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I. Introduction

The precision of the sample mean, compared to certain other location

estimators, is notoriously sensitive to the shape of the underlying

population distribution function. Furthermore, some estimators which

are considerably less sensitive than the mean to the "outliers" of

heavy tailed distributions have been found to be comparable in precision

to the mean for near-normal samples.1 This robustness to distributional

assumptions has led to an intensive search for similarly robust al-

2
ternatives to least squares for the general linear model. Since many

robust estimators of location are linear combinations of order statis-

tics, some attention has naturally focused on the problem of generalizing

3
the notions of order statistics and sample quantiles to the linear model.

This paper proposes such a generalized sample quantile (GSQ)

estimator. We contend that it generalizes the sample quantile in much

the same way that least-squares regression generalizes the sample mean.

The 6th GSQ hyperplane is estimated by minimizing a weighted sum of

absolute deviations from the hyperplane. Positive deviations are assigned

weight 3; negative deviations—weight (1-0)

.

The GSQ minimization problem may be solved by standard linear

programming techniques. In the location sub-model the GSQ estimator

reduces to the conventional sample quantile. Important invariance

properties of sample quantiles readily generalize to the GSQ. The

asymptotic distribution of the coefficients of the GSQ hyperplane are,

with very weak restrictions on the sample design and the underlying

error distribution of the model, asymptotically normal with variance
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covarlance matrix $ (0 , F)(X'X) , where X ia the design matrix of the

model and <>(0, F) Is the asymptotic variance of the 0th sample quantile

from a population with CDF F. These features of the GSQ lead us to

expect they may prove useful in the search for robust alternatives to

least squares.

The plan of the paper is as follows. Section 2 defines no-

tation and states assumptions. Section 3 sets forth the defining

minimization problem for the GSQ and characterizes its solution. In-

variance properties of the GSQ are established in Section 4. Section 5

derives the finite sample density of the GSQ estimator. The asymptotic

distribution of the GSQ coefficients is deduced in Section 6. A final

section contains a brief summary of results and some remarks on lines of

future inquiry.

II. Notation and Assumptions

Let (y : t - 1,...,T} be .ndependent random variables such

that

Pr {y < Y} « F(Y - x 0) - F(u)

where 6 is a K-vector of unknown parameters, F is a probability dia-

tribution function, and x is the t row of a known TxK design matrix

X of rank K. Equivalently, we can regard the T-vector y as being gener-

ated by the linear model,

y - X£ + u

where u is a T-vector of independent and identically distributed (i.i.d)

random variables with distribution function F.
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order to include the 1 nation sub-model a*? a special case,

.ssume X contains a constant vector so that x - (1, e ) or in matrix

notation X- (i Z) where i is a T-vector of ones and Z is a Tx(K-l)

matrix of non-constant explanatory variables. In considering the limit-

ing distribution of the GSQ's we allow T to increase with K fixed. The

elements of the design matrix are assumed bounded and lim T X'X - Q,

a K dimensional positive definite matrix.

Further we assume that the density function of u, f (u) , is:

strictly positive, bounded for all u, and twice continuously differen-

tiable. These derivitives will be denoted f ' and f". It may be noted

that under these assumptions a realization of more than K observations

(y » z
i
.) on the same hyperplane in R is an event of probability zero.

Thus the solution to the linear programming problem of the next section

will be, almost surely, nondegenerate.

1^ will denote an N- 4im«fc8ional identity matrix. The subscript

is dropped when the dimensional it clear from the context. The transpose

of a matrix will be denoted by prime '
. Finally, vector inequalities

are to be read componentwit

III. Generalized Sample Quantiiee

Given the data {y, X} the 0th generalized sample quantile is

defined as the solution to minimization problem:

Problem 1
.

(3.1) min Y (6,u) - y> '\

\

u,.
1
+ / (1-0) |u

t
.«! 2.

te(t:u
t
>p} te{t:u <<)}
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subject t

y - X8 - u

(3.2) BeR
K

Ut>

A solution to this problem is denoted by the ordered pair (B* t
u*) or

often by merely 6* since u* - y - XB*. Both elements of the solution

pair are sometimes expressed as functions of the data and the weighting

parameter {y,X,8}. 5

For computational purposes it is convenient to consider the equivalent

linear programming problem:

Problem 2

T

(3. 3) min ^(B,r
+
,r~) - Z 9r* + (l-6)r~

t-1
C

subject to:

(3.4) :••-XB -
+

r -

,K
-r

Be K
+

r >

r>0

* +* _*
A solution to Problem 2 will be denoted (g ,r ,r ). To establish the

equivalence of the two problems we first prove the following lemma.

* ++. _* +* -*

.

Lemma If (S ,r ,r ) is a solution to Problem 2 then minir ,r )-0
t t

t-1, . ..T.

+* -*
Proof : Suppose (£ ,r , r ) ia a solution but that,

min(r ,r } - a>0

Consider the vector,

* +* +* +* _* _* _*
[B , (r

1
- a),r

2
,...,r

T
; (r

1
- a),r

2
r J,





ch stil] sariif

I

ing it

into (3J),the value of the °i BO the

lemma Ifl established by contradicts

Theorem If (? . -S a solution to Problem ,r ) is a

solution to Problem 2 for identical en,

* * +* -*

L
,u ) - ce2

,r

, +*
Proof Since a {r ,r J » for all t,

jr
+

- r"| for r* - r" >
t t< t"

(.(l-e)ir^ - r~| for r* - r~ <

Hence the objective functions and constraints of the two problems are

identical.

To solve Problem 2 and obtain a characterization of the GSQ

estimator we introduce the following notation. Let t be the set of

integers {1,2, ..., T},and H be the set of K-element subsets of t. A

typical element hcH has the relative complement h - T-h. The notation

y(h) and X(h) will be used to define subsets, or partitions, of the

observations on the data, e.g. totes a K-vector of observations

on y corresponding to

now Invoke e fundamental linear programming theorem to establish,

Proposition 1 A solution to Problem 2 has the form,

*

for some h eH, where rank. X(h) K.
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Proof : Since the rank of the constraint matrix [x.1,-1] is T, a basic

solution tr Problem 2 has K+T zero variables and T non-zero variables.

Of the T nonzero variables K must correspond to since 3 receives no

weight in the objective function. The lemma implies therefore that u -0

for K distinct elements of t. This index set of "solution observations"

is denoted by h , and the result follows.

We now proceed to characterize the GSQ estimator by establishing

feasibility and optlmallty conditions for a particular heH given y, X,

and S. The linear programming methods utilized below are discussed in

Dantrig [7] and Spivey and Thrall [12].

For some heH partition the equality constraints of Problem 2

into 2 blocks. We then have the tableau,

(3.5) 1

y(h)

yOD

iK at^ (l-o)^ (1-0) !,._
o

X(h) I 0" " -I

_xGT) o i
T_K

o
K

o

-i

K

T-K
]

— —
3

r+(h)
r+(TQ

r-(h)
_r-(TT)_

The basic columns in this tableau ' lich yield 6* X(h) y(h) as a

proposed solution are given by

X(h)
XOT) D

where D is some T-K dimensional diagonal matrix with 1 or -1 diagonal

elements. The set of all such matrices will be denoted £}. Let M be

the bordered matrix,

M
1 i'*

1(h)
XOT) D
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where * - (Q-h) D + %I a (T-xf diagonal matrix with or 1-0

diagonal elements. The proposed basic columns may be introduced by pre-

multiplying (35) by M . Using partitioned inverse rules we have,

r1

-i
M
-1 1 i*DX(K) Ifb)

X(h)"
1

-DXOT)X(h)

-i'(»D

D

The revised tableau is,

(3.6)

r.-l
¥ - jfe€[y(h) - X(h) X(h)'

1
y(h)]

s
' X(h)"

1
y(h)

D[y(h)-X(h) X(h) y(h)]

91' + i\*DX(h) X(h)

x(h)"
1

-D X(h) X(h)"
1

-1
i'[0I +*D]'U-G)i'-i , *DX(h) X(h)

I I

I

-1

-1

-X(h)

DX(h) X(h)
-1

i'[(I-Q)i-«D]

-D

r+(h)

r+(h)

r+(h)

r-(h)

r-(K>
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The proposed solution for Probelm 2 is given by

6 - XChrSrOi)

r+(h) - l/2(I>fI)[y(h)-X(h)X(h)"
1
y(h)]

r+(h) -

r+(h) - 1/

r-(h) -

r-(h) - l/2(D-I)Iy(h)-X(h)X(h)"
1
yO»)]

On substituting these values into the revised tableau it is readily

verified that the proposed solution satisfies the equality constraints.

In linear programming terminology, the T basic variables of the pro-

posed solution are the K elements of and the T-K nonzero elements in

{r-f(h), r-(h)}. The latter elements correspond to the diagonal elements

of D which are +1 and -1 respectively.

The feasibility and optimality of the proposed solution can

now be checked by referring to the revised tableau. Feasibility requires

the non-negativity of (r+,r-). This is satisfied for (r+(h) ,r-(h))

;

for (r+(h), r-(h)) we require,

l/2(DfI)[y(S)-X(h)X(h)"
1
y(b)] >

l/2(D-I)[y(h)-X(h)X(h)"
1
y(h)] >

or combining these inequalities we have,

I. D[y(h)-X(h)X(h)
_1

y(h)] >_ 0.

This will be called Condition I.

Optimality requires that the weights of the non-basic variables

in the revised tableau be non-negative. This is readily verified for

(r+(h), r-(h)) for any D. Por the remaining non basic variables opti-

mality requires,



•
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i'+i'* D XChjXCh)"
1

l_

(l-G)i'-i'* D X(h)X v h)
_1

>

or combining these inequalities we have,

II. -0i' < i'* D X(h)X(h)
_1

<_ (l-G)i'

This will be called Condition II.

A unique optimality condition can also be obtained with a

slight strengthening of Condition II. Uniqueness requires strictly

positive weights in the revised tableau. The unique optimality condition,

II.' -9i; < i'* DX(h)X(h)
_1

<(1-Q)i
f

will be called Condition II'.

These conditions now yield the following characterization of

the GSQ:

Theorem 6*(y, X, 6) - X(h*)~ y(h*) is a solution to Problem 2 if there

exists a D satisfying Conditions I and II. The solution is unique if

Condition II' is also satisfied.

By reversing the above argument the converse may also be

established. That is, if B*(y, X, 6) - X(h*)"
1
y(h*) then there exists

o
a D such that Conditions I and II are satisfied.

In the following sections it will prove useful to have a notation

for the set of De^ which satisfy Condition II for a particular index set h.

Hence, let

^(h) - iDc&\-Qi' < i* DX(h) X(h)"
1

< (l-6)i'}.

It should be emphasized that &(h) is nonstochastic since it does not

depend on y. The solution element of ^(h*) is denoted D* below.
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Two set* of GSQ "regression" lines are illustrated in Figures 1 and

2. Data are presented in Tables 1 and 2. It will be noted that the GSQ

estimator is not uniquely defined for certain values of and that these

points of non-uniqueness depend upon the realization of y. (The data

for the two examples differ only in the value taken by jt . ) This situation

is in contrast to the location submodel in which non-oniqueness arises only

when T0 is an integer and therefore does not depend upon sample information.

The figures also suggest a conjecture which we do not pursue here. In the

location submodel it is well known that the order-statistics are sufficient

statistics for any sample regardless of the underlying CDF. Does an analogous

result hold for the set (8*(0): O<0<1}? Can we reconstruct the sample vector

y given the design -X and the coefficients of all GSQ hyperplanes? The

plausibility of this conjecture is increased by the observation that a GSQ

hyperplane passes through each of the sample points as varies between

and 1.
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Flgure 1

17/22 < < 1

9/22 < < 17/22

22 < < 9/22

0< < 7/22

11 12

Model

B
l
+ 6 2*

+ U

Estimates*

Data

3

2

7

8

10

X -

0<0<7/22 7/22<0< 9/22 9/22<0<17/22 17/22<0<1

e*(6)

e*(o)

-2/7

8/7

1

1

17/8

7/8

23/5

3/5
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Figure 2

1/2 <0 < 3/4

i k

i

%
3/4 <9 < 1

7 i

0<9< 7/22

/^" 7/22 <0< 1/2

6
» ^^*^*^

5 -

4 i

3 ^,J*^

1 »

10 11 12

Model

y - Bi
+

B 2x
+

u

Estimate?:

O<0<7/22

Data

3 1 1

2 1 2

7 X - 1 4

8 1 7

6 1 9

7/22<G<l/2 ! l/2<9<3/4 3/4<0<l

ejO)

B*(9)

6/7

4/7

21/8

1/4

13/6

5/6

17/3

1/3
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IV. Properties of Generalized Sample Quantlles

We now establish a number of properties of 8 (y,X,8). The proofs

* *
generally verify that h and D are invariant with respect to some trans-

formation of the data by checking Conditions I and II.

* *
Property 1 8 (Ay,X,9) - A£ (y,X,9) for A>0.

-

Proof: Condition II does not depend upon y hence it is undisturbed by the

transformation. Substituting In Condition I we have,

D*[Xy(tO - X(h*) X(h*)
_1

Ay(h*)] >0

which is undisturbed' if A>_ 0, hence

8*(Ay,X,9) - XOO'1
*y(h*) - AB*(y,X,9).

Property 2 8 (Ay, X, 1-8) - A8 (y,X,9), for A<0.

Proof: We show that if h , D satisfy Conditions I and II for ly,X,8}

then h , -D satisfy conditions I and II for {y,X,l-8}, and conversely.

Substituting the transformed data in Condition I gives,

D*[Ay(h*) - X(h*) COi*)"
1

Ay(h*)] >

and this is satisfied for A<0 with -D . From Condition II we know

-9i» < i'[ (8-^)1 + JjD*] X(h*) XCh*)"
1

<_ (1-8)1' .

So multiplying by -1,

-(1-9)1' <_ i'[ (1-9-^)1 -JjD*] X(h*) X(h*)
_1

<_ (l-d-e))!'

so that -D satisfies Condition II for 1-6. Hence, for A<0

8*(Ay,X,l-6) - XOi*)"
1

Ay(h*) - A8*(y,X,9).

Property 3 3*(y + If, X,6) - B*(y,X,9) + Y ; YeR
K

Proof: Condition II is undisturbed by the transformation of y. Condition

I on the transformed data requires,
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D*[y(h*) + X(h*)y - v (h*)X(h*)
_1

[y(h*) + X(h*) Y ]] 1

which simplifies to the original condition. Hence

B*(y + Xy,X,9) - X(h*)"
1
[y(h*) + X(h*)y] - B*(y,X,0) + y •

In che special case y -3, Property 3 implies

B*(u,X,8) - 3*(y,X,8) - 6,

hence,

6*(y,X,6) - 6 - X(h*) u(h*),

and Condition I may be written as,

D*[u(h*) - X(h*) X(h*)
_1

u(h*)] >

where D* e^(h*).

* -1 *
Property 4 3 (y,XA,6) « A '

8 (y,X,6), for any KxK matrix A of rank K.

Proof: Note that,

X(h*) A[X(h*)A]"
1

- X'h*) XCh*)"
1

hence Conditions I and II are undisturbed by the reparaneterization of

the space spanned by the X's and,

B*(y,XA,8) - [X(h*)A]'
1

y(h*) - A
-1

B*(y,X,8).

Property 5 B ([XB (y,X,6) + Mu (y,X,6)], X,6) - B (y,X,e); where M is

any TxT diagonal matrix with non-negative elements.





-15-

Proof: l.-c

so,

V

X(h*)

X(h*)

yOO

8 (y.x.e)
f * >

y(h >
' X(h*)'

M

y(h*) X(h*)
J

_* * _1 *
X(h ) X(h ) y(h

;

+ M

B* (y.x.e)

y(h*) - X(h*) X(h*)
-1

y(h*)

Let M be the lower (T-K) aubmatrix of M, then we must verify,

D*[M y(h*) - (M-I) X(h*) X(h*)
_1

y(h*) - X(h*) XCh*)"
1

y(h*)] > 0.

But this is clearly satisfied for M with non-negative elements if it was

satisfied for h ', D before the transformation.

Property 6 Let P and N denote the respective number of positive and

negative elements in u (y,X,6). Then

N <_ TG <_ K+N - T-P .

Moreover these inequalies are strict when 6 is unique.

Proof: We first note that P and N are the number of positive and negative

elements in D . Hence,

I'D i - P - N .

Next, Condition II implies that,

[(e-*5)I+ W D*] X(h*) XCh*)"
1

2 a'

where elements of the K-vector s satisfy -Gf/Sv. < l-®» k"l»«...,K. If

is unique the inequalities are strict. Postmultiplying by X(h ) and

explicitly writing X -[1 Z] yields

(6-%)i'i + 'ii* D i - s'i

(e-lj)i'Z(h*) + iji' D*Z(h*) - s'Z(h*) .
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From the first of these Inequalities we have

|
(6-Ji)(T-K) + Jj(P-N) - E s

k~l

But,

so that,

K
-K6 <_ Z s, <_ K(l-9)

" k-1
K "

N<T6<N + K-T-P
*

with strict inequalities holding when 3 is unique.

*
Property 7 8 (y,i,6) is the 8th sample quantile of y.

Proof: This follows directly from Property 6 with X-i. However a direct

proof is instructive since it shows how Conditions I and II simplify to the

sample quantile case. With X-i we have,

X(h) - 1

X(h) - i 1
: a (T-l) -vector of ones

y(h) - the h element of y

y(h) - a (T-l) -vector of y's excluding y(h) .

Conditions I and II become

Iq. D*[y(h*) - i' y(h*)] >

Ilq. *5(T-1) - ^i'D*i £ 6T <_ *s(T+l) - ^i'D*i

Prom (Iq) we see that the diagonal elements of D are +1 and -1 as the sign

_* *
of the corresponding element of [y(h ) - i y(h )] is positive or negative.

A
Hence substituting I'D i - P - N into (Ilq) we have

N < T6 < N + 1



•



which yields the conventional quantile. When T8 is not an integer the

inequalities of (Ilq) will he strictly satisfied and the quantile will be

uniquely defined. When T0 is integral, the sample quantile will be non-unique,

In this case the solution set to Problems 1 and 2 will consist of convex

combinations of two observations on y. In this case, as with the GSQ,

some convention may be adopted to resolve the ambiguity.

Property 7 may be extended to a comparison of quantiles design defined

by,

X -

4.

1
T.

Property 8 If X has the comparison of quantiles design then 3 (9) is a

vector of 9 sample quantiles for the K subsamples of y defined by X.

Proof: Conditions I and II reduce t K independent pairs of restrictions

and the result follows.

From Properties 1 and 2 it will be noted that B(h), the minimization

of absolute deviations, is the only scale invariant estimator within the

class of generalized sample quantiles. However, we may also note in passing

(defering a detailed discussion) that any estimator which is a linear com-

bination of GSQ's with symmetric weights on B*(0) and 3*(l-0) terms is also

scale invariant.

Property 3 establishes that GSQ's are "shift" or "regression" in-

variant, Property A that they are invariant to a reparameterization of

the design matrix.

Property 5 is a distinctive feature of GSQ's: B*(0) is invariant
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to transformations of y as long as the signs of all of the residuals are

left undisturbed. (The median of th^ two samples {1,2,3} and {-10,2,2.1}

are identical.)

Property 6 places narrow bounds on the number of residuals which will

be on either side of the GSQ hyperplane. It might be underlined that these

bounds come from the intercept term in the X matrix, and tighter bounds could

be calculated if all of the information in a particular X matrix were

utilized.

Properties 7 and 8 specialize GSQ 'a to simple forms of the design

matrix, establishing their equivalence with conventional definitions of the

sample quant lies.
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V. The Distribution of General ized Samnle Ouantlles

We now consider the probaji]ity density function of the estima-

tion error 6*(9) - 0. We write the probability element of 6*(9) -0 as,

(5.1) g(6)d6 r -.d6K " ** [6<6*(G) -0 <6+ d6]

where d$ - (66. , .... d<5
K
)

' and g(<5) is the probability density function

of 3*(9) -0.

For a given (h, D) c H X#(h) the joint probability of the

event

,

(5.2) 6<0M6) -0 - X(h)"
1

u(h)< <S+ d<5

and the event

(5.3) D[u(h) - X(h) X (h)"
1

u(h)] >

can be written as the probability of (5.2) times the probability of

(5.3) conditional on (5.2), or

(5.4) Pr[6<X(h)"
1

u(h) <6 4- d6] Pr [Du(h)> DX(h)6].

For distinct pairs (h,D) the events in the brackets of (5.4) are mutually

exclusive. Hence the probability element of (0*(0) -0)is,

(5.5) g(6)d5 ..jd 6
R
-

I Pr[6<X (h)'
1
u(h)<« + d«]

heH Dc^(h)

• Pr[Du(h) >D X(h)«]

We may now invoke our assumptions on u in order to obtain an expression

for g(6) in terms of F.

From the i.i.d assumption we have,

.6) PrCfeXOO"
1
u(h)<«W«] - | X00' X (h)!*

t
fTf(x

t
.6)d6

1

...d6
k
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where |X(h)*X(h)| ^ is the Jacobian of X(h)?
1

Let A° tf-lfl) denote

the t diagonal element of De c#(h) where the index t runs over the

integers in h. Then, again by tht i.i.d. assumption, we have,

a(5.7) Pr[Du(h) :; D X (h) 6] Uj. [k(l +A°) -A° F(x
t

. 6)]

A factor in this product is F(x . o) if A^ -1 and (1-F(x .6)) if

A - +1. That is, the factor equals the probability that u < x . 6 if

A - -1 and the probability that u > x .6 if A - 4-1. Now substituting

(5.6) and (5.7) into (5.5) we obtain,

'>-L DL(h)i
x(h),x(h)

i

% jr«6t.

JTfta + 4?) -*J»cv«>]tEh t

<5 - 8
' *<

s
> "heH nUh) 1

x(h) ' x(h)
I t'th

f<V 6)

To illustrate (5.8) we consider the special case of the median (6"^)

X- i, T- 2N+1.

Then,

«<«"L DUh)f(4)
til fta + *$-»; rmi.

and since every De«^(h) contains N positive and N negative elements by

Property 7 we have,

Finally, #(h) contains
! elements since this is the number of ways

that exactly N plus ones can be assigned to T-l places. H has T elements

so that

8(«) -
^f)2

[F(6)]
N

[1-F(6)]
N

f(5).





VI. The Asymptotic Distribution ol the GSQ

*
To investigate the asymptotic behavior of (6) -0 we consider the

, *
random variable • T/6(l-6) f(A)[0 (6) -0 - 6] where 6 is the K-vector

(X.0,0, . . . ,0) and F(X) - 6. This variable has the density function,

or fully written out,

(6.1) 9(1-9)

j

K/2
-K

f(X)~
K

I L |X(h)' X(h)|
heH De^th)

f (x-O *

J_ iW* + D-A
t

D
F(x.O]

teh teh

where ; i + / -1
6(l-6)/T f(X) * 6 .

Expanding the final product in Taylor series around £ » 6 we have (see

Appendix I),

IT E^(A
t

D
+ 1) - A

D
F(x-0] -

teh

I - *
I

™* + l
> - A

t°
F(x

t
o

(6.2)

teh , /A D . D
%(A

t
+ 1) - A e

I - *
|
exp {-[eCl-enr*5 !' DX(h)6

- VrV X(h) ? X(h)6

+ ii[e(l-e)T]"
1
6

, X(h) f X(h)<5

- Jjf'(X) f(X)"
2
T
_1

6' X(h)' D X(h)£

+ R(t)*]

where c (1-t)6 + t£; < t < 1.
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The uniform boundedness of (6.1) is essential if we are to be able

to investigate its asymptotic behavior term by term. In Appendix II a uni-

form bound is constructed for the case in which the design matrix, X, expands

by replication. Persuasive intuitive evidence suggests that a much weaker

condition (like, lim T~ (X'X) - Q, positive definite) would suffice to

obtain a uniform bound, but this has not yet been formally established.

In the remainder of this section we proceed under the hypothesis that (6.1)

ia uniformly bounded and therefore its limit may be investigated term by

term. 10

We now state four convergence results. (Proofs will be found in

Appendix I.

1. lim T^i 1 * D X(ii) -

2. lim T"
1
X(h)'* D X(h) - lim t"

1
X(h)'* X(h) -

3. lim T"
1
X(h)' X(h) - Q for any h e H.

4. lim R(0 -

T-»"0O

Noting that,

11m f(x.O - f(X)
K

,

T-*» teh

we conclude that, asymptotically, the density (6.1) is proportional to,

exp {-^6' Q5} ,

the constant of proportionality being,

11m I E
j
X(h)' XGOl*

1
|I - *|[^~

T-k» heH De-C(h) L

K/2
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The constant must converge to (2tt) |q| by the lntegrability of the

limiting forr^ of the density over al
1 of R .

A
Thus 8 (6), the GSQ estimator, is asymptotically multivariate

normal

N(0 + 6, (X'X)- 1
)

where,

5 - (X, 0, 0, . . ., 0)

f(X) 2

f(a) - e .

The scale parameter of the asymptotic variance-covariance matrix will be

recognized as the asymptotic variance of the sample quantile from a

population with cumulative distribution function F.

For a normal distribution with mean and variance a 2 ,

,— *
f(0) - l/a/2-*; 8 0s) , the least absolute error (LAE) estimator, is

asymptoticalxy normal with mean vect r 8 and variance-covariance matrix,

^r- (X'X)-
1

.

This estimate has less precision than the least squares estimate by a

factor of 2/7. However, the median is known to have greater precision

than the mean for a large number of "heavy-tailed" distributions and the

results of this section generalize this fact to the linear model.
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VII. Conclusion

We have shown that by placing asymmetric weights on positive and

negative residuals in the conventional least absolute error (LAE) estimation

problem, a new class of estimators for the linear model may be derived

which generalize, in a natural way, the notion of sample quantiles. Since

order statistics and conventional sample quantiles have proven so

fruitful for robust estimation of location in the univariate model
t

it is

hoped that the GSQ estimator can play an analogous role in constructing

robust alternatives to least squares for models with "heavy-tailed" error

distributions.

In the simple location submodel the GSQ estimator simplifies to the

conventional sample quantile. The important invariance properties of sample

quantiles generalize nicely to the GSQ. And we have shown that the

coefficients of the 9 GSQ hyperplane are asymptotically multivariate

normal with variance-covariance matrix $ (8 ,F) (X'X) , where <j>(6,F) is

the asymptotic variance of the 8 sample quantile from a population with

distribution function F.

The Joint (asymptotic) distribution of the vector of GSQ parameter

estimates must now be Investigated, with the ultimate aim of studying

the distribution of linear combinations of GSQ statistics. Natural generali-

zations to the linear model of trimmed means, inter-quant ile midranges and

other location estimators are suggested by the GSQ estimator; it remains to

investigate their statistical properties. At some point it will become

essential to study small-sample properties of these estimators via Honte-

Carlo techniques, but at present the vast literature on sample quantiles

and order statistics provides a rich source of theoretical analogues to

be considered.
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Appendlx I

We first develop the expansion (6.2). The product over teh Is

multiplied and divided by the determinant of the matrix I - * , which

from the definition oT C (see page 7 above) is diagonal, (T-K) x (T-K)

,

D D
with typical element [*i(A +1) - A 6]. Taking logs we consider the

sum,

In S (C) - L In

teh

l5(A
t

D
+l) - l* F(x-C)

4(A
t

D
+i) - A

t

D
6

Expanding in Taylor aeries around C • 6,

In (;) - In (6) + [(<;- 6) • V] In S (6)

+ l/2![(c- 6)'7] 2 In S (fi)

+ l/3l[(^-6)-V] 3 In S (;)

where V is the partial differentiation operator and the third order term

is evaluated at £ - (1-t)6 + t£.

Evaluating In S and the higher order terms yields

In S (O - E„ In

teh

^j(A
t

D
+l) - A

t

D
8

*j(A
t

D
+l) - A

t

D
e

-

,
,

-A " f (X)

[(H)-V]lns(i)- I [ /6(l-e) f(X)'
1
6]» —

^

^
teh T iid+A^) - A

t
6

57 \

-[e(i-e)T]
_l5

z_ [Hid+A
t

D
) - A

t

D
] A

t

D
(x

t
6)

teh

[(;-6).V]2ln S (6) - z_-^^-)
. f(X)~ ? - f(X) ? -[ij(l+A°) -A^O]"

2
(x- <S)

2

teh

- £_-^=^-f(X)- 2f(X) A
t

D
[i5(l+ADhA

t

De]-l (x.
t
6) 2

teh
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e_ [eci-enr 1 [(e-V + %A°] 2 (x.6) 2

teh

- E_ f'(A) f(X)- 2
[(e-*i) + ijA

D
] (x.6) 2

teh

- e {t- 1- [ea-eni-MO-Js) + \l
j
]} (x-6) 2

teh

- E f'(X) f(A)" 2 [(G-Js) + **A,
D
](x;6) 2

teh

[(C-6)-V] 3 In S (X) - E [8(1-8)T]"
3/2

f(X)' 3
W. (C)(x-6) 3

teh

where,

w
t
(c) -

r
2\

D
f (X-;)

t3

l+A
t

D
-2A

t

D
P(x.;)j

12 f(x^)f(x^)

(l+A
t

D
-2A

t

D
F(x.C)) 2

2A
t

D
f"(x

fc

C)

l+A
t

D
-2A

t

D
F(x.C)

In the matrix notation of earlier sections the expansion may be written as,

In S (O - -[(e(l-9)T^
l5

i
,

* D X(h)6

-JjT-V X(h)* X(h)6

+ ^ieu-enr 1 6' X(h)' $ X(h)6

- WW f(A)~ 2 T- 1 6' X(h)' * D X(h)6

+ R(C).

We now establish the four convergence results of Section 6.

(1) 11m T
2
i' • D X(h) -

Proof: From Condition II we have that,
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1' < i' IDX(h)xS) ( (l-SH*

Denote the middle term by a', then

'

J> t*X(n) - s'X(h).

X(h) is a fixed matrix and the elements of b ire bounded so the result

follows.

(2) lim T" 1 X(h) $ D X(h) - lim T""
lX(h)' * X(h) -

Proof: We show that the matrix

X(h)' * D X(h) - I [(6-Ji) + h^
U

) xx *

teh
etc

is bounded for all T. The KxK matrices x x ' are bounded, therefore

there exists a matrix C such that

Z[Q-h +^
t

D
] x

t
x
t

' £ C Z [8-8$ +i$A
t

D
].

From result 1, i' * D X(h) - s'X(h), and explicitly partitioning

X - [ilZ] we have from the intercept term,

i' * i - s'i .

But the elements of s are all bounded in the interval [-6, 1-6], hence

their sum is less than K, so,

-K6 <_ L[6-Js + %A
D

] <_ K(l-9)

and,

-K6C < X(h)' * D X(h) <_ K(l-6) C .

Similarly, 1' i - -s'i and therefore the corresponding sum is also

bounded and the result follows.
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(3) lim T
-1

X(h)' X(h) - Q for any heH

Proof: X'X - X(h)' X(h) -r X(h)' X(h) but X(h) is fixed so,

lira T- 1 X(h) f

1(h) - lim T" 1 X'X - Q

(A) lira R(;) -

J-xx>

Proof: Since

< 1 + A
D

- 2A
t

D
F(x

c
c) < 2

and f, f, f" are bounded, it follows that W (O is bounded. The vector

x is bounded by hypothesis, hence there exists a number C such that

and

Therefore,

|W
t
(c) (x

t
C)

3
|

< C < oo

R(b| < E_ l/6(6(l-6))
3/2

f(X)~ 3T"
3/2

C

teh

< 1/6(6 (l-6))"
3/2 fCA^T^C

11m R(b - 0.





-29-

Appendix II

Consider the density function.

(II. 1) m
T J

f(A)
K

I

heH Dc.

!x(h)'x(h) I- «

n- n- >*(a.
u
+i)- a "f(x

;o
•

11 f(x.O IL
tch *s(a

D
+D- A

t

D
e

The matrices X(h) arc bounded, as is f(-) and the bracketed fraction is

uniformly bounded so there exists a constant C such that (II. 1) is less

than,

K/2

Ci
Q(

*l~
Q)

|I- *
I

*(H) *[&&)]

uniformly for all T'and C £ R . (#(A) denotes the number of elements in

the set A.) Clearly,

#(H) <_

t

kP t

|I- «| <. 2

So (II.l) is bounded from above by

CileCl-e)]
1^ 2

T
1^ 2 2" (T"K)

#[j^(h)J

<_ C 2 T^ 2 2"T #[^(h)]

when C 2 Cj2 . It remains to show that the number of elements in w5^(h)

T —K/2
increases no faster than 2 T

Let A be a KxT matrix and e a T-vector whose elements are ±1. We wish

to estimate the number of solutions, e, to the symmetric system,

-i < Ae < i .

We begin by considering the case in which A expands by replication.
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Let A... («
fi

) be a KxM matrix whose first K columns are assumed to be

invertible. Denote by A, . the L replication of A. ,. , and by a the

(r)
entries of A /TN . If s<M, we have that a; ' - a. for r-0,1, . . . ,L-1

.

(L) irM+s is

Let B - (b ) be the inverse of the KxK submatrix of A,..; i.e.

K
. L.b..a. . - 6.. when J < K. Finally, set T - LM.
k-1 ik kj ij — J '

We now consider the system of inequalities

-1 - J^lrL, ^si 1 »" 1 - -•»

We have,

„. , irM+8 rM+s . _ is rM+s
rM+s-1 8»1 r-0

For any T-triple (ej, ...,e ) let p denote the number °f the e

which are positive, r 0,1,..., L-l. Thus the system may be rewritten as,

M
-1 < Z a

ls
(p

8
-(L " P

8
)) 11 (i - 1, •.., K)

8-1

M
"^ - L \bV

b
~ A(k) L - ** (k - 1, . . .

,
K)

8-1

M
where A(i) - ^ L a. . Multiplying by b., we have,

8-1

-
I

b
ikl

M
I

b
ikl

2 -' - \ ^kVs - b
ik

A(k) l i '-r8-1

Summing over k and setting,

K K
B(i) - I \\k\; C(i) - I b.,A(k)

k-1 2 k-1
1K

rfe obtain.
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M K

-B(i) < I I b,,a, p - C(i) L < B(i)— ... Ik ks s —
8"1 k-1

M
-B(i) 1 P

s + I b
ik

1
k8 P 8

" C(1) L - B(1) (1 " 1 K>

s-k+1

Denote the L- tuple (e , el,. ,...,e /T . *.,, ) by E . Then for each
8 rrr6 {.L—LjrtTB 8

T T fM—K ^ T— T If

s > K there are 2 L-tuples E , bo there are 2 - 2 simultaneous
s

choices for the E: 8 K + 1, ...,M. Let C be a fixed integer larger
o

than 2B(i)+l for all i. Then for each choice of the E »s > K, there are
8

lees than C values fpr p., i <_ K and for each of these p. there are at

TZOSt
L

LL/2 J

choices of E with p positive elements. By Stirling's

formula there is a uniform constant C (independent of L) such that

L
L/2

I

Setting C CC we obtain,

. , Y K

C 2

7l
i

2
T-LK m £K

2
T

- cV7 '

,K/2

_T

XI

2

T

K/2

as a bound for the number of solutions. The constant C is, of course,

independent of L. Had ve chosen an asymmetric system (9 f
1

h) » a smaller

bound could have been constructed, since j„ ._ I >^ L
fl
] < 6 < 1.

The generalization of this result to •reaker conditions on the design

matrix remains elusive. A geometric analogy is suggestive however. The

T-vectors, e, may be thought of as vertices of a T dimensional hypercube

in a sphere of radius i^F. The surface area of the sphere is proportional

T/2
to T and the fraction of that area satisfying the K independent in-

equalities





-32-

-i<Ac <_ i

is proportional to T . Unfortunately the discrete vertices of the

hypercube are not distributed uniformly on the sphere necessitating a more

delicate argument.





-33-

Footnot M

!• See e.£. Andrews, et.al. [1] and Huber [9].

2. See the review articles by Huber [8] and Bickel [3], and

the recent work of Yohai [13] and Relies [10].

3. The primary exponent of this approach has been Bickel [3, A].

4. For a discussion of degeneracy in linear programming

see Spivey and Thrall [12; pp. 90-99].

5. It wilX be noted that the case - ^ specializes the problem

to the minimization of absolute deviations which has been extensively

studied in recent years. For a review of this literature see Taylor [11]

and Bassett [2].

6. The equivalence of Problems 1 and 2 for - *s was first pointed

out by Charnes, Cooper, and Ferguson [5].

7. This approach to the LAE (0^i) problem was developed by

Bassett and is discussed in Taylor [11] and Bassett [2].

8. See Spivey and Thrall [12; chapter 3].

9. In the remainder of the paper Conditions I and II will be

used to characterize the GSQ estimator. Hence a unique solution to

Problems 1 and 2 need not always 3xist. The properties of the GSQ

estimator discussed in the next section are valid for any element 6 (0)

in the solution set to Problems 1 and 2. For practical purposes, it

may be convenient to adopt some arbitrary rule to select a single solution

vector in the case of multiple optimal solutions.

10. The general argument in this section parallels closely

Cramer's proof of the asymptotic normality of ordinary sample quantiles;

see [6; pp. 367-70]. The restrictive hypothesis of a replicated experi-
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mental design is employed in Appendix II to calculate a uniform bound

for the expression (6.1). A revised version of the paper will generalize

these results to weaker design conditions.
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