0,

UNIVERSITY OF
 ILLINOIS LIBRARY
 AT UREANA.CHAMPAIGN BOOKSTACKS

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

Faculty Working Papers

Ricnare そ．ミveニs

College of Commerce and Business Administration
University of lllinois at Urbana－Champaign

College of Commerce and Business Administration

 University of Illinois at Urbana－ChampaignOctober 29， 1976

geiveralized geoiderric structure of the harginal distisieutions in eveivt processes

Richard V．Evans

｜⿰⿰三丨⿰丨三⿻


```
istr!a,:m
```


 is O and W^{\prime} The \because Thase

 Ela innutysis.

Secs of states

 Use the some inductive derinillun of y

Tlerative Rolatiunahip

witich ocoliry: ris?
whers
.
and

 j produces

 grovahilitices wifiec
0
.
.

$$
\begin{aligned}
& B_{t}^{i}=B_{k=1)}^{i} B_{i}^{i}, k
\end{aligned}
$$

$$
\begin{aligned}
& u^{i} d t \text { ㄷ. } \%_{t}^{i} u^{3}=12_{[}^{i}=1
\end{aligned}
$$

 into A_{i} are w211 afinined avfnts. thub

$$
a_{t}{ }_{t}^{i}=B_{i}^{1}
$$

$$
\begin{aligned}
& \left.{ }^{2}\right)_{2}^{i}=U^{i-1} * \%_{8}^{i}
\end{aligned}
$$

Asisumane that

! \because
i ire

The recuratie ronatiantion is

$$
{ }_{u} r_{i}^{i T j}=n^{i} \div \therefore \theta_{1}^{i+1}
$$

i imi:
!...

for : 1
ana

$$
\text { 2) } b^{\prime} B_{i}^{1} a_{t}=U^{i}=L^{i--1}
$$

 in terms of the futctions at

Rearranging the intree? iom

By induction an \& har all i

$$
\begin{aligned}
& \dot{b} k_{Z}^{i} \text { it } * n^{i} * z^{i-1}=y_{1}=y^{i-1}
\end{aligned}
$$

. 17 (i

 meantheful solut ber os the ontsent

Phas: evpe incrryta

 $\because 1.10=18$

discosize Elle ift int －2：1tit．

アエリ（2が，

 fi．n ：Fic！y liave lia
plyy On lin vantior of by．jositi
$\vdots n \quad: r \quad i$supylerixdit：ory visy

Bundinry se \therefore

$$
\partial G_{t}^{0}=A H_{0}^{0} H^{0}+
$$

.

 integratable and

$$
d 0_{0}^{0}=d 0^{0}=d^{2} \# a^{3},
$$

or

$$
d 0_{\omega}^{\infty}=d r_{\infty}^{0} \text { a } 0_{0}^{\infty} d=x r^{3}+0^{2}
$$

$$
k_{d G_{\infty}^{0}}^{0}=k-1 d G_{0}^{0} * 0^{0}+\int_{0}^{2} d a * 0^{1} \% 0_{0}^{2}
$$

or
where rhe power $x-3$ reans repeat the $*$ gexazion $k-1$ thas. The expression
 stares and thus aust bet. il the livirang syaforesults ato fo be strictly

 from A. From posicive operator thoory i I Lie repeetei appication of this

 is rade equa: to i

Degeneracy

 adapted to rore generai assumphate sumid a yrubzor regutra zhis. The

 of states. Because entry inte A Cotnciaes tith che termanation of some

From the solution to these
equations the comblere fun - or or iond '

$$
\left.z_{t}^{i}=E_{t}^{i}+i_{0}^{i} i^{2}: \% u^{3} \times \sum_{i}^{i}-j+\right\}^{1} \%
$$

$$
\begin{aligned}
& Z_{\mathrm{U}}^{\mathrm{i}}=\mathrm{E}_{\mathrm{U}}^{i}+{ }_{2}^{i} \cdots \\
& { }_{2}^{i}=B_{D}^{i}+B_{D}^{i} A_{D}^{i}+
\end{aligned}
$$

 solution to the second equaticu Is
or

$$
z_{D}^{\dot{L}}=\left(1-3^{i}+\omega \quad i\right.
$$

this can De rearrang:on

The operator serjes must conger ze wat thas

This eghat．．．

last exis

$$
Z^{i}=E
$$

yues

$$
\begin{aligned}
& a_{i}^{i}=b^{4} \\
& r_{2}^{2}=n_{i}^{i}+a_{i}^{2}+\quad ; \quad
\end{aligned}
$$

$$
i_{U}^{i}-z_{i}^{i}=
$$

Nut－oid 子an

Hecreasing un：

$$
z^{i}=i
$$

Ls well de：smet ans ar

M/M/L
Although successive approximations often provide feasible calculations for nomerical analysis, it is instructive to exame ar least one example in which complete analytic solution is possible. Obvious candidates for discussion are elther $W / G / 2$ ar $G / 1 / 2$ using only the single mecessary supplementary variable. In these ases D^{i} and U^{i} are extremely degenerare since $A_{i}^{D}=(i, 0)$ and $A_{i}^{U}=(i, 0)$ Eespectively. These special Fumeling states make it easy to solve for the Z^{i} which are all identical. The analysis easily provides limiting results in probabilisy rather than the more familiar transform form.

In many ways more interesting here is the $1 \in s s$ general system M/M/I in which the analysis uses supplemertary variables w_{1} and w_{2} for both elapsed interarrival and service tiwes respectively. The state space is partitioned according to sets $A_{i}=\left\{\left(i, w_{1}, w_{2}\right) \mid w_{1} \geq 0, w_{2} \geq 0\right\}$. The set $A_{0}=\left\{\left(0, w_{1}, w_{2}\right) \mid\right.$ $\left.\omega_{1} \geq 0, \omega_{2} \equiv 0\right\}$ is the obvious exception. When there is only one customer in the system, it is his service which is in process and this must have begun after his arrival which is also the last arrival. Thus $A^{l}=\left\{\left(1, w_{1}, w_{2}\right) \mid w_{2} \geq w_{2} \geq 0\right\}$ is aiso an exception. The degeneracy occurs because $H_{i}^{U}=\left\{\left(i, 0, w_{2}\right) \mid w_{2}=0\right\}$. $A_{i}^{D}=\left\{\left(i, w_{1}, 0^{\prime} \mid w_{1} \geq 0\right\}\right.$. It is ubvinusly important but not the extreme of a funneling stare.

The operators which defire the process are

$$
\begin{aligned}
& B_{t}^{0}\left(w_{1}, 0, w_{1}^{0}, 0\right)=e^{-\lambda\left(w_{1}-\omega_{1}\right)} d w_{1} \\
& B^{0}=f_{0}^{\infty} B_{t}^{0} d t=e^{-\lambda\left(w_{1}-w_{1}\right)} d w_{1}^{\prime}
\end{aligned}
$$

For all supplementary vartable values for which in is defined and all including $i=1$

$$
\begin{aligned}
& B^{\frac{1}{2}}=\int_{0}^{\infty} B_{t}^{i} d t=e^{-(\lambda+1)\left(\sigma_{1}^{2}-W_{1}\right)} \delta\left(u_{i}^{-}-w_{i}, W_{2}^{\left.-w_{2}\right)}\right)_{i}
\end{aligned}
$$

where

$$
s(x, y)= \begin{cases}1 & x=y \\ 0 & x \neq y\end{cases}
$$

For $i \geq 0$

$$
U^{1}\left(w_{1}, w_{2}, w_{1}^{\prime}, w_{2}^{\prime}\right)=\left\{\begin{array}{l}
\lambda \\
0
\end{array}\right.
$$

if $w_{1}^{\prime}=o, w_{2}=w_{2}^{\prime}$
otherwise

For $1 \geq 1$

$$
D^{i}\left(w_{1}, w_{2}, w_{1}^{\prime}, w_{2}^{\prime}\right)=\left\{\begin{array}{l}
\mu \\
0
\end{array}\right.
$$

$$
\text { if } \mathrm{w}_{2}^{\prime}=\mathrm{o}, \mathrm{w}_{1}^{\prime}=\mathrm{w}_{1}
$$

otherwise
For the limiting distribution the solution to

$$
z_{U}^{i}=B_{U}^{i}+z_{U}^{i} * U^{i} * z_{U}^{i+1} * D^{i+1} * B_{D}^{i}
$$

is the same for all $i \geq 1$. It is

$$
Z_{U}=e^{-(\lambda+\mu) w_{1}^{\prime} \delta\left(w_{1}^{\prime}, w_{2}^{\prime}-w_{2}\right) d w_{1}^{\prime}+\lambda e^{-\lambda w_{2}^{\prime}-u w_{1}^{\prime}} \Gamma\left(w_{2}^{\prime}, w_{1}^{\prime}\right) d w_{1}^{\prime} d w_{2}^{\prime} .}
$$

for

$$
I(x, y)= \begin{cases}1 & x<y \\ 0 & x>y\end{cases}
$$

From this

$$
\begin{aligned}
& Z_{U} * U=\lambda e^{-(\lambda+\mu)\left(w_{2}^{\prime}-w_{2}\right)} d w_{2}^{\prime} \Gamma\left(w_{2}, w_{2}^{\prime}\right)+\frac{\lambda^{2}}{\mu} e^{-(\lambda+\mu) w_{2}^{\prime}} d w_{2}^{\prime} \\
& Z_{U} * D=\mu e^{-\mu w_{1}^{\prime}}{ }_{d w_{1}^{\prime}}
\end{aligned}
$$

These combine to give

$$
Z_{U} * U * Z_{U} * D=\lambda e^{-\mu W_{1}^{1}} d w_{1}^{\prime}
$$

from which

$$
Z_{U} * U * Z_{U} * D * B_{D}=\lambda e^{-\mu w_{1}^{\prime}-\lambda w_{2}^{\prime}} \Gamma\left(w_{2}^{-}, w_{1}^{\prime}\right) d w_{1}^{-} d w_{2}^{-}
$$

For the distribution at the boundary the solution to

$$
d G_{\infty}^{0}=d G_{\infty}^{0} * U^{0} * Z_{U}^{1} * D^{1} * B^{0}
$$

is

$$
d G_{\infty}^{0}=\lambda\left(e^{-\lambda W_{1}^{\prime}}-e^{-\mu w_{1}^{\prime}}\right) d w_{1}^{-}
$$

where the arbitrary scale factor has already been set so that

$$
\int_{0}^{\infty} \mathrm{d} G_{\infty}^{0}=1-\lambda / \mu
$$

In this way the recursive definition

$$
\mathrm{dG}_{\infty}^{\mathrm{n}}=\mathrm{dG}_{\infty}^{\mathrm{n}-1} * \mathrm{U} * \mathrm{Z}
$$

produces functions which sum to 1 as required for $\lambda / \mu<1$, when the limiting distribution exists. For $\lambda / \mu>1$ the $\Sigma d G^{n}$ does not converge. The explicit for m is

$$
\begin{gathered}
d G_{n}^{\infty}=\left(1-\frac{\lambda}{\mu}\right) \quad \sum_{i=0}^{n-3} \frac{\lambda^{n+1}}{\mu^{n-i-1}} \frac{\left(w_{2}^{\prime}-w_{1}^{\prime}\right.}{i!} e^{-(\lambda+\mu) w_{2}^{\prime}}+ \\
\\
\left.\frac{\lambda^{n}}{\mu}(\lambda+\mu) \frac{\left(^{\prime}{ }_{2}^{\prime}-w_{1}^{\prime}\right)^{n-2}}{(n-2)!} e^{-(\lambda+\mu) w_{2}^{\prime}}\right] \Gamma\left(w_{1}, w_{2}\right) d w_{1} d w_{2}+ \\
\\
\frac{\lambda^{n+1}}{\mu^{n-1}} e^{-\lambda w_{2}^{\prime}-\mu w_{1}^{\prime}} \Gamma\left(w_{2}^{\prime}, w_{1}^{\prime}\right) d w_{1}^{\prime} d w_{2}^{\prime}
\end{gathered}
$$

From this the marginal distributions in n and one supplementary variable are

$$
\begin{aligned}
& \int_{w_{2}^{\prime}=0}^{\infty} d G_{\infty}^{n}=\left(1-\frac{\lambda}{\mu}\right)\left(\lambda^{n} / \mu^{n+1}\right) e^{-\mu w_{1}^{i}} d w_{1}^{\prime} \\
& \int_{w_{1}^{\prime}=0}^{\infty} d G_{\infty}^{n}=\left(1-\frac{\lambda}{\mu}\right)\left(\frac{\lambda^{n+1}}{\mu^{n}}+\frac{\lambda^{n+1}}{\mu^{n-1}} \sum_{i=1}^{n-2} \frac{\mu^{i-1} w_{2}^{\prime}}{i!}+\frac{\lambda^{n}(\lambda+\mu)}{\mu} \frac{w_{2}^{-n-1}}{(n-1)!}\right) e^{-(\lambda+\mu) w_{2}^{\prime}} d w_{2}^{\prime}
\end{aligned}
$$

As anticipated marginal probabilities for the integer variable are

$$
\int_{0}^{\infty} \int_{0}^{\infty} d G_{\infty}^{n}=\left(2-\frac{\lambda}{\mu}\right) \frac{\lambda^{n}}{\mu^{n}}
$$

and for the supplementary variables they are

$$
\sum_{n=0}^{\infty} \sum_{w_{2}^{\prime}=0}^{\infty} d G_{\infty}^{n}=\lambda e^{-\lambda w_{1}^{\prime}} d w_{1}^{\prime}
$$

and

$$
\sum_{n=0}^{\infty} \sum_{W_{1}^{\prime}=0}^{\infty} d G_{\infty}^{n}=\mu e^{-\mu w_{2}^{\prime}} d w_{2}^{\prime}
$$

The infintessimal generator for this process is found from

$$
\begin{aligned}
& d G_{t+\Delta t}^{n}\left(w_{1}, w_{2}\right)=(1-\lambda \Delta t-\mu \Delta t) d G_{t}^{n}\left(w_{1}-\Delta t, w_{2}-\Delta t\right) \text { for } w_{1}>0 \text { and } w_{2}>0 \\
& d G_{t+\Delta t}^{n}\left(0, w_{2}\right)=\int_{w_{1}}^{\infty} \lambda \Delta t d G_{t}^{n-1}\left(w_{1}, w_{2}-\Delta t\right) \\
& d G_{t+\Delta t}^{n}\left(w_{1}, 0\right)=\int_{w_{2}=0}^{\infty} \mu \Delta t d G_{t}^{n+1}\left(w_{1}-\Delta t, w_{2}\right) \\
& d G_{t+\Delta t}^{o}\left(w_{1}, 0\right)=(1-\lambda \Delta t) d G_{t}^{o}\left(w_{1}-\Delta t, 0\right)+\int_{w_{2}=0}^{\infty} \mu \Delta t d G_{t}^{1}\left(w_{1}-\Delta t, w_{2}\right) \\
& d G_{t+\Delta t}^{1}(0,0)=\int_{w_{1}=0}^{\infty} \lambda \Delta t d G_{t}^{o}\left(w_{1}, o\right)
\end{aligned}
$$

Substituting the functional forms for dor $\mathrm{dG}_{\infty}^{\text {n }}$ into these relationships for small Δt also verifies that the stationary distribution has been found.

Truncated Processes

Another interpretation of this process allows it to be used more generally or perhaps suggests making A_{0} relatively large. First $\int_{0}^{\infty} Q_{\tau}^{i} d \tau * D^{i} d t$ can be interpreted as the conditional probability of a transition from states in A_{i-1} to states in A_{i-1} in $d t$ in the stachastic process derived from the original by ignoring time spent in states in A_{j} for $j>i$. The truncated process produces probabilities which are conditional probabilities of the original
\square
process. In the same vein $\int_{0}^{\infty} Q_{\tau}^{i} d \tau * D^{i} * \int_{0}^{\infty} B_{\tau}^{i-1} d t$ can be considered as conditional probabilities for transitions from states in A_{i-1} through A_{i} in a truncated process in which time is discrete and measures the exits from the sets A_{j} for $j=0$, $i-1$. The analysis for A_{0} alone is special because all exits from A_{0} lead to A_{1}. In general there are also transitions from A_{j} to A_{j-1} in the state just before exit process.

The use of truncated processes is very appropriate in numerical analysis when for $j>i$ the sets A_{j} are identical and the transition structure does not depend on j, i.e. $V^{j}=U^{i}, B_{t}^{j}=B_{t}^{i}$ and $D^{j}=D^{i}$ for $j \geq i$. In this case all $Q_{t}^{j}=Q_{t}^{i+1}$ for $j>i$. Thus only a single equation need be solved for the se functions. Once $\int_{0}^{\infty} Q_{t}^{i+1} d t$ is known then the truncated process can be analyzed to produce $\tilde{d}^{2} G_{\infty}^{k}$ for $k=0, i$. The recursive relation $d_{\infty}^{2}{ }^{j}=\hat{d G}_{\infty}^{j-1} * \int_{0}^{\infty} Q_{\tau}^{i+1} d \tau$ starting from $j=i+1$ and $\tilde{\mathrm{dG}}_{\infty}^{i}$ produces a complete set of $\tilde{\mathrm{dG}}_{\infty}^{\mathrm{i}}$. These may now be normalized to sum to 1 and the result is the limiting distribution $\mathrm{dG}_{\infty}^{\mathrm{i}}$ for the original process.

This was the approach used by Winsten [5] in discussing some problems in which the upper tail of the limiting distributions are geometric. He also allowed transitions from A_{i} to and A_{j} for $j \leq i+1$ with probabilities which depend only of $i-j$. This is enough to prove the recursive relationship $d G_{\infty}^{i+1}=d G_{\infty}^{\circ} * R$ even in the more general context of this paper. The problem is that the equation for R becomes extremely complicated. The suggestion that single event transitions from A_{i} to A_{j} for $j \leq i+k$ produces a k term recursive structure can also be persued. The expressions for the coefficients in this relationship also becone complicated as k becomes large and the structure on the A_{i} becomes complex. The introduction of groups of states by the author makes this last generalization unnecessary for treating Erland k distributions as winsten suggests.

Applications

So far, analytic application of this structure has been restricted to systems in which the A_{i} are identical and discrete from some point on. The result is that the upper tail of the limiting congestion distribution is geometric with a matrix for the term ratio. Although not explicitly used in derivations this approach can provide relatively easy access to limiting distributions for systems such as $E_{j} / E_{k} / s$ and many priority models. The intimate relation between convergent iterative calculations and the theoretical analysis make this approach useable even when it is difficult to proceed further analytically.

In developing piecewise linear processes, Gnedenko and Kovalenko [3] used the remaining length of the intervals in process as supplementary variables. The arguments presented here can easily be revised to use this representation especially if one uses rates of progress toward termination which depend on the congestion. In terms of functional forms, there seems to be no strong preference at the moment. Although this approach raises questions because (N(t), W(t)) may not be observable, it does provide an analytic structure which matches that used in computer simulations. From both the philosophic:and practical points of view it is important to think of simulation as one form of numerical analysis for complicated stochastic processes.

1. Evans, R.V., "Geometric Distributions in Some Two Dimensional Queueing Systems" O.R., Vol. 15, No. 5, 1967, pp. 830-846.
2. Evans, R.V., "Transition Functions for Event Prucesses", Tech. Memo. University of Illinois, 1976.
3. Gnedenko, B.V. and Kovalenko, I.N., Introduction to Queueing Theory translated by Kondor and edited by Louvish, Israel Program for Scientific Translations, 1968.
4. Karlin, S., "Positive Operater", Journal of Math. and Mech., Vol. 8, No. 6, 1959, pp. 907-937.
5. Winsten, C.B., "Geometric Distributions in the Theory of Queues", Journal of Royal Statistical Society, Vol. 21, No. 1, 1959, pp. 1-35.
