umVhRSITY OF CALIFORNIA DAVIS THE INTERNATIONAL SCIENTIFIC SERIES. Each Book Complete in One Volume. Crown 8vo. cloth. I. FORMS of "WATER: in Clouds and Rivers, Ice and Glaciers. By J. TYNDALL, LL.D., F.R.S. With 25 Illustrations. Ninth Edition. 5s. II. PHYSICS and POLITICS ; or, Thoughts on the Application qf the Principles of 'Natural Selection' and 'Inheritance' to 'Political Society. By WALTER BAGEHOT. Eighth Edition. 45. III. FOODS. By EDWARD SMITH, M.D., LL.B., F.E.S. With numerous Illustrations. Ninth Edition. 5.*. IV. MIND and BODY: the Theories and their Relation. By ALEXANDER BAIK, LL.D. With Four Illustrations. Seventh Edition. 4s. V. The STUDY of SOCIOLOGY. By UERBERT SPENCER. Twelfth Edition. 5*. VI. On the CONSERVATION of ENERGY. By BALFOUR STEWART, M.A., LL.D., F.R.S. With 14 Illustrations. Seventh Edition. 5s. VII. ANIMAL LOCOMOTION; or, Walking, Swimming, and Flying. By J. B. PETTIGREW, M.D., F.R.S., &c. With 130 Illustrations. Third Edition. 5s. VIII. RESPONSIBILITY in MENTAL DISEASE. By HENRY MAUDSLEY, M.D. Fourth Edition. 5s. IX. The NEW- CHEMISTRY. By Professor J. P. COOKE, of the Harvard University. With 31 Illustrations. Eighth Edition. 5s. X. The SCIENCE of LAW. By Professor SHELDON AMOS. Sixth Edition. 5*. XI. ANIMAL MECHANISM : a Treatise on Terrestrial and Aerial Locomotion. By Professor E. J. MAREY. With 117 Illustrations. Third Edition. 5s. XII. The DOCTRINE of DESCENT and DARWINISM. By Professor OSCAR SCHMIDT (Strasburg University). With 26 Illustrations. Seventh Edition. 5s. XIII. The HISTORY of the CONFLICT between RELIGION and SCIENCE. By J. W. DRAPER, M.D., LL.D. Nineteenth Edition. 5s. XIV. FUNGI : their Nature, Influences, Uses, &c. By M. C COOKE. M.A., LL.D. Edited by the Rev. M. J. BERKELEY, M.A., F.L.S. With numerous Illustrations. Third Edition. 5s. London: KEG AN PAUL, TRENCH, & CO., 1 Paternoster Square. I The International Scientific Series — continued. \ XV. The CHEMICAL EFFECTS of LIGHT and PHOTO- GRAPHY. By Dr. HERMANN VOGEL (Polytechnic Academy of Berlin). Translation thoroughly revised. With 100 Illustrations. Fourth Edition. 5*. • XVI. The LIFE and GROWTH of LANGUAGE. By WILLIAM DWIOHT WHITNEY. Fifth Edition. 5s. XVII. MONEY and the MECHANISM of EXCHANGE. By W. STANLEY JEVONS, M.A., F.R.S. Eighth Edition. 5s. XVIII. The NATURE of LIGHT, with a General Account of PHYSICAL OPTICS. By Dr. EUGENE LOMMEL. With 188 Illus- trations and a Table of Spectra in Chromo-lithography. Fourth Edition. 5*. XIX, ANIMAL PARASITES and MESSMATES. By Monsieur VAN BENEDKN. With 83 Illustrations. Third Edition. 5*. XX. FERMENTATION. By Professor SCHUTZBNBKRGER. With 28 Illustrations. Fourth Edition. 5*. XXI. The FIVE SENSES of MAN. By Professor BERNSTEIN. With 91 Illustrations. Fifth Edition. 5s. XXII. The THEORY of SOUND in its RELATION to MUSIC. By Professor PIKTRO BLASEHNA. With numerous Illustrations. Third Edition. 5s. XXIII. STUDIES in SPECTRUM ANALYSIS. By J. NORMAN LOCKYER, F.R.S. With Six Photographic Illustrations of Spectra, and numerous Engravings on Wood. Fourth Edition. 6*. (id. XXIV. A HISTORY of the GROWTH of the STEAM ENGINE. By Professor R. H. THURSTON. With numerous Illustrations, Fourth Edition. 6*. 6d. XXV. EDUCATION as a SCIENCE. By ALEXANDRR BAIN, LL.D. Sixth Edition. 5*. XXVI. The HUMAN SPECIES. By Professor A. DE Qi ATRKFAOES, Mernbre de 1'Institut. Fourth Edition. 5*. XXVII. MODERN CHROMATICS. With Application to Art and Industry. By OGDKX N. ROOD. Second Edition. With 130 original Illus- trations. 5*. London: KEGAN PAUL, TRENCH, & CO., 1 Paternoster Square. The International Scientific Serie* — continue*!. XXVIII. The CRAYFISH: an Introduction to the Study of Zoology. By T. H. HUXLEY, F.R.S. Fourth Edition. With 82 Illustrations. 5s. XXIX. The BRAIN as an ORGAN of MIND. By H. OHARLTON BASTIAN, M.D. Third Edition. With 184 Illustrations. 5*. XXX. The ATOMIC THEORY. By Professor A. Wuara. Trans- lated by E. CLEMINSHAW, F.C.S. Fourth Edition. 5$. XXXI. The NATURAL CONDITIONS of EXISTENCE as they affect Animal Life. By KAUL SEMPKH. Third Edition. With 2 Maps and 106 Woodcuts. 5e. XXXII. GENERAL PHYSIOLOGYof MUSCLES and NERVES. By Prof. J. ROSENTHAL. Third Edition. With 75 Illustrations. 5^. XXXIII. SIGHT: an Exposition of the Principles of Monocular and Binocular Vision. By JOHEPH LE CONTE, LL.D. Second Edition. With 132 Illustrations. &. XXXIV. ILLUSIONS: a Psychological Study. By JAMKS SULLY. Second Edition. 5s, XXXV. VOLCANOES : what they are and what they teach. By JOHN W. JUDD, F.R.S. Third Edition. With 96 Illustrations. 5*. XXXVI. SUICIDE : an Essay on Comparative Moral Statistics. By Professor H. MORSELLI. Second Edition. S.«. XXXVII. THE BRAIN AND ITS FUNCTIONS. By J. LUYS. Physician to the Hospice de la Salpetriere, With numerous Illus- trations. Second Edition. 5*. XXXVIII. MYTH AND SCIENCE : an Essay. By TITO VTGNOLI. Third Edition. 5s. XXXIX. THE SUN. By C. A. YOUNG, Ph.D., LL.D. Third Edition. With numerous Illustrations. 5*. XL. ANTS, BEES, and WASPS. A Record of Observations on the Habits of the Social Hymenoptera. By Sir JOHN LUBBOCK, Bart., M.P. Ninth Edition. With 5 Chromo-lithographic Plates, 5*. XLI. ANIMAL INTELLIGENCE. By GKOROE J. ROMANKS, LL.D., F.R.S. Fourth Edition. 5*. XLII. The CONCEPTS and THEORIES of MODERN PHYSICS. By J. B. STALLO. Third Edition. 5s. XLIII. DISEASES of MEMORY. An Essay in the Positive Psychology. By TH. RIBOT. Third Edition. 5*-. London: KEG AN PAUL, TRENCH, & CO. , 1 Paternoster Square, Tlte International Scientific Series — continued. XLIV. MAN BEFORE METALS. By N. JOLY, Correspondent del'lnstitut de France. Third Edition. With 148 Illustrations. 5s. XLV. THE SCIENCE of POLITICS. By Prof. SHELDON AMOS. Third Edition. 5*. XLVI. ELEMENTABY METEOBOLOGY. By ROBEHT H. SCOTT. Fourtli Edition. 5s. XLVII. THE OBGANS of SPEECH. By GEOKG HERMANN- VOX MEYEK. With 47 Illustrations. 5.v. XLYJII. FALLACIES: a View of Logic from the Practical Side. Second Edition. By ALFRED SIDGWICK. 5.*. XLIX. THE OBIGIN OF CULTIVATED PLANTS. By ALPHONSK DE OANDOLLE. 5s. L. JELLY FISH, STAB FISH, AND SEA UBCHINS. Being a Research on Primitive Nervous Systems. By G. J. ROMANES, LLJX,F.RJB. 5s. LI. THE COMMON SENSE OF THE EXACT SCIENCES. By the late WILLIAM KINGDOX CLIFFORD. Second Edition. With 100 Figures. 5s. LII. PHYSICAL EXPBESSION : its Modes and Principles. B> FHANCIS WARNER, M.D., F.R.C.P. With 50 Illustrations. 5». LIII. ANTHBOPOID APES. By ROBERT HARTMANN. With 68 Illustrations. 5s. LIV. THE MAMMALIA IN THEIB BELATION TO PRIMEVAL TIMES. By OSCAR SCHMIDT. With 51 Woodcuts. 5*. LV. COMPABATIVE LITEBATUBE. By H. MACAULAY POSNETT, LL.D. 5*. LVI. EABTHQTJAKES and other EABTH MOVEMENTS. By Prof. JOHN MILNE. With 38 Figures. 5*. LVII. MICBOBES, FEBMENTS, and MOULDS. By E. L. TKOUESSAKT. With 107 Illustrations. 5*-. LVIII. GEOGBAPHICAL and GEOLOGICAL DISTBIBU- TION of ANIMALS. By Prof. A. HBILPRIN. 5*. LTX. WEATHEB : a Popular Exposition of the Nature of Weather Changes from Day to Day. By the Hon. RALPH ABERCROMBY. With 96 Figures. Second Edition. 5s. LX. ANIMAL MAGNETISM. By ALFRED B.NET and CHARLES I' KIM-:. 6*. LXI. MANUAL OF BBITISH DISCOMYCETES, with descrip- tions of all the Species of Fungi hitherto found in Britain included in the Family, and Illustrations of the Genera. By WILLIAM PHILLIPS, F.L.S. 5*. LXII. INTEBNATIONAL LAW. With Materials for a Code of International Law. By Professor LEONE LEVI. 5j. LXIII. THE OBIGIN OF FLOBAL STBUCTUBES THBOUGH INSECT AGENCY. By Prof. G. HEXSLOW. 5*. London: KEG AN PAUL, TRENCH, & CO., 1 Paternoster Square. THE INTERNATIONAL SCIENTIFIC SERIES. VOL. LXIII. THE GEOLOGICAL HISTORY OF PLANTS BY SIE J. WILLIAM DAWSON C.M.G., LL.D., F.R.S., ETC. WITH ILLrSTRATIONS LONDON" PAUL, TRENCH & CO., 1, PATERNOSTER SQUARE 1888 LIBRARY (The rights of translation and oj reproduction are reserved.} PKEFACE. THE object of this work is to give, in a connected form, a summary of the development of the vegetable kingdom in geological time. To the geologist and botanist the subject is one of importance with reference to their special pursuits, and one on which it has not been easy to find any conveni- ent manual of information. It is hoped that its treat- ment in the present volume will also be found suffi- ciently simple and popular to be attractive to the general reader. In a work of so limited dimensions, detailed descrip- tions cannot be given, except occasionally by way of illustration ; but references to authorities will be made in foot-notes, and certain details, which may be useful to collectors and students, will be placed in notes appended to the chapters, so as not to encumber the text. tThe illustrations of this work are for the most part ginal; but some of them have previously appeared special papers of the author. J. W. D. February, 1888. 8866 0 CONTENTS. CHAPTER I. PAGE LIMINARY IDEAS OF GEOLOGICAL CHRONOLOGY AND OF THE CLASSI- FICATION OF PLANTS 1 CHAPTER II. VEGETATION OF THE LAURENTIAN AND EARLY PALAEOZOIC — QUESTIONS AS TO ALG.E 8 CHAPTER III. BRIAN OR DEVONIAN FORESTS — ORIGIN OF PETROLEUM — THE AGE OF ACROGENS AND GYMNOSPERMS 45 CHAPTER IV. CARBONIFEROUS FLORA — CULMINATION OF THE ACROGENS — FOR- MATION OF COAL . . . . . . . . .110 CHAPTER Y. ! FLORA OF THE EARLY MESOZOIC — REIGN OF PINES AND CYCADS . 175 CHAPTER VI. REIGN OF ANGIOSPERMS IN THE LATER CRETACEOUS AND EARLY TERTIARY OR KAINOZOIC 191 CONTENTS. CHAPTER VII. PAGE PLANTS FROM THE TERTIARY TO THE MODERN PERIOD . . .219 CHAPTER VIII. GENERAL LAWS OP ORIGIN AND MIGRATIONS OF PLANTS — RELATIONS OF RECENT AND FOSSIL FLORAS ...... 237 APPENDIX. I. COMPARATIVE VIEW OF PALAEOZOIC FLORAS .... 273 II. HEER'S LATEST STATEMENTS ON THE GREENLAND FLORA . .281 III. MINERALISATION OF FOSSIL PLANTS ...... 284 IV. GENERAL WORKS ON PAL^EOBOTANY ...... 286 LIST OF ILLUSTEATIONS. TABLE OF CHRONOLOGY OF PLANTS .... (Frontispiece.) Protannularia Harknessii 21 Nematophyton Logani (three Figures) 22, 23 Trail of King-Crab 28 Trail of Carboniferous Crustacean 28 Rusichnites 29 Paloeophycus 30 Astropolithon ........... 31 Carboniferous Rill-mark ......... 33 Cast of Shrinkage Cracks 34 Cone-in-cone 36 Buthotrephis 37 Silurian Vegetation 40 Brian Plants 49 Protosalvinia 54 Ptilophyton (two Figures) 62, 63 Psilophyton (two Figures) 64, 66 Sphenophyllum 65 ddodendron .......... 66 arious Ferns 72, 73 taeopteris 74 pteris 75 'egalopteris ........... 76 Calamites 77 •phyllites 78 ioxylon . . 79 X LIST OF ILLUSTRATIONS., PAGB Cordaites 81 Brian Fruits 82 Foliage from the Coal-formation Ill Sigillariae (five Figures) 112-114 Stigmariae (two Figures) 115 Vegetable Tissues 117 Coals and Erect Trees (two Figures) 118,119 Lepidodendron 120 Lepidophloios ........... 121 Asterophyllites, &c. . . . . . . . . . .122 Calamites (five Figures) 123-125 Ferns of the Coal-formation (six Figures) .... 126-129 Noeggerathia dispar 130 Cordaites 131 Fruits of Cordaites, &c 132 Conifers of the Coal-formation (four Species) . . . . .135 Trigonocarpum 136 Sternbergia 137 Walchia imbricatula . . . . . . . . .138 Foliage of the Jurassic Period 177 Podozamites 178 Salisburia 180 Sequoia 181 Populus primaeva .......... 191 Stercalia and Laurophyllum . . . . . . . .194 Vegetation of the Cretaceous Period . . . . . .195 Platanus 198 Protophyllum 199 Magnolia 200 Liriodendron (two Figures) 201 Brasenia 207 Gaylussaccia resinosa 228 Populus balsamifera 229 Fucus . 230 THE GEOLOGICAL HISTORY OF PLANTS. CHAPTER I. PRELIMINARY IDEAS OF GEOLOGICAL CHRONOLOGY AND OF THE CLASSIFICATION OF PLANTS. THE knowledge of fossil plants and of the history of the vegetable kingdom has, until recently, been so frag- mentary that it seemed hopeless to attempt a detailed treatment of the subject of this little book. Our stores of knowledge have, however, been rapidly accumulating in recent years, and we have now arrived at a stage when every new discovery serves to render useful and intelligi- ! a vast number of facts previously fragmentary and of acertain import. The writer of this work, born in a district rich in sil plants, began to collect and work at these as a boy, in connection with botanical and geological pursuits. He has thus been engaged in the study of fossil plants for nearly half a century, and, while he has published much on the subject, has endeavoured carefully to keep within the sphere of ascertained facts, and has made it a specialty to collect, as far as possible, what has been published by others. He has also enjoyed opportunities of correspondence or personal intercourse with most of 2 TUB GEOLOGICAL HISTORY OF PLANTS. the more eminent workers in the subject. Now, in the evening of his days, he thinks it right to endeavour to place before the world a summary of facts and of his own matured conclusions — feeling, however, that nothing can be final in this matter ; and bhat he can only hope to sketch the present aspect of the subject, and to point the way to new developments, which must go on long after he shall have passed away. The subject is one which has the disadvantage of pre- supposing some knowledge of the geological history of the earth, and of the classification and structures of mod- ern plants ; and in order that all who may please to read the following pages may be placed, as nearly as possible, on the same level, this introductory chapter will be de- voted to a short statement of the general facts of geological chronology, and of the natural divisions of the vegetable kingdom in their relations to that chronology. The crust of the earth, as we somewhat modestly term that portion of its outer shell which is open to our obser- vation, consists of many beds of rock superimposed on each other, and which must have been deposited succes- sively, beginning with the lowest. This is proved by the structure of the beds themselves, by the markings on their surfaces, and by the remains of animals and plants which they contain ; all these appearances indicating that each successive bed must have been the surface before it was covered by the next. As these beds of rock were mostly formed under water, and of material derived from the waste of land, they are not universal, but occur in those places where there were extensive areas of water receiving detritus from the land. Further, as the distinction of land and water arises prima- rily from the shrinkage of the mass of the earth, and from the consequent collapse of the crust in some places and ridging of it up in others, it follows that there have, from the earliest geological periods, been deep ocean- GEOLOGICAL CHRONOLOGY. 3 sins, ridges of elevated land, and broad plateaus inter- vening between the ridges, and which were at some times ander water, and at other times land, with many inter- mediate phases. The settlement and crumpling of the crust were not continuous, but took place at intervals ; and each such settlement produced not only a ridging up along certain lines, but also an emergence of the plains or plateaus. Thus at all times there have been ridges of folded rock constituting mountain-ranges, flat expansions of continental plateau, sometimes dry and sometimes sub- merged, and deep ocean-basins, never except in some of their shallower portions elevated into land. By the study of the successive beds, more especially those deposited in the times of continental submer- gence, we obtain a table of geological chronology which expresses the several stages of the formation of the earth's crust, from that early time when a solid shell first formed on our nascent planet to the present day. By collecting the fossil remains embedded in the several layers and placing these in chronological order, we obtain in like manner histories of animal and plant life parallel to the physical changes indicated by the beds themselves. The facts as to the sequence we obtain from the study of ex- posures in cliffs, cuttings, quarries, and mines ; and by correlating these local sections in a great number of places, ve obtain our general table of succession ; though it is to observed that in some single exposures or series of sposures, like those in the great canons of Colorado, or the coasts of Great Britain, we can often in one locality nearly the whole sequence of beds. Let us observe ere also that, though we can trace these series of deposits ver the whole of the surfaces of the continents, yet if tie series could be seen in one spot, say in one shaft sunk tirough the whole thickness of the earth's crust, this vould be sufficient for our purpose, so far as the history of life is concerned. THE GEOLOGICAL HISTORY OF PLANTS. The evidence is similar to that obtained by Schlie- mann on the site of Troy, where, in digging through suc- cessive layers of debris, he found the objects deposited by successive occupants of the site, from the time of the Roman Empire back to the earliest tribes, whose flint weapons and the ashes of their fires rest on the original surface of the ground. Let us now tabulate the whole geological succession with the history of animals and plants associated with it : SYSTEMS OF FORMATIONS. Age of Man and Mammalia. Age of Reptiles. Age of Amphibians and Fishes. Age of Inverte- brates. Age of Protozoa. o c Modern, "o Pleistocene, g •! Pliocene, •5 | Miocene, M L Eocene. •| f Cretaceous, o •! Jurassic, Triassic. S L Permian, Carboniferous, Erian, Silurian, Ordovician, Cambrian, . Huronian (Upper). ^ f Huronian (Lower), •3 I Upper Laurentian, o I Middle Laurentian, ^ I Lower Laurentian. ozoic. Angiosperms and Palms dominant. Cycads and Pines dominant. Acrogens and Gym- nosperms domi- nant. Protogens and Algae. It will be observed, since only the latest of the sys- tems of formations in this table belongs to the period of human history, that the whole lapse of time embraced in the table must be enormous. If we suppose the modern period to have continued for say ten thousand years, and each of the others to have been equal to it, we shall re- quire two hundred thousand years for the whole. There is, however, reason to believe, from the great thickness of the formations and the slowness of the deposition of many GEOLOGICAL CHRONOLOGY. 5 them in the older systems, that they must have re- yastly greater time. Taking these criteria into account, it has been estimated that the time-ratios for the first three great ages may be as one for the Kainozoic to three for the Mesozoic and twelve for the Paleozoic, with as much for the Eozoic as for the Palaeozoic. This is Dana's estimate. Another, by Hull and Houghton, gives the following ratios : Azoic, 34'3 per cent. ; Palaeozoic, 42*5 per cent. ; Mesozoic and Kainozoic, 23*2 per cent. It is further held that the modern period is much shorter than the other periods of the Kainozoic, so that our geological table may have to be measured by millions of years instead of thousands. We cannot, however, attach any certain and definite value in years to geological time, but must content our- selves with the general statement that it has been vastly long in comparison to that covered by human history. Bearing in mind this great duration of geological time, and the fact that it probably extends from a period when the earth was intensely heated, its crust thin, and its con- tinents as yet unformed, it will be evident that the con- ditions of life in the earlier geologic periods may have been very different from those which obtained later. When we further take into account the vicissitudes of land and water which have occurred, we shall see that such changes must have produced very great differences of climate. The warm equatorial waters have in all sriods, as superficial oceanic currents, been main agents the diffusion of heat over the surface of the earth, and eir distribution to north and south must have been termined mainly by the extent and direction of land, .ough it may also have been modified by the changes in the astronomical relations and period of the earth, and the form of its orbit.* We know by the evidence of ; * Croll, " Climate and Time." \ 6 THE GEOLOGICAL HISTORY OF PLANTS. fossil plants that changes of this kind have occurred so great as, on the one hand, to permit the plants of warm temperate regions to exist within the Arctic Circle ; and, on the other, to drive these plants into the tropics and to replace them by Arctic forms. It is evident also that in those periods when the continental areas were largely submerged, there might be an excessive amount of moist- ure in the atmosphere, greatly modifying the climate, in so far as plants are concerned. Let us now consider the history of the vegetable king- dom as indicated in the few notes in the right-hand column of the table. The most general subdivision of plants is into the two great series of Cryptogams, or those which have no mani- fest flowers, and produce minute spores instead of seeds ; and Phaenogams, or those which possess flowers and pro- duce seeds containing an embryo of the future plant. The Cryptogams may be subdivided into the following three groups : 1. Thallogens, cellular plants not distinctly distin- guishable into stem and leaf. These are the Fungi, the Lichens, and the Algae, or sea- weeds. 2. Anogens, having stem and foliage, but wholly cel- lular. These are the Mosses and Liverworts. 3. Acrogens, which have long tubular fibres as well as cells in their composition, and thus have the capacity of attaining a more considerable magnitude. These are the Ferns (Filices), the Mare's-tails (Equisetacece), and the Club-mosses (Lycopodiacece), and a curious little group of aquatic plants called Khizocarps (Rhizocarpece). The Phaenogams are all vascular, but they differ much in the simplicity or complexity of their flowers or seeds. On this ground they admit of a twofold division : 1. ^ymnospermSy or those which bear naked seeds not enclosed in fruits. They are the Pines and their allies, and the Cycads. CLASSIFICATION OF PLANTS. 2. Angiosperms, which produce true fruits enclosing the seeds! In this group there are two well-marked sub- divisions differing in the structure of the seed and stem. They are the Endogens, or inside growers, with seeds hav- ing one seed-leaf only, as the grasses and the palms ; and the Exogens, having outside-growing woody stems, and seeds with two seed-leaves. Most of the ordinary forest- trees of temperate climates belong to this group. On referring to the geological table, it will be seen that there is a certain rough correspondence between the ler of rank of plants and the order of their appearance time. The oldest plants that we certainly know are Igae, and with these there are plants apparently with structures of Thaliophytes but the habit of trees, and which, for want of a better name, I may call Protogens. Plants akin to the Ehizocarps also appear very early. Next in order we find forests in which gigantic Ferns and Lycopods and Mare's-tails predominate, and are associated with pines. Succeeding these we have a reign of Gym- nosperms, and in the later formations we find the higher Phsenogams dominant. Thus there is an advance in elevation and complexity along with the advance in geological time, but connected with the remarkable fact that in earlier times low groups attain to an elevation unexampled in later times, when their places are occu- pied with plants of higher type. It is this historical development that we have to trace in the following pages, and it will be the most simple and at the same time the most instructive method to consider it in the order of time. CHAPTER II. VEGETATION OF THE LAUKENTIAN AND EAKLT PALEO- ZOIC— QUESTIONS AS TO ALGE. OLDEST of all the formations known to geologists, and representing perhaps the earliest rocks produced after our earth had ceased to be a molten mass, are the hard, crys- talline, and much-contorted rocks named by the late Sir W. E. Logan Laurentian, and which are largely developed in the northern parts of North America and Europe, and in many other regions. So numerous and extensive, in- deed, are the exposures of these rocks, that we have good reason to believe that they underlie all the other forma- tions of our continents, and are even world-wide in their distribution. In the lower part of this great system of rocks which, in some places at least, is thirty thousand feet in thickness, we find no traces of the existence of any living thing on the earth. But, in the middle por- tion of the Laurentian, rocks are found which indicate that there were already land and water, and that the waters and possibly the land were already tenanted by living beings. The great beds of limestone which exist in this part of the system furnish one indication of this. In the later geological formations the limestones are mostly or- ganic— that is, they consist of accumulated remains of shells, corals, and other hard parts of marine animals, which are composed of calcium carbonate, which the ani- mals obtain directly from their food, and indirectly from the calcareous matter dissolved in the sea-water. In like LAURENTIAN AND EARLY PALEOZOIC. 9 manner great beds of iron-ore exist in the Laurentian ; t in later formations the determining cause of the umulation of such beds is the partial deoxidation and •lution of the peroxide of iron by the agency of organic matter. Besides this, certain forms known as Eozoon Canadense have been recognised in the Lanrentian lime- stones, which indicate the presence at least of one of the lower types of marine animals. Where animal life is, we ay fairly infer the existence of vegetable life as well, ce the plant is the only producer of food for the ani- mal. But we are not left merely to this inference. Great quantities of carbon or charcoal in the form of the sub- stance known as graphite or plumbago exist in the Laurentian. Now, in more recent formations we have deposits of coal and bituminous matter, and we know that these have arisen from the accumulation and slow putrefaction of masses of vegetable matter. Further, in places where igneous action has affected the beds, we find that ordinary coal has been changed into anthracite and graphite, that bituminous shales have been converted into graphitic shales, and that cracks filled with soft bituminous matter have ultimately become changed into veins of graphite. When, therefore, we find in the Lau- rentian thick beds of graphite and beds of limestone arged with detached grains and crystals of this sub- ee, and graphitic gneisses and schists and veins of /phite traversing the beds, we recognise the same en omen a that are apparent in later formations con- ining vegetable debris. The carbon thus occurring in the Laurentian is not to be regarded as exceptional or rare, but is widely dis- tributed and of large amount. In Canada more especially the deposits are very considerable. The graphite of the Laurentian of Canada occurs both in beds and in veins, and in such a manner as to show that its origin and deposition are contemporaneous with 10 THE GEOLOGICAL HISTORY OF PLANTS. those of the containing rock. Sir William Logan states * that " the deposits of plumbago generally occur in the limestones or in their immediate vicinity, and granular varieties of the rock often contain large crystalline plates of plumbago. At other times this mineral is so finely disseminated as to give a bluish-grey colour to the lime- stone, and the distribution of bands thus coloured seems to mark the stratification of the rock." He further states : " The plumbago is not confined to the lime- stones ; large crystalline scales of it are occasionally dis- seminated in pyroxene rock, and sometimes in quartzite and in feldspathic rocks, or even in magnetic oxide of iron." In addition to these bedded forms, there are also true veins in which graphite occurs associated with cal- cite, quartz, orthoclase, or pyroxene, and either in dis- seminated scales, in detached masses, or in bands or layers 66 separated from each other and from the wall-rock by feldspar, pyroxene, and quartz." Dr. Hunt also men- tions the occurrence of finely granular varieties, and of that peculiarly waved and corrugated variety simulating fossil wood, though really a mere form of laminated structure, which also occurs at Warrensburg, New York, and at the Marinski mine in Siberia. Many of the veins are not true fissures, but rather constitute a network of shrinkage cracks or segregation veins traversing in count- less numbers the containing rock, and most irregular in their dimensions, so that they often resemble strings of nodular masses. It is most probable that the graphite of the veins was originally introduced as a liquid or plastic hydrocarbon ; but in whatever way introduced, the char- acter of the veins indicates that in the case of the greater number of them the carbonaceous material must have been derived from the bedded rocks traversed by these veins, to which it bears the same relation with the veins * " Geology of Canada," 1868. H/C*J tal LAURENTIAN AND EARLY PALEOZOIC. H bitumen found in the bituminous shales of the Car- miferous and Silurian rocks. Nor can there be any oubt that the graphite found in the beds has been de- >osited along with the calcareous matter or muddy and ,ndy sediment of which these beds were originally corn- led. * The quantity of graphite in the Lower Laurentian series is enormous. Some years ago, in the township of Buckingham, on the Ottawa Biver, I examined a band of limestone believed to be a continuation of that described by Sir W. E. Logan as the Green Lake limestone. It was estimated to amount, with some thin interstratified bands of gneiss, to a thickness of six hundred feet or .ore, and was found to be filled with disseminated erys- .s of graphite and veins of the mineral to such an extent as to constitute in some places one-fourth of the whole ; and, making every allowance for the poorer portions, this band cannot contain in all a less vertical thickness of pure graphite than from twenty to thirty feet. In the adjoining township of Lochaber Sir W. E. Logan notices a band from twenty-five to thirty feet thick, reticulated with graphite veins to such an extent as to be mined with profit for the mineral. At another place in the same dis- ict a bed of graphite from ten to twelve feet thick, and siding 20 per cent, of the pure material, is worked, it appears in the excavation made by the quarrymen, it resembled a bed of coal ; and a block from this bed, about four feet thick, was a prominent object in the Canadian department of the Colonial Exhibition of 1886. When it is considered that graphite occurs in similar abundance at several other horizons, in beds of limestone which have been ascertained by Sir W. E. Logan to have an aggregate thickness of thirty-five hundred feet, it is * Paper by the author on Laurentian Graphite, " Journal of London Geological Society," 1876. <": ! 12 THE GEOLOGICAL HISTORY OF PLANTS. scarcely an exaggeration to maintain that the quantity of carbon in the Laurentian is equal to that in similar areas of the Carboniferous system. It is also to be observed that an immense area in Canada appears to be occupied by these graphitic and Eozoon limestones, and that rich graphitic deposits exist in the continuation of this sys- tem in the State of New York, while in rocks believed to be of this age«near St. John, New Brunswick, there is a very thick bed of graphitic limestone, and associated with it three regular beds of graphite, having an aggregate thickness of about five feet.* It may fairly be assumed that in the present world, and in those geological periods with whose organic re- mains we are more familiar than with those of the Lau- rentian, there is no other source of un oxidized carbon in rocks than that furnished by organic matter, and that this has obtained its carbon in all cases, in the first in- stance, from the deoxidation of carbonic acid by living plants. No other source of carbon can, I believe, be imagined in the Laurentian period. We may, however, suppose either that the graphitic matter of the Laurentian has been accumulated in beds like those of coal, or that it has consisted of diffused bituminous matter similar to that in more modern bituminous shales and bituminous and oil-bearing limestones. The beds of graphite near St. John, some of those in the gneiss at Ticonderoga in New York, and at Lochaber and Buckingham, and else- where in Canada, are so pure and regular that one might fairly compare them with the graphitic coal of Rhode Island. These instances, however, are exceptional, and the greater part of the disseminated and vein graphite might rather be likened in its mode of occurrence to the bituminous matter in bituminous shales and limestones. * Matthew in " Quarterly Journal of the Geological Society," vol. xii., p. 423. " Acadian Geology," p. 662. AND KAKLV I'AL.KOZOIC. \* We may compare the disseminated graphite to ilia! which we find in (hose districts of Canada in which Silu- rian and Devonian hituminous shales and limestones have heen metamorphosed and converted into graphitic rocks not very dissimilar to those in the less altered portions of the Laurent ian.* In like manner it seems prohahle that the numerous reticulating veins of graphite may have heen formed by the segregation of bituminOUB matter into .iiivs and planes of least resistance, in the manner in ich such veins occur in modern bituminous limestones id shales. Such bituminous veins occur in the Lower Carboniferous limestone and shale of Dorchester and Hillsborough, New I Brunswick, with an arrangement very similar to that, of the veins of graphite ; and in the Que- bec rocks of Point, Lex i, veins attaining to a thickness of more t ban a foot, are filled with a coaly matter having a transverse columnar structure, and regarded by Logan and Hunt as au altered bitumen. These pala3ozoic analo- gies would lead us to infer that the larger part of the Laurent ian graphite falls under the second class of de- posits above mentioned, and that, if of vegetable origin, the organic, matter must have been thoroughly disin- tegrated and bituminised before it was changed into graph i to. This would also give a probability that the vegetation implied was aquatic, or at least that it was accumulated under water. Dr. Hunt has, however, observed an indication of ter- restrial ve-ctation, or at least of subaerial decay, in the great beds of Laurontian iron-ore. These, if formed in the same manner as more modern deposits of this kind, would imply the reducing and solvent action of sub- stances produced in the decay of plants. In this case such great ore-beds as that of Hull, on the Ottawa, seventy x (Jranby, Melbourne, Owl's Head, &c., " Geology of Canada," 1863, p. 599. 14: THE GEOLOGICAL HISTORY OF PLANTS. feet thick, or that near Newborough, two hundred feet thick,* must represent a corresponding quantity of vege- table matter which has totally disappeared. It may be added that similar demands on vegetable matter as a deoxidising agent are made by the beds and veins of metallic sulphides of the Laurentian, though some of the latter are no doubt of later date than the Lauren tian rocks themselves. It would be very desirable to confirm such conclusions as those above deduced by the evidence of actual micro- scopic structure. It is to be observed, however, that when, in more modern sediments, Algae have been con- verted into bituminous matter, we cannot ordinarily ob- tain any structural evidence of the origin of such bitumen, and in the graphitic slates and limestones derived from the metamorphosis of such rocks no organic structure remains. It is true that, in certain bituminous shales and limestones of the Silurian system, shreds of organic tissue can sometimes be detected, and in some cases, as in the Lower Silurian limestone of the La Cloche Mount- ains in Canada, the pores of brachiopodous shells and the cells of corals have been penetrated by black bitu- minous matter, forming what may be regarded as natural injections, sometimes of much beauty. In correspondence with this, while in some Laurentian graphitic rocks, as, for instance, in the compact graphite of Clarendon, the carbon presents a curdled appearance due to segregation, and precisely similar to that of the bitumen in more modern bituminous rocks, I can detect in the graphitic limestones occasional fibrous structures which may be remains of plants, and in some specimens vermicular lines, which I believe to be tubes of Eozoon penetrated by matter once bituminous, but now in the state of graphite. * " Geology of Canada," 1863. LAURENTIAN AND EARLY PALAEOZOIC. 15 When palaeozoic land-plants have been converted into ,phite, they sometimes perfectly retain their structure. Mineral charcoal, with structure, exists in the graphitic ,1 of Rhode Island. The fronds of ferns, with their inutest veins perfect, are preserved in the Devonian shales of St. John, in the state of graphite ; and in the same formation there are trunks of Conifers (Dadoxylon Ouangondianum) in which the material of the cell-walls has been converted into graphite, while their cavities have been filled with calcareous spar and quartz, the finest structures being preserved quite as well as in com- paratively unaltered specimens from the coal-formation.* No structures so perfect have as yet been detected in the Laurentian, though in the largest of the three graphitic beds at St. John there appear to be fibrous structures, which I believe may indicate the existence of land-plants. This graphite is composed of contorted and slickensided laminae, much like those of some bituminous shales and coarse coals ; and in these are occasional small pyritous masses which show hollow carbonaceous fibres, in some cases presenting obscure indications of lateral pores. I regard these indications, however, as uncertain ; and it is not as yet fully ascertained that these beds at St. John are on the same geological horizon with the Lower Lau- rentian of Canada, though they certainly underlie the Primordial series of the Acadian group, and are sepa- rated from it by beds having the character of the Hu- ron i an. There is thus no absolute impossibility that distinct organic tissues may be found in the Laurentian graphite, if formed from land-plants, more especially if any plants existed at that time having true woody or vascular tissues ; but it cannot with certainty be affirmed that such tissues remai " Acadian Geology," p. 535. In calcined specimens the structures -. wc-iv ,- houn I,_N (he in ISf.?.* to eon ffmm ' \N i(h (hose of the n Liinuhis i^i • '/ » Fiu, ft,— Tmll of A juoiUrn kiiii HU'lit \\ il h ( he inoilcrn :ini ni:il ( h:i( ( he riviirnii •1 i^rnllp: oi II I'll* I uriv prtuliiei'ti 1>\ 1 lu' toos i>f ( he Lir^e |»o: (erior 1 lu>- rneie (eel. (he irrr^ulnr UMi'N fee(,.'llhl I luk een( ml furi'ou h\ (he (:nl. l( \\:i- :iNo hho\\ n (h.-it u hen (he I .mmlti.^ u: es i(: : \> mmimjj-fivt it pfotluee.s mil *'!' the eh:ir:ieler ol (hoso naiUOil LAUREXTIAX AXD EARLY PAUBOZOIC. rites, from the same beds which afford Pro- The principal difference between Protichnites their modern representatives is that the latter have ro lateral furrows luced by the les of the cara- pace, which are wanting in the for- I subsequently the same planation to sev- eral other ancient now the gener- name Bttobitc* 6 and 7).* tubercu- impressions »wn as Phyma- and Cavi- ties may, as Zefl- by the bur- rof themole- ? and fine examples occurring in the Clinton f orma- L of Canada are probably the work of Crustacea. It is however, that some of die later forms referred genera, are really Algae related to Caultrpa, or ; of Conifers of the genus BrachyphyUum. and Plamditts are tracks and borrows of with or without marks of setae, and some of the , Branches conjecturally restored, c, Branches of Lyco- podites Milleri, on same slab. son of American and Scottish specimens has led me to the belief that they were aquatic plants, more likely to have been allied to Ehizocarps than to any other group. Some evidence of this will be given in a note appended to this chapter. THE GEOLOGICAL HISTORY OF PLANTS. in 'IG. 19. — Psilophyton princeps^ restored (Lower Erian, Gaspe*). a, Fruit, natural size. £>, Stern, natural size, c, Scalari- form tissue of the axis, highly map:ni- scribed '. fied. In the restoration, one side is repre- sented in vernation and the other in fruit. Another genus, which I have named Psilopliyton * (Figs. 19, 21), may be re- garded as a connect- ing link between the Khizocarps and the Lycopods. It is so named from its resem- blance, in some re- spects, to the curi- ous parasitic Lycopods placed in the modern genus Psilotum. Sev- eral species have been described, and they are eminently characteris- tic of the Lower Eri- an, in which they were first discovered Gaspe. The typ- ical species, Psilopliy- ton princeps, which fills many beds of shale and sandstone in Gas- pe Bay and the head of the neighbouring Bay des Chaleurs with its slender stems and creeping, cord-like rhi- zomes, may be thus de- Stems branching * " Journal of the Geological Society," vols. xv., xviii., and xix., u Re- port on Devonian Plants of Canada," 1871. THE ERIAN OR DEVONIAN FORESTS. 65 dichotomously, and covered with interrupted ridges. Leaves rudimentary, or short, rigid, and pointed ; in barren stems, numerous and spirally arranged ; in fertile stems and branchlets, sparsely scattered or absent ; in decorticated specimens, represented by a minute punctate scars. Young branch- es circinate ; rhizomata cylindrical, cov- ered with hairs or ramenta, and having circular areoles irregularly disposed, giv- ing origin to slender cylindrical rootlets. Internal structure — an axis of scalari- form vessels, surrounded by a cylinder of parenchymatous cells, and by an outer cylinder of elongated woody cells. Fruc- FlG- ,2(]; — - - r . . •* nophyUum an- tincation consisting of naked oval spore- tiquum (Erian, cases, borne usually in pairs on slender, SeTpp.™?,S6r? curved pedicels, either lateral or terminal. This species was fully described by me in the papers referred to above, from specimens obtained from the rich exposures at Gaspe Bay, and which enabled me to illus- trate its parts more fully, perhaps, than those of any other species of so great antiquity. In the specimens I had obtained I was able to recognise the forms of the rhizomata, stems, branches, and rudimentary leaves, and also the internal structure of the stems and rhizomata, id to illustrate the remarkable resemblance of the forms ind structures to those of the modern Psilotum. The fructification was, however, altogether peculiar, consist- ing of narrowly ovate sporangia, borne usually in pairs, on curved and apparently rigid petioles. Tinder the microscope these sporangia show indications of cellular structure, and appear to have been membranous in char- acter. In some specimens dehiscence appears to have taken place by a slit in one side, and, clay having entered into the interior, both walls of the spore-case can be seen. In other instances, being flattened, they might be mis- 1 66 THE GEOLOGICAL HISTORY OF PLANTS. taken for scales. No spores could be observed in any of the specimens, though in some the surface was marked by slight, rounded prominences, possibly the impressions of the spores within. This peculiar and very simple style FIG. 21. — Lepidodendron and PsilopJiyton (Erian, New Brunswick). A, Lepidodendron Gaspianum. B, c, Psilophyton elegans. of spore-case is also characteristic of other species, and gives to PsilopJiyton a very distinct generic character. These naked spore-cases may be compared to those of such lycopodiaceous plants as Psilotum, in which the THE BRIAN OR DEVONIAN FORESTS. 67 scales are rudimentary. They also bear some resemblance, though on a much larger scale, to the spore-cases of some Erian ferns (ArchcBOpteris), to be mentioned in the sequel. On the whole, however, they seem most nearly related to the sporocarps of the Rhizocarpese. Arthrostigma, which is found in the same beds with Psilopliyton, was a plant of more robust growth, with better-developed, narrow, and pointed leaves, borne in a verticillate or spiral manner, and bearing at the ends of its branches spikes of naked sporocarps, apparently simi- lar to those of Psilopliyton but more rounded in form. The two genera must have been nearly related, and the slender branchlets of Arthrostigma are, unless well pre- served, scarcely distinguishable from the stems of Psilo- pJiyton. * If, now, we compare the vegetation of these and simi- lar ancient plants with that of modern Khizocarps, we shall find that the latter still present, though in a de- pauperated and diminished form, some of the character- istics of their predecessors. Some, like Pilularia, have simple linear leaves ; others, like Marsilea, have leaves in verticils and cuneate in form ; while others, like Azolla and Salvinia, have frondose leaves, more or less pinnate in their arrangement. The first type presents little that is characteristic, but there are in the Erian sandstones and shales great quantities of filamentous and linear ob- jects which it has been impossible to refer to any genus, and which might have belonged to plants of the type of Pilularia. It is quite possible, also, that such plants as PsilopJiyton glabrum and Cordaites angustifolia, of which the fructification is quite unknown, may have been allied to Rhizocarps. With regard to the verticillate type, we are at once reminded of SpJienophyllum (Fig. 20), which * Reports of the auther on " Devonian Plants," " Geological Survey of Canada," which see for details as to Erian Flora of northeastern America. 08 THE GEOLOGICAL HISTORY OF PLANTS. many palaeo-botanists have referred to the Marsiliacce, though, like other Palaeozoic Acrogens, it presents com- plexities not seen in its modern representatives. 8. pri- mcBvum of Lesquereux is found in the Hudson Kiver group, and my 8. antiquum in the Middle Erian. Be- sides these, there are in the Silurian and Erian beds plants with verticillate leaves which have been placed with the Annularies, but which may have differed from them in fructification. Annularia laxa, of the Erian, and Protannularia Harknessii, of the Siluro- Cambrian, may be given as examples, and must have been aquatic plants, probably allied to Ehizocarps. It is deserving of notice, also, that the two best-known species of Psilophy- ton (P. princeps and P. robustius), while allied to Ly- copods by the structure of the stem and such rudimentary foliage as they possess, are also allied, by the form of their fructification, to the Ehizocarps, and not to ferns, as some palaeo-botanists have incorrectly supposed. A similar remark applies to Arthrostigma ; and the beautiful pinnately leaved Ptilopliyton may be taken to represent that type of foliage as seen in modern Ehizocarps, while the allied forms of the Carboniferous which Lesquereux has named Trochopliyllum, seem to have had sporocarps attached to the stem in the manner of Azolla. The whole of this evidence, I think, goes to show that in the Erian period there were vast quantities of aquatic plants, allied to the modern Ehizocarps, and that the so- called Sporangites referred to in this paper were probably the drifted sporocarps and macrospores of some of these plants, or of plants allied to them in structure and habit, of which the vegetative organs have perished. I have shown that in the Erian period there were vast swampy flats covered with Psilophyton, and in similar submerged tracts near to the sea the Protosalmnia may have filled the waters and have given off the vast multitudes of macrospores which, drifted by currents, have settled in the THE BRIAN OR DEVONIAN FORESTS. 69 mud of the black shales. We have thus a remarkable example of a group of plants reduced in modern times to a few insignificant forms, but which played a great role in the ancient Palaeozoic world. Leaving the Khizocarps, we may now turn to certain other families of Erian plants. The first to attract our attention in this age would naturally be the Lycopods, the club-mosses or ground-pines, which in Canada and the Eastern States carpet the ground in many parts of our woods, and are so available for the winter decoration of our houses and public buildings. If we fancy one of these humble but graceful plants enlarged to the dimen- sions of a tree, we shall have an idea of a Lepidodendron, or of any of its allies (Figs. 15, 21). These large lycopo- diaceous trees, which in different specific and generic forms were probably dominant in the Erian woods, re- sembled in general those of modern times in their fruit and foliage, except that their cones were large, and prob- ably in most cases with two kinds of spores, and their leaves were also often very long, thus bearing a due pro- portion to the trees which they clothed. Their thick stems required, however, more strength than is necessary in their diminutive successors, and to meet this want some remarkable structures were introduced similar to those now found only in the stems of plants of higher rank. The cells and vessels of all plants consist of thin walls of woody matter, enclosing the sap and other con- tents of these sacs and tubes, and when strength is re- quired it is obtained by lining their interior with suc- cessive coats of the hardest form of woody matter, usually known as lignin. But while the walls remain thin, they afford free passage to the sap to nourish every part. If thickened all over, they would become impervious to sap, and therefore unsuited to one of their most important functions. These two ends of strength and permeability are secured by partial linings of lignin, leaving portions of 70 THE GEOLOGICAL HISTORY OF PLANTS. the original wall uncovered. But this may be done in a great variety of ways. The most ancient of these contrivances, and one still continued in the world of plants, is that of the barred or scalarif orm vessel. This may be either square or hex- agonal, so as to admit of being packed without leaving vacancies. It is strengthened by a thick bar of ligneous matter up each angle, and these are connected by cross- bars so as to form a framework resembling several ladders fastened together. Hence the name scalariform, or lad- der-like. Now, in a modern Lycopod there is a central axis of such barred vessels associated with simpler fibres or elongated cells. Even in SphenopJiyllum and Psilo- phyton, already referred to as allied to Khizocarps,* there is such a central axis, and in the former rigidity is given to this by the vascular and woody elements being ar- ranged in the form of a three-sided prism or three-rayed star. But such arrangements would not suffice for a tree, and hence in the arboreal Lycopods of the Erian age a more complex structure is introduced. The barred ves- sels were expanded in the first instance into a hollow cylinder filled in with pith or cellular tissue, and the outer rind was strengthened with greatly thickened cells. But even this was not sufficient, and in the older stems wedge-shaped bundles of barred tissue were run out from the interior, forming an external woody cylinder, and in- side of the rind were placed bundles of tough bast fibres. Thus, a stem was constructed having pith, wood, and bark, and capable of additions to the exterior of the woody wedges by a true exogenous growth. The plan is, in short, the same with that of the stems of the exogenous trees of modern times, except that the tissues employed are less complicated. The structures of these remarkable * First noticed by the author, " Journal of Geological Society," 1865 ; but more completely by Renault, " Comptes Rendus," 1870. THE ERIAN OR DEVONIAN FORESTS. fl trees, and the manner in which they anticipate those of the true exogens of modern times, have been admirably illustrated by Dr. Williamson, of Manchester. His papers, it is true, refer to these plants as existing in the Carboniferous age, but there is every reason to believe that they were of the same character in the Erian. The plan is the same with that now seen in the stems of exoge- nous phsenogams, and which has long ceased to be used in those of the Lycopods. In this way, however, large and graceful lycopodiaceous trees were constructed in the Erian period, and constituted the staple of its forests. The roots of these trees were equally remarkable with their stems, and so dissimilar to any now existing that botanists were long disposed to regard them as inde- pendent plants rather than roots. They were similar in general structure to the stems to which they belonged, but are remarkable for branching in a very regular man- ner by bifurcation like the stems above, and for the fact that their long, cylindrical rootlets were arranged in a spiral manner and distinctly articulated to the root after the manner of leaves rather than of rootlets, and fitting them for growing in homogeneous mud or vegetable muck. They are the so-called Stigmaria roots, which, though found in the Erian and belonging to its lycopo- diaceous plants, attained to far greater importance in the Carboniferous period, where we shall meet with them again. There were different types of lycopodiaceous plants in the Erian. In addition to humble Lycopods like those of our modern woods and great Lepidodendra, which were exaggerated Lycopods, there were thick-stemmed and less graceful species with broad rhombic scars (Leptophlewri), and others with the leaf-scars in vertical rows (Sigillaria), and others, again, with rounded leaf -scars, looking like the marks on Stigmaria, and belonging to the genus Cyclostigma. Thus some variety was given to the arbo- club-mosses of these early forests. (See Fig. 15.) real THE GEOLOGICAL HISTORY OF PLANTS. FIG. 22.— Erian ferns (New Brunswick). A, Aneimites oltusa. c, .Neuropteris poly- morpha. r. tiphenopteris pilosa. N, HymenopliyllAtes subfurcatus. Another group of plants which attained to great development in the Erian age is that of the Ferns or Brackens. The oldest of these yet known are found in the Mid- dle Erian. The Eopteris of Sa- porta, from the Silurian, at one time supposed to carry this type much further back, has unfortu- nately been found to be a mere imitative form, consisting of films of pyrites of leaf -like shapes, and produced by crystallisation. In the Middle Erian, however, more especially in North Ameri- ca, many species have been found (Figs. 22 to 24=).* I have myself recorded more than thirty spe- cies from the Middle Erian of Canada, and these belong to sev- eral of the genera found in the Carboniferous, though some are peculiar to the Erian. Of the latter, the best known are per- haps those of the genus Archce- opteris (Fig. 24), so abundant in the plant-beds of Kiltorcan in Ireland, as well as in North America. In this genus the fronds are large and luxuriant, with broad obovate pinnules de- current on the leaf -stalk, and with simple sac-like spore-cases borne on modified pinnae. An- other very beautiful fern found * For descriptions of these ferns, see reports cited above. THE EKIAN OK DEVONIAN FORESTS. 73 FIG. 23. — Erian ferns (New Brunswick). B, Cydopteris valida, and E, Sphenopteris Hartii. G, Hymenophyllites curtiloous. H, Hymeno- phyuites Gersdorffii, and portion enlarged, i, AletTiopteris discrepans. K, Pecopteris serrulata. L, Pecopteris preciosa. M, Alethopteris Perleyi. 74 THE GEOLOGICAL HISTORY OF PLAXTS. with ArcJuBOpteris is that which I have named Platyphyl- lum, and which grew on a creeping stem or parasiticaHy on stems of other plants, and had marginal fructification.* FIG. 24.— Archceopteris Jaclcaoni, Dawson (Maine). An Upper Erian fern, a, i, Pinnules showing venation. * " Reports on Fossil Plants of the Devonian and Upper Silurian of Canada," 1871, &c. THE ERIAN OR DEVONIAN FORESTS. 75 Another very remarkable fern, which some botanists have supposed may belong to a higher group than the ferns, is Megalopteris (Fig. 26). Some of the Erian ferns attained to the dimensions of tree-ferns. Large stems of these, which must have floated out far from land, have been found by Newberry in the marine limestone of Ohio (Caulopteris antiqua and C. peregrina, Newberry),* and Prof. Hall has found in the FIG. 25. — An Erian tree-fern. Caulopteris Lockwoodi^ Dawson, reduced. (From a specimen from Gilboa, New iork.) Upper Devonian of Gilboa, New York, the remains of a forest of tree-ferns standing in situ with their great masses of aerial roots attached to the soil in which they grew (Caulopteris Lockwoodi, Dn.).f These aerial roots introduce us to a new contrivance for strengthening the stems of plants by sending out into the soil multitudes of cord-like cylindrical roots from * "Journal of the Geological Society," 1871. Ibid. 76 THE GEOLOGICAL HISTORY OF PLANTS. various heights on the stem, and which form a series of stays like the cordage of a ship. This method of support Fio. W.—Mecjalopteria Dawsoni, Hartt (Erian, New Brunswick). <7, Fracr- ment of pinna. £, Point of pinnule, c, Venation. (The midrib is not accurately given in this figure.) still continues in the modern tree-ferns of the tropics and the southern hemisphere. In one kind of tree-fern THE ERIAN OR DEVONIAN FORESTS. 77 stem from the Erian of New York, there is also a special arrangement for support, consisting of a series of pecul- iarly arranged radiating plates of scalariform vessels, not exactly like those of an exogenous stem, but doing duty for it (A steropteris)* Similar plants have been described from the Erian of Falken- berg, in Germany, and of Saalfeld, in Thuringia, by Goep- pert and linger, and are referred to ferns by the former, but treated as doubtful by the latter, f This peculiar type of tree- fern is apparently a precursor of the more exogenous type of Heteranffium, recent- ly described and re- ferred to ferns by Williamson. Here, again, we haye a me- chanical contrivance now restricted to higher plants appro- priated by these old cryptogams. The history of the ferns in geological time is remark- ably different from that of the Lycopods ; for while the FIG. 27. — Calamites radiatus (Erian, New Brunswick). • * "Journal of the Geological Society," London, 1881. t " Sphenopteris Refracta," Goeppert; "Flora des Uebergangsge- birges." " Cladoxylon Mirabile," linger ; " Pakeontologie des Thuringer aides." 78 THE GEOLOGICAL HISTORY OF PLANTS. latter have long ago descended from their pristine emi- nence to a very humble place in nature, the former still, in the southern hemisphere at least, retain their arboreal dimensions and an- B cient dominance. C!l!Wk The family of the EquisetacecB, or mare's-tails, was also represented by large species of Calamites and by Asterophyl- lites in the Erian ; but, as its headquar- ters are in the Car- boniferous, we may defer its considera- tion till the next chapter. (Figs. 27, 28.) Passing over these for the present, we find that the flower- ing plants are repre- sented in the Erian forests by at least two types of Gym- nosperms, that of TaxinecB or yews, and an extinct family, that of the Cordaites (Figs. 30, 31). The yew-trees are closely allied to the pines and spruces, and are often included with them in the family of Coniferce. They differ, however, in the habit of producing berries or drupe-like fruits instead of cones, and there is some reason to believe that this was the habit of the Erian trees of this group, though their wood in some in- stances resembles rather that of the Araucaria, or Nor- Fio. 28. — Asterophyllites (Erian, New Bruns- wick). A, Asterophyllites Latifolia. B, Do., apex of stem (?) fruit, c, c1, A. scutigera. D, A. latifoha, larger whorl of leaves. D1, Leaf. THE ERIAN OR DEVONIAN FORESTS. 79 folk Island pine, than that of the modern yews. These trees are chiefly known to us by their mineralised trunks, which are often found like drift-wood on modern sand- banks embedded in the Erian sandstones or limestones. It often shows its structure in the most perfect man- ner in specimens penetrated by calcite or silica, or by pyrite, and in which the original woody matter has FIG. 29. — Dadoxylon Ouangondianum, an Erian conifer. A. Fragment showing Sternber^ia pith and wood; a, medullary sheatn; b, pith; c, wood ; d. section of pith. B, Wood-cell ; a, hexagonal areole ; 6, pore, c, Longitudinal section of wood, showing, a, areolation, and £>, medullary rays. D, Transverse section, showing, a, wood-cells, and J, limit of layer of growth. (B, c, D, highly magnified.) been resolved into anthracite or even into graphite. These trees have true woody tissues presenting that beau- tiful arrangement of pores or thin parts enclosed in cup- like discs, which is characteristic of the coniferous trees, and which is a great improvement on the barred tissue already referred to, affording a far more strong, tough, 80 THE GEOLOGICAL HISTORY OF PLANTS. and durable wood, such as we haye in our modern pines and yews (Fig. 29). These primitive pines make their appearance in the Middle Erian, in various parts of America, as well as in Scotland and Germany, and they are represented by wood indicating the presence of several species. I have myself indicated and described five species from the Erian of Canada and the United States. From the fact that these trees are represented by drifted trunks embedded in sand- stones and marine limestones, we may, perhaps, infer that they grew on the rising grounds of the Erian land, and that their trunks were carried by river-floods into the sea. No instance has yet certainly occurred of the discovery of their foliage or fruit, though there are some fan-shaped leaves usually regarded as ferns which may have belonged to such trees. These in that case would have resembled the modern Gingko of China, and some of the fruits re- ferred to the genus Cardiocarpum may have been pro- duced by them. Various names have been given to these trees. I have preferred that given by linger, Dadoxylon, as being more non-committal as to affinities than the others.* Many of these trees had very long internal pith-cylinders, with curious transverse tubulae, and which, when preserved separately, have been named Sternbergia. Allied to these trees, and perhaps intermediate between them and the Cycads, were those known as Cordaites (Fig. 30), which had trunks resembling those of Dadoxy- Ion, but with still larger Sternbergia piths and an internal axis of scalariform vessels, surrounded by a comparatively thin woody cylinder. Some of them have leaves over a foot in length, reminding one of the leaves of broad-leaved grasses or iridaceous plants. Yet their flowers and fruit seem to have been more nearly allied to the yews than to any other plants (Fig. 31). Their stems were less woody * Araucaritcs, Goeppert ; Araucarioxylon, Kraus. THE ERIAN OR DEVONIAN FORESTS. 81 and their piths larger than in the true pines, and some of the larger-leaved species must have had thick, stiff branches. They are regarded as constituting a separate family, intermediate between pines and cycads, and, be- FIG. 30. — Cordaites Eobbii (Erian, New Brunswick). «, Group of young leaves. £, Point of leaf, c, Base of leaf, d, Venation, magnified. ginning in the Middle Devonian, they terminate in the Permian, where, however, some of the most gigantic spe- cies occur. In so far as the form and structure of the leaves, stems, and fruit are concerned, there is marvel- lously little difference between the species found in the 82 THE GEOLOGICAL HISTORY OF PLANTS. Erian and the Permian. They culminated, however, in the Carboniferous period, and the coal-fields of southern France have proved so far the richest in their remains. Lastly, a single specimen, collected by Prof. James Hall, of Albany, at Eighteen-mile Creek, Lake Erie, has the structure of an ordinary angiospermous exogen, and has been described by me as Syringoxylon mirabile* E! FIG. 31. — Erian fruits, &c., some gymnospermous, and probably of Cordaites and Taxine trees (St. John, New Brunswick). A, Cardiocarpum cor- ny turn. B, Cardiocarpum acutum. o, Cardiocarpum Crampii. D, Car- diocarpum Baileyi. E, Trigonocarpum racemosum. E1, E2, Fruits en- larged. F, Antholithes Devonicus. o, Annularia acuminata. H, As- teropJiyllites acicularis. H3, Fruit of the same. K, Cardiocarpum (? young of A.}. L, Pinnularia dispalans (probably a root). This unique example is sufficient to establish the fact of the existence of such plants at this early date, unless some accident may have carried a specimen from a later forma- * " Journal of the Geological Society," vol. xviii. THE ERIAN OR DEVONIAN FORESTS. 83 tion to be mixed with Erian fossils. It is to be observed, however, that the non-occurrence of any similar wood in all the formations between the Upper Erian and the Mid- dle Cretaceous suggests very grave doubt as to the authen- ticity of the specimen. I record the fact, waiting further discoveries to confirm it. Of the character of the speci- men which I have described I entertain no doubt. We shall be better able to realise the significance and relations of this ancient flora when we have studied that of the succeeding Carboniferous. We may merely remark here on the fact that, in these forests of the Devonian and in the marshes on their margins, we find a wonder- ful expansion of the now modest groups of Khizocarps and Lycopods, and that the flora as a whole belongs to the highest group of Cryptogams and the lowest of Phse- nogams, so that it has about it a remarkable aspect of mediocrity. Further, while there is evidence of some variety of station, there is also evidence of much equality of climate, and of a condition of things more resembling that of the insular climates of the temperate portions of the southern hemisphere than that of North America or Europe at present. The only animal inhabitants of these Devonian woods, • far as known, were a few species of insects, discovered Hartt in New Brunswick, and described by Dr. Scud- er. Since, however, we now know that scorpions as ell as insects existed in the Silurian, it is probable that hese also occurred in the Erian, though their remains ave not yet been discovered. All the known insects of Erian woods are allies of the shad-flies and grasshop- ers (Neuroptera and OrtJioptera), or intermediate be- n the two. It is probable that the larvae of most of hem lived in water and fed upon the abundant vegetable matter there, or on the numerous minute crustaceans and worms. There were no land vertebrates, so far as known, but there were fishes (Dipterus, etc.), allied to the mod- 84: THE GEOLOGICAL HISTORY OF PLANTS. ern Barramunda or Ceratodus of Australia, and with teeth suited for grinding vegetable food. It is also possi- ble that some of the smaller plate-covered fishes (Placo- ganoids, like PterichtJiys) might have fed on vegetable matter, and, in any case, if they fed on lower animals, the latter must have subsisted on plants. I mention these facts to show that the superabundant vegetation of this age, whether aquatic or terrestrial, was not wholly useless to animals. It is quite likely, also, that we have yet much to learn of the animal life of the Erian swamps and woods. NOTES TO CHAPTER III. I. — CLASSIFICATION OF SPORANGITES. IT is, of course, very unsatisfactory to give names to mere frag- ments of plants, yet it seems very desirable to have some means of arranging them. With respect to the organisms described above, which were originally called by me Sporangites, under the sup- position that they were Sporangia rather than spores, this name has so far been vindicated by the discovery of the spore-cases belong- ing to them, so that I think it may still be retained as a provisional name ; bat I would designate the whole as Protosalvinice, meaning thereby plants with rhizocarpean affinities, though possibly when better understood belonging to different genera. We may under these names speak of their detached discs as macrospores and of their cellular envelopes as sporocarps. The following may be recog- nized as distinct forms : 1. Protosalvinia Huronensis, Dawson, Syn., Sporangites Huron- ensis, " Report on Erian Flora of Canada," 1871. — Macrospores, in the form of discs or globes, smooth and thick- walled, the walls pene- trated by minute radiating pores. Diameter about one one-hun- dredth of an inch, or a little more, When in situ several macro- spores are contained in a thin cellular sporocarp, probably globular in form. From the Upper Erian, and perhaps Lower Carboniferous shales of Kettle Point, Lake Huron, of various places in the State of Ohio, and in the shale boulders of the boulder clay of Chicago and vicinity. First collected at Kettle Point by Sir W. E. Logan, and THE BRIAN OR DEVONIAN FORESTS. 85 in Ohio by Prof. Edward Orton, and at Chicago by Dr. H. A. John- son and Mr. B. W. Thomas, also in New York by Prof. J. M. Clarke. The macrospores collected by Mr. Thomas from the Chicago clays and shales conform closely to those of Kettle Point, and prob- ably belong to the same species. Some of them are thicker in the outer wall, and show the pores much more distinctly. These have been called by Mr. Thomas S. CMcagoensis, and may be regarded as a varietal form. Specimens isolated from the shale and mounted dry, show what seems to have been the hilum or scar of attachment better than those in balsam. Sections of the Kettle Point shale show, in addition to the ma- crospores, wider and thinner shreds of vegetable matter, which I am inclined to suppose to be remains of the sporocarps. 2. Protosalvinia (Sporangites) Braziliensis, Dawson, " Canadian Record of Science," 1883. — Macrospores, round, smooth, a little longer than those of the last species, or about one seventy-fifth of an inch in diameter, enclosed in round, oval, or slightly reniform sporocarps, each containing from four to twenty-four macrospores. Longest diameter of sporocarps three to six millimetres. Structure of wall of sporocarps hexagonal cellular. Some sporocarps show no macrospores, and may possibly contain microspores. The specimens are from the Erian of Brazil. Discovered by Mr. Orville Derby. The formation, according to Mr. Derby, consists of black shales be- low, about three hundred feet thick, and containing the fucoid known as Spirophyton, and probably decomposed vegetable matter. Above this is chocolate and reddish shale, in which the well-preserved speci- mens of Protosalvinia occur. These beds are very widely distributed, and abound in Protosalvinia and Spirophyton. 3. Protosalvinia (Sporangites) bilobata, Dawson, "Canadian Record of Science," 1883.— Sporocarps, oval .or reniform, three to six millimetres in diameter, each showing two rounded prominences at the ends, with a depression in the middle, and sometimes a raised neck or isthmus at one side connecting the prominences. Structure of sporocarp cellular. Some of the speci- mens indicate that each prominence or tubercle contained several macrospores. At first sight it would be easy to mistake these bodies for valves of BeyricJiia. Found in the same formations with the last species, though, in so far as the specimens indicate, not precisely in the same beds. Col- lected by Mr. Derby. 4. Protosalvinia Clarkei, Dawson, P. bilobata, Clarke, " American Journal of Science." — Macrospores two-thirds to one millimetre in 86 THE GEOLOGICAL HISTORY OF PLANTS. diameter. One, two, or three contained in each sporocarp, which i?> cellular. The macrospores have very thick walls with radiating tor- tuous tubes. Unless this structure is a result of mineral crystallisa- tion, these macrospores must have had very thick walls and must have resembled in structure the thickened cells of stone fruits and of the core of the pear, or the tests of the Silurian and Erian seeds known as Pachytheca, though on a smaller scale. It is to be observed that bodies similar to these occur in the Bog- head earthy bitumen, and have been described by Credner. I have found similar bodies in the so-called " Stellar coal " of the coal district of Pictou, Nova Scotia, some layers of which are filled with them. They occur in groups or patches, which seem to be en- closed in a smooth and thin membrane or sporocarp. It is quite likely that these bodies are generically distinct from Protosalvinia. 5. Protosalvinia punctata, Newton, " Geological Magazine," New Series, December 2d, vol. ii. — Mr. Newton has named the discs found in the white coal and Tasmanite, Tasmanites, the species be- ing Tasmanites punctatus, but as my name Sporangites had priority, I do not think it necessary to adopt this term, though there can be little doubt that these organisms are of similar character. The same remark may be made with reference to the bodies described by Hux- ley and Newton as occurring in the Better-bed coal. In Witham's " Internal Structure of Fossil Vegetables," 1833, Plate XI, are figures of Lancashire cannel which shows Sporangites of the type of those in the Erian shales. Quekett, in his " Report on the Torbane Hill Mineral," 1854, has very well figured similar structures from the Methel coal and the Lesmahagow cannel coal. These are the earliest publications on the subject known to me ; and Quekett, though not understanding the nature of the bodies he observed, holds that they are a usual ingredient in cannel coals. II. — THE NATURE AND AFFINITIES OF PTILOPHYTON. (Lycopodites Vanuxemii of "Report on Devonian and Upper Silurian Plants," Part I., page 35. L. plumula of " Report on Lower Carboniferous Plants," page 24, Plate I., Figs. 7, 8, 9.) In the re- ports above referred to, these remarkable pinnate, frond-like objects were referred to the genus Lycopodites, as had been done by Goep- pert in his description of the European species Lycopodites pennm- formis, which is very near to the American Erian form. Since 1871, however, there have been many new specimens obtained, and veiy various opinions expressed as to their affinities. While Hall has named some of them Plumalina, and has regarded them as animal THE BRIAN OR DEVONIAN FORESTS. 87 structures, allied to hydroids, Lesquereux has described some of the Carboniferous forms under the generic name Trochophyllum, which is, however, more appropriate to plants with verticillate leaves which are included in this genus. Before I had seen the publications of Hall and Lesquereux on the subject, I had in a paper on " Scottish Devonian Plants " * separated this group from the genus Lycopodites, and formed for it the genus Ptilophyton, in allusion to the feather- like aspect of the species. My reasons for this, and my present in- formation as to the nature of these plants, may be stated as follows : Schimper, in his " Palasontologie Vegetale" (possibly from inat- tention to the descriptions or want of access to specimens), doubts the lycopodiaceous character of species of Lycopodites described in my published papers on plants of the Devonian of America and in my Report of 1871. Of these, L. Richardsoni and L. Matthewi are un- doubtedly very near to the modern genus Lycopodium. L. Vanuoc- emii is, I admit, more problematical ; but Schimper could scarcely have supposed it to be a fern or a fucoid allied to Caulerpa had he observed that both in my species and the allied L. pennceformis of Goeppert, which he does not appear to notice, the pinnules are ar- ticulated upon the stem, and leave scars where they have fallen off. When in Belfast in 1870, my attention was again directed to the affinities of these plants by finding in Prof. Thomson's collection a specimen from Caithness, which shows a plant apparently of this kind, with the same long narrow pinna? or leaflets, attached, how- ever, to thicker stems, and rolled up in a circinate manner. It seems to be a plant in vernation, and the parts are too much crowded and pressed together to admit of being accurately figured or described ; but I think I can scarcely be deceived as to its true nature. The circinate arrangement in this case would favour a relationship to ferns ; but some lycopodiaceous plants also roll themselves in this way, and so do the branches of the plants of the genus Psilophyton. (Fig. 17, supra.) The specimen consists of a short, erect stem, on which are placed somewhat stout alternate branches, extending obliquely outward and then curving inward in a circinate manner. The lower ones appear to produce on their inner sides short lateral branchlets, and upon these, and also upon the curved extremities of the branches, are long, narrow, linear leaves placed in a crowded manner. The specimen is thus not a spike of fructification, but a young stem or branch in ver- nation, and which when unrolled would be of the form of those * "Canadian Naturalist," 1878. 88 THE GEOLOGICAL HISTORY OF PLANTS. peculiar pinnate Lycopodites of which L. Vanuxemii of the Ameri- can Devonian and L. pennceformis of the European Lower Carbon- iferous are the types, and it shows, what might have been anticipated from other specimens, that they were low, tufted plants, circinate in vernation. The short stem of this plant is simply furrowed, and bears no resemblance to a detached branch of Lycopodites Milleri which lies at right angles to it on the same slab. As to the affinities of the singular type of plants to which this specimen belongs, I may quote from my "Report on the Lower Carboniferous Plants of Canada," in which 1 have described an allied species, L. plumula : " The botanical relations of these plants must remain subject to doubt, until either their internal structure or their fructification can be discovered. In the mean time I follow Goeppert in placing them in what we must regard as the provisional genus Lycopodites. On the one hand, they are not unlike the slender twigs of Taxodium and similar Conifers, and the highly carbonaceous character of the stems gives some colour to the supposition that they may have been woody plants. On the other hand, they might, so far as form is con- cerned, be placed with Algae of the type of Brongniart's Chondrites obtusus, or the modern Caulerpa plumaria. Again, in a plant of this type from the Devonian of Caithness to which I have referred in a former memoir, the vernation seems to have been circinate, and Schimper has conjectured that these plants may be ferns, which seems also to have been the view of Shumard." On the whole, these plants are allied to Lycopods rather than to ferns; and as they constitute a small but distinct group, known only, so far as I am aware, in the Lower Carboniferous and Brian or De- vonian, they deserve a generic name, and I proposed for them in my " Paper on Scottish Devonian Plants," 1878, that of Ptilophyton, a name sufficiently distinct in sound from Psilophyton, and expressing very well their peculiar feather-like habit of growth. The genus was defined as follows : " Branching plants, the branches bearing long, slender leaves in two or more ranks, giving them a feathered appearance ; vernation circinate. Fruit unknown, but analogy would indicate that it was borne on the bases of the leaves or on modified branches with shorter leaves." The Scottish specimen above referred to was named Pi. Thom- son^ and was characterised by its densely tufted form and thick branches. The other species known are : Pt. penncvformis, Goep- pert, L. Carboniferous ; Pt. Vanuxemii, Dawson, Devonian ; Pt. plumula, Dawson, L. Carboniferous. THE BRIAN OR DEVONIAN FORESTS. 89 Shumard's Filicites gracilis, from the Devonian of Ohio, and Stur's Pinites antecedens, from the Lower Carboniferous of Silesia, may possibly belong to the same genus. The Scottish specimen re- ferred to is apparently the first appearance ' of this form in the Devonian of Europe. I have at a still later date had opportunities of studying con- siderable series of these plants collected by Prof. Williams, of Cornell University, and prepared a note in reference to them for the Ameri- can Association, of which, however, only an abstract has been pub- lished. I have also been favoured by Prof. Lesquereux and Mr. Lacoe, of Pittston, with the opportunity of studying the specimens referred to Trochophyllum. Prof. Williams's specimens occur in a dark shale associated with remains of land-plants of the genera PsilopJiyton. Rhodea, &c., and also marine shells, of which a small species of KhynchoneUa, is often attached to the stems of the PtilopTiyton. Thus these organisms have evidently been deposited in marine beds, but in association with land-plants. The study of the specimens collected by Prof. Williams develops the following facts : (1) The plants are not continuous fronds, but slender stems or petioles, with narrow, linear leaflets attached in a pinnate manner. (2) The pinnules are so articulated that they break off, leaving delicate transverse scars, and the lower parts of the stems are often thus denuded of pinnae for the length of one or more inches. (3) The stems curve in such a manner as to indicate a cir- cinate vernation. (4) In a few instances the fronds were observed to divide dichotomously toward the top ; but this is rare. (5) There are no indications of cells in the pinnules ; but, on the other hand, there is no appearance of fructification unless the minute granules which roughen some of the stems are of this nature. (6) The stems seem to have been lax and flexuous, and in some instances they seem to have grown on the petioles of ferns preserved with them in the same beds. (7) The frequency of the attachment of small brachio- pods to the specimens of Piilophyton would seem to indicate that the plant stood erect in the water. (8) Some of the specimens show so much carbonaceous matter as to indicate that the pinnules were of considerable consistency. All these characters are those rather an aquatic plant than of an animal organism or of a land-plant. The specimens communicated by Prof. Lesquereux and Mr. ioe are from the Lower Carboniferous, and evidently represent a different species with similar slender pitted stems, often partially denuded of pinnules below ; but the pinnules are much broader and \ji v. C: i 90 THE GEOLOGICAL HISTORY OF PLANTS. more distant. They are attached by very narrow bases, and ap- parently tend to lie on a plane, though they may possibly have been spirally arranged. On the same slabs are rounded sporangia or macrospores like those of Lepidodendron, but there is no evidence that these belonged to Trochophyllum. On the stems of this plant, however, there are small, rounded bodies apparently taking the places of some of the pinnules. These may possibly be spore-cases ; but they may be merely imperfectly developed pinnules. Still the fact that similar small granules appear on the stems of the Devonian species, favours the idea that they may be organs of fructification. The most interesting discovery, however, which results from the study of Mr. Lacoe's specimens, is that the pinnules were cylindrical and hollow, and probably served to float the plant. This would account for many of the peculiarities in the appearance and mode of occurrence of the Devonian Ptilophy ton,, which are readily ex- plained if it is supposed to be an aquatic plant, attaching itself to the stems of submerged vegetable remains and standing erect in the water by virtue of its hollow leaves. It may well, however, have been a plant of higher organisation than the Algae, though no doubt cryptogamous. The species of PtilopJiyton will thus constitute a peculiar group of aquatic plants, belonging to the Devonian and Lower Carbonif- erous periods, and perhaps allied to Lycopods and Pillworts in their organisation and fruit, but specially distinguished by their linear leaves serving as floats and arranged pinnately on slender stems. The only species yet found within the limits of Canada is Pt. plu- mula, found by Dr. Honeyman in the Lower Carboniferous of Nova Scotia ; but as Pt. Vanuxemii abounds in the Erian of New York, it will no doubt be found in Canada also. III.— TREE-FERNS OF THE ERIAN PERIOD. As the fact of the occurrence of true tree-ferns in rocks so old as the Middle Erian or Devonian has been doubted in some quar- ters, the following summary is given from descriptions published in the "Journal of the Geological Society of London" (1871 and 1881), where figures of the species will be found : Of the numerous ferns now known in the Middle and Upper Devonian of North America, a great number are small and delicate species, which were probably herbaceous ; but there are other species which may have been tree-ferns. Little definite information, how- ever, has, until recently, been obtained with regard to their habit of growth. THE BRIAN OR DEVONIAN FORESTS. 91 The only species known to me in the Devonian of Europe is the Caulopteris PeacJiii of Salter, figured in the '• Quarterly Journal of the Geological Society " for 1858. The original specimen of this I had an opportunity of seeing in London, through the kindness of Mr. Etheridge, and have no doubt that it is the stem of a small arborescent fern, allied to the genus Caulopteris, of the coal forma- tion. In my paper on the Devonian of Eastern America (" Quarterly Journal of the Geological Society," 1862), I mentioned a plant found by Mr. Richardson at Perry, as possibly a species of Megaphyton, using that term to denote those stems of tree-ferns which have the leaf-scars in two vertical series ; but the specimen was obscure, and I have not yet obtained any other. More recently, in 1869, Prof. Hall placed in my hands an inter- esting collection from Gilboa, New York, and Madison County, New York, including two trunks surrounded by aerial roots, which I have described as Psaronius textilis and P. Erianus, in my " Revision of the Devonian Flora," read before the Royal Society.* In the same collection were two very large petioles, Rhachiopteris gigantea and R. palmata, which I have suggested may have belonged to tree-ferns. My determination of the species of Psaronius, above mentioned, has recently been completely confirmed by the discovery on the part of Mr. Lockwood, of Gilboa, of the upper part of one of these stems, with its leaf-scars preserved and petioles attached, and also by some remarkable specimens obtained by Prof. Newberry, of New York^ from the Corniferous limestone of Ohio, which indicate the exist- ence there of three species of tree-ferns, one of them with aerial roots similar to those of the Gilboa specimens. The whole of these specimens Dr. Newberry has kindly allowed me to examine, and has permitted me to describe the Gilboa specimen, as connected with those which I formerly studied in Prof. Hall's collections. The specimens from Ohio he has himself named, but allows me to notice them here by way of comparison with the others. I shall add some notes on specimens found with the Gilboa ferns. It may be further observed that the Gilboa specimens are from a bed containing erect stumps of tree-ferns, in the Chemung group of the Upper Devonian, while those from Ohio are from a marine limestone, belonging to the lower part of the Middle Devonian. 1. Caulopteris LocJcwoodi, Dawson. — Trunk from two to three * Abstract in " Proceedings of the Royal Society," May, 1870 ; also "Report on Brian Plants of Canada," 1871. 92 THE GEOLOGICAL HISTORY OF PLANTS. inches in diameter, rugose longitudinally. Leaf-scars broad, rounded above, and radiatingly rugose, with an irregular scar below, arranged spirally in about five ranks; vascular bundles not distinctly pre- served. Petioles slender, much expanded at the base, dividing at first in a pinnate manner, and afterwards dichotomously. Ultimate pinnae with remains of numerous, apparently narrow pinnules. This stem is probably the upper part of one or other of the species of Psaronius found in the same bed (P. Erianus, Dawson, and P. textilis, Dawson).* It appears to have been an erect stem embedded in situ in sandstone, and preserved as a cast. The stem is small, being only two inches, or a little more, in diameter. It is coarsely wrinkled longitudinally, and covered with large leaf- scars, each an inch in diameter, of a horseshoe-shape. The peti- oles, five of which remain, separate from these scars with a distinct articulation, except at one point near the base, where probably a bundle or bundles of vessels passed into the petiole. They retain their form at the attachment to the stem, but a little distance from it they are flattened. They are inflated at the base, and some- what rapidly diminish in size. The leaf-scars vary in form, and are not very distinct, but they appear to present a semicircular row of pits above, largest in the middle. From these there proceed down- ward a series of irregular furrows, converging to a second and more obscure semicircle of pits, within or below which is the irregular scar or break above referred to. The attitude and form of the petioles will be seen from Fig. 24, supra. The petioles are broken off within a few inches of the stem ; but other fragments found in the same beds appear to show their continuation, and some remains of their foliage. One specimen shows a series of processes at the sides, which seem to be the re- mains of small pinna3, or possibly of spines on the margin of the petiole. Other fragments show the division of the frond, at first in a pinnate manner, and subsequently by bifurcation ; and some frag- ments show remains of pinnules, possibly of fertile pinnules. These are very indistinct, but would seem to show that the plant ap- proached, in the form of its fronds and the arrangement of its fructification, to the Cyclopterids of the subgenus Aneimites, one of which (Aneimites Acadica), from the Lower Carboniferous of Nova Scotia, I have elsewhere described as probably a tree-fern. f The * Memoir on Devonian Flora, " Proceedings of the Royal Society," May, 1870. f "Quarterly Journal of the Geological Society," 1860. THE BRIAN OR DEVONIAN FORESTS. 93 fronds were evidently different from those of Archceopteris* a genus characteristic of the same beds, but of very different habit of growth. This accords with the fact that there is in Prof. Hall's collection a mass of fronds of Cyclopteris (Archceopteris) JacJcsoni, so arranged as to make it probable that the plant was an herbaceous fern, pro- ducing tufts of fronds on short stems in the ordinary way. The obscurity of the leaf-scars may render it doubtful whether the plant above described should be placed in the genus Caulopteris or in Stem- matopteris; but it appears most nearly allied to the former. The genus is at present, of course, a provisional one ; but I have thought it only justice to the diligent labours of Mr. Lockwood to name this curious and interesting fossil Caulopteris Lockwoodi. I have elsewhere remarked on the fact that trunks, and petioles, and pinnules of ferns are curiously dissociated in the Devonian beds — an effect of water-sorting, characteristic of a period in which the conditions of deposition were so varied. Another example of this is, that in the sandstones of Gaspe Bay, which have not as yet af- forded any example of fronds of ferns, there are compressed trunks, which Mr. Lockwood's specimens allow me at least to conjecture may have belonged to tree-ferns, although none of them are suffi- ciently perfect for description. Mr. Lockwood's collection includes specimens of Psaronius tex- tilis ; and in addition to these there are remains of erect stems some- what different in character, yet possibly belonging to the higher parts of the same species of tree-fern. One of these is a stem crushed in such a manner that it does not exhibit its form with any distinctness, but surrounded by smooth, cylindrical roots, radiating from it in bundles, proceeding at first horizontally, and then curving down- ward, and sometimes terminating in rounded ends. They resemble in form and size the aerial roots of Psaronius Erianus ; and I believe them to be similar roots from a higher part of the stem, and some of them young and not prolonged sufficiently far to reach the ground. This specimen would thus represent the stem of P. Erianus at a higher level than those previously found. We can thus in imagina- tion restore the trunk and crown of this once graceful tree-fern, though we have not the detail of its fronds. Mr. Lockwood's collections also contain a specimen of the large fern-petiole which I have named Rhachiopteris punctata. My original specimen was obtained by Prof. Hall from the same horizon in New York. * The genus to which the well-known Cyclopteris (Adiantites) Hiber- nicus of the Devonian of Ireland belongs. 94 THE GEOLOGICAL HISTORY OF PLANTS. That of Mr. Lockwood is of larger size, but retains no remains of the frond. It must have belonged to a species quite distinct from Can- lopteris Lockwoodi, but which may, like it, have been a tree-fern. 2. Caulopteris antiqua, Newberry. — This is a flattened stem, on a slab of limestone, containing Brachiopods, Trilobites, &c., of the Corniferous limestone. It is about eighteen inches in length, and three and a half inches in average breadth. The exposed side shows about twenty-two large leaf -scars arranged spirally. Each leaf, where broken off, has left a rough fracture ; and above this is a semicircular impression of the petiole against the stem, which, as well as the surface of the bases of the petioles, is longitudinally striated or tuberculated. The structures are not preserved, but merely the outer epidermis, as a coaly film. The stem altogether much resembles Caulopteris Peachii, but is of larger size. It differs from C. Lockwoodi in the more elongated leaf-bases, and in the leaves being more remotely placed ; but it is evidently of the same general character with that species. 3. Caulopteris (Protopteris) peregrina, Newberry. — This is a much more interesting species than the last, as belonging to a ge- neric or subgeneric form not hitherto recognised below the Carbonif- erous, and having its minute structure in part preserved. The specimens are, like the last, on slabs of marine limestone of the Corniferous formation, and flattened. One represents an upper portion of the stem with leaf-scars and remains of petioles ; another a lower portion, with aerial roots. The upper part is three inches in diameter, and about a foot in length, and shows thirty leaf-scars, which are about three-fourths of an inch wide, and rather less in depth. The upper part presents a distinct rounded and sometimes double marginal line, sometimes with a slight depression in the mid- dle. The lower part is irregular, and when most perfect shows seven slender vascular bundles, passing obliquely downward into the stem. The more perfect leaf -bases have the structure preserved, and show a delicate, thin-walled, oval parenchyma, while the vascular bundles show scalariform vessels with short bars in several rows, in the man- ner of many modern ferns. Some of the scars show traces of the hippocrepian mark characteristic of Protopteris; and the arrange- ment of the vascular bundles at the base of the scars is the same as in that genus, as are also the general form and arrangement of the scars. On careful examination, the species is indeed very near to the typical P. Sternbergii, as figured by Corda and Schimper.* ' Corda, " Beitrage," PI. 48, copied by Schimper, PI. 52. 95 The genus Protopteris of Sternberg, though the original species (P. punctata) appears as a Lepidodendron in his earlier plate (Plate 4), and as a Sigillaria (S. punctata) in Brongniart's great work, is a true tree-fern ; and the structure of one species (P. Cottai) has been beautifully figuered by Corda. The species hitherto described are from the Carboniferous and Permian. The second specimen of this species represents a lower part of the stem. It is thirteen inches long and about four inches in diam- eter, and is covered with a mass of flattened aerial roots lying paral- lel to each other, in the manner of the Psaronites of the coal-forma- tion and of -P. Erianus of the Upper Brian or Devonian. 4. Asteropteris noveboracensis, gen. and sp. n. — The genus As- ter opteris is established for stems of ferns having the axial portion composed of vertical radiating plates of scalariform tissue embedded in parenchyma, and having the outer cylinder composed of elongated cells traversed by leaf -bun dies of the type of those of Zyg opteris. The only species known to me is represented by a stem 2'5 cen- timetres in diameter, slightly wrinkled and pitted externally, per- haps by traces of aerial roots which have perished. The transverse section shows in the centre four vertical plates of scalariform or im- perfectly reticulated tissue, placed at right angles to each other, and united in the middle of the stem. At a short distance from the centre, each of these plates divides into two or three, so as to form an axis of from ten to twelve radiating plates, with remains of cellu- lar tissue filling the angular interspaces. The greatest diameter of this axis is about 1'5 centimetre. Exterior to the axis the stem con- sists of elongated cells, with somewhat thick walls, and more dense toward the circumference. The walls of these cells present a curious reticulated appearance, apparently caused by the cracking of the ligneous lining in consequence of contraction in the process of car- bonization. Embedded in this outer cylinder are about twelve vas- cular bundles, each with a dumb-bell-shaped group of scalariform vessels enclosed in a sheath of thick-walled fibres. Each bundle is opposite to one of the rays of the central axis. The specimen shows about two inches of the length of the stem, and is somewhat bent, apparently by pressure, at one end. This stem is evidently that of a small tree-fern of a type, so far as known to me, not before described,* and constituting a very complex and symmetrical form of the group of Palaeozoic ferns allied * Prof. Williamson, to whom I have sent a tracing of the structure, agrees with me that it is new. 96 THE GEOLOGICAL HISTORY OF PLANTS. to the genus Zygopteris of Schimper. The central axis alone has a curious resemblance to the peculiar stem described by linger (" De- vonian Flora of Thuringia ") under the name of Cladoxylon mira- bile; and it is just possible that this latter stem may be the axis of some allied plant. The large aerial roots of some modern tree- ferns of the genus Angiopteris have, however, an analogous radiating structure. The specimen is from the collection of Berlin H. "Wright, Esq., of Penn Yan, New York, and was found in the Portage group (Upper Brian) of Milo, New York, where it was associated with large petioles of ferns and trunks of Lepidodendra, probably L. Chemungense and L. primcevum. The occurrence of this and other stems of tree-ferns in marine beds has recently been illustrated by the observation of Prof. A. Agassiz that considerable quantities of vegetable matter can be dredged from great depths in the sea on the leeward side of the Caribbean Islands. The occurrence of these trunks further connects itself with the great abundance of large petioles (Rhachiopteris) in the same beds, while the rarity of well-preserved fronds is explained by the coarseness of the beds, and also by the probably long macera- tion of the plant-remains in the sea-water. In connection with this I may refer to the remarkable facts re- cently stated by Williamson* respecting the stems known as Hete- rangium and Lyginodendron. It would seem that these, while having strong exogenous peculiarities, are really stems of tree-ferns, thus placing this family in the same position of advancement with the Lycopods and Equisetacem of the Coal period. IV. — ON ERIAN TREES OF THE GENUS DADOXYLON, UNGER. (Araucarites OF GOEPPERT, Araucarioxylon OF KRAUS.) Large woody trunks, carbonised or silicified, and showing wood- cells with hexagonal areoles having oval pores inscribed in them, occur abundantly in some beds of the Middle Erian of America, and constitute the most common kind of fossil wood all the way to the Trias. They have in the older formations, generally, several rows of pores on each fibre, and medullary rays composed of two or more series of cells, but become more simple in these respects in the Per- mian and Triassic series. The names Araucarites and Araucarioxy- lon are perhaps objectionable, inasmuch as they suppose affinities to Araucaria which may not exist. Unger's name, which is non- * "Proceedings of the Royal Society," January 6, 1887. THE BRIAN OR DEVONIAN FORESTS. 97 committal, is therefore, I think, to be preferred. In my " Acadian Geology," and in my " Report on the Geology of Prince Edward Island/' I have given reasons for believing that the foliage of some at least of these trees was that known as Walchia, and that they may have borne nutlets in the manner of Taxine trees (Trigonocarpum, &c.). Grand d'Eury has recently suggested that some of them may have belonged to Cordaites, or to plants included in that somewhat varied and probably artificial group. The earliest discovery of trees of this kind in the Erian of America was that of Matthew and Hartt, who found large trunks, which I afterwards described as Dadoxylon Ouangondianum, in the Erian sandstone of St. John, New Brunswick, hence named by those geologists the " Dadoxylon sandstone." A little later, similar wood was found by Prof. Hall and Prof. Newberry in the Hamilton group of New York and Ohio, and the allied wood of the genus Ormoxylon was obtained by Prof. Hall in the Portage group of the former State. These woods proved to be specifically distinct from that of St. John, and were named by me D. Halli, D. Newberryi, and Or- moxylon Erianum. The three species of Dadoxylon agreed in hav- ing composite medullary rays, and would thus belong to the group Palceoxylon of Brongniart. In the case of Ormoxylon this character could not be very distinctly ascertained, but the medullary rays appeared to be simple. I am indebted to Prof. J. M. Clarke, of Amherst College, Massa- chusetts, for some well-preserved specimens of another species from the Genesee shale of Canandaigua, New York. They show small stems or branches, with a cellular pith surrounded with wood of coniferous type, showing two to three rows of slit-formed, bordered pores in hexagonal borders. The medullary sheath consists of pseudo-scalariform and reticulated fibres ; but the most remarkable feature of this wood is the structure of the medullary rays, which are very frequent, but short and simple, sometimes having as few as four cells superimposed. This is a character not before observed in coniferous trees of so great age, and allies this Middle Erian form with some Carboniferous woods which have been supposed to belong to Cordaites or Sigillaria. In any case this structure is new, and I have named the species Dadoxylon Clarkii, after its discoverer. The specimens occur, according to Prof. Clarke, in a calcareous layer which is filled with the minute shells of Styliola fissurella of Hall, believed to be a Pteropod ; and containing also shells of Goniatites and Gyroceras. The stems found are only a few inches in diameter, but may be branches of larger trees. H 98 THE GEOLOGICAL HISTORY OF PLANTS. It thus appears that we already know five species of Coniferous trees of the genus Dadoxylon in the Middle Erian of America, an interesting confirmation of the facts otherwise known as to the great richness and variety of this ancient flora. The late Prof. Goeppert informed me that he had recognised similar wood in the Devonian of Germany, and there can be no doubt that the fossil wood discovered by Hugh Miller in the Old Red Sandstone of Scot- land, and described by Salter and McNab, is of similar character, and probably belongs to the genus Dadoxylon. Thus this type of Conif- erous tree seems to have been as well established and differentiated into species in the Middle Devonian as in the succeeding Carbonif- erous. I may here refer to the fact that the lower limit of the trees of this group coincides, in America, with the upper limit of those prob- lematical trees which in the previous chapter I have named Proto- gens (Nematophyton, Celluloxlyon* Nematoxylon f), though Apo- roxylon of linger extends, in Thuringia, up to the Upper Devonian (Cypridina schists). V.— SCOTTISH DEVONIAN PLANTS OF HUGH MILLER AND OTHERS. (Edinburgh Geological Society, 1877.) Previously to the appearance of my descriptions of Devonian plants from North America, Hugh Miller had described forms from the Devonian of Scotland, similar to those for which I proposed the generic name Psilophyton ; and I referred to these in this connection in my earliest description of that genus. :( He had also recognised what seemed to be plants allied to Lycopods and Conifers. Mr. Peach and Mr. Duncan had made additional discoveries of this kind, and Sir J. Hooker and Mr. Salter had described some of these re- mains. More recently Messrs. Peach, Carruthers, and McNab have worked in this field, and still later* Messrs. Jack and Etheridge have summed up the facts and have added some that are new. The first point to which I shall refer, and which will lead to the other matters to be discussed, is the relation of the characteristic Lepidodendron of the Devonian of eastern America, L. Gaspianum, to L. nothum of Unger and of Salter. At the time when I described this species I had not access to Scottish specimens of Lepidodendron * "Journal of the Geological Society," May, 1881. f Ibid., vol. xix, 1863. \ " Journal of the Geological Society," London, 1859. * Jbid., 1877. THE BRIAN OR DEVONIAN FORESTS. 99 from the Devonian, but these had been well figured and described by Salter, and had been identified with L. nothum of linger, a species evidently distinct from mine, as was also that figured and described by Salter, whether identical or not with Unger's species. In 1870 I had for the first time an opportunity to study Scottish specimens in the collection of Mr. Peach ; and on the evidence thus afforded I stated confidently that these specimens represented a species distinct from L. Gaspianum, perhaps even generically so.* It differs from L. Gfaspianum in its habit of growth by developing small lateral branches instead of bifurcating, and in its foliage by the absence or obsolete character of the leaf -bases and the closely placed and some- what appressed leaves. If an appearance of swelling at the end of a lateral branch in one specimen indicates a strobile of fructification, then its fruit was not dissimilar from that of the Canadian species in its position and general form, though it may have differed in details. On these grounds I declined to identify the Scottish species with L. Gaspianum. The Lepidodendron from the Devonian of Belgium described and figured by Crepin,f has a better claim to such identification, and would seem to prove that this species existed in Europe as well as in America. I also saw in Mr. Peach's collection in 1870 some fragments which seemed to me distinct from Salter's species, and possibly belonging to L. Gaspianum.% In the earliest description of PsilopJiyton I recognised its prob- able generic affinity with Miller's " dichotomous plants," with Salter's " rootlets," and with Goeppert's Haliserites Dechenianus, and stated that I had " little doubt that materials exist in the Old Red Sand- stone of Scotland for the reconstruction of at least one species of this genus." Since, however, Miller's plants had been referred to coniferous roots, and to fucoids, and Goeppert's Haliserites was a name applicable only to fucoids, and since the structure and fruit of my plants placed them near to Lycopods, I was under the neces- sity of giving them a special generic name, nor could I with cer- tainty affirm their specific identity with any European species. The comparison of the Scottish specimens with woody rootlets, though incorrect, is in one respect creditable to the acumen of Salter, as in almost any state of preservation an experienced eye can readily per- ceive that branchlets of Psilophyton must have been woody rather * "Report on Devonian Plants of Canada," 1871. f "Observations sur quelques Plantes Fossiles des depots Devoni- ens." \ "Proceedings of the Geological Society of London," March, 1871. 100 THE GEOLOGICAL HISTORY OF PLANTS. than herbaceous, and their appearance is quite different from that of any true Algae, The type of Psilophyton is my P. princeps, of which the whole of the parts and structures are well known, the entire plant being furnished in abundance and in situ in the rich plant-beds of Gaspe. A second species, P. robustius, has also afforded well-characterised fructification. P. elegans, whose fruit appears as " oval scales," no doubt bore sac-like spore-cases resembling those of the other species, but in a different position, and perfectly flattened in the specimens procured. The only other Canadian species, P. glabrum, being some- what different in appearance from the others, and not having af- forded any fructification, must be regarded as uncertain. The generic characters of the first three species may be stated as follows : Stems dichotomous, with rudimentary subulate leaves, sometimes obsolete in terminal branchlets and fertile branches ; and in decor- ticated specimens represented only by punctiform scars. Young branches circinate. Rhizomata cylindrical, with circular root- areoles. Internal structure of stem, an axis of scalarifonn vessels enclosed in a sheath of imperfect woody tissue and covered with a cellular bark more dense externally. Fruit, naked sac-like spore- cases, in pairs or clusters, terminal or lateral. The Scottish specimens conform to these characters in so far as they are known, but not having as yet afforded fruit or internal structure, they cannot be specifically determined with certainty. More complete specimens should be carefully searched for, and will no doubt be found. In Belgium, M. Crepin has described a new species from the Upper Devonian of Condroz under the name P. Condrusianum (1875). It wants, however, some of the more important characters of the genus, and differs in having a pinnate ramification, giving it the aspect of a fern. In a later paper (1876) the author considers this species distinct from Psilophyton, and proposes for it a new generic name Rhacophyton. The characters given by Mr. Carruthers, in his paper of 1873, for the species P. Dechenianum, are very few and general : " Lower branches short and frequently branching, giving the plant an oblong circumscription." Yet even these characters do not apply, so far as known, to Miller's fucoids or Salter's rootlets or Goeppert's Halise- rites. They merely express the peculiar mode of branching already referred to in Salter's Lepidodendron notTium. The identification of the former plants with the Lepidodendron and Lycopodites, indeed, THE BRIAN OR DEVONIAN FORESTS. 1Q1 rests only on mere juxtaposition of fragments, and on the slight resem- blance of the decorticated ends of the branches of the latter plants to Psilophyton. It is contradicted by the obtuse ends of the branches of the Lepidodendron and Lycopodites, and by the appar- ently strobilaceous termination of some of them. Salter's description of his Lepidodendron nothum is quite defi- nite, and accords with specimens placed in my hands by Mr. Peach : " Stems half an inch broad, tapering little, branches short ; set on at an acute angle, blunt at their terminations. Leaves in seven to ten rows, very short, not a line long, and rather spreading than closely imbricate." These characters, however, in so far as they go, are rather those of the genus Lycopodites than of Lepidodendron, from which this plant differs in wanting any distinct leaf -bases, and in its short, crowded leaves. It is to be observed that they apply also to Salter's Lycopodites Milleri, and that the difference of the foliage of that species may be a result merely of different state of preser- vation. For these reasons I am disposed to place these two sup- posed species together, and to retain for the species the name Lycopodites Milleri. It may be characterised by the description above given, with merely the modification that the leaves are some- times nearly one-third of an inch long and secund (Fig. 17, supra, lower figure). Decorticated branches of the above species may no doubt be mis- taken for PsilopTiyton, but are nevertheless quite distinct from it, and the slender branching dichotomous stems, with terminations which, as Miller graphically states, are " like the tendrils of a pea," are too characteristic to be easily mistaken, even when neither fruit nor leaves appear. With reference to fructification, the form of L. Milleri renders it certain that it must have borne strobiles at the ends of its branchlets, or some substitute for these, and not naked spore-cases like those of PsilopJiyton. The remarkable fragment communicated by Sir Philip Egerton to Mr. Carruthers,* belongs to a third group, and has, I think, been quite misunderstood. I am enabled to make this statement with some confidence, from the fact that the reverse or counterpart of Sir Philip's specimen was in the collection of Sir Wyville Thomson, and was placed by him in my hands in 1870. It was noticed in my paper on " New Devonian Plants," in the " Journal of the Geologi- cal Society of London," and referred to my genus Ptilophyton, as stated above under Section II. , page 86 et seq. * " Journal of Botany," 1873. 102 THE GEOLOGICAL HISTORY OF PLANTS. Mr. Salter described, in 1857,* fragments of fossil wood from the Scottish Devonian, having the structure of Dadoxylon, though very imperfectly preserved ; and Prof. McNab has proposed f the generic name Palceopitys for another specimen of coniferous wood collected by Hugh Miller, and referred to by him in the " Testimony of the Rocks." From Prof. McNab's description, I should infer that this wood may, after all, be generically identical with the woods usually referred to Dadoxylon of linger (Araucarioxylon of Kraus). The description, however, does not mention the number and disposition of the rows of pores, nor the structure of the medullary rays, and I have not been able to obtain access to the specimens themselves. I have described five species of Dadoxylon from the Middle and Up- per Erian of America, all quite distinct from the Lower Carbonifer- ous species. There is also one species of an allied genus, Ormoxylon. All these have been carefully figured, and it is much to be desired that the Scottish specimens should be re-examined and compared with them. Messrs. Jack and Etheridge have given an excellent summary of our present knowledge of the Devonian flora of Scotland, in the Journal of the London Geological Society (1877). From this it would appear that Species referable to the genera Catamites, Lepi- dodendron, Lycopodites, Psilophyton, Arthrostigma, ArcTiceopteris, Caulopteris, Palceopitys, Araucarioxylon, and Stigmaria have been recognised. The plants described by these gentlemen from the Old Red Sandstone of Callender, I should suppose, from their figures and descriptions, to belong to the genus Arthrostigma, rather than to Psilophyton. I do not attach any importance to the suggestions re- ferred to by them, that the apparent leaves may be leaf-bases. Long leaf -bases, like those characteristic of Lepidofloyos, do not occur in these humbler plants of the Devonian. The stems with delicate " horizontal processes " to which they refer may belong to Ptilophy- ton or to Pinnularia. In conclusion, I need scarcely say that I do not share in the doubts expressed by some British palaeontologists as to the distinct- ness of the Devonian and Carboniferous floras. In eastern America, where these formations are mutually unconformable, there is, of course, less room for doubt than in Ireland and in western Ameri- ca, where they are stratigraphically continuous. Still, in passing * " Journal of the London Geological Society." f "Transactions of the Edinburgh Botanical Society," 1870. THE BRIAN OR DEVONIAN FORESTS. 1Q3 from the one to the other, the species are for the most part differ- ent, and new generic forms are met with, and, as I have elsewhere shown, the physical conditions of the two periods were essentially different.* It is, however, to be observed that since — as Stur and others have shown — Calamites radiatus, and other forms distinctively Devonian in America, occur in Europe in the Lower Carboniferous, it is not unlikely that the Devonian flora, like that of the Tertiary, appeared earlier in America. It is also probable, as I have shown in the " Re- ports " already referred to, that it appeared earlier in the Arctic than in the temperate zone. Hence an Arctic or American flora, really Devonian, may readily be mistaken for Lower Carboniferous by a botanist basing his calculations on the fossils of temperate Europe. Even in America itself, it would appear, from recent discoveries in Virginia and Ohio, that certain Devonian forms lingered longer in those regions than farther to the northeast ; f and it would not be surprising if similar plants occurred in later beds in Devonshire or in the south of Europe than in Scotland. Still, these facts, properly understood, do not invalidate the evidence of fossil plants as to geological age, though errors arising from the neglect of them are still current. VI.— GEOLOGICAL RELATIONS OF SOME PLANT-BEARING BEDS OF EASTERN CANADA. (" Report on Erian Plants," 1871.) The Gaspe sandstones have been fully described by Sir W. E, Logan, in his " Report on the Geology of Canada," 1863. He there assigns to them a thickness of seven thousand and thirty-six feet, and shows that they rest conformably on the Upper Silurian lime- stones of the Lower Helderberg group (Ludlow), and are in their turn overlaid unconformably by the conglomerates which form the base of the Carboniferous rocks of New Brunswick. I shall add here merely a few remarks on points in their physical character connected with the occurrence of plants in them. Prototaxites (Nematophytori) Logani and other characteristic Lower Erian plants occur in the base of the sandstones at Little Gaspe. This fact, along with the occurrence, as stated in my paper of 1863, of rhizomes of Psilophyton preserving their scalariform * " Reports on Devonian Plants and Lower Carboniferous Plants of Canada." f Andrews, " Palaeontology of Ohio," vol. ii. ; Meek, " Fossil Plants from Western Virginia," Philosophical Society, Washington, 1875. 104 TEE GEOLOGICAL HISTORY OF PLANTS. structure, in the upper part of the marine Upper Silurian lime- stones,* proves the flora of the Devonian rocks to have had its beginning at least in the previous geological period, and to charac- terise the lower as well as the upper beds of the Devonian series. In this connection I may state that, from their marine fossils, as well as their stratigraphical arrangement, Sir W. E. Logan and Mr. Billings regard the lower portions of the Gaspe sandstones as the equivalents of the Oriskany sandstone of New York. On the other hand, the great thickness of this formation, the absence of Lower Devonian fossils from its upper part, and the resemblance of the upper beds to those of the newer members of the Devonian else- where, render it probable that the Gaspe sandstones, though defi- cient in the calcareous members of the system, seen farther to the westward, represent the whole of the Devonian period. The Gaspe sandstones, as their name imports, are predominantly arenaceous, and often coarsely so, the sandstones being frequently composed of large grains and studded with quartz-pebbles. Grey and buff are prevalent colours, but red beds also occur, more espe- cially in the upper portion. There are also interstratified shaly beds, sometimes occurring in groups of considerable thickness, and associated with fine-grained and laminated argillaceous sandstone, the whole having in many places the lithological aspect of the coal- measures. At one place, near the middle of the series, there is a bed of coal from one inch to three inches in thickness, associated with highly bituminous shales abounding in remains of plants, and also containing fragments of crustaceans and fishes (Pterygotus, Ctenacanthus ? &c.). The beds connected with this coal are grey sandstones and grey and dark shales, much resembling those of the ordinary coal formation. The coal is shining and laminated, and both its roof and floor consist of laminated bituminous shale with fragments of Psilophyton. It has no true under-clay, and has been, I believe, a peaty mass of rhizomes of Psilophyton. It occurs near Tar Point, on the south side of Gaspe Bay, a place so named from the occurrence of a thick dyke of trap holding petroleum in its cavities. The coal is of considerable horizontal extent, as in its line of strike a similar bed has been discovered on the Douglas River, about four miles distant. It has not been recognised on the north * The marine fossils of these beds have been determined by Mr. Billings. They are Upper Silurian, with an intermixture of Lower Devo- nian in the upper part. Fragments of Nematophyton occur in beds of the same age in the Bay dcs Chaleurs, at Cape Bon Ami. THE BRIAN OR DEVONIAN FORESTS. 105 side of the bay, though we find there beds, probably on very nearly the same horizon, holding Psilophyton in situ. As an illustration of one of the groups of shaly beds, and of the occurrence of roots of Psilophyton, I may give the following sec- tional list of beds seen near " Watering Brook," on the north shore of the bay. The order is descending : FT. IN. 1. Grey sandstones and reddish pebbly sandstone of great thickness 2. Bright-red shale 8 0 3. Grey shales with stems of Psilophyton, very abundant »but badly preserved 0 5 4. Grey incoherent clay, slickensided, and with many rhizomes and roots of Psilophyton 0 3 5. Hard grey clay or shale, with fragments and roots of Psilophyton 4 0 6. Red shale 8 0 7. Grey and reddish crumbling sandstone Groups of beds similar to the above, but frequently much more rich in fossils, occur in many parts of the section, and evidently in- clude fossil soils of the nature of under-clays, on which little else appears to have grown than a dense herbage of Psilophyton, along with plants of the genus Arthrostigma. In addition to these shaly groups, there are numerous examples of beds of shale of small thickness included in coarse sandstones, and these beds often occur in detached fragments, as if the rem- nants of more continuous layers partially removed by currents of water. It is deserving of notice that nearly all these patches of shale are interlaced with roots or stems of Psilophyton, which some- times project beyond their limits into the sandstone, as if the vege- table fibres had preserved the clay from removal. In short, these lines of patches of shale seem to be remnants of soils on which Psilophyton has flourished abundantly, and which have been par- tially swept away by the currents which deposited the sand. Some of the smaller patches may even be fragments of tough swamp soils interwoven with roots, drifted by the agency of the waves or possibly by ice ; such masses are often moved in this way on the borders of •dern swamps on the sea-coast. The only remaining point connected with local geology to which shall allude is the admirable facilities afforded by the Gaspe coast both for ascertaining the true geological relations of the beds, and for studying the Devonian plants, as distinctly exposed on large sur- €i I 106 THE GEOLOGICAL HISTORY OF PLANTS. faces of rock. On the coast of the river St. Lawrence, at Cape Rozier and its vicinity, the Lower Silurian rocks of the Quebec group are well exposed, and are overlaid unconformably by the mas- sive Upper Silurian limestones of Cape Gaspe, which rise into cliffs six hundred feet in height, and can be seen filled with their char- acteristic fossils on both sides of the cape. Resting upon these, and dipping at high angles toward Gaspe Bay, are the Devonian sand- stones, which are exposed in rugged cliffs slightly oblique to their line of strike, along a coast-line of ten miles in length, to the head of the bay. On the opposite side of the bay they reappear ; and, thrown into slight undulations by three anticlinal curves, occupy a line. of coast fifteen miles in length. The perfect manner in which the plant-bearing beds are exposed in these fine natural sections may serve to account for the completeness with which the forms and habits of growth of the more abundant species can be described. In the Bay des Chaleurs, similar rocks exist with some local variations. In the vicinity of Campbellton are calcareous and mag- nesian breccia or agglomerate, hard shales, conglomerates and sand- stones of Lower Devonian age. The agglomerate and lower shales contain abundant remains of fishes of the genera Ceplialaspis, Coc- costeus, Ctenacanthus, and Homacanthus, and also fragments of Pterygotus. The shales and sandstones abound in remains of Psilo- phyton, with which are Nematophyton, Arthrostigma, and Lepto- phleum of the same species found in the Lower Devonian of Gaspe Bay. These beds near Campbellton dip to the northward, and the Restigouche River here occupies a synclinal, for on the opposite side, at Bordeaux Quarry, there are thick beds of grey sandstone dipping to the southward, and containing large silicified trunks of Proto- taxites, in addition to Psilophyton. These beds are all undoubtedly Lower Brian, but farther to the eastward, on the north side of the river, there are newer and overlying strata. These are best seen at Scaumenac Bay, opposite Dalhousie, between Cape Florissant and Maguacha Point, where they consist of laminated and fine-grained sandstone, with shales of grey colours, but holding some reddish beds at top, and overlaid unconformably by a great thickness of Lower Carboniferous red conglomerate and sandstone. In these beds nu- merous fossil fishes have been found, among which Mr. Whiteaves recognises species of Pterichthys, Qlyptolepis, Cheirolepis, &c. With these are found somewhat plentifully four species of fossil ferns, all of Upper Brian types, of which one is peculiar to this locality ; but the others are found in the Upper Brian of Perry, in Maine, or in the Catskill group of New York. THE BRIAN OR DEVONIAN FORESTS. 107 In order that distinct notions may be conveyed as to the geo- logical horizons of the species, I may state that the typical Devonian or Erian series of Canada and New York may be divided in descend- ing order into — 1. The Chemung group, including the Chemung and Portage sandstones and shales. 2. The Hamilton group, including the Genesee, Hamilton, and Marcellus shales. 3. The Corniferous limestone and its associated beds. 4. The Oriskany sandstone. As the Corniferous limestone, which is the equivalent of the Lower Carboniferous limestone in the Carboniferous period, is marine, and affords scarcely any plants, we may, as is usually done for like pur- poses in the Carboniferous, group it with the Oriskany under the name Lower Erian. The Hamilton rocks will then be Middle Erian, and the Chemung group Upper Erian. In the present state of our knowledge, the series may be co-ordinated with the rocks of Gaspe, New Brunswick, and Maine, as in the following table : Subdivisions. New York and Western Canada. Gasp6 and Bay des Chaleurs. Southern New Brunswick. Coast of Maine. Upper Chemung Upper Mispec Group. Perry Sand- Devonian or Group. Sandstones. Shale, Sand- stones. Erian. Long Cove, &c. stone, and Scauminac Conglomer- Beds. ate. Middle Hamilton Middle Little R.Group Devonian or Group. Sandstones. (including Erian. Bois Brule, Cordaite Cape Oiseau, Shales and &c. Dadoxylon Sandstone). Lower Corniferous Lower Lower Con- Devonian or and Sandstones. glomerates, Erian. Oriskany Gaspe Basin, &c. groups. Little Gaspe, &c. Campbellton Beds. It may be proper, before closing this note, to state the reasons which have induced me to suggest in the following pages the use of the term " ERIAN," as equivalent to " Devonian," for the great sys- tem of formations intervening between the Upper Silurian and the Lower Carboniferous in America. I have been induced to adopt this course by the following considerations : 1. The great area of 108 THE GEOLOGICAL HISTORY OF PLANTS. undisturbed and unaltered rocks of this age, including a thickness in some places of eighteen thousand feet, and extending from east to west through the Northern States of the Union and western Canada for nearly seven hundred miles, while it spreads from north to south from the northern part of Michigan far into the Middle States, is undoubtedly the most important Devonian area now known to geologists. 2. This area has been taken by all American geolo- gists as their typical Devonian region. It is rich in fossils, and these have been thoroughly studied and admirably illustrated by the New York and Canadian Surveys. 3. The rocks of this area surround the basin of Lake Erie, and were named, in the original reports of the New York Survey, the " Erie Division" 4. Great difficulties have been experienced in the classification of the Euro- pean Devonian, and the uncertainties thus arising have tended to throw doubt on the results obtained in America in circumstances in which such difficulties do not occur. These reasons are, I think, sufficient to warrant me in holding the great Erie Division of the New York geologists as the typical representative of the rocks deposited between the close of the Upper Silurian and the beginning of the Carboniferous period, and to use the term Erian as the designation of this great series of deposits as developed in America, in so far at least as their flora is concerned. In doing so, I do not wish to introduce a new name merely for the sake of novelty ; but I hope to keep before the minds of geologists the caution that they should not measure the Erian formations of America, or the fossils which they contain, by the comparatively depauperated representatives of this portion of the geological scale in the Devonian of western Europe. VII. — ON THE RELATIONS OF THE SO-CALLED " URSA STAGE " OF BEAR ISLAND WITH THE PALAEOZOIC FLORA OF NORTH AMERICA. The following note is a verbatim copy of that published by me in 1873, and the accuracy of which has now been vindicated by the recent observations of Nathorst : The plants catalogued by Dr. Heer, and characterising what he calls the " Ursa Stage," are in part representatives of those of the American flora which I have described as the " Lower Carboniferous Coal-Measures " (Subcarboniferous of Dana), and whose characteristic species, as developed in Nova Scotia, I noticed in the " Journal of the Geological Society " in 1858 (vol. xv.). Dr. Heer's list, however, includes some Upper Devonian forms; and I would suggest that THE BRIAN OR DEVONIAN FORESTS. 109 either the plants of two distinct beds, one Lower Carboniferous and the other Upper Devonian, have been near to or in contact with each other and have been intermixed, or else that in this high northern latitude, in which (for reasons stated in my " Report on the Devo- nian Flora " *) I believe the Devonian plants to have originated, there was an actual intermixture of the two floras. In America, at the base of the Carboniferous of Ohio, a transition of this kind seems to occur; but elsewhere in northeastern America the Lower Car- boniferous plants are usually unmixed with the Devonian. Dr. Heer, however, proceeds to identify these plants with those of the American Chemung, and even with those of the Middle De- vonian of New Brunswick, as described by me — a conclusion from which I must altogether dissent, inasmuch as the latter belong to beds which were disturbed and partially metamorphosed before the deposition of the lowest Carboniferous or " Subcarboniferous " beds. Dr. Heer's error seems to have arisen from want of acquaintance with the rich flora of the Middle Devonian, which, while differing in species, has much resemblance in its general facies, and especially in its richness in ferns, to that of the coal-formation. To geologists acquainted with the stratigraphy and the accom- panying animal fossils, Dr. Heer's conclusions will of course appear untenable ; but they may regard them as invalidating the evidence of fossil plants ; and for this reason it is, I think, desirable to give publicity to the above statements. I consider the British equivalent of the lower coal-measures of eastern America to be the lower limestone shales, the Tweedian group of Mr. Tate (1858), but which have sometimes been called the " Calciferous Sandstone " (a name preoccupied for a Cambrian group in America). This group does not constitute " beds of passage " to the Devonian, more especially in eastern America, where the lower coal-formation rests unconformably on the Devonian, and is broadly distinguished by its fossils. The above notes would not have been extended to so great length, but for the importance of the Erian flora as the precursor of that of the Carboniferous, and the small amount of attention hitherto given to it by geologists and botanists. * " Geological Survey of Canada," 1871. CHAPTER IV. THE CARBONIFEROUS FLORA — CULMINATION OF THE ACROGENS — FORMATION OF COAL. ASCENDING from the Erian to the Carboniferous sys- tem, so called because it contains the greatest deposits of anthracite and bituminous coal, we are still within the limits of the Palaeozoic period. We are still within the reign of the gigantic club-mosses, cordaites, and taxine pines. At the close of the Erian there had been over the whole northern hemisphere great changes of level, accompanied by active volcanic phenomena, and under these influences the land flora seems to have much dimin- ished. At length all the old Erian species had become extinct, and their place was supplied by a meagre group of lycopods, ferns, and pines of different species from those of the preceding Erian. This is the flora of the Lower Carboniferous series, the Tweedian of England, the Horton series of Nova Scotia, the lower coal-meas- ures of Virginia, the culm of Germany. But the land again subsided, and the period of the marine limestone of the Lower Carboniferous was introduced. In this the older flora disappeared, and when the land emerged we find it covered with the rich flora of the coal-formation proper, in which the great tribes of the lycopods and cordaites attained their maxima, and the ferns were con- tinued as before, though under new generic and specific forms. THE CARBONIFEROUS FLORA. Ill There is something very striking in this succession of a new plant world without any material advance. It is like passing in the modern world from one district to another, in which we see the same forms of life, only represented by distinct though allied species. Thus, when the voyager crosses the Atlantic from Europe to Amer- ica, he meets with pines, oaks, birches, poplars, and beeches of the same genera with those he had left behind ; but the species are distinct. It is something like this that meets us in our as- cent into the Carbonif- erous world of plants. Yet we know that this is a succession in time, that all our old Erian friends are dead and buried long ago, and that these are new forms lately introduced (Fig. 32). Conveying ourselves, then, in imagination for- ward to the time when our greatest accumula- tions of coal were formed, and fancying that we are introduced to the Ameri- can or European continent of that period, we find our- selves in a new and strange world. In the Devonian age, and even in the succeeding Lower Carboniferous, there was in the interior of America a wide inland sea, with forest belts clinging to its sides or clothing its isl- ands. But in the coal period this inland sea had given abed e f g FIG. 32. — Foliage from the coal-for- mation, a, Alethopteris lonchitica, fern (Moose River). £>, Sphenophyl- I'um ISchlotheimii (Pictou). 0, Lepi- dodendron binerve (Sydney), d, As- terophyllites foliosa (?) (Sydney). e, Cordaites (Joggins). f, JVeurop- teris rarinervis, fern (Sydney). g, Odontopteris suhcuneata, fern (Sydney). 112 THE GEOLOGICAL HISTORY OF PLANTS. place to vast swampy flats, and which, instead of the oil- bearing shales of the Erian, were destined to produce those immense and wide-spread accumulations of vege- table matter which constitute our present beds of bitu- minous and anthracite coal. The atmosphere of these great swamps is moist and warm. Their vege- tation is most exuberant, but of forms unfamiliar to modern eyes, and they swarm with insects, millepedes, and scorpions, and with batrachian reptiles large and small, among which we look in vain for representatives of the birds and beasts of the present day. Prominent among the more gigantic trees of these swampy forests are those known to us as SigillaricB (Fig. 33). They have tall, pillar-like trunks, often sev- eral feet in diameter, ribbed like fluted columns, but in the re- verse way, and spreading at the top into a few thick branches, which are clothed with long, grass-like leaves. They resem- ble in some respects the Lepi- dodendra of the Erian age, but are more massive, with ribbed in- stead of scaly trunks, and longer leaves. If we approach one of them more closely, we are struck with the regular ribs of its trunk, dotted with rows of scars of fallen leaves, from which it receives its name Sigillaria, or seal-tree (Figs. 34-37). If we cut into its stem, we find that, instead of FIG. BS.—SwiUarice, restored. A, Sigillaria JSrownii. B, Sigillaria elegans. THE CARBONIFEROUS FLORA. 113 the thin bark and firm wood with which we are familiar in our modern trees, it has a hard external rind, then a great thickness of cellular matter with rope-like bands of fibres, constituting an inner bark, while in the centre is a firm, woody axis of comparatively small diameter, and FIG. 34. — Sigillaria Lorwayana, Dawson. a, Zones of fruit-scars. £>, Leaf- scar enlarged. 0, Fruit-scar enlarged. See appended note. somewhat intermediate in its structures between that of the Lepidodendra and those of the cycads and the taxine conifers. Thus a great stem, five feet in diameter, may consist principally of cellular and bast fibres with very little true woody matter. The roots of this tree are i 114 THE GEOLOGICAL HISTORY OF PLANTS. perhaps its most singular feature. They usually start from the stem in four main branches, then regularly bifurcate several times, and then run out into great FIG. 35. — Stem of Sigillaria Brownii. reduced. FIG. 36. — Two ribs of Sigillaria Brownii. Natural size. cylindrical cables, running for a long distance, and evi- dently intended to anchor the plant firmly in a soft and oozy soil. They were furnished with long, cylindrical rootlets placed regularly in a spiral man- ner, and so articulated that when they dropped off they left regu- lar rounded scars. They are, in short, the Stigmarice, which we have already met with in the Erian (Figs. 38, 39). In Fig. 33 I have endeavoured to restore these strange trees. It is not wonderful that such plants have caused much botanical con- FIG. 37 -Portion of lower troversy. It was long before bot- part of stem of S. Brownii. . J Natural size. anists could be convinced that THE CARBONIFEROUS FLORA. 115 their roots are properly roots at all, and not stems of some aquatic plant. Then the structure of their FIG. 38. — JStigmaria root, seen from above, showing its regular divisions. From "Acadian Geology." stems is most puzzling, and their fruit is an enigma, for while some have found connected with them cones supposed to resemble those of lycopods, others attribute to them fruits like those of yew- trees. For years I have been myself gathering materials from the rich coal-formation deposits of Nova Scotia in aid of the solution of these questions, and in the mean time Dr. William- son, of Manchester, and Kenault and other botanists in France, have been amassing and study- ing stores of specimens, and it is still uncertain who may final- ly be the fortunate discoverer to set all controversies at rest, that the true solution consists in the fact that there are many kinds of Sigillarice. While in the modern forests FIG. 39. — Portion of bark of Stigmaria, showing scars of attachment of rootlets. My present belief is, 116 THE GEOLOGICAL HISTORY OF PLANTS. of America and Europe the species of any of our ordinary trees, as oaks, birches, or maples, may almost be counted on one's fingers, Schimper in his vegetable palaeontology enumerates about eighty species of Carboniferous Sigil- larice ; and while on the one hand many of these are so imperfectly known that they may be regarded as uncer- tain, on the other hand many species must yet remain to be discovered.* Now, in so vast a number of species there must be a great range of organisation, and, indeed, it has already been attempted to subdivide them into several generic groups. The present state of the question appears to me to be this, that in these Sigillariw we have a group divisible into several forms, some of which will eventually be classed with the Lepidodendra as lycopods, while others will be found to be naked-seeded phaeno- gams, allied to the pines and cycads, and to a remarkable group of trees known as Cordaites, which we must shortly notice. Before considering other forms of Carboniferous vege- tation, let us glance at the accumulation of coal, and the agency of the forests of Sigillarice therein. Let us im- agine, in the first instance, such trees as those represented in the figures, growing thickly together over vast swampy flats, with quantities of undergrowth of ferns and other plants beneath their shade, and accumulating from age to age in a moist soil and climate a vast thickness of vege- table mould and trunks of trees, and spores and spore- cases, and we have the conditions necessary for the growth of coal. Many years ago it was observed by Sir William Logan that in the coal-field of South Wales it was the nile with rare exceptions that, under every bed of coal, there is a bed of clay filled with roots of the Stigmaria, already referred to as the root of Sigillaria. This dis- * In a recent memoir (Berlin, 1887) Stur has raised the number of species in one subdivision of the Sigillarice (the Favularice) to forty- seven ! THE CARBONIFEROUS FLORA. 117 covery has since been extended to all the coal-fields of Europe and America, and it is a perfectly conclusive fact as regards the origin of coal. Each of these "under- clays," as they are called, must, in fact, have been a soil on which grew, in the first instance, Sigillariae and other trees having stigmaria-roots. Thus, the growth of a forest of Sigillarim was the first step toward the accumu- lation of a bed of coal. More than this, in some of the coarser and more impure coals, where there has been sufficient earthy matter to separate and preserve impres- sions of vegetable forms, we can see that the mass of the coal is made up of flattened Sigillarice, mixed with vege- FIG. 40. — Vegetable tissues from coal, a, Sigillaria and Cordaites. b, Calamodendron. table debris of all kinds, including sometimes vast quan- tities of lepidodendroid spores, and the microscopic study of the coal gives similar results (Fig. 40). Further, on the surfaces of many coals, and penetrating the shales or sandstones which form their roofs, we find erect stumps of sigillaria and other trees, showing that the accumula- tion of the coal terminated as it had begun, by a forest- growth. I introduce here a section of a few of the nu- merous beds of coal exposed in the cliffs of the South Joggins, in Nova Scotia, in illustration of these facts. We can thus see how in the slowly subsiding areas of the coal-swamps successive beds of coal were accumulated, alternating with beds of sandstone and shale (Figs. 41, 42). For other details of this kind I must refer to papers mentioned in the sequel. 118 THE GEOLOGICAL HISTORY OF PLANTS. Returning to the more special subject of this work, I may remark that the lepidodendroid trees and the ferns, both the arborescent and herbaceous kinds, are even more richly represented in the Carboniferous than in the pre- ceding Erian. I must, however, content myself with merely introducing a few representatives of some of the more common kinds, in an ap- pended note, and here give a figure of a well-known Lower Carbonifer- ous lepidodendron, with its various forms of leaf -bases, and its foliage and fruit (Fig. 43), and a similar illustra- tion of an allied generic form, that known as Lepido- phloios* (Fig. 44). Another group which claims our FIG. 41. — Beds associated with the main coal (S. Joggins, Nova Scotia). 1, Shale and sand- stone— plants with Spirorbis attached; rain- marks (?). (2, Sandstone and shale, eight feet — erect Calamites; 3, Grav sandstone, seven feet ; 4, Gray shale, four feet— an erect coniferous (?) tree, rooted on the shale, passes up through fifteen feet of the sandstones and shale.) 5, Gray sandstone, four feet. 6, Gray shale, six inches — prostrate and erect trees, with rootlets, leaves, JVaiadites, and Spiror- -. bis on the plants. 7, Main coal-seam, five feet of coal in two seams. 8, Underclay, with rootlets. attention is that of the Catamites. These are tall, cy- lindrical, branch- stems, with whorls of branch- lets, bearing needle- like leaves and spreading in stools from the base, so as to form dense thickets, like Southern cane-brakes (Fig. 46). They bear, in habit of growth and fructification, a close * For full descriptions of these, see " Acadian Geology." THE CARBONIFEROUS FLORA. 119 relation to our modern equisetums, or mare's- tails, but, as in other cases we have met with, are of gigantic size and comparatively complex structure. Their stems, in cross-section, show radi- ating bundles of fibres, like those of exogenous woods, yet the whole plan of structure presents some curious resemblances to the stems of their hum- ble successors, the mod- ern mare's-tails. It would seem, from the manner in which dense brakes of these Catamites have been preserved in the coal-for- mation of Nova Scotia, that they spread over low and occasionally inun- dated flats, and formed fringes on the seaward sides of the great Sigilla- FIG.. 42.— Erect Sigillaria, standing (S' J°ggln8' ria forests. In this way they no doubt contrib- uted to prevent the invasion of the areas of coal ac- cumulation by the muddy waters of inundations, and thus, though they may not have furnished much of the material of coal, they no doubt contributed to its purity. Many beautiful plants of the genera AsteropJiyllites and Annularia are supposed to have been allied to the Cola- mites, or to have connected them with the RMzocarps. The stems and fruit of these plants have strong points of resemblance to those of Sphenophyttum, and the leaves are broad, and not narrow and angular like those of the true Catamites (Fig. 45). No one has done more than my friend Dr. William- 120 THE GEOLOGICAL HISTORY OF PLANTS. FIG. 43. — Lepidodendron corrugatum, Dawson.a tree characteristic of the Lower Carboniferous. A, Restoration. B, Leaf, natural size, c, Cone and branch. D, Branch and leaves. E, Various forms of leaf-areoles. F, Sporangium, i, L, M, Bark, with leaf-scars. N, Bark, with leaf- Bcars of old stem, o, Decorticated stem (Knorria). / THE CARBONIFEROUS FLORA. j.'l/, • \V!:!/// ////, F. 121 FIG. 44. — LepidopTiloios Acadianus, Dawson, a lepidodendroid tree of the coal-formation. A, Kestoration. B, Portion of Dark (two thirds natural size), o, Ligneous surface of the same. F, Cone (two thirds natural size). o, Leaf (natural size). K, Portion of woody cylinder, showing outer and inner series of vessels magnified. L, Scalariform vessels (highly magni- fied). M, Various forms of leaf-scars and leaf-bases (natural size). 122 THE GEOLOGICAL HISTORY OF PLANTS. son, of Manchester, to illustrate the structure of Cala- mites, and he has shown that these plants, like other cryptogams of the Carboniferous, had mostly stems with regular fibrous wedges, like those of exogens. The structure of the stem is, indeed, so complex, and differs so much in different stages of growth, and different states of preservation, that we are in danger of falling into the greatest confusion in classifying these plants. Sometimes what we call a Calamite is a mere cast of its pith showing longitudinal striae and constrictions at the nodes. Some- FIG. 45.— Asterophyllih L v lites, Sphenophyllum, and Anmilaria. A, Astero- phyllites trinerne. A1, Leaf enlarged. B, Annularia sphenophylloides. B1, Leaf enlarged, c, Sphenophyllum erosum. c1, Leaflet enlarged. c2, Scalariform vessel of Sphenophyllum. D, Pinnularia ramosissima, probably a root. times we have the form of the outer surface of the woody cylinder, showing longitudinal ribs, nodes, and marks of the emission of the branchlets. Sometimes we have the outer surface of the plant covered with a smooth bark showing flat ribs, or almost smooth, and having at the nodes regular articulations with the bases of the verticil- THE CARBONIFEROUS FLORA. 123 late branchlets, or on the lower part of the stem the marks of the attachment of the roots. The Calamites grew in dense clumps, budding off from one another, sometimes at different levels, as the mud or sand accumu- lated about their stems, and in some species there were creeping rhizomata or root-stocks (Figs. 46 to 49). But all Calamites were not alike FIG. 46. — Calamites. A, C. Suclcorii. B, G. Cistii, ( From " Acadian Geolo- gy.") FIG. 47. — Erect Cala- mites, with roots at- tached (Nova Sco- tia). FIG. 48.— Node of C. Cistii, with long leaves (Nova Sco- tia). Dr. Williamson describes three distinct structural types. What he regards as typical Calamites has in its woody zone wedges of barred vessels, with thick bands of cel- lular tissue separating them. A second type, which * " Memoirs of the Philosophical Society," Manchester, 1886-'87. THE GEOLOGICAL HISTORY OF PLANTS. he refers to Calamopitus, has woody bundles com- posed of reticulated or multiporous fibres, with their porous sides parallel to the medullary rays, which are better developed than in the previous form. The inter- vening cellular masses are composed of elongated cells. This is a decided advance in structure, and is of the type of those forms having the most woody and largest stems, •for© £ FIG. 49. — Erect Calamites (C. Suckovii), showing the mode of growth of new stems (5), and different forms of the ribs (a, c). (Pictou, Nova Scotia.) Half natural size. which Brongniart named Calamodendron (Fig. 50). A third form, to which Dr. Williamson seems to prefer to assign this last name, has the tissue of the woody wedges barred, as in the first, but the medullary rays are better developed than in the second. In this third form the intermediate tissue, or primary medullary rays, is truly fibrous, and with secondary medullary rays traversing it. My own observations lead me to infer that there was a fourth type of calamitean stem, less endowed with woody matter, and having a larger fistulous or cellular cavity than any of those described by Dr. Williamson. There is every reason to believe that all these various THE CARBONIFEROUS FLORA. 125 and complicated stems belonged to higher and nobler types of mare's-tails than those of the modern world, and that their fructification was equisetaceous and of the form known as Calamostachys. We have already seen that noble tree-ferns existed in the Erian period, and these were continued, and their number and variety greatly extended, in the Carbonifer- ous. In regard to the structure of their stems, and the method of supporting these by aerial roots, the tree-ferns of all ages have been nearly alike, and the form and structure of the leaves, except in some comparatively rare and exceptional types, has also been much the same. Any ordinary observer examining a collection of coal- formation ferns recognises at once their kinship to the familiar brackens of our own time. Their fructification is, unfortunately, rarely preserved, so that we are not able, in the case of many species, to speak confidently of FIG. 50. — Stems of Calamodendron and tissues magnified (Nova Scotia), a, 6, Casts of axis in sandstone, with woody envelope (reduced), c, d. Woody tissue (highly magnified). their affinities with modern forms ; but the knowledge of this subject has been constantly extending, and a suffi- cient amount of information has been obtained to enable us to say something as to their probable relationships. (Figs. 51 to 55.) The families into which modern ferns are divided are, it must be confessed, somewhat artificial, and in the case 126 THE GEOLOGICAL HISTORY OF PLANTS. of fossil ferns, in which the fructification is for the most part wanting, it is still more so, depending in great part on the form and venation of the divisions of the fronds. FIG. 51.— Group of coal-formation ferns. A, Odontopterw subcuneata (Bun- bury). B, Neuropteris cordata (Brongninrt). c, Alethopteris loncfiitica (Bronfrniart). D, Dictyopteris olliqua (Bunbury). E, Phyllopteris an- tiqua (Dawson), magnified; E1, Natural size. F, Neuropteris cydopte- roides (Dawson). Of about eight families into which modern ferns are divided, seven are found in a fossil state, and of these, four at least, the Cyathacecv, the Ophioglossece, the Hy- THE CARBONIFEROUS FLORA. 127 FIG. ^.—Alethopteris grandis (Dawson). Middle coal-formation of Nova Scotia. FIG. 53. — Cyclopteris (Aneimites) Acadica (Dawson), a tree-fern of the Lower Carboniferous, a, Pinnules, b, Fragment of petiole. £, Re- mains of fertile pinnules. 128 THE GEOLOGICAL HISTORY OF PLANTS. rnenopJiyllacece, and the Marattiacece, go back to the coal- formation. * Some of these ferns have the more complex kind of spore-case, with a jointed, elastic ring. It is to be ob- Fio. 54. — Sphenopteris latior, Dawson. Coal -formation, a, Pinnule magnified, with traces of fructification. served, however, that those forms which have a simple spore-case, either netted or membranous, and without annulus, are most common in the Devonian and lowest FIG. 55. — Fructification of Palaeozoic ferns, a, Thecse of Archceopteris (Erian). 6, Theca of Senftenbergia (Carboniferous), c, Thecse of Asterotheca (Carboniferous). Carboniferous. Some of the forms in these old rocks are somewhat difficult to place in the system. Of these, the * Mr. R. Kidston has recently described very interesting forms of fern fructification from the coal-formation of Great Britain, and much has been done by European palaeobotanists, and also by Lesquereux and Fontaine in America. THE CARBONIFEROUS FLORA. 129 FIG. 56. — Tree-ferns of the Carboniferous. A, MegapTiyton magnificum, Dawson, restored. B, Leaf-scar of the same? two thirds natural size. BI. Row of leaf-scars, reduced, c, Paloeoptems Hartii, scars half natu- ral size. D, Palceopteris Acadica, scars half natural size. K 130 THE GEOLOGICAL HISTORY OF PLANTS. species of Archaopteris, of the Upper and Middle Erian, are eminent as examples. This type, however, scarcely extends as high as the coal-formation.* Some of the tree-ferns of the Carboniferous present very remarkable features. One of these, of the genus Megaphyton, seems to have two rows of great leaves, one at each side of the stem, which was probably sustained by large bundles of aerial roots (Fig. 56). In the Carboniferous, as in the Erian, there are leaves which have been referred to ferns, but are subject to doubt, as possibly belonging to broad-leaved taxine trees allied to the gingko-tree of China. One of these, repre- sented in Fig. 57, has been found in the coal-formation of Nova Scotia, and referred to the doubtful genus Noeggerathia. Fontaine has proposed for simi- lar leaves found in Virginia the new generic name Saportea. Ferns, as might be inferred from their great age, are at the present time dispersed over the whole world ; but their head- quarters, and the regions to which tree-ferns are confined, are the more moist climates of the tropics and of the southern hemisphere. The coal-swamps of the northern hemisphere seem to have excelled even these favoured regions of the present world as a paradise for ferns. I have already stated that the Carboniferous consti- tutes the headquarters of the Cordaites (Fig. 58), of which a large number of species have been described, both in * The pretty little ferns of the genus Botrychium (moonwort), so common in American and European woods, seem to be their nearest mod- ern allies. FIG. 5ft. — NoeggeratTiia dispar (half natural size). THE CARBONIFEROUS FLORA. 131 Europe and America. We sometimes, though rarely, find their stems showing structure. In this case we have a large cellular pith, often divided by horizontal parti- tions into flat chambers, and constituting the objects which, when detached, are called SUrnbergm (Fig. 62). These Sternbergia piths, however, occur in true coni- fers as well, as they do in the modern world in some trees, like our common butternut, of higher type ; and I showed many years ago that the Sternbergia type may be detected in the young twigs of the balsam -fir (Abies lalsamifera). The pith was surrounded by a ring of scalariform or barred tissue, often of considerable thickness, and in young stems so important as to have suggested lycopodia- ceous affinities. But as the stem grew in size, a regular ring of woody wedges, with tissue hav- ing rounded or hex- agonal pores or discs, like those of pines, was developed. Outside this was a bark, often apparently of some thickness. This struct- ure in many important points resembles that of cycads, and also approaches to the structure of Sigillaria, while in its more highly developed forms it approximates to that of the conifers. FIG. 5%.—Cordaites (Dory cor daites), Grand7 Eury, reduced. 132 THE GEOLOGICAL HISTORY OF PLANTS. On the stems so constructed were placed long and often broad many-nerved leaves, with rows of stomata or breathing-pores, and attached by somewhat broad bases to the stem and branches. The fruit consisted of racemes, or clusters of nutlets, which seem to have been provided A FIG. 59. — Fruits of Cordaites and Taxine Conifers (coal-formation. Nova Scotia.) A, Antholithes squamosus (two thirds). B, A. rhabdocarpi (two thirds). B1, Carpel restored, c. A. spinosus (natural size). D, Trigonocarpum intermedium. E, T. Nwggerathii. F, T. avella- num. G, Rhabdocarpus insignis, reduced. H. Antholithes pygmoeus. i, Cardiocarpum jlmtans. K, Cardiocarpum bisectum. L, Sporangites papittata, lycopodiaceous macrospores (natural size and magnified). THE CARBONIFEROUS FLORA. 133 with broad lateral wings for flotation in the air, or in some cases with a pulpy envelope, which flattens into a film. There seem to have been structures of both these kinds, though in the state of preservation of these curious seeds it is extremely difficult to distinguish them. In the first case they must have been intended for dissemination by the wind, like the seeds of spruces. In the latter case they may have been disseminated like the fruits of taxine trees by the agency of animals, though what these were it would be difficult to guess. These trees had very great reproductive power, since they produced numerous seeds, not singly or a few together, as in modern yews, but in long spikes or catkins bearing many seeds (Fig. 59), It is to be observed that the Cordaites, or the Cor- daitin®, as they have been called, as a family,* constitute another of those intermediate groups with which we have already become familiar. On the one hand they approach closely to the broader-leaved yews like Gingko, Phyllo- cladus, and Podoearpus, and, on the other hand, they have affinities with Cycadaceae, and even with Sigillariae. They were beautiful and symmetrical trees, adding some- thing to the variety of the rather monotonous Palaeo- zoic forests. They contributed also somewhat to the ac- cumulation of coal. I have found that some thin beds are almost entirely composed of their leaves, and the tissues of their wood are not infrequent in the mineral charcoal of the larger coal-seams. There is no evidence that their roots were of the stigmaroid type, though they evidently grew in the same swampy flats with the Sigillariae and Calamites. It may, perhaps, be well to say here that I believe there was a considerably wide range of organisation in the Cordaitinae as well as in the Calamites and Sigillariae, and that it will eventually be found that there were three lines * Engler ; Cordaitees of Renault. 134 THE GEOLOGICAL HISTORY OF PLANTS. of connection between the higher cryptogams and the phaenogams, one leading from the lycopods by the Sigil- lariaB, another leading by the Cordaites, and the third leading from the Equisetums by the Calami tes. Still further back the characters afterward separated in the club-mosses, mare's-tails, and ferns, were united in the Khizocarps, or, as some now, but I think somewhat un- reasonably, prefer to call them, the " heterosporous Fili- cinae." In the more modern world, all the connecting links have become extinct and the phaen ogams stand widely separated from the higher cryptogams. I do not make these remarks in a Darwinian sense, but merely to state what appear to be the lines of natural affinity and the links wanting to give unity to the system of nature. Of all the trees of the modern world, none are perhaps so widely distributed as the pines and their allies. On mountain-tops and within the Arctic zone, the last trees that can struggle against the unfavourable conditions of existence are the spruces and firs, and in the warm and moist islands of the tropics they seem equally at home with the tree-ferns and the palms. We have already seen that they are a very ancient family, and in the sandstones of the coal-formation their great trunks are frequently found, infiltrated with calcareous or silicious matter, and still retaining their structure in the greatest perfection (Fig. 60). So far as we know, the foliage of some of them which constitutes the genera Walchia and Araucarites of some authors (Figs. 60, 63) was not dissimilar from that of modern yews and spruces, though there is reason to believe that some others had broad, fern-like leaves like those of the gingko. None of them, so far as yet cer- tainly known, were cone-bearing trees, their fruit having probably been similar to that of the yews (Fig. 61). The minute structures of their stems are nearer to those of the conifers of the islands of the southern hemisphere than to that of those in our northern climes — a cor- THE CARBONIFEROUS FLORA. 135 FIG. 60. — Coniferous wood and foliage (Carboniferous). A, Araucarites gracilis, reduced. B, Dadoxylon Acadianum (radial), 90 diams. ; B1 (tangential), 90 diams. ; B2, cell showing areolation, 250 diams. c, Dadoxylon materiarium (radial), 90 diams. ; c1 (tangential), 90 diams. ; c2, cell showing areolation, 250 diams. D, Dadoxylon anti- quius (radial), 90 diams. ; D1 (tangential), 90 diams. ; D2, cell showing areolation, 250 diams. 136 THE GEOLOGICAL HISTORY OF PLANTS. relation, no doubt, to the equable climate of the period. There is not much evidence that they grew with the Si- gillarise in the true coal-swamps, though some specimens have been found in this association. It is more likely that they were in the main inland and upland trees, and FIG. 61. — Trigonocarpum Hookeri, Daw- son, from the coal-measures of Cape Breton. Probably the fruit of a Tax- ine tree. A, Broken specimen magni- fied twice natural size. B, Section magnified : a, the testa ; 5, the teg- men; c, the nucleus* d, the embryo, c, Portion of the surface of the inner coat more highly magnified. that in consequence they are mostly known to us by drifted trunks borne by river inundations into the seas and estuaries. A remarkable fact in connection with them, and show- ing also the manner in which the most durable vegetable structures may perish by decay, is that, like the Cordaites, they had large piths with transverse partitions, a struct- THE CARBONIFEROUS FLORA. 137 ure which, as I have already mentioned, appears on a minute scale in the twigs of the fir-tree, and that some- times casts of these piths in sandstone appear in a separate form, constituting what have been named SternbergicB or ArtisicB. As Kenault well remarks with reference to Cordaites, the existence of this chambered form of pith implies rapid elongation of the stem, so that the Cordaites and conifers of the coal-formation were probably quickly growing trees (Fig. 62). The same general statements may be made as to the coal-vegetation as in relation to that of the Erian. In FIG. §%.—Sterriberqia pith of Dadoxylon. A, Specimen (natural size), showing remains of wood at a, a. B, Junction of wood and pith, mag- nified, c, Cells of the wood of do., a, a; &, medullary ray; c, areo- lation. the coal period we have found none of the higher ex- ogens, and there are only obscure and uncertain indica- tions of the presence of endogens, which we may reserve for a future chapter ; but gymnosperms abound and are highly characteristic. On the other hand, we have no mosses or lichens, and very few Algae, but a great num- ber of ferns and Lycopodiaceaa or club-mosses (Fig. 63). Thus, the coal-formation period is botanically a meeting- place of the lower phaenogams and the higher cryptogams, and presents many forms which, when imperfectly known, have puzzled botanists in regard to their position in one or other series. In the present world, the flora most akin 138 THE GEOLOGICAL HISTORY OF PLANTS. to that of the coal period is that of warm, temperate re- gions in the southern hemisphere. It is not properly a tropical flora, nor is it the flora of a cold region, but rather indicative of a moist and equable cHmate. Still, FIG. W.— Walchia imbricatula, S, N., Permian, Prince Edward Island. we must bear in mind that we may often be mistaken in reasoning as to the temperature required by extinct species of plants, differing from those now in existence. Further, we must not assume that the climatal conditions of the northern hemisphere were in the coal period at all similar to those which now prevail. As Sir Charles Lyell has shown, a less amount of land in the higher latitudes would greatly modify climates, and there is every reason to believe that in the coal period there was less land than now. Further, it has been shown by Tyndall that a very small additional amount of carbonic acid in the atmos- phere would, by obstructing the radiation of heat from the earth, produce almost the effect of a glass roof or con- servatory, extending over the whole world. Again, there is much in the structure of the leaves of the coal-plants, as well as in the vast amount of carbon which they ac- cumulated in the form of coal, and the characteristics of the animal life of the period, to indicate, on independent THE CARBONIFEROUS FLORA. 139 grounds, that the carboniferous atmosphere differed from that of the present world in this way, or in the presence of more carbonic acid — a substance now existing in the very minute proportion of one thousandth of the whole — a quantity adapted to the present requirements of vege- table and animal life, but probably not to those of the coal period. Thus, if we inquire as to any analogous distribution of plants in the modern world, we find this only in the warm- er insular climates of the southern hemisphere, where ferns, lycopods, and pines appear under forms some- what akin to those of the Carboniferous, but mixed with other types, some of which are modern, others allied to those of the next succeeding geological ages of the Meso- zoic and Tertiary ; and under these periods it will be more convenient to make comparisons. The readers of recent English popular works on geol- ogy will have observed the statement reiterated that a large proportion of the material of the great beds of bi- tuminous coal is composed of the spore- cases of lycopo- diaceous plants — a statement quite contrary to that re- sulting from my microscopical examinations of the coal of more than eighty coal-beds in Nova Scotia and Cape Breton, as stated in "Acadian Geology" (page 463), and more fully in my memoir of 1858 on the "Structures in Coal," * and that of 1866, on the " Conditions of Ac- cumulation of Coal."f The reason of this mistake is, that an eminent English naturalist, happening to find in certain specimens of English coal a great quantity of re- mains of spores and spore-cases, though even in his speci- mens they constitute only a small portion of the mass, and being apparently unacquainted with what others had done in this field, wrote a popular article for the " Con- temporary Keview," in which he extended an isolated and * " Journal of the Geological Society," voL xv. f Ibid-> vo1- xxii- 140 THE GEOLOGICAL HISTORY OF PLANTS. exceptional fact to all coals, and placed this supposed origin of coal in a light so brilliant and attractive that he has been followed by many recent writers. The fact is, as stated in " Acadian Geology," that trunks of SigillaricB and similar trees constitute a great part of the denser portion of the coal, and that the cortical tissues of these rather than the wood remain as coal. But cortical or epidermal tissues in general, whether those of spore-cases or other parts of plants, are those which from their re- sistance to water-soakage and to decay, and from their highly carbonaceous character, are best suited to the pro- duction of coal. In point of fact, spore-cases, though often abundantly present, constitute only an infinitesimal part of the matter of the great coal-beds. In an article in " The American Journal of Science," which appeared shortly after that above referred to, I endeavoured to cor- rect this error, though apparently without effect in so far as the majority of British geological writers are con- cerned. From this article I have taken with little change the following passages, as it is of importance in theoretical geology that such mistakes, involving .as they do the whole theory of coal accumulation, should not continue to pass current. The early part of the paper is occupied with facts .as to the occurrence -of spores and spore-cases as partial ingredients in coal. Its conclusions .are as follows : It is not improbable that sporangites, or bodies re- sembling them, may be found in most coals; but it is most likely that their occurrence is .accidental rather than essential to coal accumulation, and that they are more likely to have been abundant in shales and cannel coals, deposited in ponds or in shallow waters in the vi- cinity of lycopodiaceous forests, than in the swampy or peaty deposits which constitute the ordinary coals. It is to be observed, however, that the conspicuous ap- pearance which these bodies, and also the strips and fragments of epidermal tissue, which resemble them in THE CARBONIFEROUS FLORA. texture, present in slices of coal, may incline an observer, not having large experience in the examination of coals, to overrate their importance ; and this I think has been done by most microscopists, especially those who have confined their attention to slices prepared by the lapidary. One must also bear in mind the danger arising from mis- taking concretionary accumulations of bituminous matter for sporangia. In sections of the bituminous shales ac- companying the Devonian coal above mentioned, there are many rounded yellow spots, which on examination prove to be the spaces in the epidermis of Psilophyton through which the vessels passing to the leaves were emitted. To these considerations I would add the fol- lowing, condensed from the paper above referred to (p. 139), in which the whole question of the origin of coal is fully discussed : * 1. The mineral charcoal or ' mother coal ? is obviously woody tissue and fibres of bark, the structure of the va- rieties of which, and the plants to which it probably be- longs, I have discussed in the paper above mentioned. 2. The coarser layers of coal show under the micro- scope a confused mass of fragments of vegetable matter belonging to various descriptions of plants, and includ- ing, but not usually in large quantities, sporangites. 3. The more brilliant layers of the coal are seen, when separated by thin lamina of clay, to have on their surfaces the markings of SigillaricB and other trees, of which they evidently represent flattened specimens, or rather the bark of such specimens. Under the micro- scope, when their structures are preserved, these layers show cortical tissues more abundantly than any others. 4. Some thin layers of coal consist mainly of flat- tened layers of leaves of Cordaites or Pychnophyllum. 5. The Stigmaria underclays and the stumps of * See also "Acadian Geology," 2d ed., pp. 138, 461, 493. 142 THE GEOLOGICAL HISTORY OF PLANTS. Sigillaria in the coal-roofs equally testify to the accu- mulation of coal by the growth of successive forests, more especially of Sigillarice. There is, on the other hand, no necessary connection of sporangite-beds with Stigmarian soils. Such beds are more likely to be accumulated in water, and consequently to constitute bituminous shales and cannels. 6. Lepidodendron and its allies, to which the spore- cases in question appear to belong, are evidently much less important to coal accumulation than Sigillaria, which cannot be affirmed to have produced spore-cases similar to those in question, even though the observation of Goldenberg as to their fruit can be relied on ; the ac- curacy of which, however, I am inclined to doubt. On the whole, then, while giving due credit to those who have advocated the spore-theory of coal, for directing attention to this curious and no doubt important constit- uent of mineral fuel, and admitting that I may possibly have given too little attention to it, I must maintain that sporangite-beds are exceptional among coals, and that cortical and woody matters are the most abundant ingre- dients in all the ordinary kinds ; and to this I cannot think that the coals of England constitute an exception. It is to be observed, in conclusion, that the spore- cases of plants, in their indestructibility and richly car- bonaceous character, only partake of qualities common to most suberous and epidermal matters, as I have explained in the publications already referred to. Such epidermal and cortical substances are extremely rich in carbon and hydrogen, in this resembling bituminous coal. They are also very little liable to decay, and they resist more than other vegetable matters aqueous infiltration — properties which have caused them to remain unchanged, and to continue free from mineral additions more than other vegetable tissues. These qualities are well seen in the bark of our American white birch. It is no wonder that THE CARBONIFEROUS FLORA. materials of this kind should constitute considerable portions of such vegetable accumulations as the beds of coal, and that when present in large proportion they should afford richly bituminous beds. All this agrees with the fact, apparent on examination of the common coal, that the greater number of its purest layers consist of the flattened bark of Sigillarice and similar trees, just as any single flattened trunk embedded in shale becomes a layer of pure coal. It also agrees with the fact that other layers of coal, and also the cannels and earthy bitumens, appear under the microscope to consist of finely comminuted particles, principally of epidermal tis- sues, not only from the fruits and spore-cases of plants, but also from their leaves and stems. These considera- tions impress us, just as much as the abundance of spore- cases, with the immense amount of the vegetable matter which has perished during the accumulation of coal, in comparison with that which has been preserved. I am indebted to Dr. T. Sterry Hunt for the fol- lowing very valuable information, which at once places in a clear and precise light the chemical relations of epidermal tissue and spores with coal. Dr. Hunt says : "The outer bark of the cork-tree, and the cuticle of many if not all other plants, consists of a highly car- bonaceous matter, to which the name of suberin has been given. The spores of Lycopodium also approach to this substance in composition, as will be seen by the follow- ing, one of two analyses by Duconi,* along with which I give the theoretical composition of pure cellulose or woody fibre, according to Payen and Mitscherlich, and an analysis of the suberin of cork, from Quercus suler, from which the ash and 2*5 per cent of cellulose have been deducted, f * Liebig and Kopp, " Jahresbuch," 1847-'48. f Gmelin, " Handbook," xv., 145. 144: THE GEOLOGICAL HISTORY OF PLANTS. Cellulose. Cork. Lycopodium. Carbon 44-44 65 • 73 64-80 Hydrogen . 6-17 8-33 8 '73 Nitrogen 1-50 6-18 Oxvsren . . 49-39 24-44 20*29 Total 100-00 100-00 100-00 "This difference is not less striking when we reduce the above centesimal analyses to correspond with the formula of cellulose, C^HgoOgo? and represent cork and Lycopodium as containing twenty-four equivalents of carbon. For comparison I give the composition of speci- mens of peat, brown coal, lignite, and bituminous coal :* Cellulose C24H2002o Cork C94H1a£r06Tzu Lycopodium Peat(Vaux) Brown coal (Schrother) Lignite (Yaux) Bituminous coal (Regnault) C24Hio03-i%- "It will be seen from this comparison that, in ulti- mate composition, cork and Lycopodium are nearer to lignite than to woody fibre, and may be converted into coal with far less loss of carbon and hydrogen than the latter. They in fact approach closer in composition to resins and fats than to wood, and, moreover, like those substances repel water, with which they are not easily moistened, and thus are able to resist those atmospheric influences which effect the decay of woody tissue." I would add to this only one further consideration. The nitrogen present in the Lycopodium spores, no doubt, belongs to the protoplasm contained in them, a substance which would soon perish by decay ; and subtracting this, the cell-walls of the spores and the walls of the spore- * " Canadian Naturalist," vi., 253. THE CARBONIFEROUS FLORA. 145 cases would be most suitable material for the production of bituminous coal. But this suitableness they share with the epidermal tissue of the scales of strobiles, and of the stems and leaves of ferns and lycopods, and, above all, with the thick, corky envelope of the stems of Sigillarim and similar trees, which, as I have elsewhere shown,* from its condition in the prostrate and erect trunks con- tained in the beds associated with coal, must have been highly carbonaceous and extremely enduring and im- permeable to water. In short, if, instead of " spore-cases," we read "epidermal tissues in general, including spore- cases," all that has been affirmed regarding the latter will be strictly and literally true, and in accordance with the chemical composition, microscopical characters, and mode of occurrence of coal. It will also be in accordance with the following statement, from my paper on the " Struct- ures in Coal," published in 1859 : "A single trunk of Sigillaria in an erect forest pre- sents an epitome of a coal-seam. Its roots represent the Stigmaria underclay ; its bark the compact coal ; its woody axis the mineral charcoal ; its fallen leaves (and fruits), with remains of herbaceous plants growing in its shade, mixed with a little earthy matter, the layers of coarse coal. The condition of the durable outer bark of erect trees concurs with the chemical theory of coal, in showing the especial suitableness of this kind of tissue for the production of the purer compact coals. It is also probable that the comparative impermeability of the bark to mineral infiltration is of importance in this respect, enabling this material to remain unaffected by causes which have filled those layers, consisting of herbaceous materials and decayed wood, with pyrites and other min- eral substances." * " Vegetable Structures in Coal," " Journal of Geological Society," xv., 626. " Conditions of Accumulation of Coal," ibid., xxii., 95. " Aca- dian Geology," 197, 464. 14:6 THE GEOLOGICAL HISTORY OF PLANTS. We need not go far in search of the uses of the coal vegetation, when we consider the fact that the greatest civilised nations are dependent on it for their fuel. With- out the coal of the Carboniferous period and the iron-ore which is one of the secondary consequences of coal ac- cumulation, just as bog-ores of iron occur in the subsoils of modern peats, it would have been impossible either to sustain great nations in comfort in the colder climates of the northern hemisphere or to carry on our arts and manufactures. The coal-formation yields to Great Brit- ian alone about one hundred and sixty million tons of coal annually, and the miners of the United States ex- tract mainly from the same formation nearly a hundred million tons, while the British colonies and dependen- cies produce about five million tons ; and it is a re- markable fact that it is to the English race that the greatest supply of this buried power and heat and light has been given. The great forests of the coal period, while purifying the atmosphere of its excess of unwholesome carbonic acid, were storing up the light and heat of Palaeozoic summers in a form in which they could be recovered in our human age, so that, independently of their uses to the animals which were their contemporaries, they are indis- pensable to the existence of civilised man. Nor can we hope soon to be able to dispense with the services of this accumulated store of fuel. The forests of to-day are altogether insufficient for the supply of our wants, and though we are beginning to apply water-power to the production of electricity, and though some promis- ing plans have been devised for the utilisation of the direct heat and light of the sun, we are stiH quite as de- pendent as any of our predecessors on what has been done for us in the Palaeozoic age. In the previous pages I have said little respecting the physical geography of the Carboniferous age ; but, as may THE CARBONIFEROUS FLORA. be inferred from the vegetation, this in the northern hemisphere presented a greater expanse of swampy flats little elevated above the sea than we find in any other pe- riod. As to the southern hemisphere, less is known, but the conditions of vegetation would seem to have been es- sentially the same. Taking the southern hemisphere as a whole, I have not seen any evidence of a Lower Devonian or Upper Si- lurian flora ; but in South Africa and Australia there are remains of Upper Devonian or Lower Carboniferous plants. These were succeeded by a remarkable Upper Carboniferous or Permian group, which spread itself all over India, Australia, and South Africa,* and contains some forms ( Vertebraria, PJiyllotheca, Glossopteris, &c. ) not found in rocks of similar age in the northern hemi- sphere, so that, if the age of these beds has been correctly determined, the southern hemisphere was in advance in relation to some genera of plants. This, however, is to be expected when we consider that the Triassic and Ju- rassic flora of the north contains or consists of intruders from more southern sites. These beds are succeeded in India by others holding cyeads, &c., of Upper Jurassic or Lower Cretaceous types (Eajmahal and Jabalpur groups). Blanf ord has shown that there is a very great similar- ity in this series all over the Australian and Indian re- gion, f Hartt and Darby have in like manner distin- guished Devonian and Carboniferous forms in Brazil akin to those of the northern hemisphere. Thus the southern hemisphere would seem to have kept pace with the north- ern, and according to Blanford there is evidence there of cold conditions in the Permian, separating the Palaeozoic * Wyley, "Journal Geol. Society," vol. xxiii., p. 172; Daintree, ibid., vol. xxviii. ; also Clarke and McCoy. f " Journal Geol. Society," vol. xxxi. 148 THE GEOLOGICAL HISTORY OF PLANTS. flora from that of the Mesozoic, in the same manner that Kamsay has supposed a similar period of cold to have done north of the equator. This would imply a very great change of climate, since we have evidence of the exten- sion of the Lower Carboniferous flora at least as far north as Spitzbergen. The upper coal-formation we cannot, however, trace nearly so far north ; so that a gradual refrigeration may have been going on before the Permian. Thus in both hemispheres there was a general similarity in the later Palaeozoic flora, and per- haps similar conditions leading to its extinction and to its replacement by that to be described in the next chapter. NOTES TO CHAPTER IV. I. CHARACTERS AND CLASSIFICATION OF PALEOZOIC PLANTS. IN the space available in this work it would be impossible to enter fully into the classification of Palaeozoic plants ; but it may be well to notice some important points for the guidance of those who may desire to collect specimens ; more especially as much uncer- tainty exists as to affinities and very contradictory statements are made. The statements below may be regarded as the results of actual observation and of the study of specimens in situ in the rocks, as well as in the cabinet and under the microscope. GYMNOSPERME^I. Family CONIFERS; Genus DADOXYLON, Endlicher; ARAUCARITES, Goeppert ; ARAUCARIOXYLON, Kraus. The trunks of this genus occur from the Middle Devonian to the Permian inclusive, as drift-logs calcified, silicified, or pyritised. The only foliage associated with them is of the type of Walchia and Araucarites — viz., slender branches with numerous small spiral acicu- lar leaves. Two of the coal-formation species, D. materiarum and another, had foliage of this type. That of the others is unknown. They are all distinct from the wood of Cordailes, for which see under that genus, THE CARBONIFEROUS FLORA. 149 The following are North American species : Trunks. Dadoxylon Ouangondianum, Dn . .M. Erian Report, 1871.* D. Halli, Dn " D. Newberryi, Dn " " D. Clarkii, Dn. (Cordaeoxylon f) . . . " Report, 1882. D. Acadianum, Dn Coal - formation Acadian Geol- and millstone ogy. grit. D. Materiarum, Dn Do. and Permo- " Carb. D. (Palaeoxylon) antiquius, Dn . . . L. Carboniferous. " D. annulatum, Dn Coal-formation. " Ormoxylon Erianum, Dn Erian Report, 1871. Foliage. Araucarites gracilis, Dn N. Coal-formation " and Permian. Walchia robusta, Dn Permian. 3 nr • * • j ? n ) Prince Ed- W. imoncatula. Dn " / T v. ward Island. All of the above can be vouched for as good species based upon microscopic examination of a very large number of trunks from dif- ferent parts of North America. The three Erian species of Dadoxylon and D. antiquius from the Lower Carboniferous have two or more rows of cells in the medullary rays. The last named has several rows, and is a true PalcBoxylon allied to D. Withami of Great Britain. D. materiarium is specially characteristic of the upper coal-formation and Permian, and to it must belong one or both of the species of foliage indicated above. D. Clarkii has very short, simple medullary rays of only a few cells superimposed, and has an inner cylinder of scalariform vessels, approaching in these points to Cordaites. Ormoxylon has a very peculiar articulated pith and simple medullary rays. Witham in 1833 described several Carboniferous species of pine- wood, under the generic name Pinites, separating under the name Pitus species which appeared to have the discs on the cell-walls * " Geological Survey of Canada : Fossil Plants of Brian and Upper Silurian Formations," by J. W. Dawson. 150 THE GEOLOGICAL HISTORY OF PLANTS. separate and in transverse lines. Witham's name was changed by Goeppert to Araucarites, to indicate the similarity of these woods to Araucaria, Pinites being reserved for trees more closely allied to the ordinary pines. Endlicher, restricting Araucarites to foliage, etc., of Araucaria-like trees, gave the name Dadoxylon to the wood ; and this, through Unger's " Genera and Species," has gained somewhat general acceptance. Endlicher also gave the name Pissadendron to the species which Witham had called Pi tus ; but Brongniart pro- posed the name Palceoxylon to include all the species with thick and complex medullary rays, whatever the arrangement of the discs. In Schimper's new work Kraus substitutes Araucarioxylon for End- licher's Dadoxylon, and includes under Pissadendron all the species placed by Brongniart in Palceoxylon. To understand all this confusion, it may be observed that the characters available in the determination of Palaeozoic coniferous wood are chiefly the form and arrangement of the wood-cells, the character of the bordered pores or discs of their walls, and the form and composition of the medullary rays. The character on which Witham separated his genus Pities from Pinites is, as I have ascertained by examination of slices of one of his original specimens kindly presented to me by Mr. Sanderson, of Edinburgh, dependent on state of preservation, the imperfectly pre- served discs or areolations of the walls of the fibre presenting the appearance of separate and distinct circles, while in other parts of the same specimens these discs are seen to be contiguous and to as- sume hexagonal forms, so that in this respect they do not really differ from the ordinary species of Dadoxylon. The true character for subdividing those species which are especially characteristic of the Carboniferous, is the composite structure of the medullary rays, which are thick and composed of several radial piles of cells placed side by side. This was the character employed by Brongniart in separating the genus Palceoxylon, though he might with convenience have retained Witham's name, merely transferring to the genus the species of Witham's Pinites which have complex medullary rays. The Brian rocks present the greatest variety of types, and Palceoxylon is especially characteristic of the Lower Carboniferous, while species of Dadoxylon with two rows of bordered pores and simple medullary rays are especially plentiful in the upper coal-formation and Permo- Carboniferous. The following table will clearly show the distinctive characters and relations of the genera in question, as held by the several authors above referred to : THE CARBONIFEROUS FLORA. 151 Wood of Palaeozoic Conifers. W»ody fibres. Medullary rays and pith. Generic names. Geological age. No discs. One or two series of cells. Aporoxylon, Unger. Devonian (Brian). Discs in one se- ries contigu- ous, or in sev- eral series spirally ar- ranged. Complex, or of two or more series of cells. Pith Sternbergian. (Pitus, Witham. 1 Palceoxylon, Brongni- -j art. Pissadendron, End- [ licher. Middle and Lower Car- boniferous and Devo- nian. Simple, or of one row of cells. Pith Sternbergian. f Araucarites, Goeppert I Dadoxylon, Endlicher. ] Araucarioxylon, t Schimper. Upper Carbo- niferous and Permian. Pith in spherical chambers. Ormoxylon* Dn. Devonian. Medullary sheath scalariform. Medullary rays frequent, simple, short. Dadoxylon (Cordaoxy- lon),t Dn. Devonian. * Type O, Erianum, Dn., " Report on Canadian Plants," 1871. t Type D. Clarkii, Dn., " Report on Canadian Plants," 1882. This may be wood of Cordaites, to which it approaches very closely. Family CORDAITES, Genus CORDAITES, Brongniart. Trunks marked by transverse scars of attachment of bases of leaves ; leaves broad, with many parallel veins, and attached by a broad base ; pistillate and staminate catkins of the nature of An- tholithes. Fruit winged or pulpy, of the kind known as Cardio- carpum. Stem with a Sternbergia pith, usually large, surrounded by a ring of pseudo-scalariform vessels, and with a cylinder usually narrow, of woody wedges, with bordered pores in one or more series, and with simple medullary rays. From specimens kindly presented to me by Prof. Renault, I have been able to ascertain that the stems of some at least of these >lants (Eucordaites) are distinct in structure from all the species of Dadoxylon, above mentioned, except D. Clarkii, of the Brian. They may be regarded as intermediate between those of conifers and cycads, which is indeed the probable position of these remarkable ilants. Grand Eury has divided the Cordaites into sub-genera, as fol- lows: 1. Eucordaites. — Leaves spatulate, obovate, elliptical, or Ian- 152 THE GEOLOGICAL HISTORY OF PLANTS. ceolate, sessile, entire, with rounded apices and of leathery con- sistency. The leaves are from twenty to ninety centimetres in length. The nerves are either equally or unequally strong. 2. Dory cor daites. — Leaves lanceolate, with sharp points ; nerves numerous, fine, and equal in strength. The leaves attain a length of from forty to fifty centimetres. 3, Poacordaites. — Leaves narrow, linear, entire, blunt at the point, with nerves nearly equally strong. The leaves are as much as forty centimetres in length. To these Renault and Zeiller have added a fourth group, Scuto- cordaites. Genus STERNBERGIA. This is merely a provisional genus intended to receive casts of the pith cylinders of various fossil trees. Their special peculiarity is that, as in the modern Cecropia peltata, and some species of Ficus, the pith consists of transverse dense partitions which, on the elonga- tion of the internodes, become separated from each other, so as to produce a chambered pith cavity, the cast of which shows transverse furrows. The young twigs of the modern Abies balsamifera pre- sent a similar structure on a minute scale. I have ascertained and described such pith-cylinders in large stems of Dadoxylon Ouangon- dianum, and D. materiarium. They occur also in the stems of Cor daites and probably of Sigillarice. 1 have discussed these curi- ous fossils at length in " Acadian Geology " and in the " Journal of the Geological Society of London," 1860. The following summary is from the last-mentioned paper : a: As Prof. Williamson and the writer have shown, many of the Sterribergia piths belong to coniferous trees of the genus Da- doxylon. b. A few specimens present multiporous tissue, of the type of Dictyoxylon, a plant of unknown affinities, and which, according to Williamson, has a Sternbergia pith. c. Other examples show a true scalariform tissue, comparable with that of Lepidodendron or Sigillaria, but of finer texture. Corda has shown that plants of the type of the former genus (his Loma- tophloios) had Sternbergia piths. Some plants of this group are by external characters loosely reckoned by botanists as ribless Sigillarice (Clathraria) ; but I believe that they are not related even ordinally to that genus. d. Many Carboniferous Sterribergice show structures identical with those described above as occurring in Cordaites, and also in some of the trees ordinarily reckoned as Sigillarice. THE CARBONIFEROUS FLORA. 153 Genus CARDIOCARPUM. I have found at least eight species of these fruits in the Erian and Carboniferous of New Brunswick and Nova Scotia, all of which are evidently fruits of gymnospermous trees. They agree in hav- ing a dense coaly nucleus of appreciable thickness, even in the flattened specimens, and surrounded by a thin and veinless wing or margin. They have thus precisely the appearance of samaras of many existing forest-trees, some of which they also resemble in the outline of the margin, except that the wings of samaras are usually veiny. The character of the nucleus, and the occasional appearance in it of marks possibly representing cotyledons or embryos, forbids the supposition that they are spore-cases. They must have been fruits of phaenogams. Whether they were winged fruits or seeds, or fruits with a pulpy envelope like those of cycads and some conifers, may be considered less certain. The not infrequent dis- tortion of the margin is an argument in favour of the latter view, though this may also be supposed to have occurred in samaras par- tially decayed. On the other hand, their being always apparently flattened in one plane, and the nucleus being seldom, if ever, found denuded of its margin, are arguments in favour of their having been winged nutlets or seeds. Until recently I had regarded the latter view as more probable, and so stated the matter in the second edi- tion of " Acadian Geology." I have, however, lately arrived at the conclusion that the Cardiocarpa of the type of C. cornutum were gymnospermous seeds, having two cotyledons embedded in an albu- men and covered with a strong membranous or woody tegmen sur- rounded by a fleshy outer coat, and that the notch at the apex rep- resents the foramen or micropyle of the ovule. The structure was indeed very similar to that of the seeds of Taxus and of Salisburia. With respect to some of the other species, however, especially those with very broad margins, it still appears likely that they were winged. The Cardiocarpa were borne in racemes or groups, and it seems certain that some of them at least are the seeds of Cordaites. The association of some of them and of those of the next genus with SigillaricB is so constant that I cannot doubt that some of them belong to plants of that genus, or possibly to taxine conifers. The great number of distinct species of these seeds, as compared with that of known trees which could have produced them, is very re- markable. Genus TRIGONOCARPUM. These are large angled nuts contained in a thick envelope, and showing internal structures resembling those of the seeds of modern 154 THE GEOLOGICAL HISTORY OF PLANTS. Taxinece. There are numerous species, as well as allied seeds re- ferred to the provisional genera RJiabdocarpus and Carpolithes. In Trigonocarpum Hookeri I have described the internal structure of one of those seeds, and many fine examples from the coal-field of St. Etienne, in France, have been described by Brongniart, so that their internal structure is very well known. Genus ANTHOLITHES. This is also a provisional genus, to include spikes of floral organs, some of which are known to have belonged to Cordaites, others probably to Sigillarice. OF UNCERTAIN AFFINITIES. Family SIGILLARIACE^:. Under this name palaeobotanists have included a great number of trees of the Carboniferous system, all of which are characterised by broad leaf -sears, with three vascular scars, and usually arranged in vertical rows, and by elongated three-nerved leaves, and roots of the stigmaria type — that is, with rounded pits, marking the attach- ment of rootlets spirally arranged. These trees, however, collected in the genus Sigillaria by arbitrary characters, which pass into those of the Lepidodendroid trees, have been involved in almost inex- tricable confusion, to disentangle which it will be necessary to con- sider : 1. The external characters of SigillaricB, and trees confounded with them. 2. Subdivision of Sigillarice by external markings. 3. The microscopic character of their stems. 4. What is known of their foliage and fruit. 1. Characters of Sigillaroid and Lepidodendroid Trunks. It may be premised that the modes of determination in fossil botany are necessarily different from those employed in recent bot- any. The palaeobotanist must have recourse to characters derived from the leaves, the scars left by their fall, and the internal struct- ures of the stem. These parts, held in little esteem by botanists in describing modern plants, and much neglected by them, must hold the first place in the regard of the fossil botanist, whereas the fructi- fication, seldom preserved,, and generally obscure, is of compara- tively little service. It is to be remarked also that in such general- ised plants as those of the Palaeozoic, remarkable rather for the de- velopment of the vegetative than of the reproductive organs, the former rise in importance as compared with their value in the study of modern plants.. THE CARBONIFEROUS FLORA. 155 In Sigffilarice, Lepidodendra, &e., the following surfaces of the stem may be presented to our inspection : 1. The outer surface of the epidermis without its leaves, but with the leaf -bases and leaf-scars more or less perfectly preserved. On this surface we may recognise: (1) Cellular swellings or pro- jections of the bark to which the leaves are attached. These may be called leaf-bases, and they are sometimes very prominent. (2) The actual mark of the attachment of the leaf situated in the most prominent part of the leaf -base. This is the leaf-scar. (3) In the leaf-scar when well preserved we can see one or more minute punct- ures or prominences which are the points where the vascular bundles passing to the leaf found exit. These are the vascular scars. When the leaves are attached, the leaf -scars and vascular scars cannot be seen, but the leaf -bases can be made out. Hence it is important, if possible, to secure specimens with and without the leaves. In flattened specimens the leaf -bases are often distorted by pressure and marked with furrows which must not be mistaken for true structural characters. The leaf-bases, which are in relief on the outer surface of the stem, of course appear as depressions on the mould in the containing rock, in which the markings often appear much more distinctly than on the plant itself. 2. The outer surface of the epidermis may have been removed or may be destroyed by the coarseness of the containing rock. In this case the leaf -bases are usually preserved on the surface of the outer or corky bark, but the leaf -scars and vascular scars have disappeared. This gives that condition of Lepidodendroid trees to which the name Knorria has been applied. When plants are in this state careful in- spection may sometimes discover traces of the leaf -scars on portions of the stem, and thus enable the Knorria to be connected with the species to which it belongs. 3. The outer or corky bark may be removed, exposing the sur- face of the inner or fibrous and cellular bark, which in the plants in question is usually of great thickness. In this case neither the leaf- bases nor the scars are seen, but punctures or little furrows or ridges appear where the vascular bundles entered the inner bark. Speci- mens in this state are usually said to be decorticated, though only the outer bark is removed. It is often difficult to determine plants in this condition, unless some portion of the stem can be found still retaining the bark ; but when care is taken in collecting, it will not infrequently be found that the true outer surface can be recovered from the containing rock, especially if a coaly layer representing the outer bark intervenes between this and the inner impression, Speci- 156 THE GEOLOGICAL HISTORY OF PLANTS. mens of this kind, taken alone, have been referred to the genera Knorria, Bothrodendron, and Halonia. 4. In some cases, though not frequently, the outer surface of the ligneous cylinder is preserved. It almost invariably presents a regularly striated or irregularly wrinkled appearance, depending upon the vertical woody wedges, or the positions of the medullary rays or vascular bundles. Specimens of this kind constituted some of the Endogenites of the older botanists, and the genus /Schizoden- dron of Eichwald appears to include some of them. Many of them have also been incorrectly referred to Calamites. 5. In some cases the cast of the medullary cylinder or pith may alone be preserved. This may be nearly smooch or slightly marked by vertical striae, but more usually presents a transverse striation, and not infrequently the transverse constrictions and septa charac- teristic of the genus Sternbergia. Loose Sterribergice* afford little means of connecting them with the species to which they belong, except by the microscopic examination of the shreds of the ligneous cylinder which often cling to them.* These facts being premised, the following general statements may be made respecting some of the more common Palaeozoic genera, referring, however, principally to the perfect markings as seen on the epidermis : Sigillaria. — Leaf -bases hexagonal or elongated, or confluent on a vertical ridge. Leaf-scars hexagonal or shield-shaped. Vascular scars three, the two lateral larger than the central. This last char- acter is constant, depending on the fact that the leaves of Sigillaria have two or more vascular bundles. All so-called Sigillarice, having the central vascular scar largest, or only one vascular bundle, should be rejected from this genus. In young branches of branching Sigil- larice the leaf -scars sometimes appear to be spiral, but in the older stems they form vertical rows ; interrupted, however, by transverse rows or bands of fruit-scars, each with a single large central vascular scar, and which have borne the organs of fructification. Arthro- caulis of McCoy is founded on this peculiarity. Syringodendron. — Differs from Sigillaria in the leaf -scars, which are circular and with a single vascular bundle. It is a matter of doubt whether these plants were of higher rank than Sigillaria tending toward the pines, or of lower rank tending toward Cyclo- stigma. Their leaf-bases form vertical ridges. Lepidodendron. — Leaf -bases rhombic, oval, or lanceolate, moder- * See my paper, " Journal of Geological Society," vol. xxvii. THE CARBONIFEROUS FLORA. 157 ately prominent. Leaf -scars rhombic or sometimes shield-shaped or heart-shaped, in the middle or upper part of the leaf -base. Vascular scars three— the middle one always largest and corresponding to the single nerve of the leaf ; the lateral ones sometimes obsolete. In older stems three modes of growth are observed. In some species the expansion of the bark obliterates the leaf -bases and causes the leaf-scars to appear separated by wide spaces of more or less wrinkled bark, which at length becomes longitudinally furrowed and simulates the ribbed character of Sigillaria. In others the leaf- bases grow in size as the trunk expands, so that even in large trunks they are contiguous though much larger than those on the branches. In others the outer bark, hardening at an early age, is incapable of either of the above changes, and merely becomes cleft into deep fur- rows in the old trunks. Lepidophloios. — Leaf -bases transverse and prominent — often very much so. Leaf -scars transversely rhombic or oval with three vascular scars, the central largest. Leaves very long and one- nerved. Large strobiles or branchlets borne in two ranks or spirally on the sides of the stem, and leaving large, round scars (cone-scars), often with radiating impressions of the basal row of scales. Species with long or drooping leaf -bases have been included in Lepidophloios and Lomatophloios. Species with short leaf -bases and cone-scars in two rows have been called Ulodendron, and some of them have been included in Sigillaria (sub-genus Clathraria). De- corticated stems are Botlirodendron and Halonia. Some of the species approach near to the last genus, especially to the Lepidoden- dra with rhombic leaf -bases like L. tetragonum. Cyclostigma. — Leaf -bases undeveloped. Leaf -scars circular or horseshoe-shaped, small, with a central vascular scar. In old trunks of Cyclostigma the leaf-scars become widely separated, and some- times appear in vertical rows. Young branches of Lepidodendron sometimes have the leaf -scars similar to those of Cyclostigma. Leptophleum. — Leaf -bases flat, rhombic; leaf-scars obsolete; vascular scar single, central. The last two genera are character- istically Devonian. In contradistinction from the trees above mentioned, the follow- ing general statements may be made respecting other groups : In conifers the leaf-bases are usually elongated vertically, often scaly in appearance, and with the leaf -scar terminal and round, oval, or rhombic, and with a single well-marked vascular scar. In Calamites, Calamodendron, and Asterophyllites the scars of the branchlets or leaves are circular or oval, with only a single vas- 158 THE GEOLOGICAL HISTORY OF PLANTS. cular scar, and situated in verticils at the top of well-marked nodes of the stem. In tree-ferns the leaf -bases are large and usually without a dis- tinct articulating surface. The vascular bundles are numerous. Protopteris has rounded leaf-scars with a large horseshoe-shaped bundle of vessels above and small bundles below. Caulopteris has large elliptic or oval leaf-scars with vascular scars disposed con- centrically. Palaeopteris,* of Geinitz, has the leaf -scars transversely oval and the vascular bundles confluent in a transverse band with an appendage or outlying bundle below, Stemmatopteris has leaf- scars similar to those of Caulopteris, but the vascular bundles united into a horseshoe-shaped band. 2. Subdivision of Sigillarice in Accordance wiih their Markings. The following groups may be defined in this way ; but, being based on one character only, they are of course in all probability far from natural : 1. Sigillaria, Brongniart. Type, Sigillaria reniformis, Bron- gniart, or S. Brounii, Dawson. — Stem with broad ribs, usually much broader than the usually oval or elliptical tripunctate areoles, but disappearing at base, owing to expansion of the stem. Leaves nar- row, long, three-nerved. 2. Rhytidolepis, Sternberg. Type, S. scutellata, Brongniart. — Ribs narrow, and often transversely striate. Areoles large, hexag- onal or shield-shaped, tripunctate. Leaves as in last group. Rings of rounded scars on the stems and branches mark attachment of fruit. It is possible that some of the smaller stems of this group may be branches of trees of group first. 3. Syringodendron, Sternberg. Type, S. organum, L. and H., S. oculata, Brongniart. — Stems ribbed; areoles small and round, and apparently with a single scar, or three closely approximated. These are rare, and liable to be confounded with decorticated ex- amples of other groups ; but I have some specimens which unques- tionably represent the external surface. 4. Fawlaria, Sternberg. Type, Sigillaria elegans of Brongni- art.— Leaf-bases hexagonal, or in young branches elliptical, in vertical rows, but without distinct ribs, except in old or decorticated stems. Fruit borne in verticils on the branches bearing transverse rows of rounded scars. Leaves somewhat broad and longitudinally striate. * This name, preoccupied by Geinitz, has been inadvertently misap- plied to the Devonian ferns of the genus Archceopteris. THE CARBONIFEROUS FLORA. 159 5. Leioderma, Goldenberg. Type, S. Sydnensis, Dawson. — Ribs obsolete. Cortical and ligneous surfaces striate. Vascular scars double, elongate longitudinally, and alike on cortical and inner surfaces. Areoles in rows and distinct ; stigmaria-roots striate, with small and distinct areoles. 6. Clathraria, Brongniart. Type, S. Menardi, Brongniart. — Areoles hexagonal, not in distinct rows, but having a spiral appear- ance. Some of the plants usually referred to this group are probably branches of Favularia. Others are evidently fragments of plants of the genus Lepidophloios. to lat r cru rea tud lar; 3. Internal Structures of Sigillaria- Stems. I long ago pointed out, on the evidence of the external markings and mode of growth, that the stems of Sigillarice must have been exogenous, and this conclusion has now been fully confirmed by the microscopic researches of Williamson, not only in the case of Sigil- larice, but of Lepidodendra and Calamodendra as well. Confining myself to my own observations, three types of Sigillarice are known to me by their internal structures, though I cannot certainly corre- late all of these with the external markings referred to above. 1. Diploxylon, in which the stem consists of a small internal is surrounded by a very thick inner bark and a dense outer cortex. A fine example from the South Joggins is thus described : * " The axis of the stem is about six centimetres in its greatest diameter, and consists of a central pith-cylinder and two concen- tric coats of scalariform tissue. The pith-cylinder is replaced by sandstone, and is about one centimetre in diameter. The inner cylinder of scalariform tissue is perfectly continuous, not radiated, and about one millimetre in thickness. Its vessels are somewhat crushed, but have been of large diameter. Its outer surface, which readily separates from that of the outer cylinder, is striated longi- Ldinally. The outer cylinder, which constitutes by much the •gest part of the whole, is also composed of scalariform tissue; but this is radially arranged, with the individual cells quadrangular in cross-section. The cross-bars are similar on all the sides and usually simple and straight, but sometimes branching or slightly reticulated. The wall intervening between the bars has extremely delicate longitudinal waving lines of ligneous lining, in the manner first described by Williamson as occurring in the scalariform tissue of certain Lepidodendra. A few small radiating spaces, partially * •• Journal of the Geological Society of London," November, 1877. 160 THE GEOLOGICAL HISTORY OF PLANTS. occupied with pyrites, obscurely represent the medullary rays, which must have been very feebly developed. The radiating bundles passing to the leaves run nearly horizontally ; but their structure is very imperfectly preserved. The stem being old and probably long deprived of its leaves, they may have been partially disorganised before it was fossilised. The outer surface of the axis is striated longitudinally, and in some places marked with impressions of tort- uous fibres, apparently those of the inner bark. In the cross-sec- tion, where weathered, it shows concentric rings; but under the microscope these appear rather as bands of compressed tissue than as proper lines of growth. They are about twenty in number. This tree has an erect, ribbed trunk, twelve feet in height and fifteen inches in diameter, swelling to about two feet at the base. 2. Favularia Type. — This has been well described by Brongniart and by Renault,* and differs from the above chiefly in the fact that the outer exogenous woody zone is composed of reticulated instead of scalariform tissue, and the inner zone is of the peculiar form which I have characterised as pseudo-scalariform. 3. Sigillaria Proper. — This I have illustrated in my paper in the " Journal of the Geological Society " for May, 1871, and it ap- pears to represent the highest and most perfect type of the larger ribbed Sigillaria. This structure I have described as follows, bas- ing my description on a very fine axis found in an erect stem, and on the fragments of the woody axis found in the bases of other erect stems : a. A dense cellular outer bark, usually in the state of compact coal — but when its structure is preserved, showing a tissue of thick- ened parenchymatous cells. b. A very thick inner bark, which has usually in great part perished, or been converted into coal, but which, in old trunks, con- tained a large quantity of prosenchymatous tissue, very tough and of great durability. This " bast-tissue " is comparable with that of the inner bark of modern conifers, and constitutes much of the min- eral charcoal of the coal-seams. c. An outer ligneous cylinder, composed of wood-cells, either with a single row of large bordered pores,f in the manner of pines * "Botanique Fossile," Paris, 1881. f These are the same with the wood-cells elsewhere called discigerous tissue, and to which I have applied the terms uniporous and multiporous. The markings on the walls are caused by an unlined portion of the cell- wall placed in a disk or depression, and this often surrounded by an THE CARBONIFEROUS FLORA. 161 and cycads, or with two, three, or four rows of such pores sometimes inscribed in hexagonal areoles in the manner of Dadoxylon. This woody cylinder is traversed by medullary rays, which are short, and composed of few rows of cells superimposed. It is also traversed by oblique radiating bundles of pseudo-scalariform tissue proceeding to the leaves. In some Sigillarice this outer cylinder was itself in part composed of pseudo-scalariform tissue, as in Brongniart's specimen of S. elegans ; and in others its place may have been taken by mul- tiporous tissue, as in a case above referred to ; but I have no reason to believe that either of these variations occurred in the typical ribbed species now in question. The woody fibres of the outer cylinder may be distinguished most readily from those of conifers, as already mentioned, by the thinness of their walls, and the more irregular distribution of the pores. Additional characters are fur- nished by the medullary rays and the radiating bundles of scalari- form tissue when these can be observed. d. An inner cylinder of pseudo-scalariform tissue. I have adopted the term pseudo-scalariform for this tissue, from the con- viction that it is not homologous with the scalariform ducts of ferns and other acrogens, but that it is merely a modification of the dis- cigerous wood-cells, with pores elongated transversely, and sometimes separated by thickened bars, corresponding to the hexagonal areo- lation of the ordinary wood-cells. A similar tissue exists in cycads, and is a substitute for the spiral vessels existing in ordinary ex- ogens. e. A large medulla, or pith, consisting of a hollow cylinder of cellular tissue, from which proceed numerous thin diaphragms to- wards the centre of the stem. These structures of the highest type of Sigillaria are on the one hand scarcely advanced beyond those of Calamopitus, as de- scribed by Williamson, and on the other approach to those of Cordaites, as seen in specimens presented to me by Renault. Finally, as to the fruit of SigillaricB, I have no new facts to offer. The strobiles or spikes associated with these trees have been variously described as gymnospermous (Renault) or cryptogamous (Goldenberg and Williamson). I have never seen them in place. Two considerations, however, have always weighed with me in refer- ence to this subject. One is the constant abundance of Trigonocarpa hexagonal rim of thickened wall ; but in all cases these structures are less pronounced than in Dadoxylon, and less regular in the walls of the same cell, as well as in different layers of the tissues of the axis. M 162 THE GEOLOGICAL HISTORY OF PLANTS. and Cardiocarpa in the soil of the Sigillaria forests, as I have studied this at the South Joggins. The other is that the rings of fruit-scars on the branches of Sigillaria are homologous with leaf-scars, not with branches, and therefore should have borne single carpels and not cones or spikes of inflorescence. These are merely suggestions, but I have no doubt they will be vindicated by future discoveries, which will, I have no doubt, show that in the family SigillariacecB we have really two families, one possibly of gymnospermous rank, or at least approaching to this, the other allied to the Lepidodendra. CRYPTOGAMIA. (Acrogenes.) Family LEPIDODENDRE^: ; Genus LEPIDODENDRON, Sternberg. These are arboreal Lycopods having linear one-nerved leaves, stems branching dichotomously, and with ovate or rhombic leaf -bases bearing rhombic leaf -scars, often very prominent. The fruit is in scaly strobiles, terminal or lateral, and there are usually, if not always, macrospores and microspores in each strobile. The young branches and stems have a central pith, a cylinder of scalariform tubes sending out ascending bundles to the leaves through a thick cellular and fibrous inner bark, and externally a dense cortex conflu- ent with or consisting of the leaf-bases. Older stems have a second or outer layer of scalariform fibres in wedges with medullary rays, and strengthening the stem by a true exogenous growth, much as in the Diploxylon type of Sigillaria. The development of this exogenous cylinder is different in amount and rate in different species.* This different development of the exogenous axis is accompanied with appropriate external appearances in the stems, and the changes which take place in their markings. These are of three kinds. In some species the areoles, at first close together, become, in the pro- cess of the expansion of the stem, separated by intervening spaces of bark in a perfectly regular manner ; so that in old stems, while widely separated, they still retain their arrangement, while in young stems they are quite close to one another. This is the case in L. corruga- tum. In other species the leaf -scars or bases increase in size in the old stems, still retaining their forms and their contiguity to each other. This is the case in L. undulatum, and generally in those Lepidodendra which have large leaf-bases. In these species the * See " Memoirs of Dr. Williamson," in "Philosophical Transactions," for ample details. THE CARBONIFEROUS FLORA. 163 continued vitality of the bark is shown by the occasional production of lateral strobiles on large branches, in the manner of the modern red pine of America. In other species the areoles neither increase in size nor become regularly separated by growth of the intervening bark ; but in old stems the bark splits into deep furrows, between which may be seen portions of bark still retaining the areoles in their original dimensions and arrangement. This is the case with L. Pictoense. This cracking of the bark no doubt occurs in very old trunks of the first two types, but not at all to the same extent. As a type of Lepidodendron, I may describe one of the oldest Carboniferous species characteristic of the Lower Carboniferous in America, and corresponding to L. Veltlieimianum of Europe. LEPIDODENDRON CORRUGATUM, Dawson. — (See Fig. 43, supra.) " Quarterly Journal of Geological Society," vol. xv. ; " Acadian Geol- ogy," page 451. Habit of Growth. — Somewhat slender, with long branches and long, slender leaves having a tendency to become horizontal or drooping. Markings of Stem. — Leaf -bases disposed in quincunx or spirally, elongate, ovate, acute at both ends, but more acute and slightly oblique at the lower end ; most prominent in the upper third, and with a slight vertical ridge. Leaf-scars small, rounded, and showing only a single punctiform vascular scar. The leaf-scar on the outer surface is in the upper third of the base ; but the obliquity of the vascular bundle causes it to be nearly central on the inside of the epidermis. In young succulent shoots the leaf-scars are contiguous and round as in Cyclostigma, without distinct leaf -bases. In this state it closely resembles L. Olivieri, Eichwald.* In the ordinary young branches the leaf-scars are contiguous, and closely resemble those of L. elegans, Brongt. (Fig. 43 C). As the branches increase in diameter the leaf-scars slightly enlarge and sometimes assume a verticillate appearance (Fig. 43 D). As they still further enlarge they become separated by gradually increasing spaces of bark, marked with many waving striae or wrinkles (Fig. 43 I, N). At the base of old stems the bark assumes a generally wrinkled appearance without distinct scars. Knorria or Decorticated States. — Of these there is a great variety, depending on the state of preservation, and the particular longi- tudinal ridges. Fig. 43 D shows a form in which the vascular bun- dles appear as cylindrical truncate projections. Other forms show | ales s * Lethaea Rossica, Plate Y, Figs. 12, 13. 164: THE GEOLOGICAL HISTORY OF PLANTS. the leaf-bases prominent, or have an appearance of longitudinal rib- bing produced by the expansion of the bark. Structure of Stem. — This is not perfectly preserved in any of my specimens, but one flattened specimen shows a central medulla with a narrow ring of scalariform vessels surrounding it, and consti- tuting the woody axis. The structure is thus similar to that of L. Harcourtii, which I regard as probably the same with the closely allied European species L. Veltheimianum. Leaves. — These are narrow, one-nerved, curving somewhat rap- idly outward (Figs. 43, B, C, D). They vary from one to two inches in length. Hoots. — I have not seen these actually attached, but they occur very abundantly in the underclays of some erect forests of these plants at Horton Bluff, and are of the character of Stigmarice, (Figs. 30, 31). In some of the underclays the long, flattened rootlets are ex- cessively abundant, and show the mark of a central vascular bundle. Fructification. — Cones terminal, short, with many small, acute imbricate scales. Spore-cases globular, smooth (Fig. 43 C). On the surface of some shales and sandstones at Horton there are innu- merable round spore-cases of this tree about the size of mustard-seed (Fig. 43 F). Large slabs are sometimes covered with these, and thin layers of shale are filled with flattened specimens. This is the characteristic species of the Lower Carboniferous coal- measures, occurring in great profusion at Horton Bluff and its vicinity, also at Sneid's Mills near Windsor, Noel and Five-Mile River, at Norton Creek and elsewhere in New Brunswick (Matthew's collection), and at Antigonish (Honey man's collection). I have received from the lowest Carboniferous beds of Ohio speci- mens of this species.* According to Eogers and Lesquereux similar forms occur in the Vespertine of Pennsylvania and in the Lower Carboniferous of Illinois. L. Veltheimianum of western Europe and L. glincanum of Russia are closely allied Lower Carboniferous A very different type is furnished by a new species from the middle coal-formation of Clifton, New Brunswick. LEPIDODENDBON CLIFTONENSE, Dawson. — Habit of Growth. — Robust, with thick branches, and leaves several inches in length. Terminal branches becoming slender, with shorter leaves. * "Journal of Geological Society," November, 1862, p. 313. f For comparisons of these see " Report on Plants of Lower Carbon- iferous of Canada," p. 21. THE CARBONIFEROUS FLORA. Markings of Stem. — Leaf-bases long oval, pointed at ends, en- larging with growth of stem. Leaf-scars central, rhombic, trans- verse. Leaves. — One-nerved, acutely pointed, from four inches in length on the larger branches to one inch or less on the branchlets. Fructification. — Cones large, cylindrical or long oval, with large scales of trigonal form, and not elongated but lying close to the sur- face. Borne on lateral, slender branchlets, with short leaves. Genus LEPIDOPHLOIOS, Sternberg ; ULODENDRON, L. and H. ; LOMATOPHLOIOS, Corda. Lepidophloios. — Under this generic name, established by Stern- berg, I include those lycopodiaceous trees of the coal-measures which have thick branches, transversely elongated leaf-scars, each with three vascular points and placed on elevated or scale-like pro- tuberances, long one-nerved leaves, and large lateral strobiles in ver- tical rows or spirally disposed. Their structure resembles that of Lepidodendron, consisting of a Sternbergia pith, a slender axis of large scalariform vessels, giving off from its surface bundles of smaller vessels to the leaves, a very thick cellular bark, and a thin dense outer bark, having some elongated cells or bast-tissue on its inner side. In these trees the exogenous outer cylinder is less de- veloped than in the Lepidodendra, and is sometimes wanting in stems or branches of some thickness. Regarding L. laricinum of Sternberg as the type of the genus, and taking in connection with this the species described by Golden- berg, and my own observations on numerous specimens found in Nova Scotia, 1 have no doubt that Lomatophloios crassicaulis of Corda, and other species of that genus described by Goldenberg, Ulodendron and BotJirodendron of Lindley, Lepidodendron ornatis- simum of Brongniart, and Halonia punctata of Geinitz, all belong to this genus, and differ from each other only in conditions of growth and preservation. Several of the species of Lepidostrofous and Lepidophyllum also belong to Lepidophloios. The species of Lepidophloios are readily distinguished from Lepidodendron by the form of the areoles, and by the round scars on the stem, which usually mark the insertion of the large strobiles, though in barren stems they may also have produced branches ; still, the fact of my finding the strobiles in situ in one instance, the ac- curate resemblance which the scars bear to those left by the cones of the red pine when borne on thick branches, and the actual impres- sions of the radiating scales in some specimens, leave no doubt in my 166 THE GEOLOGICAL HISTORY OF PLANTS. mind that they are usually the marks of cones ; and the great size of the cones of Lepidophloios accords with this conclusion. The speciee of Lepidopliloios are numerous, and individuals are quite abundant in the coal formation, especially toward its upper part. Their flattened bark is frequent in the coal-beds and their roofs, affording a thin layer of pure coal, which sometimes shows the peculiar laminated or scaly character of the bark when other charac- ters are almost entirely obliterated. The leaves also are nearly as abundant as those of Sigillaria in the coal-shales. They can readily be distinguished by their strong, angular mid-rib. The markings of Lepidophloios may easily be mistaken for those of the Clathraria type of Sigillaria. When the stem only is seen, they can be distinguished by the length of the leaf -bases in Lepi- dophloios, and by the dominant central vascular scar ; also by the one-nerved and ribbed leaves. Where the large, round marks of the cones are present, these are an infallible guide, never being present in Sigillaria. As the cones grew on the upper sides of the branches, the impression of the lower side often shows no cone-scars, or only two lateral rows, whereas on the upper side of the same branch they appear spirally arranged. I may describe as an example — Lepidophloios Acadianus, Dawson. Leaf-bases broadly rhom- bic, or in old stems regularly rhombic, prominent, ascending, termi- nated by very broad rhombic scars having a central point and two lateral obscure points. Outer bark laminated or scaly. Surface of inner bark with single points or depressions. Leaves long, linear, with a strong keel on one side, five inches or more in length. Cone- scars sparsely scattered on thick branches, either in two rows or spirally, both modes being sometimes seen on the same branch. Scalariform axis scarcely an inch in diameter in a stem five inches thick. Fruit, an ovate strobile with numerous acute scales covering small globular spore-cases. This species is closely allied to Uloden- dron majus and Lepidophloios laricinus, and presents numerous varieties of marking. Coal-formation, Nova Scotia. Family CALAMITE.E ; Genus CALAMITES, Suckow. The plants of this genus are unquestionably allied to the mod- ern Equisetacece, but excel these so much in variety of form and structure, and are so capricious in their states of preservation, and so liable to be mistaken for parts of plants generically different, that they have given rise to much controversy. The following considera- tions will enable us to arrive at some certainty. The genus Calamites was originally founded in the longitu- THE CARBONIFEROUS FLORA. 167 dinally ribbed and jointed stems so frequent in the coal-formation, and of which the common C. Suckovii is a typical form. The most perfect of these stems represent the outer surface immediately within the epidermis, in which case transverse lines or constrictions mark the nodes, and at the nodes there are rounded spots, some- times indicating radial processes of the pith, first described by Williamson ; in other cases, the attachment of branchlets, or in some specimens both. But some specimens show the outer surface of the epidermis, in which case the transverse nodal lines are usually in- visible, though the scars of branchlets may appear. In still other examples the whole of the outer tissues have perished, and the so- called Calamite is a cast of the interior of the stem, showing merely longitudinal ribbing and transverse nodal constrictions. In study- ing these plants in situ in the erect Calamite brakes of the coal- formation of Nova Scotia, one soon becomes familiar with these ap- pearances, but they are evidently unknown to the majority of palaeo- botanists, though described in detail more than twenty years ago. When the outer surface is preserved it is sometimes seen to bear verticils of long needle-like leaves (C. Cistii), or of branchlets with secondary whorls of similar leaves (C. Suckovii and (7. undulatus). No Calamite known to me bears broad one-nerved leaves like those of Asterophyllites and Annularia, though the larger stems of these plants have been described as Calamites, and the term Calamocladus has been used to include both groups. The base of the Calamite stem usually terminates in a blunt point, and may be attached to a rhizome, or several stems may bud out from each other in a group or stool. The roots are long and cylindrical, sometimes branching. The fruit consists of spikes of spore-cases, borne in whorls and sub- tended by linear floral leaves. To these strobiles the name Calamo- stachys has been given. Williamson has shown that the stem of Calamites consists of a central pith or cavity of large size surrounded by a cylinder con- sisting of alternate wedges of woody and cellular matter, with ver- tical canals at the inner sides of the wedges, and slender medullary rays. The thick cellular wedges intervening between the woody wedges he calls primary medullary rays ; the smaller medullary rays in the wedges, secondary medullary rays. There is thus a highly complex exogenous stem based on the same principle with the stem of a common Equisetum, but with much greater strength and complexity. Williamson has also shown that there are different sub-types of these stems. More especially he refers to the three following : 168 THE GEOLOGICAL HISTORY OF PLANTS. (a) Catamites proper, which has the woody wedges of scalari- form or barred tissue with thin medullary rays, and the thick pri- mary medullary rays are cellular. (b) Calamopitus has reticulated or multiporous tissue in the woody wedges with medullary rays, and the primary medullary wedges are composed of elongated cells. (c) Calamodendron has the woody wedges of barred tissue as in a, with medullary rays, but has the intervening medullary wedges of an elongated tissue approaching to woody fibre, and also with medullary rays. To these I would add a fourth type, which I have described, from the coal -formation of Nova Scotia.* (d) Eucalamodendron differs from Calamodendron in having true bordered pores or pseudo-scalariform slit-pored tissue, and cor- responds to the highest type of calamitean stem. I would also add that under a and b there are some species in which the woody cylinder is very thin in comparison to the size of the stem. In c and d the woody cylinder is thick and massive, and the stems are often large and nodose. As an example of an ordinary Calamite in which the external surface and foliage are preserved, I may quote the following from my report on the " Flora of the Lower Carboniferous and Millstone Grit," 1873 : C ALA MITES UNDULATUS, Brongniart.— This species is stated by Brongniart to be distinguished from the C. Suckovii, the character- istic Calamite of the middle coal-formation, by its undulated ribs marked with peculiar cellular reticulation. He suggests that it may be merely a variety of C. Suckovii, an opinion in which Schimper coincides ; but since 1 have received large additional collections from Mr. Elder, containing not only the stems and branches, but also the leaves and rhizomes, I am constrained to regard it as a distinct though closely allied species. The rhizomata are slender, being from one to two inches in diameter, and perfectly flattened. They are beautifully covered with a cellular reticulation on the thin bark, and show occasional round areoles marking the points of exit of the rootlets. I have long been familiar with irregular flattened stems thus reticulate, but have only recently been able to connect them with this species of Calamite. The main stems present a very thin carbonaceous bark reticu- lated like the rhizomes. They have flat, broad ribs separated by deep *" Quarterly Journal of the Geological Society," 1871. THE CARBONIFEROUS FLORA. and narrow furrows, and undulated in a remarkable manner even when the stems are flattened. This undulation is, however, perhaps an indication of vertical pressure while the plant was living, as it seems to have had an unusually thin and feeble cortical layer, and the un- dulations are apparently best developed in the lower part of the stem. At the nodes the ribs are often narrowed and gathered together, especially in the vicinity of the rounded radiating marks which ap- pear to indicate the points of insertion of the branches. At the top of each rib we have the usual rounded areole, probably marking the insertion of a primary branchlet. The branches have slender ribs and distant nodes, from which spring secondary branchlet s in whorls, these bearing in turn small whorls of acicular leaflets much curved upward, and which are ap- parently round in cross section and delicately striate. They are much shorter than the leaves of Catamites Suckovii, and are less dense and less curved than those of C. nodosus, which I believe to be the two most closely allied species. Lesquereux notices this species as characteristic of the lower part of the Carboniferous in Arkansas. It will be observed that I regard the striated and ribbed stems not as internal axes, but as representing the outer surface of the plants. This was certainly the case with the present species and with C. Suckovii and C. nodosus. Other species, and especially those which belonged to Calamodendron, no doubt had a smooth or irregularly wrinkled external bark ; but this gives no good ground for the man- ner in which some writers on this subject confound Calamites with Calamodendra, and both with Asterophyllites and Sphenophyllum. With this no one who has studied these plants, rooted in their native soils, and with their appendages still attached, can for a moment sympathise. One of the earliest geological studies of the writer was a bed of these erect Calamites, which he showed to Sir C. Lyell in 1844, and described in the " Proceedings of the Geological Society " in 1851, illustrating the habit of growth as actually seen well ex- posed in a sandstone cliff. Abundant opportunities of verifying the conclusions formed at that time have since occurred, the results of which have been summed up in the figures in Acadian Geology, which, though they have been treated by some botanists as merely restorations, are in reality representations of facts actually observed. On these subjects, without entering into details, and referring for these to the elaborate discussions of Schimper, Williamson, and McNab, and to my paper on the subject, " Journal of the Geological Society," vol. xxvii, p. 54, I may remark : 170 THE GEOLOGICAL HISTORY OF PLANTS. 1. That the aerial stems of ordinary Calamites had a thin cortical layer, with Iacuna3 and fibrous bundles and -multiporous vessels. — the whole not differing much from the structure of modern Equiseta. 2. Certain arborescent forms, perhaps allied to the true Calamites, as well as possibly the old underground stems of ordinary species,* assumed a thick-walled character in which the tissues resembled the wedges of an exogen, and abundance of pseudo-scalarif orm fibres were developed, while the ribbing of the external surface became obsolete or was replaced by a mere irregular wrinkling. 3. Sufficient discrimination has not been exercised in separating casts of the internal cavities of Calamites and Calamodendron from those representing other surfaces and the proper external surface. 4. There is no excuse for attributing to Calamites the foliage of Annularia, Asterophyllites, and Sphenophyllum, since these leaves have not been found attached to true Calamite stems, and since the structure of the stems of Asterophyllites as described by Williamson, and that of Sphenophyllum as described by the writer, f are essen- tially different from those of Calamites. 5L As the species above described indicates, good external char- acters can be found for establishing species of this genus, and these species are of value as marks of geological age. O-enus ARCHSOCALAMITES, Sternberg. This genus has been established to include certain Calamites of the Devonian and Lower Carboniferous, in which the furrows on the stem do not alternate at the nodes or joints, and the leaves in one species at least bifurcate. C. radiatus, Brongniart, is the typical species. In North America it occurs in the Erian, probably as low as the Middle Erian. In Europe it has so far been recognised in the Lower Carboniferous only. I have, however, seen stems from alleged Devonian beds in Devonshire which may have belonged to this species. Family ASTEROPHYLLITES ; Genus ASTEROPHYLLITES, Brongniart. Stems ribbed and jointed like the Calamites, but with inflated nodes and a stout internal woody cylinder, which has been described by Williamson. From the joints proceeded whorls of leaves or of branchlets, bearing leaves which differed from those of Calamites in their having a distinct middle rib or vein. The fructification con- * Williamson, " Transactions of the Royal Society.'71 MeNab, in " Proceedings of the Edinburgh Botanical Society." f "Journal of the Geological Society," 1866. THE CARBONIFEROUS FLORA. 171 sisted of long slender cones or spikes, having whorls of scales bear- ing the spore-cases. Some authors speak of Asterophyllites as only branches and leaves of Catamites; but though at first sight the re- semblance is great, a close inspection shows that the leaves of As- terophyllites have a true midrib, which is wanting in Calamites. Genus ANNULARIA. — It is perhaps questionable whether these plants should be separated from Asterophyllites. The distinction is that they produce branches in pairs, and that their whorls of leaves are one-sided and usually broader than those of Asterophyllites, and united into a ring at their insertion on the stem. One little species, A. sphenophylloides, is very widely distributed. PINNULARIA — a provisional genus — includes slender roots or stems branching in a pinnate manner, and somewhat irregularly. They are very abundant in the coal shales, and were probably not inde- pendent plants, but aquatic roots belonging to some of the plants last mentioned. The probability of this is farther increased by their resemblance in miniature to the roots of Calamites. They are always flattened, but seem originally to have been round, with a slender thread-like axis of scalariform vessels, enclosed in a soft, smooth, cellular bark. Family RHIZOCARPE.E ; Genus SPHENOPHYLLUM. Leaves in whorls, wedge-shaped, with forking veins. Fructi- fication on spikes, with verticils of sporocarps. These plants are by some regarded as allied to the Calamitece and Asterophyllitec&, by others as a high grade of Rhizocarps of the type of Marsilia. The stem had a star-shaped central bundle of scalariform or reticulato- scalarifonn vessels. Genus SPORANGITES. (Sporocarpon, Williamson.) Under this name we may provisionally include those rounded spherical bodies found in the coal and its accompanying beds, and also in the Erian, which may be regarded as Macrospores or Sporo- carps of Protosalvinia, or other Rhizocarpean plants akin to those de- scribed above in Chapter III, which see for description. Genus PROTOSALVINIA. — Under this we include sporocarps allied to those of Salvinia, as described in Chapter III. Family FILICES. Under this head I shall merely refer to a few groups of special interest, and to the provisional arrangement adopted for the fronds of ferns when destitute of fructification. 172 THE GEOLOGICAL HISTORY OF PLANTS. The external appearances of trunks of tree-ferns have been al- ready referred to. With respect to tree ferns, the oldest known examples are those from the Middle Devonian of New York and Ohio, which I have de- scribed in the "Journal of the Geological Society," 1871 and 1881. As these are of some interest, I have reproduced their descriptions in a note appended to Chapter III, which see. The other forms most frequently occurring in the Carboniferous are Caulopteris, Paloeopteris, and MegapJiyton* Stems showing merely masses of aerial roots are known by the name Psaronius. With reference to the classification of Paleozoic ferns, this has hitherto been quite arbitrary, being based on mere form and vena- tion of fronds, but much advance has recently been made in the knowledge of their fructification, warranting a more definite at- tempt at classification. The following are provisional genera usu- ally adopted : 1. Cyclopteris, Brongniart. — Leaflets more or less rounded or wedge-shaped, without midrib, the nerves spreading from the point of attachment. This group includes a great variety of fronds evi- dently of different genera, were their fructification known ; and some of them probably portions of fronds, the other parts of which may be in the next genus. 2. Neuropteris, Brongniart. — Fronds pinnate, and with the leaflets narrowed at the base ; midrib often not distinct, and disap- pearing toward the apex. Nervures equal, and rising at an acute angle. Ferns of this type are among the most abundant in the coal- formation. 3. Odontopteris, Brongniart. — In these the frond is pinnate, and the leaflets are attached by their whole base, with the nerves either proceeding wholly from the base, or in part from an indistinct mid- rib, which soon divides into nervures. 4. Dictyopteris, Gutbier. — This is a beautiful style of fern, with leaflets resembling those of Neuropteris, but the veins arranged in a network of oval spaces. Only a few species are known in the coal- formation. 5. Lonchopteris, Brongniart. — Ferns with netted veins like the above, but with a distinct midrib, and the leaflets attached by the whole base. Of this, also, we can boast but few species. 6. Sphenopteris, Brongniart. — These are elegant ferns, very nu- merous in species, and most difficult to discriminate. Their most * See my " Acadian Geology," also below. THE CARBONIFEROUS FLORA. 173 distinctive characters are leaflets narrowed at the base, often lobed, and with nervures dividing in a pinnate manner from the base. 7. Phyllopteris, Brongniart. — These are pinnate, with long lan- ceolate pinnules, having a strong and well-defined midrib, and nerves proceeding from it very obliquely, and dividing as they pro- ceed toward the margin. The ferns of this genus are for the most part found in formations more recent than the Carboniferous ; but I have referred to it, with some doubt, one of our species. 8. Alethopteris, Brongniart. — This genus includes many of the most common coal-formation ferns, especially the ubiquitous A. lon- chitica, which seems to have been the common brake of the coal- formation, corresponding to Pteris aquilina in modern Europe and America. These are brake-like ferns, pinnate, with leaflets often long and narrow, decurrent on the petiole, adherent by their whole base, and united at base to each other. The midrib is continuous to the point, and the nervures run off from it nearly at right angles. In some of these ferns the fructification is known to have been mar- ginal, as in Pteris. 9. Pecopteris, Brongniart. — This genus is intermediate between the last and Neuropteris. The leaflets are attached by the whole base, but not usually attached to each other ; the midrib, though slender, attains to the summit ; the nervures are given off less ob- liquely than in Neuropteris. This genus includes a large number of our most common fossil ferns. 10. Beinertia, Goeppert. — A genus established by Goeppert for a curious Pecopteris-like fern, with flexuous branching oblique ner- vures becoming parallel to the edge of the frond. 11. Hymenophyllites, Goeppert. — These are ferns similar to Sphenopteris, but divided at the margin into one-nerved lobes, in the manner of the modern genus Hymenophyllum. 12. Palceopteris, Geinitz. — This is a genus formed to include cer- tain trunks of tree-ferns with oval transverse scars of leaves. 13. Caulopteris, Lindley and Hutton. — Is another genus of fossil trunks of tree-ferns, but with elongate scars of leaves. 14. Psaronius, Gotta. — Includes other trunks of tree-ferns with alternate scars or thick scales, and ordinarily with many aerial roots grouped round them, as in some modern tree-ferns. 15. Megaphyton, Artis. — Includes trunks of tree-ferns which bore their fronds, which were of great size, in two rows, one on each side of the stem. These were very peculiar trees, less like modern ferns than any of the others. My reasons for regarding them as ferns are stated in the following extract from a recent paper : 174 THE GEOLOGICAL HISTORY OF PLANTS. " Their thick stems, marked with linear scars and having two rows of large depressed areoles on the sides, suggest no affinities to any known plants. They are usually ranked with Lepidodendron and Ulodendron, but sometimes, and probably with greater reason, are regarded as allied to tree-ferns. At the Joggins a very fine species (M. magnificum) has been found, and at Sydney a smaller species (M. humile) ; but both are rare and not well preserved. If the large scars bore cones and the smaller bore leaves, then, as Bron- gniart remarks, the plant would much resemble Lepidophloios, in which the cone-scars are thus sometimes distichous. But the scars are not round and marked with radiating scales as in LepidopTiloios ; they are renif orm or oval, and resemble those of tree-ferns, for which reason they may be regarded as more probably leaf-scars ; and in that case the smaller linear scars would indicate r amenta, or small aerial roots. Further, the plant described by Corda as Zippea dis- ticlia is evidently a Megaphyton, and the structure of that species is plainly that of a tree-fern of somewhat peculiar type. On these grounds I incline to the opinion of Geinitz that these curious trees were allied to ferns, and bore two rows of large fronds, the trunks being covered with coarse hairs or small aerial roots. At one time I was disposed to suspect that they may have crept along the ground ; but a specimen from Sydney shows the leaf-stalks proceeding from the stem at an angle so acute that the stem must, I think, have been erect. From the appearance of the scars it is probable that only a pair of fronds were borne at one time at the top of the stem ; and, if these were broad and spreading, it would be a very graceful plant. To what extent plants of this type contributed to the accumulation of coal I have no means of ascertaining, their tissues in the state of coal not being distinguishable from those of ferns and Lyco- podiacecv." 16. For descriptions of the genus Archceopteris and other Erian ferns, see Chapter III. CHAPTER V. THE FLORA OF THE EAKLY MESOZOIC. GREAT physical changes occurred at the close of the Carboniferous age. The thick beds of sediment that had been accumulating in long lines along the primitive con- tinents had weighed down the earth's crust. Slow sub- sidence had been proceeding from this cause in the coal- formation period, and at its close vast wrinklings occurred, only surpassed by those of the old Laurentian time. Hence in the Appalachian region of America we haye the Carboniferous beds thrown into abrupt folds, their shales converted into hard slates, their sandstones into quartzite and their coals into anthracite, and all this before the deposition of the Triassic Eed Sandstones which consti- tute the earliest deposit of the great succeeding Mesozoic period. In like manner the coal-fields of Wales and elsewhere in western Europe have suffered similar treat- ment, and apparently at the same time. This folding is, however, on both sides of the Atlantic limited to a band on the margin of the continents, and to certain interior lines of pressure, while in the middle, as in Ohio and Illinois in America, and in the great interior plains of Europe, the coal-beds are undisturbed and un- altered. In connection with this we have an entire change in the physical character of the deposits, a great elevation of the borders of the continents, and probably a considerable deepening of the seas, leading to the estab- lishment of general geographical conditions which still remain, though they have been temporarily modified by subsequent subsidences and re-elevations. 176 THE GEOLOGICAL HISTORY OF PLANTS. Along with this a great change was in progress in vegetable and animal life. The flora and fauna of the Palaeozoic gradually die out in the Permian and are re- placed in the succeeding Trias by those of the Mesozoic time. Throughout the Permian, however, the remains of the coal-formation flora continue to exist, and some forms, as the Calamites, even seem to gain in importance, as do also certain types of coniferous trees. The Triassic, as well as the Permian, was marked by physical disturb- ances, more especially by great volcanic eruptions dis- charging vast beds and dykes of lava and layers of volcanic ash and agglomerate. This was the case more especially along the margins of the Atlantic, and probably also on those of the Pacific. The volcanic sheets and dykes as- sociated with the Eed Sandstones of Nova Scotia, Con- necticut, and New Jersey are evidences of this. At the close of the Permian and beginning of the Trias, in the midst of this transition time of physical disturbance, appear the great reptilian forms character- istic of the age of reptiles, and the earliest precursors of the mammals, and at this time the old Carboniferous forms of plants finally pass away, to be replaced by a flora scarcely more advanced, though different, and con- sisting of pines, cycads, and ferns, with gigantic equiseta, which are the successors of the genus Calamites, a genus which still survives in the early Trias. Of these groups the conifers, the ferns, and the equiseta are already famil- iar to us, and, in so far as they are concerned, a botanist who had studied the flora of the Carboniferous would have found himself at home in the succeeding period. The cycads are a new introduction. The whole, how- ever, come within the limits of the cryptogams and the gymnosperms, so that here we have no advance.* * Fontaine's " Early Mesozoic Flora of Virginia " gives a very good summary of this flora in America. THE FLORA OF THE EARLY MESOZOIC. 177 As we ascend, however, in the Mesozoic, we find new and higher types. Even within the Jurassic epoch, the next in succession to the Trias, there are clear indica- tions of the presence of the endogens, in species allied to FIG. 64. — Jurassic vegetation. Cycads and pines. (After Saporta.) the screw-pines and grasses ; and the palms appear a little later, while a few exogenous trees have left their remains in the Lower Cretaceous, and in the Middle and Upper Cretaceous these higher plants come in abund- antly and in generic forms still extant, so that the dawn of the modern flora belongs to the Middle and Upper X 178 THE GEOLOGICAL HISTORY OF PLANTS. Cretaceous. It will thus be convenient to confine our- selves in this chapter to the flora of the earlier Mesozoic. Passing over for the present the cryptogamous plants already familiar in older deposits, we may notice the new features of gymnospermous and phsenogamous life, as they present themselves in this earlier part of the great rep- tilian age, and as they extended themselves with remark- able uniformity in this period over all parts of the world. For it is a remarkable fact that, if we place together in our collections fossil plants of this period from Australia, India, China, Siberia, Europe, or even from Greenland, we find wonderfully little difference in their aspect. This uniformity we have already seen prevailed in the Palaeo- zoic flora ; and it is perhaps equally marked in that of the Mesozoic. Still we must bear in mind that some of the plants of these periods, as the ferns and pines, for example, are still world -wide in their distribution ; but this does not apply to oth- ers, more especially the cycads (Fig. 65). The cycads consti- tute a singular and ex- ceptional type in the modern world, and are limited at present to the warmer cli- mates, though very generally distributed FIG. tt.—Podozamites lanceolate, Sternb. jn these, as they OC- L. Cretaceous. J cur in Africa, India, Japan, Australia, Mexico, Florida, and the West Indies. In the Mesozoic age, however, they were world-wide in their distribution, and are found as far north as Green- land, though most of the species found in the Cretaceous THE FLORA OF THE EARLY MESOZOIC. of that country are of small size, and may have been of low growth, so that they may have been protected by the snows of winter. The cycads have usually simple or un- branching stems, pinnate leaves borne in a crown at top, and fruits which, though somewhat various in structure and arrangement, are all of the simpler form of gymno- spermous type. The stems are exogenous in structure, but with slender wood and thick bark, and barred tissue, or properly as tissue intermediate between this and the disc-bearing fibres of the pines. Though the cycads have a considerable range of or- ganisation and of fructification, and though some points in reference to the latter might assign them a higher place, on the whole they seem to occupy a lower position than the conifers or the cordaiteae of the Carboniferous. In the Carboniferous some of the fern-like leaves assigned to the genus Noeggerathia have been shown by Stur and Weiss to have been gymnosperms, probably allied to cycads, of which they may be regarded at least as pre- cursors. Thus the cycadean type does not really consti- tute an advance in grade of organisation in the Mesozoic, any further than that, in the period now in question, it becomes much more developed in number and variety of forms. But the conifers would seem to have had preced- ence of it for a long time in the Palaeozoic, and it replaces in the Mesozoic the Cordaites, which in many respects excelled it in complexity. The greater part of the cycads of the Mesozoic age would seem to have had short stems and to have consti- tuted the undergrowth of woods in which conifers at- tained to greater height. An interesting case of this is the celebrated dirt-bed of the quarries of the Isle of Port- land, long ago described by Dean Buckland. In this fossil soil trunks of pines, which must have attained to great height, are interspersed with the short, thick stems of cycads, of the genus named Cycadoidea by Buckland, 180 THE GEOLOGICAL HISTORY OF PLANTS. and which from their appearance are called "fossil birds' nests " by the quarrymen. Some, however, must have attained a considerable height so as to resemble palms. The cycads, with their simple, thick trunks, usually marked with rhombic scars, and bearing broad spreading crowns of large, elegantly formed pinnate leaves, must have formed a prominent part of the vegetation of the northern hemisphere during the whole of the Mesozoic period. A botanist, had there been such a person at the time, would have found this to be the case everywhere from the equator to Spitzbergen, and probably in the southern hemisphere as well, and this throughout all the long periods from the Early Trias to the Middle Cre- taceous. In a paper published in the " Linnsean Trans- actions" for 1868, Dr. Carruthers enumerates twenty spe- cies of British Mesozoic cycads, and the number might now be considerably increased. The pines present some features of interest. We have already seen their connection with the broad-leaved Cor- daites, and in the Permian there are some additional types of broad-leaved coniferae. In the Mesozoic we have great numbers of beautiful trees, with those elegant fan-shaped leaves characteristic of but one living species, the Salisburia, or gingko-tree of China. It is curious that this tree, though now limited to eastern Asia, will grow, though it rarely fruits, in most parts of tem- perate Europe, and in America as far north as Montreal, and that in the Mesozoic period it occupied all these re- gions, and even Siberia and Greenland, and with many and diversified species (Fig. 66). FIG. W.—Salisburia (Gingko) Sibirica, Ileer. L. Creta- ceous, Siberia and North America. THE FLORA OF THE EARLY MESOZOIC. 181 tory Society : mi ., i- i FIG. 67. — Sequoia Smithiana. Heer. The name itself deserves g; cretaceous. consideration. It is that of an Indian of the Cherokee tribe, Sequo Yah, who in- vented an alphabet without any aid from the outside world of culture, and taught it to his tribe by writing it upon * In the Eocene of Australia. 182 THE GEOLOGICAL HISTORY OF PLANTS. leaves. This came into general use among the Chero- kees, before the white man had any knowledge of it ; and afterward, in 1828, a periodical was published in this character by the missionaries. Sequo Yah was banished from his home in Alabama, with the rest of his tribe, and settled in New Mexico, where he died in 1843. When Endlicher was preparing his synopsis of the conifers, in 1846, and had established a number of new genera, Dr. Jacbon Tschudi, then living with Endlicher, brought before his notice this remarkable man, and asked him to dedicate this red-wooded tree to the memory of a literary genius so conspicuous among the red men of America. Endlicher consented to do so, and only en- deavored to make the name pronounceable by changing two of its letters. Endlicher founded the genus on the redwood of the Americans, Taxodium sempervirens of Lamb ; and named the species Sequoia sempervirens. These trees form large forests in California, which extend along the coast as far as Oregon. Trees are there met with of 300 feet in height and 20 feet in diameter. The seeds have been brought to Europe a number of years ago, and we already see in upper Italy and around the Lake of Geneva, and in Eng- land, high trees ; but, on the other hand, they have not proved successful around Zurich. In 1852, a second species of Sequoia was discovered in California, which, under the name of big tree, soon at- tained a considerable celebrity. Lindley described it, in 1853, as Wetting tonia gigantea; and, in the following year, Decaisne and Torrey proved that it belonged to Sequoia, and that it accordingly should be called Sequoia gigantea. While the Sequoia sempervirens, in spite of the de- structiveness of the American lumbermen, still forms large forests along the coast, the Sequoia gigantea is con- fined to the isolated clumps which are met with inland at THE FLORA OF THE EARLY MESOZOIC. 183 a height of 5,000 to 7,000 feet above sea-level, and are much sought after by tourists as one of the wonders of the country. Keports came to Europe concerning the largest of them which were quite fabulous, but we have received accurate accounts of them from Prof. Whitney. The tallest tree measured by him has a height of 325 feet, and in the case of one of the trees the number of the rings of growth indicated an age of about 1,300 years. It had a girth of 50 to 60 feet. We know only two living species of Sequoia, both of which are confined to California. The one (8. semper- virens) is clothed with erect leaves, arranged in two rows, very much like our yew-tree, and bears small, round cones ; the other (S. gigantea) has smaller leaves, set closely against the branches, giving the tree more the ap- pearance of the cypress. The cones are egg-shaped, and much larger. These two types are therefore sharply de- fined. Both of these trees have an interesting history. If we go back into the Tertiary, this same genus meets us with a long array of species. Two of these species correspond to those living at present : the 8. Langsdorfii to the 8. sempervirenSy and the 8. Couttsicz to the S. gigantea.* But, while the living species are confined to California, in the Tertiary they are spread over several quarters of the globe. Let us first consider the Sequoia Langsdorfii. This was first discovered in the lignite of Wetterau, and was described as Taxites langsdorfii. Heer found it in the upper Ehone district, and there lay beside the twigs the remains of a cone, which showed that the Taxites Langsdorfii of Brongniart belonged to the Californian genus Sequoia established by Endlicher. He afterward * S. Couttsice has leaves like S. gigantea, and cones like those of S. sempervirens. 184 THE GEOLOGICAL HISTORY OF PLANTS. found much better preserved cones, together with seeds, along with the plants of east Greenland, which fully confirmed the determination. At Atanekerdluk in Greenland (about 70° north latitude) this tree is very common. The leaves, and also the flowers and numerous cones, leave no doubt that it stands very near to the modern redwood. It differs from it, however, in hav- ing a much larger number of scales in the cone. The tree is also found in Spitzbergen at nearly 78° north latitude, where Nordenskiold has collected, at Cape Lyell, wonder- fully preserved branches. From this high latitude the species can be followed down through the whole of Eu- rope as far as the middle of Italy (at Senegaglia, Gulf of Spezia). In Asia, also, we can follow it to the steppes of Kirghisen, to Possiet, and to the coast of the Sea of Japan, and across to Alaska and Sitka. It is recognized by Mr. Starkie Gardner as one of the species found in the Eocene of Mull in the Hebrides.* It is thus known in Europe, Asia, and America, from 43° to 78° north latitude, while its most nearly related living species, per- haps even descended from it, is now confined to Cali- fornia. With this S. Langsdorfii, three other Tertiary species are nearly related (S. brevifolia, Hr., S. disticha, Hr., and S. NordensJcioldi, Hr.). These have been met with in Greenland and Spitzbergen, and one of them has lately been found in the United States. Three other species, in addition to these, have been described by Lesquereux, which appear to belong to the group of the S. Langsdorfii, viz., 8. longifolia, Lesq., S. angustifolia, and 8. acu- minata, Lesq. Several species also occur in the Creta- ceous and Eocene of Canada. These species thus answer to the living Sequoia sem- pervirens ; but we can also point to Tertiary represen- * It is Fareitcs Campbelli of Forbes. THE FLORA OF TEE EARLY MESOZOIC. 185 tatives of the 8. gigantea. Their leases are stiff and sharp-pointed, are thinly set round the branches, and lie forward in the same way : the egg-shaped cones are in some cases similar. There are, however, in the early Tertiary six species, which fill up the gap between 8. sempervirens and 8. gigantea. They are the 8. Couttsice, 8. affinis, Lesq., 8. imbricata, Hr., 8. sibirica, Hr., 8. Heerii, Lesq., and 8. biformis, Lesq. Of these, 8. Couttsice, Hr., is the most common and most important species. It has short leaves, lying along the branch, like 8. gigantea, and small, round cones, like 8. Langsdorfii and sempervirens. Bovey Tracey in Devonshire has afforded splendid speci- mens of cones, seeds, and twigs, which have been described in the " Philosophical Transactions." More lately, Count Saporta has described specimens of cones and twigs from Armissan. Specimens of this species have also been found in the older Tertiary of Greenland, so that it must have had a wide range. It is very like to the American 8. affinis, Lesq. In the Tertiary there have been already found fourteen well-marked species, which thus include representatives of the two living types, 8. sempervirens and 8. gigantea. We can follow this genus still further back. If we go back to the Cretaceous age, we find ten species, of which five occur in the Urgon of the Lower Cretaceous, two in the Middle, and three in the Upper Cretaceous. Among these, the Lower Cretaceous exhibits the two types of the *.quoia sempervirens and S. gigantea. To the former ;he 8. Smithiana answers, and to the latter, the Reichen- bachii, Gein. The 8. Smithiana stands indeed uncom- monly near the 8. Langsdorfii, both in the appearance of the leaves on the twigs and in the shape of the cones. These are, however, smaller, and the leaves do not become narrower toward the base. The 8. pectina, Hr., of the Upper Cretaceous, has its leaves arranged in two rows, and 186 THE GEOLOGICAL HISTORY OF PLANTS. presents a similar appearance. The S. ReicJienbacJiii is a type more distinct from those now living and those in the Tertiary. It has indeed stiff, pointed leaves, lying forward, but they are arcuate, and the cones are smaller. This tree has been known for a long time, and it serves in the Cretaceous as a guiding star, which we can follow from the Urgonian of the Lower Cretaceous up to the Cenomanian. It is known in France, Belgium, Bohemia, Saxony, Greenland, and Spitzbergen (also in Canada and the United States). It has been placed in another genus — Geinitzia — but we can recognise, by the help of the cones, that it belongs to Sequoia. Below this, there is found in Greenland a nearly re- lated species, the 8. amMgua, Hr., of which the leaves are shorter and broader, and the cones round and some- what smaller. The connecting link between 8. Smithiana and Reicli- eribachii is formed by 8. subulata, Hr., and 8. rigida, Hr., and three species (8. gracilis, Hr., 8. fastigiata and 8. Gardneriana, Carr.), with leaves lying closely along the branch, and which come very near to the Tertiary species 8. Couttsice. We have therefore in the Cretaceous quite an array of species, which fill up the gap between the 8. semper vir ens and giganfea, and show us that the genus Sequoia had already attained a great development in the Cretaceous. This was still greater in the Tertiary, in which it also reached its maximum of geographical dis- tribution. Into the present world the two extremes of the genus have alone continued ; the numerous species forming its main body have fallen out in the Tertiary. If we look still further back, we find in the Jura a great number of conifers, and, among them, we meet in the genus Pinus with a type which is highly developed, and which still survives ; but for Sequoia we have till now looked in vain, so that for the present we can not place the rise of the genus lower than the Urgonian of the Cre- THE FLORA OF THE EARLY MESOZOIC. 187 DUS, however remarkable we may think it that in that period it should have developed into so many species ; and it is still more surprising that two species already make their appearance which approach so near to the living Sequoia sempervirens and S. gigantea. Altogether, we have become acquainted, up to the present time, with twenty-six species of Sequoia. Four- teen of these species are found in the Arctic zone, and have been described and figured in the "Fossil Flora of the Arctic Kegions." Sequoia has been recognised by Ettingshausen even in Australia, but there in the Eocene. This is, perhaps, the most remarkable record in the whole history of vegetation. The Sequoias are the giants of the conifers, the grandest representatives of the family, and the fact that, after spreading over the whole northern hemisphere and attaining to more than twenty specific forms, their decaying remnant should now be confined to one limited region in western America and to two species constitutes a sad memento of departed greatness.* The small remnant of S. gigantea still, however, towers above all competitors, as eminently the "big trees" ; but, had they and the allied species failed to escape the Tertiary continental submergences and the disasters of the glacial period, this grand genus would have been to us an extinct type. In like manner the survival of the single gingko of eastern Asia alone enables us to understand that great series of taxine trees with fern-like leaves of which it is the sole representative. Besides these peculiar and now rare forms, we have in the Mesozoic many others related closely to existing yews, cypresses, pines, and spruces, so that the conifers were probably in greater abundance and variety than they are at this day. * The writer has shown that much of the material of the great lignite beds of the Canadian Northwest consists of wood of Sequoia of both the modern types. 188 THE GEOLOGICAL HISTORY OF PLANTS. In this period, also, we find the earliest representatives of the endogenous plants. It is true that some plants found in the coal-formation have been doubtfully re- ferred to these, but the earliest certain examples would seem to be some bamboo-like and screw-pine-like plants occurring in the Jurassic rocks. Some of these are, it is true, doubtful forms, but of others there seems to be no question. The modern Pandanus or screw-pine of the tropical regions, which is not a pine, however, but a humble relation of the palms, is a stiffly branching tree, of a candelabra-like form, and with tufts of long leaves on its branches, and nuts or great hard berries for fruit, borne sometimes in large masses, and so protected as to admit of their drifting uninjured on the sea. The stems are supported by masses of aerial roots like those which strengthen the stems of tree-ferns. These structures and habits of growth fit the Pandanus for its especial habitat on the shores of tropical islands, to which its masses of nuts are drifted by the winds and currents, and on whose shores it can establish itself by the aid of its aerial roots. Some plants referred to the cycads have proved veri- table botanical puzzles. One of these, the Williamsonia gigas of the English oolite, originally discovered by my friend Dr. Williamson, and named by him Zamia gigas, a very tall and beautiful species, found in rocks of this age in various parts of Europe, has been claimed by Saporta for the Endogensj as a plant allied to Pandanus. Some other botanists have supposed the flowers and fruits to be parasites on other plants, like the modern Rafflesia of Sumatra, but it is possible that after all it may prove to have been an aberrant cycad. The tree-palms are not found earlier than the Middle Cretaceous, where we shall notice them in the next chap- ter. In like manner, though a few Angiosperms occur in rocks believed to be Lower or Lower Middle Cretaceous in Greenland and the northwest territory of Canada, and THE FLORA OF THE EARLY MESOZOIC. 189 I in Virginia, these are merely precursors of those of the Upper Cretaceous, and are not sufficient to redeem the earlier Cretaceous from being a period of pines and cycads. On the whole, this early Mesozoic flora, so far as known to us, has a monotonous and mean appearance. It no doubt formed vast forests of tall pines, perhaps re- sembling the giant Sequoias of California ; but they must for the most part have been dark and dismal woods, probably tenanted by few forms of life, for the great rep- tiles of this age must have preferred the open and sunny coasts, and many of them dwelt in the waters. Still we must not be too sure of this. The berries and nuts of the numerous yews and cycads were capable of affording much food. We know that in this age there were many great herbivorous reptiles, like Iguanodon and Hadrosau- rus, some of them fitted by their structure to feed upon the leaves and fruits of trees. There were also several kinds of small herbivorous mammals, and much insect life, and it is likely that few of the inhabitants of the Mesozoic woods have been preserved as fossils. We may yet have much to learn of the inhabitants of these forests of ferns, cycads, and pines. We must not forget in this connection that in the present day there are large islands, like New Zealand, destitute of mammalia, and having a flora comparable with that of the Mesozoic in the northern hemisphere, though more varied. We have also the re- markable example of Australia, with a much richer flora than that of the early Mesozoic, yet inhabited only by non-placental mammals, like those of the Mesozoic. The principal legacy that the Mesozoic woods have handed down to our time is in some beds of coal, locally important, but of far less extent than those of the Car- boniferous period. Still, in America, the Eichmond coal- field in Virginia is of this age, and so are the anthracite beds of the Queen Charlotte Islands, on the west coast of Canada, and the coal of Brora in Sutherlandshire. Valu- 190 THE GEOLOGICAL HISTORY OF PLANTS. able beds of coal, probably of this age, also exist in China, India, and South Africa ; and jet, which is so extensively used for ornament, is principally derived from the car- bonised remains of the old Mesozoic pines. In the next chapter we have to study a revolution in vegetable life most striking and unique, in the advent of the forest-trees of strictly modern types. NOTE TO CHAPTER V. I APPEND to this chapter a table showing the plant-bearing series of the Cretaceous and Laramie of North America, from a paper in " Trans. R. S. C.," 1885, which see for further details : (!N DESCENDING ORDER.) Periods. Floras and subfloras. References. Transition Eocene to Cretaceous. Upper Laramie or Porcu- pine Hill. Fort Union group, U. S. territory. f Platanus beds of Souris River and 1 Calgary. Report of Geol. Sur- 1 vey of Canada for 1879, and Me- [ moir of 1885. Upper Cretaceous Middle Laramie or Willow Creek beds. Lower Laramie or St. Mary River. Fox Hill series Cjmna and Pistia beds of bad lands of 49th parallel, Red Deer River, &c., with lignites. Report 49th Parallel and Memoir of 1885. ine. (Danian and Fort Pierre series Marine. Senonian). Belly River ( Sequoia and Brasenia beds of S. •< Saskatchewan, Belly River, &c., Coal measures of Nanai- mo, B.C., probably here. ( with lignites. Memoir of 1885. j Memoir of 1883. Many dicotyle- | dons, palms, &c. Middle Creta- ceous (Tu- ronian and Cenomani- an). Dunvegan series of Peace River. Dakota group, U. S. Amboy clays, U. S. Mill Creek beds of Rocky Mountains. '.Memoir of 1883. Many dicotyle- 1 dons, cycads, &c. ( Dicotyledonous leaves, similar to -{ Dakota group of the U. S. Me- ( moir of 1885. Lower Creta- ceous (Ne- ocomian, &c.). Suskwa River beds and Queen Charlotte Island coal series. Intermedi- ate beds of Rocky Mountains. Potomac series of Virginia. Kootanie series of Rocky Mountains. 1 Cycads, pines, a few dicotyledons. \- Report Geol. Survey. Memoir of 1885. j Cycads, pines, and ferns. Memoir | of 1885. CHAPTER VI. IE REIGN OF ANGIOSPERMS IN THE LATER CRETACEOUS AND KAINOZOIC. IT is a remarkable fact in geological chronology that the culmination of the vegetable kingdom antedates that of the animal. The placental mammals, the highest group of the animal kingdom, are not known till the be- ginning of the Eocene Tertiary. The dicotyledonous Angiosperms, which correspond to them in the vegetable king- dom, occur far earlier — in the beginning of the Upper Cre- taceous or close of the Lower Cretaceous. The reign of cy- cads and pines holds through- out the Lower Cretaceous, but at the close of that age there is a sudden incoming of the high- er plants, and a proportionate decrease, more especially of the cycads. I have already referred to the angiospermous wood supposed to be Devonian, but I fear to rest any conclusion on this iso- lated fact. Beyond this, the earliest plants of this class have been Cretaceous. FIG. 68. — Populusprimceva, Heer. Cretaceous, of Greenland. One of the oldest known Anglo- sperms. indications of found in the Lower Many years ago Heer described and fig- ured the leaves of a poplar (Populus primceva) from 192 THE GEOLOGICAL HISTORY OF PLANTS. the supposed Lower Cretaceous of Kome, in Greenland (Fig. 68). Two species, a Sterculia and a Laurus or Salix, occur among fossils described by me in the upper part of the Kootanie series of the Eocky Mountains, and Fontaine has recently found in the Potomac group of Virginia — believed to be of Neocomian age — several angio- spermous species (Sassafras, Menispermites, Sapindus, Aralia, Populus, &c. ) mixed with a rich flora of cycads and pines. These are the early forerunners of the mod- ern angiospermous flora ; but so far as known they do not occur below the Cretaceous, and in its lower portions only very rarely. When, however, we ascend into the Upper Cretaceous, whether of Europe or America, there is a remarkable incoming of the higher plants, under generic forms similar to those now existing. This is, in truth, the advent of the modern flora of the temperate regions of the earth. A very interesting tabular view of its early distribution is given by Ward, in the "American Journal of Science " for 1884, of which the following is a synopsis, with slight emendations. I may add that the new discoveries made since 1884 would probably tend to increase the proportionate number of dicotyledons in the newer groups. DICOTYLEDONOUS TREES IN THE CRETACEOUS. Upper Senonian 179 species. (Fox Hill group of America.) Lower Senonian 81 species. Upper white chalk of Europe; Fort Pierre group of America; coal-measures of Na- naimo ? Turonian 20 species. Lower white chalk ; New Jersey marls ; Belly R. group. Cenomanian 357 species. (Chalk-marl, greensand, and Gault, Niobrara and Dakota groups of America) ; Dun- vegan group of Canada ; Amboy clays of New Jersey. LATER CRETACEOUS AND KAINOZOIC. 193 Neocomian 20 species.* (Lower greensand and Speeton clay, Wealden and Hastings sands, Kootanie and Queen Charlotte groups of Canada.) Thus we have a great and sudden inswarming of the higher plants of modern types at the close of the Lower Cretaceous. In relation to this, Saporta, one of the most enthusiastic of evolutionists, is struck by this phenome- non of the sudden appearance of so many forms, and some of them the most highly differentiated of dicotyle- donous plants. The early stages of their evolution may, he thinks, have been obscure and as yet unobserved, or they may have taken place in some separate region, or mother country as yet undiscovered, or they may have been produced by a rapid and unusual multiplication of flower-haunting insects ! Or it is even conceivable that the apparently sudden elevation of plants may have been due to causes still unknown. This last seems, indeed, the only certain inference in the case, since, as Saporta proceeds to say in conclusion : "Whatever hypothesis one may prefer, the fact of the rapid multiplication of dicotyledons, and of their simultaneous appearance in a great number of places in the northern hemisphere at the beginning of the Cenomanian epoch, cannot be dis- puted, "f The leaves described by Heer, from the Middle Cre- taceous of Greenland, are those of a poplar (P. primcevd). Those which I have described from a corresponding hori- zon in the Eocky Mountains are a Sterculites (S. vetus- tula), probably allied to the mallows, and an elongated leaf, Laurophyllum (L. crassinerve) (Fig. 69), which may, however, have belonged to a willow rather than a laurel. These are certainly older than the Dakota group * Including an estimate of Fontaine's imdescribed species. f "Monde des Plantes," p. 197. 0 194 THE GEOLOGICAL HISTORY OF PLANTS. of the United States and the corresponding formations in Canada. On the eastern side of the American conti- nent, in Virginia, the Potomac series is supposed to be of Lower Cretaceous age, and here Fontaine, as already stated, has found an abundant flora of cy- cads, conifers, and ferns, with a few angiosperm- ous leaves, which have not yet been described. In the Canadian Kocky Mountains, a few hun- dreds of feet above the beds holding the before- mentioned species, are the shales of the Mill Creek series, rich in many spe- cies of dicotyledonous leaves, and corresponding in age with the Dakota group, whose fossils have been so well described, first by Heer and Capellini, and afterward by Lesquereux. We may take this Dakota group and the quader-sandstone of Ger- many as types of the plant-bearing Cenomanian, and may notice the forms occurring in them. In the first place, we recognise here the successors of our old friends, the ferns and the pines, the latter repre- sented by such genera as Taxites, Sequoia, Glyptostrobus, Gingko, and even Pinus itself. We also have a few cycads, but not so dominant as in the previous ages. The fan-palms are well represented, both in America and in the corresponding series in Europe, especially by the genus Sabal, which is the characteristic American type of fan-palm, and there is one genus which Saporta regards as intermediate between the fan-palms and the pinnately leaved species. There are also many fragments of stems FIG. W.—StercaUa and Laurophyllum or Salix, the oldest Angiosperms known in the Cretaceous of Canada. LATER CRETACEOUS AND KAINOZOIC. 195 and leaves of carices and grasses, so that these plants, now so important to the nourishment of man and his com- panion animals, were already represented. FIG. TO. — Vegetation of Later Cretaceous. Exogens and palms. (Alter Saporta. ) But the great feature of the time was its dicotyle- donous forests, and I have only to enumerate the genera supposed to be represented in order to show the richness of the time in plants of this type. It may be necessary to explain here that the generic names used are mostly sed on leaves, and consequently cannot be held as being 196 THE GEOLOGICAL HISTORY OF PLANTS. absolutely certain, since we know that at present one genus may have considerable variety in its leaves, and, on the other hand, that plants of different genera may be very much alike in their foliage. There is, however, un- doubtedly a likeness in plan or type of structure in leaves of closely allied plants, and, therefore, if judiciously studied, they can be determined with at least approxi- mate certainty.* More especially we can attain to much certainty when the fruits as well as the leaves are found, and when we can obtain specimens of the wood, showing its structure. Such corroboration is not wanting, though unfortunately the leaves of trees are generally found drifted away from the other organs once connected with them. In my own experience, however, I have often found determinations of the leaves of trees confirmed by the discovery of their fruits or of the structure of their stems. Thus, in the rich cretaceous plant-beds of the Dunvegan series we have beech-nuts associated in the same beds with leaves referred to Fagus. In the Laramie beds I determined many years ago nuts of the Trapa or water- chest nut, and subsequently Lesquereux found, in beds in the United States, leaves which he referred to the same genus. Later, I found in collections made on the Eed Deer Eiver of Canada my fruits and Lesquereux's leaves on the same slab. The presence of trees of the genera Carya and Juglans in the same formation was in- ferred from their leaves, and specimens have since been obtained of silicified wood, with the microscopic structure of the modern butternut. Still we are willing to admit that determinations from leaves alone are liable to doubt. In the matter of names of fossil leaves, I sympathise very strongly with Dr. Nathorst, of Stockholm, in his * Great allowance has to be made for the variability of leaves of the same species. The modern hazel (C. rostrata) is a case in point. Its leaves, from different parts of the same plant, are so dissimilar in form and size that they might readily be regarded as of different species. LATER CRETACEOUS AND KAIXOZOIC. 197 objection to the use of modern generic names for mere leaves, and would be quite content to adopt some non- committal termination, as that of "pkyttum" or "ites" suggested by him. I feel, however, that almost as much is taken for granted if a plant is called Corylophyllum or Corylites, as if called Corylus. In either case a judgment is expressed as to its affinities, which if wrong under the one term is wrong under the other ; and after so much has been done by so many eminent botanists, it seems inex- pedient to change the whole nomenclature for so small and questionable an advantage. I wish it, however, to be distinctly understood that plants catalogued on the evidence of leaves alone are for the most part referred to certain genera on grounds necessarily imperfect, and their names are therefore subject to correction, as new facts may be obtained. The more noteworthy modern genera included in the Dakota flora, as catalogued by Lesquereux, are the follow- ing : Liquidambar, the sweet-gum, is represented both in America and Europe, the leaves resembling those of the modern species, but with entire edges, which seems to be a common peculiarity of Cretaceous foliage.* Populus (poplar), as already stated, appears very early in Green- land, and continues with increasing number of species throughout the Cretaceous and Tertiary. Salix (willow) appears only a little later and continues. Of the family Cupuliferce we have Fagus (beech), Quercus (oak), and Castanea (chestnut), which appear together in the Dakota group and its equivalents. Fruits of some of the species are known, and also wood showing structure. Betula * With reference to this, something may be learned from the leaves of modern trees. In these, young shoots have leaves often less toothed and serrated than those of the adult tree. A remarkable instance is the Populus grandidentatm of America, the young shoots of which have en- tire leaves, quite unlike except in venation those of the parent tree, and having an aspect very similar to that of the Cretaceous poplars. 198 THE GEOLOGICAL HISTORY OF PLANTS. (birch) is represented by a few species, and specimens of its peculiar bark are also common. Alnus (alder) ap- pears in one species at least. The genus Platanus (Fige 71), that of the plane-trees, represented at present by one FIG. 71. — Platanus nobilis, Newberry, variety basilobata. Laramie. Much reduced. European and one American species, has several species in the Cretaceous, though the plane-trees seem to culmi- nate in the early part of the succeeding Eocene, where there are several species with immense leaves. The large LATER CRETACEOUS AND KAINOZOIC. 199 leaves, known as Credneria, found in the Cenomanian of Europe, and those called Protophyllum (Fig. 72) in America, appear to be nearer to the plane-trees than to any others, though representing an extinct type. The laurels are represented in this age, and the American genus Sassafras, which has now only one species, has not one merely but several species in the Cretaceous. Dios- pyros, the persimmon-tree, was also a Cretaceous genus. FIG. 72. — Protopliyllum boreale, Dawson, reduced. Upper Cretaceous, Canada. The single species of the beautiful Liriodendron, or tulip- tree, is a remnant of a genus which had several Cretaceous species (Figs. 74, 75). The magnolias, still well repre- sented in the American flora, were equally plentiful in the Cretaceous (Fig. 73). The walnut family were well repre- sented by species of Juglans (butternut) and Carya, or hickory. In all, no less than forty-eight genera are pres- ent belonging to at least twenty-five families, running through the whole range of the dicotyledonous exogens. This is a remarkable result, indicating a sudden profusion 200 THE GEOLOGICAL HISTORY OF PLANTS. of forms of these plants of a very striking character. It is further to be observed that some of the genera have many species in the Cre- taceous and dwindle to- ward the modern. In others the reverse is the case — they have expand- ed in modern times. In a number there seems to have been little change. Dr. dewberry has given, in the " Bulletin of the Torrey Botanical Club," an interesting resume of the history of the beautiful Lirio- dendron, or tulip-tree, which may be taken as an example of a genus which has gone down in importance in the course of its geological history. "The genus Lino- dendron, as all botan- ists know, is represent- ed in the present flora by a single species, ( the tulip-tree,' which is con- fined to eastern Amer- ica, but grows over all the area lying between the Lakes and the Gulf, the Mississippi and the FIG. ^.-Magnolia magnified, Dawson, Atlantic. It is a mag- reduced. Upper Cretaceous, Canada. nificent tree, On the LATER CRETACEOUS AND KAINOZOIC. 201 whole, the finest in our forests. Its cylindrical trunk, sometimes ten feet in diameter, carries it beyond all its associates in size, while the beauty of its glossy, lyre- shaped leaves and tulip- like flowers is only sur- passed by the flowers and foliage of its first cous- in, Magnolia grandiflora. That a plant so splendid FIG. 74. — Liriodendron Meekii, FIG. 75. — Liriodendron primcevum, Heer. (After Lesquereux.) Newberry. (After Newberry.) should stand quite alone in the vegetation of the present day excited the wonder of the earlier botanists, but the sassafras, the sweet-gum, and the great Sequoias of the far West afford similar examples of isolation, and the latter are still more striking illustrations of solitary grandeur." (Figs. 74 and 75.) " Three species of Liriodendron are indicated by leaves found in the Amboy clays — Middle Cretaceous — of New Jersey, and others have been obtained from the Dakota group in the West, and from the Upper Cretaceous strata of Greenland. Though differing considerably among themselves in size and form, all these have the deep sinus of the upper extremity so characteristic of the genus, and the nervation is also essentially the same. Hence, we must conclude that the genus Liriodendron, now rep- 202 THE GEOLOGICAL HISTORY OF PLANTS. resented by a single species, was in the Cretaceous age much more largely developed, having many species, and those scattered throughout many lands. In the Tertiary age the genus continued to exist, but the species seem to have been reduced to one, which is hardly to be distin- guished from that now living. In many parts of Europe leaves of the tulip-tree have been found, and it extended as far south as Italy. Its presence there was first made known by linger, in his 'Synopsis/ page 232, and in his ' Genera et Species,5 page 443, where he describes it under the name of Liriodendron procaccinii. The genus has also been noticed in Europe by Massalongo, Heer, and Ettingshausen, and three species have been distinguished. All these are, however, so much like the living species that they should, probably be united with it. We here have a striking illustration of the wide distribution of a species which has retained its characters both of fruit and leaf quite unchanged through long migrations and an enormous lapse of time. " In Europe the tulip-tree, like many of its American associates, seems to have been destroyed by the cold of the Ice period, the Mediterranean cutting off its retreat, but in America it migrated southward over the southern extension of the continent and returned northward again with the amelioration of the climate." Leaves of Liriodendron have been recognised in the Cretaceous of Greenland, though it is now a tree of the warm temperate region, and Lesquereux describes several species from the Dakota group. But the genus has not yet been recognised in the Laramie or in the Upper Cretaceous of British Columbia. In the paper above quoted, Newberry describes three new species from the Amboy clays, one of which he considers iden- tical with a Greenland form referred by Heer to L. MeeJci of the Dakota group. Thus, if all Lesque- reux's species are to be accepted, the genus begins LATER CRETACEOUS AND KAINOZOIC. 203 in the Middle Cretaceous with at least nine American species. In New Jersey the Amboy clays are referred to the same age with the Dakota beds of the West. In these Dr. Newberry has found a rich flora, including many angiosperms. The following is condensed from a pre- liminary notice in the "Bulletin of the Torrey Botanical Club " : * " The flora of the Amboy clays is closely related to that of the Dakota group — most of the genera and some of the species being identical — so that we may conclude they were nearly contemporaneous, though the absence in New Jersey of the Fort Benton and Mobrara groups of the upper Missouri and the apparent synchronism of the New Jersey marls and the Pierre group indicate that the Dakota is a little the older. "At least one-third of the species of the Amboy clays seem to be identical with leaves found in the Upper Cre- taceous clays of Greenland and Aachen (Aix la Chapelle), which not only indicates a chronological parallelism, but shows a remarkable and unexpected similarity in the vege- tation of these widely separated countries in the middle and last half of the Cretaceous age. The botanical char- acter of the flora of the Amboy clays will be seen from the following brief synopsis : " Algce. — A small and delicate form, allied to Chon- drites. " Ferns. — Twelve species, generally similar and in part identical with those described by Heer from the Cretaceous beds of Greenland, and referred to the genera Dicksonia, Gleiclienia, and Aspidium. " Cycads. — Two species, probably identical with the forms from Greenland described by Heer under the names of Podozamites marginatus and P. tenuinervis. * March, 1886. 204 THE GEOLOGICAL HISTORY OF PLANTS. " Conifers. — Fourteen species, belonging to the genera Moriconia, BrachypJiyllum, Cunninghamites, Pinus, Se- quoia, and others referred by Heer to Juniperus, Libo- cedrus, Frenelopsis, Thuya, and Dammara. Of these, the most abundant and most interesting are Moriconia cyclotoxon — the most beautiful of conifers — and Cunning- hamites elegans, both of which occur in the Cretaceous clays of Aachen, Prussia, and Patoot, Greenland. The Bracliypliyllum was a large and strong species, with im- bricated cones, eight inches in length. " The angiosperms form about seventy species, which include three of Magnolia, four of Liriodendron, three or four of Salix, three of Celastrophyllum (of which one is identical with a Greenland species), one Celastrus (also found in Greenland), four or five Ar alias, two Sassafras, one Cinnamomum, one Hedera ; with leaves that are ap- parently identical with those described by Heer as belong- ing to Andromeda, Cissites, Cornus, Dewalquea, Dios- pyros, Eucalyptus, Ficus, Ilex, Juglans, Laurus, Meni- spermites, Myrica, Myrsine, Prunus, Rhamnus, and others not yet determined. " Some of the Aralias had palmately-lobed leaves, nearly a foot in diameter, and two of the tulip-trees (Liriodendron) had leaves quite as large as those of the living species. One of these had deeply lobed leaves, like those of the white oak. Of the other, the leaves resem- bled those of the recent tulip-tree, but were larger. Both had the peculiar emargination and the nervation of Lirio- dendron. 66 Among the most interesting plants of the collection are fine species of BauJiinia and Hymenma. Of these, the first is represented by a large number of leaves, some of which are six or seven inches in diameter. They are deeply bilobed, and have the peculiar and characteristic form and nervation of the leaves of this genus. Baulii- nia is a leguminous genus allied to Cercis, and now in- LATER CRETACEOUS AND KAINOZOIC. 205 habits tropical and warm temperate climates in both hemispheres. Only one species occurs in the United States, BauMnia lunarioides, Gray, found by Dr. Bige- low on the Eio Grande. " Hymencea is another of the leguminosae, and inhab- its tropical America. A species of this genus has been found in the Upper Cretaceous of France, but quite dif- ferent from the one before us, in which the leaves are much larger, and the leaflets are united in a common petiole, which is winged ; this is a modification not found in the living species, and one which brings it nearer to BauMnia. " But the most surprising discovery yet made is that of a number of quite large helianthoid flowers, which I have called Palceantlms. These are three to four inches in diameter, and exhibit a scaly involucre, enclosing what much resembles a fleshy receptacle with achenia. From the border of this radiate a number of ray florets, one to two inches in length, which are persistent and must have been scarious, like those of Hclichrysum. Though these flowers so much resemble those of the composite, we are not yet warranted in asserting that such is certainly their character. In the Jurassic rocks of Europe and India some flowers not very unlike these have been found, which have been named William sonia, and referred to cycads by Carruthers. A similar fossil has been found in the Cre- taceous rocks of Greenland, and named by Heer William- sonia cretacea, but he questions the reference of the genus to the Cycadeae, and agrees with Nathorst in considering all the species of Williamsonia as parasitic flowers, allied to Brugmansia or Rafflesia. The Marquis of Saporta regards them as monocotyledons, similar to Pandanus. More specimens of the flowers now exhibited will perhaps prove — what we can now only regard as probable — that the Composite, like the Leguminosce, Magnoliacece, Ce- lastracece, and other highly organised plants, formed part 206 THE GEOLOGICAL HISTORY OF PLANTS. of the Cretaceous flora. No composite flowers have be- fore been found in the fossil state, and, as these are among the most complex and specialised forms of florescence, it has been supposed that they belonged only to the recent epoch, where they were the result of a long series of form- ative changes." The above presents some interesting new types not heretofore found in the Middle Cretaceous. More espe- cially the occurrence of large flowers of the composite type presents a startling illustration of the early appear- ance of a very elevated and complex form. Great interest also attaches to these Amboy beds, as serving, with those of Aix and Greenland, to show that the margins of the Atlantic were occupied with a flora similar to that occur- ring at the same time in the interior plateau of North America and on the Pacific slope. The beds at Aix-la-Chapelle are, however, probably somewhat newer than the Dakota or Amboy beds, and correspond more nearly in age with those of the Creta- ceous coal-field of Vancouver Island, where there is a very rich Upper Cretaceous flora, which I have noticed in de- tail in the " Transactions of the Eoyal Society of Cana- da."* In these Upper Cretaceous beds there are fan- palms as far north at least as the latitude of 49°, indicat- ing a very mild climate at this period. This inference is corroborated by the Upper Cretaceous flora of Atane and Patoot in Greenland, as described by Heer. The dicotyledonous plants above referred to are trees and shrubs. Of the herbaceous exogens of the period we know less. Obviously their leaves are less likely to find their way into aqueous deposits than the leaves of trees. They are, besides, more perishable, and in densely wooded countries there are comparatively few herbaceous plants. I have examined the beds of mud deposited at the mouth * Vol. ii., 1884. LATER CRETACEOUS AND KAINOZOIC. 207 of a woodland streamlet, and have found them stored with the fallen leaves of trees, but it was in vain to search for the leaves of herbaceous plants. The climate of North America and Europe, represented by the Cenomanian vegetation, is not tropical but warm temperate ; but the flora was more uniform than at pres- ent, indicating a very equable climate and the possibility of temperate genera existing within the Arctic circle, and it would seem to have become warmer toward the close of the period. The flora of the Cenomanian is separated in most countries from that of the Senonian, or uppermost Cre- taceous, by a marine formation holding few plants. This depends on great movements of elevation and depression, to which we must refer in the sequel. In a few regions, however, as in the vicinity of the Peace Eiver in Canada, there are plant-bearing beds which serve to bridge over the interval between the Early Cenomanian and the later Cretaceous.* To this interval also would seem to belong the Belly Eiver series of western Canada, which contains important beds Of COal, but is closely as- FlQ ^_Brasmia antiqua. Upper Cre- SOCiated with the marine taceous, South Saskatchewan River. . Natural size, a, J, Diagrams of vena- Fort Pierre series. A tion, slightly enlarged. very curious herbaceous plant of this group, which I have named Brasenia an- tiqua, occurs in the beds associated with one of the coals. It is a close ally of the modern B. peltata, an aquatic plant which occurs in British Columbia and in eastern 208 THE GEOLOGICAL HISTORY OF PLANTS. America, and is also said to be found in Japan, Australia, and India, a width of distribution appropriate to so old a type (Fig. 76). In so far as vegetable life is concerned, the transition from the Upper Cretaceous to the Tertiary or Kainozoic is easy, though in many parts of the world, and more especially in western Europe, there is a great gap in the deposits between the upper Chalk and the lowest Eocene. With reference to fossil plants, Schimper recognises in the Kainozoic, beginning with the oldest, five formations — Palseocene, Eocene, Oligocene, Miocene, and Pliocene. Throughout these a flora, similar to that of the Creta- ceous on the one hand and the modern on the other, though with important local peculiarities, extends. There is evidence, however, of a gradual refrigeration, so that in the Pliocene the climates of the northern hemisphere were not markedly different from their present character. In the first instance an important error was com- mitted by palaeobotanists, in referring to the Miocene many deposits really belonging to the Eocene. This arose from the early study of the rich plant-bearing Miocene beds of Switzerland, and from the similarity of the flora all the way from the Middle Cretaceous to the later Tertiary. The differences are now being worked out, and we owe to Mr. Starkie Gardner the credit of pointing these out in England, and to the Geological Survey of Canada that of collecting the material for exhibiting them in the more northern part of America. In the great interior plain of America there rests on the Cretaceous a series of clays and sandstones with beds of lignite, some of them eighteen feet in thickness. This was formerly known as the lignitic or lignite Ter- tiary, but more recently as the Laramie series. These beds were deposited in fresh or brackish water, in an internal sea or group of lakes and swamps, when the continent was lower than at present. They have been LATER CRETACEOUS AND KAIXOZOIC. 209 studied both in the United States* and Canada; and, though their flora was originally referred by mistake to the Miocene, it is now known to be Eocene or Palaeocene, or even in part a transition group between the latter and the Cretaceous. The following remarks, taken chiefly from recent papers by the author, f will serve to illustrate this : On the geological map of Canada the Laramie series, formerly known as the lignitic or lignite Tertiary, oc- curs, with the exception of a few outliers, in two large areas west of the 100th meridian, and separated from each other by a tract of older Cretaceous rocks, over which the Laramie beds may have extended, before the later denuda- tion of the region. The most eastern of these areas, that of the Souris River and Wood Mountain, extends for some distance along the United States boundary, between the 102d and 109th meridians, and reaches northward to about thirty miles south of the " elbow" of the South Saskatchewan River, which is on the parallel of 51° north. In this area the lowest beds of the Laramie are seen to rest on those of the Fox Hill group of the Upper Cretaceous, and at one point on the west they are overlaid by beds of Miocene Tertiary age, observed by Mr. McConnell, of the Geological Survey, in- the Cypress Hills, and referred by Cope, on the evidence of mammalian remains, to the White River division of the United States geologists, which is regarded by them as Lower Miocene. J The age of the Laramie beds is thus stratigraphically determined to be between the Fox Hill Cretaceous and the Lower * See more especially the elaborate and valuable reports by Lesque- reux and Newberry, and a recent memoir by Ward on " Types of the Laramie Flora," " Bulletins of the United States Geological Survey," 1887. f "Transactions of the Royal Society of Canada," 1886-'87. \ " Report of the Geological Survey of Canada," 1885. P 210 THE GEOLOGICAL HISTORY OF PLANTS. Miocene. They are also undoubtedly continuous with the Fort Union group of the United States geologists on the other side of the international boundary, and they contain similar fossil plants. They are divisible into two groups — a lower, mostly argillaceous, and to which the name of " Bad Lands beds " may be given, from the " bad lands" of Wood Mountain, where they are well exposed, and an upper, partly arenaceous member, which may be named the Souris Kiver or Porcupine Creek division. In the lower division are found reptilian remains of Upper Cretaceous type, with some fish remains more nearly akin to those of the Eocene.* Neither division has as yet afforded mammalian remains. The western area is of still larger dimensions, and ex- tends along the eastern base of the Rocky Mountains from the United States boundary to about the 55th parallel of latitude, and stretches eastward to the lllth meridian. In this area, and more especially in its southern part, the officers of the Geological Survey of Canada have recog- nised three divisions, as follows : (1) The Lower Laramie or St. Mary Eiver series, corresponding in its character and fossils to the Lower or Bad Lands division of the other area. (2) A middle division, the Willow Creek beds, consisting of clays, mostly reddish, and not recog- nised in the other area. (3) The Upper Laramie or Porcupine Hills division, corresponding in fossils, and to some extent in mineral character, to the Souris Eiver beds of the eastern area. The fossil plants collected by Dr. G. M. Dawson in the eastern area were noticed by the author in an appen- dix to Dr. Dawson's report on the 49th parallel, in 1875, and a collection subsequently made by Dr. Selwyn was described in the "Report of the Geological Survey of Canada" for 1879-'80. Those of the western area, and * Cope, in Dr. G. M. Dawson's " Report on the 49th Parallel." LATER CRETACEOUS AND KAINOZOIC. 211 especially collections made by myself near Calgary in 1883, and by officers of the Geological Survey in 1884, have been described in the "Transactions of the Royal Society of Canada," vols. iii. and iv. In studying these fossil plants, I have found that there is a close correspondence between those of the Lower and Upper Laramie in the two areas above re- ferred to respectively, and that the flora of the Lower Laramie is somewhat distinct from that of the Upper, the former being especially rich in certain aquatic plants, and the latter much more copious on the whole, and much more rich in remains of forest-trees. This is, how- ever, possibly an effect rather of local conditions than of any considerable change in the flora, since some Upper Laramie forms recur as low as the Belly Eiver series of the Cretaceous, which is believed on stratigraphical grounds to be considerably older than the Lower Laramie. With reference to the correlation of these beds with those of the United States, some difficulty has arisen from the tendency of palaeobotanists to refer the plants of the Upper Laramie to the Miocene age, although in the re- ports of Mr. Clarence King, the late director of the United States Geological Survey, these beds are classed, on the evidence of stratigraphy and animal fossils, as Upper Cretaceous. More recently, however, and partly perhaps in consequence of the views maintained by the writer since 1875, some change of opinion has occurred, and Dr. Newberry and Mr. Lesquereux seem now in- clined to admit that what in Canada we recognise as Upper Laramie is really Eocene, and the Lower Laramie either Cretaceous or a transition group between this and the Eocene. In a recent paper * Dr. Newberry gives a comparative table, in which he correlates the Lower * Newberry, " Transactions of the New York Academy," February, 1886. 212 THE GEOLOGICAL HISTORY OF PLANTS. Laramie with the Upper Cretaceous of Vancouver Island and the Faxoe and Maestricht beds of Europe, while he regards the Upper Laramie as equivalent to European Eocene. Except in so far as the equivalence of the Lower Laramie and Vancouver Island beds is concerned, this corresponds very nearly with the conclusions of the writer in a paper published last year * — namely, that we must either regard the Laramie as a transition Cretaceo- Eocene group, or must institute our line of separation in the Willow Creek or Middle Laramie division, which has, however, as yet afforded no fossil plants. I doubt, how- ever, the equivalence of the Vancouver beds and the Lower Laramie, except perhaps in so far as the upper member of the former is concerned. I have also to ob- serve that in the latest report of Mr. Lesquereux he still seems to retain in the Miocene certain formations in the West, which from their fossil plants I should be inclined to regard as Eocene, f Two ferns occurring in these beds are remarkable as evidence of the persistence of species, and of the pecul- iarities of their ancient and modern distribution. Onoclea sensiMUs, the very common sensitive fern of eastern America, is extremely abundant in the Laramie beds over a great area in the West. Mr. Starkie Gardner and Dr. Newberry have also shown that it is identical with the Filicites ffebridicus of Forbes, from the early Eocene beds of the Island of Mull, in Scotland. Thus we have a species once common to Europe and America, but now restricted to the latter, and which has continued to exist over all the vast ages between the Cretaceous and the present day. In the Laramie beds I have found asso- * " Transactions of the Royal Society of Canada," vol. ii. f While these sheets were going through the press I received a very valuable report of Mr. Lester F. Ward upon the Laramie of the United States. I have merely had time to glance at this report, but can see that the views of the author agree closely with those above expressed. LATER CRETACEOUS AND KAINOZOIC. 213 elated with this species another and more delicate fern, the modern Davallia (Stenloma) tenuifolia, but this, un- like its companion, no longer occurs in America, but is found in the mountains of Asia. This is a curious illus- tration of the fact that frail and delicate plants may be more ancient than the mountains or plains on which they live. There are also some very interesting and curious facts in connection with the conifers of the Laramie. One of the most common of these is a Thuja or arbor vitaD (the so-called "cedar" of Canada). The Laramie species has been named T. interrupta by dewberry, but it approaches very closely in its foliage to T. occidentalis, of eastern Canada, while its fruit resembles that of the western species, T. gigantea. Still more remarkable are the Sequoias to which we have already referred, but which in the Laramie age seem to have been spread over nearly all North America. The fossil species are of two types, representing respectively the modern 8. gigantea and 8. sempervirens, and their wood, as well as that of Thuja, is found in great abun- dance in the lignites, and also in the form of silicified trunks, and corresponds with that of the recent species. The Laramie contains also conifers of the genera Glypto- strobus, Taxodium, and Taxus ; and the genus Salisburia or gingko — so characteristic of the Jurassic and Creta- ceous— is still represented in America as well as in Europe in the early Eocene. We have no palms in the Canadian or Scottish Palaeo- cene, though I believe they are found further south. The dicotyledonous trees are richly represented. Perhaps the most conspicuous were three species of Platanus, the leaves of which sometimes fill the sandstones, and one of which, P. nobilis, Newberry, sometimes attains the gi- gantic size of a foot or more in diameter of its blade. The hazels are represented by a large-leaved species, 0. 214 THE GEOLOGICAL HISTORY OF PLANTS. Macquarii, and by leaves not distinguishable from those of the modern American species, C. Americana and G. rostrata. There are also chestnuts and oaks. But the poplars and willows are specially abundant, being repre- sented by no less than six species, and it would seem that all the modern types of poplar, as indicated by the forms and venation of the leaves, existed already in the Laramie, and most of them even in the Upper Cretaceous. Sassafras is represented by two species, and the beautiful group of Viburnum,) to which the modern tree-cranberry belongs, has several fine species, of some of which both leaves and berries have been found. The hickories and butternuts are also present, the horse-chestnut, the Ca- talpa and Sapindus, and some curious leaves which seem to indicate the presence of the modern genus Symphoro- carpus, the snow-berry tribe. The above may suffice to give an idea of the flora of the older Eocene in North America, and I may refer for details to the works of Newberry, Lesquereux, and Ward, already cited. I must now add that the so-called Mio- cene of Atanekerdluk, Greenland, is really of the same age, as also the "Miocene" of Mull, in Scotland, of Antrim, in Ireland, and of Bovey Tracey, in the south of England, and the Gelinden, or "Heersian" beds, of Bel- gium, described by Saporta. In comparing the American specimens with the descriptions given by Gardner of the leaf-beds at Ardtown, in Mull, we find, as already stated, Onoclea sensibilis, common to both. The species of Sequoia, Gingko, Taxus, and Glyptostrolus are also iden- tical or closely allied, and so are many of the dicotyledo- nous leaves. For example, Platanoides Helridicus is very near to P. nobilis, and Corylus Macquarrii is com- mon to both formations, as well as Populus Arctica and P. Richardsoni. I may add that ever since 1875-'76, when I first studied the Laramie plants, I have main- tained their identity with those of the Fort Union group LATER CRETACEOUS AND KAINOZOIC. 215 of the United States, and of the so-called Miocene of McKenzie Eiyer and Greenland, and that the whole are Paleocene ; and this conclusion has now been confirmed by the researches of Gardner in England, and by the dis- covery of true Lower Miocene beds in the Canadian north- west, overlying the Laramie or lignite series. In a bulletin of the United States Geological Sur- vey (1886), Dr. White has established in the West the continuous stratigraphical succession of the Laramie and the Wahsatch Eocene, thus placing the Laramie con- formably below the Lower Eocene of that region. Cope has also described as the Puerta group a series of beds holding vertebrate fossils, and forming a transition from the Laramie to the Wahsatch. White also testifies that a number of fresh-water mollusks are common to the Wah- satch and the Laramie. This finally settles the position of the Laramie so far as the United States geologists are concerned, and shows that the flora is to be regarded as Eocene if not Upper Cretaceous, in harmony with what has been all along maintained in Canada. An important resume of the flora has just been issued by Ward in the bulletins of the United States Geological Survey (1887). Before leaving this part of the subject, I would depre- cate the remark, which I see occasionally made, that fossil plants are of little value in determining geological hori- zons in the Cretaceous and Tertiary. I admit that in these periods some allowance must be made for local differences of station, and also that there is a generic sameness in the flora of the northern hemisphere, from the Cenomanian to the modern, yet these local differ- ences and general similarity are not of a nature to in- validate inferences as to age. No doubt, so long as palaeobotanists seemed obliged, in deference to authority, and to the results of investigations limited to a few Eu- ropean localities, to group together, without distinction, all the floras of the later Cretaceous and earlier Tertiary, 216 THE GEOLOGICAL HISTORY OF PLANTS. irrespective of stratigraphical considerations, the subject lost its geological importance. But, when a good series has been obtained in any one region of some extent, the case becomes different. Though there is still much im- perfection in our knowledge of the Cretaceous and Ter- tiary floras of Canada, I think the work already done is sufficient to enable any competent observer to distinguish by their fossil plants the Lower, Middle, and Upper Cre- taceous, and the latter from the Tertiary ; and, with the aid of the work already done by Lesquereux and New- berry in the United States, to refer approximately to its true geological position any group of plants from beds of unknown age in the West. An important consequence arising from the above statements is that the period of warm climate which enabled a temperate flora to exist in Greenland was that of the later Cretaceous and early Eocene rather than, as usually stated, the Miocene. It is also a question admit- ting of discussion whether the Eocene flora of latitudes so different as those of Greenland, Mackenzie River, north- west Canada, and the United States, were strictly con- temporaneous, or successive within a long geological period in which climatal changes were gradually pro- ceeding. The latter statement must apply at least to the beginning and close of the period ; but the plants themselves have something to say in favour of contem- poraneity. The flora of the Laraniie is not a tropical but a temperate flora, showing no doubt that a much more equable climate prevailed in the more northern parts of America than at present. But this equability of climate implies the possibility of a great geographical range on the part of plants. Thus it is quite possible and indeed highly probable that in the Laramie age a somewhat uniform flora extended from the Arctic seas through the great central plateau of America far to the south, and in like manner along the western coast of LATER CRETACEOUS AND KAINOZOIC. 217 Europe. It is also to be observed that, as Gardner points out, there are some differences indicating a diversity of climate between Greenland and England, and even be- tween Scotland and Ireland and the south of England, and we have similar differences, though not strongly marked, between the Laramie of northern Canada and that of the United States. When all our beds of this age from the Arctic sea to the 49th parallel have been ransacked for plants, and when the palaoobotanists of the United States shall have succeeded in unravelling the confusion which now exists between their Laramie and the Middle Tertiary, the geologist of the future will be able to restore with much certainty the distribution of the vast forests which in the early Eocene covered the now bare plains of interior America. Further, since the break which in western Europe separates the flora of the Cretaceous from that of the Eocene does not exist in America, it will then be possible to trace the succession from the Mesozoic flora of the Trias and of the Queen Charlotte Islands and Kootanie series of the Lower Cre- taceous up to the close of the Eocene ; and to deter- mine, for America at least, the manner and conditions under which the angiospermous flora of the later Creta- ceous succeeded to the pines and cycads which charac- terised the beginning of the Cretaceous period. In so far as Europe is concerned, this may be more difficult, since the want of continuity of land from north to south seems there to have been fatal to the continuance of some plants during changes of climate, and there were also apparently in the Kainozoip period invasions at certain times of species from the south and east, which did not occur to the same extent in America. In recent reports on the Tertiary floras of Australia and New Zealand,* Ettingshausen holds that the flora of * " Geological Magazine," August, 188Y. 218 THE GEOLOGICAL HISTORY OF PLANTS. the Tertiary, as a whole, "was of a generalised character ; forms now confined to the southern and northern hemi- spheres respectively being then common to both. It would thus seem that the present geographical diversities must have largely arisen from the great changes in cli- mate and distribution of land and water in the later Tertiary. The length of our discussion of the early angiosperm- ous flora does not permit us to trace it in detail through the Miocene and Pliocene, but we may notice the con- nection through these in the next chapter, and may refer to the magnificent publications of Heer and Lesquereux on the Tertiary floras of Europe and America respect- ively. CHAPTER VII. PLANTS FROM THE TERTIARY TO THE MODERN PERIOD. IT may be well to begin this chapter with a sketch of the general physical and geological conditions of the pe- riod which was characterised by the advent and culmina- tion of the dicotyledonous trees. In the Jurassic and earliest Cretaceous periods the prevalence, over the whole of the northern hemisphere and for a long time, of a monotonous assemblage of gym- nospermous and acrogenous plants, implies a uniform and mild climate, and facility for intercommunication in the north. Toward the end of the Jurassic and beginning of the Cretaceous, the land of the northern hemisphere was assuming greater dimensions, and the climate probably becoming a little less uniform. Before the close of the Lower Cretaceous period the dicotyledonous flora seems to have been introduced, under geographical conditions which permitted a warm temperate climate to extend as far north as Greenland. In the Cenomanian or Middle Cretaceous age we find the northern hemisphere tenanted with dicotyledonous trees closely allied to those of modern times, though still indicating a climate much warmer than that which at present prevails. In this age, extensive but gradual sub- mergence of land is indicated by the prevalence of chalk and marine limestones over the surface of both conti- nents; but a circumpolar belt seems to have been main- tained, protecting the Atlantic and Pacific basins from 220 THE GEOLOGICAL HISTORY OF PLANTS. floating ice, and permitting a temperate flora of great richness to prevail far to the north, and especially along the southern margins and extensions of the circumpolar land. These seem to have been the physical conditions which terminated the existence of the old Mesozoic flora and introduced that of the Middle Cretaceous. As time advanced the quantity of land gradually in- creased, and the extension of new plains along the older ridges of land was coincident with the deposition of the great Laramie series, and with the origination of its pe- culiar flora, which indicates a mild climate and consider- able variety of station in mountain, plain, and swamp, as well as in great sheets of shallow and weedy fresh water. In the Eocene and Miocene^ periods, the continents gradually assuniedT their present form, and the vegetation became still more modern in aspect. In that period of the Eocene, however, in which the great nummulitic limestones were deposited, a submergence of land occurred on the eastern continent which must have assimilated its physical conditions to those of the Middle Cretaceous. This great change, affecting materially the flora of Eu- rope, was not equally great in America, which also by the north and south extension of its mountain-chains per- mitted movements of migration not possible in the Old World. From the Eocene downward, the remains of land-animals and plants are found chiefly in lake-basins occupying the existing depressions of the land, though more extensive than those now remaining. It must also be borne in mind that the great foldings and fractures of the crust of the earth which occurred at the close of the Eocene, and to which the final elevation of such ranges as the Alps and the Rocky Mountains belongs, perma- nently modified and moulded the forms of the continents. These statements raise, however, questions as to the precise equivalence in time of similar floras found in dif- THE TERTIARY TO THE MODERN PERIOD. 221 ferent latitudes. However equable the climate, there must have been some appreciable difference in proceed- ing from north to south. If, therefore, as seems in every way probable, the new species of plants origi- nated on the Arctic land and spread themselves south- ward, this latter process would occur most naturally in times of gradual refrigeration or of the access of a more extreme climate — that is, in times of the elevation of land in the temperate latitudes, or, conversely, of local depression of land in the Arctic, leading to invasions of northern ice. Hence, the times of the prevalence of particular types of plants in the far north would precede those of their extension to the south, and a flora found fossil in Greenland might be supposed to be somewhat older than a similar flora when found farther south. It would seem, however, that the time required for the ex- tension of a new flora to its extreme geographical limit is so small, in comparison with the duration of an entire geological period, that, practically, this difference is of little moment, or at least does not amount to antedating the Arctic flora of a particular type by a whole period, but only by a fraction of such period. It does not appear that, during the whole of the Cre- taceous and Eocene periods, there is any evidence of such refrigeration as seriously to interfere with the flora, but perhaps the times of most considerable warmth are those of the Dunvegan group in the Middle Cretaceous, and those of the later Laramie and oldest Eocene. It would appear that no cause for the mild tempera- ture of the Cretaceous needs to be invoked, other than those mutations of land and water which the geological deposits themselves indicate. A condition, for example, of the Atlantic basin in which the high land of Greenland should be reduced in elevation, and at the same time the northern inlets of the Atlantic closed against the invasion of Arctic ice, would at once restore climatic conditions 222 THE GEOLOGICAL HISTORY OF PLANTS. allowing of the growth of a temperate flora in Greenland. As Dr. Brown has shown,* and as I have elsewhere argued, the absence of light in the Arctic winter is no disadvantage, since, during the winter, the growth of deciduous trees is in any case suspended ; while the con- stant continuance of light in the summer is, on the con- trary, a very great stimulus and advantage. It is a remarkable phenomenon in the history of gen- era of plants in the later Mesozoic and Tertiary, that the older genera appear at once in a great number of specific types, which become reduced as well as limited in range down to the modern. This is, no doubt, connected with the greater differentiation of local conditions in the mod- ern ; but it indicates also a law of rapid multiplication of species in the early life of genera. The distribution of the species of Salisburia, Sequoia, Platanus, Sassafras, Lirio- dendron, Magnolia, and many other genera, affords re- markable proofs of this. Gray, Saporta, Heer, dewberry, Lesquereux, and Starkie Gardner have all ably discussed these points ; but the continual increase of our knowledge of the several floras, and the removal of error as to the dates of their appearance, must greatly conduce to clearer and more definite ideas. In particular, the prevailing opinion that the Miocene was the period of the greatest extension of warmtir~ancl of a temperate flora into the Arctic, must be abandoned in favour of the later Cretaceous and Eocene ; and, if I mistake not, this will be found to ac- cord better with the evidence of general geology and of animal fossils. In these various revolutions of the later Cretaceous and Kainozoic periods, America, as Dr. Gray has well pointed out, Jias Jiad the advantage of a continuous stretch of high land^o^ DOTtE_to south, affording ajmorejjurS * u Florula Discoana." THE TERTIARY TO THE MODERN PERIOD. 223 refuge to plants in times of submergence, and means of escape to the south in times of refrigeration. Hence, the greater continuity of American vegetation and the survival of genera like Sequoia and Liriodendron, which have perished in the Old World. StifipEhere are i some ex- ceptions to this, for the gingko-tree is a case of survival in Asia of a type once plentiful in America, but now extinct there. Eastern Asia has had, however, some considerable share of the same advantage possessed by America, with the addition, referred to by Gray, of a better and more insular climate. But our survey of these physical conditions can not be considered complete till we shall have considered the great Glacial age of the Pleistocene. It is certain that throughout the later Miocene and Pliocene the area of land in the northern hemisphere was increasing, and the large and varied continents were tenanted by the noblest vege- tation and the grandest forms of mammalian life that the earth has ever witnessed. As the Pliocene drew to a close, a gradual diminution of warmth came on, and more especially a less equable climate, and this was ac- compameS with a subsidence of the land in the temperate regions and with changes of the warm ocean-currents. Thus gradually the summers became cooler and the winters longer and more severe, the hill-tops became covered with permanent snows, glaciers ploughed their way downward into the plains, and masses and fields of floating ice cooled the seas. In these circumstances the richer and more delicate forms of vegetation must have Ueen chilled to death or obliged to remove farther south, and in many extensive regions, hemmed in by the advance of the sea on the one hand and land -ice on the other, they must have altogether perished. Yet even in this time vegetation was not altogether extinct. Along the Gulf of Mexico in America, and in the Mediterranean basin in Europe, there were still some 224 THE GEOLOGICAL HISTORY OF PLANTS. remains of a moderate climate and certain boreal and arctic forms moving southward continued to exist here and there in somewhat high latitudes, just as similar plants now thrive in Grinnell Land within sight of the snows of the Greenland mountains. A remarkable sum- mary of some of these facts as they relate to England was given by an eminent English botanist, Mr. Carruthers, in his address as President of the Biological Section of the British Association at Birmingham in 1886. At Cromer, on the coast of Norfolk, the celebrated forest-bed of new- er Pliocene age, and containing the remains of a copious mammalian fauna, holds also remains of plants in a state admitting of determination. These have been collected by Mr. Keid, of the Geological Survey, and were reported on by Carruthers, who states that they represent a some- what colder temperature than that of the present day. I quote the following details from the address. With reference to the plants of the forest-bed or newer Pliocene he remarks as follows : " Only one species (Trapa natans, Willd.) has disap- peared from our islands. Its fruits, which Mr. Eeid found abundantly in one locality, agree with those of the plants found until recently in the lakes of Sweden. Four species (Prunus speciosa, L., (EnantJie Tichenalii, Sm., Potamogeton pterophyllus, Sch., and Finns abies, L.) are found at present only in Europe, and a fifth (Pota- mogeton trichoides, Cham.) extends also to North Ameri- ca ; two species (Peucedanum palustre, Moench, and Pinus sylvestris, L.) are found also in Siberia, while six more (Sanguisorba qfficinalis, L., Rubus fruticosus, L., Cornus sanguined, L., Euphorbia amygdaloides, L., Quercus robur, L., and Potamogeton crispus, L.) extend into western Asia, and two (Fagus sylvatica, L., and Alnus glutinosa, L.) are included in the Japanese flora. Seven species, while found with the others, enter also into the Mediterranean flora, extending to North Africa : these THE TERTIARY TO THE MODERN PERIOD. 225 are TJialictrum minus, L., Thalictrum flavum, L., Ra- nunculus repens, L., Stellaria aquatica, Scop., Corylus avellana, L., Yannichellia palustris, L., and Cladium mariscus, Br. With a similar distribution in the Old World, eight species (Bidens tripartite!,, L., Myosotis ccespitosa, Schultz, Suceda maritima, Dum., Ceratophyl- lum demersum, L., Sparganium ramosum, Huds., Pota- mogeton pectinatus, L., Car ex paludosa, Good., and Os- munda regalis, L.) are found also in North America. Of the remainder, ten species (Nuphar luteum, Sin., Meny- antJies trifoliata, L., Slacliys palustris, L., Rumex mari- timus, L., Rumex acetosella, L., Betula alba, L., Scirpus pauciflorus, Lightf., Taxus baccata, L., and Isoetes la- custris, L.) extend round the north temperate zone, while three (Lycopus europceus, L., Alisma plantago, L., and Phragmites communis, Trin.), having the same distribu- tion in the north, are found also in Australia, and one (Hippuris vulgaris, L.) in the south of South America. The list is completed by Ranunculus aquatilis, L., dis- tributed over all the temperate regions of the globe, and Scirpus lacustris, L., which is found in many tropical regions as well." He remarks that these plants, while including species now very widely scattered, present no appreciable change of characters. Above this bed are glacial clays, which hold other species indicating an extremely cold climate. They are few in number, only Salix polaris, a thoroughly arctic species, and its ally, S. cinerea, L., and a moss, Hypnum turgescens, Schimp., no longer found in Britain, but an Alpine and arctic species. This bed belongs to the begin- ning of the Glacial period, the deposits of which have as yet afforded no plants in England. But plants occur in post-glacial and upper-glacial beds in different parts of England, to which Carruthers thus refers : "The period of great cold, during which arctic ice q 226 THE GEOLOGICAL HISTORY OF PLANTS. extended far into temperate regions, was not favorable to vegetable life. But in some localities we have stratified clays with plant-remains later than the Glacial epoch, yet indicating that the great cold had not then entirely disappeared. In the lacustrine beds at Holderness is found a small birch (Betula nana, L.), now limited in Great Britain to some of the mountains of Scotland, but found in the arctic regions of the Old and New World and on Alpine districts in Europe, and with it Prunus padus, L., Quercus robur, L., Corylus avellana, L., Alnus glutinosa, L., and Pinus sylvestris, L. In the white clay-beds at Bovey Tracey of the same age there occur the leaves of ArctostapJiylos uva-ursi, L., three species of willow, viz., Salix cinerea, L., 8. myrtilloides, L., and 8. polaris, Wahl., and in addition to our Alpine Betula nana, L., the more familiar B. alba, L. Two of these plants have been lost to our flora from the change of climate that has taken place, viz., Salix myrtilloides, L., and 8. polaris, Wahl.; and Betula nana, L., has re- treated to the mountains of Scotland. Three others (Dry as octopetala, L., ArctostapJiylos uva-ursi, L., and Salix herfiacea, L.) have withdrawn to the mountains of northern England, Wales, and Scotland, while the re- mainder are still found scattered over the country. Not- withstanding the diverse physical conditions to which these plants have been subjected, the remains preserved in these beds present no characters by which they can be distinguished from the living representatives of the species." One of the instances referred to is very striking. At Bovey Tracey the arctic beds rest directly on those hold- ing the rich, warm temperate flora of the Eocene ; so that here we have the evidence of fossil plants to show the change from the climate of the Eocene to that of arctic lands, and the modern vegetation to indicate the return of a warm temperature. THE TERTIARY TO THE MODERN PERIOD. 227 In Canada, in the Pleistocene beds known as the Leda clays, intervening between the lower boulder clay and the Saxicava sand, which also holds boulders, there are beds holding fossil plants, in some places intermixed with sea-shells and bones of marine fishes, showing that they were drifted into the sea at a time of submergence. These remains are boreal rather than arctic in character, and with the remains of drift-wood often found in the boulder deposits serve to indicate that there were at all times oases of hardy life in the glacial deserts, just as we find these in polar lands at the present day. I condense from a paper on these plants * the following facts, with a few additional notes : The importance of all information bearing on the temperature of the Post - pliocene period invests with much interest the study of the land-plants preserved in deposits of this age. Unfortunately, these are few in num- ber, and often not well preserved. In Canada, though fragments of the woody parts of plants occasionally occur in the marine clays and sands, there is only one locality which has afforded any considerable quantity of remains of their more perishable parts. This is the well-known deposit of Leda clay at Green's Creek, on the Ottawa, celebrated for the perfection in which the skeletons of the capelin and other fishes are preserved in the calcareous nodules imbedded in the clay. In similar nodules, con- tained apparently in a layer somewhat lower than that holding the ichthyolites, remains of land-plants are some- what abundant, and, from their association with shells of Leda glacialis, seem to have been washed down from the land into deep water. The circumstances would seem to have been not dissimilar from those at present existing in the northeast arm of Gaspe Basin, where I have dredged from mud uow being deposited in deep water, living * "Canadian Naturalist," 1866. 228 THE GEOLOGICAL HISTORY OF PLANTS. specimens of Leda limatula, mixed with remains of land- plants. The following are the species of plants recognised in these nodules : 1. Drosera rotundifolia, Linn. In a calcareous nodule from Green's Creek, the leaf only preserved. This plant is common in bogs in Canada, Nova Scotia, and New- foundland, and thence, according to Hooker, to the Arctic circle. It is also European. 2. Acer spicatum, Lamx. (Acer montanum, Aiton.) Leaf in a nodule from Green's Creek. Found in Nova Scotia and Canada, also at Lake Winnipeg, according to Kichardson. 3. Potentilla Canadensis, Linn. In nodules from Green's Creek ; leaves only preserved. I have had some difficulty in determining these, but believe they must be referred to the species above named, or to P. simplex, Michx., supposed by Hooker and Gray to be a va- riety. It occurs in Canada and New England, but I have no in- formation as to its range north- ward. 4. Gaylussaccia resinosa, Tor- rey and Gray. Leaf in nodule at Green's Creek. Abundant in New England and in Canada, also on Lake Huron and the Saskatchewan, according to Kichardson (Fig. 77). 5. Populus balsamifera, Linn. Leaves and branches in nodules at Green's Creek. This is by much the most common species, and its leaves are of small size, as if from trees growing in cold and exposed situations. The species is North American and Asiatic, and abounds in New Eng- land and Canada. It extends to the Arctic circle, and is FIG. 77. — Gaylussaccia resi- nosa. Pleistocene, Can- ada. THE TERTIARY TO THE MODERN PERIOD. 229 abundant on the shores of the Great Slave Lake and on the McKenzie River, and according to Richardson con- stitutes much of the drift timber of the Arctic coast (Fig. 78). 6. Thuja occidentalism Linn. Trunks and branches in the Leda clay at Montreal. This tree occurs in New England and Canada, and extends northward into the FIG. T8. — Popul Pleistocene, Canada. Hudson Bay territories. It is a northern though not arctic species in its geographical range. According to Lyell it occurs associated with the bones of Mastodon in New Jersey. From the great durability of its wood, it is one of the trees most likely to be preserved in aqueous deposits. 7. Potamogeton perfoliatus, Linn. Leaves and seeds in nodules at Green's Creek. Inhabits streams of the Northern States and Canada, and according to Richard- son extends to Great Slave Lake. 8. Potamogeton pusillus. Quantities of fragments which I refer to this species occur in nodules at Green's Creek. They may possibly belong to a variety of P. hybridus which, together with P. natans9 now grows in 230 THE GEOLOGICAL HISTORY OF PLANTS. the river Ottawa, where it flows over the beds containing these fossils. 9. Caricece and Graminece. Fragments in nodules from Green's Creek appear to belong to plants of these groups, but I cannot venture to determine their species. 10. Equisetum scirpoides, Michx. Fragments in nod- ules, Green's Creek. This is a widely distributed spe- cies, occurring in the Northern States and Canada. 11. Fontinalis. In nodules at Green's Creek there occur, somewhat plentifully, branches of a moss appar- ently of the genus Fon- tinalis. 12. AlgcB. With the plants above mentioned, both at Green's Creek and at Montreal, there occur remains of sea- weeds (Fig. 79). They seem to belong to the genera Fucus and Ulva, but I cannot determine the species. A thick stem in one of the nod- ules would seem to indi- cate a large Laminaria. With the above there are found at Green's Creek a number of fragments of leaves, stems, and fruits, which I have not been able to refer to their species, principally on account of their defective state of preservation. None of the plants above mentioned is properly arctic in its distribution, and the assemblage may be character- ised as a selection from the present Canadian flora of some of the more hardy species having the most northern range. Green's Creek is in the central part of Canada, near to the parallel of 46°, and an accidental selection Fio. 79.— Frond of Fucus. cene. Canada. Pleisto- THE TERTIARY TO THE MODERN" PERIOD. 231 from its present flora, though it might contain the same species found in the nodules, would certainly include with these, or instead of some of them, more southern forms. More especially the balsam poplar, though that tree oc- curs plentifully on the Ottawa, would not be so pre- dominant. But such an assemblage of drift-plants might be furnished by any American stream flowing in the lati- tude of 50° to 55° north. If a stream flowing to the north, it might deposit these plants in still more northern latitudes, as the McKenzie Kiver does now. If flowing to the south, it might deposit them to the south of 50°. In the case of the Ottawa, the plants could not have been derived from a more southern locality, nor probably from one very far to the north. "We may therefore safely as- sume that the refrigeration indicated by these plants would place the region bordering the Ottawa in nearly the same position with that of the south coast of Labrador fronting on the Gulf of St. Lawrence at present. The absence of all the more arctic species occurring in Lab- rador should perhaps induce us to infer a somewhat milder climate than this. The moderate amount of refrigeration thus required would in my opinion accord very well with the probable conditions of climate deducible from the circumstances in which the fossil plants in question occur. At the time when they were deposited the sea flowed up the Ottawa valley to a height of 200 to 400 feet above its present Krel, and the valley of the St. Lawrence was a wide arm the sea, open to the arctic current. Under these con- tions the immense quantities of drift-ice from the northward, and the removal of the great heating surface now presented by the low lands of Canada and New Eng- land, must have given for the Ottawa coast of that period a summer temperature very similar to that at present ex- perienced on the Labrador coast, and with this conclusion the marine remains of the Leda clay, as well as the few 232 THE GEOLOGICAL HISTORY OF PLANTS. land molluscs whose shells have been found in the beds containing the plants, and which are species still occur- ring in Canada, perfectly coincide. The climate of that portion of Canada above water at the time when these plants were imbedded may safely be assumed to have been colder in summer than at present, to an extent equal to about 5° of latitude, and this re- frigeration may be assumed to correspond with the re- quirements of the actual geographical changes implied. In other words, if Canada was submerged until the Ottawa valley was converted into an estuary inhabited by species of Leda, and frequented by capelin, the diminu- tion of the summer heat consequent on such depression would be precisely suitable to the plants occurring in these deposits, without assuming any other cause of change of climate. I have arranged elsewhere the Post-pliocene deposits of the central part of Canada, as consisting of, in ascend- ing order : (1) The boulder clay ; (2) a deep-water de- posit, the Leda clay ; and (3) a shallow-water deposit, the Saxicava sand. But, although I have placed the boulder clay in the lowest position, it must be observed that I do not regard this as a continuous layer of equal age in all places. On the contrary, though locally, as at Montreal, under the Leda clay, it is in other places and at other levels contemporaneous with or newer than that deposit, which itself also locally contains boulders. At Green's Creek the plant-bearing nodules occur in the lower part of the Leda clay, which contains a few boulders, and is apparently in places overlaid by large boulders, while no distinct boulder clay underlies it. The circumstances which accumulated the thick bed of boulder clay near Montreal were probably absent in the Ottawa valley. In any case we must regard the deposits of Green's Creek as coeval with the Leda clay of Montreal, and with the period of the greatest abundance of Leda THE TERTIARY TO THE MODERN PERIOD. 233 glacialis, the most exclusively arctic shell of these de- posits. In other words, I regard the plants above men- tioned as probably belonging to the period of greatest re- frigeration of which we have any evidence, of course not including that mythical period of universal incasement in ice, of which, as I have elsewhere endeavoured to show, in so far as Canada is concerned, there is no evidence whatever.* The facts above stated in reference to Post-pliocene plants concur, with all the other evidence I have been able to obtain, in the conclusion that the refrigeration of Canada in the Post-pliocene period consisted of a diminu- tion of the summer heat, and was of no greater amount than that fairly attributable to the great depression of the land and the different distribution of the ice-bearing arctic current. In connection with the plants above noticed, it is in- teresting to observe that at Green's Creek, at Pakenham Mills, at Montreal, and at Clarenceville on Lake Cham- plain, species of Canadian Pulmonata have been found in deposits of the same age with those containing the plants. The species which have been noticed belong to the genera Lymnea and PlanorUs. The Glacial age was, fortunately, not of very long du- ration, though its length has been much exaggerated by certain schools of geologists, f It passed away, and a re- turning cosmic spring gladdened the earth, and was ush- ered in by a time of great rainfall and consequent denu- dation and deposit, which has been styled the " Pluvial Period." The remains of the Pliocene forests then re- turned— with somewhat diminished numbers of species — * Notes on Post-Pliocene of Canada, "Canadian Naturalist," 1872. f This I have long maintained on grounds connected with Pleistocene fossils, amount of denudation and deposit, &c., and I am glad to see that Prestwich, the best English authority on such subjects, has recently an- ounced similar conclusions, based on independent reasons. 234: THE GEOLOGICAL HISTORY OF PLANTS. from the south and again occupied the land, though they have not been able, in their decimated condition, to re- store the exuberance of the flora of the earlier Tertiary. In point of fact, as we shall see in the next chapter, it is the floras originating within the polar circle and coming down from the north that are rich and copious. Those that, after periods of cold or submergence, return from the south, are comparatively poor. Hence the modern flora is far inferior to that of the Middle Kainozoic. In America, however, and in eastern Asia, for reasons al- ready stated, the return was more abundant than in Europe. Simultaneously with the return of the old temperate flora, the arctic plants that had overspread the land re- treated to mountain-tops, now bared of ice and snow, and back to the polar lands whence they came ; and so it hap- pens that, on the White Mountains, the Alps, and the Himalayas, we have insular patches of the same groups of plants that exist around the pole. These changes need not have required a very long time, for the multiplication and migration of plants are very rapid, especially when aided by the agency of migra- tory animals. Many parts of the land must, indeed, have been stocked with plants from various sources, and by agencies — as that of the sea — which might at first sight seem adverse to their distribution. The British Islands, for example, have no indigenous plants. Their flora consists mainly of Germanic plants, which must have migrated to Britain in that very late period of the Post- glacial when the space now occupied by the North Sea was mostly dry land. Other portions of it are Scandi- navian plants, perhaps survivors of the Glacial age, or carried by migratory birds ; and still another element consists of Spanish plants, brought north by spring mi- grants, and establishing themselves in warm and sheltered spots, just as the arctic plants do on the bleak hill-tops. THE TERTIARY TO THE MODERN PERIOD. 235 The Bermudas, altogether recent islands, have one hun- dred and fifty species of native plants, all of which are West Indian and American, and must have been intro- duced by the sea-currents or by migratory birds. And so the earth became fitted for the residence of modern man. Yet it is not so good or Edenic a world as it once was, or as it may yet become, were another revo- lution to restore a mild climate to the arctic regions, and to send down a new swarm of migratory species to renew the face of the earth and restore it to its pristine fertility of vegetable life. Thus closes this long history of the succession of plants, reaching from the far back Laurentian to the present day. It has, no doubt, many breaks, and much remains to be discovered. Yet it may lead us to some positive conclusions regarding the laws of the introduction of plants. One of these, and perhaps the most remarkable of all, is that certain principles were settled very far back, and have remained ever since. We have seen that in the earliest geological periods all that pertains to the struct- ure, powers, and laws of the vegetable cell was already fixed and settled. When we consider how much this implies of mechanical structure and chemical and vital property, the profound significance of this statement be- comes apparent. The relations in these respects between the living cell and the soil, the atmosphere and the sun- shine, were apparently as perfect in the early Palaeozoic as in any subsequent time. The same may be said of the structures of the leaf and of the stem. In such old forms as Nematophyton these were, it is true, peculiar and rudi- mentary, but in the Devonian and Carboniferous the structure of leaves and stems embodied all the parts and principles that we find at present. In regard to fructifi- cation there has been more progress, for, so far as we know, the highest and most complex forms of flowers, 236 THE GEOLOGICAL HISTORY OF PLANTS. fruits, and seeds belong to the more recent periods, and simpler forms were at least dominant in the older times. Yet even in this respect the great leading laws and struct- ures of bisexual reproduction were perfected in the early Palaeozoic, and the improvements introduced in the gym- nosperm and the angiosperm of later periods have con- sisted mainly in additions of accessory parts, and in modi- fications and refinements suited to the wants of the higher and more complex types. CHAPTER VIII. GENERAL LAWS OF ORIGIN A^D MIGRATION'S OF PLANTS. — RELATIONS OF RECENT AN"D FOSSIL FLORAS. THE origination of the successive floras which have occupied the northern hemisphere in geological time, not, as one might at first sight suppose, in the sunny climes of the south, but under the arctic skies, is a fact long known or suspected. It is proved hy the occurrence of fossil plants in Greenland, in Spitzbergen, and in Grin- nell Land, under circumstances which show that these were their primal homes. The fact bristles with physical difficulties, yet is fertile of the most interesting theoreti- cal deductions, to reach which we may well be content to wade through some intricate questions. Though not at all a new fact, its full significance seems only recently to have dawned on the minds of geologists, and within the last few years it has produced a number of memoirs and addresses to learned societies, besides many less formal notices.* The earliest suggestion on the subject known to the writer is that of Prof. Asa Gray, in 1867, with reference to the probable northern source of the related floras of North America and eastern Asia. With the aid of the new facts disclosed by Heer and Lesquereux, Gray re- * Saporta, " Ancienne Vegetation Polaire " ; Hooker, " Presidential Address to Royal Society," 1878; Thistleton Dyer, "Lecture on Plant Distribution"; Mr. Starkie Gardner, "Letters in * Nature,'" 1878, &c. The basis of most of these brochures is to be found in Heer's " Flora Fossilis Arctica." 238 THE GEOLOGICAL HISTORY OF PLANTS. turned to the subject in 1872, and more fully developed this conclusion with reference to the Tertiary floras,* and he has recently still further discussed these questions in an able lecture on "Forest Geography and Archaeol- ogy." f In this he puts the case so well and tersely that we may quote the following sentences as a text for what follows : "I can only say, at large, that the same species (of Tertiary fossil plants) have been found all round the world ; that the richest and most extensive finds are in Greenland ; that they comprise most of the sorts which I have spoken of, as American trees which once lived in Europe — magnolias, sassafras, hickories, gum-trees, our identical southern cypress (for all we can see of differ- ence), and especially Sequoias, not only the two which obviously answer to the two big-trees now peculiar to California, but several others ; that they equally com- prise trees now peculiar to Japan and China, three kinds of gingko-trees, for instance, one of them not evidently distinguishable from the Japan species which alone sur- vives ; that we have evidence, not merely of pines and maples, poplars, birches, lindens, and whatever else char- acterise the temperate zone forests of our era, but also of particular species of these, so like those of our own time and country that we may fairly reckon them as the an- cestors of several of ours. Long genealogies always deal more or less in conjecture ; but we appear to be within the limits of scientific inference when we announce that our existing temperate trees came from the north, and within the bounds of nigh probability when we claim not a few of them as the originals of present species. Eemains of the same plants have been found fossil in our tem- perate region as well as in Europe." * Address to American Association. f "American Journal of Science," xvi., 1878. GENERAL LAWS OF ORIGIN AND MIGRATION. 239 Between 1860 and 1870 the writer was engaged in working out all that could be learned of the Devonian plants of eastern America, the oldest known flora of any richness, and which consists almost exclusively of gigantic, and to us grotesque, representatives of the club-mosses, ferns, and mares'-tails, with some trees allied to the cycads and pines. In this pursuit nearly all the more important localities were visited, and access was had to the large collections of Prof. Hall and Prof. Newberry, in New York and Ohio, and to those made in the remarkable plant-bearing beds of New Brunswick by Messrs. Matthew and Hartt. In the progress of these researches, which developed an unexpectedly rich assemblage of species, the northern origin of this old flora seemed to be established by its earlier culmination in the northeast, in connection with the growth of the American land to the southward, which took place after the great Upper Silurian subsi- dence, by elevations beginning in the north while those portions of the continent to the southwest still remained under the sea. The same result was indicated by the persistence in the Carboniferous of the south and west of old Erian forms, like Megalopteris. When, in 1870, the labours of those ten years were brought before the Royal Society of London, in the Bakerian lecture of that year, and in a memoir illustrat- ing no less than one hundred and twenty-five species of plants older than the great Carboniferous system, these deductions were stated in connection with the conclusions of Hall, Logan, and Dana, as to the distribution of sedi- ment along the northeast side of the American continent, and the anticipation was hazarded that the oldest Palaeo- zoic floras would be discovered to the north of Newfound- land. Mention was also made of the apparent earlier and more copious birth of the Devonian flora in America than in Europe, a fact which is itself connected with the ater northward extension of this continent. 24:0 THE GEOLOGICAL HISTORY OF PLANTS. The memoir containing these results was not published by the Koyal Society, but its publication was secured in a less complete form in the reports of the "Geological Sur- vey of Canada. " The part of the memoir relating to Cana- dian fossil plants, with a portion of the theoretical deduc- tions, was published in a report issued in 1871.* In this report the following language was used : " In eastern America, from the Carboniferous period onward, the centre of plant distribution has been" the Ap- palachian chain. From this the plants and sediments extended westward in times of elevation, and to this they receded in times of depression. But this centre was non- existent before the Devonian period, and the centre for this must have been to the northeast, whence the great mass of older Appalachian sediment was derived. In the Carboniferous period there was also an eastward distribu- tion from the Appalachians, and links of connection in the Atlantic bed between the floras of Europe and Ameri- ca. In the Devonian such connection can have been only far to the northeast. It is therefore in Newfoundland, Labrador, and Greenland that we are to look for the oldest American flora, and in like manner on the border of the old Scandinavian nucleus for that of Europe. "Again, it must have been the wide extension of the sea of the corniferous limestone that gave the last blow to the remaining flora of the Lower Devonian ; and the re-elevation in the middle of that epoch brought in the Appalachian ridges as a new centre, and established a connection with Europe which introduced the Upper Devonian and Carboniferous floras. Lastly, from the comparative richness of the later Erian f flora in eastern America, especially in the St. John beds, it might be a * " Fossil Plants of the Devonian and Upper Silurian Formations of Canada," pp. 92, twenty plates, Montreal, 1871. f See pages 107 and 108. GENERAL LAWS OF ORIGIN AND MIGRATION. fair inference that the northeastern end of the Appala- chian ridge was the original birthplace or centre of crea- tion of what we may call the later Palaeozoic flora, or of a large part of that flora." When my paper was written I had not seen the ac- count published by the able Swiss palaeobotanist Heer, of the remarkable Devonian flora of Bear Island, near Spitz- bergen.* From want of acquaintance with the older floras of America and western Europe, Heer fell into the unfortunate error of regarding the whole of Bear Island plants as Lower Carboniferous, a mistake which his great authority has tended to perpetuate, and which has even led to the still graver error of some European geologists, who do not hesitate to regard as Carboniferous the fossil plants of the American deposits from the Hamilton to the Chemung groups inclusive, though these belong to formations underlying the oldest Carboniferous, and char- acterised by animal remains of unquestioned Devonian age. In 1872 I addressed a note to the Geological Society of London on the subject of the so-called "Ursa stage" of Heer, showing that, though it contained some forms not known at so early a date in temperate Europe, it was clearly, in part at least, Devonian when tested by North American standards ; but that in this high latitude, in which, for reasons stated in the report above referred to, I believed the Devonian plants to have originated, there might be an intermixture of the two floras. But such a mixed group should in that latitude be referred to a lower horizon than if found in temperate regions. Dr. Nathorst, as already stated, has recently obtained new facts which go to show that plants of two distinct hori- zons may have been intermixed in the collections sub- mitted to Heer. ' Journal of the 212 THE GEOLOGICAL HISTORY OF PLANTS. Between 1870 and 1873 my attention was turned to the two subfloras intermediate between those of the Devo- nian and the coal-formation, the floras of the Lower Carboniferous (Subcarboniferous of some American geol- ogists) and the Millstone Grit, and in a report upon these * similar deductions were expressed. It was stated that in Newfoundland the coal-beds seem to belong to the Millstone Grit series, and as we proceed southward they belong to progressively newer portions of the Car- boniferous system. The same fact is observed in the coal-beds of Scotland, as compared with those of Eng- land, and it indicates that the coal-formation flora, like that of the Devonian, spread itself from the north, and this accords with the somewhat extensive occurrence of Lower Carboniferous rocks and fossils in the Parry Islands and elsewhere in the arctic regions. Passing over the comparatively poor flora of the earlier Mesozoic, consisting largely of cycads, pines, and ferns, and as yet little known in the arctic, and which may have originated in the south, though represented, accord- ing to Heer, by the supposed Jurassic flora of Siberia, we find, especially at Kome and Atane in Greenland, an in- teresting occurrence of those earliest precursors of the truly modern forms of plants which appear in the Creta- ceous, the period of the English chalk and of the New Jersey greensands. There are two plant-groups of this age in Greenland ; one, that of Kome, consists almost en- tirely of ferns, cycads, and pines, and is of decidedly Mesozoic aspect. This is called Lower Cretaceous. The other, that of Atane, holds remains of many modern tem- perate genera, as Populus, Myrica, Ficus, Sassafras, and Magnolia. This is regarded as Upper Cretaceous. Eest- ing upon these Upper Cretaceous beds, without the inter- * "Fossil Plants of Lower Carboniferous and Millstone Grit Forma- tions of Canada," pp. 47, ten plates, Montreal, 1873. GENERAL LAWS OF ORIGIN AND MIGRATION. 243 vention of any other formation,* are beds rich in plants of much more modern appearance, and referred by Heer to the Miocene period, a reference, as we have seen, not warranted by comparison with the Tertiary plants of Eu- rope or of America. Still farther north this so-called Miocene assemblage of plants appears in Spitzbergen and Grinnell Land ; but there, owing to the predominance of trees allied to the spruces, it has a decidedly more boreal character than in Greenland, as might be anticipated from its nearer approach to the pole.f If now we turn to the Cretaceous and Tertiary floras of western America, as described by Lesquereux, New- berry, and others, we find in the lowest Cretaceous rocks there known — those of the Dakota group — which may be in the lower part of the Middle Cretaceous, a series of plants J essentially similar to those of the so-called Upper Cretaceous of Greenland. They occur in beds indicating land and fresh-water conditions as prevalent at the time over great areas of the interior of America. But over- lying this plant-bearing formation we have an oceanic limestone (the Niobrara), corresponding in many respects to the European chalk, and extending far north into the British territory,* indicating that the land of the Lower Cretaceous was replaced by a vast Mediterranean Sea, filled with warm water from the equatorial currents, and not invaded by cold waters from the north. This is suc- ceeded by thick Upper Cretaceous deposits of clay and sandstone, with marine remains, though very sparsely * Nordenskiold, " Expedition to Greenland," " Geological Magazine," 1872. f Yet even here the bald cypress (Taxodium distichwn}, or a tree nearly allied to it, is found, though this species is now limited to the Southern States. Fieldcn and De Ranee, " Journal of the Geological So- ciety," 1878. J Lesquereux, " Report on Cretaceous Flora." * G. M. Dawson, " Report on Forty-ninth Parallel." 241 THE GEOLOGICAL HISTORY OF PLANTS. distributed ; and these show that further subsidence or denudation in the north had opened a way for the arctic currents, killing out the warm-water animals of the Nio- brara group, and filling up the Mediterranean of that period. Of the flora of these Upper Cretaceous periods, which must have been very long, we know something in the interior regions, from the discovery of a somewhat rich flora in the Dunvegan beds of the Peace Kiver dis- trict, on the northern shore of the great Cretaceous Medi- terranean;* and on the coast of British Columbia we have the remarkable Cretaceous coal-field of Vancouver Island, which holds the remains of plants of modern genera, and, indeed, of almost as modern aspect as those of the so-called Miocene of Greenland. They indicate, however, a warmer climate as then prevalent on the Pa- cific coast, and in this respect correspond with a peculiar transition flora, intermediate between the Cretaceous and Eocene or earliest Tertiary of the interior regions, and which is described by Lesquereux as the Lower Lig- nitic. Immediately above these Upper Cretaceous beds we have the great Lignite Tertiary of the West — the Laramie group of recent American reports — abounding in fossil plants, at one time regarded as Miocene, but now known to be Lower Eocene, though farther south extending up- ward toward the Miocene age. f These beds, with their characteristic plants, have been traced into the British territory north of the forty-ninth parallel, and it has been shown that their fossils are identical with those of the * " Reports of Dr. G. M. Dawson, Geological Survey of Canada." Also, " Transactions of the Royal Society of Canada," vol. i. f Lesquereux's "Tertiary Flora"; "White on the Laramie Group"; Stevenson, " Geological Relations of Lignitic Groups," American Philo- sophical Society, June, 1875; Dawson, "Transactions of the Royal So- ciety of Canada," vol. iv. ; Ward, " Bulletin of United States Geological Survey." GENERAL LAWS OF ORIGIN AND MIGRATION. 245 IcKenzie Kiver valley, described by Heer as Miocene, and probably also with those of Alaska, referred to the same age.* Now this truly Eocene flora of the temperate and northern parts of America has so many species in common with that called Miocene in Greenland that its identity can scarcely be doubted. These facts have led to scepticism as to the Miocene age of the upper plant- bearing beds of Greenland, and more especially Mr. J. Starkie Gardner has ably argued, from comparison with the Eocene flora of England and other considerations, that they are really of that earlier date, f In looking at this question, we may fairly assume that no climate, however equable, could permit the vegeta- tion of the neighbourhood of Disco in Greenland to be exactly identical with that of Colorado and Missouri, at a time when little difference of level existed in the two regions. Either the southern flora migrated north in consequence of a greater amelioration of climate, or the northern flora moved southward as the climate became colder. The same argument, as Gardner has ably shown, applies to the similarity of the Tertiary plants of temper- ate Europe to those of Greenland. If Greenland required a temperature of about 50°, as Heer calculates, to main- tain its Eocene flora, the temperature of England and that of the Southwestern States must have been higher, though probably more equable, than at present. We cannot certainly affirm anything respecting the migrations of these floras, but there are some probabilities which deserve attention. The ferns and cycads of the so-called Lower Cretaceous of Greenland are nothing but a continuation of the previous Jurassic flora. Now this was established at an equally early date in the Queen * G. M. Dawson, " Report on the Geology of the Forty-ninth Parallel," where full details on these points may be found. " Transactions of the Royal Society of Canada," vol. iv. f "Nature," December 12, 1878. 246 THE GEOLOGICAL HISTORY OF PLANTS. Charlotte Islands,* and still earlier in Virginia. f The presumption is, therefore, that it came from the south. It has, indeed, the facies of a southern hemisphere and insular flora, and probably spread itself northward as far as Greenland, at a time when our northern continents were groups of islands, and when the ocean currents were carrying warm water far toward the arctic regions. The flora which succeeds this in the sections at Atane has no, special affinities with the southern hemisphere, and is of a more temperate and continental character. J It is not necessarily Upper Cretaceous, since it is similar to that of the Dakota group farther south, and this is at least Middle Cretaceous. This flora must have originated either somewhere in temperate America or within the Arctic circle, and it must have replaced the older one by virtue of increasing coolness and continental character of climate. It must, therefore, have been connected with that elevation of the land which took place at the begin- ning of the Cretaceous. During this elevation it spread over all western America at one time or another, and, as the land again subsided under the sea of the Niobrara chalk, it assumed an aspect more suited to a warm cli- mate, but still held its place on such islands as remained above water along the Pacific coast and in the north, and it continued to exist on these islands till the colder seas * " Reports of the Geological Survey of Canada." f Fontaine has well described the Mesozoic flora of Virginia, " Ameri- can Journal of Science," January, 1879, and " Report on Early Mesozoic Floras." J In the " Proceedings of the Royal Society of Tasmania," 1887, Mr. R. M. Johnston, F. L. S., states that in the Miocene beds of Tasmania trees of European genera abound. The Mesozoic flora of that island is of the usual conifero-cycadean type. Ettingshausen makes a similar statement in the u Geological Magazine " respecting the Tertiary flora of Australia and New Zealand, stating that, like the Tertiary floras of Europe, they have a mixed character, being partly of types now belonging to the north- ern hemisphere. GENERAL LAWS OF ORIGIN AND MIGRATION. 247 the Upper Cretaceous had again given place to the warm plains and land-locked brackish seas or fresh-water lakes of the Laramie period (Eocene). Thus the true Upper Cretaceous marks a cool period intervening be- tween the so-called Upper Cretaceous (really Middle Cre- taceous) and the so-called Miocene (really Lower Eocene) floras of Greenland. This latter established itself in Greenland, and prob- ably all around the Arctic circle, in the warm period of the earliest Eocene, and, as the climate of the northern hemisphere became gradually reduced from that time till the end of the Pliocene, it marched on over both conti- nents to the southward, chased behind by the modern arctic flora, and eventually by the frost and snow of the Glacial age. This history may admit of correction in de- tails ; but, so far as present knowledge extends, it is in the main not far from the truth. Perhaps the first great question which it raises is that as to the causes of the alternations of warm and cold cli- mates in the north, apparently demanded by the vicissi- tudes of the vegetable kingdom. Here we may set aside the idea that in former times plants were suited to endure greater cold than at present. It is true that some of the fossil Greenland plants are of unknown genera, and many are species new to us ; but we are on the whole safe in affirming that they must have required conditions similar to those necessary to their modern representatives, except within such limits as we now find to hold in similar cases among existing plants. Still we know that at the present time many species found in the equable climate of Eng- land will not live in Canada, though species to all appear- ance similar in structure are native here. There is also some reason to suppose that species when new may have greater hardiness and adaptability than when in old age and verging toward extinction. In any case these facts can account for but a small part of the phenomena, which 248 THE GEOLOGICAL HISTORY OF PLANTS. require to be explained by physical changes affecting the earth as a whole, or at least the northern hemisphere. Many theoretical views have been suggested on this sub- ject, and perhaps the most practical way of disposing of these will be first to set aside a number which are either precluded by the known facts, incapable of producing the effects, or altogether uncertain as to their possible occurrence. 1. In this class we may place the theory that the poles of the earth have changed their position. Independently of astronomical objections, there is good geological evi- dence that the poles of the earth must have been nearly in their present places from the dawn of life until now. From the Laurentian upward, those organic limestones which mark the areas where warm and shallow equatorial water was spreading over submerged continents are so disposed as to prove the permanence of the poles. In like manner all the great foldings of the crust of the earth have followed lines which are parts of great circles tangent to the existing polar circles. So, also, from the Cambrian age the great drift of sediment from the north has fol- lowed the line of the existing Arctic currents from the northeast to the southwest, throwing itself, for example, along the line of the Appalachian uplifts in eastern America, and against the ridge of the Cordilleras in the west. 2. Some of the above considerations, along with astro- nomical evidence, prevent us from assuming any consid- erable change in the obliquity of the axis of the earth during geological time. 3. That the earth and the sun have diminished in heat during geological time seems probable ; but physical and geological facts alike render it certain that this influ- ence could have produced no appreciable effect, even in the times of the earliest floras, and certainly not in the case of Tertiary vegetation. GENERAL LAWS OF ORIGIN AND MIGRATION. 249 4. It has been supposed that the earth may have at different times traversed more or less heated zones of space, giving alternations of warm and cold temperature. No such differences in space are, however, known, nor does there seem any good ground for imagining their ex- istence. 5. The heat of the sun is known to be variable, and the eleven years' period of sun-spots has recently attracted much attention as producing appreciable effects on the seasons. There may possibly be longer cycles of solar energy, or the sun may be liable, like some variable stars, to paroxysms of increased energy. Such changes are possible, and may fairly be taken into the account, pro- vided that we fail to find known causes sufficient to ac- count for the phenomena. Of well-known causes there seem to be but three. These are : First, that urged by Lyell — viz., the varying distribution of land and water along with that of marine currents ; secondly, the varying eccentricity of the earth's orbit, along with the precession of the equinoxes, and the effects of this on oceanic circulation, as illustrated by Croll ; thirdly, the different conditions of the earth's atmosphere with reference to radiation, as argued by Tyn- dall and Hunt. As these causes are all founded on known facts, and not exclusive of each other, we may consider them together. I shall take the Lyellian theory first, re- garding it as the most important, and the best supported by geological facts. We know that the present distribution of land and water greatly influences climate, more especially by af- fecting that of the ocean currents and of the winds, and by the different action of land as compared with water in the reception and radiation of heat. The present distri- bution of land gives a large predominance to the arctic and sub-arctic regions, as compared with the equatorial and with the antarctic ; and we might readily imagine 250 THE GEOLOGICAL HISTORY OF PLANTS. other distributions that would give very different results. But this is not an imaginary case. We know that, while the forms and positions of the great continents have been fixed from a very early date, they have experienced many great submergences and re-elevations, and that these have occurred in somewhat regular sequence, as evidenced by the cyclical alternations of organic limestones and earthy sediments in successive geological formations. An example bearing on our present subject may serve to illustrate this. In the latter part of the Upper Silu- rian period (the Lower Helderberg age), vast areas of the American continent* were covered with an ocean in which were deposited organic limestones whose fossils show that this great interior sea was pervaded by equa- torial waters bringing food and warmth, while the in- cipient ranges of the Appalachians on the east, and the Cordilleras on the west, and the Laurentinn axis on the north, fenced off from it the colder arctic waters. How different must the climate of America and of the region north of it have been in these circumstances from that which prevails at present, or from that which prevailed in certain other periods, when it was open to the incur- sions of the arctic ice-laden currents, bearing loads of fine sediment ! f It was in these circumstances, and in the similar circumstances in which the great Corniferous limestone of the Devonian was deposited — a limestone showing in its rich coral fauna even warmer waters than those of the Lower Helderberg — that the Devonian flora * See a memoir and map by Prof. Hall, " Reports of the Regents of New York," 1874-'75. f It seems certain that the faunae of the old limestones, like the Tren- ton, Niagara, Lower Helderberg, and Corniferous, belong to warm and sheltered sea areas, and that those rich in graptolites and trilobites, en- closed in muddy sediments, belong to the colder arctic waters. Such arctic faunae are those of the Quebec group and of the Utica shale, and to some extent that of the Hamilton group. GENERAL LAWS OF ORIGIN AND MIGRATION. 251 took its origin in the north and advanced southward over new lands in process of emergence from the sea. The somewhat similar condition evidenced by the Lower Car- boniferous limestone preceded the advent of the great and ich flora of the coal-formation. Lyell's theory on this subject has, I think, in some re- snt publications, been somewhat misapprehended. It is true that he stated hypothetically two contrasted con- ditions of distribution, in one of which all the land was equatorial, in another all polar ; but he did not suppose that these conditions had actually occurred ; and even in his earlier editions, before the recent discoveries and dis- cussions as to ocean currents, he was always careful to at- tach due value to these in connection with subsidences and elevations.* In his later editions he introduced more full references to current action, and also stated CrolPs theory, but still maintained the validity of his original conclusions. The sufficiency of this Lyellian theory to account for the facts, in so far as plants are concerned, may, I think, be inferred from the course of the isothermal lines at present. The south end of Greenland is on the latitude of Christiania in Norway on the one hand, and of Fort Liard in the Peace Eiver region on the other ; and while Greenland is clad in ice and snow, wheat and other grains, and the ordinary trees of temperate climates, grow at the latter places, f It is evident, therefore, that only excep- tionally unfavourable circumstances prevent the Greenland area from still possessing a temperate flora, and these un- favourable circumstances possibly tell even on the locali- ties with which we have compared it. Further, the mouth of the McKenzie River is in the same latitude with * See " Principles of Geology," edition of 1840, chapter vii. f See "Macoun's Report," "Geological Survey of Canada," and Rich- ardson's " Boat Voyage." 252 THE GEOLOGICAL HISTORY OF PLANTS. Disco, near which are some of the most celebrated locali- ties of fossil Cretaceous and Tertiary plants. Yet the mouth of the McKenzie Eiver enjoys a much more favour- able climate and has a much more abundant flora than Disco. If north Greenland were submerged, and low land reaching to the south terminated at Disco, and if from any cause either the cold currents of Baffin's Bay were arrested, or additional warm water thrown into the North Atlantic by the Gulf Stream, there is nothing to prevent a mean temperature of 45° Fahr. from prevailing at Disco ; and the estimate ordinarily formed of the re- quirements of its extinct floras is 50°,* which is probably above rather than below the actual temperature required. Since, then, geological facts assure us of mutations of the continents much greater than those apparently re- quired to account for the changes of climate implied in the existence of the ancient arctic floras, it does not seem absolutely necessary to invoke any others, f If, however, there are other true causes which might either aid or counteract those above referred to, it may be well to consider them. Mr. Croll has, in his valuable work " Climate and Time," and in various memoirs, brought forward an in- genious astronomical theory to account for changes of climate. This theory, as stated by himself in a recent paper, J is that when the eccentricity of the earth's orbit is at a high value, and the northern winter solstice is in perihelion, agencies are brought into operation which make the southeast trade- winds stronger than the north- east, and compel them to blow over upon the northern * Heer. See, also, papers by Prof. Haughton and by Gardner in "Nature" for 1878. f Sir William Thomson, " Transactions of the Geological Society of Glasgow," February 22, 1878. \ " Cataclysmic Theories of Geological Climate," " Geological Maga- zine," May, 1878. GENERAL LAWS OF ORIGIN AND MIGRATION. 253 hemisphere as far as the Tropic of Cancer. The result is that all the great equatorial currents of the ocean are im- pelled into the northern hemisphere, which thus, in con- sequence of the immense accumulation of warm water, has its temperature raised, so that ice and snow must to a great extent disappear from the arctic regions. In the prevalence of the converse conditions, the arctic zone be- comes clad in ice, and the southern has its temperature raised. At the same time, according to Croll's calculations, the accumulation of ice on either pole would tend, by shifting the earth's centre of gravity, to raise the level of the ocean and submerge the land on the colder hemisphere. Thus a submergence of land would coincide with a cold condition, and emergence with increasing warmth. Facts already referred to, however, show that this has not al- ways been the case, but that in many cases submergence was accompanied with the influx of warm equatorial waters and a raised temperature, this apparently depend- ing on the question of local distribution of land and water ; and this in its turn being regulated not always by mere shifting of the centre of gravity, but by foldings occa- sioned by contraction, by equatorial subsidences resulting from the retardation of the earth's rotation, and by the ex- cess of material abstracted by ice and frost from the arctic regions, and drifted southward along the lines of arctic currents. This drifting must in all geological times have greatly exceeded, as it certainly does at present, the de- nudation caused by atmospheric action at the equator, and must have tended to increase the disposition to equa- torial collapse occasioned by retardation of rotation.* While such considerations as those above referred to * Croll, in " Climate and Time," and in a note read before the British Association in 1876, takes an opposite view; but this is clearly contrary to the facts of sedimentation, which show a steady movement of debris toward the south and southwest. 254: THE GEOLOGICAL HISTORY OF PLANTS. tend to reduce the practical importance of Mr. Croll's theory, on the other hand they tend to remove one of the greatest objections against it — namely, that founded on the necessity of supposing that glacial periods recur with astronomical regularity in geological time. They cannot do so if dependent on other causes inherent in the earth itself, and producing important movements of its crust. The third great cause of warmer climates in the past is the larger proportion of carbon dioxide, or carbonic- acid gas, in the atmosphere in early geological times, as proved by the immense amount of carbon now sealed up in limestone and coal, and which must at one time have been in the air. It has been shown that a very small additional quantity of this substance would so obstruct radiation of heat from the earth as to act almost like a glass roof. If, however, the quantity of carbonic acid, great at first, was slowly and regularly removed, even if, as suggested by Hunt, small additional supplies were gradually added from space, this cause could have affected only the very oldest floras. But it is known that some comets and meteorites contain carbonaceous matter, and this allows us to suppose that accessions of carbon may have been communicated at irregular intervals. If so, there may have been cycles of greater and less abundance of this substance, and an atmosphere rich in carbon dioxide might at one and the same time afford warmth and abund- dance of food to plants. It thus appears that the causes of ancient vicissitudes of climate are somewhat complex, and when two or more of them happened to coincide very extreme changes might result, having most important bearings on the distribu- tion of plants. This may help us to deal with the peculiarities of the great Glacial age, which may have been rendered excep- tionally severe by the combination of several of the causes of refrigeration. We must not suppose, however, that GENERAL LAWS OF ORIGIN AND MIGRATION. 255 the views of those extreme glacialists who suppose conti- nental ice-caps reaching half way to the equator are borne out by facts. In truth, the ice accumulating round the pole must have been surrounded by water, and there must have been tree-clad islands in the midst of the icy seas, even in the time of greatest refrigeration. This is proved by the fact that, in the Leda clay of eastern Canada, which belongs to the time of greatest submergence, and whose fossil shells show sea-water almost at the freezing- point, there are leaves of poplars and other plants which must have been drifted from neighbouring shores. Simi- lar remains occur in clays of like origin in the basin of the great lakes and in the West. These have been called " interglacial," but there is no evidence to prove that they are not truly glacial. Thus, while we need not suppose that plants existed within the Arctic circle in the Glacial age, we have evidence that those of the cold temperate and sub-arctic zones continued to exist pretty far north. At the same time the warm temperate flora would be driven to the south, except where sustained in insular spots warmed by the equatorial currents. It would return northward on the re-elevation of the land and the re- newal of warmth. If, however, our modern flora is thus one that has re- turned from the south, this would account for its poverty in species as compared with those of the early Tertiary. Groups of plants descending from the north have been rich and varied. Eeturning from the south they are like the shattered remains of a beaten army. This, at least, has been the case with such retreating floras as those of the Lower Carboniferous, the Permian, and the Jurassic, and possibly that of the Lower Eocene of Europe. The question of the supply of light to an arctic flora is much less difficult than some have imagined. The long summer day is in this respect a good substitute for a longer season of growth, while a copious covering of 256 THE GEOLOGICAL HISTORY OF PLANTS. winter snow not only protects evergreen plants from those sudden alternations of temperature which are more de- structive than intense frost, and prevents the frost from penetrating to their roots, but, by the ammonia which it absorbs, preserves their greenness. According to Dr. Brown, the Danish ladies of Disco long ago solved this problem.* He informs us that they cultivate in their houses most of our garden flowers — as roses, fuchsias, and geraniums — showing that it is merely warmth and not light that is required to enable a subtropical flora to thrive in Greenland. Even in Canada, which has a flora, richer in some respects than that of temperate Europe, growth is effectually arrested by cold for nearly six months, and though there is ample sunlight there is no vegetation. It is, indeed, not impossible that in the plans of the Creator the continuous summer sun of the arctic regions may have been made the means for the in- troduction, or at least for the rapid growth and multipli- cation, of new and more varied types of plants. Much, of course, remains to be known of the history of the old floras, whose fortunes 1 have endeavoured to sketch, and which seem to have been driven like shuttle- cocks from north to south, and from south to north, especially on the American continent, whose meridional extension seems to have given a field specially suited for such operations. This great stretch of the western continent, from north to south, is also connected with the interesting fact that, when new floras are entering from the arctic re- gions, they appear earlier in America than in Europe, and that in times when old floras are retreating from the south old genera and species linger longer in America. Thus, in the Devonian and Cretaceous new forms of those periods appear in America long before they are recognized * "Florula Discoana," Botanical Society of Edinburgh, 1868. GENERAL LAWS OF ORIGIN AND MIGRATION. 257 258 THE GEOLOGICAL HISTORY OF PLANTS. nature. Even then we shall perhaps be able to compre- hend only the means by which, after specific types have been created, they may, by the culture of their Maker, be " sported " into new varieties or subspecies, and thus fitted to exist under different conditions or to occupy higher places in the economy of nature. Before venturing on such extreme speculations as some now current on questions of this kind, we would require to know the successive extinct floras as perfectly as those of the modern world, and to be able to ascertain to what extent each species can change either spontane- ously or under the influence of struggle for existence or expansion under favourable conditions, and under arctic semi-annual days and nights, or the shorter days of the tropics. Such knowledge, if ever acquired, it may take ages of investigation to accumulate. As to the origin and mode of introduction of succes- sive floras, I am, for the reasons above stated, not disposed to dogmatise, or to adopt as final any existing theory of the development of the vegetable kingdom. Still, some laws regulating the progress of vegetable life may be recognised, and I propose to state these in connection with the Palaeozoic floras, to which my own studies have chiefly related. Fossil plants are almost proverbially uncertain with reference to their accurate determination, and have been regarded as of comparatively little utility in the decision of general questions of palaeontology. This results prin- cipally from the fragmentary condition in which they have been studied, and from the fact that fragments of animal structures are more definite and instructive than corresponding portions of plants. It is to be observed, however, that our knowledge of fossil plants becomes accurate in proportion to the extent to which we can carry the study of specimens in the beds in which they are preserved, so as to examine more per- GENERAL LAWS OF ORIGIN AND MIGRATION. 259 feet examples than those usually to be found in museums. When structures are taken into the account, as well as external forms, we can also depend more confidently on our results. Further, the abundance of specimens to be obtained in particular beds often goes far to make up for their individual imperfection. The writer of these pages has been enabled to avail himself very fully of these advan- tages ; and on this account, if on no other, feels entitled to speak with some authority on theoretical questions. It is an additional encouragement to pursue the sub- ject, that, when we can obtain definite information as to the successive floras of any region, we thereby learn much as to climate and vicissitudes in regard to the extent of land and water ; and that, with reference to such points, the evidence of fossil plants, when properly studied, is, from the close relation of plants to those stations and climates, even more valuable than that of animal fossils. It is necessary, however, that in pursuing such in- quiries we should have some definite views as to the nature and permanence of specific forms, whether with reference to a single geological period or to successive periods ; and I may be excused for stating here some gen- eral principles, which I think important for our guidance. 1. Botanists proceed on the assumption, vindicated by experience, that, within the period of human observation, species have not materially varied or passed into each other. We may make, for practical purposes, the same assumption with regard to any given geological period, and may hold that for each such period there are specific types which, for the time at least, are invariable. 2. When we inquire what constitutes a good species for any given period, we have reason to believe that many names in our lists represent merely varietal forms or er- roneous determinations. This is the case even in the modern flora ; and in fossil floras, through the poverty of specimens, their fragmentary condition, and various states 260 THE GEOLOGICAL HISTORY OF PLANTS. of preservation, it is still more likely to occur. Every revision of any group of fossils detects numerous syn- onyms, and of these many are incapable of detection without the comparison of large suites of specimens. 3. We may select from the flora of any geological pe- riod certain forms, which I shall call specific types, which may for such period be regarded as unchanging. Having settled such types, we may compare them with similar forms in other periods, and such comparisons will not be vitiated by the uncertainty which arises from the com- parison of so-called species which may, in many cases, be mere varietal forms, as distinguished from specific types. Our types may be founded on mere fragments, provided that these are of such a nature as to prove that they be- long to distinct forms which cannot pass into each other, at least within the limits of one geological period. 4. When we compare the specific types of one period with those of another immediately precedent or subse- quent, we shall find that some continue unchanged through long intervals of geological time, that others are represented by allied forms regarded either as varietal or specific, and as derived or otherwise, according to the view which we may entertain as to the permanence of species. On the other hand, we also find new types not rationally deducible on any theory of derivation from those known in other periods. Further, in comparing the types of a poor period with those of one rich in spe- cies, we may account for the appearance of new types in the latter by the deficiency of information as to the for- mer ; where many new types appear in the poorer period this conclusion seems less probable. For example, new types appearing in poor formations, like the Lower Erian and Lower Carboniferous, have greater significance than if they appeared in the Middle Erian or in the Coal Measures. 5. When specific types disappear without any known successors, under circumstances in which it seems un- GENERAL LAWS OF ORIGIN AND MIGRATION. 261 likely that we should have failed to discover their con- tinuance, we may fairly assume that they have become extinct, at least locally ; and where the field of observa- tion is very extensive, as in the great coal-fields of Europe and America, we may esteem such extinction as practi- cally general, at least for the northern hemisphere. When many specific types become extinct together, or in close succession, we may suppose that such extinction resulted from physical changes ; but where single types disappear, under circumstances in which others of similar habit continue, we may not unreasonably conjecture that, as Pictet has argued in the case of animals, such types may have been in their own nature limited in duration, and may have died out without any external cause. 6. With regard to the introduction of specific types we have not as yet a sufficient amount of information. Even if we freely admit that ordinary specific forms, as well as mere varieties, may result from derivation, this by no means excludes the idea of primitive specific types originating in some other way. Just as the chemist, after analysing all compounds and ascertaining all allotropic forms, arrives at length at certain elements not mutually transmutable or derivable, so the botanist and zoologist must expect sooner or later to arrive at elementary specific types, which, if to be accounted for at all, must be explained on some principle distinct from that of derivation. The position of many modern biologists, in presence of this question, may be logically the same with that of the ancient alchemists with reference to the chemical elements, though the fallacy in the case of fos- sils may be of more difficult detection. Our business at present, in the prosecution of palaeobotany, is to discover, if possible, what are elementary or original types, and, hav- ing found these, to enquire as to the law of their creation. 7. In prosecuting such questions geographical rela- tions must be carefully considered. When the floras of 262 THE GEOLOGICAL HISTORY OF PLANTS. two successive periods have existed in the same region, and under circumstances that render it probable that plants have continued to grow on the same or adjoining areas throughout these periods, the comparison becomes direct, and this is the case with the Erian and Carbonifer- ous floras in northeastern America. But, when the areas of the two formations are widely separated in space as well as in time, any resemblances of facies that we may observe may have no connection whatever with an un- broken continuity of specific types. I desire, however, under this head, to affirm my con- viction that, with reference to the Erian and Carbonifer- ous floras of North America and of Europe, the doctrine of "homotaxis," as distinct from actual contemporaneity, has no place. The succession of formations in the Palaeo- zoic period evidences a similar series of physical phenom- ena on the grandest scale throughout the northern hemi- sphere. The succession of marine animals implies the continuity of the sea-bottoms on which they lived. The headquarters of the Erian flora in America and Europe must have been in connected or adjoining areas in the North Atlantic. The similarity of the Carboniferous flora on the two sides of the Atlantic, and the great number of identical species, proves a still closer connection in that period. These coincidences are too extensive and too fre- quently repeated to be the result of any accident of similar sequence at different times, and this more especially as they extend to the more minute differences in the feat- ures of each period, as, for instance, the floras of the Lower and Upper Devonian, and of the Lower, Middle, and Upper Carboniferous. 8. Another geographical question is that which relates to centres of dispersion. In times of slow subsidence of extensive areas, the plants inhabiting such areas must be narrowed in their range and often separated from one another in detached spots, while, at the same time, impor- GENERAL LAWS OF ORIGIN AND MIGRATION. 263 tank climatal changes must also occur. On the re-emer- gence of the land such of these species as remained would again extend themselves over their former areas of distri- bution, in so far as the new climatal and other conditions would permit. We would naturally suppose that the first of the above processes would tend to the elimination of varieties, the second, to their increase ; but, on the other hand, the breaking up of a continental flora into that of distinct islets, and the crowding together of many forms, might be a process fertile in the production of some varie- ties if fatal to others. Further, it is possible that these changes of subsidence may have some connection with the introduction, as well as with the extinction, even of specific types. It is cer- tain, at least, in the case of land-plants, that such types come in most plentifully immediately after elevation, though they are most abundantly preserved in periods of slow subsidence. I do not mean, however, that this con- nection is one of cause and effect ; there are, indeed, in- dications that it is not so. One of these is, that in some cases the enlargement of the area of the land seems to be as injurious to terrestrial species as its diminution. 9. Another point on which I have already insisted, and which has been found to apply to the Tertiary as well as to the Palaeozoic floras, is the appearance of new types within the arctic and boreal areas, and their migration southward. Periods in which the existence of northern land coincided with a general warm temperature of the northern hemisphere seem to have been those most fa- vourable to the introduction of new forms of land-plants. Hence, there has been throughout geological time a gen- eral movement of new floras from the Palaearctic and Nearctic regions to the southward. Applying the above considerations to the Erian and Carboniferous floras of North America, we obtain some data which may guide us in arriving at general conclu- 264: THE GEOLOGICAL HISTORY OF PLANTS. sions. The Erian flora is comparatively poor, and its types are in the main similar to those of the Carbonifer- ous. Of these types a few only reappear in the middle coal-formation under identical forms ; a great number ap- pear under allied forms ; some altogether disappear. The Erian flora of New Brunswick and Maine occurs side by side with the Carboniferous of the same region ; so does the Erian of New York and Pennsylvania with the Car- boniferous of those States. Thus we have data for the comparison of successive floras in the same region. In the Canadian region we have, indeed, in direct sequence, the floras of the Upper Silurian, the Lower, Middle, and Upper Erian, and the Lower, Middle, and Upper Car- boniferous, all more or less distinct from each other, and affording an admirable series for comparison in a region whose geographical features are very broadly marked. All these floras are composed in great part of similar types, and probably do not indicate very dissimilar general physical conditions, but they are separated from each other by the great subsidences of the Corniferous lime- stone and the Lower Carboniferous limestone, and by the local but intense subterranean action which has altered and disturbed the Erian beds toward the close of that period. Still, these changes were not universal. The Corniferous limestone is absent in Gaspe, and probably in New Brunswick, where, consequently, the Erian flora could continue undisturbed during that long period. The Carboniferous limestone is absent from the slopes of the Appalachians in Pennsylvania, where a retreat may have been afforded to the Upper Erian and Lower Car- boniferous floras. The disturbances at the close of the Erian were limited to those eastern regions where the great limestone-producing subsidences were unfelt, and, on the other hand, are absent in Ohio, where the sub- sidences and marine conditions were almost at a maxi- mum. GENERAL LAWS OF ORIGIN AND MIGRATION. 265 Bearing in mind these peculiarities of the area in question, we may now group in a tabular form the dis- tinct specific types recognised in the Erian system, indi- cating, at the same time, those which are represented by identical species in the Carboniferous, those represented by similar species of the same general type, and those not represented at all. For example, Catamites cannceformis extends as a species into the Carboniferous ; Aster ophyl- lites latifolia does not so extend, but is represented by closely allied species of the same type ; NematopJiyton disappears altogether before we reach the Carboniferous. Table of Erian and Carboniferous Specific Types. Erian types. Represented in Carboniferous— ii T2 & £1 S a «4 fr* Erian types. Represented in Carboniferous — By identi- cal types. +> « || fa 1 Syrin^oxylon mirabile 9 27 Cordaites Robbii . * 2. Nematoxylon 28. C. angustifolia 3. Nematophyton 29. Archaeopteris Jacksoni 4. Aporoxylon 30. Aneimites obtusa * 5. Ormoxylon 31. Platyphyllum Brownii. 6 Dadoxylon * 32. Cyclopteris varia * 7. Sigillaria Vanuxemii . . * 33. C. obtusa 8 S palpebra . . * 34. Neuropteris polymor- 9 Didymophyllum pha • 10 Calamodendron . . * 35. N. serrulata * 11. Calamites transitionis. . * 36. N. retorquata * 12 C cannseformis * 37. N. resecta 13. Asterophyllites scutige- ra 38. Megalopteris Dawsoni . 39. Sphenopteris Hcening- 14 A latifolia * hausi * 15 Annularia laxa 40 S Harttii * 16. Sphenophyllum anti- quum * 41. Hymenophyllites curti- lobus 17 Cyclostisjrna 42 H. obtusilobus •* 18 Arthrostifnna 43. Alethopteris discrepans * 19. Lepidodendron Gaspia- num . . . * 44. Pecopteris serrulata. . . 45. P. preciosa # 20 L cormgatum * 46 Trichomanites * 21 Lycopodites Matthewi # 47 Callipteris •X- 22 L. Richardsoni 48 Cardiocarpum * 23 Ptilophyton Vanuxemii 49 C Crampii 24. Lepidophloios antiquus # 50 Antholithes * 25 Psilophyton princeps 51 Trigonocarpum * 26. P. robustius . . 266 THE GEOLOGICAL HISTORY OF PLANTS. Of the above forms, fifty-one in all, found in the Erian of eastern America, all, except the last four, are certainly distinct specific types. Of these only four reappear in the Carboniferous under identical species, but no less than twenty-six reappear under representative or allied forms, some at least of which a deriyationist might claim as modified descendants. On the other hand, nearly one half of the Devonian types are unknown in the Carbon- iferous, while there remain a very large number of Car- boniferous types not accounted for by anything known in the Devonian. Further, a very poor flora, including only two or three types, is the predecessor of the Erian flora in the Upper Silurian, and the flora again becomes poor in the Upper Devonian and Lower Carboniferous. Every new species discovered must more or less modify the above statements, and the whole Erian flora of America, as well as the Carboniferous, requires a thorough comparison with that of Europe before general conclusions can be safely drawn. In the mean time I may indicate the direction in which the facts seem to point by the following general statements : 1. Some of the forms reckoned as specific in the De- vonian and Carboniferous may be really derivative races. There are indications that such races may have originated in one or more of the following ways : (1) By a natural tendency in synthetic types to become specialised in the direction of one or other of their constituent elements. In this way such plants as Artliro stigma and PsilopJiyton may have assumed new varietal forms. (2) By embry- onic retardation or acceleration,* whereby certain species may have had their maturity advanced or postponed, thus giving them various grades of perfection in reproduction and complexity of structure. The fact that so many Erian and Carboniferous plants seem to be on the con- * In the manner illustrated by Hyatt and Cope. fin GENERAL LAWS OF ORIGIN AND MIGRATION. 267 es of the groups of Acrogens and Gymnosperms may be supposed favourable to such exchanges. (3) The con- traction and breaking up of floras, as occurred in the Middle Erian and Lower Carboniferous, may have been eminently favourable to the production of such varietal forms as would result from what has been called the " struggle for existence." (4) The elevation of a great expanse of new land at the close of the Middle Erian and the beginning of the coal period would, by permitting the extension of species over wide areas and fertile soils, and by removing the pressure previously existing, be eminently favourable to the production of new, and es- pecially of improved, varieties. 2. Whatever importance we may attach to the above supposed causes of change, we still require to account for the origin of our specific types. This may forever elude our observation, but we may at least hope to ascer- tain the external conditions favourable to their produc- tion. In order to attain even to this it will be necessary to inquire critically, with reference to every acknowl- edged species, what its claims to distinctness are, so that we may be enabled to distinguish specific types from mere varieties. Having attained to some certainty in this, we may be prepared to inquire whether the condi- tions favourable to the appearance of new varieties were also those favourable to the creation of new types, or the reverse — whether these conditions were those of compres- sion or expansion, or to what extent the appearance of new types may be independent of any external condi- tions, other than those absolutely necessary for their existence. I am not without hope that the further study of fossil plants may enable us thus to approach to a com- prehension of the laws of the creation, as distinguished from those of the continued existence of species. 3. In the present state of our knowledge we have no good ground either to limit the number of specific types 268 THE GEOLOGICAL HISTORY OF PLANTS. beyond what a fair study of our material may warrant, or to infer that such primitive types must necessarily have been of low grade, or that progress in varietal forms has always been upward. The occurrence of such an advanced and specialised type as that of Dadoxylon in the Middle Devonian should guard us against these errors. The creative process may have been applicable to the highest as well as to the lowest forms, and subse- quent deviations must have included degradation as well as elevation. I can conceive nothing more unreasonable than the statement sometimes made that it is illogical or even absurd to suppose that highly organised beings could have been produced except by derivation from pre- viously existing organisms. This is begging the whole question at issue, depriving science of a noble department of inquiry on which it has as yet barely entered, and an- ticipating by unwarranted assertions conclusions which may perhaps suddenly dawn upon us through the inspira- tion of some great intellect, or may for generations to come baffle the united exertions of all the earnest pro- moters of natural science. Our present attitude should not be that of dogmatists, but that of patient workers content to labour for a harvest of grand generalisations which may not come till we have passed away, but which, if we are earnest and true to Nature and its Creator, may reward even some of us. Within the human period great changes of distribu- tion of plants have occurred, chiefly through the agency of man himself, and we have had ample evidence that plants are able to establish themselves and prosper in climates and conditions to which unaided they could not have transported themselves, as, for instance, in the case of European weeds naturalised in Australia and New Zea- land. There is, however, no reason to believe that any specific change has occurred to any plant within the Pleis- tocene or modern period. GENERAL LAWS OF ORIGIN AND MIGRATION. 269 In a recent address, delivered to the biological section of the British Association, Mr. Carruthers has discussed this question, and has shown that the earliest vegetable specimens described by Dr. Schweinfurth from the Egypt- ian tombs present no appearance of change. This fact appears also in the leaves and other organs of plants pre- served in the nodules in the Pleistocene clays of the Ot- tawa, and in specimens of similar age found in various places in Britain and the continent of Europe.* The difficulties attending the ordinary theories of evolution as applied to plants have been well set forth by the same able botanist in his "Presidential Address to the Geological Association in. 1877," a paper which de- serves careful study. One of his illustrations is that ancient willow, Salix polaris, referred to in a previous chapter, which now lives in the arctic regions, and is found fossil in the Pleistocene beds at Cromer and at Bovey Tracey. He notes the fact that the genus Salix is a very varia- ble one, including 19 subgeneric groups and 160 species, with no less than 222 varieties and 70 hybrids. Salix polaris belongs to a subgeneric group containing 29 species, which are arranged in four sections, that to which S. polaris belongs containing six species. Now it is easy to construct a theoretical phylogeny of the deri- vation of the willows from a supposed ancestral source, but when we take our little 8. polaris we find that this one twig of our ancestral tree takes us back without change to the Glacial period. The six species would take us still farther, and the sections, subgenera, and genus at the same rate would require an incalculable amount of past time. He concludes the inquiry in the following terms : * "Proceedings British Association," 1886, "Pleistocene Plants of Canada,'1 Canadian Naturalist, 1866. 270 THE GEOLOGICAL HISTORY OF PLANTS. "But when we have reached the branch representing the generic form we have made but little progress in the phylogenesis of Salix. With Populus this genus forms a small order, Salicineae. The two genera are closely allied, yet separated by well-marked characters ; it is not, however, difficult to conceive of both having sprung from a generalised form. But there is no record of such a form. The two genera appear together among the earliest known dicotyledons, the willows being repre- sented by six and the poplars by nine species. The or- dinal form, if it ever existed, must necessarily be much older than the period of the Upper Cretaceous rocks, that is, than the period to which the earliest known dicotyledons belong. "The Salicineae are related to five other natural orders, in all of which the apetalous flowers are arranged in catkins. These different though allied orders must be led up by small modifications to a generalised amen- tiferous type, and thereafter the various groups of apetal- ous plants by innumerable eliminations of differentiating characters until the primitive form of the apetalous plant is reached. Beyond this the uncurbed imagination will have more active work in bridging over the gap between Angiosperms and Gymnosperms, in finding the interme- diate forms that led up to the vascular cryptogams, and on through the cellular plants to the primordial germ. Every step in this phylogenetic tree must be imagined. The earliest dicotyledon takes us not a step farther back in the phylogenetic history of Salix than that supplied by existing vegetation. All beyond the testimony of our living willows is pure imagination, unsupported by a single fact. So that here, also, the evidence is against evolution, and there is none in favour of it." It is easy to see that similar difficulties beset every attempt to trace the development of plants on the prin- ciple of slow and gradual evolution, and we are driven GENERAL LAWS OF ORIGIN AND MIGRATION. back on the theory of periods of rapid origin, as we have already seen suggested by Saporta in the case of the Cre- taceous dicotyledons. Such abrupt and plentiful intro- duction of species over large areas at the same time, by whatever cause effected — and we are at present quite igno- rant of any secondary causes — becomes in effect something not unlike the old and familiar idea of creation. Science must indeed always be baffled by questions of ultimate origin, and, however far it may be able to trace the chain of secondary causation and development, must at length find itself in the presence of the great Creative Mind, who is " before all things and in whom all things con- sist." APPENDIX. I.— COMPARATIVE VIEW OF THE SUCCESSIVE PALAEO- ZOIC FLORAS OF NORTHEASTERN AMERICA AND GREAT BRITAIN. IN eastern Canada there is a very complete series of fossil plants, extending from the Silurian to the Permian, and intermediate in its species between the floras of interior America and of Europe. I may use this succession, mainly worked out by myself,* to summarise the various Palaeozoic floras and sub-floras, in order to give a condensed view of this portion of the history of the vegetable kingdom, and to direct attention to the important fact, too often overlooked, that there is a definite succession of fossil plants as well as of animals, and that this is important as a means of determining geological horizons. A British list for comparison has been kindly prepared for me by Mr. R. Kidston, F. Gr. S. For lists referring to the west- ern and southern portions of America, I may refer to the reports of Lesquereux and Fontaine and White, f In this connection I am reminded, by an excellent little paper of M. Zeiller, J on Carboniferous plants from the region of the Zambesi, in Africa, that the flora which in the Carboniferous period extended over the temperate portions of the northern hemisphere and far into the arctic, also passed across the equator and prevailed in the south- ern hemisphere. Of eleven species brought from the Zambesi by M. Lapierre and examined by M. Zeiller, all were identical with Euro- * "Acadian Geology," "Reports on Fossil Plants of Canada," Geo- logical Survey of Canada. f " Geological Surveys of Pennsylvania, Ohio, and Illinois." j Paris, 1883. 274 APPENDIX. pean species of the upper coal-formation, and the same fact has been observed in the coal flora of the Cape Colony.* These facts bear testimony to the remarkable uniformity of climate and vegetation in the coal period, and I perfectly agree with Zeiller that they show, when taken in connection with other parallelisms in fossils, an actual contemporaneousness of the coal flora over the whole world. 1. CARBONIFEROUS FLORA. (1) Permo- Carboniferous Sub-Flora : This occurs in the upper member of the Carboniferous system of Nova Scotia and Prince Edward Island, originally named by the writer the Newer Coal-formation, and more recently the Permo- Carboniferous, and the upper beds of which may not improbably be contemporaneous with the Lower Permian or Lower Dyas of Europe. In this formation there is a predominance of red sandstones and shales, and it contains no productive beds of coal. Its fossil plants are for the most part of species found in the Middle or Productive Coal-formation, but are less numerous, and there are a few new forms akin to those of the European Permian. The most characteristic species of the upper portion of the formation, which has the most decidedly Permian aspect, are the following : Dadoxylon materiarium, Dawson. * Walchia (Araucarites) robusta, Dn. * W. (A.) gracilis, Dn. * W. imbricatula, Dn. Catamites SucJcovii, Brongt. C. Cistii, Brongt. * C. gigas, Brongt. Neuropteris rarinervis, Bunbury. Alethopteris nervosa, Brongt. Pecopteris arborescens, Brongt. * P. rigida, Dn. P. oreopteroides, Brongt. * Cordaites simplex, Dn. Of these species, those marked with an asterisk have not yet been found in the middle or lower members of the Carboniferous system. They will be found described, and several of them figured, in my " Report on the Geology of Prince Edward Island." f The others are * Grey, " Journal of the Geological Society," vol. xxvii. t 1871. APPENDIX. 275 common and widely diffused Carboniferous species, some of which have extended to the Permian period in Europe as well. From the upper beds, characterised by these and a few other species, there is a gradual passage downward into the productive coal-measures, and a gradually increasing number of true coal-formation species. It is worthy of remark here that the association in the Permo- Carboniferous of numerous trunks of Dadoxylon with the branches of Walchia and with fruits of the character of Trigonocarpa, seems to show that these were parts of one and the same plant. This formation represents the Upper Barren Measures of West Virginia, which are well described by Fontaine and White,* and the reasons which these authors adduce for considering the latter equiv- alent to the European Permian will apply to the more northern and eastern deposits as well, though these have afforded fewer species of plants, and are apparently less fully developed. (2) Coal-formation Sub-Fiord : The Middle or Productive Coal-formation, containing all the beds of coal which are mined in Nova Scotia and Cape Breton, is the head- quarters of the Carboniferous flora. From this formation I have catalogued f one hundred and thirty-five species of plants ; but, as several of these are founded on imperfect specimens, the number of actual species may be estimated at one hundred and twenty. Of these more than one half are species common to Europe and America. No less than nineteen species are Sigillarice, and about the same number are Lepidodendra. About fifty are ferns and thirteen are Calamites, Asterophyllites, and SpUenophylla. The great abundance and number of species of Sigillarice, Lepidodendra, and ferns are characteristic of this sub-flora ; and among the ferns certain species of Neuropteris, Pecopteris, Alethopteris, and SpTienopteris greatly preponderate. These beds are the equivalents of the Middle Coal-measures, or Productive Coal-measures of Pennsylvania, Ohio, &c., and of the coal-formation proper of various European countries. Very many of the species are common to Nova Scotia and Pennsylvania ; but in proceeding westward the number of identical species seems to di- minish. * " Report on the Permian Flora of Western Virginia and South Pennsylvania," 1880. f " Acadian Geology," and " Report on Flora of Lower Carbonifer- ous," 1873. 276 APPENDIX. (3) The Millstone Grit Sub-Flora : In this formation the abundance of plants and the number of species are greatly diminished.* Trunks of coniferous trees of the species Dadoxylon Acadianum, having wide wood-cells with three or more series of discs and complex medullary rays, become charac- teristic. Calamites undulatum is abundant and seems to replace C. Suckovii, though C. cannceformis and C. cistii continue. Sigillarice, become very rare, and the species of Lepidodendron are few, and mostly those with large leaf -bases. Lepidophloios still continues, and Cordaites abounds in some beds. The ferns are greatly reduced, though a few characteristic coal-formation species occur, and the genus Cardiopteris appears. Beds of coal are rare in this formation ; but where they occur there is in connection with them a remarkable anticipation of the rich coal-formation flora, which would thus seem to have existed locally in the Millstone Grit period, but to have found itself limited by generally unfavorable conditions. In Ameri- ca, as in Europe, it is in the north that this earlier development of the coal-flora occurs, while in the south there is a lingering of old forms in the newer beds. In Newfoundland and Cape Breton, for instance, as well as in Scotland, productive coal-beds and a greater variety of species of plants occur in this formation. The following would appear to be the equivalents of this forma- tion, in flora and geological position : 1. The Serai Conglomerate of Rogers in Pennsylvania, &c. 2. The Lower Coal-formation Conglomerate and Chester groups of Illinois (Worthen). 8. The Lower Carboniferous Sandstone of Kentucky, Alabama, and Virginia. 4. The Millstone Grit and Yoredale rocks of northern England, and the Culmiferous of Devonshire. 5. The Moor rock and Lower Coal-measures of Scotland. 6. Flagstones and Lower Shales of the south of Ireland, and Mill- stone Grit of the north of Ireland. 7. The Jiingste Grauwacke of the Hartz, Saxony, and Silesia. (4) The Carboniferous Limestone Series : This affords few fossil plants in eastern America, and in so far as known they are similar to those of the next group. In Scotland it is richer in plants, but, according to Mr. Kidston, these are largely * " Report on Fossil Plants of the Lower Carboniferous and Millstone Grit of Canada," 18Y3. APPENDIX. 277 similar to those of the underlying beds, though with some species which extend upward into the Millstone Grit. In Scotland the alga named Spiropliyton and Archceocalamites radiatus — which in Amer- ica are Erian — appear in this formation. (5) The Lower Carboniferous Sub-Flora : This group of plants is best seen in the shales of the Horton series, under the Lower Carboniferous marine limestones. It is small and peculiar. The most characteristic species are the follow- ing: Dadoxylon (Palc&oxylori) antiquius, Dn. — A species with large medullary rays of three or more series of cells. Lepidodendron corrugatum, Dn. — A species closely allied to L. Veltheimianum of Europe, and which is its American representative. This is perhaps the most characteristic plant of the formation. It is very abundant, and presents very protean appearances, in its old stems, branches, twigs, and Knorria forms. It had well-character- ised stigmaria roots, and constitutes the oldest erect forest known in Nova Scotia. Lepidodendron tetragonum, Sternberg. L. obovatum, Sternb. L. aculeafum, Sternb. L. dichotomum, Sternb. The four species last mentioned are comparatively rare, and the specimens are usually too imperfect to render their identification certain, but Lepidodendra are especially characteristic trees of this horizon. Cyclopteris (Aneimites) Acadica, Dn. — A very characteristic fern, allied in the form of its fronds to C. tenuifolia of Goeppert, to C. nana of Eichwald, and to Adiantites antiquus of Stur. Its fructifi- cation, however, is nearer to that of Aneimia than to that of Adi- antum. Ferns of the genera Cardiopteris and HymenopJiyllites also occur, though rarely. PtilopTiyton plumula, Dn. — This is the latest appearance of this Erian genus, which also occurs in the Lower Carboniferous of Eu- rope and of the United States. Cordaites borassifolia, Brongt. On the whole, this small flora is markedly distinct from that of the Millstone Grit and true coal -formation, from which it is sepa- rated by the great length of time required for the deposition of the marine limestones and their associated beds, in which no land-plants 278 APPENDIX. have been found ; nor is this gap filled up by the conglomerates and coarse arenaceous beds which, as I have explained in " Acadian Ge- ology," in some localities take the place of the limestones, as they do also in the Appalachian region farther south. The palaBobotanical and strategraphical equivalents of this series abroad would seem to be the following : 1. The Vespertine group of Rogers in Pennsylvania. 2. The Kinderhook group of Worthen in Illinois. 3. The Marshall group of Winchell in Michigan. 4. The Waverley sandstone (in part) of Ohio. 5. The Lower or False Coal-measures of Virginia. 6. The Calciferous sandstones of McLaren, or Tweedian group of Tate in Scotland. 7. The Lower Carboniferous slate and Coomhala grits of Jukes in Ireland. 8. The Culm and Culm Grauwacke of Germany. 9. The Graywacke or Lower Coal-measures of the Vosges, as de- scribed by Schimper. 10. The Older Coal-formation of the Ural, as described by Eich- wald. 11. The so-called " Ursa Stage " of Heer includes this, but he has united it with Devonian beds, so that the name cannot be used ex- cept for the local development of these beds at Bear Island, Spitz- bergen. The Carboniferous plants of arctic America, Melville Isl- and, &c., as well as those of Spitzbergen, appear all to be Lower Carboniferous.* All of the above groups of rocks are characterised by the preva- lence of Lepidodendra of the type of L. corrugatum, L. Veltheimia- num, and L. Glincanum ; pines of the sub-genus Pitus of Wit ham, Palceoxylon of Brongniart, and peculiar ferns of the genera Cy- clopteris, Cardiopteris, Triphyllopteris, and Sphenopteris. In all the regions above referred to they form the natural base of the great Carboniferous system. In Virginia, according to Fontaine and White, types, such as Archceopteris, which in the north are Upper Erian, occur in this group. Unless there have been some errors in fixing the lower limit of the Vespertine, this would indicate a longer continuance of old forms in the south. * " Notes on Geological Map of the Northern Portion of the Dominion of Canada," by Dr. G. M. Dawson, 1887. I APPENDIX. 279 2. ERIAN FLORA. (1) Upper Erian Sub-Flora : This corresponds to the Catskill and Chemung of the New York series, and to the Upper Devonian of Europe. The flora of this formation, which consists mostly of sandstones, is not rich. Its most distinctive species on both sides of the Atlantic seem to be the ferns of the genus Archceopteris, along with species referred to the genus Cyclopteris, but which, in so far as their barren fronds are concerned, for the most part resemble Archceopteris. The characteristic American species are Archceopteris Jacksoni, A. Rogersi, and A. Gaspiensis. Cyclopteris obtusa and C. (Platy- phyllum) Brownii are also very characteristic species. In Europe, Archceopteris Hibernica is a prevalent species. Leptophleum rhombicum and fragments of Psilophyton are also found in the Upper Erian. There is evidence of the existence of vast numbers of Rhizocarps in this period, in the deposits of spore- cases (Sporangites Huronensis) in the shales of Kettle Point, Lake Huron ; and in deposits of similar character in Ohio and elsewhere in the West. The Upper Erian flora is thus very distinct from that of the Lower Carboniferous, and the unconformable relation of the beds in the Northeast may perhaps indicate a considerable lapse of time. Still, even in localities where there appears to be a transition from the Carboniferous into the Devonian, as in the Western States and in Ireland, the characteristic flora of each formation may be distin- guished, though, as already stated, there is apparently some mixture in the South. (2) Middle Erian Sub-Flora : Both in Canada and the United States that part of the great Erian system which may be regarded as its middle division, the Hamilton and Marcellus shales of New York, the Cordaites shales of St. John, New Brunswick, and the middle shales and sandstones of the Gaspe series, presents conditions more favourable to the abundant growth of land-plants than either the upper or lower member. In the St. John beds, in particular, there is a rich fern flora, comparable with that of the coal-formation, and numerous stipes of ferns and trunks of tree-ferns have been found in the Hamilton and Cornifer- ous series in the West, as well as trunks of Dadoxylon. It is, how- ever, distinguished by a prevalence of small and delicate species, and by such forms as HymenophyUites and the smaller Sphenopterids, and also by some peculiar ferns, as Archceopteris and Megalopteris. 280 APPENDIX. In addition to ferns, it has small Lepidodendra, of which L. Gaspi- anum is the chief. CalamiteoB occur, Archceocalamites radiatus being the dominant species. This plant, which in Europe appears to reach up into the Lower Carboniferous, is so far strictly Erian in north- east America. Sigillarice, scarcely appear, but Cordaites is abun- dant, and the earliest known species of Dadoxylon appear, while the Psilophyton, so characteristic of the Lower Erian, still continues, and the remarkable aquatic plants of the genus Ptilophyton are locally abundant. (3) Lower Erian Sub-Flora : This belongs to the Lower Devonian sandstones and shales, and is best seen in that formation at Gaspe and the Bay des Chaleurs. It is equivalent to the Oriskany sandstone, so far as its animal fossils and mineral character are concerned. It is characterised by the ab- sence of true ferns, Calamites and Sigillarice,, and by the presence of such forms as Psilophyton, Arthrostigma, Leptophleum. and Ne- matophyton. Lepidodendron Gaspianum and Leptophleum already occur, though not nearly so abundant as Psilophyton. The Lower Erian plants have an antique and generalised aspect which would lead us to infer that they are near the beginning of the land-flora, or perhaps in part belong to the close of an earlier flora still in great part unknown ; and few indications of land-plants have been found earlier. At Campbellton and Scaumenac Bay, on the Bay des Chaleurs, fossil fishes of genera characteristic of the Lower and Upper De- vonian horizons respectively, occur in association with fossil plants of these horizons, and have been described by Mr. Whiteaves.* It is interesting to note that, as Fontaine and White have ob- served, certain forms which are Erian in the northeast are found in the Lower members of the Carboniferous in West Virginia, indicat- ing the southward march of species in these periods. 3. THE SILURIAN FLORA AND STILL EARLIER INDICATIONS OF PLANTS. In the upper beds of the Silurian, those of the Helderberg series, we still find Psilophyton and NematopJiyton ; but below these we know no land-plants in Canada. In the United States, Lesquereux and Claypole have described remains which may indicate the exist- ence of lycopodiaceous and annularian types as far back as the be- * " Transactions of the Royal Society of Canada." APPENDIX. 281 an cal ginning of the Upper Silurian, or even as low as the Hudson River group, and Hicks has found Nematophyton and Psilophyton in beds about as old in Wales, along with the uncertain stems named Ber- wynia. In the Lower Silurian the Protannularia of the Skiddaw series in England may represent a land-plant, but this is uncertain, and no similar species has been found in Canada. The Cambrian rocks are so far barren of land-plants; the so- iled Eophyton being evidently nothing but markings, probably produced by crustaceans and other aquatic animals. In the still older Laurentian the abundant beds of graphite probably indicate the existence of plants, but whether aquatic or terrestrial it is impos- sible to decide at present. It would thus appear that our certain knowledge of land-vegeta- tion begins with the Upper Silurian or the Silurio-Cambrian, and that its earliest forms were Acrogens allied to Lycopods, and proto- typal trees, forerunners of the Acrogens or the gymnosperms. In the Lower Devonian little advance is made. In the Middle Devonian this meagre flora had been replaced by one rivalling that of the Car- boniferous, and including pines, tree-ferns, and arboreal forms of Lycopods and of equisetaceous plants, as well as numerous herba- ceous plants. At the close of the Erian the flora again became meagre, and continued so in the Lower Carboniferous. It again be- came rich and varied in the Middle Carboniferous, to decay in the succeeding Permian. II.— HEER'S LATEST RESULTS IN THE GREENLAND FLORA. A VERY valuable report of Prof. Steenstrup, published in Copen- hagen in 1883, the year in which Heer died, contains the results of his last work on the Greenland plants, and is so important that a summary of its contents will be interesting to all students of fossil botany or of the vicissitudes of climate which the earth has under- gone.* The plant-bearing beds of Greenland are as follows, in ascending order : 1. CRETACEOUS. 1. The Kome series, of black shales resting on the Laurentian gneiss. These beds are found at various other localities, but the * Meddelelser om Gronland, Hefte V., Copenhagen, 1883. 282 APPENDIX. name above given is that by which they are generally knr vn. Their flora is limited to ferns, cycads, conifers, and a few enclogens, with only Populus primceva to represent the dicotyledons. These beds are regarded as Lower Cretaceous (Urgonian), but the animal fossils would seem to give them a rather higher position. They may be regarded as equivalent to the Kootanie and Queen Charlotte beds in Canada, and the Potomac series in Virginia. 2. The Atane series. These also are black shales with dark- coloured sandstones. They are best exposed at Upernavik and Waigat. Here dicotyledonous leaves abound, amounting to ninety species, or more than half the whole number of species found. The fossil plants resemble those of the Dakota series of the United States and the Dunvegan series of Canada, and the animal fossils indicate the horizon of the Fort Pierre or its lower part. They may be regarded as representing the lower part of the Upper Cretaceous. The genera Populus, Myrica, Quercus, Ficus, Platanus, Sassafras, Laurus, Magnolia, and Liriodendron are among those represented in these beds, and the peculiar genera Macclintockia and Credneria are characteristic. The genus Pinus is represented by five species, Sequoia by five, and Salisburia by two, with three of the allied genus Baiera. There are many ferns and cycads. 3. The Patoot series. These are yellow and red shales, which seem to owe their colour to the spontaneous combustion of pyritous lignite, in the manner observed on the South Saskatchewan and the Mackenzie rivers. Their age is probably about that of the Fox-Hill group or Senonian, and the Upper Cretaceous of Vancouver Island, and they afford a large proportion of dicotyledonous leaves. The genera of dicotyledons are not dissimilar from those of Atane, but we now recognise Betula and Alnus, Comptonia, Planer a, Sapo- tacites, Fraxinus, Viburnum, Cornus, Acer, Celastrus, Paliurus, Ceanothus, ZizypJius, and Cratcegus as new genera of modern aspect. On the whole there have been found in all these beds 335 species, belonging to 60 families, of which 36 are dicotyledonous, and repre- sent all the leading types of arborescent dicotyledons of the temper- ate latitudes. The flora is a warm temperate one, with some re- markable mixtures of sub-tropical forms, among which perhaps the most remarkable are Kaidocarpum referred to the Pandanece, and such exogens as Ficus and Cinnamomum. 2. TERTIARY. 4. The Unartok series. This is believed to be Eocene. It con- sists of sandstone, which appears on the shores of Disco Island, and APPENDIX. 283 possibly at some other places on the coast. Tne beds rest directly and apparently conformably on the Upper Cretac^pus, and have af- forded only eleven species of plants. Magnolia is represented by two species, Laurus by two, Platanus by two, and one of these said to be identical with a species found by Lesquereux in the1 aramie,* Viburnum, Juglans, Quercus, each by one species ; the ubiquitous Sequoias by S. Langsdorffii. This is pretty clearly a Lower Lanraie flora. 5. The Atanekerdluk series, consisting of shaly beds, with lime- stone intercalated between great sheets of basalt, much like the Eocene of Antrim and the Hebrides. These beds have yielded 187 species, principally in bands and concretions of siderite. and often in a good state of preservation. They are referred to the Lower Miocene, but, as explained in the text, the flora is more nearly akin to that of the Eocene of Europe and the Laramie of America. The animal fossils are chiefly fresh- water shells. Onoclea sensibilis, several conifers, as Taxites Olriki, Taxodium distichum, Olyptostro- bus Europc&us, and Sequoia Langsdorffii, and 42 of the dicotyledons are recognised as found also in American localities. Of these, a large proportion of the more common species occur in the Laramie of the Mackenzie River and elsewhere in northwest Canada, and in the western United States. It is quite likely also that several spe- cies regarded as distinct may prove to be identical. It would seem that throughout the whole thickness of these Tertiary beds the flora is similar, so that it is probable it belongs al- together to the Eocene rather than to the Miocene. No indication has been observed of any period of cold intervening between the Lower Cretaceous and the top of the Tertiary deposits, so that, in all the vast period which these formations represent, the climate of Greenland would seem to have been temperate. There is, however, as is the case farther south, evidence of a gradual dimi- nution of temperature. In the Lower Cretaceous the probable mean annual temperature in latitude 71° north is stated as 21° to 22° centigrade, while in the early Tertiary it is estimated at 12° centi- grade. Such temperatures, ranging from 71° to 53° of Fahrenheit, represent a marvellously warm climate for so high a latitude. In point of fact, however, the evidence of warm climates in the arctic regions, in the Palaeozoic as well as in the Mesozoic and early Ter- tiary, should perhaps lead us to conclude that, relatively to the whole of geological time, the present arctic climate is unusually severe, and * Viburnum marginatum of Lesquereux. 284 APPENDIX. that a temperate climate in the arctic regions has throughout geo- logical time been the rule rather than the exception. OF FOSSIL PLANTS. •• 7?£ state of preservation of fossil plants has been referred to " ^Mentally in several places in the text; but the following more definite statements may be of service to the reader. I. Organic remains imbedded in aqueous deposits may occur in an unchanged condition, or only more or less altered by decay. This is often the case with such enduring substances as bark and wood, and even with leaves, which appear as thin carbonaceous films when the layers containing them are split open. In the more recent de- posits such remains occur little modified, or perhaps only slightly changed by partial decay of their more perishable parts. In the older formations, however, they are usually found in a more or less altered condition, in which their original substance has been wholly or in part changed into coaly, or bituminous, or anthracitic or graphitic matter, so that leaves are sometimes represented by stains of graphite, as if drawn on stone with a lead-pencil. Yet even in this case some portion of the original substance remains, and without any introduction of foreign material. II. On the other hand, such remains are often mineralised by the filling of their pores or the replacement of their tissues with mineral matter, so that they become hard and stony, and sometimes retain little or nothing of their original substance. The more important of these changes, in so far as they affect fossil plants, may be ar- ranged under the following heads : (a) Infiltration of mineral matter which has penetrated the pores of the fossil in a state of solution. Thus the pores of fossil wood are often filled with calcite, quartz, oxide of iron, or sulphide of iron, while the woody walls of the cells and vessels remain in a carbonised state, or converted into coaly matter. When wood is preserved in this way it has a hard and stony aspect ; but we can sometimes dis- solve away the mineral matter, and restore the vegetable tissue to a condition resembling that before mineralisation. This is especially the case when calcite is the mineralising substance. We sometimes find, on microscopic examination, that even cavities so small as those of vegetable cells and vessels have been filled with successive coats of different kinds of mineral matter. (b) Organic matters may be entirely replaced by mineral sub- stances. In this case the cavities and pores have been first filled, APPENDIX. 285 ben — the walls or solid parts being removed by decay or solu- tion— mineral matter, either similar to that filling the cavities, or differing in colour or composition, has been introduced. Silicified wood often occurs in this condition. In the case of silicified wood, it sometimes happens that the cavities of the fibers have been filled with silica, and the wood has been afterward removed by decay, leaving the casts of the tubular fibers as a loose filamentous sub- stance. Some of the Tertiary coniferous woods of California are in this state, and look like asbestus, though they show the minute markings of the tissue under the microscope. In the case of silicified or agatized woods, it would seem that the production of carbon di- oxide from the decaying wood has caused the deposition of silica in its place, from alkaline solutions of that substance, and thus the carbon has been replaced, atom by atom, by silicon, until the whole mass has been silicified, yet retaining perfectly its structure. (c) The cavities left by fossils which have decayed may be filled with clay, sand, or other foreign matter, and this, becoming subse- quently hardened into stone, may constitute a cast of the fossils. Trunks of trees, roots, &c., are often preserved in this way, appearing as stony casts, often with the outer bark of the plant forming a car- bonaceous coating on their surfaces. In connection with this state may be mentioned that in which, the wood having decayed, an entire trunk has been flattened so as to appear merely as a compressed film of bark, yet retaining its markings ; and that in which the whole of the vegetable matter having been removed, a mere impression of the form remains. Fossils preserved in either of the modes, (a) or (5), usually show more or less of their minute structures under the microscope. These may be observed : — (1) By breaking off small splinters or flakes and examining them, either as opaque or as transparent objects. (2) By treating the material with acids, so as to dissolve out the mineral matters, or portions of them. This method is especially applicable to fossil woods mineralised with calcite or pyrite. (3) By grinding thin sections. These are first polished on one face on a coarse stone or emery hone, and then on a fine hone, then attached by the polished face to glass slips with a transparent cement or Canada balsam, and ground on the opposite face until they become so thin as to be trans- lucent. In most cities there are lapidaries who prepare slices of this kind ; but the amateur can readily acquire the art by a little prac- tice, and the necessary appliances can be obtained through dealers in minerals or in microscopic materials. Very convenient cutting and polishing machines, some of them quite small and portable, are 286 APPENDIX. now made for the use of amateurs. In the case of exogenous woods, three sections are necessary to exhibit the whole of the structures. One of these should be transverse and two longitudinal, the latter in radial and tangential planes. IV.— GENERAL WORKS ON PAL^OBOTANY. IN the text frequent reference has been made to special memoirs and reports on the fossil plants of particular regions or formations. There are, however, some general books, useful to students, which may be mentioned here. Perhaps the most important is Schimper's " Traite de Paleontologie Vegetale." Very useful information is also contained in Renault's " Cours de Botanique Fossile," and in Balfour's " Introduction to Palaeontological Botany," and Nichol- son's " Palaeontology." Unger's " Genera et Species," Brongniart's " Histoire des Vegetaux Fossiles," and Lindley and Hutton's " Fossil Flora," are older though very valuable works. Williamson's " Me- moirs," in the " Philosophical Transactions," have greatly advanced our knowledge of the structures of Palaeozoic plants. Lastly, the " Palaeophytology " of Schenk, now in course of publication in Ger- man and French, in connection with Zittel's " Palaeontology," is an important addition to manuals of the subject. INDEX. Acer, 228. Acrogens, 6. Agassiz, Prof., 16. Alaska, Flora of, 245. Algae, real and spurious, 26, 230. Amboy clays, Flora of, 203. America, Cretaceous of, 190. Angiosperms, 6. Annularia, 122. Anogens, 6. Antholithes, 132. Aporoxylon, 25. Araucarioxylon, 148. Araucarites, 134. Archaeocalamites, 170. Archaeopteris, 77, 85. Arctic origin of plants, 221, 238. Arthrophycus, 30. Arthrostigma, 67. Asterophyllites, 78, 122, 170. Asteroptcris, 77, 85. Astropolithon, 30. Atane, Plants of, 242, 281. Atanekerdluk, Plants of, 283. Australia, Palaeozoic flora of, 147. Tertiary flora of, 217. Bauhinia, 204. Bear Island, 241. Betula, 198. Bilobites, 28. Bovey Tracey, Plants of, 226. Brasenia, 207. Buckland, Dr., 179. Buthotrephis, 37. Calamites, 77, 123, 166. Calamodendron, 125. Cambrian flora, 20. Canada, Brian of, 103. Carboniferous of, 110. Laramie of, 209. Pleistocene of, 227. Carbon in Laurentian, 9. Carboniferous flora, 110. Carboniferous, Climate of, 138. of Southern Hemisphere, 147. Cardiocarpum, 82, 153. Carruthers, Mr., 24, 98, 180. On modifications of modern plants, 225, 269. Carya, 196. Cauda-galli fucoid, 105. Caulerpites, 29. Caulopteris, 75, 94. Clarke, Prof., 51. Climate, Causes of, 247. Climate and plants, 216, 220, 232. of Carboniferous, 138. of Cretaceous and Eocene, 216. of Devonian, 47. of Early Mesozoic, 178. 288 INDEX. Climate and plants of Laurentian, 17. of Pleistocene, 227, 230. of Pliocene, 223. Coal, origin of, 117, 139. Comparison of floras, 272. Composite, 266. Cone-in-cone, 36. Coniferse, Brian, 78, 96. Carboniferous, 134, 148. Mesozoic, etc., 181. Cope, Mr., 215. Cordaites, 78, 130, 151. Corylus, 213. Crepin, M., 99. Cretaceous, Flora of, 190. Climate of, 216. Croll on climate, 252. Cromer, Plants of, 224. Cycads, Mesozoic, 178. Cyclostigma, 157. Dadoxylon, 96, 134, 148. Dawson, Dr. G. M., 52, 210. Delgado, Prof., 26. Dendrophycus, 33. Derby, Orville, 53. Devonian flora, 45. Devonian or Erian, 107, 279. Climate of, 47. Dicotyledons, Cretaceous, 192. Table of, 192. Dictyolites, 33. Dictyospongia, 39. Disco, Exotic plants at, 256. Flora of, 245, 282. Drepanophycus, 39. Drosera, 228. Dunvegan beds, 244. Eocene, Flora of, 208, 214. Climate of, 216. Eophyton, 31. Eopteris, 72. Eozoon of Laurentian, 9. Equisetum, 176, 230. Erian flora, 45, 279. Climate of, 47. Erian or Devonian, 107. Ettingshausen, Dr., 187, 215. Exogens, Cretaceous, 192. Tertiary, 213, 224. Fagus, 196, 197. Ferns, Erian, 72. Carboniferous, 126, 171. Fructification of, 128. Stems of, 90, 129. Tertiary, 212. Filices, 72, 126, 171. Flora of Cambrian, 26. of Carboniferous, 110, 274. of Cretaceous, 190. of Early Mesozoic, 175. of Erian, 45, 279. of Jurassic, 177, 186. of Laramie, 209. of Laurentian, 8. of Miocene, 220, 223. of Modern, 219. of Permian, 274. of Pleistocene, 223, 227. of Tertiary, 191, 208, 214, 219. Fontaine, Prof., 130, 176. Fontinalis, 230. Fort Union beds, 210. Fucoids, 27. Gardner, Mr. Starkie, 212. Geinitz, Dr., 174. Geological formations, Table of, 4. Glossopteris, 147. Glyptodendron, 25. Glyptostrobus, 194. Goeppert, Dr., 99. Grant, Col., 36. Graphite from INDEX. 289 aphite from plants, 8. Gray, Dr., Origin of floras, 223, 237. Greenland, Climate of, 216. Fossil flora of, 247. Gulielmites, 35. Gyinnosperms, 6. Haliserites, 39. Hartt, Prof., 53. Heer, Dr., 108, 181. Helderberg period, Sea of, 250. Heterangium, 77. Hicks, Dr., 21. Hunt, Dr. Sterry, 13, 143. Huxley, Prof., 53. Hymenaea, 204. Insects, Brian, 83. Juglans, 196. Jurassic flora, 177. Kainozoic flora, 191, 208, 214, 219. Kidston, Mr. R, 128, 273. King, Mr. Clarence, 211. Kome, Plants of, 242, 281. Laramie flora, 209, 215. Laurentian plants, 8. Laurentian, Climate of, 17. Laurophyllum, 193. Laws of introduction of plants, 237, 266. Leda clay, Flora of, 232. Lepidodendron, 120, 156, 162. Lepidophloios, 121, 157, 165. Leptophleum, 157. Lesquereux, Mr. L., 169, 214. Licrophycus, 30. Lignitic series of America, 208. Liquidambar, 197. Liriodendron, 199. Lower Carboniferous flora, 277. Logan, Sir W., 48. Lyell on climate, 249. Magnolia, 200. McConnell, Mr., 209. McXab, Prof., 169. Megalopteris, 76. Megaphyton, 129. Mesozoic flora, 175. Climate of, 178. Migrations of plants, 240, 245. Miller, Hugh, 98. Miocene flora, 220. Miocene, Supposed, 242. Modern flora, 219. Modern plants, how modified, 269. Modifications of plants, 266. Nathorst, Dr., 26, 196. Nematodendreae, 25. Nematophycus, 23. Nematophyton, 21, 22, 42. Newberry, Dr., 200, 203, 214. Newfoundland, Fossil plants of, 242. Newton, Mr., 52. Nicholson, Dr. A., 20. Niobrara series, 243, 246. Noeggerathia, 130. Northern origin of plants, 238. Origin of plants, 237. Orton, Prof., 51. Pachytheca, 21. Palaeanthus, 205. Palaeochorda, 30. Palaeophycus, 30, 38. Palaeozoic floras compared, 273. Palms, 188, 194. Pandanus, 188. Patoot beds, 282. Peach, Mr., 98. Petroleum, Origin of, 56. Phymatoderma, 29. Plants, Classification of, 6. Platanus, 198. Platyphyllum, 74. 290 INDEX. Pleistocene climate, 227, 230. Pleistocene flora, 223, 227. Pliocene climate, 223. Podozamites, 178. Poles, Supposed change of, 248. Populus, 191, 228. Potamogeton, 229. Potentilla, 228. Protannularia, 21. Protichnites, 27. Protophyllum, 199. Protosalvinia, 52. Protostigma, 20. Prototaxites, 21. Psaronius, 93. Psilophyton, 64. Ptilophyton, 62, 86. Quercus, 197. Rhizocarps, 48. Rill-marks, 33. Rusichnites, 28. Saccamina, 57. Salisburia, 180. Salter, Mr., 98. Salvinia, 54. Saporta, Count de, 26, 193. Saportea, 57. Sassafras, 199. Scalariform tissue, 70. Schimper, Dr., 116, 169, 208. Scolithus, 30. Scottish Devonian, 98. Sequoia, 181. Shrinkage cracks, 33. Sigillaria, 71, 112, 154. Southern Hemisphere, 217, 273. Carboniferous in, 147. Southern Hemisphere, Tertiary in, 217. Sphenophyllum, 61, 122, 171. Spirophyton, 38. Spitzbergen, 241. Sterculites, 193. Sternbergla, 137, 152. Stigmaria, 115. Stur, Dr., on Sigillaria, 116. Symphorocarpus, 214. Syringodendron, 156. Syringoxylon, 82. Table of formations, 4. Tasmania, Fossil plants of, 217, 246. Tasmanite, 57. Tertiary period, Flora of, 191, 208, 214, 219. Tertiary of Australia, 217. Thallogens, 6. Thomas, Mr., 51. Thuja, 213, 229. Time, Geological, 5. Trapa, 196. Tree-ferns, 90, 129. Triassic flora, 176. Trigonocarpum, 136, 153. Tyndall, Prof., 138. Ulrich, Prof., 57. Unartok beds, 281. Ursa stage of Heer, 108, 241. Walchia, 134, 138. Ward, Mr. L. T., 192, 212, 215. Wethered, Mr. E., 52. White, Dr., 215. Williams, Prof., 51. Williamson, Dr., 26, 31, 71, 167. Williamsonia, 188. THE END. PRINTED BY WILLIAM CLOWES AND SONS, LIMITED, LONDON AND BECCLES. A LIST OF KEG AN PAUL, TRENCH & CO.'S PUB LIC A TIONS. 11,87. I, Paternoster Square, London* CONTENTS, PAGE GENERAL LITERATURE. . 2 PARCHMENT LIBRARY . .18 PULPIT COMMENTARY . .21 INTERNATIONAL SCIENTIFIC SERIES . . . .30 PAGE MILITARY WORKS. . . 33 POETRY 35 NOVELS AND TALES . . 41 BOOKS FOR THE YOUNG . 43 GENERAL LITERATURE. A. K. H. B. — From a Quiet Place. A Volume of Sermons. Crown 8vo, $s. ALEXANDER, William, D.D., Bishop of Derry — The Great Ques- tion, and other Sermons. Crown 8vo, 6s. ALLIES, T. W., M.A.—'PeT Crucem ad Lucem. The Result of a Life. 2 vols. Demy 8vo, 25 s. A Life's Decision. Crown 8vo, 7s. 6.—The Laws of Therapeutics ; or, the Science and Art of Medicine. Second Edition. Crown 8vo, 6s. KINGSFORD, Anna, M.D.— The Perfect Way in Diet. A Treatise advocating a Return to the Natural and Ancient Food of our Race. Third Edition. Small crown 8vo, 2s. KINGSLEY, Charles, M.A.— Letters and Memories of his Life. Edited by his Wife. With two Steel Engraved Portraits, and Vignettes on Wood. Sixteenth Cabinet Edition. 2 vols. Crown 8vo, 12s. *** Also a People's Edition, in one volume. With Portrait. Crown 8vo, 6s. All Saints' Day, and other Sermons. Edited by the Rev. W. HARRISON. Third Edition. Crown 8vo, 7-r. 6d. True Words for Brave Men. A Book for Soldiers' and Sailors' Libraries. Sixteenth Thousand. Crown 8vo, 2s. 6d. KNOX, Alexander ,4. —The New Playground ; or, Wanderings in Algeria. New and Cheaper Edition. Large crown 8vo, 6s. Kegan Paid, Trench & Co.'s Publications. 15 Kosmos ; or, the Hope of the World. 3*. 6d. Land Concentration and Irresponsibility of Political Power, as causing the Anomaly of a Widespread State of Want by the Side of the Vast Supplies of Nature. Crown 8vo, $s. LANDON, Joseph.— School Management ; Including a General View of the Work of Education, Organization, and Discipline. Sixth Edition. Crown 8vo, 6s. LAURIE, S. S— The Rise and Early Constitution of Univer- sities. With a Survey of Mediaeval Education. Crown 8vo, 6s. LEE, Rev. F. G., D.C.L.— The Other World ; or, Glimpses of the Supernatural. 2 vols. A New Edition. Crown 8vo, 15^. LEFEVRE, Right Hon. G. Shaw. — Peel and O'Gonnell. Demy 8vo, IQS. 6d. Letters from an Unknown Friend. By the Author of " Charles Lowder." With a Preface by the Rev. W. H. CLEAVER. Fcap. 8vo, is. Life of a Prig. By ONE. Third Edition. Fcap. 8vo, 3^. 6d. LILLIE, Arthur, M.R.A.S.—'T'hz Popular Life of Buddha. Containing an Answer to the Hibbert Lectures of 1881. With Illustrations. Crown 8vo, 6s. Buddhism in Christendom ; or, Jesus the Essene. With Illustrations. Demy 8vo, i$s. LONGF2LLOW, H. Wadsworth.—'Lkte. By his Brother, SAMUEL LONGFELLOW. With Portraits and Illustrations. 3 vols. Demy 8vo, 42J. LONSDALE, Margaret.— Sister Dora : a Biography. With Portrait. Twenty-ninth Edition. Small crown 8vo, 2s. 6d. George Eliot : Thoughts upon her Life, her Books, and Herself. Second Edition. Small crown 8vo, is. 6d. LOUNSBURY, Thomas R.— James Fenimore Cooper. With Portrait. Crown 8vo, 5.?. LOWDER, Charles.— & Biography. By the Author of " St. Teresa." Twelfth Edition. Crown 8vo. With Portrait. $s, 6d. LUCKES, Eva C. E. — Lectures on General Nursing, delivered to the Probationers of the London Hospital Training School for Nurses. Second Edition. Crown 8vo, 2s. 6d. LYALL, William Rowe, D.D.— Propaedeia Prophetica ; or, The Use and Design of the Old Testament Examined. New Edition. With Notices by GEORGE C. PEARSON, M.A., Hon. Canon of Canterbury. Demy 8vo, ioj. 6d. LYTTON, Edward Bulwer, Lord.— Life, Letters and Literary Remains. By his Son, the EARL OF LYTTON. With Portraits, Illustrations and Facsimiles. Demy 8vo. Vols. I. and IT., 32,$-. 16 A List of MACAULAY, G. C.— Francis Beaumont : A Critical Study. Crown 8vo, 5*. MACHIAVELLI, Niccolb. — Lif e and Times. By Prof. VILLARI. Translated by LINDA VILLARI. 4 vols. Large post 8vo, 48*. Discourses on the First Decade of Titus Livius. Trans- lated from the Italian by NINIAN HILL THOMSON, M.A. Large crown 8vo, I2s. The Prince. Translated from the Italian by N. H. T. Small crown 8vo, printed on hand-made paper, bevelled boards, 6s. MACNEILL, J. G. Swift.— How the Union was carried. Crown 8vo, cloth, is. 6d. ; paper covers, is. MAGNUS, Lady.— About the Jews since Bible Times. From the Babylonian Exile till the English Exodus. Small crown 8vo, 6s. MAGUIRE, Thomas.— Lectures on Philosophy. Demy 8vo, 9^. Many Voices. A volume of Extracts from the Religious Writers of Christendom from the First to the Sixteenth Century. With Biographical Sketches. Crown 8vo, cloth extra, red edges, 6s. MARKHAM, Capt. Albert Hastings, R.N.— The Great Frozen Sea : A Personal Narrative of the Voyage of the Alert during the Arctic Expedition of 1875-6. With 6 full-page Illustrations, 2 Maps, and 27 Woodcuts. Sixth and Cheaper Edition. Crown 8vo, 6s. MARTINEAU, Gertrude.— Outline Lessons on Morals. Small crown 8vo, $s. 6d. MASON, Charlotte M. — Home Education ; a Course of Lectures to Ladies. Crown 8vo, 3J-. 6d. Matter and Energy : An Examination of the Fundamental Concep- ceptions of Physical Force. By B. L. L. Small crown 8vo, 24-. MAUDSLEY, H., M.D.— Body and 'Will. Being an Essay con- cerning Will, in its Metaphysical, Physiological, and Pathological Aspects. 8vo, I2s. Natural Causes and Supernatural Seemings. Second Edition. Crown 8vo, 6s. McGRATH, Terence.— Pictures from Ireland. New and Cheaper Edition. Crown 8vo, 2s. MEREDITH, TJ/.^.—Thep tokos, the Example for Woman. Dedicated, by permission, to Lady Agnes Wood. Revised by the Venerable Archdeacon DENISON. 32mo, limp cloth, u. 6d. MILLER ', Edward. — The History and Doctrines of Irvingism ; or, The so-called Catholic and Apostolic Church. 2 vols. x,arge post 8vo, 15^. The Church in JRelatipn to .the Staje, La^gejcrpwn 8vo, Kegan Paid, Trench & Go's Publications. 17 WILLS, Herbert.— Poverty and the State ; or, Work for the Un- employed. An Inquiry into the Causes and Extent of Enforced Idleness, with a Statement of a Remedy. Crown 8vo, 6s. MITCHELL, Lucy M.—A. History of Ancient Sculpture. With numerous Illustrations, including 6 Plates in Phototype. Super- royal 8vo, 42^. MOCKLER, E.—K Grammar of the Baloochee Language, as it is spoken in Makran (Ancient Gedrosia), in the Persia- Arabic and Roman characters. Fcap. 8vo, $s. MOHL, Julius and Mary. — Letters and Recollections of. By M. C. M. SIMPSON. With Portraits and Two Illustrations. Demy 8vo, 155-. MOLESWORTH, Rev. W. Nassau, M.A.— History of the Church of England from 166O. Large crown 8vo, 7*. 6d. MORELL, J. ^.—Euclid Simplified in Method and Language. Being a Manual of Geometry. Compiled from the most important French Works, approved by the University of Paris and the Minister of Public Instruction. Fcap. 8vo, 2s. 6d. MORGAN, C. Lloyd.— The Springs of Conduct. An Essay in Evolution. Large crown 8vo, cloth, js. 6d. MORIS ON, y. C^^-.—The Service of Man : an Essay towards the Religion of the Future. Second Edition. Demy 8vo, IQS. 6d. MORSE, E. S., Ph.D.— First Book of Zoology. With numerous Illustrations. New and Cheaper Edition. Crown 8vo, 2s. 6d. My Lawyer : A Concise Abridgment of the Laws of England. By a Barrister-at-Law. Crown 8vo, 6s. 6d. NELSON, y. H., M.A.—A Prospectus of the Scientific Study of the Hindu Law. Demy 8vo, gs. Indian Usage and Judge-made Law in Madras. Demy 8VO, I2S. NEWMAN, Cardinal— Characteristics from the Writings of. Being Selections from his various Works. Arranged with the Author's personal Approval. Seventh Edition. With Portrait. Crown 8vo, 6s. %* A Portrait of Cardinal Newman, mounted for framing, can be had, 2s. 6d. NEWMAN, Francis William.— Essays on Diet. Small crown Svo, cloth limp, 2s. New Social Teachings. By POLITICUS. Small crown Svo, 5*. NICOLS, Arthur, F.G.S., F. R. G. 6*.— Chapters from the Physical History of the Earth : an Introduction to Geology and Palaeontology. With numerous Illustrations. Crown Svo, 5.?. NIHILL, Rev. H. D.— The Sisters of St. Mary at the Cross: Sisters of the Poor and their Work. Crown Svo, 2s. 6J. 1 8 A List of NOEL, The Hon. Roden. — Essays on Poetry and Poets. Demy 8vo, I2s. NOPS, Marianne. — Class Lessons on Euclid. Part I. containing the First Two Books of the Elements. Crown 8vo, 2s. 6d. Nuces : EXERCISES ON THE SYNTAX OF THE PUBLIC SCHOOL LATIN PRIMER. New Edition in Three Parts. Crown 8vo, each is. %* The Three Parts can also be had bound together, 3*. GATES, Frank, F.R.G.S.— Matabele Land and the Victoria Falls. A Naturalist's Wanderings in the Interior of South Africa. Edited by C. G. GATES, B.A. With numerous Illustra- tions and 4 Maps. Demy 8vo, 2is. O'BRIEN^ R. Barry.— Irish Wrongs and English Remedies, with other Essays. Crown 8vo, 55. OGLE, Anna C. — A Lost Love. Small crown 8vo, 2s. 6d. 0' HEAR A, Kathleen.— Henri Perreyve and his Counsels to the Sick. Small crown 8vo, 5^. One and a Half in Norway. A Chronicle of Small Beer. By Either and Both. Small crown 8vo, 3^. 6d. O*NEIL, the late Rev. Lord. — Sermons. With Memoir and Portrait. Crown 8vo, 6s. Essays and Addresses. Crown 8vo, 5*. OTTLEY, H. Bickersteth.—Wn& Great Dilemma. Christ His Own Witness or His Own Accuser. Six Lectures. Second Edition. Crown 8vo, %s. 6d. Our Public Schools— Eton, Harrow, 'Winchester, Rugby, Westminster, Marlborough, The Charterhouse. Crown 8vo3 6s. PADGHAM, Richard.— In the Midst of Life we are in Death. Crown 8vo, $s. PALMER, the late William.— Notes of a Visit to Russia in 1840-1841. Selected and arranged by JOHN H. CARDINAL NEWMAN, with Portrait. Crown 8vo, 8s. 6d. Early Christian Symbolism. A Series of Compositions from Fresco Paintings, Glasses, and Sculptured Sarcophagi. Edited by the Rev. Provost NORTHCOTE, D.D., and the Rev. Canon BROWNLOW, M.A. With Coloured Plates, folio, 42.?., or with Plain Plates, folio, 25^. Parchment Library. Choicely Printed on hand-made paper, limp parchment antique or cloth, 6s. ; vellum, Js. 6d. each volume. The Poetical 'Works of John Milton. 2 vols. Chaucer's Canterbury Tales. Edited by A. W. POLLARD. 2 vols. Kegan Paul, Trench & Go's Publications. 19 Parchment Library — continued. Letters and Journals of Jonathan Swift. Selected and edited, with a Commentary and Notes, by STANLEY LANE POOLE, De Quincey's Confessions of an English Opium Eater. Reprinted from the First Edition. Edited by RICHARD GARNETT. The Gospel according to Matthew, Mark, and Luke. Selections from the Prose Writings of Jonathan Swift. With a Preface and Notes by STANLEY LANE- POOLE and Portrait. English Sacred Lyrics. Sir Joshua Reynolds's Discourses. Edited by EDMUND GOSSE. Selections from Milton's Prose Writings. Edited by ERNEST MYERS. The Book of Psalms. Translated by the Rev. Canon T. K, CHEYNE, M.A., D.D. The Vicar of Wakefleld. With Preface and Notes by AUSTIN DOBSON. English Comic Dramatists. Edited by OSWALD CRAWFURD, English Lyrics. The Sonnets of John Milton. Edited by MARK PATTISON, With Portrait after Vertue. French Lyrics. Selected and Annotated by GEORGE SAINTS- BURY. With a Miniature Frontispiece designed and etched by H. G. Glindoni. Fables by Mr. John Gay. With Memoir by AUSTIN DOBSON, tand an Etched Portrait from an unfinished Oil Sketch by Sir Godfrey Kneller. Select Letters of Percy Bysshe Shelley. Edited, with an Introduction, by RICHARD GARNETT. The Christian Year. Thoughts in Verse for the Sundays and Holy Days throughout the Year. With Miniature Portrait of the Rev. J. Keble, after a Drawing by G. Richmond, R.A. Shakspere's Works. Complete in Twelve Volumes. Eighteenth Century Essays. Selected and Edited by AUSTIN DOBSON. With a Miniature Frontispiece by R. Caldecott. Q. Horati Flacci Opera. Edited by F. A. CORNISH, Assistant > Master at Eton. With a Frontispiece after a design by L. Alma Tadema, etched by Leopold Lowenstam. Edgar Allan Poe's Poems. With an Essay on his Poetry by ANDREW LANG, and a Frontispiece by Linley Sambourne. 2O A List of Parchment Library — continued. Shakspere's Sonnets. Edited by EDWARD DOWDEN. With a Frontispiece etched by Leopold Lowenstam, after the Death Mask. English Odes. Selected by EDMUND GOSSE. With Frontis- piece on India paper by Hamo Thornycroft, A.R.A. Of the Imitation of Christ. By THOMAS A KEMPIS. A revised Translation. W'ith Frontispiece on India paper, from a Design by W. B. Richmond. Poems : Selected from PE.RCY BYSSHE SHELLEY. Dedicated to Lady Shelley. With a Preface by RICHARD GARNETT and a Miniature Frontispiece. PARSLOE, Joseph.— Our Railways. Sketches, Historical and Descriptive. With Practical Information as to Fares and Rates, etc., and a Chapter on Railway Reform. Crown 8vo, 6s. PASCAL, £?aise.—The Thoughts of. Translated from the Text of Auguste Molinier, by C. KEGAN PAUL. Large crown 8vo, with Frontispiece, printed on hand -made paper, parchment antique, or cloth, I2s. ; vellum, l$s. PAUL, Alexander. — Short Parliaments. A History of the National Demand for frequent General Elections. Small crown 8vo, $s. 6d. PAUL, C. Kegan. — Biographical Sketches, Printed on hand-made paper, bound in buckram. Second Edition. Crown 8vo, 7-r. 6 Notes of a Round Trip from Long. o° to o°. New and Cheaper Edition. Large crown 8vo, Js. 6d. Old World Questions and New World Answers. Second Edition. Large crown 8vo, 7^. 6d. Plain Thoughts for Men. Eight Lectures delivered at Forester's Hall, Clerkenwell, during the London Mission, 1884. Crown 8vo, cloth, is. 6d ; paper covers, is. PRICE, Prof. Bonamy. — Chapters on Practical Political Economy. Being the Substance of Lectures delivered before the University of Oxford. New and Cheaper Edition. Crown 8vo, 5-y. Prig's Bede : the Venerable Bede, Expurgated, Expounded, and Ex- posed. By The Prig. Second Edition. Fcap. 8vo, 3-r, GJ. Kegan Paid, Trench & Go's Publications. 21 Pulpit Commentary, The. (Old Testament Series.} Edited by the Rev. J. S. EXELL, M.A., and the Very Rev. Dean H. D. M. SPENCE, M.A., DTD. Genesis. By the Rev. T. WHITELAW, D.D. With Homilies by the Very Rev. J. F. MONTGOMERY, D.D., Rev. Prof. R. A. REDFORD, M.A., LL.B., Rev. F. HASTINGS, Rev. W. ROBERTS, M.A. An Introduction to the Study of the Old Testament by the Venerable Archdeacon FARRAR, D.D., F.R.S. ; and Introductions to the Pentateuch by the Right Rev. H. COT- TERILL, D.D., and Rev. T. WHITELAW, M.A. Eighth Editien. I vol., 15^. Exodus. By the Rev. Canon RAWLINSON. With Homilies by Rev. J. ORR, Rev. D. YOUNG, B.A., Rev. C. A. GOODHART, Rev. J. URQUHART, and the Rev. H. T. ROBJOHNS. Fourth Edition. 2 vols., iSs. Leviticus. By the Rev. Prebendary MEYRICK, M.A. With Introductions by the Rev. R. COLLINS, Rev. Professor A. CAVE, and Homilies by Rev. Prof. REDFORD, LL.B., Rev. J. A. MACDONALD, Rev. W. CLARKSON, B.A., Rev. S. R. ALDRIDGE, LL.B., and Rev. McCHEYNE EDGAR. Fourth Edition. i$s. Numbers. By the Rev. R. WINTERBOTHAM, LL.B. With Homilies by the Rev. Professor W. BINNIE, D.D., Rev. E. S. PROUT, M.A., Rev. D. YOUNG, Rev. J. WAITE, and an Intro- duction by the Rev. THOMAS WHITELAW, M.A. Fifth Edition. i$s. Deuteronomy. By the Rev. W. L. ALEXANDER, D.D. With Homilies by Rev. C. CLEMANCE, D.D., Rev. J. ORR, B.D., Rev. R. M. EDGAR, M.A., Rev. D. DAVIES, M.A. Fourth edition. i$s. Joshua. By Rev. J. J. LIAS, M.A. With Homilies by Rev. S. R. ALDRIDGE, LL.B., Rev. R. GLOVER, REV. E. DE PRESSENSE, D.D., Rev. J. WAITE, B.A., Rev. W. F. ADENEY, M.A. ; and an Introduction by the Rev. A. PLUMMER, M.A. Fifth Edition. I2s. 6d. Judges and Ruth. By the Bishop of BATH and WELLS, and Rev. J. MORISON, D.D. With Homilies by Rev. A. F. MUJR, M.A.,' Rev. W. F. ADENEY, M.A., Rev. W. M. STATHAM, and Rev. Professor J. THOMSON, M.A. Fifth Edition. los. 6d. 1 Samuel. By the Very Rev. R. P. SMITH, D.D. With Homilies by Rev. DONALD ERASER, D.D., Rev. Prof. CHAPMAN, and Rev. B. DALE. Sixth Edition. 15*. 1 Kings. By the Rev. JOSEPH HAMMOND, LL.B. With Homilies by the Rev. E. DE PRESSENSE, D.D., Rev. J. WAITE, B.A., Rev. A. ROWLAND, LL.B., Rev. J. A. MACDONALD, and Rev. J. URQUHART. Fifth Edition. 15^. 22 A List of Pulpit Commentary, The — continued. 1 Chronicles. By the Rev. Prof. P. C. BARKER, M.A., LL.B. With Homilies by Rev. Prof. J. R. THOMSON, M.A., Rev. R. TUCK, B.A., Rev. W. CLARKSON, B.A., Rev. F. WHITFIELD, M.A., and Rev. RICHARD GLOVER. 15^. Ezra, Nehemiah, and Esther. By Rev. Canon G. RAWLINSON, M.A. With Homilies by Rev. Prof. J. R. THOMSON, M.A., Rev. Prof. R. A. REDFORD, LL.B., M.A., Rev. W. S. LEWIS, M.A., Rev. J. A. MACDONALD, Rev. A. MACKENNAL, B.A., Rev. W. CLARKSON, B.A., Rev. F. HASTINGS, Rev. W. DINWIDDIE, LL.B., Rev. Prof. ROWLANDS, B.A., Rev. G. WOOD, B.A., Rev. Prof. P. C. BARKER, M.A., LL.B., and the Rev. J. S. EXELL, M.A. Sixth Edition. I vol., 12s. 6d. Isaiah. By the Rev. Canon G. RAWLINSON, M.A. With Homilies by Rev. Prof. E. JOHNSON, M.A., Rev. W. CLARKSON, B.A., Rev. W. M. STATHAM, and Rev. R. TUCK, B.A. Second Edition. 2 vols., 15^. each. Jeremiah. (Vol. I.) By the Rev. Canon T. K. CHEYNE, M.A., D.D. With Homilies by the Rev. W. F. ADENEY, M.A., Rev. A. F. MUIR, M.A., Rev. S. CONWAY, B.A., Rev. J. WAITE, B.A., and Rev. D. YOUNG, B.A. Third Edition. 15^. Jeremiah (Vol. II.) and Lamentations. By Rev. T. K. CHEYNE, M.A. With Homilies by Rev. Prof. J. R. THOMSON, M.A., Rev. W. F. ADENEY, M.A., Rev. A. F. MUIR, M.A., Rev. S. CONWAY, B.A., Rev. D. YOUNG, B.A. 15^. Hosea and Joel. By the Rev. Prof. J. J. GIVEN, Ph.D., D.D. With Homilies by the Rev. Prof. J. R. THOMSON, M.A., Rev. A. ROWLAND, B.A., LL.B., Rev. C. JERDAN, M.A., LL.B., Rev. J. ORR, M.A., B.D., and Rev. D. THOMAS, D.D. i$s. Pulpit Commentary, The. (New Testament Series.) St. Mark. By Very Rev. E. BICKERSTETH, D.D., Dean of Lich- field. With Homilies by Rev. Prof. THOMSON, M.A., Rev. Prof. J. J. GIVEN, Ph.D., D.D., Rev. Prof. JOHNSON, M.A., Rev. A. ROWLAND, B.A., LL.B., Rev. A. MUIR, and Rev. R. GREEN. Fifth Edition. 2 vols., 2is. The Acts of the Apostles. By the Bishop of BATH and WELLS. With Homilies by Rev. Prof. P. C. BARKER, M.A., LL.B., Rev. Prof. E. JOHNSON, M.A., Rev. Prof. R. A. REDFORD, LL.B., Rev. R. TUCK, B.A., Rev. W. CLARKSON, B.A. Third Edition. 2 vols., 2IS. I Corinthians. By the Ven. Archdeacon FARRAR, D.D. With Homilies by Rev. Ex-Chancellor LIPSCOMB, LL.D., Rev. DAVID THOMAS, D.D., Rev. D. FRASER, D.D., Rev. Prof. J. R. THOMSON, M.A., Rev. J. WAITE, B.A., Rev. R. TUCK, B.A., Rev. E. HURNDALL, M.A.* and Rev. H. BREMNER, B.D. Third Edition. 15.?. Kegan Paul, Trench & Cols Publications. 23 Pulpit Commentary, The— continued. 2 Corinthians and Galatians. By the Yen. Archdeacon FARRAR, D.D., and Rev. Prebendary E. HUXTABLE. With Homilies by Rev. Ex-Chancellor LIPSCOMB, LL.D., Rev. DAVID THOMAS, D.D., Rev. DONALD ERASER, D.D., Rev. R. TUCK, B.A., Rev. E. HURNDALL, M.A., Rev. Prof. J. &. THOMSON, M.A., Rev. R. FINLAYSON, B.A., Rev. W. F. ADENEY, M.A., Rev. R. M. EDGAR, M.A., and Rev. T. CROSKERY, D.D. 2is. Ephesians, Philippians, and Golossians. By the Rev. Prof W. G. BLAIKIE, D.D., Rev. B. C. CAFFIN, M.A., and Rev. G G. FINDLAY, B.A. With Homilies by Rev. D. THOMAS, D.D. Rev. R. M. EDGAR, M.A., Rev. R. FINLAYSON, B.A., Rev »W. F. ADENEY, M.A., Rev. Prof. T. CROSKERY, D.D., Rev E. S. PROUT, M.A., Rev. Canon VERNON HUTTON, and Rev. U. R. THOMAS, D.D. Second Edition. 2is. Thessalonians, Timothy, Titus, and Philemon. By the I Bishop of Bath and Wells, Rev. Dr. GLOAG and Rev. Dr. EALES. With Homilies by the Rev. B. C. CAFFIN, M.A., Rev. R. FINLAYSON, B.A., Rev. Prof. T. CROSKERY, D.D., Rev. W. F. ADENEY, M.A., Rev. W. M. STATHAM, and Rev. D. THOMAS, D.D. 15 s. Hebrews and James. By the Rev. J. BARMBY, D.D., and Rev Prebendary E. C. S. GIBSON, M.A. With Homiletics by the Rev. C. JERDAN, M.A., LL.B., and Rev. Prebendary E. C. S. GIBSON. And Homilies by the Rev. W. JONES, Rev. C. NEW, Rev. D. YOUNG, B.A., Rev. J. S. BRIGHT, Rev. T. F. LOCKYER, B.A., and Rev. C. JERDAN, M.A., LL.B. Second Edition. 15.$-. PUSEYy Dr.— Sermons for the Church's Seasons from Advent to Trinity. Selected from the Published Sermons of the late EDWARD BOUVERIE PUSEY, D.D. Crown 8vo, 5.?. RANKE, Leopold von.— Universal History. The oldest Historical Group of Nations and the Greeks. Edited by G. W. PROTHERO. Demy 8vo, i6s. REND ELL, J. ^/.—Concise Handbook of the Island of Madeira. With Plan of Funchal and Map of the Island. Fcap. 8vo, is. 6d. REVELL, W. F.— Ethical Forecasts. Crown Svo. REYNOLDS, Rev. J. JF.— The Supernatural in Nature. A Verification by Free Use of Science. Third Edition, Revised and Enlarged. Demy Svo, iqs. The Mystery of Miracles. Third and Enlarged Edition. Crown Svo, 6s. The Mystery of the Universe our Common Faith. Demy Svo, i^s. The World to Come: Immortality a Physical Fact. Crown Svo, 6s. 24 A List of RIB OT, Prof. Th.— Heredity: A Psychological Study of its Phenomena, its Laws, its Causes, and its Consequences. Second Edition. Large crown 8vo, gs. ROBERTSON', The late Rev. F. W., M.A.—Life and Letters of. Edited by the Rev. STOPFORD BROOKE, M.A. I. Two vols., uniform with the Sermons. With Steel Portrait. Crown 8vo, JS. 6d. II. Library Edition, in Demy 8vo, with Portrait. 12s. III. A Popular Edition, in I vol. Crown 8vo, 6s. ROBERTSON, The late Rev. F. W., M. A.— continued. Sermons. Four Series. Small crown 8vo, 3-y. 6d. each. The Human Race, and other Sermons. Preached at Chelten- ham, Oxford, and Brighton. New and Cheaper Edition. Small crown 8vo, %s. 6d. Notes on Genesis. New and Cheaper Edition. Small crown Svo, 3.. 6d. [Expository Lectures on St. Paul's Epistles to the Corinthians. A New Edition. Small crown Svo, $s. Lectures and Addresses, with other Literary Remains. A New Edition. Small crown Svo, $s. An Analysis of Tennyson's " In Memoriam." (Dedicated by Permission to the Poet-Laureate.) Fcap. Svo, 2s. The Education of the Human Race. Translated from the German of GOTTHOLD EPHRAIM LESSING. Fcap. Svo, 2s. 6d. The above Works can also be had, bound in half morocco. %* A Portrait of the late Rev. F. W. Robertson, mounted for framing, can be had, 2s. 6d. ROMANES, G. J. — Mental Evolution in Animals. With a Posthumous Essay on Instinct by CHARLES DARWIN, F.R.S. Demy Svo, I2s. ROOSEVELT, Theodore. Hunting Trips of a Ranchman. Sketches of Sport on the Northern Cattle Plains. With 26 Illustrations. Royal Svo, i8s. ROSMINI SERB^ATI, Antonio.— Life. By the REV. W. LOCKHART. Second Edition. 2 vols. With Portraits. Crown Svo, 12s. Rosmini's Origin of Ideas. Translated from the Fifth Italian Edition of the Nuovo Saggio Sutf origine delle idee. 3 vols. Demy Svo, cloth, los. 6d. each. Rosmini's Psychology. 3 vols. Demy Svo [Vols. I. and II. now ready], los. 6d. each. ROSS, Janet.— Italian Sketches. With 14 full-page Illustrations. Crown Svo, JS. 6d. RULE, Martin, M.A. — The Life and Times of St. Anselm, Archbishop of Canterbury and Primate of the Britains. 2 vols. Demy Svo, 32^. Kegan Paul, Trench & Co!s Publications. 25 SAMUELL, Richard. — Seven, the Sacred Number : Its use in Scripture and its Application to Biblical Criticism. Crown 8vo, los. 6d. SAYCE, Rev. Archibald Henry. — Introduction to the Science of Language. 2 vols. Second Edition. Large post 8vo, zis. SCOONES, W. Baptiste.—'FouT Centuries of English Letters : A Selection of 350 Letters by 150 Writers, from the Period of the Paston Letters to the Present Time. Third Edition. Large crown 8vo, 6s. rEE, Prof. Germain. — Bacillary Phthisis of the Lungs. Trans- lated and edited for English Practitioners by WILLIAM HENRY WEDDELL, M.R.C.S. Demy 8vo, los. 6d. Shakspere's Works. The Avon Edition, 12 vols., fcap. 8vo, cloth, iSs. ; in cloth box, 2is. ; bound in 6 vols., cloth, i$s. Shakspere's "Works, an Index to. By EVANGELINE O'CONNOR. Crown Svo, $s. SHELLEY, Percy JBysshe.-t.iie. By EDWARD DOWDEN, LL.D. 2 vols. With Portraits. Demy Svo, 36^. SHILLITO, Rev. Joseph. — Womanhood : its Duties, Temptations, and Privileges. A Book for Young Women. Third Edition. Crown Svo, 3^. 6d. Shooting, Practical Hints. Being a Treatise on the Shot Gun and its Management. By "20 Bore." With 55 Illustrations. Demy SVO, I2J. Sister Augustine, Superior of the Sisters of Charity at the St. VJohannis Hospital at Bonn. Authorized Translation by HANS THARAU, from the German "Memorials of AMALIE VON LASAULX." Cheap Edition. Large crown Svo, qs. 6d. SKINNER, James.— A Memoir. By the Author of * < Charles Lowder. " With a Preface by the Rev. Canon CARTER, and Portrait. Large crown, Js. 6d. %* Also a cheap Edition. With Portrait. Fourth Edition. Crown Svo, 3^. 6d. SMEATON, D. Mackenzie. — The Loyal Karens of Burma. Crown Svo, 4^. 6d. SMITH, Edward, M.D., LL.B., F. R. S. —Tubercular Consump- tion in its Early and Remediable Stages. Second Edition. Crown Svo, 6s. SMITH, Sir W. Cusack, £art.—Ou? 'War Ships. A Naval Essay. Crown Svo, $s. Spanish Mystics. By the Editor of " Many Voices." Crown Svo, 5«r. Specimens of English Prose Style from Malory to Ma- caulay. Selected and Annotated, with an Introductory Essay, by GEORGE SAINTSBURY. Large crown Svo, printed on hand- made paper, parchment antique or cloth, 12s. ; vellum, 15^. 26 A List of SPEDDING, James.— Reviews and Discussions, Literary, Political, and Historical not relating to Bacon. Demy 8vo, 12s. 6d. Evenings with a Reviewer ; or, Macaulay and Bacon. With a Prefatory Notice by G. S. VENABLES, Q.C. 2 vols. Demy 8vo, iSs. Stray Papers on Education, and Scenes from School Life. By B. H. Second Edition. Small crown 8vo, 3^. 6d. STREATFEILD, Rev. G. S.,M.A. — Lincolnshire and the Danes. Large crown 8vo, 7^. 6d. STRECKER- WISLICENUS.— Organic Chemistry. Translated and Edited, with Extensive Additions, by W. R. HODGKINSON, Ph.D., and A. J. GREEN AWAY, F.I.C. Second and cheaper Edition. Demy 8vo, 12s. 6d. Suakin, 1885 ; being a Sketch of the Campaign of this year. By an Officer who was there. Second Edition. Crown 8vo, 2s. 6d. SULLY, James, M.A.— Pessimism : a History and a Criticism. Second Edition. Demy 8vo, 14^. Sunshine and Sea. A Yachting Visit to the Channel Islands and Coast of Brittany. With Frontispiece from a Photograph and 24 Illustrations. Crown 8vo, 6s. SWEDENBORG, Eman.—T>Q Gultu et Amore Dei ubi Agitur de Telluris ortu, Paradiso et Vivario, turn de Pri- mogeniti Seu Adami Nativitate Infantia, et Amore. Crown 8vo, 6s. On the Worship and Love of God. Treating of the Birth of the Earth, Paradise, and the Abode of Living Creatures. Translated from the original Latin. Crown 8vo, 'js. 6d. Prodromus Philosophic Ratiocinantis de Infinite, et Causa Final! Greationis I deque Mechanismo Opera- tionis Animas et Corporis. Edidit THOMAS MURRAY GORMAN, M. A. Crown 8vo, Js. 6d. TACZTf/S.—The Agricola. A Translation. Small crown 8vo, 2s. 6d. TARRING, C. y.— A Practical Elementary Turkish Grammar. Crown 8vo, 6s. TA YLOR, Rev. Isaac. — The Alphabet. An Account of the Origin and Development of Letters. With numerous Tables and Facsimiles. 2 vols. Demy 8vo, 36^. TAYLOR, Jeremy.— The Marriage Ring. With Preface, Notes, and Appendices. Edited by FRANCIS BURDETT MONEY COUTTS. Small crown 8vo, 2s. 6d. TAYLOR, Sedley. — Profit Sharing between Capital and Labour. To which is added a Memorandum on the Industrial Partnership at the Whitwood Collieries, by ARCHIBALD and HENRY BRIGGS, with remarks by SEDLEY TAYLOR. Crown 8vo, 2s. 6d. Kegan Paul, Trench & Cols Publications. 27 THOM, J. Hamiiton.—l^&ws of Life after the Mind of Christ. Two Series. Crown Svo, 7^. 6d. each. THOMPSON, SirH.— Diet in Relation to Age and Activity. Fcap. Svo, cloth, is. 6d. ; paper covers, is. TIDMAN, Paul F.— Money and Labour. U. 6d. TIPPLE, Rev. S. A. — Sunday Mornings at Norwood. Prayers and Sermons. Crown Svo, 6^. TODHUNTER, Dr. J.— A Study of Shelley. Crown Svo, 7*. TOLSTOI, Count Leo.— Christ's Christianity. Translated from the Russian. Large crown Svo, *]s. 6d. .; TRANT, William.— Trade Unions; Their Origin, Objects, and Efficacy. Small crown Svo, is. 6d. ; paper covers, is. fENCH, The late R. C.9 Archbishop.— Notes on the Parables of Our Lord. Fourteenth Edition. Svo, I2s. Cheap Edition, 7J. 6d. Notes on the Miracles of Our Lord. Twelfth Edition. Svo, 12s. Cheap Edition, 7.?. 6d. Studies in the Gospels. Fifth Edition, Revised. Svo, IQS. 6d. Brief Thoughts and Meditations on Some Passages in Holy Scripture. Third Edition. Crown Svo, $s. 6d. Synonyms of the New Testament. Tenth Edition, En larged. Svo, I2s. Sermons New and Old. Crown Svo, 6s, On the Authorized Version of the New Testament. Second Edition. Svo, Js. Commentary on the Epistles to the Seven Churches in Asia. Fourth Edition, Revised. Svo, 8.?. 6d. The Sermon on the Mount. An Exposition drawn from the Writings of St. Augustine, with an Essay on his Merits as an Interpreter of Holy Scripture. Fourth Edition, Enlarged. Svo, ids. 6d. Shipwrecks of Faith. Three Sermons preached before the University of Cambridge in May, 1867. Fcap. Svo, 2s. 6d. Lectures on Mediaeval Church History. Being the Sub- stance of Lectures delivered at Queen's College, London. Second Edition. Svo, I2s. English, Past and Present. Thirteenth Edition, Revised and Improved. Fcap. Svo, $s. On the Study of Words. Nineteenth Edition, Revised. Fcap. Svo, 5*. 28 A List of TRENCH, The late R. C.9 Archbishop.— continued. Select Glossary of Knglish Words Used Formerly in Senses Different from the Present. Sixth Edition, Revised and Enlarged. Fcap. 8vo, 5^. Proverbs and Their Lessons. Seventh Edition, Enlarged. Fcap. 8vo, 4s. Poems. Collected and Arranged anew. Ninth Edition. Fcap. 8vo, *js. 6d. Poems. Library Edition. 2 vols. Small crown 8vo, los. Sacred Latin Poetry. Chiefly Lyrical, Selected and Arranged for Use. Third Edition, Corrected and Improved. Fcap. 8vo, Js. A Household Book of English Poetry. Selected and Arranged, with Notes. Fourth Edition, Revised. Extra fcap. 8vo, 5J-. 6d. An Essay on the Life and Genius of Galderon. With Translations from his "Life's a Dream" and "Great Theatre of the World." Second Edition, Revised and Improved. Extra fcap. 8vo, 5-r. 6d. Gustavus Adolphus in Germany, and other Lectures on the Thirty Years5 War. Third Edition, Enlarged. Fcap. 8vo, 4J. Plutarch : his Life, his Lives, and his Morals. Second Edition, Enlarged. Fcap. 8vo, 3-r. 6d. Remains of the late Mrs. Richard Trench. Being Selec- tions from her Journals, Letters, and other Papers. New and Cheaper Issue. With Portrait. 8vo, 6s. TUKE, Daniel Hack, M.D., F.R.C.P.— Chapters in the History of the Insane in the British Isles. With Four Illustra- tions. Large crown 8vo, 12s. TWINING, Louisa. — Workhouse Visiting and Management during Twenty- Five Years. Small crown 8vo, 2s. VAUGHAN, H. Halford.—TXQw Readings and Renderings of Shakespeare's Tragedies. 3 vols. Demy 8vo, i2s. 6d. each. VICARY, J. Fulford.—SSigSL Time. With Illustrations. Crown 8vo, 7s. 6d. VOGT, Lieut.-Col. Hermann.— The Egyptian War of 1882. A translation. With Map and Plans. Large crown Svo, 6s. VOLCKXSOM, E. W. v.— Catechism of Elementary Modern Chemistry. Small crown Svo, 3^. WALPOLE, Chas. George.— A Short History of Ireland from the Earliest Times to the Union with Great Britain. With 5 Maps and Appendices. Third Edition. Crown Svo, 6s, Kegati Paul, Trench & Cols Publications. 29 WARD, Wilfrid.— The Wish to Believe, A Discussion Concern- ing the Temper of Mind in which a reasonable Man should undertake Religious Inquiry. Small crown 8vo, 5^. • WARD, William George, Ph.D.— Essays on the Philosophy of Theism. Edited, with an Introduction, by WILFRID WARD. 2 vols. Demy 8vo, 2is. WARNER, Francis, M.D. — Lectures on the Anatomy of Move- ment. Crown 8vo, 4.$-. 6d. WARTER, J. W.— An Old Shropshire Oak. 2 vols. Demy 8vo, 2Ss. WEDMORE, Frederick.— The Masters of Genre Painting. With Sixteen Illustrations. Post 8vo, *js. 6d. WHITMAN, Sidney.— Conventional Cant: its Results and Remedy. Crown 8vo, 6s. WHITNEY, Prof. William Dwight. — Essentials of English Grammar, for the Use of Schools. Second Edition. Crown 8vo, 3.5-. 6d. HITWORTH, George Clifford.— An Anglo-Indian Dictionary : a Glossary of Indian Terms used in English, and of such English or other Non- Indian Terms as have obtained special meanings in India. Demy 8vo, cloth, I2s. fLSON, Lieut.-Col. C. T.— The Duke of Berwick, Marshal of France, 1702-1734. Demy 8vo, 15*. ILSON, Mrs. R. F.-~ The Christian Brothers. Their Origin and Work. With a Sketch of the Life of their Founder, the Ven. JEAN BAPTISTE, de la Salle. Crown 8vo, 6s. WOLTMANN, Dr. Alfred, and WOERMANN, Dr. Karl— History of Painting. With numerous Illustrations. Medium 8vo. Vol. I. Painting in Antiquity and the Middle Ages. 28^. ; bevelled boards, gilt leaves, 30^. Vol. II. The Painting of the Renascence. 42.5-. ; bevelled boards, gilt leaves, 45^. IUMANS, Edward L., M.D.—K Class Book of Chemistry, on the Basis of the New System. With 200 Illustrations. Crown 8vo, $s. UMANS, Eliza A.— First Book of Botany. Designed to Cultivate the Observing Powers of Children. With 300 Engravings. New and Cheaper Edition. Crown 8vo, 2s. 6d. UNG, Arthur.— Axial Polarity of Man's Word-Embodied Ideas, and its Teaching. Demy 4to, 15^. 3O A List of THE INTERNATIONAL SCIENTIFIC SERIES. I. Forms of Water in Clouds and Rivers, Ice and Glaciers. By J. Tyndall, LL.D., F.R.S. With 25 Illustrations. Ninth Edition. $s. II. Physics and Politics ", or, Thoughts on the Application of the Principles of " Natural Selection " and " Inheritance " to Political Society. By Walter Bagehot. Eighth Edition. 4*. III. Foods. By Edward Smith, M.D., LL.B., F.R.S. With numerous Illustrations. Ninth Edition. $s. IV. Mind and Body : the Theories and their Relation. By Alexander Bain, LL.D. With Four Illustrations. Eighth Edition. $s. V. The Study of Sociology. By 'Herbert Spencer. Thirteenth Edition. $s. VI. On the Conservation of Energy. By Balfour Stewart, M.A., LL.D., F.R.S. With 14 Illustrations. Seventh Edition. 5^. VII. Animal Locomotion ; or Walking, Swimming, and Flying. By J. B. Pettigrew, M.D., F.R.S., etc. With 130 Illustrations. Third Edition. $s. VIII. Responsibility in Mental Disease. By Henry Maudsley, M.D. Fourth Edition. 5*. IX. The New Chemistry. By Professor J. P. Cooke. With 31 Illustrations. Ninth Edition. $s. X. The Science of Law. By Professor Sheldon Amos. Sixth Edition. 5* XI. Animal Mechanism : a Treatise on Terrestrial and Aerial Loco- motion. By Professor E. J. Marey. With 117 Illustrations. Third Edition. 5*. XII. The Doctrine of Descent and Darwinism. By Professor Oscar Schmidt. With 26 Illustrations. Seventh Edition. 5.7. XIII. The History of the Conflict between Religion and Science. By J. W. Draper, M.D., LL.D. Twentieth Edition. $s. XIV. Fungi : their Nature, Influences, Uses, etc. By M. C. Cooke, M.D., LL.D. Edited by the Rev. M. J. Berkeley, M.A., F.L.S. With numerous Illustrations. Third Edition. 5-f. XV. The Chemical Effects of Light and Photography. By ' Dr. Hermann Vogel. With 100 Illustrations. Fourth Edition. 5*- XVI. The Life and Growth of Language. By Professor William Dwight Whitney. Fifth Edition. 5*. Kegan Paul, Trench & Cols Publications. 31 XVII. Money and the Mechanism of Exchange. By W Stanley Jevons, M. A., F.R.S. Eighth Edition. 5*. XVIII. The Nature of Light. With a General Account of Physical Optics. By Dr. Eugene Lommel. With 188 Illustrations and a Table of Spectra in Chromo-lithography. Fourth Edition. 5*. XIX. Animal Parasites and Messmates. By P. J. Van Beneden. With 83 Illustrations. Third Edition. 5*. XX. Fermentation. By Professor Schiitzenberger. With 28 Illus- trations. Fourth Edition. $s. XXI. The Five Senses of Man. By Professor Bernstein. With 91 Illustrations. Fifth Edition. 5^. XXII. The Theory of Sound in its Relation to Music. By Pro fessor Pietro Blaserna. With numerous Illustrations. Third Edition. $s. XXIII. Studies in Spectrum Analysis. By J. Norman Lockyer, F.R.S. With six photographic Illustrations of Spectra, and numerous engravings on Wood. Fourth Edition. 6s. 6d. XIV. A History of the Growth of the Steam Engine. By Professor R. H. Thurston. With numerous Illustrations. Fourth Edition. 6s. 6d. V. Education as a Science. By Alexander Bain, LL.D. Sixth Edition. 5*. VI. The Human Species. By Professor A. de Quatrefages. Fourth Edition. 5.$-. XXVII. Modern Chromatics. With Applications to Art and In- dustry. By Ogden N. Rood. With 130 original Illustrations. Second Edition. $s. XXVIII. The Crayfish : an Introduction to the Study of Zoology. By Professor1 T. H. Huxley. With 82 Illustrations. Fourth Edition. £*• XXIX. The Brain as an Organ of Mind. By H. Charlton Bastian, M.D. With numerous Illustrations. Third Edition. 5^. XXX. The Atomic Theory. By Prof. Wurtz. Translated by G. Cleminshaw, F.C.S. Fourth Edition. 5*. XXXI. The Natural Conditions of Existence as they affect Animal Life. By Karl Semper. With 2 Maps and 106 Woodcuts. Third Edition. $s. XXXII. General Physiology of Muscles and Nerves. By Prof. J. Rosenthal. Third Edition. With Illustrations. 5*. XXXIII. Sight : an Exposition of the Principles of Monocular and Binocular Vision. By Joseph le Conte, LL.D. Second Edition. With 132 Illustrations. 5*. «Jk4 „ • XX 32 A List of XXXIV. Illusions : a Psychological Study. By James Sully. Third Edition. $s. XXXV. Volcanoes : "what they are and what they teach. By Professor J. W. Judd, F.R.S. With 92 Illustrations on Wood. Third Edition. $s. XXXVI. Suicide : an Essay on Comparative Moral Statistics. By Prof. H. Morselli. Second Edition. With Diagrams. $s, XXXVII. The Brain and its Functions. By J. Luys. With Illustrations. Second Edition. $s. XXXVIII. Myth and Science : an Essay. By Tito Vignoli. Third Edition. 5^. XXXIX. The Sun. By Professor Young. With Illustrations. Second Edition. $s. XL. Ants, Bees, and Wasps : a Record of Observations on the Habits of the Social Hymenoptera. By Sir John Lubbock, Bart., M.P. With 5 Chromo-lithographic Illustrations. Eighth Edition, & XLI. Animal Intelligence. By G. J. Romanes, LL.D., F.R.S. Fourth Edition. 5.?. XLII. The Concepts and Theories of Modern Physics. By J. B. Stallo. Third Edition. 5*. XLIII. Diseases of the Memory ; An Essay in the Positive Psycho- logy. By Prof. Th. Ribot. Third Edition. 5*. XLIV. Man before Metals. By N. Joly, with 148 Illustrations. Fourth Edition. $s. XLV. The Science of Politics. By Prof. Sheldon Amos. Third Edition. $s. XLVI. Elementary Meteorology. By Robert PI. Scott. Fourth Edition. With Numerous Illustrations. $s. XLVII. The Organs of Speech and their Application in the Formation of Articulate Sounds. By Georg Hermann Von Meyer. With 47 Woodcuts. 5^. XLVIII. Fallacies. A View of Logic from the Practical Side. By Alfred Sidgwick. Second Edition. $s. XLIX. Origin of Cultivated Plants. By Alphonse de Candolle. 5*- L. Jelly-Fish, Star-Fish, and Sea-Urchins. Being a Research on Primitive Nervous Systems. By G. J. Romanes. With Illustrations. 5-r. LI. The Common Sense of the Exact Sciences. By the late William Kingclon Clifford. Second Edition. With 100 Figures. 5* Kegan Paul, Trench & Co.'s Publications. 33 LII. Physical Expression : Its Modes and Principles. By Francis Warner, M.D., F.R.C.P., Hunterian Professor of Com- parative Anatomy and ^Physiology, R.C.S.E. With 50 Illus- trations. 5^. LIII. Anthropoid Apes. By Robert Hartmann. With 63 Illustra- tions. 5«f. LIV. The Mammalia in their Relation to Primeval Times. By Oscar Schmidt. WTith 51 Woodcuts. $s. LV. Comparative Literature. By H. Macaulay Posnett, LL.D. 5-r. LVI. Earthquakes and other Earth Movements. By Prof. John Milne. With 38 Figures. Second Edition. $s. LVII. Microbes, Ferments, and Moulds. By E. L. Trouessart. With 107 Illustrations. $s. LVIII. Geographical and Geological Distribution of Animals. By Professor A. Heilprin. With Frontispiece. $s. LIX. "Weather. A Popular Exposition of the Nature of Weather Changes from Day to Day. By the Hon. Ralph Abercromby. With 96 Illustrations. $s. LX. Animal Magnetism. By Alfred Binet and Charles Fere. 5*. LXI. Manual of British Discomycetes, with descriptions of all the Species of Fungi hitherto found in Britain included in the Family, and Illustrations of the Genera. By William Phillips, F.L.S. 5*. LXI I. International Law. With Materials for a Code of Inter- national Law. By Professor Leone Levi. 5.?. LXIII. The Origin of Floral Structures through Insect Agency. By Prof. G. Henslow. MILITARY WORKS. BRACKENBURY, CoL C. B., R.A. — Military Handbooks for Regimental Officers. I. Military Sketching and Reconnaissance. By Col. F. J. Hutchison and Major H. G. MacGregor. Fifth Edition. With 15 Plates. Small crown Svo, 4.;. II. The Elements of Modern Tactics Practically applied to English Formations. By Lieut. -Col. Wilkinson Shaw. Sixth Edition. With 25 Plates and Maps. Small crown Svo, gs. III. Field Artillery. Its Equipment, Organization and Tactics. By Major Sisson C. Pratt, R.A. With 12 Plates. Third Edition. Small crown Svo, 6s. D 34 A List of BRACKENBURY, Col. C. B., R.A. —continued. IV. The Elements of Military Administration. First Part : Permanent System of Administration. By Major J. W. Buxton. Small crown 8vo, 7^. 6d. V. Military Law : Its Procedure and Practice. By Major Sisson C. Pratt, R.A. Third Edition. Small crown 8vo, 4s. 6d. VI. Cavalry in Modern 'War. By Col. F. Chenevix Trench. Small crown 8vo, 6s. VII. Field Works. Their Technical Construction and Tactical Application. By the Editor, Col. C. B. Brack enbury, R.A. Small crown 8vo. BRENT, Brig.-Gen. J. L.— Mobilizable Fortifications and their Controlling Influence in War. Crown 8vo, 5*. BROOKE, Major, C. A".— A System of Field Training. Small crown 8vo, cloth limp, 2s. Campaign of Fredericksburg, November— December, 1862. A Study for Officers of Volunteers. With 5 Maps and Plans. Crown 8vo, $s. CLERY, C., Lieut. -Col. — Minor Tactics. With 26 Maps and Plans. Seventh Edition, Revised. Crown 8vo, $s. COLVILE, Lieut. Col. C. /^.—Military Tribunals. Sewed, 2s. 6d. CRAUFURD, Capt. H. J.— Suggestions for the Military Train- ing of a Company of Infantry. Crown 8vo, u. 6d. HAMILTON, Capt. Ian, A.D.C.— The Fighting of the Future, u. HARRISON, Col. R.— The Officer's Memorandum Book for Peace and War. Fourth Edition, Revised throughout. Oblong 32mo, red basil, with pencil, 3^. 6d. Notes on Cavalry Tactics, Organisation, etc. By a Cavalry Officer. With Diagrams. Demy 8vo, 12s. PARR, Capt. H. Hallam, C.M.G.— The Dress, Horses, and Equipment of Infantry and Staff Officers. Crown 8vo, is. SCHAW, Col H.— The Defence and Attack of Positions and Localities. Third Edition, Revised and Corrected. Crown 8vo, 3.y. 6d. STONE, Capt. F. Gleadowe, R.A.— Tactical Studies from the Franco-German War of 1870-71. With 22 Lithographic Sketches and Maps. Demy 8vo, 30^. WILKINSON, H. Spenser, Capt. 2Qth Lancashire R. V. — Citizen Soldiers. Essays towards the Improvement of the Volunteer Force. Crown 8vo, 2s. 6d. Kegan Paul, Trench & Co.'s Publications. 35 POETRY. ABBA Y, R.— The Castle of Knaresborough. A Tale in Verse. Crown Svo, 6s. ADAM OF ST. VICTOR.— The Liturgical Poetry of Adam of St. Victor. From the text of GAUTIER. With Translations into English in the Original Metres, and Short Explanatory Notes, by DIGBY S. WRANGHAM, M.A. 3 vols. Crown Svo, printed on hand-made paper, boards, 2is. AITC&ISON, fames.— The GliTonicle of Mites. A Satire. Small crown Svo. $s. ALEXANDER, William, D.D., Bishop of Derry.— St. Augustine's Holiday, and other Poems. Crown Svo, 6s, AUCHMUTY,A. C.— Poems of English Heroism : FromBrunan- burh to Lucknow ; from Athelstan to Albert. Small crown Svo, is. 6d. BARNES, William.— Poems of Rural Life, in the Dorset Dialect. New Edition, complete in one vol. Crown Svo, Ss. 6d. BAYNES, Rev. Canon H. R.— Home Songs for Quiet Hours. Fourth and Cheaper Edition. Fcap. Svo, cloth, 2s. bd. BEVINGTON, L. S.— Key Notes. Small crown Svo, 5^. IUNT, Wilfrid Scaiven. — The Wind and the Whirlwind. Demy Svo, is. 6d. The Love Sonnets of Proteus. Fifth Edition, iSmo. Cloth extra, gilt top, 5^. BO WEN, H. C., M.A.— Simple English Poems. English Literature for Junior Classes. In Four Parts. Parts I., II., and III., 6d. each, and Part IV., is. Complete, 3*. BRYANT, W. C.— Poems. Cheap Edition, with Frontispiece. Small crown Svo, 3^. 6d. Galderon's Dramas : the Wonder- Working Magician — Life is a Dream— the Purgatory of St. Patrick. Translated by DENIS FLORENCE MACCARTHY. Post Svo, los. Camoens' Lusiads. — Portuguese Text, with Translation by J. J. AUBERTIN. Second Edition. 2 vols. Crown Svo, I2s. CAMPBELL, Lewis.— Sophocles. The Seven Plays in English Verse. Crown Svo, 7.?. 6d. CER VANTES. — Journey to Parnassus. Spanish Text, with Trans- lation into English Tercets, .Preface, and Illustrative Notes, by JAMES Y, GIBSON. Crown Svo, i&, 36 A List of CER V ANTES— -continued. Numantia : a Tragedy. Translated from the Spanish, with Introduction and Notes, by JAMES Y. GIBSON. Crown 8vo, printed on hand-made paper, 5*. Chronicles of Christopher Columbus. A Poem in 12 Cantos. By M. D. C. Crown 8vo, 7*. 6d. Cid Ballads, and other Poems.— Translated from Spanish and German by J. Y. GIBSON. 2 vols. Crown 8vo, I2s. COXHEAD, Ethel.— Birds and Babies. With 33 Illustrations. Imp. j6mo, gilt, 2s. 6d. Dante's Divina Commedia. Translated in the Terza Rima of Original, by F. K. H. HASELFOOT. Demy 8vo, i6s. DE &ERANGER.—K Selection from his Songs. In English Verse. By WILLIAM TOYNBEE. Small crown 8vo, 2s. 6d. DENNIS, y. — English Sonnets. Collected and Arranged by. Small crown 8vo, 2s. 6d. DE VERE, Audrey.— Poetical "Works. I. THE SEARCH AFTER PROSERPINE, etc. 6s. II. THE LEGENDS OF ST. PATRICK, etc. 6s. III. ALEXANDER THE GREAT, etc. 6s. The Foray of Queen Meave, and other Legends of Ireland's Heroic Age. Small crown 8vo, 5^. Legends of the Saxon Saints. Small crown 8vo, 6s. Legends and Records of the Church and the Empire. Small crown 8vo, 6s. DILLON, Arthur.— Gods and Men. Fcap. 4to, 7*. 6d. DOBSON, Austin.— Old. World Idylls and other Verses. Seventh Edition. Elzevir 8vo, gilt top, 6s. At the Sign of the Lyre. Fifth Edition. Elzevir 8vo, gilt top, 6s. DOWDEN, Edward, LL.D.— Shakspere's Sonnets. With Intro- duction and Notes. Large post 8vo, 7^ &/. DUTT, Toru.—K Sheaf Gleaned in French Fields. New Edition, Demy 8vo, los. 6d. Ancient Ballads and Legends of Hindustan. With an Introductory Memoir by EDMUND GOSSE. Second Edition, i8mo. Cloth extra, gilt top, 5*. EDWARDS, Miss Betham.—PQQms. Small crown 8vo, $s. 6d. ELLIOTT, Ebemzer, The Corn Law Rhymer.— Poems. Edited by his son, the Rev. EDWIN ELLIOTT, of St. John's, Antigua. 2 vols. Crown 8vo, i8.r. Kegan Paul, Trench & Co.'s Publications. 37 English Verse. Edited by W. J. LINTON and R. H. STODDARD. 5 vols. Crown 8vo, cloth, $s. each. I. CHAUCER TO BURNS. II. TRANSLATIONS. III. LYRICS OF THE NINETEENTH CENTURY. IV. DRAMATIC SCENES AND CHARACTERS. V. BALLADS AND ROMANCES. FOSKETT, Edward.— Poems. Crown 8vo, 6s. GOODCHILD, John A.— Somnia Medici. Three series. Small crown Svo, $s. each. GOSSE, Edmund.— New Poems. Crown Svo, 7*. 6et. Firdausi in Exile, and other Poems. Second Edition. Ekevir Svo, gilt top, 6s. GURNEY, Rev. Alfred.— The Vision of the Eucharist, and other Poems. Crown Svo, $s. A Christmas Faggot. Small crown Svo, $s. HARRISON, Clifford.— In Hours of Leisure. Crown Svo, 5^. HEYWOOD, J. C.— Herodias, a Dramatic Poem. New Edition, Revised. Small crown Svo, $s. • PAntonius. A Dramatic Poem. New Edition, Revised. Small crown Svo, $s. Salome. A Dramatic Poem. Small crown Svo, 5^. HICKEY, E. H.—K Sculptor, and other Poems. Small crown Svo, 5*. HOLE, W. G. — Procris, and other Poems. Fcap. Svo, %s. 6d. , John.— Poetical Works. Edited by W. T. ARNOLD. Large crown Svo, choicely printed on hand-made paper, with Portrait in eau-forte. Parchment or cloth, I2s. ; vellum, 15^. KING, Edward. A Venetian Lover. Small 4to, 6s. KING, Mrs. Hamilton.— The Disciples. Ninth Edition, and Notes. Small crown Svo, $s. A Book of Dreams. Second Edition. Crown Svo, 3.?. 6d. LAFFAN, Mrs. R. S. De Courcy.—A. Song of Jubilee, and other Poems. With Frontispiece. Small crown Svo, 3.?. 6d. LANG, ^.—XXXII. Ballades in Blue China. Elzevir Svo, 5*. Rhymes a la Mode. With Frontispiece by E. A. Abbey. Second Edition. Elzevir Svo, cloth extra, gilt top, $s. LANGFORD, /. A., LL.D.—On Sea and Shore. Small crown Svo, 5-r. KEATS 38 A List of LASCELLES, John.— Golden Fetters, and other Poems. Small crown 8vo, 3^. 6d. LAWSON, Right Hon. Mr. Justice.— Hymni Usitati Latine Redditi : with other Verses. Small 8vo, parchment, 55. Living English Poets MDCCCLXXXII. With Frontispiece by Walter Crane. Second Edition. Large crown 8vo. Printed on hand-made paper. Parchment or cloth, 1 2s. ; vellum, 1 5^. LOCKER, .F.— London Lyrics. Tenth Edition. With Portrait. Elzevir 8vo. Cloth extra, gilt top, $s. Love in Idleness. A Volume of Poems. With an Etching by W. B. Scott. Small crown 8vo, 5«r. LUMSDEN, Lieut.-CoL H. ^.—Beowulf: an Old English Poem. Translated into Modern Rhymes. Second and Revised Edition. Small crown 8vo, $s. LYSAGHT, Sidney Royse.—K Modern Ideal. A Dramatic Poem. Small crown 8vo, $s. MAGNUSSON, Eirikr, MA., and PALMER, E. H., M.A.— Johan Ludvig Runeberg's Lyrical Songs, Idylls, and Epi- grams. Fcap. 8vo, 5-y. MEREDITH, Owen [The Earl of Lytton\— Lucile. New Edition. With 32 Illustrations. i6mo, 3^. 6d. Cloth extra, gilt edges, $s..6d. MORRIS, Lewis. — Poetical Works of. New and Cheaper Editions, with Portrait. Complete in 3 vols., $s. each. Vol. I. contains " Songs of Two Worlds." Twelfth Edition. Vol. II. contains " The Epic of Hades." Twenty-first Edition. Vol. III. contains "Gwen" and "The Ode of Life." Seventh Edition. •Vol. IV. contains " Songs Unsung " and " Gycia." Fifth Edition. Songs of Britain. Third Edition. Fcap. 8vo, 5*. The Epic of Hades. With 16 Autotype Illustrations, after the Drawings of the late George R. Chapman. 4to, cloth extra, gilt leaves, 21 s. The Epic of Hades. Presentation Edition. 4to, cloth extra, gilt leaves, los. 6d. The Lewis Morris Birthday Book. Edited by S. S. COPE- MAN, with Frontispiece after a Design by the late George R. Chapman. 32mo, cloth extra, gilt edges, 2s. ; cloth limp, u. 6d MORSHEAD, E. D. A.— The House of Atreus. Being the Agamemnon, Libation-Bearers, and Furies of ^schylus. Trans- lated into English Verse. Crown 8vo, 7.?. The Suppliant Maidens of ^Eschylus. Crown 8vo, 3^. 6