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PREFACE. 

In this publication an attempt has been made to gather 
into one volume all of the investigations that apply to the 
system of polyconic projections. This was undertaken 
mainly for the reason that no such treatise has ever 
been produced in the English language. No adequate 
treatment even of the ordinary, or American, poly: 
conic projection has been given in any separate publica- 
tion. The work by Thomas Craig entitled ‘‘A Treatise on 
Projections,” published by the United States Coast and 
Geodetic Survey, 1882, gives almost no treatment of the 
pos projection as used by the Coast and Geodetic 
urvey, but merely makes reference to the various yearly 

reports of the Superintendent of the Survey for iriforie 
tion regarding it. : 

The subject of projections as a whole seems to have been 
considerably neglected by authors who employ the English 
language. A small work by Arthur R. HRnkes published 
by the Cambridge University Press in 1912, is an excellent 
introduction to the general subject, and gives promise of 
some awakened interest in this branch of applied mathe- 
matics. 

In the preparation of this publication the followin 
works were especially consulted: The most excellent wor 
by M. A. Tissot, Mémoire sur la Représentation des Sur- 
faces et les Projections des Cartes Géographiques, Paris, 
1881; Traité des Projections des Cartes Céjecaniingee by 
A. Germain, Paris, 1866 (?); Lehrbuch der Landkartenpro- 
jektionen, by Norbert Herz, Tee 1885; Notes on Stere- 
ographic Projection by Prof. W. W. Hendrickson, U.S. N. 

It is hoped that the treatment of the various classes of 
polyconic projections may be found complete enough to 
serve all practical purposes. 
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GENERAL THEORY OF POLYCONIC PROJECTIONS. 

By Oscar S. Apams, 

Geodetic Computer, U. S. Coast and Geodetic Survey. 

DETERMINATION OF ELLIPSOIDAL EXPRESSIONS. 

In the consideration of the subject of map construction, 
the initial question to be decided is the manner in which 
the meridians and parallels are to be represented in an or- 
derly way upon the plane surface of themap. This is done 
by the adoption of some mathematical expression that 
determines a one-to-one relation between the meridians, 
and parallels and their corresponding curves in the plane. 
In the consideration of this determination, the earth can be 
looked upon either as a sphere orasan ellipsoid of revolution. 
When especial accuracy is desired, the eccentricity must be 
taken into account. If the formulas are determined for the 
ellipsoid, they can be reduced to those for the sphere by 
setting the expression for the eccentricity equal to zero. 
Since the ellipsoidal form is to be taken as the basis of 
most of the following discussions, a preliminary determi- 
nation of the necessary lines will be given. 

In figure 1 let EPS represent a quadrant of the generat- 
ing ellipse. P and P’ are contiguous points; PK is the 
normal at P and P’ K the same at P’. If the equation of 
the ellipse be given in the parametric form 

%=a cos y 

y=b sin y, 

a will represent the equatorial radius or the semimajor axis, 
and 6 the polar radius or semiminor axis; y is the eccentric 
angle as indicated in figure 1_ If ¢ is the latitude of the 
point P, it will be seen that 

tan au Y dy’ 

but 
dz= —asin y dy 

dy= bcosydy. 
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Hence 

tan o=F tan y. 

We denote the eccentricity by ¢ and define it by the 
equation 

eB b2 
= =1—- 

a? a?’ 

hence 
b 
_— = er 

Fic. 1.—Generating ellipse with the radii of curvature of the earth. 
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By substituting this value, we obtain 

tan y= j1—é tan ¢. 

sin y=_ton _ _vi-étane _ yi-ésin ¢ 
"/l+tan’y -J1+tan’o—é tan’g 1—é sin’ 

Vi+tan’y /Jl+tan’g—@€ tan’g -/1—é sin’¢ 

sec’y dy=-/1—é sec’y de 

If we denote the radius of curvature PK of the meridian 
by pm, we have from the general theory of plane curves 
the relation pzdyg=ds. 

But 

ds = dz? + dy? = ya’ sin*y + b? cos*y dy re avy1—é cos’*y dy. 

Also | , 
——__—_—_- ss wl --e 

‘ V1 = ; cos’*y =e J1—é sing 

an 
Ses LS 

v1 —é cos’y Ob rer ane yn 

or 
_ a(l—é) dy 

o= = Sainte) 
Hence 

ag BOG) : 

—- (1—é sin’y)”2 

The normals at any two points on the same parallel circle 
intersect in a point K’ of the axis of rotation. If we pass 
a plane through these two normals and then let the nor- 
mais approach each other until they finally coincide, we 
obtain a vertical plane tangent to the given parallel and 
erpendicular to the meridian at the point of tangency. 
he radius of curvature of a small aro in this direction is’ 

given by PK’ because the normals of two contiguous 
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points of this arc intersect in K’. If we denote this radius 
by pn, we have 

t  a& cosy. a 

Px cosy cosy (1—é? sin’)? 

If the exement of length of the meridian is denoted by dm, 
we obtain 

- oe 0e 

dm= G—é sin’g) 

This is an elliptic integral that it is not necessary to 
evaluate in this place, since we shall have occasion to 
employ it only in the differential form. 7 

DEVELOPMENT OF GENERAL FORMULAS FOR THE POLY- 
CONIC PROJECTIONS. 

Tissot defines a polyconic projection as one in which 
the parallels of latitude are represented by arcs of a non- 
concentric system of circles, with the centers of these 
various circles lying upon a straight line. This line of 
centers is generally called the central meridian; but it is 
not necessarily the central meridian of any given map 
and in cases does not appear upon the map at all. 

In the following discussion the latitude will be denoted 
by ¢g, and the longitude out from the central meridian 
will be denoted by X. 

In figure 2 let Q M be the arc of a circle that represents 
a given \ on the parallel of latitude 9, with radius SQ 
and center at S. Let RM’ be an arc of equal d on the 
parallel of latitude ¢+dy, with radius S’F and center at S’. 
O is the point of intersection of the central meridian and 
the Equator. Let OS be denoted by s. Then since s is a 
decreasing function of g, SS’ is equal to —ds. If the 
angle QS M is denoted by 6, we have 

SP =-—ds cos @. 

S’P=-—ds sin 0. 

M’ N=S’ Mx Z WS’ N. 

But 

Z M’'S’ N= ZOS’ M’ — ZOS’N 

= ZOS’ M’— ZOSN- ZS'NS, 
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since 

ZOS’N= ZOSN+ ZS’NS. 

But 

Z08' M’— LOSN=$ de. 

Se S N= +dp, 

at the limit. 
S’P  —ds sin 0 

, aS _ SS = 

LS’ NS =a — tap 
e 

O 

Fic. 2,—Differential elements of a polyconic projection. 
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Therefore 3 
wen~o+de)| (Sp te + rasp 

or, at the limit 

i O08 ; 
M N=p(5" )de+ds sin 6. 

MN=S M—SN=S M—S’ N—-SP, 

since at the limit 

S’N=PN. 

But 

S M—S’ N= —dp. 

By substituting this value and the value of SP, we obtain 

MN=—dp+ds cos 0. 

If we denote Z M’ MN by y, we have at the limit 

O06 e 

Meow Pog ds 
tan Y= TN > ds as 

do Cos gee 

If we denote the change in scale or the magnification 
along the meridian by ky, and that along the parallel by 
kp, we shall obtain the following expressions for these 
quantities: 

M’ M= MN sec y=(ds cos 0—dp) sec y. 

The arc of the meridian on the earth that is represented 
by WM M is given by 

a(i—é)d 

dm=pade=G— a ainsi” 
Hence we have 

7, _d-é sin?) / ds dp 
hin Siac de COs 9-5") s00 y.. 
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The arc of a parallel on the map between the meridians 
of longitude \ and A+d) is equal to 

On 

This arc upon the earth is equal to the expression 

p (3 dx, since ¢ is constant. 

_ addrcos¢ 
PnCOS dy = al De sin?) 

Therefore 
_p —ésin’g)'2 06 

kp a@ cos ~ ON 

The ratio of increase of area, denoted by K, is given by 

Fi ales ain (5-¥)=hukp pone, 

dp\ 0@ 
os 6 "de On 

CLASSIFICATION OF POLYCONIC PROJECTIONS. 

p(1—é* sin’y)? (ds 

K=3 (1—&) cos o\de © 

The general division of polyconic projections is sub- 
divided into the following classes shiek are not, however, 
mutually exclusive: 

(1) Rectangular polyconic projections. 
(2) Stereographic meridian and horizon projections. 
(3) Guatoranl polyconic projections. 
(4) Equal area or e Grlene polyconic projections. 
(5) Conventional polyconic projections. 
(6) Ordinary, or erican, polyconic projection. 

The general differential formulas developed above will 
now be applied to these classes in the order named. 

RECTANGULAR POLYCONIC PROJECTIONS. 

The condition that must be fulfilled if the meridians and 
parallels of the map are to intersect at right angles is 
expressed analytically by 

y=0. 

Since this condition requires, whatever the value of s and a, 
that 

tan y=0, 

OO dS <.. 
Lape 

we must have 
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Let us introduce as a new variable a function of ¢ 
denoted by u and defined by the equation 

1ds_1du 

pdg udg 
But | 

lds 1 OF 

pdo sin 0 0g 
hence 

abe cone elrdat 
‘sn00¢  udg 

By integrating this partial differential equauce with respect 
to ¢, we obtain the required relation. Ss integration may 
be carried through in the following manner. 

jan A 2 
sin 0 0g oo 

29 
co y+ 8in oe 2 

dg= — 

asin £ cos! OF 

00 d. meee 
. 000 2 609 2 — u 

sin 85 

log sin 5 —log cosy = —log uw+log T(A).* 

Log I'(A) isa function of \ that is added since the integration 
is partial with respect to ¢. The function T'(A) ts as yet 
undetermined. 

log tan u ay Oe E = 

or 
cpa 

tan 9 Rie 

* This function has no connection with the gamma function defined by the second 
Eulerian integral. 
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Since for \=0, @ must also be zero, the function I'(A) must 
vanish with ». This is the only condition that is required 

_ to give a rectangular polyconic projection. 
If we choose an arbitrary function for T'(A) that van- 

ishes with \ and another arbitrary function of ¢ for u and 
set 

_TQ) 
tan 5 = u ’ 

then the net will always be rectangular provided that 

ds 
_ yf? pede 

dy 

in which s is also an arbitrary function of 9, or provided 
that 

_ (2% 
ae f u de de 

with p arbitrary. 
Since in this case of the rectangular polyconic projec- 

tion y=0 and.sec y=1, we have : 

_(-é sin? 9)" ds =) 
Ln evel ears de COs eae 

_p—e sin? 9)? T’(A) . 

kp a@ COs g FOO) c. Bi 

since 

OO} E1"(k) Aa 
dx FA) sin 6. 

If we wish the parallel of latitude ¢ to lie on the developed 
base of the cone tangent to the earth at latitude ¢, we 
must have 

LG cote 
Pe sir ¢)'? 

If, besides, the parallels are to be spaced along the central 
meridian in proportion to their true distances, we must 
also take 

pee Sel dora act 
~ Jo (l—e sin? 9) (1—é sin? 9) 
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With these values we obtain 

ds a(i—e&) + a cosec’¢ a & cos? ¢ 
de (l—éesin?g)* (—éesin? vg)? (1—é sin? ¢)*? 

_a—cosec? 9) a cot? ¢ 

(1—é sin? 9)’ (1—é sin? yg)’ 

hence 

oe cot 
p dg 4 

Therefore 

Lie cot u em ae) 

by integration, we obtain 

log w= —log sin y=log cosec g, 

or, passing to exponentials, 

U=COSEC ¢. 
But 

TEs : 
tan 5 7%) =T(\) sin ¢. 

The length of an are of the developed parallel is given by 

6 = 6 
5 2a COS ¢ 5 

= —___——. T'(h) 5° 

(1—é sin? g)? tan 5 

2a cot ¢ 

p) = —_____————_ tan 

(1—é sin? g)"2 tan 

On the equator, since g=0 and 6=0, we obtain for an arc 
from \=0 to d the value 

equatorial arc = 2a T'(A). 

Tf we now add the condition that the equatorial arcs are 
to be preserved in their true length, we have 

2a T(A) =anr 

or 

rQ)=3: 
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This value gives 

tan oe in =5 sin ¢. 
bo| DB 

This gives the full determination of the projection. With 
these values we shall now determine the magnification 
along the meridians and parallels. 

Oss bo] 

dp a cosec? ~ ae Cos? 
de (1—é sin? g)2' (l—é sin? 9) 

__—4@ cosec? 9+ae+ae cos? ¢ 
(1 — e sin? ¢)*2 

and 

— oe 

Substituting these values in the differential formulas on 
pages 12 and 13, we obtain 

cosec? g (1+ cos? 1—é sin? 
bag ad Lane Ot #08 8 

The formula for k, shows that the value of k, along the 
central meridian is equal to unity; that is, the scale is 
maintained constant along this meridian as was provided 
by the choice of the value for s. This means that the 
parallels are spaced along the central meridian in pro- 
portion to their distances apart upon the earth. Since 
this is true, with the known radii we can construct the 
parallel arcs either by drafting or by plotting by means of 
computed coordinates. The only things remaining to be 
determined are the points of intersection of the meridians 
with these parallels. : 

In order to determine these points, we have first 

aX COS — OR erent coe 
pan 2” 2(—e sin? yg) 

991943 O- 52-2 
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But the right-hand member of this equation is equal to 
one-half the arc of the parallel of latitude ¢ from \=0 to 
the value \. If then in figure 3 we lay off the distance MN 
on the tangent to the parallel drawn from the point where 
it crosses the central meridian and take it equal in length 
to one-half the arc of this parallel up to the given longitude 
\, the angle MCN will be equal to one-half of 6. To de- 
termine the point of intersection, from N ds center with a 
radius VM construct an arc intersecting the parallel at M,. 
The point 1, is then the intersection of the meridian ) 
with the parallel 9. 

This projection has been much used by the English War 
Office for the construction of maps. 

Fic. 3.—Construction of are of parallel on rectangular polyconic projection, 

We can easily determine the radius of curvature of th 
meridians in this projection. In figure 2 . 

M’ M= (ds cos 6—dp), 

since in this case cos y= 1. 

6 ae 
1— tan’ 1 ahh is 7) 

2 

1+tan’s 1 + sin Pe 

The angle between two successive radii of curvature is the 
angle between the tangents to the parallels of g and ¢+d¢ 
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at the points Mand WM’, respectively, since the projection 
is rectangular. This angle j is evidently equal to dé. 
By differentiation we obtain 

6d0 X 
sec*5 9 9 COS ¢ dg, 

since \ is a constant for a given meridian. 
Hence 

dr cos g dy 

1 1 Sein? 4 g 

do = 

The radius of curvature of the meridian, denoted by p, 
is given in the form 

By substituting the values of S, 2, and cos 6 and redue 

ing, we find 
ae »? 

afi—-é+d— eG sin? o +95 cos? ¢ (1— sin? ¢) | 
[0 ) RSS ee eee ee ae eee 

d cos ¢ (1—é sin? ¢)?? 

The magnification of area. becomes 

res 
‘cosec? g &[1+cos?y] 1—e sin’ ¢ \ 
12ee% \ L2e ey Ow ee oe 

But 
oe 

. ave sin? » 

cos 6= 2 

1+7 sin’ ¢ 

and 
ASIN — 

sin 6= 2 
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By substituting these values we obtain 

2 2 2 ore (2 2) (1+} ens er °)- € aes ¢) 1+} cA x sin? e) 

c= 20 2 

ace SUE ee cot? e(1-F sin? °) |= (+3 +* sin? ¢) 

or, on reduction, 

2 2 Reso 
fee ieee Ee ye a ee 

4 Z 1-é 
= ye 5 

(1 +% sin’) 

If we eee this to unity, we shall find the equation of a 
curve ae which there is no exaggeration of area. On 
reduction this equation becomes 

— 2ain2 

\ sint ¢ +4)? sin? g— 8)? cos? o (=S*)- 0, 

which is satisfied by \=0, or by the equation 

— 2ain2 

? sint ¢+4 sin? ¢—8 cos? g (SES*)-o. 

The areas of all sections north of this curve are diminished 
and those lying south of it are increased in their represen- 
tation on the map. 

If we confine ourselves to the consideration of the sphere 
EK may be expressed in the form 

h? 30 NEVEO F 
1 ee COs? 9 

Te aA ROP a Noe 

(1 + . sin? >) 

The differential element of area of the representation is 
given in the form 

K= 

=~ cos gp dg dn. 
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If the whole area of the sphere is represented on one con- 
tinuous map, one-fourth of the area of the representation 
will be given by integration of this expression from \=0_ 

to \=7 and from g=0 to e=5- 

To obviate the use of the fractions, it is better to let) =2y; 

y will then range from 0 to e and d\=2 dy. 

The total area S is given by 

7 2 2 2 = 1+y?+y’ cos’ y ae penny COSES, 
8 sa | cos 9 dy > (1+y? sin? ¢)? 

i 1+y?+y? cos’¢ ne tT cot? ~ 
2 ain2 2 TG ore ee 

ome hea eine 2) (1 +Tsin’g ) 

+cosec? ¢ tan (5 sin ¢ ). 

z ma cot? ¢ cos 
Dee ee 20sec 79 cot ¢ 

0 
Tee hae 

(+ A an Mo 

tan (5 sin ¢ ) de. 

T 7 Z staf IT ca 
E casec g—cosec’ ¢ tan (5 sin °) | 

ihe es 
+ (G as 2) tan 5 

The quantity in brackets has to be evaluated for the lower 
limit, since it takes the form oo — at this point. Let us 
write it in the form 

S=4d? 

Mes Te ee 
3 sn eg — tan 9 sn ¢ 
—_ 

sin? a) 

which takes the form 5 at the lower limit. 

T TM, 
ian E sin g—tan 3 5 sin 2] 

e=0 sin? 9 
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~ COS 
7 cos z 
2, 6 oy ee 

lim 1 Ley sim” ¢@ 

Gp =0 2 sin 9 cos ¢ 

Therefore, 

S=a[(4+7?) tan ater. 

This value is greater than the surface of the sphere in the 
ey POsUnt te ratio of 8: 5. 

he length of the outer meridian for the representation 
of the sphere is given by four times the integral of a km de 

T 
from ¢=0 to e=5 with \=7 in the value of 6. 

For the sphere kn = cosec? g— cot? ¢ cos 8, 
and for the outer meridian 

1 

1+] (1+ cos? ¢) 

m— 2 : R 

I+7 sin” ¢ 

The length of the meridian is, therefore, given by 

= de. 

1? 

aes | one cos? ¢) 

1=4a [ +, 
" ies sin? » 

By means of a table of integrals we find that the value of 
this integral is given in the form 

1=2an[(4+ 7?)”2 — 1]. 

The length of a great circle at the outer limit of the map 
is increased in the ratio 

(4+ 77)% —1:1 or about 2.72 : 1. 
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STEREOGRAPHIC MERIDIAN PROJECTION. 

In the discussion of the stereographic meridian and 
horizon projection, it is probably best to consider first the 
sphere and later to indicate the manner in which the 
ellipsoidal shape can be taken into account. To employ 
the differential formulas given before, we need only to 
set ¢ equal to zero. 
Any stereographic projection is a perspective projection 

of the sphere, either upon a tangent plane or upon a dia- 
metral plane, with the center of the projection lying upon 
the surface of the sphere in such a way that the diameter 
through the point of projection is perpendicular to the 

Fig. 5.—Radius from center on stereozraphic projection. 

plane upon which the projection is made. We shall make 
use of the diametral plane since there is only a difference 
of scale between that and the tangent plane. 

In figure 5 let the circle QMRP be a plane section 
of the sphere determined by the diameter PQ and the 
projecting line PM. P is the point of projection, OF is 
the trace of the diametral plane upon which the map is to 
be constructed, and the point Q projected into O forms 
the center of the map. Let the angle QOM be denoted 
uy Pp; then the arc QM is the measure of p. All points . 
of the sphere at the arc distance p from Q will lie upon a 
circle the plane of which is parallel to the plane OR. The 
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lines that project the points of this circle will all lie upon 
a right circular cone that will cut the plane OR in a circle 
the radius of which will be equal to ON. OP is equal to a, 

and the angle OPN is equal to c. 

Hence 

ON=p=a tan ; 

If we denote the angle between p and the X axis in the 
mapping plane by w, we have 

asin cos w 
%=p cos w=a tan s cos Pps aaa OG 

2 1+ cos p 

ee ae We P.., _vsin p sin w 
y=psinw=a tan 5 Sin w “T-+4cos p 

T 

W V 

Fig. 6.—Transformation triangle for meridian stereographic projection. 

If the point of projection lies on the Equator as it does 
in the stereographic meridian projection, the values of 
the econ of p and w» must be determined in terms of 
gy and X. 

In figure 6, let WQV be the Equator and T the pole 
and let 7Q project into the central meridan of the map. 
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P is the point that we were considering in the previous 
figure. PQ=p 

TQ=5 

TP=35-¢ 

ZPTQ=r 

£PQT=5-». 

From the trigonometry of the spherical triangle we 
have the relations 

cos p=COS A COS o 

sin p sin w=sin ¢ 

sin p COS w=SIN ) COS ¢. 

If these values are substituted in the equations for x 
and y, we obtain 

fide a@ sin d cos ¢ 
1+cos A COS @ 

. $5 @ sin ¢ 
Y 1+cos \ cos ¢ 

From these equations, by solving for sin } and cos }, 
there result 

se 4 by 

sin A=— tan 
Si acted 

GOs ee 
y COS 9 

Hence : 

a >. , (asm g—y)? _ 
yp tan’y+ yp? COs —=t, 

or, by reduction, 

e+ y?—2ay cosec p= —a? 

or, as usually written, 

2? + (y—a cosec ¢)* =a’cot?¢. 
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This equation shows that the parallels are circles, and that 
the parallel of latitude ¢ has the radius a cot ¢, and that 
the center lies at the point r=0, y= acosec yg. The paral- 
lels are therefore circles, nonconcentric, but having their 
centers on the line x=0. The projection is thus seen to 
be a Econ projection in the sense of Tissot’s definition. 
By solving the original equations for sin g and cos ¢ we 

find 
ES y sin 

7. | @SieN 2 COs h~ 

zr 
cos g= 

asin \—2 Cos X 

By squaring and adding, the equation of the meridians is 
obtained. 

| y? sin?d Tp ae 
(a sin \—z cos\)? (@sinA—zcosA)? ? 

or, on reduction, 

x+y? + 2az cot A=a* 

or, as usually written, 

(cx+a cot d)?+y? =a? Paddein: 

The meridians are thus seen to be circles also; the circle for 
the longitude has the radius a@ cosec i, and the center lies 
at the point r=a cotdA, y=0. 

In this projection we have, therefore, 

p=acotg¢ 

S=d Cosec ¢ 

ae oa sin \ sin ¢ 
p 1+cosr\ cos¢ 

or! sin X 

Og 1+cosrAcos¢ 

ds 

de 
= — a cot ¢ cosec 9 

00 ds . asindX cote asindA cote _ 
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Therefore 
tan y=0, or Y=0, and the projection belongs in the class 

of the rectangular polyconic projections. 
The equations for the magnification along the parallels 

and along the meridians, respectively, are for the sphere 

& cos pee 
poet de de 

By a cos p 

k Sep els Sie 06. 

P acos g OA 

But 
dp 3 
ior < COsec*¢g 

oes cos A-+COS ¢ 

8 OT 4 c0s X COS @ 

and 
OO sin y 

OA 1+cos cos g 

By substituting these values in the formulas for k, and kp 
we obtain 

—a cot ¢ cosec ¢ (cos A+ Cos ¢) 
2 

1+ cos \ cos ¢ Papi ond 
kn = a 

nares SRLS) 
1+cos A cos ~ 

acot¢ sin ~ 1 

The projection is therefore conformal, since the meridians 
and parallels form an orthogonal net and the magnifica- 
tion along the meridians and along the parallels is the same. 



\ 

aan fo) 

Fig, 7.—Stereographic meridian projection of a hemisphere. 
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DERIVATION OF STEREOGRAPHIC MERIDIAN PROJECTION 
BY FUNCTIONS OF A COMPLEX VARIABLE.2 

The element of length upon the sphere is given in the 
form 

dy 
7 ee 74 2 2 2 — 72 2 2 dS? = a? (de? + dd cos?¢) =a cds o(a5,+a) 

If we set 

dS becomes 
dS? =a? cos? ¢ (do? +d)?). 

Any conformal projection may then be expressed as a 
function a of +4 r or of ¢—7, in which 7 denotes as 
usual -/—1. 

c08 % oe" {Sa (E) G +e) 

2 2 cos (f+ +$)+ sin (i+ 5) 

2 sin (G+ +$) cos (7+ aNg 

(7+ ) sin (F+5) ier "9 et AID ideo 
a 7 Mgt By 

sin (7+$ cos (F+$ 
4 

ine ay (EURO ion aae Oe Tee o=+ log, sin (F+§) log, cos (4+$) 

o=log, tan G # S) 

a See General Theory of the Lambert Conformal Conic Projection, Special Publication. 
No. 53, U. S. Coast and Geodetic Survey. 
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or, on passing to exponentials, 

ot UMng.Z é =tan (5+) 

=o ay Medea 2 oH. hase sin i+$)+e0s (7+5) 

Se ee a eee 

cos 
ase Bom (is ) rele e) 

+o —oc 

2 

or 

=Sec o 

cosh o=sec ¢ 

6 eet bs 
Sor =sinh o 

sinh o= /cosh?c—1 

sinh c= -/sec?y— 1 =tan ¢. 

sinh 72A=7 sim X. 

cosh 7A=Cos X. 
If we take . 

ai [et (7—id) 0 esd 

ty gt eGR) 5 gC) 

we obtain the stereographic meridian projection. 
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This can also be written in the form 

2+ay=ai tanh (5°) 

a; a a **) 
SN 

cosh € ms 

ai sinh ea) cosh () 

cosh (3*) cosh () 

_ ai (sinh o—sinh 2) 
~ cosh ¢+ cosh r 

_ai (sinh o—7 sin J) 

~ gosh ¢+ cos A 

_asin A+ai sinh o 
~ cosh ¢+cos A 

_asin \+a1 tan ¢ 
sec g+cos A 

_@sin \ cos g+aisin ¢g | 
Es 1+ cos d\ cos ¢ 

By equating the real parts and the imaginary parts this 
becomes 

@ sin \ cos ¢ 

to cos d\ COS — 

_ asin g 
Y~T4 cos dX COS — 

We thus by this method arrive at the same values that 
were obtained before by expressing analytically the results 
of the direct projection. The fact that the projection can 
be derived by the use of functions of a complex variable 
establishes the conformality of the projection.* 

*See Coast and Geodetic Survey Special Publication No. 53, The General Theory of the 
Lambert Conformal Conic Projection. 
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In order to take into consideration the ellipsoidal shape 
of the earth, we proceed in the following way. If we 
denote the element of length upon the ellipsoid by dz, 
we have 

dot— a (1—é)?d¢?_ — cos’eg d ] 
G—é sin’y)? '1—é sin’y 

a? cos*¢ (1—&)? de Ly sire AP | EON Nc Le 0 Sa ee 21. 
dz 1—é sin’g E= (1-é aint)? o8 

In this case 

de ss (1 ae é”) de 

cos ¢ (1—é sin’) 

(1—é sin’g— é@ cos’¢) de 

cos ¢ (l—é sin’y) 

_ de écos¢g de 

cosg 1—é sin’y 

ecosgdg etos¢ de) MR Se cos ¢ d 
sin (5 +e) 2\l—esng l1+esing 

[eee G5) +siv G9) | ee 
2am (f+ 5) Gee Gt s) 

-§(¢es eee ecos g deg 
2\l-—esing l+esing 

cea forsee _ feos G5) By, sin (5+) a, 

Lia 74 
J sin (Z+8) cos (7+ 

site see! ee e cos gdyg 

2j l—esing l+esing 

Be oad FS arch) Me Ge SNe © —esi ¢=log, sin (7 +5) log. cos (F+$) +5 log, (1—e sin ¢) 

—5 log. (1+esin ¢) 

= he tan (7+ S) . Gane sin - 

ees 4°92 I+esin¢ 

1l—esin ¢\9 

ne (G+ +) . Ga oe 
991943 O- 52-3 
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We can now,map the ellipsoid conformally upon the 
sphere by the relations | , 

= N 
and . 

) : e € 

ey m,¢\ , (l-esme\z, 
tan (5+ ) a 7+$) (GE) 

The latitudes y’ are computed for the parallels that we 
may wish to map; that is, for 10°, 20°, etc., or for what- 
ever interval we may choose. This sphere may then be 
conformally mapped upon the plane, the values of y’ being 
employed in the computation. Each step is conformal; 
hence the plane map 1s.a conformal representation of the 
ellipsoid. 

he magnification upon the sphere is given by 

, % 
ds a cos ¢’ (<< +0.) 

cos’ 

dz acsy [  U-ePde aa 
(—é sin’y)”| cos’*g A —é sin’¢)? ‘ 

_cos gy’ (l—é sin’¢)” 

cos 9 

The total magnification is equal to the product of the 
values obtained for the ellipsoid upon the sphere and for 
the sphere upon the plane. The total magnification, 
which we shall denote by k without subscript, since it is 
the same at any point in all directions, is given in the form 

. | 0s ¢. (i=€ sin?y)” 

~ cos o (1+ ¢0s J Cos ¢g’) 

CONSTRUCTION OF STEREOGRAPHIC MERIDIAN PROJECTION. 

It is a very easy matter to construct a sterece ere 
meridian projection graphically. Divide the meridian 
circle into equal arcs at whatever interval it is desired 
to construct the meridians and parallels. In figure 8 the 
divisions are made at 30° intervals. QR’ =30°; the tangent 
at R’ gives the radius S’R’ and the center S’ for the 
parallel of 30°; a similar arc with center distance to the 
south equal to OS’ and with radius equal to S’R’ gives 
the projection of the parallel of 30° S. The tangent at 
R or SR gives the radius for 60° of latitude, and the 
same arc transferred to the south gives the projection 
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for 60°S. The center distance OT=SR with radius 7’P’ = 
TP gives the projection of meridian 60° west and OT’ 
gives 60° east; also the center distance OU=S8’R’ per- 
mits the construction of 30° W. and OU’=S'’R’ gives the 
meridian of 30° E. 

Fig, 8.—Construction of stereographic meridian projection. 

Probably the most satisfactory way to construct the 
projection is by means of a computed table of radii and 
of coordinates of the center. The centers of the parallels 
all lie on the Y axis and those of the meridians lie on the X 
axis. The radii and the distances of the centers of the 
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parallels become, respectively, the distances of the centers 
and the radii of the meridians. In the table py and p, 
denote, respectively, the radii of the meridians and of the 
parallels; 8, and ap, the distances of the centers; 6, and 
dp, the distances of the intersections of the meridians with 
the Equator and of the parallels with the central meridian. 
The table, of course, applies to the sphere and not to the 
ellipsoid. The values are given in terms of the earth’s 
radius, or they are the values for a sphere of unit radius. 

TABLE FOR THE STEREOGRAPHIC MERIDIAN PROJECTION. 

[In units of the earth’s radius.] 

g ord fm OF ap Pp OF Bm bm OF dp gory 

Degrees. Degrees. 
0 oe ore 0. 00000 0 
5 11. 47371 11. 43005 . 04366 5 

10 5. 73877 5. 67128 . 08749 10 
15 3. 86370 3. 73205 13165 15 

2. 92380 2. 74748 17633 
PBI OG BV 2. 51204 2. 30442 20762 23° 27’ 30’ 

25 2. 36620 2. 14451 22169 25 
30 000 1. 73205 26795 30 
35 1. 74345 1. 42815 31530 33 
40 1, 55572 1, 19175 36397 
45 1. 41421 1. 00000 41421 45 

1 41 - 83911 46631 50 
55 1. 22077 - 70021 52057 50 
60 1. 15470 - 91730 57735 60 

1. 10338 - 46631 63707 
66° 32’ 30” 1 - 43395 65616 66° 32’ 30°’ 

70 1. 06418 - 36397 70021 7 
75 1, 03528 - 26795 76733 7a 
80 1. 01543 - 17633 83910 80 
83 1. 00382 - 08749 91633 85 
90 1. 00000 - 00000 1. 00000 90 

STEREOGRAPHIC HORIZON PROJECTION. 

In a stereographic projection the center of the map may 
lie at any point upon the earth’s surface. We have just 
treated the case in which the center lay upon the equator. 
If the center is to be in latitude a, we start with the same 
equation in terms of the arc distance from the center and 
the azimuth reckoned from the great circle perpendicular 
to the meridian through the center. 

_ asin p Cos w 
— 1+cos p 

_asin psinw 

~ 1+cos p 
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re 9 let T be the pole, Q the center of the projection, 
and let P be any given point. 

$ 

Fig. 9.—Transformation triangle for stereographic horizon projection. 

TQ= 5-4 

TP=—9 

QP=p 

Ges 

£TQP=~ -». 

From the trigonometry of the spherical triangle we have 

and 

cOS p=sin a Sin g+COS a@ COS A COS ¥ 
‘ 

sin p_ sin A 
cosg cosw 

, Or sin p COS w=sin J COS ¢,. 

sin p Sin #=COS a SIN Y—SIN & COS A COS & 
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On the substitution of these values we obtain as defini- 
tions of the coordinates of the projection 

asin \ cos ¢ 

v1 +sin a sin 9+C0S8 a COS \ COS @ 

__a(cos a sin g—sin @ COS ) COS ¢) 
y 1+sin asin ¢+cos a2 COS A COS — 

From these equations, by solving for sin ¢ and cos ¢, we 

x sin a cosA+y sin d 
sin eee ea Sata GG Ue LO OES Oe 

° a cos a Sin \—# cos A—y Sin @ sin A 

Zr COS @ 
cos te a RE ny oe SP Oa 

?~@ COS & SiN N—& COS A—Y sin @ sin A 

By squaring and adding there results : 

{x sin a cosA+y sin A)? +2? cos? @ 

= (a cos asin \—z cos A—y Sin @ sin d)?, 

By partene the operations and collecting, we obtain 
finally 

a? +y?+2ax sec a cot }\+2ay tan a=a’, 

which may also be written 

(x+a sec a cot A)?+ (y+a tan a)? =a? sec? a cosec? X. 

This is the equation of the meridians, and they are thus 
seen to be circles. The meridian of longitude ) has the 
radius 

pm=a@ sec a cosec A, with its center at the point, 

“z= —a sec a cot i, 

y= —a@ tan a. 

The centers, therefore, all lie on the line 

y=—a@ tan a. 
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By solving the original equations for sin \ and cos ) we 
get 

(sin a+sin ¢) 

asin a cos ¢+Y COS @ COS Y 

a cos asin g—y—ysinasin ¢ 
cos A= - 

asin a cos ¢+ Y COS @ COS g 

By squaring and adding we obtain 

z(sin a+sin ¢)?+(a cos a sin g—Yy—y sin @ sin ¢)?= 

cos? g(a sin a+y Cos a)’, 

or, on developing and arranging, 

(sin a+sin ¢)?+y?(sin a+sin ¢)?— 2ay cos a(sina+sin ¢) 

= q@?(sin? a cos? g— cos? @ sin? ¢) 

—— e 

The parallels are, therefore, circles with their centers all 
lying on the Y axis. The parallel of latitude ¢ has the 
radius 

a@ cos ¢g 
Pps ee 

sin a+sin ¢ 

with its center at the point 

r=0, 

__ a@cos.a 
Y~ Sn a +sin ¢ 

The parallel of latitude —a is evidently a straight line, 
since the radius becomes infinite for this value, as does 
also the distance of the center from the center of the 
projection. 

he projection is seen to be a polyconic projection in 
accordance with the definition of Tissot. 
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For the parallels we have 

_  acos¢g 
P~sin a+sin ~ 

 @aecosea 

~ gin a+sin ¢ 

sin A(sin a+sin ¢g) : r 
sin 6 =- = —S 

p 1+sin asin ¢+cos a cos A cos g 

cos 6a SY — 208 A +608 @ COS g+sin a cos) sin ¢ 
zs p 1+sin @ sin 9+COs @ COS J COS 

s in this case is not reckoned from the Equator; but, 
since we need only the derivative of s with respect to ¢, 
it will answer the pene to leave it as itis. In fact, s 
could be reckoned from any fixed point in the line of 
centers and in this case it is reckoned from the origin 
which lies at latitude a. 

OO cos a sin d 
Oy 1+sin asin g+Ccos a cos ad cos ¢ 

a sin a+sin ¢ 

OX 1+sin asin ¢+cos @ cos \ Cos ¢ 

ds acosacos¢g 
dye (sin a+sin ¢)? 

dp _ al +sin a@ sin ¢) 

dy (sin a+sin ¢)? 

These values may now be substituted in the general dif- 
ferential formulas and by that means we obtain the follow- 
ing results: 

00 as aa @ cos a sin X cos g 
-O0 de (sina+sin g) (1+sinesing+ cosa cos \ cos ¢) 

@ cos a sin d Cos ¢ 0 

(sin a+sin g) (1+sin a sin ¢+cos a cos \ cos g) — 

Therefore 

tan. y =0 
or 

y=0. 
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The parallels and meridians form, then, an orthogonal nct 
of circles. 

(5: dp 18 cog 9%) , 
te, = Sd? gee COS a COS Y 

a cos y ~ (sin a+sin ¢)? 

cos A\+cos a cos y+sina cosA sing ,1+sin a sing 
1+sin @ sin ¢+cos @ cos \ COS & (sin a+sin ¢)? 

= if 

1+sin a sin ¢+cos @ cos A COS ¢ 

O60 
P~acose OA k 

x9. 1 sina+sin¢g 

sin a+sin ¢ 1+sin asin ¢+ COs @ COS A COS Y 

1 

~ 1+sin @ sin g+cos @ Cos \ Cos @ 

Sa 

Fic. 10.—Stereographic horizon projection of a hemisphere—horizon of Paris. 
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The projection is thus shown to be conformal, since the 
meridians and parallels are orthogonal and the magnifica- 
tion along both is the same. We might have taken this 
for granted since we found that the stereographic meridian 
projection was conformal and the nature of the projec- 
tion is not changed by moving the point of projection to 
a different point upon the sphere. 

In taking account of the spheroid we proceed as in the 
case of the stereographic meridian projection. The magni- 
fication at a point (the same in all directions) would then be 

ra cos ¢’ (1—é* sin’y)"2 

cos g(1+sin a’ sin g’ +cos a’ cos \ COs g’) 

DERIVATION OF STEREOGRAPHIC HORIZON PROJECTION 
BY FUNCTIONS OF A COMPLEX VARIABLE. 

The projection, being a conformal projection, can be ex- 
pressed in terms of a function of a complex variable either 
of o+id or of c—id. Let us take 

ai sinh (—3-*) 

a. va aS 

ai sinh (-3-*) cosh (sate ) 

\ cosh es +2) cosh (a8 +2) 

_i[sinh o—sinh A+8)] 
~ cosh (¢ +B) + cosh ar 

_ai[sinh o—sinh 7 cosh 6—cosh 2A sinh B) 
~ cosh o cosh B+sinh o sinh B+ cosh a 

But 
cosh o=sec ¢ 

sinh g=tan ¢ 

sinh 2A=2 sin dX 

cosh 1A=cos dX. 
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By substituting these values we obtain 

. _ai(tan g—1sin ) cosh B—cos sinh £) 
Saye a6 gy cosh B+tan ¢g sinh B+cos \ 

_asin ) cosh B+ a1 (tan g—cos ) sinh 8) 
~ sec g cosh B+tan gsinh B+cos\ _ 

By equating the real parts and the imaginary parts, we get 

ie asin d cosh B 
a sec v cosh B+ tan ysinh 6 +cos A 

a (tan g—cos X sinh B) 

¥~ sec g cosh B +tan yg sinh B+cos \ 
Let 

cosh B=sec a, 

then 3 

sinh B=tan a. 

Substituting these values we obtain 

Pe a@ sec asin Xd 
sec a sec ¢+tan a tan ¢+ cos dA 

eo a(tan g—tan @ cos )) 

Y sec a sec g+tan a tan ¢+cos dA 

On multiplying both numerator and denominator by cos a 
COS ¢, we derive 

asin \ cos ¢ 
DG ee ee GL 

1+sin asin ¢+CO0S @ COS Xd COS Y 

_ a(cos a2 SM y—SiN a COS d COS ¢) 

1+ sin asin ¢+ Cos a COs A COS — 

We thus arrive at the same equations that were ob- 
tained before. 

PROOF THAT CIRCLES PROJECT INTO CIRCLES IN STEREO- 
GRAPHIC PROJECTIONS. 

It can be proved in a general way that, in any stereo- 
graphic projection, any circle upon the sphere is projected 
into a circle upon the plane of the map. Straight lines 
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must, of course, be considered as circles of infinite radii, 
with centers at infinity. Any circle either great or small 
which passes through the pomt of projection will be pro- 
jected into a straight line, since all of the projecting lines 
will lie in the plane of the circle and will cut the mapping 
plane in a straight line, which is formed by the intersection 
of the plane of the circle with the mapping plane. 

Let us now take any other circle upon the sphere. Make 
a great-circle section of the sphere containing the point of 
projection and the pole of the given circle. This great 
circle necessarily will also pass through the point that pro- 
jects into the center of the map, i. e., the point antipodal to 

(4) 

Fic. 11.—Proof that circles project into circles on stereographic projections. 

the point of projection. After this is done turn the great 
circle section into the plane of the page. The plane of this 
section will evidently be perpendicular to the plane of the 
given circle, since the plane of any great circle containing 
the pole of the given circle would partake of this property. 

In figure 11 let O be the point of projection, KZ the trace 
of the mapping plane, BC the trace of the plane of the 
circle, and let A ee the point that projects into the center 
of the map. The lines that project the circle under con- 
sideration will evidently form an oblique cone that has the 
given circle as a circular section. Any plane parallel to 
the plane of this circle will also cut the cone im a circle. 
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We shall now prove analytically that any such oblique cone 
that has one system of circular sections has also another 
system of circular sections. If we have a cone passing 
through the circle z=0, 2?+y?=a’, it will be a perfectly 
general one if we take the apex at the point z=/, y=0, 
z=hin the plane y=0. A line through this point is given 
by the equations 

2—f=a(z—h) 

y=B(z—h). 

This line intersects the plane z=0 in the point the coordi- 
nates of which are 

Since this point is to lie on the circle, we have 

(f—ah)?+ Bh? =a’, 
But 

ew ay 
Wi 

A oe 
ee Sian| 

By substituting these values we obtain 

(fe—hx)’?+hy? =a? (2—h)?. 

This is the equation of a cone bearing the same relation to 
the plane y=0 that the projecting cone bears to the plane 
of the great circle. This equation may be written in the 
form 

h? (a?-+-y? +22 —a?) =2[ fhe + (a? —f?-+h?)2—2ha’. 

Hence, if the conical surface is cut by either of the planes, 

=F 
or 

2fha + (a? —f? +h?)2z—2ha? =65, 

the points of intersection will satisfy an equation of the 
form 

et+y+2+2Axr+2Be+D=0 



46 U. S. COAST AND GEODETIC SURVEY. 

for all values of y and 6, and the sections will therefore be 
plane sections of a sphere. Therefore, there are two series 
of circular sections made by two systems of parallel planes, 
and both systems are parallel to the plane y=0. 

The trace of the cone upon the plane y=0 has for its 
equation: 

| (fe—he)?-—@ (e—h)? =0. 

This is, therefore, the equation of the two generating lines 
which lie in that plane. The equation of the two planes 
in opposite systems giving the circular sections is 

(z—vy) [2fha+ (a —f? +h?) 2—2ha? —6]=0. 

By adding these two equations we get an equation of the 
form 

v+24+A’r+ B’y+C’=0. 

This shows that the four points in which the two generating 
lines in the plane y=0 meet the planes forming the circular 
sections lie upon a circle. Hence the first system of 
planes makes the same angle with the one of the generating 
lines that the second system makes with the other. We 
will now show that the mapping plane fulfills the conditions 
for the second system of circular sections. The mapping 
plane is evidently perpendicular to the plane of the great 
circle ALOK, and it thus fulfills the first condition. The 
further condition is that it must.make the same angle with 
one of the elements of the cone lying in the plane of the 
great circle that the plane of the circle on the sphere makes 
with the other element in this plane. In figure 11 

T Z CBO =5 ere OLAC=>(arc hii Beene Vos =745are AC 

£ KFO=5 (are OK +are LAC) =7+5 are AC, 

Therefore 
CBO = £ KFO 

and 
ZBCO= Z FGO. 

It is thus seen that the points B, C, F, and @ lie upon a 
circle and all the conditions are fulfilled for a circular 
section. 

Construct the tangents BD and CD, draw EW parallel 
to CD, and draw FH parallel to BD. 
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Then 
DC: EM=D0: EO=DB: EH, 

but 
DC=DB. 

Therefore 
Ge TEL 

LEGH=5 GeOE are Ice) ="45 PS 

J ERG 27 PPHO= 72 £ DBO =n—5 arc OLACB 

=r-5 (arc OLACB K—arc BK) 

he -{ r +5 arc BK =t45 arc BK. 

Therefore 
ZEGH= Z EHG 

and 
EH= EG. 

In a similar way it can be proved that 

EM=EF. 
But, since 

EH=EM, 

EG = EF, 

therefore the projection of D is the center of the circle that 
maps the given circle. JD is, of course, the apex of the cone 
tangent to the sphere along the given circle. 

he stereographic horizon projection can be constructed : 
either by computation of the radii and centers or directly 
by erapive construction. The formulas for computation 
are for the meridians 

Pm=@ Sec a cosec »X 

Iim= —asec a cotr 

Ym= —a tana 
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and for the parallels 

a COs ¢ @ COS ¢ 
Pp sin a+sin e 5 ae =) oe 7 

2 2 
Lp = 0 

Si a COS @ Bt a@ COS @ 

¥p~ sin a-+sin ae. < (“$°) pe a5). 

2 2 

The forms last given should be used for logarithmic com- 
putation. 

CONSTRUCTION OF STEREOGRAPHIC HORIZON PROJECTION. 

The method of graphical construction for the parallels 
is as follows: Let us suppose that we wish to construct a 
projection for a=30°. In figure 12 the point of projection 
is supposed to be in the perpendicular to the plane of the 
paper at H. Let the plane of the central meridian (that 
through the point of projection) cut the mapping plane or 
the plane of the paper in the line YY’. This central 
meridian section is then turned upon YY’ as an axis until 
it falls in the plane of the paper. The eye will then be at 
O, and A will be the point that projects into the center of 
the map. Construct the angle AHQ equal to 30°; then 
QQ’ is the trace of the equitorial plane upon the plane of 
the central meridian. The diameter PP’ perpendicular to 
QQ’ is the axis of the earth turned with the plane of the 
central meridian. YY’ is the projection of the central 
meridian, since the plane was turned upon this line as an 
axis; hence, if any point is projected upon this line the 
corresponding point upon the map will be determined. 
P and P’ are the.poles; draw OP and OP’. Then pis the 
North Pole of the map and p’ is the South Pole of the 
same. 

To determine the circle that forms the projection of any 
parallel, lay off the arc CQ equal to the latitude; in the 
figure CQ=45°. Construct CB perpendicular to PP’ and 
construct tangents at B and C meeting in the axis pro- 
duced at D. Draw OB, OC, and OD; then B’ and c’ are 
points on the circle, and D’ is the center of the same. 
With D’ as center and with radius D’B’ or D’c’ construct 
the circle, and the circle so drawn in the ‘figure is the 
projection of the parallel of 45° of latitude. OQ deter- 
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mines the point q on the Equator, and OF drawn parallel 

to PP’ locates the center at F; with the radius F¢ draw 
the arc OqA; this arc is the projection of the Equator. 

Fig. 12.—Construction of parallels on stereographic horizon projection. 

In a similar manner the projections of any desired parallels 
can bedrawn. Itis evident that any two of the points B’, 
c’, and D’ will be sufficient to determine the circle, since 

991943 O- 52-4 
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we know that the center lies upon YY’. The circle 
which represents the parallel of latitude —a has an infinite 
radius with center at infinity on the line Y Y’; it is there- 
fore a straight line pee de to YY’. The lower 
point at which the parallel crosses the central meridian is 
given by | . 

a(cos a—cos ¢) 

Yo Pe sinatsing — 

This takes the form 0/0 for g=—a, and the limit must 
be determined for this point. 

: a(cos a—cos ; a sin lim ( g) ge 

sin a+sin ¢ gz —q 8% =—a tan a, 
g=—a 

or, otherwise, 

a(cos a—cos ¢) 1 
sida ape yo a es 

which for ¢ = —a becomes —a tan a. 
The straight line parallel, therefore, conicides with the 
line of centers for the meridians; and hence must be the 
perpendicular bisector of pp’. It is the line RR’ drawn 
in the figure. 

In figure 13 the details of the construction of the merid- 
lans are given. p and p’ are determined in the same way 
as in figure 12. To determine the coordinates of p and 
of p’, we set x=0 in the equation of the meridian and 
solve for y. We thus find that 

y = —a tan ata seca; 
therefore 

Ep=—a tan a+aseca 
and. 

Ep’ = —a tan a—a@ sec a. 

The middle point of pp’ is given by 

5 (Ep+ Ep’) = —a tan a. 

The perpendicular bisector of pp’ is, of course, the line of 
centers of the meridians, since they must all pass through 
the points p and p’ and they thus have pp’ as a common 
chord. This line of centers is the line RR’ in the figure. 



THEORY OF POLYCONIC PROJECTIONS. es | 

The length of Fp’ is equal to the length of Hp’ minus the 
length of HF; hence the length of Fp’=a sec a. The 
center for the arc that is the projection of the meridian 
of longitude \ lies on the line RR’ at the point zm= —a 
secacotd. With p’ as acenter and with any convenient 
radius construct a circle; divide this circumference into 

Fig. 13.—Construction of meridians on stereographic horizon projection. 

equal arcs for whatever interval it is desired to construct 
the meridians, the initial pomt of the subdivision being 
the point where this circle intersects the central meridian. 
In the figure we have 7 

BF= Fp’ tan Z Bp’F; 
but 

Fp’ =a sec a. 
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If then the angle Bp’ F=5-2, we shall have 

BF=a sec a cot X. 

The arc GH must be taken as the complement of the 
longitude, for which we wish to construct the meridian. 
GK is 30°; therefore C is the center of the meridian for 
4=60°. The meridians all pass through p and 9’, so 
that they may be nonsheiclert as soon as we have located 
a centers. is, of course, the center for the meridian 
of \=90°. 

~) 

Ss 
Fic. 14.—Elements of a small circle on stereographic projection. 

SOLUTION OF PROBLEMS IN STEREOGRAPHIC PROJECTIONS. 

We shall now give the demonstration of the solutions 
of a few problems connected with stereographic projections. 
The plane of the projection is called the primitive plane, 
and the circle formed by the intersection of the primitive 
plane with the sphere is called the primitive circle. The 
polar distance of a point on the sphere is the angular 
distance on the sphere from one of the poles of the primi- 
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tive circle. The polar distance of a circle is the angular 
distance of any point of its circumference from either of 
its own poles. The imclination of a circle is the angle 
between its plane and the primitive plane. It is meas- 
ured by the arc distance between the pole of the given 
circle and the pole of the primitive circle, since this 
measures the angle between the perpendiculars to the 
planes of the two circles. 

In figure 14 let NESW be the primitive circle and let 
QR be the trace of the plane of a small circle, with P as 
its pole; then PR = PQ is its polar distance and PN is its 
inclination. Thediameter WH is called the line of measures 
of the circle QR; NS 1s perpendicular to WE at the center 

D 

Fic. 15.—Determination of the are distance from the center on stereographic projection 

of the primitive circle. S is the point of projection and 
Q’ and R’ are the projections of the extreme or principal 
elements of the oblique circular cone SQR which is formed 
by the projecting lines of the points of the circle QR. 
Denoting the polar distance of the circle by « and the 
inclination by £, we, have 

OR’=a tan 5 (—€) 

OQ’ =a tan 5 (+8) 

Problem 1.—To determine the shortest distance between 
the center of the map and another point the projection of 
which is given; that is, to determine the arc of a great 
circle between them: 
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In figure 15 let DBEA be the primitive circle and let AB 
be the line of measures; g is the given point. Construct 
Cg’ equal to Cg and draw Eg’ from the point of sight H 
and prolong it to meet the primitive circle at G; then DG 
is the arc distance, since all points of polar distance DG 
are projected into the circle of which ae are gg’ forms a 
part. ‘Therefore, the great circle distance of Cg and Cg’ 
are equal; DG is evidently the polar distance of g’, and 
hence also of g. If the given point lies on the line of 
measures the construction is the same as that given for 
the determination of the great circle distance of 9’. 

Fic. 16.—Projection of a circle with given projection of pole and given polar distance on 
stereographic projection. 

Problem 2.—To construct the projection of a given circle, 
its polar distance and the projection of its pole bemg 
given: 

In figure 16 let P’ be the projection of the pole. NESW 
is the primitive circle with NS passing through P’ and 
with WE perpendicular to NS; NS is then the line of 
measures, with W as the pomt of projection. Draw 
WP’P and from P lay off the arcs Pp and Pq equal to the 
given polar distance. Draw Wp and Wg, thus locating 
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p’ and q’ in the line of measures. A circle constructed 
on p’qg’ as diameter is the required projection, since 
‘q’ is the projection of the diameter of the circle on the 

fine of measures. This circle can be determined in another 
way by locating p and p’ as before; then at p draw the 

Fic. 17.—Projection of circle whose pole projection lies on the primitive circle on stereo- 
graphic projection, 

beeen pQ meeting OP produced at Q; then WQ locates 
C the center of the required circle. With C as center and 
with Cp’ as the radius, we can construct the circle. If P’ 
lies on the primitive circle, P and P’ will coincide, and the 
construction is evident from figure 17. 
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Problem 3.—To project a great circle, the projection of 
the pole being given: 

In this case the polar distance is = and Pp=Pq=5 in 

figure 18. The circle passes through W and E; hence it is 
sufficient to locate either p’ or q’; WC is parallel to OP, 

Ss 
Fic. 18.—Projection of a great circle with given pole projection on stereographic projection. 

and in this manner (@ can be located; with C as center, with 
CE as radius, the circle can be constructed. 
Problem 4.—To find the locus of centers of all great circles 

passing through a given point: 
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Fia.. 19.—Locus of centers of great circles through a given point on stereographic projection. 

In figure 19 let P’ be the projection of the given point 
through which the great circles are to pass; draw the diam- 
eter VP’S and the perpendicular diameter WH. The pro- 
jections of all great circles through P’ must also pass 
through a point at the distance of 7 from P’; accordingly 
draw the diameter PQ and draw WQ, cutting NS the line 
of measures in Q’; then Q’ is the projection of the antipode 
of P. Since all the required circles pass through P’ and 
Q’, their centers must lie on the straight line perpendicular 
to P’Q’ at its middle point c; this line is called the line of 
centers. 

Since a great circle may always be drawn through the 
points W, P’, and £, the point c may be found by drawing 
a perpendicular bisector to WP’ intersecting NS in ce. 
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The triangle WP’c is isosceles, and the angle P’ Wp equals 

the ancla WP'S yisehas measured by 5 (5 tare PN) 
1 

_. =5 arc PNW; that is, the arc PEp=arc PNW. Hencelay 
2 

off the are PEp=are PNW and draw Wep. This is the 
same as laying off a polar distance PN W from P; thus the 
line of centers is the projection of a small circle passing 
through the line of sight and having the polar distance 
PNW=7-—, where £ denotes the inclination of the circle. 

From figure 19 WQ=PE; QSp=7-(pE+ WQ)=r- 
PEp=1—PNW= WQ; hence lay off WQp=2PE, and 
draw Wp, thus locating c. Wp is evidently perpendicular 
to PQ, so that c can be located in that way. 

Z WEp= ZPOE= Z WOQ; hence a line joining E and p 
is parallel to PQ; this gives another method for locating c. 

roblem 6.—To draw a great circle through P, making a 
given angle with NS: 

In figure 19 the tangent to the required circle at P makes 
the given angle (m), with P’OS; the perpendicular to the 

tangent makes with P’OS the angle 2 —m. Hence con- 

struct SP’R =5-™ with P’R intersecting the line of cen- 

ters at R, the center of the required circle. 
The projection of a great circle always meets the primi- 

tive circle at the extremities of a diameter as MM’ in 
figure 19. 
Re has 6.—To find the projection of a pole of a given 
ircle: 
In figure 18 let Wp’E be a great circle; draw the per- 

pendicular diameters WE and NS, and draw Wp’p; lay off 

oP equal to = and draw WP, thus locating P’, the required 

& 

pole. 
In figure 16 let p’q’ be a given small circle; through its 

center c draw NS and draw WE at right angles; draw Wp’ 
to locate p and Wq’ to locate.qg; bisect the arc gN Ep, locat- 
ing P, and draw WP, thus locating P’, the projection of 
the required pole. 

Problem 7.—To construct the projection of a great circle 
passing through the projections of two given points: 
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Fig. 20.—Projection of a great circle through the projections of two given points on stereo- 
graphic projection. 

In figure 20 let ORO’S be the primitive circle and let 
P and Q be the projections of the two given points, and 
let A.be the center of the projection. The lines that pro- 
ject any two antipodal points are perpendicular to each 
other; we can then easily determine the projections of 
the points antipodal to P and Q through which the pro- 
jected circle must necessarily pass. Draw PA and prolong 
it beyond A; at A erect the perpendicular AO, intersecting 
the primitive circle at O; draw OP and erect upon it the 
perpendicular OP’ intersecting PA produced in P’; P’ is 
then the projection of the point antipodal to P. The tri- 
angle OPP’ is the projecting triangle turned on the pro- 
jected line PP’ as an axis into the plane of the paper. 
na similar way Q’ can be determined, but a circle passed 
through P, Q, and P’ is the required projection. It may 
be seen that the construction is correct from the considera- 
tion that AP’ must be a third proportional to AP and AO. 
If the point of which P is the projection has the polar dis- 
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tance p, then AP=a tan e and AP’=a tan : (7—p) 

=a cot = : but O0A=a, and so we have 

OP = 0A—OA.: AP. 

This establishes the validity of the construction. 

As a basis for the next problem we shall prove that if a 
plane passes through the poles of two great circles it cuts 

off equal arcs on the two circles. | 
In figure 21 let P be the pole of the great circle CEC’ 

and let P’ be the pole of DED’ with the center of the 

Fic, 21.—Plane through the poles of two great circles, 
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sphere at O. The triangle OPP’ is isosceles; therefore, the 
line PP’ is equally inclined to the planes of the great 
circles, since it is equally inclined to their perpendiculars 
OP and OP’. Produce PP’ in both directions to intersect 
the planes of the circles, the one at Q and the other at Q’. 
The triangle OPQ=the triangle OP’Q’, since OP=OP’, 
ZOPQ= ZOP’Q’, and ZPOQ= ZP’OQ’. Therefore, 
Q0 =Q’0 and QD=Q’C". Pass a plane through PP’ and 
let QGHG’ be its trace on the plane of DED’ and let 
Q’ F’H F be the trace on the plane of CEC’. Then ZOQH = 
ZOQ’H, since the corresponding right triangles are equal. 
The are DG will therefore equal the are C’ fF’, and the arc 
G’D’ will equal the are CF, since Q and Q’ are the same 
distance from their respective great circles. But the arc 
GEG’ =7— (DG + D’G’) andthe are FEF’ = 1— (F'C"’ + CF). 
Therefore, the arc GEG’ is equal to the arc FEF”, and the 
proposition is proved. 

Problem &.—To determine the shortest distance between 
two points whose projections P and @ are given; that is, 
to determine the arc of a great circle between them: 

Fic. 22.—Great circle arc between two points on stereographic projection. 
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In figure 22 construct the projection of the great circle 
passing through P and Q, the projections of the two given 
points, by the method of problem 7. Draw NS the diam- 
eter determined by the intersections of this great circle pro- 
jection with the primitive circle and draw the perpendicu- 
lar diameter WE. ‘This diameter is then the line of meas- 
ures. Locate the projection of the pole of SR N by drawing 

SRT and by laying off T U=5) and by then drawing S U, 

thus locating K, the projection of the pole. Draw KP and 
KQ and prolong them to intersect the primitive circle in 
P’ and Q’, respectively; then P’ WQ’ is the great circle arc, 
between the given points of which P and Q are the projec- 
tions. KP’ and KQ’ are the projections of circles passing 

through the point of projection and through the pole of the 
great circle of which SPQWN is the projection. But the 
point of projection is the pole of the primitive circle; hence 
the planes that determine the projections KP’ and KQ’ 
cut off equal arcs on the great circle, whose projection is 
SPQN and the primitive circle. Therefore, the arc P’Q’ 
is equal to the are of which PRQ is the projection. 

This problem can be solved, together with that of deter- 
mining the projection of the great circle passing through 
the projections of the two given points in the following 
manner: 
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Fig. 23.—Sphere showing intersection of given lines. 

In figure 23 let Z be the zenith and C the center of the 
sphere and let MM’ be the arc of a great circle joining the 

points Mand M’. If Eis the point of projection, m and 
m’ are evidently the projections of M and M’. Produce 
the chord MM’ until it meets mm’ produced in FR; then 
RC is evidently in the plane of the great circle UM’, and 
also in the primitive plane. ‘Therefore, the points O 
and O’ lie on the projection of the great circle and the 
projection is fully determined, since it is a circle passin 
through m, m’, O, and O’. If MM’ is parallel to mm’, 
then evidently OO’ is also parallel to each of these lines. 
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Now, in figure 24 let NESW be the primitive circle and 
let WE be the line of measures; also let m and m’ be the 
projections of the given points. Take On’=Om/’ and 
On=Om,; draw Sn’ to intersect the primitive circle in p’ 
and Sn to intersect it in p. On mm’ construct the tri- 
angle Dmm’, having mD=Sn and m’D=Sn’; prolong 
Dm’ to q’, making m’q’ =n’p’, and prolong Dm to q, mak- 
mg=np. Then qq’ is the chord distance between the 
given points, and this chord being laid off anywhere on 

NV 

Fig. 24.—Projection of great circle through two points and length of arc between them 
on stereographic projection. 

the primitive circle will give the great-circle-arce distance. 
The triangle Dgq’ is evidently the triangle HMM’ of 
figure 23 turned on mm’ as an axis into the plane of the 
projection or into the primitive plane. Prolong mm’ and 
qq’ until they intersect at R, and draw RO intersecting the 
primitive circle in C and C’. A circle made to pass 
through C, m, m’, and C’, is the required projection of the 
great circle through the points Mand MM’ of the sphere. 
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This same problem can be solved by the method of 
descriptive geometry in the following way: 

- 

4 ie eee 

=, 

ee ce ee eee ee coe, eee ee ee ce ee ee ee eee eee ee ee ee 

U 2 

Fig. 25.—Projection of great circle through two points on stereographic projection, 
second method. 

In figure 25 FO is the trace of the great circle plane on | 
the horizontal plane; we need to determine, then, this 
trace of the plane of , M’ and the center of the sphere. 
n and n’, pand p’ are determined as before; from p let fall 
the ee eee pq upon WE and from p’, the perpen- 
dicular p’q’; prolong Om to r, makmg Or=QOq, and pro- 
long Om’ to r’, making -Or’=Oq’. r and r’ are then the 
orthographic horizontal projections of the given points M 
and JM’ on the sphere. Draw S’U parallel to WE; let 
fall the perpendiculars r’s’ and rs and prolong them, 
making S’7”=p’q’ and ST=pq. T and T” are the ortho- 
graphic vatticdiprajection of UM and M’, and TT” is the 

991943 O- 52-5 



66 U. S. COAST AND GEODETIC SURVEY. 

vertical projection of the line MM’ and rr’ is the hori- 
zontal projection of the same line. Prolong TT’ until it 
intersects the lne S’S at U and erect the perpendicular 
UR intersecting r’r prolonged in R. AF is the trace of the 

line MM’ on the horizontal plane, which is here the 
primitive plane. 0 is then the trace of the great circle 
plane on the horizontal or primitive plane. This deter- 
mines the points C’ and C”’, through which the projection 
of the great circle must pass. A circle made to pass 
through the points C, m, m’, and C” is the required pro- 
jection. Note that m’m produced passes through the 
point FR, as it should. 3 : 

Problem 9.—To lay off on a great circle an arc of given 
length from a given point P: 

Determine the projection of the pole of the given great 
circle projection. In figure 22 let K be the projection of 
the pole of the great circle of which the arc SPRQN is the 
rojection; draw KP intersecting the primitive circle in 

fpr . Lay off the given arc P’Q’ on the primitive circle and 
draw Ka! intersecting the projection of the great circle 
in Q; then PQ is the projection of the ree arc. 

Problem 10.—The projection of a great circle and that 
of a point being given, to construct the projection of the 
great circle passing through the given point and perpen- 
dicular to the given great circle: 

Determine the projection of the pole of the given great, 
circle and then construct the projection of the great circle 
passing through this pole and the given point; this is the 
required projection. ; 

roblem 11.—To construct the projection of a great 
circle which passes through a given point and which is 
inclined at a certain angle z to the primitive plane: 
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Fic. 26.—Projection of great circle with given inclination to the primitive plane 
on stereographic projection. 

In figure 26 if the given point lies on the primitive circle, 
as N, draw NS and WE, the line of measures. Construct 
the angle ONC equal to the given angle z; then C is the 
center and CN the radius of the required projection. If 
the projection of the given point is not on the primitive 
circle, but is at some other point, as P, construct the are 
CD with O as a center with OC as a radius. Construct 
another arc with P as a center and with CN as a radius 
intersecting the first arc in D; then with D as a center 
and with DP as a radius construct the required projection. 
(Remark.—If the given point does not tie on the primi- 
tive circle, the construction is not always possible; m 
fact, the angle z can not be less than the angle WOA.) 

Problem 12.—To determine the inclination of two great 
circles with respect to each other: 

This problem is solved by determining the projections 
of the poles of the given circles, and then by measuring 
the great-circle-arc distance between them. Apply the 
method of problem 6 and then that of problem 8. With 
great circles the inclination of the planes is equal to the 
angle between the radii of the two circles drawn to the. 
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point of intersection, since the inclination is equal to the 
angle between the given circles. The method of the 
problem can, however, be applied to any circles, either 
great or small. Even with small circles we may draw 
the projections of the parallel great circles and then deter- 
mine their inclination with respect to each other by the 

S 

Fig. 27.—Determination of the inclination of the planes of two great circles on 
stereographic projection. 

radi drawn to the point of intersection. In figure 27 
let SHN be the projection of a great circle, with Cas the 
center for the arc; also let H’H’ W’ be the projection of 
another great circle with C’ as the center for the arc. 
The angle between the arcs is then equal to (K’’C’, since 
the angle between the radii is equal to the angle between 
the tangents, and, the projection being conformal, the 
angle between the circles is preserved in their representa- 
tions. Locate the projection of the pole of each of the 
given great circles; KA is the projected pole of the first 
circle and K’ is that of the second circle. A great circle 



THEORY OF POLYCONIC PROJECTIONS. 69 

passing through the pole of a given great circle has its 
plane necessarily perpendicular to that of the given great 
circle; therefore the great circle which passes through the 
poles of the two great circles has its Nate perpendicular 
to the plane of each of the given circles. K’’ must then 
be the projection of the pole of this great circle of which 
IKK’I’ is the projected arc. GG’ is therefore the great 
circle arc of which KK’ is the projection; or the angle 
GOG’ is the angle that measures the inclination of the 
planes of the given great circles. The angle GOG’ should, 
therefore, equal the angle ('K’’C’; the impossibility of 
making a pect construction may cause some deviation 
from equality in the constructed figure. 

Problem 13.—The projection of a point being given, to 
construct the meridian and parallel passing through the 
oint: 
If the problem is to be determinate, we must have the 

peu live circle given and the projection of one of the 
oles. 
In figure 28 let NES W be the primitive circle and let 

P be the projection of the pole ; locate the south pole by 
drawing WP and then WP’ perpendicular to WP; RR’ is 
the perpendicular bisector of PP’, and is therefore the line 
of centers for the meridians. Let Q be the projection of 
the given point; pass a circle through P, Q, and P’, and 
this is the projection of the meridian through the given 
oint. Construct a tangent to PQP’ at Q, meeting NS 

in 7; then Tis the center of the projection of the parallel 
and TQ is the radius; this fully determines the projection 
of the parallel which is the arc QQ’. 
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Fig.28.—Projection of the meridian and parallel through a given point on stereographic 
projection. 
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Problem 14.—To construct the projections of the circles 
parallel to a given circle: 

Fig. 29.—Projection of circles parallel to given circle on 
stereographic projection. 

In figure 29 let pp’ with center at (be the given circle. 
Draw NcS and the perpendicular diameter WE; draw 
Wp’P’ and WpP; bisect the arc PP’, thus locating Q the 
pole of the given circle. From Q lay off the polar distance 

of the required parallel circle. In the figure QR =QR’ =3 ; 

draw WR and WR’, thus locating the extremities of the 
diameter of the given circle rr’; the center is given by 
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bisecting this line. For the parallel great circle take 

QT=5; WT locates ¢ and WU parallel to OQ locates U, 

the center of the required great circle projection. 

CONFORMAL POLYCONIC PROJECTIONS. 

Since we are to have a conformal projection, it is best 
to treat the case for a sphere and then to take into account 
the ellipsoidal shape in the same way that we did in treat- 
ing the stereographic projections. 

In the treatment of the rectangular polyconic projec- 
tions, we found that 

tan & HAUG co 
2 U 

and for the sphere that 

1(@ gog9 2) 
a 7 Wr de 

ae p TAX). x 

Pacis” TO): 9; 

also” 

1ds_1 du, 
pdp ude 

If the projection is to be conformal, it must be rectangular, 
and, in addition, the scale at any given point must be the 
same along the meridian that it is along the parallel, or 
m pe 

Hence 

ds apy pa’) . 
a cos 0h) = eT Ny’ sin 6, 

or 

Wen COS te. (dS dp... 
I’ Q)= ene, Hees -<P). 

*See p. 15. 
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But 

2 t ze SDL, 1s SP EN) 
ae eee ee 

1+tan’s 

0 
a: ae 1 tan’> u? T(r) 

2S eae tor peice] 

1+tan’s 

Substituting these values and the value of 

we obtain 

Ty eos v (2 du en a) 
a 2pu udgw+T7(a) de 

_ cos ¢ du __cos gdp =e [u? —T2(A)] Obie [u? + T?(A)] 

ae 
cos ¢ dp £8 a) wur( SE gdu_ cose ) 

2ou dp 2u? de 2u? do 2pu dye 

iia yell 
Taye oe de dp, du 

“do "de 

— (bl 4. HU) O8 # 
de Pde) 2pu? 

Since I'(A) is independent of ¢, T’(A) is also independent 
of yg; consequently the two expressions dependent upon ¢ 
must reduce to constants. e can set one of them equal 
to unity, because u can be multiplied by any constant 
without changing the value of either s or p; and if so, 
T(A) would be multiplied by the same constant, so that 
§ would not be changed thereby. 
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Accordingly let 

ie, 
wl’ Pde _ 
ths du , 

de de 
or 

dp_jdu_ide, p du 
de °de ude aa dy 

dp _ 1 du 

(x7 ~ujde ? Tew de) 
1 1 

(u—%)de=ed(u-=) 

1 

p ae! 

by integration 
1 c 

log. p= log.( w -z) + log. 5 

in which the constant of integration is taken in the form 

log. 5° It determines the scale of the projection. Passing 

to exponentials, we obtain 

But 
lds idu 

pdp ude 
or 

ds =o du, 
U 
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Therefore, by integration, 

c 1 
s—5(u+2) 

in which the constant of integration may be taken as 
zero, since the addition of any quantity would only serve 
to change the point from which s is reckoned. 

From these results we obtain 

St+tp=cu 

eee 
u 

or, by multiplication, 

g—pP=e. 

This equation shows that the circle with the origin as 
center, constructed with the radius ¢, cuts all the parallels 
at right angles. Any circle drawn through the two points 
of intersection of this circle and the line of centers of the 
parallels will also cut the parallels orthogonally, for the 
tangents drawn to it from any point in this line of centers 
are equal. Therefore, these circles, since they form the 
orthogonal trajectories of the parallels of the map, are 
none other than the projections of the meridians. The 
two common points in the line of centers of the parallels. 
are the poles of the map. 

If, then, we take two arbitrary points to represent the 
two poles, the meridians of the map will be the arcs of 
circles which pass through these two points and the 
parallels will be other arcs of circles having their centers 
at various points of the prolongation of the line of poles 
and each passing through the point of contact of the 
tangent drawn from the center to any one of the merid- 
ians; for example, to the circumference described upon the 
line of poles as diameter. 
We have yet to find the expressions for u, p, and s in 

terms of g, and that for I (A) in terms of X, by which expres- 
sions we may be able to tell, in the first series of arcs, 
the one that corresponds to a given meridian X and, 
in the second series of arcs, the one that corresponds to 
the parallel of latitude ¢. 
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In the expression for I’ (A) on page 73, if we let 5 

represent the second constant, we have 

dp ot) Se nN 

Uaaneh ge Dis amie) 

or, by substitution in the equation on page 73, 

r’Q)=5 11 +1? 
T’(A)dA _1n 
T+r7Q) 2% 

by integration, 

tan—! T'(A) == A+! 

or 
Nn 

(A) = tan G ose c'). 

Hence 
Aye! nN , 

tan ae tan é A+¢e ): 

Since for \=0, we have 6=0; therefore, c’=0 and 

NT 
T'(\) = tan 5 r 

and 
Genet 10) 

tan Dea tan 3 r- 

To determine u, we may write 

dp du\ cos ¢ nN 

Wage do) 2pu? 2 

in the form 

d (up) cose sn 

digs «2pit® Tacs 
But 

and 
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By substituting these values, we obtain 

cosg dun 

w—-ldg 2 

du _—n dy 
w—1l 2 cos¢ 

1f/ du du n de 
2\u-1 util Aaa 5 ) 

sin ul go 

n Loos (G+$) +8in’ (Z+$) | ao 
“2 — ay a 

du eos =i) $) dy = sin (7+5) i z 

in 48)? om (G8) COs 

By integration 

Se = i=n Ee sin (F aah +$)- —log. cos G vir +$)| +log, k, 

log. & being the constant of integration. Passing te 
exponentials we obtain 

ni( 2 € tan ( 4 +) 
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or 

es k tant (7+$)+1 

k tan®™ (i+$)- 1 

i tan (F+$)44 
k? tan?” G +$)- 1 

nf 7G i 2k tan (5+) 
a 1\ 

2 ang __ e k? tan (Z+$)+1 

c WEG 
MO ut+z)=¢ 

TQ) =tan5r 

rit CLES ih i @ TQ) k tan: (G+$ 1 a 

aN eT e\ tan gh 
k tan® oe 

The value of s gives the distance of the center for the 
circle that is to represent the parallel of latitude y from the 
intersection of the central meridian with the parallel that is 
represented by a straight line; p.is the radius of this 
parallel; the parallel is therefore fully determined by 
these two quantities, since the centers of the parallels must 
lie on the central meridian. In order to construct the 
Meridians, we must determine on the parallel of ¢ the 
value of #, the angle at the center of parallel y, that corre- 
sponds to the meridian of longitude \; this method of 
p otting the meridians by coordinates will be unnecessary, 
owever, if we determine the equation of the meridians. 

We have 
= psin 6. 

y = § — pcos 8. 
But 

tan @ _TQ) 
2 Ww 

or 
7] n 6 

u = T() cot 5 = tan 5 d cot 5" 
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Hence 

c 1 c nN 7] nN i) 
0=5( ~ =) =5( tan 5h cot 5 cot 3 tan 3) 

or 

(sin =X cos 5) _ (cos *y sin 5) 
p= 2e Nig’ S64. tee Zh Oe Aa ees 2 = 2 2 = 

sin nd sin @ ? 

also 
bas) 6\2 Ree ON? 

(sin 5s cos 3) +(cos ah sin 5) 

s=2c ——————————- HJ 2": 
sin mA sin 6 

_ 1 7] Po ON 1 7) Leek 
(sin $2c0s 3 —cos 5*sin 5 (sin 9% cos at cos 5% sin>) 

aD 
sin nA sin 6. 

sin i (n\ — 6) sin = (nd +6) 
2 2 c(cos 8—cos nd) 

—? SS — eg 

sin mr gin 6 sin nA ‘sin 6 

Bi 2c x ONE 0 
S—p Cos 6 ee a (sin 5 cos 5) 2 sin’5 

BOTY 29 
+(cos $a sin 5) 2 costs | 

4c sin af cos *( sin = A+ cos r) 

=> 

2 

sin nA sin @ 

_¢sin 6 
* gin mA. 7 

: c(cos 6 us COs NA) 

poe gin nd i ee 

or 

€ cos 6 
anthnoore cot nr. 

Therefore 
y’? + (2+c cot nr)? =c? cosec? ny. 
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Since this equation contains only ) and is independent of 
g and @, it is the equation of the meridians. The meridians 
are therefore circles with centers upon the X axis (the 
straight line parallel of the map) lying at the distance 
= —ec cot md from the origin and having the radius 
= c cosec NX. 

Since for x=0, y= +e, all of the meridians pass through 
the two points which are distant +¢ and —e from ihe 
one 2c is therefore the length of the central meridian 
included between the poles. 

As an aid to construction, we may assume the equation 

k tan (F+$)=tan (G+5); 

S=c cosec Y 
then 

and 
p=c cot y. 

A special case of this projection is given by the values 
k=1 and n=1- in which case y =g, and 

S=€ Ccosec 9 

p=C cot ¢ 

and the equation of the meridians becomes 

y’ + (a+ cot d)? =e cosec? d. 

This is evidently the stereographic meridian projection, 
which has already been discussed under that heading. 

DETERMINATION OF ‘THE CONFORMAL PROJECTION IN 
WHICH THE MERIDIANS AND PARALLELS ARE REPRE- 
SENTED BY CIRCULAR ARCS. 

This projection is the one devised by Lagrange. His 
problem was to determine the general conformal projec- 
tion in which the meridians and parallels were both 
represented by circular arcs. 

Since the projection is to be conformal, we can express it 
in the form of a function of a complex variable.* 

_*See The General Theory of the Lambert Conformal Conic Projection, Special Publica- 
tion No. 53, U. S. Coast and Geodetic Survey. © 
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Let 7 denote as usual -/ —1 and assume the relations, 

x— iy =f,(o +1) 

r+iy=f,(o—1d), 

then f, and f, are conjugate functions of a complex variable 
that are only limited to being analytical functions. From 
these we find at once 

p= 51 Alot) +flo-0)] 

y=5L ilo +O) fo -1n)], 

or, denoting f,\(¢+7) by f, and fi(¢—a~) by f, 

i 
= 5 (Ai +h) 

: 1 
w= —5(h—t) 

1 Of ttf) 

oe 2 ERE =) 

oy = a Fas As ) 

0 Ley 
Ss = 5S i +f’). 

From these equations it follows that 

Or _. ,OY On ==, OY 
Oe hee d 5 Geka os 

991943 O- 52-6 
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From these we obtain at once 

= —— SC 

OP) Pes 5 OEY 
Oc? Or Od ©=)>— OO? 

(82) + (35) ~(ax) +(5k) x B00 ax 
=A A — Of =f at 

Therefore 
W=-f(e +i) f',(¢—1). 

If the coordinates of a plane curve are expressed in 
terms of an independent variable ¢ in the form 

x= p(t) 
y=), 

the expression for the radius of curvature is given in the 
form ) 

dz@y dydx 
1 dt dt? dt dt? 

1S): @T 
Since in the expressions for z and y in terms off, and f,,, 

¢ is # function of the latitude and ) is merely the longi- 
tude, ¢ is constant along a given parallel and 2 is constant 
along a given meridian; in other words, ¢ remaining con- 
stant, we obtain a parallel by variation of \, and dX being 
constant, we get a meridian by variation of c. Therefore, 
if we neglect the sign 

de d'y_dy d%s 
= Oc Oo? Oc Oc? 

™ [y+ T 
dz d’y dy ds 

= ONO OXON 

* [@)+QOT 
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or by substituting the values on page 82 

i Roe"0e. 20%. Oy 1 ow 1 

BR, Wi dc dc ON Oc da OK | WOd 

i) 1 os 07. -voy Ory 1 oW 
SNP Se RB, W.drdr dc OAOA Oa] Woe 

or, again paying no attention to sign, 

ie) 
Ryn ON\W 

| 

Deicke | 
———< 

R, o\W/)’ 

W=Vf',(o4+a) f',(o—®). 

If the meridians and parallels are to be circles, 2, must 
be independent of co, and R, must be independent of 2. 
This fact is analytically expressed by 

Of A 0/1 
3 (p-)=0 and sip: )=°- 

These two conditions lead to the same condition; that is, to 

ron)“ Oc OA\ W, 

From this it follows that, if the projection is conformal, 
the condition that one system of curves forming the net is to 
be made up of circles, makes it necessary that the other set 
should also be circular arcs; this includes, of course, straight 
lines as special cases of circles with infinite radii and with 
centers at infinity. 

If, in order to simplify the analysis, we set 

in which 

E 3 
Gan) 9, (¢ +10) 

\f’,(o — id) a aN) =9,(¢ ~ MD), 
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then 
1 : g 
Wr (+1) g,(¢—) 

1 i : ; ; 
= AG +1) g.(g—A) +9,(6 +0) g’,(¢ —1d) 

o? fl a, ; 

Oo oar) = (e+) g2(0— 1d) — tg, (6 +4) g,"(o — 1) 

so that from the required condition we have 

g’'(o +d) _ go’ — 1) 
Go +A) ~ g,(¢—A) 

The two members of this equation are conjugate complex 
functions, and the equality can only exist on condition that 
the members are each equal to a real constant. Let us use 
6? for this constant and, for the sake of abbreviation, let 
us denote the variable «+. by 2 and g,(z) by 4. The 
differential equation then becomes 

PZ 
dz =a B?Z.. 

Multiply both members by us and we have 

2dZ #Z dZ 
“de de 78°" Ge" dz 

(=) 7 B?Z? a: ae 

-7? being the constant of integration. 

oes 
Ea 

By integration, 

or 

BdZ 

Wea 
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Integrating again, we obtain 

log.(6Z + \/8?Z? — 7°) =Bz+6 
or 

BZ+V¥eL—y~=e™. 

Taking reciprocals we get 

pL — \BU AH = ye 
By addition, we obtain 

ee ye? _2 
— el Bz —_ ~ Z ape + OB e 

Now, for abbreviation let 

op a and “og 7 P: 

and we have 

Z=A,e% + B,e-* 
or 

g,(o +0d) = A,ehOt+® + Be Bheti), 

But 

FN Ra dey ‘Yo 
cat cler Temn yn 

Hence 3 

TREN (2S boo WEY O® 
dz (A, 8 + B,e-*)? 

e282 

_ 1 dAe*+B,) 
UOl=a7 F (A282 + B,)? 

By integration 

1 1 
ae) ae S2AR Age eB 0, 

If we set —2A?8= M and —2A,B,8=N and restore the 
value of 2, we obtain 

A 1 
file + 1h) = C+ Me?Be+in) + N 

85 
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Since fi(o +r) is equal to «—iy, the constant C tends 
only to translate the origin. Let us suppose that Cis a 
complex quantity in the form of a+ib. If we transpose — 
C to the left-hand member, we have 

1 
z—a—vly +b) = ap ogeray 

a and 6 may be either positive or negative and either or 
both may be zero. No generality is lost if we set them ~ 
both equal to zero, since they may be accounted for by a 
mere translation of axes. 

Now, let M=- Ar and N= — Bi and we get 

1e—Ble+inr) 

=) = Agke+) + Be-Betia)* 

By multiplying both terms of the fraction by Ae*e- + 
Be-®e—), we get 

tAe—2Pr + 7 BeBe 

Sa a A2¢78* + DAB cos 28d) + B2e—** 

BNE A Ua 
—— Ate?6 4. 2 AB cos 28) + Be 262 

By equating the real parts and the imaginary parts, we 
obtain 

cs A sin 28r 

oS Arete +2AB cos 28\ + B2e—28¢ 

sae A cos 2B8r + Be-*6e : 

Y~ ~ A2é8 +2 AB cos 28\-+ Bre~26 
On the sphere 

= Ane o =loge tan(4+$) 

and on the ellipsoid 

1—esin ¢\? 

i loge| tan es 5) a +e sin ) | 

That the meridians and parallels are both circles, we 
already know, since the function f, was determined on 
this condition: but in order to obtain their equations, we 
must proceed. in the usual way. If we eliminate o, we 
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shall have the equation of the \ meridian and, by the 
elimination of }, we may obtain the equation of the 
parallel of latitude ~. 

| rita A? +2A Be-*6* cos 28d + B2e—*82 
Y~ (a?e8"+2AB cos 28+ Be) 

e—2B8e 

~ Aze8= +2AB cos 28) + B%e~262" 

Therefore 

=e — (Aé*= cos 28 +B) 

oie sin 26d. 

From these, by the elimination of o, we obtain 

2 YEB OY) oot om 
or 

P+ytayt ze cot 26\=0. 

eo 2BXr 1 

(@ oe: re) +(y+53) - = ZB? sin? 2Bv’ 

This is a circle, the center being at the point 

cot 2Br 

nse oR 

Yor —9R 

and its radius being 

1 

Po" 2B sin 26’ 

This equation is pleniacelly satisfied by the values x=0 

y=0, and by z=0, y= — since all meridians pass 

through these points, ney. represent the two poles; the 
Y axis is the central meridian. 
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If we eliminate d, we get 

(sto aE B) st oan JEP ee = Areste. 
x? +y? (x? + y?)? 

Developing and arranging, we get 

Yt 2 ae yy eB a? ya Ate (2 7)? 

Dividing by «?+y?, since this can only vanish for z=0, 
y= 0, we Pat (A2e#8o — B?) (2? +y?) -—2By=1 

2By 1 
m+ — Aaeiee — Bi Arlee — Bi 

or 

B 2 A? esbe 

OS er ae 

This is a circle with center at the point 

B 

t= 0; Yo= Aagibe — Bi 
and with radius 

Ae?be 
Po ~ "A2¢48o — Be ; 

Since we know that the projection is conformal, it is 
known that the magnification 1s the same at any point 
in all directions. We can determine its value along a 
parallel and in that way determine its value in all 
directions. 

Ox 2A8 cos 26d (A2e282 +. B2e-28c) 4. 4 A? BB 

On” (A?# + 2AB cos 28N+ Bree)? 

ou 2AB sin 2B (A?e?6 + B2e-286) — 4A B*Be—28" sin 28d 
(A2¢28e + 2 AB cos 28 + B2e-282)? 

) Sty = RSE ees Aa So 
€ ix) (5 i (A2e?8* + 2 AB cos 28 + B%e-282)? 
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But on the earth 

P] 
=) = a? cos? ¢ 
ad/ 1—é€sin?¢ 

from which it follows that 

dS, 2AB V1—€ sin? ¢ 
k="T3 a cos @ (A2e8"42AB cos 26h+ Be) 

In order to derive the equations in tel usual form, 

we shall move the origin down to the point — 5 = The value 

of « will remain the same, but the new value of y will 

equal the old value of y increased by oR or y’ =yt5p° 

The equations are. therefore, 

A sin 26d 
~ A2¢?8* +2 AB cos 26d + Bre-28- 

A2¢@28e nie Bre-2B8e 

Y~ 5B (A2¢?8° + 2 AB cos 28) + B%e—787) ° 

The equation of the meridians now becomes 

cot 2Br 

(24% e) + Y= GB? sin? 2B = TN 
and that ot the oo 

: Ae 4Be + B? 2 A2¢@4be 

2+] 9 spa — By | ~ Cree 
_ To identify this projection with the one formerly 
obtained, let 

1 
BB 28=n, and Hoy 

B 
Then 

i 2ck sin nd 

u= Tene + 2h cos nk +e”? 

c(k2e22 bee e—n) 

4 yagne +2k cos n\+e7% 

(2+c¢ cot nd)?+y?=Cc? cosec? nd 
c(k?e222 + 1) 2 4} ¢2n¢ 
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ine: = Tv Qg 

ee € $) 

or for the spheroid 

bs 1l—esin ¢\= 

aes (G+ HE oe 

Therefore, for the sphere 

But for the sphere 

2ck sin nd tan® ¢ sls 

pal Cera? | nf k? tan? (+8) +2k cos md tan (+$)+1 

c | Htan( 3 + ) — est lane 

k? tan22 (G+ +£)+ 2k cos n\ tan® G+ tant (42) 44 

73 

Cc | tane( F-+$)+ 1| 4c? k? tan 72 (7+) 

a? yy — =) = —____~—S,. 
k? tan 7+£)—1 i? tan 7+$)-1 : 

Ano D 4° 2 

We thus see that 

C= 

as Ere cua aa =(G aL 1 

If we denote that intersection which lies nearest the origin 
by y (that is to say the y value for \=0), we have 
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By performing the indicated operations, we obtain 

nie 9 k tan qt5 1 ts 

tan 5= rae tan > 

k tan (G+$)+1 

The projection is thus found to be identical with the one 
previously obtained by a different procedure. 

With these values the magnification (denoted by k’ for 
distinction) for the ellipsoid becomes 

ey 2ckn1—e sine 
a cos p (k2e"7+2k cos nd +6727)’ 

nt en we Nop Lee SILC 
Cun (G+5) : G +e sin e)2 

If the parallel, the latitude of which is —a, 1s to be repre- 
sented by the circle of infinite radius or by the straight 
line, among the circles of parallels, which forms the perpen- 
dicular bisector of the line joining the poles of the projec- 
tion, then the radius of this parallel and the distance of its 
center from the origin must become infinite. This will be 
the case if 

k’ 

in which 

c 

T @ a 
2 PA Cif Race ee eae VE k?tan rn =) 1 

hence 

2 ir Aa igus at k?tan G 5 1=0 

or 

If, for the sake of abbreviation, we set 

nlp ad ON O® Banh 2S Pay 6 Ullah ee) k tan (F+$) tan (4+§) tan (5+5) m, 

the expression for the center of the parallel becomes 

_c(m? +1) 2cem 
to=0, Yo pa ea Pa and the radius becomes Po— 2 = tn 
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The equation for the parallel becomes 

‘ Roo Cree) Mone 4c? mv 
L +[y m—1 ~ (m?=1)? 

The equation of the meridians remains as before 

(+c cot nd)? +y?=C cosec? nix. 

The coordinates expressed in terms of m become 

2cem sin nr 

| LTO cos N+ mM? 

c (m?—1) 

YT 42m cos n+ m2’ 

and tne magnification for the sphere becomes 

= Bi dgiely Jo-2enetitiel aris ol 
~ a cos ¢ (1+2m cos n\+m?)’ 

and for the spheroid 

ae 2emn V1—€ sin2e 
~acos g (1+2m cos n\+m?’) 

with the value for m in thé last ST 

m=k tan® i+$)- (1zesins Sep me 

Since both ¢ and a must be less than 5 , if g is greater than 

tan (7+$) > tan (G- 5) 

tan (G+ S) tan (f+ = 

m>1. 

—a, then 

and 

In a similar way it may be shown that when ¢< —a, then 
m< 1. 
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The parallel circles whose latitudes are greater than —a 
lie on the positive side of y; those with latitudes less than 
—a lie on the negative side. 
In the expressions for the projection to which we have 

arrived, c, a, and are constants that we can determine to 
fit such conditions as we may require the projection to 
fulfill, these being limited, of course, to the conditions 
that are possible in a conformal map. 

c determines the scale of the projection and it may be 
any real constant, so that it only remains to determine a 
and n. If a=0, then the straight line parallel represents 
the equator and m becomes 

30 Hehe eg m= tan (G+8), 

so that k=1. 

SPECIAL CASES OF THE PROJECTION. 

If n converges to zero, and at the same time ¢ converges 
to o in such a way that cn=2a, we obtain a projection 
in which the parallels are represented by straight lines 
perpendicular to the Y axis since their centers le at 
infinity on the Y axis. In the same way the meridians 
have infinite radii with centers at infinity on the X axis; 
consequently they are perpendicular to this axis. 

To determine the values we have 

bag ee 2cm sin nr ] 

nz0 Lit2m cos n+ m? 

cn= 2a 

m=1 

fenn(-8+ J 
¢=lim | ——{~S——___+ 
n=0 1+2m cos n\ + ™? 

cn = 2a 

m=1 
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The limiting value of this is seen to be 

t— ine 

as c(m? — 1) 
yam 1+2m cos nr cm| 

cn=2a 

mA 

=lim [c(m?—1)] 
eS 

n=0 4 
cn= 2a 

i— 

rice) ada a ca Vea i. oe (G+$ | 

=— him 
4 Nn 
n=0 : 

Cnh—=24 

tan (7+$ =i 
=< lim ja G8) 

2 nN 
n=0 

| taf Oa CLF ee ia. e ai (G + s) log, tan G aa a) 

1 

The value of this expression at the limit is 

a oy Ay y=a log, tan (i+) 

We have thus arrived at the Mercator projection as a 
special case of Lagrange’s projection. Although it is 
not a polyconic projection in the accepted sense, yet it 
oa as a special case of one of the important projections 
of the polyconic class. Lamberts conformal conic pro- 
jection can also be obtained as a special case by letting 
B become equal to zero in the equations containing the 
A and B constants. 

*| since £ ax=ax logea | 



THEORY OF POLYCONIC PROJECTIONS. 95 

If n becomes equal to unity, we obtain the stereographic 
projection and the equations take the form 

2cm sin X 

o~T42m cos A+ m? 

pL: c(m?—1) 

Y~T+2m cos A+ m? 

- is Ee Ty. with m= tan ($+) tan (7+$) 

Substituting this value of m and reducing, we obtain 

€ cos @ sin \ cos ¢ 
¢ == OF 

1+sin a sin ¢+ cos @ COS A COS Y 

a c (sin a+sin ¢) 
¥~T4sin a sin ¢+C0S a COSA COS ¢ 

If we now let y’=y—sin a, which merely moves the origin 
and does not change the nature of the projection, we 
obtain after dropping the primes 

c cos a sin X cos — 
fi Se Gea Ge es ee a ee 

1+sin a sin ¢+COS @ COS A COS — 

__€ cos a(cos @ COs g—Sin a COs d COS ¢) 
Y 1+sin a sin ¢+COSs @ COS A GOS ¢ 

Now by replacing ¢ cos a by a, we arrive at the values pre- 
viously obtained 

aie a sin \ cos ¢ 
1+sin a sin ¢+COS @ COS A COS — 

__a(cos a cos gy—sin @ cos d COs ¢) 
1+sin a sin ¢+Cos @ cos A COS ¢ 
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GENERAL STUDY OF DOUBLE CIRCULAR PROJECTIONS. 

_ In order to enter upon some points not yet discussed, 
we shall study in general those projections in which the 
meridians are represented by a system of circles passing 
through two common points which form the poles of the 
projection and in which the parallels are represented by 
a system of curves orthogonal to the meridians. The 
centers of the circles forming the meridians will all he 
upon the perpendicular bisector of the common chord 
which forms the line joining the poles of the projection. 
The tangents drawn to the various circumferences from 
any pa of the prolongation of the common chord are 
equal, since they are in each case a mean proportional 
between the same secant and the external segment of the 
same. If from this point as center, with a radius equal 
to one of these tangents, we describe a circle, it will inter- 
sect all the circular arcs representing the meridians at 
right angles. We thus see that the orthogonal trajec- 
tories of the meridians of the map—that is, the parallels— 
are also circumferences, so that they belong to the poly- 
conic projections. The locus of centers of the parallels 
is a straight line passing through the projections of the 
two poles and perpendicular to the locus of centers of 
the meridians. 
Every point of either prolongation of the line ot poles of 

the map can be considered as the center of the projection 
of one of the parallels, and the radius of this projection is 
then equal to the tangent drawn through the point in 
question to one of the meridians of the map; for example, 
to the circumference described upon the line of poles as 
diameter. Reciprocally, if in a projection with aghcetaal 
curves the parallels are circumferences having their centers 
upon the prolongations of one of the diameters of a given 
circumference and as radii the tangents drawn from the 
various centers to this circumference, the meridians will 
also be circumferences which pass through the two extrem- 
ities of the given diameter. This will not be true if the 
radii of the parallels are determined by any other condition 
than the one mentioned. The rectangular polyconic pro- 
jection of the English War Office, already discussed, fur- 
nishes an example of an othogonal projection in which the 
parallels, but not the meridians, are circumferences. 

The properties which we have just pointed out are not 
the only ones which we can extend from the stereographic 
projection to all conformal projections with circular 
meridians and from these to projections with circular 
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meridians and orthogonal parallels. In figure 30 let P 
and P’ be the projections of the poles, O the middle point 
of the line PP’, APA’P’ the circumference described upon 
PP’ as a diameter, AA’ the diameter perpendicular to 
PP’; in addition, let S be the center of the projection of any 
parallel, U and U’, D and D’, F' and F’ the points where 
this projection intersects, respectively, the circumference 

Fig. 30.—Geometrical relations between orthogonal circular meridians and parallels, 
e. 

APA’P’, the line PP’, and the perpendicular erected at S 
upon this line; finally, let V be the intersection of PP’ 
with UU’, and let U, be symmetrical to U with respect to 
O, so that U’U, is parallel to PP’ 
The point D being the bisector of the are UDU’, UD 

will bisect the angle formed by the chord UU’ and the 
tangent OU; the point A’ being the bisector of the arc 

991943 O- 52-7 
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U'A'U,, UA’ also bisects the angle U’UU,; therefore, the 
three points U, D, A’ lie on a straight line which makes it 
noscatii to construct the pomt D without describing the 
circumference S when Uis given. Since the angles AUA’, 
DUD’, each. being inscribed in a semicircle, are right 
angles, the three points A, U, D’ also le on a straight line, 
which is the bisector of the angle formed by one of the — 
ne of the triangle U’UU, with the prolongation of the 
other. 

The angle PUA’, which subtends, upon the circumfer- 
ence O, an arc equal to a quarter of the circumference, is 
equal to the half of a right angle; the same is true of the 
angle DUF’, which subtends upon the circumference S 
an arc equal to a quadrant; the two angles are, therefore, 
equal, and, as two of their sides UA’ and UD coincide, the 
two others, UP and UF’, also coincide; that is to say, that 
the points U, P, F’ are in a straight line. Since UP’ is 
perpendicular to UP and UF to UF’, the points P’, U, F 
are also in a straight line. It follows from this that UD 
is the bisector of the right angle PUP’ and UD’ of the 
adjacent angle PUF; therefore, DP : DP’=D’P : D’P’= 
UP: UP’. The projection of each parallel is the locus of 
the points the distances of which to the projections of the 
two poles have a given fixed ratio. The lines UP and | 
UP’ are in their turn bisectors of the right angles DUD’ 
and DUA; therefore, the ratio of the asics of any 
point of the circumference O to the two points D and D’ is 
constant. 

In figure 31 the letters already appearing in figure 30 are 
employed with the same signification. ‘The semicircum- 
ference PAP’ is the projection of a particular meridian. 
Let us now consider the projection PMGP’ of any meridian. 
Let T be the center, G and WM its intersections with AA’ 
and the circumference S, respectively, and, finally, let @’ 
and M’ be the points of intersection of the arc which com- 
pletes the circumference JT with the same two lines, respec- 
tively. With regard to the two circumferences S and 7, 
we should have to point out the same properties that were 
pointed out as obtaining between the two circumferences 
S and O. It will be sufficient to indicate the following 
facts: Since JM lies on the parallel circle which is the locus 
of points with distances from P and P’ in the ratio DP to 
DP’, the ratio of MP to MP’ is the same as that of DP to 
DP’; therefore, the line MD is the bisector of the angle 
P MP’, and it should pass through the mid-point G’ of the 
arc PG’P’; then the three points M, D, @’ are in a straight 
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line; the same is true of the three points D’, M, G, 
as also of G, D, M’ and of G’, M’, D’. The three points 
D’', G, G@’ are thus the vertices of a triangle the altitudes of 
which intersect in D and the feet of these perpendiculars 
are at O, M’, and M. 

Let us construct the angle POT equal to that which the 
meridian PMP’ makes with the straight line meridian 
PP’; the three points P’, G, Z will be in a straight line, 

Fig. 31.—Geometrical relations between orthogonal meridians and parallels, 
second figure. 

because the angle OP’G which subtends the arc PMG upon 
the circumference 7 is equal to half the angle formed 
by the chord PP’ with the tangent at P’; that is, to half 
the angle POI; hence upon the circumference O it ought 
to subtend an arc equal to P/; that is to say, that the pro- 
longation of P’G ought to pass through J. We have, then, 
to determine directly the point G, a process analogous to 
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that which may be made use of in the stereographic pro- 
jection upon a meridian. 

Let us construct 7Z perpendicular to TP and inter- 
secting in LZ the projection PMP’ of the meridian; the 
three points P’, L, A are in a straight line, for the angle 
PP’L, which has its vertex upon the circumference T and 
intercepts the same arc as the angle at the center PTT, is 
equal to half this angle or to half a right angle; therefore, 
the prolongation of P’L ought to pass through the point A. 

The radius OP or OA of the circumference described 
upon the line of poles as diameter being taken as unity, we 
define the modified latitude of a parallel as the arc AU of 
this circumference comprised between the straight line 
parallel AA’ of the map and the projection UDU’ of the 
parallel in question. This arc which we denote by g’ is 
also the half of the angle at which, from the center of the 
projection of the parallel, one would see the circumference 
described upon the line of poles as diameter; this are varies 

with ¢ from 0 to = and from 0 to == For the abbrevia- 

tion of the formulas we shall often use in them in place of 
the are that has just been defined the modified colatitude 
p’, which is the complement of ¢’ and which represents the 
are PU comprised between the projection of the pole and 
that of the parallel; p’ can then vary from 0 to 7 with the 
colatitude p. 

Every circumference described from a point S of the pro- 
longation of PP’ as center, with the tangent SU for radius, 
is, i any system of projection with orthogonal intersec- 
tions and with circular meridians, the projection of a par- 
allel; that which varies from one system to another is the 
position of this parallel upon the globe, or, inversely, it is 
the expression of or of p’ as a function of ¢ or p, respec- 
tively. Whatever this expression may be, if we call r the 
radius SD or SU or SM of the projection of the parallel 
and s the distance OS from its center to the center of the 
map, we shall have from the right angled-triangle OSU 

r=cot ¢’ 

8=cosec ¢’ 

st. 
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Since the three points A, D, U’ are in a straight line, 

the angle at A of the triangle OAD is - {ual to 5 and it 

results, in this triangle and the triangle OAD’, that OD = 

tan S and OD’ =cot ©. We thus have 0D x OD’ =1, as 

it put to be, since the tangent OU is the mean propor- 
tional between OD and OD’. 

The constant ratio of the distances of any point of the 
projection of a aay to the projections P and P’ of 
the two poles will be 

a tan PP’U=tan = 

Let us now consider the meridians. The longitude will 
be reckoned as starting from that meridian the projec- 
tion of which is the straight line PP’, and we shall define 
the modified longitude of a meridian the angle at which 
its projection intersects the projection of the central 
meridian, an angle which we shall denote by ’; this angle 
is also half the angle at which, from the center of the 
projection of the meridian, we should see the line of 
poles of the map. Therefore, for the meridian projected 
into PGP’, d’ will be the angle which PP’ makes with the 
tangent at P to the arc PGP’, or, what amounts to the 
same thing, to the angle OTP. The projection can vary 
without the arc PGP’ ceasing to be the projection of a 
meridian; that which will vary will be the position of this 
meridian upon the earth or, inversely, the expression of 
d’ as & function of \. Whatever this expression may be, 
if we call & the radius TG or TP or TM of the projection 
of the meridian, and S the distance OT of its center from 
the center of the map, the right-angled triangle O7P will 
give 

R=cosec )’ 

S=cot d’ 

and the triangles OPG and OPG’ will give 

Xe 
x oe 

OG = tan oe OG' =cot 5 
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We thus have 0G x OG’ =1, which ought to be so, since 
OP is a mean proportional between OG and OG’. 

The coordinates yg’ and d’ or p’ and 2d’ determine the 
position of any point of the map; however, we shall make 
use also of a third variable depending upon the first two. 

_ This will be the angle OSM formed by the radius SM of 
the projection of the parallel with the straight line meridian 
or, what amounts to the same thing, the angle OTM 
formed by the radius 7M of the projection of the meridian 
with the straight line parallel. We denote this angle by 
6; it is the angle at which -one would see, either from the 
center of the projection of a parallel or from the center 
of the projection of the meridian, the distance of any 
point M to the center of the map. 

Half of 6 is equal to the inscribed angle OG’M, which 
subtends upon the circumference T the same arc as the 
angle at the center OTM, or to the angle OG’D, since 
the three points @’, D, M are in a straight line; but the 
tangent of this angle is given by the ratio of OD to OG’. 
We have, then, | 

/ / 6 r 7) 
tan 5 — ban D) tan 9 ° 

From this equation we deduce 

6 
said ie Sap _ sin X’ sin ¢’ 

a cM ae eg Ua at, 1+ tan? $ 1+cos)' cos ¢ 

1— ten?! 
2 cos A’+cos ¢’ | 

cos § = ————,, = ; ; 
1+ tan?s 1+cos d\’ cos ¢ 

The coordinates of M with respect to the axes OA and 
OP are | 

sae sin \’ cos ¢’ 

fo et = (cee. Coste, 

sin ¢’ 
y= sin OTe X’ cos yg” 
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We have for the square of the distance OM to the origin 

1—cos \’ cos g 2 2 : 
Pre 1+cos \’ cos g’ 

We should note that the general equation of the circles 
traced upon the sphere and that of circles traced upon 
the map have exactly the same form when we take for 
coordinates g and \ on the sphere andy’ and \’ upon the 
plane. On the unit sphere we have 

X=COS A COS —Y 

y =sin d COs ¢ 

Z=sIn ¢. 

If we substitute these values in the equation of a plane 

Az+By+ Cz+D=0, 
we obtain 

(A cos \+ 8B sin dX) cos ¢+ Csin + D=0. 

This is the equation of a circle determined by the inter- 
section of the plane with the sphere. 

The general equation of a circle in the plane is given by 

(x—a)?+ (y— 6b)? =e, 

or on substitution of the values of x and y in terms of 
yg’ and 0’ we obtain 

(SENS sin \’ cos ¢’ -a) + (qa easy’ sin y’ -b) = a 
1+.cos X’ cos ¢’ 1+ cos \’ cos ¢’ ciieal 

or on development 

1-cos ’ cos e" 2a sin )\’ COS g 26 sin ¢’ 
l+cos \’ cos ¢’ 1+cosd’cos¢g’ 1+cos 2’ cos ¢’ 

1—ecos \’ cos g’—2a sin 0’ cos ¢’—26 sin ¢g’ =e—-a@—- Bb 

+ (?—a?— 6’) cos Xd’ cos 9g’ 

(a? + b?—c—1) cos’ cos y’ — 2a sin’ cos vg’ — 2b sin ¢’ 

+a24+R—2+1=0 
or 

(A’ cos \’+B’ sin WN’) cos 9’ + @ sin g’ + D’= 
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A’, B’, 0’, and D’ being constants depending upon the 
position of the center and the radius of the circle. In 
the meridian stereographic projection we have y’=¢ and 
’=h, so that it is only necessary to take A’, B’, C’, and 
D’ proportional to A, B, C, and D, respectively, in order 
that the two circles may correspond to each other. There- 
fore, in the stereographic projection on a meridian, and 
as a consequence also upon the horizon of any place, 
every circle is projected into a circle. This fact has 
already been proved in another place by the use of ana- 
lytic geometry.* 

Let us now determine the expressions for the scale 
along the meridian and for that along the parallels. When 
the point Mis displaced infinitesimally upon the projection 

of the meridian, the arc described is equal to Rss dy’. 

and when displaced upon the parallel the arc described is 

equal to (7) dd’; therefore, we have 

ea OTOL dos 
Pecos ¢\OX’/ dr 

Now, if we take the logarithms of the two members 

of the formula which gives tne value of tan Z and then 
2 

differentiate, we obtain 

dé dn’ dy’ 
= = aT) 

sin@ sind’ sing’ 

which gives for the partial derivative values the following 
expressions: 

09 sind of sind 
Ou. sol ON Usa Ne 

On substituting these values and the values of r and & 
we obtain 

x sin 6 dy’ 

~ gin \’ sin g’ deg km 

os sin, 9 dy! 

P~ cos g tan yg’ sin d’ dy’ 
Se ee eee ee 

*See p. 43. 
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or, on substituting the value of sin @, 

ap pte Leal = doe 
~ 1+ c0s d’ cos ¢’ de “em 

1 cos g’ dy’ 
= _—————————————————— ee 

CONFORMAL DOUBLE CIRCULAR PROJECTIONS. 

In the conformal polyconic projection the condition 
kn=kp gives in the case of the double circular ortho- 
gonal net 

sec g’ dg’ dn’ 
secy dp dr 

The left-hand member of this equation is a function of 
g alone and the right-hand member a function of \ alone; 
it is therefore necessary that they should be equal to the 
same constant n; hence 

dy’ =n dr 
and 

eet. de. 
cosy’ cosg. 

By integrating the first equation we get 

Noa, 

no constant of integration being introduced, since 2’ 

vanishes with A. In the second equation let 9’ =5- p’ 

and let ¢ =5 —p and we obtain 

LE 
sin p’ sin p 

Let us write this in the form 

, / / / 

cot 2 P+ tan Pan cot Pin tan B®, 
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on integration this becomes 
/ ihe 

, : ee) ; 
log, sin F—log. cos FE =n log. sin 57” log. cos 5 

f 

—n loge sin Pin log, cos , 

or 

/ 

log, tan =n log. tan P_n log. tan Po 
2 oe 

or, on passing to exponentials, 

p n 

2 

P fo tan 5) 

tan, / 

tan = 

The constant which enters into the expression for tan 
/ 

E denoted by tan a is determined by the fact that the 

straight line parallel is to have the colatitude p,. When 

p is equal to p, p’ becomes equal to 5 and 7— «co win the 

further discussion we shall consider Po>s and reckon p 

and p’ from the North Pole. That will throw the straight- 
line parallel into the Southern Hemisphere. 

The angles are everywhere preserved except at the 
poles; in order that they may be preserved also at these 
two points, it is necessary that we should have n equal 
to unity, and then we have the stereographic projection 
upon the horizon of the place of the central meridian 

which has the latitude ¢, = p, — = 

CAYLEY’S PRINCIPLE. 

This puts us in position to explain what is sometimes 
called besiege principle.* Since in the stereographic 
projection m must equal unity, the meridians in the hori- 
zon projection are simply the same arcs as those of the 

* See Cayley’s Collected Mathematical Papers, Vol. VII, p. 397. Also mentioned in the 
ninth edition of the Encyclopedia Britannica, Vol. X, p. 203, in which place some aston- 
ishing mathematical analysis is given in explanation of the principle. 

7 : 

a 

7 

: 

Pe ee ee eee ee ee ee ee EE ee 
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stereographic meridian projection. The parallels are 
determined by the equation 

, tan aE 
p 2 

tan oT : 
tan fe 

Parallels constructed for p’ on the meridian projection are 
the parallels for p on the horizon projection. The circle 
constructed with its diameter consisting of the chord for 

$9 = Po —-5 in the meridian projection becomes the projec- 

tion of the horizon circle in the horizon projection. In 
figure 32, pMp’N is the meridian circle of the original 
meridian projection and PQP’Q’ is the horizon circle for 

2a 
Po=-3 constructed on the chord of the meridian circle for 

fo=5 - Tangents to the computed p’ points of the meridian 

circle would determine the centers and radii of the arcs 
- for the horizon projection; or the radii and center dis- 

tances can be computed from the expressions for r and s in 

terms of PS 

If we let p, become 5 and then let » converge to zero 

while leaving constant the product of n by the length OP in 
figure 31, which we have chosen as unity in the former 
analysis, we obtain again Mercator’s projection. If we 
maintain this product equal to two, we shall have con- 
stantly 

“ n 

tan = 9 1 — (tan z) 
OG=h ae and Ua —-——<: 

) et +( tan z) 

The limiting values of these expressions as n=0 are given 
in the form 

OG=x, and OD=log, cot fe 

* For the derivation of these limits see p. 94. 
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DISCUSSION OF THE MAGNIFICATION ON THE CONFORMAL 
DOUBLE CIRCULAR PROJECTION. 

The values which we have found for k, and kp in any 
system of rectangular projections with circular meridians 
and parallels have now become equal to each other and 
we have for the ratio of the lengths at each point of a 
conformal projection 

os n sin 0 
cos ¢ tan ¢g’ sin 0’ 

It results from this equation that, upon any given parallel, 
k increases or diminishes at the same time as 4. When 
the value of sin 6 is substituted, we obtain 

ps Tysee pe = T° nm sin p’ 
sec gy’ +cos )’ sin p (1+cos 2’ sin 9’) 

A point of discontinuity is found when cos )’ sin p’ = — I- 
Within the limits of the map this can happen only when 

p’ =5 and \’=+7. In the stereographic projection this 

pout is the antipode of the center of. the map. If n is 
ess than unity 1t would fall outside of the map of the 
whole surface; but if n is greater than unity it would fall 
inside of the map of. the earth’s surface, since we should 
have n\= +7. 

For convenience we will write the above expression in 
the form 

ed aes F) r|. ES sin p| 5(tan at cot 5 +cos d 

In this expression we need only to replace \’ by nd and 
/ n 

tan a by (cot f tan ) to obtain k directly as a function 

of p and. In order to see immediately what happens to 
k at the poles, we shall make this substitution and express 
the result in the form 

(age Po n 2 Pp 1l+n Pp 1—n 

7—(cot ) (sin r) (cos r) 

n 1—n 1+n 

+(tan 2) (sin r) (cos ) +sin p COS NA- 
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We shall need the derivatives of k with respect to p of the 
first two orders; we have 

or | 
0/1 / 1 / “ ap Ee = — cot p ar (cosec p + cos d ) cos p 

: Yee (;:) 5 , n sin p sin p op? Ee) ay aes USS eee Pp 

—sin? p (1+ cos 0’ sin p’), 
or 

n sin p sin p’ A SEA Se) |=sin p (1+cos d’ sin p’) 

+n cos p cos p’—n’. 

Let us first suppose n<1. Then at the two poles, that 
is, for p=0 and for p=7z, we should have k= 0; within 
the interval k would pass upon each meridian through a 
minimum. Denoting by a subscript m the value which 
applies for k a minimum, we should have, by equating to 
zero the first derivative of k with respect to p, 

COS D'm = COS Dra 

1+cos d/ sin p’n n 

ical foe 

i tan ph, m 

O°k'|_cos | rm 

Op’] COS Dm 
i Ae E 

SIN Pm SIN P'm | 73 

The corresponding point is situated in the Northern Hemi- 
sphere. 

sin p Ok 

sumes for p=0 and for p=7m are, respectively, n—1 and 
1—n, so that the first is negative and the second is positive. 

The values which the above expression for 

But for p’ =5) p(= Po) ae ; hence the expression is pos- 

itive for p’=5) and, in fact, it is positive for p=<-- 5 5 The 
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point at which the minimum is found lies, therefore, in the 
Northern Hemisphere. 

The values of pm and p’m for a given value of n on any 
given meridian would have to be determined by successive 
approximations until the equation containing pm, p’m, ’, 
and n would be satisfied by the value obaraae: For 
articular meridians the equation becomes much simpler. 

Thus for the central meridian it becomes 

tan G'm SID Gm 
2 n 

When this value is substituted in the equation for the 
second derivative, we obtain 

: ee 1 O’k 1+ cos ¢,—7 
SM Pm SIN Pm Op In| n?-+ sin? Om “ 

It is upon this meridian that we obtain the smallest of all 
the minima. . 

Let us now suppose n>1. The conditions are now 
changed, since k=0 at the poles. The value of k upon 
each meridian passes through a maximum instead of a 
minimum; this maximum is found in the Southern Hemi- 
sphere and lies between the colatitude p, and the South 

sin p 
Pole. This is shown by the fact that i s. is equal to 

n—1 for p=0, a positive result; for p=, p’=5) and the 

value is —cos py, still positive, since Pa> 53 for p=7 the 

value becomes 1—n, a negative result. Hence the maxi- 
gun lies between the straight line parallel and the South 

ole. 
When n is slightly greater than unity, it may happen 

that, starting at zero, the value of k would pass eee a 
maximum in the Northern Hemisphere; then it would fall 
to a minimum in the same hemisphere, and finally pass 
through a maximum in the Southern Hemisphere to return 
to zero at the South Pole. This depends upon whether 
COS Pm 
COS Dm 
nis but slightly greater than unity. 

Lagrange proposed to profit by the fact that n and p, 
were arbitrary pees to so determine them that k 
would vary as slowly as possible at a given point upon the 

becomes greater than n; this may well happen if 
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meridian and upon the parallel in the vicinity of the prin- 
cipal place of the country the map of which he wished to 
construct. One part of the condition is fulfilled by making 
the meridian of the place become the central or straight 
line meridian, for in that case the derivative of k with 

NS 
IK\\ 

+f 

a4 zy 

respect to \ becomes zero for \=0. We can now equate 
to zero the first derivative of & with respect to p upon. this 
meridian; it would merely be necessary to consider ¢,, aS 
the latitude of the given place. The second derivative will 
also become equal to zero if we take 

Fig. 33.—Lagrange’s’ projection with Paris as center of least alteration. 
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n= 1+ cos’¢,n. 

Having thus found n, we would calculate 9’, by means of 
the formula 

: : 
tar me SE Om | 

2 n 

Then we should have for the determination of p, 

Pe 
tan Po a tan Em cot Pm . 

For example, if the principal place was found on the 
Equator, we should have 

~m=9, n= 4/2, om=0, and Po= 5" 

The Equator would then be represented by a straight line 
and the system of projection would be defined by the 
equations 

’=h/2 

tan = = (ton By . 

A special case considered by Lagrange is given by the 
values of definition 

8 =cot = 

S=cot >: 

Hence 

cosec v’ =cot 5 

cot »\’=cot x 
iz, 

or 

991943 O- 52- 8 
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Hence Po=5 and the Equator is represented by a straight 

line. The whole surface of the earth may be represented 
on a unit circle with the projection as defined, and the 
projection is so given in figure 34. 

dy 
Lr x els 5 Nave Ca je MMI AWS CN ill TaN suites 

Wk MITRE HRP Lar 
PPh Tis Bee 

ix 4 : 

Ler 
SW AATT 
TA 
COO 

Se 
Ig. 34.—Lagrange’s projection, earth’s surface in a circle. 

EQUIVALENT OR EQUAL-AREA POLYCONIC PROJECTIONS. 

An equivalent or equal-area projection is one in which 
the proportion of areas is preserved constant; that is to 
say, that any portion of the map bears the same ratio to 
the region it represents that any other portion does to the © 
region which it represents, or the ratio of area of any part 
is equal to the ratio of area of the whole representation. 
This is expressed analytically by the equation 

Kick Comey —1. 

In the polyconic projection this becomes for the sphere 

p__(ds dp\ 08 _ 5. 
a@Cos ¢ Fae ae ae 
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Integrating partially with respect to \ and @ with ¢ re- 
maining constant, we obtain 

LA, eae os 

no constant being added, since 6 and \ vanish together. 
In this expression s and p are any function of ¢ that we 
may choose. @ would then be determined by the above 
equation. Inversely, if we give the relation which should 
obtain between 6, gy, and subject to the condition that 
should be a linear function of @ and sin 6, there would be 

am infinity of equal-area polyconic projections which 
would satisfy this relation. In fact, w and v being given 
functions of g, the assigned relation would be 

usin d—v6=h, 
in which 

ds 
t= Ho a’cos g dy 

po. dp Deel at 
a? cos ¢ dg 

or 
eg 

p= poi+2a° | v cos ¢ dg. 
oO 

Po and s, denoting the two constants of integration. 
There is no equivalent polyconic projection that is at the 

same time rectangular. In a rectangular polyconic pro- 
jection we have 

and 

ce Ae sin 6. —— 

Orv. FA) 
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By substituting these values we obtain 

p sin 6 (2 du on oP) T’(A) 

a cos ¢ \u de Tay, Le” 
but 

ee Ob GN) 

sin = 24 T3(Q) 

_w—T?() 

008 9 ETA) 
Hence 

2p? du w—T?(A) 2pu 1 dp 1 

a cosy de [W+TO)P a cosy w+lQ) de PQ)’ 

This is an equation that must be identically satisfied by the 
values of uw (a function of ¢) and I'(A) (a function of X). 
The right-hand member is independent of ¢; hence the left- 
hand member must also be independent of y. The condi- 
tion will be identically satisfied if wu equals a constant and 

ap 1 ap is equal to a constant 
acos¢y dy 4 F 

If uw is a constant, s is also a constant, and the projection ~ 
would pass into one of the limiting cases of the pat coae 
projections. 

The integration of the equation 

2p dp=a’c cos ¢ de 
gives 

p?=p,.’+a’c sin ¢. 

By assigning particular values to the constants p, and c, 
we may obtain Lambert’s central equal area projection, 
Lambert’s isospherical stenoteric projection (sometimes 
called Lambert’s fifth), or, finally, Albers’ projection. 
None of these are polyconic projections in the accepted 
sense, and hence no investigation of their properties will 
be given at this time. 
No one of the strictly polyconic equivalent projections 

has ever become of practical importance, because they 
would generally be complicated both for computation and 
construction. 



THEORY OF POLYCONIC PROJECTIONS. 117 

Let us Lae taleg the case in which the scale should be 
held constant along the parallels. We should then have 

kp=1 and ky, cos y= 1, 

1 fds dp 
a(% cos 0—F)=1 

ds cos 8@—dp=a dy 

or 

or ; 
ds cos 0=dp+a dg. 

On any given parallel the right-hand member of this equa- 
tion is a constant, since dp is a function of 9; but @ is a 
function of ¢ and \, for we have 

foe OR 
P"acosgOd — 

or, by integration, 
a@ COS ———— 

no constant being added, since 6 and d vanish tcgether. 
It follows that the left-hand member of the above equa- 

tion must vanish identically; that isto say, ds=0. The 
circles of parallels are, thereforg, concentric and 

f dp= —a dg, 
or, by integration, 

P= Pot AG — ¢)- 

This is Bonne’s projection; but, of course, it is not a poly- 
conic projection, since s is constant; that is, the parallel 
arcs are concentric. It appears, however, in the attempt 
to attain certain things by means of the equal-area poly- 
conic projection and can be looked upon as a limiting case 
of the same. 

If we assume 

p=a cot¢ 

s=a(y+ cot ¢), 
then 

dp_ i 
aor cosec? ¢ 

ds __ ape ay 3 
dp ti —cosec g) = —a cot’ ¢. 
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If these values are substituted in the equation of condition 

cf as dp, 
ae dg tea de =, 

we obtain for the determination of 6 the equation 

6—cos? ¢ sin 0=d sin? ¢. 

In this case 

1 — cos? ¢ cos 0 
== sec 

Fem sin? 9 BBE 

sin? 
kp= a 1—cos? ¢ cos 6” 

so that we have as required 

kmkp cos Y=1, 

and both, and k, are equal to unity for 6=0. 

If, on the other hand, we assume 

p=a cote 

S=a cosec ¢ 

dp is maeic? de a cosec? ¢ 

ds s =—aco 9) die cot ¢ cosec g 

these values belie substituted in the equation of condition 
give as the formula for @ 

@—cos ¢ sin =A sin’ g 
and 

1—cos ¢ cos 8 

sin? 9 
—— sec yp 

sin? » 

1—cos 9 cos 6’ 

so that kn kp cos Y=1 and kp=1 for 0=¢, and km=sec y at 
the same point. 

p= 

————— 
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CONVENTIONAL POLYCONIC PROJECTIONS. 

There is a class of projections that are not strictly equal- 
area, but which have the property that they preserve the 
area of the zones between the parallels and that of the 
lunes between the meridians. ee equal-area projection 
possesses this property, but it is not conversely true that 

- any projection possessing this property is also an equal- 
area projection. Tissot calis projections of this class 
atractozonic. It can be rigidly proved that no rectangular 
polyconic projection can be an equal-area projection. We 
can, however, have an atractozonic projection in the 
polyconic class that 
also has circular 
meridians forming a 
rectangular net with 
the circular parallels. 

In those that we 
shall study first we 
shall take the 
straight-line paral- 
lel of the map to, 
represent the Equa- 
tor, and the circum- 
ference described 
upon the line of 
poles of the map as 
diameter to repre- 
sent the meridian the 
longitude of which is 
90°, reckoned from 
the central meridian 
or the line of poles. 
We shall determine Fic. 35.—Geometrical relations ofatractozonic projections. 

¢’ as a function of ¢ 
in such a manner that, in the hemisphere limited by this 
meridian, the area of the half zone comprised between any 
two parallels will be preserved, and we shall determine }’ 
as a function of \, so that the area of the lune formed by 
any two meridians may be preserved. The equal-area 
projections not only have the zones and lunes equal, but 
also in them the meridians af the earth and those of the 
map, respectively, divide each zone into proportional parts. 
This latter property is not found in the atractozonic 
projections. 

In figure 35 we shall suppose the radius OA or OP equal 
to ./2,so that the hemisphere and the circle which serves.as 
its projection are equivalent, since the radius of the globe 
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is taken as unity. The half zone with a base limited by the 
parallel of latitude ¢ has the area 7(1—sin g). It is pro- 
jected upon the portion of the plane PUDU’ which the 
chord UU’ divides into two segments of circles; the one - 
UPU’ is the difference between the sector OUPU’, meas- 

ured by 5 OP? times the arc UPU’ or by r—2¢9’, and 

the triangle OUU’, which is measured by 5 OU x OU’ x 

sin ZUOU’ or by sin 2¢’; the other segment is the difference 
between the sector SUDU’ and. the triangle SUU’; the 
angle USU’ is equal to 29’, and the radius SU of the par- 
allel is equal to -/2 cot ¢’, so that the area of the segment 
is equal to (2y’—sin 29’) cot? gy’. By equating the area 
of the zone to the area of the projection of the same, we 
obtain, the relation 

T—7T Sin p=7—2y’ —3in 2y’ + (2y’ —sin 29’) cot? o’ 

or 

_sin 2g’ — 29’ cos 29’ v. 
Sa = 1—cos 2y’° 

According to the second condition, the area of the segment 
OPGP’ ought to be equal to that of the lune formed by the 
central meridian with the meridian of longitude A. The 
angle PTG is the angle d’, so that TP= /2 cosec d’. The 
area of the segment OPGP’ is equal to the area of thesector 
TPGP’, minus the area of the triangle TPP’. 

TPGP! =5TP? x are PGP’ 

= x 2 cosec? AN’ K 2n’ 

= 2’ cosec? d’ 

ATPP’ =5TP x TP’ sin £PTP? 

=: x 2 cosec? X’ sin 2d’ 

TPP’ =cosec’)’ sin 2’. 

Hence for the area of the segment we obtain 

OPGP’ =2)’ cosec?d’ — cosec?d’ sin 2X’. 
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The area of the lune upon the unit sphere is equal to 2); 
hence by equating this area to the area of the projection 
of the same we obtain 

2n’/ —sin 20’ 

Be sin2)/ 
or 

me 2n’ —sin 20’ 

SRPARCGS ON’ © 

These two expressions may be written 

: sin 2y’ —29’ cos 29’ 

a Ona T sin?y’ 

? 

ft aN, 
(oa e cot Xr . 

By computing by means of the first equation the values of 
¢, which correspond to a sufficient number of values of ¢’, 
we could construct a table which, reciprocally, would make 
known the values of yg’ corresponding to given values of ¢. 
The second equation would make it possible to solve the 
same problem with respect to \ and X’. 

With these relations we obtain. 

dg’ _m cos g(1—cos 29’)? 
de ~ 4 sin 2¢’ (2¢’ —sin 29’) 

an! _ sin?)’ 

an 2 (1—)’ cot X’) 

hats m cos g sin g’ tan ¢g’ sin 0 
m™ 4/2 sin X’ (2¢’ —sin 29’) 

piwcdle ti dad) Ray Sim of P09 
P 2 cos g tan ¢’ (1—2’ cot X’) 

or 
fi eS cos ¢ tan y’ 1 
Viet = a 7 Pa ays a ee Seas ey Dale Oe COs ¢ 

1, com's ening ce yt a) 
Pp J2 cos g 1—X’ cot X’ 1+c0s 2’ cos 9’ 

LD G08: ef 1 1 

~ 2 cos g 1—2d cot dX’ 1+ cos XN’ cos gy! 
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By setting aside the condition that the principal meridian 
should be represented by the circumference described 
upon the line of poles of the map as diameter, we could 
Shiai a series of atractozonic projections instead of a 
single one, and in this group some would certainly be found 
the alterations of which would be less than those of the © 
rojection that we have just studied. We could still 
urther increase the indetermination, and we could intro- 
duce two parameters in the place of one by not fixing in 
advance the parallel, the projection of which should be a 
straight line. This remark applies also to the remaining 
projections in this class. 

In a rectangular circular projection, in place of deter- 
mining ¢’ as a function of ¢, so that the projection of each 
zone should be equivalent to the zone it represents, we 
can bring about that the ratio of the surfaces should be 
continually equal to unity along a given meridian or that 
the focal should be preserved upon this meridian. 
Similarly, we could determine }’ as a function of \ in such 
a way that, upon a-given parallel, the same conditions 
should be f ed. By combining each expression of ¢’ so 
obtained with one of the expressions for \’ we could form 
several kinds of projections, each of which would possess 
the two properties in question. 

Let us continue to represent the principal meridian by 
the circumference described upon the line of poles of the 
map as diameter, the Equator by the diameter perpen- 
dicular to this line, and let us call R the radius of the cir- 
cumference. 

The ratio of surfaces at each point, in one of these rectan- 
_ gular circular projections, is 

cosy! die! a’ 
cos g (1+cos dN’ cos g’)? dg dd 

K=F 

We now propose to bring about that it should remain equal 
to unity along the central meridian. For \=0 we have 
d’ =0, and the derivative of )\’ with respect to \ assumes a 
known value n, depending on the nature of the function of 
dX which has been adopted to represent the value of 2’. 
The condition is then 

nk? £28 ge dy’ 
(1+cos BL 7h wet e dy 

or, by integration, 

PRLS BEN OM oe Kd sin g= 5 (1-5 tan 5 tan $- 

serie we 
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No constant of integration is added, since ¢ and g’ vanish 
at one and the same time. If each pole is to be a single 

point this equation must be valid for = or — 5. This gives 

nk? =3. If we wish that the ratio of surfaces should be 
ao to unity along the Equator, it would be necessary to 
ave 

dn’ 
nh (1+ cos vpn? A, 

n’ being the value of the derivative of y’ with respect to 
y for g=0. We deduce from this equation, by integra- 
tion, the relation ay 

n' R? 1 ‘ ’ ’ 
ae 5eGy tan * Jean 9? 

no constant being added, since A and 2X’ vanish together. 
Since the meridian of 90° of longitude is to be represented 
by the circumference described upon the line of poles of 
the map as diameter, it is necessary that this equation 
should be satisfied when we make in it at the same time 

=5 and == we have then 

We can unite the two conditions; then the mode of pro- 
jection will be defined by the two relations which we have 
Just obtained, the first between ¢’ and ¢, the second be- 
tween )’ and 2; in addition, n’ will be found joined to n 
by the relation nn’ R? = 4, which we obtain either by making 

g=0 and Bee in the first differential equation or by 

making \=0 and Om =n in the second. From this we 

conclude that 

R=5r- 
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The two equations are 

/ 

bo |S 

VY 

sin o= ; 3 — tan? ¢ )tan 

pei nN Ne A= 5(3+tan > tan 5 

km and kp have now become 

1 _vz cos ¢ (1+cos ¢’)? 
™™ 4 cos ¢g’ (14+ ¢08 0’ cos ¢’) 

be pol ces gy’ (1+ cos 0’)? 

> (x cos ¢ (1+cos 2’ cos ¢’) 

x _[ 1 (1+c0s2’) +cos¢") |? 
K=knky=| 5 1+ cos ’ cos ¢’ 

The latter formula can be written 

ee Arie! (1—cos dX’) (1—cos ¢’) 7 
isi 2 1+ cos )’ cos ¢’ 

In this form we see that K is everywhere less than unity, 
except on the Equator and upon the central meridian, and 
that the alteration of surface increases with the longitude 
ke with the latitude. On the principal meridian we 
obtain 

i 

K cok =2- = cos‘ 5 

Let us further examine how gy’ ought to vary with ¢ in 
order that the areas should be preserved along the prin- 
cipal meridian. If we denote by n’’ the value which the 

derivative of \’ with respect to \ takes for h=5, we should 

have 

cos gy dg=n’"’ R? cos gg’ dg’ 

or, by integration, 

sin g=n’’ R? sin g’, 

no constant being added, since ¢ and g’ vanish simul- 
taneously. 
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If yg and ¢’ are to become 5 simultaneously, we shall 

have the condition 

i ial 

and in this case the pole will be represented by a single 
point. The SUE then reduces to 

g =¢. 

If to this equation we add the following: 

a rN’ n’ 
ae (3 + tan? 5) tan 9? 

we know that the surfaces will also be preserved along the 
_ Equator; this equation was derived from the differential 
equation 

dy’ /)\2 Peat = asecnc) 

which gives n’’ — when in it we make h=5) N=5 and 

dn’ 
a. 

This value of n’’ gives 

=5 30. 

The values for the magnification along the meridians and 
parallels now become 

= v3a 1 

"2° 1+c0s ¢ cos XN’ 

2 «.(1+c0s X’)? 
a aE er eras era | 

3m 1+ cos ¢ cos X’ 

and from these we derive 

K-( oy 1+ cos d’ y. 

1+ cos ¢ cos dN’ 
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The ratio of surfaces is greater than unity everywhere 
except on the Equator and upon the principal meridian. 
The alteration increases with the latitude; on the other 
hand, it diminishes when the longitude increases. This is 
shown at once by writing the above expression in the form 

2 sin? 5 2 
K= sec? ot t=. 

-1+cos ¢ cos A 

Upon the central meridian, where the greatest alteration is 
produced, we have 

K=see'5- 

The conditions to insure that the areas should be pre- 
served along the meridian of longitude \, and along the 
parallel of latitude yg give, respectively, the differential 
equations 

ap Caste 1 dy’ _ 
A sin’ X’o cos ¢ (1+ cos N’, cos ¢’)? de 

B sin ¢’, tan ¢’ gat de et dha ee 
i °(1+cos yg’, cos XN’)? dd 

sug 

The integration of the first: equation gives 

aah pe Jer usin pF Eau, , = Xo £) sing=Al 5 aed WRGs oT cot \’, tan (tan 5 tan-5) P 

and from the second we get 

ae -1 "0 ee 
r=Bl 20’ tan (tan gan 1+.cos g’, cos d’ 

The quantities ¢, ¢’o, Xo \’o and the constants A and B are 
joined to each other by the four relations that are obtained 
y expressing that the first equation is satisfied for p=, 

with y’ =¢’,, as also for e=5 with 9’ == and the second for 

=5 with )’ = as also for \=), with Ee ae 

The ratio of surfaces has now become 

(1+cos d’, cos ¢’) (1+ cos ¢’, cos d’) |? 
a (1 +c0s 9’, COS A’4) (1 +c08 XN’ Cos 9’) 5 
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In the parentheses of the second member the factor which 
varies with ¢’ is 

1+cos \’, cos y’ _, , cos \’,—cos XN’ 
1+cos 0’ cos g’ cos \’+sec 9g’ 

We see, then, that upon each of the meridians for which we 
have \<A), the ratio Kis less than unity and increases from 
the Equator to the pole; for \>\, we have K>1 and K 
increases from the pole to the Equator. We should see in 
a similar manner that, upon each parallel whose latitude is 
less than g,, K is smaller than unity and increases with the 
longitude, while, if ¢ is greater than ¢,, K will be greater 
than unity and will increase as the longitude decreases. 
Thus K attains a minimum AK, at the center of the map, and 
another K, at the pole on the principal meridian; it attains 
a maximum K, at the pole on the central meridian; and, 
finally, a second maximum K, at the intersection of the 
Equator with the principal meridian; these values are 

( +c0s X’o) (1 +008 9’o)']? 
2(1+ cos dX’, cos 9’) 

1 

~ (1+ 0s X’, cos 4) 

ee 1+cos ¢’, y 
3 (1+ cos \’, cos 9’, 

/ 2 K=( 1+ cos \'y ) 

1+ cos \’, COS -¥'4 

K,= 

K, 

Let us still consider the rectangular circular projection 
in which the hemisphere is represented by a complete 
circle, and let us now suppose that we wish to develop 
the central meridian with its true length. In order to 

do this we take the radius of the map equal to = In. 

figure 30 we have seen that the three points A’, D, and 
U are in a straight line; hence the angle OA’D is equal 

to the half of y’. Moreover, we have here OA’ =5 and 

OD =g; the right triangle OA’D will then give 
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If we also wish to develop the Equator with the true 
length, we should have in figure 31 OG=, and, since the 
angle OPG is equal to the half of ’, the triangle OPG 
will give in turn 

tan¥ =? BM yr 

From these two equations we obtain 

6 Are 
tan 3 rig gear? 

and also 

dg’ _sin ge’ 

de g 

dd’ _ sin ’ 

MN Gans 
so that we obtain 

: wa sin 6 Sa sin ¢g’ 

m™~2egsind’ 2 o(1+ cos d’ cos g’) 

Se sin 6 T sin )’ 
Pp ~2rXcos¢ tang 2U+cosN’ cosy’) 

At the intersection of the Equator and the principal 
meridian, we have ¥ 

The Equator being developed with its true length, if 
we make the second condition no longer apply to the 
central meridian, but to the principal meridian, and if 
we wish that the arcs of this last have for projections 
arcs that are proportional to them, the relation between 
» and ’ will remain the same, but that which exists 
between ¢ and ¢’ will be replaced by 9’ =¢, which rela- 
tions give 

ieee le ans =~ 

@ 2 8 tan 5=— tan 5 
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We have then 

pene OU a Ae 
m'2singsin)\’ 21+4+c0s 2X cos ¢ 

7 sind °F sin \’ 
kp 

e™ ™ Nie) 20) 
~ 4 X(1+c0s8 2’ cos ¢)? 

This projection is sometimes called the stereographic pro- 
jection with modified meridian. | 

NONRECTANGULAR CIRCULAR PROJECTIONS. 

Let us always suppose that to each point of the globe 
there corresponds one point of the map, and only one, so 
that the circumferences which serve for the projections of 
the meridians all pass through two points P and P’ in 
figure 36, which are the projections of the two poles. 
Let APA’P’ be the circumference described upon PP’ as 
diameter, O its center, AA’ the diameter perpendicular 
to PP’, UDU’ the proecuan of the parallel of latitude ¢ 
or of colatitude p, S the point in the prolongation of PP’ 
which serves as the center for this projected parallel, V 
the middle point of the chord UU’ common to the two 
circumferences APA’P’ and UDU’. Further, let PGP’ 
be the projection of the meridian of longitude \, reckoned 
from the central metidian projected into the line PP’ and 
let T be the center of the circumference PGP’. Let us 
continue to define this last by the angle X’ at which it 
intersects PP’, which is equal to the angle OTP, so that 
in the triangle OTP we have, as formerly, on taking OP 
as unity and on denoting by F# and S, respectively, the 
radius JP and the distance OT, 

f= cosec n’, 8=cot dX’, R?—S?=1. 

As to the projection UDU’ of the parallel, we can define 
it by the two lengths r and s, as we have done up to this 
time, or by the two angles which the sides of the triangle 
OSU make with each other. Let us call the angle SOU, 
’; its complement, gv’; the angle OSU, «; and, finally, 

fot y denote the angle which one of the radii OU and SU 
makes with the prolongation of the other. Since we have 
OU=1, the triangle OSU is determined by two of the 

991943 O- 52-9 
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Fig. 36.—Geometrical relations of nonrectangular double-circular projections. 

uantities r, s, p’, ¢, and y and it is easy to express the 
three other quantities as well as the various lines of the 
figure in functions of the first two. We have especially 



THEORY OF POLYCONIC PROJECTIONS. 131 

yer p 

_sin p’ 
sin e€ 

_ sin 
sin e€ 

. cos (2) 

OD=s—r=———~ 
cos = 

2 

a 

cin(75") 

sin © 
2 

str= 

The ratio of the two parts DP and DP’ into which the 
line PP’ is divided by the projection of the parallel is 
expressed very simply by means of p’ and y. In fact, 
this latter angle is equal to that of the two tangents at 
U to the two Ccinfansees: which angle is divided into 
two parts by the chord UU’, the one of which is the double 
of the angle DUU’, and the other of the angle PUU’. 

The angle PUD is then equal to = but of the two comple- 

mentary angles PP’U and P’PU the first is equal to =. 

It comes about, then, in the triangles DPU and DP’U 

that 

DU sin 3 = DP cos E 

? 

DU cos 5 = DP’ sin§ ’ 

from which, by dividing member by member and on 
denoting the ratio by &, 
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The alteration ¥ of the angle of the meridians with the 
T 

3 2 
to obtain it simply, let us note that, M, being the second 
point of intersection of SM with the circumference PMP’, 
we have 

SMxSM,=SP xSP’, 

if Mis displaced by changing the meridian but, remaining 
on the same parallel, SM is constant; then the same is true 
of SM,; consequently, also of MM,. Then the projection 
MN of the radius TM of the variable meridian of the map 
upon the radius SM of the fixed parallel has a constant 
length. At the point U this length is expressed by F sin p 

sin y 
sin )’ 

parallels is the excess of the angle SMT over 5- In order 

or by » and, at the point U, by cos 7; it thus results 

that 
sin Y=cos y sin XN’. 

In the triangle OST the angle at S, which we will call o, — 
may be immediately obtained, for we have 

Ss 
tan eke 

Let us now designate by 6 the angle OSY and by 6 the angle 
OTM, which we shall need for calculating the ratios km 
and kp. The triangle STM gives 

sin (0+0)=F cos ¥ 

cos G+o)=75 cos ; 

but we have in the triangle OST 

so that we have 

sin (O+0)=% sin o cos p 

cos (6 +o)=— cos ¢ cos 
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or 
: sing cosy 

SL USO COS N’ . 

sin p’ cos ¢ cos 
cos (6+-¢) =—*+—_.___—“. 

sin y 

It is, however, sufficient to calculate one of the angles 6 
and 6; we have, in fact, 

6—0=y, 

for, J being the point of intersection of 7U with PP’, the 
two triangles OJ T and [SW have the angles at J equal, and, 
by expressing that the sum of the other angles are the 
same in the one triangle as in the other, we obtain the 
relation which we have just written. 

The rectangular coordinates of the point VM with respect 
to the axes OA and OP are 

2=Pr sin 6 

y=f sin 6. 
We now have 

06 

ye F008: 
P' sin p OA 

By taking, with respect to p and with respect to \, the 
derivatives of the logarithms of the two members of each 
of the relations which we have established between the 

different variables, we obtain = and = which figure in 

the values of k,, and kp; but it is more simple to obtain 
km by making use of the formula 

la=(- 7 cos a) sec y, 

which has been demonstrated with regard to polyconic 
projections in general. Since the meridians are also 
circles with their centers upon the same straight line, 
we can form an expression fog kp by replacing in the 
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expression for km, p by \, r by R, s by S, and 6 by 6, and by 
dividing by sin p; this gives 

tie dss 5) Seu. 
kp Geake jam Dp 

The projection of 7 Mupon OT being equal to TO plus the 
projection of SM, we have 

R cos 6=S+4+ 7 sin 0. 

Substituting for cos 6, in the expression of kp, the value 
which results from this last equation, and observing that 
dk dk > as’. oe 

R ax S Fy 18 Zero, since Rk? —S? is a constant, we have 

jo os rsiné@ ds, 
Pp" #sin p cos p dy’ 

but 

1dS _ ee Tah, 
Ray, sin -dN” 

so that 
7 _rsin @ sec py dy" 
Pp. sin X’ sin. py dX 

The expression for k, can be written 

Ps as EE sin? A sec y. 

Let us examine in particular what these ratios become 
upon. the straight-line parallel of the map which we shall 
make, for example, correspond to the Equator. Let us 
call A the value which is assumed for g=0 by the deriva- 
tive of OD or s—r with respect to ¢ and —B the hmit 

toward which tends the ratio of = to 2r? when ¢ tends 

toward zero. Since at the same time 7@ tends toward OG 
I 

or tan *., we find that on the Equator De 

aS 

ky=A+B tan? a 

all PON, 

es Deak: 
since y=0 at that point. 
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The condition that the areas should be preserved along 
this line will then be 

1 ’ rn’ dn’ 
(A+B tan? >) Sec” 5 ae 

or, by integration, 

Bee x. ’ 
: (A+5 tan 5) tan mete 

no constant being added, since \ and })’ vanish simulta- 
~ neously. 

There is an infinity of circular projections with oblique 
angles that are atractozonic. If we suppose the meridian 
of 90° of longitude represented by the circumference 
described upon the line of poles as diameter, these pro- 
jections are furnished by the following equations: 

: 2e—sin 2e : / Poach / a 2¢’ +sin 29’ — (1+cos 29’) Tacos 26 ™ SMG 

2)’ —sin Zr" _) 
1—cos2\’  *" 

The first leaves yet undetermined one of the two quantities ; : 
g’ and e as a function of 9g; as to the second, it 1s incom- 
patible with the condition of preservation of areas along 
the Equator, which proves that no circular projection 
with oblique angles can be equal-area in the complete 
sense. 

PROJECTION OF NICOLOSI OR GLOBULAR PROJECTION. 

In this projection the Equator and the central meridian 
are found developed in straight lines and with their true 
lengths; the principal meridian is represented by the 
circumference described upon fhe line of poles of the 
ee as diameter; and, finally, the arcs of this meridian 
and the corresponding arcs of the circumference are pro- 
portional. We therefore have 
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Ren 

P 

R=5 cosec )’ 

oF / S=5 cot X 

sin Y=cos y sin 0” 

tan qo 
8 

_simo cosy 
sin (6+<c) Se a Cae 

5=0+y 

T 
=S cos g—r 

= (lo 2c oe Seas, G 

ae Siti = 2 D) e—-Y 

r sin @ 

~ X Cos yg cos py 

*See p. 128. 

sec p 
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The latter formula is very easily deduced, since by 
logarithmic differentiation we obtain 

patd ae es 
sinh’ dN UN” 

when this value is substituted in the general formula, we 
obtain the relation as given above. The formula for k,, is 
somewhat more complicated in its derivation. We have 
from the a priori conditions 

S—r=o9 

or 

+ (s—r) =1- 

From the triangle OSU we obtain 

1? 

Utes cam TS SIN ¢; 

but 

S—Tr=¢ 

1 3 
(s—g)?=s?+7] —7s8 sin y 

(w sin g—2y)s= — 9? 

or 

ae 
en: 

sin g—2e 

ds___ —% _8 (w cos y~2) | — 

dg wrsing—2¢g m7rsmy—29¢ 

__2r—7s cos ¢ 
7 sin g—29 

When these values are substituted in the general formula on 
page 134, we obtain the value of k,,, as given above. A 
circle constructed upon the line of poles of the map as a 
diameter gives the projection of the principal meridian. A 
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diameter perpendicular to this is the projection of the 

Equator. Both of these diameters are divided into equal 

parts and the projection of the principal meridian is divided 

into the same number of equal parts. The parallels are 

arcs through the divisions of hs line of poles passin 

through the corresponding divisions of the principa 

meridian. The meridians are arcs passing through the 

poles and through the divisions of the Equator or the 
diameter perpendicular to the line of poles. 

tas 
—. SS 

Fig. 37.—Nicolosi’s projection or globular projection. 

PROJECTION OF P. FOURNIER. 

Another conventional projection is that proposed b 
P. Fournier in 1646, which is a polyconic projection wit 
meridians that are ellipses. The Equator and the central 
meridian are developed with their true length on two 
straight lines perpendicular to each other; the central 
meridian serves as the major axis of all the ellipses for each 
of which the corresponding \ serves as the semiminor axis. 
The principal meridian is a circumference of a circle. The 



THEORY OF POLYCONIC PROJECTIONS. 139 

projections of the parallels intercept upon this circumference 
and upon the projection of the central meridian lengths 
proportional to the corresponding ares of the globe. 

In figure 38 let APA’P’ be a circumference the radius of 

which OP is equal to 5 ; it will reprdsent the principal 

meridian. Let PP’ be the central meridian of the map 

Pp’ 

Fig. 38.—Geometrical relations of Fournier’s projection. 

and let AA’ be the Equator. If we take OD equal to 9, 
and if we make the angles AOU and A’OU’ also equal to ¢, 
the circumference passing through the three points U, D, 
U’ will be the projection of the parallel of latitude g. By 
taking OG equal to d and constructing a half ellipse eee 
for vertices P. G, and P’ we shall obtain the projection o 
the meridian of longitude \._ Let M be the point where it 
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intersects the parallel, and let S be the center for the latter; 
draw the abscissa MN of the point Mand the tangent MT 
to the ellipse; also draw SU and SW. 

The parallels are the same as those in the globular pro- 
jection, so that we have, as before, 

S—r=o9 

a1? 

CSAs ae sin ¢ 

or, by combining the two equations, 

g(r+s) —7s ‘sin ett =0 

1 

t-? 
s= —————_————————"* 

wr sin gp—2o 

By taking the derivatives of the two members of these 
equations with respect to ¢ we obtain 

ds 2r—s cos 9 
dp «sin g—29 

The angle OS is still denoted by 9. The triangle SMN 
gives for the rectangular coordinates of M with O as an 
origin 

c=? sin 0 

y=s—r cos 6. 

The elliptic meridian, has the equation 

Ge ea 
er ‘€) =1. 

By substituting the above values of x and y in this equa- 
tion, and then solving for cos 0, we find 

gi w4n! + 2rd? (28 sin g— 1) + 9°97? — 40's. 
ae P (x? — 402) 
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By using this equation we can compute the angle @ as well 
as the values of x and y. If we denote by » the angle OFM 
formed by the tangent to the ellipse at M and the Y axis, 
we know that we have 

4) 
tan 7= ae 

but the departure y of the angle of the meridian from an 
orthogonal intersection with the parallel is the angle SMT, 
which is equal to the difference between the angles OTM 
and OSM; we have then 

y=n—9. 

Everything is now known in the expression for ky, namely 

ds dr 
m= (Fe cos 9-5") sec y. 

By substituting the values this becomes 

= TS COS p—2r_. ,8 
Ie =(1 oe eae = sin’) sec yy, 

an expression that has the same form as in the case of the 
lobular projection; but, of course, the angles @ and y have 

erent values from what they had in that projection. 

ky= (55) Sec ¢. 

By differentiating the equation for cos 6 with respect to X 

we obtain the value of - which may be reduced to a con- 

venient form by substituting for sin @ its value in terms of 
z and y; this form is much more readily obtained by dif- 
ferentiating the expressions for + and y with respect to 
\, and then the differentiation of the equation of the ellipse 
partially with respect to \ will furnish the equation for 

determining = - In this way we get 

Ox _ qed, , 
OPT it Jon Tt oN 

Oyo oh. GO | O08 
Dx Sin 9 sy =F sy 

az Og @ | 4yoy_ 
NON APT GON 

and 

0; 
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By solving these linear equations for = we obtain 

pallet AC Lay 
OX A [ws — (7? —4)?) y] 

Hence 
ee Tse SeC O ‘ 
P~X [s— (@?—4)) ¥] 

Upon the central meridian we have 

6=0, Y=0, kn=1, 

a\ 2 

kp =sec e4/ 1-(=2) , 

upon the principal meridian 

Fb ne s—F sin ¢) CS ae 9 gy») 

a relation that is evident from the figure. 

and 

\\ 

Fig, 39.—Projection of P. Fournier. 
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sin v-sle (r+s) -F| 

kn=—, ui | (e-§ sin ) z+" | 

Ie rT 

aS. 

ORDINARY, OR AMERICAN, POLYCONIC PROJECTION. 

This is the projection that is generally referred to in this 
country as the polyconic projection; but we have attempted 
to show that the polyconic projection class is an exceed- 
ingly broad one and that it contains examples of almost 
every kind of projections. The name American polyconic 
i ibebee has been given to it by European writers chiefly 
ecause it has been extensively used by the United States 

Coast and Geodetic Survey; in fact, the projection seems 
to have been devised by Supt. F. R. Hassler to meet the 
eames in the charting of the coast of the United 
tates. 
For convenience of reference we shall give again the dif- 

ferential formulas developed on pages 10-13: 

—— sin 6 

tan y= —*_ 
ds os gp 2? 
dg de 

_ (l—é sin’g)”" ds dp 
bn ee (Ss cos @ =) sec y 

_p(l—e sin’y)” 06 
kp @ cos ¢ Or 

_p(l—é sin’y)? (ds _ dp\ 08 
K=o (1—&) cos¢ (z —— do) Ox 

The characteristics of this projection are that each par- 
allel is the developed base of the cone tangent along the 
parallel in question; that the parallels are spaced along the 
central meridian in proportion to their true distances apart 
along this meridian; and, finally, that the scale is main- 
tained constant along the parallels. 
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With these conditions we have 

_  acot¢ 
e™ = sin’g)* 

tt aye BON Ts oo Mette s=a(l af 1—ésintg)@ ' U—€ sin’y)# 

or. 

By intergration 
9=X sin 9, 

no constant of integration being added, since @ and \ vanish 
simultaneously. Since the parallels are represented by 
circles and since the scale along the parallels is to be main- 
tained constant, the last relation can be obtained b 
eqlaune an arc of the projection to an arc of the parallel; 
ence 

aX COs 
ee anys 

a cot ¢ AES aX COS o 

(l1—é sin? g)* (1—é sim? ¢)*% 

or 

§=) sin ¢. 
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These values fully determine the projection, and all of the 
elements can at once be computed. 

dp @ cosec? ¢ ae Cos? ¢ 

—a cosec? g+a & (1+ cos? ¢) 
(1—é sin? og)’ 

—a cosec? 9 +aé (1+ cos? ¢) ds a(1—e?) 

(1—é sin? ¢)*2 dee sin? 9)" 
__a@ (1—cosec? vy) +a cos? ¢ 
ye (1—é sin? ¢)*2 

me cot? 9+ dae cos? ¢ 

(1 —é sin? ¢)*/: 

—a cot? 9 (1—é sin? ¢) : 

(1 —é sin? ¢)*/2 

—a cot? ¢ 

(1 —é sin? 9)” 

OO. 
Sd g 

Sa COS ¢ 

991943 O- 52-10 
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By substituting these values in the differential formulas 
we obtain 

ae eety a, d cos ee sin 0 (1— sin? yg) °~ d= sin? g)% 
tan Y= 2 5. he 2 ___acoty Cones. a@ cosec *9—ae (1+ cos? ¢) 

(1—é? sin? ¢)* G—esin?g)? 

tan d cos? y sin ¢—Ccos? ¢ sin @ 
‘ 1 e? (1 + cos? ¢) sin? ¢ 

1—e’ sin’ ¢ 1—e’sin’¢ 

A sin g—sin 6 

e? sin? ¢ 

1—é sin’ ¢ 
sec? »—cos 0— 

oe 6—sin 6 

2a 1—é sin? ¢ 

— (1—é sin? g)") a cot? ¢ a cosec? ¢ 
k _ A—e' sin® ¢)" See ig eee eae AO) sa gle Ie eA aS OF a REE gate EE Ta EES 

” a (1 —é’) (1 —é? sin? ¢)* boats: (1 —é* sin? ¢)* 

ae’ cos’ o 
oe 
(1—é sin? arr | oe 

_secy 
~1-é 

[— (1 —é* sin? ¢) cot? ¢ cos 6+ cosec? ¢ (1 —e’ sin? ¢) 

—é cos’ o| 

sec y : 
3 | cose: g—e&—é cos? g—cot? o(1 —é sin? ¢) 

(ame 
sec 
—e¥ cosec? y— e’— €’ cos’ g— cot? y+ cos? ¢ 

2 2 2 = 2 9 + 2(cot? p—é cos? ¢) sin 5 

Ss 

1 2 
= coy | 1-e+2 (cot? o— €? cos? ¢) sin’ | 

2 (cot? g—é* cos? ¢) sin? J 
K=14 ——______. 

1-2 
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When } is small—that is, when the map is not extended 
far from the central meridian—an approximation in a 
series in terms of \ is very convenient. If we neglect # 
and higher powers, we obtain 

tan y= 

or approximately 

3 ain3 
Mem fae sin? ¢) 

02 ee ee ee 
v tan? 9 (1—é? sin? ¢) —e* sin? ¢ 

aN z l—e 7) 
== sin ¢ cos? ¢ (Ses 

3 —é sin? 2) 

noe 
azsin2 ecos o( —2 

For smaller values of y this can be still further approxi- 
mated by the form 

for the sphere k, becomes 

km=sec W (cosec? ¢— cot? ¢ cos 6). 

To obtain an approximation we let sec y=1 and we get 

2 

kn=( cosec* y— cot? + coti.¢ — Oats :) 

2 
=1+% COs? ¢. 
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In these approximations \ must of course be expressed in 
arc. 
An approximation for k, was determined by A. Linden- 

kohl, of the United States Coast and Geodetic Survey, that — 
is remarkably close to the one given above. This was given 
in the form 

a: d° cos g\? E= +0.01(—,=~), 

in which )° is the distance from the central meridian in 
degrees of longitude. In this form # corresponds to the 

2 

term -5 cos *g in, the first approximation. 

The projection is generally plotted from computed coordi- 
nates of the intersections of the meridians and parallels. 
If we take as origin the interesection of the central meridian 
and the Equator, we shall have 

2=p sin 6 

y=S—p cos 0. 

It is the more general practice to compute each parallel 
with its own origin; that is to say, by using as origin the 
intersection of the parallel in question with the central 
meridian. 

In this case 

2=p sin 6 

Yy=p—p cos 0=2p sin? =a tan. = 

The @ angles have to be computed for each parallel that it 
is desited to map by computation. If these are to be at 
frequent eimrals, it 1s customary to compute certain 
coordinates and then to interpolate the intervening values. — 

The meridional-arc values are tabulated in meters from 
minute to minute in the Polyconic Projection Tables, 
Special Publication No. 5, United States Coast and Geo- 
detic Survey. If it is desired to refer the coordinates of 
the various parallels to a common origin, it is merely 
necessary to add the meridional-arc values reckoned from 
the chosen, origin to the y values as determined above; this 
is true because the valye of s is given as equal to the 
meridional arc from the Equator to the parallel of latitude 
gy, with the addition of the value of p in terms of y. It is 
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customary, however, in the construction of the projection 
to locate the various origins on the central meridian by 
their meridional-arc values and then to use the coordinates 
as originally computed. It is, in general, not necessary to 
compute the p, values since the tabulated A factor values 
given in Special Publication No. 8, United States Coast 
and Geodetic Survey, are connected with them by the 
relation 

om 1 

op, smn t7” 
or 

t 
Pu™ ZA sin 1” 

Hence 
log pn=colog A+colog sin 1’’. 

The logarithms of the A factors in meters are tabulated for 
each minute of latitude in Special Publication No. 8, as 
referred to above. With these values as given the formula 
for p becomes 

P=Pn cot ¢o. 

A great advantage of this projection consists in the fact 
that a universal tails can be computed that can be used 
anywhere upon the earth’s surface. Almost every other 
rojection has special elements that must be determined 
or each projection. These elements are generally certain 
arbitrary constants that enter into the formulas for compu- 
tation. The Mercator projection is another projection that 
can have a universal table. 

If the whole earth’s surface were mapped in one continu- 
ous projection it would be interesting to know what would 
be the length of the meridian that forms the outer boundary 
of the representation and also how many times the area has 
been increased. Such a projection of the sphere is shown 
in figure 40. By approximate measurement on a plate of 
such a projection it was found that the ratio of increase of 
length of the outer meridian was about 3.2 to 1. 

The element of area of the representation being given in 
the form 

dS =a? K cos ¢ dg dy 

for the sphere, we have 

K= (cosec? ¢— cot? ¢ cos 6), 
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so that 

dS =a? [cosec? ¢— cot? ¢ cos (Asin ¢)] cos ¢ dg ax. 

One-fourth of the area is given by integrating between the 

limits \=0 to \=7z and ¢=0 to g=5- The total area S is 

therefore given by the formula 

S =4a? a 2 cos g dg] [cosec? g—cot? ¢ cos(A sin ¢)] dv 
oO oO ; 

=. fF E cosec? e-= r= sin % sin | cos g de 

= : = cos* 
= 4a? [—7 cosec ¢] 2 —4a ee ? sin (x sin ¢) de. 

In the latter integral let s=7 sin ¢ 

then 
dz 

cos gdp=—>s 

and 
cos? 

—4q? [F antes ? sin(r sin ¢) cos ¢ dy 
c¢] 

Pisin al ™sin x 
tk 2 art ee 4 = 4 q77? Roe 5 == (27? +4) a i 2 dz. 

Hence the value of S becomes 

+ S =4a*[—7 cosec ¢] 2+277a* = tanees ose 
ce) & (o) 

sin Sey + (20° +4)a [Sas 

The integrated terms assume the form «0 —oo at the lower 
limit, and must be evaluated for that point. The last term 
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of the expression is the transcendental function known as 
the integral sine; it is represented by the series 

7 sin & e ig ag x 
i ed dit = %— 3a} TE Bl 7-71 9-9! Rk MN Mr 

The value of this series for r=7 is approximately 1.852. 
To aid in the evaluation of the integrated part, we shall 

restore the value of z=7 sin ¢ 

cos (r sin ¢) |= sin (7 sin ¢) 
sin 9 o 

| —4" cosec ¢+2 Sne a 

-|+ sin(m sin yg) +27 sin ¢ cos(z sin y) —47 sin ef 
sin? » | 

lint [ Sets Sine) fOr nig cos G sine) oar sine | 

har ] sae 27 COS ¢ COS(x Sin ¢)+27 COS ¢ COS(x Sin ¢)—27r?2Sin y COS ySin(xSin y)—4z COS g 

OW ewe [ 2sin ¢ cos. ¢ | 
Qi 

Dives 27 cos (7 sin ¢) —7’ sin ¢ sin (7 sin ¢) —27 

= pa [== cos ¢ sin (x sin g)—7? cos 9 sin sin ¢)—78 sin ¢ cos ¢ cos (x sin 2] 

=0. 

Therefore ; 

S=[—4ar—27-+ (277+4) 1.852] a? 

=[—67+ (27?+4) 1.852]a? 

=[— 67 + 23.74 x 1.852]a? 

= (— 18.85 + 43.97) a? 

= 25.12 a’. 

Area of the sphere = 47a? = 12.57 a’. 

Area of map _25.12 
Area of sphere 12.57 

The area is therefore increased approximately in the ratio 
of 2:1. 

=2 very nearly. 
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TISSOT’S INDICATRIX. 

To represent one surface upon another we imagine that 
each surface is decomposed te two systems of lines into 
infinitesimal parallelograms, and to each line of the first 
surface we make correspond one of the lines of the second; 
then the intersection of two lines of the different sys- 
tems upon the one surface and the intersection of the 
two corresponding lines upon the other determine two cor- 
responding pee finally, the totality of the points of the 
second which correspond to the points of a given figure of 
the first forms the representation or the projection of this 
figure. We obtain the different methods of representation 
by varying the two series of lines which form the graticule 
upon one of the surfaces. | 

If two surfaces are not applicable to. each other, it is 
impossible to choose a method of projection such that there 
is similarity between every figure traced upon the first and 
the corresponding figure upon the second. On the other 
hand, whatever the two surfaces may be, there exists an 
infinity of systems of projection Peete angles, and, 
as a consequence, such that each figure infinitely small and 
its representation are similar to each other. There is also an 
infinity of others preserving the areas. However, these 
two classes of projections are exceptions. A method of 
projection being taken by chance, it will generally happen 
that the angles will be changed, except, possibly, at par- 
ticular points, and that the corresponding areas will not 
have a constant ratio to each other. The lengths will thus 
be altered. 

Let us consider two curves which correspond to each 
other on the two surfaces. In figure 41 letO and Ube two 
points of the one, O’ and M’ the corresponding points of 
the other, and let OT be the tangent at O to the first curve. 
If the point UM approaches the point O indefinitely, the point 
M’ will approach indefinitely the point O’, and the ratio of 
the length of the arc O’M’ to that of the arc OM will tend 
toward a certain limit; this limit is what we call the ratio of 
lorigtlis at the point O upon the curve OM or in the direction 
OT. Inasystem of projection preserving the angles the ratio 
thus defined has the same value for all “pete at a given 
point; but it varies with the position of this point, unless 
the two surfaces are palicable to each other. When the 
representation does not preserve the angles except at par- 
ticular points, the ratio of lengths at all other pomts 
changes with the direction. 
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The deformation produced around each point is subjected 
to a law which depends neither upon ‘ie nature of the 
surfaces nor upon the method of projection. 

Every representation of one surface upon another can 
be replaced by an infinity of orthogonal projections each 
made upon a suitable Beales 
We note, first, that there always exists at every point 

of the first surface two tangents perpendicular to each 
other, such that the directions which correspond to them 
upon the. second surface also intersect at right angles. 
In figure 42 let CE and OD be two tangents perpendicular 
to each other at the point O on the first surface; let C’E’ 
and O’D’ be the corresponding tangents to the second. 

oO’ 

Fia. 41.—A curve and its projection. 

Let us suppose that of two angles C’O’D’ and D’O’E’ the 
first is acute, and let us imagine that a right angle having 
its vertex at O turns from left to right around this point 
in the plane CDE, starting from hs position COD and 
arriving at the position DOE. The corresponding angle 
in the plane tangent at O to the second surface will first 
coincide with C’O’D’ and will be acute; in its final position 
it will coincide with D’O’ E’, and will be obtuse; within the 
interval it will have passed through a right angle. There- 
fore, there exists a system of two tangents weeks the 
condition stated, except at certain singular points. From 
this property we conclude that in every system of repre- 
sentation there is upon the first of the two surfaces a 
system of two series of orthogonal curves whose ae eS 
tions upon the second surface are also orthogonal. The 
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two surfaces are thus divided into infinitesimal rectangles 
which correspond the one to the other. 

D 

é O E 
DB. 

e @) a 

Fig. 42.—T wo tangents at right angles and their projections. 

This fact being established, let 1 be a point in figure 43 
infinitely near to O upon the first surface and let OPMQ 
be that one of the infinitesimal rectangles which we have 
just described that has OM as a diagonal. Let us move 

Q M 

Q’ M' 

OL ne, P P' 
Fig. 43,—Projection of infinitely near points. 

the second surface and place it so that the projections of 
the sides OP and OQ fall upon the sides themselves pro- 
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longed if necessary; then let O’P’M’Q’ be the rectangle 
corresponding to OPM Q; let us call NV the point of inter- 
section of the lines OM’ and PM. We can consider this 
point as the orthogonal projection of the point that M 
would be if we should turn the plane of the rectangle 
OPMQ through a suitable angle with OP as an axis. But 
this angle, which depends only upon the ratio of the two 
lines VP and MP, is the same whatever point M may be; 
for denoting, respectively, by ¢ and d the ratios of the 
lengths in the directions OP and OQ—that is, on setting 

Ome OQ’ _ 

On? oo” 

we should have 

— — SSS SSeS 

and, consequently, 

Thus if M moves on an infinitesimal curve traced around 
O, we shall obtain the locus described by N by turning this 
curve through a certain angle around OP as an axis and 
by then projecting orthogonally upon the plane tangent 
at O. On the other hand, we have 

OM {OT | 
ON OP” 

‘so that the locus of the points M’ is homothetic to that of 
the points N; the center of similitude is O, and the ratio of 
similitude has the value c. The representation of the 
infinitesimal figure described by the point M is then in 
reality an orthogonal projection of this figure made on a 
suitable scale, or the figure formed by the points N and 
that formed by the points M’ are formed by parallel sec- 
tions of the same cone. Any geographic map can, there- 
fore, be considered as produced by juxtaposition of orthog- 
onal projections of all the surface elements of the country, 
provided that we vary from one element to the other both 
the scale of the reduction and the position of the element 
with respect to the plane of the map. 
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Of all the right angles which are formed by the tangents 
at the point O those of the lines OP and OQ and their pro- 
longations are the only ones one side of which remains 
parallel to the tangent plane after the rotation which was 
described above; fet are the only ones then which are 
projected into right angles. We can now state an addition 
to the proposition which has just been proved, and we can 
express the whole in the following form: At every point of 
the surface which we wish to represent there are two per- 
pendicular tangents, and, if the angles are not preserved, 
there are only two, such that those which correspond to 
them upon the other surface also intersect at right angles. 
So that, upon each of the two surfaces, there exists a sys- 
tem of orthogonal trajectories, and, if the method of rep- 
resentation does not preserve the angles, there exists 
only one of them the projections of which upon the other 
surface are also orthogonal. 
We shall denote, by first and second principal tangents, 

the two perpendicular tangents the angle between which is 
not altered by the projection. Weshall continue to denote, 
respectively, by c and d the ratio of lengths in the direc- 
tions of these tangents, and we shall suppose that c¢ is 
greater than d. | 

If the infinitesimal curve drawn around the point 0 is a 
circumference of which O is the center, the representation 
of this curve will be an ellipse the axes of which will fall 
upon the principal tangents, and these will have the values 
2c and 2d, the radius of the circle being taken as unity. 
This ellipse constitutes at each point a sort of indicatrix 
of the system of projection. 

In place of projecting orthogonally the circumference, 
the locus of the points M in figure 43, which gives the 
ellipse the locus of the points N, then increasing this in the 
ratio of ¢ to unity, which gives the locus of the points WY’, 
we can perform the two operations in the inverse order. 
We should then in figure 44 obtain the point UM’ of the 
elliptic indicatrix which corresponds to a given point UM 
of the circle by prolonging the radius OY until it meets at 
R the circumference described upon the major axis as 
diameter, and then by dropping a perpendicular from & 
upon OA, the semimajor axis, and, finally, by reducing this 
perpendicular RS, starting from its foot S in the ratio of d 
toc. The pomt M’ thus determined will be the required 
point. 

In figure 44 let us draw OM’, and let us call, respectively, 
u and wu’ the angles AOM and AOM’ which correspond 
upon the two surfaces. Inasmuch as the second is the 
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Fig. 44.—Tissot’s indicatrix. 

smaller of the two, we see that the representation dimin- 
ishes all the acute angles one side of which coincides with 
the first principal tangent. Between wu and wu’ we have, 
moreover, the relation 

d 
tan wu’ ie tan u, 

since 

ponikenRs an UT OS 

M'S 
tan u’ = Og” 

and, consequently, 3 
’S 

pc s =— tan wu BS tan u ; tan wu. 

Let us prolong the line RS to R’ and then join O and R’. 
The two triangles OR M’ and OR’M’ give 

sin (w—u') = 255 sin (u+w’), 
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which is obtained by equating two expressions for the 
ratio of the areas of the triangles. The same relation fol- 
lows at once analytically from the tangent relation first 

given. The angle w increasing from zero to 5 its alteration 

u—u’ increases from zero up to a certain value a, then 
decreases to zero. The maximum is produced at the 

moment when the sum w+’ becomes equal to = Let U 

and U’ be the corresponding values of uw and uw’. We find 
from the tangent formula that the following are their 
values: 

tan p= and tan ne 

The quantity w can be computed by any one of the formulas. 

sin OF ad 

_ 2 ed 
COs w= 77? 

tan o=— 7) 2~/cd 

rn es ea vd 
—— +d 

vd 
ria 3 =15 oe tan es ely 

From the last two equations since the sum of U and U’ is 

equal to 5 and their difference .is equal to w, we have 

pc TY U=3 ate and U’= ree 

From the tangent relation we see that when we change u 

to au it is sufficient to change wu’ to g—u. The same 

substitutions being effected in u+vu’, give for result 
7 — (u mesh tt: so that the sine formula shows that the value 
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of the alteration is not changed. Thus of two angles 
which are found to be chan aA by equal quantities each 
is the complement of the projection of the other. 

If we wish to calculate directly the alteration which any 
given angle u is subject to, we should make use of one of 
the two formulas 

(c—d) tan u 
tan (u— wu) org = 2a 

(ec—d) sin 2u , Pie il de NS aa ach sheet tea 

tan (u—u ee cag (c—d) cos 2u’ 

which follow immediately from the previous formulas by 
easy analytical reductions. 

B 

O 

Fig. 45.—Angular change in projection, first case. 

Let us now consider an angle MON in figures 45 and 46, 
which has for sides neither one nor the other of the prin- 
cipal tangents OA and OB. We can suppose the two 
directions OM and ON to the right of OB and the one of 
them OM above OA. According as the other ON will be 
above OA (fig. 45) or below OA (fig. 46), we should calcu- 
late the corresponding angle M’ON’ by taking the differ- 
ence or the sum of the angles AOM’ and AON’, which 
would be given by the formula stated above. The alter- 
ation MON—M'ON’ would also in the first case be the 
difference, and in the second case would be the sum of 
the alterations of the angles AOM and AON. When the 
angle AON (fig. 45) is equal to the angle BOM’, we know 
that its alteration is the same as that of the angle AO, 
so that the angle MON will then be reproduced in its true 
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magnitude by the angle M’ON’. Thus to every given 
direction we can join another, and only one other, such 
that their angle is preserved in the projection. However, 
the second direction will coincide with the first when it 
makes with OA the angle which we have denoted by U. 

The angle the most altered is that which this direction 
forms with the point symmetric to it with respect to OA; 
it is represented upon the projection by its supplement. — 
The maximum alteration thus produced is equal to 2w. 

8B 
M 

M' 

NV’ 

N 

Fig. 46.—Angular change in projection, second case. 

This can never be found applicable to two directions that 
are perpendicular to each other. 

The length OM in figure 44 having been taken as unity, 
the ratio of lengths in the direction OM is measured by 
OM’. Let us denote by r this ratio; we can calculate it 
by means of one of the formulas 

r cos wu’ =c cos U 

rsin u’=d sin u 
or 

72 = @ cos *u+d? sin *u. 

991943 O- 52-11 
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We have also among 7, u, and the alteration w—u" of the 
angle wu the relation 

2r sin (u—wu’) = (c—d) sin 2u, 

which expresses that, in the triangle ORM’, the sines of 
two of the angles are to each other as the sides opposite. 

The maximum and the minimum of r correspond to the 
principal tangents and are, respectively, c and d. | 

Let us call r and r, the ratios of lengths in two directions 
at right angles to each other and let y be the alteration that 
the right angle formed by these two directions is subjected 
to. From the well-known properties of conjugate diam- 
eters in the ellipse we have 

Pt? =C+d 

rr, cos y=cd 

or, in terms of the scales along the parallels and meridians, 
the semiaxes are given by the equations 

CC Hh? yn +k? > 

COT cos Vv. 

For all angles not changed by the projection the product 
of the ratios of lengths along their sides is the same. 
In fact, let OA (fig. 45) and OB be the two principal 
tangents; let MON be any angle whatever; and let 
M’'ON’ be its projection. Let us denote by r’ and r’’ 
the ratios of lengths along OM and ON and by wu and wv’ 
the angles AOM and AOM’. 
Then 

r’ cos U’ =C COS U 

r’’ sin Z AON =d sin Z AON; 

but we know that, when the alteration MON— M’ON’ 
is zero, the angle AON is the complement of wu’ and the 
angle AON’ is the complement of wu; so that the second 
equation gives 

1 .€OS 10 COS U. 

By multiplying these equations member by memher we 
obtain 
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which proves the statement. It results from this property 
that the ratio of lengths in the two directions the angle 
of which undergoes the maximum alteration is equal to 
vcd; for the angle which is not altered and which has for 
side one of these two lines reduces to zero, and it has the 
same line for second side, so that r’ =r’’ = Ved. 

In the ordinary, or American, polyconic projection we 
have 

km = K sec y 

oe 
Hence 

?+d?=1+4+ K? sec? p 

ca=K 
or 

0=5 (V1+2K+ K? se? y+ V1—2K+ K? see p) 

d=s (J1+2K+ EK? se? y—-Y1—2K+ K* sec? y). 

By means of these formulas the semiaxes could be 
computed for any point on a continuous map of the 
sphere or of the ellipsoid if it is desired to take into 
account the eccentricity of the generating ellipse. As a 
o6d approximation for projections extending no farther 
rom the central meridian than is usually the case, we 
may take 

c= K sec P=km 

C—_/ 

The effect of this approximation becomes barely perceptible 
in the third place of decimals for \ = 45°, so that the approx- 
imation is exceedingly good for projections of less extent in 
longitude. : 

With this approximation for the semiaxes it only remains 
to determine the angles through which the axes of coordi- 
nates should be turned to make them coincide with the 
directions of the axes of the ellipse. The angle through 
which the axes must be turned to make the z axis be tan- 
gent to the parallel at the point we shall denote by £; its 
value is given by the formula 

£=)\ sin ¢. 
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If y is the angle between the conjugate axes, and if 7 
is the angle between the major axis and the conjugate 
axis of x, we have from the theory of conjugate axes 

@ 
tan y tan (n+y)= eae 

By developing this expression we get 

d?+c? tan? 7 , 
Ol ane (c?—d?) tan 7’ 

but 

y=5t¥. 

Therefore é 
_ @+c tan’ 7 

es (c?—d?) tan » 

By solving this for tan » we get 

2 2 2 f2\2 2 

ten 7= 4 cot y—4/ = cot? =, 

from which 7 can be determined. The angle between the 
minor axis and the conjugate minor axis is equal to 7+y. 

If — is counted positive for points east of the central 
meridian, the axes must be turned through the angle 
&—n—w. We shall then have 

w= 2 cos ((—n—w) +y sin (E—9—p) 

y’=—xsin ((—n—-y)+y cos (E—n—-Y). 

For points west of the central meridian ——-yn—y can be 
considered negative in the transformation formulas. 

If geodetic azimuths are given, they should first be 
referred to the parallel as initial line; that is, they should 
be reckoned from the east around counterclockwise 
through north. If the »+y le is added to these 
azimuths we shall obtain the angle uw. Since the elliptic 
indicatrix has the minor axis in the direction of the 
initial line, we have 

tan uw” =3 tan wu. 
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The ratio of scale is given by the equations 

r sin u’=c sin u 
or 

r cos u’/ =d Cos u. 

If it is desired to determine the azimuth of the line from 
a point to a near point from their coordinates on the 
map, we have approximately 

z’ and y’ being the coordinates of one of the points with | 
respect to the other as origin in the transformed system; 
that is, after the axes have been turned to make the axes 
of the ellipse coincide with the axes of coordinates. Then 

d ‘ 

tan. es tan w’’. 

The azimuth reckoned from east to north is given by 
a=u+ti—n—y. 

If the map does not extend more than 5 degrees beyond 
the central meridian, the angle 7 can be considered zero 
and the reductions become comparatively simple. 

The theory of the elliptic indicatrix can be applied to 
any projection that has a change of scale at any point 
for different directions; that is, for any projection that is 
not conformal. It has been applied only to the ordinary 
polyconic projection in this publication, since for practical . 
purposes that one is probably the most important of the 
nonconformal projections treated under the polyconic pro- 
jections. 

The appended tables of the elements of the ordinary 
polyconic projection are taken from Tissot’s work. They 
are computed for the sphere but can safely be used for 
ordinary computation work. If more exact results are 
desired the computations should be made from the first 
by employment of the spheroidal formulas. 3 
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TABLES OF ELEMENTS OF THE ORDINARY OR AMERICAN 
POLYCONIC PROJECTION. 

Values of y. 

IN 

? 
0° 16)? 30° 45° 60° 52 90° 

° ° 7 ° 7 ° / ° , ° / ° ? ° , 

(Tie ee ne om Se Ie ke 0 00) 0 00] 0 00] 0 00] 0 00] 0 00] 0 00 
i eae eee eae Pe wats 0000} 20) "024) 40418") 0 52) 1 45.) 2) 52a 09 
SOR ME el ah ee ee ae 0/0090: 08 70 28:1 1c 23 152 53h AsO amos 
Tat eh OE an Ate Mosca ele ce O (007) 00.04 |--0 27-1 1) 289, 50157 10ae geet 
BORE SOR eee sae ae a ae O: 00) |102,02))050) 17°|2 0" G51) 2 OL | 3 teil oe 4G 
LO Sass isis nee So ce ee see O-COn OFOF 00052) Oa lial Om Sone test 2 00 
CARR RE Ss tala lle OP 7 i et 0 00; O 00; 0 00; 0 00; O OO} O OD 0 00 

Values of ky. 

» 

? 
0° 152 30° 45° 60° Tae 90° 

i} 

Dain ee ee ee eee 1.000 | 1.034] 1.137] 1.308] 1.548] 1.857] 2.234 
1S ied acd cates see oe CEE 1.000 | 1.032} 1.128} 1.287] 1.509] 1.794] 2.141 
5 Dees hyeel eterae AE ih tae a ay 1.000 | 1.026] 1.102] 1.229] 1.404] 1.626] 1.893 
ASS peta aah Ga Ee Liat ae 1.000] 1.017] 1.068] 1.151] 1.264] 1.404] 1.571 
GOR cian Ses ee eee eee 1.000 |} 1.009; 1.034] 1.074} 1.129) 1.195 1.270 
(ORS oti. het A I 1.000 | 1.002] 1.009] 1.020] 1.034] 1.050] 1.069 
GOR aii adie coi Mh iS. Per a 1.000] 1.000] 1.000} 1.000] 1.000] 1.000] 1.000 

Values of 2w. 

¢ 
0° 15° 30° 45° 60° 75° 90° 

° ° 7 ° , ° , ° 7 ° 7 ° le ° 4 

Oe. Sess B SO | SOBRE 0 00} 1 55] 7. 21/15 20|] 24 50|34 55| 44 51 
1h Vat ee ee amar oe RENE? 0 00] 1 48] 6 53] 14 26| 23 29] 33 09/ 42 49 
SOLE. SAE Seen 0 00} 1 27| 5 36] 11 52/19 33] 28 O01} 36 43 
AOL 2 2 Aes. 2 y Aer ee oe 0 00; 0 58) 3 45] 8 09] 13 42} 20 04) 26 52 
(COR Riles managed dt Luatuet ao) 0° 00)),0 29| 1 54) 4 11 | 7 13 | 30700 14 31 
Ome ene se eR ee a SoS 0 00; 0 08} O 31] 1 09} 1 57) 3 04 4 18 
2 amar ee ommnate ee. Nay ak 0 00] 0 00] 0 00] 0 00} 0 00} 0 00} O 00 
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Values of c. 

IN 

? 
0° 15° 30° 45° 60° 73° 90° 

° 

area aaesites ae aaeee 1.000} 1.034]; 1.137) 1.308} 1.548] 1.857 2.204 
ae ae One hse ee a ee 1.000 | 1.032] 1.128| 1.287] 1.510] 1.795} 2.143 
DO Rae ote eee sets: esas ace 1.000 |} 1.026) 1.102.) 1.229} 1.405| 1.629 1.899 
A ee ree ee ee ee oe scien 1.000} 1.017] 1.068] 1.152] 1.266] 1.410 1.580 
GOS ees ess. TERE 1.000} 4.009} 1.034} 1.075] 1.1381} 1.200 1.280 
RSS SE ae Ree eee ee ; 1.000 1.002 | 1.009] 1.020} 1.034] 1.053 1.073 
i) fae Bea EO eae ee oe ae eek Oe | 1.000 } 1.000; 1.000; 1.000; 1.000} 1.000 1.000 

Values of d. 

i 

g 1 

O° Feed tedin30° | F452 heweo® 41 75° | -80° 

ee eee pia SS 1.000 ; 1.000} 1.000} 1.000} 1.000}| 1.000 1.000 
Vesa ead sae RE aso eee 1.000 | 1.000; 1.000} 1.000; 0.999] 0.99 0.997 
SOP eee Boe EE os sea 1.000} 1.000} 1.000} 0.999; 0.997] 0.994 0.989 
CGS See Seeterane retea ts 1.000 | 1.000} 1.000} 0.999] 0.996 | 0.992 0.984 
GU aR eae oaee Beene! Sse eee 1.000 |} 1.000} 1.000} 0.999} 0.997] 0.993 0. 987 
(Ose ete. Beer ee eee 1.000 |} 1.000} 1.000} 1.000] 1.000] 0.998 0.$95 
QO Rae es Saks SUE oo ee eae 1.000 |} 1.000! 1.000} 1.000} 1.000] 1.000 1.000 

Values of K. 

i 
¢g 

O° to | 30° Pass eon. |” 75?~ | 90° 

° 

Oeste ee BE = A eee 1.000 | 1.034] 1.137| 1.308] 1.548| 1.857 | 2.234 
We eae ee eek See eee ae 1.000 | 1.0832 { 1.128] 1.287) 1.508] 1.792 2.135 
OO eee se Saab hae Saas 1.000 |} 1.026; 1.102] 1.228} 1.402} 1.620 1.879 
gets Ae A a Oe ED oe 1.000 | 1.017} 1.068] 1.150] 1.262] 1.399 1.556 
C.D) OS See eee ste 1.000 | 1.009} 1.0384] 1.074] 1.128] 1.192 1.264 
TORS Sea ces cee Lee 1.000 | 1.002} 1.009) 1.020] 1.034] 1.050 1.068 
OO i eR P SE cn cary ua els oc 1.000 | 1.060} 1.000] 1.000} 1.000} 1.000 1.000 

TRANSVERSE POLYCONIC PROJECTION. 

If the earth is considered as a sphere, there is no reason 
why the tangent cones that determine the projection 
should necessarily be tangent to the earth along parallels 
of latitude and should have their apexes in the axis of the 
earth. Any diameter prolonged might just as well serve 
as the line of apexes, and then the cones would be tangent 
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along a system of small circles that would correspond to 
the parallels of latitude in the ordinary projection. Some 
great circle of the earth would correspond to the central 
meridian. By this scheme a map of great extent in longi- 
tude could be constructed without the usual trouble due 
to the longitudinal scale error. The error in scale in this 
case would appear along the great circles of the projection 
that correspond to the meridians in the ordinary projection. 

The most feasible plan for the construction of such a 
projection would seem to be the following: Since such a 
map would, no doubt, be planned for a large section of 
the earth’s surface, the ellipsoidal features would be neg- 
ligible, and the ordinary tables could be employed, just as 
if they had been computed for the sphere. With these 
tables construct a projection in the usual way. After it 
is constructed turn the projection so that the poles fall 

‘Fig. 48.—Transformation triangle for transverse polyconic projection. 

upon the Equator and then by means of the formulas for 
the transformation of coordinates the intersections of the 
parallels and meridians can be computed in terms of the 
parameters that correspond to latitude and longitude on 
the ordinary projection. After the projection has been 
constructed and turned into the new position, the 9 and \ 
values become what we shall denote by y and 7. The 
values in degrees will be just the same as before, but the 
will have the new designation. Figure 47 represents suc 
a scheme in outline. PP’ is the central meridian, and 
QQ’ represents the Equator in the projection as constructed. 
The projection is now turned and PP’ becomes the chosen 
great circle, and QQ’ becomes a meridian on the map; y 
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‘is measured to the right and left of QQ’ and 7 is measured 
up and down from PP’. 

In the figure 48 let P be the pole and let RBR’ be the 
Equator and also let ABA’ be the great circle that we 
wish to make correspond to the central meridian of the 
ordinary projection. BR and BA are quadrants, and AR 
measures the inclination of the given great circle to the 
plane of the Equator, and PIZA becomes the Equator on 
the transverse projection. Let Q be the intersection that 
we wish to compute. Wehave BQ=90°—y; QP=90°—¢; 
BP=90°; ZBPQ=90°-; ZABR=6; ZPBQ=90°— 
(8+). By the trigonometry of the spherical triangle we 
obtain from these results the relations 

sin Yy=sin \ cos ¢ 

cos ¥ cos (8+7) =cos A cos g 

cos y sin (8+7) =sin 5 

or by combining the last two equations 

tan (8+7) =sec Xd tan ¢. 

Bisaconstant the value of which is known from our choice 
of the great circle that is to form the center of the map; 
it is the value of the parallel of latitude to which the great 
circle is tangent. 
By use of the equations 

sin Y=sin A cos ¢ 
and 

tan (8+7) =sec \ tan ¢ 

we can compute the y and 7 values for any intersections of 
the parallels and meridians that we may wish to determine. 
The points are then plotted on the projection as originally 
constructed; a smooth curve drawn through the points 
corresponding to a constant value of ¢ will represent the 
parallel of latitude y, and, similarly, the smooth curve 
through the points corresponding to a constant value of 
will represent the meridian of longitude ». After these 
curves are drawn, the original projection lines can be 
erased, and then only the meridians and parallels will 
appear on the projection. The folding plate represents 
such a projection of the North Pacific Ocean, showing 
the eastern coast of Asia in its relation to North America. 
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The projection was constructed by Mr. Chas. H. Deetz, 
cartographer of the United States Coast and Geodetic Sur- 
vey, with the central great circle approximately the one 
joining San Francisco and Manila. Another projection of 
this kind was constructed by Mr. A. Lindenkohl, cartog- 
rapher in the United States Coast and Geodetic Survey, 
consisting of a map of the United States based on the 
great circle intersecting the 95° meridian at 39° of latitude. 
In this projection 8 =39° and } is reckoned from the 95° 
meridian. 

The meridian that corresponds to the Equator in the 
projection as first constructed is an axis of symmetry for 
the map, so that the coordinates of the intersections need 
to be computed only for one-half of the map if the Equator 
of the original projection corresponds to one of the meri- 
dians that EUs on the map, so that for each value of 
+» we may have another intersection for —, with the 
latitude the same in both cases. In the one constructed 
by Mr. Lindenkohl for the United States the meridians 
were constructed for every 5° of longitude, so that the 
meridian of 95° appeared upon the projection. If 94° had 
been chosen in place of 95°, we should have had a meridian 
to compute for a d of 4° E. and one for a \ of 6° W., and 
so on for the others. 

In the construction of the projection of which the fold- 
ing plate is a copy the exicel ereat circle is the one that 
is tangent to the parallel of 45° of latitude at the point of 
its intersection with the 160° meridian west of Greenwich. 
Mr. Deetz (in the construction of his projection) computed 
the intersections of his original projection -after it was 
turned into the new position in terms of latitude and 
longitude and then interpolated the even values of inter- 
sections on this projection. From the original three equa- 
tions we obtain 

tan \=sec (6+7) tan p 

sin g=sin (8+7) cos v. 

In the case under consideration B=45° and 6+ 7 is the 
latitude of the intersection of any given great circle with 
the 160° meridian. 8+7 is, therefore, constant for any 
given great circle. The amount of computation required 
is about the same for either method of procedure. 
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PROJECTION FOR THE INTERNATIONAL MAP ON THE SCALE 
OF 1 : 1000000. . 

The projection adopted for this map is a modified 
polyconic projection devised by M. Lallemand. The scale | 
is slightly reduced along the central meridian, thus bringing | 
the parallels closer together in such a way that the meridians 
2° on each side of the center are made true to scale. Up 
to 60° of latitude the separate sheets are to include 6° of 
longitude and 4° of latitude. From latitude 60° to the 
pole the sheets are to include 12° of longitude; that is, two 
sheets are to be united into one. The oe and bottom 
parallel of each sheet are constructed in the usual way; 
that is, they are circles constructed from centers lying on 
the central meridian, but not concentric. These two par- 
allels are then truly divided. The meridians are straight 
lines joining the corresponding points of the top and 
bottom parallels. Any sheet will then join exactly along 
its margins with its four neighboring sheets. The cor- 
rection to the length of the central meridian is very slight, 
amounting to only 0.01 inch at the most, and the change 
is almost too slight to be measured on the map. 

In the resolutions of the International Map Committee, 
London, 1909, it is not stated how the meridians are to be 
divided; but, no doubt, an equal division of the central 
meridian was intended. Through these points circles 
could be constructed with centers on the central meridian 
and with radii equal to p, cot yg. In practice, however, an 
equal division of the straight-line meridians between the 
top and bottom parallels could scarcely be distinguished 
from the points of parallels actually constructed by means 
of radii or by coordinates of their intersections with the 
meridians. ‘The provisions also fail to state whether, in 
the sheets covering 12° of longitude instead of 6°, the 
meridians of true length shall be 4° instead of 2° on each 
side of the central meridian; but such was, no doubt, the 
intention. In any case, the sheets would not exactly join 
together along the parallel of 60° of latitude. 

he appended tables give the corrected lengths of the 
central meridian from 0° to 60° of latitude and the coordi- 
nates for the construction of the 4° parallels within the 
same limits. Hach parallel has its own origin; i. e., where 
the parallel in question intersects the central meridian. 
The central meridian is the Y axis and a perpendicular to 
it at the origin is the X axis; the first table, of course, gives 
the distance between the origins. The y values are small 
in every instance. In terms of the parameters used 
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throughout this publication these values are given by the 
expressions 

2=p, cot ¢ sin (A sin ¢) 

y =p, cot g[1—cos (A sin ¢)]=2p, cot 9 sin(* 552) : 

In the tables as published in the International Map 
Tables, the x coordinates were computed by use of the 
erroneous formula 

L=p, cot ¢ tan (A sin ¢). 

The resliipeg ator in the tables is not very great and is 
practically almost negligible. The tables as given below 
are all that are required for the construction of all maps up 
to 60° of latitude. This fact in itself shows very clearly the 

| eee of the use of this projection for the purpose in 
and. 
A discussion of the numerical properties of this map 

system is given by M. Ch. Lallemand in the Comptes 
Rendus, tome 153, page 559. He finds that the maximum 
error of scale of a meridian is 1 part in 1270, which 
corresponds to 0.35 mm. in the height, 0.44 m., of the sheet. 
The maximum error of scale of a parallel is 1 part in 
3200, and the greatest alteration of azimuth is 6 minutes 
of arc. These errors are much smaller than those occa- 
sioned by the expansion and contraction of the sheet due 
to atmospheric conditions. 

TABLES FOR THE PROJECTION OF THE SHEETS OF THE 
INTERNATIONAL MAP OF THE WORLD. 

[Scale 1: 1000 000. Assumed figure ofthe earth: a—€378.24 km.; 6=—6356.56 km.] 

TaBLE 1.—Corrected lengths on the central meridian, in millimeters 

Latitude: oe Correc- | Corrected 
tion. length. 
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TaBLE 2.—Coordinates of the intersections of the parallels and the meridians, 
in millimeters. 

Longitude irom central 
ridian. 

Lati- Coordi- is 
tude nates 

1° am a 

0 x 111.32 222. 64 333. 96 
y 0. 00 0. 00 0. 00 

4 ap 111.05 222. 10 333. 16 
y 0. 07 0. 27 0.61 

8 110. 25 220. 49 330. 74 
y 0. 13 0.54 1.21 

12 ap 108. 91 217. 81 326. 73 
y 0. 20 0. 79 1.78 

16 ar 107. 04 214. 08 321.13 
7] 0. 26 1. 03 2.32 

20 £ 104. 65 209. 31 313. 98 
y 0.31 1. 25 2. 81 

24 a 101. 76 203. 52 305. 31 
y 0. 36 1.45 3.25 

28 eA 98.37 196. 75 295.15 
y 0. 40 1.61 3. 63 

32 z 94. 50 189. 01 283. 56 
y 0. 44 1275 3.93 

36 z 90.17 180. 36 270. 59 
y 0. 46 1. 85 4.16 

40 x 85. 40 170. 82 256. 29 
y 0. 48 1.92 4,31 

44 x 80. 21 160. 45 240. 73 
y 0. 49 1.95 4.38 

48 z 74. 63 149. 29 224. 00 
y 0. 48 1.94 4, 36 

52 z 68.69 137. 40 206. 16 
y 0. 47 1. 89 4. 

56 Lt 62. 40 124. 83 187.31 
y 0.45 1.81 4. 

60 ay 55. 81 111.64 167.52 
y 0. 42 1.69 a 
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