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PREFACE

The day has clearly passed when any comprehensive presen-

tation of all dynamics could be compressed and unijfied within

the compass of one moderate volume of homogeneous plan.

The established connections of dynamical reasoning with other

fields in physics are of increasing number and closeness, as

furnishing for them strongly rooted sequences in their interpre-

tative trains of thought and linking together what would else

have continued to stand separate. And that relation has reacted

powerfully in modern times upon dynamics itself, perpetually

enriching its substance, yet at the same time introducing within

it certain sharpening differences that are stamped upon it by the

type of use for which preparation is being made. These in fact

modify superficially the modes of expression and their tone, and

shift their own emphasis through a range that brings about

what is in effect a subdivision of territory and an acknowledg-

ment of practically diverse interests. It is in response to the

situation which has been thus unfolding, and in conformity with

its drift toward manifold adaptations, that special treatises have

been rendered available whose measure of unquestioned excel-

lence and authority would make superfluous an attempt to

replace any such unit with a marked improvement upon it.

But undoubtedly these differentiations founded in divergencies

and inevitably expressing them in some degree, are entailing a

corresponding need and demand to offset them with a broadening

survey of the common foundation and of the common stock of

resources. And with that end in view another treatment of

dynamics finds a place for itself and holds it for special service.

This will propose to state with catholic inclusiveness the principles
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that lay out and direct all the main lines of use, and to anticipate

at their common source, as it were, the preferred methods and

forms that are characteristic of various provinces.

On this side also reasonable requirements for the immediate

future have been satisfied up to a definitely recognizable point.

For works on abstract dynamics are at hand to help, whose

number and quality have left no fair opening for renewed exposi-

tion, that could indeed scarcely attain excellence without dupli-

cating them. In the same proportion, however, that their

requisite perspective has grown, until it involves truly panoramic

sweep, its due scope must cease to be secured except from a

distance that expunges most details and spares only landmarks

of the bolder outlines. And under the urgent pressure to con-

dense in order to avoid neglecting and yet not become too

voluminous in summarizing completely, to keep even pace with

widening outlook, this view of dynamics cannot but endure the

attendant risks of abstractness. Because it must lean in building

toward great rehance upon the formal aid of mathematics, per-

force the physical coloring will fade and the bonds with experi-

mental reasoning be loosened. The stated results are pro-

gressively less likely to comprise what is charged with tentative

quality and is held with the candidly provisional acceptance

proper to inductive method.

For a student devoted to physical science though, as the

gifted mathematicians Poincare and Maxwell have been anxiously

insistent that he should be aware, there are lurking elements of

danger in magnifying a bare logical skeleton as a goal, and in

spending best effort upon articulating it. It is a misguidance

apt to control into rigidity thought which can scarcely prove

worthily fruitful unless it is maintained plastic. There is a

plain sense in which dependence upon clarity of demonstration

in terms of mathematical brevity and rigor may operate as a

defect; and that severe pruning which suppresses all but defini-
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tive advance may mislead. There is a season for mitigating the

austerity of algebra and daring to become discursive, for relaxing

the ambition that is steadied to attain command of abstract

principles on their highest level and for pausing in reflective

examination of their genesis and their setting. Truly it would

sterilize action to inchne thus always; but never to turn aside

from the more arduous pursuit tends to dissipate that atmosphere

for dynamics which has given it life.

At the other extreme are found the practical temperaments,

looking for tools with which to undertake their special tasks, and

largely unmindful of the processes by which those have been

shaped and of the far-reaching equipment in which their func-

tion is but one part, if only a particular routine can be adequately

served or intelligently mastered. And this more empirical frame

of mind that springs from absorption in monopohzing pursuits

can be fostered and strengthened by the sheer difliculties in

external form that are impressed upon abstract dynamics by the

tendencies that have just been referred to, and by the air of

remoteness from things material and mundane which that

treatment, if uncorrected, confers. Unless it can be halted,

therefore, a movement toward disintegration which must be

coped with will confront the cultivators of dynamics that

derives a backing also from other circumstances of the present

situation.

The Hfting of technical science to a better plane, where the

habitual facing of new problems under the illumination of

theoretical insight is coming to prevail, creates a demand in all

the fundamental sciences that is a modern appeal. It has been

incorporated into fixed plans of preparation for normal careers

in active life to accompHsh those things which were formerly

undertaken with dominating incHnation by minds self-selected

through their special gifts. There must be, then, in the methods

of presentation and in the execution of them, some recognition
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of a constituency that is at once larger, less homogeneous, and

more in need of aid. In a restricted sense of the word, there is

a summons to popularize the abstruser sciences, and among them

dynamics, with a design to favor their assimilation by students

at an earher stage. This will make concessions in view of

hindrances inherent in the subject-matter, and allowance for

faculties of comparison and of analytic judgment not yet ripened

into full command of all resources.

There is some element in the immediate need that is due to

passing a transition and that will be lost in a newly adjusted

order; for it has appeared from manifold experience what

marvels can be wrought by tradition in giving easy currency to

scientific doctrine. Moreover, the obstacles that loomed larger

by mere novelty suffer genuine reduction by more lucid state-

ment. An older generation arrived but gradually at an under-

standing of the principle in conservation of energy, and caught

the advantage and power of absolute measurements first in

glimpses. Yet they have lived to find those unfamiliar ideas

adopted among the smoothly working formulas of unquestioned

truth. So it will not pass the limits of a reasonable anticipation

to forecast how the younger generation of today can move at

ease in their maturity among bold concepts that were obscure

when imperfectly grasped. Nevertheless, as the call now is,

so must the answer be given.

Every aspect of the thoughts here put down is framed in a

personal experience: the profit from quickening perception and

appreciation for the nexus between sharply generalized ideas

and their narrower origins; the benefit of laying stepping-

stones gauged to a student's stride; the reward of implanting

human interest within the routine of an industrial calling; also

the moral gain through confirming intellectual honesty under a

sustained demand for actual comprehension of what one is

challenged to attack among the papers rated as classics, or in
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judging and sifting recent work. Aiding to scent difficulties

first and then to overcome them fits the processes of the average

mind, where the stronger talent can walk self-guided.

The present enterprise was born of the foregoing considerations

in so far as they dictated its material and the ends for which that

was offered in gradual accumulation during many years and

under the influence of contact with students of varied purpose.

It renounces from the outset all claim to be systematically con-

ceived; it is content with a circling return from one point and

another to a core of ideas that are worth reviewing in their

various aspects because they are central. In their nature being

a supplement to standard books that differ in type from each

other, and offering themselves in flexible continuation of an

elementary stage with unsettled achievement, these selected dis-

cussions cannot escape being judged fragmentary by some, redun-

dant by others. But their spirit and their general aim are built

upon ascertained failure to acquire elsewhere a just comprehen-

sion of several matters here made prominent and perhaps in

some degree originally presented.

This kernel of intention in the subject-matter gathered for

these chapters lends to them, it may be claimed legitimately,

something of peculiar appropriateness for the circumstances of

their publication. On the occasion to be celebrated it seems

particularly pertinent that there should be recorded in some

permanent form the working of those influences which our

University has not withheld from her graduates, to nourish in

them a living root of independent thinking and of unflinching

thoroughness without which constructive scholarship cannot

exist.

June, 1917.
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CHAPTER I

Introductory Summary

1. Only sciences that have attained a certain ripeness of

strongly rooted development have been found capable of com-

bining a vigorous and progressive activity at their working

frontier for advance with reflective examination of their deeper

foundations and their general method. The activity is aggressive

in devising novel attack upon enlarging material, while reflection

upon what has already become standard must go with recasting

it to meet modified demands. This situation has been promi-

nently reaUzed in the case of dynamics, whose stirrings to self-

criticism have been evermore spurred by the interactions with

mathematics and astronomy', its closer neighbors, at the same

time that its field was broadening to permeate and harmonize the

greater part of physics. A large net gain of helpful stimulus from

common aim must be allowed here, reenforcing the vigor from

rapid growth, though there have been some dangers for dynamics

to avoid, such as becoming infected with the more formal and

abstract spirit of mathematics, or underrating its own basis in

phenomena by acquiescing too generously in philosophy's rating

for empirical science. It is a fitting preliminary to our immediate

purpose to touch upon one or two such reactions between in-

fluences from without and from within; in part because the

inquiries that were provoked, though prolonged through fifty

years or more with acuteness and tenacity, have left practically

unshaken the external forms of quantitative expression, at least.

This is no sign, however, that djmamics is stationary and stereo-

typed; but onlj^ a reassuring fact to beget confidence in the

fabric of the science. The subtle and less obtrusive changes

1
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must not be forgotten, that have clarified the concepts and

infused into them added significance by revised interpretation.

Reading the prospects of the imminent future, too, rouses the

expectation that what has been will continue to be, while dy-

namics is adapting itself to a wider scheme of connections and

to a more accurate insight into its own doctrine or theory.

It is indeed an astonishing testimony to the happy strokes of

genius in the founders of mechanics that force, impulse, work,

momentum and kinetic energy still exhaust the primary needs,

though the broader scope of dynamics now covers the chain of

transformations in which mechanical energy is only one link.

And it confirms our belief in the vital and definitive appropriate-

ness of those quantities to find them retained essentially by those

who are trying out another body of principles that might be substi-

tuted entirely or in part for the Newtonian mechanics. Mean-

while the equations of motion have not been superseded, yet

they date from the seventeenth century; the notable advances

due to d'Alembert, Euler and Lagrange in the eighteenth century,

and to Hamilton in 1835, offer still the foundations upon which

we build. But this introduction would outline a one-sided and

misleading picture of mere static stability unless it used its

warrant in bringing to supplementary notice three strands that

have been woven into dynamics more recently, to alter in some

degree its texture and to influence its emphasis. We shall next

attempt to dispose of these in all proper brevity.

2. Under the first label energetics we are called upon to chron-

icle a strong movement that sought to enhance the prestige that

energy in its various forms had already gained by the rapidly

successful campaign about the middle of the nineteenth century.^

This tendency was an almost inevitable accompaniment of that

dominating relation to physical processes which conservation of

energy as a conceded central principle had justified beyond cavil.

1 See Note 1. Refer to collected notes following Chapter IV.
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But the more pronounced utterances about energy overshot the

mark in their zeal, and sought to exalt it in rank as the one

dynamical quantity to which the rest should be held auxiliary,

and upon which they should be based mathematically. Then
the series—kinetic energy, momentum, force, mass—was to be

unfolded out of its first term by divisions; and violent extremists

were heard, even condemning force as a superfluous concept,

refusing to associate it directly with our muscular sense, or to

recognize it as an alternative point of departure yielding momen-
tum and other quantities by multiplications. Of course deliber-

ate minds looked askance at a professedly universal point of

view that would exclude, save at the cost of an artificial device,

such important elements as constraints that do no work. Com-
mon sense declined to cripple our assault upon problems for

doctrinaire reasons that would bar and mark for disuse certain

highways of approach, but it seized the chance instead to enrich

and strengthen dynamics by wisely adopting the suggestion to

exploit more completely the relations that energy specially

furnishes, and to incorporate them among its resources and

methods. After abating its flare of exuberance, the saner forces

behind the reconstruction that was advocated have been har-

nessed and made contributory to a real advance that grafts new
upon old, and embraces whatever proved advantage attaches to

all reasonable points of view, with the object of reducing finally

their oppositions and fitting them in place within a more compre-

hensive survey.

What is patent to read in the example of energetics should in

prudence be made further to bear fruit; since judging historically,

any new burst of reform spirit will be likely to repeat the main

features of its lesson. An old and thoroughly tested science

especially will less easily break the continuity of its course,

though it is always responsively ready to swerve under every

fresh impulse to amendment by discovery. So the matters
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offered recently under the caption relativity are surely giving to

dynamics a wider sweep of horizon; but there too, when the

permanent benefit accruing has been sifted out, the residue will

probably prove more moderate than the tone of radical spokes-

men has been implying while the sensation of novelty was

strongest.^

3. It has been remarked often that Newton's three laws of

motion taken by themselves give a bias toward concentrating

attention upon momentum, and upon force exclusively as its

time-derivative, with a comparative neglect of the counterpart

in work and its relation to force. The restoration of balance

began at once however, and soon the principle of vis viva was

added and recognized as complementary on a level footing to

Newton's second law. The equivalents of what are now known

as the impulse equation and the work equation were established

firmly and put to use. The readjustment thus begun was

continued by steps as their desirableness was felt until with the

ripeness of time it culminated, we may say, in the proposals

that form the nucleus of what we call energetics. It will be

profitable to expand that thought and mention some chief

sources of the need to follow that line, or what gain has been

found in doing so.

In rudimentary shape the idea of conservation of energy had

emerged early; the histories are apt to date it from the method

invented by Huyghens for the treatment of the pendulum.

And so soon as the formal step had been taken in addition, that

set apart under the heading potential energy the work of weight

and of gravitation, because it can be anticipated by advance

calculation exactly and with full security, the invariance of

mechanical energy under the play of these forces when thus

expressed, or its conservation within these narrower hmits,

became a demonstrable corollary of fundamental definitions.

1 See Note 2.
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The discovered inclusion of electric and magnetic attractions or

repulsions under the same differentially applied law of inverse

square that is characteristic of gravitation made natural the

extension of potential energy as a statement of securely antici-

pated work to the field of those actions as well. And a large

group of valuable mathematical consequences was accumulated

which remain classic and which accompany the law of inverse

square wherever it may lead, retaining their validity with only

slight changes of detail.

These developments are controlled to a great extent by the

idea of energy, and they must have built up a general perception

of its power. The invariance of energy was fitted more com-

pletely for use as a principle, wherever its mechanical forms alone

enter which we distinguish as kinetic and potential, when Gauss

had evolved that plan of so-called absolute measure which has

furnished us with the centimeter-gram-second system. He
certainly consolidated into unity all sources of ponderomotive

force in the several fields where a potential had been recognized.

Of course we discriminate between this stage and the conserva-

tion of energy under all its transformations to which the period

of Mayer, Joule and their coworkers attained. The earlier

halting-place behind distinct limitations of scope left matters

besides with a formal content only, in the sense that no questions

were raised and squarely faced that looked toward localizing the

latent energy and investigating the possible mechanism by which

a medium might hold it in storage. This formal mathematics

centered on the fact that the work done within a conservative

system and between the same terminal configurations does not

depend upon the particular paths connecting them. It is a

strikingly significant exhibition of that quasi-neutrality that is

now one salient and accepted feature in the procedure of ener-

getics that so much of solid and permanent accomplishment was

possible while certain vital issues were evaded, and without
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being compelled to register even a tentative decision upon them.

That non-committal attitude towards much else as subsidiarj',

provided always that the gains and losses of energy for the

system under consideration can be made to balance, has often

been employed to turn the flank of obstacles and has been in that

respect an element of strength. Or it leaves us in the lurch

weakly, we might say about other occasions where we have

stood in need of some crucial test between alternatives, and have

found but a dumb oracle.

4. The next important advance was then timely and specially

fruitful in giving life and deeper meaning to what had been in

these directions more a superficial form; and at the same time

in moving forward beyond the previous stopping-place to expand

the range of dynamical ideas.^ It is Maxwell who is credited with

initiating these contributions by treating dynamically new

aspects of electromagnetic phenomena. He took bold and novel

ground by outlining his provisional basis for an electromagnetic

theory of light that converted a colorless temporary vanishing of

energy into a definite and plausible plan for its storage in a

medium. In achieving this change of front he brought three

lines of thought to a convergence-point; for besides the re-

searches of Faraday and those that identified quantitatively the

many transformations of energy, he utilized more fully than

his predecessors had dared the possibilities that the earlier

dynamics had done much toward making ready to his hand.

It is this third element perhaps that marks most strongly for

us the threshold of the new enterprise upon which dynamics will

hereafter be engaged, in whose tasks we can find a union in just

proportion of imaginative speculation with mastery of the

mathematical instruments and with the candid policy of ener-

getics to preserve an open mind and a suspended judgment in

the face of undecided questions.

1 See Note 3.
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Maxwell was a pioneer in prolonging with new purpose the

sequence upon which d'Alembert set out, and which Lagrange

continued, beyond the point at which the latter paused after

recording notable progress. What those earlier men had done

with the discovery of virtual work as a basis for developing

mechanics remained to be restated for dynamics, and adapted

to a more inclusive command of energy transformations. Among
other things this has given us an enlarged interpretation of older

terms. We are ready to view a conservative sj'^stem as one

whose energy processes are reversible: that is, energy of any

form being put in, it can be restored without loss, in the same

form or in some other. We have learned to group fair analogues

of kinetic and of potential energy for a system thus conservative

according to one defensible test. Potential forms of energy will

be found resilient as the original examples are; that is, they will

exhaust themselves automatically, under the conditions of the

particular combination, unless the corresponding transformation

is prevented actively. But in order to be coordinated with

kinetic energy on the other hand, the passive quality must be in

evidence that requires some decisive intervention for the passage

into other forms. This trend toward assigning wider meaning

to dynamical concepts has given us further generalized force as a

quotient of energy by a change in its correlated coordinate; the

matching of force and coordinate as factors in the product that

is energy being executed on due physical grounds. We have

been led likewise to replace mass by a broader term inertia,

where a quantity is detectable in the phenomena of more general

energy-storage, that stands in essential parallelism with the rela-

tion of mass itself to force and kinetic energy. And the dynami-

cal scheme has been rounded out by allowing to momentum those

privileges of latency and of reappearance in the literal mechanical

form, that were at the outset the monopoly of energy.

5. These comments have been attached to Lagrange's equa-
2
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tions because Maxwell did in fact make them the vehicle of his

thought; insisting upon sufficient detail to lift the reproach of

indefiniteness, but also by a right inherent in the method passing

over in silence the points where invention had thus far failed. But

it was demonstrated long ago that d'Alembert and Lagrange and

Hamilton have provided us with interconnected lines of approach

to the same goal; except as the element of choice is directed by

convenience Hamilton's principle lends equal favor and support

with Lagrange's equations to the attempt to summarize a com-

prehensive statement in terms of energy. The former however

elects to generalize for all analogous transformations upon a

simple theorem: That potential energy will exhaust itself as

rapidly as imposed constraints allow upon producing kinetic

energy.

Beside the direct intention to indicate some reasons why
dynamics leans increasingly upon energy relations, and borrows

from energetics some modes of attack, these later remarks have

a reverse implication as well. They intimate the belief that

firm hold upon the elementary content of dynamical principles

and intelligent full insight into them are not superseded, nor

yet to be shghted. And the meaning here is not the mere com-

monplace truth that the more modest range satisfies many needs;

or that historically it is the tap-root that has nourished and

sustained the later growth. But recurring to what lies at the

foundation is further the best preparation for the critical dis-

crimination that must be exercised at the advancing frontier,

because it holds the clews of conscious intention by which all

effort there has been guided, and lends effective aid in steering

an undeflected course among a medley of proposals to tolerate in

concepts a figurative shading of their literal acceptation, or to

condone acknowledged fictions on grounds of expediency.

6. The redistribution of emphasis upon which we have been

dwelling has doubtless exercised the most penetrating influence



Introductory Summary 9

to alter the complexion of mechanics as Newton left it, and

therefore we have put it first. But there has been a second

movement whose modifying effect as dynamics has grown must

not be neglected, and which also like the leavening with energetics

has been spread over a considerable period, though our report

of its outcome can be compressed into a brief space. ^ This

exhibited itself in a searching and protracted discussion on the

relativeness of velocity and acceleration that did its part in con-

tributing to clearness by removing ambiguity from a group of

terms and carrying through a completer analysis of their bearings.

The main concern here was not so much with the baldly kine-

matical side of the question; since it is plain that the final truth

in that sense lies very near the surface. But the endeavor was

quite specially shaped by the ambition to contrive at least soundly

consistent expression for all dynamical processes that shall be

recognized in physics; perhaps with some reach toward an ideal

of universal and ultimate validity. The entire relativeness of

those motions, which furnish leading factors of importance in

decisions upon working values of dynamical quantities, is now a

standard item in the opening chapters of dynamics as a corol-

lary to choice of reference elements by agreement.

The acquirement of this point of view has therefore excluded

all search for truly absolute motion and canceled the unqualified

significance of the phrase which dates as far back as Newton.

Since it seems flatly contradictory to unshackled relativeness,

an impression may be created at first hearing that here for once

the older thought has been overturned and radically revised.

Yet the case is not so weak as it sounds, nor do we see, when

we look below the surface, that any foundations have been

affected vitally. We may be comforted to observe only another

striking instance where a great mind did not everywhere and

straightway hit upon most felicitous terms to describe how it

• See Note 4.
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dealt with powerful nascent conceptions. Newton seems to call

motions absolute if they dovetailed easily with the spacious

frame of physical action that his discovery of gravitation was

beginning to build; and himself engrossed in a swift recon-

naissance through the new region, he left later invention to

amend his notation. But it is chiefly the philosophical conno-

tations of his word absolute and not its unfitness in physics that

have made it the center of futile controversy. Thus the idea that

the older writers really had in mind when they spoke of absolute

motion was scarcely different from one that continues to hold

its ground and compels us still to separate two lines of inquiry.

Because beyond the settlement of kinematical equivalences that

is direct and simple since it is unhampered by any physical

considerations, the questions of real difficulty remain unsettled

to confront us. They have had a certain elusive character by

involving a complicated and tentative estimate that must

balance on the largest scale and through the whole range of

physics net gain against loss in simplicity. What common back-

ground, as it were, of reference-elements is decipherable upon

which the interplay of forces and of energies shall stand in

simplest and most consistently detailed relief?

In consequence it has not been displaced as a tenet of orthodox

dynamical doctrine that standards by which to judge of the

energy, momentum and force that ought to appear in its accounts

will not stand on a par if adopted at random, however inter-

changeable they have proved in passing upon rest, velocity and

acceleration by the mathematical criteria in the more indifferent

domain of kinematics. Dynamics has never hesitated to stig-

matize apparent forces, for example, as spurious or fictitious in

relation to its general procedure, and to revise its lists of rejec-

tions on due grounds derived from advance in knowledge and

in method. The definitive resolution of uncertainties that affect

reasonable decision for the questions here implied is still awaited;
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of necessity that objective is not attainable conclusively while

the surveys in the several provinces of physics remain both

fragmentary and disconnected. Though it has been claimed

indeed that secure foothold was being gained through reliance

upon a reference to stellar arrangement in removing excres-

cences that showed by the light of its corrective tests.

7. The growing practice to designate that reference as ultimate,

however, has not excluded a proper admission that its lines of

specification were to be improved by whatever greater precision

new discovery and analysis of it reveal definitely to be progress.

And it is fairly probable that majority opinion was looking

entirely in that direction for fresh landmarks until other prospects

were opened with vigor in recent years. These depend upon a

certain increase in freedom to retain functional forms when the

time-variable is added to the coordinates and included in the

group of quantities that are involved in the readjustment when a

change of base in the reference is undertaken. This far-reaching

proposal derived its original suggestion from optical phenomena

peculiar to electromagnetism and in one sense exceptional; yet

since it is the crux of this situation that a decision of universal

application is sought, any unreconciled indications of alternative

must be reckoned with, whereby two plans for attaining the

maximum simplicity that is desired become divergent. The

competitive schemes of ultimate reference cannot be weighed

decisively before the ramifications of both have been traced

everywhere in that detail which can afford a satisfactory con-

clusion through their final comparison. And for that the time

does not seem ripe; especially as each thus far falls short of

established universal quality by seeming to leave some combina-

tions unreduced, or abnormal to its plan. It is therefore reassur-

ing to our logical sense to note how the practically available

devices of proximate reference persist and are neutral, save in

the formulation of the Hmits upon which their steps of increasing
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precision may be declared to converge. For that their own
framework is by spontaneous intention approximate can be

conceded without discussion.

8. The contrast upon which we have been remarking, between

an indecision toward many-phased equivalences and the evolution

of preference among them is then one characteristic of the trans-

ition from kinematics to dynamics; that is, from a range fixed by

mathematical conformity to a selection narrowed by physical

meanings. We can proclaim a forward step in that direction when

the allowable mathematical range has been plausibly dehmited, as

with the transverse wave of optics from Fresnel's wave-surface in

crystals to recent descriptive spectroscopy; but it is the crown of

attainment to master insight into the causes of the effects ob-

served, or into their sources, or into their explanations, in whatever

chosen terms the phrase may stand. This persistent effort to

identify physical sequences with a mechanism, to link a series

of phenomena by means of a mechanical interpretation, has

absorbed its full quota of sanguine activity since Newton scored

his early partial success with the propagation of sound. The

record shows in the main that the harvest of reward for these

attempts has continued into this later era, slackening somewhat

of course by exhaustion of the material. Yet there has been,

too, a baffling of the imagination in its task of dissecting the

complicated workings of energy in less traceable manifestations

by traveling on parallels to direct sense-experience. And again

optics illustrates; but now is shown a kind of failure, both with

the abandoned types of its theory and in its electromagnetic

alliance.

Every move in bestowing thus upon dynamics the control of a

larger domain has been healthy growth, keeping pace with

progress in other directions; and always sufficiently safeguarded

against speculative vagueness by bonds with the method of its

beginnings. Wherever mechanical energy in ponderable masses
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exhibits itself in the actual chain of transformations, it gives a

touchstone through the measurable quantities, Uke pondero-

motive force, by which to try the conceived series for its vahdity

or consistency.

There are assumed successions, however, in which mechanical

energy is not directly in evidence though equivalents of it appear

in amounts known by using the change-ratios. Suppose we trans-

late the given facts or quantities and introduce mechanical energy

fictitiously. We have been prone to incline our judgment of the

original case according to the analogies of its artificial substitute,

and accordingly to accept the assumptions of the former or to

speak skeptically of its paradoxes. But in the puzzHng region

that we have just mentioned there may be written a hidden

caution about the cogency of such transferred conclusions. The

absence of mechanical energy from the transformations that do

occur, as we are ready to suppose for light during transmission,

or for a free electron with inertia and without mass but traversing

an electromagnetic field, may be a contributory circumstance in

precluding a mechanical model and in leaving us thus far in the

twilight of kinematics, wrecked on obstacles of seeming internal

contradiction. And to the extent to which this indicated possi-

bility is entertained, the leverage of these unreduced phenomena

will be diminished, to guide or to modify dynamical thought that

discusses ponderable materials.

9. The third gain that we must bring forward is the improved

formulation of dynamics by replacing the cartesian expansions

with vector analysis, whenever general discussions and theorems

are taken in hand, or indeed everywhere unless we are barred

by the needs of detailed calculation to which the vector notation

is not so well adapted. The direct influence here is confined to

external forms, it is true; yet indirectly an undeniable effect

will always be exerted to favor continuity in the presentation of

reasoning, and to preserve with fewer breaks an intelligent
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orientation during extended developments. These advantages

are felt already, and they will accrue perpetually as a natural

accompaniment of increased compactness in stating relations

and of accentuating resultants first, only passing on to their

partial aspects where necessary. We should all lend our aid to

banish the obscurities and the disguises inseparable from the

older system of equation-triplets. The subdivision of the newer

analysis that is known distinctively as vector algebra is stand-

ardized fairly to the point of rendering great help in dynamics,

and adjustments to this specific use are perfecting. As regards

the vector operators like gradient, curl and divergence, they are

as yet far from establishment in full effectiveness, by unforced

extension of their original relation to field-actions and abatement

of its comparative abstruseness.

10. This introduction will distort the truth of its own words

and convey an unbalanced false impression, unless our reading

of it can be depended upon to counterpoise the omissions that have

trimmed it to these succinct proportions. So it is well to make

room at this point for a few sentences that bear upon maintaining a

real perspective against the tendency of extreme compression.

And first it must be realized that the personal careers of a small

group of geniuses do not constitute scientific history. To men-

tion one great man and to picture him advancing with long sure

strides implies with scarce an exception a whole accompanying

period.active with sporadic anticipations of some larger swing; an

epoch of transition busy with foreshadowings of a new alignment.

One's own thought should always supply this current of perhaps

unrecorded preparation for an impetus that has given enduring

reputation to its standard-bearer. The moulding of dynamics

therefore is not the merit of its master-builders alone; we must

not ignore those who had an inconspicuous share in establishing

and in perpetuating its governing traditions.

Then secondly it may prove misleading to speak exclusively
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of changes and innovations, though some temporary aim compels

that. So we should return to the thesis of our opening para-

graphs and allow them a corrective weight: That the large

body of principles acquired early for dynamics and since un-

questioned has steadied its course. It has been capable of

assimilating the material that we have chosen to mention more

explicitly without sacrifice of comparative power to treat for

example the mechanics of solids and fluids. The considerations

derived within that older territory must hold their place in what

now follows.

11. It will be helpful in the direction of forestalling verbal

quibbles and of clearing the ground otherwise if we enter next

upon an explanation of the usage that we shall adopt for a few

convenient terms; and also proceed to indicate the general

attitude chosen in which to approach mathematical physics, of

which dynamics forms one part. It may be well to premise

once for all that no such personal choice covers a mistaken en-

deavor to close a question that is regarded reasonably as open,

and to silence dissenting opinion. But there is often a practical

necessity for taking a definite position, where adherence to one

view colors exposition; and thus it should be candidly an-

nounced, although the occasion is not appropriate for extended

argument.

In accordance with the unavoidable compulsion to take up

piecemeal the phenomena and the processes given by observation

and experiment in the physical world, any particular problem

of dynamics is obliged to concern itself with a solution obtained

under recognized limitations. These exhibit themselves on one

side in setting a boundary to the region within which the course

of events shall be investigated. If we distinguish within such a

boundary a part enclosed that is ponderable and a part that is

imponderable, we shall apply those terms on a plain etymological

basis; so that the ponderable contents have weight as evidenced
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by the balance and are subject to gravitation, while the im-

ponderable contents are not thus detectable. We shall speak

of the former also as masses or as bodies. The latter if not

alluded to as free space are called the ether, or the medium,

meaning the medium for the transmission of light and other

electromagnetic action. It is assumed that the ether-medium

has not mass in the sense just specified; but this does not deny

to it the more inclusive quality of inertia in certain connections.

A distinction need not be always upheld between mechanics and

dynamics ; but where this is done the second name has the broader

scope, in that it may bring both masses and medium under

consideration, which comprise then a dynamical system rather

than a mechanical one. By contrast the older branch, me-

chanics, attempts only to deal with masses grouped into one

body, or into a system of bodies. We shall conceive a body to

fill its volume continuously and therefore to be adapted in so

far to expressing by means of an integral its total, either of mass

or of any quantity that is a function of the mass-distribution.

The conception behind the phrase system of bodies is somewhat

flexible; it may denote a discrete arrangement of bodies, whose

mass and the like are then given as a sum of a finite number of

terms, of which usage the astronomical view of our sun and its

planets grouped as bodies in the solar system affords a typical

instance; but it is applied also to a closely articulated assemblage

of bodies like a machine, under suppositions that might or might

not naturally justify integration. The opposition between body

and system of bodies is retained and does some service though

it is not tenable under stricter scrutiny, and cannot be radical so

long as physical theory actually analyzes all accessible bodies

into fine-grained systems for the purposes of molecular and

atomic dynamics. On the other hand the contrast between

systems of bodies and dynamical systems loses somewhat in

significance where the interspaces are assumed to be void and
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the ether-medium is ignored; an abstraction common every-

where but in electro-magnetism; and the epithet, dynamical,

then points only towards inclusion of all transformations of

energy that remains associated with masses.

12. The tangled complexity in phenomena as they occur

however compels our official accounts of them to be given piece-

meal in other respects than by isolation of the region that lies

within an assigned boundary. What is further to be done may
be denominated variously; but it runs toward idealizing condi-

tions, both by selecting certain elements as most important for

study of their quantitative consequences and by a restatement

of these that consciously relaxes somewhat precision of corre-

spondence with the facts. It is evident how the two sources of

distortion are likely to conspire in simplifying the mathematics;

since neglecting weaker influences puts aside their smaller effects

as mere modifying terms of a main result. To prune difficulties

by this procedure as a preliminary to formulation and discus-

sion is in some sort a contrivance of approximation, conceding

the lack of desirable full power in our mathematical machinery.

That several determining reasons blend in it can perhaps be

recognized, though that is a subtle question upon which we shall

not touch; but what has practical weight is to separate two uses

of approximation, if such omission be accepted as one of them,

at the same time granting that both are drawn upon partly

because mathematics limps.

^

To put the case briefly, sometimes we lay down a rule strictly

but approximate to the results of it; which is a purely mathe-

matical operation, utilizing for example a convergent series as

we do when calculating the correction for amplitude in the period

of a weight pendulum. Or again the assumed rule itself is known

to be approximate, as is the fact when we call the pendulum

rigid and the local weight-field uniform and constant. A further

> See Note 5.
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distinction is that the first type relates to obstacles which may
be overcome entirely by device, as in reducing finally some

obstinate integral, but which lie ofif the track of advances in

physics. In the instance just quoted the correction for ampli-

tude will remain untouched, because an angle and its sine will

never be equal. But with* approximations of the second or

physical type it is otherwise; we cannot make a body more accu-

rately rigid by taking thought, nor can we bestow upon the

field-vector (g) any quality of constancy that it lacks; so they

progress by changing their rule. If provisional and marking

imperfect knowledge while we await amendments of magnitude

not yet ascertained, they move toward refinement of precision

parallel to the advancing front of experimental research, as the

law of Van der Waals about gases is seen to improve upon that

of Boyle. Yet no supreme obligation is felt to make such changes

everywhere; permanent and voluntary renunciations of achiev-

able accuracy are frequent, too; we shall probably continue in

many connections to discuss rigid solids and ideal fluids, not-

withstanding the volume of fruitful investigations in elasticity,

in viscosity and elsewhere, whose data are now at our disposal.

13. All these points are self-evident at first contact, and yet

it is advisable to name them, in order to put aside what is inci-

dental and focus attention upon the intrinsic structure of our

equations, which leaves them inevitably approximate as an

accepted limitation due to idealized or simplified statement.

Clothing this thought in a figure, let us say that the principles of

physics crystallize from the data of discovery into the concepts

that have been shaped by invention to express them, but not

without revealing traces of constraint and distortion that are

not subdued and made quite to vanish under repeated attempts

at adjustment. Historical inquiry has brought to light some

remarkable interdependences here, and furnished a list of ex-

amples how discovery has stimulated the invention of concepts
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to match, and how on the other hand a stroke of inspiration in

devising a well-adapted concept has smoothed the path to dis-

covery of principle. Nevertheless the intimate psychology of

such reciprocity is one of those deep secrets that have been

securely guarded, and it need not concern us; we reach the kernel

of the matter for the present connection when we insist upon the

framework of dynamics as built of invented concepts and add

one or two corollaries of that central idea.

In the first place, in order to proceed bj'^ mathematical reason-

ing from specified assumptions, the margin of ambiguity in the

terms that are used must be cut down as much as is feasible.

A controversy about Newton's third law; whether or not it

applies to a source of light, could be settled easily under our

agreement that the ether-medium is not a body {corpus). And
the emancipation from corroborative tests in the free realm of

concepts is some compensation for the trouble of defining. It

has been laborious to disentangle the mean solar second as a

uniform standard of time; but the fluxion-time (t) of Newton in

its quality of independent variable must be equicrescent. So in

the concept of unaccelerated translation there is no place for

differences of velocity anywhere or at any time; and values

specified to be simultaneous cannot be affected by uncertain

deviations from that assumption; and for the conceptual iso-

tropic solid under Hooke's Law the stress-strain relation is

rigorouslj'^ linear. Likewise, if according to the tenets of rela-

tivity the light-speed in free space and relative to the source is

always the same, we go on unflinching to work out the conse-

quences; and any such assumption with its demonstrable deduc-

tions will be entertained with candor, so long as its contacts with

observed facts given by correct mathematics do not fail either

as plausible physics. However, from the side of these perpetual

tests there is sleepless critical judgment upon all our mental

devices, to continue, to revise or to reject them. In other respects
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the schemes may be plastic to shift the point in precision at which

they halt, and we are reasonably tolerant also of conventional

fictions.

This brings to a close the short preface of such verbal comment

as may provide a setting in which to frame the equations that

follow, and at the same time assist in some respects to receive

more appreciatively their meaning by bringing to view what

underlies them.



CHAPTER II

The Fundamental Equations

14. Any standard exposition of dynamics, though it may not

attempt a comprehensive and most general treatment of the

methods and principles, will introduce into its resources for

carrying on the discussion the six quantities : Force, Momentum,
Kinetic Energy, Power, Force-moment and Moment of Momen-
tum. The terms in detail that are required for the specification

of these, and a certain group of propositions into which they

enter, are so fundamental that they become practically in-

dispensable in establishing the necessary developments. The

units that their function as measured quantities demands are

supplied according to the centimeter-gram-second system with so

nearly universal adoption that we can regard it as having dis-

placed all competitors, everywhere except in some technical

applications where special needs prevail; so that we shall con-

sider no alternative plan of measurement.

Since the six quantities named are not independent of each

other, but are connected by a number of cross-relations that we

can assume to be famiHar in their elementary announcement, it

is clear that the way hes open to select for a starting-point a

certain set as primary, the others then falling into their own

place as derived or even auxiliary quantities. It is also plain,

as a mere matter of logical arrangement, that any particular

selection of a primary set will not be unique, with a monopoly

of that title to be put first; and this leaves the exercise of prefer-

ence to be governed ultimately by reasons drawn from the

subject-matter. Not only is it possible to make beginnings

from more points than one in presenting the six quantities on a

21
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definite basis, and in exhibiting the Hnks among them, but it is the

truth that beginnings have been made differently and defended

vigorously. We have already alluded to one such period of

polemic through which dynamics has passed. It is a necessity

however to choose a procedure by some one line of advance;

but let it be understood that we do this with no excessive claim

for its preponderant advantage or convenience, and explicitly

without prejudice to the validity of some other sequence that

may be preferred.

15. In the light ol this last remark we shall make our start

by picking out for first mention a group of three quantities:

Momentum, Kinetic Energy and Moment of Momentum. With-

out anticipating a more specific analysis of them, it is evident on

the surface that they all apply in designating an instantaneous

state depending on velocities, and that momentum is the core

of the three; entering as free vector, as localized vector, and as

factor in a scalar product. And further it can be noted at once,

without presuming more than a first acquaintance with me-

chanics, that the remaining three quantities constituting a second

group can be described in symmetrical relation to the first three

as their time-rates. Then force is made central; and it in turn

appears as a free vector, as a localized vector, and as a factor in a

scalar product. We take the first step accordingly by laying

down for application to any body or to any system of bodies the

three defining equations

:

Total momentum = S /mVdm = Q

;

(I)

Total kinetic energy = S fjn^(y-vdm) = E; (II)

Total moment of momentum = S /m(r x vdm) = H. (Ill)

These indicate in each case, with notation that, is so nearly

standard as to carry its own explanation, the result of a mass-

summation extended to contributions from all the mass included

in the system at the epoch, under the terms of some agreement
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covering the particular matter in hand, and isolating in thought

temporarily, for purposes of study and discussion, the phenomena

in a limited region. In conformity with a previous explanation

in section 11 any assumed continuous distributions of mass are

included under the integrals, whose further summation indicated

by (2) may be necessary when a system of bodies, discrete or

contiguous, is to be considered. It deserves to be emphasized

perhaps that these are defining equalities merely; so that (Q)

and (H) and (E) only denote aggregate values associated with

the system at the epoch, and so to speak observable in it; neither

side of the equalities conveys any implication about external

sources, or causes by whose action these aggregates may have

originated, or which may be operative at that epoch to bring

about changes affecting them.

16. Because the variables (r) and (v) occur in the quantities

with which we are now dealing, if for no deeper reason, it is

implied that a definite system of reference has been fixed upon

as an essential preliminary to actual attachment of values to

momentum, kinetic energy and moment of momentum. For

the ordinary routine which is likely to involve recasting vector

statements into semi-cartesian equivalents, or the inverse opera-

tion of arriving at the former by means of the latter, the requisite

elements for the reference are obtained by selecting an origin

from which to measure distances and axes for orienting directions.

Unless special exception be explicitly noted we shall follow the

prevalent usage of taking axes of reference that are orthogonal

and in the cycle of the right-handed screw; and shall for con-

venience conduct the main discussion on this permanent back-

ground, reserving any substitution of equivalents for occasions

where that has some peculiar fitness. The reference-frame that

has been agreed upon, it must not be forgotten, is in the essence

of it conceptually fixed while the agreement to use it continues in

force, because it has been singled out as the unique standard in

3
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relation to which we specify or trace what can be called the

configurations (r) and the motions (v).

As an antecedent condition of algebraic evaluation for our

three fundamental quantities in a given system at any epoch,

the choice of some reference-frame then is necessary; but it is

likewise evident that any one choice that may be made is equally

sufficient in respect to removing mathematical indeterminateness.

And consequently it will be found true that much can be done

in advancing a satisfactory exposition of dynamical principles to

the point where we stand at the threshold of calculations that

rest on a basis of observed phenomena, without going beyond the

potential assumption of that reference-frame that must be faced

finally, in order to complete the necessary and sufficient condi-

tion for the definiteness of the physical specifications. In other

words, a considerable proportion of the usual developments in

dynamics can be provided ready-made to this extent, and yet

fitting the measure of any reference-frame that is particularly

indicated as appropriate by a physical combination or by a line

of argument.^

These considerations are adapted to bring to the front also

the idea that quantities like the three with which we are con-

cerned at tnis moment can be evaluated for two or more different

reference-frames, perhaps with the object of reviewing their

comparative merit, especially in being adjusted to the preferences

of consistent physical views (see section 7). It follows naturally

therefore that provision must be made quantitatively for trans-

fers of base from one reference-frame to another, either in progress

toward ultimate reference, as in abandoning a frame fixed

relatively to the rotating earth, or as a device of ingenuity in

order to reach certain ends simply. The material of Chapter iii

in large part bears upon questions of that nature.

17. The range of the mass-summations that are stipulated in

1 See Note 6.
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the expressions with which we are dealing can vary with time

for several reasons that can be operative separately or con-

currently. It is compatible with many conditions about bound-

ary-surface that material may be added or lost, as is the case

when gas is pumped into a tank or out of it, or when unit volume

of an elastic solid gains or loses by compression or extension.

Or it may fit the circumstances best to mark off a boundary that

changes with time, as when we take up mechanical problems

Uke those of a growing raindrop or a falling avalanche. The

values of (Q, E, H) are accommodated to any complication of

such conditions, with the single caution that the total mass shall

then be delimited as an instantaneous state at the epoch.

We go on to assume, however, in connection with any transfers

of reference that we are called upon to execute, that mass remains

unaffected thereby in its differential elements and in its total,

being guided by the absence of experimental evidence that mass,

in our adopted use of the word, needs to be made dependent upon

position or velocity. Assembling these suppositions, we see that

mass will play its part in the equations as a pure scalar and

positive constant, except as accretions or losses of recognizable

portions may be a feature of the treatment. And consequently

equation (II) can be made algebraic at once, since the vector

factors are codirectional, and be given the form

E = 2 /^(IvMm), (1)

although the original model should be preserved besides, as a

point of departure for parallelisms that will show themselves later.

18. Return now to examine the two remaining equations, in

order to extract some additional particulars of their meaning.

In the first the total momentum appears as a vector sum, so

built up that its constituents are usually described as free vectors.

This term is seen to justify combining the dispersed elements to

one resultant, on reflecting that the predicated freedom of such
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vectors lies wholly in the non-effect of mere shift to another base-

point; and that this renders legitimate the indefinite repetition of

the parallelogram construction for intersecting vectors until all

the differential elements have been absorbed, into the total aggre-

gate. But this incidental and as it were graphical convenience

must not lead us to neglect the fact that we are nevertheless

retaining the idea of momentum as a distributed vector, and con-

tinuing to associate each element of it locally with some element

of mass. However formed its total belongs to the system as a

whole; and it can be localized, as it sometimes is at the center

of mass of the system, only by virtue of a convention or an

equivalence.^

We can call the total momentum a free vector, of course; but

its freedom does not quite consist in an indifference about its

base-point; more nearly it expresses the inherent contradiction

there would be in localizing anywhere what in fact is still con-

ceived to pervade the mass of the system. At several points we
5hall discover how the service of vectors in physics makes desir-

able some addition to the formal mathematical handling of them.

It will not be overlooked, finally, how the above analysis of com-

position enlarges upon the addition qf parallel forces to constitute

.a total, through the similar properties of an algebraic and a geo-

metric sum; the latter reduces to its resultant by complete

cancellation in a plane perpendicular to the resultant.

19. In the third equation each local element of momentum

has the attribute of a localized vector through definite assign-

ment to the extremity of its radius-vector. It is not apparent

that the vector product in which it is a factor is thereby deter-

mined to be unequivocally localized; but here again physical

considerations enter that are extraneous to the mathematics; the

practice tacitly followed localizes the several elements of moment

of momentum, not at the differential masses to which they in

1 See Note 7.
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one sense belong, but at the origin in acknowledgment of their

intimate connection with rotations about axes there, and of the

origin's importance in determining the lever-arms when the

mass-arrangement is given. Each differential moment of

momentum thus located being perpendicular to the plane of its

(r) and (v) of that epoch, is evidently also normal to the plane

containing consecutive positions of the radius-vector; that is,

(dH) is colinear with (dy), if the latter denotes the resultant

element of angle- vector that (r) is then describing; and on this

we can found a transformation that is worth noting. If (ds) is

the element of path for (dm),

dr = ^ (r X ds); ^ =
^^

(r X v); dH = Y(rMm); (2)

and the last equation reproduces differentially the type of an

elementary and partial relation among moment of momentum,

moment of inertia and angular velocity for a rigid solid. Only

(y) is here individually determined in magnitude and in direction

for each (dm); no common angular velocity and collective

moment of inertia are assigned, as they are in the case of a

rigid solid, but with disturbance in general of the colinearity

shown by (dH) and (y) into h divergence of the resultant vectors

for angular velocity and moment of momentum.

20. The three equations of section 15 are simplified remarkably

whenever the condition prevails that the velocity (v) has a

common value throughout the system that is in question. This

state of affairs is designated as translation of the system; it may
persist during a finite interval of time, or it may appear only

instantaneously, and in either case naturally it entails a corre-

sponding quality in the simplifications. When the condition of

translation persists the common velocity (v) need not be con-

stant; but the simultaneous velocities everywhere must be

equal. The resulting forms applying to translation are then

seen to be for a total mass (m).
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Q = vS /^dm = mv; (3)

E = §(vv)S/^dm = imv2; (4)

H = (S fjjdm) X V = f X mv. (5)

The last equation introduces the familiar mean vector (f) which

locates the center of mass of the system through the mass-

average of the individual radius-vectors (r) according to* the

defining equation

mf ^ S /„,rdm. (6)

The last group of equations contains the suggestion from which

has been worked out a notion that has had some vogue and

convenience in dynamics: that of an equivalent or representative

particle to which are attributed negligible dimensions but also

the total mass, momentum and kinetic energy of the system.

Equations (3, 4, 5) show that such a fictitious particle at the

position of the center of mass of the system would replace the

latter in respect of (Q, E, H) while translation -continues. And
since it is their ratio to other lengths that settles whether

dimensions are physically negligible, the absurdity that there

would be in concentrating momentum and energy into a mathe-

matical point is sensibly mitigated.

21. Even when the condition is not met that simultaneous

velocities shall be equal everywhere, a constituent translation

can be carved out artificially from the actual totals (Q, E, H)

at the epoch and for the system. Let every local velocity (v)

be split into two components in conformity with the relation

V = c + u, (7)

in which (c) is assigned at will, but taken everywhere equal, and

(u) denotes whatever remains of (v). Then substitution in the

fundamental equations of section 15 will segregate the totals

into a part that corresponds to translation and a supplement.

Among the indefinite number of possibilities, we select one
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particularly fruitful plan for illustration. Let (v) be the mass-

average of velocities determined by the condition

mv = 2 /^vdm. (8)

Then if

V = V + u, 2 /mUdm = necessarily. (9)

But we have also, in consequence of equation (9),

E = is /„,(v + u) • (v + u)dm = imv2 + |S /^uMm. (10)

And further,

H = 2 /Jr X (V + u)dm] = (2 /^rdm) x v + 2 /^(r x udm). (11)

In order to reduce the last term place r = ir + r', so that (r')

like (u) is departure of the local value from the mean. Then

finally

H = (f X vm) + 2 /^(r' x udm), (12)

in which the segregation according to mean values and de-

partures from them is complete.

Taking equation (8) in conjunction with the first terms on the

right-hand of equations (10) and (12). the idea of a particle at the

position of the center of mass reappears, having the total mass (m)

,

the total momentum (mv = Q), and the kinetic energy (^mv^).

But whereas equations (3, 4, 5) covered the data completely, this

contrived and partial translation with the mean velocity (v)

leaves residual amounts of kinetic energy and moment of momen-

tum; and these are due to departures from the mean values of (r)

and (v), as the last terms in equations (10) and (12) indicate

plainly, which items, as is also evident, have no resultant influ-

ence on the momentum. It is clear that this plan of partition is

adapted to accurate use; but it proves to have some advantages

too as the basis of an approximation, where the residual terms

are in small ratio to the translation-quantities and can be ne-

glected in comparison with the latter. The so-called simple

'pendulum affords one instance.
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22. The recognition of elements of momentum as localized

vectors brings in an additional detail of their physical specifica-

tion; so this alone could be alleged as one valid reason for con-

ceding to moment of momentum its place in the general founda-

tion of dynamics. But we are now in a position to realize another

advantage of which that third equation gives us control. Mean
values have admitted elements of strength in smoothing out

accidental or systematic differences in a series of data, and in

enabling us to convert an integral into a product of finite factors.

Yet this acceptable aid may be offset in part by such elimination

on the whole of departures from the mean as is shown in

S/^r'dm = 0; 2 /„udm = 0.

Now first inspection of equation (12) shows how it serves to

retrieve by means of the vector products the divergencies that

would be lost from sight in the mean values, and thus to piece

out the support in that direction which equation (10) accom-

plishes through its scalar products, wherever we have an interest

to gauge effects of divergence that are cumulative and not

self-canceUing,

23. Before passing on to another topic it is worth taking occa-

sion to remark that the values for the totals of momentum,

kinetic energy and moment of momentum can be adjusted

without difficulty to expression as summations extended over a

volume; for in terms of the local density (5) and element of

volume (dV) the mass-element there is expressible by

dm = 5dV.

This density will be rated always a pure scalar on ac^count of

its correlation with mass, and both density and volume are best

standardized in dynamics as positive factors in the positive

product that is mass, though it is not advisable to brush aside

too lightly the combinations that the character of volume as a
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pseudo-scalar permits. Since the value of the density is zero

throughout the volume that is left unoccupied by the supposed

distribution of mass, the inclusion of such portions into a summa-
tion throughout the whole region within the assumed boundary

is without influence upon the result and can be indicated formally

without error. To declare a density zero is the equivalent of

excluding a volume from a mass-summation.

- Hence the need of a double notation (2) and ( /m) will dis-

appear, if the continuous volume can be paired with a density

also eJBfectively continuous, by any of the plausible devices that

evade abrupt changes at passage from volume with which mass

is associated to volume from which mass is said to be absent.^

With these words of explanation the alternative forms that follow

are interpretable at once:

Q = Ao.v(5dV); (13)

E = !/,„, v.v(5dV); (14)

H = /vo,.(rxv(5dV)). (15)

Let us add for its bearing upon the lines of treatment when

mass is variable that then both (5) and (dV) are susceptible of

change. And also recall how there will always be that out-

standing question about mean values in comparison with diver-

gence from them, of which we spoke above, whenever we face the

contradictory demands of mathematical continuity and of open

molecular structure, in order to reconcile them adequately—for

instance, in the concept of a homogeneous body with a value of

density that is common to all its parts.

24. We shall next approach the remaining group of funda-

mental quantities that we have enumerated already as three:

Force, Power, and Force-moment. The first object must be to

set forth in satisfying clearness and completeness their relations

1 See Note 8.
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to the previous group of three, in order to proceed then securely

with reading the lesson how the interlinked and consolidated

set of six quantities provides all requisite solid and efficacious

support, both for the current general reasoning of dynamics

and for its specialized lines of employment.

We began to follow the track over ground that has become

well-trodden since Newton's day, when we laid down a meaning

for the phrase total momentum of a system of bodies and the symbol

(Q) representing it which in effect only renames the intention of

the historic words " Quantity of motion." We also continue the

tradition that has been perpetuated ever since Newton's second

law launched its beginnings for approval, by fixing attention in

its turn upon the rate of change in the momentum, in its differ-

ential elements and in its total, and regard that as delivering to

us the clews, that we shall later follow up, to the forces brought

to bear upon the system of bodies that is under investigation,

with which forces we must undertake to reckon. The gist of

that law has not yielded perceptibly under all the proposals to

improve upon it, though we may be rewording it more flexibly

under widening appeal to experience. Its drift makes the claim

that changes in (Q) are not spontaneous; that when they are

identified to occur there is reason to be alert and detect why,

with gain for physical science in prospect by success.

25. The first move toward formulation could scarcely be

simpler; it is to indicate the time-derivative of equation (I) and

write

Q-^[2/^vdml. (IV)

Yet the mere mathematics of execution blocks the way with

distinctions to be made, unless we are resolved to carry an over-

weight of hampering generality. For it is common knowledge

that the masses are often comprised in such a summation on a

justified footing that they are in every respect independent of
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time; and consequentlj' it is then legitimate to differentiate

behind the signs of summation in equation (IV). But forms

alter as the mass included is in any way a function of time;

they will differ besides if onh^ the total mass changes by loss or

gain of elements, or only the elements change leaving the total

constant, or if both sorts of dependence upon time are permissible

under the scheme of treatment. The first supposition of complete

mass-constancy underlies the dynamics of rigid solids and is a

stock condition in much dynamics of fluids as well. And because

it prevails most naturally to that extent, it is perhaps fair to

select this mass-constancy as standard; especially when depar-

tures from it are likely soon to be cut off from the stream of

systematic development by running into speciaHzing restrictions

and a narrowly applicable result.^

However opinion may stand on that matter, it seems certain

that no aspect should be allowed to escape us finally that belongs

to the full scope of mathematical possibility attaching to the

indicated time-derivative of (Q). Anj^ contribution to the

changes in momentum may mature a suggestion about force-

action and gain physical meaning. Therefore the tendency seems

unfortunate to borrow the terms of Newton's second law, for

its professedly general statement, from the special though widely

prevalent case which throws all the change in momentum upon

the velocity-factor. To speak of force as universally measured

b}' the product of mass and acceleration is misleading if the

habit blinds us to the fuller scope of the second law, and atrophies

at all our capacity to use it.

26. In order that the derivative of an expression may be

formed for use, certain conditions of continuity must not be

violated, as we know; but when a derivative is to be made

representative of a sequence of states, mathematical physics has

available a repertory of resources in constructing this requisite

1 See Note 9.
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continuity of duration and distribution. Examples are plentiful

among the classic methods of attack, how variously the proper

degree of identifiable quality is assigned to a succession of states,

that links the individual terms into a continuous series. Rankine's

device for studying a sound-wave in air is a travelling dynamics

that keeps abreast of the propagation; Euler's hydrodynamical

equations stand permanently at the same element of volume, and

record for successive portions of liquid that stream by; and many
processes where material passes steadily through a machine are

most tractable in similar fashion. We shall not insist further

then upon this point, except to say that advanced stages of the

subject are less apt to rely upon straightforward sameness and

constancy in the masses specified for summation under the term

body or system of bodies. With the reserves of that cautious pre-

amble, we can afford to qualify the case of mass-constancy and

literal sameness as standard in a limited sense, and exploit some

of the consequences flowing from that assumption.

27. On the grounds now announced explicitly the indicated

operation of equation (IV) yields

Q = 2 fjdm ^ S /^dR = R. (16)

As a symbol, therefore, (dR) is defined to mean the local resultant

force at each diflerential mass for which there is evidence through

the local acceleration; and accordingly (R) denotes the vector

sum of such elements of force when the whole system of bodies

is included. This total force is in nature a dispersed aggregate

like the total momentum, and the line of comment under that

heading applies here with a few changes, which however are

obvious enough to absolve us from repeating it.

28. Before we carry the discussion into farther detail it seems

best to bring equations (II) and (III) to this same level by

putting down their time-derivatives, observing consistently

there also the imposed limitation to complete mass-constancy,
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but remembering always that vve halted exactly on that line and

postponed until due notice shall be given the further step in

restriction that will introduce a rigidly unchanging arrange-

ment or configuration of all the mass-elements. Writing first the

general defining equation as preface,

dE

we can then make the application to the specialized conditions

that gives

^=|S/^^(vvdm) = 2/JvdR). (17)

This indicates at each element of mass a local manifestation of

power that is measured by the scalar product of the force-element

and velocity—this scalar product being of course not merely

formal, since (v) and (dR) are not in general colinear. It has

been called also, perhaps with equal appropriateness, the activity

of the force.

29. In this preliminary consideration there remains only the

time-derivative of equation (III) . And we shall preserve a help-

ful symmetry of statement by giving its place here also to the

general defining equation, and following it as we have done

previously with its present special value. Then

M = H; (VI)

and

M = 2 /^- (r X vdm) = S /n,(r x dR); (18)

the reduction of the expansion to one of its two terms being the

evident consequence of the identity of (r) and (v). The last-

equation demonstrates within the limits set for it that the time-

derivative of the total moment of momentum measures the total

force-moment of the local elements of force that are calculated
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according to equation (16). As a postscript to equation (18)

repeat with the necessary modifications what was inserted in

section 19, about equation (III), and at the end of section 22.

The example of a force-couple will come to mind at once, where

the pair of its forces is self-cancelling from the free-vector aggre-

gate of force, and it devolves upon the localized force-vector of a

moment to restore for consideration the important effects of

couples.

Observe also the peculiar prominence of the radius-vector in

vector algebra. Where the cartesian habit is to bring both

moment of momentum and force-moment into direct and ex-

clusive relation to a line or axis, vector methods substitute rela-

tion to the origin, which is a point. Upon examination, however,

the difference partly vanishes, because the vector reference to a

point is only a superficial feature. We have explained in con-

nection with equation (2), how a resultant axis is tacitly added.

The element (dM) is similarly a maximum or resultant, the

factors in (r x dR) being given, the effective fraction of the

moment for other axes through the origin being obtainable by

projecting (dM).^

30. Equations (16, 17, 18) bear on their face and for their

particular setting sufficient reasons for interpreting (Q) in terms

of those forces (dR); (P) or (dE/dt) in terms of the activity of

those same forces (v-dR); and (M) or (H) in terms of their

force-moments (r x dR). There seems to be neither confusion

nor danger imminent if we extend the names thus rooted in

commonplace experience to the (at least mathematically) more

complicated possibilities of equations (IV), (V), (VI). We can

be bold to identify (Q) always as some force (R); (dE/dt) as a

power (P); and (H) always as a force-moment (M); if we have

made ourselves safely aware how terms in any completed mathe-

matical expansion may remain non-significant physically until

1 See Note 10.
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discovery confirms them. We have alluded before to the fact

that dynamics does not altogether shrink from a figurative tinge

in extensions of terms first assigned Uterally, if essentials of

correspondence are adequately preserved. But notice particu-

larly that the verbal adoptions proposed above cannot of them-

selves assure the occurrence of the duplicate adjustments among

equations (16), (17), and (18). To forces whose sum is (Q) will

correspond activities that we may denote by (v-dQ), and mo-

ments of type (r x dQ). But we must not conclude in advance

that the former group will in their sum match (dE/dt) ; nor that

the latter group will match exactly (H); though both equiva-

lencies hold under the condition of mass-constancy. And for

discrepancies there will be no general corrective formula; they

must be newly weighed wherever they may appear.

31. Let us next turn back to the ideas of translation and

equivalent particle of which we spoke in sections 20 and 21,

and continue them in the light of equations (16, 17, 18). In the

first place note that the mean velocity (v) as previously specified

by equation (8) becomes now identical with the velocity of the

center of mass, because the time-derivative of equation (6) takes

the form
mf = 2 /mi'dm = mv. (19)

Secondly the conditions justify for the next time-derivative,

m^ = 2 SJfdm, (20)

showing that the center of mass has the mass-average of accelera-

tions. Hence a particle having the total mass (m) of the system

and retaining always its position (f) at the center of mass would

show at every epoch the total momentum (Q) ; and its accelera-

tion would determine the value (R) of the total force in equation

(16) through the product (mv).

But if the first terms in the second members of equations (10)

and (12) and the derivatives of those terms with regard to time
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be now considered, with the new meaning for (v), it is seen that

the specified particle at the center of mass duly represents all

the dynamical quantities for the system, except those parts which

depend upon departures (r') from the mean vector (f) and upon

departures (u) from the mean velocity (v). Hence such an

artificial or fictitious translation with the center of mass runs like a

plain thread through all the equations for the actual system, and

reproduces accurately their six dynamical quantities when we

simply superpose upon it the additional kinetic energy, moment
of momentum, power and force-moment whose source is in

the deviations from mean values. It is a self-evident corollary

that in a real or pure translation the particle at the center of mass

represents the system without corrections, since the local accelera-

tions must be of common value while translation continues, in

order that simultaneous velocities may remain equal. This

keeps each velocity (u) permanently at zero.

32. It will be instructive to enforce without delay the difi"er-

ences from parallelism with the preceding details that appear at

several points, in the simplest combinations where it becomes

natural to regard the total mass as variable with time. Let us

then take up for consideration a body in translation, or equiva-

lently a representative particle, denoting by (m) and (v) the

instantaneous values of its mass and velocity. For the momen-

tum and the kinetic energy at the epoch we still have

Q = mv; E = ^(mvv). (21)

If we stand by the agreement that (Q) shall be force and embody

it in the time-derivative of the first equation, we shall write

Q = R = mt+-^yv. (22)

When mass is constant, resultant force and resultant acceleration

have the same direction, as we can read in equation (16). But in
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striking contrast with that consequence, equation (22) shows

that its (R) does not in general coincide with either velocity or

acceleration.

Proceeding next to examine the power, and continuing to

specify it as the derivative of (E) we find

dE _ ,

,

, ., 1 dm

,

-^ = P = f (mv-v + mv- v) + 2 "dt"
^^'"^'^

1 dm
= mt.v+2-^(v-v). (23)

Comparison with equation (22) brings out the relation

dm
dt-^-^

dE 1 dm
= dt+2-dF^'^- (24)

/ dm \
R • V = I mv + -rr v I • v = m^ • v +

And once more a variation from the previous model is impressed

upon us; the power (P) is thrown out of equivalence with the

activity or working-rate of the force (R), thus realizing the

suggested contingency of section 30. The time-integral of the

last equation assumes the form

r(R-v)dt = mil + h r(dmv.v),
«/ti »^t.

(25)

and expresses on its face the conclusion that the total work of

the force (R) for the interval is not accumulated in the change

shown by the kinetic energy. What the form and the fate are

of the energy summed in the last integral remains as a physical

question for further study; it may, for instance, cease to be

available, or it may be stored reversibly ready to appear again

by transformation.

If instead of dealing with the resultant (R) we proceed by the'

standard resolution into tangential and normal parts, these are

4
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_ dm ^ , ^

R(t) = "d^v + mt(t); R(„) = mt(n); (26)

and if we should maintain that measure of force which is ex-

pressible as the product of mass and its acceleration, the inferences

from the above equations would lead through the quotients of

force by its acceleration to different estimates of the mass in-

volved. From the first equation we obtain as a ratio of tensors

R(t) dm . . dv
-;r^ = -^v + m, smce V(t) =

y^

;

(27)

and from the second equation

f^ = m. (28)
V(n)

33. The last value agrees with our initial supposition, and is

to that extent the true mass ; and the value given by the first quo-

tient in equation (27) has been distinguished as effective mass

since the motion of a submerged body through a liquid suggested

the term. We are aware how that idea has been borrowed and

systematized in connection with the dynamics of electrons; and

it is, therefore, of interest to verify that the difference between

longitudinal mass and transverse mass originally introduced there,

though now perhaps in course of abandonment, is quantitatively

identifiable with the term (vdm/dv) according to the assumed

relations for electrons of dependence of mass upon speed.

The effect when we are conscious of the whole situation must

be to make evident how much turns upon attributing the entire

force {R) to the mass (m), because a force diminished by the

amount of the last term in equation (22) would reestablish con-

formity with the type of equation (16) as

dm
d^

And this is not mere mathematical ingenuity, for in the hydro

(R - AR) = mv; AR = "^v. (29)
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dynamical conditions at least we know that the excess of effective

mass over the weighed mass is only a disguised neglect of back-

ward force upon the advancing body due to displacement of the

liquid. So that while groping among phenomena that are less

understood, our attention should keep equal hold upon both

alternatives of statement until experimental analysis decides

finally between them. It is in some degree a question of words

whether all of the force (R) falls within a specified boundary.

34. The formal changes that have been pointed out, and their

possible reconcilement with a larger group of facts through a

second phj'sical view, are important enough to justify this

immediate effort to fix attention upon them. The path is beset

with similar ambiguities whenever the details attendant upon

transformations of the subtler forms of energy are sought.

Therefore it is vital to pursue the thought of the section referred

to, and to perceive with conviction even in this simplest example

offered, how the bare assertion that a time rate for mass will be

introduced for better embodiment of the data leaves the dy-

namics still impracticably vague for decision. We could not

pass upon the physical validity and sufficiency of the force (R)

assigned by equation (22) without fuller insight into suppositions.

The instinctive control of the mathematics by repeated references

to the physics is so well worth strengthening that we shall dwell

upon one other side of the instance before us, though for sug-

gestion only and not with any elaborate intention of exhausting

it.

35. If a stream of water flows steadily in straight stream fines

and with equal velocity everywhere, there is no loophole for

acceleration, neither of an individual particle nor in passage

sj'stematically from one to another. Yet under an arbitrary

agreement to include more and more water in the stipulated

boundary the total momentum would gain an assigned time rate

and the (R) of equation (22) a value
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^ dm
, ,R = ^v. (30)

This is plainly illusory and void of dynamical meaning. We
must cut off change of mass by mere lapse of time; this is one

wording of the conclusion. But on the other hand conceive the

mass (m) to grow continuously by picking up from rest differ-

ential accretions, somewhat as a raindrop may increase by

condensation upon its surface, and equation (30) traces a phys-

ical process.

Investigation of this as a physical action confirms equation (30)

quantitatively for a proper surface distribution of the elementary

impacts, as force called for if the slowing of speed is to be com-

pensated that would be consequent upon redistribution of the

same total momentum through a continuously increasing mass.

Thus much of force being allotted to keeping the velocity of the

growing system constant, only the margin above this part would

be registered in the acceleration. Moreover the way is then

opened to interpret the last term in equation (25) by adapting

specially the usual expression for kinetic energy converted at

impact into other forms. Quoting, in a notation that will be

understood at sight, we write that loss in the form

L = (l-e^)2-(i;5^j(v.-v.)'. (31)

Applying this to the conditions of inelastic central impact

(e = 0); with the ratio (mi/m2) negligible, as (dm/m) is; and

when the relative speed (vi — V2) is (v) ; we find

L = idmv2. (32)

And this wastage of kinetic energy finds due representation

through the integral in question.

The essential condition, however, about (L) is a conversion of

kinetic energy; and as remarked already that conversion might
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just as well be reversible. It is, therefore, again suggestive and

perhaps even significant, that the sharing of energy between two

forms indicated in the second member of equation (25) can be

seen to correspond quantitatively with the partition of energy

between the electric and the magnetic field of an electron as

authoritatively calculated according to the assumed rate of

change in its mass with speed. Of course this verifies or proves

nothing, except the possibility in this direction as in others of

constructing a mechanical process that is quantitatively adjusted

to other and different processes where energy is converted.^

36. The six chosen quantities have been made definite by

means of defining equations, which are truly designated as funda-

mental to the degree that the quantities involved possess that

quality. With these identities we have been content to occupy

ourselves mainly thus far, and confine discussion to phenomena

observed or observable in a system of bodies, and to be described

in terms of the masses, their radius-vectors, and two derivatives

of the latter. With data of this type a range of inferences can

be drawn, quantitatively determinate, too, up to a certain point,

regarding the physical influences under which the system will fur-

nish those data. Any assumed local distribution of mass, velocity

and acceleration demands calculable aggregates of force, momen-
tum and the rest, which the equations can be taken to specify.

But nowhere along this line of thought is the further question

mentioned, about how the influences shall be provided and

brought to bear in producing what we see and measure, or what

is visible and measurable in the system that is under observation.

Not that the relations prove finally to be so one-sided as the

sequence of our mathematics would suggest, according to which

it happens that first mention is given to (Q, E, H), and they are

made primary in the sense that the group (R, P, M) then follow

by differentiation.

1 See Note 11.
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Yet the latter group would precede more naturally if the

object were to reach the first group by integration; and this

inverse order is revealed to be also a normal alternative. That

procedure erects into data the physical influences like Force,

Power and Force-moment to which the system is externally or

internally subjected, and makes attack in the direction of pre-

dicting the response of the system in detail. The unconstrained

tendency of this line of approach is then to set forth the supple-

mentary idea that the accumulations of Momentum, Kinetic

Energy and Moment of Momentum in the system of bodies are

to be read as integrated consequences of the influences first

specified.^

The formal change is inconsiderable, though the spirit of it

guides three of our announced identities into full-fledged equa-

tions either of whose members is calculable in terms of the other.

By usual title, these are the Equations of Motion, Work and Im-

pulse that are an important part of dynamical equipment and

rthat will next engage our attention. Since deciphering and list-

ing the operative physical conditions comes now to- the front, the

weighing of arguments converges upon making the list of forces

that is sought exhaustive, and upon weeding out illusory items

from it. It must be apparent how that search and critical

revision are bound up with inquiries Uke the suggestions of the

previous section.

37. Dynamical analysis of results in its field has everywhere

made tenable and corroborated the thesis that momentum and

kinetic energy are traceable as fluxes. This is understood to

imply that each local increase of those quantities will be found

balanced against some other local decrease, either manifest in

the quantity as such, or finally detectable under certain disguises

of transformation. In application to a system of bodies, this

means identifying a process of exchange dependent upon what is

1 See Note 12.
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in some sort external to it, and sometimes located to occur over

the whole boundary or over limited areas of it, or sometimes

recognized to permeate the whole volume or Umited regions of it.

Under the conditions that go with change in total mass by the

passage of material through the stipulated boundary, the mass

thus gained or lost may just carry its momentum and kinetic

energy out or in, without any complicating interactions.

If, however, we exclude and put aside sach processes of pure

convection by confining ourselves to complete mass-constancy,

there is evidence that changes in the total kinetic energy and the

total momentum of a system of bodies are accompanied uni-

versally by exhibitions of force at the seat of the transfer. And
this remains equally true whether a transformation between

other recognizable forms and the mechanical quantities denoted

by (Q) and (E) is taking place there or not. The possible ex-

changes between kinetic energy and other types, and the change-

ratios corresponding to them are a commonplace of modern

physics; as also we know how refined measurement has attested

the forces upon bodies at transformations hke that into light-

energy. The settled anticipations in those respects have become

even strong enough to look confidently upon occasional failure

as only postponed success. The more recent proposal is to in-

clude momentum as well as kinetic energy within the scope of

these ideas and concede for both alike a conversion into less

directly sensible modifications, with force exerted upon bodies

of the system or by them as a symptom of the transformation.

And there seems to be no cogent reason why this should not hold

its ground.

38. The quantitative formulation of these two transfers by

flux in relation to what we shall call the transfer-forces tem-

porarilj'- and for the purpose of present emphasis because they

are symptomatic of sach action, presents to us the familiar

equations of impulse and work which shall be first written, with

the usual mass-constancy supposed, in the forms
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Q - Qo = 2 j dR'dt (The Equation of Impulse); (33)
Jo

E - Eo = 2 f dR'-ds' (The Equation of Work). (34)
Jo

They are intended to express total change from (Qo) to (Q)

during any time-interval (0, t), and total change from (Eo) to

(E) during any simultaneous displacements (0, s') at the points

of apphcation of the transfer-forces (dR'). The integrations

then cover the summation of effect over time or distance for each

differential force (dR'); and the symbol (S), though open to

mathematical criticism as a crude notation, is doubtless suf-

ficiently indicative of a purpose to include the aggregate of all

such forces at every area and volume where the transfers may
be proceeding. We must make also the necessary discrimination

between the forces denoted by (dR') and those symbolized by

(dR) in equation (16), that are localized by association with

elements of mass and not by participation in some transfer

process, and that express themselves through the local accelera-

tions manifested within the material of the system of bodies,

while the forces (dR') can be determined wholly or to an im-

portant degree by data extraneous to the system.

It should be remarked next how one summation prescribed

by the second member of equation (33) can be executed without

further knowledge or specification, since the one time-interval

applies in common to all force elements (dR') that are making-

simultaneous contributions toward the total change (Q — Qo).

Hence if the vector sum of these forces in whatever distribution

they occur be written (R'), the explained sense of this addition

standing entirely in parallel with the comment attached to (R)

in equation (16), we see that

Q - Qo = Tr'
t/O

dt. (35)
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A corresponding general reduction of equation (34) would first

require equal vector displacements (ds) at all points of appli-

cation throughout the group of (dR'), a condition that need not

be satisfied.

A second essential difference between the equations of impulse

and work is that the former includes indifferently every force

(dRO, in that some duration of its action is a universal charac-

teristic. But in order that a force (dR') may be effective in

work, not only must there be displacement at the point where

it acts upon the system, but that displacement must not be

perpendicular to the line of the force. Either of these conditions

may be at variance with the facts. It is a convenient usage to

distinguish transfer-forces as constraints when they do no work;

which signifies also when their work is negligible, of course.

39. Both (R') and (R) are vector sums and have been exposed

in their formation similarly to cancellation, but there is no pre-

supposed relation of correspondence in detail between the two

groups that would coordinate the occurrence and the extent of

such spontaneous or automatic disappearances from the two

final totals. If however we begin by confining comparison to

those totals as such, that is yielded through the correlation of

two statements which are now before us. Form the time-deriva-

tive of equation (35), replacing (Q) by its defined general equiva-

lent from equation (I) and repeating its conditional derivative

from equation (16). The consequence to be read is

d r
Q = R =—

j
RMt = R'; (36)

and the relation between the extreme members of the equahty

is contingent only upon the vahdity of equation (35). This

would carry the equahty unconditioned otherwise of (R') and

(R) if (Q = R) can be introduced as a defining general equation.

It gives latitude enough for the present line of thought to accept

(R) as first quoted.
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On its surface the last equation offers the meaning that the

forces appUed to the system under the rubric (R') are competent

to furnish exactly the total of force exhibited through the con-

stituents of (R). And the same leading idea dictates the other

verbal formula: The forces (dR) are an emergence of the group

(dR') after a transmission and a local redistribution. But neither

reading is a truism, as the world has realized since d'Alembert

first made the truth evident; for equation (36) does no more

than convey one fruitful aspect of d'Alembert's principle which

declares equality for the impressed forces (R') and the effective

forces (R), which names sanctioned by general usage we shall

now adopt, and standardize the relation as the equation of motion

under the form

2(dR0 = 2 /nivdm. [The Equation of Motion.] (37)

In the first member the sign (S) recurs to the intention explained

for equations (33, 34); and the particular basis of the second

member has been made part of the record.

It is already clear that we have now come to deal with an

equation by whose aid can be calculated either what total of

impressed force is adequate to produce designated accelerations

in given masses or what distributions of accelerations through-

out a mass are compatible with a known group of impressed

forces as their consequence. But the predicated equality is

restricted to the totals and contains that element of indeter-

minateness which affects every resultant, in so far as it is an

unchanging representative of many interchangeable sets of com-

ponents. And in any properly guarded terms that are equiva-

lent to the statement made above, the acknowledged deduction

from the equality is in its chief aspect a conclusion about the

acceleration at the center of mass of the system when (R') is

known, or a foreknowledge of what (R') must be somehow built

up if that center of mass is to be accelerated according to a

known rule.
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40. If there were complete physical independence among the

masses of a system, or. in the current phrase, if there were no

connections and constraints active between them to hamper

mutually the freedom of their individual motions, impressed

forces would make their effects felt only locally where they were

brought to bear. And then for each such subdivision of the

total mass as was thus affected equation (37) would apply, and

an impulse equation would follow. Observe however that the

question of minuteness in the subdivision enters, and that

practically halt will be made with some undivided unit, assigning

to it a common value of acceleration; so that the center of mass

idea reappears in this shape ultimately, and duly proportioned

to the scale of force-distribution symbolized by (dR').

In actual fact there are found to be connections among the

parts of a system of bodies, whose local influence deflects the

acceleration from being purely the response to the local quota

of (dR'). In other words, the masses of the system can exercise

upon each other a group of forces internally, which must be re-

garded as superposed upon the impressed forces before the account

of locally active force is to be held complete. To be sure this

reduces to the now almost instinctive perception that external

and internal are relative in use, and that an action may be

impressed from outside upon a part which is exercised internally

in respect to a larger whole. But like many other simple thoughts

it was once announced for the first time.

Now certain forces being impressed, and with whatever

internal connections interposed that the system is capable of

exercising, the net outcome is an observable group of effective

forces. It is therefore common sense to conclude that this

net effect could be entirely nullified, in respect to the accelera-

tions produced locally, by a second group of impressed forces

applied also locally, and everywhere equal and opposite to the

local value given by (dR). In virtue of equation (37) moreover
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it becomes apparent that the supposititious second group of im-

pressed forces would always amount in their aggregate to (— R').

Hence two auxiliary conclusions can be stated: First and nega-

tively, that the superposed internal connections do not on the

whole modify the original net sum (R')," and the second is

positive, to the effect that the office of internal connections in

these relations is to transmit and make effective where they

would otherwise not be felt in the system, the distribution of

impressed forces (dR').

The internal connections can be described legitimately as them-

selves in equilibrium; they are the lost forces of d'Alembert.

And the really applied group (dR') would be in equilibrium also

with our second group of locally impressed forces. But this

compensation is a supposition contrary to fact; the resultant

(R') is unbalanced force to use the ordinary phrase. These

details of interpretation are requisite exposition of the formally

insignificant change that writes instead of equation (37)

S(dR') - 2 /mtdm = 0;
(38)

S(dR' • 5s') - S frai^dm) • 5s = 0;

as a formulation of d'Alembert's principle. The second form in-

volves the so-called virtual velocities (5s', 5s), which term is fairly

misleading; for these symbols designate any displacements con-

sistent with preserving the internal connections intact, and capa-

ble of occurring simultaneously; one group at the driving points

of (dR') and the other locally at each (dm). Obviously either

form aims to express that fictitious equilibrium which is derivable

from the real conditions. Because the second form is cast into

terms of work, it seems to call for the remark that the founda-

tion upon which all of this is reared lies nevertheless in the im-

pulse equation, and the development might be called an expan-

sion of consequences under Newton's third law; there is no vital

bearing upon the actual energy relations definitively established
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by it. What remains to be said in the latter respect we shall

next consider.

41. The first and familiar fact is that the kinetic energy of

a system of bodies can be affected by interactions that are usually

styled internal : quotable instances being gravitational attraction

between sun and earth, and the effects of resilience upon distorted

elastic bodies. Therefore some deliberate caution must be

observed in delimiting the terms external and internal in rela-

tion to impressed forces, if equation (34) is to cover the total

change in kinetic energy and yet make no dislocation from the

impulse equation. It will be noticed that the critical instances

are connected with transformations of energy; and of energy

that one mode of speech would describe as internal to the system.^

We can put force exercised upon a body by action of the ether-

medium into the other category, since that medium is by explicit

supposition external to our conception of body.

The case of gravitation is resolved by the consideration that

the conversion of its potential energy into the kinetic form is

attended with exercise of equal and opposite forces upon two

bodies, according to inference from observation. If both bodies

are included in the system, these forces cancel each other and do

not disturb previous conclusions; and if one body is outside the

system's boundary, its action appears among the (dR'). A
parallel statement can be drawn up for elastic deformations;

but there is a remnant of combinations that are more obscure,

like the transformations of molecular and atomic energies that

can also affect kinetic energy, and that are by common usage

attributed to the system as an internal endowment. Our

ignorance of their more intimate nature however does not seem a

barrier; we can still look upon every change in a system's kinetic

energy as accompanied by impressed forces (dR'), whether these

are exerted in self-compensated pairs and removed thus from

1 See Note 13.
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influence upon the impulse equation, or whether there are un-

balanced elements that affect the total momentum in addition

to changing the kinetic energy. To this extent all impressed

forces can be called external, though there may be hesitation

about classing as external or internal the particular type of

energy that is under transformation to or from the kinetic form.

The corollary may be added, that so long as equal and opposite

elements of force are also colinear, their moments for any origin

are self-cancelling; otherwise they constitute couples.

With the attempt to formulate correct equations of motion,

the difiiculties of physical dynamics may be said to begin, when

it is required to make the list of impressed forces what we have

spoken of as exhaustive and freed from illusions. Outside the

range of rather direct perceptions, we grapple with uncertainties

under conditions of imperfect knowledge—with hypothetical

forces, intangible energies, figurative masses. Dynamics that

was ready to renounce criticism of provisional equations of

motion would be over-sanguine. Conversions of energy into the

one distinctively mechanical form that we call kinetic are perhaps

closest to direct inquiry into attendant circumstances; and

though it would be overcautious to construct on that base only,

it seems probable that dissecting there first is the clew to larger

success, and that equations (33, 34, 36) are landmarks on that

road.

In practice, the bare statement of d'Alembert's principle as

given by any one of the three forms indicated is supplemented

with some record of the particular connections that overcomes

the difiiculty of specifying every individual local acceleration,

and reduces the number of indispensable data within manageable

limits. The forces of the connections are thus described in-

directly through the geometrical equations of condition; and this

method is more effective than the more direct one, because the

magnitude of the constraining forces will in general depend upon
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the speeds, though the kinematical analysis of the hnkages

remains unaltered. It is this thought that introduced Lagrange's

use of indeterminate multipliers}

None of these devices though qualifies the character of d'Alem-

bert's equality in asserting a quantitative equivalence between

a net total of external agency (impressed forces) and the response

to it on the part of a system of bodies, as expressed in the states

of motion that the effective forces summarize. The physical

thought attaching to the equation of motion will be clearer

when cause and effect are kept apart, and will tend toward

obscurity or confusion when a shuffling of terms from one member

to the other, as a mathematical device or for other reasons, has

impaired this desirable homogeneousness.

42. One large section of dynamics is devoted to working out

its principles in their application to rigid solids. As these are

specified, they carry to an extreme limit a scheme of inter-

connections among their constituent parts that provides an

ideal, of internal structure which knows no rupture nor even

distortion, but which provides inexorably all necessary con-

straining connections. Like other such concepts its considera-

tion yields results which are not only valuable in themselves,

but which also furnish a point of departure for the introduction

of conditions that approach their standards closely enough to

be taken account of by means of small corrective terms. Beside

repeating that frequent and useful relation of a concept to actual

data, the study of rigid dynamics has some more special reasons

to support it, of which one is discoverable in the trend of the-

oretical views about the constitution of all systems of bodies.

The boldest analysis of molar and molecular and atomic units,

as a substratum for the increasing number of energy-forms that

we associate with them and give passage through them, has not

broken away entirely from utilizing rigid solids of smaller scale

* See Note 14.
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and their dynamics. This gives the prevailing tone in attacking

the atomic nucleus and its atmosphere of electrons even, with

only such mental reactions to modify the trust in the details of

the reasoning as have a wholesome influence to maintain the flexi-

bihty that is scientific and make our dynamics more nearly

universal in what it embraces.^ In this sense the kinematical

phase, through which so many of these matters evolve, remains

uncompleted—or we may dub it empirical—until dynamics can

serve it with reasoned argument.

In the second place, however, any rule of constancy is likely

to have an advantage of particular kind over the multifarious

rules of variation in correlation with which it is unique. This

goes beyond the formal gain in abohshing some mathematical

complications, though that, too, frees our minds to entertain the

salient ideas with fuller concentration. Like our previous

assumption of constancy in mass, this added supposition of

permanent internal arrangement puts off particularizing among

rules of change, and enables us to carry forward through instruc-

tive developments the task of bringing some general principles

more nakedly to discussion. This grows cumbrous or impossible

where conclusions are subject to many contingent decisions.

43. It bears rather closely upon these suggestions that we can

make one good entry upon the particular inquiries about rigid

solids by resuming and continuing the hne of thought that

paused at equation (20). In that section some glimpses were

secured of a superposition by means of which a serviceable sketch

can be drawn of a dynamical outline for certain systems of bodies.

Or otherwise stated, the actual totals of the important quantities

are grouped round the concept of a representative particle, leav-

ing only specified remainders for further consideration. Let us

now separate from such a system one body that we shall suppose

rigid and having continuous mass-distribution, and deduce for

1 See Note 15.
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it, with increased finality of detail, the special consequences that

seem valuable for our purpose. It is clear that the center of

mass of this body will retain all the functions already assigned

to the representative particle, and also that it must now in

addition, because the body is rigid, fall into an unchanging

configuration that makes constant in length all such vectors as

(r') of equation (12). And it follows too from the conception of

rigidity that the internal connections are excluded from net

effect upon the sequences of conversion that change the body's

kinetic energy. They are reduced in their final influence to the

office of transmitting and distributing the consequences of con-

versions and constraints that have been effected otherwise than

by any machinery of readjustments, named or unnamed, of in-

ternal arrangement. The intended meaning is not essentially

varied, though it has been rendered less explicit perhaps, when

it is said that the impressed forces can here only displace the body

as a whole, or that the internal connections can do no work.

44. Now it is the elementary characteristic of translation that

it does apply to the body as a whole and affect it uniformly

throughout in all kinematical respects. Our next natural step,

therefore, is to examine the remaining possibiHty that is con-

sistent with the constant length of every (r'), and that therefore

restricts the locus of each mass-element to some sphere that is

centered on the center of mass. If we accept for this type of

motion as a whole the term rotation, there still remain some

particulars to establish definitely; and of these the first will be

the general value of the velocity denoted by (u) in equation (9),

for which one fitting name is the local velocity relative to the center

of mass. It is evidently identical with the local velocity (v) of

each (dm) if (v) is zero, or if the center of mass is the origin of

reference. With control of the value for (u) we can ultimately

take up the evaluation of the terms that contain (u) or depend

upon it, knowing in advance that these can appear in (E, H,

P, M) but not in (Q, R).

5
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45. In order to approach the matter conveniently let (CO
denote the center of mass, and locate orthogonal axes there that

are lines of the body: that is, they move with the body and retain

their positions in it. The unit-vectors of those axes shall be

(i', y, k') in the standard right-handed cycle. Then using the

word temporarily in an untechnical sense, any rotation relative

to (C) will in general change all the angles that (i', j', k') make
with the reference-axes. Consider first differential changes of

orientation (o, g, 5) matching the order of the unit-vectors.

Then (a) as an angle-vector is normal to the plane of the con-

secutive positions of (i'); similarly for (g) and (j'), and for (5)

and (k'). The corresponding linear displacements on unit

sphere around (C) are given as products of perpendicular factors

by
di' = a X i'; dj' = 5 X j'; dk' = 5 x k'. (39)

The vector products are not affected, and hence these equalities

are not disturbed, if we introduce three arbitrary elements of

angular displacement; (X') in the line of (i') into the first, (i»')

in the line of (j') into the second, and (v') in the line of (k') into

the third, writing

di' = (a + ^Oxi'; df = (5 + v')xj';
^ ^

(40)
dk' = (5 + v') X k'.

But because the axis-set must remain orthogonal in the rigid

body, the elements of angular displacement in the line of the

third axis must always be equal for the two other axes at the

same stage. This renders possible the adjustments of particular

values that make equations (40) simultaneous:

^ = 5(i') = S(i'); v = a(j') = 6(j');

(41)
V = o(k') = 5(k');

with the consequence that equations (40) are satisfied in the

forms



The Fundamental Equations 57

di' = dy X i'; dj' = dr X j'; dk' = dy x k';

(42)
dy = ^ + V + V.

The occurrence of the vector (dy) as a common factor in all three

equations, combined with its determination by projections on

axes arbitrarily chosen and with the fact that simultaneous

linear displacements at points in the same radius-vector must

be proportional to distances from (C), shows that at each epoch

and for every (r') of constant length,

dr' = dy X r'; f ' = u = &> x r'; u = y. (43)

Here («) denotes the rotation-vector for either body or axis-set,

of course, since they are supposed to turn together. It follows

without further question that if a rigid sohd moves so that all

its radius-vectors (r) measured from any reference-origin remain

of constant length, the simultaneous velocities (v) of all mass-

elements conform to the relation

V = fa) X r. (44)

Any such motion as a whole is described as a pure rotation with

angular velocity (&>), for which vector the origin is conventionally

the base-point.

46. The vector (w) is usually termed the angular velocity of

the body at the epoch, the phrase being made reasonable by the

appearance of (fa)) as a factor common to all radius-vectors in

equations hke (43) or (44). But both the procedure by which

this angular velocity was determined and its appearance in a

vector product show plainly that its resultant value is not

effective to produce changes of direction in all radius-vectors.^

This common factor has been seen to include three elements

that become superfluous each for one axis, as not influencing

1 See Note 16.
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angular displacement of it, nor the corresponding linear displace-

ment of points in it. The rotation-vector is thus open to inter-

pretation as a maximum value, useful in giving through its pro-

jection upon the normal to any plane at its base-point the part

effective to bring about a complete angular displacement oc-

curring in that plane. If we identify (o>) with the line of a rota-

tion-axis, permanent or instantaneous, these explanations are

consistent with the elementary ideas of spin about the rotation-

axis and hnear velocity given by the product of rate of spin and

distance from the axis.

47. The preceding identification of a rotation-vector connects

its considerations with departures from configurations of (i'j'k')

that are themselves subject to self-produced change, in so far

as they move with the body; and this might conceivably modify

the result. But if that loop-hole seems to exist it is closed when

we detect the same vector (dy) in direct terms of its projections

upon the reference-axes oriented by (ijk) permanently. And
it is, further, worth while to do that, because these projections

are uniquely advantageous in preparing for algebraic additions

to express any resultant angular displacement according to the

relation

Y = fdy = i/d7(i) + j/d7(j) + k/d7(k), (45)

the tensors that are integrated being those of the projections of

each (dy) upon the axes of (i, j, k). The confirmation sought

depends upon satisfying the relations,

d7(i) = Xi'-i + MJ'-i + "k'-i

d7(i) = Xi'-j +MJ'-J + "k'-j

d7(k) = Xi'-k + MJ'-k + I'k'-k.

(46)

Ordinary routine verifies that equations (46) fulfil identically

the necessary conditions:
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di' = dy X i' = i(i'(k)d7(i) - i'(j)d7(k))

+ j(i'(i)d7(k) - i'(k)d7(i))

+ k(i'(nd7(i) - i'(i)d7(i)). r (47>

dj' = dy X j' = etc.

dk' = dy X k' = etc.

It is not without interest to notice in detail how algebraic cancel-

lations now preserve the obligatory independence of (^) in the

results for (di') ; of (v) in those for (dj') ; and of (v) in those for

(dk'). This second development is more circuitous, because

the permanently orthogonal condition, due to rigidity, pertains

intimately to (i', j', k'), the coincidence of results by both attacks

being a special instance under a general theorem that will be

proved subsequently (see section 85). The equal corroboration of

equation (44) is a plain inference, and hence, wherever a rotation-

vector covers the local velocities of a rigid body, or the body is

in pure rotation about a fixed point, the summed projections are

invariant

:

0)(i) + W(j) + fa>(k) = 0>(i') + 0>(j)' + G)(k') = w. (48)

Substitute in equation (44), use the standard relation for common
origin,

r = X + y + z = x' + y' + z', (49)

and omit products of colinear factors. This yields

V = fa>(i) X (y + z) + w(i) X (z + x) + fa>(k) X (x + y) ]

\ (50)
= w(i') X (y' + z') + a)(j') X (z' + x') + (O(k') X (x' + y'), J

and is the foundation for a standard rule: Linear velocities in a

rotating rigid body are given correctly by superposing those due

to separate partial* rotations, either about the reference-axes or

about the positions at the epoch of any three lines of the body

intersecting orthogonally at the origin.
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48. In the present connection however we are deaUng with

a rotation relative to (C) as superposed upon the concept

of a representative particle and supplementing the latter, with a

proved equivalence of translation and rotation thus combined

in replacing the most general group of velocities in our rigid

body. On incorporating these recent restatements into equa-

tions (10) and (12), they take on the more special forms that

we can now exhibit. Denote the last terms in the two equations

by (Er) and (Hr), which we shall call briefly the kinetic energy

and the moment of momentum relative to the center of mass.

Then for the one body of continuous mass

Hr = /ni(r' X udm) = /xn(r' x (w x r')dm)

= /„(o(r'.r') -r'(G>.r'))dm; (51)

Er = I /mU-udm = I /m((o X r') • (ui x r')dm

= I /m((corO^ - (co.rO^)dm = K^'Hr); (52)

the final reduction of (Er) being readily verifiable, when we

remember that (<o) is common to all elements in these mass-

summations.

49. Next we continue into equations (17) and (18) the same

plan of partition between representative particle and supple-

mentary term. Direct substitution there according to the rela-

tions previously used,

V = V + u; r = f + r'; (53)

gives

P =^ = v-R + /„u-dR; (54)

M ^ H = (f X R) + /„(r' X dR).
. (55)

We may remind ourselves that the first terms in the final

members of both these equations are in harmony with the time-

derivatives of corresponding terms in equations (10) and (12)
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if we bear in mind equation (20) ; and they show how the particle

can be reUed upon still to present these contributions to power

and to force-moment as based upon its artificial translation with

the center of mass. Denote the additional power and force-

moment by (Pr) and (Mr); then from equations (54, 55),

Pr = /m(o> X r') -dR = io-fUr' x dR) = wMr; (56)

M^^Uir'xdR). (57)

We shall compare these statements with the consequences of

equations (51, 52), which give for their derivatives

^(Er) =K"-Hk + <o.Hr); (58)

Hk = ^ /m(r' X udm) = /„,(r' x lidm)

;

(59)

because (u) and (r') are identical. Further, since differentiation

of equation (9) shows
V - -^

-f- u, (60)

a natural name for the last term is the local acceleration relative

to the center of mass, which would indicate also a local force-

element (lidm) differing from (dm) that is (dR) and thereby

breaking the equality of (H^) and (M^). But since

/„.r'dm = 0, (/„.r'dm) x v = /„,(r' x vdm) = 0; (61)

and this term can be added without error to equation (59),

giving
.

Hr = fm{i' X (^ + ii))dm = Mr' x dR) = Mr. (62)

Evidently the value in equation (61) could reversely be sub-

tracted without error from equation (57). The interchange-

ableness of these forms should not be lost sight of.

50. A similar concordance of equations (56, 58), though it is
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not superficially evident, follows at once on showing a right to

add the third member in the equality

(*) Mr = 0)-Hr = (0-Hr, (63)

whose first and second members are now known to be equal.

The required proof is got by differentiating equation (51), where

we find

Hr = /„,{6(r'-r') - u(a>.r') - r'(<bT')}dm, (64)

whose scalar product with (&>) is, omitting everywhere scalar

products of perpendicular factors,

o>-Hr = /„,{(G>-u))(r'T') - (G)T')(6)T'))}dm
(65)

= /mw-(fa>(r'-r') — r'(o>-r'))dm = o-Hr.

The vector (<b) which is the time-derivative of the rotation-

vector (w) is named the vector of angular acceleration. Of course

it provides for both changes of direction (or of axis) in the rota-

tion, and for changes in its magnitude (or spin) ; and (tb) must

be of common application at any epoch to all mass-elements,

because that is true for («).

51. With the support of equations (51, 52, 56, 58), we have

given .consideration to all four quantities that need specifjdng,

for the rotation that is the remainder over and above the fic-

titiously segregated translation, since the representative particle

as it has been determined engages the totals of force and momen-

tum. And having brought the discussion to this point, in terms

connected with the effective forces whose resultant is (R), it

remains to make that transition to impressed forces with equal

resultant (R'), which we have learned to associate with d'Alem-

bert's name. Under the conditions explained for rigid bodies,

certain sources of impressed force are not to be permitted, but

the total work done must appear in the energies of translation

and rotation. Let us then next summarize how matters stand
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with the six dynamical quantities, in the two groups that we
have recognized.

I. Translation:

1. Force (R' = R) at (f).

2. Momentum (Q = mv) at (f).

3. Energy (Et = ^mv^).

4. Moment of Momentum (H-r = f x mv) ; consistent

with (2).

5. Power (P^ = R'-v = (d/dt)(ET)); consistent with (1)

and (3).

6. Force-moment (M^ = f x R' = Hx) ; consistent with

(1) and (4).

II. Rotation:

1. Force = 0; consistent with couples expressing self-

compensating elements in (R').

2. Momentum = always; consistent with impulse of zero

force.

3. Energy (Er = ^wHr).
4. Moment of Momentum (Hj^); consistent with zero

momentum.

5. Power (P^ = wMr = {d/dt)(EjJ); consistent with (1)

and (3).

6. Force-moment (Mr = H^); consistent with (1), (3)

and (5).

52. The review of these details impresses the fact that the

above conventional separation accomplishes complete inde-

pendence for two such constituents of the actual data, in the sense

that the course of events can be duly expressed for each group,

with indifference to the presence or absence of the other, by a self-

contained use of the general dynamical scheme. This secures

the full simplicity attendant on pure superposition, by shrewdly

exploiting center of mass for its average properties, and kinetic

energy with moment of momentum for their salvage of what the
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mean values sacrifice, utilizing also a form of Poinsot's allowance

through a couple for off-center action of a force. The idea is

successful, besides, in concentrating into the rotation elements

where the form and the mass-distribution of the bod}^ complicate

the data with differences; and this frees the translation for giving

expression to broad traits of similarity.

The rudiments of the steps now taken are perceivable in equa-

tions (10) and (12), where it is plain that an internal energy like

(Er) could belong to radial pulsations of mass-elements about

(C), either alone or added to spin as a whole; but development

is checked until (u) is particularized in its value and distribution.

It is plain, however, that adaptation to many combinations is

feasible, whose general feature is non-appearance in translational

energy of full equivalent for the total work done. Failing

definite knowledge that forbids, a rotation can be devised as one

possible means of absorbing a quota of kinetic energy, and as

one guide to conjecture among the facts of an observed diversion

of energy from a translation. It is scarcely necessary to insist

that the equivalence of any such devices is restricted to those

particulars according to which their lines were laid down; the

particle plus a rotation is an equivalent for the general motion

of a rigid body only in the six respects enumerated.^

53. At equation (44) the idea was introduced that pure rota-

tion of a rigid body about a reference-origin, instead of the center

of mass, is describable in corresponding terms on substituting

(r) for (r') and (v) for (u). The intrinsic difference lies in the

necessity that a reference-origin is a fixed point, whereas the

possible velocity of the center of mass runs like a thread through

all our recent discussion. Let us realize that the main results

now added can be similarly extended, and put down as applicable

to pure rotation about the reference-origin these parallels specif-

ically to equations (51, 52, 56, 62, 65):

I See Note 17.



The Fundamental Equations 65

H = /^^((o(^•^) - r(<o-r))dm;

P = coM;
H = M;
H = coH = G)M.

(66)

Total quantities (67)

for pure rota- (68)

tion. (69)

(70)

Since in this ease supposed, the center of mass need not coincide

with the origin, the alternative choices will be open to treat the

body as exhibiting rotation alone, or as affected with translation

and with a rotation besides. But translation cannot bring in

change of direction for Hnes of the body, hence both views of

the rotation must agree in their rotation-vectors permanently.

And because the center of mass cannot change its position relative

to its rigid body, a relation distinctive of pure rotation must be

V = Q X f. (71)

The comparative directness and convenience of the two methods

will be decided according to circumstances. One method ex-

cludes from (M) any forces really acting through the origin;

the other can omit from (M^) any forces acting through (C)-

54. We proceed with the requisite analysis of rotation, by

examining the specialized values of local accelerations and some

consequences of them, conscious always in the light of what has

just been said, that the conclusions will be available for twofold

use. One is more important, doubtless, because more inclusive

in application to the most general type of motion of which a rigid

body is capable; but the second has weight, too, in attacking the

conditions of pure rotation that are made prominent, for in-

stance, in common forms of the gyroscope.

The local acceleration of a pure rotation given by differentiating

equation (44) is

v = ((oxr) + (toxv).
. (72)

Let us make this form our text and starting-point, remembering

that in the other circumstances it is to be recast into
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li = (g) X r') + (o> X u), (73)

with continuations where (r') replaces (r) everywhere and (u)

replaces (v), while (u) is read the local acceleration of the rotation

and is the excess of (t) over (v). The vector (w) gives the

velocity of the extremity of (w), of course; and its base-point

will be taken conventionally at the origin with which our idea of

rotation is associated. Then the process modifying (w) by (d))

is one of continuous parallelogram composition for intersecting

vectors, though equivalent indeed to addition in a triangle.

The vector sum in equation (72) deserves close attention,

because though the two types of its terms are on one count an

incident of the algebra, it happens that they conform remark-

ably, first to the kinematical elements, and later to a certain

plane of cleavage in the djmamics. The form of the second term

connects it conclusively with change of direction only for its

velocity; and the first term enters and vanishes with angular

acceleration. If (w) retains direction (w) must be colinear with

it; and then first inspection can identify the terms with the

tangential and the normal acceleration respectively of the local

(dm) in its circle perpendicular to (w). But the complete separa-

tion of changes in magnitude and in direction for (v) that then

exists should not be assumed more generally; it is always true,

however, that the first term in the acceleration bears the same

relation to the axis of angular acceleration (w) that the corre-

sponding velocity (v) does to the axis of rotation (w).

55. Multiplying equation (72) by (dm) yields the effective

force-element, which, because it is exhibited locally, must have

a moment to be found by taking that force in vector product

with its (r). The total moment then demanded by the localized

forces must, as we have seen, be furnished by the impressed

forces; and this amount is expressed by the integral

M = /,„[r X ((a> X r) + (to X v))dm]. (74)
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Denote the two main constituents of this moment by (M') and

(M"); and let us take up the second part for examination.

Expand the triple vector product, omit the scalar product of

perpendicular factors, and finally write for (v) its known value.

This shows

M" = — /mV(G)-r)dm = — /^(o x r)(fa)-r)dm. (75)

Next form for comparison the product

w X H = /ni(cd X [w(r-r) — r(wr)]dm)

= - /m(w xr)(o>-r)dm, (76)

and we see that the extreme members are identical. Hence we

conclude that the office of thus much of the force-moment is to

produce a change of direction in the vector of total moment of

momentum so regulated that the latter would move with the

body or retain its position in the bodj'. This is a simple corollary

of the interpretation of (g>) according to section (47). If ((,i)

and (H) were in every case colinear, their vector product at the

value zero would become formal and meaningless. But it appears

plainly in equation (66), first that (H) may be thrown out of

line with («) by the term

— /mr(wr)dm,

which does not in fact generally vanish nor become colinear

with (w); and secondly, that (H) and (to) cannot become per-

pendicular by compensations within the first term, because every

product (r-r) is essentially positive. That they never are perpen-

dicular we shall conclude presently (see section 58) ; the general

obliquity of the rotation-vector and the moment of momentum
vector is one characteristic in rotation, and is operative to cause

effects to which there is no parallel where a kinematical vector

and its dynamical associate are colinear, Uke momentum and its

velocity. If angular acceleration is absent, everj^ element in (M')
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is zero, but (M") is not affected, since it depends upon the (w)

of the epoch, and not upon the past or future history of (ui) . If a

rigid body is spinning steadily about a fixed axis even, (M") is

called for, as a directive moment, whenever (o>) and (H) diverge.

For the case of rotation about the center of mass, (Mr") will be

furnished by a couple. These moments are recognizable as the

centrifugal couple of the older fashion in speech. Like forces

normal to a path, they disappear from the power equation by a

condition of perpendicularity, as is visible from equation (68),

when we have noticed through equations (75, 76) that (M") is

perpendicular to ((,i).

56. What has been determined about (M") presents it in such

relation to the (o) of the epoch that an impressed total force-

moment of that value is adjusted exactly to continuance of

constancy in the rotation-vector (o>); the zero value of power

and the consequent constancy of (E) being an evident con-

comitant of that as primary condition. It is further acceptable

on copimonsense grounds that (H) whose divergence from (w)

is fixed by the mass-distribution when (co) is constant, as the

form of equation (66) proves, must then accompany that mass-

distribution through its changes in azimuth round the rotation-

axis, so as to describe a right circular cone and keep up with any

originally coincident radius-vector of the body. And the shrink-

ing of such a cone into its axis provides for the singular case of

non-divergence, with no (M") required for adjustment.

With the above details in hand, the part (M') of the force-

moment appears in the light of a disturber of adjustment, and

that opens for it an indefinite range of possibilities or puts away

the expectation of particular conclusions, except two: that it

must supply, first, all power and all changes in magnitude of (H),

and secondly, any change of direction that displaces (H) rela-

tively to the body.

57. At this point the chance offers for a pertinent remark
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about all equations like (74) in their type. They exhibit an

impressed phj'^sical agency (here of (M)) in terms that compare

it for excess or defect with an adjustment that is not compensa-

tion as equilibrium is, but calls for positive action (such as (M")

here exerts). It is an ambiguity inseparable from the algebra,

especially where the total available is numerically less than the

critical value, that an adjustment disturbed is indistinguishable

from one not secured. In other words we can be sure only that

(M') and (M") are mathematically represented in (M), when the

latter has been assigned arbitrarily; using again the present

instance, we know nothing of (M') and (M") separately as active

agencies. Neither of the forms

M = M"; M - M" = 0; (77)

indicates equilibrium, but both express a fulfilled adjustment,

much as equation (36) was read. Both of the forms

M = 0; M' + M" = 0; (78)

apply the condition of equilibrium to (H) in the sense of making

it a constant vector. In these circumstances an angular acceler-

ation that underlies (M') will appear in the equations unless (M')

and (M") are zero separately, which can be true only specially;

and there is some trace of mathematical suggestion that this

angular acceleration arises by give-and-take between (M') and

(M") that diverts the latter from its original office of keeping

(fa)) constant.

Doubtless that instinctive view, if it exists, receives some

support from knowledge of other conditions in which an active

assignable force-moment is indispensable to the appearance of

angular acceleration; and that is the root of the inclination to

see paradox in the phenomena that realize the conditions of

equation (78). But in consequence of the divergence already

spoken of, if the (H) vector preserves its direction in the reference-
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frame while the body is in rotation, the vector (w), obHque to it,

will not be constant also, and accordingly there will be angular

acceleration. This occurs spontaneously we might say, (M) be-

ing zero, in the absence of control that would be effective to

keep (o)) constant and shift the burden of change upon (H). It

makes the reasons for the apparently abnormal results more

obscure, that the kinematical aspects depending upon (<o) and (w)

are often patently visible, whereas the dynamical elements that

really dominate are hidden from view.^

58. While we are laying emphasis upon the general separation

of directions for (w) and (H), it is proper to be aware how this

works out only for the body as a whole through the mass-summa-

tion of (dH) and the introduction of the common rotation-vector,

and does not appear in the local elements, that it is the object of

that plan and its advantage to handle in one group and not

individually. It was observed already in equation (2) which

had not yet been narrowed to rotation, that for each (dm) its

(dH) and its (y) are coincident vectors, the latter lying in the

normal to the plane (r, ds) and being attributed to the local (r) as

its particular angular velocity. This lesson can now be repeated

from equation (51) or (66), if we denote by (wi, Ti, yi) the unit-

vectors of (co) and of (r), and of the perpendicular to (r) in the

plane (w, r), noticing that for instance equation (66) can be

written, if (a) is the angle (w, r),

dH = (o>i(ajr2) — Ti.{(ai^ cos a))dm
= Yi(ajr^ sin a)dm = ^(rMm). (79)

It is instructive to see, next, how the body as a whole retains

for its total moment of momentum in relation to its rotation-

vector the same type as equation (79) shows; and this can be

done by assembling the projections of every (dH) upon the

direction of (w). The result to be recorded for use is

1 See Note 18.
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H(„) = /mO)i(cor2 - (<oi-r)(G)-r))dm = wlu), (80)

expressed as we find, also as the product of an angular velocity

and a moment of inertia about its axis, but both these factors

now refer to the whole body, and this form excludes perpendicu-

larity of (<d) and (H).

Because (H) is a sum into which the differently weighted ele-

ments (y) enter, and the weighting depends upon what happens

to be the mass-distribution, the final result cannot be forced

completely into any one mould, beyond the point here estab-

lished; only we know that the rest of (H) must be in the plane

perpendicular to (<o). Therefore according to equation (67) we

learn that

E = i("-H) =f lu), (81)

which may also be inferred directly from equation (52), by a

slightly varied reduction of the last member but one. Let us

use the occasion to renew the reminder that the rotation relative

to (C) involves only a transfer to its notation of the details here

attached to the other case.

59. A similar trend can be marked in the other partners (w)

and (M') which bring kinematics and dynamics into connection

:

an elementary type of expression which appears differentially

then persists in application to the body as a whole, but with a

supplement governed by the particular mass-distribution that

produces obliquity of (M') and (to). For the local element

(dM') equation (74) leads by expansion to

dM' = ((b(r-r) - r(a)-r))dm, (82)

which it will be noted reproduces equation (66), except that (w)

has replaced (w) throughout. Consequently equation (79) can

be paralleled in the form

dM' = (a)i(cbr2) - Ti(cor^ cos j8))dm

= px(cor2 sin /S)dm = (w son /3)pi(rMm). (83)
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But (tbi, ri, pi) are now unit-vectors for (to), (r) and the per-

pendicular to (r) in the plane (w, r), and (j8) denotes the angle

(w, r). It is plain that (co sin j8)pi is for each (r) the effective

part of (tb), as (w sin a) yi is the locally effective projection of (g>),

and that (r^dm) is a moment of inertia for the axis (pi). Thus

the type is set for the corresponding expression in terms devised

to apply to the body; and in fact we find

M'(i) = /inw(r2 - (<bi-r)2)dm = 6l(^), (84)

whose form excludes perpendicularity likewise for (d>) and (M')-

60. It can be conceded as one legitimate purpose of equations

(80), (81) and (84) to extract from the more general treatment

of rotation what residue of correspondence remains with those

simpler forms that are met in uniplanar dynamics. Looking in

that direction, the main difference can be localized in the addi-

tion of an independent axis of (o) to stand alongside the previous

axis of (w). But the greater enlightenment in the discussion

comes from the insistence upon putting foremost the powerfully

direct analysis, by means of the dynamical vectors (H) and (M)

and their connections. This tends to make the kinematical

vectors, and especially (&>), rather subsidiary until restrictions

upon the problem restore to them more nearly equal weight.

61. If we start again from equation (66) and enter upon the

semi-cartesian expansion for the vector (H) the first results found

are

H(x) = co(x)/m(r-r)dm - /mX(<o-r)dm; 1

H(y) = fa>(y)/m(r-r)dm - /n,y(o)-r)dm; [ (85)

H(z) = fc)(z)/m(r-r)dm - /„iZ(fa>-r)dm. J

These continue to assume pure rotation round the origin, the

body being in a general orientation relative to the reference-

frame (XYZ). Retaining one value of (o>) given in relation to

(XYZ), the last terms in the second members are seen to depend

upon the body's orientation, but the first terms are invariant for
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all such orientations. By a definite choice of orientation the last

terms can always be remarkably simpUfied, and what are known

as the principal axes of inertia for the origin will then coincide

with the axes (XYZ). We presuppose the proof that there are

never fewer than three orthogonal principal axes at every point

that is in rigid configuration with a rigid body, and ordinary

acquaintance with properties of the ellipsoid of inertia or mo-

mental ellipsoid; this material is standard and accessible.

In all three equations expand (to-r) and reduce to the forms

H(x) = i{co(x)I(x) — co(y)/mXydm — co(2)/mZxdm}; 1

H(y) = j{co(y)I(j) - aj(,)/myzdm - oj(x)/mXydm} ; V (86)

H(j) = k{aj(z)I(2) — a)(x)/razxdm — co(y)/myzdm}. J

The property of principal axes determines the disappearance of

six integrals at the orientation where those lines of the body

coincide with (XYZ). Supposing that coincidence, therefore, it

becomes true that

H = w(x)I(x) + <«>(y)I(y) + w(z)I(i)- [Principal axes.] (87)

But (H) can be represented invariantly by an indefinite number

of groups of orthogonal projections, and for one group, which

can be chosen at every epoch and for every (w), the coincidences

that simpUfy equation (87) will occur instantaneously. How
and on what terms the advantage of the simplification can be

made permanently available is a question to be taken up here-

after (see section 118); but some useful decisions follow immedi-

ately here.

62. And first, the possible extent is made evident of the can-

cellation ensuing through the difference between the two con-

tributions to the second member of equation (66) . It is indicated

by the present remainder, in which all the terms are essentially

positive, if we take the vector factors absolutely. Secondly, if

we turn to kinetic energy, the aid given by adopting principal
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axes, there too, is apparent in reducing the number of terms in

the expression. For whereas the expansion of equation (67) on

the basis of equation (86) will yield nine terms that do not

coalesce into fewer than six, the reduction of these to three is a

consequence of equation (87), from which follows

E = |[(w(x))^I(x) + (W(y))''l(y) + (aJ(^))2I(,)].

[Principal axes.] (88)

This again by deleting subtractive terms has regained parallelism

with the case of translation and three orthogonal components of

velocity except for the difference, irreducible in the general

expression, between the uniform mass-factor (m) and the indi-

vidual inertia-coefficients Hke (I(x)).

63. In the third place, that similarity in type between equa-

tion (66) and equation (82) which has been relied upon before to

abbreviate details can be employed again. Like equations (86)

for (H) we can write for (M')

M'(x) = i{w(x)I(x) — a>(y)/mxydm — W(z)/mzxdm}; "1

M'(y) = j{w(y)I(y) — W(z)/myzdm — W(x)/niXydm
}

) [ (89)

M'(z) = k{co(z)I(z) — co(x)/mZxdm — w(y)/myzdm}; J

in which the same six integrals occur that the choice of principal

axes eliminates. Consequently if we use at the epoch the pro-

jections upon the principal axes, we obtain

M' = W(x)I(x) + w(y)I(y) + w(z)I(z). [Principal axes.] (90)

This adds one feature to the previous conclusion in equation

(84), and makes evident that (M') cannot vanish while (w) differs

from zero, as a limitation upon the subtractive element of equation

(82) . And it throws stronger light upon a possible constancy of (E)

while both (M') and (M") are active, for which the condition is

that (M') as well as (M") should be perpendicular to (w). This

is compatible with the presence of («) since the latter may have

any direction relatively to (w). Where the time-derivatives of
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equations like (80) play a part in such considerations as the fore-

going, of course it may be necessary to take account of variable

moment of inertia as being important in reconcihng the presence

of (ti) and the absence of (M).

Should the rotation that is under investigation be about the

center of mass of the body, the force to be brought in for the

accompanying translation or to accelerate the particle of the

combination is calculable as (m^), where any value may have

been assigned by other elements to the second factor. But if the

case is one of pure rotation round any origin or fixed point, it is

plain that the acceleration and velocity of the center of mass are

prescribed at the values

t = (g) X f) + (w X v); V = (fc) X f), (91)

requisite locally under the rule of equations (44, 72). Then the

total force brought to bear must be accurately adjusted to produce

this acceleration, and a constraint at the origin may have to be

made active in order to give exactly the requisite force. For

reasons of that nature, the constraint may need to be calculated

or expressed, although it can contribute nothing to the moment
(M) about the origin, and can in that respect be ignored. It

rests upon the general understanding about sections 45 and 51,

that all the leading equations like (86, 88, 89) are adaptable to

center of mass as origin without formal change, and by mere

substitution of the values then effective.



CHAPTER III

Reference-Frames: Transfer and Invariant Shift

64. Let us recall now the fact that the exercise of choice of

reference-frame must be an assumed preliminary to determining

any definite working values for the fundamental quantities, and

consequently for all quantities calculable in terms of them.

This is not interfered with as a truth by our predominant habit

of making the earth's surface locally the tacitly adopted basis of

reference. The circumstances then bring with them quite natu-

rally a recognizable need of deliberately guided inquiry into the

extent to which such values are affected by an allotted range in

selection and specification for our reference-frame. This will

afford the necessary machinery for correct transfer from one

reference-frame to another as standard when that is dictated by

an effort at greater precision or by reasons founded in an ad-

vantage of convenience.

The line of thought to be taken up next will trace out those

matters of material consequence connected with the chief kine-

matical and dynamical expressions which require for their settle-

ment a collation of values resulting when particular frames are

chosen among a group that are in assigned conditions of relative

configuration and motion. The fullest survey belonging to that

discussion embraces much that would be scarcely relevant on

the scale laid down for our present undertaking. But by allowing

the more practical interests in these directions to set the limits,

we shall confine our scope to methods that are in most frequent

use for translating the important expressions into convertible

terms of familiar type and ascertaining their mutual dependence.

In so far as vectors can be made the vehicle of expression, they

76
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are likely to deal direct!}^ with resultants and totals, and then

we are concerned with the amounts by which these change at a

transfer from one frame to another. Yet because we must at

times prepare more completely for computation, this alone would

constrain us to sacrifice to those ends the compactness of vectorial

statements. Other reasons also compel us to find place for the

partials or components that are characteristic of various coordi-

nate systems whose peculiar advantages make them useful

auxiliaries to the reference-frame; and this will raise a second

group of questions. Some close intrinsic connections will be

found, however, to make interdependent the two branches of the

inquiry, relating one to the uses of coordinate systems and the

other to comparisons among reference-frames, which occupy this

chapter and the next.

65. First as to transfers and comparisons among reference-

frames. Since scalar mass that is unaffected by position and

motion becomes by that supposition neutral to the main issues

here, something can be done toward clearing the ground by

noticing at once how many important decisions must then turn

upon the kinematical factors; solely upon these in the differ-

ential elements, though as we have found at certain points in

the preceding chapter, the mass-distribution continues to play

some part through the integrals that are related to the center of

mass and to the moments of inertia. Accordingly we are enabled

to restrict ourselves in the first steps to kinematics, essentially

to radius-vectors and velocities and accelerations, the properly

dynamical phase being covered finally by introducing the neces-

sary mass factors.

As one aid to brevity, we shall outline a notation by way of

preface, to be used consistently throughout the combinations and

comparisons that we must make. Let one reference-frame estab-

lished by its origin (O) and its axes (XYZ) be constituted the

standard, the axes being orthogonal and in the cycle of a right-
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handed screw. By affording to our thought one term common

to a series of comparisons, this frame will furnish a means of

coordinating their individual results. Let any one of the other

reference-frames with which we may happen to be concerned

alternatively, either under suggestion from special conditions or

for the purpose of more general discussion, be determined

through its origin (O') and its axes (X'Y'Z') and be distinguished

as a comparison-frame. All the frames are supposed congruent.

We shall preserve a helpful symmetry of notation by assigning

regularly primed quantities to comparison-frames and unaccented

symbols to the standard. But we must not fail to remember

either that the distinction which sets off one frame as standard

is for convenience of correlation only, in the first instance, and

it retains its arbitrary element until physical reasoning can be

seen to converge noticeably or convincingly upon one frame, or a

set of frames meeting formulated conditions, as the basis better

accommodated to the ultimate statement of any physical laws

or regular sequences among phenomena. We have touched on

this point in sections 6 and 7. In the preliminary view every

frame is qualified for selection to be standard, in relation to

which all the others fall into their status of comparison-frames.

66. The configuration of any (0', X'Y'Z') relative to the stand-

ard can be specified as though it had arisen in virtue of a dis-

placement from original coincidence with (O, XYZ), without

needing to imply, however, that the coincidence once existed in

reality and that the final configuration has developed pro-

gressively by a time process, but also without excluding the

latter possibility. In order to dispose of certain aspects of the

matter, let us at first conceive definitely all these individual

configurations to be permanent, each comparison-frame being

taken in a configuration that it retains. Then any continuous

transitions within an arrangement of such frames will associate

themselves rather with grouping it into a space locus, and no
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idea will be imported into it of those other features belonging

distinctively to motion and a path. But we must expect to find

here as elsewhere, that the two points of view run easily one into

the other, with those groups of virtual displacements, indicated

as possible without violating the conditions for the locuS; becom-

ing an actual series in time when the paths are described. One

moving frame can mark the positions of all members of a group

that are in permanent configurations, as it coincides with them

in succession. In point of fact, several similar modulations of the

thought here hinge alike upon that dual conception of the

elements that enter.

67. The assignment of its relative configuration will involve in

general for any frame both a difference of position between (0')

and (O) and a difference of orientation between (X'Y'Z') and

(XYZ). Moreover these two data are assignable independently,

and it is intuitively true that the actual localization of (O',

X'Y'Z') is reproducible from coincidence with (O, XYZ) by com-

bining them in either order. Let the parallel displacement or

translation of the axes with the origin (0') be specified by the

vector (00') which we shall denote by (ro). And the changed

orientation is equivalent to a subsequent displacement by rota-

tion of (X'Y'Z') as a rigid cross, because they are congruent with

(XYZ) and remain orthogonal. Using the notation of section 45,

we can indicate the result by the vector sum

Y = /dr, • (92)

with the possibility attaching to resultants in general, of repre-

senting equivalently many sets of components.

If the idea of succession enters the last equation, the present

connection confines it to a timeless series of elements (dy), in

each of which the constituents (^cyv) or substitutes for them are

coexistent. Where it will not cause confusion, the term rotation-

vector can be applied to (dy), as well as to (y) of the earlier
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section. For any comparison-frame accordingly its configuration

is given with the requisite definiteness by the two total displace-

ments taken in either order,

To = /dio; Y = fdy. (93)

68. Let us introduce next any point (Q) having at a given

epoch radius-vector (r) in the" standard, and (r') in a comparison-

frame. The difference of orientation alone while (0') coincided

with (O) would leave the radius-vector invariant for all per-

missible sets of axes, the expression of which condition can be

put into terms of the two sets of unit-vectors,

r = ix + jy + kz = i'x' + j'y' + k'z'; (94)

where the invariance is noticeably obscured until the vector

algebra brings it into full rehef. The alternative relation

accompanying separation of (0') and (O) is

r = To + r', (95)

whose form obviously excludes equality of (r) and (r') so long

as (ro) differs from zero. It should be observed about the last

equation that it is based rather upon a triangle as graph than

upon a parallelogram, because the conception of (r') makes it a

localized vector with (O') for base-point.

Regarding now (Q) as typical in any continuous or discon-

tinuous assemblage of points, and (Q') as any other such point

whose radius-vectors in the two frames appear in the allowable

forms (r + Ar), (r' + Ar'), we have for the vector (QQ')

Ar = Ar', . (96)

throughout the group of points, independently of the points

chosen and of the particular comparison-frame employed. This

records the patent truth that the arrangement of members in

any point-group, or their configuration relative to each other,- is

expressible invariantly by means of the standard frame and of
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every (O', X'Y'Z'). With that meaning the remark is to be

accepted that " Position coordinates appear in our equations by

a convenient fiction only, they being parasitic and auxihary

variables that can be eliminated."^

69. If for sufficient reason we maintain the discrimination

between (Q) and (Q') as two individual points and locate each

permanently in its configuration with (O, XYZ) ; or let each be

fixed in the space attached to the standard reference-frame in the

words of one current phrase; no questions about time-derivatives

of (r), (r'), (Ar) or (Ar') can arise, so long as the configuration of

(O', X'Y'Z') is also by supposition permanent. The source of

those reasons and their cogency will depend upon the case in

hand; they may be physical in their nature and extracted by

interpretation and analysis from observation, or their origin^

may be frankly due to a feature in the mathematical treatment.

By associating other such individual points with (Q) and (Q')

we may build up a continuous group as a limit, for which the

general radius-vector becomes in length a function of its orienta-

tion but the essentials of the description remain timeless.

However in any unforced survey of other particular circum-

stances and their plain suggestions a competitive view must find

recognition, that will regard both (Q) and (O', X'Y'Z') as indi-

viduals somehow identifiable through a series of changing con-

figurations in (0, XYZ), and consequently any account that aims

at practical completeness cannot neglect coordinating the two

alternatives. There is the elementary fact, for example, that the

same dependence of radius-vector upon its orienting angle as before

can be presented with both variables made functions of time. But

the fruits of that idea are not exhausted in one announcement at

the threshold of the matter. For when in our view (Q') becomes

a subsequent position of the point (Q), or whenever, more inclu-

sively, the varying position of a moving point is matched at each

1 Quoted from Poincare.
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epoch with the permanent position of a coincident point, the

twofold relation of the same symbols to which this leads with

such a double point will reappear perpetually. This can make

either aspect of the coincidence a continuous indicator or marker

for the other, by means of some connecting rule that formulates

from either side the relation of consecutive values—here of the

radius-vector. Neither phase of the combination can be ignored

or subordinated, without losing hold upon ideas that are central

in evaluating any variable quantity by legitimate transition to a

substituted uniform condition.^

70. These considerations confront us with the necessity of

preparing here for that kind of transition, and conceiving (Q)

and (0', X'Y'Z') to be individual and moving. This can be

executed conveniently by subdividing into steps, and taking first

the one that affects (Q) alone, while we retain for the time being

that permanent configuration of (0', X'Y'Z') in the standard

frame which is afterwards to be abandoned. If we accept for

(Q) and (Q') a fusion of identity in the sense that they are now

adopted as two positions of the same moving point, terminal for

any time-interval (At), the mean velocities for that interval will

be equal in our two reference-frames, and also the instantaneous

velocities at the epoch beginning the interval. This conclusion

finds expression in sequence with the requisite new reading of

equation (96) as

V = Lim^t=o
( ^ )

= Lim^t=o (~^]-^''> (^'^)

or in semi-cartesian dress,

dx . dy , dz ..dx' .,dy'
.
,,dz' , ,„^,

V = iTr + j^f + k^TT = i'-rr-f j'-57 +k'-r- = v', (98)
dt Mt dt dt •* dt dt ' ^ ^

since both sets of unit-vectors are by supposition constant here,

as well as (lo). And further,, because these simultaneous veloci-

1 See Note 19.
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ties of (Q) are thus continually equal vectors, it is an evident

corollary that the accelerations of (Q) in the two frames are

always equal at the same epoch; or

t - Lim,t=o(|^) = Lim,t=o(^) - t', (99)

whose expanded equivalent again is

. d^x . dV , d-z

^ ^
^dt^ + ^dt^""^ dt2

.,dV .dy ,,dV , , ,

dt2 ^ ^ dt2 ^ dt2
^^""^

71. Taken together, these statements make clear for every

epoch the invariance of velocity and acceleration that holds

good throughout any group of reference-frames that are in

permanent relative configuration. Also the consequences in

application to the same system of bodies at the same epoch are

apparent. Each local velocity and acceleration being un-

affected, the six fundamental quantities show in the standard and

in any comparison-frame of the group thus correlated:

Q = q', R = R'; E = E'; P = P'; 1

H = H' -F (ro X QO; M = M' + (ro x R'), J ^ ^

which it may be well to compare for likeness and difference, say

when (ro = f), with the corresponding relations exhibited in

section 51, the contrast between (C) there and (O') here lying in

the freedom of the former point to move with velocity and ac-

celeration. The less narrowly limited connection of center of

mass with force-moment and moment of momentum should be

realized.

72. The foregoing results are sufficiently practical in their

bearing to incite us to appropriate, without delaying, the possi-

bilities that they illustrate. These lie in the direction of a certain

liberty to employ what amounts to a whole series of different
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reference-frames at successive epochs of the same problem, or

inside the range covered by one discussion, and yet avoid pro-

hibitive compHcations that might be due to such repeated trans-

fers to new standards. Provided only that we observe those

restrictions which underlie the invariance of any particular

quantities with which we are dealing, the frames become inter-

changeable in respect to them; and freedom prevails to depart,

at later epochs and as often as may prove desirable, from the

initial choice of reference-frame. At least it is evident how
there will be no danger, on relinquishing one frame and adopting

another subject to the proper conditions, of dislocating ruinously

by breaking into it the expression of a continuous series of values

for any quantity that the change leaves invariant. Dislocations

of minor scope can be reckoned with otherwise, or often dis-

regarded, where they enter.

Such procedure remains clearly valid, always within its limita-

tions, whether its revisions of choice involve configurations

separated by steps that are finite or that are made with finite

pauses between them, or whether the group of frames used melts

at the limit into a continuously consecutive arrangement. It is

equally permissible, besides, to regulate the employment of

members in a group of frames according to a time-schedule, or

to effect timeless transitions among frames and to concern our-

selves comparatively with simultaneous values of different quan-

tities, or finally of the same quantity when we break the barrier

of invariance. The actual working out of the main thought

rings the changes on all these offered chances, so that several of

the combinations will come before us prominently for specific

examination.

73. We proceed next to remove the limitation that has held

us to permanent configuration for (O', X'Y'Z'). We relax this

permanence relative to (O, XYZ) by admitting, first changes in

(ro) alone while (y) is unchanging in equation (93), and after-
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wards the full freedom with changes in (y) also. It seems ad-

vantageous to attack this phase of the matter, too, through what

we have spoken of as fusion of identity; but now for comparison-

frames that like the points (Q) and (Q') can from another

approach also be distinguished as separate individuals. Return

then to that original view of those points, include some second

comparison-frame (O", X"Y"Z") and carry on the notation by
adding

O'O" = Aro; 0"Q' = r". (102)

The relations associating (Q) with (0') and (O), and (Q') with

(0") and (O) are

r = To + r'; r -j- Ar = (ro + Aro) + r", (103)

showing by their difference

At = Ato + (r" - r'), (104)

whose verbal equivalent can be read from the broken line

,(QO'0"Q') that is equal as a vector sum to (QQO and closes a

quadrilateral that may be of course either gauche or plane.

We may now retrace the previous track further, whenever we
can attribute to the frames (0^ X'Y'Z') and (O", X"Y"Z")
some adequate basis of continuous identity similar to that which

was made to unite (Q) and (Q'), so that the entire group of

discrete frames of permanent but differing configurations is

replaced by the conception of one representative frame (O',

X'Y'Z') in continuously variable relation to the standard. First,

confine attention to the origin (O'), deferring a little the intro-

duction of changing orientation, suppose (ro) to vary with time

and read equation (104) to correspond. The originally un-

related vectors (r') and (r") coalesce under one symbol (r')

when that is used to signify a vector drawn always from the

position of (O') at any epoch to the simultaneous position of (Q).

It is therefore a vector to be rated in the standard frame as
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localized, but variable in all three particulars of length, orienta-

tion and base-point. In pursuance of that thought write

r" - r' = Ar', (105)

divide equation (104) by the elapsed time (At) and proceed to

record the limiting ratio in the form

(S)Lim^t=a
['^^J

= r - f = V - Vo, (106)

if (v) and (vo) denote the velocities of (Q) and of (0') in the

standard frame. The formal repetition in this first member of

(v') as specified in the terms of equation (97) is significant of its

unconstrained meaning here too as the velocity of (Q) reckoned

in the frame (O', X'Y'Z'), but under an extension that allows a

supposed motion of (O')- Duly observing the imposed condition

of unchanging orientation for (i'j'k') that is still maintained,

confirm this feature of the development by writing the time-

derivative of the permanent relation in equation (95) in the form

.. dx' ., dy' , , dz' , _,

and compare with equation (98). It is plain that (v') and (v.)

are equal at any epoch when (fo) is zero.

74. These thoughts harmonize in another respect with equa-

tion (106) if we see registered there a consequence of a double

process of incrementation for the vector (r'), now completely vari-

able in the standard frame, with rate (v) at its forward end and

with rate (vo) at its base-point. In every such combination, so

long as these rates are equal, the vector retains its length and

orientation in the reference-frame; as a free vector it remains

equal at all epochs, though as a localized vector it experiences

change of position determined by the common value of the two

rates. In the less particularly chosen suppositions where the two

rates are unequal, only their difference such as (v — Vo) is avail-

able to give change of tensor and of orientation.
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But to take account of these latter elements for (r') and to

ignore or drop out the change in position for (O') substitutes

effectively (O', X'Y'Z') as reference-frame, the orientation of

(i'j'k') having first and last the requisite permanence, so that the

transfer is uncomphcated in that respect. And since the part

(vo) applies simultaneously or in common to all points (Q), the

readjustment of velocity values made necessary by this type of

transfer to a new reference-frame (O', X'Y'Z') can be summarized

as the subtraction of a translation with the velocity of the new origin

in the first standard frame. In connection with this the thought

frequently finds expression that each frame carries its space in

rigid attachment to it, and these interpenetrating spaces will

have in the present case at each coincident pair of points the

relative velocity (± Vo) at any epoch.

The effects upon acceleration of a similar transfer while

(i'j'k') remain constant show plainly on forming the time-deriva-

tive of equation (107). This gives

d-x' d-v' d^z'
t'^i'-^-+j'-^^ + k'— = v- Vo; ^t-t' = vo; (108)

and the proper allowance shows again in terms of a translation

with the new origin (O'), whose acceleration, however, is now
essential and not its velocity. In the hght of equations (107,

108) the combinations become self-evident by which velocities

or accelerations or both may be left invariant under a change of

reference-frame. The bearing upon the segregation in sections

21, 31, 48 and 49 will not escape attention.

75. In order to embrace finally the transition to axes (X'Y'Z')

whose orientation is changing in the standard frame, while they

are accompanying their origin (O'), we can use our knowledge

that the rotation-vector of sections 45 and 67 specifies such

changes adequately, and thus complete under the wider play of

these conditions the time-derivative of the relation that remains

valid,
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r = ro + r' = To + (i'x' + j'y' + k'z'). (109)

Upon the supposition that the group (i'j'k') are at the epoch

varying in direction relative to (XYZ) as determined by the

rotation-vector (y), we are led by the differentiation directly to

the equation

' = '»+(txr') + (4f + j'f + k'f), (110)

from which it follows that

V- v' = Vo + (i-xrO; v = v' + [vo + (y x r')]. (HI)

Typical special cases under this equation can be decided by

inspection. Note the form now taken by the idea of inter-

penetrating spaces in section 74, connecting it with the general

motion of a rigid solid in section 48. The last group of terms in

equation (110) must still be recognized as the velocity (v') of

(Q) in (O', X'Y'Z'), because the transfer to the latter as the

standard cancels perforce from admission into (v') every change

in orientation attributable otherwise to (i'j'k'), in addition to

ignoring changes in the position of (O').

76. Various equivalent verbal formulations beside those al-

ready suggested can be devised for equations (107, 108, 111),

that all amount in principle to a superposition of relative veloci-

ties or accelerations. And it will be seen how the same idea can

be applied repeatedly and can carry us through a chain of trans-

fers to a final result that accumulates in itself all the contributions

at its several steps. Remembering that forces are bound to

superposition also, as they enter successively with the acceptance

of their accelerations into physical status, trace there a line of

advance in precision that would parallel our discarding one

reference-frame in favor of another.'^ The same possibility of

superposition lies open as we go forward from equation (111) to

» See Note 20.
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consider the similar transfer for accelerations, though the com-

plications soon cut down any advantage of a verbal expression

for it.

Formal routine yields for the time-derivative of the general

relation in equation (110) or (111) the result

^ = to + (f X r') + 2(y X v') + (y X (r X r')) + ', (112)

in which (r'), (v'), (v') specify the position, velocity and acceler-

ation of any point (Q) by means of (O', X'Y'Z'); that is, to

recapitulate,

r'^iV + jy + kV; v'^i'^ + r^' + k'l^;

.,_.,d^x; d^/ dV
^ ~ ^ dt^

"^ ^ dt2
"^

dt2 '

(113)

(y) is the angular acceleration belonging at the epoch to the

rotation-vector (y), and (vo) denotes the acceleration of (O')

in (0, XYZ). Interest will center here upon the terms affected

by the rotation, into which the elements (r') and (v') individual

to the point (Q) enter; and for the latter, the connections shown

in equation (111) must be duly heeded. It will cultivate control

of details in the method to carry through its application to such

combinations as (y = 0), (y = 0)> separately or conjointly, in

preparation for the summary that follows. And then to work

out lists, comparable with that in section 71, for the general

conditions of equations (107, 111, 112), showing how the different

quantities are affected by the transfers from one reference-frame

to another that have been brought under review. It is always

a reciprocal interdependence that is in question, and a procedure

for transfer in either direction.

77. To round out this stage of the inquiry, we can now formu-

late for velocity and acceleration the suppositions necessary to

their invariance, that will put the frames for which these are



90 Fundamental Equations of Dynamics

satisfied to that extent on an equal or indifferent footing. We
begin with acceleration, whose invariance necessitates con-

formably to equation (112),

^0 + (y X r') + 2(y X v') + (y X (r X r')) = 0. (114)

But (vo), (y) and (y) are to be assumed independently of each

other; and further, the search is for a general relation covering

all points (Q) in all phases of their motion, which puts aside as

insufficient every particular adjustment or singular value like

r' = 0; v' = 0;

or colinear factors in some individual vector products. Hence

the proposed invariance of acceleration demands all three con-

ditions,

to = 0; Y = 0; Y = 0. (115)

These permit the comparison-frame to have unaccelerated trans-

lation with (O'), but forbid changes in orientation (y) as indicated

by its time-derivatives of the first and second order.

The invariance of velocity imposes different limitations deriv-

able by inspection from equation (111) as being

Vo = 0; Y = 0. (116)

The second of these conditions, therefore, is common to the

invariance of velocity and of acceleration. But as regards the

translation with (O') equation (116) excludes any velocity (vo)

though allowing an acceleration (to), while equation (115) inverts

these relations. The double condition for invariance of velocity

bars at the epoch motion of (O', X'Y'Z') in (O, XYZ), but gives

freedom as to subsequent states. The triple condition for

invariance of acceleration maintains the exclusion of -changing

orientation and sharpens it by (y = 0), but allows any constant

value of the vector (vo).

The above conclusions coupled with the discussion that led
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to equations (98) and (100) bring out how (O', X'Y'Z') if treated

as moving in the standard frame must always sacrifice in some

degree the invariant properties in regard to velocity, acceleration

and the dynamical quantities dependent upon them; though

these are, nevertheless, preserved intact by a succession of frames,

each in coincidence with the moving frame at one epoch. The
permanent values of (ro) and (y) for the stationary frames are

marked off, one by one, in the series of instantaneous values for

those elements belonging to the moving frame. In this sense

and to this extent, the presence or absence of an invariance that

happens to be in question can be made to turn upon the point

of view, which because it affects values also raises issues that need

to be decided in the light of clear statement of the position our

thought has occupied. Consequently it is likely to repay us,

if we enforce this main idea by approaching it in reliance upon

the frames of permanent configuration, the mathematics being

modified to match.
Invariant Shift.

78. Whereas the radius-vectors (r) have been handled in the

preceding equations as functions of time alone, directly in (O,

XYZ) and in (O', X'Y'Z') through the relation

r = ro + r', (117)

this second mode of making a beginning will disguise the same

radius-vectors (r) into functions of three independent variables

(t. To, y). And this will evidently lead toward fixing attention

upon a whole group of comparison-frames inclusively, to be

constructed by assigning continuous, but otherwise arbitrary,

values to (ro) and (y), perhaps in connection with equation (93),

while (t) remaining unchanged gives simultaneous currency to

those values.

The exact differential of (r) indicated according to the new

terms is
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dr = -dt + — dro + T-d7. (118)
at oTo oy

This form might indeed be denominated rather sterile of meaning

in respect to (r) itself, for it is apparent enough from many of

the expressions that we have been laying down that (r) is not

intrinsically dependent on either (to) or (y). Similarly if we

use equation (117), and after omitting the terms that are neces-

sarily zero, on our assumption about independent variables, write

appeal to equation (94) seems to tell that (r') at any epoch does

not change with (y). But after admitting that

^ = ^ + ^ = 0; T- = 0; 120
dro OTo OTo dy

equation (119) is found, notwithstanding, really helpful for the

end sought, as a starting-point for collating dijfferent sets of

components within our group of frames, though it might be

superfluous did we restrict ourselves to resultants. In order to

develop this idea more fully introduce the semi-cartesian equiva-

lent

r' = i'x' + jy + k'z', (121)

whose second member is intended for a comprehensive notation

applying both tensors (x'y'z') and unit-vectors (i'j'k') generically

to the whole group. They are then variables as affected by

passage from one frame to its neighbors, and in addition the

tensors are variable with time in the same frame.

This temporary identity of the variables in the one frame, which

may pick that one out or enable us to recognize it, and yet be

evanescent for the group of frames as a whole, lies close to the

heart of the thought in equation (119), as contrasted with a

completer convection of identity with one moving frame, whose
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tensors and unit-vectors are consequently functions of time only.

For the present purpose, on the other hand, and in its adapted

mathematics, the tensors (x'y'z') must be considered functions

of (ro), (y), (t); but the unit-vectors (i'j'k') and (ro) do not at

this stage vary by mere lapse of time ; nor the former by reloca-

tion of the origin (O')—they must be functions of (y) alone.

Under the suppositions and the reasons for them thus made

explicit, we execute the differentiation of equation (121) in

combination with equation (119) and obtain

dr = T— dr
5ro

,{dx' , ax' , dx' \

(a^<*'« + 57<^^ + ir*)

. ,( Sz'
,

dz'
,

3z' \

+ i

+ j

(122)

+

79. This expansion supplies material to interpret profitably,

when it is observed that the imposed condition for the partial

time-derivatives with the set of variables now adopted is the

same in effect as that for invariant velocity to which equation

(97) is subject. Consequently the three terms on the left are

properly equated to the velocity of any (Q) in the standard frame,

when we write

The double use of this equality is apparent, either in obtaining

projections of known (v) upon the (X'Y'Z') of the configuration,

or in determining (v) by means of its projections upon whatever

particular comparison-frame is designated by the stationary

values at which (ro) and (y) are arrested while the partial change

with (t) is recorded.
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Thus no essential in regard to consistent expression of velocities

would be sacrificed if we depended upon any such comparison-

frame momentarily to replace (O, XYZ) in its service as standard,

and did likewise for new stationary values of (ro) and (y) with

velocities at other epochs. This comment will infuse its due

quota of meaning into the equality

f^v = ~ (124)

and parallel expressions, whenever similar opposed total deriva-

tives and partials are made to play their roles as the basis of a

regular procedure, in which a resultant vector is to be con-

structed or evaluated by means of components parallel to axes

that differ systematically, or in which the projections of a given

vector upon such axes appear naturally.

It is readily apprehended, at this point, how such plans are

effectively equivalent to a continuous process of transfer to new
standard frames that is kept simple by its preservation of invari-

ance, while it may secure a permanence of form or other ad-

vantage in addition. The indispensable resolution of accelera-

tion along tangent and normal of the epoch in treating curved

paths is one case in point; and the compact forms obtained by

introducing principal axes will suggest strongly some similar

scheme in continuation of sections 61 and 63 with expectation of

profit from it. It seems convenient to have a brief name for

contrived plans of this character, so we shall refer to them here-

after as shift of reference-frame, implying always invariant shift

in so far as some quantities are not thereby modified from the

simultaneous value indicated in the standard frame.^

80. The three terms put down in equation (123) are then

seen to reproduce accurately in the combinations of iequation

(122) the actual displacement (dr) for the time (dt) of the

moving point (Q) in the standard frame; and therefore, the

1 See Note 21.



Reference Frames 95

remaining entries in the coefficients of (i'j'k') must be illusory

if taken by themselves, as regards describing what is thus

happening at (Q). In fact, as their form involving constancy

of (t) indicates clearly, they are attendant upon comparisons of

corresponding and simultaneous pairs in two sets of projections

determining or determined by the same (r'), but connected with

two sets of axes differing in orientation by (dy) and having

origins separated by (dro). The complete coefficients of (i'j'k')

being evidently the exact differentials for the present inde-

pendent variables of the tensors (x'y'z'), equation (122) can be

rewritten

dr = dro + (dr X r') + (i'dx' + I'df + k'dz'), (125)

if we bring in the consequences of the rotation-vector (dy) in

the form

(126)

Accordingly equation (125) in its second member is so arranged

that it includes within its last group deviations from the true

value of (dr) through apparent or spurious changes in the

tensors, and finally offsets these by the corrective first and

second terms.

That exactly the compensating adjustment shown must exist,

can be argued summarily, in line with our remark upon equations

(119, 120), from the independence of actual -changes in (r) of

mere subheadings in our accounts of them, but some few details

are worth inserting for emphasis. The first of equations (120)

is self-evident, for (r') must lose whatever (lo) gains, while (r)

is held at its value by unchanging (t). Let us therefore analyze

only the second of those equations in regard to the dependence

of the tensors upon (y). We must have
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x' = i'- (x - xo) + i'- (y - yo) + i'- (z - zo). (127)

Then because neither (xyz) nor (xoyoZo) in the standard frame

are dependent upon (y),

— d7 = (^— d7 j-((x - Xo) + (y - yo) + (z - Zo))

Consequently
(g'O

(128)

ax'— d7 = (dYxi')T' = - (dYxr')-i'; (129)

and similarly

^'d7 = - (dYxr')-j'; ^'d7 = - (dYxr')-k'; (130)

which together prove consistently with anticipation,

81. Let us next return to equation (110), with the reminder

that it occurs in a general procedure of substituting a new
reference-frame to be standard, by making necessary allowance

for the relative motion of the two frames. Multiply both

members by (dt) and verify that its form then becomes identical

with equation (125), although the latter was deduced under

more special limitations that we propose to distinguish as shift,

and that keep the velocities invariant. In other words, the

sum of the last three terms in this equation will differ by the

same amount from an actual displacement (dr) in the standard

frame, whether (dro) and (dY) designate differentially changes

of configuration observable in the one moving comparison-frame,

or whether the same elements express the shift in passage to a

consecutive member of the invariant group of frames.
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These two relations distinct in their conceived source are

joined into a formal identity, primarily because together they

embrace a series of coincidences, as displayed in sections 69 and

77, for each aspect of which the same symbols can be given

coherent meaning. But that fact though patent is no good

ground for obliterating either one of the serviceable conceptions

out of which the equation that we are now discussing has arisen

for us. We should rather grasp firmly the thought that two

successions are here instructively coordinated: one ensuing by

movement of an identified frame into new positions, and the

other by timeless shift to new stationary frames. These con-

clusions refer in this first instance, of course, only to the velocities

for which they have been established ; but they are conveniently

capable of extensions. In the measure that these are unfolded,

they will lend finalh'^ to the otherwise trivial identity

A = (A - B) + B (132)

that equation (125) may suggest, a value for working needs

through practically advantageous selections of (B). Note, for

example, that equation (74) is scarcely different in type.

82. As the last remark might imply somewhat plainly, the

exploitation of the dominating idea in shift will look to govern

its course and its extent by special phases of adaptation con-

trived to meet combinations that do occur. Analysis that we

shall undertake of several coordinate systems may be expected

to illustrate and repeat that lesson. What the instances quoted

in section 79 show is more generally true: That the plans for

shift require various adjustments to be renewed continuously,

and keep modulated pace with conditions that develop velocity,

acceleration and the closely related dynamical quantities. Thus

the progress of the shift must accommodate itself to a regulative

time-series of other values, and this in turn imposes upon the

shift process itself a necessary rate in time. That situation the
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mathematics handles by recognizing (to) and (y) to be functions

of time, instead of treating them as independent variables subject

only to timeless change; so linking them with each other and

with the salient phenomena that are to be followed up that some

hne of advantage sought is most nearly secured.

Nevertheless since the previously independent increments still

form a background, these additional functions of time will differ

in certain respects from those that yield, for instance, the veloci-

ties and accelerations of the moving points (Q) . One formulation

of the critical difference declares that the latter class of time

functions is dictated altogether by an objective element; they

must conform to the phenomena studied and express them, their

own nature and form being to that important extent not under

control. Those of the former class are open to free choice,

although we may grant, indeed, that this control is exercised

normally in bringing to pass some mode of subordination to what

is occurring in other sequences, to the end of attaining simpler

models in equations, or the like removal of complications. This

employment of time functions in dynamics that are distinguish-

able in their nature, has long been commented upon and provided

for, though the discrimination is stated variously and not always

in clearest terms.^

On a foundation of the foregoing explanation or some equiva-

lent, we are brought to accept a two-fold dependence upon time

in equation (122) and in any statements that disclose to examina-

tion the grounds for a similar distinction. Thus we gain the

liberty to regard the partial processes as simultaneous, to divide

equation (125) by (dt) and so to establish an exact formal identity

with equation (110) by allowing for shift rates that are inde-

pendently assignable. Yet the alternative readings diverge still

in the direct meanings associated with (fo) and (y); these are

alike, however, in standing equally among the controllable time

J See Note 22.
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rates, because the one definite frame to which transfer shall be

executed may move at will, save as outlook toward convenience

guides or special circumstances demand. Perhaps it is not

over-subtle either to insist upon a second residual difference:

The plan of equation (110) aims primarily to connect properly

two sets of values for velocity, each correct and complete for its

own conditions; but equation (125), on the contrary, entertains

only one set of values as correct, that are made to reappear

finally from being obscured under a transient distortion.

83. We should not have elaborated these ideas with equal

fullness had the results borne solely upon the narrower issues

gathered about the radius-vector, and had not Hamilton's hodo-

graph given a clew toward making the radius-vector repre-

sentative of other vectors, and the velocity of its extremity a

key to the general vector's time rate. The vector algebra having

fallen heir to these methods and enlarged them, it is natural to

look upon the previous section as a preface and proceed to trace

again its characteristic connections when any vector (V) has

replaced (r), and its time-derivatives are offered in parallel with

(v) and (^). In the course of such extension, we may expect

correspondences and fruitful grafting of larger ideas upon the

parent special case, all along the line of development whose

details are now fairly before us.

But when we come to examine and sort the material that pre-

sents itself under such headings, we find the two chief operations

that we have been comparing very unequally represented in

practice. The circumstances of unrestricted change from one

reference-frame to another do reappear in connection with all

physical vectors and other types of quantity; and as we have

seen exemplified repeatedly already, those changes when they

are made necessitate a deliberate reconsideration of all these

quantitative values. Yet besides, the occasions that compel

such revisions are, at once, comparatively rare and apt to be
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made for conditions that have become more strongly speciaHzed

;

although the process is important as regards flawless execution,

it shows few features that give it the weight of a procedure that

holds its place among the routine methods of frequent use.

The alternative conception that we call shift, however, has

been introduced and given preliminary analysis here to a degree

that may seem not quite called for, because in the first place it

is implicitly or explicitly involved when a number of the standard

coordinate systems in dynamics are employed, which is a routine

procedure; and because secondly, there has been some failure

in clear apprehension and announcement of just those conse-

quences of the restrictions upon the process of shift that bring it

into close alliance with the prevailing purpose of coordinate

systems. For these are, in the main, adapted to the one central

idea of expressing equivalently or invariantly, through some

convenient dissection into parts, a resultant or total quantity

that relations in a standard frame have first actually or potentially

settled upon. When therefore we dismiss in a few sentences the

subject of changing reference-frame for the general vector (V),

and yet expand the idea of shift on its broader lines, the explana-

tion is to be sought in the reasons that have just been given.

84. If we look again at equation (95) with a view to generalizing

upon it, we must describe (ro) as the difference between the

values in the two frames of the vector that is under considera-

tion. Similarly if we write the equation

V = Vo + V (133)

in beginning an attempt to extend the validity of previous con-

clusions, it is clear how (Vo) is to be read. It is also apparent,

or verified by easiest trial, that one obstacle to indicating here a

more general rule for change of reference-frame enters because

the value of (Vo) depends upon the quantity represented by (V),

as instanced by the conditions for invariance in section 77. But
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it was also forced upon our attention, from equation (94) onward,

that (r') in the standard frame is invariantly given by all frames

whose origin is at (O') in its position for the epoch. And while

this too draws the lines closer for (V) and limits narrowly the

usefulness of results attached to derivatives of (r), (ro) and (r'),

in doing that it points convincingly toward the process of shift,

if we are to generalize, in which this very invariance has been

made a prominent characteristic. When we look at the matter

from another side, and observe how near an assigned behavior

of (i'j'k') comes to furnishing completely the compensating or

corrective elements in an equation like (125), once more the

conformity of a coordinate system to some rule of displacement

can be seen. Thus polar coordinates are essentially a shifting

orthogonal set, and a scrutiny of the standard expressions for the

components there shows that they meet (r') on an equal footing

of reproducing a resultant invariantly.

85. We shall begin the definite inquiry about shift in its larger

relation to coordinate systems by supposing that we have to do ,

with any free vector determined in the standard frame as (V),

postponing the mention of locahzed vectors. Then (V) may be

associated legitimately with the origin (O) as base-point, and

any element that might correspond to (ro) will be suppressed.

With the usual unit-vectors, here taken at a common origin for

convenience, we must have at the epoch, whatever range in

orientation may be permitted for (i'j'k'),

V = iV(.) 4- jV(,) + kV(.) = i'V(.') + j'V(y') -f k'V(.'). (134)

This relation, to repeat with emphasis an incidental remark of

section 79, may face in either of two directions, according as the

data make (V) itself or its three constituents directly known.

The next equation derives much of its importance from the

fact that the algebra so seldom furnishes a resultant vector im-

mediately, unless the superficial geometry happens to fit.
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Express now the time-derivative of (V) ; it will be consistently

specified for the same standard frame as (V) itself, and it ap-

pears as

= (i'V(.') + j'V(/) + k'V(.'))

+ i' ^ (V(.')) + j' ^ (V(,')) -I- k' ~ (V(.')). (135)

It is to be observed about tensors like (V(x')) that they are

differentiated on that comprehensive understanding about them,

spoken of in section 78, which is favored by an algebra that

attends to magnitudes alone and can neglect orientation. In

the first group of the third member in this equation, it is the

vector algebra with its equal attention to directions which is

repairing that deficiency in the other algebra. In order to

follow up and express this idea, we adopt the notation for all

such cases,

V(.) - i' ^ (V(.')) + j' ^ (V(,')) + k' ^ (V(.')), (136)

intended to suggest that only the tensor magnitudes of (i'j'k')

have been dififerentiated. Omitting the second member of equa-

tion (135), and in reliance upon section 80 for a reduction of

the first group, the third member can be rewritten in the more

nearly standard form,

V = (y X V) + V(„.). (137)

But equation (134) would not be modified if the origin for

(i'j'k') were at any distance (ro) from (0) and were moving in

any way. Our last result would still hold, provided the same

(y) were retained, because it is a sheer relation for projections

upon which it stands. Further, whenever (y) is zero, both (V)

and (V) are represented indifferently by their respective compon-
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^ents in (XYZ) or in (X'Y'Z') ; and this harmonizes with the invari-

ance found by using the permanent configurations of the coinci-

dences and the idea of shift. Otherwise even when (i'j'k') fall

in (ijk) and make the two sets of components for (V) the same,

the total time-derivatives of any algebraic expressions for the

tensors of (i'j'k') would not agree with the projections of (V)

on (X'Y'Z'). But note that the proper partial derivatives of

those tensors would give correct values for (V), as we discovered

from equation (123) in the case of (v).

There is one condition of special arrangement that cancels the

difference between (V) and (V(m)) though (y) is not zero; namely,

colinear or parallel factors in the corrective vector product. And
since (y) as applying to (i'j'k') rests on a supposition subject to

a certain control, there is a strong hint in the above possibihty

of cancellation, which several coordinate systems have found

their own ways to adopt. We can give a first illustration from

our original discussion of the rotation-vector. For if we multiply

equation (137) by (dt) and identify (V) with (dy) the two

members show equality to the second order, in confirmation of

section 47.

86. Let the vector (V) be represented graphically from (O) as a

base-point, in the manner of the velocity vector for the hodo-

graph, then the derivative (V) will be given as the velocity of its

extremity in (0, XYZ); and on comparing equations (111, 137),

the former in application to a common origin, the other derivative

(V(m)) is seen to give similarly the velocity with which the

extremity of (V) moves in the frame (X'Y'Z'). Consequently

we find forms like (V(m)) described sometimes as derivatives

relatively to the moving axes (X'Y'Z'), and, to be sure, they are.

But we must not neglect the other fact that this uncompleted

derivative is applied to a quantity that like (V) has been speci-

fied for the standard frame, and that itself does not stand in any

one particular relation to the frame (X'Y'Z'). These schemes.
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if thus viewed, are composite; or they straddle between the

standard frame for (V) and a comparison-frame for (V(m));

but they are less disjointed if interpreted as shift. The above

denial, of course, runs only against a general truth, and does

not exclude special conditions under which the same term covers

both a shift and the other form of transfer. It is plain for

example, in giving velocity by means of polar coordinates in

uniplanar motion as

V = ri ^ + (<o X r), (138)

that the first term in the sum can be read either as (V(n,)), or as

(v') for the frame consisting of (r) and a perpendicular, with the

second term equally adapted to either sense.

It contributes much to the serviceable simplicity of equation

(137) that it observes always the limits of a one-step transition

from a vector to its first derivative, while a radical change of

reference-frame must rebuild from the beginning by as many
steps as are necessary. Let us exemplify how contrasts appear,

by taking (v) as the vector of equation (137) and placing the

result alongside equation (112), from which (vo) has been removed

by the supposition of a common origin, and in which, for closer

parallelism, we have substituted for (v') in terms of (v). On
one hand we find

v= (y XV) +(„.); (139)

and on the other

v = (y X r') + 2(t X v) - (y X (y X r')) + v'. (140)

It is evident how the latter equation has accumulated compli-

cations in its two steps that we followed earlier, and that the

last terms in the two equations are not reduced to equality even

by making (y) constant.

87. With this exposition accomplished, of the consequences

for free vectors and their first derivatives of their inclusion in
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plans of shift, we can proceed to add for localized vectors those

supplementary particulars which the localizing factor makes

necessary in relations like

(rxV) = (roxV) + (r'xV), (141)

when account is taken of the change in (ro) due to shift of the

comparison-frame into some new but permanent configuration.

This allowance is obviously required in order to complete the

details for the effective momentary replacement of (O, XYZ)
by successive members in the group (O', X'Y'Z'). And it is

most easily disentangled from other elements, by using that

superposition applying to similar cases which was indicated as

far back as section 67.

Using the temporary notation

M = (rxV); M'^(r'xV); (142)

the special question that concerns us here is the relation between

(M) in the standard frame and (M'), the latter quantity being

expressed under the guidance of ideas that it will be well to

make quite explicit. First, the vector (V) enters both products

invariantly; and secondly, its total time-derivative appears

without distinction in both, because changes in (i'j'k') being

now put aside in order to consider changes in (ro) alone, the

corrective term of equation (137) disappears. But thirdly, with

(y) dropped from the list of section 78 for the reason named,

(r') becomes a function of the two variables (ro, t). Then its

exact differential is for the present shift

dr' dr'

and if this is timed to march with the actual changes during (dt)

we get

d£'_ar^droar^ dro_. ^_.
dt ~

aro dt
"^

at ' dt ^ ^°'
at

~ ^' ^-^^^^
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the last equality having the same validity as in equation (124),

Hence

-(^XV)M' =
(^
— xVj + (r'xV) = ((f-fo)xV) + (r'xV); (145)

M = (f X V) + (r X V) = M' + (ro X V) + (ro x V). (146)

Consequently, though (O') coincides with (0), if there is dis-

placement of the former with shift rate (fo) the values of (M)

and (MO as defined will still differ by the term (to x V)

.

We may restate the last equation by arriving at it through

M - M' = (ro X V); M - M' = (h x V) + (ro x V), (147)

if that is deemed a sufficient analysis of the conditions for the

differentiation; and there is precedent for calling (M') the

moment of (V) for a moving base-point. It is only iteration

here, however, to makie the comment that the directer thought

holds in view the stationary points (0'), for which the coincident

moving point serves as marker at beginning and end of the

interval (dt).

Let us make application of this development to moment of

momentum and its derivative, as being the localized vectors

among our fundamental quantities. We are still confining

attention to shift of origin alone; and we shall not go beyond

the expressions for the representative particle at the center of

mass. Write then

H = (f X Q) = (ro + f) X Q = (ro x Q) + H(o'); (148)

M' = ((V - ro) X Q) + (f X Q) = H(o');

and reduce by omitting the product of colinear factors. But

for the moment about (O') of the force measured in the standard

frame we have

M(o') = f X Q = H(o') + (h X 0), (149)
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which thus replaces with these conditions of shift the relation of

equation (VI).

88. For estabhshing the theorem of equation (137) and pre-

senting its bearings and a few of its consequences, reliance has

been placed almost exclusively upon the vector algebra; yet

those ideas were manageable to the other algebra also, though

it cannot fail to be apparent how much the absence there of

direct indication for orientation renders the operations in

matters like these more cumbrous, and the expressed results less

perspicuous. If, therefore, it seems profitable to go over part of

that ground in terms of the older method, that is not at all

with wasted effort upon verification, nor in order to gain reward

in fuller insight, except as seeing the cross connections is likely

to prove instructive. But coordinate algebra is indispensable

for calculation; transition to more succinct treatment, where

it can finally displace the older method, is still in progress, which

is keeping some comparisons temporarily that will fall away

later; and moreover, the next chapter is concerned with coordi-

nate systems as its chief topic. Consequently in preparation

for that material and for these other reasons, it seems well to

put in a link of connection ; we shall, therefore, proceed to parallel

section 85 with the algebraic equations that offer the same

meaning under other forms.

It is unnecessary to carry a separation of origins into this

development, because as we have noticed repeatedly its effects

are in themselves easy to record, and are cared for completely

by uncomphcated superposition. Thinking of (X'Y'Z') and

(XYZ) as having common origin (O), (x'y'z') and (xyz) are, in

the first instance, the coordinates of any point (Q). But we
can draw advantage in two ways from previous experience;

first, (Q) can locate a representative particle of finite mass as

well as one mass-element of a body, and secondly, (x'y'z') and

(xyz) can be made to denote the projections of any vector (V)
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with base-point at (0), by extension of their relation to the

particular vector (r) that is now identical with (r'). Unless the

contrary is said explicitly, (V) is to be regarded as determined

in the standard frame (XYZ), and introduced invariantly into

any connections with (X'Y'Z'). This vector can be regarded

as localized at (0) either by its property as a recognized free

vector like (Q) and (R), or by a convention agreeing with its

nature in cases like the rotation-vector (w) and its companions

(fa)), (H), and (M) when pure rotation about (O) is supposed.

The symbols are to be endowed with the wider valid meanings in

the equations constructed according to the adjoining table that

shows the direction cosines of the relative configuration.

89. The usual transformation equations when made explicit

for (xyz) are

X = lix' -I- miy' -1- niz',

"

y = I2X' + may' + Uaz', V (150)

z = I3X' -1- may' + ngz'.
.

And the companion forms derivable by an elementary process

are
x' = lix -1- Uy + I3Z,

= miX -H moy + nisz, -

= niX + n2y -|- Usz.

(151)

Together these are known to depend upon or to express the

mutual relations of projection between two sets of components

of the same resultant vector. When the direction cosines are
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invariable, the correspondence with constancy of (i'j'k') is evi-

dent, and the same mutual relation runs on into all the deriva-

tives, giving invariance whose obvious details need not detain us.

A change of configuration, however, makes in general all the

direction cosines vary, and there the same alternatives recur

that were brought out in sections 78 and 82. One of these will

make (x', y', z') each a function of three independent variables

that are time and two direction cosines, the third of the latter

being removed by a standard connection like

li^ + h' + 13=^ = 1. (152)

The second point of view will set time in its place as the one

independent variable of which all other quantities are functions;

but here it will be just as desirable as before to put into properly

conspicuous relief the modified relation of time to variables

like (x, y, z) and to others like (li, la, I3).

90. Equations of the same type as

:^-^^dt+^^d^ + ^^dt
^^^^^

can be read in the light of equation (123) ; and what remain to ex-

amine are the complete time-derivatives of the quantities (x'y'z'),

principally in order to detect the rotation-vector (y) of (X'Y'Z')

by penetrating its disguise of direction angles and their deriva-

tives. Adopting the fluxion notation, for ease in writing total

time-derivatives, we have first

x' = (lii -\- Isy -\- I3Z) + (iix + Uy + isz). (154a)

Note in passing, as consequences of equations (151, 154) that

may prove suggestive later,^

ax' dk\
J

d(dx'\_di'

which are typical of similar relations running all through the

1 See Note 23.



110 Fundamental Equations of Dynamics

sets of equations, when we add to the value of (x') its com-

panions

y' = (miX + may + mgz) + (liiix + may + msz),]

i' = (nix + nay + Usz) + (riix + nay + hsz). J

Concentrating attention upon the last groups in these equations,

because the effects of changing configuration appear exclusively

in them, and introducing the necessary direction angles in order

to prepare for the connection with (y), expand into the forms

— [xdi sin ai + yda sin aa + zda sin as];!

— [x/3i sin /3i + yi32 sin ^2 + z^s sin 183]; [ (156)

— [xei sin ei + yea sin a + zks sin €3]. J

But the normal to the plane (X', X) must be the axis for (di);

and with the direction cosines of those intersecting lines given as

1, 0, 0, (X); h, I2, I3, (XO; (157)

the direction cosines (X, /i, j') of the normal to their plane worked

out by the standard method gives

cos as cos oi2

X = 0; fi=-~. ; v=-. . (158)sm ax sm ai

But as explained in section 46 the rate at which (X') is turning

about that normal must be the projection of (y) upon that line,

or equivalently,

dx = X7(x) + M7(y) + »'7(z), (159)

from which follows

— di sin ai = 7(y) cos as — y^.^,) cos ag. (160)

Proceeding similarly with the eight other terms which complete

the group of that type in equations (154), it is seen after simple

reduction that they make up in the first, second and third equa-

tion respectively

- (7(y')Z' - 7(z')yO; - (7(z')X' - 7(x')Z'

- (7(x')y - 7(y')X').
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Since the first members of those equations correspond to the

total derivatives of the tensors obtainable from equation (125),

we find after orientation and forming the vector sum that equa-

tions (154) jdeld consistently with equation (137)

V(m) = V-(yxV), (162)

on our understanding about the broader meaning of (x'y'z')

and (xyz).

It is left as an exercise, modeled on the above plan but con-

tinued into the formation of second derivatives, to reach by the

algebraic routine the coordinate equations which together repre-

sent the result recorded in equation (112), if we suppress there

all terms depending on a separation of origins. Where the

quantity (y) occurs in executing this, it is of interest to reahze

what has been alluded to elsewhere; that (y) and (y) may be

connected with either (XYZ) or (X'Y'Z'), since the difference

term in equation (162) is zero when (y) is (V).



CHAPTER IV

The Main Coordinate Systems

91. The standard frame itself has an additional office of

providing a coordinate system that is basic in certain ways, and

that is in fact tacitly utihzed for the semi-cartesian expansions

in terms of (ijk) , both in immediate relation to vector quantities,

and for the expression of constituents in work, kinetic energy

and power, where vector factors occur in scalar products. To do

these things has become so much habitual or even instinctive

that we learn with some surprise how Maclaurin is given credit

for invention here, as Euler is for inventing the concept of fluid

pressure, which at this date might also seem part of external

nature.

The standard frame, too, has one lead in advantage over other

resolutions through the unqualified permanence of its origin

and of its unit-vectors, which enables us to submit its tensors

unhesitatingly to algebraic operations, and pass over to vector

algebra by merely supplying the ellipsis of the unaffected ori-

enting factors. The disturbing influences in other combina-

tions, where (ro) and (i'j'k') make more caution advisable, have

been forcing themselves upon us repeatedly. But as we have

seen illustrated for mean values, and as is not unusual, the

presence of such desirable elements as we find in the standard

frame may be also a drawback. Within the complete projection

on a standard axis, distinctions of source in changes of magnitude

or of direction may be lost, that are vital in the vectors that play

a part. The net force parallel to (X) and its work, if written for

a particle

X = m^ ; W = /Xdx; (163)

112
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hide, in the first, the fact that normal force (N) and tangential

force (T) are coalescing in the one sum, and in the second, that

part of this work is illusory in so far as the projection of (N)

enters the sum (X), and does work in the algebra though not in

the mechanics. At one other point we have been enabled to

compare the principal axes of inertia with (XYZ) and ascertain

that all advantage does not lie with the latter, for expressing

compactly either the scalar energy or the vector force-moment.

And these considerations, in sum, may justify us in leaving the

resolution into constituents according to the standard axes to

one side, except where we touch upon it for some special con-

nection. Then we are free to devote detailed attention to other

coordinate systems that are chiefly current, and make due

analysis of their intention and of the scope of their success.

It seems quite enough therefore if we collect here the indicated

partitions for (XYZ) that are reasonably self-evident rewritings

of the totals to which the preceding text has given most weight:

Q = i2/„,xdm + j2/„,ydm + kZ/„,zdm; (164)

H = iS/m(yz — zy)dm -f- j2/m(zx — xz)dm

+ k2/„.(xy - yi)dm; (165)

E = iZ/^nxMm + i2/™y2dm + IS^zMm; (166)

R = i-Efmxdm + j2/„.ydm -f kS^zdm; (167)

M = iXfmiy'z — zy)dm + jS/m(zx — xz)dm

+ kS/n,(xy - yx)dm; (168)

P = ^fmidX + S/n.ydY -f- 2/„.zdZ. (169)

It will be found profitable to compare equations (165) and (86);

also equations (166) and (81, 88), including the comment preced-

ing the latter. Since the first three equations in the above group

are mere expansions of the forms in section 15, they have the

same scope as those. Similarly the validity of the last three is
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coextensive with that for equations (16, 17, 18) of which they are

the expansions.

Euler's Configuration Angles.

92. Because it deals directly and exclusively with the recurrent

element that is found at the root of so many particular results,

we shall take up next those orientation angles for specifying

configuration which were devised by Euler and by custom bear

his name. They have not yet been displaced from a conceded

position of value in use for their purpose. There is an added

reason for giving these angles proper discussion in that the

expression of them as vectors has scarcely been attempted; we

find their connections with other specifying elements almost

exclusively in the form of purely algebraic equations. It is a

curious fact that angle in prevailing practice has not arrived at

legal recognition as a vector, though the vector quality of its

first and second time-derivatives, angular velocity and angular

acceleration, was announced and employed a number of years

ago. So we need to do something consciously toward incor-

porating angle-vectors into our scheme of treatment on a parity

with other vector quantities, in order that real symmetries of

relation may not be seen distorted.

Supposing that one end of a line (r) is fixed and that it moves

into a new position, its second configuration in relation to its

first can be given by a vector-angle normal to the plane of the

two positions. This vector is axial, and related to an area with

duly assigned circulation; and the area is in the plane located

by the extreme positions of (r), its magnitude being twice that

of the sector of the unit circle limited by those positions. But

such a direct representation of this total would be no more

convenient for use in all cases than other resultants are, so its

projections according to Euler's plan are substituted, which

amounts to giving the latitude and the longitude on unit sphere
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centered at the fixed point or origin (O), in which (r) cuts that

surface. Assuming next that (r) is a definite fine of a rigid soHd

that is Kmited to pure rotation about (O), a third angle added

will enable us to complete the description of a new configuration

for the solid, and this last angle will denote a rotational dis-

placement about (r). We shall follow usage in assigning the

symbols {&) to the latitude angle, and (t|f) to the longitude angle,

while (^) is added for the rotation about (r) ; it remains only to

agree upon zero values of the three angular coordinates. It

suits our purpose in its general course better, to think in terms

of a displaced rigid cross (X'Y'Z'), which may here be made

equivalent to the rigid solid named above, and then coincidence

of (X'Y'Z') with (XYZ) yields the natural zero. We identify

(Z) with the earth's polar axis in its relation to latitude and

longitude.

93. Beginning with resultant angular displacement (y) at zero,

and (X'Y'Z') coincident with (XYZ), let the plane (Y'Z')

separate from (YZ) by angular displacement (t|f) about (Z), in

which that vector angle must then fall. Next let angular dis-

placement (&) occur about the displaced position of (X'), in whose

line therefore it must lie as a vector angle ; and finally let (X', Y')

turn with angular displacement (^) about the final position

of (Z'), with whose line this third vector angle must then

coincide. To make the conditions standard, (t{r, d, ^) are

all to be taken positive by the rule of the right-handed cycle.

The order of the three displacements has been chosen so that

each is made about one of the three axes (X'Y'Z') as found at

the beginning of that stage. It is verified without difiiculty

that the summed projections on (XYZ) are

Y(x) = i(t? cos rp -\- <p sin d sin ^); 1

T(y) = J(^ sin ^ — (p sin i} cos ^); > (170)

Y(,) = k(\(/ + <p cos ^). J
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And if we resolve on the final orientations of (X'Y'Z'), those

projections are

Y(x') = i'(i? cos <p -\- ip sin d^ sin cp)
;

Y(y') = j'(— t? sin (p -h ^ sin i? cos cp);

Y(,')
= k'(<p + \P cos t?).

(171)

These two sets of projections are orthogonal; but if we state the

supposed displacements directly, and let (t|fi, ^i, ^i) represent

unit-vectors agreeing with those suppositions, the set is obUque

to the extent that the angle (t|fi, ^i) is (&) and not in general a

right angle. We add accordingly,

Y = i^i('A) + ^iW + ^i(^), (17^)

and have secured three equivalent forms of expression for the

resultant angle-vector (y). Observe also the differences among
the three in regard to the unit-vectors; (ijk) are permanently

oriented, (i'j'k') are capable of displacement by rotation, for they

remain orthogonal, but (tlfi, ^i, ^i) must be considered indi-

vidually. It is seen, if we hold definitely to the terms of the

description, that (i|fi) is of permanent orientation in (Z), that

(&i) depends for orientation upon (i|r), being always normal to

the displaced position of the (Y'Z') plane, and that (^i) depends

similarly upon both (i|r) and (&), because the (^) displacement

begins where the second stage leaves off. All three quantities

(ijf, '&, ^) are rotation-vectors applying to the axis-set (X'Y'Z')

as representative of a rigid body, and standing to the changes of

direction of individual lines in the relation established by sec-

tion 46. This needs to be borne in mind if any question should

be opened about changing the sequence of the three steps, so

that (p) and (^) though equal to their first magnitudes are con-

nected as vectors with different axes.

The above forms of statement are mathematically on the same

footing as a means of determining (y), but there can be no real
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doubt where the preference would fall on the score of ease in

application or execution, when the three plans are compared.

The second is especially intricate because its projections are

associated with that very terminal configuration of (X'Y'Z')

which it may be the object to locate, but which must somehow

become known before the scheme can assume full definiteness.

It should be inserted however for the sake of its subsequent

uses.

94. The employment of the standard angles (ijr, ^, ^) is not

confined to expressing configurations, and is therefore not

exhausted in equations (170, 171, 172). Indeed the primary

service of Euler's so-called geometrical equations has begun at

their developed connections with the rotation-vector or angular

velocity, and found a natural continuation in deahng with

angular acceleration written (y) or (w). As we now undertake

to make those connections clear, combinations will occur at

first or in later application, that make it advisable to retain (y)

and (y) for use with comparison-frames hke (X'Y'Z'), and let

the meaning of the parallel quantities (w) and (w) refer ex-

clusively, as in sections 45, 55, 62 and 63, to a rigid body's rota-

tion, either about its center of mass or about some fixed point.

To maintain this consistent distinction will avoid confusion where

both pairs of elements are presented in the same inquiry.

The expressions for (y) that we have just obtained are con-

trived to show its value at the advancing front of a progressive

angular displacement to which (i|r, #, ^) can be considered to

belong. Consequently it is adapted to differentiation, with a

view to exhibit either a systematic succession of partial differ-

entials or simultaneous time rates in a total derivative; and

previous discussions have laid a foundation for interpretations

leading in both directions. In the first instance we are most

nearly concerned with the derivation of (y) from the three several

equations (170, 171, 172) and the collation of results with sec-
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tion 85 as bearing upon the current algebraic forms. And because

this has some Httle flavor of revising the latter, the fuller infusion

of vector peculiarities into these matters having not yet worn off

its novelty, there seems to exist a stronger reason for detail,

than the mere arrival at conclusions for handy use might

demand.^

95. As in similar comparisons elsewhere, the (ijk) projections

furnish reliably through pure and total tensor differentiation an

unquestioned standard to which alternatives must conform if

correctly formulated. So the first straightforward step is to

employ equation (170) in this test; and we prepare the way
with the expansion

r/di? d^ . . \
"^ "" M I dt

^^^ "^ "^
dt"

^^° '^ ^^^ ^ J

(-+ (
— r} sm \p -rr -\- (p COS i? sm i/' -77

d^l^+ (p Sm i9 COS xf/ TT
)]

r/dt? d<p \
+ jN ^sin^ - ^sm^cosxl^j (173)

d^ dt?

+ [ ^ cos ^ 37 — ^ cos I? COS ^ -77(•

+ ^ sm ?? sm 1/' -7- I

But we have been remarking from section 79 onward that the

partial time-derivatives in equations like (171, 172), when the

unit-vectors are made variables, must reproduce the standard

frame values obtained through (ijk). Let us accordingly write

1 See Note 24.
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out those two sets of partials and proceed toward comparing

them with equation (173). Observing that the conditions of

the differentiation exclude trigonometric functions of the angles

from varying, though they permit the angles as magnitudes to

change, we find

^(i',j',k')=i (^-cos^ + -sin^sin<,j

., / 5t? . 3^ . \
+ J I

- — sm (p + — sm I? cos ^
j

^^..,....) = ..(^) + «,(f) + *.(^^). (175)

The value directly apparent in the last equation can be noticed

by inspection to agree with that of the equation preceding, if we

assemble mentally from the latter the items falling respectiveh'

along (ill, ^1, ^i). And this coincidence is next to be recognized

similarly in the first groups marked off under (i, j, k) in equation

(173), with the single variation that the latter appear as total

derivatives of the angle magnitudes. The patent conclusion is

that proper allowance for the difference between these total and

these partial time-derivatives must exactly offset the remaining

groups in equation (173); and that outcome might be accepted

on the fair ground that it harmonizes with equations (126, 131),

without going further. Yet the completed analysis of how
that compensation is in fact brought about here, has an im-

mediate bearing and interest that justify setting down its several

steps.

96. The last groups of terms in equation (173) can be brought

together and rearranged so that they are identified as the vector

products to which they are equated below:

9
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t? -T- (— i sin ^ + j cos rp)

+ 9? -7- (i cos 7} sm ^ — j cos t? cos (^ — k sin z>)

d^ ,. . . . . N+ v? TT (1 sin ?? cos
\l/ + } sm 1} sm ^)

d^ dt? dr^

= ^ t?(tl:i X *i) + dt
^^*' ^ *'^ "^

dt
*'^''^' ^ *'^'

The verification as regards magnitudes, directions and order of

factors in the vector products is ordinary routine devoid of arti-

fice, due regard being paid to the specifications of direction in

the sections immediately preceding. The character* of the

second member is plain: it consists of allowances for changing

directions of the two unit-vectors (^i) and (^1), the former being

affected by the turning about (i|ri), and the latter by the two

turnings about (1^1) and (*i). It is instructive to notice that

these individual consequences of the changes in the unit-vectors

preserve their type and enter singly in parallel with the develop-

ments of sections 47 and 80, although there is here no common
factor, the rotation-vector, related equally to all three unit-

vectors (tti, di, ^1). This line of attack has been adopted partly

in order to extend in that direction our earlier proof.

In preparing to demonstrate that the differences between

(ai?/at) and (dt?/dt), (dcp/dt) and (d^/dt), exactly nullify the

second member of equation (176), it is most direct to start from

explicit values of {\l/, t?, <p). By a process of elementary elimina-

tion applied to equations (170) it foUows that

cos ^

sm ir

t? = 7w COS ^p + 7(y) sin \p;

1

<P
=

sin t?
(7(x) sin xp - 7(y) COS rp).

(177)
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It is to be remarked as regards these equations that in order to

arrive at their partial time-derivatives, we must include as

variables only (7(r)), (7(y)), (7(»))> and for the total derivatives

we must include also all the other factors as functions of time.

It is therefore possible to write these indications of the differences

:

d^

dt

di? _ M _ Md^
dt

~
at

~ a^ dt
'

d(p dip d<p d\l/ d<pd^

dt~dt^d4'dt~^d^dt

Evaluating the second members from equations (177) and finally

adding the orienting unit-vectors we derive these expressions:

a^A _ ^dr/; d4^d^

dt
~ a^ dt

"*"
at? dt

(178)

^^Pd^P

"^'aiAdt

cos t? . d^
- ^igiu^ WW cos '^ + T'cy^ s^° '^)

dt

(cos T? d\l/\

"sln^^dt j'

ai/' di? 1 / . , X
di^

^^^ dt"
= ^^sln^ ^^^^^ '^° "^ - ''''' '^' ^^ d?

1^

sin 7?

d«A

/ 1 dt?\

^^^l^In^^dtj'

^1^ ^ = -^U- 7(x) sm i/' ^- 7(y) cos ^)
^^

= i».(-^sin,?^);

a^ d^

ai/'dt"

1^

sin t?
?i nir^ (7(x) cos r/' -f- 7(y) sin ^)

di/^

dt

-^^(sint^'^dt)'

cos t?
, . X \ d??

,i^3^(T(.)sm^-7(.)Cos,A)j^

_ / cost? dt?\

-^^V~sln^''dt;-J

(179)
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After forming them into three groups as shown below, they can

be recognized as constituting the vector products to which they

are severally equated

;

'H
diA

dt

cost?

' sin t? y

d^

dt
rHiixi^i);

<P

d^

dt

/ 1 cost?\ di? . .

l^^si^-^^s"In^J=-dt^^*^^^^^'

diA . diA ,- ^Kp ^- sm I? = - ^- (p{^i X ^i).

(180)

The first quantity of these three is known by the first parenthesis

to be perpendicular to (tl;i) in the plane of (tjfi, ^i) ; so the second

quantity is perpendicular to (^i) in the same plane; and (fl^i)

is by supposition normal to that plane. The directions match

the order of factors and the signs.

97. When the established conclusions of equations (176, 180)

are united with what was found to be true on casting up into a

vector sum the three first groups in the coefficients of (i, j, k),

equation (173), the registration of all these connections yields

the continued equality

. { d^ dip . . \= 1 I
— cos ^ + — sm t? sm i/- I

.{d^. dip . \ . . f dxf^ d<p A
+

^U ''"' ^" eJ '^^ ^ '^' V-^^[dt + at
^^' V

= i'(^-cos^ + -sm.?sm^j

+ jM - —- sm ^ +— sm ?? cos ^ I

(181)
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dip d& dip ( d\p d?? d^\

drl/ d\t/ d^

The last member is a specially plain demand of the vector algebra,

in order to reconcile the value of (y) obtained by means of

(XYZ) with the terms of equation (172) and its vector angles,

and uphold the condition for invariant representation of (y)

as the angular displacement proceeds. With this invariance put

beyond critical doubt such vectors as (y) take their place under

the procedure of equation (137), and we have detected here the

earmarks of an invariant shift. A closer superficial agreement

with that equation results from the coordination of derivatives

calculated from equations (170, 171), because the axes (X'Y'Z')

remain orthogonal and rotate. With some watchful avoidance of

confusion in the notation, the reasoning of section 80 can be

duplicated, and the result confirmed without difficulty,

Y =^ (i'T(x') + j'T(y') + k'7(z'))

= [i'^,(T(.'))+r^(T(.'))+k'^^(Tc.'))]

+ (t X y), (182)

where (y) in the vector product must denote the shift rate for

(X'Y'Z'), and the rest of that member shows the type of (V(n,)).

We do not need now to transcribe the details of that develop-

ment, with a less particular value for the shift rate.

98. Having made the beginning in section 93 with angular

coordinate which may be placed in parallel with coordinate

lengths, the above relation that introduces an angular velocity
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is liable to the same sort of double reading that was insisted

upon in section 81, so that the change of reference-frame for

angular velocity would also come to the front. Then using the

third member of the last equation for illustration of a more

general case, its first group can be said to present angular velocity-

relative to (X'Y'Z'), while the vector product added transfers

correctly to (XYZ) as a standard. If this second branch of the

idea is before us, a continuation of it in close likeness to the

working out of consequences into equation (112) suggests itself

naturally, in order to make a transfer between reference-frames

that covers angular acceleration, as the previous equation pro-

vided for such a change in respect to linear accelerations. But

that general provision will be omitted, with the intention of

considering any special instance under its plan in the light of

its own circumstances; and what attention is now to be given to

angular acceleration will enter with the repetition of the one-

step shift process, in which the original vector (V) is an angular

velocity, and the derivative that appears in particular to replace

the general derivative (V) of equation (137) is an angular acceler-

ation, with the one standard frame retained, and no departures

from invariant values finally tolerated.

That policy meets the requirements most frequently made in

this field, and indeed the material that has grown to be classic

and devoted to the relations of rotation-vectors and their deriva-

tives to dynamical quantities, expressed especially by means of

Euler's angles, marks its initial stage at the point that we have

now reached. One feature of it, that we have once alluded to,

is letting angle figure as an algebraic magnitude, but constructing

a sequel where its two derivatives become vectors, effectively or

with full recognition. It cannot be surprising, therefore, that

those distinctions in respect to angular quantity, between its

partial and its total time-derivative, nowhere need to appear

in the classic equations; though we have been compelled to
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give them weight in the interest of correct work. Because both

compensating elements in equations hke (173) have their source

in orientation, a view that excludes orientation needs neither;

and the one magnitude derivative with respect to time that is

retained may within certain limits raise no issue whether it is

partial or total. There is however one place where comment

has been the habit upon something of defect in the algebraic

linkage, and where it is interesting to discover that the concept

of vector angle does a little to make a better joint. We shall

attempt to dispose of that minor matter in this pause between

two steps of the more important progress. '^

The comment in question hinges upon equations that the

algebraic methods have always written equivalently to

., dt? diA . .

1 -Y = -T,- cos ^ + TT sm t? sm tp;

j'.^ = _ -— sin ^ -f- -r- sm t} cos <p;
dt dt

*^-^ = dT + dT^^^^'

(183)

and where our sequences of thought have caused the substitution

of time partials everywhere in the second members. If we pick

out one equation for a sample, multiply by (dt) and write

(i'-Y)dt = di? cos ^ + d^ sin t} sin (p, (184)

the usual and perfectly true remark about it and its companions

is to this effect: The second members not being exact differen-

tials under the ordinary test, because the equalities are not

satisfied that would give for instance

— (cos <p) = ^ (sin I? sin <p), (185)

> See Note 25.
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there is some drawback upon using the first members. But if the

vector plan retains the total derivatives in equations (183) and

completes them, equation (184) becomes, as we have seen,

(i'"j')dt = dt?(cos ^ + ^ cos ^ sin (p)

+ d^^(sin t? sin <p) + d^(— ?? sin ^ + ^ sin t? cos <p), (186)

in which the coefficients of (dt?, d^, d^) do make the first member
an exact differential by conforming to the standard rule, as direct

test verifies. That particular drawback was removed by using

vector angle in deriving the rotation-vector, and by aiming in

our calculus deliberately to preserve the exact differentials that

occurred naturally.

99. For the kind of inquiry that comes next in order, rotation-

vectors in the standard frame are an assumed basis in the state-

ment, being either given outright or brought within reach by

such data related to Euler's angles as the foregoing sections have

set forth. The undertaking looks toward expressing angular

acceleration-vectors for the standard frame in terms of the same

angles (t{r, d, ^) and consequently in connection with some

auxiliary frame like (X'Y'Z'). In its main outline this must

stand as a parallel illustration of the method introduced before;

but in order to vary from mere repetition, let there be one

rotation-vector (<o) applying to a rigid body that is in pure rota-

tion about the origin (0), and a second (y) for the axes (X'Y'Z'),

with whose aid (6) is to be determined through its projections

upon them. We shall choose special assumptions, that will be

found profitable because they anticipate one set of data met in

real requirements of investigation. Let that definite fine of

the body, which is to have the angular coordinates (^, d) and

thus specify those elements of the body's configuration, always

coincide with (Z'); and to complete the assignment of relative

configuration for body and axes, let (^) be permanently zero for

the latter. Therefore (Y') is contained permanently in the
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plane (Z', Z), and (X') in the normal to that plane. Dis-

tinguishing the angles applying to the axes as {ii, O', ^') the

conditions are

,{,' = ^; ^' = d; ^' = 0; ^ (any value). • (187)

100. The rotation-vectors (w) and (y) are now to be expressed,

but that cannot be done by borrowing the forms from sections

95 and 97. For it is essential to the present circumstances that

the sets of projections of each rotation-vector must give that

quantity invariantly, as before it was exacted that the angle

(y) should be so expressed by equations (170, 171, 172). For

every range in this use, equation (134) is to be made funda-

mental and characteristic. Going to one root of the matter in

equations (111, 116), and holding to the leading thought of

section 86, it becomes formally clear that no term like (y x V)

of equation (137) can appear in forms adapted to the new inde-

pendent start. And in reason it is convincing that projection

at the moment is indifferent to past and future, and its results

must be mathematically independent of a continuing process to

which it is indifferent. All this fits perfectly our conception of

each set (X'Y'Z') as fixed, and (y) as a shift rate among the

fixed sets. Bringing to equation (173) the modifying idea that

(y) equal to zero must accompany the projection upon the

individual set of axes for the epoch, we find first that the second

groups in the coefiicients of (ijk) drop away because they repre-

sent projections of a term Hke (y x V), and secondly that the

difference between total and partial time-derivatives disappears

in view of equations (178, 180). To be sure this detail is only a

roundabout consequence of discarding at the one projection that

which belongs only to a unified series of such projections as a

whole; but it has bearing in dispelling lingering obscurities on

the formal side of these matters. The point would not need to

be labored so, were not misapprehension fostered by the mis-

nomer reference to moving axes in speaking of them.
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This is preface to writing the values

d\f^ d& d<p
0, = ttx ^ + O, ^ + ^, ^ ; = *¥ + *

d^

dt
(188)

in order to proceed from them to the value of («) that is con-

nected with the projections of (o>) on (X'Y'Z'). It seems worth

noting that these may be corroborated by considering the par-

ticular configuration when (X'Y'Z') fall in (XYZ), for which of

course equality of projections must ensue. From equation (173)

we see for that case and for the projections of (g>),

rw = 1

d^

dt
rcy) = 0;

i|r = ^ = ^ =

r(^) ^Vdt +dt;

'

0; and y = o>.

(189)

It is true that the cancellations of terms arising from the type

(t X V) now follow from (y) being zero, but they show con-

sistency in the final outcome. The sum in (y(z)) is contributed,

part by turning of the plane (Y'Z) about (Z), and part by turning

relatively to that plane about (Z') coincident with (Z). Finally

we can summarize in a brief rule the office of the two derivatives

in connections like the present one: The partial time-derivative

of the tensors enters where projection has preceded differentia-

tion, and the total derivative where differentiation has preceded.

101. By projecting the rotation-vector (o>) upon (X'Y'Z') we

find

"(x') = 1'
d^

dt
= ^1

d^

dt

(190)W(y') = 3 I dt
^^'^'^j '

,,/d^ d^ \ fd<p d^p \
"^''' = ^ U +dt^"^V = ^^VdF+dF^"^V'.

the tensors being comprehensive or general values as explained
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in section 78, and therefore open to differentiation, whose execu-

tion yields .

d d^t?

dt
^""'^''^ -

dt^
'

d , , dV . dt? drP

d-t(-(v'))
= dt"^sm.? + ^^-cos.?;

d
, dV dV dt? dtA .

;jr'(cO(z')) = T.T + T,T cos t? - ;t- -.,- sin t?

dt dt2 ' dt dt dt

(191)

The differentiation of equations (190) needs for its completion

the terms introduced by changes of orientation in (i'j'k'), which

are

^ dt? _ diA

dt
~ dt

^1 37 = 37 «:i X *i) 37 = «;i X Oi) ~ ;

d^

dt

d^d^
dt dt

'

, diA . /diA , .„ dt? , .,Ad^ .

/ d^ y d\l/ dt?
= «fi X JO y~ j sin t? + (di X j') ^ ^- sin t?;

fdip diA \

HdF+dt^^^^j
/di/'

, , dt?
,

.\/d^ d<A \

,/dt?d •P ,
dt?d.A

dt +dTdI^^''^

(192)

Next resolve the vector products into (X', Y', Z') and assemble

the terms for each one of the axes, which shows for the results

w hen reduced by some cancellations
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.),

(y') = J'
(

dV . di} dtp dxl^ di?

dt^^^^^-dtdT+dtdT^"^^')
dV

'^-dtdt^^^^j-

(193)

(194)

In making the resolution the components of the vector products

to be used are shown by

il:i X *i = y cos t? — ^1 sin I?; ijfi x j' = — *i cos &;

^ixj' = ^i; i|fi X ^1 = ^1 sin t?; Oi x §i = - j'.

Having obtained by these operations the projections of (w) for

the standard frame upon (X'Y'Z'), as corrected for the assumed

shift of the axes, the total (o>) given by the vector sum of the

second members is easily seen to be

d^
dt2

dV
dt2

+ (*i X h)
d^ d^

dt dt

+ ^^^^*^)dtdt +^<f^^*^)dtdt-

(195)

And this last form of the value for the angular acceleration of

the body is finally to be compared, on the one hand with the

result of differentiating directly

diA

" = ^^dt
+^ dt? d.^

^dt +^^dt (196)

and on the other hand, with the standard relation in equation

(137). The first of these comparisons is no more than a matter

of inspection, because the derivatives of the tensors appear

immediately, and the known changes of orientation for (i^i, Oi, ^i)

are exactly accounted for in the vector products of equation (195).

In order to carry through the other comparison we need for
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(V(m)) the derivatives of the tensors that are already recorded

in equation (191), and whose vector sum can be thrown into the

form, when the parts are duly oriented,

^ d^
, dV

.
dV

, ,
.d'i'dt?

^c^) = ^i:^ + ^i:i;? + *idt2""^ ^"^'^
'^dt dt

* (197)
dt2 ' "^'dt^

To this must be added

N / d^ dt?\ / diA dt? d<s\ ,_„,

whose expansion reduces to

dxl/ d<a dd d<p
Ctx..) = «.x4,)di^df+(».xWgfdf, (199)

and confirms through the sum of equations (197, 199) the former

value of (o)). Notice the difference in the segregation for the

two groupings, by which the same term can be attributed at will

to change of direction or of magnitude.

The components of (co) in (XYZ) are obtainable in the forms

<0(x) = 1

dd d<p . . \
cos ;/' + 37 sm t? sin i/- I

;

"(y) =

dt

d^

dt
sin

\l/

dt

d^

d^
sin d cos \l/):

(200)

through which another plain road is opened to determine (<!>);

but we shall not go further here than to indicate it.

Polar Coordinates.

102. The system known as polar coordinates is a fitting sequel

to what has just been done, because Euler's angles that we have

denoted by (i^, -6^) are universally employed to orient the radius-

vector (r) whose pole is then taken at our origin (0) . The angle
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(^) is obviously superfluous when we are concerned with one

hne only and not with a body, even when (r) moves in three

dimensions; and when a limitation to the uniplanar conditions

is imposed the pole is most often located in the plane of motion,

and then of the three angles (tl/) alone needs to be used. We
shall guide the development toward the relations for three

dimensions, and afterwards call attention to some briefer state-

ments for the uniplanar case.

If we write the radius-vector (r) as the product of its unit-

vector (rO and its tensor (r), according to one normal scheme of

the vector algebra, the time-derivative (t) takes on the form

f = ri^+rir, (201)

with unforced separation of the entire directional change from

that which refers to the algebraic magnitude. By means of the

results now at our disposal, the vector (y) in application to the

single line (r) would lead straight to the expression for the

velocity of (Q) at the extremity of (r),

dr , ,
dr , ^ dd/ , x dt? , ^

V = ri^-t- (rxr) = ri^ + (<rixrOr^ + (dixri)r^- . (202)

From the second member, we infer at sight the truth of one usual

statement about (v) : That it includes simultaneous motion on a

sphere centered at the pole of (r), and growth of (r) in length.

So long as we think strictly in the terms indicated, there is no

rotation according to our use of that word; we deal with (y)

merely as the angular velocity of the one line. But when the

third member of the last equation is drawn in, the set of axes

(X'Y'Z') as laid down in section 93 reappears, since the three

parts of the velocity constitute always an orthogonal set, of

which (r) itself would be (Z') in our adopted convention, coin-

ciding with (Z) for zero values of (i|r, ^). The completed con-
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sistent identification of axes and their true rotation-vector gives

'^'^^^dt~'~*^dt' ^ = permanently.

(203)

It is self-evident that these three projections are an invariant

equivalent for (v), because they are in their source only the

three parts of (t) in the standard frame. But we can also repeat

the remark attached to equation (138), and enlarge it in the

direction of presenting these polar coordinate relations for velocity

in the light of a narrowly specialized instance within more elastic

conditions.

Instead of binding (X'Y'Z') to coincidence of (Z') and (r),

let the axes rather move about the origin (O) as allowed by any

general value of the rotation-vector (y). The configuration of

(r) in the frame (X'Y'Z') will be shown generally by

r = i'x' + j'y' + k'z'; (204)

and for those suppositions the general values of (V) and (V(ra))

in equation (137) will assume the form

dr
, ,

d)/' , , dt>
r = r.-+(,I,.xrOr^ + (*:xrOr^

.,dx' ..dy' , ,dz' , , ,^^^x

The effect of that particular choice for the rotation-vector in

equation (203) is then put clearly in evidence: the velocity of

(Q) at the extremity of (r), but reckoned relatively to the frame

(X'Y'Z'), is thrown exclusively upon the axis (Z'), while (x', y')

remain permanently at zero, and the term (y x r) is left to bring
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in all of both components that (v) shows parallel to (X') and

to (Y') . Or in the alternative reading, the correction for shift of

orientation being perpendicular to (r), it is segregated com-

pletely from the only change in tensor magnitude that is allowed

to become realized in (X'Y'Z').

103. The natural order proceeds next to take up, with polar

variables as instruments, the task of expressing the polar com-

ponents of the acceleration with which (Q) moves relatively to

the standard frame, and which can be determined otherwise,

as we know, by projecting the resultant (t) upon the directions

of (X'Y'Z') at the epoch. However these projections may be

written originally, the translation into functions of (r, ijr, d) is a

matter of algebra only. Leaving that method aside, the details

will be worked out in two ways, both moving with reasonable

directness toward the end in view, and each having its own

interest through the vector algebra of it. Let us carry out

first the application of equation (137). It gives

(m)
V dt2 ^dt dt/

+ 3(
dV . dr di/' . diA di?

^dt"^^^^^ + dtdF^^"^ + d^dt

(y X v) = r d^ di? 1

+ k' 3r,

r dr , s d^A , , d§

I

ri^ + (tti X Ti)r^ + (di X ri)r
}l

(206)

dt ' '"^'^'^'^dt

As a help in expanding the second equation these relations enter:

(^1 X rO = »! sin ??;

iti X (i^i X Ti) = — i' sin ^ cos ^ — Ti sin^ ?>;

1^1 X (*i X Ti) = Oi cos i}; (^1 X ri) = i';

^1 X (tti X ri) = 0; di X (^i x ri) = - ri.

(207)
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Summing the items in their proper orientation, the polar com-

ponents of (v) are found to be

d^t? „drdt? /di/'V •

dt2 ^ dt dt

(208)

. / d^t? „drdt? /di/'V • \
^(x') = 1 (^r^ + 2^t dt

- 'U J
''° ^ '"'V'

., / dV . .
^d^dr . „ diJd./' \

^(y') = J' (^^dt^si^'^ + 2d^dt'^°'^ + ^^dTdT^^'^ j'

^-'>=^(dt^-Kdr)-<dt)«-^^)-
The second development picks up its thread at equation (201),

and differentiates that again as it stands; so the first stage shows

immediately
d^r _. dr^^^ = '^dti+2f:^^+r-:r;

and carrying out some of the indicated operations yields

fi = (yxTi);

i-'i = (y X ri) + (y X fi) = (y X ri) + (y x (y x ii));

: djP
,

. dV
, A dt? . . d^t?

'

dt *
Y = <:i:Tr + ^idt'^ + ^idt+^^dt2'

d^
with 1^1 constant, ^i = tt (^i x ^i);

^dV
. /, ,dxlydr}\

(y X rx) = (iti X ri)^ +
(^

(.<li X ^i) ^^^- j X ri

Y X (y X Ii) = [iti X (tti X Ti)] (
-7-m

d2|?

+ (^ixri)^;

+ [itix(0,xrO]^^+[d:x«:.xrO]^^

+ [^1 y (^

10
•^'^^K^J

(209)

(210)
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Substituting these values in equation (209), it is recognizable

readily with the aid of equations (207) that the results of the two

methods are in perfect agreement.

104. The adjustment of the foregoing analysis to the simplified

conditions of uniplanar motion, where the pole for (r) is taken

in the plane of the motion, will make (•&) constantly a right angle,

so that (r) revolves in the equatorial plane of the sphere whose

polar axis is (Z). In adaptation to that case the velocity com-

ponents are

V(z') = V(r) = rx^; V(.v') = i yr^
J;

V(x') = 0; (211)

and the acceleration components become

V(z') = V(r)

/d^r fdxPY\

dt2
"^

dt dt y

'

(212)

V(x') = 0.

Even on this simpler level, and after removing those complica-

tions which belong to the freedom in three dimensions, the

same feature remains prominent through all the results; in one

sense the idea of superposition fails. For though the resultant

velocity contains neither more nor less than the parts due to the

radial motion by itself and the revolution by itself, we cannot

build up in that fashion the acceleration (t) of equations

(208), nor yet of equations (212). In the latter, the second term

in the coefficient of (j') does not belong to the radial motion, nor

to the circular motion, but it appears only when these two types

coexist. And under the broader conditions, the coexistence in

pairs of the three component velocities asserts itself through

the terms in the acceleration

:

^'my^ y(4ty. y{-m- <-)
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In view of their obtrusive symmetry, it is somewhat surprising

that the force depending on the third of the group should have

invited and fixed nearly exclusive attention: it is the famous

compound centrifugal force with which the name of Coriolis has

been associated.^

Approaching along the line now laid down to follow, these

terms can be traced intelligently to a common origin in the

nature of the coordinate system that is being employed; their

appearance is connected essentially with the changes of direction

pecuhar to the descriptive vectors that are used. On that side,

the parts of the force that match such accelerations may be

declared mathematical, though it must be granted that they can

become sound physics too, whenever those descriptive vectors

are closely fitted to the physical action. In a centrifugal pump,

a force that goes with the coefficient of (j') above does work

and strains the structural parts. But the same term shows in

the algebra, when constant velocity is referred to a pole lying

outside the straight line path, although no net force at all can

then be active. It is also a significant fact that the factor (2)

in each case makes its appearance because two terms coalesce,

whose function is different in respect to the vector quantities

that they affect. It is half-and-half change of magnitude in

one vector and change of direction in a second distinct vector,

as our process of derivation demonstrates. So the force of

Coriolis cannot give a definitive account of gyroscopic phenomena

on the basis of an incident in the algebra; first, it must be

exhibited to correspond with traceable dynamical action. The

same lesson is enforced here as by the matters broached in

sections 35 and 57, of which the latter is peculiarly pertinent in

that it brings forward the idea that angular acceleration, and

therefore the coexistence of rotations about (t{ri) and (^i) that is

characteristic of the compound centrifugal force, may come about

> See Note 26.
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in the absence of all force-moment, as a symptom that control

is absent, not that it is present and is producing these effects.

105. The general values of equation (208) cover as a special

case, it is plain, the condition that (r) shall be constant in length

which goes with a pure rotation about (O). Consequently if

we make that assumption here, the special value of () that is

obtained must be reconcilable with the determination made in

sections 54 and 101. Only the latter, in its turn, must be special-

ized for a point situated in its axis of (§i), which is now also that

of (ri). The notation in the two sections is consistent with the

same supposition about the rotation-vector (y) of (X'Y'Z');

and the axis (Z') is common to both inquiries. But it will be

observed that (^i) of section (101) is identified with (i'), and (di)

of equations (203) is paired with (j'); and hence a comparison

of results must adopt in correspondence

(i'); (JO; (k'); [Equations (193)]

(JO; (-i'); (kO; [Equations (2O8)]

in order to preserve the right-handed cycle.

If (r) is constant in length the terms remaining in equations

(208) are

V(x')=i'(^r^-r(^-j^j sm^cos^j;

^(y''" = (214)
., / dV . ^ dip dd \)=3 (^r^sm^ + 2r^^cos^j;

And the vector sum of these must agree with equation (72) after

the latter has been adapted to the point

z' = r; x' = y' = 0. (215)

We have for use with equations (72, 188, 193)



(216)

The Main Coordinate Systems 139

(fc) X r) = i'(«(y')r) - j'(^(x')r);

<o(fa)-r) — r(a)*)

r dxP d^ d<pl/' fdrP d<p\\

When the multiphcations are carried out and the items duly-

oriented by the plan explicitly recognized for equations (214),

the values are found in agreement at all points.

The special circumstances to which equations (214) conform,

make them express the acceleration of a point in the symmetry-

axis of a top or gyroscope when it is spinning about that axis

while the latter is executing any motions that change (d) and

(it). Beside the utility of this value in application to the problem

of the top, and the consolidation that the conclusions attain

through the comparison, it is particularly instructive to follow

carefully and in detail the appearance of terms in the acceleration,

and their various disappearances by cancellation. Then one

learns to cross-examine the mathematics and to discount sensibly

its evidence or suggestion as to just what dynamical processes

are in operation.

106. The fact that the resolution into polar component shapes

itself in accommodation to each individual radius-vector prevents

the introduction of any usefully general integrations to include

extended masses. As a substitute recourse is had, where the

radius-vector enters naturally, to plans like that worked out

for the rotation of a rigid body, which has contrived to extract

the common elements (to) and (ci) for use with all radius-vectors,

and the moments of inertia as factors that cover the whole mass.

The polar components that have been deduced are then limited

practically to one mass-element or to the particle at the center of
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mass of the body. For the latter case, there is no difficulty in

writing down for the six fundamental quantities the parts of

their standard frame values that match the orthogonal polar

projections. These are:

drl

^^d-tj

(217)

Q = m
1^

(di X rOr —- + {^, x ri)r ^ +

= Q(x') + Q(y') + Q(z');

E = >[v2(.') + v2(/) + v2(.')]

= E(s') + E(y') + E(z');

H = m[-i'(rv(,'))+j'(rv(.'))]

= H(x') + H(y'); [H-iz') = 0];

R = m[i'v(^') + j'v^y'-) + kV(^')]

= R(x')+ R(y') + R(z');

P = R(x')V(x') + R(y')V(y') + R(z')V(z');

M = - i'(R(y')) + j'(rR(,')) = M(.') + M(y');

[M(.') = 0]. J

As an addendum to the separation of power or activity (P) into

its parts it is worth noting that the total force corresponding to

the heading (y x v) of equation (206) can finally contribute

nothing to the work done. It must of necessity be perpendicular

to (v) and therefore ineffective in the product (R-v). Amounts

of work per second may be yielded in the parts of (P) by the

inclusion of these directional forces, but they must be self-com-

pensating and give zero of work in the aggregate. Their behavior

in both respects toward power is similar to that of normal force

that is confined to changing direction in resultant momentum.

Under (V(m)), other elements of force may be entered that also

give change of direction to (mv) ; this function it may share with

(y x v). But (V(m)) has monopoly, as was pointed out earlier,
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of bringing about all changes of magnitude in (v), and hence in

(mv). It is plain common sense to confirm these conclusions by

the observation that what happens to coordinates merely—to

the descriptive vectors as we have called them—cannot affect

the physical data that they are devised to describe.

Hansen's Ideal Coordinates.

107. By the trend of the standard illustrations, it cannot fail

to have grown conspicuous already, how varied the available

combinations must be and how many kinds of adjustment to

special purposes are rendered possible, when once such resources

and expedients have been brought under fair control, and a

definite formulation of the ends sought has been arrived at.

The next instance in order, the ideal coordinates so named by

Hansen who proposed them, is adapted to strengthen that per-

ception.^ The invention of the plan seems to have been con-

sciously directed by a purpose, and it finds a place here because

it has made its standing good for certain fields of application.

As would be natural to surmise, the proposals that have won

acceptance have been gleaned by the sifting of actual and con-

tinued trial among the larger number submitted for general

approval. Ideal coordinates are made to follow upon the polar

system here because the radius-vector still remains a prominent

element in their specifications; and on this account, they too

have no immediate range beyond tracing the motion of one

particle or mass-element. It will be recognized that they pursue,

like the other coordinate systems that have been discussed, the

object of stating standard frame values, but in more elastic

partition of the totals than (XYZ) itself can furnish.

The chief concern of ideal coordinates is with velocity, and its

main course may be called a response to the question, in what

direction can the restrictions upon the frame (X'Y'Z'), that the

1 See Note 27.
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polar system has been seen to impose, be loosened without im-

pairing the invariance of (v) that the polar components retain.

That point being secured, the other consequences entailed are

left in whatever form they may happen to appear. In this way
it becomes part of the inquiry to ascertain how the expression of

acceleration is affected by the assumed conditions. The frames

(X'Y'Z') and (XYZ) continue with a common origin (O).

108. If we add to the suppositions of section 102 a rotation of

(X'Y'Z') about (Z') that can be of any assigned magnitude,

equation (202) will be written, when as before we identify (^i,

k', and rO,

dr dJ/ d«? d(p
V = ri ^ + (»l:i X ri)r^ + (*i x ri)r^ + (4i x r^r ^[ ; (218)

but the difference introduced is only formal since (^i, Ti) are

identical unit-vectors, and in this frame (X'Y'Z') it is still the

coordinate (r) or (z') alone that can differ from zero, while the

same corrections make the previous invariant representation of

(v) persist. This puts before us the nucleus of Hansen's idea, as

vector algebra allows us to condense it. Now it will not be

overlooked that (V(x'), V(y'), V(z')) as determined by equation

(203) are the components of (v) in that frame of permanent

configuration in (XYZ) for which, with (§) equal to zero, the frame

(X'Y'Z') is the indicator at the epoch. But it follows from the

form of equation (218) that a whole group of fixed frames which

at the epoch have (Z') in common and are distributed through

all azimuths round that axis for the range (0, 27r) in (<p), satisfy

first the relation for the vector sum

di/' dt}
V(x') + V(y') = (t|fi X ri)r ^ + (*i X rOr ^- , (219)

and accordingly for the invariance of

V = V(.') + V(/) -f V(.'). (220)
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Whatever the direction therefore, in which the extremity of (r)

is instantaneously moving parallel to the (X'Y') plane, it is

possible to select at that epoch among the group mentioned

above one frame for which (V(x')) is zero, and another for which

(V(y')) is zero; and whichever alternative is chosen of these two

it is further open to attempt determining the rate of the rotation

about (Z') so that this one component remains permanently zero.

We shall return presently and develop consequences of those

possibilities, after pausing to insist a little upon equation (220)

which has not yet been particularized in that sense.

109. In order to come nearer to the form of statement that

Hansen was compelled to employ, go back to section 89, where

equations (150, 151) express the invariance of (r) in frames

having a common origin. Let us pass on to consider equations

(154), noticing how the added invariance of (v) necessitates the

vanishing of the last group of terms in each of them, for which

one condition extracted from equation (162) is seen to be that (y)

though differing from zero is colinear with (r). For our benefit

just now, this signifies that if two frames give equivalent sets of

components for the same resultant velocity, the equivalence will

not be disturbed by allowing one of them to be subject to a shift,

provided that the axis of it lies in the radius-vector at the epoch.

Then, as Hansen puts it, equations (151, 154) will exhibit the

same type in their forms, with velocities replacing everywhere

the corresponding coordinates, and the ideal for (x'y'z') has been

reached. As we have approached it there are two stages: the

shift of (X'Y'Z') in the angular coordinates (t{f, *) is not without

influence upon the relations, but it has been compensated in

equations (203), and adding then a supplementary shift about

(ti) that is also (^0 leaves this compensation untouched.

The zero value of (^) having been standardized for equation

(203) with (X') in the plane (Z', Z), for the more general value

of (^) that is now contemplated we should write
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., / dt?
.

d^ . . \
V(x') = 1 ( r-rr cos ^ •+ r-r-' sin t? sin v? I

;

(221)
., / dt? .

,
d^ . \

V(y') = ] I - r^ Sin ^ + r^ Sin t? COS ^ I

.

And if we settle upon making (V(y')) zero, the proper value of (^)

at the epoch is determined by
di/' .

r^ sin ??

tg <p' =
^^

. (222)

^dt-

Let us retain (y) for the rotation-vector of (X'Y'Z'), and dis-

tinguish by (to) the angular velocity of (r), so that in the subse-

quent details

dip d?? d<p d\p dd^ , „,

Then under the condition of adjustment shown by equation (222)

we have

v,., = (oxr)=i'[r^(^y+r^(^ysin^^J;
(224)

dr
V(y') = 0; V(,') = fi^-

110. The execution of this manoeuvre reduces the statement,

so far as velocities are concerned, to one of motion in an instan-

taneously oriented plane (Z'X'), with a resolution of (v) for the

standard frame along the radius-vector and the perpendicular to

it in that plane. The values of the components conform per-

fectly in type to those of the similar projections in the permanent

plane of uniplanar conditions; and the prospect is opened for

success in determining such a rate of rotation about (r) as will

perpetuate the instantaneous relations in exactly this form

when they have been established at some one epoch; this involves
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keeping the values of (V(y')) continuously at zero, though it is

always reckoned in the normal to the shifting plane (Z'X')-

The examination of the arrangement requisite to that end is

connected with the question about components of the accelera-

tion (t), and we shall make our beginning there.

Recorded in equations (208) are the projections of (t) for

(XYZ) upon the (X'Y'Z') axes as located by (^ = 0) ; and from

them can be calculated the equivalent set of projections upon

the axes (X'Y'Z') located by the general value of (^), precisely

as equation (221) does this for velocit3^ Those projections can

finally be particularized for the angle (^') assigned by equation

(222) to satisfy its announced condition. Distinguish the last

named components of (t) temporarily as (v'(x"), t(y"), ^(z"));

they are given by

*-(x") = i"(v(x') cos <p' + V(y') sin ^');

^(y") = j"(- V(x') sin <p' + V(.v') cos <p');

t(,") = k"(v(,')); with k" = k' = ri,

the new unit-vectors being (i"j"k")-

(225)

In the text of section 103, the components of (v) happen to find

expression through polar variables, but that is plainly only an

incident of the sequence in which they were developed; they

might just as well have been derived from

d^x

dt2
^(x") =

^y'

)
=i"(i"

)
= j"(r-

)
= k" (k"

i3I^+i' ^dt^+^
d^\
dtV'

+ 3'
d^
dt^

• dx2 ,
,

^dt^+^

^+r.k^V
dt^^^ ^dtV'

dtV '

J•^dl^+^"

(226)

or in some other equivalent fashion, the choice depending upon

how the data are presented. It is another consequence of this
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idea, that the original shift of (X'Y'Z') in (ijf, d) belonging to

polar components is unessential; in effect it drops out of con-

sideration through the allowances for its presence when equations

(208) were made correct, as we saw also in speaking about

equations (203). The vital element in these ideal coordinates is

the accompanying rotation about (r) which has been relied on

at critical points to secure at once invariance and simplification

in the relations for the velocities, and whose consistent intro-

duction into those for acceleration we are now prepared to finish.

In order to accentuate the real dissociation from the polar

scheme, let us think definitely in the terms suggested for equations

(226), of two coincident frames in the configuration with (XYZ)

designated by (tjf, ^, ^'), of which one is fixed, while the other is

departing from coincidence by rotation about the (r) of the epoch.

We will temporarily call the rate of this departure (u) in substi-

tution for the time rate (^i d^j/dt).

111. Then the specialization of equation (137) to these cir-

cumstances gives, if we particularize the velocities also as (V(x"),

V(y"), V(z")), and remember

U(,") = u; U(^") = U(y") = 0; V(y") = 0; (227)

^(x") = i"^(v(x"));

^(y") = Jr[^(v(y")) + (ua,r)];

'('") = k"f^(v,0).

(228)

Hence, in order that these values may be reconciled with a

permanent zero value for (V(y")), the magnitude of (u) niust be

adjusted to the acceleration parallel to (j") of the epoch, which

for the present purpose we may suppose to be one among the

data, as well as the velocity component (i"(uT)). At the same
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time, as the forms of the last equation show, the accelerations

parallel to (k", i") are reckoned as though those were constant

unit-vectors. But it is plain that the existence of shift cannot

disappear completely from acceleration and from velocity too,

because the necessary conditions

(u X r) = 0; (u X v) = 0; with (u) not zero; (229)

are incompatible, so long as (v) and (r) are not parallel.

There is a strong natural suggestion, through the connection

and the form in which these ideal coordinates have come to our

attention, that they bear by their intention upon the astronomical

problems that occupy themselves with orbits whose differential

sectors are drawn out of one containing plane by disturbing forces.

To this conception of a continuous succession of osculating orbits

the method is ingeniously accommodated, with a separation

that is of practical advantage between the forces (mV(x")),

(m^(8")), whihc, as it were, control the orbit-element of the

epoch, and the force (mt(y")) into which the distorting influence

is collected. Yet interest in the method should not be confined

to astronomers, because its device is repeated with only the

modifications that the new conditions impose under the next

heading, when the osculating circle of curvature is brought into

relation with any curved path of a moving point; and the

parallelism is an instructive feature for our discussion.

Resolution on Tangent and Normal.

112. The local tangent and normal to the path of a moving

point afford a coordinate system that has been in general use

since the days of Euler, but its employment for velocities could

not be carried beyond the rudimentary stage of indicating the

set of values (0, 0, v) in every such application. It is clear that

this remark includes with equal force momentum and kinetic

energy that contain no other kinematical factor than velocity.



148 Fundamental Equations of Dynamics

The resolution tangentially and normally has that ground for

concerning itself solely with acceleration and with dependent

dynamical quantities like force, power and work. In this it

differs from the coordinate systems that have been occupying

us hitherto: by not being serviceable in more than one stage of

differentiation, whereas the terms of the other systems have

linked with two derivatives at least. How the tangent-normal

plan branches off from the radius-vector series appears when we
write

dr
r = Tir; f = v = f ir + ri ^ ;

(230)
dv

r ^ V = v,v -F vx ^ ;

and compare the last equality, that realizes the separation along

tangent and normal to the path, with equation (209) that con-

tinues the polar component scheme. Because one stage does

isolate itself thus, it becomes feasible for it to remain bound by

the invariance test for a quantity with which it connects, and

yet take on the quality of a mixed plan in other respects. A
plan mixed or composite in regard to the standard frame, by

dealing with comparison-frames (O', X'Y'Z') whose (r') and (f')

are not invariant with (r) and (f), though (r") and (f) are thus

related. Section 77 furnishes all needed reminder about like

combinations.

Such realities as the exclusion of normal force from effect

upon power have thrown tangential force into stronger relief;

and the more impressive function of the latter in changing mag-

nitudes. Some plan or other of resolution for acceleration is

favored, because the resultant quantity finds in general no

visible geometrical element falling in its line as the tangent to

the path does with velocity. The projections on tangent and

normal form the simplest set that contains any segregation, for
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as we have once noticed, the (XYZ) set does not discriminate

but speaks always of its own tensors. The separation on the

basis that tangential acceleration changes velocity through its

tensor alone, and the normal part changes the unit-vector alone,

is the most important early and familiar instance that general

ideas of vector algebra had to pattern after. The last of equa-

tions (230) has, as we are aware, grown into a general handling

of any vector derivative.

113. The polar components of acceleration have been found

to involve in comparative complexity the distinctive traits of the

velocity vector as exhibited by its derivative, because their

formulation is guided by elements foreign to (v) and borrowed

from the behavior of the other vector (r). And as we see illus-

trated repeatedly, the changes in any vector indicate themselves

most directly by analysis of its derivative according to some

leading idea inherent in the vector itself. It did not escape us

that the vector (H), for example, is but indirectly described by

use of (w) and (w) in sections 56 and 57, and that there is likely

to be a gain when the more direct connection of (H) and (M) is

utilized.

Before entering upon any new considerations, let us once more

pick up the thread at section 89, and renew the thought that

(xyz) and (x'y'z') can be read as projections of any free vector

such as (v). Then equations (154) or their alternatives made
explicit for (x, y, z) are the algebraic statement of shift for

acceleration, (v) for the standard frame being given indifferently

by
V = ix + jy + kz; V = i'x' + j'y' + k'z'. (231)

Also the details worked out for (r), beginning with section 78,

are translatable for (v), and justify for instance, as we can use

now the Euler angles, and are paralleling (ro = 0),

3v dy dv dv
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whose meaning reproduced more briefly in

^ = t(„» + (t X v) (233)

gives foundation for our next useful conclusion.

114. In a plane curve that is the path of a point (Q), the

successive orientations of the tangent can be said to arise by a

continuous turning, whose axis is the normal at (Q) to the

plane of the path. And this turning to which we assign the

angular velocity (q), and which accompanies the progress with

velocity (v) of (Q) along the curve, is registered in its effect upon

(v) through the normal acceleration that is written

v2
^(n) = (o> X v) = - Pi - . (234)

P

The order of factors in the second member is seen to direct this

acceleration toward the local center of curvature of the path,

and the known geometry introduces the radius of curvature,

whose standard unit-vector points away from that center.

Complementary to this is the tensor change in (v) provided for

by the tangential acceleration whose natural form is

dv
V(t) = vi ^- . (235)

In order to recast these statements in the language of shift,

let comparison-frames be conceived distributed along the path

and with origins in it, each in a permanent configuration with

the standard frame, its (X') axis pointing forward along the

local tangent and its (Y') axis inward along the normal, (o) being

standard as positive. All such frames will give both velocity

and acceleration invariantly with the standard frame, and for

each one as (Q) passes its origin the same conditions prevail at

the epoch:

V(x') = v; V(j.') = V(.') = 0. (236)

But the shift of origin alone, as we have noticed elsewhere, being
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without effect upon the projections as vectors, the application of

equation (233) will yield

. •/ d . . dv
^(x') = 1 :t: (v(x')) = Vi tt ;dt^ ' ' dt

'

(237)

V(y') = j'(wv); V(,') = 0;

consistently with equations (234, 235).

115. But a space curve differs from a plane curve very much
as the instantaneous orbit spoken of in section 111 differs from a

plane orbit, in that its differential sectors, bounded now by radii

of curvature and not by radius-vectors, are not coordinated into

one plane. Each is treated typically like the uniplanar case,

however, but in the plane of its epoch. A gradual change of

this plane can always be accomplished by an added turning

about some axis contained in each plane element, the displace-

ments due to which being normal to that element are merely

superposed on whatever process is being completed within the

plane of the element itself. The direction of each such axis in

its individual plane will be chosen according to the particular

condition that it is desired to fulfil.

In the account of Hansen's coordinates it was proved that the

designated axis left both component velocities (<o x r) and

(ri(dr/dt)) unaffected by a rotation about it; and also two of

the three component accelerations. In the example before us

now, it becomes desirable to leave unchanged the one velocity (v)

that enters unresolved, and the entire acceleration. It soon

appears how this is attained by letting each differential sector

turn about an axis that is the Une of (v) at the epoch. This will

add no new velocity at any point Uke (Q) in that axis, and it

leaves the acceleration components unaltered because the supple-

mentary term (y' x v) would in any event be normal to the

plane element, if (y') denotes a rate of rotation about any axis

in that plane, and this term vanishes for every magnitude of (y')

11
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when the latter is colinear with (v). Consequently if we apply

equation (233) again, writing

y = {i>^ + r'), (238)

equations (236, 237) are continued in validity for any space

curve, though derived originally from uniplanar motion. It is

plain in what way the shift process is to be modified when it

must include a varying plane (X'Y') for the osculating circle;

and also that the tensor of (y') must be fitted to the tortuosity

of the curve, while (w) is determined by the circle of curvature.

The vector magnitude {y') is, to the extent shown, external to

the acceleration problem stated; and in this it goes beyond the

corresponding vector (u) of Hansen's system, as reference to

equation (228) confirms. The geometry of space curves, in

wl^ich our axis (Z') figures as the binormal, is seen to build with

similar ideas to those just developed.

116. If a comparison-frame (O', X'Y'Z') is moving as a whole

relative to the standard with unaccelerated translation whose

velocity is (vo), and the velocity of (Q) relative to (0', X'Y'Z')

is (v'), the last of equations (230) gives for

dv'
V = Vo + v', V = t/v' + Vi' -^

.

(239)

And since by supposition (i'j'k') are here constant vectors, there

is no distinction between (t/) relative to (X'Y'Z') and (XYZ).

Hence comparing the paths of (Q) relative to the two frames, it

is clear that the sum is invariant, if we add together each tan-

gential acceleration and its partner of normal acceleration,

although the velocities in the paths are different, as is the appor-

tionment of the acceleration between the two components. Such

indifference as exists to the inclusion or the exclusion of constant

velocities is often a helpful fact in treating of accelerations.

But its other limitations must be observed beside the one just

indicated, as applying for example to power (R-v). If in this
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product (R) is retained, and (v) is changed to (v'), the product

is altered unless (vo) and (R) happen to be perpendicular.

As the summation

I ds = (s - So)
. (240)

constitutes a rectification of the path, so the other legitimate

summation

£(mgdt) = m(v-v.) (241)

might be termed a rectification of momentum. In each opera-

tion we may see, by one waj^ of viewing it, the accumulation of

tensor elements upon one shifted line that becomes parallel in

succession to the vector elements whose tensors are thus summed.

But it does not explain fully why the second summation is

mathematically as valid as the first, just to remark that each

element of momentum is colinear with an element (ds). The
tensor factors may be in any ratio that varies from one element

to another and distorts the graph. In addition to whatever

else can be said, we may return to the idea of comprehensive

tensor running through a process of shift and observe what

condition makes an element of actual displacement and the

exact differential of such a tensor equal, by obviating that fore-

shortening of each element and the telescoping of their series

that shift in general causes. If v/e take for instance equation

(122) in connection with its context, the condition is seen to be

that the vector product denoted generally by (y x V) should be

perpendicular to the fine on which the tensor in question is laid

off. This becomes a specially simplified relation when the plan

of shift is such that only one tensor occurs. The polar scheme

contains only the length (r) of the radius-vector; the tangent

and normal resolution only the tensor of (v), which may indeed

be identified with (r) by the thought of section 88. In forming
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the derivative of (r) or of (v) under the form of equation (137),

(V(m)) comprises nothing but the total derivative of the tensor,

and the mathematical test for integrability is met. If it were

practically easier to devise plans of the type instanced, without

sacrificing other advantages, there would be less hindrance to

forming integrated values of tensors in working out results of

shift.

117. We shall close this summary of our last system of point

coordinates by gathering for record its most serviceable relations

to the fundamental quantities, and here again with a representa-

tive particle at the center of mass of a body definitely in mind.

They show in terms of projections parallel to the (X'Y'Z')

specified for equations (236, 237), with (xo', yo', zo') added for

the coordinates in the standard frame of the particle caught in

passage through the (0') of the epoch.

Q(x') = Q = mv; Q(,') = Q(,') = 0;

E(,') = E = imv2; E(y') = E(,') = 0;

H = (xo' + yo' + ZoO X Q = + j'(zo'Q) - k'(yo'Q);

R ') = ^' (^ d^ ) ' ^(y') = i'(mvco); R(,') = 0;

P = Rc.')V = m^v = ^(E(.')); I"
(242)

-M = (xo' + yo' + Zo') X (R(x') + R(y'))

= k' ( mwvxo' — m Tr yo' 1

-I- j' f m Tr Zo' j
- i'(mcovzo').

The expression written for (M) should be compared with the

direct vector derivative of (H) as given above in terms of the

shifting (X'Y'Z').
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Euler's Dynamical Equations.

118. The configuration angles (tjr, ^, ^) have been associated

with Euler's name already; and once more we follow the estab-

lished custom in speaking of the next plan to be examined as

Euler's, describing the statements of it as his dynamical equations,

and so contrasting them with the purely geometrical or kinemati-

cal ideas brought forward under the other title.^ This second

group of Euler's equations constitutes a system of resolution for the

dynamical quantities that departs in one important respect from

all the others that have preceded it in the order that we are

following. It has been constructed with specific reference to a

rigid body as a whole, instead of being shaped for one element

of mass, or at most for a particle at the center of mass. The
summation covering the entire mass has been incorporated into

the expressions, as an integral part of their standard form; the

field of use for them is particularly among those parts of the total

quantities that must fall outside all plans that are limited, in

conception or in effective and convenient adaptation, to a par-

ticle's translation. Therefore it will be anticipated that we shall

deal in these equations with that element of rotation in the most

general tj'^pe of motion for a rigid body, which is the obUgatory

remainder after deducting a translation with its center of mass.

The explanations on this point in sections 48 to 63 may be re-

ferred to; also those in regard to the dynamical independence

of the rotation and the translation, and the connection of a pure

rotation about an origin with one about a moving center of mass

(see sections 52 and 53). Let it be remarked, in order to cover

this aspect of the situation, that Euler's dynamical equations once

developed for the conditions of rotation, are apphcable equally

to either occurrence of it.

119. A junction with previous results can be made by bringing

together the equations for the values of (H) and of (M), since

» See Note 28.
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it has been proved that moment of momentum and force-moment

furnish central clews to guide inquiry among the phenomena of

rotation. Let the understanding be that our analysis attaches

primarily to rotation about a center of mass (C), and that any

necessary transitions to pure rotation are to be adequately

indicated.

On returning to equations (86) the signs of mass-summation

are in evidence, and also of the general interrelation between

each component of (H) and all three components of the rotation-

vector (o)), when an unguided choice of (XYZ) has been made,

to which axes those located at (C) will be assumed parallel for a

beginning. The concept of (to) as properly applicable to the

complex of radius-vectors lying within the body has been adopted

profitably, but it is not to be overlooked that a changing con-

figuration of body and (XYZ) makes the inertia factors variable.

Neither does parallelism of the axis of (w) with one of (XYZ),

permanent or transient, introduce the lacking symmetry into

these equations. Note, however, the form of equation (80),

regard (co) as parallel to (Z), and complete the set of component

equations thus particularized. They are for (X'Y'Z') at (C),

H(z') = k'(aj(z')l(z')); H(y') = j'(- co(,')/™yVdm)

;

(243)
H(x') = i'(- w(z')/mz'x'dm).

Observe the form of the last two components, and the fact that

the orienting factors in them are coordinates.

120. The commentary of the last paragraph can be duplicated

essentially in respect to equations (89), replacing (H) by (M')

and (fa>) by (to). Thus if we next suppose the axis of (to) parallel

to (Z), all three components of (M') persist, and a similar differ-

ence in type reappears, between the first component and the two

others. Again for (X'Y'Z') at (C),

M'(,') = k'(«(z')I(z')); M'(y') = j'(- w(z')/myVdm);
(244)

M'(x') = i'(- aj(z')/mz'x'dm).
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Bringing in the other part (M") of the total force-moment does

not better the symmetry, neither of the last equations nor of

their parent equations, since in reliance upon equations (75, 76)

we find

M" = (a> X H). (245)

These observations multiply reasons for appropriating the

principal axes at (C) in a selective choice of (X'Y'Z') for any

one epoch, and then perpetuating whatever advantages are

reaped, by introducing a shift that is so regulated that the same

three hues of the body which are its principal axes for (C) shall

always be taken to mark or indicate the configuration of the

fixed frame, in terms of whose projections or components of the

quantities in question the equations are to be written. The

case for these principal axes is strengthened when equation (88)

adds kinetic energy to the expressions in this way simplified;

and when we reflect that within the scheme now proposed, the

inertia factors are reduced from six in number to three that are

the principal moments of inertia, and that the triplet retains the

same values as the axes under this scheme shift. The general

case is to be supposed, where there are no more than three

principal axes at (C), and the momental ellipsoid is not one of

rotation.

In view of the role about to be assigned to them, a specialized

notation referring to principal axes is called for, and we shall

meet that need first by using (A, B, C) to denote both the

magnitudes of the principal moments of inertia and the axes

with which they are associated. As magnitudes, (A, B, C) are

scalar factors in equations. They are associated with hues and

not with either one direction in those Unes, so they are not

vector tensors. As axes for specifying configuration, (ABC)

designate by convention one direction in each line. The cycle

order is as they stand written, so that in the zero of configuration,

(A) is parallel to (X), (B) to (Y), and (C) to (Z). The axis of
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(C) is then (Z') of our preceding notation, and it has at any

epoch the angular coordinates (ijr, •&). The third angular dis-

placement (^) is about the (C) axis itself. (See section 93.)

Secondly, projections of any vector upon the principal axes will

be denoted as illustrated for (w) and (&>) thus:

W = W(a) + W(b) + W(c); 0> = fa>(a) + <I>(b) + "(c); (246)

and the corresponding unit-vectors by (ai, bi, Ci).

Utilizing this notation, the equations brought under review

above are reduced to the forms

H = o)(a)A + (O(b)B + fa>(c)C;

(247)
M' = w(a)A + «(b)B -}- <b(c)C;

M" = ai(a>(b)CO(c)C — C0(c)C0(b)B)

+ bi(cO(c)CO(a)A — aj(a)aj(c)C)

+ Ci(w(a)CO(b)B — co(b)a)(a)A); (248)

E = MAco2(a) + Bco2(b) + Ca,2(e)]. (249)

And this yields for the similar components of the total moment
(M)

M(a) = ai[a>(a)A + W(b)a)(c)(C — B)]; 1

M(b) = bi[ci(b)B + co(e)co(a)(A - C)]; y (250)

M(c) = Ci[a)(c)C + co(a)a)(b)(B — A)]. J

The sequence of ideas by which these specialized equations have

been reached should be attentively scrutinized, also the inter-

pretation of the combinations at this stage. Equations (250)

are evidently valid at any one epoch, and can be evaluated if

these elements are known at that epoch:

(1) The orientation of the axes (ABC) in (XYZ), and the

magnitudes (A, B, C);

(2) The vector (6) in tensor and orientation;

(3) The vector (w) in tensor and orientation.
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121. In order to supply some other profitable details, and to

put another link in the connections of these equations with

general forms, we shall recur to equations (86) and differentiate

with regard to time, the first of them for a sample. It is funda-

mental that the result must represent the projection of (M)

upon (X), the latter being taken arbitrarily; and that with base-

point at (C) all moments must be reducible to couples, all net

force being absorbed into the translation. (See section 51.) The
conspicuous complication in this derivative is a lesson about

what principal axes avoid, for we find

H(x) = M(^) = i| I(x)^(w(^)) -f co(x)^(I(j))

. dx , r dy
,- '«'(y)/m^ ydm - c<j(y)/„,x^-dm

- ^ (aj(y))/„>xydm - aj(z)/m ^ zdm

- w(z)/mX ^dm — t: (co(,))/mZxdm \ . (251)

In the third member, the third, fourth, sixth and seventh terms

are to be further expanded by use of the velocity relations for

rotation,

dx dy
^ = (^(y)2 - w(z)y; ^ = w(z)X - w(x)z;

dz
^ = co(i)y - co(j-)X.

(252)

When the axes (XYZ) are particularly chosen to be the set (ABC)

in its position at the epoch, all terms can be struck out that

contain as factors the integrals known as products of inertia.

And this choice cancels the second term in the third member

also. Because for all sets of orthogonal axes at the same origin

we have
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I(x) + I(y) + I(z) = 2/inrMm (an invariant magnitude); (253)

and hence during relative displacement of body and (XYZ),

ft ^^^^^^ + ft
^'^'^'^ + ^t

^'^'-'^ ^ ^- ^^^^^

But for the longest and for the shortest axis of the momental

ellipsoid, corresponding to the least and the greatest principal

moment of inertia, the condition of maximum or minimum re-

moves two terms separately from the above equation of condi-

tion, which then proves that a stationary value of moment of

inertia enters for the third principal axis also.

After removing all the terms of indicated zero value, there

remains

H(x) = ai
I

I(x) ^ (co(x)) + aj(y)a>(z)/m(y2 + x2)dm

- co(z)co(y)/m(z2 + x2)dm \
, (255)

for comparison with the first of equations (250). The two state-

ments harmonize completely, if we insist upon the identity of

meaning for the expressions

4dt^''^^>)J'
w(a), i ^ (co(x)) ;

[(A) and (X) parallel.]

they are both representative of the projection of the vector (w)

upon (A) or (X). The comparison for the two other pairs of

equations is to be made similarly.

122. The next step in progress releases equations (250) from

this one reading of their symbolism, and lays a foundation for

the equivalences

"(a) = ai T7 (t«J(a)) ; b>(b) = biT7(aj(b));
"^^

^
"^^

(256)

"(c) ^ ^1^ (W(c))>

where the second members are to be recognized as components
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of (V(m)) in equation (137), for application to the derivative (<I>)

as expressed under a process whose shift rate is marked by the

axes (ABC). Since these are definite Hnes of the body, they

must conform to its rotation-vector («), and we have in this

shift another example of cancelled correction, for

W = <J(m) + (o> X (o) = ^1 jl ('•'(a)) + bl jT ('•'(b))

+ Cl^(a,(e)), (257)

where the tensors in the third member have taken on a new

shade of interpretation. They have become the generalized

values for the shifting axes, instead of being particularized single

values.

But there is one more consequence in this direction that still

remains to be formulated, and that can be drawn from the

expression in equations (247) for moment of momentum which

can now be conceived as continuously valid and differentiated,

due allowance being included for the changing orientation of the

projections that make up the total. We can write

EiA ^ (co(a)) + biB ^ (w(b)) + CiC ^ (aj(c))

+ (<o X H), (258)

whose separation into components restates equations (250), after

incorporating into the latter the transitions of equations (256).

The forms derived by either line of procedure are Euler's dynami-

cal equations, whose establishment with the means at their

inventor's disposal must always be rated as a remarkable achiev-e-

ment. It is in addition moreover remarkable that the segre-

gation according to the terms of equation (258), which is more

nearly mathematical in its origin, is also a separation that splits

the force-moment into parts with a plain and important difference
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of physical effect; and the beginning made in section 55 was

with design selected in order to dwell upon that fortunate chance.

A conclusive proof of the equations in very few lines can evi-

dently be extracted from the material that has been discussed

here with greater expansion; but a demonstration may become

too brief to be effective for insight, in a matter that has wide

general bearings, so the detail is probably not superfluous.

123. Among the uses of Euler's equations, the predominant

type of rigid body whose rotation is to be investigated is likely

to show a certain symmetry, whose representation in the mo-

mental ellipsoid gives equality to two axes of the latter. This

must convert the general ellipsoid into one of rotation with a

symmetry axis; the known consequence being that all per-

pendiculars to that symmetry axis at the center of the rotational

ellipsoid become principal axes with equal moments of inertia.

This combination arises if the rotating body itself, being homo-

geneous in material, has an axis of symmetry; and bodies

designed for rapid revolution are usually turned in a lathe. But

it is clear that a prism of square cross-section, as well as a circular

cylinder, would manifest its symmetry in a momental ellipsoid

of rotation. And Euler's dynamical equations, being concerned

with distribution of mass only as recorded in principal moments

of inertia, would not discriminate between the two cases, granted

the magnitudes (A, B, C) are severally equal in them.

It is proposed next to reconsider equations (250) in the light

of this possibility, designating (C) as the axis of symmetry of

the momental ellipsoid for (C), with the corollary that the

magnitudes (A) and (B) are equal; their common value we can

call (A). If now the axes of (A) and (B) are stiU definitely

located as lines of the body, whose rotation-vector (y) is identical

therefore with (to) for the body, no essential change appears in the

equations except dropping out the last term of the third. Espe-

cially equations (256) that are determined by the equality of
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(y) and (a>) are available as before. However all lines of exposi-

tion in reaching Euler's equations must set the adoption of

principal axes in the central place, and not the equality of the

rotation-vectors. So by multiplying the number of principal

axes the condition of symmetry enables choice to be variouslj''

exercised and yet range among them, though the auxiliary equal-

ity be abandoned and a relative motion through the material

of the rotating body be permitted to the principal axes that have

been selected. It is clear that the assumed relations limit the

difiference between (y) and (o) to a turning about (ci) that is

also (^i); but to this element it remains free to assign any

magnitude. The expression of that freedom is

d^ d?? d<p

d^ dt? /, d^\
(259)

where (k) may have any positive or negative value. Euler's

equations proper given for (k = 1) have been put before us

already; and we shall add for consideration, among the gener-

alized Euler forms suggested by the last equation, only that

modification which becomes necessary when the value of (k) is

taken at zero. This supposition happens to offer some special

advantage in handling combinations like a gyroscope under

control by weight moment, and the earth as affected by a gravita-

tion couple due to its spheroidal figure.

124. Let us mark the change of plan by using (A', B') to

denote those principal axes that are now substituted for (A, B),

recollecting first that as moments of inertia all four magnitudes

are equal, and secondly, that (C) is common to both sets of

axes. Then as a reminder of the needed revision in equations

(256) we can write
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W = ai' 37 (W(a')) + bi TT (W(b')) + Ci -77 (W(c))
dt dt '^dt

+ ((^^^ + ^^¥)x")- (2^«)

In equations (193) are recorded values for those components

of («) which accord in directions with the present specifications

for (A'B'C); and in equations (191) of section 101 the line of

development caused us to put down in terms of (tjr, -d, ^) the

first three entries on the right hand of equation (260). It seems

advisable to clinch the comparison in respect to equations (256,

257) by developing here for that resolution the general com-

ponents of (w), and lastly confirming the harmony of the two

sets at their coincidence that occurs for (^ = 0). These are the

first details:

w(a) = ^1 ^ ((^w) = a.[
d^
dt2

d^ d<p

dt dt

dV . . di/'dt?

+ 37^ sm I? sin ^ -f-
— 37 cos ^ sin cp

dt2 dt dt

. ^^ dip
"I+ dtdi'^°'^'°'^J'

[ d^d dt? d<p
«b(b) =bi^(a,(b)) =bi[^-^sm^--^cos^

dV . di^dt?
+ -r— sin t? COS (f

-\- -TT 37" cos t? COS <p
at'' at dt

diAd

dt dt

<P . • 1- sin t? sin ^ ;

«(c) = <^i ^ ("(c)) = fdV
-''adt^

dV
+ TIF cos t?

dt2

d^(M
dt dt

sin t? ;

(261)
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the values to be differentiated in the second members being duly-

identified in the survey that equation (181) has put together.

What remains of the results last written when they are particu-

larized for the condition (§ = 0); with (<«)(&')), (o>(b')) obtained

by a corresponding resolution of (<o), fills out the more general

form of Euler's equations,

M(a') = a/[w(a')A' + co(b')co(c)(C - B')];

'

M(b') = b/[ci(b')B' + a;(c)co(a')(A' - C)]; • (262)

M(c) = Ci[aj(c)C];

the necessitated companion being the equalities of magnitude

A = A' = B = B'. (263)

Finally the components of (w) that match the above statement

being added:

,fd^\ ^ ,/# . \
w(a') = ai I ^ ) ; «(b') = bi I ^ sm z? I

;

(264)

"(c)
fd<p dxl^ \

such advantage as this alternative formulation possesses on the

kinematical side is made to appear. Dynamically something is

contributed to a preference for it when the resultant force-

moment is a vector that lies continually in the line of the axis

(A'). A preliminary examination of the instances quoted above

shows that they lend themselves unconstrainedly to this analysis

which will be found applied in section 127.

125. On the surface the constant reference to ((^) and (&>),

either in their totals or through differently designated sets of

their components, is apt to leave a misleading impression that

they are pivotal quantities in any investigation where Euler's

equations are employed. It seems worth while, therefore, to

put in stronger light the primary emphasis of equation (258)
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upon changes that are going on in the moment of momentum
vector (H). The separation in the second member there fits a

line of demarcation between changes in magnitude and in direc-

tion, since the first group of terms is by the connections that have

been estabhshed for it a magnitude derivative of

H = ai(Aco(a)) + bi(Aw(b)) + Ci(Caj(c)), (265)

though distorted from its value as reckoned in the standard

frame by shift of the axes (ABC). But just that shift is in-

dispensable, as we have insisted, in order that the properties of

principal axes may prune the cumbrous algebraic expansions

into maximum brevity. Where a corrected segregation for (H)

into changes of magnitude and of direction entails a sacrifice of

the gain by using (ABC), the balance of choice leans always one

way; that much of dynamical indirectness in Euler's equations

is condoned. But there is an increasing tendency and a whole-

some one, to put their dynamical sense to the front, letting (o>)

and (6) fall into a subordinate importance, derived in large

degree from the clews they furnish to (M) and to the course of

events for (H). It was less easy to do this under the older forms

of Euler's day, but it is facilitated, as has perhaps been made
convincingly apparent, by a vector algebra that follows so

intimately the history of vector quantities.

126. Naturally the thought has suggested itself to inquire after

a scheme modeled upon the resolution of force into a tangential

and a normal component, for application to moment of momen-

tum. One main obstacle is not difl5cult to detect, for after indi-

cating the start in parallel to the other procedure,

dH\
dt )

H = hi(H) ; H = hi(H) + h:
(J
^ ) ; (266)

it is noticeable first that (H) cannot be assumed to fall in a

principal axis, and secondly that no data for (hi) are available
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from geometrical sources. Therefore the longer forms, for (H)

in equation (86) and for (dH/dt) in equation (251) must be used,

and the expressions must be encumbered with an added angular

velocity for (hi). Introduction of (XYZ) gives no help, nor of

the partial time-derivatives that rely upon holding (ABC) sta-

tionar3^ Either leaves commingled the parts that are sought

distinct.

But one resolution of force-moment can be carried through

that is different from Euler's and yet has aspects that recom-

mlend it. This is contrived so that one component is taken in

the axis of ((o) at each epoch, and arranged otherwise as will be

explained presently; approaching in plan the tangential resolu-

tion of force in so far as (w) and (v) can be said to bear similar

relations to the two aims. It has the merit besides of piecing

out the usual discussion of rotation about a fixed axis, by giving

recognition to those supplementary terms which disappear on

fixing the axis about which the body is rotating.

Return to the value of (M") in equation (75) and of (M')

formed by mass-summation of equation (82), and assemble their

respective contributions. Let (u) denote the rate of change in

direction of (o>), so that with unit-vector (<oi) we have

" = "^(^)^j + (uxco); (267)

where (u) must be perpendicular to (w); and subdivide (r) as

shown by
r = r(„) + r'. (268)

Then

d>-r

Tdco 1
M(„) = 6)1 Tr/m(r-r)dm — /mr(„)(w-r)dm ,

= ( wi^ + (u X <o)

J
• (ru) -t- r')

(269)

^l^ru)) + (ux(o).r'. (270)

12
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Identify (Z') with (w), and (u) witk (Y') in direction, giving

rdo) 2 ~l

j7 fm(r^ - z' )dm — uw/mz'x'dm

fdoj "1

= 0)1 jT I(^'J - uoj/xnzVdm . (271a)

In the plane (X'Y') we have to consider

- /m(o) X r)(fa>-r)dm - /„!'(« -r)dm + (u x to)/m(r-r)dm, (272)

from which are gathered without difficulty

M

M (y') =J'[-

coVmy'z'dm - ^ /mz'x'dm + uwl(x')
].

coVmz'x'dm — -TT /my'z'dm

— Uw/mXydm].

(271b)

Noteworthy is the extent to which equations (271) are reduced

by symmetries, though (u) is not zero, as well as the reappearance

of the elementary form when (u) vanishes. Dissection of these

moments shows almost immediately the force elements at (dm)

in components parallel to our (X'Y'Z') to be

dR(.') = i'[-^y'- ^vjdm;

Tdw
dR(y') = j' ^ x' - uwz' - a;2y

'J
dm;

(273)

dR(z') = fc)i(ucoy')dm;

which should be connected also with equation (72) by direct

projection upon (X'Y'Z'), and by applying the proper shift

process to (H), determined by the elements (to, u) on the same

line as sections 111 and 115 develop.
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Regular Precession and Rotational Stability.

127. The aim and scope of these discussions could not attempt

to include many particular requirements of individual problems

without transgressing the boundary set by their intention, which

is guided rather toward preparation for more generic or recurrent

needs. It is, therefore, only because the dynamical features of

gyroscopic action are generally acknowledged to be typical

within a comparatively broad range, that some space is con-

ceded to examination of them. But though this carries us

beyond the stage of laying out a plan and somewhat into exe-

cution of it, it is proposed not to go far in that direction, nor to

speak of more than two topics that are critical points in the

general perspective. The first of these takes the form of a

deliberate inquiry into the circumstances of that adjustment to

steadied motion which is described with a phrase of wide ac-

ceptance as regular precession, and about which as a center so

much else can be made to figure as a disturbance of it or a de-

parture from it. And the second is devoted to laying bare the

play of dynamical factors that operates to produce rotational

stability.^

The arrangement of the gyroscope is assumed to give it a pure

rotation about a fixed point (0), that is now taken as origin for

axes like (A'B'C), the last named being an axis of symmetry,

the shift rate for the set being as agreed in section 124, and the

zero of configuration being marked by coincidence of (A'B'C)

with (XYZ), where the (Z) axis is chosen vertical and down-

wards. The total controlling force-moment is supposed to be

furnished by weight, the standard frame being fixed relatively

to the earth, and the gyroscope has universal joint freedom at (O).

For its rotation-vector (o)) then, the two equivalents have been

supplied,

• See Note 29.
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d(A dt^ dip ,/dt?\

+ b/(^sin») + c.(^ + fcos»). (274)

For regular precession the conditions that obtain are

d«? ^ d\f/ d(p

~rr ) TT ) «^j constant:
dt dt

or (275)

w(a') = 0; w(b'), w(o), constant.

And in order to standardize values, attach the further conditions

d<p

df>«' <t? <2; A' > C. (276)

Then the weight moment is negatively directed in the axis (A'),

and with understandable notation the application of equations

(262) to this adjustment shows the following scheme of specialized

values

:

(277)

r d\l/ d<p
ai'(- Wr sin t?) = a/ A^-^

dt
^^^ ^

= bi' [zero];

= Ci [zero].

It is a clear matter of algebra that the first equation is satisfied for

sin i} = 0;

or for

d^P_ _ co(c)C ± V(Ca;(c))2 + 4WrA cos t?

dt
~

2A cos I?

or in another expression of it for

d^

dt

C^±-J(c^^y+4W?(A-C)cos^

2(A - C) cos
"^

(278)
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Putting aside for the moment the first root, our questioning

begins with ascertaining the dynamical double process that

finds expression in the two signs of the second root and that

shows to inspection in either form under the assumed relations

of value, a quicker rotation about (Z) and a slower rotation of

opposite sign as possible adjustments.

128. It lies on the surface that while regular precession con-

tinues the vector (H) can be changing its orientation only and

not its tensor, and that since (H) must always be contained in

the plane (B', C), the applied force-moment must in the adjust-

ment meet the condition

a/(- W? sin t?) = ^ijri^ X h) (279)

equally at the quicker rate and at the slower rate of rotation

about the vertical axis. For the explanation how this can

occur, we shall look upon the moment of momentum as built up

by superposition, following the second member of equation (274)

in its elements which are now the first and third only. The
contribution from the principal axis (C) and its horizontal part

effective here in (M) let us write

H,.>=c.(c^^); N' = n.(c^^in^). (280)

Then having excluded (Z) from being a principal axis by the

suppositions laid down in the inequalities (276), the second instal-

ment of (H) must allow for both a vertical and a horizontal part,,

the latter being contained in the plane (Z, C) ; and it alone is ef-

fective in (M); call it (N"). The total effective component of

(H) for the vector product of equation (279) is accordingly an

algebraic sum

N' H- N" = Hi r± C^ sin t? ± (A - C) ^ sin t? cos t?
, (281)

the part (N") being readily evaluated to confirm this.
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129. It is hext apparent from the cycle order that the rotation

about (Z) must be negative in order that both terms within the

parenthesis may first point the same way relatively to (ni) for

our fixed assumptions, and secondly, give by the vector product

that negative orientation in (A') which the operative and nega-

tive weight-moment demands. So the standardized form in the

circumstances becomes

M(a') = (^tlri-xHJ

= airC^-^sin^ - (A - C) f^ Y sin ?? cos ^1 . (282)

It is patent how elastic the constancy of this algebraic sum can

be made, or of its equivalent vector product; large (N' + N")

and slow rotation, or smaller (N' + N") and quicker rotation.

With equation (281) besides to show reversal of the rotation about

(Z) converting a numerical sum into an algebraic one, all other

elements being held unchanged. But leaving those details as

covered sufficiently, it behooves us to note in equations (278)

that each double value has its own common quantities that are

not entirely reconcilable. Since

/d^ diA \
"(e.) = ^i(dt +dt ^°'^j' ^^^^^

the first member, together with both (??) and (d^/dt), cannot all

remain unchanged while the rotation about (Z) is made fast or

slow. Equation (281) has tacitly taken one choice; but (<i>(c))

is a standard-frame quantity, whose constancy in magnitude

moreover is assured under the third of equations (262) whenever

(M(c)) is zero. We might then attach our thought preferably to

the first form in equations (278), and recast the result thus:

M (a')

= air('^sina)(c<o,., - A^cos*]]; (284)
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in which the possibihties of varying factors in a constant product

reappear, with (i?) and (w(c)) barred from change. It will be

noticed finally that either more direct derivation of result corre-

sponds exactly with the terms to which the first of equations

(277) reduces, so our analysis reversed could be applied im-

mediately to the latter. It ought to be said about the realization

of conditions, that the spin round the (C) axis is usually pre-

ponderant heavily in magnitude, and for this reason the observed

rotation about the vertical with a negative weight moment is

normally retrograde, the necessary high rate for the contrary

rotation being practically unattained.

130. Let equations (262) next be released from their restriction

to that adjustment whose relations are now ascertained. Then

with repetition of the idea put forward in the connection of

section 56 there can be a rearrangement in this instance, too,

that will describe the general action in terms of a deviation from

adjustment as a convenient basis for exhibiting the consequences

in the light of a disturbance. Re-establishing their unspecialized

character, equations (277) will be written

ai'(— Wr sin ??) = a•[
, d2?> dip . ^
^dF + dF^^"^^"^"^

= ^i4.

-T- COS ^A -TT sm
dt dt 'I

(w(b'))

=cir

diA , dt}

+ dt^°^^^dt

C^^(cO(e))

-d^CcO(e)J,

d^ , dxf/ . di/' . , di}'

+ dt"^d^^^^^-dt^^^''^dt

(285)

But all the items there put down only elaborate still the one



174 Fundamental Equations of Dynamics

dynamical fact that no vector change in moment of momentum
is ever being produced except the increment along the instan-

taneous position of the (A') axis, which is that of (#i). Denote

the projection of (H) upon the plane (Z, C) by (H'), and the

first of the three expressions can be put in these equivalent forms

:

aA-W?sm.)=a,'[f^(A^)] + (*.^xH');
(286)

The first statement is read that the weight moment devotes to

changing magnitude for the component of (H) in its own line

whatever margin remains after providing for continuance of

change in direction for the rest of (H). And the second, that

the deviation of the actual moment (M) from the adjustment

moment (M(o)) required for prevailing values is registered in a

process of change for (d). The indicated preemption claim of

the changes in direction has a certain figurative shading, we may
allow, but a certain truth also; because those affect quantities

at their existent values for the epoch, whereas the quantities

that are changes in magnitude are called into being and not

present already. And so with the second form of statement:

the section referred to concedes that the subtracted force-moment

in the first member may be declared nominal or mathematical;

but both points of view above are dynamically suggestive and

to be entertained as a mental habit.

The other equations of the group (285) set forth the kinematical

complications that ensue because nothing dynamical is effective

in those lines. They give foundation for important and inter-

esting studies that are, however, only to be alluded to here;

we shall content ourselves with insisting once more upon the

thought of sections 56 and 57. At the regular precession adjust-

ment every term in the second members of these equations
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vanishes separately and they become a blank recording nothing.

Now they sum up algebraically to zero, though the individual

terms need not vanish; but they are, in a sense to be understood

with due Hmitations, as empty of phj^sical content as ever; they

chronicle only formal and internal readjustments of expression.

131. The topic of rotational stability is also at its core dynami-

cal, and it is approachable most directly through the considera-

tions that we have been attaching to regular precession, when

the possibilities are examined of securing that type of adjust-

ment with the (C) axis directed nearly in the upward vertical.

We shall confine inquiry, on this side as well, to outlining the

connections; their essentials being grasped, the exhaustive

treatment of details offers no other obstacles than the inevitable

mathematical difiiculties.

The first pertinent thought is derivable from equations (278)

when a range into the second quadrant is permitted to (&),

and a discrimination needs to be regarded between real and

imaginary values of the rotation about (Z), or between adjust-

ments that can and that cannot be accomplished. Selecting the

first alternative form for the solution, this dividing hne is to be

drawn where the values denoted here as special yield the relation

= (Caj'(c))2 + 4W?A cos t?'; cos t?' < 0. (287)

And the critical magnitude which (w(o)) must at least reach if

imaginary values are to be excluded completely is given by

/4WrA ,^„^,
CO(c) = ±-y| ^2 J ^^°°)

so that if the spin about (C) equals or exceeds this rate, the

attainment of regular precession at every position in (•&) is only a

matter of providing the companion value of the spin about (Z).

With this simple mathematics clear the next step is, as in the

previous combination, to detect and assign the dynamical
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reason that must underlie it. The first stage in meeting that

requirement starts with the merely reshaped equation

A^ =sint?(^- Wr-^Ca,(e) + A(^^j cos^j. (289)

This can be made to tell us that if the axis (C), having been

directed vertically upwards, moves away from that position, and

changes (t?) by a small amount from the value (tt), it will be true

that

(290)
/ dt? \

,A* =di( dr-TT jdt; cost?=-l.

In words, the rotation rate (d??/dt) will always be subject to

reduction in magnitude when the above parenthesis is itself a

negative quantity; and we have discovered a cause for this

reduction by seeing how the weight moment meets a first claim

for guiding directional changes in (H); a special case under

equation (286) is before us now. The stronger such absorption

of force-moment, the more rapid becomes that check upon the

initial motion in (^), which will begin straightway as (C) leaves

the upward vertical whenever the parenthesis is in the aggregate

negative. Therefore we are led by these considerations to look

at equation (284) in a somewhat new light after rewriting it

d^t? _ sint^

dt^"
~ " ~ ~ A W? +^ Cco(c) - A r^Y cos t?y (284a)

Then a zero value of the parenthesis when its factor is not zero

marks the transition between favorable and unfavorable con-

ditions for checking an existing motion in (^). In application

to the second quadrant, the third term must be a positive mag-

nitude always, but it decreases as (C) approaches a horizontal

position. It is clear that cases may occur where the first member
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has unfavorable sign as (r?) leaves the value (ir), and becomes

favorable only after a finite drop of the axis (C). Also it has

been seen that the unfavorable interval can then be narrowed

by quickening the spin about (C), and it disappears at the

critical value indicated by equation (288). Because (sin t^ = 0)

is always one solution, there is a discontinuity possible here

between the two types of solution, similar to that for the conical

pendulum obtainable by assuming (d<p/dt) zero in the second

form of equation (278). The classification sometimes made of

gyroscope tops as weak and strong follows the line of thought

just traced.

132. The factors in the second term of the parenthesis that is

under examination are never quite independent so long as (d^/dt)

occurs in (w(,.)); but their dependence assumes a special phase

when the (C) axis and the vertical can become coincident, for then

there will be only two different expressions for the same (vertical)

component of (H). In order to develop the latter relation and

to reduce the parenthesis accordingly we shall begin with the

more general statement and afterwards particularize it. By
projecting from (B') and from (C) on the vertical and adding

we obtain

Hu .) = tI:i[^^sin7?B'jsinT?

+ ('^ + ^ cos t? ) C cos t?!. (291)

Consequently

H(,,) - t|;i(H(e) • <rO = tti
(^ A sin^ t?

) ;
[B' = A]

; (292)

with the general value for the tensor ratio

# _ H(^,) - H(„) cos t?

dt ~ A(l - cos^ ^)
'

^^^'^''^

which gives under the equality attendant upon coincidence in
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the upward vertical, the conventions for signs being duly recon-

ciled,

Substitution in equation (290) shows as a condition that the

right-hand member should be negative when (C) leaves the

upward vertical with positive (At?)

(Ca>(c))2 > 4AWr. (294)

The greater this inequality the stronger the retardation, the

sooner the departure is brought to a halt. The mathematics of

equation (288) has found thus a foundation in the dynamical

process initiated when (C) leaves its vertical position.

133. In what precedes, the emphasis falls upon moment of

momentum in relation to force-moment. The thought is not

complete however until the work of the weight moment has

been connected with changes in kinetic energy. For the case in

hand we find by using the principal axes,

[(5¥y+(5f^'°''y]+^c"'<"; (295)

and the last term being constant, the variations or interchanges

consequent upon work done are confined to the two other terms.

Now referring to equations (285) examination soon convinces us

that the initiative, so to speak, centers in the quantity that is in

the fine of the resultant force-moment. So long as (dt?/dt) is

zero, no change can occur in (co(b')); but the vanishing of

(w(b'), co(c)) separately or simultaneously might not prevent

changes in (dt?/dt). It is characteristic of the stability here in

question that the action depends vitally upon the actual oc-

currence of a displacement; and this accounts for the known

feature of gyroscopic mechanisms, that their efficiency is nullified

by removing the degree of freedom upon which their functioning

depends.

E = U
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For the power as the derivative of the kinetic energy,we can write

P = -4 (Sf ) 5F + ""'' S ("<'')
] = M(.-.

5F • (296)

Let the conditions be such that positive work is done, negative

moment being accompanied by negative displacement. Then

the first term in the second member will be negative for opposite

signs of its factors. And we see diverted from their appearance

in the coordinate (i?) the magnitude changes in both (H) and (E)

that (M) would make visible there, were there no gyroscopic

interactions.

The general agreement of the equation (288) and the inequality

(294) in their formulation of a critical value is obvious; and it

ought not to be longer obscure why the same truth is at the

foundation of each criterion. The essence of the adjustment to

regular precession is the insufficiency of the available weight

moment at a certain value of (t?) and other quantities to do more

than supply exactly what is needed for the corresponding direc-

tional change in (H). The reversal in sense of the inequality

that we arrived at, declares in effect an unavoidable preponder-

ance of weight moment consistently with the other given values,

and its sufficiency to quicken the motion in {&) that is supposed

to exist already. It is an easUy deduced consequence therefore

as regards the axis (C) that it will continue its departure from

the upward vertical until conditions alter. The imaginary

range of equation (278) is one signal that the combination of

the accompanying spin about (Z) with the actual horizontal

component of (H) is within that region unequal to monopolizing

the full force-moment active. The quantitative elaboration of

these leading ideas produces the accepted results in every detail.

Generalized Momenta and Forces.

134. At the date of their original announcement, Lagrange's

coordinates and the equations of motion that employed them
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were contrived in the service of what would now be called

mechanics proper, for the imperious reason that the longer list

of energy transformations which dynamics distinctively em-

braces had not yet been discovered and drawn into the funda-

mental quantitative connections. The terms coordinate, con-

figuration, velocity and momentum were enlarged by Lagrange

from usage as he found it no doubt, but his broader scheme did

not break the alliance with geometrical ideas for its kinematics.

His parameters were ultimately based on combinations of

lengths and position angles, though kept unspecialized by sup-

pressing or deferring the analysis of them into the plainer geo-

metrical elements. The energy too was introduced primarily in

its kinetic form, that and momentum deriving their dynamical

quality from those inertia factors that are in their nature either

directly given as mass, or else as literal as moments of inertia

that emerge from a mass-summation.^

Lagrange's equations will be found akin to Euler's in two

respects: first they are normally intended for treating as a unit

some body or system of bodies; and secondly, they are after a

fashion of their own indifferent toward a substitution of one

system for another, provided that determinate equivalencies are

observed, as we have seen Euler's equations to be under invari-

ance of (A, B, C) in magnitude. This likeness extends far

enough to coordinate the two plans and to make the latter when

duly stated a special result of Lagrange's broader handling.

The demonstration offered by Lagrange himself is founded on

d'Alembert's principle; and this interconnection of the two

phases of the same idea, and of each with Hamilton's different

formulation of it, lends to the establishment of the equations of

motion an air of logical redundancy. This was the subject of a

passing remark in our Introduction; and it might be recalled too

that the noticeable swing away from the first vogue of d'Alem-

» See Note 30.
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bert's statement centers upon a recent discovery of more compre-

hensive adaptability in the alternative forms devised by Lagrange

and by Hamilton to a range of energy transformations that was

unsuspected when either of the latter was first accepted. By
the light of what is developing further in that quarter the esti-

mate of their fruitfulness will continue to be decided.

Because these are the origins it seems advisable to let the

treatment here conform to them, instead of making a short path

to the newest reading. There is ground to expect that the fuller

reahzation of meaning in the extension of method and of its

valid possibilities will have its best source in a reasoned apprecia-

tion of where the latent power resided and how it was implanted.

We hold one reliable clew already, wherever it proves true that a

mechanism, construing the word not too remotely from direct

perceptions, can be seen to give in its fluxes of energy and momen-

tum a quantitative equivalent for those fluxes under less restricted

conditions of transformation.

135. On working outwards to occupy a broader field, and

passing at points the hmits earlier drawn, some elements of new

definition or specification are involved, which the circumstances

lead toward supplying in part positively, in part by noting the

barriers that remain. And we shall relinquish the attempt to

finish each topic in a systematic progressive order, wherever it

promises better success to proceed less rigidly; coming back to

add a stroke and explain or define what was at first only sketched.

When it is said that any set of coordinates must determine a

configuration completely, the plain idea is that they do for a

system what we expect of the standard frame (0, XYZ), the

coordinates being enumerated for as many joints or articulations

as removal of ambiguity makes necessary. If the coordinate

set is thus equivalent to (xyz), the same idea may be conveyed

by declaring each general coordinate to be a definite function of

the set (xyz). In normal usage we do not abandon the relation
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upheld for other coordinate systems, that the values expressed

with their aid are standard frame values of the quantities dealt

with, but we seek that aid through any convenient functions of

(xyz) and not merely through lines and angles. Such pre-

liminary conception of a coordinate denoted by (k) prepares the

way for a definition of the corresponding velocity as (k), meaning

the total time-derivative of the magnitude of (k), the question

about vector quality being left open, an equal number of veloci-

ties and of coordinates being matched each to each.

Passing next to momentum we are again confronted with a

definition that pairs each velocity with its own momentum
quantity. Let (q) denote one of these momenta belonging to

the velocity (k); then the defining equation is written, if (E)

is still the total kinetic energy of the system to be studied,

dE
q^^. (297)

And another fixed point in the scheme now being presented is

that (E) shall be a homogeneous quadratic function of all the

velocities (k). To this specification other things must be made

to bend should that become necessary, which is a matter for due

inquiry. But meanwhile one evident consequence of it can be

read from the last equation, regarding the constitution of the

momenta (q) ; they cannot be other than linear functions of the

velocities (k) and homogeneous. Refer however to the closing

remark of section 141.

136. Putting together what has been said, one feature in the

relation of coordinates to configuration is caused to stand in

relief: they must determine it in a form free from all reference

to velocities in order that (E) may take on the assigned type.

Let us add as being naturally required, that the members of a

coordinate set must be mutually independent, and proceed to

speak of their connection with the so-called degrees of freedom
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that a system of bodies possesses. Consideration of simplest

instances, like that of a ball carried on the last in a numerous

set of rods jointed together, shows that a large number of speci-

fying elements or coordinates may be actually employed in

designating configuration, even in one plane. But we know also

that two rectangular or two polar coordinates only are required

in this case; and the prevaihng distinction seems to follow the

line thus indicated, making degrees of freedom equal in number

to the minimum group of coordinates requisite in describing a

configuration, classing the excess in the number really used as

superfluous coordinates. This disposes of the matter well enough,

leaving for special examination only such interlocking of two

coordinates into related changes as happens when a ball rolls

(without sliding) on a table; and that finer point need not detain

us. In these terms, a rigid solid has available not more than

six degrees of freedom, three of which might call for coordinates

locating its center of mass, with the remaining three covered

by the Euler angles, for example. And we may borrow from

regular procedure in that case, as known through repeated

discussion, that an equation of motion is associated with each

degree of freedom. That normal arrangement continues with

evident good reason, though our treatment is shaped according

to Lagrange's proposals, which do not change the objective in

essence, but only the mode of reaching it.

137. To complete the plan, therefore, into which accelerations

do not enter directly, there is need to specify its forces; here the

determining thought has its root in the energy relations, running

in the course that we shall next lay out, whose first stage has no

novelty, but merely holds to the equivalence in work established

for any resultant force. The right to substitute one force (R)

for all the distributed effective force elements depends upon its

equality with them in respect to total work and impulse. The

same thought, in other words, declares equal capacity for setting

13
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up the total flux of kinetic energy and momentum in relation to

the system of bodies, the separation of force and couple moment
or of translation and rotation being a detail and without final in-

fluence. It is inherent, moreover, in the determination of any

such resultant through vector sums or through algebraic sums

that a set of components may be variously assigned to the same

resultant. The ground that Lagrange traversed led him to a

variation only on previous forms in expressing this essential

energetic equivalence of the resultant force. The fact indeed

that he set out from the equilibrium principle of virtual work due

to d'Alembert should obviate any surprise on meeting the

defining equation for his generalized forces.

With each degree of freedom which makes flux of kinetic

energy possible, associate its force (F); sum the work during

elements of displacement in all the coordinates (k) and express

its necessary equality to the same work given in terms of the

usual forces parallel to (X, Y, Z). The equation is

S(FdK) = 2/„(dR-ds)

= S/„,[dR(,)dx + dR(y)dy + dR(.)dz], (298)

which yields by a transformation that embodies through the

partial derivative notation the supposition of independence that

goes with the coordinates, for each force an expression

F = 2A [dRw ^ + dR(y) ^ + dR(.) ^ J
. (299)

Holding to this statement any force (F) can be defined in magni-

tude by the work per unit of displacement in its coordinate;

and the narrowing assumption does not appear that (F) and (k)

are colinear, provided a convention can be observed that gives

the work its real sign as determined by gain or loss to the system's

kinetic energy. It is this relation which Lagrange's equations

enlarge by including the other energies of dynamics.
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We continue by introducing necessarily equivalent expressions

for a change in configuration,

dx = 2(|dK); dy = z(|dK);

dz=2(|dK);
(300)

in which the summation extends to all the coordinates (k).

Then in the fluxion notation

= KiO' ^ = Ki")' '-^10' (301)

from which follow for each coordinate singly the important

equaHties

dx dx dy dy dz dz

dk dK ' dk dK ' dk Ok
' (302)

Taking the term from the first integral of equation (299), it can

be given the form, by using the last results

,^ dx d / ,^ dx\ ,^ d /dx\
dR«

ii = S (<*Q« ai) - -^Q"'
dt (ii j '

(^»3^>

and similarly from the remaining integrals,

^^^-> ^ = ft (^^(^> i) - ^^^^^ ft (i)

'

dR(z) — =^ - A.
dK ~ dt

/ ,^ di'\ ,^ d ( dz\
(303b)

To recast the last factors in these three equations we write

6_

dt

( d \ dx d [ d \ dy

dt\dK^^^ J~ dK'

(304)
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whose justification is somewhat a matter of mathematical con-

science. The order of the two differentiations may boldly be

inverted as a legitimate operation; or whatever hazard may be

felt in that can be guarded against by rigorous proofs that are

accessible. Incorporating the last forms and summing equations

(303), the force finds expression as

F =
-/"[s(^«^'^))-a^(^^)]

d fdE\ dE
, ,

in application to each one of the coordinates, and the whole

development is then open to further comment or illustration.

138. This exposition of Lagrange's equations, and of the con-

cepts upon which their statement rests, has been kept apart

purposely from the infusion of vectorial ideas, in order to set

forth as clearly as may be done that possibility upon which

their larger usefulness in great measure depends, and of which

insistent mention was made in the first chapter. Some care

seems needed to break up the misleading connotations of words

like velocity and momentum, that in their first and perhaps

most literal sense imply each an orienting vector. And the

emancipation of thought in this regard has been hindered doubt-

less by the unsuggestive practice of pointing out as examples of

this method of attack solely those where velocities and momenta

and forces offer themselves habitually as vectors—like those

which our material has been including hitherto. If the trend

of any demonstration equivalent to the foregoing be watched,

however, it is seen to hinge essentially upon an enumeration of a

sum of terms in the total energy of all forms that are considered,

and analyzing them as products that conform to a type. This

contains always as a factor the time rate of one in a group of

quantities by whose means the changes in that energy content are
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adequately determined. The success of the analysis therefore

depends, broadly speaking, upon the isolation of suitable factors

in the physics of the energy forms to specify the energy configur-

ation and to provide the necessary velocities. And in that direc-

tion it is interesting to note the part really played by the (XYZ)
velocities and momenta as they lead to the vital connections in

equation (305) . They are scarcely more than a scaffolding, an aid

in building but removed from the structure built, impressing

effectively only one character upon the result—that its scheme of

values shall be quantitatively a possible set in that mechanical

phantom or model which is mirrored in the case treated. On their

face, Lagrange's equations might seem to stand in parallel with

tangential ordinary forces only, since the latter are alone con-

cerned in work. But we shall show that this limitation does not

in fact exist, and that the pattern set by the (XYZ) axes when

they include for their projections constraints as well, is stamped

upon these other combinations, which may be caused also to

reveal normal forces that may be active (see section 141). As a

counterpart to this relation it is to be observed how the (XYZ)

axes fit everywhere into a plan of algebraic products through their

three coexistent and practically scalar operations; and how for

the element of scalar mass equations (1, II) are always free

alternatives, whatever restrictions subsequent steps may impose,

as for instance equation (67) has recorded.

139. Having laid some preliminary emphasis upon the extent

to which they may exceed in scope other coordinate systems, it

will be advisable to carry the comparison with Lagrange's plans

into the region of overlapping, and make this last system prove

itself capable of bringing out correct consequences there too, when

orientation is reestablished. The cross relations have many
lessons that are of value; and some are yielded by a review of

the polar coordinates that we shall put first. Borrowing from

section 106 the expression for kinetic energy of a particle, and

using fluxion notation for brevity.



188 Fundamental Equations of Dynamics

E = |m[r2 + r2t?2 + r^ sin2 ^(^)2]. (306)

The Lagrange coordinates must be independent and sufficient

to give configuration in (XYZ) ; and (r, ^, i|r) meet this require-

ment. But the velocities must correspondingly be (r, i^, \p).

The details work out into the forms, {d'E/dtp) being zero,

dE
dr

dE dE . .

= mr: —v- = mrt?: tt = nir^ sm^ ^\}/:

d /aE\
.

d /dE\
dtUJ = -^' dt(^)=-(2^^^ + ^^^)'

d /aE\
-j7 I T^ ) = m(2r sm2 i}4^r + 2r2 sin i} cos H&

+ r^sin^t?^^);

dE
dr

= m(rt?2-|-rsin2i?(^))2;
dE

= m(r2 sin t? cos i>(^))2.

(307)

A general agreement is at once manifest when these terms are

grouped and compared with equations (208) ; but it is a striking

difference that the forces (F(^)) and (F(^)), associated with

those two coordinates, must now be recognized as moments of

the forces denoted previously by (R(x')) and (R(y')), for rotation-

axes characterized plainly through the respective lever arms.

This is a necessary concomitant of making velocities out of

(t?, rp). The regrouping of terms also is instructive in betraying

that loss of distinction for the orientation changes here as well

which algebra usually evinces.

140. For a second example, let us make in the Lagrange form

a restatement of section 89, utilizing equations (154) as a starting-

point, and adapting them to a particle, as the desirably simple

case. If (x', y', z') are selected as three coordinates, the con-

figuration in (XYZ) is not determinate by them alone, but in

the plan followed the position angles for the axes (X'Y'Z') must

be known also; and of these as many as are independent can be
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added to make the required list of coordinates, of which all but

three will then be superfluous in a sense already explained, and

not to be reckoned among the degrees of freedom. The purpose

of illustration can be attained sufficiently if we consider the

uniplanar conditions, both for the particle which is then supposed

to be restricted to the (XY) plane, and for the relative con-

figuration of (X'Y'Z'), where we assume (Z) and (Z') permanently

coincident. Hence for the kinetic energy of (m) the expression

is in understandable terms

E = |(x2 + y2)m = im[x'2 + y'^ + (x'^ + y")y'

- 2xy7 + 2x'y'i], (308)

the coordinates being now (x', y', 7) and the velocities (x', y', 7)

;

the last velocity is an algebraic derivative, (Z) being the fixed

axis for (y). Again the details are, when this homogeneous

quadratic function of the velocities is differentiated.

^, = m(x -y7); -^, = m(y + X 7)

;

dE

dy

dE
dx'

dE

or

= m{y{x'' + y') -xy + x'y');

= mij^x' + 7y');

= m(7y - 7x');
dE

dy
0.

(309)

After forming the time-derivatives of the first three in the group

and substituting values, we obtain for the three forces of the

coordinates,

F(.') = m(k' - 7y' - 2iy' - 7V);

F(y') = m(y' + 7x' + 27i' - 7y); ^ (310)

(v)
= x'F(,') - y'F (x)'
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The third coordinate advertises that it is superfluous, in that its

force value, whose form is readily verifiable as a moment, only

confirms what is otherwise ascertained about the remaining

forces.

141. In their adaptation to the present class of cases, some

truths can be picked out that furnish clews for the lines of more

extended use. First, referring to equations (155) and collating

them with equations (302, 304), the latter are seen to be far-

reaching analogues of changes that build upon the line of the

quantity at the epoch, and of those others that depend upon a

change of slope; they are correlated respectively with changing

tensor and orientation of a vector. While a partial derivative

like (dx/dK) may appear as a direction cosine within the purely

geometrical conditions, it is a more inclusive reduction factor else-

where. It is also open to observation in the last two illustrations

that the generalized momenta become for those applications the

orthogonal projections upon a distinguishable line, either of the

momentum or of the moment of momentum in the standard

frame. Differences of distribution for the same total projection

between various pairs of groups is no more than part of the

mathematical machinery, and it is especially to be expected

where sets of partial derivatives occur whose variables have been

changed. Note that

51' ^' (^">

presuppose: the first, that all coordinates are held stationary*

and all velocities but that one; and the second, that only the

one coordinate is allowed to change, and none of the velocities.

Comparisons with other sets of partials in our developments

should prove helpful, as it will be to find answer for the question

whether the Lagrange plan, when it deals with forces like (R),

affiliates more closely with the mode of equation (112) or with

that of equation (233).
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Related to the second example here and to the ideas about

superfluous coordinates, is another point of view that has like-

ness with the method of section 82. The standard frame coordi-

nates, as expressed in equations (150), can be discriminatingly-

dependent upon time, indirectly through (x', y', z') and directly

through the direction cosines. Their exact differentials will then

appear as

3x , , dx , , dx , , 3x , ,^ ^^

with two companions, the last term in each comprising the group

that arise by differentiating the direction cosines if we have re-

garded (xyz) as given in a functional form Uke

X = f(x', y', z', t), (313)

and the superfluous elements are spoken of and dealt with as

due to variations of the geometrical relations with time. The

distinction that such changes of direction are assigned and not

brought about by physical action is consistent with what has

been seen above—the absence of those additional force speci-

fication^ that would be introduced through them otherwise.

The exercise of preference in selecting the elements to be drawn

off thus into their own time function, however, need not be always

the plainest of matters. And where an accompanying verbal

usage is accepted that denies the title coordinate to position

variables not ranked among degrees of freedom, the kinetic

energy ceases to be a homogeneous quadratic function of the

(remaining) legalized velocities. Of course these comments

hold good for extension to the generalized energy configuration.

142. Retaining the energy value and imposing upon equations

(310) the conditions that (7) and the origin shall be so regulated as

to keep (V(y')) at zero permanently, they conform to the tangent

and normal resolution of force for those uniplanar restrictions;

and in space curves there is the same correspondence between
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the general case and the one duly specialized. The test of the

latter form being of some length and of no difficulty, and because

it shows finally only an equivalent for section 115, we pass it

with mention merely and proceed to examine Euler's equations

for instructive connections with those of Lagrange.

We can quote two equally valid expressions for rotational

energy of a rigid solid for which (A = B), when mounted as in

section 127:

= h(^ + (^ sin t?)2)A + K^ + 'A cos i}yC. (314)

In the former, no total time-derivatives can be detected of quan-

tities determining configuration, but only those projections of a

given (w) appear which presuppose knowledge of the configura-

tion, and which could be rated partial derivatives of (y) accord-

ing to the explanation of equation (185) as related to section 79.

This fact has been noticed in several connections since the subject

of position angles was opened (see sections 93 and 98), and it

explains why the direct expression by means of the Euler angles

is not entirely superseded by using (<.>(»), "(b), w(c)). The co-

ordinates are then (t|r, ^, ^), the velocities (^, t?, ^) in the

fluxion notation, and we foresee that our previous force-moments

will now figure as forces. It is plain that

- = _ = 0; F<„ = F<„ = 0; (315)

the latter pair of values expressing the controlling constancies of

the moment of momentum in this problem, or of the momenta

(q(^), q(^)) in the present terminology. These values when

worked out, and those that complete the expression

= -Ji (q(^)) - IT , (316)w
dt'^^'^'^^ d&

are all in recognizable identity with what was obtained elsewhere.
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143. The action of the gj'^roscope has been seen capable of

diverting energy from one coordinate to another as a perhaps

secondary consequence of maintaining change of direction in a

moment of momentum that is of constant magnitude. And it is

easy to multiply instances, wherever the inertia factors (moments

and products of inertia) can be variable, that a change in value

for kinetic energy is demanded under constancy of the other

quantity, this being entailed if the rotation factor alters. Thus a

synometrically shrinking homogeneous sphere has constant (H)

under the influence of gravitational self-attractive forces between

its parts, but the rotational energy grows as an expression of

work done in the shortening lines of stress. In symbols, for

rotation about a diameter,

H = o>I(„) ; E = ico^Ic^) = i
(j^

)' I(o) = ^--
, (317)

21 (D)

with the denominator growing continually smaller. What is here

illustrated is more widely possible to happen among the analogous

factors of energy, where its different forms are interconnected in

the same system, so that the energy may be transferred and

redistributed among the Lagrange coordinates though some of the

corresponding momenta remain unaltered. Neither is it remote

from the mental attitude already alluded to, in approaching the

study of a physical system through certain external and accessible

bearings of it while a margin is left for less definite inference, to

base tentative conclusions about concealed constant momenta

upon observable indirect effects on energy. It is some prepara-

tion for those fields of usefulness to follow out the relations in the

next sequence of ideas, which may be carried through first for

directed momenta and finally be restated more broadly.

We shall suppose a system with four generalized coordinates,

three (^, r?, <p) what we have termed accessible, and details about

the fourth (r) to be subjects for inference, as we may say. The
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latter has then naturally no force assigned to it for direct con-

nection with changes of energy, and is adapted to the thought

expressed above, by having its momentum assumed a constant

magnitude. Accordingly these conditions are written

^M — Oj QCt) = constant. (318)

Add the supposition as conforming reasonably to the limitations

upon knowledge, that no known relations contain (r) itself.

Then since

d . . dE
(t) = dt(''<">-ir'

(^i«)

each term in the second member vanishes separately or is a blank.

144. The momentum (qcr)) being actually present can modify

the phenomena; that is the effects of other forces and the energy

reactions. It is to be asked : How will the statements be recast,

if we detect (q(T)) as though distributed in parts added to the other

momenta, to which the phenomena are being exclusively ascribed?

This moves in the direction of suspending direct inquiry into (t),

so the method is frequently described as allowing ignoration of

coordinates.^ Expressing this resolution of (q(T)) with the aid of

the direction cosines (1, m, n), and adding its components to the

other momenta as indicated, the total orthogonal projections on

the lines will indicate

aE ,
,

dE ,

jT = q (*) + iq(r); ^ = q (-» + ^^m;
^

SE (^20)

^ = q'(4.) + m^r)'

The coordinates {\[/, r?, </>) need not be themselves orthogonal, but

the parts (q') and (qcr)) are.

The adjudged energy (E) would then have to satisfy the general

relation growing by implication out of the real scalar product for

rotation

»SeeNote31.
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E = Kto-H), (321)

the possible non-linearity of any velocity (k) and its momentum
(q) being here also recognized; this yields the form

E = UHq'w + lq(r)) + Hq'w + mq(,))

+ ^(q'(^) + nqco)]. (322)

Introducing (Q) in this connection to denote the constant magni-

tude (q(T)), the forces derivable from the supposed energy will

appear as containing the terms

d /aE\ ^ d /^(o)\ ^dl

ityd^p J dt V 04^' J
"^ ^dt'

/clE\ _ d /aE(o)\ dm

/aE\_ d /aE(o)\

dt

d_

dt

d_

dt

dt
'

dn

dt
•

(323)

The quantity of energy (E(o)) represents what would be present

if (Q) were non-existent, and the last terms in the equations

register the modification due to the introduction of (Q) on the

supposed basis, namely through its resolved parts that maintain

the directions of the momenta (q(j,), q(,>), q(*))- Their indi-

cated connection with changes of direction relative to (^, t?, <p)

momenta should not pass unnoticed. To conform with the above

values, the energy (E') allowed for in excess of (E(o)) must be

E' = ^(IQ) + ^(mQ) + ^(nQ); (324)

and in order to fill out consistently the scheme begun with equa-

tions (323) we must continue in the expressions of force with

dE 3E(o) ^E dtj

aE
dtp

dxl^

dE(o) dE

dd
"*"

a^

aE(o) aE
dtp . dtp

(325)
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dE' ^ / . al . dm dn \

dE

dE

dyp

dm

d^J '

E' ^f , d\ .dm dn\

(p \ ocp dtp otp J

(326)

Hence the aggregate departures from the forces that would be

indicated by (E(o)) alone can be seen in

dE
dt\dip ) d^p

d_/aE(o)

dt\ d^|y'

\_dE,
J drP

d_/aE\ _ dE d /aE(o)\ _ dE(o)

dt V 5?? y a??
~ dt V d^ )

~
dt?

. ai .am
^a^ + ^a^+^^^%)]'

+ Q Ldt "V
. . ai .am

^^)]'

d_/aE\ _aE _ d / aE(o) \ _ a.E(o)

/ d(p dt \ a^ / d(pdt \d<p d(p dt \ a

^ r dn / . ai am an \ 1

(327)

145. But the energy really introduced by the momentum (Q),

like the other portion E(o) of the energy is expressible by a

homogeneous quadratic function of the velocities which it is

permissible at any one epoch to put into the form

E(Q) = iK(; + 1.A + m#+ n^)2, (328)

(K) being a function of coordinates only, and the value being in
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other respects fixed by necessary relations for partial derivatives

of E(Q). Thus

aE(Q)

dr
= K(t -\- U + m4 + n<p) = Q [by definition];

aE(Q) aE(Q) aE(Q)

[by equations (320)].

(329)

Further we have, since (E(q)) involves coordinates through both

factors,

?|ai = ig(, + ,^ + ,, + „,).

, f . dl dm dn\
+ K(r + l^ + mt? + n^)(^^- + ^^+^^j; (330)

and the second part is recognizable through equations (327,

329). In order to adapt the remaining part to the present

connection, first put equation (328) into the legitimate form

next shown, and then express its partial derivative for a coordi-

nate, subject to our condition that (Q) is a constant magnitude.

The results are

E(Q) -
2 K

aE(Q) iQ^aK laK
(331)

(; + 1^ + m,? + n^),2

and the last member is identified as the negative of the corre-

sponding quantity in equation (330) . Its appearance in the final

forms is intimately related to a diversion of energy that persists,

though the action of (Q) is veiled otherwise. Utihzing all these

detailed relations justifies the equality, where the notation for

the last term in the first member indicates the condition observed,

and for (dl/dt) we have inserted the value
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dl d\ . d\ . d\

d /aE(o)\ aE(o) qP/^I

^"^
^ (332a)

— T7(E(o) + E(Q)) - F(j,).

To which the companions added after cycHc interchanges are

"^
\d<p a?? / ^ J

"^
L 5^ Jq dt\d4 J

— ^ (E{o) + E(Q)) — F(^);

^/aE(o^\
dt \ d(p J

dE (0)

d(p
+ Q

+
Vdt? 5^ / J L ^<^ Jq dt\d<p /

dE

— ^ (E(o) + E(Q)) = F(^).

(332b)

146. It is plain from these forms how the actual values of the

last members but one for the energy changes in the system may
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be preserved and an account of them be given under various

other interpretations that are in a sense fictitious. Or they are

put in a fashion that uses knowledge up to its borders, with safe

non-committal beyond them. What is here exemplified for one

coordinate ignored, can be extended of course to many by a

similar procedure. And when acceptance of reduction factors

has widened the range outside that covered by the geometrical

direction cosines, intricacies of energy connections are made

resolvable in many general ways.

It may happen that some contributions to the total group of

forces acting on a system are comprised under a potential energy

function; and it is in the nature of those relations that such

forces are independent of velocities. If therefore there is any

gain in doing so, the active forces may be held asunder in two

groups, one containing all the forces derivable from any potential

energy functions ($). Then in any coordinate (k) the new model

of Lagrange's equations is only formally varied when it is written

^''- = fM^^-^^)-h^^-*^' (333)

since ($) is inoperative in the first term, and in the second it

only transposes one group of the forces. But this type offers

the significant feature that a course of events to which the first

member can be the key, is exhibited as depending upon the

momentary outstanding difference between two quantities

measurable as energy. And with the door opened as usual to

seemingly vital analogies among energj^ forms, much is being

done in these days to increase the command of dynamical state-

ment for the most inclusive rules or principles deciphered among

physical sequences of transformed energy. It did not seem, there-

fore, that the objects of the chapter on the side of stimulating

suggestion would be attained unless we were brought to this gate-

way into a larger field. But then too we must be content with

14



200 Fundamental Equations of Dynamics

that much of accomphshment, leaving the other forms of La-

grange's equations, beside this second one as they are usually

counted, to the systematic continuations of which there is no lack.

The exploitation of the concept called kinetic potential, whose

roots can be traced in the difference (E — <^), and its alternative

origin as a deduction from Hamilton's principle of stationary

action, are the groundwork of much modern dynamical thought.^

1 See Note 32.
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Note 1 (page 2). To be aware of are an initial trend through

the drift impressed by the nature of the material, as well as an

active later movement with its propaganda. Regarding the

first of these headings it is discussible whether the opinion alluded

to in section 3 is fully representative of Newton's own stand-

point, or whether that tendency to one-sided development was

due to adherents whose acceptance of ideas was narrower than

the scheme of his proposal. So much can be done by way of

expanding or contracting the thought lying behind a condensed

formulation in Latin that we tread on insecure ground in at-

tempting a decision. Safest it seems to allow in Newton's

plan at least potential provision inclusive of all that two succeed-

ing centuries could reasonably urge on this score. Adding per-

haps, what expert judges would have us not overlook, that a

comprehensive power-equation is laid down in the scholium to

the third law. Read in English thus: "If the Activity of an

agent be measured by its amount and its velocity conjointly;

and if, similarly, the Counter-activity of the resistance be meas-

ured by the velocities of its several parts and their several

amounts conjointly, whether these arise from friction, cohesion,

weight or acceleration;—Activity and Counter-activity, in all

combinations of machines, will be equal and opposite" (Thomson

and Tait, Natural Philosophy (1879), Part I, page 247). The

genius of Heaviside for directest dynamical thinking approves

this scholium as capable of covering the fluxes and transforma-

tions of energy that more recent dynamics introduces (Electro-

magnetic Theory, III, pages 178-80).

In the movement toward basing the derivation of other con-

cepts upon energy, Tait put forward an early denial of primary

201
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quality to force in a lecture before the British Association (1876).

The habits of thought in these respects, however, are interwoven

with a widespread campaign extending over the main issues of

epistemology (Erkenntnistheorie) that enlivened the period 1895-

1905, some of whose other aspects are touched upon subsequently

(see notes 4 and 5). The party there whose watchword was

"Phenomenology" made common cause with energetics as a

properly neutral mode of statement, in opposition to theoretical

physics—or more justly to overweight in speculation. These

matters of broad sweep are only to be hinted here; they are fully

in evidence throughout the journals of that date. Yet we may
admit mention of two books, one showing how energetics

counterpoises and supplements other aspects of dynamics, and

the second exhibiting by contrast exaggerations into which

zealous advocates were led. The titles are : Helm, die Energetik

(1898); Ostwald, die Naturphilosophie (1902).

Note 2 (page 4). The spirit of this paragraph finds confirma-

tion in recent judicial utterances, as regards both appreciation

of the new movement and prudent reserve in passing judgment.

Consult Silberstein, The Theory of Relativity, for a lucid account

of the Lorentz-Einstein method that estimates its gains with

candor and acumen. The workable value in the opened vein

of possibihties will be extracted progressively, as its logic is

brought to bear upon questions involving previous sequences

and their origins. Poincar^ expresses this plainly in his summing

up: "Aujourd'hui certains physiciens veulent adopter une con-

vention nouvelle ... plus commode, voil^ tout. . . . Ceux qui

ne sont pas de cet avis peuvent l^gitimement conserver I'an-

cienne. . . . Je crois, entre nous, que c'est ce qu'ils feront encore

longtemps" (Dernieres Pensees, page 54). Clarification and

settlement here seem delayed by an observable tendency to

expound the central ideas of relativity in an entanglement with

much irrelevant mathematics that is describable also as tran-
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scendental. This blurs essentials and will obstruct the final

rating of the novel features among the resources of physics.

It is foreign to such alhance, and hence perhaps one influence

toward dissolving it, that the modified handUng of simultaneous-

ness traces its Uneage so directly to experimental evidence, and

the effort to state its results with unforced symmetry. Yet on

that side, too, there might arise need of corrective, if perchance

the conclusion were entertained seriously, that any newly as-

sumed attitude releases us from that bondage to idealized

concepts and simpKfying approximations which sections 12 and

13 indicate. We should be compelled to reject every inference

that some system invented to replace Newtonian dynamics can

be other than differently conceptual and approximate. What
alternative concepts to employ will always remain as a choice

determined on practical grounds. It would be breaking with

the canons of sound scientific doctrine to displace one series of

working ideas by another whose improved adaptation to universal

service is at best to be classed among open questions. Though

symmetry in equations is desirable, it is not to be secured at all

costs. In order to turn the balance conclusively, insight must

first be attained that goes far enough in excluding illusion from

the corresponding dynamics. The characteristic formulas of

relativity draw their suggestion from groups of phenomena that

spread over limited area as compared with the explored range

of physics. Their analysis beyond the kinematical stage, more-

over, is too obscure and intricate as yet to afford mandatory

reasons, or even trustworthy guidance, for much reshaping of our

fundamental equations. See note 11 below, in continuance of

this thought.

Note 3 (page 6). The reference is to Maxwell's Treatise on

Electricity and Magnetism, II, Chapters V and VI of Part IV.

He records (1873) the stimulus received from the Natural

Philosophy by Thomson and Tait (1867), and from the revival



204 Fundamental Equations of Dynamics

of dynamical advance inspired by " that stiff but thoroughgoing

work" (Heaviside). It continues to offer an unexhausted mine

to a later generation. In its second edition (1879) the present

topic by added material and recasting points rather plainly

toward mutual reaction between Maxwell and its authors. It

is true that their expanded treatment does not explicitly occupy

his larger field, though their gyroscopic illustrations run easily,

as can be seen, into a generalized scheme of cyclic systems. In

that direction Ebert, with Chapters XX-XXII of his Magne-

tische Kraftfelder (1897), has made a junction by elaborating

into dilution the results of Hertz and Helmholtz. Others like

Gray prolong directly the line of Maxwell's initiative (Absolute

Measurements in Electricity and Magnetism, II, Part I, Chapter

IV (1893)).

It is not premature to remark, in anticipation of notes 30

and 31, and with bearing upon the current presentations of

Lagrange's equations, how guardedly the vectorial connections

of their original scope are relaxing. We may suppose that the

freedom to cut loose in this respect has been for a time masked

by the cartesian (XYZ) forms, whose effective reduction to

quasi-scalar expressions has had an influence elsewhere, as pointed

out in section 91, toward indifference about such distinctions

that fails to regard them as vital.

Note 4 (page 9). What is appropriate here in preparing for

intelligent command of stock resources must not go far beyond

claiming for these inquiries a continued relation to the organic

structure of dynamics of which their perennial life is one con-

vincing proof. Some study of their literature cannot be dis-

pensed with, from which differently shaded opinions will be

drawn, to be sure, that will yet unite in agreement on the final

importance of the answers. To recommend this as one region

for deliberate thinking is the purpose at this place, leaving

opinions to shape themselves individually. The concession how
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fully routine belonging to execution can go its way unhampered

by deeper questions should be permitted to repeat itself without

undermining finally the need incumbent upon us to discuss them.

Section 16 alludes to some temporary grounds for unconcern,

others are supplied by the sufficiency of a fixed earth's surface

for staging so many investigations of physics, and in various

directions a fortunate postponement is tolerated. But testimony

is broadcast how steadfastly some settlement is nevertheless

held in view, for the experimental bearings of it even, when freed

from all metaphysical residue. For exemplifying reference take

Larmor's comment (Aether and Matter, page 273) and Helm's

pertinent remark (Energetik, page 216).

There were several leaders in the public sifting of these theories.

Prominent among them Mach, who has gone on record in his

Science of Mechanics, Chapter II, and elsewhere.* The possi-

bility of the so-called Newtonian transformation having been

put on a secure basis, that headed unconstrainedly toward using

an origin at the center of mass of the solar system and directions

determined by the stars for a natural reference-frame. Espe-

cially for what are rightfully classed as internal energies of the

system this would be capable of high precision in presenting

through accelerations relative to it, for the bodies with which

we deal, the physical forces active among them or upon them

(see section 52, and note 17). It is a live question of the passing

time whether that habit of mind had better be upset, or can be

superseded with definite net gain.

Note 5 (page 17). The assertion is hardly contestable, that

quantitative physics deals with an idealized and simplified

skeleton built of concepts, so soon as its content exceeds the

rules that are empirical by intention and form. The supports

found for outstanding argument are then two: first, uncom-

* This is the briefer title of the English translation, the original title being

"Die Mechanik in ihrer Entwickelung historisch-kritisch dargestellt."
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promising denial that the goal can be aught else than empirical

rules, ingenuity being restricted to embodying best in them the

ascertained data; or secondly, in questioning doubt how the

boundary-line runs among special cases. Troubles of the latter

origin involve no radical divergencies, since they are everywhere

inherent in such a separation of two classes, both being acknowl-

edged to exist. Positions like the first mentioned would be a

fetter upon growth through their exclusive blindness to patent

and historic facts, were not a saving clause inserted in extremist

tenets by human readiness to lapse into inconsistency for good

cause. To illustrate how the main contention spoken of would

cramp effort, we find place for a quotation, which however is

content to set two standards in opposition: "Die Fourier'sche

Theorie der Warmeleitung kann als eine Mustertheorie bezeichnet

werden. Dieselbe . . . griindet sich auf eine beobachtbare

Tatsache nach welcher die Ausgleichungsgeschwindigkeiten

[kleiner] Temperaturdifferenzen diesen Differenzen selbst pro-

portional sind. Eine solche Tatsache kann zwar durch feinere

Beobachtungen genauer festgestellt werden, sie kann aber mit

andern Tatsachen nicht in Widerspruch treten. , . . Wahrend

eine Hypothese wie jene der kinetischen Gastheorie . . . jeden

Augenblick des Widerspruchs gewartig sein muss" (Mach,

Prinzipien der Warme, page 115). We know that the goal here

implied for theory is only the starting-post for it in the doctrine

of another school of thinking; but must abstain from even

outlining the argument.

The important concern for dynamics here turns plainly upon

the question of aligning it in method with the rest of mathematical

physics, or of excepting it from partnership in a search for con-

fessedly empirical rules. In point of fact, this one undeniably

fruitful wielding of idealized conditions has been a bulwark of

defense for universal procedure. No interested student can

afford to neglect Poincar^'s pronounced judgment in this field,
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to be found especially under the four book-titles: La science et

riiypothese; La valeur de la Science; Science et M^thode;

Dernieres Pens^es. The first three are most compactly accessible

in one volume of English translation headed The Foundations of

Science (1913); the fourth not included in that collection is of

recent date (1913) and presents much that is of value. Far from

putting these matters aside as completed, latest developments

have renewed and intensified their Hvely discussion. As repre-

sentative in one direction we name the work of Robb : A Theory

of Time and Space (1914); and on another line a paper by N.

Campbell (1910), The Principles of Dynamics (Philosophical

Magazine, XIX, page 168). These will sufiiciently lay out a

track for further pursuit, in connection with notes 1, 4 and 6.

Note 6 (page 24). There is much more here than the kine-

matical colorlessness that precedes the introduction of dynamical

elements. Attention is being directed to that stage of inclusive

preparedness in the fundamental equations that is one permanent

attribute of "Analytic mechanics," in so far as its forms of

statement are made equally ready to contain various speciaUzed

data. Workers in the subject really avail themselves of this

privilege to delay in particularizing. Lorentz for example does

not attempt to settle in advance which reference-frames meet the

conditions attached to the primary relations for the electro-

magnetic field. He lays the decision aside temporarily with the

passing remark that the equations remain vahd so long as they

accord with the value (c = 3 X 10^° cm./sec.) for light-speed in

free space. So a top's local behavior relatively to the earth's

surface follows equations of motion in common with the gyro-

scopic compass up to a certain divergence-point, though the

former ignores the earth's rotation, and the latter may be said

to reveal it. In a group of parallel cases the differences center

upon replacing gravitation by weight; which illustrates how
essentially the standards of desirable or attainable precision

enter into adapting broader analytic expressions.
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Note 7 (page 26). A number of points touching the fuller in-

corporation of vectors into physical purposes must become more

definite presently, as the novelty of their use subsides. Con-

ventions that have been transferred from mathematical defini-

tions, or that have been added tacitly, will be opened to needed

revisions first by being made explicit. The text will be found to

adopt this feature of sound policy at several places, none of which

should be slurred. Care to delimit equivalences legitimately in

relation to physical conclusions is one leading idea as regards

substitutions that approves itself to be a needed refinement

upon the looser term equality. For accelerating the center of

mass of a system forces have the quality of free vectors, because

their position is without effect upon equivalence in this respect.

Yet when we discuss motion relative to the center of mass,

forces fall away from that equivalence, being then dependent

upon position for their effect, and consistently they cease to be

free vectors. Such instances compel us to qualify classifications

and permissible substitutions.

Similar deliberateness in borrowing from mathematics is en-

couraged in section 68, with its suggested distinction between

triangle and parallelogram as graphs of a vector sum; and in

section 74, where an element of parallel shift enters to round out

the variableness of a vector quantity.

The idea of vector-angle used in equation (2) has not yet

found its way into textbooks. Its introduction is an almost

self-evident detail of any systematic vector algebra, to supply

the missing member of the series in which angular velocity and

acceleration were long since recognized. How that proves help-

ful is elaborated in section 92 and its sequel. The simple step

of completing with natural orienting unit-vectors the established

ratio (ds/r) for magnitude of angle seems to be announced first

in the Physical Review (N. S.), I, page 56 (1913). In section

46 the text opens from this side a new meaning for the rotation-
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vector that fits usefully in several ways, though it is, of course,

nothing but that second interpretation possible for every vector

product which happens to have been overlooked here. We
must ascribe the oversight to a continuance of the earlier exclu-

sive habit of using only the projection of (r) that is perpendicular

to (w), and not the corresponding projection of the latter vector.

Notice how the rotation-vector can be given another role if we
rewrite equation (44) in the form

V = - (r X <o),

reading the second member as the negative moment of (w)

distributed locally at each (dm) . This has important connections

with the uses of vector potential, and the association of the curl

operator with the latter.

Note 8 (page 31). Later research has come to the aid of

mathematical demands or convenience on this side, bj' detecting

real transitions with however sharp gradient behind most first

'assumptions of discontinuous break. In proportion as facts of

that character gather they soften the impression of artifice in

making phenomena amenable to treatment by allowing for quick

gradations, and inchne modern physics away from recognizing

discontinuous change except upon compulsion. See Lorentz,

The Theory of Electrons (1909), page 11. This accounts prob-

ably for some psychology alongside the mathematical needs

mentioned in section 26, of which we might admit an admixture

in the satisfaction, when identity preserved or at least quantitj^

conserved is attributable anywhere without too strained devices.

Poincare's shrewd remark is to this effect: "Physicists can be

relied upon to find something else whose total remains invariant,

should energy leave them in the lurch." And is there not some

shade of disappointment in conceding our failure to trace indi-

vidual elements of energy by Poynting's theorem, as well as the

paths of flux? Compare Lorentz, The Theory of Electrons,
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page 25; Heaviside, Electromagnetic Theory, I, page 75

(1893).

Note 9 (page 33). To follow lines that are accommodated to

some directive idea of constancy gives in many ways a natural

order. About this we should acknowledge though, how inevi-

tably our assigning conceptually common or constant values takes

its suggestion from what are means or averages in their experi-

mental basis. Neither must the truth be forgotten with which

section 69 closes. The enlargement in appUcation through free

use of mass-averages, time-means, and the like can be instanced

for the immediate connection from sections 20, 21 and 31. But

it confronts us without any special search everywhere in physics,

when we remember that the point at which values are admitted

to be "local" is in practice solely a matter of scale; they are

finally representative of mean values to a certain order of

precision (compare section 42). Less familiar but perhaps just

as significant is that reading of the curl and the divergence locally

in a vector field which sees in them the specification of an arti-

ficial symmetry which rests upon mean values, and replaces

legitimately for certain ends the actual field-distribution. See

the Physical Review, XXXIV, page 359 (1912); Boussinesq,

Note sur le potentiel spherique, pages 319-329, in his Application

des Potentiels a Tetude de FEquilibre et du Mouvement des

Solides elastiques (1885).

Note 10 (page 36). Every such element that is force-moment

presents a local resultant, similar to those met in section 19

through being normal to the individual plane of its factors. As

vector products these local resultants are all open to the same

sort of double reading as is brought up for the rotation-vector

in note 7 and completed in note 16. The process of mass-

summation for a system then continues associated with the

resultant elements (dH) or (dM), combining each group as a

vector sum to a total resultant of determinate orientation and
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tensor. The fraction of this last resultant effective or available

in relation to any particular axis of unit-vector (ai) is ascertain-

able by one final projection, representable respectively bj''

H(a) = ai(H-ai); M(a) = ai(M-ai).

The departure from the cartesian scheme consists especially in

reserving projection for the closing operation, to be executed only

when the demand for it enters. There is the common inversion

of order between mass-summation and projection, on passing

over to vector algebra.

Note 11 (page 43). There is a considerable region opened to

plain sailing among developments hke those of sections 32-35,

whenever the observed material justifies our major premiss that

inertia occurs as a variable quantity. But whatever general

bearings may be obtained thus, we do not of necessitj^ touch

the source of the inferred variableness, and much less do we reach

a halting-place about it in default of supplementary evidence.

The emphasis of the text is focussed upon the truth of this remark

which is of wide application, the electronic case being included

among others. Consequently there is a warning implied to avoid

a pitfall: ascribing prematurely the appearing variableness to

one tj^pe of source among several of which experience has made

us aware, and thereby affecting the conclusions with fallacy.

The conscious fictions that cluster round the idea of effective

mass should make us wary of deceptive illusions there whose

enigma has not been resolved. The capacity of an unincluded

(or undetected) force to compel indirect recognition of itself

in the inertia-coefficient is well-known. And a long line of

suggestive connections with processes of continuously repeated

impact have their root in an old problem. This is the trans-

mission of elastic deformation through a bar struck at one- end

(see Clebsch, Theorie d'Elasticite des corps soUdes, translated

by. St. Venant, page 480a, Note finale du § 60). A po.ssible
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modification of that treatment for impact has been set forth

repeatedly, in the attempt to cover wider conditions of converting

and storing energy within a system, under some form of structm-e

or arrangement. Heaviside especially has achieved instructive

results under that heading. The cogency of the logic in trans-

ferring demonstrated consequences of this nature to electrons

hinges on the query in how far the convective energy of electro-

magnetic inertia is adequately analogous to the kinetic energy of

(ponderable) mass. At this date it would plainly beg the larger

question to assert unreservedly that both these forms of energy

are literally the same.

Note 12 (page 44). In the closing chapter of his Kritische

Geschichte der allgemeinen Prinzipien der Mechanik (1877)

Diihring urges the sound advice not to stop short of first-hand

contact with the notable contributions that mark epochs of

advance. The case of d'Alembert's discovery enforces the

wisdom of that counsel, because a tradition echoing an imperfect

apprehension of the principle has leaned toward perverting the

gist of it from the meaning that the leaders in dynamics state

clearly, whose essential thought sections 38-41 aim to restore.

Compare them with the analysis of the principle in Mach's

Science of Mechanics and in Helm's Energetik. One source of

confusion can be located in the transposition that yields the

forms of equation (38). This point is alluded to at the end of

section 41; and the idea is expanded with elementary detail in

Science, XXVIII, page 154. Some obstacles to ready under-

standing are due no doubt to a certain crabbed brevity of the

nascent formulation in d'Alembert's Traite de Dynamique

(1758), found in Chapter I of Part II. A German translation of

this classic is provided among Ostwald's Klassiker der exakten

Wissenschaften (Number 106).

Note 13 (page 51). The influence of the energetic view per-

vades the handling of energy flux and of the accompanying forces
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or stresses. The transfer-forces of the text appear for example

in Helm's exposition (Energetik, page 233 and passim). The
habit of thinking in these terms is cultivated by greater familiar-

ity with storage of energy in media, which has added the vigor

of a physically conceived process to the formal nature of potential

energy in the earliest instance of gravitation, where the mecha-

nism remains completely obscure (see section 3). It is growing

increasingly evident how the outcome of explorations among
energies intrinsic and external is capable of reduction in parallel

fashion, exhibiting the conditioned modes of revealing their

presence and the measured extent of their availability. The

lessons about cautious inference of which some scant mention

is made in the text are perhaps nowhere more impressive among
the inductions of physics, when once the safety of non-committal

attitude must be abandoned in active search for a determinate

process. We remember the remark that "An infinite number

of mechanical explanations are possible" (Poincare), especially

since we deal primarily with finite or statistical resultants;

and even plausible schemes are numerous enough to leave a

broad margin for indecision. See Lorentz, Theory of Electrons,

pages 30-32.

Poynting's original paper should not be left unread (Philo-

sophical Transactions (1884), Part II, page 343); nor touch be

lost with Heaviside's stimulating directness (e. g., Electromag-

netic Theory, I, pages 72-78). A sensible summary incorporat-

ing links with relativity is furnished by MattioH; Nuovo Cimento

(series 6), IX, pages 255, 263 (1915).

Note 14, page 53. Geometrical conditions are always a need-

ful auxiliary in expressing constraints for the reason named in

the text. The use of indeterminate multipliers would carry

unreduced geometrical forms into the equations of motion, giving

what might be called quasi-forces. Lagrange himself offers that

analysis of their significance in his Mecanique Analytique, I,
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pages 69-73 (Bertrand's edition (1853)). Later practice runs

more nearly in the line of separating these supplementary rela-

tions from the purely dynamical truths, and using the former

admittedly as mathematical aid in eUminations looking to ends

like integrations. Thomson and Tait held it part of their

service to have brought together the fully dynamical treatment

of constrained and of free systems (Natural Philosophy, Part I,

pages 271, 302).

Note 15 (page 54). The point now reached offers occasion to

add explicit reference to Routh's encyclopedic work in two

parts: Elementary Rigid Dynamics, Advanced Rigid Dynamics;

as a storehouse to which we shall long resort for authoritative

presentation of characteristic material in this field. The design

of our text has acknowledged as one main object to foster the

study of masters such as Kelvin, Routh and a few others in

dynamics. To this end we are building a less steep approach to

the level upon which their progress moves. It cannot be said

to stand in prospect that these writers will become antiquated;

but need will arise from time to time for seeing the older system-

atic grouping in an altered perspective, in order to renew connec-

tions or symmetry that temporary stress upon some lines of

growth may have disturbed.

Note 16 (page 57). Preparation has been made by anticipa-

tion in the connection of notes 7 and 10 to accept this meaning

and ojffice for the rotation-vector which are an enlargement upon

the usual current statement about it. That aspect is adapted to

set in higher relief its comprehensive and yet particular relation

to those individual radius-vectors upon which vector algebra

turns attention. There is some advantage gained, too, by

approaching the special rigid connection on the line that starts

with the complete freedom in equation (2), and sees the vector

(w) of common apphcation to all radius-vectors to be an out-

growth of that rigidity.
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Note 17 (page 64). It is important to keep track of successive

restrictions that enter to affect the range of conclusions. Here

we must not overlook that the added condition of rigidity

influences only a general reduction in form for certain parts of

(E, H, P, M) that are seen to occur already in equations (10, 12,

54, 55) as written for any non-rigid system of constant mass.

In brief, the notion of a constituent translation with the center

of mass applies to all such systems ; and so does the independent

treatment of that translation and of the motion relative to the

center of mass, as spoken of in section 52. That point is elab-

orated for elementary purposes in my Principles of Mechanics,

Part I, pages 91-101. Including now equations (19, 20) it is

made fully evident how no new situation is introduced when we

ascribe rigidity to the body, except in the entrance of rotation.

While absorbing the residual (E, H, P, M), this type of motion

also gives concise expression to their values, in every one of

which, it will be noticed, either (o) or (w) appears, marking the

relation of both to the body as a whole.

Note 18 (page 70). The frequent necessity of a dynamically

active couple for an adjusted control securing kinematical con-

stancy in the vector (w) is now an everyday lesson learned from

the directive couple of rotation about a fixed axis. The possible

divergence of (co) and (H) furnishes the simple key which cuts

off vector constancy of both together; with habitual demand

then prevailing for some (M) associated with every change in

(H). But there has been an astonishing record of tenacious

refusal to distinguish between such conditions of active control

and the conditions of equilibrium, here and in the companion

instance of radial control requisite for continuance of circular

motion. The surviving power of instinctive prepossessions has

perpetuated in unexpected quarters the ancient unclearness

lurking behind " centrifugal force and couple "
; and this threatens

to endure under the full illumination of the vector view. The

15
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root of many like confusions is traceable to a failure really to

grasp the facts in the first of equations (38) , with unfaltering dis-

crimination between impressed and effective forces. That equa-

tion does not describe an actual equilibrium; neither does the

result of any transposition which yields an equation like the

second form of (77). Yet compare the presentation by authori-

ties: Klein and Sommerfeld, Theorie des Kreisels (1897), pages

141, 166, 175, 182; though no criticism applies anywhere to their

mathematical correctness.

Note 19 (page 82). This labored insistence upon the dual

aspects of all coincidences is indeed designed to remove an

ambiguity in symbolism whose currency has grown out of im-

perfect attention to them. There is usually reward for watch-

fulness on those points. But the allowableness of such detail

in the text rests more upon its initiative for developing the idea

of shift in section 79. Notice, as we proceed, how often the

unit-vectors and the tensors of vector quantities offer themselves

naturally as independent variable elements, and afford a ground

for partial differentiations of a type peculiar to vector algebra.

Note 20 (page 88). Of course forces are "bound to super-

position" only by the same tie of definition or specification

that holds velocity and acceleration also, and that is broken

when we abandon the parallelogram graph. But it is remark-

able how regularly in physics that mutual independence among

energies (and among forces that change them) is experimentally

supported, of which superposition and linear relation are mathe-

matical expression. Still it is reasonable to grant that not all

definitions devised for physical quantity have escaped a bias

from this side which will need to be allowed for or rectified.

Yet the high price paid for relinquishing that simplest rule

warrants the change of base only on clearest showing of the

balance-sheet.

By referring to "physical status" the text means to encourage
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that scrutiny for terms of algebraic origin whose favorable and

unfavorable outcome in particular connections it cites in several

places. To be sure, candor and detachment are called for con-

tinually in reaching judgment through the arguments by con-

vergent plausibility upon which closing of the doubtful issues

here depends (see sections 6 and 7).

Note 21 (page 93). The superficial features of what is here

named shift are detectable generally in previous accounts of

coordinate systems; and Hayward is often credited with a com-

prehensive survey of the subject in a paper: On a direct method

of estimating velocities with respect to axes movable in space

(Cambridge Philosophical Transactions (1864), X, page 1*).

Anticipations of the controlling purpose in shift might be ex-

pected confidently, since its ramifications are now recognizable

through all that coordinate machinery of early devising without

which commonest operations of algebra would have been blocked.

But the circumstance seems exceptional that completed analysis

of its working has been postponed. The proposition presented

by equation (137) does not occur in the first editions of Routh,

and he never gives to it deserved prominence. Abraham's state-

ment of it is of course formally right, yet he describes our

(X'Y'Z') questionably as a "Rotierendes Bezugssystem " (The-

orie der Elektrizitat (1904),,!, page 34). The relations of

coincidence that make equation (124) important Routh disposes

of in one obscurely placed line: "As if the axes were fixed in

space" (Elementary Rigid Dynamics (1905), page 213). Equally

casual is Abraham (p. 115) : "Die Umrechnung [auf ein bewegtes

Bezugssj^stem] geschieht genau so, als ob das bewegte System in

seiner augenblicklichen Lage ruhte." This comparative blank

left place for that more systematic or conscious display which

vector algebra favors of the really operative methods. Its

*Thb is the date of publication. The paper itself was dated and read

(1856).
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partial novelty has set its measure at a length in the text that

may well be curtailed when their leading thought has once been

laid down.

Note 22 (page 98). Some authors cover the point by a dis-

tinction between explicit and implicit functions of time. Or

again the changing relation fairly equivalent to our shift of

(i'j'k') among (ijk) is made to introduce a partial time-derivative

(Thomson and Tait, Natural Philosophy, Part I, page 303).

It cannot escape notice what direct gain in clearness the regular

acceptance in our algebra of time-derivatives for unit-vectors

yields. The due adjustment of pace for shift, especially in

order to simplify dynamical problems in astronomy, has called

forth important discussion touching the double entry of time,

while methods of treating perturbations were becoming fully

established; and this engaged the attention of men like Donkin,

Jacobi, Hansen. There is a sequel in that region to sections

107-112; see, for instance, Cayley, Progress in Theoretical

Dynamics, British Association Report (1857).

Note 23 (page 109). The type to be remarked in equations

(154) as leading to generalizations of them is the functional

relation between each of (x', y', z') and all of both (x, y, z) and

(x, y, z). The same combinations show reciprocally when equa-

tions (150) are differentiated, and they affect characteristically

the expressions derived for kinetic energy. In equations like

(155) the first equality of partial derivatives brings out the

extent to which building up is occurring in the instantaneous

lines of (x', y', z'); and the second such equality connects

the remainder of the increment visibly with changes of slope that

are proceeding. It becomes then a simple matter to forecast

how these constituents will reproduce the result given through

a vector derivative.

Note 24 (page 118). One main objective being to specify

configurations in the standard frame, it is indispensable in the
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plan that some unbroken link with the latter should be main-

tained. The permanent orientation in (Z) of the angle-vector

(tjf) serves that purpose, every displacement (dtjf) being im-

mediately relative to (XYZ). By the terms of section 93 dis-

placements in (•&) have this one step interposed between direct

junction with (XYZ); and finally displacements in (^) are two

removes from that immediate relation. Taking other comment
from the text, it is made apparent how adequately all this

parallels the conception of displacements parallel to (X, Y, Z)

as successive, independent, and cumulatively relative. There

too, whichever the second and third displacements are, according

to the order selected, each must accept a determined initial state

due to the displacements that have preceded it. The residual

difference is inherent in the mutually supplementary qualities

of linear and angular displacements. Other parallel features

with longer-established vector schemes will repay attention;

for example the sentence just preceding equation (174) does not

mark an exceptional condition. It is of interest, too, to dwell

upon the fact implied on page 120, that (t|r, ^, ^) give us the

model of a coordinate-set with a changing obliquity among its

unit-vectors. It is obviously unessential, except for conven-

ience, that (i'j'k') should be orthogonal or retain any constant

relative obliquity. Some proposals have been made to include

the more general relation of direction for sets of unit-vectors

;

and the necessary modification of section 45 would be no more

than simple routine.

Note 25 (page 125). Needless to say, the revised conclusion

reached through equation (186) renounces any attempt to make
complete derivatives out of what are actually partials; but it

succeeds in assigning their proper quality to derivatives, for all

such combinations involving vectors, under a general rule stated

at the close of section 100. The root of the matter goes back to

equation (124); and the establishment of angle among vectors.
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places it in a category with them in this respect also. In what

form the omission of that element raises the diflSculty may be

gathered from Klein and Sommerfeld, Theorie des Kreisels,

page 46. The truth is that a similar non-integrability of tensor

accompanies every plan of shift, except those in which a special

condition is satisfied that includes them among what may be

classed with envelope solutions (see section 116).

Note 26 (page 137). The text bears frequent testimony con-

sistently to a high appreciation for the genius and inspiration

of the earlier workers who built dynamics, among whom we may
name Coriolis. Yet we should respect our obligation also to

carry forward or to rectify the first suggestions; being taught to

expect advances in our reading attached to results especially,

whose mathematical accuracy has never been questioned. It is

that hint of possible improvement which the text here submits,

afl&rming the lesson of cultivating perception of physical mean-

ings upon which best modern thought concentrates, and which

is illustrated by sections 35, 57 and 104; all to be taken in

the light of repeated comment upon those clouding transfers

between the two members of equation (37) which are still too

prevalent.

Note 27 (page 141). Hansen, Sachsische Gesellschaft der

Wissenschaften, Mathematisch-physikalische Klasse, III, pages

67-71. This original statement retains value, partly still

through the material it discusses, and again through the moral

it conveys that vector methods have made these problems more

manageable. The reaction of Jacobi in some letters to Hansen

(Crelle, Journal fiir reine und angewandte Mathematik, XLII,

(1851)) shows instructively the struggle toward clear and firmly

grasped thought proceeding, with strictest scrutiny of detail

in the new proposal. In the paper referred to above, Hansen's

double use of time is worked out (compare note 22), that remains

current among astronomers.
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Note 28 (page 155). We do not measure rightly the inherit-

ance of rigid dynamics from Euler's labors without conscious

effort to reconstruct the void that they filled once for all. Unless

his inventive intuitions had here been favored by a happy chance,

he could hardly have moulded from the first heat so many of the

forms that seem destined to hold permanent place. We can

imagine that his inspiration caught early glimpses of the relation

that equations (72) and (258) now convey; but Euler may have

been content to seize the validity of equation (257) without

proving it, as Fourier did in like case. Certain it is that the

point involved in that equivalence seemed troublesome enough

to be made the object of various special proofs, before our

general equation (137) had been attained (see Routh, Elementary

Rigid Dynamics (1882), page 212). For the historic date, the

memoir presented to the Berlin Academy is quoted (1758).

But a satisfactory survey of Euler's contributions on the topic

is best obtained through his collected works. Easier access

perhaps is had in the German translation (Wolfers, 1853); in

the volumes 3^ entitled Theorie der Bewegung the "Centrifugal

couple" appears at page 323, and our main interest would prob-

ably concentrate on pages 207-443.

Note 29 (page 169). Klein and Sommerfeld, Uberdie Theorie

des Kreisels (1897-1910), is one instance, quoting our Preface,

how special treatises of unquestioned excellence make superfluous

an attempt to replace them. This work, and Routh's version in

the Advanced Rigid Dynamics (edition of 1905), Chapter V,

with Thomson and Tait's discussions passim in Natural Philos-

ophy, Part I, supply for gyroscopic problems the indispensable

material, exhaustive of more than their general aspects. The

aim of the text here is strictly confined to lending its announced

special emphasis to two items. One is shown to be of ramifying

importance as a singular value round which deviations from it

may be organized; the other is uniquely characteristic, and it
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proves amenable to this analysis most simply, in comparison

with other methods. Compare in verification Theorie des

Kreisels, pages 247, 316, on strong and weak tops.

Note 30 (page 180). A fuller command of generalized co-

ordinates and forces as an effective working method can be

inferred from evidence on two sides: first, more unequivocal

recognition is accorded to their finally scalar type; and secondly,

the primary demonstration of relations shows increasingly

directer insight. Dispose of the latter point by collating

Lagrange's proof (Mecanique Analytique, I; Dynamique, Sec-

tion IV); Thomson and Tait, whose change between (1867)

and (1879) is instructive; and Heaviside, Electromagnetic

Theory, III, page 178. The last-named is a climax of condensa-

tion, and thereby somewhat unfitted for the text; but it will

be quoted below for a double reason. The quantitative emanci-

pation of Lagrange's equations may be traced gradually, if we

like, beginning with equations such as (150, 151), where the

(1, m, n) coefficients are particular reduction factors conditioned

as in equation (152). Next advance to the more liberal possi-

bilities of linear vector functions illustrated by equations (86,

89), and clinch the series with Byerly's half-humorous emphasis

(Generalized Coordinates (1916), page 33). This book has the

merit of helpfully discursive approach to a large subject; and

though it seems tacitly limited to the vector conception, closing

the matter on the range that Lagrange occupied at one bound

and not gradually, proper antidote can be sought elsewhere.

See Silberstein, Vectorial Mechanics (1913), page 59; while

Ebert has been referred to in note 3, for his treatment in the

larger spirit of energetics.

We insert now the quotation from Heaviside; it illustrates

fairly the ne plus ultra in both respects. Notation of our text

is continued. Because (E) is a homogeneous quadratic function

of the velocities, Euler's theorem about homogeneous functions

enables us to .write
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of which the legitimate total time-derivative is

Since (E) is ''by structm-e" a function of velocities and co-

ordinates only,

Divide the last equation by (dt) and subtract from the second,

giving

the last member expressing the energetic invariance of activity

(see equation (298)).

It would be misleading if the text pretended to do more than

give Lagrange's equations their setting of introductory connec-

tion with the other topics treated. In order to proceed safely

the results here gleaned must be followed up seriously; the

references given already indicate where to begin, and they can

be relied upon to supplement themselves as the subject opens.

Questions to be met at once are alluded to incidentally in section

136: a rationally consistent view of superfluous coordinates,

including how they may drop that character and become physical;

and the bearing of that quoted "interlocking" upon the signifi-

cance of the term holonomous. That there are more vital issues

awaiting analysis is suggested by Burbury (Proceedings of the

Cambridge Philosophical Society, VI, page 329); by such com-

ment as Heaviside's (Electromagnetic Theory, III, page 471)

upon Abraham's successful extension of Lagrange's equations;

and by the lines of inquiry to which note 32 points.



224 Fundamental Equations of Dynamics

Note 31 (page 194). This development is seen to be borrowed

from Thomson and Tait, pages 320-24. The few changes are

adapted here and there to an even keener intent to keep the

energies and momenta at the front, subordinating the investiture

with mathematics. It was thought needful to drive the entering

wedge before closing, for the sake of those continuations to which

Maxwell's example leads. The reduction factors (1, m, n) are

easily released from their trigonometrical meaning, and other

geometrical implications cancelled.

Note 32 (page 200). For the justified application of equation

(333), or of forms derivable mathematically from it, to all se-

quences of energy change, one turning-point is set by delimiting

the necessary equivalences between the mechanical readings of

(E) and (<l>) and the broader dynamical ones. This general idea

is pursued by Konigsberger in his papers, Uber die Prinzipien

der Mechanik (Sitzungsberichte der Berliner Akademie (1896),

pages 899; 1173); and is entertained by Whittaker in his

Analytic Dynamics (1904), Chapter X, passim. The stimulus

to this quest seems still attached to the possibility of construct-

ing a parallel in mechanical energy by using values connected

with other energy changes. One gathers this meaning from the

utterance of Larmor (Aether and Matter, page 83) and others

like it.
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223; and energy- factors, 186-187;

and Euler's, 180, 192; and polar

components, 188; and standard

frame, 187; and tangent-normal,

187; are scalar, 184, 186, 222; in-

clude constraints, 187.

Larmor, 205, 224.

Latency, of momentum and energj',

7, 45.

Law, of inverse square, 5; of inertia-

change, 40.

Laws, of motion, 4, 32-33, 50, 201.

Localized vectors, 22, 26, 36; and
shift, 104-106.

Lorentz, 202, 207, 209, 213.

Lost forces, 50.

Mach, 205, 206, 212.

Maclaurin, 112.

Mass, and volume-integral, 30, 31

as quotient, 3, 40; constancy of, 25

continuity of, 16; generalized, 6

variable, 38.

Mass average, and precision, 49; of

acceleration, 37; of velocity, 29.

Mass constancy, 33.

Mass-summation, 22; differentiated,

24, 32-33.

Mathematics, and dynamics, 36-37,

113, 137, 139, 174-175, 208, 216,

220; simplifies, 17.

Mattioli, 213.

Maxwell, 6, 203, 224.

Mean values, 210; residues from, 30,

36, 60-63.

Mean vector, 28.

Mechanical models, 12, 13, 43, 181,

187, 213, 224.

Molecular energy, 51.

Moment of momentum, 22, 27, 210;

a fundamental quantity, 21; a

localized vector, 22, 27; and par-

ticle, 29; and precession, 171; and

principal axes, 73; and rigid solids,
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55, 60, 73, 156; and rotation-vector,

27, 68, 69; and shift, 106; and trans-

lation, 28; and volume-integral,

30, 31; supplements mean values,

29, 30.

Moments of inertia, and Euler equa-

tions, 162, 180; invariance of, 160.

162.

Momentum, 22; a distributed vector,

26; a flux, 44; a fundamental

quantity, 21; and center of mass,

29, 63; and generalized velocity,

182; and translation, 28; and vari-

able energy, 193-194; and volume-

integral, 30-31; convection of, 45;

generalized, 182, 190; invented by
Newton, 4; latency of, 7, 45; recti-

fied, 153; transformed, 45.

Momentum change, and force, 32,

36, 46.

Motion, absolute, 9, 10; equation of,

48; relative to center of mass, 28,

38, 215; second law of, 32-33;

third law of, 50, 201.

Multipliers, indeterminate, 53, 213.

Newton, 4, 9, 32-33, 50, 201.

Notation, comparison-frame, 78; prin-

cipal axes, 157-158; standard

frame, 77-78.

Oblique coordinates, 116, 219.

Orthogonal axes, adopted, 23.

Ostwald, 202, 212.

Parameters, Lagrange's, 180.

Partial derivatives, 91-96, 125, 149,

185, 190. 216, 218, 219.

Particle, 28; and center of mass, 37-

38; and energy, 29; and moment of

momentum, 29; and polar com-

ponents, 139-140: and rigid solid,

54; and tangent-normal, 154; equi-

valence of, 64.

Phenomenology, 202.

Poincare, 81, 202, 206, 213.

Points, individualized, 81; motion of,

81-82.

Polar components, 140; and ideal co-

ordinates, 142; and Lagrange equa-

tions, 188; and pure rotation, 138-

139; and superposition, 136; and
tangent-normal, 148, 149; uni-

planar, 136.

Polar coordinates, 130-135.

Polar velocity, and shift, 133.

Ponderomotive force, 5, 13.

Position coordinates, auxiliary, 81.

Potential, 5; energy, 4, 7, 51, 199;

kinetic, 200, 224,

Power; 35, 36; a fundamental quan-

tity, 21; and center of mass, 60, 63;

and directive action, 68, 140; and
rigid solid, 60, 61, 63; and shift,

140-141, 152-153; and variable

mass, 39, 42.

Power equation, 201.

Poynting, 213.

Precession, 169-174; condition for,

170; imaginary, 175, 177, 179.

Precision, 207, 210; and mass average,

49.

Principal axes, 73, 157, 160, 162-163;

and energy, 74; and Euler equa-

tions, 157, 160, 162; and force-

moment, 74; and moment of mo-
mentum, 73; notation for, 157-

158.

Principle, d'Alembert's, 60; Hamil"

ton's, 8; of vis viva, 4.

Principles, discovery of, 18; stability

of, 8.
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Projection, of angle-vector, 58, 115-

116.

Proximate reference, 11.

Pure rotation, 59; and center of mass,

64-65, 75; and constraints, 75; and
polar compionents, 138-139.

Quantity of motion, 32.

Radius-vector, invariance of, 80;

mean, 28: partial derivative of, 91-

96; prominence of, 27, 36, 209, 210,

214; typical character of, 99.

Reduction factor, 190, 218, 224.

Reference-axes, orthogonal, 23.

Reference-frame, conceived fixed, 23;

postponed choice of, 24, 207; proxi-

mate, 11; transfer for, 76; ulti-

mate, 9, 10, 11, 88.

Reference-frames, configuration of,

78-79; invariant groups of, 84.

Regular precession, 169-174; and

force-moment, 171-172; and mo-
ment of momentum, 171; dynamics

of, 171-174; imaginary, 175, 177,

179.

Relativity, 4, 11, 202, 213.

Representative prarticle, 28.

Resolution, tangent-normal, 40, 147-

154.

Resultant elements, force, 34; force-

moment, 36, 210; moment of mo-
mentum, 27, 210; momentum, 22.

Revision, of physical equations, 52.

Rigid dynamics, and Euler equa-

tions, 155, 221; approximate, 53.

Rigidity, 214, 215; and internal

energ>^, 55; of ultimate parts, 54.

Rigid solid, 53; and center of mass,

55; and Euler equations, 155; and

force-moment, 60, 61; and im-

pressed force, 55, 62-63; and mo-
ment of momentum, 55, 60, 73,

156; and particle, 54; and power,

60, 61, 63; and rotation, 55, 57, 58,

63, 215; angular velocity of, 57;

general motion of, 63; structure of,

53, 55, 62.

Robb, 207.

Rotation, 55-57, 215, and accelera-

tion, 65-66; and center of mass, 55,

57, 60; and energj-, 63, 65, 71, 74:

and Euler equations, 155; and
force-moment, 66-67, 68, 71, 74;

and impressed force, 62-63; and
uniplanar motion, 72, 167; and
velocity, 57, 59; of rigid solid, 55,

57, 58, 63.

Rotational stability, 169, 175-179;

condition for, 176, 178.

Rotation-axis, and force, 66, 168;

and force-moment, 167-168,

Rotations, superposition of, 59.

Rotation-vector, 57, 208, 214; and

configuration angles, 117-123; and
force-moment, 68; and shift, 123,

124, 126-131; and standard frame,

58-59; divergence from moment of

momentum, 27, 67-70.

Routh, 214, 217, 221.

Scalar equations: cartesian, 107-111;

Lagrange's, 184, 186; standard

frame, 112, 187.

Shift, 94, 97, 216, 217, 218; and ac-

celeration, 150, 152; and angular

acceleration, 126-131, 160, 164;

and cartesian axes, 107-111; and

Euler equations, 160-161, 164; and

force-moment, 106, 161; and free

vectors, 100-104; and ideal co-

ordinates, 143, 147; and integra-
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tion, 126, 153-154; and localized

vectors, 104-106; and moment of

momentum, 106; and motion com-

pared, 96-97, 104; and polar ac-

celerations, 134; and polar veloci-

ties, 133.

Shift rate, 97-98; and power, 140,

152-153; and rotation-vector, 123,

124, 126-131.

Silberstein, 202, 222.

Simplifications, in dynamics, 17, 54,

205.

Space curves, acceleration in, 151-

152.

Stability, condition for, 176, 178; of

principles, 2, 8, 15; rotational, 169,

175-179.

Standard frame, and fundamental

quantities, 113; and Lagrange

equations, 187; and rotation-vec-

tor, 58-59; arbitrary choice of, 78;

as coordinate system, 112; nota-

tion for, 77-78.

Storage of energy, 6, 7, 64.

Summation, continuous or discrete,

23.

Superfluous coordinates, 183, 190,

191, 223.

Superposition, 59, 88, 216; failure of,

136; of rotation and translation,

63.

System, conservative, 5, 7; dynamical,

16; internal connections of, 49-50;

of bodies, 16.

Tait, 201.

Tangent-normal, 40, 147; and ac-

celeration, 148; and force-moment,

166; and fundamental quantities,

154; and ideal coordinates, 151-

152; and Lagrange equations, 187;

and polar components, 148, 149;

and velocity, 147; as prototype,

149.

Tensors, derivatives of, 93, 96, 102,

154; groups of, 92.

Thomson and Tait, 201, 203, 214,

218, 221, 222, 224.

Time-derivative, of geometrical equa-

tions, 191.

Time functions, two classes of, 98,

218, 220.

Timeless comparisons, 81.

Total and partial derivatives, 91-96,

125, 128, 219.

Total force, 34; and center of mass,

37.

Transfer: angular acceleration, 124;

angular velocity, 124; reference-

frame, 24, 76, 77.

Transfer-force, 45; a distributed vec-

tor, 47; and local resultants, 46; as

constraints, 47.

Transformation, of momentimn, 45.

Translation, 27, 28; and center of

mass, 37-38, 63, 215; and energy,

28, 63, and impressed force, 62-63;

and rigid solid, 55, 63; and rotation,

63, 215.

Transmission of force, 50.

Ultimate, reference, 9, 10, 11, 205;

rigidity, 54.

Uniplanar, acceleration, 136, 150;

rotation, 72, 167.

Variable mass, 38-42, 211; and ig-

nored force, 40-41 ; and summation,

24-25.

Vector algebra, 13, 208.

Vectors, descriptive, 137, 141; dis-
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tributed, 26, 34, 45; shift for, 100-

106.

V^elocity, 82; and center of mass, 29,

55, 57, and ideal coordinates, 142-

144; and rotation, 57, 59; and tan-

gent-normal, 147, 152; angular, 57;

generalized, 182, 186-187, 223; in-

variance of, 83, 90; mass-average

of, 29; partial derivative of, 149;

polar components of, 132, 133, 136;

relative to center of mass, 55, 57;

transfer for, 85-88; virtual, 50.

Virtual, velocity, 50; work, 7, 50.

Vis viva, principle of, 4.

Volume integrals, 30, 31.

Whittaker, 224.

Work, virtual, 7, 50.

Work equivalence, and force, 46, 183-

184, 223.
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