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. ctur< >f the Marginal

:)istri:

Richard V. Evans
ifessor, Business Administration

Suire;ia_ry: The states of vector valuei tion processes with nearesi Lghbor

transitions are divided into : sequenct of sets A.. The marginal distributions
i

i ifi i
G are divided into a fai

'<
I ia! dG ' = L,(dG ). Re-

t t t i t

cursive calculations pi the form oi hi Linear fun< : ions L and thi

, o
indary cunt c Lor dG. .

t





This paper coni es the study of a genera] family of congestion processes

[2], The state of the system led ectoi N(t), Wit). N(t) is a

finite dimens on;:. tor wit;, non i
nates. W(t) is a

k dimensional vector of ela ; lossible intervals wmch

may be in process at time t. ich value N(t) a k dimensional vector

S is defined. ft ha i 1 in th> i the i th type interval
n

is in progress when N(t) = n rad »l I l(t) = n and no interval

terminates in t to t + r
, W(t + T

) = W(t) + i S . Each of the i th type inter-

vals is assumed to be a random variable with disl i Lbution function F^t) ,F
i
(0)=0,

continuous density f.(t),and a finite mean. If ,m event of type i occurs

when N(t) = n and W(t) = w there is a change in the value of N(r) from n to u'

and w becomes w' according to a set of routing probabilities u.(n,w,n ,w' )

which are continuous from the right in w and sum to i for each i,n, and w,

The i th coordinate of w' becomes indicat Lng that either a new interval of

the. ith type is begun or that when N(t) = n no interval of type i is in

process. In addition this change me i
, I the j th type interval so that

w" . = or it mav interrupt the interval so that the j th coordinate of S .is
j

n

is and w .

: w.. The I mge to a' nay be -
; s^ or continuation of

J J

anj number of intervals «rhi • in process or suspended while

N(t) = n. Final] utii Ltif Ltive only for n for

which |n"-nj = 1 v Jute values of the

tdinates. This is the >• - Lon which is the basis of

the analysis.

This papei will examine rgi tions of the process which

often provide su: i
..cess. Let

these distributions be G (n,w) the prob bility that N(t) = n

and W(t) is approximately w. The ev i ur< provides a simple justifica-

n for a recursive relal Lou hip l - first used in
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queuing by Winsten [5] and Chen by Evan:
i

Sets of stale s

To use the n< > at Lghboi pro erl , I Lrst the possible values of N(t),

W(t) are divided into sets A., i = 0, ... These sets must have the property

that if N(t), W(t) £ A. then rva2 (o,t) must: have

occureci at some time a .'.
. . ,

The fact

that except for a set of pi finite number of events in

(o,t) guarantees that to th< < iei tuusl I a last event in (o,t)

[2 J. This combined wit >robabilities are

oniy positive for pairs of values hii h i—n" L, makes the

construction of a family ol -.
; £ feasible Even Ln ;•>

i 11 Lc models there

may not bean obvious unique partition. ;ibilii ,
- with A containing

the value n=0 and then defines A. = {n,w| , n-n for some n " s A, ,1.
i -1

Another possibility is A ={n,w| i rordin ti of n is 0i- and then
o

us*- the same inductive del Lnil :n oi i.. .

l

Tter at ive Relatic n is]

i

The probability equati based on deco i can; Ltion from n,v

A ar time ;

: to n'. w'i A. at time n ord ti the possible
o i

number of events j Ln : Ln1 • |uence of j events ;

d o • an . he evei causes the last

departure fro nA , t t.S be k + '

wh ii
i ur ie t . fi

P^(n,w,n \w ") = ... ,w*,n'*,w'*)d

k=0 r w . ,

where

P (n,w,n ,w) i Ltion from n, w at

to n' and appro^ ' .-
' at t
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anci

Q
1

' (n*,w*,n',w') alii of " event transition from

a* ,w* t A , Li i . .
i tls (o,dt) to

A. at t wi t ho ut
1

> St. i d ; , t )

The existence of u 1 1 c: ^ ^ probabi Lit: ; does i Lfficull ies since they

involve appropri finite number of i/als. Summing over

j produces

*'
i

>; P
J (n,w,n',w') = I

C
(n,w,n*,w (n*,w*,n' ,w")dT

j=0
C

j=0 k=Q i w* u* \. ,
'

i -

1

Reversing the summation operations produces

- .- i - ^
P (n,w.n w ) = . / Y. P (n,w,n*,w*) (n*,w*,n ,w ) d'e
t . . . L—

I

w* n 7rtA.
,

t
l-l

v.

rfhere ? = ii P
J and = 5

1
'

'

t . r t: t-T "t-i
j=0 a=0

Assuming dC (n,w) > only foi n w A this result can be written as

dG
t
(n ''° = f f

.

:

, k Q
j

(n* -
, \w')d7

n w* n*i A. . i i
-

1

This Dieans that there is a fa ly of ]
' ions L. wl Lc!i map the functions

iG (n*,w^ for n*, inl or ri',w' .

Using th • onshi Lc.it forms loi the taboo

Drob. ties ( e deveio] Ln terms of s >m< Less complicated

-> rob a b i ] i t ies . >e f 1 n e

i k
6 ' (n,w.n ,w ) = .

. uence of k • vents starting

,w tl i i ie is complied in time t and

= n ' ,w" i
•- .:.<), ..

;

I A. for
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B
1

= I B
Uk

1
n

c

i k
Z (n,w,n',w')

;

r> sequence of k events starting

from n,w i i. at time is co q I ited in time t and

t N(t), W(t) = n",w' i A. and N(t) , W(x) E A

i

(n,w,n',w') dt = probabilii i /enl occurring Ln dt causing the

tr; ... : Lon rom n, w \. to n ,Vi - A
.

, ,

M at - /. = Q dc
t t

D (n,w,n',w' )dt = probability of an event occurring in at causing

the transition from ,. A. to n ,w ; A. .

! l-l

For each finite sequence of events the first exi! from A. and first reentrv
' l

into A. are well defined events. Thus
i

Qf'
a
dt = D

W
dt * B^'1

+ '"I

3 2

~Z i
l f U

1"1
*! * B

i,k
* ^"^V * D^dT * Z

1^
J-2 lc-1 ° °

T C" T

For simplicity o not ition, the sums and Integra s over st i have been

surpressed ir. • ieration mits on thi :

: sums reflect the fact

that it requires two events • . , . . A .
, , i en to A.. A1J on« and two

event sequences whoso prol .-;'-. must Q n< ver leave

.•ifter entering it. miming over tli nber oi evi nts.

Q
X
dt = U

1 l
dt * B

1
+ ' r' • Q>

lH L
d i>'

"1
d

*t c> o t-i

This equation can be solved iti using

t t





-}-

fc_i ,
,i , .t . . k-l i+i i~] k-l„i

Z
t

=
15

t
+

£ £
B
t-? '

dl

The validity of this Lterai Lve Ls mo i rotn its probabilistic

interpretation. hi k measures the an • iber of entries into

•:. event :- - Lon. Phis means

chat the ; ,

•- imations is i> nd and converges

because the number ' a 1 : finii h probability 1.

A more interesting version of the pre equal Lon results from taicing

Laplace transforms so that th< onvoli become ;
s. A related

tation occurs if the interest is focused on stable distributions.

iUming t hat

Limit dG (n.w) = dG (n.w)
t

i r f .

i;:

J
-- dG (n,w) for n.w A

The recursive 1 Lationsl , is

uG - G
i — 1

o »+

1

1 * /

Lnl egra I must ( iv< ge or

limit * n
1

di = Limit
't- T

t — '*>

can converge only bi dG in zer tati r V. ,
are transient,

ected time spent 1 A • - 1 mti ring A. .

/ Co' does nor guarantee rhe e- ence ol ng distribution. This
o t

requires that dG. 1 chat the eigi thesi Integrals as





functions >>i the dG b than 1 01 that LAG its.

Most queueing system model s ha iquences which ect

transitions from any state n., v, to a lei n '

, w" in finite time

with positiv<
I tb] Lsh that

for i 1

1) /" b
1

dt * o
1

* L
j

i

L+1
= :

'

o t

and

2) /
'

[i'ch * U
1

* L
1+1

- T,

1

o t

where 3 < 1 and L (n,w) = 1 for all n, w e A..

The firsc requirement is that from an (n,w) in i, su eventually leaves

A . Sir.ce D and U are finite this means that the expected Length of stay
i

GO i

in A must be finite: i.e. / B dt is finil I (n,w) in A.. The .second
i o t. l

requirement is that the exit is not always to a stati A . These properties

j , .

guarantee that J Q dt converges. The argument is pe easiest to describe
o t

in terms of the. functions Z
t

.

k i
Integrating the iterative definition of Z. with respect to time

:,i,. ," .i,,.
, -

03 ,t fi . „i, .
' L+3 , k-l„i

J Z dt = / B dt -:• d * D cr\ * Z
o t at o t-i

Rearrangii ; thi rati on

/~V dt - /Vdt h B
d

* u^i [j o
i+1do * r/^-Vdtjo t o t . o t

By induction on foi i

/" R
Z

J

at * D
1 Xl}'1

= _ | dt * D
1

* L
1" 1

o t o

.
— 1 5 +

1

I - 1 i i i— 1

•
. [£,] * f •

i;
: A

z * D * L
"o o c

i i — 1 i x*4~ 1

B dt * I) * L + / B * U dt * L
t o t

<





and

V dt * l.

L
-

I
B I,

V
|

,

'

n
* D

i+1
d^] * [/^zfdr]]*!.

1

r o t o ° Lo

r 8 dl * L
1
+ [/ B *

L-p

.-

As k goes to infini Lnite

The consc. :ion to the

equation. The solution found th so the only

one which has the additional requi Q to have

probabilistic meaning. Firsi must bi non negativ 'or any non i - ; ve

measure W, W k Z must be a noi i Conversely, for any \\ox\

negative function V, Z * v must iction. In addition

oo j j L-

1

3

/ Z * D * L < L since thi rci I

> tnus t i

o t
— I

cceed 1. Lnall} Z^(n,w,n . (n w,n ',w') sir ifSK restricted

than B . her W satisfy thes condil ation, Compan W with
t t

J
t

the sequence L produc ;

1
- V - -' f

1

B
j

'

!

I
- O

i+1
dl * (W

j

. -
k~V

p )
t t o o £ - - t-fc,

Rv induction W Z • for a] i

' B .

t t t I
t

Let (W - Z ) * D
1

'
I

!

-! L
1

:
). Again

induction (W
1

i U df * L BL
t

'

Repeating the in<
'

L . cause of th n gativity

thit, means that Z
1

• mvei Ls the only probabilisti*
t t

meaningful Lul Lon of ;.

• type ; '

In a previous unpublisl liscussion, the author began .

tessima] > emarked that con-

gestion processes wore derd from moi ' ary processes. That, point
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of view has been enta

elementary . the routing part of

the pro i b< so im h the congestion process that

separation ?rely an abstraction. Thi

especially ti im ire

of.- ultaneou

di s( over the op tii ingestion

prot ess .

There Ls lestions,

Suppose that • even all of random

variables. Such vari tara r of expon a

phases or p. tervals. '. the end i
Interval ter-

minates or anoth< Llities

alternatives dep< :e just I. The pin ises nei not '••

ordered and Ldei inte:

distributions, the natui rete supple

v.. r i able wh

j

the s t art o f

the inl ngestion md not

on the tirae since in pro< ess

can be studied j r valued process N(t)

.

This proce hases may have no

physica i

'

on the i imbe of trans i . : .

supplef • val ued

variab j e in ibility
i

equation to become in sbles.

. this case the terms of

-ind matrices although thi ,
,.. isional. Such

is the case len th j in th* fini >thod
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t be the best method continuous Liscrete so

that digs La I -
reason

for this discuss:! > ' " ous

supplenw

Boundary Set A

ko [3] is the

general ni sest siental

dixit that i

has no asso;-i tei the ti on

lome foi pro-

babilities are then hat thi system

is empl - ploit a n Li ties

recurs Lvej he number o mpty.

rhis i si Liar tc the recui Ltio Les presented

in [2 -ingle at its limit Ing

probaba hen performii

the recurs t the probabilities

sum to 1. Th s is /sis of

3 imit ing prob contain a

numl-' ited suppl

mentary vai i
dG .

Again one can the last depart nre

from A .

dc
c

= dc° * b° + :'

t t '->

: i, Limil >1 the
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dG° - dG° B° + /" f
X

dC_ * U
(

I . * D'di * B°x o rc o o x-t,

In interesting cases it is impossible to remain in A indefinitely and 3^ is

the zero oDerator and . In t must also be
o t t

integratable and

n r> 1
dG - dG * I

» «! D T O t

or

dG° = dG° * Z
* 0"dt * D"

"> <= o "<*

This suggests choosing dG^ at=- a;. measure and iteratively calculating

k o iC— 1 D o oo 1 co o
dG = dG * U * / 2 dT * D * / Ed:

oo co o - o t

or

IcO OO ool 1 oc o O fk— 1 1 » 1 x .oo oK
dG = dG * U * If Z dT * D * / Bdt * U •

~' f Z dx * D * / 3°dt
o° °= Of O t ' O T O t

where the power k-1 means repeat the * operation k-i times. The expression

oo o O
/ B dt * U * L is the probat Llil of leaving A for the various starting
o t

v - " o

states and thus must be L if the limiting system results are to be strictly

oo i i
positive. Similarly J Z dt * D * L is the probability of ever returning

o T

to A from states in A . These . states in A, or the
o 1 i.

system limit will be de operator in brackets must be

strictly positive ma >n the subset of n and

values of the supplementary ir b -hich car. be entered in a transition

from A . From positive operator theory h j the repeated application of this

to any non zero measure will produce a unic limit in the spai_e of

signed measures. Thus the entire iterative proceedure will converge to such
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o o c
a limit if dG * U is positive at least for sen -as, Moreo .'lying

U° * L to both sides shows chat "dG * U° ' U° * L . This

number is imm tterial since it is puted s sum of probabilities

is made equal to 1.

Degeneracy

S3 far this discussion has made iitl u . of the restricted nature of

the changes in the supplementary variables. j.ments can be

adapted to more general assumptions . tion require this. The

assumptions about changes in the suppier.au t ary variables imply that both

U and D are degenerate. They assign positive probability only to subsets

of states* Because entry into A coincides with the termination of some
i

interval, some supplementary variables must be ^t cimes . Thus

both of the sets A. = {n',w'>
j

(n' s
¥'} E A.. (J "(n,w ,n' ,w") > for

some (n,w) e A } and A.. = {(n',w"") (n',w") e A~, D (n,w,n"*,w') >

for some (n.w) z A , } are strict subsets of A.. This strict inclusion is
' i+l i

even true of A° (J A.. Within A. there is a Markov process for which the initial
i w i r

i

u •< D
distribution is concentrated in A. U A. ana B is the transition operator.

1 ^^ T 1-

Exists from A. to A. , and A, . have ti an functions B_ * U and B^ * D
x i+l i- t c

respectively. Let B,. be the restriction or B to transitions rrom A, to A ,

u > t t 11
i i D

B-r. the restriction or B tc k. to , These operators are
D,t l

all that are needed to study the co: .g rest. i .
and Z of

Z^. The restricted operators satis; :ns

„i -,i .t ,t _i ^ „i+l -.i+l . , _j
Z,, = B, T + ; / B,. * U * Z,. w Z^ d;dt
TJ,t TI,t o o TJ,£ %, r-K D,t-t

zn - = 4 h
+ /

C
/
T

B,
1
, , * U

1
* Z

i+1
* D

i+1
* Z

1
ix

From the solution to these
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equations the complete found since

Z
1

- B
1
+ f

L

t t o

Further "ormulae na the Lap] transform

or concentrating same

symbols without the of the :.or

with respect to time.

z
u - B

u
+ * D1

i i i4-l
z^; = BI + BZ * u * z„ * d
D D D u D

Use the previous assumptions B * U ' * D * L < L_

These guarantee that measure;. = L are ma pea into

measures G for v'a * L . Thy Largest value of

B * U * Z * D is less t! rantees an explicit
u

solution to the second equ is

Zi = I (BJ * U
1

* Z
i+1

r=0

or

z
d ~ (1 " b

d
L '

where the power is l respectively,

Substituting this

Z
1

= B
1
+ B? ,

i+1
)

(r)
* B

1

this can be reai • as

oo x-t"l

z* « bJ * i (u
1

* z *
U U _ u

r=0

The operator series must conv

i i i

"u u v





or

4 = E

This ns idt rs the

last exit

L
E

strictii are non negative gives

the pre * .

i k-l„i - r.i , k-l„i+l
U U D

For all k, -s > ZT1
sir-

u

4- k; .'
•

'

U

Also inducl is monotone non

decreasing and bounded frc which satisfies

the equation.

», i

D

is well del of

Z , Z satisfying the on for 2 was

aerived.
u
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M/M/I

Although successive approximations often provide feasible calculations

for numerical analysis, it is instructive to examine at least one example in

which complete analytic solution is possible. Obvious candidates for dis-

cussion are either M/6/1 or G/M/l using only the single necessary supplementary

variable. In these cases D and U are extremely degenerate since A = (i,o)

and A = (i,c) respectively. These special funneling states make it easy to

solve for the Z which are. all identical. The analysis easily provides

limiting results in probability rather than the more familiar transform form.

In many ways more interesting here is the less general system M/M/l in

which the analysis uses supplementary variables w, and w for both elapsed

interarrival and service times respectively. The state space is partitioned

according to sets A. = {(i,w ,w ) j
w >_ 0. w

9
_> 0}. The set A = {(o,w ,w_)

w
i i 0,w = 0) is the obvious exception. When there is only one customer in

the system, it is his service which is in process and this must have, begun after

his arrival which is also the last arrival. Thus A = {(l,w..,w ) j
w ^ w > 0}

is also an exception. The degeneracy occurs because A. = {(i,o,w_)
|

v > 0},

A. = {(i.w. ,(T | w, > 0} . It is obvfously important but not the extreme of a
l 1 ' 1 —

funneling state.

The operators which define the process are

B° (w.^.w^O) = e-
A(wl-Wl>dWl

-

B° = r B°dt - e^^W
o t 1

For all supplementary variable values for which it is defined and all i including

i = 1

,i, .> - N -(A+u) (w'~w, ) . , , , . ,

t
(w

l'
W2'Wl 'W

2
)

= e X X "5 (*'{-w
1

>w2~w
?

^ dt

b
1

= /" B^dt - e-
(x+v)(Vw

r*(w;-w,,w;-w
7
)dW :

u t X 1 J. J. I

where

lb*] -
(J jg
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For i >

U (w. ,w
?
,w' w") - "t

1°

if w£ = o,w
2
=W2

otherwise

For i > 1

D
1
(w

1
,w2Jw^,wp = -I

For the limiting distribution the solution to

if v' = o,w'=w.

otherwise

1
= B

1
+ Z

1
* U

1
* Z

t+1
* D

±+1
* B

1

U U U U D

is the same for all i >_ 1. It is

-(A+n)v
z
u

= e 1 5(w£,W2-w
2
)dw£ + Ae

-Xw2-"wi
r(w-,w£)dw£dw^

for

r(x v) = c
1 x- yUX ' y; l x>y

From this

Z^ * U = Xe-
(X+K)(w2-W2>dw

2
r(w

2
.w

2
) + £ e

- (X+y)w
2 dw

2

Z
y

* D = Me~
UWldw^

These combine to give

Z
U
*U*Z

U
*D= Xe~

PW
l dw£

from which

Z
D

* U * Zy * D * B
D

= Xe~
m '

l
~ X^ r(w

2
,wpdw£dw

2

For the distribution at the boundary the solution to

dG° = dG° * U° * zi * D
1

* B°
00> CD
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is

dG = A(e x - e 1 )dw
1

where the arbitrary scale factor has already been set so that

f" dG° = 1 - \/\i
o °°

In this way the recursive definition

dG
n

= dG
n_1

* U * Z
oo CO

produces functions which sum to 1 as required for X/v < 1, when the limiting

distribution exists. For X/u > 1 the EdG does not converge. The explicit

for m is

, n-3 ,n+l ,w2-wf> ,, . N ,

dG
00

= a--) [z ^rr Ltt^1 e'
(x+u)w

2 +
U i=0 y

n-1_1 l!

,n ^wf-wf.n-Z ,. . ,

n+1
dw„u=r e r(w2'V dw

i
c

From this the marginal distributions in n and one supplementary variable are

/ dG
n

= (i - A) (A
n
/ u
n+1

) e
- ,jw idw:

w2
'=0 V X

00
. .n+1 A n+1 n-2 i-1 ^i .n.,

, . w? /i. \ •*

/ dG
n

= (1 _ A)(2l_ + *
E i_J^_ + ^iA±El JL_,).-

(Wll)wt
*r;

wi=0 " " M
n

u
11
" 1

i=l
l! y (n"1)! 2

As anticipated marginal probabilities for the integer variable are

«> oo n A A

/ / dG" = (1- -)—
o o « u n

u
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and for the supplementary variables they are

S / dG
n

= Ae"
Xw

l dw:

n=0 1*2=0

and

E / dG
n

= ue"
MW2'

dwX
00 /

n=0 w'=0

The infintessimal generator for this process is found from

dG*\. (w ,w ) = (l-AAt-yAt)dG^(w -At.w.-At) for w > and w >

00

dG
t+At (°'W

2
)

= / ^tdG°"1
(w

1
,w

2
-At)

w o

00

dG
t+At

(w
l'

0) = f yAt dG"
+1

(w
1
-At,w

2
)

w
2
=0

CO

dG
t+At

(w
i'

0) =
( 1- AAt)dG°(w

1
-At,o) + / wAtdG^(Wl-At,w

2
)

w
2
=0

CO

dG
t+At ( °' 0) = f XAtdG°(w!'°)

w =0

Substituting he functional forms fov .d for dG
n Into thrse relationships for

small At also verifies that the stationary distribution has been found.

Truncated Processes

Another interpretation of this process allows it to be used more generally

00 i i
or perhaps suggests making A relatively large. First / Q dt * D dt can be

o ox
interpreted as the conditional probability of a transition from states in A

to states in A._
1

in dt in the stachastic process derived from the original

by ignoring time spent in states in A. for j > i. The truncated process

produces probabilities which are conditional probabilities of the original
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00 i i °° i—

1

process. In the same vein I Q di * D * / B dt can be considered as
o t o T

conditional probabilities for transitions from states in A through A. in

a truncated process in which time is discrete and measures the exits from

the sets A. for i = 0, i-1. The. analysis for A alone is special because
j o

all exits from A lead to A . In general there are also transitions from

A. to A._
1

in the state just before exit process.

The use of truncated processes is very appropriate in numerical analysis

when for j > i the sets A. are identical and the transition structure does

not depend on j, i.e. £r = IT, B = B and Er = D for j > i. In this case

all Q = Q ' for j > i. Thus only a single equation need be solved for these

*> i+i
functions. Once / Q__ dt is known then the truncated process can be analyzed

o t

^k ^ "j *\/ i — 1 °° i+1
to produce dG for k = o,i. The recursive relation dGJ = dG ' * / Q dt* oo oo oo q ^-j

^ i ^ i
starting from j = i+1 and dG produces a complete set of dG . These may now

be normalized to sum to 1 and the result is the limiting distribution dG° GO

for the original process.

This was the approach used by Winsten [5] in discussing some problems in

which the upper tail of the limiting distributions are geometric. He also

allowed transitions from A. to and A. for j £ i + 1 with probabilities which

depend only of i-j . This is enough to prove the recursive relationship

dG^ ' = dG^ * R even in the more general context of this paper. The problem

is that the equation for R becomes extremely complicated. The suggestion that

single event transitions from A. to A. for i < i + k produces a k term
i J -

recursive structure can also be persued. The expressions for the coefficients

in this relationship also become complicated as k becomes large and the

structure on the A. becomes complex. The introduction of groups of states by

the author makes this last generalization unnecessary for treating Erland k

distributions as Winsten suggests.
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Applications

So far, analytic application of this structure has been restricted to

systems in which the A. are identical and discrete from some point on. The

result is that the upper tail of the limiting congestion distribution is

geometric with a matrix for the term ratio. Although not explicitly used in

derivations this approach can provide relatively easy access to limiting

distributions for systems such as E./E /s and many priority models. The
J k

intimate relation between convergent iterative calculations and the theoretical

analysis make this approach useable even when it is difficult to proceed

further analytically.

In developing piecewise linear processes, Gnedenko and Kovalenko [3] used

the remaining length of the intervals in process as supplementary variables.

The arguments presented here can easily be revised to use this representation

especially if one uses rates of progress toward termination which depend on

the congestion. In terms of functional forms, there seems to be no strong

preference at the moment. Although this approach raises questions because

(N(t), W(t)) may not be observable, it does provide an analytic structure

which matches that used in computer simulations. From both the philosophical

and practical points of view it is important to think of simulation as one

form of numerical analysis for complicated stochastic processes.
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