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Summary

The purpose of this study is to develop a systematic and rational approach to the univer-
sity resource allocation problem based upon the use of the Davis generalized hierarchical goal
decomposition model. This university model represents the first successful goal programming-
decomposition modelling effort of an actual administration situation. The model was solved on
a CDC CYBER-175 computer. Although the formulation was enormous, convergence was rapid. The
results of this research clearly confirm that organizational models based upon mathematical
programming techniques can offer a systematic and viable approach to organizational design,
multi-period planning, and resource allocation in decentralized organizations.
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A Generalized Hierarchical Goal Decomposition Model
of Resource Allocation within a University

I. Introduction

During the coming decade, most institutions of higher education will

enter a no-growth or perhaps negative-growth era. The likely continuance

of historically high inflation will place additional burdens upon these

institutions. In this kind of demographic and economic environment, the

status quo will be difficult if not impossible to maintain; university

programs will have to be consolidated, reduced, and/or abandoned in order

to accommodate operational and financial constraints. In this setting,

universities must boldly come to grips with the problems of resource

allocation. The purpose of this study is to develop a systematic and

rational approach to the university resource allocation problem.

As Richard Cyert [5, p. 7] has remarked, even though nonprofit

(viz , educational, medical, and government) institutions play a major

role in sustaining national welfare, "there has been little attention

to these areas by business management scholars. [These scholars] have

tended to emphasize the [for-profit] business firm without looking for

a transfer of knowledge" to the nonprofit sector.

This study attempts to fill the void noted by Cyert. It describes

the implementation of a university resource allocation-planning model

that utilizes the generalized hierarchical goal decomposition model (GHM)

recently developed by Wayne J. Davis [7], Unlike the strict maximiza-

tion or minimization linear programming decomposition models (see [1,

6, 15, 19, and 27]), the GHM is an extension of the goal programming/
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decomposition organizational models developed by Ruefli [25, 26],

Freeland and Baker [14], and Davis and Talavage [10].

Unfortunately, although the first of these organizational models

was introduced over ten years, n£ prior modelling effort has success-

fully implemented and solved an actual administrative solution in a

decomposition-goal programming format. This study describes the first

successful implementation of such a model. The successful results of

this research clearly confirm that organizational models based upon

mathematical programming techniques can offer a systematic and viable

approach to organizational design and multi-period planning and re-

source allocation in a real world decentralized organization.

In addition to this introduction, this paper contains five sections.

Section II provides a brief overview of resource allocation problems

within a decentralized university setting. A complete discussion of the

Davis generalized hierarchical model is given in Section III, In addi-

tion to the specification of the GHM's three levels, the model's solu-

tion procedures and properties are discussed. The fourth section pro-

vides the specification of the three levels of university resource

allocation model and a brief description of organizational priority

weightings. Section V describes the model's computation requirements

and solutions characteristics. Also the results of model revision and

sensitivity analysis are reported. The final section contain a sum-

mary of the paper and discusses the need for continued research.

II. Resource Allocation in a Decentralized University Setting

A university resembles a divisionalized corporation; however, in-

stead of separate divisions, representing operating subunits or profit
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centers, a typical university is composed of departments, schools, and

colleges. It is well established that optimal transfer prices within

a for-profit divisionalized corporation must consider all corporate con-

straints and opportunity costs [12], A priori one can argue that the

allocation of resources within a university must also consider all or-

ganizational constraints, economies of scale, and opportunity costs.

However because a university cannot point to a unique goal such as

shareholder wealth or economic profit maximization, the measurement of

these opportunity costs is difficult. Based upon institutional priori-

ties, a university typically pursues a set of organizational objectives

which are targeted at achieving teaching, research, and public service

goals. Indeed the literature is replete with examples proposing the

use of multicriteria or goal programming in university resource alloca-

tion. For a representative sample see [13, 16, 17, 18, 20, 22, 23, 29,

and 30].

Unfortunately a careful perusal of these studies reveals that each

focuses upon a component of the university organization. That is these

studies concentrate upon an individual department, a college, or univer-

sity administrative problem. None highlights the problems created by

divergencies in goals and priorities as one moves through the various

levels of the organization's hierarchy.

Given the current demographic and economic environment in higher

education it is essential that resources be allocated in accordance

with organizational goals and priorities. Further the allocation pro-

cess must consider the simultaneous interactions, constraints, and

complexities of funding and staffing decisions for department, college.
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and university programs. The following section describes an organiza-

tional model or algorithm that appears to offer great promise in dealing

with resource allocation, budgeting, and other managerial issues faced

by decentralized organizations.

III. The Generalized Hierarchical Model

Like its predecessors, the GUM follows an iterative solution pro-

cedure and is designed to capture the structure of a three level hier-

archical organization similar to that depicted in Figure 1. It should

be noted that the GKM can easily accommodate an n level decentralized

organization; however, for ease of exposition, only three are presented.

As seen in Figure 1, there is one central or supremal unit, whose prin-

cipal organizational responsibility and role are setting goals and

allocating resources. Subordinate to the central unit are M management

units. These organizations coordinate their subordinate operating units

and allocate local resources, such that the programs and policies under

the authority and responsibility of each management unit conform to

overall organizational goals and priorities. Each operating unit (some-

times called an "infimal subsystem" in the literature) is designated by

a single index, i. Given M managers, it is possible to define a series

of integers r , r^,...,r„, such that operating units Cr,_, + 1) through

r report to manager k. Assuming a total of N operating units, r^

equals 0, and r equals N. The responsibility and role of each operating

unit are Co carry out the organizational operations of the firm and

generate proposal revisions representing alternative levels of organi-

zational output.
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Mathematlcal Structure of the GHM

The mathematical structure of the algorithm is defined by equations

(1-14. i) given in Table 1. Equations (1-4) pertain to the central units

problems, (5.k-10.i) to the management units, and (11-14) to the oper-

ating units. The levels will be discussed separately, beginning with

the management unit and followed by the central or operating problems.

A. The management unit subproblem .

Each management unit (k=l,...,M) has two sets of goals. The first

is a m^ vector, G, , which defines a set of external goals imposed by the

central unit at iteration x. The second set is represented by a m^

vector of internal goals, g, , These internal goals are not modified

during the algorithm's solution procedure, and they can provide a cer-

tain amount of autonomy for each management unit. There are two m^ vec-

+ T - T
tors, Y ' and Y, '

, which are respectively positive and negative devia-

tion vectors at iteration t from the external goal vector G, . In addi-

tion there are two m/ vectors, y, ' and y, '
, which represent positive

and negative deviations from the internal goal vector, g ,

The kth management unit can select from a set of n vectors,

X , .,.,X.. These vectors contain a set of proposals or operating deci-

sions generated during iterations 1 through t by operating unit i,

i = r + l,...,r, . B. and Bl (i=r,_^ + l,...,r,) are (n. x m.) and

(n. X m^) matrices respectively. These linearly relate the ith oper-

ating unit's decision to the kth management unit's external and internal

-r

goals. Associated with each X. vector is a n. vector, C.. The multi-
1 11

T
plication, C X., yields the cost of a particular proposal vector or



-7-

Table 1

The Mathematical Structure of the GHM

The Central Unit Problem: Equation #

M
Minimize: Z {C. gJ"*"^

+ wj sj'^"*"^ + wf S~'^'^^} = Z*^"^^ (1)

k=l \ '^ ic K k ic

Subject to:

I G^^ + I^ s!'^^^ - I s:''^-'^ = G^^ + Y^^ - 17' ^ (2)m,k °hr'^ ™v K.k k

(for k = 1,...,M),

where I is a (m, x m. ) identity matrix.

k=l

„t+l „+,t+l , --,t+l ^ - ...

k ' k * k - ^^

The kth Management Unit Problem: (k = 1,...,M)

""k t

Minimize: _^Z
^^^

Z^ C^X^A^ + W^Y^'^ + W'y;'^ + w^yj' -^ + .--y"'^ C5.k)

Subject to:

i=Cr^_l+l) ^=1

^k t

I I B^xJaT - I Y, '^ + I Y,"'^ = G, (6.k)

i=Cr^_^+l) x=l ^ ^ ^ \ ^ \^ ^

\ t

x=(r +1) T=l He Tc

t

Z xT = 1 (for i = r, +l,...,r,) (8.1)

T=l
^ ^"^

'^

^1' ^k'^'
\'^'

^'k'^»
^'^

^k''' -° ^^-^^
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^t+1 _ . *,t t +,t -,t +,t -,t.

Subject to I

Equation if

(for i = r +l,...,r, ), where X*'*^ = Z xhl (10. i)

T=l

The ith Operating Unit Problem: (i = 1,...,N)

Minimize: CX^"^-"" + fi%t'^"*'''' + "T*?'*^"^^ (11. i)
i 1 1 i i 1

- ^t+1 T ,+, t+1 , T ,-,t+l t+1 .T- ..
B X. - 1 tp. + I 4>

,

' = Y. (12. i)
i 1 n^ 1 n^ i i

D,xf^ f F^ (13.1)

„t+l ,+,t+l J A-.t+l ^ n M/ ,-\X. . 'I'j » and i(».' >_ (14. i)
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operating program. Also in equation C5.k) one observes W, and W~ as

well as w, and w, . These m, and mJ* vectors are penalty weights asso-

elated with the Y '
, Y ' ', y '

, and y, ' " deviation variables. Paren-

thetically, it should be noted the omission of the c, vectors reduces

the kth management unit problem formulation to a standard goal program-

ming format. The same is true for central and operating unit problems

if the cost vectors, C^ <k=l,...,M) and C^ Ci=l,...,N), are assumed to
k

be null in equations (1) and Cll.i). All cost vectors were assumed to

be null in the university planning model described in the subsequent

section. However, as will be seen shortly, operating costs and budget

T T
limitations were incorporated in the X. and G, vectors. For other ap-

1 k

plications, inclusion of these cost vectors directly into objective

functions may be warranted; see for example the design problem given

in [9].

In solving its problem, each management unit selects a composite

* t
n. vector of operating programs, X '

, that have been submitted over

the previous t iterations. This is accomplished by selecting values

for X. (T=l,...,t and i=r,_^ + l,...,r,) that achieve the priorities

established in equation (5.k). This convex combination requirement

given in equation (8.i) allows each management unit to have a mathe-

matical "memory" of its operating units' previous proposals, and is in

the spirit of convex combination requirement included in the original

Dantzig and Wolfe original decomposition formulation [6], Once an op-

timal solution (in the goal programming sense) is found, the kth manage-

ment unit passes its information up and down the organization's hier-

archy. The central unit is "told" how close the management unit came
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to achieving the goals it was given for iteration t, G, , and the sub-

ordinate operating units are given a n . vector of goals, y. ,

(i=r,_ + l,...,r,). The y. vectors provide direction to each oper-

ating unit in formulating new proposals which can potentially improve

goal achievement at iteration t+1. A discussion of the functional form

of Y is given in the section immediately following the description

of the operating unit's problems.

B. The central unit subproblem .

As seen in equations (1-4) the central unit's principal task is the

selection of new goal vectors G, (k=l,...,M) for its management units.

The central unit optimizes its objective function value, Z , in a

traditional goal programming sense (at least for purposes of this study)

.

This is done by minimizing S, ' and S, ' (for k=l,...,M); these are

m, vectors of positive and negative deviations from the over-achieved

and under-achieved goal values generated at iteration t. In determining

the new goal vectors the central unit must satisfy the constraints given

in equation (3) . Here G is a m^ vector of overall organizational goals

and P (k=l,...,M) is a matrix that linearly relates the goal vector,

G , to the global university goals in G^.

C. The operating unit subproblem .

The operating units (i=l,...,N) have a structure that is almost

identical to the central unit. The n, -length vector, J<. and fi., are

traditional goal programming priority weights assigned to q) . and <}) . ,

Ti. -length positive and negative deviation vectors from the goal vector

Y . . X, is an n. vector containing the unit's operating decisions.
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F. is a £. -vector of inflexible operating constraints, and D. is a

(£ X n.) matrix of linear relationships that relates the unit's oper-

ating decisions to F.,

Solution Procedure of the GHM

The GHM algorithm follows an iterative information and goal revi-

sion process in achieving a final solution. Figure 2 outlines this

process. Initially the central unit selects preliminary goal values

for its managers. These goals are of course subject to the constraints

given in equation (3) . Simultaneously each operating unit provides its

superior with an initial set of operating decisions that fall within

the feasible region described in equation (13. i). On the first itera-

tion, the elements of the operating units' goal vectors, y. (i=l,...,N),

are initialized to zero. Thus the units' proposals satisfy only the

minimum specifications given in (13. i). Accordingly, this level of the

algorithm resembles a "zero-base" [24] budgeting system.

Utilizing this information each management unit formulates and

solves its problem generating values for Y '
, Y '

, y '
, and y~'

K. K. K. iC

(k=l,,.,,M). At this juncture two alternatives are available: (1) ask

the central unit for a new set of revised goals, G and (2) ask. the

operating units to revise their proposals so that they conform more

closely with the current external goals, G, , and internal goals, g, ,

Alternative (2) will be discussed initially.

Equations (10. i) and (12. i) provide insight into this goal revision

process. At iteration t assume that management unit k believes that its

external goal vector will be held constant. Further assume it believes
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that only operating unit i among its subordinates can generate a new set

of proposals, X, , which can improve the management's external and in-

t t
ternal goals, G, and g, , respectively. Given these assumptions, the

kth management unit can subtract the contribution of its remaining oper-

ating units to determine y, , This yields equation (14).

t+1
^i

G^' ^k t B.
_ _^_ - E z -^- x" x'

t
T=l

b!
J

L.

J J
(14)

The assumption used to derive (14) in conjunction with equation

(6.k) provide the final algebraic definition of 7. used by the GHM.

This is given in equation (15).

t+1 :

^i = ^T=l

B.

b:'
xT x' -
i 1

r y"^' <= 1
k _

" +,t
^k J L V^

(for i=l, . . . ,N)

(15)

At the intuitive level, equation (15) is much less complicated than

it looks, and by focusing on one element of an external goal vector the

thrust of the revision process can be seen easily. Assume that the kth

management unit has a budget over-run of $.125 million (i.e., the budget

element of the Y ' vector equals $.125 million). The management unit

then looks at the budget for operating unit i (for convenience assume

that to be $1.5 million at iteration t) . Based upon equation (15) the

budget element in y. would equal $1,375 million. Of course these re-

ductions (increases) in operating goals would be applicable to all units

subordinate to manager k. Continuing the budget analogy, the effect of



-14-

providing new y. (^"''^v i"*"^' • • • »^v^ ^^ management k it to demand a bud-

get cut, if feasible, from each of its subordinates.

After receiving their new goal vectors, y. , (i=l,...,N), the

operating units solve their individual problems for X, . While this

is going on the central unit formulates its latest problem based upon

+ t ~ t t
the Y, * and Y, ' deviation vectors from the G. , goal vectors at itera-

tion t Ck=l,...,M). Given, these values, the central unit can determine

* t
the goal levels, G ' (for k=l,...,M) that would have allowed each manage-

ment unit to meet its previous goals exactly. Equation (16) defines

* tV •

^k'*^
"

°k
"^

^k'*^
" \'^ ^^°^ k=l,...,M) (16)

* t
With the G, ' vectors in hand, the central can solve for a new set of

k

revised goals subject to the constraints given in equation (3-4).

Once the new goal vectors and operating decisions are determined,

they are transmitted to the appropriate management unit, and the process

begins again. These information exchanges continue until an overall

optimum is reached. The optimum is defined as follows: at each itera-

tion the central unit compares its objective function value, Z , with

its previous value Z . When the values are equal an "optimal" solution

has been achieved at least in the goal programming sense. Proof of this

convergence is given in [7, pp. 32-38],

Properties of the GKM's Coordination Mechanism

As noted earlier the Davis GKM is an outgrowth of several previous

algorithms [26, 26, 14, and 10]. However, unlike previous models, the
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GHM offers significant advantages. Typically the mDdel will converge to

a final solution in four iterations or less. Further no_ heuristic start-

ing procedures are required. In contrast to previous decentralized or-

ganization studies by Davis and Talavage [10] and Christensen and Obel

[4] these convergence results are extraordinary. Indeed, if one ex-

cludes the first iteration, which is required for model initialization,

the number of planning, programming, and/or budgetary reviews required

by the GHM is strikingly similar to those actually experienced by most

decentralized organizations.

The speed of the GHM's convergence rate stems principally from its

use of goal deviations and revised target goals as coordinative mech-

anisms. In the previous decentralized planning models, the key coor-

dination variable has been the simplex multiplier or shadow price. A

brief example can explain how a shadow price coordinating mechanism can

create convergence problems.

Assume that an organization is very close to achieving one of its

-3
goals. Even if the size of the deviation were 10 units from a goal

value, the shadow price of this constraint would have a non-zero value.

It is also possible for this shadow price to have the same value in a

3
situation where the deviation is 10 units from the same target goal.

In other words, the shadow prices does not necessarily measure an organ-

ization's degree of goal achievement. Instead it captures goal non-

achievement, but offers no advice on how far goals must be adjusted.

Use of goal deviations as a coordination mechanism solves this problem.

On a more pragmatic note, the author is aware of relatively few complex

organizations that consciously allocate resources on the basis of
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simplex multipliers. On the other hand, most if not all organizations

consistently utilize measures of goal over-achievement or under-achieve-

ment in allocating organizational resources.

Unfortiinately a comparison of the solution properties of the GHM

vis-a-vls previous algorithms is beyond the scope of this study. How-

ever, see [11 and 32] for a review of these models.

IV. Specification of the University Model

The planning model presented in this study focuses upon university

resource allocation over a three year horizon. As seen in Figure 3,

the university is composed of two major units: the Colleges of Arts

and Sciences (AS) and Business Administration (BA) . In turn each col-

lege is composed of several subordinate departments or institutes.

Georgia State University CGSU) served as the structuring guide for

the institution presented in this study, and it should be noted that

some of the model's characteristics do not conform to the actual organ-

izational structure at GSU. For example, GSU has five colleges; only

two, albeit the largest, of these colleges were included in the study.

These simplifications were undertaken to keep the dimensions of the

problem within reasonable bounds. Accordingly the results of the re-

search, although strongly representative of Georgia State, do not repre-

sent a "pure" implementation.

The principal focus of the study was upon the academic units of

the university. The intent was to isolate the effects and interactions

of student demand, educational quality, and fiscal responsibility upon

the university's staffing for academic instruction, research, and public

service. Problems of providing incremental or decremental administrative
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and support services such as building naintenance, physical security,

and major additions to computer, laboratory, library, classroom, and

office capacities and resources were not directly included in the model.

From an economic perspective many of these requirements are "sunk" or

"fixed" commitments. By omitting these services one might infer that

their current level is considered optimal; however, such a conclusion

is unwarranted. By treating the funding of these "sunk cost" resources

as a minimum goal, sensitivity analysis utilizing funding deviations

and reallocation alternatives could easily evaluate the potential trade-

offs of these fixed commitments.

The model was formulated based upon a nine (and not twelve) month

fiscal operation. This was justified on the grounds that summer school

teaching and research grant support are typically an appendage to the

normal operations of the university. AJ.though the summer lull can pro-

vide opportunities for revenue generating executive development seminars

and a variety of other public service and educational programs, these

summer allocations are exogenous to the model. An overview of the uni-

versity, college, and department problems as well as a brief summary of

the university priority weightings are presented below.

The University Level Problem

A statement of the university level formulation requires the speci-

fication cf the aggregate university goal vector G , the partitioned

college goal vectors G , k=l,2, and the P, matrices which relate the

college programs and university goals.

For operational purposes the university is assumed to have six

performance goals in each planning period. These goals relate to the
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university's discretionary budget, graduate and undergraduate unfulfilled

student demand, minimum levels of university-wide undergraduate core

course offerings, and faculty composition.

Panel A of Table 2 provides the values for each of the G, elements.

The first three elements specify budgets of $8.0, $8.5, and $9.0 million

during the next three years respectively. The next six goals are related

to unfulfilled undergraduate and graduate student demand. Each of the un-

fulfilled goal levels is constrained to be less than or equal to zero.

The next three goals focus upon the common freshman-sophomore core

curriculum shared by AS and BA students. At GSU, approximately 78% and

44% of the respective freshman and sophomore BA courses are provided by

the AS faculty. Thus the quality of both the AS and BA undergraduate pro-

grams are heavily dependent upon the allocation decisions made within

the AS departments. Because these decisions effect individual college

and university programs, it seems entirely reasonable that the univer-

sity should review these decisions to assure overall program quality.

The final two goal sets involve proportional constraints related

to faculty composition and accreditation. These goals are targeted at

maintaining excellence in teaching and research and impose the follow-

ing conditions: (a) at least two-thirds of the university's full time

faculty must have completed a Ph.D. or other earned doctorate degree

and (b) the percentage of full time equivalent teaching assistants and

instructors should not exceed 40% of the entire faculty.

To understand how a zero goal can generate a proportional con-

straint, assume that MF is the number of faculty without a terminal

(e.g., Ph.D.) degree and DF represents the number of terminal degree
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facuity. Also assume that the university has a policy that requires

that at least two-thirds of its faculty to have a terminal degree. This

implies

DF >_ 2/3 [MF + DF] . (18)

Rearranging (18) and inserting positive and negative deviation

variables, d_^ and d,^, yields the following goal programming constraint:

-2/3 MF + 1/3 DF -
d;Jj^

+ d!^ = . (19)

The role of the university is to generate the right-hand side of

this constraint which appears in the colleges' formulation.

In solving its problem, the university partitions the G vector,

by solving for the variables defined in panel B of Table 2. Of course

these goal assignments are subject to the constraints appearing in

panel C of Table 2 (i.e., equations 17.1 through 17.10). For example,

the university attempts to allocate college budgets that fall within

its overall budget ceilings. It should be emphasized that these "hard

constraints" will not necessarily prevent budget overruns, or other un-

desirable goal violations. This results from the inclusion of the

S, * and S ' (k=l,...,M) deviation vectors in equation (2). How-

ever, based upon the priority weighting vectors W and W, (k=l,2) sup-

plied by the colleges, the university will attempt to get as close as

possible to its desired set of objectives.

The College Problems

Within the GHM framework the colleges review the operating decisions

generated by their subordinate departments and recommend revised operating
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and performance goals based upon external university and internal college

policies.

A. Internal Goals

Because the majority of a university course offerings are part of

internal college programs, it was not necessary to superimpose external

university constraints upon all departmental minimum course offerings.

However, there was a need to specify that internal college programs were

adequately staffed and funded. To accomplish this, three internal goal

sets were imposed; they controlled the colleges' doctoral programs and

tenure decisions during the three year planning horizon. These internal

goals and constraints are given in equations (20.1) through (20.3) in

Table 3. Parenthetically all equations in Table 3 excepting (20.9) ap-

peared in both college's problem formulations; (20.9) was applicable

to AS.

An internal goal relating to doctoral seminars was included for

several reasons. Viable doctoral programs can provide opportunities and

incentives to faculty members to become involved in research and to re-

main current in areas of specialization. Also Ph.D. students can aug-

ment departmental teaching lines, and outstanding doctoral candidates

tend to reflect favorably upon the university and can attract top

faculty and students. Unfortunately because most doctoral seminars

have small enrollments and are taught by the best qualified and most

highly paid faculty, doctoral programs may not be at first glance cost

effective. Unless minimum goals were placed upon these seminar offer-

ings, they might not be offered.
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Equations (20.2) and (20.3) specify the final two internal goals

and constraints; they related to the granting of tenure. It was felt

including a potential for incorporating future promotions, and/or the

hiring outstanding, tenured faculty would greatly enhance. These con-

straints were not intended to evaluate faculty productivity, but were

incorporated as a means of assessing the budgetary faculty composition

implications of tenure policies.

B. External Goals

Equations (20.4) through (20.9) specify the remaining goals and

constraints for the AS and BA college problems. Of course as mentioned

earlier, (20.9) is applicable only to Arts and Sciences. These equa-

tions link the right-hand side goal values, generated by the university

problem, to the departmental operating proposals. They are targeted at

meeting the university stipulated budget, unfulfilled undergraduate and

graduate demand, faculty composition, and minimum core course offering

goals in each of the three planning periods.

The Departmental Problems

In a decentralized setting, top management is typically interested

in the big picture rather than the minute intricacies of operating de-

tails. However, as one moves down the organizational hierarchy, it be-

comes necessary to consider many operating decision interactions in de-

tail. Unfortunately because of space limitations, only a brief overview

of the departmental problems can be presented. However, a detailed des-

cription is available in [31, pp. 31-107].



-25-

A. Departmental Decision Variables

The principal components of the departmental problems are the

number, level, and size of course offerings and the type and quality of

staffing positions teaching those courses. To link these components each

department had seven levels of full time equivalent (FTE) of staff and

faculty positions as well as seven levels of course offerings in each of

the three planning periods. The staff and faculty variable levels were:

(1) secretarial and research associate personnel, (2) graduate student

research assistants, (3) graduate student teaching assistants, iU) in-

structors (nonterminal degree), (5) assistant, C6) associate (tenured),

and (7) full (tenured) professors. The course offering levels were:

(1) freshman-sophomore core, (2) junior-senior core, (3) junior-senior

major-minor, (4) graduate (masters) core, (5) graduate (masters) major,

(6) graduate (doctorate) core, and (7) graduate (doctorate) major

courses. Also, associated with these course levels are seven variables

that capture unfulfilled course demand during each of the three planning

periods. Based upon these variables, let 'ii-, . , X-<. > and T
'^•,X,t ic.,x,t ic,>x,t
2 J 2

equal staff and faculty positions, course offerings, and unfulfilled

student demand associated with department j of college k, at level i in

planning period t respectively. Finally let 6, , the budget of depart-

ment j of college k during period t equal the sum of department salaries,

a, , plus indirect costs c^, ,

k. , t
'^

k. ,t
J J

B. Departmental Operating Constraints and Goals.

Each departmental formulation incorporated five categories of oper-

ating constraints: (a) class size and enrollments, (b) teaching loads
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and levels, (c) secretarial and research support, (d) direct and indirect

budgetary expenses, and (e) tenure obligations. These constraints are

given in equations (21.1) through (21.16) in Table 4.

Equations (21.1) through (21.5) attempt to incorporate university

policy in regard to average class size and professional teaching levels

for the seven course levels offered within the departments. For example

(21.1) states that the number of courses offered by department k. at
J

level i in year t times the average class size for that level, less any

unfulfilled student demand in department k, for course level i in
J

period t will equal the expected student demand for that course level.

In addition (21.2) through (21.5) specify that courses offered at var-

ious levels cannot exceed the pool of faculty capable of teaching at

that level. For example, only professional faculty are allowed to

teach doctoral courses; however, as the pool of course offerings ex-

pands to include the freshman-sophomore level (21.5) all teaching

levels are included.

Equations (21.6) through (21.8) provide minimum and maximum levels

of secretarial and departmental administrative support. In a similar

fashion (21.9) and (21.10) levy maximum and minimum levels for depart-

mental gradiiate students research assistant support. Equations (21.11)

through (21.14) are related to budgetary items. Respectively they de-

fine departmental salaries, minimum and maximum indirect cost levels,

and a total departmental budget. Finally (21.15) and (21.16) insure

that tenure obligations are fulfilled.

A final set of goal linkage equations is necessary to complete

the departmental problem specifications. Because these equations are
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departmental "mini" versions of the college internal and external goal a

constraints given in equations (20.1) through (20.9) in Table 3, they

will not he detailed here. However, one should note that instead of

summing across subordinate units, these departmental goal linkage con-

straints focus upon a single department. As noted earlier not all con-

straints given in Table 3 are applicable to every department. As an

example, a departmental version of (20.1) was applied only to those de-

partments offering doctoral programs. Also only AS departments incor-

porated a minimum freshman-sophomore core course constraint.

Goal Deviation Priority Weightings

The power and flexibility of goal programming result from its abil-

ity to get "as close as possible" to a desired set of policy conditions

[3, p. 217], This is achieved through a multiple objective satisfying

criteria function. The intracies of the priority weighting vectors seen

in equation (1), (5.k), and (11. i) are rather cumbersome. Because they

are given elsewhere [3, pp. 109-112], only a few summary details are

presented here.

Several interesting aspects emerged from the college's priority

rankings. First there was a lack of symmetry between the weights as-

signed by AS and 3A to budget overruns, with AS assigning a much higher

priority to suppressing positive deviations. Although it was possible

to scale their weightings to achieve parity, this was not done in order

to explore the implications of disparate priorities on the university's

allocation of resources.

Two additional divergencies were noticable in the priority weight-

ings, BA placed higher priorities en its doctoral programs and tenure/
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promotion goals. On the other hand, AS was inore concerned with its

undergraduate programs. These weightings were not surprising given the

current educational environment characterized by an oversupply of poten-

tial faculty and undersupply of students in AS disciplines.

V. The Model's Solution

The computer memory requirements necessary to solve a centralized

version of GSU model are enormous. The overall problem would have over

7,200 variables and 2,800 constraints. Using a standard linear program-

ming (L.P.) code its solution would require inversion of a matrix con-

taining slightly core than 19.^ million elements. These dimensions ex-

ceed the absolute machine limits of most computer's memory or core by

a considerable factor.

One of the major benefits of decomposition algorithms such as the

GHM is that these huge problems can be decomposed into reasonably sized

subproblems. For the GSU model the smallest of subproblems was the

central unit; it contained 69 variables and 36 constraints. Tne largest

problems were in the EA departments. These departments contained 375

variables and 141 constraints. Unfortunately, the nan-hours required

to formulate and solve, seriatum , the various iterative stages of the

algorithm through conventional linear programming solution codes was

prohibitive. Assuming that five iterations are required for convergence,

the GSU model would require 528 (22 subproblems x 5 hours x 5 solutions)

man-hours. Further, this manual data manipulation dramatically increased

the probability of errors creeping into the subproblems' formulations

and results.
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Thus it was necessary to write a computer program that could imple-

ment the Davis algorithm and remain a maximum core limit of 100,000 com-

puter words. (A computer word can store a number's value with reasonable

accuracy.) Although a FORTRAN code [8, pp. 187-235] that implemented a

previous version of the Davis algorithm was modified to implement the

GHM, the L.P. optimization subroutines within the original program worked

poorly. Thus it was necessary to install a new set of optimization sub-

routines [21] in the GHM's code.

The GEM FORTRAM code and L.P. subroutines were written and tested

on a Control Data Corporation CYBER-175 computer. The GKM code offered

two significant benefits: computational ease and speed. For example

data input preparation for the GSU problem required eighty man-hours.

Central processing unit (CPU) compilation and execution time was excel-

lent. For twelve iterations 297.5 CPU seconds were required: for four

iterations 97.7 seconds v;ere required.

Solution Characteristics of the Initial Formulation

The initial GSU problem formulation converged to a final solution

in twelve iterations. These results were rather disappointing in view

of the fact that previous testing of the algorithm on two test problems

required no mere than five iterations.

Although the model generated no unfulfilled graduate or undergrad-

uate student demand in any planning year, this was achieved at a con-

siderable price. Most dramatic were budget deficits of approximately

$1.0, $1.1, and $1.2 xiillicn in years one through three respectively.

With few exceptions the departments relied upon teaching assistants and
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temporary instructors rather than assistant professors. In view of

severe budget restrictions such policies might be acceptable stopgap

measures; however, the long-term implications of these hiring policies

are likely to be disastrous and could result in the stagnation of

teaching innovations and research.

The model was not totally successful at meeting the colleges' in-

ternal goals. Although minimum support was generated for doctoral pro-

grams, the results of the promotion goals were inconsistent in that no

promotions were incorporated in the BA solution. This result can be

attributed to the algorithm's "perception" that BA was generating the

university's deficits.

As noted earlier, the AS penalties associated with budget overruns

was significantly higher than BA (100 versus 75) , This higher level of

priority weighting could be interpreted as "political clout," In fact

analysis of the colleges' budget deviaitions revealed that all deficits

occurred in BA. From a behavioral viewpoint, a scenario in which a

bureaucratic organization with realtively nx)re political power receives

a disproportionately large share of available funding is plausible. But

from the university administration's viewpoint, this type of situation

cannot be tolerated. In light of these and other characteristics it

was necessary to revise the original formulation and to ameliorate the

solution's shortcomings through sensitivity analysis.

Problem Revision and Sensitivity Analysis

In trying to eliminate budget deficits several alternative strate-

gies were available. These included increasing average class sizes and

faculty teaching loads, decreasing faculty raises and indirect e:cpenses,
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and allowing "less expensive" graduate student teaching assistants and

instructors to teach upper level courses. Clearly each of these alter-

natives created trade-offs in maintaining faculty morale, educational

quality, and institutional effectiveness. Further, accreditation stan-

dards imposed by the American Assembly of Collegiate Schools of Business

(AACSB) and the University System's Board of Regents regulations severely

limited several courses of actions. Although numerous policy alterna-

tives were tested with varying degrees of success, the compromise ver-

sion of the model reported here focused upon five principal areas.

The first policy change involved an increase in average class size.

Even though these increases could potentially lower education quality,

the Carnegie Commission has endorsed this approach [2]. The second

change attempted to counterbalance the potential dimunition of educa-

tional quality precipitated by class size increases. In the original

formulation, temporary instructors were allowed to teach at all levels

except doctoral level seminars, (See equations (21.2) through (21.5).)

In the revised version temporary instructors were allowed to teach only

freshman- sophomore and junior-senior core courses. It was anticipated

that these changes would force the model to incorporate additional as-

sistant professors into the final solution, thereby injecting fresh view-

points into departments and improving research and teaching innovation.

Based upon the size of the university's deficit, it was unlikely

that campus-wide increases in class size could totally offset funding

shortfalls. As a result the third change in university policy focused

upon limiting the size of departmental indirect costs. Although un-

pleasant, the indirect expense reductions were clearly preferable to

salary reductions.
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The fourth revision in GSU formulation attempted to provide parity

in the budget priorities of the AS and BA colleges. In the revised model

both colleges' budget overrun penalty weights were increased and equated

so that no college had an advantage in bureaucratic bargaining power.

The final changes made in the original model eliminated the inter-

nal promotion goals for both colleges and modified the constraints speci-

fying the minimum number of departmental doctoral seminars to equal the

number of seminars observed in the original solutions. This level of

doctoral program support was felt to be more than adequate. Initially

the promotion goals were intended to reward excellence in research,

teaching, and public service. Unfortunately sensitivity analysis re-

vealed that their ability to achieve this objective was at best poor,

and they were dropped from the model. It should be noted that potential

future promotions can be incorporated into the formulation within the

department constraints. (see equations (21.15) and (21.16).) As a

result omitting promotion constraints does not severely limit the for-

mulations applicability.

Results of the Revised Formulation

The modified version of the model reached a final solution after

four iterations, and unlike the previous versions, all university and

internal college goals v/ere achieved. Several aspects of the solution

are noteworthy. One of the most pleasant and surprising aspects was

rapid convergence. Although changes in priority weights was expected

to improve convergence, the improvements exceeded expectations. Not

only did the changes in budget priorities improve computational time

and expense, they generated small budget surpluses for BA in years one
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and two and AS for year three. As one might expect these restrictive

budgets had a direct effect on departmental research support and in-

direct cost allocations, but none of these support levels was felt to

be below minimum acceptable levels.

Perhaps the most disappointing aspect of the revised formulation

was the model's inability to incorporate significant levels of assistant

professors in its solutions. In fact careful analysis of teaching loads

and class offerings revealed that a few^ departments had surplus tenured

professors. The stark reality of such a scenario emphatically drives

home the need to continually evaluate admissions, tenure, academic, and

budgetary policies over reasonable planning horizons.

Based upon the complexity and interactions of departmental, college,

and university policies, the timely analysis of the major issues facing

all levels of a university's administration can be extremely difficult.

However, the computational ease engendered by the use of the GHM pro-

vides a convenient and straightforward solution procedure that allows

testing and sensitivity analysis of an unlimited number of alternative

strategies and policies. As in all mathematical allocation models, the

quality of the algorithm's results are "only as good as the accuracy

with which the model describes the reality of [a particular] institu-

tion" [28, p. 45]. Although the proposed GHM cannot guarantee an

"optimal" allocation of an organization's resources, it can, if properly

employed, significantly improve upon the rationality and reasonableness

of resource allocation decisions in many decentralized, hierarchical

organizations.
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VI. Summary and Conclusions

The purpose of this study was to develop a rational approach based

upon the Davis generalized hierarchical goal decomposition model (GHM)

that could be useful in allocating resources within a decentralized uni-

versity. Based upon the algebraic structure of this decomposition tech-

nique, a university resource allocation model was developed for Georgia

State University (GSU) . The model was formulated to encompass a three

year planning horizon, and dealt with three levels of the university,

structuring subproblems for the university administration, two colleges,

and nineteen departments. Certain simplifying changes were incorporated

to keep the problem's size within reasonable bounds; however, the re-

sulting model's fomulation strongly resembled Georgia State.

The size of the GSU formulation was enormous. Without the use of

the Davis algorithm, a matrix defining the overall problem would contain

slightly less than 20 million elements. A FORTRAN computer program was

written to implement the GEM on a Control Data Corporation CYBER-175

computer. Computational requirements of the model were excellent.

The results of the original formulation were disappointing. Ac-

cordingly revisions and sensitivity analysis was conducted to improve

the model's solution characteristics. These changes generated dramatic

icqjrovements in several areas, and on balance the model appears to offer

a reasonable approach to the dilemma currently faced by many university

administrators. Even in an environment characterized by multiple and

conflicting institutional goals, a lack of unanimity in regard to or-

ganizational priorities, and severe financial restrictions, the model
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has performed well. This is not to infer that additional refinements

and changes in the GSU formulation and/or GHM are unwarranted. For ex-

ample, in developing the GSU formulation, questions concerning incre-

mental or decremental administrative and support services and facilities

were omitted. In view of the model's relatively short planning horizon

can be justified. However, future research should expand the model's

planning horizon in order to focus upon the impact that all operating

decisions can have on long-run institutional viability.

Although the computer algorithms presented in this study have been

based upon a linear objective function-goal programming solution proce-

dure, alternative functional forms could be superior. For example, if

a non-linear instead of linear ftinctional form objective function were

used, the magnitude of the cumulative penalties associated with devia-

tion values could increase at an increasing rate as undesirable devia-

tions become larger. In addition to consideration of a nonlinear ob-

jective function, research investigating the possibility of utilizing

an integer or mixed integer programming code in conjunction with a non-

linear optimization procedure should be undertaken. Clearly the need

for continuing research remains.
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