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INTRODUCTION.

Eleiueiitary algebra may bo regarded, for the purpose of the present

paper, as a body of propositions concerning tiic sums and products of num-
bers ;

* these propositions are not independent, but can all be deduced from a

few fundamental propositions, or axioms,, which are accepted as self-evident

properties of number, just as the propositions of geometry can all be deduced

from a few fundamental propositions, or axioms, which are accepted as self-

evident properties of space.

The primary object of this paper is to present a list of fundamental pro-

positions for algebra, from which, on the one hand, all the other propositions

of algebra can be deduced, and in which, on the other hand, no superfluous

items are included,—a list, in short, which is sufficient, unAfree from redun-

dancies.

The first propositions which suggest themselves for this purpose are the

ten "general laws" numbered ^il-^l.T, 3/1-3/5, in §1 ; all these laws will be

recognized as familiar and obviously true propositions concerning numbers.

The next step is to see what propositions follow from these laws hy logical

deduction. But here the question at once arises : How can we be sure that our

'deduction is rigorous ? How can we be sui'e that we do not employ, in our

reasoning, some other properties of numbers besides those expressly stated in

the axioms ? The only way to avoid this danger is to think of our fundamental

laws, not as axiomatic propositions about numl)crs, but as blioik forms in

which the letters a, b, c, etc. may denote any objects we please and the

symbols + and X any rules of combination ;t such a blank form will become

a proposition only when a definite interpretation is given to the letters

and symbols ^indeed a true proposition for some interpretations and a

false proposition for others. (Thus, the blank form " d -[- b — b -\-
a"

* It will greatly assist the reader if lie will, from tlie start, ttiinl; of multiplication, not as

repeated addition, but a.s a separate operation, liiiving no connection with addition except

through the distributive law, a(6 + c) = ah -\- ac.

Many propositions of algebra concern also the relation of order (or of "greater and

less") between two numbers; these propositions arc not considered however in the present

paper, which stops at the point where the introduction of the relation of order seems necessary.

t A rule of combination is any rule or convention by which two objects determine a

third.
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is a true proposition if (( and h signify numbers, and + the ordinary addition

of numbers ; but it is a false proposition if a and h signify rotations of a

plane about various axes perpendicular to it, and 4 the succession of two such

rotations.) The deductions made from such blank forms must necessaril}' be

purely formal, and hence will not be affected by the troublesome connotations

which would be sure to attach themselves to any concrete interpretation of

the symbols.

From this point of view our work becomes, in reality, much more

general than a study of the S3'stem of numbers ; it is a study of any system

which sulisfies the conditions laid down in the gener<d hmsoi §1.* As a matter

of fact, there are many such systems, all of which are usually included under

the general name of algebra. Thus, there are the various different systems

of numbers— the positive integral numbers, the rational numbers, the com-

plex numbers, etc.,— all of which, when -f and X are defined in the ordi-

nary way, satisfy all these laws. Then there is the system of points (or

vectors) in a plane, with their "sums" and "products" defined as in Argand's

diagram (see the end of this introduction). Another striking example is the

system of all rational numbers, with the "sum" of a and h defined as r< + 6 -f- 1

and their "product" as ah + {a + />) ; f a biief computation will show that this

strange system also satisfies all the laws of §1.

Every system which has the properties stated in the fundamental laws

will have also all the properties formally deduced from those laws. The

system of natural numbers, with ordinary addition and multiplication, ap-

pears, therefore, as merely a special case of the general class of systems whose

properties are here studied.

The object of the paper may now be more precisely stated in the following

form : Given a c?«s-.s of elements with two rules of combination, what conditions

must such a systcia satisfy in order tohe formally nqiuvidanlto one of the systems

of ordinary (dyelira? The first conditions which we impose are naturally the

ten "general laws" numbered ^^11-^1.5, 3/1-3/5, in §1 ; but these laws are to

be regarded no longer as "axioms," since they are merely blank forms, not in

themselves either true or false, but rather as "postulates," because we

* liy a 'system," ill this coniiectidii, we mean any class of entities among wliicli two

rules of coinljiuatioii are establislied.— The entities which belong to the class are called the

" elements " of the clas.s, or of the system.

t Trans. Amer. Math. Soc, vol. « (1905), p. 225.
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"demand," arbiti-arily, that the system considered shall conform to these

conditions.*

It appears at once, however, that there are many different t3'pes of ele-

mentary algebra (for exaiiii)le the algebra of the positive integers, the algebra

of the rational numbers, the algebra of vectors, etc.), and that the ten general

laws of §1 are not sufficient to determine any particular type. We therefore-

add, in §4, a list of special laws (postulates E\-Ei\), which serve to distin-

guish the various types from one another. This §4 thus completes the main

object of the paper. Special attention may be called to the discussion of the

notion of isomorphism between two sj'stoms, and the notion of a sufficient, or

categorical, set of postulates for a particular type of algebra (see page 2()),

which are of fundamental importance in this connection.

Finally, in §5, the independence of the general laws is established, so

that we may be sure that the list contains no redundancies. The method for

establishing the independence ofa set of postulates consists in exhibiting, in the

case of each postulate, an example of a systeui which satisfies all the other

postulates of the set, but not the one in question. | These systems maybe
called pseudo-algebras, since they fail to be true algebras in respect to some

single item in the specifications. J

Incidentally, the paper contains a rigorous development of the rational

number-system, starting from the sequence of the natural numbers. The vari-

ous kinds of numbers are introduced primarily as operators, to indicate repeated

addition, repeated multiplication, etc., performed on the elements of the

original system ; but rules of combination are defined among these opera-

tors in such a way that they become themselves examples of systems which

satisfy all the laws of §1. Moreover, all the examples used in §5 are con-

structed out of material offered by these number-systems, so that no part of

the paper (except the introduction, and the proof of the final paragraph in §4)

presupposes any knowledge of mathematics whatever, beyond the ability to

recite the familiar sequence of natural numbers : 1, 2, 3, etc.

• Any set of consistent postulates mij;lit be used as the basis of an abstract deductive

theory; but only those sets of postulates are worth studying which are capable of some inter-

esting concrete interpretation. If preferred, the postulates may be called " assumptions," or

"hypotheses;" cf Trans. Amer. Math. Sor., vol. 5 (I'.tOl), p. 288.

tThis method has become familiar in the last ten years through the worl<s of Peano,

Fieri, Padoa, Hilbert, and others.

I It is customary, however, to extend the word algebra so as to include any system which

satisfies postulates .ill, 2, 3, 4. 5; M\,i; and £^ 1.
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The signs " = "and"?t" are used to denote equality and inequality,

respectively ; two elements are said to be ecjual when either can replace the

other in every proposition in which it occurs.

It is needless to add that the paper contains no new theorems in so old

a subject as elementary algebra ; the only part of the paper which has any

claim to originality is §5, containing the proofs of independence.

For bibliographical references, the reader is I'eferred to the Transactions

of the American Mathematical Society, vol. 3 (1902), p. 264; vol. 5 (1904),

p. 288 ; vol. 6 (1905), p. 209 ; to H. Ilankel's Theorie dercomplexen Zahlen-

si/steme (1867) ; to Stolz and Gmeiner's Theoretische Arithmetik (1902) ; and

to articles in the Encyclopiidie der mathematischen Wissenschaften.

Illustrative example.

In order to have before the reader a concrete example of a system which

satisfies all the postulates, we cite at once the familiar geometric example of

the ordinaiy complex quantities, or vectors in the plane (Argand's diagram).

In this system the class of elements considered is the class of all the points in

the plane, including a special point 0, called the origin, and another special

point U, whose distance from is called the unit-distance.

The point A + ^ is defined as the point arrived at by starting from A
and taking a step equal in length and direction to the step from to B.

B
A+B

AB

Fio. 1.

The point ^ X ^ is defined as the point whose "angle" (from OU) is the

sum of the "angles" of A and B and whose "distance" (from 0) is the

product of the "distances" of A and B. Here if a and b are the

distances of A and B respectively, then the "product," x, of a and b, is

to be constructed geometrically from the proportion x-.a — h :.m, where u is

the unit-distance (see figure 3).
''

With an elementary knowledge-of plane geometry, including the proper-

ties of similar triangles, one can readily show that this system satisfies all the

postulates A1-A5, M1-M5, in §1, and also the "existence-postulates"

BI—E5, in §4; the proof for JB'6, however, is more difficult.

Z'

'Jf.
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[The "product" of two distances, a and b, with respect to the unit^dis-

tance «, may also be defined as follows : In the special case in which a and b

are commensurable with u, say a = (^K/fi)u and b = (\/v)u, tiicir product is

dotitied as (/c\,Vy)M. In any case, there are sequences of commensurable

distances which approach a and b as limits

:

,. r " " , « "I -1 1- r " " " "I

then the product of a and /> is defined as the limit of the sequence

u u u '

If this definition appears less simple than the geometric definition given above,

it may be remembered that the properties of similar triangles, on which the

Geometric construction depends, are usually established by the considera-

tion of limits of infinite sequences of precisely this character.]

§1. THE GENERAL LAWS OF ADDITION AND MULTIPLICATION.

We consider a class of elements, denoted by a, b, c, etc., and two rules of

combination, called addition (+) and multiplication (X) ; and upon this sys-

tem we impose the following conditions, expressed in the postulates num-

bered I, AI-A5, M1-M5.
The consistency of these postulates is shown by the examples given in the

introduction and in §3 ; their independence will be established by the examples

given in §5.

Any system which satisfies these postulates Al-An, 311-315 is said to

obey the general laws of elementary algebra as regards addition and multi-

plication. YsLvioas special types of systems of this kind will be distinguished

by means of further postulates in §4.

In order to exclude the obviously trivial cases of an empty class and

a class containing only a single element, we adopt, first of all.

Postulate I. The class contains at least two elements.

This postulate will be assumed without further mention throughout the

paper.
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The laws of addition.

Postulate A1. If a and b are elements of the class {a = h or a ^ b),

then a + b is likewise an element of the class, uniquely determined by a and b

in their given order, and called the "sum, aj)l>(s b."

The operation of finding a + b when a and b are given is called "addi-

tion ;" the elements a and b are called the "terms" of the sum a + b.

Any system which satisfies this postulate Al maj' be called a closed system

with respect to addition, since the successive addition of any number of ele-

ments does not take us outside the system. When sums of three or more ele-

ments are considered, parentheses are employed with obvious significance, as in

[(« -t- b) + a] + d, etc. It should be noticed, however, that as far as postu-

late A\ is concerned, a + 6 is not necessarily the same element as 6 + a

(see postulate Ab).

Postulate Ai. Throughout the system, '

(^a + b) + c = a + {b + c).

This is the associative law for addition* In view of this law, paren-

theses may be removed or inserted at pleasure in a sum of any number of

terms.

Postulate JL3. (1) If a + x = a + y, then x = y.

{2) If X + a — y + a, then x — y.

These may be called the laivs of cancelation for addition.^ Either (1) or

(2) is deduciblo from the other by the aid of the commutative law for addition

(see postulate -45), but so many theorems can be proved from A\, 2, 3

without the aid of that law that it has seemed worth while to state both parts

of A'6 in this manner.

Postulate ^4. If fi-x — y^y, where /a is any positive integer, then x—y.

This postulate will be used first in connection with theorem 26 ; the no-

tation, which indicates repeated addition, will be explained in theorem 21.

The postulate may be called the law of non-circularity, since, as we shall see

* The words "associative," "conimntative," and 'distributive" have been In general use

since tlie middle of the niiieteentli century. See II. Ilanlcel, Theorie der complexen Zahlen-

systeme (1867), p. 3, foot-note.

tCf. Trans. Amer. Math. A^oc, vol. G (1905), p. 212.

d
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in theorem 20, it prevents a repeated sumnmtion from returning, so to speak,

into itself. (For a "weaker" postulate, which can bo used, under certain con-

ditions, in place of postulate Ai, see appendix 1
.

)

[Postulate Ab. Throughout the system,

a + h = b + a.~\

This is the commutative Imc for addition.* This postulate is placed in

brackets, because it will prove to be deducible from ^11, 2, 3, with the aid

of some of the laws of nmltiplication, and is therefore redundant when the list

of postulates is taken as a whole (see page 25.)

The lau's of multiplication.

Postulate Ml. //' a and h are elements of the class (a = h or a ^ b),

then a X b (written also a-b or simply ab) is likewise an element of the

class, unifjuely determined by a and b in their given order, and called the

"product, a times b."

The operation of finding a X b when a and b are given is called "multi-

plication ;" the elements a and b are called the "factors" of the product cb.

Parentheses are used as in addition.

Postulate M2. Throughout the system,

{a X b) X c = a X ( b X c).

This is the associative laiv for mtdtiplication. In view of this law, paren-

theses may be removed or inserted at pleasure in a product of any number of

factors.

Postulate M^. (1) If ax = ay and a + a :^ a, then x — y.

(2) Jf xa = ya and a + a jt a, then x = y.

These are the laws of cancelation for multiplication. Either (1) or (2)

is deducible from the other by the aid of the commutative law for multiplica-

tion (postulate Mb) ; both parts are included, however, for the sake of the

deductions which can be made from M\, 2, 3 without the aid of Mb. The

restriction "a. + a ^ «" may be written "a i^ D" after the definition of the zero-

element is obtained, in theorem 1. (For a "weaker" postulate which can be

used, under certain conditions, in place of postulate MZ, see appendix 1.)

* See footnote * on preceding pa^e.



190C] FUNDAMENTAL LAWS OF ADDITION AND MULTIPLICATION ft

. Postulate Mi. Throughout the class,

(1) a(b + c) — ah + ac, and

(2) (b + c)a= ha + ca.

These are called the distributive laics *for multiplication with respect to

addition. Either (1) or (2) is deducible from the other by the aid of Mb;
both parts arc iucludod, liovrcver, for the same reason as in the case of pos-

tulate MS.

Postulate Mri. Throughout the sysfem, 5

a X b = b X a.

This is the commutative law for multiplication. Unlike the commutative

law for addition, this postulate is independent of all the preceding p«)stulates.

These ten postulates, Al-Ab, Ml—Mb, aro tho sronoi-al laws of addition

and nmltiplication in elementary algebra. The immediate consequences of

these laws are developed in tho next section.

§2. deductions from these laws.

Sections 2—3 contain the most important of the deductions which can be

drawn from the postulates Al-Ab, 311-Mb. The precise postulates on

wliioli the proof of each theoi'em depends are stated in brackets after the
^

number of the theorem ; to avoid interruption in reading the paper, the proofs

themselves, whenever needed, are collected in §6 below.

The zero-element.

T^ieorem 1, and Definition. \_A1, 2, 3.] It follows from postulates

Al, 2, 3 that there cannot be more than one element z such that z + z = z ;

if there is any such element, it is called the zero-element of the system, and

denoted by ; that is,

+ n = 0.

(Proof on p. 35 ; on the use of the symbols and 0, see §3, below.)

This definition of the zero-element, which is suggested by Benjamin

Peirce's definition of an "idempotent" element, f is somewhat simpler than the

more usual definition, which is based on the property here stated as theorem 2.

See footnote * on page 7.
,

, t B- Peirce, Linear Associative Algebra, 1874.



10 HUNTINGTON [October

Theorem 2. [-41, 2, 8.] If thorc^ i« a zero-element, 0, then

(/ + a =: (/ and n + « = a

for every element a ; and conversely, if a } x = a ov x -\- a z= a, then x = 0.

(Proof on p. 36.)

On account of this additive property, the zero-element is often called the

"modulus" of addition.*

I'keorem 3. [vll, 2, 3 ; M\, 4.] If there is a zero-element, 0, then

a X B = n and X •« =

for every element a. (Proof on p. 36.)

This theorem expi'esses the multiplicative property of the zero-element.

Theorem 4. {A 1, 2,. 3 ; Ml, 3i or 32, 4.] If a6 = then either

« = or 6 = 0. In other words, a product (ib cannot be the zero-element,

unless at least one of its factors, a or h, is the zero-element. (Proof on p. 36.)

This theorem is of considerable importance, and may be called the laiv of

the zero product (compare appendix 1).

T'he unit-tlemeut.

Theorem 5, and Definition. [3/1, 2, 3.] It follows from postulates

3/1, 2, 3 that there cannot be more than one element u, different from the

zero-element, and such that m X w = «« ; if there is any such element, it is

called the unit-element of the system, and denoted by 1 ; that is,

1 X 1 = 1 (1 ?t 0).

(Proof on p. 36 ; on the use of the symbols 1 and 1, see §3, below.)

Corollary. If a X a = a and a i^ 0, then a = I.

This definition of the unit-element is due to B. Peirce (loc. cit.) ; the

more usual definition is here given as theorem 6.

Theorem 6. [3/1, 2, 3.] If there is a unit-element, 1, then

ax i = " and 1 X a — a

for every element a. (Proof on p. 36.)

On account of this propertjs the unit-element is often called the "mod-

ulus" of multiplication.

* Cf . H. Hankel, loc. ctt., p. 23; also Sto\za.nd GmeinaT, Theoretische Arithmetik (1902),

p. 64.
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Theorem 7. [^1, 2, 3; Ml, 2, 8, 4.] Conversely, if ax = a or

xa — a, and a ^t 0, then x— I. (Proof on p. 36.)

Opposite elements. Subtraction. '

Lemma. \_A1, 2, S.] It follows from postulates Al, 2, 3 that if

a + b = B, then b + a = B ; hence we may speak of two elements as having

a zero sum, without ambiguity in regard to the order of the terms, even

before assuming the commutative law ^5. (Proof on p. 36.)

Theorem 8, and Definition. \_A1, 2, 3.] Given any element a, there

cannot be more than one element x such that the sum of x and a is ; if

there is any such element, it is called the oppo.nte of a, and denoted by B — a,

or simply by — a ; that is,

« + (—«) = (— a) -\- a = B.

Any two elements whose sum is the zero-element are called a pair of opposite

elements.

Corollary . If there is a zero^element, then — = 0; and if a is an ele-

ment which has an opposite, then — (— a) = a.

The opposite of an element a is commonly called the "negative" of a ; it

seems preferable, however, to reserve the term negative for use in the phrase

'positive and negative elements." *

Concerning the multiplication of opposites we have :

Theorem 9. [/ll, 2, 3 ; M\, 4.] If a and b are elements which have

opposites, then

'^' (- a) X ^ = « X (- b) = - ab, and (- a) X (- 6) = ab.

(Proof on p. 3(i.)

The following theoi'ems are the first which require the commutative law

for addition (postulate Ab) :

Theorem 10. [^1, 2, 3, 5.] If a and b are elements which have op-

posites, then — (-«) + i-b) =-{a + b).

(Proof on p. 36.)

* The distinction between positive and negative elements involves the notion of order,

and vvi.l therefore not l.e discussed in tlie present paper. (An element o is called positive

or negative according as a + a ^ « or a + a < a.) It should lie mentioned, however, that

in many cases the relation of order is definable in terms of addition, or of addition and mul-

tiplication; see especially 0. Veblen, Trans. Amer. Math. Soc, vol. 7 0906), pp. 197-199.
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Theorem 11, and Definition. \_A\, 3, 5.] Given any elements a and h,

there cannot be more than one element x such that a — b-^x = x-\-b\ if

there is any such element it is called the remainder, a minus b, and denoted

by a — 6 ; that is,

a = b Jr {a — b) = {a -b) + h.

The operation of finding a — b when a and b are given is called "sub-

traction ;" the definition of —a in theorem 8 is a special case.

Theorem 12. [^1, 2, 3, 5.] If the remainders in question exist,

then a + (b — c) = (a + b) — c; a — (b + c) = (a — b)— c ; and a — {b — c)

;= (« — b) -\- c. Moreover, if there is a zero-element, then « — = « and

a — a = B ; and if— x exists, then

a + (— x) = a — X and o — (— x) = a + x.

(Proof on p. 36.)

Theorem 13. [^1, 3, 5; Ml, 4.] Ub-c exists, then

a(b — c) = ab — ac and {b — c)a = ba — cm.

(Proof on p. 37.)

Reciprocal elements. Division.

Lemma. [3/1, 2, 3.] It follows from postulates il/1, 2, 3 that if

ab = I, then ba = I ; hence we may speak of two elements as having a unit

product, without ambiguity in regard to the order of the factors, even before

assuming the commutative law Ji.5. (Proof on p. 37.)

Theorem 14, and Definition. \_M\, 2, 3.] Given any element u, there

cannot be more than one element y such that the product of y and a is 1 ; if

there is any such element, it is called the reciprocal ofa, and denoted by -, or

Ija ; so that

"© = ()"-•

(Proof on p. 37.) Any two elements whose product is the unit-clement

are called a pair of reciprocal elements.

Remark. In view of theorem 3, it is evident that ifa = fl, then no recip-

rocal of a exists in anj-^ system that satisfies postulate M^.
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Theorem 15. [^11, 2, 3 ; Ml, 2, 3, 4.] If u is an element which has

an opposite and a reciprocal, then

A - _ 1
— a a'

(Proof on p. 37.)

The following theorems are the first which require the commutative law

for multiplication (postulate Mb) :

Theorem 16. [Ml, 2, 3, 5.] If « and b are elements which have recip-

rocals, then

I 1 1

a b ab

(Proof on p. 37.)

Theorem 17, and Definition. \_M 1, 3, 5.] Given any elements a and b,

b not zero, then there cannot be more than one element y such that a = by = yb ;

if there is any such element it is called the quotient, a divided by b, and is

denoted by t, or a/b ; so that

©

=

o
The operation of finding a/b when a and b are given is called "division ;"

the element a is called the "numerator," and b the "denominator," of the

quotient a/b. The special case in which the numerator is the unit-element

agrees with the detinition of 1/a given in theorem 14.

Remark. From theorem 3 it is evident that if b = U there is no

(uniquely determined) clement y such that a = by ; hence division by the

zero-element is impossible in any system which satisfies postulate MA. On the

other hand, if 6 ?i 0, then 0/6 = 0.

Theorem 18. \_M \, 2, 3, 5.] If the quotients in question exist, then

: a /a\ ac /"\ /
a a c ac {^'\if''\ "^

^b' \b)^''^~b' KbJ'^^Fc' b^d^Vd' \b)^\d)^~be-

Moreover, if there is a unit-element, then a/1 — a and «/« = 1. (Proof on

p. 37.)

r /
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Theorem 19. If the required quotients and remainders exist, then ;

(1) [^1; 3/1, 2, 3, 4; 5.] 1 + ^ = ^-1^;

(2) [^1,3,5; 3/1,2,3,4,5.] «_^ = '.^^^

(Proof on p. 37.)

The so-called inw<jinavij unitx.

Theorem 20. [^1, 2, 3; Ml, 2, 3, 4, f).] In a system containing a

unit-element and its opposite (1 and —1), if there is any element x such that

X X a" = —1, then there will be another element, namely — x, having the

same property ; but there cannot be more than two such elements. If there

are two such elements, they are called the imagimiry units (or better, the

secondary units) of the system ; and denoted by / and — i ; that is

i X i = — I and (- i) X (- «) =— I.

(Proof on p. 37.)

The term imaginary is a legacy from the eighteenth century, which has,

unfortunately, become firmly tixed in mathematical literature ; the elements

r and — / are of course no more "imaginary" than any other elements which

may exist in the system.*

It is a curious fact concerning these imaginary units, that no distinction

can be made between them in terms of addition and multiplication ; that is,

there is no true proposition concerning i, and expressible in terms of addition

and multiplication alone, which does not remain a true proposition when — « is

put in place of i.

§3. FURTHER DEDUCTIONS: USE OF NUMERICAL OPERATORS.

Multiples of an element. Use of integral numbers as coefficients.

Theorem 21, and Definition. [-41, 2.] If r/ is any element of the

system, then the elements

a, a + a,
_
a + a + a, a + a + a + a, • • •

belong to the system, and are called the multiples of a. In order to secure a

• For a sketch of the higtory of the Imaginary quantities, see H. Hankel, loc. cit., p. 71.
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convenient notation for these successive multiples, \vc employ, in the manner

explained below, the familiar sequence of Arabic numerals,

1,2,3,...;

no knowledge of these symbols is presupposed, however, beyond a rule by

which, when any one of them is given, the next following one can be written

down, the rule being of such a nature that each new symbol is different from

all that have gone before it. Thus :

the element a is denoted by la

;

the element la + a is denoted by 2a
;

the element 2a + a is denoted by 3«

;

and so on ; in general,

the element va + a is denoted by v'a,

where v' is the numeral next following p. In this way the element fia, where

fi is any Arabic numeral, is delined, and is called the fj."' multiple of a.

The Arabic numerals are called, in mathematical language, the positive

integral numbers, or the j)osilive integers, and when used in the manner

just described they are called coefficients ; thus, in ixa, the number /x is the

coefficient of the element a.

It must be noticed that iJ.a is not a j)ioduct in the sense of postulate

Ml, since the number ytt is merely a symbol of operation and not an ele-

ment of the system a, b, c, . .In particular, the positive integral

nnmb' \ must not bc confused with the unit-element, 1, of theorem 5.

The statement of many theorems in regard to multiples of an element

can be much simplified by the aid of the following conventions in regard to

the positive integral numbers.

If X, is any positive integer, then the integer next following \ is called

the successor of \, and denoted by X + 1 ; the successor of X + 1 is denoted

by \ + 2 ; the successor of X. + 2 is denoted by X + 3 ; and so on ; in general,

the successor of X + i- is denoted by X + v', where v' is the successor of v ;

that is,

(X + z/) + 1 = X + (I/+ 1).

In this manner, we can define, by successive steps, a positive integer
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for any two positive integers X and /* ; this integer \ + /i is called the sum,

X plus fi.

Further, if X is any positive integer, X + X is denoted by 2X ; 2X + X

is denoted by 3X; and so on ; in general, j^X -f X is denoted v' X, where v'

is the successor of v; that is,

v\ + \ =z (v + l)X;

moreover, to complete the series, we set IX = X.

In this manner we can define, by successive steps, a positive integer

(jX (written also /i X X or fx-\)

for any two positive integers X and /i ; this integer /xX is called the product,

fi times X.

Finally, if X come.s later than /^ (or /n earlier than X) in the succession

of positive integers, we write X > ;it (or /x < X)

.

From these definitions it follows, by "mathematical induction," that the

sums and products of the positive integral numbers obey the associative,

commutative, and distributive laws for addition and multiplication, and also

the laws of cancelation (proof on p. 37) ; in other words, the xi/stem of posi-

tive integers, loit/t addition and mullipJication defined as above, is itself an

example of a system satisfying posttdates A\-Ab, M\-Mb, so that all the

definitions and theorems of §2 can be ai)pHcd to it.' Thus, the system

contains a unit-element (namely the nun:ber 1), but no zero-element; the

remainder, X — /*, will exist in the system when and only when \> fx.

The fact that the number-system satisfies the ten postulates is incidental,

however, in the present discussion, since the numbers appear merely as

symbols of operation, not as elements of the class a, b, c, whose

properties are primarily under consideration.

The usefulness of these definitions concerning the positive integral

numbers is shown by the following theorems concerning multiples of an ele-

ment of the original system

:

Theorem 22. \A\, 2.] If a be any element of the system, and X, /i

any positive integers, then

Xa + fiff zz: (X + n)a and X(/ua) = (X/ii)«.

(Proof on p. 38.)

The first part of this theorem shows that the sum of any two multiples

of a is again a multiple of «, and that X« + fxa — /xa + \a ; that is, the
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sy.item of muUiples of any element a is a dosed system with respect to addition,

and obeys the commutative laiv. Hence we may use the notion of subtraction

within this sj'steni (theorems 11-12), so that we have, on the basis of postu-

lates A\, 2, 3 alone :

Theorem 23. [^1, 2, 3.] If \ > /^, tlion

\a — fia — (X — fj.)a.

(Proof on p. 39.)

The negative integral numbers and the zero-number.

Concerning multiples of opposite elements, we have :

Theorem 24. [yll, 2, 3.] If « is any element which has an opposite, then

m(- «) = - (/^«)'

where n is any positive integer. Hence, any element of this form ma}' be

denoted without ambiguity by — /ics. (Proof on p. 39.)

This theorem suggests the use of the composite s3'mbol — /i as an operator

analogous to the operators already used ; such a symbol — ix, where /i is any

positive integer, is called a negative integral number, or a negative integer.

Moreover, we may define sums and products of positive and negative integers

as follows (the purpose being to devise such definitions that the formulae in

theorem 22 shall remain true when X or /i or both are negative) :

/^N/N /. ^ . , ^ , ^f^ — M when X > II,

(-X) + (_M) = -(X 4- M) ;
X + (-^) = (-^) + X

={_(^_;),,henX<^;

(- X) X (- ^) = X;ii ; \x (- At) = (- X) X M = - (V) •

These definitions are only partially satisfactory, however, since there is

no meaning attached to a sum of the form X4-(—X). To obviate this diffi-

culty, we introduce a new operator called the zero-number, 0, with the con-

vention that

Oa. z=

for every element a, and the following definitions as to sums and products

:

X+(-X) = 0; X + = 0+X = X;(-X)4-0=0 + (-X)=:-X; 0+0 = 0;

XXO = OXX = 0; (_X)X0=0X(-X) = 0; 0X0 = 0.

This zero-number, 0, which is merely an operator, must be carefully distin-

guished from the zero-element, 0, of theorem 1,

^
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The positive and negative integers, together with the zero-number, make

up the system of all integnil numbers. The system of all inteyral numbers is,

incidentally, another example ofa system which satisfies all the postulatesA\-Ab

,

Ml-Mb ; it contains a unit-element (the number 1), and a zero-element (the

number 0) ; and subtraction is always possible. The usefulness of these defi-

nitions is shown by the following theorem :

Theorem ib. [^41, 2, 3.] If « is any element which has an opposite,

then the formula' of theorem 22 hold true when \ and jx are any integral num-

bers (positive, negative or zero).

Sitbmultiples and rational fractions of an element. Use of the rational

numbers as coefficients.

The following theorems depend on the postulate of non-circularity (-44),

which has not hitherto been required.

Theorem 26. [^1, 2, 3, 4.] It' fia = (where /i is any positive inte-

ger), then = 0. In other words, if any nmltiple of a is the zero-element,

then a itself is the zero-element. (Proof on p. i}9.)

Corollary. If
\

'^t fi, and a ^ B, then \a ^^ fia. In other words, if a is

not the zero-element, then every nmltiple of a is different from every other

multiple of a; this justifies the name "law of non-circularity" propostd for

postulate -.44.

In view of this theorem, we notice that every system Avhich satisfies pos-

tulates Al-AA, and contains more than a single element, must be infnite.

Theorem 27, and Definition. [AA, 2, 3, 4.] If ff is any element, and

f* any positive integer, then there cannot be more than one element x such

that /tx = a ; if there is any such element, it is called the fi"^ submultiple of a,

and denoted by -, or alu. ; that is,

'^0 = "

In particular, a/1 — a.

Corollary. If \ ^ i^.,
and a ^t 0, then ajX ^t aju.

Theorem 28, and Definition. \_A\, 2, 3, 4.] If «/^ exists, then

0-
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where X. and /i are any positive integers. Any element of this form is called

a rational fraction of a, and may be denoted without ambiguity by -a. In

* X la.
particular, -a = \a, and -« = -. (Proof on p. 39.)

J. fA, fX

Corollary. If X/y,, = fxX^, then -a ——a.

This theorem 28 suggests the use of the composite symbol - as an operator

analogous to the operators already used ; such a symbol -, where X and fi are

any positive integ(?rs, is called tijiom'tive rational nuniher.

In order to make these symbols as useful as possible, we agree, in the

first place, to set - = X, and to call - = — wherever X/Uj = /^Xj ; with this
1 IJ. fA.^

convention, if ^ and tj are any positive rational numbers, we shall have ^a — rja

whenever ^ — -q.

Further, we define the sum and product of two positive rational numbers

by the formulfe

X Xi Xni -\- /iXi X Xj XXi

these definitions reducing to the previous definitions for positive integers when

M = Ml = 1-

Finally, we agree to write - > — whenever X/x, > fj-X,.

M Ml

With these definitions of addition and multiplication, the system of posi-

tive rational numbers is, incidentally, a system which satisfies all the postulates

AV-Ab, 3/1-J/5 ; it contains a unit-clement (the number 1), but no zero-

element ; the remainder, ^ — t), exists in the system when and only when ^ > ij

;

but division is always possible.

The usefulness of these definitions is apparent from the following theorems

(compare theoi'ems 22-23) :

Theorem 29. [Al, 2, 3, 4.] If « be any element all of whose submul-

tiples exist, and if f , i] are any positive rational numbers, then

!« + 7]a = (t + >!)(' and ^{v(') = {h)('-

The first part of this theorem shows that the sum of any two rational

fractions of a is again a rational fraction of a, and that ^a + r^a — tja + ^a ;

that is, the system of rational fractions of any element a is a closed system
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with respect to addition, and obeys the commutative law {A^) . Hence we

may use the notion of subtraction within this system (see theorems 11-12),

so that we have, on the basis of postulates ^11, 2, 3, 4 alone

:

Theorem 30. [-41, 2, 3, 4.] If a is an element all of whose submulti-

ples exist, and if f , »; are positive rational numbers such that ^ > 77, then

frt - V" = (f - '/)"•

The negative rational numbers.

Concerning rational fi-actions of opposite elements we have :

Theorem 31. \_A\, 2, 3, 4.] If a is any element which has an oppo-

site and all its submultiplos, then

where - is an ,' positive- raLiuii;il .iu.nl)er. Ilcnc, any cK'Ui. nt of this form

X
may be denoted without ambiguity b}' a.

This theorem suggests that we add the symbol to our list of opera-

toi'9 ; such a symbol — -, where X and
fj.

are any positive integers, is called a

nejative rational number. The negative rational numbers bear the same rela-

tion to the positive rational numbers that the negative integers bear to the

positive integers. The positive and negative rational numbers, together with

the zero-number, constitute the set of all rational numbers, and the sum and

product of an}' two rational numbers are defined by precisely the same conven-

tions as in the case of all integers (page 17.)

The system of all rational numbers , icith addition and nmltiplicaiion defined

in this way, is still another example of a system which satisfies all the postulates

AI-A5, Ml-Ma; this system contains a unit-element (the number 1), and

a zero-element (the number 0) ; every element has an opposite, and every

element except zero has a reciprocal, so that subtraction and division are

always possible, except division by zero.

The usefulness of these definitions is shown by

Theorem 32. [^1, 2, 3, 4.] If a is any element which has an oppo-

site and all its submultiples, then the formulte of theorem 22 hold true when X

and fi are replaced by any rational numbers (positive, negative, or zero).
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Farther theorems on the use of numerical coefficients.

Theorem 33. [^1, 2; M\, 4.] If \, /j, are any positive integers,

and a, b any elements, then

(\a) (/ii) = (\fj,)ab.

Theorem 34. [^1, 2, 3 ; M 1, 4.] Iff, rj are any integral numbers,

and a, b any elements which have opposites, then

aa){vb) - {^v)ab.

Theorem 35. [^11, 2, 3, 4 ; 31 1, 4.] If f, t) are any rational num-
bers, and a, b any elements which have opposites and submultiples, then

aa){r,b)=.{^V)ab.

(Proofs on p. 39.)

To avoid further repetition, the following theorems are stated at once for

the general case, in which f, rj and stand for any rational numbers, and a,

b, X, y for any elements which have opposites and submultiples :

Theorem 36. [^1, 2, 3, 4.] If Ox = Oy and 6 z^ Q, then a; = y ; and

if |a = ria and a ^t fl, then | = t?. (Proof on p. 40.)

Theorem 37. [J.1, 2, 3, 4.] If fa = II, then either f = or a = 0.

(By theorem 3t).)

Theorem 38. [vll, 2, 3, 4, ,5.] f^i- + '>) = fa + f6. (Proof on p. 40.)

Theorem 39. [yll, 2, 3, 4, 5.] f(fl -(!')= f« - f6. (Proof on p. 40.)

Theorem 40. [^1, 2, 3, 4; Ml, 2, 3, 4, 5.] If r, :^ and 6 7^ 0,

then

|a ^ /|\ a

r}b \vJb'

(Proof on p. 41.)

Powers of an element.

Use of the integral numbers as exponents.

Theorem 41, and Definition. \_Ml, 2.] If a is any element of the

system, then the elements

a, a X a, a X a X a, a X a X a X a, • • •
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belong to the system and are called the jjowers of a.

The element a is denoted by a'

;

the element (i^ X a is denoted by a^ ;

the element «'' X a is denoted by a*

;

and so on ; in general,

the element «" X « is denoted by «"',

where v' is the positive integer next following v. In this way the element rr,

where /i is any positive integer, is defined, and is called the /x"' power of a.

The positive integers when used in this manner are called exponents ; thus, •

in ff", the positive integer /^ is the exponent of the element a.

By the use of the definitions for the sum and product of two positive

integers, we have :

Thtorem 42. [3/1, 2.] If « is any element of the system, then

rt* X a>' — a^^" and {a^y — a"'',

when \, fi are any positive integral numbers (compare theorem 22).*

The first part of this tlieoreni shows that the product of any two powers

of a is again a power of a, and that «'' X «'" = a" X a^ ; that is, the system of

powers of any element a is a dosed si/slevi icitli respect to multiplication, and

obeys the commutative law. Hence we may use the notion of division within

this system (theorems 17-18), so that we have, on the basis of postulates

Ml, 2, 3 alone :

Theorem 43. [J/1, 2, 3.] If X > /x, then aV^r = a^--*. (Compare

theorem 23).

Concerning powers of reciprocal elements, we have

:

Theorem 44. [J/1, 2, 3.] If a is any element which has a recip-

rocal, then

0'-
«''

where fi is any positive integer.

These theorems suggest the use of the negative integral numbers and

the zero-number as exponents, operating on any element which has a reciprocal

;

thus, if we agree to define

*The proofs of tlieorems 41-45 are Himilar to the proofs of theorems 21-25, and may

well be left to the reader.
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<(-'' = — and d" = 1,

we shall have :

Theorem 45. [-M\, 2, 3.] If a is any ck'ineiit which ha.s a reciprocal,

then the formuliv of theorem 42 hold true when \ and /x are anj integral

numbers (positive, negative, or zero).

On tlie use of rational exponents.

The analog}' between these theorems 41-45 on powers and the

theorems 21-25 on multiples suggests the possibility of carrying the par-

allel one step further and introducing also the use of rational numbers as

exponents. The attempt to do this is complicated, however, by the fact

that we have, in general, no law for multiplication corresponding to the

law of non-circularity for addition (see theorem 26) ; that is, if a and /i are

given, there may well be more than one element x such that x>^ = a. If,

therefore, we detinc a^*^ to signify an element x such that .r" = a, we must
understand that we are introducing a sj'nibol whose value is, in general,

not uniquelij determined. Such nnxltiple-vulued symbols can indeed be used,

as is well known, to good advantage, and their properties can be made to

conform, approximately, to the laws of theorem 42 ; but the study of them
would carry us beyond the limits of the present paper.

Further theorems on the use of numerical exponents.

Theorem 4(5. \_M 1, 2, 3, 5.] If the requisite reciprocals and quotients

exist, then

{ahr = ''" b- and (^^-j = ^,

when /i is any integer (positive, negative, or zero).

Since the rational numbers form. a system which satisfies the postulates

A\-A^, M\-Mb with respect to their addition and multiplication, the defini-

tions of a", a-", and «" will apply eciuiillvwhen the element a is replaced by any
rational number ^(provided f ^t in f""). Using this notation we have :

Theorem 47. [A\, 2, 3, 4 ; Ml, 2, 3, 4.] If the requisite reciprocals

exist, then
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when n is any integer, and ^ any mtional number (provided ^ ^ when /a is

negative).

Concerning a power of a sum of two terms, we have the following im-

portant theorem, known as the binomial theorem for positive integral ex-

ponents :

Theorem 48. [-^41, 2 ; M\, 2, 4, 5.] If fi is any positive integer, then

(a + br = rt" + Y
«""' * + ^^r P """' ^'

i • ^ • o

(Proof by induction.)

Concerning the subtraction of two i)Owcrs, we have :

Theorem 49. [^1, 2, 3, 5 ; 311, 2, 4, 5.] If a - 6 exists, then

a^+ i _ 6" + ' = (« - b) (rt" + a^-i 6 4- a""'' 6'^ + • • • + aZc^-i + i"),

where ^t is any positive integer.

Equations of the /x"' degree in x.

A conditional equation of the form

CoX" + Cia-"-! + f^a,-"-' + • • • + c^_i X + c; = 0,

where /x is any given positive integer, and Co(?t 0), Cj, c^, • • •, c^ are any

elements of the system, is called an equatio7i of the /i"^ degree in x ; any

element x which satisfies the condition is called a root of the equation ; the

left-hand side of the equation is called a jjoli/iiomicd of the fi"' degree in x
;

and the given elements Cq, Ci, • • • , c^ are called the coefficients of the poly-

nomial (or of the equation.)

Lemma. If x — a\s a root of an equation of the /a"' degree in x, then

the equation can be written in the form

(x — «) X (,a polynomial of next lower degree in x) = 0,

provided the system is one in which subtraction and division (except division

by 0) are always possible.

Theorem 50. [^1, 2, 3, 4, 5 ; M\, 2, 3, 4, 5.] If the system is one

in which every equation of the ft'* degree has at least one root, then every

such equation can be written in the form

(x - «i) (x - a^) (x - ag) • • • (x - u^) = 0,
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Each of the elements «,, a^, • • • a^ will be a root of the equation, and the

equation cannot have any other roots. (Proof by successive applications of

the lemma.)

Redundancy of the commutative law for addition.

It remains to prove, as stated above, that the commutative law for addi-

tion (postulate -45) is redundant when the list of postulates is taken as a

whole.

Theorem. The commutative law for addition,

a -\- b = b -^ u,

is a consequence of postulates A\, 2, 3 ; M 1, Sj or 82, 4.

This theorem was given first by H. Hankel in 1867 ; the proof is here

modified so as not to require the existence of a unit-element.

Proof. Let c be any element different from (by postulate I). Then

(a+6)(c+c) = («+6)c+ {a-\-b)c = ac+ bc+ac+bc, by 3/4i and Mi^;

but also

(a+b)(c+c) = a(c+c)+b(c+c) = ac+nc+ bc+ bc, by iW4^ and Jl/4i

;

hence

and therefore

Hence

and therefore

In order to use MS^ instead of JTf.^j in the proof, we should have merely

to start with (c+c)(a+b) instead of (a+ b){c+c).

§4. SPECIAL LAWS OF ADDITION AND MULTIPLICATION,

PAKTICULAR TYPES OF ELEMENTARY ALGEBRA.

The postulates A\-A!y, M\-Mb may be satisfied, as we have seen, by

many different systems; for example, tiie system of positive integers, with

addition and multiplication defined as on page 15, or the system of all rational

numbers, with addition and multiplication defined as on page 20,

Vac^-bc = ac-\-bc-\-bc. by .43i,

bc-\-ac = uc+bc. by A\.

{b+a)c= (« + 6)c. by Mii,

b-\-a = a-rb. by Mi^.
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Two Systems satisfying tliese geiiei-al laws are said to be isomoi'pJiic with

respect to addition and multiplication when the following conditions are satis-

fied :

1) the elements of the two systems can be brought into one-to-one corres-

pondence (so that each element of one class is paired with one and only one

element of the other class, and reciprocally each element of the second class is

paired with one and only one element of the (irst class) ; and

2) this correspondence can be set up in such a way that whenever a and b

in one class correspond to a' and b' in the other class, then a + b will corre-

spond to a' + b', and a X b will corresjjond to a' X b'

.

Two systems satisfying the general laws of §1, and isomorphic with each

other, are said to belong to the same type of rdgebra; two systems satisfying

the same general laws, but not isomor{)hic with each other are said to belong

to different types of algebra. The various sj'stems of numbers employed as

operators in §2 aftbi'd examples of several difterent types of algebra.

Two algebras of the same type are formally identic<d as far as addi-

tion and nuiltii)lication are concerned ; that is, they cannot be distinguished

by any properties expressible in terms of addition and multiplication alone.

The set of postulates A\-Ab, M\-Mb is clearly not sufficient to de-

teraiine any one type of algebra, since all these postulates can bo satisfied

by various systems, non-isomorphic with one another. In order to obtain,

for each of the more important types of elementary algebra, a set of pos-

tulates which shall completely determine that type, we add certain further

postulates, given in the present section. Each of the resulting sets of jios-

tulates determines comjAetely one type of algebra, in the sense that any two

systems which satisfy all the postulates of that set will be isomorphic with

respect to addition and multiplication.

A set of postulates which is sufficient to determine a particular type of

S3'stem in this manner has been called a categorical set of postulates.* This

» The earliest set of postulates having this character Is probably the set of five postulates

for the system of natural numbers with respect to succession, given by G. Peano in 1891.

[Rivistn di Matematica, vol. 1 (1891), p. 87; Formulaire de Mathematiques, vol. 2 (1898), p. 2.]

Other sets of postulates of the same kind, for the systems of positive real, positive rational,

and positive integral numbers with respect to addition, were given by the present writer in 1902.

[^Trans. Amer. Math. Soc, vol. 3, pp. 264-284, especially theorems II, II', III", on pp. 277,

282, 283. See also ibid., vol. 6(1905), p. 41.] The name categorical was introduced in 1904

by O. Veblen, who has made important use of the notion in his sets of postulates for geom-

etry. [Trans. Amer. Math. Soc, vol. 5 (1904), p. 346.]
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name has been criticised by Couturat as inappropriate ;* but whether or not

the name lias been happily chosen, the notion itself is of fundamental impor-

tance. Any categorical set of postulates includes, by implication, all the

properties of the type of sjsteni which it determines, as far as they concern

the operations in question ; thus, in case of a categorical set of postulates for a

type of algebra every proposition which is expressible in terms of addition

and multiplication alone must either be a consequence of the postulates of such

a set, or else be in contradiction with them. This is not true of a non-

categorical set of postulates, like the set AI-A5, 311-M5 ; for example, the

proposition "there is an element z in the system, such that z + z = z" is

neither deducible from these postulates nor in contradiction with them ; it is

true in some systems which satisfy the postulates, and false in others.

The object of the present section is, then, to give a sufficient, or categorical

,

set of postulates for each of the types of algebra here considered. (Other

types of algebra—like the algebra of all real numbers, or the algebra of all

complex numbers— require for their characterisation properties which in-

volve the notion of order, and are therefore not discussed in the present

paper.

)

The new postulates all concern the existence, in the system, of elements

satisfying certain conditions, and are therefore designated by the letter E.

The algebra of positive integers and the algebra of positive integers with zero.

The first of the special laws which we add to the general laws of § 1 is

the following

:

Postulate E\. There is a tinit-elemenl in the system (see theorem 5)

.

All the multiples of this unit-element will exist in the system, by pos-

tulates ^11, 2, and may be called the positive integral elements of the system.

By theorems 22 and .33, these positive integral elements form a closed system

with respect to addition and multiplication (see postulates A\ and Ml) ;

hence, to obtain a sufficient, or categorical, set of postulates for this type of

algebra, we have only to add the following postulate

:

Postulate F. There are no elements in the system besides those required

by the other postulates.

* L. Couturat, Let principes des Mathematiques, 1905, p. 169.
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That is, the algehru ofpositive integers is completely determined by pos-

tulates

A\, 2; Ml, 2, 3, 4; El; F.

Every S3'stem which satisfies these eight conditions will be formally identical'

with the system of positive integers, as far as addition and multiplication are

concerned. (The other postulates of §1 become redundant after ^1 and i^

are added.)

Further, if we add

Postulate E2. There is a zero-eJement in the system (Age theorem 1),

then the postulates

Al, 2, 3; Ml, 2, 3, 4; El, 2; F

completely determine the algebra ofpositive integers with zero. Every system

which satisfies these ten conditions will be formally identical with the

system of positive integers with zero, as far as addition and multiplication are

concerned.

This postulate F may be called, for lack of a better name, the law of

non-superfluity.* The "other postulates" referred to mean, of course, in

each case, the other postulates of the set considered in that case.

The algebra of all integers.

Besides postulates El and E2 we may add also

Postulate E'i. The opposite of the unit-ehmenl exists in the system

(see theorem 8).

When this postulate is added, the system will contain 1, B, and — 1, and

all the multiples of 1 and — I ; these elements form a closed system with re-

spect to addition and umltiplication (by theorems 25 and 34), and maybe
called the integral elements of the system.

Hence the algebra of all integers is completely determined by postulates

Al, 2, 3; Ml, 2, 3, 4; ^1, 2, 3 ; F.

* This postulate is much less vague tlmn Hilbert's "Axiom of Completeness" (Axiom der

VoUsiandigkeit). whicli is appireotly intended to serve a similar purpose. [See Jahresbericht

der Deutscheii MalhfrmUiker-Vi'reiidguug, vol . 8 (lilOil), part 1, p. 184 ] Hilbert does not use

the notion of isamorphism, huwiver, and his "Axioms of geometry," as a matter of fact, do

not form a categorical set.
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Every system which satisfies these eleven conditions will be isomorphic

with the system of all integers, with respect to addition and multiplication.

The algebra ofpositive rationals, and the algebra ofpositive rationals with zero.

We now introduce another postulate,

Postulate ^4. All the subjimltiples of the unit-element exist in the

system.

By virtue of this postulate, all the rational fractions of the unit-element

(theorem 28) will exist in the system, and may be called the positive rational

elements of the system. Moreover, these elements form a closed system with

respect to addition and niultiplication, by theorems 29 and 35.

Hence, the algebra of the positive rationals is completely determined by

postulates

A\, 2, 3, 4; Ml, 2, 3, 4; El, 4; F.

The isomorphism of any two systems which satisfy these eleven conditions

is established by means of the fact that the sum and product of two elements

of the form - I and— \ are wholly determined by the numbers X, /i, X^, and ^j

(see theorems 29 and 35).

Similarly, the algebra of positive rationals with zero is completely deter-

mined by the postulates

Al, 2, 3, 4; Ml, 2, 3, 4 ; E\, 2, 4; F.

Here, and below, postulate M5 becomes redundant when the later postu-

lates are added.

The_ algebra, of all rationals.

The algebra of all rationals (positive, negative, or zero) is completely

determined by postulates

Al, 2, 3, 4; Ml, 2, 3, 4; El, 2, 3, 4; F.

Every system which satisfies these thirteen conditions will be formally

identical with the system of all rational numbers, with respect to addition and

multiplication. This type of algebra is the simplest type in which the four

opei-ations of addition, multiplication, subtraction, and division (except divi-

sion by zero) are always possible.
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It will be noticed that in all the types of algebra so far considered, the

isomorphism between two systems of the same type can be set up in only one

way, since the unit-elements of the two systems must be made to correspond.

The algebras of complex quantitieft.

We now consider postulates E\, 2, 3, with

Postulate Eb. There is a pair of imaginarij units in the system (see

theorem 20).

An imaji^inary unit, i, defined by the equation i'^ = — 1, cannot be an in-

tegral or rational element of the system, because if it were, then i'^ could not

be — 1. Hence, hy A\, the addition of this postulate Eh introduces a new

class of elements of the form ^1 + rji, where ^ and t) are integral or i-ational

numbers. Elements of this form are called complex elements of the system,

with integral or with rational coefficients. No further elements are introduced

by multiplication, however, since

(^1 + vi){^il + vil) = (1^1 - ';'/i)l + {bh + vh)i-

Hence a definite type of algebra, which may be called the algebra oj

complex quantities with integral coefficients is completely determined by

postulates

Al, 2, 3 ; Ml, 2, 3, 4 ; ^1, 2, 3, 5 ; F.

In a similar way another tj'pe of algebra, called the algebra of complex

qtiaiitities loith rational coefficients is completely determined by postulates

^11, 2, 3, 4 ; Ml, 2, 3, 4 ; El, 2, 3, 4, 5 ; F.

It will be noticed that in the case of either of the complex algebras, the

isomorphism between two systems of either tj'pe can be set up in two ways,

on account of the ambiguity in the choice of the element i (see theorem 20).

An example of a system which satisfies all the postulates for the algebra

of complex quantities with integral [or rational] coefficients is the class of all

ordered pairs of integral [or rational] numbers, (^, rj), with addition and

multiplication defined as follows :

(^l> '?l) + (^2. Vi) = (il + ?2. '?! + %),

(^1. Vl) X (?2, Vi) = (^ils - '7l'?2l ^lV2 + '71^2)-

Here = (0, 0), 1^(1,0),*= (0, 1) or (0, - 1), and (^, v) = |1 + vi-

The system thus constructed is called the system of ordi^iary complex numbers

with integral [or rational] coefficients ; the construction of some example of
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this kind is necessary to establish the consistency of the last two sets of

postulates.

The algebra of all algebraic quantities.

Any equation of the /*"* degree in x, in which the coefficients are integral

elements of the system, may be written in the form

\o x" + \i a;"-' + X., x**-'- + . . . + X^_i x + X^ • 1 = 0,

where Xo(7iO), Xj, • • • X^ are integral numbers ; such an equation is called an

algebraic equation with integral coefficients, and any root of such an equation

is called an algebraic element of the system.

It is easy to show that if x and y are algebraic elements, then x + y and

xy are also algebraic elements ; that is, the algebi-aic elements of a system

form a closed system with respect to addition and multiplication.*

Further, if the coefficients in any equation of the form

Co Xf' + Ci X"-! + C2 X''-2 + . . . + C^_i X + 6^.1 =

are algebraic elements, then all the roots of such an equation (in so far as they

exist in the system) are also algebraic elements.*

Hence, in order to obtain a system in which every such equation has a

root, we need to add mei'ely the following postulate :

Postulate JE6. Every algebraic equation of the /x'* degree with integral

coefficients has at least one root.

Then the postulates

A\, 2, 3, 4 ; Ml, 2, 3, 4, 5 ; ^1, 2, 6 ; F
determine completely a type of algebra called the algebm of all algebraic

quantities. All the other type.n of algebra which have been considered-in this

section are sub-algebras within this algebra of algebraic quantities.

In this algebra, the opposite of the unit-element, and all the submultiples

of the unit-element, exist (since the equations x + 1 = U and Xx — 1 = have

roots in the system) ; moreover, there is a pair of imaginary units, namely,

* For the proofs of these theorems, which are due to R. Dedekiqd (1877), and involve

merely an elementary knowledge of determinants, the reader is referred to F. Bachmann's
Zahlentheorie, vol. 5 (Allgemeine Arithmetik der ZahlenkOrper, 1905), pp. 3-6. Another me-
thod of proof, depending on elementary properties of symmetric functions, is given in Borel
and Drach's Theorie des nombres et I'algebre superieure, 1895, p. 184.
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the roots of the equation a;^ + 1 = fl. Hence all the postulates E\-E& are

satisfied.

This type of algebra is the simplest type in which the operations of addi-

tion, multiplication, subtraction, and division (except division by tiie zero-

element) are always possible, and in which every equation of the /n"' degree in

X (the coefBcients being any elements of the system) always has a root ; it

therefore forms a suitable stopping-place for the discussion in the present

paper.

The problem. of constructing an example of a system of this type is an

interesting one, into which we cannot enter here ;* the consisfenc;/ of th« pos-

tulates is usually established by the fact tiiat the algebra of algebraic (juantities

is a sub-algebra within the algebra of vectors described in the introduction.

§5. EXAMPLES OF SYSTEMS WHICH SATISFY SOME BUT NOT ALL OF THE

GENERAL LAWS OF §1. PROOFS OF INUEPENUENCE.

In this section we establisii the independence of the postulates Al-Ai,
Ml—Mb, by exhibiting, in the case of each of the postulates, a system which

satisfies all the other postulates, but not the one for which it is numbered.

No one of the postulates, therefore, is deducible from the remaining postulates;

for, if it were, then any system which possessed all the other properties would

possess this property also, which, as the examples show, is not the case.

The rules of combination in these pseudo-algebraic systems we denote by

® and 0, reserving the symbols + and X for use between numbers, in the

sense explained in §3. In describing each system, we must give : (1) the

class of elements considered, (2) the rule of combination called ©, and (3)

the rule of combination called G

.

List of the postulates q/" §1 {genei'ol laws).

A\. a ffi 6 in the system.

A2. (a B b) ® c = a S> (b ® c).

AS. (1) If a ® X ~ a ® >/, then x = _y.

(2) If X © a = y © n, then x = y.

Ai. If fj.x = fiy, then x = y.

\_Ah. a ® S = b ® a.]

*See £. Borel and J. Drach, Thenrie des nombres et I'alttebre superieure, 1896, p. 157. Foy

^n early statement of the problem, compare H. Hankel, loc. cit., 1867, §12.
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Ml. a Q b in the system.

M2. (a e b) Q c = a Q (b o c).

M3. (I) liaQx = aQy and a ® a :^ a, then x = y.

(2) ItxQa — yQu and a ® a ^ a, then x — y.

Mi. (1) a Q {b ® c) = (a Q b) © (a o c).

(2) (b ® c) e a = (b e a) ® (c q a).

Mb. a Q b = b Q a.

Examples of pseudo-algebras.

The examples which prove the independence of the several postulates are

the following, all of which are constructed out of numerical classes with which

the reader has already been made familiar in §3.

All except A\. The class of all rational numbers, with ® and o defined

as follows : a ® b — a -\- b whenever a -\- b — Q ; otherwise, a ® b not in the

class, a 6 = ab, where nb denotes the ordinary product.

All except A2. The class of all rational numbers, a ® b = 2(a + b).

a Q b = ab.

All except A^^ and A6. The class of positive rational numbers.

a ® b = a. a o b = ab.

All except A?)^ and Ab. The class of positive rational numbers.

a ® b = b. a Q b — ab.

All except A\ and ^3.3. The class of all rational numbers, a ® a = a

but \i a ii b, then a ® b = 0. a & b — ab.

Ail except AA. A class consisting of nine elements, 0, 1, 2, •, 8,

with ® and defined by means of the following tables

:

® 1 2 3 4 5 6 7 8

1 2 3 4 6 6 7 8

1
1

2 4 5 3 7 8 6

2 1 5 3 4 8 G 7

3 6 7 8 1 2

4 8 6 1 2

5 7 2 1

6 3 4 5

7 6 8

8 4

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 1 6 8 7 3 5 4

3 4 7 1 8 2 6

4 2 3 5 6 1

5 8 2 4 6

6 4 1 7

7 8 8

8 8

For example, 8©7 = 7©8 = lj 307=;708=^?
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This system (which is a Galois Field of order 3*) satisfies also all the

existence postulates E\, 2, 3, 4, 5. Thus,

= 0, 1 = 1, -1=2, t = 4or8.

All except 3/1 . Tiio class of all rational numbers. a ® h = a -\- h.

a Q h = ab when nb — 1 ; otherwise a Q b not in the ckiss.

All except 3/2. The class of complex numbers of the form ae^ + he.^,

where a and b are any rational numbers, and the "units," e^ and e.^, are con-

nected by the following "multiplication table :"*

Ci Ci = Ci ; Cj 62 — Cj e^ — — e.^ ; Cj e^ — — e^.
^^ ^^ _ ^^

- e-i - ej

All except MBi and 3/5'. The class of all complex numbers of the form

aci + icj where a and b are positive rational numbers or zero, and *

6j 61 — e^'f €1 C2 — ^1 > ^'2 ^1 — ^2 ' ^2 ^2 — ^2'

All except 3/3j awtZ 3/5. The same class as the preceding, with

ei 62

ei ei ei

^2 ^2 62

ei ^2

ei ei ^2

^2 ei ^2

Cj 6j — 6j J 6] 62 — 6-2 » ^2 ^1 — ^1 ' ^2 ^2 — ^2'

^K except 3/3i and ilf82. The class of all complex numbers of the form

aei + be^y where a and b are any rationjil numbers and *

6*j €| — Gj ; ^1 ^2 — ^2 ^1 — ^2 ' ^2 ^2 — ^2

ei «i

ei ei ^2

e.. e-. ^"2

*It is understood that the "sum" of two complex numbers ae\ + be^ and' a'ei + ft'es is

(ff -|- a')ei + (6 + h')p-i their "product" is aa'e\^i + aftViPj + ha'e-2ei + hb'e-ye-i, where the ex-

pressions eici, «!#», es*"! and e^a are to be simplified, in any given case, iiccording to the "multi-

plication-table" adopted in that case. In any such system of complex numbers, botli the

distributive laws (3H) will clearly be satisfied; moreover, the associative and commutative

laws for multiplication (M2, Mb) will hold throughout the system whenever they hold for the

'multiplication-table" of the e's.
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All except Mii and Mb. The class of all couples of the form (a, 6),

where a and b are positive rational numbers, with ® and G defined as follows :

(«i, 6|) © (a.2, ^2) = («i + «2> ^1 + ^3) ;

(a,, 61) (a-i, h.i) — {a^a-i, a^bo, + b^).

All except M4^i and J/o. The same class as the preceding, with ffi

defined in the same way, and defined as follows

:

(aj, 61) (a^, 62) = {a^a-i, b^a^ + b.^).

All except M^i and Mi^. The class of all rational numbers.

a ® b = a + b. aQb = a + b+l.

All except Mb. The class of all complex numbers of the form ae^ + be^

+ ce, + de^, with the following "multiplication table" for the "units" Ci, e.^, Cg,

and 64

:

e. ^2 ea ''4

ei ei 6-2 e-i 64

e-i ej -^1 e* -63

e-i 63 -64 -e, 62

e* 64 e-i -62 -ei

This is the system of quaternions with rational coefiicients.

Thus the independence of all the postulates of §1 (except ^5) is

established. The redundancy of postulate Ab is proved on page 25.

§ti. PROOFS OF THEOREMS IN -§§2-4.*

The proofs of a number of theorems in §§2-4, were postponed to the

present section, to avoid interruption in reading.

Page 9.

Proof of theorem 1. Suppose z -\- z = z and z' + z'--z'. Then

z + z + z' = z + z' + z', hy Al, 2 ; hence z + z' = z' + z', by ASi, and there-

tore 2 = z', by AS^.

' I am indebted to Mr. P. W. Bridgmaa and Mr. G. C. Evans for assistance in verifying

the demonstrations in tliis and the preceding section.

/?
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Proof of theorem 2. If ffl + = 0, then a-fO + n = a + B and

+ B + a = ffl + a, by Al, 2 ; hence a + = a, by A3.i, and + o, = a, by

ASi.

Conversely, if a + x = a or x + a = a, then a + x + x = a + x or

X + X \- a = X + a, hy Al, 2 ; hence, x + x = x, hy A3.

Proof of theorem 3. By ^ll, 4,, n X = a X (H + 0) = (a X 0)

4- (a X D), whence « x = 0. by theorem 1 ; again, by Ml, 4,^, x «

= (0 + D) X a = (D X a) + (0 X a), whence x « = 0, by theorem 1.

Proof of theorem 4. If a x b = 0, then a X 6 = a x 0, by theorem 3 ;

hence, if a :^ B, then b - n, by Jf3i. Or thus: if a x b — 0, then a x b

= X *. by theorem 3 ; hence, if b ^ B, then a = 0, by JfS.^.

Proof of theorem 5. Suppose uu — u and u' u' = ?«', with ?< :^ and

m' 7t 0. Tlien uuu' = uh'u', by J/1,2; hence uu' = u'u', by 3/3i, and

therefore u = k', by Md^.

Proof of theorem (i. If 1x1 = 1. then «xlxl=«xl and

lxlx«=lx«. by i¥l, 2 ; hence ax 1 = a, by M3.j,, and 1 x « = a,

by iTf3i, since I :^ B.

Pages 11-12.

Proof of theorem 7. If az = a or xa = a, then orxa; ~ ax or xxa =: xa,

by iV/1, 2 ; hence xx = x, by J/3, so that x = or 1. But x :ft B, since if

X = 0, then a = 0, by theorem 3 ; therefore x = 1.

Proof of lemma to theorem 8- If a + b = 0, then b+a + b — b + B
— h = B + b, by Al, 2, and theorem 2 ; hence b + a = B, by A'df—Theoreui

8 follows from this lemma by A'6.

Proof of theorem 9. By 3/4i and theorem 3, a(— b) + ab z= a(— b + b)

= a X = 0, so that a(— b) and ab are opposite elements ; again, by i^f4g and

theorem 3, (— a)b + ab =(— a + a) b = B X b z= B, so that (— a) b and ab

are opposite elements. Hence, further, (— a) X {— b) = —[(— a) X 6]

= — [— («i)] = «6, by the corollary to theorem 8.

Proof of theorem 10. By A2, 5, (- a) + (- J) + (« + J) == (_ a)

+ a + {-b) + /y = + = 0, so that (- a) + (- b) and (a + b) are op-

posite elements.

Proof of theorem 12. First, [a + (6 — c)] + c = a -ir \_{b — c) + c]

= a + i = [(a -I- 6) _ c] + c ; hence a + (6 — c) = (a + i) — c, by A3«_. The
second equation is proved in a similar way by adding 6 + c to both sides,

and the third equation by adding b.
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Proof of theorem 13. By ^1^41, ac + a (6 — c) = a [c + (6 — c)]

= ab =^ ac + {ab — «c) ; hence a{b — c) — ab — ac, by 31^1. Similarly for

the second part of the theorem.

Proof of lemma to theorem 14. If a ^ B and ab = I, then aba = I x a

= a X I, whence ba = I, by il/Sj. l{ b g!: B and ab - I, then bab — b X I

= I X b, whence 6a = i, by 3/32. If both a and b are 0, then in any case

ab = ba.

Proof of theorem 14. If ay = 1 and ay' = I, then, by the lemma,

y' =1 X y' =^ya X y' ^y X ay' = y X I =y.
Pages 13-14.

Proof of theorem 15. a(-\ = I = (- «) (— ) = a f - (-^)1 ,

by theorem 9 ; hence - = — ( j, by J/Sj.

Proof of theorem 16. -XrX«i=XaX^Xi'^=iXl=l,
a a I)

so that - X T and ub are reciprocal elements.
a b

^

Proof of theorem 18. Multiply the five equations by be, b, be, bd, e/d,

respectively ; then use MS.
Proof of theorem 19. Multiply the equations by bb', and reduce by M^ ;

then use 313, since b, and b' must be difterent from 0.

Proof of theorem 20. First, in any system containing the elements 1

and — 1, every element will have an opposite, since, if a; is any element, then

(~ I) X X will exist in the system, by 3/1, and (— l)x x — — x, by theorems

9 and 6 ; moreover, if xx — — 1, then ^,— *) X (— a;) = — 1, by theorem

9. Secondly suppose xx = — I and yy =z — I ; then xx —,yy = H, whence

(x + y){x — y) — D, by 3/4, 5, and therefore either x + j/ = B or x — y = B,

by theorem 4 ; that is, a; = — y or a; = y.

Page 1(5.

Proof of the laws of addition and multiplicationfor the positive integers.

1) (a+/3)+Y=a+(^+>y).

This is true when 7 = 1, by definition. Also, if it is true when y = v,

then it will be true when 7 = v', where v' is the successor of v ; for,

(a+j3)+v'=[{a+0)+v-] + l = [a+(/3+i')] +l=a+[(/3+^)+ l] ^a+(^+p').
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Hence, putting successively v = 1, 2, 3, • • -, we see that the formula is true

when 7 is any positive integer. This metiiod of proof is called induction

from 7 = i; to 7 = v', when i/' is the successor of v ; or briefly, induction on 7.

2) Lemma. a+1 = l+a. By induction on o

:

3) a+^ = /8+a. For, by induction on /3

:

a+v'={a+v)+l= (v+a)-\-l = v+(a+l) =: v+(l+a) = {v+l)+a = v'+a.

4) a(8+y) = afi+ay. For, by induction on a:

•''(/S+7) = v{^+y) + (8+y) = v^+vy+^+y = v^+^+vy+y = v'0+v'y.

5) (/34-7)a = ^a+ya. For, by induction on 7:

(y9+i/)a= [(/3+«')+l]a = (0+v)a+a — 0a+va+a ^ ^a+v'a.

6) ("/3)7 = a(^y). For, by induction on a:

{t/fi)y = (vyS+/9)7 = (.'/8)7+/37 = v(^y)+0J = «''(/87)-

7) Lemma. la = a-l For, by induction on a

:

1j^'= l(i/+l) = liz+M = I..1 + 1 = j/'-l.

8) oy3 = fia. For, by induction on a

:

v'^ = v^+fi = ^.v+0.1 = 0(v+l) = ^v'.

9) Lemma. If a ?t /8, then either a = /8+^ or /3 = a + ^, where f is

some positive integer. For, if a > 0, then a will be found in the secjuence

/3 + 1, y3 + 2, y8 + 3, • • • ; and if /3 > a, then /3 will be found in the sequence

+ 1, a + 2, a + 3, • • ..

10) Lemma, a + /S ^t a. For, a + ^ will be found in the sequence

a+l,«-f-2,o + 3, •••, and each of these numbers is different from a.

11) If a 4- I = a + 7;, then f = 7;. For, if | i^ j;, then we should have

1 = J/ + ?, say, whence a + (t) + ^) = a + rj, or (a + rj) + ^ = (a + i)),

which is impossible.

12) If a| = arj, then ^ = r). For, if ^ :^ >], then we should have

^ = r] + ^, say, whence «(?; + f) = a??, or arj -\- a^ = ar), which is impossible.

Proof of theorem 22. By definition, Xa + a = (X + l)a ; hence Xa + fia

= (X + fi)a, by induction on fi, since Xa + v'a — Xa + (va + a) = (Xa -f- va) + a

. (X + v)a + a = [(X + J/) + 1] rt = (X + v')a.
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Again, 1 (m«) = (l/i)«; hence X(/ia) = (\ai)«, by induction on \, since

v'(/jia) = i'(fia) + fia — {vix)a -\- fia = (vfi + /*)« = (v'/x^a.

Pages 17-19.

Proof of theorem 23.

(\a — na) + fjid = X(i = i(\ — /x) + fj,'\n = {X — /m) a + fia ; hence

\a — fiu = (\ — fj,)a, by AS^.

Proof of theorem 24. By definition, 1(— a) + 1« = ; hence fi(— a)

+ fia — B, by induction on fi, since

v'(— a) + i/a = (— «) + [v(— a) + m] + n = {— a) + U + a = U

;

therefore /t(— «) and fia are opposite elements.

Proof of theorem 26. If there is a zero-element, 0, then every multiple

of II is D ; that is, when fi is any positive integer, fiB = 11, whence the theorem,

by ^4.

Proof of the corollary. Suppose X.rt = fin, and \ > fi; then \ = fi + ^,

so that (fi + |)« = fid, whence fiu + f« — fia ; therefore ^a — 0, by theorem

2, and hence a — 0, by theorem 26.

Proof of theorem 28. fi[ X r^\~\ = x[fiC-\~\= Xa = ji [— ~\
;

hence X( - ) = — , by Ai.

Proof of theorem 29. Put f = -, 77 = — ; take the (/ayni)* multiple of
fi fii

both sides of the equation, and use theorem 27.

Page 21.

Proof of theorems 33-35. Let X, fi be any positive integers. We
prove first that a(tib) = fi{uh) ; thus, rt(l-6) = l-(rti), and by induction,

«(i/'6) = a{vh + fj) = a{vb) + ab = v{ah) + nb = p'(ab),

where v' is the successor of v. Then it follows that (Xa)(^fib) = (Xfi)(ab) ;

for, (l-a)(fib) — (l-fi)(ab) ; and by induction,

(^i/a) (fib) = (va + rt) (fib) = (va){fib) -f a(fib) = (vfi)(ab) + f-{ab)

;= (i^/x + fi) ab z^(^v'fj,)(ab).
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To prove that { - ((\ (-^ b) (~ = —\ {nb) , take the (/i/Ai)"' multiple of

both sides. The proof for negative coefficients follows from theorem 24 and

theorem 9.

Proof of theorem 36. Let X, /n bo any positive integers.

1) If \x = \i/, tlu'ii X — ;/, by Ai.

If ^x =
^ y, then XX =(/x ^y = /.Q x) = ^Qy) = (^ ^) .y = Xy,

and therefore * = y as above.

therefore a; = y as above.

2) If Xa = fin, then X = /x, by theorem 26.

If - « = — rt, then /i.Xrt = fi.fi, \-(i] =fifj,il —u) = fi-XM, and therefore
M Ml \l^ J \ft'\ J

u,,X — wX] as above ; that is, - = — .

M /*i

If ( — -\ a = {— —J «, then >/ = — <i, and therefore = — as above ;
•

V /*/ \ /*!/ M Ml M Ml

hence = ^

.

M Ml

The proof of theorem 37 follovirs at once from theorem 36.

Proof of theorem 38. Let X, /u. be any positive integers.

Clearly, l(a + 6) = \a + 16 ; hence X(« + 6) = Xrt + X6 by induction,

since v'{a + 6) = v{a + 6) + (« + i) = w* + ^6 + « + 6 z:; m + a + i/6 + 6

= v'a + i/6, where i/ is the successor of v.

Further,- (a + 6) = - « H— b, since the /i"* multiple of each side is

X(a + 6) or Xa + X6.

X
Finally, ( \ {a \- b) = ( j a + ( j6, by the aid of theorem 10.

Proof of theorem 39. ^(a - 6) + |6 = |(a - 6 + 6) = ^« = (^a - ^6;

+ |6 ; hence ^(a —b) = |« — |6, by A?).^.
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Proof of theorem 40.

<'") (S)
=f" = (•'!) ('D = ('')(!•;>'"«. frl s'.-^

«..

since r^h i:. B.

The proofs of theorems 41-45 are shnilar to the proofs of theorems 21-

25, and need not be given here in detail.

Page 24.

Proof of lemma to theorem 50. If a; = a is a root of the equation

V + CiX"-! + C2.X^-2 + • • • + C^_tX + C^. 1 = 0,

then

co^*" + Ciffl"
-^ + c/f-* + • • • + cv_i« + c^- 1 = 0;

hence, by subtraction, the given equation may be written in the form

00(05^ — «") + Ci(a;''-i — rt"-!) + c2(.<;''-2 — «"--) + . . . + c^_i(a; - «) = 0,

each term of which, by theorem 49, is divisible by a; — a.

APPENDIX 1.

The following postulate holds in all the types of algebra which we have

considered in this paper

:

Postulate El . If x ^ y, then there is nither an element v such that

X = 1/ + V, or an element w such that y —x + iv.

In the first case, v— a — b ; in the second, w —b ~ a (compare theorem

11)-

If we add this postulate E 1 io the list of general laws in §1, then pos-

tulates 44 and 31i may be replaced by the following simpler postulates, A 4'

andil/3':

Postulate A^'. If a ^ S, then fia -^ 0, where fia is any multiple ofa

(see theorem 21).

This is a modified form of the law of non-circularity.

Postulate Mi'. Ifa^S and b jt S, then ab jt U.

This is the law of the zero-product (compare theorem 4).

The deduction of postulate AA from Al, 2, 3, 5 and El is as follows :

We are to prove that if fix = fiy, then x = y. Suppose x -^ y, and that



42 HUNTINGTON (October

X = y + V, hy El. Then fix = fiy + fiv, by theorem 38 tor positive integers ;

whence /iv = 0, by hypothesis and theorem 2, so that t> = B, by Ai'. There-

fore X =y, by theorem 2. — Similarly if ?/ = a: + to.

The deduction of postulate MZ^ from A\, 2, 3, J/1, 3', 4i, and U7 is as

follows :

We are to prove that if nx = ni/ and a -^ B, then x — y. Suppose x ^ y,

and that x = y + v, by El. Then ax = ay + av, by J/4i. whence rtv = 0,

by hypothesis and theorem 2, so that r = 0, by MZ' (since « ^t 0) . There-

fore X — y, hy theorem 2. — Similarly h' y —x + w.

The deduction of Ji3.2 follows in like manner from ^1, 2, 3, M\, 3', 4jj,

and ^7.

Examples.

An example of a system which satisfies ^1 —Ab and 3/1 —Mb, but not

^7, is the system of all positive rational numbers > 2, with addition and mul-

tiplication defined in the usual way.

An example of a system which satisfies ^ 1, 2, 3, 4, 5 and il/1, 2, 3', 4, 5,

but not 3/3, is the system of all complex numbers of the fonn «e' + be", or

(rt, b), where a is zero or any positive rational number, and b is zero or a posi-

tive rational > 1, with the following "multiplication table" for the units :

e"e' = e"

This system contains a zero-element, 0= (0, 0),and a unit^element,

I = (1, 0). To show that it does not satisfy 3/3, note that (0, 2) o (4, b)

— (0, 18) while also (0, 2) e (3, 6) = (0, 18). Moreover, as was to be ex-

pected, it does not satisfy El ; for example, if n = (2, 7) and b = (3, 6),

then neither a — b nor b — a exists in the system.

The existence of this system shows that the set of postulates in § 1 is

"weakened"* when 3/3 is replaced by 3/3', since 3/3 cannot be deduced from

3/3' without the aid of an additional postulate, like El.
An example of a system satisfying A\, 2, 3, 4', 5 and 3/1, 2, 3, 4, 5, but

not Ai, would also be interesting ; I have not, however, been able to find an

* The notion "weaker" seems to me to be applicable rather to a set of postulates than to a

single postalate.

e' e"

e'

e"

e' e"

e" e"
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example of this kind. It therefore remains an open question whether the set

of postulates in § 1 is really "weakened" when Ai is replaced by A4:'.

APPENDIX 2.

It may be interesting to note here, somewhat more in detail than in the

text, what can be done with postulates Al, 2, 3 ; 3/1, 2, 3 without the aid of

the distributive laws for multiplication.

Lemma 1. If « x = D or D X « = 0, then « x = i X «.

For, if «0 = D, then BaBa = BBa, whence Ba = B, by MS^ ; and again,

if Bn = 0, then aBaB = aBB, whence aB = B, by M3i.

Lemma 2. H a X B = n or B x a = ", then « x D = D X «•

For, if ((B = a, then aBa = aa, whence Ba — a, by Md^ ; and again, if

Da = a, then aBa = aa, whence aB — a, by Mi^.

Theorem A. In any system which satisfies A\, 2, 3; 3/1, 2, 3, if we

assume in regard to the multiplicative property of 0, merely that

0X0 = 0,

then either u x ^ — '^ X d— ^ ft)r every element a, or else a x ^ — ^ X. <^i'= <^

for every element a.

For, since DO = 0, we have xBBa = xBa ; therefore, by 3/32, if a;0 ^
for any single element x, then 0« = a for every element a. Hence the theo-

rem, by lemmas 1 and 2.

Theorem B. In any system which satisfies A\, 2, 3; 3/1, 2, 3, if

cX0 = or Oxc = for any single element c, not or 1, then a X B
— B X a =B for every element a.

Proof: If cB — 0, then ccBa = clr«, whence 0a = (for, if Ba ^ 0, then

cc = c, by 3/3.2, ^^^ therefore c = or 1, by theorem 8) ; hence the theorem,

by lemma 1.

Theorem O. In any system which satisfies A\, 2, 3; 3/1, 2, 3, if

ex = c or Oxc = c for any single element c, not 0, then « x = X «

= a for every element a.

Proof: If cO = 0, then cBBa = cBa, whence fla = a, by 3/3i ; hence the

theorem, by lemma 2.
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Examples.

The following three systems, all of which satisfy A\, 2, 3, 4, 5 and Ml,

2,3, 5, but not J/ 4, Avill illustrate these theorems. In each of the systems

there is a zero-element, namely = 0.

Example 1. The class of all even integers, with addition defined in the

usual way, and multiplication defined as follows :

aoO = OQa = a; otherwise a o b — ab.

In this system, the equations ffl©O = 00« = are true when and only

when a = B. There is no unit-element.

Example 2. The class of all positive integers and zero, with r? ® S =
a + b, and « © 6 defined as follows

:

a Q \ = \ Qa= a; otherwise « o 6 = rr, + i 4- 2.

In this system, there is a unifr-element, namely 1 = 1, and the equations

n0O=n©« = O are true when and only when a = I.

Example 3. The class of all positive integers and zero, with a ® b =
a + b, and a e b — n + b + I.

In this system, the equations a© = 0© a=0, and also the equations

« = © rt = «, are false for all values of «. There is no unit-element.

It should be noticed that all these systems possess the property that a

product is never zero unless at least one of its factors is zero.

Harvard UHiVERSrrr,

Cambridgb, Mass.
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