> Cockburn, J. Roy Brief synopsis of the course of lectures in descriptive geometry

Brief Synopsis of the Course

of Lectures in

Descriptive Geometry

AS ARRANGED FOR THE FIRST YEAR FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO

J. ROY COCKBURN, B.A.Sc.
Associate Professor of Descriptive Geometry

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

Brief Synopsis of the Course of Lectures in

Descriptive Geometry

AS ARRANGED FOR THE FIRST YEAR
FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO

J. ROY COCKBURN, B.A.Sc.
Associate Professor of Descriptive Geometry

$$
\begin{aligned}
& Q A \\
& \text { Sol } \\
& \text { C632 }
\end{aligned}
$$

FIRST YEAR LECTURES IN DESCRIPTIVE GEOMETRY

J. Roy Cockburn, B.A.Sc.,

Descriptive Goemetry is the science by means of which solid objects may be represented upon a single plane surface and by means of which problems in solid geometry may be solved by graphical methods.

In the solution of problems by the methods of descriptive geometry all points and lines are represented by their projections upon plane or other surfaces.

Definitions

(1) A plane is a surface such that if any two points in the surface be joined by a straight line the line will be wholly in that surface.
(2) The projection of a point may be defined as follows:-If a straight line be drawn through a given point to intersect a given surface, the point where this line intersects the surface is the projection of the given point on the given surface and the straight line joining the point with its projection is called the projecting line of the point.

If the projection be upon a plane surface and the projecting line be perpendicular to that surface the projection is said to be orthographic. If the projecting line be inclined to the plane surface the projection is said to be oblique.

The projection of a given line is the line which contains the projection of every point in the given line and similarly the projection of any object may be found by obtaining the projection of every line and point in the object.

If all the projecting lines of any object are parallel, the projection is said to be a parallel projection and may be either orthographic or oblique.

If all the projecting lines of an object pass through some fixed point the projection is said to be conical or a conical projection.

Perspectives are the most familiar examples of conical projections. Many of the projections of the earth's surface used in map making also belong to this class.
(3) A straight line is said to be perpendicular to a plane if it is at right angles to every straight line in the plane drawn through its point of intersection with the plane.
(4) The angle between two planes is the angle between two lines one, in each of the planes and each passing through a point in the line of intersection of the two planes and perpendicular to the line of intersection.

PROPOSITIONS IN SOLID GEOMETRY Proposition I

If two straight lines intersect they are contained in one plane for, if a plane be passed through one of the lines it may be revolved about that line as an axis until it contains the other.

Proposition II

If two planes intersect, their line of intersection is a straight line. (Fig. 1.)

Let M and N be two planes which intersect.
If the two points A and B be taken in the line of intersection of M and N and joined by a straight line, the straight line will lie wholly in the plane M (def. of plane); and for the same reason it will lie wholly in plane N .

Therefore the straight line $A B$ is the line of intersection of the two planes.

Proposition III

If a straight line be perpendicular to each of two intersecting straight lines at their point of intersection, it is perpendicular to their plane. (Fig. 2.)

Let $A B$ be a straight line perpendicular to each of the straight lines $B D$ and $B F$ at their point of intersection B. Then the straight line $A B$ must be perpendicular to the plane " M " containing $B D$ and $B F$.
Construction:
Produce $A B$ to C, making $B C=A B$. Join D and F and from any point on $D F$, such as E, draw the straight line $B E$ to the point B. Join the points D, E and F with points A and C. Proof:

In triangles $A B D$ and $C B D$,
side $A B=$ side $C B$.
side $D B$ is common,
and $A B D=C B D$.
\therefore the side $A D$ must $=$ side $D C$.
Similarly
In triangles $A B F$ and $C B F$
side $A F$ may be proved = side $C F$
Again
side $A D=$ side $D C$
side $A F=$ side $C F$
side $D F$ is common.
If triangle $C D F$ be revolved about the side $D F$ through a sufficient angle the sides $D C$ and $C F$ will fall on the sides $A D$ and $A F$ and the point C will coincide with the point A.
\therefore line $C E$ will coincide with and equal line $A E$.
Again
In triangles $A B E$ and $C B E$
side $A B=$ side $C B$
side $B E$ is common
and side $A E=$ side $C E$
$\therefore A B E=C B E$ and
\therefore each $=$ right angle.
$\therefore A B$ is at right angles to line $B E$ and \therefore to any straight line in plane M passing through point B.

It is therefore perpendicular to the plane M which contains the two straight lines $B D$ and $B F$.

FIG』ロロ

F16』

Fles．

Fine 40

F10 事。

FGG ${ }^{6}$

FiG』 7 ．

Fig．8．

Fi（e） 9

Fies 10.

Proposition IV

Every plane which contains a straight line perpendicular to another plane is perpendicular to that plane. (Fig. 3.)

Let the straight line $A B$ be perpendicular to the plane M. Then any plane such as N which contains the line $A B$ is perpendicular to the plane M.

Let $B C$ be the line of intersection of the plane M with plane N.
Through the point B where line $A B$ intersects the plane M draw the straight line $B D$ at right angles to $B C$.

The straight line $A B$ is perpendicular to line $B C$. Def. 3 and $B D$ is perpendicular to $B C$. \therefore the angle $A B D$ is the angle between the planes M and N. But angle $A B D=1$ right angle.

Def. 3

Proposition V

If two planes be perpendicular to one another every line drawn in one of them perpendicular to their line of intersection is perpendicular to the other. (Fig. 3.)

Let the two planes M and N be perpendicular to one another and let $A B$ be a line in plane N drawn perpendicular to the line of intersection $B C$.
Construction:
Through point B draw $B D$ perpendicualr to $B C$.
The angle $A B D$ is a right angle.
The angle $A B C$ is a right angle.
Def. 4
\therefore straight line $A B$ is perpendiculat to plane M.
Prop. III

Collary-Proposition V

If through any point in M a straight line be drawn perpendicular to the plane N it will intersect it in $B C$; for if not, two perpendiculars could be drawn from the same point in M.

Proposition VI

If two planes which intersect be both perpendicular to a third plane, their line of intersection is also perpendicular to the third plane. (Fig. 4.)

Let the planes N and P which intersect along the line $A B$ be both perpendicular to the plane M.

The point B is a point common to all three planes.
Then a straight line perpendicular to M through the point B will lie altogether in the plane N and altogether in the plane P. \therefore it must be the line of intersection of N and P, Prop. V Cor. or in other words, the line of intersection of planes N and P is perpendicular to plane M.

Proposition VII

Two straight lines which are perpendicular to the same plane are parallel to one another. (Fig. 5.)

Let $A B$ and $C D$ be two straight lines, each perpendicular to the plane M. They are therefore parallel.

Because $A B$ is perpendicular to the plane M, the plane $A B D$ must be perpendicular to plane M.

Prop. IV and the line $C D$ being perpendicular to the plane M must lie in the plane $A B D$.

Prop. V Cor.
$\therefore A B$ and $C D$ are in the same plane and as the angles $A B D$ and $C D B$ are each right angles, $A B$ and $C D$ are parallel.

Proposition VIII

If one of two parallel straight lines is perpendicular to a plane the other is also perpendicular to that plane. (Fig. 5.)

Let $A B$ and $C D$ be two parallel straight lines and one of them $A B$ perpendicular to the plane M. Then $C D$ must also be perpendicular to plane M.
Proof:
Because $A B$ is perpendicular to plane M, then the plane $A B D$ must be perpendicular to the plane M.

Prop. IV
But $C D$ is in the plane, $A B D$ being parallel to the line $A B$, and as $A B D$ is a right angle $\therefore C D B$ must be a right angle and \therefore line $C D$ must be perpendicular to the plane M.

Prop. V

Proposition IX

If two straight lines are each parallel to a third straight line they are parallel to one another. (Fig. 6.)
$A B$ and $C D$ are two straight lines each parallel to the straight line $E F$.
$A B$ and $C D$ must then be parallel to each other. Construction:

Through some point in $E F$ pass a plane M perpendicular to $E F$.
$A B$ being parallel to $E F$ must be perpendicular to plane M.
Prop. VIII
Likewise $C D$ must be perpendicular to plane M.
Prop. VIII
$A B$ and $C D$ are therefore parallel to one another.
Prop. VII

Proposition X

A plane which contains one of two parallel straight lines is parallel to the other. (Fig. 7.)
$A B$ and $C D$ are two parallel straight lines and M is a plane containing $C D$. Plane M must then be parallel to the line $A B$.
$A B$ and $C D$ being parallel are in the same plane. $A B C D$.
\therefore if $A B$ intersects the plane M it must intersect it along the line $C D$; but, this is impossible, as $A B$ is parallel to $C D$.

Proposition XI

A straight line which is parallel to a plane is also parallel to the line of intersection with that plane of any plane containing the line (Fig. 7.)

Let the straight line $A B$ be parallel to the plane $M . A B$ is then parallel to $C D$, the line of intersection with M of any plane containing $A B$, such as P.

If $A B$ be not parallel to $C D$, the line of intersection of M and P, it will meet $C D$; but, as $C D$ is wholly contained in plane M, $A B$ would meet M at the same point; but, this is impossible; therefore $A B$ and $C D$ are parallel.

Corollary 1.-Proposition XI

If two straight lines which meet be each parallel to a plane their plane must be parallel to the plane first mentioned.

Proposition XII

If two planes which are parallel to each other be intersected by a third plane the lines of intersection must be parallel. Proof.

If the two lines of intersection be not parallel they will meet, since they are in the same plane; but, the planes would then meet in the same point which is impossible.

Proposition XIII

Planes to which the same straight line is perpendicular are parallel. Proof:

If the two planes be not parallel they will meet in a straight line and from any point in this line lines could be drawn, one in each plane, to intersect the given line, and these lines would each be perpendicular to the given line.

But, this is impossible: therefore, the given planes cannot meet and therefore are parallel.

Proposition XIV

If two intersecting straight lines be parallel respectively to two other intersecting straight lines situated in a different plane from the first two, the first two and the second two contain equal angles and their planes are parallel. (Fig. 8.)
$A B$ and $B C$ are parallel respectively to $D E$ and $E F$.
Then the angle $A B C=$ the angle $D E F$ and plane $A B C$ is parallel to plane $D E F$.
Construction:
Cut off $A B$ and $D E$ equal and $B C$ and $E F$ equal.
Join $A D, B E, C F, A C$ and $D F$.
Proof:
Because $A B$ and $D E$ are equal and parallel, then $A D$ and $B E$ must be equal and parallel.

Because $B C$ and $E F$ are equal and parallel, then $B E$ and $C F$ must be equal and parallel, and $\therefore A D$ and $C F$ must be equal and parallel. Prop. IX
Then because $A D$ and $C F$ are equal and parallel, $A C$ and $D F$ must be equal and parallel.

In triangles $A B C$ and $D E F$
side $A B=$ side $D E$
side $B C=$ side $E F$
side $A C=$ side $D F \therefore$ angle $A B C=$ angle $D E F$.
Again:
Because $A B$ is parallel to $D E$, it is parallel to the plane $D E F$. Prop. X
Similarly $B C$ is parallel to plane $D E F$.
\therefore plane $A B C$ is parallel to the plane $D E F$.
Prop. XI Cor. 1

Proposition XV

If two straight lines be at right angles to one another their orthographic projections on a plane parallel to either one of them are also at right angles. (Fig. 9.)

Let $A B$ and $C D$ be two straight lines at right angles to one another, and M a plane parallel to $A B$.

The orthographic projections of $A B$ and $C D$, viz., $a b$ and $c d$ are also at right angles.
Proof:
$A E$ is parallel to $a e \quad$ Prop. XI
and $a e$ is perpendicular to $e E$ $\therefore A E$ is perpendicular to $e E$

Prop. III
and \therefore perpendicular to plane $e E D$, and
$\therefore a e$ is perpendicular to plane $e E D$
Prop. VIII and \therefore to line ed.

Proposition XVI

If the projections of two straight lines be at right angles to one another and one of the lines be parallel to the plane of projection, the two lines are at right angles. (Fig. 9.)

Let $A B$ and $C D$ be two straight lines of which the projections $a b$ and $c d$ are at right angles and the line $A B$ is parallel to the plane of projection M.
$A E$ and $a e$ are parallel
Prop. XI
and $a e$ is perpendicular to the projecting plane Eed.
Prop. III
$\therefore A E$ is perpendicular to the plane $e E D$ and \therefore to $E D$.

Prop. VIII

Proposition XVII

If a straight line be perpendicular to a plane the orthographic projection of the line on another plane is perpendicular to the line of intersection of the two planes. (Fig. 10.)

Let $A B$ be a straight line perpendicular to the plane P, and M a plane intersecting P along line $C D$.
$a b$ is the orthographic projection of $A B$ on the plane M.
$a b$ is \therefore perpendicular to $C D$.

Proof:
As $A B$ is perpendicular to P, the plane $A B c a$ is perpendicular to P
and plane $A B c a$ is perpendicular to M.
\therefore plane $A B c a$ is perpendicular to $C D$
Prop. VI
$\therefore C D$ is perpendicular to $a c$.
Def. III

PROBLEMS RELATIVE TO POINTS, STRAIGHT LINES AND PLANES

In general, points and lines are represented by their projections upon two imaginary planes: one plane, called the vertical plane of projection, being chosen in a vertical position; and the other plane, called the horizontal plane of projection, being chosen in a horizontal position.

In the representation of points and lines by their projections upon these planes it is found convenient to consider that the projections have been made and then one of the planes revolved about the line of intersection of the two planes until both planes coincide. In this way the projections of the points and lines can be represented upon a single plane surface.

The two imaginary planes divide space into four parts or quadrants and these quadrants are usually called the first, second, third and fourth, being numbered as shown in Fig. 11.

The point of sight or point of observation is considered to be in the first quadrant.

If the horizontal plane be revolved as indicated by the arrow heads until it coincides with the vertical plane of projection, a point such as " A " in the first quadrant would have its vertical projection a^{v} above the ground line (intersection of the two planes) and its horizontal projection a below the ground line.

Fua 11.
The points B, C and D in the other quadrants will be represented as shown.

Definitions

The vertical trace of a straight line is the point where it intersects the vertical plane of projection.

The horizontal trace of a straight line is the point where it intersects the horizontal plane of projection.

The vertical trace of a plane is its line of intersection with the vertical plane of projection.

The horizontal trace of a plane is its line of intersection with the horizontal plane of projection.

Problem I

Given the projections of a straight line, to find its horizontal and vertical traces. (Fig. 12.)

Let $a b$ and $a^{v} b^{v}$ be the horizontal and vertical projections of the straight line $A B$.

Produce the vertical projection $a^{\vee} b^{v}$ to intersect the ground line in the point $c^{\vee} . c^{\vee}$ is then the vertical projection of the point C where the line $A B$ intersects the horizontal plane and the horizontal projection of this point must be at the intersection of the horizontal projection of $A B$, viz., $a b$, with the line $c^{1} C$ drawn perpendicular to the ground line.

As the point C is a point on the horizontal plane, its horizontal projection coincides with the point itself. Therefore, the point C or c is the horizontal trace of $A B$.

In the same way the vertical trace D may be found.

Problem II

Given the points in which a straight line pierces the planes of projection, to find its projections. (Fig. 12.)

Let the points C and D be the points where the line pierces the horizontal and vertical planes respectively.

The horizontal projection of the point C is the point C itself,

Its vertical projection is the point c^{v} found by drawing line $c c^{1}$ to intersect the ground line at the point c^{∇}.

Likewise D is the vertical projection of D and d the horizontal projection of D.

Join the horizontal projection of C to the horizontal projection of D by the line $C d . C d$ is then the horizontal projection of the required line, and similarly $c^{\vee} D$ is its vertical projection.

Problem III

To find the length of a straight line whose projections are given and also to find the angle which it makes with the planes of projection (Fig. 13.)

Let $A B$ be the given line, given by its horizontal projection $a b$ and its vertical projection $a^{\mathrm{v}} b^{\mathrm{v}}$.

If the straight line $A B$ be revolved about a straight line through " A " and perpendicular to the vertical plane until it becomes

parallel to the horizontal plane, its horizontal projection $a b_{2}$ will be equal to the line in length, and the inclination of the projection $a b_{2}$ to the ground line will equal the angle between the line and the vertical plane.

During this revolution the horizontal projection of B moves from b to b_{2} along a line parallel to the ground line.

The vertical projection of point B moves around the arc of a circle, whose centre is a^{v}, from point $b^{\boldsymbol{v}}$ to point b_{2}^{v}, i.e., until $a^{\vee} b_{2}^{\mathrm{v}}$ becomes parallel to the G. L.

The line $a b_{2}$ is equal in length to the line $A B$ in space.

The angle $a b_{2} b$ equals the angle between the line $A B$ and the vertical plane of projection.

In the same way the angle $b_{2}^{v} a^{v} b_{1}^{v}$ equals the angle which the line makes with the horizontal plane of projection.

Problem IV

Given the length of a line, the angles which the line makes with the planes of projection and the projections of one extremity of the line, to find the projections of the line. (Fig. 18.)

Let the given line be $A B$ and the projections of one extremity be the points a and a^{∇}.

First, find the projections of the line when it is parallel to the vertical plane and making the required angle with the horizontal plane as follows:-

Through point a^{\vee} draw line $a^{v} b_{1}^{v}$ inclined to the ground line at an angle equal to required angle between $A B$ and " H " plane, and make $a^{\mathrm{v}} b_{1}^{\mathrm{v}}$ equal to the required line $A B$.

Through point a draw line $a b_{1}$ parallel to the ground line.
To find point b_{1} draw through b_{1}^{v} the line $b_{1}^{\mathrm{v}} b_{1}$ perpendicular to the ground line and to intersect $a b_{1}$ in the point $b_{1} a b_{1}$ and $a^{v} b_{1}^{\mathrm{V}}$ are the horizontal and vertical projections of the line $A B$ when it is parallel to the vertical plane and making the required angle with the horizontal plane.

Next find in the same way the horizontal and vertical projections $a b_{2}$ and $a^{\mathrm{v}} b_{2}^{\mathrm{v}}$ of $A B$ when it makes the required angle with the vertical plane and is parallel to the horizontal plane.

Again: As long as line $A B$ is inclined at the same angle to the vertical plane and point A remains stationary, the vertical projection $A B$ must be constant in length and the distance of the horizontal projection of B (viz., b) from the ground line must be constant.

Also, as long as the line $A B$ makes the same angle with the horizontal plane of projection, the length of its horizontal projection must be constant and if point A be stationary, then the distance of the vertical projection of B from the ground line must be constant.

Therefore, to find vertical projection of point B, draw line $b_{1}^{\mathrm{v}} b^{\mathrm{v}}$ parallel to the ground line and with centre a^{1} and radius $a^{\mathrm{x}} b_{2}^{\mathrm{v}}$ describe arc $b_{2}^{\mathrm{v}} b^{\mathrm{v}}$ to intersect line $b_{1}^{\mathrm{v}} b^{\mathrm{v}}$ at b^{v}. b^{v} is required vertical projection.

In the same way, b, the horizontal projection of B, may be found.
$a^{\mathrm{v}} b^{\mathrm{v}}$ is required vertical projection.
$a b$ the required horizontal projection.

Problem V

To find the traces of a plane containing three given points. (Fig. 14.)

Note-The vertical trace of the plane is its intersection with the vertical plane.

The horizontal trace is its intersection with the horizontal plane.

Let $A B C$ be the three given points, given by their projections $a^{\mathrm{v}} b^{\mathrm{v}} c^{\mathrm{v}}$ and $a b c$.

A plane passing through these three points must contain a straight line joining any two of them and the points where such a line intersects the planes of projection must be points on the required traces.

Find the vertical trace of the line joining A and B, viz., F.
Prob. I
Also the vertical trace of the line joining B and C, viz., G.
Prob. I
Join $F G$, obtaining the vertical trace of the plane.

Problem VI

To find the angle between two given straight lines which intersect. (Fig. 15.)

FTic. [55.

Let $A B$ and $A C$ be the two lines given by their projections $a b$, $a^{\mathrm{v}} b^{\mathrm{v}}$ and $a c, a^{\mathrm{v}} c^{\mathrm{v}}$ and intersecting at point A.

To find the angle between them.
Find the horizontal trace of the plane containing these lines. Prob. V
The three lines $A B, A C$ and the trace $D E$ just found form a triangle.

Revolve this triangle about the line $D E$ until it coincides with the horizontal plane.

To do this, find the projection of the line $A F$ from point A, perpendicular to the line $D E$ and intersecting it at point F. The horizontal projection of $A F$ is the line $a F$ drawn perpendicular to $D E$. Its vertical projection is the line $a^{v} f^{v}, f^{v}$ being point on ground line and on perpendicular $F f^{\mathrm{v}}$ to the ground line.

Find the true length of this line $A F$, viz., $A_{1} F$.
Prob. III
Through point F draw line $F A_{2}$ equal $A_{1} F$ and perpendicular to $D E$. The point A_{2} gives the revolved position of point A.

Join A_{2} with points D and E.
The lines $A_{2} D$ and $A_{2} E$ are the positions of the lines $A D$ and $A E$ when revolved to coincide with the horizontal plane.

The angle $D A_{2} E$ shows the true size of the angle between the lines $A B$ and $A C$.

Problem VII

To find ihe projections of a line bisecting the angle between two
given straight lines which intersect. (Fig. 15.)
Let $A B$ and $A C$ be the two given lines intersecting at the
point A.
Find the true size of the angle $B A C$, viz., $D A_{2} E$ in the same
way as in problem VI, by the method of revolving into the horizontal
plane.
While in revolved position, bisect the angle $D A_{2} E$ by the line
$A_{2} G$ intersecting line $E D$ at point G.
Find vertical projection of point G, viz., g^{v}.
Join G with $a:$ line $a G$ is horizontal projection of required line.
Join $a^{v} g^{\mathrm{v}}$ and line $a^{\mathrm{v}} g^{\mathrm{v}}$ is the vertical projection of required line.

Problem VIII

To find the projections of the line of intersection of two oblique planes. (Fig. 16.)

Let $L M$ be the vertical trace and $M N$ the horizontal trace of one of the planes and $L P$ the vertical and $P N$ the horizontal trace of the other plane.

The vertical traces of the two planes intersect at point L.
The horizontal traces of the two planes intersect at point N.
L and N are therefore, points on the required line of intersection and as the line of intersection is a straight line, it must be the line joining points L and N.

Find projections of points L and N.

l^{v} is vertical projection and l the horizontal projection of point L.
n^{v} is vertical and n the horizontal projection of point N.
Join $l^{v} n^{v}$ obtaining the vertical projection of required line of intersection. $l n$ is the horizontal projection.

Problem IX

To find the projection of the line of intersection of two planes, both of which are parallel to the ground line. (Fig. 17.)

Let $A B$ be the vertical trace and $C D$ the horizontal trace of one of the planes and $W X$ the vertical trace and $Y Z$ the horizontal trace of the other.

Note-The planes being parallel to the ground line, must have their traces parallel to the ground line.

Prob. XI
Pass an auxiliary plane through both of the given planes. One perpendicular to the two planes will be most convenient.

Such a plane is the plane $E F G H$, having both traces perpendicular to the ground line.

The vertical trace $A B$ is intersected in the point E by the vertical trace $E G$ of the auxiliary plane and the horizontal trace $C D$ in the point F by the horizontal trace $F H$.

The line joining the points E and F is the line of intersection of the plane $A B C D$ by the auxiliary plane, and similarly, the line $G H$ is the line of intersection of the plane $W X Y Z$ by the auxiliary plane.

If the auxiliary plane be revolved through an angle of 90° about its vertical trace $E G$, it will coincide with the vertical plane and the lines of intersection $E F$ and $G H$ will in that position be in the vertical plane, and their point of intersection (K) will be shown in position K_{1}.

Revolve the auxiliary plane back to the original position. finding k^{v} and k, its vertical and horizontal projections. K being common to the three planes, $A B C D, W X Y Z$ an $d E F G H$ must be on the line of intersection of $A B C D$ and $W X Y Z$.

Problem X

To find the projection of the point of intersection of a given straight line and a given plane. (Fig. 18.)

Let $L M$ be the vertical trace of the given plane and $M N$ the horizontal trace, and $A B$ be the line given by its vertical projection $a^{v} b^{\mathrm{v}}$ and its horizontal projection $a b$.

Find the traces of the plane containing the line $A B$ and its horizontal projection.
$O P$ and $P Q$ are the traces.
Find the line of intersection of the plane $L M N$ by the plane

$O P Q$. Such a line is $O Q$. Its vertical projection is $o^{1} q^{1}$ and its horizontal projection oq.

The vertical projection $o^{v} q^{v}$ intersects the vertical projection $a^{1} b^{1}$ at the point c^{1}, this the vertical projection of the point where the line $A B$ intersects the line $O Q$ and \therefore where it intersects the plane $L M N$.

Find the point c the horizontal projection of point c^{1} or c on line $A B$.

Problem XI

To find the projection of a line passing through a given point and perpendicular to a given plane and to find the distance from the point to the plane. (Fig. 19.)

Let $L M$ be the vertical trace and $M N$ the horizontal trace of the given plane, and a^{v} the vertical projection and a the horizontal projection of the given point.

To find the vertical projection of a line through point A and perpendicular to the plane $L M N$, draw the line $a^{\mathrm{v}} b^{\mathrm{v}}$ through a^{v} perpendicular to $L M$.

Prop. XVII
In the same way, find the horizontal projection $a b$.
To find the distance to the plane $L M N$ from the point A, find the projections (b^{v} and b) of the point B where the line $A B$ intersects the plane $L M N$.

Find the distance from the point A to the point B and the distance $A B$ is the required distance. Prob. X Prob. III

Problem XII

To project a given line orthographically on a given plane and to find the position of the projection relatively to one of the traces of the plane. (Fig. 20.)

Fies 20

Let $L M$ be the vertical trace and $M N$ the horizontal trace of the given plane, and $a^{v} b^{v}$ the vertical projection and $a b$ the horizontal projection of the given line $A B$.

To find the orthographic projection of the line $A B$ on the plane $L M N$ it is necessary to find the orthographic projection of the two extremities A and B.

Through the point A draw the line $A W$ perpendicular to the plane $L M N$ and find the point where $A W$ intersects the plane $L M N$ (or) this plane.

Prob. X
The point W shown by its projections w^{v} and w is the orthographic projection of the point A on the plane $L M N$. Similarly the point X given by its projection x^{v} and x, is the orthographic projection of the point B on the plane $L M N . w^{v} x^{v}$ is the vertical projection and $w x$, the horizontal projection of the required line. The second part of this problem may be solved by revolving the plane $L M N$ about its horizontal trace into the horizontal plane.

Problem XIII

Through a given point to pass a plane perpendicular to a given line. (Fig. 21.)

Let X be the point given by its projections x^{v} and x, and $A B$ be the line given by its projections $a^{\mathrm{v}} b^{\mathrm{v}}$ and $a b$.

A plane perpendicular to the line $A B$ must have its vertical trace perpendicular to the vertical projection of the line $A B$ and its horizontal trace perpendicular to the horizontal projection of the line $A B$.

Prop. XVII

T0. 21.
Through point X draw the line $X Y$ parallel to the vertical trace of the required plane. Its vertical projection is $x^{\nabla} y^{v}$ perpendicular to $a^{\vee} b^{\vee}$ and its horizontal projection $x y$ is parallel to the ground line.

Find the point Y where this line intersects the horizontal plane. As the line $X Y$ is parallel to the vertical trace of the required plane and it passes through the point X it must be contained in
the required plane. Y is therefore a point on the horizontal trace of the required plane.

Problem XIV

Through a given point to pass a plane parallel to two given straight lines. (Fig. 22.)

Let X be the point given by its projections x^{v} and x, and $A B$ and $C D$ be the given lines, $a^{v} b^{v}$ and $a b$ being the projections of one, and $c^{v} d^{v}$ and $c d$ the projections of the other.

Through the point X draw a line parallel to $A B$, e.e., through x^{v} draw a line $o^{v} m^{v}$ parallel to $a^{v} b^{v}$ and through x draw om parallel to $a b$ obtaining projections of the required line.

Through X draw a line parallel to $C D: l^{v} n^{v}$ being the vertical and \ln the horizontal projection.

Find the traces of a plane containing these two lines $L N$ and MO. Prob. V
$L M$ is the vertical trace of plane and $O N$ the horizontal trace of the required plane.

Problem XV

To pass a plane through a straight line parallel to another straight line. (Fig. 23.)

Let $A B$ and $C D$ be the given lines. It is required to pass a plane through $C D$ parallel to $A B$.

Through the point D on $C D$ draw the line $E F$ parallel to $A B$. Find the traces of a plane containing $C D$ and $E F$.

Prob. V

Problem XVI

To find the shortest distance from a given point to a given straight line. (Fig. 24.)

Let the point X be given by its projections x^{v} and x and the straight line $A B$ given by its projections $a^{\mathrm{v}} b^{\mathrm{v}}$ and $a b$.

The shortest distance from x to $A B$ is evidenlty the length of a perpendicular from X to $A B$.

Through X pass a plane $L M N$ perpendicular to line $A B$.
Find the point Y where line $A B$ intersects plane $L M N$.
Prob. X
The line joining the points X and Y being in a plane which is perpendicular to line $A B$ must, therefore, be perpendicular to $A B$.

The length of the line $X Y$ is the required distance. This may be found by Problem III.

Problem XVII

To find the angle between a given straight line and a given plane. (Fig. 25.)

Def.-The angle between a straight line and a plane is the angle between the line and its orthographic projection on the plane.

If a line be drawn from a point on the given line perpendicular to the given plane, the angle which it makes with the given line is the complement of the required angle.

Let $L M N$ be the given plane and $A B$ be the given straight line.
Through the point A, draw the line $A C$ perpendicular to the plane $L M N$. Find the angle between $A B$ and $A C$.

Prob. VI
90°-This angle is the required angle.

Problem XVIII

To find the angle between two given planes. (Fig. 26.)
Let $L M$ be the vertical trace and $M N$ the horizontal trace of one plane and $L P$ the vertical trace and $P N$ the horizontal trace of the other plane.

The angle between two planes is the angle between two lines, one in each plane, perpendicular to the line of intersection.

Therefore, if a plane be passed through the two planes so that it is at right angles to their line of intersection the two lines of intersection thus found are at right angles to the line of intersection on the planes $L M N$ and $L P N$. The angle between these two lines is the required angle.
$W X$ is the horizontal trace of the auxiliary plane which is taken at right angles to $L N$, the line of intersection of the two planes.

In order to obtain the horizontal projection of the point Z in which the line $L N$ is intersected by the auxiliary plane $W X Z$ revolve the line $L N$ and the auxiliary plane $W X Z$, about the horizontal projection of $L N$, until the line takes the position $L_{1} N$ on the horizontal plane, the auxiliary plane becoming perpendicular to the horizontal plane of projection, $Y Z$ being the horizontal trace in the revolved position.
Z_{1} is the point where the plane $W X Z$ intersects the line $L_{1} N$.
Revolve the plane and line back to the original position, obtaining z, the horizontal projection of the required point.

Join W and X to z, obtaining the projections of the lines cut from the planes $L M N$ and $L P N$ by the auxiliary plane.

Revolve the auxiliary plane $W X Z$ about its horizontal trace, until it coincides with the horizontal plane of projection. The point Z falls at $Z_{2} Y Z_{2}$ being equal to $Z Y_{1}$.

The angle $W Z_{2} X$ equals the angle between the two planes.

Problem XIX

Either trace of a plane being given and the angle which the plane makes with the corresponding plane of projection, to find the other trace. (Fig. 27.)

Let $L M$ be the horizontal trace of the plane and a the angle which the plane makes with the horizontal plane of projection.

At any point A in line $L M$ draw $A B$ perpendicular to $L M$ and in the horizontal plane. It intersects the ground line at the point B.

Draw $B C_{1}$ perpendicular to $A B$ and in horizontal plane.
Make angle $B A C_{1}=a$.
Revolve plane of triangle $A B C_{1}$ through 90° about $A B$ or until $B C_{1}$ coincides with he vertical plane. C_{1} will fall at C. $B C$ being equal to $B C_{1}$ join $C M$ and the line $C M$ is the required vertical trace.

Problem XX

To find the shortest line that can be drawn terminated in two given straight lines. (Fig. 28.)

Let $A B$ and $C D$ be the two given lines.
Through the line $A B$ pass a plane parallel to the line $C D$.
Prob. XV
$W X$ is the vertical trace and $Y Z$ the horizontal trace.
Project the line $C D$ on the plane $W X Y Z$ (Prob. XII), $E F$ is the required projection intersecting line $A B$ at the point F, of which f and f^{1} are the horizontal and vertical projections. Through F draw line $F G$ perpendicular to $W X Y Z$ to intersect line $C D$ in point G. Prob. XIII. The length of the line $F G$ is the required length, and is shown at $f g_{1}$.

AXOMETRIC PROJECTION

If in a solid object three principal directions or axes be assumed each one perpendicular to the other two and the object be pro-

25

jected orthographically on a plane which is inclined to these axes the orthographic projection thus formed is called an Axometric or Axonometric Projection．

The method of obtaining the Axometric Projection is to assume a sufficient number of straight lines parallel to the axes and then find the projections of these lines．

In the case of a rectangular solid such as a cube or prism it is only necessary to find the projections of the edges when they are placed parallel to the assumed axes．

In Fig． 29 let $a B, a C$ ，and $a D$ be the orthographic projections of three lines $A B, A C$ ，and $A D$ each one of which is at right angles to the other two，and $B C, C D$ and $D B$ the intersections of the plane of projection with the planes $A B C, A C D$ ，and $A D B$ respec－ tively．

㢄国。20．
If the plane $A B C$ be revolved about $B C$ to coincide with the plane of projection A will fall at A_{1} ．

As the angle $B A_{1} C$ is a right angle the arc $B A_{1} C$ must be a semi circle．The line $D a A_{1}$ is perpendicular to $B C_{1}$ ．

Prop．XVII
$A_{1} B$ is the true length of the line $A B$ ．
$a B$ is its projected length．
The ratio of the length $a B$ to the length $A_{1} B$ is therefore the ratio of the length of the projection of any line parallel to $A B$ to the length of the line．

The corresponding ratios for lines parallel to $A C$ and $A D$ are found in a similar manner．

The practical method of making an axonometric projection is as follows：

First construct a scale as in Fig．29．The angles at a may be any convenient size．

Secondly assume straight lines in the object each one of which can be placed parallel to one of the assumed axes．The projections
of the lines will be parallel to their respective axes and the lengths of their projections can be found from the scale.

ISOMETRIC PROJECTION

If the three principal directions or axes in an axometric projection be all inclined at the same angle to the plane of projection the projection is called an Isometric Projection.

In order to prove certain properties of the Isometric Projection, take as an example the projection of a cube on a plane which makes equal angles with all its edges. Such a plane would be at right angles to a diagonal of the cube.

Let $A B$ (Fig. 39) be a diagonal of a cube as shown above and $A C, A D$ and $A E$, three edges mecting at the point A.

In Fig 30 the ratio of the line $B D$ to the line $D E$ equals the ratio of the diagonal of a face of a cube to the diagonal of a cube, i.e., it is equal to the ratio between the length of the isometric projection of a line to the actual length of the line

FPG. ${ }^{3} 0$
In the three triangles $A B C, A B D$ and $A B E$
The sides $A C, A D$ and $A E$ are all equal, and sides $B C B D$ and $B E$ are all equal and side $A B$ is common. \therefore angles $B A C$, $B A D$ and $B A E$ are all equal.

If perpendiculars be dropped from the three points C, D and E on the line $A B$, they will all fall at a common point F, and a plane containing these three lines will be perpendicular to the line $A B$.

In triangles, $A C F, A D F$ and $A E F$,
The sides $A C, A D$ and $A E$ are all equal.
Angle $F A C=$ angle $F A D=$ angle $F A E$ and
side $A F$ is common,
\therefore angle $A F C=$ angle $A D F=$ angle $A E F$
and side $F C=F D=F E$

The orthographic projection of $A C$ on plane through C, D and E is line $C F$,
of $A D$ is line $D F$,
of $A E$ is line $E F$
In triangles $F C D, F D E$ and $F E C$
sides $F C, F D$ and $F E$ are all equal.
and sides $C D, D E$ and $E C$ are all equal
\therefore angles CFD, DFE and $E F C$ are all equal and each $=120^{\circ}$.
\therefore the projections of $A C, A D$ and $A E$ on the plane $C D E$ are all equal and make angles of 120° with each other, and the projections of these lines on the plane $C D E$ are their isometric projections because plane $C D E$ makes equal angles with all three lines.

To determine the relation beween the lengths of the projections of the sides $A C, A D$ and $A E$ and the length of the lines themselves.

In the similar triangles $B A C$ and $A F C$
angle $A F C=$ angle $A C B=1$ right angle
$\therefore A C: C F=A B: B C$
i.e., $A C: C F=$ diagonal of cube: diagonal of face of cube.


```
QA Cockburn, J. Roy
5 0 1
C632
                                    Brief synopsis of the
course of lectures in
descriptive geometry
```

P\&ASci

PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

