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Abstract

We start with postulating a Poisson regression model with a random

error term

[X(x)?]y ,
f u

PY
(y|x,0 = ^ e

Mx; \ y = 0, 1, 2, ...

where x is assumed to be a nonstochastic variable; £ is a random

2
variable having an x distribution with 2r degrees of freedom. Then

the marginal distribution of Y is the negative binomial distribution

with probability function

„ fv \ , T(r+y)
r

1 ,r
r

X(x) ,y
PYW " r(y+l)r(r) L l+X(x) J l l+A(x) J

for y = 0, 1, 2, ...; r > 0. We define a binary response variable Z

such that Z = 1 iff Y > 1 and Z = iff Y = 0. If X(x) = exp (cc+6x) ,

a generalized logit model

1 - P (x)

log [ rr—] = a + g x

P (x)

follows, where Pn
(x) = P (Z=0|x). To see the practical usefulness of

the generalization, we fitted the model to Ashford-Sowden's data. As

compared with an ordinary logit model, significant improvement in good-

2
ness-of-fit has been observed in terms of the x goodness-of-f it

statistic. Especially, it is remarkable for the tail areas of p»(x).

Some more versions of qualitative response models will be also dis-

cussed in their connection to the Poisson process.





1. Introduction

The purpose of the present paper is to propose a possible general-

ization of the logit transformation. The logit transformation of a

binomial probability has been widely used to analyze qualitative data

in socio-economic investigations as well as in biometric research. The

generalized logit model developed here involves only one more parameter

than the conventional logit model. Therefore, the simplicity of the

latter model is essentially preserved by our generalization. We base

our derivation on the following assumption: a binary response may be

observed as an indicator for an underlying (possibly unobservable) non-

homogenous compound Poisson process: i.e., it indicates whether or not

the number of events occurred in the process exceeds a fixed unknown

threshold. The Poisson rate parameter is assumed to depend on some

exogenous factors as well as a multiplicative random component. Since

the Poisson process is derived on the basis of a few weak assumptions,

it would be fair to claim that our approach gives another natural inter-

pretation to the logit model.

The genesis of the probability integral model, including the logit

and probit models, is usually described by postulating a hypothetical

random variable called tolerance , the variation of which causes the

randomness in the binary response. If the tolerance has a logistic

distribution, the logit model follows (See, for instance, Cox (1970).)

In Section 2 we incidentally propose a probability integral model of a

chi-square distribution. That is, if we have a Poisson process with non-

homogenous rate parameter as an underlying structure for a binary

response, what we call the chisquit model immediately follows.





In order to see practical relevance of our generalization, we fit th

model to some empirical data. The results given in Section 4 show that

our generalization improves the statistical fit of the model quite sub-

stantially, albeit it causes no essential difficulties in computation.

2. Poisson Regression and Chisquit Model

To begin with let us consider a random phenomenon where events

occur in a Poisson process with non-homogeneous rate parameter X. For

the time being, we assume that the variation of X is fully explained

by some independent variables x. Then the number, say Y, of events to

occur in an interval of fixed length t and for fixed x is a Poisson

random variable with probability function

[A(x)t] y -X(x)t
(2.1) P

Y (y x) =
^j

e ~

for y = 0, 1, 2, ..., where A (x) is a function of x and its range is

limited to positive half of the real line. If X(x) is specified up

to its functional form and a random sample of Y is observed with

corresponding value of x, then we can make inferences about unknown

parameters in X(x). This is called the Poisson regression analysis,

special cases of which have been investigated by Gart [1964] and

Jorgenson [1961].—

If we let T be the continuous amount of time (or area, distance,

etc.) required to observe the r-th event in the Poisson process with

rate parameter X (x) , starting from an arbitrary point in the process,

the nonnegative random variable T has a Gamma distribution with

density function f(t) = X (Xt)
r_1

e"
Xt

/r(r) for t > and f(t) =

elsewhere. Hence we obtain an obvious equality
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(2.2) P(Y > k|x, t) = P(T < t) = F 2 [2tA(x)] ,

X 2k
2

where F 2 is the cumulative distribution function (cdf) of x -distribu-
x 2k

tion with 2k degrees of freedom. (See, for instance, Johnson and Kotz

[1969], p. 98.)

Now let us define the following binary response model on the

Poisson process: a qualitative change (catastrophe) that concerns us

occurs if and only if Y > k; namely, a binary random variable Z equals

one if and only if Y 21 k and zero elsewhere. This is a version of multi-

hit model used in biological application. As a practical example this

relates to the case where Y stands for a random accumulation of causes

of a certain catastrophic change: if the number of an individual's

accumulated causes exceeds a threshold k, then a catastrope occurs to

him; otherwise, he remains in the same state. The degree of the change

would be somehow related to the amount by which Y exceeds k. However,

what we are concerned with and actually observe is a binary response:

whether or not the catastrophe occurred to each individual. The rate

parameter A which is intrinsic to each individual is regarded as indicat-

ing his proneness to the catastrophe which is supposed to be determined

by his characteristics as well as some exogenous factors.

Another example, presented below, is referring to limitation of

observability. It very often happens that due to certain limitation of

observability or some other reasons, we witness only an all-or-none

response: whether or not at least one event has occurred to each

individual in an interval of fixed length. To put it differently, the

number of events which might have occurred is unobservable or outside

our concern. A typical example may be a survey research on possession
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of a certain durable goods, say a car. The survey is often concerned

only with a binary response: whether or not each individual possesses

a car. It conceals the number of cars he possesses as well as the

quality of his car.

If we adjust the scale of measuring length so that t = 1/2, then

2/
we obtain a binary response model—

(2.3) P(Z=l|x) = F 2 [A(x)]
X 2k

The unknown parameter k may or may not have definite physical meaning.

The function X (x) is usually specified as either linear, exponential,

or multiplicative function. If the value of k is not determined

theoretically, then it should be regarded as a parameter that must be

estimated from data simultaneously with the parameters in A (x)

.

The underlying structure of the probit and logit models is often

described by postulating the existence of an unobservable (hypothetical)

random variable called the tolerance : namely, Z=l if and only if the

tolerance, say U, falls below the threshold, c(x) say, determined by

3/
an individual's characteristics x.— If the cdf of the tolerance is

F.. , then

(2.4) P(Z=l|x) = F
u
[c(x)] .

If U has either normal or logistic distribution, the probit or logit

model follows, respectively. Our model, straightforwardly derived

from a nonhomogeneous Poisson process, may be regarded as an alternative

specification of the tolerance model, and it could be appropriately

called the chisquit model .
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Since U is intrinsically a hypothetical variable, there is no

reason at all to confine its distribution to a class of symmetric

distributions. In some practical applications it might be more adequate

to assume that the tolerance is distributed with some skewness and its

2
range is bounded below. Since x -distribution is asymptotically normal

as its degrees of freedom become large, it may be fair to say that the

probit model is obtained as a limiting form of the chisquit model.

As for estimation, no particular difficulty arises if the value of

k is specified a priori . We can employ essentially similar methods to

that used to estimate the probit and logit models. If k is unspecified

a priori , it could be estimated simultaneously with the parameters in

2
The distribution of log(x ) approaches normal distribution more

2
rapidly than that of x itself. (See Johnson and Kotz [1970], p. 181.)

Therefore, if the varying rate parameter is reasonably specified as

an exponential function such as exp(a+gx), then

(2.5) P(Z=l|x) = P(log x
2

2

k 1 a + 6x)
,

the right-hand side of which could be very closely approximated by the

cdf of the normal distribution with mean log(2k) and variance 1/k,

unless k is extremely small. Moreover, if X (x) is a multiplicative

a
function such as ax , we have a log-linear function of x instead of

a linear one on the right-hand side of (2.5). The above considera-

tion leads us to the following.

Suppose that the linear or log-linear probit model fits given data

very well. Then this suggests that the varying rate parameter in
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the assumed Poisson process might be just appropriately specified as an

exponential or multiplicative function of x. Of course, it is fair to

say that there is no way of discriminating a model with linear X (x)

and k large enough to permit normal approximation from another alter-

native model with exponential X(x) and small k. In either of these

two cases the linear probit model will fit data very well.

3. Generalized Logit Transformation

One of the apparent shortcomings of the chisquit model is the follow-

ing: we assume that the rate parameter \ for each individual is

completely determined by a finite number of explanatory variables x.

This is obviously unrealistic and necessitates modification of the

model. Also, in practice, we need to keep the number of the variables

as small as possible. To cope with this we permit the rate parameter

to be a random function of the characteristics set x, i.e.

(3.1) X = X(xH ,

2
where 2 ? is a random variable having x distribution with 2r degrees

of freedom. It should be noted that 2r need not be an integer. Also,

as the model is multiplicative, no loss of generality is caused by

2
assuming the distribution of 2£ is x instead of a Gamma distribution.

Given E,, Y has a conditional Poisson distribution. It is straight-

forward to show that Y is unconditionally distributed as negative

binomial with probability function—

ri -n „ «\ri - r(r+y)
r

1 -.r
r
X(x) .y

(3 ' 2) PY (y) " r(y+l)r(r) [ i?xlx7 ] [ITHx7 ]

for y=0, 1, 2, ..., and r > .
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Now let k be a threshold: i.e., we have a binary response Z such

that Z = 1 if Y > k and Z = otherwise. We note that

o 3 ) p(Y > k) = i
r(r+y)

f I 1
r

r
A <x > ]yU ' J; W>*) l

r(y+l)r(r) l l+A(x) J l l+A(x) J

- I, , N (k,r) ,
ip (x) ' '

where

< 3 - 4) * (x) = iMfxT •

I is the incomplete Beta function. A generalized logit transformation

l-P (x)
1/r

(3.5) log { } = log A(x)

P (x)

where Pn
(x) = P(Z=0|x) and r is a positive constant, may be derived

from either of the following two models. First, let us suppose that

k = 1, i.e., the binary response indicates whether or not at least one

event occurs. Then we have

(3.6) p (x) = P(Z=0|x) =

[1+A(x)]
r

It is straightforward to verify that this implies (3.5). Second,

let 5 he exponentially distributed, i.e., r = 1. Then model (3.6) again

follows with r replaced by k. Which model is more appropriate is a

problem that should be answered case by case on a priori ground; that

is, the two models may not be discriminated objectively by data. The

conventional logit transformation (3.5) with r = 1 corresponds to all-or-

none binary response (i.e., k = 1) defined on a compound nonhomogeneous

Poisson process with exponential error distribution (i.e., r = 1)

.





-8-

n -f-ftv

Moreover, if we specify A(x) = e and r = 1, then the familiar

linear logit model follows. If we specify a multiplicative model

A(x) = ax , the log-linear logit model follows. Since r is an unknown

parameter appearing in the error distribution, it should be simultaneously

estimated with the parameters in A(x) from sample observations.

When we have grouped data, the simplest way of estimating the

model would be the so-called Berkson's minimum chi-squares method.

The asymptotic variance of the empirical generalized logit transforma-

* 1/r * 1/r
tion, log {[1-P ]/p

Q
>, is given by

1_P
(3.7)

n r (l-p ) pQ

where pn
= P(Z=0Jx); pn is the estimate of pn based on a sample of size

n. Replacing the unknown p„ by its sample estimate pn , we can apply

generalized least squares to obtain estimates for parameters in A(x)

for a given value of r. The optimal value of r might be found by

2
minimizing, for example, the x goodness-of-fit test statistic with

respect to r.

4. Numerical Results

To examine practical relevance of our generalization we fitted the

generalized logit model to Ashford and Sowden's [1970] data. Their

data, presented in tables after aggregation, consisted of the number

of coal miners in nine 5-year-wide age group reporting either, neither,

or both of the respiratory symptoms, breathlessness and wheeze. They

developed the bivariate probit model to analyze this data, which was

later reanalyzed by Grizzle [1971] and Mantel and Brown [1973]. In
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fact, the Ashford-Sowden data should be adequately analyzed by a cer-

tain bivariate model, but for simplicity we neglect the multivariate

as well as multinomial aspect of the data and treat it as if it con-

sisted of two separate sets of binomial data, one for each symptom.

2
The optimal value of r was determined so that the x goodness-

of-fit test statistic

9 2 (y..-y..)
2

1=1 j=i
;..

be minimized respectively for each symptom, where y , . and y . are the

observed and interpolated frequencies in the cell of the i-th age

group and either having or not having each symptom (j=l corresponds to

"yes" and j=2 corresponds to "no").

Following Grizzle [1971] and Mantel and Brown [1973], the normalized

median age of each group x = (median age-17)/5 is taken as the explanatory

variable. For simplicity, we assume a linear function of x for the right-

hand side of (3.5) and employ Berkson's minimum chi-squares method to

estimate coefficients for each given value of r.

The estimated generalized logit models are

(4.2) P(Z =0|x) =

[1 + exp(-4. 012+0. 632x)]°'
293

2
with x

= 4.998 for breathlessness;

(4.3) P(Z =0|x) =

[1 + exp(-2. 226+0. 400x)]°"
360

2
with x

= 3.653 for wheeze, as compared to the ordinary logit models
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(4.4) P(Z =0|x) =
'1 '

' 1 + exp(-4.804+0.510x)

2
with x = 16-554 for breathlessness;

(4.5) P(Z
2
=0|x) =

1
-

exp (_3>116+0- 326x)

2
with x = 8.027 for wheeze. The degrees of freedom are 14 and 15,

respectively, for the generalized and ordinary logit models. The

interpolated values are tabulated in Tables 1 and 2 with observed

values. It may be fair to say that the improvement is significant

on the whole. In particular, it is remarkable for the tail areas.

To see the sensitivity of the model to the change of r we present

in Table 3 the estimates, a and 3, of a constant term and coefficient

2
to x with the associated value of x statistic for different values

of r.

To give contrast to the Ashford-Sowden data the model was also

fitted to Morimune's [1976] data relating private ownership of a

house to income. It turned out that the log-linear model is far more

appropriate than the linear model. The estimated generalized logit

model is

(4.6) P(Z=0|x) = - r-r~
[1 + exp (-9. 39 3+0. 911 log x) ]

2
with x = 8.616, as compared to the ordinary logit model

(4.7) P(Z=0|x) =
j
-

exp(_11#102+i.298 log x)

2
with x = 9.568. Also, the estimated chisquit model is

(4.8) P(Z=0|x) = F 2 (-1.573+0.403 log x)
X 7.158

with x
2

= 8.530.





-11-

In this example the improvement of fit is not striking. If we

take into account the decrease of the degrees of freedom, almost no

significant gain is observed by generalizing the logit model by introduc-

ing a transformation parameter r. However, if you look at Table 4, you

will realize that in tail areas of the distribution the goodness-of-f it

was improved, albeit slightly, by generalizing the model. Also, it is

interesting to note that the generalized logit model and the chisquit

model gave almost the same interpolated numbers.

It is straightforward to extend the model to the case of multi-

nomial ordered response. Also, possible further developments of the

work in this note will include the expansion to multivariate cases by

postulating a multivariate Poisson process.





Table 1. Ashford-Sowden Data on Breathlessness

X
Yes No

Age Obs. r=.293 r=l Obs. r=.293 r=l

20-24 1 16 19.0 26.3 1936 1933.0 1925.7

25-29 2 32 32.3 39.8 1759 1758.7 1751.2

30-34 3 73 69.3 77.1 2040 2043.7 2035.9

35-39 4 169 161.8 165.2 2614 2621.2 2617.8

40-44 5 223 225.0 216.2 2051 2049.0 2057.8

45-49 6 357 379.8 356.4 2036 2013.2 2036.6

50-54 7 521 494.4 471.7 1569 1595.6 1618.3

55-59 8 558 570.6 571.9 1192 1179.4 1178.1

60-64 9 478 475.2 507.8 658 660.8 628.2

The columns headed by r=.293 and r=T contain interpolated values by the
models (11) and ( 13 ) , respectively.





Table 2. Ashford-Sowden Data on Wheeze

X

Yes No
Age Obs. r=.360 r=l Obs. r=.360 r=l

20-24 1 104 102.0 112.9 1848 1850.0 1839.1

25-29 2 128 133.4 140.4 1663 1657.6 1650.6

30-34 3 231 220.3 222.8 1882 1892.7 1890.2

35-39 4 378 397.1 390.7 2405 2385.9 2392.3

40-44 5 442 432.2 419.6 1832 1841.8 1854.4

45-49 6 593 587.5 571.1 1800 1805.5 1821.9

50-54 7 649 641.8 632.8 1441 1448.2 1457.2

55-59 8 631 651.0 657.4 1119 1099.0 1092.6

60-64 9 504 495.0 514.6 628 637.0 617.4

The columns headed by r=.360 and r=l contain interpolated values by the

models ( 12 ) and ( 14 ) .





2
Table 3. Estimates and x Statistic for Different

Values of r: Ashford-Sowden Wheeze Data

2
X

10 -5.345

8 -5.124

6 -4.840

4 -4.442

2 -3.769

1 -3.116

.8 -2.913

.6 -2.657

.4 -2.313

.3 -2.083

.2 -1.785

.1 -1.363

289 14.74

290 14.50

292 14.11

295 13.35

306 11.29

326 8.03

336 6.79

354 5.23

388 3.75

423 3.97

493 7.86

709 30.33
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Footnotes

1. Gart [1964] analyzed the case when X(x) is a linear function of
a single explanatory variable without a constant term. Jorgenson
[1961] developed the maximum likelihood estimation for the case
when X(x) is a linear function of several variables. As far as

I know, there have been quite a few applications of the Poisson
regression analysis to real problems.

2. The rate parameter is not independent of the choice of the scale
of measuring length. However, if we assume an exponential or

multiplicative function for X(x), it has no effect on relevant
coefficients of the variables x; i.e., only a constant term is

affected by the choice of the scale.

3. More details of the tolerance model are referred to Cox [1970].
In the context of econometric analysis, the underlying structure
of the model is often described by postulating the existence of
the random utility instead of the tolerance.

4. The chibit model defined by (3) may be regarded as a reduced
form of the binary response model defined on a Poisson process with
varying parameter A(x). In this case the parameter k must be an
integer. It is possible, however, to view (3) as a version of
the tolerance model. Then k need not be an integer.

5. The derivation of the negative binomial distribution as a com-
pounding Poisson and Gamma distribution is found in most text-
books. See, for instance, Johnson and Kotz [1969]. This
distribution is also derived by assuming different sorts of under-
lying chance mechanisms. A comprehensive review is given by
Boswell and Patil [1970] . Under certain circumstances it may
produce a more reasonable physical interpretation to postulate
another underlying chance mechanism instead of the compound
Poisson regression.
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