
(1)

DEPARTMENT OF THE INTERIOR
 UNITED' STATES GEOLOGICAL SURVEY

 gEORGE OTIS SMITH, DIRECTOR
GEOGRAPHIC

TABLES AND FORMULAS

COMPILED BY'
SAMUEL S. GANNETT

WASHINGTON government printing office 1908
(and

\cdots

$$
\begin{array}{ll}
7 \\
2
\end{array}
$$

数
N
20
\& 1 2

DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
GEORGE OTIS SMITH, DIRECTOR

GEOGRAPHIC

TABLES AND FORMULAS

COMPILED BY

SAMUEL S. GANNETT

GAM
G 3

Dour
Digitized by the latérnet Archive in 2007 with funding from Microsoft Corporation

CONTENTS.

Page.
Rules for solution of right-angled triangles 5
Reduction to center 6
Graphic reduction to center 8
Solution of triangles, two sides and included angle being given 8
Three-point problem 9
Graphic solution of the three-point problem 11
Micrometer alidades-determination of constant and value of division 12
Method of fixing a meridian at any time by hour angle 14
Tables 16

1. Polaris: times of culmination and elongation 16
2. Polaris: azimuth at elongation 19
3. Polaris: azimuths at different hour angles 20
4. Polaris: azimuths and altitudes at different hour angles 26
Example of use of projection tables 35
5. Projections for large areas 37
6. Projections: scale ${ }_{1 \pi 5^{\frac{1}{2}} 000}$, latitudes 0° to 80° 49
7. Projections: scale ${ }^{63} \frac{1}{3} \sigma \sigma$, latitudes 0° to 80° 59
8. Projections: scale ${ }_{6 \overline{2} \frac{1}{50 \pi}}$, latitudes 25° to 50° 71
9. Projections: scale $\frac{{ }_{4}^{\frac{1}{80}} 06}{}$, latitudes 25° to 50° 77
10. Projections: scale ${ }_{\text {T } 20}^{\frac{1}{0} \delta \overline{0}}$, latitudes 25° to 50° 86
11. Areas of quadrilaterals; 1° extent, latitudes 0° to 90° 95
12. Areas of quadrilaterals; 30^{\prime} extent, latitudes 0° to 90° 97
13. Areas of quadrilaterals; 15^{\prime} extent, latitudes 0° to 90° 100
14. Areas of quadrilaterals; 10^{\prime} extent, latitudes 0° to 90° 106
15. For conversion of arc into time 111
16. For conversion of time into arc 112
17. For conversion of mean time into sidereal time 113
18. For conversion of sidereal time into mean time 114
19. For interconversion of feet and decimals of a mile 115
20. For conversion of wheel revolutions into decimals of a mile 116
21. Five-place logarithms of natural numbers 126
22. Five-place logarithms of circular functions expressed in arc and time 148
23. Geodetic position computations 193
24. Log. m , for use in computing spherical excess 271
25. Mean refraction 272
26. Corrections for curvature and refraction. 273
27. For obtaining differences of altitude 274
28. Horizontal distances and elevations from stadia readings 290
29. For converting metric into United States measures 299
30. For converting United States measures into metric 300
31. For interconversion of miles and logarithms of meters 301
Convenient equivalents 313
Constants 315
Linear expansion of metals 315
Index 317

ILLUSTRATIONS.

Page.
Fig. 1. Solution of right-angled triangles 5
2. Reduction to center. 6
3. Solution of triangles; two sides and included angle given 8
4. Three-point problem; computation 10
5. Three-point problem; graphic solution 11
6. Aspects of Polaris 14
7. Construction of polyconic projection 35

GEOGRAPHIC TABLES AND FORMULAS.

Compiled by S. S. Gannett.

RULES FOR SOLUTION OF RIGHT-ANGLED TRIANGLES.

The "parts" of the figures are-
$\mathrm{H}=$ hy pothenuse,
$\mathrm{P}=$ perpendicular,
$B=$ base,
and the six circular functions of the angle α at the hase of the triangle.

Fig. 1.-Solution of right-angled triangles.
Rule I. The product of two opposite parts $=1, \therefore$ either is the reciprocal of the other.

Example: $\operatorname{Tan} \alpha \times \cot \alpha=1, \tan \alpha=\frac{1}{\cot \alpha}$.
Rule II. Each part=adjacent part divided by the following part, \therefore each part $=$ the product of the adjacent parts.

Example: $\operatorname{Sin} \alpha=\frac{\cos \alpha}{\cot \alpha}, \sin \alpha=\frac{\mathrm{P}}{\mathrm{H}}, \mathrm{B}=\mathrm{H} \times \cos \alpha$.

REDUCTION TO CENTER.

In fig. 2 let
$\mathrm{P}=$ place of instrument;
$\mathrm{C}=$ center of station;
$\mathrm{Q}=$ measured angle at P between two objects, A and B ;
$y=$ angle at P between C and the left-hand object, B ;
$r=$ distance CP;
$\mathrm{C}^{\prime}=$ unknown and required angle at C ;
$\mathrm{D}=$ distance AC ;
(r and D must be reduced to same unit, usually meters.)
$\mathrm{G}=$ distance BC ;
$\mathrm{A}=$ angle at A between P and C ;
$B=$ angle at B between P and C.

Fig. 2.-Reduction to center.

Then, from the relation between the parts of the triangle,
$\mathrm{G}: r:: \sin y: \sin \mathrm{B} ;$
hence

$$
\sin \mathrm{B}=\frac{r \sin y}{\mathrm{G}}
$$

As the angles at A and B are very small, their sines may be regarded as equal to $\mathrm{A} \sin 1^{\prime \prime}$ and $\mathrm{B} \sin 1^{\prime \prime}$, respectively; hence

$$
\mathrm{B}=(\text { in } \operatorname{seconds}) \frac{r \sin y}{\mathrm{G} \sin 1^{\prime \prime}}
$$

and

$$
\mathrm{C}^{\prime}=\mathrm{Q}+\frac{r \sin (\mathrm{Q} \pm y)}{\mathrm{D} \sin 1^{\prime \prime}}-\frac{r \sin y}{\mathrm{G} \sin 1^{\prime \prime}} .
$$

In the use of this formula, proper attention should be paid to the signs of $\sin (\mathrm{Q}+y)$ and $\sin y$; for the first term will be positive only when $(\mathrm{Q}+y)$ is less than 180° (the reverse with $\sin y$); D being the distance of the right-hand object, the graduation of the instrument running from left to right.
r being relatively small, the lengths of D and G are approximately computed with the angle Q .

The following quantities must be known in addition to the measured angles in order to find the correction for reducing to center:

1. The angle measured at the instrument, P , between the center of the signal or station, C , and the first-observed station to the right of it, A.
2. The distance from the center of the instrument to the center of the station $=r$.
3. The approximate distances, D, G, etc., from the station occupied to the stations observed. The latter may be computed from the uncorrected angles.
Example: Reduction to center from P to C .
Constants: a. c. $\log \sin 1^{\prime \prime} \quad=5.31443$ \log feet to \log meters $=9.48402$
log constant (for any station) 4.79845
$r=6.5$ feet: $\log \quad=0.81291$.
log constant for this station 5.61136

log sin angle	9. 6036	9.7818
a. c. \log distance	5. 3954	5. 3162
$\log r+$ constant.	5.6114	5.6114
log correction.	0.6104	0. 7094
correction to direction.	$4^{\prime \prime} .08$	$5^{\prime \prime} .12$

correction to angle B P A $=4^{\prime \prime} .08+5^{\prime \prime} .12=9^{\prime \prime} .20$.

GRAPHIC REDUCTION TO CENTER.

Approximate closure errors of triangles may be tested in the field before distances have been computed by scaling from the plot the distances between stations in miles and the perpendicular distance in feet from signal to line joining instrument and distant station.

Then, since 1 foot at a distance of 40 miles sabtends an angle of $1^{\prime \prime}$ (nearly),
$\frac{\text { length of perpendicular in feet } \times 40}{\text { number of miles }}=$ correction in seconds.
Example: Station P. Correction for swing on line B P, 30 miles in length from instrument to signal

$$
=\frac{3.8 \text { feet } \times 40}{30}=\mathbf{5}^{\prime \prime} .1,
$$

correction for swing on line A $\mathrm{P}, 25$ miles in length,

$$
=\frac{2.6 \text { feet } \times 40}{25}=4^{\prime \prime} .2,
$$

and correction to angle $\mathrm{B} P \mathrm{~A}=\mathrm{Q}$ to reduce from instrument to signal $=5.1^{\prime \prime}+4.2^{\prime \prime}=9.3^{\prime \prime}$, agreeing closely with the exact computation.

APPROXIMATE SPHERICAL EXCESS IN SECONDS.
This may be obtained by dividing the area of the triangle in square miles by 75.5 .

SOLUTION OF TRIANGLES.

Given two sides and included angle, to solve the triangle:

Fig. 3.-Solution of triangles; two sides and included angle given.
Let x be an auxiliary angle; then

$$
\begin{gathered}
\tan x=\frac{a}{b}, \text { or } \log \tan x=\log a-\log b ; \\
\tan \frac{1}{2}(\mathrm{~A}-\mathrm{B})=\tan \left(x-45^{\circ}\right) \tan \frac{1}{2}(\mathrm{~A}+\mathrm{B}) ; \\
\frac{1}{2}(\mathrm{~A}+\mathrm{B})+\frac{1}{2}(\mathrm{~A}-\mathrm{B})=\mathrm{A} ; \\
\ldots \quad \frac{1}{2}(\mathrm{~A}+\mathrm{B})-\frac{1}{2}(\mathrm{~A}-\mathrm{B})=\mathrm{B} ;
\end{gathered}
$$

from which remaining parts can be computed.

Example:

THREE-POINT PROBLEM.

If three points, forming a triangle of which the sides and angles are known or can be computed, be visible from a fourth point, P , it is required to determine the position of P .

Set up the theodolite at P and measure the two angles subtended by any two of the given sides.

This problem is of use in cases where, the regular triangulation having been completed, additional points are required for the topographic survey, or are needed for special service. The angles should be carefully measured, and in the computations the logarithms should be carried to seven places of decimals.

Three cases of its application are given, as in others, such as when P falls upon one or another of the sides of the known triangle, or on the prolongation of either, the case resolves itself into the solution of a simple triangle with one side and the angles given; or the problem is indeterminate, as when P is situated on the circumference of the circle passing through the three known points-a contingency which rarely occurs.

Example for each of the three cases.

Given the side	$a=11204.5$	Angle observed A P C= P^{\prime}
Given the side	$b=7289.0$	Angle observed A P B $=\mathrm{P}^{\prime \prime}$
Given the side	$c=6273.8$	To find A B P = ${ }^{\text {a }}$
Given the angle	$\mathrm{A}=111^{\circ} 10^{\prime} 54^{\prime \prime}$	To find A C P = y

Fig. 4.-Three-point problem; computation.

Computation.

$\log c$........... 3. 3.7975307	$\log c . \ldots$. 3. 7975397	$\log c . \ldots3 .3975307$
$\log \sin \mathrm{P}^{\prime} \ldots . . .{ }^{\text {a }} 9.8849100$	$\log \sin \mathrm{P}^{\prime} \ldots . . .{ }^{\text {a }} 9.8839061$	$\log \sin \mathrm{P}^{\prime} \ldots \ldots . .9 .9869041$
$\operatorname{colog} b$........ 6. 1373320	colog b......... 6. 1373320	colog b.......... 6. 1373320
colog $\sin \mathrm{P}^{\prime \prime} \ldots . .00 .1594574$	colog $\sin \mathrm{P}^{\prime \prime} \ldots . . .0 .1569894$	colog $\sin \mathrm{P}^{\prime \prime} \ldots \ldots .0 .0071016$
$\log \tan \mathrm{Z} \ldots \ldots . .999792301$	$\log \tan \mathrm{Z} \ldots \ldots .{ }^{\text {a }} 9.9747583$	$\log \tan \mathrm{Z}$...... 9.9288684
Z... $43^{\circ} 37^{\prime} 49^{\prime \prime} .6$	Z... $43^{\circ} 20^{\prime} 09^{\prime \prime} .2$	Z... $40^{\circ} 19^{\prime} 43^{\prime \prime} .3$
$\log \cot \left(\mathrm{Z}+45^{\circ}\right) 8.3785397$	$\log \cot \left(\mathrm{Z}+45^{\circ}\right) 8.4631818$	$\log \cot \left(\mathrm{Z}+45^{\circ}\right) 8.9122794$
$\log \tan$ S....... 0.6519386	$\log \tan$ S....... 9. 1805366	$\log \tan$ S....... 9.6116787
$\log \tan \varepsilon_{\text {_ }} \ldots \ldots . .9 .9304783$	$\log \tan \varepsilon \ldots \ldots . .7 .6437184$	$\log \tan \varepsilon \ldots \ldots . . .8 .5239581$
ع.... $6^{\circ} 07^{\prime} 21^{\prime \prime} .7$	$\varepsilon \ldots . .0^{\circ} 15^{\prime} 08^{\prime \prime} .1$	$\varepsilon \ldots . .1^{\circ} 54^{\prime} 50^{\prime \prime} .04$
S.... $77^{\circ} 26^{\prime} 08^{\prime \prime} .0$	S..... $8^{\circ} 37^{\prime} 02^{\prime \prime} .0$	S... $22^{\circ} 14^{\prime} 33^{\prime \prime} .00$
$x \ldots 83^{\circ} 33^{\prime} 29^{\prime \prime} .7$	$x \ldots . .8^{\circ} 52^{\prime} 10^{\prime \prime} .1$	$x \ldots 24^{\circ} 09^{\prime} 23^{\prime \prime} .00$
$y \ldots . .71^{\circ} 18^{\prime} 46^{\prime \prime} .3$	$y \ldots . .8^{\circ} 21^{\prime \prime} 53^{\prime \prime} .9$	$y \ldots 20^{\circ} 19^{\prime} 43^{\prime \prime} .00$
Hence,	Hence,	Hence,
P A B $52^{\circ} 35^{\prime \prime} 52^{\prime \prime} .3$	P A B $126^{\circ} 58^{\prime} 19^{\prime \prime} .9$	P A B $55^{\circ} 30^{\prime} 37^{\prime \prime} .00$
P A C $58^{\circ} 35^{\prime} 01^{\prime \prime} .7$	P A C $121^{\circ} 50^{\prime} 46^{\prime \prime} .1$	P A C $55^{\circ} 40^{\prime} 17^{\prime \prime} .00$

As all the angles and a side in each triangle are now known, the other sides, or the distances from P to the three given points, can be readily computed.

	m		m		m
P	7194.87	P B	7194.94	P B	5256. 29
P A	8999.89	P A	1388.54	P A	2609.75
P C	8107.98	P C	8107.91	P C	6203.63
P Λ	8999.89	P A	1388.54	P A	2609.75

The results are verified when both triangles give the same value for the line P A.

GRAPHIC SOLUTION OF THE THREE-POINT PROBLEM.

1. When new point is within the triangle formed by the three points, point sought is within the triangle of error.
2. When new point is on or near the circle passing through the other points, the location is uncertain.
3. When new point is within either of the three shaded segments of the circle (see diagram below), orient on middle point; then the line from middle point lies between true point and point of intersection of lines from other two points.
4. When new point is without the circle, orient on most distant point; then the point sought is always on the same side of the line from most distant point as the point of intersection of the other two lines.

Note.-Since a location can be made from any three points, whether correctly plotted or not, therefore always check such locations by means of a fourth point if possible.

Fig. 5.-Three-point problem; graphic solution.

MICROMETER ALIDADES-DETERMINATION OF CONSTANT AND VALUE OF DIVISION.
$\mathrm{R}^{\prime}, \mathrm{R}^{\prime \prime}=$ readings of micrometer screw.
$R=R^{\prime}-R^{\prime \prime}=$ difference of readings.
$d=$ value in seconds of arc of 1 division of micrometer head.
$\mathrm{A}=$ angle subtended by targets in seconds of arc.
$\mathrm{C}=$ micrometer constant or ratio.
$\mathrm{H}=$ distance to targets, supposed at right angles to line of sight.
$\mathrm{B}=$ length of base, or distance between targets.

(1) $\quad \underline{d}=\frac{\mathrm{B}}{\mathrm{HR} \sin .1^{\prime \prime}}$
(2) $\mathrm{C}=\frac{1}{d \sin .1^{\prime \prime}}=\frac{\mathrm{HR}}{\mathrm{B}}$

EXAMPLE.
Readings taken on two targets 21.25 feet apart at right angles to the line of sight and at a measured horizontal distance of 2859.5 feet from the point of observation.

$$
\begin{array}{lc}
\mathrm{R}^{\prime} & \mathrm{R}^{\prime \prime} \\
550.0-88.0= & \mathrm{R} \\
540.5-76.5 & =464.0 \\
\text { etc. etc. } \quad \frac{\text { etc. }}{462.075} \text { mean of } 20 \text { readings. }
\end{array}
$$

Computation of d by formula (1): $\mathrm{B}=21.25 \mathrm{ft} \ldots$. . $\log .1 .32736$ $\mathrm{H}=2859.5 \mathrm{ft} \ldots$. colog. 6.54371 $\sin 1^{\prime \prime}$.-.....-. colog. 5.31443 $\mathrm{R}=462.075 \mathrm{ft} . \operatorname{colog} .7 .33528$ $d=3^{\prime \prime} .317 \ldots-.-\log .0 .52078$

Computation of C by formula (2):
$\mathrm{B}=21.25 \mathrm{ft} \ldots$ colog. 8.67264
$\mathrm{H}=2859.5 \mathrm{ft}_{\mathrm{f}} \ldots \log .3 .45629$
$\mathrm{R}=462.075 \mathrm{ft}$. log. 2.66472
$\mathrm{C}=62180 \ldots \ldots \log .4 .79365$

For computing distances use this formula:
(3) $\mathrm{H}=\frac{\mathrm{BC}}{\mathrm{R}}$

When the base is not at right angles to the line of sight as at b, or at the same elevation as the point of observation, the factors $\sin a$ and $\cos \mathrm{V}$ must be introduced, a being the angle between the base and line of sight and V the vertical angle at A .

The full formula for distances then becomes-
(4) $\mathrm{H}=\frac{b \mathrm{C} \sin a \cos \mathrm{~V}}{\mathrm{R}}$

The plotted position of the base b should be prolonged on the field sheet in order to permit the measurement of the angle a with a large paper or other protractor, with greater accuracy.

METHOD OF FIXING A MERIDIAN AT ANY TIME BY HOUR ANGLE.

[Extracted from United States Land Survey Manual.]
The annexed diagram (fig. 6) will show in their proper relation the various aspects of Polaris in its daily apparent motion around the north-polar point.

This must be carefully studied, as the illustration of Table 1, for finding at any hour the hour angle and azimuth of Polaris, and the resulting meridian, at times when more direct methods are not available.

Hour angle of Polaris.-In fig. 6 the full vertical line represents a portion of the meridian passing through the zenith Z (the point directly overhead), and intersecting the northern horizon at the north point N, from which, for surveying purposes, the azimuths of Polaris

Fig. 6.-Aspects of Polaris.
are reckoned east or west. The meridian is pointed out by the plumb line when it is in the same plane with the eye of the observer and Polaris on the meridian, and a visual representation is also seen in the vertical wire of the transit, when it covers the star on the meridian.

When Polaris crosses the meridian it is said to culminate; above the
pole (at S), the passage is called the upper culmination, in contradistinction to the lower culmination (at S^{\prime}).

In the diagram-which the surveyor may better understand by holding it up perpendicular to the line of sight when he looks toward the pole-Polaris is supposed to be on the meridian, where it will be about noon on April 10 of each year. The star, appears to revolve around the pole, in the direction of the arrows, once in every $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ of mean solar time; it consequently comes to and crosses the meridian, or culminates, nearly four minutes earlier each successive day. The apparent motion of the star being uniform, one quarter of the circle will (omitting fractions) be described in $5^{\mathrm{h}} 59^{\mathrm{m}}$, one half in $11^{\mathrm{h}} 58^{\mathrm{m}}$, and three quarters in $17^{\mathrm{h}} 57^{\mathrm{m}}$. For the positions $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$, etc., the angles $\mathrm{SPs}_{1}, \mathrm{SPs}_{2}, \mathrm{SPs}_{3}$, etc., are called hour angles of Polaris, for the instant the star is at $\mathrm{s}_{1}, \mathrm{~s}_{2}$, or s_{3}, etc., and they are measured by the arcs Ss_{1}, $\mathrm{Ss}_{2}, \mathrm{Ss}_{3}$, etc., expressed (in these instructions) in mean solar (common clock) time, and are always counted from the upper meridian (at S), to the west, around the circle from $0^{\mathrm{h}} 0^{\mathrm{m}}$ to $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, and may have any value between the limits named. The hour angles, measured by the arcs $\mathrm{Ss}_{1}, \mathrm{Ss}_{2}, \mathrm{Ss}_{3}, \mathrm{Ss}_{4}, \mathrm{Ss}_{5}$, and Ss_{6}, are approximately $1^{\mathrm{h}} 8^{\mathrm{m}}, 5^{\mathrm{h}} 55^{\mathrm{m}}$, $9^{\mathrm{h}} \pm^{\mathrm{m}}, 14^{\mathrm{h}} 52^{\mathrm{m}}, 18^{\mathrm{h}} 01^{\mathrm{m}}$, and $22^{\mathrm{h}} 48^{\mathrm{m}}$, respectively; their extent is also indicated graphically by broken fractional circles about the pole.

Suppose the star observed at the point S_{3}; the time it was at S (the time of upper culmination), taken from the time of observation, will leave the arc Ss_{3}, or the hour angle at the instant of observation; similar relations will obtain when the star is observed in any other position; therefore, in general:

Subtract the time of upper culmination from the correct local mean time of observation; the remainder will be the hour angle of Polaris expressed in time, or the "argument for Table 3."

The observation may be made at any instant when Polaris is visible, the exact time being carefully noted.

TABLES.

Table 1.-Local mean (astronomical) time of the culminations and elongations of Polaris in the year 1902.
[From Magnetic Declination Tables, U. S. Coast and Geodetic Survey. Computed for latitude 40° north and longitude 90° or $6^{\text {b }}$ west of Greenwich.]

Date.	East elongation.	Upper culmination.	West elongation.	Lower culmination.
1902	${ }^{\text {b }}$ m	${ }^{\text {b }}$ m	b m	h m
January 1	$0 \quad 45.8$	$6 \quad 40.6$	$12 \quad 35.3$	$\begin{array}{ll}18 & 38.7\end{array}$
January 15	$23 \quad 46.6$	$5 \quad 45.3$	1140.0	$17 \quad 43.4$
February 1	$22 \quad 39.5$	438.2	$\begin{array}{ll}10 & 32.9\end{array}$	$\begin{array}{ll}16 & 36.3\end{array}$
February 15	$21 \quad 44.2$	$3 \quad 42.9$	$\begin{array}{lll}9 & 37.7\end{array}$	$15 \quad 41.0$
March 1	$20 \quad 49.0$	$\begin{array}{ll}2 & 47.7\end{array}$	$8 \quad 42.4$	$14 \quad 45.8$
March 15	$19 \quad 54.0$	152.7	747.3	$\begin{array}{ll}13 & 50.7\end{array}$
April 1	$18 \quad 47.0$	$0 \quad 45.6$	$6 \quad 40.3$	$\begin{array}{ll}12 & 43.7\end{array}$
April 15	$17 \quad 52.0$	$23 \quad 46.7$	$5 \quad 45.3$	$11 \quad 48.6$
May 1	$16 \quad 49.1$	$\begin{array}{ll}22 & 43.8\end{array}$	442.5	$\begin{array}{ll}10 & 45.7\end{array}$
May 15	$15 \quad 54.2$	$21 \quad 48.9$	$3 \quad 47.6$	$\begin{array}{ll}9 & 50.8\end{array}$
June 1.	$14 \quad 47.5$	$20 \quad 42.3$	240.9	$8 \quad 44.2$
June 15	$13 \quad 52.6$	$19 \quad 47.4$	146.0	749.3
July 1	$12 \quad 50.0$	$18 \quad 44.8$	$0 \quad 43.4$	$6 \quad 46.7$
July 15	$11 \quad 55.1$	$17 \quad 49.9$	$\begin{array}{ll}23 & 44.6\end{array}$	$5 \quad 51.8$
Angust 1	$10 \quad 48.6$	$16 \quad 43.4$	$22 \quad 38.0$	$4 \quad 45.3$
August 15.	$\begin{array}{lll}9 & 53.7\end{array}$	$15 \quad 48.5$	$21 \quad 43.1$	$3 \quad 50.4$
September 1	847.1	$14 \quad 41.9$	$20 \quad 36.5$	243.8
September 15	$7 \quad 52.2$	$13 \quad 47.0$	$19 \quad 41.6$	148.9
October 1	$6 \quad 49.3$	$12 \quad 44.1$	$\begin{array}{ll}18 & 38.7\end{array}$	$0 \quad 46.0$
October 15	$5 \quad 54.3$	1149.1	$\begin{array}{ll}17 & 43.7\end{array}$	$23 \quad 47.2$
November 1	447.5	$10 \quad 42.3$	$\begin{array}{ll}16 & 36.9\end{array}$	$22 \quad 40.4$
November 15	$3 \quad 52.3$	947.1	$15 \quad 41.8$	$21 \quad 45.2$
December 1.	249.3	844.1	$14 \quad 38.8$	$20 \quad 42.2$
December 15	154.0	$7 \quad 48.8$	$13 \quad 43.6$	$19 \quad 46.9$

A. To refer the above tabular quantities to years subsequent to 1902:

For year 1903 add 1.4 minutes.

1904	add	2.8	"	up to March 1on and after March 1
	subtract	1.1	"	
1905	add	0.2	"	up to March 1 on and after March 1
1906	"	1.5	"	
1907	،	2.9	"	
1908		[4.2	"	
	,	10.3	"	
1909	"	1.7	"	.
1910	"	3.0	،	
1911	"	4.4	،	

B. To refer to any calendar day other than the first and fifteenth of each month: Subtract the quantities below from the tabular quantity for the preceding date.

Day of month.	Minutes.	Number of days elapsed.
2 or 16	3.9	1
$3 \quad 17$	7.9	2
418	11.8	3
$5 \quad 19$	15.8	4
$6 \quad 20$	19.7	5
$7 \quad 21$	23.6	6
$8 \quad 22$	27.6	7
$9 \quad 23$	31.5	8
$10 \quad 24$	35.5	9
1125	39.4	10
$12 \quad 26$	43.3	11
$13 \quad 27$	47.3	12
$14 \quad 28$	51.2	13
29	55.2	14
30	59.1	15
31	63.0	16

C. To refer the table to standard time and to the civil or common method of reckoning:
$\left.{ }^{(}{ }^{a}\right)$ Add to the tabular quantities four minutes for every degree of longitude the place is west of the standard meridian, and subtract when the place is east of the standard meridian.
$\left.{ }^{(}{ }^{b}\right)$ The astronomical day begins twelve hours after the civil day, i. e., begins at noon on the civil day of the same date, and is reckoned from 0 to 24 hours. Consequently an astronomical time less than twelve hours refers to the same civil day, whereas an astronomical time greater than twelve hours refers to the morning of the next civil day.

It will be noticed that for the tabular year two eastern elongations occur on January 12 and two western elongations on July 12. There are also two upper culminations on April 12 and two lower culminations on October 12. The lower culmination either follows or precedes the upper culmination by $11^{\mathrm{h}} 58^{\mathrm{m}} .1$.
D. To refer to any other than the tabular latitude between the limits of 25° and 50° north: ADD to the time of west elongation $0^{\mathrm{m}} .13$ for every degree south of 40°, and subtract from the time of west elongation $0^{\mathrm{m}} .18$ for every degree north of 40°. Reverse these operations for correcting times of east elongation.
E. To refer to any other than the tabular longitude: Add $0^{m} .16$ for each 15° east of the ninetieth meridian, and subtract $0^{\mathrm{m}} .16$ for each 15° west of the ninetieth meridian.
A few examples will illustrate the use of table 1.

1. Required the time of upper culmination of Polaris for a station in longitude 90° west, for March 3, 1904.

Astron. time, U. C. of Polaris, 1904, March 1	46.6
Reduction for two days, $7^{\mathrm{m} .9} \mathbf{9}$ (B) (subtract)	7.9
Local mean time U. C. of Polaris, 1904, March 3	38.7

The required time may also be obtained by using the table in the opposite direction, i. e., by taking the time for March 15, and adding the reduction as follows:

Astron. time U. C. of Polaris, 1904, March 15	$1{ }^{1} 51.6$
Reduction for twelve days, add.	47.3

In this case the two results are practically identical. If the computation is made both ways, the results will check each other. B has been inserted to save the surveyor the little trouble of making the multiplications; thus, for the above example, in the table under B, opposite the third or seventeenth day of the month in the left hand column, will be found the correction $7^{m} .9$.

Computing from a preceding date, for days between April 11 and 15 of any year, the reduction in B will be greater than the tabulated time of culmination, in which case $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ will be added, to make the subtraction possible.
2. Required, for a station in longitude 90° west, the time of U . C. of Polaris for April 14, 1906:

P U C.		
Astron. time, U. C. of Polaris, 1906, April 1.	0	47.1
Add.	23	56.1
Sum.	24	43.2
Reduction to April 14, subtract.		51.2
	23	52.0

Working from a following date, for days between 9th and 15th of April, the sum will exceed $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, and when this occurs subtract $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ from the sum, and the remainder will be the required time.
3. Required, for a station in longitude 90° west, the time of U. C. of Polaris for April 10, 1904.
Astron. time, U. C. of Polaris, 1904, April 15.............................. 23 . 45.6
Reduction for five days, add .. 19.7
Sum.. 24 05.3
Subtract... 23 . 56.1
Local mean time, U. C. of Polaris, 1904, April 10
$0 \quad 09.2$
For further application of table 1 see pp. 24 and 25.

Table 2.-Azimuth of Polaris when at elongation for any year between 1902 and 1910.

Latitude.	1902.0	1903.0	1904.0	1905.0	1906.0	1907.0	1908.0	1909.0	1910.0
	- ,	- ,	- '	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc
25°	120.5	120.1	119.8	119.4	119.1	118.7	118.4	118.1	117.7
26	21.1	20.8	20.5	20.1	19.8	19.4	19.1	18.7	18.4
27	21.9	21.5	21.2	20.8	20.5	20.1	19.8	19.4	19.1
28	22.6	22.2	21.9	21.6	21.3	20.9	20.5	20.1	19.8
29	23.4	28.0	22.7	22.4	22.1	21.7	21.3	20.9	20.5
30	24.2	23.9	23.5	23.1	22.8	22.4	22.1	21.7	21.3
31	25.1	24.7	24.4	24.0	23.6	23.2	22.9	22.5	22.2
32	26.0	25.6	25.3	24.9	24.5	24.1	23.8	23.4	23.1
33	27.0	26.6	26.2	25.9	25.5	25.1	24.7	24.3	24.0
34	28.0	27.6	27.2	26.9	26.5	26.1	25.7	25.3	25.0
35	29.0	28.7	28.3	27.9	27.5	27.1	26.8	26.4	26.0
36	30.1	29.8	29.4	29.0	28.6	28.2	27.9	27.5	27.1
37	31.3	30.9	30.5	30.1	29.7	29.3	29.0	28.6	28.2
38	32.6	32.2	31.8	31.4	31.0	30.6	30.2	29.8	29.4
39	33.9	33.5	33.1	32.7	32.3	31.8	31.4	31.0	30.6
40	35.2	34.8	34.4	34.0	33.6	38.2	32.8	32.4	32.0
41	36.7	36.2	35.8	35.4	35.0	34.6	34.2	33.8	33.4
42	38.2	37.7	37.3	36.9	36.5	36.0	35.6	35.2	34.8
43	39.8	39.3	38.9	38.5	38.1	37.6	37.2	36.8	36.3
44	41.4	41.0	40.5	40.1	39.7	39.2	38.8	38.4	37.9
45	43.2	42.7	42.3	41.8	41.4	40.9	40.5	40.1	39.6
46	45.0	44.6	44.2	43.7	43.2	42. 7	42.3	41.9	41.4
47	46.9	46.5	46.0	45.6	45.1	44.6	44.2	43.7	43.3
48	49.0	48.6	48.1	47.7	47.2	46.7	46.3	45.8	45.3
49	51.2	50.7	50.2	49.8	49.3	48.8	48.4	47.9	47.4
50	153.5	153.0	152.5	152.0	151.5	151.0	150.6	150.1	149.6

The above table was computed with mean declination of Polaris for each year. A more accurate result will be had by applying to the tabular values the following correction, which depends on the difference of the mean and the apparent place of the star. The deduced azimuth will in general be correct within $0^{\prime} .3$.

For middle of-	Correction.	For middle of-	Correction.
	\% 1		,
January .	-0.4	July	+0.3
February .	-0.3	August.	$+0.1$
March	-0.2	September	-0.1
April	0.0	October	-0.3
May	$+0.2$	November	-0.6
June	$+0.3$	December	-0.8

[From U. S. Land Survey Manual. The hour angles are expressed in mean solar time. The occurrence

for the use of surveyors.
of a period after minutes of time or of an hour angle indicates that its value is 0 m .5 greater than printed.]

Table 3 gives for various hour angles, expressed in mean solar time and for even degrees of latitude from 30 to 50 degrees, the azimuths of Polaris for eight years, computed for average values of the north polar distance of the star, the arguments being the hour angle (or 23^{h} $56^{\mathrm{m}} .1$ minus the hour angle when the latter exceeds $11^{\mathrm{h}} 58^{\mathrm{m}}$), which is termed the time argument, ${ }^{a}$ and the latitude of the place of observation. The table is so extended that azimuths may be taken out by inspection and all interpolation ávoided, except such as can be performed mentally.

The hours of the "time arguments" are placed in the columns headed "hours," on the left of each page. The minutes of the time arguments will be found in the columns marked " m ," under the years for which they are computed, and they are included between the same heavy zigzag lines which inclose the hours to which they belong.

The time arguments are given to the nearest half minute; the occurrence of a period after the minutes of any one of them indicates that its value is $0^{m} .5$ greater than printed, the table being so arranged to economize space.

The table will be used as follows: Find the hours of the time argument in the left-hand column of either page; then, between the heavy lines which inclose the hours, find the minutes in the column marked at the top with the current year. On the same horizontal line with the minutes the azimuth will be found under the given latitude, which is marked at the top of the right-hand half of each page. Thus, for 1904 , time argument $0^{\mathrm{h}} 43^{\mathrm{m}}$, latitude 36°, find 0^{h} on left-hand page, and under 1904 find 43^{m} on tenth line from the top, and on same line with the minutes, under latitude 36°, is the azimuth $0^{\circ} 17^{\prime}$. For 1908, time argument $9^{\text {h }} 33 \frac{1}{2}^{\mathrm{m}}$, latitude 48°, the azimuth is $1^{\circ} 1 \frac{1}{2}^{\prime}$, found on the twenty-first line from the top of right-hand page.

If the exact time argument is not found in the table, the azimuth should be proportioned to the difference between the given and tabular values of said argument.

The table has been arranged to give the azimuths by simple inspection. No written arithmetical work is required, all being performed mentally. It will always be sufficient to take the nearest whole degree of latitude and use it as above directed, except for a few values near the top of either page where the difference of azimuths for 2° difference of latitude amounts to four or five minutes of arc.

[^0]The attention of the observer is directed to the fact that he should always use one day of twenty-four hours as the unit when he subtracts the time of culmination from the time of observation. In any case when the time of upper culmination, taken from table 1, for the given date would be numerically greater than the astronomical time of observation, the former time will be taken out for a date one day earlier than the date of observation. The surveyor will decide when such condition exists by comparing the time given in the table with his astronomical time of observation. (See Example 4 and explanations in footnotes, page 24.)

The watch time to be used when making observations on Polaris at all times except elongation should be as accurate as can be obtained. Looking at table 3 near top of page 20, the surveyor will observe that for a difference of four minutes in the time argument there is a change of about two minutes in azimuth; consequently, to obtain the azimuth to the nearest whole minute of arc, the local mean time, upon which all depends, should be known within two minutes. When the observer uses standard railroad time he will correct the same for the difference of longitude between his station and the standard meridian for which the time is given at the rate of four minutes of time for each degree of the difference in arc. Thus, if the difference in longitude is $6^{\circ} 45^{\prime}$, the equivalent in time will be twenty-seven minutes. The difference of longitude may be taken from a good map. The correction will be subtracted from the standard railroad time of observation when the surveyor's station is west, or added when east of the standard meridian, as the case may require, to obtain local time. It is immaterial where the surveyor obtains the standard time provided he gets it right, a result which will be gained most easily by a direct personal comparison at a telegraph office.

If the direction of the meridian is known with an error not greater than one-fourth of a degree, the local time can be obtained to the nearest minute by observing the sun's transit by the following method, suggested by Mr. H. L. Baldwin, jr.

The transit being in meridian and carefully leveled, place the telescope so that it will point toward the sun at the time the latter comes to the meridian and allow the magnified image of the sun to fall upon a notebook or sheet of white paper about 1 foot distant from eyepiece. The telescope should be slightly out of focus (lengthened) to get best results, the best focal position to be determined by trial. When the vertical cross wire bisects the sun's image, note the time by watch. This will be the time of apparent noon. To get time of mean noon, correct the noted time by adding or subtracting the equation of time, taken from the Nautical Almanac "to reduce apparent noon to mean noon," or get this from any almanac giving "sun fast" or "sun slow" time.

Example.

June 20, 1903. h. m. s
Watch time of sun's transit $\begin{array}{lll}11 & 50 & 25\end{array}$
Equation of time $+1 \quad 04$
Local mean noon $\begin{array}{lll}11 & 51 & 29\end{array}$
Or watch slow 831The error of observation should not exceed two or three secondsand the error resulting from incorrect meridian will be approximatelyfour seconds for each 1^{\prime} error in meridian.
Applications of Tables 1 and 3.

1. Required the hour angle and azimuth of Polaris, for a station in latitude 46°N., longitude 90° W., at $8^{\mathrm{h}} 24^{\mathrm{m}}$ p. m., November 7, 1910.
h. m.
Astronomical time of observation, 1910, November 7 824.0
Equivalent to time of November 6 $32 \quad 24.0$
Astron. time, U. C. Polaris, November 1 (table 1).. $10 \quad 45.3$
Reduction to November 6^{a} (B), subtract............. $\quad b 19.7$
Astron. time, U. C. Polaris, November 6 $10 \quad 25.6$, subtract . $c 10 \quad 25.6$
Hour angle of Polaris, at observation $21 \quad 58.4$
Subtract from ${ }^{d} 23 \quad 56.1$
Time argument for table 3 $\begin{array}{ll}1 & 57.7\end{array}$
Azimuth of Polaris, at observation $0^{\circ} 51^{\prime}$ E.
2. Required the hour angle and azimuth of Polaris, for a station in latitude $41^{\circ}$$12^{\prime}$ N., longitude $94^{\circ} \mathrm{W}$., at $6^{\mathrm{h}} 16^{\mathrm{m}}$ a. m., November 19, 1904.
Astronominal time of observation, 1904, November 18......................... 18 16.0 h. m.Astron. time, U. C. Polaris, November 15 (table 1).- $\quad 9 \quad 47.1$
Reduction to November 18, subtract 11.8
Astron. time, U. C. Polaris, November 18 9 35.3, subtract $9 \quad 35.3$
Hour angle of Polaris, at observation, and time argument for table 3 e8 40.7
Azimuth of Polaris, at observation (table 3), 72^{\prime} or $f 1^{\circ} 12^{\prime} \mathrm{W}$.The following four examples illustrate any difficulties in the use oftables 1 and 3:
[^1]
EVENING OBSERVATIONS.

1. February 20,1904 , at $7^{\mathrm{h}} 42^{\mathrm{m}} .5 \mathrm{p}$. m., local mean time, Polaris is observed at a station in southern California, latitude 36°, longitude 117°.
Time of observation .. 7 42.5
From table 1, U. C. Polaris, February 15.......................... $\begin{gathered}\text { h. } \\ 3 \\ 45.7\end{gathered}$
Reduction to February 20 . .. 19.7
$3 \quad 26.0$
Time elapsed since preceding culmination.................................. 416.5
From table 3 corresponding azimuth is $80^{\prime} .5=1^{\circ} 20^{\prime} .5$.
2. May 9, 1904, at $8^{\text {h }} 56^{\mathrm{m}} .4$ p. m., local mean time, Polaris is observed at a station in northeastern Minnesota, latitude 48°, longitude 90°. The nearest culmination is that of May 8.

From table 3, sorresponding azimuth is 34^{\prime}.

MORNING OBSERVATIONS.

3. May 10, 1904, at $5^{\mathrm{h}} 13^{\mathrm{m}}$ a. m., local mean time, or May $9,17^{\mathrm{h}} 13^{\mathrm{m}}$, astronomical time, Polaris is observed at a station in northeastern Minnesota, latitude 48°, longitude 90°.

Time of observation, May 9, 1904.			$\begin{array}{cc} \mathrm{h} . & \mathrm{m} . \\ 17 & 13.0 \end{array}$	
From table	h.	${ }_{\text {m, }}$		
Reduction to May 9		31.5		
			22	11.2

From table 3 corresponding azimuth is $104^{\prime} .3=1^{\circ} 44^{\prime} .3$
4. February 21, 1904, at $5^{\mathrm{h}} 10^{\mathrm{m}}$ a. m., local mean time, Polaris is observed at a station in southern California, latitude 36°, longitude 117°. The nearest culmination is on February 21.

Time of observation, February 20... 1710.0
From table 1, U. C., February $15 \ldots$.
Reduction to February 20 19.7

$$
\begin{array}{lll}
3 & 26.0+23 & 56.1=27 \quad 22.1
\end{array}
$$

Time to elapse to next following culmination.......................... $10 \quad 12.1$
From table 3, corresponding azimuth is $39^{\prime} .3$.

Table 4.-Azimuth and Apparent Altitude of Polaris at Different Hour Angles.
[From U. S. Coast and Geodetic Survey Report for 1895.]
The accompanying tables are intended for field use, to facilitate placing an instrument in the meridian. They are also suitable for determining the approximate latitude or meridian. They contain the azimuth of Polaris at intervals of fifteen minutes in hour angle for each degree of north latitude from 30° to 60°, and the apparent altitude at the same intervals and for each fifth degree of latitude. ${ }^{a}$ The tables are computed for the declination of Polaris $88^{\circ} 46^{\prime}$, but the rate of change in both azimuth and altitude is given with the argument 1^{\prime} increase in declination. ${ }^{b}$ The tables are intended to be used in connection with the American Ephemeris, where are given the apparent right ascension and declination of Polaris for each day in the year. The approximate local time will in general be known with sufficient accuracy from standard time and the approximate longitude of the place. The following example explains the use of the tables and the derivation of the hour angle of Polaris:

Position, latitude $36^{\circ} 20^{\prime}$ N., longitude $5^{\mathrm{h}} 20^{\mathrm{m}} 30^{\mathrm{s}} \mathrm{W}$. of Greenwich.

a The tables were computed with the following formulas:

$$
\begin{aligned}
& \sin t \\
& \tan a=\frac{\sin t}{\cos \varphi \tan \delta-\sin \varphi \cos t^{\prime}} \\
& \sin h=\sin \varphi \sin \delta+\cos \varphi \cos \delta \cos t \text {, } \\
& \sin a_{\mathrm{e}}=\frac{\cos \delta}{\cos \phi}, \\
& \cos t_{\mathrm{e}}=\cot \delta \tan \varphi ; \\
& \text { where } a=\text { azimuth from true north, } \\
& t=\text { hour angle, } \\
& \varphi=\text { latitude }, \\
& \delta=\text { declination, } \\
& h=\text { true altitude, } \\
& a_{\mathrm{e}}=\text { azimuth at elongation, } \\
& t_{\mathrm{e}}=\text { hour angle at elongation. }
\end{aligned}
$$

[^2]

It is to be remembered that Polaris is east of the meridian fortwelve hours before upper culmination, and west of the meridian for twelve hours after. By setting the instrument at the apparent altitude and sweeping near the meridian Polaris can ordinarily be found and the instrument placed in the meridian some time before dark. With transit instruments not provided with horizontal are, the value of the azimuth adjusting screw may be readily determined and used.

Without the American Ephemeris these tables may be conveniently used for obtaining the approximate meridian or latitude, in connection with Bulletin 14, United States Coast and Geodetic Survey, ${ }^{a}$ where are given the approximate mean times of culminations of Polaris, and the mean declinations for various epochs.

[^3]| | | α | | | δ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | - | | | 8. | - | 1 | / |
| 1895 | | | | 30.08 | 88 | 44 | 52.68 |
| 1900 | | | 22 | 33.76 | 88 | 46 | 26.66 |
| 1905 | | | 24 | 42.48 | 88 | 48 | 00.31 |
| 1910 | | | 26 | 56.58 | 88 | 49 | 33.61 |

Table 4.-Azimuth and apparent altitude

Hour angle before or after upper culmination.	Azimuth of Polaris computed for declination $88^{\circ} 46^{\prime}$.					
	$\begin{gathered} \text { Latitude } \\ 30^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 31^{\circ} . \end{aligned}$	$\begin{gathered} \text { Latitude } \\ 32^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 33^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 34^{\circ} . \end{aligned}$	Latitude 35°.
h. m.	- ' "	- ' $"$	$\bigcirc{ }^{\circ}{ }^{\prime \prime}$	- , "	- ' "	- ' 1
015	00540	00543	00547	00551	00555	00600
030	01118	01125	01133	01141	01149	01158
045	01653	01704	01715	01727	01740	01753
100	02223	02238	02253	02309	02326	02344
115	02748	02806	02825	02845	02906	02928
130	03305	03326	03349	03413	03438	03504
145	03813	03838	03904	03932	04000	04030
200	04312	04340	04409	04440	04512	04546
215	04758	04829	04902	04936	05012	05050
230	05232	05306	05342	05419	05459	05540
245	05652	05729	05807	05848	05930	10015
300	10058	10137	10218	10301	10346	10434
315	10447	10528	10612	10658	10746	10836
330	10819	-1 0902	10948	11036	11127	11220
345	11133	11218	11306	11356	11449	11545
400	11428	11515	11605	11657	11752	11850
415	11704	11752	11844	11937	12034	12134
430	11919	12009	12102	12157	12255	12357
445	12114	12205	12259	12355	12455	12557
500	12248	12340	12435	12532	12632	12736
515	12400	12453	12548	12646	12747	12851
530	12451	12544	12640	12738	12839	12944
545	12520	12613	12709	12807	12909	13014
600	12527	12619	12715	12814	12915	13020
615	12512	12604	12659	12757	12859	13003
630	12434	12527	12621	12719	12819	12923
645	12336	12427	12521	12618	12717	12820
700	12216	12306	12359	12455	12553	12655
715	12035	12125	12216	12310	12408	12508
730	11834	11922	12012	12105	12200	12259
745	11613	11659	11748	11839	11933	12029
800	11333	11417	11504	11553	11645	11739
815	11034	11116	11201	11248	11337	11429
830	10717	10757	10840	10925	11012	11101
845	10343	10422	10502	10544	10629	10715
900	05954	10030	10107	10147	10229	10312
915	05549	05623	05658	05734	05813	05854
930	05131	05201	05234	05308	05343	05421
945	04659	04727	04757	04828	04900	04934
1000	04216	04242	04308	04336	04405	04435
1015	03723	03745	03808	03833	03859	03926
1030	03220	03239	03259	03320	03343	03406
1045	02709	02725	02742	02800	02818	02838
1100	02151	02204	02218	02232	02247	02303
1115	01628	01638	016.48	01659	01710	01722
1130	01101	01108	01114	01122	01129	01137
1145	00531	00534	00538	00542	00545	00549
Elongation:			12716	12814	12916	13020
	h. m. ${ }^{\text {c }}$.	h. m. m. ${ }_{\text {s. }}$		h. m. ${ }^{\text {c }}$.	h. m. ${ }^{\text {c }}$.	h. $m .8$ \&.
Hour angle.	55709	55702	55655	55648	55640	55633

of Polaris at different hour angles.

Azimuth of Polaris computed for declination $88^{\circ} 46^{\prime}$.					Correction for 1^{\prime} increase in declination of Polaris.		Hour angle before or after culmination.
$\begin{gathered} \text { Latitude } \\ 36^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 37^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 38^{\circ} . \end{aligned}$	$\begin{gathered} \text { Latitude } \\ 39^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 40^{\circ} \text {. } \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & 30^{\circ} . \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & 40^{\circ} . \end{aligned}$	
\bigcirc -	$\bigcirc{ }^{\circ}$ ' ${ }^{\prime}$	'	${ }^{\circ}{ }^{\prime}{ }^{\prime \prime}$	$\bigcirc{ }^{\circ}{ }^{\prime \prime}$	"	"	h. m.
00605	00610	00615	00620	00626	- 5	- 5	015
01208	01218	01228	01239	01250	-9	-10	030
01807	01822	01838	01854	01911	-14	-16	045
02402	02422	02443	02504	02527	-18	-21	100
02951	03015	03041	03108	03136	-23	-26	115
03531	03600	03631	03702	03736	-27	-31	130
04102	04135	04211	04247	04326	-31	-36	145
04622	04700	04739	04821	04904	-35	-40	200
05129	05211	05255	05341	05429	-39	-45	215
05623	05709	05757	05847	05940	-43	-49	230
10102	10151	10243	10337	10434	-46	-53	245
10524	10617	10712	10810	10912	-50	-57	300
10929	11025	11124	11225	11330	-53	-60	315
11316	11414	11516	11621	11729	-56	-63	330
11643	11744	11849	11957	12108	-58	-66	345
11950	12054	12201	12311	12425	-61	-69	400
12236	12342	12451	12603	12720	-63	-72	415
12501	12608	12719	12833	12952	-64	-74	430
12703	12812	12924	13040	13200	-66	-75	445
12842	12952	13106	13223	13344	-68	-76	500
12959	13109	13224	13342	13504	-69	-77	515
13052	13203	13318	13437	13559	-69	-78	530
13121	13233	13348	13507	13630	-70	-78	545
13127	13239	13354	13513	13635	-70	-78	600
13110	13221	13336	13454	13616	-69	-78	615
13030	13140	13254	13411	13532	-68	-77	630
12926	13035	13148	13304	13424	-67	-76	645
12759	12907	13018	13133	13252	-66	-75	700
12611	12717	12826	12939	13056	-65	-73	715
12400	12504	12612	12723	12838	-64	-72	730
12128	12230	12336	12445	12557	-62	-69	745
11836	11936	12039	12145	12254	-60	-66	800
11524	11621	11722	11825	11931	-57	-64	815
11153	11248	11345	11445	11548	-54	-61	830
10804	10856	10950	11047	11147	-51	-58	845
10358	10447	10538	10631	10727	-48	-54	900
05937	10022	10109	10159	10251	-45	-50	915
05500	05542	05625	05711	05759	-42	-46	930
05010	05048	05127	05209	05253	-38	-42	945
04508	04542	04617	04654	04734	-34	-38	1000
03954	04024	04055	04128	04203	-30	-34	1015
03430	03457	03524	03552	03622	-26	-29	1030
02859	02920	02943	03007	03032	-22	-24	1045
02319	02337	02355	02414	02435	-18	-20	1100
01735	01748	01802	01816	01831	-13	-15	1115
01146	01154	01204	01213	01223	- 9	-10	1130
00553	00558	00602	00607	00612	-4	-5	1145
13128	13240	13355	13514	13636		-78	
$\begin{array}{llll}\text { h. } & \text { m. } & 8 . \\ 5 & 56 & 85\end{array}$	$\begin{gathered} h . \\ 5 . \\ 5 . \\ 56 \\ \hline \end{gathered}$	$\begin{aligned} & \text { h. m. } .8 .8 \\ & 5 \\ & 56 \\ & \hline 0.0 \end{aligned}$		h. h. 8. 5 55 52 5	8. $+\quad 2$	$\begin{array}{r}8 . \\ +\quad 3 \\ \hline\end{array}$	

Table 4.-Azimuth and apparent altitude

Hour angle before or after upper culmination.	Azimuth of Polaris computed for declination $88^{\circ} 46^{\prime}$.					
	Latitude	$\begin{aligned} & \text { Latitude } \\ & 41^{\circ} . \end{aligned}$	$\begin{gathered} \text { Latitude } \\ 42^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 43^{\circ} . \end{gathered}$	$\underset{440}{\text { Latitude }}$	$\begin{aligned} & \text { Latitude } \\ & 45^{\circ} . \end{aligned}$
h. m.	' "	- ' "	\bigcirc -	\bigcirc -	,	"
015	00626	00632	00639	00645	00652	00700
030	01250	01303	01315	01329	01343	01358
045	01911	01930	01948	02008	02029	02052
100	02527	02551	02616	02643	02710	02740
115	03136	03205	03236	03309	03344	03421
130	03736	038.11	03848	03927	04009	04052
145	04326	04407	04450	04535	04622	04712
200	04904	04950	05039	05129	05223	05319
215	05429	05520	05614	05710	05810	05912
230	05940	10035	10134	10236	10341	10449
245	10434	10534	10638	10744	10854	11008
300	10912	11016	11124	11235	11350	11509
315	11330	11438	11550	11706	11825	11949
330	11729	11841	11957	12116	12239	12408
345	12108	12223	12342	12504	12632	12804
400	12425	12543	12705	12831	13001	13137
415	12720	12840	13004	13133	13307	13445
430	12952	13114	13241	13412	13548	13729
445	13200	13324	13453	13625	. 13804	13947
500	13344	13510	13640	13814	-13954	14138
515	13504	13630	13802	13937	14118	14304
530	13559	13726	13858	14034	14216	14402
545	13630	13757	13929	14105	14247	14434
600	13635	13802	13934	14110	14251	14438
615	13616	13743	13914	14049	14230	14416
630	13532	13658	13828	14003	14142	14327
645	13424	13548	13717	13850	14028	14212
700	13252	13415	13542	13713	13849	14031
715	13056	13217	13342	13511	13645	13824
730	12838	12956	13119	13246	13417	13553
745	12557	12713	12833	12956	13125	13258
800	12254	12407	12524	12645	12810	12940
815	11931	12041	12155	12312	12433	12559
830	11548	11655	11805	11918	12035	12157
845	11147	11249	11355	11505	11618	11735
900	10727	10826	10928	11033	11141	11254
915	10251	10345	10443	10543	10647	10754
930	05759	05849	05942	10038	10137	10238
945	05253	05339	05427	05518	05611	05707
1000	04734	04815	04858	04944	05032	05122
1015	04203	04239	04318	04358	04440	04525
1030	03622	03653	03726	03801	03838	03916
1045	03032	03058	03126	03155	03226	03258
1100	02435	02456	02518	02542	02606	02632
1115	01831	01847	01904	01922	01940	02000
1130	01223	01234	01245	01257	01309	01323
1145	00612	00618	00623	00629	00636	00642
Elongation:						
		h. m. ${ }_{\text {l }}$		h. m. 8.	h. m. 8.	h. m. 8.
Hour angle.	55552	55543	55534	55524	55514	55504

of Polaris at different hour angles-Continued.

Azimuth of Polaris computed for declination $88^{\circ} \mathbf{4 6}$.					Correction for 1^{\prime} increase in declination of Polaris.		$\begin{aligned} & \text { Hour } \\ & \text { bangle } \\ & \text { before } \\ & \text { or after } \\ & \text { cuper } \\ & \text { culmi- } \end{aligned}$
Latitude 46°	$\begin{gathered} \text { Latitude } \\ 47^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 48^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 49^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 50^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 40^{\circ} . \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & 50^{\circ} . \end{aligned}$	
	- ' "	$\bigcirc{ }^{\circ}$ ' 1	- ' $\quad 1$	- ' "	"	"	h. m.
00708	00716	00725	00734	00744	- 5	-6	015
01413	01430	01448	01506	01525	-10	-13	030
02115	02140	02206	02233	02302	-16	-19	045
02811	02844	02918	02955	03033	-21	-25	100
03459	03540	03623	03708	03756	-26	-32	115
04138	04226	04317	04411	04508	-31	-38	130
04805	04901	04959	05102	05207	-36	-43	145
05419	05522	05628	05738	05852	-40	-49	200
10018	10128	10241	10359	10521	-45	-54	215
10601	10717	10838	11003	11132	-49	-59	230
11126	11248	11415	11547	11724	-53	-64	245
11632	11800	11933	12111	12254	-57	-68	300
12117	12250	12429	12613	12802	-60	-72	315
12540	12718	12902	13051	13246	-63	-76	-330
12941	13123	13311	13505	13706	-66	-80	345
13317	13503	13655	13854	14059	-69	-83	400
13629	13818	14014	14216	14425	-72	-86	415
13915	14108	14306	14511	14724	-74	-88	430
14135	14330	14531	14739	14954	-75	-90	445
14329	14525	14728	14938	15155	-76	-91	500
14455	14653	14857	15108	15327°	-77	-92	515
14554	14753	14958	15210	15430	-78	-93	530
14626	14825	15030	15243	15503	-78	-94	545
14631	14829	15034	15246	15506	-78	-93	600
14608	14805	15010	15221	15440	-78	-93	615
14518	14714	14917	15127	15344	-77	-92	630
14401	14556	14756	15004	15220	-76	-91	645
14218	14410	14609	14814	15027	-75	-89	700
14009	14159	14354	14557	14806	-73	-87	715
13735	13921	14114	14313	14519	-72	-85	730
13436	13619	13808	14003	14205	-69	-82	745
13114	13253	13438	13629	13826	-66	-79	800
12729	12904	13044	13230	13422	-64	-76	815
12323	12453	12628	12809	12955	-61	-72	830
11856	12021	12151	12326	12507	-58	-68	845
11410	11530	11654	11823	11957	-54	-64	900
10905	11019	11138	11301	11428	-50	-59	915
10344	10452	10604	10721	10841	-46	-55	930
05807	05909	10015	10124	10238	-42	-50	945
05216	05312	05411	05513	05619	-38	-45	1000
04612	04701	04753	04849	04947	-34	-40	1015
03957	04040	04125	04212	04302	-29	-34	1030
03332	03408	03446	03526	03608	-24	-29	1045
02700	02728	02759	02831	02905	-20	-23	1100
02020	02042	02105	02129	02155	-15	-18	1115
01336	01351	01406	01422	01439	-10	-12	1130
00649	00656	00704	00712	00721	-5	-6	1145
14632	14831	15036	15248	15508	-78	-93	
h. m. 5 5 54 8.83				$\begin{array}{cccc} h_{2} & \text { m. } \\ 5 & 54 \\ \hline \end{array}$	$\begin{array}{r}8.8 . \\ +\quad 3 \\ \hline\end{array}$	$\begin{array}{r}8 . \\ +\quad 5 \\ \hline\end{array}$	

Table 4.-Azimuth and apparent altitude

Hour angle before or after upper culmination.	Azimuth of Polaris computed for declination $88^{\circ} 46^{\prime}$.					
	$\begin{aligned} & \text { Latitude } \\ & 50^{\circ} . \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & 51^{\circ} . \end{aligned}$	$\begin{gathered} \text { Latitude } \\ 52^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 53^{\circ} . \end{aligned}$	$\begin{aligned} & \text { Latitude } \\ & 54^{\circ} . \end{aligned}$	$\begin{gathered} \text { Latitude } \\ 55^{\circ} . \end{gathered}$
$h . m$.	$\bigcirc{ }^{\circ}$	$\bigcirc{ }^{\circ}{ }^{\prime \prime}$	- ' $\quad \prime$	$\bigcirc{ }^{\circ}$, 17	- ' $\prime \prime$	$\bigcirc{ }^{\circ}$ ' $\quad \prime$
015	00744	00754	00805	00817	00829	00842
030	01525	01546	01608	01631	01656	01722
045	02302	02333	02406	02441	02518	02557
100	03033	03114	03158	03244	03333	03425
115	03756	03847	03940	04038	04138	04243
130	04508	04608	04712	04820	04932	05049
145	05207	05317	05431	05549	05712	05841
200	05852	10011	10134	10303	10437	10616
215	10521	10648	10821	10959	11143	11333
230	11132	11308	11448	11635	11829	12030
245	11724	11907	12055	12251	12454	12704
300	12254	12444	12641	12844	13055	13315
315	12802	12959	13202	13413	13632	13900
330	13246	13449	13658	13916	14142	14418
345	13706	13914	14129	14352	14625	14907
400	14059	14312	14532	14801	15039	15327
415	14425	14642	14907	15140	15423	15716
430	14724	14944	15213	15450	15737	20035
445	14954	15217	15449	15729	20020	20321
500	15155	15421	15654	15937	20231	20535
515	15327	15554	15829	20115	20410	20716
530	15430	15658	15934	20220	20516	20823
545	15503	15731	20008	20253	20550	20858
600	15506	15734	20010	20256	20552	20858
615	15440	15706	15941	20226	20521	20826
630	15344	15609	15843	2.0125	20418	20722
645	15220	15442	15714	15954	20244	20545
700	15027	15247	15515	15752	20039	20336
715	14806	15023	15248	15521	15804	20057
730	14519	14732	14952	15221	15459	15747
	14205	14413	14629	14858	15126	15408
800	13826	14029	14240	14458	14725	15001
815	13422	13620	13825	14038	14258	14527
830	12955	13148	13347	13552	13806	14028
845	12507	12653	12845	13044	13250	13504
900	11957	12137	12322	12513	12711	12917
915	11428	11601	11738	11922	12112	12308
930	10841	11006	11136	11312	11453	11640
945	10238	10355	10517	10644	10816	10953
1000	05619	05728	05842	10000	10123	10250
1015	04947	05048	05153	$0 \cdot 5302$	05415	05532
1030	04302	04356	04452	04551	04654	04801
1045	03608	03652	03739	03829	03922	04018
1100	02905	02941	03018	03058	03141	03226
1115	02155	02222	02250	02320	02352	02426
1130	01439	01457	01516	01537	01558	01621
1145	00721	00730	00739	00749	00800	00811
Elongation:						
Azimuth.	$\begin{array}{lll}1 & 55 & 08 \\ h . & m . & s\end{array}$	1. 57. h. m. s. s.				2. 090 h. 5
Hour angle.	55407	55354	55341	55327	55312	55257

of Polaris at different hour angles-Continued.

Azimuth of Polaris computed for declination $88^{\circ} 46^{\prime}$.					Correction for 1^{\prime} in-crease in declination of Polaris.		Hour angle before upper culmi-nation. nation.
$\begin{gathered} \text { Latitude } \\ 56^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 57^{\circ} . \end{aligned}$	$\begin{gathered} \text { Latitude } \\ 58^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 59^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 60^{\circ} . \end{aligned}$	$\begin{gathered} \text { Latitude } \\ 50^{\circ} . \end{gathered}$	$\begin{aligned} & \text { Latitude } \\ & 60^{\circ} . \end{aligned}$	
-	- ' "	$\bigcirc{ }^{\circ}$ ' ${ }^{\prime}$	- ' "	$\bigcirc{ }^{\circ}$ ' $"$!	"	h. m.
00856	00912	00928	00945	01003	- 6	-	015
01750	01820	01853	01927	02004	-13	- 17	030
02639	02724	02812	02903	02958	-19	- 25	045
03521	03620	03723	03831	03944	-25	- 33	100
04352	04506	04624	04748	04919	-32	- 41	115
05211	05339	05512	05652	05840	-38	- 49	130
10016	10156	10344	10540	10744	-43	- 57	145
10803	10957	11158	11408	11628	-49	- 64	200
11531	11737	11952	12216	12451	-54	- 71	215
12239	12456	12724	13001	13250	-59	- 78	230
12923	13152	13431	13721	14023	-64	- 84	245
13543	13822	14112	14413	14728	-68	-89	300
14137	14425	14725	15037	15403	-72	- 94	315
14703	15000	15308	15630	20007	-76	- 99	330
15200	15504	15821	20151	20537	-80	-104	345
15626	15937	20301	20640	21034	-83	-108	400
20021	20338	20709	21054	21455	-86	-111	415
20344	20706	21042	21432	21839	-88	-114	430
20634	21000	21340	21735	22147	-90	-116	445
20851	21220	21603	22002	22417	-91	-118	500
21034	21405	21750	22151	22609	-92	-119	515
21142	21514	21901	22304	22723	-93	-120	530
21217	21550	21936	22339	22758	-94	-120	545
21217	21549	21935	22337	22756	-93	-120	600
21144	21514	21859	22259	22715	-93	-119	615
21037	21405	21747	22144	22557	-92	-118	630
20857	21221	21600	21953	22403	-91	-116	645
20644	21005	21339	21727	22132	-89	-114	700
20400	20716	21045	21427	21826	-87	-111	715
20045	20355	20718	21054	21446	-85	-108	730
15700	20004	20320	20649	21032	-82	-104	745
15247	15543	15852	20212	20547	-79	-100	800
14806	15054	15354	15706	20032	-76	- 96	815
14258	14539	14830	15132	15447	-72	- 91	830
13726	13957	14239	14531	14835	-68	-86	845
13130	13351	13623	13905	14157	-64	- 80	900
12512	12724	12944	13214	13455	-59	- 75	915
11834	12036	12245	12503	12730	-55	- 69	930
11137	11328	11525	11731	11945	-50	- 63	945
10423	10603	10748	10941	11141	-45	-56	1000
05654	05822	05955	10134	10320	-40	- 50	1015
04912	05027	05148	05314	05445	-34	-43	1030
04118	04221	04328	04440	04557	-29	- 36	1045
03314	03405	03459	03557	03659	-23	- 29	1100
02502	02541	02621	02705	02751	-18	22	1115
01645	01710	01738	01807	01838	-12	- 14	1130
00823	00836	00850	00904	00920	-	-	1145
21221	21554	21940	22343	22802	-93	-120	
h. 5 5 52		h. 5 5 52 58	$\begin{array}{cccc}\text { h. } \\ 5 & \text { m. } & 8 . \\ 5 & 51 & 47\end{array}$	$\begin{aligned} & \text { h. m. } \left.\begin{array}{c} 8 . \\ 5 \\ 5 \\ 51 \end{array}\right) \end{aligned}$	+ $\stackrel{8}{5}$	+ $+\quad 7$	

Table 4.-Azimuth and apparent altitude of Polaris at different hour angles-Continued.

Houranglebeforeorafteroraterupperculmi-nation.	Apparent altitude of Polaris, computed for declination $88^{\circ} 46^{\prime}$ and mean refraction.							Correc-tionforin-creasecreasein dec-linationof Po.of Prolaris.	$\begin{aligned} & \text { Her } \\ & \text { ange } \\ & \text { before } \\ & \text { or after } \\ & \text { upper } \\ & \text { upulmi- } \\ & \text { nation. } \end{aligned}$
	$\begin{gathered} \text { Latitude } \\ 30^{\circ} . \end{gathered}$	$\underset{35^{\circ} .}{\substack{\text { Latitude }}}$	$\begin{gathered} \text { Latitude } \\ 40^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 45^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 50^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 55^{\circ} . \end{gathered}$	$\begin{gathered} \text { Latitude } \\ 60^{\circ} . \end{gathered}$		
000	3115.6	3615.3	4115.1	4614.9	5114.8	5614.6	6114.5	-1.0	00
015	3115.4	3615.2	4114.9	4614.8	5114.6	5614.4	6114.3	-1.0	5
030	3114.9	3614.7	4114.5	4614.3	5114.2	5614.0	6113.8	1.0	030
045	3114.2	3613.9	4113.7	4613.5	5113.3	5613.2	6113.0	-1.0	045
100	3113.0	3512.8	4112.5	4612.3	5112.2	5612.0	6111.9	-1.0	100
115	3111.6	3611.3	4111.1	4610.9	5110.8	5610.6	6110.4	-0.9	115
	3109.9	3609.6	4109.4	4609.2	5109.0	5608.8	6108.6	-0.9	30
145	3107.9	3607.6	4107.3	4607.2	5107.0	5606.8	6106.6	-0.9	1.45
200	3105.6	3605.3	4105.0	4604.8	5104.6	5604.4	6104.2	-0.8	0
215	3103.0	3602.7	4102.4	4602.2	5102.0	5601	6101.6	-0.8	215
230	3100.1	3559.8	4059.5	4559.3	5059.1	5558.9	6058.7	-0.8	30
245	3057.0	3556.7	4056.5	4556.2	5056.0	5555.8	6055.5	-0.7	245
300	3053.7	3553.4	4053.1	4552.9	5052.6	5552.3	6052.1	-0.7	0
315	3050.1	3549.8	4049.5	4549.2	5049.0	5548.8	6048.5	-0.6	15
330	3046.4	3546.0	4045.7	4545.5	50	5545.	60	-	
3	3042.4	3542.1	4041.	45	50	5541.0	60	-0.5	
40	3038.3	3538.0	4037.6	4537.4	5037	5536.8	6036.5	-0.	00
415	3034.0	3533.6	4033.	4533.0	5032.8	5532.5	6032.1	-0.4	15
4	3029.6	3529.2	4028.9	4528.5	5028.3	5528.0	6027.6	-0.4	430
445	3025.0	3524.6	4024.3	4524.0	5023.7	5523.4	6023.0	-0.3	445
500	30	3520.0	4019.7	4519.4	5019.1	5518.8	6018.4	-0.2	
	3015.6	3515.3	4014.9	4514.6	5014.3	5514.0	6013.6	-0.2	515
530	3010.8	3510.4	4010.1	4509.9	5009.6	5509.2	6008.8	-0.1	530
545	3006.0	3505.6	$40 \quad 05.3$	4505.0	5004.7	5504.4	6004.0	0.0	
600	3001.2	3500.8	4000.5	4500.2	4959.9	5459.5	5959.1		
	2956.4	3456.0	3955.6	4455.3	4955.0	5454.7	5954.3	+0.1	615
630	2951.6	3451.2	3950.8	4450.5	4950.2	5449.9	5949.6	+0.1	630
45	2946.8	3446.4	3946.0	4445.7	4945.5	$5+45.1$	5944.8	$+0.2$	
700	3942.1	3441.7	3941.4	4441.1	4940.8	5440.4	5940.1	+0.3	700
715	2937.5	3437.1	3936.8	4436.4	4936.	54	5935		
730	2933.0	3432.6	3932.3	4432.0	4931.7	5431.4	5931.0	+0.4	30
745	2928.6	3428.2	3927.9	4427.6	4927.3	5427.0	5926.7		745
00	2924.4	3424.0	3923.7	4423.4	4923.1	5422.8	5922.5	+	0
815	2920.3	3419.9	3919.6	4419.3	4919.0	5418.8	5918.4	+	15
830	2916.4	3416.0	3915.7	4415.4	4915	5414.9	59	+0.6	
845	2912.7	3412.3	3912.0	4411.7	4911.5	5411.2	5911.0		45
900	2909.2	3408.8	3908.5	4408.3	4908.1	5407.9	5907.6	+	900
915	2905.9	3405.5	3905.3	4405.0	4904.8	5404.5	5904.3	+0.8	15
930	2902.8	3402.5	3902.2	4402.0	4901.8	5401.5	5901.3	+0.8	930
945	2900.0	3359.7	3859.4	4359.2	4859.0	5358.8	5858.6	+0.8	-
00	2857.5	3357.2	3856.9	4356.7	4856.6	5356.4	5856.1	+0.9	1000
1015	2855.3	3355.0	3854.7	4354.5	4854.3	5354.1	5853.9	+0.9	1015
1030	2853.3	3353.0	3852.8	4352.5	4852.4	5352.1	5852.0	$+0.9$	1030
1045	2851.6	3351.3	3851.1	4350.8	4850.7	5350.5	5850.3	+0.9	1045
1100	2850.2	3349.9	3849.7	4349.5	4849.4	5349.1	5849.0	+1	
1115	2849.2	3348.9	3848.6	4348.4	4848.2	5348.0	5847.9	+1.0	1115
1130	2848.4	3348.1	3847.8	4347.6	4847.5	5347.2	5847.1	+1.0	1130
1145	2847.9	3347.6	3847.4	4347.1	4847.0	5346.8	5846.7	+1.0	45
1200	2847.7	3347.4	3847.2	4347.0	4846.8	5346.7	5846.6	+1.0	0

Fig. 7.-Construction of polyconic projection. 15' of latitude and longitude; scale 1:48000. Construction lines (to be drawn in pencil) dotted; final projection lines full.

EXAMPLE OF USE OF PROJECTION TABLES.

Let it be required to construct a projection for the area between parallels of $40^{\circ} 00^{\prime}$ and $40^{\circ} 15^{\prime}$ and meridians $90^{\circ} 00^{\prime}$ and $90^{\circ} 15^{\prime}$ on a scale of $1: 48000$ (4,000 feet $=1$ inch). For this scale it is customary to show meridians or parallels at intervals of 5 minutes, though any other desired interval may be adopted.

Through the center of the paper (see diagram, fig. 7) draw two fine pencil lines $a-b$ and $c-d$ exactly perpendicular to each other. The vertical line will be the meridian of $90^{\circ} 07^{\prime} 30^{\prime \prime}$ and the intersection of the horizontal line with the vertical line will be a point on the parallel of $40^{\circ} 07^{\prime} 30^{\prime \prime}$. From the column headed "Meridional distance" Table 9 , page 82 , opposite 40° in column "Latitude of parallel," take
the value of a latitude interval of 5^{\prime}, which is 7.588 inches; lay off half of this interval or 3.794 inches, on the central meridian above and below the horizontal line; these distances will give points e and f, on the parallels of $40^{\circ} 10^{\prime}$ and $40^{\circ} 05^{\prime}$, respectively. The distance, 7.588 inches, laid off above and below the latter points will give points g and h for latitudes $40^{\circ} 15^{\prime}$ and $40^{\circ} 00^{\prime}$. Through each of these points draw a line parallel to the horizontal line and perpendicular to the vertical line first drawn.

In a similar manner lay off points on the east and west lines through latitude points $40^{\circ}(h)$, and $40^{\circ} 15^{\prime}(g)$, by measuring from the meridian east and west distances obtained from the columns headed "Abscissas of developed parallel" in Table 9, page 82, for the appropriate latitude and for the longitude intervals of $2 \frac{1}{2}^{\prime}$ and $7 \frac{1}{2}^{\prime}$. Thus, for 40°, the tabular value for $2 \frac{1}{2}^{\prime}$ is 2.919 inches, for 5^{\prime} it is 5.837 inches, and for $7 \frac{1^{\prime}}{}{ }^{\prime}$ it is 8.755 inches. The points so found (i, j, k, l) will be on the meridians of $90^{\circ} 00^{\prime}, 90^{\circ} 05^{\prime}, 90^{\circ} 10^{\prime}$, and $90^{\circ} 15^{\prime}$. Find similar points for latitude $40^{\circ} 15^{\prime}$, and join corresponding points with light pencil lines. In order to find points on these meridians where each parallel of latitude crosses, take from the columns headed "Ordinates of developed parallel" in Table 9, on the same page, opposite the given latitude 40°, the distance for the "Longitude interval" $2 \frac{1}{2}$ ' and $7 \frac{1}{2}$ ' (the value of $2 \frac{1}{2}^{\prime}$ for the $1: 48000$ scale is inappreciable, being less than 0.001 inch); lay these distances off northward along the meridian from the horizontal lines, giving points x, y, z, etc., on the desired parallels, and through these points draw curved lines concave toward the north. After testing the accuracy of the plotting by comparing the length of the diagonals $f-i=f-l, h-m=h-n$, etc., the projection may be inked in.

In a similar manner projections may be constructed for other scales or areas. Table 7, for the scale of 1:63360 (1 mile to 1 inch), may be used for any even fraction or multiple of a mile. The distance between parallels being found from column "Meridional distance;" distances not given may be found by simple proporticn except for "ordinates of developed parallel," which increase as the square of the distance from the central meridian. For scales of any number of thousands of feet to 1 inch, use suitable fractions of the distance given for scale $1: 12000(1,000$ feet to 1 inch) in Table 10.

For maps of large areas Table 5 gives the actual or full scale distances in meters. These may be divided by the proper scale ratio and the distances so found platted with a metric scale or reduced to feet by the table on page 268 ; the X values are the distances from the central horizontal line measured to the north or south, and the corresponding Y values give the offsets northward to points on the curved parallels. The distances measured east and west from the central meridian are those in the part of Table 5 entitled "Arcs of the parallel" (p. 39), each to be taken for the proper latitude. For projections of large extent the meridians differ sensibly from straight lines and they as well as the parallels must be drawn as curves.

Table 5.-For projection of maps of large areas.

[The ratio of the yard to the meter as stated by Clarke, namely, 1 meter $=1.093623$ yards $=39.370432$ inches, is that used in the table.]

LENGTHS OF DEGREES OF THE MERIDIAN.

Latitude.	Meters. \boldsymbol{a}	Statute miles.	Latitude.	Meters. ${ }^{\text {a }}$	Statute miles.
-			-		
0	110,567.2	68. 704	45	111, 130.9	69.054
1	110,567.6	68.704	46	111, 150. 6	69. 066
2	110,568. 6	68.705	47	111, 170.4	69.079
3	110,570. 3	68.706	48	111, 190.1	69.091
4	110, 572.7	68.708	49	111, 209. 7	69. 103
5	110,575. 8	68.710	50	111, 229.3	69.115
6	110, 579.5	68.712	51	111, 248.7	69.127
7	110,583.9	68.715	52	111, 268.0	69.139
8	110,589.0	68.718	53	111, 287.1	69. 151
9	110,594. 7	68.721	54	111, 306. 0	69. 163
10	110,601.1	68.725	55	111, 324.8	69.175
11	110, 608.1	68.730	56	111,343. 3	69.186
12	110,615. 8	68.734	57	111, 361.5	69.197
13	110,624. 1	68.739	58	111, 379.5	69.209
14	110,633.0	68.744	59	111,397. 2	69.220
15	110, 642.5	68.751	60	111, 414.5	69.230
16	110, 652.6	68.757	61	111, 431.5	69. 241
17	110, 663.3	68.764	62	111, 448.2	69.251
18	110, 674.5	68.771	63	111, 464.4	69. 261
19	110,686. 3	68.778	64	111, 480.3	69. 271
20	110,698.7	68.786	65	111, 495.7	69.281
21	110, 711.6	68.794	66	111,510.7	69. 290
22	110, 725.0	68.802	67	111,525. 3	69.299
23	110, 738.8	68.811	68	111,539. 3	69.308
24	110, 753.2	68.820	69	111, 552.9	69.316
25	110, 768.0	68.829	70	111,565. 9	69.324
26	110, 783.3	68.839	71	111, 578.4	69.332
27	110, 799.0	68.848	72	111,590.4	69.340
28	110, 815.1	68.858	73	111, 601.8	69.347
29.	110, 831.6	68. 869	74	111,612. 7	69.354
30	110,848. 5	68.879	75	111, 622.9	69.360
31	110, 865.7	68.890	76	111, 632.6	69.366
32	110, 883.2	68.901	77	111, 641.6	69.372
33	110, 901.1	68.912	78	111, 650.0	69.377
34	110, 919.2	68.923	79	111, 657.8	69.382
35	110, 937. 6	68.935	80	111, 664.9	69.386
36	110,956. 2	68. 946	81	111, 671.4	69.390
37	110, 975.1	68. 958	82	111, 677.2	69.394
38	110,994. 1	68.969	83	111, 682.4	69.397
39	111,013. 3	68.981	84	111, 688.9	69. 400
40	111, 032.7	68.993	85	111, 690.7	69.402
41	111, 052.2	69.006	86	111, 693.8	69. 404
42	111, 071.7	69.018	87	111, 696.2	69. 405
43	111, 091.4	69.030	88	111, 697.9	69. 407
44	111, 111.1	69.042	89	111, 699.0	69. 407
45	111, 130.9	69.054	90	111, 699.3	69.407

a These quantities express the number of meters and statute miles contained within an arc of which the degree of latitude named is the middle; thus, the quantity $111,032.7$, opposite latitude 40°, is the number of meters between latitude $39^{\circ} 30^{\prime}$ and latitude $40^{\circ} 30^{\prime}$.

Table 5.-For projection of maps of large areas-Continued.
[Extracted from Appendix No. 6, U. S. Coast and Geodetic Survey Report for 1884.]
LENGTHS OF DEGREES OF THE PARALLEL.

Latitude.	Meters.	Statute miles.	Latitude.	Meters.	Statute miles.
-			-		
0	111, 321	69.172	45	78, 849	48.995
1	111, 304	69.162	46	77, 466	48.136
2	111, 253	69.130	47	76, 058	47.261
3	111, 169	69.078	48	74, 628	46.372
4	111, 051	69.005	49	73, 174	45.469
5	110, 900	68.911	50	71,698	44.552
6	110, 715	68.795	51	70, 200	43.621
7	110, 497	68.660	52	68, 680	42.676
8	110, 245	68.504	53	67, 140	41.719
9	109, 959	68.326	54	65, 578	40.749
10	109, 641	68.129	55	63, 996	39. 766
11	109, 289	67.910	56	62, 395	38. 771
12	108, 904	67.670	57	60, 774	37.764
13	108, 486	67.410	58	59, 135	36.745
14	108, 036	67.131	59	57, 478	35.716
15	107, 553	66.830	60	55, 802	34. 674
16	107, 036	66.510	61	54, 110	33.623
17	106, 487	66.169	62	52, 400	32. 560
18	105, 906	65.808	63	50, 675	31.488
19	105, 294	65.427	64	48,934	30.406
20	104, 649	65.026	65	47, 177	29.315
21	103, 972	64.606	66	45, 407	28.215
22.	103, 264	64.166	67	43, 622	27.106
23	102, 524	63. 706	68	41, 823	25.988
24	101, 754	63. 228	69	40, 012	24.862
25	100, 952	62. 729	70	38, 188	23.729
26	100, 119	62.212	71	36, 353	22.589
27	99, 257	61.676	72	34, 506	21.441
28	98, 364	61.122	73	32, 648	20.287
29	97, 441	60.548	74	30, 781	19.127
30	96, 488	59.956	75	28, 903	17.960
31	95, 506	59.345	76	27, 017	16. 788
32	94, 495	58.716	77	25, 123	15.611
33	93, 455	58.071	78	23, 220	14.428
34	92, 387	57.407	79	21,311	13.242
35	91,290	56. 725	80	19, 394	12. 051
36	90, 166	56.027	81	17, 472	10.857
37	89, 014	55.311	82	15, 545	9.659
38	87, 835	54.579	83	13, 612	8.458
39	86, 629	53.829	84	11,675	7.255
40	85, 396	53.063	85	9,735	6. 049
41	84, 137	52. 281	86	7,792	4.842
42	82, 853	51.483	87	5,846	3.632
43	81, 543	50.669	88	3, 898	2.422
44	80, 208	49.840	89	1,949	1. 211
45	78, 849	48.995	90	0	0.000

Table 5.-For projection of maps of large areas-Continued.
[Extracted from Appendix No. 6, U. S. Coast and Geodetic Survey Report for 1884.]
arcs of the parallel in meters.

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 24°.			Latitude 25°.			Latitude 26°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
\bigcirc,			-			-		
100	101, 753	361	100	100, 951	372	100	100,118	383
${ }_{2}^{2} 00$	203, 500	1,445	${ }_{2}^{2} 00$	201, 896	1,489	${ }_{2}^{2} 00$	200, 231	1,532
300	305, 237	3,250	300	302, 831	3,351	300	300, 332	3,447
400	406, 959	5,778	400	403, 749	5,957	400	400, 416	6,128
$\begin{array}{ll}500 \\ 6 & 00\end{array}$	508,660 610,336	9,028 13,001	$\begin{array}{ll}500 \\ 6 & 00\end{array}$	504,645 605,514	9,307 13,401	$\begin{array}{ll}500 \\ 6 & 00\end{array}$	500,476 600,506	9,574 13,786
700	711, 981	17,695	700	706, 349	18,239	700	700,501	18,763
800	813,590	23,109	800	807, 146	23, 821	800	800,456	24,505
900	915,159	29,245	900	907,899	30,146	900	900, 364	31,011
1000	1,016, 681	36,102	1000	1,008, 603	37,215	1000	1,000,218	38, 282
1100	1,118, 152	43,679	1100	1,109, 252	45, 026	1100	1,100, 015	46,316
1200	1,219,566	51,977	1200	1,209, 841	53,578	1200	1,199,747	55, 114
1300	1,320, 919	60, 994	1300	1,310,364	62,873	1300	1,299,409	64,675
1400	1, 422, 205	70,731	1400	1,410,815	72,909	1400	1,398,994	74,998
1500	1,523,420	81,186	1500	1,511,190	83,685	1500	1,498,498	86, 082
1600	1,624,558	92, 360	1600	1,611,483	95, 202	1600	1,597, 914	-97, 928
1700	1,725, 614	104,251	1700	1,711,688	107, 458	1700	1,697, 237	110,534
1800	1, 826, 583	116,859	1800	1,811,800	120, 453	1800	1,796, 460	123,899
1900	1,927,460	130, 184	1900	1,911,813	134,186	1900	1,895,578	138,023
2000	2,028, 240	144, 225	2000	2,011,722	148,656	2000	1,994,585	152,905
2100	2,128,918	158,981	2100	2,111,522	163, 862	2100	2,093, 475	168,544
2200	2,229,488	174,451	2200	2,211, 207	179,805	2200	2,192,243	184,939
2300	2, 329, 946	190, 634	2300	2,310,771	196,482	2300	2,290, 882	202,089
2400	2,430,287	207, 530	2400	2, 410, 210	213, 894	2400	2, 389,387	219, 993
2500	2, 530,505	225, 138	2500	2,509,518	232,038	2500	2,487, 753	238, 650
2600	2,630,596	243, 458	2600	2, 608, 689	250, 914	${ }^{26} 00$	2,585, 973	258,061
2700	2, 730, 554	262,487	2700	2, 707, 718	270,521	27 28	2, 684, 042	278, 222
2800	2, 830,374	282, 225	2800	2, 806, 600	290, 859	2800	2,781, 953	299, 132
2900	2, 930, 052	302, 671	2900	2, 905, 329	311, 925	2900	2, 879, 702	320, 788
3000	3,029,582	323,825	3000	3, 003, 900	333, 718	3000	2, 977, 281	343, 197

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 27°.			Latitude 28°.			Latitude 29°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
- ,			- ,			\bigcirc		
100	99, 256	393	100	98, 363	403	100	97,439	412
200	198, 505	1,573	200	196, 719	1,612	200	194, 872	1,649
300	297, 742	3,539	300	295, 062	3, 627	300	292, 291	3,710
400	396, 960	6,291	400	393, 385	6,447	400	389,689	6,595
	496,154	9,829 14,154	$\begin{array}{ll}500 \\ 6 & 00\end{array}$	491,682 589,945	10,073 14,505	500 6000	487,059 584,394	10,305 14,838
700	694, 440	19,264	700	688, 168	19,741	700	681,687	20, 194
800	793, 522	25,159	800	786,347	25, 782	800	778, 931	26,374
900	892, 554	31, 839	900	884,472	32,627	900	876,120	33,376
1000	991,529	39,303	1000	982,537	40,276	1000	973,246	41,199
1100	1,090,442	47, 551	1100	1,080,537	48,728	1100	1,070,302	49, 845
1200	1,189,287	56,583	1200	1,178,464	57,983	1200	1,167,282	59,313
1300	1,288, 057	66,398	1300	1, 276, 312	68,040	1300	1,264, 178	69, 601
1400	1,386,746	76,995	1400	1,374,075	78,899	1400	1,360, 983	80,706
1500	1,485, 348	88,374	1500	1,471,745	90,558	1500	1,457,691	92, 631
1600	1,583, 857	100, 534	1600	1,569, 315	103,017	1600	1,554, 295	105, 375
1700	1,682, 267	113, 474	1700	1,666, 781	116, 275	1700	1, 650,787	118, 935
1800	1,780,570	127, 193	1800	1,764,135	130,331	1800	1, 747, 161	133, 311
1900	1,878, 762	141,690	1900	1,861, 371	145, 185	1900	1,843,410	148,502
	1,976, 836	156, 966		1,958, 481	160,835	2000	1,939,527	164,506
2100	2,074,786	173, 018	2100	2, 055, 460	177.280	2100	2, 035, 505	181,324
2200	2,172, 606	189, 845	2200	2, 152, 302	194, 518	${ }_{22}^{22} 00$	2, 131, 338	198, 953
${ }^{23} 00$	2, 270, 289	207, 447	2300	2, 248, 998	212,550	${ }^{23} 000$	2, 227, 020	217,392
2400	2,367, 830	225, 823	2400	2, 345, 544	231, 374	2400	2, 322, 539	236,640
	2,465, 222	244,970	2500	2,441, 932	250, 988		2,417,893	256,695
2600	2, 562, 459	264, 889	2600	2, 538, 156	271, 391	26 26	2, 513, 074	277, 558
2700	2, 659, 535	285, 577	2700	2, 634,210	292, 582	27 28	2, 608, 075	299, 224
2800	2, 756, 445	307, 035	28 29 29	2,730, 087	314,559	$\begin{array}{r}28 \\ 28 \\ 29 \\ \hline 9\end{array}$	$\stackrel{2}{2,702,890}$	321, 694
29 80 80	$2,853,181$ $2,949,739$	329,259 352,249	29.00 30	2, 225,779 $2,921,284$	337,321 360,866	29 30 30	2,797,511 $2,891,931$	344,964 369,036

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 30°.			Latitude 31°.			Latitude 32°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
-			- ,			- ,		
100	96,487	421	100	95,505	429	100	94,494	437
2 2 00	192,967	1,684	200	191,002	1,717	200	188, 980	1,748
300	289,432	3,789	300	286, 484	3,863	300	283,449	3,933
	385, 875	6,735	400	381, 943	6,867	400	377, 894	6,991
500	482, 288	10,523	500	477, 371	10,729		472, 307	
600	578, 665	15, 153	${ }_{6}^{600}$	572, 760	15, 450	600	566, 680	15,727
700 800	674, 998	20,623	700 800	668, 103	21,027	700	661,004	21, 404
8 9	771,279 867,502	26,934	8 9 00	763, 392	27,461	800	755, 272	27, 954
	867, 502	34,084	900	858, 619	34,751	900	849,475	35,375
1000	963, 658	42,074	1000	953,777	42,897	1000	943,605	43, 667
$\begin{array}{ll}11 & 00 \\ 12\end{array}$	1, 059, 741	50, 903	11 11 00	1,048, 858	51, 898	11100	1,037, 655	52, 829
$\begin{array}{ll}12 & 00 \\ 13 & 00\end{array}$	1,155,744	60,570	1200	1,143, 854	61, 753	1200	1,131,616	62, 861
$\begin{array}{ll}13 & 00 \\ 14 & 00\end{array}$	1, 251,658	71, 074	1300	1, 238, 758	72,462	1300	1,225,480	73,761
	1,347, 477	82,415	1400	1,333, 561	84, 024	1400	1,319, 239	85, 529
1500	1,443,193	94, 591	1500	1,428,257	96,437	1500	1,412, 885	98,164
1600	1,538, 800	107,603	16.00	1,522, 837	109, 701	1600	1,506,411	111,664
1700	1,634,290	121, 449	1700	1,617,294	123,815	1700	1,599, 808	126,029
1800	1,729,654	136,127	1800	1,711,621	138, 777	1800	1,693, 067	141, 256
1900	1,824,887	151, 637	1900	1,805, 810	154,586	1900	1,786,182	157, 346
2000	1,919,982	167, 977	2000	1, 899, 852	171,241	2000	1,879, 144	174,296
${ }_{21}^{21} 00$	2, 014, 930	185, 147	2100	1, 993, 740	188, 741	${ }_{21}^{21} 00$	1,971, 946	192, 105
${ }^{22} 00$	2, 109, 725	203, 143	2200	2,087, 468	207, 085	2200	2,064,579	210,772
23 23 24 00	2, 204, 359	221, 966	2300	2,181, 027	226, 270	${ }_{23} 00$	2, 157,035	230,295
	2, 298, 825	241, 616	2400	2, 274, 411	246, 295	2400	2, 249,305	250, 672
2500	2, 393,116	262, 089	2500	2, 367, 610	267, 159	2500	2,341,385	271,901
2600	2, 487, 224	283, 383	2600	2,460, 618	288, 860	2600	2, 433, 264	293, 981
${ }^{27} 00$	2,581,144	305, 498	2700	2,553,427	311, 396	2700	2, 524,935	316,910
2800	2, 674, 867	328,432	2800	2, 646,029	334, 765	2800	2, 616,390	340,686
29 39	2,768, 385	352, 183	2900	2, 738, 418	358, 966	2900	2, 707,621	365, 307
3000	2,861,694	376, 749	3000	2,830,585	383,997	3000	2, 798, 621	390, 770

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 33°.			Latitude 34°.			Latitude 35°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
-			- '			-		
100	93, 454	444	100	92,385	451	100	91,289	457
200	186, 899	1,777	200	184,762	1,803	200	182,568	1,828
300	280, 328	3,997	300	277, 121	4,057	300	273, 830	4,112
400	373, 731	7,106	400	369, 454	7,212	400	365, 064	7,310
500	467, 100	11,102	500	461,751	11,268	500	456,261	11,421
600	560,428	15,986	${ }_{6} 00$	554,004	16,225	${ }_{6}^{600}$	547,412	16,445
700 800	653, 704	21, 757	700 800	646,205	22,082	700 800	638,509	22,381
800 900	746,922 840,072	28,414	8 9	738, 314	28,839 36,494	8 9	729,542 820,501	29,229 $\mathbf{3 6}, 987$
1000	933,146	44,385	1000	922,403	45, 048	1000	911,379	45,656
1100	1,026,136	53,697	1100	1,014,305	54,499	1100	1,002, 165	55,234
1200	1,119,033	63, 893	1200	1,106,110	64,846	1200	1,092,850	65,721
1300	1,211,829	74,971	1300	1,197,809	76,089	1300	1,183, 426	77,115
1400	1,304,515	86,931	1400	1,289,395	88,227	1400	1,273, 884	89,415
1500	1,397, 083	99,771	1500	1,380, 858	101, 258	1500	1,364,214	102,619
1600	1,489,526	113,491	1600	1,472, 190	115, 180	1600	1,454,407	116, 728
1700	1,581,834	128, 089	1700	1,563,381	129,993	1700	1,544;454	131,738
1800	1,673,998	143,564	1800	1,654,423	145,696	1800	1,634,347	147, 650
1900	1,766,011	159, 914	1900	1,745, 308	162,287	1900	1,724,076	164,460
2000	1,857,866	177, 138	2000	1,836, 026	179,763	2000	1,813, 632	182,168
2100	1,949,553	195, 234	2100	1,926,569	198, 124	2100	1,903,006	200, 772
2200	2, 041,062	214, 201	2200	2,016,929	217,368	2200	1,992, 190	220, 268
2300	2,132, 387	234,037	2300	2, 107,097	237, 493	2300	2,081,174	240,657
2400	2, 223, 521	254,740	2400	2,197, 065	258, 497	2400	2,169, 949	261,936
2500	2, 314,453	276,309	2500	2,286, 823	230, 378	2500	2,258,507	284,102
2600	2, 405, 175	-298,741	2600	2, 376, 363	303, 134	2600	2,346, 838	307, 154
2700	2, 495, 680	322,034	2700	2,465, 677	326,763	2700	2,434, 934	331, 089
28 20	2, 585, 961	346, 187	2800	2,554, 756	351,262	2800	2,522,787	355, 905
29 30	$2,676,007$ $2,765,812$	371,197 397,061	29 300 300	$2,643,591$ $2,732,175$	376,629 402,863	29 30 30	$2,610,386$ $2,697,724$	381,598
	2,86,						2,	408, 168

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y meters.								
Latitude 36°.			Latitude 37 ${ }^{\circ}$.			Latitude 38°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
\bigcirc,			- '			- '		
100	90,164	462	100	89, 012	467	100	87, 833	472
200	180,319	1,850	200	178, 015	1,870	200	175, 656	1,888
300	270,455	4,162	300	266, 997	4,207	300	263,458	4,247
400	360, 562	7,399	400	355, 951	7,479	400	351, 230	7,549
500	450,631	11,560	500	444, 865	11,685	500	438, 962	11,795
600	540,653	16,645	600	533, 730	16, 824	600	526,643	16,983
700	630,618	22,652	700	622,536	22, 896	700	614,263	23,112
800	720,517	29, 583	800	711,273	29,901	800	701,812	30,183
900	810,340	37, 435	900	799, 932	37,838	900	789, 280	38,195
1000	900, 078	46, 209	1000	888,503	46,706	1000	876,657	47,145
1100	989, 720	55, 903	1100	976, 975	56,503	1100	963, 933	57,034
1200	1,079,259	66,515	1200	1,065, 340	67, 229	1200	1,051,098	67,860
1300	1, 168,684	78,046	1300	1,153, 587	78,882	1300	1,138, 141	79,622
1400	1,257, 987	90, 494	1400	1,241, 707	91,462	1400	1,225,053	92, 319
1500	1,347, 156	103, 856	1500	1,329, 690	104, 967	1500	1,311, 823	105,949
1600	1,436,184	118, 133	1600	1,417,526	119, 395	1600	1, 398,441	120,511
1700	1,525, 061	133, 323	1700	1,505,206	134,745	1700	1,484,899	136,002.
1800	1, 613,777	149,423	1800	1,592,721	151,015	1800	1,571,185	152, 421
1900	1,702,324	166,433	1900	1,680, 059	168, 203	1900	1,657, 289	169,767
2000	1,790, 691	184, 350		1,767, 211	186, 307	$20 \quad 00$	1, 743, 202	188, 037
2100	1,878, 870	203, 173	2100	1,854, 169	205, 326	2100	1,828, 914	207,229
2200	1,966,851	222, 899	2200	1,940,922	225, 258	2200	1,914,415	227, 341
2300	2, 054,625	243,527	2300	2,027,462	246,099	2300	1,999,694	248,370
2400	2,142, 183	265,055	2400	2,113,777	267, 849	2400	2,084, 743	270, 315
2500	2, 229, 516	287, 479	2500	2,199, 860	290,503	2500	2,169,551	293, 172
2600	2, 316,613	310, 798	2600	2,285, 699	314,061	2600	2, 254, 109	316, 939
2700	2, 403,467	335, 009	2700	2,371,287	338, 519	2700	2,338,406	341, 613
2800	2, 490, 068	360,111	2800	2,456,612	363, 874	2800	2,422,433	367, 192
2900	2, 576,407	386,099	2900	2,541, 667	390, 125	2900	2,506, 181	393, 672
3000	2,662,475	412, 971	3000	2, 626,441	417, 267	3000	2,589,639	421, 050

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 39°.			Latitude 40°.			Latitude 41°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
-			-			\bigcirc		
100	86,627	476	100	85,394	479	100	84,136	482
200	173,243	1,903	200	170,778	1,916	200	168, 260	1,927
300	259, 859	4,281	300	256,140	4,311	300	252, 363	4,335
400	346,403	7,611	400	341,470	7,663	400	336,432	7,706
500	432, 925	11,891	500	426,757	11,972	500	420,457	12,039
600	519,396	17,121	600	511,990	17,238	600	504,428	17,335
700	605, 803	23,300	700	597, 158	23,460	700	588, 332	23,591
800	692,138	30,428	800	682, 252	30,637	800	672, 159	30,807
900	778,388	38, 504	900	767, 260	38,768	900	755, 897	38,983
1000	864, 545	47, 527	1000	852, 171	47,852	1000	839,537	48,118
1100	950,598	57,496	1100	936,975	57,888	1100	923, 067	58,209
1200	1,036,536	68,409	1200	1,021, 661	68,875	1200	1,006,475	69,256
1300	1,122,349	80, 266	1300	1,106, 218	80,811	1300	1,089,752	81,258
1400	1,208,027	93, 064	1400	1, 190, 636	93,695	1400	1,172, 886	94, 212
1500	1,293,559	106, 802	1500	1,274,904	107, 525	1500	1, 255, 866	108, 117
1600	1,378, 934	121,479	1600	1,359, 012	122, 300	1600	1,338, 681	122, 971
1700	1,464, 144	137,093	1700	1,442, 949	138,017	1700	1,421,321	138, 773
1800	1,549,177	153, 642	1800	1,526, 704	154, 675	1800	1,503,775	155, 520
1900	1,634,023	171, 124	1900	1,610,267	172, 272	1900	1,586, 031	173, 210
2000	1,718,671	189,537	2000	1,693, 628	190, 805	2000	1,668, 079	191, 841
2100	1,803,113	208, 878	2100	1,776, 775	210, 272	2100	1,749,909	211,409
2200	1,887,337	229,146	2200	1,859,698	230,671	${ }_{22}^{22} 00$	1,831, 509	231, 914
2300	1,971,333	250, 337	2300	1,942, 387	251, 998	2300	1,912,869	253, 352
2400	2, 055,091	272,450	2400	2, 024,833	274, 252	2400	1,993, 978	275, 719
2500	2,138, $\mathrm{\epsilon} 02$	295, 481	2500	2, 107,023	297,430		2, 074,826	299, 014
2600	2, 221, 854	319,429	2600	2, 188,948	321, 528	${ }^{26} 00$	2, 155, 402	323, 233
${ }^{27} .00$	2,304, 838	344,289	2700	2, 270,597	346, 543	${ }^{27} 00$	2, 235, 695	348, 374
2800	2, 387,545	370,059	2800	2,351,961	372,473	2800	2,315,695	374,432
2900	2, 469,963	396,736	2900	2,433, 029	399,314	29 30	2, 395, 392	401, 404
3000	2,552, 084	424, 317	3000	2,513,790	427,063	3000	2, 474, 774	429, 287

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 42°.			Latitude 43°.			Latitude 44°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
- ,			- ,			- ,		
100	82, 851	484	100	81,541	485	100	80, 206	486
200	165, 691	1,935	200	163, 071	1,941	200	160, 401	1,945
300	248, 508	4,354	300	244,578	4,367	300	240,572	4,375
400	331, 292	7,739	400	326, 050	7,763	400	320,708	7,778
500	414, 030	12,092	500	407, 476	12,129	500	400, 797	12,152
600	496, 712	17,410	600	488, 844	17,464	600	480, 827	17,496
700	579,325	23,693	700	570, 143	23, 766	7000	560,786	23, 811
800	661, 861	30,941	800	651, 361	31,036	800	640,662	31,094
900	744,305	39,152	900	732, 486	39, 272	900	720,445	39,345
1000	826,648	48,325	1000	813, 508	48, 474	1000	800,122	48, 563
1100	908,879	58,459	1100	894, 415	58,639	1100	879,681	58, 746
1200	990,985	69,553	1200	975, 195	69,766	1200	959,110	69,893
1300	1,072,956	81,605	1300	1,055,837	81, 854	1300	1,038, 399	82,002
1400	1,154,781	94,614	1400	1,136,329	94,901	1400	1,117,535	95, 072
1500	1,236,449	108, 577	1500	1,216,661	108,905	1500	1,196,507	109, 100
1600	1,317,948	123, 493	1600	1,296,820	123, 864	1600	1,275,303	124,084
1700	1,399,267	139, 360	1700	1,376,795	139, 777	1700	1,353,911	140, 023
1800	1,480, 395	156,175	1800	1,456, 575	156, 640	1800	1, 432, 320	156,913
1900	1,561,321	173,937	1900	1,536, 148	174,451	1900	1,510,519	174,753
$20 \quad 00$	1,642,035	192,642	2000	1,615,505	193, 209	2000	1,588, 496	193, 540
2100	1,722,524	212,289	2100	1,694, 632	212,909	2100	1, 666, 240	213, 270
2200	1,802,779	232,874	2200	1,773,519	233, 551	2200	1,743,738	233,942
2300	1,882,788	254,396	2300	1,852,155	255, 129	2300	1,820,980	255, 552
2400	1,962,540	276, 850	2400	1,930,528	277, 642	2400	1,897,955	278,096
2500	2,042,024	300, 234	2500	2,008,628	301, 087	2500	1,974, 650	301, 572
2600	2,121,230	324, 544	$\checkmark 2600$	2,086,443	325,459	2600	2,051, 055	325,977
2700	2,200, 146	349, 778	2700	2,163,963	350, 750	2700	2,127, 159	351,306
2800	2, 278,762	375, 932	2800	-2,241,176	376,974	2800	2, 202, 950	377, 555
29 30	2, 357,067	403, 002	2900	2,318, 071	404, 109	2900	2,278,417	404, 722
3000	2,435, 052	430, 985	$30 \quad 00$	2,394, 639	432, 157	3000	2, 353, 550	432, 801

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 45°.			Latitude 46°.			Latitude 47°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
\bigcirc -			-			\bigcirc		
100	78,847	486	$1{ }_{1}^{1} 00$	77,464	486	$1{ }^{1} 00$	76,056	485
200	157,682	1,946	200	154,915	1,945	200	152, 100	1,942
300	236,493	4,378	300	232,342	4,376	. 300	228, 119	4,368
400	315, 269	7,783	400	309, 732	7,779	400	304, 101	7,765
500	393, 996	12,160	500	387, 074	12, 153	500	380,034	12,131
600	- 472, 663	17,508	600	464, 354	17,498	600	455, 904	17,467
700	551, 258	23,826	700	541,562	23,813	700	531,700	23, 770
800 900	629,769 708,184	31,114 39	8 9 00	611, 684	31,096	8 9 00	607,410	31,040
900	708, 184	39,370	900	695, 708	39,347	900	683, 020	39,276
1000	786, 492	48,594	1000	772, 623	48,565	1000	758, 520	48,477
1100	864, 679	58,782	1100	849,416	58,747	1100	833,895	58,640
1200	942,735	69,936	1200	926,075	69,893	1200	909, 135	69,765
1300	1,020,647	82,051	1300	1,002,588	82,000	1300	984, 227	81,849
1400	1, 098, 404	95,127	1400	1,078, 943	95, 067	1400	1,059,158	94, 890
1500	${ }^{1} 1,175,994$	109,162	1500	1,155,128	109, 091	1500	1,133, 917	108, 887
1600	1, 253, 404	124, 153	1500	1,231, 131	124,071	1600	1, 208, 491	123, 837
1700	1,330,624	140,099	1700	1,306, 940	140,003	1700	1,282, 868	139, 738
1800	1,407, 640	156,996	1800	1,382, 543	156,887	1800	1,357,036	156,587
1900	1,484,443	174,842	1900	1,457,928	174, 718	1900	1,430, 984	174,381
2000	1,561, 019	193, 635	2000	1,533, 083	193,494	2000	1,504,697	193, 118
2100	1,637,358	213, 371	2100	1,607,997	213, 212	2100	1,578, 166	212,793
${ }_{22}^{22} 00$	1,713,447	234,048	2200	1,682, 657	233, 869	2200	1,651, 377	233,405
2300	1,789,276	255, 663	2300	1,757,052	255, 462	2300	1,724,320	254,950
2400	1,864,831	278,211	2400	1, 831, 170	277, 987	2400	1,796, 982	277,425
2500	1,940,103	301,690	2500	1,904,999	301,441		1,869, 351	300, 824
${ }_{26}^{26} 00$	2, 015, 079	326,097	2600	1,978,528	325, 820	${ }^{26} 000$	1,941, 415	325, 146
2700	2,089, 749	351,427	2700	2, 051,745	351, 120	2700	2,013, 163	350, 386
${ }_{29}^{28} 00$	2,164, 100	377, 676	2800	2,124, 639	377, 337	${ }_{28}^{28} 00$	2, 084, 583	376, 539
2900	2, 238. 121	404,841	29.00	2, 197, 197	404, 468	2900	2, 155, 663	403, 602
3000	2,311,802	432,918	3000	2, 269, 410	432,507	3000	2,226, 392	431, 569

Table 5.-For projections of maps of large areas-Continued.
COORDINATES OF CURVATURE.

Natural scale.-Values of X and Y in meters.								
Latitude 48°.			Latitude 49°.			Latitude 50°.		
Longitude.	X	Y	Longitude.	X	Y	Longitude.	X	Y
\bigcirc			- ,			- ,		
100	74,626	484	$1{ }_{1} 00$	73,172	482	100	71,696	479
200	149, 239	1,936	200 300	146,331	1,928	$\stackrel{2}{2} 00$	143, 379	1,917
3 4 4	223, 827	4,355	300 4	-219,465	4,337	300 4	${ }_{2}^{215,037}$	4,313
400	298, 377	7,742 .	400	292,561	7,709	400	286, 656	7,667
500	372, 877	12,095	500	365, 606	12,044	500	358, 224	11,978
600	447, 314	17,414	600	438, 588	17, 340	600	429, 727	17,246
700	521, 677	23,698	700	511, 493	23,598	700	501, 154	23,469
800	595, 951	30,946	$\bigcirc 00$	584,310	30,815	800	572,492	30,646
900	670,125	39,157	900	657, 026	38, 991	900	643, 727	38,777
1000	744, 186	48,329	1000	729,627	48, 123	1000	714,847	47,859
1100	818, 123	58,461	1100	802, 102	58, 212	1100	. 785, 839	57, 891
1200	891, 921	69,552	1200	874,438	69,254	1200	856,691	68,872
$\begin{array}{ll}13 & 0 \\ 14 & 00\end{array}$	-965,570	81, 998	1300	946, 622	81, 248	$\begin{array}{ll}13 & 00 \\ 14 & 00\end{array}$	927, 389	80,798
1400	1,039, 056	94,598	1400	1,018,642	94, 191	1400	997, 922	93, 669
1500	1,112,367	108,551	1500	1,090,485	108, 082	1500	1,068, 277	107, 482
1600	1,185, 491	123,453	1600	1,162,138	122, 918	1600	1,138,440	122,234
1700	1,258, 416	139, 302	1700	1,233,591	138,697	1700	1, 208, 400	137, 923
1800	1,331,129	156,096	1800	1, 304, 829	155, 416	1800	1,278, 144	154,546
1900	1, 403,618	173,832	1900	1,375, 840	173, 071	1900	1,347, 660	172, 099
2000	1,475,871	192,506	2000	1,446,613	191, 660		1,416,934	190,581
2100	1,547,876	212, 116	2100	1,517, 135	211, 180	2100	1,485, 956	209, 987
2200	1,619,620	232, 658	2200	1,587, 394	231, 627	2200	1,554,711	230,314
${ }_{23}^{23} 00$	1,691, 091	254,128		1, 657, 378	252, 998	23 24 24 00	1,623, 189	251,559
2400	1,762,279	276, 524	2400	1,727,073	275, 288	2400	1,691, 377	273, 717
2500	1,833, 170	299,842	2500	1,796, 470	298, 495	2500	1,759, 262	296, 785
2600	1,903, 752	324,077	2600	1,865,554	322, 614	2600	1, 826, 833	320,758
2700	1,974,015	349,225	2700	1,934, 315	347, 640		1,894,077	345, 633
2800	2,043, 945	375, 283	${ }^{28} 000$	2, 002, 740	373, 570		1,960,983	371, 404
29 30 30	$2,113,531$ $2,182,762$	402,245 430,107	$\begin{array}{ll}29 & 00 \\ 30 & 00\end{array}$	$2,070,817$ $2,138,536$	400,399 428,123	29 30 30	$2,027,538$ $2,093,731$	398,068 425,619
30	2,182, 762			2,138, 53			2,03, 731	

Table 6.-Coordinates for projection of maps (scale $\left.\frac{1}{12 \frac{1}{0070}}\right)$.
[From Smithsonian Geographical Tables.]

46061-08-4

[From Smithsonian Geographical Tables.]

[From Smithsonian Geographical Tables.]

Table 6.-Coordinates for projection of maps (scale $\left.\begin{array}{rl}125^{1} \sigma \sigma 0\end{array}\right)$-Continued.
[From Smithsonian Geographical Tables.]

Table 6.-Coordinates for projection of maps (scale ${ }_{\frac{12}{25000}}$)-Continued.
[From Smithsonian Geographical Tables.]

Table 6.-Coordinates for projection of maps (scale $\frac{1}{125000}$)-Continued.
[From Smithsonian Geographical Tables.]

Table 6.-Coordinates for projection of maps (scale $\frac{\left.12 \frac{1}{12000}\right)}{}$-Continued.
[From Smithsonian Geographical Tables.]

[From Smithsonian Geographical Tables.]

Table 6.-Coordinates for projection of maps (scale $\frac{1}{12 \frac{1}{000}}$)-Continued.
[Erom Smithsonian Geographical Tables.]

Table 6.-Coordinates for projection of maps (scale $\frac{1}{12 \frac{1}{\sigma} \bar{\sigma}}$)-Continued.
[From Smithsonian Geographical Tables.]

[From Smithsonian Geographical Tables.]

Table 7.-Coordinates for projection of maps (scale ${ }_{\left.6 \frac{1}{3} \frac{1}{65 \sigma}\right)}$-Continued.
[From Smithsonian Geographical Tables.]

Table 7.-Coordinates for projection of maps (scale $\frac{1}{63 \frac{1}{60}}$) - Continued.
[From Smithsonian Geographical Tables.]

Latitude of parallel. 3) SiClianer	Meridional distances from even degree parallels.	Abscissas of developed parallel.						Ordinates of developed parallel.		
		5^{\prime} longitude.	$\begin{aligned} & 10^{\prime} \text { longi- } \\ & \text { tude. } \end{aligned}$	$\begin{gathered} 15 \text { longi- } \\ \text { tude. } \end{gathered}$	$\begin{gathered} 20^{\prime} \text { longi- } \\ \text { tude. } \end{gathered}$	25^{\prime} longitude.	$\begin{aligned} & 30^{\prime} \text { longi- } \\ & \text { tude. } \end{aligned}$			
$14 \quad 00$	Inches. 68.740	Inches. 5.594	Inches. 11.188	Inches. 16. 783	Inches. 22.377	Inches. 27.971	Inches. 33.565	Longitude interval.	14°	15°
10	11.458	5.590	11.180	16.770	22. 360	27.950	33.540			
20	22.915	5.586	11.172	16.758	22.344	27.930	33.515			
30	34.373	5.582	11.163	16.745	22.327	27.909	33.490			
40	45.830	5.578	11.155	16.733	22.310	27.888	33.465	'	Inches.	Inches.
50	57.288	5.573	11.147	16.720	22.294	27.867	33.440	5	0.001	0.001
1500	68.746	5.569	11.138	16.708	22.277	27.846	33.415	10	.004 .009	.004 .009
10	11.459	5.565	11.130	16.694	22.259	27.824	33.389	20	. 016	. 017
20	22.917	5. 560	11.121	16.681	22.241	27.802	33.362	30	. 035	. 038
30	34.376	5.556	11.112	16. 667	22.223	27.779	33.335			
40	45.834	5.551	11.103	16.654	22.206	27.757	33.308			
50	57.293	5.547	11.094	16.641	22.188	27.735	33.282			
$16 \quad 00$	68.752	5.542	11.085	16.628	22.170	27.713	33.255			
10	11.460	5. 538	11.076	16.613	22.151	27.689	33.227			
20	22.919	5.533	11.066	16.599	22.132	27.665	33.198			
30	34.379	5.528	11.057	16. 585	22.113	27.642	33.170	5	0.001	0.001
40	45.838	5.524	11.047	16.571	22.094	27.618	33.142	10	. 004	. 005
50	57.298	5.519	11.038	16.556	22.075	27.594	33.113	15	. 010	. 011
	68.758	5.514	11.028	16.542	22.056	27.571	33.085	20	. 018	. 019
	68.75	5.514	11.028	16.542	22.056	27.57	33.085	25 30	.028 .040	.029 .042
10	11.461	5.509	11.018	16.527	22.036	27.546	33.055			
20	22.921	5.504	11.008	16.512	22.016	27.521	33.025			
30	34.382	5.499	10.998	16.497	21.996	27.495	32.994			
40	45.843	5. 494	10.988	16. 482	21.976	27.470	32.964			
50	57.304	5.489	10.978	16.467	21.956	27.445	32.934		18°	19°
1800	68. 764	5. 484	10.968	16.452	21.936	27.420	32.904			
10	11.462	5.479	10.957	16. 436	21.915	27.394	32.872	5	0.001	0,001
20	22.924	5.473	10.947	16.420	21.894	27.367	32.840	10	. 005	. 005
30	34.386	5.468	10.936	16. 404	21.872	27.341	32.809	15	. 011	. 012
40	45.848	5. 463	10.926	16.389	21.852	27.315	32.777	20	. 020	. 021
50	57.310	5.458	10.915	16.373	21.830	27.288	32.746	25	. 031	. 032
1900	68.771	5. 452	10.905	16.357	21.809	27.262	32.714	30	. 044	. 046
10	11.463	5.447	10.893	16.340	21.787	27.234	32.680			1
20	22.926	5.441	10.882	16.324	21.765	27.206	32.647			
30	34.390	5.436	10.871	16.307	21.742	27.178	32.614	-		
40	45.853	5.430	10.860	16. 290	21.720	$\stackrel{27.150}{ }$	32.580		20°	21°
50	57.316	5.424	10.849	16.274	21.698	27.123	32.547			
$20 \quad 00$	68.779	5.419	10.838	16.257	$21.67{ }^{\circ}$	27.095	32.513	5	0.001	0.001
10	11. 464	5.413	10.826	16.239	21.652	27.065	32.478	10	.005 .012	.006 .013
20	22.929	5.407	10.814	16.222	21. 629	27.036	32.443	20	. 022	. 022
30	34.394	5.401	10.803	16. 204	21.605	27.007	32.408	25	. 034	. 035
40	45.858	5.396	10.791	16.187	21.582	26.978	32.373	30	. 049	. 051
50	57.322	5.390	10.779	16.169	21.558	26.948	32.338			
2100	68.787	5.384	10.768	16.151	21.535	26.919	32.303			$!$

[From Smithsonian Geographical Tables.]

Table 7.-Coordinates for projection of maps (scale ${ }_{6 \sigma^{\frac{1}{6} \overline{0}}}{ }^{1}$)—Continued.
[From Smithsonian Geographical Tables.]

Latitude of parallel.	Meridional distances from even degree parallels.	Abscissas of developed parallel.						Ordinates of developed parallel.		
		5 longitude.	10^{\prime} longitude.	15^{\prime} longitude	$\begin{gathered} 20 \text { longi- } \\ \text { tude. } \end{gathered}$	25^{\prime} longitude.	30^{\prime} longitude.			
$28 \quad 00$	Inches. 68.849	Inches. 5.093	$\begin{array}{r} \text { Inches. } \\ 10.187 \end{array}$	Inches. 15. 280	Inches. 20.374	Inches. 25.467	Inches. 30.560		28°	29°
10	11.476	5.085	10.171	15. 256	20.342	25.427	30.513			
20	22.953	5.077	10.155	15.232	20.310	25.387	30.465			
30	34.430	5.069	10.139	15.208	20.278	25.347	30.417			
40	45.906	5.061	10.123	15.185	20.246	25.308	30.369	,	Inches.	Inches.
50	57.383	5.054	10.107	15.161	20.214	25.268	30.321	5	0.002	${ }_{0} 000$
2900	68.859	5.046	10.091	15.137	20.182	25.228	30.274	10 15	. 0076	. 0016
10	11.478	5.037	10.075	15.112	20.150	25.187	30.224	$\stackrel{20}{25}$. 028	. 028
20	22.957	5.029	10.058	15.087	20.117	25.146	30.175	${ }_{30}^{25}$. 0643	$\xrightarrow{.044}$
30	34.435	5.021	10.042	15.063	20.084	25.105	30.126		. 06	. 064
40	45.913	5.013	10.025	15.038	20.051	25.064	30.076			
50	57.391	5.004	10.009	15.013	20.018	25.022	30.027			
$30 \quad 00$	68.870	4.996	9.993	14.989	19.985	24.981	29.978			
10	11.480	4.988	9.976	14.963	19.951	24.939	29.927		30°	31°
20	22.960	4.979	9.959	14.938	19.917	24.896	29.876			
30	34.440	4.971	9.942	14.912	19.883	24.854	29.825			
40	45.920	4. 962	9.925	14.887	19.849	24.812	29.774	10	. 0007	0.002 .007
50	57.400	4.954	9.908	14.862	19.815	24.769	29.723	15	. 016	. 017
3100	68.880	4.945	9.891	14.836	19.782	24.727	29.672	20	. 029	. 030
10	11.482	4.937	9.873	14.810	19.747	24.683	29.620	30	. 065	. 067
20	22.964	4.928	9.856	14.784	19.712	24.640	29.568			
30	34.446	4.919	9.838	14.758	19.677	24.596	29.515			
40	45.927	4.910	9.821	14.731	19.642	24.552	29.463			
		4.902	9.804	14.705	19.607	24.509	29.411		32°	33°
3200	68.891	4.893	9.786	14.679	19.572	24.465	29.358			
10	11.484	4. 884	9. 768	14.652	19.536	24.420	29.305			
20	${ }^{22.967}$	4.875	9.750	14.625	19.500	24.376	29.251	10	. 007	. 0008
30 40	34.451 $\mathbf{4 5 . 9 3 4}$	4.866 4.857	0.732 9.714	14.598 14.572	19.465 19.429	24.331 24.286	29.197 29.143	15	. 017	. 017
50	57.418	4.848	9.696	14.545	19.393	24.241	29.089	20 25	. 030	. 031
3300	68.902	4.839	9.679	14.518	19.357	24.196	29.036	30	. 068	. 069
10	11.485	4.830	9.660	14.490	19.320	24.150	28.980			
20	22. 971	4.821	9.642	14.462	19.283	24.104	28.925			
30 40	34.456 45.942	4.812 4.802	9.623 9.605	14.435 14.407	19.246 19.210	24.058	28.870			
50	57. 427	4.793	9.586	14.379	19.173	23.966	$\begin{array}{r} 28.814 \\ 28.759 \end{array}$		34°	35°
3400	68.913	4.784	9.568	14.352	19.136	23.920	28.704	5	0.002	0.002
10	11.487	4. 774	9. 549	14.323	19.098	23.872	28.647	10	. 008	. 008
20	22.975	4.765	9. 530	14.295	19.060	23.825	28. 590	15 20	. 017	. 018
30	34.462	4.755	9.511	14.267	19.022	23.778	28.533	25	. 049	. 049
40 50	45. 949 57.437	4. 746 4.737	9.492 9.473	14.238 14.210	$\begin{gathered} 18.984 \\ 18 \end{gathered}$	23.730 23.683	$\begin{aligned} & 28.476 \\ & 28.420 \end{aligned}$	30	. 070	. 071
3500	68.924	4.727	9.454	14.181	18.908	23.636	28.363			

Table 7.-Coordinates for projection of maps (scale ${ }_{\left.6 \frac{1}{3} \frac{1}{360}\right) \text {-Continued. }}$
[From Smithsonian Geographical Tables.]

Table 7.-Coordinates for projection of maps (scale ${ }_{6 \frac{1}{3} \frac{1}{6 \sigma}}$) -Continued.
[From Smithsonian Geographical Tables.]

46061-08-5

Table 7.-Coordinates for projection of maps (scale ${ }_{6 \frac{1}{3} \frac{1}{36 \sigma} \text {) -Continued. }}$.
[From Smithsonian Geographical Tables.]

Table 7.-Coordinates for projection of maps (scale ${ }_{6 \frac{1}{3} \frac{1}{66 \sigma}}$) - Continued.
[From Smithsonian Geographical Tables.]

Table 7.-Coordinates for projection of maps (scale ${ }^{6^{\frac{1}{3}}{ }^{\frac{1}{60}}}$) -Continued.
[From Smithsonian Geographical Tables.]

Table 7.-Coordinates for projection of maps (scale $\frac{\sigma^{\frac{1}{360}} \text {)-Continued. }}{}$)
[From Smithsonian Geographical Tables.]

Latitude of parallel.	Meridional distances from even degree parallels.	Abscissas of developed parallel.						Ordinates of developed parallel.		
		5^{\prime} longitude.	10^{\prime} longitude.	$\begin{gathered} 15 \text { 'longi- } \\ \text { tude. } \end{gathered}$	20'longitude.	25' longitude.	30^{\prime} longitude.			
$\begin{array}{cc} \circ & \prime \\ 70 & 00 \end{array}$	Inches. 69.317	Inches. 1.977	$\begin{array}{r} \text { Inches. } \\ 3.955 \end{array}$	Inches. 5.932	Inches. 7.910	Inches. 9.888	Inches. 11.865	Longi tude interval.	70°	71°
10	11.554	1. 962	3.923	5.885	7.846	9. 808	11. 770			
20	23.109	1.946	3.892	5.837	7.783	9.729	11.675			
30	34.663	1.930	3.860	5. 790	7.720	9. 650	11.579			
40	46.217	1.914	3. 828	5. 742	7.656	9. 571	11.485		Inches.	Inches.
50	57.772	1.898	3.796	5.695	7.593	9.491	11.389	5	0.001	0.001
7100	$69.326{ }^{\text { }}$	1.882	3.765	5.647	7.530	9,412	11.294	15	. 012	. 012
	11.556							20	. 022	. 0231
20	23.111	1.850	3.701	5. 552	7.402	9.253	11.103	30	. 049	. 047
30	34.667	1.835	3. 669	5.504	7.338	9.173	11.008			
40	46. 222	1.819	3.637	5.456	7.275	9.094	10.912			
50	57.778	1.803	3.605	5.408	7.211	9.014	10.816			
7200	69.334	1. 787	3.574	5.360	7.147	8.934	10.721		72°	73°
10	11.557	1.771	3.542	5.312	7.083	8. 854	10.625			
. 20	23.114	1.755	3. 509	5. 264	7.019	8. 774	10.528			
30	34.670	1.739	3.477	5.216	6.955	8. 694	10.432	5	0.001	0.001
40	46. 227	1. 723	3. 445	5.168	6.891	8. 614	10.336	10	. 005	. 005
50	57.784	1.707	3.413	5.120	6.826	8.533	10.240	15 20	$\begin{aligned} & .011 \\ & .020 \end{aligned}$. 011
7300	69.341	1.691	3.381	5.072	6.762	8.453	10.144	25	. 031	. 029
10	11.558	1.674	3.349	5.024	6.698	8.373	10.047			
20	23.116	1. 658	3.317	4.975	6. 634	8.292	9.950			
30	34.674	1.642	3.284	4.927	6.569	8.211	9.853			
40	46.232	1.626	3.252	4.878	6.504	8.131	9.757			
50	57.790	1.610	3. 220	4.830	6.440	8.050	9.660		74°	75°
$74 \quad 00$	69.348	1.594	3.188	4.782	6.376	7.970	9.563			
10	11.559	1.578	3. 155	4.733	6.311	7.889	9. 466	5	0.001	0.001
20	23.118	1. 562	3.123	4.685	6. 246	7.808	9. 369	10	. 004	. 004
30	34.677	1.545	3.091	4.636	6.181	7.727	9. 272	15	. 010	. 009
40	46. 236	1.529	3. 058	4.587	6.116	7.645	9. 175	20	. 018	. 017
50	57.796	1.513	3.026	4.539	6.052	7.565	9.077	25 30	. 028	. 026
7500	69.355	1.497	2.993	4.490	5.987	7.484	8.980			
10	11.560	1. 480	2.961	4.441	5. 922	7.402	8. 882			
20	23.120	1.464	2.928	4. 392	5.856	7.321	8.785			
30	34.681	1.448	2. 896	.4.344	5.792	7.240	8. 687			
40	46. 241	1.432	2. 863	4.295	5.726	7.158	8. 590		76°	77°
50	57.801	1.415	2.831	4.246	5.661	7.077	8.492			
$76 \quad 00$	69.361	1.399	2. 798	4.197	5.596	6.995	8.394	5	0.001	0.001
10	11.561	1.383	${ }^{4} 2.765$	4.148	5. 530	6.913	8. 296	15	. 009	. 008
20	23.122	1.366	2.733	4.099	5. 465	6.832	8.198	20	. 016	. 015
30	34.683	1. 350	2.700	4.050	5.400	6.750	8.099	25	. 025	. 023
40	46.244	1.334	2.667	4.001	5.334	6.668	8.002	30	. 036	. 033
50	57.806	1.317	2.634	3.952	5. 269	6.586	7.903			
7700	69.367	1. 301	2.602	3. 903	5. 204	6.505	7.805			

Table 7.-Coordinates for projection of maps (scale $\frac{{ }_{6 \frac{1}{3}} \frac{1}{8} \sigma}{}$)-Continued.
[From Smithśonian Geographical Tables.]

Latitude of parallel.	Meridional distances from even degree parallels.	Abscissas of developed parallel.						Ordinates of developed parallel.		
		5^{\prime} longitude.	$\begin{gathered} 10^{\prime} \text { longi- } \\ \text { tude. } \end{gathered}$	$\begin{aligned} & 15 \text { 'longi- } \\ & \text { tude. } \end{aligned}$	20^{\prime} longitude.	$\begin{gathered} 25 \text { longi- } \\ \text { tude. } \end{gathered}$	$\begin{aligned} & 30^{\prime} \text { longi- } \\ & \text { tude. } \end{aligned}$			
$\begin{array}{cc} \circ & \prime \\ 77 & 00 \end{array}$	Inches. 69.367	Inches. 1.301	Inches. 2.602	Inches. 3. 903	Inches. 5.204	Inches. 6.505	Inches. 7.805	Longitude interval.	77°	78°
10	11.562	1.284	2.569	3.854	5.138	6.423	7.707			
20	23.124	1.268	2.536	3.804	5. 072	6.341	7.609			
30	34.686	1.252	2.503	3. 755	5.006	6.258	7.510			
40	46.248	1.235	2. 470	3.706	4. 941	6.176	7.411			
	57.810	1.219		3.656		6.094	7.313	[5	$\begin{array}{r}0.001 \\ -.004 \\ \hline\end{array}$	0.001 .003
$78 \quad 00$	69.373	1. 202	2.405	3.607	4.810	6.012	7.214	15 20	. 008	. 008
10	11. 563	1.186	2.372	3.558	4.744	5.930	7.115	25 30	. 023	. 021
20	23.126	1.169	2.339	3.508	4.678	5.847	7.016			
30	34.689	1.153	2.306	3.459	4.612	5.765	6.918			
40	46.252	1.136	2.273	3.410	4. 546	5.683	6.819			
50	57.814	1.120	2.240	3.360	4.480	5.600	6.720			
$79 \quad 00$	69.377	1.104	2.207	3.311	4.414	5.518	6.621		79°	80°
10	11.564	1.087	2.174	3. 261	4.348	5.435	6.522			
20	23.127	1.070	2.141	3.211	4.282	5.352	6.422			
30	34.691	1.054	2.108	3.162	4.216	5.270	6.323			0.001
40	46.255	1.037	2.075	3.112	4.150	5.187	6. 224	10 15	. 0003	. 003
50	57.818	1.021	2.042	3.062	4.083	5.104	6.125	15 20	. 013	. 0061
$80 \quad 00$	69.382	1.004	2.009	3.013	4.017	5.022	6.026	25 30	.020 .028	. 018

Table 8.-Coordinates for projection of maps (scale ${ }_{6 \frac{1}{2} \delta \sigma}$).

Table 8.-Coordinates for projection of maps (scale $\frac{\left.{ }^{62 \frac{1}{5} 00}\right) \text {-Continued. }}{}$

Table 8.-Coordinates for projection of maps (scale $\frac{1}{62 \frac{1}{500}}$)-Continued.
[From Smithsonian Geographical Tables.]

$\begin{gathered} \text { Lati- } \\ \text { tude of } \\ \text { parallel. } \end{gathered}$	Meridio-	Abscissas of developed parallel.						Ordinates of developed parallel.				
	even	$2 \frac{1}{2}^{\prime}$ longi-	5^{\prime} longi-	719${ }^{\prime}$ longi-	10^{\prime} longi-	$12 \frac{1}{8}^{\prime}$ lon-	15'longi-					
$\begin{array}{cc}\circ & \prime \\ 33 & 0 \\ & 0 \\ & 10 \\ & 1 \\ & 20 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ 5 \\ & 5\end{array}$	Inches.	Longitude interval.	33°	34°								
		2.453	4.906	7.359	9.812	12.265	14.718 14.704 14.690					
	5.822	2.451	4.901	7.352	9.802	12.253						
	11.643	2.448	4.897	7.345	9.793	12.241						
	17.465	2.446	4.892	7.338	9.784	12.230	14.676					
	23.287	2.444	4.887	7.331	9.774	12.218	14.662	,	Inches.	Inches.		
	29.109	2.441	4.882	7.324	9.765	12.206	14.648					
	34.930	2.439	4. 878	7.317	9.756	12.195	14.633	$2 \frac{1}{8}$	0.000	$\begin{array}{r} 0.000 \\ .002 \end{array}$		
		2.437	4.873	7.310	9. 746	12.183	14.619	5	. 002			
		2.434	4.868	7.303	9.737	12.171	14.605	712	. 004	$\begin{aligned} & .002 \\ & .004 \end{aligned}$		
		2.432	4. 864	7.296	9.728	12.160	14.591	10^{2}	. 008	. 008		
		2.430	4.859	7.289	9. 718	12.148	14.577	$12{ }^{\frac{1}{2}}$. 012	. 012		
		2.427	4.854	7.282	9.709	12.136	14. 563	$15^{\frac{2}{2}}$. 017	. 018		
$34 \begin{array}{r}00 \\ \\ 05 \\ 10 \\ 15 \\ 20 \\ \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 50 \\ \\ \\ 55\end{array}$		2.425	4. 850	7.275	9.700	12.124	14.549	35°				
	5.823	2.423	4.845	7.267	9.690	12.112	14.535					
	11.645	2. 420	4.840	7.260	9.680	12.100	14. 520	1 Inches.				
	17.468	2. 418	4.835	7.253	9.671	12.088	14.506	$2 \frac{1}{8}$				
	23.291	2.415	4.831	7.246	9.661	12.076	14.492		0.000			
	29.113	2.413	4.826	7.239	9.652	12.064	14.477	5	. 002			
	34.936	2.411	4.821	7.231	9.642	12.052	14.463	$10^{7 \frac{1}{4}}$				
		2. 408	4.816	7.224	9.632	12.040	14.448	10	$.008$			
		2.406	4.811	7.217	9.623	12.028	14.434	$12 \frac{1}{1}$. 012			
		2.403	4.807	7.210	9.613	12.016	14.42014.405	15 . 018				
		2.401	4.802	7.203	9. 604	12.004						
		2.399	4. 797	7.195	9.594	11.992	14.391					
$35 \begin{array}{rr}00 \\ & 05 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 35 \\ 40 \\ & 45 \\ & 50 \\ & 55\end{array}$		2.396	4. 792	7.188	9.584	11.980	14.376					
	5.824	2.394	4. 787	7.181	9.574	11.968	14.362		35°	36°		
	11.647	2.391	4. 782	7.174	9.565	11.956	14.347	Longitude interval.				
	17.471	2.389	4. 777	7.166	9.555	11.944	14.332					
	23.294	2.386	4.773	7.159	9.545	11.931	14.318					
	29.118	2.384	4. 768	7.151	9.535	11.919	14.303					
	34.942	2.381.	4.763	7.144	9.525	11.907	14.288					
		2.379	4.758	7.137	9.516	11.895	14.273					
		2.376	4. 753	7.129	9.506	11.882	14.259	,	Inches.	Inches 0.001		
		2.374	4. 748	7.122	9.496	11.870	14.244					
		2.372	4.743	7.115	9.486	11.858	14.229	21 $\frac{1}{8}$	0.000			
		2.369	4.738	7.107	9.476	11.845	14.214	5 7	.002 .004	$\begin{array}{r} 0.001 \\ .002 \end{array}$		
$36 \begin{array}{ll}36 & 00 \\ & 05 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 35 \\ 40 \\ 45 \\ & 45 \\ & 50 \\ & 55\end{array}$		2.367	4. 733	7.100	9.466	11.833	14. 200	10	. 008	. 008		
	5. $8^{\circ} 24$	2.364	4.728	7.092	9.456	11.820	14.185	121 $\frac{1}{1}$. 012	. 013		
	11.649	2.362	4.723	7.085	9.446	11.808	14.169	15	. 018	. 018		
	17.473	2. 359	4.718	7.077	9.436	11.795	14.154	37°				
	23.297	2.357	4.713	7.070	9.426	11.783	14.139					
	29.122	2.354	4.708	7.062	9.416	11.770	14.124					
	34.946	2.352	4.703	7.055	9.406	11.758	14. 109	1				
		2.349	4.698	7.047	9.396	11.745	14.094					
		2.346	4.693	7.039	9.386	11.732	14.079	$2 \frac{1}{8}$	$\begin{array}{r} \text { Inches. } \\ 0.001 \end{array}$			
		2.344	4.688	7.032	9.376	11.720	14.064	5	. 002			
		2.341	4.683	7.024	9.366	11.707	14.048	$7 \frac{1}{8}$. 005			
		2.339	4.678	7.017	9.356	11.694	14.033	10	. 008			
$37 \quad 00$		2.336	4.673	7.009	9.345	11.682	14.018	15	. 01018			

Table 8.-Coordinates for projection of maps (scale ${ }_{6 \frac{1}{2} \sigma \pi}$) -Continued.
[From Smithsonian Geographical Tables.]

Table 8.-Coordinates for projection of maps (scale ${ }_{6 \frac{1}{2} \frac{1}{5 \sigma \pi}}$) -Continued.
[From Smithsonian Geographical Tables.]

Table 8.-Coordinates for projection of maps (scale ${ }_{6 \overline{2}^{\frac{1}{5}} 00}$)-Continued.
[From Smithsonian Geographical Tables.]

Table 9.-Coordinates for projection of maps (scale $\left.{ }_{\ddagger \frac{1}{80 \sigma \sigma}}\right)^{\text {a }}$ a
[Prepared by S. S. Gannett.]

 lowing cases. Scale ${ }_{2 \pi} \frac{1}{\delta \delta \%}:$ For a given latitude the meridional distance for a certain latitude interval and the abscissas and ordinates for a certain longitude interval are double the values given in the table. Scale ${ }^{\frac{1}{\delta} \delta \sigma}$: For a given latitude the meridional distance for a certain latitude interval and the abscissas and ordinates for a certain longitude interval are half the values given in the table.

Table 9.-Coordinates for projection of maps (scale ${ }_{48 \frac{1}{0} 0 \mathrm{D}}$)-Continued.

Table 9.-Coordinates for projection of maps (scale $\left.\Psi^{\frac{1}{8} 00 \sigma}\right)$-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.			
	Longitude interval.								
	$2^{\frac{1}{2}}$	5^{\prime}	${ }^{7 \frac{1}{2}}$	10^{\prime}	15^{\prime}	Longitude interval.	Inch.		
-	$\begin{array}{r} \text { Inches. } \\ 3.264 \\ .261 \\ .259 \\ .258 \\ .256 \end{array}$	Inches.$\begin{array}{r} 6.528 \\ .522 \\ .519 \\ .517 \\ .511 \end{array}$	$\begin{gathered} \text { Inches. } \\ 9.792 \\ .783 \\ .779 \\ .775 \\ .766 \end{gathered}$	Inches. 13.056	Inches.	5	0.002		
$\begin{array}{ll}31 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ & 10\end{array}$					$\begin{array}{r} 19.584 \\ .567 \end{array}$				
				$\begin{array}{r} 13.056 \\ .044 \end{array}$		$7 \frac{1}{2}$			
				.039.033	. 558	15	. 010		
					. 550		. 022		
20	3.253	6. 505	9.757	13.010	19.515	Latitude. interval.	Meridional distance.		
${ }_{25}^{221}$. 251	. .499	. 7743	12.999	. 498				
						Inches.			
30	. 247	. 494	. 741	. 988	. 481	2	1.5153.031		
						3			
35	3. 244	6. 488 '	9. 732	12.976	19.464		4.545 6. 062		
40	. 243	. 485	. 728	. 970	. 455	5	7.5789.093		
	$\begin{array}{r} .241 \\ 230 \end{array}$	$\begin{array}{r} .700 \\ .482 \\ .477 \end{array}$	$\begin{aligned} & .723 \\ & .715 \end{aligned}$	$\begin{aligned} & .964 \\ & .953 \end{aligned}$	$\begin{array}{r} .447 \\ .430 \end{array}$	6			
45						7	10. 609		
						8	12. 124		
505215550	$\begin{array}{r} 3.236 \\ .234 \\ .233 \\ .230 \end{array}$	6. 471	9. 707	12.942	19.413	10	$\begin{aligned} & \begin{array}{l} 15.640 \\ 15.156 \end{array} \end{aligned}$		
		$\begin{aligned} & .468 \\ & .465 \\ & .459 \end{aligned}$	$\begin{array}{r} .702 \\ .697 \\ .688 \end{array}$	$\begin{array}{r} .936 \\ .930 \\ .918 \end{array}$					
					$\begin{aligned} & .395 \\ & .377 \end{aligned}$	Longitude. interval.	Inch.		
$\begin{array}{rr}3200 \\ 05 \\ 073 \\ & 10 \\ & 15\end{array}$	3. 230	6.459	9. 688	12.918	19.377	,			
	. 2227	.453.450	. 680	.906	. 3550	${ }^{5}$	0.002		
							. 006		
	$\begin{array}{r} .223 \\ .220 \end{array}$	$\begin{array}{r} .447 \\ .441 \end{array}$. 670	. 8882	.341 .323	15	. 010		
20	3.218	6. 435	9.652	12.870	19.305		Latitude interval.	Meridional distance.	
${ }_{25}^{22 \frac{1}{2}}$. 644	. 8684	. 298				
30	$\begin{aligned} & .214 \\ & .212 \end{aligned}$	$\begin{array}{r} .429 \\ .423 \end{array}$	$.644$	$.858 \text { ? }$	$.287$		Inches. 1. 516		
						1			
35	3.208	6. 417	9. 625	12.834	19. 251	$\stackrel{2}{3}$	3.032 4.547		
${ }^{371} 4$. 207	$\begin{array}{r} .414 \\ .411 \end{array}$. 621	. 828		4	6. ${ }^{\text {4. }} 063$		
				. 822	. 233	4	6. 063		
45	. 202	. 405	. 608			6 9.095 7 10.611			
50	3. 200	6. 400	9. 600	12. 799	19.199	$\begin{array}{r}8 \\ 9 \\ \hline\end{array}$	12.127		
$52 \frac{1}{2}$. 198	. 396	. 595	. 793	. 189		$\begin{aligned} & 13.643 \\ & 15.159 \end{aligned}$		
5560	$\begin{array}{r} .197 \\ .194 \end{array}$	$\begin{aligned} & .393 \\ & .387 \end{aligned}$	$\begin{array}{r} .590 \\ .581 \end{array}$	$.787$. 180	10			
				$.775$. 162	Longitude interval.	Inch.		
$\begin{array}{ll}33 & 00 \\ & 05 \\ & 07 \\ & 07 \\ & 10 \\ & 15 \\ & 15\end{array}$	3. 194	6. 387	9. 581	12.775	19.162				
	. 191	. 3879	. 5768	. 763	. 136				
						5			
	. 188	. 376	. 563	. 751	. 127	$\stackrel{5}{7 \frac{1}{2}}$	0.003.006		
	. 185	. 370	. 554	. 739	. 109	${ }^{7 \frac{1}{2}}$			
						15	. 023		
20	3. 182	6. 364	9.545	12. 727	19.090				
$22 \frac{1}{2}$. 180	. 360	. 540	. 720	. 080				
${ }_{30}^{25}$. 1786	.357 .351	. 5336	.714 .702	. 071	interval.	distance.		
						,	Inches.		
35	3.172	6. 345	9.517	12.690	19.035	1	1.516		
$37 \frac{1}{2}$. 171	. 342	. 513	. 684	. 026	2	3. 032		
40	. 169	. 339	. 508	. 678	. 017	3	4. 548		
45	. 166	. 333	. 499	. 665	18.998	4	6. 065		
						5	7. 580		
						6	9.097		
50	3. 163	6. 327	9. 490	12.653	18.980	7	10.613		
$52 \frac{1}{2}$. 162	. 324	. 485	. 647	. 971	8	12.129		
55	. 160	. 320	. 481	. 641	. 961	9	13.645		
60	. 157	. 314	. 472	. 629	. 943	10	15. 161		

Table 9.-Coordinates for projection of maps (scale $\frac{\left.{ }_{480}^{880}\right)}{}$-Continued.

$\begin{aligned} & \text { Latitude } \\ & \text { of } \\ & \text { parallel. } \end{aligned}$	Abscissas of developed parallel.					Ordinates of developed parallel.	
	Longitude interval.						
	$2^{22^{\prime}}$	5^{\prime}	${ }^{72^{\prime}}$. 10^{\prime}	15^{\prime}	Longitude interval.	Inch.
\circ 34 300 05 072 07	$\begin{array}{r} \text { Inches. } \\ 3.157 \\ .154 \\ .52 \\ .151 \\ .148 \end{array}$	$\begin{array}{r} \text { Inches. } \begin{array}{c} \text {. } \\ 61314 \\ .309 \\ .305 \\ .302 \\ .296 \end{array} \end{array}$	$\begin{array}{r} \text { Inches. } \\ 9.472 \\ .462 \\ .457 \\ .453 \\ .444 \end{array}$	Inches.12.629.617.610.604.592	Inches. 18.943 .925 .915 .906 . 888	,	
						${ }_{7}^{5}$	0.003 .006
							. 0006
						15	. 023
$\begin{aligned} & 20 \\ & 22 \frac{1}{21} \\ & 255 \\ & 30 \end{aligned}$	$\begin{array}{r} 3.145 \\ .143 \\ .142 \\ .139 \end{array}$	$\begin{gathered} 6.290 \\ .286 \\ .283 \\ .277 \end{gathered}$	$\begin{array}{r} 9.434 \\ .430 \\ .425 \\ .416 \end{array}$	$\begin{array}{r} 12.579 \\ .572 \\ .567 \\ .554 \end{array}$	$\begin{array}{r} 18.869 \\ .899 \\ .850 \\ .831 \end{array}$	Latitude Interval.	Meridional distance.
							Inches.
							1. ${ }_{3} .516$
$\begin{aligned} & 35 \\ & 37 \frac{17}{2} \\ & 40 \\ & 45 \end{aligned}$	$\begin{array}{r} 3.135 \\ .134 \\ .132 \\ .129 \end{array}$						3. 4.548
		$\begin{aligned} & 6.271 \\ & \therefore 268 \\ & .264 \\ & .258 \end{aligned}$	$\begin{array}{r} 9.406 \\ .402 \\ .396 \\ .387 \end{array}$	$\begin{array}{r} 12.542 \\ .535 \\ .559 \\ .517 \end{array}$	$\begin{array}{r} 18.813 \\ .803 \\ .793 \\ .775 \end{array}$	4	${ }^{4} .065$
						5	7.581
						${ }^{6}$	$\begin{array}{r}9.096 \\ 10.613 \\ \\ \hline\end{array}$
							12.130
		$\begin{array}{r} 6.252 \\ .249 \\ .246 \\ .240 \end{array}$	$\begin{array}{r} 9.378 \\ .374 \\ .369 \\ .360 \end{array}$	$\begin{array}{r} 12.504 \\ .498 \\ .492 \\ .479 \end{array}$	$\begin{array}{r} 18.756 \\ .747 \\ .788 \\ .719 \end{array}$	10	${ }^{13.646}$
$\begin{aligned} & 50 \\ & 50{ }_{2}^{2} \\ & 552_{2} \\ & 60 \end{aligned}$	$\begin{array}{r} 3.126 \\ .124 \\ .123 \\ .120 \end{array}$					10	15.162
							Inch.
35$\begin{array}{r}00 \\ 05 \\ 07 \\ 10 \\ 10 \\ 15\end{array}$						$7{ }^{7}$1010	0.003.006.010.023
	$\begin{array}{r} 3.120 \\ .117 \\ .115 \\ .114 \\ .110 \end{array}$	$\begin{array}{r} 6.240 \\ .233 \\ .230 \\ .227 \\ .220 \end{array}$	$\begin{array}{r} 9.360 \\ \begin{array}{r} 350 \\ .345 \\ .340 \\ .330 \end{array} \end{array}$	$\begin{array}{r} 12.479 \\ .466 \\ .460 \\ .454 \\ .441 \end{array}$	$\begin{array}{r} 18.719 \\ .699 \\ .690 \\ .681 \\ .661 \end{array}$		
2020222$22^{2}$30	$\begin{array}{r} 3.107 \\ .105 \\ .104 \\ .100 \end{array}$	$\begin{gathered} 6.214 \\ .211 \\ .208 \\ .201 \end{gathered}$	$\begin{aligned} & 9.321 \\ & .317 \\ & .312 \\ & .302 \end{aligned}$	$\begin{array}{r} 12.428 \\ .422 \\ .415 \\ .402 \end{array}$	$\begin{array}{r} 18.642 \\ .633 \\ .623 \\ .604 \end{array}$	Latitude interval.	Meridional
							Inches.
$\begin{aligned} & 35 \\ & 37 \frac{1}{2} \\ & 40 \\ & 45 \end{aligned}$	$\begin{array}{r} 3.097 \\ .096 \\ .094 \\ .091 \end{array}$						$\begin{array}{r}\text { cher } \\ \substack{1.516 \\ 3.033} \\ \hline\end{array}$
		$\begin{array}{r} 6.195 \\ .192 \\ .188 \\ .182 \end{array}$	$\begin{array}{r} 9.292 \\ .288 \\ .283 \\ .273 \end{array}$	$\begin{array}{r} 12.390 \\ .334 \\ .377 \\ .364 \end{array}$	$\begin{array}{r} 18.585 \\ .576 \\ .5656 \\ .546 \end{array}$	1 3 4	4.549 6
						4	6.067 7.583
						6	9.100
						7	10.616
50502555060	$\begin{array}{r} 3.088 \\ .086 \\ .084 \\ .082 \end{array}$	$\begin{array}{r} 6.176 \\ .172 \\ .169 \\ .163 \end{array}$	$\begin{array}{r} 9.263 \\ .258 \\ .254 \\ .244 \end{array}$	$\begin{array}{r} 12.351 \\ .345 \\ .338 \\ .326 \end{array}$	$\begin{array}{r} 18.527 \\ .517 \\ .508 \\ .489 \end{array}$		12.133
						10	15.164
						Longi-	
$\begin{array}{ll}36 & 00 \\ 005 \\ 007 \\ & 10 \\ \\ 15\end{array}$				$\begin{array}{r} 12.326 \\ .313 \\ .306 \\ .300 \\ .287 \end{array}$		$\begin{gathered} \text { tude } \\ \text { interval. } \end{gathered}$	Inch.
	$\begin{array}{r} 3.082 \\ .078 \\ .076 \\ .075 \\ .072 \end{array}$	$\begin{array}{r} 6.163 \\ .156 \\ .153 \\ .150 \\ .144 \end{array}$	$\begin{array}{r} 9.244 \\ .234 \\ 230 \\ .225 \\ .215 \end{array}$		$\begin{array}{r} 18.489 \\ .469 \\ .459 \\ .450 \\ .431 \end{array}$		
						5	
						${ }_{7 \frac{1}{2}}$	0.003 .006
						10^{2}	. 010
						15	. 024
202022253030	$\begin{gathered} 3.068 \\ .067 \\ .065 \\ .062 \end{gathered}$	$\begin{array}{r} 6.137 \\ .134 \\ .130 \\ .124 \end{array}$	$\begin{array}{r} 9.205 \\ .200 \\ .195 \\ .185 \end{array}$	$\begin{array}{r} 12.274 \\ .268 \\ .260 \\ .247 \end{array}$	$\begin{array}{r} 18.411 \\ .401 \\ .300 \\ .371 \end{array}$		
							Meridional distance.
						interval.	
3537304045	$\begin{gathered} 3.058 \\ .057 \\ .055 \\ .052 \end{gathered}$	$\begin{array}{r} 6.117 \\ .114 \\ .110 \\ .104 \end{array}$	$\begin{array}{r} 9.176 \\ .171 \\ .166 \\ .156 \end{array}$	$\begin{array}{r} 12.234 \\ .228 \\ .221 \\ .208 \end{array}$	$\begin{array}{r} 18.351 \\ .342 \\ .332 \\ .312 \end{array}$	13345678910	Inches. 4.551 7. 584 $\begin{array}{r}9.102 \\ 10.619 \\ \hline\end{array}$ 12. 13.65 13. 65 15.169
5050555060	$\begin{array}{r} 3.048 \\ .047 \\ .045 \end{array}$	$\begin{gathered} 6.097 \\ .094 \\ : .091 \\ : 084 \end{gathered}$	$\begin{array}{r} 9.146 \\ .141 \\ .136 \\ .126 \end{array}$	$\begin{array}{r} 12.194 \\ .188 \\ .182 \\ .169 \end{array}$	$\begin{array}{r} 18.292 \\ .282 \\ .272 \\ .253 \end{array}$		

Table 9.-Coordinates for projection of maps (scale $\operatorname{4}^{\frac{1}{0} 0 \sigma}$)—Continued.

Table 9.-Coordinates for projection of maps (scale $\frac{1}{4800 \gamma}$)-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.	
	Longitude interval.						
	$2 \frac{1}{2}^{\prime}$	5^{\prime}	${ }^{7 \frac{1}{2}}$	10^{\prime}	15^{\prime}	Longitude interval.	Inch.
\bigcirc						'	\cdots
$\begin{array}{ll}40 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ & 10 \\ & 15\end{array}$	$\begin{array}{r} 2.919 \\ .915 \\ .913 \\ .912 \\ .908 \end{array}$	$\begin{array}{r} 5.837 \\ .830 \\ .826 \\ .823 \\ .816 \end{array}$	$\begin{array}{r} 8.755 \\ .745 \\ .740 \\ .734 \\ .723 \end{array}$	$\begin{array}{r} 11.674 \\ .660 \\ .653 \\ .646 \\ .631 \end{array}$	17.514.490	${ }_{5}^{5}$	- 0.003
					. 479	10	$.011$
					. 469		
15	2.904	5.808	8.712	11.616	17.424	atitude	Meridional distance.
20						interval.	
	.902.900	.8801.794	$\begin{array}{r} .700 \\ .702 \\ .691 \end{array}$. 609	. .403		Inches.
25				$\begin{array}{r} .602 \\ .588 \end{array}$		'	
30	. 897					1	1.518
						2	3. 035
35	2.894	5.787	8.680	11.574	17.361	4	4. 5570
$37 \frac{1}{2}$. 8982	. 784	.675.679	. 567		$\stackrel{4}{5}$	6.070 7.588
40	. 890	. 780		$\begin{array}{r} .560 \\ .545 \end{array}$. 351	${ }_{6}$	
45	. 886		. 659		. 317	7	$\begin{array}{r} 9.106 \\ 10.624 \\ 12.143 \\ 13.660 \\ 15.178 \end{array}$
						8	
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \\ & 60 \end{aligned}$	2.883	5.765	8. 648	11.530	17.295	9 10	
	. 881	$\begin{array}{r} .762 \\ .758 \end{array}$. 523		10	
	. 879		$\begin{array}{r} .04 Z \\ .636 \\ .625 \end{array}$	$\begin{array}{r} .516 \\ .501 \end{array}$	$\begin{aligned} & .273 \\ & .251 \end{aligned}$		
	. 875	. 750				Longitude interval.	Inch.
$\begin{array}{ll}41 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ & 10 \\ & 15\end{array}$	2.875	5.750	8.625	11. 501	17.251	5	
	.872 .870	. 7443	.614.609.604		. 2229		
	. 870			. 486		${ }_{7 \frac{1}{2}}$. 006
	. 868	.736.729	$\begin{array}{r} .604 \\ .594 \end{array}$.472.458	. 208	10^{2}	. 011
	. 864					15	. 025
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 2.861 \\ .859 \\ .857 \\ .854 \end{array}$	$\begin{array}{r} 5.722 \\ .718 \\ .714 \\ .707 \end{array}$	$\begin{array}{r} 8.582 \\ .577 \\ .572 \\ .561 \end{array}$	11.443 .436 .428	$\begin{array}{r} 17.165 \\ .154 \\ .143 \\ .121 \end{array}$	Latitude interval.	Meridional distance.
						1	Inches.
$\begin{aligned} & 35 \\ & 37 \frac{1}{2} \\ & 40 \\ & 45 \end{aligned}$	$\begin{array}{r} 2.850 \\ .848 \\ .846 \\ .843 \end{array}$	$\begin{array}{r} 5.700 \\ .696 \\ .692 \\ .685 \end{array}$	$\begin{array}{r} 8.550 \\ .544 \\ .539 \\ .528 \end{array}$	11.399	17.099	2	3. 4.554
				. 392	. 088	4	
							6. 072
				. 370	. 055	5	7.590 9.108
						7	10.626
50	2.839	5.678	8.517	11.355	17.033	- 9	$\begin{aligned} & 13.140 \\ & 15.186 \\ & 15.181 \end{aligned}$
$52 \frac{1}{2}$. 8.837	$\begin{aligned} & .674 \\ & .670 \\ & .663 \end{aligned}$	$\begin{aligned} & .510 \\ & .505 \\ & .494 \end{aligned}$	$\begin{array}{r} 1.300 \\ .347 \end{array}$	- 021		
55	$\begin{aligned} & .801 \\ & .835 \\ & .831 \end{aligned}$			$\begin{array}{r} .347 \\ .340 \\ .326 \end{array}$	$\begin{array}{r} .021 \\ 16.989 \end{array}$		
						Longitude interval.	
$\begin{array}{ll}42 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ & 10 \\ & 15\end{array}$	$\begin{array}{r} 2.881 \\ .827 \\ .826 \\ .824 \\ .820 \end{array}$						Inch.
		$\begin{array}{r} 5.663 \\ .655 \\ .652 \\ . .648 \\ .641 \end{array}$	$\begin{array}{r} 8.494 \\ .483 \\ .478 \\ .472 \\ .462 \end{array}$	$\begin{array}{r} 11.326 \\ .311 \\ .304 \\ .296 \\ .282 \end{array}$	$\begin{array}{r} 16.989 \\ .966 \\ .956 \\ .944 \\ .923 \end{array}$		
						${ }_{7 \frac{1}{2}}$. 006
						10^{2}	. 011
	$\begin{array}{r} 2.817 \\ .815 \\ .813 \\ .809 \end{array}$					15	. 025
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$		$\begin{array}{r} 5.634 \\ .630 \\ .626 \\ .618 \end{array}$	$\begin{array}{r} 8.450 \\ .444 \\ .439 \\ .428 \end{array}$	11.267 . 259 .237	$\begin{array}{r} 16.901 \\ .889 \\ .878 \\ .855 \end{array}$?	
						Latitude interval.	Meridional distance.
$\begin{aligned} & 35 \\ & 37 \frac{1}{2} \\ & 40 \\ & 45 \end{aligned}$	$\begin{array}{r} 2.805 \\ .804 \\ .802 \\ .798 \end{array}$	$\begin{array}{r} 5.611 \\ .608 \\ .604 \\ .597 \end{array}$	$\begin{array}{r} 8.417 \\ .412 \\ .406 \\ .395 \end{array}$	$\begin{array}{r} 11.222 \\ .215 \\ .208 \\ .192 \end{array}$	$\begin{array}{r} 16.833 \\ .823 \\ .812 \\ .790 \end{array}$,	Inches.
						1	1.518
						2	3. 036
						3	4. 6.073
						4	6. 073 7.591
						6	9. 109
50	$\begin{array}{r} 2.794 \\ .793 \\ .791 \\ .787 \end{array}$	$\begin{array}{r} 5.589 \\ .585 \\ .582 \\ .574 \end{array}$	$\begin{array}{r} 8.384 \\ .378 \\ .372 \\ .361 \end{array}$	$\begin{array}{r} 11.178 \\ .170 \\ .163 \\ .148 \end{array}$	$\begin{array}{r} 16.767 \\ .755 \\ .745 \\ .722 \end{array}$	7	10.627
$52 \frac{1}{2}$						8	12. 147 13. 666 15.184
55						9	
60						10	

Table 9.-Coordinates for projection of maps (scale ${ }_{48 \frac{1}{0} 00}$)-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.	
	Longitude interval.						
	$2{ }^{\prime}$	5^{\prime}	${ }^{7 \frac{1}{2}}$	10^{\prime}	15^{\prime}	Longitude interval.	Inch.
$\begin{array}{cc}\circ & \prime \\ 43 & 00 \\ 05 \\ & 07 \\ \\ 07 \frac{1}{2} \\ & 10 \\ & 15\end{array}$	Inches.$\begin{array}{r} 2.787 \\ .783 \\ .781 \\ .779 \\ .776 \end{array}$	Inches. 5.574 $\stackrel{.}{566}$.558 . 551	$\begin{gathered} \text { Inches. } \\ 8.361 \\ .349 \\ .343 \\ .338 \\ .326 \end{gathered}$	Inches.$\begin{array}{r} 11.148 \\ .132 \\ .124 \\ .117 \\ .102 \end{array}$	Inches. 16.722 - 698 . 686 .675	$\begin{gathered} 1 \\ 5 \\ 7 \frac{1}{2} \\ 10^{2} \\ 15 \end{gathered}$	$\begin{array}{r} 0.003 \\ .006 \\ .011 \\ .025 \end{array}$
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 2.772 \\ .770 \\ .768 \\ .764 \end{array}$	$\begin{array}{r} 5.543 \\ .539 \\ .535 \\ .528 \end{array}$	$\begin{array}{r} 8.314 \\ .308 \\ .303 \\ .292 \end{array}$	$\begin{array}{r} 11.086 \\ .078 \\ .070 \\ .055 \end{array}$	$\begin{array}{r} 16.629 \\ .617 \\ .606 \\ .583 \end{array}$	Latitude interval.	Meridional distance.
						,	Inches.
						1	1.519
						$\stackrel{2}{3}$	3.038 4.557
	2.760	5.520	8.280	11.040	16.560	4	6.075
${ }_{40} 37$. 758	. 516	. 274	. 032	. 5487	5	7.5949.113
45	. 756	. 505				6	
	. 752					8	$\begin{aligned} & 10.631 \\ & 12.149 \end{aligned}$
50	2.749	5.498	8.246	10.995	16.493	9	$\begin{aligned} & 13.668 \\ & 15.187 \end{aligned}$
	. 747					10	
$\begin{aligned} & 55^{\circ} \\ & 60 \end{aligned}$	$\begin{aligned} & .745 \\ & .741 \end{aligned}$	$\begin{aligned} & .490 \\ & .482 \end{aligned}$	$.235$. 964	. 446	Longitude interval.	Inch.
$44 \begin{array}{ll}00 \\ 05 \\ & 07 \frac{1}{2} \\ \\ & 10 \\ & 15\end{array}$	2.741	5.482	8.223	10.964	16.446	,	0.003
	. 737	. 4744	. 212		. 411		
	. 733			. 941		${ }_{7}{ }^{\frac{1}{2}}$. 006
		. 467	$\begin{aligned} & .200 \\ & .188 \end{aligned}$.934.918	.400.377	10	. 025
	. 730	. 459				15	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	2.726	5.451	8.177	10.902	16.354	Latitude interval.	Meridional distance.
	. 723	. 447	. 171	. 894	. 341		
	. 722	. 4434	. 1154	. 8872	. 308	'	
	. 718						Inches. 1.519
35$37 \frac{1}{2}$4045	2.714	5.428	8.142	10.856	16. 284	3	4.557
	. 712	. 424	. 136	. 848	. 272		
			. 130	. 840	. 261	$\stackrel{4}{5}$	7.595
	. 706	. 413				6	9.11410.633
						7	
50	2.702	5.405	8.108	10.810	16.215	8	$\begin{aligned} & 12.152 \\ & 13.671 \end{aligned}$
$52 \frac{1}{2}$55	. 700	. 401		. 802	. 203	9 10	
	$\begin{aligned} & .698 \\ & .695 \end{aligned}$	$\begin{aligned} & .401 \\ & .397 \\ & .390 \end{aligned}$.794.779	$\begin{array}{r} .192 \\ .169 \end{array}$	10	
$45 \begin{aligned} & \\ & 4500 \\ & \\ & \\ & 05 \\ & 07 \frac{1}{2} \\ & \\ & 10 \\ & 15\end{aligned}$		$\begin{array}{r} 5.390 \\ .382 \\ .378 \\ .374 \\ .366 \end{array}$				Longitude interval.	Inch.
	$\begin{array}{r} 2.695 \\ .691 \\ .689 \\ .687 \\ .683 \end{array}$		$\begin{array}{r} 8.084 \\ .073 \\ .067 \\ .061 \\ .049 \end{array}$	$\begin{array}{r} 10.779 \\ . .764 \\ .756 \\ . .788 \\ .732 \end{array}$	$\begin{array}{r} 16.169 \\ .146 \\ .134 \\ .092 \\ .098 \end{array}$		
						$\begin{gathered} 5 \\ 7 \frac{1}{2} \\ 10^{2} \\ 15 \end{gathered}$	$\begin{array}{r} 0.003 \\ .006 \\ .011 \\ .025 \end{array}$
202212230	$\begin{array}{r} 2.679 \\ .677 \\ .675 \\ .671 \end{array}$	$\begin{array}{r} 5.358 \\ .354 \\ .350 \\ .342 \end{array}$	$\begin{array}{r} 8.038 \\ .032 \\ .026 \\ .014 \end{array}$	$\begin{array}{r} 10.717 \\ .708 \\ .768 \\ .685 \end{array}$	16.075 .063 .027	Latitude interval.	Meridional distance.
						,	Inches.
35	$\begin{array}{r} 2.667 \\ .665 \\ .663 \\ .660 \end{array}$	$\begin{array}{r} 5.334 \\ .330 \\ .326 \\ .319 \end{array}$	$\begin{array}{r} 8.002 \\ 7.996 \\ .990 \\ .978 \end{array}$	$\begin{array}{r} 10.669 \\ .661 \\ .653 \\ .638 \end{array}$	$\begin{array}{r} 16.003 \\ 15.991 \\ .980 \\ .957 \end{array}$	1	1.3193.0384.557
$37 \frac{1}{2}$						23	
40							4.557 6.077
45						6.0777.596	
						6	9.115
${ }_{52} 50$	2.655.654	5.311	7.966	10.622	15.933	7	10.635
		. 307	. 960	. 614	. 921	8	12.154
55	. 654	. 303	. 954	- 606	. 909	9	13.673
60	. 648	. 295	. 942	. 590	. 885	10	15.192

Table 9.-Coordinates for projection of maps (scale ${ }_{4 \frac{1}{0} \sigma \bar{\sigma}}$)-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.	
	Longitude interval.						
	$2{ }^{\prime}$	$5{ }^{\prime}$	$7 \frac{1}{2}^{\prime}$	10^{\prime}	15^{\prime}	Longitude interval.	Inch.
\circ 46 00 05 07 $07 \frac{1}{2}$ 10 15	Inches. 2.648 .644 . 640 .635	Inches.5.295.287.281.279.271	Inches. 7.942 $\begin{aligned} & .930 \\ & .922 \\ & .918 \\ & .906 \end{aligned}$	$\begin{array}{r} \text { Inches. } \\ 10.590 \\ .574 \\ .562 \\ .558 \\ .542 \end{array}$	Inches. 15.885 .861 .844 .83	${ }^{7 \frac{1}{2}}$	$\begin{array}{r} 0.003 \\ .006 \\ .011 \\ .025 \\ \hline \end{array}$
	$\begin{array}{r} 2.631 \\ .630 \\ .627 \\ .623 \end{array}$	$\begin{array}{r} 5.263 \\ .259 \\ .255 \\ .247 \end{array}$	$\begin{array}{r} 7.894 \\ .888 \\ .882 \\ .870 \end{array}$	$\begin{array}{r} 10.526 \\ .518 \\ .510 \\ .494 \end{array}$	$\begin{array}{r} 15.789 \\ .777 \\ .765 \\ .741 \end{array}$	Latitude interval.	Meridional distance.
20							
$22 \frac{1}{2}$						'	Inches.
25							
30						1	$\begin{aligned} & 1.520 \\ & 3.039 \end{aligned}$
35	2. 619	5. 239	7.858	10. 478	15.717	4	4.559 6.078
$37 \frac{1}{2}$. 617	.235	. 884	. 470	$\begin{aligned} & .705 \\ & .692 \end{aligned}$		7.598
40	. 615	. 230	. 846	. 461		6	9.117
45	$\bullet .611$. 223	. 834	. 445	$\begin{aligned} & .692 \\ & .667 \end{aligned}$	7	10.637
						8	12.157
50	2.607	5.214	7.822	10.429	15.643	9	$\begin{aligned} & \begin{array}{l} 15.677 \\ 15.196 \end{array} \end{aligned}$
$52 \frac{1}{2}$. 605	. 210	. 816	. 421	. 631	10	
${ }_{60}$. 699	. 198	. 798	$\begin{aligned} & .413 \\ & .397 \end{aligned}$	$\begin{array}{r} .619 \\ .595 \end{array}$	Longitude interval.	Inch.
$\begin{array}{ll}47 & 00 \\ & 05 \\ 07 \frac{1}{2} \\ \\ 10 \\ & 15\end{array}$	2.599	5.198.190.186.182.174	7.798	10.397	15.595		
	. 595		. 786	$\begin{aligned} & .381 \\ & .373 \end{aligned}$. 571		
	. 593		. 780			$7 \frac{1}{2}$	0.003 .006
	. 591		. 774	. 373	. 547	10^{2}	. 011
	. 587		. 761	. 348		15	
20222530	2. 583	5. 166	7.749.743	10.332.324	15.498.486	Latitude interval.	Meridional distance.
	.579.575	. 158	. 737	. 299	. 449		
						,	Inches.
						1	
35	2.570	5.141	7.712	10.282	15. 423	2	3.4.5394.59
$37 \frac{1}{2}$. 568	. 137	. 706	. 274		4	
40	. 567	. 133	. 700	. 266	. 399	4	6. 079
45	. 563	. 125	. 688	. 250	. 375	5	9.119
						78	10.15812.158
50	2.559	5.117	7.676	10.234	15.351		
$52 \frac{1}{2}$.557.555	$\begin{array}{r} .113 \\ .109 \end{array}$	$\begin{array}{r} .670 \\ .663 \\ .650 \end{array}$	$\begin{aligned} & .226 \\ & .218 \\ & .201 \end{aligned}$	$\begin{array}{r} .339 \\ .326 \\ .307 \end{array}$	10	15.197
55							
60	. 550	. 100				Longitude interval.	Inch.
					15. 301		
$48 \quad 00$	2.550	5.100	7.650				
05	. 546			10.201 .185	. 277	,	
$07 \frac{1}{2}$. 544	. 088	$\begin{aligned} & .000 \\ & .632 \\ & .626 \end{aligned}$. 177	$\begin{aligned} & .265 \\ & .252 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \frac{1}{2} \\ & 10^{2} \\ & 15 \end{aligned}$	
$1{ }_{15}$							$\begin{array}{r} 0.003 \\ .006 \\ .011 \\ .025 \end{array}$
15	. 538	. 076	. 614	. 152			
20	$\begin{array}{r} 2.534 \\ .532 \\ .530 \\ .526 \end{array}$	$\begin{array}{r} 5.068 \\ .064 \\ .060 \\ .051 \end{array}$	$\begin{array}{r} 7.602 \\ .596 \\ .590 \\ .577 \end{array}$	$\begin{array}{r} 10.136 \\ .128 \\ .119 \end{array}$	$\begin{array}{r} 15.204 \\ .192 \\ .179 \\ .154 \end{array}$	Latitude interval.	Meridional distance.
$22{ }_{2}^{12}$							
30							
	$\begin{array}{r} 2.522 \\ .520 \\ .517 \\ .513 \end{array}$	$\begin{array}{r} 5.043 \\ .039 \\ .034 \\ .026 \end{array}$	$\begin{array}{r} 7.564 \\ .558 \\ .552 \\ .539 \end{array}$	$\begin{array}{r} 10.086 \\ .078 \\ .069 \\ .052 \end{array}$	15.129	,	Inches.1.520
35						3	
$37 \frac{1}{2}$. 116		3. $0 ¢ 0$4.560
40					. 103		
45					. 078	3 4.560 4 6.080	
	2.509					6	9.120
50		5.018	7.527	10.036	15.054		10.640
$52 \frac{1}{2}$.507.505	. 014	. 521	$\begin{array}{r} .028 \\ .020 \\ .003 \end{array}$		8	
55					$\begin{array}{r} .042 \\ .030 \\ .005 \end{array}$	910	13.68015.200
60	. 501	. 002	. 502				

Table 9.-Coordinates for projection of maps (scale ${ }_{48 \frac{1}{0} 00}$)-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.	
	Longitude interval.						
	22^{\prime}	5^{\prime}	${ }^{7 \frac{1}{2}}$	10^{\prime}	15^{\prime}	Longitude interval.	Inch.
\circ 49 00 05 $07 \frac{1}{2}$ 10 15 20 $22 \frac{1}{2}$ 25 30	Inches. 2.501 2.496 . 494 .492 .488	Inches.5.0024.993.989.985.976	Inches. 7.502 . 490 . 484 . 464	$\begin{array}{r} \text { Inches. } \\ 10.003 \\ 9.986 \\ .978 \\ .970 \\ .952 \end{array}$	Inches. 15.005 14.980 .967 .955 .929	,	
							0.003
						$10^{7 \frac{1}{2}}$. 0061
						10	.011 .025
	$\begin{array}{r} 2.484 \\ .482 \\ .480 \\ .476 \end{array}$	$\begin{array}{r} \text { 4. } 968 \\ .964 \\ .960 \\ .952 \end{array}$	$\begin{array}{r} 7.452 \\ .446 \\ .440 \\ .428 \end{array}$	$\begin{array}{r} 9.936 \\ .928 \\ .920 \\ .903 \end{array}$	$\begin{array}{r} 14.904 \\ .892 \\ .880 \\ .855 \end{array}$	interval.	Meridional distance.
						,	Inches.
							1.520 3.040
						$\stackrel{2}{3}$	3. 040 4.560
35	2.472	4.943	7.415	9.886	14.829	4	6.081
$37 \frac{1}{2}$. 470	. 939	. 408	. 888	. 816	5	7. 601
40	. 4676	. ${ }^{\text {. }} 9234$. 402	. 8659	. 803	6	9.121 10.641
						8	12.162
						${ }^{9}$	13.682
50	2.459	4.918	7.377	9.836	14.754	10	15.202
$52 \frac{1}{2}$. 457	. 914	. 371	. 828	. 742		
55 60	.455 .450	.910 .901	. 364	. 819	.729 .703		

Table 10.-Coordinates for the projection of maps (scale $\left.\frac{1}{12000}\right)$.
[Prepared by S. S. Gannett and George T. Hawkins.]

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.		
	Longitude interval.							
	1^{\prime}.	2^{\prime}.	$3{ }^{\prime}$.	4^{\prime}.	5'.	Longitude interval	Inch.	
- '	Inches.	Inches.	Inches.	Inches.	Inches.	'		
25 00 05 $07 \frac{1}{2}$ 10 15	5.520	11.040	16.560	22.080	27.600	1	. 000	
	. 516	. 032	. 549	. 065	. 581	2	. 002	
	. 515	. 029	. 544	. 057	. 572	3	. 003	
	. 512	. 025	. 538	. 050	. 562	4	. 006	
	. 509	. 018	. 528	. 035	. 544	5	. 009	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	5.505	11.010	16.515	22.020	27.525	Latitude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance } . \end{gathered}$	
	. 503	. 006	. 509	. 012	. 516			
	$\begin{array}{r} .505 \\ .501 \\ .497 \end{array}$.00210.995	. 503	.00521.990	. 5087			
			. 492			,	Inch	
	5.494				27.468	1	6.057	
35$37 \frac{1}{2}$4045		10.988	16.480	21.975		3	12.114 18.171	
	. 492	. 984	. 476	. 968	$\begin{array}{r} .449 \\ .430 \end{array}$	3	18.171 24.228	
	.490.486		$\begin{array}{r} .470 \\ .458 \end{array}$	$\begin{array}{r} .960 \\ .945 \end{array}$		5	24.22830.285	
$\begin{aligned} & 50 \\ & 52 \frac{2}{2} \\ & 555 \\ & 60 \end{aligned}$	5.482	10.965	16.448	21.930	27.411.401	Longi-		
	. 480	. 961	. 441	. 921				
	. 478	. 957	. 435	. 9190	. 392	tude	Inch.	
	. 475	. 950	. 424	. 900	. 373	interval.		
26.0005$07 \frac{1}{8}$1015	5.475	10. 950	16. 424	21.900	27. 373	1	. 000	
						23		
	. 469	. 9347	. 406	. 875	. 343		.002 .003	
	$\begin{array}{r} .467 \\ .463 \end{array}$	$\begin{array}{r} .933 \\ .925 \end{array}$	$\begin{array}{r} .400 \\ .389 \end{array}$	$\begin{aligned} & .867 \\ & .852 \end{aligned}$	$\begin{array}{r} .333 \\ .314 \end{array}$	45	. 006	
							. 009	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	5.459	10.918	16.377	21.835	27.294	Latitude interval.	Meridi-onal distance.	
	. 457	. 914	. 371	. 828	. 284			
	$\begin{array}{r} .455 \\ .451 \end{array}$	$\begin{array}{r} .914 \\ .910 \end{array}$. 365	. 820	. 275			
		$\begin{array}{r} .910 \\ \hline 902 \end{array}$. 353	. 805	. 255	,	Inches.	
						1	6.058	
35	5.447	10.894	16. 341	21.789	27.235	2	12.115	
$37 \frac{1}{9}$. 445	. 890	. 335	. 780	. 225	3	18.173	
40	. 443	. 887	. 330	. 773	. 216	4	24.231	
45	. 439	. 878	. 318	. 758	. 196	5	30.289	
50	5.435	10.870	16.306	21. 741	27.176			
$52{ }^{\frac{1}{2}}$. 4331	. 8663	.298 .294	.732 .725	.167 .157	Longi-	Inch.	
60	. 428	. 855	. 282	. 710	. 138	interval.		
						1		
$\begin{array}{ll}27 & 00 \\ & 05 \\ 07 \\ & 10 \\ & 15 \\ & 15\end{array}$	5.428	10.855	16.283	21.710	27.138		.000.002	
	$.422$. 8448	. 270	. 695	. 118	3		
			. 264	. 686			. 003	
	. 420	$\begin{aligned} & .839 \\ & .831 \end{aligned}$	$\begin{aligned} & .258 \\ & .247 \end{aligned}$	$\begin{array}{r} .678 \\ .662 \end{array}$. 097	4	.006.010	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 5.410 \\ .409 \\ .407 \\ .403 \end{array}$	$\begin{array}{r} 10.822 \\ .818 \\ .815 \\ .805 \end{array}$	$\begin{array}{r} 16.233 \\ .227 \\ . .220 \\ .210 \end{array}$	$\begin{array}{r} 21.645 \\ .6636 \\ .628 \\ .612 \end{array}$	$\begin{array}{r} 27.056 \\ .046 \\ .035 \\ .015 \end{array}$	Latitude interval.	Meridional distance	
						,	Inches.6.058	
						1		
35	5.399	10.798	16.198	21.595	26.995	2	12.117	
$37 \frac{1}{2}$. 397	. 794	. 191	. 588	. 984	3		
40	$\begin{array}{r} .395 \\ .395 \\ .391 \end{array}$	$\begin{array}{r} .790 \\ .782 \end{array}$	$\begin{array}{r} .185 \\ .172 \end{array}$	$\begin{array}{r} .580 \\ .562 \end{array}$	$\begin{aligned} & .974 \\ & .953 \end{aligned}$	${ }_{5}^{4}$	$\begin{aligned} & 24.235 \\ & 30.292 \end{aligned}$	
45								
50	$\begin{array}{r} 5.387 \\ .384 \\ .382 \\ .378 \end{array}$	$\begin{array}{r} 10.774 \\ .768 \\ .765 \\ .758 \end{array}$	$\begin{array}{r} 16.160 \\ .154 \\ .148 \\ .135 \end{array}$	$\begin{array}{r} 21.548 \\ .538 \\ .530 \\ .515 \end{array}$	$\begin{array}{r} 26.933 \\ .922 \\ .912 \\ .892 \end{array}$			
525								
55								
60								

Table 10.-Coordinates for the projection of maps (scale ${ }_{\frac{1}{2000}}$)-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.		
	Longitude interval.							
	1^{\prime}.	2^{\prime}.	3^{\prime}.	4^{\prime}.	5'.	Longitude interval.	Inch.	
$\begin{array}{ll}28 & 0 \\ & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ & 10 \\ & 15\end{array}$	Inches.	Inches.	Inches.	Inches.	Inches.	,		
	5.378	10.758	16.135	21.515	26.892	1	. 000	
	. 374	. 749	. 122	. 498	. 871	2	. 002	
	. 372	. 745	. 116	. 488	. 861	3	. 003	
	. 370	. 740	. 110	. 480	. 850	4	. 006	
	. 366	. 732	. 098	. 465	. 830	5	. 010	
$\begin{aligned} & 20 \\ & 22 \frac{12}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 5.362 \\ .360 \\ .358 \\ .354 \end{array}$	$\begin{array}{r} 10.724 \\ .720 \\ .715 \\ .708 \end{array}$	$\begin{array}{r} 16.085 \\ .078 \\ .072 \\ .060 \end{array}$	$\begin{array}{r} 21.448 \\ .439 \\ .430 \\ .415 \end{array}$	$\begin{array}{r} 26.810 \\ .799 \\ .789 \\ .768 \end{array}$	Latitude interval.	$\begin{array}{\|c} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{array}$	
						,	Inches.	
35	5.349	10.698	16.048	$\begin{array}{r}21.398 \\ \hline 388 \\ \hline\end{array}$	26.746735	1	6.060 12.120	
						3	18.178	
$\begin{aligned} & 3 \frac{1}{2} \\ & 4 \end{aligned}$	$\begin{array}{r} .347 \\ .345 \end{array}$	$\begin{aligned} & .694 \\ & .690 \end{aligned}$. 0345	. 380	. 775	4	24.238	
45	. 341	. 682	. 022	. 362	. 703	5	30.298	
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 5.336 \\ .334 \\ .332 \\ .328 \end{array}$	$\begin{array}{r} 10.673 \\ .668 \\ . .655 \\ .657 \end{array}$						
			$\begin{array}{r} 16.010 \\ 15.004 \\ 1998 \\ .985 \end{array}$	$\begin{array}{r} 21.348 \\ .339 \\ .330 \\ .312 \end{array}$	$\begin{array}{r} 26.683 \\ .672 \\ .662 \\ .640 \end{array}$	Longitude interval	Inch.	
						,		
2900	5.328	10.657	15.985	21.312	26.640		. 000	
	- 324	. 648		$\begin{array}{r} .295 \\ .287 \end{array}$	$\begin{array}{r} .619 \\ .608 \end{array}$	23	. 002	
	. 322							
			. 9588	$\begin{aligned} & .278 \\ & .260 \end{aligned}$. 598		. 006	
	. 315	. 630				5	. 010	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 5.310 \\ .308 \\ .306 \\ .302 \end{array}$	$\begin{array}{r} 10.621 \\ .617 \\ .612 \\ .605 \end{array}$	$\begin{array}{r} 15.932 \\ .925 \\ .920 \\ .907 \end{array}$	$\begin{array}{r} 21.242 \\ .234 \\ .225 \\ .209 \end{array}$	$\begin{array}{r} 26.553 \\ .542 \\ .532 \\ .511 \end{array}$	Latitude interval.	Meridional distance.	
						,	Inches.	
						1	6.060	
35	$\begin{array}{r} 5.298 \\ .295 \\ .294 \\ .289 \end{array}$		15.894	21.192	26.490	$\begin{aligned} & 3 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 12.121 \\ & 18.182 \\ & 24.242 \\ & 30.302 \end{aligned}$	
$37 \frac{1}{1}$		$\begin{array}{r} 10.596 \\ .591 \\ .5878 \\ .578 \end{array}$	$\begin{array}{r} .886 \\ .880 \\ .867 \end{array}$	$\begin{aligned} & .183 \\ & .174 \\ & .156 \end{aligned}$	$\begin{array}{r} 20.778 \\ .4768 \\ .445 \end{array}$			
40								
45								
	$\begin{array}{r} 5.284 \\ .282 \\ .280 \\ .275 \end{array}$							
50		$\begin{array}{r} 10.569 \\ .565 \\ .560 \\ .552 \end{array}$	$\begin{array}{r} 15.853 \\ .847 \\ .841 \\ .828 \end{array}$	$\begin{array}{r} 21.137 \\ .130 \\ .121 \\ .104 \end{array}$	$\begin{array}{r} 26.422 \\ .412 \\ .401 \\ .380 \end{array}$	Longitude interval	Inch.	
${ }_{55}^{52 \frac{1}{2}}$								
60								
$\begin{array}{ll}30 & 00 \\ & 05 \\ & 07 \frac{1}{4} \\ & 10 \\ & 15\end{array}$	$\begin{array}{r} 5.275 \\ .272 \\ .269 \\ .267 \\ .262 \end{array}$	$\begin{array}{r} 10.552 \\ .543 \\ .538 \\ .534 \\ .525 \end{array}$	$\begin{array}{r} 15.828 \\ .815 \\ .808 \\ .801 \\ .787 \end{array}$	$\begin{array}{r} 21.104 \\ .086 \\ .077 \\ .068 \\ .050 \end{array}$		12345	.000.002.003.006.010	
					$\begin{array}{r} 26.380 \\ .358 \\ .346 \\ .335 \\ .312 \end{array}$			
20224203030	$\begin{array}{r} 5.258 \\ .256 \\ .254 \\ .249 \end{array}$	$\begin{array}{r} 10.516 \\ .512 \\ .507 \\ .499 \end{array}$	$\begin{array}{r} 15.774 \\ .768 \\ .760 \\ .748 \end{array}$	$\begin{array}{r} 21.032 \\ .024 \\ .014 \\ 20.998 \end{array}$	$\begin{array}{r} 26.290 \\ .280 \\ .2687 \\ .247 \end{array}$	Latitude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}$	
						'	Inches.	
35	5.245	10.490	15.735	20.980	26.225		6.061 12.122 18	
$37 \frac{1}{2}$4040	.243.240. .236	$\begin{array}{r} .485 \\ .480 \\ .472 \end{array}$	$\begin{array}{r} .728 \\ .721 \\ .708 \end{array}$	$\begin{array}{r} .971 \\ .961 \\ .944 \end{array}$	$\begin{array}{r} .213 \\ .202 \\ .180 \end{array}$	1345 •	$\begin{aligned} & 12.122 \\ & 18.183 \\ & 24.245 \\ & 30.305 \end{aligned}$	
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 5.232 \\ .229 \\ .227 \\ .222 \end{array}$	$\begin{array}{r} 10.463 \\ .459 \\ .454 \\ .445 \end{array}$	$\begin{array}{r} 15.695 \\ .688 \\ .681 \\ .667 \end{array}$	$\begin{array}{r} 20.927 \\ .918 \\ .908 \\ .890 \end{array}$	$\begin{array}{r} 26.159 \\ .147 \\ .135 \\ .112 \end{array}$			

Table 10.-Coordinates for the projection of maps (scale $\frac{1}{12000}$)-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.		
	Longitude interval.							
	1^{\prime}.	2^{\prime}.	3^{\prime}.	4^{\prime}.	5^{\prime}.	Longitude interval.	Inch.	
$\begin{array}{ll} 31 \quad 00 \\ & 00 \\ & 05 \\ & 07 \frac{1}{9} \\ & 10 \\ & 15 \end{array}$	Inches.	Inches.	Inches.	Inches.	Inches.	,		
	5. 222	10.445	15.667	20890	26.112	1	. 000	
	. 218	. 435	. 654	. 872	. 089	2	. 002	
	. 216	. 432	. 647	. 863	. 079	3	. 003	
	. 213	. 426	. 640	. 853	. 066	4	. 006	
	. 209	. 417	. 626	. 834	. 043	5	. 010	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 5.204 \\ .202 \\ .200 \\ .195 \end{array}$	$\begin{array}{r} 10.408 \\ .404 \\ .400 \\ .390 \end{array}$	$\begin{array}{r} 15.613 \\ .605 \\ .598 \\ .585 \end{array}$	$\begin{array}{r} 20.817 \\ .807 \\ .798 \\ .780 \end{array}$	$\begin{array}{r} 26.021 \\ .009 \\ 25.998 \\ .975 \end{array}$	Latitude interval.	Meridional distance.	
						1	Inches.	
						1	6.062	
$\begin{aligned} & 35 \\ & 37 \frac{1}{2} \\ & 40 \\ & 45 \end{aligned}$	5. 190	10. 381	15.571	20.762	25.952.941	23	12.12418.187	
	. 188	-.372	. 557					
	. 186			. 743	. .929	$\stackrel{4}{5}$	24.24930.311	
	. 181			. 725	. 906			
$\begin{aligned} & 50 \\ & 52 \frac{1}{8} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 5.177 \\ .174 \\ .172 \\ .167 \end{array}$	10.353 . 348 .344	15. 530 . 523 . 516 . 502	$\begin{array}{r} 20.706 \\ .697 \\ .688 \\ .669 \end{array}$	25.883 .871 .836	Longitude interval.	Inch.	
$\begin{array}{ll}32 & 00 \\ & 05 \\ & 07 \frac{1}{4} \\ & 10 \\ & 15\end{array}$	5.167	10.334	15.502	20.669	25.836	1	.000.002	
	$\begin{aligned} & .162 \\ & .160 \end{aligned}$.325.320	$\begin{aligned} & .487 \\ & .480 \end{aligned}$. 81212	3		
				. 650			. 003	
	.158.153	$\begin{aligned} & .315 \\ & .305 \end{aligned}$	$\begin{array}{r} .473 \\ .458 \end{array}$	$\begin{aligned} & .630 \\ & .611 \end{aligned}$	$\begin{aligned} & .788 \\ & .764 \end{aligned}$	$\stackrel{4}{5}$.007.010	
2022203030	$\begin{array}{r} 5.148 \\ .146 \\ .143 \\ .139 \end{array}$	$\begin{array}{r} 10.296 \\ .291 \\ .286 \\ .277 \end{array}$	$\begin{array}{r} 15.444 \\ .437 \\ .430 \\ .416 \end{array}$	$\begin{array}{r} 20.592 \\ .582 \\ .573 \\ .554 \end{array}$	$\begin{array}{r} 25.740 \\ .728 \\ .716 \\ .693 \end{array}$	La titude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}$	
							Inches.	
						1	6. 063	
35	5.134	10.268	15.401	20.535	25.669	2 3	$\begin{aligned} & 12.127 \\ & 18.190 \end{aligned}$	
$37 \frac{1}{1}$. 131	. 263	$\begin{aligned} & .394 \\ & .387 \end{aligned}$	$.526$	$\begin{array}{r} .659 \\ .645 \\ .622 \end{array}$	3		
40	. 129	. 258				45	24. 25430.317	
45	. 124	. 249	. 373	. 498				
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 5.120 \\ .117 \\ .115 \\ .110 \end{array}$	10.239.234.229.220	$\begin{array}{r} 15.359 \\ .352 \\ .344 \\ .330 \end{array}$	$\begin{array}{r} 20.478 \\ .469 \\ .459 \\ .440 \end{array}$	$\begin{array}{r} 25.598 \\ .586 \\ .574 \\ .550 \end{array}$			
						Longitude interval.	Inch.	
3300						,		
	$\begin{array}{r} 5.110 \\ .105 \\ .103 \\ .100 \\ .096 \end{array}$	10. 220	15.330	20.440	25.550	1	. 000	
		$\begin{aligned} & .210 \\ & .206 \end{aligned}$.316.308	$\begin{array}{r} .421 \\ .411 \end{array}$	$\begin{array}{r} .020 \\ .526 \\ .514 \end{array}$. 002	
							. 003	
		$\begin{aligned} & .201 \\ & .191 \end{aligned}$	$\begin{array}{r} .301 \\ .287 \end{array}$	$\begin{array}{r} .402 \\ .382 \end{array}$	$\begin{aligned} & .502 \\ & .478 \end{aligned}$	45	.007.010	
$\begin{aligned} & 20 \\ & 22 \frac{1}{x} \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 5.091 \\ .088 \\ .086 \\ .081 \end{array}$	$\begin{array}{r} 10.182 \\ .176 \\ .171 \\ .162 \end{array}$	$\begin{array}{r} 15.272 \\ .264 \\ .257 \\ .242 \end{array}$	$\begin{array}{r} 20.363 \\ .352 \\ .342 \\ .323 \end{array}$	$\begin{array}{r} 25.454 \\ .440 \\ .428 \\ .404 \end{array}$	Latitude interval.	Meridional distance.	
						d		
						1	6. 065	
35	$\begin{array}{r} 5.076 \\ -\quad .074 \\ -.071 \\ .066 \end{array}$	$\begin{array}{r} 10.152 \\ .147 \\ .143 \\ .132 \end{array}$	$\begin{array}{r} 15.228 \\ .220 \\ .213 \\ .199 \end{array}$	$\begin{array}{r} 20.304 \\ .294 \\ .285 \\ .265 \end{array}$	$\begin{array}{r} 25.380 \\ .368 \\ .356 \\ .331 \end{array}$	${ }_{3}$	12.129	
$37 \frac{1}{8}$						3	18.193 24.258	
40						$\stackrel{4}{5}$	24.258 30.322	
45						5	30.322	
$\begin{aligned} & 50 \\ & 52 \frac{1}{8} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 5.061 \\ .059 \\ .056 \\ .052 \end{array}$	$\begin{array}{r} 10.123 \\ .118 \\ .113 \\ .103 \end{array}$	$\begin{array}{r} 15.184 \\ .177 \\ .169 \\ .155 \end{array}$	$\begin{array}{r} 20.246 \\ .236 \\ .226 \\ . .206 \end{array}$	$\begin{array}{r} 25.307 \\ .295 \\ .282 \\ .258 \end{array}$			

Table 10.-Coordinates for the projection of maps (scale $\frac{\left.\mathrm{T}_{2} \frac{1}{0} \overline{0}\right)}{}$-Continued.

Table 10.-Coordinates for the projection of maps (scale ${ }_{\frac{1}{2} \frac{1}{00 \sigma}}$)-Continued.

Table 10.-Coordinates for the projection of maps (scale ${ }_{1 \frac{1}{200 \sigma}}$)-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.				
	Longitude interval.									
	1^{\prime}.	2 .	3 '.	4^{\prime}.	5^{\prime}.	Longitude interval.	Inch.			
$\begin{array}{ll} \circ & \circ \\ 40 & 00 \\ 005 \\ 057 \\ 07 \\ & 10 \\ & 15 \end{array}$	Inches.	Inches.	Inches.	Inches.	Inches.	,				
	4.669	9.339	14.008	18.678	23.347	1	. 000			
	. 664	. 328	13.991	. 655	. 319	2	. 002			
	. 661	. 322	. 983	. 644	. 305	3	. 005			
	. 658	.316 .305	.975 .957	. 632	. 261	5	. 007			
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 4.647 \\ .644 \\ .641 \\ .635 \end{array}$	$\begin{array}{r} 9.293 \\ .288 \\ .282 \\ .271 \end{array}$	$\begin{array}{r} 13.940 \\ .931 \\ .923 \\ .906 \end{array}$	$\begin{array}{r} 18.586 \\ .575 \\ . .54 \\ . .542 \end{array}$	$\begin{array}{r} 23.233 \\ .219 \\ .205 \\ .177 \end{array}$	Latitude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}$			
						,	Inches.			
						1	6. 072			
	4.630	9.259	13.889	18.518	23.148	2	12.143			
$37 \frac{1}{2}$4045	$\begin{aligned} & .627 \\ & .624 \\ & .618 \end{aligned}$	$\begin{array}{r} .253 \\ .248 \\ .236 \end{array}$	$\begin{aligned} & .880 \\ & .871 \\ & .854 \end{aligned}$	$\begin{array}{r} .507 \\ .495 \end{array}$	$\begin{aligned} & .134 \\ & .119 \\ & .090 \end{aligned}$	345	$\begin{aligned} & 24.286 \\ & 30.358 \end{aligned}$			
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 4.612 \\ .609 \\ .606 \\ .600 \end{array}$	$\begin{array}{r} 9.224 \\ .219 \\ .213 \\ .201 \end{array}$	$\begin{array}{r} 13.837 \\ .828 \\ .819 \\ .801 \end{array}$	$\begin{array}{r} 18.449 \\ .438 \\ .426 \\ .402 \end{array}$	$\begin{array}{r} 23.061 \\ .047 \\ .032 \\ .002 \end{array}$					
						Longitude interval.	Inch.			
						,				
$41 \begin{array}{ll}41 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ & 10 \\ & 15\end{array}$	4. 600	9. 201	13.801	18.402	23.002	2	.000.002			
	. 595	. 189	. 784	. 378						
	. 592	. 183	. 775	. 368	. 958	3	. 005			
	$\begin{aligned} & .589 \\ & .583 \end{aligned}$	$\begin{aligned} & .178 \\ & .166 \end{aligned}$	$\begin{array}{r} .766 \\ .749 \end{array}$	$\begin{aligned} & .355 \\ & .332 \end{aligned}$	$\begin{array}{r} .944 \\ .915 \end{array}$	4	. 007			
						5	. 010			
$\begin{aligned} & 20 \\ & \mathbf{2 2} 2 \frac{2}{2} \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 4.577 \\ .574 \\ .571 \\ .566 \end{array}$	$\begin{array}{r} 9.154 \\ .149 \\ .143 \\ .131 \end{array}$	$13 \quad 332$.714 .697	$\begin{array}{r} 18.309 \\ .298 \\ . .266 \\ .262 \end{array}$	$\begin{array}{r} 22.886 \\ .872 \\ .857 \\ .828 \end{array}$	Latitude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}$			
						,	Inches.			
		9.119	13.679	18.239		1 2 3	$\begin{array}{r}6.072 \\ 12.145 \\ \hline\end{array}$			
	4.560	$\begin{aligned} & .114 \\ & .108 \end{aligned}$	$\begin{array}{r} .670 \\ .661 \end{array}$.227.215	22. 798	3	$\begin{aligned} & 18.218 \\ & 24.290 \\ & 30.362 \end{aligned}$			
$37 \frac{1}{4}$ 40	4.560 .557 .554				$\begin{array}{r} .784 \\ .769 \end{array}$					
45	. 548	. 096	. 644	. 192	. 740	5				
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \end{aligned}$	$\begin{array}{r} 4.542 \\ .539 \\ .536 \end{array}$	$\begin{gathered} 9.084 . \\ .078 \\ .072 \end{gathered}$	$\begin{array}{r} 13.626 \\ .617 \\ .600 \end{array}$	$\begin{array}{r} 18.168 \\ .156 \\ .145 \end{array}$	$\begin{array}{r} 22.710 \\ .695 \\ .681 \end{array}$	Longitude interval.	Inch.			
$\begin{array}{ll}42 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ 10 \\ 10 \\ & 15\end{array}$	4.530	9.060	13.591	18.122	22.652	,				
	. 524	. 049	13.572	. 098	. 6222	1				
		. 043	, 564	. 086		3 . 005	. 002			
	. 518	$\begin{aligned} & .037 \\ & .025 \end{aligned}$	$\begin{array}{r} .555 \\ .537 \end{array}$. 073	. 592		. 007			
	15.513 . 025 . 537 . 050 . .563 50									
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	4.507			9.013	13.520	18.027	22.533	Latitude interval.	$\left\lvert\, \begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}\right.$	
	. 504	. 007	1.511							
	. 501	. 002	. 502	. 003	504					
	. 495	. 990	. 484	17.979	. 474	,	Inches. 6.073 12.148 18.220 24.294 30.367 30.367			
-						12345				
35	$\begin{array}{r} 4.489 \\ .486 \\ .483 \\ .477 \end{array}$	$\begin{array}{r} 8.978 \\ .972 \\ .966 \\ .954 \end{array}$	$\begin{array}{r} 13.467 \\ .458 \\ .449 \\ .431 \end{array}$	$\begin{array}{r} 17.956 \\ .944 \\ .932 \\ .908 \end{array}$	$\begin{array}{r} 22.445 \\ .430 \\ .415 \\ .385 \end{array}$					
$37 \frac{1}{8}$										
40										
45										
50$52 \frac{1}{4}$5560	$\begin{array}{r} 4.471 \\ .468 \\ .465 \\ .459 \end{array}$	$\begin{array}{r} 8.942 \\ .936 \\ .930 \\ .918 \end{array}$	$\begin{array}{r} 13.413 \\ .404 \\ .395 \\ .377 \end{array}$	$\begin{array}{r} 17.884 \\ .872 \\ .860 \\ .836 \end{array}$	$\begin{array}{r} 22.355 \\ .340 \\ .325 \\ .295 \end{array}$					

Table 10.-Coordinates for the projection of maps (scale $\frac{\left.1 \frac{1}{12000}\right) \text {-Continued. }}{\text {. }}$

$\begin{aligned} & \text { Latitude } \\ & \text { of } \\ & \text { parallel. } \end{aligned}$	Abscissas of developed parallel.					Ordinates of developed parallel.	
	Longitude interval.						
	$1{ }^{\prime}$.	$2{ }^{\prime}$.	3'.	4'.	5'。	Longitude interval.	Inch.
-	Inches.	Inches.			Inches:	,	
$\begin{array}{ll}43 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ \\ & 10 \\ & 15\end{array}$	4.459	8.918			22.295.265	1	. 000
		. 906	13.377	$\begin{array}{r} 17.836 \\ .812 \end{array}$		2	. 002
	. 450	. 899	. 349	. 799	. 249	3	. 005
	. 4447		$\begin{aligned} & .047 \\ & .340 \\ & .322 \end{aligned}$	$\begin{aligned} & .787 \\ & .762 \end{aligned}$	$\begin{aligned} & .234 \\ & .203 \end{aligned}$	45	. 007
							. 010
$\begin{aligned} & 20 \\ & 22 \frac{1}{3} \\ & 25 \\ & 30 \end{aligned}$	4.434	8.869	13.303	17.738	22.172.157	Latitude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}$
	. 431	. 863	. 294	. 726			
	$\begin{array}{r} .428 \\ .422 \end{array}$	$\begin{aligned} & .856 \\ & .844 \end{aligned}$. 2865	$\begin{array}{r} .713 \\ .688 \end{array}$	$\begin{aligned} & .141 \\ & .110 \end{aligned}$		
						,	Inches.
35	4.416	8.832	13.248		22.080	1	6. 075
				17.664		2	12.149
3714045	. 413	. 826	. 239	. 652	. 065	3	$\begin{aligned} & 18.223 \\ & 24.298 \end{aligned}$
	$\begin{array}{r} .415 \\ .410 \\ .404 \end{array}$	$\begin{aligned} & .020 \\ & : 820 \\ & : 808 \end{aligned}$	$\begin{aligned} & .230 \\ & .212 \end{aligned}$	$\begin{aligned} & .640 \\ & .616 \end{aligned}$	$\begin{aligned} & .000 \\ & .050 \\ & .020 \end{aligned}$	$\stackrel{4}{5}$	$\begin{aligned} & 24.298 \\ & 30.372 \end{aligned}$
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 4.398 \\ .395 \\ .392 \\ .386 \end{array}$	$\begin{array}{r} 8.796 \\ .789 \\ .784 \\ .772 \end{array}$	$\begin{array}{r} 13.194 \\ .184 \\ .175 \\ .157 \end{array}$	$\begin{array}{r} 17.592 \\ .579 \\ .567 \\ .543 \end{array}$	$\begin{array}{r} 21.990 \\ .974 \\ .959 \\ .929 \end{array}$	Longitude interval	Inch.
$\begin{array}{ll}44 & 00 \\ 05 \\ & 07 \\ \\ & 10 \\ & 15\end{array}$	4.386	8.772	13.157	17.543	21.929	12344	$\begin{aligned} & .000 \\ & .002 \\ & .005 \\ & .007 \\ & .010 \end{aligned}$
	. 380	. 759	. 139	. 518	. 898		
	. 376	. 753	. 129	. 506	. 882		
	. 373	. 747	. 120	. 494	. 867		
	. 367	. 734	. 102	. 469	. 836		
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	4.361	8.722	13.083	17.444	21.805	Latitude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}$
	. 358	. 716	- 074	. 431	. 789		
	, 355	. 709	. 064	. 419			Inches. 6. 076 12.152 18. 228 30.380
	. 349	. 697	. 046	. 394	. 743	,	
						1 2 3	
${ }_{37}^{35}$	4.342	8.685	13.027 .018	17.370	21.712	3	
37 40	. 339	. 678	. 018	. 345	. 6981	4	
45	. 330	. 660	12.990	. 320	. 650	5	
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 565 \\ & 60 \end{aligned}$	$\begin{array}{r} 4.324 \\ .321 \\ .318 \\ .312 \end{array}$	$\begin{array}{r} 8.648 \\ .642 \\ .635 \\ .623 \end{array}$					
			$\begin{array}{r} 12.971 \\ .963 \\ .953 \\ .935 \end{array}$	$\begin{array}{r} 17.295 \\ .283 \\ .270 \\ .246 \end{array}$	$\begin{array}{r} 21.619 \\ .604 \\ .588 \\ .558 \end{array}$	Longitude interval.	Inch:
$\begin{array}{ll}45 & 00 \\ 05 \\ 007 \\ \\ 10 \\ 10 \\ & 15\end{array}$	$\begin{array}{r} 4.312 \\ .305 \\ .302 \\ .299 \\ .293 \end{array}$	$\begin{array}{r} 8.623 \\ .610 \\ .604 \\ .598 \\ .586 \end{array}$	$\begin{array}{r} 12.935 \\ .916 \\ .906 \\ .897 \\ .878 \end{array}$	$\begin{array}{r} 17.246 \\ .221 \\ .208 \\ .196 \\ .171 \end{array}$	$\begin{array}{r} 21.558 \\ .557 \\ .511 \\ .495 \\ .464 \end{array}$	'	.000.002.005.007.010
						12345	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{r} 4.287 \\ .283 \\ .280 \\ .274 \end{array}$	$\begin{array}{r} 8.573 \\ .567 \\ .560 \\ .548 \end{array}$	$\begin{array}{r} 12.860 \\ .849 \\ .841 \\ .822 \end{array}$	$\begin{array}{r} 17.146 \\ .134 \\ .121 \\ .096 \end{array}$	$\begin{array}{r} 21.433 \\ .417 \\ .401 \\ .370 \end{array}$	Latitude interval.	$\begin{array}{\|c} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{array}$
						,	Inches.
	$\begin{array}{r} 4.268 \\ .264 \\ .261 \\ .255 \end{array}$					1	6.077 12.154
$\begin{aligned} & 35 \\ & 37 \frac{1}{4} \\ & 40 \\ & 45 \end{aligned}$		$\begin{array}{r} 8.535 \\ .529 \\ .522 \\ .510 \end{array}$	$\begin{array}{r} 12.803 \\ .793 \\ .784 \\ .765 \end{array}$	$\begin{array}{r} 17.070 \\ .058 \\ .045 \\ .020 \end{array}$	$\begin{array}{r} 21.338 \\ .322 \\ .306 \\ .275 \end{array}$	3	18.231
						4	24.308
						5	30.385
$\begin{aligned} & 50 \\ & 50 \frac{1}{9} \\ & 55 \\ & 60 \end{aligned}$	$\begin{array}{r} 4.249 \\ .246 \\ .242 \\ .236 \end{array}$	$\begin{array}{r} 8.497 \\ .491 \\ .485 \\ .472 \end{array}$	$\begin{array}{r} 12.746 \\ .737 \\ .727 \\ .707 \end{array}$	$\begin{array}{r} 16.995 \\ .982 \\ .970 \\ .944 \end{array}$	$\begin{array}{r} 21.243 \\ .228 \\ .212 \\ .180 \end{array}$		

Table 10.-Coordinates for the projection of maps (scale $\left.\frac{1}{12000}\right)$-Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.		
	Longitude interval.							
	1^{\prime}.	2^{\prime}.	3^{\prime}.	4^{\prime}.	5^{\prime}.	Longitude interval.	Inch.	
46 \circ 46 00 05 07 $07 \frac{1}{8}$ 10 15	Inches.	Inches.	Inches.	Inches.	Inches.	,		
	4.236	8.472	12.707	16.944	21.179	1	. 000	
	. 229	. 459	. 688	. 918	.147	2	. 002	
	. 226	. 452	. 679	. 905	. 131	3	. 005	
	. 223	. 446	. 669	. 892	.115	4	. 007	
	. 216	. 433	. 649	. 867	. 082	5	. 010	
$\begin{aligned} & 20 \\ & 22 \frac{1}{2} \\ & 25 \\ & 30 \end{aligned}$	4. 210	8.420	12.630	16.840	21.051.035	Latitude interval.	Meridional distance.	
	. 207	. 414	. 621	. 828				
	$\begin{aligned} & .204 \\ & .198 \end{aligned}$. 408	. 611		. 019			
		. 395	. 593	. 790	20.988	1	Inches.6.078	
35	4.191	8.382	12.573	16.764	20.955	3	12.15718.235	
$37 \frac{1}{2}$. 188	.376.369	12.573 .564	16.764	$\begin{array}{r} .939 \\ .922 \end{array}$			
40	. 184		.553.534	$\begin{array}{r} .738 \\ .712 \end{array}$		5	$\begin{aligned} & 24.313 \\ & 30.391 \end{aligned}$	
45	. 178	. 356			$\begin{aligned} & .922 \\ & .890 \end{aligned}$			
$\begin{aligned} & 50 \\ & 52 \frac{1}{2} \\ & 55 \\ & 60 \end{aligned}$	4.172	8.343	12.515	$\begin{array}{r} 16.687 \\ .674 \\ .661 \\ .635 \end{array}$	$\begin{array}{r} 20.858 \\ .842 \\ .826 \\ .794 \end{array}$	Longitude interval.	lnch.	
	. 168	. 337	. 505					
	. 165	. 330	. 496					
	. 159	. 318	. 476					
$\begin{array}{ll}47 & 00 \\ & 05 \\ & 07 \frac{1}{2} \\ & 10 \\ & 15\end{array}$	4.159	8.318	12.476	16.635	20.794	'	. 000	
	. 152	. 305	. 457	. 610	. 762	2		
	. 149	. 299	. 448	. 597	$\begin{array}{r} .746 \\ .730 \end{array}$. 002	
	. 146	. 292	$\begin{array}{r} .438 \\ .418 \end{array}$	$\begin{array}{r} .584 \\ .558 \end{array}$		2	. 005	
	. 139	. 279			$\begin{array}{r} .730 \\ .697 \end{array}$	4	.007 .010	
20$22 \frac{1}{2}$2530	4. 133	8. 266	12.398	16.531	20.664	Latitude interval.	Meridional distance.	
	. 130	. 259	$\begin{array}{r} .389 \\ .378 \\ .359 \end{array}$	$\begin{aligned} & .518 \\ & .505 \\ & .478 \end{aligned}$	$\begin{aligned} & .648 \\ & .631 \\ & .598 \end{aligned}$			
	.126	. 252						
	. 120	. 239						
						2	Inches. 6.078	
35	4.113	8.226	12.339	16.452	20.565		12.157	
$37 \frac{1}{2}$.110	. 220	. 329	. 439	$\begin{aligned} & .549 \\ & .532 \\ & .500 \end{aligned}$	2345	$\begin{aligned} & 18.235 \\ & 24.315 \\ & 30.392 \end{aligned}$	
40	.106	. 213	. 319	$\cdot .426$				
45	. 100	. 200	. 300	. 400				
50525560	$\begin{array}{r} 4.094 \\ .090 \\ .089 \\ .080 \end{array}$	$\begin{array}{r} 8.187 \\ .180 \\ .174 \\ .161 \end{array}$	$\begin{array}{r} 12.281 \\ .271 \\ .261 \\ .241 \end{array}$	$\begin{array}{r} 16.375 \\ .361 \\ .348 \\ .322 \end{array}$	$\begin{array}{r} 20.468 \\ .451 \\ .435 \\ .402 \end{array}$			
						Longitude interval.	Inch.	
$48 \quad 00$	$\begin{array}{r} 4.080 \\ .074 \\ .071 \\ .067 \\ .061 \end{array}$	$\begin{array}{r} 8.160 \\ .148 \\ .142 \\ .135 \\ .122 \end{array}$	12.241	16.321	20.401	11234	.000.002.005.007.010	
05			. 222	. 296	. 370			
$07 \frac{1}{8}$. 212	. 284	. 354			
10			. 202	. 270	. 337			
15			. 182	. 244	. 304			
20	$\begin{gathered} 4.054 \\ .051 \\ .048 \\ .041 \end{gathered}$	$\begin{array}{r} 8.108 \\ .102 \\ .095 \\ .082 \end{array}$	$\begin{array}{r} 12.162 \\ .153 \\ .143 \\ .123 \end{array}$	$\begin{array}{r} 16.217 \\ .204 \\ .190 \\ .164 \end{array}$	$\begin{array}{r} 20.271 \\ .255 \\ .238 \\ .205 \end{array}$	Latitude interval.	$\begin{gathered} \text { Meridi- } \\ \text { onal } \\ \text { distance. } \end{gathered}$	
$22 \frac{1}{6}$								
25								
30						-		
35						12345	Inches. 6.080 12.160 18.240 24.320 30.400	
371	$\begin{array}{r} 4.034 \\ .031 \\ .028 \\ .021 \end{array}$	$\begin{array}{r} 8.069 \\ .062 \\ .055 \\ .042 \end{array}$	$\begin{array}{r} 12.103 \\ .093 \\ .083 \\ .063 \end{array}$	$\begin{array}{r} 16.138 \\ .124 \\ .110 \\ .084 \end{array}$	$\begin{array}{r} 20.172 \\ .155 \\ .138 \\ .105 \end{array}$			
${ }^{3} 10$								
45								
50	$\begin{gathered} 4.014 \\ .011 \\ .008 \\ .001 \end{gathered}$	$\begin{array}{r} 8.029 \\ .022 \\ .016 \\ .002 \end{array}$	$\begin{array}{r} 12.043 \\ .034 \\ .024 \\ .003 \end{array}$	$\begin{array}{r} 16.058 \\ .045 \\ .031 \\ .004 \end{array}$	$\begin{array}{r} 20.072 \\ .056 \\ .039 \\ .006 \end{array}$			
$52 \frac{1}{4}$								
55								
60								

Table 10.-Coordinates for the projection of maps (scale ${ }_{\overline{1} \frac{1}{0} \overline{0} \overline{0}}$)—Continued.

Latitude of parallel.	Abscissas of developed parallel.					Ordinates of developed parallel.	
	- Longitude interval.						
	$1{ }^{\prime}$.	2 '.	3 '.	4^{\prime}.	5'.	Longitude interval	Inch.
- '	Inches.	Inches.	Inches.	Inches.	Inches.	,	
$49 \quad 00$	4.001	8. 002	12.003	16. 004	20.006	1	. 000
05	3.995	7.989	11.984	15.978	19.973	2	. 002
${ }^{07 \frac{1}{2}}$. 991	. 982	. 974	. 965	. 956	3	. 005
10	. 988	. 976	. 964	. 952	. 939	4	. 007
15	. 981	. 962	. 943	. 924	. 905	5	. 010
20	3.974	7.949	11.923	15.898	19.872		Meridi-
${ }_{25}^{22 \frac{1}{2}}$.942 .936	. 919	. 8885	. 8846	interval.	onal
30	. 961	. 9222	. .883	. 8744	. 8805		distance.
						'	Inches.
35	3.954	7.908	11.863	15.817	19.771	2	6.081 12.162
$37 \frac{1}{2}$. 951	. 902	. 81.83	. 804	- 755	${ }_{3}$	12.162
40	. 948	. 895	. 843	. 790	. 738	4	18.243 24.324
45	. 941	. 882	. 823	. 764	. 705	5	30.405
50	3.934	7.869	11.803	15. 738	19.672		
$52 \frac{1}{2}$. 931	. 862	. 793	- 724	. 655		
55	. 928	. 855	. 783	. 710	. 638		
60	. 921	. 842	. 762	. 683	. 604		

Table 11.-Areas of quadrilaterals of earth's surface of 1° extent in latitude and longitude.
From Smithsonian Geographical Tables.]

Table 11.-Areas of quadrilaterals of earth's surface of 1° extent in latitude and longitude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.		Area in square miles.	$\begin{gathered} \text { Middle } \\ \text { tude } \\ \text { tuadrila } \end{gathered}$	$\begin{aligned} & \text { lati- } \\ & \text { of } \\ & \text { teral. } \end{aligned}$	Area in square miles.
- /		-	,		\bigcirc	,	
$66 \quad 00$	1, 954.97		00	1,164. 49	86	00	336.02
6630	1, 916.75		30	1, 123.75	86	30	294.08
$67 \quad 00$	1, 878.37		00	1,082.91	87	00	252.11
$67 \quad 30$	1, 839.84		30	1, 041.99	87	30	210.12
6800	1,801.16	78	00	1,000.99	88	00	168.12
6830	1, 762.33		30	959.90	88	30	126. 10
$69 \quad 00$	1, 723.36		00	918.73		00	84.07
6930	1, 684.24		30	877.49	89	30	42.04
$70 \quad 00$	1,645. 00		00	836.18	90	00	00.00
$70 \quad 30$	1, 605.62		30	794.79			
7100	1, 566. 10	81	00	753.34			
7130	1,526.46		30	711.83			
7200	1, 486.70	82	00	670.27			
7230	1, 446. 81	82	30	628.64			
7300	1, 406. 81		00	586.97			
$73 \quad 30$	1,366. 69		30	545.24			
7400	1,326. 46		00	503.47			
$74 \quad 30$	1, 286.12		30	461.66			
$\begin{array}{ll}75 & 00\end{array}$	1, 245.68		00	419.81			
$75 \quad 30$	1, 205. 13	85	30	377.93			

Table 12.-Areas of quadrilaterals of earth's surface of 30^{\prime} extent in latitude and longitude.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$\bigcirc 1$		- 1		- 1	
$0 \quad 00$	1,188. 10	1100	1, 166.84	2200	1,103. 68
015	1,188. 08	1115	1,165. 86	2215	1, 101.77
$0 \quad 30$	1,188. 05	1130	1,164. 86	2230	1,099. 84
$0 \quad 45$	1,188.00	1145	1,163.85	2245	1, 097.88
100	1,187.92	1200	1,162. 81	2300	1,095.91
115	1,187. 82	$12 \quad 15$	1,161. 75	2315	1,093. 92
130	1,187. 70	12. 30	1,160.67	2330	1,091.90
145	12187.56	1245	1,159.56	2345	1,089.87
200	1,187. 39	1300	1,158. 44	$24 \quad 00$	1,087. 81
215	1,187. 20	1315	1,157. 29	$24 \quad 15$	1,085. 74
230	1,186. 99	1330	1,156. 12	$24 \quad 30$	1,083. 64
245	1, 186.76	1345	1,154.93	$24 \quad 45$	1,081. 52
300	1,186.51	1400	1, 153.72	2500	1,079. 39
315	1, 186. 24	$14 \quad 15$	1,152. 48	2515	1,077. 23
330	1,185.95	1430	1, 151.23	$25 \quad 30$	1,075.05
345	1, 185.62	$14 \quad 45$	1,149.95	2545	1,072.85
400	1, 185.28	1500	1, 148. 65	$26 \quad 00$	1, 070.64
$4 \quad 15$	1,184. 92	1515	1, 147.33	2615	1,068. 40
430	1, 184.53	$15 \quad 30$	1,145.99	$26 \quad 30$	1,066. 14
445	1, 184.13	1545	1,144.63	$26 \quad 45$	1,063. 86
$5 \quad 00$	1, 183.70	1600	1,143. 25	$27 \quad 00$	1,061.56
$5 \quad 15$	1,183. 24	$16 \quad 15$	1,141. 84	$27 \quad 15$	1,059.24
$5 \quad 30$	1,182. 77	1630	1,140. 41	$27 \quad 30$	1,056.90
$5 \quad 45$	1,182. 28	1645	1,138.96	2745	1, 054.54
600	1,181. 76	$17 \quad 00$	1,137. 50	2800	1,052. 16
615	1,181. 22	$17 \quad 15$	1,136. 00	$28 \quad 15$	1,049.76
630	1,180. 66	$17 \quad 30$	1,154.49	2830	1,047.34
645	1,180. 08	1745	1,132.96	2845	1,044. 90
$7 \quad 00$	1, 179.48	1800	1,131.41	2900	1,042. 44
$7 \quad 15$	1,178.85	$18 \quad 15$	1,129.83	2915	1,039.97
730	1, 178.20	$18 \quad 30$	1, 128.24	2930	1,037.47
745	1,177.53	1845	1, 126. 62	2945	1,034.95
800	1,176. 84	1900	1,124.98	3000	1,032. 41
815	1,176. 13	1915	1, 123.32	3015	1,029.85
830	1,175.39	1930	1,121. 64	$30 \quad 30$	1,027.27
845	1, 174. 63	1945	1,119.93	3045	1,024. 68
900	1,173. 86	$20 \quad 00$	1,118. 21	3100	1,022. 06
$9 \quad 15$	1,173. 06	$20 \quad 15$	1, 116.47	3115	1, 019.43
930	1,172. 23	$20 \quad 30$	1, 114.71	3130	1,016. 77
945	1,171.39	$20 \quad 45$	1, 112.92	3145	1,014. 10
1000	1, 170.52	2100	1,111. 11	3200	1,011. 40
$10 \quad 15$	1,169. 63	$21 \quad 15$	1, 109.28	$32 \quad 15$	1,008. 69
$10 \quad 30$	1, 168.73	2130	1, 107.44	3230	1,005.96
1045	1,167. 80	2145	1,105.57	3245	1,003. 20

Table 12.-Areas of quadrilaterals of earth's surface of 30^{\prime} extent in latitude and longi. tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
- ,		\bigcirc,		\bigcirc,	
3300	1, 000.43	44. 00	860.25	5500	687.70
3315	997.64	$44 \quad 15$	856.67	5515	883.44
3330	994.83	4430	853.07	5530	679.17
3345	992.00	$44 \quad 45$	849.46	5545	674.89
$34 \quad 00$	989.16	4500	845.82	5600	670.60
$34 \quad 15$	986.29	$45 \quad 15$	842.18	5615	666.29
3430	983.41	4530	838.51	5630	661.97
3445	980.50	4545	834.83	5645	657.64
3500	977.58	$46 \quad 00$	831.13	5700	653.29
3515	974.64	4615	827.42	$57 \quad 15$	648.93
3530	971.68	46.30	823.68	$57 \quad 30$	644.55
3545	968.70	4645	819.94	5745	640.17
3600	965.70	$47 \quad 00$	816.18	5800	635.77
3615	962.68	$47 \quad 15$	812.40	5815	631.36
3630	959.65	4730	808.60	5830	626.93
3645	956.60	$47 \quad 45$	804.79	5845	622.49
3700	953.52	4800	800.97	$59 \quad 00$	618. 05
3715	950.43	4815	797.13	5915	613.59
3730	947.32	4830	793.27	5930	609.11
3745	944.21	4845	789.39	5945	604.62
3800	941.05	4900	785.50	$60 \quad 00$	600.13
$38 \quad 15$	937.88	$49 \quad 15$	781.60	$60 \quad 15$	595.62
3830	934.71	4930	777.68	$60 \quad 30$	591.09
3845	931.51	4945	773.74	$60 \quad 45$	586.56
3900	928.29	$50 \quad 00$	769. 79	6100	582.01
3915	925.06	5015	765.83	$61 \quad 15$	577.45
3930	921.80	$50 \quad 30$	761.85	6130	572.88
39.45	918.53	$50 \quad 45$	757.85	6145	568.30
$40 \quad 00$	915.25	5100	753.84	6200	563.71
$40 \quad 15$	911.94	$51 \quad 15$	749.82	$62 \quad 15$	559.11
4030	908.61	5130	745.78	6230	554.49
$40 \quad 45$	905.27	5145	741.72	6245	549.86
4100	901.91	5200	737.65	6300	545.23
4115	898.54	5215	733.57	$63 \quad 15$	540.58
4130	895.14	5230	729.47	$63 \quad 30$	535.92
4145	891.73	5245	725.36	$63 \quad 45$	531.25
4200	888.30		721.23	64.00	526.57
$42 \quad 15$	884.85	5315	717.08	$64 \quad 15$	521.88
4230	881.39	5310	712.93	$64 \quad 30$	517.17
4245	877.91	5345	708.76	$64 \quad 45$	512.46
4300	874.41	5400	704.57	6500	507.74
4315	870.90	$54 \quad 15$	700.38	$65 \quad 15$	503.01
4330	867.37	5430	696.16	6530	498.26
4345	863.82	5445	691.94	6545	493.51

Table 12.-Areas of quadrilaterals of earth's surface of 30^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.		Area in square miles.	$\left\lvert\, \begin{gathered} \text { Middle lat } \\ \text { of quadr } \\ \text { eral. } \end{gathered}\right.$	$\begin{aligned} & \text { atitude } \\ & \text { Irilat- } \\ & \text { ll } \end{aligned}$	Area insquare miles.	Middle of qua	$\begin{aligned} & \text { atitude } \\ & \text { hrilat- } \\ & \text { I. } \end{aligned}$	Area in square miles.
-	,		-	,		\bigcirc		
	00	488.75		00	331.62	82	00	167.57
	15	483.97			326.58	82	15	162.37
	30	479.19			321.53	82	30	157.16
	45	474.40			316.48		45	151.95
	00	469.60		00	311.42	83	00	146.74
	15	464. 78	75	15	306.36	83		141.53
		459.96			301.28	83	30	136.31
67	45	455.13		45	296.21	83	45	131.09
	00	450.29	76	00	291.12	84	00	125.87
	15	445.45		15	286.04	84		120.64
	30	440.59		30	280.94	84	30	115.42
	45	435.72		45	275.84	84	45	110.18
	00	430.84		00	270.73	85	00	104.95
	15	425.96		15	265.62	85		99.72
	30	421.06		30	260.50	85		94.48
		416.16		45	255.38	85	45	89.25
	00	411.25		00	250.25	86	00	84.01
	15	406.34		15	245.12	86	15	78. 76
	30	401.41		30	239.98	86	30	73.52
	45	396. 47		45	234.83	86	45	68.27
	00	391.53		00	229.68	87	00	63.03
71	15	386.58		15	224.53	87	15	57.78
	30	381.62		30	219.37		30	52.53
	45	376.65		45	214.21		45	47.28
	00	371.68		00	209.05	88	00	42.03
72	15	366.70		15	203.88	88	15	36. 78
72	30	361.71		30	198.70	88	30	31.53
	45	356.71	80.		193. 52	88	45	26.27
	00	351.71		00	188.34		00	21. 02
	15	346.69		15	183.15	89		15. 76
73	30	341.68	81	30	177.96	89	30	10.51
	45	336.65	81		172.77	89	45	5.26

Table 13.-Areas of quadrilaterals of earth's surface of 15^{\prime} extent in latitude and longitude.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.			Area in squaremiles.	Midd of qua	$\begin{aligned} & \text { e lati } \\ & \text { drila } \end{aligned}$	tude teral.	Area in squaremiles.	Midd of qua	le lat	tude eral.	Area in square miles.
-	1	//			1			-	1	$1 /$	
0	07	30	297.02		37	30	295.63	11	07	30	291.59
0	15	00	297.02	5	45	00	295.57	11	15	00	291.47
0	22	30	297.02	5	52	30	295.51	11	22	30	291.34
	30	00	297.01	6	00	00	295.44	11	30	00	291.22
0	37	30	297.01	6	07	30	295.37	11	37	30	291.09
0	45	00	297.00	6	15	00	295.31	11	45	00	290.96
0	52	30	296.99	6	22	30	295. 24	11	52	30	290.83
	00	00	296.98	6	30	00	295.17	12	00	00	290.70
1	07	30	296.97	6	37	30	295.09	12	07	30	290.57
1	15	00	296.96	6	45	00	295.02	12	15	00	290.44
1	22	30	296.94	6	52	30	294.95	12	22	30	290.30
	30	00	296.93	7	00	00	294.87	12	30	00	290.17
1	37	30	296.91	7	07	30	294. 79	12	37	30	290.03
1	45	00	296.89	7	15	00	294.71	12	45	00	289.89
1	52	30	296.87	7	22	30	294.63	12	52	30	289.75
2	00	00	296.85	7	30	00	294.55	13	00	00	289.61
2	07	30	296.82	7	37	30	294. 47	13	07	30	289.47
2	15	00	296.80	7	45	00	294.39	13	15	00	289.33
2	22	30	296.77	7	52	30	294.30	13	22	30	289.18
2	30	00	296. 75	8	00	00	294. 21	13	30	00	289.03
2		30	296. 72	8	07	30	294.12	13	37	30	288.88
2	45	00	296.69	8	15	00	294.03	13	45	00	288. 73
2	52	30	296.66	8	22	30	293. 94	13	52	30	288.58
3	00	00	296.63	8	30	00	293.85	14	00	00	288.43
3		30	296.60	8	37	30	293.75	14	07	30	288.28
3	15	00	296.56	8	45	00	293.66	14	15	00	288.12
3	22	30	296.53	8	52	30	293.56	14	22	30	287.96
3	30	00	296.49	9	00	00	293.47	14	30	00	287.81
3	37	30	296.45	9	07	30	293.37	14	37	30	287.65
3	45	00	296.41	9	15	00	293.27	14	45	00	287.49
3	52	30	296.36	9	22	30	293.16	14	52	30	287.33
4	00	00	296.32	9	30	00	293.06	15	00	00	287.17
4	07	30	296. 28	9	37	30	292.95	15	07	30	287. 00
4	15	00	296. 23	9	45	00	292.85	15	15	00	286.83
4	22	30	296.18	9	52	30	292.74	15	22	30	286.67
4	30	00	296.13	10	00	00	292.63	15	30	00	286.50
4	37	30	296.08	10	07	30	292.52	15	37	30	286.33
4	45	00	296.03	10	15	00	292.41	15	45	00	286.16
4	52	30	295.98	10	22	30	292.30	15	52	30	285.99
5	00	00	295.93	10	30	00	292.19	16	00	00	285.82
5	07	30	295.87		37	30	292.07	16	07	30	285.64
5	15	00	295.81	10	45	00	291.95	16	15	00	285.46
5	22	30	295.75	10	52	30	291.83	16	22	30	285. 28
5	30	00	295.69		00	00	291.71	16	30	00	285.10

Table 13.-Areas of quadrilaterals of earth's surface of 15^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.			Area in square miles.	$\underset{\text { of qua }}{\text { Midd }}$	$\begin{aligned} & \text { le lat } \\ & \text { dariat } \end{aligned}$	titude	Area in square miles.	$\begin{aligned} & \text { Midd } \\ & \text { of qua } \end{aligned}$	$\begin{aligned} & \text { le lati } \\ & \text { adrilat } \end{aligned}$	tude teral.	$\begin{gathered} \text { Area in } \\ \text { square miles } \end{gathered}$
-	1	"			,	"		-	,	"	
16	37	30	284.92	22	07	30	275.68		37		263.93
16	45	00	284.74	22	15	00	275.44	27	45	00	263. 64
16	52	30	284.56	22		30	275.20	27	52	30	263.34
1.7	00	00	284.38		30	00	274.96	28	00	00	263.04
17	07	30	284.19	22		30	274.72	28	07	30	262.74
17	15	00	284.00	22	45	00	274.47	28	15	00	262.44
17	22	30	283.81	22	52	30	274.22	28	22	30	262.14
17	30	00	283.62		00	00	273.98	28	30	00	261.84
17	37	30	283.43	23	07	30	273. 73	28	37	30	261.53
17	45	00	283.24	23	15	00	273.48	28	45	00	261.23
17	52	30	283.05	23	22	30	273.23	28	52	30	260.92
18	00	00	282.86		30	00	272.98	29	00	00	260.61
18	07	30	282.66	23	37	30°	272.72	29	07	30	260.30
18	15	00	282.46	23	45	00	272.47	29	15	00	259.99
18	22	30	282.26	23		30	272.21	29	22	30	259.68
	30	00	282.06			00	271.95	29	30	00	259.37
18	37	30	281.86	24	07	30	371.69	29	37	30	259.05
18	45	00	281.66	24	15	00	271.44	29	45	00	258.74
18	52	30	281.45	24	22	30	271.17	29	52	30	258.42
19	00	00	281.25		30	00	270.91	30	00	00	258.10
19	07	30	281.04	24	37	30	270.65	30	07	30	257.78
19	15	00	280.83	24	45	00	270.38	30	15	00	257.46
19	22	30	280.62	24	52	30	270.11	30	22	30	357.14
19	30	00	280.41	25	00	00	269.85	30	30	00	256.82
19	37	30	280.20	25	07	30	269.58	30	37	30	256.49
19	45	00	279.99	25	15	00	269.31	30	45	00	256.17
19	52	30	279.77	25	22	30	269.04	30	52	30	255.84
20	00	00	279.55	25	30	00	268.76	31	00	00	255.52
20	07	30	279. 34	25	37	30	268.49	31	07	30	255.19
20	15	00	279.12	25	45	00	268.21	31	15	00	254.86
20	22	30	278.90	25	52	30	267.94	31	22	30	254.53
20	30	00	278.68	26	00	00	267.66	31	30	00	254.19
20	37	30	278.46	26		30	267.38	31	37	30	253.86
20	45	00	278.23	26	15	00	267.10	31	45	00	253.53
20	52	30	278.00	26		30	266.82	31	52	30	253.19
	00	00	277. 78			00	266.54	32	00	00	252.85
21	07	30	277.55	26		30	266. 25 .	32	07	30	252.51
21	15	00	277.32	26	45	00	265.97	32	15	00	252.17
21	22	30	277.09	26	52	30	265.68	32	22	30	251.83
	30	00	276.86		00	00	265.39	32	30	00	251.49
21	37	30	276.63	27	07	30	265.10	32	37	30	251.15
21	45	00	276.39	27	15	00	264.81	32		00	250.80
21	52	30	276.16	27	22	30	264.52	32	52	30	250.45
	00	00	275.92		30	00	264.23	33	00	00	250.11

Table 13.-Areas of quadrilaterals of earth's surface of 15^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.			- Area in squaremiles.	Midd of qua	$\begin{aligned} & \text { e lati } \\ & \text { drila } \end{aligned}$	tude teral.	Area in square miles.	$\begin{aligned} & \text { Middl } \\ & \text { of que } \end{aligned}$	le lat	tude teral.	Area in squaremiles.
-	1	"		-	1	"		-	,	"	
33	07	30	249. 76	38	37	30	233. 28	44	07	30	214. 61
33	15	00	249.41	38	45	00	232.88	44	15	00	214.17
33	22	30	249.06	38	52	30	232.48	44	22	30	213.72
	30	00	248.71	39	00	00	232.07	44	30	00	213.27
33	37	30	248. 36	39	07	30	231.67	44	37	30	212.82
33	45	00	248.00	39	15	00	231.27	44	45	00	212.37
33	52	30	247.65	39	22	30	230.86	44	52	30	211.91
34	00	00	247.29	39	30	00	230.45	45	00	00	211.46
34	07	30	246.93	39	37	30	230.04	45	07	30	211.00
34	15	00	246.57	39	45	00	229.63	45	15	00	210.55
34	22	30	246.21	39	52	30	229.22	45	22	30	210.09
34	30	00	245.85	40	00	00	228.81	45	30	00	209.63
34	37	30	245.49	40	07	30	228.40	45	37	30	209. 17
34	. 45	00	245.13	40	15	00	227.99	45	45	00	208. 71
34	52	30	244.76	40	22	30	227.57	45	52	30	208.25
35	00	00	244.40	40	30	00	227.15	46	00	00	207.78
35	07	30	244.03	40	37	30	226. 73	46	07	30	207. 32
35	15	00	243.66	40	45	00	226.32	46	15	00	206.86
35	22	30	243. 29	40	52	30	225.90	46	22	30	206.39
35	30	00	242.92	41	00	00	225.48	46	30	00	205.92
35	37	30	242.55	41	07	30	225.06	46	37	30.	205.45
35	45	00	242.18	41	15	00	224.64	46	45	00	204. 99
35	52	30	241.80	41	22	30	224.21	46	52	30	204.52
36	00	00	241.43	41	30	00	223. 79	47	00	00	204.05
36	07	30	241.05	41	37	30	223. 36	47	07	30	203.57
36	15	00	240.67	41	45	00	222.93	47	15	00	203. 10
36	22	30	240.29	41	52	30	222.50	47	22	30	202.63
36	30	00	239.91	42	00	00	222.08	47	30	00	202.15
36	37	30	239.53	42	07	30	221.65	47	37	30	201.67
36	45	00	239.15	42	15	00	221.21	47	45	00	201.20
36	52	30	238.77	42	22	30	220.78	47	52	30	200.72
37	00	00	238.38	42	30	00	220.35	48	00	00	200.24
37	07	30	237.99	42	37	30	219.91	48	07	30	199. 76
37	15	00	237.61	42	45	00	219.48	48	15	00	199.28
37	22	30	237.22	42	52	30	219.04	48	22	30	198. 80
37	30	00	236.83	43	00	00	218.60	48	30	00	198. 32
37	37	30	236.44	43	07	30	218.16	48	37	30	197.83
37	45	00	236.05	43	15	00	217.73	48	45	00	197.35
37	52	30	235.66	43	22	30	217.28	48	52	30	196.86
38	00	00	235.26	43	30	00	216.84	49	00	00	196.38
38	07	30	234.87°	43	37	30	216. 40	49	07	30	195. 89
38	15	00	234.47	43	45	00	215.96	49	15	00	195.40
38	22	30	234.07	43	52	30	215.51	49	22	30	194.91
38	30	00	233.68	44		00	215.06	49	30	00	194.42

Table 13.-Areas of quadrilaterals of earth's surface of 15^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral			Area in square miles.	Middle latitude of quadrilateral.			Area in square miles.	Middle latitude of quadrilateral.			Area in square miles.
-	1	"			,	"		-	,	"	
	37	30	193.93		07	30	171.39		37		147.21
	45	00	193.44	55	15	00	170.86	60	45	00	146.64
49	52	30	192.94		22	30	170.33	60	52	30°	146. 07
	00	00	192.45		30	00	169.79		00	00.	145.50
50	07	30	191.95	55	37	30	169.26	61	07	30	144.93
50	15	00	191.46	55	45	00	168.72	61	15	00	144.36
50	22	30	190.96	55	52	30	168.19	61	22	30	143.79
50	30	00	190.46		00	00	167.65	61	30	00	143.22
50	37	30	189.96	56	07	30	167.11	61	37	30	142.65
50	45	00	189.46	56	15	00	166.57	61	45	00	142.08
50	52	30	188.96	56	22	30	166.03	61	52	30	141.50
	00	00	188.46		30	00	165.49	62	00	00	140.93
51	07	30	187.96	56	37	30	164.95	62	07	30	140.35
51	15	00	187.46	56	45	00	164.41	62	15	00	139.78
51	22	30	186.95	56	52	30	163.87	62	22	30	139.20
	30	00	186.45		00	00	163.32	62	30	00	138.62
51	37	30	185. 94	57	07	30	162.78	62	37	30	138.04
51	45	00	185.43	57	15	00	162.23	62	45	00	137.47
51	52	30	184.92	57	22	30	161.68	62	52	30	136. 89
	00	00	184.41		30	00	161.14	63	00	00	136.31
52	07	30	183.90	57	37	30	160.59	63	07	30	135. 73
52	15	00	183.39	57	45	00	160.04	63	15	00	135.15
52	22	30	182.88	57	52	30	159.49	63	22	30	134.56
52	30	00	182.37		00	00	158.94	63	30	00	133.98
52	37	30	181.85	58	07	30	158.39	63	37	30	133.40
52	45	00	181. 34	58	15	00	157.84	63	45	00	132.81
52	52	30	180.82	58	22	30	157.29	63	52	30	132.23
53	00	00	180.31	58	30	00	156.73	64	00	00	131.64
53	07	30	179. 79	58		30	156. 18	64	07	30	131.06
53	15	00	179.27	58	45	00	155.62	64	15	00	130. 47
53	22	30	178.75	58	52	30	155.07	64	22	30	129.88
53	30	00	178.23	59	00	00	154.51	64	30	00	129.29
53	37	30	177.71	59		30	153.96	64	37	30	128.70
53	45	00	177. 19	59	15	00	153.40	64	45	00	128.12
53	52	30	176.67	59	22	30	152.84	64	52	30	127.53
54	00	00	176. 14	59	30	00	152.28	65	00	00	126.94
54	07	30	175.62	59	37	30	151.72	65		30	126. 34
54	15	00	175.10	59	45	00	151.16	65	15	00	125. 75
54	22	30	174.57	59	52	30	150.60	65	22	30	125.16
	30	00	174.04			00	150.03	65	30	00	124.57
54	37	30	173.51			30	149.47	65	37	30	123.97
54	45	00	172.99	60	15	00	148.91	65	45	00	123.38
54	52	30	172.46	60	22	30	148.34	65	52	30	122.78
	00	00	171.93	60	30	00	147.77	66	00	00	122.19

Table 13.-Areas of quadrilaterals of earth's surface of 15^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.			Area in square miles.	Midd	$\begin{aligned} & \text { elat lat } \\ & \text { dirila } \end{aligned}$	itude teral.	Area in square miles.	Midd of qua	le lat	itude teral.	Area in square miles
-	,	"			,	"			,	"	
66	07	30	121.59		37	30	94. 78		07	30	67.04
66	15	00	120.99		45	00	94.16	77	15	00	66.41
66	22	30	120.40	71	52	30	93.54	77	22	30	65.77
	30	00	119.80		00	00	92.92		30	00	65.13
66	37	30	119.20		07	30	92.30	77	37	30	64.49
66	45	00	118.60	72	15	00	91.68	77	45	00	63.85
66	52	30	118.00		22	30	91.05		52	30	63.20
67	00	00	117.40		30	00	90.43		00	00	62.56
67	07	30	116.80		37	30	89. 80	78	07	30	61.92
67	15	00	116.20	72	45	00	89.18	78	15	00	61.28
67	22	30	115.59	72	52	30	88.55	78	22	30	60.64
	30	00	114.99		00	00	87.93		30	00	60.00
67	37	30	114.39		07	30	87. 30		37	30	59.35
67	45	00	113.78	73	15	00	86.67	78	45	00	58.71
67	52	30	113.18	73	22	30	86.05	78	52	30	58.06
	00	00	112.57		30	00	85.42		00	00	57.42
68	07	30	111.97	73	37	30	84. 79	79	07	30	56. 78
68	15	00	111.36	73	45	00	84.16	79	15	00	56.13
68	22	30	110.76	73	52	30	83.53		22	30	55.49
68	30	00	110.15		00	00	82.91		30	00	54.84
68	37	30	109.54		07	30	82.28		37	30	54.20
68	45	00	108.93	74	15	00	81.65	79	45	00	53.55
68	52	30	108.32		22	30	81.01	79	52	30	52.91
69	00	00	107. 71		30	00	80.38	80	00	00	52.26
		30	107. 10		37	30	79. 75		07	30	51.62
69	15	00	106. 49	74	45	00	79.12	80	15	00	50.97
69	22	30	105.88	74	52	30	78.49	80	22	30	50.32
	30	00	105.27		00	00	77.86		30	00	49.68
69	37	30	104.65	75	07	30	77.22	80	37	30	49.03
69	45	00	104.04	75	15	00	76.59	80	45	00	48.38
69	52	30	103.43	75	22	30	75.95	80	52	30	47.73
70	00	00	102.81		30	00	75. 32		00	00	47.08
	07	30	102.20		37	30	74.69		07	30	46. 44
	15	00	101.59	75	45	00	74.05		15	00	45. 79
70	22	30	100.97	75	52	30	73.42	81	22	30	45.14
70	30	00	100.35		00	00	72.78	81	30	00	44.49
70	37	30	99. 74		07	30	72.14		37	30	43.84
70	45	00	99.12	76	15	00	71.51	81	45	00	43.19
70	52	30	98.50	76	22	30	70.87	81	52	30	42.54
	00	00	97.88		30	00	70.24		00	00	41.89
71	07	30	97.26	76	37	30	69.60	82	07	30	41.24
71	15	00	96.65	76	45	00	68.96	82	15	00	40.59
71	22	30	96.03		52	30	68.32		22	30	39. 94
	30	00	95.41		00	00	67.68	82	30	00	39. 29

Table 13.-Areas of quadrilaterals of earth's surface of 15^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.			Area in squaremiles.	Midd of qu	drila	tude teral.	Area in square miles.	Midd of qua	$\begin{aligned} & \text { e lati } \\ & \text { drila } \end{aligned}$	tude teral.	Area in squaremiles.
	1	"			,				'	/	
	37	30	38.64		07	30	25.58		37	30	12.48
82	45	00	37.99	85	15	00	24.93	87	45	00	11.82
82	52	30	37.34	85	22	30	24.27	87	52	30	11.16
	00	00	36.69			00	23.62	88	00	00	10.51
83	07	30	36.03		37	30	22.97	88	07	30	9.85
83	15	00	35. 38	85	45	00	22.31	88	15	00	9. 20
83	22	30	34.73	85	52	30	21.66	88	22	30	8.54
83	30	00	34.08	86	00	00	21.00	88	30	00	7.88
83	37	30	33.42		07	30	20.35	88	37	30	7. 22
83	45	00	32. 77	86	15	00	19.69	88	45	00	6.57
83	52	30	32.12	86	22	30	19.04	88	52	30	5.91
84	00	00	31.47	86	30	00	18.38	89	00	00	5. 26
	07	30	30.81		37	30	17. 72		07	30	4.60
84	15	00	30.16	86	45	00	17.07	89	15	00	3.94
84	22	30	29.51	86	52	30	16. 41	89	22	30	3.28
	30		28.86	87	00	00	15. 76	89	30	00	2.63
	37		28. 20		07	30	15.10	89	37	30	1.97
84	45.		27.54	87	15	00	14. 44	89	45	00	1.31
	52	30	26.89	87	22	30	13. 79		52		0.66
	00		26. 24		30	00	13. 13				

Table 14.-Areas of quadrilaterals of earth's surface of 10^{\prime} extent in latitude and longitude.
[From Smithsonian Geog raphical Tables.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrifateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
- ,		-		-	
005	132.01	725	130.93	1445	127.77
015	132.01	735	130.88	1455	127.67
025	132.01	745	130.84	1505	127.58
035	132.00	755	130.79	1515	127.48
045	132.00	805	130.73	1525	127.38
055	131.99	815	130.68	1535	127.28
105.	131.99	825	130.63	1545	127.18
115	131.98	835	130.57	$15 \quad 55$	127.08
125	131.97	845	130.51	1605 -	126.98
135	131.96	855	130.46	1615	126.87
145	131.95	905	130.40	1625	126.77
155	131.94	915	130.34	1635	126. 66
205	131.93	925	130.28	1645	126.55
215	131.91	935	130.22	$16 \quad 55$	126.44
225	131.90	945	130.15	1705	126.33
235	131.88	955	130.09	$17 \quad 15$	126. 22
245	131.86	$10 \quad 05$	130.02	$17 \quad 25$	126.11
255	131.84	$10 \quad 15$	129.96	1735	126.00
305	131.82	$10 \quad 25$	129.89	1745	125.88
315	131.80	1035	129.82	$17 \quad 55$	125.77
325	131.78	1045	129.76	1805	125.65
335	131.76	$10 \quad 55$	129.68	1815	125. 54
345	131.74	1105	129.61	1825	125.42
355	131.71	1115	129.54	1835	125.30
405	131.68	1125	129.47	1845	125.18
415	131.66	1135	129.39	$18 \quad 55$	125.06
425	131.63	1145	129.32	1905	124.94
435	131.60	1155	129.24	1915	124.81
	131.57	1205	129.16	$19 \quad 25$	124.69
455	131.54	1215	129.08	1935	124. 56
505	131.50	1225	129.00	1945	124.44
515	131.47	1235	128.92	$19 \quad 55$	124.31
525	131.44	1245	128.84	2005	124.18
535	131.40	1255	128.76	2015	124.05
545	131.36	1305	128.67	$20 \quad 25$	123.92
555	131.33	1315	128.59	2035	123.79
605	131.29	1325	128.50	$20 \quad 45$	123.66
615	131.25	$13 \quad 35$	128.41	$20 \quad 55$	123.52
625	131.21	1345	128.33	2105	123.39
635	131.16	1355	128. 24	2115	123.25
645	131.12	$14 \quad 05$	128.14	2125	123.12
655	131.07	$14 \quad 15$	128.05	2135	122.98
705	131.03	1425	127.96	2145	122.84
715	130.98	1435	127.87	2155	122.70

Table 14.-Areas of quadrilaterals of earth's surface of 10^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral		Area in square miles.	$\begin{gathered} \text { Middle } \\ \text { tude } \\ \text { quadrile } \end{gathered}$	$\begin{aligned} & \text { lati- } \\ & \text { of } \\ & \text { teral. } \end{aligned}$	Area in square miles.	$\begin{gathered} \text { Middle } \\ \text { tude } \\ \text { quadrila } \end{gathered}$	$\begin{aligned} & \text { lati- } \\ & \text { ot } \\ & \text { iteral. } \end{aligned}$	Area in square miles.
-	,		-	,		-	,	
22	05	122. 56	29	25	-115. 37		45	106.29
22	15	122.42	29	35	115.18	36		106.06
	25	122.28	29	45	114.99	37		105. 83
	35	122.13	29	55	114.81	37	15	105.60
22	45	121.99	30	05	114.62	37	25	105.37
22	55	121.84	30	15	114.43	37		105. 14
23	05	121.69	30	25	114.24	37	45	104.91
	15	121.55		35	114.04	37	55	104.68
23	25	121.40	30	45	113.85	38		104. 44
	35	121.25	30	55	113.66	38		104.21
23	45	121.10	31	05	113.47	38	25	103.97
	55	120.94		15	113.27	38	35	103. 74
24	05	120.79	31	25	113.07	38		103. 50
24	15	120.64	31	35	112.88	38		103.26
24	25	120.48	31	45	112.68	39		103.02
	35	120.33	31	55	112.48	39		102.78
24	45	120.17	32	05	112.28	39		102.54
24	55	120.01	32	15	112.08	39		102.30
25	05	119.85	32	25	111.87	39		102.06
	15	119.69	32	35	111.67	39		101.82
25	25	119.53	32	45	111.47	40	05	101.57
25	35	119.37	32	55	111. 26	40	15	101.33
25	45	119.21	33	05	111.06	40	25	101.08
25	55	119.04	33	15	110.85	40	35	100.83
26	05	118.87	33	25	110.64	40		100.59
26	15	118.71	33	35	110.43	40	55	100. 34
26	25	118.54	33	45	110.22	41	05	100.09
26	35	118.37		55	110.01	41	15	99.84
	45	118.21	34	05	109. 80	41	25	99.59
26	55	118.04	34	15	109.59	41		99.33
27	05	117.87	34	25	109.37	41	45	99.08
27	15	117.69	34	35	109. 16	41	55	98.83
	25	117.52	34	45	108. 94	42	05	98.57
	35	117.35	34	55	108. 73	42		98.32
27	45	117.17	35	05	108.51	42		98.06
27	55	116. 99	35	15	108.29	42	35	97.80
28	05	116.82	35	25	108.07	42		97.55
28	15	116.64	35	35	107.85	42	55	97.29
28	25	116.46	35	45	107. 63	43		97.03
28	35	116.28	35	55	107.41	43		96.77
28	45	116.10	36	05	107.19	43		96.50
28	55	115.92	36	15	106.96	43		96.24
	05	115.73	36	25	106. 74	43		95.98
29	15	115.55	36	35	106. 51	43	55	95.71

Table 14.-Areas of quadrilaterals of earth's surface of 10^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
$\bigcirc 1$		\bigcirc,		-	
$44 \quad 05$	95.45	$50 \quad 45$	84.21	$57 \quad 25$.	71.78
$44 \quad 15$	95.19	$50 \quad 55$	83.91	$57 \quad 35$	71.46
$44 \quad 25$	94.92	5105	83.61	5745	71.13
$44 \quad 35$	94.65	$51 \quad 15$	83.31	$57 \quad 55$	70.80
- 4445	94.38	$51 \quad 25$	83.01	5805	70.48
$44 \quad 55$	94.11	$51 \quad 35$	82.71	5815	70.15
4505	93.84	5145	82.41	$58 \quad 25$	69.82
4515	93.58	5155	82.11	$58 \quad 35$	69.49
$45 \quad 25$	93.30	5205	81.81	5845	69.17
$45 \quad 35$	93.03	5215	81.51	$58 \quad 55$	68.84
4545	92.76	$52 \quad 25$	81.20	5905	68.51
$45 \quad 55$	92.48	5235	80.90	5915	68.18
$46 \quad 05$	92.21	5245	80.60	59 9	67.84
$46 \quad 15$	91.94	$52 \quad 55$	80.29	5935	67.51
$46 \quad 25$	91.66	$53 \quad 05$	79.98	5945	67.18
4635	91.38	5315	79.68	$59 \quad 55$	66.85
4645	91. 10	$53 \quad 25$	79.37	$60 \quad 05$	66.51
$46 \quad 55$	90.82	$53 \quad 35$	79.06	$60 \quad 15$	66.18
4705	90.55	5345	78.75	$60 \quad 25$	65.84
$47 \quad 15$	90.27	$53 \quad 55$	78.44	6035	65.51
$47 \quad 25$	89. 99	$54 \quad 05$	78.13	$60 \quad 45$	65.17
$47 \quad 35$	89. 70	$54 \quad 15$	77.82	$60 \quad 55$	64.84
4745	89.42	$54 \quad 25$	77.51	6105	64.50
$47 \quad 55$	89.14	5435	77.19	$61 \quad 15$	64.16
4805	88.85	$54 \quad 45$	76.88	$61 \quad 25$	63.82
$48 \quad 15$	88.57	$54 \quad 55$	76.57	6135	63.48
4825	88.28	5505	76.25	6145	63.14
4835	88.00	$55 \quad 15$	75.94	6155	62.80
4845	87.71	$55 \quad 25$	75. 62	6205	62.46
$48 \quad 55$	87.42	5535	75.30	6215	62.12
4905	87.13	5545	74.99	$62 \quad 25$	61.78
4915	86.84	$55 \quad 55$	74.67	6235	61.44
49 25	86.55	5605	74.35	6245	61.10
4935	86.26	$56 \quad 15$	74.03	$62 \quad 55$	60.75
4945	85.97	$56 \quad 25$	73.71	6305	60.41
4955	85.68	5635	73.39	$63 \quad 15$	60.06
$50 \quad 05$	85. 39	5645	73.07	$63 \quad 25$	59.72
$50 \quad 15$	85.09	$56 \quad 55$	72. 75	6335	59.37
$50 \quad 25$	84.80	5705	72.43	$63 \quad 45$	59.03
$50 \quad 35$	84.50	5715	72.10	6355	58.68

Table 14.-Areas of quadrilaterals of earth's surface of 10^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

Middie latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
- ,		\bigcirc,		\bigcirc,	
$64 \quad 05$	58.33	$70 \quad 45$	44.05	$77 \quad 25$	29.13
$64 \quad 15$	57.99	$70 \quad 55$	43.69	7735	28.76
$64 \quad 25$	57.64	7105	43.32	$77 \quad 45$	28.37
6435	57.29	$71 \quad 15$	42.95	$77 \quad 55$	27.99
$64 \quad 45$	56.94	$71 \quad 25$	42.58	$78 \quad 05$	27.62
$64 \quad 55$	56.59	7135	42.22	$78 \quad 15$	27.24
6505	56. 24	7145	41.85	$78 \quad 25$	26.85
$65 \quad 15$	55.89	7155	41.48	$78 \quad 35$	26.47
$65 \quad 25$	55.54	7205	41.11	$78 \quad 45$	26. 09
6535	55.19	$72 \quad 15$	40. 74	$78 \quad 55$	25. 71
6545	54.83	7225	40.37	7905	25.33
$65 \quad 55$	54.48	7235	40.00	$79 \quad 15$	24.95
6605	54.13	$72 \quad 45$	39. 63	$\begin{array}{ll}79 & 25\end{array}$	24.57
6615	53. 78	$72 \quad 55$	39.26	7935	24.18
$66 \quad 25$	53.42	7305	38. 89	7945	23. 80
6635	53.06	7315	38.52	$79 \quad 55$	23.42
6645	52.71	$73 \quad 25$	38.15	$80 \quad 05$	23.04
$66 \quad 55$	52.35	73 35	37.78	$80 \quad 15$	22.65
67 05	52.00	73 45	37.41 -	$80 \quad 25$	22.27
$67 \quad 15$	51.64	$73 \quad 55$	37.03	8035	21.89
$67 \quad 25$	51.28	7405	36.66	$80 \quad 45$	21.50
6735	50.93	$74 \quad 15$	36.29	$80 \quad 55$	21.12
6745	50.57	$74 \quad 25$	35.91	8105	20.73
$67 \quad 55$	50.21	7435	35.54	8115	20.35
6805	49.85	$74 \quad 45$	35.17	$81 \quad 25$	19.97
$68 \quad 15$	49. 49	$74 \quad 55$	84.79	8135	19.58
$68 \quad 25$	49.13	7505	34.42	8145	19.20°
6835	48.77	$75 \quad 15$	34.04	8155	18.81
6845	48.41	$75 \quad 25$	33.66	8205	18.43
$68 \quad 55$	48.05	$75 \quad 35$	33. 29	8215	18.04
6905	47.69	$75 \quad 45$	32.91	8225	17.65
$69 \quad 15$	47.33	$75 \quad 55$	32.53	8235	17.27
6925	46.97	7605	32.16	8245	16. 88
6935	46: 60	$76 \quad 15$	31.78	8255	16. 50
6945	46. 24	$76 \quad 25$	31.40	8305	16. 11
69 -55	45.88	7635	31.03	8315	15.73
$70 \quad 05$	45.51	$76 \quad 45$	30.65		15. 34
$70 \quad 15$	45.15	$76 \quad 55$	30.27	8335	14.95
$70 \quad 25$	44. 78	7705	29.89	8345	14.57
$70 \quad 35$	44.42	$77 \quad 15$	29.51	8355	14.18

Table 14.-Areas of quadrilaterals of earth's surface of 10^{\prime} extent in latitude and longi-tude-Continued.
[From Smithsonian Geographical Tables.]

$\begin{aligned} & \text { Middle lati- } \\ & \text { tude of } \\ & \text { quadrilateral. } \end{aligned}$	Area in square miles.	$\begin{gathered} \text { Middle lati- } \\ \text { tude of } \\ \text { quadrilateral. } \end{gathered}$	Area in square miles.	Middle latitude of quadrilateral.	Area in square miles.
-		-		\bigcirc,	
$84 \quad 05$	13. 79	8605	9.14	8805	4.47
$84 \quad 15$	13.40	8615	8.75	$88 \quad 15$	4.09
$84 \quad 25$	13. 02	$86 \quad 25$	8.36	$88 \quad 25$	3.70
8435	12.63	$86 \quad 35$	7.97	8835	3.31
$84 \quad 45$	12. 24	$86 \quad 45$	7.59	$88 \quad 45$	2.92
8455	11. 86	$86 \quad 55$	7.20	8855	2.53
8505	11.47	8705	6. 81	8905	2.14
8515	11.08	8715	6.42	8915	1.75
$85 \quad 25$	10.69	$87 \quad 25$	6.03		1.36
8535	10. 30	8735	5.64	8935	0.97
8545	9.92	8745	5. 25	8945	0.58
$85 \quad 55$	9.53	8755	4.86	8955	0.19

Table 15.-For conversion of arc into time.

-	h. m.	,	m. s.	/	s.										
0	00	60	40	120	80	180	120	240	160	300	$20 \quad 0$	0	00	0	0.000
1	04	61	44	121	84	181	124	241	164	301	$20 \quad 4$	1	04	1	0.067
2	08	62	48	122	88	182	12	242	168	302	208	2	08	2	0.133
3	012	63	412	123	812	183	1212	243	1612	303	2012	3	012	3	0.200
4	016	64	416	124	816	184	1216	244	1616	304	2016	4	016	4	0.267
5	020	65	420	125	820	185	1220	245	1620	305	2020	5	020	5	0.333
6	024	66	424	126	824	186	1224	246	1624	306	2024	6	024	6	0.400
7	028	67	428	127	828	187	1228	247	1628	307	2028	7	028	7	0.467
8	032	68	432	128	832	188	1232	248	1632	308	2032	8	032	8	0.533
9	036	69	436	129	836	189	1236	249	1636	309	2036	9	036	9	0.600
10	040	70	440	130	840	190	1240	250	1640	310	2040	10	040	10	0.667
11	044	71	444	131	844	191	1244	251	1644	311	2044	11	04	11	0.733
12	048	72	448	132	848	192	1248	252	1648	312	2048	12	048	12	0.800
13	052	73	452	133	852	193	1252	253	1652	313	2052	13	052	13	0.867
14	056	74	456	134	856	194	1256	254	1656	314	2056	14	056	14	0.933
15	10	75	50	135	90	195	130	255	170	315	210	15		15	1. 000
16	14	76	54	136	94	196	134	256	174	316	214	16	14	16	1. 067
17	18	77	58	137	98	197	138	257	178	317	218	17	18	17	1.133
18	112	78	512	138	912	198	1312	258	1712	318	2112	18	112	18	1.200
19	116	79	516	139	916	199	1316	259	1716	319	2116	19	116	19	1.267
20	120	80	520	140	920	1200	1320	260	1720	320	2120	20	120	20	1.333
21	124	81	524	141	924	201	1324	261	1724	321	2124	21	124	21	1.400
22	128	82	528	142	928	202	1328	262	1728	322	2128	22	128	22	1.467
23	132	83	532	143	932	203	1332	263	1732	323	2132	23	132	23	1.533
24	136	84	536	144	936	204	1336	264	1736	324	2136	24	136	24	1.600
25	140	85	540	145	940	205	1340	265	1740	325	2140	25	140	25	1.667
26	144	86	544	146	944	206	1344	266	1744	326	2144	26	144	26	1.733
27	148	87	548	147	948	207	1348	267	1748	327	2148	27	148	27	1.800
28	152	88	552	148	952	208	1352	268	1752	328	2152	28	152	28	1.867
29	156	89	556	149	956	209	1356	269	1756	329	2156	29	156	29	1.933
30	20	90		150	$10 \quad 0$	210	140	270	180	330	22	30		30	2.000
31		91		151	104	211		271	18	331		31		31	2.067
32	28	92	68	152	108	212	148	272	188	332	228	32	28	32	2.133
33	212	93	612	153	1012	213	1412	273	1812	333	2212	33	212	33	2200
34	216	94	616	154	1016	214	1416	274	1816	334	2216	34	216	34	2.267
35	220	95	620	155	1020	215	1420	275	1820	335	2220	35	220	35	2.333
36	224	96	624	156	1024	216	1424	276	1824	336	2224	36	224	36	2.400
37	228	97	628	157	1028	217	1428	277	1828	337	2228	37	228	37	2. 467
38	232	98	632	158	1032	218	1432	278	1832	338	2232	38	232	38	2.533
39	236	99	636	159	1036	219	1436	279	1836	339	2236	39	236	39	2.600
40	240	100	640	160	1040	220	1440	280	1840	340	2240	40	240	40	2.667
41	244	101	644	161	1044	221	1444	281	1844	341	2244	41	244	41	2.733
42	248	102	648	162	1048	222	1448	282	1848	342	2248	42	248	42	2.800
43	252	103	652	163	1052	223	1452	283	1852	313	2252	43	252	43	2.867
44	256	104	656	164	1056	224	1456	284	1856	344	2256	44	256	44	2.933
45	30	105	70	165	110	225	150	285	190	345	230	45	30	45	3.000
46	34	106	74	166	114	226	154	286	194	346	${ }_{23}^{23} 4$	46	$\begin{array}{ll}3 & 4 \\ 3\end{array}$	46	3.067
47	38	107	78	167	118	227	158	287	198	347	238	47		47	3.133
48	312	108	712	168	1112	228	1512	288	1912	348	2312	48	312	48	3.200
49	316	109	716	169	1116	229	1516	289	1916	349	2316	49	316	49	3.267
50	320	110	720	170	1120	230	1520	290	1920	350	2320	50	320	50	3.333
		111	724	171	1124	231	1524	291	1924	351	2324	51	324	51	3.400
52	328	112	728	172	1128	232	1528	292	1928	352	2328	52	328	52	3. 467
53	332	113	732	173	1132	233	1532	293	1932	353	2332	53	332	53	3.533
54	336	114	736	174	1136	234	1536	294	1936	354	2336	54	336	54	3.600
55	340	115	740	175	1140	235	1540	295	1940	355	2340	55	340	55	3.667
56	344	116	744	176	1144	236	1544	296	1944	356	2344	56	344	56	3.733
57	348	117	748	177	1148	237	1548	297	1948	357	2348	57	348	57	3.800
58	352	118	752	178	1152	238	1552	298	1952	358	2352	58	352	58	3.867
59	356	119	756	179	1156	239	1556	299	1956	9	2356	59	356	59	3.933
60	40	120	80	180	120	240	160	300	$20 \quad 0$	360	$24 \quad 0$	60	0	60	4.000

Table 16.-For conversion of time into arc.

Hours of time into are.											
Time.	Arc.										
hrs.	\bigcirc	hrs.	\bigcirc	hrs.	-	hrs.	\bigcirc	hrs.	-	hrs.	\bigcirc
1	15	5	75	9	135	13	195	17	255	21	315
2	30	6	90	10	150	14	210	18	270	22	330
3	45	7	105	11	165	15	225	19	285	23	345
4	60	8	120	12	180	16	240	20	300	24	360
Minutes of time into arc.						Seconds of time into arc.					
m.		m.		m		s.	' "	s.	' "	s.	' "
1	015	21	515	41	1015	1	015	21	515	41	1015
2	030	22	530	42	1030	2	030	22	530	42	1030
3	045	23	545	43	1045	3	045	23	545	43	10.45
4	10	24	60	44	110	- 4	10	24	60	44	110
5	115	25	615	45	1115	5	115	25	615	45	1115
6	130	26	630	46	1130	6	130	26	630	46	1130
7	145	27	645	47	1145	7	145	27	645	47	1145
8	20	28	70	48	120	8	20	28	70	48	120
9	215	29	715	49	1215	9	215	29	715	49	1215
10	230	30	730	50	1230	10	230	30	730	50	1230
11	245	31	745	51	1245	11	245	31	745	51	1245
12	30	32	80	52	130	12	30	32	80	52	130
13	315	33	815	53	1315	13	315	33	815	53	1315
14	330	34	830	54	1330	14	330	34	830	54	1330
15	345	35	845	55	1345	15	345	35	845	55	1345
16	40	36	90	56	140	16	40	36	90	56	140
17	415	37	915	57	1415	17	415	37	915	57	1415
18	430	38	930	58	1430	18	430	38	930	58	1430
19	445	39	945	59	1445	19	445	39	945	59	1445
20	50	40	$10 \quad 0$	60	150	20	50	40	$10 \quad 0$	60	150
Hundredths of a second of time into are.											
$\begin{aligned} & \text { Hundredths } \\ & \text { of a second } \\ & \text { of time. } \end{aligned}$. 00	. 01	.02	. 03	. 04	. 05	. 06	. 07	.08	. 09
		"	"	"	"	"	"	"	"	"	"
0.00		0.00	0.15	0.30	0.45	0.60	0.75	0.90	1.05	1.20	1.35
. 10		1.50	1.65	1.80	1.95	2.10	2.25	2.40	2.55	2.70	2.85
$\begin{array}{r} .20 \\ .30 \end{array}$		3.00	3.15	3.30	3.45	3.60	3.75	3.90	4.05	4.20	4.35
		4.50	4.65	4.80	4.95	5.10	5.25	5.40	5.55	5.70	5.85
. 40		6.00	6.15	6.30	6.45	6.60	6.75	6.90	7.05	7.20	7.35
0.50		7.50	7.65	7.80	7.95	8.10	8.25	8.40	8.55	8.70	8.85
. 60		9.00	9.15	9.30	9.45	9.60	9.75	9.90	10.05	10.20	10.35
.70.80		10.50	10.65	10.80	10.95	11.10	11.25	11.40	11.55	11.70	11.85
		12.00	12.15	12.30	12.45	12.60	12.75	12.90	13.05	13.20	13.35
. 90		13.50	13.65	13.80	13.95	14.10	14.25	14.40	14.55	14.70	14.85

Table 17.-For conversion of mean time into sidereal time.

46061-08-8

Table 18.-For conversion of sidereal time into mean time.

Table 19.-For interconversion of feet and decimals of a mile.

Feet.	Miles.	Feet.	Miles.	Feet.	Miles.	Feet.	Miles.
53	. 01	1373	. 26	2693	. 51	4013	. 76
106	. 02	1426	. 27	2746	. 52	4066	. 77
158	. 03	1478	. 28	2798	. 53	4118	. 78
211	. 04	1531	. 29	2851	. 54	4171	. 79
264	. 05	1584	. 30	2904	. 55	4224	. 80
317	. 06	1637	. 31	2957	. 56	4277	. 81
370	. 07	1690	. 32	3010	. 57	4330	. 82
422	. 08	1742	. 33	3062	. 58	4382	. 83
475	. 09	1795	. 34	3115	. 59	4435	. 84
528	. 10	1848	. 35	3168	. 60	4488	. 85
581	. 11	1901	. 36	3221	. 61	4541	. 86
634	. 12	1954	. 37	3274	. 62	4594	. 87
686	. 13	2006	. 38	3326	. 63	4646	. 88
739	. 14	2059	. 39	3379	. 64	4699	. 89
792	. 15	2112	. 40	3432	. 65	4752	. 90
845	. 16	2165	. 41	3485	. 66	4805	. 91
898	. 17	2218	. 42	3538	. 67	4858	. 92
950	. 18	2270	. 43	3590	. 68	4910	. 93
1003	. 19	2323	. 44	3643	. 69	4963	. 94
1056	. 20	2376	. 45	3696	. 70	5016	. 95
1109	. 21	2429	. 46	3749	. 71	5069	. 96
1162	. 22	2482	. 47	3802	. 72	5122	. 97
1214	. 23	2534	. 48	3854	. 73	5174	. 98
1267	. 24	2587	. 49	3907	. 74	5227	. 99
1320	. 25	2640	. 50	3960	. 75	5280	1.00

Table 20.-Converting wheel revolutions into hundredths of a mile.
[Prepared by J. H. Jennings.]
[Scale divisions outside; revolutions inside.]
CIRCUMFERENCE OF WHEEL, 9.5 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$		$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	6	11	17	22	28	33	39	44	50	56
$\mathbf{1 0}$	61	67	72	78	83	89	94	100	105	111
$\mathbf{2 0}$	117	122	128	133	139	144	150	155	161	167
$\mathbf{3 0}$	172	178	183	189	194	200	205	211	216	222
$\mathbf{4 0}$	228	233	239	244	250	255	261	266	272	278
$\mathbf{5 0}$	283	289	294	300	305	311	316	322	328	333
$\mathbf{6 0}$	339	344	350	355	361	366	372	378	383	389
$\mathbf{7 0}$	394	400	405	411	416	422	428	433	439	444
$\mathbf{8 0}$	450	455	461	466	472	478	483	489	494	500
$\mathbf{9 0}$	506	511	516	522	528	533	539	544	550	555

CIRCUMFERENCE OF WHEEL, 9.6 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\boldsymbol{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	5	11	16	22	27	33	38	44	50	55
$\mathbf{1 0}$	60	66	72	77	82	88	93	99	105	110
$\mathbf{2 0}$	116	121	126	132	137	143	148	154	159	165
$\mathbf{3 0}$	171	177	182	188	193	199	204	209	215	220
$\mathbf{4 0}$	225	231	236	242	247	253	258	264	270	275
$\mathbf{5 0}$	281	286	292	297	303	308	314	319	325	330
$\mathbf{6 0}$	336	341	347	352	358	363	369	374	380	385
$\mathbf{7 0}$	391	396	402	407	413	418	424	429	435	440
$\mathbf{8 0}$	446	451	457	462	468	473	479	484	490	495
$\mathbf{9 0}$	501	506	512	517	523	528	534	539	544	550

CIRCUMFERENCE OF WHEEL, 9.7 FEET.

0	1	2	3	4	;	6	7	8	9	10
0	5	11	16	22	27	33	38	44	49	54
10	60	65	71	76	81	87	92	98	103	109
20	114	120	125	131	136	142	147	152	158	163
30	169	174	179	185	190	196	201	206	212	218
40	223	228	234	239	245	250	256	261	267	272
50	277	283	288	294	299	305	310	316	321	326
60	331	337	342	348	353	359	364	370	376	381
70	386	392	397	403	408	414	419	424	429	435
80	441	446	451	457	462	468	473	479	484	490
90	495	500	506	511	517	522	528	533	539	544

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.
CIRCUMFERENCE OF WHEEL, 9.8 FEET.

0	1	2	3	4	5	6	7	8	9	10
0	5	11	16	22	27	32	38	43	49	54
10	59	65	70	75	81	86	91	97	102	108
≥ 0	113	119	124	129	135	140	145	151	156	162
30	167	172	178	183	189	194	199	205	211	216
40	221	226	231	237	242	248	253	259	265	270
50	275	280	286	291	296	302	307	313	318	324
60	329	334	339	345	350	356	361	366	372	377
30	383	388	. 394	400	405	410	415	421	426	431
80	437	442	447	453	458	464	469	474	480	485
90	490	496	501	506	512	517	522	528	533	539

CIRCUMFERENCE OF WHEEL, 9.9 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	5	11	16	21	27	32	37	43	48	53
$\mathbf{1 0}$	59	64	69	75	80	85	91	96	101	107
$\mathbf{2 0}$	112	117	122	128	133	138	144	149	155	160
$\mathbf{3 0}$	165	170	176	181	186	192	197	203	208	213
$\mathbf{4 0}$	219	224	229	235	240	245	251	256	261	267
$\mathbf{5 0}$	272	277	282	288	293	298	304	309	314	320
$\mathbf{6 0}$	325	330	336	341	346	352	357	362	368	373
$\mathbf{0 0}$	378	384	389	394	400	405	410	416	421	426
$\mathbf{8 0}$	432	437	442	448	453	458	464	469	474	480
$\mathbf{9 0}$	485	490	496	501	506	512	517	522	528	533

CIRCUMFERENCE OF WHEEL, 10 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$\mathbf{5}$	11	16	21	26	32	37	42	48	53
$\mathbf{1 0}$	58	63	69	75	80	85	90	96	101	106
$\mathbf{2 0}$	111	116	121	127	132	137	143	148	153	158
$\mathbf{3 0}$	164	169	174	180	185	190	195	201	206	211
$\mathbf{4 0}$	217	222	227	232	238	243	248	253	259	264
$\mathbf{5 0}$	269	275	280	285	290	296	301	306	311	317
$\mathbf{6 0}$	322	327	333	338	343	349	354	359	364	370
$\mathbf{7 0}$	375	380	385	391	396	401	406	412	417	422
$\mathbf{8 0}$	428	433	438	444	449	454	459	465	470	475
$\mathbf{9 0}$	481	486	491	496	502	507	512	517	523	528

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.
CIRCUMFERENCE OF.WHEEL, 10.1 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$\mathbf{5}$	10	16	21	26	31	36	41	47	52
$\mathbf{1 0}$	58	63	68	73	79	84	89	94	100	105
$\mathbf{2 0}$	110	115	121	126	131	136	142	147	152	157
$\mathbf{3 0}$	162	167	173	178	183	188	193	199	204	209
$\mathbf{4 0}$	214	220	226	231	236	241	247	252	257	262
$\mathbf{5 0}$	267	272	277	282	288	293	298	303	308	314
$\mathbf{6 0}$	319	324	329	334	340	345	350	355	361	366
$\mathbf{7 0}$	371	376	381	386	392	397	402	408	413	418
$\mathbf{8 0}$	424	429	434	439	445	450	455	460	466	471
$\mathbf{9 0}$	476	481	486	492	497	502	507	513	518	523

CIRCUMFERENCE OF WHEEL, 10.2 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$\mathbf{5}$	10	16	21	26	31	36	41	47	52
$\mathbf{1 0}$	57	62	67	73	78	83	88	93	98	104
$\mathbf{2 0}$	109	114	119	124	130	135	140	145	150	155
$\mathbf{3 0}$	161	166	171	176	181	186	191	197	202	207
$\mathbf{4 0}$	212	218	224	229	234	239	244	249	254	259
$\mathbf{5 0}$	264	269	275	280	285	290	295	300	306	311
$\mathbf{6 0}$	316	321	326	332	337	342	347	352	357	363
$\mathbf{7 0}$	368	373	378	383	388	394	399	404	409	414
$\mathbf{5 0}$	419	425	430	435	440	446	451	456	461	466
$\mathbf{9 0}$	471	476	481	487	492	497	503	508	513	518

CIRCUMFERENCE OF WHEEL, 10.3 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$\mathbf{5}$	10	15	20	26	31	36	41	46	51
$\mathbf{1 0}$	56	62	67	72	77	82	87	92	97	103
$\mathbf{2 0}$	108	113	118	123	128	133	138	144	149	154
$\mathbf{3 0}$	159	164	169	174	180	185	190	195	200	204
$\mathbf{4 0}$	209	214	219	224	230	235	240	245	250	256
$\mathbf{5 0}$	262	267	272	277	282	287	292	297	303	308
$\mathbf{6 0}$	313	318	323	328	333	338	344	349	354	359
$\mathbf{7 0}$	364	369	374	380	385	390	395	400	405	410
$\mathbf{8 0}$	416	421	426	431	436	441	446	451	457	462
$\mathbf{9 0}$	467	472	477	482	487	492	498	503	508	513

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.
CIRCUMFERENCE OF WHEEL, 10.4 FEET.

0	1	2	3	4	5	6	7	8	9	10
0	5	10	15	20	25	30	36	41	46	51
10	56	61	66	71	76	81	86	91	97	102
$\underline{0}$	107	112	117	122	127	132	137	142	147	152
30	157	163	168	173	178	183	188	193	198	203
40	208	213	218	223	228	233	238	244	249	254
50	259	264	269	274	279	284	289	295	300	305
60	310	315	320	325	330	335	340	345	350	356
70	361	366	371	376	381	386	391	396	401	406
so	411	416	421	426	432	437	$4+2$	447	452	457
90	462	467	472	478	483	488	493	498	503	508

CIRCUMFERENCE OF WHEEL, 10.5 FEET.

0	1	2	3	4	\%	6	7	8	9	10
0	5	10	15	20	25	30	35	40	45	50
10	55	60	65	70	75	80	85	90	95	101
20	106	111	116	121	126	131	136	141	146	151
30	156	161	166	171	176	181	186	191	196	201
40	206	211	216	221	226	231	236	241	246	251
50	257	262	267	272	277	282	287	292	297	302
60	307	312	317	322	327	332	337	342	347	352
70	357	362	367	372	377	382	387	392	397	402
80	407	. 412	417	422	428	433	438	443	448	453
90	458	463	468	473	478	483	488	493	498	503

CIRCUMFERENCE OF WHEEL, 10.6 FEET.

0	1	\because	3	4	\%	6	7	8	9	10
0	5	10	15	20	25	30	35	40	45	50
10	55	60	65	70	75	80	85	90	95	100
20	105	110	115	120	125	130	135	140	144	149
30	154	159	164	169	174	179	184	189	194	199
40	204	209	214	219	224	229	234	239	244	249
50	254	259	264	269	274	279	284	289	294	299
60	304	309	314	319	324	329	334	339	344	349
70	354	359	364	369	374	379	384	389	393	398
80	403	408	413	418	423	428	433	438	443	448
90	453	458	463	468	473	478	483	488	493	498

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.
CIRCUMFERENCE OF WHEEL, 10.7 FEET.

0	1	2	3	4	5	6	7	8	9	10
0	5	10	15	20	25	30	35	40	44	49
10	54	59	64	69	74	79	84	89	94	99
20	104	109	114	119	123	128	133	138	143	148
30	153	158	163	168	173	178	183	188	193	198
40	203	207	212	217	222	227	232	237	242	247
50	252	257	262	267	272	277	282	287	291	296
60	301	306	311	316	321	326	331	336	341	346
70	351	356	361	366	371	375	380	385	390	395
so	400	405	410	415	420	425	430	435	440	445
90	450	454	459	464	469	474	479	484	489	494

CIRCUMFERENCE OF WHEEL, 10.8 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	5	10	15	20	24	29	34	39	44	49
$\mathbf{1 0}$	54	59	64	68	73	78	83	88	93	98
$\mathbf{0 0}$	103	108	113	118	122	127	132	137	142	147
$\mathbf{3 0}$	152	156	161	166	171	176	181	186	191	196
$\mathbf{4 0}$	200	205	210	215	220	225	230	235	240	244
$\mathbf{0 0}$	249	254	259	264	269	274	279	283	288	293
$\mathbf{6 0}$	298	303	308	313	318	323	328	332	337	341
$\mathbf{7 0}$	346	351	356	361	366	371	376	381	386	391
$\mathbf{8 0}$	396	401	406	411	416	421	425	430	435	440
$\mathbf{9 0}$	445	450	455	460	464	469	474	479	484	489

CIRCUMFERENCE OF WHEEL, 10.9 FEET.

0	1	2	3	4	5	6	7	8	9	10
0	5	10	15	19	24	29	34	39	44	48
10	53	58	63	68	73	78	82	87	92	97
20	102	107	111	116	121	126	131	136	141	145
30	150	155	160	165	170	175	179	184	189	193
40	197	202	207	212	217	222	227	232	237	242
50	247	252	257	261	266	271	276	281	286	290
60	295	300	305	310	315	319	324	329	334	339
\%0	344	349	353	358	363	368	373	378	383	387
80	392	397	402	407	411	416	421	426	431	436
90	440	445	450	455	460	465	469	474	479	484

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.

CIRCUMFERENCE OF WHEEL, 11.0 FEET.

0	1	\geq	3	4	5	6	7	s	9	10
0	5	10	14	19	24	29	33	38	43	48
10	53	57	62	67	72	76	81	86	91	96
20	101	106	110	115	119	124	129	134	139	144
30	149	105	158	163	168	173	178	182	187	192
40	197	202	206	211	216	221	225	230	235	240
¢0	245	250	254	259	263	268	273	278	283	285
60	293	298	302	307	312	317	321	326	331	336
70	341	346	350	355	360	365	369	374	379	384
s0	389	394	398	403	408	413	417	422	427	432
90	437	442	446	451	456	461	465	470	475	480

CIRCUMFERENCE OF WHEEL, 11.1 FEET.

0	1	\because	3	4	5	6	7	8	9	10
0	5	10	14	19	24	29	33	38	43	48
10	52	57	62	66	71	76	S1	85	90	95
20	100	104	109	114	119	124	129	133	138	143
30	147	152	157	161	166	171	176	180	185	190
40	195	200	205	209	214	219	224	229	233	238
50	243	248	252	257	262	267	271	276	281	286
60	290	295	300	305	309	314	319	324	328	333
70	338	343	347	352	357	362	367	371	376	381
so	386	390	395	400	405	409	414	419	424	428
90	433	438	443	447	452	457	462	466	471	476

CIRCUMFERENCE OF WHEEL, 11.2 FEET.

0	1	\because	3	4	;	${ }^{6}$	7	s	9	10
0	5	9	14	19	24	28	33	38	42	47
10	52	57	62	66	71	76	80	84	89	94
20	99	104	108	113	117	-122	127	132	137	141
30	146	151	155	160	165	169	174	179	184	188
40	193	198	203	207	212	217	222	226	231	236
50	240	245	250	255	259	264	269	274	278	283
60	287	292	297	302	307	312	316	321	326	330
70	334	339	344	348	353	358	363	367	372	377
80	382	386	391	396	400	405	410	415	419	424
90	429	434	438	443	447	452	456	461	466	471

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.
CIRCUMFERENCE OF WHEEL, 11.3 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{1 4}$	19	23	28	33	37	42	47
$\mathbf{1 0}$	51	56	61	65	70	74	79	83	88	93
$\mathbf{2 0}$	$\mathbf{9}$	103	108	112	117	122	126	131	135	140
$\mathbf{3 0}$	145	150	154	159	164	168	173	178	183	187
$\mathbf{4 0}$	191	196	200	205	210	215	220	224	229	234
$\mathbf{5 0}$	238	243	248	252	257	261	266	271	276	280
$\mathbf{6 0}$	285	290	294	299	304	308	313	318	322	327
$\mathbf{7 0}$	332	336	341	346	350	355	360	364	370	374
$\mathbf{8 0}$	378	383	387	392	397	402	406	411	416	420
$\mathbf{9 0}$	425	430	434	439	444	448	453	458	462	467

CIRCUMFERENCE OF WHEEL, 11.4 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	5	9	14	18	23	28	32	37	42	46
$\mathbf{1 0}$	50	56	60	65	69	74	79	83	88	93
$\mathbf{2 0}$	97	102	107	111	116	120	125	129	134	139
$\mathbf{3 0}$	143	148	152	157	162	167	171	176	180	185
$\mathbf{4 0}$	190	195	199	204	208	213	217	222	227	231
$\mathbf{0 0}$	236	241	245	250	255	259	264	269	273	278
$\mathbf{6 0}$	282	287	291	296	301	306	310	315	319	324
$\mathbf{7 0}$	329	333	338	343	347	352	357	361	366	370
$\mathbf{8 0}$	375	380	384	389	394	398	403	407	412	417
$\mathbf{9 0}$	421	426	431	435	440	445	449	454	458	463

CIRCUMFERENCE OF WHEEL, 11.5 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	5	9	14	18	23	28	32	37	41	46
$\mathbf{1 0}$	50	55	59	63	68	72	77	82	87	92
$\mathbf{2 0}$	96	101	105	110	114	119	124	128	133	138
$\mathbf{3 0}$	142	147	151	156	161	165	170	174	179	184
$\mathbf{4 0}$	188	193	197	202	207	211	216	220	225	229
$\mathbf{5 0}$	234	239	243	248	252	257	262	266	271	275
$\mathbf{6 0}$	280	285	289	294	298	303	308	312	317	321
$\mathbf{7 0}$	326	331	335	340	344	349	353	358	363	367
$\mathbf{8 0}$	372	377	381	386	390	$\mathbf{3 9 5}$	399	404	409	413
$\mathbf{9 0}$	418	422	427	432	436	441	445	450	454	459

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.
CIRCUMFERENCE OF WHEEL, 11.6 FEET.

0	1	2	3	4	5	6	7	8	9	10
0	5	'9	14	18	23	27	32	36	41	46
10	50	55	59	64	68	73	77	82	87	91
20	96	100	104	109	114	118	123	127	132	136
30	141	146	150	155	159	164	168	173	178	182
40	187	191	196	200	205	209	214	218	223	227
50	232	237	241	246	250	255	259	264	269	273
60	278	282	287	291	296	300	305	309	314	318
70	323	328	332	. 337	341	346	350	355	360	364
80	369	373	378	382	387	391	396	400	405	410
90	414	419	423	428	432	437	441	446	450	455

CIRCUMFERENCE OF WHEEL, 11.7 FEET.

0	1	2	3	4	5	6	7	8	9	10
0	5	9	13.	18	23	27	32	36	41	45
10	50	54	59	63	68	72	77	81	86	90
20	95	99	104	108	113	117	122	126	131	135
30	140	144	149	153	158	162	167	171	176	180
40	185	189	194	198	203	207	212	217	221	225
50	230	235	239	244	248	253	257	262	266	271
60	275	280	284	289	293	298	302	307	311	316
70	320	325	329	334	338	343	347	352	-356	361
80	365	370	374	379	383	388	392	397	401	406
90	410	415	419	424	428	433	437	442	446	451

CIRCUMFERENCE OF WHEEL, 11.8 FEET.

0	1	2	3	4	j	6	7	8	9	10
0	4	9	13	18	22	27	32	36	40	45
10	49	53	58	62	67	72	76	80	85	89
20	94	98	103	107	112	116	121	125	130	134
30	139	143	148	152	157	161	165	170	174	179
40	183	187	192	197	201	206	210	215	219	223
50	228	232	237	241	246	250	255	259	264	268
60	273	277	282	286	291	295	300	304	309	313
70	317	321	326	330	335	339	344	348	353	358
80	362	367	372	376	380	385	389	393	398	402
90	407	411	416	420	425	429	434	438	443	447

Table 20.-Converting wheel revolutions into hundredths of a mile—Continued.
circumference of wheel, 11.9 feet.

0	1	2	3	4	5	6	7	8	9	10
0	4	9	13	18	22	27	31	$\cdots 5$	40	44
10	49	53	58	62	67	71	76	80	84	89
20	93	98	102	107	111	115	120	124	129	133
30	138	142	146	151	155	160	164	169	173	178
40	182	187	191	195	200	204	209	213	218	222
50	226	231	235	240	244	249	253	258	262	266
60	271	275	280	284	289	293	298	302	306	311
70	315	320	324	329	333	338	342	346	350	355
80	360	364	369	373	377	382	386	391	395	399
90	404	409	413	417	422	426	431	435	440	444

CIRCUMFERENCE OF WHEEL, 12 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	4	9	13	18	22	26	31	35	40	44
$\mathbf{1 0}$	48	53	57	62	66	70	75	79	84	88
$\mathbf{2 0}$	91	96	100	104	109	113	118	122	128	132
$\mathbf{3 0}$	136	141	145	150	154	158	163	168	172	176
$\mathbf{4 0}$	180	185	189	194	198	202	207	211	216	220
$\mathbf{5 0}$	224	229	233	238	242	246	251	255	260	264
$\mathbf{6 0}$	268	273	277	281	286	290	295	299	304	308
$\mathbf{7 0}$	312	317	321	326	330	334	339	343	348	352
$\mathbf{5 0}$	356	361	365	370	374	378	383	388	392	396
$\mathbf{9 0}$	400	405	409	414	418	422	427	431	436	440

CIRCUMFERENCE OF WHEEL, 12.1 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	$\mathbf{4}$	$\mathbf{9}$	13	17	22	26	31	35	39	44
$\mathbf{1 0}$	48	53	57	61	66	70	75	79	83	87
$\mathbf{0 0}$	91	96	100	105	109	113	118	122	126	131
$\mathbf{3 0}$	135	139	144	148	153	157	161	165	170	174
$\mathbf{4 0}$	178	183	187	192	196	201	205	209	214	$\mathbf{2 1 8}$
$\mathbf{5 0}$	222	227	231	235	240	244	249	253	257	262
$\mathbf{6 0}$	266	270	275	279	283	288	292	296	301	305
$\mathbf{7 0}$	310	314	318	323	327	331	336	340	344	349
$\mathbf{8 0}$	353	358	362	366	370	375	379	384	388	392
$\mathbf{9 0}$	397	401	405	410	414	419	423	427	432	$\mathbf{4 3 6}$

Table 20.-Converting wheel revolutions into hundredths of a mile-Continued.
CIRCUMFERENCE OF WHEEL, 12.2 FEET.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	\mathbf{y}	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	4	9	13	17	22	26	30	35	39	43
$\mathbf{1 0}$	48	52	56	61	65	69	74	78	82	87
$\mathbf{2 0}$	91	95	100	104	108	113	117	121	126	130
$\mathbf{3 0}$	134	138	143	147	151	156	160	165	169	173
$\mathbf{4 0}$	178	182	186	191	195	199	204	208	212	216
$\mathbf{5 0}$	221	225	230	234	238	243	247	251	256	260
$\mathbf{6 0}$	264	268	273	277	281	286	290	294	299	303
$\mathbf{7 0}$	307	312	316	320	325	329	333	338	342	346
$\mathbf{8 0}$	351	356	359	364	368	372	377	381	385	390
$\mathbf{4 0}$	395	399	404	408	412	417	421	425	429	433

After measuring wheel use nearest tenth for size of wheel.

Table 21.-Five-place logarithms of natural numbers.
[Fractional change in a number corresponding to a change in its logarithm.]
Computed from the formula,

$$
\frac{\Delta N}{N}=\frac{\Delta \log N}{\mu}
$$

$\mu=$ modulus of common logarithms $=0.43429448$.

$\begin{aligned} & \text { For } \\ & \Delta \log _{i t} N \\ & =1 \text { unit in } \end{aligned}$	$\frac{\Delta N}{N}$	$\begin{aligned} & \text { For } \\ = & \Delta \text { log } N \\ = & \text { units in } \end{aligned}$	$\underset{\substack{\frac{\Delta N}{N} \\ \text { (in round } \\ \text { numbers) }}}{\frac{1}{2}}$
Fourth place.	$\frac{1}{4348}$	Fourth place.	$\frac{1}{1000}$
Fifth place .	- 43129	Fifth place ..	$10 \frac{1}{0} 000$
Sixth place	$\begin{array}{r} 43129 \\ 434294 \end{array}$	Sixth place.	$\frac{1}{100000}$
Seventh place.	$434^{\frac{1}{2}} 945$	Seventh place	$\frac{1000000}{1000}$

Table 21.-Five-place logarithms of natural numbers-Continued.

N.	L. 0	1	2	3	4		5	6	6		7		8		9
0		00000	30103	47712	6020		69897	7781		84			309		424
1	00000	04139	07918	11394	1461		17609	2041					527		
2	30103	32222	34242	36173	3802		39794	4149			136		716		240
3	47712	49136	50515	51851	5314		54407	5563							
4	60206	61278	62325	63347	6434		65321.	6627				681	124		020
5	69897	70757	71600	72428	7323		74036	7481			587	763	343		
6	77815	78533	79239	79934	8061		81291	8195					251		
7	84510	85126	85733	86332	8692		87506	8808					209		763
8	90309	90849	91381	91908	9242		92942	9345			52	94	448		939
9	95424	95904	96379	96848	9731		97772	982							
10	00000	00432	00860	01284	01703		02119	0253					342		743
11	04139	04532	04922	05308	0569		06070	064			819				555
12	07918	08279	08636	08991	0934		09691	1003	37	10	380				059
13	11394	11727	12057	12385	12710		13033	13	54		672	139	988		301
14	14613	14922	15229	15534	15836		16137	16			732				319
15	17609	17898	18184	18469	1875		19033	1931		19	590	198	866		140
16	20412	20683	20952	21219	2148		21748	2201							
17	23045	23300	23553	23805	2405		24304	2455			797				
18	25527	25768	26007	26245	2648		26717	2695			84				
19	27875	28103	28330	28556	28780		29003	2922		29	47				
20	30103	30320	30535	30750	30963		31175	3138	87		597	318			015
21	32222	32428	32634	32838	3304		33244	3344			646				044
22	34242	34439	34635	34830	3502		35218	3541			03	357	793		984
23	36173	36361	36549	36736	36922		37107	3729			475				
24	38021	38202	38382	38561	38739		38917	3909			70	394	445		620
25	39794	39967	40140	40312	40483		40654	4082			993	41			
26	41497	41664	41830	41996	42160		42325	4248							
27	43136	43297.	43457	43616	43775		43933	4409				444			560
28	44716	44871	45025	45179	45332		45484	4563							
29	46240	46389	46538	46687	4683		46982	4712			276				
30	47712	47857	48001	48144	4828		48430	4857	72		14				996
31	49136	49276	49 415.	49554	49693		49831				06				379
32	50515	50651	50786	50920	5105		51188	5132		514	55	515	587		720
33	51851	51983	52114	52244	52375		52504	5263				52			
34	53148	53275	53403	53529	53656		53782	5390		540		541		54	83
35	54407	54531	54654	54777	54900		55023	5514			67	553			59
36	55630	55751	55871	55991	56110		56229	5634							
37	56820.	56937	57054	57171	57287		57403	5751							864
38	57978	58092	58206	58320	58433		58546				71				
39	59106	59218	59329	59439	59550		59660			59	79				
40	60206	60314	60423	60531	60638		60745	6085	83	60	59	610	066	61	72
41	61278	61384	61490	61595	61700		61805	6190			14	621	118	62	221
42	62325	62428	62531	62634	62737		62839	62		63	43	631			246
43	63347	63448	63548	63649	63749		63849	6394	49	64	8	641	147		246
44	64345	64444	64542	64640	64738		64836	6493				6512		65	
45	-65 321	65418	65514	65610	65706		65801	6589			92	6608		66	181
46	66276	66370	66464	66558	66652		$6674{ }^{\text {¢ }}$	6683			32				17
47	67210	67302	67394	67486	67578		67669	6776			52	679	943	68	34
48	68124	68215	68305	68395	6848		68574	6866		687	53	688	842	68	31
49	69020	69108	69197	69285	69373		69461	6954		69	3				810
50	69897	69984	70070	70157	70243		70329	7041	15	705	01	705	586	706	672
N.	L. 0	1	2	3	4		5	6		7			8		
$1^{\prime}=60^{\prime \prime}$		S. 4. 68557 T		T. 4. 68557		$0^{\circ} 5^{\prime}=300^{\prime \prime}$		' S. 4. 68557				T. 4. 68558			
02	$=120$	4. 68	557	4. 68		$06=360$			4. 68557			4. 68558			
03	$=180$	4. 68	557	4. 68		$0 \quad 7=420$			4. 68557			4. 68558			
04	$=240$	4. 68	557	4. 68	558.	08	$8=480$		4. 68557			4. 68558			

Table 21.-Five-place logarithms of natural numbers-Continued.

N.	L. 0	1	2	3	4	5	6	7			8		9
50	69897	69984	70070	70157	70243	70329	$70^{\circ} 415$	7050		7058	586	70	672
51	70757	70842	70927	71012	71096	71181	71265	7134	49	7143	433	71	517
52	71600	71684	71767	71850	71933	72016	72099	7218	81	7226	263	72	346
53	72428	72509	72591	72673	72754	72835	72916	7299		7307	078		
54	73239	73320	73400	73480	73560	73640	73719	7379		7387	878		957
55	74036	74115	74194	74273	74351	74429	74507	7458		7466	663	74	741
56	74819	74896	74974	75051	75128	75205	75282	7535	58	7543	435		
57	75 7687 7643	75664 76418	75740 76	75815	75891	75967	76042	76118		7619	193		268
58	76 77085	76418 77 159	76492 7725	76567 77305	76641 77	76716 77452	76790 77525	7686 77 59		7693	938 670		
60	77815	77887	77960	78032	78104	78176	78247	7831	19	7839	390	78	462
61	78533	78604	78675	78746	78817	78888	78958			7909	099		
62	79239	79309	79379	79449	79518	79588	79657	7972		7979	796		
63	79934	80003	80072	80140	80209	80277	80346	8041		8048	482		
64	80618	80686	80754	80821	80889	80956	81023	8109		8115	158		
65	81291	81358	81425	81491	81558	81624	81690	8175	57	8182	823	81	
66	81954	82020	82086	82151	82217	82282	82347	8241		8247	478		
67	82607	82672	82737	82802	82866	82930	82995	8305		8312	123		
68	83251 83885	83315	83378	83442	83506	83569	83632	8369		8375	759		
69	83885	83948	84011	84073	84136	84198	84261	8432		8438	386		
70	84510	84572	84634	84696	84757	84819	84880	8494	42	8500	003	85	
71	85126	85187	85248	85309	85370	85431	85491	8555	52	8561	612	85	
72	85733	85794	85854	85914	85974	86034	86094	8615	53	86	213	86	273
73	86332	86392	86451	86510	86570	86629	86688	8674		8680	806	86	
74	86923	86982	87040	87099	87157	87216	87274	8733		8739	390		
75	87506	87564	87622	87679	87737	87795	87852	8791		8796	967.	88	024
76	88081	88138	88195	88252	88309	88366	88423	8848	80	8853	536		
77	88649	$8870 \frac{\square}{7}$	88762	88818	88874	88930	88986	8904		8909	098		
78	89209	89265	89321	89376	89432	89487	89542			8965	653		
79	89763	89818	89873	89927	89982	90037	90091			9020	200		
80	90309	90363	90417	90472	90526	90580	90634	9068		907	741	90	
81	90849	90902	90956	91009	91062	91116	91169	9122		9127	275		
82	91381	91434	91487	91540	91593	91645	91698	9175	51	9180	803		
83	91908	91960	92012	92065	92117	92169	92221	9227		923	324	92	376
84	92428	92480	92531	92583	92634	92686	92737	9278		928	840		
85	92942	92993	93044	93095	93146	93197	$93 \quad 247$	9329	98	93	349	93	399
86	93450	93500	93551	93601	93651	93702	93752	9380		9385	852	93	
87	93952	94002	94052	94101	94151	94201	94250	9430		943	349		
88	94448	94498	94547	94596	94645	94694	94743	9479		948	841	94	890
89	94939	94988	95036	95085	95134	95182	95231	9527	79	9532	328		376
90	95424	95472	95521	95569	95617	95665	95713	9576	61	9580	809	95	
91	95904	95952	95999	96047	96095	96142	96190	96		96	284		
92	96379	96426	96473	96520	96567	96614	96661	9670	08	967	$75 \overline{5}$		
93	96848	96895	96942	96988	97035	97081	97128	9717	74	9722	220	97	267
94	97313	97359	97405	97451		97543	97589	9763		9768	681		
95	97772	97818	97864	97909	97955	98000	98046	9809	91	98	137	98	182
96	98227	98272	98318	y8 363	98408	98453	98498	9854		985	588		632
97	98677	98722	98767	98811	98856	98900	98945	9898		9903	034		
98	99123	99167	99211	99255	99300	99344	99388	9943		99	476	99	520
99	99564	99607	99651	99695	99739	99782	99826	9987	8	9991	913		957
100	00000	00043	00087	00130	00173	00217	00260	0030	30	003	346	00	389
N.	L. 0	1	2	3	4	5	6	7			8		9
$0^{\circ} 9^{\prime}=540^{\prime \prime}$		S. 4. 68557		T. 4. 68558		$0^{\circ} 13^{\prime}=780^{\prime \prime}$ S. 4. 68557 T. 4. 68558							
010	$=600$	4. 68	8557	4. 68		$0 \quad 14=$	840	4. 68	557			. 68	558
011	$=660$	4. 6	8557	4. 68		$0 \quad 15=$	900	4. 68	557			. 68	558
$0 \quad 12$	$=720$	4. 6	8557	4. 68		$0 \quad 16=$	960	4. 68	557			. 68	558

Table 21.-Five-place logarithms of natural numbers-Continued.

Table 21.-Five-place logarithms of natural numbers-Continued.

Table 21.-Five-place logarithms of natural numbers-Continued.

Table 21.-Five-place logarithms of natural numbers-Continued.

Table 21.-Five-place logarithms of natural numbers-Continued.

$1^{\circ} 15^{\prime}=4500^{\prime \prime}$	S. 4. 68554	T. 4. 68564	$1^{\circ} 20^{\prime}=4800^{\prime \prime}$	S. 4. 68554	T. 4. 68565
$116=4560$	4. 68554	4. 68565	$121=4860$	4. 68553	4. 68566
$117=4620$	4. 68554	4. $6856 \overline{\text { n }}$	$122=4920$	4. 68553	4. 68566
$118=4680$	4. 68554	4. 68565	$123=4980$	4. 68553	4. 68566
$119=4740$	4. 68554	4. 68565	$24=5040$	4. 68553	4. 68566

Table 21.-Five-place logarithms of natural numbers-Continued.

Table 21.-Fiwe-place logarithms of natural numbers-Continued.

Table 21.-Five-place logarithms of natural numbers-Continued.

N.	L. 0	1	2	3	4	5	6	7	8	9		P. P.
900	95424	429	434	439	444	448	453	458	463	468		
901	472	477	482	487	492	497	501	506	511	516		
902	521	525	530	535	540	545	550	554	559	564		
903	569	574	578	583	588	593	598		607	612		
904	617	622	626	631	636	641	646		655	660		
905	$66 \bar{\square}$	670	674	679	684	689	694		703	708		
906	713	718	722	727	732	737	742			756		
907	761	766	770	775	780	785	789	794	799	804		
908	809	815	818	823	828	832	837		847	852		
909		861	866		875	880	885			899		
910	904	909	914	918	923	928	933	938	942	947		
911	952	957	961	966	971	976	980	985	990	995		
912	${ }^{999}$	*004	*009 *	*014	*019	*023	*028	*033 *	*038 *	*042		${ }^{\text {b }}$
913	96047	052	057	061	066	*071	076	080	085	090		$\left\lvert\, \begin{aligned} & 0,5 \\ & 1,0\end{aligned}\right.$
914	095	099	104	109	114	118	123		133	137		1,5
915	142	147	152	156	161	166	171	175	180	185		2,0
916	190	194	199	204	209	213	218		227	232		2,5 2,5 3,0
917	237	242	246	251	256	261	265	270	275	280		3,5
918	284	289	294	298	303 350	308	313	317 365	322	327 374		4,0
919	332	336	341	346	350	355	360	365	369	374		4,5
920	379	384	388	393	398	402	407	412	417	421		
921	426	431	435	440	$445 \overline{1}$	450						
922	473	478	483	487	492 539	497	501	506 553	511	515		
923	520	525	530	534	539					562		
924	567	572	577	581	586	591	595	600	605	609		
925	614	${ }_{6} 19$	624	628	${ }_{683}^{633}$	638	642	647	652	656		
926	661	666	670	675	680	685	689	694	699	703		
927	708	713	717	722	727	731	736		745	750		
928	755	759	764	769	774	778	783			797		
929	802	806	811	816	820	825	830	834	839	844		
930	848	853	858	862	867	872	876	881	886	890		
931	$89 \overline{5}$	900	904	909	914	918	923	928	932	937		
932	942	${ }_{993}^{946}$	951	956	960	$96 \overline{1}$	970	974	979	984		4
933	988	993	997 *	*002	*007	*011	*016	*021	*025	*030		0,4
934	97035	039	044	049	053	058	063	067	072	077		0,8 1,2
935 936	081 128	086 132	090 137	095	100 146	104	109	114	118	123		1,6
936	128	132	137	142	146	151.	155			169		1,0 2,0
937	174	179	183	188	192	197	202	206	211	216		
938 939	220 267	${ }_{271}^{225}$	${ }^{230}$	234 280	239 285	243 290	${ }_{294}^{248}$			262 308		2,8 3,2
												3,6
940	313	317	322	327	331	336	340	345	350	354	.	
941	359	364	368	373	377	382	387	391	396	400		
942	405	410	414	419	424	428	433	437	442	447		
943	451	456	460	465	470	474	479	483	488	493		
944	497	502	506	511	516	520	525		534	539		
945	543	548	552	557	562	566	571	575	580	585		
946	589	594	598	603	607	612	617	621	626	630		
947	635	640	644	649	653	658	663	667	672	676		
948	681	685	690	695	699	704	708	713	717	722		
949	727	731	736	740	745	749	754	759	763	768		
950	772	777	782	786	791	795	800	804	809	813		
N.	L. 0	1	2	3	4	5	6	7	8	9		P. P.
$2^{\circ} 30^{\prime}=9000 \prime \prime$222		S. 4.685444. 685444. 685434. 685434. 68543			T. 4. $6858{ }^{\circ}$ 4. 68585 4. 68586 4. 68586 4. 68587		$\begin{aligned} & 2^{\circ} 35^{\prime}=9300^{\prime \prime} \\ & 2 \quad 36=9360 \\ & 237=9420 \\ & 2 \quad 38=9480 \\ & 2 \quad 39=9540 \end{aligned}$				S. 4.68543 T. 4.68587 4. 68553 4.68 587 4. 68 542 4. 68588 4. 68542 4.68 588 4. 68542 4. 68588	

Table 21.-Five-place logarithms of natural numbers-Continued.

Formula for using quantities S and T :
$\log \sin a=\quad \log a^{\prime \prime}+S$.
$\log \tan a=\quad \log a^{\prime \prime}+T$.
$\log \cot a=$ a. c. $\log a^{\prime \prime}+\mathrm{a} . \mathrm{c} . \log T$.
$\log a^{\prime \prime}=\log \sin a-S=\log \tan a-T$.
$\log \cos a=\quad \log \left(90^{\circ}-a\right)^{\prime \prime}+S$.
$\log \cot a=\quad \log \left(90^{\circ}-a\right)^{\prime \prime}+T$.
$\log \tan a=$ a. c. $\log \left(90^{\circ}-a\right)^{\prime \prime}+$ a. c. $\log T$.
$\log \left(90^{\circ}-a\right)^{\prime \prime}=\log \cos a-S=\log \cot a-T$.

Table 22.-Five-place logarithms of circular functions, expressed in arc and time.

Table 22.-Five-place logarithms of circular functions, etc.-.Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

4°									
m. s.	,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		
16	2	8.84358	$\begin{aligned} & 181 \\ & 179 \\ & 179 \\ & 178 \end{aligned}$	8.84464	$\begin{aligned} & 182 \\ & 180 \\ & 180 \\ & 179 \end{aligned}$	1.15536	9.998949.99893	60	$44 \quad 0$
		8.84539		8. 84646		1.15 354		59	5652
		8.84718		8.84826		1.15174	9.99892	58	
		8.84897		8. 85006		1.14 994	9.99 891	57	48
		8.85075		$8.8518 \overline{5}$		1.14815	9.99 891	56	
16	6789	8.85252	$\begin{aligned} & 177 \\ & 177 \\ & 175 \\ & 175 \end{aligned}$	8. 85363	$\begin{aligned} & 177 \\ & 177 \\ & 176 \\ & 176 \end{aligned}$	1.14637	9.998909.998899.998889.998879.99886	$\begin{aligned} & 55 \\ & 54 \\ & 53 \\ & 52 \\ & 51 \end{aligned}$	43 40 36 32 28 24
		8. 85429		8. 85540		1.14460			
		8.85 805		8. 85717		1.14283			
		8.85 780		8.85893		1.14107			
		8.85955		8.86069		1.13931			
16	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	8. 86128	$\begin{aligned} & 173 \\ & 173 \\ & 171 \\ & 171 \\ & 171 \end{aligned}$	8.86243	$\begin{aligned} & 174 \\ & 174 \\ & 172 \\ & 172 \\ & 171 \end{aligned}$	1,13 757	$\begin{aligned} & \text { 9. } 9988{ }^{8 \prime} \\ & 9.99884 \\ & 9.99883 \\ & 9.99882 \\ & 9.99881 \end{aligned}$	$\begin{aligned} & \mathbf{5 0} \\ & 49 \\ & 48 \\ & 47 \\ & 46 \end{aligned}$	$43 \quad 20$
		8.86301		8. 86417		1.13583			16
		8. 86474		8. 86591		1.13409			12
		8.86645		8.86763		1.13237			8
		8.86816		$8.86935{ }^{\text {a }}$		1.13065			4
17	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	8. 86987	169	8.87106		1.12894	9.99 880	45	$43 \quad 0$
		8. 87156	169	8. 87277	170	1.12723	9.99879	44	56
		8.87325	169	8.87447	169	1.12553	9.99879	43	52
		8.87494	169	8.87616	169	1.12384	9.99 878	42	48
		8.87661	168	8.87785	169	1.12215	9.99877	41	44
17	$\begin{aligned} & \mathbf{2 0} \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	8.87829	$\begin{aligned} & 166 \\ & 166 \\ & 165 \\ & 164 \end{aligned}$	8.87953	$\begin{aligned} & 167 \\ & 167 \\ & 166 \\ & 165 \end{aligned}$	1.12047	9.998769.998759.998749.998739.99872	$\begin{aligned} & \hline \mathbf{4 0} \\ & 39 \\ & 38 \\ & 37 \\ & 36 \end{aligned}$	4240
		8.87995		8. 88120		1.11880			36
		8.88161		8.88287		1.11713			32
		8.88326		8.88453		1.11547			28
		8.88490		8.88618		1.11382			24
$\begin{array}{rr}17 & 40 \\ 44 \\ 48 \\ 48 \\ 52 \\ & 56\end{array}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	8.88	$\begin{aligned} & 163 \\ & 163 \\ & 162 \\ & 162 \\ & 160 \end{aligned}$	8.88783	$\begin{aligned} & 165 \\ & 163 \\ & 163 \\ & 163 \end{aligned}$	1.11217	9.99871 9.99870 9.99869 9.99868 9.99867	$\begin{aligned} & \hline 35 \\ & 34 \\ & 33 \\ & 32 \\ & 31 \end{aligned}$	$42 \quad 20$
		8. 88817		8. 88948		1.11052			16
		8.88980		8.89111		1.10 889			12
		8.89142		8.89 274		1.10726			8
		8.89304		8.89437		1.10563			4
$\begin{array}{rr}18 & 0 \\ & 4 \\ & 8 \\ & 12 \\ & 16\end{array}$	$\begin{aligned} & \hline \mathbf{3 0} \\ & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	8.89 464	$\begin{aligned} & 161 \\ & 159 \\ & 150 \\ & 159 \end{aligned}$	8.89598	$\begin{aligned} & 162 \\ & 160 \\ & 160 \\ & 160 \\ & 159 \end{aligned}$	1.10402	9.99866 $9.9986 \overline{5}$ 9.99864 9.99863 9.99862 9.99862	$\begin{aligned} & \mathbf{3 0} \\ & 29 \\ & 28 \\ & 27 \\ & 26 \end{aligned}$	$42 \quad 0$
		8. 89625		8.89760		1.10240			56
		8.89784		8.89920		1. 10080			52
		8.89 943		8. 90080		1.09760			48
		8.90102		8.90240					44
18	$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	8.90	157	8.90399		1.09601	9.99 861	25	40
		8.90417	157	8.90557		1.09443	9.99 860	24	36
		8. 90574	156	8.90715	1	1. $0928{ }^{\text {a }}$	9.99 859	23	32
		8.90730	155	8. 90872	157	1. 09128	9.99 858	22	28
		8.90885	155	8.91029	156	1.08971	9.99 857	21	24
18	$\begin{aligned} & \hline \mathbf{4 0} \\ & 41 \\ & 42 \\ & 43 \\ & 44 \end{aligned}$	8.91040		8.91185		1.08815	9.99856	20	$41 \quad 20$
		8.91195	154	8.91340	155	1.08660	9.99855	19	
		8.91349		8.91495		1.08505	9.99 854	18	12
		8.91502	153	8.91650	155	1.08350	9.99853	17	8
		8.91655	152	8.91803	$\begin{aligned} & 153 \\ & 154 \end{aligned}$	1.08 .197	9.99 852	16	4
19	$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	8.91807		8.91957		1.08043	9.99 851	15	410
		8.91959	151	8. 92110	153	1. 07890	9.99 850	14	56
		8.92110	151	8. 92262		1.07738	9. 99848	13	52
		8.92261	151	8.92414		1. 07586	9.99847	12	48
		8.92411	150	8.92565	$\begin{aligned} & 151 \\ & 151 \end{aligned}$	1.07435	9.99846	11	44
$\begin{array}{rr}19 & 20 \\ 24 \\ & 28 \\ 32 \\ & 36\end{array}$	$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \end{aligned}$	8.92561		8.92716		1.07284	9. $9984{ }^{\text {a }}$	10	$40 \quad 40$
		8.92 710	149	8.92866	150	1. 07134	9, 99844	9	36
		8. 92859	148	8.93016	149	1.06984	9.99843	8	32
		8.93007	147	8.93 165	149	1.06835	9.99842	7	28
		8.93154	14	8.93313	149	1.06687	9.99841	6	24
19	$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \end{aligned}$	8.93301		8.93462		1.06538	9.99840	5	$40 \quad 20$
		8.93448	146	8.93609	147	1.06391	9.99839	4	16
		8.93594	146	8.93756	147	1.06244	9.99838	3	12
		8.93740		8.93903		1.06097	9.99837	2	8
		8.93885	$\begin{aligned} & 145 \\ & 145 \end{aligned}$	8.94049	146	1.05951	9.99 836	1	4
$20 \quad 0$	60	8.94030		8.94195		1.05805	9.99 834	0	40
		L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,	m. s.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

$7{ }^{\circ}$											
m. s.	,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.				
28	01234	9.08589	$\begin{aligned} & 103 \\ & 103 \\ & 102 \\ & 102 \end{aligned}$	9.08914	105	0.91086	9.99675	60	320		
		9.08692		9.09019		0.90981	9.99674	59	56		
		9.08795		9.09123	104	0.90 877	9.99672	58	52		
		9.08897		9.09227	104	0.90773	9.99670	57	48		
		9.08999		9.09330	104	0.90670	9.99669	56		44	
28	$\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	9.09101	$\begin{aligned} & 101 \\ & 102 \\ & 101 \\ & 101 \\ & 100 \end{aligned}$	9.09434	$\begin{aligned} & 103 \\ & 103 \\ & 102 \\ & 103 \\ & 102 \end{aligned}$	0.90566	9.99667	55	3140		
		9.09202		9.09537		0.90463	9.99666	54	$31 \quad 40$		
		9.09304		9.09640		0.90360	9.99664	53	32		
		$9.0940 \overline{5}$		9.09742		0.90258	9.99663	52			
		9.09506		9.09845		0.90155	9.99 661	51		24	
28 10 44 48 52 56	$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	9.09606	$\begin{array}{r} 101 \\ 100 \\ 100 \\ 99 \end{array}$	9.09 947	$\begin{aligned} & 102 \\ & 101 \\ & 102 \\ & 101 \\ & 101 \end{aligned}$	0.90053	9.99659	50	31		
		9.09707		9.10049		0.89951	9.99658	59	-31 16		
		9.09807		9.10150		0.89850	9.99656	48	12		
		9.09907		9.10252		0. 89748	9.996559.99653	47	8		
		9.10006		9.10353.		0.89647					
$\begin{array}{rr}29 & 0 \\ 4 \\ & 8 \\ & 12 \\ & 16\end{array}$	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 19 \end{aligned}$	9.10106	$\begin{aligned} & 99 \\ & 99 \\ & 98 \\ & 99 \end{aligned}$	9.10454	$\begin{aligned} & 101 \\ & 101 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	0.89546	9.99651				
		$9.1020 \overline{5}$		$9.1055 \overline{5}$		0.89445	$9.99650 \quad 44$		310		
		9.10304		9.10656		0.89344	9.99648		$43-52$		
		9.10402		9.10756		0.89244	9.99647		48		
		9.10501		9.10856		0.89144	9.99645	41		44	
$\begin{array}{rr}29 & 20 \\ 24 \\ 28 \\ & 32 \\ & 36\end{array}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	9.10599	$\begin{aligned} & 98 \\ & 98 \\ & 98 \\ & 97 \\ & 97 \end{aligned}$	9.10956	$\begin{array}{r} 100 \\ 99 \\ 99 \\ 99 \\ 99 \end{array}$	$\begin{array}{ll} 0.89 & 044 \\ 0.88 & 944 \\ 0.88 & 84 \overline{5} \\ 0.88 & 746 \\ 0.88 & 647 \end{array}$	9.996439.996429.996409.996389.99637	4039383736	3040		
		9.10697		9.11056						36	
		9.10795		9.11155°						32	
		9.10893		9.11254						28	
		9.10990		9.11353						24	
$\begin{array}{rr}29 & 40 \\ 44 \\ 48 \\ 42 \\ 52 \\ & 56\end{array}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	9.11087	9797969796	9.11452	$\begin{aligned} & 99 \\ & 98 \\ & 98 \\ & 98 \\ & 98 \end{aligned}$	$\begin{array}{ll} 0.88 & 548 \\ 0.88 & 449 \\ 0.88 & 351 \\ 0.88 & 253 \\ 0.88 & 155 \end{array}$	9.996359.996339.996329.996309.99	$\begin{aligned} & 35 \\ & 34 \\ & 33 \\ & 32 \\ & 31 \end{aligned}$	$30 \quad 20$		
		9.11184		9.11551						16	
		9.11281		9.11649						12	
		9.11377		9.11747						8	
		9.11474		9.11845						1	
$\begin{array}{rr}30 & 0 \\ 4 \\ \\ 8 \\ & 12 \\ & 16\end{array}$	$\begin{aligned} & \mathbf{3 0} \\ & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	9.11570	$\begin{aligned} & 96 \\ & 95 \\ & 96 \\ & 95 \\ & 95 \end{aligned}$	9.11943	$\begin{aligned} & 97 \\ & 98 \\ & 97 \\ & 97 \\ & 96 \end{aligned}$	0.880570.879600.878620.877650.87668	9.99 9.99 9.99 9.924 9.99 9.922	$\begin{aligned} & 30 \\ & 29 \\ & 28 \\ & 27 \\ & 26 \end{aligned}$	$30 \quad 0$		
		9.11666		9.12040						06284	
		9.11761		9.12138							
		9.11857		9.12235							
		9.11952		9.12332						44	
$\begin{array}{ll}30 & 20 \\ & 24 \\ 28 \\ & 32 \\ & 36\end{array}$	$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \end{aligned}$	9.12047	9594959494	9.12428	$\begin{aligned} & 97 \\ & 96 \\ & 96 \\ & 96 \\ & 96 \end{aligned}$	$\begin{array}{ll} 0.87 & 572 \\ 0.87 & 475 \\ 0.87 & 379 \\ 0.87 & 283 \\ 0.87 & 187 \end{array}$	9.996189.996179.996159.996139.99612	$\begin{aligned} & 25 \\ & 24 \\ & 23 \\ & 22 \\ & 21 \end{aligned}$	$\begin{array}{rr}29 & 40 \\ & 36 \\ 32 \\ & 28 \\ & 24\end{array}$		
		9.12142		9.12525							
		9.12236		9.12621							
		9.12331		9.12717							
		9.12425		9.12813							
$\begin{array}{rr}30 & 4 \\ & 4 \\ & 4 \\ & 5 \\ & 5\end{array}$	$\begin{array}{r} 40 \\ 41 \\ 42 \\ 43 \\ 44 \end{array}$	9.12519	94	9.12909	96	0.87091	9.999.9109.999.9089.999.9059.903	2019181716	$29 \quad 20$		
		9.12612	4	9.13004	95	0.86996				101284	
		9.12706	93	9.13099	95	0.86901					
		9.12799	93	9.13194	95	0.86806					
		9.12892	93	9.13289	95	0.86711					
$31 \begin{array}{rr} \\ & 0 \\ & 4 \\ & 8 \\ & 12 \\ & 16\end{array}$	$\begin{aligned} & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	9.12985°		9.13384		0.86616	9.996019.996009.995989.995969.99595	1514131211	290		
		9.13078	93	9.13478	94	0.86522				056484	
		9.13171	93	9.13573	95	0.86427					
		9.13263	92	9.13667	94	0.86333					
		9.13355	92	9.13761	94	0.86239					
$\begin{array}{ll}31 & 20 \\ & 24 \\ & 28 \\ & 32 \\ & 36\end{array}$	$\begin{array}{r} 50 \\ 51 \\ 52 \\ 53 \\ 54 \end{array}$	9.13447		9.13854	$\begin{aligned} & 94 \\ & 93 \\ & 93 \\ & 93 \end{aligned}$	$\begin{array}{lll}0.86 & 146 \\ 0.86 & 052 \\ 0.85 & 959 \\ 0.85 & 866 \\ 0.85 & 773\end{array}$	9.99 9.99 9.99 9.99 9.99 9.99 9.98	109876	$28 \quad 40$		
		9.13539		9.13948					$28 \quad 40$		
		9.13630	92 91	9.14041						8	
		9.13722	92	9.14134						28	
		9.13813	91	9.14227						24	
31	$\begin{aligned} & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \end{aligned}$	9.13904	$\begin{aligned} & 90 \\ & 91 \\ & 90 \\ & 91 \\ & 90 \end{aligned}$	9.14320	$\begin{aligned} & 92 \\ & 92 \\ & 93 \\ & 91 \\ & 92 \end{aligned}$	$\begin{array}{ll} 0.85 & 680 \\ 0.85 & 588 \\ 0.85 & 496 \\ 0.85 & 403 \\ 0.85 & 312 \end{array}$	9.99 9.99 9.98 9.98 9.99 98 9.99 989	54321	$\begin{array}{ll}28 & 20 \\ & 16 \\ & 12\end{array}$		
		9.13994		9.14412							
		9.14085		9.14504							
		9.14175		9.14597							
		9.14266		9.14688							
320	60	9.14356		9.14780		0.85220	9.99575	0	28	0	
		L. Cos.	d.	L. Cotg.	e.d.	L. Tang.	L. Sin.	,	m.	8.	

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline m. s. \& , \& L. Sin. \& d. \& L. Tang. \& c. d. \& L. Cotg. \& L. Cos. \& d. \& \& \\
\hline \multirow[t]{5}{*}{\(\begin{array}{r}40 \\ \\ \\ \\ 4 \\ 8 \\ \\ \\ 12 \\ 16 \\ \hline\end{array}\)} \& 0 \& 9.23967 \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& 72 \\
\& 71 \\
\& 71 \\
\& 72
\end{aligned}
\]} \& 9.24632 \& \& 0.75368 \& 9.99 335 \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 3 \\
\& 2 \\
\& 2 \\
\& 2
\end{aligned}
\]} \& 60 \& 20 \\
\hline \& 1 \& 9.24039 \& \& 9.24706 \& 74 \& 0.75294 \& 9.99333 \& \& 59 \& 56 \\
\hline \& 2 \& 9.24110 \& \& 9.24779 \& 73 \& 0.75221 \& 9.99 331 \& \& 58 \& 52 \\
\hline \& 3 \& 9.24181 \& \& 9.24853 \& 74 \& 0. 75147 \& 9.99 328 \& \& 57 \& 48 \\
\hline \& 4 \& 9.24253 \& \& 9.24926 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 73 \\
\& 74
\end{aligned}
\]} \& 0.75074 \& 9.99326 \& \& 56 \& 44 \\
\hline \multirow[t]{5}{*}{40} \& 5 \& 9. 24324 \& \[
\begin{aligned}
\& 72 \\
\& 71
\end{aligned}
\] \& 9. \(2 \overline{5} 000\) \& \& 0.75000 \& 9.99 324 \& \multirow[t]{5}{*}{2
2
3
2
2
2
2} \& 55 \& 19 \\
\hline \& 6 \& \(9.2439 \overline{5}\) \& 71 \& 9.25 073 \& 73 \& 0.74927 \& 9.99 322 \& \& 54 \& 156 \\
\hline \& 7 \& 9.24466 \& 71 \& 7.25146 \& \& 0.74854 \& 9.99 319 \& \& 53 \& 32 \\
\hline \& 8 \& 9.24 536 \& 70 \& 9.25219 \& 73 \& 0.74781 \& 9.99 317 \& \& 52 \& 28 \\
\hline \& 9 \& 9.24 607 \& 71 \& 9.25292 \& \[
73
\] \& 0.74708 \& 9.99315 \& \& 51 \& 24 \\
\hline \multirow[t]{5}{*}{40} \& 10 \& 9.24 677 \& 70 \& 9. 25365 \& \& 0.74635 \& 9.99 313 \& \& 50 \& \(19 \quad 20\) \\
\hline \& 11 \& 9.24748 \& 71 \& 9.25437 \& 72 \& 0.74563 \& 9.99310 \& 3 \& 49 \& 16 \\
\hline \& 12 \& 9.24818 \& 70 \& 9.25510 \& 73 \& 0.74490 \& 9.99 308 \& \multirow[t]{2}{*}{2} \& 48 \& 12 \\
\hline \& 13 \& 9.24 888 \& 70 \& 9.25582 \& 72 \& 0.74418 \& 9.99306 \& \& 47 \& \multirow[t]{2}{*}{8
4} \\
\hline \& 14 \& 9.24958 \& 70 \& 9.25655 \& 73
72 \& 0.74345 ¢ \& 9.99304 \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& 2
\end{aligned}
\] \& 46 \& \\
\hline \multirow[t]{5}{*}{\(\begin{array}{rr}41 \& 0 \\ \& 4 \\ \& 8 \\ \& 12 \\ \& 16\end{array}\)} \& 15 \& 9. 25028 \& 70 \& 9.25727 \& \multirow[t]{2}{*}{} \& 0.74273 \& 9.99301 \& \multirow[t]{2}{*}{2} \& \multirow[t]{2}{*}{\[
45
\]} \& \multirow[t]{2}{*}{19} \\
\hline \& 16 \& 9.25098 \& 70 \& 9.25799 \& \& 0.74201 \& 9.99299 \& \& \& \\
\hline \& 17 \& 9.25168 \& 70 \& 9.25871 \& \[
\begin{aligned}
\& 72 \\
\& 72
\end{aligned}
\] \& 0.74129 \& 9. 99.297 \& \multirow[t]{2}{*}{2
3
3} \& 43 \& 52 \\
\hline \& 18 \& 9.25 237 \& 69 \& 9.25943 \& \[
\begin{aligned}
\& 72 \\
\& 72
\end{aligned}
\] \& 0.74057 \& 9.99 294 \& \& 42 \& \multirow[t]{2}{*}{48} \\
\hline \& 19 \& 9.25307 \& 70 \& \(9.2601 \overline{5}\) \& \[
72
\] \& 0.73985 \& 9.99292 \& \[
\begin{aligned}
\& 0 \\
\& 2 \\
\& 2
\end{aligned}
\] \& 41 \& \\
\hline \multirow[t]{5}{*}{41} \& 20 \& 9. 25376 \& 69 \& 9.26086 \& \& 0.73914 \& 9.99 290 \& \& 40 \& \\
\hline \& 21 \& \(9.2544{ }^{\text {a }}\) \& 69 \& 9. 26158 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 72 \\
\& 71
\end{aligned}
\]} \& 0.73842 \& 9.99 288 \& 2 \& 39 \& \multirow[t]{2}{*}{\(\begin{array}{rr}18 \& 40 \\ \& 36 \\ \& 32\end{array}\)} \\
\hline \& 22 \& 9.25514 \& 69 \& 9.26229 \& \& 0.73771 \& 9.99285 \& \multirow[t]{2}{*}{3
2
2} \& 38 \& \\
\hline \& 23 \& 9.25583 \& 69 \& 9.26301 \& 72 \& 0.73699 \& 9.99 283 \& \& 37 \& 28 \\
\hline \& 24 \& 9.25 652 \& 69 \& 9.26372 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 71 \\
\& 71
\end{aligned}
\]} \& 0.73628 \& 9.99281 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 2 \\
\& 3
\end{aligned}
\]} \& 36 \& 24 \\
\hline \multirow[t]{5}{*}{41. 40} \& 25 \& 9.25 721 \& 69 \& 9.26443 \& \& 0.73557 \& 9.99 278 \& \& 35 \& \\
\hline \& 26 \& 9.25790 \& 69 \& 9.26514 \& \& 0.73486 \& 9.99276 \& \multirow[t]{2}{*}{2} \& 34 \& \(18 \quad 20\) \\
\hline \& \({ }_{28}^{27}\) \& 9.25 858 \& 68 \& 9.26585 \& \[
\begin{aligned}
\& 71 \\
\& 71 \\
\& 70
\end{aligned}
\] \& 0.73415 \& 9.99 274 \& \& \multirow[t]{2}{*}{33
32} \& 12 \\
\hline \& 28 \& 9.25 927 \& 69 \& 9.26 \(655^{\circ}\) \& 70 \& \(0.7334 \overline{5}\) \& 9.99 271 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 2 \\
\& 3 \\
\& 2 \\
\& 0
\end{aligned}
\]} \& \& 8 \\
\hline \& 29 \& 9.25995 \& \multirow[t]{2}{*}{68} \& 9.26726 \& \multirow{2}{*}{71} \& 0.73274 \& 9.99269 \& \& 31 \& 4 \\
\hline \multirow[t]{5}{*}{\begin{tabular}{rr}
\(42 \quad 0\) \\
\& 4 \\
8 \\
\& 12 \\
\& 16 \\
\hline
\end{tabular}} \& 30 \& 9. 26063 \& \& 9.26797 \& \& 0.73203 \& 9. 99267 \& \[
2
\] \& 30 \& \\
\hline \& 31 \& 9. 26131 \& 68 \& 9.26867 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 70 \\
\& 70
\end{aligned}
\]} \& 0.73133 \& 9.99264 \& 3 \& 29 \& \(\begin{array}{rr}18 \& 0 \\ \\ 56\end{array}\) \\
\hline \& 32 \& 9.26 199 \& 68 \& 9.26937 \& \& 0.73063 \& 9.99 262 \& \multirow[t]{2}{*}{\(\stackrel{2}{2}\)} \& 28 \& \multirow[t]{2}{*}{52
48} \\
\hline \& 33 \& 9. 26267 \& 68 \& 9.27008 \& 71 \& 0.72992 \& 9.99 260 \& \& \multirow[t]{2}{*}{27
26} \& \\
\hline \& 34 \& 9.26335 \& \[
68
\] \& 9.27078 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 70 \\
\& 70
\end{aligned}
\]} \& 0.72922 \& 9.99257 \& \[
\begin{aligned}
\& 2 \\
\& 3
\end{aligned}
\] \& \& 44 \\
\hline \multirow[t]{5}{*}{\(42 \quad 2\)

2
2} \& 35 \& 9. 26403 \& \multirow[t]{2}{*}{67} \& 9.27148 \& \& 0. 72852 \& 9.99 255 \& \& 25 \& 1740

\hline \& 36 \& 9. 26470 \& \& 9.27218 \& 70 \& 0.72782 \& 9.99 25.2 \& 3 \& 24 \&

\hline \& 37 \& 9. 26538 \& 68 \& 9.27288 \& 70 \& 0.72712 \& 9. 99250 \& ${ }_{2}^{2}$ \& 23 \& 32

\hline \& ${ }^{38}$ \& 9. 26605 \& 67 \& 9.27 357 \& 69 \& 0.72643 \& 9.99 248 \& 2 \& 22 \& 28

\hline \& 39 \& 9.26672 \& \& 9.27427 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 70 \\
& 69
\end{aligned}
$$} \& 0.72573 \& 9.99245 \& \multirow[b]{2}{*}{} \& 21 \& 24

\hline \multirow[t]{5}{*}{$\begin{array}{ll}42 \quad 40 \\ & 44 \\ 48 \\ & 52 \\ & 56 \\ \end{array}$} \& 40 \& 9. 26739 \& 67 \& 9.27496 \& \& 0.72504 \& 9.99 243 \& \& 20 \& $17 \quad 20$

\hline \& 41 \& 9. 26806 \& 67 \& 9.27566 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 70 \\
& 69
\end{aligned}
$$} \& \multirow[t]{2}{*}{0. 72434

0.72365} \& \multirow[t]{2}{*}{9.992 241
9.99238} \& 2 \& \multirow[t]{2}{*}{19
18} \& \multirow[t]{4}{*}{}

\hline \& 42 \& 9. 26873 \& 67 \& 9.27635° \& \& \& \& \& \&

\hline \& 43 \& 9.26 940 \& 67 \& 9.27704 \& 69 \& 0.72296 \& 9.99236 \& 2 \& 17 \&

\hline \& 44 \& 9.27007 \& \multirow[t]{2}{*}{66} \& 9.27773 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 69 \\
& 69
\end{aligned}
$$} \& \multirow[t]{2}{*}{$\frac{0.72227}{0.72158}$} \& \multirow[t]{2}{*}{9.99 233} \& \& 16 \&

\hline \multirow[t]{5}{*}{$\begin{array}{rr}43 & 0 \\ & 4 \\ 8 \\ & 12 \\ & 12\end{array}$} \& 45 \& 9. 27073 \& \& 9.27842 \& \& \& \& 2 \& 15 \& 17

\hline \& 46 \& 9.27 140 \& 67 \& 9.27911 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 69 \\
& 69
\end{aligned}
$$} \& 0.72158

0.72089 \& 9.99229 \& \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 14 \\
& 13 \\
& 12
\end{aligned}
$$} \& 56

\hline \& 47 \& 9.27206 \& \multirow[t]{2}{*}{66
67} \& 9.27980 \& \& \multirow[t]{2}{*}{0.72020
0.71951} \& \multirow[t]{2}{*}{9.99 2226
9.99224} \& \multirow{3}{*}{2} \& \& 52

\hline \& 48 \& 9.27 273 \& \& 9.28049 \& 69 \& \& \& \& \& 48

\hline \& 49 \& 9.27339 \& 66 \& 9.28117 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 68 \\
& 69
\end{aligned}
$$} \& 0.71883 \& 9.99221 \& \& 11 \& 44

\hline \multirow[t]{5}{*}{| $43 \quad 20$ | |
| :--- | :--- |
| 24 | |
| 28 | |
| 32 | |
| 36 | |
| | |} \& 50 \& 9.27 $40 \overline{\overline{5}}$ \& 66 \& 9.28186 \& \& \multirow[t]{5}{*}{\[

$$
\begin{array}{ll}
0.71 & 814 \\
0.71 & 746 \\
0.71 & 677 \\
0.71 & 609 \\
0.71 & 541
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{ll}
9.99 & 219 \\
9.99 & 217 \\
9.99 & 214 \\
9.99 & 212 \\
9.99 & 209
\end{array}
$$
\]} \& \multirow[b]{5}{*}{3

2
2

3} \& \multirow[t]{5}{*}{$\begin{array}{r}10 \\ 9 \\ 8 \\ 7 \\ 6 \\ \hline\end{array}$} \& \multirow[t]{5}{*}{| 16 | 40 |
| :--- | :--- |
| | 36 |
| | 32 |
| | 28 |
| | 24 |}

\hline \& 51 \& 9. 27471 \& \multirow[b]{2}{*}{6} \& 9. 28254 \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 68 \\
& 69 \\
& 68
\end{aligned}
$$} \& \& \& \& \&

\hline \& 52 \& 9.27537 \& \& 9.28323 \& \& \& \& \& \&

\hline \& 53 \& 9.27602 \& 65 \& 9.28391 \& \& \& \& \& \&

\hline \& 54 \& 9.27668 \& 66 \& 9.28459 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 68 \\
& 68
\end{aligned}
$$} \& \& \& \& \&

\hline \multirow[t]{5}{*}{| 43 |
| :--- |
| 4 |
| 44 |
| 44 |
| 48 |
| |
| |
| 52 |
| |} \& 55 \& 9.27 734 \& \& 9.28527 \& \& \multirow[t]{5}{*}{| 0.71473 |
| :--- |
| 0.71 |
| 0.71 |
| 0.538 |
| 0.71 |
| 0.71 |
| 0.70 |} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{ll}
9.99 & 207 \\
9.99 & 204 \\
9.99 & 202 \\
9.99 & 200 \\
9.99 & 197
\end{array}
$$
\]} \& \multirow[t]{6}{*}{2

3
3
2
2
3
2} \& \multirow[t]{5}{*}{5
4
4
3
2

1} \& \multirow[t]{5}{*}{$$
\begin{array}{rr}
\hline 16 & 20 \\
& 16 \\
& 12 \\
& 8 \\
& 4
\end{array}
$$}

\hline \& 56 \& 9.27799 \& 65 \& $9.2859 \overline{5}$ \& 68 \& \& \& \& \&

\hline \& 57 \& 9.27 864 \& 65 \& 9.28662 \& 67 \& \& \& \& \&

\hline \& 58 \& 9.27930 \& 66 \& 9.28730 \& 68 \& \& \& \& \&

\hline \& 59 \& 9.27 995 \& 65 \& 9,28 798 \& 68 \& \& \& \& \&

\hline 440 \& 60 \& 9.28060 \& \& $9.2886{ }^{\text {¢ }}$ \& 67 \& 0.71135 \& 9.99195 \& \& 0 \& 160

\hline \& \& L. Cos. \& d. \& L. Cotg. \& c. d. \& L. Tang. \& L. Sin. \& d. \& , \& m. s.

\hline
\end{tabular}

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22．－Fire－place logarithms of circular functions，etc．－Continued．

		¢			¢¢									\％
	8	gigse		荗が虫念	出出出電	Weme		\＄NNTM	N1NTNTE	いいいいい	っちゃご	cos－rocr	－Wroro	，
\％	\circ \pm \pm 0 8 8	1000000 Н出出今出 	ب0：000 0出出出出 		0：00000出出出出出 	000：000出出出出古 ！ivitice	10：000：00古 $4:{ }_{0}^{0}$ 운우웅ㅇㅇㅇㅇ	10：000：00 Hig io i 	0 GUOMO 	0 4 wNN：N	0000000 어ㄹㅓㅓ업	000000 어ㄹㅓㅓ엉	$0: 0000$ T겅	5 0 0
？														\bigcirc
¢		合志志志 거영웅	oب 0：0ب：0ب：出出念念志 Che．ede	0㤁志志出出 	НАА屮二 \＆idecieq	o出出出出山 	0ب 0ب 0 0ب 0：出出出已都 4 ox． Atwove		－古苦出古合 	0古台出出出 B	00：00：000出出出古古 	0合古台包皆 	M్ర్రీ 	－
\bigcirc	grarger yryyyy yryy													？
								OOPOO ${ }^{\circ} \mathrm{H}_{\infty} \mathrm{C}_{\infty}$ 					00000 옹ㅇㅇㅇㅇㅇ 	
\％			0 오ㅇㅓㅓ처엉	 	0：0：0ب 0：0． 	oب 0ب：0ب ه： 	O $\mathscr{\infty} \notin \otimes=8$ cerceroy	0：000000 	000000 $\because 888 \infty 8$ 	0：0000000 	0 앙우우웅	O：هب ه：0：0ب $\mathscr{\infty} \otimes \infty \otimes$ 우ㅇㅜㅜㅇ․․ 9	 Sixix ${ }^{\circ}$	＋
？														？
，	－	－000	-1×00				NN0N0\％	W్ర్ర్心p్M		出它免去出	出出禹出皆	어어의	89990］	
\％	0	－	NN\％	出禹恣兑。	－－－－			－	NN\％N	出禹包家。			出禹恐\％	

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

$1^{\text {h }}$

15°

m. s.	,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.			
12	0	9.41300		9.42805		0.57195	9.98494	333434	60	60	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	1	9.41347	47	9.42856	51	0.57144	9.98 491		59		
	2	9.41394	47	9.42906	50	0.57094	9.98488		58		
	3	9.41441	47	9.42957	51	0.57043	9.98484		57		
	4	9.41488	47	9.43007	50	0.56993	9.98481		56		
3	5	9.41535		9.43057	50	0.56943	9.98477	4	55	59	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	6	9.41582	47	9.43 108	51	0.56892	9.98474	3	54		
	7	9.41628	46	9.43 158	50	0.56842	9.98471	3	53		
	8	9.41675	47	9.43208	50	0.56792	9.98467	4	52		
	9	9.41722	47	9.43258	50	0.56742	9.98454	3	51		
0 4 4 4 5 5	10	9.41 768		9.43308	50	0.56692	9.98460	4	50	59	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	11	9.41815	47	9.43358	50	0.56642	9.98457	3	49		
	12	9.41861	46	9.43408	50	0.56592	9.98453	4	48		
	13	9.41908	47	9.43458	50	0.56542	9.98450	3	47		
	14	9.41954	46	9.43508	50	0.56492	9.98447	3	46		
1	15	9.42001		9.43558		0.56442	9.98443		45	59	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	16	9.42 047	46	9.43607	49	0.56393	9.98 940	3	44		
	17	9.42093	46	9.43657	50	0.56343	9.98436	4	43		
	18	9.42 140	47	9.43 707	50	0.56293	9.98433	3	42		
	19	9.42186	46	9.43756	49	0.56244	9.98429	4	41		
1 20 24 28 38 32 36	20	9.42 232	46	9.43806		0.56194	9.98 426		40	58	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	21	9. 42278	46	9.43 $85 \underline{\text { º }}$	49	$0.5614 \frac{5}{7}$	9.98 422	4	39		
	22	9. 42324	46	9.43905	50	0.56095	9. 98419	3	38		
	23	9.42 370	46	9.43954	49	0.56046	C. 98415	4	37		
	24	9.42416	46	9.44004	50	0.55996	9. ${ }^{\circ}$ \%, 412	3	36		
$\begin{array}{ll}1 & 4 \\ & 4 \\ & 4 \\ & 5 \\ & \\ & \end{array}$	25	9.42 461	45	9. 44053	49	0.55947	9. 98409	3	35	58	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	26	9. 42507	46	9.44 102	49	0.55898	9.98405	4	34		
	27	9.42553	46	9. 44151	49	0.55849	9.98402	3	${ }_{32} 3$		
	28	9. 42599	46	9.44 201	50	0.55799	9. 98398	4	${ }_{31}^{32}$		
	29	9.42644	45	9.44250	49	0.55750	9.98395	3	31		
2	30	9.42690		9.44299		0.55701	9.98391	4	30	58	056524844
	31	9. 42735	45	9.44348	49	0.55652	9.98388	3	29		
	32	9.42 781	46	9.44397	49	0.55603	9.98384	4	28		
	33	9. 42826	45	9.44446	49	0.55554	9.98381	3	${ }^{27}$		
	34	9.42872	$\begin{aligned} & 46 \\ & 45 \end{aligned}$	9.44495	$\begin{aligned} & 49 \\ & 49 \end{aligned}$	0.55505	9.98 377	4	26		
$\begin{array}{ll}2 & 2 \\ & 2 \\ & 2 \\ & 3\end{array}$	35	9.42917		9. 44544		0.55456	9.98 373		25	57	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	36	9. 42962	45	9. 44592	48	0.55408	9.98 370	3	24		
	37	9.43 008	46	9.44641	49	0.55359	9.98 366	4	23		
	38	9. 43053	45	9. 44690	49	0.55310	9. 98363	3	22		
	39	9. 43098	45	9.44738	49	0.55262	9.98359	4	21		
2	40	9.43143	45			0.55213		$\stackrel{ }{ }$	20	57	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	41	9.43 188	45	9. 44836	49	0.55164	9.98 352	4	19		
	42	9.43 233	45	9.44884	48	0.55116	9.98349	3	18		
	43	9. 43278	45	9.44 933	49	0.55067	9.98345	4	17		
	44	9.43323	45	9.44981	48	0.55019	9.98342	3	16		
3	45	9.43367	44	9. 45029	48	0.54971	9.98 338	4	15	57	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	46	9.43 412	45	9. 45078	49	0.54922	9.98 334	4	14		
	47	9.43457	45	9. 45126	48	0.54874	9.98331	3	13		
	48	9. 43502	45	9.45174	48	0.54826	9.98 327	4	12		
	49	9.43546		9.45222	48	0.54778	9.98324	3	11		
3	50	9. 43591	45	9.45 271	49	0.54729	9. 98320		10	56	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	51	9.43 635	44	9.45 319	48	0.54681	9.98 317	3	9		
	52	9.43680	45	9.45 367	48	0. 54633	9. 98313	4	8		
	53	9.43 724	44	9.45415	48	0.54585	9. 98309	4	${ }^{7}$		
	54	9.43769	45	9.45463	48	0.54537	9.98306	3	6		
3	55	9.43813		9.45 511		0.54489	9.98 302		5	56	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	56	9.43857	44	9. 45559	48	0.54441	9.98 299	3	4		
	57	9. 43901	44	9.45606	47	0.54394	9.98 295	4	3		
	58	9.43946	45	9.4. 654	48	0.54346	9.98 291	4	2		
	59	9.43990	44	9.45 702	48	0.54298	9.98 288	3	1		
40	60	9.44034		9.45750		0.54250	9.98284	4	0	56	0
		L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	m.	s.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
1^{h}
17°

Table 22．－Five－place logarithms of circular functions，etc．－Continued．

	$\stackrel{3}{6}$			ちーツ－0｜		施	あ゙，					范	ーい い	！
	$\stackrel{\square}{8}$	Gxosex		免出出	出出世今	Wiccucis	ceede eice		N150019	も禹ごひ	どくいここ	cos－rocr	－Coneo	，
\％	4 0 0 0			－ gis 	：000000： 앙잉잉형 Gi	000000 옹앙앙잉 	ex ex ex 0：0： 잉ㅇㅇㅇㅇㅇㅇ 	00：00：00：000000 gㅇgㅇ․ 	せ \＃\＆象必定器禺	屯出出も出 	屯 屯も屯 	000000屯 ＂．	o：0：0000：0：屯 屯 屯 $\begin{gathered}\infty \\ \infty\end{gathered}$ 	H 20 $\underline{\square}$
\bigcirc			We\％ucic	mouncis	W80ccicis	Mucme	MCEMOM	Cosecsecs					± 80.8080	R
¢	0 0 0 0 8 			000000 	$000: 00$路汱恣恣 	00：0：0：0 	0：0： 도⼼써어⼼禺突密出出	0：00：00：00：000 	or 어어NN 	grorer \＆\％\＆\＆\＆	0：0：0：0：0： gercrory 	0： 0 	gerrer 	皆
$\stackrel{8}{2}$		今出出出	\pm	念出出	N	令心灾	会心尤	N心N	ち出心穴	も出出去寺	出灾出出出		むせためせ	？
¢				00000菅出む出台 		0.0000今出出出 Vive	0.0000二今出出然忥出宫家安			0.0000 앙어웅		0.0000 $\dot{\infty}_{\infty}^{\infty} \dot{\infty}_{\infty}^{\infty} \dot{\infty}_{\infty}^{\infty}$ 	0.0 .000 $\infty_{\infty}^{\infty} \infty_{\infty}^{\infty} \dot{\infty}_{\infty}^{\infty}$ 	5 0 O \％
5 0 0 0	$\|$0 0 0 g		－ 9090 M 덩ㅇㅇㅇㅇㅇㅇㅇㅇ はNた。	0： Coucco 	$0: 0: 0: 0$ Coyce －	0：0：0：0：00：00 OTOMOM Nいので	ciucce 	Youce 잉르어⼼커	ه：0：00000 00 거ㅇㅓㅓ어엉	000000 OMSMM 겅명렁허렁	000000 	000000 かomed old	000000 －9909 	5 0 0
？		crstor	AOMA	Orsters	\rightarrow ¢リカ	OH－4	$\Delta \Delta \Delta 0 r$	\rightarrow－\rightarrow crs	$\rightarrow \Delta$ cras	$\Delta \Delta \Delta$ Or	$\Delta \Delta \oplus$－		$\triangle \pm$ ¢ Or	？
－	\bigcirc	N00400	のvかo＇0｜	こたぢいい		N0N0．0		cepedicicic	¢çise	古念出出出			¢9¢ $0^{\circ} 8$	
\square \square	\pm	－¢ べ，	N心茧			N0．		－					全乐岛灾	

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
1^{h}
19°

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
$1^{\text {h }}$

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{\(22^{\circ}\)} \\
\hline m. s. \& , \& L. Sin. \& d. \& L. Tang. \& c. d. \& L. Cotg. \& L. Cos. \& d. \& \& \\
\hline \multirow[t]{5}{*}{28} \& 0 \& 9.57358 \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& 31 \\
\& 31 \\
\& 31 \\
\& 31
\end{aligned}
\]} \& 9.60 641 \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& 36 \\
\& 37 \\
\& 36 \\
\& 36 \\
\& 37
\end{aligned}
\]} \& 0.39359 \& 9.96 717 \& \multirow[b]{5}{*}{\[
\begin{aligned}
\& 6 \\
\& 5 \\
\& 5 \\
\& 5 \\
\& 5
\end{aligned}
\]} \& 60 \& \multirow[t]{5}{*}{\begin{tabular}{rr}
32 \& 0 \\
566 \\
52 \\
48 \\
\& 44 \\
\hline
\end{tabular}} \\
\hline \& 1 \& 9.57389 \& \& 9. 60677 \& \& 0.39323 \& 9. 96711 \& \& 59 \& \\
\hline \& 2 \& 9.57420 \& \& 9. 60714 \& \& 0.39286 \& 9.96706 \& \& 58 \& \\
\hline \& 3 \& 9.57451 \& \& 9.60750 \& \& 0.39250 \& 9.96 701 \& \& 57 \& \\
\hline \& 4 \& 9.57482 \& \& 9. 60786 \& \& 0.39214 \& 9.96696 \& \& 56 \& \\
\hline \multirow[t]{5}{*}{\(\begin{array}{ll}28 \& 20 \\ \& 24\end{array}\)} \& 5 \& 9.57514 \& \& 9.60823 \& 36 \& 0.39177 \& 9.96691 \& \& 55 \& 3140 \\
\hline \& 6 \& 9.57545 \& 31 \& 9. 60859 \& 36 \& 0.39141 \& 9. 96686 \& 5 \& 54 \& 36 \\
\hline \& 7 \& \(9.57{ }^{\text {a }} 76\) \& 31 \& 9. 60895 \& 36 \& 0.39105 \& 9.96681 \& 5 \& 53 \& 32 \\
\hline \& 8 \& 9.57607 \& 31 \& 9.60 931 \& 36 \& 0.39069 \& 9. 96676 \& 5 \& 52 \& 28 \\
\hline \& 9 \& 9.57638 \& 31
31 \& 9.60967 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 36 \\
\& 37
\end{aligned}
\]} \& 0.39033 \& 9.96 670 \& 6
5 \& 51 \& 24 \\
\hline \multirow[t]{5}{*}{\begin{tabular}{rr}
28 \& 40 \\
\& 44 \\
\& 48 \\
\& 52 \\
\& 56 \\
\hline
\end{tabular}} \& 10 \& 9.57669 \& \& 9.61004 \& \& 0.38996 \& 9.96 665 \& \& 50 \& \(31 \quad 20\) \\
\hline \& 11 \& 9.57700 \& 31 \& 9. 61040 \& 36 \& 0.38960 \& 9. 96660 \& \& 49 \& 16 \\
\hline \& 12 \& 9.57731 \& 31 \& 9.61 076 \& 36 \& 0.38924 \& 9.96 \(6.5{ }^{5} 5\) \& 5 \& 48 \& 12 \\
\hline \& 13 \& 9. 57762 \& 31 \& 9.61112 \& \& 0.38888 \& \(9.9665 \overline{0}\) \& \& 47 \& 8 \\
\hline \& 14 \& 9.57793 \& 31 \& 9.61148 \& \[
\begin{aligned}
\& 26 \\
\& 36
\end{aligned}
\] \& 0.38852 \& \(9.9664 \overline{5}\) \& \[
\begin{aligned}
\& 5 \\
\& 5
\end{aligned}
\] \& 46 \& 4 \\
\hline \multirow[t]{5}{*}{\(\begin{array}{rr}29 \& 0 \\ 4 \\ \& 8 \\ \& 12 \\ \& 16\end{array}\)} \& 15 \& 9.57824 \& \& 9.61184 \& \& 0.38816 \& 9.96640 \& \& 45 \& 31 \\
\hline \& 16 \& 9.57 855 \& 31
30 \& 9.61220 \& 36 \& 0.38780 \& 9.96 634 \& \& 44 \& 56 \\
\hline \& 17 \& \(9.57885^{\circ}\) \& 30 \& 9.61256 \& \({ }_{36}^{36}\) \& 0.38744 \& 9.96 629 \& \& 43 \& 52 \\
\hline \& 18 \& 9.57916 \& 31 \& 9.61292 \& 36 \& 0.38708 \& 9.96 624 \& \& 42 \& 48 \\
\hline \& 19 \& 9.57947 \& \multirow[t]{2}{*}{31} \& 9.61328 \& \multirow[t]{2}{*}{36} \& 0.38672 \& 9.96619 \& \multirow[t]{2}{*}{5} \& 41 \& 44 \\
\hline \multirow[t]{5}{*}{\(\begin{array}{rr}29 \& 20 \\ 24 \\ 28 \\ 32 \\ 32 \\ 36\end{array}\)} \& 20 \& 9.57978 \& \& 9.61364 \& \& 0.38636 \& 9.96 614 \& \& 40 \& \multirow[t]{5}{*}{\(\begin{array}{ll}30 \& 40 \\ \& 36 \\ 32 \\ \& 28 \\ \& 24\end{array}\)} \\
\hline \& 21 \& 9. 58008 \& 30 \& 9.61400 \& 36 \& 0.38600 \& 9.96 608 \& \& 39 \& \\
\hline \& 22 \& 9. 58039 \& 31 \& 9.61 436 \& 36 \& 0.38564 \& 9.96 603 \& \& 38 \& \\
\hline \& 23 \& 9.58070 \& 31 \& 9.61 472 \& 36 \& 0.38528 \& 9.96 598 \& 5 \& 37 \& \\
\hline \& 24 \& 9.58101 \& \& 9.61508 \& \multirow{2}{*}{36} \& 0.38492 \& 9.96593 \& \multirow[t]{2}{*}{} \& 36 \& \\
\hline \multirow[t]{5}{*}{\begin{tabular}{rr}
29 \& 40 \\
\& 44 \\
48 \\
\& 52 \\
\& 56 \\
\hline
\end{tabular}} \& 25 \& 9. 58131 \& 30 \& 9,61 544 \& \& 0.38456 \& 9.96588 \& \& 35 \& \multirow[t]{5}{*}{\(\begin{array}{rr}30 \& 20 \\ \& 16 \\ \& 12 \\ \& 8\end{array}\)} \\
\hline \& 26 \& 9.58162 \& 31 \& 9.61579 \& 35 \& 0.38421 \& 9.96582 \& \& 34 \& \\
\hline \& 27 \& 9.58192 \& 30 \& 9.61 615 \& \& 0.38385 \& 9.96577 \& 5 \& 33 \& \\
\hline \& 28 \& 9.58223 \& \& 9.61651 \& \& 0.38349 \& 9.96572 \& \& 32 \& \\
\hline \& 29 \& 9.58253 \& \multirow[t]{2}{*}{31} \& 9.61687 \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 36 \\
\& 35
\end{aligned}
\]} \& 0.38313 \& 9.96567 \& \& 31 \& \\
\hline \multirow[t]{5}{*}{30} \& 30 \& 9.58284 \& \& 9.61722 \& \& 0.38278 \& 9.96562 \& \& 30 \& \multirow[t]{5}{*}{\(\begin{array}{lr}30 \& 0 \\ \& 56 \\ \& 52 \\ \& 48\end{array}\)} \\
\hline \& 31 \& 9.58314 \& \& 9.61758 \& \& 0.38242 \& 9.96556 \& \& \& \\
\hline \& 32 \& \(9.5834 \bar{\chi}\) \& 31
30 \& 9.61794 \& 36 \& 0.38206 \& 9.96551 \& \& 28 \& \\
\hline \& 33 \& 9.58375
9.58406 \& 30
31 \& 9.61830
9.61865 \& 36
35 \& 0.38170
0.38135 \& 9. 96546
9.96541 \& 5 \& 27
26 \& \\
\hline \& 34 \& 9.58406 \& 30 \& 9.61865 \& 36 \& 0.38135 \& 9.96541 \& \& 26 \& \\
\hline \multirow[t]{5}{*}{\(\begin{array}{rr}30 \& 20 \\ 24 \\ \& 28 \\ \& 32\end{array}\)} \& 35 \& 9.58436 \& \& 9.61901 \& \& 0.38099 \& 9.96 535 \& \& 25 \& \multirow[t]{5}{*}{\begin{tabular}{ll}
29 \& 40 \\
\& 36 \\
\& 32 \\
\& 28 \\
\& 24 \\
\hline
\end{tabular}} \\
\hline \& 36 \& 9.58 467 \& 31
30 \& 9. 61936 \& \& 0.38064 \& 9.96 530 \& 5 \& \(\stackrel{24}{24}\) \& \\
\hline \& 37 \& 9.58 497 \& 30 \& 9.61972 \& 36 \& 0.38028 \& 9.96525 \& 5 \& 23 \& \\
\hline \& 38 \& 9.58527 \& 30 \& 9.62008 \& \& 0.37992 \& 9.96520 \& 5 \& 22 \& \\
\hline \& 39 \& 9.58557 \& \multirow[t]{2}{*}{31} \& 9.62043 \& \multirow[t]{2}{*}{36} \& 0.37957 \& 9.96514 \& 5 \& 21 \& \\
\hline \multirow[t]{5}{*}{30
4
4

4} \& 40 \& 9. 58588 \& \& 9. 62079 \& \& 0.37921 \& 9. 96509 \& \& 20 \& \multirow[t]{5}{*}{$\begin{array}{rrr}29 & 20 \\ & 16 \\ & 12 \\ & 8 \\ & 4 \\ & \end{array}$}

\hline \& 41 \& 9. 58618 \& \& 9.62114 \& \& 0.37886 \& 9.96504 \& 6 \& 19 \&

\hline \& 42 \& 9. 58648 \& 30
30 \& 9. 62150 \& \& 0.37850 \& 9.96 498 \& 5 \& 18 \&

\hline \& 43 \& 9.58 678 \& 30 \& 9. $6218{ }^{\circ}$ \& \& 0.37815 \& 9.96493 \& 5 \& 17 \&

\hline \& 44 \& 9.58709 \& \multirow[t]{2}{*}{30} \& 9.62 221 \& 35 \& 0.37779 \& 9.96488 \& 5 \& 16 \&

\hline \multirow[t]{5}{*}{| 31 | 0 |
| ---: | ---: |
| | 4 |
| 8 | |
| | 12 |
| | 16 |} \& 45 \& 9.58739 \& \& 9, 62×256 \& \& 0.37744 \& 9.96 483 \& \& 15 \& \multirow[t]{5}{*}{$\begin{array}{rr}29 & 0 \\ 56 \\ & 52 \\ 48 \\ 44\end{array}$}

\hline \& 46 \& 9.58769 \& \& 9. 62 292 \& \& 0.37708 \& 9.96 477 \& 5 \& 14 \&

\hline \& 47 \& 9. 58799 \& 30
30 \& 9. 62327 \& 35 \& 0.37673 \& \& \& 13 \&

\hline \& 48 \& 9.58 829 \& 30 \& 9. ${ }^{\text {9. }} 6236238$ \& 36 \& 0.37638
0.37602 \& 9.96467
9.96461 \& ${ }_{6}^{6}$ \& 11 \&

\hline \& 49 \& 9.58859 \& 3 \& 9.62398 \& 35 \& 0.37602 \& 9.96461 \& 5 \& 11 \&

\hline \multirow[t]{5}{*}{$\begin{array}{ll}31 & 20 \\ 24 \\ & 28 \\ 32 \\ 32 \\ & 36\end{array}$} \& 50 \& 9.58889 \& \& 9. 62433 \& \& 0.37567 \& 9. 96456 \& \& 10 \& \multirow[t]{5}{*}{| 28 | 40 |
| ---: | ---: |
| | 36 |
| 32 | |
| 28 | |
| . | 24 |}

\hline \& 51 \& 9.58919 \& 30 \& 9. 62468 \& 35 \& 0.37532 \& 9. 96451 \& 6 \& 9 \&

\hline \& 52 \& 9.58949 \& 30
30 \& 9.62501 \& 36 \& 0.37496 \& 9.96 445 \& ${ }_{5}^{6}$ \& 8 \&

\hline \& 53 \& 9.58 979 \& 30 \& 9.62 539 \& 35 \& 0.37461 \& 9.96440 \& 5 \& 7 \&

\hline \& 54 \& 9.59009 \& 30 \& 9.62 574 \& 35 \& 0.37426 \& $9.9643 \overline{5}$ \& 6 \& 6 \&

\hline \multirow[t]{5}{*}{$\begin{array}{ll}31 & 40 \\ 44 \\ & 48 \\ & 52 \\ & 56 \\ & \end{array}$} \& 55 \& 9.59039 \& \& 9. 62609 \& \& 0.37391 \& 9. 96429 \& \& 5 \& $28 \quad 20$

\hline \& 56 \& 9.59069 \& \& 9. 62645 \& \& 0.37355 \& 9. 96424 \& 5 \& 4 \& 16

\hline \& 57 \& 9.59098 \& $\stackrel{29}{30}$ \& 9. 62680 \& 35 \& 0.37320 \& 9. 96419 \& 6 \& 3 \& 12

\hline \& 58 \& 9.59128 \& 30 \& 9. $6271 \overline{5}$ \& 35 \& $0.3728{ }^{2} 5$ \& 9.96413 \& \& 2 \& 8

\hline \& 59 \& 9.59158 \& \multirow[t]{2}{*}{30} \& 9.62 750 \& \multirow[t]{2}{*}{35} \& 0.37250 \& 9.96 408 \& \multirow[t]{2}{*}{5} \& 1 \& 4

\hline \multirow[t]{2}{*}{32} \& 60 \& 9.59 188 \& \& 9. 62785 \& \& 0.37215 \& 9.96403 \& \& 0 \& $28 \quad 0$

\hline \& \& L. Cos. \& d. \& L. Cotg. \& c. d. \& L. Tang. \& L. Sin. \& d. \& , \& m. s.

\hline
\end{tabular}

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
1^{h}

m.	S.		L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.			
32	0	0	9.59188	$\begin{aligned} & 30 \\ & 29 \\ & 30 \\ & 30 \end{aligned}$	9.62785	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 36 \\ & 35 \end{aligned}$	0.37215	9.96 403	655	$\begin{aligned} & 60 \\ & 59 \\ & 58 \\ & 57 \\ & 56 \end{aligned}$	28	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	4	1	9. 59218		9.62820		0.37180	9.96 397				
	8	2	9. 59247		$9.6285{ }^{\text {a }}$		0.37145	9.96392				
	12	3	9.59 277		9.62890		0.37110	9. 96387				
	16	4	9.59307		9.62926		0.37074	9.96381				
32	20	5	9. 59336	$\begin{aligned} & 30 \\ & 30 \\ & 29 \\ & 30 \end{aligned}$	9.62961	$\begin{aligned} & 35 \\ & 35 \\ & 35 \\ & 35 \\ & 34 \end{aligned}$	0.37039	9.96 376	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 6 \\ & 5 \end{aligned}$	55	27	4036322824
	24	6	9.59366		9.62 996		0.37004	9.96370		54		
	28	7	9. 59396		9.63031		0.36969	9.96365		53		
	32	8	9. 59425		9.63 066		0.36934	9.96360		52		
	36	9	9.59455		9.63101		0.36899	9.96354		51		
32	40	10	9.59 484	$\begin{aligned} & 30 \\ & 29 \\ & 30 \\ & 29 \end{aligned}$	9.63135	$\begin{aligned} & 34 \\ & 35 \\ & 35 \\ & 35 \\ & 35 \\ & 35 \end{aligned}$	0.36865	9.96 349	$\begin{aligned} & 6 \\ & 5 \\ & 5 \\ & 6 \\ & 5 \\ & 5 \end{aligned}$	50	27	2016128
	44	11	9.59 514		9.63170		0.36830	9.96343		49		
	48	12	9. 59543		9.63205		0.36795	9.96 338		48		
	$\overline{5}^{5}$	13	9.59 573		9.63240		0.36760	9. 96333		47		
	56	14	9.59602		9.63275		0.36725	9.96327		46		
33	0	15	9. 59632		9.63310	35	0.36690	9.96 322	$\begin{aligned} & 6 \\ & 5 \\ & 6 \\ & 5 \\ & 6 \end{aligned}$	45	27	056524844
	4	16	9.59 661	$\stackrel{29}{29}$	9. $6334 \overline{5}$			9.96316		44		
	12	17	9. 996960	39	9. 63379	34	0.36621	9.96 311		43		
	12	18	9.59720	${ }_{29} 2$	9.63414	35	0.36586	9.96305		42		
	16	19	9.59749	$\stackrel{29}{29}$	9.63449	35	0.36551	9.96300		41		
33	20	20	9.59 778	3029292929	9. 63484		0.36516	9.96 294	555656	40	26	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	24	21	9.59 808		9. 63519	35	0.36481	9.96 289		39		
	28	22	9.59 837		9.63553	34	0.36447	9.96 284		38		
	32	23	9. 59866		9.63588	35	0. 36412	9.96 278		37		
	36	24	9.59895		9.63623	35	0.36377	9.96273		36		
33	40	25	9. 59	3029	9. 63657		0.36343	9. 96267	5	5	26	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	44	26	9.59		9. 63692	35	0.36308	9.96 262		34		
	48	27	9. 59983		9.63 726	34	0.36274	9.96 256		33		
	52	28	9.60 012		9.63 761	35	0.36239	9.96251		32		
	56	29	9.60 041		9.63796	35	0.36204	9.96245		31		
3	0	30	9.60		9. 63830	34	0.36170	9. 96240	5	30	26	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	8	81	9.60099			35	0.36135	9.96234	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	29		
	8 12	32 33	9. 60128 9.60157	29	9. 638989	34	0.36101	9.96 229	${ }_{6}$	28		
	12	33	9.60157	29	9.63934	35	0.36066	9.96223	5	27		
	16	34	9.60186	29	9.63968		0.36032	9.96218	5	26		
34	20	35	9.60 215		9.64003	35	0.35997	9.96 212		25	25	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	24	36	9.60 244		9.64037		0.35963	9.96207		24		
	28	37	9.60 273	$\stackrel{29}{29}$	9.64072	35	0.35928	9.96201	5	23		
	32	38	9. 60302	${ }_{29}^{29}$	9.64106	34	0.35894	9.96196	5	22		
	36	39	9.60331	28	9. 64140	35	0. 35860	9.96190	5	21		
34	40	40	9.60		9.64175		0.35825	9.96185		20	25	20161284
	44	41	9. 60388		9.64209	34	0.35791	9.96179		19		
	48	42	9.60 417		9.64243		0.35757	9.96174	5	18		
	52	43	9.60 446	$\stackrel{29}{29}$	9.64278	35	0.35722	9.96168	${ }_{6}^{6}$	17		
	56	44	9.60474		9.64312	$\begin{aligned} & 34 \\ & 34 \end{aligned}$	0.35688	9.96162	5	16		
35	0		9.60		9. 64346		0.35			15	25	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	4	46	9. 60532	$\stackrel{29}{29}$	9.64381	35	0.35619	9.96151	6	14		
	8	47	9.60 561	29	9.64415	34	$0.3558{ }^{\text {\% }}$	9.96146	5	13		
	12	48	9. 60589	28	9. 64449	34	0.35551	9.96140	${ }_{5}^{6}$	12		
	16	49	9.60618	2	9.64483	${ }_{34}$	0.35517	9.96135	5	11		
35	20	50	9. 60646		9. 64517		0.35483	9.96129		10		40
	24	51	9.60 675		9. 64552	35	0.35448	9.96123	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	9		36
	28	52	9. 60704	$\stackrel{29}{29}$	9. 64586	34 34	0.35414	9.96 118	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	8		32
	32	53	9. 60732 9.60	29	9.64620 9.64654	34 34	0.35380 0.35346	9.96112 9.96107	5	7		28
35				28		34			6			
	40		9.60 789	$\begin{aligned} & 29 \\ & 28 \\ & 29 \\ & 28 \\ & 28 \end{aligned}$	9. 64688	$\begin{aligned} & 34 \\ & 34 \\ & 34 \\ & 34 \\ & 34 \end{aligned}$	0. 35212		$\begin{aligned} & 6 \\ & 5 \\ & 6 \\ & 5 \\ & 6 \end{aligned}$		24	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	44	56	9.60 818		9.64722		0.35278	9.96095		4		
	48	57	9. 60846		9. 64756		0.35 244	9.96090		3		
	52	58	9.60875		9.64790		0.35210	9.96 084		2		
	56	59	9.60 903		9.64824		0.35176	9.96079		1		
36	0	60	9.60 931		9.64858		0.35142	9.96073		0	24	0
			L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	m.	s.

Table 22．－Five－place logarithms of circular functions，etc．－Continued．

	荌		｜r			\％	わい ${ }^{\circ}$		－					？
	8			运安今出出	发出念出		W\％	NosNoc	NNNN弋	あぁこちひ		－a vocr	\triangle CNHO	
\％		00：0：0：00 어⼼옹엉 	0 오오옹 	000000 옹옹오 NTNN	앙여옹 	1000000沓の日のロ 얼్రిథ్రిల	0ب 0：0ب0 00 のロのロの 	00：00：000 のロのロの 	o：0：0：000 0： のロのロの 	oب：0：0：0：0： のロのロの 	oب：0：0：0：0： のロののロ 	0 のロののロ 노엉응	00：00：00 90888 연으양ㅇㅇㅜ	5
？														？
¢	\circ 8 8 ∞ $\stackrel{\circ}{5}$		 앙్ㅑ야렁్ㅓ	or 	o கஃகஃகஃ 		o 엉్ㅓ్ㅜ영 －リーフ	o ；；；刃 \＆⿷్ర్ర心．	¢ 	0000000 	今 		0：0：0：0：0： 오욕ㅇㅇㅛ 	5
\％														¢
	－		OOPO\％			Pooce	00000 				00000 	00000 W世出出出 ∞ 	00000 ళ్లుi్jicic 	
\＃			0 0 \＆icicici ్ㅣ어영ㅇ		0 붔ㅆㅆㅇㅜ 	oب 0： \＆icicici \bigcirc onco	o \＆icicicic 		هب 0：0ب：0：00 \＆icicici －No	0 \＆icicieq 		ب0 0 0 0 0 0 0 0 \％888\％ $\infty-\infty$ 	0 \＆88\％8 앙양ㅇNㅇㅓㅓㅇㅡ	5 0 0
？														？
，	\bigcirc	or	$0 \sim \infty$		あこめせだ	NNSNT	NNNNO	W్ర్ర్ట్ర్ల్ర్ర్ర	¢్యumisu	今令品告	\＆出禹会宇		¢remge	
！	N	－	N（1）			NNW\％		－	NNW్N世		－	NN0．		

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
1^{h}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline m. s. \& \prime \& L. Sin. \& d. \& L. Tang. \& c. d. \& L. Cotg. \& L. Cos. \& d. \& \& \&

\hline $40 \quad 0$ \& 0 \& 9.62595 \& \& 9.66867 \& \& 0.33133 \& 9.95728 \& \multirow{6}{*}{6
6
6
6} \& 60 \& \multirow[t]{5}{*}{20} \& 0

\hline 4 \& 1 \& 9.62622 \& 27 \& 9.66900 \& 33 \& 0.33100 \& 9.95722 \& \& 59 \& \& 56

\hline 8 \& 2 \& 9.62649 \& 27 \& 9.66933 \& 33 \& 0.33067 \& 9.95716 \& \& 58 \& \& 52

\hline 12 \& 3 \& 9.62676 \& 27 \& 9.66966 \& 33 \& 0.33034 \& 9.95 .710 \& \& 57 \& \& 48

\hline 16 \& 4 \& 9.62703 \& 27 \& 9.66999 \& 33 \& 0.33001 \& 9.95704 \& \& 56 \& \& 44

\hline $40 \quad 20$ \& 5 \& 9.62730 \& 27 \& 9.67032 \& 33 \& 0.32968 \& 9.95698 \& \& 5 \& \multirow[t]{5}{*}{19} \& \multirow[t]{5}{*}{9
40
36
32
28

24}

\hline 24 \& 6 \& 9.62757 \& 27 \& $9.6706 \overline{5}$ \& 33 \& 0.32935 \& 9.95692 \& 6 \& 54 \& \&

\hline 28 \& 7 \& 9.62784 \& 27 \& 9.67098 \& 33 \& 0.32902 \& 9.95686 \& 6 \& 53 \& \&

\hline 32 \& 8 \& 9.62811 \& 27 \& 9.67131 \& 33 \& 0.32869 \& 9.95680 \& 6 \& 52 \& \&

\hline 36 \& 9 \& 9.62838 \& 27 \& 9.67163 \& 32 \& 0.32837 \& 9.95674 \& 6 \& 51 \& \&

\hline \multirow[t]{5}{*}{40} \& 10 \& $9.6286 \overline{5}$ \& 27 \& 9.67196 \& 33 \& 0.32804 \& 9.95668 \& 6 \& 50 \& \multirow[t]{5}{*}{19} \& \multirow[t]{5}{*}{20
16
12
8
4}

\hline \& 11 \& 9.62892 \& 27 \& 9.67229 \& 33 \& 0.32771 \& 9.95663 \& 5 \& 49 \& \&

\hline \& 12 \& 9.62918 \& 26 \& 9.67262 \& 33 \& 0.32738 \& 9.95657 \& 6 \& 48 \& \&

\hline \& 13 \& 9.62945 \& 27 \& 9.67295 \& 33 \& 0.32705 \& 9.95651 \& 6 \& 47 \& \&

\hline \& 14 \& 9.62972 \& 27 \& 9.67327 \& 32 \& 0.32673 \& $9.9564 \overline{5}$ \& 6 \& 46 \& \&

\hline \multirow[t]{5}{*}{41} \& 15 \& 9.62999 \& 27 \& 9.67360 \& 33 \& 0.32640 \& 9.95639 \& 6 \& 45 \& \multirow[t]{5}{*}{19} \& \multirow[t]{5}{*}{0
56
52
48
44}

\hline \& 16 \& 9.63026 \& 27 \& 9.67393 \& 33 \& 0.32607 \& 9.95633 \& 6 \& 44 \& \&

\hline \& 17 \& 9.63052 \& 26 \& 9.67426 \& 33 \& 0.32574 \& 9.95627 \& 6 \& 43 \& \&

\hline \& 18 \& 9.63079 \& 27 \& 9.67458 \& 32 \& 0.32542 \& 9.95621 \& 6 \& 42 \& \&

\hline \& 19 \& 9.63106 \& 27 \& 9.67491 \& 33 \& 0.32509 \& 9.95615 \& \multirow{2}{*}{6} \& 41 \& \&

\hline \multirow[t]{5}{*}{$\begin{array}{rl}41 & 20 \\ & 2 \\ 28 \\ & 32 \\ & 36\end{array}$} \& 20 \& 9.63133 \& 27 \& 9.67524 \& 33 \& 0.32476 \& 9.95609 \& \& 40 \& \multirow[t]{5}{*}{18} \& \multirow[t]{5}{*}{40
36
32
28
24}

\hline \& 21 \& 9.63159 \& 26 \& 9.67556 \& 32 \& 0.32444 \& 9.95603 \& 6 \& 39 \& \&

\hline \& 22 \& 9.63186 \& 27 \& 9.67589 \& 33 \& 0.32411 \& $9.95 \quad 597$ \& 6 \& 38 \& \&

\hline \& 23 \& 9.63213 \& 27 \& 9.67622 \& 33 \& 0.32378 \& 9.95591 \& 6 \& 37 \& \&

\hline \& 24 \& 9.63239 \& 26 \& 9.67654 \& 32 \& 0.32346 \& $9.9558 \overline{5}$ \& 6 \& 36 \& \&

\hline \multirow[t]{5}{*}{$41 \begin{array}{r}40 \\ 44 \\ \\ 48 \\ 52 \\ \\ \\ 56\end{array}$} \& 25 \& 9.63266 \& 27 \& 9.67687 \& 33 \& 0.32313 \& 9.95579 \& 6 \& 35 \& \multirow[t]{5}{*}{18} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
20 \\
16 \\
12 \\
8 \\
4
\end{array}
$$}

\hline \& 26 \& 9.63292 \& 26 \& 9.67719 \& 32 \& 0.32281 \& 9.95573 \& 6 \& 34 \& \&

\hline \& 27 \& 4.63319 \& 27 \& 9.67752 \& 33 \& 0.32248 \& 9.95567 \& 6 \& 33 \& \&

\hline \& 28 \& 9.63345 \& 26 \& 9.67785 \& 33 \& 0.32215 \& 9.95531 \& 6 \& 32 \& \&

\hline \& 29 \& 9.63372 \& 27 \& 9.67817 \& 32 \& 0.32183 \& 9.95555 \& 6 \& 31 \& \&

\hline \multirow[t]{5}{*}{$\begin{array}{rr}42 & 0 \\ & 4 \\ & 8 \\ & 12\end{array}$} \& 30 \& 9.63398 \& 26 \& 9.67850 \& 33 \& 0.32150 \& 9.95549 \& 6 \& 30 \& \multirow[t]{5}{*}{18} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
0 \\
56 \\
52 \\
48 \\
44
\end{array}
$$}

\hline \& 31 \& $9.6342 \overline{5}$ \& 27 \& 9.67882 \& 32 \& 0.32118 \& 9.95543 \& 6 \& 29 \& \&

\hline \& 32 \& 9.63451 \& 26 \& 9.67915 \& 33 \& 0.32085 \& 9.95537 \& 6 \& 28 \& \&

\hline \& 33 \& 9.63478 \& 27 \& 9.67947 \& 32 \& 0.32053 \& 9.95531 \& 6 \& 27 \& \&

\hline \& 34 \& 9.63504 \& 26 \& 9.67980 \& 33 \& 0.32020 \& $9.9552 \overline{5}$ \& 6 \& 26 \& \&

\hline \multirow[t]{5}{*}{42} \& 35 \& 9.63531 \& 27 \& 9.68012 \& 32 \& 0.31988 \& 9.95519 \& 6 \& 25 \& \multirow[t]{5}{*}{17} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 40 \\
& 36 \\
& 32 \\
& 28 \\
& 24
\end{aligned}
$$}

\hline \& 36 \& 9.63557 \& 26 \& 9.68 044 \& 32 \& 0.31956 \& 9.95513 \& 6 \& 24 \& \&

\hline \& 37 \& 9.63583 \& 26 \& 9.68077 \& 33 \& 0.31923 \& 9.95507 \& 6 \& 23 \& \&

\hline \& 38 \& 9.63610 \& 27 \& 9.68109 \& 32 \& 0.31891 \& 9.95500 \& 7 \& 22 \& \&

\hline \& 39 \& 9.63636 \& 26 \& 9.68142 \& 33 \& 0.31858 \& 9.95494 \& 6 \& 21 \& \&

\hline \multirow[t]{5}{*}{$\begin{array}{rr}42 & 40 \\ 44 \\ 48 \\ & 52 \\ & 56\end{array}$} \& 40 \& 9.63 662 \& 26 \& 9.68174 \& 32 \& 0.31826 \& 9.95488 \& 6 \& 20 \& \multirow[t]{5}{*}{17} \& \multirow[t]{5}{*}{20
16
12
8
4}

\hline \& 41 \& 9.63689 \& 27 \& 9.68206 \& 32 \& 0.31794 \& 9.95482 \& 6 \& 19 \& \&

\hline \& 42 \& $9.6371 \overline{5}$ \& 26 \& 9.68239 \& 33 \& 0.31761 \& 9.95476 \& 6 \& 18 \& \&

\hline \& 43 \& 9.63741 \& 26 \& 9.68271 \& 32 \& 0.31729 \& 9.95 470 \& 6 \& 17 \& \&

\hline \& 44 \& 9.63767 \& 26 \& 9.68303 \& 32 \& 0.31697 \& 9.95464 \& 6 \& 16 \& \&

\hline \multirow[t]{5}{*}{43} \& 45 \& 9.63794 \& 27 \& 9.68336 \& \multirow[t]{2}{*}{33} \& 0.31664 \& 9.95458 \& 6 \& 15 \& \multirow[t]{5}{*}{17} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
0 \\
56 \\
52 \\
48 \\
44
\end{array}
$$}

\hline \& 46 \& 9.63820 \& 26 \& 9.68368 \& \& 0.31632 \& 9.95452 \& 6 \& 14 \& \&

\hline \& 47 \& 9.63846 \& 26 \& 9.68400 \& 32 \& 0.31600 \& 9.95446 \& 6 \& 13 \& \&

\hline \& 48 \& 9.63872 \& 26 \& 9.68432 \& 32 \& 0.31568 \& 9.95440 \& 6 \& 12 \& \&

\hline \& 49 \& 9.63898 \& \multirow[t]{2}{*}{26
26} \& $9.68465 \overline{ }$ \& \multirow[t]{2}{*}{33} \& 0.31535 \& 9.95434 \& \multirow[t]{2}{*}{6
7} \& 11 \& \&

\hline \multirow[t]{5}{*}{$\begin{array}{rr}43 \quad 20 \\ & 24 \\ & 28\end{array}$} \& 50 \& 9.63924 \& \& 9.68497 \& \& 0.31503 \& 9.95427 \& \& 10 \& \multirow[t]{5}{*}{16} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 40 \\
& 36 \\
& 32 \\
& 28 \\
& 24
\end{aligned}
$$}

\hline \& 51 \& 9.63950 \& 26 \& 9.68529 \& 32 \& 0.31471 \& 9.95421 \& 6 \& 9 \& \&

\hline \& 52 \& 9.63976 \& 26 \& 9.68561 \& 32 \& 0.31439 \& 9.95415 \& 6 \& 8 \& \&

\hline \& 53 \& 9.64002 \& 26 \& 9.68593 \& 32 \& 0.31407 \& 9.95409 \& 6 \& 7 \& \&

\hline \& 54 \& 9.64028 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 26 \\
& 26
\end{aligned}
$$} \& 9.68626 \& 33 \& 0.31374 \& 9.95403 \& \multicolumn{2}{|l|}{6 - 6} \& \&

\hline \multirow[t]{5}{*}{$\begin{array}{rr}43 & 40 \\ & 44 \\ & 48\end{array}$} \& 55 \& 9.64054 \& \& 9.68658 \& \multirow[t]{6}{*}{\[
$$
\begin{aligned}
& 32 \\
& 32 \\
& 32 \\
& 32 \\
& 32
\end{aligned}
$$

\]} \& 0.31342 \& 9.95397 \& \multirow[t]{6}{*}{\[

$$
\begin{aligned}
& 6 \\
& 7 \\
& 6 \\
& 6 \\
& 6
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{aligned}
& 5 \\
& 4 \\
& 3 \\
& 2 \\
& 1
\end{aligned}
$$

\]} \& \multirow[t]{5}{*}{16} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
20 \\
16 \\
12 \\
8 \\
4
\end{array}
$$
\]}

\hline \& 56 \& 9.64080 \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 26 \\
& 26 \\
& 26 \\
& 26 \\
& 26
\end{aligned}
$$} \& 9.68690 \& \& 0.31310 \& 9.95391 \& \& \& \&

\hline \& 57 \& 9.64106 \& \& 9.68722 \& \& 0.31278 \& 9.95384 \& \& \& \&

\hline \& 58 \& 9.64132 \& \& 9.68754 \& \& 0.31246 \& 9.95378 \& \& \& \&

\hline \& 59 \& 9.64158 \& \& 9.68786 \& \& 0.31214 \& 9.95372 \& \& \& \&

\hline $44 \quad 0$ \& 60 \& 9.64184 \& \& 9.68818 \& \& 0.31182 \& 9.95366 \& \& 0 \& 16 \& 0

\hline \& \& L. Cos. \& d. \& L. Cotg. \& c. d. \& L. Tang. \& L. Sin. \& d. \& , \& m. \& S.

\hline
\end{tabular}

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
$1^{\text {h }}$

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline m. S. \& 1 \& L. Sin. \& d. \& L. Tang. \& c. d. \& L. Cotg. \& L. Cos. \& d. \& \&

\hline \multirow[t]{5}{*}{52
0
4

8

12} \& 0 \& 9.67161 \& \multirow[b]{5}{*}{24
23
24
24} \& 9.72567 \& \multirow[b]{2}{*}{31} \& 0.27433 \& 9.94593 \& \multirow[b]{5}{*}{6
7
7
6} \& 60 \& 80

\hline \& 1 \& 9.67185 \& \& 9.72598 \& \& 0.27402 \& 9.94587 \& \& 59 \& 56

\hline \& 2 \& 9.67208 \& \& 9.72628 \& 30 \& 0.27372 \& 9.94580 \& \& 58 \& 52

\hline \& 3 \& 9.67232 \& \& 9.72659 \& 31 \& 0.27341 \& 9.94573 \& \& 57 \& 48

\hline \& 4 \& 9.67256 \& \& 9.72689 \& 30 \& 0.27311 \& 9.94567 \& \& 56 \& 44

\hline \multirow[t]{5}{*}{$\begin{array}{ll}52 & 20 \\ & 24 \\ & 28 \\ & 32 \\ & 36\end{array}$} \& 5 \& 9.67280 \& \[
24

\] \& 9.72720 \& 31 \& 0.27280 \& 9.94560 \& \[

$$
\begin{aligned}
& 6 \\
& 7
\end{aligned}
$$
\] \& 55 \& 740

\hline \& 6 \& 9.67303 \& 23 \& 9.72 750 \& 30 \& 0.27250 \& 9.94553 \& \multirow[t]{3}{*}{7
7
6
7
7} \& 54 \& \multirow[t]{2}{*}{36
32}

\hline \& 7 \& 9.67327 \& 24 \& 9.72780 \& 30 \& 0.27220 \& 9.94546 \& \& 53 \&

\hline \& 8 \& 9.67350 \& 23 \& 9.72811 \& 31 \& 0.27189 \& 9.94540 \& \& 52 \& 28

\hline \& 9 \& 9.67374 \& \multirow[t]{2}{*}{24} \& 9.72841 \& \multirow[t]{2}{*}{30

31} \& 0.27159 \& 9.94533 \& $$
\begin{aligned}
& 7 \\
& 7
\end{aligned}
$$ \& 51 \& 24

\hline \multirow[t]{5}{*}{$52 \quad 40$} \& 10 \& 9.67398 \& \& 9.72872 \& \& 0.27128 \& 9.94526 \& \& 00 \& 7

\hline \& 11 \& 9.67421 \& 23 \& 9.72902 \& 30 \& 0.27098 \& 9.94519 \& 7 \& 49 \& \multirow[t]{2}{*}{16}

\hline \& 12 \& $9.6744 \overline{5}$ \& 24 \& 9.72932 \& \& 0.27068 \& 9.94513 \& 6 \& \multirow[b]{2}{*}{47} \&

\hline \& 13 \& 9.67468 \& 23 \& 9.72963 \& 30
31 \& 0.27037 \& 9.94506 \& 7 \& \& 8

\hline \& 14 \& 9.67492 \& 24 \& 9.72993 \& $$
\begin{aligned}
& 30 \\
& 30
\end{aligned}
$$ \& 0.27007 \& 9.94499 \& 7 \& 46 \& 4

\hline \multirow[t]{5}{*}{$\begin{array}{rr}53 & 0 \\ 4 \\ & 8 \\ & 12\end{array}$} \& 15 \& 9.67515 \& 23 \& 9.73 023 \& \multirow[t]{2}{*}{} \& 0.26977 \& 9.94492 \& \& 45 \& 70

\hline \& 16 \& 9.67539 \& 24 \& 9.73054 \& \& 0.26946 \& 9.94485 \& 7 \& 44 \& \multirow[t]{2}{*}{56
52}

\hline \& 17 \& 9.67562 \& 23 \& 9.73084 \& $$
\begin{aligned}
& 31 \\
& 30
\end{aligned}
$$ \& 0.26916 \& 9.94479 \& 6 \& 43 \&

\hline \& 18 \& 9.67586 \& 24 \& 9.73 114 \& 31

30 \& 0.26886 \& 9.94472 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 7 \\
& 7
\end{aligned}
$$} \& 42 \& 52

48

\hline \& 19 \& 9.67609 \& 23 \& 9.73144 \& 30
30 \& 0.26856 \& 9.94495 \& \& 41 \& 44

\hline \multirow[t]{5}{*}{$\begin{array}{rr}53 & 20 \\ & 24 \\ 28 \\ & 32 \\ 36\end{array}$} \& 20 \& 9.67633 \& 24 \& 9.73175 \& 31 \& 0.26825 \& 9.94458 \& $$
7
$$ \& 40 \& $6 \quad 40$

\hline \& 21 \& 9.67656 \& 23 \& 9.7320 ² \& 30 \& 0.26795 \& 9.94 451 \& 7 \& 39 \& 36

\hline \& 22 \& 9.67680 \& 24 \& 9.73235 \& \multirow[t]{2}{*}{30
30} \& $0.2676 \overline{5}$ \& 9.94445 \& 6 \& 38 \& \multirow[t]{2}{*}{32}

\hline \& 23 \& 9.67703 \& 23 \& 9.73265 \& \& $0.2673 \overline{5}$ \& 9.94438 \& 7 \& 37 \&

\hline \& 24 \& 9.67726 \& 23 \& 9.73295 \& 30
30 \& 0.26705 \& 9.94431 \& 7 \& 36 \& 24

\hline \multirow[t]{5}{*}{$\begin{array}{rr}53 & 40 \\ & 44 \\ 48 \\ & 52 \\ & 56\end{array}$} \& 25 \& 9.67750 \& 24 \& 9.73 326 \& 31 \& 0.26674 \& 9.94424 \& \multirow[b]{2}{*}{7} \& 35 \&

\hline \& 26 \& 9.67773 \& 23 \& 9.73356 \& 30 \& 0.26644 \& 9.94417 \& \& 34 \& 16

\hline \& 27 \& 9.67796 \& \multirow[t]{3}{*}{23
24
23
23} \& 9.73386 \& 30 \& 0.26614 \& 9.94410 \& 7 \& 33 \& 12

\hline \& 28 \& 9.67820 \& \& 9.73416 \& 30 \& 0.26584 \& 9.94404 \& 6 \& 32 \& 8

\hline \& 29 \& 9.67843 \& \& 9.73446 \& 30 \& 0.26554 \& 9.94397 \& 7 \& 31 \& 4

\hline \multirow[t]{5}{*}{$\begin{array}{r}54 \\ \\ \\ \\ 4 \\ 8 \\ \\ \\ \\ \hline\end{array}$} \& 30 \& 9.67866 \& \multirow[t]{5}{*}{24
23
23
23
23} \& 9.73476 \& 30 \& 0.26524 \& 9.94390 \& \multirow[b]{5}{*}{7} \& 30 \&

\hline \& 31 \& 9.67890 \& \& 9.73507 \& 31 \& 0.26493 \& 9.94383 \& \& 29 \& 56

\hline \& 32 \& 9.67913 \& \& 9.73537 \& 30 \& 0.26463 \& 9.94376 \& \& 28 \& 52

\hline \& 33 \& 9.67936 \& \& 9.73567 \& 30 \& 0.26433 \& 9.94369 \& \& 27 \& 48

\hline \& 34 \& 9.67959 \& \& 9.73597 \& 30 \& 0.26403 \& 9.94362 \& \& 26 \& 44

\hline \multirow[t]{5}{*}{$\begin{array}{rl}54 & 20 \\ 24 \\ & 28 \\ 32 \\ & 36\end{array}$} \& 35 \& 9.67982 \& 23 \& 9.73 627 \& 30 \& 0.26373 \& 9.94355 \& \multirow[b]{5}{*}{6
7
7
7

7} \& \multirow[t]{5}{*}{$$
\begin{aligned}
& 25 \\
& 24 \\
& 23 \\
& 22 \\
& 21
\end{aligned}
$$} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{ll}
5 & 40 \\
& 36 \\
& 32 \\
& 28 \\
& 24
\end{array}
$$
\]}

\hline \& 36 \& 9.68006 \& 24 \& 9.73657 \& 30 \& 0.26343 \& 9.94349 \& \& \&

\hline \& 37 \& 9.68029 \& 23 \& 9.73687 \& 30 \& 0.26313 \& 9:94342 \& \& \&

\hline \& 38 \& 9.68052 \& 23 \& 9.73717 \& 30 \& 0.26283 \& 9.94335 \& \& \&

\hline \& 39 \& $9.6807{ }^{\text {¢ }}$ \& 23 \& 9.73747 \& \& 0.26253 \& 9.94328 \& \& \&

\hline \multirow[t]{5}{*}{| 54 | 40 |
| :--- | :--- |
| | 44 |
| | 48 |
| | 52 |
| | 56 |} \& 40 \& 9.68098 \& 23 \& 9.73777 \& 30 \& 0.26223 \& 9.94321 \& \multirow[b]{5}{*}{7

7
7
7
7} \& 20 \& \multirow[t]{5}{*}{$\begin{array}{ll}5 & 20 \\ & 16 \\ & 12\end{array}$}

\hline \& 41 \& 9.68121 \& 23 \& 9.73807 \& 30 \& 0.26193 \& 9.94314 \& \& 19 \&

\hline \& 42 \& 9.68144 \& 23 \& 9.73 837 \& 30 \& 0.26163 \& 9.94307 \& \& 18 \&

\hline \& 43 \& 9.68167 \& 23 \& 9.73867 \& 30 \& 0.26133 \& 9.94300 \& \& 17 \&

\hline \& 44 \& 9.68190 \& 23 \& 9.73897 \& \multirow{2}{*}{30} \& 0.26103 \& 9.94293 \& \& 16 \&

\hline \multirow[t]{5}{*}{$\begin{array}{rr}55 & 0 \\ 4 \\ & 8 \\ & 12 \\ & 16\end{array}$} \& 45 \& 9.68213 \& 23 \& 9.73927 \& \& 0.26073 \& 9.94286 \& \multirow[b]{5}{*}{7
6
7
7
7} \& 15 \& \multirow[b]{5}{*}{48
44}

\hline \& 46 \& 9.68237 \& \multirow[t]{4}{*}{$$
\begin{aligned}
& 24 \\
& 23 \\
& 23 \\
& 22
\end{aligned}
$$} \& 9.73957 \& 30 \& 0.26043 \& 9.94279 \& \& 14 \&

\hline \& 47 \& 9.68260 \& \& 9.73987 \& 30 \& 0.26013 \& 9.94273 \& \& 13 \&

\hline \& 48 \& 9.68283 \& \& 9.74017 \& 30 \& 0.25983 \& 9.94266 \& \& 12 \&

\hline \& 49 \& 9.68305 \& \& 9.74047 \& 30 \& 0.25953 \& 9.94259 \& \& 11 \&

\hline \multirow[t]{5}{*}{$\begin{array}{ll}55 & 20 \\ & 24 \\ & 28 \\ & 32 \\ & 36\end{array}$} \& 50 \& 9.68328 \& 23 \& 9.74077 \& 30 \& 0.25923 \& 9.94252 \& \& 10 \& \multirow[t]{5}{*}{440
36
32
28

24}

\hline \& 51 \& 9.68351 \& 23 \& 9.74107 \& 30 \& 0.25893 \& $9.9424 \overline{5}$ \& 7 \& 9 \&

\hline \& 52 \& 9.68374 \& 23 \& 9.74137 \& 30 \& 0.25863 \& 9.94238 \& 7 \& 8 \&

\hline \& 53 \& 9.68397 \& 23 \& 9.74166 \& 29 \& 0.25834 \& 9.94231 \& 7 \& 7 \&

\hline \& 54 \& 9.68420 \& 23 \& 9.74196 \& $$
\begin{aligned}
& 30 \\
& 30
\end{aligned}
$$ \& 0.25804 \& 9.94224 \& 7 \& 6 \&

\hline 5540 \& 55 \& 9.68443 \& \multirow{6}{*}{$$
\begin{aligned}
& 23 \\
& 23 \\
& 23 \\
& 22 \\
& 23
\end{aligned}
$$} \& 9.74226 \& \& 0.25774 \& 9.94217 \& \& 5 \& \multirow[t]{5}{*}{20

16
12}

\hline 44 \& 56 \& 9.68466 \& \& 9.74256 \& $$
30
$$ \& 0.25744 \& 9.94210 \& 7 \& 4 \&

\hline 48 \& 57 \& 9.68489 \& \& 9.74286 \& $$
30
$$ \& 0.25714 \& 9.94203 \& 7 \& 3 \&

\hline 52 \& 58 \& 9.68512 \& \& 9.74316 \& $$
30
$$ \& 0.25684 \& 9.94196 \& 7 \& 2 \&

\hline 56 \& 59 \& 9.68534 \& \& 9.74345 \& $$
29
$$ \& 0.25655 \& 9.94189 \& 7 \& 1 \&

\hline $56 \quad 0$ \& 60 \& 9.68557 \& \& 9.74375 \& \& 0.25625 \& 9.94182 \& \& 0 \& 40

\hline \& \& L. Cos. \& d. \& L. Cotg. \& c.d. \& L. Tang. \& L. Sin. \& d. \& , \& m. s.

\hline
\end{tabular}

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

1^{h}

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline $2^{\text {h }}$ \& \multicolumn{8}{|c|}{31°} \& \&

\hline m. s. \& \& L. Sin. \& d. \& L. Tang. \& c. d. \& L. Cotg. \& L. Cos. \& d. \& \&

\hline 40 \& 0 \& 9.71184 \& \& 9. 77877 \& \& 0.22123 \& 9.93307 \& \& 60 \& 560

\hline 8 \& 1 \& 9.71205 \& 21 \& 9. 77906 \& ${ }_{29}^{29}$ \& 0.22094 \& 9.93299 \& 8 \& 59 \& 56

\hline 8 \& 2 \& 9.71226 \& 21 \& 9. 77935 \& 29 \& 0.22065 \& $9.93{ }^{291}$ \& 8 \& 58 \& 52

\hline 12 \& \& 9.71247 \& 21 \& 9. 77963 \& 28 \& 0.22037 \& 9.93284 \& 7 \& 57 \& 48

\hline 16 \& 4 \& 9.71268 \& \multirow[t]{2}{*}{21} \& 9.77992 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 29 \\
& 28
\end{aligned}
$$} \& 0.22008 \& 9.93276 \& \multirow[t]{2}{*}{8} \& 56 \& 4.

\hline \multirow[t]{5}{*}{20} \& 5 \& 9. 71289 \& \& 9.78020 \& \& 0.21980 \& 9.93269 \& \& 55 \& 5.540

\hline \& 6 \& 9.71310 \& 21 \& 9.78049 \& 29 \& 0.21951 \& 9.93261 \& 8 \& 54 \& 36

\hline \& 7 \& 9.71331 \& 21 \& 9.78077 \& 28 \& 0.21923 \& 9.93253 \& 8 \& 53 \& 32

\hline \& 8 \& 9.71 35\% \& 21 \& 9.78 $10 \underline{\underline{6}}$ \& 29 \& 0.21894 \& 9.93246 \& 7 \& 52 \& 28

\hline \& 9 \& 9.71373 \& 20 \& $9.7813 \overline{5}$ \& $$
\begin{aligned}
& 29 \\
& 28
\end{aligned}
$$ \& 0.21865 \& 9.93238 \& 8 \& 51 \& 24

\hline \multirow[t]{5}{*}{4
4
4

5
5} \& 10 \& 9.71393 \& \& 9.78163 \& \& 0.21837 \& 9.93230 \& \& 50 \& \multirow[t]{5}{*}{$55 \begin{array}{r}20 \\ \\ 16 \\ \\ \\ \\ \\ \hline\end{array}$}

\hline \& 11 \& 9. 71414 \& ${ }_{21} 21$ \& 9.78192 \& $\stackrel{29}{29}$ \& 0.21808 \& 9.93223 \& 7 \& 49 \&

\hline \& 12 \& 9. 71435 \& 21 \& 9.78 2220 \& 29 \& 0.21780 \& 9.93 215 \& 8 \& 48 \&

\hline \& 13 \& 9.71456 \& ${ }_{21}^{21}$ \& 9.78 249 \& 29 \& 0.21751 \& 9.93207 \& 8 \& 47 \&

\hline \& 14 \& 9.71477 \& \multirow[t]{2}{*}{21} \& 9.78277 \& $$
\begin{aligned}
& 28 \\
& 29
\end{aligned}
$$ \& 0.21723 \& 9.93200 \& \multirow[t]{2}{*}{7} \& 46 \&

\hline \multirow[t]{5}{*}{$\begin{array}{rr}5 & 0 \\ & 4 \\ & 8 \\ & 12 \\ & 16 \\ & \end{array}$} \& 15 \& 9.71498 \& \& 9.78306 \& \& 0.21694 \& 9.93192 \& \& 45 \& \multirow[t]{5}{*}{55 $\begin{array}{rr}0 \\ & 56 \\ & 52 \\ 48 \\ & 44\end{array}$}

\hline \& 16 \& 9.71519 \& 21 \& 9.78334 \& 28 \& 0.21666 \& 9.93184 \& 8 \& 44 \&

\hline \& 17 \& 9.71539 \& 20 \& 9.78363 \& 29 \& 0.21637 \& 9.93177 \& 7 \& 43 \&

\hline \& 18 \& 9.71560 \& 21 \& 9.78 391 \& 28 \& 0.21609 \& 9.93169 \& 8 \& 42 \&

\hline \& 19 \& 9,71581 \& 21 \& 9.78419 \& $$
\begin{aligned}
& 28 \\
& 29
\end{aligned}
$$ \& 0.21581 \& 9.93161 \& 8 \& 41 \&

\hline \multirow[b]{5}{*}{36} \& 20 \& 9.71602 \& \& 9.78 448 \& \& 0.21552 \& 9.93154 \& \& 40 \& \multirow[t]{5}{*}{$\begin{array}{rl}54 & 40 \\ & 36 \\ 32 \\ & 2 \times \\ & 24\end{array}$}

\hline \& 21 \& 9.71622 \& 20 \& 9.78476 \& 28 \& 0.21 524 \& 9.93146 \& 8 \& 39 \&

\hline \& 22 \& 9.71643 \& 21 \& 9.78 505 \& 29 \& 0.21495 \& 9. 93138 \& 8 \& 38 \&

\hline \& 23 \& 9.71664 \& 21 \& 9.78533 \& \& 0.21467 \& 9.93131 \& 8 \& 37 \&

\hline \& 24 \& 9.71685 \& 20 \& 9.78562 \& $$
\begin{aligned}
& 29 \\
& 28
\end{aligned}
$$ \& 0.21438 \& 9.93123 \& 8 \& 36 \&

\hline \multirow[t]{5}{*}{$5 \begin{array}{ll}5 & 4 \\ & 4 \\ & 48 \\ & 5 \\ & 5\end{array}$} \& 25 \& 9.71705 \& \& 9.78590 \& \& 0.21410 \& 9.93115 \& \& 35 \& \multirow[t]{5}{*}{| 54 | 20 |
| ---: | ---: |
| | 16 |
| | 12 |
| | |}

\hline \& 26 \& 9.71726 \& 21 \& 9.78 618 \& \& 0.21382 \& 9.93 108 \& 7 \& 34 \&

\hline \& 27 \& 9.71747 \& 21 \& 9.78647 \& ${ }_{9}^{29}$ \& 0.21353 \& 9.93100 \& 8 \& 33 \&

\hline \& 28 \& 9.71767 \& 20 \& 9.78675 \& 28 \& 0.21325 \& 9.93092 \& 8 \& 32 \&

\hline \& 29 \& 9.71788 \& \multirow[t]{2}{*}{21} \& 9.78704 \& 28 \& 0.21296 \& 9.93084 \& 7 \& 31 \&

\hline \multirow[t]{5}{*}{6} \& 30 \& 9.71809 \& \& 9. 78732 \& \& 0.21268 \& 9.93 077 \& \& 30 \& \multirow[t]{5}{*}{| 54 | 0 |
| :---: | ---: |
| | 56 |
| | 52 |
| | 48 |
| | 44 |}

\hline \& 31 \& 9. 71829 \& 20 \& 9. 78760 \& 28 \& 0.21240 \& 9.93 069 \& 8 \& 29 \&

\hline \& 32 \& 9.71850 \& 21 \& 9. 78789 \& ${ }_{9}^{29}$ \& 0.21211 \& 9.93061 \& 8 \& 28 \&

\hline \& 33 \& 9.71870 \& 20 \& 9.78817 \& 28 \& 0.21183 \& 9.93053 \& 8 \& 27 \&

\hline \& 34 \& 9.71891 \& \multirow[t]{2}{*}{20} \& 9.78845 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 28 \\
& 29
\end{aligned}
$$} \& 0.21155 \& 9.93046 \& 8 \& 26 \&

\hline \multirow[t]{5}{*}{$6 \quad 2$} \& 35 \& 9.71911 \& \& 9. 78874 \& \& 0.21126 \& 9.93 038 \& \& 25 \& \multirow[t]{5}{*}{$\begin{array}{ll}53 & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 2 \\ & 2\end{array}$}

\hline \& 36 \& 9.71932 \& 21 \& 9. 78902 \& ${ }_{28}^{28}$ \& 0.21098 \& 9.93 930 \& 8 \& 24 \&

\hline \& 37 \& 9. 71952 \& 20 \& 9.78930 \& 29 \& 0.21070 \& 9. 93022 \& 8 \& 23 \&

\hline \& 38 \& 9.71 973 \& 21 \& 9. 78959 \& ${ }^{29}$ \& 0.21041 \& 9.93014 \& 7 \& 22 \&

\hline \& 39 \& 9.71994 \& 20 \& 9.78 987 \& $$
\begin{aligned}
& 28 \\
& 28
\end{aligned}
$$ \& 0.21013 \& 9.93007 \& 7

8 \& 21 \&

\hline \multirow[t]{5}{*}{$6 \quad 4$} \& 40 \& 9.72014 \& \& 9. 79015 \& \& $0.2098 \overline{5}$ \& 9.92999 \& \& 20 \& $53 \quad 20$

\hline \& 41 \& 9.72034 \& 20 \& 9.79043 \& \& 0.20957 \& 9.92991 \& 8 \& 19 \& 16

\hline \& 42 \& 9.720 .5 \& 21 \& 9. 79072 \& $\stackrel{29}{ }$ \& 0.20928 \& 9.92983 \& 8 \& 18 \& 12

\hline \& 43 \& 9.72075 \& 20 \& 9.79100 \& 28 \& 0. 20900 \& 9.92976 \& 7 \& 17 \& 8

\hline \& 44 \& 9.72096 \& \multirow{2}{*}{20} \& 9.79 128 \& 28 \& 0. 20872 \& 9.92968 \& 8 \& 16 \& 4

\hline \multirow[t]{5}{*}{7} \& 45 \& 9.72 116 \& \& 9.79 156 \& \& 0.20814 \& 9.92 960 \& \& 15 \& \multirow[t]{5}{*}{53 | 53 | |
| ---: | ---: |
| | 0 |
| | 56 |
| | 52 |
| | 48 |
| | 44 |}

\hline \& 46 \& 9.72137 \& ${ }_{20}^{21}$ \& $9.7918 \overline{5}$ \& ${ }_{2}^{29}$ \& 0.20815 \& 9.92952 \& 8 \& 14 \&

\hline \& 47 \& 9.72 157 \& 20 \& 9.79 213 \& \& 0.20 787 \& 9.92944 \& 8 \& 13 \&

\hline \& 48 \& 9.72177 \& 20 \& 9.79 241 \& 28 \& 0.20759 \& 9.92936 \& 8 \& 12 \&

\hline \& 49 \& 9.72198 \& \multirow[t]{2}{*}{20} \& 9.79 269 \& 28 \& 0.20731 \& 9.92929 \& 8 \& 11 \&

\hline \multirow[t]{5}{*}{$7 \quad 2$} \& 50 \& 9.72218 \& \& 9. 79297 \& \& 0.20703 \& 9.92921 \& \& 10 \& \multirow[t]{5}{*}{| 52 | 40 |
| :--- | :--- |
| | 36 |
| | 32 |
| | 28 |
| | 24 |}

\hline \& 51 \& 9.72 238 \& ${ }_{21} 2$ \& 9. 79326 \& 29 \& 0.20674 \& 9.92913 \& 8 \& 9 \&

\hline \& 52 \& 9.72 259 \& ${ }_{20} 2$ \& 9. 79354 \& 28 \& 0.20646 \& 9. 92905 \& 8 \& 8 \&

\hline \& 53 \& 9.72 279 \& 20 \& 9. 79382 \& \& 0.20618 \& 9.92897 \& 8 \& 7 \&

\hline \& 54 \& 9.72299 \& 21 \& 9.79 410 \& 28 \& 0.20590 \& 9.92889 \& 8 \& 6 \&

\hline \multirow[t]{5}{*}{$\begin{array}{ll}7 & 40 \\ & 4 \\ & 48 \\ & 52 \\ & 56\end{array}$} \& 55 \& 9.72320 \& \& 9.79 438 \& \& 0. 20562 \& 9.92881 \& \& \& \multirow[t]{5}{*}{$\begin{array}{ll}52 & 20 \\ & 16 \\ & 12 \\ & 8\end{array}$}

\hline \& 56 \& 9.72340 \& 20 \& 9.79466 \& ${ }_{29}^{28}$ \& 0.20534 \& 9.92874 \& 8 \& 4 \&

\hline \& 57 \& 9.72360 \& ${ }_{21}^{20}$ \& 9. $7949 \overline{\text { a }}$ \& 29 \& 0.20505 \& 9. 92866 \& 8 \& \&

\hline \& 58 \& 9.72 381 \& 20 \& 9. 79523 \& 28 \& 0.20477 \& 9.92858 \& 8 \& 2 \&

\hline \& 59 \& 9.72401 \& \multirow[t]{2}{*}{20} \& 9.79 551 \& \multirow[t]{2}{*}{28} \& 0.20449 \& 9.92850 \& \multirow[t]{2}{*}{8} \& 1 \&

\hline \multirow[t]{2}{*}{8} \& 60 \& 9.72421 \& \& 9.79579 \& \& 0.20421 \& 9.92842 \& \& 0 \& 520

\hline \& \& L. Cos. \& d. \& L. Cotg. \& c. d. \& L. Tang. \& L. Sin. \& d. \& , \& m. s.

\hline
\end{tabular}

Table 22．－Five－place logarithms of circular functions，etc．－Continued．

	忒			F にNか心．		范	いいがo						ーテハーか	\％
	8	¢ֻ̧org	¢ ¢ ¢ ¢ ¢	↔からせせ	出忒出家	W్ర్ర心W	¢	TNN0N		いいったぢ	出ぢいい	coonerer	\triangle ON1－	，
\％	0 -1 0 0 0	o ONN							o NTN弋工凡心代 	o べ心弋工凡心式 ※己心	oب 0：0：00 ふ区	0 N弋工凡 N弋工 $8 \mathrm{c} \mathrm{c}_{\mathrm{o}} \mathrm{r}$ ぷかった。	 多念念念	5
\％		¢0060	86\％\％			8800	（880	N0080	\％6808	8880	ONON	O80	ONO8	？
	0 0 0 0 0 0										0 0 0 0 0 0 0 0 C1 0 old －10 $0_{0}^{\circ} 0_{0}^{\circ}$ べ心のめ8	oب oب 0 0 0 0 然象志出し	o B్రి $-\omega$	\％
？			1000	－ $0 \times 0 \times 10$		N－	Nosenco	Nosom	N100000	－	N000010	Now	N000000	？
怱	－				$\begin{aligned} & 00000 \\ & 00000 \\ & 10 N 10 \\ & 0040 \end{aligned}$			00000 ర్రి ్తి Bis				0.0000 N（N్ర్రీ层ひN ∞ \＆	0.0000 Nనㅇㅇㅇㅇ 	$\begin{gathered} \stackrel{1}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{*} \end{gathered}$
E	co cos ¢ Heg			－0 000 00 出出念出灾	多华华华 © 800	o 옹오웅 \％r cr cr C్రీ	0路然 ¢rger च－1 ${ }^{\circ}$	0：0：0ب 0：ه： 쏘ㅇㅑㅒㅇ『్ర	부Nㅜㅇ 10 	oب 0：0：0：00 써여ㅆㅒㅒ	쏘웅ㅆㅇ웅 	0 오옹영 겅어우웅 －vo	o かom －毋が心	H 0 0 0
\％		$\infty \times \infty \times \infty$	$\infty \infty \times \infty$	$\infty \infty \infty$	$\infty \times \infty$	$\infty \infty \times \infty$	$\infty \infty \infty$	$\infty \infty \infty$	$\sim \infty \times \infty$	？				
\checkmark	O	－N00nor	の，\times O－		がぃーい゚	NNNN0	NNONO	W్N్ర్ECME	Wisw uct	出令它台虫				
\square \square	$\stackrel{+}{\infty}$	－		出为资。									T 出禹厅	

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
33°

m. s.	\prime	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.			
$\begin{array}{rr}12 & 0 \\ & 4 \\ \\ \\ & 12\end{array}$	0	9.73 611		9.81252		0.18748	9.92359		60	48	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	1	9.73 630	19	9.81279	27	0.18721	9.92351	8	59		
	2	9.73650	20	9.81307	28	0.18693	9.92343	8	58		
	3	9.73 669	19	9.81335	28	0.18665	9.92335	8	57		
	4	9.73689	20	9.81362	27	0.18638	9.92326	9	56		
12	5	9.73708	19	9.81390	28	0.18610	9.92318		55	47	4036322824
	6	9.73727	19	9.81418	28	0.18582	9.92310	8	54		
	7	9.73 747	20	9.81445	27	0.18555	9.92302	8	53		
	8	9.73 766	19	9.81473	28	0.18527	9.92293	9	52		
	9	9.73785	19	9.81500	$\begin{aligned} & 27 \\ & 28 \end{aligned}$	0.18500	9.92285	8	51		
12	10	$9.7380 \overline{5}$	20	9.81528		0.18472	9.92277	8	50	47	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	11	9.73824	19	9.81556	28	0.18444	9.92269	8	49		
	12	9.73843	19	9.81583	27	0.18417	9.92260	9	48		
	13	9.73863	20	9.81611	28	0.18389	9.92252	8	47		
	14	9.73882	19	9.81638	27	0.18362	9.92244	8	46		
$13 \quad \begin{array}{r} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 12\end{array}$	15	9.73901	19	9.81666	28	0.18334	$9.92235{ }^{\circ}$	9	45	47	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	16	9.73921	20	9.81693	27	0.18307	9.92227	8	44		
	17	9.73940	19	9.81721	28	0.18279	9.92219	8	43		
	18	9.73959	19	9.81748	27	0.18252	9.92211	8	42		
	19	9.73978	19	9.81776	27	0.18224	9.92202	9	41		
$13 \begin{array}{ll}13 \\ & 2 \\ & 2 \\ & 3 \\ & 3\end{array}$	$\because 0$	9.73997		9.81803		0.18197	9.92194	8	40	46	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	21	9.74017	20	9.81831	28	0.18169	9.92186	8	39		
	22	9.74036	19	9.81858	27	0.18142	9.92177	9	38		
	23	9.74055	19	9.81886	28	0.18114	9.92169	8	37		
	24	9.74074	19	9.81913	28	0.18087	9.92161	8	36		
$\begin{array}{ll}13 & 40 \\ & 4 \\ & 48 \\ & 5 \\ & 56 \\ & \end{array}$	25	9.74093		9.81941		0.18059	9.92152	9	35	46	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	26	9.74113	20	9.81968	27	0.18032	9.92144	8	34		
	27	9.74132	19	9.81996	28	0.18004	9.92136	8	33		
	28	9.74151	19	9.82023	27	0.17977	9.92127	9	32		
	29	9.74170	19	9.82051	27	0.17949	9.92119	8	31		
$14 \begin{array}{r}14 \\ \\ \\ \\ \\ \\ 12\end{array}$	30	9.74 189		9.82078		0.17922	9.92111	8	30	46	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	31	9.74208	19	9.82106	28	0.17894	9.92102	9	29		
	32	9.74227	19	9.82133	27	0.17867	9.92094	8	28		
	33	9.74246	19	9.82161	28	0.17839	9.92086	8	27		
	34	9.74265	19	9.82188	27	0.17812	9.92077	9	26		
$14 \begin{array}{rr}14 & 20 \\ & 2 \\ & 32 \\ & 36\end{array}$	35	9.74284	19	9.82215	27	$0.1778 \overline{5}$	9.92069	8	25	45	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	36	9.74303	19	9.82243	28	0.17757	9.92060	9	24		
	37	9.74322	19	9.82270	27	0.17730	9.92052	8	23		
	38	9.74341	19	9.82298	28	0.17702	9.92044	8	22		
	39	9.74360	19	9.82325	27	0.17675	9.92035	9	21		
$\begin{array}{ll}14 & 4 \\ & 4 \\ & 48 \\ & 5 \\ & 5 \\ & \end{array}$	40	9.74 379		9.82352		0.17648	9.92027	8	20	45	$\begin{array}{r} 20 \\ 16 \\ 12 \\ 8 \\ 4 \end{array}$
	41	9.74398	19	9.82380	28	0.17620	9.92018	9	19		
	42	9.74417	19	9.82407	27	0.17593	9.92010	8	18		
	43	9.74436	19	9.82435	28	0.17565	9.92002	8	17		
	44	$9.7445 \overline{5}$	19	9.82462	27	0.17538	9.91993	8	16		
$15 \quad 0$	45	9.74474	19	9.82489	27	0.17511	$9.9198 \overline{5}$		15	45	$\begin{array}{r} 0 \\ 56 \\ 52 \\ 48 \\ 44 \end{array}$
	46	9.74493	19	9.82517	28	0.17483	9.91976	9	14		
	47	9.74512	19	9.82544	27	0.17456	9.91968	8	13		
	48	9.74531	19	9.82571	27	0.17429	9.91959	9	12		
	49	9.74549	18	9.82599	28	0.17401	9.91951	9	11		
$15 \begin{array}{r}2 \\ 2 \\ 2 \\ \\ 3 \\ \\ \\ \hline\end{array}$	50		19	9.82626	27				109876	44	$\begin{aligned} & 40 \\ & 36 \\ & 32 \\ & 28 \\ & 24 \end{aligned}$
	51	9.74587	19	9.82 653	27	0.17347	9.91934	898898			
	52	9.74606	19	9.82681	28	0.17319	9.91925				
	53	9.74625	19	9.82708	27	0.17292	9.91917				
	54	9.74644	18	9.82735		0.17265	9.91908				
15 4 4 4 4 5 5	55	9.74 662		9.82762	28	0.17238	9.91900	898989	5	44	$\begin{array}{r} 20 \\ 16 \\ 12 \\ \gamma \\ 4 \end{array}$
	56	9.74681	19	9.82790	28	0.17210	9.91891		4		
	57	9.74700	19	9.82817	27	0.17183	9.91883		3		
	58	9.74719	19	9.82844	27	0.17156	9.91874		2		
	59	9.74737	1819	9.82871	$\begin{aligned} & 27 \\ & 28 \end{aligned}$	0.17129	9.91866		1		
160	60	9.74756		9.82899		0.17101	9.91857		0	44	0
		L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	m.	\$.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, ete.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.
$2^{\text {h }}$

38°

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Tabie 22.-Five-place logarithms of circular functions, etc.-Continued.
$2^{\text {h }}$

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

41°										
m. s.	,	L. Sin.	d.	L. Tang.	c.d.	L. Cotg.	L. Cos.	d.		
$\begin{array}{rr}44 & 0 \\ 4 \\ 8 \\ 12 \\ 16\end{array}$	0	9.81694	$\begin{aligned} & 15 \\ & 14 \\ & 15 \\ & 14 \end{aligned}$	9.93916	26252625	0.06084	9.87778	$\begin{aligned} & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \end{aligned}$	60	$\begin{array}{rr}16 & 0 \\ & 56 \\ 52 \\ & 48\end{array}$
	1	9.81709		9.93942		0.06058	9.87767		59	
	2	9.81723		9.93967		0.06033	9.87756		58	
	3	9.81738		9.93993		0.06007	9.87 745		57	
	4	9.81752		9.94018	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	0.05982	9.87734		56	48
44	5	9.81767		9.94 044		0.05956	9.87723		555454	
	6	9.81781	14	9.94069	$\begin{aligned} & 25 \\ & 26 \\ & 25 \end{aligned}$	0.05931	9.87712			$\begin{array}{ll}15 & 40 \\ & 36\end{array}$
	7	9.81796	15	9.94095		0.05905	9.87 701	$\begin{aligned} & 11 \\ & 11 \\ & 11 \end{aligned}$	53525	32 28
	8	9.81810	14	9.94120		0.05880	9.87690			
	9	$9.8182 \overline{5}$	14	9.94146		0.05854	9.87679	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	51	24
44 40 44 48 52 56	10	9.81839		9.94171	26	0.05829	9.87668	11	5049	$15 \quad 20$
	11	9.81854	15	9.94197		0.05803	9.87657	11		
	12	9.81868	14	9.94222	25	0.05778	9.87646		48	
	13	9.81882	14	9.94248	26	0.05752	9.87635	11	47	12 8
	14	9.81897	15	9.94273	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	0.05727	9.87624	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	46	4
$\begin{array}{rr}45 \quad 0 \\ 4 \\ 4 \\ & 8 \\ & 12 \\ & 16\end{array}$	15	9.81911	14	9.94 299		0.05701	9.87613		45	150
	16	9.81926	15	9.94324	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	0.05676	9.87601	12	44	15652
	17	9.81940	14	9.94350		0.05650	9.87590		43	
	18	9.81 955	15	9.94375	25	0.05625	9.87579	11	42	48
	19	9.81969	14	9.94401	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	0.05599	9.87568	$\begin{aligned} & 11 \\ & 11 \end{aligned}$		44
$45 \quad 20$	20	9.81983		9. 94426		0.05574	9.87557		40	1440
24	21	9.81998	15	9. 94452	26	0.05548	9.87546	11	39	36
28	22	9.82012	14	9.94 477	25	$0.055^{2} 23$	9.87535	11	38	32
32	23	9.82026	14	9.94 503	26	0.05497	9.87524		37	28
36	24	9.82041	15	9.94528	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	0.05472	9.87513	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	36	24
$\begin{array}{ll}45 & 40 \\ 44 \\ 48 \\ 48 \\ 52 \\ 56\end{array}$	25	9.82050	14	9.94554	25	0.05446	9.87501		3534	$14 \quad 20$
	26	9.82069		9.94 579		0.05421	9.87490			16
	27	9.82 084	15	9.94 604	25	0.06396	9.87479	11	3332	
	28	9.82 098	14	9.94 630	26	0.05370	9.87 468	$\begin{aligned} & 11 \\ & 11 \end{aligned}$		8
	29	9.82112	14	$9.9465{ }^{\text {¢ }}$	${ }_{26}^{25}$	0.05345	9.87457		31	
46 0 4 8 12 16	30	9.82126	14	9.94681		0.05319	9.87446		30	140
	31	9.82141	15	9.94706	25	0.05294	9.87434	12	29	5652
	32	$9.8215 \overline{5}$	14	9.94 732		0.05268	9.87423	11	28	
	33	9.82169	14	9.94757	25	0.05243	9.87 412		$\begin{aligned} & 27 \\ & 26 \end{aligned}$	48
	34	9.82184	14	9.94783	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	0.05217	9.87401	11		
$\begin{array}{rr}46 & 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3\end{array}$	35	9.82198		9.94 808		0.05192	9.87390			1340
	36	9.82212	14	9. 94834	26	0.05166	9.87378	12	24	-36
	37	9. 82226	14	9.94 859		0.05141	9.87367	11	232222	3228
	38	9.82240	14	9.94884	25	0.05116	9.87356			
	39	9.82255	14	9.94910	26	0.05090	9.87345	11	21	24
464	40	9.82269		9. $9493{ }^{\text {9 }}$		0.05065	9.87334		20	1320
	41	9.82283	14	9.94961	2625	0.05039	9.87322	11	19	$\begin{aligned} & 16 \\ & 12 \end{aligned}$
	42	9.82297	14	9.94986		0.05014	9.87311		18	
	43	9.82311	14	9.95012	26	0.04988	9.87300	11	1716	8
	44	9.82326	15	9.95037	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	0.04963	9.87288	12		8
$\begin{array}{rr}47 & 0 \\ 4 \\ 8 \\ 12 \\ & 16\end{array}$	45	9.82340		9.95 062		0.04938	9.87277		15	13
	46	9.82354		9.95 088		0.04912	9.87266		1413	1356
	47	9.82368	14	9.95113	25	0.04887	9.87255	11		52
	48	9.82382	14	9.95139	$\begin{aligned} & 26 \\ & 25 \\ & \hline \end{aligned}$	0.04861	9.87243	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	1211	4844
	49	9.82396	14	9.95164		0.04836	9.87232			
$47 \quad 20$24283236	50	9.82410		9.95 190	26	0.04810	9.87221		10	12403632
	51	9.82424	14	$9.95215{ }^{\text {¢ }}$	25	0.04785	9.87209	12	9	
	52	9.82439	15	9.95 240	25	0.04760	9.87198		8	
	53	9.82453	14	9.95266	26	0.04734	9.87187	11	7	
	54	9.82467	14	9.95291	25	0.04709	9.87175	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	6	
$\begin{array}{rr}47 \\ 4 \\ 4 \\ 4 \\ 4 \\ & 5 \\ & 5\end{array}$	55	9.82481	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	9.95317		0.04683	9.87164	$\begin{aligned} & 11 \\ & 12 \\ & 11 \\ & 11 \\ & 12 \end{aligned}$		$\begin{array}{rr} 12 & 20 \\ & 16 \\ & 12 \\ & 8 \\ & 4 \end{array}$
	56	9.82495		9.95 342	$\begin{aligned} & 25 \\ & 26 \\ & 25 \\ & 25 \\ & 26 \end{aligned}$	0.04658	9.87153		$\begin{aligned} & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	
	57	9.82509		9.95 368		0.04632	9.87141			
	58	9.82523		9.95393		0.04607	9.87130			
	59	9.82537		9.95418		0.04582	9.87119			
$48 \quad 0$	60	9.82551		9.95444		0.04556	9.87107		0	120
		L. Cos.	d.	L. Cotg.	c.d.	L. Tang.	L. Sin.	d.	,	m. s.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

Table 22.-Five-place logarithms of circular functions, etc.-Continued.

2^{h}

m.	S.	,	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.			
56	0	0	9.84177	13	9.98484	25	0.01516	9.85693	12	60	$4 \begin{array}{rr}4 & 0 \\ 56 \\ 52 \\ 48 \\ 44\end{array}$	
	4	1	9.84190	13	9.98509	25	0.01491	9.85681	12	59		
	8	2	9.84203	13	9.98534	25	0.01466	9.85669	12	58		
	12	3	9.84216	13	9.98560	25	0.01440	9.85657	12	57		
	16	4	9.84229	13	9.98585	25	0.01415	9.85645	12	56		
56	20	5	9.84242	13	9.98610	25	0.01390	9.85632	12	55		
	24	6	9.84255	13	9.98635		$0.0136 \overline{5}$	9.85620	12	54	$3 \quad 40$	
	28	7	9.84269	14	9.98661	26	0.01339	9.85608		53	32	
	32	8	9.84282	13	9.98686	25	0.01314	9.85596	12	5251	28	
	36	9	9.84295	13	9.98711	25	0.01289	9.85583	13		24	
56	40	10	9.84308	13	9.98737	26	0.01263	9.85571		50	320	
	44	11	9.84321	13	9.98762	25	0.01238	9.85559	12	49	16	
	48	12	9.84334	13	9.98787	25	0.01213	9.85547	12	48	12	
	52	13	9.84347	13	9.98812	26	0.01188	9.85534	13	47	8	
	56	14	9.84360	13	9.98838	$\begin{aligned} & 26 \\ & 25 \end{aligned}$	0.01162	9.85522	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	46	4	
57	0	15	9.84373	12	9.98863	$\begin{aligned} & 25 \\ & 25 \\ & 26 \\ & 25 \\ & 25 \end{aligned}$	0.01137	9.85510		45	30	
	4	16	9.84385	13	9.98888		0.01112	9.85497	13	44	56	
	8	17	9.84398	13	9.98913		0.01087	9.85485	12	43	52	
	12	18	9.84411	13	9.98939		0.01061	9.85473	12	42	48	
	16	19	9.84424	13	9.98964		0.01036	9.85460	$\begin{aligned} & 13 \\ & 12 \end{aligned}$	41	44	
57	20	40	9.84437	13	9.98989	$\begin{aligned} & 26 \\ & 25 \\ & 25 \\ & 25 \\ & 26 \end{aligned}$	0.01011	9.85448		40	0	
	24	21	9.84450	13	9.99015		0.00985	9.85436	12	39	36	
	28	22	9.84463	13	9.99040		0.00960	9.85423	12	38	32	
	32	23	9.84476	13	9.99065		0.00935	9.85411		37	28	
	36	24	9.84499	13	9.99090		0.00910	9.85399	13	36	24	
57	40	25	9.84502	13	9.99116	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 26 \\ & \end{aligned}$	0.00884	9.85386		35		
	44	26	9.84515	13	9.99141		0.00859	9.85374	13	35 34	16	
	48	27	9.84528	12	9.99166		0.00834	9.85361	12	33	12	
	52	28	9.84540	13	9.99191		0.00809	9.85349		3231	84	
	56	29	9.84553	13	9.99217		0.00783	9.85337	$\begin{aligned} & 12 \\ & 12 \end{aligned}$			
58	0	30	9.84566	1313131312	9.99242	$\begin{aligned} & 25 \\ & 26 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	0.00758	9.85324	$\begin{aligned} & 12 \\ & 13 \\ & 12 \\ & 13 \\ & 12 \end{aligned}$	3029282726		
	4	31	9.84579		9.99267		0.00733	9.85312			56	
	8	32	9.84592		9.99293		0.00707	9.85299			52	
	12	33	9.84605		9.99318		0.00682	9.85287			48	
	16	34	9.84618		9.99343		0.00657	9.85274			44	
58	20	35	9.84630	13	9.99368	25	0.00632	9.85262		25 1 40 23 36 22 32 21 28 21 24		
	24	36	9.84643	13	9.99394	25	0.00606	9.85250	13			
	28	37	9.84656	13	9.99419	25	0.00581	9.85237	13			
	32	38	9.84669	13	9.99444	25	0.00556	$9.8522 \overline{5}$	12			
	36	39	9.84682	12	9.99469	9	0.00531	9.85212	12			
58	40	40	9.84694	1313131213	9.99495		$0.0050 \dot{5}$	9.85200		20	$\begin{array}{rrr}1 & 20 \\ & 16 \\ & 12 \\ & 8 \\ & 4\end{array}$	
	44	41	9.84707		9.99520	25	0.00480	9.85187	13	19		
	48	42	9.84720		$9.9954{ }^{\circ}$	25	0.00455	9.85175	12	18		
	52	43	9.84733		9.99570	25	0.00430	9.85162	13	17		
	56	44	9.84745		9.99596	25	0.00404	9.85150	12	16		
59	0	45	9.84758	$\begin{aligned} & 13 \\ & 13 \\ & 12 \\ & 13 \\ & 13 \end{aligned}$	9.99621	$\begin{aligned} & 25 \\ & 26 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	0.00379	9.85137	$\begin{aligned} & 12 \\ & 13 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$	48	
	4	46	9.84771		9.99646		0.00354	9.85125				
	8	47	9.84784		9.99672		0.00328	9.85112				
	12	48	9.84796		9.99697		0.00303	9.85100				
	16	49	9.84809		9.99722		0.00278	9.85087				
59	20	50	9.84822	$\begin{aligned} & 13 \\ & 12 \\ & 13 \\ & 13 \\ & 10 \end{aligned}$	9.99747	$\begin{array}{r} 26 \\ .25 \\ 25 \\ 25 \\ 26 \end{array}$	0.00253	9.85074	$\begin{aligned} & 12 \\ & 13 \\ & 12 \\ & 13 \\ & 12 \end{aligned}$	$\begin{array}{r} 10 \\ 9 \\ 8 \\ 7 \\ 6 \end{array}$	363228	
	24	51	9.84835		9.99773		0.00227	9.85062				
	28	52	9.84847		9.99798		0.00202	9.85049				
	32	53	9.84860		9.99823		0.00177	9.85037				
	36	54	9.84873		9.99848		0.00152	9.85024				
59		55	9.84885		9.99874	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 26 \\ & 25 \end{aligned}$	0.00126	9.85012	$\begin{aligned} & 13 \\ & 13 \\ & 12 \\ & 13 \\ & 12 \end{aligned}$	54321	16	
	44	56	9.84898	13	9.99899		0.00101	9.84999				
	48	57	9.84911	13	9.99924		0.00076	9.84986				
	52	58	9.84923	2	9.99949		0.00051	9.84974				
	56	59	9.84936	13	9.99975		0.00085	9.84961				
60	0	60	9.84949		0.00000		0.00000	9.84949		0	00	
			L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	m. s.	

Table 23.-Geodetic Position Computations.

TABLE OF LOGARITHMS OF FACTORS A, B, C, D, E, F, BASED UPON THE CLARKE SPHEROID OF 1866 AND THE METRIC SYSTEM, BETWEEN LATITUDES 0° AND 72°.
[Extracted from reports of the U. S. Coast and Geodetic Survey.]

CONSTANTS.

$$
\begin{aligned}
& \mathrm{A}=\frac{\left(1-e^{2} \sin ^{2} \varphi\right)^{\frac{1}{2}}}{a \operatorname{arc} 1^{\prime \prime}} \\
& \mathrm{B}=\frac{\left(1-e^{2} \sin ^{2} \varphi\right)^{\frac{3}{2}}}{a\left(1-e^{2}\right) \operatorname{arc} 1^{\prime \prime}} \\
& \mathrm{C}=\frac{\left(1-e^{2} \sin ^{2} \varphi\right)^{2} \tan \varphi}{2 a^{2}\left(1-c^{2}\right) \operatorname{arc} 1^{\prime \prime}} \\
& \mathrm{D}=\frac{\frac{3}{2} e^{2} \sin \varphi \cos \varphi \operatorname{arc} 1^{\prime \prime}}{1-e^{2} \sin ^{2} \varphi} \\
& \mathrm{E}=\frac{\left(1+3 \tan ^{2} \varphi\right)\left(1-e^{2} \sin ^{2} \varphi\right)}{6 a^{2}} \\
& \mathrm{~F}=\frac{1}{\mathrm{r}_{2}} \sin \varphi \cos ^{2} \varphi \operatorname{arc}^{2} 1^{\prime \prime}
\end{aligned}
$$

Ratio adopted in this table is the Clarke value of the meter, namely, 1 meter $=$ 39.370432 inches.

The formulas for the computation of the geodetic differences in latitude $\Delta \varphi$, in longitude $\Delta \lambda$, and in azimuth $\Delta \alpha$ are as follows:

$$
\left\{\begin{aligned}
-\Delta \varphi & =s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C+(\delta \varphi)^{2} D-h \cdot s^{2} \sin ^{2} \alpha \cdot E \\
\Delta \lambda & =s \sin \alpha \sec \varphi^{\prime} \cdot A \\
-\Delta \alpha & =\Delta \lambda \sin \frac{1}{2}\left(\varphi+\phi^{\prime}\right) \sec \frac{1}{2}(\Delta \varphi)+(\Delta \lambda)^{3} F
\end{aligned}\right.
$$

where

$$
\left\{\begin{array}{l}
\varphi^{\prime}=\varphi+\Delta \varphi \\
\lambda^{\prime}=\lambda+\Delta \lambda \\
\alpha^{\prime}=\alpha+\Delta \alpha+180
\end{array}\right.
$$

$$
\text { and }\left\{\begin{array}{l}
-\delta \varphi=s \cos \alpha \cdot B+s^{2} \sin ^{2} \alpha \cdot C-h \cdot s^{2} \sin ^{2} \alpha \cdot E \\
\quad \text { also } h=s \cos \alpha \cdot B
\end{array}\right.
$$

For subordinate triangulation when the sides do not exceed say 25 kilometers, or about 15 statute miles, the term involving E in $\Delta \varphi$ and the factor sec $\frac{1}{2}(\Delta \varphi)$, as well as the term involving F in $\Delta \alpha$, may be omitted.

$$
46061-08-13
$$

EXAMPLES OF COMPUTATION OF GEODETIC COORDINATES.

Azimuth a : Spherical angle:		。	,	"
	Nell-Chusca.	159	29	08.728
		120	54	13.980
$\begin{aligned} & \text { Azimuth } a^{\prime}: \\ & \delta a+180^{\circ} \end{aligned}$	Nell-Zuni.	38	34	54.748
		179	50	02.124
Azimuth (a) :	Zuni-Nell.	218	24	56.872

Latitude:

	- 1	/
ϕ :	$35 \quad 25$	$25 \quad 13.473$
$d \phi$		$-17 \quad 47.546$
ϕ^{\prime}	$35 \quad 07$	$07 \quad 25.927$
Computation for latitude:		
$\log \mathrm{s}$		4. 6236305
" B	B 8	8.5111933
"	$\cos a^{\prime} \quad 9$.	9.8930500
$\log ($		3.0278738
$\log \mathrm{s}^{2}$		9. 24726
" C		1. 25696
" s	$\sin ^{2} a^{\prime}$	9.58986
\log	(II)	0.09408
\log D		2.3674
	$[\mathrm{I}+\mathrm{II}]^{2}$	I] ${ }^{2} \quad 6.0568$
\log	(III)	8.4242
$\log \mathrm{E}$		6.0124
" S	$\mathrm{s}^{2} \sin ^{2} a^{\prime}$	$a^{\prime} \quad 8.8371$
"	(I)	3.0279
$\log (\mathrm{IV})$		7.8774

Longitude.

Geo. Pos. No. 5.
Zuni.
Geo. Pos. No. 6.
Computation for longitude:

$\log \mathrm{s}$	4.6236305
$\sin a^{\prime}$	9. 794928
" A^{\prime}	8.509239
" $\sec \phi$	0.087294
Corr. for diff. arc	\& sine $=-1$
$\log (\mathrm{V})$	3.0
$d \lambda$	$1035{ }^{\prime \prime} .3$

Computation of azimuth:

$\log (\mathrm{V})$	3.015091
$"$	\sin
$"$	$\left(\frac{\phi+\phi}{2}\right)$
sec	$\left(\frac{d \phi}{2}\right)$
	0.761522
0.000001	

\log (VI)
2. 776614
$d a \quad-\quad 597^{\prime \prime} .876$
$-9^{\prime} \cdot 57^{\prime \prime} .876$

Azimuth check.
(I) 1066.286+
(II) $\quad 1.242+$

Azimuth a : Spherical angle:	Chusca-Nell.			/
		339	21	40.150
		25	11	38.601
$\begin{aligned} & \text { Azimuth } a^{\prime}: \\ & \qquad d a+180^{\circ} \end{aligned}$	Chusca-Zuni.	4	33	18.751
		179	57	25.650
Azimuth (a)	Zuni-Chusca.	184	30	44.401

Latitude.

	\circ	\prime	$\prime \prime$
$\phi:$	35	53	06.746
$d \phi$	-	45	40.818
ϕ^{\prime}	35	07	25.928

Computation for latitude:

$\log \mathrm{s}$	4. 9280539
" ${ }^{\text {B }}$	8.5111594
" $\cos a^{\prime}$	9.9986260
\log (I)	3.4378393
$\log \mathrm{s}^{2}$	9. 85610
" C	1.26435
${ }^{6} \sin ^{2} a^{\prime}$	7.79982
\log (II)	8.92027
$\log \mathrm{D}$	2.3698
$\left.{ }^{[1+I I}\right]^{2}$	6.8757
l_{og} (III)	9.2460
$\log \mathrm{E}$	6.0214
" $\mathrm{s}^{2} \sin ^{2} a^{\prime}$	7.6559
' (I)	3.4378
\log (IV)	7.1151

(I)	$2740.560+$				-	1	/
(II)	. $083+$				218	24	56.872
					184	30	44.401
(III)	. $176+$	[$\mathrm{I}+\mathrm{II}]$	2740.643				
(IV)	. 001 -	\log	3. 4378525	Check:	33	54	12.471
-d L	-2740.818	$[1+I I]^{2}$	6.87570	Spher. angle at Zuni	33	54	12.469

Table 23.-Geodetic position computations-Continued.
LATITUDE 0°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 1°.

Lat.	$\log A$	$\log B$	$\log C$	$\log D$	$\log \mathrm{E}$	$\log \mathrm{F}$
100	$\overline{8} .5097261$	$\overline{8} .5126748$	$\overline{9} .6489$	$\overline{0} .934$	亏̄. 6128	6. 534
1	61	48	560	941	29	
2	61	47	631	948	29	
3	61	47	701	955	29	
4	61	46	769	962	29	
05	60	46	836	969	29	
6	60	45	903	975	29	
7	60	45	9.6968	982	29	
8	60	44	9.7032	988	30	
9	60	44	096	0.995	30	
10	8.5097260	8.5126743	9.7158	1.001	5. 6130	
11	59	43	- 220	007	30	
12	59	42	281	013	30	
13	59	42	341	019	30	
14	59	41	400	025	31	
15	59	41	458	031	31	
16	58	40	516	037	31	
17	58	39	572	042	31	
18	58	39	628	048	31	
19	58	38	684	053	31	
20	8. 5097258	8.5126738	9. 7738	1. 059	5. 6132	6.658
21	57	8. 37	792	064	5. 32	
22	57	36	846	070	32	
23	57	36	898	075	32	
24	57	35	9.7950	080	32	
25	57	35	9.8002	085	32	
26	56	34	053	090	33	
27	56	33	103	095	33	
28	56	33	152	100	33	
29	56	32	202	105	33	
30	8. 5097256	8.5126731	9.8250	1.110	5. 6133	
31	55	31	298	115	34	
32	55	30	346	119	34	
33	55	29	393	124	34	
34	55	29	439	129	34	
35	54	28	485	133	34	
36	54	27	531	138	35	
37	54	26	576	142	35	
38	54	26	620	147	35	
39	53	25	664	151	35	
40	8. 5097253	8.5126724	9.8708	1. 156	5. 6136	6. 755
41	53	23	751	160	36	
42	53	23	794	164	36	
43	52	22	836	168	36	
44	52	21	878	173	36	
45	52	20	920	177	37	
46	52	20	961	181	37	
47	51	19	9.9002	185	37	
48	51	18	$04: 2$	189	37 38	
49	51	17.	082	193	38	
50	8.5097251	8.5126716	9.9122	1. 197	5.6138	
51	8.50	8.512 16	. 161	201	5.6138	
52	50	15	200	205	38	
53	50	14	239	209	39	
54	49	13	277	212	39	
55	49	12	315	216	- 39	
56	49	11	353	220	39	
57	49	10	390	224	40	
58	48	10	427	227	40	
59	48	09	464	231	40	
60	8.5097248	8.5126708	9. 9500	1.2347	5.6140	6.834

Table 23.-Geodetic position computations-Continued.
Latitude 2°.

Lat.	$\log \mathrm{A}$	\log B	$\log \mathrm{C}$	$\log \mathrm{D}$	$\log \mathrm{E}$	$\log \mathrm{F}$
$\begin{array}{r}200 \\ \\ \hline 1\end{array}$	8. 5097248	8. 5126708	${ }^{9.95002} 5$	1. ${ }_{383}$	5.6140 41	$\overline{\overline{6}} .834$
	47	06	${ }_{5721}$	419	41	
3	47	05	${ }_{6076}$	454	${ }_{41}^{41}$	
4	47	04	6428	489	41	
05	46	03	${ }^{6777}$	524	42	
6	${ }_{46}^{46}$	${ }_{01}^{02}$	7123 7467	559 593	${ }_{42}^{42}$	
8	45	${ }^{6700}$	7808	627	43	
9	45	6699	8146	661	43	
10	8.5097245	8.5126698	9. 98482	1. 2694	5.6143	
11	44	${ }_{97}^{97}$	8815	727		
${ }_{13}^{12}$	${ }_{44}^{44}$	${ }_{96}^{97}$	${ }_{9473}^{9145}$	760	${ }_{44}^{44}$	
14	${ }_{43}^{44}$	${ }_{95}$	$\overline{\text { 9. }}$. 99799	${ }_{826}$	${ }_{44}^{44}$	
15	43	94	$\overline{0} .00122$	858	45	
16	43	${ }_{91}^{93}$	${ }_{0}^{043}$	890	45	
17	42	91	0762	922	45	
	42	89	1078 1392	${ }_{1.2984}{ }^{933}$	${ }_{46}^{45}$	
20	8.5097241	8.5126688	0.01703	1.3015	5.6146	6.901
${ }_{22}^{21}$	${ }_{41}^{41}$	87	${ }_{22013}$	046	${ }_{47}^{46}$	
${ }_{23}^{22}$	${ }_{40}^{41}$	86 85	${ }_{2625}^{2320}$	${ }_{107} 07$	${ }_{47}^{47}$	
24	40	84	2928	138	47	
25	40	83	3229	168	48	
${ }_{27}^{26}$	39 39	${ }_{81}^{82}$	3528	197	${ }_{48}^{48}$	
28	${ }_{38}$	80	3825 4119	256	${ }_{49}^{48}$	
29	38	79	4412	285	49	
30	8.5097238	8.5126678	0.04703	1.3314	5.6149	
${ }_{32}^{31}$	${ }_{37}^{37}$		4992 5279	343 372		
${ }_{33}^{32}$	${ }_{37}^{37}$	75 74	5279 5564	372 400	${ }_{50}$	
34	36	73	5847	428	51	
35	36	72	6129	456		
${ }_{37}^{36}$	35 35	70	6408 6886	${ }_{512}^{484}$	${ }_{52}$	
38	${ }_{35}^{35}$	68	6686 6962	539	${ }_{52}$	
39	34	67	7237	567	52	
	8.5097234	8.5126666	0.07509	1. 3594	5.6153	6.959
${ }_{42}^{41}$	33 33	65 64	7780 8050			
43	${ }_{33}^{33}$	62	8317.	674	54	
44	32	61	8583	701	54	
	32	${ }_{59}^{60}$	${ }_{9848}^{8848}$			
${ }_{47}^{46}$	31 31 31	59 58	${ }_{9372}^{911}$	753 779	55 55	
48	31	56	9631	805	${ }_{56}^{56}$	
49	30	55	0.09890	831	56	
	8. 5097230	8.5126654	0. 10146	1.3856	5.6156	
52	${ }_{29}^{29}$	$\stackrel{52}{51}$	${ }_{0655}^{0401}$	${ }_{907}^{882}$	$\begin{aligned} & 57 \\ & 57 \end{aligned}$	
${ }_{5}^{53}$	28	50	${ }^{0907}$	932	57	
54	28	49	1158	957	58	
	28		1407	1. 3982		
56 57	$\stackrel{27}{27}$	${ }_{45}^{46}$	1655 1902		59 59	
58	26	43	2147	055	59	
59	26	42	2390	080	60	
60	8. 5097225	8.5126641	0.12633	1.4104	5.6160	7.010

Table 23.-Geodetic position computations-Continued.
LATITUDE 3°.

Lat.	$\log A$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.03 \end{gathered}$	$\log C$	$\log D$	$\log \mathrm{E}$	$\log F$
$\begin{array}{ll} \circ & 1 \\ 3 & 00 \end{array}$	$\overline{8} .5097225$	$\overline{8} .5126641$	$\overline{0} .12633$	1. 4104	¢亏. 6160	$\stackrel{\overline{7}}{ } .010$
	- 25	8. 39	- 2874	1. 28	5. 61	
	24	38	3113	52	61	
3	24	37	3352	75	61	
4	24	35	3589	1.4199	62	
05	23	34	3825	1. 4222	62	
- 6	23	33	4059	46	62	
. 7	22	31	4293	69	63	
	22	30	4525	1.4292	63	
9	21	28	4756	1.4315	64	
10	8.509 7221	8.5126627	0.14985	1. 4338	5.6164	
11		26	5214			
12	20	24	541	1.4383	65	
13	19	23	5667	1.4405	65	
14	19	21	5892	28	66	
15	18	20	6116	50	66	
16	18	18	6338	72	67	
17	17	17	6560	1.4494	67	*
18	17 16	15 14	6780 6999	1.4516 38	68 68	
20	8. 5097216	8.5126612	0.17217	1. 4560	5.6168	7.055
21	15	11	7434	1. 4581	69	
22	15	09	7650	1. 4603	69	
23	14	08	7665	24	70	
24	14	06	8079	45	70	
25	13	05	8292	66	71	
26	13	03	8504	1.4687	71	
27	12	02	8715	1.4708	72	
28	11	6600 6599	${ }_{9135}^{8925}$	$\stackrel{29}{50}$	72	
30	8.509 7211	8.512 6597	0. 19341	1.4770	5.6173	
31	10	96	- 9548	1.4791	5. 73	
32	10	94	9754	1.4811	74	
33	09	92	19959	32	74	
34	09	91	20163	52	75	
35	08	89	0366	72	75	
36	08	88	0568	1.4892	76	
37	07	86	0769	1.4912	76	
38	07	84	0969	32	77	
39	06	83	1168	52	77	
40	8. 5097206	8.5126581	0.21367	1. 4971	5.6178	7.096
41	05	80	1564	1.4991	78	
42	04	78	1761	1. 5011	79	
43	04	76	1956	30	79	
44	03	75	2151	49	80	
45	03	73	2345	${ }_{6}^{68}$	80	
47	02	69	2731	1.5107	81	
48	01	68	2922	1. 26	81	
49	01	66	3113	45	- 82	
50	8.509 7200	8.5126564	0. 23302	1.5163	5. 6182	
51	7199		3491	1.5182	83	
52 53	99 98	61 59	3680 3867	1. 5201	84 84	
54	98	58	4053	${ }_{38}$	85	
55	97	56	4239	56	85	
56	96	54	4424	${ }^{7} 7$	86	
57 58 58	96	52	4608	1.5293	86	
59	95	49	4974	29	87	
60	8.5097194	8.5126547	0.25156	1.5347	5. 6188	7.133

Table 23.-Geodetic position computations-Continued.
LATITUDE 4°.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lat. \& $\log A$ \& $$
\text { diff. } 1^{\prime \prime \prime}={ }_{-0.04}
$$ \& $\log \mathrm{C}$ \& \log D \& \log E \& $\log \mathrm{F}$

\hline - , \& \& \& \& \& \&

\hline $\begin{array}{rrr}400 \\ 4 \\ \\ & 1\end{array}$ \& $\overline{8} .509{ }_{93}^{7194}$ \& $$
\overline{8} .5126547
$$ \& $$
\overline{0} .25156
$$ \& $$
\overline{1.5347}
$$ \& $$
\begin{aligned}
& \overline{5} .6188 \\
& 88 \\
& 88
\end{aligned}
$$ \& $\overline{\overline{7}} .133$

\hline $\stackrel{2}{2}$ \& - $\begin{array}{r}93 \\ 92\end{array}$ \& 43
42 \& +5518 ${ }_{5697}$ \& 1.5383
1.5401 \& $$
\begin{aligned}
& 89 \\
& 89 \\
& 89
\end{aligned}
$$ \&

\hline \& \& 40 \& 5876 \& \& 90 \&

\hline 05 \& 91 \& 38 \& 6055 \& ${ }_{54}^{36}$ \& 90 \&

\hline ${ }_{7}^{6}$ \& ${ }_{90}^{91}$ \& ${ }_{34}^{36}$ \& 6232
6409 \& \& ${ }_{91}^{91}$ \&

\hline 8 \& 89 \& 32 \& 6585 \& 1.5489 \& 92 \&

\hline 9 \& 89 \& 31 \& 6760 \& 1.5506 \& 92 \&

\hline 10 \& 8.5097188 \& 8.5126529 \& 0.26935 \& 1.5523 \& 5.6193 \&

\hline 11 \& 87
87 \& ${ }^{27}$ \& 7109 \& \& \&

\hline 12
13 \& 87
86 \& ${ }_{23}^{25}$ \& ${ }_{745}^{7282}$ \& ${ }_{75}^{58}$ \& $$
\begin{aligned}
& 94 \\
& 95
\end{aligned}
$$ \&

\hline 14 \& 86 \& 21 \& 7627 \& 1.5592 \& 95 \&

\hline 15 \& 85 \& 19 \& 7798 \& 1.5609 \& 96 \&

\hline - 17 \& 84
84 \& 17
16 \& 7968
8138 \& ${ }_{42}^{25}$ \& ${ }_{97}^{96}$ \&

\hline 18 \& ${ }_{83}$ \& 14 \& 88308 \& 59 \& ${ }_{97}^{97}$ \&

\hline 19 \& 82 \& 12 \& 8476 \& 76 \& 98 \&

\hline 20 \& 8. 5097182 \& 8.5126510 \& 0.28644 \& 1.5692 \& 5.6199 \& 7.168

\hline ${ }_{22}^{21}$ \& \& \& \& 1.5709

25 \& 5.6199
5.6200 \&

\hline 23 \& 80 \& 04 \& ${ }_{9144}$ \& ${ }_{42}$ \& \&

\hline 24 \& 79 \& 02 \& 9310 \& 58 \& 01 \&

\hline 25 \& 78 \& 6500 \& 9475 \& 74 \& 01 \&

\hline ${ }_{27}^{26}$ \& 78
77 \& ${ }^{6498}$ \& ${ }_{9802}^{9639}$ \& 1.5791
1.5807 \& ${ }_{03}^{02}$ \&

\hline 28 \& 76 \& 94 \& 0.29965 \& \& ${ }_{03}$ \&

\hline 29 \& 76 \& 92 \& 0.30128 \& 39 \& 04 \&

\hline 30 \& 8.5097175 \& 8.5126490 \& 0.30290 \& 1.5855 \& 5. 6204 \&

\hline 31
32 \& ${ }_{74}^{74}$ \& \& ${ }_{0611}^{0451}$ \& 1.5887 \& 05
05 \&

\hline 33 \& 73 \& 84 \& 0771 \& 1.5902 \& 06 \&

\hline 34 \& 72 \& 82 \& 0931 \& 18 \& 07 \&

\hline 35 \& 72 \& 80 \& 1090 \& ${ }_{50}$ \& 07 \&

\hline 36
37 \& ${ }_{70}^{71}$ \& 78
76 \& 1248
1406 \& 50
65 \& 08
08 \&

\hline 38 \& 70 \& 74 \& 1563 \& 81 \& 09 \&

\hline 39 \& 69 \& 72 \& 1719 \& 1.5996 \& 10 \&

\hline ${ }_{41}^{40}$ \& 8.5097168 \& 8.5126470 \& 0. 31875 \& 1.6011 \& 5. 6210 \& 7.200

\hline ${ }_{42}^{41}$ \& 67
67 \& ${ }_{65}^{68}$ \& ${ }_{2186}^{2031}$ \& ${ }_{42}^{27}$ \& 11 \&

\hline 43 \& 66 \& 63 \& 2340 \& 57 \& 12 \&

\hline 44 \& 66 \& 61 \& 2491 \& 73 \& 13 \&

\hline 45
46 \& ${ }_{64}^{65}$ \& 59 \& ${ }_{2800}^{2647}$ \& 1.6088 \& 13 \&

\hline 47 \& ${ }_{63}^{64}$ \& ${ }_{55}^{57}$ \& ${ }_{2953}^{2800}$ \& 1.6103
18 \& 15 \&

\hline 48 \& 63 \& 53 \& 3104 \& 33 \& 15 \&

\hline 49 \& 62 \& 51 \& 3255 \& 48 \& 16 \&

\hline \& 8.5097161 \& 8.5126448 \& 0. 33406 \& \& 5. 6216 \&

\hline 51

52 \& ${ }_{60}^{60}$ \& \& | 3556 |
| :--- |
| 3706 | \& 1.6192 \& 17

18 \&

\hline 53 \& 59 \& \& 3855 \& 1.6207 \& 18 \&

\hline 54 \& 58 \& 40 \& 4004 \& 21 \& 19 \&

\hline 55 \& 57 \& 38 \& 4152 \& \& \&

\hline 56
57 \& 57
56 \& ${ }_{33}^{35}$ \& ${ }_{4447}$ \& ${ }_{65}^{51}$ \& $\stackrel{20}{20}$ \&

\hline 58 \& 55 \& ${ }_{89}^{31}$ \& 4594 \& 80 \& 22 \&

\hline \& \& \& \& \& \&

\hline 60 \& 8.509 7154 \& 8.5126427 \& 0.34885 \& 1.6308 \& 5. 6223 \& 7.229

\hline
\end{tabular}

Table 23.-Geodetic position computations-Continued.
LATITUDE 5°.

Table 23.-Geodetic position computations-Continued.
Latitude $6{ }^{\circ}$.

Table 23.-Geodetic position computations-Continned.
LATITUDE 7°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.02 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \operatorname{diff} .1^{\prime \prime}=-0.06 \end{gathered}$	$\log C$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.16 \end{gathered}$	$\log \mathrm{E}$	$\log \mathrm{F}$
$\begin{array}{lc} \circ & \prime \\ 7 & 00 \end{array}$	8. 5097047	$\overline{8} .5126107$	$\overline{0} .49600$	1. 7749	Г $\overline{5} .6316$	$\overline{\overline{7}} 371$
-1	8.50946	8.51263	$\begin{array}{r} \\ \hline\end{array}$	1. $\quad 59$	$\begin{array}{r}17 \\ \hline 17\end{array}$. 37
2	45	6100	809	69	18	
3	44	6097	0.49913	79	19	
4	43	94	0.50016	89	20	
05	42	91	119	1. 7799	21	
${ }^{6}$	41	88	222	1.7809	22	
7	40	85	325	- 19	23	
8	39	82	428	- 29	23	
9	38	78	530	- 39	24	
10	8.5097037	8.5126075	0.50632	1.7849	5.6325	
11	36	72	734	59	${ }_{2}^{26}$	
12	35	69	836	68	27	
13	34 33	66 62	0.50937 0.51039	78 88	28 29	
15	32	59	140	1.7898	30	
16	30	56	240	1.7908	31	
17	$\stackrel{29}{ }$	53	341	17	32	
18	${ }_{27}^{28}$	50 46	441	27 37	33 34	
20	8.5097026	8.5126043	0.51641	1. 7946	5.6335	7.391
21	25	40	741	56	36	
22	24	37	840	66	37	
23	23	33	0.51939	75	37	
24	22	30	0.52038	85	38	
25	21	27	137	1. 7994	39	
26	20 19	${ }_{20}^{23}$	236 334	1.8004 13	40	
28	17	17	432	23	42	
29	16	14	530	32	43	
30	8. 5097015	8.5126010	0.52628	1.8042	5. 6344	
31	14	07	725	51	45	
32	13	04	882	61	46	
35	12	6000 5997	0.52919	70	47	
34	11	5997	0.53016	79	48	
35 36	10 09	94 90	${ }_{209}^{113}$	89 1.8098	49 50	
37	07	87	306	1.8107	- 51	
38	06	83	402	17	52	
39	05	80	497	26	53	
40	8.5097004	8.5125977	0.53593	1.8135	5.6354	7.409
41	03 02	73 70	688 784	44 53	55 56	.
43	01	66	879	- 63	57	
44	7000	63	0.53973	72	58	
45	6998	60	0.54068	81	59	
46	97	56	162	${ }^{91}$	60	.
48	96 95	53 49	${ }_{351}^{257}$	1.8199 1.8208	61 62	
49	94	46	444	17	63	
50	8. 5096993	8.5125942	0.54538	1. 8226	5.6364	
51 52	$\begin{aligned} & 91 \\ & 90 \end{aligned}$	39 35	631 725	35 44	65 66	
53	89	32	818	53	67	
54	88	28	0.54911	62	68	
55	87	25	0.55003	71	69	
56	86	21	096	80	70	
57	84	18	188	$\begin{array}{r}89 \\ \hline 18\end{array}$	71	-
58 59	83 82	14	280	1.8298	72	
59	82	11	372	1.8307	73	
60	8.509 6981	8.5125907	0.55464	- 1.8315	5.6374	7.427

Table 23.-Geodetic position computations-Continued.
LATITUDE 8°.

Lat.	diff. $1^{\prime \prime}=-0.02$	$\log B$ diff. $1^{\prime \prime}=-0.06$	$\log C$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0.14 \end{gathered}$	diff. $1^{\prime \prime}=+0.02$	$\log \mathrm{F}$
- ,						
800	$\overline{8} .5096981$	- 8.5125907	$\overline{0} .55464$	1. 8315	$\overline{5} .6374$	$\overline{\overline{7}} .427$
	80	04	555	24	75	
2	79	5900	646	33	76	
3	77	5897	738	42	77	
4	76	- 93	829	50	78	
05	- 75	90	0.55919	59	79	
6	74	86	0.56010	68	80	
7	73	82	100	77	81	
8	71	79	191	85	82	
9	70	75	281	1.8394	83	
10	8.5096969	8.5125872	0.56371	1.8403	5. 6384	
11	68	68	460	12	85	
12	67	64	550	20	86	
13	65	61	639	28	87	
14	64	57	728	37	88	
15	63	54	817	45	90	
16	62	50	${ }^{906}$	54	91	
17	61	46	0.56995	62	92	
18	59	43	0.57083	71	93	
19	58	39	172	79	94	
20	8.5096957	8.5125835	0.57260	1. 8488	5. 6395	7.444
21	-56	8.512 32	348	1.8496	. 96	
'21	54	28	436	1.8505	97	
23	53	24	523	13	98	
24	52	20	611	21	99	
25	51	17	698	30	5. 6400	
26	49	13	785	38	5.6401	
27	48	09	-872	46	- 02	
28	47	06	0.57959	55	03	
29	46	5802	0.58045	63	04	
30	8.5096945	8.5125798	0.58132	1. 8571	5.6406	
31	43	94	218	80	07	
32	42	91	304	88	08	
33	41	87	390	1.8596	09	
34	- 39	83	476	1.8604	10	
35	38	79	562	13	11	
36	37	75	647	21	12	
37	36	72	732	29	13	
38	34	68	818	37	14	
39	33	64	903	1 45	15	
40	8.5096932	8.5125760	0.58987	1. 8653	5.6416	7. 461
41	31	56	0.59072	61	18	
42	29	53	157	69	19	
43 44	28 28	49 45	241 395	77 85	20	
44	27	45	325	85	21	
45	25	41	409	1.8693	22	
46	24	37	493	1.8701	23	
47	23	33	577	09	24	
48	22	29	660	17	25	
49	20	26	744	25	26	
50	8.509 6919	8.5125722	0.59827	1.8733	5.6428	
51	18	8. 18	910	41	5. 29	
52	16	14	0.59993	49	30	
53	15	10	0.60076	57	31.	
54	14	06	159	65	32	
55	12	5702	- 241	73	33	
56.	11	5698	324	81	34	
57 .	10	94	406	89	35	
58	09	90	488	1.8796	37	
59	07	86	570	1.8804	38	
60	8.5096906	8.5125682	0.60652	1.8812	5.6439	7.476

Table 23.-Geodetic position computations-Continued.
LATITUDE 9°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.02 \end{gathered}$	$\log B$ ff. $1^{\prime \prime}=-0.07$	$\log C$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0.12 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } 1^{\prime \prime}=+0.02 \end{gathered}$	$\log \mathrm{F}$
900	$\overline{8} .5096906$	$\overline{8} .5125682$	$\overline{0} .60652$	1. 8812	Б. 6439	$\overline{7} .476$
	05	78	733	20	40	
2	03	74	815	27	41	
3	02	70	896	35	42	
4	6901	66	0.60977	43	44	
05	6899	62	0.61058	51	45	
6	98	58	139	58	46	
7	97	54	220	66	47	
8	95	50	301	74	48	
9	94	46	881	81	49	
10	8.5096893	8.5125642	0.61461	1.8889	5.6450	
11	91	38	542	1.8897	52	
12	90	34	622	1.8904	53	
13	89	30	702	12	54	
14	87	26	781	19	55	
15	86	22	861	27	56	
16	84	18	0.61941	34	57	
17	83	14	0.62020	42	59	
18	82	10	099	50	60	
19	80	06	178	57	61	
20	8.5096879	8.5125602	0.62257	1.8964	5. 6462	7.490
21	78	5598	336	72	63	
22	76	93	415	79	65	
23	75	89	493	87	66	
24	74	85	572	1.8994	67	
${ }^{2} 5$	72	81	650	1.9002	68	
26	71	77	728	09	69	
27	69	73	806	17	70	
28	68	69	884	24	72	
29	67	64	0.62962	31	73	
30	8.509 6865	8.512 5560	0.63039	1.9039 46	5. 6474	
31	64 64	56 52	117 194	46	75	
32 33	62	48	194	53	78	
34	60	43	349	68	79	
35	58	39	426	75	80	
36	57	35	502	82	81	
57	55	31	579	90	83	
38	54	27	656	1.9097	84	
39	53	22	732	1.9104	85	
40	8. 5096851	8.5125518	0.63808	1.9111	5. 6486	7.505
41	50	14	885	19	87	
42	48	10	0.63961	26	89	
43	47	05	0.64037	33	90	
44	45	5501	112	40	91	
45	44	5497	188	47	92	
46	43	92	264	54	94	
47	41	88	339	61	95	
48	40	84	415	69	96	
49	38	80	490	76	97	
50	8. 5096837	8.5125475	0.64565	1.9183	5.6498	
51	35	71	. 640	$\begin{array}{r}90 \\ \hline 197\end{array}$	5.6500	
52	34	67	- 715	1.9197	01	
53	33	62	789	1.9204	02	
54	31	58	864	11	03	
55	30	54	0.64938	18	05	
56	28	49	0.65013	25	06	
57	27	45	087	32	07	
58 59	25	40	161 235	39	08	
59	24	36	235	46	10	
60	8.5096822	8.5125432	0.65309	1.9253	5.6411	7.518

Table 23.-Geodetic position computations-Continued.
LATITUDE 10°.

Lat.	$\log \mathbf{A}$ diff. $1^{\prime \prime}=-0.03$	$\log B$ iff. $1^{\prime \prime}=-0.08$	$\log C$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0.11 \end{gathered}$	$\begin{gathered} \log E \\ \operatorname{diff} .1^{\prime \prime}=+0.02 \end{gathered}$	$\log \mathrm{F}$
- ,		.				
$10 \quad 00$	§ె. 5096822	$\overline{8} .5125432$	$\overline{0} .65309$	1. 9253	$\overline{\overline{5}} .6511$	$\overline{\overline{\mathbf{7}}} .518$
. 1	21	27	383	1. 60	-. 12	
- ${ }^{2}$	19	23	456	67	13	
3	18	19	530	74	15	
4	17	14	603	80	16	
05	15	10	677	87	17	
6	14	05	750	1.9294	18	
7	12	5401	823	1.9301	20	
8	11	5396	896	- 08	21	
9	9	92	0.65968	15	22	
10	8. 5096808	8.5125388	0.66041	1.9322	5.6524	
11	06	83	114	28	25	
12	05	79	186	35	26	
13	03	74	259	42	27	
14	02	70	331	49	29	
15	6800	65	403	56	30	
16	6799	61	475	62	31	
17	97	- 56	547	69	33	
- 18	96	52	619	76	34	
19	94	47	691	82	35	
20	8.5096793	8.5125343	0.66762	1.9389	5. 6536	7.532
21	91	38	834	1.9396	5. 38	7.532
22	90	33	905	1.9403	39	
23	88	29	0.66976	09	40	
24	87	24	0.67047	. 16	42	
25	85	20	118	23	43	
26	84	15	189	- 29	44	-
27	82	11	260	36	46	
28	\$1	06	331	42	47	
29	79	5302	401	49	48	
30	8.509 6777	8.512 5297	0.67472	1.9456	5. 6549	
31	76	92	542	-62	5.651	
32	- 74	88	613	69	52	
33	73	83	683	75	53	
34	71	79	753	82	55	
35	70	74	823	88	56	
36	68	69	893	1.9495	57	
37	67	65	0.67962	1. 9501	59	
38	65	60	0.68032	08	60	
39	64	55	102	14	61	
40	8.5096762	8.5125251	0.68171	1.9521	5.6563	7.544
41	60	46	240	27	64	
42	59	41	310	34	65	
43	57	37	379	40	67	
44	56	32	448	47	68	
45	54	27	517	53	69	
46	53	23	586	60	71	
47	51	18	654	66	72	
48	50	13	723	72	73	
49	48	08	791	79	75	
50	8. 5096746	8.5125204	0.68860	1.9585	5.6576	
51	45	5199	928	91	78	
52	43	94	0.68996	1.9598	79	
53	42	89	0.69064	1.9604	80	
54	40	85	132	10	82	
55	38	80	200	17	83.	
56	37	75	268	23	84	
57	35	70	336	29	86	
58	34	66	404	36	87	-
59	32	61	471	42	88	
60	8.5096730	8.5125156	0.69539	1. 9648	5.6590	7.556

Table 23.-Geodetic position computations-Continued.
LATITUDE 11°.

Lat.	$\stackrel{\cdot}{\log \mathrm{A}} \mathrm{~A}_{1 \prime \prime}^{=-0.03}$	$\underset{\text { diff. } 1^{\prime \prime}=\underset{-0.08}{ } .}{ }$	$\log C$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.10 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.02 \end{gathered}$	$\log \mathrm{F}$
$\begin{array}{cc}\circ & \prime \\ 11 & 00\end{array}$	¢. 5096730	$\overline{8} .5125156$	$\overline{0} .69539$	1. 9648	$\overline{\overline{5}} .6590$	$\overline{7} .556$
	8.59	81	${ }_{606}$	1.94	91	
	27	46	673	61	93	
3	26	41	740	67	94	
4	24	37	807	73	95	
05	22	32	874	79	97	
6	21	27	0. 69941	86	98	
7	19	22	0. 70008	-92	5. 6599	
8	18	17	074	1.9698	5.6601	
9	16	12	141	1.9704	02	
10	8.5096714	8.5125108	0. 70208	1. 9710	5.6604	
11	13	5103	274	16	05	
- 12.	11 09	5098 5093	${ }_{406}^{340}$	${ }_{29}^{23}$	06 08	
- $\begin{array}{r}13 \\ \hline 14\end{array}$	11 08	5093 88	406 473	29 35	08 09	
15	06	83	539.	41	11	
16	05	78	604	47	12	
17	03	73	670	53	13	
18	01	68	736	59	15	
19	6700	. 63	802	65	16	
20	8. 5096698	8.5125058	0.70867	1.9771	5. 6618	7.568
21	96	53	933 0.70998	. 77	${ }_{2}^{19}$	
22	95	49	0.70998	- 83	20	
23	93	44	0.71063	89	${ }_{23}^{22}$	
24	91	39	128	1.9795	23	
25	90	34	194	1.9801	25	
26	88	29	259	07	26	
27	86	24	323	13	$\stackrel{27}{ }$	
28	85	19	388	19	29	
29	83	14	453	25	30	
30	8.5096681	8.5125009	0.71518	1.9831	5. 6632	
31 32	80 78	$\begin{array}{r} 04 \\ 4999 \end{array}$	582 647	37 43	33 35	
33	76	94	711	49	36	
34	75	89	775	55	37	
35	73	83	840	61	39	
36	71°	78	${ }^{904}$	67	40	.
37	70	73	0.71968	73	42	
38 $-\quad 39$	68 66	68 63	0.72032 095	79 85	43 45	
40	8.509 6665	8.5124958	0. 72159	1. 9890	5.6646	7.580
41	63	53	223	1. 9896	${ }_{49}^{47}$	
42	61 59	48 43	286 350	1.9902 08	49 50	
44	58	38	413	14	52	
45	56	33	477	20	53	
46	54	28	540	25	55	
48	51	17	666	37	58	
49	49	12	729	43	59	
	8. 5096647	8.5124907	0.72792	1. 9949	5. 6661	
51	46	4902	855	54	62	
52	44	4897	918	60	64	
53	43	92	0.72980	66	65	
54	41	86	0.73043	72	66	
5.5	39	81	106	77	68	.
56	37	76	168	83	69	
57	35	71	230	89	71	
58 59	34 32	66 60	293 355	94 1.9900	72 74	
60	8. 5096630	8.5124855	0.73417	2.0006	5. 6675	7.591

Table 23.-Geodetic position computations-Continued.
LATITUDE 12°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.03 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.09 \end{gathered}$	$\log C$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0.09 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.04 \end{gathered}$	$\log \mathrm{F}$
$\begin{array}{cc}\circ & \prime \\ 12 & 00\end{array}$	$\overline{8} .5096630$	$\overline{8} .5124855$	$\overline{0} .73417$	$\overline{2} .0006$	$\overline{\overline{5}} .6675$	$\overline{\overline{7}} .591$
	8. 5096030	8.512480	- 479	2.000	5.6675 77	7.591
	27	45	541	17	78	
3	25	39	603	23	80	
4	23	34	664	28	81	
05	21	29	726	34	83	
6	20	24	788	40	84	
7	18	18	849	45	86	
8	16	13	911	51	87	
9	14	08	0.73972	57	89	
10	8. 5096613	8.5124803	0.74033	2.0062	5.6690	
11	11	4797	094	67	92	
12	09	92	156	73	93	\cdot
13	07	87	${ }_{2} 17$	79	95	
14	06	81	278	84	96	
15	04	76	339	${ }^{90}$	98	
16	02	71	399	2. 0096	99	
17	6600	65	460	2.0101	5.6701	-
18	6599	60	521	07	02	
19	97	55	581	12	04	
20	8. 5096595	8.5124749	0.74642	2.0118	5.6705	7.601
21	93	44	702	23	07	
22	91	39	763	29	08	
23	90	33	823	34	10	
24	88	28	883	40	11	
25	86	23	0.74943	45	13	
$\stackrel{26}{ }$	84	17	0.75003	50	14	
27	82	12	063	56	16	
${ }_{29}^{28}$	81 79	66 4701	183	61 67	17 19	
30	8.5096577	85124696	0.75243	2.0172	5.6720	
31	75	90	302	77	22	
32	73	85	362	83	24	
33	72	79	422	88	25	
34	70	74	481	94	27	
35	58	68	540	2.0199	28	.
36 37	66	63	600	2.0205	30	
38	62	52	718	15	33	-
39	61	46	777	21	34	
40	8. 5096559	8.5124641			5.6736	7.611
41	57 55 50	35 30	$\begin{array}{r} 895 \\ 0.75954 \end{array}$	32 37	37 39	
43	53	24	0.76013	42	41	
44	51	19	072	47	42	
45	50	13	130	53	44	
46	48	${ }_{0} 08$	189	58	45	
47	46	4602	247	63	47	
48 49	44 42	4597 91	306 364	69 74	48 50	
50	8. 5096540	8.5124586	0.76422	2.0279	5.6751	
51	39	80	481	84	53	
52	37	75	539	${ }^{90}$	55	
54	33	63	655	2.0300	58	
55	31	58	713	05	59	
56	29	52	771	10	61	
57	27	47	828	16	62	
59	24	35	0.76944	26	66	
60	8.5096522	8.5124530	0.77001	2.0331	5.6767	7.621

Table 23.-Geodetic position computations-Continued.
LATITUDE 13°.

Lat.	$\begin{gathered} \log A \\ \operatorname{diff} .1^{\prime \prime}=-0.03 \end{gathered}$	$\begin{gathered} \log B \\ \operatorname{diff.} 1^{\prime \prime}=-0.10 \end{gathered}$	$\stackrel{\log C}{\text { diff. } 1^{\prime \prime}=+0.93}$	$\stackrel{\log \mathrm{D}}{\text { diff. } 1^{\prime \prime}=+0.08}$	$\begin{aligned} & \log \underset{\mathrm{E}}{\mathrm{E}} \\ & \operatorname{diff} .1^{\prime \prime}=+0.03 \end{aligned}$	$\log F$
- ,						
$13 \quad 00$	$\overline{8} .5096522$	$\overline{8} .5124530$	$\overline{0} .77001$	$\overline{2} .0331$	5. 6767	$\overline{7} .621$
1	20	24	059	36	69	
2	18	19	116	42	70	
3	16	13	174	47	72	
4	14	07	231	52	74	
05	12	4502	288	57	75	
6	10	4496	346	62	77	
7	09	90	403	67	78	
8	07	85	460	73	80	
9	05	79	517	78	82	
10	8. 5096503	8.5124473	0.77574	2.0383	5.6783	
11	6501	67	630	88	85	
12	6499	62	687	93	86	
13	97	56	- 744	2. 0398	88	
14	95	50	801	2.0403	90	
15	93	45	857	08	91	
16	91	39	914	13	93	
17	90	33	- 0.77970	18	94	
18	88	27	0.78027	23	96	
19	86	22	083	28	98	
20	8.509 6484	8.5124416	0.78139	2.0433	5.6799	7.631
21	82	10	195	38	5.6801	
22	80	4404	251	44	03	
23	78	4399	307	49	04	
24	76	93	363	54.	06	
25	74	87	419	59	07	
26	72	81	475	64	09	
27	70	76	531	69	11	
28	68	70	587	74	12	
29	66	64	642	78	14	
30	8.509 6464	8.5124358	0.78698	2.0483	5.6816	
31	63	52	754	88	- 17	
32	61	46	809	93	19	
33	59	41	865	2.0498	20	
34	57	35	920	2.0503	22	
35	55	29	0.78975	08	24	
36	53	23	0. 79030	13	25	
37	51	17	086	18	27	
38	49	11	141	23	29	
39	47	4305	196	28	30	
40	8.5096445	8.5124299	0.79251	2.0533	5.6832	7.640
41	43	94	306	38	34	
42	41	88	360	42	35	
43	39	82	415	47	37	
44	37	76	470	52.	39	
45	35	70	525	57	40	
46	33	64	579	62	- 42	
47	31	58	634	67	- 44	
48	29	52	588	72	45	
49	27	46	743	76	47	
50	8.5096425	8.5124240	0.79797	2.0581	5.6849	
51	23	34	851	86	50	
52	21	28	. 905	91	52	
53	19	22	0.79960	2.0596	54	
54	17	16	0.80014	2.0601	55	
55	15	10	068	05	57	
56	13	4204	122	10	59	
57	11	4198	176	15	60	
58	09	92	230	$\because 0$	62	
,59	07	86	284	24	64	
60	8.5096405	8.5124180	0.80337	2.0629	5.6865	7.649

Table 23.-Geodetic position computations-Continued.
LATITUDE 14°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.03 \end{gathered}$	diff. $1^{\prime \prime}=-0.10$	$\log C$ diff. $1^{\prime \prime}=+0.87$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff.} 1^{\prime \prime}=+0.08 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \operatorname{diff.} 1^{\prime \prime}=+0.03 \end{gathered}$	$\log F$
- ,						
1400	$\overline{8} .5096405$	$\overline{8} .5124180$	$\overline{0} .80337$	$\overline{2} .0629$	5. 6865	$\overline{\overline{7}} .649$
1	03	74	391	34	67	.
2	6401	68.	445	39	69	
3	6399	62	498	43	71	
4	97	56	552	48	72	
05	95	50	605	53	74	
6	93	44	659	58	76	
7	91	38	712	62	77	
8	89	32	765	67	79	
9	87	26	819	72	81	
10	8.5096385	8.5124120	0.80872	2.0676	5.6882	
11	83	14	925	81	84	
12	81	08	0.80978	86	86	
13	79	4101	0.81031	90	88	
14	77	4095	084	2.0695	89	-
15	75	89	137	2.0700	91	
16	73	83	190	04	93	
17	71	77	243 -	09	94	
18	69	71	295	14	96	
19	67	65	348	18	98	
20	8.5096365	8.5124059	0.81401	2.0723	5.6900	7.658
21.	63	52	453	28	01	
22	61	46	506	32	03	
23	58	40	558	36	05	
24	56	34	611	41	06	
25	54	28	663	46	08	
26	52	21	715	51	10	
27	50	15	767	55	12	
28	48	09	820	60	13	
29	46	4003	872	64	15	\leqslant
30	8.5096344	8.5123997	0.81924	2.0769	5.6917	
31	42	90	0.81976	73	19	-
32	40	84	0.82028	78	20	
33	38	78	080	83	22	
34	36	72	131	87	24	
35	34	65	183	92	26	
36	32	59	235	2.0796	27	
37	29	53	287	2.0801	29	
38	27	47	338	05	31	
39	25	40	390	10	33	
40	8.5096323	8.5123934	0.82441	2.0814	5. 6934	7.667
41	21	28	493	19	36	1
42	19	22	544	23	38	
43	17	15	596	28	40	
44	15	09	647	32	41	
45	13	3903	698	37	43	
46	11	3896	749	41	45	
47	08	90	800	46	47	
48	06	84	852	- 50	48	
49	04	77	903	54	50	
50	8.5096302	8.5123871	0.82954	2.0859	5.6952	
51	6300	65	0.83005	63	54	
52	6298	58	055	68	55	
53	96	52	106	72	57	
54	94	45	157	77	59	
55	92	39	208	81	61	
56	89	33	258	85	63	
57	87	26	309	90	64	
58	85	20	360	94	66	
59	83	13	410	2.0899	68	
60	8.5096281	8.5123807	0.83461	2.0903	5.6970	7.675

Table 23.-Geodetic position computations-Continued.
LATITUDE 15°.

Lat.	$\begin{gathered} \log A \\ \text { diff. } 1^{\prime \prime}=-0.04 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.11 \end{gathered}$	$\log \mathrm{C}$ diff. $1^{\prime \prime}=+0.82$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.07 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \operatorname{diff} .1^{\prime \prime}=+0.03 \end{gathered}$	$\log \mathrm{F}$
	$\overline{8} .5096281$	$\overline{8} .5123807$	$\overline{0} .83461$	$\overline{2} .0903$	5. 69%	$\overline{\overline{7}} .675$
15	8. 79	8.5123801	- 511	2. 07	\%. 72	
2	77	3794	561	12	73	
3	74	88	612	16	75	
4	72	81	662	21	77	
05	70	75	712	25	79	
6	68	68	762	29	80	
7	66	62	813	34	82	
8	64	56	863	38	84	
9	62	49	913	42	86	
10	8. 5096259	8.5123743	0.83963	2.0947	5. 6988	
11	57	36	0.84012	51	89	
12	55	30	062	55	91	
13	53	23	112	59	93	
14	51	17	162	64	95	
15	49	10	212	68	97	
16	46	3704	261	72	5.6999	
17	44	3697	311	77	5.7000	
18	42	91	361	81	02	
19	40	84	410	85	04	
20	8.5096238	8.5123677	0.84460 .	2.0990	5. 7006	7.683
21	35	71	509	94	08	
22	33	64	558	2.0998	09	
23	31	$\cdot 58$	608	2.1002	11	
24	29	51	657	07	13	
25	27	45	706	11	15	
26	24	38	755	15	17	
27	22	31	804	19	19	
28	20	25	854	23	20	
29	18	18	903	28	22.	
30	8.5096216	8.5123612	0.84952	2. 1032	5.7024	
31	14	3605	0.85001	36	26	
32	11	3598	049	40	28	
33	09	92	098	44	30	
34	07	85	147	49	31	
'35	05	79	196	53	33	
36	02	72	245	57	35	
37	6200	65	293	61	- 37	
38	6198	59	342	65	39	
39	96	52	390	69	41	
40	8.5096194	8.5123545	0.85439	2. 1074	5. 7042	7.691
41	91	39	487	. 78	44	
42	89	32	536	- 82	46	
43	87	25	584	86	- 48	
44	85	19	633	90	50	
45	82	12	681	94	52	
46	80	3505	729	2. 1099	54	
47	78	3498	777	2.1103	55	
48	76	92	825	07	57	
49	73	85	874	11	59	
50	8.5096171	8.5123478	0.85922	2.1115	5.7061	
51	69	71	0.85970	19	63	
52	67	65	0.86018	23	65	
53	64	58	066	27	67	
54	62	51	113	31	69	
55	60	44	161	35	70	
56	58	38	$\cdot 209$	39	72	
57	55	31	257	44	74	
58	53	24	- 304	48	76	
59	51	17	352	52	78	
60	8.5096149	8.5123411	0.86400	2.1156	5. 7080	7.698

Table 23.-Geodetic position computations-Continued.
LATITUDE 16°.

Lat.	$\log \mathrm{A}$ diff. $1^{\prime \prime}=-0.04$	$\begin{gathered} \log B \\ \operatorname{diff} .1^{\prime \prime}=-0.1 \end{gathered}$	$\log C$ diff. $1^{\prime \prime}=+0.77$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0.06 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } 1^{\prime \prime}=+0.03 \end{gathered}$	$\log \mathrm{F}$
$16 \quad 00$	8.5096149	8.5123411	0.86400	2.1150	5. 7080	7.698
1 2	46	3404 3397	447	60	82	
3	42	90	542). 68	85	
4	40	83	590	72	87	
05	37	76	637	76	89	
6	35	70	684	80	91	
7	33	63	732	84	93	
8	30	56	779	88	95	
9	28	49	826	92	97	
10	8.5096126	8.5123342	0.86873	2.1196	5. 7099	
11	24	35	921	2.1200	5.7101	
12	21	28	0.86968	- 04	03	
13	19	22	0.87015	08	04	
14	17	15	062	12	06	
15	14	- 08	109	16	08	
16	12	3301	106	20	10	
17	10	3294	202	24	12	
18	08	87	249	28	14	
19	05	80	296	32	16	
20	8.5096103	8.5123273	0.87343	2. 1236	5. 7118	7.705
21	6101	66	389	40	20	
22	6098	59	436	44	22	
23	96	52	483	47	24	
24	94	- 45	529	51	25	
25	91	39	576	55	27	
26	89	32	622	59	29	
27	87	25	669	63	31	
28	84	18	715	67	33	
29	82	11	761	71	35	
30	8. 5096080	8.5123204	0.87808	2.1275	5. 7137	
31	77	3197	854	79	39	
32	75	- 97	900	83	41	
33	73	- 83	947	87	43	
34	70	76	0.87993	90	45	
35	68	69	0.88039	94	47	
36	- 66	62	085	2. 1298	49	
37	- 63	55	131	2.1302	51	
38	61	48	17%	06	52	
39	59	41	223	10	54	
40	8. 5096056	8.5123133	0.88269	2.1314	5. 7156	7.712
41	54	26	315	17	58	
42	52	19	360	21	60	
43	49	12	406	25	62	
44	47	3105	452	29	64	,
45	45	$30=8$	498	33	66	
46	42	91	543	37	68	
47	40	- 88	589	40	70	
48	37	- 77	631	- 44	72	
49	35	70	680	- 45	74	
50	8.5096033	8.5123063	0. 58726	2.1352	5.7176	
51	30	56	771	56	78	
52	28	48	816	59	80	
53	26	41	${ }^{1} 62$	63	82	
54	23	34	937	67	84	
55	$\stackrel{21}{ }$	27	952	71	86	
56	18	20	0.88998	74	88	
57	16	13	0.89043	78	90	
58	14	3006	088	- 82	92	
59	11	2995	133	86	94	
60	8. 5096009	8.5122991	0.89178	2.1390	5.7196	7.719

Table 23.-Geodetic position computations-Continued.
LATITUDE 17°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.04 \end{gathered}$	$\begin{gathered} \log B \\ \operatorname{diff} .1^{\prime \prime}=-0.12 \end{gathered}$	$\begin{gathered} \log C \\ \operatorname{diff} .1^{\prime \prime}=-0.73 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff.} 1^{\prime \prime}=+0.06 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \operatorname{diff.} 1^{\prime \prime}=+0.03 \end{gathered}$	$\log \mathrm{F}$
${ }^{\circ} 170$				$\overline{2} 1390$	5. 7196	$=719$
1700	8.5096009	8.5122991	0. 89178	2.1390 93	5. 7196	7.719
2	04	$\stackrel{84}{77}$	268	2.1397	97 99	
3	6002	70	313	2.1401	5.7201	
4	5999	62	358	04	03	
05	97	55	403	08	05	
6	94	48	448	12	07	
7	92	41	493	16	09	
8	90	34	538	19	11	
9	87	26	583	23	13	
10	8.5095985	$8.512 \quad 2919$	0.89627	2.1427	5. 7215	
11	82	12	672	30	17	
12	- 80	2905	717	34	19	
13	78	2897	761	38	21	
14	75	90	806	42	23	
15	73	83	850	45	25	
16	70	76	895	49	27	
17	68	68	939	53	29	
18	65	61	0.89984	56	31	
19	63	54	0.90028	60	33	
20	8.5095961	8.5122846	0.90072	2.1464	5. 7235	7.726
21	58	39	117	67	37	
22	56	32	161	71	39	
23	53	24	205	75	41	
24	- 51	17	249	78	43	
25	48	10	294	82	45	
26	46	2802	338	85	47	
27	44	2795	382	89	49	
28	41	88	426	93	51	
29	39	80	47 C	2.1496	53	
30	8.5095936	8.5122773	0.90514	2.1500	5. 7255	
31	34	66	558	04	57	
32	31	58	602	07	59	
33	29	51	646	11	61	
34	26	44	689	14	64	
35	24	36	733	18	66	
36	21	29	777	22	68	
37	19	21	821	25	70	
38	16	14	864	29	72	
39	14	2707	908	32	74	
40	8.5095912	8.5122699	0.90952	2.1536	5.7276	7.732
41,	09	92	0.90995	39	78	
42	07	84	0.91039	43	80	
43	04	77	082	47	82	
44	5902	69	126	50	84	
45	5899	62	169	54	86	
46	97	55	212	57	88	
47	94	47	256	61	90	
48	92	40	299	64	92	
49	89	32	342	68	94	
50	8. 5095887	8.5122625	0.91386	2.1571	5.7296	
51	84	17	429	75	5.7298	
52	82	10 2602	472	78	5.7300	
53	79	2602	515	88	02	
54	77	2595	558	85	04	
55	74	87	601	89	06	
56	72	80	644	92	08	
57	69	72	687	96	11	
58	67	65	730	2.1599	13.	
59	64	57	773	2.1603	15 .	
60	8.5095862	8.5122550	0.91816	2.1606	5.7317	7.738

Table 23.-Geodetic position computations-Continued.
LATITUDE 18°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 19°.

Lat.	$\log \mathrm{A}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.18 \end{gathered}$	$\underset{\text { diff. } 1^{\prime \prime}}{\log C}$	$\begin{aligned} & \log \mathrm{D} \\ & .1^{\prime \prime}=+0 . \end{aligned}$	$\log \mathrm{E}$	$\begin{aligned} & \log \mathrm{F} \\ & .10^{\prime}=+2.7 \end{aligned}$
- 19 ¢ 00	8.5095707	8.5122086	0.94330	2. 1808	5.7443	7.756
1	04	78	370	11	. 45	
2	8.5095702	70	411	14	47	
	8.5095699	62	452	18	49	
4	96	54	493	21	52	
05	94	46	534	24	54	
6.	91	38	575	27	56	
7°	89	30	615	30	58	
8 9	86 83	14	656 697	34 37	60	
10	8.509 5681	8.5122006	0.94737	2.1840	5.7464	
11	78	8.5121999	778	43	67	
12	75	91	819	46	69	
13	73	83	859	50	71	
14	70	75	900	53	73	
15	67	67	940	56	75	
16	65	59	0.94981	59	78	
17	62	51	0.95021	62	80	
18	59	43	061	66	82	
19	57	35	102	69	84	
20	8. 5095654	8.5121927	0.95142	2. 1872	5.7486	7.761
21	52	19	182	75	88	
22	49	${ }^{11}$	223	78	91	
23	46	8.5121903	263	81	93	
24	43	8.5121895	303	34	95	
25	41	87	344	88	97	
26	38	79	384	91	5. 7499	
27	35	71	424	94	5. 7501	
$\stackrel{28}{29}$	33 30	63 55	464	2.1897 2.1900	04 06	
30	8.5095627	8.5121847	0.95544	2.1903	5.7508	
31	25	38	584	07	10	
32	22	30	624	10	12	
33	19	22	664	13	15	
34	16	14	704	16	17	
35	14	8.5121806	744	19	19	
36	11	8.5121798	784	22	21	
37	08	90	824	25	23	
38	06	82	863	28	26	
39	03	74	903	31	28	
40	8. 5095600	8.5121766	0.95943	2. 1934	5.7530	7.767
41	8.5095598	57	0.95983	38	32	
42	$\begin{aligned} & 95 \\ & 92 \end{aligned}$	49	0.96022	41	34	
44	89	33	062 102	44	37 39	
45	87	25	142	50	41	
46	84	17	- 181	53	43	
47	81	08	221	56	46	
48	78	8.5121700	260	59	48	
49	76	8.5121692	300	62	50	
50	8. 5095573	8.5121684	0.96339	2. 1965	5.7552	
51	70	${ }_{6}^{75}$	379	68	54	
52	68		418	71	57 59	
54	62.	51	497	77	61	
55	59	43	536	- 80	63	
56	57	34	575	83	65	
57	54	26	615	86	68	
58	51	18	654	89	70	
59	48	10	693	92	72	
60	8. 5095546	8.5121602	0.96733	2.1996	5. 7574	7.772

Table 23.-Gieodetic position computations-Continued.
LATITUDE 20°.

Lat.	$\stackrel{\log \mathrm{A}}{\text { diff. } 1^{\prime \prime}=-0.05}$	$\text { diff. } 1^{\log B}=-0.14$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.64 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.05 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.04 \end{gathered}$	$\underset{\operatorname{liff} .10^{\prime} \mathrm{F}}{=+2.5}$
- ,						
$20 \quad 00$	8.509 5516	¢. 5121602	0.96733	2.1996	5. 7574	7.772
	43.	8.5121593	772	2. 1999	77	
2	40°	85	811	2.2002	79	
3	37	77	850	05	81	
4	35	68	889	08	83	
65	32	60	928	11	86	
6	29	52	0.96967	14	88	
	26	44	0.97006	17	90	
8	24	35	045	20	92	
9	21	27	084	23	94	
10	8.5095518	8.5121519 ,	0.97123	2. 2026	5. 7597	
11	15	10°	162	28	5. 7599	
12	12	8. 5121502	201	31	5. 7601	
13	10	6. 5121494	240	34	03	
14	07	85	279	37	06	
15	04	77	318	40	08	
16	8. 2095501	69	356	43	10	
17	8.5095499	60	395	46	12	
18	96	52	434	49	15	
19	93	44	472	52	17	
20	8. 5095490	8.5121435	0.97511	2.2055	5. 7619	7.777
21	87	27	550	58	21	
22	85	18	588	61	24	
23	82	10	627	64	${ }^{26}$	
24	79	8.512 1402	666	67	28	
25	76	8. 5121393	704	70	30	
26	73	85	743	73	33	
27	71	76	781	76	35	
28	68	68 60	819	89	37	
29	65	60	858	81	40	
30	8. 5095462	8. 5121351	0.97896	2. 2084	5. 7642	
31	59	43	935	87	44	
32	57	34	0. 97973	93	46	
33	54	26	0.98011	93	49	
34	51	17	050	96	51	
35	48	09	088	2. 2099	53	
36	45	8. 5121301	126	2. 2102	55	
37	42	8.5121292	164	05	58	
88 39	40 37	84 75	293 241	08 10	60 62	
40	8.5095434	8. 5121267	0.98279	2.2113	5. 7664	7. 782
41	31	58	317	16	67	
42	28	50	355	19	69	
43	25	41	393	22	71	
44	23	33	431	25	74	
45	20	- 24	469	28	76	
46 47	17	\circ 8.5121207	507 545	31 33	78 81	
48	114	8.5121207 8.5121199	583	${ }_{36}$	83	
49	08	${ }^{90}$	621	39	85	
50	S. 50.75406	8.5121182	0.98659	2. 2142	5. 7688	
51	03	73	697	45	90	
52	8. 5095400	64	735	48	92	
53	8.5095397	56	773	50	91	
54	94	47	811	53	- 97	
55	91	39 *	848	56	5. 7699	
56	88	30	886	59	5. 7701	
57	86	21	924	62	04	
58 59	83 80	13 $\times .5121104$	- 962	${ }_{6}^{65}$	06	
59	80	8.5121104	0.98999	67	08	
60	8. 5095377	8. 5121096	0.99037	2. 2170	5. 7711	7.787

Table 23.-Geodetic position computations-Continued.
LATITUDE 21°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 22°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 23°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 24°.

Lat.	diff. $1^{\prime \prime}=-0.05$	$\begin{gathered} \log B \\ \operatorname{diff} .1^{\prime \prime}=-0.1 \end{gathered}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.5 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.0 \end{gathered}$	$\begin{gathered} \log E \\ \operatorname{diff.} 1^{\prime \prime}=+0.0 \end{gathered}$	$\begin{gathered} \log F \\ \operatorname{diff} .10^{\prime}=+1.6 \end{gathered}$
- ,						
2400	8. 5094833	8.5119463	1.05456	2.2627	5.8146	7.823
	30	53	490	29	49	
2	26	44	523	31	51	
3	23	34	557	34	54	
4	20	24	591	36	57	
05	17	15	625	58	59	
6	14	8.5119405	658	41	62	
7	10	8. 5119396	692	43	C4	
8	07	86	726	45	67	
9	04	77	760	47	69	
10	8.5094801	8.5119367	1.05794	2. 2650	5.8172	
11	8.5094798	58	827	52	74	
12	94	48	861	54	77	
13	91	- 38	894	56	79	
14	NS	29	928	59	82	-
15	85	19	962	61	85	
16	¢2	09	1.05995	63	87	
17	78	欠. 5119300	1.06029	65	90	
18	75	S.511 ¢290	062	- 68	92	
19	72	81	096	70	95	
20	8.5094769	र. 5119271	1. 06130	2.2672	5.8197	7.826
21	66	61	163	74	5.8200	
22	62	52	197	77	02	
23	- 59	42	230	79	05	
24	56	32	263	81	07	
25	53	23	297	83	10	
26	50	13	330	85	13	
27	46	8.5119203	364	88	15	
28	43	8.5119194	397	90	18	
$\cdot 29$	40	84	431	92	20	
30	8.5094737	8.5119174	1.06464	2. 2694	5.8223	
31	. 33	65	497	96	25	
32	30	55	530	2.2699	28	
33	27	45	564	2.2701	31	
34	24	35	597	03	33	
35	20	26	630	05	36	
36	17	16	664	07	38	
37	14	8.5119106	697	10	41	
38	11	8.5119096	730	12	43	
39	07	87	763	14	46	
40	8. 5094704	8.5119077	1.06797	2.2716	5.8249	7.829
41	8.5094701	67	830	18	51	
42	8.5094698	58	863	20	54	
43	94	48	896	23	56	
44	91	38	929	25	59	
4.5	48	28	962	27	61	
46	85	18	1.06995	29	64	
47	81	¢. 5119009	1.07028	31	67	
48	78	8. 5118999	061	33	69	
49	75	89	095	36	72	
50	8. 5094672	¢. 5118979	1.07128	2.2738	5.8274	
51	68	70	161	40	77	
52	65	60	194	42	80	
53	62	50	226	44	82	
54	59	40	259	46	85	
55	55	30	292	49	87	
56	52	21	325	51	90	
57	49	11	358	53	92	
58	45	8.5118901	391	55	$\begin{array}{r}95 \\ \hline 88\end{array}$	
59	42	¢. 5118891	424	57	5.8298	
60	8. 5094639	8.5118881	1.07457	2.2759	5.8300	7.832

Table 23.-Geodetic position computations-Continued.
LATITUDE 25°.

Lat.	$\underset{\log A}{\operatorname{liff} .1^{\prime \prime}=-0.06}$	$\begin{aligned} & \log B \\ & \operatorname{liff.} 1^{\prime \prime}=-0 \cdot 16 \end{aligned}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.51 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0.03 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.04 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=+1 \cdot 5 \end{gathered}$
-						
2500	8. 5094639	8.5118881	1.07457	2.2759	5.8300	7.832
	36	71	490	61	03	
2	32	62	523	63	05	
3	29	52	555	66	08	
4	26	42	588	68	11	
05	23	32	621	70	13	
6	19	22	654	72	16	
7	16	12	687	74	18	
8	13	8.5118802	719	76	21	
9	09	8.5118793	752	78	24	
10	8. 5094606	8. 5118783	1.07785	2.2780	5. 8326	
11	03	73	817	82	29	
12	8. 5094600	63	850	85	32	
13	8.5094596	53	883	87	34	
14	93	43	915	89	37	
15	90	33	948	91	39	
16	86	- $\quad 23$	1.07981	93	42	
17	83	- 13	1. 08013	95	45	
18	80	8.5118704	046	-97	47	
19	76	8.5118694	078	2. 2799	50	
20	8. 5094573	8.5118684	1. 08111	2.2801	5.8359	7.835
21	70	74	143	03	55	
22	${ }_{6}^{66}$	64	176		59	
23	63 60	54 4	${ }_{241}^{208}$	07	${ }_{6}^{60}$	
24	60	4	241	10	63	
25	56	34	${ }^{273}$	12	66	
27	53 50	${ }^{24} 14$	306 338	14 16	68 71	
28	46	8.5118604	370	18	73	
29	43	8.5118594	403	20	76	
30	8.509 4540	8.5118584	1.08435	2.2822	5. 8379	
31	37	74	468	24	81	
32	33 30	64 54	500 532	26 28	84 87	
${ }_{34}$	26	44	565	30	89	
35	23	34	597	32	- 92	
36	20	24	629	34	$\begin{array}{r}94 \\ \hline\end{array}$	
37 38	17	8.511 $\begin{array}{r}14 \\ 8504\end{array}$	662	36 38	5.8397 5.8400	
39	10	8.5118494	726	40	5.82	
40	8.5094507	8.5118484	1. 08758	2.2842	5. 8405	7.838
41	8. 03	74	791	44	08	
42	8.5094500	64	823	46	10	
43	8.5094496	54	855	48	13	
44	93	44	387	50	16	
45	90	34	919	52	18	
46	86	24	951	54	21	
47	83	- 14	1.08984	56	24	
48	80	8. 5118404	1.09016	${ }_{60} 58$	${ }_{29}^{26}$	
49	76	8.5118393	048	60	29	
50	8.5094473	8.5118383	1.09080	2. 2862	5. 8131	
51	70	73	112	64	34	
52	66	63	144	66	${ }^{37}$	
53 54	63 60	43	${ }_{208}^{176}$	70	$\begin{array}{r}39 \\ 42 \\ \hline\end{array}$	
55	. 56	33	240	72	45	
56	53	23	${ }_{3}^{272}$	74	47	
${ }_{58}$	${ }_{46}$	8.5118303	304 336	76	53	
59	43	8.5118893	- 368	80	55	
60	8. 5094439	8.5118283	1.09400	2.2882	. 5.8458	7.841

Table 23.-Geodetic position computations-Continued.
LATITUDE 26°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff.} 1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0 \cdot 17 \end{gathered}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.52 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.03 \end{gathered}$	$\log E$ diff. $1^{\prime \prime}=+0.04$	$4 \text { diff. } 10^{\prime}=+1 \cdot 3$
- ,		-	-	,		
2600	8.5094439	8.5118283	1.09400	2. 2882	5.8458	7.841
1	36	72	432	84	61	
2	33	62	464	86	63	
3	29	52	496	88	66	
4	26	42	527	90	69	
05	22	32	-559	92	71	
6	19	22	591	94	74	
7	16	12	623	96	77	
8	12	8.5118201	655	2. 2898	79	
9	09	8.5118191	687	2. 2900	82	
10	8.5094406	8.5118181	1.09718	2. 2902	5. 8485	
11	8. 5094402	71	750	04	88	
12	8.5094399	61	782	06	90	
13	95	51	814	08	93	
14	92	40	845	10	'96	
15	88	30	877	12	5.8498	
16	85	20	909	14	5.8501	
17	82	10	940	16	04	
18	78	8. 5118100	1.09972	18	06	
19	75	8.5118089	1.10004	20	09	
20	8. 5094372	8.5118079	1. 10036	2. 2322	5.8512	7.844
21	68	69	067	23	14	
22	65	59	099	25	17	
23	61	48	130	27	20	
24	58	38	162	29	22	-
25	54	28	194	31	25	
26	51	18	225	33	28	
27	48	8.5118008	257	35	30	
28	44	8.5117997	288	37	33	
29	41	87	320	39	36	
30	8.5094337	8.5117977	1.10351	2. 2941	5.8539	
31	34	67	383	43	41	
32	31	56	414	45	44	
33	27	46	446	47	47	
34	24	36	477	48	49	
35	29	25	509	50	52	-
36	17	15	540	52	55	
37	13	8.5117905	571	54	57	
38	10	8.5117895	603	56	60	
39	07	84	634	58	63	
40	8. 5094303	8.5117874	1.10666	2. 2960	5. 8566	7.846
41	8.5094300	. 64	697	62	68	
42	8.5094296	53	728	63	71	
43	93	43	760	65	74	
44	89	33	791	67	76	
45	86	22	822	69	79	
46	83	12	854	71	82	
47	79	8.5117802	885	73	85	
48	76	8.5117791	916	75	87	
49	72	81	947	77	90 .	,
50	8. 5094269	8.5117771	1. 10979	2. 2978	5.8593	
51	65	60	1.11010	80	95 5.8598	
52	62	50	041	82	5.8598	
53	58	40	072	84	5.8601	
54	55	29	103	86	04	
55	52	19	134	88	06	
56	48	8.5117709	166	89	09	
57	45	8.5117698	197	91	12	-
58	41	88	228	93	14	,
59	38	77	259	95	17	
60	8. 5094234	8.5117667	1.11290	2. 2997	5.8620	7.849

Table 23.-Geodetic position computations-Continued.
LATITUDE 27°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 28°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 29°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \text { diff. } 1^{\prime \prime}=-0.18 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.49 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0.03 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.05 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=+0.8 \end{gathered}$
- ,						
$29 \quad 00$	8.5093808	8.5116389	1.14932	2.3203	5.8955	7.861
1	05	78	961	04	58	
2	8.5093801	68	1.14991	06	60	
3	8.5093797	57	1.15021	07	63	
4	91	46	050	09	66	
05	90	35	080	10	69	
6	86	24	109	12	72	
7	83	13	139	14	75	
8	79	8.5116302	168	15	78	
9	76	8.5116291	198	17	80	
10	8.5093772	8.5116280	1.15228	2.3218	5. 8983	
11	68	69	257	20	86	
12	65	58	287	21	89	
13	61	47	316	23	92	
14	57	36	346	25	95	
15	54	26	375	26	5. 8998	
16	50	15	40',	28	5. 9000	
17	46	8.5116204	434	29	03	
18	43	8.5116193	464	31	06	
19	39	82	493	32	09	
- 20	8.5033735	8.5116171	1.15522	2.3234	5.9012	7.863
21	32	60	552	35	15	
22	28	49	581	37	18	
23	24	38	611	38	21	
24	21	27	640	40	23	
25	17	16	670	42	26	
26	13	8.5116105	699	43	29	
27	10	8.5116094	728	45	32	
28	06	83	758	46	35	
29	8.5093702	72	787	48	38	
30	8.5093699	8.5116061	1. 15816	2.3249	5. 9041	
31	95	50	846	51	43	
32	91	39	875	52	46	
33	88	28	904	54	49	
34	81	17	934	55	52	
35	80	8.5116006	963	57	55	
36	77	8.5115995	1. 15992	58	58	
37	73	84	1.16021	60	61	
38	69	73	051	61	64	
39	66	61	080	63	67	
40	8. 5093662	8. 5115950	1. 16109	2. 3264	5.9069	7.864
41	58	39	138	66	72	
42	55	28	167	67	75	
43	51	17	197	69	78	
44	47	8.5115906	226	70	81	
45	41	8.5115895	255	78	84	
46	40	84	284	73	87	
47	36	73	313	75	90	
48	33	62	343	76	93	
49	29	51	372	78	96	
50	8.50993625	8.5115840	1.16401	2.3279	5. 9098	
51	21	29	430	81	5.9101	
52	18	18	459	82	04	
53	14	8.5115806	488	84	07	
54	13	8.5115795	517	85	10 ,	
55	07	84	546	87	13	
56	8.5093603	73	575	88	16	
57	8. 5093599	69	604	90	19	
58	96	51	633	91	22	
59	92	- 40	663	93	25	
60	8.5093588	8.5115729	1.16692	2.3294	5.9127	7.866

Table 23.-Geodetic position computations-Continued.
LATITUDE 30°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log B \\ \operatorname{diff} .1^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \operatorname{diff.} 1^{\prime \prime}=+0.48 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.02 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } 1^{\prime \prime}=+0.05 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=+0.7 \end{gathered}$
- ,		-				
$30 \quad 00$	8.5093588	8.5115729	1.16692	2.3294	5.9127	7.866
1	84	18	721	96	30	.
2	81	8.5115706	750	97	33	
- 3	77	8.5115695	778	2.3298	36	
4	73	84	807	2.3300	39	
05	69	73	836	01	42	
6	66	62	865	03	45	
7	62	51	894	04	48	
8	58	40	923	06	51	
9	55	28	952	07	54	
10	8.5093551	8.5115617	1.16981	2.3309	5.9157	
11	47	8.5115606	1.17010	10	59	
12	43	8.5115595	- 039	12	62	
13	40	84	068	13	65	
14	36	73	097	14	68	
15	32	61	126	16	71	
16	29	50	155	17	74	
17	25	39	184	18	77	
18	21	28	212	20	80	
19	17	17	241	22	83	
29	8.5093514	8.5115505	1.17270	2.3323	5.9186	7.867.
21	10	8.5115494	299	24	89	
22	06	83	328	26	92	
23	8.5093502	72	357	27	95	
24	8.5093499	61	385	29	5. 9198	
25	95	49	414	30	5.9200	
26	91	38	443	32	03	
27	88	27	472	33	06	
28	84	16	500	34	09	
29	80	8.5115404	529	36	12	
30	8.5093476	8.5115393	1.17558	2.3337	5.9215	
31	72	82	587	. .39	18	
32	69	71	615	40	21	
33	65	59	644	41	24	
34	61	48	673	43	27	
35	57	37	701	44	30	
36	54	26	730	46	33	
37	50	14	759	47	36	
38	46	8.5115303	788	48	39	
39	42	8.5115292	816	50	42	
40	8.5093439	8.5115281	1. 17845	2. 3351	5. 9245	7.869
41	35	69	874	53	48	.
42	31	58	902	54	${ }_{6} 1$	
43	27	47	931	55	53	
44	24	35	959	57	56	
45	20	24	1.17988	58	59	
46	16	13	1.18017	59	62	
47	12	8.5115202	045	61	65	
48	09	8.5115190	074	62	68	
49	05	79	102	64	71	
50	8. 5093401	8.5115168	1.18131	2. 3365	5.9274	
51	\&. 5093397	56	160	66	77	
52	94	45	188	68	80	
53	90	34	217	69	83	
54	86	22	245	70	86	
55	82	$8.511 \begin{array}{r}11 \\ \hline 100\end{array}$	274	72	89 99	
56	78	8.5115100	302	73	92 95	
57	75	8.5115088	331	74	95	
. 58	67	77 66	359 388	76 77	5.9298 5.9301	
60	8.509 3363	8.51150 .54	1.18416	2.3379	5. 9304	7.870

Table 23.-Geoáetic position computations-Continued.
LATITUDE 31°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \text { diff. } 1^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.47 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.02 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.05 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=+0.5 \end{gathered}$
- '						
3100	8. 5093363	8.511 -554	- 1.18416	2. 3379	5. 9304	7.870
- 1	60	43	445	80	07	
2	56	32	473	81	10	
3	52	20	501	83	13	
4	48	8.5115009	530	84	16	
05	44	8.5114998	558	85	19	
6	41	86	587	87	22	
7	37	75	615	88	25	
8	33	64	643	89	28	
9	29	52	672	91	31	
10	र. 2093325	x. 5114941	1.18700	2.3392	5. 9334	
11	22	29	729	93	37	
12	18	18	757	95	39	
13	14	8.5114907	785	96	42	
14	10	8.5114895	813	97	45	
15	06	84	842	2. 3399	48	
16	8. 5093303	72	870	2.3400	51	
17	8.5093299	61	898	- 01	54	
18	95	50	927	- 03	57	
19	91	38	955	04	60	
20	8. 5093287	8.5114827	1.18983	2.3405	3. 9363	7.871
21	84	15	1. 19012	06	66	
22	80	8.5114804	040	48	69	
23	76	8.5114793	068	09	72	
24	72	81	096	10	75	
25	68	70	125	12	78	
26	65	58	153	13	81	
27	61	47	181	14	84	
28	57	35	209	16	87	
29	53	24	238	17	90	
30	8.5093249	8.5114713	1. 19266	2.3418	5.9393	
31	46	8.5114701	294	20	-96	
32	42	8.5114690	322	21	5. 9399	
33	38	78	351	22	5.9402	
34	34	67	379	23	05	
35	30	55	407	25	08	
36	26	44	435	26	11	
37	23	32	463	27	14	
38	19	21	491	29	17	
39	15	8.5114609	520	30	20	
40	8. 5093211	8.5114598	1.19548	2. 3431	ธ. 9423	7.872
41	07	86	576	32	26	
42	03	75	604	34	29	
43	8.5093200	63	632	35	32	
44	8.5093196	52	660	36.	35	
45	92	40	688	37	38	
46	88	29	716	'39	41	
47	84	17.	744	40	44	
48	81	8.5114506	772	41	47	
49	77	8.5114494	800	43	50	
50	8.5093173	8.5114483	1.19828	2.3444	5.9453	
51	69	71	856	45	56	
52	65	60	884	- 46	59	
53	61	48	912	48	62	
54	57	37	940	49	65	
55	54	25	- 968	50	68	
56	50	14	1.19996	51	72	
57	46	8.5114402	1. 20024	53	75	
58	42	8.5114391	052	54	78	
59	38	79	080	55	81	
60	8.5093134	8.5114368	1. 20108	2.3456	5. 9484	7.873

Table 23.-Geodetic position computations-Continued.
LATITUDE 32°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 33°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 34°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	diff. $1^{\prime \prime}=-0.20$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.45 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.02 \end{gathered}$	$\underset{\text { diff. } 1^{\prime \prime}=+0.05}{\log \mathrm{E}} \quad \stackrel{\log \mathrm{F}}{\mathrm{l}} .10^{\prime}=+0.0$	
- ,						
$34 \quad 00$	8. 5092665	8.5112959	1. 23409	2.3592	5. 9853	7.877
1	61	47	437	93	- 57	
2	57	35	464	94	60	
3	53	23	491	95	63	
4	49	8.5112911	518	96	66	
05	45	8.5112899	545	97	69	
6	41	87	572	- 98	72	
7	37	75	599	2.3599	75	
8	33	63	626	2.3600	79	
9	29	51	653	01	82	
10	8.5092625	$8.511: 840$	1. 23680	2.3602	5. 9885	
11	21	28	707	03	88	
12	17	16	734	04	91	
13	13	8.511804	761	05	94	
14	09	$8.511: 792$	788	06	5.9897	
15	05	80	815	07	5.9901	
16	8.5092601	68	842	08	04	
17	8.5092597	56	869	09	07	
18	93	44	896	10	10	
19	89	32	923	11	13	
20	8. 5092585	$8.511: 720$	1.23950	2.3612	5. 9916	7.877
21	81	$8.511<708$	1.23977	13	19	
22	77	8.511 2696	1. 24004	14	23	
23	73	84	031	15	26	
24	6.	72	058	16	29	
25	65	60	085	17	32	
26	61	48	112	18	35	
27	57	36	139	19	38	
28	53	24	165	20	42	
29	49	12	192	21	45	
30	र. 5092545	8.5112600	1.2219	2.3.22	5.9948	
31	41	8.5112588	246	23	51	
32	37	76	273	24	54	
33	33	64	300	- 25	57	
34	29	52	327	26	61	
35	25	40	354	27	64	
36	21	28	381	28	67	
37	17	16	408	29	70	
38	13	8.5112504	431	30	73	
39	09	8.5112492	461	31	76	
40	8.5092505	8.5112480	1.24488	2.3632	ว. 9980	7.877
41	8.5092501	68	515	33	83	
42	8.5092497	56	542	34	86	
43	93	44	569	35	89	
44	89	32	595	36	92	
45	85	20	629	37	96	
46	81	8.5112408	649	38	5.9999	
47	77	8.5112396	676	39	6.0002	
48	73	84	703	40	05	
49	69	72	729		08	
50	8.509 2465	8.5112360	1. 24756	41 2.3642	6.0011	
51	61	48	783	43	15	
52	57	35	810	43	18	
53	53	23	837	44	21	
54	49	8.5112311	$\succ 63$	45	24	'
- 55	45	8.5112299	890	46	27	
56	41	87	917	47	31	
57	37	'5	944	48	34	
58	33	¢3	$\begin{array}{r}970 \\ \hline 189\end{array}$	49	37	
59	29	51	1. 24997	50	40	
60	R.509 2425	8.5112239	1. 25024	2.3651	6.0043	7.877

Table 23.-Geodetic position computations-Continued.
LATITUDE 35°.

Lat.	$\underset{\text { diff. } 1^{\prime \prime}=-0.07}{\log }$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.44 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.01 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.05 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=+0.0 \end{gathered}$
	\cdot					
3500	8.509 2425	8.5112239	1. 25024	2.3651	6.0043	7.877
	21	27	050	52	47	
	17	15	077	53	50	
3	13	8. 5112203	104		53	
4	09	8.5112191	131	55	56	
05	05	78	157	56	59	
6	8. 5092401	66	184	56	63	
7	8.5092396	54	211	57	66	
8	92	42	${ }_{2} 237$	58	${ }_{7}^{69}$	
9	88	30	264	59	72	
10	8. 5092384	8. 5112118	1. 25291	2.3660	6. 0075	
11	80	8.5112106	317	61	79	
12	70	8.5112094	344	62	82	
13	72	82	371	${ }_{64}^{63}$	85	
14	68	70	397	64	88	
15	64	57	424	65	91	
16	${ }_{50}^{60}$	45	451	66	- 95	
17	56	33	477	66	6. 0098	
18	52	21	504	67	6.0101	
19	48	8.5112009	531	68	04	
20	8. 5092344	8.5111997	1. 25557	2. 3669	6. 0107	7.877
21	40	85	584	70	11	
22	36	72	610	71	14	
24	$\stackrel{32}{28}$	60 48	636	73	${ }_{20}^{17}$	
25	24	36	690	74	23	
26	20	24	717	75	27	
27	16	12	743	75	30	
28	12	8. 5111900	770	76	33	
29	08	8. 5111887	796	7	36	
30	8. 5092304	8.5111875	1.25823	2.3678	6. 0140	
31 32	8.5092300 8.509 22960	63 51	850 876	79 80	43	
33	8. $509 \begin{array}{r}22966 \\ 92\end{array}$	51 39	876 903	80	46 49	
34	87	27	929	82	52	
35	83	15	956	82	56	
36	79	8.5111802	1.25982	83	59	
37	75	8.5111790	1.26009	84	62	
38	71	78	035	85	${ }_{69}^{65}$	
39	67	66	062	86	69	
40	8.5092263	8.5111754	1. 26088	2.3688	6.0172	7.874
41	59	41	115	88	75	
42	55	${ }_{17}^{29}$	141	88	78	
43	51	17	168	89	81	
44	47	8.511 170\%	194	90	85	
45	43	8.5111693	221	91	88	
46	39	80	247	92	91	
47	35	68	274	93	94	
48	31	56	300	94	6. 0198	
49	27	44	327	94	6.0201	
50	8. 50922222	8.5111632	1. 26353	2.3695	6.0204	
51	18	${ }^{20}$	380	${ }_{97}^{96}$	07	
52	14	8.5111607	406	97	11	
53 54	10 06	8.5111595	4332 459	98 99	14 17	
	8. 5092202		455	2.3699	20	
56	8. 509219 x	58	512	2.3700	24	
57	91	46	535	01	27	
$5 \times$	90	34	56.5	02	30	
59	86	22	691	03	33	
60	8. 5092182	8. 5111510	1. 26617	$\because 3704$	6.0237	7.87%

Table 23.-Geodetic position computations-Continued.
LATITUDE 36°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log B \\ \operatorname{diff} .1^{\prime \prime}=-0.20 \end{gathered}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.44 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.01 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.05 \end{gathered}$	$\begin{gathered} \log F \\ \text { diff. } 10^{\prime}=-0.2 \end{gathered}$
- ,						
3600	8.5092182	8.5111510	1.26617	2.3704	6.0237	7.877
	78	8.5111497	644	04	40	
2	74	85	670	05	43	
3	70	73	697	06	46	
4	65	61	723	07	50	
05	61	48	749	08	53	
6	57	36	776	09	56	
7	53	24	802	09	59	
8	49	8.5111412	828	10	63	
9	45	8.5111399	855	11	- 66	
10	8.5092141	8.5111387	1. 26881	2.3712 .	6.0269	
11	37	75	908	$13{ }^{\circ}$	72	
12	33	63	934	13	76	
13	29	50	960	14	79	
14	25	38	1. 26987	15	8:	
15	21	26	1.27013	16	- $85{ }^{\text {* }}$	
16	16	14	039	17	- 89	
17	12	8.5111301	066	17	92	
18	08	8.5111289	092	18	$9 \overline{7}$	
19	04	77	118	19	6.0299	
20	8. 5092100	8.5111265	1. 27145	2.3720	6.0302	7.877
21	$8.509 \bigcirc 096$	52	171	21	05	
22	92	40	197	21	08	
23	88	28	223	22	12	
24	84	15	250	23	15	
25	80	8.5111203	276	24	18	
26	75	8.5111191	302	25	21	
27	71	79	329	25	25	
28	67	66	355	26	28	
29	63	54	381	27	31	
30	8. 5092059	8.5111142	1. 27407	2.3728	6.0334	
31	55	29	434	29	38	
32	51	17	460	29	41	
33	47	8. 5111105	486	30	44	
34	43	8.5111092	512	31	48	
35	39	80	539	32	51	
36	35	68	56.	32	54	
37	30	56	591	33	57	
38	26	43	617	34	. 61	
39	22	31	644	35	64	
40	8. 5092018	8.5111019	1.27670	2.3735	6. 0367	7.87
41	14	8.5111006	696	36	71	
42	10	8.5110994	722	37	74	
43	06	82	748	38	77	
44	8. 5092002	69	775	39	80	
45	8. 5091998	57	801	39	84	
46	93	45	827	40	87	
47	¢9	32	853	41	90	
18	85	20	879	42	94	
49	81	8.511 0908	905	42	6.0397	
50	8.5091977	¢. 5110895	1. 27932	2.3743	6.0400	
51	73	83	. 958	44	03	
52	69	71	1. 27984	45	07	
53	65	$5 \times$	1. 2×010	45	10	
64	61	46	036	46	13	
55	- 56	34	062	47	17	
56	$5: 2$	21	088	48	20	
57	48	¢ 5110809	114	48	23	
$5 \times$	41	¢. 311079	141	49	27	
59	40	84	167	- 50	30	
60	8. 5091936	8.511 0772	1.28193	2.3750	6.0433	7.876

Table 23.-Geodetic position computations-Continued.
LATITUDE 37°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=ー-0.21 \end{gathered}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.43 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.01 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.0 ; \end{gathered}$	$\begin{gathered} \log . \mathrm{F} \\ \text { diff. } 10^{\prime}=-0.3 \end{gathered}$
- ,						
3700	8.5091936	8.5110772	1. 28193	2.3750	6.0433	7.876
1	32	60	219	51	37	
2	28	47	245	52	40	
3	23	35	271	53	43	
4	19	22.	297	53	46	
05	15	8.5110710	324	54	50	
6	11	8.5110698	350	55	53	
7	07	85	376	56	56	
8	\$5.09 1503	73	402	56	60	
9	85.091899	61	428	57	63	
10	8.5091895	8.5110648	1.28454	2.3758	6.0466	
11	90	36	480	59	70	
12	86	23	506	59	73	
13	$8{ }^{\circ}$	8.5110611	532	60	76	
14	78	8.5110599	558	61	80	
15	74	86	584	61	83	
16	70	74	610	62	86	
17	66	61	636	63	89	
18	62	49	662	73	93	
19	57	37	688	64	96	
20	8.5091853	8.5110524	1. 28715	2.3765	6.0499	7.876
21	49	12	741	66	6.0503	
22	45	8.5110500	767	66	06	
23	41	8.5110487	793	.67	09	
24	37	75	819	68	13	
25	33	62	845	68	16	
26	28	50	871	69	19	-
27	24	37	897	70	23	
28	20	25	923	70	26	
29	16	13	949	71	29	
30	8. 5091812	8.5110400	1.28975	2.3779	6.0533	
31	08	8.5110388	1.29001	72	36	
32	04	75	1. 027	73	39	
33	8.5091800	63	- 0.53	74	43	
34	8.5091795	51	- 079	74	46	
35	91	38	104	75	49	
36	87	26	130	76	53	
37	83	13	156	76	56	
38	79	8.5110301	182	77	59	
39	75	8.5110288	208	78	63	
40	8.5091771	S. 5110276	1.29231	2.3779	6. 0566	7.875
41	66	${ }_{51}^{64}$	$\underline{260}$	79 80	69	
42	62	51	286	. 80	73	
43	58	39	312	81	76	
44	54	26	338	81	79	
45	50	14	364	82	83	
46	46	8.5110201	$3 \% 1$	82	86	
47	41	8.5110189	416	83	89	
48	37	76	442	84	93	
49	33	64	468	84	6.0596	
50	8.5091729	8.5110151	1.29494	2.3785	6.0600	
51	25	39	520	86	03	
52	21	26	546	86	06	
53	16	14	571	87	10	
54	12	8. 511 0102	597	88	13	
55	08	8.5110089	623	88	16	
56	8.5091704	\square	649	89	20	
57	8.5091700	61	675	90	23	
58	8.5091696	52	701	90	26	
59	92	39	727	- 91	30	
60	8.5091687	8.5110027	1.29753	2.3792	6.0633	7.874

Table 23.-Geodetic position computations-Continued.
LATITUDE 38°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.4 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=+0 . \end{gathered}$	$\begin{gathered} \log E \\ \operatorname{diff.} 1^{\prime \prime}=+0.0 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=-0.4 \end{gathered}$
- 1						
3800	8.5091687	8.5110027	1. 29753	2.3792	6. 0633	7.874
1	83	14	778	92	36	
2	79	8.5110002	804	93	40	
3	75	8.5109989	830	93	43	
- 4	71	77	856	94	47	
05	67	64	882	95	50	
6	62	52	908	95	53	
7	58	39	934	96	57	
8	54	27	959	97	60	
9	50	14	1.29985	97	63	
10	8.5091646	8.5109902	1.30011	2.3798	6. 0667	
11	42	8.5109889.	037	2.3799	70	
12	37	77	063	2.3800	73	
13	33	64	089	00	77	
14	29	52	114	01	80	
15	25	39	140	01	84	
16	21	27	166	02	87	
17	17	14	192	02	90	
18	12	8.5109802	218	03	94	
19	08	8.5109789	243	03	6.0697	
20	8.5091604	8.5109777	1.30269	2. 3804	6. 0701	7.874
21	8.5091600	64	295	05	04	
22	8.5091596	52	321	05	07	
23	92	39	347	06	11	
24	87	27	372	06	14	
25	83	14	398	07	17	
$\stackrel{26}{ }$	79	8.5109701	424	08	21	
27	75	8.5109689	450	08	24	
28	71	77	476	09	28	
29	66	64	501	09	31	
30	8.5091562	8.5109652	1.30527	2.3810	6. 0734	
31	58	39	553	11	38	
32	54	27	579	11	41	
33	50	14	-604	12	44	
34	46	8.5109601	630	12	48	
35	41	8.5109589	656	13	51	
36	37	76	682	14	55	
37	33	64	707	14	58	
38	29	51	733	15	61	
39	25	39	759	15	65	
40	8.5091521	8.5109526	1.30785	2.3816	6.0768	7.873
41	16	14	810	16	72	
42	12	8.5109501	836	17	75	
43	08	8.5109488	862	18	78	
44	04	76	887	18	82	
4.5	8. 5091500	63	913	19	85	
46	8.5091495	51	939	19	89	
47	91	38	965	20	92	
48	87	26	1.30990	20	95	
49	83	13	1.31016	21	6.0799	
50	8.5091479	8.5109401	1.31042	2. 38.2	6.0802	
51	75	8.5109388	067	22	06	
52	70	76	093	23	09	
53	66	63	119	23	13	
51	62	50	144	24	16	
55	58	38	170	24	19	
56	53	25	196	25	23	
57	49	13	221	25	26	
58	45	8.5109300	247	26	30	
59	41	8.5109287	273	27	33	
60	8. 5091437	$8.5109: 57$	1.31×99	2.3527	6.053t	7.872

Table 23.-Geodetic position computations-Continued.
LATITUDE 39°.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lat. \& $$
\begin{gathered}
\log \mathrm{A} \\
\operatorname{diff.} 1^{\prime \prime}=-0.07
\end{gathered}
$$ \& $$
\underset{\text { diff. } 1^{\prime \prime}==-0.21}{\log B}
$$ \& $$
\begin{gathered}
\log \mathrm{C} \\
\text { diff. } 1^{\prime \prime}=+0.43
\end{gathered}
$$ \& $$
\begin{gathered}
\log \mathrm{D} \\
\text { diff. } 1^{\prime \prime}=+0.01
\end{gathered}
$$ \& $$
\begin{gathered}
\log \mathrm{E} \\
\text { diff. } 1^{\prime \prime}=+0.06
\end{gathered}
$$ \& $$
\underset{\text { diff. } 10^{\prime}=-0.5}{\log \mathrm{~F}}
$$

\hline - \& \& \& \& - \& \&

\hline 3900 \& 8.5091437 \& 8.5109275 \& 1.31299 \& 2. 3827 \& 6.0836 \& 7.872

\hline \& 33 \& 62 \& 324 \& 28 \& 40 \&

\hline \& 28 \& 50 \& 350 \& 28 \& 43 \&

\hline 3 \& 24 \& 37 \& 375 \& 29 \& 47 \&

\hline 4 \& 20 \& 25 \& 401 \& 29 \& 50 \&

\hline 05 \& 16 \& 8. 5109212 \& 427 \& 30 \& 53 \&

\hline 6 \& 12 \& 8.5109199 \& 452 \& 30 \& 57 \&

\hline 7 \& 07 \& ${ }_{7}$ \& 478 \& 31 \& 60 \&

\hline 8 \& 8. 5091403 \& 74 \& 504 \& 31 \& 64 \&

\hline 9 \& 8.5091399 \& 62 \& 529 \& 32 \& 67 \&

\hline 10 \& 8.5091395 \& 8.5109149 \& 1.31555 \& 2. 3832 \& 6.0871 \&

\hline 11 \& 91 \& 36 \& 581 \& 33 \& 74 \&

\hline 12 \& 86 \& 24 \& 606 \& 33 \& 87 \&

\hline 13 \& 82 \& 8. 5109111 \& 632 \& 34 \& 81 \&

\hline 14 \& 78 \& 8.5109098 \& 658 \& 35 \& 84 \&

\hline 15 \& 74 \& 86 \& 683 \& 35 \& - 88 \&

\hline 16 \& 70 \& 73 \& 709 \& 36 \& 91 \&

\hline 17 \& 65 \& 61 \& 734 \& 36 \& 95 \&

\hline 18 \& 61 \& 48 \& 760 \& 37 \& 6. 08988 \&

\hline 19 \& 57 \& 36 \& 786 \& 37 \& 6.0902 \&

\hline 20 \& 8.5091353 \& 8.5109023 \& 1.31811 \& 2. 3838 \& 6.0905 \& 7.871

\hline 21 \& 49 \& 8.5109010 \& ${ }_{867} 83$ \& 38
39 \& 08 \&

\hline 22 \& 44 \& 8.5108998 \& 862 \& 39 \& 12 \&

\hline 23
24 \& 40
36 \& 85
73 \& 888
913 \& 39
40 \& 15
19 \&

\hline 25 \& 32 \& 60 \& 939 \& 40 \& 22 \&

\hline 26 \& ${ }_{23}$ \& 47 \& $\begin{array}{r}965 \\ \hline 1990\end{array}$ \& 41 \& ${ }_{29}^{26}$ \&

\hline 27 \& 23 \& 35 \& 1.31990 \& 41 \& ${ }_{39} 9$ \&

\hline 28 \& 19
15 \& 8.510 8909 \& 1.32016 041 \& 42 \& 32
36 \&

\hline 30 \& 8.5091311 \& 8.5108897 \& 1.32067 \& 2.3843 \& 6.0939 \&

\hline 31 \& . 07 \& 84 \& 092 \& 43 \& - 43 \&

\hline 32 \& 8. ${ }_{8} 50913021298$ \& 72
59 \& 118 \& 44 \& 50 \&

\hline 34 \& 8.50 \& 46 \& 169 \& 45 \& 53 \&

\hline 35 \& 90 \& 34 \& 195 \& 45 \& 57 \&

\hline 36 \& 86 \& 21 \& ${ }_{220}$ \& 46 \& 60 \&

\hline 37 \& 81 \& 8. 5108808 \& 246 \& 46 \& 63 \&

\hline \& \& 8 \& \& \& \&

\hline 40 \& 8.5091269 \& 8.5108771 \& 1.32323 \& 2.3848 \& 6.0974 \& 7.870

\hline 41 \& 64 \& 58 \& 348 \& 48 \& 77 \&

\hline 42 \& 60 \& 45 \& 374 \& 49 \& 81 \&

\hline 43 \& 56 \& 33 \& 399 \& 49 \& 84 \&

\hline 44 \& 52 \& 20 \& 425 \& 50 \& 88 \&

\hline 45 \& 48 \& 8.5108707 \& 450 \& 50 \& 91 \&

\hline 46 \& 43 \& 8.5108695 \& 476 \& 51 \& 95 \&

\hline 47 \& 39 \& 82 \& 501 \& 51 \& 6. 0998 \&

\hline 48 \& 35 \& 69 \& 527 \& 52 \& 6. 1002 \&

\hline 49 \& 31 \& 57 \& 552 \& 52 \& 05 \&

\hline 50 \& 8. 5091227 \& 8.5108644 \& 1.32578 \& 2.3852 \& 6. 1008 \&

\hline 51 \& 22 \& 31 \& 603 \& 53 \& 12 \&

\hline 52 \& 18 \& 8. $510 \begin{array}{r}19\end{array}$ \& 629 \& 53 \& 15 \&

\hline 53 \& 14 \& 8.5108606 \& 654 \& 54
54 \& ${ }_{22}^{19}$ \&

\hline 54 \& 10 \& 8.5108593 \& 680 \& 54 \& 22 \&

\hline 55 \& 06 \& 81 \& 705 \& 55 \& 26 \&

\hline 56 \& 8. 5091201 \& 68 \& 731 \& 55
56 \& ${ }_{33}^{29}$ \&

\hline 57
58 \& 8.5091197

93 \& 55
43 \& 756 \& 56
56 \& 33
36 \&

\hline 59 \& 89 \& 30 \& 807 \& 57 \& 40 \&

\hline 60 \& 8. 5091184 \& 8.5108517 \& 1.32833 \& 2.3857 \& 6. 1043 \& 7. 869

\hline
\end{tabular}

Table 23.-Geodetic position computations-Continued.
LATITUDE 40°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.01 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \operatorname{diff.} 1^{\prime \prime}=+0.06 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \operatorname{diff} .10^{\prime}=-0.7 \end{gathered}$
- '						
$40 \quad 00$	8.5091184	8.5108517	1.32833	2.3857	6.1043	7.869
1	80	8.5108505	858	58	47	
2	76	8.5108492	884	58	50	
3	72	79	909	58	54	
4	67	67	935	59	57	
05	63	54	960	59	61	
6	59	41	1.32986	60	64	
7	55	29	1.33011	60	67	
8	50	16	037	60	71	-
9	46	8.5108403	062	61	74	
10	8.5091142	8.5108391	1.33088	2.3861	6. 1078	
11	38	-78	113	62	- 81	
12	34	- 65	139	62	85	
13	29	53	164	63	88	
14	25	40	189	63	92	
15	21	27	215	64	95	
16	17	15	240	64	6.1099	
17	12	8.5108302	266	65	6.1102	
18	08	8.5108289	291	65	06	
19	04	77	317	65	09	
20	8.5091100	8.5108264	1.33342	2.3866	6. 1113	7.867
21	8.5091096	51	368	66	16	
22	91	38	393	67	20	
23	87	26	418	67	23	
24	83	13	444	68	27	
25	79	8.5108200	469	68	30	
26	74	8.5108188	495	68	34	
27	70	75	520	69	37	
28	- 66	62	546	69	41	
29	62	50	571	70	44	
30	8.5091057	8.5108137	1.33596	2.3870	6.1148	
31	53	- $\quad 24$	622	70	51	
32	49	8.5108111	647	71	55	
33	45	8.5108099	673	71	58	
34	41	86	698	72	62	
35	36	73	723	72	65	
36	32	61	749	72	69	
37	28	48	774	73	72	
38	24	35	800	73	76	
39	19	23	825	74	79	
40	8.5091015	8.5108010	1.33850	2.3874	6. 1183	7. 866
41	11	8.5107997	876	74	86	
42	07	84	901	75	90	
43	8.5091002	72	926	75	$\begin{array}{r}93 \\ \hline 187\end{array}$	
44	8. 5090998	59	952	76	6.1197	
45	94	46	1.33977	76	6. 1200	
46	90	33	1.34003	76	04	
47	85	- 210	028	77	071	
48	81	8.5107908	053	77	11	
49	77	8.5107895	079	77	15	
50	8.5090973	8.5107883	1.34104	2.3878	6. 1218	
51	68	70	129	78	22	
52	64	57	155	79	25	
53	60	44	180	79	29	
54	56	32	206	79	32	
55	52	19	231	80	36	
56	47	8.5107806	256	80	39	
57	43	8.5107793	282	80	43	
58	39	81	307	81	46	
59	34	68	332	81	50	
60	8.5090930	8.5107755	1.34358	2.3882	6. 1253	7.864

Table 23.-Geodetic position computations-Continued.
LATITUDE 41°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.01 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.06 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=-0.8 \end{gathered}$
$\bigcirc 1$						
4100	8.5090930	8.5107755	1.34358	2*3882	6.1253	7.864
	26	42	383	82	57	
2	22	30	408	82	60	
3	18	17	434	83	64	
4	13	8.5107704	459	83	67	
05	09	8.5107691	484	83	71	
6	05	79	510	84	75	
7	8.5090900	66	535	84	78	
8	8.5090896	53	560	84	82	
9	92	40	586	85	85	
10	8.5090888	8.5107628	1.34611	2.3885	6.1289	
11	83	-15	636	85	92	
12	79	8.5107602	662	86	96	
13	75	8.5107590	687	86	6.1299	
14	71		712	87	6.1303	
15	67	64	738	87	06	
16	62	51	763	87	10	
17	58	39	788	88	14	
18	54	26	814	88	17	
19	49	13	839	88	21	
20	8.5090845	8.5107500	1. 34864	2.3889	6. 1324	7.863
21	41	8.5107488	890	89	28	
22	37	75	915	89	31	
23	32	62	940	90	35	
24	28	49	965	90	38	-
25	24	36	1.34991	30	42	
26	20	24	1.35016	91	46	
27	15	8.5107411	041	91	49	
28	11	8.5107398	066	91	53	
29	07	85	092	91	56	
30	8.5090803	8.5107373	1.35117	2. 3892	6. 1360	
31	8.5090798	60	142	92	63	
32	94	47	168	92	67	
33	90	34	193	93	70	
34	86	22	218	93	74	
35	81	8.5107309	243	93	7.8	
36	77	8.5107296	269	94	81	
37	73	83	294	94	85	
$3 \times$	69	70	319	94	88	
39	64	58	345	95	92	
40	8.5090760	8.5107245	1.35370	2.3895	6.1395	7.861
41	56	32	395	95	6.1399	
42	52	19	420	96	6.1403	-
43	47	8.5107207	446	96	06	
44	- 43	8.5107194	471	96	10	
45	39	81	496	97	13	
46	35	68	522	97	17	
47	30	05	547	97	20	
48	26	- 43	572	97	24	
49	22	- 30	597	98	28	
50	8. 5090718	8.5107117	1. 35623	2.3898	C. 1431	
万1	13	8.5107104	648	98	35	
52	09	8.5107091	673	98	38	
53	0.5	- 79	698	99	42	
54	8.5090700	66	723	99	46	
55	8.5090696	53	749	2.3899	49	
56	92	40	774	2.3900	53	
57	88	27	799	00	56	
58 59	83 79	8.510 7008	824	00	60	
59	79	8.5107002	850	00	63	
60	8.5090675	8.5106989	1.35875	2.3901	6.1467	7.860

Table 23.-Geodetic position computations-Continued.
LATITUDE 42°.

Table 23.-Geodetic position computations-Continued.
Latitude 43°.

Lat.	$\begin{gathered} \log \mathbf{A} \\ \text { diff. } 1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log \mathrm{B} \\ \text { diff. } 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=+0.00 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.06 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=-1.0 \end{gathered}$
- ,						
43 co	8.5090419	8. 5106220	1.37386	2.3914	6. 1684	7.854
	14	8.5106207	412	15	88	
2	10	8.5106195	437	15	92	
3	${ }_{0} 06$	82	462	15	95	
4	8.5090401	69	487	15	6. 1699	
05	8. 5090397	56	512	15	6.1703	
6	93	43	537	16	06	
7	89	30	563	16	10	
8	84	17	588	16	14	
9	80	8.5106105	613	16	17	
10	8. 5090376	8.510 6092	1.37638	2.3916	f. 1721	,
11	71	79	663	16	1. 25	
12	67	66	688	17	28	
13	63	- 53	713	17	32	
-14	59	40	739	17	36	
15	54	28	764	17	39	
16	50	15	789	17	43	
17	46	8. 5106002	814	17	47	
18	41 37	8.5105989 76	839 864	18.	$\begin{array}{r}50 \\ \hline \quad 54\end{array}$	
	8. 5090333	8.5105963	1.37889	2.3918	6. 1758	
21	- 29	50	${ }^{1} 915$	-. 18	1. 61	7.85
22	24	38	940	18	65	
23	20	25	965	18	69	
24	16	8.5105912	1.37990	18	72	
25	12	8. 5105899	1. 38015	19	76	
26	${ }^{07}$	86	040	19	80	
27	8. 5090303	73	065	19	83	
28 29	8. 5090299	60 48	091 116	19	87 91	
30	8. 5090290	8.5105835	1.38141	2.3919	6. 1795	
31	86	22	166	20	6. 1798	
32	82	8.5105809	191	20	6. 1802	
33	77	8.5105796	216	20	06	
34	73	83	241	20	09	
35	69	71	266	20	13	
36	64	58	292	20	17	
37	60	45	317	20	20	
38	56	32	342	20	24	
39	52	19	367	21	28	
40	8. 5090247	8. 5105706	1. 38392	2. 3921	6. 1831	7.850
41	43	8.5105693	417	${ }^{21}$	35	
42	39	81	442	21	39	
43	34	68	467	${ }_{21}^{21}$	42	
44	30	55	492	21	46	
45	26	42	518	21	50	
46	22	29	543	21	53	
47	17	16	568	22	57	
48	13	8.5105603	593	22	61	
49	09	8.5105591	618	22	65	
50	8. 5090204	8.5105578	1. 38643	2.3922	6. 1868	
51	8. 5090200	65	668	22	72	
52	8.5090196	52	693	22	76	
53 54	92 87	39 26	719 744	$\stackrel{22}{22}$	79 83	
	83	13	769	22	87	
56	79	8.5105501	794	23	91	
57	74	8.5105488	819	${ }^{23}$	94	
58	70	75	844	23	6. 1898	
59	66	62	869	23	6. 1902	
60	8.5090162	8.5105449	1.38894	2.3923	6. 1905	7: 848

Table 23.-Geodetic position computations-Continued.
LATITUDE 44°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 45°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	$\underset{\text { diff. } 1^{\prime \prime}=-0.21}{\log B}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.42 \end{gathered}$	$\underset{\text { diff. } 1^{\prime \prime}= \pm 0.00}{ }$	diff. $1^{\log \mathrm{E}}=+0.06$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=-1.3 \end{gathered}$
- ,						
4500	8. 5089904	8.5104677	1. 40400	2. 3926	6.2130	7.840
1	8. 5089900	64	425	${ }^{26}$	34	
	8.5089896	51	450	26	38	
3	91	39	475	${ }_{26}$	42	
4	87	26	501	26	46	
05	83	13	526	26	49	
6	78	8.5104600	551	26	53	
7	74	8.5104587	576	26	57	
8	70	74	601	${ }_{26}$	61	
9	66	61	626	26	64	
10	8. 5089861	8.510 4548	1. 40651	2.3926	6.2168	
11	57	36	676	26	72	
12	53	$\stackrel{23}{23}$	701	26	76	
13 14	48	8.5104510	727	${ }_{26}$	80	
15	40	84	777	${ }^{26}$	87	
16	36	71	802	26	91	
17	31	59	827	26	95	
18	27	46	852	26	- 6.2199	
19	23	33	877	26	6. 2202	
20	8.5089818	8. 5104420	1.40902	2.3926	6. 2206	7.838
21	14	8. 5104407	927	${ }_{26} 6$	10	
22	10	8.5104394	$\xrightarrow{952}$	${ }_{26} 6$	14	
24	8.508 ${ }^{0801}$	81 68	1.40978 1.41003	26 26	18 21	
25	8.5089797	56	028	26	25	
26	93	43	053	26	29	
27	88	3 S	078	26	33	
28	84	1'/	103	26	37	
29	80	8.5104304	128	26	40	
30	8.5089776	8.510 4291	1. 41153	2.3926	6. 2244	
31	71	78	178	26	48	
32	67	65	203	26	52	
33	63	52	229	26	56	
34	58	40	254	26	60	
35	54	27	279	${ }^{26}$	63	
36	50	14	30.1	25	67	
37	46	8.5104201	329	25	71	
38	41	8.5104188	354	25	75	
39	37	75	379	25	79	-
40	8.5089733	8.5104162	1. 41404	2.3025	6. 2283	7.835
41	28	49	429	25	86	
42	24	37	454	25	90	
43	20	8. $510{ }^{24}$	479	25	\% 94	
44	16	8.5104111	505	25	6. 2298	
45	11	8.5104098	530	25	6. 2302	
46	07	85	55.5	25	06	
47	8.5089703	72	580	25	09	
48	8.5089698	60	605	25	13	
49	94	47	630	25	17	
50	8.50×9689	8.5104634	1.41655	2.3925	6. 2321	
51	85	21	68.5	25	25	
52	81	8.5104008	705	25	29	
${ }_{54}^{53}$	77 72	8.5103995 82	731 756	${ }_{24}^{25}$	32 36	
55	68	69	781	24	40	
56	64	57	806	24	44	
57	60	44	831	24	48	
58	55	31	856	24	52	
59	51	18	881	24	55	
60	8. 5089647	8.5103905	1.41906	2. 3924	6. 2359	7.832

Table 23.-Geodetic position computations-Continued.
Latitude 45°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	$\log B$ diff. $1^{\prime \prime}=-0.21$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.4 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=-0.00 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.0 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=-1.4 \end{gathered}$
$\bigcirc \quad 1$						
4600	$8.5 \subset 89647$	8.5103905	1.41906	2.3924	6. 2359	7.832
1	43	8.5103892	931	24	63	
2	38	79	957	24	67	
3	34	67	1.41982	24	71	
4	30	54	1.42007	24	75	
05	25	41	032	24	79	
6	21	28	057	23	82	
7	17	15	082	23	86	
8	13	8.5103802	107	23	90	
9	08	8.5103789	132	23	94	
10	8. 5089604	8.5103776	1.42157	2. 3923	6.2398	
11	8.5089600	64	183	23	- 6.2402	
12	8.5089595	51	208	23	06	
13	91	38	233	23	09	
14	87	25	258	23	13	
15	83	8.5103712	283	23	17	
16	78	8.5103699	308	23	21	
17	74	86	333	22	25	
18	70	74	358	22	29	
19	65	61	384	22	33	
20	8.508 9561	8.5103648	1. 42409	2.3922	6.2436	7.830
21	57	35	434	22	40	
22	53	22	459	22	44	
23	48	8.5103609	484	22	48	
24	44	8.5103596	509	22	52	
25	40	84	534	22	56	
26	35	71	559	21	60	
27	31	58	584	21	64	
28	27	45	610	21	67	
29.	23	32	635	21	71	
30	8. 5089518	8.5103519	1. 42660	2. 3921	6. 2475	
31	14	8.5103506	685	21	79	
32	10	8.5103494	710	21	83	
33	05	81	735	21	87	
34	S. 5089501	68	760	20	91	
35	8. 5089497	55	786	20	95	
36	93	42	811	20	6.2499	
37	88	29	836	20	6.2502	
38	81	17	861	20	06	
39	80	8.5103404	886	20	10	
40	8.5089475	8.5103391	1.42911	2.3920	6.2514	7.827
41	71	78	936	19	18	
42	67	65	961	19	22	
43	63	52	1.42987	19	26	
44	58	39	1.43012	19	30	
45	54	27	037	19	34	
46	50	14	062	19	38	
47	45	8.5103301	087	19 .	41	
48	41	8.5103288	112	18	45	
49	37	75	137	18	49	
50	8. 5089433	8.5103262	1. 43163	2. 3918	6. 2553	-
51	28	49	188	18	57	,
52	24	37	213	18	61	
53	20	24	238	18	65	
54	16	8.5103211	263	18	69	
55	11	8.5103198	288	17	73	
56	07	85	314	17	77	
57	8.5089403	72	339	17	81	
58	8.5089398	60	364	17	84	
59	94	47	389	17	88	
60	8.5089390	8.5103134	1.43414	2.3917	6. 2592	7.824

Table 23.-Geodetic position computations-Continued.
LATITUDE 47°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{aligned} & \log B \\ & \text { diff. } 1^{\prime \prime}=-0.21 \end{aligned}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.42 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=-0.00 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } 1^{\prime \prime}=+0.07 \end{gathered}$	diff. $10^{\prime}=-1.6$
\bigcirc						
$47 \quad 00$	8.508 9390	8.5103134	1.43414	2. 3917	6. 2592	7.824
	86	21	439	16	6. 2596	
2	81	8.5103108	465	16	6. 2600	
3	77	8.5103095	490	16	04	
4	73	82	515	16	08	
05	68	70	540	16	12	
6	64	57	565	16	16	
7	60	44	590	15	20	
8	56	31	. 615	15	24	
9	51	18	641	15	28	
10	8. 5089347	8.5103005	1.43666	2.3915	6. 2632	
11	43	8.5102993	691	15	35	
12	38	80	716	14	39	
13	34	67	741	14	43	
14	30	54	766	14	47	
15	26	41	792	14	51	
16	- 21	28	817	14	55	
17	17	16	842	13	59	
18	13	8.5102903	867	13	63	
19	09	8.5102890	892	13	67	
20	8. 5089304	$8.510 \quad 2877$	1.43917	2.3913	6. 2671	7. 821
21	8.5089300	64	943	13	75	
22	8.5089296	51	968	12	79	
23	91	39	1.43993	12	83	
24	87	26	1.44018	12	87	
25	83	13	043	12	91	
26	79	8.5102800	069	12	95	
27	74	8.5102787	094	11	6.2699	
28	70	74	119	11	6. 2702	
29	66	62	144	11	06	
30	8.5089261	8.5102749	1. 44169	2.3911	6.2710	
31	57	36	195	11	14	
32	53	23	220	10	18	
33	49	8.5102710	245	10	22	
34	44	8.5102698	270	10	26	
35	40	85	295	10	30	
36	36	72	321	10	34	
37	32	59	346	09	38	
38	27	46	371	09	42	
39	23	33	396	09	46	
40	8. 5089219	8.5102621	1.44421	2.3909	6. 2750	7.817
41	14	8.5102608	447	08	54	
42	10	8.5102595	472	08	58	
43	06	82	497	08	62	
44	8. 5089202	69	522	08	66	-
45	8. 5089197	57	547	07	70	
46	93	44	573	07	74	
47	89	31	598	07	78	
48	84	18	623	07	82	
49	80	8.5102505	648	07	86	
50	8.5089176	8.5102493	1.44673	2.3906	6.2790	
51	72	80	699	06	94 6.898	
52	67	67	724	06	6.2798	
53	63	. 54	749	06	6.2802	
54	59	- 41	774	05	06	
55	55	28	800	05	10	
56	50	16	825	05	14	
57	46	8.5102403	850	05	18	
58	42	8.5102390	875 900	04	$\stackrel{22}{96}$	
59	38	77	900	04	26	
60	×. 5089133	¢. 5102364	1.44926	2.3904	6.2830	7.814

Table 23.-Geodetic position computations-Continued.
LATITUDE 48°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{aligned} & \log B \\ & \text { diff. } 1^{\prime \prime}=-0.21 \quad . \quad \operatorname{diff} .1^{\prime \prime}=+0.42 \end{aligned}$		${\operatorname{diff.~} 1^{\prime \prime}=-0.00}_{\log }$	$\begin{aligned} & \log \mathrm{E} \\ & \mathrm{ff} .1^{\prime \prime}=+0 \end{aligned}$	$\begin{aligned} & \log \mathrm{F} \\ & 10^{\prime}=-1.7 \end{aligned}$
- ,						
4800 1	8.5089133 29	8. $510 \begin{array}{r}2364 \\ 52\end{array}$	1.44926 ${ }_{951}$	2. ${ }^{3904}$	6.2830 34	7.814
	25	39	1.44976	03	34 38	
	${ }^{20}$	${ }^{26}$	1.45001	03	${ }_{46}^{42}$	
4	16	13	027	03	46	
05	12	8.5102300	052	02	50	
${ }_{7}^{6}$	8.508 ${ }_{9108}^{08}$	8.510 22888	077 102 10	${ }_{02}^{02}$	54 58	
8	8.5089099	62	128	02	62	
9	95	49	153	01	66	
10	8.5089091	8.5102236	1.45178	2. 3901	6. ${ }^{2870}$	
11	86 82	8.5102241	- 2203	${ }_{01}^{01}$	78	
13	78	8.5102198	254 299	00	82	
14	74	85	279	00	86	
15	69	72	304	2. 3900	${ }_{9}^{90}$	
16 17	65 61	60 47	${ }_{355}^{330}$	2.3899 99	6. ${ }^{989}$	
18	57	34	380	99	6.2902	
19	52	21	406	99	06	
20	8. 5089048	8.5102108	1.45431	2. 3898	6. 2910	7.811
${ }_{22}^{21}$	${ }^{44}$	8.5102096	456 481	${ }_{98}^{98}$		
${ }_{23}^{22}$	39 35	83 70	${ }_{507}^{481}$	98 97	${ }_{22}^{18}$	
24	31	57	532	97	26	
	27	45	557	97	30	
26 27	22 18		582 608	${ }_{96}^{97}$	34 38	
28	14	8.5102006	633	${ }_{96}$	42	
29	10	8.5101993	658	96	46	
30	8.5089005	8. 5101981	1.45683	2.3895	6. 2950	
31	8. 5089001	${ }_{55}^{68}$	709	${ }_{95}^{95}$	${ }_{58}^{54}$	
32 33	8.5088997 93	55 42	734 759	95 95	${ }_{62}$	
34	88	30	785	91	66	
35	84	17	810	94	70	
36 37	80 76	8.5101901 8.5101891	835 861	${ }_{93}^{94}$	74 78	
38	71	88	886	93	82	
39	67	66	911	93	86	
	8. 5088963	8. 51018.53	1. 45937	2. 3892	6. 2990	7.807
${ }_{42}^{41}$	59 54	$\begin{aligned} & 40 \\ & 27 \end{aligned}$	1.45987 ${ }^{962}$	- $\begin{aligned} & 92 \\ & 92\end{aligned}$	6. 29998	
43	50	15	1. 46012	91	6. 3002	
44	46	8.5101802	038	91	06	
	41	8.5101789	063	${ }_{90}^{91}$	10	
46 47	$\stackrel{37}{37}$	76 64	088 .114	${ }_{90}^{90}$	19	
48	${ }_{29}^{38}$	51	- 139	90	23	
49	24	38	164	89	27	
	8. 5088980	8.5101725	1.46190	2. 3889	6. $\begin{array}{r}3031 \\ 35\end{array}$	
51 52 5	16 12	$\begin{array}{r} 13 \\ 8.5101700 \end{array}$	215 240	89 88	35 39	
${ }_{53}^{52}$	08	8.5101687	266	88	43	
54	8.5088903	7	291	88	47	
	8.5088899	${ }_{6}^{62}$	316			
56 57 57	95 90	49 36	342 367	87	59 59	
58		${ }_{23} 2$	392	86	${ }_{6}^{63}$	
59	82	8.5101610	418	86	67	
60	8.50. 8878	8. 5101598	1.46443	2. 3886	6.3071	7.804

Table 23.-Geodetic position computations-Continued.
LATITUDE 49°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 50°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 51°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.21 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.43 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff.} 1^{\prime \prime}=-0.01 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.07 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 10^{\prime}=-2.2 \end{gathered}$
- ,			1			
5100	8.508 8371	8.5100076	1. 49502	2. 3833	6. 3569	7.780
1	66	64	528	33	73	
2	62	51	553	32	78	
3	58	38	579	32	82	
4	54	26	605	31	86	
05	50	13	630	31	90	
6	45	8.5100001	656	30	95	
7	41	8.5099988	682	29	6.3599	
8	37	75	707	29	6.3603	
9	33	63	733	28	07	
10	8.5088329	8.5099950	J. 43759	2.3828	6.3612	
11	24	38	785	27	16	
12	20	25	810	27	$\cdot 20$	
13	16	13	836	26	24	
14	12	8.5099900	862	26	28	
15	08	8.5099887	887	25	33	
16	8. 5088303	75	913	25	37	
17	8.5088299	62	939	24	41	
18	95	50	965	23	45	
19	91	37	1.49990	23	50	
20	8.5088287	8.5099825	1. 50016	2.3822	6. 3654	7.776
21	82	8.5099812	042	22	- 58	
22	78	8.5099799	067	21	63	
23	74	87	093	21	67	
24	70	74	119	20	71	
25	66	62	145	20	75	
26	62	49	170	19	80	
27	57	37	196	18	84	
28	53	24	222	18	88	
29	49	8.5099711	248	17	92	
30	8.5088245	8.5099699	1.50273	2.3817	6. 3697	
31	41	86	299	16	6.3701	
32	36	74	325	16	05	
33	32	61	351	15	10	
34	28	49	376	14	14	
35	24	36	402	14	18	
36	20	24	428	13	22	,
37	16	8.5099611	454	13	27	
38	11	8.5099599	480	12	31	
39	07.	86	505	11	35	
40	8. 5088203	8.5099574 ,	- 1.50531	2.3811	6.3740	7.772
41	8.5088199	61	557	10	44	
42	95	48	583	10	48	
43	90	36	609	09	52	
44	86	23	634	08	57	
45	82	8.5099511	660	08	61	-
46	78	8.5099498	686	07	65	
47	74	86	712	07	70	
48	70	73	738	06	74	
49	65	61	764	05	78	
50	8.508 8161	8.5099448	1.50789	2. 3805	6. 3782	
51	57	36	815	04	87	
52	53	23	841	04	91	
53	49	8. 5099411	867	03	6.3795	
54	45	8.5099398	893	02	6.3800	
55	40	86	919	02	04	
56	36	73	944	01	08	
57	32	61	970	01	13	
58	28	48	1.50996	2.3800	17	
59	24	36	1.51022	2.3799	21	
60	8.5088120	8.5099323	1.51048	2.3799	6.3826	7.767

Table 23.-Geodetic position computations-Continued.
LATITUDE 52°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 53°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 54°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 55°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \mathrm{diff} .1^{\prime \prime}=-0.07 \end{gathered}$	diff. $1^{\prime \prime}=-0.20$	iff. $1^{\prime \prime}+0$	diff. $1^{\prime \prime}=-0.02$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}-+0 . c \kappa \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \text { diff. } 1 v^{\prime}=-2.8 \end{gathered}$
- ,						
5500	8.5087381	8. 5097107	1.55777	2. 3661	6. 4629	7.723
	77	8.509 7095	803	60	33	
2	73	82	830	59	38	
3	69	70	857	58	43	
4	65	58	884	57	47	
05	61	46	910	56	52	
6	56	34	937	56	57	
7	52	22	964	55	61	
8	48	8.5097010	1. 55991	54	66	
9	44	8.5096998	1.56017	53	70	
10	8.5087340	8.5096986	1. 56044	2. 3652	6.4675	
11	36	74	071	51	80	
12	32	62	098	50	84	
13	28	49	125	49	89	
14	24	37	151	48	94	
15	20	25	178	47	6.4698	
16	16	13	205	46	6. 4703	
17	12	8.5096901	232	45	08	
18	08	8.5096889	259	44	12	
19	04	77	286	43	17	
20	8.5087300	8. 5096865	1.56312	2. 3642	6.4721	7.717
21	8.5087296	53	339	42	26	
22	92	41	366	41	31	
23	88	29	393	40	35	
24	84	17	420	39	40	
25	80	8. 5096805	447	38	45	
26	76	8.5096793	474	37	49	
27	72	81	500	36	54	
28	68	69	527	35	59	
29	64	57	554	34	63	
30	8.5087260	8.5096745	1.56581	2.3633	6.4768	
31	56	33	-608	32	73	
32	52	21	- 635	31	77	
33	48	8.5096709	662	30	82	
34	44	8.5096696	689	29	87	
35	40	84	716	28	91	
36	36	72	743	27	6.4796	
37	32	60	770	- 26	6.4801	
38	28	48	- 797	25	05	
39	24	36	823	24	10	
40	8.5087220	8.5096624	1. 66850	2.3623	6.4815	7.711
41	16	8.509 12	877	22	20	
42	12	8.5096600	904	21	24	
43	08	8.5096588	931	20	29	
44	04	76	958	19	34	
45	8.5087200	64	1. 56985	18	38	
46	8.5087196	52	1.57012	17	43	
47	92	40	039	16	48	
48	88	28	066	15	52	
49	84	16	093	14	57	
50	8.5087180	8. 5096505	1.57120	2. 613	6.4862	
51	76	8.5096493	147	12	66	
52	72	81	174	11	71	
53	68	69	201	10	76	
54	64	57	229	09	81	
55	60	45	256	08	- 85	
56	56	33	283	07	90	
57	52	21	310	06	6. 4895	
58	48	8. 5096409	337	05	6.4900	
59	44	8.5096397	364	04	04	
60	8.5087140	8.5096385	1. 57391	2.3603	6.4909	7.706

Table 23.-Geodetic position computations-Continued.
LATITUDE 56°.

Lat.	$\operatorname{diff.~}^{\log \mathrm{A}}=-0.07$	$\log B$ iff. $1^{\prime \prime}=-0.20$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.45 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=-0.02 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } 1^{\prime \prime}=+0.08 \end{gathered}$	$\begin{gathered} \log F \\ \operatorname{diff} .10^{\prime}=-3.0 \end{gathered}$
- 1					1	
$56 \quad 00$	8. 5087140	8.5096385	1. 57391	2. 3603	6.4909	7.706
1	36	73	418	02	14	
2	32	61	445	01	18	
3.	28	49	472	2.3600	23	
4	- 24	37	499	2.3599	28	
05	20	25	526	98	33	
6	16	13	554	97	37	
7	12	8. 5096301	581	96	42	
8	08	8.5096289	608	95	47	
9	04	77	635	94	52	
10	8. 5087100	8.5096266	1. 57662	2.3593	6. 4956	
11	8.5087096	54	689	92	61	
12	92	42	717	91	66	
13	88	30	744	90	71	
14	84	18	771	89	75	
15	80	8. 5096206	798	88	80	
16	76	8. 5096194	825	-87	85	
17	72	82	852	86	90	
18	69	70	880	85	94	
19	65	58	907	84	6.4999	
20	8.5087061	8. 509×147	1.57934	2.3583	6. 5004	7.700
21	57	35	961	82	09	
22	53	${ }^{23}$	1.57989	81	13	
23	49	8.5096111	1.58016	80	18	
24	45	8.5096099	043	78	23	
25	41	87	070	77	28	
26	37	- 75	098	76	32	
27	33	63	125	75	37	
28	29	51	152	74	42	-
29	25	40	179	73	47	
30	8. 5087021	8.5096028	1.58207	2. 3572	6.5052	
31	17	8. 16	234	71	56	
32	13	8.5096004	261	70	61	
33	09	8.5095992	289	69	66	
34	05	80	310	68	71	
35	8.5087001	68	343	67	75	
36	8.5086997	57	371	66	80	
37	93	45	398	65	85	
38	89	33	425	64	90	
39	86	21	453	62	95	
40	8.5086982	8.5095909	1.58480	2.3561	6.5099	7.694
41	78	8.5095897	507	60	6.5104	
42	74	86	535	59	09	
43	70	74	562	58	14	
44	66	62	589	57	19	.
45	62	50	617	56	24	
46	58	38	644	55	28	
47	54	27	672	54	33	
48	50	8 509515	699	53	38	
49	46	85095803	726	52	43	
50	8.5086942	8.5095791	1.58754	2. 3550	6.5148	
51	38	79	781	49	52	
52	34	67	809	48	57	
53	30	56	836	47	62	
54	26	44	864	46	67	
55	23	32	891	45	72	
56	19	20	919	44	77	
57	15	8.5095709	946	43	81	
58	11	8.5095697	1. 58974	42	86	
59	07	85	1.59001	41	91	
60	8.5086903	8.5095673	1.59028	- 2.3539	6.5196	7.688

Table 23.-Geodetic position computations-Conṭinued.
LATITUDE 57°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 58°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.47 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=-0.02 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } 1^{\prime \prime}=+0.08 \end{gathered}$	$\begin{gathered} \log F \\ \text { diff. } 10^{\prime}=-3.3 \end{gathered}$
-						
5800	8.5086669	8. 5094972	1. 60692	2. 3469	6. 5490	7.669
			720	68	6.5495	
	62	49	748	67	6. 5500	
3	58	38	776	66	05	
4	54	26	804	64	10	
05	50	14	832	63	15	
6	46	8. 5094903	860	62	20	
7	42	8.5094891	888	61	25	
8	38	80	916	59	30	
9	35	68	944	58	35	
10	8. 5086631	8.509 4857	1.60972	2. 3457	6. 5540	
11	${ }_{2}^{27}$	45	1.61000	56	45	
12	23	${ }_{3}^{33}$	028	54	50	
13	19	22	056	53	55	
14	15	8. 5094810	084	52	60	
15	11	8. 5094799	112	51	65	
16	08	87	140	49	70	
17	04	76	168	48	75	
18	8.5086600	64	197	47	80	
19.	8.5086596	53	225	46	85	
20	8.5086592	8.5094741	1.61253	2. 3444	6. 5590	7.662
21	88	30	281	43	6. 5595	
22	85	18	309	42	6. 5600	
23	81	8. 5094707	337	41,	05	
24	77	8. 5094695	365	39	10	
25	73	84	393	38	15	
26	69	72	422	37	20	
27	65	61	450	35	25	
28	62	49	478	34	30	
29	58	38	506	33	35	
30	8.5086554	8.5094626	1.61534	2. 3432	6. 5640	
31	50	15	563	30	45	
32	46	8. 5094603	591	$\stackrel{29}{ }$	50	
33	42	8.5094592	619	28	55	
34	39	80	647	26	60	
35	35	69	675	25	65	
36	31	57	704	24	70	
37	27	46	732	23	75	
38	23	35	760	21	80	
39	20	23	789	20	86	
40	8. 5086516	8.509 4512	1.61817	2. 3419	6. 5691	7.656
41	12	8.5094500	845	17	6. 5696	
42	08	8.5094489	873	16	6.5701	
43	04	77	902	15	06	
44	8.508 6500	66	930	14	11	
45	8.5086497	54	958	12	16	
46	93	43	1.61987	11	21	
47	89	32	1.62015	10	26	
48	85	20	043	08	31	
49	81	8. 5094409	072	07	36	
50	8.5086478	8. 5094397	1. 62100	2. 3406	6. 5741	
51	74	86	129	04	46	
52	70	74	157	${ }^{03}$	51	
53	66	63	185	02	56	
54	62	52	214	2. 3400	62	
55	59	40	242	2. 3399	67	
56	55	29	271	98	72	
57	51	17	¢99	96	77	
58	47	8. 5094306	327	95	82	
59	43	8.5094295	356	94	87	
60	$8.5086 \mathbf{4} 40$	8. 5094283	1.62384	2. 3392	6.5792	7.649

Table 23.-Geodetic position computations-Continued.
LATITUDE 59°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.19 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { liff. } 1^{\prime \prime}=+0 . \end{gathered}$	$\begin{aligned} & \log \mathrm{D} \\ & \text { iff. } 1^{\prime \prime}=-0.0 \end{aligned}$	$\begin{gathered} \log \mathrm{E} \\ 2 \text { diff. } 1^{\prime \prime}=+0 . \end{gathered}$	$9 \mathrm{diff} \cdot 10^{\prime}=-3 .$
$\begin{array}{cc}59 & 00 \\ & 1\end{array}$	8.5086440 36	8.5094283	1.62384 413	$\begin{array}{r} 2.3392 \\ 91 \end{array}$	$\begin{aligned} & 6.5792 \\ & 6.5^{9} 97 \end{aligned}$	7.649
	32	61	441	90	6.5802	
	${ }_{24}^{28}$	${ }_{38}^{49}$	${ }_{498}^{470}$	${ }_{87}^{88}$	${ }_{13}^{07}$	
5	21	26	527	86	18	
6	17	15	555	84	${ }_{23}$	
8	${ }_{09}^{13}$	8. 50944204	${ }_{612}^{584}$	${ }_{82}^{83}$	${ }_{33}^{28}$	
9	05	$8.59{ }_{81}$	641	80	${ }_{38}^{38}$	
10	8.5086402	8.5094170	1.62669	2. 3379	6.5843	
11	8.5086398 ${ }_{94}$					
12	94	47	727	76	54	
13 14	${ }_{87}^{90}$	${ }_{24}^{36}$	755	75	$\stackrel{59}{64}$	
14	87	24	784	74	64	
15	83	13	812	72	69	
16 17	79 75	8. 5094102	841	${ }_{69}^{71}$	74	
18	71	79	898	68	84	
19	68	68	927	67	89	
${ }^{20}$	8.5086364	8.5094056	1.62955	2. 3365	6.5895	7.642
${ }_{22}^{21}$	60 56	${ }_{34}^{45}$	1.62984	${ }_{63}^{64}$	6.5900	
23	53	${ }_{22}$	1.6041	61	10	
24	49	11	070	60	15	
${ }_{26}^{25}$	${ }_{41}^{45}$	8.509 4000	099	58	20	
${ }_{27}^{26}$	${ }_{38}$	8.5093989	156	56	${ }_{31}^{26}$	
28	34	66	185	54	36	
29	30	55	214	53	41	
30	8.5086326	8.5093943	1.63242	2.3351	6. 5946	
31	${ }_{19}^{23}$	${ }_{31}^{32}$	271			
32 33	19	8.5093910	300 329	${ }_{47}$	${ }_{62}^{57}$	
34	11	8.5093898	357	46	67	
	${ }_{0} 8$	87	386	44	72	
36 37	04 8.508 6300	${ }_{65} 76$	415	43	87	
37 38	$\begin{aligned} & 8.5086300 \\ & 8.5086296 \end{aligned}$	${ }_{53}^{65}$	${ }_{473}^{44}$	${ }_{40}^{42}$	82 88	
${ }_{39}$	8.5086296 93	42	501	${ }_{39}$	${ }_{93}^{88}$	
	8.5086289	8. 5093831	1.63530	2. 3337		7.635
${ }_{42}^{41}$	85 81	\% 8.5093808	${ }_{588}^{559}$	36 35	6. 6003	
43	78	8.5093797	${ }_{617}$	${ }_{33}$	14	
44	74	86	646	32	19	
	70	75	674	${ }^{30}$		
${ }_{47}^{46}$	66 63	- ${ }_{52}^{63}$	773	${ }_{28}^{29}$	${ }_{34}^{29}$	
48	59	41	761	${ }^{26}$	40	
49	55	30	790	25	45	
	8.5086251	8. 5093719	1.63819	2.3323		
51		8.5093704	888			
52 53	44 40	8.5093696	877 906	20 19	${ }_{61}^{61}$	
54	36	74	935	17	71	
$5{ }_{5}^{56}$	29	52	${ }^{1.63993}$	15	81	
${ }_{58}^{57}$	25 22	${ }_{29}^{40}$		13 12	${ }_{92}^{87}$	
59	18	18	080	10	6. 6097	
60	8.5086214	8.5093607	1.64109	2. 3309	6.6102	7.627

Table 23.-Geodetic position computations-Continued.
LATITUDE 60°.

Lat. $\left\lvert\, \begin{gathered}\log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.66\end{gathered} \quad\right.$ diff. $1^{\prime \prime}=-0 . i \delta$ diff. $1^{\prime \prime}=+0.49$ diff.
$\log D$
$\log \mathrm{E}$
$\log \mathrm{F}$

Table 23.-Geodetic position computations-Continued.
LATITUDE 61°.

Lat.	$\stackrel{\log A}{\text { diff. } 1^{\prime \prime}=-0.06}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.18 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.50 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=-0.03 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.09 \end{gathered}$	$\begin{gathered} \log F \\ \text { diff. } 10^{\prime}=-4.0 \end{gathered}$
- ,				-		
61.00	8.5085993	8. 5092944	1.65869	2. 3218	6.6422	7.605
	89	33	898	17	27	
	86	22	928	15	32	
3	82	11	958	13	38	
4	79	5. 5092900	1.65987	12	43	
05	75	8. 5092889	1.66017	10	48	
6	71	78	047	09	54	
7	68	67	076	07	59	
8	64	56	106	06	65	
9	60	46	136	04	70	
10	8.508 5957	8. 5092835	1.66166	2. 3202	6.6476	
11	53	24	195	2. 3201	81	
12	49	13	225	2.3199	87	
13	46	8. 5092802	255	98	92	
14	42	8. 5092791	285	96	6. 6497	
15	39	80	315	94	6. 6503	
16	35	69	344	93	08	
17	31	58	374	91	14	
18	28	48	404	90	19	
19	24	37	434	88	25	
20	8.5085920	8. 5092726	1. 66464	- 2.3186	6. 6530	7.597
21	17	15	494	85	36	
22	13	8.5092704	524	83	41	.
23	10	8.5092693	553	81	46	
24	06	83	583	80	52	
25	8. 5085902	72	613	78	57	
26	8.5085899	61	643	77	63	
27	95	50	673	75	68	
28	92	39	703	73	74	
29	88	28	733	72	79	
30	8.5085884	8. 5092618	1.66763	2.3170	6. 6585	
31	81	8. 5092607	793	68	90	
32	77	8.509 2596	823	67	6. 6599	
33 34	74 70	85 74	853 883	65 64	6.6601 07	
35	66	64	913	52	12	
36	63	53	943	60	18	
37	59	42	1.66973	58	23	
38	56	31	1.67003	57	29	
39	52	20	033	55	34	
40	8.5085848	8. 5092510	1.67063	2.3154	6. 6640	7.589
41	45	8. 5092499	094	52	45	
42	41	88	124	50	51	
44	38 34	77 67	154 184	49 47	66 68	
45	30	56	214	45	67	
46	27	45	244	44	73	
47	23	34	274	42	78	
48	20	24	305	40	84	
49	16	15	335	39	89	
50	8. 5085813	8.5092402	1.67365	2.3137	6. 6695	
51	09	8. 5092391	395	35	6.6700	
52	05	81	425	34	06	
53	8. 5085802	70	456	32	12	
54	8.5085798	59	486	30	17	
55	95	49	516	29	23	
56	91	38	547	27	28	
57	88	${ }_{16}$	577	25	34	
59	80	8.5092306	637	22	- 45	
60	8.5085777	8.5092295	1. 67668	2.3120	6. 6750	7.581

Table 23.-Geodetic position computations-Continued.
LATITUDE 62°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 63°.

Lat.	$\begin{gathered} \log A \\ \operatorname{diff} .1^{\prime \prime}=-0.06 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.17 \end{gathered}$	$\begin{gathered} \log C \\ \text { diff. } 1^{\prime \prime}=+0.52 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { diff. } 1^{\prime \prime}=-0.03 \end{gathered}$	$\begin{gathered} \log E \\ \text { diff. } 1^{\prime \prime}=+0.10 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \operatorname{diff} .10^{\prime}=-4.5 \end{gathered}$
	8.5085566	8. 5091661	1.69510	2.3014	6. 7089	7.556
631	8.508 566	8.5091601	1.69510 541	2.3014	6.7095	7.55
2	59	40	572	11	6.7101	
3	55	30	603	09	07	
4	52	20	635	07	12	
05	48	8.5091609	666	05	18	
6	45	8. 5091599	697	03	24	
7	41	88	728	02	30	
8	38	78	759	2.3000	35	
9	34	68	791	2.2998	41	
10	8.5085531	8.5091557	1.69822	2.2996	6.7147	
11	27	47	853	94	53	
12	24	36	884	- 92	59	
13	20	26	915	90	64	
14	17	16	947	89	70	
15	14	8.5091505	1.69978	87	76	
16	10	8.5091495	1. 70009	85	82	
17	07	85	041	83	88	
18	03	74	072	81	93	
19	8.5085500	64	103	79	6.7199	
20	8.5085496	8.5091454	1.70135	2.2977	6. 7205	7.547
21	93	43	166	75	11	
22	89	33	197	74	17	
23	86	23	229	72	22	
24	83	12	260	70	28	
25	79	8.5091402	292	68	34	
26	76	8.5091392	323	66	40	
27	72	81	355	64	46	
28	69	71	386	62	51	
29	65	61	417	60	57	
30	8.508 546\%	8. 5091350	1. 70449	2. 2958	6. 7263	
31	58	40	480	57	69	
32	55	30	512	55	75	
33	52	19	544	53	81	
34	48	8.5091309	575	51	86	
35	45	8.5091299	- 607	49	92	
36	41	89	638	47	6. 7298	
37	38	78	670	45	6.7304	
38	34	68	701	43	10	
39	31	58	733	41	16	
40	8.5085428	8.5091248	1. 70765	2. 2939	6. 7322	7.538
41	24	37	796	37	28	
42	21	27	828	36	33	
43	17	17	860	34	39	
44	14	8.5091207	891	32	45	
45	11	8.5091196	923	30	51	
46	07	86	955	28	57	
47	04	76	1.70986	26	63	
48	8. 5085400	66	1.71018	24	69	
49	8.5085397	55	050	22	75	
50	8.5085394	8.5091145	1. 71082	2.2920	6.7381	
51	90	35	114	18	86	
52	87	25	145	16	92	
53	83	15	177	14	6.7398	
54.	80	8.5091104	209	12	6.7404	
55	77	8. 5091094	241	10	10	
56	73	84	273	08	16	
57	70	74	305	06	22	
58	66	64	337	04	28	
59	63	54	368	02	34	
60	8.5085360	8.5091043	1.71400	2.2901	6. 7440	7.529

Table 23.-Geodetic position compuitations-Continued.
LATITUDE 64°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 65°.

Lat.	$\begin{gathered} \log A \\ \text { diff. } 1^{\prime \prime}=-0.05 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.1 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.5 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \operatorname{diff} .1^{\prime \prime}=-0.0 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.1 \end{gathered}$	$\begin{gathered} \log \mathrm{F} \\ \operatorname{diff} .10^{\prime}=-5.0 \end{gathered}$
$\begin{array}{cc}\circ & \prime \\ 65 & 00\end{array}$	8.5085159	8. 5090442	1.73343	2.2778	6. 7802	7.501
651	8.5085159	8.509 32	1. $\begin{array}{r}376 \\ \end{array}$	-. 76	- 08	
2	- 52	22	409	74	14	
3	49	12	442	72	20	
4	46	8.5090402	475	70	27	
05	43	8.5090393	508	68	33	
6	39	83	541	65	39	
7	36	73	574	63	45	
8	33	63	607	61	51	
9	30	53	640	59	57	
10	8.5085126	8.5090344	1. 73673	2. 2757	6. 7864	
11	23	34	706	55	70	
12	20	24	739	53	76	
13	17	14	772	50	82	
14	13	8.5090304	805	48	88	
15	10	8.5090295	838	46	6. 7895	
16	07	85	871	44	6. 7901	
17	03	75	904	42	07	
18	8.5085100	65	937	40	13	
19	8.5085097	55	1.73970	38	19	
20	8.5085094	8.509 0245	1.74004	2.2735	6.7926	7.491
21	90	36	037	33	32	
22	87	26	070	31	38	
23	84	16	103	29	44	
24	81	8.5090206	136	27	51	
25	77	8.5090197	170	24	57	
$\stackrel{26}{ }$	74	87	203	22	63	
27	71	77	236	20	69	
28	68	67	270	- 18	76	
29	64	57	303	16	82	
30	8.5085061	8.5090148	1.74336	2. 2714	6. 7988	
31	58	38	370	11	6. 7994	
32	54	28	403	09	6.8001	
33	51	18	436	07	07	
34	48	8.5090109	470	05	13	
35	45	8.509 0099	503	03	19	
36	41	89	537	2. 2700	26	
37	38	80	570	2.2698	32	
38	35	70	604	96	38	
39	32	60	637	94	44	
40	8.5085029	8.5090051	1. 74670	2.2692	6.8051	7.481
41	25	41	704	89	57	
42	22	31	738	87	63	
43	19	22	771	85	70	
44	16	12	805	83	76	
45	13	.8.509 0002	838	80	82	
46	09	8.508 9993	872	78	89	
47	06	83	906	76	6.8093	
48	03	73	939	74	6.8101	
49	8.5085000	64	1.74973	72	07	
50	8.5084996	8.5089954	1. 75007	2. 2669	6.8114	
51	93	44	040	67	20	
52	90	35	074	65	27	
53	87	25	108	63	33	
54	84	15	142	60	39	
55	80	8.5089906	175	58	46	
56	77	8.5089896	209	56	52	
57	74	87	243	53	58	-
58	71	77	277	51	65	
59	68	67	311	49	. 71	
60	8.5084964	8.5089858	1. 75344	2.2647	6.8177	7.471

Table 23.-Geodetic position computations-Continued.
LATITUDE 66°.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Lat. \& $$
\underset{\operatorname{diff} .1^{\prime \prime}=-0.05}{ }
$$ \& $\log \mathrm{B}$
iff. $1^{\prime \prime}=-0.16$ \& $$
\begin{gathered}
\log \mathrm{C} \\
\text { diff. } 1^{\prime \prime}=+0.57
\end{gathered}
$$ \& $$
\underset{\operatorname{diff} .1^{\prime \prime}=-0.04}{ }
$$ \& $$
\begin{gathered}
\log E \\
\text { diff. } 1^{\prime \prime}=+0.11
\end{gathered}
$$ \& $$
\begin{gathered}
\log \mathrm{F} \\
\text { diff. } 10^{\prime}=-5.3
\end{gathered}
$$

\hline - , \& \& \& \& \& \&

\hline $66 \quad 00$ \& 8. 5084964 \& 8. 5089858 \& 1. 75344 \& 2.2647 \& 6. 8177 \& 7.471

\hline ${ }_{1}^{1}$ \& 61 \& 48 \& 378 \& 44 \& 84 \&

\hline \& 58 \& 39 \& 412 \& 42 \& - 90 \&

\hline 3 \& 55 \& 29 \& 446 \& 40 \& 6. 8196 \&

\hline 4 \& 52 \& 20 \& 480 \& 38 \& 6. 8203 \&

\hline 05 \& 48 \& 10 \& 514 \& 35 \& 09 \&

\hline 6 \& 45 \& 8. 5089801 \& 548 \& 33 \& 16 \&

\hline 7 \& 42 \& 8.5089791 \& 582 \& 31 \& 22 \&

\hline 8
9 \& 39
36 \& 82
72 \& 616
650 \& 28
26 \& ${ }_{35}^{28}$ \&

\hline 10 \& 8.5084933 \& 8.5089762 \& 1.75684 \& 2.2624 \& 6. 8241 \&

\hline 11 \& 29 \& 8.508 53 \& . 718 \& -22 \& 6. 48 \&

\hline 12 \& 26 \& 43 \& 752 \& 19 \& 54 \&

\hline 13 \& 23 \& 34 \& 786 \& 17 \& 61 \&

\hline 14 \& 20 \& 24 \& 820 \& 15 \& 67 \&

\hline 15 \& 17 \& 14 \& 854 \& 12 \& 73 \&

\hline 16 \& 13 \& 8. 5089705 \& 889 \& 10 \& 80 \&

\hline 17 \& 10 \& 8. 5089696 \& 923 \& 08 \& 86 \&

\hline 18
19 \& 07
04 \& 86 \& 957 \& 05 \& 93 \&

\hline 19 \& 04 \& 77 \& 1. 75991 \& 03 \& 6.8299 \& -

\hline 20 \& 8. 5084901 \& 8.5089667 \& 1.76025 \& 2. 2601 \& 6.8306 \& 7.461

\hline 21 \& 8.508 4898 \& 58
48 \& 060
094 \& 2. 2598 \& 12 \&

\hline 23 \& 91 \& 39 \& 128 \& 94 \& 25 \&

\hline 24 \& 88 \& 29 \& 163 \& 91 \& 31 \&

\hline 25 \& 85 \& 20 \& 197 \& 89 \& 38 \&

\hline 26 \& 82 \& 11 \& 231 \& 87 \& 44 \&

\hline 27 \& 79 \& 8. 5089601 \& 266 \& 84 \& 51 \&

\hline ${ }_{28} 8$ \& 76 \& 8. 5089592 \& 300 \& 82 \& 57 \&

\hline 29 \& 73 \& 82 \& 334 \& 80 \& 64 \&

\hline 30 \& 8.5084869 \& 8.5039573 \& 1. 76369 \& 2.2578 \& 6. 8370 \& -

\hline 31 \& 66 \& 63 \& 403 \& 75 \& 77 \&

\hline 32 \& 63 \& 54 \& 438 \& 73 \& 83 \&

\hline 33
34 \& 60
57 \& 44
35 \& 472
507 \& 70
68 \& 90
6.8396 \&

\hline 35 \& 54 \& 25 \& 541 \& 66 \& 6.8403 \&

\hline 36 \& 50 \& 16 \& 576 \& 63 \& 09 \&

\hline 37 \& 47 \& 8. 5089507 \& 610 \& 61 \& 16 \&

\hline 38 \& 44 \& 8.5089497 \& 645 \& 59 \& $\stackrel{2}{ }$ \&

\hline 39 \& 41 \& 88 \& 679 \& 56 \& 29 \&

\hline 40 \& 8.508 4838 \& 8. 5089478 \& 1.76714 \& 2. 2554 \& 6. 8436 \& 7. 450

\hline 41 \& 35 \& 69 \& 749 \& 51 \& 42 \&

\hline 42 \& 32 \& 60 \& 783 \& 49 \& 49 \&

\hline 43
44 \& 29
26 \& 51
41 \& 818
853 \& 47
44 \& 55
62 \&

\hline 45 \& 22 \& 32 \& 887 \& 42 \& 68 \&

\hline 46 \& 19 \& 23 \& 922 \& 39 \& 75 \&

\hline 47 \& 16 \& 13 \& 957 \& 37 \& 81 \&

\hline 48 \& 13 \& 8.5089404 \& 1.76991 \& 35 \& 88 \&

\hline 49 \& 10 \& 8.5089395 \& 1. 77026 \& 32 \& 6.8495 \&

\hline 50 \& 8.5084807 \& 8.5089385 \& 1. 77061 \& 2. 2530 \& 6. 8501 \&

\hline 51 \& 04 \& 76 \& 096 \& 27 \& 08 \&

\hline 5 \& ¢. 5084801 \& 66 \& 131 \& 25 \& 14 \&

\hline $\frac{53}{54}$ \& ¢.
$\times 108497$

94 \& 57
48 \& 166
200 \& 23
20 \& ${ }_{27}^{21}$ \&

\hline 54 \& 94 \& 48 \& 200 \& 20 \& 27 \&

\hline 55 \& 91 \& 38 \& 235 \& 18 \& 34 \&

\hline 56 \& 88 \& 29 \& ${ }^{270}$ \& 15 \& 41 \&

\hline 57 \& 85
82 \& 20 \& 305 \& 13 \& 47 \&

\hline 59 \& 82
79 \& 8.508 9301 \& 340
375 \& 11
08 \& 54
60 \&

\hline 60 \& 8.5084776 \& 8. 5089292 \& 1.77410 \& 2. 2506 \& 6.8567 \& 7.440

\hline
\end{tabular}

Table 23.-Geodetic position computations-Continued.
LATITUDE 67°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 68°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \text { diff. } 1^{\prime \prime}=-0.05 \end{gathered}$	$\begin{gathered} \log B \\ \text { diff. } 1^{\prime \prime}=-0.15 \end{gathered}$	$\begin{gathered} \log \mathrm{C} \\ \text { diff. } 1^{\prime \prime}=+0.62 \end{gathered}$	$\begin{gathered} \log \mathrm{D} \\ \text { difi. } 1^{\prime \prime}=-0.4 \end{gathered}$	$\begin{gathered} \log \mathrm{E} \\ \text { diff. } 1^{\prime \prime}=+0.12 \end{gathered}$	$\begin{gathered} \log F \\ \text { diff. } 10^{\prime}=-5.9 \end{gathered}$
$\bigcirc 1$						
$68 \quad 00$	8. 5084593	8.508 8745	1.79547	2. 2354	6. 8972	7.406
	90	36	583	52	79	
${ }_{2}$	87	- 27	620	49	86	
3	84	18	656	47	6. 8993	
4	81	09	692	44	6.9000	
05	78	8. 5088700	728	41	07	
6	76	8.5088691	765	39	14	
7	73	82	801	36	21	
8	70	73	838	33	28	
9	67	64	874	31	35	
10	8.508 4564	8.5088656	1. 79911	2. 2328	6. 9042	
11	61	47	1.947	${ }^{26}$	48	
12	58	38	1.79984	23	55	
13	55	29	1.80020	20	62	
14	52	20	057	18	69	
15	49	11	093	15	76	
16	46	8. 5088602	130	12	83	
17	43	8.5088593	166	10	90	
18	40	84	203	07	6. 9097	
19	37	75	240	04	6. 9104	
20	8.5084534	8.5088566	1. 80276	2.2302	6. 9111	7.395
21	31	58	313	2.2299	18	
22	28	49	350	96	25	
23	25	40	387	94	32	
24	22	31	423	91	39	
25	19	22	460	88	46	,
$\stackrel{26}{26}$	16	13	497	85	53	,
$\stackrel{27}{ }$	13	8.5088505	534	83	60	
$\stackrel{28}{29}$	10 07	8.5088496	571	80	67	
	07	87	608	77	74	
30	8.508 4504	8.5088478	1. 80645	2. 2275	- 6.9181	
31	8. 5084501	69	682	72	${ }^{88}$	
32	8.5084499	60	719	69	6. 9195	
33	96	52	756	67	6.9203	
34	93	43	793	64	10	
35	90	34	830	61	17	
36	87	25	867	58	24	
37	84	17	904	56	31	
38	81	8.5088408	941	53	38	
39	78	8.5088399	1.80978	50	45	
40	8.5084475	8.5088390	1.81015	2. 2248	6. 9252	
41	72	82	052	45	$\overline{59}$	
42	70	73	089	42	66	
43	67	64	127	39	73	
44	64	56	164	36	80	
45	61	47	201	34	88	
46	58	38	239	31	6. 9295	
47	55	30	276	28	6. 9302	
48	52	21	313	26	09	
49	49	12	350	23	16	
50	8.5084446	8.5088303	1. 81388	2.2220	6.9323	
51	43	8.5088295	425	17	30	
52	40	86	463	14	37	
5	38	77	500	12	45	-
54	35	68	538	09	52	
55	32	60	575	06	59	
56	29	51	613	03	66	
57	26	43	650	2.2201	73	
58	23	34	688	2.2198	80	
59	20	25	726	95	88	
60	8.5084417	8.508 8217	1.81763	2.2192	6.9395	7.371

Table 23.-Geodetic position computations-Continued.
LATITUDE 69°.

Lat.	diff. $1^{\prime \prime}=-0.05$ diff. $1^{\prime \prime}=-0.14$ diff. $1^{\prime \prime}=+0.64$ diff. $1^{\prime \prime}=-0.05$ diff. $1^{\prime \prime}=+0.12$ diff. $10^{\prime}=-6.2$					
$\begin{array}{cc}\circ & \prime \\ 69 & 00\end{array}$	8.508 4417	8.5088217	1.81763	2. 2192	6.9395	7.371
	8.50814	8. 088	1.81801	2. 89	6.9402	
2	12	8.5088200	838	87	09	
3	09	8.5088191	876	84	16	
4	06	82	914	81	- 24	
05	03	74	952	78	31	
6	8.508 4400	- 65	1.81989	75	38	
7	8.5084397	57	1.82027	72	45	
8	94	48	065	70	52	
9	92	39	103	67	60	
10	8.508 4389	8.5088131	1.82141	2.2164	6.9467	
11	86	22	179	61	74	
12	83	14	217	58	82	
13	80	8. 5088105	255	55	89	
14	77	8.5088096	293	53	6.9496	
15	74	88	330	50	6.9503	
16	71	79	369	47	11	
17	69	71	407	44	18	
18	66	62	445	41	25	
19	63	54	483	38	32	
20	8.508 4360	8.5088045	1.82521	2.2136	6. 9540	7.358
21	57	37	559	33	47	
22	55	28	597	30	54	
23	52	20	636	27	62	
24	49	11	674	24	69	
25	46	8. 5088003	712	21	76	
26	43	8.508 7994	750	18	84	
27	40	86	789	15	91	
28	37	77	827	12	6.9598	
29	35	69	865	10	6.9606	
30	8.5084332	8. 5087960	1.82904	2.2107	6.9613	
31	29	52	942	04	20	
32	26	43	1.82981	2.2101	28	
33	23	35	1.83019	2. 2098	35	
34	21	26	058	95	42	
35	18	18	096	92	50	
36	15	09	135	89	57	
37	12	8.5087901	173	86	65	
38	09	8.5087893	212	83	72	
39	06	84	250	80	79	
40	8.5084304	8.508 7876	1.83289	2.2078	6. 9687	7. 346
41	8.5084301	67	328	75	6.9694	
42	8.5084298	59	366	72	6.9702	
43	95	51	405	69	09	
44	93	42	444	66	16	
45	90	34	483	63	24	
46	87	26	521	60	31	
47	84	17	560	57	39	
48	81	09	599	54	46	
49	79	8.5087801	638	51	54	
50	8.508 4276	8.5087792	1.83677	2.2048	6. 9761	
51	73	84	716	45	69	
52	70	75	755	42	76	
53	67	67	794	39	84	
54	65	59	833	36	91	
55	62	- 50	872	33	6. 9799	
56	59	- 42	911	30	6.9806	
57	56	34	950	27	14	
58	54	25	1.83989	24	21	
59	51	17	1.84028	21	29	
60	8.508 4248	8.508 7709	1.84068	2. 2018	6. 9836	7.333

Table 23.-Geodetic position computations-Continued.
LATITUDE 70°.

Table 23.-Geodetic position computations-Continued.
LATITUDE 71°.

Lat.	$\begin{gathered} \log \mathrm{A} \\ \operatorname{diff} .1^{\prime \prime}=-0.04 \end{gathered}$	$\operatorname{liff} .1^{\prime \prime}=-0.13$	$\begin{aligned} & \log \mathrm{C} \\ & 1^{\prime \prime}=+0.70 \end{aligned}$	$l_{n=-0.05}^{g}$	$\begin{aligned} & \mathrm{g} \mathrm{E} \\ & \hline=+0.13 \end{aligned}$	$\begin{aligned} & \log F \\ & 10^{\prime \prime}=-7.2 \end{aligned}$
- 2						
7100	8.508 4086	8.5087222	1.86470	2.1831	7.0298	7.293
		14	511	28	7.0306	
	80	8.5087206	552	25	14	
3	78	8.5087198	593	21	22	
4	75	90	634	18	30	
05	72	82	675	15	38	
6	70	74	717	12	46	
7	67	66	758	08	54	
8	64	58	799	05	62	-
9	62	50	840	2.1802	70	
10	8.5084059	8.5087142	1.86881	2. 1799	7.0378	
11	57	34	923	95	85	
12	54	27	1.86964	92	7.0393	
13	51	19	1.87005	89	7.0401	
14	49	11	046	86	09	
15	46.	8. 5087103	088	82	17	
16	43	8.5087095	129	79	25	
17	41	87	171	76	33	
18	38	79	212	72	41	
19	36.	72	254	69	49	
20	8.5084033	8.5087064	1.87295	2. 1766	7.0457	7.279
21	30	56	337	62	65	
22	28	48	378	59	73	
${ }_{24}^{23}$	${ }_{23}^{25}$	${ }_{83}^{40}$	420 462	56 52	82 90	
25	20	25	503	49	7.0498	
26	17	17	545	46	7.0506	
27	15	09	587	42	14	
28	12	8.508 7002	629	39	22	
29	10	8.5086994	671	36	30	
30	8.5084007	8.5086986	1.87712	2.1732	7.0538	.
31	05	78	754	29	- 46	
33	8.5084002 8.5083999	71	796 838	26 26	54	
34	8.59	55	880	19	70	
35	94	47	922	16	79	
36	92	40	1.87964	12	87	
37	89	32	1.88006	09	7.0595	
38	86	24	049	06	7.0603	
39	84	16	091	2.1702	11	
40	8.508 3981	8. 5086908	1.88133	2.1699	7.0619	7.265
41	79	8.5086901	175	95	27	
42	76	8.5086893	217	92	36	
43	74	85	260	89	44	
44	71	78	302	- 85	52	
45	68	70	344	82	60	
46	66	62	387	78	68	
47	63	55	429	75	77	
48	61	47	472	72	85	
49	58	40	514	68	7.0693	
50	8.5083956	8.5086832	1.88557	2. 1665	7.0701	
51	53	24	599	61	09	
52	51	17	642	58	18	
54	46	8.508 6802	727	$\stackrel{54}{51}$	26 34	
55	43	8.5086794	770	48	42	
56	41	86	813	44	51	
58	38 36	79 71	855 898	41	59 67	
59	33	64	941	34	75	
60	8.5083930	8.5086756	1.88984	2.1630	7.0784	7.250

Table of values of $\log \sec \frac{1}{2}(\Delta \varphi)$.

$\Delta \varphi$	$\log _{(\Delta \varphi)}^{\sec } \frac{1}{\Delta}^{\circ}$	$\Delta \varphi$	$\begin{gathered} \log \sec \frac{\frac{1}{2}}{(\Delta \varphi)} \end{gathered}$	$\Delta \varphi$	$\log _{(\Delta \varphi)} \sec \frac{1}{9}$	$\Delta \varphi$	$\underset{(\Delta \varphi)}{\log \sec } \frac{\frac{1}{2}}{2}$	$\Delta \varphi$	$\underset{(\Delta \varphi)}{\log \sec } \frac{\frac{1}{2}}{2}$
,		,		,		,		,	
10	0.000000	28	0.000004	46	0.000010	64	0.000019	82	0.000031
11	1	29	4	47	10	65	19	83	32
12	1	30	4	48	11	66	20	84	32
13	1	31	4	49	11	67	21	85	33
14	1	32	5	50	11	68	21	86	34
15	1	33	5	51	12	69	22	87	35
16	1	34	5	52	12	70	22	88	36
17	1	35	6	53	13	71	23	89	36
18	1	36	6	54	13	72	24	90	37
19	2	37	6	55	14	73	24	91	38
20	2	38	7	56	14	74	25	92	39
21	2	39	7	57	15	75	26	93	40
22	2	40	7	58	15	76	26	94	41
23	2	41	8	59	16	77	27	95	41
24	3	42	8	60	16	78	28	96	42
$\stackrel{25}{26}$	3 3	43	8	${ }_{62}^{61}$	17	79 80		97 98	
26 27	3 3	44	9 9	62 63	18 18	80 81	29 30	98 98	44

To convert:		To convert:	
Meters to feet.	Feet to meters.	Kilometers to statute miles.	Statute miles to kilometers.
$1=3.280833$	$1=0.3048006$	$1=0.6213699$	$1=1.609347$
$2 \quad 6.561667$	$2 \quad 0.6096012$	$2 \quad 1.2427399$	2 . 3.218694
$3 \quad 9.842500$	$3 \quad 0.9144018$	$3 \quad 1.8641098$	$3 \quad 4.828042$
$4 \quad 13.123333$	$4 \quad 1.2192024$	$4 \quad 2.4854798$	$4 \quad 6.437389$
$5 \quad 16.404166$	$5 \quad 1.5240030$	$5 \quad 3.1068497$	$5 \quad 8.046736$
$6 \quad 19.685000$	$6 \quad 1.8288037$	$6 \quad 3.7282196$	$6 \quad 9.656083$
$7 \quad 22.965833$	$7 \quad 2.1336043$	$7 \quad 4.3495896$	$7 \quad 11.265430$
$8 \quad 26.246666$	$8 \quad 2.4384049$	$8 \quad 4.9709595$	$8 \quad 12.874778$
$9 \quad 29.527500$	$9 \quad 2.7432055$	$9 \quad 5.5923295$	$9 \quad 14.484125$

Table of corrections to longitude for difference in arc and sine.

$\log s(-)$	${ }_{\text {ference. }}^{\log \text { dif- }} \log \Delta \lambda(+)$		$\log s(-$	\log difference.	$\log \Delta \lambda(+)$	$\log s(-)$	$\log _{\text {feren }}$	if- 1ce.	$\log \Delta \lambda(+)$
3. 876	0.0000001	2.385	4.871	0.0000098	3. 380	5.172	0.000	0392	3. 681
4.026	02	2.535	4.882	103	3.391	5.178		402	3. 687
4.114	03	2.623	4.892	108	3.401	5.183		412	3.692
4.177	04	2.686	4.903	114	3. 412	5.188		422	3. 697
4.225	05	2.734	4.913	119	3.422	5.193		433	3.702
4.265	06	2.774	4.922	124	3.431	5.199		443	3.708
4. 298	07	2.807	4.932	130	3.441	5.204		453	3.713
4.327	08	2.836	4.941	136	3.450	5.209		464	3.718
4. 353	09	2. 862	4.950	142	3.459	5.214		474	3.723
4.376	10	2.885	4.959	147	3. 468	5.219		486	3.728
4.396	11	2.905	4.968	153	3.477	5.223		497	3. 732
4.415	12	2.924	4.976	160	3.485	5. 228		508	3.737
4.433	13	2.942	4.985	166	3.494	5.233		519	3.742
4.449	14	2. 958	4.993	172	3. 502	5. 238		530	3. 747
4.464	15	2.973	5.002	179	3.511	5.242		541	3.751
4. 478	16	2.987	5.010	186	3. 519	5.247		553	3. 756
4.491	17	3.000	5.017	192	3. 526	5. 251		565	3. 760
4. 503	18	3.012	5.025	199	3. 534	5.256		577	3. 765
4.526	20	3. 035	5.033	206	3. 542	5.260		588	3. 769
4.548	23	3.057	5.040	213	3.549	5. 265		600	3.774
4. 570	25	3.079	5.047	221	3.556	5.269	-	613	3. 778
4. 591	27	3.100	5.054	228	3.563	5.273		625	3.782
4.612	30	3.121	5.062	236	3. 571	5.278		637	3. 787
4. 631	33	3. 140	5. 068	243	3. 577	5.282		650	3. 791
4.649	36	3.158	5.075	251	3.584	5.286		663	3.795
4. 667	39	3. 176	5.082	259	3.591	5. 290		674	3. 799
4.684	42	3.193	5.088	267	3. 597	5.294		687	3.803
4. 701	45	3. 210	5.095	${ }_{28} 275$	3. 604	5. 299		702	3. 808
4.716	48	3.225	5.102	284	3.611	5. 303		716	3.812
4.732	52	3.241	5.108	292	3.617	5. 307		729	3.816
4. 746	56	3.255	5.114	300	3.623	5.311		743	3. 820
4. 761	59	3. 270	5.120	309	3.629	5.315		757	3. 824
4.774 4.788	63	3.283	5.126 5.132	318 327	${ }_{3.641}^{3.635}$	5.319 5.323		771	3. 8282
4.801	71	3.310	5. 138	336	3.647	5.327		800	3.836
4.813	75	3.322	5.144	345	3.653	5.331		814	3.840
4.825	80	3. 334	5.150	354	3.659	5. 335		829	3.844
4.834	84	3.343	5.156	364	3.665	5.339		845	3.848
4. 849	89	3. 358	5. 161	${ }_{3}^{373}$	3.670	5.343		861	3.852
4. 860	94	3. 369	5.167	383	3.676	5.347		877	3.856

INVERSE SOLUTION.

Having Latitudes and Longitudes of Two Points to Compute Azimuths and Distances.

The following example shows the method of performing the operation. The northernmost point should be used as the initial position, then all signs for (I), (II), and (III) are + , and for (IV) -. The value of $\Delta \lambda$ may be either + or - , but this sign need only be used in determiring in which quadrant the azimuth angle α falls, i. e., the sign of $\tan \alpha(12)$. An inspection of a rough plat of the positions will also determine this. The correction to $\Delta \lambda$ is found from a distance scaled off from the plat, and need not be very close. In (8) the term $(\mathrm{I}+\mathrm{II})^{2}$ is the square of the difference of latitude $\Delta \varphi$ in seconds. Since (IV) is always small, \log (I) in (8) may be taken as \log of $\Delta \varphi$ from (1). If $\cos \alpha$ is smaller than $\sin \alpha$, find s from $\log s \cos \alpha$ in (11). As a check on the work compute the second
position, using distance and azimuth found as above. The order of solution is shown by figures in parentheses. The cosines of latitudes are proportional to the intercepted parallels.

```
Latitude \(=\varphi=38^{\circ} 23^{\prime} \quad 27^{\prime \prime} .00\) Given.
    \(\varphi^{\prime}=37 \quad 45 \quad 09 \quad .30\) Given.
    \(\Delta \varphi=38^{\prime} 17^{\prime \prime} .70\)
        \(=2297\) " 70 (1)
        \(\log \Delta \varphi=3.3612933\)
        \(\log \mathrm{C}=1.30360\)
    \(\log S^{2} \sin ^{2} \alpha=8.75770\).
    \(\log \quad \begin{aligned} & \text { (II) } \\ & \text { (II) }\end{aligned}=1^{0.06130(152}{ }^{(7)}\)
        \(\log \mathrm{D}=2.3812\)
\(\log (\mathrm{I}+\mathrm{II})^{2}=6.7226\)
\(\log\) (III) \(9.1038(8)\)
        III \(=0^{\prime \prime} .13\)
        \(\log \mathrm{E}=6.0711\)
\(\log S^{2} \sin ^{2} \alpha=8.7577\)
        \(\log \mathrm{I}=3.3613\)
    \(\log \mathrm{IV}=8.1901(9)\)
        IV \(=-\prime\). 02
        (II) \(=+1.15^{\prime \prime}\)
        \((\) III \()=+0.13\)
        IV \(=-.02\)
    Sum \(=+1.26^{\prime \prime}(10)\)
        \(\Delta \varphi=2297.70\)
        \((\mathrm{I})=2296.44\)
```

Table 24.-Log m, for use in computing spherical excess.
[Computed for the Clarke spheroid of 1866.$]$

Lat.	Log m.	Lat.		Log m.	Lat.		Log m.
-			,			,	
000	1. 40695		00	1.40590		00	1. 40349
$0 \quad 30$	1. 40695		30	1. 40586		30	1. 40344
100	1. 40695		00	1. 40582		00	1. 40339
130	1. 40694		30	1. 40578	51	30	1. 40334
200	1.40694		00	1. 40573		00	1. 40329
230	1.40694		30	1. 40569	52	30	1. 40324
300	1.40693		00	1. 40565		00	1. 40319
330	1.40693		30	1.40560		30	1. 40314
400	1.40692		00	1.40556		00	1. 40309
430	1.40691		30	1.40552		30	1. 40304
500	1.40690		00	1.40548	55	00	1. 40299
530	1. 40689		30	1. 40544		30	1.40295
600	1. 40688		00	1.40539		00	1. 40290
630	1.40687		30	1.40534		30	1. 40285
700	1.40686		00	1.40530	57	00	1. 40280
730	1. 40685	32	30	1.40525	57	30	1.40276
800	1. 40683		00	1.40520	58	00	1. 40271
830	1.40682		30	1.40516	58	30	1. 40266
900	1.40680		00	1. 40511		00	1. 40262
930	1.40679		30	1. 40506		30	1. 40257
$10 \quad 00$	1. 40677		00	1. 40501	60	00	1. 40253
$10 \quad 30$	1. 40675	35	30	1. 40496	60	30	1. 40249
1100	1.40673		00	1. 40491	61	00	1.40244
1130	1. 40671		30	1. 40486	61	30	1.40240
1200	1. 40669		00	1. 40482		00	1. 40235
1230	1. 40667	37	30	1. 40477	62	30	1. 40231
1300	1. 40665		00	1.40472	63	00	1. 40227
1330	1. 40663	38	30	1.40467	63	30	1. 40223
1400	1. 40660	39	00	1.40462	64	00	1.40219
1430	1.40658	39	30	1.40457		30	1. 40215
1500	1. 40655	40	00	1. 40452		00	1. 40210
1530	1. 40653	40	30	1.40446	65		1. 40207
1600	1. 40650	41	00	1. 40441	66	00	1. 40203
1630	1. 40647	41	30	1.40436	66	30	1. 40199
1700	1. 40644	42	00	1.40431	67	00	1.40195
1730	1. 40642	42	30	1.40426		30	1. 40192
1800	1.40639	43	00	1. 40421	68	00	1.40188
1830	1.40636	43	30	1.40416	68	30	1. 40185
1900	1. 40632	44	00	1. 40411	69	00	1.40181
1930	1. 40629	44	30	1. 40406	69	30	1. 40178
$20 \quad 00$	1. 40626	45	00	1. 40400	70	00	1. 40174
$20 \quad 30$	1. 40623	45	30	1. 40395	70		1. 40171
2100	1. 40619	46	00	1. 40390		00	1.40168
2130	1.40616	46	30	1. 40385	71	30	1.40164
2200	1. 40612	47	00	1. 40380	72	00	1. 40161
2230	1. 40608	47	30	1.40375			
2300	1. 40605	48	00	1.40369			
2330	1.40601	48	30	1. 40364			
$24 \quad 00$	1.40597	49	00	1. 40359			
2430	1.40594		30	1.40354			

APPROXIMATE SPHERICAL EXCESS.

This may be obtained by dividing the area of the triangle in square miles by 75.5.

Table 25.-Mean refraction.

Table 26.-Corrections for curvature and refraction, in feet $=0.574$ (distance, miles) ${ }^{2}$.
[Difference in feet between the apparent and true level at distances varying from 1 to 66 miles.]

Distance, miles.	Difference in feet for-			Distance, miles.	Difference in feet for-		
	Curvature.	Refraction.	Curvature and refraction.		Curvature.	Refraction.	$\begin{aligned} & \text { Curvature } \\ & \text { and } \\ & \text { refraction. } \end{aligned}$
1	0.7	0.1	0.6	34	771.3	108.0	663.3
2	2.7	0.4	2.3	35	817.4	114.4	703.0
3	6.0	0.8	5.2	36	864.8	121.1	743.7
4	10.7	1.5	9.2	37	913.5	127.9	785.6
5	16.7	2.3	14.4	38	963.5	134.9	828.6
6	24.0	3.4	20.6	39	1,014. 9	142.1	872.8
7	32.7	4.6	28.1	40	1,067.6	149.5	918.1
8	427	6.0	36.7	41	1, 121.7	157.0	964.7
9	54.0	7.6	46.4	42	1,177.0	164.8	1,012.2
10	66.7	9.3	57.4	43	1, 233.7	172.7	1,061.0
11	80.7	11.3	69.4	44	1, 291.8	180.8	1,111.0
12	96.1	13.4	82.7	45	1,351.2	189.2	1,162.0
13	112.8	15.8	97.0	46	1,411.9	197.7	1,214.2
14	130.8	18.3	112.5	47	1, 474.0	206. 3	1,267. 7 .
15	150.1	21.0	129.1	48	1,537.3	2152	1,322. 1
16	170.8	23.9	146.9	49	1,602.0	224.3	1,377.7
17	192.8	27.0	165.8	50	1, 668. 1	233.5	1,434.6
18	216.2	30.3	185.9	51	1, 735.5	243.0	1,492.5
19	240.9	33.7	207.2	52	1, 804. 2	252.6	1,551. 6
20	266.9	37.4	229.5	53	1,874.3	262.4	1,611.9
21	294.3	41.2	253.1	54	1,945. 7	272.4	1,673.3
22	322.9	45.2	277.7	55	2,018.4	282.6	1,735.8
23	353.0	49.4	303.6	56	2,092. 5	292.9	1,799.6
24	384.3	53.8	330.5	57	2, 167.9	303.5	1,864.4
25	417.0	58.4	358.6	58	2, 244.6	314.2	1,930.4
26	451.1	63.1	. 388.0	59	2,322. 7	325. 2	1,997.5
27	486.4	68.1	418.3	60	2,402.1	336.3	2,065. 8
28	523.1	73.2	449.9	61	2,482.8	347.6	2, 135. 2
29	561.2	78.6	482.6	62	2,564.9	359.1	2,205.8
30	600.5	84.1	516.4	63	2,648. 3	370.8	2,277.5
31	641.2	89.8	551.4	64	2, 733.0	382.6	2,350.4
32	683.3	95.7	587.6	65	2,819.1	394.7	2, 424.4
33	726.6	101.7	624.9	66	2,906.5	406.9	2, 499.6

Table 27. -For obtaining differences of altitude for any minute up to 15 degrees, And for any distance.
[Prepared by Arthur P. Davis.]
explanation of table.
The left-hand column is the minutes of the vertical angle, the degrees being denoted by the large number at top of page. The boldface figures at top of column is the distance in miles. Numbers in the body of the table denote the difference of elevation corresponding to the angle on the left and the distance at top. The correction for curvature, refraction, and height of instrument is always plus; it therefore increases the difference of level for angles of elevation, and is subtracted from the difference of level for angles of depression.

Example.-Required the difference of altitude corresponding to a vertical angle of $+9^{\circ} 18^{\prime}$ at a distance of 3.628 miles. On page $28 t$ the tabular number corresponding to $9^{\circ} 18^{\prime}$ and-

Feet.
A distance of 3 mikes is . 2 2, 594
For a distance of 6 miles is 5,188 -for 0.6 is therefore $\quad 519$
For a distance of 2 miles is 1,729 -for 0.02 is therefore $\quad 17$
For a distance of 8 miles is 6,917 -for 0.008 is therefore 7
Correction for curvature, refraction, and height of instrument for 3.6 miles is + . 12
Total difference of altitude.. $+3,149$

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.

	1	2	3	4	ธ	6	7	S	9	Corrections for curvature, refraction, and height of instrument.			
1	1.5	3.1	5	6	8	9	11	12	14	Miles.	Feet.	Miles.	Feet.
2	3.1	6.1	9	12	15	18	22	25	28	1.6	6	10.2	64
3	4.6	9.2	14	18	23	28	32	37	41	2.1	7	10.3	65
	6.1	12.3	18	25	31	37	43	49	55	2.5	8	10.4	67
5	7.7	15.4	23	31	38	46	54	61	69	2.8	9	10.5	68
6	9.2	18.4	28	37	46	55	65	74	83	3.1	10	10.6	69
7	10.8	21.5	32	43	54	65	75	86	97	3.4	11	10.7	70
8	12.3	24.6	37	49	61	74	86	98	111	3.6	12	10.8	71
9	13.8	27.6	41	55	69	83	97	111	124	3.8	13	10.9	73
10	15.4	30.7	46	61	77	92	108	123	138	4.1	14	11.0	74
11	16.9	33.8	51	68	84	101	118	135	152	4.3	15	11.1	75
12	18.4	36.9	55	74	92	111	129	147	166	4.5	16	11.2	77
13	20.0	39.9	60	80	100	120	140	160	180	4.7	17	11.3	78
14	21.5	43.0	65	86	108	129	151	172	194	4.8	18	11.4	79
15	23.0	46.1	69	92	115	138	161	184	207	5.0	19	11.5	80
16	24.6	49.1	74	98	123	147	172	197	221	5.2	20	11.6	82
17	26.1	52.2	78	104	131	157	183	209	235	5.4	21	11.7	83
18	27.6	55.3	83	111	138	166	194	221	249	5.5	22	11.8	84
19	29.2	58.4	88	117	146	175	204	233	263	5.7	23	11.9	86
20	30.7	61.4	92	123	154	184	215	246	276	5.8	24	12.0	87
21	32.3	64.5	97	129	161	194	226	258	290	6.0	25	12.1	89
22	33.8	67.6	101	135	169	203	237	270	304	6.1	26	12.2	90
23	35.3	70.7	106	141	177	212	247	283	318	6.3	27	12.3	91
24	36.9	73.7	111	147	184	221	258	295	332	6.4	28	12.4	93
25	38.4	76.8	115	154	192	230	269	307	346	6.5	29	12.5	94
26	39.9	79.9	120	160	200	240	280	319	359	6.7	30	12.6	96
27	41.5	82.9	124	166	207	249	290	332	373	6.8	31	12.7	97
28	43.0	86.0	129	172	215	258	301	344	387	6.9	32	12.8	99
29	44.5	89.1	134	178	223	267	312	356	401	7.0	33	12.9	100
30	46.1	92.2	138	184	230	276	323	369	415	7.2	34	13.0	102
31	47.6	95.2	143	190	238	286	333	381	429	7.3	35	13.1	103
32	49.2	98.3	147	197	246	295	344	393	442	7.4	36	13.2	105
33	50.7	101.4	152	203	253	304	355	405	456	7.5	37	18.3	106
34	52.2	104.4	157	209	261	313	366	418	470	7.6	38	13.4	108
35	53.8	107.5	161	215	269	323	376	430	484	7.8	39	13.5	109
36	55.3	110.6	166	221	276	332	387	442	498	7.9	40	13.6	111
37	56.8	113.7	170	227	28.4	341	398	456	512	8.0	41	13.7	112
38	58.4	116.7	175	233	292	350	409	467	525	8.1	42	13.8	114
39	59.9	119.8	180	240	300	359	419	479	539	8.2	43	13.9	115
40	61.4	122.9	184	246	307	369	430	492	553	8.3	44	14.0	117
41	63.0	125.9	189	252	315	378	441	504	567	8.4	45	14.1	119
42	64.5	129.0	194	258	323	387	452	516	581	8.5	46	14.2	120
43	66.0	132.1	198	264	330	396	462	528	594	8.6	47	14.3	122
44	67.6	135.2	203	270	338	405	473	541	608	8.7	48	14.4	124
45	69.1	138.2	207	276	346	415	484	553	622	8.8	49	14.5	125
46	70.6	141.3	212	283	353	424	495	565	636	8.9	50	14.6	127
47	72.2	144.4	217	289	361	433	505	578	650	9.0	51	14.7	129
48	73.7	147.5	221	29.5	369	442	516	590	664	9.1	52	14.8	130
49	75.3	150.5	226	301	376	452	527	602	677	9.2	53	14.9	132
50	76.8	153.6	230	307	384	461	538	614	691	9.3	54	15.0	134
51	78.3	156.7	235	313	392	470	548	627	705	9.4	55	15.1	135
52	79.9	159.7	240	319	399	479	559	639	719	9.5	56	15.2	137
53	81.4	162.8	244	326	407	488	570	651	733	9.6	58	15.3	139
54	82.9	165.9	249	332	415	498	581	664	747	9.7	59	15.4	141
55	84.5	169.0	253	338	422	507	591	676	760	9.8	60	15.5	142
56	86.0	172.0	258	344	430	516	602	688	774	9.9	61	15.6	144
57	87.5	175.1	263	350	438	525	613	700	788	10.0	62	15.7	146
58	89.1	178.2	267	356	445	535	624	713	802	10.1	63	15.8	148
59	90.6	181.3	272	363	453	544	634	725	816			15.9 16.0	150 151
60	92.2	184.3	276	369	461	553	645	737	829				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.

	1	2	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument. a			
0	92.2	184.3	276	369	461	553	645	737	829	Miles	Feet	Miles.	Feet
1	93.7	187.4	281	369 375	468	503 562	645 656	750	843	16.1	Feet.	M2.1	Feet. 285
2	95.2	190.5	286	381	476	571	667	762	857	16.2	155	22.2	287
3	96.8	193.5	290	387	484	581	677	774	871	16.3	157	22.3	290
4	98.3	196.6	295	393	492	590	688	786	885	16.4	159	22.4	293
5	99.8	199.7	300	399	499	599	699	799	899	16.5	161	22.5	295
6	101.4	202.8	304	406	507	608	710	811	912	16.6	163	22.6	298
7	102.9	205.8	309	412	515	618	720	823	926	16.7	165	22.7	300
8	104.4	208.9	313	418	522	627	731	836	940	16.8	167	22.8	303
9	106.0	212.0	318	424	530	636	742	848	954	16.9	168	22.9	306
10	107.5	215.1	323	430	538	645	753	860	968	17.0	170	23.0	308
11	109.1	218.1	327	436	545	654	763	873	982	17.1	172	23.1	311
12	110.6	221.2	332	442	553	664	774	885	995	17.2	174	23.2	313
13	112.1	224.3	336	449	561	673	785	897	1,009	17.3	176	23.3	316
14	113.7	227.3	341	455	568	682	796	909	1,023	17.4	178	23.4	319
15	115.2	230.4	346	461	576	691	806	922	1,037	17.5	180	23.5	321
16	116.7	233.5	350	467	584	700	817	934	1,051	17.6	182	23.6	324
17	118.3	236.6	355	473	-591	710	828	946	1,065	17.7	184	23.7	327
18	119.8	239.6	359	479	599	719	839	959	1,078	17.8	186	23.8	330
19	121.4	242.7	364	485	607	728	849	971	1,092	17.9	188	23.9	332
20	122.9	245.8	369	492	614	737	860	983	1,106	18.0	190	24.0	335
21	124.4	248.9	373	498	622	747.	871	995	1,120	18.1	193	24.1	338
22	126.0	251.9	378	504	630	756	882	1,008	1,134	18.2	195	24.2	341
23	127.5	25.0	383	510	638	765	893	1,020	1,148	18.3	197	24.3	343
24	129.0	258.1	387	516	645	774	903	1,032	1,161	18.4	199	24.4	346
25	130.6	261.2	392	522	653	783	914	1,045	1,175	18.5	201	24.5	349
26	132.1	264.2	396	528	661	793	925	1,057	1,189	18.6	203	24.6	352
27	133.6	267.3	401	535	668	802	936	1,069	1,203	18.7	205	24.7	355
28	135.2	270.4	406	541	676	811	946	1,082	1,217	18.8	207	24.8	358
29	136.7	273.5	410	547	684	820	957	1,094	1,231	18.9	210	24.9	360
30	138.3	276.5	415	553	691	830	968	1,106	1,244	19.0	212	25.0	363
31	139.8	279.6	419	559	699	839	979	1,118	1,258	19.1	214	25.1	366
32	141.3	282. 7	424	565	707	848	989	1,131	1,272	19.2	216	25.2	369
33	142.9	285.7	429	571	714	857	1,000	1,143	1,286	19.3	218	25.3	372
34	144.4	288.8	433	578	722	866	1,011	1,155	1,300	19.4	221	25.4	375
35	146.0	291.9	438	584	730	876	1,022	1,168	1,314	19.5	223	25.5	378
36	147.5	295.0	442	590	737	885	1,032	1,180	1,327	19.6	225	25.6	381
37	149.0	298.0	447	596	745	894	1,043	1,192	1,341	19.7	227	25.7	384
38	150.6	301.1	452	602	753	903	1,054	1,204	1,355	19.8	230	25.8	387
39	152.1	304.2	456	608	760	913	1,065	1,217	1,369	19.9	232	25.9	390
40	153.6	307.3	461	615	768	922	1,075	1,229	1,383	20.0	234	26.0	393
41	155.2	310.3	466	621	776	931	1,086	1,241	1,397	20.1	236	26.2	399
42	156.7	313.4	470	427	784	940	1,097	1,254	1,410	20.2	239	26.4	405
43	158.2	316.5	475	633	791	949	1,108	1,266	1,424	20.3	241	26.6	411
44	159.8	319.6	479	639	799	959	1,118	1,278	1,438	20.4	243	26.8	417
45	161.3	322.6	484	645	807	968	1,129	1,291	1,452	20.5	246	27.0	423
46	162.9	325.7	489	651	814	977	1,140	1,303	1,466	20.6	248	27.2	429
47	164.4	328.8	493	658	822	986	1,151	1,315	1,480	20.7	250	27.4	435
48	165.9	331.9	498	664	830	996	1,162.	1,327	1,493	20.8	253	27.6	442
49	167.5	334.9	502	670	837	1,005	1,172	1,340	1,5¢7	20.9	255	27.8	448
50	169.0	338.0	507	676	845	1,014	1,183	1,352	1,521	21.0	258	28.0	455
51	170.6	341.1	512	682	853	1,023	1,194	1,364	1,535	21.1	260	28.2	461
52	172.1	344.2	516	688	860	1,032	1,205	1,377	1,549	21.2	262	28.4	467
53	173.6	347.2	521	694	868	1,042	1,215	1,38!	1,563	21.3	265	28.6	474
54	175.2	350.3	525	701	876	1,051	1,226	1,401	1,576	21.4	267	28.8	480
55	176.7	353.4	530	707	883	1,060	1,237	1,414	1,590	21.5	270	29.0	487
56	178.2	356.5	535	713	891	1,069	1,248	1,426	1,604	21.6	272	29.2	494
57	179.8	359.5	539	719	899	1,079	1,258	1,438	1,618	21.7	275	29.4	501
58	181.3	362.6	544	725	907	1,088	1,269	1,450	1,632	21.8	277	29.6	507
59	182.8	365.7	549	731	914	1,097	1,280	1,465	1,643	21.9	280	29.8	514
60	184.4	368.8	553	738	922	1,106	1,291	1,475	1,659	22.0	282	30.0	521

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of alitude for any minute, etc.-Continued.
2°

	1	2		4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument.a			
0	184.4	368.8	553	738	922	1,106	1,291	1,475	1,659				
1	185.9	371.8	. 558	74.4	930	1,116	1,301	1,487	1,673	Miles.	Feet.	Mites.	Feet.
2	187.5	374.9	562	750	937	1,125	1,312	1,500	1,687	1.6	6	10.2	64
3	189.0	3780	567	756	945	1,134	1,323	1,512	1,701	2.1	7	10.3	65
4	190.5	381.1	572	762	953	1,143	1,334	1,524	1,715	2.5	5	10.4	67
5	192.1	384.1	576	768	960	1,152	1,344	1,537	1,729	2.8	9	10.5	68
6	193.6	387.2	581	774	968	1,162	1,355	1,549	1,742	3.1	10	10.6	69
7	195.1	390.3	585	781	976	1,171	1,366	1,561	1,756	3.4	11	10.7	70
8	196.7	393.4	590	787	983	1,180	1,377	1,573	1,770	3.6	12	10.8	71
9	198.2	396.4	595	793	991	1,189	1,388	1,586	1,784	3.8	13	10.9	73
10	199.8	399.5	599	799	999	1,199	1,398	1,598	1,798	4.1	14	11.0	74
11	201.3	402.6	604	805	1,006	1,208	1,409	1,610	1, 812	4.3	15	11.1	75
12	202.8	405.7	609	811	1,014	1,217	1,420	1,623	1,826	4.5	16	11.2	77
13	204.4	408.8	613	818	1,022	1,226	1,431	1,635	1, 839	4.7	17	11.3	78
14	20.3. 9	411.8	618	824	1,030	1,235	1,441	1,647	1, 853	4.8	18	11.4	79
15	207.5	414.9	622	830	1,037	1,245	1,452	1,660	1,867	5.0	19	11.5	80
16	209.0	418.0	627	836	1,045	1,254	1,463	1,672	1,881	5.2	20	11.6	82
17	210.5	421.1	632	842	1,053	1,263	1,474	1,684	1, 895	5.4	21	11.7	83
18	212.1	424.1	636	848	1,060	1,272	1,484	1,697	1,909	5.5	22	11.8	84
19	213.6	427.2	641	854	1,068	1,282	1,495	1,709	1,932	5.7	23	11.9	86
20	215.1	430.3	645	861	1,076	1,291	1,506	1,721	1,936	5.8	24	12.0	87
21	216.7	433.4	650	867	1,083	1,300	1,517	1,733	1,950	6.0	25	12.1	89
22	218.2	436.4	655	873	1,091	1,309	1,528	1,746	1,964	6.1	26	12.2	90
23	219.8	439.5	659	879	1,099	1,319	1,538	1,758	1,978	6.3	27	12.3	91
24	221.3	442.6	664	885	1,106	1,328	1,549	1, 770	1,992	6.4	28	12.4	93
25	222.8	445.7	669	891	1,114	1,337	1,560	1,783	2,006	6.5	29	12.5	94
26	224.4	448.7	673	897	1,122	1,346	1,571	1,795	$\stackrel{2}{2}, 019$	6.7	30	12.6	96
27	225.9	451.8	678	904	1,130	1,355	1,581	1,807	2,033	6.8	31	12.7	97
28	227.5	454.9	682	910	1,137	1,365	1,592	1, 820	2,047	6.9	32	12.8	99
29	229.0	458.0	687	916	1,145	1,374	1,603	1,832	2,061	7.0	33	12.9	100
30	230.5	461.1	692	922	1,153	1,383	1,614	1,844	2,075	7.2	34	13.0	102
31	232.1	464.1	696	928	1,160	1,392	1,624	1,857	2, 089	7.3	35	13.1	103
32	233.6	467.2	701	934	1,168	1,402	1,635	1,869	2,102	7.4	36	13.2	105
33	235.1	470.3	705	941	1,176	1,411	1,646	1,881	2,116	7.5	37	13.3	106
34	236.7	473.4	711	947	1,183	1,420	1,657	1,893	2,130	7.6	38	13.4	108
35	238.2	476.4	715	953	1,191	1,429	1,668	1,90f,	2,144	7.8	39	13.5	109
36	239.8	479.5	719	959	1,199	1,439	1,678	1,918	2,158	7.9	40	13.6	111
37	241.3	482.6	724	965	1,207	1,448	1,689	1,930	2,172	8.0	41	13.7	112
38	242.8	485.7	779	971	1,214	1,457	1,700	1,943	2,186	8.1	42	13.8	114
39	244.4	488.8	733	978	1,222	1,466	1,711	1,955	2,199	8.2	43	13.9	115
40	245.9	491.8	738	984	1,230	1,476	1,721	1,967	2,213	8.3	44	14.0	117
41	247.5	494.9	742	990	1,237	1,485	1,732	1,980	2,227	8.4	45	14.1	119
42	249.0	497.0	747	996	1,245	1,494	1,743	1,992	2,241	8.5	46	14.2	120
43	250.5	501.1	752	1,002	1,253	1,503	1,754	2,004	2,255	8.6	47	14.3	122
44	$\stackrel{52.1}{ }$	504.2	756	1,008	1,260	1,512	1,765	2,017	2,269	8.7	48	14.4	124
45	253.6	507.2	761	1,014	1,268	1,522	1,775	2,029	2,283	8.8	49	14.5	125
46	235.2	510.3	765	1,021	1,276	1,531	1,786	2,041	2,296	8.9	50	14.6	127
47	256.7	513.4	770	1,027	1,283	1,540	1,797	2,054	2,310	9.0	51	14.7	129
48	258.2	516.5	775	1,033	1,291	1,549	1,808	2,066	2,324	9.1	52	14.8	130
49	259.8	519.5	779	1,039	1,299	1,559	1,818	2,078	2,338	9.2	53	14.9	132
50	261.3	522.6	784	1,045	1,307	1,568	1,829	2,091	2,352	9.3	54	15.0	134
51	262.9	525.7	789	1,051	1,314	1,577	1,840	2,103	2,366	9.4	55	15.1	135
52	264.4	528.8	793	1,058	1,322	1,586	1,851	2,115	2, 380	9.5	56	15. 2	137
$\stackrel{5}{54}$	267.9	531.9 534.9	798	1,064	1,330	1,596	1,862	2,127	2,393	9.6	58	15.3	139
55	269.0	534.9 538.0	807	1,076	1,345	1,605	1,872	$\stackrel{2,140}{2,152}$	2,407	9.7 9.8	69	15.4	141
56	270.6	541.1	812	1,082	1,353	1,623	1,894	2,164	2, 435	9.8 9.9	61	15.5 15.6	142
57	272.1	544.2	816	1,088	1,360	1,633	1,905	2,177	2,449	10.0	52	15.7	146
58	273.6	547.3	821	1,095	1,368	1,642	1,915	2,189	2,463	10.1	63	15.8	148
59	27.2	550.3	826	1,101	1,376	1,651	1,926	2,201	2,477			15.9 16.0	150 151
60	276.7	553.4	830	1,107	1,384	1,660	1,937	2,214	2,490				

[^4] is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued. 3°

"For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.
4°

	1	2	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument. a			
'													
0	369.2	738	1,108	1,477	1,846	2,215	2,584	2,954	3, 323				
1	370.8	742	1,112	1,483	1,854	2,225	2,595	2,966	3,337	Miles.	Feet.	Miles.	Feet.
2	372.3	745	1,117	1,489	1,862	2,234	2,606	2,978	3,351	1.6	6	10.2	64
3	373.8	748	1,122	1,495	1,869	- -243	2,617	2,991	3,365	2.1	7	10.3	65
4	375.4	751	1,126	1,502	1,877	2,252	2,628	3,003	3,378	2.5	8	10.4	67
5	376.9	754	1,131	1,508	1,885	2,262	2,639	3,015	3, 392	2.8	9	10.5	68
6	378.5	757	1,135	1,514	1,892	2,271	2,649	3,028	3,406	3.1	10	10.6	69
7	380.0	760	1,140	1,520	1,900	2,280	2,660	3, 040	3,420	3.4	11	10.7	70
8	381.6	763	1,145	1,526	1,908	2,289	2,671	3,053	3,434	3.6	12	10.8	71
9	383.1	766	1,149	1,532	1,916	2,299	2,682	3,065	3,448	3.8	13	10.9	73
10	384.7	769	1,154	1,539	1,923	2,308	2,693	3,077	3,462	4.1	14	11.0	74
11	386.2	772	1,159	1,545	1,931	2,317	2,703	3,090	3,476	4.3	15	11.1	75
12	387.7	775	1,163	1,551	1,939	2,326	2,714	3,102	3,490	4.5	16	11.2	77
13	389.3	779	1,168	1,557	1,946	2,336	2,725	3,114	3,504	4.7	17	11.3	78
14	390.8	782	1,172	1,563	1,954	2,345	2,736	3,127	3,517	4. 8	18	11.4	79
15	392.4	785	1,177	1,569	1,962	2,354	2,747	3,139	3,531	5. 0	19	11.5	80
16	393.9	788	1,182	1,576	1,970	2,363	2,757	3,151	3,545	5.2	20	11.6	82
17	395.5	791	1,186	1,582	1,977	2,373	2,768	3,164	3,559	5.4	21	11.7	83
18	397.0	794	1,191	1,588	1,985	2,382	2,779	3,176	3,573	5.5	22	11.8	84
19	398.6	797	1,196	1,594	1,993	2,391	2,790	3,188	3,587	5.7	23	11.9	86
20	400.1	800	1,200	1,600	2,000	2,401	2,801	3,201	3,601	5.8	24	12.0	87
21	401.6	803	1,205	1,607	2,008	2,410	2,811	3,213	3, 615	6.0	25	12.1	89
22	403.2	806	1,210	1,613	2,016	2,419	2,822	3,225	3,629	6.1	26	12.2	90
23	404.7	809	1,214	1,619	2,024	2,428	2,833	3,238	3,643	6.3	27	12.3	91
24	406.3	813	1,219	1,625	2,031	2,438	2,844	3,250	3,656	6.4	28	12.4	93
25	407.8	816	1,223	1,631	2,039	2,447	2,855	3, 263	3,670	6.5	29	12.5	94
$\stackrel{26}{ }$	409.4	819	1,228	1,637	2,047	2,456	2,866	3,275	3,684	6.7	30	12.6	96
27	410.9	822	1,233	1,644	2,055	2,465	2,876	3,287	3,698	6.8	31	12.7	97
28	412.5	825	1,237	1,650	2,062	2,475	2,887	3,300	3, 712	6.9	32	12.8	99
29	414.0	828	1,242	1,656	2,070	2,484	2,898	3,312	3,726	7.0	33	12.9	100
30	415.5	831	1,247	1,662	2,078	2,493	2,909	3, 324	3, 740	7.2	34	13.0	102
31	417.1	834	1,251	1,668	2,085	2,503	2,9:0	3,337	3,754	7.3	35	13.1	103
32	418.6	837	1,256	1,675	2,093	2,512	2,930	3,349	3,768	7.4	36	13.2	105
33	420.2	840	1,261	1,681	2,101	2,521	2,941	3,361	3,782	7.5	37	13.3	106
34	421.7	843	1,265	1,687	2,109	2,530	2,952	3,374	3,796	7.6	38	13.4	108
35	423.3	847	1,270	1,693	2,116	2,540	2,963	3,386	3,809	7.8	39	13.5	109
36	424.8	850	1,274	1,699	2,124	2,549	2,974	3,399	3,823	7.9	40	13.6	111.
37	426.4	853	1,279	1,705	2, 132	2,558	2,985	3,411	3,837	8.0	41	13.7	112
38	427.9	856	1,284	1,712	2,140	2,567	2,995	3,423	3,851	8.1	42	13.8	114
39	429.5	859	1,288	1,718	2,147	2,577	3,006	3,436	3,865	8.2	43	13.9	115
40	431.0	862	1,293	1, 724	2,155	2,586	3,017	3,448	3,879	8.3	44	14.0	117
41	432.5	865	1,298	1,730	2,163	2,595	3,028	3,460	3, 993	8.4	45	14.1	119
42	434.1°	868	1,302	1,736	2, 170	2, 605	3,039	3,473	3,907	8.5	46	14.2	120
43	435.6	871	1,307	1,743	2,178	2, 614	3,049	3,485	3,921	8.6	47	14.3	122
44	437.2	874	1,312	1,749	2,186	2,623	3,060	3,498	3,935	8.7	48	14.4	124
45	438.7	877	1,316	1,755	2,194	2,632	3,071	3,510	3,949	8. 8	49	14.5	125
46	440.3	881	1,321	1,761	2,201	2,642	3,082	3,522	3, 963	8.8	50	14.6	127
47	441.8	884	1,325	1,767	2,209	2, 651	3,093	3,535	3, 976	9. 0	51	14.7	129
48	443.4 444	887	1,330	1,773	2,217	2, 660	3,104	3,547	3,990	9.1	52	14.8	130
49	444.9	890	1,335	1,780	2,225	2,669	3,113	3,558	4,003	9.2	53	14.9	132
50	446.5	893	1,339	1,786	2,232	2,679	3,125	3,572	4,018	9.3	54	15.0	134
51	448.0	896	1,344	1,792	2,240	2, 688	3,136	3,584	4,032	9.4	55	15.1	135
52	449.6	899	1,349	1,798	2,248	2,697	3,147	3,596	4,046	9.5	56	15.2	137
58	451.1	902	1,353	1, 804	2,256	2,707	3,158	3,609	4,060	9.6	58	15.3	139
54 55	452.7 454.2	905	1,358	1,811	2,263	2,716	3, 169	3, 621	4,074	9.7	59	15.4	141
55 56	454.2	908	1,363	1,817	2,271	2, 725	3,179	3, 634	4,088	9.8	60	15.5	142
56 57	455.8 457.3	912	1,367	1, 823	2,279	2, 735	3,190	3,646	4,102	9.9	61	15.6	144
57 58	457.3	915	1,372	1,829	2,286	2, 744	3,201	3, 658	4,116	10.0	62	15. 7	146
58 59	458.8	918	1,377	1,835	2,294	2,753	3,212	3, 671	4,130	10.1	63	15. 8	148
59	460.4	921	1,381	1,842	2,302	2,762	3,223	3,683	4,144			15.9 16.0	150 151
60	461.9	924	1,386	1,848	2,310	2, 772	3,234	3,696	4,157			16.0	151

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.

	1	2	3	4	อ	6	7	8	9	Corrections for curvature, refraction, and height of instrument. a			
	461.9	924	1,38	1,8	2,31	2,7	3,2						
1	463.5	927	1,390	1,854	2,317	2,781	3,244	3, 708	4,171	Miles.	Feet.	Miles:	Feet.
2	465.0	930	1,395	1,860	2,325	2,790	3,255	3, 720	4,185	1.6	6	10.2	64
3	466.6	933	1,400	1,866	2,333	2,800	3,266	3, 733	4,199	2.1	7	10.3	65
4	408.1	936	1, 405	1,873	2,341	2,809	3,277	3,745	4,213	2.5	8	10.4	67
5	469.7	939	1, 409	1,879	2,348	2,818	3,288	3,757	4,227	2.8	9	10.5	68
6	471.2	942	1,414	1,885	2,356	2,827	3,299	3,770	4,241	3.1	10	10.6	69
7	472.8	946	1,419	1,891	2,364	2,837	3,309	3,782	4,255	3.4	11	10.7	70
8	474.3	949	1,423	1,897	2,372	2,846	3,320	3,795	4,269	3.6	12	10.8	71
9	475.9	952	1, 428	1,904	2,379	2,855	3,331	3, 807	4,283	3.8	13	10.9	73
10	477.4	955	1, 432	1,910	2,387	2,865	3,342	3,819	4,297	4.1	14	11.0	74
11	479.0	958	1, 437	1, 916	2,395	2,874	3,353	3,832	4,311	4.3	15	11.1	75
12	480.5	961	1,442	1,922	2,403	2,883	3,364	3,844	4,325	4.5	16	11.2	77
13	482.1	964	1,447	1,928	2,410	2,892	3,375	3,857	4,339	4.7	17	11.3	78
- 14	483.6	967	1,451	1,935	2,418	2,902	3,385	3,869	4,353	4.8	18	11.4	79
15	485.2	970	1,456	1,941	2,426	2,911	3,396	3,881	4,367	5.0	19	11.5	80
16	486.7	973	1,461	1,947	2,434	2,920	3,407	3,894	4,381	5.2	20	11.6	82
17	488.3	976	1,465	1,953	2,441	2, 930	3,418	3,906	4,394	5.4	21	11.7	83
18	489.8	980	1,470	1,959	2,449	2,939	3,429	3,919	4,408	5.5	22	11.8	84
19	491.3	983	1,475	1,966	2,457	2,948	3,440	3,931	4,422	5.7	23	11.9	86
20	492.9	986	1,479	1,972	2, 465	2,958	3, 450	3, 943	4,436	5.8	24	12.0	87
21	494.5	989	1,483	1,978	2,472	2,967	3, 461	3, 956	4,450	6.0	25	12.1	89
22	496.0	992	1,488	1,984	2,480	2,976	3,472	3, 968	4,464	6.1	26	12.2	90
23	497.6	995	1,493	1,990	2, 488	2,985	3,483	3,981	4,478	6.3	27	12.3	91
24	499.1	998	1,498	1,996	2,496	2,995	3,494	3,993	4,492	6.4	28	12.4	93
25	500.7	1,001	1,502	2,003	2,503	3,004	3,505	4,005	4,506	6.5	29	12.5	94
26	502.2	1,004	1,507	2,009	2,511	3, 013	3,515	4,018	4,520	6.7	30	12.6	96
27	503.8	1,007	1,512	2,015	2,519	3,023	3,526	4,030	4,534	6.8	31	12.7	97
28	505.3	1,010	1,516	2,021	2, 527	3,032	3,537	4,042	4,548	6.9	32	12.8	99
29	506.9	1,014	1,521	2,027	2,534	3,041	3,548	4,055	4,562	7.0	33	12.9	100
30	508.4	1,017	1,525	2,034	2,542	3, 050	3,559	4,067	4,576	7.2	34	13.0	102
31	510.0	1,020	1,530	2,040	2, 550	3,060	3,570	4,080	4,590	7.3	35	13.1	103
32	511.5	1,023	1,535	2,046	2,558	3,069	3,581	4,092	4,604	7.4	36	13.2	105
33	513.0	1,026	1,539	2,052	2,565	3,078	3,591	4,105	4,618	7.5	37	13.3	106
34	514.6	1,029	1,544	2,058	2,573	3,088	3, 602	4,117	4,632	7.6	38	13.4	108
35	516.2	1,032	1,549	2,065	2,581	3,097	3,613	4,129	4,645	7.8	39	13.5	109
36	517.7	1,035	1,553	2,071	2,589	3,106	3, 624	4,142	4,659	7.9	40	13.6	111
37	519.3	1, 039	1, 558	2,077	2,596	3,116	3, 635	4,154	4,673	8.0	41	13.7	112
38	520.8	1,042	1,563	2,083	2,604	3,125	3,646	4,167	4,687	8.1	42	13.8	114
39	522.4	1,045	1,568	2,089	2,612	3,134	3,657	4,179	4,701	8.2	43	13.9	115.
40	523.9	1,048	1,572	2,095	2, 620	3, 144	3,667	4,191	4,715	8.3	44	14.0	117
41	525.5	1,051	1,576	2,102	2,627	3,153	3,678	4,204	4,729	8.4	45	14.1	119
42	527.0	1,054	1,581	2,108	2,635	3, 162	3, 689	4,216	4,743	8.5	46	$\cdot 14.2$	120
43	528.6	1,057	1,586	2,114	2,643	3,172	3, 700	4,229	4,757	8.6	47	14.3	122
44	530.1	1,060	1,591	2,121	2,651	3,181	3, 711	4,241	4,771	8.7	48	14.4	124
45	531.7	1,063	1,595	2,127	2,658	3, 190	3, 722	4,253	4,785	8.8	49	14.5	125
46	533.2	1,066	1,600	2,133	2, 666	3,199	3, 733	4,266	4,799	8.9	50	14.6	127
47	534.8	1,070	1, 605	2,139	2,674	3,209	3, 743	4,278	4,813	9.0	51	14.7	129
48	536.3	1,073	1,609	2,145	2,682	3,218	3,754	4,291	4,827	9.1	52	14.8	130
49	537.9	1,076	1,614	2,154	2,689	3,227	3,765	4,303	4,841	9.2	53	14.9	132
50	539.4	1,079	1,618	2,158	2,697	3,237	3, 776	4,315	4,855	9.3	54	15.0	134
51	541.0	1,082	1, 623	2, 166	2,705	3,246	- ${ }^{\text {, }} 787$	4,328	4,869	9.4	55	15.1	135
52	542.5	1,085	1,628	2,170	2,713	3,255	3,798	4,340	4,883	9.5	56	15.2	137
53	544.1	1,088	1,632	2,176	2,721	3,265	3, 809	4,353	4,897	9.6	58	15.3	139
54	545.6	1,091	1,637	2,183	2,728	3,274	3, 819	4,365	4,911	9.7	59	15.4	141
55	547.2	1,094	1, 642	2,189	2,736	3,283	3, 830	4,378	4,925	9.8	60	15.5	142
56	548.7	1,097	1, 646	2,195	2,743	3,292	3,841	4,390	4,939	9.9	61	15.6	144
57	550.3	1,101	1,651	2,201	2,752	3,302	3,852	4,402	4,953	10.0	62	15.7	146
58	551.8	1,104	1,656	2,207	2,759	3,311	3,863	4,415	4,967	10.1	63	15.8	148
59	553.4	1,107	1,661	2,214	2,767	3,320	3,874	4,427	4,981			15.9 16.0	150 151
60	575.0	1,110	1,665	2,220	2,775	3,330	3,885	4,440	4,995				

u For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.
6°

	1	2	3	4	5	6	7	8	9	Corrections for curvature, refraction and height of instrument. a			
,													
0	555.0	1,110	1,665	2,220	2,775	3,330	3,885	4,440	4,995				
1	556.5	1,113	1,670	2,226	2,783	3,339	3, 896	4,452	5009	Miles.	Feet.	Miles.	Feet.
2	558.1	1,116	1,674	2,232	2,790	3,348	3,906	4,464	5, 023	1.6	6	10.2	64
3	559.6	1,119	1,679	2,238	2,798	3,358	3,917	4,477	5,037	2.1	7	10.3	65
4	561.2	1,122	1,684	2,245	2,806	3,367	3,928	4,489	5,050	2.5	8	10.4	67
5	562.7	1,125	1,688	2,251	2,814	3,376	3,939	4,502	5,064	2.8	9	10.5	68
6	564.3	1,129	1,693	2,257	2,821	3,386	3,950	4,514	5,078	3.1	10	10.6	69
7	565.8	1,132	1,697	2,263	2,829	3,395	3,961	4,527	5,092	3.4	11	10.7	70
8	567.4	1,135	1,702	2,270	2,837	3,404	3,972	4,539	5, 106	3.6	12	10.8	71
9	568.9	1,138	1,707	2,276	2,845	3,414	3,983	4,551	5,120	3.8	13	10.9	73
10	570.5	1,141	1,711	2,282	2,852	3,423	3,993	4,564	5,134	4.1	14	11.0	74
11	572.0	1,144	1,716	2,288	2,860	3,432	4,004	4,576	5,148	4.3	15	11.1	75
12	573.6	1,147	1,721	2,294	2,868	3,442	4,015	4,589	5,162	4.5	16	11.2	77
13	575.2	1,150	1,725	2,301	2,876	3,451	4,026	4,601	5,176	4.7	17	11.3	78
14	576.7	1,153	1,730	2,307	2,884	3,460	4,037	4,614	5, 190	4.8	18	11.4	79
15	578.3	1,157	1,735	2,313	2,891	3, 470	4,048	4,626	5,204	5.0	19	11.5	80
16	579.8	1,160	1,739	2,319	2,899	3,479	4, 059	4,639	5,218	5.2	20	11.6	82
17	581.4	1,163	1,744	2,325	2,907	3,488	4,070	4,651	5,232	5.4	21	11.7	83
18	582.9	1,166	1,749	2,332	2,915	3,498	4,080	4,663	5,246	5.5	22	11.8	84
19	584.5	1,169	1,753	2,338	2,922	3,507	4,091	4,676	5,260	5.7	23	11.9	86
20	586.0	1,172	1,758	2,344	2,930	3,516	4,102	4,688	5,274	5.8	24	12.0	87
21	587. ${ }^{\text {c }}$	1,175	1,763	2,350	2,938	3,526	4,113	4,701	5,288	6.0	25	12.1	89
22	589.1	1,178	1,767	2,357	2,946	3, 535	4, 124	4,713	5,302	6.1	26	12.2	90
23	590.7	1,181	1,772	2,363	2,953	3, 544	4,135	4,726	5,316	6.3	27	12.3	91
24	592.2	1,185	1,777	2,369	2,961	3,554	4,146	4,738	5, 330	6. 4	28	12.4	93
25	593.8	1,188	1,781	2,375	2,969	3,563	4,157	4,750	5,344	6.5	29	12.5	94
26	595.4	1,191	1,786	2,381	2,977	3,572	4,168	4,763	5,358	6. 7	30.	12.6	96
27	596.9	1,194	1,791	2,388	2,985	3, 581	4,178	4,775	5,372	6.8	31	12.7	97
28	598.5	1,197	1,795	2,394	2,992	3,591	4,189	4,788	5,386	6.9	32	12.8	99
29	600.0	1,200	1,800	2,400	3,000	3,600	4,200	4,800	5, 400	7.0	33	12.9	100
30	601.6	1,203	1,805	2,406	3,008	3,609	4,211	4,813	5, 414	7.2	34	13.0	102
31	603.1	1,206	1,809	2,413	3,016	3, 619	4,222	4,825	5, 428	7.3	35	13.1	103
32	604.7	1,209	1, 814	2,419	3,023	3,628	4,233	4,838	5, 442	7.4	36	13.2	105
33	606.3	1,213	1,819	2,425	3,031	3,637	4,244	4,8®0	5,456	7.5	37	13.3	106
34	607.8	1,216	1,823	2,431	3,039	3, 647	4,255	4,862	5,470	7.6	38	13.4	108
35	609.4	1,219	1,828	2,437	3,047	3, 656	4,266	4,875	5,484	7.8	39	13.5	109
36	610.9	1,222	1, 833	2,444	3, 055	3, 666	4,276	4,887	5,498	7.9	40	13.6	111
37	612.5	1,225	1,837	2,450	3, 062	3,675	4,287	4,900	5, 512	8.0	41	13.7	112
38	614.0	1,228	1,842	2,456	3,070	3,684	4,298	4,912	5,526	8.1	42	13.8	114
39	615.5	1,231	1,847	2,462	3,078	3,694	4,309	4,925	5,540	8.2	43	13.9	115
40	617.2	1,234	1,851	2,469	3,086	3,703	4,320	4,937	5,554	8.3	44	14.0	117
41	618.7	1,237	1,856	2,475	3,094	3,712	4,331	4,950	5,568	8.4	45	14.1	119
42	620.3	1,241	1,861	2, 481	3,101	3, 722	4,342	4,962	5,582	8.5	46	14.2	120
43	621.8	1,244	1,865	2, 487	3,109	3, 731	4,353	4,975	5,596	8.6	47	14.3	122
44	623.4	1,247	1,870	2,494	3,117	3,740	4,364	4,987	5, 610	8.7	48	14.4	124
45	624.9	1,250	1,875	2,500	3,125	3,750	4,374	4,999	5,624	8.8	49	14.5	125
46	626.5	1,253.	1,879	2,506	3,132	3,759	4,385	5,012	5, 638	8.8	50	14.6	127
47	628.0	1,256	1,884	2,512	3,140	3,768	4,396	5, 024	5,653	9. 0	51	14.7	129
48	629.6	1,259	1,889	2,518	3,148	3,778	4,407	5,037	5,667	9.1	52	14.8	130
49	631.2	1,262	1,894	2,525	3,156	3,787	4,418	5,049	5,681	9.2	53	14.9	132
50	632.7	1,265	1,898	2,531	3,164	3,796	4,429	5, 062	5,695	9.3	54	15.0	134
51	634.3	1,269	1,903	2,537	3,171	3,806	4,440	5,074	5,709	9.4	55	15.1	135
52	635.8	1,272	1,908	2,543	3,179	3, 815	4,451	5,087	5,723	9.5	56	15.2	137
53	637.4	1,275	1,912	2,550	3,187	3,824	4,462	5,099	5,737	9.6	58	15.3	139
54	638.9	1,278	1,917	2,556	3,195	3,834	4,473	5,112	5,751	9.7	59	15.4	141
55	640.5	1,281	1,922	2,562	3, 203	3, 843	4,484	5,124	5,765	9.8	60	15.5	142
56	642.1	1,284	1,926	2,568	3,210	3,852	4,494	5,136	5,779	9.9	61	15.6	144
57	643.6	1,287	1,931	2,575	3,218	3,862	4,505	5,149	5,793	10.0	62	15. 7	146
58	645.2	1,290	1,936	2,581	3, 226	3,871	4,516	5,161	5,807	10.1	63	15.8	148
59	646.7	1,293	1,940	2,587	3,234	3,880	4,527	5,174	5,821			15.9 16.0	150 151
60	648.3	1,297	1,945	2,59:	3,242	3,890	4,538	5,186	5,835				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.

7°

	1	*	3	4	5	6	7	8	9	Corrections for curvature, refraction and height of instrument.a			
	648	1.29											
1	648.3 649.9	1,300	1,945	2,593 2,599	3,242 3,249	3,890 3,899	4,538 4,549	5, 186	$\begin{aligned} & 5,835 \\ & 5,849 \end{aligned}$	Miles.	Feet.	Miles.	Feet.
2	651.4	1,303	1,954	2, 606	3,257	3,909	4,560	5,211	5,863	1.6	6	10.2	64
3	653.0	1,306	1,959	2, 612	3,265	3,918	4,571	5,224	5,877	2.1	7	10.3	65
4	654.5	1,309	1,964	2,618	3,273	3,927	4,582	5,236	5,891	2.5	8	10.4	67
5	656.1	1,312	1,968	2,624	3,281	3,937	4,593	5,249	5,905	2.8	9	10.5	68
6	657.7	1,315	1,973	2, 631	3,288	3,946	4,604	5,261	5,919	3.1	10	10.6	69
7	659.2	1,318	1,978	2,637	3,296	3,955	4,615	5,274	5,933	3.4	11	10.7	70
8	660.8	1,322	1,982	2,643	3,304	3,965	4,626	5,286	5,947	3.6	12	10.8	71
9	662.4	1,325	1,987	2,649	3,312	3,974	4,636	5,299	5,961	3.8	13	10.9	73
10	663.9	1,328	1,992	2,656	3,320	3,983	4,647	5,311	5,975	4.1	14	11.0	74
11	665.5	1,331	1,996	2,662	3, 327	3,993	4,658	5,324	5, 989	4.3	15	11.1	75
12	667.0	1,334	2,001	2, 668	3,335	4,002	4,669	5,336	6,003	4.5	16	11.2	77
13	668.6	1,337	2,006	2,674	3,343	4,012	4,680	5,349	6,017	4.7	17	11.3	78
14	670.2	1,340	'2, 010	2,681	3,351	4,021	4, 691	5, 361	6,031	4.8	18	11.4	79
15	671.7	1,343	2,015	2, 687	3,359	4,030	4,702	5,374	6,045	5.0	19	11.5	80
16	673.3	1,347	2,020	2,693	3,366	4,040	4,713	5,386	6,060	5.2	20	11.6	82
17	674.8	1,350	2,025	2, 699	3, 374	4,049	4,724	5,399	6,074	5.4	21	11.7	83
18	676.4	1,353	2,029	2,706	3,382	4,058	4,735	5,411	6,088	5.5	22	11.8	84
19	678.0	1,356	2,034	2,712	3,390	4,068	4,746	5,424	6,102	5.7	23	11.9	86
20	679.5	1,359	2,039	2, 718	3,398	4,077	4,757	5,436	6,116	5.8	24	12.0	87
21	681.1	1,362	2,043	2,724	3,403	4,087	4,768	5, 449	6,130	6.0	25	12.1	89
22	682.6	1,365	2,048	2,731	3,413	4,096	4,779	5,461	6,144	6.1	26	12.2	90
23	684.2	1,368	2,053	2,737	3,421	4,105	4,789	5,474	6,158	6.3	27	12.3	91
24	685.8	1,372	2,057	2,743	3,429	4,115	4,800	5,486	6, 172	6.4	28	12.4	93
25	687.3	1,375	2,062	2,749	3,437	4,124	4,811	5, 499	6,186	6.5	29	12.5	94
26	688.9	1,378	2,067	2,756	3,444	4,133	4,822	5,511	6,200	6.7	30	12.6	96
27	690.5	1,381	2,071	2,762	3,452	4,143	4,833	5, 524	6,214	6.8	31	12.7	97
28	692.0	1,384	2,076	2,768	3,460	4,152	4,844	5, 536	6,228	6.9	32	12.8	99
29	693.6	1,387	2,081	2,774	3,468	4,161	4,855	5,549	6,242	7.0	33	12.9	100
30	695.1	1,390	2,085	2, 781	3,476	4,171	4,866	5,561	6,256	7.2	34	13.0	102
31	696.7	1,393	2,090	2,787	3,483	4,180	4,877	5,574	6,270	7.3	35	13.1	103
32	698.3	1,396	2,095	2,793	3, 491	4,190	4,888	5, 586	6,284	7.4	36	13.2	105
33	699.8	1, 400	2,099	2,799	3,499	4,199	4,899	5, 599	6,298	7.5	37	13.3	106
34	701.4	1,403	2, 104	2,806	3,507	4,208	4,910	5,611	6,312	7.6	38	13.4	108
35	702.9	1, 406	2,109	2, 812	3,515	4,218	4,921	5, 624	6,327	7.8	39	13.5	109
36	704.5	1, 409	2, 114	2,818	3,523	4,227	4,932	5, 636	6,341	7.9	40	13.6	111
37	706.1	1, 412	2,118	2,824	3,530	4,236	4,943	5,649	6,355	8.0	41	13.7	112
38	707.6	1,415	2, 123	2,831	3, 538	4,246	4,953	5,661	6,369	8.1	42	13.8	114
39	709.2	1,418	2,128	2,837	3,546	4,255	4,964	5,674	6,383	8.2	43	13.9	115
40	710.8	1,422	2,132	2,843	3, 554	4,26.7	4,975	5,686	6,397	8.3	44°	14.0	117
41	712.3	1,425	2,137	2,849	3,562	4,274	4,986	5,699	6,411	8.4	45	14.1	119
42	713.9	1, 428	2,142	2,856	3,569	4,283	4,997	5, 711	6,425	8.5	46	14.2	120
43	715.5	1,431	2, 146	2, 862	3,577	4,293	5,008	5, 724	6,439	8.6	47	14.3	122
44	717.0	1, 434	2,151	2,868	3,585	4,302	5,019	5,736	6,453	8.7	48	14.4	124
45	718.6	1, 437	2,156	2,874	3, 593	4,312	5,030	5,749	6,467	8.8	49	14.5	125
46	720.2	1,440	2,160	2,881	3,601	4,321	5,041	5, 761	6,481	8.9	50	14.6	127
47	721.7	1,443	2,165	2,887	3, 609 .	4,330	5,052	5,774	6,495	9.0	51	14.7	129
48	723.3	1,447	2,170	2,893	3,616	4,340	5,063	5,786	6,510	9.1	52	14.8	130
49	724.8	1,450	2,175	2,899	3,624	4,349	5,074	5,799	6,524	9.2	53	14.9	132
50	726.4	1,453	2,179	2,906	3, 632	4,358	5,085	5,811	6,538	9.3	54	15.0	134
51	728.0	1,456	2,184	2,912	3,640	4,368	5,096	5, 824	6,552	9.4	55	15.1	135
52	729.5	1, 459	-2,189	2,918	3,648	4,377	5,107	5, 836	6,566	9.5	56	15.2	137
53	731.1	1, 462	2,193	2,924	3,656	4,387	5,118	5,849	6, 580	9.6	58	15.3	139
54	732.7	1, 465	2,198	2,931	3, 663	4,396	5, 129	5,861	6,594	9.7	59	15.4	141
55	734.2	1, 468	2,203	2,937	3,671	4,405	5, 140	5,874	6,608	9.8	60	15.5	142
56	735.8	1,47)	2,207	2,943	3,679	4,415	5,151	5,886	6,622	9.9	61	15.6	144
57	737.4	1, 475	2,212	2,949	3, 687	4,424	5,162	5, 899	6,636	10.0	62	15.7	146
58	738.9	1, 478	2,217	2,956	3,695	4, 434	5,172	5,911	6,650	10.1	63	15.8	148
59	740.5	1, 481	2,221	2,962	3,702	4,443	5,183	5,924	6,664			15.9 16.0	150 151
60	742.1	1,484	2,226	2,968	3,710	4,452	5,194	5,936	6,678				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.

8°

	1	$\mathbf{2}$	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument.a			
0	742	1,4	2,226	2,968	3,710	4,	5,1	5	6,678				
1	743.6	1,487	2,231	2,974	3, 718	4,462	5,205	5,949	6,693	Miles.	Feet.	Miles.	Feet.
2	745.2	1,490	2,236	2,981	3,726	4,471	5,216	5,962	6,707	1.6	6	10.2	64
3	746.8	1,494	2,240	2,987	3,734	4,481	5,227	5,974	6,721	2.1	7	10.3	65
4	748.3	1,497	2,245	2,993	3,742	4,490	5,238	5,987	6,735	2.5	8	10.4	67
5	749.9	1,500	2,250	3,000	3,749	4,499	5,249	5,999	6,749	2.8	9	10.5	68
6	751.0	1,503	2,254	3,006	3,757	4,509	5,260	6,012	6,763	3.1	10	10.6	69
7	753.0	1,506	2,259	3,012	3,765	4,518	5,271	6,024	6,777	3.4	11	10.7	70
8	754.6	1,509	2,264	3,018	3,773	4,528	5,282	6,037	6,791	3.6	12	10.8	71
9	756.2	1,512	2,269	3,025	3,781	4,537	5,293	6,049	6,806	3.8	13	10.9	73
10	757.7	1,515	2,273	3,031	3,789	4,546	5,304	6,062	6,820	4.1	14	11.0	74
11	759.3	1,519	2,278	3,037	3,797	4,556	5,315	6,074	6,834	4.3	15	11.1	75
12	760.9	1,522	2,283	3,043	3,804	4,565	5,326	6,087	6,848	4.5	16	11.2	77
13	762.4	1,525	2,287	3, 050	3,812	4,575	5,337	6,100	6,862	4.7	17	11.3	78
14	764.0	1,528	2,292	3,056	3,820	4,584	5,348	6,112	6,876	4.8	18	11.4	79
15	765.6	1,531	2,297	3,062	3,828	4,593	5,359	6,125	6,890	5.0	19	11.5	80
16	767.1	1,534	2,301	3,069	3,836	4,603	5,370	6,137	6,904	5.2	20	11.6	82
17	768.7	1,537	2,306	3, 075	3,844	4,612	5,381	6,150	6,918	5.4	21	11.7	83
18	770.3	1,541	2,311	3,081	3,851	4,622	5,392	6,162	6,933	5.5	22	11.8	84
19	771.8	1,544	2,316	3,087	3,859	4,631	5,403	6,175.	6,947	5.7	23	11.9	86
20	773.4	1,547	2,320	3,094	3,867	4,640	5,414	6,187	6,961	5.8	24	12.0	87
21	775.0	1,550	2,325	3,100	3,875	4,650	5,425	6,200	6,975	6.0	25	12.1	89
22	776.6	1,553	2,330	3,106	3,883	4,659	5,436	6,212	6,989	6.1	26	12.2	90
23	778.1	1,556	2,334	3,112	3,891	4,669	5,447	6,225	7,003	6.3	27	12.3	91
24	779.7	1, 559	2,339	3,119	3,898	4,678	5,458	6,237	7,017	6.4	28	12.4	93
25	781.3	1,562	2,344	3,125	3,906	4,688	5,469	6,250	7,031	6.5	29	12.5	94
26	782.8	1,566	2,348	3,131	3,914	4,697	5,480	6,263	7,045	6.7	30	12.6	96
27	784.4	1, 569	2, 353	3,138	3, 922	4,706	5,491	6,275	7,060	6.8	31	12.7	97
28	786.0	1,572	2,358	3,144	3,930	4,716	5,502	6,288	7,074	6.9	32	12.8	99
29	-87.5	1,575	2,363	3,150	3,938	4,725	5,513	6,500	7,088	7.0	33	12.9	100
30	789.1	1,5:8	2,367	3,156	3,945	4,735	5,524	6,313	7,102	7.2	34	13.0	102
31	790.7	1,581	2,372	3,163	3,953	4,744	5,535	6,325	7,116	7.3	35	13.1	103
32	792.2	1,584	2,377	3,169	3,961	4,753	5,546	6,338	7,130	7.4	36	13.2	105
33	793.8	1,588	2,381	3,175	3,969	4,763	5,557	6,351	7,144	7.5	37	13.3	106
34	795.4	1,591.	2,386	3,182	3,977	4,772	5,568	6,363	7,159	7.6	38	13.4	108
35	796.9	1,594	2,391	3,188	3,985	4,782	5,579	6,376	7,173	7.8	39	13.5	109
36	798.5	1,597	2,396	3,194	3,993	4,791	5,590	6,388	7,187	7.9	40	13.6	111
37	800.1	1,600	2,400	3,200	4,001	4,801	5,601	6,401	7,201	8.0	41	13.7	112
38	801.7	1,603	2,405	3,207	4,008	4,810	5,612	6,414	7,215	8.1	42	13.8	114
39	803.2	1, 607	2,410	3,213	4,016	4,820	5,623	6,426	7,229	8.2	43	13.9	115
40	804.8	1,610	2,414	3,219	4,024	4,829	5,634	6, 439	7,243	8.3	44	14.0	117
41	806.4	1,613	2, 419	3,226	4,032	4,838	5, 645	6, 451	7,258	8.4	45	14.1	119
42	808.0	1,616	2,424	3,232	4,040	4,848	5,656	6,464	7,272	8.5	46	14.2	120
43	809.5	1,619	2,429	3,238	4,048	4,857	5, 667	6,476	7,286	8.6	47	14.3	122
44	811.1	1,622	2,433	3,244	4,056	4,867	5, 678	6,489	7,300	8.7	48	14.4	124
45	812.7	1,625	2,438	3,251	4,063	4,876	5,689	6,501	7,314	8.8	49	14.5	125
46	814.2	1,628	2,443	3,257	4,071	4,886	5,700	6,514	7,328	8.9	50	14.6	127
47	815.8	1,632.	2,447	3,263	4,079	4,895	5,711	6,527	7,342	9.0	51	14.7	129
48	817.4	1,635	2,452	3,270	4,087	4,904	5,722	6,539	7,357	9.1	52	14.8	130
49	819.0	1,638	2,457	3,276	4,095	4,914	5,733	6,552	7,371	9.2	53	14.9	132
50	820.5	1,641	2,462	3,282	4,103	4,923	5, 744	6,564	7,385	9.3	54	15.0	134
51	822.1	1,644	2,466	3,288	4,111	4,933	5,755	6,577	7,399	9.4	55	15.1	135
52	823.7	1,647	2,471	3,295	4,118	4,942	5,766	6,590	7,413	9.5	56	15.2	137
53	825.3	1,651	2,476	3,301	4,126	4,952	5,777	6,602	7,427	9.6	58	15.3	139
54	826.8	1,654	2,481	3,307	4,134	4,961	5,788	6,615	7,442	9.7	59	15.4	141
55	828.4	1,657	2,485	3, 314	4,142	4,970	5,799	6,627	7,456	9.8	60	15.5	142
56	830.0	1,660	2,490	3,320	4,150	4,980	5, 810	6,640	7,470	9.9	81	15.6	144
57	831.5	1,663	2,495	3, 326	4,158	4,989	5,821	6,652	7,484	10.0	62	15.7	146
58	833.1	1, 666	2, 499	3,332	4,166	4,999	5,832	6,665	7,498	10.1	63	15.8	148
59	834.7	1,669	2,504	3,339	4,173	5,008	5,843	6,678	7,512			15.9 16.0	150
60	836.3	1,673	2,509	3,345	4,181	5,018	5,854	6,690	7,526				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.

9°

	1	$\underline{9}$	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument. a			
0													
0	836.3	1,673	2,509	3,345	4,181	5,018	5, 854	6,690	7,526				
1	837.8	1,676	2,514	3, 351	4,189	5,027	5, 865	6, 703	$7,541$	Miles.	Feet.	Miles.	Feet.
2	839.4	1,679	2,518	3,358	4,197	5,037	5,876	6,715	7,555	1.6	6	10.2	64
3	841.0	1,682	2,523	3,364	4,205	5,046	5, 887	6,728	7,569	2.1	7	10.3	65
4	842.6	1,685	2,528	3,370	4,213	5,055	5, 898	6, 741	7,583	2.5	8	10.4	67
5	844.2	1,688	2,532	3,377	4.221	5,065	5,909	6, 753	7,597	2.8	9	10.5	68
6	845.7	1,691	2,537	3, 383	4,229	5, 074	5,920	6,766	7,612	3.1	10	10.6	69
7	817.3	1,695	2,542	3,389	4,237	5,084	5,931	6,778	7,626	3.4	11	10.7	70
8	848.9	1,698	2,547	3,396	4,244	5,093	5,942	6,791	7,640	3.6	12	10.8	71
9	850.5	1,701	2,551	3,402	4,252	5,103	5,953	6,804	7,654	3.8	13	10.9	73
10	852.0	1,704	2,556	3,408	4,260	5,112	5,964	6,816	7,668	4.1	14	11.0	74
11	853.6	1,707	2,561	3,414	4,268	5,122	5,975	6,829	7,683	4.3	15	11.1	75
12	855.2	1,710	2,566	3, 421	4,276	5,131	5,986	6,842	7,697	4.5	16	11.2	77
i3	856.8	1,714	2,570	3,427	4,284	5,141	5,997	6,854	7,711	4.7	17	11.3	78
14	858.3	1.717	2,575	3,433	4,292	5,150	6,008	6,867	7,725	4.8	18	11.4	79
15	859.9	1,720	2,580	3, 440	4,300	5, 160	6,020	6,879	7,739	5.0	19	11.5	80
16	861.5	1,723	2,585	3,446	4,308	5,169	6,031	6,892	7,754	5.2	20	11.6	82
17	863.1	1.726	2,589	3,452	4,315	5,179	6,042	6,905	7,768	5.4	21	11.7	83
18	864.7	1,729	2,594	3,459	4,323	5, 188	6, 053	6,917	7,782	5.5	22	11.8	84
19	866.2	1,732	2,599	3,465	4,331	5,197	6,064	6,930	7,796	5.7	23	11.9	86
$\stackrel{20}{ }$	867.8	1,736	2,603	3,471	4,339	5,207	6,075	6,943	7,810	5.8	24	12.0	87
21	869.4	1,739	2,608	3,478	4,347	5,216	6,086	6,955	7,825	6.0	25	12.1	89
22	871.0	1,742	2,613	3,484	4,355	5,226	6,097	6,968	7,839	6.1	26	12.2	90
23	572.5	1,745	2, 618	3,490	4,363	5,235	6,108	6,980	7,853	6.3	27	12.3	91
24	874.1	1,748	2,622	3,496	4,371	5,245	6,119	6,993	7,867	6.4	28	12.4	93
25	875.7	1,751	2,627	3,503	4,379	5,254	6,130	7,006	7,881	6.5	29	12.5	94
26	877.3	1,755	2,632	3,509	4,386	5,264	6,141	7,018	7,896	6.7	30	12.6	96
27	878.8	1,758	2,637	3,515	4,394	5,273	6,152	7,031	7,910	6.8	31	12.7	97
28	880.4	1,761	2,641	3,522	4,402	5, 283	6, 163	7,043	7,924	6.9	32	12.8	99
29	882.0	1,764	2, 646	3,528	4,410	5,292	6,174	7,056	7,938	7.0	33	12.9	100
30	883.6	1,767	2,651	3, 534	4,418	5,302	6,185	7,068	7,952	7.2	34	13.0	102
31	885.2	1,770	2,656	3,541	4,426	5,311	6,196	7,081	7,967	7.3	35	13.1	103
32	886.7	1,774	2,660	3,547	4,434	5,320	6,207	7,094	7,981	7.4	36	13. 2	105
33	888.3	1,777	2, 665	3, 553	4,442	5, 330	6,218	7,107	7,995	7.5	37	13.3	106
34	889.9	1,780	2,670	3,560	4,450	5,339	6,229	7,119	8,009	7.6	38	13.4	108
35	891.5	1,783	2,674	3,566	4,457	5,349	6.240	7,132	8,023	7.8	39	13.5	109
36	893.1	1,786	2,679	3,572	4,465	5,358	6,252	7,145	8,038	7.9	40	13.6	111
37	894.6	1,789	2,684	3,579	4,473	5,368	6,263	7,157	8,052	8.0	41	13.7	112
38	896.2	1,792	2,689	3, 585	4,481	5,377	6,274	7,170	8,066	8.1	42	13.8	114
39	897.8	1,796	2,693	3,591	4,489	5,387	6,285	7,183	8,080	8.2	43	13.9	115
40	899.4	1,799	2,698	3,598	4,497	5,396	6,296	7,195	8,095	8.3	44	14.0	117
41	901.0	1,802	2,703	3, 604	4,505	5,406	6, 307	7,208	8,109	8.4	45	14.1	119
42	902.5	1,805	2,708	3, 610	4,513	5,415	6, 318	7,220	8,123	8.5	46	14.2	120
43	- 904.1	1,808	2,712	3, 617	4,521	5,425	6,329	7,233	8,137	8.6	47	14.3	122
44	905.7	1,811	2,717	3,623	4,529	5, 434	6,340	7,246	8,151	8.7	48	14.4	124
45	907.3	1,814	2,722	3,629	4,537	5,444	6,351	7,258	8,166	8.8	49	14.5	125
46	908.9	1,818	2,727	3,636	4,544	5,453	6,362	7,271	8,180	8.9	50	14.6	127
47	910.5	1,821	2, 731	3, 642	4,552	5,463	6,373	7,284	8,194	9.0	51	14.7	129
48	912.0	1,824	2,736	3,648	4,560	5,472	6,384	7,296	8,208	9.1	52	14.8	130
49	913.6	1,827	2,741	3,654	4,568	5,482	6,395	7,309	8,223	9.2	53	14.9	132
50	915.2	1,830	2,746	3, 661	4,576	5, 491	6,406	7,322	8,237	9.3	54	15.0	134
51	916.8	1,833	2,750	3,667	4,584	5,501	6,417	7,334	8,251	9.4	55	15.1	135
52	918.4	1,837	2,755	3,673	4,592	5,510	6,429	7,347	8,265	9.5	56	15. 2	137
53	919.9	1,840	2,760	3, 680	4,600	5,520	6,440	7, 360	8,279	9.6	58	15.3	139
54	921.5	1, 843	2,765	3,686	4,608	5,529	6, 451	7,379	8,294	9.7	59	154	141
55	923.1	1,846	2,769	3,692	4,616	5,539	6, 462	7,385	8,308	9.8	60	15.5	142
56	924.7	1,849	2,774	3, 699	4,623	5,548	6,473	7, 397	8,322	9.9 10.0	61	15.6	144
57	926.3	1,852	2,779	3,705	4,631	5,558	6, 484	7,410	8,336	10.0	62	15.7	146
58	927.8	1,855	2,784	3, 711	4,639	5,567	6,495	7,423	8,351	10.1	63	15.8	148
59	929.4	1,859	2,788	3,718	4,647	5,577	6,506	7,435	8,365			15.9 16.0	150 151
60	931.0	1,862	2,793	3,724	4,655	5,586	6,517	7,448	8,379				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.
10°

	1	2	3	4	5	6	\bigcirc	8	9	Corrections for curvature, refraction and height of instrument. x			
0	931.0	1,862	2,793	3,724	4,655	5,586	6,517	7,448	8,379				
1	932.6	1,865	2,798	3,730	4,663	5, 596	6,528	7,461	8,393	Miles.	Feet.	Miles.	Feet.
2	934.2	1,868	2,803	3,737	4,671	5,605	6,539	7,473	8,408	1.6	6	10.2	64
3	935.8	1,872	2,807	3,743	4,679	5,615	6,550	7,486	8,422	2.1	7	10.3	65
4	937.4	1,875	2,812	3,749	4,687	5,624	6,561	7,499	8, 436	2.5	8	10.4	${ }_{6}^{67}$
5	938.9	1,878	2,817	3,756	4,695	5, 634	6,573	7,512	8,450	2.8	9	10.5	68
6	940.5	1,881	2, 822	3,762	4,703	5,643	6,584	7,524	8,465	3.1	10	10.6	69
7	942.1	1,884	$\stackrel{\sim}{2}, 826$	3,768	4,711	5,653	6,595	7,537	8,479	3.4	11	10.7	70
8	943.7	1,887	2,831	3,775	4,718	5,662	6,606	7,550	8,493	3.6	12	10.8	71
9	945.3	1,891	2,836	3,781	4,726	5,672	6,617	7,562	8,508	3.8	13	10.9	73
10	946.9	1,894	2,841	3,787	4,734	5,681	6,628	7,575	8,522	4.1	14	11.0	74
11	948.5	1,897	2,845	3,794	4,742	5,691	6,639	7,588	8,536	4.3	15	11.1	75
12	950.0	1,900	2,850	3,800	4,750	5,700	6,650	7,600	8,550	4.5	16	11.2	77
13	951.6	1,903	2,855	3,807	4,758	5,710	6,661	7,613	8,565	4.7	17	11.3	78
14	953.2	1,906	2,860	3,813	4,766	5,719	6,672	7,626	8,579	4.8	18	11.4	79
15	954.8	1,910	2,864	3,819	4,774	5,729	6,684	7,638	8,593	5.0	19	11.5	80
16	956.4	1,913	2,869	3,826	4,782	5,738	6,695	7,651	8,607	5.2	20	11.6	82
17	958.0	1,916	2,874	3,832	4,790	5,748	6,706	7,664	8, 622	5.4	21	11.7	83
18	959.6	1,919	2,879	3,838	4,798	5,757	6,217	7,676	8,636	5.5	22	11.8	84
19	961.1	1,922	2,883	3,845	4,806	5,767	6,728	7,689	8,650	5.7	23	11.9	86
20	962.7	1,926	2,888	3,851	4,814	5,776	6,739	7,702	8,665	5.8	24	12.0	87
21	964.3	1,929	2,893	3,857	4,822	5,786	6,750	7,715	8,679	6.0	25	12.1	89
22	965.9	1,932	2,898	3,864	4,830	5,795	6,751	7,727	8,693	6.1	26	12.2	90
23	967.5	1,935	2,902	3,870	4,837	5,805	6,772	7,740	8,707	6.3	27	12.3	91
24	969.1	1,938	2,907	3,876	4,845	5,814	6,784	7,753	8,722	6.4	28	12.4	93
25	970.7	1,941	2,912	3,883	4,853	5,824	6,795	7,765	8,736	6.5	29	12.5	94
26	972.2	1,944	2,917	3, 889	4,861	5,833	6,806	7,778	8,750	6.7	30	12.6	97
27	973.8	1,948	2,921	3, 895	4,869	5,843	6,817	7,791	8,764	6.8	31	12.7	97
28 29	975.4 977.0	1,951 1,954	$\stackrel{2}{2,926}$	3,902 3,908	4877 4,885	5,853 5,862	6,828 6,839	7,803 7,816	8, 779 8,793	6.9 7.0	32	12.8 12.9	99 100
29	977.0	1,954	2,931	3,908	4,885	5,862	6,839	7,816	8,793				100
30	978.6	1,957	2,936	3,914	4,893	5,872	6,850	7,829	8,807	7.2	34	13.0	102
31	980.2	1,960	2,941	3,921	4,901	5, 881	6,861	7,841	8,822	7.3	35	13.1	103
32	981.8	1,964	2,945	3,927	4,909	5,891	6,872	7,854	8,836	7.4	36	13.2	105
33	983.4	1,967	2,950	3,933	4,917	5,900	6,884	7,867	8,850	7.5	37	13.3	106
34	985.0	1,970	2,955	3,940	4,925	5,910	6,895	7,880	8,865	7.6	38	13.4	108
35	986.5	1,973	2,960	3,946	4,933	5,919	6,906	7,892	8,879	7.8	39	13.5	109
36	988.1	1,976	2,964	3,953	4,941	5,929	6,917	7,905	8,893	7.9	40	13.6	111
37	989.7	1,980	2,969	3,959	4,949	5,938	6,928	7,918	8,908	8.0	41	13.7	112
38	991.3	1,983	2,974	3,965	4,957	5,948	6,939	7,931	8,922	8.1	42	13.8	114
39	992.9	1,986	2,979	3,972	4,965	5,957	6,950	7,943	8,936	8.2	43	13.9	115
40	994.5	1,989	2,984	3,978	4,973	5,967	6,962	7,956	8,951	8.3	44	14.0	117
41	996.1	1,992	2,988	3, 984	4,980	5,977	6,973	7,969	8, 965	8.4	45	14.1	119
42	997.7	1,995	2,993	3, 991	4,988	5,986	6,984	7,981	8,979	8.5	46	14.2	120
43	999.3	1,999	2,998	3,997	4,996	5,996	6,995	7,994	8, 993	8.6	47	14.4	122
44	1,000.9	2,002	3,003	4,003	5,004	6,005	7,006	8,007	9, 008	8.7	48	14.3	124
45	1,002.5	2,005	3,007	4,010	5,012	6,015	7,017	8,020	9,022	8.8	49	14.5	125
46	1,004.0	2,008	3,012	4,016	5,020	6,024	7,028	8,032	9,036	8.9	50	14.6	127
47	1,005. 6	2,011	3,017	4,023	5,028	6,034	7,039	8,045	9,051	9.0	51	14.7	129
48	1,007.2	2,014	3,022	4,029	5,036	6,043	7,051	8,058	9,065	9.1	52	14.8	130
49	1,008.8	2,018	3,026	4,035	5,044	6,053	7,062	8,071	9,079	9.2	53	14.9	132
50	1,010.4	2,021	3,031	4,042	5,052	6,062	7,073	8,083	9,094	9.3	54	15.0	134
51	1,012.0	2,024	3,036	4,048	5,060	6,072	7,084	8,096	9,108	9.4	55	15.1	135
52	1,013.6	2,027	3,041	4,054	5,068	6,082	7,095	8,109	9,122	9.5	56	15.2	137
53	1,015.2	2,030	3,046	4,061	5,076	6,091	7,106	8,121	9,137	9.6	58	15.3	139
54	1,016.8	2,034	3,050	4,067	5,084	6,101	7,117	8,134	9,151	9.7	59	15.4	141
55	1,018.4	2,037	3,055	4,073	5,092	6,110	7,129	8,147	9,165	9.8 9.8	60	15.5	142
56 57	$1,020.0$	$\xrightarrow{2,040}$	3,060 3,065	4,080 4,086	5,100 5,108	6,120 6,129	7,140	8,160 8,172	9,180 9,194	9.9 10.0	61	${ }_{15.7}^{15.6}$	144
58	1,023.1	2,046	3,069	4,093	5,116	6,139	7,162	8,185	9, 208	10.1	63	15.8	148
59	1,024.7	2,049	3,074	4,099	5,124	6,148	7,173	8,198	9,223			15.9 16.0	150 151
60	1,026.3	2,053	3,079	4,105	5,132	6,158	7,184	8,211	9,237				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.
11°

	1	2	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument. a			
'													
0	1,026.3	2,053	3, 079	4,105	5,132	6,158	7,184	8,211	9,237				
1	1,027.9	2, 056	3, 084	4,112	5,140	6,168	7,195	8,223	9,251	Miles.	Feet.	Miles.	Feet.
2	1,029.5	2,059	3,089	4,118	5,148	6,177	7,207	8,236	9,266	1.6	6	10.2	64
3	1,031.1	2,062	3, 093	4,124	5,156	6,187	7,218	8,249	9,280	2.1	7	10.3	65
4	1,032. 7	2,065	3,098	4,131	5,164	6,196	7,229	8,262	9,294	2.5	8	10.4	67
5	1,034.3	2,069	3, 103	4,137	5,172	6,206	7,240	8,275	9,309	2.8	9	10.5	68
6	1,036	2,072	3,108	4,144	5,180	6,215	7,251	8,287	9,323	3.1	10	10.6	69
7	1,038	2,075	3,113	4,150	5,188	6,225	7,263	8,300	9, 338	3.4	11	10.7	70.
8	1,039	2,078	3, 117	4,156	5,196	6,235	7,274	8,313	9, 352	3.6	12	10.8	71
9	1,041	2,081	3,122	4,163	5,204	6,244	7,285	8,326	9, $366{ }^{\text {- }}$	3.8	13	10.9	73
10	1,042	2,085	3,127	4,169	5,212	6,254	7,296	8,338	9,381	4.1	14	11.0	74
11	1,044	2,088	3,132	4,176	5,219	6,263	7,307	8,351	9,395	4.3	15	11.1	75
12	1,045	2,091	3, 136	4,182	5,227	6,273	7,318	8, 364	9, 409	4.3	16	11.2	77
13	1,047	2,094	3, 141	4,188	5,235	6,283	7,330	8,377	9, 424	4.7	17	11.3	78
14	1,049	2,097	3,146	4,195	5,243	6,292	7,341	8,390	9,438	4.8	18	11.4	79
15	1,050	2,101	3,151	4,201	5,251	6,302	7,352	8,402	9,453	5.0	19	11.5	80
16	1,052	2,104	3,156	4,208	5,259	6,311	7,363	8,415	9, 467	5.2	20	11.6	82
17	1,053	2,107	3,160	4,214	5, 267	6,321	7,374	8,428	8,481	5.4	21	11.7	83
18	1,055	2,110	3,165	4,220	5,275	6,330	7,386	8,441	9, 496	5.5	22	11.8	84
19	1,057	2,113	3,170	4,227	5,283	6,340	7,397	8,453	9,510	5.7	23	11.9	86
20	1,058	2,117	3, 175	4,233	5,291	6,350	7,408	8,466	9,524	5.8	24	12.0	87
21	1,060	2, 120	3, 180	4,239	5,299	6,359	7,419	8,479	9, 539	6.0	25	12.1	89
22	1,061	2,123	3,184	4,246	5,307	6, 369	7,430	8,492	9,553	6.1	26	12.2	90
23	1,063	2,126	3,189	4,252	5,315	6,378	7,441	8,504	9,568	6.3	27	12.3	91
24	1,065	2,129	3,194	4,259	5,323	6, 388	7,453	8,517	9,582	6.4	28	12.4	93
25	1,066	2,133	3,199	4,265	5,331	6, 398	7,464	8, 530	9,596	6.5	29	12.5	94
26	1,068	2,136	3,204	4,271	5,339	6,407	7,475	8,543	9,611	6.7	30	12.6	96
27	1,069	2,139	3,208	4,278	5,347	6, 417	7,486	8,556	9,625	6.8	31	12.7	97
28	1,071	2, 142	3,213	4,284	5,355	6, 426	7,497	8, 568	9,639	6.9	32	12.8	99
29	1,073	2,145	3,218	4,291	5, 263	6,436	7,509	8,581	9,654	7.0	33	12.9	100
30	1,074	2,148	3,223	4,297	5,371	6, 445	7,520	8,594	9,668	7.2	34	13.0	102
31	1,076	2,152	3,227	4,303	5,379	6,495	7,531	8, 607	9,682	7.3	35	13.1	103
32	1,077	2,156	3,232	4,310	5,387	6,465	7,542	8,619	9,697	7.4	36	13.2	105
33	1,079	2,158	3,237	4,316	5,395	6,474	7,553	8,632	9,711	7.5	37	13.3	106
34	1,081	2,161	3,242	4,323	5,403	6,484	7,564	8,645	9, 726	7.6	38	13.4	108
35	1,082	2,164	3,247	4,329	5, 411	6,493	7,576	8,658	9,740	7.8	39	13.5	109
36	1,084	2,168	3,252	4,335	5,419	6,503	7.587	8,671	9,755	7.9	40	13.6	111
37	1,085	2, 171	3,256	4,342	5,427	6,513	7,598	8,683	9,769	8.0	41	13.7	112
38	1,087	2,174	3,261	4,348	5,435	6,522	7,609	8, 696	9,783 9,798	8.1	42	13.8	114
39	1,089	2,177	3,266	4,355	5,443	6,532	7,621	8,709	9,798	8.2	43	13.9	115
40	1,090	2,181	3,271	4,361	5,451	6,542	7,632	8,722	9,812	8.3	44	14.0	117
41	1,092	2,184	3,276	4,367	5,459	6,551	7,643	8,735	9,827	8.4	45	14.1	119
42	1,093	2,187	3,280	4,374	5,467	6,561	7,654	8,748	9,841	8.5	46	14.2	120
43	1,095	2,190	3,285	4,380	5, 475	6,570	7,665	8,760	9,856	8.6	47	14.3	122
44	1,097	2,193	3,290	4,387	5,483	6,580	7,677	8,773	9,870	8.7	48	14.4	124
45	1,098	2,197	3,295	4,393	5,491	6,590	7,688	8,786	9,884	8.8	49	14.5	125
46	1,100	2, 200	3, 300	4,399	5,499	6,599	7,699	8,799	9, 899	8.9	50	14.6	127
47	1,101	2,203	3,304	4,406	5,507	6,609	7,710	8,812	9, 913	9.0	51	14.7	129
48	1,103	2,206	3, 309	4,412	5,515	6,618	7,721	8,825	9,928	9.1	52	14.8	130 132
49	1,105	2,209	3,314	4,419	5,523	6,628	7,733	8,837	9,942	9.2	53	14.9	132
50	1,106	2,213	3, 319	4,425	5,531	6,638	7, 744	8,850	9,956	9.3	54	15.0	134
51	1,108	2,216	3,324	4,431	5,539	6, 647	7,755	8,863	9,971	9.4	55	15.1	135
52	1,109	2,219	3,328	4,438	5,547	6,657	7,766	8,876	-9,985	9.5	56	15.2	137
53	1,111	2,222	3,333	4,444	5, 555	6,666	7,778	8,889 8,901	10,000 10,014	9.6 9.7	58 59	15.3 15.4	139 141
54	1,113	2,225	3, 338	4,451	5,563	6,676 6,686	7,789	8,901 8,914	10,014 10,029	9.7 9.8	69	15.4 15.5	141
55	1,114	2, 229	3,343 3,348	4,457 4,464	5,571 5,579	6,686 6,695	7,800 7,811	8,914	10,029 10,043	9.8 9.9	60	15.5 15.6	142
57	1,117	2, 235	3, 352	4,470	5,587	6,705	7,822	8,940	10,057	10.0	62	15.7	146
58	1,119	2,238	3,357	4,476	5,595	-6,715	7,834	8,953	10,072	10.1	63	15.8	148
59	1,121	2,241	3,362	4,483	5,603	6,724	7,845	8,966	10,086			15.9 16.0	150 151
60	1,122	2,245	3,367	4,489	5,611	6,734	7,856	8,978	10,101				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.
12°

	1	2	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument. ${ }^{a}$			
0	1,122	2,245	3,367	4,489	5,612	6,734	7,856	8,978	10, 101				
1	1,124	2,248	3,372	4,496	5,620	6,743	7,867	8,991	10,115	Miles.	Feet.	Miles.	Feet.
2	1,126	2,251	3,377	4,502	5,628	6,753	7,879	9,004	10,130	1.6	6	10.2	64
3	1,127	2,254	3,381	4,508	5,636	6,763	7,890	9,017	10, 144	2.1	7	10.3	65
4	1,129	2,257	3,386	4,515	5, 644	6,772	7,901	9,030	10,159	2.5	8	10.4	67
5	1,130	2,261	3,391	4,521	5,652	6,782	7,912	9,043	10,173	2.8	9	10.5	68
6	1,132	2,264	3,396	4,528	5,660	6,792	7,924	9,056	10, 188	3.1	10	10.6	69
7	1,134	2,267	3,401	4,534	5, 668	6,801	7,935	9,068	10,202	3.4	11	10.7	70
8	1,135	2,270	3,405	4,541	5,676	6,811	7,946	9,081	10,216	3.6	12	10.8	71
9	1,137	2,274	3,410	4,547	5,684	6,821	7,957	9,094	10,231	3.8	13	10.9	73
10	1,138	2,277	3,415	4,554	5,692	6,830	7,969	9,107	10,245	4.1	14	11.0	74
11	1,140	2,280	3,420	4,560	5,700	6,840	7,980	9,120	10,260	4.3	15	11.1	75
12	1,142	2,283	3,425	4,566	5,708	6,850	7,991	9,133	10,274	4.5	16	11.2	77
13	1,143	$\cdots, 286$	3,430	4,573	5,716	6,859	8,002	9,146	10,289	4.7	17	11.3	78
14	1,145	2,290	3,434	4,579	5,724	6,869	8,014	9,158	10,303	4.8	18	11.4	79
15	1,146	2,293	3,439	4,586	5,732	6,879	8,025	9, 171	10,318	5.0	19	11.5	80
16	1,148	2,296	3,444	4,592	5,740	6,888	8,036	9,184	10,332	5.2	20	11.6	82
17	1,150	2,299	3,449	4,599	5,748	6,898	8,047	9,197	10,347	5.4	21	11.7	83
18	1,151	2,302	3,454	4,605	5,756	6,907	8,059	9,210	10,361	5.5	22	11.8	84
19	1,153	2,306	3,459	4,611	5,764	6,917	8,070	9,223	10,376	5.7	23	11.9	86
20	1,154	2,309	3,463	4,618	5,772	6,927	8,081	9,236	10,390	5.8	24	12.0	. 87
21	1,156	2,312	3, 468	4,624	5,780	6,936	8,092	9,249	10,405	6.0	25	12.1	89
22	1,158	2,315	3,473	4,631	5,788	6,946	8,104	9,261	10,419	6.1	26	12.2	90
23	1,159	2,319	3, 478	4,637	5,796	6,956	8,115	9,274	10,434	6.3	27	12.3	91
24	1,161	2,322	3,483	4,644	5,804	6,965	8,126	9,287	10,448	6.4	28	12.4	93
25	1,163	2,325	3,487	4,650	5,812	6,975	8,138	9,300	10,463	6.5	29	12.5	94
26	1,164	2,328	3,492	4,656	5,821	6,985	8,149	9,313	10,477	6. 7	30	12.6	96
27	1,166	2,331	3,497	4,663	5,829	6,994	8,160	9,326	10,491	6.8	31	12.7	97
28	1,167	2,335	3,502	4,669	5,837	7,004	8,171	9,339	10,506	6.9	32	12.8	99
29	1,169	2,338	3,507	4,676	5,845	7,014	8,183	9,351	10,520	7.0	33	12.9	100
30	1,171	2,341	3,512	4,682	5,853	7,023	8,194	9,364	10,535	7.2	34	13.0	102
31	1,172	2,344	3,516	4,689	5,861	7,033	8,205	9,377	10,549	7.3	35	13.1	103
32	1,174	2,348	3,521	4,695	5,869	7,043	8,216	9,390	10,564	7.4	36	13.2	105
33	1,175	2,351	3,526	4,702	5,877	7,052	8,228	9,403	10,579	7.5	37	13.3	106
34	1,177	2,354	3,531	4,708	5,885	7,062	8,239	9,416	10,593	7.6	38	13.4	108
35	1,179	2,357	3,536	4,714	5,893	7,072	8,250	9,429	10,608	7.8	39	13.5	109
36	1,180	2,360	3,541	4,721	5,901	7,081	8,262	9,442	10,622	7.9	40	13.6	111
37	1,182	2,364	3,546	4,727	5,909	7,091	8,273	9,455	10,637	8.0	41	13.7	112
38	1,183	2,367	3,550	4,734	5,917	7,101	8,284	9,468	10,651	8.1	42	13.8	114
39	1,185	2,370	3,555	4,740	5,925	7,110	8,296	9,481	10,666	8.2	43	13.9	115
40	1,187	2,373	3,560	4,747	5,933	7,120	8,307	9,494	10,680	8.3	44	14.0	117
41	1,188	2,377	3,565	4,753	5,942	7,130	8,318	9,506	10,695	8.4	45	14.1	119
42	1,190	2,380	3,570	4,760	5,950	7,140	8,329	9,519	10, 709	8.5	46	14.2	120
43	1,192	2,383	3,575	4,766	5,958	7,149	8,341	9,532	10,724	8.6	47	14.3	122
44	1,193	2,386	3,579	4,773	5,966	7,159	8,352	9,545	10,738	8.7	48	14.4	124
45	1,195	2,390	3,584	4,779	5,974	7,169	8,363	9,558	10,753	8.8	49	14.5	125
46	1,196	2,393	3,589	4,785	5,982	7,178	8,375	9,571	10,767	8.9	50	14.6	127
47	1,198	2,396	3,594	4,792	5,990	7,188	8,386	9,584	10,782	9.0	51	14.7	129
48	1,200	2,399	3,599	4,798	5,998	7,198	8,397	9,597	10,796	9.1	52	14.8	130
49	1,201	2,402	3,604	4,805	6,006	7,207	8,409	9,610	10,811	9.2	53	14.9	132
50	1,203	2, 406	3, 608	4,811	6,014	7,217	8,420	9,623	10,825	9.3	54	15.0	134
51	1,204	2, 409	3,613	4,818	6,022	7,227	8,431	9,636	10,840	9.4	55	15.1	135
52	1,206	2,412	3,618	4,824	6,030	7,236	8,442	9,648	10,855	9.5	56	15.2	137
53	1,208	2,415	3, 623	4,831	6, 038	7,246	8,454	9,661	10,869	9.6	58	15.3	139
54	1,209	2, 419	3, 628	4,837	6,046	7,256	8,465	9,674	10,884	9.7	59	15.4	141
55	1,211	2,422	3,633	4,844	6, 055	7,265	8,476	9,687	10,898	9.8	60	15.5	142
56	1,213	2,425	3,638	4,850	6,063	7,275	8,488	9,700	10,913	9.9	61	15. 6	144
57	1,214	2, 428	3,642	4,857	6, 071	7,285	8,499	9,713	10,927	10.0	62	15.7	146
58	1,216	2, 431	3,647	4,863	6,079	7,294	8,510	9,726	10,942	10.1	63	15.8	148
59	1,217	2,435	3,652	4,869	6,087	7,304	8,521	9,739	10,956			15.9 16.0	150
60	1,219	2,438	3,657	4,876	6,095	7,314	8,533	9,752	10,971				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.
13°

	1	2	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument.a			
,													
0	1,219	2,438	3,657	4,876	6,095	7,314	8,533	9,752	10,971				
1	1,221	2,441	3, 662	4,882	6,103	7,324	8,544	9,765	10,985	Miles.	Feet.	Miles.	Feet.
2	1,222	2,444	3,667	4,889	6,111	7,333	8,556	9,778	11, 000	1.6	6	10.2	64
3	1,224	2,448	3, 672	4,895	6,119	7,343	8,567	9,791	11, 015	2.1	7	10.3	65
4	1,225	2,451	3,676	4,902	6,127	7,353	8,578	9,804	11, 029	2.5	8	10.4	67
5	1,227	2,454	3, 681	4,908	6,135	7,362	8,590	9,817	11,044	2.8	9	10.5	68
6	1,229	2,457	3, 686	4,915	6,143	7,372	8,601	9,830	11, 058	3.1	10	10.6	69
7	1,230	2,461	3,691	4,921	6,152	7,382	8,612	9,843	11, 073	3.4	11	10.7	70
8	1,232	2,464	3, 696	4,928	6,160	7,392	8,624	9,855	11, 087	3.6	12	10.8	71
9	1,234	2,467	3,701	4,934	6,168	7,401	8,635	9,868	11, 102	3.8	13	10.9	73
10	1,235	2,470	3, 706	4,941	6,176	7,411	8,646	9,881	11, 117	4.1	14	11.0	74
11	1,237	2,474	-3,710	4,947	6,184	7,421	8,658	9,894	11,131	4.3	15	11.1	75
12	1,238	2,477	3, 715	4,954	6,192	7,430	8,669	9,907	11, 146	4.5	16	11.2	77
13	1,240	2,480	3,720	4,960	6,200	7,440	8,680	9,920	11, 160	4.7	17	11.3	78
14	1,243	2,483	3,725	4,967	6,208	7,450	8,692	9,933	11, 175	4.8	18	11.4	79
15	1,243	2,487	3,730	4,973	6,216	7,460	8,703	9,946	11, 190	5.0	19	11.5	80
16	1,245	2,490	3,735	4,980	6,224	7,469	8,714	9,959	11, 204	5.2	20	11.6	82
17	1,247	2,493	3,740	4,986	6,233	7,479	8,726	9,972	11, 219	5.4	21	11.7	83
18	1,248	2,496	3,744	4,993	6,241	7,489	8,737	9,985	11, 233	5.5	22	11.8	84
19	1,250	2,500	3,749	4,999	6,249	7,499	8,748	9,998	11,248	5.7	23	11.9	86
20	1,251	2,503	3,754	5,006	6,257	7,508	8,760	10,011	11, 262	5.8	24	12.0	87
21	1,253	2, 506	3,759	5,012	6,265	7,518	8,771	10,024	11, 277	6.0	25	12.1	89
22	1,255	2,509	3,764	5,019	6,273	7,528	8,782	10,037	11, 292	6.1	26	12.2	90
23	1,256	2,513	3,769	5,025	6,281	7,537	8,794	10,050	11, 306	6.3	27	12.3	91
24	1,258	2,516	3,774	5,032	6,289	7,547	8,805	10, 063	11,321	6.4	28	12.4	93
25	1,260	2,519	3,779	5, 038	6;297	7,557	8,816	10,076	11,336	6.5	29	12.5	94
26	1,261	2,522	3,783	5,044	6,306	7,567	8,828	10,089	11, 350	6.7	30	12.6	96
27	1,263	2,525	3,788	5,051	6,314	7,576	8,839	10, 102	11,365	6.8	31	12.7	97
28	1,264	2,529	3,793	5,057	6,322	7,586	8,851	10, 115	11, 379	6.9	32	12.8	99
29	1,266	2,532	3,798	5,064	6,330	7,596	8,862	10,128	11,394	7.0	33	12.9	100
30	1,268	2,535	3, 803	5,070	6,338	7,606	8,873	10, 141	11,409	7.2	34	13.0	102
31	1,269	2,538	3,808	5,077	6,346	7,615	8,885	10,154	11, 423	7.3	35	13.1	103
32	1,271	2, 542	3,813	5,083	6,354	7,625	8,896	10, 167	11,438	7.4	36	13.2	105
33	1,273	2,545	3,817	5,090	6,362	7,635	8,907	10, 180	11, 452	7.5	37	13.3	106
34	1,274	2,548	3,822	5,096	6,371	7,645	8,919	10, 193	11, 467	7.6	38	13.4	108
35	1,276	2,551	3,827	5,103	6,379	7,654	8,930	10,206	11, 482	7.8	39	13.5	109
36	1,277	2, 555	3, 832	5,109	6,387	7,664	8,942	10,219	11, 496	7.9	40	13.6	111
37	1,279	2,558	3, 837	5,116	6, 395	7,674	8,953	10,232	11,511	8.0	41	13.7	112
38	1,281	2,561	3,842	5,122	6,403	7,684	8,964	10,245	11,526	8.1	42	13.8	114
39	1,282	2,565	3,847	5,129	6,411	7,693	8,976	10,258	11,540	8.2	43	13.9	115
40	1,284	2,568	3,852	5,135	6,419	7,703	8,987	10,271	11,555	-8.3	44	14.0	117
41	1,286	2,571	3,857	5,142	6,427	7,713	8,999	10,284	11, 569	8.4	45	14.1	119
42	1,287	2, 574	3,861	5,149	6, 436	7,723	9,010	10,297	11,584	8.5	46	14.2	120
43	1,289	2,578	3, 866	5,155	6,444	7,732	9,021	10,310	11,599	8.6	47	14.3	122
44	1,290	2,581	3, 871	5,162	6, 452	7,742	9,033	10,323.	11, 613	8.7	48	14.4	124
45	1,292	2,584	3,876	5, 168	6,460	7,752	9,044	10,336	11, 628	8.8	49	14.5	125
46	1,294	2,587	3, 881	5,175	6,468	7,762	9,055	10,349	11, 643	8.9	50	14.6	127
47	1,295	2,591	3,886	5,181	6,476	7,771	9,067	10,362	11, 657	9.0	51	14.7	129
48	1,297	2,594	3,891	5, 188	6,484	7,781	9,078	10,375	11,672	9.1	52	14.8	130
49	1,299	2,597	3,896	5,194	6,493	7,791	9,090	10,388	11,687	9.2	53	14.9	132
50	1,300	2,600	3.900	5, 201	6,501	7,801	9, 101	10, 401	11,701	9.3	54	15.0	134
51	1,302	2,604	3,905	5,207	6, 509	7,811	9,112	10,414	11,716	9.4	55	15.1	135
52	1,303	2,607	3,910	5,214	6,517	7,820	9,124	10,427	11,731	9.5	56	15.2	137
53	1,305	2,610	3,915	5,220	6,525	7,830	9, 135	10,440	11,745	9.6	58	15.3	139
54	1,307	2,613	3,920	5,227	6,533	7,840	9,147	10,453	11,760	9.7	59	15.4	141
55	1,308	2,617	3,925	5,233	6,541	7,850	9,158	10,466	11,775	9.8	60	15.5	142
56	1,310	2, 620	3,930	5,240	6, 550	7,859	9,170	10,479	11, 789	9.9	61	15.6	144
57	1,312	2, 623	3,935	5,246	6,558	7,869	9,181	10,492	11, 804	10.0	62	15.7	146
58	1,313	2, 626	3,940	5,253	6,566	7,879	9,192	10,506	11, 819	10.1	63	15.8	148
59	1,315	2,630	3,944	5,259	6,574	7,889	9,204	10,519	11,833			15.9 16.0	150 151
60	1,316	2,633	3,949	5,266	6,582	7,899	9,215	10,532	11,848				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 27.-For obtaining differences of altitude for any minute, etc.-Continued.
14°

	1	"	3	4	5	6	7	8	9	Corrections for curvature, refraction, and height of instrument.a			
0	1,31	2,63	3,	5,	6	7,8	9,215		11,848				
1	1,318	2, 2336	3,949 3,954	5,266 5,272	6,582 6,590	7,909	9,227	10,545	11,863	Miles.	Feet.	Miles.	Feet.
2	1,320	2,639	3,959	5,279	6,599	7,918	9,238	10,558	11,877	1.6	6	10.2	64
3	1,321	2,643	3,964	5,285	6,607	7,928	9,249	10,571	11,892	2.1	7	10.3	65
4	1,323	2,646	3,969	5,292	6,615	7,938	9,261	10,584	11,907	2.5	8	10.4	67
5	1,325	2,649	3,974	5,298	6,623	7,948	9,272	10,597	11,923	2.8	9	10.5	68
6	1,326	2,653	3,979	5,305	6,631	7,957	9,284	10,610	11,936	3.1	10	10.6	69
7	1,328	2,656	3,984	-5,312	6,639	7,967	9,295	10,623	11,951	3.4	11	10.7	70
8	1,330	2,659	3,989	5,318	6,648	7,977	9,307	10,636	11,966	3.6	12	10.8	71
9	1,331	2,662	3,993	5,325	6,656	7,987	9,318	10,649	11,980	3.8	13	10.9	73
10	1,333	2,666	3,998	5,331	6,664	7,997	9,329	10,662	11,995	4.1	14	11.0	74
11	1,334	2, 669	4,003	5,338	6,672	8,006	9,341	10,675	12,010	4.3	15	11.1	75
12	1,336	2,672	4,008	5,344	6,680	8,016	9,352	10, 688	12,024	4.5	16	11.2	77
13	1,338	2,675	4,013	5,351	6,688	8,026	9,364	10,701	12,039	4.7	17	11.3	78
14	1,339	2,679	4,018	5,357	6,697	8,036	9,375	10,715	12,054	4.8	18	11.4	79
15	1,341	2,682	4,023	5,364	6,705	8,046	9,387	10, 728	12,069	5.0	19	11.5	80
16	1,343	2,685	4,028	5,370	6,713	8,056	9,398	10,741	12,083	5.2	20	11.6	82
17	1,344	2,688	4,033	5,377	6,721	8,065	9,410	10,754	12,098	5.4	21	11.7	83
18	1,346	2,692	4,038	5,383	6,729	8,075	9,421	10,767	12,113	5.5	22	11.8	84
19	1,348	2,695	4,042	5,390	6,737	8,085	9,432	10,780	12, 127	5.7	23	11.9	86
20	1,349	2,698	4,047	5,397	6,746	8,095	9,444	10,793	12,142	5.8	24	12.0	87
21	1,351	2,702	4,052	5,403	6,754	8,105	9,455	10,806	12,157	6.0	25	12.1	89
22	1,352	2,705	4,057	5,410	6,762	8,114	9,467	10,819	12,172	6.1	26	12.2	90
23	1,354	2,708	4,062	5,416	6,770	8,124	9,478	10, 832	12,186	6.3	27	12.3	91
24	1,356	2,711	4,067	5,423	6,778	8,134	9,490	10,845	12, 201	6.4	28	12.4	93
25	1,357	2,715	4,072	5,429	6,787	8,144	9,501	10,859	12,216	6.5	29	12.5	94
26	1,359	2,718	4,077	5, 436	6,795	8,154	9,513	10,872	12,231	6.7	30	12.6	96
27	1,361	2,721	4,082	5, 442	6,803	8,164	9,524	10, 885	12,245	6.8	31	12.7	97
28	1,362	2,724	4,087	5,449	6,811	8,173	9,536	10,898	12,260	6.9.	32	12.8	99
29	1,364	2,728	4,092	5,455	6,819	8,183	9,547	10,911	12,275	7.0	33	12.9	100
30	1,366	2,731	4,097	5,462	6,828	8,193	9,559	10,924	12,290	7.2	34	13.0	102
31	1,367	2,734	4,101	5,469	6,836	8,203	9,570	10,937	12,304	7.3	35	13.1	103
32	1,369	2,738	4,106	5,475	6,844	8,213	9,581	10,950	12,319	7.4	36	13.2	105
33	1,370	2,741	4,111	5,482	6,852	8,223	9,593	10,963	12,334	7.5	37	13.3	106
34	1,372	2,744	4,116	5, 488	6,860	8,232	9,604	10,976	12, 349	7.6	38	13.4	108
35	1,374	2,747	4,121	5,495	6,868	8,242	9,616	10,990	12,363	7.8	39	13.5	109
36	1,375	2,751	4,126	5,501	6,877	8,252	9,627	11,003	12,378	7.9	40	13.6	111
37	1,377	2,754	4,131	5,508	6,885	8,262	9,639	11,016	12,393	8.0	41	13.7	112
38	1,379	2,757	4,136	5,514	6,893	8,272	9,650	11,029	12,408	8.1	42	13.8	114
39	1,380	2,761	4,141	5,521	6,901	8,282	9,662	11,042	12, 422	8.2	43	13.9	115
40	1,382	2,764	4,146	5,528	6,910	8,291	9,673	11, 055	12,437	8.3	44	14.0	117
41	1,384	2,767	4,151	5,534	6,918	8,301	9,685	11,068	12,452	8.4	45	14.1	119
42	1,385	2,770	4;156	5,541	6,926	8,311	9,696	11, 081	12,467	8.5	46	14.2	120
43	1,387.	2,774	4,160	5,547	6,934	8,321	9,708	11,095	12, 481	8.6	47	14.3	122
44	1,388	2,777	4,165	5,554	6,942	8,331	9,719	11, 108	12,496	8.7	48	14.4	124
45	1,390	2,780	4,170	5,560	6,951	8,341	9,731	11, 121	12,511	8.8	49	14.5	125
46	1,392	2,784	4,175	5,567	6,959	8,351	9, 742	11, 134	12,526	8.9	50	14.6	127
47	1,393	2,787	4,180	5,574	6,967	8,360	9,754	11, 147	12,541	9.0	51	14.7	129
48	1,395	2,790	4,185	5,580	6,975	8,370	9,765	11,160	12,555	9.1	52	14.8	130
49	1,397	2,793	4,190	5,587	6,983	8,380	9,777	11,173	12,570	9.2	53	14.9	132
50	1,398	2,797	4,195	5,593	6,992	8,390	9,788	11, 187	12,585	9.3	54	15.0	134
51	1,400	2,800	4,200	5,600	7,000	8,400	9,800	11, 200	12, 600	9.4	55	15.1	135
52	1,402	2,803	4,205	5,606	7,008	8,410	9,811	11,213	12,615	9.5	56	15.2	137
53	1,403	2,807	4,210	5,613	7,016	8,420	9,823	11,226	12, 629	9.6	58	15.3	139
54	1,405	2,810	4,215	5,620	7,024	8,429	9, 834	11,239	12, 644	9.7	59	15.4	141
55	1,407	2,813	4,220	5,626	7,033	8,439	9,8.6	11,232	12, 659	9.8	60	15.5	142
56	1, 408	2,816	4,225	5,633	7,041	8,449	9,807	11,266	12, 674	9.9	61	15.6	144
57	1, 410	2,820	4,230	5,639	7,049	8,459	9,869	11, $2^{7} 9$	12, 689	10.0	62	15.7	146
58	1,411	2,823	4,234	5,646	7,057	8,469	9,880	11, 292	12,703	10.1	63	15.8	148
59	1,413	2,826	4,239	5,653	7,066	8,479	9,892	11, 305	12,718			15.9 16.0	150 151
60	1,415	2,830	4,244	5,659	7,074	8,489	9,903	11,318	12, 733				

a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument is assumed 4.5 feet.

Table 28.-Horizontal distances and elevations from stadia readings.
This is a most generally useful stadia table for rods reading 1 foot to the 100 feet and with angles up to 30°. The values of other measures than those given in the table are obtained by multiplying the quantities under the proper vertical angle by stadia readings in hundreds of units. The quantity representing the focal distance is very small and is given at the bottom of each page for focal lengths between threefourths and $1 \frac{1}{4}$ feet and is represented as a constant equal to c. For ordinary work it is not necessary to take the latter into account. The direct use of the table involves a multiplication for each result obtained.

Example.-Let rod intercept be 3.25 feet, and the angle of inclination be $5^{\circ} 35^{\prime}$. Then the distance on the horizontal would be

$$
d=325 \text { feet. }
$$

If we accept the focal distance $f+c$ as 1.25 feet, we have from the tables

$$
d^{\prime}=3.25 \text { feet } \times 99.05+1.24=323.15 \text { feet, }
$$

and

$$
h=3.25 \text { feet } \times 9.68+0.11=31.57 \text { feet }
$$

Table 28.-Horizontal distances and elevations from stadia readings.

Minutes.	0°.		$1{ }^{\circ}$.		2°.		3°.	
	Horizontal distance.	Difference of elevation.						
0	100.00	0.00	99.97	1. 74	99.88	3.49	99. 73	5.23
2	100.00	0.06	99.97	1.80	99.87	3.55	99. 72	5. 28
4	100.00	0.12	99.97	1.86	99.87	3.60	99.71	5.34
6	100.00	0.17	99.96	1.92	99.87	3.66	99.71	5.40
8	100.00	0.23	99.96	1.98	99.86	3.72	99. 70	5.46
10	100.00	0.29	99.96	2.04	99.86	3. 78	99.69	5.52
12	100. 00	0.35	99.96	2.09	99.85	3.84	99.69	5.57
14	100.00	0.41	99.95	2.15	99.85	3.90	99.68	5.63
16	100.00	0.47	99.95	2.21	99.84	3.95	99.68	5.69
18	100.00	0.52	99.95	2. 27	99.84	4.01	99.67	5.75
20	100.00	0.58	99.95	2.33	99.83	4.07	99.66.	5.80
22	100.00	0.64	99.94	2.38	99.83	4.13	99.66	5.86
24	100.00	0.70	99.94	2.44	99.82	4.18	99.65	5.92
26	99.99	0.76	99.94	2.50	99.82	4.24	99.64	5.98
28	99.99	0.81	99.93	2.56	99.81	4.30	99.63	6.04
30	99.99	0.87	99.93	2.62	99.81	4.36	99.63	6.09
32	99.99	0.93	99.93	2.67	99.80	4.42	99.62	6.15
34	99.99	0.99	99.93	2.73	99.80	4.48	99.62	6.21
36	99.99	1.05	99.92	2. 79	99.79	4.53	99.61	6. 27
38	99.99	1.11	99.92	2.85	99.79	4.59	99.60	6.33
40	99.99	1.16	99.92	2.91	99.78	4.65	99.59	6.38
42	99.99	1. 22	99.91	2.97	99.78	4.71	99.59	6. 44
44	99.98	1.28	99.91	3.02	99.77	4.76	99.58	6.50
46	99.98	1.34	99.90	3.08	99.77	4.82	99.57	6.56
48	99.98	1.40	90.90	3.14	99.76	4.88	99.56	6.61
50	99.98	1.45	99.90	3.20	99.76	4.94	99.56	6.67
52	99.98	1.51	99.89	3. 26	99.75	4.99	99.55	6.73
54	99.98	1.57	99.89	3.31	99.74	5.05	99.54	6. 78
56	99.97	1.63	99.89	3.37	99.74	5.11	99.53	6.84
58	99.97	1.69	99.88	3.43	99.73	5. 17	99.52	9.90
60	99.97	1. 74	99.88	3.49	99.73	5.23	99.51	6. 96
$c=0.75$	0.75	0.01	0.75	0.02	0.75	0.03	0.75	0.05
$c=1.00$	1.00	0.01	1.00	0.03	1.00	0.04	1.00	0.06
$c=1.25$	1.25	0.02	1.25	0.03	1.25	0.05	1.25	0.08

Table 28.-Horizontal distances and elevations from stadia readings-Continued.

Minutes.	4°.		$5{ }^{\circ}$.		6°.		$7{ }^{\circ}$.	
	Horizontal distances.	$\begin{gathered} \text { Difference } \\ \text { of eleva- } \\ \text { tion. } \end{gathered}$	Horizontal distances	$\begin{gathered} \text { Difference } \\ \text { of eleva- } \\ \text { tion. } \end{gathered}$	Horizontal distances.	$\begin{aligned} & \text { Difference } \\ & \text { of eleva- } \end{aligned}$ tion.	Horizontal distances.	$\begin{gathered} \text { Difference } \\ \text { of eleva- } \\ \text { tion. } \end{gathered}$
0	99. 51	6. 96	99. 24	8.68	98.91	10.40	98.51	12. 10
2	99.51	7.02	99.23	8.74	98.90	10. 45	98.50	12. 15
4	99. 50	7.07	99.22	8.80	98.88	10.51	98.48	12. 21
6	99. 49	7.13	99.21	8.85	98.87	10.57	98. 47	12. 26
8	99.48	7.19	99.20	8.91	98.86	10. 62	98.46	12. 32
10	99.47 ${ }^{\text { }}$	7.25	99.19	8.97	98.85	10.68	98.44	12.38
12	99. 46	7.30	99.18	9.03	98.83	10. 74	98. 43	12.43
14	99.46	7.36	99.17	9.08	98.82	10.79	98.41	12.49
16	99. 45	7.42	99.16	9.14	98.81	10.85	98.40	12.55
18	99. 44	7.48	99.15	9.20	98.80	10. 91	98.39	12.60
20	99.43	7.53	99.14	9.25	98.78	10.96	98.37	12. 66
22	99. 42	7.59	99.13	9.31	98. 77	11.02	98.36	12. 72
24	99. 41	7.65	99.11	9.37	98.76	11.08.	98. 34	12. 77
26	99. 40	7.71	99.10	9.43	98.74	11.13	98.33	12.83
28	99. 39	7.76	99.09	9.48	98.73	11.19	98.31	12. 88
30	99.38	7.82	99.08	9.54	98.72	11.25	98. 29	12.94
32	99.33	7.88	99.07	9.60	98. 71	11. 30	98.28	13. 00
34	99.37	7.94	99.06	9.65	98. 69	11. 36	98.27	13. 05
36	99.36	7.99	99.05	9.71	98. 68	11.42	98.25	13.11
38	99.35	8.05	99.04	9.77	98.67	11.47	98. 24	13.17
40	99.34	8.11	99.03	9.83	98.65	11.53	98.22	13.22
42	99.33	8.17	99.01	9.88	98.64	11.59	98. 20	13. 28
44	99.32	8.22	99.00	9.94	98.63	11. 64	98.19	13. 33
46	99. 31	8.28	98. 99	10. 00	98.61	11. 70	98.17	13. 39
48	99. 30	8.34	98.98	10. 05	98.60	11.76	98.16	13.45
50	99.29	8.40	98.97	10.11	98.58	11.81	98.14	13.50
52	99. 28	8.45	98.96	10.17	98.57	11.87	98.13	13.56
54	99.27	8.51	98.94	10. 22	98.56	11. 93	98.11	13. 61
56	99. 26	8.57	98.93	10. 28	98.54	11.98	98.10	13. 67
58	99.25	8.63	98.92	10. 34	98.53	12. 04	98.08	13. 73
60.	99.24	8.68	98.91	-10.40	98.51	12.10	98.06	13.78
$c=0.75$	0. 75	0.06	0.75	0.07	0.75	0.08	0. 74	-0.10
$c=1.00$	1.00	0.08	0.99	0.09	0.99	0.11	0.99	0.13
$c=1.25$	1.25	0.10	1.24	0.11	1.24	0.14	1. 24	0.16

Table 28.-Horizontal distances and elevations from stadia readings-Continued.

Minutes.	8°.		$9{ }^{\circ}$.		10°.		11°.	
	Horizontal distances.	$\left\|\begin{array}{c} \text { Difference } \\ \text { of elevaa- } \\ \text { tiona. } \end{array}\right\|$	Horizontal distances.	Difference of elevation.	Horizontal distances.	$\begin{gathered} \text { Difference } \\ \text { of eleva- } \end{gathered}$ tion.	Horizontal distances	$\begin{aligned} & \text { Difference } \\ & \text { of eleva- } \\ & \text { tion. } \end{aligned}$
0	98.06	13. 78	97.55	15.45	96.98	17.10	96.36	18. 73
2	98.05	13.84	97.53	15.51	96.96	17.16	96.34	18.78
4	98. 03	13.89	97.52	15.56	96.94	17.21	96.32	18.84
6	98.01	13.95	97.50	15.62	96.92	17.26	96.29	18.89
8	98.00	14.01	97.48	15.67	96.90	17.32	96.27	18.95
10	97.98	14.06	97.46	15.73	96.88	17.37	96.25	19.00
12	97.97	14.12	97.44	15.78	96. 86	17.43	96.23	19.05
14	97.95	14.17	97.43	15.84	96.84	17.48	96.21	19.11
16	97.93	14.23	97.41	15.89	96.82	17.54	96.18	19.16
18	97.92	14.28	97.39	15.95	96. 80	17.59	96. 16	19. 21
20	97.90	14.34	97.37	16.00	96.78	17.65	96.14	19. 27
22	97.88	14.40	97.35	16.06	96. 76	17.70	96.12	19.32
24	97.87	14.45	97.33	16. 11	96.74	17.76	96.09	19.38
26	97.85	14.51	97.31	16.17	96.72	17.81	96.07	19.43
28	97.83	14.56	97.29	16. 22	96.70	17.86	96.05	19. 48
30	97.82	14.62	97.28	16.28	96.68	17.92	96.03	19.54
32	97.80	14.67	97.26	16.33	96.66	17.97	96.00	19. 59
34	97.78	14.73	97.24	16.39	96.64	18.03	95.98	19.64
36	97.76	14.79	97.22	16.44	96.62	18.08	95. 96	19.70
38	97.75	14.84	97.20	16.50	96.60	18.14	95.93	19. 75
40	97.73	14.90	97.18	16.55	96.57	18.19	95.91	19.80
42	97.71	14.95	97.16	16.61	96.55	18.24	95.89	19. 86
44	97.69	15.01	97.14	16. 66	96.53	18.30	95.86	19. 91
46	97.68	15.06	97.12	16.72	96.51	18.35	95.84	19.96
48	97.66	15.12	97.10	16.77	96.49	18.41	95.82	20.02
50	97.64	15.17	97.08	16. 83	96.47	18.46	95.79	20.07
52	97.62	15. 23	97.06	16.88	96.45	18.51	95. 77	20.12
54	97.61	15.28	97.04	16.94	96. 42	18.57	95. 75	20.18
56	97.59	15.34	97.02	16.99	96. 40	18.62	95. 72	20.23
58	97.57	15.40	97.00	17.05	96. 38	18.68	95.70	20.28
60	97.55	15.45	96.98	17.10	96.36	18.73	95.68	20. 34
$c=0.75$	0.74	0.11	0.74	0.12	0.74	0.14	0.73	0.15
$c=1.00$	0.99	0.15	0.99	0.16	0.98	0.18	0.98	0.20
$c=1.25$	1.23	0.18	1.23	0.21	1. 23	0.23	1.22	0.25

Table 28.-Horizontal distances and elevations from stadia readings-Continued.

Minutes.	12°.		13°.		14°.		15°.	
	Horizontal distances.	Difference of eleva- tion. tion.	Horizontal distances	Differenec of elevation.	Horizontal distances.	Difference of elevation.	Horizontal distances.	$\begin{aligned} & \text { Difference } \\ & \text { of eleva- } \\ & \text { tion. } \end{aligned}$
0	95.68	20.34	94.94	21.92	94.15	23.47	93.30	25.00
2	95.65	20. 39	94.91	21.97	94.12	23.52	93.27	25.05
4	95.63	20.44	94. 89	22.02	94. 09	23.58	93.24	25.10
6	95.61	20.50	94.86	22.08	94.07	23.63	93.21	25.15
8	95.58	20.55	94.84	22.13	94.04	23.68	93.18	25.20
10	95.56	20.60	94.81	22.18	94.01	23.73	93.16	25.25
12	95.53	20.66	94. 79	22.23	93.98	23.78	93.13	25.30
14	95.51	20.71	94. 76	22.28	93.95	23.83	93. 10	25.35
16	95. 49	20.76	94.73	22.34	93.93	23.88	93.07	25. 40
18	95.46	2081	94.71	22.39	93.90	23.93	93.04	25.45
20	95.44	20.87	94. 68	22.44	93.87	23.99	93.01	25.50
22	95. 41	20.92	94.66	22.49	93.84	24.04	92.98	25.55
24	95.39	20.97	94. 63	22.54	93.81	24.09	92.95	25.60
26	95. 36	21.03	94. 60	22.60	93. 79	24. 14	92.92	25. 65
28	95.34	21.08	94.58	22.65	93.76	24. 19	92.89	25. 70
30	95.32	21.13	94.55	22. 70	93.73	24.24	92.86	25.75
32	95. 29	21.18	94.52	22. 75	93. 70	24. 29	92.83	25.80
34	95.27	21.24	94.50	22.80	93.67	24. 34	92.80	25.85
36	95.24	21.29	94.47	22.85	93.65	24. 39	92. 77	25. 90
38	95.22	21. 34	94. 44	22.91	93.62	24. 44	92.74	25.95
40	95. 19	21. 39	94.42	22.96	93.59	24.49	92.71	26.00
42	95.17	21.45	94.39	23.01	93.56	24.55	92.68	26.05
44	95. 14	21.50	94. 36	23.06	93. 53	24.60	92.65	26.10
46	95.12	21.55	94.34	23.11	93.50	24. 65	92.62	26.15
48	95.09	21.60	94. 31	23. 16	93.47	24. 70	92.59	26.20
50	95.07	21.66	94.28	23.22	93.45	24.75	92. 56	26.25
52	95. 04	21.71	94.26	23.27	93.42	24.80	92.53	26.30
54	95.02	21.76	94.23	23.32	93.39	24.85	92.49	26. 35
56	94.99	21.81	94. 20	23.37	93.36	24.90	92.46	26.40
58	94. 97	21.87	94.17	23.42	93.33	24.95	92.43	26.45
60	94.94	21.92	94.15	23.47	93.30	25.00	92.40	26.50 .
$c=0.75$	0.73	0.16	0.73	0.17	0.73	0.19	0.72	0.20
$c=1.00$	0.98	0.22	0.97	0.23	0.97	0.25	0.96	0.27
$c=1.25$	1. 22	0.27	1.21	0.29	1.21	0.31	1.20	0.34

Table 28.-Horizontal distances and elevations from stadia readings-Continued.

Minutes.	16°.		17°.		18°.		19°.	
	Horizontal distances.	Difference of elevation.	Horizontal distances.		Horizontal distances.	Difference of elevation.	Horizontal distances.	Difference of elevation.
0	92. 40	26. b0	91.45	27.96	90.45	29.39	89.40	30.78
2	92.37	26.55	91.42	28.01	90.42	29.44	89.36	30.83
4	92.34	26.59	91.39	28.06	90.38	29.48	89.33	30.87
6	92.31	26. 64	91.35	28. 10	90.35	29.53	89.29	30.92
8	92.28	26. 69	91.32	28.15	90.31	29.58	89.26	30.97
10	92.25	26. 74	91.29	28.20	90.28	29.62	89.22	31.01
12	92.22	26.79	91.26	28. 25	90.24	29.67	89.18	31.06
14	92.19	26.84	91.22	28.30	90.21	29.72	89.15	31.10
16	92.15	26.89	91.19	28.34	90.18	29. 76	89.11	31.15
18	92.12	26.94	91.16	28.39	90.14	29.81	89.08	31.19
20	92. 09	26.99	91.12	28. 44	90.11	29.86	89.04	31.24
22	92.06	27.04	91.09	28. 49	90.07	29. 90	89.00	31.28
24	92.03	27.09	91.06	28.54	90.04	29.95	88.96	31.33
26	92.00	27.13	91.02	28.58	90.00	30.00	88.93	31.38
28	91.97	27.18	90.99	28.63	89.97	30.04	88.89	31.42
30	91.93	27.23	90.96	28.68	89.93	30.09	88.86	31.47
32	91.90	27.28	90.92	28. 73	89.90	30.14	88.82	31.51
34	91.87	27.33	90.89	28. 77	89.86	30.19	88.78	31.56
36	91.84	27.38	90.86	28. 82	89.83	30.23	88.75	31.60
38	91.81	27.43	90.82	28. 87	89.79	30.28	88.71	31.65
40	91.77	27.48	90.79	28.92	89.76	30.32	88.67	31.69
42	91.74	27.52	90.76	28.96	89.72	30.37	88.64	31.74
44	91.71	27.57	90.72	29.01	89.69	30.41	88.60	31.78
46	91.68	27.62	90.69	29.06	89.65	30.46	88.56	31.83
48	91.65	27.67	90.66	29.11	89.61	30.51	88.53	31.87
50	91.61	27.72	90.62	29.15	89.58	30.55	88.49	31.92
52	91.58	27.77	90.59	29. 20	89.54	30.60	88.45	31.96
54	91.55	27.81	90.55	29.25	89.51	30.65	88.41	32.01
56	91.52	27.86	90.52	29.30	89.47	30.69	88.38	32.05
58	91.48	27.91	90.48	29.34	89.44	30.74	88.34	32.09
60	91.45	27.96	90.45	29.39	89.40	30.78	88.30	32.14
$c=0.75$	0.72	0.21	0.72	0.23	0.71	0.24	0.71	0.25
$c=1.00$	0.86	0.28	0.95	0.30	0.95	0.32	0.94	0.33
$c=1.25$	1. 20	0.35	1.19	0.38	1.19	. 0.40	1.18	0.42

Table 28.-Horizontal distances and elevations from stadia readings-Continued.

Minutes.	20°.		21°.		22°.		23°.	
	Horizontal distances.	Difference of elevation.	Horizontal distances.	Difference of elevaof elen. tion.	Horizontal distances.	Difference of elevation.	Horizon tal distances.	Difference of elevation.
0	88.30	32.14	87.16	33.46	85.97	34.73	84. 73	35.97
2	88. 26	32.18	87.12	33.50	85.93	34.77	84.69	36.01
4	88.23	32.23	87.08	33.54	85.89	34.82	84.65	36. 05
6	88. 19	32.27	87.04	33.59	85.85	34.86	84.61	36.09
8	88.15	32.32	87.00	33.63	85.80	34.90	84.57	36.13
10	88.11	32.36	86. 96	33.67	85.76	34.94	84.52	36.17
12	88.08	32.41	86.92	33.72	85.72	34.98	84.48	36.21
14	88.04	32.45	86.88	33.76	85.68	35.02	84.44	36.25
16	88.00	32.49	86. 84	33.80	85.64	35.07	84.40	36.29
18	87.96	32.54	86.80	33.84	85.60	35.11	84.35	36. 33
20	87.93	32.58	86.77	33.89	85.56	35.15	84.31	36.37
22	87.89	32.63	86.73	33.93	85.52	35. 19	84.27	36.41
24	87.85	32.67	86.69	33.97	85.48	35. 23	84.23	36.45
26	87.81	32.72	86.65	34.01	85.44	35. 27	84.18	36.49
28	87.77	32.76	86.61	34.06	85.40	35.31	84.14	36.53
30	87.74	32.80	86.57	34.10	85.36	35.36	84.10	36.57
32	87.70	32.85	86.53	34.14	85.31	35.40	84.06	36.61
34	87.66	32.89	86.49	34.18	85.27	35.44	84.01	36.65
36	87.62	32.93	86.45	34.23	85. 23	35.48	83.97	36.69
38	87.58	32.98	86.41	34. 27	85.19	35.52	83.93	36.73
40	87.54	33.02	86.37	34.31	85.15	35.56	83.89	36. 77
42	87.51	33.07	86.33	34.35	85.11	35.60	83.84	36.80
44	87.47	33.11	86. 29	34.40	85.07	35.64	83.80	36.84
46	87.43	33.15	86.25	34.44	85.02	35.68	83.76	36.88
48	87.39	33.20	86: 21	34.48	84.98	35.72	83.72	36.92
50	87.35	33.24	86.17	34.52	84.94	35.76	83.67	36.96
52	87.31	33.28	86.13	34.57	84.90	35.80	83. 63	37.00
54	87.27	33.33	86.09	34.61	84.86	35.85	83.59	37.04
56	87.24	33. 37	86.05	34.65	84.82	35.89	83.54	37.08
58	87.20	33. 41	86.01	34.69	84.77	35.93	83.50	37.12
60	87.16	33. 46	85.97	34.73	84.73	35.97	83.46	37.16
$c=0.75$	0. 70	0.26	0. 70	0.27	0.69	0.29	0.69	0.30
$r=1.00$	0.94	0.35	0.93	0.37	0.92	0.38	0.92	0.40
$c=1.25$	1.17	0.44	1.16	0.46	1.15	0.48	1.15	0.50

Table 28.-Horizontal distances and elevations from stadia readings-Continued.

Minutes.	24°.		25°.		26°.		27°.	
	Horizontal distances.	Difference of elevation.						
0	83.46	37.16	82.14	38.30	80. 78	39.40	79.39	40.45
2	83.41	37.20	82.09	38. 34	80.74	39.44	79.34	40.49
4	83.37	37.23	82.05	38. 38	80.69	39.47	79. 30	40.52
6	83.33	37.27	82.01	38.41	80.65	39.51	79.25	40.55
8	83.28	37.31	81.96	38.45	80.60	39.54	79. 20	40.59
10	83.24	37.35	81.92	38.49	80.55	39.58	79.15	40.62
12	83.20	37.39	81.87	38.53	80.51	39.61	79.11	40.66
14	83.15	37.43	81.83	38. 56	80.46	39.65	79.06	40.69
16	83.11	37.47	81.78	38.60	80.41	39.69	79.01	40.72
18	83.07	37.51	81.74	38.64	80.37	39.72	78.96	40.76
20	83.02	37.54	81.69	38.67	80.32	39.76	78.92	40.79
22	82.98	37.58	81.65	38.71	80. 28	39.79	78.87	40.82
24	82.93	37.62	81.60	38.75	80.23	39. 83	78.82	40.86
26	82.89	37.66	81.56	38.78	80.18	39. 86	78. 77	40.89
28	82.85	37.70	81.51	38.62	80.14	39.90	78. 73	40.92
30	82.80	37.74	81.47	38.86	80.09	39.93	78.68	40.96
32	82. 76	37.77	81.42	38.89	80.04	39.97	78.63	40.99
34	82.72	37.81	81.38	38.93	80.00	40.00	78.58	41.02
36	82.67	37.85	81.33	38.97	79.95	40.04	78.54	41.06
38	82.63	37.89	81.28	39.00	79.90	40.07	78.49	41.09
40	82. 58	37.93	81.24	39.04	79.86	40.11	78.44	41.12
42	82.54	37.96	81.19	39.08	79.81	40. 14	78.39	41.16
44	82.49	38.00	81.15	39.11	79. 76	40.18	78. 34	41.19
46	82.45	38.04	81.10	39.15	79.72	40.21	78. 30	41.22
48	82.41	38.08	81.06	39.18	79.67	40. 24	78.25	41.26
50	82.36	38.11	81.01	39.22	79.62	40.28	78. 20	41.29
52	82.32	38.15	80.97	39.26	79.58	40.31	78.15	41.32
54	82.27	38.19	80.92	39.29	79.53	40.35	78.10	41.35
56	82.23	38. 23	80.87	39.33	79.48	40.38	78.06	41.39
58	82.18	38. 26	80.83	39.36	79.44	40.42	78.01	41.42
60	82.14	38.30	80.78	39.40	79.39	40.45	77.96	41.45
$c=0.75$	0.68	0.31	0.68	0.32	0.67	0.33	0.66	0.35
$c=1.00$	0.91	0.41	0.90	0.43	0.89	0.45	0.89	0.46
$c=1.25$	1.14	0.52	1.13	0.54	1. 12	0.56	1.11	0.58

Table 28.-Horizontal distances and elevations from stadia readings-Continued.

Minutes.	28°.		29°.		30°.	
	Horizontal distances.	Difference of elevations.	Horizontal distances.	Difference of elevations.	Horizon tal distances.	Difference of elevations.
0	77.96	41.45	76.50	42.40	75.00	43. 30
2	77.91	41.48	76.45	42.43	74.95	43. 33
4	77.86	41.52	76. 40	42.46	74.90	43. 36
6	77.81	41.55	76.35	42. 49	74.85	43. 39
8	77.77	41.58	76.30	42.53	74.80	43.42
10	77.72	41.61	76.25	42.56	74.75	43.45
12	77.67	41.65	76.20	42.59	74.70	43.47
14	77.62	41.68	76.15	.42. 62	74.65	43. 50
16	77.57	41.71	76.10	42.65	74.60	43.53
18	77.52	41.74	76.05	42.68	74.55	43.56
20	77.48	41.77	76.00	42.71	74.49	43.59
22	77.42	41.81	75.95	42.74	74.44	43.62
24	77.38	41.84	75.90	42.77	74. 39	43.65
26	77.33	41.87	75.85	42.80	74.34	43.67
28	77.28	41.90	75.80	42.83	74. 29	43.70
30	77.23	41.93	75.75	42.86	74.24	43.73
32	77.18	41.97	75. 70	42.89	74.19	43.76
34	77.13	42.00	75.65	42.92	74.14	43. 79
36	77.09	42.03	75.60	42.95	74.09	43.82
38	77.04	42.06	75. 55	42.98	74.04	43.84
40	76.99	42.09	75.50	43.01	73.99	43.87
42	76.94	42.12	75. 45	43.04	73.93	43. 90
44	76.89	42.15	75. 40	43.07	73.88	43.93
46	76. 84	42.19	73.35	43.10	73. 83	43.95
48	76. 79	42.22	75. 30	43.13	73.78	43.98
50	76.74	42.25	75.25	43.16	73.73	44.01
52	76.69	42.28	75. 20	43.18	73.68	44.04
54	76.64	42.31	75.15	43.21	73.63	44.07
56	76.59	42.34	75.10	43.24	73.58	44.09
58	76. 55	42.37	75. 05	43.27	73.52	44.12
60	76. 50	42.40	75.00	43.30	73.47	44.15
$\begin{aligned} & c=0.75 \\ & c=1.00 \end{aligned}$	0.66	0.36	0.65	0.37	0.65	0.38
	0.88	0.48	0.87	0.49	0.86	0.51
$c=1.25$	1.10	0.60	1.09	0.62	1.08	0.64

Table 29.-For converting metric into United States measures.
LINEAR.

| Meters. | Inches. | Meters. | Feet. | Meters. | Yards. | Kilo-
 meters. | Miles. |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 39.3700 | 1 | 3.280833 | 1 | 1.093611 | 1 | 0.62137 |
| 2 | 78.7400 | 2 | 6.561667 | 2 | 2.187222 | 2 | 1.24274 |
| 3 | 118.1100 | 3 | 9.842500 | 3 | 3.280833 | 3 | .86411 |
| 4 | 157.4800 | 4 | 13.123333 | 4 | 4.374444 | 4 | 2.48548 |
| 5 | 196.8500 | 5 | 16.404166 | 5 | 5.468056 | 5 | 3.10685 |
| 6 | 236.2200 | 6 | 19.685000 | 6 | 6.561667 | 6 | 3.72822 |
| 7 | 275.5900 | 7 | 22.965833 | 7 | 7.655278 | 7 | 4.34959 |
| 8 | 314.9600 | 8 | 26.246666 | 8 | 8.748889 | 8 | 4.97096 |
| 9 | 354.3300 | 9 | 29.527500 | 9 | 9.842500 | 9 | 5.59233 |

SQUARE.

| Square
 centi-
 meters. | Square
 inches. | Square
 meters. | Square
 feet. | Square
 meters. | Square
 yards. | Hec-
 tares. | Acres. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1550 | 1 | 10.764 | 1 | 1.196 | 1 | 2.471 |
| 2 | 0.3100 | 2 | 21.528 | 2 | 2.392 | 2 | 4.942 |
| 3 | 0.4650 | 3 | 32.292 | 3 | 3.588 | 3 | 7.413 |
| 4 | 0.6200 | 4 | 43.055 | 4 | 4.784 | 4 | 9.884 |
| 5 | 0.7750 | 5 | 53.819 | 5 | 5.980 | 5 | 12.355 |
| 6 | 0.9300 | 6 | 64.583 | 6 | 7.176 | 6 | 14.826 |
| 7 | 1.0850 | 7 | 75.347 | 7 | 8.372 | 7 | 17.297 |
| 8 | 1.2400 | 8 | 86.111 | 8 | 9.568 | 8 | 19.768 |
| 9 | 1.3950 | 9 | 96.875 | 9 | 10.764 | 9 | 22.239 |

Table 30.-For converting United States measures into metric.
LINEAR.

Inches.	Milli- meters.	Feet.	Meters.	Yards.	Meters.	Miles.	Kilo- meters.
1	25.4001	1	0.304801	1	0.914402	1	1.60935
2	50.8001	2	0.609601	2	1.828804	2	3.21869
3	76.2002	3	0.914402	3	2.743205	3	4.82804
4	101.6002	4	1.219202	4	3.657607	4	6.43739
5	127.0003	5	1.524003	5	4.572009	5	8.04674
6	152.4003	6	1.828804	6	5.486411	6	9.65608
7	177.8004	7	2.133604	7	6.400813	7	11.26543
8	203.2004	8	2.438405	8	7.315215	8	12.87478
9	228.6005	9	2.743205	9	8.229616	9	14.48412

SQUARE.

Square	Square centimeters.	$\begin{gathered} \text { Square } \\ \text { feet. } \end{gathered}$	Square meters	Square	Square meters.	Acres.	Hectares.
1	6. 452	1	9. 290	1	0.836	1	0.4047
2	12.903	2	18.581	2	1.672	2	0. 8094
3	19.355	3	27.871	3	2.508	3	1.2141
4	25. 807	4	37.161	4	3.344	4	1.6187
5	32. 258	5	46.452	5	4.181	5	2. 0234
6	38.710	6	55. 742	6	5.017	6	2. 4281
7	45.161	7	65.032	7	5.853	7	2. 8328
8	51.613	8	74.323	8	6.689	8	3. 2375
9	58.065	9	83.613	9	7.525	9	3.6422

Table 31.-For interconversion of miles and logarithms of meters, for distances from 10 to 100 miles.

The value adopted for the meter is 39.3700 inches. Distances between triangulation stations are given in logarithms of meters, but for general use distances in miles are most frequently desired.

The following examples illustrate use of the table:

To find the number of miles corresponding to log. distance in meters
 4. 56857

Next lower log. in table is for 23.00 miles
4. 56838

Difference 19
Corresponding to tabular difference for 0.01 mile.
Hence distance required is 23.01 miles.
For distances less than 10 miles proceed as above; first adding 1 to the characteristic of the given logarithm and afterwards dividing the corresponding number of miles by 10. Example:

Having given the log. 3.84062, which is less than any given in the table, and therefore for a distance less than 10 miles, adding 1 to the characteristic of the logarithm gives 4.54062 , which corresponds to a distance of 43.05 miles. Hence the distance sought is 43.05

$$
10
$$

To change-
(Add.)
Log. of miles to log. of meters 3. 2066498

Log. of yards to log. of meters 9. 9611371

Log. of feet to log. of meters 9. 4840158

Log. of inches to log. of meters. 8.4048346
Log. of meters to log. of miles. 6. 7933502
Log. of meters to log. of yards . 0.0388629
Log. of meters to log. of feet . .. 0.5159842
Log. of meters to log. of inches... . . 1.5951654
Table 31.-For interconversion of miles and logarithms of meters.
[Prepared by S. S. Gannett.]

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
10.00	4. 20665	43	10.50	4. 22784	41	11.00	4. 24804	39
. 05	4. 20882		. 55	4. 22990		. 05	4. 25001	
. 10	4. 21097		. 60	4. 23196		. 10	4. 25197	
. 15	4.21312		. 65	4. 23400		. 15	4. 25393	
. 20	4. 21525	42	. 70	4. 23603		. 20	4. 25587	
. 25	4. 21737		. 75	4. 23806	40	. 25	4. 25780	
. 30	4.21949		. 80	4. 24007		. 30	4. 25973	38
. 35	4.22159		. 85	4. 24208		. 35	4. 26165	.
. 40	4. 22368		. 90	4. 24408		. 40	4. 26355	
. 45	4. 22577	41	. 95	4.24606		. 45	4. 26545	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile	Miles.	Log. meters.	Diff. log .01 mile
11.50	4. 26735	38	14.00	4. 35278	31	16. 50	4. 42413	26
. 55	4. 26923		. 05	4.35433		. 55	4. 42545	
. 60	4. 27111	37	. 10	4.35587		. 60	4. 42676	
. 65	4. 27298		. 15	4.35741		. 65	4. 42806	
. 70	4. 27484		. 20	4.35894		. 70	4.42937	
. 75	4. 27669		. 25	4. 36047	30	. 75	4. 43067	
. 80	4. 27853		. 30	4.36199		. 80	4.43196	
. 85	4.28037		. 35	4.36350		. 85	4.43325	
. 90	4. 28220	36	. 40	4. 36501		. 90	4. 43454	
. 95	4.28402		. 45	4.36652		. 95	4.43582	
12.00	4. 28583		. 50	4. 36802		17.00	4. 43710	25
. 05	4. 28764		. 55	4. 36951		. 05	4. 43837	
. 10	4. 28944		. 60	4.37100		. 10	4. 43964	
. 15	4. 29123		. 65	4.37249		. 15	4. 44091	
. 20	4. 29301		. 70	4.37397	29	. 20	4. 44218	
. 25	4. 29479	35	. 75	4. 37544		. 25	4. 44344	
. 30	4. 29656		. 80	4.37691		. 30	4. 44470	
. 35	4. 29832		. 85	4.37838		. 35	4.44595	
. 40	4. 30007		. 90	4. 37984		. 40	4. 44720	
. 45	4.30182		. 95	4.38129		. 45	4. 44845	
. 50	4. 30356		15.00	4. 38274		. 50	4. 44969	
. 55	4. 30529		. 05	4. 38419		. 55	4.45093	
. 60	4.30702	34	. 10	4.38563		. 60	4.45216	
. 65	4.30874		. 15	4.38706		. 65	4.45339	
. 70	4.31046		. 20	4.38849		. 70	4.45462	
. 75	4. 31216		. 25	4. 38992	28	. 75	4. 45585	24
. 80	4. 31386		. 30	4. 39134		. 80	4.45707	
. 85	4. 31555		. 35	4. 39276		. 85	4.45829	
. 90	4. 31724		. 40	4. 39417		. 90	4.45950	
. 95	4.31892	33	. 45	4.39558		. 95	4.46071	
13.00	4. 32059		. 50	4. 39698		18.00	4. 46192	
. 05	4.32226		. 55	4. 39838		. 05	4.46313	
. 10	4. 32392		. 60	4.39977		. 10	4.46433	
. 15	4. 32558		. 65	4. 40116		. 15	4. 46553	
. 20	4.32722		. 70	4.40255		. 20	4.46672	
. 25	4. 32887		. 75	4.40393		. 25	4. 46791	
. 30	4.33050		. 80	4. 40531	27	. 30	4. 46910	
. 35	4. 33213	32	. 85	4.40668		. 35	4. 47029	
. 40	4.33375		. 90	4.40805		. 40	4. 47147	
. 45	4.33537		. 95	4.40941		. 45	4.47265	23
. 50	4. 33698		16.00	4.41077		. 50	4. 47382	
. 55	4. 33859		. 05	4.41213		. 55	4.47499	
. 60	4.34019		. 10	4.41348		. 60	4.47616	
. 65	4.34178		. 15	4.41482		. 65	4. 47733	
. 70	4.34337		. 20	4.41616		. 70	4.47849	
. 75	4. 34495		. 25	4.41750		. 75	4. 47965	
. 80	4. 34653	31	. 30	4.41884		. 80	4. 48081	
. 85	4. 34810		. 35	4.42017	26	. 85	4.48196	
. 90	4. 34966		. 40	4.42149		. 90	4.48311	
. 95	4.35122		. 45	4.42282		. 95	4.48426	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
19.00	4. 48540	23	21.50	4.53909	20	24.00	4.58686	18
. 05	4. 48654		. 55	4.54010		. 05	4.58777	
. 10	4. 48768		. 60	4.54110		. 10	4.58867	
. 15	4.48882		. 65	4.54211		. 15	4.58957	
. 20	4.48995		. 70	4.54311		. 20	4.59047	
. 25	4. 49108		. 75	4. 54411		. 25	4.59136	
. 30	4. 49221	22	. 80	4.54511		. 30	4.59226	
. 35	4.49333		. 85	4.54610		. 35	4.59315	
. 40	4. 49445		. 90	4.54709		. 40	4.59404	
. 45	4. 49557		. 95	4.54808		.45	4.59493	
. 50	4. 49669		22.00	4. 54907		. 50	4.59582	
. 55	4. 49780		. 05	4.55006		. 55	4.59670	
. 60	4. 49891		. 10	4.55104		. 60	4.59759	
. 65	4.50001		. 15	4.55202		. 65	4.59847	
. 70	4.50112		. 20	4.55300		. 70	4.59935	
. 75	4. 50222		. 25	4.55398	19	. 75	4. 60023	
. 80	4.50332		. 30	4.55495		. 80	4. 60110	
. 85	4. 50441		. 35	4.55593		. 85	4. 60198	
. 90	4. 50550		. 40	4.55690		. 90	4. 60285	17
. 95	4.50659		. 45	4.55787		. 95	4.60372	
20.00	4. 50768		. 50	4.55883		25.00	4. 60459	
. 05	4. 50876		. 55	4.55980		. 05	4.60546	
. 10	4.50985		. 60	4.56076		. 10	4. 60632	
. 15	4.51093		. 65	4. 56172		. 15	4.60719	
. 20	4.51200		. 70	4. 56268		. 20	4.60805	
. 25	4.51308	21	. 75	4. 56363		. 25	4. 608.71	
. 30	4.51415		. 80	4.56459		. 30	4.60977	
. 35	4.51521		. 85	4.56554		. 35	4.61063	
. 40	4. 51628		. 90	4.56649		. 40	4. 61148	
. 45	4.51734		. 95	4.56743		.45	4.61234	
. 50	4. 51840		23.00	4.56838		. 50	4. 61319	
. 55	4.51946		. 05	4.56932		. 55	4.61404	
. 60	4.52052		. 10	4.57026		. 60	4.61489	
. 65	4. 52157		. 15	4.57120		. 65	4.61574	
. 70	4.52262		. 20	4.57214		. 70	4.61658	
. 75	4.52367		. 25	4.57307	-	. 75	4. 61743	
. 80	4. 52471		. 30	4.57401		. 80	4.61827	
. 85	4. 52576		. 35	4.57494		. 85	4.61911	
. 90	4.52680		. 40	4.57587	18	. 90	4.61995	-
. 95	4. 52783		. 45	4.57679		. 95	4.62079	
21.00	4.52887		. 50	4.57772		26.00	4.62162	
. 05	4.52990		. 55	4.57864		. 05	4.62246	
. 10	4. 53093		. 60	4.57956		. 10	4.62329	
. 15	4.53196		. 65	4.58048		. 15	4. 62412	
. 20	4.53299	20	. 70	4.58140		. 20	4.62495	
. 25	4.53401		. 75	4.58231	-	. 25	4. 62578	
. 30	4.53503		. 80	4.58323		. 30	4. 62661	16
. 35	4. 53605		. 85	4.58414		- 35	4.62743	
. 40	4.53706		. 90	4. 58505		. 40	4. 62825	
. 45	4.53808		. 95	4.58596		. 45	4. 62908	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log .01 mile	Miles.	Log. meters.	Diff. log. .01 mile
26.50	4. 62990	16	29.00	4. 66905	15	31.50	4. 70496	14
. 55	4.63071		. 05	4.66980		. 55	4.70565	
. 60	4.63153		. 10	4. 67054		. 60	4. 70634	
. 65	4.63235		. 15	4.67129		. 65	4.70702	
. 70	4.63316		. 20	4.67203		. 70	4.70771	
. 75	4.63397		. 25	4. 67278		. 75	4. 70839	
. 80	4.63479		. 30	4.67352		. 80	4. 70908	
. 85	4.63559		. 35	4. 67426		. 85	4. 70976	
. 90	4.63640		. 40	4. 67500		- 90	4. 71044	
. 95	4.63721		. 45	4.67573		. 95	4.71112	
27.00	4. 63801		. 50	4. 67647 .		32.00	4. 71180	
. 05	4.63882		. 55	4. 67721		. 05	4.71248	
. 10	4.63962		. 60	4.67794		. 10	4.71315	
. 15	4.64042		. 65	4.67867		. 15	4.71383	
. 20	4.64122		. 70	4.67941		. 20	4.71451	13
. 25	4. 64202		. 75	4. 68014		. 25	4. 71518	
. 30	4.64281		. 80	4. 68087		. 30	4.71585	
. 35	4.64361		. 85	4. 68159		. 35	4.71652	
. 40	4.64440		. 90	4. 68232		. 40	4.71719	
. 45	4.64519		. 95	4.68305		. 45	4.71787	
. 50	4.64598		30.00	4.68377	14	. 50	4.71853	
. 55	4.64677		. 05	4. 68449		. 55	4.71920	
. 60	4.64756		. 10	4.68522		. 60	4.71987	
. 65	4.64835		. 15	4. 68594		. 65	4. 72053	
. 70	4.64913		. 20	4.68666		. 70	4. 72120	
. 75	4. 64991		. 25	4. 68737		. 75	4. 72186	
. 80	4. 65069		. 30	4. 68809		. 80	4. 72252	
. 85	4. 65147		. 35	4. 68881		. 85	4. 72319	
. 90	4. 65225		. 40	4. 68952		. 90	4. 72385	
. 95	4.65303		. 45	4.69024		. 95	4.72451	
28.00	4.65381	15	. 50	4. 69095		33.00	4. 72516	-
. 05	4. 65458		. 55	4. 69166		.05	4. 72582	
. 10	4. 65536		. 60	4. 69237		. 10	4.72648	
. 15	4.65613		. 65	4. 69308		. 15	4. 72713	
. 20	4.65690		. 70	4.69379		. 20	4.72779	
. 25	4. 65767		. 75	4. 69449		. 25	4. 72844	
. 30	4.65844		. 80	4. 69520		. 30	4. 72909	
. 35	4.65920		. 85	4. 69590		. 35	4. 72975	
. 40	4.65997		. 90	4. 69661		. 40	4. 73040	
. 45	4.66073		. 95	4.69731		. 45	4.73105	
. 50	4. 66149		31.00	4. 69801		. 50	4. 73169	
. 55	4.66226		. 05	4. 69871		. 55	4. 73234	
. 60	4.66302		. 10	4.69941		. 60	4.73299	
. 65	4.66377		. 15	4. 70011		. 65	4.73363	
. 70	4.66453		. 20	4.70081		. 70	4.73428	
. 75	4. 66529		. 25	4. 70150		. 75	4. 73492	
. 80	4.66604		. 30	4. 70219		. 80	4.73557	
. 85	4.66680		. 35	4. 70289		. 85	4.73621	
. 90	4.66755		. 40	4. 70358		. 90	4. 73685	
. 95	4.66830		. 45	4.70427		. 95	4.73749	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
34.00	4. 73813	13	36.50	4. 76894	12	39.00	4. 79771	11
. 05	4. 73877		. 55	4. 76954		. 05	4.79727	
. 10	4. 73940		. 60	4. 77013		. 10	4. 79883	
. 15	4. 74004		. 65	4. 77072		. 15	4.79938	
. 20	4. 74068		. 70	4. 77132		. 20	4. 79994	
. 25	4. 74131		. 75	4. 77191		. 25	4. 80049	
. 30	4. 74194		. 80	4. 77250		. 30	4. 80104	
. 35	4. 74258		. 85	4. 77309		. 35	4.80159	
. 40	4. 74321		. 90	4. 77368		. 40	4.80215	
. 45	4. 74384		. 95	4. 77426		. 45	4. 80270	
. 50	4. 74447		37.00	4. 77485		. 50	4. 80325	
. 55	4.74510		. 05	4. 77544		. 55	4.80380	
. 60	4. 74573		. 10	4. 77602		. 60	4. 80435	
. 65	4. 74635		. 15	4. 77661		. 65	4. 80489	
. 70	4. 74698		. 20	4. 77719		. 70	4. 80544	
. 75	4. 74761	12	. 25	4. 77778		. 75	4.80599	
. 80	4. 74823		. 30	4. 77836		. 80	4.80653	
. 85	4. 74885		. 35	4. 77894		. 85	4. 80708	
. 90	4. 74947		. 40	4. 77952		. 90	4. 80762	
. 95	4. 75010		.45	t. 78010		. 95	4.80817	
35.00	4. 75072		. 50	4. 78068		40.00	4. 80871	
. 05	4. 75134		. 55	4. 78126		. 05	4.80925	
. 10	4. 75196		. 60	4. 78184		. 10	4. 80979	
. 15	4. 75257		. 65	4. 78241		. 15	4. 81034	
. 20	4. 75319		. 70	4. 78299		. 20	4.81088	
. 25	4. 75381		. 75	4. 78357		. 25	4.81142	
. 30	4. 75443		. 80	4. 78414		. 30	4.81195	
. 35	4. 75504		. 85	4. 78472		. 35	4.81249	
. 40	4. 75565		. 90	4. 78529		. 40	4.81303	
. 45	4. 75627		. 95	4. 78586		. 45	4. 81357	,
. 50	4. 75688		38.00	4. 78643		. 50	4. 81411	
. 55	4. 75749		. 05	4. 78701	11	. 55	4. 81464	
. 60	4. 75810		. 10	4. 78758		. 60	4. 81518	
. 65	4. 75871		. 15	4. 78815		. 65	4.81571	
. 70	4. 75932		. 20	4. 78871		. 70	4. 81624	
. 75	4. 75993		. 25	4. 78928		. 75	4.81677	
. 80	4. 76053		. 30	4. 78985		. 80	4.81731	
. 85	4. 76114		. 35	4. 79041		. 85	4.81784	
. 90	4. 76174		. 40	4. 79098		. 90	4.81837	
. 95	4. 76235		. 45	4. 79155		. 95	4.81890	
36.00	4. 76295		. 50	4. 79211		41.00	4. 81943	
. 05	4. 76355		. 55	4. 79267		. 05	4.81996	
. 10	4. 76416		. 60	4. 79324		. 10	4.82049	
. 15	4. 76476		. 65	4. 79380		. 15	4. 82102	
. 20	4. 76536		. 70	4. 79436		. 20	4.82155	
. 25	4. 76596		. 75	4. 79592		. 25	4. 82207	
. 30	4. 76656		. 80	4. 79548		. 30	4. 82260	
. 35	4. 76715		. 85	4. 79604		. 35	4. 82313	10
. 40	4. 76775		. 90	4. 79660		. 40	4. 82365	
. 45	4.76835		. 95	4. 79716		. 45	4.82417	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
41.50	4. 82470	10	44.00	4.85010	10	46.50	4.87410	9
. 55	4. 82522		. 05	4.85060		. 55	4.87457	
. 60	4.82574		. 10	4.85109		. 60	4. 87504	
. 65	4.82627		. 15	4.85158		. 65	4.87550	
. 70	4.82679		. 20	4.85207		. 70	4. 87597	
. 75	4. 82731		. 25	4. 85256		. 75	4.87643	
. 80	4. 82783		. 30	4.85305		. 80	4.87690	
. 85	4. 82835		. 35	4. 85354		. 85	4.87736	
. 90	4.82886		. 40	4. 85403		. 90	4.87782	
. 95	4.82938		. 45	4.85452		. 95	4.87829	
42.00	4. 82990		. 50	4. 85501		47.00	4. 87875	
. 05	4.83042		. 55	4.85550		. 05	4.87921	
. 10	4. 83093		. 60	4.85599		. 10	4.87967	
. 15	4. 83145		. 65	4. 85647		. 15	4. 88013	
. 20	4. 83196		. 70	4.85696		. 20	4. 88059	
. 25	4. 83248		. 75	4. 85744		. 25	4.88105	
. 30	4. 83299		. 80	4.85793		. 30	4.88151	
. 35	4.83350		. 85	4.85841		. 35	4.88197	
. 40	4: 83402		. 90	4.85890		. 40	4.88243	
. 45	4. 83453		. 95	4.85938		. 45	4.88289	
. 50	4. 83504		45.00	4. 85986		. 50	4. 88334	
. 55	4.83555		. 05	4. 86035		. 55	4.88380	
. 60	4. 83606		. 10	4.86083		. 60	4. 88326	
. 65	4. 83657		. 15	4.86131		. 65	4.88471	
. 70	4. 83708		. 20	4. 86179		. 70	4. 88517	
. 75	4. 83759		. 25	4. 86227		. 75	4. 88502	
. 80	4. 83809		. 30	4. 86275		. 80	4. 88608	
. 85	4.83860		. 35	4.86323		. 85	4.88653	
. 90	4.83911		. 40	4. 86371		. 90	4. 88699	
. 95	4.83961		. 45	4.86418		. 95	4. 88744	
43.00	4. 84012		. 50	4. 86466		48.00	4. 88789	
. 05	4.84062		. 55	4.86514		. 05	4. 88834	
. 10	4. 84113		. 60	4. 86561		. 10	4. 88879	
. 15	4.84163		. 65	4.86609		. 15	4.88925	
. 20	4.84213		. 70	4. 86657		. 20	4.88970	
. 25	4. 84264		. 75	4. 86704		. 25	4. 89015	
. 30	4.84314		. 80	4. 86751		. 30	4. 89060	
. 35	4.84364		. 85	4.86799		. 35	4.89105	
. 40	4.84414		. 90	4. 86846		. 40	4. 89149	
. 45	4. 84464		. 95	4. 86894		. 45	4.89194	
. 50	4. 84514		46.00	4. 86941	9	. 50	4. 89239	
. 55	4.84564		. 05	4. 86988		. 55	4. 89×84	
. 60	4.84614		. 10	4. 87035		. 60	4.89329	
. 65	4.84663		. 15	4. 87082		. 65	4. 89373	-
. 70	4.84713		. 20	4.87129		. 70	4.89418	
. 75	4. 84763		. 25	4. 87176		. 75	4. 89462	
. 80	4. 84812		. 30	4. 87223		. 80	4. 89507	
. 85	4. 84862		. 35	4. 87270		. 85	4.89551	
. 90	4.84911		. 40	4. 87317		. 90	4.89596	
. 95	4.84961		. 45	4. 87364		. 95	4.89640	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. 10 g . .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. \log .01 mile
49.00	4. 89685	9	51.50	4. 91846	8	54.00	4. 93904	8
. 05	4.89729		. 55	4.91888		. 05	4.93945	
. 10	4. 89773		. 60	4.91930		. 10	4.93985	
. 15	4.89817		. 65	4.91972		. 15	4.94025	
. 20	4.89861		. 70	4.92014		. 20	4.94065	
. 25	4. 89906		. 75	4. 92056		. 25	4.94105	
. 30	4. 89950		. 80	4. 92098		. 30	4.94145	
. 35	4.89994		. 85	4.92140		. 35	4.94185	
. 40	4. 90038		. 90	4. 92182		. 40	4.94225	
. 45	4.90082		. 95	4.92224		. 45	4.94265	
. 50	4. 90125		52.00	4. 92265		. 50	4.94305	
. 55	4. 90169		. 05	4. 92307		. 55	4. 94345	
. 60	4.90213		. 10	4. 92349		. 60	4. 94384	
. 65	4.90257		. 15	4.92390		. 65	4. 94424	
. 70	4.90301		. 20	4.92432		. 70	4.94464	
. 75	4. 90344		. 25	4. 92474		. 75	4.94503	
. 80	4.90388		. 30	4. 92515		. 80	4. 94543	
. 85	4.90431		. 35	4. 92557		. 85	4.94583	
. 90	4.90475		. 40	4.92598		. 90	4.94622	
. 95	4.90519		. 45	4.92639		. 95	4.94662	
50.00	4. 90562		. 50	4. 92681		55.00	4. 94701	
. 05	4. 90605		. 55	4. 92722		. 05	4. 94741	
. 10	4. 90649		. 60	4. 92764		. 10	4. 94780	
. 15	4. 90692		. 65	4. 92805		. 15	4. 94820	
. 20	4.90735		. 70	4.92846		. 20	4.94859	
. 25	4. 90779		. 75	4. 92887		. 25	4. 94898	
. 30	4.90822		. 80	4.92928		. 30	4.94937	
. 35	4. 90865		. 85	4.92969		. 35	4.94977	
. 40	4.90908		. 90	4.93011		. 40	4.95016	
. 45	4. 90951		. 95	4.93052		. 45	4.95055	
. 50	4. 90994		53.00	4.93093		. 50	4. 95094	
. 55	4. 91037		. 05	4.93133		. 55	4.95133	
. 60	4.91080		. 10	4.93175		. 60	4.95172	
. 65	4.91123		. 15	4.93215		. 65	4.95212	
. 70	4.91166		. 20	4.93256		. 70	4.95251	
. 75	4. 91209		. 25	4. 93297		. 75	4. 95289	
. 80	4. 91251		. 30	4. 93338		. 80	4. 95328	
. 85	4. 91294		. 35	4. 93378		. 85	4.95367	
. 90	4. 91337		. 40	4. 93419		. 90	4.95406	
. 95	4.91379		. 45	4.93460		. 95	4.95445	
51.00	4.91422		. 50	4. 93500		56.00	4. 95484	
. 05	4. 91465		. 55	4. 93541		. 05	4. 95523	
. 10	4. 91507		. 60	4. 93581		. 10	4. 95561	
. 15	4.91550		. 65	4. 93622		. 15	4. 95600	
. 20	4.91592		. 70	4.93662		. 20	4.95639	
. 25	4. 91634		. 75	4.93703		. 25	4. 95677	
. 30	4. 91677	8	. 80	4.93743		. 30	4. 95716	
. 35	4.91719		. 85	4.93784		. 35	4. 95754	
. 40	4.91761		. 90	4.93824		. 40	4. 95793	
. 45	4.91803		. 95	4. 93864		. 45	4. 95831	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
56.50	4. 95870	8	59.00	4. 97750	7	61.50	4. 99553	7
. 55	4. 95908		. 05	4. 97787		. 55	4.99588	
. 60	4.95947		. 10	4. 97824		. 60	4.99623	
. 65	4. 95985		. 15	4.97861		. 65	4.99658	
. 70	4. 96023		: 20	4.97897		. 70	4.99693	
. 75	4. 96062		. 25	4. 97934		. 75	4.99729	
. 80	4. 96100		. 30	4. 97971		. 80	4.99764	
. 85	4.96138		. 35	4.98007		. 85	4.99799	
. 90	4.96176		. 40	4.98044		. 90	4. 99834	
. 95	4.96214		. 45	4.98080		. 95	4.99869	
57.00	4. 96253		. 50	4. 98117		62.00	4. 99904	
. 05	4.96291		. 55	4.98153		. 05	4.99939	
. 10	4.96329		. 60	4.98190		. 10	4. 99974	
. 15	4.96367*		. 65	4.98226		. 15	5. 00009	
. 20	4.96405		. 70	4. 98262		. 20	5.00044	
. 25	4. 96443		. 75	4. 98299		. 25	5. 00079	
. 30	4. 96481		. 80	4.98335		. 30	5. 00114	
. 35	4. 96518		. 85	4.98371		. 35	5. 00149	
. 40	4.96556		. 90	4.98408		. 40	5. 00183	
. 45	4.96594		. 95.	4.98444		. 45	5.00218	
. 50	4.96632		$\bigcirc 60.00$	4.98480		. 50	5. 00253	
. 55	4. 96669		. 05	4. 98516		. 55	5. 00288	
. 60	4. 96707		. 10	4.98552		. 60	5. 00322	
. 65	4.96745		. 15	4.98589		. 65	5.00357	
. 70	4.96783		. 20	4.98625		. 70	5.00392	
. 75	4.96820		. 25	4. 98661		. 75	5. 00426	
. 80	4.96858	7	. 30	4. 98697		. 80	5.00461	
. 85	4. 96895		. 35	4.98733	.	. 85	5. 00495	
. 90	4. 96933		. 40	4.98769	.	. 90	5.00530	
. 95	4.96970		.45	4.98805		. 95	5. 00565	
58.00	4.97008		. 50	4.98841		63.00	5. 00599	
. 05	4.97045		. 55	4.98876		. 05	5. 00633	
.10	4. 97083		. 60	4.98912		. 10	5. 00668	
. 15	4.97120		. 65	4.98948		. 15	5.00702	
. 20	4.97157		. 70	4.98984		. 20	5.00737	
. 25	+. 97195		. 75	4.99020		. 25	5. 00771	
. 30	4.97232		. 80	4.99055		. 30	5.00805	
. 35	4.97269		. 85	4.99091		. 35	5.00840	
. 40	4.97306		. 90	4.99127		. 40	5. 00874	
.45	4.97343		. 95	4.99162		. 45	5. 00908	
. 50	4. 97381		61.00	4. 99198		. 50	5. 00942	
. 55	4.97418		. 05	4.99234		. 55	5.00977	
. 60	4.97455		. 10	4.99269		. 60	5.01011	
. 65	4.97492		.15	4.99305		. 65	5. 01045	
. 70	4.97529		. 20	4.99340		. 70	5.01079	
. 75	4.97566		. 25	4.99376		. 75	5.01113	
. 80	4.97603		. 30	4. 99411		. 80	5. 01147	
. 85	4.97640		. 35	4. 99447		. 85	5.01181	
. 90	4.97677		. 40	4. 99482		. 90	5. 01215	
. 95	4.97713		. 45	4.99517		. 95	5.01249	

Table 31.-For interconversion of miles and logarillms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
64.00	5. 01283	7	66.50	5. 02947	7	69.00	5. 04550	6
. 05	5.01317		. 55	5.02980		. 05	5. 04581	
. 10	5.01351		. 60	5.03012		. 10	5.04613	
. 15	5. 01385		. 65	5. 03045		. 15	5. 04644	
. 20	5.01419		. 70	5. 03078		. 20	5. 04676	
. 25	5. 01452		. 75	5.03110		. 25	5.04707	
. 30	5.01486		. 80	5.03143		. 30	5.04738	
. 35	5.01520		. 85	5.03175		. 35	5.04770	.
. 40	5. 01554		. 90	$5.03 \varrho 08$. 40	5.04801	
. 45	5.01587		. 95	5.03241		. 45	5.04832	
. 50	5. 01621		67.00	5. 03273	6	. 50	5. 04863	
. 55	5.01655		. 05	5. 03305		. 55	5. 04895	
. 60	5.01688		. 10	5. 03337		. 60	5. 04926	
. 65	5.01722		. 15	5. 03370		. 65	5. 04957	
. 70	5.01755		. 20	5. 03402		. 70	5. 04988	
. 75	5.01789		. 25	5. 03434		. 75	5. 05019	
. 80	5.01823		. 30	5.03467		. 80	5.05051	
. 85	5.01856		. 35	5. 03499		. 85	5. 05082	
. 90	5.01889		. 40	5. 03531		. 90	5.05113	
. 95	5.01923		. 45	5. 03563		. 95	5. 05144	
65.00	5.01956		. 50	5. 03595		70.00	5. 05175	
. 05	5.01990		. 55	5.03627		. 05	5. 05206	
. 10	5.02023		. 60	5. 03660		. 10	5. 05237	
. 15	5.02056		. 65	5. 03692		. 15	5. 05268	
. 20	5. 02090		. 70	5.03724		. 20	5.05299	
. 25	5. 02123		. 75	5. 03756		. 25	5. 05330	
. 30	5. 02156		. 80	5. 03788		. 30	5. 05361	
. 35	5.02190		. 85	5.03820		. 35	5. 05391	
. 40	5. 02223		. 90	5.03852		. 40	5. 05422	
. 45	5.02256		. 95	5. 03884		. 45	5. 05453	
. 50	5. 02289		68.00	5.03916		. 50	5. 05484	
. 55	5.02322		. 05	5.03948		. 55	5. 05515	
. 60	5.02355		. 10	5.03980		. 60	5. 05545	
. 65	5. 02389		. 15	5.04012		. 65	5. 05576	
. 70	5.02421		. 20	5.04043		. 70	5. 05607	
. 75	5.02455		. 25	5.04075		. 75	5.05538	
. 80	5.02488		. 30	5.04107		. 80	5. 05668	
. 85	5.02521		. 35	5.04139		. 85	5. 05699	
. 90	5.02554		. 40	5.04171		. 90	5.05730	
. 95	5.02587		. 45	5.04202		. 95	5. 05760	
66. 00	5. 02619		. 50	5.04234		71.00	5. 05791	
. 05	5. 02652		. 55	5. 04266		. 05	5. 05821	
. 10	5. 02685		. 60	5. 04297		. 10	5. 05852	
. 15	5. 02718		. 65	5. 04329		. 15	5. 05883	
. 20	5.02751		. 70	5. 04361		. 20	5.05913	
. 25	5. 02784		. 75	5.04392		. 25	5. 05943	
. 30	5.02816		. 80	5. 04424		. 30	5. 05974	
. 35	5. 02849		. 85	5.04455		. 35	5. 06004	
. 40	5.02882		. 90	5.04487		. 40	5. 06035	
. 45	5. 02915		. 95	5.04518		. 45	5. 06065	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log .01 mile
71.50	5. 06096	6	74.00	5.07588	6	76.50	5.09031	6
. 55	5. 06126		. 05	5.07617		. 55	5. 09059	
. 60	5.06156		. 10	5.07647		. 60	5. 09088	
. 65	5.06187		. 15	5.07676		. 65	5. 09117	
. 70	5. 06217		. 20	5. 07705		. 70	5.09145	
. 75	5. 06247		. 25	5. 07735		. 75	5. 09173	
. 80	5. 06277		. 30	5. 07764		. 80	5. 09201	
. 85	5. 06308		. 35	5. 07793		. 85	5. 09229	
. 90	5.06338		. 40	5.07822		. 90	5. 09258	
. 95	5.06368		. 45	5.07851		. 95	5.09286	
72.00	5. 06398		. 50	5. 07881		77.00	5. 09314	
. 05	5. 06428		. 55	5.07910		. 05	5.09342	
. 10	5. 06459		. 60	5. 07939		. 10	5. 09370	
. 15	5. 06489		. 65	5.07968		. 15	5. 09399	
. 20	5. 06519		. 70	5.07997		. 20	5.09427	
. 25	5. 06549		. 75	5. 08026		. 25	5.09455	
. 30	5. 06579		. 80	5. 08055		. 30	5. 09483	
. 35	5. 06609		. 85	5. 08084		. 35	5. 09511	
. 40	5. 06639		. 90	5.08113		. 40	5. 09539	
. 45	5. 06669		. 95	5.08142		. 45	5.09567	
. 50	5. 06699		75.00	5. 08171		. 50	5. 09595	
. 55	5.06729		. 05	5. 08200		. 55	5. 09623	
. 60	5. 06759		. 10	5.08229		. 60	5. 09651	
. 65	5. 06789		. 15	5. 08258		. 65	5. 09679	
. 70	5. 06818		. 20	5.08287		. 70	5.09707	
. 75	5. 06848		. 25	5. 08316		. 75	5. 09735	
. 80	5. 06878		. 30	5.08345		. 80	5. 09763	
. 85	5. 06908		. 35	5.08373		. 85	5. 09791	
. 90	5. 06938		. 40	5.08402		. 90	5. 09819	
. 95	5. 06967		. 45	5.08431		. 95	5.09847	
73.00	5. 06997		. 50	5.08460		78.00	5. 09875	
. 05	5. 07027		. 55	5.08488		. 05	5. 09902	
. 10	5.07057		. 60	5.08517		. 10	5. 09930	
. 15	5.07086		. 65	5.08546		. 15	5. 09958	
. 20	5.07116		. 70	5.08575		. 20	5. 09986	
. 25	5. 07146		. 75	5.08603		. 25	5. 10013	
. 30	5.07175		. 80	5. 08632		. 30	5. 10041	
. 35	5.07205		. 85	5. 08661		. 35	5. 10069	
. 40	5. 07235		. 90	5. 08689		. 40	5. 10097	
. 45	5.07264		. 95	5.08718		. 45	5. 10124	
. 50	5.07294		76.00	5.08746		. 50	5. 10152	
. 55	5.07323		. 05	5. 08775		. 55	5. 10180	
. 60	5.07353		. 10	5. 08803		. 60	5. 10207	
. 65	5. 07382		. 15	5. 08832		. 65	5. 10235	
. 70	5.07412		. 20	5.08861		. 70	5. 10263	
. 75	5. 07441		. 25	5.08889		. 75	5. 10290	
. 80	5. 07471		. 30	5.08917		. 80	5. 10318	
. 85	5.07500		. 35	5. 08946		. 85	5. 10345	
. 90	5. 07529		. 40	5. 08974		. 90	5. 10373	
.95	5.07559		. 45	5.09003		. 95	5. 10400	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
79.00	5.10428	5	81.50	5.11781	5	84.00	5. 13093	- 5
. 05	5. 10455		. 55	5.11807		. 05	5.13119	
. 10	5.10483		. 60	5. 11834		. 10	5. 13145	
. 15	5.10510		. 65	5.11861		. 15	5. 13170 .	
. 20	5.10537		. 70	5.11887		. 20	5.13196	
. 25	5. 10565		. 75	5.11913		. 25	5. 13222	
. 30	5. 10592		. 80	5. 11940		. 30	5.13248	
. 35	5. 10620		. 85	5. 11967		. 35	5. 13273	
. 40	5. 10647		. 90	5. 11993		. 40	5. 13299	
. 45	5.10674		. 95	5.12020		. 45	5.13325	
. 50	5.10702		82.00	5. 12046		. 50	5. 13351	
. 55	5.10729		. 05	5. 12073		. 55	5.13376	
. 60	5.10756		. 10	5. 12099		. 60	5.13402	
. 65	5. 10784		. 15	5.12126		. 65	5.13428	
. 70	5.10811		. 20	5.12152		. 70	5.13453	
. 75	5.10838		. 25	5. 12179		. 75	5. 13479	
. 80	5.10865		. 30	5. 12205		. 80	5. 13505	
. 85	5.10893		. 35	5. 12231		. 85	5. 13530	
. 90	5. 10920		. 40	5. 12258		. 90	5. 13556	
. 95	5.10947		.45	5. 12284		. 95	5.13581	
80.00	5.10974		. 50	5. 12310		85.00	5. 13607	
. 05	5.11001		. 55	5. 12337		. 05	5. 13632	
. 10	5. 11028		. 60	5. 12363		. 10	5. 13658	
. 15	5.11055		. 65	5. 12389		. 15	5. 13683	
. 20	5.11082		. 70	5. 12416		. 20	5.13709	
. 25	5. 11109		. 75	5. 12442		25	5. 13734	
. 30	5.11137		. 80	5. 12468		. 30	5. 13760	
. 35	5.11164		. 85	5. 12494		. 35	5.13785	
. 40	5.11191		. 90	5. 12521		. 40	5.13811	
. 45	5.11218		. 95	5. 12547		. 45	5.13836	
. 50	5. 11245		83.00	5. 12573		. 50	5. 13862	
. 55	5.11272		. 05	5. 12599		. 55	5.13887	
. 60	5.11299		. 10	5. 12625		. 60	5. 13912	
. 65	5.11325		. 15	5. 12651		. 65	5. 13938	
. 70	5. 11352		. 20	5.12677		. 70	5.13963	
. 75	5. 11379		. 25	5. 12703		. 75	5. 13988	
. 80	5.11406		. 30	5. 12729		. 80	5. 14014	
. 85	5.11433		. 35	5. 12756		. 85	5.14039	
. 90	5.11460		. 40	5.12782		. 90	5. 14064	
. 95	5.11487		. 45	5.12808		. 95	5.14090	
81.00	5.11513		. 50	5. 12834		86.00	5. 14115	
. 05	5.11540		. 55	5.12860		. 05	5. 14140	
. 10	5.11567		. 60	5. 12886		. 10	5.14165	
. 15	5. 11594		. 65	5. 12912		. 15	5.14191	
. 20	5.11621		. 70	5.12937		. 20	5.14216	
. 25	5.11647		. 75	5. 12963		. 25	5. 14241	
. 30	5.11674		. 80	5. 12989		. 30	5.14266	
. 35	5.11701		. 85	5. 13015		. 35	5.14291	
. 40	5. 11727		. 90	5.13041		. 40	5. 14316	
. 45	5. 11754		. 95	5. 13067		. 45	5.14341	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.
86.50	5. 14367	5	89.00	5. 15604	5	91.50	5.16807	5
. 55	5.14392		. 05	5.15628		. 55	5. 16831	
. 60	5.14417		. 10	5. 15653		. 60	5. 16855	
. 65	5.14442		. 15	5.15677		. 65	5. 16878	
. 70	5.14467		. 20	5.15701		. 70	5.16902	
. 75	5. 14492		. 25	5.15726		. 75	5. 16926	
. 80	5.14517		. 30	5.15750		. 80	5. 16949	
. 85.	5. 14542		. 35	5.15775		. 85	5. 16973	
. 90	5.14567		. 40	5. 15799		. 90	5. 16997	
. 95	5.14592		. 45	5.15823		. 95	5.17020	
87.00	5.14617		. 50	5.15847		92.00	5. 17044	
. 05	5. 14642		. 55	5.15872		. 05	5. 17067	
. 10	5.14667		. 60	5. 15896		. 10	5.17091	
. 15	5. 14692		. 65	5.15920		. 15	5.17115	
. 20	5.14717		. 70	5.15944		. 20	5.17138	
. 25	5.14741		. 75	5. 15968		. 25	5. 17162	
. 30	5.14766		. 80	5. 15993		. 30	5.17285	
. 35	5.14791		. 85	5.16017		. 35	5. 17209	
. 40	5.14816		. 90	5. 16041		. 40	5. 17232	
. 45	5.14841		. 95	5. 16065		. 45	5.17256	
. 50	5. 14866		90.00	5. 16089		. 50	5. 17279	
. 55	5.14891		. 05	5.16113		. 55	5.17303.	
. 60	5.14915		. 10	5.16137		. 60	5. 17326	
. 65	5.14940		. 15	5. 16162		. 65	5. 17349	
. 70	5. 14965		. 20	5.16186		. 70	5. 17373	
. 75	5.14990		. 25	5.16210		. 75	5.17396	
. 80	5. 15014		. 30	5. 16234		. 80	5. 17420	
. 85	5.15039		. 35	5. 16258		. 85	5. 17443	
. 90	5.15064		. 40	5. 16282		. 90	5. 17467	
. 95	5. 15089		.45	5.16306		. 95	5.17490	
88.00	5. 15113		. 50	5.16330		93.00	5. 17513	
. 05	5.15138		. 55	5.16354		. 05	5.17537	
. 10	5. 15163		. 60	5.16378		. 10	5.17560	
. 15	5.15187		. 65	5. 16402		. 15	5.17583	
. 20	5.15212		. 70	5. 16426		. 20	5.17607	
. 25	5. 15237		. 75	5. 16450		. 25	5. 17630	
. 30	5. 15261		. 80	5. 16474		. 30	5. 17653	\cdots
. 35	5.15286		. 85	5. 16497		. 35	5. 17676	
. 40	5.15310		. 90	5. 16521		. 40	5.17700	
.45	5:15335		. 95	5. 16545		. 45	5. 17723	
. 50	5. 15359		91.00	5. 16569		. 50	5. 17746	
. 55	5.15384		. 05	5.16593		. 55	5.17769	
. 60	5. 15408		. 10	5. 16617		. 60	5.17793	
. 65	5. 15433		. 15	5. 16641		. 65	5.17816	
. 70	5.15457		. 20	5. 16665		. 70	5.17839	
. 75	5. 15482		. 25	5. 16688		. 75	5. 17862	
. 80	5.15506		. 30	5.16712		. 80	5.17885	
. 85	5.15531		. 35	5.16736		. 85	5.17908	
. 90	5.15555		. 40	5.16760		. 90	5.17932	
. 95	5.15580		. 45	5.16783		. 95	5.17955	

Table 31.-For interconversion of miles and logarithms of meters-Continued.

Miles.	Log.meters.	Diff.log. .01 mile.	Miles.	Log. meters.	Diff. log. .01 mile.	Miles.	Log.meters.	Diff. log. .01 mile.
94.00	5. 17978	5	96. 00	5.18892	5	98.00	5.19788	4
. 05	5. 18001	-	. 05	5. 18915		. 05	5. 19810	
. 10	5. 18024		. 10	5. 18937		. 10	5.19832	
. 15	5.18047		. 15	5.18960		. 15	5. 19854	
. 20	5. 18170		. 20	5.18983		. 20	5.19876	
. 25	5. 18193		. 25	5. 19005		. 25	5. 19898	
. 30	5.18116		. 30	5. 19028		. 30	5. 19920	
. 35	5. 18139		. 35	5.19050		. 35	5. 19942	
. 40	5. 18162		. 40	5.19073		. 40	5. 19965	
. 45	5.18185		. 45	5.19095		. 45	5.19987	
. 50	5. 18208		. 50	5. 19118		. 50	5. 20009	
. 55	5.18231		. 55	5. 19140		. 55	5. 20031	
. 60	5.18254		. 60	5.19163		. 60	5. 20053	
. 65	5.18277		. 65	5. 19185		. 65	5. 20075	
. 70	5.18300		. 70	5. 19208		. 70	5. 20097	
. 75	5. 18323		. 75	5.19230		. 75	5. 20119	
. 80	5. 18346		. 80	5. 19253		. 80	5. 20141	
. 85	5. 18369		. 85	5. 19275		. 85	5. 20163	
. 90	5.18392		. 90	5. 19297		. 90	5. 20185	
. 95	5.18415		. 95	5.19320		. 95	5. 20207	
95.00	5. 18437		97.00	5. 19342	4	99.00	5. 20229	
. 05	5.18460		. 05	5. 19365		. 05	5. 20250	
. 10	5.18483		. 10	5.19387		. 10	5. 20272	
. 15	5.18506		. 15	5.19409		. 15	5. 20294	
. 20	5. 18529		. 20	5.19432		. 20	5.20316	
. 25	5. 18551		. 25	5. 19454		. 25	5.20338	
. 30	5. 18574		. 30	5. 19476		. 30	5.20360	
-. 35	5. 18597		. 35	5.19499		. 35	5. 20382	
. 40	5. 18620		. 40	5.19521		. 40	5. 20404	
.45	5. 18643		. 45	5.19543		. 45	5. 20425	
. 50	5. 18665		. 50	5. 19565		. 50	5. 20447	
. 55	5. 18688		. 55	5.19588		. 55	5. 20469	
. 60	5.18711		. 60	5.19610		. 60	5. 20491	
. 65	5.18733		. 65	5. 19632		. 65	5. 20513	
. 70	5. 18756		. 70	5. 19655		. 70	5.20535	
. 75	5.18779		. 75	5.19677		. 75	5. 20556	.
. 80	5.18802		. 80	5. 19699		. 80	5. 20578	
. 85	5.18824		. 85	5. 19721		. 85	5.20600	
. 90	5.18847	\cdot	. 90	5.19743		. 90	5. 20621	
. 95	5.18869		. 95	5. 19765		. 95	5. 20643	

CONVENIEN'T EQUIVALENTS.

1 acre $=209$ feet square, nearly.
1 acre $=43,560$ square feet $=4,840$ square yards.
1 statute mile $=1,760$ yards $=5,280$ feet $=63,360$ inches.
1 cubic foot $=7.48$ gallons $=0.804$ bushel .
1 cubic foot of water weighs 62.4 pounds.
1 wine gallon $=8.34$ pounds water.
1 wine gallon $=231$ cubic inches.
1 avoirdupois pound $=7,000$ grains.
1 troy pound $=5,760$ grains.

1 meter $=39.37$ inches. Log. 1.5951654.
1 meter $=3.28083$ feet. Log. 0.5159842 .
1 meter $=1.093611$ yards. Log. 0.0388629 .
1 meter $=0.00062137$ mile. Log. 6.7933502.
1 kilometer $=3,281$ feet $=$ five-eighths mile, nearly.
1 cubic meter $=35.314$ cubic feet $=1.308$ yards.
1 liter $=1.0567$ quarts.
1 gram $=15.43$ grains.
1 kilogram $=2.2046$ avoirdupois pounds.
1 tonneau (metric ton) $=2,204.6$ pounds.
1 cubic meter per minute $=0.5886$ second-foot.
1 second-foot $=50$ California miner's inches.
1 second-foot $=40$ Arizona miner's inches.
1 second-foot $=449$ gallons per minute.
1 second-foot for one day $=1.9835$ acre-feet.
1 second-foot for one day $=646,272$ United States gallons.
1 second-foot $=$ about one acre-inch per hour.
1 acre-foot $=325,850$ gallons.
$1,000,000$ gallons $=3.07$ acre-feet.
$1,000,000$ cubic feet $=22.95$ acre-feet.
$1,000,000$ gallons per 24 hours $=1.55$ second-feet.
1 horse power $=550$ foot-pounds per second.
1 horse power $=76$ kilogrammeters per second.
1 horse powtrr $=746$ watts.
1 horse power $=1$ second-foot water falling 8.8 feet.
1 second-foot falling 10 feet $=1.135$ horse power.
1 foot per second $=1.077$ kilometers per hour.
1 foot per second $=0.68$ miles per hour.
1 inch $=2.54$ centimeters.
1 foot $=0.3048$ meters.
1 yard $=0.9144$ meters.
1 mile $=1.60935$ kilometers.
1 square yard $=0.836$ square meters.
1 acre $=0.4047$ hectares.
1 square mile $=259$ hectares.
1 square mile $=2.59$ square kilometers.
1 cubic foot $=0.0283$ cubic meters.
1 cubic yard $=0.7646$ cubic meters.
1 gallon $=3.7854$ liters.
1 pound $=0.4536$ kilograms.
1 atmosphere $=$ about $\left\{\begin{array}{l}15 \text { pounds per square inch. } \\ 1 \text { ton per square foot. } \\ 1 \text { kilo per square centimeter. }\end{array}\right.$
Acceleration of gravity $=32.16$ feet per second.
To change miles to inches on map:
Scale 1: 125000,1 mile $=0.50688$ inches. \quad Log. $=9.7049052$.
Scale 1: 90000, 1 mile $=0.70400$ inches. \quad Log. $=9.8475727$.
Scale 1:62500, 1 mile $=1.01376$ inches. \quad Log. $=0.0059352$.
Scale 1:45000, 1 mile $=1.40800$ inches. Log. $=0.1486027$.
To change log. of meters to log. of inches on map:
Scale 1:125000 add 6.4982552.
Scale 1: 90000 add 6.6409228 .
Scale 1:62500 add 6.7992853 .
Scale 1:45000 add 6.9419528.

CONSTANTS.

		Log.
Basis of natural logarithms.................e	2.7182818285	0. 4342944819
Modulus of Briggs's logarithms m	0. 4342944819	9.6377843113-10
Radius of the circle in seconds.	206264.8062	5. 3144251332
Radius of the circle in minutesr	3437.74677	3.5362738828
Radius of the circle in degrees.	57.2957795	1.7581226324
Circumference of the circle in seconds	1296000	6. 1126050015
Circumference of the circle in minutes.	21600	4. 3344537512
Circumference of the circle in degrees	360	2.5563025008
Circumference of the circle for the diameter. $=$	1	0.0000000000
	3. 1415926536	0. 4971498727

Sidereal year $=365.2563578$ mean solar days.
Sidereal day $=23^{\mathrm{h}} 56^{\mathrm{m}} 4 .{ }^{\mathrm{s}} 100$ mean solar time.
Mean solar day $=24^{\mathrm{h}} 3^{\mathrm{m}} 56 .{ }^{5} 546$ sidereal time.
Mean distance of the earth from the sun $=92800000$ miles.

PHYBICAL CONSTANTS.
Velocity of light (Harkness) $=186337$ miles per second $=299878 \mathrm{~km}$. per second.
Velocity of sound through dry air $=1090 \sqrt{1+0.00367 t^{\circ} \mathrm{C}}$. feet per second.

LINEAR EXPANSIONS OF PRINCIPAL METALS IN MICRONS PER METER (OR MILLIONTHS PER UNIT LENGTH).

Name of metal.	$\begin{gathered} \text { Expansion } \\ \text { per } \\ \text { degree } \mathbf{C} . \end{gathered}$	$\begin{gathered} \text { Expansion } \\ \text { per } \\ \text { degree } F \text {. } \end{gathered}$
Aluminum.....	20	11.1
Brass.	19	10.5
Copper	17	9.4
Glass.	9	5.0
Gold	15	8.3
Iron, cast.	11	6.1
Iron, wrought.	12	6.7
Lead	28	15.5
Nickel-steel.	0	0.0
Platinum	9	5.0
Platinum-iridium	8.7	4.8
Silver	19	10.5
Steel, hard.	12	6.7
Steel, soft.	11	6.1
Tin	19	10.5
Zinc.	29	16.1

Page.Alidades, micrometer, determination of con-stant and value of division 12-13
Altitude, differences of, table for obtain- ing 274-289
Arc into time, table for conversion of 111
Astronomical constants 315
Azimuths of Polaris at any hour angle, ex- planation of 22-25
at any hour angle, table of. 20-21
at elongation, table of 19
Center, reduction to, example of 7
reduction to, figure and formula for 6reduction to, graphicCircular functions expressed in arc andtime, five-place logarithm tableof.148-192
Constants, table of 315
Culminations of Polaris, table giving times of. 16
examples for computing times of 18
Curvature and refraction, table of correc- tions for. 273
Elongations of Polaris, table of azimuth at. 19
table of times of 16
Equivalents, convenient, table of 313-314
Expansion, linear, of metals 315
Feet to decimals of a mile, table for conver- sion of 115
Feet to meters, table for conversion of. 268
Geodetic position computations, formulas and constants for 193
inverse solution, example of 270
logarithms of factors A, B, C, D, E, F, latitude $0^{\circ}-72^{\circ}$ 193-270
Hour angle of Polaris 14
Kilometers to statute miles, table for con- version of 268
Logarithms of circular functions expressedin arc and time, five-place tableof.148-192
of natural numbers, five-place table of. 126-147
Longitude corrections, difference in arc and sine, table of 269
M, logarithm of, for use in computing spherical excess 271
Mean time into sidereal time, table for con- version of 113
Meridian, method of fixing 14-15
Metals, linear expansion of 315
Meters, logarithms of, and miles, table for interconversion of. 301-313
Meters to feet. table for conversion of 268
Metric into United States measures, table for converting 299
Page.
Micrometer alidades, determination of con- stant and value of division..... 12-13 version of 115
Mile, decimals of, into feet, table for con-
Mile, decimals of, into feet, table for con-
Miles and logarithms of meters, table for interconversion of 301-313
Number, fractional change in, correspond- ing to a change in its logarithm. 126
Numbers, natural, five-place logarithm table of 126-147
Physical constants 315
Polaris, apparent altitude and azimuth of,at different hour angles26-34
aspects of, figure showing 14
azimuths of, at any hour angle, explana- tion of table. 22-25
at any hour angle, table of 20-21
at elongation, table of. 19
culminations of, examples for comput- ing times of 18
culminations and elongations of, table of times 16
hour angle of, definition 14
Projection of maps of large areas, table of. . 37-4Projection of maps, scale $1: 12,000$, table ofcoordinates86-94
scale $1: 48,000$, table of coordinates. 77-85
scale $1: 62,500$, table of coordinates 71-76
scale $1: 63,360$, table of coordinates 59-70
scale $1: 125,000$, table of coordinates 49-58
tables for, examples of use of 35-36
Projection, polyconic, construccion of, figure showing 35
Quadrilaterals 10^{\prime} extent in latitude and longitude, areas of. 106-110
15^{\prime} extent in latitude and longitude, areas of. 100-105
30^{\prime} extent in latitude and longitude, areas of 97-99
1° extent in latitude and longitude, areas of 95-96
Reduction to center, example of 7
figure and formula for 6
graphic, explanation of 8
Refraction, mean, table of 272
Sidereal time into mean time, table for con- version of 114
Spherical excess, approximate, method of obtaining 8,272
Spherical excess, log. m. for use in comput- ing. 271
Stadia readings, horizontal distances and elevations, table of 290-298
Statute miles to kilometers, table for con-version of.2 2f

Page.
Three-point problem, computation of...... 10 graphic solution of 11
Time to arc, table for conversion of 112
Time, local, method of obtaining.
Time, mean, table for conversion of, into
sidereal, and vice versa........ 113-114 8

Triangles, solution of, two sides and included angle given \qquad cluded

Page.

Triangles, right-angled, rules for solution of. 5 United States measures to metric, table for conversion of, and vice versa. 299-300 Wheel revolutions to hundredths of a mile, table for conversion of......... 116-125

5

0

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

APR 161915
APR 11932

YD066176

[^0]: a The vertical diameter SS', fig. 6, divides the apparent path of Polaris into two equal parts, and for the star at any point s_{6} on the east side is a corresponding point s_{1} on the west side of the meridian, for which azimuth N_{w} is equal to the azimuth $\mathrm{N} e$. The are, $\mathrm{Ss}_{1} \mathrm{~S}^{\prime} \mathrm{s}_{6}$, taken from the entire circle (or $23^{\mathrm{h}} 56^{\mathrm{m}} .1$), leaves the are Ss_{6}, and its equal Ss_{1}, expressed in time, may be used to find, from table 3, the azimuth $\mathrm{N} w$, which is equal to $\mathrm{N} e$.
 The hour angles entered in table 3 include only those of the west half of the circle ending at S , and when an hour angle greater than $11^{\mathrm{h}} 58^{\mathrm{m}}$ results from observation it will be subtracted from 23^{h} $56^{\mathrm{m} .1}$, and the remainder will be used as the "time argument" for the table. The surveyor should not confound these two quantities. The hour angle itself always decides the direction of the azimuth and defines the place of the star with reference to the pole and meridian, as noted at top of table 3. See examples.

[^1]: a By reference to the above table, the surveyor will observe that the times, between November 1 and 15 , are greater than $8^{\mathrm{h}} 24^{\mathrm{m}}$; consequently, the culmination for one day earlier, November 6 , will be used.
 b From table 1, opposite sixth day of month.
 c To subtract, take one day from November 7 , and add its equivalent, 24^{h}, to $8^{\mathrm{h}} 24^{\mathrm{m}}$, making, November $6,32^{\mathrm{h}} 24^{\mathrm{m}}$ (which is the time expressed by November $7,8^{\mathrm{h}} 24^{\mathrm{m}}$); then subtract in the usual manner.
 a See last clause of footnote, page 22.
 e In case the hour angle comes out greater than $11^{\mathrm{h}} 58^{\mathrm{m}}$, subtract it from $23^{\mathrm{h}} 56^{\mathrm{m}} .1$; see example 4 , above.
 f The hour angle being less than $11^{\mathrm{h}} 588^{\mathrm{m}}$, the azimuth is west; see precepts, top of table 3 .

[^2]: be applied with reversed sign while the declination is less than $88^{\circ} 46^{\prime}$, as it will be until near the close of the century.

[^3]: a Approximate Times of Culminations and Elongations and of the Azimuths at Elongation of Polaris for the Years between 1889 and 1910.

 The mean places of Polaris are given as follows:

[^4]: a For all distances under 1.6 miles the correction may be taken as +5 feet. Height of instrument

