fQA
154
H8

UC-NRLF

\$ (15143

THE FUNDAMENTAL LAIVS OF ADDITION AND MILITIPLICATION IN ELEMENTARY ALGEBRA

By Emward V. Huntington

PLTCE, BIN CENT:

आாா

THE FUNDAMENTAL LAWS OF ADDITION AŃD MULTIPLICATION IN ELEMENTARY ALGEBRA*

By Edward V. Huntington

CONTENTS.

INTRODUCTION.

Elementary algebra may be regarded, for the purpose of the present paper, as a body of propositions concerning the sums and products of numbers; * these propositions are not independent, but can all be deduced from a few fundamental propositions, or axioms, which are accepted as self-evident properties of number, just as the propositions of geometry can all be deduced from a few fundamental propositions, or axioms, which are accepted as selfevident properties of space.

The primary object of this paper is to present a list of fundamental propositions for algebra, from which, on the one hand, all the other propositions of algebia ean be deduced, and in which, on the other hand, no supertluous items are inchoded,-a list, in short, which is sufficient, and free from redundancies.

The first propositions which suggest themselves for this purpose are the ten "general laws" numbered $A 1-A$), $M 1-1 / 5$, in $§ 1$; all these laws will be recognized as familiar and obvionsly true propositions coneerning numbers.

The next step is to sce what propositions follow from these laws by logical deduetion. But here the question at once arises: How ean we be sure that our deduction is rigorous? How can we be sure that we do not cmploy, in our reasoning, some other properties of numbers besides those expressly stated in the axioms? The only way to avoid this danger is to think of our fundamental laws, not as axiomatic propositions about numbers, but as blemk forms in which the letters n, b, c, etc. may denote any objects we please and the symbols + and x any rulcs of combination $\dagger \dagger$ such a blank form will become a proposition only when a definite interpretation is given to the letters and symbols -indeed a true proposition for some interpretations and a false proposition for others. (Thus, the blank form " \quad t $+b=b+u$ "

[^0]is a true proposition if a and b signify numbers, and + the ordinary addition of numbers; but it is a false proposition if $"$ and b signify rotations of a plane about various axes perpendicular to it, and + the succession of two such rotations.) The deductions made from such blank forms must necessarily be purely formal, and hence will not be affected by the tronblesome connotations which would be sure to attach themselves to any concrete interpretation of the symbols.

From this point of view our work beeomes, in reality, much more general than a study of the system of numbers; it is a study of uny system which satisfies the conditions leid down in the generul luxes of §1.* As amatter of fact, there are many such systems, all of which are usually included under the general name of algebra. Thus, there are the various diflerent systems of numbers-the positive integral numbers, the rational numbers, the complex numbers, ctc., -all of which, when + and \times are defined in the ordinary way, satisfy all these laws. Then there is the system of points (or vectors) in a plane, with their "sums" and "products" defined as in Argand's diagram (see the end of this introduction). Another striking example is the system of all rational numbers, with the "sum" of " and l d defined as $a+b+1$ and their "product" as $(l)+(\because+b)$; \dagger a brief computation will show that this strange system also satisfies all the laws of §1.

Every system which has the properties stated in the fundamental laws will have also all the properties formally deduced from those laws. The system of natural numbers, with ordinary addition and multiplication, appears, therefore, as merely a special case of the general class of systems whose properties are here studied.

The object of the paper may now be more precisely stated in the following form: Given a cluss of elements with two rules of combination, what conditions must such " system sretisfy in order to le formully equiralent to one of the systems of ordiner!y clyelnce? The first conditions which we impose are naturally the ten "general laws" numbered $A 1-A 5,3 / 1-M 5$, in $\S 1$; but these laws are to be regarded no longer as "axioms," since they are merely blank forms, not in themselves either true or false, but rather as "postulates," because we

[^1]"demand," arbitrarily, that the system considered shall conform to these conditions.*

It appears at once, however, that there are many different types of elementary algebra (for example the algebra of the positive integers, the algebra of the rational numbers, the algebra of vectors, etc.), and that the ten general laws of $\$ 1$ are not sufficient to determine any particular type. We therefore. add, in $\S 4$, a list of special laws (postulates $E 1-E 6$), which serve to distinguish the various types from one another. This $\S 4$ thus completes the main object of the paper. Special attention may be called to the discussion of the notion of isomorphism between two systems, and the notion of a sufficient, or categorical, set of postulates for a particular type of algebra (see page 26), which are of fundamental importance in this connection.

Finally, in $\S 5$, the independence of the general laws is established, so that we may be sure that the list contains no redundancies. The method for establishing the independence of a set of postulates consists in exhibiting, in the case of each postulate, an example of a system which satisfies all the other postulates of the set, but not the one in question. \dagger These systems may be called pseudo-algebras, since they fail to be true algebras in respect to some single item in the specifications. \ddagger

Incidentally, the paper contains a rigorous development of the rational number-system, starting from the sequence of the natural numbers. The various kinds of numbers are introduced primarily as operators, to indicate repeated addition, repeated multiplication, etc., performed on the elements of the origiual system; but rules of combination are defined among these operators in such a way that they become themselves examples of systems which satisfy all the laws of $\$ 1$. Moreover, all the examples used in $\S 5$ are constructed out of material offered by these number-systems, so that no part of the paper (except the introduction, and the proof of the final paragraph in §4) presupposes any knowledge of mathematics whatever, beyond the ability to recite the familiar sequence of natural nmmbers: $1,2,3$, etc.

[^2]The signs " $=$ " and " \neq " are used to denote equality and inequality, respeetively; two elements are said to be equal when either can replace the, other in every proposition in whieh it oecurs.

It is needless to add that the paper contains no new theorems in so old a subject as elementary algebra; the only part of the paper which has any elaim to originality is $\S 5$, containing the proofs of independence.

For bibliograplieal referenees, the reader is referred to the Transactions of the American Mathematical Society, vol. 3 (1902), p. 264 ; vol. 5 (1904), p. 288 ; vol. 6 (1905), p. 209 ; to H. Hankel's Theorie der complexen Zahlensysteme (1867) ; to Stolz and Gmeiner's Theoretische Arithmetik (1902) ; and to articles in the Encyclopüdie der mathematischen Wissenschaften.

Illustrative example.
In order to have before the reader a concrete example of a system which satisfies all the postulates, we eite at onee the familiar geometrie example of the ordinary complex quantities, or vectors in the plane (Argand's diagram). In this system the class of elements considered is the elass of all the points in the plane, including a special point O, called the origin, and another speeial point U, whose distance from O is ealled the unit-distance.

The point $A+B$ is defined as the point arrived at by starting from A and taking a step equal in length and direction to the step from O to B.

Fig. 1.

Fig. 2.

Fig. 3.

The point $A \times B$ is defined as the point whose "angle" (from $O U$) is the sum of the "angles" of A and B and whose "distance" (from O) is the product of the "distances" of A and B. Here if a and b are the distances of A and B respectively, then the "product," x, of a and b, is to be constructed geometrically from the proportion $x: a=b: u$, where u is the unit-distance (see figure 3).

With an elementary knowledge of plane geometry, including the properties of sinilar triangles, one ean readily show that this system satisfies all the postulates $A 1-A 5, M 1-M 5$, in $\S 1$, and also the "existence-postulates" $E 1-E 5$, in $\S 4$; the proof for $E 6$, however, is more difficult.
[The "product" of two distances, a and b, with respeet to the unit-distance μ, may also be defined as follows: In the speeial case in which a and b are commensurable with u, say $a=(\kappa / \mu) u$ and $b=(\lambda / \nu) u$, their product is defined as $(\kappa \lambda / \mu \nu) u$. In any case, there are sequenees of commensurable distances which approach a and $/ /$ as limits:

$$
a=\lim \left[\lambda_{1} \frac{u}{2}, \lambda_{2} \frac{u}{2^{2}}, \lambda_{3} \frac{u}{2^{3}}, \cdots\right], \zeta=\lim \left[\mu_{1} \frac{u}{2}, \mu_{2} \frac{u}{2^{2}}, \mu_{3} \frac{u}{2^{3}}, \cdots\right] ;
$$

then the produet of a and b is defined as the limit of the sequenee

$$
\lambda_{1} \mu_{1} \frac{u}{2^{2}}, \quad \lambda_{2} \mu_{2} \frac{u}{2^{4}}, \quad \lambda_{3} \mu_{3} \frac{u}{2^{6}}, \cdots
$$

If this definition appears less simple than the geometric definition given above, it may be remembered that the properties of similar triangles, on which the geometric construction depends, are usually established by the considera-

- tion of limits of infinite sequences of precisely this character.]

§1. the general laws of addition anil nulthrlication.

We consider a class of elements, denoted by a, b, c, ete., and two rules of combination, called addition $(+)$ and multiplieation (X); and upon this system we impose the following conditions, expressed in the postulates numbered I, A1-A5, M1-M5.

The consistency of these postulates is shown by the examples given in the introduetion and in $\S 3$; their independence will be established by the examples given in $\$ 5$.

Any system which satisfies these postulates $A 1-A^{5}, M 1-M 5$ is said to obey the general laws of elementury algebra as regards addition and multiplieation. Various special types of systems of this kind will be distinguished by means of further postulates in $\S 4$.

In order to exclude the obviously trivial eases of an cmpty class and a class containing only a single element, we adopt, first of all,

Postulate I. The class contains at least two elements.
This postulate will be assumed without further mention throughout the paper.

The laws of addition.
Postulate A1. If a and b are elements of the class $(a=b$ or $a \neq b)$, then $a+b$ is likewise an element of the class, uniquely determined by a and b in their given order, and called the "sum, a plus b."

The operation of finding $a+b$ when a and b are given is called "addition ;" the clements a and b are called the "tcrms" of the sum $a+b$.

Any system which satisfics this postulate $A 1$ may be called a closed system with respect to addition, since the successive addition of any number of elements does not take us outside the system. When sums of threc or more elcments arc considcred, parentheses are employed with obvious significance, as in $[(a+b)+c]+d$, etc. It should be noticed, however, that as far as postulate $A 1$ is concerned, $a+b$ is not necessarily the same element as $b+a$ (sec postulate $A 5$).

Postulate A2. Throughont the system,

$$
(a+b)+c=a+(b+c) .
$$

This is the associative law for addition.* In view of this law, parentheses may be removed or inserted at pleasure in a sum of any number of terms.

Postulate A3. (1) If $a+x=a+y$, then $x=y$.
(2) If $x+a=y+a$, then $x=y$.

These may be called the laws of cancelation for addition. \dagger Either (1) or (2) is deducible from the other by the aid of the commutative law for addition (see postulate A^{5}), but so many theorems can be proved from $A 1,2,3$ without the aid of that law that it has seemed worth while to state both parts of $A 3$ in this manner.

Postulate A4. If $\mu x=\mu y$, where μ is any positive integer, then $x=y$.
This postulate will be used first in connection with theorem 26 ; the notation, which indicates repeated addition, will be explained in theorem 21. The postulate may be called the law of non-circularity, since, as we shall see

[^3]in theorem 26, it prevents a repeated summation from returning, so to speak, into itself. (For a "wcakcr" postulate, whieh can bo used, under certain conditions, in place of postulate $A 4$, see appendix 1.)
[Postulate A5. Throughout the system,
$$
a+b=b+a .]
$$

This is the commutative law for addition.* This postulate is placed in braekets, beeause it will prove to be dedncible from $A 1,2,3$, with the aid of some of the laws of multiplication, and is therefore redmendant when the list of postulates is taken as a whole (see page 25.)

The laws of multiplication.

Postulate M1. If a and b are elements of the class ($a=b$ or $a \neq b$), then $a \times b$ (written also $a \cdot b$ or simply $a b$) is likewise an element of the cluss, uniquely determined by a and b in their given order, and called the "product, a times b."

The operation of finding $a \times b$ when a and b are given is ealled "multiplication;" the clements a and b are ealled the "fuetors" of the product ab. Parentheses are used as in addition.

Postulate M2. Throughout the system,

$$
(a \times b) \times c=a \times(b \times c)
$$

This is the associative law for multiplication. In vicw of this law, parentheses may be removed or inscrted at pleasure in a produet of any number of faetors.

Postulate M3. (1) If $a x=$ ay and $a+a \neq a$, then $x=y$.
(2) If $x a=y a$ and $a+a \neq a$, then $x=y$.

These are the laws of cancelation for multiplication. Either (1) or (2) is deducible from the other by the aid of the commutative law for multiplication (postulate M5) ; both parts arc inchaded, however, for the sake of the deductions which can be made from $M 1,2,3$ withont the aid of M5. The restriction " $u+a \neq a$ " may be written " $a \neq \mathbb{I \prime}$ " after the definition of the zeroelement is obtained, in theorem 1. (For a "weaker" postulate whieh can be nsed, under certain cónditions, in place of postulate $M / 3$, see appendix 1.)

[^4]Postulate M4. Throughout the class,

$$
\begin{aligned}
& \text { (1) } a(b+c)=a b+a c, \text { and } \\
& \text { (2) }(b+c) a=b a+c a .
\end{aligned}
$$

These are ealled the distributive laws * for multiplication with respeet to addition. Either (1) or (2) is dedueible from the other by the aid of M5; both parts are included, howerer, for the same reason as in the ease of postulate M3.

Postulate M5. Throughout the system,

$$
a \times b=l \times a .
$$

This is the commutative law for multiplication. Unlike the commutative law for addition, this postulate is independent of all the preeeding postulates.

These ten postulates, $A 1-A 5, M 1-M 5$, are the general laws of addition and multiplication in elementary algebra. The immediate eonsequenees of these laws are developed in the next seetion.

§2. DEDUCTIONS FROM THESE LAWS.

Seetions 2-3 eontain the most important of the deduetions whieh can be drawn from the postulates $A 1-A 5, M 1-M 5$. The preeise postulates on which the proof of eaeh theorem depends are stated in brackets after the number of the theoren; to avoid interruption in reading the paper, the proofs themselves, whenever needed, are colleeted in $\S 6$ below.

> The zero-element.

Tlieorem 1, and Definition. [A1, 2, 3.] It follows from postulates $A 1,2,3$ that there eannot be more than one element z sueh that $z+z=z$; if there is any such element, it is ealled the zero-element of the system, and denoted by $\mathbb{\square}$; that is,

$$
\mathbb{I I}+\mathbb{I}=\mathbb{U} .
$$

(Proof on p. 35 ; on the use of the symbols $\mathbb{\square}$ and 0 , see $\S 3$, below.)
This definition of the zero-element, which is suggested by Benjamin Peiree's definition of an "idempotent" element, \dagger is somewhat simpler than the more usual definition, whieh is based on the property here stated as theorem 2.

[^5]Theorem 2. [A1, 2, 3.] If there is a zero-element, then

$$
u+\mathbb{d}=u \text { and } \mathbb{\pi}+u=a
$$

for every element u; and conversely, if $u+x=u$ or $x+u=\|$, then $x=\mathbb{a}$. (Proof on p. 36.)

On aecount of this additive property, the zero-element is often called the "modulus" of addition.*

Theorem 3. $[A 1,2,3 ; M 1,4$.$] If there is a zero-element, \mathbb{O}$, then $a \times \mathbb{I}=\mathbb{I}$ and $\mathbb{I I} \times \cdot \boldsymbol{\ell}=\mathbb{I}$
for every clement a. (Proof on p. 36.)
This theorem expresses the multiplicative property of the zero-element.
Theorem 4. $\left[A 1,2, .3 ; M 1,3_{1}\right.$ or $3_{2}, 4$.] If $a b=\mathbb{1}$ then either $a=\mathbb{I}$ or $b=\mathbb{I}$. In other words, a product $a b$ ennnot be the zero-element, unless at least one of its factors, ℓ or b, is the zero-element. (Proof on p. 36.)

This theorem is of eonsiderable importanee, and may be called the law of the zero product (compare appendix 1).

The unit-clement.

- Theorem 5, and Definition. [M1,2,3.] It follows from postulates $M 1,2,3$ that there cannot be more than one element u, different from the zero-element, and such that $u \times u=u$; if there is any such element, it is called the unit-element of the system, and denoted by 1 ; that is,

$$
\mathbb{1} \times \mathbb{1}=\mathbb{1} \quad(1 \neq \mathbb{I})
$$

(Proof on p. 36 ; on the use of the symbols $\mathbb{1}$ and 1 , see $\S 3$, below.)
Corollary. If $a \times a=\|$ and $~ \because \neq \mathbb{\square}$, then $\because=\mathbb{B}$.
This definition of the unit-element is due to B. Peiree (loc. eit.) ; the more usual definition is here given as theorem 6.

Theorem 6. [M1, 2,3.] If there is a unit-element, \mathbb{A}, then

$$
u \times \mathbb{1}=\imath \text { and } \mathbb{1} \times u=u
$$

for every element \because. (Proof on p. 36.)
On aceount of this property, the unit-element is often called the "modulus" of multiplication.

[^6]Theorem 7. $[A 1,2,3 ; M 1,2,3,4$.$] \quad Conversely, if a x=a$ or $x a=a$, and $a \neq \mathbb{A}$, then $x=1$. (Proof on p.36.)

Opposite elements. Subtraction.
Lemma. [A1, 2, 3.] It follows from postulates $A 1,2,3$ that if $a+b=\mathbb{I}$, then $b+a=\mathbb{I}$; henee we may speak of two elements as having a zero sum, without ambiguity in regard to the order of the terms, even before assuming the commutative law $A 5$. (Proof on p. 36.)

Theorem 8, and Definition. [A1, 2, 3.] Given any element a, there eannot be more than one element x such that the sum of x and u is $\mathbb{I I}$; if there is any such element, it is ealled the opposite of a, and denoted by $1-a$, or simply by $-a$; that is,

$$
a+(-a)=(-a)+a=\mathbb{I}
$$

Any two elements whose sum is the zero-element are called a pair of opposite elements.

Corollary. If there is a zero-element, then $-\mathbb{I I}=\mathbb{I I}$; and if a is an element whieh has an opposite, then $-(-a)=a$.

The opposite of an element u is commonly ealled the "negative" of a; it seems preferable, however, to reserve the term negative for use in the phrase "positive and negative elements." *

Coneerning the multiplieation of opposites we have:
Theorem 9. $\quad[A 1,2,3 ; M 1,4$.$] \quad If a$ and b are elements which have opposites, then

$$
(-a) \times b=a \times(-b)=-a b, \text { and }(-a) \times(-b)=a b
$$

(Proof on p. 36.)
The following theorems are the first whieh require the commutative law for addition (postulate $A 5$) :

Theorem 10. [A1, 2, 3, 5.] If a and b are elements whieh have opposites, then

$$
(-a)+(-b)=-(a+b)
$$

(Proof on 1, 36.)

[^7]Theorem 11, and Definition. [A1, 3,5.] Given any elements a and b, there cannot be more than one element x such tlat $a=b+x=x+b$; if there is any such element it is called the remainder, a mimes b, and denoted by $a-b$; that is,

$$
a=b+(a-b)=(a-b)+b
$$

The operation of finding $a-b$ when a and b are given is called "subtraction ;" the definition of $\mathbb{I I}-u$ in theorem 8 is a spccial case.

Theorem 12. [A1, 2, 3, 5.] If the remainders in question exist, then $a+(b-c)=(a+b)-c ; a-(b+c)=(a-b)-c$; and $a-(b-c)$ $=(a-b)+c$. Moreover, if there is a zero-element, then $a-\mathbb{I}=a$ and $u-a=\mathbb{I}$; and if $-x$ exists, then

$$
a+(-x)=a-x \text { and } a-(-x)=a+x
$$

(Proof on p. 36.)
Theorem 13. [A1, 3, 5; M1, 4.] If $b-c$ exists, then

$$
a(b-c)=a b-a c \text { and }(b-c) a=b a-c a
$$

(Proof on p. 37.)

Reciprocal elements. Division.

Lemma. [M1, 2, 3.] It follows from postulates $M 1,2,3$ that if $a b=1$, then $b u=1$; hence we may speak of two elements as having a unit produet, without ambiguity in regard to the order of the factors, even before assuming the commutative law M5. (Proof on p. 37.)

Theorem 14, and Definition. [M1, 2, 3.] Given any element a, there cannot be more than one element y such that the product of y and a is \mathbb{I}; if there is any such element, it is ealled the reciprocal of a, and denoted by $\frac{1}{a}$, or $1 / a$; so that

$$
a\left(\frac{1}{\prime \prime}\right)=\left(\frac{1}{a}\right) a=\mathbb{1}
$$

(Proof on p. 37.) Any two elements whose product is the unit-element are called a pair of reeiproeal elements.

Remari\%. In view of theorem 3, it is evident that if $a=$ dif , the no reciprocal of ℓ exists in any system that satisfies postulate $M 4$.

Theorem 15. [A1, 2, 3; M1, 2, 3, 4.] If a is an element which has an opposite and a reciprocal, then

$$
\frac{1}{-a}=-\frac{1}{a}
$$

(Proof on p. 37.)
The following theorems are the first which require the commutative law for multiplication (postulate M5) :

Theorem 16 . [M1,2,3,5.] If a and b are elements which have reciprocals, then

$$
\frac{1}{a} \times \frac{1}{b}=\frac{1}{a b}
$$

(Proof on p. 37.)
Theorem 17, and Definition. [M1,3,5.] Given any elements a and b, b not zero, then there cannot be more than one element y such that $a=b y=y b$; if there is any such element it is called the quotient, a divided by b, and is denoted by $\frac{a}{b}$, or a / b; so that

$$
a=b\left(\frac{a}{b}\right)=\left(\frac{a}{b}\right) b
$$

The operation of finding a / b when a and b are given is called "divisiou;" the element a is called the "numerator," and b the "denominator," of the quotient a / b. The special case in which the numerator is the unit-element agrees with the definition of $1 / a$ given in theorem 14 .

Remark. From theorem 3 it is evident that if $b=\mathbb{I}$ there is no (uniquely determined) element y such that $a=b y$; hence division by the zero-element is impossible in any system which satisfies postulate $M / 4$. On the other hand, if $b \neq \mathbb{I I}$, then $\mathbb{I} / b=\mathbb{I}$.

Theorem 18. [M1,2,3,5.] If the quotients in question exist, then $\frac{a c}{b c}=\frac{a}{b} ;\left(\frac{a}{b}\right) \times c=\frac{a c}{b} ;\left(\frac{a}{b}\right) / c=\frac{a}{b c} ; \frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d} ; \quad\left(\frac{a}{b}\right) /\left(\frac{c}{d}\right)=\frac{a d}{b c}$.

Moreover, if there is a unit-element, then $a / \downarrow=a$ and $u / a=1$. (Proof on p. 37.)

Theorem 19. If the required quotients and remainders exist, then :

$$
\begin{array}{ll}
{[A 1 ; M 1,2,3,4,5 .]} & \frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d} ; \\
{[A 1,3,5 ; M 1,2,3,4,5 .]} & \frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d}
\end{array}
$$

(Pronf on p. 37.)
The so-called imaginury units.
Theorem 20. [A1, 2, 3; M1, 2, 3, 4, 5.] In a system containing a unit-element and its opposite (1 and -1), if there is any element x such that $x \times x=-1$, then there will be another element, namely $-x$, having the same property ; but there cannot be more than two such elements. If there are two sueh elements, they are ealled the imuginury units (or better, the secondary units) of the system ; and denoted by i and $-i$; that is

$$
i \times i=-1 \quad \text { and } \quad(-i) \times(-i)=-1
$$

(Proof on p. 37.)
The term imaginary is a legaey from the eighteenth eentury, which has, unfortunately, become firmly fixed in mathematieal literature; the elements i and $-i$ are of course no more "imaginary" than any other elements which may exist in the system.*

It is a eurious fact concerning these imaginary units, that no distinetion can be made between them in terms of addition and multiplieation; that is, there is no true proposition eoncerning i, and expressible in terms of addition and multiplieation alone, which does not remain n true proposition when $-i$ is put in place of i.

§3. furtier deductions: use of numerical operators.

Multiples of an element. Use of integral numbers as coefficients.
Theorem 21, and Definition. [A1,2.] If a is any element of the system, then the elements

$$
a, \quad a+u, . u+u+u, \quad a+u+a+u, \cdots
$$

belong to the system, and are called the multiples of \because. In order to seeure a

* For a sketch of the history of the imaginary quantities, see H. Hankel, loc. cit., p. 71.
eonvenient notation for these sueeessive multiples, we employ, in the manner explained below, the familiar sequenee of Arabie numerals,

$$
1,2,3, \cdots ;
$$

no knowledge of these symbols is presupposed, however, beyond a rule by whieh, when any one of them is given, the next following one ean be written down, the rule being of sueh a nature that eael new symbol is different from all that have gone before it. Thus:

> the element a is denoted by $1 a$;
> the element $1 a+a$ is denoted by $2 a$;
> the element $2 a+a$ is denoted by $3 a ;$
and so on; in general,
the element $\nu \nmid+a$ is denoted by $\nu^{\prime} a$,
where ν^{\prime} is the numeral next following ν. In this way the element μ, , where μ is any Arabie numeral, is defined, and is ealled the $\mu^{t h}$ multiple of a.

The Arabie numerals are ealled, in mathematieal language, the positive integral numbers, or the positive integers, and when used in the manner just deseribed they are called coefficients; thus, in μa, the number μ is the eoeffieient of the element a.

It must be notieed that $\mu \alpha$ is not a produet in the sense of postulate M, since the number μ is merely a symbol of operation and not an element of the system a, b, c, \cdots. In partieular, the positive integral numb- 1 must not be confused with the unit-element, l, of theorem 5 .

The statement of many theorems in regard to multiples of an element can be mueh simplified by the aid of the following eonventions in regard to the positive integral numbers.

If λ is any positive integer, then the integer next following λ is called the successor of λ, and denoted by $\lambda+1$; the suecessor of $\lambda+1$ is denoted by $\lambda+2$; the sueeessor of $\lambda+2$ is denoted by $\lambda+3$; and so on; in general, the sueeessor of $\lambda+\nu$ is denoted by $\lambda+\nu^{\prime}$, where ν^{\prime} is the suecessor of ν; that is,

$$
(\lambda+\nu)+1=\lambda+(\nu+1) .
$$

In this manner, we ean define, by sueeessive steps, a positive integer

$$
\lambda+\mu,
$$

for any two positive integers λ and μ; this integer $\lambda+\mu$ is ealled the sum, λ plus μ.

Further, if λ is any positive integer, $\lambda+\lambda$ is denoted by $2 \lambda ; 2 \lambda+\lambda$ is denoted by 3λ; and so on; in general, $\nu \lambda+\lambda$ is denoted $\nu^{\prime} \lambda$, where ν^{\prime} is the sueeessor of ν; that is,

$$
\nu \lambda+\lambda=(\nu+1) \lambda ;
$$

moreover, to complete the series, we set $1 \lambda=\lambda$.
In this manner we ean define, by snceessive steps, a positive integer

$$
\mu \lambda(\text { written also } \mu \times \lambda \text { or } \mu \cdot \lambda)
$$

for any two positive integers λ and μ; this integer $\mu \lambda$ is called the product, μ times λ.

Finally, if λ comes later than μ (or μ earlier than λ) in the succession of positive integers, we write $\lambda>\mu$ (or $\mu<\lambda$).

From these definitions it follows, by "mathematieal induction," that the sums and produets of the positive integral numbers obey the assoeiative, commutative, and distributive laws for addition and multiplication, and also the laws of eancelation (proof on p. 37) ; in other words, the system of positive integers, with addition and multiplication definerl as above, is itself an example of a system satisfying postulates $A 1-A 5, M 1-M 5$, so that all the definitions and theorems of $\$ 2$ can be applied to it.' Thus, the system eontains a unit-element (namely the nun:ber 1), but no zero-element; the remainder, $\lambda-\mu$, will exist in the system when and only when $\lambda>\mu$. The faet that the number-system satisfies the ten postulates is incidental, however, in the present diseussion, sinee the numbers appear meieiy ats symbols of operation, not as elements of the elass a, b, c, \ldots whose properties are primarily under consideration.

The usefulness of these definitions eoneerning the positive integral numbers is shown by the following theorems eoneerning multiples of an element of the original system :

Theorem 22. [A1,2.] If a be any element of the system, and λ, μ any positive integers, then

$$
\lambda a+\mu a=(\lambda+\mu) a \quad \text { and } \quad \lambda(\mu a)=(\lambda \mu) a .
$$

(Proof on p. 38.)
The first part of this theorem shows that the sum of any two multiples of a is again a multiple of a, and that $\lambda u+\mu u=\mu u+\lambda u$; that is, the
system of multiples of any element a is a closerl system with respect to addition, and obeys the commutative law. Hence we may use the notion of subtraction within this system (theorems 11-12), so that we have, on the basis of postulates $A 1,2,3$ alone :

Theorem 23. $[A 1,2,3$.$] If \lambda>\mu$, then
(Proof on p. 39.)

$$
\lambda a-\mu a=(\lambda-\mu) a .
$$

The negative integral numbers and the zero-number.
Coneerning multiples of opposite elements, we have:
Theorem 24. [A1, 2, 3.] If a is any element which has an opposite, then

$$
\mu(-a)=-(\mu a)
$$

where μ is any positive integer. Hence, any element of this form may be denoted without ambiguity by $-\mu \mu$. (Proof on p. 39.)

This theorem suggests the use of the eomposite symbol - μ as an operator analogous to the operators already used; such a symbol $-\mu$, where μ is any positive integer, is called a negative integral number, or a negative integer. Moreover, we may define sums and products of positive and negative integers as follows (the purpose being to devise such definitions that the formulre in theorem 22 shall remain true when λ or μ or both are negative):

$$
\begin{gathered}
(-\lambda)+(-\mu)=-(\lambda+\mu) ; \lambda+(-\mu)=(-\mu)+\lambda=\left\{\begin{array}{r}
\lambda-\mu \text { when } \lambda>\mu \\
-(\mu-\lambda) \text { when } \lambda<\mu
\end{array}\right. \\
(-\lambda) \times(-\mu)=\lambda \mu ; \quad \lambda \times(-\mu)=(-\lambda) \times \mu=-(\lambda \mu)
\end{gathered}
$$

These definitions are only partially satisfactory, however, since there is no meaning attached to a sum of the form $\lambda+(-\lambda)$. To obviate this difficulty, we introduce a new operator called the zero-number, 0 , with the convention that

$$
0 a=\mathbb{I}
$$

for every element a, and the following definitions as to sums and produets:

$$
\begin{gathered}
\lambda+(-\lambda)=0 ; \lambda+0=0+\lambda=\lambda ;(-\lambda)+0=0+(-\lambda)=-\lambda ; 0+0=0 \\
\lambda \times 0=0 \times \lambda=0 ; \quad(-\lambda) \times 0=0 \times(-\lambda)=0 ; \quad 0 \times 0=0
\end{gathered}
$$

This zero-number, 0 , which is merely an operator, must be carefully distinguished from the zero-element, $\mathbb{I f}$, of theorem 1 .

The positive and negative integers, together with the zero-number, make up the system of all integral mumbers. The system of all interfal numbers is, incidentally, another example of a system which satisfies rll the postulates $A 1-A 5$, M1-M5; it contains a mit-element (the mumber 1), and a zero-element (the number 0) ; and subtraction is always possible. The usefulness of these definitions is shown by the following theorem:

Theorem 25. [A1, 2, 3.] If ℓ is any element whieh has an opposite, then the formule of theorem 22 hold trie when λ and μ are any integral umbbers (positive, negative or zero).

Submultiples and ratiomal fructions of an element. Use of the rational numbers us coefficients.

The following theorems depend on the postulate of non-eireularity $(A 4)$, which has not hitherto been required.

Theorem 26. [A1, 2, 3, 4.] If $\mu \ell=\mathbb{I l}$ (where μ is any positive integer), then $a=\mathbb{a}$. In other words, if any multiple of a is the zero-element, then a itself is the zero-element. (Proof on p. 39.)

Corollary. If $\lambda \neq \mu$, and $a \neq \mathbb{\mathbb { }}$, then $\lambda \neq \mu a$. In other words, if a is not the zero-element, then every multiple of a is different from every other multiple of a; this justifies the name "law of non-eircularity" moposed for postulate $A 4$.

In view of this theorem, we notiee that every system whieh satisfies postulates $A 1-A 4$, and contains more than a single element, must be inf nite.

Theorem 27, and Definition. [A1,2,3,4.] If \because is any element, and μ any positive integer, then there cannot be more than one clement x sueh that $\mu x=a$; if there is any sueh element, it is callod the $\mu^{\text {th }}$ submultiple of a, and denoted by $\frac{a}{\mu}$, or a / μ; that is,

$$
\mu\left(\frac{a}{\mu}\right)=a
$$

In partieular, $a / 1=a$.
Corollary, If $\lambda \neq \mu$, and $a \neq \mathbb{I}$, then $a / \lambda \neq u / \mu$.
Theorem 28, and Definition. $[A 1,2,3,4$.$] If a / \mu$ exists, then

$$
\lambda\left(\frac{\ell}{\mu}\right)=\frac{\lambda \|}{\mu},
$$

where λ and μ are any positive integers. Any clement of this form is called a rational fraction of a, and may be denoted without ambiguity by $\frac{\lambda}{\mu} a$. In partieular, $\frac{\lambda}{1} a=\lambda a$, and $\frac{1}{\mu} a=\frac{a}{\mu}$. (Proof on p. 39.)

Corollary. If $\lambda \mu_{1}=\mu \lambda_{1}$, then $\frac{\lambda}{\mu} a=\frac{\lambda_{1}}{\mu_{1}} a$.
This theorem 28 suggests the use of the eomposite symbol $\frac{\lambda}{\mu}$ as an operator analogous to the operators already used; such a symbol $\frac{\lambda}{\mu}$, where λ and μ are any positive integers, is ealled a positice rational number.

In order to make these symbols as useful as possible, we agree, in the first plaee, to set $\frac{\lambda}{1}=\lambda$, and to eall $\frac{\lambda}{\mu}=\frac{\lambda_{1}}{\mu_{1}}$ wherever $\lambda \mu_{1}=\mu \lambda_{1}$; with this convention, if ξ and η are any positive rational numbers, we shall have $\xi a=\eta a$ whenever $\xi=\eta$.

Further, we define the sum and produet of two positive rational numbers by the formule

$$
\frac{\lambda}{\mu}+\frac{\lambda_{1}}{\mu_{1}}=\frac{\lambda \mu_{1}+\mu \lambda_{1}}{\mu \mu_{1}}, \quad \frac{\lambda}{\mu} \times \frac{\lambda_{1}}{\mu_{1}}=\frac{\lambda \lambda_{1}}{\mu \mu_{1}}
$$

these definitions redueing to the previous definitions for positive integers when $\mu=\mu_{1}=1$.

Finally, we agree to write $\frac{\lambda}{\mu}>\frac{\lambda_{1}}{\mu_{1}}$ whenever $\lambda \mu_{1}>\mu \lambda_{1}$.
With these definitions of addition and multiplieation, the system of positive rational numbers is, incidentally, a system which satisfies all the postulates $A 1-A 5, M 1-M 5$; it contains a unit-element (the number 1), but no zeroelement; the remainder, $\xi-\eta$, exists in the system when and only when $\xi>\eta$; but division is always possible.

The usefulness of these definitions is apparent from the following theorems (compare theorems 22-23) :

Theorem 29. [A1, 2, 3, 4.] If a be any element all of whose submultiples exist, and if ξ, η are any positive rational numbers, then

$$
\xi a+\eta u=(\xi+\eta) a \quad \text { and } \quad \xi(\eta(u)=(\xi \eta) a .
$$

The first part of this theorem shows that the sum of any two rational fractions of a is again a rational fraetion of a, and that $\xi a+\eta a=\eta a+\xi a$; that is, the system of rational fraetions of any element a is a elosed system
with respeet to addition, and obeys the eommutative law $(A 5)$. Henee we may use the notion of subtration within this system (see theorems 11-12), so that we have, on the basis of postukates $A 1,2,3,4$ alone:

Theorem 30. [A1, 2, 3, 4.] If a is an element all of whose submultiples exist, and if ξ, η are positive rational numbers sueh that $\xi>\eta$, then $\xi a-\eta u=(\xi-\eta) a$.

The negative rational numbers.
Concerning rational fraetions of opposite elements we have :
Theorem 31. [A1, 2, 3, 4.] If a is any element which has an opposite and all its submultiples, then

$$
\frac{\lambda}{\mu}(-a)=-\binom{\lambda}{-a}
$$

where $\frac{\lambda}{\mu}$ is ang positive rational nuaber. Hence, any chement of this form may be denoted without ambiguity by $-\frac{\lambda}{\mu}$ a.

This theorem suggests that we add the symbol $-\frac{\lambda}{\mu}$ to our list of operators; sueh a symbol $-\frac{\lambda}{\mu}$, where λ and μ are any positive integers, is ealled a ne fatite rational mumber. The negative rational numbers bear the same relation to the positive rational mmbers that the negative integers bear to the positive intugers. The positive and negative rational numbers, together with the zero-number, constitute the set of all rational numbers, and the sum and product of any two rational numbers are defined by preeisely the same eonventions as in the ease of all integers (page 17.)

The system of all rational numbers, with addition and nultiplication defined in this way, is still another example of a system which satisfies all the postulates A1-A5, M1-M5; this system eontains a unit-element (the number 1), and a zero-element (the number 0) ; every element has an opposite, and every element exeept zero has a reciprocal, so that subtraction and division are always possible, exeept division by zero.

The usefulness of these definitions is shown by
Theorem 32. [A1, 2, 3, 4.] If a is any element whieh has an opposite and all its submultiples, then the formuls of theorem 22 hold true when λ and μ are replaced by any rational numbers (positive, negative, or zero).

Further theorems on the use of mumerical coefficients.
Theorem 33. [A1,2;M1,4.] If λ, μ are any positive integers, and a, b any elements, then

$$
(\lambda a)(\mu b)=(\lambda \mu) a b
$$

Theorem 34. [$A 1,2,3 ; M 1,4$.] If ξ, η are any integral numbers, and a, b any elements whieh have opposites, then

$$
(\xi \alpha)(\eta b)=(\xi \eta) a b
$$

Theorem 35. [A1, 2, 3, 4; M1, 4.] If ξ, η are any rational numbers, and a, b any elements which have opposites and submultiples, then

$$
(\xi a)(\eta b)=(\xi \eta) a b
$$

(Proofs on p. 39.)
To avoid further repetition, the following theorems are stated at onee for the general case, in whieh ξ, η and θ stand for any rational numbers, and a, b, x, y for any elements which have opposites and submultiples:

Theorem 36. [A1, 2, 3, 4.] If $\theta x=\theta y$ and $\theta \neq 0$, then $x=y$; and if $\xi a=\eta a$ and $a \neq \llbracket$, then $\xi=\eta$. (Proof on p. 40.)

Theorem 37. [A1, 2, 3, 4.] If $\xi a=\mathbb{I}$, then either $\xi=0$ or $a=\mathbb{I}$. (By theorem 3b.)

Theorem 38. $[A 1,2,3,4,5.] \quad \xi(a+b)=\xi a+\xi b$. (Proof on p. 40.)
Theorem 39. $[A 1,2,3,4,5.] \xi(a-b)=\xi a-\xi b$. (Proof on p. 40.)
Theorem 40. $[A 1,2,3,4 ; M 1,2,3,4,5$.$] \quad If \eta \neq 0$ and $b \neq \mathbb{I}$, then

$$
\frac{\xi a}{\eta b}=\left(\frac{\xi}{\eta}\right)_{\bar{b}}^{a}
$$

(Proof on p. 41.)
Powers of an element.
Use of the integral numbers as exponents.
Theorem 41, and Definition. [M1,2.] If a is any element of the system, then the elements

$$
a, \quad a \times a, \quad a \times a \times a, \quad a \times a \times a \times a, \cdots
$$

belong to the system and are called the powers of a.
The element $\quad a$ is denoted by a^{1};
the element $u^{2} \times u$ is denoted by a^{2};
the elenent $a^{2} \times a$ is denoted by u^{3};
and so our ; in general,
tinc element $a^{\nu} \times a$ is denoted by $a^{\nu \prime}$,
where ν^{\prime} is the positive integer next following ν. In this way the element a^{μ}, where μ is any positive integer, is defined, and is callod the $\mu^{\text {th }}$ power of a.

The positive integers when used in this manner are called exponents; thus, in a^{μ}, the positive integer μ is the exponent of the element a.

By the use of the definitions for the sum and product of two positive integers, we have :

Theorem 42. [M1,2.] If a is any clement of the system, then

$$
a^{\lambda} \times a^{\mu}=a^{\lambda}+\mu \quad \text { and } \quad\left(a^{\lambda}\right)^{\mu}=a^{\lambda \mu}
$$

when λ, μ are any positive integral numbers (compare theorem 22).*
The first part of this theorem shows that the product of any two powers of a is again a power of u, and that $a^{\lambda} \times a^{\beta}=a^{\mu} \times a^{\lambda}$; that is, the system of pouers of amy element a is a closed system with respect to multiplication, and obeys the commutatice luw. Hence we may use the notion of division within this system (theorems 17-18), so that we have, on the basis of postulates M1, 2, 3 alone:

Theorem 43. [M1, 2, 3.] If $\lambda>\mu$, then $a^{\lambda} / a^{\mu}=a^{\lambda-\mu}$. (Compare theorem 23).

Concerning powers of reciprocal elements, we have:
Theorem 44. [M1, 2, 3.] If r is any element which has a reciprocal, then

$$
\left(\frac{1}{\ell^{\mu}}\right)^{\mu}=\frac{\mathbb{1}}{\iota^{\mu}} .
$$

where μ is any positive integer.
These theorems suggest the use of the negative integral numbers and the zero-number as exponents, operating on any element which has a reciprocal ; thus; if we agree to define

[^8]$$
u^{-\mu}=\frac{\mathbb{1}}{u^{\mu}} \quad \text { and } \quad u^{0}=1
$$
we shall have:
Theorem $45 .[M 1,2,3$.$] . If a$ is any element which has a reeiprocal, then the formula of theorem 42 hold true when λ and μ are any integral numbers (positive, negrative, or zcro).

> On the use of rational exponents.

The analogy between these theorems 41-45 on powers and the theorems 21-25 on multiples suggests the possibility of carrying the parallel one step further and introducing also the use of rational numbers as exponents. The attempt to do this is complicated, however, by the fact that we lave, in general, no law for multiplication corresponding to the law of non-circularity for addition (see theorem 26) ; that is, if a and μ are given, there may well be more than one clement x such that $x^{\mu}=a$. If, therefore, we define $a^{1 / \mu}$ to signify an element x such that $x^{\mu}=a$, we must understand that we are introducing a symbol whose value is, in general, not uniquely determined. Such multiple-valued symbols can indeed be used, as is well known, to good advantage, and their properties can be made to conform, approximately, to the laws of theorem 42 ; but the study of them would carry us beyond the limits of the present paper.

Further theorems on the use of numerical exponents.
Theorem 46. [M1,2,3,5.] If the requisite reciprocals and quotients exist, then

$$
(a b)^{\mu}=a^{\mu} b^{\mu} \quad \text { and } \quad\left(\frac{a}{b}\right)^{\mu}=\frac{a^{\mu}}{b^{\mu}}
$$

when μ is any integer (positive, negative, or zero).
Since the rational numbers form.a system which satisfics the postulates A1-A5, M1-M5 with respect to their addition and multiplication, the definitions of $a^{\mu}, a^{-\mu}$, and u^{0} will apply equally when the elcment a is replaced by any rational number ξ (provided $\xi \neq 0$ in $\xi^{-\mu}$). Using this notation we have:

Theorem 47. $[A 1,2,3,4 ; M 1,2,3,4$.$] If the requisite reciproeals$ exist, then

$$
\left(\xi^{\prime}\right)^{\mu}=\left(\xi^{\mu}\right) \mu^{\mu},
$$

when μ is any integer, and ξ any rational number (provided $\xi \neq 0$ when μ is negative).

Concerning a power of a sum of two terms, we have the following important theorem, known as the binomial theorem for positive integral exponents:

Theorem 48. [A1,2;M1,2,4,5.] If μ is any positive integer, then

$$
\begin{aligned}
(a+b)^{\mu}= & a^{\mu}+\frac{\mu}{1} a^{\mu-1} b+\frac{\mu(\mu-1)}{1 \cdot 2} a^{\mu-2} b^{2} \\
& \quad+\frac{\mu(\mu-2)(\mu-3)}{1 \cdot 2 \cdot 3} \epsilon^{\mu-3} b^{3}+\cdots+b^{\mu}
\end{aligned}
$$

(Proof by induction.)
Coneerning the subtraction of two powers, we have:
Theorem 49. [A1,2,3,5; M1, 2, 4,5.] If $a-b$ exists, then

$$
a^{\mu+1}-b^{\mu+1}=(a-b)\left(a^{\mu}+a^{\mu-1} b+a^{\mu-2} b^{2}+\cdots+a b^{\mu-1}+b^{\mu}\right)
$$

where μ is any positive integer.
Equations of the $\mu^{\text {th }}$ degree in x.
A conditional equation of the form

$$
c_{0} x^{\mu}+c_{1} x^{\mu-1}+c_{2} x^{\mu-2}+\cdots+c_{\mu-1} x+c_{\mu}=\mathbb{I I}
$$

where μ is any given positive integer, and $c_{0}(\neq \mathbb{N}), c_{1}, c_{2}, \cdots, c_{\mu}$ are any elements of the systen, is called an equation of the $\mu^{\text {th }}$ degree in x : any element x which satisfies the condition is called a rool of the equation; the left-hand side of the equation is ealled a polynomial of the $\mu^{\text {th }}$ degree in x; and the given elements $c_{0}, c_{1}, \cdots, c_{\mu}$ are called the coefficients of the polynomial (or of the equation.)

Lemmi. If $x=a$ is a root of an equation of the $\mu^{\text {th }}$ degree in x, then the equation ean be written in the form

$$
(x-a) \times(\text { a polynomial of next lower degree in } x)=\mathbb{I}
$$

provided the system is one in which subtraction and division (except division by d) are always possible.

Theorem 50. [A1, 2, 3, 4,5; M1, 2, 3, 4, 5.] If the system is one in which every equation of the $\mu^{\text {th }}$ degree has at least one root, then every sueh equation can be written in the form

$$
\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{\mu}\right)=\mathbb{I}
$$

Each of the elements $a_{1}, a_{2}, \ldots a_{\mu}$ will be a root of the equation, and the equation cannot have any other roots. (Proof by suceessive applieations of the lemma.)

Redundancy of the commutative law for addition.
It remains to prove, as stated above, that the commutative law for addition (postulate A5) is redundant when the list of postulates is takell as a whole.

Theorem. The commutative law for addition,

$$
a+b=b+a
$$

is a consequence of postulates $A 1,2,3 ; M 1,3_{1}$ or $3_{2}, 4$.
This theorem was given first by H. Hankel in 1867; the proof is here modified so as not to require the existence of a unit-element.

Proof. Let c be any element different from \mathbb{I} (by postulate I). Then

$$
(a+b)(c+c)=(a+b) c+(a+b) c=a c+b c+a c+b c, \quad \text { by } M 4_{1} \text { and } M 4_{2}
$$ but also

$$
(a+b)(c+c)=a(c+c)+b(c+c)=a c+a c+b c+b c, \quad \text { by } M 4_{2} \text { and } M 4_{1} ;
$$

henee
and therefore

$$
b c+a c+b c=a c+b c+b c, \quad \text { by } A 3_{1},
$$

$$
b c+a c=a c+b c, \quad \text { by } A 3_{2}
$$

Hence

and therefore

$$
(b+a) c=(a+b) c, \quad \text { by } M 4_{2},
$$

$$
b+a=a+b, \quad \text { by } M 3_{2}
$$

In order to use $M 3_{1}$ instead of $M 3_{2}$ in the proof, we should have merely to start with $(c+c)(a+b)$ instead of $(a+b)(c+c)$.

§4. special laws of addition and multiplication. particular types of elementary algebra.

The postulates $A 1-A 5, M 1-M 5$ may be satisfied, as we have seen, by many different systems; for example, the system of positive integers, with addition and multiplication defined as on page 15, or the system of all rational numbers, with addition and multiplication defined as on page 20.

Two systems satisfying these general laws are said to be isomorphic with respect to addition and multiplieation when the following eonditions are satisfied :

1) the elements of the two systems ean be brought into one-to-one correspondence (so that each element of one elass is paired with one and only one element of the other elass, and reciproeally each element of the second elass is paired with one and only one element of the first elass) ; and
2) this correspondenee ean be setup in sueh a way that whenever a and b in one class eorrespond to ${ }^{\prime}$ ' and b^{\prime} in the other elass, then $a+b$ will correspond to $a^{\prime}+b^{\prime}$, and $a \times b$ will correspond to $a^{\prime} \times b^{\prime}$.

Two systems satisfying the general laws of $\S 1$, and isomorphie with eaeh other, are said to belong to the same type of rlgebrce; two systems satisfying the same general laws, but not isomorphie with each other are said to belong to different types of algebra. The various systems of numbers employed as operators in $\S 2$ afford examples of several different types of algebra.

Two algebras of the same type are formally identical as far as addition and multiplieation are eoneerned; that is, they eannot be distinguished by any properties expressible in terms of addition and multiplieation alone.

The set of postulates $A 1-A 5, M 1-M 5$ is elearly not suffieient to determine any one type of algebra, since all these postulates ean be satisfied by various systems, non-isomorphie with one another. In order to obtain, for each of the more important types of elementary algebra, a set of postulates whieh shall completely determine that type, we add eertain further postulates, given in the present section. Each of the resulting sets of postulates determines completely one type of algebrc, in the sense that any two systems whieh satisfy all the postulates of that set will be isomorphic with respeet to addition and multiplication.

A set of postulates whieh is suffieient to determine a partieular type of system in this manner has been called a cutegorical set of postulates.* This

[^9]name has been criticised by Couturat as inappropriate ;* but whether or not the name has been happily chosen, the notion itself is of fundamental importance. Any categorical set of postulates includes, by implication, all the properties of the type of system which it determines, as far as they concern the operations in question ; thus, in case of a categorical set of postulates for a type of algebra every proposition which is expressible in terms of addition and multiplication alonc must either be a consequence of the postulates of such a set, or else be in contradiction with them. This is not true of a noncategorical set of postulates, like the set $A 1^{\circ}-A 5, M 1-M 5$; for example, the proposition "there is an element z in the system, such that $z+z=z$ " is neither deducible from these postulates nor in contradiction with them; it is true in some systems which satisfy the postulates, and false in others.

The object of the present section is, then, to give a sufficient, or categorical, set of postulutes for each of the types of algebra here considered. (Other types of algebra -like the algebra of all real numbers, or the algebra of all complex numbers-require for their characterisation properties which involve the notion of order, and are thercfore not discussed in the present paper.)

The new postulates all concern the existence, in the system, of elements satisfying certain conditions, and are therefore designated by the letter E.

The algebra of positive integers and the algelra of positive integers with zero.

The first of the special laws which we add to the general laws of $\S 1$ is the following :

Postulate E1. There is a qnit-element in the system (see theorem 5).
All the multiples of this unit-clement will exist in the system, by postulates $A 1,2$, and may be called the positive integral elements of the system. By theorems 22 and 33 , these positive integral elements form a closed system with respect to addition and multiplication (sce postulates $A 1$ and $M 1$); hence, to obtain a sufficient, or categorical, set of postulates for this type of algebra, we have only to add the following postulate:

Postulate F. There are no elements in the system lesides those required biy the other postulates.

[^10]That is, the algelra of positive integers is completely determined by postulates

$$
A 1,2 ; M 1,2,3,4 ; E 1 ; F .
$$

Every system which satisfies these eight conditions will be formally identieal ${ }^{\circ}$ with the system of positive integers, as far as addition and multiplication are concerned. (The other postulates of $\S 1$ become redundant after $E 1$ and F^{T} are added.)

Further, if we add
Postulate E2. There is a zero-element in the system (see theorem 1), then the postulates

$$
A 1,2,3 ; M 1,2,3,4 ; E 1,2 ; F
$$

completely determine the algebru of positive integers with zero. Every system which satisfies these ten conditions will be formally identical with the system of positive integers with zero, as far as addition and multiplication are concerned.

This postulate F may be called, for lack of a better name, the law of non-superfluity." The "other postulates" referred to mean, of course, in each ease, the other postulates of the set considered in that case.

The algebra of all integers.

Besides postulates $E 1$ and $E 2$ we may add also
Postulate E3. The opposite of the unit-element exists in the system (see theorem 8).

When this postulate is added, the system will contain $\mathbb{1}, \mathbb{I}$, and -1 , and all the multiples of 1 and -1 ; these elements form a closed system with respect to addition and multiplication (by theorems 25 and 34), and may be ealled the integral elements of the system.

Hence the algebra of all integers is completely determined by postulates

$$
A 1,2,3 ; M 1,2,3,4 ; E 1,2,3 ; F
$$

[^11]Every system which satisfies these eleven conditions will be isomorphie with the system of all integers, with respect to addition and multiplication.

The algebra of positive rationals, and the algebra of positive rationals with zero.
We now introduce another postulate,
Postclate E4. All the submultiples of the unit-element exist in the system.

By virtue of this postulate, all the rational fractions of the unit-element (theorem 28) will exist in the system, and may be called the positive rational elements of the system. Moreover, these elements form a elosed system with respeet to addition and multiplication, by theorems 29 and 35 .

Hence, the algebra of the positive rationals is completely determined by postulates

$$
A 1,2,3,4 ; M 1,2,3,4 ; E 1,4 ; F .
$$

The isomorphism of any two systems which satisfy these eleven conditions is established by means of the faet that the sum and product of two elements of the form $\frac{\lambda}{\mu} \mathbb{1}$ and $\frac{\lambda_{1}}{\mu_{1}} \mathbb{a r e}$ wholly determined by the numbers $\lambda, \mu, \lambda_{1}$, and μ_{1} (see theorems 29 and 35).

Similarly, the algebra of positive rationals with zero is completely determined by the postulates

$$
A 1,2,3,4 ; M 1,2,3,4 ; E 1,2,4 ; F .
$$

Here, and below, postulate M5 becomes redundant when the later postulates are added.

> The algebra of all rationals.

The algebra of all rationals (positive, negative, or zero) is completely determined by postulates

$$
A 1,2,3,4 ; M 1,2,3,4 ; E 1,2,3,4 ; F .
$$

Every system which satisfies these thirteen conditions will be fornally identical with the system of all rational numbers, with respect to addition and multiplication. This type of algebra is the simplest type in which the four operations of addition, multiplication, subtraction, and division (except division by zero) are always possible.

It will be noticed that in all the types of algebra so far considered, the isomorphism between two systems of the same type can be set up in only one way, since the unit-elements of the two systems must be made to correspond.

The algebras of complex quantities.

We now consider postulates $E 1,2,3$, with
Postulate E5. There is a pair of imaginary units in the system (see theorem 20).

An imaginary unit, i, defined by the equation $i^{2}=-1$, cannot be an integral or rational element of the system, because if it were, then i^{2} could not be -1 . Hence, by $A 1$, the addition of this postulate $E 5$ introduces a new class of elements of the form $\xi 1+\eta i$, where ξ and η are integral or rational numbers. Elements of this form are called complex elements of the system, with integral or with rational coeflicients. No further elements are introduced by multiplication, however, since

$$
(\xi 1+\eta i)\left(\xi_{1} 1+\eta_{1} i\right)=\left(\xi \xi_{1}-\eta \eta_{1}\right) 1+\left(\xi \eta_{1}+\eta \xi_{1}\right) i .
$$

Hence a definite type of algebra, which may be called the algebra of complex quantities with integral coefficients is completely determined by postulates

$$
A 1,2,3 ; M 1,2,3,4 ; E 1,2,3,5 ; I^{\prime}
$$

In a similar way another type of algebra, called the algelra of complex quantities with rational coefficients is completely determined by postulates

$$
A 1,2,3,4 ; M 1,2,3,4 ; E 1,2,3,4,5 ; F
$$

It will be noticed that in the case of either of the complex algebras, the isomorphism between two systems of either type can be set up in two ways, on account of the ambiguity in the choice of the element i (see theorem 20).

An example of a system which satisfies all the postulates for the algebra of complex quantities with integral [or rational] coefficients is the class of all ordered pairs of integral [or rational] numbers, (ξ, η), with addition and multiplication defined as follows:

$$
\begin{gathered}
\left(\xi_{1}, \eta_{1}\right)+\left(\xi_{2}, \eta_{2}\right)=\left(\xi_{1}+\xi_{2}, \eta_{1}^{m}+\eta_{2}\right), \\
\left(\xi_{1}, \eta_{1}\right) \times\left(\xi_{2}, \eta_{2}\right)=\left(\xi_{1} \xi_{2}-\eta_{1} \eta_{2}, \xi_{1} \eta_{2}+\eta_{1} \xi_{2}\right) .
\end{gathered}
$$

Here $\mathbb{I}=(0,0), \mathbb{1}=(1,0), i=(0,1)$ or $(0,-1)$, and $(\xi, \eta)=\xi \mathbb{1}+\eta i$. The system thus constructed is called the system of ordinary complex numbers with integral [or rational] coefficients; the construction of some example of
this kind is necessary to cstablish the consistency of the last two sets of postulates.

The algebra of all algebraic quantities.
Any equation of the $\mu^{\text {th }}$ degree in x, in which the coefficients are integral elements of the system, may be written in the form

$$
\lambda_{0} x^{\mu}+\lambda_{1} x^{\mu-1}+\lambda_{2} x^{\mu-2}+\cdots+\lambda_{\mu-1} x+\lambda_{\mu} \cdot 1=\mathbb{1},
$$

where $\lambda_{0}(\neq 0), \lambda_{1}, \cdots \lambda_{\mu}$ arc integral numbers ; such an equation is called an alyelraic equation with integral coefficients, and any root of such an equation is called an algelnaic element of the system.

It is easy to show that if x and y are algebraic elements, then $x+y$ and $x y$ are also algebraic elcments; that is, the algebraic elements of a system form a closed system with respect to addition and multiplication.*

Further, if the coeflicients in any equation of the form

$$
c_{0} x^{\mu}+c_{1} x^{\mu-1}+c_{2} x^{\mu-2}+\cdots+c_{\mu-1} x+c_{\mu} \cdot 1=\mathbb{I}
$$

are algebraic elements, then all the roots of such an equation (in so far as they exist in the system) are also algebraic elements.*

Hence, in order to obtain a system in which every such equation has a root, we nced to add merely the following postulate:

Postulate E6. Every algelraic equation of the $\mu^{\text {th }}$ clegree with integral coefficients has at least one root.

Then the postulates

$$
A 1,2,3,4 ; M 1,2,3,4,5 ; E 1,2,6 ; F
$$

determine completely a type of algebra called the algebra of all algebraic quentities. All the other types of algebra which have been considered-in this section are sub-algebras within this algebra of algebraic quantities.

In this algebra, the opposite of the unit-element, and all the submultiples of the unit-element, exist (since the equations $x+1=\mathbb{I}$ and $\lambda x-1=\mathbb{T}$ have roots in the system) ; moreover, there is a pair of imaginary units, namely,

[^12]the roots of the equation $x^{2}+1=\mathbb{I I}$. Henee all the postulates $E 1-E 6$ are satisfied.

This type of algebra is the simplest type in whieh the operations of addition, multiplieation, subtraction, and division (exeept division by the zeroelement) are always possible, and in which every equation of the $\mu^{\text {th }}$ degree in x (the coeffieients being any elements of the system) always has a root; it therefore forms a suitable stopping-place for the discussion in the present paper.

The problem.of construeting an example of a system of this type is an interesting one, into which we cannot enter here ; * the consistency of the postulates is usually established by the faet that the algebra of algebraie quantities is a sub-algebra within the algebra of vectors deseribed in the introduction.
§5. examples of systems whicit satisfy some but not all of the general laws of $\S 1$. proofs of independence.

In this seetion we establish the independence of the postulates $A 1-A 4$, $M 1-M 5$, by exhibiting, in the ease of each of the postulates, a system which satisfies all the other postulates, but not the one for which it is numbered. No one of the postulates, therefore, is deducible from the remaining postulates; for, if it were, then any system which possessed all the other properties would possess this property also, whieh, as the examples show, is not the ease.

The rules of combination in these pseudo-algebraie systems we denote by \oplus and \odot, reserving the symbols + and \times for use between numbers, in the sense explained in $\S 3$. In deseribing each system, we must give: (1) the elass of elements considered, (2) the rule of combination called \oplus, and (3) the rule of eombination called \odot.

List of the postulates of $\$ 1$ (general laws).

A1. $a \oplus b$ in the system.
A2. $(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
A3. (1) If $a \oplus x=a \oplus y$, then $x=y$.
(2) If $x \oplus a=y \oplus a$, then $x=y$.

A4. If $\mu x=\mu y$, then $x=y$.
[A5. $\quad a \oplus \overleftarrow{b}=b \oplus a$.]
*See É. Borel and J. Drach, Théurie des nombres et l'alyèbre supérieure, 1895, p. 157. For ann early statement of the problem, compare H. Hankel, loc. cit., 1867, §12.

M1. $a \odot b$ in the system.
M2. $(a \odot b) \odot c=a \odot(b \odot c)$.
M3. (1) If $a \odot x=a \odot y$ and $a \oplus a \neq \alpha$, then $x=y$.
(2) If $x \odot a=y \odot a$ and $a \oplus a \neq a$, then $x=y$.

M4. (1) $a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c)$.
(2) $(b \oplus c) \odot a=(b \odot a) \oplus(c \odot a)$.

M5. $a \odot b=b \odot a$.

Examples of pseudo-algebras.

The examples which prove the independence of the scveral postulates are the following, all of whieh are construeted out of numerieal elasses with which the reader has already been made familiar in §3.

All except A1. The class of all rational numbers, with \oplus and \odot defined as follows : $a \oplus b=a+b$ whencver $a+b=0$; otherwise, $a \oplus b$ not in the class. $a \odot b=a b$, where $a b$ denotes the ordinary product.

All except A2. The class of all rational numbers. $a \oplus b=2(a+b)$. $a \odot b=a b$.

All except $A 3_{1}$ and $A 5$. The class of positive rational numbers. $a \oplus b=a . \quad a \odot b=a b$.

All except $A 3_{2}$ and $A 5$. The class of positive rational numbers. $a \oplus b=b . \quad a \odot b=a b$.

All except $A 3_{1}$ and $A 3_{2}$. The class of all rational numbers. $a \oplus a=a$ but if $a \neq b$, then $a \oplus b=0 . \quad a \odot b=a b$.

Ail except A4. A class eonsisting of nine elements, $0,1,2, \ldots, 8$, with \oplus and \odot defined by means of the following tables :

\oplus	0	1	2		3	4	5	6	7	8	\bigcirc	0	1	2		3	4	5	6	7	8
0	0	1	2		3	4	5	6	7	8	0	0	0	0		0	0	0	0	0	0
1		2	0		4	5	3	7	8	6	1	c	1	2		3	4	5	6	7	8
2			1		5	3	4	8	6	7	2	0		1		6	8	7	3	5	4
3					6	7	8	0	1	2	3		2			4	7	1	8	2	5
4						8	6	1	2	0	4						2	3	5	6	1
5							7	2	0	1	5							8	2	4	6
6								3	4	5	6								4	1	7
7									5	3	7									8	3
8										4	8										2

For example, $3 \oplus 7=7 \oplus 3=1 ; \quad 3 \odot 7=7 \odot 3=2$

This system (whieh is a Galois Field of order 3^{2}) satisfies also all the existenee postulates $E 1,2,3,4,5$. Thus,

$$
\mathbb{I I}=0, \quad \mathbb{1}=1, \quad-\mathbb{1}=2, \quad i=4 \text { or } 8
$$

All except $M 1$. The elass of all rational numbers. $\quad a \oplus b=a+b$. $a \odot b=a b$ when $a b=1$; otherwise $a \odot b$ not in the elass.

All except M2. The elass of eomplex numbers of the form $a e_{1}+b e_{2}$, where a and b are any rational numbers, and the "units," e_{1} and e_{2}, are conneeted by the following "multiplication table :"*

$$
e_{1} e_{1}=e_{1} ; e_{1} e_{2}=e_{2} e_{1}=-e_{2} ; e_{2} e_{2}=-e_{1}
$$

	$e_{1} e_{2}$
e_{1}	$e_{1}-e_{2}$
e_{2}	$-e_{2}-e_{1}$

All except $M 3_{1}$ and $M 5$. The elass of all eomplex numbers of the form $a e_{1}+b e_{2}$ where a and b are positive rational numbers or zero, and *

$$
e_{1} e_{1}=e_{1} ; e_{1} e_{2}=e_{1} ; e_{2} e_{1}=e_{2} ; e_{2} e_{2}=e_{2}
$$

	e_{1}	e_{2}
e_{1}	e_{1}	e_{1}
e_{2}	e_{2}	e_{2}

All except $M 3_{2}$ and $M 5$. The same class as the preeeding, with

$$
e_{1} e_{1}=e_{1} ; e_{1} e_{2}=e_{2} ; e_{2} e_{1}=e_{1} ; e_{2} e_{2}=e_{2}
$$

	e_{1}	e_{2}
e_{1}	e_{1}	e_{2}
e_{2}	e_{1}	e_{2}

All except $M 3_{1}$ and $M 3_{2}$. The elass of all eomplex numbers of the form $a e_{1}+b e_{2}$, where a and b are any rational numbers and *

$$
e_{1} e_{1}=e_{1} ; e_{1} e_{2}=e_{2} e_{1}=e_{2} ; e_{2} e_{2}=e_{2}
$$

| | $\left.\begin{array}{ll}e_{1} & \epsilon_{2} \\ e_{1} & \\ e_{2} & e_{1} \\ e_{2} & e_{2}\end{array}\right]$ |
| :--- | :--- | :--- |

* It is understood that the "sum" of two complex numbers $a e_{1}+b e_{2}$ and $a^{\prime} e_{1}+b^{\prime} e_{2}$ is $\left(a+a^{\prime}\right) e_{1}+\left(b+b^{\prime}\right) e_{2}$ their "product" is $a a^{\prime} e_{1} e_{1}+a b^{\prime} e_{1} e_{2}+b r^{\prime} e_{2} e_{1}+b b^{\prime} e_{2} e_{2}$, where the expressions $e_{1} e_{1}, e_{1} e_{2}, e_{2} f_{1}$ and $e_{2} e_{2}$ are to be simpllfed, in any given ease, necording to the "multi-plieation-table" adopted ln that ease. In any such system of eomplex numbers, both the distributive laws (M4) wlll elearly be satisfled; moreover, the associative and commutative laws for multiplication ($M 2, M 5$) will hold throughout the system whenever they hold for the "multiplleation-table" of the e 's.

All except $M 4_{1}$ and $M 5$. The class of all couples of the form (a, b), where a and b arc positive rational numbers, with \oplus and \odot defined as follows:

$$
\begin{aligned}
& \left(a_{1}, b_{1}\right) \oplus\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right) ; \\
& \left(a_{1}, b_{1}\right) \odot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, a_{1} b_{2}+b_{1}\right) .
\end{aligned}
$$

All except $M 4_{2}$ and $M \overline{5}$. The same class as the preceding, with \oplus defined in the same way, and \odot defined as follows:

$$
\left(a_{1}, b_{1}\right) \odot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} a_{2}+b_{2}\right)
$$

All except $M 4_{1}$ and $M 4_{2}$. The elass of all rational numbers.

$$
a \oplus b=a+b . \quad a \odot b=a+b+1 .
$$

All except M5. The class of all eomplex numbers of the form $a e_{1}+b e_{2}$ $+c e_{3}+d e_{4}$, with the following "multiplication table" for the "units" e_{1}, e_{2}, e_{3}, and e_{4} :

	e_{1}	e_{2}	e_{3}	e_{4}
e_{1}	e_{1}	e_{2}	e_{3}	e_{4}
e_{2}	e_{2}	$-e_{1}$	e_{4}	$-e_{3}$
e_{3}	e_{3}	$-e_{4}$	$-e_{1}$	e_{2}
e_{4}	e_{4}	e_{3}	$-e_{2}$	$-e_{1}$

This is the system of quaternions with rational coefficients.
Thus the independenee of all the postulates of $\S 1$ (except A5) is established. The redundancy of postulate $A 5$ is proved on page 25.

```
\S6. PROOFS OF theorems in`§§2-4.*
```

The proofs of a number of theorems in $\S \S 2-4$, were postponcd to the present section, to avoid interruption in reading.

Page 9.
Proof of theorem 1. Suppose $z+z=z$ and $z^{\prime}+z^{\prime}=z^{\prime}$. Then $z+z+z^{\prime}=z+z^{\prime}+z^{\prime}$, by $A 1,2$; henee $z+z^{\prime}=z^{\prime}+z^{\prime}$, by $A 3_{1}$, and theretore $z=z^{\prime}$, by $A 3_{2}$.

[^13]Proof of theorem 2. If $\mathbb{\pi}+\mathbb{\pi}=\mathbb{\pi}$, then $a+\mathbb{\pi}+\mathbb{\pi}=a+\mathbb{\pi}$ and $\mathbb{I}+\mathbb{I}+a=\mathbb{I}+a$, by $A 1,2$; henee $a+\mathbb{I}=a$, by $A 3_{2}$, and $+a=a$, by $A 3_{1}$.

Conversely, if $a+x=a$ or $x+a=a$, then $a+x+x=a+x$ or $x+x+a=x+a$, by $A 1,2$; henee, $x+x=x$, by $A 3$.

Proof of thenrem 3. By $M 1,4_{1}, a \times \mathbb{I}=a \times(\mathbb{I}+\mathbb{I})=(a \times \mathbb{I})$ $+(a \times \mathbb{I})$, whenee $a \times \mathbb{I}=\mathbb{I I}$, by theorem 1 ; again, by $M 1,4_{2}, \mathbb{I I} \times a$ $=(\mathbb{I}+\mathbb{I}) \times a=(\mathbb{I I} \times a)+(\mathbb{I} \times a)$, whenee $\mathbb{I I} \times a=\mathbb{I}$, by theorem 1 .

Proof of theorem 4. If $a \times b=\mathbb{I}$, then $a \times b=a \times \mathbb{\square}$, by theorem 3 ; hence, if $a \neq \mathbb{I}$, then $b=\mathbb{I}$, by $M 3_{1}$. Or thus: if $a \times b=\mathbb{I}$, then $a \times b$ $=\mathbb{I I} \times b$, by theorem 3 ; henee, if $b \neq \mathbb{I}$, then $a=\mathbb{I}$, by $M 3_{2}$.

Proof of theorem 5. Suppose $u u=u$ and $u^{\prime} u^{\prime}=u^{\prime}$, with $u \neq \mathbb{I I}$ and $u^{\prime} \neq \mathbb{1}$. Then $u u u^{\prime}=u u^{\prime} u^{\prime}$, by $M 1,2$; henee $u u^{\prime}=u^{\prime} u^{\prime}$, by $M 3_{1}$, and therefore $u=u^{\prime}$, by $M 3_{2}$.

Proof of theorem 6. If $1 \times 1=1$, then $a \times 1 \times 1=a \times 1$ and $1 \times 1 \times a=1 \times a$, by $M 1,2$; hence $a \times \mathbb{1}=u$, by $M 3_{2}$, and $\mathbb{1} \times a=a$, by $M 3_{1}$, since $1 \neq \mathbb{I}$.

Pages 11-12.
Proof of theorem 7. If $a x=a$ or $x a=a$, then $a x x=a x$ or $x x a=x a$, by $M 1,2$; henee $x x=x$, by $M 3$, so that $x=\mathbb{I}$ or 1 . But $x \neq \mathbb{I}$, sinee if $x=\mathbb{I f}$, then $a=\mathbb{I f}$, by theorem 3 ; therefore $x=1$.

Proof of lemma to theorem 8. If $a+b=\mathbb{I}$, then $b+a+b=b+\mathbb{I}$ $=b=\mathbb{1}+b$, by $A 1,2$, and theorem 2 ; henee $b+a=\mathbb{\sharp}$, by $A 3_{2}$. -Theorem 8 follows from this lemma by $A 3$.

Proof of theorem 9. By $M 4_{1}$ and theorem $3, a(-b)+a b=a(-b+b)$ $=a \times \mathbb{I}=\mathbb{d}$, so that $a(-b)$ and $a b$ are opposite elements; again, by $M 4_{\mathbf{e}}$ and theorem $3,(-a) b+a b=(-a+a) b=\mathbb{d} \times b=\mathbb{d}$, so that $(-a) b$ and $a b$ are opposite elements. Hence, further, $(-a) \times(-b)=-[(-a) \times b]$ $=-[-(a b)]=a b$, by the eorollary to theorem 8 .

Proof of theorem 10. By $A 2,5,(-a)+(-b)+(a+b)=(-a)$ $+a+(-b)+b=\mathbb{\square}=\mathbb{d}$, so that $(-a)+(-b)$ and $(a+b)$ are opposite elements.

Proof of theorem 12. First, $[a+(b-c)]+c=a+[(b-c)+c]$ $=a+b=[(a+b)-c]+c$; hence $a+(b-c)=(a+b)-c$, by $A 3_{2}$. The seeond equation is proved in a similar way by adding $b+c$ to both sides, and the third equation by adding b.

Proof of theorem 13. By $M 4_{1}, a c+a(b-c)=a[c+(b-c)]$ $=a b=a c+(a b-a c)$; hence $a(b-c)=a b-a c$, by $M 3_{1}$. Similarly for the second part of the theorem.

Proof of lemma to theorem 14. If $a \neq \mathbb{\square}$ and $a b=1$, then $a b a=1 \times a$ $=a \times 1$, whence $b a=1$, by $M 3_{1}$. If $b \neq \mathbb{4}$ and $a b=1$, then $b a b=b \times 1$ $=1 \times b$, whence $b a=1$, by $M 3_{2}$. If both a and b are \mathbb{I}, then in any ease $a b=b a$.

Proof of theorem 14. If $a y=1$ and $a y^{\prime}=1$, then, by the lemma, $y^{\prime}=\mathfrak{1} \times y^{\prime}=y a \times y^{\prime}=y \times a y^{\prime}=y \times \mathfrak{1}=y$.

Pages 13-14.
Proof of theorem 15. $a\left(\frac{1}{a}\right)=1=(-a)\left(\frac{1}{-a}\right)=a\left[-\left(\frac{1}{-a}\right)\right]$, by theorem 9 ; hence $\frac{1}{a}=-\left(\frac{1}{-a}\right)$, by $M 3_{1}$.

Proof of theorem 16. $\frac{1}{a} \times \frac{1}{b} \times a b=\frac{1}{a} \times a \times \frac{1}{b} \times b=1 \times 1=1$, so that $\frac{1}{a} \times \frac{1}{b}$ and $a b$ are reeiprocal elements.

Proof of theorem 18. Multiply the five equations by $b c, b, b c, b d, c / d$, respectively ; then use M3.

Proof of theorem 19. Multiply the cquations by $\left\langle b^{\prime}\right.$, and reduce by $M 4$; then use $M 3$, since b, and b^{\prime} must be different from if.

Proof of theorem 20. First, in any system containing the elements i and -1 , every element will have an opposite, sinee, if x is any element, then $(-1) \times x$ will exist in the system, by $M 1$, and $(-1) \times x=-x$, by theorems 9 and 6 ; moreover, if $x x=-1$, then $(-x) \times(-x)=-1$, by theorem 9. Secondly suppose $x x=-1$ and $y y=-1$; then $x x-y y=\mathbb{1}$, whenee $(x+y)(x-y)=\mathbb{I}$, by $M 4,5$, and therefore either $x+y=\mathbb{I}$ or $x-y=\mathbb{I}$, by theorem 4 ; that is, $x=-y$ or $x=y$.

Page 16.
Proof of the laws of addition and multiplication for the positive integers.
1)

$$
(a+\beta)+\gamma=a+(\beta+\gamma) .
$$

This is true when $\gamma=1$, by definition. Also, if it is true when $\gamma=\nu$, then it will be true when $\gamma=\nu^{\prime}$, where ν^{\prime} is the sueeessor of ν; for,

$$
(a+\beta)+\nu^{\prime}=[(a+\beta)+\nu]+1=[a+(\beta+\nu)]+1=\boldsymbol{a}+[(\beta+\nu)+1]=\boldsymbol{a}+\left(\beta+\nu^{\prime}\right) .
$$

Hence, putting successively $\nu=1,2,3, \ldots$, we see that the formula is true when γ is any positive integer. This method of proof is called induction from $\gamma=\nu$ to $\gamma=\nu^{\prime}$, when ν^{\prime} is the successor of ν; or brietly, induction on γ.
2) Lemma. $a+1=1+a$. By induction on a :

$$
\nu^{\prime}+1=(\nu+1)+1=(1+\nu)+1=1+(\nu+1)=1+\nu^{\prime}
$$

3) $a+\beta=\beta+a$.

For, by induction on β :
$a+\nu^{\prime}=(a+\nu)+1=(\nu+a)+1=\nu+(a+1)=\nu+(1+a)=(\nu+1)+a=\nu^{\prime}+a$.
4) $\quad a(\beta+\gamma)=a \beta+a \gamma$. For, by induction on a : $\nu^{\prime}(\beta+\gamma)=\nu(\beta+\gamma)+(\beta+\gamma)=\nu \beta+\nu \gamma+\beta+\gamma=\nu \beta+\beta+\nu \gamma+\gamma=\nu^{\prime} \beta+\nu^{\prime} \gamma$.
5)
$(\beta+\gamma) a=\beta a+\gamma a . \quad$ For, by induction on $\gamma:$ $\left(\beta+\nu^{\prime}\right) a=[(\beta+\nu)+1] a=(\beta+\nu) a+a=\beta a+\nu a+a=\beta a+\nu^{\prime} a$.
6) $\quad(a \beta) \gamma=a(\beta \gamma)$.

For, by induction on a :

$$
\left(\nu^{\prime} \beta\right) \gamma=(\nu \beta+\beta) \gamma=(\nu \beta) \gamma+\beta \gamma=\nu(\beta \gamma)+\beta \gamma=\nu^{\prime}(\beta \gamma)
$$

7) Lemma. $1 a=a \cdot 1 \quad$ For, by induction on a : $1 \nu^{\prime}=1(\nu+1)=1 \nu+1 \cdot 1=\nu \cdot 1+1=\nu^{\prime} \cdot 1$.
8) $\quad \underline{\beta}=\beta a$. For, by induction on a :

$$
\nu^{\prime} \beta=\nu \beta+\beta=\beta \cdot \nu+\beta \cdot 1=\beta(\nu+1)=\beta \nu^{\prime} .
$$

9) Lemma. If $a \neq \beta$, then either $a=\beta+\xi$ or $\beta=a+\xi$, where ξ is some positive integcr. For, if $a>\beta$, then a will be found in the sequence $\beta+1, \beta+2, \beta+3, \cdots$; and if $\beta>a$, then β will be found in the sequence $a+1, a+2, a+3, \cdots$
10) Lemma. $a+\beta \neq a$. For, $a+\beta$ will be found in the sequence $a+1, a+2, a+3, \cdots$, and each of these numbers is different from a.
11) If $a+\xi=a+\eta$, then $\xi=\eta$. For, if $\xi \neq \eta$, then we should have $\xi=\eta+\zeta$, say, whence $a+(\eta+\zeta)=a+\eta$, or $(a+\eta)+\zeta=(a+\eta)$, which is impossible.
12) If $a \xi=a \eta$, then $\xi=\eta$. For, if $\xi \neq \eta$, then we should have $\xi=\eta+\zeta$, say, whence $a(\eta+\zeta)=a \eta$, or $a \eta+a \zeta=a \eta$, which is impossible.

Proof of theorem 22. By definition, $\lambda a+a=(\lambda+1) a$; hence $\lambda u+\mu \ell$ $=(\lambda+\mu) u$, by induction on μ, since $\lambda r \iota+\nu^{\prime} u=\lambda a+(\nu a+a)=(\lambda a+\nu a)+\iota$ $(\lambda+\nu) \iota+a=[(\lambda+\nu)+1] \iota=\left(\lambda+\nu^{\prime}\right) u$.

Again, $1(\mu a)=(1 \mu) a$; hence $\lambda(\mu a)=(\lambda \mu) a$, by induction on λ, since

$$
\nu^{\prime}(\mu a)=\nu(\mu a)+\mu a=(\nu \mu) a+\mu a=(\nu \mu+\mu) a=\left(\nu^{\prime} \mu\right) a
$$

Pages 17-19.
Proof of theorem 23.

$$
\begin{gathered}
(\lambda a-\mu a)+\mu u= \\
\lambda u=[(\lambda-\mu)+\mu] a=(\lambda-\mu) a+\mu a ; \text { hence } \\
\\
\lambda a-\mu a=(\lambda-\mu) a, \text { by } A 3_{2} .
\end{gathered}
$$

Proof of theorem 24. By definition, $1(-a)+1 a=\mathbb{I}$; hence $\mu(-a)$ $+\mu a=\mathbb{I f}$, by induction on μ, sinec

$$
\nu^{\prime}(-a)+\nu^{\prime} a=(-a)+[\nu(-a)+\nu a]+a=(-a)+\mathbb{\square}+a=\mathbb{I} ;
$$

therefore $\mu(-a)$ and μa are opposite elements.
Proof of theorcm 26. If there is a zero-element, \mathbb{I}, then every multiple of \mathbb{I} is \mathbb{I}; that is, when μ is any positive integer, $\mu \mathbb{I}=\mathbb{I}$, whence the theorem, by $A 4$.

Proof of the corollary. Suppose $\lambda \alpha=\mu a$, and $\lambda>\mu$; then $\lambda=\mu+\xi$, so that $(\mu+\xi) ~ \iota=\mu u$, whence $\mu u+\xi \iota=\mu u$; therefore $\xi u=\mathbb{I}$, by theorem 2 , and henee $\ell=\mathbb{I}$, by thcorem 26 .

Proof of theorem 28. $\mu\left[\lambda\left(\frac{a}{\mu}\right)\right]=\lambda\left[\mu\left(\frac{a}{\mu}\right)\right]=\lambda a=\mu\left[\frac{\lambda \alpha}{\mu}\right]$; hence $\lambda\left(\frac{u}{\mu}\right)=\frac{\lambda a}{\mu}$, by $A 4$.

Proof of theorem 29. Put $\xi=\frac{\lambda}{\mu}, \eta=\frac{\lambda_{1}}{\mu_{1}}$; take the $\left(\mu \mu_{1}\right)^{\text {th }}$ multiple of both sides of the equation, and use theorem 27.

Page 21.
Proof of theorems $33-35$. Let λ, μ be any positive integers. We prove first that $a(\mu b)=\mu(a b)$; thus, $a(1 \cdot b)=1 \cdot(a b)$, and by induction,

$$
a\left(\nu^{\prime} b\right)=a(\nu b+b)=a(\nu b)+a b=\nu(a b)+a b=\nu^{\prime}(a b)
$$

where ν^{\prime} is the suecessor of ν. Then it follows that $(\lambda a)(\mu b)=(\lambda \mu)(\alpha b)$; for, $(1 \cdot a)(\mu b)=(1 \cdot \mu)(a b)$; and by induetion,

$$
\begin{aligned}
\left(\nu^{\prime} a\right)(\mu b)=(\nu a+a)(\mu b)=(\nu a)(\mu b)+a(\mu b) & =(\nu \mu)(a b)+\mu(a b) \\
& =(\nu \mu+\mu) a b=\left(\nu^{\prime} \mu\right)(a b)
\end{aligned}
$$

To prove that $\left(\frac{\lambda}{\mu} a\right)\left(\frac{\lambda_{1}}{\mu_{1}} b\right)\left(\frac{\lambda}{\mu}=\frac{\lambda_{1}}{\mu_{1}}\right)(a b)$, take the $\left(\mu \mu_{1}\right)^{\text {th }}$ multiple of both sides. The proof for negative coefficients follows from theorem 24 and theorem 9.

Proof of theorem 36. Let λ, μ be any positive integers.
If $\lambda x=\lambda y$, then $x=y$, by $A 4$.
If $\frac{\lambda}{\mu} x=\frac{\lambda}{\mu} y$, then $\lambda x=\left(\mu \frac{\lambda}{\mu}\right) x=\mu\left(\frac{\lambda}{\mu} x\right)=\mu\left(\frac{\lambda}{\mu} y\right)=\left(\mu \frac{\lambda}{\mu}\right) y=\lambda y$, and therefore $x=y$ as above.

If $\left(-\frac{\lambda}{\mu}\right) x=\left(-\frac{\lambda}{\mu}\right) y$, then $-\left(\frac{\lambda}{\mu} x\right)=-\left(\frac{\lambda}{\mu} y\right)$, whence $\frac{\lambda}{\mu} x=\frac{\lambda}{\mu} y$, and therefore $x=y$ as above.
2)

If $\lambda \epsilon=\mu \epsilon$, then $\lambda=\mu$, by theorem 26.
If $\frac{\lambda}{\mu} a=\frac{\lambda_{1}}{\mu_{1}} a$, then $\mu_{1} \lambda \iota=\mu_{1} \mu\left(\frac{\lambda}{\mu} a\right)=\mu \mu_{1}\left(\frac{\lambda_{1}}{\mu_{1}} a\right)=\mu \lambda_{1} a$, and thercfore $\mu_{1} \lambda=\mu \lambda_{1}$ as above; that is, $\frac{\lambda}{\mu}=\frac{\lambda_{1}}{\mu_{1}}$.

If $\left(-\frac{\lambda}{\mu}\right) u=\left(-\frac{\lambda_{1}}{\mu_{1}}\right) u$, then $\frac{\lambda}{\mu} \because=\frac{\lambda_{1}}{\mu_{1}}$ a, and thercfore $\frac{\lambda}{\mu}=\frac{\lambda_{1}}{\mu_{1}}$ as above ; hence $-\frac{\lambda}{\mu}=-\frac{\lambda_{1}}{\mu_{1}}$.

The proof of theorem 37 follows at once from theorem 36 .
Proof of theorem 38. Let λ, μ be any positive integers.
Clearly, $1(a+b)=1 a+1 b$; hence $\lambda(a+b)=\lambda a+\lambda b$ by induction, since $\nu^{\prime}(a+b)=\nu(a+b)+(a+b)=\nu a+\nu b+a+b=\nu a+a+\nu b+b$ $=\nu^{\prime} a+\nu^{\prime} b$, where ν^{\prime} is the successor of ν.

Further, $\frac{\lambda}{\mu}(a+b)=\frac{\lambda}{\mu} a+\frac{\lambda}{\mu} b$, since the $\mu^{\text {th }}$ multiple of cach side \cdot is $\lambda(a+b)$ or $\lambda a+\lambda b$.

Finally, $\left(-\frac{\lambda}{\mu}\right)(a+b)=\left(-\frac{\lambda}{\mu}\right) a+\left(-\frac{\lambda}{\mu}\right) b$, by the aid of theorem 10 .
Proof of theorem 39. $\quad \xi(a-b)+\xi b=\xi(a-b+b)=\xi a=(\xi a-\xi b)$ $+\xi b$; hence $\xi(a-b)=\xi a-\xi b$, by $A 3_{2}$.

Proof of theorem 40.
$(\eta b)\left(\frac{\xi a}{\eta b}\right)=\xi_{\imath}=\left(\eta \frac{\xi}{\eta}\right)\left(b \frac{a}{b}\right)=(\eta b)\left(\frac{\xi}{\eta} \cdot \frac{a}{b}\right) ;$ henee $\frac{\xi a}{\eta b}=\frac{\xi}{\eta} \cdot \frac{a}{b}$, by $M 3_{1}$,
since $\eta b \neq$ III.
The proofs of theorems 41-45 are similar to the proofs of theorems 2125 , and need not be given here in detail.

Page 24.
Proof of lcmma to theorem 50. If $x=u$ is a root of the equation

$$
c_{0} x^{\mu}+c_{1} x^{\mu-1}+c_{2} x^{\mu-2}+\cdots+c_{\mu-1} x+c_{\mu} \cdot \mathbb{1}=\mathbb{I I},
$$

then

$$
c_{0} r^{\mu}+c_{1} \tau^{\mu-1}+c_{2} t^{\mu-2}+\cdots+c_{\mu-1} \ell+c_{\mu} \cdot \mathbb{1}=\mathbb{I}
$$

henee, by subtraction, the given equation may be written in the form
$c_{0}\left(x^{\mu}-u^{\mu}\right)+c_{1}\left(x^{\mu-1}-u^{\mu-1}\right)+c_{2}\left(x^{\mu-2}-u^{\mu-2}\right)+\cdots+c_{\mu-1}(x-u)=\mathbb{I}$, each tcrm of whieh, by theorem 49 , is divisible by $x-a$.

appendin 1.

The following postulate holds in all the types of algebra which we have eonsidered in this paper :

Postulate E7. If $x \neq y$, then there is either an element v such that $x=y+v$, or an element w such thut $y=x+w$.

In the first case, $v=a-b$; in the seeond, $w=b-a$ (eompare theorem 11).

If we add this postulate $E 7$ to the list of general laws in $\S 1$, then postulates $A 4$ and $M 3$ may be replaced by the following simpler postulates, $A 4^{\prime}$ and $M 3^{\prime}$:

Postulate $A 4^{\prime}$. If $a \neq \mathbb{U}$, then $\mu a \neq \mathbb{M}$, where $\mu \boldsymbol{\mu}$ is any multiple of a (see theorem 21).

This is a modified form of the law of non-cireularity.
Postulate M3'. If $a \neq \mathbb{I}$ and $b \neq \mathbb{I I}$, then $a b \neq \mathbb{I I}$.
This is the law of the zero-produet (compare theorem 4).
The deduetion of postulate $A 4$ from $A 1,2,3,5$ and $E 7$ is as follows :
We are to prove that if $\mu x=\mu y$, then $x=y$. Suppose $x \neq y$, and that
$x=y+v$, by $E 7$. Then $\mu x=\mu y+\mu v$, by theorem 38 for positive integers; whenee $\mu v=\mathbb{I}$, by hypothesis and theorem 2, so that $v=\mathbb{I}$, by $A 4$ '. Therefore $x=y$, by theorem 2. - Similarly if $y=x+w$.

The deduction of postulate $M 3_{1}$ from $A 1,2,3, M 1,3^{\prime}, 4_{1}$, and $E 7$ is as follows:

We are to prove that if $\quad(x=a y$ and $a \neq \mathbb{I}$, then $x=y$. Suppose $x \neq y$, and that $x=y+v$, by $E 7$. Then $a x=a y+a v$, by $M 4_{1}$. whence $a v=\mathbb{1}$, by hypothesis and theorem 2 , so that $v=\mathbb{I}$, by $M 3^{\prime}$ (sinee $a \neq \mathbb{I}$). Therefore $x=y$, by theorem 2. - Similarly if $y=x+w$.

The deduction of $M 3_{2}$ follows in like manner from $A 1,2,3, M 1,3^{\prime}, 4_{2}$, and $E 7$.

Examples.

An example of a system which satisfies $A 1-A 5$ and $M 1-M 5$, but not $E 7$, is the system of all positive rational numbers >2, with addition and multiplication defined in the usual way.

An example of a system which satisfies $A 1,2,3,4,5$ and $M 1,2,3^{\prime}, 4,5$, but not $M 3$, is the system of all complex numbers of the form $a e^{\prime}+b e^{\prime \prime}$, or (a, b), where a is zero or any positive rational number, and b is zero or a positive rational > 1 , with the following "multiplieation table" for the units:

$$
e^{\prime} e^{\prime}=e^{\prime} ; e^{\prime} e^{\prime \prime}=e^{\prime \prime} e^{\prime}=e^{\prime \prime} ; e^{\prime \prime} e^{\prime \prime}=e^{\prime \prime}
$$

$$
\begin{array}{l|l|l}
& \frac{e^{\prime} e^{\prime \prime}}{} \\
\hline e^{\prime} & e^{\prime} e^{\prime \prime} \\
e^{\prime \prime} & e^{\prime \prime} e^{\prime \prime}
\end{array}
$$

This system contains a zero-element, $\mathbb{I}=(0,0)$, and a unit-element, $1=(1,0)$. To show that it does not satisfy M3, note that $(0,2) \odot(4,5)$ $=(0,18)$ while also $(0,2) \odot(3,6)=(0,18)$. Moreover, as was to be expeeted, it does not satisfy $E 7$; for example, if $a=(2,7)$ and $b=(3,6)$, then neither $a-b$ nor $b-a$ exists in the system.

The existence of this system shows that the set of postulates in $\S 1$ is "weakened"* when $M 3$ is replaced by $M 3^{\prime}$, since $M 3$ cannot be deduced from $M 3^{\prime}$ without the aid of an additional postulate, like $E 7$.

An example of a system satisfying $A 1,2,3,4^{\prime}, 5$ and $M 1,2,3,4,5$, but not $A 4$, would also be interesting; I have not, however, been able to find an

[^14]example of this kind. It therefore remains an open question whether the set of postulates in $\S 1$ is really "weakened" when $A 4$ is replaced by $A 4$.

APPENDIX 2.

It may be interesting to note here, somewhat more in detail than in the text, what can be done with postulates $A 1,2,3 ; M 1,2,3$ without the aid of the distributive laws for multiplication.

Lemme 1. If $a \times \mathbb{\square}=\mathbb{I}$ or $\times u=\mathbb{4}$, then $a \times \mathbb{\square}=\mathbb{\square} \times u$.

Lemmu 2. If $a \times \mathbb{\square}=a$ or $\mathbb{\square} \times a=u$, then $u \times \mathbb{I}=\mathbb{\square} \times a$.
For, if $\quad a \mathbb{I I}=u$, then $a \mathbb{I f} a=u$, whence $\mathbb{I f} u=a$, by $M 3_{3}$; and again, if $\llbracket u=a$, then $a \llbracket u=a u$, whence $u \mathbb{I}=u$, by $M 3_{2}$.

Theorem A. In any system whieh satisfies $A 1,2,3 ; M 1,2,3$, if we assume in regard to the multiplieative property of \mathbb{I}, merely that

$$
\mathbb{I} \times \mathbb{I}=\mathbb{I}
$$

then either $a \times \mathbb{\|}=\mathbb{U} \times a=\mathbb{d}$ for every element a, or else $a \times \mathbb{\square}=\mathbb{4} \times a=a$ for every element \boldsymbol{a}.

For, since $\mathbb{I} \mathbb{I}=\mathbb{I}$, we have $x \mathbb{U} a=x \mathbb{I} a$; therefore, by $M 3_{2}$, if $x \mathbb{I} \neq \mathbb{I}$ for any single element x, then $\mathbb{I} a=a$ for every element a. Henee the theorem, by lemmas 1 and 2 .

Theorem B. In any system which satisfies $A 1,2,3 ; M 1,2,3$, if $c \times \mathbb{\pi}=\mathbb{\pi}$ or $\times c=\mathbb{\pi}$ for any single element c, not $\mathbb{\pi}$ or 1 , then $a \times \mathbb{\pi}$ $=\mathbb{\square} \times a=\square$ for every clement a.

Proof: If $c \mathbb{\|}=\mathbb{\|}$, then $c c \mathbb{d} \ell=c \| u$, whenee $\mathbb{d} a=\mathbb{\|}$ (for, if $\mathbb{I} a \neq \mathbb{d}$, then $c c=c$, by $M 3_{2}$, and therefore $c=\mathbb{I}$ or 1 , by theorem 8); henee the theorem, by lemma 1 .

Theorem C. In any system which satisfies $A 1,2,3 ; M 1,2,3$, if $c \times \mathbb{\|}=c$ or $\mathbb{\|} \times c=c$ for any single element c, not $\mathbb{\|}$, then $a \times \mathbb{I}=\mathbb{I} \times a$ $=a$ for every element α.

Proof: If $c\|=\|$, then $c \| a=c \llbracket a$, whence $\mathbb{\|} a=a$, by $M 3_{1}$; hence the theorem, by lemma 2 .

Examples.

The following three systems, all of which satisfy $A 1,2,3,4,5$ and $M 1$, $2,3,5$, but not $M / 4$, will illustrate these theorems. In each of the systems there is a zero-element, namely $\mathbb{I}=0$.

Example 1. The class of all even integers, with addition defined in the usual way, and multiplication defined as follows:

$$
a \odot 0=0 \odot a=a ; \text { otherwise } \quad a \odot b=a b
$$

In this system, the equations $\because \odot \mathbb{H}=\mathbb{I} \odot u=\mathbb{U}$ are true when and only when $a=\mathbb{a}$. There is no unit-element.

Example 2. The class of all positive integers and zero, with $\quad \ell \oplus b=$ $a+b$, and $a \odot b$ defined as follows :

$$
a \odot 1=1 \odot a=a ; \text { otherwise } a \odot b=a+b+2
$$

In this system, there is a unit-element, namely $\mathbb{A}=1$, and the equations $\iota \odot \mathbb{\|}=\mathbb{I} \odot \imath=\mathbb{a}$ are true when and only when $\imath=\mathbb{1}$.

Exrmple 3. The elass of all positive integers and zero, with $a \oplus b=$ $a+b$, and $a \odot b=a+b+1$.

In this system, the equations $a \odot \mathbb{I}=\mathbb{\square} \odot a=\mathbb{I}$, and also the equations $\alpha \odot \mathbb{a}=\mathbb{I} \odot a=a$, are false for all values of a. There is no unit-element.

It should be noticed that all these systems possess the property that a produet is never zero unless at least one of its factors is zero.

Marvard Untversitty,
Cambridge, Mass.

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book is DUE on the last date stamped below.

DEC111505 Ev

(4)

[^0]: * It will greatly assist the reader if he will, from the start, think of multiplication, not as repeated addition, but as a separatc operation, having no connection with addition except through the distrlbutive law, $a(b+c)=a b+a c$.

 Many propositious of algebra concern also the relatlon of order (or of "greater and Icss") between two numbers; thesc propositions arc not consldercd howcver in the present paper, which stops at the point where the intruduction of the relation of order scems necessary.

 + A rule of combination is any rule or convention by which two objects detcrmine a third.

[^1]: * By a "system," in this comection, we mean any class of entitics amoug which two rules of combiuation are establlshed. - The entities which belong to the class are called the " elements" of the class, or of the system.
 \dagger Trans. Amer. Math. Soc., vol. 6 (1905), p. 225.

[^2]: * Any set of consistent postulates might be used as the basis of an abstract deductive theory; but only those sets of postulates arc worth studyiug which are eapable of soue interesting conerete interpretation. If preferred, the postulates may be ealled "assumptions," or "hypotheses;" cf Trins. Amer. Math. Sor., vol. 5 (1904), p. 283.
 \dagger This method has become familiar in the last ten years through the works of l'eano, Pieri, Padoa, Hilbett, and others.
 \ddagger it is customary, however, to exteud the word algebra so as to include any system which satisties postulates $A 1,2,3,4,5 ; M 1,4$; and $E 1$.

[^3]: * The words "assoeiative," "commutative," and "distribntive" have been in general use sinee the middle of the nineteenth century. See H. Hankel, Theorie der complexen Zahlensysteme (1867), p. 3, foot-note.
 \dagger Cf. Trans. Amer. Nath. Soc., vol. 6 (1905), p. 212.

[^4]: * See footnote * on preceding page.

[^5]: * See footnote * on page 7.
 + B. Peirce, Linear Associative Algebra, 1874.

[^6]: * Cf. H. Hankel, loc. cit., p. 23; also Stolz and Gmeiner, Theoretische Arithmetik (1902), p. 54.

[^7]: * The distinction between positive and negative elements involves the notlon of order, and will therefore not be discussed in the present paper. (An elcment a is called positive or negative according as $a+a>a$ or $a+a<a$.) It should be mentioned, however, that in many cases the relation of order is definable in terms of addition, or of addition and multiplication; see especlally O. Veblen, Trans. Amer. Math. Soc., vol. 7 (1906), pp. 197-199.

[^8]: * The proofs of theorems 41-45 are similar to the proofs of theorems 21-25, and may well be left to the reader.

[^9]: * The earliest set of postulates luaving this character is probably the set of five postulates for the system of natural uumbers with respect to succession, given by G. Peano in 1891. [Rivista di Matematica, vol. 1 (1891), p. 87; Formulaire de Mathématiques, vol. 2 (1898), p. 2.] Other sets of postulates of the same kind, for the systems of positive real, positive rational, and positive integral numbers witl respcet to addition, were given by the prescnt writer in 1902. [Trans. Amer. Math. Soc., vol. 3, pp. 264-284, especially theorems II, IL', Il1", on pp. 277, 282, 283. See also ibid., vol. 6 (1905), p. 41.] The name categorical was introduced in 1904 by 0 . Veblen, who has made important ase of the notion in his sets of postulates for geometry. [Trans. Amer. Math. Soc., vol. 5 (1904), p. 346.]

[^10]: * L. Couturat, Les principes des Mathématiques, 1905, p. 169.

[^11]: * This postulate is much icss vague than Hilbert's "Axiom of Completencss" (Axiom der Vollsiandigkeit). which is appurently intended to serve a similar purpose. [See Jahresbericht der Deutschon Mathrmutiker-Vereinigung, vol. 8 (1900), part 1, p. 184] Hilbert doen not use the notion of isomorphism, luwrever, and his "Axioms of geometry," as a matter of fact, do not form a categorical set.

[^12]: * For the proofs of these theorems, whieh are due to R. Dedekind (1877), and involve merely an elementary knowledge of determinants, the reader is referred to P. Baehmann's Zahlentheovie, vol. 5 (Allgemeine Arithmetik der Zahlenkarper, 1905), pp. 3-6. Another method of proof, depending on elementary properties of symmetric funetions, is given in Borel and Drach's Théorie cles nombres et l'algëbre supérieure, 1895, p. 184.

[^13]: * I am indebted to Mr. P. W. Bridgman and Mr. G. C. Evans for assistance in verifying the demonstrations in this and the preceding section.

[^14]: * The notion "weaker" seems to me to be applicable rather to a set of postulates than to a single postulate.

