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THE GENERALIZED RUBINSTEIN/ STEIN COVARIANCE OPERATOR AND ITS
APPLICATION TO THE ESTIMATION OF REAL SYSTEMATIC RISK

ABSTRACT

This paper generalizes Rubinstein's (1973, 1976), Stein's (1973) and Losq and

Chateau's (1982) covariance operator to the case where both variables are

functions of multivariate normal random variables. This resulting covariance

operator is extremely useful for either implicit functions of or non-poly-

nomials of multivariate normal random variables, such as exponential func-

tions. An application of the use of the covariance operator to the estimation

of real systematic risk is provided to illustrate the results. We also

compare this covariance operator with the moment generating function method in

this application. (COVARIANCE OPERATOR; MOMENT GENERATING FUNCTION; CAPITAL

ASSET PRICING MODEL ; SYSTEMATIC RISK)





THE GENERALIZED RUBINSTEIN/ STEIN COVARIANCE OPERATOR AND ITS

APPLICATION TO THE ESTIMATION OE REAL SYSTEMATIC RISK

1 . Introduction

If random variables x and y have a joint distribution which is bivariate

normal and if f(.) is a continuously differentiable function of y, then

Rubinstein (1973, 1976) and Stein (1973) have demonstrated that

Cov(x,f(y)) = E[f'(y)]Cov(x,y), (1)

if E[f'(y)] exists, where E is the expectation operator, Cov is the covariance

operator, and f'(y) = df(y)/dy. Later, Losq and Chateau (1982) generalize the

above result from a function, f , of one random variable to n random variables

as follows:

n

Cov(x,f(y
i ,...,yn )) = S E[f L ] •Cov(x,y i )

,

(2)

i=l

provided that all expectation values exist, where f^ is the partial derivative

of f with respect to y^, i = l,...,n. Rubinstein (1976) has applied the

covariance operator of equation (1) to derive the capital asset pricing model

(CAPM) of Sharpe (1964) and the option pricing model of Black and Scholes

(1973). Losq and Chateau
.
(1982) employ the covariance operator of equation

(2) to derive the multibeta CAPM.

Later work by Roll (1973) extends the CAPM of Sharpe to a world of

stochastic inflation as follows:

E[RiP] = RfE[P] + 3 i
*E[RmP - R fP], (3)

where P is stochastic purchasing power, R^ is the nominal holding period

return for asset i, f denotes the nominal riskless asset, m denotes the market

portfolio, and 3^ is defined as follows:

3i
= Cov(R

i
P, RmP)/Var(RmP). (A)

In deriving equation (3), it is necessary to assume either that investors



possess quadratic utility functions of real wealth or that nominal return

relatives and purchasing power are multivariate normal, or both. The latter

case is, however, more common in the empirical literature.

The purpose of this paper is, first, to generalize the covariance operator

of equations (l) and (2) to the case where both variables are functions of

multivariate normal random variables (MNRVs), and, second, to apply this

generalized covariance operator along with the moment generating function

(MGF) method to estimate real systematic risk as defined in equation (A).

The covariance operator as defined in equations (1) and (2) is convenient

for use in obtaining the covariance between one normal random variable and

another variable which is a function of MNRVs. This is especially true when

the latter variable is either an implicit function of or a non-polynomial of

MNRVs. Unfortunately, the covariance operator fails when both variables are

functions of MNRVs. In contrast, the MGF method can obtain the covariance

between two variables which may be represented by polynomials of MNRVs (and

non-MNRVs as well), such as in (A). However, when both variables are either

implicit functions of or non-polynomials of MNRVs, the MGF method also fails.

In the next section, the covariance operator of equations (1) and (2) is

generalized to the case where both variables are functions of MNRVs. In

section 3, both the resulting covariance operator and the MGF methods are

employed to estimate real systematic risk as defined in (A). Further examples

of the application of this generalized Rubinstein/Stein (RS) covariance

operator are shown in section A. The final section summarizes the results.

2. The Generalized Rubinstein/Stein Covariance Operator

Suppose that x±, . .

.

,xn , y\$ • • * »ym are jointly MNRVs and that all the

following indicated expectations exist. Since the proofs of the Theorem and



Corollary 2 are similar to that of Corollary 1 but great expense is required

to carry out the algebraic complexities, therefore the proof is given in

detail only for Corollary 1 and is sketched briefly for the Theorem but is

omitted for Corollary 2.

THEOREM : Suppose that f is a p-order polynomial function of Xj_,...,xn ,

and g is any p times continuously differentiable function of y^,...,ym . Then

CovCfCx^ . .
.
,xn ), g(yi,...,ym ))

n m
= S S Etf^ElgJ-CovCxi.y^)
1-1 j-1

n n m m
+ (1/2!) SEES E[fn i2 ]E[gn i2

]Cov( Xil yn )Cov(x i2 ,y i2 )

il=l 12=1 jl=l j2=l

+ +

n n m m p

(1/p!) S""E E-'-'SCElfi! ip ]E[gn ip ] n Cov(x ik ,y ik )}, (5)
11-1 lp-1 jl-1 jp-1 "

' Jy
k=l

where the subscripts for functions f and g represent partial derivatives.

PROOF: The proof is briefly sketched as follows: First, the result is

proven by using induction on the order K = k^ + k2 + ... + kn of the monomial

f(xi,...,Xj.) = x-f x2 • -- xn
n

r with Losq and Chateau's result for the case K =

1. Then the following additivity of the covariance operator is applied to the

polynomial f = a^f^ + ... + a
q
f
q

to complete the proof.

Cov(a
1
f
1

+ ... + a
q
f
q , g) = a

1
Cov(f

1 ,g) + ... + a
q
Cov(f

q
,g).

Q.E.D.

Remark : The Theorem can be easily extended to the case where both

functions f and g are continuously differentiable, with p perhaps infinite.

The next two corollaries are the special cases of the Theorem.

COROLLARY 1 : Assume that g(y) is a p times continuously differential

function of y. Then



Cov(xP,g(y)) = p-E[xP- 1 ]E[g( 1 )]-Cov(x,y) + C5'E[xP- 2 ]E[g( 2
) ]Cov 2 (x,y)

+ ... + Cg-E[xP _k ]E[g (k )]-Covk (x,y) + ...

+ Cg.j-ElxlElg^P-^l-CovP-kx.y) + E[g<P>]CovP(x,y), (6)

where 2 < k < (p-1), g^ is the i
th derivative of g(y), and Cg = p!/q!.

PROOF : Define set S = {p
1

,
equation (6) is true for the case of an integer

p}. We prove by the principle of strong induction on p that S is equal to the

set of all positive integers. We first prove that 1 e S. From (1), we have

Cov(x,g(y)) = EEg^^CovCx.y), (7)

which is in S. In addition, since g^- ' is continuously dif ferentiable, we

have the following relationship

CovCx.g^ 1 )) = E[g( 2 )]Cov(x,y). (8)

We now assume that 2, ..., n-1 and n c S. We will show that n+1 e S. It can

be shown that:

Cov(xn+1 ,g(y)) = E[x]Cov(xn ,g(y)) + n-Cov(xn
"
1 ,g(y)) -Var(x)

+ Cov(xn ,g( 1 b'Cov(x,y) + E[xn ]E[g^ 1 )]-Cov(x,y). (9)

Denote that

A = E[x]Cov(xn ,g(y))

= n-E[x]E[xn
-
1 ]E[g( 1 )]'Cov(x,y) + C5-E[x]E[xn

" 2 ]E[g( 2
)

] 'Cov 2 (x,y)

+ ... + CjJ-E[x]E[xn
" k ]E[g( k )]-Covk (x,y) + ...

+ C^_
1
'E2 [x]E[g (n "

1 )]-Covn
-

1 (x,y) + E[x]E[g (n)
] -Covn (x,y)

= n{E[xn ]
- (n-l)-E[xn

" 2 ]'Var(x)}E[g( 1 )]-Cov(x,y)

+ C5{E[xn_1 ]
- (n-2)-E[xn

" 3 ]-Var(x)}E[g (2) ]'Cov 2 (x,y)

+ ... + C£{E[xn_k+1 ]
- (n-k)-E[xn

- k - 1 ]*Var(x)}E[g( k )]-Covk (x,y) + ...

+ C^.^Efx 2
]

- Var(x)}E[g (n -
1 )]'Cov( n

- 1 )(x,y) + E[x]E[g^ n
) ]Covn (x,y)

,

from n c S, and

B = n-Cov(xn
"

1 ,g(y))-Var(x)

= n(n-l)E[xn
- 2 ]E[g( 1 )]Var(x)Cov(x,y) + nC2

_1
E[xn

- 3 ]E[g (2 ) ] Var(x)Cov 2 (x,y)



+ ... + nCg- 1E[xn
" k_1 ]E[g (k) ]Var(x)Covk(x,y) + ...

+ nCn:jE[x]E[g (n
" 2) ]Var(x)Covn_2 (x,y) + n-E[g( n_1 >] •Var(x)Covn

-
1 (x,y)

,

from n-1 c S, and

C = Cov(xn ,g( 1 ))-Cov(x,y)

= n-E[xn
- 1 ]E[g( 2 )]-Cov2 (x,y) + Cn - [xn

" 2 ]E[g( 3
)

] -Cov3 (x,y)

+ ... + Cg_
1
-[xn

-k+1 ]E[g( k )]'Covk(x,y) + ...

+ C^_
1
-E[x]E[g( n )]-Covn (x) + E[g( n+1 )]'Covn+1 (x,y),

from n e S and (7). Recognizing that (n-k)Cg = nC^" 1 in A and B, then

Cov(xn+1 ,f(x)) = A + B + C + E[xn ]E[g( 1 )]-Cov(x,y)

= (n+l)-E[xn ]E[g( 1 )]-Cov(x,y) + (Cg + n)E[xn_1 ]E[g (2) ] -Cov2 (x,y)

+ ... + (Cg + Cg_
1
)E[xn

- k+1 ]E[g( k )]'Covk (x,y) + ...

+ (1 + C^_
1
)-E[x]E[g( n >]'Covn (x,y) + E[g< n+1 )

] -Covn+1 (x,y) . (10)

Noticing that Cg + Cg_]_ = Cg+1 , (10) becomes (6) with p = n+1, which is in S.

The proof is complete. Q.E.D.

COROLLARY 2 : Suppose that x, yi»...»yn are multivariate normal, and that

g(.) is a p times continuously dif ferentiable function of y^, ..., yn . Then

n

Cov(xP,g( yi ,..., yn
)) = S p-E[xP- 1 ]E[g i ]Cov(x,y i )

i=l

n n

+ Z 2 C§-E[xP- 2 ]E[ gii ]-Cov(x, yi )-Cov(x, yi ) + ...

i=l j=l
n n n p

+ Z----Z----Z {E[gn ik ip ] tt Cov(x,yik )}. (11)
il=l ik=l ip=l k=l

3. Use of the Generalized RS Covariance Operator and Moment Generating
Function Methods to Estimate Real Systematic Risk

3. 1 The Generalized RS Covariance Operator

The result from the Theorem is now employed to obtain real systematic risk

defined in (A) as follows:



Cov^P.P^P) = EtRilEfRjVarCP) + E[R
i ]E[P]Cov(P,Rm ) + E[P]E[Rm ]Cov(R i

,P)

+ E 2 [P]Cov(R
i
,Rm ) + Cov(R

i
,P)Cov(Rm ,P) + Cov^ ,Rm ) • Var(P) (12)

VarCP^P) = E2 [Rm ]Var(P) + 2'E[P]E[Rm]Cov(P,Rm )

+ E 2 [P]-Var(Rm ) + Cov2 (P,Rm ) + VarCRj -Var(P)

.

(13)

The real beta is given by the ratio of (12) over (13). If inflation is

non-stochastic, the real beta is identical to the nominal beta and is reduced

to Cov(R
i ,Rm)/Var(Rm ). Q.E.D.

3.2 The Moment Generating Function Method

Given that R^, Rm , and P are trivariate normally distributed, Hogg and

Craig (1969, Ch. 13) show that the moment generating function of this distri-

bution may be written as:

cp(t
1
,t2 ,t 3 ) = exp^E^] + t 2E[Rm ] + t 3E[P] + ( 1/2) [ (

t

1 )
2 'Var(R

i )

+ (t 2 )
2 -Var(Rm ) + (t 3 )

2 -Var(P) + 2"t1 't3 'Cov(Ri ,P)

+ 2-t2 -t 3 -Cov(Rin ,P) + 2-t
1
't2 -Cov(R i ,Rm )]} (14)

It may be shown from (14) (though somewhat time consuming) that

E [ R iRm
p2

] " [3
A(p(t

1
,t 2 ,t 3 )/ 3 t l3 t2 (3t 3 )

2
]! t =t =t =0

1 2 3

= Cov(R
i ,Rm)-Var(P) + E[R i ]E[Rm ]Var(P) + E2 [P] •Cov(R

i ,RJ

+ 2-E[R
i
]E[P]'Cov(Rm ,P] + 2'E[Rm ]E[P]-Cov(R i

,P)

+ 2-Cov(Rm ,P)-Cov(R i ,P) + E[R i ]E[Rm ]E2 [P]. (15)

EtP^P2
] = [3

Acp(0,t 2 ,t 3 )/(St 2 )
2

( 3 t 3 )
2
]! t =t =0

= Var(Rm)-Var(P) + E2 [Rm ] • Var(P) + E2 [P] Var(Rm )

+ 2-Cov 2 (Rm ,P) + 4-E[Rm ]E[P]Cov(Rm ,P) + E2 [RJE2 [P]. (16)

From the definition of covariance, we also have

E[RiP] = Cov(R
i ,P) + E[Ri]E[P] (17)

Ed^P] = Cov(Rm ,P) + E[Rm ]E[P] (18)

ElRiV2
]

= Cov(R
i
P,RmP) + E[R

i
P]E[RmP] (19)

EKP^P) 2
] = Var(RmP) + {E[RmP]}

2 (20)



Similarly, it is possible to prove form equations (15)-(20) that CovCR^P,!^?)

and VarCl^P) are equal to (12) and (13), respectively. Again, real beta is

equal to the ratio of (12) over (13).

Obviously, the MGF method is significantly more time consuming than the

generalized RS covariance operator method!

4. Further Examples

Example 1 : If x and y are bivariate normal, what is Cov(x ,y^)?

Solution : We may apply the MGF method to solve this problem, but it is

tedious and time consuming. The answer is however easily obtained by applying

Corollary 1 as follows:

Cov(x3
,y

A
) = 12-{E2 [x] + Var(x)}{E3

[y] + 3E(y) •Var(y)}Cov(x,y)

+ 36{E2 (y) + Var(y)}'E(x)-Cov2 (x,y) + 24*E(y) -Cov 3 (x,y)

.

Example 2 : If x and y are bivariate normal, what is Cov(x^y,ey)?

Solution : It is very difficult to apply the MGF method to solve this

problem. Applying the Theorem to the problem yields

Cov(x2y,ey) = 2'{E[x]E[y] + Cov(x,y)}E[ ey] -Cov(x,y)

+ {E2 [x] + Var(x)}E[ey]'Var(y) + E[y]E[ey] 'Cov2 (x,y)

+ 2E[x]E[ey]Cov(x,y)-Var(y) + Ele?] -Cov2 (x,y) -Var(y)

.

(21)

It is known from Aitchison and Brown (1957, p. 8) that E(e^) = exp{E(y) +

(1/2) *Var(y)} . Consequently it is a relatively easy task to compute (21).

5. Conclusions

In this paper, the Rubinstein/Stein covariance operator is generalized to

the case where both variables are functions of multivariate normal random

variables. This new method is proven to be more powerful and convenient to

employ than the moment generating function method.
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