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Abstract

Henderson's hypothesis of the rule of three and four (Henderson,

1979: 90) conjectures that a stable competitive market never has more

than three significant competitors. Henderson observes that the rule

appears to be a good prediction of the results of competition in such

fields as steam turbines, automobiles, baby food, soft drinks, and

airplanes

.

A game theoretic model is formulated which suggests that aggrega-

tion of competitive information and imposition of structural stability

results in an explanation of the rule in a generalized context.
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Introduction

It has been acknowledged (Cunningham and Robertson (1983)) that

certain consulting firms and consultants have contributed in large

measure to the development of the theory of strategic management.

Henderson (1979), the founder of the Boston Consulting Group, has been

active in the formulation of both theory and practice in strategic

management and has contributed many strategic perspectives based mainly

upon his experience and observation of many strategic decision situa-

tions .

Henderson discusses the anatomy of competition in a number of im-

portant contributions (1979: 90), (1983: 7). He stresses the value of

understanding the nature of competitive equilibrium since it provides

a benchmark for the formulation and evaluation of competitive strategy.

In this paper one of Henderson's propositions about competition and

corporate management is examined. Henderson states the Rule of Three

and Four as follows (1979: 90):

A stable competitive market never has more than
three significant competitors, the largest of
which has no more than four times the market share
of the smallest.

Henderson's rule is based upon empirical observation and appears to

fit the results of effective competition in a range of industries.

Henderson (1979: 93) later points out that "a rigorous application

of the Rule of Three and Four would require identification of discrete,

homogeneous market sectors in which all competitors are congruent in

their competition."
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This latter statement could be interpreted in two ways. First

that the three or four significant competitors adopt different strate-

gies. Second, that the three or four significant competitors repre-

sent the three or four viable competitive positions within the industry.

These positions are essentially the basis for the formulation of

strategic groups (Caves and Porter (1977), Porter (1980)).

The main aim of this paper is the development of a game theoretic

model which presents an explanation of the Rule of Three and Four in a

generalized context. The implications of the results are discussed

and some research uses of game theory in identifying strategic groups

are then suggested.

Are There Limits to the Number of Strategic Groups

Strategic groups are defined to be groups of firms that possess or

use similar strategies, i.e., goals and objectives, product-market

competitive positioning, resource allocations and operating policies.

These groups could be within an industry or across industries (Cooper

and Schendel (1971)).

Consider groupings within an industry, say, the beer industry. If

we consider the marketing strategy, each producer tries to differentiate

his own product from the rest of the competitors. For example, Miller

High Life is directed at hard-working blue-collar workers for relaxa-

tion at the end of a tough day; Michelob for those weekends with close

friends. In this instance, the number of strategic groups Is equiva-

lent to the amount of product differentiation possible in that industry.

Levitt (1980) argues that all goods and services are dif ferentiable

—
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even if the generic product is identical, the offered product is dif-

ferentiated. Even though the above argument does not explain why the

product should be differentiated, but rather than it can be, it does

imply that differences in consumers and/or producers may necessitate

product differentiation.

The question then remains whether there is any limit to the number

of strategic groups. The implication in Levitt (1980) is that, poten-

tially, there is none; "only the budget and the imagination limit the

possibilities." On the other hand, oligopolistic forms of market

structures are observed for many stable products, such as automobiles,

steel, toothpaste, etc. Often three or four firms absorb most of the

market share in industries such as turbine-generators (Sultan (1975)).

Schendel and Patton (1978), in their analysis of the beer industry,

choose three hypothesized groupings based on geographic scope, namely

small regional, large regional and national. Aggregating all the

firms into an industry level model produced severe heterogeneity

whereas the geographic grouping was hypothesized to be homogeneous

within groups. Indeed, these persistent differences in industry struc-

ture -lead to relatively few market segments suggesting that there might

be limits to the number of strategic groups.

In the following section, a game theoretic model is formulated

which examines whether there are, in fact, only a limited number of

strategic positions that firms can occupy in an Industry and considers

the stability of these positions.
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A Game Theoretic Formulation

The model assumes that the industry consists of a large number of

firms, each of which produces a single product for the market. Each

firm's product can be differentiated, but it remains a close substi-

tute for the products of other firms. The firms act as monopolists,

as far as their customers are concerned, and set prices; on the other

hand, they compete amongst themselves for the consumer demand since

customers can switch from one firm's product to another's. This eco-

nomic model was posited by Chamberlin to capture the notion of product

differentiation; this market structure falls in between that of pure

competition and pure monopoly, and is aptly named monopolistic com-

petition (Mansfield, Chap. 24 (1974)). The basic elements in the

modelling approach of individual firms used here will be goals/

objectives, means or resource decisions possible and environmental

constraints (Schendel and Patton (1978)).

The model assumes that there is a single objective for each firm,

namely utility maximization. While it is true that there very well

could be a number of goals, often conflicting, that firms operate

under, the contention here is that cost factors could be attributed to

all the key goals and a net utility function could be derived for each

firm. Essentially, the trade-off between, say profit maximization and

market share maximization, can be captured in the utility function.

The actions or resource decisions, that each firm can take, are

made over several controllable variables. These can be strategic and

operating variables. For ease of exposition, only strategic variables

will be allowed to influence the utility function. One of these will
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be the price (P.) that the firm i charges for its product, thus acting

as a monopolist towards its consumers. Two other strategic variables

that will be used are advertising (A.) and material cost (M. ). These

variables were chosen from the table of variables listed for the brew-

ing industry by Schendel and Patton (1978).

The environmental constraints encompass those variables that the

individual firm cannot control even though its decisions may influence

them. These non-controllable variables will be chosen to describe the

competitive nature of the industry. Here, the non-controllable var-

iable used, for exposition's sake, will be the industry average price

(P), the industry average advertising (A) and the industry average

material costs (M) . It should be noted that these variables are the

industrial counterpart to the firm controllable variables. Each firm

takes these variables as given while trying to maximize their utility

function.

Then, in this model, each firm, assumed to be identical, will

maximize its utility function

U(P
i

, A., M
i

, 7, A, M).

The function U is assumed to be continuously dif ferentiable in all its

variables but not necessarily quasi-concave in its strategic variables

(P., A., M.)« An equilibrium for this game is a set of strategies for

each firm such that the outcome of the game is stable, i.e., in

equilibrium, firm i cannot do any better than using its equilibrium

strategy given that its competitors are playing their equilibrium

strategies. This type of stability concept is called a Cournot-Nash



-6-

equllibrium in economics literature. In particular, symmetric equi-

libria will be examined since a priori all firms have been assumed to

be identical. See the appendix for a more formal definition.

The symmetric equilibrium could be a pure strategy equilibrium in

which case all firms are following the same strategy. Then, there is

only one strategic group consisting of all firms in this equilibrium.

On the other hand, the symmetric equilibrium can be in mixed strategies,

i.e., equilibrium dictates that each firm randomize over some distinct

number of strategies. It is not reasonable nor practical to expect

firms to toss coins in making strategic decisions (and also constantly

changing them) in reality. Then the interpretation of these mixed

strategy equilibria will be that the firms, in the industry, split

into different groups, each group using a distinct strategy specified

by the mixed equilibrium. The proportion of firms in each group will

approximate the probability assessment assigned to the particular

strategy used by the group in the equilibrium.

Intuitively, given a symmetric mixed equilibrium, the firms are

indifferent to the actual choice between any of the strategies in the

2
equilibrium since the utility level associated with each is the same.

The actual allocation of firms to these strategies is not possible at

this level of generality but it is presumed that the prior history of

It should be noted that there could .very well be asymmetric
equilibria for a symmetric game.

2
It is possible for other strategies to have a similar utility

level if the probability associated with these are zero. It will be

assumed that this does not occur, i.e., all the strategies producing
laximal utilities have positive probabilities associated with them.
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the firm will make it gravitate to a specific strategic position. The

point of focus in this research is the question of how large the number

of strategic positions can be in this equilibrium.

Limits to the Number of Strategic Groups

A priori, there is no reason to believe that there is a bound on

the number of strategic positions for the model presented. However,

by imposing the condition of structural stability in the equilibrium

structure, a definite limit on strategic positions emerges.

The notion of Cournot-Nash equilibrium intimated a sense of stabil-

ity of the following form: given the parameters of the model, once

every firm is playing its equilibrium strategy, then no firm individ-

ually has any incentive to break away from this equilibrium. The idea

of structural stability argues for yet another sense of stability,

namely: given small shifts in the parameters of the model, Cournot-

Nash equilibrium structure changes only slightly. This sort of

stability ensures that small random fluctuations of the environment

will not make firms change their strategies drastically.

This concept of structural stability is taken from the field of

differential topology in mathematics (Guillerain and Pollack (1974),

Chapters 1 and 2). Its relevance to the model presented here is ob-

vious since, in practice, the utility function, which is the funda-

mental building block, can only be estimated within some non-zero

margin of error. Given snail perturbations in the utility function,

it is important to determine whether the equilibrium, in these per-

turbed models, is similar and close to that in the unperturbed model.
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If so, the equilibrium in the unperturbed model is said to be struc-

turally stable.

To understand how structural stability is maintained, the equi-

librium structure should be examined a little more closely. In the

model, given industry information (P, A, M) , each firm chooses values

for its strategic variables (P., A , M ) so as to maximize its utility,

Assume, for the sake of exposition, that the mixed equilibrium has

e * * * * * *
exactly two strategies (P, , A., M, ) and (P~, A- , M~) with the equi-

librium industry variables being (P*, A*, M*). Then, due to their

* * * * * *
optimality, the utility associated with (P.., A., M, ) and (P

? , Aj, M~)

given (P*, A*, M*) is exactly the same or, to put it another way, the

difference in the utility functions, at the equilibrium positions, is

zero.

Now perturb the utility function, structurally, by, a very small

amount so as to keep the values of the functions and its derivatives

close to their originally unperturbed values. To ensure stability of

the unperturbed equilibrium, the utility-difference map has to be

checked to ensure that it is well defined and that it assumes a value

of zero close to the unperturbed equilibrium industry information

value of (P~*, ~A*, ¥*).

The model assumptions assure that the utility difference map is

well defined but it is the existence of a value of zero for this map

near (P*, A*, M*) which brings about limitations on the number of

3
The explicit conditions are given in the appendix with mathe-

matical rigor.
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strategic groups. Note that in this example equilibrium, the utility

difference map is a function of the industry information (P, A, M) and

the value it takes is the difference between two strategic positions.

Hence it takes on a single value, i.e., the domain of this map is the

space of values that (P, A, M) can take, i.e., R and the range of the

map is the real line R .

Now suppose there were, in fact, five strategic positions in

equilibrium. Then, the utility difference map would have the same

domain as before but its range would be values in the four dimensional

4
real space R , i.e., it would have to specify values of utility dif-

ferences between the first and second strategic positions, the second

4
and third, the third and fourth and finally the fourth and fifth —

four different values for every value of (P, A, M) . For the original

equilibrium (P*, A*, M*) to be structurally stable, this perturbed

utility difference map has to take on a value equal to zero (in the

four dimensional space) near (P*, A*, M*).

In general, if a map is from a higher dimensional to a lower diraen-

3 1
sional space (R to R as in the first example), then each value that

this nap takes on can be reproduced for some specific perturbation of

this nap. But , when this map is from a lower dimensional to a higher

3 4
dimensional space (R to R as in the second example), there exists

some perturbation that misses any and every specified value that the

unperturbed nap takes on. In the present model, the value of the

utility difference nap that is of interest is zero. Mathematically,

4
There is no need to specify the difference between the first and

fifth since It will becone redundant.
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for a two strategy equilibrium, perturbations could take on this value,

but for a five strategy equilibrium, there exists a perturbation which

never takes the value zero. Hence the second example can never be

structurally stable while the first possibly could be.

An intuitive example of this mathematical result is the following:

consider the intersection of straight lines— two lines can intersect

at a point and small perturbations of these lines will still intersect

at a point. On the other hand, let three lines intersect at a point

—

then there is always a small perturbation of these lines such that

these lines do not intersect at a common point. This example shows

that two lines intersecting at a common point is stable but anything

above two is unstable, i.e., the nature of this intersection changes .

drastically.

This result is stated below as:

Instability Theorem : If the dimension of the industry information »

space (or the uncontrollable variable space) (P, A, M) is three, then

no mixed symmetric Cournot-Nash equilibrium with more than four

strategies can be structurally stable.

A rigorous proof of this result is given in the appendix.

Discussion of Result

The result implies that if there are three industry information

variables (P, A, M) involved, then the firms cannot split up into more

than four strategic groups, each group differentiating the product

uniquely, in a structurally stable equilibrium. Notice that the re-

sult does not necessarily imply the existence of a stable equilibrium
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with exactly four groups. It is possible to have a product differen-

tiated stable equilibrium with only two groups of firms. Also, an

example could be constructed, within the framework of this model,

which involves more than four groups in equilibrium. However, any

perturbation of the example would destroy the structure of this equi-

librium. Kumar (1981, Chapter 2) has examples of such equilibria

derived from consumer behavior in an economics context. This sub-

stantiates the existence of such equilibria in realistic models and

also that they are not degenerate.

Similar dimensional arguments have been used, with inverted logic,

in the field of multi-dimensional scaling (Churchill (1976), pp. 233-

241). The argument is that given n firms in a product differentiated

market, they can be represented in a (n-1) dimensional attribute space

with no constraints on the relationships between these firms. In a

sense, this reflects the idea that given an industry with four strategy

groups, one can find three factors over which they can be clearly dif-

ferentiated and still retain the independence of each factor. This is

similar to the result here which claims that given three factors

(P, A, M) there can be, at most, four strategic groups in a stable

equilibrium.

Given the instability theorem for this model, a clearly important

problem is how to define the characteristics of the four possible

strategic groups that can occur in a maximally differentiated equi-

librium. This issue, though not formally treated here, can be handled

using the well-known concepts of efficient frontiers and stability.
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Summary and Conclusions

The game theoretic formulation and proof of the validity of

Henderson's conjectures depends upon a number of assumptions made in

the analysis. These are as follows: first, that there are a large

number of competitors in the industry at the outset so that the aggre-

gate statistics that each competitor faces are the same; second, the

notion of stability in the process of industry evolution.

The idea of stability and equilibrium is important from a stra-

tegic management viewpoint. If a particular company in an industry

can predict the equilibrium strategy positions when the industry

matures, then it can adapt its strategy to position itself within one

of the stable strategy positions and thus not drop by the wayside in

any subsequent 'shakeout'. Alternatively, it may attempt to extricate

itself from an unfavorable strategy position assuming an accurate pre-

diction of the positioning of the long-term equilibrium.

The proof in the paper, albeit based upon a simplified model, tends

to confirm Henderson's empirical observations. The vision of mature

industries given by this model is that there are only a few pure stra-

tegies being used by firms in the industry—either there are a few main

firms using different strategies or there are many firms "bunching up"

or grouping around a few distinct strategies. The former is the rule

of 3 or 4 by BCG and the latter is a generalization of the Rule. The

generalization probably narrows to the Rule of 3 and 4 when the fixed

costs to entry are very large.
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Appendix

For the given model, the strategic variables for the firm are

(P., A., M.), the industry information variables are (P, A, M) and the

common utility function facing each firm is

U(P
1

, A
±

, M
i>

"p, "A, ¥)

which is continuously dif ferentiable. Each firm maximizes its utility

function over its strategic variables taking the industry information

variables as given.

Definition : A mixed strategy based on k pure strategies is given by

k th
((P., A , M , at ), .) where u is the probability placed on the i

k

strategy (P , A
i

, M ) with u - ((»-» • • • , ul ) e 0^ S {(y^ ..., u
fc

|
E 1^=1}

.

Definition ; The reaction set at (P, A, M) , denoted by R(~P~, A", M) , is

the set of (P., A., M.) which globally maximizes the utility function

at (P~, T, 1?).

Definition : A symmetric mixed strategy Cournot-Nash equilibrium based

* * * *k —
on k pure strategies is given by ((P., A , M. , oj ) ._, , P* , A*, M*)

satisfying for all ai = (w ..., oj ) e ft .

k k"- JL JL JL JL ^ AAA
Z w U(P , A., M , P*, A*, M*) > I 0) U(P , A., M. , P*. A*, M*),

1=1
i i l

i=1
i i l l

k ^ A k A ^ k A ^
E u .P. = P*, E ui.A. - A*. E u. M. = M*

,

i l i i l i
1-1 1=1 1=1

where w* = (ft^, .... o^) e ^, (P^ A
±

, M
±
) e R(7* , 1* , IT*)
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The above definition implies that there are k strategies

* * * k
(P , A., M.) , which are the best responses given (P*, A*, M*) and

that each of these strategies has a corresponding probability to

* *
associated with it. This probability to* = (to , ..., to ) is the one

that gives the highest expected profits compared to all other prob-

ability measures and also satisfies the consistency condition that the

expected or average value of the best response strategy is indeed

(P*. A*, M*).

This equilibrium implies that around a small neighborhood of

(P*, A*, M*), there exist k local maxima and by the assumption of

positive probabilities associated with each utility maximizing

strategy (see footnote 2), they are isolated. Also, the utility

levels at each of these local maxima, at (P*, A*, M*), is the same.

Using notations,

let x
i ~ (p

i'
A
i' V* i=1, •••»

and y = (T, ~A, ~M)

3 k-1
and D: R * R defined by

D(y) = (U(x (y),y) - U(x
1+1 (y) ,y)

,

1 — i y I. y • • • * K X ,

x.(y) e S(y),

j=l, ..., k)

where S(y) is the set of local maxima at the point y = (P, A, M)

,

Then, in a small neighborhood of y* = (P*, A*, M* ) , D(y) is well

defined and D(y*) - 0.
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Now consider all perturbations U, of the function U such that the

values of the function U. , its first and second derivatives can be

made as close as needed to those corresponding values of U by choosing

X small enough. To ensure the stability of the equilibrium using profit

function U, it is necessary to demonstrate the existence of a similar

equilibrium, close by and unique in a neighborhood of the original

equilibrium, for all perturbations U, , with X in a some open neighbor-

hood of the value (where it is assumed that Un
= U) . Three conditions

have to be satisfied for such an existence, namely

(1) the local maxima sets S(y) and S,(y) must be close to each other

in a neighborhood of y* and the cardinality of S,(y) should be

equal to k.

(2) if condition (1) is satisfied, then the profit difference function

D. is well defined in this neighborhood of y*. Then, it is neces-

* _* * *
sary to show the existence of y, = (P. , A., M. ) close to y* , in the

*
neighborhood were D, is defined, such that D,(y,) = 0.

(3) Then it is necessary to ensure the existence of a probability vector

*
w. such that the expected value of the best response strategy

(p
tx'

An« M
tx>

is indeed (V V V-
Condition (1) can be shown to be true through an application of

the implicit function theorem and using the fact that the local maxima

are non-degenerate critical points (Guillerain and Pollack (1974)). It is

the second condition which leads us to the limitation on the value that k

can take.
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Proof of the Instability Theorem :

Consider the case where k > 5. Then, the continuous map D, whose

domain is some compact subset A of the neighborhood of y* and whose

k-1
range is a subset B of R , satisfies D(y*) 0. It should be noted

that D is uniformly continuous and B is a compact set of measure zero

k-1
in R . Now either is on the boundary of set B or not.

If is on the boundary, then there exists a sufficiently small

vector translation D. such that is not contained in the range of

this perturbation D..

If is in the interior of B, then approximate D (which is uni-

formly continuous) uniformly by means of a piecewise continuous linear

function, D. Note that this is a perturbation of D. For this approxi-

mation, Is either in its range or not. If is not in its range,

then this perturbation suffices and let D, = D. If is in its range,

then it must be on its boundary (since D is piecewise linear) and

therefore a sufficiently small vector translation D, of D can get rid

of the in its range.

Thus, we can construct a perturbation D, of D either through pure

vector translation or through a uniform approximation or through a

combination of both, such that no y exists with Di,(y) = 0.

n
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