


THE LIBRARY
OF

THE UNIVERSITY
OF CALIFORNIA
LOS ANGELES

The RALPH 0. LIBRARY

.MA
LOS ANGELES, CALIF.

TEXT BOOKS BOUGHT & SOLD

COLLEGE BOOK COMPANY
725 W. 6th ST. LOS ANGELES, CALIFORNIA



-Or





GENERAL PRINCIPLES

OF THK

METHOD OF LEAST SQUARES,

WITH APPLICATIONS,

DANA P. BARTLETT, S.B.,

PROFESSOR or MATHEMATICS. MASSACHUSETTS INSTITUTE

or TECHNOLOGY.

THIRD EDITION.

BOSTON
THE AUTHOR

1915.



COPYRIGHT, 1915.

BY DANA P. BARTLETT.

TECHNOLOGY BRANCH

HARVARD COOPERATIVE SOCIETY

76 MASSACHUSETTS AVENUE, CAMBRIDGE, MASS.

1933



Geology
Library

PREFACE.

The preparation of this volume was undertaken with the

view of presenting in as simple and concise a manner as

possible the fundamental principles of the Method of Least

Squares. While it is believed that everything essential to

the solution of all ordinary problems has been included, no

attempt has been made to develop at length those special

methods and forms that are so useful and almost necessary in

case large numbers of observations of certain kinds, such,

for instance, as those met with in geodetic and astronomical

measurements, are to be adjusted.

Frequent references throughout the text, and more particu-

larly the list oi works given on page v of the Appendix, will,

however, enable the student to extend his studies in what-

ever special direction his profession may require ;
it being

expected that this book will in such cases be looked upon

merely as an introductory treatise. All of the works men-

tioned have been freely consulted in the preparation of these

pages, and the author desires in particular to acknowledge

his indebtedness for many of the examples.

DANA. P. BARTLKTT.
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THE METHOD OF LEAST SQUARES.

CHAPTER I.

GENERAL PRINCIPLES.

1. In scientific investigations of all kinds it is frequently

necessary to determine the values of certain quantities by
means of actual measurements either with or without the aid

of instruments. The observations may be made directly upon
the values of the unknown quantities or upon certain functions

of the unknowns. In the latter case the values of the required

quantities must be obtained by computation from the observed

values of the functions. In order to obtain more accurate

values of the unknowns than would be given by a single

measurement, or set of measurements, the observations are

usually repeated either in the same way and under the same

conditions or in a variety of different ways and under vary-

ing conditions.

Under these circumstances it will invariably be found that

the different measurements give discordant results, the amount

of the discrepancies varying with the character of the observa-

tions ;
and the question that now presents itself is how to

determine from these discordant observations the true values

of the required quantities. From the nature of the case,

however, we can not expect to obtain our values with absolute

accuracy; all that we can hope for is to obtain those values

which are rendered most probable after all the observations

are taken into account, and, further, to determine the degree
of confidence that can be placed in those values.
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2. The attainment of the above results constitutes the

primary object of the Method of Least Squares. The method

is also employed in comparing the relative worth of different

measurements of the same quantity, and in determining the

equation of a curve which shall suitably represent the relation

between two variables in cases where the exact law connecting
them is not known.

Also, before making any observations, we may employ the

method to determine how precise the component measurements

of a series must be in order to yield a required degree of pre-

cision in the final result; or, conversely, to determine what

the precision of the final result will be, knowing the precision

attainable in the component measurements. This latter appli-

cation of the method will be treated at length in the course

on " The Precision of Measurements."

3. Errors. The cause of the discrepancies between the

results of our different observations is that every observation

that is a measure is subject to error. These errors are of two

kinds, Constant or Systematic Errors and Accidental Errors.

4. Constant Errors are errors which in all measures of the

same quantity, made with the same care and under the same

conditions, have the same magnitude, or whose presence and

magnitude are due to some fixed cause. These constant

errors may be of several classes, which are designated as

follows:

First. Theoretical Errors, such as those due to the refrac-

tion or aberration of light, the effect of a definite change in

temperature or moisture on our standards of measurement,
etc. As soon as their causes are known the magnitude of

these errors may be calculated and their effect eliminated

from the observations.

Second. Instrumental Errors, such as errors of division of

graduated scales, defects in micrometer screws, eccentricity of

circles, etc. These errors will be discovered by an examina-

tion of the instruments and their effects eliminated from the
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observations, either by a particular method of using the

instruments or by subsequent computation.
Third. Personal Errors. These are due to personal pecu-

liarities of an observer, who always answers a signal too soon

or too late, always estimates a quantity smaller than it is, etc.

The character and magnitude of these errors may be deter-

mined by a study of the observer, his "Personal Equation"

may be obtained, and his observations thus corrected for this

source of error.

5. Mistakes. Although of a somewhat different character,

these should be considered in connection with constant errors.

A mistake is made when a figure 3 is read for a figure 8, or

when in reading a graduated circle which is numbered in both

directions the angle is read 43 instead of the complementary

angle 47, etc. These mistakes are usually of such a charac-

ter that they may be detected by an inspection of the observa-

tions and a proper correction made.

6. Accidental Errors are errors due to irregular causes,

whose effect upon the observations is not determined by any
circumstances peculiar to that particular set of measurements,
and which cannot therefore be computed and allowed for

beforehand. Such errors are those due to sudden changes in

refraction owing to sudden and unobserved changes in tem-

perature; unequal expansion of different parts of an instru-

ment with change in temperature; shaking of an instrument

in the wind, etc. But most important of all are those errors

which arise from imperfections in the sight, hearing, and other

senses of the observer, which render it impossible for him to

adjust and use his instruments with absolute accuracy.
After a full investigation of the constant errors, the observer

should diminish the accidental errors as much as possible, both

in number and magnitude, by taking every precaution and care

in the measurements themselves. The problem now remains

to combine the observations so that the remaining accidental

errors shall have the least probable effect upon the results,
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and it is to bring about this combination of observations that

we employ the Method of Least Squares.
When no more observations are made than are sufficient to

determine one value for each of the unknown quantities, we
must accept these values as the most probable ones. But if

additional observations are made leading to discordant results,

we can not take any one of them as the correct value, and in

fact, as already stated, we shall probably not be able to obtain

the true values of the unknowns. All that we can do is to find

values of the unknowns which shall remove the discrepancies
between the different observations and which shall be those

values that are rendered most probable by the existence of

the observations themselves.

On first thoughts it may seem that these accidental errors,

being due to so many different and unknown causes, will be

beyond the scope of mathematical investigation. Neverthe-

less, the theory of probability requires that these errors shall

follow in magnitude and frequency a law that is capable of

exact mathematical expression, and experience confirms the

correctness of this law.

For more extended remarks on these subjects see

Holman, " Discussion of the Precision of Measurements," pp. 1-14.

Merriman, " Text-Book of Least Squares," pp. 1-6.

Chauvenet,
"
Spherical and Practical Astronomy," pp. 469-473.

Wright,
" Treatise on the Adjustment of Observations," pp. 11-18.

LAWS OF ERRORS OF OBSERVATION.

7. The derivation of the general laws of the occurrence of

errors of observation, and of the processes for determining
the most probable values of the unknown quantities, will be

based upon the following
Axiom. If a series of n direct observations, M, M^ . . . Mn ,

is made upon the value of a quantity M, all the observations

being made with the same care and under the same circum-
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stances, the most probable value M$ of that quantity is the

arithmetical mean of the observations. Or

f
.

8. The Real Error (a) of an observation is the difference

between the observed value of the measured quantity and the

real value.

9. The l-tesidual (w) of an observation is the difference

between the observed value of the measured quantity and

the value rendered most probable by the existence of the

observations.

10. Example. Eight observations are made upon the

resistance of a coil of wire, the true resistance being 512.

Find from these observations the most probable resistance,

and also the real errors and residuals.

Observations. Real Errors. Residuals.

M. x v

512.4 -f .4 + .30

512.2 -J-.2 -J-.10

511.9 - .1 - .20 ^
512.3 -f .3 -f .20

511.8 - .2 - .30

512.3 -f .3 -f .20

511.9 - .1 - .20

512.0 .0 - .10

Mean= 512.10 2v= ^00

From the observations, then, we should say that the most

probable resistance of the coil is 512.10. It will also be

noticed that the sum of the residuals is zero. That this is a

general result following from the assumption of the arith-

metical mean as the most probable value may be proved as

follows : If the observations are J/,, J/j, . . . Mn ,
the
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arithmetical mean M^ and the residuals v^ u2,
. . . vn,

then

we have

t?!
= J/i MO, v2= My MQ, . . . yn=Mn M .

2,v='%lU~ nM
= 2M- ?,M, since M =

n

.-. Sv= (2)

11. Weighted Observations. The weight of an observa-

tion expresses its relative worth compared with other obser-

vations. Thus, if six observations are made upon the value

of a quantity, five of which give the same result, while the

sixth differs, in combining these two different results to

obtain the most probable value of the unknown, the first

value ought to have five times the influence upon the final

result that the second has, since it has taken five times as

much labor and time to obtain it. Hence in general we may
say

12. The Weight (p) of an observation may be considered

as representing the number of times the observation has been

repeated and the same result obtained.

The weights assigned to observations may be due to a

variety of causes, as difference in skill of observers, difference

in the instruments used or the circumstances under which

the observations are made, etc. But whatever the cause, the

effect on the final values of weighting an observation will be

the same as indicated in the preceding paragraph.

13. Example. Suppose n observations, J/
1}
M2 ,

. . . Mn,

of weights PI, pz ,
. . . pn,

are made upon the value of a

quantity M. To find the most probable value M of the

quantity.

From the above interpretation of the meaning of weight,

we may consider that the whole number of observations is

P\~\~Pz-\- - ' Pm or 2/>, and that the result Ml has been
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obtained in />x observations, M2 in p2 observations, etc.,

Therefore, by (1)

p l

JWJ) is called the General Mean.

If the residuals are v^ v2,
. . . vn,

we have

Q (4)

Which shows that in the case of direct observations of differ-

ent weights the sum of the weighted residuals is zero.

14. If the observations are not made directly upon the

values of the required quantities, the method of adjusting

the results so as to obtain the best possible values of the

unknowns will depend upon the laws which govern the dis-

tribution of the errors of these observations. It is found in

practice that the accidental errors of observations follow cer-

tain well defined laws, and what these are may best be seen

by taking an actual example.
15. Example, One thousand shots are fired at a target

which is divided into a number of horizontal sections by lines

one foot apart, the centre line of the target being in the

middle of one of these spaces. The shots were distributed

as follows :

In Space. Shott. In Space. Shots. In Space. Shott.

! -Hi to+ i 19 ~ 2i to -3 79

4 4- i
" -- i 212 -3^ -4 16

10 - \
" -1 204 -4 " -5 2

89 -1 " -2 193

In this case the errors are evidently the distances of the

shots from the centre of the target. Further, as far as can
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be judged from these one thousand shots, if another shot is

fired the probability that this shot will fall between the

lines

.204

193

.010

.089

.190

.212

and -:

-ii " '

.079

.016

.002

-\- 5 and -f 4 is .001

_^_4 4- 3i
"

-004

+ 3*
"

+ 2*
'<

+H " +
+ *

" ~

The sum of the above probabilities is unity, and, therefore,

as far as the preceding shots show the 1001st shot will cer-

tainly hit the target.

16. Now using as abscissas the distances of the horizontal

lines from the centre of the target, and as ordinates the num-

ber of shots falling in the corresponding spaces, we may
construct the following figure :

Figure 1.

And if the entire area of this figure is taken as unity then

the area of each rectangle will denote the probability of a
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shot, if fired, falling within the corresponding space of the

target.

The graphical representation of the accidental errors of

observation will always give a figure similar to the above.

Hence denoting errors by abscissas, and their frequency by
ordinates, the law of error of any series of observations may
be represented by a curve whose general form is determined

by Figure 1. This curve is called the " Curve of Error," and
is shown in Figure 2.

/I

//

K'

Figure 2.

PDil

In order that this curve may represent exactly the distri-

bution of the errors in any given series of observations it

ought to meet the axis of X at some definite distance to the

right and left of the origin and coincide with the axis from

there on, for in all actual observations there is a limit beyond
which no errors occur. But as the exact point of meeting
could not be determined for any given case, and as it would

not l)e possible to obtain the equation of such a curve, we
make it asymptotic to the axis of X, taking care that the

error thus introduced shall in any set of observations be so

small as to be negligible.
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17. An inspection of Figures 1 and 2 will now exhibit

some of the general lawc of errors of observation and the

corresponding properties of the curve of error.

Lavs of Error derived from an

inspection of Figure 1.

Representation of these laws by the

Curve of Error.

First. Small errors are more

frequent than large ones.

Second. Positive and negative
errors of the same absolute mag-
nitude are equally likely to occur.

Third. The probability of the

occurrence of very large errors is

very small.

Fourth. The frequency of any
error depends upon the magnitude
of that error.

The maximum point of the

curve is on the axis of Y.

The curve is symmetrical with

respect to the axis of Y.

The curve is asymptotic to the

axis of X.

The equation of the curve will

be of the form

if
~

*^\ / \ /

18. If, now, the total area between the curve and the axis

of X be denoted by unity the probability that the error of

any given observation will fall between the magnitudes x and

x-\-dx will be represented by the area included between the

curve, the axis of X, and the ordinates of the curve at the

errors x and x -\- dx> or by

y dx= <f>(x) dx (6)

And this probability will be known as soon as we find the

form of the function <(#).
19. The above expressions in (5) and (6) are the ones

that we should use if we regard the curve of error as repre-

senting the law of occurrence of errors of observation. If,

however, we look upon the curve as expressing the law to

which we must make the residuals conform, in order that the

values of the unknown quantities obtained from them may be
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the most probable values, we should replace x by u and use

the expressions

y=*() (7)

and ydv= $(v)dv (8)

for (5) and (6), respectively.

THE EQUATION OF THE CURVE OF ERROR.

20. Let n observations, all of the same weight, with

results MI, MZ, . . . Mn,
be made upon any function or

functions of a number of unknown quantities z^ z2 ,
. . . z

q ;

and let the residuals of M^ M^ . . . Mn be v iy v2, . . . yn,

and the probability of the occurrence of these residuals be

<j>(Vi) dv, <(v2 ) do, . . .
<f>(vn ) dv, respectively. Then the

probability of the simultaneous occurrence of all these

residuals will be

. . .
<f>(vn ) (civ)* (9)

Each different method that might be adopted for computing
the values of the unknowns z

1?
z2 ,

. . z
q would lead to a dif-

ferent set of residuals v^ w2>
yn >

but obviously that set

of values of 2,, z2 ,
. . . z

q
should be considered the best which

corresponds to the particular set of residuals v
t ,
v2> u

the probability of whose occurrence is greater than that of

any other set.

Therefore the most probable values of z
t ,

z2, . . . z
q

are

those that make P in (9), or log/* in (10), a maximum.

The values of zu 22 ,
. . . z

q corresponding with this latter

condition are those that satisfy equations (11). It maybe
noticed that these equations also express the preliminary
conditions leading to a minimum value of log /

J
,
but the
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nature of the problem is such that a maximum value of P
evidently exists while a minimum does not, and it is there-

fore unnecessary to investigate further the mathematical

conditions for a maximum. Hence we have

, __ n _

1 d <(Vi)
f ti \ 3<r I

* * *

(11)

I
* * * JL/M \ T^f

and for convenience we may put

S?=v

substituting in (11) we have

(14)

These equations contain all the unknowns z t ,
z2 >

2
?

an(i

there are as many equations as unknowns, hence as soon as

we find the form of the function u) we can solve these
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equations for the most probable values of z
l5

22,
. . . z

q
. Since

we have considered the general case, and the above results

are to hold true whatever the number of unknown quantities
and the form of the functions observed, we may deduce the

form of \f/(v) by solving a special example.

Example. Let n observations of equal weight be made

upon the value of a single unknown z l5 with results M^ J/,,

. . . Mn,
and let the residuals be v x, y2 >

vn . Then the

most probable value of zt is given by

differentiating with respect to zx,

dv! dv2 dvn
1 .. __ _ ^^_ _ i. __ ._, / o |

dZi
~

dZi
~

3z t

substituting (a) in (14), changing all the signs, we have

*0>i) + *(")+ . .^() = (b)

But in this case, as was shown in (2),

1 + U2 + ' =
(
C )

In order that (b) and (c) may both be true the functional

symbol i/>
must indicate multiplication by a constant. That

is, in general

!/r(t;)
= cw (15)

Substituting this in (13) and (12),

dv

dv
therefore ^ = cy -^~

<j>(v) dz dz

Integrating, log <(y) = ^cy
2

-J

I
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Since y=<f>(v) is the equation of the curve of error, (7),

we may therefore write it

But on examination of the curve, y is seen to be a decreas-

ing function of v, and hence the exponent of e is essentially

negative. Accordingly we will write our equation in the

form

y=ke-h^ (16)

the values of k and h depending upon the character of the

observations, but in all observations of the same kind and

weight having the same values.

This equation represents the law in accordance with which

the residuals must be distributed in order that the best results

may be obtained from our observations. But, as before

mentioned, if we wish our curve to represent the most prob-

able distribution of the real errors of observation we should

write the equation in the form

y=ke-*** (17)

Hereafter we shall use without further remark either form

of the equation according to the aspect in which we are

considering our curve.

An inspection of the above equation will show that it

satisfies all the conditions noted in discussing the form of the

curve of error in paragraph 17.

21. It is important to notice that in all discussions in the

Method of Least Squares the number of observations is sup-

posed to be large and always greater than the number of

unknown quantities. As will be illustrated later on, para-

graph 91, whenever this is the case there is a remarkable

agreement between the results obtained in practice and those
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indicated by the theory. And even when the observations

are few in number the method still affords the best means at

our command for their adjustment, the results obtained

merely having a smaller weight than they would have had if

derived from a greater number of observations.

THE METHOD OF LEAST SQUARES.

22. We are now in a position to see whence comes the

name " Least Squares."
In paragraph 20 it was pointed out that whenever we

make a series of observations, each observation of the set

having the same weight, the most probable system of values

of the unknown quantities will be that which corresponds
with the set of residuals the probability of whose occurrence

is a maximum. That is, the best set of values of the

unknowns will be that which gives a maximum value to

But from equation (16) this reduces to

P= kne~h<iW + v* + f 2
) (dv)* (18)

Since the exponent of e in this expression is negative,

evidently P will be a maximum when

v?-\-v*-\- . . . i?
2= Sv8 is a minimum. (19)

Hence the adjustment of observations by the Method of

Least Squares is based upon the principle that the most prob-

able system of values of the unknowns is that which renders

the sum of the squares of the residuals a minimum. Hence

the name.

The conditions for a maximum value of P were expressed

in equations (14), and since it has been shown that the
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function
\f/

means multiplication by a constant, those equa-

tions reduce to the following, called

NORMAL EQUATIONS.

Vi . V2 . vn
a 4- V2 a--h V a =~

Vz
~ *

An inspection of these equations will show that they also

express the conditions that will make the sum of the squares

of the residuals a minimum.

In the adjustment of observations the above are the funda-

mental equations. In order to obtain the most probable

values of the unknowns in any set of observations, all that is

necessary is to form the Normal Equations for that set and

solve them simultaneously. The examples already solved for

direct observations are merely special cases of the above

general solution.
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THE ADJUSTMENT OF OBSERVATIONS.

INDIRECT OBSERVATIONS.

23. In the determination of the values of quantities by
means of observations the functions of the unknowns that it

is necessary to observe may be of any form, but if they are

not linear the normal equations derived from them are likely

to be complicated and difficult, if not impossible, to solve.

Hence if the observations are not upon linear functions of

the unknowns, the first step will be to reduce them to

equivalent linear expressions by transformations depending
on the character of the observed functions

;
see paragraphs

43 and 44. It will be necessary to consider, therefore, the

method of adjusting observations on linear functions alone,

and the procedure in cases of this kind may be illustrated by
the following simple example.

24. Example. S^ 2, $3, are three solids whose masses

are required. Not having standard weights enough to obtain

all these masses directly, by varying the distribution of the

solids in the pans of the balance the following observations

are made :

S^= Sz -|- 1.7 grams.

,== 2.4

s +A',= A\-t-1.0
"

S'2= 8, -f 3 -
"

If, now, the most probable values of /S^ St, are repre-

sented by 2,, 22 ,
28, and the corresponding residuals of the

observations by v^ u 2, . . . 4, the values of these residuals in

terms of 2,, 22,
28 may be found from the above observations
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by transposing all terms to the first members of the equa-

tions, and we obtain at once the following, called

OBSERVATION EQUATIONS.

z l
_ 22 1.7 = vt

l'-li=l* (A)

22 _ 23 3.0 = v^

Applying equations (20) as formulas we have the

NORMAL EQUATIONS.

22+23 -1.0)

(22 -23 -3.0) = (B)

-f-(22 -23 -3.0)(-l) =
Simplified, these become

22t 222 23 0.7=0 (a)

221 -J-3 2 2.3= (b)
0.4=0 (c)

3X(a)
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25. Rule. For each observation write an "Observation

Equation
"
/ then for each unknown form a " Normal

Equation" by multiplying the first member of each observa-

tion equation by the coefficient of that unknown in that

equation, adding the results and placing the sum equal to

zero. Solve these equations simultaneously for the values

of the unknowns.

In solving for the most probable values of the unknowns

the second members of the observation equations are very

commonly written zero instead of v^ v2 ,
. . . vn . For this is

the form in which the equations naturally appear, and if the

observations were exact the residuals would actually all be

zero. The method of solution is the same in either case.

26. Observations of Unequal Weight. If the observations

are not all of equal weight the same method will apply,

except that in the formation of the normal equations each

observation equation will be used the number of times denoted

by its weight. Thus in the last example if the observations

have the weights 4, 9, 1, 4, the normal equations will have

the same form as in (B), page 18, but each part of each

equation will be multiplied by the weight of the observation

equation from which it is derived. This will give the

NORMAL EQUATIONS.

4(21 -22 -1.7) + (-2 1+ 22+ 23 -1.0)(-l):=0
4( 2l

- 22
- 1.7)(- 1) + (- ai 4- 2a+ 2, _ 1.0)

9(2,
- 2.4) + (- 2l+ 22+ 23 -1.0)

+ 4(28 -2,-3.0)(-l) =
or reduced

52l 522
- 23 5.S=0 (a)

52!-(-922 32 3 6.2 (b)
.

2l 322 +1428 10.6=0 (c)

the solution of which gives

z, = 7.07 22= 5.42 z
:}

2.42
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Further it will at once be seen that if p^ p2 ,
. . . pn,

are the

weights of the corresponding observations, equations (20)
take the general form:

WEIGHTED NORMAL EQUATIONS.

5^2 ,
9vH A'-.nVn---

8vn

Hence for the formation of the normal equations in weighted
observations on linear functions of the unknowns, we have

the following:

27. Rule. For each observation write an " Observation

Equation
"

/ then for each unknown form a "Normal

Equation" by multiplying thejirst member of each observa-

tion equation by the coefficient of that unknown in that

equation and by the weight of that equation, adding the

results and placing the sum equal to zero. Solve these

equations simultaneously.

28. The same result will be obtained if we begin by

multiplying each observation equation by the square root of

its weight and then proceed according to the first rule

(paragraph 25).

This result illustrates the important principle that multi-

plying a set of equations by the square roots of their weights
reduces them all to equivalent equations of weight unity.

29. Relation between the Weight of an Observation and
the Value of h. If in paragraph 20 the n observations
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have weights jt>x, jt>2 ,
. . . pn,

and the quantity A values

AU A2,
. . . An,

then equation (18) becomes

P=kle~
h^ v^ Jc2e-

h** vf
. . . kne~

h^ v^
(dv)

n

The most probable set of values of the unknowns is that

which makes P a maximum, and P is a maximum when

li\ Vi'
2+ ^2

2
^2

2+ hrfvn
2 is a minirmim. (23)

The conditions for a minimum value of this expression are

the following, which are then for this case the

NORMAL EQUATIONS.

But equations (21) are also the normal equations for

this case. Hence (21) and (24) must be identical, and

pi : Pz : Pn = /*i
3

: hf : . . . h,? (25)

Tliat is, the square of A is proportional to the weight of

the observation. Accordingly, since A increases in value as

the quality of the observations is improved, it is culled " The
Measure of Precision."
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Further, it follows from (23) and (25) that the most

probable system of values of the unknowns will be that in

which

Pi Vi*-\-pa Vt*-{- -Pn^n is a minimum. (26)

And this is the most general form of statement of the

principle of " Least Squares." The same principle is repre-

sented in equations (21).

30. Computation of Corrections. If large numbers occur

in the observations it is better to compute the most probable

corrections to apply to the observed values rather than the

most probable values of the unknowns themselves. In this

way we can often avoid a large amount of numerical work.

31. Example. P^ jP2, jP8, P4 , P& are five points whose

altitudes above the mean level of the sea are to be determined

from the following observations of difference of level.

Px
= 573.08 P4 -P2= 170.28

Py -P l
= 2.60 Pt P,= 425.00

P2= 575.27 P6= 319.91

PS P2= 167.33 P6= 319.75

P4 -P8= 3.80

An inspection of these observations shows that we may put

^= 573-1-2! P4 =745+ 24

(A)
P8 =742+ 23

where zl5
22 ,

2S,
24 ,

26 ,
are small corrections whose most

probable values are to be determined. We now have for

OBSERVATION EQUATIONS.

573 _|_ Zl
_ 573.08= or 2!-.08=

_ 573_ 2l
_ 2.60=0 or 22-2!-.60=

575 -f 22 - 575.27= or 22 .27 =ty
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742+ z8
- 575 -z2

- 167.33= or z8 -z2 -.33=
745 _|_ 24 742 - z3 3.80=0 or z4 -z3 .80=0
745+ z4 575 za

- 170.28=0 or 24 -z2 -.28=0
745 _|_ 24

_ 320 -z6
- 425.00=0 or z4 z5 =0

320+ 26
- 319.91= or z6+ .09=

320 -i-z6
- 319.75=0 or z6 -f.25=

From these we now form the

NORMAL EQUATIONS.

22 X
- z2 + .52=0

_ 2l _|_422
_ zs z4 .26=0

- z2 -f2z8
-. z4 -j- .47=

_ 22 _ 28 -|-3z4 z5 1.08=0
- z4 -f-3z5 -f- .34=

and solving,

2l =-.19; z2= .14; zs =.05; z4 =.43; z5 =.03

Substituting these in equations (A) we have for the most

probable altitudes,

Pl
= 572.81 Ps= 742.05 P5

= 320.03

P2
= 575.14 P4

= 745.43

If the original observation equations had been retained,

the independent terms in the normal equations would have

been

570.48 240.26 163.53 599.08 214.66

32. Significant Figures. The adjustment by the Method

of Least Squares of observations which occur in practice,

although not difficult, is apt to be long and laborious. Hence

to reduce this labor as much as possible it is of great import-

ance that careful attention should be given in the solutions

to the proper use of significant figures. When in doubt,
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however, as to the proper number of figures to retain it is

better to keep too many rather than too few, as the superfluous

figures can be rejected at the end of the computation ;
while

if too few are retained the results obtained from the compu-
tations will be worthless.

For a general discussion of the subject of significant figures

see Holman's " Precision of Measurements," pages 76 to 84,

but for the present the following rules will suffice for most

cases.

Rule 1. In casting offplaces offigures increase by 1 the

last figure retained, when the following figure is 5 or over.

Rule 2. In the precision measure retain two significant

figures.

Rule 3. In any quantity retain enough significantfigures
to include the place in which the second significant figure

of its precision measure occurs.

Rule 4. When several quantities are to be added or

subtracted, apply Mule 3 to the least precise and keep only
the corresponding figures in the other quantities.

Rule 5. When several quantities are to be multiplied or

divided into each other, find the percentage precision of the

least precise. If this is

1 per cent or more, use four significant figures.

.1 " " " "
five

" "

.01 " " " " six " "

in all the work. If the final result obtained in this way
conflicts with Rule 3, apply the latter.

Rule 6. When logarithms are used, retain as many
places in the mantissce as there are significant figures
retained in the data under Rule 5.

The application of these rules is not always possible in the

course of the work, since the precision measures may not be

known until the end of the computation. But as a general
rule it is sufficient in direct observations to retain one more
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place of figures than is given by the individual observations,

and in indirect observations to retain two additional places.

CONDITIONED OBSERVATIONS.

33. Conditioned Observations are those in which the

unknown quantities must be determined not only so as to

satisfy as closely as possible the observation equations, but

also so as to satisfy exactly certain other conditions. These

conditions must be less in number than the unknown quantities,

otherwise the unknowns could be determined from the con-

ditions alone.

The adjustment of observations of this class may be reduced

to the method already used for unconditioned observations in

the following way.
The observations are represented by

" Observation Equa-

tions," and the conditions by certain other equations, called

" Condition Equations."
Between these two sets of equations we will eliminate as

many unknowns as there are conditions. From the resulting

equations, which will be the same in number as the observa-

tions, we will form in the usual manner the " Normal

Equations" for the remaining unknowns. Having solved

these normal equations and substituted the results in the con-

dition equations, we shall obtain the values of the unknowns
first eliminated.

All conditions of the problem are now fulfilled, for the

condition equations are satisfied exactly and, moreover,

according to the principle of Least Squares our results

are those rendered most probable by the existence of the

observations.

As in the example last considered, it is often more

advantageous to compute corrections to the observed values

of the unknown quantities rather than the values of the

quantities themselves.
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34. Example. Find the most probable values of the angles
of a quadrilateral from the observations,

^= 101 13' 22" weight 3

J5= 93 49 17 " 2 ..

O= 87 5 39 2

D= 77 52 40 1

0' 58"

The condition to be satisfied is in this problem

(B)

Let 2u z2 ,
28, z4 be the most probable corrections to add

to the observed values. This gives for

OBSERVATION EQUATIONS

zl=Q weight 3

*;=o

"

2 < C)

and for the

CONDITION EQUATION

Eliminating z^ between (D) and (C), the equations from

which the normal equations are to be derived become

= weight 3

(E)
z2= " 2

a,= " 2
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Applying the rule in paragraph 27, these give the

NORMAL EQUATIONS

(F)

Solving, and substituting the results in equation (D), we
find

z
l
=- 8.29 e,= - 12.43 Q .

22= - 12.43 s4= 24.85

Applying these corrections to the observations (A), the

most probable values of the angles are

-4= 101 13' 13".71

.#=93 49 4.57 H ,

C= 87 5 26.57

D= 77 52 15.15

Note. In eliminating unknowns between the observation

and condition equations care must be taken that the obser-

vation equations are not combined with each other or multi-

plied by any quantity. For if this is done the weights of
the observation equations will be altered. (See 28.)

35. In the above example it is evident that the corrections

to be applied to the different observations are inversely as

their weights. And, in general, when there is but one

equation of condition, the observations expressing direct

determinations of the unknowns, the corrections will be pro-

portional to the coefficients of the unknowns in the equation
of condition divided by the weights of the corresponding
observations. A proof of this is given in paragraph 117.
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The most common case is that in which these coefficients

are all unity, as in the example just solved, and we may then

derive the

Rule. Find the difference between the theoretical and
observed results and divide this correction among the

observations in the inverse ratio of their weights.

In the last example the sum of the observed angles exceeds

360 by 58". Therefore the correction to be applied to A is

- 58 X - -=-58xi=- 8.29

EMPIRICAL FORMULAS AND CONSTANTS.

36. In the work so far considered the observations are

supposed to be made either directly upon the values of the

unknown quantities or upon some function of the unknowns
whose form, and the constants entering into it, are definitely

known. But another sort of problem frequently occurs,

in which observations are made upon the values of a certain

variable and the corresponding values of some function of it,

the exact form of the function not being known. The object
in this case is the determination of the most probable form of

the function and the values of the constants involved
;
that

is, the derivation of the algebraic expression best representing
the law connecting the variable and function.

This expression may be looked upon as the equation of a

curve, abscissas denoting values of the variable and ordinates

values of the function, and for all values of the variable

within the range of the observations we may determine from

it the most probable values of the function corresponding.
But except in special cases, where the number of observations

is large, where the law connecting variable and function is

well defined, and where the equation obtained is an accurate
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representation of this law, it cannot be assumed to apply

beyond the range of the observations. And in no case would

it be safe to make use of the curve very far beyond the limits

of the observations.

37. The Method of Least Squares will not assist in deter- M
,

mining the form of the function. This must be settled upon

beforehand, either from theoretical considerations or by

constructing a plot, using values of the variable as abscissas

and of the function as ordinates, when the smooth curve

drawn through the points thus obtained will indicate the

form of equation to be used.

It is to be observed that this is a method of trial and will

not necessarily give the most probable form of the function
;

and in fact we may not be able to obtain the form that would

be absolutely best. Further, several forms of equation may
be known which would represent well the plotted points. In

such a case that should be considered the best in which the

sum of the squares of the residuals is found to be the least.

38. As soon as the form of the function is decided upon it

should be reduced to the linear form, and the determination

of the values of the constants involved is then a simple

application of the preceding methods.

As the " Observation Equations
"
in any given problem will

all be of the same kind, it is usually advisable to write out

the general form of the "Normal Equations" and arrange
the computations in tabular form, while the retention of

the proper number of significant figures is of particular

importance in this work.

39. A case that frequently occurs is that in which the

quantity y is a constantly increasing function of the vari-

able a;, or where the plotted curve is approximately parabolic
in form. Here the equation

... (27)

may be taken to represent the relation between the variable
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and the function. The larger the number of terms taken in

the second member, the more accurately may the equation
obtained be made to represent the results of the observations

;

but the labor involved increases rapidly with increase in the

number of terms, and if the plot shows a very nearly straight

line the first two terms alone may suffice.

40. Example. In measuring the velocity of the current

of a river the following results were obtained :

Depths. Velocities.

x V
1 4.86

2 5.14

3 5.15

4 4.85

5 4.24

6 3.36

7 2.16

8 0.67

The velocity at the surface is 4.250. Find the equation of

a curve which will express the relation between x and V.

Plotting the observations we find the curve
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This is approximately parabolic in form and passes through
the fixed point (0, 4.25). Therefore the relation between x

and V may be expressed by the equation

(A)

and substituting in this the corresponding values of x and V
as given by the observations, we shall have eight observation

equations from which the most probable values of B and (7

are to be computed.
All of the observation equations being of the form (A) we

have the

NORMAL EQUATIONS

4

4- B Sx8+ 4.25 2z2 - 2 Fa;
2= (a)

(b)

For computing the coefficients in these equations it is most

convenient to arrange the following table.

X
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Substituting these results in (a) and (b) we have

8772 6^-1-1296^ -f 341.95 = (c)

1296(7+ 204^-f- 41.17 = (d)

and solving,

C =.1493 J? = .7465 (e)

Therefore the required equation is

V= 4.25 -f- .7465z - .1493<c2 (f )

Whenever the quantities in the observations are so large

that the use of logarithms is desirable, these can best be put
in the same columns directly over the natural numbers.

41. It is to be remarked that in solutions like the above

we assume, from our method of forming the observation and

normal equations, that the observations on the values of the

function are alone subject to error, the observations on the

variable being supposed to be exact or to have errors so small

as to be negligible.

42. Periodic Phenomena. If as the variable increases the

function passes through recurring values, that is, if y is a

periodic function of x, some form of trigonometric equation
would be the proper one to select. For instance, a good form

to use is

y = A + B sin ^jfv+ C cos^jfx (28)

where A, .Z?, C are the constants whose most probable values

are to be found, and m is the number of units of x comprised
in the entire cycle of values of y. The quantity m is to be

determined from an inspection of the observations, and if it

appears that several values of m might be used, all should be

tried, and that which leads to the smallest sum for the squares
of the residuals is to be considered the best. If the several
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cycles are not similar and regular, additional terms involving

multiples of x will have to be added to equation (28).

43. Special Treatment of Exponential Equations. If the

equation selected is not in the linear form as regards the

unknown constants the general method of procedure is

given in paragraph 44, but in some special cases a more

simple reduction is possible. A quite common case is the

following:

Suppose the relation between x and y is expressed by the

equation

y = kxm (29)

the problem being to obtain the best values of k and m.

Taking the logarithms of both members of (29),

log y = log k -j- m log x

Denoting log k by k', this equation becomes

m log x-\-k' log y =

which is in the linear form as regards the unknowns m and

&', and the normal equations may now be formed in the usual

manner.

The most convenient way of determining whether equation

(29) is a suitable one to select or not is to plot the corre-

sponding values of x and y on logarithmic cross-section

paper. If (29) is a proper equation to use the plotted points

will lie upon a straight line.

REDUCTION OF OBSERVATION EQUATIONS TO THE
LINEAR FORM.

44. When the observation equations are not linear as

regards the unknowns, the only practicable method of pro-

cedure, as already mentioned in paragraph 23, is to reduce
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them to that form. This reduction may be effected as

follows :

Let the observation equations be

Z2,
. . . Z

q )
= M[

Z2 ,
. . . Zq) = MS
..... (A)

fn(Zl
Z2 ,

. . . Z
q )
= Mn

in which Z
x ,
Z2 ,

. . . Z
g represent the unknown quantities and

J/i, J/g, . . . J/n the observations, the functions being of

known form.

Let Z
t ',
Z2 ',

. . . Z
q

be approximate values of Z
t ,
Z2 ,

. . . Z
9,

found by trial or the solution of a sufficient number of the

observation equations, and let the most probable values of

ZM Z2 ,
. . . Z

q
be

^'+ 2!, Z2

'+ 22 ,
...Z

g
'+ z

9 (B)

!, z2 ,
. . . 3

? being small corrections whose values are to be

determined by the Method of Least Squares. The first

observation equation in (A) may then be written,

Expanding the first member by Taylor's Theorem, denoting

^, Z2 ',
. . . Zq) by A?j, and neglecting terms containing

powers of 2
t ,

z2,
. . . z

q higher than the first, this becomes

If now we represent the coefficients of 2,, 2,, ... z
gj by

a
ii ^i ^u a^8 ^i -^i ^y Wiu an<^ treat the other
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equations in (A) in the same manner, our observation equa-

tions will take the form

(C)

The second members reduce to the residuals since the

quantities z
t ,

22 ,
z
q represent merely the most probable

values of the corrections. Equations (C) can now be solved

in the usual manner and the most probable values of

Zj, Z2,
. . . Z

q
found by substituting the results in (B).

45. Example. From the following observations find the

most probable values of x and y.

sin x -4- cos 2y = 1.5

cos x -\- 3 sin y = 1.7 (A)
x2 4 5y = 2.1

By trial it is found that 42 and 18 are approximate
values of x and y. Then in accordance with paragraph 44

we put
x = 424-z1 y=18+ 2a (B)

and expanding the different functions, we find

&! = sin 42 4- cos 36, ^-
l = cos 42, -.-- = - 2 sin 36

ox vy= 1.48 =.74 =-1.18

2= cos 42 4- 3 sin 18, ~-2= -sin42, vr-
a= 3 cos 18

ox vy= 1.67 =-.67 =2.85

*-/ 42ir
V4-6

18ir **-_o 42* dk
n. I r O . 'z it . 7;

\1KO/ 180 x 180 dy
= 2.11 =1.47

Art
-

Jl/i = - .02, A-2
- J/a = -

.03, *, J/3 = .01
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Therefore we have for

OBSERVATION EQUATIONS

.742! 1.18za .02 = v l

- .672X -f 2.8522 .03 = u2 (C)
1.472l _j_ 5z2 _|_ .01 = va

From these are obtained the

NORMAL EQUATIONS

3.162! -L. 4.5722 + .020 = D .

4.572! -[- 34.5l22 .012 =
Solving,

Zi = - .00845 22 = .00147 (E)

These results are in circular measure. Reducing to degree
measure we have

a1== -29'.0 22 = 5'.1 (F)

Substituting these in (B),

a;:=41 Sl'.O y=185'.l (G)

46. If the observations are conditioned, precisely the same

method will be followed in reducing all the equations to the

linear form. The rest of the solution will then be as usual.

If the values found for 2j, 22,
. . . z

q should turn out to be

so large that the terms involving their second and higher

powers can not be neglected as assumed, the process must be

repeated using the values of Z^ Z2 ,
. . . Z

q first obtained as

approximations.
In a few cases the equations may be reduced to the linear

form by some special artifice of a simple character, as in

paragraph 43. In such cases the method of expansion by

Taylor's Theorem should not be used.
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CHAPTER III.

THE PRECISION OF OBSERVATIONS.

47. The work so far considered has treated solely of the

methods by means of which the most probable values of the

unknown quantities may be determined from a series of

observations. But in general something more than this is

desired. We wish to know, if possible, how much reliance

can be placed upon the results obtained, and how they com-

pare in precision with other determinations of the same

quantities. Preliminary to the discussion of the precision of

our results it will be necessary to consider more fully the

Curve of Error.

48. The Constant k. The law of distribution of errors of

observation has been shown to be represented by a curve

whose equation is

y = ke-

In this, if x = 0, y = k (30)

Therefore the constant k represents the intercept of the

Curve of Error on the axis of Y. It is not, however, an

independent quantity but is determined by the value of A,

as will now be shown.

49. To Find k in Terms of h. Since, as shown in para-

graph 18, the total area between the curve and the axis

of A" is denoted by unity, we have

k C"e-h
'

2x*dx = 1 or k C^e^^dx = 5 (a)
J-ao Jo

This may be written

/*<* ^
I g~h'

Jo
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Let t = hx, .-. dt = hdx. Also, when x = oc, = cc,

and when x = 0, Z = 0.

^a52 A <? (c)
o

Multiplying this equation by

/% /00

I
e-*

2 ^ = I

/ ^
we have

r r ** dtT= r
|_*^o J

*/o ^o

_ 1 / <7
~

2 Jo 1-fa;
2

1f~~
~~. 00

i
T= tan J

a; =
2L Jo ^

Substituting (31) in (c) and (b)

\fc h h

2 2

Therefore equations (16) and (17) become

~y ~ e
VTT

or = - (32)

(33)
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50. It has been shown that the quantity A is a "Measure

of Precision" of the observations, and hence a determination

of its value in each case would enable us to compare the

relative reliability of different measurements. In practice,

however, it is not found convenient to compute the value of

h directly, and so this quantity is used only in developing
the theory of the subject, while in the comparison of observa-

tions certain other quantities now to be derived are used as

precision measures. These latter quantities are called the

"Mean of the Errors," the "Mean Error," and the "Probable

Error," respectively, and may be computed directly from the

observations. Further, as it will be found that they all bear

a definite relation to A, the value of this quantity can be

determined from them if desired.

In the following discussions no distinction is made between

positive and negative errors of the same numerical magnitude,
and unless otherwise stated the observations are all of the

same weight.

THE MEAN OF THE ERRORS OR AVERAGE DEVIATION.

51. The Average Deviation (a.d.) of an observation is

the arithmetical mean of the errors all taken with the positive

sign.

Since from (6) the probability that the error of a single

observation will fall between x and x-\-dx is

<() dx,

if n observations are made, the number of errors falling

between these limits is

n
<f>(x) dx.

Hence the sum of all the errors of the observations is

,%<*> xQO

n I y
<j>(x) dx or 2w I x

<f>(x) dx.
*/- Jt
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Dividing this last expression through by n we have

/* D 2A /*
a.d. = 2 I x<f>(x)dx = I <rA2a;2 a:<fo

Jo VV^o

= - -1-
fY*

2*2

(-2A
2
z) rfz

AVTT^O

or .<?. = -
(34)

THE MEAN ERROR.

52. The Mean Error (p) of an observation is the square
root of the arithmetical mean of the squares of the errors.

The total number of errors being n, the number falling

between x and x -\- dx is, as just shown,

n <f>(x) dx,

and the sum of the squares of these errors is

n x2

<f>(x) dx.

Therefore the sum of the squares of all the errors is

n I x2

<f>(x)
dx

_

H
a = - - C e

-h-x* X2 jx (%)

But as shown in paragraph 49,

h
dx = I or e-l dx = If (b)

VTT^-" ^- h

Differentiating (b) with respect to A,

-2A
_00
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and replacing the integral in (a) by its value as determined

from equation (c), we have

THE PROBABLE ERROR.

53. The Probable Error (r) of an observation is an error

such that one-half the errors of the series are greater than it

and the other half less than it. Or it is an error of such a

magnitude that the probability of making an error greater
than it in any given observation is just equal to the probability
of making one less than it, both probabilities being one-half.

The probability that the error of an observation will fall

between x and x-\-dx being <f>(x) dx, the probability

that the error will fall between the limits r and r is

P = (36)

If r is the probable error, P is one-half, or

(37)

and from this definite integral r is to be found.

Let t= A, .-. dt= hdx. Also when x= r, we have

t= hr, and when x= 0, t = 0. Substituting these results

in (37), we have

VTT
(38)
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Denote hr by p. Then by interpolation in a table of

values of this integral, the value of hr in (38) is found to

be

p = hr = .47694

.__.. .17691
=

ft

:

h

54. When Z is small the values of
JJo

found by expanding e~^ into a series and integrating the

successive terms. Thus, by Maclaurin's Theorem,

fV*
Jo

*8 /6 *7

- +
3

5[2_ 7[3_

RELATIONS BETWEEN
Jl, r, .d., A, AND p.

P 1

. From (40) r = -, and from (34) a.c?. =
h

55

r = p a.d. V/TT

or r = .8453 a.<?. (41)

Also from (35) p.
=

or r = .6745 |i (42)
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The relation between the values of
/*, r, a.d., and h may

be conveniently expressed as follows :

1 r
o = - = - = a.d.

y/? (43)

or arranging in tabular form,
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weight of the arithmetical mean is n, its probable error r

will be given by

r 2 1 r-~ = - or r = = (46)

Or in general, suppose 8 is any precision measure of an

observation of weight p, and suppose p is the weight of a

second similar quantity or observation, then the correspond-

ing precision measure 8 of the latter will be

(47)

The case of most common occurrence is that in which

p =. 1, and then we have

80 = -^= (48)

Example J5. A line is measured five times and the aver-

age deviation of the mean (A. D.) found to be .016 feet.

How many additional measurements are necessary in order

that the A. D. of the mean may be reduced to .004 feet ?

Let x be the total number of observations required. Then

x : 5 = .000256 : .000016

x = 80

Consequently the number of additional measurements

required is 75.

Example C. In two determinations of the quantity L
there were obtained

L v
= 427.320 0.040, Z 2 427.30 0.16

Find their relative weights, and the most probable value

of L and its probable error.
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Note. The above is the method commonly employed to

denote that the probable errors of the observations are 0.040

and 0.16.

, 162 16
From (45)

* = - - = -

^2 42
1

From (3), the most probable value of L will be given by
'

^ = 427 +
16 X .32 + .80

= 427.319

and the weight of L being 17, by (48),

r = -^ = .039

vrf

Therefore we should write the result

Z = 427.319 .039

REPRESENTATION OF
[1, a.d., AND r ON THE CURVE OF

ERROR.

58. To find the points of inflection of the Curve of Error

we have

.-
ax

y = ke--

- 2 h*k x

d*y
For a point of inflection, ,

'

2
= 0, or

2 A 2 k e~h
-x

'2

(2 A* x 2 - 1
)
=

x = = ^ by (35).
Ay 2
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That is, the Mean Error is represented by the abscissa of

the point of inflection of the Curve of Error. See OM in

figure 2, page 9.

Next, for the abscissa of the centre of gravity of the area

to the right of OY, we have

I y x dx

aso = OD = Jo
i\i /-/rpy ' ' Ju

2 A /, a= 7= f
\ir J o

for, ( 18), j^y
dx =

^

Integrating,

1
= a.d. by (34).

Finally, if an ordinate PP' be drawn so as to bisect the

area to the right of the origin between the curve and the

axis of X, the Probable Error will be represented by the dis-

tance of this ordinate from the axis of Y, For the proba-

bility of the occurrence of an error less than the amount OP
is then equal to the probability of the occurrence of an error

greater than OP. This being the case, OP is the probable
error by definition.



CHAPTER IV.

COMPUTATION OF THE PRECISION MEASURES.

/ DIRECT OBSERVATIONS.

59. Observations of Equal Weight. Given n direct obser-

vations all of the same weight on a single quantity M, to

find the Mean and Probable Errors and Average Deviation

of a single observation and of the Arithmetical Mean.

Let the observations be J/i, M^, . . . Mn .

u " arithmetical mean be MQ .

" " real errors be x^ x2 ,
. . . xn .

" " residuals be v l5 v2 vn-

Denote the mean and probable errors and average devia-

tion of a single observation by /*, r, and a.d., respectively,

and the corresponding quantities for the arithmetical mean

by fio,
r

,
and A.D. Then by definition,

and /*
=

If MQ represented the true value of M, the residuals

would be the same as the real errors, and we should have

/*
=

and if n is large this formula is practically exact. Hut when

n is small a more accurate expression is necessary. To
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obtain this let M -\- x be the true value of M. Therefore

Xi = Ml (M -}- x )
= v v x

(- *o) = vz x

-j- x )
= vn x

Squaring, adding, and dividing by n

= f = (2y
2 - 2 x< V + nx<?

[- ay
2 for by (2) 2 =

The value of x is not known and can not be found

exactly, but it is approximately equal to the mean error of

Jf
,

that is, by (48), to /to
= JL.

Substituting this value in the above we have

2 _ I
P"

^ n ' n

* > U* .w
by (48)

by (42)

and
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60. In order to avoid the use of the squares of the

residuals we may proceed as follows : From (49)

n

On the average, the values of the residuals will then be

/
n - 1

* = : \ -^~ *

I

Vn = \a \
n I

n 1

Adding and dividing by n, neglecting the signs of the

residuals,

H \
^

/

n \ n n \
n-l

a.d.

a.d. = (54)
V
/

n(w--l)

by (48) ^l.D. = -

(55)
w ^n 1

by (41) r = >8453 Sty
(56)

^n(n-l)
.8453 i>

and r = inzi (57)
w- Vw 1

The mean errors may also be computed from the above by

using the table of equivalents in paragraph 55, but this is

not customary, formulas (50) and (51) being used for this
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purpose. Results derived from (50) are to be regarded as

more accurate than those obtained from (54), the latter

being a second approximation.

61. Example. From the following measurements on the

length of a base line find the most probable length and the

values of the various precision measures.

M
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and we should write for the most probable length of the

base line

J/o = 455.330 .042

62. Observations of Unequal Weight. Using the same

notation as above, with slight modifications, we will

Let MQ represent the General Mean.
"

Pit Pzi Pn be the weights.
"

a.d.^ a.d.<i, . . . a.d.n be the average deviations.

"
P-n f*w - i*n be tne mean errors.

" r
\->

r2i - - rn be the probable errors.

"
a.c?., /x, r, and v refer to observations of weight unity.

Then by (48)

t j.

etc.

If the " Observation Equations
"

are formed for this case

they will be

MI Jf = v M2 3/o = -y2, . . . Mn J/o = vn .

And, as was shown in paragraph 28, if these equations are

each multiplied by the square root of the weight of the corre-

sponding observation, they will all be reduced to equivalent

equations of weight unity. On performing this operation

it will be seen that the residuals of the new equations

become

And evidently to these reduced observations the formulas

of paragraph 59 apply.
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Therefore

*pv
l r = .6745 H (58)n I

K = V n = .6745 |i, (59)

=
N/ . (60)

Also, by a method similar to that used in paragraph 60, it

may be shown that

a.d. = = r = .8453a.<?. (61)

a.eZ.fc
=

t
n = .8453 a.d. k (62)

n(w 1)

.J). =
I)

Formulas (61), (62) and (63) are not of much value in

practice unless all the weights are perfect squares, for other-

wise no labor is saved in the computations, since the square

root of each weight will have to be determined, and the results

obtained can not be considered as reliable as those given by
formulas (58), (59) and (60).
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63. Example. Given a series of observations on M,
difference in longitude between two stations. To find

/i, /AO, a.d., A.D., r, riy r .

the

M
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FUNCTIONS OF OBSERVED QUANTITIES.

64. Theorem. Given any number of quantities and their

Mean and Probable Errors and Average Deviations, to find

the Mean and Probable Errors and Average Deviation of auy
function of the quantities.

Let the quantities be J/i, M2, . . . M
q

.

" " mean errors be
/u.t , ^ . . .

p.q
.

" " function be M=f(M1,M2,
. .. M

q ).
" " mean error of M be E.
" "

probable error of M be R.
" "

average deviation of M be D.

The derivation of the general formula will be simplified if

we consider first a few special forms of functions.

65. Case I. Suppose Jff = _Mi J8fa .

The number of observations from which Mv and M^ and
hence ^ and ^ have been determined is not necessarily

known, but we may assume that for each quantity it is any
large number n, and that the real errors of the observations

are

for J/i, a;/, a^", i'", . . .

u Jf x ' X "
X.,'"

Then the real errors of M, computed from the separate
observations on J/i and M2 will be

y.
' + n.

> ~ "
-|_

~ "
rf

HI \ III
*

\
~^~ * "

5 \
' * 9 \ ""*

n

or JE 2 =
|t1

2 +ti2
2

(64)

since in the most probable case the term ^x^x^ will dis-

appear, as there most likely will be as many positive as
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negative products of the same absolute magnitude of the

form X-L xz .

By successive applications of the above the same principle

may be extended to cover the algebraic sum of any number

of quantities. So that if

M = M, Mz . . . Mq

then E* = m 2 + H^
2 + . . - lV = 2>2 ()

Since probable errors and average deviations differ from

mean errors merely by a constant factor, we ishall likewise

have

(66)

.
2

(67)

66. Example. Given the telegraphic longitude results,

h. m. sec. sec.

(A) Cambridge west of Greenwich, 4 44 80.99 0/23

(B) Omaha "Cambridge, 1 39 15.04 0.06

(C) Springfield east " Omaha, 25 8.69 0.11

Find Z,, the longitude of Springfield, and its probable error.

Z = A 4- B C = 5* 58
m

37'.34 0'.26

for by (66) R =
y/(.23

2
-f .06 2

-f- .II 2
)
= .26

67. Case IT. Suppose 3 = a^f^

Using the same notation as in paragraph 64, the real

errors of Jf will be

n : f"1

or E = CT.Ji! (68)
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68. Case III. Suppose M= a\Mv a2M2 . . . aqMq

By combining (65) and (68)

also JJ2 = SwV2

(69)

and J>2 = S a2
.<?.'

69. Example. The length of a bar at 20 Centigrade is

found to be 75".0041 0".0037, and its expansion per

centigrade degree 0".0036 0".0018. What is the length

of the bar at 56 Fahrenheit ?

20 C. = - X 20 + 32 = 68 F.
5

5 5
The expansion for 1 F. will be - X -0036 - X -0018

a 9

or .0020 .0010

L = 75.0041 - 12 X .0020

= 74.9801

R = V-0037
2 + (12 X .001)"

= .013

L = 74".980 0".013

70. Case IV. Suppose M = f (Mi, M* . . Mq ).

Let MI = !-{- *i, M2 = 2 -j-
m2, . . . Mq

= a
q -f- wg,

where at ,
a2, . . . ag are arbitrarily assumed quantities very

nearly equal to M^ M^ . . . Mq, so that m^ m2, . . . m
q

are

so small that their second and higher powers may be neg-
lected. Then the errors of Mlt M2, . . . M

q may be con-

sidered to be in ra^ m2j . . . mq,
and hence f^, p.2 ,

... pq
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may be regarded as the mean errors of the quantities

ij, rw2, . . . mq . We now have

M = f (<*i + mn + wij, . . . 7 -|- q )

Expanding this expression by Taylor's Theorem, and

denoting f(ai, a2 ,
. . . a

9 ) by J!/"', we have

M M'
BM' 8M' dM'

-4- m^ -= \- m z -= 4- . . . m a -= (A)1 da t

2

ddt q da
q

-\- negligible terms in the second and

higher powers of m^ ? 2,
. . . m

q .

Then the mean error of M will be the same as the mean
error of terms (A), and by (69) this is given by

or what is practically the same thing, by

71. Example A. Two sides of a right triangle are meas-

ured with results

a = 49.53 0.59

b = 50.38 0.93 >
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Find the length of the hypotenuse c and its probable
error. In this example

M=
dM

y/
2
-f 62

By (70) J2-= ^r +

T70.65 _70.65j
E = .78

and c 70.65 0.78

.Example B. If the probable error of x is r, what is

the probable error of the common logarithm of x ? In this

case

M = Iog10 MI = Iog10 a;

9 lgio * lgio e

da; a;

Example C. If the weight of x is p, what is the weight

p of sin x ?

Denoting the mean errors of x and sin x by /x.
and JE',

respectively, we have, by (45) and (70),
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Po V?
and =

p E*

P
p = - = p sec8 x

COS* X

72. Equation (70), which expresses the law of propaga-
tion of error in functions of observed quantities, is one of the

most important in the whole theory of the Method of Least

Squares. Upon it in particular is based the discussion of th*

" Precision of Measurements." This subject treats, in the

first place, of the methods of finding the precision of a

quantity obtained by computation from a series of measured

quantities; ?.nd, in the second place, it investigates the pre-

cision with which the component measurements of a series

must be made in order to obtain a required degree of pre-

cision in the final result. The following simple example will

illustrate the character of the solutions :

73. Example. In the determination of a current bv a

tangent galvanometer we have

I = 10 tan <

G

where I is the current in amperes, II the horizontal com-

ponent of the earth's magnetic force, G the galvanometer

constant, and
<f>

the angle of deflection. Given the errors

8i 8j 8s> in -"> @ an(l tan <, to find the error A in I.

By (70)

100 100 //2 100 ZT2

- V (a)
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100 // 2

Dividing this equation by 12 =- tan 2
</>

we nave

TAT P-TJ P
bJ

= bJ + bJ
That is, the square of the percentage error in I is equal

to the sum of the squares of the percentage errors in H, G,

and tan
<f>.

Hence if

If is determined within .4 per cent.

Q u n .2 " "

tan
<f>

" " " .1 " "

then = V .16 -f- .04 -j- .01 = .46 per cent. (c)

Next, suppose the value of I is required to within .1 per

cent. To find the necessary accuracy in the determinations

of H, 6?, and tan < when the error in each of these quan-

tities is to have the same influence upon the total error.

From (b) we shall now have

A = - = .000577

8j_
= .00058^

82 = .00058 G (e)

83 = .00058 tan
<^>

It is comparatively easy to obtain the necessary accuracy

in the measurements of G and tan <, but difficult in the

case of H.

For additional work of this kind see Holman's " Precision

of Measurements."



COMPUTATION OF THE PRECISION MEASURES. 61

74. Combination of Functions of the Same Variables.

It is to be noticed that equation (70) applies only when M
is a function of independent quantities. If J/i, M2 ,

. . . Mq

are merely different functions of the same quantities we
must proceed as follows :

Let MI =
<j> (2X ,

22, . . . z
fc )

M, = $ (2U 22 ,
. . . t )

M = f (
Jfte Jff )

If any single observations of 21? z2 ,
. . . 2

fc are subject to

errors a^, a;2, . . . ic^, the corresponding errors in Jl/j and

J/2 will be

for J/j, Jfi = a1x l -\- 2 2 -(-... a^xk (a)
"

J^, JT2 = a/Xi -|- a2 'a;2 -f- . . . ak'xk (b)

Where a^ az,
. . . ak are the differential coefficients of

J/i, and /, 2
'

. . . at
'

the differential coefficients of Jf2
with respect to 2 X, 22 ,

. . . 2^. The corresponding error in

M will then be

X = AX: + A'X2 (c)

Where A and A are the differential coefficients of M
with respect to Mv and J^. Substituting in (c) from (a)
and (b),

X = (Aa-i.-\- A'a\) x^ -\- (Aa^ -}- A'a'z } x2 . . .

= a Xt -\- fix-i -{-... \Xk

Then if the number of observations or values of X be

denoted by ,

. . . XV.
2

(d)
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since in the most probable case the product terms will

cancel out.

Expanding (d) we have

E* = (Aa, 4- .4V)
2
Mi

2 + (Aa, + A'az')* rf + . . .

= ^'(^v -f 2V . ) + ^"KV + 2'V . . .)

+ 2yl^'(iiVi
2 + 2 2W+...) (71)

75. Example. As a very simple problem take

Jfi = 22!, 3/2 = 82^ /*!
=

0.1,

and M= J/i + Jfs .

Then .4 = 1, A' = 1, a t
= 2, a

t

' = 3.

By (71) ^a = 4 X -01 + 9 X -01 4- 2 X 2 X 3 X -01 = .25

or ^ = 0.5

In this particular example the result may be found directly

from (68) by substituting at first in M the values of M^
and M.,.

Thus M = 23! 4- 3zt
= 52t

.E' = 5/it
= 0.5

If M and Jf2 had been independent quantities, by (64)

or (69) we should have had

E = V(2 X 0.1)
2 + (3 X O.I)

2

= 0.36

INDIRECT OBSERVATIONS.

76. The determination of the precision measures of the

unknown quantities in case the observations are indirect

involves a knowledge of the weights of the unknowns, and

consequently the method of computing these weights must
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first be demonstrated. It will be assumed at present that all

the observations are of weight unity.

FIRST METHOD OF COMPUTING THE WEIGHTS.

Let the observations be

in which M^ M^ . . . Mn denote the actual observations,

and Zj, z2,
... z

q
the most probable values of the unknown

quantities. Let

&! J/i = mu ki M2 = m^ . . . kn Mn = m^

Then the above equations give rise to the

OBSERVATION EQUATIONS

(A)

By the rule, paragraph 25, we now form the

NORMAL EQUATIONS

2i 2 a2
-}- 22 2 ab

-j- . . . z
v 2 ay + 2 am =

z
t 2 ab _j_

22 2 *2 -f ... 2^ 2 i</ + 2 bm =
(B)

21 2 a? -f 22 2 bq -j- . . . 3
? 2 (?

2 + 2 ym =
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Multiply the first of (B) by Qly the second of (B) by
. . . and add the results. Then

i (i2a2
-f Q^ab -f . . .

-f z2 (Q^ab + &262 + . . .

4- &S am -|- ^22 6m -f ...

=

Let u Qz, ... $g
be determined so that the coefficient

of 2a in (C) shall be unity, and the coefficients of za,

38, ... z
q

each equal to zero. That is, let

&S 2 + #22 ab + . . . Qql aq - - 1 =
=

<2j2 aq -\- $22 bq -}- Qq^ q* =0
Then (C) becomes

z^ _j_ Q^am -|- #226m -f . . . QqSqm = (E)

Equations (D) may be derived from the normal equations

(B), if in them we replace zu z2, ... 2^ by ^ t , $2 ,
. . . ^g ,

2 m by 1, and 2 6m, 2 cm, ... 2 <?m by zero. Hence

the solution of the normal equations with these changes will

give the values of Q ly Q2 ,
... Qq

.

TO SHOW THAT Qi IS THE RECIPROCAL OF THE WEIGHT OF XL

Expanding the coefficients of (E) we have
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4- 2 2 + . .

4- &(*!zi 4- *2w 2 4- *n

=

or collecting the coefficients of m1} wi2,
. . .

=

For convenience in writing we will let

a x
= Qlal 4- ^2^! 4- . . .

03 = ^Xa2 -j- ^2i2 4 . . .

(E')

Z
l + ajT^! 4- 02^2 4. . . . anWln = (G)

Multiply the first of (F) by a 1} the second by a2,
. . .

and add the results. Then

2oa = <2,2a
2

4- Q^ab 4- ...

= 1 by first of (D) (H)

Multiply the first of (F) by blt the second by J2, ...

and add the results. Then
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= by second of (D)
Likewise 2 ca = (H')

Multiply the first of (F) by at, the second by a2 ,
.

and add the results. This gives

2a2 = Qi2 aa -j- <>22 ba. + ... $82 ?a

= & ty (H) and (H') (I)

Let fi be the mean error of an observation of weight unity.

Let pzj
be the mean error of z

x
.

Let pZl
be the weight of z^.

The mean errors of m^ wz 2 ,
. . . mn are the same as the

mean errors of J/i, M^ . . . Mn and each is accordingly

equal to p. Therefore from (G), by (69)

Pv* = a!
2
/*
2 + 02V2 + oVa

= M
22a2

= Ci/*' by (I) (J)

But by (48) ^ = -

Pzi

Comparing this with
( J) we see at once that

Qi = (K)
Pzi

Therefore, for the First Method of computing the weights
we have the following :
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77. Rule I. In the normal equation for z^ write 1

for the absolute term 2 am, and in the other equations

zero for each of the absolute terms 2 bm, 2 cm, ... 2 qm.
The value of zl foundfrom these equations, is the recipro-

cal of the weight of the value of zx obtained by the solution

of the normal equations.

To Jind the weights of z2 ,
z3 ,

. . . z
q , proceed in a similar

way, forming a corresponding set of equations for each

unknown.

SECOND METHOD OF COMPUTING THE WEIGHTS.

78. Write equations (B) of paragraph 76 in the form

zt 2
2 + z2 2 ab -\- . . . z

q 2 aq -|- 2 am = A
Zi 2 ab -f-

z2 2 b* -\- . . . z
q 2 bq -f- 2 bm = B

bq -f- qm = Q

Then in the solution by the preceding method, equation

(E) becomes

-f-

(M)

in which, as was proved in (K), Q l is the reciprocal of the

weight of Zi. Whatever method of elimination is employed
in the solution of the normal equations, the coefficient of A
in the value of z

x
must necessarily be always the same.

Hence we have

79. Rule II. Write A, B, ... Q instead of zero in the

second members of the normal equations and carry out

their solution in any convenient way. Then the most

probable values of z^ z2 ,
. . . z are yiven by those terms

in the results which are independent of A, Tt. . . . Q,
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The weight of z is the reciprocal of the coefficient of A
in the value of zx . The weight of z2 fa the reciprocal of
the coefficient of JS in the value of z2, etc., etc.

THIRD METHOD OF COMPUTING THE WEIGHTS.

80. From the second, third, . . . equations of (L) find

the values of z2, zs zq in terms of zv and substitute

in the first of (L) without reduction. Then the first of

(L) becomes

Rzi = T + A + terms in
, (7, ... Q

Where T is the sum of all the numerical quantities result-

ing from the substitutions. Dividing through by Jl,

T A.
zl
= -f -f terms in B, <7, . . . Q (N)

I\ Jf

T
in which is the most probable value of zt, and, as was

-B

shown in deriving the second method,

R = A. (O)

From this follows at once

81. Rule III. Substitute in the normal equationfor zt

the values of 22, zst . . . z
q

in terms of z as found from
the remaining equations. Then before freeing offractions
or introducing any reduction factor, the coefficient of 2j
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in this equation is the weight of the value of s t obtained

in the solution.

To find the weights of 22 ,
s3, . . . z

q , proceed in a similar

way with the normal equations for each of these unknowns.

For the solution of an example by the three different

methods see paragraph 84.

THE MEAN ERROR OF AN OBSERVATION.

82. The next step will be to derive
/x,

the mean error

of an observation of weight unity. In the following demon-

stration the equations referred to by letters are those in

paragraphs 76 to 81.

Let the real values of 21} 22, ... z
q

be

and substituting in (A) we have

i( 2 i -h i) + &!(Z2 + Je,) -f . . . qi(zq -f- X
q } -f- mj = A!

(i + ^i) + ^2(22 + ^2) + ^O? + ff ) + 2 = A2

(P)

n(2i + *!> + ftw (32 + a;2 ) -f . . . qn (zq -f- a?,) 4- 7nn = An

where Au A2 ,
. . . An are the real errors of J/i, J/^, . . . J/J,,

or of wij, ra2 ,
. . . mn .

Multiply the first of (P) by au the second by 2 ,
...

and add the results. This gives

Zi 2 2
-)- z2 2 A -f- ... z

7 2 ? -f- 2 aw

-j- i 2 a2 + x2 2 * + . . . x
q 2 ay = 2 a A

But by the first of (B) the first line in this equation is

equal to zero, and therefore
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xl 2 a2
-j- x 2 ab -f- . . . x

q 2 aq 2 aA =
Also xl 2 ab + x2 2 W -f . . . x

q 2 fy - 2 A =......... (Q)

a?! 2 ? + x3 2 6? -f- . . . x
q 2 <?

2 2 ?A =

These being of the same form as the normal equations

(B), the value of x^ resulting from their solution will be

of the same form as that of z1 in the solution of those equa-

tions, with only the substitution of A for m. From

(G) we shall therefore have

X a-i& aA ... UjjAjj =

Multiply the first of (P) by v v , the second of (P) by
t>2 ,

. . . and add the results. Then

(z2 + x^bv + . . . (zq -f-

and multiplying the first of (A) by a
1} the second by

a2,
. . . and adding the results

Say = Zj 2
2

-f-
z2 2 ab -j- . . . z

7 2 a<? -j- S aw
= by the first of (B).

Also 2&y =

2?y =

Substituting these values in the above, we find that

2 my = 2 Aw (S)

Now multiply the first of (A) by v^ the second by
u . . . and add the results. This shows that
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2X 2 ay -\- z2 2 #y -f-
z
9 2 <?y -|- 2 mu = 5 u2

and as above,

2 ay = 2y... = 2 ay =

Combining this result with (S) we have

2 my = 2y2 2 Ay (T)

Next multiply the first of (A) by A t ,
the second by

A8 ,
. . .

,
add the results and compare with (T). This gives

z
l 2 aA -(- Z2 2 #A -|- ... 2

9 2 tfA -f- 2 wiA

= 2 Ay = 2y2

(U)

And finally, multiplying the first of (P) by A x ,
the second

by A2 ,
... and adding the results, we have

! 2 A -|- 22 2 &A -j- ... 2, 2 q\ + 2 mA

+ ! 2 A + x2 2 b\ -|- . . . 2^2 ^A = 2 A2

Therefore from (U)

2 y
2 + x

l 2 aA + , 2 6A + . . . x
q 2 ?A = 2A2

(V)

- - L -
^ w ?i w

We must now find the mean values of the terms a^

JC2 2 iA, ... x
9 2 </A. Expanding 2 aA,

2 aA = a^! -f- a 2A 2 -|- . . . anAn

from (R) x
l
= a^ -(- a2A2 -{- ^^w

Multiplying,

Zj 2 aA = a^tAj
2

-f a-jOjA.,
2

-f- . . . awanAn

-|- terms in A,Aj, A tAj, . . .
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In the most probable case these product terms vanish, and

substituting for A!*, A2
2
,

. . . An2 the mean value
/*
a
,
we

have

xl 2 A =
/A

2 2 aa

= M*

Similarly jc2 2 &A =
/u,

2

From (W) then, q being the number of unknowns,

, = 2 2
qtS

n n

I T.,,a= V-=^ (72)" n q

* = -7= = V; ^ ('3)

A.
* Z

pz (n - q)

83. By a method similar to that used in paragraph 60, we

may derive

a.d. = (75)
V n(n q)

(76)
\lpz n(n - q)

84. Example. In illustration of the above processes
take the example in paragraph 24, where we found for
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OBSERVATION EQUATIONS

Zl 22 1.7 = Vi

za 2.4 = va A .

_
2l + z2

-L. 28 - 1.0 = va

22 Z3 3.0 = v^

and for

NORMAL EQUATIONS

2 z
1 2 22

- 23 0.7 = (a)
2 2 t 4- 3 22 2.3 = (b)

-
2l + 3 z3

- 0.4 = (c)

SOLUTION FOR THE WEIGHTS BY THE FIRST METHOD.

For finding the weight of zt the above normal equations
would be written

2 zl
-- 2sa 23 -- 1 = (a')

- 2 zl + 3 z* =0 (b')

i + 3 28 =0 (c')

Solve for z

3 X (a')
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Solve for z,

3 X (a") 6 z
l

-- 6 22 3 zs
=

(c") _ji + 3 za =
5 zt 6 z2 =0

6
1 = - *

5 3
Substitute in (b") z2 = .-.

jt>Zi
= -

(d")
3 5

For finding the weight of zs the equations are

2z, -- 2z2 z^ =
(a"')

- 2 Si + 3 z2 =0 (b'")
- zx + 3 z8

- 1 = (c'")

Solve for z8

4
from (b'") 2 z2 = - zt

' O

substitute in (a'") 2 Zj 3 z8 =0
2 X (c'")

- 2z, + 6z3
-- 2 =

3 zs
- 2 =

2 3

SOLUTION BY THE SECOND METHOD.

The normal equations will now be modified so as to appear
in the following form :

2z
t

-- 2 z2 - z8
-- 0.7 = A (a)

- 2 z
l -4- 3 z2

- 2.3 = B (b)
- z

l -f 3 z8 - 0.4 = C (c)
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Solving,

3 x (a) 6 zl
- 6 z2 - 3 z8 - 2.1 = 3 A

(c)
- zl_-{- 3 g,

-- 0.4 = (7

5 Zl
_ 6 z2

-- 2.5 = 3 ^4 -j- C
- 4 gt -4- 6 z2 - 4.6 = 2 jg_

2l 7.1 = ZA + 2J3+C (8)

Zi = 7.1 and ptl
= (d)

o

Substituting (S) in (b)

3 z = 16.5 _-6^ 5^--2<7

3
22 = 5.5 and jo^ = (e)

5

Substituting (S) in (c)

zs = 2.5 and pZi
= (f)

SOLUTION BY THE THIRD METHOD.

The normal equations are now taken in their original form.

2 z,
-- 2 z2

- z3 -- 0.7 = (a)

- 22! + 3 z2
- 2.3 = (b)

-
z, + 3 za

- 0.4 = (c)
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To obtain zt and its weight we proceed as follows :

zl .4
from (c) 2, = +

2 zl 2.3
from (b) 22 ==

1-

Substitute in (a)

4 4.6 2 t .4
2 zv

-
Zi
_--_ --- 0.7 =33 3 3

zl 7.1

Collecting terms, =
o o

2l = 7.1 and pzi
= -

(d)

For z2

3 X (a) -j- (c) 5 sjj 6 z2 2.5 =
6

zx
= - sa + 0.5

5

12
Substitute in (b) z* 1.0 -f 3 32 2.3 =

5

3
Collecting terms,

- 2a 3.3 =
5

3
Zt = 5.5 and / = -

(e)

For 2,

3 X (a) + 2 X (b) 2 2l 3 z3
- 6.7 =

3 6.7
2, = 2. +

2
!

2

O ft 7
Substitute in (c) 2, 1-

3 28 0.4 =
2
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3 75
Collecting terms, za

- =0
L

'

g
zs = 2.5 and psa

= (f)
A

It is evident that the three methods give identically the

same results and that the work is about the same in each case.

COMPUTATION OF THE PRECISION MEASURES.

Substituting the values found for z^ z2 and z3 in the

observations equations (A), we have

7.1 _ 5.5 - 1.7 = Vt = - .1 .01 = v^
2.5 2.4 = va

=
-j- .1 .01 = v2

2

- 7.1 -f 5.5 + 2.5 - 1.0 = vs = - .1 .01 = v,
a

5.5 - 2.5 3.0 = v4 = .0 .00 = v4
2

.03 =
In this example n = 4, q = 3.

By (72) p = y
= .17

By (74) r = .6745^ = .12

By (73) ^ = = .30 r
zt
= .20

3

9

By (75) u.d. = = .15
<u

r = .8453 a.d. = .13
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85. Observations of Unequal Weights. If the observations

are not all of the same weight the formulas and operations
are merely modified in the usual manner and equations (72)
and (75) take the more general form

a.d. = -
(78)

V
7

n(n q)

CONDITIONED OBSERVATIONS.

86. Suppose there are given n observations, n' condi-

tions and q unknown quantities. Then by paragraph 33,

the method of solution is to eliminate n' unknowns between

the " Observation " and " Condition "
equations, leaving

q n' independent unknowns in the " Normal "
equations.

Consequently formula (77) now applies to this case and it

would be written

=
y (Jf)* n q + n

also p, = y _ (80)v p*(n q + n')

The weights of the q n' unknown quantities can be

found by any one of the three methods already given and

then the mean error of each unknown may be computed by

using formula (80). If the mean errors of the n' quantities

that were first eliminated is wanted, their weights must be

determined by eliminating a different set of n' quantities

from the original observation equations and solving the neces-

sary sets of equations for these weights. The first method of
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solution for the weights would perhaps be best here as the

actual values of the unknowns have already been found.

87. Example. Given the

OBSERVATION EQUATIONS

2l
-L. 22 3.0 = weight 1

2l
_ 28 -f 1.5 = "4

22
- 2.2 = "3 (

A )

Zl -f 23 3.4 = "2
and the

CONDITION EQUATION

2j}
_ 22

- 0.5 = (B)

To find the most probable values of zt ,
z2, and zs,

and

also their mean errors.

Eliminating z8 between (A) and (B) there remains

Zl _|- 22 3.0 = weight 1

Zl
- z2 -f 1.0 = "4

z2 2.2 = "3
Zl _|_ Z2

_ 2.9 = "2
From these we have the

NORMAL EQUATIONS

7 2l
- z2 - 4.8 =

- z t -f.
10 za - - 19.4 =

Solving,

Zl
= 0.98 pzi

= 6.9

z2 = 2.04 pzt
= 9.9 (D)

from (B) ZjJ = 2.54
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Now eliminating z2 between (A) and (B), we find

2t _|_ 28 _ 3.5 = weight 1

2l
- za + 1.4 =< 4

z3 - 2.7 = 3

2l _j_ 2a
_ 3.4 = 2

From these we derive the new set of

NORMAL EQUATIONS

7 Zl
- z8

- 4.3 = p .

- zt + 10 zs 24.4 =
and solving for z8

zs = 2.54 pZ3
= 9.9 (G)

Substituting the values of Zj, z2 and z8 in equations (A),
we have the residuals

V
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The first significant figure in the mean errors is so large

that it is not worth while to retain the second place as usual.

If desired, the probable errors and average deviations can

now be computed by the usual formulas.

88. In case the observations are made directly upon the

values of several quantities subject to certain conditions, we
have n = g, and equation (79) reduces to

v=^
from which the mean error of any observation may at once

be computed from its weight.

89. Example. Taking the example in paragraph 34 on

the measurement of the angles of a quadrilateral, we had for

OBSERVATION EQUATIONS

2
1
= weight 3

2

2

1

for the

CONDITION EQUATION

Zl
-L. z2 _|_ 2j5 _j_ z4 4. 58 = (B)

and for the

NORMAL EQUATIONS

4 zi 4- z2 4- z3 + 58 =
*i + 3 z2 4- za + 58 = (C)

2l _j_ Z2 _j- 3 zs + 58 =
Solving these equations for the values of the unknown

quantities and also for their weights, we have

Zi = 8.3 pzi
3.5

z2 = -12.4 pzt
= 2.5

zs = . 12.4 Pzs = 2.5
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and forming a new set of normals containing 24 ,
we find, on

solving for that quantity,

z4 = - 24.9 = 1.75

These values of z,, z2 zv> zt are a^s *n this case the

residuals of the observations, and therefore to compute the

precision measures we have

V



CHAPTER V.

MISCELLANEOUS THEOREMS.

THE DISTRIBUTION OF ERRORS.

90. Having developed the processes for the adjustment of

observations according to the Method of Least Squares, it

will now be interesting to show how closely the distribution

of errors found in actual practice corresponds to the theo-

retical distribution upon which our methods of solution are

based.

By formula (36), the probability that the error of a single

observation will be numerically less than a is

p =
T= e~^ dx < 82 >

VTT Jo

Let t = hx, .. dt = h dx. Also when x = 0,

t =
;

and when x = a, t =. ha = p^L. Sub-
r

stituting in (82),

P = p -'*= ~ Cpre-'*dt (83J
VTTJo

Values of P for values of the argument are given in
T

Table I. Also for any series of observations this quantity
P will represent the fraction of the entire number which

should have errors less than the amount a. Hence if P is

multiplied by the whole number of observations the result

will be the number of errors which should be less than the

limit a.
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91. Example. Forty measurements on the diameter of

Saturn's ring were made by Bessel, with the following
results :

M v
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The fourth column contains the differences between the suc-

cessive values of f, and by multiplying each of these

differences by 40, the number of observations, we have the

quantities in column five, which are the numbers of errors

that according to the theory should fall within the corre-

sponding limits. Column six shows the actual number of

residuals occurring between these limits.

a
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with the question of the detection of a mistake or constant

error, which a consideration of the circumstances of the

observations or of the instruments might reveal, but it is

assumed that there is nothing whatever to guide us except
the mere fact of the unusual size of the residuals of the

observations under discussion. To reject an observation

merely because it differs considerably from the others is

entirely unjustifiable, while to retain it without any investi-

gation is a neglect of the evidence furnished by the observa-

tions themselves.

The adoption of any rigid criterion based upon the magni-
tude of the residuals is perhaps more satisfactory from a

mathematical standpoint than from that of a practical observer,

and some of the latter are of the opinion that no observation

should be rejected entirely, even the most widely discordant

ones being given a certain weight. In this latter case,

however, the Theory of Probability will furnish a guide as to

the proper weights to assign to the different observations.

Of the various criteria that have been proposed, that

developed by Pierce (see Chauvenet, page 558) is perhaps
the most complete. The derivation and application of this

criterion is, however, somewhat long and complicated, and

for all ordinary cases the following simple methods will give

practically as good results.

93. Criterion for the Rejection of a Single Doubtful

Observation. It was shown in (83) that in a series of n

observations the number of errors numerically less than a

should be HP, and therefore the number of errors greater
than a should be

n - nP = n(\ P) (84)

If the value of the expression in (84) is less than one-half,

the occurrence of an error of magnitude a will have a

greater probability against it than for it, and hence the obser-

vation corresponding may be rejected.
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Accordingly the limit of rejection, a, of a single doubtful

observation is obtained from the equation

n (1
- P) = -

V '
2

or P = 2 n - I

(85)

94. JZxample. Fifteen observations on the value of an

angle are made. Ought any of the observations to be

rejected ?

M



j METHOD OF LEAST SQUARES.

Using all the observations we find

3fft = 2 24 '.20 r = .6745 t = .37t/
4 -256 = .J

V 14

OQ

By (85), P = = .967

By Table I,
- = 3.17 .-. a = 1.17

As the residual 1.40 is larger than a, we reject the

last observation.

From the remaining observations we now compute a new

mean value and a new set of residuals. And we find

o 145
M' 2 24'.31 r' = .6745 V/ = .27

By (85), P = = .964

By Table I,
- = 3.11 .-. a = .84

The third observation may accordingly be rejected.

From the thirteen observations that remain we find

M"9 = 2 24V23 r" = .6745 i/
L263 = .22

v 12

P = . = .962
26

- = 3.08 .-. a = .68
r

Therefore no more observations are to be rejected.
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95. The Huge Error. In cases where the number of

observations is not unusually large, a simple and safe criterion

for the rejection of a doubtful observation is found in the use

of the " Huge Error."

This is an error of such a magnitude that 999 out of every

1000 errors are less than it and only 1 as large as or greater

than it.

Therefore the probability that the error of any given

observation will be less than the " Huge Error "
is .999, and

from Table I,

when P = .999, = 4.9
r

a = Huge Error = 4.9 r
= 3,3 jx (86)
= 4il a.cl.

Then in any limited series of observations, if an error

greater than the huge error is found, we should reject the

observation corresponding.

See also, Holman, page 30
; Wright, page 131.

CONSTANT ERRORS.

96. Throughout our discussion of the methods of adjusting

observations so as to obtain from them the most probable
values of the unknown quantities, all constant errors are

supposed to have been eliminated before the Method of

Least Squares is applied in deducing the results.

If this is not done, and each observation is subject to the

same constant error, the final result will be affected by an

equal amount, and in short, the Method of Least Squares is

not capable of removing or reducing the effect of errors of

this kind. All that is accomplished by the use of the method

is to reduce to a minimum the effect of the Accidental Errors.
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Hence it will be seen that although by increasing the

number of observations of a given kind we may increase the

precision, that is, reduce the probable error, of our final

result as much as we choose, yet we do not in this way
necessarily increase the accuracy of the determination.

But if the unknowns can be determined in several ways, or

under a variety of different circumstances, with various

instruments, or by different observers, then it is most proba-
ble that the constant errors of the different sets of measure-

ments will be grouped about the true values of the unknowns

according to the exponential law of error. Accordingly a

combination of such observations will enable us to increase

not only the precision, but also the accuracy of the final

result, the constant errors of the different sets tending to

cancel each other in the same way that the accidental errors

of a single set do.

It is for this reason that determinations of a quantity from

observations made in a variety of ways are more valuable

than those obtained merely from different sets of measure-

ments of the same kind.

97. The probability of the existence of a constant error

may often be expressed in the following manner.

Example. A standard 100 ohm coil is compared with

a Wheatstone's bridge and the mean result found to be

100.90 0.20. To find the probability that there is an error

in the bridge between
-|-

0.30 and -(- 1.50 ohms.

Suppose the result 100.90 0.20 is treated as a single

observation, and we find by an application of (83) the prob-

ability that the error of this observation is numerically less

than 0.60 ohms.

.f\

Here - = = 3.00 .-. P = .957
r .20

Hence, as far as is shown by the observations, the proba-

bility that 100.90 ohms is within 0.60 ohms of the true
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value is .957. But since it is known that the true resistance

is 100 ohms, it follows that there is the same probability

that there is a constant error in the bridge between -|- 0.30

and -|- 1-50 ohms.

98. Combination of Determinations having Different Con-

stant Errors. In case two or more determinations of a

quantity, together with their probable errors, are obtained,

the method of combining them so as to secure the best final

result was considered in paragraph 56, and in Example C,

paragraph 57. But it was there assumed that all the results

were subject to the same constant errors, while if this is not

true the probable errors of the separate determinations bear

no relation to their weights, and accordingly in such cases

another process must be adopted.

To determine whether the different measurements may
fairly be considered to have the same constant errors we may
proceed as follows :

Let the determinations of the quantity M be

-fl/i ^ (a)

MI rz (b)

and let the difference between these results be

d = J/i Hfa (c)

Then the probable error of d is by (66),

72 = vV + r, (d)

If d is of such a magnitude that an accidental error as

great as it may reasonably be expected, we may assume that

the constant errors of (a) and (b) are the same, and pro-
ceed as in Example C, paragraph 57.

But if the probability of making two determinations which

differ by the amount d is very small, we had best consider

J/t
and MI to have the same weight, provided there are no
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special reasons for regarding one better than the other. The

final value ot M will then be the arithmetical mean of MI
and JH/2 ,

and its probable error will be found by (53).

99. Example A. An angle is measured by a theodolite

and by a transit with results

By Theodolite, 24 13' 36".0 3".l

By Transit, 24 13' 24" 14"

What is the most probable value of the angle and its prob-
able error?

Referring to the preceding paragraph,

^ = 3.1, r2 = 14, d = 12,

and the probable error of d is

R = V3.1
2 + 142 = 14

Then from Table I the probability that the accidental

error of a determination will be at least as large as 12 is

found from

*- = 1? = .86 ,. 1 - P = .57
r 14

That is, there is more than an even chance that two such

determinations of the angle will differ by as much as 12.

Hence it is fair to assume that the two determinations are

not affected by constant errors of different magnitudes, and

they would be combined as in Example C, paragraph 57.

Example J3. Suppose the zenith distance, M, of a star,

observed at two different culminations, is found to be

J/i = 14 53' 12".10 0".30

M2 = 14 53' 14".30 0".50

What is the best final value ?

Here d = 2.2, 72 = ^ .09 -f .25 = .58

and for - = = 3.8, 1 - P = .01
r .58
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Therefore the chance that the difference in the two deter-

minations, due to accidental errors, will be as large as 2.2 is

only one in a hundred. It is to be concluded then that the

constant errors of observations at the two culminations differ

by about 2.2, and as there is nothing to show that one meas-

urement is more accurate than the other we will give them

both the same weight and take the mean. Then the best

value for the zenith distance is

M = 14 53' 13".20 0".74

For M. = 14- 53- +
13

''

10 + 14" 3

2i

= 14 53' 13".20

2.42

By (53) r = .6745
V^-^;

= -74

For a more extended treatment of this subject see Johnson,
" The Theory of Errors and Method of Least Squares,"

chap. vii.

THE WEIGHTING OF OBSERVATIONS.

100. In case the relative worth of observations is not

settled by methods already discussed, the proper weight to

assign to each quantity in the final adjustment can only be

determined from a full knowledge of all the circumstances of

the measurements. Even then considerable experience in

the particular work in hand is required before the best values

for these weights can be assigned. The weight given to a

quantity should never be considered final, but always subject

to revision whenever new information with regard to the

quantity is obtained. Thus an observation which at first is

supposed to deserve a high degree of confidence is often

found on later investigation to possess very little value, and

vice versa.

See also Wriyht, page 118.
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OTHER LAWS OF ERROR.

101. Although in the great majority of cases the distribu-

tion of errors follows the exponential law thus far considered,

there are a few special cases in which some of the suppositions

made in deriving that law do not hold, arid hence for the

adjustment of such observations the corresponding special

laws of error must be determined.

For instance, in applying the exponential law we assume a

large number of observations, that each observation is sub-

ject to the same law of error, that small errors are more

likely to occur than large ones, and that positive and negative
errors are equally probable. Now it is easy to conceive of

cases where only positive errors can occur, or where the

probability of the occurrence of a small error may not be

greater than that of a larger one, etc. If we can determine

the different sources of error in any case and the relative

effect of each upon the quantity sought, we shall arrive at

the law of error for that particular set of observations. The

case of most common occurrence is the following.

102. Suppose all errors between the limits a and a

are equally probable, and that there are no errors beyond
these limits. Then if y = <f>(x) is the equation of the

Curve of Error, and its area is represented as in para-

graph 18, we have

<f>(x) dx = 1 (a)

or 2 <t>(x) I dx = 1 (b)

since by the supposition made <f>(x) must be a constant.

Integrating and solving for </>(), we have

y =
* ct
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To find the Mean Error we have by definition as in para-

graph 52

p* = C
a
x2

<(a;) dx
/ -a

_ i C a

a Jo
x* dx

a

7?
The Probable Error is derived from the equation

C r 1

<(a:) dx =
J-r 2

1 CT j 1_ I dx =
a c/o 9

Finally, for the Average Deviation we have

/"*flt

a.d. = x < (x) dx
J -a

= _ I x dx
a Jo

7
And the Curve of Error has the form

(88)

(89)

(90)
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That the average deviation and probable error are in this

case equal to one half of a may also be seen from the defini-

tion of these quantities.

Example. In taking a logarithm from a four place table,

what is the probable error of the mantissa ?

In this case the maximum error is .00005, and all

errors between .00005 and .00005 are equally probable.
Therefore

r = .000025

103. The only other special case of common occurrence is

that in which the error of a quantity is due to two sources,

each of which can with the same probability assume all

values between a and a. Here it may be shown that

the curve of error consists of two straight lines whose equa-
tions are

2a x 2a -\- oc

V = -;- and = _ (91)

Also (i
1 = -

a?, r = (2
- <fz) a (92)

3

For a more extended discussion of special laws of error, see

"Wright, paragraphs 31 to 39. See also Example 151.

104. Contradictory Observations. Suppose three observa-

tions of a quantity give results 55, 56, 91. It is obvious that

to take the arithmetical mean as the most probable value in

this case would be contrary to the evidence furnished by the

measurements, while in so small a number of observations it

would not be allowable to reject the value 91 entirely. With
such a series of observations no satisfactory solution can be

obtained, but probably the best thing to do would be to take

the value which has as many observations less than it as it

has greater, or 56.



CHAPTER VI.

GAUSS'S METHOD OF SUBSTITUTION.

105. The most laborious part of the application of the

Method of Least Squares to the adjustment of observations

consists in the formation and solution of the "Normal Equa-

tions," and this labor increases enormously with increase in

the number of observations, of unknowns and of conditions.

It is not at all unusual to find that the adjustment of a single

set of observations takes several weeks, even with all the aid

that can be obtained from tables of logarithms, of squares, of

products, and of reciprocals, and also from the use of calcu-

lating machines. In general the computations can be per-

formed more rapidly and with less fatigue by using a machine

or a table of products than by using logarithms, but a combi-

nation of methods is often desirable.

106. In any case however it is of the utmost importance
that the formation and solution of the normal equations
should be effected in a systematic way, and that as far as

possible checks on the numerical work be carried along in

the computations. By a slight amount of additional work

checks upon the results at successive stages of the solution

may be obtained by means indicated in the following dem-

onstrations, while the most satisfactory form for the solution

of the normal equations is given by the "Method of Substitu-

tion" proposed by Gauss.

This method will now be explained; and it is to be observed

that it is customary in this subject to enclose a quantity in

brackets when the sum of a number of quantities of the same

kind is to be denoted. Thus [>] means the same as 26.
For the sake of simplicity in demonstration it will be

assumed that the observations are all reduced to weight unity.
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107= Checks on the Formation of the Normal Equations.

If, as in paragraph 76, we take for

OBSERVATION EQUATIONS

-f- *22 + Q&q + m2 = 2

(A)

we shall have for

NORMAL EQUATIONS

? + [aw] =
[aft] % + [ftft] ,+ ... [fty] z

9 + [ftm] =
......... (B)

i + [ft?] t + . [??] z
g + [?m] =

Let

i + *i + . q\ + mi
= 5i

8 + *2 + ' 2* + ^2 = *2

......... (C)

an -f- ft -f- . . . qn -j- mn = sn

... [a] + [ft] + . . . [?] 4. [m] = [s]

Multiplying the first of (C) by 7W
1? the second by w2,

. . .

and adding, there results

[am] + [6w] -j- . . . [gra] + [wiwi] = [m] (93)

Next multiplying each of equations (C^ by its a and

adding, and then each by its b and adding, etc., we have
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[cm] + [6] + . . . [ag] + [&] = [*]
[aft] + [&&] + . . . [6g] + [&w] = [&]......... (94)

[ag] + [6g] + . . . [gg] -}- [gm] = [g]

Equation (93) will be satisfied if the absolute terms in

the normal equations are correct, and equations (94) when
the coefficients of the unknown quantities are correct. These

check the formation of the normal equations.

108. The Reduced Normal Equations and the Elimination

Equations.
The value of zl in terms of the remaining unknowns,

derived from the first of equations (B), is

[oft] [oc] [am]
'

[aa]
2
"

[aa]
Z*

~
'

[aa]

Substituting this in the remaining n 1 equations, they
become

-
[ao] + . . [cm] - [o] =
L J '

-fL J
[aa]

And letting

(F)
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the above equations take the following form, which, being
the same as that of the original normal equations, they are

called the

FIRST REDUCED NORMAL EQUATIONS,

[ftfl, 1] Z2 + [ftc, 1] Z3 + . . . [fy, 1] z
q 4- [ftm, 1] =

[ftc, 1] z2 + [cc, 1] 2, + . . . [eg-, 1] z
g 4- [cm, 1] =

(G)

\bq, 1] 22 4~ [C3S 1] zs 4~ [?!?> 1] s
g 4~ [?m 1] =

An inspection of equations (F) will render it easy to form

a rule for writing out any one of them.

Now by means of the first of equations (G), eliminating
z2 from each of the others in the same way that z^ was

eliminated from the normal equations, there results the

SECOND REDUCED NORMAL EQUATIONS

[cc, 2] z3 4~ [c<7, 2] z
q 4- [cm, 2] =

(H)

[eg, 2] z3 4~ [?<?> 2] z
q 4~ [$^> 2] =

In which

[ftc, 1] [c, 1]
[cc,2] =

, 1]

(I)

Continuing this process we shall finally arrive at the single

equation

- 1
]
= o (J)

from which the value of z
q is determined.
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The value of z
q_

will then be obtained by substituting the

numerical value of z
q

in the first of the preceding set of

equations, and so on, until finally 2 t is obtained from the

first of the original normal equations. The equations from

which the unknowns are actually determined are then the

following, called the

ELIMINATION EQUATIONS.

-f- . . . [a#] zq -f- [aw] =
]*ff + [6m, 1] =

(95)

4- [> q-i] = o

It may be seen from the rule in paragraph 81 that

<1 1] i8 ^e weight of 2
g,

and the weight of any
unknown might be found at the same time as its value by

making it the last in the order of elimination, but except in

special cases the weights had best be obtained by the general

process of paragraph 115.

109. Check on the Solution of the Normal Equations.

Multiplying the first of the Observation Equations (A) by
m

t ,
the second by m2 ,

. . . and adding the results, we have

[my] = [am] z
t -j- [6m] 22 -f~ \.

<lm ~\
z
q ~\~ [ W4 >"]

But in equation (T), paragraph 82, it was shown that

[my] = [vy]. Therefore

[yy] = [am] z
l -j- [6m] 22 -(-... \_qni] z

q -f- [mm]

Substituting in this the value of z
l from the first of (95),

we get the result

[ww] = [6m, 1] za -|- [c/, 1] z3 -f . . .

in which
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n i-i n n Ca^l [W*1
[bm, 1] = [im]

L
_
J L J

[aa]

r in r ->[mm, 1] = [mml

(K)

[am] [am]

[(/(/]

being similar in form to equations (F).
Next eliminating za in a like manner, we get

[uw] = [cm, 2] a, + . . . [?m, 2] z
? -J- [mm, 2]

and continuing this process it finally appears that

[yv] = [mm, q] [96]

110. Arrangement of the Computations. In computing
the coefficients that appear in the "Auxiliary" or "Reduced

Normal Equations" it is most convenient to arrange the work

in tabular form. The arrangement of the solution will be

illustrated for an example containing four unknowns but it

will be evident that the process can be extended to cover any
case.

Let the Observation and Normal Equations be represented

by equations (A) and (B), there being only four unknowns

z\i
22> zs> Z4 an(i arrange a table as on the next page. In this

scheme of solution the upper lines of the rows in the first

compartment contain all the quantities that appear in the

Normal Equations, together with [mm] and the quantities

in the column headed * which are used in checking the

results in accordance with equations (93) and (94). The

other compartments contain the corresponding quantities

for the Reduced Normal Equations, and the first line in

each compartment gives the coefficients in the Elimination

Equations.
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SCHEME A, SOLUTION OF THE NORMAL EQUATIONS.

a b e d m I
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The logarithms of the quantities in the first row of each

compartment are also written in, and from these by proper
subtractions are obtained the logarithms in the margin, where

[aft]

[aa]'
Ac =

c =
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The last compartment of the table is added to give this

final check and the value of [yy] in accordance with equa-

tion (96).

If the multiplications and divisions are simple or if a table

of squares or products or a computing machine is used the

logarithms will of course be omitted from the scheme of

solution.

112. Example. In order to illustrate the systematic for-

mation of the coefficients that appear in the Normal Equations
as well as the solution of the latter by the above method we
will take the

OBSERVATION EQUATIONS

Z

2z2 = 0.1 = 0.4

First form a table containing the coefficients in these equa-
tions and also the sums s. As a first check the sum of the

quantities in column s should be equal to the sum of all the

quantities in all the other columns.

I. COEFFICIENTS IN THE OBSERVATION EQUATIONS.

No.
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From these we now compute the coefficients in the Normal

Equations (B), and also the necessary quantities for the

check equations (93) and (94).

II. COEFFICIENTS IN THE NORMAL EQUATIONS.

No.
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Substituting these quantities now in the general tabular

scheme of paragraph 110 we have the results on the following

page. The work of the first compartment is performed
without the use of logarithms, as the numbers are simple.

The quantities in the last column should all be zero accord-

ing to the check equations, what small differences there are

being due to the rejection of figures beyond the third place
in the decimals. The decimal points in logarithms to which

correspond negative numbers have been replaced by the

letter n.

The demonstrations that have been made now enable us to

see at once from an inspection of the results in this table

that

z^ = 0.238

pZ4
= 1.6

[wv] = .007

Therefore substituting in equations (73) and (74) we
have

p.Z4
= .047 r^ .032

If the two values of [uu] obtained in the solution had

differed at all we should have taken the mean of the two.

113. If the Elimination Equations (95) are divided by

[aa], [>, 1], [cc, 2], [cfo?, 3], respectively, they become

-f A b z2 -\- A c zz -f- Ad z4 -f Am =
*a + -#c3 + -#rf*4 + J*m =

Cm =
J>m =

And the solution for the unknowns can be effected most

conveniently by arranging the computations in the manner
illustrated on page 109.
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SCHEME A. SOLUTION OF THE NORMAL EQUATIONS.

a
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SCHEME B. SOLUTION OF THE ELIMINATION EQUATIONS.

-

Iogz4 Iogz2

log A

log Cd zt

log Ad z^

114. Filling out this table for the example just solved, we
have

.238
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115. The Weights of the Unknowns. In order to deter-

mine the precision measures of z
t ,

z2 ,
and 23,

it would

next be necessary to compute the weights of the latter quan-
tities. The demonstration of the processes by which these

weights may be found will not be taken up here, as the best

method to adopt varies a good deal with the character of the

example, but a statement of the results in the general form

of solution will be given.

By treating the Elimination Equations in a way similar to

that used in deriving equation (E) of paragraph 76 from

equations (B) of the same paragraph, we may show that

Zl + Am -f Bm a, -f- Cm a, + Dm as =
*, + 3m + Cm & + Dm fr = (100)
* + Cm + A, 73

=

where the a's, /?'s, y's,
are determined from the equations

a, = Bd + Cd h + h = Q

Ac +^c0l + a, = J?c +& = (101)
Ab + ai = Cd + 73 =

Then by an application of the principles of Rule 1, para-

graph (77), it may be shown that

1
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These equations can of course be extended to cover any
number of unknown quantities, and tabular schemes for the

computations of the a's, /?'s, y's, . . . and of the weights

Pzj Pzz
> Pzz,

... can readily be arranged.
For a general demonstration of these results, and also for

a discussion of special methods of solution, consult

Johnson, "The Theory of Errors and Method of Least Squares,"

chap. ix.

Wright,
" Treatise on the Adjustment of Observations," chap. iv.

Chauvenet,
"
Spherical and Practical Astronomy," pp. 530-649.

THE METHOD OF CORRELATIVES.

116. The method of adjusting "Conditioned Observa-

tions
"

explained in paragraph 33 is perfectly general, but

where there are many conditions to be satisfied the solution

is apt to be very laborious. For the case that occurs most fre-

quently in practice, in which the observations are direct and

equal in number to the number of unknown quantities, the

process of solution devised by Gauss and called the " Method

of Correlatives" is the most convenient. This method is

derived as follows :

Let q observations, M^ M^ . . . M
q ,

of the respective

weights />!, p.,,, . . . pq,
be made directly upon the values

of q unknown quantities, and let the most probable values

of the unknowns be

= J/i -f VH za = J/a -f q
.

Where v 1? u2, . . . v
q ,

are the most probable corrections to

apply to the observed values as well as in this case the

residuals of the observations.

If the ri condition equations are not linear they may be

reduced to that form by the method of paragraph 44, so that

we may assume for our
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CONDITION EQUATIONS

l"l + a2 2 + aqVq + -\

b
l v l -f- 2 t?2 -f- . . .

?
u
9 + w* 2 =

(A)

In which the quantities m
lt
w2 ,

. . . mn',
would all be zero

if the observations were exact. It is to be observed that the

coefficients a, d, . . . are not arranged in the same order in

these equations as they are in the observation equations of

paragraph 107.

The values of v t , 2 ,
v
q,

must be determined so as to

satisfy the above equations and also by the principle of Least

Squares, so as to make

-f- Pz^ + Pqvq = a minimum.

Corresponding with a minimum value of this last we have

PlVldOl + P2V2dv2 -f . . . pq
V
q
dv

q
= (B)

for all possible simultaneous values of do^ c?y2,
. . . dv

q ;
that

is, for all values which satisfy the equations,

-f- a2dv2 -|~ . . . a
qdvq

=
=

(C)

l
q
dvq =

lidVi -J- lzdvz -f- Iqdvq
=

obtained by differentiating equations (A).

Therefore, denoting the first member of (B) by R and the

first members of (C) by S^ S2, ...
,>,

it will be nec-

essary that

R _ k^ - k2Sz
- ... kn,Sn, = (D)

where &
t , k%, ... kn<, are undetermined coefficients.
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This last equation will be satisfied if the coefficient of each

differential in it is made equal to zero, that is, if

(103)

Pqvg == k vaq -f- KyOq -(- kn'lq

All that remains therefore is to find values of v iy v2 ,
... vq

and A^, A;2> . . . AV, which will satisfy simultaneously equa-

tions (A) and (103), and that this may be done is easily

seen from the fact that we have the same number of equations

as unknowns.

Substituting the values of w
x ,
v2,

... v
q

from equations

(103) inequations (A) we have the following :

CT ab alMZ- - #2 i. *vZ

jr. y <tf>
,, - &&

,. y ^^
to *

-p-
' -

*fe *
*T
-' 2

p-
'

(104)

CT? 6? II

The solution of these equations gives at once the values of

A*,, &2, . . . Ay, which are called the "Correlatives" of the

Condition Equations. The values of Vj, u2 , . . . v
q

are then

found by substituting the values of the k's in equation (103).

117. As equations (104) are of the same general form as

a set of Normal Equations, Gauss's Method of Substitution

can be advantageously employed in the solution.
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When there is but a single equation of condition the second

members of equations (103^) reduce to their first terms, and

equations (104) reduce to the single equation

CLd

^2 + m, = (105)

and the values of v lt v2y ... v
q

in (103) become

a,

v =
aa

' P
It is from these results that the rules in paragraph 35 are

derived.

118. Example. Suppose we have given the observations

MI = 2.02, weight 3

Mt = 4.13, 2

Ms = 2.52,
" 5 (a)

MI = 2.67, 7

M&
= 2.84, 4

and let the most probable values of the unknowns be repre-

sented by

Z, = Mi + !,
22 = M2 -\- Vt ,

. . . 25
= JJf5 + VS (b)

Also suppose that the unknowns are subject to the conditions

Z 2 2 S 2 14-0

-3. = 1.5 (c)
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Then expressing these conditions in terms of the corrections

by means of (a) and (b), we have the

CONDITION EQUATIONS

^1 + V . + V3 + U* + U 5 + -18 =
w2

- vt
- .04 =

Referring to paragraph 116, we see that in this example

n' = 2, m 1
= 0.18, m z = 0.04

For the purpose of computing the coefficients in equations

(104) we next arrange the following table.

p
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Substituting these results in equations (104), we have

^ 4- &2 4- .18 =
420 14

(e)
5 9

k, -\ >L .04 =
14 14

Solving, &! = .1647
(^

&2 = .1537

Then from equations (103) we get at once

t>! = .0549, v4 = .0455,

v2 = .0055, vs = .0412. (g)
vs = .0329,

And by substituting these results in (b) we can obtain the

values of z^ 22, 28 ,
24, z6 .

The above is the solution of Example 70, page 127.



EXAMPLES.

1. An urn contains five black balls, three red balls and

two white balls. If three balls are drawn from the urn what

different combinations may result, and what is the probability
of each ?

2. In a single throw with a pair of dice what is the

probability that neither ace nor doublets will appear ?

y

3. Four cards are drawn from a pack. What is the

probability of getting four aces? Of getting one of each

suit?

4. From a lottery of thirty tickets, marked 1, 2, ... 30,

four tickets are drawn. What is the probability that num-

2
bers 1 and 15 will be among them?

145

5. Find the odds against the appearance of 7 or 11 in a

single throw with a pair of dice. 7 : 2

6. I toss up n coins. What is my chance of getting just

one head ?

7. In a single throw what are the relative chances of

throwing 9 with two dice and with three dice ? 24 : 25

8. From 2 n counters marked with consecutive numbers

two are drawn. What are the odds against having an even

sum ? n : n 1

9. In two trials with a single die what is the probability

of throwing (a) an ace the first time only? (b) at least one

ace ?

10. Find the probability of throwing doublets one or

91
more times in three trials with a pair of dice.

216



118 METHOD OF LEAST SQUARES.

11. Find the probability of throwing exactly three aces

125
in five trials with a single die.

3888

12. A certain stake is to be won by the first person who
throws 5 with a die of twelve faces. What is the chance of

the sixth person ?

13. A and B play chess. A wins on the average two

games out of three. What is A's chance of winning just

80
four games out of the first six ?

243

14. A and B shoot alternately at a mark. A hits once in

n times and B once in n 1 times. Find their chances of

first hit, and the odds in favor of B if A misses on his first

shot. Even, n : n 2

15. In how many trials will it be a wager of 4 to 3 that

double five will be thrown with a pair of dice ? 30

16. Find the probability of throwing one and only one

5
ace in two trials with a single die.

18

17. If I have three tickets in a lottery of four prizes and

41
eight blanks, what is my chance of drawing a prize ?

55

18. Find the probability of throwing at least four aces in

203
six trials with a single die.

23328

19. On an average seven ships out of eight return to port.

Find the chance that out of five ships expected at least three

... 16121
will return.

16384

20. In a lottery containing a large number of tickets,

where the prizes are to the blanks as 1 : 9, find the chance

of drawing at least two prizes in five trials.

100000
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21. In a purse are ten coins, all nickels except one which

is a five-dollar gold piece ;
in another are ten coins, all

nickels. Nine coins are taken from the first purse and

placed in the second, and then nine coins are taken from the

latter and placed in the former. If you now had your choice

which purse would you take ?

22. A and B engage in a game in which A's skill is to

B's as 2:3. What is A's chance of winning at least two

games out of five ?

23. If A's skill at a certain game is double that of B,

what are the odds against A's winning four games before B
wins two? 131 : 112

24. A party of twenty-five take seats at a round table.

What are the odds against any two specified persons sitting

next to each other ?

25. A has three shares in a lottery in which there are three

prizes and six blanks. B has one share in another where

there is but one prize and two blanks. What are their

relative chances of getting a prize ? A : B = 16 : 7

26. Expand through the terms involving h* and &8
,
the

expression

- + (y + *)'
'X -\- h

When a; is 1 and y is -, does - 4- y* increase or
2 x

diminish when x and y begin to increase at the same rate?

27. Given f (x, y) = x2

(a -j- y)
8
, expand the expres-

sion (a; 4- A)
2

(a + y + &)'.

28. Find the value of Iog10 a -j- cos
ft,

when a =. 1001

and b = 0.1. Give the result first to five places and then

to seven places of significant figures, in each case without the

aid of tables. 4.000433

29. Transform to the new origin, (2, 3, 1), the equa-

tion, z2
-f </

2
-4- a2 4 x -f- 6 y - 2 z - 11 = 0, the
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axes remaining parallel to the original ones. The equations
of transformation are x = 2-j-a;', y = 3-j-t/',
2=1 + 2'. x2

-f y
2
4- 22 = 25

30. Find the minimum value of 2

-)- xy -|- y
2 a by.

(ab a* b2
)

3

31. Find the values of
, y and 2 that render a maximum

or a minimum the function a;
2

-f- y
2

-J- z2

-(- a; 2 2 a?y.

32. Find the values of x and y that render a maximum
or a minimum the expression sin x -\- sin y -j- cos

(a; -j- yj.

33. Find the co-ordinates of a point the sum of the squares
of whose distances from three given points, (a^, y, ), (z2 , y2 ),

. . . (Xl -|- 2 + 3 )

(a:8 , y8 ), is a minimum. a; = -

o

34. Given the volume, a8
,
of a rectangular parallelepiped,

find its shape when its surface is a minimum.

35. Find the volume of the greatest rectangular parallelo-

piped that can be inscribed in the ellipsoid

a^ y
2 2 Sabc

^
" "

*
" "

^
:

~3~7^

36. In the Physical Laboratory apparatus for illustrating

the Estimation of Tenths, the reading of the micrometer head

for a certain setting is computed to be 2.3038, which may be

taken as exact. Setting the apparatus by the eye the follow-

ing readings are obtained :

2.314 2.324 2.310 2.519 2.326

2.320 2.302 2.313 2.305

What are the accidental and real errors and the residuals ?

Are there any constant errors or mistakes ? If there are

constant errors are they of the first, second, or third class ?

How do you tell?
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37. Are the following observations such as to call for an

application of the Method of Least Squares in their adjust-
ment?

x -\- y z -\- u = 5 3 y z u = 1

x 2y -\-2z-\- u = 1 x y -f- 4z
-|- 6w = 9

38. In the case of direct observations, what other quanti-
ties besides the arithmetical mean might reasonably be

assumed to give plausible values of the unknowns ? Why is

the arithmetical mean preferred to these ?

39. Find the most probable value of a quantity M from

the observations

216.27 216.16 216.04 216.19 216.44 216.58

.29 .43 215.99 .39 .51

.33 .09 216.23 .14 215.94

Also test the result by finding the sum of the residuals.

M 216.251

40. In the determination of a certain wave length, Row-
land made the following observations. Find the most prob-
able wave length.

4.524 4.515 4.513 4.507 4.501 4.485 4.517 4.493 4.505

.500 .508 .511 .497 .502 .519 .504 .492

4.5055 0.0017

41. Ten measurements of the density of a body gave
results as follows. Find the most probable density.

9.662 9.664 9.677 9.663 9.645

.673 .659 .662 .680 .654

9.6639 0.0022

42. In a triangulation of the U. S. Coast Survey an angle

was measured twenty-four times witli results
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116 C
43'
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47. In sixty-six determinations of the velocity of light

made at Washington the percentage of errors of different

magnitudes was found to be as follows:

Over

Equal to



124 METHOD OF LEAST SQUARES.

52. Find the altitudes in Example 49 if the observations

have weights 5, 3, 6, 2, 4, respectively.
-"

53. Solve the example in paragraph 31, giving the obser-

vations the weights 25, 25, 4, 4, 4, 4, 4, 4, 1, respectively.

Elevation of P5 = 320.25

54. Find the most probable values of z t ,
22, and z8 from

the observations

2X
= 552.10 wt. 16 21 22

= -75 wt. 1

z2 -f- za = .15 " 9 Zi -J- z2 zs = 552.05 " 1

z3 = 551.23 "4 z
l

z3 = .70 " 1

22 = 551.30 " 4

22 = 551.2345

55. In the triangulation of Lake Superior there were

measured at station the angles

F P = 62 59' 40".33 wt. 5

F E = 64 11 34 .92 7

F B = 100 20 29 .12 " 4

P B = 37 20 49 .55 7

E O B = 36 8 55 .86 "4

Required the adjusted values of the angles.

F P = 40".28 0".34

56. In the U. S. Lake Survey the following angles were

measured at station North Base :

(1) Crebassa Middle 55 57' 58".68 wt. 3

(2) Middle Quaquaming 48 49 13 .64 " 19

(3) Crebassa Quaquaming 104 47 12 .66 17

(4) Quaquaming South Base 54 38 15 .53 " 13

(5) Middle South Base 103 27 28.99 6

Find the adjusted values of the angles.

(1) = 58".965; r = 0".28
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- 57. Adjust the following observations of differences in

level:

Altitude of A 401.3 wt. 16 C above B 72.5 wt. 9

A above B 220.8 " 16 A B 222.0 1

A (7 150.2 " 4 Altitude of J? 180.7 " 1

58. ])8. In "Conditioned Observations" can the number of

observations required be less than the number of unknown

quantities? Why must the number of conditions be less

than the number of unknowns?
59. From the following measurements of the angles formed

at the centre of a disk by four radial lines, find the most

probable values of the angles.

A = 104 25' 13" O = 86 33' 20"

B = 98 13 47 D = 70 48 23

A = 104 25' 2".25

Also solve giving the observations the weights 5, 2, 1, 4,

respectively.

60. Four observations on the angle A of a triangle gave
a mean of 36 25' 47", two observations on B gave a

mean of 90 36' 28", and three on G gave 52 57' 57".

Adjust the triangle. A = 36 25' 44".2
;

r = 7".7

61. Five angles at a station are measured, and also their

sum. The observed sum differs from the sum of the five

observed parts by the amount d. What are the adjusted
values of the angles ?

62. The three angles of a spherical triangle are measured

with results

A = 46 17' 38".32 B = 73 35' 16".15

C = 60 7' 5".16.

Adjust the triangle, knowing that the spherical excess is

2".475. A = 39".3; ^ = 1".6
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63. At the station Pine Mountain the following angles
were observed between surrounding stations :

Jocelyne Deepwater 65 11' 52".500 wt. 3

Deepwater Deakyne 66 24 15 .553 " 3

Deakyne Burden 87 2 24 .703 " 3

Burden Jocelyne 141 21 21 .757 " 1

Find the most probable values of the angles.

64. Solve Examples 55 and 56 by the method of " Con-

ditioned Observations."

65. A is a station whose altitude is known to be 5240.1

feet. JB and C are floats on a lake, and D is a signal point.

From the following observations determine the most prob-
able altitudes of J?, C and D.

C below A 720.1 wt. 3 B below A 719.7 wt. 3

D A 200.3 "5 B D 520.9 " 2

C " D 520.4 " 2

66. Given the following observations, subject to the con-

dition Zi -j- za = zs ,
find the most probable values of

zly z^ and z3 .

2zi za + zs = 3.0 222 za = 1.0

2z! 3z2 = 4.5 Zi -f- 222 = 5.1

Zl + z3 = 3.8

67. The chemical composition of a specimen was found

by several observers to be as follows :

Pb = .52 Other substances = .09 Au and Ag = .39

Ag = .27 Pb and Ag = .78 Impurities = .10

Au = .11 Pb and impurities = .62 Au = .12

From these observations find the most probable composition
of the specimen.



EXAMPLES. 127

68. From the following observations what are the best

values of the unknowns, supposing that y and z must be

equal ?

x -\- y = 5.2 wt. 4 y -\- z = 4.2 wt. I

x = 3.0 " 9 z = 2.0 " 4

85 -- = 1.1 " 1

69. In determining the difference in longitude between

various cities the results obtained were

(1) Cambridge Washington 23 4K041 wt. 30

(2) Cambridge Cleveland 42 14.875 " 7

(3) Cambridge Columbus 47 27.713 " 8

(4) Washington Columbus 23 46.816 " 7

(5) Cleveland Columbus 5 12.929 " 5

Adjust these observations.

70. The capacity of a condenser is known to be 14.0 m. f.

It is divided into five sections, a, b, c, d, e, and it is known

that the difference between b and d is 1.5 m. f. Find the

most probable capacities of the sections from the observa-

tions

a = 2.02 wt. 3 d = 2.67 wt. 7

b = 4.13 "2 e = 2.84 " 4

c = 2 '52 " 5 a = 1.9651

71. If the unknowns in the following observations are

subject to the condition x -|- 2y -|- 3z = 36, what are

their adjusted values?

x = 4.3 wt. 1, y = 5.7 wt. 4, z = 7.3 wt. 9

x = 3.77

72. A cannon is discharged horizontally from the top of

a bluff. Observations on the time, and distance of fall of the

ball gave the results

t = 0.5 1.0 1.5 2.0 seconds

8 = 1.2 4.0 9.1 15.0 metres
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What curve, passing through the point of departure of the

ball, will represent the above observations ?

73. An Argand burner shows the following efficiencies

with varying rates of gas consumption :

g = 2.0 2.3 2.8 3.3 4.0 4.5 5.0 feet

E = 2.1 2.4 2.5 3.0 3.2 3.8 4.1

Find the equation of the straight line which best rep-

resents the relation between g and E. The measurements

on g are without appreciable error.

74. Observations are made upon the expansion of Amyl
alcohol with change in temperature as follows :

V = 1.04 1.12 1.19 1.24 1.27 cu. cm.

t = 13.9 43.0 67.8 89.0 99.2 C. degrees

If V = 1 -)- -Z? t -j- C t
2

expresses the law connect-

ing the volume and temperature, find the most probable
values of B and C.

75. In a Hooke's joint where the angle between the axes

is 45, x being the angular rotation of the driver, and y
that of the follower, from the following measurements find

the equation of a curve that will represent the relation

between x and y x.

X
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the measurements are given below. From them derive an

equation to express the temperature at any time of the year.

Jan. 4.66 May 9,83 Sept. 8.16

Feb. 5.42 June 10.09 Oct. 6.55

Mar. 6.77 July 9.71 Nov. 5.10

Apr. 8.59 Aug. 9.14 Dec. 4.41

y = 7.369 + 0.9854 sinSOz - 2.7084 cos30x

-f 0.0100 sin60a; 0.1950 cosGOa;

- 0.0133 sin 90sc-f 0.1783 cos 90a

In this answer the values of x begin at the 15th of Janu-

ary, and represent the time in months.

77. The law connecting the time of vibration of a pendu-
lum with its length is assumed to be of the form, T = m Ln

.

From the following observations find the most probable values

of m and n.

T = 12.9 'll.6 10.4 9.7 5.3 4.6

'L = 164.4 132.9 107.6 93.5 28.4 20.6

L is in centimetres, T in tenths seconds. n 0.5000

m = 1.0044

78. Determine the equation of a curve which will repre-
sent the following observations :

X

0.0
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80. At a station P the angles between a straight line

passing through P parallel to the axis of X and the direc-

tions from P of four points P1} P2,
_P8,

P4 ,
are measured.

Having given the coordinates, (a, >), of the four points,

find the coordinates of P.

Point.

Pi

If the coordinates of the point P are (x, y), and the

angle is denoted by A, we have

Coordinates.
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84. If twenty measurements of an angle give a result with

an A.D. of 0".38, and it is required to find the angle so

that the A.D. shall be only 0".25, how many more observa-

tions must be made ? 27

85. From the following determinations of the area of a

field find the most probable area and its probable -error.

5674 12, 5680 4, 5685 3, 5682 1, 5678 2

4 = 5681.41 0.84

86. From the following measurements by Fizeau and

x others, find the most probable value for the velocity of light

together with its probable error. Measurements are in kilo-

meters.

298000 1000 299990 200 299930 100

298500 1000 300100 1000

V = 299917 88

87. Two different instruments give for the value of an

angle, f
11 *

34 55' 33".0 4".l, 34 55' 36".0 6".3

What is the best value to take for the angle ?

34 55' 33".9 3".4

88. Determinations of the difference in longitude between

Washington and Key West made on seven different days

gave the results

I9
m

1'.42 0'.044 19
m

l
s
.60 0'.046

1 .37 .037 1 .55 .045

1 .38 .036 1 .57 .047

1 .45 .036

What is the best value and its probable error?

r.4GO 0*.016
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89. In the triangulation of Lake Ontario two different

instruments gave for an angle, 74 25' 5".429 0".29 from

sixteen readings, and 74 25' 4".611 0''.22 from twenty-
four readings. Find the most probable value of the angle
and its probable error.

90. In each of Examples 39-45 find the mean and prob-
able errors and average deviation of each observation and of

the most probable value, using formulas from (50) to (63)

according as they apply.
91. In Example 42 divide the observations in their order

into six groups of four observations each and compute the

mean of each group. Then determine the probable error of

the first of these means :
(
1 ) considered as a single measure

of four times the weight of those in Example 42
; (2) directly

as one of six observations of equal weight; (3) as a deter-

mination from its four constituents. 0".67
;
0".72

;
1".00

92. The following twenty-nine measurements on the den-

sity of the earth, made by Cavendish, give as a mean result

5.48. What is the probable error of an observation ? Solve

by the usual method and also by taking the residual that

occupies the middle position. 0.14

5.50
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Find the probable errors and weights for a single observa-

tion in each case, and also the adjusted length of the line

and its probable error. 741.146 0.015

95. Twenty-one determinations of a chronometer correc-

tion gave results

- 8.78 - 8.78 - 8.68 - 8.80 - 8.96 - 8.83 - 8.79

.76 .51 .63 .75 .64 .70 .90

.85 .64 .58 .78 .65 .64 .93

Find the probable error of the mean by using both formulas

(53) and (57), and also determine the probable error of a

single observation by taking the middle residual.

0.017; 0.018; 0.09

96. In the following observations show that M = 49.64,

fi
= 1.95, r = 1.31, /AO

== 0.40, r = 0.27, p.3
= 0.87,

rz
= 0.59.

M = 48.81 48.76 49.53 51.56 50.38 49.84

p = 5 4 5 3 2 5

97. Observations on the time of ending of a transit of

Mercury are made by different observers with a variety of

instruments and under more or less favorable circumstances.

If the weights assigned by the computer are as indicated, find

the best value for the time and its probable error.

b
h
38

m
23' wt. 1 38

m
26* wt. 3 38

m
19* wt. 3

37 55 " 38 21 2 38 21 " 2

38 10 " 1 38 18 2 38 15 2

t = 5* 38
m

19
S
.9

98. An angle is measured five times with a theodolite, and

seven times with- a transit, giving results

Theodolite, 31".7, 39".S, 40".7, 28".6, 32".3

Transit, 32 .S, 30 .7, 38 .2, l>9 .3, 41 .6 35".3, 36".2
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If the relative values of readings by the two instruments

are as 3 to 2, what is the most probable value of the angle ?

What is the mean error of the result ?

^99. Given J/x
= 65.58 .59, Jf2 = 35.15 .93,

M8 = 49.64 .27, find the probable errors of 4 J/t

3 J/8 + 2 J/3 and of ^ + ^ - ^3
. 3.69

;
0.43

2* O T:

100. The three angles of a triangle are measured, and the

probable error of each observation is r . What is the prob-
able error of the triangle error ? r y/~3~

101. The zenith distance of a star on the meridian is

observed to be z = 21 17' 20' .3 2".3. The declina-

tion of the star is given as d = 19 30' 14".8 0".8.

What is the latitude of the place and its probable error ?

L z -f d = 40 47' 35".l 2"4.

102. The zenith distance z of a star at upper culmina-

tion is observed ,n times, and its zenith distance z> at

lower culmination n' times. If the latitude is given by
L = 90 -- | (z -f- z'), and the probable error of an

observation is r, what is the probable error of the latitude ?

103. The horizontal force necessary to start a 100-pound

weight sliding along a table is observed to be 15.5 0.2

pounds. Find the probable error of the coefficient of friction.

104. If a line is measured by the continued application of

a unit of measure, and r is the probable error of the placing
and reading of this measure, what is the probable error of

the length I ? r f[~
105. If the average deviations of z1? z, 2s? are a

t
^ c

>

respectively, what is the average deviation of zf -(- z2
2
-\- zs

2
?

106. If the radius of a circle is measured with result

1000.0 2.0, how should the circumference and area be

expressed ?

107. Two sides, a and
>,

and the included angle C of

a triangle are measured with results a = 252.52 .06
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feet, b = 300.01 .06 feet, C = 42 13' 00" 30".

What is the area and its probable error ? 25452 9

108. Measurements of adjacent sides of a rectangle gave
a r1? and b r2 . What is the probable error of the

area, and for what kind of a rectangle will this probable

error be the least ?

109. If the measured sides of a rectangle have the same

a.d., what is the a.d. of the diagonal determined from

them ? Same

110. If the sides of a rectangle are measured in the

manner indicated in Example 104 and found to be a and b,

wrhat is the probable error of the area ?

111. The correction to be applied to a chronometer is

found to be -(- 12
m

13*.2
8
.3. Ten days later the cor-

rection is again determined and found to be 12
m

21*.4 0*.3.

What is the mean daily rate and its probable error ?

0*.820 O
s
.042

112. Measurements of the compression of the earth's

meridian have resulted in

.000046
294

What is the probable error of the denominator 294 ? 3.98

113. The current flowing in a circuit is due to two

sources whose electromotive forces are determined to be

!
= 200 2, e3 = 400 3. The resistance of the

circuit is 30 1. Find the current and its probable error.

20 0.68

114. The side b and angles B and C of a triangle are

measured with results b = 106 .06 metres, H =
29 39' 1', C = 120 7' 2'. What is the most

probable value of the angle A and of the side c ?

A = 30 14' 2'.2; c = 185.5J5 0.15

115. The distance between two divisions on a graduated
scale is measured by a micrometer. Show that the average
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deviation of the mean of two results is the same as the aver-

age deviation of a single reading.

116. If the weights of the determinations of three angles

A, B, C, are 3, 3, 1, respectively, what is the weight of

the sum of the three angles ? 0.6

117. If the weight of x is />, what is the weight of

loga * ?

118. If 05 = and the weight of y is p, what is the
c

weight of x ? czp
119. In Example 107, how closely must the parts be

measured in order to obtain the area within 0.5 per cent ?

120. From observations on I and t the value of g is

to be computed by the pendulum formula

t = 7T \/
9

What changes in g will be produced by changes in I and

t of Si and 82 units, respectively, and what are the allow-

able errors in I and t it g is to be determined within

1 per cent ?

121. The moment of inertia of a cylindrical bar is to be

obtained from measurements on its mass w, its length A,

and its diameter d. The error in the determination of m
is negligible, the precision of the determination of d is four

times that of h. If the measurements give m = 48,

h = 8.000, d = 1.200 0.10, and

T I ,I = m I

1 12 16

what is the probable error of I, and what should be the

ratio of c? to A to determine I most accurately ?

d : h 256 : 9
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122. If observations give for a certain quantity x the

value 303, with a mean error of 2, what is the mean error

of the expression 3 x -f- Iog10 2 x ?

123. The probable error of the determination of the

angle A is 20". What is the maximum probable error of

sin A -j- oos A ?

124. If the probable error of an observation on an angle
is 10", is there any difference between the probable error

of the function sin A -\- cos A -\- sin C and of the func-

tion sin A -j- cos J5 -f- sin (7, supposing A and B are

of the same magnitude ?

125. Given the observations,

Zj
- 2z2 + z8

- 3 = 3*! -f- 22 -f 228
- 17 =

3z2
- 4z8

- 2 = -
! 4- 4Z2 -j- 3z, - 10 =

Find the most probable values of zu z,, zs, and also their

weights and precision measures.

Z! == 3.541
; p^ = 29

;
r
Zl
= .024

126. Find the weights and precision measures of the

unknowns in Examples 48 to 57.

127. Determine the probable errors of the constants in

Examples 72 to 79, inclusive.

128. The length of a pendulum which beats seconds is

given by

I == /' -|- I q -- s\ I' sin'Z

where I' is the length at the equator, q the ratio of
289

the centrifugal force at the equator to the weight, and s the

compression of the meridian regarded as unknown. Putting

I' = 991 + *, q - s I' = y,
\ 2

I

observations in different latitude* gave in millimetreR the
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following equations, from which we are to determine I and

a together with their probable errors :

x -|- 0.969y =
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133. On the average how many observations must be made

before an error as large as three times the mean error will

occur ?

134. In Example 46, assuming that all errors between any
two limits fall half way between those limits, compute the

average deviation and mean error of an observation and com-

pare their ratio with the theoretical value given in the table

in paragraph 55.

135. A line is measured 500 times and the probable error

of each observation is 0.6 cm. How many errors should

occur between 0.4 c.m. and 0.8 c.m. ?

136. Show how the value of -n- could be determined

experimentally from observations such as those in Example
131.

137. In a system of observations all equally good, r being
the probable error of a single observation, if two observations

are taken at random, what quantity is their difference as

likely as not to exceed, and what is the probability that the

difference will be less than r? r^lT; 0.367

138. In the following measurements of an angle, ought

any of the observations to be rejected ?

12' 51".75 47".85 47".40 48".90 44".45

48 .45 51 .05 48 .85 50 .95

50 .60 47 .75 49 .20 50 .55

139. Determine whether any of the observations in

Example 44 should be rejected.

140. A quantity M is measured with the results given

below. Ought all the observations to be retained ?

M = 236, 251, 249, 252, 248, 254, 246, 257, 243, 274

141. A certain angle has been laid out with such accu-

racy that its true value may be taken as exactly 90. Twenty-
five observations are made upon it with a transit that it is
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desired to test, and the result obtained is 89 59' 57" 0".8.

What are the odds in favor of a constant error in the instru-

ment between 1" and 5"? Between 0" and 6"?

908 : 92 ;
86 : 1

142. Repeated measurements of a standard metre bar

with a decimetre scale gave a result 10.032 0.010. What

are the odds in favor of a constant error in the scale between

43:7

143. Two determinations of the length of a line gave

683.4 0.3 and 684.9 0.3, respectively. Show that the

best value for the length is 684.15 0.51, and that the

probable systematic error of each determination is 0.65.

144. Two men A and B observe an angle repeatedly

with the same instrument with results

A. B.

47 23' 40" 23' 35" 47 23' 30" 24' 00"

23 45 23 40 23 40 23 20

23 30 23 50

Is there any relative personal error, and what is the best

final value?
*

47 23' 38".2 1".6

145. Three independent determinations of the capacity

of a condenser made with three different instruments gave
results 42.22 0.21, 43.40 .15 and 44.20 0.18.

What is the most probable value of the capacity ?

For extended treatment of the subject illustrated in Exam-

ples 143 to 145 see Johnson, "The Theory of Errors and

Method of Least Squares," chap. vii.

146. In an estimation of tenths what is the probable error

of an observation ? What is the average deviation ? 0.025

147. In obtaining the angle of deflection of the needle of

a tangent galvanometer by the usual method what is the

probable error of the result ?
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148. If all the errors of a series of observations must fall

between and a, and the frequency of any error is pro-

portional to its magnitude, what is the Curve of Error?

What are the values of r, a.d., and /* ? r = -
V"2~

149. In Example 148 what is the probability that the error

of a single observation will be as large as 0.5 a.

150. If all values of x between and a are possible,

and their probabilities are proportional to their squares, find

the mean value of x and the probability that x will be as

large as 0.5 a. Also draw the Curve of Error.

151. What is the greatest probable error of a logarithm
found by interpolation in a seven place table ? .000000015

152. Given the following set of Normal Equations, together

with [mm] = 1.3409, find the most probable values of

the unknowns and their weights and probable errors. There

were sixteen observations.

3.1217 z l 4- .5756 z2
- .1565 z3

- .0067 z<

- 1.5710 =
.5756 z

l 4- 2.9375 z2 -f- .1103 za
- .0015 z<

4- .9275 =
- .1565 z l 4- .1103 z2 4- 4.1273 z3 4 .2051 zt

+ .0652 =
- .0067 z,

- .0015 z2 4- .2051 z3 -j- 4.1328 z<

-f .0178 =
z

l
= 0.583 0.018

z4 = - 0.004 0.015

153. From ten observation equations, for which was found

[mm] = 2.6322, there resulted the normal equations

5.2485 zj
- - 1.7472 z2 - 2.1954 z, -f- 0.5399 =

- 1.74722
t -f 1.SS59 za 4- 0.8041 z3

-- 1.4493 =
- 2.1954 zt -j- 0.8041 z2 -j- 4.0440 z8 - 1.S6S1 =
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Find the most probable values of z
x ,

z2 and za together with

their probable errors. z^ =. 0.42 0.11

154. Find the most probable values of the unknowns in

the normal equations

459 zx 308 z2 389 z3 -f- 244 z4 507 =
_ 308 zt -f- 464 z2 -f- 408 zs 269 z4 -f 695 =

389 ! 4- 408 z2 -f 676 z3
- 381 z4 -f- 653 =

244 zt 269 z2 331 z3 -f- 469 24
-- 283

[mm] = 1129

z4 = _ 0.488
; p,t

= 281

155. If thirteen observation equations give rise to the

result [mm~\ = 100.34 and to the normal equations

17.50 zt
- 6.50 z2 - 6.50 z3

- 2.14 =
6.50 zl -j- 17.50 z2 6.50 z3 13.96 =
6.50 zt 6.50 z2 + 20.50 z3 + 5.40 =

show that the most probable values of the unknowns are

zt = 0.67 0.60, z2 = 1.17 0.60, 28 = 0.32 0.55



APPENDIX.

ELEMENTS OP THE THEORY OP PROBABILITY.

200. Definition. If an event can happen in a ways, and

fail in b ways, and all these ways are equally likely to occur,

the probability of the happening of the event is
^-,a I o

and the probability of its failure is : -.
a -j- b

Since the event must either happen or fail, the sum of the

above probabilities must represent a certainty. But_ _ -i

a -f b

That is, the probability of a certainty is expressed by unity.

Also, if the probability, F, of the happening of an event is

known, the probability of its failure is given at once by
1 -P.

201. Example A. A single throw is made with a pair of

dice. What is the probability that the sum of the spots

turned up will be 5 ?

Number of ways of throwing the dice is 6 X 6 == 36

Number of ways of throwing five is 4

4 1
.-. Probability of throwing five is

36 9

Example J3. A coin is tossed up six times. Find the

chance that three heads and three tails will be the result
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Number of ways of throwing the coin is 2* = 64

6x5x4
Number of ways of throwing three heads is = 20

1X2X3
20 5

Probability of throwing three heads is =
64 16

202. Compound Events. A certain event can happen in

a ways and fail in b ways : a second independent event can

happen in a' ways, and fail in b
1

ways, all of these ways

being equally likely to occur.

To find the probability of the simultaneous occurrence of

the two events.

The total number of ways in which the events can take

place together is (a -\- b) (a
1

-\- b')

(1) Both events can happen in a a' ways.

(2) Both events can fail in b b' ways.

(3) First event can happen and second fail in a b' ways.

(4) First event can fail and second happen in a' b ways.

The probability of (1) is

(a + b) (a
1 + b')

The probability of (2) is
;

,
; ; rr-

(a + b) (a
1

-j- b
1

)

ft />'

The probability of (3) is

The probability of (4) is

( + *) (' + *')

aTb

(a -f b) (a
1 + b')

But the probability of the happening of the first event is

,
and of the second event is

, r/ ,
etc. Hence it

will at once be seen that the probability of the simultaneous

occurrence of two independent events is equal to the product
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of the probabilities of the occurrence of the component events.

Or, in general, if Plt P2 ,
. . . Pn are the probabilities of

the occurrence of any number, /?, of independent events, the

probability of the simultaneous occurrence of all the events is

Pl X P, X ... Pn (A)

By independent events is meant those such that the manner

of occurrence of one has no influence upon the manner of

occurrence of the others.

203. Example C. The chance that A can solve a cer-

2
tain problem is

,
and the chance that B can solve it is

Find,
12

(a) The probability that both will solve it.

(b) The probability that the problem will be solved.

For (a). This is a question as to the probability of the

concurrence of two independent events. Therefore by an

application of (A), the probability that both will solve the

problem is

2
N

5 A
3

'

12 18"

For (b). The problem will be solved unless both fail.

The probability that both will fail is v =
8 12 86

7 29
The probability of getting a solution is 1 - - = -

36 36

Example D. A pack of cards is cut, and those taken off

then replaced. In how many trials will it be an even wager
that an ace will be cut?
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Let n be the number of trials. Then n is to be found

from

\= -
52 / 2

where the first member of the equation represents the proba-

bility that we shall not fail n times in succession.

Solving for n,

log 2
n = 2

log 52 log 48

= 8.7

In nine trials then there is a little more than an even chance

of cutting an ace.

204. Dependent Events. If we have a number of events

whose modes of occurrence are dependent one upon another,

the probability of their concurrence will be found by the same

method as in paragraph 202 ; a' now denoting the number

of ways in which after the first event has happened the

second will follow, and b
1

the number of ways in which after

the first has happened the second will not follow, etc. Accord-

ingly, the general formula (A) of paragraph 202 applies to

dependent events a well as to independent ones.

Also, if an event can take place in a variety of ways, the

total probability of its occurrence will be the sum of the

probabilities of its occurrence in each of the different ways.

205. Example E. Suppose two purses contain respect-

ively five dimes and a copper, and six dimes. A coin is taken

at random from the first purse and placed in the second, and

then a coin is transferred from the second to the first. What
is the probability that the copper will remain in the first purse ?

The probability that the copper will be taken from the first

purse and placed in the second, and then returned to the first

purse is

1_ J_ J_
~6

X Y 42
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and the probability that the copper will not be taken from

the first purse at all is

5

~6~

Therefore the probability that the copper will finally remain

in the first purse is

_1_ 5_
3C ^

AO R Af> 1

FUNCTIONS OF SEVERAL VARIABLES.

206. For the application of Taylor's Theorem to the

expansion of a function of several independent variables, see

Osborne's " Differential and Integral Calculus," page 145.

And for the conditions that lead to maxima and minima

values of such functions, see page 155 of the same work.
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TABLE II. Common Logarithms.
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TABLE III. Squares of Numbers.
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