

?

International Library of Technology 36F

Geometry and Trigonometry

230 Illustrations

By
EDITORIAL STAFF

INTERNATIONAL CORRESPONDENCE SCHOOLS

GEOMETRY
PLANE TRIGONOMETRY
NATURAL TRIGONOMETRIC FUNCTIONS
LOGARITHMIC TRIGONOMETRIC FUNCTIONS

Geometry, Part 1: Copyright, 1906, by International Textboor Company. Entered at Stationers' Hali, London.
Geometry, Part 2: Copyright, 1905, by International Textbook Company. Entered at Stationers' Hall, London.
Plane Trigonometry, Part 1: Copyright, 1906, by International Textbook Company. Entered at Stationers' Hall, London.
Plane Trigonometry, Part 2: Copyright, 1906, by Intrrnational Textbook Company. Entered at Stationers' Hall, London.
Trigonometric Tables: Copyright, 1906, by International Textbook Company. Copyright, 1893, by The Colliery Engineer Company.
Logarithmic Tables: Copyright, 1917, under the title Locarithms, by International Textbook Company.

All rights reserved

Printed in U. S. A.

$$
\begin{gathered}
\text { Press of } \\
\text { International Textbook Company } \\
\text { Scranton, Pa. } \\
=36 \mathrm{~F}
\end{gathered}
$$

PREFACE

The volumes of the International Library of Technology are made up of Instruction Papers, or Sections, comprising the various courses of instruction for students of the International Correspondence Schools. The original manuscripts are prepared by persons thoroughly qualified both technically and by experience to wrise with authority, and in many cases they are regularly employed elsewhere in practical work as experts. The manuscripts are then carefully edited to make them suitable for correspondence instruction. The Instruction Papers are written clearly and in the simplest language possible, so as to make them readily understood by all students. Necessary technical expressions are clearly explained when introduced.

The great majority of our students wish to prepare themselves for advancement in their vocations or to qualify for more congenial occupations. Usually they are employed and able to devote only a few hours a day to study. Therefore every effort must be made to give them practical and accurate information in clear and concise form and to make this information include all of the essentials but none of the nonessentials. To make the text clear, illustrations are used freely. These illustrations are especially made by our own Illustrating Department in order to adapt them fully to the requirements of the text.

In the table of contents that immediately follows are given the titles of the Sections included in this volume, and under each title are listed the main topics discussed.

International Textbook Company

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

CONTENTS

Norz-This volume is made up of a number of separate Sections, the page numbers of which usually begin with 1. To enable the reader to distinguish between the different Sections, each one is designated by a number preceded by a Section mark (g). which appears at the top of each page, opposite the page number. In this list of contents, the Section number is given following the title of the Section, and under each title appears a full synopsis of the subjects treated. This table of contents will enable the reader to find readily any topic covered.
GEOMETRY, § 7, § 8 Pages
§ 7
Preliminary Definitions 1-2
Straight-Line Figures 3-29
Angles and perpendiculars; Parallels; Polygons; Trian- gles; Quadrilaterals; Additional properties of tri- angles.
The Circle 30-36
Measurement of Angles. 37-42
§ 8
Proportion 1- 6
Polygons 7-33
Similar triangles; Other similar polygons; Areas of poly-gons; Regular polygons.
Circular Measurements 34-43
The circle; Length of any arc; Areas bounded by cir- cular arcs.
The Ellipse 42-43
Mensuration of Solids 44-60
Prism and cylinders; Pyramid and cone; Wedge; Sphere ;Cylindrical ring; Prismoid.
PLANE TRIGONOMETRY, § 9, § 10
§ 9
Trigonometric Functions 1-15
Trigonometric Tables 16-51
Tables of natural functions; Table of logarithmic func- tions; General principle of interpolation.
Solution of Right Triangles 52-61
§ 10 Pages
Logarithmic Functions of Small Angles 1-6
General Trigonometric Formulas 7-16Angles and their trigonometric functions; Addition ofangles.
Oblique Triangles 17-31
Areas 32-49Land measure: Areas of triangles; Areas of trapezoids;Areas of regular polygons; Areas bounded by irregularoutlines.
Appendix: Derivation of Formulas 50-61
TRIGONOMETRIC TABLES-(At Back of Book)Natural Trigonometric Functions.Logarithmic Trigonometric Functions.
LOGARITHMIC TABLES-(At Back of Book)

GEOMETRY

(PART 1)

PRELIMINARY DEFINTTIONS

Abstract

Note. - The study of Geometry is a process of systematic and orderly reasoning rather than a matter of memory. The student is advised to study the principles and propositions stated until he understands them thoroughly and sees their relation one to another, and, when a proposition is accompanied by an explanation in small type, to read over the explanation carefully one or more times, until he clearly understands the matter, following out the references to the figure when a figure is given. If he will do this he will find Geometry to be of great benefit and assistance to him in his subsequent studies. But he is not required to commit to memory the explanations or any part of the text except a few of the more important principles and propositions, such as those to which the Examination Questions relate.

1. Every material body possesses two general properties without regard to any other condition, namely: form, or shape, which is due to the relative positions of its parts; and magnitude, or size, which is due to the distance of its parts from one another.

The form and magnitude of a body can be described by the relative positions of points, lines, and surfaces.
2. A point has position without magnitude. A dot is commonly used to represent a point; but a dot, no matter how small, has length, breadth, and thickness, while a theoretical point has position only.
3. A line is the path of a point in motion; it has one dimension-length. Thus, if a point is moved from the position A, Fig. 1, to the position B, its path, or trace, is the

Fig. 1 line $A B$.
4. A straight line, or right line, Fig. 2, is a line that does not change its
Fig. 2 direction.
5. The distance between two points is the length of the straight line joining them.

Fig. 3

Pig. 4
6. A curved line, Fig. 3, is a line that changes its direction at every point.
7. A broken line, Fig. 4, is a line that changes its direction at only certain points. It is made up wholly of different straight lines.
The word line, when not qualified by any other word, is understood to mean a straight line.
8. A surface is the path of a line when moved in a direction other than its length. Thus, if a line is moved from the position $A B$, Fig. 5, to the position $C D$, the line describes the surface $A B D C$.

9. A flat surface, plane surface,

 or simply a plane, is a surface such

Fig. 5 that a straight line between any two of its points lies wholly in the surface. If a straightedge is laid on a plane surface in any direction, every point of the straightedge will touch the surface.
10. A figure is any combination of points and lines. A figure that lies entirely in one plane is a plane figure.

In referring to a figure, a point is designated by a letter placed conveniently near it; thus, in Fig. 1, the left end of the line is referred to as the point A. The entire line is referred to as "the line $A B$, " the letters A and B designating two points, usually the ends of the line. If a line is broken or curved, as many points are named as are considered necessary to designate the line.
11. Geometry is that branch of mathematics that treats of the construction and properties of figures.
12. To produce a line is to prolong it or to increase its length. A straight line can be prolonged or produced to any extent in either direction. Thus, in Fig. 6, the straight line $A B$ is produced to the points C and D.
13. To bisect any given magnitude is to divide it into two equal parts. Thus, the

Fig. 6

Fig. 7 straight line $A B$, Fig. 7, is bisected at the point C if $A C$ is equal to $C B$. When a given magnitude is bisected, each of the parts into which it is divided is one-half the given magnitude.

STRAIGHT-LINE FIGURES

ANGLES AND PERPENDICULARS

14. An angle, Fig. 8 , is the opening between two straight lines that meet in a point. The two straight lines are the sides, and the point where the lines meet is the

Fig. 8 vertex, of the angle. Thus, in Fig. 8, the straight lines $O A$ and $O B$ form an angle at the point O; the lines $O A$ and $O B$ are the sides of this angle, and the point O is its vertex.

An angle is usually referred to by naming a letter on each of its sides and a third letter at the vertex, the letter at the vertex being placed between the other two. Thus, the angle in Fig. 8 is called angle $A O B$ or angle $B O A$.

An angle may also be designated by a letter placed between its sides near the vertex. Thus, the two angles $X C Y$ and $Y C Z$, Fig. 9, may be referred to as the angles A and B, respectively.

An isolated angle, that is, an angle whose vertex is not the vertex of any other angle, may be designated

Fig. 9 by naming the letter at its vertex. For example, the angle in Fig. 8 may be called the angle O.
15. Two angles, as A and B, Fig. 9, having the same vertex and a common side $C Y$, are called adjacent angles.
16. Two angles are equal when one can be placed on

Fig. 10 the other so that they will coincide. Thus, in Fig. 10, the angles $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$ are equal, because $A^{\prime} O^{\prime} B^{\prime}$ can be superimposed on $A O B$, so that with O^{\prime} upon O and $A^{\prime} O^{\prime}$ along $A O, B^{\prime} O^{\prime}$ will take the direction of $B O$ and coincide with it.
17. Any angle may be thought of as being formed, or generated, by a line turning about the vertex as a pivot, from the position of one side to the position of the other. Thus, the angle $A O B$, Fig. 8, may be conceived as generated by a line turning about O from the position $O A$ to the position $O B$. The size of the angle does not depend on the length of the sides, which are supposed to be of indefinite length, but on the opening between the sides; or, what is the same thing, on the amount of turning necessary to bring one side to the position of the other.
18. If a straight line, as $A B$, Fig. 11 , meets another straight line, as $C D$, so as to make with it two equal adjacent angles, each of these angles is a right angle, and the first line is said to be perpendicular to the second. The point where the first line meets the second is called the

Frg. 11 foot of the perpendicular. It is evident that all right angles are equal.

Pig. 12
19. A horizontal line is a line parallel to the horizon, or to the surface of still water.
20. A vertical line is a line perpendicular to a horizontal line, and having, therefore, the direction of a plumb-line. See Fig. 12.
21. An oblique angle is any angle that is not a right angle. An acute angle is an oblique angle that is less than a right angle. An obtuse angle is an oblique angle that is greater than a right angle. In Fig. 13, $B O C$ and

Fig. 13 $A O C$ are oblique angles, $B O C$ being an acute angle, and $A O C$ an obtuse angle.

Fig. 14
22. Two angles are said to be complementary when their sum is equal to one right angle. Each of two complementary angles is called the complement of the other. Thus, in Fig. 14, in which $A B$ is perpendicular to $B D$, the angles M and N are complementary, their sum being equal to the right angle $A B D$.
23. Two angles are said to be supplementary when their sum is equal to two right angles. Each of two supplementary angles is called the supplement of the other. In Fig. 15, $A O D$ and $D O B$ are supplementary angles, their sum being evidently equal to the sum of the two right angles $P O B$ and $P O A$.

It will be seen from this illustration that two adjacent angles whose non-

Fig. 15 common sides are in the same straight line are always supplementary. Conversely, if two adjacent angles are supplementary, their non-common sides are in the same straight line.
24. At a given point in a straight line, one perpendicular to the line and only one can be drawn.

Fig. 16

Let O, Fig. 16, be the given point in the line $O B$. Suppose that with the point O fixed, the line $O C$ starts from the position $O B$ and revolves about O. In any position, as $O C$, it makes two angles with the line $A B$; one $A O C$, the other $B O C$. As $O C$ revolves from the position $O B$ to the position $O A$, the angle $B O C$ will continually increase, and the
angle A OC will continually decrease. There will therefore be one position, as $O D$, where the two angles are equal, and there can evidently be but one such position.
25. The sum of all the angles formed on the same side of a straight line about the same point in the line is equal to two right angles.

Fig. 17

In Fig. 17, the sum of the three angles M, N, and P is evidently equal to the angle $B O E$, and the sum of the angles Q and R is equal to the angle $E O A$. But, by Art. 23, $B O E+E O A$ is equal to two right angles. Hence, $M+N+P+Q$ $+R=$ two right angles.
26. The sum of all the angles formed in the same plane about one point is equal to four right angles. Thus, in Fig. 18, $M+N+P+Q$ $+R+S+T+U=$ four right angles.

Fig. 18

Fig. 19
27. When two lines, as $A B$ and C D, Fig. 19, cut or cross each other, they are said to intersect. Their common point O is called their point of intersection, or simply their intersection.
28. Two intersecting straight lines determine four angles having a common vertex. Any one of these angles and the angle on the opposite side of both lines, as the angles M and N, Fig. 19, are called vertical angles with respect to each other. Vertical angles may also be defined as those having a common vertex and in which the sides of the one are the prolongations of the sides of the other.

Since M and N are each the supplement of P, they are equal to each other. Any angie is equal to its vertical angle.
29. If two straight lines intersect and one of the angles is a right angle, the other three angles are right angles, and the lines are perpendicular to each other.
30. Two oblique lines drawn from the same point in a perpendicular to a line, and cutting off on that line equal distances from the foot of the perpendicular, are equal.

Let $P O$ and $P Q$, Fig. 20, be two oblique lines drawn from the point P in the perpendicular $A B$, and let $B O$ and $B Q$ be equal. Then, by turning the right side of the figure about $A B$, it will coincide with the left side; O will fall on Q, and $P O$ will coincide with $P Q$. Hence, $P O$ is equal to $P Q$.

Fig. 20
31. Every point in the perpendicular at the middle point of a straight line is equally distant from the ends of the line. Thus, in Fig. 20, P, which may be any point in the perpendicular $A B$ at the middle point B of $O Q$ is equally distant from Q and O.
32. Two equal oblique lines drawn from the same point in the perpendicular to a straight line make equal angles with the straight line and with the perpendicular.

Since when $P B O$, Fig. 20 , is brought to coincide with $P B Q, P O$ coincides with $P Q$ and $B O$ with $B Q$, the angle $M=$ angle M^{\prime}, and angle $N=$ angle N^{7}.
33. A line that divides an angle into two equal angles is called the bisector of that angle. In Fig. 20, PB is the bisector of $O P Q$, since $M=M^{\prime}$.
34. Two points, each of which is equally distant from the two extremities of a line, determine a perpendicular bisecting the line. Thus, in Fig. 20, A and P are two points. equally distant from Q and O and determine the perpendicular bisecting the line $O Q$.

EXAMPLES FOR PRACTICE

 1. Show that the bisectors of two vertical angles are in the same straight line.
 Suqgestion.-In Fig. 21, show that the sum of the angles on one side of the bisector $A B$ of the angle $N O P$ is equal to the sum of the angles on the other side.

2. Show that the bisectors of two supplementary adjacent angles are perpendicular to each other.

Sugexstion.-In Fig. 22, show that the angle $E O$ F is one-half of two right angles.

Fic. 22

PARALLELS

35. Parallel lines, Fig. 23, are straight lines that lie in the same plane and never meet, however far they are produced. Any two parallel lines have the same

Fig. 28 direction and are everywhere equally distant from each other.
36. When two parallel lines, as $P Q$ and $R S$, Fig. 24, are cut by a third line, as $X Y$, the cutting line $X Y$ is called a secant line or a transversal.

The eight angles thus formed are named as follows: The angles a, A, d, and D are exterior angles. The angles b, B, C, and C are interior angles. The pairs of angles a and d or A and D are alternate-exterior angles. The pairs of angles b and c or B and C are alternate-interior angles. The pairs of angles a and c, A and C, b and d, or B and

Fig. 21 D are exterior-interior or corresponding angles.
37. When two parallel lines are cut by a transversal, the alternate-interior angles are equal.

Let $C D$ and $E F$, Fig. 25, be the parallel lines and $A B$ the trans versal. The angles M and M^{\prime} have their sides $G D$ and $H F$ parallei and $A G$ and $G H$ in the same line; hence, the turning in changing from the direction $H F$ to the direction $H G$ is equal to the turning in changing from the direction $G D$ to the direction $G A$. That is, angle $A G D$, or M, is equal to the angle $G H F$, or M^{\prime}, Art. 17. But angle M is equal to angle N, Art. 28; therefore, angle N is equal to angle M^{\prime}. In like manner, it can be shown that the angle $D G H$ is equal to the angle $G H E$.

Fig. 25
38. It follows from the preceding article that the alternate-exterior angles are equal; also, the exteriorinterior angies. Thus, in Fig. 24, we have $a=d, A=D$; $B=D, b=d ; B=C, b=c$.
39. In Fig. 24, the angle a and the angle A are supplementary adjacent angles, and their sum is, therefore, equal to two right angles. From this, and from the principle stated in the preceding article, it follows that any angle in Fig. 24 marked by a capital letter and any angle marked by a small letter are together equal to two right angles.

The principles stated in this and in the two preceding articles may be summed up as follows: When two parallel lines are cut by an oblique transversal, the four obtuse angles are equal to one another; the four acute angles are equal to one another; and any of the obtuse angles is the supplement of any of the acute angles.
40. If a straight line is perpendicular to one of two

Fig. 26 parallel lines, it is perpendicular to the other also.

In Fig. 26, $A B$ and $C D$ are parallel, and $L M$ is drawn perpendicular to $A B$. Then, since the alternate-interior angles P and \cong are equal, and since P is a right angle, Q must be a right angle alse; that is, $L M$ is perpendicular to $C D$.

I L. T $36 \mathrm{~F}-2$
41. The distance between two parallel lines is the length intercepted by the two parallels on any line perpendicular to them. Thus, $L M$, Fig. 26, is the distance between $A B$ and $C D$.
42. If two straight lines $A B$ and $C D$, Fig. 27, are cut by a third straight line $E F$ so that the exterior-interior angles M and N are equal, the two straight lines are parallel.

Fig. 27

If $A B$ were not parallel to $C D$, we might draw through G a line $P Q$ that was parallel to $C D$. But then the exterior-interior angles N and $E G Q$ would be equal (Art. 38), which is obviously inconsistent with the supposition that N is equal to M.
43. If two lines, as $A B$ and $C D$, Fig. 28, are parallel to a third line, as $E F$, they are parallel to each other.

Draw a transversal $G H$. Then, since $A B$ is parallel to $E F$, the alternate-interior angles M and N are equal; and, since $C D$ is parallel to $E F$, the alternate-interior angles P and N are equal. We have, therefore, $N=M, N=P$, and, consequently, $M=P$. As M and P are exteriorinterior angles, it follows, from Art. 42, that $A B$ and $C D$ are parallel.

Fic. 28
44. Two angles whose sides are respectively parallel and lie in the same or opposite directions from their vertexes are equal.

In Fig. $29(a), B A$ and $E D$ are parallel and extend in the same direction; also, $B C$ and $E F$ are parallel and extend in the same direction from the vertexes. Let O be the point of intersection of the sides $B C$ and $E D$ produced. Then, since $B Q$ and $E F$ are parallel, the exterior-interior angles E and M are equal; and, since $B A$ and $E G$ are parallel, the exterior-interior angles B and M are equal. Therefore, the angles B and E, being each equal to M, are equal to each other.

In Fig. $29(b), B A$ and $E F$ are parallel and extend in opposite directions; also, $B C$ and $E D$ are parallel and extend in opposite directions from the vertexes. Producing $F E$ and $D E$, we have. by the preceding case, $B=D^{\prime} E F^{\prime}$. As $D E F$ and $D^{\prime} E B^{\prime}$ ar verticai
angles, they are equal, and, therefore, B, which is equal to $D^{\prime} E F^{\prime}$. is also equal to $D E F$.

(a)

(b)

Fig. 29
45. If one side of an angle is parallel to one side of another angle, the two extending in the same direction from the vertexes, and if the other sides of the two angles are also parallel, but extend in opposite directions from the vertexes, the two angles are supplementary.

In Fig. $30, B C$ and $E D$ are parallel and extend in the same direction, while $B A$ and $E F$ are parallel and extend in opposite directions from the vertexes. Producing $A B$, we have, by Art. 44, $N=E$. Now, $M+N=$ two right angles; therefore, $M+E=$ two right angles.

Fig. 30
46. Two angles that have their sides perpendicular, each to each, are either equal or supplementary; they are equal if both are acute or both obtuse; and supplementary if one is acute and the other obtuse.

In Fig. 31, let $G H$ be perpendicular to $A B$, and $K H$ perpendicular to $B C$. Draw $B D$ parallel to $K H$, and $B E$ parallel to $G H$. Then, by Art. 44, $D B E$ is equal to $K H G$. Since $E B A$ and $D B C$ are right angles, by taking $D B A$
from each of them $E B D$ is seen to be equal to $A B C$. Hence, the acute angle $A B C$ is equal to the acute angle $K H G$. Also, when one angle is the acute angle $A B C$ and the other is the obtuse angle $C H /$, since $G H /$ is the supplement of $K H G$, it must be the supplement of $A B C$.

POLYGONS

DEFINITION8

47. A polygon is a portion of a plane bounded by straight lines. The boundary lines are the sides of the polygon. The angles formed by the sides are the angles of the polygon. The vertexes of the angles of the polygon are the vertexes of the polygon. The broken line that bounds it, or the whole distance around it, is the perimeter of the polygon. Thus, $A B C D E$, Fig. 32, is a polygon; the sides of this polygon are $A B, B C$,

Fig. 32 $C D, D E$, and $E A$; its angles are $A B C, B C D, C D E$. $D E A$, and $E A B$; and its vertexes are A, B, C, D, and E.
48. The number of vertexes of a polygon is the same as the number of sides.
49. The least number of sides that a polygon can have is three, since two straight lines cannot enclose space.
50. Polygons are classified in various manners. One of these classifications is based on the number of sides. A polygon of three sides is a triangle; a polygon of four sides, a quadrllateral; a polygon of five sides, a pentagon; a polygon of six sides, a hexagon; a polygon of seven sides, a heptagon; a polygon of eight sides, an octagon; a polygon of nine sides, a nonagon; a polygon of ten sides, a decagon; a polygon of twelve sides, a dodecagon.

Pig. 38
51. An equilateral polygon is a polygon whose sides are all equal. Thus, in Fig. 33, $A B=B C=C D$ $=D A ;$ hence, $A B C D$ is an equilateral polygon.
52. An equiangular polygon is a polygon whose angles are all equal. Thus, in Fig. 34, angle $A=$ angle B $=$ angle $D=$ angle C; hence, $A B D C$ is an equiangular polygon.

Fig. 3
53. A regular polygon is a polygon

Fig. 35 in which all the sides and all the angles are equal. Thus, in Fig. 35, $A B=B D=D C$ $=C A$; and angle $A=$ angle $B=$ angle D $=$ angle C; hence, $A B D C$ is a regular polygon. Some regular polygons are shown in Fig. 36.

54. A reentrant angle of a polygon is an angle whose sides if produced through the vertex will enter the surface bounded by the perimeter of the polygon. Thus, $B C D$, Fig. 37 , is a reentrant angle.

Fig. 37

TRIANGLES

55. Triangles are classified with regard to their sides into scalene, isosceles, and equilateral triangles.

56. A scalene triangle, Fig. 38 , is a triangle that has no two of its sides equal.
57. An isosceles trlangle, Fig. 39, is a triangle that has two of its sides equal.

F1G. 3
58. An equilateral triangle, Fig. 40 , is a triangle that has its three sides equal. An equilateral triangle is a particular kind of isosceles triangle.

Fig. 40 Thus, the triangle $A B C$, Fig. 40, may be regarded as an isosceles triangle whose equal sides are $A B$ and $A C$, as an isosceles triangle whose equal sides are $B A$ and $B C$, or as an isosceles triangle whose equal sides are $C A$ and $C B$. All the statements made with regard to isosceles triangles are, therefore, true of equilateral triangles.
59. Triangles are classified with regard to their angles into right-angled, obtuse-angled, and acute-angled triangles. See Fig. 41.

60. A right-angled triangle, or a right triangle, is a triangle having a right angle. The hypotenuse of a right triangle is the side opposite the right angle. The legs of a right triangle are the sides that include the right angle.
61. An obtuse-angled triangle is a triangle having an obtuse angle.
62. An acute-angled triangle is a triangle all the angles of which are acute.
63. An oblique triangle is a triangle that has no right angle. The class oblique triangles includes all obtuse-angled and acute-angled triangles.
64. An equiangular triangle is a triangle whose three angles are equal.
65. The base of a triangle is the side on which the triangle is supposed to stand. In a scalene triangle. any side
may be considered as the base. In an isosceles triangle, the unequal side is usually, though not necessarily, taken as the base.

The angle opposite the base of a triangle is sometimes called the vertical angle of the triangle. In Figs. 42 and $43, A C$ is the base.
66. The altitude of a triangle is the length of a line drawn from the vertex of the angle opposite the base perpendicular to the base. Thus, in Figs. 42 and 43, the length of $B D$ is the altitude.
67. An exterior angle of a triangle is an angle formed by a side and the prolongation of another side. Thus, in

Fig. 42

Fig. 44 Figs. 43 and 44 , the angle $B C D$, formed by the side $B C$ and the prolongation of the side $A C$, is an exterior angle of the triangle $A B C$. The angle $B C A$ is adjacent to the exterior angle $B C D$. The angles A and B are opposite-interior angles to the angle $B C D$.
68. In any triangle, an exterior angle is equal to the sum of the opposite-interior angles.

Let $D C B$, Fig. 44, be an exterior angle of the triangle $A B C$. Draw $C E$ through C parallel to $A B$. Then, the angles M and A, being exterior-interior angles, are equal. Also, N and B, being alternate-interior angles, are equal. Hence, angle M plus angle N, that is, the exterior angle $D C B$, is equal to angle A plus angle B, or the sum of the opposite-interior angles.
69. The sum of the interior angles of a triangle is equal to two right angles.

In Fig. 44, the angles $B C D$ and $B C A$, being supplementary adjacent angles, are together equal to two right angles. But, by the preceding article, the angle $B C D$ is equal to the sum of the angles A and B. Hence, the sum of the three interior angles A, B, and $B C A$ is equal to two right angles.
70. The following important propositions are immediate consequences of that stated in Art. 69:

1. If two angles of a triangle are known, or if their sum is known, the third angle can be found by subtracting their sum from two right angles.
2. If two angles of a triangle are equal, respectively, to two angles of another triangle, the third angle of the firstmentioned triangle is equal to the third angle of the other triangle.
3. A triangle can have but one right angle, or one obtuse angle.
4. In any right triangle, the two acute angles are complementary.
5. Each angle of an equiangular triangle is equal to onethird of two right angles, or two-thirds of one right angle.
6. From a point without a line, only one perpendicular to the line can be drawn.

EXAMPLES FOR PRACTICE

1. If one acute angle of a right triangle is one-third of a right angle, what is the value of the other? Ans. Two-thirds of a right angle
2. It one angle of a triangle is one-half of a right angle, and another is five-sixths of a right angle, what is the third angle?

Ans. Two-thirds of a right angle
3. The exterior angle of a triangle is $1 \frac{?}{8}$ right angles, and one of the opposite-interior angles is one-fourth of a right angle; what are the other angles of the triangle?

Ans. $\left\{\begin{array}{l}\text { Other opposite-interior angle }=\frac{3}{20} \\ \text { Ang }\end{array}=1.15\right.$ right angles
Ans. $\left\{\begin{array}{l}\text { Angle adjacent to exterior angle }=\text { three-fifths of a right angle }\end{array}\right.$

Psc. 45
4. Show that in the triangle $A B C$, Fig. 45, the bisector of the right angle $A B C$ forms with the bisector of the exterior angle at C an angle that is equal to one-half of the angle A.
Suggrstion.-Let $B D$ be the bisector of $A R C$ and $F D$ the bisector of $R C E$. Then $B C F$ is equal to $C B D$ plus $C D B$, or $C D B$ is equal to $B C F$ minus $C B D$. Also, $E C B$ is equal to $C B A$ plus A, or A is equal to $E C B$ minus $C B A$. Furthermore, $E C B$ is equal to twice $B C F$ and $C B A$ is equas to twice $C B D$.
5. One angle of a triangle is one-half of a right angle: (a) What are the remaining two angles, if one is twice as large as the other? (b) What kind of triangle is this?

Ans. $\left\{\begin{array}{l}\text { (a) One-half of a right angle and one right angle } \\ \text { (b) An }\end{array}\right.$
Ans. $\{$ (b) An isosceles right triangle
71. Two plane figures are equal when one can be placed on the other so that they will coincide in all their parts.

Thus, the triangles $A B C$ and $A^{\prime} B^{\prime} C$, Fig. 46, are equal, because if $A^{\prime} B^{\prime} C^{\prime}$ is imagined to be lifted off the paper, moved over and placed on $A B C$, the sides $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $C^{\prime} A^{\prime}$ can be made to coincide

Fig. 46
with $A B, B C$, and $C A$, respectively, and the angles A^{\prime}, B^{\prime}, and C to coincide with the angles A, B, and C. It is evident, from the figure, that if the vertexes of the two triangles coincide, the triangles will coincide throughout, and are, therefore, equal.

The polygons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$, Fig. 47, are equal, because $A^{\prime} B^{\prime} C D^{\prime} E^{\prime}$ can be imagined to be lifted, turned over, and placed on $A B C D E$ so as to make the two polygons coincide in all their parts.

Pig. 47
72. Two triangles are equal when a side and two adjacent angles of one are equal to a side and two adjacent angles of the other.

Let $A^{\prime} B^{\prime}$, Fig. 48, equal $A B$, the angle A^{\prime} equal the angle A, and the angle B^{\prime} equal the angle B. Now, if $A^{\prime} B^{\prime} C$ is placed on $A B C$ so that $A^{\prime} B^{\prime}$ coincides with its equal $A B$, with A^{\prime} on A and B^{\prime} on B, $A^{\prime} C$ will take the direction $A C$; since the angle A^{\prime} is equal to the angle A, and as B^{\prime} is equal to $B, B^{\prime} C$ will take the direction $B C$.

Now, the point C will fall somewhere on the line $A C$, and also somewhere on the line $B C$, and since two lines can intersect in only one point, C must fall at the intersection of $A C$ and $B C$, or at C. Hence, the vertexes of the triangles coincide and the triangles are equal.

Fig. 48

 ,
coincide; for since $A^{\prime}=A, A^{\prime} C^{\prime}$ will take the direction $A C$, and since $A^{\prime} C^{\prime}=A C, C^{\prime}$ will coincide with C. The same reasoning applies to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, after the latter triangle has been turned over.
75. Two triangles are equal when the three sides of the one are equal, respectively, to the three sides of the other.

In Fig. 50, let $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $C^{\prime} A^{\prime}$ be equal, respectively, to $A B, B C$, and $C A$. Place $A^{\prime} B^{\prime} C^{\prime}$ in the position $A B C^{\prime \prime}$, with its longest side $A^{\prime} B^{\prime}$ coinciding with $A B$, and $C^{\prime \prime}$ on the opposite side of $A B$ from C; then join C and $C^{\prime \prime}$. Now, $A C$ is equal to $A C^{\prime \prime}$, and $B C$ is equal to $B C^{\prime \prime}$; hence, A and B determine a perpendicular to $C C^{\prime \prime}$ at its mid-point (Art. 34). Then, by Art. 32, the angle $C A D$ is equal to the angle $C^{\prime \prime} A D$, or to $C^{\prime} A^{\prime} B^{\prime}$, and by Art. 74 the triangles $C A B$ and $C^{\prime} A^{\prime} B^{\prime}$ are equal.
76. In an isosceles triangle, the angles opposite the equal sides are equal.

Let $A B C$, Fig. 51, be an isosceles triangle in which $A B=B C$. Draw the bisector $B D$ of the angle B. Then, by Art. 74, the triangles $A B D$ and $C B D$ are equal. Therefore, $A=C$.
77. The equality of the triangles $A B D \quad$ Fro. 51 and $C B D$, Fig. 51, gives $A D=D C$, and angle $M=$ angle $N=$ one right angle (since $M+N=$ two right angles). Hence,

1. The bisector of the vertical angle of an isosceles triangle bisects the base and is perpendicular to it.
2. Conversely, the perpendicular bisecting the base of an isosceles triangle passes through the vertex of the opposite angle and bisects that angle.
3. Also, the perpendicular drawn from the vertical angle of an isosceles triangle to the base, bisects both the base and the vertical angle.
4. If two angles of a triangle are equal, the sides opposite these two angles are equal, and the triangle is therefore isosceles.

In Fig. 51, let $A=C$. Draw $B D$ perpendicular to $A C$. The right triangles $B D C$ and $B D A$ have the common side $B D$, and acute angle $A=C$. Therefore (Art. 73), they are equal, and their hypotenuses $B A$ and $B C$ are equal.
79. It follows from Art. 76 that an equilateral triangle is, also equiangular, and from the preceding article that an equiangular triangle is also equilateral.

Fig. 52
80. If two sides of a triangle are equal, respectively, to two sides of another triangle, and the angle opposite one of these two sides in the first triangle is equal to the corresponding angle in the second triangle, the angles opposite the other two equal sides are either equal or supplementary.

In Fig. 52, let $A^{\prime} C=A C, A^{\prime} B^{\prime}=A B$, and the angle $B^{\prime}=B$. Place $A^{\prime} B^{\prime} C$ on $A B C$ so that $A^{\prime} B^{\prime}$ coincides with $A B$. Then since $B^{\prime}=B, B^{\prime} C$ will take the direction $B C$, and since $A^{\prime} C$ joins $B^{\prime} C, C$ must fall on $B C$, at either C or D. If C falls at C, the triangles are equal and the angle $C=C$; but if C^{C} falls at $D, A D B$ is the angle C, and $A D B$, the supplement of $A D C$, is the supplement of C, since, by Art. $\mathbf{7 6}, A D C=C$.

81. If two triangles have two sides of the one equal to two sides of the other, and the angles opposite one pair of the equal sides are right angles or equal obtuse angles, the triangles are equal.

Since a triangle can have but one right or one obtuse angle, when the angles B and B^{\prime}. Fig. 53, are obtuse, the angle C cannot be the supplement of C, hence C must equal C.
82. Of two sides of a triangle, that is greater which is opposite the greater angle.

In the triangle $A B C$, Fig. 54, let the angle C be greater than the angle B. Draw $C D$, making with $C B$ an angle $B C D$ equal to the angle B. Then $B C D$ is an isosceles triangle, and $C D=D B$. Therefore, $A D+D B$, or $A B$, is the same as $A D$ $+D C$, which is evidently greater than $A C$.

Fig. 54
83. Of two angles of a triangle, that is greater which is opposite the greater side.

Let A and B be two angles of a triangle, a the side opposite A, and b the side opposite B. Suppose that a is greater than b. If A were equal to B, the triangle would be isosceles, and $a=b$. If B were greater than A, then by the preceding article, b would be greater than a. Therefore, since B cannot be equal to or greater than A, it must be less, or A must be greater than B.
84. If from a point O, Fig. 55 , without a line $A B$, a perpendicular $O P$ to the line is drawn, and also two oblique lines $O L$ and $O L^{\prime}$, the oblique line $O L$, whose foot L is

Fig. 55 farther from the foot P of the perpendicular, is the greater of the two oblique lines.

Suppose the two oblique lines $O L$ and $O L^{\prime}$ to be on the same side of the perpendicular. Since $O L^{\prime} P$ is a right triangle and $O P L^{\prime}$ the right angle, the angle $O L^{\prime} P$ is acute; also, the angle $O L^{\prime} L$ is obtuse, since it is the supplement of $O L^{\prime} P$. As the triangle $O L L^{\prime}$ can have but one obtuse angle, $O L^{\prime} L$ is greater than $O L P$, and, therefore (Art. 82), OL is greater than $O L^{\prime}$. If $O L$ lies on the opposite side of the perpendicular from $O L^{\prime}$, as in the position $O L^{\prime \prime}$, and if $P L^{\prime \prime}=P L$, which is greater than $P L^{\prime}$, then, by Art. 30, $O L^{\prime \prime}=O L$, which is greater than $O L^{\prime}$.
85. If the hypotenuse, as $A B$, Fig. 56, and one leg, as $B C$, of a right triangle are equal, respectively, to the
hypotenuse and one leg of another right triangle, as $A^{\prime} B^{\prime} C^{4}$,

$A^{\prime \prime}$, the hypotenuse $B A^{\prime \prime}$, or $B^{\prime} A^{\prime}$, would be less than $B A$ (Art. 84); and, if A^{\prime} fell on the left of A, the hypotenuse $B^{\prime} A^{\prime}$ would be greater than $B A$.

EXAMPLES FOR PRACTICE

1. Show that, if two intersecting lines, as $A B$ and $D C$, Fig. 57, bisect each other, the lines $A C$ and $D B$ are parallel.

Fig. 57
2. If the value of the unequal or vertical angle of an isosceles triangle is two-fifths of a right angle, what is the value of each of the base angles?

Ans. Four-fifths of a right angle

Fig. 58
3. Show that the bisectors of the base angles of an isosceles triangle form with the base an isosceles triangle; or that, $A D C$, Fig. 58, is an isosceles triangle.
4. Show that the length of the inaccessible line $A B$, Fig. 59, can he found by measuring $A O$ and $B O$, then making $O D=O B$ and $O C=O A$, and finally measuring $C D$.

Fig. 69

QUADRILATERALS

86. There are three kinds of quadrilaterals: the parallelogram, the trapezoid, and the trapezium.
87. A parallelogram is a quadrilateral whose opposite sides are parallel. There are four kinds of parallelograms: the rectangle, the square, the rhomboid, and the rhombus.
88. A rectangle, Fig. 60 , is a parallelogram whose angles are all right angles.

Fig. 60

FIG. 61
90. A rhomboid. Fig. 62, is a quadrilateral whose opposite sides are parallel, and whose angles are not right angles.

Fig. 62

Fig. 68
91. A rhombus, Fig. 63, is a rhomboid having equal sides.
92. A trapezoid, Fig. 64, is a quadrilateral that has only two of its sides parallel.

Fig. 64

Fig. 65
93. A trapezium, Fig. 65, is a quadrilateral having no two sides parallel.
94. The altitude of a parallelogram, or of a trapezoid, is the length of the perpendicular distance between the parallel sides. See dotted line in Figs. 62, 63, and 64.
95. A diagonal of a quadrilateral is a straight line drawn from the vertex of any angle of the quadrilateral to the vertex of the angle opposite. A diagonal divides a quadrilateral into two triangles. See Figs. 60 and 65.
96. In a parallelogram, as $A B C D$, Fig. 66, the opposite sides and opposite angles are equal; that is, $A B=D C, A D$ $=B C$, angle $A=$ angle C, angle $B=$ angle D.

Fig. 66

Draw the diagonal $A C$. Then, angle $M=\operatorname{angle} M^{\prime}$, and $N=N^{\prime}$ (Art. 37). The triangles $A D C$ and $A B C$, having the common side $A C$ and the adjacent angles M and N^{\prime} equal, respectively, to M^{\prime} and N, are equal (Art. 72). Therefore, $A D$ $=B C, A B=D C$, and angle B $=$ angle D. Also, since $M=M^{\prime}$ and $N=N^{\prime}$, it follows that $M+N^{\prime}$, or $B A D$, is equal to $M+N^{\prime}$, or $B C D$.
97. The diagonal of a parallelogram divides the parallelogram into two equal triangles.
98. Parallel lines intercepted between parallel lines are equal. Thus, if the parallels $A B$ and $C D$, Fig. 67, are cut by the parallels $E F, G H, I J, K L$,

Fig. 67 we have, from Art. 96, $M N=O P=Q R=S T$.
99. The diagonals of a parallelogram, as $A C$ and $B D$, Fig. 68, bisect each other; that

Fig. 68 is, denoting by O the point of intersection of the diagonals, $O A=O C$ and $O B=O D$.

In the triangles $A O B$ and $D O C, A B=D C$ (Art. 96), $M=M^{\prime}$ and $N=N^{\prime}$ (Art. 37). Therefore, the triangles are equal
(Art. 72) and $O A=O C . O B=O D$.

EXAMPLES FOR PRACTICE

1. Show that if the diagonals of a quadrilateral bisect each othe: the figure is a parallelogram.

Suggestion.-In Fig. 68, assume that $O A=O C, O B=O D$. Then show that triangle $B O C=$ triangle $A O D$, and triangle $A O B=$ triangle $D O C$.
2. Show that the diagonals of a rectangle are equal.

Suggestion.-Show that in any rectangle $A B C D$ the triangle $A B C=$ triangle $A B D$.
3. Show that if the opposite sides of a quadrilateral are equal, the figure is a parallelogram.

Suggestion.-Draw the diagonal. Then, by Art. 75, the triangles formed are equal.
4. Show that if two sides of a quadrilateral are equal and parallel, the figure is a parallelogram.
5. Show that if one angle of a parallelogram is a right angle, the parallelogram is a rectangle.

ADDITIONAL PROPERTIES OF TRIANGLES

100. The bisectors of the three angles of a triangle meet in a point.

In the triangle $A B C$, Fig. 69, draw the bisectors of the angles A and B and let them meet at O. Join C and O. and draw the perpendiculars from O to the sides of the triangle. Then, in the right triangles $B O F$ and $B O E, B O$ is common and the angle $O B F$ = angle $O B E$. Hence, by Art. 73, these triangles are equal. Therefore, $O F=O E$. In a similar manner it can be shown that $O D=O E$. Therefore, $O D=O F$. The right triangles $O F C$ and $O D C$, having $O D=O F$ and $O C$ common, are equal (Art. 85). Hence, angle $O C F=$ angle

Fig. 69 $O C D$; that is, $O C$, which meets the bisectors $A O$ and $B O$ in O, is the bisector of the angle C.
101. Any point in the bisector of an angle is equally distant from the sides of the angle. For it has just been shown that, in Fig. 69, $O F=O E$.
102. The perpendiculars erected at the middle points of the three sides of a triangle meet in a point equally distant from the vertexes of the triangle.

1 I. T . $3 \mathrm{FF}-3$

In Fig. 70, draw the perpendiculars to $C B$ and $A C$ at their midpoints D and E, and iet O be the point in

Fig. 70 which these perpendiculars meet. Now, O, being in $O D$, is equally distant from C and B (Art. 31), that is, $O B=O C$: and being in $O E$, is equally distant from A and C; that is, $O A=O C$. From these two equalities it follows that $O B=O A$. Therefore, the perpendicular to $A B$ at its middle point F passes through O. (Art. 77).
103. If several parallel lines intercept equal distances on one transversal, they intercept equal distances on any other transversal.

In Fig. 71, let the parallels $A E, B G$, $C I, D K$ intercept the equal distances $A B, B C$, and $C D$ on the transversal $P Q$, and let $R S$ be any other transversal. Draw $E F, G H, I J$, parallel to $A B$. Then, by Art. 98, $E F$ $=A B, G H=B C, I J=C D$. Hence, $E F=G H=I J$. In the triangles $E F G, G H I$, and $I J K$, angle E $=$ angle $G=$ angle I (Art. 38), and angle $F=$ angle $H=$ angle J (Art. 44).

Fig. 71 Hence, by Art. 72, these triangles are equal, and, therefore, $E G=$ $G I=I K$.

104. A line parallel to one of the sides of a triangle and bisecting one of the other sides, bisects the third side also.

In Fig. 72 , let $D E$ bisect $A B$ and be parallel to $A C$. Draw a line through B parallel to $A C$. Then since the three parallels intercept equal parts on $A B$, they intercept equal parts on $B C$; that is, $B E=E C$.
105. A line joining the middle points of two sides of a triangle is parallel to the third side and equal to one-half of that third side.

In Fig. 72, let $D E$ join D and E, the middle points of $A B$ and $B C$. The first part of this proposition follows at once from the preceding
article. Let F be the middle point of $A C$, and draw $F E$. This line is parallel to $A B$, and, therefore, $A D \bar{E} F$ is a parallelogram. Consequently (Art. 96),$D E=A F=\frac{1}{\frac{1}{4}} A C$.
106. The lines joining the middle points of the three sides of a triangle divide it into four equal triangles.

The diagonal $D F$, Fig. 72, divides the parallelogram $A D E F$ into two equal triangles $A F D$ and $D F E$. Likewise, the diagonal $E F$ divides $D E C F$ into two equal triangles $D F E$ and $E F C$; and the diagonal $D E$ divides the parallelogram $B D F E$ into the two equal triangles $D F E$ and $B D E$. Hence, triangle $A F D=$ triangle $D F E$ $=$ triangle $E F C=$ triangle $B D E$.
107. Any of the parallelograms $A D E F, F C E D$, $D B E F$, Fig. 72, is equal to one-half the given triangle, since it contains two of the four equal triangles into which the given triangle is divided.
108. A line, as $E F$, Fig. 73, parallel to the bases $A B$ and $D C$ of a trapezoid and passing through the middle point E of one of the non-parallel sides, passes through the middle point of the other non-parallel side and is equal to one-half the sum of the parallel sides or bases.

Since the parallels $A B, E F$, and $D C$ intercept equal parts on $A D$, they intercept equal parts on $B C$ (Art. 103); that is, $B F=F C$.

Draw $B D$, meeting $E F$ in G.

Fig. 73 Then, by Art. 105, in the triangle $D C B, F G$ is one-half $C D$. Also, in the triangle $A D B, G E$ is one-half $B A$. Hence, $F G+G E$, or $F E=\frac{1}{2}(C D+B A)$.
109. The medians of a triangle are the lines drawn from the vertexes to the middle points of the opposite sides.
110. The medians of a triangle meet in a point whose distance from any vertex is two-thirds the length of the median from that vertex.

In Fig. 74, $A D, B E, C F$ are the median lines of the triangle $A B C$; they meet at O, and $A O=\frac{4}{3} A D, B O=\frac{4}{8} B E$ and $C O=\frac{1}{3} C F$.

Let $A D$ and $C F$ meet at O. Join I and H, the mid-points of $C O$ and
 $A O$, respectively; also join D and F. Then, in the triangle $A O C, I H$ is parallel to $A C$ and equal to one-half $A C$ (Art. 105). Also, in triangle $A B C, D F$ is parallel to $A C$ and equal to one-half $A C$. Hence, $I H$ and $D F$ are equal and parallel. It follows that the triangles $D O F$ and $H O I$ are equal, and that, therefore, $H O=O D$. But, by construction, $A H=H O$. Hence, $A H=H O=O D$, whence, $A O=\frac{2}{3} A D$. Similarly $C O=\frac{\pi}{3} C F$. That is, one median cuts off on the other median two-thirds of the distance from the vertex to the opposite side.

POLTGONS IN GENERAL.

111. Two polygons are equal when they can be divided into the same number of triangles equal each to each and

Fig. 75
similarly placed. Thus, the polygons shown at (a) and (b) in Fig. 75 are composed of the same number of triangles equal each to each and similarly placed, and it is evident that one polygon can be placed on the other so that they will coincide throughout; hence, they are equal.
112. An exterior angle of a polygon is an angle formed by any side and the prolongation of an adjacent side. In Fig. 76, the angles M

Fig. 76 and N are exterior angles of the polygon $A B C D E$.
113. A diagonal of a polygon is any line joining two vertexes not adjacent to the same side of the polygon. Thus, in Fig. 75, $A C, A D$, and $A E$ are diagonals of the polygon $A B C D E F$.
114. The sum of the interior angles of any polygon is equal to two right angles multiplied by a number that is two less than the number of sides of the polygon.

Let (a), Fig. 75, be any polygon. Draw the diagonals from one vertex and thus divide the polygon into triangles. It is seen that the first triangle $A B C$ and the last triangle $A F E$, each contains two sides of the polygon, while each of the other triangles contains but one side of the polygon. Thus, the number of triangles formed is two less than the number of the sides of the polygon. Hence (Art. 69), the sum of the angles of the triangles, or of the polygon, is two right angles multiplied by a number that is two less than the number of sides of the polygon.
115. Let $n=$ number of sides of a polygon;
$S=$ sum of interior angles of the polygon, expressed in right angles.
Then,

$$
S=2(n-2)=2 n-4
$$

If $n=4$, then $S=2 \times 4-4=4$ right angles; that is, the sum of the angles of a quadrilateral is equal to four right angles.

Example 1.-What is the value of one of the interior angles of an equiangular hexagon?

Solution.-The number of sides of a hexagon is six; hence, applying the formula, $S=2 \times(6-2)=8$ right angles, that is, the sum of the interior angles of a hexagon is equal to eight right angles. Since the hexagon is equiangular, one of the angles is equal to one-sixth of eight right angles, or $1 \frac{1}{3}$ right angles. Ans.

Example 2.-If one of the interior angles of an equiangular polygon is equal to $1 \frac{3}{7}$ right angles, what is the name of the polygon?

Solution.-If one of the interior angles is equal to $1 \frac{3}{7}$ or $\frac{10}{7}$ right angles, their sum S is equal to $\frac{10}{7} \times n=\frac{10 n}{7}$. But from the formula, $S=2 n-4$. Therefore, $\frac{10 n}{7}=2 n-4$; whence, $n=7$. A polygon of seven sides is a heptagon; therefore, tne polygon is a heptagon. Ans.

EXAMPIES FOR PRACTICE

1. Show that if two angles of a quadrilateral are supplementary the other two angles are supplementary.
2. In a triangle $A B C$, the angle C is twice the angle B. Show that the line that bisects the angle C meets the line $A B$ at a point D so that $C D=B D$.

Sugrastion.-Half the angle $C=$ angle B. Then in the triangle $C D B$, angle $B C D=$ angle $C B D$.
3. What is the value of one of the interior angles of an equiangular octagon?

Ans. $1 \frac{1}{2}$ right angles
4. (a) What is the value of one of the interior angles of an equiangular quadrilateral? (b) What kind of quadrilateral is it?

$$
\text { Ans. }\left\{\begin{array}{l}
(a) \text { One right angle } \\
(b) \text { Reetangle }
\end{array}\right.
$$

5. If one of the interior angles of an equiangular polygon is equal to $1 \frac{8}{v}$ right angles, what is the name of the polygon? Ans. Nonagon

THE CIRCLE

DEFINITIONS AND GENERAL PROPERTIES

116. A circle, Fig. 77 , is a plane figure bounded by a curved line every point of which is equally distant from a point within called the center.

Fig. 77
118. The diameter of a circle is a straight line drawn through the center and terminated at both ends by the circumference. Thus, $A E$, Fig. 78 , is a diameter of the circle whose center is O.

Fic. 78
119. The radius of a circle is any straight line drawn from the center to the circumference. The plural of radius is radii. Thus, $O A, O E$, and $O F$, Fig. 78, are radii of the circle whose center is O.
120. The distance from the center to the circumference is, by the definition of a circle, the same for all points in the same circle; hence, all radii are equal.
121. When any two radii, as $O A$ and $O E$, Fig. 78, are in the same straight line, they form a diameter. Hence, the length of the diameter is twice the length of the radius.
122. An arc of a circle is any part of its circumference, as $D C B$, Fig. 78.
123. An arc equal to one-half the circumference is a semi-circumference; and an arc equal to one-fourth the circumference is a quadrant.
124. A chord is a straight line, as $B D$, Fig. 78 , joining any two points in a circumference, or it is a line joining the extremities of an arc.
125. The longest chord that can be drawn in a circle is a chord that passes through the center and is, therefore, a diameter.
126. An arc of a circle is said to be subtended by its chord. Thus, the arc $B C D$, Fig. 78, is subtended by the chord $B D$.

Every chord in a circle subtends two arcs. Thus, $B D$ subtends both the arcs $B C D$ and $B A F E D$.

When an arc and its chord are spoken of, the arc less than a semi-circumference is meant, unless the contrary is stated. The shorter are is usually referred to by naming the letters at its extremities; thus, the arc $B C D$ is called the $\operatorname{arc} B D$.
127. A segment of a circle is a part of the circle enclosed by an arc and its chord. In Fig. 78, the part of the circle between the chord $B D$ and the arc $B D$ is a segment.

A segment equal to one-half the circle is a semicircle.
128. A sector of a circle is the space included between an arc and the two radii drawn to the extremities of the arc. In Fig. 78, the space included between the arc $F E$ and the radii $O F$ and $O E$ is a sector.
129. Two circles are equal when the radius or diameter of one is equal to the radius or diameter of the other.

Fic. 79
130. A tangent to a circle is a line that touches the circumference in only one point. In Fig. 79, $A B$ is tangent to the circle whose center is O.

The point E at which the tangent touches the circumference is the point of contact, or point of tangency.
131. Two circles are tangent when they touch each other in one point only, as in Fig. 80. When two circles are tangent, they are tangent to the same straight line at the point of tangency.

Fig. 80
132. A secant, as the term is used in geometry, is a line that intersects the circumference of a circle in two points. In Fig. 79, CD is a secant to the circle whose center is O.

133. An inscribed angle is an angle whose vertex lies on the circumference of a circle, and whose sides are chords. In Fig. 81, ABC is an inscribed angle.

Fig. 81
134. A central angle, or an angle at the center, is an angle whose vertex is at the center of a circle and whose sides are radii. Thus, in Fig. 82, $A O B$ is a central angle.

Fig. 82

135. An inscribed polygon is a polygon each of whose vertexes lies on the circumference of a circle, as in Fig. 83. The circle is said to be circumscribed about the polygon.

Fig. 83
136. An inscribed circle is a circle whose circumference touches but does not intersect each of the sides of a polygon, as in Fig. 84. The polygon is said to be circumscribed about the circle.

Fig. 84

137. Concentric circles are circles having the same center. See Fig. 85.

Fig. 85
138. Every diameter of a circle bisects the circle and its circumference. Thus, in Fig. 86, both the arc and the portion of the circle on one side of the diameter $A B$ are equal, respectively, to the arc and the portion of the circle on the other side.

Fig 86
139. In the same circle, or equal circles, equal angles at the center intercept equal arcs on the circumference.

Let O and O^{\prime}, Fig. 87, be equal circles, and $A O B$ and $A^{\prime} O^{\prime} B^{\prime}$ equal angles. Place the circle O^{\prime} on O so that the point O^{\prime} coincides with O and the

Fig. 87 line $O^{\prime} B^{\prime}$ takes the direction $O B$. Then, since $O B$ and $O^{\prime} B^{\prime}$ are equal, being radii of equal circles, B^{\prime} will fall on B, and, since the angle O^{\prime} is equal to the angle O, the line $O^{\prime} A^{\prime}$ will take the direction of $O A$, and, being equal to $O A$, its extremity A^{\prime} will fall on A. Hence, the $\operatorname{arcs} A B$ and $A^{\prime} B^{\prime}$ will coincide and are equal.
140. In the same circle, or equal circles, equal arcs are intercepted by equal angles at the center.

Let O and O^{\prime}, Fig. 87, be equal circles, and $A B$ and $A^{\prime} B^{\prime}$ equal arcs. Place the circle O^{\prime} on the circle O, with the points O^{\prime} and A^{\prime} on O and A, respectively. Then, since the arc $A^{\prime} B^{\prime}$ is equal to the arc $A B, B^{\prime}$ will fall on B. Then the angle O^{\prime} is equal to the angle O, as the vertex and the sides of the angles coincide.
141. In the same circle or equal circles, equal chords subtend equal arcs.

Let $A B$ and $C D$, Fig. 88, be equal chords. Draw the radii $A O, B O, C O$, and $D O$, joining A, B, C and D to O. Then the triangles $A O B$ and $C O D$, having three sides of one equal to three sides of the other, are equal. Hence, the angle $A O B$ is equal to the angle $C O D$, and, therefore (Art. 139), the $\operatorname{arc} A B$ is equal to the $\operatorname{arc} C D$.

142. In the same circle, or equal circles, equal arcs are subtended by equal chords.
143. A perpendicular from the center of a circle to a chord bisects the chord and the arc subtended by it.

Let $O M$, Fig. 89, be drawn from O perpendicular to the chord $A B$. Join O to A and B. The triangle $A O B$ is isosceles, since the two sides $O A$ and $O B$ are radii of the same circle. Therefore (Art. 77), $A M=M B$. Also, $A, O M$ $=M O B($ Art. 77); therefore (Art. 139), $\operatorname{arc} A C=\operatorname{arc} C B$.

Fig. 89
144. The perpendicular erected at the middle of a chord passes through the center of the circle and bisects the are subtended by the chord.
145. Through any three points not in a straight line a circumference can be passed.

Fig. 90

Let A, B, and C, Fig. 90 , be any three points. Draw $A B$ and $B C$. At the middle point of $A B$ draw $K H$ perpendicular to $A B$; at the middle point of $C B$ draw $F E$ perpendicular to $B C$ and meeting $K H$ at O. As O is a point in the perpendiculars at the middle points of $A B$ and $B C$, it is equally distant from A, B, and C. Therefore, a circle with O as center and $O B$ as radius will pass through A, B, and C.
146. A straight line perpendicular to a radius at its extremity is tangent to the circle.

Let $A B$, Fig. 91, be perpendicular to $O H$ at its extremity H. As $O H$ is perpendicular to $A B$ it is shorter than any other line, as $O M$, drawn from O to $A B$. Hence, M is without the circle, and any point in $A B$ other than H is without the circle. Therefore, $A B$ touches the circle in only the point H, and is, consequently, tangent to the circle.

Fig. 91
147. A perpendicular to a tangent at the point of tangency passes through the center of the circle.
148. A tangent to a circle is perpendicular to the radius drawn to the point of tangency.
149. If two circles intersect, the line joining their centers bisects at right angles the line joining the points where the circles intersect.

Fig. 92

Let the two circles whose centers are O and P, Fig. 92, intersect at A and B. The point P, being the center of a circle, is equally distant from A and B, points on the circumference. Similarly, O is equally distant from A and B. Hence, by Art. $34, O$ and P determine the perpendicular bisecting $A B$.
150. The two tangents from a point to a circle are equal.

Let $P A$ and $P B$, Fig. 93, be tangents from P to the circle whose center is O. Draw $O A$, $O P, O B$. Then the triangles $P O B$ and $P O A$ are right triangles (Art. 148). In these triangles, $P O$ is common and $O A$ is equal to $O B$. Hence, the triangles are equal, and $P A=P B$.

Fig. 93
151. The line joining an external point to the center of a circle bisects the angle made by the two tangents drawn from the point to the circle. Thus, the angle $O P A$, Fig. 93 , is equal to the angle $O P B$.

EXAMPLES FOR PRACTICE

1. Show that the line joining the intersection of two tangents to the center of the circle bisects the chord joining the points of tangency.
2. Show that the bisector of the angle between two tangents passes through the center of the circle.

Fig. 9
3. Show that in the same circle, or equal circles, equal chords are equally distant from the center.

Suggestion.-Draw OF and OF. Fig. 94, perpendicular to the equal chords $A B$ and $C D$. Then what is true of the triangles $A E O$ and $D O F$?
4. Show that the tangents to a circle at the extremities of a diameter are parallel.
5. Show that in any circle a chord parallei to a tangent is bisected by the diameter drawn
to the point of contact.

MEASUREMENT OF ANGLES

152. The ratio of one quantity to another of the same kind is the number of times that the first contains the second. When both quantities are represented by numbers, their ratio is the same as the quotient obtained by dividing one of the numbers by the other.
153. In the same circle, or equal circles, two central angles have the same ratio as their intercepted arcs; that is, in Fig. 95, angle $A O B:$ angle $C O D=\operatorname{arc} A B: \operatorname{arc} C D$.

Suppose the arc $A B$ to be three-fifths of the arc $C D$. Divide $A B$ into three equal parts, and $C D$ into five equal parts, as shown, and join the points of division with the center. Since $A B: C D=3: 5$, or $\frac{A}{C} \frac{B}{D}=\frac{3}{5}$, it follows that one-third of $A B$ is one-fifth of $C D$; that is, arc $A E=\operatorname{arc} D F$, and, therefore, angle $A O E=$ angle $D O F$. We have, therefore, angle $A O B=3 \times$ angle $A O E$, angle $C O D$ $=5 \times$ angle $D O F=5 \times$ angle $A O E$; whence, $\frac{\text { angle } A O B}{\text { angle } C O D}=\frac{3 \times \text { angle } A O E}{5 \times \text { angle } A O E}=\frac{3}{5}=\frac{\operatorname{arc} A B}{\operatorname{arc} C D}$.

Fig. 95
154. Since the angle at the center and its intercepted arc increase and decrease in the same ratio, it is said that an angle at the center is measured by its intercepted arc.
155. The whole circumference of a circle is divided into 360 equal parts, called degrees. A degree is divided into 60 equal parts, called minutes; and a minute is divided

Fig. 96 into 60 equal parts, called seconds. Degrees, minutes, and seconds of arc are used as units for measuring circular arcs. Since the circumference of every circle contains 360 degrees, the length of a degree differs in different circles. Thus, if $A O B$, Fig. 96 , is an angle of 1°, $A B$ is an arc of 1° in the larger circle and $C D$ is also and arc of 1° in the smaller concentric circle. A degree of the earth's equator is a little more than 69 miles
long; and a degree of the circumference of a circle whose liameter is 360 inches is 3.1416 inches long.

Degrees, minutes, and seconds are indicated by ${ }^{\circ},{ }^{\prime},{ }^{\prime \prime}$. Thus, $25^{\circ} 3^{\prime} 10^{\prime \prime}$ means 25 degrees, 3 minutes, and 10 seconds.

Since a right angle intercepts one quarter of a circumference, the number of degrees measuring it is $360 \div 4$ $=90^{\circ}$. The number of degrees measuring an angle equal to one-half of a right angle is $90^{\circ} \div 2=45^{\circ}$.

Usually, the magnitude of an angle is expressed by stating the number of degrees that it subtends. Thus, a right angle is referred to as an angle of 90°; one-third of a right angle, as an angle of 30°, etc.
156. An inscribed angle is measured by one-half the intercepted arc. Thus, in Fig. 97, the angle $A B C$ is measured by one-half the arc $A D C$.

Draw the diameter $B O D$ and the radii $O C$ and $O A$. The angle $C O D$, the exterior angle of the tri-

Fig. 97 angle $O B C$, is equal to the angle $O B C$ plus the angle $O C B$. But the angle $O C B$ is equal to the angle $O B C$, as they are opposite the equal sides of an isosceles triaugle. Hence, the angle $C O D$, which is measured by the arc $C D$. is equal to $2 \times O B C$. Therefore, $O B C$ is measured by one-half the arc $C D$. Similarly, the angle $O B A$ is measured by one-half the arc $A D$. Therefore, the angle $A B C$ is measured by one-half the arc $A D$ plus one-half the $\operatorname{arc} D C$; that is, by one-half the $\operatorname{arc} A C$.
157. In the same circle, or equal circles, equal arcs are intercepted by equal inscribed angles.
158. All angles inscribed in the same segment are equal.
159. Any angle inscribed in a semicircle is a right angle.

The angle $A C B$, Fig. 98, is measured

Fig. 98 by one-half the arc $A D B$, which is a semicircumference. As a semi-circumference contains 180°, the angle $A C B$ is measured by one-half of 180°, or 90°, and is, therefore, a right angle.
160. The vertexes of all the angles of a given magnitude whose sides pass through two fixed points, lie on a circle that passes through the two fixed points and any one of the vertexes.
In Fig. 99, let $A P B$ be an angle of the given magnitude and A and B the fixed points. Through A, B, and P, pass a circle. Now, any angle, as $A P_{1} B$ or $A P_{1} B$, whose sides pass through A and B and whose vertex lies on the arc $A P B$ is (Art. 158) equal to the given angle $A P B$.

Again, any angle, as $A P^{\prime} B$, whose sides pass through A and B and whose vertex lies without the arc $A P B$ is less than the angle $A P B$. For if $A P$ is produced to meet $B P^{\prime}$ at Q, the angle $A P B$ being an exterior angle of the triangle $B P Q$, is equal to $P Q B+P B Q$ and is therefore greater than $P Q B$, and as $P Q B$

Fig. 99 is greater than $A P^{\prime} B$ (since $\left.P Q B=A P^{\prime} B+Q A P^{\prime}\right)$, it follows that $A P B$ is greater than $A P^{\prime} B$.

In like manner it can be shown that any angle, as $A P^{\prime \prime} B$, whose sides pass through A and B and whose vertex lies within the $\operatorname{arc} A P B$, is greater than the given angle $A P B$.
161. An angle formed by a tangent, as $T M$, Fig. 100,

Fig. 100 and a chord, as $T P$, is measured by one-half the intercepted arc TE P.

Draw the diameter TOA. Then MTA is a right angle and is, therefore, measured by one-half the semi-circumference TE PA. The angle $P T A$ is measured by one-half the arc $P A$. Hence, the angle $M T P$, equal to $M T A$ minus $P T A$, is measured by one-half the difference between the semicircumference and $P A$; that is, by one-
half the arc $T E P$.

EXAMPLES FOR PRACTICE

1. Prove that the angle $B P A$, Fig. 101, formed by two secants intersecting without the circumference is measured by one-half the difference of the intercepted $\operatorname{arcs} A B$ and $C D$; that is, by $\frac{1}{2}(A B-C D)$.

Sugerstion.- Join C and B. Then angle $B C A$ is an exterior angle of the triangle $B C P$, and ungle $B P C$ is equal to angle $A C B$ minus angle $D B C$.

Fig. 101
2. Show that the angle $A P B$, Fig. 102, formed by two tangents $P T$ and $P T^{\gamma}$ is measured by one-half the difference of the intercepted arcs $T Q T^{\prime}$ and $T R T^{\prime}$.

Suggestion,-Join T and T^{\prime}. Then $A T T^{\prime}$ is an exterior angle of triangle $T T^{\prime} P$, while $A T T^{\prime}$ and $P T^{\prime} T$ are angles formed by a tangent and a chord.

Fig. 102
162. The angle of intersection of two tangents is the angle formed by one tangent with the prolongation of the

Fig. 103 other tangent. Thus, the angle $A P T^{\prime}$, Fig. 103, is the angle of intersection of the two tangents $T P$ and $P T^{\prime}$.
163. The angle of intersection of two tangents is equal to the central angle whose sides pass through the points of tangency.

In Fig. 103, join $T T^{\prime}$. Then, the angle $A P T^{\prime}$ is equal to the sum of the equal angles $P T T^{\prime \prime}$ and $P T^{\prime} T$. But each of these angles is made by a tangent and a chord and is, therefore, measured by one-half of the arc $T S T^{\prime}$. Hence, the angle $A P T^{\prime}$ is measured by the arc $T S T^{\prime}$. The central angle O is also measured by this arc; therefore, the angle O is equal to the angle $A P T^{\prime}$.
164. The opposite angles of an inscribed quadrilateral are supplementary; that is, their sum is equal to two right angles or 180°.

In Fig. 104, the angle B is measured by one-half the arc $A D C$, and the opposite angle D is measured by onehalf the arc $A B C$. The sum of the arcs $A D C$ and $A B C$ is a circumference, or 360°. Hence, the sum of the angles $A D C$ and $A B C$ is measured by one-hal: of 360°, or 180°.
165. If the opposite angles of a quadrilateral are supplementary, the quadrilateral can be inscribed in a circle.

Fig. 104

Example 1.-What is the number of degrees in each angle of an equilateral triangle?

Solution.-The sum of the three angles of the triangle is two righ angles, or 180°. Since the three angles are equal, each angle is onethird of 180°, or $\frac{180^{\circ}}{3}=60^{\circ}$. Ans.

Example 2.-The unequal angle of an isosceles triangle is $75^{\circ} 32^{\prime} 10^{\prime \prime}$; what is the magnitude of each of the equal angles?

Solution.-Since the sum of the three angles is 180°, the sum of the two equal angles is 180° minus the other angle, or $180^{\circ}-75^{\circ} 32^{\prime} 10^{\prime \prime}$ $=104^{\circ} 27^{\prime} 50^{\prime \prime}$, and each of them is one-half of this sum, or $\left(104^{\circ} 27^{\prime} 50^{\prime \prime}\right) \div 2=52^{\circ} 13^{\prime} 55^{\prime \prime}$. Ans.

Example 3.-The exterior angle of a triangle is $124^{\circ} 3^{\prime} 40^{\prime \prime}$, and one of the opposite-interior angles is 60°; find the other two angles of the triangle.

Solution.-Let the given exterior angle be denoted by A, the given interior angle by B, the other opposite-interior angle by C, and the third angle of the triangle by A^{\prime}. (Let the student draw the triangle and mark these angles.) Then, $A=B+C$; whence, $C=A-B$ $=124^{\circ} 3^{\prime} 40^{\prime \prime}-60^{\circ}=64^{\circ} 3^{\prime} 40^{\prime \prime}$. Ans. Also, $A+A^{\prime}=180^{\circ}$; whence, $A^{\prime}=180^{\circ}-A=180^{\circ}-124^{\circ} 3^{\prime} 40^{\prime \prime}=55^{\circ} 56^{\prime} 20^{\prime \prime}$. Ans.

EXAMPLES FOR PRACTICE

1. Show that the only parallelogram that can be inscribed in a

Pir. 105 circle is a rectangle.
2. Show that if from a point A, Fig. 105, on the arc of a circle a chord $A B$ and a tangent $A T$ are drawn, the perpendiculars $D C$ and $D E$ drawn to them from the middle point D of the subtended are are equai.
I L T 36F-4
3. The angle of intersection of two tangents is 100°; find the number of degrees in each angle formed by the tangents and the chord through the points of contact.

Ans. 50°
4. One of the acute angles of a right triangle is 50°; what is the magnitude of the other acute angle?

Ans. 40°
5. Each of the equal angles of an isosceles triangle is 45°; show that the triangle is right-angled.
6. Two angles of a triangle are $37^{\circ} 41^{\prime} 30^{\prime \prime}$ and $86^{\circ} 51^{\prime} 2^{\prime \prime}$; what is the value of the other angle?

Ans. $55^{\circ} 27^{\prime} 22^{\prime \prime}$

GEOMETRY

PROPORTION

DEFINITIONS AND GENERAL PRINCIPLES

1. A proportion is an equality of ratios or of fractions. Thus, the fractions $\frac{4}{5}$ and $\frac{8}{10}$, being equal, form a proportion. In general, if $\frac{a}{b}$ is equal to $\frac{c}{d}$, these two ratios or fractions form a proportion, which may be written in any of the following forms: $\frac{a}{b}=\frac{c}{d}, a: b=c: d, a: b:: c: d$. When written in either of the last two forms, the proportion is read a is to b as c is to d.
2. Properties of Proportions. -The first and the fourth term of a proportion are called the extremes; the second and the third, the means. Thus, in the proportion $a: b$ $=c: d$, the extremes are a and d, and the means, b and c.
3. If any four quantities are in proportion, the product of the extremes is equal to the product of the means. This principle follows at once from the definition of a proportion, as will be explained presently. If a, b, c, and d, are in proportion, then, by the definition,

$$
\begin{equation*}
\frac{a}{b}=\frac{c}{d} \tag{1}
\end{equation*}
$$

This equation may be treated the same as any other algebraic equation. Both members of the equation may be
multiplied or divided by the same quantity, or the same quantity may be added to or subtracted from both members, and the proportion may thus be changed to a great number of forms without destroying the equality of the ratios. Different names are applied to these changes, some of the most common of which are given in the following articles.

In order to show that the product of the means is equal to the product of the extremes, multiply both members of equation (1) by $b d$ to clear of fractions; the equation then becomes

$$
\begin{equation*}
a d=b c \tag{2}
\end{equation*}
$$

4. It is evident that if two fractions are equal, their reciprocals are also equal. If $\frac{a}{b}=\frac{c}{d}$, then $\frac{b}{a}=\frac{d}{c}$; that is, if $a: b=c: d$, we have also $b: a=d: c$.

Taking the reciprocal of a fraction is called inverting the fraction. The operation of inverting the two fractions of a proportion is called inversion.
5. If both members of equation (2), Art. 3, are divided by $c d$, there results

$$
\frac{a}{c}=\frac{b}{d}, \text { or } a: c=b: d
$$

Or, if both members of equation (2) are divided by $b a$, the result is

$$
\frac{d}{b}=\frac{c}{a}, \text { or } d: b=c: a
$$

Therefore, either the means or the extremes of a proportion can be interchanged. This operation is called alteruation.
6. If 1 is added to each member of equation (1), Art. 3, the equation becomes

$$
\frac{a}{b}+1=\frac{c}{d}+1
$$

Reducing each member to an improper fraction,

$$
\begin{equation*}
\frac{a+b}{b}=\frac{c+d}{d}, \text { or } a+b: b=c+d: d \tag{1}
\end{equation*}
$$

In a similar manner it can be shown that

$$
\begin{equation*}
a+b: a=c+d: c \tag{2}
\end{equation*}
$$

The proportions (1) and (2) are said to be derived from the original proportion by composition.
7. If 1 is subtracted from each member of equation (1), Art. 3, the equation becomes

$$
\frac{a}{b}-1=\frac{c}{d}-1
$$

Reducing each member to an improper fraction,

$$
\begin{equation*}
\frac{a-b}{b}=\frac{c-d}{d}, \text { or } a-b: b=c-d: d \tag{1}
\end{equation*}
$$

In a similar manner it can be shown that

$$
\begin{equation*}
a-b: a=c-d: c \tag{2}
\end{equation*}
$$

The proportions (1) and (2) are said to be derived from the original proportion by division.

LINES DIVIDED PROPORTIONALLY

8. Two straight lines are divided proportionally when the corresponding segments or parts are in proportion; or when the ratio of the two segments of one is the same as the ratio of the two segments of the other. Thus, the lines $A B$

Fig. 1 and $C D$, Fig. 1, are divided proportionally in the points E and F if $A E: E B=C F: F D$.
9. A line parallel to one of the sides of a triangle divides the other two sides proportionally. Thus, in Fig. 2, where

Fig. 2 $D E$ is parallel to $B C, A D: D B$ $=A E: E C$.

Suppose that the ratio of $A D$ to $D B$ is as 3 to 2; that is, let $\begin{aligned} & A D \\ & D B\end{aligned}=\frac{3}{2}$. Divide $A B$ into five equal parts, and through the points of division draw lines parallel to $B C$. These lines will intercept equal distances on AC (see Geometry, Part 1).
As the ratio of $A D$ to $D B$ is that of 3 to $2, A D$ will contain three. and $D B$ will contain two, of the equal parts into which $A B$ is divided.

Also, $A E$ will contain three and $E C$ two of the equal parts into which $A C$ is divided; so that $A E=3 \times A G$, and $E C=2 \times A G$; whence

$$
\begin{gathered}
\frac{A E}{E C}=\frac{3 \times A G}{2 \times A G}=\frac{3}{2}=\frac{A D}{D B} \\
A E: E C=A D: D B
\end{gathered}
$$

or,
10. Any two sides of a triangle are to each other as the segments into which they are divided by any line parallel to the third side. Thus, in Fig. 2, $A B: A C=A D: A E$ $=D B: E C$.

From the preceding article, we have

$$
A D: D B=A E: E C
$$

whence (Art. 6),

$$
\begin{aligned}
A D+D B: D B & =A E+E C: E C \\
A B: D B & =A C: E C
\end{aligned}
$$

that is,
and, interchanging the means (Art. 5),
$A B: A C=D B: E C$
In the same manner it may be shown that

$$
A B: A C=A D: A E
$$

11. If a line divides two sides of a triangle proportionally, it is parallel to the third side. Thus, if DE, Fig. 3, divides $A B$ and $A C$ so that $A D: D B=A E: E C$, then $D E$ is parallel to $B C$.

If $D E$ were not parallel to $B C$, a line $D E^{\prime}$ could be drawn through

Fig. 3 D parallel to $B C$. Then, by Art. 9 , we should have $\frac{A D}{D B}=\frac{A E^{\prime}}{E^{\prime} C^{\prime}}$; whence, since we have assumed that $\frac{A D}{D B}=\frac{A E}{E C}$,

$$
\frac{A E}{E C}=\frac{A E^{\prime}}{E^{\prime} C}
$$

By interchanging the means of this proportion, we obtain

$$
\frac{A E}{A E^{\prime}}=\frac{E C}{E^{\prime} C}
$$

This equality is evidently absurd, since $A E$ is greater than $A E^{\prime}$, whereas $E C$ is less than $E^{\prime} C^{-}$Therefore, no other line than $D E$ can Fass through D and be parallel to $B C$.

Example 1.-Find the length of the line $A B$, Fig. 4, of which the end B is inaccessible.

Solution.-There are several ways of solving this problem in practice. The one illustrated in the figure is as follows: Any convenient distance $A C$ is measured and the angle C observed with a transit or compass. From C, a distance $C E$ is measured, and at E an angle $A E D$ equal to C is turned off. The point D where the line of sight $E D$ meets $A B$ is marked, and the distances $A D$ and $A E$ are measured. Then, since $A E D$ equals C, the lines $E D$ and $C B$ are parallel (see Geomelry, Part 1) and, therefore (Art. 9),

$$
A B: A C=A D: A E
$$

whence (Art. 3),

$$
A B \times A E=A C \times A D
$$

and, dividing by $A E$,

$$
A B=\frac{A C \times A D}{A E} . \quad \text { Ans. }
$$

Fig. 4

Example 2.-Divide a line $A B$, Fig. 1, of given length into two parts $A E$ and $E B$ whose ratio shall be the same as that of two given numbers m and n; that is, so that $A E: E B=m: n$.

Solution.-Since $A E: E B=m: n$, we must have (Art. 6),

$$
\frac{A E+E B}{E B}=\frac{m+n}{n}, \text { or, } \frac{A B}{E B}=\frac{m+n}{n},
$$

whence, solving for $E B$,

$$
E B=\frac{n \times A B}{m+n} . \quad \text { Ans. }
$$

$A E$ can be found in a similar manner, or by subtracting the value of $E B$ from $A B$.

EXAMPLES FOR PRACTICE

1. If the measured distances in Fig. 4 are $A C=100$ feet, $A E$ $=45.2$ feet, $A D=48.36$ feet, what are the distances $A B$ and $D B$?

$$
\text { Ans. }\left\{\begin{array}{l}
A B=106.99 \mathrm{ft} . \\
D B=58.63 \mathrm{ft} .
\end{array}\right.
$$

2. If, in Fig. 3, $A D=75$ feet, $D B=16.25$ feet, and $A C$ $=80$ feet, find $A E$ and $E C$.

$$
\text { Ans. }\left\{\begin{array}{l}
A E=65.75 \mathrm{ft} . \\
E C=14.25 \mathrm{ft} .
\end{array}\right.
$$

3. If $A B$, Fig. 1, is equal to 125 feet, find the distances $A E$ and $E B$ so that the line will be divided at E in the ratio of 5 to 2 .

$$
\text { Ans. }\left\{\begin{array}{l}
A E=89.286 \mathrm{ft} . \\
E B=35.714 \mathrm{ft} .
\end{array}\right.
$$

12. If two lines, as $A B$ and $C D$, Fig. 5, are cut by any number of parallel lines, as $E M, G N, I O$, etc., the corresponding intercepts are proportional; that is, $E G: G I$ $=M N: N O ; G I: I K=N O: O P$, or, by interchanging the means, $E G: M N=G I: N O=I K: O P$, etc.

Fig. 5

Through E, draw $E F$ parallel to $C D$. Then, $E H=M N, H J=N O, J L$ $=O$ P. (See Geometry, Part 1.) Also, by Arts. 9 and 10,

$$
\frac{E K}{E L}=\frac{E G}{E H}=\frac{G I}{H J}=\frac{I K}{J L}
$$

that is,

$$
\frac{E K}{M P}=\frac{E G}{M N}=\frac{G I}{N O}=\frac{I K}{O P}
$$

or, $\quad E K: M P=E G: M N=G I: N O=I K: O P$
13. In any triangle $A B C$, Fig. 6, the bisector $B D$ of an angle divides the side opposite proportionally to the including sides; that is, $A B: B C=A D: D C$.

Draw $C E$ parallel to $B D$ and meeting $A B$ produced in E. Then, in the triangle $A E C$, by Art. 9,

$$
\begin{equation*}
A B: B E=A D: D C \tag{1}
\end{equation*}
$$

The angles $D B C$ and M, being alternateinterior angles, are equal; that is, $M=\frac{1}{2} B$. The angles $D B A$ and E, being exterior-interior angles, are equal; that is, $E=\frac{1}{2} B$. Therefore, $E=M$, and $B E=B C$.

-Fig. 6 Substituting, in equation (1), $B C$ for its equal $B E$,

$$
A B: B C=A D: D C
$$

POLYGONS

SIMILAR POLYGONS

SIMILAR TRIANGLES

14. Similar polygons are those whose corresponding angles are equal and whose corresponding sides are proportional.

In order that two polygons may be similar, it is manifestly necessary that each angle of the one shall be equal to the corresponding angle of the other. But this is not sufficient; the corresponding sides must be proportional. For example,

Pig. 7
the quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, Fig. 7, have their corresponding angles equal, but they are not similar, because their corresponding sides are not proportional. The quadrilaterals $A B C D$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ have their corresponding angles equal and their corresponding sides proportional. and are, therefore. similar.

The corresponding sides of similar polygons are called homologous sides.
15. Two triangles are similar when the angles of one are equal to the angles of the other.

In Fig. 8 , let the angles of the triangle $A B C$ be equal, respectivery,
 to those of the triangle $A^{\prime} B^{\prime} C^{\prime}$. Place the triangle $A^{\prime} B^{\prime} C^{\prime}$ upon $A B C$, so that the angle A^{\prime} will coincide with its equal A. Then B^{\prime} will fall along $A B$ and C^{\prime} along $A C$, as at $B^{\prime \prime}$ and $C^{\prime \prime}$, respectively, and $B^{\prime} C^{\prime}$ will take the position $B^{\prime \prime} C^{\prime \prime}$. The angle $B^{\prime \prime}$, which is equal to $B^{\prime \prime}$. is equal to B, and the angle $C^{\prime \prime}$, which is equal to C^{\prime}, is equal to C; hence, $B^{\prime \prime} C^{\prime \prime}$ is parallel to $B C$ (see Geometry, Part 1). Then, by Art. 10,

$$
A B: A B^{\prime \prime}=A C: A C^{\prime \prime}
$$

Substituting $A^{\prime} B^{\prime}$ and $A^{\prime} C^{\prime}$ for their respective equals $A B^{\prime \prime}$ and $A C^{\prime \prime}$,

$$
A B: A^{\prime} B^{\prime}=A C: A^{\prime} C^{\prime}
$$

In like manner, it can be proved that

$$
A B: A^{\prime} B^{\prime}=B C: B^{\prime} C^{\prime}
$$

Therefore, the triangles, having their angles equal and their corresponding sides proportional, are similar.
16. Two triangles are similar when two angles of the one are equal respectively to two angles of the other.
17. Two right triangles are similar when an acute angle of one is equal to an acute angle of the other.
18. A triangle is similar to any triangle formed by a line parallel to one of its sides and the segments it intercepts on the other two sides or the other two sides prolonged.
19. Two triangles are similar when the three sides of one are either parallel or perpendicular to the three sides of the other.
20. Two triangles are similar when their corresponding sides are proportional.

$$
\text { In Fig. 9, } \quad A B: A^{\prime} B^{\prime}=A C: A^{\prime} C=B C: B^{\prime} C
$$

On $A B$, lay off $A D$ equal to $A^{\prime} B^{\prime}$; on $A C$, lay off $A E$ equal to $A^{\prime} C$, and join $D E$. Then, since $A B: A D=A C$ $: A E, D E$ is parallel to $B C$. Hence, by Art. 18, triangles $A B C$ and $A D E$ are similar, and, consequently, triangles $A B C$ and $A^{\prime} B^{\prime} C$ are similar if it can be shown that similar if it can be she
$D E=B^{\prime} C$. Now,

Fig. 9

$$
A B: A D=B C: D E, \text { or } A B: A^{\prime} B^{\prime}=B C: D E
$$

But, $A B: A^{\prime} B^{\prime}=B C: B^{\prime} C^{\prime}$
The last two proportions are the same, term for term, excepting the last term; hence, $D E$ is equal to $B^{\prime} C^{\prime}$, and the triangles $A D E$ and $A^{\prime} B^{\prime} C^{\prime}$ are equal. Therefore, the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar.
21. Two triangles are similar when an angle of the one is equal to an angle of the other and the including sides are proportional.
22. In two similar triangles, corresponding altitudes have the same ratio as any two corresponding sides.

Let $C D$ and $C D^{\prime}$, Fig. 10, be the corresponding altitudes of the

Fig. 10 two similar triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. The right triangles $A C D$ and $A^{\prime} C^{\prime} D^{\prime}$, having angle A equal to the angle A^{\prime}, are similar; hence,

$$
C D: C^{\prime} D^{\prime}=A C: A^{\prime} C^{\prime}
$$

But, since the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar,
$A C: A^{\prime} C^{\prime}=A B: A^{\prime} B^{\prime}$

$$
=B C: B^{\prime} C^{\prime}
$$

Therefore,

$$
C D: C^{\prime} D^{\prime}=A C: A^{\prime} C^{\prime}=A B: A^{\prime} B^{\prime}=B C: B^{\prime} C^{\prime}
$$

23. As stated in Art. 14, two polygons are similar when their corresponding angles are equal and their corresponding sides are proportional. It has now been shown that, in triangles, either of these conditions includes the other. This could have been expected from the fact that either the thres
angles or the three sides of a triangle fix its shape. This is not true of a polygon of more than three sides, as the angles can be changed without altering the sides, or the proportions of the sides can be changed without altering the angles.

Example 1,-In the triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$. Fig. 11, angle $A=$ angle A^{\prime}, angle $B=$ angle B^{\prime}, and angle $C=$ angle C^{\prime}, and the

Fig. 11
sides $B C, C A, A B$, and $B^{\prime} C^{\prime}$ have the dimensions that are marked on them; find the lengths of the sides $C^{\prime} A^{\prime}$ and $A^{\prime} B^{\prime}$.

Solution.-Since the two triangles are equiangular, they are similar, and hence the value of $A^{\prime} B^{\prime}$ and that of $A^{\prime} C^{\prime}$ are conveniently found
as follows:

$$
\begin{gathered}
2.75: 2.42=2.5: A^{\prime} B^{\prime} \\
A^{\prime} B^{\prime}=\frac{2.42 \times 2.5}{2.75}=2.2 \mathrm{in} . \quad \text { Ans. } \\
2.75: 2.09=2.5: A^{\prime} C^{\prime}
\end{gathered}
$$

whence
whence $\quad A^{\prime} C^{\prime}=\frac{2.09 \times 2.5}{2.75}=1.9 \mathrm{in}$. Ans.

Example 2.-In Fig. $12, C D$ is perpendicular to $A C$ and is 170 feet long; $D B$ is 60 feet; and $B E$, perpendicular to $B D$, is 55 feet long; find the distance $A C$.

Solution.-The right triangles $A C D$ and $D B E$ have the angles $A D C$ and $B D E$ equal; hence, they are similar, and $A C: C D=B E: B D$, or $A C: 170=55: 60$
whence,

$$
A C=\frac{170 \times 55}{60}=155.83 \mathrm{ft} . \text { Ans. }
$$

Example 3.-It is required to cut from a triangular plate $A B C$, Fig. 13, having the dimensions shown, a trapezoidal plate $B D E C$ whose upper base $D E$ shall be 6 inches; find the distances $A D$ and $A E$ that must be cut off.

Solution.-The similar triangles $A D E$ and $A B C$ give,

Fig. 13

$$
\begin{aligned}
& \frac{A D}{A B}=\frac{D E}{B C} ; A D=\frac{A B \times D E}{B C}=\frac{12.5 \times 6}{10}=7.5 \mathrm{in} . \text { Ans. } \\
& \frac{A E}{A C}=\frac{D E}{B C} ; A E=\frac{A C \times D E}{B C}=\frac{15 \times 6}{10}=9 \mathrm{in} . \text { Ans. }
\end{aligned}
$$

Example 4.-In order to measure the height $R H$ of a pier $A_{1} P Q R$, Fig. 14, whose base and top are, respectively, 22 feet and 12 feet square and whose sides all have the same inclination, a transit was set at a point O distant 250 feet from the side A_{1} of the pier; that is, so that $O M_{1}=250$ feet. $A_{1} B_{1}$ was a rod on which the horizontal line of sight $O M_{1}$ intercepted a distance $A_{1} M_{2}=4.5$ feet. The same rod was

Fig. 14
held at a distance $O M=20$ feet from the instrument, and the height $A M$ above the ground noted. Then the telescope of the transit was directed to the top R of the pier, and, with the rod still held at A, the height $A N$ was read on the rod. By subtracting $A M$ from $A N$, the distance $M N$ intercepted between the lines $O M_{1}$ and $O R$ was found to be 6 feet. What was the height $\mathcal{K} H$?

Solution.-The inclination of $A_{1} R$ and that of $P Q$ being equal we have, $A_{1} H=J P$, and $H J=R Q=12 \mathrm{ft}$. Now,

$$
\begin{gathered}
A_{3} P=A_{1} H+H J+J P=2 A_{1} H+12 \\
A_{2} H=\frac{A_{1} P-12}{2}=\frac{22-12}{2}=5 \mathrm{ft} .
\end{gathered}
$$

wheace,
The similar triangles $O M N$ and $O K^{\prime} R^{2}$ give

$$
\begin{aligned}
\frac{O M}{M N} & =\frac{O K}{K R^{\prime}} K R=\frac{O K \times M N}{O M} \\
& =\frac{\left(O M_{1}+M H_{1} K\right) \times M N}{O M}=\frac{\left(O M_{1}+A_{1} H\right) \times M N}{O M} \\
& =\frac{(250+5) \times 6}{20}=\frac{255 \times 6}{20}=76.5 \mathrm{ft}
\end{aligned}
$$

Finally,

$$
R H=R K+K H=R K+M_{1} A_{1}=76.5+4.5=81 \mathrm{ft} \text {. Ans. }
$$

EXAMPLES FOR PRACTICE

1. In Fig. 15, the lines of sight $O P$ and $O Q$ of a transit intercept on a rod distances, $A B=2$ feet and $A_{1} B_{1}=4.75$ feet; if the distance $O A$ is 100 feet, what is the distance $O A_{1}$? Ans. 237.5 ft .

Fig. 15
2. In order to find the stress in the member $B D$, Fig. 16, by the method of moments, it is necessary to find the distance $D O$ from D to

FIG. 16
the point of intersection O of $D A$ and $C B$, both produced; the dimensions being as shown, what is that distance?

Ans. $D O=80 \mathrm{ft}$.
2. ABCD, Fig. 17, is a trapezoid whose non-parallel sides produced meet at O; the line $M N$ is parallel to the bases $A D$ and $B C$; the dimensions of $A D, B C, B M$, and $M A$ being as shown, find $O B$ and $M N$.

$$
\text { Ans. }\left\{\begin{array}{l}
O B=315 \mathrm{ft} \\
M N=85.714 \mathrm{ft} .
\end{array}\right.
$$

4. In a triangle $A B C$, side $A B$ $=32$ feet, $B C=34$ feet, and $A C=48$ feet; if side $A^{\prime} B^{\prime}$ of a similar triangle $A^{\prime} B^{\prime} C^{\prime}$ is 72 feet long, what are the lengths of the other two sides?

Fig. 17

$$
\text { Ans. }\left\{\begin{array}{l}
A^{\prime} C^{\prime}=108 \mathrm{ft} \\
B^{\prime} C^{\prime}=76.5 \mathrm{ft}
\end{array}\right.
$$

5. The base of a right triangle is 24 inches, and its altitude 72 inches; at what distance from the top is the triangle 16 inches wide?

$$
\text { Ans. } 48 \text { in. }
$$

IMPORTANT CONSEQUENCES OF THE THEORY OF SIMILAR TRIANGLES

24. When the first of three quantities is to the second as the second is to the third, the three quantities are in continued proportion; the second is a mean proportional between the first and third; and the third is a third proportional to the first and second. Thus, if $a: b=b: c$, the three quantities a, b, and c are in continued proportion; b is a mean proportional between a and c; and c is a third proportional to a and b.
25. In a right triangle, as $A B C$, Fig. 18, the perpendicular $C D$ drawn from the vertex of the right angle to the hypotenuse, divides the triangle into two triangles $A C D$ and $C D B$ that are similar to the whole triangle and to each other.

Fig. 18

The right triangles $A B C$ and $A C D$ are similar, by Art. 17, as the angle A is common. Also, the triangles $A B C$ and $C B D$, having angle B in common, are similar. Again, the triangles $A C D$ and $C B D$, being each similar to $A B C$ are similar to each other.
26. In a right triangle, the perpendicular to the hypotenuse from the vertex of the right angle is a mean
proportional between the two parts or segments into which it divides the hypotenuse; that is, Fig. 18, $A D: C D$ $=C D: D B$.
As the triangles $B C D$ and $A B C$ are similar, and the angle B is common, the angle $B C D$ must equal the angle A, and similarly the angle $A C D$ must equal the angle B. The triangles $A C D$ and $B C D$ are similar, hence the sides opposite equal angles are to proportion; that is,

$$
\begin{aligned}
\frac{A D(\text { side opposite } A C D)}{C D(\text { side opposite } B)} & =\frac{C D(\text { side opposite } A)}{D B(\text { side opposite } B C D)} \\
\text { Or, } \quad A D: C D & =C D: D B
\end{aligned}
$$

27. The side $A C$, Fig. 18 , is a mean proportional between the whole hypotenuse and the segment $A D$ on the same side of $C D$ as the side $A C$; that is, $A B: A C=A C$ $: A D$. Similarly, $A B: B C=B C: B D$.

The triangles $A B C$ and $A C D$ are similar, hence the sides opposite equal angles are proportional; that is,

$$
\begin{aligned}
& \frac{A B \text { (opposite right angle) }}{A C \text { (opposite right angle) })}=\frac{A C \text { (opposite } B)}{A D \text { (opposite } A C D)} \\
& \text { Or, } \quad A B: A C=A C: A D
\end{aligned}
$$

Example 1.-In the right triangle $A B C$, Fig. 19, find the length of the perpendicular $C D$.

Fig. 19

Solution.-The perpendicular is a mean proportional between the parts $A D$ and $D B$ into which it divides the hypotenuse; therefore,

$$
\begin{gathered}
6.4: C D=C D: 3.6 \\
\overline{C D}=6.4 \times 3.6
\end{gathered}
$$

and $C D=\sqrt{6.4 \times 3.6}=4.8 \mathrm{in}$. Ans.
Example 2.-Find the length of the sides of the right triangle $A B C$, Fig. 20, in which $C D$ is the perpendicular from the vertex of the right angle to the hypotenuse.

Solution. - The hypotenuse is 7.2 in . +4.9 in . $=12.1 \mathrm{in}$. The side $C B$ is a mean proportional between the hypotenuse $A B$ and the part $D B$; therefore,

Fig. 20

$$
\begin{gathered}
12.1: C B=C B: 4.9 \\
\overline{C B^{2}}=12.1 \times 4.9 \\
C B=\sqrt{12.1 \times 4.9}=7.7 \mathrm{in} . \text { Ans. }
\end{gathered}
$$

The leg $A C$ is a mean proportional between $A B$ and $A D$; that is,

$$
\begin{aligned}
& A B: A C=A C: A D \\
& A C=\sqrt{A B \times A D} \\
&= \sqrt{12.1 \times 7.2}=9.34 \text { in. Ans. }
\end{aligned}
$$

28. Since an angle inscribed in a semicircle is a right angle, it follows from Arts. 26 and 27, that:
(a) A perpendicular $C D$, Fig. 21, drawn from any point on the circumference of a circle to a diameter $A B$, is a mean proportional between the segments into which it divides the diameter; that is,

$$
A D: C D=C D: D B
$$

(b) A chord $C A$ drawn from a point in a circumference to the end of a diameter is a mean proportional between the

Fig. 21 whole diameter and the adjacent segment $A D$; that is,

$$
A B: A C=A C: A D
$$

29. If from a point without a circle, a tangent and a secant are drawn, the tangent is a mean proportional

Fig. 22 between the whole secant and the exterior segment; that is, in Fig. 22, $P B: P T=P T: P A$.

In the triangles $B P T$ and $A P T$, the angle P is common. The angle B, an inscribed angle, and the angle $P T A$, an angle formed by a tangent and a chord. are equal, since each is measured by onehalf the same arc AT. Hence, the triangles are similar by Art. 16, and

$$
\begin{gathered}
\frac{P B(\text { opposite angle } P T B)}{P T(\text { opposite angle } P A T)}=\frac{P T(\text { opposite angle } B)}{P A(\text { opposite angle } P T A)} \\
P T^{*}=P B \times P A \\
P T=\sqrt{P B \times P A}
\end{gathered}
$$

30. If from a point without a circle any two secants are drawn, the product of one secant and its external segment is equal to the product of the other secant and its external segment.

In Fig. 23, $P B$ and $P C$ are secants. Draw the tangent $P T$. Then, from Art. 29,

	$\bar{P}^{3}=P A \times P B$
and	$\overline{P T}^{3}=P C \times P D$
hence,	$P A \times P B=P C \times P D$

Fig. 23
31. If any two chords be drawn through a point within a circle, the product of the segments of one is equal to the product of the segments of the other.

In Fig. 24, the angles D and B, being measured by one-half the arc $A C$, are equal. The angles $B P C$ and $D P A$, being vertical angles, are equal. Hence, by Art. 16, the triangles $C B P$ and $A D P$ are similar. Therefore,

$$
\frac{A P}{C P}=\frac{P D}{P B}
$$

and

$$
A P \times P B=C P \times P D
$$

Fig. 24

EXAMPLES FOR PRACTICE

1. The perpendicular from the vertex of the right angle of a right criangle divides the hypotenuse into parts of 23.04 inches and 1.96 inches. Find: (a) the length of the perpendicular; (b) the length of the two sides of the triangle.

$$
\text { Ans. } \begin{cases}(a) & 6.72 \text { in. } \\ (b) & 24 \\ \text { in. a }\end{cases}
$$

2. If, in Fig. 22, the distance $C P$ of the point P from the center of the circle is 65 feet, and the radius $C R$ is 25 feet, what is the length of the tangent $P T$?

Ans. 60 ft .
3. The chord of the arc of a segment is 14 inches long and the height of the segment is 2 inches; what is the radius? Ans. $13 \frac{1}{4} \mathrm{in}$.

OTHER SIMILAR POLYGONS

32. Two polygons are similar when they are composed of the same number of triangles similar each to each and similarly placed.

Thus, in Fig. 25, the polygons $A B C D E$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ are composed of the same number of similar triangles similarly placed.

Since the triangle $A E D$ is similar to the triangle $A^{\prime} E^{\prime} D^{\prime}$, angle E $=$ angle E^{\prime} and angle $A D E=$ angle $A^{\prime} D^{\prime} E^{\prime}$. Also, in the similar triangles $A D C$ and $A^{\prime} D^{\prime} C$, angle $A D C$ $=$ angle $A^{\prime} D^{\prime} C^{\prime}$. Hence, the sum of the angles $A D E$ and $A D C$, or the angle $E D C$, is equal to the sum of the angles $A^{\prime} D^{\prime} E^{\prime}$ and $A^{\prime} D^{\prime} C^{\prime}$, or the angle $E^{\prime} D^{\prime} C^{\prime}$. In like manner, angle
 $D C B=$ angle $D^{\prime} C^{\prime} B^{\prime}$,
angle $B=$ angle B^{\prime}, and angle $B A E=$ angle $B^{\prime} A^{\prime} E^{\prime}$. Since the triangles are similar,

$$
E D: E^{\prime} D^{\prime}=A D: A^{\prime} D^{\prime} \text { and } A D: A^{\prime} D^{\prime}=D C: D^{\prime} C^{\prime}
$$

hence, $E D: E^{\prime} D^{\prime}=D C: D^{\prime} C^{\prime}$
In like manner,

$$
D C: D^{\prime} C^{\prime}=C B: C^{\prime} B^{\prime}=B A: B^{\prime} A^{\prime}=A E: A^{\prime} E^{\prime}
$$

Therefore, as the angles of the one polygon are equal to the corresponding angles of the other and the sides of the one polygon are proportional to the sides of the other, the polygons are similar.
33. Two similar polygons can be divided into the same number of similar triangles similarly placed.
34. The perimeters of two similar polygons are in the same ratio as any two homologous sides.

In Fig. 25, let P be the perimeter of the polygon $A B C D E$, and $P^{\prime \prime}$ the perimeter of the polygon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$. Since the polygons are similar

$$
\begin{equation*}
\frac{A E}{A^{\prime} E^{\prime}}=\frac{E D}{E^{\prime} \bar{D}^{\prime}}=\frac{D C}{D^{\prime} C^{\prime}}=\frac{C B}{C^{\prime} B^{\prime}}=\frac{B A}{B^{\prime} A^{\prime}} \tag{1}
\end{equation*}
$$

Let each of these equal ratios be denoted by R; that is, let

$$
\frac{A E}{A^{\prime} E^{\prime}}=R, \frac{E D}{E^{\prime} D^{\prime}}=R, \frac{D C}{D^{\prime} C^{\prime}}=R, \frac{C B}{C^{\prime} B^{\prime}}=R, \frac{B A}{B^{\prime} A^{\prime}}=R
$$

From these equations we obtain,

$$
\begin{gathered}
A E=R \times A^{\prime} E^{\prime}, E D=R \times E^{\prime} D^{\prime}, D C=R \times D^{\prime} C^{\prime} \\
C B=R \times C^{\prime} B^{\prime}, B A=R \times B^{\prime} A^{\prime}
\end{gathered}
$$

Adding the sides of these equalities,

$$
\begin{aligned}
& A E+E D+D C+C B+B A \\
= & R \times A^{\prime} E^{\prime}+R \times E^{\prime} D^{\prime}+R \times D^{\prime} C^{\prime}+R \times C^{\prime} B^{\prime}+R \times B^{\prime} A^{\prime} \\
= & R\left(A^{\prime} E^{\prime}+E^{\prime} D^{\prime}+D^{\prime} C^{\prime}+C^{\prime} B^{\prime}+B^{\prime} A^{\prime}\right)
\end{aligned}
$$

whence
But

$$
\begin{gathered}
A E+E D+D C+C B+B A \\
A^{\prime} E^{\prime}+E^{\prime} D^{\prime}+D^{\prime} C^{\prime}+C^{\prime} B^{\prime}+B^{\prime} A^{\prime} \\
R=\frac{A E}{A}=\frac{E D}{A^{\prime} E^{\prime}}=\frac{D C}{E^{\prime} D^{\prime}}=\frac{C^{\prime}}{D^{\prime}}, \text { etc.; } \\
P=\frac{D E}{P^{\prime}}=\frac{A E}{A^{\prime} E^{\prime}}=E^{\prime} E^{\prime} D^{\prime}=\frac{D^{\prime} C^{\prime}}{}, \text { etc. }
\end{gathered}
$$

therefore,
35. Equation (1) of the preceding article is a series of equal ratios, of which the numerators are the antecedents and the denominators the consequents. The general truth was shown in that article, that in a series of equal ratios the sum of the antecedents is to the sum of the consequents as any antecedent is to its consequent.

AREAS OF POLYGONS

36. Definitions. - The area of a surface is the superficial space included within its boundary lines. Area is expressed by the ratio of the surface to a surface of fixed value chosen as a unit and called the unit of area.
37. A square whose side is equal in length to the unit of length is usually taken as the unit of area, and its area is called the square unit. For example, if the unit of length is 1 inch , the unit of area, or square inch, is the square whose sides measure 1 inch , and the area of any surface is expressed by the number of square inches that the surface contains. If the unit of length were 1 foot, the unit of area would measure 1 foot on each side, and the area of the surface would be expressed in square feet. Square inch and square foot are abbreviated to sq. in. and sq. ft., respectively, and are often indicated by the symbols $\square^{\prime \prime}$ and \square^{\prime}.
38. Two surfaces are equivalent when their areas are equal.
39. Comparison of the Areas of Two Rectangles. The areas of two rectangles $A B C D$ and $A^{\prime} B^{\prime} C D^{\prime}$, Fig. 26, having equal altitudes are to each other as their bases; that 15, area $A B C D$: area $A^{\prime} B^{\prime} C^{\prime} D^{\prime}=A B: A^{\prime} B^{\prime}$.

Suppose that $A^{\prime} B^{\prime}$ is four-fifths of $A B$, or that $A B: A^{\prime} B^{\prime}=5: 4$. Divide $A B$ into five equal parts $A E, E F$, etc., and $A^{\prime} B^{\prime}$ into four
equal parts $A^{\prime} E^{\prime}, E^{\prime} F^{\prime}$, etc. It is evident that $A^{\prime} E^{\prime}=A E$, for, since $A B$ is to $A^{\prime} B^{\prime}$ in the ratio of 5 to 4 , any quantity, as $A E$, that is contained five times in $A B$ must be contained four times in $A^{\prime} B^{\prime}$. Through the points of division $E, F, E^{\prime}, F^{\prime}$, etc., draw perpendiculars

Fig. 26
to $A B$ and $A^{\prime} B^{\prime}$. Each large rectangle is thus divided into small rectangles, all of which are equal. As $A B C D$ contains five, and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ contains four, of the small rectangles, the ratio of the two large rectangles is that of 5 to 4 , which is also the ratio of their bases.
40. Since any of the sides of a rectangle can be considered as the base, it follows that the area of two rectangles having equal bases are to each other as their altitudes.
41. The areas of any two rectangles are to each other as the products of their bases by their altitudes.

Let A and B, Fig. 27, be two rectangles whose altitudes are a and a^{t} and whose bases are b and b^{\prime}, respectively. Construct a rectangle C with an altitude a and a base b^{\prime}. Then, by Arts. 39 and 40,
and

$$
\begin{align*}
& A: C=b: b^{\prime} \tag{1}\\
& C: B=a: a^{\prime}
\end{align*}
$$

Multiplying equation (1) by equation (2),

$$
\begin{equation*}
A C: B C=a b: a^{\prime} b^{\prime} \tag{3}
\end{equation*}
$$

Dividing the terms of the first member of equation (3) by C

$$
A: B=a b: a^{\prime} b^{\prime}
$$

42. Area of a Rectangle. - The area of a rectangle is equal to its base multiplied by its altitude; that is, in Fig. 28,

$$
A=b h
$$

Fig. 28

Construct a unit square a. Then (Art. 41), $A: a=h \times b: 1 \times 1$ i

$$
\frac{A}{a}=\frac{h \times b}{1 \times 1}
$$

But a is a unit square, and its area is therefore equal to 1 ; hence,

$$
A=b h
$$

43. Area of a Triangle.-The area of a right triangle is equal to one-half the product of the two legs of the triangle; that is, in Fig. 29, area $A B C=\frac{1}{2} a b$.

For the triangle $A B C$ is one-half the rectangle $A B C D$ and the area of the latter is $a b$.

44. The area of any triangle is equal to one-half the product of its base and altitude.

In Fig. $30(a)$, let $A C$ be the base and $B H$ the altitude of the triangle $A B C$. The area $A B C$ is equal to the sum of the right triangles $A H B$ and $C H B$, which, by the last article, is
$\frac{1}{3} B H \times A H+\frac{1}{2} B H \times H C=\frac{1}{2} B H \times(A H+H C)=\frac{1}{2} B H \times A C$

(a)

(b)

Fig. 30
In Fig. $30(b)$, the area $A^{\prime} B^{\prime} C^{\prime}$ is the difference between the areas of the right triangles $B^{\prime} H^{\prime} C^{\prime}$ and $B^{\prime} H^{\prime} A^{\prime}$; that is,

$$
\begin{gathered}
\frac{1}{1} B^{\prime} H^{\prime} \times H^{\prime} C-\frac{1}{\frac{1}{2} B^{\prime} H^{\prime} \times H^{\prime} A^{\prime}}=\frac{1}{1} B^{\prime} H^{\prime} \times\left(H^{\prime} C^{\prime}-H^{\prime} A^{\prime}\right) \\
=\frac{1}{1} B^{\prime} H^{\prime} \times A^{\prime} C^{\prime}
\end{gathered}
$$

Let b be the base, h the altitude, and A the area of any triangle; then,

$$
A=\frac{1}{2} b h
$$

45. Two triangles having the same base are to each other as their altitudes, and two triangles having the same altitude are to each other as their bases.
46. Two triangles having the same base and the same altitude are equivalent.

It should be borne in mind that any side of a triangle can be taken as the base, the altitude being the perpendicular to that side from the opposite vertex.
47. To find the area of a triangle from the lengths of its three sides, apply the following:

Rule. -From half the sum of the three sides subtract each side separately; multiply together the half sum and the three remainders and extract the square root of the product.

Let a, b, and c be the three sides of a triangle, and A the area; let

$$
s=\frac{1}{2}(a+b+c)
$$

Then

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

The geometrical proof of this rule is very laborious, and will not be given here. A proof will be found in Trigonometry.

Example. - What is the area of a triangle having two sides 19.8 feet long, and one side 28 feet long?

Solution.-It is immaterial which side is called a, b, or c. $s=\frac{a+b+c}{2}=\frac{28+19.8+19.8}{2}=33.8$; taking b and c as the short sides, $s-a=33.8-28=5.8$, and $s-b$ and $s-c$ are each $33.8-19.8$ $=14$. Then, applying the formula
$A=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{33.8 \times 5.8 \times 14 \times 14}=196 \mathrm{sq} . \mathrm{ft} .$, nearly.

Ans.
48. A triangle equivalent to any given polygon may be constructed as follows:

Let $A B C D E F$, Fig. 31, be the given polygon. Produce any of the sides, as $A F$, in both directions, as indicated by $X Y$. This line
will be referred to as the base. Starting from one of the ends of $A F$. as A, draw a diagonal $A C$ forming a triangle with $A B$ and $B C$. Draw $B B_{1}$ parallel to $C A$, meeting the base at B_{1}, and join C to B_{1}.

Fig. 81
The polygon $B_{1} C D E F$ has one side less than the given polygon, and is equivalent to it. For

$$
\begin{aligned}
& A B C D E F=B_{1} B C D E F+\text { triangle } B_{1} B A \\
& B_{1} C D E F=B_{1} B C D E F+\text { triangle } B_{1} B C
\end{aligned}
$$

The two triangles $B_{1} B A$ and $B_{1} B C$ are equivalent, for they have the common base $B_{1} B$, and their altitudes, being each equal to the distance between the parallels $A C$ and $B_{1} B$, are equal. Proceeding with the polygon $B_{1} C D E F$ as with the original polygon, draw the diagonal $B_{1} D$, forming a triangle with $B_{1} C$ and $C D$. Draw $C C_{1}$ parallel to $D B_{1}$, and join D and C_{1}. It can be shown as before that the polygon $C_{1} D E F$ is equivalent to $B_{1} C D E F$, and, therefore, to the original polygon. Finally, draw the diagonal $C_{1} E$, and $D D_{2}$ parallel to it, meeting the base at D_{1}. Then will the triangle $D_{1} E F$ be the required triangle equivalent to the given polygon.

In practice, it is more convenient, as well as more accurate, to reduce about one-half of the polygon on one side of A and the rest on the other side of F. Thus, having reduced the polygon to the quadrilateral $C_{1} D E F$, the diagonal $F D$ is drawn from $F ; E E_{1}$ is drawn through E parallel to $D F$, and E_{1} joined to D. This gives $C_{1} D E_{1}$ as the required triangle.
49. Area of a Parallelogram. - The area of a parallelo-

Fig. 32 gram is equal to its base multiplied by its altitude; that is, in Fig. 32, area $A B C D=A D$ $\times M N$.

For $A B C D$ is equal to the sum of the equal triangles $A B C$ and $A D C$, or to twice either of them, as $A D C$; that is, $A B C D=2 \times \frac{1}{1} A D$ $\times C H=A D \times C H=A D \times M N$.

Example 1.-What is the cost of paving a street 1,800 feet long and 36 feet wide with asphalt, the price being $\$ 2$ per square yard?

Solution. - The surface to be covered is a rectangle whose sides are 36 ft . and $1,800 \mathrm{ft}$., or 12 yd . and 600 yd ., and whose area is, therefore, $12 \times 600=7,200 \mathrm{sq} . \mathrm{yd}$. The cost of paving is, then, $2 \times 7,200$ $=\$ 14,400$. Ans.

Example 2.-One side of a triangular plot of land is 125 feet long and the perpendicular distance from the opposite vertex to this side is 174.24 feet; it is desired to find a side of a rectangle that has the same area as the triangle and one side 75 feet long.

Solution.-The area of the triangle is $\frac{1}{2} \times 125 \times 174.24=10,890$ sq. ft . Then the other side of the rectangle is $10,890 \div 75=145.2 \mathrm{ft}$.

Ans.
Example 3.-Divide a triangular plot of land into any number of equal parts by lines from a vertex to the opposite side.

Solution.-Divide the side opposite, the vertex through which the lines are to be run into the required number of equal parts and run lines from the vertex of the triangle to the points of division. Then, since the triangles thus formed have equal bases and their vertexes in the same point, they are equivalent. Ans.

Example 4.-Divide a given triangle into parts proportional to any given numbers by lines run through a vertex.

Solution.-Let the given triangle be $A B C$, Fig. 33, and let it be required to divide it into parts proportional to 3,4 , and 5 , by lines drawn from the vertex A.

The base $B C$ is divided into parts proportional to the numbers 3,4 , and 5 , by dividing it into $3+4+5=12$ equal parts, and then marking the third and the seventh points of division. From the points thus marked, lines are run to the vertex A. Then, by Art. 45,

Fig. 33

$$
C A D: A D E=3: 4
$$

and,

$$
A D E: A B E=4: 5 \text { Ans. }
$$

EXAMPLES FOR PRACTICE

1. Find the area of a square whose side is 5 feet 9 inches.

Ans. 33.062 sq. ft
2. Find the area of a rhombus whose length is 12.5 feet, and whose height is 9.25 feet.

Ans. $115.62 \mathrm{sq} . \mathrm{ft}$.
3. One side of a room is 16 feet long; if the floor contains 240 square feet, what is the length of the other side?

Ans. 15 ft .
4. In a trapezium two not adjacent sides are 16 and 14 inches, respectively. A diagonal divides the trapezium into two triangles whose altitudes from their vertexes to the given sides as bases are 17 inches and 3 inches, respectively; what is the area of the trapezium?

Ans. 157 sq. in.
5. The base $B C$ of a triangle is 150 chains and the perpendicular from the opposite vertex A to $B C$ is 45 chains; it is desired to divide the triangle into two parts equal in area by a line from A to $B C$; how far from B is D, the intersection of this line with $B C$?

Ans. 75 ch .
6. From the mid-point E of the side $A B$ of a parallelogram $A B C D$, lines are drawn to the vertexes D and C and to the mid-point of the side $C D$; show that these lines divide the parallelogram into four triangles that are equal in area..
7. Find the area of a triangle whose three sides are 13,14 , and 15 feet.

Ans. 84 sq. ft.
8. Find the area of a right triangle whose hypotenuse is 50 feet and one of whose legs is 40 feet.

Ans. 600 sq. ft .
50. Area of a Trapezoid. -The area of a trapezoid is

Fig. 34 equal to one-half the sum of the parallel sides multiplied by the altitude; that is, in Fig. 34, area of trapezoid $A B C D=\frac{1}{2}(A B+D C) \times M N$.

The area of the trapezoid is equal to the sum of the areas of
the two triangles $A B C$ and $A D C$; hence,

$$
\begin{aligned}
A B C D & =\frac{1}{2} A B \times C H+\frac{1}{1} D C \times A E \\
& =\frac{1}{2} A B \times M N+\frac{1}{2} D C \times M \Lambda^{\prime} \\
& =\frac{1}{2}(A B+D C) \times M N
\end{aligned}
$$

Let $b_{1}=$ length of lower base;
$b_{\mathrm{s}}=$ length of upper base;
$h=$ altitude.

Then, the area A of the trapezoid $A B C D$ is

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) h
$$

51. Since the median line FG, Fig. 34, joining the midpoints of the non-parallel sides is equal to $\frac{1}{\frac{1}{(}(A B+D C) \text {, }}$ the area of a trapezoid is equal to the product of the median line by the altitude.

Example.-Divide a plot of ground in the form of a trapezoid into any number of equal parts by lines intersecting the two bases.

Solution.-Divide each of the bases into the same number of equal parts into which the trapezoid is to be divided and run lines through the corresponding points of division. The trapezoids thus formed have equal bases and the same altitude and are, therefore, equal in area. Ans.

EXAMPLES FOR PRACTICE

1. The parallel sides of a trapezoid are 321.51 and 214.24 feet, and the perpendicular distance between them is 171.16 feet; what is the area of the trapezoid? Ans. 45,849 sq. ft.
2. Find the area of a trapezoid whose parallel sides are 20.5 and 12.25 chains, the perpendicular distance between them being 10.75 chains.

Ans. 17.603 A.
3. The parallel sides of a trapezoidal plot of ground are 400 feet and 360 feet long; the distance between the parallel sides is 100 feet. It is desired to divide this plot into five lots by lines intersecting the parallel sides; what will be the length of the front and the rear of one of the lots?

Ans. 80 ft . and 72 ft .
4. How many square feet are there in a board 12 feet long, 18 inches wide at one end, and 12 inches wide at the other end?

Ans. 15 sq. ft.
52. Area of Any Polygon.-The area of any polygon can be found by dividing the polygon into triangles, determining the area of each triangle, and adding the results.
53. Comparison of the Areas of similar Polygons. The areas of two similar triangles are to each other as the squares of their homologous sides.

Fig. 35

In Fig. 35,
Area $A B C=\frac{1}{2} A B \times C D$
Area $A^{\prime} B^{\prime} C^{\prime}=\frac{1}{3} A^{\prime} B^{\prime} \times C^{\prime} D^{\prime}$
Dividing equation (1) by equation (2), $\frac{A B C}{A^{\prime} B^{\prime} C^{\prime}}=\frac{A^{3} B}{A^{\prime} B^{\prime}} \times \frac{C D}{C^{\prime} D^{\prime}}$
but, by Art. 22, $C D=\frac{A B}{A^{\prime} D^{\prime}}=$
hence, substituting in (3)

$$
\begin{gathered}
\frac{A B}{A^{\prime} B^{\prime}} \text { for } \frac{C D}{C^{\prime} D^{\prime}}, \frac{A B C}{A^{\prime} B^{\prime} C^{\prime}}=\frac{A B}{A^{\prime} B^{\prime}} \times \frac{A B}{A^{\prime} B^{\prime}}=\frac{\bar{A} B^{2}}{\overline{A^{\prime} B^{\prime}}} \\
A B C: A^{\prime} B^{\prime} C^{\prime}=\overline{A B}: \overline{A^{\prime} B^{\prime}}
\end{gathered}
$$

that is,
54. The areas of two similar triangles are to each other as the squares of any two homologous lines.
55. The areas of two similar polygons are to each other as the squares of their homologous lines.

By Art. 33, two similar polygons can be divided into the same number of similar triangles. The sums of these triangles will, by Art. 35, be to each other as any triangle of one polygon is to the corresponding triangle of the other. But these triangles are to each other as the squares of any two homologous lines. Hence, the sum of the triangles, or the polygons, are to each other as the squares of any two homologous lines.

Example 1.-Divide a given triangle by a line parallel to the base into parts such that the given triangle shall be to the triangle cut off as $m: n$.

Solution.-Let $A B C$, Fig. 36, be the given triangle, and $A D E$ be the triangle cut off so that $A B C: A D E=m: n$. By Art. 18, $A D E$ and $A B C$ are similar; hence, by Art. 53, $A B C: A D E=\bar{A} \bar{B}^{\prime}: \bar{A} \bar{D}^{*}$
But by the conditions of the problem,

$$
A B C: A D E=m: n
$$

Therefore, $\overline{A B}: \bar{A} \bar{D}^{3}=m: n$;
whence, $\quad A D=A B \sqrt{\frac{n}{m}}$. Ans.
When the triangle $A B C$ is to be divided into two equal parts,

Fig. 36

$$
A D=A B \sqrt{\frac{1}{2}}=.70711 A B
$$

Example 2.-Let the length $A B$ of example 1 be 32 chains and the area of $A B C$ be 25.6 acres; what is the length of $A D$, if it is desired to make the triangle $A D E$ contain 15 acres?

Solution.-The area $A B C$ is to be to the area of $A D E$ as $25.6: 15$; hence, $m: n=25.6: 15$.

Then,

$$
A D=32 \sqrt{\frac{15}{25.6}}=24.495 \mathrm{ch} . \text { Ans. }
$$

Example 3.-Divide a given triangle $A B C$, by lines parallel to the base, into n equal parts.

Solution.-Let $A B C$, Fig. 37, be the triangle, and $D E, F G, H I$, etc., divide it into n equal parts. Then $A D E$ is one part, $A F G$ is two parts, and so on. Hence,
$A B C: A D E=n: 1$
$A B C: A F G=n: 2$; etc.
Then, by example 1 ,

$$
\begin{gathered}
A D=A B \sqrt{\frac{1}{n}} ; A F=A B \sqrt{\frac{2}{n}} \\
A H=A B \sqrt{\frac{3}{n}} ; \text { etc. Ans. }
\end{gathered}
$$

Fig. 37

Example 4.-Two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar. The sides of the triangle $A B C$ are: $A B=10$ inches, $B C=21$ inches, $A C=17$ inches, and in the triangle $A^{\prime} B^{\prime} C^{\prime}$ the side $B^{\prime} C^{\prime}=42$ inches; what is the area of the triangle $A^{\prime} B^{\prime} C^{\prime}$?

Solution.-In the triangle $A B C, s=\frac{10+17+21}{2}=24$. Then $s-a=3, s-b=7, s-c=14$, and the area is $\sqrt{24 \times 3 \times 7 \times 14}$ $=84 \mathrm{sq}$. in. By the principle of Art. 53,

$$
\begin{gathered}
\text { area of } A^{\prime} B^{\prime} C^{\prime}: \text { area of } A B C=\overline{B^{\prime} C^{\prime}}: \overline{B C^{3}} \\
\text { area of } A^{\prime} B^{\prime} C^{\prime}: 84=42^{\mathrm{s}}: 21^{8} \\
42^{8}: 21^{s}=4: 1 \\
\text { area of } A^{\prime} B^{\prime} C^{\prime}: 84=4: 1 \\
\text { area of } A^{\prime} B^{\prime} C^{\prime}=4 \times 84=336 \text { sq. in. Ans. }
\end{gathered}
$$

that is,
But hence, whence,

EXAMPLES FOR PRACTICE

1. Suppose that the sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$ in example 4 of Art. 55 are $A^{\prime} B^{\prime}=20$ inches, $B^{\prime} C^{\prime}=42$ inches, and $C^{\prime} A^{\prime}=34$ inches; show that the answer that is given to the example is correct.
2. The triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are similar; being given $B C$ $=13$ inches, $C A=14$ inches, $A B=15$ inches, and $B^{\prime} C^{\prime}=19.5$ inches; find the area of the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Ans. 189 sq. in.
3. Let $A B$, one side of a triangle $A B C$, be 60 chains long, and let it be required to divide, by lines parallel to $B C$, the triangle $A B C$ into five equal parts. (a) What are the lengths of the lines $A D, A F$, $A H$, and $A T$? (b) Let the area of $A B C$ be 120 acres; by means of Art. 53, prove your results.

$$
\text { Ans. }\left\{\begin{array}{l}
A D=26 \mathrm{ch} .83 .31 . \\
A F=37 \mathrm{ch} .94 .71 . \\
A H=46 \mathrm{ch} .47 .6 \mathrm{l} . \\
A T=53 \mathrm{ch} .66 .6 \mathrm{l} .
\end{array}\right.
$$

4. Find the lengths of $A D$ and $A F$ when the triangle of example 3 is divided into three parts, whose areas shall be proportional to the numbers 3,4 , and 5 .

$$
\text { Ans. }\left\{\begin{array}{l}
A D=30 \mathrm{ch} . \\
A F=45 \mathrm{ch} .82 .61 .
\end{array}\right.
$$

Hint. - This is the same as if the triangle were divided into $3+4+5$ equal parts and $A D E$ contained three, and $A F G$, seven of these equal parts.
56. The Theorem of Pythagoras. - In any right triangle, the square described on the hypotenuse is equivalent to the sum of the squares described on the other two sides.

Let $A B C$, Fig. 38, be a right triangle. Draw an equal triangle in the position $C B^{\prime} C^{\prime}$, so that $C B^{\prime}$ will be in the prolongation of $B C$. Construct the squares $A B D E$ and $B^{\prime} C^{\prime} F D$ on $A B$ and $B^{\prime} C^{\prime}$, respectively. Since $M+N_{1}(=M+N)$ is a right angle, $A C C^{\prime}$ is also a right angle. Produce $E F$ to A^{\prime}, making $F A^{\prime}=B A=D E$.

Fic. 88 Then, since $E F$ is the difference between $D F$ and $D E$, or $B C$ and $A B, E A^{\prime}$ $=B C$. Draw $A A^{\prime}$ and $C^{\prime} A^{\prime}$. Each of the right triangles T_{s} and T_{s} is equal to $T_{\text {, }}$ since their legs are respectively equal. The quadrilateral $A C C^{\prime} A^{\prime}$, having all its sides equal and a right angle C, is a square-the square on the hypotenuse $A C$. This square is equal to the shaded figure plus the sum of the triangles T_{s} and T_{s}; or to the shaded figure plus twice the triangle T. The sum of the squares $A B D E$ and $B^{\prime} C^{\prime} F D$ is equal to the shaded figure plus the sum of the triangles T and T_{1}, or to the shaded figure plus twice the triangle T. Therefore, square $A C C^{\prime} A^{\prime}=$ square $A B D E+$ square $B^{\prime} C^{\prime} F D$.

A particular case of the proposition just proved is shown in Fig. 39.

Let. c be the hypotenuse, and a and b the other two sides of any right triangle.

Then,

$$
\begin{align*}
c^{2} & =a^{2}+b^{2} \tag{1}\\
c & =\sqrt{a^{2}+b^{2}} \tag{2}\\
a & =\sqrt{c^{2}-b^{2}} \tag{3}
\end{align*}
$$

Formula 3 may be written

$$
\begin{equation*}
a=\sqrt{(c-b)(c+b)} \tag{4}
\end{equation*}
$$

Fig. 39

Example 1.-If $A B=3$ inches and $B C=4$ inches, what is the length of the hypotenuse $A C$, Fig. 38?

Solution.-

$$
\begin{aligned}
A C & =\sqrt{A B^{2}+\overline{B C^{2}}} \\
& =\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \mathrm{in.} \text { Ans. }
\end{aligned}
$$

Example 2.-The side given is 3 inches ($=b$, say), the hypotenuse is 5 inches $(=c)$; what is the length of the other side?

Solution.-Applying formula 4, Art. 56,

$$
a=\sqrt{(5-3)(5+3)}=\sqrt{16}=4 \text { in. Ans. }
$$

Also,

$$
a=\sqrt{c^{2}-b^{2}}=\sqrt{5^{2}-3^{2}}=4 \mathrm{in.} \text {. Ans. }
$$

Example 3.-If, from a church steeple that is 150 feet high, a rope is to be attached at the top and to a stake in the

Fig. 40 ground 85 feet from its foot (the ground being supposed to be level), what must be the length of the rope?

Solution.-In Fig. 40, $A B$ represents the steeple 150 ft . high; C, a stake 85 ft . from the foot of the steeple; and $A C$, the rope. Here we have a triangle right-angled at B, of which $A C$ is the hypotenuse. The square of $A C=85^{\circ}+150^{\circ}$ $=7,225+22,500=29,725$. Therefore,

$$
A C=\sqrt{29,725}=172.4 \mathrm{ft} ., \text { nearly. Ans. }
$$

Example 4.-Referring to Fig. 16, it is required to find the length of the post $A B$ and that of the member $B C$.

Solution.-Draw $B K$ parallel to $E D$. Then, $B K=E D=16 \mathrm{ft}$. and $C K=C D-D K=C D-E B=15-12=3 \mathrm{ft}$. The right triangles $A E B$ and $B C K$ give

$$
\begin{aligned}
& A B=\sqrt{A E^{2}+E B^{3}}=\sqrt{16^{2}+12^{2}}=\sqrt{400}=20 \mathrm{ft} . \text { Ans. } \\
& B C=\sqrt{B K^{2}+\bar{C} K^{2}}=\sqrt{16^{2}+3^{2}}=\sqrt{265}=16.279 \mathrm{ft} . \text { Ans. }
\end{aligned}
$$

EXAMPLES FOR PRACTICE

1. If the two sides about the right angle in a right triangle are 52 and 39 feet long, how long is the hypotenuse?

Ans. 65 ft .
2. A ladder 65 feet long reaches to the top of a house when its foot is 25 feet from the house; how high is the house, supposing the ground to be level?

Ans. 60 ft .
3. The shortest distance from a point to a line is 25 inches; the distances from this point to the extremities of the line are 54 inches and 40 inches, respectively; what is the length of the line?

Ans. 79.08 in.
4. Show that the diagonal of a square is equal to the side multiplied by $\sqrt{2}$.

REGULAR POLYGONS

57. A regular polygon is a polygon that has equal sides and equal angles, that is, it is equilateral and equiangular.
58. A circle can be circumscribed about any regular polygon.

Take any three vertexes of the regular polygon $A B C D E$,

Fig. 11 Fig. 41, as the vertexes A, B, C, and pass a circle through them. Let O be the center of this circle. Join O to A, B, C, D, and E. The polygon being equiangular, the angle $A B C=$ angle $B C D$. The angles $O C B$ and $O B C$, being opposite equal sides $O C$ and $O B$ of the triangle $O B C$, are equal. Hence,

$$
A B C-O B C=B C D-O C B
$$

$A B O=O C D$
The polygon being equilateral, the sides $A B$ and $C D$ are equal. Hence, the triangles $A O B$ and $O C D$, having two sides and included angie of one equal to two sides and included angle of the other equal, are equal. Therefore, $O D=O A$, and a circle passing through A.
B, and C must pass through D. In like manner, it can be shown that the circle passes through E.
59. A circle can be inscribed in any regular polygon.

In Fig. 41, $O A, O B, O C, O D$, and $O E$, being radii of the circumscribed circle, are equal and divide the polygon into equal isosceles triangles that have a common vertex O. The altitudes of these equal triangles are equal, hence the perpendicular distances, as $O F$, from O to each of the sides are the same. Therefore, a circle drawn with O as center and a radius equal to $O F$ will be inscribed in the regular polygon.
60. The center of a regular polygon is the common center of the circumscribed and the inscribed circle.
61. The radius of a regular polygon is the radius of the circumscribed circle, as $O A$, Fig. 41.
62. The apothem of a regular polygon is the radius of the inscribed circle, as $O F$, Fig. 41.
63. The angle at the center of a regular polygon is the angle included by the radii drawn to the extremities of any side.
64. The angle at the center of any regular polygon is equal to four right angles, or 360°, divided by the number of the sides.
65. If n is the number of sides of a regular polygon, the sum of its interior angles is $2(n-2)$ right angles (see Geometry, Part 1), or, $90^{\circ} \times 2(n-2)=180^{\circ} \times(n-2)$, and, since all the angles are equal, each angle is equal to $\frac{180^{\circ} \times(n-2)}{n}=180^{\circ}-\frac{360^{\circ}}{n}$. Since this value depends only on the number of sides, all regular polygons of the same number of sides have the same angles.
66. Regular polygons of the same number of sides are similar; their perimeters are to eack other as any two homologous lines, and their areas are to each other as the squares of any two homologous lines.
67. The area of a regular polygon is equal to one-half the product of the perimeter and the apothem.

I I. T $36 \mathrm{~F}-6$

Let l be the side $M N$ of a regular polygon, Fig. 42, n the number of sides, $p(=n l)$ the perimeter, $a(=O F)$ the apothem, and A the area. As A is equal to the sum of n triangles, each equal to $M O N$, we have, $A=\left(\frac{1}{2} M N \times O F\right) \times n=\frac{1}{\frac{1}{2}} l a \times n=\frac{1}{\frac{1}{2} n} l \times a$, or,

$$
A=\frac{1}{2} p a
$$

Example.-Find the area of a regular pentagon whose side is 25 feet and apothem is 17.2 feet.

Solution.-The figure is a pentagon, hence it has five sides. The perimeter is 5×25 and the area is $\frac{5 \times 25 \times 17.2}{2}$ $=1,075 \mathrm{sq}$. ft. Ans.
68. The areas of regular polygons each of whose sides is equal to 1 are given in the following table:

TABLE I
 AREAS OF REGULAR POLYGONS

Name	Number of Sides	Area When Side $=1$	Name	Number of Sides	Area When Side $=$:
Triangle	3	. 4330	Octagon	8	4.8284
Square	4	1.0000	Nonagon	9	6.1818
Pentagon	5	1.7205	Decagon .	10	7.6942
Hexagon'	6	2.5981	Undecagon	11	9.3656
Heptagon	7	3.6339	Dodecagon	12	II 1.1960

From the principle of Art. 55, the following rule is derived:

Rule.- To find the area of any regular polygon, square the length of a side and multiply by the area of the similar polygon whose side is equal to the unit of length.

Let $A=$ area; $l=$ length of side of required polygon; $a=$ area of similar polygon whose side is 1 ; then, by Art. 55,

$$
\begin{aligned}
A: a & =l^{2}: 1^{3} \\
A & =a l^{2}
\end{aligned}
$$

whence,
Example. - The side of a regular octagon is 3 inches, find its area.
Solution.-From the table, the area of a regular octagon whose side is 1 in . is 4.8284 sq . in. Hence, the area of the octagon whose side is 3 in . is $4.8284 \times 3^{3}=43.456 \mathrm{sq}$. in. Ans.
69. If the vertexes of a regular inscribed polygon are joined to the middle points of the arcs subtended by the sides of the polygon, the joining lines form a regular inscribed polygon of double the number of sides. Thus, the octagon A F B G, etc., Fig. 43, is formed by joining the middle points of the arcs subtended by the sides of the square $A B C D$.

Fig. 43

Fig. 44
70. If tangents are drawn at the middle points of the arcs between adjacent points of contact of the sides of a regular circumscribed polygon, a regular circumscribed polygon of double the number of sides is formed. Thus, in Fig. 44, the octagon EFGH, etc., is formed by drawing tangents at the middle points of the arcs between adjacent points of contact of the sides of the circumscribed square $A B C D$.

CIRCULAR MEASURFMENTS

THE CIRCLE

LENGTE OF ANY ARC

7\%. If any two circles are taken, and two regular polygons of the same number of sides are inscribed in them, the perimeters of these polygons are to each other as the radii of the circles (Art. 66). This relation holds whatever the number of sides of the polygon. Now, it is evident that, as this number increases, the perimeters of the two polygons approach the circumferences of their respective circles. We may, therefore, consider these circumferences as extreme cases of the perimeters of regular polygons, in which the number of sides is increased indefinitely; whence we conclude that the circumferences, also, are to each other as their radii.

If c and c^{\prime} are the circumferences of any two circles, and r and r^{\prime} their respective radii, we may write,

$$
\begin{aligned}
c: c^{\prime} & =r: r^{\prime} \\
c: r & =d^{\prime}: r^{\prime} \\
\frac{c}{r} & =\frac{c^{\prime}}{r^{\prime}}
\end{aligned}
$$

whence,

Dividing both numbers by 2 , and denoting the diameters by d and d^{\prime},
that is,

$$
\begin{aligned}
\frac{c}{2 r} & =\frac{d^{\prime}}{2 r^{\prime}} \\
\frac{c}{d} & =\frac{c^{\prime}}{d^{\prime}}
\end{aligned}
$$

As c and c^{\prime} are any two circumferences, it is seen that the ratio obtained by dividing any circumference by its diameter is the same for all circumferences. This ratio is usually
denoted by the Greek letter π (pronounced pi). We have, therefore, for any circle,
whence,

$$
\frac{c}{d}=\pi
$$

72. The quantity π can be determined by elementary geometrical methods, which may be found in treatises on geometry; but these methods are very laborious. A much better method is afforded by the theory of series, which is treated in works on trigonometry and the differential calculus. It is found that π cannot be expressed as an exact fraction, either decimal or vulgar. Its value can, however, be calculated to any desired degree of approximation. The following value is approximate to fifteen decimal places:

$$
\pi=3.141592653589793+
$$

For nearly all practical purposes, 3.1416 is a sufficiently close value. This value is used very generally, and will be used in this Course, unless otherwise stated. The student should commit it to memory. A value that is often used in rough calculations is $\frac{22}{7}$; it can be used when no more than three significant figures are required in the result.
73. The length of an arc, when the number of degrees in the arc and the radius of the circle are given, may be found as follows:

The length of the arc is evidently the same part of the length of the circumference ($2 \pi r$) as the number of degrees in the arc is of the number of degrees in the whole circumference, or 360°. Thus, if n is the number of degrees in the arc, and l is its length, we shall have,
whence,

$$
\begin{gathered}
\frac{2 \pi r}{l}=\frac{360}{n} \\
l=\frac{\pi r n}{180}
\end{gathered}
$$

In applying this formula, minutes and seconds should be expressed as fractions of a degree.

Example 1.-Find the length of a rope that will go around a wheel or drum 7.5 feet in diameter.

Solution.-The required length is equal to the length c of the circumference of the wheel or drum. Here $d=7.5 \mathrm{ft}$., and, taking $\pi=3.1416$, we have, by formula of Art. 71,

$$
c=3.1416 \times 7.5=23.562 \mathrm{ft} . \text { Ans. }
$$

Using $\frac{y^{2}}{7}$ for π, the result, to three significant figures, is

$$
c=\frac{22}{7} \times 7.5=23.6 \mathrm{ft} . \text { Ans. }
$$

Example 2.-Find the diameter of a circular race track 1 mile in length.

Solution.-Here c is given ($=1 \mathrm{mi} .=5,280 \mathrm{ft}$.) and the quantity required is d. From the formula $c=\pi d$, we get

$$
d=\frac{c}{\pi}=\frac{5,280}{3.1416}=1,680.7 \mathrm{ft} . \text { Ans. }
$$

Example 3.-What is the length of a railroad circular curve having a radius of 1,540 feet and subtending an angle at the center equal to $26^{\circ} 35^{\prime}$?

Solution.-To apply formula of Art. 73, we have $r=1,540 \mathrm{ft}$., $n=26 \frac{35^{\circ}}{\circ}=26.583^{\circ}$, nearly. Therefore,

$$
l=\frac{3.1416 \times 1,540 \times 26.583}{180}=714.50 \mathrm{ft} . \quad \text { Ans. }
$$

74. When only the chord $A B$, Fig. 45, of an arc and the height, or "rise," $C D$ of the segment are known, the following approximate method gives good results. $A C$, the chord of half the arc, has the value

$$
A C=\sqrt{\overline{A D}+\overline{C D}^{2}}=\sqrt{\left(\frac{A B}{2}\right)^{3}+\overline{C D}}
$$

Then, to find the length of the arc:
1Rule. - From eight times the chord of half the arc, subtrace the chord of the whole arc and divide the remainder by 3.

That is,

Fig. 45

$$
\operatorname{arc} A C B=\frac{8 \times A C-A B}{3}
$$

Let $c=$ chord of whole arc;
$h=$ height of segment;
$l=$ length of arc.
Then, $\quad A C=\sqrt{\frac{c^{3}}{4}+h^{2}}=\frac{1}{2} \sqrt{c^{2}+4 h^{3}}$
and

$$
l=\frac{4 \sqrt{c^{2}+4 h^{2}}-c}{3}
$$

This formula gives the length of an arc less than one-sixth of the circumference correct to four figures, and it gives the length of an arc less than one-third of the circumference correct to three figures.

Example.-Find the length of the arc $A C B$, Fig. 46.
Solution.-In this example, $c=72, h=8$. Therefore,

Fig. 46
75. For very flat arcs, that is, when $\frac{h}{c}$ is very small (say not greater than .1), the following approximate formula may be used, the notation being the same as in the preceding article:

$$
l=c+\frac{8 h^{2}}{3 c}
$$

Example 1.-Find the length of the $\operatorname{arc} A B$, Fig. 46.
Solution.-

$$
l=72+\frac{8 \times 8^{2}}{3 \times 72}=72+2.37=74.37 . \text { Ans. }
$$

This is not a very close approximation, because the ratio $\frac{h}{c}\left(=\frac{8}{72}=\frac{1}{9}\right)$ is not very small; however, the approximate value thus found would be close enough for most practical purposes.
Example 2.-The chord of a railroad curve is 675 feet long, and the rise (or, "middle ordinate," as the rise is called in railroad work) is 40 feet; what is the length of the curve?

Solution.-Here $c=675, h=40$, and therefore

$$
l=675+\frac{8 \times 40^{2}}{3 \times 675}=675+6.32=681.32 \mathrm{ft} . \quad \text { Ans }
$$

76. Circular Measure of an Angle.-The following equation follows from the formula of Art. 73:

$$
\frac{l}{r}=\frac{\pi n}{180}=\frac{\pi}{180} \times n
$$

If we assume the radius to be 1 , then

$$
\begin{equation*}
l=\frac{\pi}{180} \times n \tag{1}
\end{equation*}
$$

This equation gives the length of the are that the angle subtends on a circle whose radius is equal to unity. The length of such arc is called the circular measure of the angle, and the angle is often referred to by stating that measure. Thus, an angle of 1.34 , circular measure, means an angle that subtends an arc of length 1.34 on a circle whose radius is 1 . An angle expressed in circular measure is also said to be expressed in radians.

If in equation 1 we make $n=180^{\circ}$, we obtain, for the circular measure of $180^{\circ}, l=\pi$, that is, 180° is equivalent to π radians. Likewise, 90° is equivalent to $\frac{\pi}{2}$ radians, etc.

EXAMPLES FOR PRACTICE

1. Find the distance around the outside of a waterwheel whose outside diameter is 22 feet 8 inches.

Ans. 71.21 ft .
2. The wheel of a carriage is observed to turn 375 times in going from a certain place to another; the diameter of the wheel is 3.5 feet; what is the distance between the two places?

Ans. 4,123.4 ft.
3. A circular column measures 45.5 inches around the outside; what is its diameter?

Ans. 14.483 in.
4. A belt covers an arc of 50° on a pulley whose diameter is 5 feet; what length of the belt is in contact with the pulley? Ans. 2.1817 ft .
5. How long will it take a train to move over a curve subtending an angle of 100°, the radius of the curve being 1,800 feet, and the train going at the rate of 20 miles an hour?

Ans. 1.79 min .
6. The length of arc of a circle is equal to the radius; find the number of degrees in the arc.

Ans. $57.3^{\circ}=57^{\circ} 18^{\prime}$, nearly
7. The chord of a railroad curve is 600 feet long and the middle ordinate is 80 feet; what is the length of the curve?

Ans. 628 ft .

AREAS BOUNDED BY CIRCULAR ARCS

77. The area of a circle is equal to one-half the product of its circumference and radius (Art. 67). This at once follows by considering the circle as an extreme case of a regular polygon.

Let $A=$ area of circle;
$c=$ circumference of circle;
$r=$ radius of circle.

Then,

$$
A=\frac{1}{2} c r
$$

or, since $c=2 \pi r$,

$$
A=\frac{1}{2} 2 \pi r \times r
$$

or, simplifying,

$$
\begin{equation*}
A=\pi r^{2}=3.1416 r^{3} \tag{1}
\end{equation*}
$$

Writing ${ }_{2}^{d}$ for r, we obtain for the area in terms of the diameter,

$$
\begin{equation*}
A=\frac{\pi d^{3}}{4}=.7854 d^{v} \tag{2}
\end{equation*}
$$

These formulas serve likewise to find r or d when A is given. Since $2 \pi r=c$, we have

$$
r=\frac{c}{2 \pi}, \text { and } \pi r^{*}=\pi\left(\frac{c}{2 \pi}\right)^{\prime}=\frac{c^{2}}{4 \pi}
$$

that is,

$$
\begin{equation*}
A=\frac{c^{2}}{4 \pi} \tag{3}
\end{equation*}
$$

This formula gives the area of a circle when its circumference is known.

Example 1.-The steam pressure on a piston is 75 pounds per square inch, and the diameter of the piston is 15 inches; what is the pressure on the whole surface of the piston?

Solution.-The required pressure is evidently seventy-five times the number of square inches in the surface of the piston, or seventy-five times the area A of the piston. Here $d=15 \mathrm{in}$., and formula 2 gives

$$
A=.7854 \times 15^{\circ}
$$

whence the total pressure is

$$
75 \times .7854 \times 15^{2}=13,254 \mathrm{lb} . \text { Ans. }
$$

Example 2.-The distance around a circular park is 2.75 miles; what is the area of the park, in acres?

Solution.-Here c is given equal to $2.75 \mathrm{mi} .=(2.75 \times 80) \mathrm{ch}$. Therefore, the area of the park, in square chains, is (formula 3)

$$
\frac{(2.75 \times 80)^{2}}{4 \times 3.1416}
$$

The area, in acres, is one-tenth of this, or

$$
\frac{1}{10} \times \frac{(2.75 \times 80)^{2}}{4 \times 3.1416}=\frac{220^{2}}{125.664}=385.15 \mathrm{~A} . \quad \text { Ans. }
$$

Example 3.-What must be the diameter of a circular sewer pipe that 'ts cross-section may be 12.75 square feet?

Solution.-Solving formula 2 for d,

$$
d=\sqrt{\frac{A}{.7854}}=\sqrt{\frac{12.75}{.7854}}=4.03 \mathrm{ft} . \text { Ans. }
$$

EXAMPLES FOR PRACTICE

1 The cable of a suspension bridge measures 40 inches around its circumference; find: (a) the diameter d of the cable; (b) the area A of the cross-section.

$$
\text { Ans. }\left\{\begin{array}{l}
(a) d=12.732 \mathrm{in} . \\
(b) A=127.32 \mathrm{sq} . \mathrm{in}
\end{array}\right.
$$

2. Find a formula for the area A of the space enclosed between two circles $A B C$ and $D E F$, Fig. 47, the diameter of the outer circle being D, and that of the inner circle d.

$$
\text { Ans. }\left\{\begin{array}{l}
A=\frac{\pi}{4}\left(D^{2}-d^{2}\right) \\
A=\frac{\pi}{4}(D+d)(D-d)
\end{array}\right.
$$

3. What must be the inner diameter of a circular chimney, that its inner cross-section may be 14 square feet?
4. The diameter of a circular airway of a mine is 10 feet; find: (a) the circumference $c ;(b)$ the area A of the cross-section.

$$
\text { Ans. }\left\{\begin{array}{l}
(a) \quad c=31.416 \mathrm{ft} \\
(b) A=78.54 \text { sq. } \mathrm{ft} .
\end{array}\right.
$$

78. A sector is the same part of a circle as its arc is of the circumference.

Let $A=$ area of circle;
$A^{\prime}=$ area of sector;
$n=$ number of degrees in arc of sector.
Then,

$$
A^{\prime}: A=n: 360
$$

whence,

$$
A^{\prime}=\frac{n A}{360}=\frac{\pi r^{2} n}{360}
$$

Example.-The angle of a sector of a circle is 75°; the diameter of the circle is 12 inches; what is the area of the sector?

Solution.-The area A of the circle is $12^{2} \times .7854$ sq. in. Then the area of the sector is

$$
\frac{n A}{360}=\frac{75 \times 12^{3} \times .7854}{360}=23.562 \text { sq. in. Ans. }
$$

79. The area of a sector is equal to one-half the product of its base by the radius of the circle.

$$
A^{\prime}=\frac{1}{2} r i
$$

If l is the length of the arc, or base, of a sector, we have (Art. 73):
whence,

$$
\begin{aligned}
& l=\frac{\pi r n}{180} \\
& n=\frac{180 l}{\pi r}
\end{aligned}
$$

This value of n substituted in formula of Art. 78 gives

$$
\begin{aligned}
& A^{\prime}=\frac{\pi r^{2}}{360} \times \frac{180 l}{\pi r} \\
& A^{\prime}=\frac{1}{2} r l
\end{aligned}
$$

or, reducing,
Example.-If the radius of an arc is 5 feet and the length of the arc is 4 feet, what is the area of the sector?

Solution.-By formula of Art. 79 ,

$$
A^{\prime}=\frac{l r}{2}=\frac{4 \times 5}{2}=10 \text { sq. ft. Ans. }
$$

80. The area of a segment, as $A D B$, Fig. 48, is evidently equal to the area of the sector $A O B D$ minus the area of the triangle $A O B$.

Example 1.-The diameter of a circle is 10 inches, and the chord of the arc of a segment is 7 inches; what is the area of the segment?

Solution.-In Fig. 48, let $A B=7$ in. and the diameter $=10 \mathrm{in}$. Then, $O B=5$ in., and $C B=3.5$ in. Hence, $O C=\sqrt{5^{2}-3.5^{2}}=3.57 \mathrm{in}$., and $C D=5$ $-3.57=1.43 \mathrm{in}$. Then, by formula of Art. 74, arc $A D B=\frac{4 \sqrt{7^{2}}+4 \times 1.43^{3}}{3}=7.75 \mathrm{in}$. Hence, area of sector $A O B D=\frac{1}{2} \times 5 \times 7.75$ $=19.38 \mathrm{sq}$. in. The area of the triangle $4 O B=\frac{1}{3} \times 3.57 \times 7=12.50$ sq. in. Therefore, the area of the segment is $19.38-12.50$ $=6.88 \mathrm{sq}$. in. Ans.

Fig. 48

Fig. 49

Example 2.-The chord of the are of a seg. ment is 79 inches and the height of the segment is 20 inches; find the area of the segment.

Solution.-Let $A C B E$, Fig. 49, be the circle; let $A B=79 \mathrm{in}$. and $C D=20 \mathrm{in}$. Then. $A D=\frac{1}{\frac{1}{2}} \times 79 \mathrm{in} .=39.5 \mathrm{in}$. By Art. 28,
or, whence,

$$
\begin{aligned}
C D: A D & =A D: D E \\
20: 39.5 & =39.5: D E \\
D E & =78.01
\end{aligned}
$$

Hence, the diameter $=20+78.01=98.01$ in., and the radius $=49$. Then the arc $A C B=\frac{4 \sqrt{79^{2}+4 \times 20^{4}}-79}{3}=91.7 \mathrm{in}$. Hence, the area of sector $A O B C=91.7 \times \frac{1}{1} \times 49=2,246.65 \mathrm{sq}$. in. The area of the triangle $A O B=1 \times 79 \times 29=1,145.5 \mathrm{sq}$. in. Therefore, the area of the segment $=2,246.65-1,145.50=1,101.15 \mathrm{sq}$. in. Ans.

THE ELLIPSE

81. An ellipse is a plane figure bounded by a curved line such that the sum of the distances of any point on that line from two fixed points within is always equal to the length of the line passing through the fixed points and terminating at both ends in the curved line.

Fic. 50

In Fig. 50, the fixed points are A and B, and if C and D are any two points on the curve, $A C+C B=A D$ $+D B=F E$. The two fixed points are the foci. The line $F E$ through the foci is the transverse, or major, axis.
The line $G D$, which is the perpendicular bisector of $F E$, is the conjugate, or minor, axis. The foci may be located from G or D as a center by striking ares with a radius equal to one-half $F E$.
82. There is no simple and exact method of finding the periphery (perimeter) of an ellipse. The following formula gives values very nearly exact:

Let $C=$ periphery;

$$
a=\text { half the major axis; }
$$

$b=$ half the minor axis;

$$
D=\frac{a-b}{a+b}
$$

Then,

$$
C=\pi(a+b) \frac{64-3 D^{4}}{64-16 D^{3}}
$$

Example.-What is the periphery of an ellipse whose axes are 10 inches and 4 inches long?

Solution.-In this example, $a=5, b=2, D=\frac{5-2}{5+2}=\frac{3}{7}$.
Then, $\quad C=3.1416(5+2) \frac{64-3\left(\frac{3}{3}\right)^{4}}{64-16\left(\frac{3}{7}\right)^{2}}=23.013$
Therefore, the periphery is 23.013 in . Ans.
83. The area of an ellipse is equal to the product of its two semiaxes multiplied by π.

Let $a=$ half the major axis;
$b=$ half the minor axis;
$A=$ area.
Then, $\quad A=\pi a b=3.1416 a b$
Example.-What is the area of an ellipse whose axes are 10 inches and 6 inches?

Solution.-Here, $a=\frac{1}{2} \times 10=5, b=\frac{1}{2} \times 6=3$.
Then, $\quad A=3.1416 \times 5 \times 3=47.124$
Therefore, the area is 47.12 sq . in. Ans.

EXAMPLES FOR PRACTICE

1. The number of degrees in the angle formed by drawing radii from the center of a circle to the extremities of an arc of the circle is 84 ; the diameter of the circle is 17 inches; what is the area of the sector?

Ans. 52.96 sq. in.
2. Given the chord of the arc of a segment equal to 24 inches, and the height of the segment equal to 6.5 inches, find: (a) the diameter of the circle; (b) the area of the segment.

$$
\text { Ans. } \begin{cases}(a) & 28.7 \text { in. } \\ (b) & 109.5 \text { sq. in. }\end{cases}
$$

3. (a) What is the perimeter of an ellipse whose axes are 15 inches and 9 inches? (b) What is the area?

$$
\text { Ans. } \begin{cases}(a) & 38.29 \text { in. } \\ (b) & 106.03 \\ \text { sq. in. }\end{cases}
$$

4. The base of a sector is 24 inches and the diameter of the circle is 54 inches; what is the area of the sector?

Ans. 324 sq. in.

THE MENSURATION OF SOLIDS

84. A solld, or body, has three dimensions: length. breadth, and thickness.
85. The entire area of a solid is the area of the whole outside of the solid.

The convex area of a solid having one or two flat ends is the same as the entire surface, except that the areas of the ends or bases are not included.
86. The volume of a solid is expressed by the number of times that it will contain another volume, called the unit of volume. Instead of the word volume, the expression cubical contents is frequently used.

THE PRISM AND CYLINDER

87. A prism is a solid whose ends are equal polygons in parallel planes, and whose sides are parallelograms.

88. A parallelopipedon, Fig. 51, is a prism whose bases (ends) are parallelograms.

Fig. 51
89. A cube, Fig. 52, is a parallelopipedon whose faces and ends are squares.

Fic. 52
90. The cube whose edges are equal to the unit of length is taken as the unit of volume when finding the volume of a solid.

Thus, if the unit of length is 1 inch, the unit of volume will be the cube each of whose edges measures 1 inch, or 1 cubic inch; and the number of cubic inches the solid contains will be its volume. If the unit of length is 1 foot, the unit of volume will be 1 cubic foot, etc. Cubic inch, cubic foot, and cubic yard are abbreviated to $\mathrm{cu} . \mathrm{in} ., \mathrm{cu} . \mathrm{ft}$., and cu. yd., respectively.
91. Prisms take their names from their bases. Thus, a triangular prism is one whose bases are triangles; a pentagonal prism is one whose bases are pentagons, etc.
92. A cylinder, Fig. 53, is a round body of uniform diameter with circles for its ends.
93. A right prism, or right cylinder, is one whose center line (axis) is perpendicular to its bases.

Fig. 53
94. The altitude of a prism or cylinder is the perpendicular distance between its two ends.
95. To find the convex area of any right prism, or right cylinder:

Rule.-Multiply the perimeter of the base by the altitude.
Let $p=$ perimeter of base;
$h=$ altitude;
$c=$ convex area.
Then,

$$
c=p h
$$

Example 1.-What is the convex area of a right prism whose base is a square, one side of which is 9 inches, and whose altitude is 16 inches?

Solution.- $9 \times 4=36 \mathrm{in}$., the perimeter of the base. Applyin ${ }_{6}$ formula of Art. 95,

$$
c=36 \times 16=576 \text { sq. in., the convex area. Ans. }
$$

To find the entire area, add the areas of the two ends to the convex area.

[^0]Solution.-The area of one end is $9^{\circ}=81$ sq. in. $81 \times 2=162$ sq. in., is the area of both ends. $576+162=738 \mathrm{sq}$. in., the entire area of the parallelopipedon. Ans.

Example 3.- What is the entire area of a right cylinder whose base is 16 inches in diameter, and whose altitude is 24 inches?

Solution.- $16 \times 3.1416=50.27 \mathrm{in}$., or the perimeter (circumference) of the base. $50.27 \times 24=1,206.48 \mathrm{sq}$. in., the convex area.
$16^{*} \times .78 .4 \times 2=402.12 \mathrm{sq}$. in., the area of the ends.
$1,206.48+402.12=1,608.6 \mathrm{sq}$. in., the entire area. Ans.
96. To find the volume of a prism, or cylinder:

Rule.-The volume of any prism or cylinder is equal to the area of the base multiplied by the altitude.
I.et $A=$ area of base;
$h=$ altitude;
$V=$ volume.
Then,

$$
V=A h
$$

If the given prism is a cube, the three dimensions are all equal, and the volume equals the cube of one of the edges. Hence, if the volume is given, the length of an edge is found by extracting the cube root.

If the volume and the area of the base are given, the altitude is $h=\frac{V}{A}$. If the cylinder or prism is hollow, the volume is equal to the area of the ring or base multiplied by the altitude.

Example 1.-What is the volume of a rectangular prism whose base is 6 inches by 4 inches, and whose altitude is 12 inches?

Solution.-The base of a rectangular prism is a rectangle; hence, $6 \times 4=24 \mathrm{sq}$. in., the area of the base. Applying formula of Art. 96, $V=24 \times 12=288 \mathrm{cu}$. in., or the volume. Ans.

Example 2.-What is the volume of a cube whose edge is 9 inches?
Solution.- $9^{3}=9 \times 9 \times 9=729 \mathrm{cu}$. in., the volume. Ans.
Example 3.-What is the volume of a cylinder whose base is 7 inches in diameter, and whose altitude is 11 inches?

Solution.- $7^{\prime} \times .7854=38.48 \mathrm{sq}$. in., the area of the base. Applying formula of Art. 96, $V=38.48 \times 11=423.28 \mathrm{cu}$. in., the volume. Ans.

THE PYRAMID AND CONE

97. A pyramid, Fig. 54 , is a solid whose base is a polygon, and whose sides are triangles uniting at a common point, called the vertex. If the base is a regular polygon, and the sides have the same inclination to the base, the pyramid is a regular pyramid.
98. A cone, Fig. 55, is a solid whose

Fig. 54

Fig. 55 base is a circle, and whose convex surface tapers uniformly to a point called the vertex.
99. The altitude of a pyramid or cone is the perpendicular distance from the vertex to the base.
100. The slant height of a regular pyramid is a line drawn from the vertex perpendicular to one of the sides of the base. The slant height of a cone is a straight line drawn from the vertex to the circumference of the base, and lying on the surface of the cone.
101. To find the convex area of a regular pyramid or a cone:

Rule. -The convex area of a regular pyramid or of a cone is equal to the perimeter of the base multiplied by one-half the slant height.

Let $p=$ perimeter;
$s=$ slant height;
$c=$ convex area.
Then,

$$
c=\frac{p s}{2}
$$

Example 1.-What is the convex area of a regular pentagonal pyramid, if each side of the base measures 6 inches and the slant height measures 14 inches?

Solution.-The base of the pentagonal pyramid is a pentagon, and consequently it has five sides. $6 \times 5=30 \mathrm{in}$., or the perimeter of the base. Applying formula of Art. 101,

1 I. T $36 \mathrm{~F}-7$

$$
c=\frac{p s}{2}=\frac{30 \times 14}{2}=210 \text { sq. in., the convex area. Ans. }
$$

Example 2.-What is the entire area of a cone whose altitude is 15 inches, and whose base is 16 inches in diameter?

Solution.-The slant height of the cone is the hypotenuse of a right triangle whose legs are the radius of the base and altitude of the cone, respectively. Therefore, the slant height is equal to $\sqrt{15^{2}+8^{2}}=17 \mathrm{in}$. (Art. 56). The perimeter of the base is 16×3.1416 $=50.2656$ in. Applying formula of Art. 101,

$$
c=\frac{50.2656 \times 17}{2}=427.26 \mathrm{sq} . \mathrm{in}
$$

The area or the base is $16^{*} \times .7854=201.06 \mathrm{sq}$. in. The entire area is, therefore, $427.26+201.06=628.32$ sq. in. Ans.
102. To find the volume of any pyramid or cone:

Rule. - The volume of any pyramid or cone equals the area of the base multiplied by one-third of the altitude.

Let $A=$ area of base;
$h=$ altitude;
$V=$ volume.
Then,

$$
V=\frac{A h}{3}
$$

EXAMPLE 1.-What is the volume of a triangular pyramid, each edge of whose base measures 6 inches, and whose altitude is 8 inches?

Solution.-The base is an equilateral triangle; hence, applying the rule of Art. 68, the area is $6^{3} \times .433=15.59$ sq. in. Applying formula of Art. 102,

$$
V=\frac{A h}{3}=\frac{15.59 \times 8}{3}=41.57 \mathrm{cu} . \text { in. Ans. }
$$

Example 2.-What is the volume of a cone whose altitude is 18 inches, and whose base is 14 inches in diameter?

Solution.- $14^{2} \times .7854=153.94$ sq. in., the area of the base. Applying formula of Art. 102,

$$
V=\frac{A h}{3}=\frac{153.94 \times 18}{8}=923.64 \mathrm{cu} . \text { in., the volume. Ans. }
$$

103. It has been stated that the volume of a cone or a pyramid is equal to one-third the product of the area of the base multiplied by the altitude. Similarly, the volume of anv solid whose base is a plane figure and which tapers to e
point like a cone or a pyramid is equal to one-third of the product of its base and altitude.

Example.-Find the volume of an elliptical cone, whose base is an ellipse with diameters 8 inches and 6 inches, and the altitude is 7.5 inches.

Solution. - The area of the ellipse at the base is $3.1416 \times 4 \times 3$ The volume is equal to one-third the product of the area of the base and altitude; that is,

$$
V=\frac{1}{3} \times 3.1416 \times 4 \times 3 \times 7.5=94.248
$$

Hence, the volume is 94.248 cu . in. Ans.

EXAMPLES FOR PRACTICE

1. Find the volume of a triangular pyramid of which the altitude is 4 inches and the base is an equilateral triangle having each side 3 inches long.

Ans. 5.2 cu . in.
2. Find the weight of a steel bar 16 feet long and 2 inches in diameter, the weight of steel being taken as .28 pound per cubic inch.

Ans. 168.89 lb.
3. What is the entire area of a hexagonal prism 12 inches long, each side of the base being 1 inch long? Ans. 77.196 sq. in.
4. (a) Find the convex area of a cone whose altitude is 12 inches, and the circumference of whose base is 31.416 inches. (b) Find the volume of the cone.

Ans. $\left\{\begin{array}{l}(a) \\ 204.2 \text { sq. in. } \\ (b) \\ 314.16 \text { cu. in }\end{array}\right.$

THE FRUSTUM OF A PYRAMID OR A CONE
104. If a pyramid is cut by a plane parallel to the base. as in Fig. 56, so as to form two parts, the lower part is called a frustum of the pyramid.
105. If a cone is cut in a similar manner, as in Fig. 57, the lower part is called a frustum of the cone.
106. The upper end of a frustum of a pyramid or cone is called the upper base, and the lower end the lower base. The altitude

Fig. 56 of a frustum is the perpendicular distance between the bases.
107. To find the convex area of a frustum of a regular pyramid or of a cone:

Rule. -The convex area of a frustum of a regular pyramid or of a cone equals one-half the sum of the perimeters of its bases multiplied by the slant height of the frustum.

Let $p=$ perimeter of lower base; $p^{\prime}=$ perimeter of upper base;
$s=$ slant height;
$c=$ convex area.
Fig. 57

$$
c=\left(\frac{p+p^{\prime}}{2}\right) s
$$

Example 1.-Given the frustum of a triangular pyramid in which each side of the lower base measures 10 inches, each side of the upper base measures 6 inches, and whose slant height is 9 inches; find the convex area.

Solution.- $10 \mathrm{in} . \times 3=30 \mathrm{in}$., the perimeter of the lower base. $6 \mathrm{in} . \times 3=18 \mathrm{in}$., the perimeter of the upper base. Applying formula of Art. 107, $c=\left(\frac{p+p^{\prime}}{2}\right) s=\frac{30+18}{2} \times 9=216$ sq. in., the convex area. Ans.

Example 2.-If the diameters of the two bases of a frustum of a cone are 12 inches and 8 inches, respectively, and the slant height is 12 inches, what is the entire area of the frustum?
SoLUTION. $-\frac{(12 \times 3.1416)+(8 \times 3.1416)}{2} \times 12=376.99$ sq. in., the conver area. $\quad 8^{3} \times .7854=50.27$ sq. in.

$$
12^{3} \times .7854=113.1 \mathrm{sq} . \mathrm{in}
$$

$113.1+50.27=163.37 \mathrm{sq} . \mathrm{in}$., the area of the two ends. 376.99 $+163.37=540.36 \mathrm{sq}$. in., the entire area of the frustum. Ans.
108. To find the volume of the frustum of a pyramid or a cone:

Rule.- Add the areas of the upper base, the lower base, and the square root of the product of the areas of the two bases; multiply this sum by one-third of the altitude.

Let $A=$ area of lower base;
$a=$ area of upper base;
$h=$ altitudc;
$V=$ volume.

Then, $\quad V=(A+a+\sqrt{A a}) \frac{h}{3}$
Example 1.-Given a frustum of a hexagonal pyramid in which each edge of the lower base measures 8 inches, and each edge of the upper base measures 5 inches, and whose altitude is 14 inches, what is its volume?

Solution.-A hexagonal pyramid is one whose base is a regular hexagon, as shown in Fig. 58. Hence, applying formula of Art. 68,

$$
A=8^{2} \times 2.5981=166.28 \text { sq. in. }
$$

In a similar way, the area of the upper base is found to be 64.95 sq . in. Then, applying formula of Art. 108,

$$
V=(166.28+64.95+\sqrt{166.28 \times 64.95})^{14}
$$

$=335.15 \times \frac{14}{3}=1,564.03 \mathrm{cu}$. in., the volume. Ans.

Fig. 58

Example 2.-What is the volume of a frustum of a cone whose upper base is 8 inches in diameter, whose lower base is 12 inches in diameter, and whose altitude is 15 inches?

Solution.-The area of the upper base is $8^{2} \times .7854=50.27 \mathrm{sq}$. in. The area of the lower base is $12^{2} \times .7854=113.1$ sq. in., nearly. The square root of their product is $\sqrt{50.27 \times 113.1}=75.4$.

Then,

$$
V=(50.27+113.1+75.4) \frac{15}{3}
$$

$=238.77 \times \frac{15}{3}=1,193.85 \mathrm{cu}$. in., the volume. Ans.

THE WEDGE

109. A wedge, as here considered, is a solid whose base is a rectangle, two of whose oppo-

Fig. 59 site faces are parallel triangles, and two are parallelograms whose intersection is called the edge of the wedge. A wedge may therefore be defined as a triangular prism having one rectangular face, called the base. In Fig. 59, $A B C D$ is the base and $E F$ the edge of the wedge.
110. The altitude of a wedge is the perpendicular distance between the base and the opposite edge.
111. To find the yolume of a wedge:

Rule.- The volume of any wedge is equal to the area of the base multiplied by one-half the altitude.

Let $A=$ area of base;
$h=$ altitude;
$V=$ volume.
Then,

$$
V=\frac{A h}{2}
$$

Example.-What is the volume of a wedge whose base is a rectangle 6 feet long and 4 feet wide, and whose altitude is 10 feet?

Solution. - The area of the base is $4 \times 6=24 \mathrm{sq}$. ft. Applying formula of Art. 111,

$$
V=\frac{24 \times 10}{2}=120 \mathrm{cu} . \mathrm{ft} . \text { Ans. }
$$

EXAMPLES FOR PRACTICE

1. Steel weighs .28 pound per cubic inch; find the weight of a steel wedge whose base is a rectangle 3 inches by $1 \frac{1}{8}$ inches and whose altitude is 8 inches.

Ans. 5.04 lb .
2. Find the volume of the frustum of a square pyramid of which the larger base is 15 inches square, the smaller base, 14 inches square, and the altitude, 3 inches.

Ans. 631 cu . in.
3. A round tank is 8 feet in diameter at the top (inside) and 10 feet at the bottom; if the tank is 12 feet deep, how many gallons will it hold, there being 231 cubic inches in a gallon? Ans. $5,734.2 \mathrm{gal}$.
4. (a) What is the convex area of the frustum of a square pyramid whose altitude is 16 inches, one side of whose lower base is 28 inches long, and of the upper base 10 inches? (b) What is the volume of the frustum.

Ans. $\left\{\begin{array}{l}\text { (a) } 1,395.18 \mathrm{sq} . \text { in. } \\ \text { (6) } \\ 6,208 \mathrm{cu} . \mathrm{in} .\end{array}\right.$

THE BPHERE

Fig. 60
112. A sphere, Fig. 60, is a solid bounded by a uniformly curved surface every point of which is equally distant from a point within, called the center.

The word ball is commonly used instead of sphere.
113. To find the area of the surface of a sphere

Rule. - The area of the surface of a sphere equals the square of the diameter multiplied by π.

Let $S=$ surface;

$$
d=\text { diameter. }
$$

Then,

$$
S=\pi d^{\prime}
$$

Example.-What is the area of the surface of a sphere whose diameter is 14 inches?

Solution.-Applying formula of Art. 113, $S=3.1416 \times 14^{\circ}$ $=3.1416 \times 14 \times 14=615.75 \mathrm{sq}$. in., the area. Ans.
114. To find the volume of a sphere:

Rule. - The volume of a sphere equals the cube of the diameter multiplied by $\frac{\pi}{6}$.

Let $V=$ volume;
$d=$ diameter.
Then,

$$
V=\frac{\pi}{6} d^{3}=.5236 d^{3}
$$

Example.-What is the weight of a lead cannon ball 12 inches in diameter, a cubic inch of lead weighing 41 pound?

Solution.-Applying formula of Art. 114, $V=.5236 \times 12 \times 12$ $\times 12=904.78 \mathrm{cu}$. in., the volume of the ball.

$$
904.78 \times .41=370.96 \mathrm{lb} . \quad \text { Ans. }
$$

The volume of a spherical shell, or hollow sphere, is equal to the difference in volume between two spheres having, respectively, the outer and the inner diameter of the shell.
115. To find the diameter of a sphere of known volume:

Rule. - Divide the volume by .5236 and extract the cube root of the quotient. The result is the diameter.

$$
d=\sqrt[3]{\frac{V}{.5236}}=1.2407 \sqrt[3]{V}
$$

Example.-The volume of a sphere is 96.1 cubic inches; what is its diameter?

Solution.-Applying formula of Art. 115,

$$
d=\sqrt[3]{\frac{V}{5236}}=\sqrt[3]{\frac{96.1}{5236}}=1.2407 \sqrt[3]{96.1}=5.68 \mathrm{in.} \text { Ans. }
$$

116. If any solid is cut into two parts by a plane, the surface of either part exposed by the removal of the other part is called a plane section of the solid.

Plane sections are divided into three classes: longitudinal sections, cross-sections, and right sections. A longitudinal section is any plane section taken lengthwise through the solid. Any other plane section is called a cross-section. If the surface exposed by taking a plane section of a solid is perpendicular to the center line of the solid, the section is called a right section. The surface exposed by any longitudinal section of a cylinder is a rectangle. The surface exposed by a right section of a cube is a square; of a cylinder or a cone, a circle. An oblique cross-section of a cylinder is an ellipse.

THE CYLINDRICAL RING

117. A cylindrical ring is a solid that may be generated by a circle revolving about an external axis in its plane.
118. To find the convex area of a cylindrical ring:

Rule.-Multiply the circumference of an imaginary crosssection on the line AB, Fig. 61, by the length of the center line D.

Example.-A piece of round iron rod is bent into circular form to make a ring for a chain; if the outside diameter of the ring is 12 inches and the inside diameter is 8 inches, what is its convex area?

Solution.-The diameter of the center circle equals one-half the sum of the inside and outside diameters, $\frac{12+8}{2}=10$, and 10×3.1416 $=31.416 \mathrm{in}$., the length of the center line. The radius of the inside circle is 4 in ., of the outside circle 6 in .; therefore, the diameter of the cross-section on the line $A B$ is 2 in . Then, $2 \times 3.1416=6.2832 \mathrm{in}$., and $6.2832 \times 31.416=197.4 \mathrm{sq}$. in., or the convex area. Ans.
119. To find the volume of a cylindrical ring:

Rule. -The volume will be the same as that of a cylinder whose altitude equals the length of the dotted center line D.

Fig. 61, and whose base is the same as a cross-section of the ring on the line $A B$, drawn from the center O. Hence, to find the volume of a cylindrical ring, multiply the area of an imaginary cross-section on a line $A B$, by the length of the center line D.

Example.-What is the volume of a cylindrical ring whose outside diameter is 12 inches, and whose inside diameter is 8 inches?

Fig. 61

Solution.-The diameter of the center circle equals one-half the sum of the inside and outside diameters, $\frac{12+8}{2}=10.10 \times 3.1416$ $=31.416 \mathrm{in}$., the length of the center line. The radius of the outside circle is 6 in., of the inside circle, 4 in .; therefore, the diameter of the cross-section on the line $A B$ is 2 in . Then, $2^{2} \times .7854=3.1416$ sq. in., the area of the imaginary cross-section; and 3.1416×31.416 $=98.7 \mathrm{cu}$. in., the volume. Ans.

EXAMPLES FOR PRACTICE

1. (a) What is the area of the surface of a sphere 30 inches in diameter? (b) What is the volume of the sphere?

Ans. $\left\{\begin{array}{l}(a) \\ (b) \\ \text { (b) } \\ 14,137.2 \\ \text { cu }\end{array}\right.$ in. in.
2. (a) What is the convex area of a cylindrical ring, the outside diameter of the ring being 10 inches and the inside diameter $7 \frac{1}{2}$ inches? (b) What is the volume of the ring?

$$
\text { Ans. }\left\{\begin{array}{l}
(a) \\
107.95 \\
\text { sq. in. } \\
33.734 \\
\text { cu. in. }
\end{array}\right.
$$

3. The volume of a sphere is 606.132 cubic inches; what is the convex area of a cone whose slant beight is 10 inches, and the diamete: of whose base is the same as the diameter of the sphere?

Ans, 164.934 sq. in.

THE PRISMOID

120. A prismoid is a solid whose two bases are any polygons in parallel planes, and whose lateral faces may be divided into triangles and trapezoids by lines joining the vertexes of one base with those of the other. Thus, the solid shown in Fig. 62 is a prismoid; its bases are the pentagon $A B C D E$ and the quadrilateral $F G H I$, which lie in
parallel planes; and its faces are the triangle $G B C$ and the

Fic. 62 trapezoids $G C D H, H D E I, I E A F$. and $F A B G$.
121. The altitude of a prismoid is the perpendicular distance between the bases or parallel faces.
122. The parallel faces or bases of a prismoid are commonly called its end sections.

A prismoid is also defined as a solid having two parallel end faces, and composed of any combination of prisms, wedges, and pyramids, whose common altitude is the perpendicular distance between the parallel faces.
123. The middle section of a prismoid is the polygon formed by a plane, parallel to the bases, and cutting the prismoid at equal distances from the two bases or end sections. Thus, polygon $P Q R S$ is the middle section of the prismoid shown in Fig. 63.

124. Any dimension of the middle section of a prismoid may be taken equal to one-half the sum of the corresponding dimensions of the two end sections or bases. Thus, in Fig. 63, $P Q=\frac{1}{2}(A B+F G), Q R=\frac{1}{3} B C, R S=\frac{1}{2}(G H+C D)$, and $S P=\frac{1}{2}(H F+D A)$.
125. The area of the middle section of a prismoid may be measured directly, or calculated from its dimensions as determined from the dimensions of the end sections. It is not, in general, equal to one-half the sum of the areas of the bases.

The area of the middle section of a prism is the same as the area of either base; the area of the middle section of a wedge is equal to one-half the area of the base; the area of the middle section of a pyramid is equal ts one-fourth the area of the base.
126. To find the volume of a prismoid:

Rule.-Multiply the sum of the areas of the two end sections plus four times the area of the middle section by one-sixth the altitude.

Let $A=$ area of one base or end section;
$A^{\prime}=$ area of opposite base or end section;
$M=$ area of middle section;
$h=$ altitude;
$V=$ volume of prismoid.
Then,

$$
V=\frac{h}{6}\left(A+A^{\prime}+4 M\right)
$$

This formula for finding the volume of a prismoid is known as the prismoidal formula. It is theoretically exact for determining the volumes of those solids to which it applies.

The derivation of this formula is as follows:
A prismoid can always be divided into elementary parts that will be prisms, wedges, and pyramids. From formula of Art. 96, the volume of a prism is $V=A h$; from formula of Art. 111, the volume of a wedge is $V=\frac{A h}{2}$; and from formula of Art. 102, the volume of a pyramid is $V=\frac{A h}{3}$. If these expressions are reduced to a common denominator, there will result,

$$
\begin{equation*}
\text { For a prism, } \quad V=\frac{6 A h}{6} \tag{1}
\end{equation*}
$$

For a wedge, $\quad V=\frac{3 A h}{6}$

$$
\begin{equation*}
\text { For a pyramid, } \quad V=\frac{2 A h}{6} \tag{2}
\end{equation*}
$$

Since any prism is of uniform cross-section throughout its length, every section will have the same area A, and equation (1) may be written

$$
V=\frac{6 A h}{6}=\frac{h}{6}\left(A+A^{\prime}+4 M\right)
$$

For a wedge, evidently $A^{\prime}=0$, and $M=1 A$. Hence, equation (2) may be written

$$
V=\frac{3 A h}{6}=\frac{h}{6}(A+0+2 A)=\frac{h}{6}\left(A+A^{\prime}+4 M\right)
$$

For a pyramid, $A^{\prime}=0$, and $M=\frac{1}{\frac{1}{2}} A$. Hence, equation (3) may be written

$$
V=\frac{2 A h}{6}=\frac{h}{6}(A+0+A)=\frac{h}{6}\left(A+A^{\prime}+4 M\right)
$$

Each of these formulas is the same as the formula given in this article; which shows that the latter formula applies correctly to the volume of a prism, pyramid, or wedge, and since it applies to each, it applies also to their sum, or the volume of a prismoid.

Example.-Find the volume of the prismoid shown in Fig. 64, whose altitude is 14 inches.

Solution.-Let $P Q R$ be the middle section. Then,

Fic. 64

$$
\begin{aligned}
P Q= & \frac{1}{3}(A B+D E)=\frac{1}{2}(13 \\
& +4)=8.5 \mathrm{in} . \\
Q R= & \frac{1}{3}(B C+E F)=\frac{1}{1}(37 \\
& +13)=25 \mathrm{in} . \\
R P= & \frac{1}{1}(A C+D F)=1(40 \\
& +15)=27.5 \mathrm{in} .
\end{aligned}
$$

The areas of the triangles are calculated by formula of Art. 47, which gives the area of $A B C=240 \mathrm{sq}$. in., area of $D E F=24$ sq. in., and area of $P Q R=105.2$ sq. in., nearly. Hence,

$$
V=\frac{14}{6} \times(240+24+4 \times 105.2)=1,597.9 \mathrm{cu} . \text { in., nearly. Ans. }
$$

127. A familiar example of a prismoid is a railway cutting where the roadway is a horizontal plane, the side slopes are inclined planes, and the original surface of the ground is more or less inclined and irregular.

For calculating the volume of cuts and fills the prismoidal formula, though theoretically exact, gives results that are only approximate, on account of the inequalities of the surface of the ground. The nearer to each other the crosssections are taken, the more accurate will be the result.

Example 1.-Find, by the prismoidal formula, the volume of the frustum of a square pyramid of which the larger base is 2.5 feet square, the smaller base is 1 foot square, and the altitude is 16 feet.

Solution.-The area of the larger base is $2.5 \times 2.5=6.25 \mathrm{sq}$. ft .; the area of the smaller base is $1 \times 1=1 \mathrm{sq}$. ft . The middle section is a square whose side is one-half the sum of the side of the upper and lower base; that is, $\frac{1}{3} \times(2.5+1)=1.75 \mathrm{ft}$. The area of the middle section is $1.75^{2}=3.0625 \mathrm{sq}$. ft. Applying formula of Art. 126, the volume of the frustum is

$$
t \times 16 \times(6.25+1+4 \times 3.0625)=52 \mathrm{cu} . \mathrm{ft} . \text { Ans. }
$$

Example 2.-In a railway cutting 200 feet long, the following are the areas, in square feet, of the cross-sections taken every 50 feet, namely: $2,700,2,619,2,556,2,484,2,610$. What is its volume?

Solution. -The volume between the first and the third cross-section is, by formula of Art. 126,

$$
V=\frac{100}{6}(2,700+2,556+4 \times 2,619)=262,200 \mathrm{cu} . \mathrm{ft} .
$$

The volume between the third and the fifth section is

$$
V=\frac{100}{6}(2,556+2,610+4 \times 2,484)=251,700 \mathrm{cu} . \mathrm{ft} .
$$

The volume of the cutting is the sum of the volumes of the two prismoids, which is $513,900 \mathrm{cu} . \mathrm{ft} .=19,033 \mathrm{cu} . \mathrm{yd}$. Ans.
128. Average End Areas. - In practice, the volume of cuts and fills is often calculated by what is known as the method by average end areas, or simply as the end area method. By this method, the volume of the solid is found by multiplying one-half the sum of the two end areas by the distance between the two sections. Thus, let

$$
\begin{aligned}
A & =\text { area of one cross-section; } \\
A^{\prime} & =\text { area of next cross-section; } \\
h & =\text { perpendicular distance between sections; } \\
V & =\text { volume. }
\end{aligned}
$$

Then,

$$
V=\frac{h}{2}\left(A+A^{\prime}\right)
$$

Results obtained by this formula are approximate and slightly larger than those given by the prismoidal formula. On account of its simplicity, the average end area formula is much used in practical earth-work calculations. The inequalities of the surface of the ground make it impossible to find the exact volume of a cut or fill, however accurate may be the formula applied.

Example. - The areas of two cross-sections of a fill 50 feet apart are 2,700 and 2,619 square feet respectively; find the volume of the section, in cubic yards.

Solution.-In this case, $A=2,700 ; A^{\prime}=2,619$; and $h=50$; then

$$
V=\frac{50}{2}(2,700+2,619)=132,975
$$

Hence, the volume is $132,975 \mathrm{cu} . \mathrm{ft} .=4,925 \mathrm{cu} . \mathrm{yd}$. Ans.

EXAMPLES FOR PRACTICE

1. Find the volume of a right prismoid whose bases are rectangles that measure 10 inches by 8 inches and 8 inches by 6 inches, and whose height is 40 inches.

Ans. 2,533.3 cu. in.
2. A railway cutting is 800 feet in length; the areas, in square yards, of cross-sections taken every 100 feet are: 237, 220, 204, 187, 171, 186, 204, 210, 220. Find the number of cubic yards in the cutting: (a) by the prismoidal formula; (b) by average end areas.

$$
\text { Ans. }\left\{\begin{array}{l}
(a) \\
(b) \\
b 3,633 \\
53,683 \mathrm{cu} . \\
\mathrm{cu} . \\
\mathrm{yd} .
\end{array}\right.
$$

3. Find, by the prismoidal formula, the volume of a frustum of a hexagonal pyramid; each side of the lower base being 12 inches; of the upper base, 8 inches; and the altitude being 12 inches.

Ans. 3,159.3 cu. in.
4. Find, by the prismoidal formula, the volume of a wedge whose base is a rectangle 15 feet in length and 9 feet in width, and whose altitude is 12 feet.

Ans. $810 \mathrm{cu} . \mathrm{ft}$.

PLANE TRIGONOMETRY

(PART 1)

THE TRIGONOMETRIC FUNCTIONS

DEFINITIONS

1. Trigonometric Functions and Trigonometry Defined.-Let A, Fig. 1, be any acute angle; $A M$ and $A N$, its sides; $B C$, a perpendicular drawn to the side $A N$ from any point on the side $A M$; and $B^{\prime} C^{\prime}$, a perpendicular drawn to the side $A M$ from any point on the side $A N$. In the right triangle $A B C$, one of the vertexes of which is the vertex of the angle A, the hypotenuse $A B$ will be referred to as the hypotenuse; the perpendicular $B C$, opposite the vertex of the
 angle A, as the side opposite; and the leg $A C$, containing the vertex of the angle A, as the side adjacent. Likewise, in the right triangle $A B^{\prime} C^{\prime}$, the hypotenuse is $A B^{\prime}$; the side opposite is $B^{\prime} C^{\prime}$; and the side adjacent, or the leg containing the vertex of the angle A, is $A C^{\prime}$. It should be borne in mind that these terms are used in connection with, or with reference to, the angle A.

The two right triangles $A B C$ and $A B^{\prime} C^{\prime}$, having the acute angle A in common, are similar. Therefore,

$$
\frac{A B}{A C}=\frac{A B^{\prime}}{A C^{\prime}}, \quad \frac{B C}{A B}=\frac{B^{\prime} C^{\prime}}{A B^{\prime}}, \quad \frac{B C}{A C}=\frac{B^{\prime} C^{\prime}}{A C^{\prime}}
$$

It will be observed that, from whichever side the perpendicular is drawn, and whatever the point from which it is drawn, the ratio of the hypotenuse to the side adjacent
remains unchanged, or is constant. The same is true of the ratio of the side opposite to the side adjacent, and, in general, of the ratio of any two of the three lines-hypotenuse, side adjacent, and side opposite. Evidently, these ratios are different for different angles. Thus, if A is 45°, both acute angles B and B^{\prime} are also 45°; the triangles $A B C$ and $A B^{\prime} C$ are isosceles; and therefore

$$
\frac{B C}{A C}=\frac{B^{\prime} C^{\prime}}{A C^{\prime}}=1
$$

If A is greater than $45^{\circ}, B C$ is greater than $A C$, and the ratio $\frac{B C}{A C}$, having its numerator greater than its denominator, is greater than 1.

Confining ourselves to the ratio $\frac{B C}{A C}$ of the side opposite to the side adjacent, it is seen that the value of this ratio depends on the magnitude of the angle, and may, therefore,

Fig. 2 be used for the determination of the angle. Thus, it has just been shown that when the angle is 45° the ratio is equal to 1 ; hence, if in the solution of a problem it is found that the two legs of a right triangle are equal, or that their ratio is 1 , it can be at once concluded that each of the acute angles is 45°.

Consider now an angle A, Fig. 2, of 30°. The right triangle $A B C$ having been constructed, $B C$ is the side opposite and $A C$ the side adjacent. If H is the middle point of the hypotenuse, the line $H C$ is equal to $A H$, or $\frac{A B}{2}$; for, if a semicircle is described on $A B$ as a diameter, with $H A$ as a radius, that semicircle must pass through C, since the angle $A C B$ is a right angle. Now, $H C$ being equal to $H B$, the angle $H C B$ is equal to B, or 60°; and, as the sum of the three angles of the triangle $B H C$ is 180°, the angle $B H C$ must be 60°. The triangle $H B C$ being equiangular, it is also equilateral, and therefore $B C=B H=\frac{A B}{2}$, and
the ratio of the side opposite to the hypotenuse is $\frac{B C}{A B}$ $=\frac{\frac{1}{2} A B}{A B}=\frac{1}{2}$. Suppose, now, that in dealing with a right triangle the hypotenuse is found, by measurement, to be 1,500 feet and one of the sides 750 feet. Since the ratio of 750 to 1,500 is $\frac{1}{2}$, we at once conclude that the angle opposite the 750 -foot side is 30°, and the other angle of the triangle, 60°.

These illustrations give a general idea of the practical value and use of the ratios under consideration. These ratios are determined for each angle, by methods that will be again referred to further on, and collected together in a table, from which the angle corresponding to any given ratio can be determined. Thus, if in a certain angle the ratio of the opposite side to the hypotenuse is $\frac{1}{2}$, this ratio is looked for in the table, where it is found as that belonging to 30°. In this manner, the value of the angle is determined from the ratio in question, that ratio being obtained from the measured lengths of certain lines.
2. The ratios considered in the preceding article are called trigonometric functions of the angle A. In the

Fig. 3 triangle $A B C$, Fig. 3, two ratios are obtained by dividing any of three sides by each of the other two. Hence, there are six trigonometric functions of the angle A. This is true of any angle, since A is here used to represent any angle whatever. These functions have very important and useful properties, which make them exceedingly valuable for the solution of geometrical problems by computation.
3. Trigonometry is that branch of mathematics that treats of the properties of trigonometric functions and of their application to the solution of triangles.

I L T $36 \mathrm{~F}-8$
4. The sine and the Tangent.-Two of the most important of the trigonometric functions are the ratio of the side opposite to the hypotenuse, and that of the side opposite to the side adjacent; that is, $\frac{a}{c}$ and $\frac{a}{b}$, Fig. 3. They are called, respectively, the sine of A and the tangent of A. The words sine and tangent are abbreviated to \sin and tan, respectively, and the expressions $\sin A, \tan A$, are for brevity read sine A, tangent A, instead of sine of A, and tangent of A. We have, then,

$$
\begin{align*}
& \sin A=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{a}{c} \tag{1}\\
& \tan A=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{a}{b} \tag{2}
\end{align*}
$$

If these formulas are fixed in the mind, little difficulty will be experienced in remembering the others that will be given. It should be noticed that the side opposite is the numerator in both ratios. The occurrence of the letter a in both the words adjacent and tangent will help one to remember which of the two fractions represents the tangent and which the sine.

Fig. 5

Example 1.-In the right triangle $A B C$, Fig. 4, the lengths of the sides are shown; find the sine and the tangent of A.

Solution. - In this case, the hypotenuse $A B=10$; the side adjacent, $A C=8$; side opposite, $B C=6$. These values in formulas 1 and 2 give

$$
\begin{aligned}
& \sin A=\frac{6}{10}=.6 . \text { Ans. } \\
& \tan A=\frac{6}{8}=.75 . \text { Ans. }
\end{aligned}
$$

Example 2.-In the right triangle $A B C$, Fig. 5, the hypotenuse is 12 chains, and the side $A C$ is 9 chains; find: (a) the sine and the tangent of $A ;(b)$ the sine and the tangent of B.

SoLution. - (a) For the angle A, we have
hypotenuse $A B=12$
side adjacent, $A C=9$
side opposite, $B C=\sqrt{A B^{2}-\bar{A} C^{3}}=\sqrt{12^{2}-9^{8}}=7.9372$
Substituting in formulas 1 and 2,

$$
\begin{aligned}
& \sin A=\frac{B C}{A B}=\frac{7.9372}{12}=.66143 . \text { Ans. } \\
& \tan A=\frac{B C}{A C}=\frac{7.9372}{9}=.88191 . \text { Ans. }
\end{aligned}
$$

(b) For angle B, we have

$$
\text { hypotenuse } B A=12
$$

side opposite, $A C=9$
side adjacent, $B C=7.9372$
Therefore, $\quad \sin B=\frac{A C}{A B}=\frac{9}{12}=.75$. Ans.

$$
\tan B=\frac{A C}{B C}=\frac{9}{7.9372}=1.1339 . \text { Ans. }
$$

EXAMPLES FOR PRACTICE

1. In a right triangle $A B C$ (make a sketch of this triangle), A and B are the two acute angles; the hypotenuse $=40$ feet; side opposite $B=15$ feet; find: $(a) \sin A$ and $\tan A ;(b) \sin B$ and $\tan B$.

$$
\text { Ans. }\left\{\begin{array}{l}
(a) \sin A=.92703, \tan A=2.47207 \\
(b) \sin B=.37500, \tan B=.40452
\end{array}\right.
$$

2. From a point on one side of an angle M, a perpendicular is drawn on the other side; it is found that this perpendicular is 12.5 inches long, and that it meets the other side at a distance of 7.75 inches from the vertex; find the sine and the tangent of the angle M. (Make a sketch of this triangle.)

$$
\text { Ans. }\left\{\begin{array}{l}
\sin M=.84988 \\
\tan M=1.61290
\end{array}\right.
$$

3. From a point on one side of an angle A distant 10 inches from the vertex, a perpendicular is drawn on the other side; the distance from the vertex to the foot of the perpendicular is 6 inches; find $\sin A$ and $\tan A$.

$$
\text { Ans. }\left\{\begin{array}{l}
\sin A=.80000 \\
\tan A=1.33333
\end{array}\right.
$$

4. The two acute angles of a right triangle are P and Q; the side opposite P is 150 feet, and that opposite Q is 225 feet; find: (a) $\sin P$ and $\tan P ;(b) \sin Q$ and $\tan Q$.

$$
\text { Ans. }\left\{\begin{array}{l}
\text { (a) } \sin P=.55469, \tan P=.66667 \\
(b) \sin Q=.83204, \tan Q=1.50000
\end{array}\right.
$$

5. The Cosine and Cotangent.-The cosine and cotangent of an angle are, respectively, the sine and the tangent of the complement of the angle. The words cosine and cotangent are abbreviated to cos and cot, respectively, and the expressions $\cos A, \cot A$ are read cosine A, cotangent A. Denoting any angle by A, its complement is $90^{\circ}-A$; therefore, according to the definitions just given,

$$
\begin{align*}
& \cos A=\sin \left(90^{\circ}-A\right) \tag{1}\\
& \cot A=\tan \left(90^{\circ}-A\right) \tag{2}
\end{align*}
$$

Since the complement of $90^{\circ}-A$ is A, it also follows that

$$
\begin{align*}
& \cos \left(90^{\circ}-A\right)=\sin A \tag{3}\\
& \cot \left(90^{\circ}-A\right)=\tan A \tag{4}
\end{align*}
$$

With reference to the angle B. Fig. $3, B C$ is the side adjacent and $A C$ the side opposite. Therefore, by formulas 1 and 2, Art. 4,

$$
\sin B=\frac{b}{c}, \tan B=\frac{b}{a}
$$

and therefore, since A is the complement of B,

$$
\begin{aligned}
& \cos A=\sin B=\frac{b}{c} \\
& \cot A=\tan B=\frac{b}{a}
\end{aligned}
$$

or, again referring to the angle A, which is the angle under consideration,

$$
\begin{align*}
& \cos A=\frac{\text { side adjacent }}{\text { hypotenuse }} \tag{5}\\
& \cot A=\frac{\text { side adjacent }}{\text { side opposite }} \tag{6}
\end{align*}
$$

The student will, after some practice, become familiar with these formulas. Whenever he forgets them, he should refer to the definitions of the cosine and cotangent, which will at once enable him to write down the formulas, pro vided that he remembers those for the sine and the tangent.
6. The secant and Cosecant. -The secant of an angle is the reciprocal of the cosine of the angle; that is. 1 divided by the cosine.

The word secant is abbreviated to sec. According to the definition, we have

$$
\begin{equation*}
\sec A=\frac{1}{\cos A} \tag{1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\cos A=\frac{1}{\sec A} \tag{2}
\end{equation*}
$$

7. The cosecant of an angle is the secant of the complement of the angle. The abbreviations cosec and csc are used for cosecant. According to the definition, we have

$$
\begin{equation*}
\csc A=\sec \left(90^{\circ}-A\right) \tag{1}
\end{equation*}
$$

Since A is the complement of $90^{\circ}-A$, we have also

$$
\begin{equation*}
\csc \left(90^{\circ}-A\right)=\sec A \tag{2}
\end{equation*}
$$

By means of formula 1, Art. 6, this relation may be written

$$
\csc A=\sec \left(90^{\circ}-A\right)=\frac{1}{\cos \left(90^{\circ}-A\right)}
$$

or, since $\cos \left(90^{\circ}-A\right)=\sin A$ (formula 3, Art. 5),

$$
\begin{equation*}
\csc A=\frac{1}{\sin A} \tag{3}
\end{equation*}
$$

Therefore, the cosecant of an angle may also be defined as the reciprocal of the sine. Notice very particularly that

$$
\begin{aligned}
& \text { secant }=\text { reciprocal of cosine } \\
& \text { cosecant }=\text { reciprocal of sine }
\end{aligned}
$$

From formula 3 above follows

$$
\begin{equation*}
\sin A=\frac{1}{\csc A} \tag{4}
\end{equation*}
$$

8. Cofunctions and Complementary Functions. The functions cosine, cotangent, and cosecant are sometimes called cofunctions of the angle considered; while the sine, tangent, and secant are called fundamental functions. As has been explained, the cofunctions of an angle are the corresponding fundamental functions of the complement of the angle. Thus, the cosine of .4 is the sine of $90^{\circ}-A$; the cotangent of A is the tangent of $90^{\circ}-A$; etc.

A fundamental function and its corresponding cofunction are called complementary functions of each other. The sine, for example, is the complementary function of the cosine; and the cosine is the complementary function of the sine.

Example 1.-Find: (a) the cosine of the angle A, Fig. 5 ; (b) the cotangent; (c) the secant; (d) the cosecant.
Solution.-(a) The cosine of A is equal to the sine of B, or

$$
\frac{A C}{A B}=\frac{9}{12}=.75 . \text { Ans. }
$$

(b) The cotangent of A is equal to the tangent of B, or (see example 2, Art. 4)

$$
\frac{A C}{B C}=\frac{9}{7.93 \overline{7} 2}=1.1339 . \text { Ans. }
$$

(c) The secant of A is 1 divided by $\cos A$, or

$$
1 \div \frac{9}{12}=\frac{12}{9}=1.33333 . \text { Ans. }
$$

(d) The cosecant of A is 1 divided by $\sin A$, or

$$
1 \div \frac{B C}{A} \frac{A B}{B C}=\frac{12}{7.9372}=1.51187 . \text { Ans. }
$$

Example 2.-Find the functions of 30°.

Fig. 6

Solution.-Let the angle MA P, Fig. 6, be 30°. Draw $B C$ perpendicular to $A P$ produce it to B^{\prime}, making $C B^{\prime}=C B$, and draw $A B^{\prime}$. The triangle $B A B^{\prime}$ thus formed is isosceles, and angle $C A B^{\prime}$ $=C A B=30^{\circ}$. Therefore, $B A B^{\prime}=30^{\circ}$ $+30^{\circ}=60^{\circ}$. Also, angle $B=90^{\circ}-30^{\circ}$ $=60^{\circ}$; and angle $B^{\prime}=$ angle $B=60^{\circ}$. As the three angles of $A B B^{\prime}$ are equal, the sides are also equal, and $c=B B^{\prime}=2 a$. Now, the figure gives,

$$
b=\sqrt{c^{3}-a^{2}}=\sqrt{(2 a)^{3}-a^{2}}=\sqrt{3 a^{2}}=a \sqrt{3}
$$

Bearing these values in mind, we have

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{a}{c}=\frac{a}{2 a}=\frac{1}{2} . \text { Ans. } \\
& \tan 30^{\circ}=\frac{a}{b}=\frac{a}{a \sqrt{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3} . \text { Ans. } \\
& \cos 30^{\circ}=\frac{b}{c}=\frac{a \sqrt{3}}{2 a}=\frac{\sqrt{3}}{2} . \text { Ans. }
\end{aligned}
$$

$\cot 30^{\circ}=\frac{b}{a}=\frac{a \sqrt{3}}{a}=\sqrt{3} . \quad$ Ans.
$\sec 30^{\circ}=\frac{1}{\cos 30^{\circ}}=1 \div \frac{\sqrt{3}}{2}=\frac{2}{\sqrt{3}}=\frac{2}{3} \sqrt{3}$. Ans.
$\csc 30^{\circ}=\frac{1}{\sin 30^{\circ}}=1 \div \frac{1}{2}=2$. Ans.
Note.-It is only in a few cases that the values of the trigonometric functions of an angle can be derived by elementary principles, as above. The general method for determining the functions of any angle is comparatively complicated, and is beyond the scope of this work. The trigonometric functions of any angle can be obtained from a table, as will be presently explained.

EXAMPLES FOR PRACTICE

1. The acute angles of a right triangle are B and C; the side opposite B is 1,200 feet; and that opposite C is 1,500 feet; find the fundamental functions of B, and from them the cofunctions of C.

$$
\text { Ans. }\left\{\begin{array}{l}
\sin B=.62471, \tan B=.8, \sec B=1.2806 \\
\cos C=.62471, \cot C=.8, \csc C=1.2806
\end{array}\right.
$$

2. From example 2, Art. 8, derive the functions of 60° $i=90^{\circ}-30^{\circ}$).

$$
\text { Ans. }\left\{\begin{array}{l}
\sin 60^{\circ}=\frac{\sqrt{3}}{2}, \tan 60^{\circ}=\sqrt{3}, \cos 60^{\circ}=\frac{1}{2} \\
\cot 60^{\circ}=\frac{\sqrt{3}}{3}, \sec 60^{\circ}=2, \csc 60^{\circ}=\frac{2}{3} \sqrt{3}
\end{array}\right.
$$

3. Given $\sin A=\frac{2}{3}$ and $\cos B=\frac{4}{5}$, find $\csc A$ and $\sec B$.

$$
\text { Ans. }\left\{\begin{array}{l}
\csc A=1.5 \\
\sec B=1.25
\end{array}\right.
$$

4. Find the trigonometric functions of 45°. (Notice that here the side opposite is equal to the side adjacent. Denote the hypotenuse by c, and express the other two sides in terms of c.)

$$
\text { Ans. }\left\{\begin{array}{l}
\sin 45^{\circ}=\cos 45^{\circ}=1 \sqrt{2} \\
\tan 45^{\circ}=\cot 45^{\circ}=1 \\
\sec 45^{\circ}=\csc 45^{\circ}=\sqrt{2}
\end{array}\right.
$$

9. The Versed Sine and Coversed Sine. -The versed sine (vers) of an angle is 1 minus the cosine; and the coversed sine (covers) is 1 minus the sine.

$$
\begin{align*}
\text { vers } A & =1-\cos A \tag{1}\\
\text { covers } A & =1-\sin A \tag{2}
\end{align*}
$$

These two functions are not much used, except in railroad work.
10. Summing Up. - The foregoing definitions are

Fig. 7 summed up in the table given below, which contains the expressions for the functions of the angle A, Fig. 7, in terms of the hypotenuse c, the side opposite, a, and the side adjacent, b.

TABLE I

Function	\sin	\tan	\cos	\cot	\sec	\csc	vers	covers
Value . . .	$\frac{a}{c}$	$\frac{a}{b}$	$\frac{b}{c}$	$\frac{b}{a}$	$\frac{c}{b}$	$\frac{c}{a}$	$1-\frac{b}{c}$	$1-\frac{a}{c}$

The ratios $\frac{c}{b}$ and $\frac{c}{a}$ for the secant and cosecant are obtained from the formulas $\sec A=1 \div \cos A=1 \div \frac{b}{c}=\frac{c}{b}$, $\csc A=1 \div \sin A=1 \div \frac{a}{c}=\frac{c}{a}$.
11. Representation of the Trigonometric Functions by Lines.-Let A, Fig. 8, be any angle. From its

vertex O, describe a circle of radius 1 ; or, otherwise, describe any circle and take its radius as unity. This circle intersects
the sides of the angle at B and C. Draw the tangent $C T$, meeting $O B$ produced at T; the radius $O C^{C}$ perpendicular to $O C$; the lines $B P$ and $B P^{\prime}$ perpendicular to $O C$ and $O C^{\prime}$, respectively; and the tangent $C^{\prime} T^{\prime}$, meeting $O B$ produced at T^{\prime}.

Since the angle A is measured by the arc $C B$, the trigonometric functions of the angle are said to be likewise the trigonometric functions of the arc. It is, for instance, immaterial whether we say that 1 is the tangent of an angle of 45° or of an arc of 45°.

In the figure constructed as just explained, the trigonometric functions of the angle A, or of the arc $C B$, may be represented by lines, as marked. For, in the right triangle $O P B$, in which $B P, O P$, and $O B$ are, respectively, the side opposite, the side adjacent, and the hypotenuse, we have

$$
\sin A=\frac{B P}{O B}, \cos A=\frac{O P}{O B}
$$

or, since $O B=1$,

$$
\sin A=\frac{B P}{1}=B P, \cos A=\frac{O P}{1}=O P
$$

In the triangle $O C T$, in which $C T$ and $O C$ are, respectively, the side opposite and the side adjacent, and $O T$ is the hypotenuse,

$$
\begin{aligned}
\tan A & =\frac{C T}{O C}=\frac{C T}{1}=C T \\
\sec A & =\frac{O T}{O C}=\frac{O T}{1}=O T
\end{aligned}
$$

By the same reasoning, it can be shown that $C^{\prime} T^{\prime}$ and $O T^{\prime}$ are, respectively, the tangent and the secant of the angle $C^{\prime} O T^{\prime}$, or the cotangent and the cosecant of A, since $C^{\prime} O T^{\prime}$ is the complement of A.

Let the student verify that, according to the definitions of the versed sine and coversed sine, these functions are represented by $P C$ and $P^{\prime} C^{\prime}$, respectively.

RELATIONS AMONG THE FUNCTIONS OF AN ANGLE

12. Method of Marking a Triangle. - The triangle $A B C$, Fig. 7, has the angles marked by the capital letters A, B, and C and the sides opposite these angles marked by the small letters a, b, and c, respectively. This method of marking a triangle is very useful and convenient, as it points out at once the relative position of the sides and the angles. In a right triangle, the right angle is usually designated by C. In the figures that follow, when only the angles are marked, the sides opposite are taken as marked by the small letters corresponding to the capital letters that mark the angles.
13. Relation Between Tangent and Cotangent. In Fig. 7,

$$
\operatorname{tav} A=\frac{a}{b}, \cot A=\frac{b}{a}
$$

Multiplying these equations together gives
whence,

$$
\begin{aligned}
\tan A \times \cot A & =\frac{a}{b} \times \frac{b}{a}=1 \\
\cot A & =\frac{1}{\tan A} \\
\tan A & =\frac{1}{\cot A}
\end{aligned}
$$

That is, the tangent and cotangent are each the reciprocal of the other. This is a very important relation, and should be committed to memory, together with those given in the two articles following.
14. Tangent and Cotangent in Terms of sine and Cosine. -In Fig. 7,

$$
\sin A=\frac{a}{c}, \cos A=\frac{b}{c}
$$

Dividing these equations member by member gives

$$
\frac{\sin A}{\cos A}=\frac{a}{c} \div \frac{b}{c}=\frac{a}{b}
$$

that is, since $\frac{a}{b}=\tan A$,

$$
\begin{equation*}
\tan A=\frac{\sin A}{\cos A} \tag{1}
\end{equation*}
$$

Also, because the cotangent is the reciprocal of the tangent,

$$
\begin{equation*}
\cot A=\frac{\cos A}{\sin A} \tag{2}
\end{equation*}
$$

15. Relations Between the Squares of Certain Functions.-A power of a trigonometric function is indicated by writing the exponent immediately after the abbreviation used for the function. Thus, the square of the sine of A, or of $\sin A$, is written $\sin ^{2} A$, and read sine square A. Similarly, the cube of $\tan A$ is written $\tan ^{3} A$, and read tangent cube A, etc.

In the right triangle $A B C$, Fig. 7, we have

$$
a^{2}+b^{2}=c^{2}
$$

Dividing both members of this equality by c^{2} gives

$$
\frac{a^{2}}{c^{2}}+\frac{b^{2}}{c_{2}}=1
$$

that is,

$$
\begin{equation*}
\sin ^{2} A+\cos ^{2} A=1 \tag{1}
\end{equation*}
$$

Again, dividing both members of the equation $c^{2}=a^{2}+b^{2}$ by b^{3},

$$
\frac{c^{2}}{b^{2}}=\frac{a^{2}}{b^{3}}+1=1+\frac{a^{3}}{b^{2}}
$$

that is,

$$
\begin{equation*}
\sec ^{2} A=1+\tan ^{2} A \tag{2}
\end{equation*}
$$

Similarly, if both members of the equation $c^{3}=a^{3}+b^{x}$ are divided by a^{2},

$$
\frac{c^{3}}{a^{2}}=1+\frac{b^{3}}{a^{3}}
$$

that is,

$$
\begin{equation*}
\csc ^{3} A=1+\cot ^{3} A \tag{3}
\end{equation*}
$$

16. To Express Any Function in Terms of Any Other Function.-In the triangle $A B C$, Fig. 7, we have

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1}
\end{equation*}
$$

Dividing both members of this equation by c^{2} gives

$$
\begin{equation*}
\frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=1 \tag{2}
\end{equation*}
$$

From these two equations, any of the six ratios $\frac{a}{b}, \frac{a}{c}, \frac{b}{a}, \frac{b}{c}$,
${ }_{a}^{c}{ }_{a}^{c} \frac{c}{b}$ can be found when one of them is given. If, for instance, $\frac{a}{c}$ is given, $\frac{c}{a}$ is obtained by dividing 1 by $\frac{a}{c} ; \frac{b}{c}$, by solving equation (2) for ${ }_{c^{2}}^{c^{3}}$ and taking the square root; ${ }_{b}^{c}$, by taking the reciprocal of the value just found for $\frac{b}{c}$. To find $\frac{a}{b}$, divide both members of equation (1) by b^{2}, which gives

$$
\frac{a^{2}}{b^{2}}+1=\frac{c^{3}}{b^{2}}
$$

whence, multiplying through by $\frac{b^{2}}{c^{2}}$,

$$
\frac{b^{3}}{c^{3}}\left(\frac{a^{3}}{b^{3}}+1\right)=\frac{c^{2}}{b^{3}} \times \frac{b^{3}}{c^{3}}=1
$$

and hence, dividing through by $\frac{a^{3}}{b^{2}}+1$,

$$
\frac{b^{3}}{c^{2}}=\frac{1}{\frac{a^{2}}{b^{2}}+1}
$$

Substituting this value of $\frac{b^{2}}{c^{2}}$ in equation (2) and solving for $\frac{a}{b}$, the latter ratio is obtained in terms of $\frac{a}{c}$.

Table II gives the relation between any two functions of any angle A.
TABLE II
RELATIONS BETWEEN THE FUNCTIONS OF AN ANGLE

In Terms of	$\sin A$	$\cos A$	$\tan A$	$\cot A$	$\sec A$	csc A
$\sin A=$	$\sin A$	$\sqrt{1-\cos ^{\prime} A}$	$\frac{\tan A}{\sqrt{1+\tan ^{2} A}}$	$\frac{1}{\sqrt{1+\cot ^{2} A}}$	$\frac{\sqrt{\sec ^{2} A-1}}{\sec A}$	$\frac{1}{\csc A}$
$\cos A=$	$11-\sin ^{2} A$	$\cos A$	$\frac{1}{\sqrt{1+\tan ^{2} A}}$	$\frac{\cot A}{\sqrt{1+\cot ^{2} A}}$	$\frac{1}{\sec A}$	$\frac{\sqrt{\csc ^{2} A-1}}{\csc A}$
$\tan A=$	$\frac{\sin A}{\sqrt{1-\sin ^{2} A}}$	$\frac{\sqrt{1-\cos ^{2} A}}{\cos A}$	$\tan A$	$\frac{1}{\cot A}$	$\sqrt{\sec ^{2} A-1}$	$\frac{1}{\sqrt{\csc ^{3} A-1}}$
$\cot A=$	$\frac{11-\sin ^{2} A}{\sin A}$	$\frac{\cos A}{\sqrt{1-\cos ^{2} A}}$	$\frac{1}{\tan A}$	$\cot A$	$\frac{1}{\sqrt{\sec ^{3} A-1}}$	$\sqrt{\csc ^{3} A-1}$
$\sec A=$	$\frac{1}{\sqrt{1-\sin ^{2} A}}$	$\frac{1}{\cos A}$	$\sqrt{1+\tan ^{2} A}$	$\frac{\sqrt{1+\cot ^{2} A}}{\cot A}$	$\sec A$	$\frac{\csc A}{\sqrt{\csc ^{3} A-1}}$
$\csc A=$	$\frac{1}{\sin .4}$	$\frac{1}{\sqrt{1-\cos ^{2} A}}$	$\frac{\sqrt{1}+\tan ^{2} A}{\tan A}$	$\sqrt{1+\cot ^{2} A}$	$\frac{\sec A}{\sqrt{\sec ^{2} A-1}}$	$\csc A$

TRIGONOMETRIC TABLES

TABLES OF NATURAL FUNCTIONS

17. To facilitate calculations, tables of the trigonometric functions are used. The tables give values for the sines, cosines, tangents, and cotangents of angles from 0° to 90°. The values of the secant and cosecant are not generally given in tables; they are obtained by dividing 1 by the cosine and the sine, respectively, according to formula 1 , Art. 6, and formula 3, Art. 7.

There are two kinds of trigonometric tables; namely, the lable of natural functions and the table of logarithmic functions. The table of natural functions gives the actual values of the functions, while the table of logarithmic functions gives the logarithms of the functions. It may be remarked that, except in making a table, the values of the functions are never calculated directly because the process is so long and laborious that it would require considerable time to calculate even the value of one function of an angle; nor is there a simple method of calculating the angle corresponding to a given function.

18. To Find the Natural Functions of an Angle Less Than 45° and Containing No Odd seconds. - The required function is found in the double column marked at
the top with the given number of degrees, in the subdivision of that column headed by the name of the given function, and horizontally opposite the number in the left-hand column (marked ') that expresses the number of odd minutes in the angle. When the function considered is a sine or a cosine, it is taken from the table headed Natural Sines and Cosines; when a tangent or cotangent, from the table headed Natural Tangents and Cotangents.

Example.-Find the natural functions of an angle of $37^{\circ} 23^{\prime}$.
Solution.-On page 30 of the table headed Natural Sines and Cosines, the double column headed 37° is found. Looking in the lefthand minute column for 23 (number of odd minutes in the given angle), and glancing along the horizontal row to the right of 23 , the number .60714 is found in the single column marked Sine under 37°; and the number . 79459 is found in the column marked Cosine. Therefore,

$$
\sin 37^{\circ} 23^{\prime}=.60714 . \text { Ans. }
$$

$$
\cos 37^{\circ} 23^{\prime}=.79459 . \text { Ans. }
$$

The tangent and cotangent are taken in a similar manner from the table headed Natural Tangents and Cotangents, page 39. The results are:
$\tan 37^{\circ} 23^{\prime}=.76410$. Ans.
$\cot 37^{\circ} 23^{\prime}=1.30873$. Ans

EXAMPLES FOR PRACTICE

Verify the following values:
(a) $\sin 39^{\circ} 55^{\prime}=.64167 ; \cos 39^{\circ} 55^{\prime}=.76698 ; \tan 39^{\circ} 55^{\prime}=.83662$; $\cot 39^{\circ} 55^{\prime}=1.19528$.
(b) $\tan 16^{\circ} 32^{\prime}=.29685 ; \cos 16^{\circ} 32^{\prime}=.95865 ; \sec 16^{\circ} 32^{\prime}=1.04313$; csc $16^{\circ} 32^{\prime}=3.51407$.
(c) $\cot 43^{\circ} 2^{\prime}=1.07112 ; \csc 43^{\circ} 2^{\prime}=1.46537 ; \tan 43^{\circ} 2^{\prime}=.93360$; $\cos 43^{\circ} 2^{\prime}=.73096$.
19. To Find the Natural Functions of an Angle Greater Than 45° and Containing No Odd Seconds. The required function is found in the double column marked at the bottom with the given number of degrees, in the subdivision of that column having at the bottom the name of the given function, and horizontally opposite the number in the right-hand column (marked ') that expresses the odd minutes in the angle. It will be observed that the number of degrees at the bottom of the pages decrease as the pages increase,
and that the number of minutes in the right-hand column increase from bottom to top.

Example.-Find the functions of $53^{\circ} 43^{\prime}$.
Solution.-The double column marked 53° at the bottom is found on page 30 of Natural Sines and Cosines. Looking along the horizontal row determined by the number 43 in the right-hand minute column, the number .80610 is found in the single column marked Sine at the bottom, and the number .59178 in the single column marked Cosine at the bottom, these two columns forming the double column marked 53° at the bottom. Therefore,

$$
\begin{aligned}
& \sin 53^{\circ} 43^{\prime}=.80610 . \\
& \cos 53^{\circ} 43^{\prime}=.59178 . \text { Ans. }
\end{aligned}
$$

The tangent and cotangent are similarly taken from page 39 of Natural Tangents and Cotangents. The results are:

$$
\begin{aligned}
& \tan 53^{\circ} 43^{\prime}=1.36217 . \quad \text { Ans. } \\
& \cot 53^{\circ} 43^{\prime}=.73413 . \quad \text { Ans. }
\end{aligned}
$$

EXAMPLES FOR PRACTICE

Verify the following values:
(a) $\sin 67^{\circ} 45^{\prime}=.92554 ; \cos 67^{\circ} 45^{\prime}=.37865 ; \tan 67^{\circ} 45^{\prime}=2.44433$; $\cot 67^{\circ} 45^{\prime}=.40911$.
(b) $\cot 74^{\circ} 3^{\prime}=.28580 ; \quad \csc 74^{\circ} 3^{\prime}=1.04004 ; \sin 74^{\circ} 3^{\prime}=.96150$.
(c) $\cos 48^{\circ} 9^{\prime}=.66718 ; \cot 48^{\circ} 9^{\prime}=.89567 ; \csc 48^{\circ} 9^{\prime}=1.34248$.

20. To Find the Natural Functions of an Angle

 Containing Odd Seconds.-The method of solving this problem by means of the table is founded on the following principle, which applies within the limits of approximation with which the table is constructed:If several angles are taken within an interval not greater than 1^{\prime}; that is, so that the difference between the greatest and the smallest shall not exceed 1^{\prime}, the ratio of the difference between any two of these angles to the difference between any other two is the same as the ratio obtained by dividing the difference between the values of any trigonometric function for the first pair of angles, by the difference between the values of the same function for the second pair of angles. For instance, if the angles $43^{\circ} 46^{\prime} 32^{\prime \prime}, 43^{\circ} 46^{\prime}$ $34^{\prime \prime}, 43^{\circ} 46^{\prime} 40^{\prime \prime}$, and $43^{\circ} 47^{\prime}$ are taken between $43^{\circ} 46^{\prime}$ and $43^{\circ} 47^{\prime}$, then
$\frac{43^{\circ} 47^{\prime}-43^{\circ} 46^{\prime} 40^{\prime \prime}}{43^{\circ} 46^{\prime} 34^{\prime \prime}-43^{\circ} 46^{\prime} 32^{\prime \prime}}=\frac{\sin 43^{\circ} 47^{\prime}-\sin 43^{\circ} 46^{\prime} 40^{\prime \prime}}{\sin 43^{\circ} 46^{\prime} 34^{\prime \prime}-\sin 43^{\circ} 46^{\prime} 32^{\prime \prime}}$
In general, if A, B, C, D are any angles within an interval of 1^{\prime}, then

$$
\begin{aligned}
& \frac{A-B}{C-D}=\frac{\sin A-\sin B}{\sin C-\sin D}=\frac{\cos A-\cos B}{\cos C-\cos D} \\
& \quad=\frac{\tan A-\tan B}{\tan C-\tan D}=\cot A-\cot B \\
& \cot C-\cot D
\end{aligned}
$$

Similarly,

$$
\frac{A-B}{B-C}=\frac{\sin A-\sin B}{\sin B-\sin C}=\frac{\cos A-\cos B}{\cos B-\cos C}, \text { etc. }
$$

Let A be the number of degrees and minutes in any angle, and s the number of odd seconds. Then the angle, which will be represented by $A+s^{\prime \prime}$, lies between A and $A+1^{\prime}$ or between A and $A+60^{\prime \prime}$. For instance, if the angle is $25^{\circ} 15^{\prime} 37^{\prime \prime}$, it lies between $25^{\circ} 15^{\prime}$, which is represented by A, and $25^{\circ} 16^{\prime}$, which is $25^{\circ} 15^{\prime}+1^{\prime}$, or $A+1^{\prime}$, or $A+60^{\prime \prime}$. In this case s represents $37^{\prime \prime}$. From the principle stated above we have,

$$
\begin{gathered}
\frac{\left(A+60^{\prime \prime}\right)-A}{\left(A+s^{\prime \prime}\right)-A}=\frac{\sin \left(A+60^{\prime \prime}\right)-\sin A}{\sin \left(A+s^{\prime \prime}\right)-\sin A} \\
\frac{60}{s}=\frac{\sin \left(A+1^{\prime}\right)-\sin A}{\sin \left(A+s^{\prime \prime}\right)-\sin A}
\end{gathered}
$$

whence, solving this equation for $\sin \left(A+s^{\prime \prime}\right)$,

$$
\begin{equation*}
\sin \left(A+s^{\prime \prime}\right)=\sin A+\left[\sin \left(A+1^{\prime}\right)-\sin A\right] \frac{s}{60} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\tan \left(A+s^{\prime \prime}\right)=\tan A+\left[\tan \left(A+1^{\prime}\right)-\tan A\right] \frac{s}{60} \tag{2}
\end{equation*}
$$

For the cosine, we have

$$
\cos \left(A+s^{\prime \prime}\right)=\cos A+\left[\cos \left(A+1^{\prime}\right)-\cos A\right] \frac{s}{60}
$$

but, since the cosine of an angle decreases as the angle increases, $\cos A$ is greater than $\cos \left(A+1^{\prime}\right)$, and therefore it is better to write the formula thus,

$$
\begin{align*}
& \cos \left(A+s^{\prime \prime}\right)=\cos A-\left[\cos A-\cos \left(A+1^{\prime}\right)\right] \frac{s}{60} \tag{3}\\
& \text { Similarly, }
\end{align*}
$$

$$
\begin{equation*}
\cot \left(A+s^{\prime \prime}\right)=\cot A-\left[\cot A-\cot \left(A+1^{\prime}\right)\right] \frac{s}{60} \tag{4}
\end{equation*}
$$

I L T $36 \mathrm{~F}-9$

The functions of A and $A+1^{\prime}$ can be readily taken from the table, as explained in the preceding articles, and from them the functions of $A+s^{\prime \prime}$ are determined by the formulas just given, or by the following rule, which states in words what the formulas express in symbols:

Rule.-Find, in the table, the sine, cosine, tangent, or cotangent corresponding to the degrees and minutes in the angle.

For the seconds, find the difference between this value and the value of the sine, cosine, tangent, or cotangent of an angle 1 minute greater; multiply this difference by a fraction whose numerator is the number of seconds in the given angle and whose denominator is 60 .

If the sine or tangent is sought, add this correction to the value first found; if the cosine or cotangent is sought, subtract the correction.

Example.-Find: (a) the sine of $56^{\circ} 43^{\prime} 17^{\prime \prime}$; (b) the cosine; (c) the tangent; and (d) the cotangent.

Solution.-(a) Here $A=56^{\circ} 43^{\prime}, s=17, A+1^{\prime}=56^{\circ} 44^{\prime}$.

$$
\begin{aligned}
\sin \left(A+1^{\prime}\right)= & \sin 56^{\circ} 44^{\prime}= \\
\sin A=\sin 56^{\circ} 43^{\prime}= & .83613 \\
\text { Difference }= & .00016 \\
& \times \frac{17}{60} \\
& \frac{.00005, \text { nearly }}{}
\end{aligned}
$$

Adding this product to $\sin A$, we have

$$
\begin{aligned}
\sin 56^{\circ} 43^{\prime} 17^{\prime \prime}=.83597+.00005= & .83602 . \quad \text { Ans. } \\
\cos A=\cos 56^{\circ} 43^{\prime}= & .54878 \\
\cos \left(A+1^{\prime}\right)=\cos 56^{\circ} 44^{\prime}= & .54854 \\
\text { Difference }= & .00024 \\
& \times \frac{\times \frac{17}{60}}{} \\
& .00007, \text { nearly }
\end{aligned}
$$

Subtracting this product from $\cos A$, we have

$$
\begin{align*}
\cos 56^{\circ} 43^{\prime} 17^{\prime \prime}=.54878-.00007= & .54871 . \text { Ans. } \\
\tan \left(A+1^{\prime}\right)=\tan 56^{\circ} 44^{\prime}= & 1.52429 \tag{c}\\
\tan A=\tan 56^{\circ} 43^{\prime}= & 1.52332 \\
\text { Difference }= & .00097 \\
& \frac{\times \frac{17}{60}}{.00027, \text { nearly }}
\end{align*}
$$

Adding this product to $\tan A$, we have $\tan 56^{\circ} 43^{\prime} 17^{\prime \prime}=1.52332+.00027=1.52359$. Aus.
$\cot A=\cot 56^{\circ} 43^{\prime}=.65646$
$\cot \left(A+1^{\prime}\right)=\cot 56^{\circ} 44^{\prime}=.65604$
Difference $=.00042$
$\times \frac{17}{60}$
.00012 , nearly
Subtracting this product from $\cot A$, we have
$\cot 56^{\circ} 43^{\prime} 17^{\prime \prime}=.65646-.00012=.65634$. Ans.

EXAMPLES FOR PRACTICE

Verify the following values:
(a) $\sin 18^{\circ} 54^{\prime} 45^{\prime \prime}=.32412$; $\tan 18^{\circ} 54^{\prime} 45^{\prime \prime}=.34262$.
(b) $\cos 34^{\circ} 17^{\prime} 18^{\prime \prime}=.82621 ; \cot 34^{\circ} 17^{\prime} 18^{\prime \prime}=1.46659$.
(c) $\sin 72^{\circ} 26^{\prime} 20^{\prime \prime}=.95340 ; \cot 72^{\circ} 26^{\prime} 20^{\prime \prime}=.31647$.
(d) $\cos 65^{\circ} 6^{\prime} 9^{\prime \prime}=.42100 ; \tan 65^{\circ} 6^{\prime} 9^{\prime \prime}=2.15457$.
(e) $\sin 80^{\circ} 0^{\prime} 3^{\prime \prime}=.98481 ; \cot 80^{\circ} 0^{\prime} 3^{\prime \prime}=.17631$.
(f) $\tan 14^{\circ} 14^{\prime} 14^{\prime \prime}=.25373 ; \cos 14^{\circ} 14^{\prime} 14^{\prime \prime}=.96928$.
21. To Find the Angle Corresponding to a Given Function, when the Function Is in the Table.-This case does not present any difficulty. Having found the given function in the table, the degrees in the angle are taken from the top or the bottom, and the minutes from the left- or the right-hand column, according as the name of the function is at the top or at the bottom of the page.

Example 1.-The sine of an angle is .47486; what is the angle?
Solution.-Glancing down the columns marked Sine in the table of Natural Sines and Cosines, .47486 is found (on page 28) in the column headed 28°. The number of minutes, 21 , is found in the lefthand minute column, horizontally opposite . 47486 . Therefore, . 47486 $=\sin 28^{\circ} 21^{\prime}$. Ans.

Example 2.--Find the angle whose cosine is . 27032.
Solution.-Looking in the columns marked Cosine at the top of the page, the given cosine is not found; hence, the angle is greater than 45°. Consequently, looking in the columns marked Cosine at the bottom of the page, .27032 is found (on page 26) in the double column marked $74^{\text {C }}$ at the bottom, and in the horizontal row beginning with 19 in the right-hand minute column. Therefore, the angle whose cosine is .27032 is $74^{\circ} 19^{\prime}$; or, $.27032=\cos 74^{\circ} 1 y^{\prime}$. Ans.

Example 3.-Find the angle whose tangent is $\mathbf{2 . 1 5 9 2 5}$.
Solution.-On searching the table of Natural Tangents, the given tangent is found to belong to an angle greater than 45°, so that it must be looked for in the column marked Tangent at the bottom. It is found in the column having 65° at the bottom and opposite 9^{\prime} in the right-hand minute column. Therefore, $2.15925=\tan 65^{\circ} 9$. Ans.

Example 4.-Find the angle whose cotangent is . 43412 .
Solution.-From the table of Natural Cotangents, it is found that this value is less than the cotangent of 45°, so it must be found in the column marked Cotangent at the bottom. Looking there, it is found in the column having 66° at the bottom, and opposite 32^{\prime}, in the righthand column of minutes. Therefore, the angle whose cotangent is .43412 is $66^{\circ} 32^{\prime}$, or $.43412=\cot 66^{\circ} 32^{\prime}$. Ans.

EXAMPLES FOR PRACTICE

1. Find the angle whose sine is .47486 .
2. Find the angle whose cosine is .74353 .
3. Find the angle whose tangent is 2.06247 .
4. Find the angle whose cotangent is $\mathbf{1 . 2 0 6 6 5}$.
5. Find the angle whose sine is .76903 .
6. Find the angle whose tangent is 9.93101 .

Ans. $28^{\circ} 21^{\prime}$
Ans. $41^{\circ} 58^{\prime}$
Ans. $64^{\circ} 8^{\prime}$
Ans. $39^{\circ} 39^{\prime}$
Ans. $50^{\circ} 16^{\prime}$
Ans. $84^{\circ} 15^{\prime}$
22. To Find the Angle Corresponding to a Given Function, When the Function Is Not in the Table. Since the table includes the functions of all angles containing no odd seconds, a function not found in the table must correspond to an angle having odd seconds. Let the odd seconds that are to be determined be denoted by s, and the degrees and minutes by A, as in Art. 20. Now, two consecutive functions including the given function can always be found in the table; that is, two consecutive functions of which one is greater and the other less than the given function. The required angle must, therefore, lie between the two angles corresponding to these two consecutive functions, and its number of degrees and minutes, A, is the number of degrees and minutes in the smaller of the two angles. The larger angle is $A+1^{\prime}$, or $A+60^{\prime \prime}$, while the required angle is $A+s^{\prime \prime}$. Having determined A, it only remains to determine the number of odd seconds, or s. This is done by means of
the following formulas, obtained by solving for s the formulas found in Art. 20.

If the given function is a sine or tangent,

$$
\begin{align*}
& s=\frac{\sin \left(A+s^{\prime \prime}\right)-\sin A}{\sin \left(A+1^{\prime}\right)-\sin A} \times 60 \tag{1}\\
& s=\frac{\tan \left(A+s^{\prime \prime}\right)-\tan A}{\tan \left(A+1^{\prime}\right)-\tan A} \times 60 \tag{2}
\end{align*}
$$

If the given function is a cosine or cotangent,

$$
\begin{align*}
& s=\frac{\cos A-\cos \left(A+s^{\prime \prime}\right)}{\cos A-\cos \left(A+1^{\prime}\right)} \times 60 \tag{3}\\
& s=\frac{\cot A-\cot \left(A+s^{\prime \prime}\right)}{\cot A-\cot \left(A+1^{\prime}\right)} \times 60 \tag{4}
\end{align*}
$$

Observe that, although $A+s^{\prime \prime}$ is not known, its sine, cosine, etc., as the case may be, is known, or given. Thus, if the problem is to find the angle whose cotangent is .97888 , we have $\cot \left(A+s^{\prime \prime}\right)=.97888$.

The foregoing formulas lead to the following general rule for finding the angle corresponding to a given function:

Rule.-Find the difference of the two numbers in the table between which the given function lies, and use that difference as the denominator of a fraction.

Find the difference between the function belonging to the smaller angle and the given function, and use that difference as the numerator of the fraction mentioned above. Multiply this fraction by 60. The result will be the number of seconds to be added to the smaller angle in order to obtain the required angle.

Example 1.-Find the angle whose sine is .57698.
Solution.-Looking in the table of Natural Sines, in the columns marked Sine, it is found that the given sine lies between . 57691 $\left.i=\sin 35^{\circ} 14^{\prime}\right)$ and $.57715\left(=\sin 35^{\circ} 15^{\prime}\right)$. The difference between them is $.57715-.57691=.00024$. The difference between the sine of the smaller angle, or .57691, and the given sine, or .57698 , is . $57698-.57691$ $=.00007$. Then, $\frac{.00007}{.00024} \times 60=\frac{7}{24} \times 60=18^{\prime \prime}$, nearly, and the required angle is $35^{\circ} 14^{\prime} 18^{\prime \prime}$; or, $.57698=\sin 35^{\circ} 14^{\prime} 18^{\prime \prime}$. Ans.

[^1]Example 2.-Find the angle whose cosine is . 27052.
Solution.-Looking in the table of Cosines, the given cosine is found to belong to a greater angle than 45° and therefore it must be looked tor in the columns marked Cosine at the bottom of the page. It is found between the numbers $.27060\left(=\cos 74^{\circ} 18^{\prime}\right)$ and $.27032\left(=\cos 74^{\circ} 19^{\prime}\right)$. The difference between the two numbers is $.27060-.27032=28$ units of the fifth order. The cosine of the smaller angle, or $74^{\circ} 18^{\prime}$, is $.270 f 00$, and the difference between this and the given cosine is $.27060-.27052$ $=8$ units of the fifth order. Hence, $\frac{8}{28} \times 60=17^{\prime \prime}$; and, therefore, $.27052=\cos 74^{\circ} 18^{\prime} 17^{\prime \prime}$. Ans.

Example 3.-Find the angle whose tangent is 2.15841 .
Solution.- 2.15841 falls between $2.15760\left(=\tan 65^{\circ} 08^{\prime}\right)$ and 2.15925 $\left(=\tan 65^{\circ} 9^{\prime}\right)$. The difference between these numbers is 2.15925 $-2.15760=165$ units of the fifth order; $2.15841-2.15760=81$ units of the fifth order. Hence, $\frac{81}{165} \times 60=30^{\prime \prime}$, nearly, and therefore $2.15841=\tan 65^{\circ} 8^{\prime} 30^{\prime \prime}$. Ans.

Example 4.-Find the angle whose cotangent is 1.26342 .
Solution.- 1.26342 falls between $1.26395\left(=\cot 38^{\circ} 21^{\prime}\right)$ and 1.26319 $\left(=\cot 38^{\circ} 22^{\prime}\right)$. The difference between these numbers is 1.26395 $-1.26319=.00076 . \quad$ Also, $1.26395-1.26342=.00053 . \quad \frac{53}{76} \times 60=42^{\prime \prime}$, and therefore $1.26342=\cot 38^{\circ} 21^{\prime} 42^{\prime \prime}$. Ans.

EXAMPLES FOR PRACTICE

1. Find: (a) the sine of $48^{\circ} \mathbf{1 7}^{\prime}$; (b) the cosine; (c) the tangent.

$$
\text { Ans. } \begin{cases}(a) & .74644 \\ (b) & .66545 \\ (c) & 1.12172\end{cases}
$$

2. Find: (a) the sine of $13^{\circ} 11^{\prime} 6^{\prime \prime}$; (b) the cosine; (c) the tangent.

$$
\text { Ans. } \begin{cases}(a) & .22810 \\ (b) & .97364 \\ (c) & .23427\end{cases}
$$

3. Find: (a) the sine of $72^{\circ} 0^{\prime} 2^{\prime \prime}$; (b) the cosine; (c) the tangent.

Ans. $\begin{cases}(a) & .95106 \\ (b) & .30901 \\ (c) & 3.07778\end{cases}$
4. (a) Of what angle is .26489 the sine? (b) Of what angle is it the cosine?

Ans. $\left\{\begin{array}{l}\text { (a) } \\ 15^{\circ} \\ (b) \\ 74^{\circ} \\ 21^{\prime} \\ 38^{\prime} \\ 37^{\prime \prime} \\ 23^{\prime \prime}\end{array}\right.$
5. (a) Of what angle is .688 the sine? (b) Of what angle is it the cosine? (c) Of what angle is it the tangent?

$$
\text { Ans. }\left\{\begin{array}{llll}
\text { (a) } & 43^{\circ} & 28^{\prime} & 20^{\prime \prime} \\
\text { (b) } & 46^{\circ} & 31^{\prime} & 40^{\prime \prime} \\
\text { (c) } & 34^{\circ} & 31^{\prime} & 40^{\prime \prime}
\end{array}\right.
$$

TABLE OF LOGARITHMIC FUNCTIONS

23. The student is already familiar with the use of the table of logarithms of numbers. As stated in Art. 17, a table of logarithmic functions is a table containing the logarithms of the natural functions, these logarithms being, for convenience, called logarithmic functions. Thus, the logarithm of the sine of an angle is referred to as the logarithmic sine of the angle.

The connection between the tables can be seen from the following:
From table of natural functions, $\cot 44^{\circ}$. $=1.03553$
From table of logarithms, $\log 1.03553$. $=.01516$
From table of logarithmic functions, $\log \cot 44^{\circ}=.01516$
Few tables give the logarithmic secants and cosecants. These logarithmic functions may be obtained from the relations,

$$
\sec A=\frac{1}{\cos A}, \csc A=\frac{1}{\sin A}
$$

which give,
$\log \sec A=-\log \cos A, \log \csc A=-\log \sin A$
That is, instead of adding the logarithmic secant or cosecant, the logarithmic cosine or sine, respectively, may be subtracted. Likewise, instead of subtracting the logarithmic secant, the logarithmic cosine may be added, and instead of subtracting the logarithmic cosecant, the logarithmic sine may be added.
24. Description of the Table. -The table of logarithmic functions contains for every minute the logarithms, to five decimal places, of the trigonometric sines, cosines, tangents, and cotangents of angles from 0° to 90°. From 0° to 45°, the degrees are placed at the top of the page and the minutes in the column headed' on the left. From 45° to 90°, the degrees are at the bottom of the page, the minutes in the last whole column at the right, and the name of the trigonometric function is placed at the bottom of the column.

This arrangement is similar to that in the table of natural functions. It will be observed that the numbers of degrees at the top of the pages increase in the order of the pages from 0° to 44°, while those at the bottom decrease from 89° to 44°.

The general description of the table will be better understood by referring to one of its pages. Take, for instance, the page marked 11° at the top and 78° at the bottom. The first column on the left (marked ') contains the natural numbers from 1 to 60 . These numbers represent minutes. Horizontally opposite to these numbers, and in the columns marked at the top $\log \sin , \log \tan$, etc., are printed the log. arithmic functions, each function being in the same horizontal line as the number of minutes by which the corresponding angle exceeds 11°. Thus, the logarithmic tangent of $11^{\circ} 39^{\prime}$, which is $\overline{1} .31425$, is found in the column marked $\log \tan$ at the top, and in the same horizontal line as the number 39 in the left-hand column. Similarly, the number $\overline{1} .99072$, being in the column marked at the top log cos, and in the same horizontal line as 48 in the left-hand column, is the logarithmic cosine of $11^{\circ} 48^{\prime}$. In some tables, several mantissas are printed under and to the right of the same characteristic, and are understood to belong with that characteristic. Thus, in the logarithm just considered, only the mantissa .99072 is printed, the characteristic being the sarne as the first one found above that mantissa.

The last column but one (marked ' at the bottom) contains the natural numbers from 1 to 60 , increasing from bottom to top. It will be observed that any angle determined by the number of degrees at the bottom (78 in this case) and any number of minutes in the right-hand minute column, is the complement of the angle determined by the number of degrees at the top (11 in this case) and the number of minutes in the left-hand minute column, horizontally opposite the number of minutes in the right-hand minute column. Thus, the number 18 in the right-hand minute col$u m n$ is horizontally opposite the number 42 in the left-hand column, and we have, $78^{\circ} 18^{\prime}+11^{\circ} 42^{\prime}=90^{\circ}$. Therefore,
since the fundamental functions of an angle are equal to the cofunctions of its complement,

$$
\begin{aligned}
\sin 11^{\circ} 42^{\prime} & =\cos 78^{\circ} 18^{\prime} \\
\cot 11^{\circ} 42^{\prime} & =\tan 78^{\circ} 18^{\prime}, \text { etc. } \\
\text { and } \quad \log \sin 11^{\circ} 42^{\prime} & =\log \cos 78^{\circ} 18^{\prime}, \text { etc. }
\end{aligned}
$$

For this reason, the notation log tan is written at the bottom of the column headed log cot, to indicate that the logarithms in this column are the logarithmic tangents of angles whose number of degrees is the number (78 in this case) at the bottom of the page, and whose number of minutes is opposite those logarithms in the right-hand minute column. Similarly, the columns marked $\log \sin , \log \tan$, and $\log \cos$ at the top are marked, respectively, $\log \cos , \log \cot$, and $\log \sin$ at the bottom.
25. After the column marked $\log \sin$ there is a column marked d. This column contains the differences, expressed in units of the fifth decimal order, between the consecutive logarithmic sines given in the sine column. Thus, referring to the page headed 11°, the first number in the d-column following the sine column is 65 ; it will be observed that this number is opposite the space between the logarithmic sines $\overline{1} .28125$ and $\overline{1} .28060$, and is the difference, in units of the fifth decimal order, or expressed in hundred thousandths, between these two logarithmic sines. These differences are called tabular differences. Similar differences are printed in the column marked d after the cosine column, and in the column marked c.d. between the tangent and the cotangent column. The notation c. d. means common difference, as the differences between the successive logarithmic tangents are the same as those between the corresponding cotangents. although obtained by reversing the order in which the functions are subtracted; that is to say, $\log \tan A-\log \tan B$ $=\log \cot B-\log \cot A$.

The tabular differences for the cosines are not given in the first ten pages, both for want of space and because they are so small that they can be readily determined by mental subtraction.

The use of the tabular differences, the use and contents of the column marked p. p. in all pages but the first three, and the peculiarities and applications of these first three pages of the table will be explained further on.

26. To Find the Logarithmic Functions of an Angle Llaving No Odd Seconds.

Rule.-For an angle less than 45°, look for the degrees at the top of the page and for the minutes in the column (marked') at the left of the page on which the number of degrees is found. Then look across the page along the horizontal row containing the given number of minutes, into the column headed by the name of the function whose logarithm is required. The desired logarithm is found in this row and column.

For an angle between 45° and 90°, find the degrees at the bottom of the page and the minutes in the column (marked ') at the right of the page. Then look across the page, along the horizontal row containing the given number of minutes, into the column marked at the bottom with the name of the function whose $\operatorname{logarithm}$ is to be found. The row and column thus determined contain the desired logarithm.

Example 1.-Find the logarithmic sine and the logarithmic tangent of $15^{\circ} 24^{\prime}$.

Solution.-On the page marked 15° at the top, in the column headed $\log \sin$, and in the same horizontal row with 24 , the number T .42416 is found; and in the column headed \log tan, the number $\overline{1} .44004$ is found. Hence,

$$
\begin{aligned}
& \log \sin 15^{\circ} 24^{\prime}=\overline{1} .42416 . \quad \text { Ans. } \\
& \log \tan 15^{\circ} 24^{\prime}=\overline{1} .44004 . \quad \text { Ans. }
\end{aligned}
$$

Example 2.-Find the logarithmic tangent and cosine of $73^{\circ} 10^{\prime}$.
Solution.-As 73 is greater than 45, it is found at the bottom of the page. Looking for the number of minutes (10^{\prime}) in the right-hand minute column, and following the horizontal row determined by this number into the column marked $\log \tan$ at the bottom, the number .51920 is found. Likewise, the number $\overline{1} .46178$ is found in the column marked $\log \cos$ at the bottom, and horizontally opposite the number 10 in the right-hand minute column. Therefore,
$\log \tan 73^{\circ} 10^{\prime}=.51920$. Ans.
$\log \cos 73^{\circ} 10^{\prime}=\overline{1} .46178$. Ans.

EXAMPLES FOR PRACTICE

1. Find: (a) the logarithmic cosine of $36^{\circ} 58^{\prime}$; (b) the logarithmic tangent.

Ans. $\begin{cases}\text { (a) } & 1.90254 \\ (b) & 1.87659\end{cases}$
2. Find: (a) the logarithmic tangent of $23^{\circ} 39^{\prime}$; (b) the logarithmic cotangent.

$$
\text { Ans. } \begin{cases}(a) & \overline{1} .64140 \\ (b) & .35860\end{cases}
$$

3. Find: (a) the logarithmic sine of $79^{\circ} 45^{\prime}$; (b) the logarithmic cosine.

Ans. $\left\{\begin{array}{l}(a) \\ (b) \\ \text { (b) } \\ \hline\end{array} .2503018\right.$
4. Find: (a) the logarithmic tangent of $46^{\circ} 59^{\prime}$; (b) the logarithmic cotangent.

Ans. $\begin{cases}(a) & 03009 \\ (b) & \overline{1} .96991\end{cases}$
27. To Find the Logarithmic Functions of an Angle Containing an Odd Number of Seconds.-Let the number of degrees and minutes in an angle any of whose logarithmic functions is required be denoted by A, and the number of odd seconds by s. Thus, if the angle is $37^{\circ} 43^{\prime} 19^{\prime \prime}, A$ will equal $37^{\circ} 43^{\prime}$, and s will equal $19^{\prime \prime}$; also, $A+1^{\prime}$, or $A+60^{\prime \prime}$, will equal $37^{\circ} 43^{\prime}+1^{\prime}$, or $37^{\circ} 44^{\prime}$. (See Art. 20.) Since the table gives the logarithmic functions of any angle containing no odd seconds, the logarithmic functions of A and $A+1^{\prime}$ may be readily found, as explained in the last article. Let these logarithmic functions be denoted by l and l^{\prime}, respectively, and the required logarithmic function by L. In the general theory of logarithms, treated in advanced works on mathematics, it is shown that if two consecutive angles (as $37^{\circ} 43^{\prime}$ and $37^{\circ} 44^{\prime}$) are taken from the table, the difference between any logarithmic function of the greater and the same logarithmic function of the smaller angle is to the difference between the same logarithmic function of any intermediate angle (as $37^{\circ} 43^{\prime} 19^{\prime \prime}$) and the same function of the smaller angle, as the difference between the greater and the smaller angle is to the difference between the intermediate and the smaller angle. If the notation $F(A)$, read function of A, is employed to denote any logarithmic function of an angle A, we have, writing $A+60^{\prime \prime}$ instead of $A+1^{\prime}$,

$$
\begin{gathered}
\frac{F\left(A+60^{\prime \prime}\right)-F(A)}{F(A+s)-F(A)}=\frac{\left(A+60^{\prime \prime}\right)-A}{(A+s)-A}=\frac{60}{s} \\
\frac{l^{\prime}-l}{L-l}=\frac{60}{s}
\end{gathered}
$$

that is,
whence,

$$
L-l=\left(l^{\prime}-l\right) \frac{s}{60}
$$

and

$$
L=l+\left(l^{\prime}-l\right) \frac{s}{60}
$$

The difference between l^{\prime} and l, being the difference between two consecutive logarithmic functions, may be taken from the column of tabular differences in the table. (See Art. 25.) Denoting the tabular difference $l^{\prime}-l$ by D, the preceding equation becomes

$$
L=l+D \times{ }_{60}^{s}
$$

It should be observed that, since the sine and the tangent increase with the angle, while the cosine and cotangent decrease as the angle increases, $l^{\prime}-l$ is positive or negative according as the functions considered are fundamental functions (sine, tangent) or cofunctions (cosine, cotangent). In the latter case, D in the formula should be treated as negative; that is, the product $D \times \frac{s}{60}$ should be subtracted from l

It should also be borne in mind that the tabular difference D is expressed in units of the fifth order of decimals, or hundred thousandths. Thus, if the number of seconds s is 15 , and the tabular difference is 36 , the quantity to be added to l is $.00036 \times \frac{\text { 敦 }}{}=.00009$.

If $l=\overline{\mathbf{1}} .59812$, the work is arranged as follows:

$$
l=\overline{1} .59812
$$

$$
\begin{aligned}
D \times \frac{s}{60} & =\frac{9}{L}=\overline{\overline{1} .59821}
\end{aligned}
$$

When, as in this case, the product $D \times \frac{s}{60}$ is small, it can readily be added or subtracted mentally. Only the significant figures of D (those given in the d-column) are used, it being understood that the result expresses units of
the fifth order of decimals. Thus, instead of writing D $=.00036$, and $D \times \frac{s}{60}=.00036 \times \frac{5}{60}$, the following abbreviated notation is used: $D=36 ; D \times \frac{s}{60}=36 \times \frac{s}{60}$, the latter product expressing decimal units of the fifth order, or hundred thousandths.

The foregoing formula indicates the process by which the logarithmic functions of an angle containing odd seconds are obtained. It may be stated in words as follows:

Rule.-Drop the seconds, and find the logarithmic function of the remaining angle. Find the tabular difference between this logarithmic function and the same function of the angle next higher in the table. Multiply this tabular difference by the number of seconds in the angle and divide the product by 60. Add this result to or subtract it from the logarithm found, according as the logarithm to be determined is that of a fundamental function or that of a cofunction. The result thus obtained is the required logarithmic function.

Example 1.-Find: (a) the logarithmic sine of $15^{\circ} 40^{\prime} 32^{\prime \prime}$; (b) the logarithmic cosine.

Solution-(a) Dropping the seconds, $15^{\circ} 40^{\prime}$ is obtained, whose logarithmic sine, found as in Art. 25, is $\overline{1} .43143$; that is, $l=\overline{1} .43143$. Opposite the space between this logarithm and the following, and in the column marked d , is found the tabular difference $45(=D)$. Applying the formula given in Art. 27,

$$
\begin{aligned}
& L=\overline{1} .43143+.00045 \times \frac{37}{l} \\
& l=\overline{1} .43143 \\
& D \times{ }^{\frac{s}{60}}=45 \times \frac{32}{60}=24 \\
& L=\overline{1} .43167
\end{aligned}
$$

that is. $\quad \log \sin 15^{\circ} 40^{\prime} 32^{\prime \prime}=$. 43167 . Ans.
In practice, it is not necessary to write all the figures of l before adding the correction $D \times{ }_{60}^{5}$. Having found the value of l in the table, one places and keeps the finger on that value and calculates the correction $D \times \frac{s}{60}$. In the majority of cases, this correction can be added mentally to l. Thus, in the example just explained, the correcthon is 24 , which, being mentally added to the number 43 formed by the
last two figures of l, gives 67 as the last two figures of L. The othes figures of L are the same as those of l.
(b) The logarithmic cosine of $15^{\circ} 40^{\prime}$ is $\overline{1} .98356(=\ell)$. Horizontally opposite the space between this logarithm and the following, the tabular difference $4(=D)$ is found in the column marked d on the right of the cosine column. As the function under consideration is a cofunction, the correction $D \times \frac{s}{60}$ must be subtracted for l. We have, then,

$$
\begin{aligned}
l & =\overline{1} .98356 \\
D \times \frac{s}{60}=4 \times \frac{32}{60} & =\frac{2, \text { to the nearest unit }}{L}
\end{aligned}
$$

Therefore, $\quad \log \cos 15^{\circ} 40^{\prime} 32^{\prime \prime}=\overline{1} .98354$. Ans.
In practice, the correction 2 would be subtracted mentally, without previously writing the value of l.

Example 2.-Find the logarithmic tangent of $63^{\circ} 39^{\prime} 27^{\prime \prime}$.
SOLuTion.-Dropping the seconds, and referring to the page marked 63° at the bottom, the logarithmic tangent of $63^{\circ} 39^{\prime}$ is found to be $.30512(=l)$. Since in this case the angles increase from bottom to top, the tabular difference to be used is that horizontally opposite the space between the logarithm just taken and the one immediately above it in the column (that is, .30543). This difference is 31 , printed in the column marked c . d . on the left of the cotangent column. We have, therefore,

$$
l=.30512
$$

$$
\begin{aligned}
\frac{s}{60} \times D=\frac{27}{60} \times 31 & =\frac{14, \text { to the nearest unit }}{L}
\end{aligned}
$$

Therefore, $\quad \log \tan 63^{\circ} 39^{\prime} 27^{\prime \prime}=.30526$. Ans.
EXAMPLE 3.-Find the logarithmic cotangent of $54^{\circ} 8^{\prime} 9^{\prime \prime}$.
Solution.-Dropping the seconds, the value of l is found to be 1.85913. The tabular difference in the c. d. column and horizontally opposite the space between this logarithm and the one immediately above it is 26 . As the cotangent is a cofunction, the correction $\frac{s}{60} \times D$ is to be subtracted from l. Then,

$$
l=\overline{1} .85913
$$

$$
\begin{aligned}
\frac{s}{60} \times D=\frac{9}{60} \times 26 & = \\
L & =\overline{1.86909}
\end{aligned}
$$

Therefore, $\quad \log \cot 54^{\circ} 8^{\prime} 9^{\prime \prime}=\tilde{1} .85909$. Ans.

EXAMPLES FOR PRACTICE

1. Find the logarithmic sine, tangent, and cosine of $33^{\circ} 21^{\prime} 46^{\prime}$

$$
\text { Ans. }\left\{\begin{array}{l}
\log \sin =\overline{1} .74032 \\
\log \tan =\overline{1} .81852 \\
\log \cos =\overline{1} .92179
\end{array}\right.
$$

2. Find the logarithmic sine and cotangent of $23^{\circ} 3^{\prime} 17^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \sin =\overline{1} .59286 \\
\log \cot =.37100
\end{array}\right.
$$

3. Find the logarithmic tangent and cosine o! $49^{\circ} 12^{\prime} 12^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \tan =.06395 \\
\log \cos =\overline{\mathrm{I}} .81516
\end{array}\right.
$$

4. Find the logarithmic sine, tangent, and cosine of $72^{\circ} 52^{\prime} 49^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \sin =\overline{1} .98031 \\
\log \tan =.51143 \\
\log \cos =\overline{\mathrm{I}} .46890
\end{array}\right.
$$

5. Find the logarithmic sine and cotangent of $81^{\circ} 38^{\prime} 28^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \sin =\overline{1} .99536 \\
\log \cot =\overline{1} .16712
\end{array}\right.
$$

6. Find the logarithmic tangent and cosine of $65^{\circ} 0^{\prime} 47^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \tan =.33159 \\
\log \cos =\overline{\mathbf{1}} .62574
\end{array}\right.
$$

7. Find the logarithmic secant and cosecant of $59^{\circ} 0^{\prime} 9^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \mathrm{sec}=.28819 \\
\log \mathrm{csc}=.06692
\end{array}\right.
$$

28. Use of the Column of Proportional Parts. - The method described in the preceding article can be applied to any table of logarithmic functions. Some tables, however, among them the table furnished with this Course, contain a column giving the products of the tabular differences by the fractions $\frac{8}{60}, \frac{7}{60}, \frac{8}{60}, \frac{9}{60}, \frac{1}{60}, \frac{20}{60}, \frac{30}{60}, \frac{4}{6} \frac{9}{6}$, and $\frac{50}{60}$. These products are called proportional parts, and are given in the right-hand column (marked p. p. at the top) of each page, beginning with 3°. The tabular differences are here printed in heavy figures. Under each tabular difference are given the products of it by $\frac{8}{80}, \frac{7}{80}$, etc., the number of sixtieths being printed horizontally opposite the product, on the left of a vertical line. Thus, referring to the right-hand column of the page marked 13° at the top, the numbers $54,53,52$, printed in heavy type, are tabular differences. The number 27 , directly under 54 , and horizontally opposite the
number 30 on the left of the vertical line, is the product of 54 by $\frac{30}{6}$. Likewise, 17.3 , found under 52 , and horizontally opposite 20 , is the product of 52 by $\frac{30}{80}$. The proportional parts for $1,2,3,4,5$ are obtained from those for $10,20,30$, etc., by moving the decimal point one place to the left. Thus, the proportional part for 20 , under the tabular difference 52 , is 17.3 , as just explained. The proportional part for 2 , that is, the product of 52 by $\frac{9}{60}$, is 1.73 .

In the first three pages of the logarithmic table, no proportional parts are given, the use of these pages being different from that of the others. In pages 45,46 , and 47 , not all the tabular differences are given in the p. p. column, owing to want of space; but the proportional part for any tabular difference is easily obtained by means of the proportional parts for digits given at the bottom of the p. p. column. Referring, for example, to page 45 , the tabular difference 215 , which is found in the c. d. column, does not appear in the p. p. column. If we wish to find the product of 215 by $\frac{38}{8}$, we look in the p. p. column for the tabular difference next lower than 215 , which is 212 . Horizontally opposite 30 , and under 212 , we find 106 ; that is, $212 \times \frac{30}{80}=106$. As 215 $=212+3$, we must add to the product just found (106), the product of $3 \times \frac{30}{80}$. This is taken from the column headed 3 near the bottom of the p. p. column: there we find 1.5 horizontally opposite 30 ; that is, $3 \times \frac{30}{86}=1.5$. Therefore, $215 \times \frac{30}{80}=106+1.5=107.5$. The addition of these two products can usually be effected mentally.

The correction $D \times \frac{s}{60}$ to be applied to l in order to find L (formula of Art. 27) is found from the table of proportional parts as follows:

> Rule.-Having found the tabiular difference D, look for this difference in the column of proportional parts. If this difference is found in that column and the number of seconds is a digit greater than 5 or a digit followed by a cipher, look for it on the left of the vertical line under D; the correction is then found horizontally opposite this number, and directly under D. If the
number of seconds is a digit less than 6, add a cipher, find the proportionai part corresponding to the resulting number, and move the decimal point one place to the left. If the number of seconds consists of two significant digits (as 39), find the correction for the first digit followed by a cipher, and that for the second digit, and add the two corrections. (Thus, if the numbeof seconds is 43 , the correction is found by adding the corrections for 40 and 3.)

If the tabular difference D is not found in the $p . p$.column (which may happen only on pages 45 to 47), take, as just explained, the proportional part corresponding to the next lower tabular difference found in the p. p.column; then, from the digit columns found at the bottom of the p.p.column, find the proportional part corresponding to the difference between D and the tabular difference just used. Add the two proportional parts thus found.

Example 1.-Find: (a) the logarithmic tangent of $22^{\circ} 17^{\prime} 8^{\prime \prime}$; (b) the logarithmic cosine.

Solution.-(a) Dropping the seconds, we find $\log \tan 22^{\circ} 17^{\prime}$ $=\overline{1} .61256(=l) ; D=36$. Turning to the column of proportional parts, 36 is found in heavy type near the top of the page. Following the horizontal row that begins with 8 (number of seconds) at the left of the vertical line under 36 , we find in that row, and directly under 36 , the correction 4.8 , which may be called 5 , as there are no other numbers to be combined with it. Therefore,

$$
\begin{aligned}
l & =\overline{1} .61256 \\
\frac{s}{60} \times D=\mathrm{p} \cdot \mathrm{p} \cdot & =\frac{5}{L} \\
L & =\overline{\overline{1} .61261}
\end{aligned}
$$

That is, $\quad \log \tan 22^{\circ} 17^{\prime} 8^{\prime \prime}=\overline{1} .61261$. Ans.
(b) $l=\log \cos 22^{\circ} 17^{\prime}=\overline{1} .96629 ; D=5$. Looking for the column headed 5 among the proportional parts, the correction .7 (or say 1) is found directly under 5 and horizontally opposite 8 . Therefore,

$$
l=1.96629
$$

$$
\begin{aligned}
& \frac{s}{60} \times D=\text { p. p. }=\frac{1}{L}=\overline{1.96628} \\
& \text { That is, } \quad \log \cos 22^{\circ} 17^{\prime} 8^{\prime \prime}=\overline{1} .96628 . \quad \text { Ans. }
\end{aligned}
$$

Example 2.-Find the logarithmic sine of $3^{\circ} 18^{\prime} 9^{\prime \prime}$.
Solution.- $l=\sin 3^{\circ} 18^{\prime}=\overline{2} .76015 ; D=219$. The difference 219 is not found in the p. p. column; the tabular difference in the p. p. column next lower is 216 . Under 216, and horizontally opposite 9 , is
found 32.4. The difference between 219 and 216 is 3 . Looking for 3 in the digit columns at the bottom of the p. p. column, .5 is found under 3, and horizontally opposite 9. Therefore, $219 \times \frac{9}{80}=32.4+.5$ - 33, nearly.

$$
\begin{aligned}
l & =\overline{2} .76015 \\
219 \times \frac{9}{60} & =33 \\
L & =\overline{2.76048}
\end{aligned}
$$

That is, $\log 3^{\circ} 18^{\prime} 9^{\prime \prime}=\overline{2} .76048$. Ans.

Example 3.-Find: (a) the logarithmic tangent of $53^{\circ} 47^{\prime} 04^{\prime \prime}$; (b) the logarithmic cosine.

Solution.-(a) $l=\log \tan 53^{\circ} 47^{\prime}=.13529 ; D=26$; the proportional part for 40 , under D, that is, under 26 , is 17.3 ; the proportional part for 4 is $\frac{17.3}{10}$, or 2 , nearly.

$$
\begin{aligned}
l & =.13529 \\
26 \times \frac{4}{60} & =2 \\
L & =.13531
\end{aligned}
$$

That is, $\quad \log \tan 53^{\circ} 47^{\prime} 4^{\prime \prime}=.13531$. Ans.
(b) $l=\log \cos 53^{\circ} 47^{\prime}=1.77147 ; D=17$. The number horizontally opposite 40 , in the column headed 17 among the proportional parts, is 11.3; the proportional part for 4 is, therefore, $\frac{11.3}{10}=1$, nearly.

$$
\begin{aligned}
l & =\overline{1} .77147 \\
17 \times \frac{4}{60} & =\frac{1}{L} \\
L & =\overline{1} .77146
\end{aligned}
$$

That is, $\log \cos 53^{\circ} 47^{\prime} 4^{\prime \prime}=\mathbf{1} .77146$. Ans.

Example 4.-To find the logarithmic cotangent of $72^{\circ} 35^{\prime} 47^{\prime \prime}$.
Solution. - $l=\log \cot 72^{\circ} 35^{\prime}=1.49652 ; D=45$. Looking among the proportional parts for the column headed 45 . the correction for 40 is found to be 30 , and that for 7 is found to be 5.3. Therefore, $l=\overline{1} .49652$
p. p. for $40=30.0$
p. p. for $7=5.3$
p. p. for $\mathbf{4 7}=\square \quad \mathbf{3 5}$

$$
L=\overline{1.49617}
$$

That is, $\quad \log \cot 72^{\circ} 35^{\prime} 47^{\prime \prime}=\overline{1} .49617$. Ans.
In practice, it would not be necessary to write down the corrections 30 and 5.3 , which would be added mentally. The same remark applies to all similar cases.

EXAMPLES FOR PRACTICE

1. Find the logarithmic sine and cotangent of $9^{\circ} 39^{\prime} 17^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \sin =1.22456 \\
\log \cot =.76924
\end{array}\right.
$$

2. Find the logarithmic sine, tangent, and cosine of $39^{\circ} 8^{\prime} 52^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \sin =\overline{1} .80025 \\
\log \tan =1.91065 \\
\log \cos =\overline{1} .88959
\end{array}\right.
$$

3. Find the logarithmic cotangent and cosecant of $80^{\circ} 3^{\prime} 46^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \cot =\overline{1} .24352 \\
\log \mathrm{csc}=.00657
\end{array}\right.
$$

4. Find the logarithmic sine, secant, and tangent of $49^{\circ} 054^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \sin =1.87788 \\
\log \sec =.18319 \\
\log \tan =.06197
\end{array}\right.
$$

5. Find the logarithmic tangent and cosine of $4^{\circ} 2^{\prime} 4^{\prime \prime}$.

$$
\text { Ans. }\left\{\begin{array}{l}
\log \tan =\overline{2} .84838 \\
\log \cos =\overline{1} .99892
\end{array}\right.
$$

29. To Find the Angle Corresponding to Any Logarithmic Function When the Given Function Is Found in the Table.-In this case, the angle, which contains no odd seconds, is found as follows:

Rule. -Find the given logarithm in the column marked by the name of the function whose logarithm is given. Then, if the name of the given function is at the top of the column, the number of degrees in the angle is that at the top of the page, and the number of minutes is horizontally opposite the logarithm, in the left-hand minute column. If the name of the function is at the foot of the column, the number of degrees in the angle is that at the foot of the page, and the number of minutes is in the righthand minute column, horizontally opposite the given logarithm.

In searching the table for a given logarithm, it should be borne in mind that the logarithmic sines and tangents increase, and the cosines and cotangents decrease, from 0° to 90°. Therefore, in the columns marked $\log \sin$ and \log tan at the top, the logarithms increase, and in the columns headed \log cos and log cot the logarithms decrease, from the first to the last page. The sines and tangents continue to
increase, and the cosines and cotangents to decrease, from the last page to the first, in the columns marked with the names of these functions, respectively, at the bottom. Thus, the last page contains, in the column headed $\log \sin$, the logarithmic sines of the angles between 44° and 45°. The sines are continued in the column marked $\log \sin$ at the bottom, which contains the logarithmic sines of the angles between 45° and 46°; the preceding page contains the sines of angles between 46° and 47°, etc. Here the logarithmic sines increase from bottom to top, and in the inverse order of the pages.

When looking for a given logarithmic sine, open the table at random. Glance at both of the sine columns, that is, the column marked $\log \sin$ at the top and the column marked $\log \sin$ at the bottom, and compare the logarithms in them with the given logarithm. If the given logarithm is less than those found in the column marked $\log \sin$ at the top, said given logarithm must be in that column, but in a preceding page. If the given logarithm is greater than those in the column marked $\log \sin$ at the bottom, said given logarithm must be in that column, but in a preceding page. If neither of these is the case, the given logarithm must be in a subsequent page. Turn a few pages forwards or backwards, as the case may be, and repeat the operation. The comparison of the two columns, however, is not usually necessary after the first three figures of the given logarithm have been found in one of them, as that logarithm is then found in that column, and can be readily seen among the logarithms beginning with those three figures.

Proceed exactly in the same manner when the given function is a cosine; that is, treat the cosine as though it were a sine; but, having found the given logarithm, treat it as that of a cosine and take the angle accordingly.

As the tangents of angles less than 45° are less than 1 , their logarithmic tangents have negative characteristics, and as the tangents of angles greater than 45° are greater than 1 , their logarithmic tangents have positive characteristics. Therefore, a logarithmic tangent should be looked for in the
column marked \log tan at the top or at the bottom, according as its characteristic is negative or positive. For a logarithmic cotangent, the rule should be reversed.

Example 1.-Find the angle whose logarithmic sine is $\bar{I} .57669$.
Solution.-Opening the table at random, say at the page marked 36° at the top, it is at once seen that the logarithms in the column marked $\log \sin$ at the top are greater than the given logarithm. This logarithm must, therefore, be in that columin, but in a preceding page. Turning the pages backwards, a few at a time, the given logarithm is found on page 64, among those logarithms whose first three figures are 1.57 . As the name of the function is at the head of the column, the number of degrees (22) is taken from the top of the page, and that of minutes (10) from the left-hand minute column. Therefore, the angle whose logarithmic sine is $\overline{\mathbf{1}} .57669$ is $22^{\circ} 10^{\prime}$, or $\overline{1} .57669=\log \sin 22^{\circ} 10^{\prime}$.

Suppose that the table had first been opened at page 56 . Since the given logarithm is greater thau those in the column marked log sin at the top and less than those in the column marked log sin at the bottom (or $\log \cos$ at the top), the given logarithm is to be found in a subsequent page. Suppose also that, turning the pages forwards, a few at a time, we come to page 63, and find the first three figures ($\overline{1} .57$) of the given logarithm in the column marked $\log \sin$ at the top. Then, without consulting the other column, we follow the former column to the bottom, and into the next page, where we find the given logarithm, and take the corresponding angle as before.

Example 2.-To find the angle whose logarithmic sine is $\overline{1} .89810$.
Solution.-Open the table at random, say at page 73. Since the given logarithm is greater than those in the column marked $\log \sin$ at the top, and less than those in the column marked $\log \sin$ at the bottom, it must be found in a subsequent page. Suppose that we turn next to page 85 . We see at once that the given logarithm is greater than those in the column headed $\log \sin$, and also than those in the column marked $\log \sin$ at the bottom. Therefore, it must be in the latter column in some preceding page. Turning the pages backwards, we find the first three figures ($\overline{1} .89$) of the given logarithm on page 79, and among the logarithms to which these three figures are common, we find $\overline{1} .89810$. As this is a logarithmic sine, and the name sine is at the bottom of the column, the degrees in the corresponding angle are taken from the bottom of the page, and the minutes from the right-hand minute column. Therefore, $52^{\circ} 16^{\prime}$ is the angle whose logarithmic sine is $\overline{1} .89810$; that is, $\overline{1} .89810=\log \sin 52^{\circ} 16^{\prime}$. Ans.

Example 3.-Find the angle whose logarithmic cosine is $\overline{1} .86924$.
Solution.-Treating this as though it were a logarithmic sine, it is found, as explained above, on page 84 , in the column marked $\log \sin$
at the bottom. Since the name cosine is at the top of the column, the required angle is $42^{\circ} 16^{\prime}$. That is, $\overline{1} .86924=\log \cos 42^{\circ} 16^{\prime}$. Ans.

Example 4.-Find the angle whose logarithmic cotangent is 15639.
Solution.-As the characteristic is positive, the logarithm should be looked for in the column marked \log cot at the top. After looking in a few pages, the first three figures (0.15) of the logarithm are found on page 76, and among them is found the given logarithm. The name of the function being at the head of the column, the degrees in the angle are taken from the top of the page, and the minutes from the left-hand minute column. Therefore, $.15639=\log \cot 34^{\circ} 54^{\prime}$. Ans.

EXAMPLES FOR PRACTICE

1. Find the angle whose logarithmic sine is $\overline{1} .57885$. Ans. $22^{\circ} 17^{\prime}$
2. Find the angle whose logarithmic sine is $\overline{1} .66731$. Ans. $27^{\circ} 42^{\prime}$
3. Find the angle whose logarithmic sine is $\overline{2} .93740$. Ans. $4^{\circ} 58^{\prime}$
4. Find the angle whose logarithmic sine is $\overline{1} .98345$. Ans. $74^{\circ} 17^{\prime}$
5. Find the angle whose logarithmic cosine is $\overline{1} .92086$.

Ans. $33^{\circ} 33$
6. Find the angle whose logarithmic cosine is $\overline{1} .57232$. Ans. $68^{\circ} 4$
7. Find the angle whose logarithmic cosine is $\overline{1} .84949$. Ans. $45^{\circ} 0^{\prime}$
8. Find the angle whose logarithmic tangent is $\overline{1} .97649$.

Ans. $43^{\circ} 27^{\prime}$
9. Find the angle whose logarithmic cotangent is $\overline{2} .89274$.

Ans. $85^{\circ} 32^{\prime}$
10. Find the angle whose logarithmic tangent is .67377 .

Ans. $78^{\circ} 2^{\prime}$
11. Find the angle whose logarithmic cotangent is .35517 .

Ans. $23^{\circ} 49^{\prime}$
12. Find the angle whose logarithmic tangent is 1.28060 .

Ans. $87^{\circ} 0$
30. To Find the Angle Corresponding to a Given Logarithinic Function when the Function Is Not in the Table. - Without the Use of Proportional Parts.-From the formula given in Art. 27, the following may be obtained:

$$
s=\frac{(L-l) \times 60}{D}=\frac{(L-l) \times 60}{l^{\prime}-l}
$$

Therefore, if the function L is given and it is found to lie between the consecutive logarithms l and l^{\prime}, the corresponding angle $A+s$ is that corresponding to l increased by the number of seconds determined by the formula just given. It will be remembered (see Art. 27) that l and l^{\prime} are, respectively, the logarithmic functions of two angles (A and $A+1^{\prime}$) differing by one minute. If the function is a fundamental function (sine or tangent) l^{\prime} is greater than l; and since L lies between l and l^{\prime}, L is also greater than l; therefore, both $L-l$ and $l^{\prime}-l$ are positive. If the function is a cofunction, l is greater than l^{\prime}, and also greater than L; therefore, both $L-l$ and $l^{\prime}-l$ are negative, and $\frac{L-l}{l^{\prime}-l}$ is positive. In such case, however, it is better to write this fraction in the form $\frac{l-L}{l-l^{\prime}}$.

From the formula and the explanations just given, the following rule is derived for finding the angle corresponding to any given logarithmic function:

Rule.-Find in the table the two consecutive logarithmic functions between which the given function lies. The degrees and minutes in the smaller of the angles corresponding to these two functions are the degrees and minutes in the required angle.

Find the difference between the given function and that of the smaller angle; multiply that difference by 60, and divide the product by the tabular difference between the two functions in the table. The result will be the number of odd seconds in the required angle.

As the tabular difference is expressed in units of the fifth decimal order, the difference $L-l$ should be likewise expressed. Thus, if $L=\overline{1} .25198$, and $l=\overline{1} .25168$, the difference $L-l$ will be called 30 .

Example 1.-Find the angle whose logarithmic sine is $\overline{1} .47867(=L)$.
Solution.-The first three figures of the given logarithm are always found in the table, and this makes it easy to determine the functions between which the given logarithm lies. Searching the sine columns of the table, it is found that $\overline{\mathrm{I}} .47867$ lies between $\overline{\mathrm{I}} .47854(=l)$ and
I. $47894\left(=l^{\prime}\right)$ on page 59. The smaller of the two angles corresponding to these two logarithms is $17^{\circ} 31^{\prime}(=A)$. Now, $L-l=13, l^{\prime}-l$ (tabular difference taken from table) $=40$. Therefore,

$$
s=\frac{13 \times 60}{40}=19.5^{\prime \prime}, \text { or, say, } 20^{\prime \prime}
$$

and $A+s=17^{\circ} 31^{\prime}+20^{\prime \prime}=17^{\circ} 31^{\prime} 20^{\prime \prime}$ that is, $\quad \overline{1} .47867=\log \sin 17^{\circ} 31^{\prime} 20^{\prime \prime}$. Ans.

Example 2.-Find the angle whose logarithmic tangent is .27743 ($=L$).

Solution.-As the characteristic is positive, the logarithms between which L lies should be looked for in the column marked \log tan at the bottom. These two logarithms are $.27738(=\ell)$ and $.27769\left(=l^{\prime}\right)$. The smaller angle corresponds to .27738 , and is $62^{\circ} 10^{\prime}(=A)$. Also,

$$
L-l=5, l^{\prime}-l(=D)=31
$$

$$
A+s=A+\frac{5 \times 60}{31}=62^{\circ} 10^{\prime}+10^{\prime \prime}, \text { nearly },=62^{\circ} 10^{\prime} 10^{\prime \prime}
$$

that is,
$.27743=\log \tan 62^{\circ} 10^{\prime} 10^{\prime \prime}$. Ans.
Example 3:-Find the angle whose logarithmic cotangent is 1. $85899(=L)$.

Solution. L is found to lie between $\overline{1} .85887\left(=l^{\prime}\right)$ and $\overline{1} .85913$ $(=l)$. It will be noticed that here l is the greater, and l^{\prime} the smaller of the two logarithms. Angie corresponding to $l=54^{\circ} 8^{\prime}(=A)$.

$$
\begin{gathered}
\qquad \begin{array}{rl}
l & =\overline{1} .85913 \\
l-L & =\frac{1}{1.85899} \\
14 & l-l^{\prime}=26
\end{array} \\
\text { that is, } \quad A+s=54^{\circ} 8^{\prime}+\frac{14 \times 60}{26}=54^{\circ} 8^{\prime} 32^{\prime \prime}, \text { nearly } \\
\overline{1} .85899=\log \cot 54^{\circ} 8^{\prime} 32^{\prime \prime} . \text { Ans. }
\end{gathered}
$$

EXAMPLES FOR PRACTICE

1. Find the angle whose logarithmic sine is $\overline{1} .45566$.

Ans. $16^{\circ} 35^{\prime} 27^{\prime \prime}$
2. Find the angle whose logarithmic tangent is $\overline{\mathbf{1}} .33471$.

Ans. $12^{\circ} 11^{\prime} 44^{\prime \prime}$
3. Find the angle whose logarithmic sine is $\overline{\mathbf{1}} .89798$.

Ans. $52^{\circ} 14^{\prime} 42^{\prime \prime}$
4. Find the angle whose logarithmic cosine is $\overline{1} .67412$.

Ans. $61^{\circ} 49^{\prime} 23^{\prime \prime}$
5. Find the angle whose logarithmic cosine is $\bar{I} .92386$.

Ans. $32^{\circ} 56^{\prime} 45^{\prime \prime}$
6. Find the angle whose logarithmic cotangent is .54139 .

Ans. $16^{\circ} 2^{\prime} 20^{\prime \prime}$
7. Find the angle whose logarithmic tangent is $\overline{1} .86712$.

Ans. $36^{\circ} 22^{\prime} 7^{\prime \prime}$
8. Find the angle whose logarithmic cosine is $\overline{1} .99785$.

Ans. $5^{\circ} 42^{\prime} 0^{\prime \prime}$
9. Find the angle whose logarithmic cotangent is $\overline{\mathrm{I}} .12345$.

Ans. $82^{\circ} 25^{\prime} 52^{\prime \prime}$
31. With the Use of Proportional Parts.-Having found the degrees and minutes in the angle as in the preceding case, the number s of odd seconds may be

105
conveniently found from the column of propor- $6 \mid 10.5$
tional parts. In order to facilitate the explanations $\quad 7 \quad 12.3$

that follow, the proportional parts corresponding 8814.0 | to the tabular difference 105 are here copied from | 9 | 15.8 |
| :--- | :--- | :--- | page 48 of the table. It will, therefore, be assumed $10 \quad 17.5$ that the value of D is 105 , and, for what is said $20 \quad 35.0$ below, the student should refer to these propor- $30 \quad 52.5$ tional parts. Such being the case, the formula $40 \quad 70.0$ given at the beginning of the preceding article $50 \mid 87.5$ may be written,

$$
s=\frac{(L-i) \times 60}{105}
$$

The value $L-l$, which is the difference between the given logarithm and the logarithm of the degrees and minutes (A) in the required angle, is readily determined, as already explained. It is only necessary to repeat that, if the function is a cofunction, $l-L$ should be used instead of $L-l$. Since the numbers on the right of the vertical line are the products of $\frac{105}{60}$ by the numbers on the left, it follows that the numbers on the left are the products of those on the right by $\frac{60}{105}$. Thus, $52.5=\frac{105}{80} \times 30$, and $30=52.5 \times \frac{50}{105}$ $=\frac{52.5 \times 60}{105}$. Therefore, if $L-l$ is found among the numbers directly under 105, the value of s is the number on the left of the vertical column horizontally opposite $L-l$. For example, if $L-l=35$, then $s=20^{\prime \prime}$. If $L-l=16$, then
$s=9^{\prime \prime}$, the number 9 being opposite 15.8 , which, to the nearest unit, may be called 16 .

It will be remembered that the proportional parts opposite $10,20,30,40,50$, when divided by 10 (that is, when the period is moved one place to the left), give the products of $\frac{108}{60}$ by $1,2,3,4$, and 5 . From those parts we may, therefore, find by inspection the products of $\frac{105}{60}$ by all the digits from 1 to 9 ; and, in what follows, we shall proceed as if the products $1.75,3.50,5.25,7.00,8.75$ of $\frac{105}{60}$ by $1,2,3,4$, and 5 were actually printed in the table opposite those digits; that is, it will be assumed that the proportional parts run in this order: $1.75,3.50,5.25,7.00,8.75,10.5,12.3,14.0$, etc., up to 87.5 , the corresponding numbers on the left being, $1,2,3,4$, $5,6,7,8,9,10,20,30,40,50$. The proportional parts $1.75,3.50,5.25,7.00,8.75$ will be referred to as proportional parts found in the table, corresponding to $1,2,3,4$, and 5 seconds, respectively.

This being understood, the number s of odd seconds in the angle is determined as follows:

Rule.-Find $l, l^{\prime}, L-l$, and $l^{\prime}-l(=$ tabular difference, or D), as before. Look for the tabular difference D in the column of proportional parts. Look for $L-l$ in the column of proportional parts directly under D. If $L-l$ is found there, the number horizontally opposite it on the left of the vertical line is the required number of seconds s. If $L-l$ is not found under D, take the proportional part next lower, which call p. Find the difference between $L-l$ and p, and look among the proportional parts under D for this difference, or the part nearest to it, whether higher or lower. Call this part p'. Add the numbers horizontally opposite p and p^{\prime} on the left of the vertical line. The result will be the required number of seconds s.

Example 1.-Find the angle whose logarithmic tangent is I. $42822(=L)$.

Solution.- $l=1.42805, A=15^{\circ} 0^{\prime}, L-l=17, D=51$. Looking in the column marked p. p. for 51 , the number $17(=L-l)$ is found under it, horizontally opposite the number 20 on the left of the vertical column. Therefore, $s=20^{\prime \prime}$, and

$$
\mathrm{I} .42822=\log \tan 15^{\circ} 0^{\prime} 20^{\prime \prime} . \text { Ans. }
$$

Example 2.-- Find the angle whose logarithmic cosine is 1. $.52783(=L)$.

Solution.- $l=\mathbf{1} .52811, A=70^{\circ} 17^{\prime}, l-L=28, D=36$. The proportional part under 36 next lower than 28 is $24 ; 28-24=4$; the proportional part nearest 4 is 4.2 ; the number horizontally opposite 24 is 40 ; and the number horizontally opposite 4.2 is 7 ; hence, $s=40+7$ $=47^{\prime \prime}$, and therefore

$$
\overline{1} .52783=\log \cos 70^{\circ} 17^{\prime} 47^{\prime \prime} . \text { Ans. }
$$

Example 3.-Find the angle whose logarithmic sine is $\overline{\mathbf{1}} .66191(L)$.
Solution.- $\quad l=\overline{1} .66173 ; A=27^{\circ} 19^{\prime} ; L-l=18 ; D=24$. Looking in the p. p. column for 24 , the proportional part next lower than 18 is $16(=p)$, horizontally opposite which is $40.18-p=18-16$ $=2$. This difference is found among the proportional parts in the table (since it is the same as 20 with the decimal point moved one place to the left), and corresponds to $5^{\prime \prime}\left(=\frac{50}{10}\right)$. Therefore, $s=40+5$ $=45^{\prime \prime}$, and

$$
\overline{\mathbf{1}} .66191=\log \sin 27^{\circ} 19^{\prime} 45^{\prime \prime} . \text { Ans. }
$$

Example 4.-Find the angle whose logarithmic cotangent is $\overline{1} .00375(=L)$.

Solution.- $l=\overline{1} .00427 ; A=84^{\circ} 14^{\prime} ; l-L=52 ; D=126$. The proportional part under 126 next lower than 52 is $42(=p)$, which corresponds to $20^{\prime \prime} ; 52-42=10$. The proportional part nearest to 10 is $10.50\left(=\frac{105.0}{10}\right)$, which corresponds to $5^{\prime \prime}\left(=\frac{50}{10}\right)$. Therefore, $s=20^{\prime \prime}+5^{\prime \prime}=25^{\prime \prime}$, and $\overline{1} .00375=\log \cot 84^{\circ} 14^{\prime} 25^{\prime \prime}$. Ans.

EXAMPLES FOR PRACTICE

1. Find the angle whose logarithmic sine is $\bar{I} .78988$. Ans. $38^{\circ} 3^{\prime} 20^{\prime \prime}$
2. Find the angle whose logarithmic tangent is $\overline{1} .78540$.

Ans. $31^{\circ} 23^{\prime} 15^{\prime \prime}$
3. Find the angle whose logarithmic sine is $\overline{1} .77777$.

Ans. $36^{\circ} 49^{\prime} 56^{\prime \prime}$
4. Find the angle whose logarithmic cosine is $\overline{1} .87341$.

Ans. $41^{\circ} 39^{\prime} 21^{\prime \prime}$
5. Find the angle whose logarithmic cotangent is .31789 .

Ans. $25^{\circ} 41^{\prime} 9^{\prime}$
6. Find the angle whose logarithmic cosine is $\overline{1} .34567$.

Ans. $77^{\circ} 11^{\prime} 38^{\prime \prime}$
7. Find the angle whose logarithmic cotangent is $\overline{1} .00381$.
8. Find the angle whose logarithmic tangent is 1.00300 .

Ans. $84^{\circ} 1942^{\prime \prime}$
9. Find the angle whose logarithmic sine is $\overline{2} .99001$.

Ans. $5^{\circ} 36^{\prime} 30^{\prime \prime}$
32. Tabular Values Increased by 10.-To avoid calculating with negative characteristics, they may be made positive by increasing them by 10 . Thus, $\log \sin 27^{\circ}$ may be given as 9.65705 instead of $\overline{1} .65705$. The true logarithm is, therefore, $9.65705-10$; the -10 is usually not written, but is implied. In many books this method is used for the logarithms of trigonometric functions. In applying such logarithms to the solution of a problem, the characteristic in the final result must be corrected to agree with the conditions of the problem.

GENERAL PRINCIPLE OF INTERPOLATION

33. It has been explained in some of the preceding articles how to determine the natural or the logarithmic functions of any angle containing an odd number of seconds, and therefore, not found in the table; also, how to find the angle corresponding to a given function, when that function is not in the table but lies between two values given in the table. The operation by which such intermediate values are determined from a table is called interpolation. The values that are actually given in the table are called tabular values. For example, in the table of logarithmic functions already described are found all angles that lie between 0° and 90° and contain no odd seconds, and also the logarithmic sines, cosines, etc. of such angles; those are all tabular values. Angles containing odd seconds are not in the table, nor are their logarithmic functions. Both these angles and their functions are intermediate values, and it is in connection with them that interpolation is used.
34. The general principle of interpolation, to be explained presently, is of the utmost importance, and of great value to the engineer, whose work requires the frequent use of tables of various kinds. That principle, although only approximately true, applies to nearly all tables with which the engineer has to deal, and the student should endeavor to make himself thoroughly familiar with it.

Let a table be constructed on the general type shown on the margin, the left-hand column containing values of a quantity X, and the right-hand column corresponding values of some quantity whose values depend on the values of X. Thus, the values of X may be the natural numbers $1,2,3,4$, etc., and the corresponding values of F may be the logarithms or the square roots of those numbers; or the values of X may be angles, and those of F may be sines, cosines, etc.,
 either natural or logarithmic. So far as the principle of interpolation is concerned, it is immaterial what kind of quantity is represented by X, and what kind of quantity is tabulated under F. It should be stated, however, that the principle applies only to tables in which the differences between consecutive values of X and the differences between the corresponding values of F do not vary very rapidly.

Let x_{1} and x_{2}, as shown in the above general form, be two consecutive values of X given in the table, and f_{3} and f_{3} the corresponding values of F. Let x be a value of X lying between x_{3} and x_{2}, and f the corresponding value of F. Neither x nor f is in the table, but one of them is given, and the problem is to find the other by interpolation. For instance, if the table is one of natural tangents in which the angles increase by whole minutes, x_{1} and x_{2} may be, respectively, $31^{\circ} 42^{\prime}$ and $31^{\circ} 43^{\prime}$, and f_{1} and f_{3} their corresponding tangents; while x may be any angle between $31^{\circ} 42^{\prime}$ and $31^{\circ} 43^{\prime}$, and f its tangent. Either x may be given to find f; or f may be given to find x.

The quantity by which the tabular value x_{1} must be algebraically increased in order to obtain x will be called the increment of x_{1}, and denoted by $i\left(x_{3}\right)$, read increment of x_{1} (mathematicians use the notation Δx_{1}, read delta x_{1}). We have, then,

$$
\begin{equation*}
x=x_{1}+i\left(x_{1}\right) \tag{1}
\end{equation*}
$$

Using a similar notation for f_{1},

$$
\begin{equation*}
f=f_{1}+i\left(f_{2}\right) \tag{2}
\end{equation*}
$$

If x is given, $i\left(x_{1}\right)$ may be assumed as given, since $i\left(x_{1}\right)$ $=x-x_{3}$. Then $i\left(f_{1}\right)$ is determined by interpolation, as explained below, and f is found from formula 2. Similarly, if f is given, $i\left(f_{3}\right)$ is likewise given, and x is found by interpolation.

The difference, as $x_{3}-x_{1}$, of two consecutive values of X, will be called the interval of X; and that between two consecutive values of F, the interval of F. The notation $I\left(x_{1}\right)$. read interval of x_{1}, will be used to denote the interval $x_{2}-x_{1}$. Similarly, $I\left(f_{1}\right)$ will denote the interval $f_{3}-f_{1}$.

The principle of interpolation is this: The increments $i\left(x_{1}\right)$ and $i\left(f_{1}\right)$ are to each other as the corresponding intervals $I\left(x_{3}\right)$ and $I\left(f_{3}\right)$; or, algebraically,

$$
\begin{equation*}
\frac{i\left(x_{1}\right)}{i\left(f_{1}\right)}=\frac{I\left(x_{3}\right)}{I\left(f_{1}\right)} \tag{3}
\end{equation*}
$$

This formula is very easily remembered on account of its symmetry. The following, derived from it, serve, respectively, to find $i\left(f_{1}\right)$ when x is given, and $i\left(x_{1}\right)$ when f is given:

$$
\begin{align*}
& i\left(f_{3}\right)=I\left(f_{1}\right) \times \frac{i\left(x_{2}\right)}{I\left(x_{1}\right)} \tag{4}\\
& i\left(x_{1}\right)=I\left(x_{1}\right) \times \frac{i\left(f_{1}\right)}{I\left(f_{3}\right)} \tag{5}
\end{align*}
$$

The last two formulas may be stated in the form of a general principle, as follows: Either increment is equal to the corresponding interval multiplied by the ratio of the other increment to the other interval. It is easy to remember what the numerator of this ratio is, by noticing that the ratio is
always less than 1 , and that, since the increment is always less than the interval, the former must be the numerator and the latter the denominator. It should be noted that $i\left(x_{1}\right), i\left(f_{1}\right), I\left(x_{1}\right)$, and $I\left(f_{1}\right)$ may be expressed in any corr venient units, it being understood that $i\left(f_{1}\right)$, as determined from formula 4, is in the same units as $I\left(f_{3}\right)$; and that $i\left(x_{1}\right)$, as determined from formula 5 , is in the same units as $I\left(x_{1}\right)$. Thus, if the values of f_{3}, and f_{1} in the table are, respectively, 4.3476 and 4.3463 , then, $I\left(f_{2}\right)=f_{3}-f_{1}$ $=.0013$, or, if one ten-thousandth is taken as the unit, we may write $I\left(f_{1}\right)=13$. The value of $i\left(f_{1}\right)$, determined from formula 4, must be understood to express ten-thousandths. For instance, if $\frac{i\left(x_{1}\right)}{I\left(x_{1}\right)}=.3$, then, $i\left(f_{1}\right)=13 \times .3=3.9$ (tenthousandths) $=4$ (ten-thousandths), nearly.

The value of f is then found thus,

$$
\begin{aligned}
f_{1} & =4.3463 \\
i\left(f_{1}\right) & =\frac{4}{4} \\
f & =4.3467
\end{aligned}
$$

Usually, the correction $i\left(f_{1}\right)$ can be added to f_{1} mentally, in order to find f.

Example 1.-Find the logarithm of 57,846 by means of a five-place table giving the logarithms of numbers consisting of four figures.

Solution.-Only the mantissas will be considered, since the characteristics are determined by inspection. The given number lies between $57,840\left(=x_{1}\right)$ and $57,850\left(=x_{3}\right)$, whose logarithms are, respectively, $.76223\left(=f_{1}\right)$ and $.76230\left(=f_{3}\right)$. We have, therefore, expressing $f_{3}-f_{1}$, or $I\left(f_{1}\right)$, in units of the fifth order

$$
\begin{array}{rlrl}
x & =57846 & f_{3}=.76230 \\
x_{1} & =57840 & f_{1} & =\frac{.76223}{7} \\
i\left(x_{1}\right) & =\frac{I\left(f_{1}\right)}{}=- \\
I\left(x_{1}\right)=x_{3}-x_{1}=10
\end{array}
$$

Then (formula 4),

$$
\begin{gathered}
i\left(f_{1}\right)=7 \times \frac{6}{10}=4.2=4, \text { nearly } \\
f=\left\{\begin{array}{c}
f_{1} \\
+i\left(f_{1}\right)
\end{array}=\left\{\begin{array}{c}
.76223 \\
+4
\end{array}=.76227 .\right. \text { Ans. }\right.
\end{gathered}
$$

and

Example 2.-Find, by means of a five-place table, the number the mantissa of whose logarithm is .47693 .

Solutron.-Here $f(=.47693)$ lies between the tabular values $.47683\left(=f_{1}\right)$ and $.47698\left(=f_{3}\right)$, which are, respectively, the logarithms of $29,980\left(=x_{1}\right)$ and $29,990\left(=x_{3}\right)$. We have, then,

$$
\begin{array}{rlr}
r_{2} & =.47698 & x_{1}=29,990 \\
f & =.47693 & x_{1}=\frac{29,980}{10} \\
f_{1} & =.47683 & I\left(x_{1}\right)=\frac{15}{15}
\end{array}
$$

Then (formula 5),

$$
i\left(x_{1}\right)=10 \times \frac{10}{15}=7, \text { nearly }
$$

and

$$
x=x_{1}+i\left(x_{1}\right)=29,980+7=29,987 . \text { Ans. }
$$

This gives the significant figures of the number. The decimal point should be placed according to the characteristic of the given logarithm.

Example 3.-Find the angle whose natural tangent is $.56781(=1)$ by means of a table giving the natural tangents of angles varying by minutes.

Solution.-Here f is found to lie between $.56769\left(=\tan 29^{\circ} 35^{\circ}\right.$ $\left.=f_{1}\right)$ and $.56808\left(=\tan 29^{\circ} 36^{\prime}=f_{3}\right)$. Expressing $x_{3}-x_{1}$, or $I\left(x_{1}\right)$, in seconds, we have

$$
\begin{aligned}
& x_{3}=29^{\circ} 36^{\prime} \\
& x_{1}=29^{\circ} 35^{\prime} \\
& I\left(x_{1}\right)=60^{\prime \prime} \\
& \begin{aligned}
f_{3} & =.56808 \\
f & =.56781 \\
\boldsymbol{f}_{1} & =.56769 \\
I\left(f_{1}\right) & =39 \\
i\left(f_{1}\right) & =12
\end{aligned}
\end{aligned}
$$

Then (formula 5),

$$
i\left(x_{1}\right)=60^{\prime \prime} \times \frac{12}{39}=18^{\prime \prime}, \text { nearly }
$$

and

$$
x=x_{1}+i\left(x_{1}\right)=29^{\circ} 35^{\prime} 18^{\prime \prime} . \text { Ans. }
$$

Example 4.-In Searles' field book is given a table of lengths of sres for different degrees of curvature. Part of it is as follows (lengths in feet):

Degree of Curve $(=X)$	Length of Arc for One Station $(=F)$
$10^{\circ} 10^{\prime}$	100.135
$10^{\circ} 20^{\prime}$	100.136
$10^{\circ} 30^{\prime}$	100.140

Find the length of the arc between two stations for a $10^{\circ} 26^{\prime}$ curve

Solution.-Here we have, $x=10^{\circ} 26^{\prime}$, which lies between $10^{\circ} 20$ $\left(=x_{1}\right)$ and $10^{\circ} 30\left(=x_{2}\right)$. Expressing $I\left(x_{1}\right)$ and $i\left(x_{1}\right)$ in minutes, and $I\left(f_{1}\right)$ and $i\left(f_{1}\right)$ in thousandths, we have $I\left(x_{1}\right)=10, i\left(x_{1}\right)=6$, $I\left(f_{1}\right)=140-136=4$.

Therefore (formula 4),

$$
i\left(f_{1}\right)=4 \times \frac{6}{10}=2, \text { nearly }
$$

and

$$
f=f_{1}+i\left(f_{1}\right)=\left\{\begin{array}{c}
100.136 \\
+2
\end{array}\right\}=100.138 . \text { Ans. }
$$

In all simple cases like this the operations can be performed mentally and very rapidly.

EXAMPLES FOR PRACTICE

1. From the following table, find, by interpolation, the cube root of 347.3 and that of 349.7 .

Number	Cube Root
347	7.0271
349	7.0338
350	7.0406
	7.0473

Ans. $\left\{\begin{array}{l}7.0291 \\ 7.0453\end{array}\right.$
2. Find, from the following table, the diameter of a circle whose circumference is 63.57318 .

Diameter	Circumference
20.1	63.14601
20.2	63.46017
20.3	63.77433

Ans. 20.236

SOLUTION OF RIGHT TRIANGLES

35. Fundamental Equations.-Let $A B C$, Fig. 9, be a right triangle, in which A, B, and C are the angles and a, b, and c are the lengths of the sides, c being the hypotenuse. Since A and B are complementary angles, we have

$$
\begin{array}{ll}
\sin A=\cos B & \tan A=\cot B \\
\cos A=\sin B & \cot A=\tan B
\end{array}
$$

Also, from the definitions of the trigonometric functions, $\sin A=\frac{a}{c}, \tan A=\frac{a}{b}, \cos B=\sin A=\frac{a}{c}, \cot A=\frac{b}{a} ;$

Fig. 9
whence, expressing the value of a from each of these equations,

$$
\begin{align*}
& a=c \sin A \\
& a=b \tan A \\
& a=c \cos B \\
& a=b \cot B \tag{4}
\end{align*}
$$

From formulas 1 and $\mathbf{3}$, the following values are found for c :

$$
\begin{align*}
& c=\frac{a}{\sin A}=a \csc A \tag{5}\\
& c=\frac{a}{\cos B}=a \sec B \tag{6}
\end{align*}
$$

Finally, from geometry,

$$
\begin{equation*}
c^{2}=a^{2}+b^{2} \tag{7}
\end{equation*}
$$

Of the trigonometric formulas just given, it is only necessary to commit to memory formulas 1 and $\mathbf{2}$, as the others are immediate consequences of these. These two formulas may be stated in words thus:

Either leg of a right triangle is equal to the hypotenuse multiplied by the sine, or to the other leg multiplied by the tangent. of the opposite angle.

It should be observed that, since a is either leg whose opposite angle is A, and adjacent angle B, the letters a and b may be interchanged in the preceding formulas, provided that A and B are likewise interchanged. Thus, by interchanging a and b, A and B in formulas $\mathbf{1}$ and 5 , we obtain,

$$
b=c \sin B, c=\frac{b}{\sin B}=b \csc B
$$

36. Solution of a Right Triangle. - In general, when some of the parts of a triangle are given, the process of determining the others is called solving the triangle, or the solution of the triangle. The latter expression is applied also to the triangle determined in accordance with the given data.

In order to solve a right triangle, two parts, one at least of which should be a side, must be known in addition to the right angle. The two parts may be either (1) one side and one of the acute angles, or (2) two sides.
37. Case 1.-Given a Side and an Acute Angle. The other acute angle is found from the relation $A+B=90^{\circ}$, and the other two sides by means of formulas 1 to $\mathbf{7}$, Art. 35, as illustrated by the following examples:

Example 1.-In Fig. 10, the length of the hypotenuse $A B$ of the right triangle $A C B$, right-angled at C, is 24 feet, and the angle A is $29^{\circ} 31^{\prime}$; find the sides $A C$ and $B C$, and the angle B.

Fig. 10

Note. - When working examples of this kind, make a sketch and mark the known parts, as shown in the figure.

Solution Without Logarithms.- $B=90^{\circ}-A=90^{\circ}-29^{\circ} 31^{\circ}$ $=60^{\circ} 29$. By formula 3, Art. 35, interchanging a and b, and A and B,
$b=c \cos A=24 \cos 29^{\circ} 31^{\prime}=24 \times .87021=20.89 \mathrm{ft}$., nearly.
By formula 1, Art 35,

$$
a=24 \sin 29^{\circ} 31^{\prime}=24 \times .49288=11.82 \mathrm{ft} . \text {, near! } \mathrm{y} .
$$

$$
\text { Ans. }\left\{\begin{array}{l}
B=60^{\circ} 29 \\
A C=20.89 \mathrm{ft} . \\
B C=11.82 \mathrm{ft} .
\end{array}\right.
$$

Solution by Logarithms.-By formulas 8 and 1, Art. 35,

$$
\begin{align*}
& b=24 \cos 29^{\circ} 31^{\prime} \tag{1}\\
& a=24 \sin 29^{\circ} 31^{\prime}
\end{align*}
$$

LOGARITHMS FOR (1)

$$
\begin{equation*}
\log 24=1.38021 \tag{2}
\end{equation*}
$$

$\log \cos 29^{\circ} 31^{\prime}=\overline{1} .93963$

$$
\begin{aligned}
\log b & =1.31984 \\
b & =20.89
\end{aligned}
$$

Logarithms for (2)
$\log 24=1.38021$
$\log \sin 29^{\circ} 31^{\prime}=1.69256$

$$
\log a=1.07277
$$

$$
a=11.82
$$

In working examples of this kind, the two logarithmic functions should be taken from the table at the same time. It saves time and space to arrange the operations as follows:

$$
\begin{aligned}
\log a & =1.07277 ; a=11.82 \\
\log \sin 29^{\circ} 31^{\prime} & =\overline{1} .69256 \\
\log 24 & =1.38021 \\
\log \cos 29^{\circ} 31^{\prime} & =\overline{1} .93963 \\
\log b & =\overline{1.31984} ; b=20.89 . \text { Ans. }
\end{aligned}
$$

The logarithm of 24 is written first, and then the logarithms of the sine and cosine, one over, the other under, $\log 24$, the addition being performed upwards in one case and downwards in the other.

Example 2.-One leg of a right triangle $A C B$, Fig. 11, is 37 feet
 7 inches long; the angle opposite is $25^{\circ} 33^{\prime} 7^{\prime \prime}$; what are the lengths of the hypotenuse and the side adjacent, and what is the other angle?

Solution Without Logarithms. $B=90^{\circ}-25^{\circ} 33^{\prime} 07^{\prime \prime}=64^{\circ} 26^{\prime} 53^{\prime \prime}$. Reducing 37 ft .7 in . to ft ., we have, $a=37.583 \mathrm{ft}$., nearly.
By formula 5, Art. 35,

$$
c=\frac{37.583}{\sin 25^{\circ} 33^{\prime} 07^{\prime \prime}}=\frac{37.583}{.43133}=87.133 \mathrm{ft.} \text {, nearly. }
$$

By formula 4, Art. 35, interchanging a and b, and A and B, $b=a \cot A=37.583 \times 2.09166=78.611 \mathrm{ft}$., nearly .

Solution by Logarithms.-As before,

$$
\text { Ans. }\left\{\begin{array}{l}
B=64^{\circ} 26^{\prime} 53^{\prime \prime} \\
A C=78.611 \\
A B=87.133 \mathrm{ft}
\end{array}\right.
$$

$$
c=\frac{37.583}{\sin 25^{\circ} 33^{\prime} 7^{\prime \prime}}
$$

Also,

$$
b=37.583 \cot 25^{\circ} 33^{\prime} 7^{\prime \prime}
$$

$$
\log b=1.89548 ; b=A C=78.611 \mathrm{ft}
$$

$$
\log \cot 25^{\circ} 33^{\prime} 7^{\prime \prime}=.32049
$$

$$
\log 37.583=1.57499
$$

$$
\log \sin 25^{\circ} 33^{\prime} 7^{\prime \prime}=\overline{1} .63481
$$

$$
\log c=1.94018 ; c=A B=87.132 \mathrm{ft} \text {. Ans. }
$$

It is to be noted that the value of $A B$ given by logarithms is different in the fifth figure from the result given by natural functions. This is due to the fact that in using five-place tables the results can be depended on to be correct to only four figures, and to have a very close approximation to the fifth figure.

[^2]38. Case II.-Given Two Sides. If the given sides are the two legs a and b, A is found from formula 2, Art. 35, and B, from the relation $A+B=90^{\circ}$. To find c, tormula 7, Art. 35, may be used; but, unless a and b are convenient numbers to square, it is preferable to determine c by

Fig. 12 formula 5, Art. 35, after having determined A.

If the given sides are the hypotenuse c and one leg, say a, the

Fig. 13
angle A is found by formula 1, Art. 35, B from the relation $A+B=90^{\circ}$, and b from either formula 4, or formula $\mathbf{7}$, Art. 35. The latter gives

$$
b=\sqrt{c^{2} \rightarrow a^{2}}
$$

Unless c and a are convenient numbers to square, the quantity under the radical should be replaced by the product $(c+a)(c-a)$, and then

$$
\log b=\frac{1}{2}[\log (c+a)+\log (c-a]
$$

from which b can be readily determined.
Example 1.-Given a and b as shown in Fig. 12, to find A, B, and c
Solution.-Formula 2, Art. 35,

$$
\begin{aligned}
& \tan A=\frac{a}{b}=\frac{15}{18}=\frac{5}{6}=.83333 \\
& A=39^{\circ} 48^{\prime} 20^{\prime \prime} \\
& B=90^{\circ}-39^{\circ} 48^{\prime} 20^{\prime \prime}=50^{\circ} 11^{\prime} 40^{\prime \prime}
\end{aligned}
$$

Formula 5, Art. 35,

$$
\begin{aligned}
c=\frac{15}{\sin A} & =\frac{15}{\sin 39^{\circ} 48^{\prime} 20^{\prime \prime}} \\
\log 15 & =1.17609 \\
\log \sin 39^{\circ} 48^{\prime} 20^{\prime \prime} & =1.80630 \\
\log c & =1.36979 ; c=23.431
\end{aligned}
$$

Otherwise,
$c=\sqrt{15^{3}+18^{3}}=\sqrt{(3 \times 5)^{2}+(3 \times 6)^{2}}=3 \sqrt{5^{2}+6^{3}}=3 \sqrt{61}=23.431$.
Ans.
Example 2.-The hypotenuse c and the leg b having the values shown in Fig. 13, find the acute angles and the leg a.

Solution.-By formula 3, Art. 35, interchanging a and b, A and B,

$$
\cos A=\frac{b}{c}=\frac{305.45}{596.76}
$$

$$
\begin{array}{rlrl}
\log 305.45 & =2.48494 & 90^{\circ} & =89^{\circ} 59^{\prime} 60^{\prime \prime} \\
\log 596.76 & =2.77580 & A & =59^{\circ} 12^{\prime} 46^{\prime \prime} \\
\log \cos A & =\overline{1} .70914 ; A=59^{\circ} 12^{\prime} 46^{\prime \prime} & B & =30^{\circ} 47^{\prime} 14^{\prime \prime}
\end{array}
$$

Formula 2, Art. 35,

$$
a=305.45 \tan 59^{\circ} 12^{\prime} 46^{\prime \prime}
$$

$$
\log 305.45=2.48494
$$

$\log \tan 59^{\circ} 12^{\prime} 46^{\prime \prime}=.22489$

$$
\log a=2.70983 ; a=512.66
$$

Otherwise, $\quad a=\sqrt{c^{3}-b^{3}}=\sqrt{(c+b)(c-b)}$

$$
\begin{aligned}
& c+b=902.21 \quad \log (c+b)=2.95531 \\
& c=596.76 \quad \log (c-b)=2.46435 \\
& b=305.45 \\
& c-b=291.31 \\
& \text { 2) } 5.41966 \\
& \log a=2.70983 ; a=512.66 \\
& \text { Ans. }\left\{\begin{array}{l}
A=59^{\circ} 12^{\prime} 46^{\prime \prime} \\
B=30^{\circ} 47^{\prime} 14^{\prime \prime} \\
a=512.66 \mathrm{ft} .
\end{array}\right.
\end{aligned}
$$

EXAMPLES FOR PRACTICE

1. In a right triangle $A C B$, right-angled at C (let the student make a sketch), the hypotenuse $A B=40$ inches and angle $A=28^{\circ}$ $14^{\prime} 14^{\prime \prime}$; solve the triangle.

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Angle } B=61^{\circ} 45^{\prime} 46^{\prime \prime} \\
A C=35.239 \mathrm{in.} \\
B C=18.925 \mathrm{in} .
\end{array}\right.
$$

2. In a right triangle $A C B$, right-angled at C, the side $B C$ $=10$ feet 4 inches; if angle $A=26^{\circ} 59^{\prime} 6^{\prime \prime}$, what are the other parts?

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Angle } B=63^{\circ} 0054^{\prime \prime} \\
A B=22 \mathrm{ft.} 91 \\
A C=20 \mathrm{ft.} 31 \mathrm{in} \text { in., nearly } \\
A \text { nearly }
\end{array}\right.
$$

3. In a right triangle $A C B$, the hypotenuse $A B=60$ feet and the side $A C=22$ feet; solve the triangle. \quad Angle $A=68^{\circ} 29^{\prime} 22^{\prime \prime}$ Ans. $\left\{\begin{array}{l}\text { Angle } B=21^{\circ} 30^{\prime} 38^{\prime \prime} \\ B\end{array}\right.$ $B C=55.821 \mathrm{ft}$.
4. In a right triangle $A C B$, right-angled at C, side $A C=.364$ foot and side $B C=.216$ foot; solve the triangle.

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Angle } A=30^{\circ}{ }^{\circ} 1^{\prime} 6^{\prime \prime} \\
\text { Angle } B=59^{\circ} 18^{\prime \prime} 54^{\prime \prime} \\
A B=.423 \mathrm{ft} .
\end{array}\right.
$$

PRACTICAL EXAMPLES

39. When an object is viewed by an observer, the object may be either above or below a horizontal plane passing through the observer's eye. The angle made with this plane by the line of sight, that is, by the line from the observer's eye to the object, is called an angle of elevation if the object is above that plane; an angle of depression if the object is below that plane. The object is said to be seen at an angle of elevation or at an angle of depression according as it is above or below the plane in question. For example, a lighthouse is seen from a ship at sea at angle of elevation, while the ship is seen from the lighthouse at an angle of depression.

Example 1.-The angle of elevation of the top of a vertical cliff, CB, Fig. 14, at a point 100 feet from its base, is $36^{\circ} 50^{\prime}$; find the height of the cliff.

Solution.-By formula 2, Art. 35, required height $=a=100 \times \tan 36^{\circ} 50^{\prime}=100$ $\times .74900=74.9 \mathrm{ft}$. Ans.

PIG. 14

Example 2.-A statue is placed on the top of a column. At a point on the ground 130 feet from the base of the column, the angle of elevation of the top of the statue and that of the column are $43^{\circ} 38$ and $40^{\circ} 58^{\prime}$, respectively; find the height of the statue and column. (Let the student make a sketch.)

Solution.-Let $h=$ height of column; $h^{\prime}=$ height of column and statue.

Then,
Whence,

$$
\tan 40^{\circ} 58^{\prime}=\frac{h}{130}
$$

Also,

$$
h=130 \times \tan 40^{\circ} 58^{\prime}=112.875
$$

$$
\tan 43^{\circ} 38^{\prime}=\frac{h^{\prime}}{130}
$$

Whence, $\quad k^{\prime}=130 \times \tan 43^{\circ} 38^{\prime}=123.942$
Therefore, the height of the column is 112.875 ft . Ans.
The height of the statue is $123.942-112.875=11.07 \mathrm{ft}$. Ans.
Example 3.-The top and bottom of a lighthouse $L T$, Fig. 15,

Fig. 15 located on a hill $M N$, are observed from a ship S with a sextant. It is found that the angles of elevation of T and L are, respectively, $6^{\circ} 27^{\prime}$ and $5^{\circ} 15^{\prime}$. If the height of the lighthouse is 128 feet, and the surface of the sea is assumed to be plane, what are: (a) the height $h(=C L)$ of the hill above sea level? (b) the horizontal distance $d(=S C)$ of the ship from the lighthouse?

Solution.-(a) In the right triangles L.CS and TCS, we have $d=h \cot 5^{\circ} 15^{\prime}$, and $d=(h+128) \cot 6^{\circ} 27^{\prime}$
Equating the two values of d,

$$
h \cot 5^{\circ} 15^{\prime}=(h+128) \cot 6^{\circ} 27^{\prime}
$$

whence,

$$
h=\frac{128 \cot 6^{\circ} 27^{\prime}}{\cot 5^{\circ} 15^{\prime}-\cot 6^{\circ} 27^{\prime}}=\frac{128 \times 8.84551}{10.8829-8.84551}=555.72 . \text { Ans. }
$$

(b) From (a),

$$
d=h \cot 5^{\circ} 15^{\prime}=555.72 \cot 5^{\circ} 15^{\prime}=6,047.8 \mathrm{ft} . \quad \text { Ans. }
$$

Example 4.-In Fig. 16, $P_{1} T_{2}$ is the track of a railroad that curves into a circular arc $T_{1} M T_{3}$ at T_{3}. The chord $T_{1} T_{\mathrm{a}}$ of the whole arc is found, by measurement, to be 764.7 feet, and the chord $T_{\mathrm{a}} M$ of half the arc, 393.2 feet. Find: (a) the external angle I between $P_{2} T_{2}$ and $P_{1} T_{1}$ produced; (b) the radius $r\left(=C T_{1}\right)$ of the curve $T_{1} M T_{\mathrm{s}}$.

Solution.-(a) Draw $C T_{1}, C M$, and $C T_{n}$, as shown. Since $P_{1} O$ and $P_{s} O$ are tangent to the circle, the angles $O T_{3} C$ and $O T, C$ are right angles; and as the sum of the angles

Fig. 16 in the quadrilateral $O T_{1} C T_{3}$ is four right angles, we must have $X+T_{1} O T_{3}=2$ right angles $=180^{\circ} ;$ we have also, $I+T_{1} O T_{\mathrm{s}}=180^{\circ} ;$ therefore, $I=X$. The line $C M$ bisects both the angle X and the chord $T_{1} T_{3}$. As the angle $M T_{1} T_{\mathrm{s}}$ is measured by one-half the
$\operatorname{arc} M T_{3}$, it is equal to one-half of $M C T_{3}$, or to $\frac{1}{8} X$. The right triangle $M T_{\mathbf{2}} N$ gives

$$
\cos \frac{1}{4} X\left(=\cos M T_{1} N\right)=\frac{T_{1} N}{T_{1} M}=\frac{\frac{1}{1} T_{1} T_{3}}{T_{1} M}=\frac{382.35}{393.2}
$$

whence, by either logarithms or natural functions (logarithms are far preferable in this case),

$$
\frac{1}{4} X=13^{\circ} 29^{\prime} 20^{\prime \prime} ; I(=X)=4 \times 13^{\circ} 29^{\prime} 20^{\prime \prime}=53^{\circ} 57^{\prime} 20^{\prime \prime} . \text { Ans. }
$$

(b) In the right triangles $C T_{\mathrm{s}} N$,

$$
r\left(=C T_{1}\right)=\frac{T_{1} N}{\sin \frac{1}{2} X}=\frac{382.35}{\sin 26^{\circ} 58^{\prime} 40^{\prime \prime}}=842.83 \mathrm{ft} . \text { Ans. }
$$

Example 5.-Fig. 17 is a cross-section of a dam, the dimensions being as shown. The batter of the face $A B$ is 30 in 100 , or .3. Find: (a) the width $w_{1}(=A B)$ of the face; (b) the batter of the back $C D$; (c) the width $w_{2}(=C D)$ of the back.

Note.-By the batter of one of the sides of an inclined wall is meant the rate at which that side deviates from the vertical. Thus, in Fig. 17, the side $B A$ deviates from the vertical by the amount $M N$ in the vertical distance $B N$ or by the amount $A P$ in the distance $B P$. Either of the ratios $\frac{M N}{B N}$ or $\frac{A P}{B P}$ expresses the batter of the wall. A batter of 30 in 100 is the same as $\frac{30}{100}$, or .3 . It will be noticed that the batter is equal to the tangent of the inclination of the side of the wall to the vertical.

FIG. 17

Solution.-(a) As just explained, $\tan A B P=$ batter $=.3$; whence $A B P=16^{\circ} 41^{\prime} 58^{\prime \prime}$. The triangle $A B P$ gives,

$$
w_{1}=\frac{B P}{\cos A B P}=\frac{95}{\cos 16^{\circ} 41^{\prime} 58^{\prime \prime}}=99.182 \mathrm{ft} . \text { Ans. }
$$

(b) The triangle $A P B$ gives,

$$
A P=P B \tan A B P=95 \times .3=28.5 \mathrm{ft} .
$$

From the figure,

$$
Q D=A D-A P-P Q=54-28.5-10.75=14.75 \mathrm{ft} .
$$

The triangle $C Q D$ gives,
batter of $C D=\tan Q C D=\frac{Q D}{Q C}=\frac{14.75}{95}=.15526$
or, say, 15.5 in 100 ; also, $Q C D=8^{\circ} 49^{\prime} 31^{\prime \prime}$. Ans.
(c) $w_{3}=\frac{C Q}{\cos Q C D}=\frac{95}{\cos 8^{\circ} 49^{\prime} 31^{\prime \prime}}=96.139 \mathrm{ft}$. Ans.

Example 6.-Fig. 18 represents a derrick; the dimensions being as shown, determine: (a) the inclination A of the boom $Q R$ to the vertical; (b) the inclination M of the $\operatorname{rod} P R$ to the vertical; (c) the point U at which the guy rope $P U$ must be tied, that it may make an angle of 60° with the horizontal; (d) the length $P U$ of the guy rope.

Solution.- (a) The triangle $R Q S$ gives,
$\sin A=\frac{Q S}{Q R}=\frac{28}{42}=\frac{2}{3} ;$ whence, $A=41^{\circ} 48^{\prime} 38^{\prime \prime}$. Ans.
(b) The same triangle gives,

$$
R S=\sqrt{(42+28)(42-28)}=\sqrt{70 \times 14}=31.305
$$

The triangle $P T R$ gives,
$R T=R S-S T=R S-Q P=31.305-11.5=19.805 \mathrm{ft}$.

Fig. 18
$\tan M=\frac{P T}{R T}=\frac{28}{19.805^{\prime}} ;$ whence, $M=54^{\circ} 43^{\prime} 38^{\prime \prime}$. Ans.
(c) In the triangle $P O U$,

$$
O U=O P \cot 60^{\circ}=15 \cot 60^{\circ}=8.660 \mathrm{ft} . \text { Ans. }
$$

(d) In the same triangle,

$$
P U=\frac{O P}{\sin 60^{\circ}}=\frac{15}{\sin 60^{\circ}}=17.320 \mathrm{ft} . \text { Ans. }
$$

EXAMPLES FOR PRACTICE

1. In order to determine the distance C, Fig. 19, across an intervening stream, a line $C A$, at right angles to $C B$, was measured; the angle $C A B$ was also measured, and found to be $50^{\circ} 16^{\prime}$. If $C A$ $=100$ feet, what is the distance $C B$? Ans. $C B=120.31 \mathrm{ft}$.
2. A ship was observed from the top of a lighthouse under an angle of depression of 50°; if the top of the lighthouse is 250 feet above sea level, what was the horizontal distance of the ship from the lighthouse?
3. From two points P_{1}, P_{3}, Fig. 20, assumed to be on the same horizontal line, the angles of elevation of the top O of a column were found to be as shown. If $P_{1} P_{2}=300$ feet, and the points P_{1} and P_{8} are 9 feet higher than the base of the column, find: (a) the height h ($=O H$) of the column; (b) the horizontal distance d from P_{1} to the axis of the column.

$$
\text { Ans. }\left\{\begin{array}{l}
(a) h=366.77 \mathrm{ft} \\
(b) d=292.31 \mathrm{ft} .
\end{array}\right.
$$

Fig. 19

Fig. 20
4. A water pipe has a grade of 5.5 per cent. (that is, the pipe drops or rises 5.5 feet in every hundred feet measured horizontally); find: (a) the inclination of the pipe to the horizontal; (b) the length of pipe required for a horizontal distance of 2,764 feet.

Ans. $\left\{\begin{array}{l}\text { (a) } 3^{\circ} 8^{\prime} 54^{\prime \prime} \\ (b) \\ \text { (}) \\ 2,768.2 \mathrm{ft} .\end{array}\right.$
5. The face $A B$, Fig. 17, and back $C D$ of a dam 80 feet high are to have a batter of 26 and 12 in 100 , respectively; if the base $A D$ is to be 45 feet wide, find: (a) the angles A and D at the base; (b) the width $B C$ of the top.

Ans. $\left\{\begin{array}{l}\text { (a) } A=75^{\circ} 25^{\prime} 33^{\prime \prime}, D=83^{\circ} 9 \prime 26^{\prime \prime} \\ \text { (b) } B C=14.6 \mathrm{ft} .\end{array}\right.$
6. Show that the base of an isosceles triangle is equal to twice one of the equal sides multiplied by the sine of one-half the vertical angle (angle opposite base).
7. A railroad curve $A B C$, Fig. 21, radius 1,500 feet, subtends a central angle of $49^{\circ} 13^{\prime}$. (a) Find the length of the chord $A C$. (b)

Fre. 21 What will be the error in taking the length of the chord for the length of the arc? (Determine the latter length by the rules of geometry).

Ans. $\left\{\begin{array}{l}(a) A C=1,249.2 \mathrm{ft} \text {. } \\ (b) 39.3 \mathrm{ft} .\end{array}\right.$
$\left\{\begin{array}{l}\text { (a) } A C= \\ (b) 39.3 \mathrm{ft} .\end{array}\right.$

2

PLANE TRIGONOMETRY

(PART 2)

Serial 779B

LOGARITHMIC FUNCTIONS OF SMALL ANGLES

1. Angles less than 3° are of comparatively rare occurrence in practice. When, however, they do occur, and they contain odd seconds, their logarithmic sines, tangents, and cotangents cannot be accurately determined by the general formulas and rules given in Plane Trigonometry, Part 1. These functions are found from a special table, which covers the first three pages of the general table of logarithmic functions furnished with this Course. These pages differ from the others in several respects, namely:
(a) The column of seconds on the left, marked " at the top, gives the total number of seconds in all angles between 0° and 3°, at intervals of 1 minute. Thus, on page 43 , the number 6,360 in the column of seconds is horizontally opposite 46 in the minute column, and is, therefore, the total number of seconds in $1^{\circ} 46^{\prime}$.
(b) The column headed S T, between the sine and the tangent column, contains the values of $\log \tan A-\log A^{\prime \prime}$, and $\log \sin A-\log A^{\prime \prime}$ for all values of A between 0° and 3°, varying from minute to minute; $A^{\prime \prime}$ is the total number of seconds in the angle A. The first four figures of these differences are common to the tangent and the sine and are printed near the head of the column; the other two figures are printed under S for the sine and under T for the tangent. The two figures corresponding to any angle are horizontally opposite the total number of seconds in the
angle, this total number of seconds being given in the lefthand column. Thus, for $1^{\circ} 45^{\prime}\left(=6,300^{\prime \prime}\right)$, the value of S, or of $\log \sin 1^{\circ} 45^{\prime}-\log 6,300$, is 6.68551 ; and the value of T, or of $\log \tan 1^{\circ} 45^{\prime}-\log 6,300$, is 6.68571 .
(c) Next to the cotangent column, there is a column marked C , containing the values of $-T$. The first four figures of these values are common to all angles between 0° and 3°, and are printed but once; the other two are printed horizontally opposite the number of seconds in the corresponding angles. Thus, for $1^{\circ} 51^{\prime}\left(=6,660^{\prime \prime}\right)$, the value of C is 5.31427 . The values of S, T, and C will here be referred to as corrections.

2. To Find the Logarithmic Sine or Tangent of an

 Angle Between 0° and $\mathbf{3}^{\circ}$. -If there are no odd seconds in the angle, the logarithm may be at once taken from the table, as in Plane Trigonometry, Part 1. Here it will be assumed that the angle contains a number of odd seconds. Let the angle be denoted by A, and the total number of seconds in it by $A^{\prime \prime}$; that is, let $A^{\prime \prime}$ be the angle reduced to seconds. (See Art. 1.)Rule. -Open the table at the page headed by the number of degrees in the given angle. Look in the minute column for the number of minutes nearest (whether greater or less) to the number of odd minutes and seconds in the given angle. (Thus, if the given angle is $2^{\circ} 36^{\prime} 40^{\prime \prime}$, look for $2^{\circ} 37^{\prime}$; if the given angle is $2^{\circ} 36^{\prime} 21^{\prime \prime}$, look for $2^{\circ} 36^{\prime}$.) Take from the column headed S T the correction horizontally opposite the number of minutes found as just described, using the correction under S for the sine, and that under T for the tangent. Look in the column of seconds at the left of the page for the number horizontally opposite the number of minutes in the given angle, and to it add the number of odd seconds in that angle. The result will be the total number of seconds $\left(A^{\prime \prime}\right)$ in the given angle. Find the logarithm of this number of seconds from the table of logarithms of numbers. Add to this logarithm the correction found as above. The result will be the required logarithmic sine or tangent, according to the correction used.

Example 1.-To find the logarithmic sine of $1^{\circ} 3^{\prime} 45^{\prime \prime}(=A)$.
Solution.-Opening the table at page 43 (headed 1°), we look for 4^{\prime} in the minute column, since $3^{\prime} 45^{\prime \prime}$ is nearer to 4^{\prime} than to 3^{\prime}. Horizontally opposite 4 , and in the column headed S T, the sine correction $\overline{6} .68555(=S)$ is found. We now look in the minute column for the number of minutes (3) in the given angle; horizontally opposite it in the left-hand column is the number 3,780 , number of seconds in $1^{\circ} 3^{\prime}$; adding $45^{\prime \prime}$, we obtain $3,825\left(=A^{\prime \prime}\right)$ for the total number of seconds in the given angle.
that is,

$$
\begin{aligned}
\log A^{\prime \prime}=\log 3,825 & =3.58263 \\
S & =\overline{6} .68555 \\
\log \sin A & =\overline{2} .26818
\end{aligned}
$$

Example 2.-To find the logarithmic tangent of $2^{\circ} 36^{\prime} 17^{\prime \prime}$.
Solution.-On page 44, the correction for the tangent, opposite 36^{\prime}, is $\overline{6} .68587(=T)$. Number of seconds opposite 36^{\prime} in the left-hand column, 9,$360 ; A^{\prime \prime}=9,360+17=9,377$.

$$
\begin{aligned}
\log 9,377 & =3.97206 \\
T & =\overline{6} .68587
\end{aligned}
$$

$$
\log \tan 2^{\circ} 36^{\prime} 17^{\prime \prime}=\overrightarrow{\overline{2} .65793} . \text { Ans. }
$$

3. To Find the Logarithmic Cotangent of an Angle Between 0° and 3°.

Rule. -Find $C, A^{\prime \prime}$, and $\log A^{\prime \prime}$ exactly as in the last article, C being taken from the correction column next to the cotangent column. Subtract $\log A^{\prime \prime}$ from C. The result will be the required logarithmic cotangent.

Example.-To find the logarithmic cotangent of $1^{\circ} 52^{\prime} 37^{\prime \prime}$.
Solution.-On page 43, the correction under C, and horizontally opposite 53^{\prime}, is $5.31427 ; A^{\prime \prime}=6,720+37=6,757$.

$$
C=5.31427
$$

$\log A^{\prime \prime}=\log 6,757=3.82975$

$$
C-\log A^{\prime \prime}=\overline{1.48452}
$$

that is,

$$
\log \cot 1^{\circ} 52^{\prime} 37^{\prime \prime}=1.48452 . \text { Ans. }
$$

4. To Find the Logarithmic Tangent, Cosine, or Cotangent of an Angle Between 87° and 90°.-These functions also are to be taken from the first three pages of the table of logarithmic functions. The simplest way to proceed is to subtract the angle from 90° and look for the
corresponding complementary function as explained in Arts. 2 and 3. Thus, $\log \cos 88^{\circ} 55^{\prime} 38^{\prime \prime}$ is obtained by looking for $\log \sin \left(90^{\circ}-88^{\circ} 55^{\prime} 38^{\prime \prime}\right)=\log \sin 1^{\circ} 4^{\prime} 22^{\prime \prime}$.

EXAMPLES FOR PRACTICE

1. Find the logarithmic sine of $1^{\circ} 6^{\prime} 19^{\prime \prime}$.
2. Find the logarithmic sine of $0^{\circ} 2^{\prime} 41^{\prime \prime}$.
3. Find the logarithmic tangent of $2^{\circ} 56^{\prime} 57^{\prime \prime}$.
4. Find the logarithmic cotangent of $1^{\circ} 30^{\prime} 18^{\prime \prime}$.
5. Find the logarithmic cosine of $88^{\circ} 50^{\prime} 49^{\prime \prime}$.
6. Find the logarithmic tangent of $89^{\circ} 3^{\prime} 9^{\prime \prime}$.
7. Find the logarithmic cotangent of $88^{\circ} 0^{\prime} 25^{\prime \prime}$.

Ans. $\overline{2} .28532$
Ans. $\mathbf{4 . 8 9 2 4 0}$
Ans. $\overline{2} .71196$
Ans. 1.58049
Ans. $\overline{2} .30370$
Ans. 1.78151
Ans. $\overline{2} .54157$
5. To Find the Angle Corresponding to a Given Logarithmic Function, When the Function Lies Between Two of the Functions in the First Three Pages of the Table.-I. Sine and Tangent.-As explained in Art. 1, $\log \sin A=S+\log A^{\prime \prime}$; therefore,

$$
\begin{equation*}
\log A^{\prime \prime}=\log \sin A-S \tag{1}
\end{equation*}
$$

Likewise, when $\log \tan A$ is given,

$$
\begin{equation*}
\log A^{\prime \prime}=\log \tan A-T \tag{2}
\end{equation*}
$$

From these formulas is derived the following
Rule. -Find in the table the logarithm nearest to the given one. Take the correction horizontally opposite this logarithm, and subtract it from the given logarithm. The result will be the logarithm of the total number of seconds $\left(A^{\prime \prime}\right)$ in the given angle. Find the number corresponding to this logarithm, and reduce it to degrees, minutes, and seconds.

It is here assumed that the given function lies between two functions in the column marked $\log \sin$ or \log tan, as the case may be, at the top. If the names of the functions are at the bottom, the sine should be treated as in Plane

Trigonometry, Part 1; the tangent should be treated as if it were a cotangent, according to the directions to be given presently, and when the angle corresponding to that cotangent is found, it should be subtracted from 90°.
II. Cotangent.-Since $\log \cot A=C-\log A^{\prime \prime}($ Art. 3), we have

$$
\begin{equation*}
\log A^{\prime \prime}=C-\log \cot A \tag{3}
\end{equation*}
$$

From this formula is derived the following
Rule. - Find in the table the logarithmic function nearest the given cotangent. Take from the C column the correction horizontally opposite the logarithm just found, and from it subtract the given logarithmic cotangent. The result will be the logarithm of the total number of seconds in the angle.

Here, as before, it is assumed that the given cotangent lies between two of those marked \log cot at the top. If it lies between two logarithms in the column marked log cot at the bottom, it should be treated as if it were a tangent, and having found the angle corresponding to this tangent, it should be subtracted from 90° to obtain the required angle.

III. Cosine.

Rule.-If the given cosine lies between two of those in the column headed log cos, apply the general rule given in Plane Trigonometry, Part 1. If it lies between two of the logarithms in the column marked $\log \cos$ at the bottom, treat it as if it were a sine, find the angle corresponding to that sine as above, and subtract the result from 90°.

Example 1.-To find the angle whose logarithmic tangent is $\overline{2} .32803$.
Solution.-The logarithmic tangent nearest to $\overline{2} .32803$ is $\overline{2} .32711$, found in the column headed \log tan on page 43. The T correction horizontally opposite $\overline{2} .32711$ is $\overline{6} .68564$.

$$
\begin{aligned}
\log \tan A & =\overline{2} .32803 \\
T & =\overline{6} .68564 \\
\log A^{\prime \prime} & =\overline{3.64239}
\end{aligned}
$$

From the table of logarithms of numbers,

$$
A^{\prime \prime}=4,389^{\prime \prime}=1^{\circ} 13^{\prime} 9^{\prime \prime} . \text { Ans. }
$$

Example 2.-To find the angle whose logarithmic cotangent is 2.49567.

1 I. T 36F-1?

Solution.-The nearest logarithmic cotangent found in the table is 2.49488 . The number opposite this logarithm in the C column is 5.31442 .

$$
\begin{gathered}
C=5.31442 \\
\log \cot A=\frac{2.49567}{2.81875} ; \\
\log A^{\prime \prime}= \\
A^{\prime \prime}=659^{\prime \prime}=0^{\circ} 10^{\prime} 59^{\prime \prime} . \text { Ans. }
\end{gathered}
$$

Notr.-Angles are here given to the nearest whole second.
Example 3.-To find the angle whose logarithmic cosine is $\overline{2} .63723$.
Solution.-The nearest logarithm, $\overline{2} .63678$, is found on page 44 , in the column headed $\log \sin$. The given function is, therefore, to be treated as if it were a logarithmic sine, and the angle A, corresponding to this sine is to be subtracted from 90° to obtain the required angle A. The correction horizontally opposite $\overline{2} .63678$, in the S column, is $\overline{6} .68544$.

$$
\begin{aligned}
& \log \sin A_{1}=\overline{2} .63723 \\
& S=\overline{6} .68544 \\
& \log A_{1}^{\prime \prime}=3.95179 \\
& A_{1}=8,949^{\prime \prime}=2^{\circ} 29^{\prime} 9^{\prime \prime} \\
& A=90^{\circ}-2^{\circ} 29^{\prime} 9^{\prime \prime}=87^{\circ} 30^{\prime} 51^{\prime \prime} . \text { Ans. }
\end{aligned}
$$

EXAMPLES FOR PRACTICE

Verify the following values:
(a) $\overline{2} .17645=\log \sin 0^{\circ} 51^{\prime} 37^{\prime \prime}$ (e) $\overline{2} .48790=\log \cot 88^{\circ} 14^{\prime} 19^{\prime \prime}$
(b) $\overline{3} .94316=\log \sin 0^{\circ} 30^{\prime} 10^{\prime \prime}$ (f) $2.47608=\log \cot 0^{\circ} 11^{\prime} 29^{\prime \prime}$
(c) $\overline{2} .65783=\log \cos 87^{\circ} 23^{\prime} 36^{\prime \prime} \quad\left(g^{\prime}\right) \quad 1.31009=\log \tan 87^{\circ} 11^{\prime} 48^{\prime \prime}$
(d) $\overline{2} .58349=\log \tan 2^{\circ} 11^{\prime} 41^{\prime \prime}$ (h) $\overline{3} .95377=\log \cos 89^{\circ} 29^{\prime} 6^{\prime \prime}$
6. Use of the Column of Seconds for Obtaining the Angle Corresponding to a Given Function.-In order to avoid confusing the student by too many rules, the reduction of $A^{\prime \prime}$ to degrees, minutes, and seconds was, in the preceding articles, effected by the ordinary rules of arithmetic, without any reference to the table. The following is a more expeditious method:

Let the given function lie between the functions of two consecutive angles, A_{3} and $A_{4}+1^{\prime}$. Then, the degrees and minutes in the required angle are those in A_{2}, and may be at once written down. The number in the column of seconds on the left, horizontally opposite the number of minutes in A_{1}, gives the total number of seconds in A_{3}. Denoting that
number by $A_{i}^{\prime \prime}$ and the number of odd seconds in the required angle by s, we have

$$
s=A^{\prime \prime}-A_{2}^{\prime \prime}
$$

Example.-To find the angle whose logarithmic tangent is $\overline{2} .30217$.
Solution.-The given function lies between $\overline{2} .29629$ and $\overline{2} .30263$. The angle corresponding to the first of these two functions is $1^{\circ} 8^{\prime}$ $\left(=A_{1}\right) ; A_{2}^{\prime \prime}=4,080^{\prime \prime}$.

$$
\begin{aligned}
\log \tan A & =\overline{2} .30217 \\
T & =\overline{6} .68563 \\
\log A^{\prime \prime} & =\overline{3.61654} ; A^{\prime \prime}=4,136 \\
s & =A^{\prime \prime}-A_{3}^{\prime \prime}=4,136-4,080=56^{\prime \prime} \\
A & =A_{1}+s=1^{\circ} 8^{\prime} 56^{\prime \prime} . \text { Ans. }
\end{aligned}
$$

The subtraction $A^{\prime \prime}-A_{2}^{\prime \prime}$ can usually be effected mentally.

EXAMPLES FOR PRACTICE

Apply the method just described to the Examples for Practice given after Art. 4.

GENERAL TRIGONOMETRIC FORMULAS

ANGLES AND THEIR TRIGONOMETRIC FUNCTIONS

7. Angle of Any Magnitude. - In trigonometry, an angle is considered as being generated by a straight line turning about one of its ends, which is the vertex of the angle. In this motion, any point in the turning line describes a circular are, whose number of degrees is the measure of the angle. The turning line is called the generating line. The position that this line occupies before it begins to turn, and from which arcs are measured, is called the initial
 line, or the initial position of the generating line; and the position it occupies after turning through a certain angle
is called the final position. In Fig. 1, for example, the initial position of the generating line is $O X$. The turning is supposed to take place about the point O and in a dire t. tion opposite to that in which the hands of a clock move. When the line turns from the position $O X$ to the final positions $O B, O C, O D, O E, O F$, it generates angles o^{1} $30^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}, 320^{\circ}$, respectively, as indicated or the figure. If the line makes a complete turn, so that it: final position coincides with its initial position $O X$, the angle generated is 360°.
8. Positive and Negative Angles.-When an angle is described by a line turning in a direction contrary to that

Fig. 2 in which the hands of a watch move, the angle is considered positive; if described in the opposite direction, it is considered negative. Refer-
ring to Fig. 2, the angle $X O B$, whose supplement is A, may be regarded as having been described in any of the following manners:
(a) By turning the generating line about O from the position $O X$ in the positive direction through $(180-A)$ degrees to the position $O B$.
(b) By turning the generating line about O in a positive direction through an angle of 180°, when it will be in the position $O C$, and then turning it back from $O C$ in the negative direction through the angle $-A$ (negative, because turned in the negative direction) into the position $O B$.
(c) By turning the generating line about O in the negative direction through the angle $-A$, into the position $O D$, and then turning it back in the positive direction through 180° into the position $O B$.

It is to be noticed that, however the angle $\left(180^{\circ}-A\right)$ may be regarded as described, the resulting angle $X O B$ is the same.
9. Quadrants.-Let $O X$, Fig. 3, be the initial position of the generating line, and $O M_{3}, O M_{3}, O M_{3}, O M_{4}$ final
positions, determining, respectively, the angles $A_{1}, A_{2}, A_{2}, A_{4}$, all measured from $O X$ upwards and toward the left. Producing $X O$ and drawing through O a perpendicular $Y Y^{\prime}$ to $O X$, the plane of the figure is divided into four right angles, called quadrants. Taking them in order, following the direction in which positive angles are reckoned, they are distinguished as follows: $X O Y$ is the first quadrant; $Y O X^{\prime}$, the second quadrant; $X^{\prime} O Y^{\prime}$, the third quadrant; and $Y^{\prime} O X$, the fourth quadrant.

Fig. 3
10. Trigonometric Functions of Any Angle.-In the definitions given in Plane Trigonometry, Part 1, only acute angles were considered. Referring to Fig. 3, in which $B_{1} C_{1}$ is perpendicular to $O X$, the trigonometric functions of the acute angle A_{1} were defined by the following equations:

$$
\begin{array}{ll}
\sin A_{1}=\frac{\text { side opposite }}{\text { hypotenuse }}=\frac{B_{1} C_{1}}{O B_{1}} & \tan A_{1}=\frac{\text { side opposite }}{\text { side adjacent }}=\frac{B_{1} C_{1}}{O C_{1}} \\
\cos A_{1}=\frac{\text { side adjacent }}{\text { hypotenuse }}=\frac{O C_{1}}{O B_{1}} & \text { cot } A_{1}=\frac{\text { side adjacent }}{\text { side opposite }}=\frac{O C_{1}}{B_{1} C_{1}} \\
\sec A_{1}=\frac{\text { hypotenuse }}{\text { side adjacent }}=\frac{O B_{1}}{O C_{1}} & \text { csc } A_{1}=\frac{\text { hypotenuse }}{\text { side opposite }}=\frac{O B_{1}}{B_{1} C_{2}}
\end{array}
$$

These formulas serve as the definitions of the trigonometric functions of any angle; that is, the sine of any angle
is the ratio of the side opposite to the hypotenuse; the tangent is the ratio of the side opposite to the side adjacent, etc. But, in order that these definitions may be correct, it is necessary to apply to them some algebraic rules relating to signs.

In Fig. 3, the hypotenuse used for the determination of the functions of A_{1} is any portion $O B_{1}$ of the side $O M_{1}$, which is the final position of the generating line. From B_{1}, a perpendicular $B_{1} C_{2}$ is drawn on the initial line $O X$, thus determining the right triangle $O B_{1} C_{2}$. The length of the perpendicular $B_{1} C_{1}$, which is the side opposite the vertex of the angle, is the distance of B_{1} above the initial line $O X$, and the length of the adjacent side $O C_{1}$ is the distance of the point B_{1} to the right of the vertex, measured along the initial line; or, what is the same thing, $O C_{1}$ is the distance of $B_{1} C_{1}$ from the vertex, measured toward the right.

Consider now the angle $X O M_{v}$, or A_{v}, in which the fina? position $O M$, of the generating line lies in the second quadrant. As before, the hypotenuse to be used in the definitions of the trigonometric functions of A_{2} is any portion $O B$, of the side $O M_{3}$, which is the final position of the generating line. As before, also, a perpendicular from B_{2} is drawn on the initial line $O X$; but, in this case, the perpendicular falls on $O X$ produced. In the right triangle $O B, C_{3}$, the perpendicular $B_{3} C_{3}$ is the side opposite the vertex of the angle A_{3}, and $O C$, is the side adjacent. It should be noted very particularly that the terms side opposite and side adjacent are used to describe the positions of the legs of the right triangle with reference to the vertex of the angle considered, not to the angle itself. Thus, $B_{3} C_{3}$ is not opposite the angle A_{n}, but opposite the vertex O of that angle. The length of the side opposite, $B_{3} C_{3}$, measures the distance of B, above the initial line; and the length of $O C_{2}$, or the side adjacent, measures the distance of the opposite side B, C, to the left of the vertex; or, in the language of algebra, it may be said that $-O C_{3}$ is the distance of B, C_{1} to the right of O.

Having defined the cosine of any angle as the ratio of the side adjacent to the hypotenuse, and the side adjacent as the
distance of the side opposite from the vertex, measured toward the right of the vertex, it is necessary, when the side opposite is to the left of the vertex, to consider its distance from the vertex, or the side adjacent, as negative. This is in accordance with the general principle of algebra, that, if distances counted in one direction are treated as positive, distances in the opposite direction must be treated as negative. In the triangle $O B_{3} C_{2}$, therefore, $O C_{2}$ should be treated as negative, and tnerefore, the cosine of A_{3} is $\frac{-O C_{2}}{O B_{3}}$.

Considering now the angle A_{2}, the hypotenuse is, as above, any portion $O B_{3}$ of the side $O M_{3}$, which is the final position of the generating line. From B_{3}, the perpendicular $B_{3} C_{s}$ on the initial line (produced) is drawn, and thus a right triangle is determined, in which $B_{3} C$, is the side opposite, and $O C_{3}$ the side adjacent. As previously explained, $O C_{3}$ should be treated as negative. The opposite side $B_{3} C_{3}$, which is the distance of $B \mathrm{~s}$ below the initial line, should also be treated as negative; for if distances above the initial line are treated as positive, those below the initial line must be treated as negative.

Finally, in the angle $A_{\mathbf{c}}$, which terminates in the fourth quadrant, $O C_{0}$, the side adjacent, is positive, while $B C_{0}$, the side opposite, is negative.

The foregoing explanations may be summed up as follows: The side opposite is positive or negative according as the hypotenuse is above or below the initial line. The side adjacent is positive or negative according as it extends toward the right or toward the left of the vertex. The hypotenuse is always positive.
11. Algebraic signs of the Functions.-Referring again to Fig. 3, it will be observed that, for any angle, as A_{1}, terminating in the first quadrant, both the side adjacent and the side opposite, or $O C_{1}$ and $B_{1} C_{3}$, are positive, and therefore all the functions are positive; for any angle, as A_{2}, terminating in the second quadrant, the side adjacent, or $O C_{3}$, is negative, and the side opposite, or $B_{2} C_{2}$, is positive. Therefore,

$$
\begin{gathered}
\sin A_{3}=\frac{+B_{3} C_{3}}{+O B_{3}}, \text { positive } \quad \tan A_{3}=\frac{ \pm B_{3} C_{3}}{-O C_{3}}, \text { negative } \\
\cos A_{3}=\frac{-O C_{3}}{+O B_{3}}, \text { negative } \quad \sec A_{3}=\frac{ \pm O B_{2}}{-O C_{3}}, \text { negative } \\
\csc A_{3}=\frac{+O B_{3}}{+B_{3} C_{3}}, \text { positive }
\end{gathered}
$$

The signs of the functions of angles terminating in the third and in the fourth quadrant are similarly determined. The results are tabulated below.

TABLE I

Function	Quadrant			
	First	Second	Third	Fourth
	Sign of Function			
Sine	$+$	$+$	-	-
Cosine .	+	-	-	+
Tangent .	+	-	$+$	-
Cotangent	+	-	$+$	-
Secant	+	-	-	$+$
Cosecant	+	+	-	-

12. Trigonometric Functions of 0° and 90°. - In the right triangles $A C B$, Fig. 4, the hypotenuse $A B$ may
 be taken to have any value whatever. It is evident that $B C$, the side opposite, decreases as the angle $C A B$ decreases, and becomes zero when the angle becomes zero; and that $B C$ coincides with the hypotenuse $A B$ when the angle $C A B$ is 90°. Again, $A C$, the adjacent side, increases as the angle decreases, and is equal to the hypotenuse $A B$ when the angle $C A B$ is 0°. Also, $A C$ becomes zero when $C A B$ is 90°. Now, from the definitions of the trigonometric functions,
$\sin C A B=\frac{\text { side opposite }}{\text { hypotenuse }}$, whence $\left\{\begin{array}{l}\sin 0^{\circ}=\frac{0}{A B}=0 \\ \sin 90^{\circ}=\frac{A B}{A B}=1\end{array}\right.$
$\cos C A B=\frac{\text { side adjacent }}{\text { hypotenuse }}$, whence $\left\{\begin{array}{l}\cos 0^{\circ}=\frac{A B}{A B}=1 \\ \cos 90^{\circ}=\frac{0}{A B}=0\end{array}\right.$
In like manner,

$$
\begin{array}{ll}
\tan 0^{\circ}=\frac{0}{A C}=0 & \tan 90^{\circ}=\frac{B C}{0}=\infty \\
\cot 0^{\circ}=\frac{A C}{0}=\infty & \cot 90^{\circ}=\frac{0}{C B}=0
\end{array}
$$

Note.-The cotangent of $C A B$ is equal to $\frac{C A}{C B}$. Now, as the angle decreases, the side $C B$ becomes less and less, and it is evident that, as the denominator of a fraction becomes less and less, the numerator remaining the same, the value of the fraction increases. As the denominator decreases indefinitely, the value of the fraction increases indefinitely, and when the value of the fraction exceeds any known quantity, however great, it is said to be infinite. The sign ∞ is used to express an infinite number.
13. Functions of $\left(180^{\circ}-\boldsymbol{A}\right)$.-Let $X O M$, Fig. 5, be any angle, and $A\left(=M O X^{\prime}\right)$ its supplement. Draw $O M^{\prime}$ making with $O X$ an angle equal to A, as shown. Take any part $O B$ of $O M$ for the hypotenuse, and draw $B C$ perpendicular to $O X$ produced; draw $B B^{\prime}$ parallel to

Fig. 5 $O X$, and $B^{\prime} C^{\prime}$ perpendicular to $O X$. Then, $B C=B^{\prime} C^{\prime}$; $O B=O B^{\prime} ; O C=-O C^{\prime}$ (Art. 10); and, by the definitions of the functions,

$$
\begin{align*}
\sin X O M=\frac{B C}{O B} & =\frac{B^{\prime} C^{\prime}}{O B^{\prime}}=\sin A \\
\cos X O M=\frac{O C}{O B} & =\frac{-O C^{\prime}}{O B^{\prime}}=-\cos A \\
\sin \left(180^{\circ}-A\right) & =\sin A \tag{1}\\
\cos \left(180^{\circ}-A\right) & =-\cos A \tag{2}
\end{align*}
$$

that is,

Similarly, $\tan \left(180^{\circ}-A\right)=-\tan A$

$$
\begin{equation*}
\cot \left(180^{\circ}-A\right)=-\cot A \tag{3}
\end{equation*}
$$

These relations are especially useful for finding the logarithmic functions of angles greater than 90°, since these functions are arithmetically equal to those of the supplements of the angles; that is, when signs are disregarded, any function cf an angle and that of its supplement are equal. For example, $\sin 105^{\circ}=\sin \left(180^{\circ}-105^{\circ}\right)=\sin 75^{\circ} ; \cos 105^{\circ}$ $=-\cos \left(180^{\circ}-105^{\circ}\right)=-\cos 75^{\circ}$.
14. Functions of $\left(90^{\circ}+A\right)$.-By formula 1 of Art. 13,
$\sin \left(90^{\circ}+A\right)=\sin \left[180^{\circ}-(90+A)\right]=\sin \left(90^{\circ}-A\right)$ or, since $\sin \left(90^{\circ}-A\right)=\cos A$,

$$
\begin{equation*}
\sin \left(90^{\circ}+A\right)=\cos A \tag{1}
\end{equation*}
$$

The following formulas may be derived in a similar manner:

$$
\begin{align*}
& \tan \left(90^{\circ}+A\right)=-\cot A \tag{2}\\
& \cos \left(90^{\circ}+A\right)=-\sin A \tag{3}\\
& \cot \left(90^{\circ}+A\right)=-\tan A \tag{4}
\end{align*}
$$

15. Functions of Negative Angles.-The complement of an angle is the algebraic difference between the angle and 90°. If the angle is greater than 90°, its complement is negative. Thus, the complement of 95° is $90^{\circ}-95^{\circ}$ $=-5^{\circ}$. The cofunctions of an angle are the corresponding fundamental functions of its complement, whether that complement be positive or negative. Thus, $\cos 85^{\circ}=\sin \left(90^{\circ}\right.$ $\left.-85^{\circ}\right)=\sin 5^{\circ} ; \cos 95^{\circ}=\sin \left(90^{\circ}-95^{\circ}\right)=\sin \left(-5^{\circ}\right)$. Similarly, $\sin 95^{\circ}=\cos \left(90^{\circ}-95^{\circ}\right)=\cos \left(-5^{\circ}\right)$. It is, therefore, necessary to know how to determine the functions of negative angles.

If $90^{\circ}+A$ is any angle, its complement is $90^{\circ}-\left(90^{\circ}\right.$ $+A)=-A$; and, therefore,
$\cos \left(90^{\circ}+A\right)=\sin (-A), \cot \left(90^{\circ}+A\right)=\tan (-A)$
$\sin \left(90^{\circ}+A\right)=\cos (-A), \tan \left(90^{\circ}+A\right)=\cot (-A)$
whence, replacing the values of $\cos \left(90^{\circ}+A\right), \cot \left(90^{\circ}\right.$ $+A)$, etc. from the preceding article,

$$
\begin{align*}
\sin (-A) & =-\sin A \tag{1}\\
\tan (-A) & =-\tan A \tag{2}\\
\cos (-A) & =\cos A \tag{3}\\
\cot (-A) & =-\cot A \tag{4}
\end{align*}
$$

ADDITION OF ANGLES

16. To Express the Sine or Cosine of the Sum or Difference of Two Angles in Terms of the Sine and Cosine of the Angles.-The following formulas are fundamental; being of frequent occurrence, they are very important, and should be committed to memory:

$$
\begin{align*}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \tag{1}\\
\cos (A+B) & =\cos A \cos B-\sin A \sin B \tag{2}\\
\sin (A-B) & =\sin A \cos B-\cos A \sin B \tag{3}\\
\cos (A-B) & =\cos A \cos B+\sin A \sin B \tag{4}
\end{align*}
$$

Note.-The derivation of these formulas is given in the Appendix at the end of this Section, under the Roman numeral I. That Appendix contains this and a few other demonstrations that are comparatively laborious and may be found irksome by some. They are not essential to the understanding of the formulas, and the student is not required to learn them. He is, however, advised to peruse them carefully, as they are good exercises in the handling and transforming of both algebraic and trigonometric expressions.

These formulas are not used, as they seem to imply, to determine the sine or the cosine of the sum or difference of two angles, when the sine and cosine of those angles are given. They can be used for this purpose, but there would be no advantage in so doing. Their main value consists in their application to transforming complicated trigonometric expressions into simpler ones. The student will often have occasion to employ them in this manner. In order that he may have an idea of this application of the formulas, two examples are given here.

Example 1.-To determine the angle A from the relation

$$
\frac{\sin \left(A+28^{\circ}\right)}{\sin A}=.95
$$

Solution.-Applying formula 1, we have

$$
\begin{aligned}
& \frac{\sin \left(A+28^{\circ}\right)}{\sin A}=\frac{\sin A \cos 28^{\circ}+\cos A \sin 28^{\circ}}{\sin A} \\
= & \frac{\sin A \cos 28^{\circ}}{\sin A}+\frac{\cos A \sin 28^{\circ}}{\sin A}=\cos 28^{\circ}+\cot A \sin 28^{\circ}
\end{aligned}
$$

replacing $\frac{\cos A}{\sin A}$ by its equal $\cot A$ (see Plane Trigonometry, Part 1). Substituting this value of the quotient $\frac{\sin \left(A+28^{\circ}\right)}{\sin A}$ in the given equation, we have,

$$
\cos 28^{\circ}+\cot A \sin 28^{\circ}=.95
$$

whence $\quad \cot A=\frac{.95-\cos 28^{\circ}}{\sin 28^{\circ}}=\frac{.95-.88295}{.46947}=.14282$
$A=81^{\circ} 52^{\prime} 19^{\prime \prime}$. Ans.
and, therefore,
$A=81^{\circ} 52^{\prime} 19^{\prime \prime}$. Ans.
Example 2.-To transform the expression $\tan A+\tan B$ into the expression $\frac{\sin (A+B)}{\cos A \cos B}$.

Note.-Transformations of this kind are very often useful, when logarithms are employed. Thus, if $\tan A+\tan B$ were to be multiplied by 39.578 , it would be necessary first to find the natural tangent of A, then that of B, add the two together. take the logarithm of the sum thus obtained, and add this logarithm to that of 39.578 . It. however. the expression $\frac{\sin (A+B)}{\cos A \cos B}$ is used, the logarithms of $\sin (A+B), \cos A$ $\cos B$ can be taken from the table, and the operation performed without having recourse to natural functions, which are often inconvenient.

Solution.-We have (Plane Trigonometry, Part 1),

$$
\tan A+\tan B=\frac{\sin A}{\cos A}+\frac{\sin B}{\cos B}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B}
$$

According to formula 1, the numerator of this last fraction is equal to $\sin (A+B)$. Therefore,

$$
\tan A+\tan B=\frac{\sin (A+B)}{\cos A \cos B}
$$

17. Sine and Cosine of $2 A$ and of $\frac{1}{2} A$.-From the formulas for the sine and cosine of the sum of two angles, the following are deduced:

$$
\begin{align*}
\sin 2 A & =2 \sin A \cos A \tag{1}\\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \tag{2}\\
\cos 2 A & =1-2 \sin ^{2} A \tag{3}\\
\cos 2 A & =2 \cos ^{3} A-1 \tag{4}\\
\sin A & =2 \sin \frac{1}{2} A \cos \frac{1}{2} A \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \cos A=\cos ^{2} \frac{1}{2} A-\sin ^{2} \frac{1}{2} A \tag{6}\\
& \cos A=1-2 \sin ^{2} \frac{1}{2} A \tag{7}\\
& \cos A=2 \cos ^{2} \frac{1}{2} A-1 \tag{8}
\end{align*}
$$

As in the case of formulas 1 to $\mathbf{4}$, Art. 16, these formulas are used mainly for the purposes of transformation. They are very simply derived as follows:
When B is made equal to A, formula 1, Art. 16, becomes $\sin (A+A)=\sin A \cos A+\cos A \sin A$
that is, $\quad \sin 2 A=2 \sin A \cos A$
Similarly, formula 2, Art. 16, becomes

$$
\cos (A+A)=\cos A \cos A-\sin A \sin A
$$

that is, $\quad \cos 2 A=\cos ^{2} A-\sin ^{2} A$
Formula 3 follows from this, by writing $1-\sin ^{*} A$ instead of $\cos ^{2} A$ (since $\sin ^{2} A+\cos ^{2} A=1$); and formula 4, by writing $1-\cos ^{2} A$ instead of $\sin ^{2} A$.

Formulas 1 to $\mathbf{4}$ give the sine and cosine of twice any angle in terms of the sine and cosine of the angle. If the angle is denoted by $\frac{1}{2} A$, twice the angle will be A, and formulas 1 to 4 take the forms of formulas 5 to 8 .

OBLIQUE TRIANGLES

FUNDAMENTAL PRINCIPLES

Note.-For the general method of marking and naming the sides and angles of a triangle, see Plane Trigonometry, Part 1.
18. Principle of sines.-In any triangle, the sides are proportional to the sines of the opposite angles. That is,

$$
\frac{a}{b}=\frac{\sin A}{\sin B}, \frac{a}{c}=\frac{\sin A}{\sin C}, \frac{b}{c}=\frac{\sin B}{\sin C}
$$

Let $A B C$, Fig. 6, be any triangle and p the perpendicular from C on the opposite side. Then, in (a), the right triangles $A C D$ and $B C D$ give, respectively,

$$
p=b \sin A, p=a \sin B
$$

whence, putting the two values of p equal to each other, $a \sin B=b \sin A$
and, therefore, dividing by $b \sin B$,

$$
\frac{a}{b}=\frac{\sin A}{\sin B}
$$

In (b), the right triangles $A C D$ and $B C D$ give, respect ively,

$$
\begin{gathered}
p=b \sin A, p=a \sin C B D \\
a \sin C B D=b \sin A
\end{gathered}
$$

whence,

(a)

(b)

Fig. 6
But, as $C B D=180^{\circ}-B$, we may write $\sin B$ instead of $\sin C B D($ Art. 13), and, therefore, $a \sin B=b \sin A$
whence, as before,

$$
\begin{equation*}
\frac{a}{b}=\frac{\sin A}{\sin B} \tag{1}
\end{equation*}
$$

By drawing a perpendicular from B on $A C$, and reasoning in the same manner, it may be shown that

$$
\begin{equation*}
\frac{a}{c}=\frac{\sin A}{\sin C} \tag{2}
\end{equation*}
$$

Similarly,

$$
\frac{b}{c}=\frac{\sin B}{\sin C}
$$

By transforming equation (1), we obtain

$$
\frac{a}{\sin A}=\frac{b}{\sin B}
$$

and by a similar transformation of equation (2),

$$
\frac{a}{\sin A}=\frac{c}{\sin C}
$$

We have, therefore,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

The principle of sines may, then, be stated in this form: In every triangle, the quotient obtained by dividing the length of any side by the sine of the opposite angle is the same, whatever the side taken.

This quotient is called the modulus of the triangle, and will here be denoted by M. The modulus can be found when any of the sides and the opposite angle are known.

The principle of sines is one of the most important in trigonometry, and both forms in which it is stated in this article should be committed to memory.
19. The Cosine Principle.-In any triangle, the square of one side is equal to the sum of the squares of the other two sides minus twice the product of these two sides and the cosine of their included angle. That is (Fig. 6),

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

These formulas are derived in Appendix II.
20. Principle of Tangents.- The sum of any two sides of a triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. That is (Fig. 6),

$$
\frac{a+b}{a-b}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}
$$

The derivation of this formula is given in Appendix III. The student should have no difficulty in committing the formula to memory, as its symmetry makes it very easy to remember.

SOLUTION OF OBLIQUE TRIANGLES

21. The solution of oblique triangles is treated under four cases:

Case I: Given Two Sides and the Included Angle. Let a, b, and C, Fig. 6 , be given and A, B, and c be required. Of the two methods given below, the first is preferable in most cases.

First Method.-From the formula in Art. 20, the following is readily derived:

$$
\begin{equation*}
\tan \frac{1}{8}(A-B)=\frac{a-b}{a+b} \tan \frac{1}{2}(A+B) \tag{1}
\end{equation*}
$$

Now, since $A+B+C=180^{\circ}$, we have also,

$$
\begin{gathered}
A+B=180^{\circ}-C ; \text { and } \frac{1}{2}(A+B)=\frac{1}{2}\left(180^{\circ}-C\right) \\
=90^{\circ}-\frac{1}{1} C
\end{gathered}
$$

Therefore, $\frac{1}{2} C$ is the complement of $\frac{1}{2}(A+B)$, and hence, $\tan \frac{1}{2}(A+B)=\cot \frac{1}{2} C$. Substituting this value in equation (1), the following formula is derived:

$$
\begin{equation*}
\tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C \tag{1}
\end{equation*}
$$

If the student remembers the formula in Art. 20, or the principle of tangents, he will have no difficulty in remembering this formula, which is derived from the formula in Art. 20, by simply writing $\cot \frac{1}{2} C$ instead of $\tan \frac{1}{2}(A+B)$.

From this formula $\frac{1}{2}(A-B)$ can be found. Let this value of $\frac{1}{2}(A-B)$ be denoted by D. We have also, as explained above, $\frac{1}{2}(A+B)=\frac{1}{2}\left(180^{\circ}-C\right)=90^{\circ}-\frac{1}{2} C$.

$$
\begin{align*}
& \frac{1}{2}(A+B)=90^{\circ}-\frac{1}{2} C \tag{2}\\
& \frac{1}{2}(A-B)=D \tag{3}
\end{align*}
$$

Adding equations (2) and (3) gives

$$
A=\left(90^{\circ}-\frac{1}{2} C\right)+D
$$

Subtracting equation (3) from (2) gives

$$
B=\left(90^{\circ}-\frac{1}{2} C\right)-D
$$

Knowing A and B, the side c may be found from the relation (Art. 18),

$$
\frac{c}{\sin C}=\frac{a}{\sin A}, \text { which gives } c=\frac{a \sin C}{\sin A}
$$

It is, however, more convenient to find c from the following formula, the derivation of which is given in Appendix IV:

$$
\begin{equation*}
c=\frac{(a-b) \cos \frac{1}{2} C}{\sin \frac{1}{2}(A-B)} \tag{2}
\end{equation*}
$$

It will be noticed that, for calculating $\tan \frac{1}{2}(A-B)$, the logarithms of $(a-b)$ and $\cot \frac{1}{2} C$ have to be found. The logarithm of $\cos \frac{1}{2} C$ may be taken out of the table at the same time as that of $\cot \frac{1}{2} C$. Also, when the angle $\frac{3}{2}(A-B)$ is taken from the table, its logarithmic sine should be taken at the same time. This greatly simplifies the application of formula 2.

Second Method.-The third side c can be found directly from the formula in Art. 19, which gives

$$
c=\sqrt{a^{2}+b^{2}-2 a b \cos C}
$$

Then, by the principle of sines,

$$
\sin A=\frac{a \sin C}{c}, \sin B=\frac{b \sin C}{c}
$$

This method is of value when the only required part is the side c, especially if a and b are convenient numbers to square.

Example 1.-In a triangle, $a=17$ feet, $b=12$ feet, and the included angle $C=59^{\circ} 23^{\prime}$. To find the other parts of the triangle.

Solution.-Here $\frac{1}{1} C=29^{\circ} 41^{\prime} 30^{\prime \prime} ; a+b=17+12=29$, and $a-b=17-12=5$. Then, by the first method,
$\tan \frac{1}{2}(A-B)=\frac{5}{29} \times \cot 29^{\circ} 41^{\prime} 30^{\prime \prime}$

$$
\begin{aligned}
& \log 5=.69897 \\
& \log 29=1.46240 \\
& \overline{1.23657} \\
& \log \cot 29^{\circ} 41^{\prime} 30^{\prime \prime}=.24397 \\
& \log \tan \frac{1}{1}(A-B)=\overline{\overline{1} .48054} \\
& D=1(A-B)=16^{\circ} 49^{\prime} 25^{\prime \prime} \text {; } \\
& \log 5=.69897 \\
& \log \cos 29^{\circ} 41^{\prime} 30^{\prime \prime}=\frac{1.93887}{.63784} \\
& \log \sin D=\overline{1} .46154 \\
& \log c=\overline{1.17630} \\
& c=15.007 \text {. Ans. } \\
& A=\left(90^{\circ}-29^{\circ} 41^{\prime} 30^{\prime \prime}\right)+16^{\circ} 49^{\prime} 25^{\prime \prime}=77^{\circ} 7^{\prime} 55^{\prime \prime} \text {. Ans. } \\
& B=\left(90^{\circ}-29^{\circ} 41^{\prime} 30^{\prime \prime}\right)-16^{\circ} 49^{\prime} 25^{\prime \prime}=43^{\circ} 29^{\prime} 5^{\prime \prime} . \text { Ans. }
\end{aligned}
$$

Example 2.-Given $a=10, b=15$, and $C=60^{\circ}$; to find c.
Solution.-By the second method,

$$
\begin{aligned}
c & =\sqrt{10^{2}+15^{2}-2 \times 10 \times 15 \cos 60^{\circ}} \\
& =\sqrt{325-300 \times .5}=\sqrt{175}=13.229 \mathrm{ft} . \quad \text { Ans. }
\end{aligned}
$$

EXAMPLES FOR PRACTICE

1. Given $a=37.46$ feet, $b=59.17$ feet, and $C=69^{\circ} 13^{\prime}$; find A, B, and c.

$$
\text { Ans. }\left\{\begin{array}{rl}
A & =37^{\circ} 21^{\circ} 30^{\prime \prime} \\
B & =73^{\circ} 25^{\prime} 30^{\prime \prime} \\
c & 57.72 \mathrm{ft} .
\end{array}\right.
$$

2. Two sides of a triangle are, respectively, 687.64 and 319.58 feet long, and their included angle is $47^{\circ} 15^{\prime} 8^{\prime \prime}$; find the other two angles and the third side.

$$
\text { Ans. }\left\{\begin{array}{l}
\text { Angles, } 106^{\circ} 14^{\prime} 56^{\prime \prime} \text { and } 26^{\circ} 29^{\prime} 56^{\prime \prime} \\
\text { Third side }=525.97
\end{array}\right.
$$

3. Given $c=4$ chains, $a=6$ chains, and $B=45^{\circ} 18^{\prime}$; find b.

$$
\text { Ans. } b=4.271 \mathrm{ch}
$$

4. Given $\delta=43.16$ chains, $c=51.29$ chains, and $A=35^{\circ} 8^{\prime} 10^{\prime \prime}$; find B, C, and a.

$$
\text { Ans. }\left\{\begin{array}{l}
B=57^{\circ} 13^{\prime} 20^{\prime} \\
C=87^{\circ} 38^{\prime} 30^{\prime \prime} \\
a=29.544 \mathrm{ch}
\end{array}\right.
$$

22. Case II: Given a Side and Two Angles.-Let c, A, and B be known, to find a, b, and C. The angle C $=180^{\circ}-A-B$. By the principle of sines,

$$
-\frac{a}{\sin A}=\frac{c}{\sin C}, \text { whence } a=\frac{c}{\sin C} \sin A
$$

Similarly,

$$
b=\frac{c}{\sin C} \sin B
$$

Since $\frac{c}{\sin C}$ is the modulus of the triangle (Art. 18), these formulas may be thus stated: Any side of a triangle is equal to the modulus of the triangle multiplied by the sine of the angle opposite that side.

Example.-Given $a=98.48, B=60^{\circ} 45^{\prime}$, and $C=39^{\circ} 15^{\prime}$; to find b, c, and A.

Solution.- $A=180^{\circ}-\left(60^{\circ} 45^{\prime}+39^{\circ} 15^{\prime}\right)=80^{\circ}$. Ans.

$$
M=\frac{98.48}{\sin 80^{\circ}} ; b=\frac{98.48}{\sin 80^{\circ}} \sin 60^{\circ} 45^{\prime} ; c=\frac{98.48}{\sin 80^{\circ}} \sin 39^{\circ} 15^{\prime}
$$

$\log 98.48=1.99335$
$\log \sin 80^{\circ}=\overline{1} .99335$
$\log M=\overline{2.00000}$

$$
\log b=1.94076 ; b=87.248 . \text { Ans. }
$$

$$
\log \sin 60^{\circ} 45^{\prime}=\overline{\overline{1} .94076}
$$

$$
\log M=2.00000
$$

$$
\log \sin 39^{\circ} 15^{\prime}=\overline{1} .80120
$$

$$
\log c=\frac{1.80120}{1 . c} ;=63.27 . \text { Ans. }
$$

Note.-Attention is called to the convenient way in which the work is here arranged. Having determined $\log M$, this logarithm is copied, and then one of the logarithms to be added to it is written above it, the other under it, the addition being performed upwards in one case, and downwards in the other.

EXAMPLES FOR PRACTICE

1. Given $a=45.39$ feet, $B=38^{\circ} 12^{\prime}$, and $C=11^{\circ} 11^{\prime} 34^{\prime \prime}$; find A, b, and c.

$$
\text { Ans. }\left\{\begin{aligned}
A & =130^{\circ} 36^{\prime} 26^{\prime \prime} \\
b & =36.973 \mathrm{ft} \\
c & =11.605 \mathrm{ft} .
\end{aligned}\right.
$$

2. Given $c=101.11$ chains, $C=55^{\circ} 55^{\prime} 55^{\prime \prime}$, and $A=10^{\circ} 10^{\prime} 10^{\prime \prime}$; find B, a, and b.

$$
\text { Ans. }\left\{\begin{array}{l}
B=113^{\circ} 53^{\prime} 55^{\prime \prime} \\
a=21.551 \mathrm{ch} . \\
b=111.59 \mathrm{ch} .
\end{array}\right.
$$

23. Case III: Given Three sides.-Let a, b, and c be given, to find A, B, and C.

First Method.-The angles can be found directly from the cosine formulas (Art. 19), which, being solved for $\cos A$, $\cos B$, and $\cos C$, respectively, give

$$
\left.\begin{array}{l}
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \tag{1}\\
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{array}\right\}
$$

These formulas are to be used when the numbers a, b, c are convenient to square; otherwise, they are too cumbersome, and those given below for the functions of half the angles should be employed. It is necessary to apply the formulas in determining only two of the angles, as the third follows from the relation $A+B+C=180^{\circ}$. As a check, however, the formulas should be applied to the third angle also.

It should be borne in mind that, if the cosine of an angle is found to be negative, this implies that the angle is obtuse (Art. 13). In such case, the cosine is treated as positive, and the corresponding angle taken from the table is subtracted from 180° to obtain the required angle. Thus, if $\cos A=-.97030$, we look for the angle whose cosine is +.97030 , which is 14°. Then, $A=180^{\circ}-14^{\circ}=166^{\circ}$.

Example.-Given $a=4$ inches, $b=5$ inches, and $c=7$ inches: to find A, B, and C.

Solution. $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{5^{2}+7^{2}-4^{2}}{2 \times 5 \times 7}=\frac{58}{70}=.82857$, and, therefore, $A=34^{\circ} 2^{\prime} 53^{\prime \prime}$. Ans.

$$
\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}=\frac{4^{2}+7^{2}-5^{2}}{2 \times 4 \times 7}=\frac{40}{56}=.71429
$$

and, therefore, $B=44^{\circ} 24^{\prime} 54^{\prime \prime}$. Ans.

$$
C=180^{\circ}-A-B=101^{\circ} 32^{\prime} 13^{\prime \prime} . \text { Ans. }
$$

As a check, we have

$$
\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{4^{2}+5^{2}-7^{3}}{2 \times 4 \times 5}=-\frac{8}{40}=-.20000
$$

The angle whose cosine is .20000 is $78^{\circ} 27^{\prime} 47^{\prime \prime}$. Therefore, $C=180^{\circ}$ $-78^{\circ} 27^{\prime} 47^{\prime \prime}=101^{\circ} 32^{\prime} 13^{\prime \prime}$.

Second Method.-As said before, this method is to be applied when the operations required by formula $\mathbf{1}$ involve too much labor, which happens when the lengths of the given sides consist of three or more significant figures-the usual case. If the sum of the sides is denoted by $2 s$, or half their sum by s, the angles A, B, C may be found by the following formulas, which are derived in Appendix V:

$$
\left.\begin{array}{rl}
\tan \frac{1}{2} A & =\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\
\tan \frac{1}{2} B & =\sqrt{\frac{(s-a)(s-c)}{s(s-b)}} \\
\tan \frac{1}{2} C & =\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}
\end{array}\right\}
$$

For angles differing but little from 90° (say between 85° and 90°), use the cosine formulas 3 ; in all other cases, the tangent formulas 2.

We have also,

$$
\begin{equation*}
\sin \frac{1}{2} A=\sqrt{\frac{(s-b)(s-\bar{c})}{b c}} \tag{4}
\end{equation*}
$$

with similar formulas for $\sin \frac{1}{2} B$ and $\sin \frac{1}{2} C$. These formulas are of value for deriving the tangent formulas $\mathbf{2}$, as well as for deriving an expression for the area of a triangle when the sides are given. They may also be used instead of the tangent formulas 2 for the determination of the angles, but the latter are preferable.

Example.-In the triangle $A B C, a=567$ feet, $b=736$ feet, and $c=264$ feet; to find the angles A, B, and C.

Solution.-The tangent formulas will be used.
To find A

a	$=567$	$\log (s-c)$	$=2.71559$
b	$=736$	$\log (s-b)$	$=\underline{1.67669}$
c	$=\frac{264}{4.39228}$		
$2 s$	$=1,567$	$\log s$	$=2.89404$
s	$=783.5$	$\log (s-a)$	$=\underline{2.33546}$
$s-a$	$=216.5$		$\frac{5.22950}{2) \overline{1} 16278}$
$s-b$	$=47.5$		
$s-c$	$=519.5$	$\log \tan \frac{1}{1} A$	$=48139$
$\frac{1}{2} A$	$=20^{\circ} 52^{\prime} 38^{\prime \prime}, A=41^{\circ} 45^{\prime} 16^{\prime \prime}$. Ans.		

To find $B \quad$ To find C
$\begin{aligned} \log (s-a) & =2.33546 \\ \log (s-c) & =\underbrace{2.71559}_{5.05105}\end{aligned}$
$\begin{aligned} & \log s=2.89404 \\ & \log (s-b)=\underline{1.67669} \\ & \log \tan \frac{1}{2} B= \frac{4.57073}{0.48032} \\ & \frac{1}{2} B=60^{\circ} 5^{\prime} 29^{\prime \prime} ; B=120^{\circ} 10^{\prime} 58^{\prime \prime} \\ & \text { Ans. }\end{aligned}$

$$
\begin{aligned}
& \log (s-a)=2.33546 \\
& \log (s-b)=\underline{1.67669}_{4.01215}
\end{aligned}
$$

$$
\begin{aligned}
\log s & =2.89404 \\
\log (s-c) & =2.71559
\end{aligned}
$$

$$
5.60963
$$

2) $\overline{\overline{1} .40252}$

$$
\frac{1}{2} C=9^{\circ} 1^{\prime} 54^{\prime \prime} ; C=18^{\circ} 3^{\prime} 48^{\prime \prime}
$$

Ans.

To check, add the angles:

$$
\begin{array}{r}
41^{\circ} 45^{\prime} 16^{\prime \prime} \\
120
\end{array} 10 \quad 58
$$

The triangle closes within 2 sec . This error is due to the use of fiveplace tables, and to the fact that the angle in each case was taken out to the nearest second.

EXAMPLES FOR PRACTICE

1. Given $a=1$ mile, $b=2$ miles, and $c=1.5$ miles; find A, B, and C. (Use first method.)

$$
\text { Ans. }\left\{\begin{array}{l}
A=28^{\circ} 57^{\prime} 17^{\prime \prime} \\
B=104^{\circ} 28^{\prime} 39^{\prime \prime} \\
C=46^{\circ} 34^{\prime} 4^{\prime \prime}
\end{array}\right.
$$

2. Given $a=50$ chains, $b=30$ chains, and $c=45$ chains; find A, B, and C. (Use first method.)

$$
\text { Ans. }\left\{\begin{array}{l}
A=80^{\circ} 56^{\prime} 36^{\prime \prime} \\
B=36^{\circ} 20^{\prime} 7^{\prime \prime} \\
C=62^{\circ} 43^{\prime} 17^{\prime \prime}
\end{array}\right.
$$

3. Given $a=63.47$ feet, $b=89.36$ feet, and $c=109.83$ feet; find A, B, and C (Use second method.)

$$
\text { Ans. }\left\{\begin{array}{l}
A=35^{\circ} 18^{\prime} 10^{\prime \prime} \\
B=54^{\circ} 27^{\prime} 2^{\prime \prime} \\
C=90^{\circ} 14^{\prime} 50^{\prime \prime}
\end{array}\right.
$$

4. Given $a=2,354$ feet, $b=3,115$ feet, and $c=836.6$ feet; find A, B, and C. (Use second method.)

$$
\text { Ans. }\left\{\begin{array}{l}
A=21^{\circ} 7^{\prime} 24^{\prime \prime} \\
B=151^{\prime \prime} 31^{\prime} 8^{\prime \prime} \\
C=7^{\circ} 21^{\prime} 30^{\prime \prime}
\end{array}\right.
$$

24. Case IV: Given Two Sides and the Angle Opposite One of Them. - In the triangle $A B C$, let a, b, and A be given, to find B, C, and c. The angle B or C is found by means of the principle of sines; thus,

Then,

$$
\frac{a}{\sin A}=\frac{b}{\sin B}, \text { whence } \sin B=\frac{b \sin A}{a}
$$

When the data are given as above, without any further restrictions, there may be two triangles that will answer the given conditions; and the problem is said to have two solutions. For here the angle B is determined from its sine; and as every sine corresponds to two supplementary angles, either of these angles may be taken. Thus, if $\sin B$ is found to be .64746 , the corresponding angle may be either $40^{\circ} 21^{\prime}$ or $180^{\circ}-40^{\circ} 21^{\prime}=139^{\circ} 39^{\prime}$, since these angles both have the same sine (Art. 13).

The same result is obtained from geometrical considerations. On any line $A X$, Fig. 7, construct an angle equal

to the given angle A, and on its side $A C$ take $A C$ equal to one of the given sides b. From C as a center, with a radius equal to the side a, describe an arc. This arc will generally cut $A X$ at two points, B_{1} and B_{2}, and either of the triangles $A C B_{1}$ or $A C B_{2}$ will answer the conditions of the problem, for they both contain the given sides b and a, and the angle A opposite a.

The problem will have but one solution in the following cases:

1. If $a=b \sin A$. For in this case a will be equal to the perpendicular $C P$, Fig. 7, and the arc described from C will touch $A X$ at P only.
2. If $a=b$. For in this case the angles A and B must be equal, and therefore both acute, since a triangle cannot have two obtuse angles. In this case B_{1} coincides with A in Fig. 7, since $C B_{3}=C A$.
3. When a is greater than b. For in this case A must be greater than B,

Fig. 8 and the latter angle must therefore be acute. This is shown by Fig. 8 ; the arc described from C cuts $A X$ produced at B_{2}, and $C B_{1}$, although equal to a, is not opposite $A\left(=C A B_{3}\right)$.

When a is less than $b \sin A$, the problem is impossible. For then a is less than $C P$, Fig. 7, and the arc does not cut $A X$ at all. This is also shown by the formula $\sin B=\frac{b \sin A}{a}$, which would give $\sin B$ a value greater than 1 , which is an impossible value, for no sine can be greater than 1 .

Example.-Given $a=273$ feet, $b=392$ feet, and $A=37^{\circ} 14^{\prime}$; to find B, C, and c.

Solution.-Here a is less than b, and, unless $\sin B$ is found to be greater than 1 (in which case the problem is impossible), there are two solutions.

$$
\begin{aligned}
& \sin B=\frac{b \sin A}{a}=\frac{392 \times \sin 37^{\circ} 14^{\prime}}{273} ; B=\left\{\begin{array}{l}
60^{\circ} 19^{\prime} 17^{\prime \prime}, \text { or } \\
180^{\circ}-60^{\circ} 19^{\prime} 17^{\prime \prime} \\
=119^{\circ} 40^{\prime} 43^{\prime \prime} . \text { Ans. }
\end{array}\right. \\
& C=\left\{\begin{array}{l}
180^{\circ}-37^{\circ} 14^{\prime}-60^{\circ} 19^{\prime} 17^{\prime \prime}=82^{\circ} 26^{\prime} 43^{\prime \prime}, \text { or } \\
180^{\circ}-37^{\circ} 14^{\prime}-119^{\circ} 40^{\prime} 43^{\prime \prime}=23^{\circ} 5^{\prime} 17^{\prime \prime} . \text { Ans. }
\end{array}\right. \\
& c=\frac{a}{\sin A} \sin C=\frac{273}{\sin 37^{\circ} 14^{\prime}} \sin \left\{\begin{array}{l}
82^{\circ} 26^{\prime} 43^{\prime \prime}, \text { or } \\
23^{\circ} 5^{\prime} 17^{\prime \prime}
\end{array}\right\}=447.27 \mathrm{ft} ., \text { or }
\end{aligned}
$$

PRACTICAL EXAMPLES

Example 1.-The distance between two points A and B, Fig. 9, is 360.38 feet, the angles from A and B to a station C are found, with a transit, to be, respectively, $62^{\circ} 17^{\prime}$ and $39^{\circ} 51^{\prime}$. What are the distances of C from A and B ?

$$
\begin{aligned}
& \text { Solution. }-C=180^{\circ}-62^{\circ} 17^{\prime}-39^{\circ} 51^{\prime}=77^{\circ} 52^{\prime} \text {. Modulus }(M) \\
& \text { of triangle }=\frac{360.38}{\sin 77^{\circ} 52^{\prime}} \text {. Then }(\text { Art. 18) } \\
& \qquad a=\frac{360.38}{\sin 77^{\circ} 52^{\prime}} \sin 62^{\circ} 17^{\prime}=326.32 \mathrm{ft} . \text { Ans. } \\
& \qquad b=\frac{360.38}{\sin 77^{\circ} 52^{\prime}} \sin 39^{\circ} 51^{\prime}=236.2 \mathrm{ft.} \text {. Ans. }
\end{aligned}
$$

Example 2.-The distances of a fort C from two other forts A and B are as marked in Fig. 10; the lines of sight from C to A and B make an angle of $53^{\circ} 8^{\prime} 16^{\prime \prime}$. What is the distance between the two forts A and B ?

Fig. 10

Solution.-The two sides and the included angle are given, and formulas 1 and 2, Art. 21, will be applied. It is not necessary to $\longrightarrow \longrightarrow$ determine the angles A and B, for

Fig. 11
they are not required. Formula
1, Art. 21,

$$
\begin{gathered}
\tan \frac{1}{3}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C \\
=\frac{3,439-2,378}{3,439+2,378} \cot \frac{53^{\circ} 8^{\prime} 16^{\prime \prime}}{2} \\
=\frac{1,061}{5,817} \cot 26^{\circ} 348^{\prime \prime} \\
\frac{1}{2}(A-B)=20^{\circ} 2^{\prime} 20^{\prime \prime}
\end{gathered}
$$

Formula 2, Art. 21,

$$
\begin{aligned}
c & =A B=\frac{(a-b) \cos \frac{1}{2} C}{\sin \frac{1}{\frac{1}{2}(A-B)}} \\
& =\frac{1,061 \cos 26^{\circ} 34^{\prime} 8^{\prime \prime}}{\sin 20^{\circ} 2^{\prime} 20^{\prime \prime}} \\
& =2,769.4 \mathrm{ft} . \quad \text { Ans. }
\end{aligned}
$$

Example 3.-A weight W, Fig. 11, is to be hung from a pulley sliding freely on the rope $O Q P$. The length of the rope is l, and its ends are fastened at two points O and P, whose horizontal distance is d and whose vertical distance is h, as shown. It being proved in mechanics that the pulley will
rest in equilibrium when the vertical line $W Q$ bisects the angle $O Q P$, what are the lengths $x(=O Q)$ and $y(=P Q)$ of the two segments of the rope for which that condition obtains?

[^3]Solution.-Let $Q D$ be a vertical line through Q. According to the data, this line makes equal angles with $O Q$ and $Q P$. These angles are denoted by Z. The angles made by $O Q$ and $P Q$ with $O P$ are denoted by Y and X, respectively. The line $O R$ is horizontal, and $P R$ vertical

As $O R$ and $R P$ are known, the right triangle $O P R$ gives

$$
\tan M=\frac{h}{d}
$$

Aiso, in the triangle $O E D, N=90^{\circ}-M$.
The angles M and N may, therefore, be assumed to be known.
Drawing $P F$ parallel to $R O$, we have .

$$
d(=O R)=O D+D R=O D+P F
$$

or, substituting the values of $O D$ and $P F$ from the triangles $O D Q$ and $P F Q$,

$$
\begin{gathered}
d=x \sin Z+y \sin Z=(x+y) \sin Z=l \sin Z \\
\sin Z=\frac{d}{l}
\end{gathered}
$$

whence,
Having tuund Z, we have

$$
\begin{aligned}
& X=180^{\circ}-(N+Z)(\text { triangle } P E Q) \\
& Y=N-Z(\text { triangle } O E Q)
\end{aligned}
$$

The modulus of the triangle $O P Q$ is
$\frac{O P}{\sin O Q P}=\frac{O P}{\sin 2 Z}=\frac{d \div \cos M}{\sin 2 Z}=\frac{d}{\cos M \sin 2 Z}=\frac{d}{\sin N \sin 2 Z}$
Therefore (Art. 18), $x=\frac{d}{\sin N \sin 2 Z} \sin X$
or, substituting the value of X, and noticing that $\sin \left[180^{\circ}-(N+Z)\right]$
$=\sin (N+Z)$,
$x=\frac{d}{\sin N \sin 2 Z} \sin (N+Z)$.
Likewise,
$y=\frac{d}{\sin N \sin 2 Z} \sin (N-Z)$.

EXAMPLES FOR PRACTICE

1. Find the distance $M N$ across the lake from the data shown in Fig. 12.

Fig. 12

$$
\text { Ans. } M N=669.51 \mathrm{ft} .
$$

2. The angles from two stations M and N, Fig. 13, to two inaccessible
points P and Q being as shown, and the distance $M N$ being 550 feet

Fig. 13

Hint. - First calculate $M P$, then $M Q$. and finally $P Q$.

$$
\text { Ans. } P Q=799.7 \mathrm{ft}
$$

3. In Fig. 14, the sides $A B$ and $D E$ were measured and the angles were turned as marked. Find the lengths of the sides $B C_{1}$ $C A, C F, A F, C D, F D, E F$.

$$
\text { Ans. }\left\{\begin{array}{l}
B C=677.92 \mathrm{ft} . \\
C A=1,065.8 \mathrm{ft} \\
C F=905.46 \mathrm{ft} . \\
A F=703.1 \mathrm{ft} . \\
C D=696.83 \mathrm{ft} . \\
E D=1,019.7 \mathrm{ft} \\
E F=687.97 \mathrm{ft} .
\end{array}\right.
$$

4. Two observers on the same side of a steeple, and in the same vertical plane with it, are 100 feet apart, and find that the angles of elevation are $26^{\circ} 28^{\prime}$ and $49^{\circ} 14^{\prime}$. What is the height of the steeple?

Ans. 87.225 ft .

Fig. 14
5. Find the altitude h and the lengths of the sides $A B$ and $C D$ of the trapezoid $A B C D$, Fig. 15.

$$
\text { Ans. }\left\{\begin{aligned}
h & =62.22 \mathrm{ft} . \\
A B & =87.58 \mathrm{ft} . \\
C D & =64.579 \mathrm{ft}
\end{aligned}\right.
$$

6. The connecting-rod $A B$, Fig. 16, of an engine is 9 feet 3 inches, and the crank-arm $C B$ is $10 \frac{1}{2}$ inches; the figure shows the crank after

Fig. 15
it has performed one-eighth of a revolution, starting from the position $C B^{\prime}$. Find: (a) the inclination M of the connecting-rod to the axis

Fig. 16
ot the piston rod, which is in line with $C A ;(b)$ the distance $A C$ of the joint A from the center of the crank-circle.

$$
\text { Ans. }\left\{\begin{array}{l}
(a) M=3^{\circ} 50^{\prime} 7^{\prime \prime} \\
(b) A C=9 \mathrm{ft} .10 \frac{1}{3} \text { in., nearly }
\end{array}\right.
$$

Areas

LAND MEASURE

25. In surveying the public lands of the United States and Canada, all linear measurements are made with the surveyors' chain, also known as Gunter's chain, from the name of the inventor. This chain is 66 feet in length and contains 100 links, each 7.92 inches long. In private surveys, the foot is commonly taken as the unit of linear measure, and small land areas are expressed in square feet.

Land areas of considerable extent in the countries mentioned are generally expressed in acres. Fractional parts of an acre, which formerly were expressed in roods, square rods or perches, and square links, are now expressed decimally by nearly all surveyors. Thus, 40.35 acres is written instead of 40 acres, 1 rood, and 16 square rods.

Tables of linear and square measure are given in Arithmetic, and to those tables the student is referred for detailed information regarding the subject. The following table gives the relative values of the units of area used in land surveying in the countries referred to above. As already stated, the square foot and acre are now the units most commonly employed.

Table of Land Measure

[^4]As will be observed, there are 10 square chains in an acre. In order, therefore, to reduce to acres any number of square chains, it is sufficient to move the decimal point one place toward the left, which is equivalent to dividing by 10. It must also be borne in mind that, since there are 100 links in 1 chain, links are usually expressed decimally as hundredths of a chain. Thus, 6.72 chains is written instead of 6 chains 72 links.

Example 1.-A rectangular piece of land is 1,060 feet in length by 820 feet in breadth; what is its area: (a) in acres and decimals? (b) in acres, roods, and perches?

Solution.- (a) $1,060 \times 820=869,200$ sq. ft .; $869,200 \div 43,560$ $=19.954$ A. Aus.
(b) $.954 \mathrm{~A} .=.954 \times 4=3.816 \mathrm{R}$.; .816 R . is equal to $.816 \times 40$ $=32.64 \mathrm{P}$. Hence, the area is 19 A. 3 R. 32.64 P. Ans.

Example 2.-A rectangular piece of land is 12 chains and 6 links (12.06 chains) in length by 8 chains and 55 links (8.55 chains) in breadth; what is its area: (a) in acres and decimals? (b) in acres, roods, and perches?

Solution. - (a) $12.06 \times 8.55=103.11$ sq. ch.; $103.11 \div 10$ $=10.311 \mathrm{~A}$. Ans.
(b) $.311 \mathrm{~A} .=.311 \times 4=1.244 \mathrm{R} . ; .244 \mathrm{R}$. is equal to $.244 \times 40$ $=9.76 \mathrm{P}$. Hence, the area is 10 A .1 R .9 .76 P . Ans.

EXAMPLES FOR PRACTICE

1. A rectangular piece of land is 1,190 feet in length by 700 feet in breadth; what is its area: (a) in acres and decimals? (b) in acres, roods, and perches?

$$
\text { Ans. }\left\{\begin{array}{l}
(a) 19.123 \text { A. } \\
(b) \text { 19 A.0 R. } 19.7 \text { P. }
\end{array}\right.
$$

2. A rectangular piece of land is 525 feet long by 250 feet wide, what is its area: (a) in acres and decimals? (b) in acres, roods, and perches?

$$
\text { Ans. }\left\{\begin{array}{l}
(a) 3.013 \text { A. } \\
(b) \text { 3 A. } 0 \text { R. } 2.08 ~ P . ~
\end{array}\right.
$$

3. A rectangular piece of land is 15 chains and 65 links in length by 8 chains and 16 links ia breadth; what is its area: (a) in acres and decimals? (b) in acres, roods, and perches?

$$
\text { Ans. }\left\{\begin{array}{l}
(a) 12.77 \text { A. } \\
(b) 12 \text { A. } 3 \text { R. } 3.2 \text { P. }
\end{array}\right.
$$

AREAS OF POLYGONS

THE TRIANGLE

Note. - In all that follows, the area of any figure under consideration will be designated by S, unless otherwise stated.
26. Given the Base and Altitude.-Any of the sides of a triangle may be taken as the base, the altitude being the length of the perpendicular drawn on the base from the vertex of the opposite angle. In Fig. 17, b is taken as the base,
 and the perpendicular $B H$, denoted by h, is the altitude.

It was shown in Geomelry, Part 2, that the area of a triangle, when the base b and altitude h are known, is given by the formula

$$
S=\frac{1}{2} b h
$$

27. Given Two Sides and the

 Included Angle.-Let b, c, and A, Fig. 17, be given. In the right triangle $A B H$, we have $h=c \sin A$. The substitution of this value of h in the formula in Art. 26 gives$$
S=\frac{1}{2} b c \sin A
$$

In words, the area of a triangle is equal to one-half the product of any two sides and the sine of their included angle.

Example.-Two of the sides of a triangular field are 39.47 and 59.23 chains, respectively, and their included angle is $65^{\circ} 10^{\prime} 40^{\prime \prime}$. To find the contents of the field, in acres.

Solution.-By the formula, S (square chains) $=\frac{1}{2} \times 39.47 \times 59.23$ $\sin 65^{\circ} 10^{\prime} 40^{\prime \prime}=1,060.9 \mathrm{sq}$. ch.; whence, dividing by 10 (Art. 25),

$$
S(\text { acres })=106.09 \mathrm{~A} . \text { Ans. }
$$

28. Given One side and Two Angles.-The other angle may be at once found by subtracting the sum of the two given angles from 180°. It may, therefore, be assumed that the three angles are known. Let b, Fig. 17, be the given side. From Art. 22, the value of c is equal to the modulus of the triangle multiplied by $\sin C$, or,

$$
c=\frac{b}{\sin B} \sin C
$$

Substituting this value in the formula in Art. 27, we obtain

$$
S=\frac{b^{2} \sin A \sin C}{2 \sin B}
$$

29. The formula in Art. 28 is convenient when logarithmic functions are employed. For the use of natural functions, the following is preferable:

In the right triangles $A B H$ and $C B H$, Fig. 17, we have, $A H=h \cot A, C H=h \cot C$
whence, adding these two equations,

$$
\begin{gather*}
A H+C H=h \cot A+h \cot C \\
b=h(\cot A+\cot C) \tag{1}
\end{gather*}
$$

that is,
and, therefore, $\quad h=\frac{b}{\cot A+\cot C}$
This formula is useful and should be committed to memory. It may be stated in words thus: The altitude of a triangle is equal to the base divided by the sum of the cotangents of the adjacent angles.

By substituting, in the formula in Art. 26, the value of h given in formula 1, we obtain

$$
\begin{equation*}
S=\frac{b^{3}}{2(\cot A+\cot C)} \tag{2}
\end{equation*}
$$

In words, the area of a triangle is equal to the square of any side divided by twice the sum of the cotangents of the angles adjacent to that side.

Example.-One side of a triangular field is 127.64 chains, and the adjacent angles are $46^{\circ} 15^{\prime}$ and $60^{\circ} 41^{\prime}$. To find the area.

Solution by Logarithmic Functions.- Here, $b=127.64, A$ $=46^{\circ} 15^{\prime}, C=60^{\circ} 41^{\prime}$, and $B=180^{\circ}-46^{\circ} 15^{\prime}-60^{\circ} 41^{\prime}=73^{\circ} 4^{\prime}$. Formula of Art. 28,

$$
\begin{aligned}
& S=\frac{127.64^{2} \sin 46^{\circ} 15^{\prime} \sin 60^{\circ} 41^{\prime}}{2 \sin 73^{\circ} 4^{\prime}} \\
& =5,363.4 \text { sq. ch. }=536.34 \mathrm{~A} . \quad \text { Ans. }
\end{aligned}
$$

Solution by Natural Functions.-By formula 2,

$$
\begin{aligned}
S & =\frac{127.64^{\circ}}{2\left(\cot 46^{\circ} 15^{\prime}+\cot 60^{\circ} 41^{\prime}\right)}=\frac{127.64^{*}}{2(.95729+.56156)} \\
& =\frac{127.64^{2}}{3.0377}=5,363.4 \text { sq. ch. }=536.34 \mathrm{~A} . \text { Ans. }
\end{aligned}
$$

[^5]
EXAMPLES FOR PRACTICE

1. Two sides of a triangular field are 3,760 and 2,757 feet, respectively, and their included angle is $54^{\circ} 13^{\prime} 13^{\prime \prime}$. What is the area of the field, in acres?

Ans. $S=96.534 \mathrm{~A}$.
2. One side of a triangle is 96.34 chains; the opposite angle is $49^{\circ} 10^{\prime}$, and one of the adjacent angles, $69^{\circ} 45^{\prime} 30^{\prime \prime}$. What is the area of the triangle, in acres?

Ans. $S=503.69 \mathrm{~A}$.
3. One side of a triangle is 8.93 inches, and the adjacent angles are $34^{\circ} 16^{\prime}$ and $17^{\circ} 37^{\prime} 18^{\prime \prime}$. What is the area of the triangle?

Ans. $S=8.638$ sq. in.
4. Two sides of a triangle are 17 and 25 feet, respectively, and the included angle is $76^{\circ} 13^{\prime}$. What is the area of the triangle?

$$
\text { Ans. } S=206.38 \text { sq. ft. }
$$

30. Given the Three sides.-Let a, b, and c, Fig. 17, be given, and denote $\frac{1}{2}(a+b+c)$ by s. The area S of the triangle is given by the following formula, which is derived in Appendix VI:

$$
S=\sqrt{s(s-a)(s-b)(s-c)}
$$

Example.-The sides of a triangular tract are $1,034.6$ ($=a$, say), 978.28 ($=b$, say), and $2,176.4(=c$, say) feet, respectively; to find the area, in acres.

Solution.-The work may be conveniently arranged as shown below. The numbers in marks of parenthesis indicate the order in which the several quantities are set down. In (6), s is placed above a, b, c in order to facilitate the subtractions. The differences $s-a, s-b, s-c$ are written, as the subtractions are performed, horizontally opposite a, b, and c, respectively.
(6) $s=2,394.64$
$\begin{array}{ll}\text { (1) } a=1,634.60 & \text { (7) } s-a=760.04\end{array}$
(2) $b=978.28$
(8) $s-b=1,416.36$
(3) $c=2,176.40$
(9) $s-c=218.24$
(4) $2 s=4,789.28$
(5) $s=2,394.64$
(10) $\log s=3.37924$
(11) $\log (s-a)=2.88083$
(12) $\log (s-b)=3.15117$
(13) $\log (s-c)=2.33893$

$$
\log S \xlongequal{2} \begin{array}{|c|c|c|}
\hline 11.75017 \\
=5.87509
\end{array} \quad S=750,050 \text { sq. ft. }=17.22 \text { A. Ans. }
$$

EXAMPLES FOR PRACTICE

1. Find the area of a triangular tract whose sides are $54.36,73.19$, and 101.76 chains, respectively. Ans. $S=192.26 \mathrm{~A}$.
2. Find the area of a triangular plate whose sides are 17.12, 12.75, and 8.95 inches, respectively.

Ans. $S=55.646$ sq. in.

THE TRAPEZOID

31. Notation.-In Fig. 18, the bases, or parallel sides, of the trapezoid $A B C D$ are denoted by b_{1} and b_{8}; the altitude, by h; and the sides $A D$ and $B C$, by a and c, respectively. The angles will be designated by the letters A, B, C, D at the vertexes. The line $D B^{\prime}$ is

Fig. 18 drawn through D parallel to $C B$, thus forming a parallelogram in which $B^{\prime} B=D C=b_{2}$, and $D B^{\prime}=C B=c$. Also, angle $D B^{\prime} A=B$, and $A B^{\prime}=A B-B^{\prime} B=b_{1}-b_{2}$. For some purposes, it is convenient to represent this difference by a single letter d, as shown in the figure.
32. Given the Bases and the Altitude.-As shown in Geometry, Part 2, the area of a trapezoid is equal to one-half the product of the altitude by the sum of the bases; that is,

$$
S=\frac{1}{2}\left(b_{1}+b_{3}\right) h
$$

33. Given the Bases and the Angles Adjacent to One of Them. - Let b_{1}, b_{2}, A, and B, Fig. 18, be given. In the triangle $A D B^{\prime}$ we have (formula 1, Art. 29),

$$
h=\frac{b_{1}-b_{3}}{\cot A+\cot B}
$$

If this value of h is substituted in the formula of Art. 32, the result is,

$$
\begin{equation*}
S=\frac{\left(b_{1}-b_{2}\right)\left(b_{1}+b_{2}\right)}{2(\cot A+\cot B)} \tag{1}
\end{equation*}
$$

As the product of the sum of two quantities by their difference is equal to the difference between the squares of the
quantities, $\left(b_{1}-b_{3}\right)\left(b_{1}+b_{3}\right)$ is equal to $b_{1}{ }^{2}-b_{3}{ }^{\circ}$; and, therefore, formula 1 may also be written:

$$
\begin{equation*}
S=\frac{b_{1}{ }^{2}-b_{8}{ }^{2}}{2(\cot A+\cot B)} \tag{2}
\end{equation*}
$$

For the use of logarithmic functions, formula 1 may be transformed into the following (see Appendix VII):

$$
\begin{equation*}
S=\frac{\left(b_{1}-b_{2}\right)\left(b_{1}+b_{2}\right) \sin A \sin B}{2 \sin (A+B)} \tag{3}
\end{equation*}
$$

In the application of these formulas, the student snoald bear in mind that the cotangent of an angle greater than 90° is negative, and numerically equal to the cotangent of the supplement of the angle; also, that the sine of an angle greater than 90° is equal to the sine of its supplement. Thus, $\cot 105^{\circ}=-\cot \left(180^{\circ}-105^{\circ}\right)=-\cot 75^{\circ}=-.26795$; and $\sin 105^{\circ}=\sin 75^{\circ}=.96593$.

Example 1.-The two bases of a trapezoid are 350 and 137 chains, respectively; the angles adjacent to the longer base are $75^{\circ} 10^{\prime}$ and $63^{\circ} 54^{\prime}$. What is the area of the trapezoid?

Solution by Natural Functions. - Let $350=b_{1}, 137=b_{3}$, $A=75^{\circ} 10^{\prime}, B=63^{\circ} 54^{\prime}$. As b_{1} and b_{2} are not convenient numbers to square, formula 1 , which is better adapted to logarithmic work, will be used.

$$
\begin{gathered}
S=\frac{(350-137)(350+137)}{2\left(\cot 75^{\circ} 10^{\prime}+\cot 63^{\circ} 54^{\prime}\right)}=\frac{213 \times 487}{2(.26483+.48989)}=68,721 \mathrm{sq.ch} . \\
=6,872.1 \mathrm{~A} . \text { Ans. }
\end{gathered}
$$

Solution by Logarithmic Functions.-By formula 3,

$$
S=\frac{(350-137)(350+137) \sin 75^{\circ} 10 \sin 63^{\circ} 54}{2 \sin 139^{\circ} 4^{\prime}}
$$

or, replacing $\sin 139^{\circ} 4^{\prime}$ by $\sin \left(180^{\circ}-139^{\circ} 4^{\prime}\right)=\sin 40^{\circ} 56$,
$S=\frac{213 \times 487 \sin 75^{\circ} 10^{\prime} \sin 63^{\circ} 54^{\prime}}{2 \sin 40^{\circ} 56^{\prime}}=68,721$ sq. ch. $=6,872.1$ A. Ans.
Example 2.-The bases of a trapezoid are 100 and 70 feet, the angles adjacent to the shorter base being $52^{\circ} 47^{\prime}$ and $143^{\circ} 14^{\prime}$. What is the area of the trapezoid?

Solution.-Since the bases are parallei, the two angles adjacent to each of the non-parallel sides are supplementary. Thus, in Fig. 18, $A+D=180^{\circ}, B+C=180^{\circ}$; and, therefore, $A=180^{\circ}-D$; $B=180^{\circ}-C$. Let $52^{\circ} 47^{\prime}=D, 143^{\circ} 14=C$. Then,

$$
\begin{aligned}
A & =180^{\circ}-52^{\circ} 47 \ell=127^{\circ} 13^{\prime} \\
B & =180^{\circ}-143^{\circ} 14^{\prime}=36^{\circ} 46^{\prime} \\
\cot A & =-\cot \left(180^{\circ}-127^{\circ} 13^{\prime}\right)=-\cot 52^{\circ} 47^{\prime}=-.76950 \\
\cot B & =\cot 36^{\circ} 46^{\prime}=1.33835
\end{aligned}
$$

Formula 2,

$$
S=\frac{100^{2}-70^{2}}{2(+1.33835-.7595)}=\frac{5,100}{1.1577}=4,405.3 \text { sq. ft. Ans. }
$$

EXAMPLES FOR PRACTICE

1. The bases of a trapezoidal tract are 78.63 and 54.71 chains, respectively; the angles adjacent to the longer base are $55^{\circ} 18^{\prime}$ and $62^{\circ} 53^{\prime}$. Find the area, in acres.

Ans. $S=132.4 \mathrm{~A}$.
2. Find the number of square feet in a trapezoidal cross-section of a canal 40 feet wide at the bottom, 65 feet wide at the top, and whose non-parallel sides are inclined to the horizontal at an angle of 50°. (The dimensions across the top and bottom are measured horizontally.)

$$
\text { Ans. } S=782.09 \text { sq. } \mathrm{ft} .
$$

3. The two bases of a trapezoid are 10.25 and 18.76 inches, respectively; one of the angles adjacent to the shorter base is $76^{\circ} 45^{\prime} 10^{\prime \prime}$, and the angle diagonally opposite is $66^{\circ} 8^{\prime} 9^{\prime \prime}$; find the area of the trapezoid. (Use logarithmic functions.)

Ans. $S=596.4$ sq. in.
34. Given the Four sides.-If the difference between the two bases added to the sum of the non-parallel sides is denoted by $2 s$; that is, if the expression $\frac{1}{2}(a+c+d)$, Fig. 18, is denoted by s, the area of the trapezoid is given by the following formula (see Appendix VIII):

$$
S=\frac{b_{1}+b_{2}}{d} \sqrt{s(s-a)(s-c)(s-d)}
$$

EXAMPLE FOR PRACTICE

The bases of a trapezoidal field are 136.43 and 210.18 chains, respectively; one of the non-parallel sides is 96.73 chains, and the other 164.37 chains. Find the area of the tract, in acres.

$$
\text { Ans. } S=864.97 \mathrm{~A} .
$$

THE REGULAR POLYGON

35. Given the Number of sides and the Radius. Let $M N$, Fig. 19, be one of the sides of a regular polygon

Fig. 19 of n sides; O, the center, and r the radius, of the circumscribed circle (called also the center and radius, respectively, of the polygon); and A, the angle at the center subtended by a side of the polygon. The length of the side $M N$ will be denoted by l.

Let n and r be given, to find the area S of the polygon and the length l of each of its sides. From Geometry, Part 2, the angle $M O N$, or A, is found by dividing 360° by the number of sides in the polygon; that is,

$$
A=\frac{360^{\circ}}{n}
$$

The area of the triangle $M O N$ is (Art. 27) $\frac{1}{2} O M \times O N$ $\sin M O N$, or $\frac{1}{2} r \times r \sin A=\frac{1}{2} r^{2} \sin A=\frac{1}{2} r^{2} \sin \frac{360^{\circ}}{n}$. Since the polygon consists of n triangles equal to $M O N$, its area S is equal to n times the area of $M O N$; that is,
or

$$
S=n \times \frac{1}{2} r^{\circ} \sin \frac{360^{\circ}}{n}
$$

$$
\begin{equation*}
S=\frac{1}{1} n r^{*} \sin \frac{360^{\circ}}{n} \tag{1}
\end{equation*}
$$

In the right triangle $M O H$, we have,

$$
M H=r \sin \frac{A}{2}
$$

or, since $M H$ is one-half of $M N$, or of l,

$$
\frac{l}{2}=r \sin \frac{A}{2}
$$

whence, multiplying by 2 ,

$$
l=2 r \sin \frac{A}{2}
$$

Finally, $\frac{A}{2}=\frac{1}{2} \frac{360^{\circ}}{n}=\frac{180^{\circ}}{n}$. By the substitution of this
value in the expression for l just found, we get, finally,

$$
\begin{equation*}
l=2 r \sin \frac{180^{\circ}}{n} \tag{2}
\end{equation*}
$$

36. When the Number of Sides and Their Common Length Are Given.-Let n and l, Fig. 19, be given, to find the radius r and the area S. The radius is found by solving formula 2, Art. 35, for r, which gives,

$$
\begin{equation*}
r=\frac{l}{2 \sin \frac{180^{\circ}}{n}} \tag{1}
\end{equation*}
$$

In the triangle $M O H$, we have,

$$
O H=M H \cot \frac{1}{2} A=\frac{M N}{2}-\cot \frac{1}{2} A
$$

The area of $M O N$ is $\frac{1}{2} M N \times O H$. Writing instead of $O H$ the value just found,

$$
\begin{aligned}
\frac{1}{2} M N & \times \frac{M N}{2} \cot \frac{1}{2} A=\frac{M N^{3}}{4} \cot \frac{1}{2} A \\
& =\frac{l^{2}}{4} \cot \frac{1}{2} A=\frac{l^{2}}{4} \cot \frac{180^{\circ}}{n}
\end{aligned}
$$

Multiplying this by n, we obtain, for the area of the polygon,

$$
\begin{equation*}
S=\frac{n l^{\prime}}{4} \cot \frac{180^{\circ}}{n} \tag{2}
\end{equation*}
$$

Example 1.-Find the area, and also the rength of the side, of a regular decagon inscribed in a 15 -inch circle.

Solution.-In practice, it is usual to refer to a circle by its diameter, and so a $15-\mathrm{in}$. circle is a circle whose diameter is 15 in . We have, therefore, $r=\frac{15}{2}=7.5, n=10, \frac{360^{\circ}}{n}=\frac{360^{\circ}}{10}=36^{\circ}, \frac{180^{\circ}}{n}=18^{\circ}$, and formulas 1 and 2 , Art. 35, give

$$
\begin{aligned}
S & =1 \times 10 \times 7.5^{\circ} \sin 36^{\circ}=165.32 \text { s. } . \text { in. Ans. } \\
l & =2 \times 7.5 \sin 18^{\circ}=4.635 \mathrm{in.} \text { Ans. }
\end{aligned}
$$

Example 2.-Each of the sides of an octagonal park is 150 feet; what is the area of the park, in acres?

Solution.-Here $l=150 \mathrm{ft}$., $n=8, \frac{180^{\circ}}{n}=\frac{180^{\circ}}{8}=22 \frac{1^{\circ}}{}=22^{\circ} 30^{\prime}$, and formula 2 , Art. 36, gives,
$S=\frac{1}{8} \times 8 \times 150^{\circ} \cot 22^{\circ} 30^{\prime}=2 \times 22,500 \cot 22^{\circ} 30^{\prime}=(45,000$ cut $\left.22^{\circ} 30^{\prime}\right) \mathrm{sq} . \mathrm{ft} .=\frac{45,000 \cot 22^{\circ} 30}{43,560} \mathrm{~A} .=2.494 \mathrm{~A}$. Ans.

EXAMPLES FOR PRACTICE

1. Find the side and area of an equilateral triangle inscribed in a 20 -inch circle.

$$
\text { Ans. }\left\{\begin{array}{l}
l=17.321 \mathrm{in} . \\
S=129.9 \mathrm{sq} . \mathrm{in} .
\end{array}\right.
$$

2. What must be the length of the side and the radius of a regular pentagon, that its area may be 46.97 square feet?

$$
\text { Ans. }\left\{\begin{array}{l}
l=5.225 \mathrm{ft} . \\
r=4.445 \mathrm{ft}
\end{array}\right.
$$

3. An eight-sided drive is to be built around a circular park 1,500 feet in diameter, the drive to be 15 feet wide, with its outer corners on the circumference of the park. Find: (a) the length of each of the sides of the outer boundary of the drive; (b) the length of each of the sides of the inner boundary; (c) the cost of paving the drive with asphalt, at $\$ 2.25$ per square yard; (d) the difference between the exact area of the drive and the approximate area found by assuming the polygonal boundaries to coincide with the circumferences of their respective circumscribed circles.

$$
\text { Ans. }\left\{\begin{array}{l}
(a) \\
(b) \\
(b) \\
561.02 \mathrm{ft} \\
(c) \\
(d) \\
(d) \\
844,025 \\
\text { sq. yd. }
\end{array}\right.
$$

OTHER POLYGONS

37. The area of any polygon can be determined by dividing the polygon into triangles, and measuring in each triangle whatever parts are necessary for the determination of its area. The parts to be measured depend on special conditions and on the instruments used. The polygon may be divided into triangles either by diagonals or by lines drawn from a convenient interior point to the different vertexes. Illustrations of these methods of division will be given in connection with surveying. When the area is to be determined from a plat, the hase and altitude of each triangle are usually the most convenient parts to measure.

AREAS BOUNDED BY IRREGULAR OUTLINES

AREA INCLUDED BETWEEN A STRAIGHT LINE AND AN IRREGULAR CURVE

38. By Selected Ordinates.-Let it be required to determine the area between the curve $D C$ and the straight line $A B$, Fig. 20. A very convenient method is to draw perpendiculars on $A B$ from the points of the curve at which its direction changes appreciably, and to consider the portion of the curve between two consecutive perpendiculars to be a straight line. The

Fig. 20 figure is then treated as if divided into a number of trapezoids, whose areas can be computed by the rules of geometry. The perpendiculars are called ordinates. Both the lengths of the ordinates and the distances between every two consecutive ordinates should be measured. The area of any of the (approximate) trapezoids into which the figure is thus divided is equal to one-half the sum of the two ordinates enclosing it multiplied by the distance between them. It should be understood that both this rule and those given further on relating to the same subject are only approximate. Since the bounding curve is irregular, that is, does not follow any mathematical law, no exact formula can be found for the area.

Example.-Referring to Fig. 20, suppose that, beginning at the left of the figure, the successive ordinates measure $15,13,12,13.5,20$, $21.5,22,20$, and 16 feet, respectively, and that the successive distances between the offsets, from left to right, measure $7.5,10,15,41,10.5$, 11.5, 11.5 , and 21 feet, respectively; what is the area of the surface?

Solution.-The area of the figure is approximately equal to the sum of the areas of the trapezoids into which it is divided, and the area of each trapezoid is equal to one-half the șum of its parallel sides multiplied by the perpendicular distance between them. Therefore, the area of the figure is equal to

$$
\begin{gathered}
\frac{15+13}{2} \times 7.5+\frac{13+12}{2} \times 10+\frac{12+13.5}{2} \times 15+\frac{13.5+20}{2} \times 41 \\
+\frac{20+21.5}{2} \times 10.5+\frac{21.5+22}{2} \times 11.5+\frac{22+20}{2} \times 11.5+\frac{20+16}{2} \times 21 \\
=2,195.5 \mathrm{sq} . \mathrm{ft} \text {. Ans. }
\end{gathered}
$$

39. Trapezoldal Rule: Sigma Notation.-In order to facilitate the calculations, the ordinates are often measured at regular intervals along the straight line, as shown in Fig. 21. The area $A B C D$ included between the straight line and the irregular boundary can then be more easily calculated by what is commonly known as the trapezoldal rule. This

Fig. 21
is merely a rule for calculating the combined area of a series of trapezoids that have the same altitude, the areas being combined for convenience of calculation. The result given by this rule is closer the smaller the distance between the ordinates. The rule is as follows:

Rule.-Add together one-half the two end ordinates and all ihe intermediate ordinates, and multiply the sum by the common distance between the ordinates.

Let $\quad a=$ first ordinate;

$$
\begin{aligned}
n & =\text { last ordinate; } \\
h_{\mathrm{s}}, h_{\mathrm{s}}, h_{\mathrm{s}} & =\text { intermediate ordinates; } \\
a & =\text { common distance between ordinates } \\
S & =\text { area of surface }
\end{aligned}
$$

Then, $\quad S=\left[\frac{1}{2}(a+n)+h_{1}+h_{3}+h_{3}+\ldots\right] d$
This expression may be put in a simpler form by using the sigma notation, which is as follows: As will be noticed, all the intermediate ordinates are denoted by h,
different subscripts being used to indicate different values of h. We may, therefore, write the value of S thus,

$$
S=\left[\frac{1}{2}(a+n)+\operatorname{sum}(\mathrm{f} \text { all values of } h] d\right.
$$

Instead of the phrase sum of all values of h, the expression Σh, read sigma h, is used. The symbol $\mathbf{\Sigma}$ is the Greek letter sigma, corresponding to English S, and is very commonly used, as here, to indicate the addition of several quantities of the same character, denoted by a single symbol; hence, the name sign of summation, which also is often given to that letter.

By using the sigma notation, the value of S may be written

$$
S=\left(\frac{a+n}{2}+\Sigma h\right) d
$$

Example.-If the ordinates from the straight line $A B$ to the curved boundary $D C$, Fig. 21, are $19,18,14,12,13,17$, and 23 links, respectively, and are at equal distances of 50 links, what is the area included between the curved boundary and the straight line?

Solution.-Area $A B C D=\left(\frac{19+23}{2}+18+14+12+13+17\right)$ $\times 50=4,750$ sq. li. Ans.
40. Simpson's Rule. -The foregoing rule assumes that all the small figures into which the area is divided are perfect trapezoids, which assumption always involves more or less error, since the irregular boundary is in nearly all cases an irregular curve. When the offsets are taken at

Fig. 22
reguiar intervals, the following rule, known as Simpson's one-third rule, gives a closer approximation. In applying this rule, the base line must be divided into an even number of equal parts; the ordinates measured at the points of division are numbered consecutively, as shown in Fig. 22.

Rule.-Divide the base line into an even number of equa? parts, and at the points of division erect ordinates terminating in the curve. Number the ordinates 1, 2, 3, etc., from left to right, including those at the ends of the base. Add together the end ordinates, four times the sum of all intermediate evennumbered ordinates, and twice the sum of all intermediate oddnumbered ordinates; multiply the total sum by one-third the common distance between adjacent ordinates.

This rule has been used extensively; it can be expressed by a formula as follows:

Let $h_{\mathrm{s}}=$ any intermediate even-numbered ordinate;
$h_{3}=$ any intermediate odd-numbered ordinate;
and let all other quantities be represented by the same letters as in the preceding article. Then,

$$
S=\left(a+n+4 \Sigma h_{3}+2 \Sigma h_{\mathrm{s}}\right) \frac{d}{3}
$$

The notation will be readily understood by reference to Fig. 23. The expres-

Fig. 23 sion $4 \sum h$, means four times the sum of all the ordinates h_{s}, or, in other words, four times the sum of all the even-numbered ordinates.
Example.-What is the area $A B C D$, Fig. 21, by Simpson's rule, using the same values as in the example in Art. 39?

Solution.- $S=[19+23+4(18+12+17)+2(14+13)] \times \frac{50}{8}$ $=4,733$ sq. li. Ans.

EXAMPLES FOR PRACTICE

1. A figure included between a straight base line, a curve, and twe perpendiculars to the base at the ends has nine ordinates, including the two end perpendiculars, whose lengths are $43,48,39,50,41,32$, 37,31 , and 22 feet, respectively; the common distance between the ordinates is 60 feet. Find the area: (a) by the trapezoidal rule; (b) by Simpson's rule.

Ans. $\left\{\begin{array}{l}\text { (a) } \\ \text { (b) } \\ 18,630 \\ 18,860 \\ \text { sq. } \mathrm{ft} .\end{array}\right.$
2. In order to determine the area included between an irregular boundary, a straight base line, and two perpendiculars to the base at the ends, eight ordinates, including the two end perpendiculars, are measured from the straight line to the boundary. The ordinates are found to measure $16,18,12,13,15,17,19$, and 20.5 feet, and the successive distances between them are found to measure $7.8,10,15,20$. 12,40 , and 5 feet, respectively. What is the area of the surface?

Ans. $1,760.9$ sq. ft .
3. A surface lying between a straight base line and a curve is limited by two perpendiculars to the base line at the ends; the base line is divided into eight parts 50 feet each, and at the points of division ordinates are measured. The lengths of the successive ordinates, including the two end perpendiculars, are $10,25,38,49,58,65,70,73$, and 74 feet, respectively. Find the area of the surface: (a) by the trapezoidal rule; (6) by Simpson's rule. Ans. $\left\{\begin{array}{l}\text { a }) \\ (b), 000 \\ \text { (bq. } \\ 21,067 \\ \text { sq. ft. }\end{array}\right.$

AREA BOUNDED BY AN IRREGULAR CURVE

41. By Ordinates.-Suppose that it is required to find the area enclosed by the heavy irregular curve shown in Fig. 24. A broken line $A E F M G H I A$ is drawn around

Fig. 24
the curved boundary line, and as close to it as convenient. Ordinates to the straight lines thus drawn are measured from the points where the direction of the curved boundary changes materially, as shown. The area of the polygon

AEFMGHIA is çalculated by one of the methods
 explained in preceding articles, and from it is subtracted the sum of the areas included between the curved boundary and the broken line, calculated as in Art. 39.

At such corners as A, the triangles $A B C$ and $A B D$ are computed from the measured bases $A C$ and $A D$ and the altitudes $B C$ and $B D$. All the quadrilaterals, as $Q R S T$, are treated as trapezoids; and such three-sided figures as $M P N$, as triangles. The process is so simple that it does not require any further explanation.
42. By the Plani-meter.-The most convenient way to find the area of a plane surface having an irregular boundary is by the planimeter. There are several forms of planimeters; the one most commonly used is the polar planimeter (see Fig. 25). As will be seen from the illustration, this instrument has two arms $i j$ and $g h$ connected by a hinge joint. The point e at the end of the bar $i j$ is called the anchor
point; it remains stationary while the point d, called the pointer or tracer, at the end of the bar $g h$ is moved over the outline of the figure whose area is to be determined. The movement of the pointer d causes the wheel c on the opposite end of the bar to roll on the paper; this wheel is called the measuring wheel or counter wheel. The graduated bar $g h$ can be adjusted by sliding it in or out through the socket m in the top of the frame. This bar is clamped by means of a clamp screw, a part of which is shown back of the small movable.socket n, and is set at the exact length required by means of the thumbscrew f. The bar $i j$ is of fixed length; it is pivoted at k, the junction of the two bars. The measuring wheel c is mounted on the main axis $a b$, which is parallel with the bar $g h$. The complete revolutions of the wheel c are read on the disk l, and the fractional parts of revolutions are read on the wheel c and the vernier v, the tenths and hundredths being read on the wheel itself, and the thousandths on the vernier.

To use the planimeter, the anchor point e is fixed on the paper or drawing board, preferably outside the figure to be measured, the pointer d is placed on some point in the periphery of the figure, and a reading of the wheel c is taken. The point d is then moved carefully around the periphery of. the figure, in a clockwise direction, or from left to right, to the point of beginning. A second reading of the wheel c is then taken, and the difference between the two readings is the number of revolutions of the wheel. If the wheel is set to read zero, the number of revolutions is given directly by the second reading.

If the anchor point is outside the area to be measured, the distance traversed by the wheel, or the product of the number of revolutions by the circumference of the wheel, in inches, multiplied by the length of the bar $n h$, in inches, is the area, in square inches, bounded by the path of the pointer d.

If the anchor point is inside the area, the product just referred to must be added to the area of the zero circle,
whose radius is equal to $\sqrt{p^{2}+q^{2}+2 p r}, p$ being the length of the arm $n h ; r$, the distance from the center of the wheel c to the center of the joint k; and q, the length of the bar $k j$. The bar $g h$ is generally set at such a length that ten times the number of revolutions of the wheel c is the area measured. This area is the actual area of the figure measured, and the area represented by the figure is determined from the scale of the plat. The area given by the planimeter, in square inches, must be multiplied by the square of the scale of the plat, in order to get the area sought. Thus, if the plat has been drawn to a scale of 50 feet to an inch, each square inch of the plat is equivalent to $50 \times 50=2,500$ square feet of area.

Suppose that the area bounded by the irregular line in Fig. 25, as measured by the planimeter, is 2.535 square inches, and that the scale of the plat is 100 feet to an inch; then the area represented by a square inch of the plat is 100×100 $=10,000$ square feet, and the area represented by the closed figure is $10,000 \times 2.535=25,350$ square feet.

Full directions for using the planimeter are usually furnished by the maker.

APPENDIX: DERIVATION OF FORMULAE

I-FORMULAS 1 TO 4 OF ART. 16.

Let $R O Q$, Fig. 26, be any angle A, and $Q O S$ any angle B. Then, $A+B=R O S$. From any point P on $O S$, draw $P N$ and $P M$, perpendicular, respectively, to $O R$ and $O Q$. Draw $M K$ parallel to $O R$ and therefore perpendicular to $P N$; also, $M L$ perpendicular to $O R$. The angles $M P K$ and $R O Q$, having their sides perpendicular each to each, are equal. Now,

Fig. 26
$\sin (A+B)=\frac{N P}{O P}=\frac{N K+K P}{O P}=\frac{M L}{O P}+\frac{K P}{O P}=\frac{O M \sin A}{O P}+\frac{P M \cos A}{O P}$
(triangles $M L O$ and $P M K)=\sin A \frac{O M}{O P}+\cos A \frac{P M}{O P}=\sin A \cos B$ $+\cos A \sin B$ (triangle $O P M$)

This is formula 1.
Also,

$$
\cos (A-B)=\sin \left[90^{\circ}-(A-B)\right]=\sin \left[\left(90^{\circ}-A\right)+B\right]
$$

or, by formula 1 ,

$$
\begin{aligned}
\cos (A-B) & =\sin \left(90^{\circ}-A\right) \cos B+\cos \left(90^{\circ}-A\right) \sin B \\
& =\cos A \cos B+\sin A \sin B
\end{aligned}
$$

which is formula 4.
Formula 3 follows from this; for

$$
\begin{gathered}
\sin (A-B)=\cos \left[90^{\circ}-(A-B)\right]=\cos \left[\left(90^{\circ}+B\right)-A\right] \\
=\cos \left(90^{\circ}+B\right) \cos A+\sin \left(90^{\circ}+B\right) \sin A
\end{gathered}
$$

or, because $\cos \left(90^{\circ}+B\right)=-\sin B$, and $\sin \left(90^{\circ}+B\right)=\cos B$ (Art. 14), $\sin (A-B)=-\sin B \cos A+\cos B \sin A=\sin A \cos B-\cos A \sin B$. Finally, applying this formula,

$$
\begin{gathered}
\cos (A+B)=\sin \left[90^{\circ}-(A+B)\right]=\sin \left[\left(90^{\circ}-A\right)-B\right] \\
=\sin \left(90^{\circ}-A\right) \cos B-\cos \left(90^{\circ}-A\right) \sin B \\
=\cos A \cos B-\sin A \sin B
\end{gathered}
$$

which is formula 2.

II-FORMULAS OF ART. 19

Referring to Fig. 6 (a) and (b), Art. 18,

$$
\begin{equation*}
a^{2}=p^{2}+B D^{2} \tag{1}
\end{equation*}
$$

In $(a), B D=c-A D$, whence $\overline{B D} D^{2}=c^{2}-2 c \times A D+\bar{A} \bar{D}^{2}$.
In $(b), B D=A D-c$, whence $\bar{B} D^{2}=\bar{A} \bar{D}^{2}-2 c \times A D+c^{2}$.
Substituting this value of $B D$ in equation (1),

$$
\begin{equation*}
a^{2}=p^{2}+\bar{A} D^{2}+c^{2}-2 c \times A D \tag{2}
\end{equation*}
$$

But $p^{2}+\overline{A D}^{2}=b^{2}$, and $A D=b \cos A$; therefore,

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

When the angle opposite the side is obtuse, as B in Fig. 6 (b), the same reasoning leads to the relation,

$$
b^{2}=a^{2}+c^{2}+2 a c \times \cos C B D
$$

the second member of which becomes $a^{2}+c^{3}-2 a c \cos B$, when $\cos C B D$ is replaced by its equal $-\cos B$ (Art. 13).

III-FORMULAS OF ART. 20

Let $A B C$. Fig. 27, be any triangle. As usual, the angles of the tri-

Fic. 27 angle will be denoted by A, B, C, and the opposite sides by a, b, c, respectively; that is, angle $C A B$ $=A, B C=a$, etc. Produce $A C$ to A^{\prime}, making $C A^{\prime}=B C=a$. Draw $B A^{\prime}$, and $A P$ perpendicular to it, meeting $B C$ at Q.

Since $B C=C A^{\prime}$, the triangle $B C A^{\prime}$ is isosceles, and, therefore, the angles $C A^{\prime} B$ and $C B A^{\prime}$ are equal. The sum of these two angles, or twice either of them, is equal to the external angle $B C A$, or C, and therefore each of these two angles is equal to $\frac{1}{2} C$. In the right triangle $A P A^{\prime}$, the angle M, being the complement of A^{\prime}, is equal to $90^{\circ}-\frac{1}{3} C$.
We have also,

$$
K=A-M=A-\left(90^{\circ}-\frac{1}{2} C\right)
$$

or, since $C=180^{\circ}-(A+B)=180^{\circ}-A-B$,

$$
K=A-\left[90^{\circ}-\frac{1}{2}\left(180^{\circ}-A-B\right)\right]=\frac{1}{2}(A-B)
$$

The angle N being external to the triangle $A Q B$, we have

$$
\begin{aligned}
N= & K+B=\frac{1}{2}(A-B)+B=\frac{1}{2}(A+B) \\
& =\frac{1}{2}\left(180^{\circ}-C\right)=90^{\circ}-\frac{1}{2} C=M
\end{aligned}
$$

Therefore, the triangle $A Q C$ is isosceles, and $Q C=A C=b$; and, consequently, $B Q=a-b$.

The right triangle $A B P$ gives,
or, writing the values of $B P$ and $A P$ from the triangles $B Q P$ and $A P A^{\prime}$,
that is,

$$
\begin{equation*}
\tan \frac{1}{\frac{1}{2}}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C \tag{1}
\end{equation*}
$$

Now, $\frac{1}{2} C=\frac{1}{2}\left[180^{\circ}-(A+B)\right]=90^{\circ}-\frac{1}{\frac{1}{2}}(A+B)$, and therefore, $\cot \frac{1}{3} C=\tan \frac{1}{4}(A+B)$. By substituting this value in equation (1), and transforming, the formula in Art. 20 is obtained.

IV-FORMULA 2 OF ART. 21

This formula is derived from Fig. 27 as follows: In the triangle $B P Q$,

$$
\begin{equation*}
B P=B Q \cos \frac{1}{2} C=(a-b) \cos \frac{1}{2} C \tag{1}
\end{equation*}
$$

and, in the triangle $A B P$,

$$
c(=A B)=\frac{B P}{\sin \frac{1}{3}(A-B)}
$$

which becomes formula 2 when $B P$ is replaced by its value (1).

V-FORMULAS 2 TO 4 OF ART. 23

We have (formula 8, Art. 17),

$$
2 \cos ^{2} \frac{1}{3} A=1+\cos A
$$

or, substituting the value of $\cos A$ from formula 1, Art. 23,
$2 \cos ^{2} \frac{1}{2} A=1+\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{2 b c+b^{2}+c^{2}-a^{2}}{2 b c}=\frac{(b+c)^{2}-a^{2}}{2 b c}$
or, remembering that the difference between the squares of two numbers is equal to their sum multiplied by their difference,

$$
\begin{equation*}
2 \cos ^{2} \frac{1}{2} A=\frac{(b+c+a)(b+c-a)}{2 b c} \tag{1}
\end{equation*}
$$

Now, since $a+b+c=2 s$, we have, subtracting $2 a$ from both members, $b+c-a=2 s-2 a=2(s-a)$. Likewise, $a+b-c$ $=2(s-c)$, and $a+c-b=2(s-b)$. Substituting these values in equation (1),
whence,

$$
2 \cos ^{2} \frac{1}{2} A=\frac{2 s \times 2(s-a)}{2 b c}=\frac{2 s(s-a)}{b c}
$$

$$
\begin{equation*}
\cos \frac{\frac{1}{2}}{} A=\sqrt{\frac{s(s-a)}{b c}} \tag{2}
\end{equation*}
$$

which is formula 3, Art. 23.
Likewise (formula 7, Art. 17),

$$
\begin{align*}
& \qquad \begin{array}{l}
2 \sin ^{2} \frac{1}{2}=1-\cos A=1-\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
=\frac{2 b c-b^{2}-c^{2}+a^{2}}{2 b c}=\frac{a^{2}-\left(b^{2}-2 b c+c^{2}\right)}{2 b c}=\frac{a^{2}-(b-c)^{2}}{2 b c} \\
=\frac{(a+b-c)(a-b+c)}{2 b c}=\frac{2(s-c) \times 2(s-b)}{2 b c}=\frac{2(s-b)(s-c)}{b c} \\
\text { Whence, } \quad \sin \frac{1}{2 b}=\sqrt{\frac{(s-b)(s-c)}{b c}}
\end{array}
\end{align*}
$$

which is formula 4, Art. 23.
Formula 2 is obtained by dividing equation (3) by equation (2).

VI-FORMULA OF ART. 30

Formulas 3 and 4 of Art. 23 are:

$$
\begin{align*}
& \sin \frac{1}{\frac{1}{2}}=\sqrt{\frac{(s-b)(s-c)}{b c}} \tag{1}\\
& \cos \frac{1}{2} A=\sqrt{\frac{s(s-a)}{b c}} \tag{2}
\end{align*}
$$

Also (formula 5, Art. 17),

$$
\begin{equation*}
\sin A=2 \sin \frac{1}{3} A \cos \frac{1}{2} A \tag{3}
\end{equation*}
$$

Substituting in equation (3) the values of $\sin \frac{1}{\frac{1}{2}} A$ and $\cos \frac{1}{\frac{1}{2}} A$ from equations (1) and (2),

$$
\begin{gathered}
\sin A=2 \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{s(s-a)}{b c}}=2 \sqrt{\frac{s(s-a)(s-b)(s-c)}{b^{2} c^{3}}} \\
=2 \frac{\sqrt{s(s-a)(s-b)(s-c)}}{b c}
\end{gathered}
$$

Substituting this value in formula of Art. 27,

$$
S=\sqrt{s(s-a)(s-b)(s-c)}
$$

VII-FORMULA 3 OF ART. 33

We have, since cot $=\frac{\cos }{\sin }$,

$$
\begin{gathered}
\frac{1}{\cot A+\cot B}=\frac{1}{\frac{\cos A}{\sin A}+\frac{\cos B}{\sin B}}=\frac{\sin A \sin B}{\sin B \cos A+\cos B \sin A} \\
=\frac{\sin A \sin B}{\sin (A+B)}
\end{gathered}
$$

By substituting this value in formula 1, we obtain

$$
S=\frac{\left(b_{1}-b_{2}\right)\left(b_{1}+b_{2}\right) \sin A \sin B}{2 \sin (A+B)}
$$

VIII-FORMULA OF ART. 34

Let the area of the triangle $A D B^{\prime}$, Fig. 18, be denoted by T, and that of the parallelogram $B C D B^{\prime}$ by P. Then,

$$
\begin{align*}
& S=P+T \tag{1}\\
& P=b, h, T=\frac{1}{1} d h
\end{align*}
$$

Now,
Dividing the first of these equations by the second,

$$
\frac{P}{T}=\frac{b_{3}}{\frac{1}{1} d}=\frac{2 b_{3}}{d}=\frac{2 b_{3}}{b_{1}-b_{3}}
$$

whence,

$$
P=\frac{2 b_{3}}{b_{3}-b_{3}} T
$$

Substituting this value of P in equation (1),
$S=\frac{2 b_{3}}{b_{1}-b_{3}} T+T=\left(\frac{2 b_{3}}{b_{3}-b_{3}}+1\right) T=\frac{b_{1}+b_{3}}{b_{1}-b_{3}} T=\frac{b_{1}+b_{3}}{d} T$
Let $\frac{1}{2}(a+c+d)=s$. Then (formula of Art. 30),

$$
T=\sqrt{s(s-a)(s-c)(s-d)}
$$

and, substituting this value in equation (2),

$$
S=\frac{b_{2}+b_{2}}{d} \sqrt{s(s-a)(s-c)(s-d)}
$$

TABLE OF TRIGONOMETRIC FORMULAS

The principal formulas occurring in the text, and others that can be readily derived from these, are tabulated in the following pages for convenient reference. As these formulas, which include those for the solution of triangles, are here systematically classified and arranged, the student will find this table useful in the solution of all kinds of problems requiring the application of trigonometry. He is advised to refer to it often, so as to become familiar with its contents and use.

FORMULAS DEFINING THE TRIGONOMETRIC FUNCTIONS

Fic. 28

1. $\sin A=\frac{a}{c}$
.
2. $\tan A=\frac{a}{b}$
3. $\cos A=\sin \left(90^{\circ}-A\right)=\frac{b}{c}$
4. $\cot A=\tan \left(90^{\circ}-A\right)=\frac{b}{a}$
5. $\sec A=\frac{c}{b}$
6. $\csc A=\sec \left(90^{\circ}-A\right)=\frac{c}{a}$
7. vers $A=1-\cos A=1-\frac{b}{c}$
8. covers $A=\operatorname{vers}\left(90^{\circ}-A\right)=1-\sin A=1-\frac{a}{c}$

FUNCTIONS OF 0° AND 90°

9. $\sin 0^{\circ}=0$
10. $\tan 0^{\circ}=0$
11. $\cos 0^{\circ}=1$
12. $\cot 0^{\circ}=\infty$
13. $\sec 0^{\circ}=1$
14. $\csc 0^{\circ}=\infty$
15. $\sin 90^{\circ}=1$
16. $\tan 90^{\circ}=\infty$
17. $\cos 90^{\circ}=0$
18. $\cot 90^{\circ}=0$
19. $\sec 90^{\circ}=\infty$
20. $\csc 90^{\circ}=1$

FUNCTIONS OF NEGATIVE ANGLES

21. $\sin (-A)=-\sin A$
22. $\cot (-A)=-\cot A$
23. $\tan (-A)=-\tan A$
24. $\sec (-A)=\sec A$
25. $\cos (-A)=\cos A$
26. $\csc (-A)=-\csc A$

FUNCTIONS OF $90^{\circ}+A$

27. $\sin \left(90^{\circ}+A\right)=\cos A \quad$ 30. $\cot \left(90^{\circ}+A\right)=-\tan A$
28. $\tan \left(90^{\circ}+A\right)=-\cot A \quad 31 . \sec \left(90^{\circ}+A\right)=-\csc A$
29. $\cos \left(90^{\circ}+A\right)=-\sin A \quad 32 . \csc \left(90^{\circ}+A\right)=\sec A$

FUNCTIONS OF $180^{\circ}-A$ AND OF $180^{\circ}+A$

33. $\sin \left(180^{\circ}-A\right)=\sin A$
34. $\tan \left(180^{\circ}-A\right)=-\tan A$
35. $\cos \left(180^{\circ}-A\right)=-\cos A$
36. $\cot \left(180^{\circ}-A\right)=-\cot A$
37. $\sec \left(180^{\circ}-A\right)=-\sec A$
38. $\csc \left(180^{\circ}-A\right)=\csc A$
39. $\sin \left(180^{\circ}+A\right)=-\sin A$
40. $\tan \left(180^{\circ}+A\right)=\tan A$
41. $\cos \left(180^{\circ}+A\right)=-\cos A$
42. $\cot \left(180^{\circ}+A\right)=\cot A$
43. $\sec \left(180^{\circ}+A\right)=-\sec A$
44. $\csc \left(180^{\circ}+A\right)=-\csc A$

FUNCTIONS OF $360^{\circ}-A$ AND OF $360^{\circ}+A$

45. $\sin \left(360^{\circ}-A\right)=-\sin A \quad 51 . \sin \left(360^{\circ}+A\right)=\sin A$
46. $\tan \left(360^{\circ}-A\right)=-\tan A \quad 52 . \tan \left(360^{\circ}+A\right)=\tan A$
47. $\cos \left(360^{\circ}-A\right)=\cos A \quad$ 53. $\cos \left(360^{\circ}+A\right)=\cos A$
48. $\cot \left(360^{\circ}-A\right)=-\cot A \quad$ 54. $\cot \left(360^{\circ}+A\right)=\cot A$
49. $\sec \left(360^{\circ}-A\right)=\sec A \quad$ 55. $\sec \left(360^{\circ}+A\right)=\sec A$
50. $\operatorname{rsc}\left(360^{\circ}-A\right)=-\csc A \quad 56 . \csc \left(360^{\circ}+A\right)=\csc A$

FUNCTIONS OF $(A+B)$ AND OF $(A-B)$

57. $\sin (A+B)=\sin A \cos B+\cos A \sin B$
58. $\sin (A-B)=\sin A \cos B-\cos A \sin B$
59. $\cos (A+B)=\cos A \cos B-\sin A \sin B$
60. $\cos (A-B)=\cos A \cos B+\sin A \sin B$
61. $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
62. $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$

FUNCTIONS OF $2 A$ AND OF $\frac{1}{2} A$

63. $\sin 2 A=2 \sin A \cos A$
64. $\cos 2 A=\cos ^{2} A-\sin ^{2} A$
65. $\cos 2 A=2 \cos ^{2} A-1$
66. $\cos 2 A=1-2 \sin ^{2} A$
67. $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$
68. $\quad \sin \frac{1}{2} A=\sqrt{\frac{1-\cos A}{2}}$
69. $\cos \frac{1}{2} A=\sqrt{\frac{1+\cos A}{2}}$
70. $\tan \frac{1}{2} A=\sqrt{\frac{1-\cos A}{1+\cos A}}$
71. $\tan \frac{1}{2} A=\frac{1-\cos A}{\sin A}$

SUMS AND DIFFERENCES OF FUNCTIONS
72. $\sin A+\sin B=2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$
73. $\sin A-\sin B=2 \sin \frac{1}{2}(A-B) \cos \frac{1}{2}(A+B)$
74. $\cos A+\cos B=2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$
75. $\cos A-\cos B=2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(B-A)$
76. $\tan A+\tan B=\frac{\sin (A+B)}{\cos A \cos B}$
77. $\tan A-\tan B=\frac{\sin (A-B)}{\cos A \cos B}$:
78. $\sin ^{2} A-\sin ^{2} B=\sin (A+B) \sin (A-B)$
79. $\cos ^{2} A-\cos ^{2} B=\sin (A+B) \sin (B-A)$
$80 \cos ^{2} A-\sin ^{2} B=\cos (A+B) \cos (A-B)$
relations among the functions of an angle

$\sin A=$	$\tan A=$	$\cos A=$	ot A	$\sec A=$	csc $A=$
81. $\frac{\tan A}{\sqrt{1+\tan ^{\circ} A}}$	86. $\frac{\sin A}{\sqrt{1-\sin ^{\circ} A}}$	91. $\sqrt{1-\sin ^{2} A}$	96. $\frac{\sqrt{1-\sin ^{2} A}}{\sin A}$	$\text { 101. } \frac{1}{\sqrt{1-\sin ^{\circ} A}}$	106. $\frac{1}{\sin A}$
82. $\sqrt{1}-\cos ^{2} A$	$\text { 37. } \frac{\sqrt{1-\cos ^{2} A}}{\cos A}$	92. $\frac{1}{\sqrt{1+\tan ^{*} A}}$	97. $\frac{1}{\tan A}$	102. $\sqrt{1+\tan ^{\circ} A}$	107. $\frac{\sqrt{1+\tan ^{\prime} A}}{\tan A}$
83. $\frac{1}{\sqrt{1+\cot ^{3} A}}$	88. $\frac{1}{\cot A}$	93. $\frac{\cot A}{\sqrt{1+\cot ^{2} A}}$	98. $\frac{\cos A}{\sqrt{1-\cos ^{2} A}}$	103. $\frac{1}{\cos A}$	108. $\frac{1}{\sqrt{1-\cos ^{\circ} A}}$
84. $\frac{\sqrt{\sec ^{\circ} A-1}}{\sec A}$	89. $\sqrt{\sec ^{8} A-1}$	94. $\frac{1}{\sec A}$	99. $\frac{1}{\sqrt{\sec ^{8} A-1}}$	$\text { 104. } \frac{\sqrt{1+\cot ^{2} A}}{\cot A}$	109. $\sqrt{1+\cot ^{2} A}$
85. $\frac{1}{\csc A}$	90. $\frac{1}{\sqrt{\csc ^{\circ} A-1}}$	95. $\frac{\sqrt{\csc ^{2} A-1}}{\csc A}$	100. $\sqrt{\mathrm{csc}^{*} A-1}$	$105 \cdot \frac{\csc A}{\sqrt{\csc ^{\circ} A-1}}$	$\text { 110. } \frac{\sec A}{\sqrt{\sec ^{2} A-1}}$

FORMULAS FOR THE SOLUTION OF RIGHT

TRIANGLES

Fig. 29

FORMULAS FOR THE SOLUTION OF OBLIQUE TRIANGLES

-

NATURAL TRIGONOMETRIC FUNCTIONS

1

II

1	0°		1°		2°		3°		4°		,
	Sine	Cosine									
-	. 00000	1.	. 01745	. 99988	. 03490	. 99939	. 05234	. 99886	. 06976	. 99756	60
8	. 00029	1.	. 01774	. 99984	. 03519	. 99938	. 05263	. 99886	. 07005	. 99754	59
2	. 00058	1.	. 01803	. 99984	. 03548	. 99937	. 05292	. 99880	. 07034	. 99752	58
3	. 00087	1.	. 01833	. 99983	. 03577	. 999936	. 05321	. 99888	. 07063	. 99750	57
4	. 00116	1.	. 01886	. 999983	. 03606	. 999935	. 053350	. 99857	. 07092	. 999748	56
8	. 00145	1.	.01891	. 99982	. 03635	. 99934	. 05379	. 99855	.07121	. 99746	55
6	. 00175	1.	. 01920	. 99982	. 03604	. 99933	. 05408	. 99854	. 07150	. 99744	54
$?$.00204	1.	. 01949	. 4×981	. 03693	. 99993	. 05437	. 99852	. 07179	. 997472	53
8	. 00233	1.	. 01978	. 99988	. 037723	-99931	. 05466	-99851	. 07208	. 99740	52
9	. 002623	1.	. 02007	. 99980	. 03752	. 999930	. 05495	. 99849	. 07237	. 999738	51
10	.00291	1.	. 02036	-99979	. 03781	-99929	. 05524	. 99884	. 07266	. 99736	50
11	. 00320	99999	. 02065	. 99979	.03810	. 99927	. 05553	. 99886	. 07295	. 99734	49
12	. 00349	. 99999	. 02094	. 99978	. 03839	. 99926	.05582	. 99844	. 07324	. 99731	48
13	. 00378	. 99999	. 02123	. 99977	. 03868	. 99925	.05611	. 99842	. 07353	. 99729	47
14	. 00407	.99999	. 02152	. 99977	. 03897	. 99924	. 05640	. 99884	. 07382	. 99727	46
15	. 00436	. 99999	. 02181	. 999976	. 03926	. 99923	. 05669	. 99838	. 07411	. 997725	48
16	. 00465	. 99999	. 02211	. 999976	. 03955	. 99922	. 05698	. 998838	. 07440	. 997723	44
17	. 00495	99999	. 02240	. 99975	. 03984	. 99921	. 05727	. 99836	. 07469	. 99721	43
18	. 00524	. 99999	. 02269	. 99974	. 04013	. 99919	. 05756	. 99834	. 07498	. 99719	42
19	. 00553	. 99998	. 02298	. 999974	. 0404042	. 99918	. 05785	. 998333	.07527 .07556	. 99716	41
20	. 00582	. 99998	. 02327	. 99973	. 04071	. 99917	. 05814	. 99831	. 07556	. 99714	40
21	. 00611	. 99998	. 02356	. 99972	. 04100	. 99916	. 05884	. 99829	. 07585	. 99712	39
22	. 00640	. 99998	. 02385	. 99972	. 04129	. 99915	. 05873	. 99827	. 07614	. 99710	38
23	. 00669	. 99998	. 02414	. 99971	. 04159	. 99913	. 05902	. 99826	. 07643	. 99708	37
24	. 00698	. 99998	. 02443	. 99970	. 04188	. 99912	. 05931	. 99882	. 07672	. 99705	36
25	. 00727	. 99997	. 02472	. 99969	. 04217	. 99911	. 05960	. 99882	. 077701	. 99703	35
26	. 00756	199997	. 02501	. 99969	. 04246	. 99910	. 05989	. 99821	. 07730	.99701	34
27	. 00785	. 99997	. 02535	. 99968	. 04275	.99900	. 06018	. 99819	. 07759	. 99669	33
28	. 00814	. 99997	. 02560	. 99967	. 04304	. 99907	.06047	. 99817	. 07788	. 99696	32
20	.008.14	. 99996	. 02589	. 999966	. 043333	. 99906	.06076	. 99815	. 078817	. 99694	31
30	. 00873	. 99996	. 02618	. 99966	. 04362	.99905	. 06105	. 99813	. 07846	. 99693	30
31	.00902	. 99996	. 02647	. 99965	.04391	. 99904	.06134	. 99812	.07875	.99689	29
32	.0093x	. 99996	. 02676	. 99964	. 04420	. 99902	. 06163	. 99810	. 07904	. 99688	28
33	. 00960	. 99995	. 02705	. 99963	. 04449	. 99901	.06193	. 998808	. 07933	. 99685	37
34	. 00989	. 99995	. 02734	. 99963	. 04478	. 99900	. 06221	. 998806	. 07962	. 99683	36
35	. 01018	. 99995	. 02763	. 99962	. 04507	. 99898	. 06250	. 99804	.07991	. 99680	25
36	. 01047	. 99995	.02792	. 99961	. 04536	. 99897	. 06279	. 99803	. 08020	. 99678	13
37	.010\%6	. 99994	.02821	. 99960	. 04565	. 99886	. 06308	. 998801	. 08049	. 99676	23
${ }^{3}$. 01105	. 00004	. 02850	. 99959	. 04594	. 99894	. 063377	. 99799	. 08078	.99673	23
39	. 01134	. 99994	.02879	. 999959	. 04623	. 99898	. 06366	. 999797	.08107 .08136	. 996671	21 20
40	. 08164	. 99993	. 02908	. 99958	.04653	. 99892	. 06395	-99795	. 08136	. 99668	20
41	. 01193	,09003	.02938	. 99957	. 04683	. 99890	. 06424	. 99793	. 08165	. 99666	19
42	. 01223	. 99993	. 02967	. 99956	.04711	. 99888	. 06453	. 99793	.08194	.99664	18
43	. 01251	-99992	. 02996	. 99955	. 04740	. 99888	. 06482	. 99790	. 08223	. 99665	17
44	. 01280	. 99992	. 03025	. 99954	. 04769	. 99886	. 06511	. 99788	. 08252	. 99659	16
45	. 01309	ragel	. 03054	. 99953	. 04798	. 99888	. 06540	. 99788	. 08281	. 99657	15
46	. 01338	. 99991	. 03083	. 99952	.04827	. 99883	. 06569	. 99978	.08310	. 99654	14
47	. 01367	. 99991	. 03112	. 99992	. 048886		. 06598	. 99788	. 08339	. 99652	13
48	.01396	.9990	. 03141	. 9995 !	. 04885	.99881	. 06627	. 99780	. 08368	. 99649	13
49	. 01425	-99990	. 03170	. 99950	. 04914	-99879	. 066656	. 99778	. 08397	. 99647	11
56	. 01454	. 99989	. 03199	.99949	. 04943	. 99878	. 06685	. 99776	. 08426	. 99644	10
51	. 01483	. 999889	. 03228	. 999948	. 04972			. 999774			
52	. 01513	. 99988	. 0325278	. 999947	.05008	. 99878	.06743	. 999772	. 0888484	. 996393	ह
53	. 01542	. 99988	. 03286	. 99946	. 05030	. 99873		. 999770	. 08513	. 99637	?
54	.01571 .01600	. 99988	.03316 .03345	. $999945{ }^{\text {. }}$. 0505089	.99872 .99870	.06802	. 999768	.08542 .08571	. 99633	5
55 56	.01600 .01629	. 999887	.03345 .03374	. 999944	. 05088	. 998870	.06831	. 99766	.08571 .08600	. 996332	5
57	. 01658	. 99986	. 03403	. 99942	. 05146	. 99867	. 06889	. 999762	. 08629	. 99627	3
58	. 01687	. 99986	.03432	. 99941	.051/5	. 99866	.06918	. 99760	.08658	. 99625	d
59	. 01716	. 99985	.03461	. 99940	. 05205	. 998864	. 06947	. 99758	. 08687	. 99622	1
60	. 01745	. 99985	. 03490	. 99939	. 05234	. 99863	. 06976	. 99756	. 08716	. 99619	0
1	Cocine Sine		Cosine Sine		Cosine Sine		Cosine Sine		Cosiue Sin		1
	89°		88°		87°		86°		85°		

7	5°		6°		7^{0}		8°		9°		
	Sine	Cosine									
-	.08716	.99619	.10453	. 99453	. 12187	. 99255	. 13917	. 99027	.15643	. 98769	60
1	. 08745	. 99617	. 10483	. 999449	. 12216	. 99251	. 13946	. 99023	. 15672	. 98764	59
3	. 08774	. 99614	. 10511	. 99446	. 12245	. 99248	. 13975	. 99019	. 15701	. 98760	58
3	.08803	. 99612	. 10540	. 99443	. 12274	. 99244	. 14004	-99015	. 15730	. 98755	57
,	. 08831	.99609	. 10569	. 994440	.12302	. 99240	. 14033	. 990011	. 15758	. 94755	56
6	. 088860	.9960;	. 10597	. 99437	$\begin{array}{r}.12331 \\ \hline \\ \hline 1360\end{array}$. 992337	. 14061	. 99006	. 15787	. 98746	55
6	.08889 .08018	. 996604	. 10626	.99434 .99431	11360 .13389	.99233 .99230	.1409 .1411	. 990002	.15816 .15845	. 98784	54
1	. 08947	-90550	.10684	. 999428	. 12418	. 9992326	. 141488	. 9808989	. 158848	. 98737	53
1	.08976	. 99596	. 10713	. 99424	. 12447	. 99222	. 14177	. 98090	. 15902	. 988728	51
${ }^{13}$.09005	. 99594	. 10742	. 99421	. 12476	. 99219	. 84205	. 98986	. 15931	. 98723	50
11	. 09034	. 99591	. 10771	. 99418	. 12504	. 99215	. 14234	. 98982	. 5959	. 08718	49
12	. 09063	. 99588	. 10800	. 99415	. 12533	. 99211	. 14263	.91978	. 15088	. 98714	$4{ }^{4}$
13	. 09092	. 99586	. 10829	. 99412	.12562	.99208	. 84292	. 98973	. 16017	. 98709	47
14	. 09121	. 99583	. 10858	. 99409	. 12591	. 99204	. 84320	. 98969	. 16046	. 98904	46
15	. 09150	.99580	. 10887	.99406	. 12620	. 99200	. 143349	. 88905	. 16074	. 98700	45
6	. 09179	. 9955	.10916	. 99402	.12649	. 99197	. 34378	. 988061	. 16103	. 98695	4
17	. 09208	. 99575	. 10945	.99399	. 12678	. 99193	. 14407	. 98957	. 16132	. 98690	43
18	. 09237	. 99573	. 10973	. 99396	. 12706	. 99189	. 14436	. 9895.3	. 16160	. 98686	43
19	. 09266	. 999570	. 11002	. 993933	. 12735	. 991818	. 34.464	. 98948	. 16888	. 98681	41
20	.09295	. 99567	. 11031	. 99390	. 12764	. 99182	. 14493	. 98944	. 16218	. 98676	43
21	. 09324	. 99564	. 11060	. 99386	. 12793	. 99178	. 14522	. 98980	. 16246	.9867	39
32	. 09353	. 99562	. 11089	. 99383	.12822	. 99175	. 14551	. 98936	. 16275	. 98667	38
23	.09382	. 99559	. 11118	. 99380	. 12851	. 99171	. 14580	. 98931	.16304	. 98662	37
24	. 09818	. 99556	. 11147	. 99377	. 12880	. 99167	. 14608	. 98927	. 16333	. 98657	36
25	. 09440	. 99553	. 111176	. 99374	. 12908	. 99163	. 14633	.98923	. 16361	. 98652	35
46	. 09469	. 99551	. 11205	. 99370	. 12937	. 99160	. 14600	. 98919	. 16390	. 98648	14
37	. 09498	. 99548	. 11234	. 99367	. 12966	. 99156	. 14695	. 98914	. 16819	. 98643	33
28	. 09527	. 99545	. 11263	. 99364	. 12995	. 99152	. 34723	. 98910	. 16447	. 98638	32
39	. 09556	. 999542	. 11291	. 99336	. 13024	. 99914	. 14752	. 98906	. 16476	. 08063	31
30	. 09585	. 99540	. 11320	. 99335	. 13053	. 99144	. 14788 t	.98902	. 16505	. 98629	$3{ }^{3}$
31	. 09614	. 99537	. 11349	. 99354	.13088	. 99141	14810	. 98897	. 16533	. 98624	牫
33	. 09642	. 99534	. 11378	. 99351	. 13110	99137	. 14838	. 98893	. 16562	. 98619	28
33	¢96\%1	S953	. 11407	99347	. 13139	. 99133	. 14867	. 98889	. 16591	. 98614	27
34	. 09700	. 99528	. 11436	. 99344	. 13168	. 99129	. 14896	. 98884	. 16620	. 98609	26
35	. 09729	. 99526	. 11465	.9934	. 13197	. 99125	. 14925	. 98880	. 16648	. 98604	25
$3{ }^{3}$. 09758	. 99523	. 11494	. 99333	. 13226	. 99123	. 14954	. 98876	. 16679	. 98600	24
37	. 09787	. 99520	. 11523	. 99334	. 13254	. 99118	. 14982	. 98878	.16;06	. 98595	21
38	. 09816	. 99517	. 11558	. 993338	. 13288	. 99114	. 15011	. 98887	. 16734	. 98550	31
39	. 09845	-99514	. 111580	. 99327	. 13312	. 99110	. 15040	. 988863	.16763	. 98585	${ }^{21}$
40	. 09874	. 99511	. 11609	-99324	. 13341	. 99106	. 15069	. 98858	. 16792	. 98580	20
41	.09901	. 99508	. 11638	. 99320	. 13370	. 99102	. 15097	. 98854	. 16820	. 98575	19
43	.09932	. 99506	. 11667	. 99317	. 13399	. 99098	. 15126	. 9888	. 168849	. 98570	18
41	.09961	. 99503	. 11696	. 99314	. 13427	-99094	. 15155	. 98845	. 16878	. 98565	27
44	109080	. 99500	. 11725	. 99310	. 13456	. 99001	. 15184		. 16906	. 98561	16
45	. 10019	. 99494	. 111754	. 99307	. 13485	- 990087	. 15212	. 98836	. 16935	. 98856	15
46	. 10048	. 99494	. 11788	. 99303	. 13514	. 99083	. 15241	. 98832	. 16964	. 98551	14
47	. 10077	.99491	. 11818	-99300	. 13543	. 99079	. 15270	. 98887	. 16992	. 98546	13
48	. 10106	. 99488	. 118840	. 99297	. 13572	. 99075	. 15299		. 17021	. 98541	13
49	. 10135	. 99485	. 11886	. 99293	.13600 .13629	. 99071	.15327 .15356	. 98818	. 17050	. 985536	11
50	. 10164	.9948a	. 11898	. 99290	. 13629	. 99067	. 15356	. 93814	.17078	. 98531	10
51	. 10192	. 99479	. 11927	. 99286	. 13658	. 99063	.15385	. 98809	. 17107	. 98526	
53	. 10221	. 99476	. 11956	. 99283	. 13687	. 99059	. 15414	. 98805	. 171.36	. 98521	8
51	. 20250	. 99473	. 111985	. 99279	. 13716	. 99055	. 15442	. 98800	. 17164	. 98516	2
54	. 10279	. 99470	. 12014	. 992276	. 13744	. 99051	. 15471	. 98996	. 17193	. 98511	6
55	. 10308	. 99467	. 12043	. 99272	. 83773	. 99047	- 15500	. 98791	. 87222	. 98506	1
56	. 10337	. 99464	. 12071	. 992269	. 13802	. 99043	. 15529	. 98987	. 17250	. 98501	4
57	. 10366	. 99461	. 12100	. 99265	. 138831	. 99039	. 15557	. 987872	. 177279	. 98496	,
58	.10395 .10424	. 99458	. 12129	. 99926288	.13860 .13889	. 990035	- 15586	.98778 .98773	.17308 .17336	. 98498	1
6	. 10453	.9945 ${ }^{2}$. 12187	. 99355	. 13917	. 99027	.15643	. 98769	. 173365	. 98481	,
1	Cosine Sine		Cosine	Sine	Cosine		Cosine Sine		Cosine Sin		7
	84°		83°		$\cdots 82^{\circ}$		81°		80°		

1	10°		11°		12°		13°		14°		f
	Sine	Cosine									
0	. 17365	. 9848 s	. 19081	. 98163	. 20791	. 97815	. 22495	. 97437	24193	. 97030	60
3	. 17393	.98.476	. 19109	. 98157	. 20820	. 97809	. 22523	. 97430	. 24220	.97023	5
2	.17423	.98478	. 19138	. 98152	. 20888	. 97803	. 22552	.97424	. 24249	. 97015	58
1	. 17451	. 98466	. 19167	. 98146	. 20877	. 97797	. 222580	. 97417	. 24277	. 97008	57
4	. 17479	. 98461	. 19195	. 98140	. 20905	. 977791	. 22608	. 97411	. 24305	.9703s	56
5	. 17508	. 98455	. 19224	. 98135	. 20933	. 97784	. 222637	. 97404	. 24333	. 96994	55
8	. 17537	. 98850	.19252	. 98129	. 20962	. 97778	. 22665	. 97398	. 24363	.96487	54
7	. 17565	. 98445	. 192881	. 98124	. 20990	. 977772	. 222693	. 973391	. 24390	. 96980	53
1	. 17594	. 98440	. 19309	. 98118	. 21019	. 977766	. 22732	. 97384	. 24418	. 96973	52
0	.17623	. 98435	. 19338	. 98112	. 21047	. 97760	. 22750	. 97378	. 24446	. 96966	51
10	.17651	.98430	. 19366	. 98107	. 21076	. 97754	. 32778	. 97371	. 24474	. 96959	50
11 12	. 17680	.98425	. 19395	. 98101	. 211104	. 97748	. 228807	. 97365	. 24503	. 96952	40
12	. 17778	. 98420	. 19423	. 98096	. 21133	. 97742	. 22885	. 97358	.24531	. 96945	48
13	. 17737	.98414	. 19452	.98090	. 211161	. 977735	. 228863	-97351	. 24559	. 96937	47
14	. 17766	. 98409	.19481	. 98084	. 21188	. 97729	. 22893	. 97345	. 24587	. 96930	46
15	. 17794	.98404	. 19509	. 98079	. 21218	. 97723	. 22920	. 57338	. 24615	. 96923	45
16	.17823	. 98399	. 195388	. 98073	. 21246	. 97717	. 22948	. 973331	. 24644	. 96916	44
87	. 17858	. 98394	. 19566	. 98067	. 21275	. 97711	. 22977	. 97325	. 24672	.96909	43
18	. 17880	. 98389	. 19595	. 98061	. 21303	. 977705	. 23005	. 97318	. 24700	. 96902	42
19	. 17909	.98383	. 19625	. 98056	. 21331	. 97698	. 23033	. 97311	. 24728	. 96884	41
20	. 17937	. 98378	. 19653	. 98050	. 21360	. 97692	. 23062	. 97304	. 24736	. 96887	40
21	. 17966	. 98373	.19680	. 98044	. 21388	. 97686	. 23090	. 977298	.24984	.96880	39
33	. 17995	. 98368	. 19709	. 98039	. 21417	. 97680	. 23118	. 97291	.24813	. 96873	18
23	. 18023	. 98362	. 19737	. 98033	. 21445	. 97673	. 23146	. 97284	. 24841	. 96866	37
24	. 18052	. 98357	. 19766	. 98027	. 21474	. 97667	. 23175	. 97278	. 24869	. 96858	36
25	. 18081	. 98335	. 19794	. 98021	. 21502	. 97661	. 23203	. 97271	. 24897	. 968581	35
26	. 18109	. 98347	. 19823	. 98016	. 21530	. 97655	. 23231	. 97264	. 24925	. 96844	34
27	. 18138	. 98341	. 19851	. 98010	. 21559	. 97648	. 23260	. 97257	. 24954	. 96837	33
28	. 18186	. 98331	. 19880	. 98004	. 21587	. 97643	. 33288	. 97251	. 24982	. 968829	33
29	. 18195	. 98331	. 19908	. 97998	. 21616	. 97636	. 23316	. 97244	. 25010	. 968822	31
30	. 18324	. 98325	. 19937	-97992	. 21644	.9763c	. 23345	. 97237	. 25038	. 96815	30
38	. 18252	. 98320	. 19965	. 97987	. 21672	. 97623	. 23373	. 97230	. 25066	. 96807	29
32	. 18281	. 98315	. 19994	.97981	.21701	.97617	.23401	. 97223	. 25094	. 96800	28
33	. 18309	. 98310	. 20022	. 97975	. 21729	. 97611	. 23429	. 97217	. 25122	. 96793	27
34		. 98304	. 20051	. 97969	. 21758	. 97604	. 23458	. 97210	. 25151	. 96788	15
35	. 18367	. 98299	. 20079	. 97963	. 21786	. 97598	. 23486	. 97203	. 25179	. 96778	25
36	. 18395	. 98294	. 20108	. 97958	. 21814	. 97592	. 23514	. 97106	. 25207	. 96777	4
37	. 18424	. 98288	. 20136	. 97952	. 21843	. 97585	. 23542	. 97189	. 25235	. 96764	23
38	. 18452	. 98283	. 20165	. 97946	. 21871	. 97579	. 23571	. 9718 a	. 25263	. 96756	23
39	. 18488	. 98377	. 20193	. 97940	. 21899	. 97573	. 33599	. 97176	. 25291	. 96749	21
40	. 18509	. 98273	. 20223	. 97934	. 21928	. 97566	. 23627	. 97169	. 25320	. 96742	20
41	. 18538	. 98267	20250	. 97928	. 21956	. 97560	. 23656	. 97163	. 25348	. 96734	19
43	. 18557	. 98261	. 20279	. 97922	. 21985	. 97553	. 23684	. 97155	. 25376	. 96727	18
43	. 18595	. 98256	. 20307	. 97916	. 23013	. 97547	. 23712	. 97148	. 25404	. 96719	17
44	. 18624	. 98250	. 20336	. 97910	.22041	. 97545	. 23740	. 97141	. 25432	. 96712	16
45	. 18652	. 98245	. 20364	. 97905	. 222070	. 97534	. 23769	. 97134	. 25460	. 96705	15
46	. 18681	. 98240	. 20393	. 97899	. 22098	. 97538	. 23797	. 97127	. 25488	. 96697	14
47	. 18710	. 98234	. 20421	. 97893	. 222126	. 97521	. 23885	. 97120	. 25516	. 96690	13
48	. 18738	. 98329	. 20450	.97887	. 22155	. 97515	. 23855	. 97113	. 25545	. 96682	12
49	. 18767	. 98223	. 20478	. 97888	. 22183	. 97508	. 23882	. 97106	. 25573	. 96675	11
50	. 18795	. 98218	. 20507	. 97875	. 22212	. 97502	. 23910	. 97100	. 25601	. 96667	10
51	. 18824	. 98212	. 20535	. 97869	. 22240	. 97496	. 23938	. 97093	. 25629	. 96660	
31	. 18853	. 98207	. 20563	. 97863	. 22268	. 97489	. 23966	. 97086	. 25657	.96653	8
53	. 18888	. 98201	.20593	-97857	. 22297	. 97483	. 23995	. 97079	. 25688	. 96645	7
54	. 18910	. 981.96	. 20620	. 97851	. 22325	. 97476	. 24023	. 97072	. 25713	.96638	6
55	. 18938	. 98100	. 20649	. 97845	. 22353	. 97479	. 24051	. 97065	.25741	. 96630	5
56	. 18967	. 98185	. 20677	. 97839	.22382	. 97463	. 24079	. 97058	. 25769	.96633	4
57	. 18995	. 98179	. 20706	. 97833	. 22410	. 97457	. 24108	.97051	.25798	. 96615	3
58	. 19024	. 98174	. 20734	. 97837	. 22438	. 97450	. 24136	. 97044	.25826	. 96608	2
59 60.	.19053 .19081	.98168 .98163	. 20763	.97821 .97815	. 222467	. 97444	. 24164	.97037 .97030	.25854 .25882	. 96600	8
,	Cosine	Sine	Cosine Sine		Coaine Sine		Cosine		Cosine Slr		
	79°		78°		77°		76°		75°		

1	15°		16°		17°		18°		19°		,
	Sline	Cosine	Sine	Cosine	Sine	Cosine	Sine	Cosine	Sline	Cosine	
0	. 25883	. 96593	. 27564	. 96126	. 29237	. 95630	430513	. 95106	. 32557	.94552	60
8	. 25910	. 96585	. 27592	. 96118	. 39265	. 95623	. 30929	. 95097	. 32584	. 94542	59
\cdots	. 25938	.96578	. 27620	.96110	. 29293	. 95613	. 30957	. 95088	. 32613	. 94533	54
3	. 25966	. 96570	. 27648	. 96102	. 29321	. 95605	. 30985	. 95079	-32639	. 94523	57
4	. 25994	.96563	. 27676	. 960094	. 29348	. 95596	. 31012	. 95070	. 32667	. 94514	56
5	. 26022	. 96555	. 27704	.96086	. 29376	. 95588	. 31040	. 95061	. 32694	. 94504	55
6	. 26050	. 96547	. 27731	. 96078	.29404	-95579	. 31068	. 95052	. 32723	. 94495	54
7	. 26079	. 06540	. 27759	. 96070	. 29432	. 95578	. 31095	. 95043	- 32749	. 94485	53
8	. 26107	.96532	. 27787	.96063	. 29460	. 95562	. 31123	. 95033	-32777	. 94476	53
10	. 261135	. 96524	. 27815	. 96054	. 29487	. 95554	. 31158	. 95024	-32804	. 94466	51
10	. 26163	. 96517	. 27843	. 96046	. 29515	. 95545	. 31178	. 95015	. 32832	. 94457	50
18	. 26191	. 96509	. 27871	.96037	. 29543	. 95536	. 31206	. 95006	. 32859	. 94447	49
12	. 36219	. 96502	. 27899	. 960029	. 29571	. 95528	. 31233	. 94997	. 32887	. 94438	45
13	. 36247	. 96494	. 27927	.96031	. 29599	. 95519	. 31268	. 94988	. 32914	. 94428	47
14	. 36375	. 96486	. 27955	. 96013	. 29626	. 95511	.31289	. 94979	. 32942	. 94418	46
15	. 26303	. 96479	. 27983	. 960005	. 29654	. 95502	. 31316	. 94979	. 32969	-94409	45
16	. 26331	.96471	. 28011	. 95997	. 29683	. 95493	.31344	.94961	. 32997	. 944399	4
17	. 26359	. 96463	. 28039	. 95989	. 29710	. 95485	. 31372	. 94952	. 33024	. 94390	41
18	. 26389	. 96456	. 28067	. 95981	. 29737	. 95476	. 31399	. 94943	. 33051	. 94380	42
19	. 26415	.96448	. 28095	. 95972	. 29765	. 95467	. 31427	. 94933	. 33079	. 94370	48
20	. 26443	.96440	. 28123	. 95964	. 29793	. 95459	. 31454	. 94924	. 33106	.94368	40
21	.26471	.96433	. 28150	. 95956	. 29821	. 95450	. 31483	.9491	. 33134	. 94351	37
22	. 26500	. 96425	. 28178	. 95948	. 29849	. 95441	. 31510	. 94906	. 33161	. 94343	38
23	. 26528	. 96417	. 28206	. 95940	. 29876	. 95433	. 31537	. 94897	. 33189	. 943332	37
24	. 26556	. 96410	. 28234	.95931	. 29904	. 95424	. 31565	. 94888	. 33216	. 943322	36
25	. 26584	. 96402	. 28263	. 95923	. 29932	. 95415	. 31593	. 94878	. 33244	. 94313	35
26	. 266612	. 96394	. 28290	. 95915	. 29960	.95:07	. 31620	. 94869	. 33271	-94303	14
27	. 26640	. 96386	. 28318	. 95907	. 29987	. 95398	. 31648	.94860	. 33298	. 94293	13
48	. 26668	. 96379	. 28346	. 95898	. 30015	. 95389	. 31675	.94851	. 33326	.94284	33
${ }^{\text {a }}$. 26696	. 96371	. 28374	. 95880	. 30043	. 95388	. 31703	.94842	. 33353	. 94274	31
30	. 26724	. 96363	. 28403	. 95882	. 30071	. 95373	. 31730	.94832	. 33388	.94264	30
31	. 26752	. 96355	. 28429	. 95874	. 30098	.95363	. 31758	. 94823	. 33408	. 94254	29
32	. 26780	. 96347	. 28457	. 95865	. 30126	-95354	. 31786	. 94814	.33436	. 94245	ล1
33	$12 \mathrm{zk} \mathrm{l}^{2}$. 96340	. 28485	. 95857	. 30154	. 95345	. 31813	. 9488	. 33463	. 94235	27
34	. 26836	. 96333	. 28513	. 95849	. 30182	.95337	.31841	. 94795	. 33490	. 94225	26
35	. 268864	. 96323	. 285441	. 958841	. 30209	. 95328	. 31888	. 94788	. 33518	. 94215	25
36	. 268892	.96316	. 28569	. 95832	. 30237	. 95319	. 31896	. 94777	. 33545	. 94206	24
37	. 26930	. 96308	. 28597	. 95824	. 30265	. 95310	. 31923	. 94768	. 33573	. 94196	23
39	. 26948	.96301	. 28625	. 95816	. 30292	. 95301	.31951	. 94758	. 33600	. 94186	23
19	. 26976	. 96293	. 28652	. 95807	. 30320	. 95293	. 31979	. 94749	. 33627	. 941876	21
40	. 27004	. 96285	. 28680	. 95799	. 30348	.95284	. 32006	. 94740	. 33655	. 94167	20
41	. 27032	. 96277	. 28708	.95791	. 30376	. 95275	. 32034	. 94730	. 33682	. 94157	19
42	. 37060	. 96269	. 28736	. 95788	. 30403	. 95266	. 32061	. 94721	. 33710	. 94147	18
48	. 27088	. 96261	. 28764	. 95774	. 30437	. 95257	. 32089	. 94712	. 33737	. 94137	17
44	. 27116	. 96253	. 28792	. 95766	. 30459	. 95248	. 32116	. 94703	. 33764	. 94127	16
45	. 27144	. 96246	. 28820	. 95757	. 30486	. 95240	. 32144	. 94693	. 33792	.94118	15
46	. 27172	. 96238	. 28847	. 95749	. 30514	. 95231	. 32171	. 94684	. 33819	.94108	14
47	. 27200	. 96230	. 28875	. 95740	. 30542	. 95222	. 32199	. 94674	. 33846	. 94098	13
18	. 27228	. 963232	. 28003	. 95732	. 30570	. 95213	. 32227	. 94665	. 33874	. 94088	13
45	. 37256	. 96214	. 28938	. 95724	. 30597	. 95204	. 32254	. 94656	. 33901	. 94078	11
50	. 27284	. 96206	. 28959	. 95715	. 30625	. 95195	. 33283	. 94646	. 33929	. 94068	10
51	. 27312	. 96198	. 288987	. 95707	. 30653	. 95186	. 32309	. 94637	. 33956	. 94058	
52	. 27340	. 96190	. 29015	. 95698	. 30680	. 95177	. 32337	. 946627	. 33983	-94049	8
53	. 27368	.96182	. 29042	. 95600	. 30708	. 95168	. 32364	. 94618	- 34011	. 94039	\%
54	. 27396	. 961774	. 29070	. 95681	. 30736	. 95159	. 32392	. 94609	. 34038	. 94029	6
55	. 27424	. 96166	. 29098	. 95673	. 30763	. 95150	. 32419	. 94599	. 34065	. 94019	5
56	. 27453	. 96158	. 29126	. 95664	. 30791	. 95142	. 32447	. 94550	. 34093	-94009	4
57	. 27480	. 966150	. 29154	. 95656	. 30819	.95133	. 32474	. 94580	. 34120	-93999	3
58	. 27508	. 966142	. 29182	. 95647	. 30846	.95124	. 32502	. 94571	. 34147	. 93989	2
59	. 27536	.96134	,29209	. 95639	. 30874	.95115	. 32529	. 94561	. 34175	. 93979	1
60	. 27564	. 96126	. 29237	. 95630	. 30902	. 95106	. 32557	. 94553	. 34202	. 93969	0
,	Cosine	Sine	Cosine	Sine	Cosine	Sine	Cosine Sin		Cosine		1
	74°		73°		72°		71°		70°		

1	20°		21°		22°		23°		24°		1
	Sine	Cosine									
0	-34202	. 93969	. 35837	. 93358	. 37461	. 92718	. 39073	. 92050	. 40674	.91355	60
1	-34.229	. 93959	. 35864	. 93348	. 37488	. 92707	. 39100	. 92039	. 40700	. 91343	59
1	. 34257	. 93949	$\cdot .35{ }^{\text {d9 }} 91$. 93337	. 37515	. 92697	. 39127	. 92028	. 40727	.91331	58
3	. 34284	. 93939	. 35918	. 93327	. 37542	. 92688	. 39153	. 92016	. 40753	. 91319	57
4	. 34311	. 93929	. 35945	. 93316	. 37569	. 92675	. 39180	. 92005	. 40780	. 91307	56
5	. 34339	. 93919	. 35973	. 93306	. 37595	. 92664	. 39207	. 91994	. 40806	. 91295	55
6	. 34366	. 93909	. 36000	. 93295	. 37632	. 923653	. 39234	. 91982	. 40833	. 91283	54
7	. 34393	.9. 899	. 36027	. 93285	. 37649	. 92642	. 39260	. 91971	. 40880	. 91272	53
1	. 34421	. 93888	. 36054	. 93274	. 37676	. 92631	. 39287	. 91959	. 40886	. 91260	52
9	. 34448	. 93879	.36081	. 93264	. 37703	. 92620	. 39314	. 91948	.40913	. 91248	51
10	. 34475	. 93869	. 36108	.93253	. 37730	. 92609	. 39348	. 91936	. 40939	.91236	50
11	.34503	. 938859	. 36135	. 932433	. 37757	. 92598	. 39367	. 91925	. 40966	. 91224	48
13	. 34530	. 938849	. 36162	. 93232	. 37784	. 92587	. 39394	. 91914	.40992	.91212	48
13	-34557	. 93839	. 36190	. 93222	. 37811	. 92576	.39421	. 91902	. 41019	.91200	47
14	. 34584	. 93829	. 36217	.93215	. 37838	. 92565	. 39448	.91891	. 41045	. 91188	46
15	. 34612	. 93819	. 36244	. 93201	. 37865	. 92554	. 39474	.91879	41073	. 91176	45
16	. 346396	. 93809	. 36271	. 931190	. 37892	. 92543	. 39501	. 918868	. 41098	.91164	44
17	. 34666	. 93799	. 36298	. 93180	. 37919	. 92532	. 39528	. 91856	. 41125	. 91152	43
18	. 34694	. 93789	. 36325	. 93169	. 37946	. 92521	. 39555	. 91885	.41151	. 91140	42
19	.34721	. 93779	. 36352	. 93159	. 37973	. 92510	. 39581	. 91833	. 41178	.91128	41
40	. 34748	. 93769	. 36379	. 93148	. 37999	. 92499	. 39608	.91822	. 41204	.91136	40
31	. 34775	. 93759	. 36406	.93137	. 38026	. 92488	. 39635	.91810	.41231	.91104	39
22	. 34803	. 93748	. 36434	. 93127	.38053	.92477	.39661	. 91799	. 41257	.91092	38
23	. 34830	. 93738	. 36461	. 93116	. 38080	. 92465	. 39688	. 91787	. 41284	. 91080	37
24	. 34857	. 93728	. 36488	. 93106	.38107	. 92155	. 39715	. 91775	. 41310	. 91068	36
25	. 34884	. 93718	. 36515	. 93005	.38134	-92444	. 39741	. 91764	. 41337	. 91056	35
26	. 34912	. 93708	. 36542	. 93084	. 38161	. 92432	. 39768	. 91752	. 41363	. 91044	34
27	. 34939	. 93698	. 36569	-93074	. 38188	.92421	. 39795	.91741	. 41390	.91032	33
28	. 34966	. 93688	. 36596	. 93063	. 3^{8215}	. 92410	. 39822	. 91729	. 41416	.91020	32
29	. 34993	. 93677	. 36623	. 93052	. $3^{8824 x}$. 92399	. 39848	. 91718	. 41443	. 91008	31
30	.35021	. 93667	. 36650	. 93042	. 38268	. 92388	. 39875	. 91706	. 41469	. 90996	30
38	. 35048	. 93657	. 36677	.93031	. 3^{8295}	. 92377	. 39902	. 91694	. 41496	. 90984	29
32	. 35075	.93647	. 36704	. 93020	. 3^{88322}	. 92366	. 39928	. 91683	. 41523	. 90972	28
33	. 35103	. 93637	. 36731	. 93010	. 383349	. 92355	- 39955	. 91671	. 41549	. 90960	27
34	. 35130	. 93626	. 36758	. 92999	. 38376	. 923433	. 39982	. 91660	. 41575	. 90948	26
35	. 35157	. 93616	. 36785	. 92988	.38403	. 92332	. 40008	. 91648	. 41602	. 90936	25
36	. 35184	. 93606	. 36812	. 92978	. 38430	. 92321	. 40035	. 91636	. 41628	. 90924	24
37	. 35211	. 93596	. 36889	. 92967	. 381456	. 92310	. 40062	. 91625	. 41655	. 90911	23
38	. 35239	. 933585	. 368687	. 92956	. 388483	. 922299	. 40088	. 91613	. 41681	.90899	22
39	. 35266	. 93575	. 36894	. 92945	. 38510	. 92287	. 40115	. 91601	. 41707	. 90887	21
40	. 35293	. 93565	.36921	. 92935	. 38537	. 92276	. 40141	. 91590	. 41734	. 90875	20
42	. 35320	. 93555	. 36948	. 92924	. 38564	. 92265	. 40168	. 91578	. 41760	. 90863	19
42	. 353437	. 93544	. 36975	. 92913	. 38591	. 92254	. 40195	. 91566	. 41787	. 90851	18
43	. 35375	. 93534	.37002	. 92902	. 38617	. 92243	. 40221	. 91555	. 41813	. 90839	17
44	. 35402	. 93524	-37029	. 92892	. 38644	. 92231	. 40248	. 91543	. 41880	. 90826	16
45	-35429	. 93514	. 37056	.92881	. 38671	. 922220	. 40275	.91531	. 41866	. 90814	15
46	. 35456	. 93503	-37083	. 928870	. 38698	. 922209	. 10301	. 91519	. 41892	.90802	14
47	. 35484	. 93493	-37110	. 928859	. 38725	. 92198	.40328	. 91508	. 41919	. 90790	13
48	. 35518	. 93483	. 37137	. 928849	. 38753	. 92186	.40355	. 91496	. 41945	. 90778	12
49	. 35538	. 93472	. 37164	. 92838	. 38778	. 92175	.40381	. 91484	. 41972	. 90766	11
50	. 35565	. 93462	. 37191	. 92827	. 38805	. 92164	. 40408	. 91472	. 41998	. 90753	10
51	. 35593	. 93452	. 37218	. 928816	.38832	. 92153	. 40434	.91461	.42024	.90741	8
53	. 35619	. 93441	. 37245	. 928805	. 38885	. 92141	. 40461	. 91449	. 42058	. 90729	8
53	. 35647	.93431	. 37273	. 92794	. 38886	. 92130	. 40488	. 91437	. 42077	. 90717	7
54	. 35674	. 93420	. 37299	. 92784	. 38912	. 92119	. 40514	. 91425	. 42104	. 90704	8
55	. 35701	. 93410	. 37326	. 92773	. 38939	. 92107	. 40541	. 91414	-42130	.90692	5
56	. 35728	- 93400	. 37353	. 92763	- 38966	. 920096	40567	. 91402	. 42156	.90680	4
53	$\cdot 35755$. 933889	. 37388	. 92755	- 38993	. 92085	. 40594	. 913130	. 42183	. 90668	3
58	. 35782	. 93370	. 37407	. 92740	. 39020	. 92073	. 40621	. 91378	. 42209	. 90655	2
59	. 35^{810}	. 933368	. 37434	. 92729	. 39046	. 92063	. 40647	. 91366	. 42235	. 90643	1
60	. 35837	.93358	. 37461	. 92718	. 39073	. 92050	. 40674	. 91355	. 42363	.90631	-
ρ	Cosine		Cosine Sine		Cosine Sine		Cosine Sine		Cosine Sin		,
	69°		68°		67°		66°		65°		

I L T $36 \mathrm{~F}-16$

1	25°		26°		27°		28°		29°		1
	Sine	Cosine	Sine	Cosine	Sine	Cogine	Sine	Cosine	Sine	Cosine	
0	. 42263	. 9063 \%	. 43837	. 808	. 45399	.89101	. 46947	. 88295	.48481	. 87462	60
1	. 42288	. 90618	. 438863	. 80867	. 45425	. 89087	. 46973	. 88888 z	. 48506	.8-448	59
2	. 42315	. 90606	. 43889	. 89854	. 45451	. 89074	. 46999	. 88267	. 485332	. 87434	55
3	. 42341	19059	. 43916	. 89884	. 45477	.89061	. 47024	. 88254	. 485557	. 87420	57
4	. 42367	. 90582	. 43942	. 80828	. 45503	. 89048	. 47050	. 88240	. 48583	. 87406	56
5	. 42394	. 90569	. 43968	. 89816	. 45529	. 89035	. 47076	. 88226	. 48608	. 87398	55
6	. 42420	. 90557	. 43994	. 898803	. 45554	. 890021	. 47101	. 88213	. 48634	. 87377	54
8	. 42446	. 90545	. 44020	. 89790	. 455880	. 898008	. 471278	. 881199	. 48659	. 87363	53
8	. 42473	.90532	. 44046	. 89777	. 45606	. 88995	. 47153	. 88185	. 48684	. 87349	52
-	. 42499	. 90520	. 44072	. 89764	. 45632	. 889881	. 47178	. 88172	. 48710	. 87335	51
10	. 42525	. 90507	. 44098	. 89753	. 45658	88968	.47204	. 88158	. 48735	. 87331	50
11 12	. 42552	. 90495	-4A124	. 897399	. 45684	. 888955	. 47229	. 881144	. 48768	. 87306	49
13	-.42578	. 90483	. 44151	. 8977273	.45710 .45736	. 888942	. 47255	.88130	. 48988	.87292	48
14	. 42631	. 904458	. 442823	. 897700	. 455763	. 88989	.47288 .47306	. 888117	. 488811	. 872786	47
15	. 42657	. 90446	. 44229	. 89687	. 45787	. 88903	. 47332	. 88089	. 48862	. 87250	45
16	. 42683	. 90433	. 44255	. 80674	.45813	. 88888	. 47358	. 88075	. 48888	. 87235	44
17	. 42709	. 90421	. 44281	. 89662	. 45839	. 88875	. 47383	888063	. 489013	. 87231	43
18	. 42736	. 90408	. 44307	. 89649	. 45865	. 88886	. 47409	R8849	. 48938	. 87207	42
19	. 42763	. 90396	. 44333	. 80636	. 45891	. 88848	. 47434	. 88034	. 48064	. 87193	41
20	. 42788	. 90383	. 44359	. 89623	. 45917	. 88835	. 47460	. 88020	. 48989	. 87178	40
28	. 42815	.90371	. 44385	. 89610	. 459	. 8882	. 47486	88606	. 49014	. 87164	39
13	.42841	. 90358	. 44411	. 89597	. 45968	. 888808	. 47511	. 87993	. 49040	. 87150	38
23	.42867	. 90346	. 44437	. 89584	. 45994	. 88795	. 47537	. 87999	. 49065	.87136	37
24	. 42894	. 90334	. 44464	. 89578	. 46020	. 88782	. 47563	. 87965	. 49090	. 87121	36
25	. 42920	. 90321	. 44490	. 89558	. 46046	. 88768	. 47588	. 87951	. 49116	. 87807	35
26	. 42946	. 90309	. 44516	. 89545	. 46073	. 88755	. 47614	. 87937	. 4914 L	. 87093	34
27	. 42973	.90296	. 44542	. 89532	. 46097	. 88741	. 47639	. 87923	. 49166	. 87079	33
28	. 42999	.90284	. 44568	. 89519	. 46123	. 88728	. 47665	. 87909	. 49192	. 87004	32
29	. 43025	. 90271	. 44594	. 89506	. 46149	. 88715	. 47690	. 87896	. 49217	. 87050	31
30	. 43051	. 90259	. 44630	. 89493	. 46175	. 88701	. 47716	. 87882	. $4924{ }^{2}$. 87036	39
31	. 43077	. 90246	. 44646	. 89480	. 46201	. 88688	.47741	. 87888	. 49268	87028	vy
32	. 43104	. 90233	. 44672	. 89467	. 46226	. 88674	. 47767	. 87854	. 49293	. 87007	38
33	. 43130	.90231	. 44698	. 89454	. 46253	. 88861	. 47793	. 87840	. 49318	.86993	37
34	. 43156	. 90208	. 44724	. 89841	. 46378	. 88647	. 47818	. 87826	. 49334	.86978	16
35	.43182	.90196	. 44750	. 89428	. 46304	. 88634	. 47884	. 87812	. 49369	886964	25
35	. 43209	. 90183	. 44776	. 89415	. 46330	. 88620	. 47869	. 87798	. 49394	. 86949	53
37	. 43235	. 90171	. 44802	. 89402	. 46355	. 88607	. 47895	. 87784	. 49419	. 86935	23
38	. 43261	. 90158	. 44828	. 89389	. 46381	. 88593	. 47920	. 87770	. 49445	. 86921	33
39	.43287	. 90146	. 44854	. 89376	. 46407	. 88580	. 47946	. 87756	. 49470	.86906	21
40	. 43313	.90133	. 44880	. 89363	. 46433	. 88566	. 47971	. 87743	. 49495	. 86893	20
41	. 43340	.90120	. 44906	.89350	. 46458	. 88553	. 47997	. 87729	. 40521	.86878	19
41	. 43366	. 90108	. 44932	. 89337	. 46484	. 88539	. 48022	. 87715	. 49546	. 86863	18
4.3	. 43392	. 90005	. 44958	. 89324	. 46510	. 88526	. 48048	. 87701	. 49575	.86849	17
44	. 43418	.90083	. 44984	. 89313	. 46536	. 88312	. 48073	. 87687	. 49596	. 86834	16
45	. 43445	.90070	. 45010	. 89298	. 465651	. 884999	. 48099	. 87673	. 49632	. 86820	15
46	. 43471	. 90057	. 45036	. 89285	. 46587	. 88485	. 48124	. 87659	. 49647	.86805	14
47	. 43497	. 90045	. 45063	. 89272	. 46613	. 88473	. 48150	. 87645	. 49672	. 86793	83
$4{ }^{4}$. 43523	. 90032	. 45088	. 89259	. 46639	. 88448	. 48175	. 87631	. 49697	. 86777	12
49	. 43549	. 90019	. 45114	. 89245	. 46664	. 888445	. 48201	. 87617	. 49723	. 86763	17
50	. 43575	. 90007	. 45140	. 89233	. 46690	.88431	. 48226	. 87603	. 49748	. 86748	10
58	. 43602	. 8999	. 45166	. 89319	. 467716	. 888487	. 48253	. 87589	. 49773	. 86733	8
52	. 43628	. 89981	. 45192	. 89206	. 46742	. 888404	. 48277	. 87575	. 49798	. 86719	8
53	. 43654	. 80968	. 45218	. 89193	. 46767	. 88390	. 48303	. 87561	. 49824	. 86704	?
54	. 43680	. 89956	. 45243	. 89180	.46793	. 88377	. 48328	. 87546	. 49884	. 86690	0
55	-43706	.84943	. 452269	. 89167	. 46819	. 883333	. 48354	. 87532	- 49874	. 866075	5
5	. 43733	. 89930	. 45295	. 89153	. 46884	. 883493	. 48379	. 87518	. 49899	. 866661	4
57	. 43759	. 89918	. 45328	. 89140	. 46870	. 883336	. 48405	. 87504	. 49924	. 86646	,
58 59	. 433785	.89905 .89892	. 453478	. 89127	. 46896	.88332 .88308	.48430 .48456	.87490 .87176	. 499950	. 8666317	1
60	. 43837	. 89879	.45309	. 89101	. 46947	. 88295	. 48488	. 87463	. 50000	. 86603	
	Cosine Sine		Cosine Sine		Cosine	Sine	Cosine Sine		Cosine Sine		t
	64°		63°		- 62°		61°		60°		

1	30°		31°		32°		33°		34°		7
	Sine	Cosine									
0	50060	. 86603	. 51504	. 85717	. 52992	. 84805	. 54464	. 83867	. 55919	. 82004	60
1	. 50025	. 86588	. 51529	. 85702	. 53017	. 84789	. 54488	. 83851	. 55943	. 82887	59
2	. 50050	. 86573	. 51554	. 85687	. 533041	. 84774	. 54513	. 83835	. 55968	. 82871	98
3	.50076	. 86559	. 51579	. 85672	. 53066	. 84759	. 54537	. 83819	. 55992	. 82855	57
4	. 50101	. 86544	. 51604	. 85657	. 53091	84743	. 54561	. 83804	. 56016	. 82839	56
5	. 50126	. 865350	. 51628	. 85642	. 53115	. 84728	. 54588	. 83788	. 56040	. 82822	55
6	. 50151	. 86515	. 51653	. 85667	. 53140	. 84712	. 54610	${ }^{.83772}$. 560064	R28co	54
8	. 50176	. 86501	. 51678	. 85613	. 53164	. 84697	. 54635	. 83736	. 56088	. 83790	53
8	. 50201	. 86486	. 51703	.85597 8582	. 53189	.84681 .84666	. 54659	.83740 83724	. 56112	. 827773	53
9	. 50227	. 86847	.51728 .51753	.85582 .85567	.53214 .53238	.84666 .84650	.54683 .54708	.83724 .83708	.56136 .56160	.88757	51 50
10	. 50253	. 86457	. 51753	. 85567	. 53238	. 84650	. 54708	. 83708	. 56160	.82741	50
18	. 50277	. 86442	. 51778	. 85551	. 53263	. 84635	. 54732	. 83692	. 56184	. 83724	49
12	. 50302	. 86427	. 51803	. 855536	. 53288	. 84619	. 54756	. 83676	. 56208	. 82708	48
13	. 50327	. 86413	. 51828	. 85521	. 53312	. 84604	. 54781	. 83660	. 56232	. 82692	47
14	. 50352	. 86398	. 51852	. 85506	. 53337	. 84588	. 54805	.83645	. 56256	. 82375	46
15	. 50377	.86384	. 51877	. 85499	. 53361	. 84573	. 54829	. 83629	. 56280	. 82659	45
16	. 50403	. 86369	. 51903	. 85476	. 53386	. 84557	. 54854	. 83613	. 56305	. 82643	44
17	. 50428	. 86354	. 51927	. 85461	. 53411	. 84542	. 54878	. 83597	. 56329	. 82626	43
13	. 50453	. 86340	. 51953	. 85446	. 53435	. 84526	. 54902	.83581	. 56353	.82610	42
19	. 50478	. 86325	. 51977	. 85431	. 53460	. 84511	. 54927	. 83565	. 56377	. 82593	41
20	. 50503	. 86310	. 52002	. 85416	. 53484	. 84495	. 54951	. 83549	.56401	. 82577	40
21	. 50528	. 86295	. 52026	. 85401	. 53509	. 84480	. 54975	. 83533	. 56425	. 82561	39
22	. 50553	.8628!	. 52058	. 85385	. 53534	. 84464	. 54999	. 83517	. 56449	. 82544	39
23	. 50578	Rhaeb	. 52076	. 85370	. 53558	. 84448	. 55024	.83501	. 56473	. 82528	37
34	. 50603	. 86251	. 52101	. 85355	.53583	. 84433	. 55048	. 83485	. 56497	. 82511	36
25	. 50628	. 86237	. 52126	. 85340	. 53607	. 84417	. 55072	. 83469	. 56521	. 82495	35
25	. 50654	. 86222	. 52151	. 85325	.53632	. 84402	. 55097	. 83453	. 56545	. 82478	34
27	. 50679	. 86207	. 52175	. 85310	. 53656	. 84388	.55121	. 83437	. 56569	. 82462	33
588	. 50704	. 86193	. 52200	. 85294	.53681	. 84370	. 55145	. 83421	. 56593	. 82446	32
29	. 50729	. 86178	. 52225	. 85279	. 53705	. 84355	. 55169	. 83405	. 56617	. 82429	31
30	. 50754	. 86163	. 52250	. 85264	. 53730	. 84339	. 55194	. 83389	. 56641	. 82413	10
31	. 50779	. 86148	. 52275	. 85249	. 53754	. 84324	.55218	. 83373	. 56665	. 82396	29
33	. 50804	. 86133	. 52299	. 85234	. 53779	. 84308	. 55242	. 833356	. 56689	.82380	26
35	. 50829	. 86119	. 52324	. 85218	. 53804	.84292	. 55266	. 83340	. 56713	. 82363	27
14	. 50854	. 86104	. 52349	. 85203	.53828	. 84277	. 55291	. 83324	. 56736	. 82347	26
35	. 50879	. 86089	. 52374	. 85188	. 53885	.84261	. 55315	. 83308	. 56760	. 82330	25
36	. 50904	. 86074	. 52399	. 85173	. 53877	. 84245	. 55339	. 83292	. 56784	. 82314	24
37	. 50929	. 86059	. 52423	. 85157	. 53903	. 842330	. 55363	. 83276	. 56808	. 83297	13
38	50954	. 86045	. 52448	. 85142	. 53926	. 84214	. 55388	. 83260	. 56833	.82281	23
39	. 50979	. 86030	. 52473	. 85127	.53951	. 84198	. 55412	. 83244	. 56856	. 82264	21
40	. 51004	. 86015	. 52498	. 85112	. 53975	. 84182	. 55436	. 83228	. 56880	.82248	$=0$
41	. 51029	. 86000	. 52522	. 85096	. 54000	.84167	. 55460	. 83212	.56904	.82231	19
42	. 51054	. 85985	. 52547	. 85081	. 54024	.84151	. 55484	. 83195	. 56928	.83214	18
43	. 51079	. 85970	. 52572	. 85066	. 54049	. 84135	. 55509	. 83179	56952	. 82198	17
4	. 51104	. 85956	. 52597	. 85051	. 54073	. 84120	. 55533	. 83163	. 56976	. 82181	16
45	-51129	.85941	. 52621	. 85035	. 54097	.84104	. 55557	. 83147	. 57000	. 82165	15
46	. 51154	. 85926	. 52646	. 85020	. 54122	. 84088	.55581	. 83131	. 57024	. 82148	14
47	. 51179	. 85911	.52671	. 85005	. 54146	.84072	. 55605	. 83115	. 57047	.82132	82
49	. 51204	. 85896	. 52696	. 84989	. 54178	. 84057	. 55630	. 83008	. 57071	. 82115	12
49	. 51229	. 85881	. 52720	. 84974	. 54195	.84041	. 55654	. 83083	. 57095	. 82008	11
50	. 51254	. 85866	. 52745	. 84959	. 54220	. 84025	. 55678	. 83066	. 57119	.82082	30
51	. 58279	. 8585 5	. 52770	. 84943	. 54244	. 84009	. 55703	. 83050	. 57143	. 82065	
52	. 51304	. 85883	. 52794	. 84928	. 54269	. 83994	. 557726	. 83034	. 57167	820.4	8
53	. 51329	.85821	. 52819	. 849313	. 54293	. 83978	. 55750	. 83017	.57191	.82032	7
54	. 51354	. 85806	. 52844	. 84889	. 543317	. 83962	. 55775	. 83001	. 57215	82015	6
55	. 51379	. 85793	. 52869	. 848882	. 543423	. 83946	. 55799	. 829895	. 57238	. 81999	5
56	. 51404	. 85777	. 52893	. 84866	. 54366	. 83930	. 558823	. 82969	. 57262	. 81989	4
57	. 51429	. 85762	. 52918	. 84851	. 54391	. 83915	. 55847	. 82953	. 57288	. 81965	3
58 50	. 51454		. 52943	.84836 .84820	.54415 .54440	.83899 .83883			.57310 .57334	.81949 .88932	2
59	.51479 .51504	.85732	. 5292973	.84880	.54440 .54464	.83883 .83867	.55895 .55919	.829204	. 573334	.81932	!
,	Cosine $/$ Sine		Cosine		Cosine	Sine	Cosine	Sine	Cosine	Sine	\%
	59°		58°		57°		56°		55°		

,	35°		36°		37°		38°		39°		,
	ne	Cosine	Sine	Osine	Sine	sine	Sine	sine	Sine	Cosine	
-	. 57358			. 80	. 60182		.61560		62933		60
1					. 6002						58
$\stackrel{2}{3}$.57405 .57429	. 8181882	. 588888	.80867	${ }^{.60228}$. 798829	. 6161635	. 787878	. 623977	.77678 .77660	58 57
4	. 57453	. 81848	. 58887	. 80833	.60274	. 79793	. 61658	. 788789	. 63023	. 97648	86
5	. 577479	${ }^{81832}$. 80816	. 60298	.7972	${ }^{6} 61681$. 78711	. 63045	. 97683	55
	- 5757508	${ }_{8}^{.81825}$. 60321	.799741			. 633090	. 777605	54
8	- 5775458	. 81788	-	.8076	.60344 .60367	.797423	. 61749	.788	. 630900	l.775568	52
0	. 57573	. 81765	. 58990	. 807	. 60390	. 7970		. 786	. 63135	. 77550	51
10	. 57596	.81748	. 59014	. 80730	. 60414	. 7968	. 61795	. 786	. 63	.77531	50
11	. 57	.81731								. 77513	49
12	. 576643	816				.7966			. 63203	. 77494	48
13	. 576607	.81698	. 590084	.80679	. 600483	.79635	. 6181889	. 7885	. 6322258	$\begin{array}{r}.97476 \\ .77458 \\ \hline\end{array}$	47
14	. 575091	疗 81681	. 59.18131	.806644	. 60529	.79600	. 61909	. 78332	. 632271	- 77739	45
15 16	+ 57715 .57738	-81664	- 59.154	.806427	. 605553	${ }^{.79583}$. 61932	. 78514	. 63293	. 77421	84
17	. 577762	. 8163	. 59178	. 806	. 60576	.7956	.619:9		. 633	. 77402	0
18	. 57788	${ }^{81814}$. 59202	. 805953	. 60599	-79547	. 61	. 78	. 63	. 773384	
${ }_{20} 19$. 5.578383	81597 81580	.59225 .5948	.88576	. 600622	.799312	. 6220024	.78860	. 6333838	. 7773364	41
21	. 5	.8156		. 80					63		10
22	. 5788	. 81546	.592	. 80524		.7947				. 77	
23	. 579904	.81530	. 59338	. 80507	. 60714	. 79459	. 6200	.78887	. 63451	. 772923	36
24	. 57928	.81513	. 593442	. 80489	. 60738	.7944I	. 6221	.78369	. 63473	. 77273	36
25	. 57995	. 81496		. 80472	. 6076	.7942	. 621	.78351	. 634	.77255	35
${ }^{26}$. 814		. 8045		. 794	. 62218	.783	. 635	. 77236	34
27	. 57999	. 81462	. 59412	.8043		.79388	. 62188	. 783315	. 6355	.77218	${ }^{33}$
28	. 588023	. 818445	. 59436	. 80420	. 608830	.79371	. 622206	.78297	. 635	.77199	${ }^{32}$
29 30	. 58070	. 81412	. 5949488	${ }^{.80403}$.60853 .60876	.793933	. 622229 (.78279 .7881	. 6358585	.771816	31 30 30
31		.81		. 8					. 63630		
33	. 58318	. 813	. 59529	. 80351	. 609	.7930				. 77125	4
33	. 581414	. 813131	. 59553	. 80334	. 60994	.792823	. 62323	.78206	. 63675	.77107	27
5		.81344	. 59576	. 80316	. 600968	.79264	. 62342	. 788188	.63698 .63720	. 777088	26 25
35	. 5	.81327 81310 8	. 595	.802892	. 600991	.79247	. 62338		. 637720	. 77705	25
36		. 813120	. 5.59628	${ }^{.8028}$. 6103	.79229	. 623811	. 78184		. 777035	24 23 23
18		. 81276	. 59669	. 80247	. 6106	. 79193	. 62433	. 78116	. 637	. 77014	22
39	. 582883	. 81259	. 59093	. 80230	${ }^{.61084}$.79976	. 62456	. 788098		.76996	21
40	. 58307	. 81242	. 59716	. 80212	.61107	. 79158	. 62479	.78079	. 6383	. 76977	
48	. 58330	818225	. 59	. 80	.61130	.79140	. 625	.78061	. 638	. 76959	19
42	-	. 81208	. 5976	.80178	. 61153	.79122	. 62524	. 78043	. 638	. 76940	18
43	. 58378	.81191	. 59786	. 80160	. 61176		. 62547	.78025	. 63899	.76921	17
4	. 58801	.81174	. 59809	. 80143	. 61199	.79087	. 6255	.78007	. 63922	. 76093	16
45	. 58425	. 81157	. 5983	. 801	. 6122	.79069	. 625	.77988	. 63	. 768	15
-6	. 58449	. 81140	. 598856	. 80108	. 61245	.79051	. 626	.77970	. 639	. 7688	14
4	. 588472	. 811123	. 59879	${ }^{8} 80091$. 61268	.79033	. 626	.77952	. 639	.76847	3
19	. 588459	. 81089	+599926		. 6121214	. 7989098		. 779934		. 786888	11
so	. 58543	. 81072	. 59949	. 80038	. 61337	. 78980	. 62700	. 77897	.64056	.76791	${ }^{10}$
51	. 58567	.810		. 80021	. 61360	. 780	. 67728	.77879	. 64078	. 76772	
53	.58590	.81038	. 5999	. 8000	. 61383	. 78	. 627751	. 77	. 64100	. 7675754	
53	. 588614	${ }^{81} 8021$. 6000	.79986	. 61406	.780	. 62777	. 77	. 64123	. 767735	
54		. 8100	. 60000	.79968	- 61489	.7888	.6279	.77888	${ }^{6} 6$.76	
$\frac{4}{56}$. 809	. 600		. 61474		. 628		. 6415	.760679	
57	. 58708	. 80	. 6	. 7	. 61497	. 78885	. 6	.77769	.6421	${ }^{.76669}$	
8		. 80936	. 6	.78	. 61520	.78837	. 6288	. 777751	. 64234	.76642	
5		. 80919	015		. 61543	.78819	. 6290	.77733	. 64256	. 76623	
60	. 58779	.80902	.60183	. 79	. 61	200	.62932	.77715	. 64279	. 76604	
	Cosine Sine		Cosine Stine		Cosine		Cosine ${ }^{\text {S }}$ Sine		Cosine ${ }^{\text {P }}$ Sine		,
	54°		53°		- 52°		51°		50°		

I	40°		41°		42°		43°		44°		1
	Sine	Cosine									
0	. 64279	. 76604	. 65600	.75471	. 66913	. 74314	. 68200	. 73135	. 69466	. 71934	60
1	. 643301	. 76586	. 65628	. 75452	. 66935	. 74295	. 68321	. 73116	. 69487	. 71914	59
3	. 64323	. 76567	. 656550	. 75433	. 66956	. 74276	. 68242	. 73096	. 69508	.71894	58
3	. 64346	. 76548	. 65672	. 75414	. 66978	. 74256	. 682264	. 73076	. 69529	. 71873	${ }^{57}$
3	.64368 .64390	.76530 .76518	. 656994	.75395 .75375	. 669999	.74237 .74217	. 688825	. 73056	.69549 .69570	.71853 .71833	56
1	. 64390	.76511	. 65716	. 753375	. 67021	. 74217	. 683006	. 73036	. 69570	. 71833	53
1	. 64413	. 76492	. 65738	. 753536	. 67043	.74198 .74178	. 6833279	. 73016	. 69591	. 71813	53
7	. 64435	. 76473	. 65759	. 753337	. 67004	.74178 .74159	.68349 .68370	. 72996	. 69612	. 71792	53
\%	. 64445	. 764455	. 65781	.75318 .75299	. 6708107	.74159 .74139	. 683370	.72976 .72957	.69633 .69654	. 71772	52
10	.64479 .64501	.76436 .76417	. 6558825	.75229 .75280	. 67129	.74120	. 68412	. 72937	. 69675	. 71752	50
11	. 64524	. 76398	. 65847	.75261	. 67151	. 74100	. 68434	. 72917	. 69696	. 71718	49
12	. 64546	. 76380	. 65869	. 75241	. 67172	. 74080	. 68455	. 72897	. 69717	. 71691	48
13	. 64568	. 76361	.65891	. 75222	. 67194	. 74061	. 68476	. 72877	. 69737	. 71671	47
14	. 64590	. 76342	. 65913	. 75203	. 67215	. 74041	. 68497	. 72857	69758	. 71650	46
15	. 64612	.76323	. 65935	. 75184	. 67237	. 74022	. 68518	. 72837	. 69779	. 71630	45
16	. 64635	. 76304	. 65956	. 75165	. 67258	. 74002	. 68539	.72817	. 69800	. 71610	44
17	. 64657	. 76286	. 65978	. 75146	. 67280	. 73983	. 68561	. 72797	. 69821	. 71590	43
18	. 64679	.76267	. 66000	.75126	.67301	. 73963	. 68582	. 72777	. 69842	. 71569	42
19	. 64701	. 76248	.66022	. 75107	. 67323	. 73944	. 68603	. 72757	. 69862	. 71549	41
20	. 64723	. 76229	. 66044	. 75088	. 67344	. 73924	. 68624	. 72737	. 69883	. 71529	40
21	. 64746	.76210	. 66066	. 75069	. 67366	.73904	. 68645	. 72787	. 69904	. 71508	39
22	. 64768	.76192	. 660088	. 75050	. 67387	. 73885	. 68666	. 72697	. 69925	. 71488	38
23	. 64790	. 76173	. 66109	. 75030	. 67409	. 73865	. 68688	. 72677	. 69946	. 71468	37
24	. 64812	. 76154	. 66131	. 75011	. 67430	. 73846	. 68709	. 72657	. 69966	. 71447	36
25	. 64834	. 76135	. 66153	. 74992	. 67452	. 738826	. 68933	. 72637	. 69997	. 71427	35
2	. 64856	. 76116	. 66175	. 74973	. 67473	. 73806	. 68751	. 72617	. 70008	. 71407	34
27	. 64878	. 76097	. 66197	. 74953	. 67495	. 73787	. 68772	. 72597	. 70029	. 71386	33
25	. 64901	. 76078	. 66218	. 74934	. 67516	. 73767	. 68793	. 72577	. 70049	. 71366	32
29	. 64923	. 76059	. 66240	. 74915	. 67538	. 73747	. 68814	. 72557	. 70070	. 71345	31
30	. 64945	.76041	. 66262	. 74896	. 67559	. 73728	. 68835	. 72537	. 70091	. 71325	30
31	. 64967	.76022	.66284	. 74876	. 67580	. 73708	. 68857	. 72517	. 70112	.71305	29
32	. 64989	. 76003	. 66306	. 74857	. 67602	. 73688	. 68878	. 72497	. 70132	. 71284	28
33	. 65011	. 75984	. 66327	. 74838	. 67623	. 73669	. 68899	. 72477	. 70153	. 71264	27
34	. 65033	. 75965	. 66349	.74818	. 67645	. 73649	. 68920	-72457	. 70174	. 71243	16
35	. 65055	. 75946	. 66371	. 74799	. 67666	. 73629	. 689941	. 72437	. 70195	. 71223	25
36	. 65077	. 75927	. 66393	. 74780	. 67688	. 73610	. 68962	. 72417	. 70215	. 71203	24
37	. 65100	. 75908	. 66414	. 74760	. 67709	. 73590	. 68983	. 72397	. 70236	. 71182	33
38	. 65122	. 75888	. 66436	. 74741	. 67730	. 73570	. 69004	. 72377	. 70257	. 71162	21
39	. 65144	. 75870	. 66458	. 74722	. 67753	. 73551	. 69025	- 72357	. 70277	. 71141	31
40	. 65166	.75851	. 66480	. 74703	. 67773	.73531	. 69046	. 72337	. 70298	. 711121	30
41	. 65188	.75832	. 66501	. 74683	. 67795	. 73511	. 69067	. 72317	. 70319	. 711100	19
42	. 65210	. 75813	. 66523	.74664	. 67816	. 73491	. 69088	. 72297	. 70339	.71080	18
43	. 65232	. 75794	. 66545	. 74644	. 67837	. 73473	. 69109	. 72277	. 70360	. 71059	17
44	. 65354	. 75775	. 66566	. 74625	. 67859	. 73452	. 69130	. 72257	.70381	. 71039	16
45	. 65276	. 75756	. 66588	. 74606	. 67880	. 73432	. 69151	. 72236	. 70401	. 71019	15
46	. 65298	. 75738	66610	. 74586	. 67901	. 73413	. 69172	. 72216	. 70422	. 70998	14
47	. 65.320	. 75719	. 666332	. 74567	. 67923	. 73393	. 69193	. 72196	. 70443	. 70978	13
48	. 653342	. 757700	. 666653	. 74548	. 67944	. 73373	. 69214	. 72176	. 70463	. 70957	13
49	. 65364	. 75680	. 66665	. 74428	. 67965	. 73353	. 69235	. 72156	. 70484	. 70937	1
50	. 65386	. 73661	. 66697	. 74509	. 67987	. 73333	. 69256	.72136	. 70505	. 70916	10
51 52	. 65408	. 75642	. 66718	. 74489	68006	. 73314	. 69277	. 21116	. 70525	. 70896	
52	. 65430	. 75623	. 66740	. 74470	. 680202	. 73294	. 69298	. 72095	.70546	. 70875	8
53	. 65453	. 75604	. 66763	. 74451	. 68051	. 73274	. 69319	. 72075	. 705667	. 70855	7
54	. 65474	. 75585	. 66783	. 74431	. 688072	. 732544	. 69340	. 72055	. 70 O587	. 70834	6
55	. 65496	. 75566	. 668805	. 74412	. 68093	. 73234	. 69361	. 72035	. 70608	.70813	5
56	. 65518	. 75547	. 668827	. 74392	. 68115	. 73215	. 69383	. 72015	. 70628	. 70793	4
57 58	. 65540	. 75528	. 668888	. 743373	. 68136	. 73195	. 69403	. 71995	. 70649	. 70772	,
58	. 65562	. 75509	. 668870	. 743353	. 68157	. 73175	. 69424	. 71974	. 70670	. 70752	3
59	. 65588	. 75490	. 66899	. 74333	. 68179	. 73155	. 69445	. 71954	. 70690	. 70731	1
60	. 65606	. 75471	. 66913	. 74314	. 68200	. 73135	. 69466	. 71934	. 70718	. 70718	0
,	Cosine Sine		Cosine		Cosine Sine		Cosine Sine		Cosine 1 Sine		
	49°		48°		47°		46°		45°		

1	0^{0}		I^{0}		2°		3°		4°		1
	Tang	Cotang									
0	. 000000	Infinite	. 01746	57.2900	. 03492	28.6363	. 05241	19.0811	.06993	14.3007	80
1	.00029	3437.75	. 01775	56.3506	. 03521	28.3994	. 05270	28.9755	. 07022	14.2411	50
2	. 00058	1718.87	. 01804	55.4415	. 03550	28.1664	. 05299	18.8711	.07051	14.1821	58
3	.00087	1145.92	. 01833	54.5613	. 03579	27.9372	. 05328	18.7678	. 07080	14.12,35	57
4	.00116	859.436	. 01862	58.7086	.03609	27.7117	. 05357	18.0656	. 07110	14.0655	56
8	. 00145	687.549	.01891	52.8821	.03638	37.4899	. 05387	18.5645	. 07139	14.0079	55
6	. 00175	572.957	. 01920	52.0807	. 03667	27.2715	. 05416	18.4645	. 07168	13.9509	53
7	. 00204	491.106	. 01949	51.3032	.03696	27.0566	. 05445	88.3655	. 07197	13.8940	53
8	. 00233	429.718	. 01978	50.5485	. 03725	26.8450	. 05474	18.2677	. 07227	13.8378	52
9	.0026a	381.971	. 02007	49.8157	. 03754	26.6367	. 05503	18.1708	. 07256	13.7821	51
10	.00291	343-774	.02036	49.1039	. 03783	26.4316	. 05533	18.0750	. 07285	13.7367	50
11	. 00320	312.521	. 02066	48.4121	.03812	26.2296	. 05562	87.9803	. 07314	13.6719	59
12	. 00349	286.478	. 02095	47.7395	. 03848	26.0307	. 05591	17.8863	. 07344	13.6174	48
13	. 00378	264.441	. 02124	47.0853	. 03871	25.8348	. 05620	17.7934	. 07373	13.5634	47
14	. 00407	245.552	. 02153	46.4489	. 03900	25.6418	. 05649	17.7015	. 07402	13.5098	46
15	. 00436	239.182	.02183	45.8294	. 03929	25.4517	. 05678	17.6106	. 07431	13.4566	13
16	. 00465	214.858	. 02211	45.2261	. 03958	25.2644	. 05708	17.5205	. 07461	13.4039	44
17	. 00495	202.219	. 03240	44.6386	. 03987	35.0798	. 05737	17.4314	. 07490	13.3515	43
18	. 00524	190.984	. 02269	44.0661	. 04016	24.8978	. 05766	17.3432	. 07519	13.2996	[27
19	. 00553	180.933	. 02298	43.5081	. 04046	24.7185	. 05795	17.255^{8}	. 07548	13.2480	41
20	.0058 ${ }^{\text {a }}$	171.885	. 02328	42.9641	. 04075	24.5418	. 05824	17.1693	. 07578	13.1969	40
28	. 00618	163.700	. 02357	42.4335	. 04104	24.3675	.05854	87.0837	. 07607	$13.146{ }^{1}$	39
22	. 00640	156.259	. 02386	41.9158	. 0.4133	24.1957	. 05883	16.9950	. 07636	13.0958	38
23	. 00669	149.465	. 02415	41.4106	.04162	24.0263	. 05912	16.9150	. 07665	13.0458	37
24	. 00668	143.237	. 02444	40.9174	.04191	23.8593	. 05941	16.8319	. 07695	12.9962	36
35	. 00727	137.507	. 02473	40.4358	. 04220	23.6945	. 05970	16.7496	. 07724	12.9469	35
26	. 00756	132.219	. 02502	39.9655	. 04250	23.5321	. 05999	16.6681	. 07753	12.8981	34
27	.00785	127.321	. 02531	39.5059	. 04279	23.3718	. 060029	16.5874	. 07788	12.8496	38
26	.008 5	122.774	. 02560	39.0568	. 04308	23.2137	. 06058	16.5075	. 07812	12.8014	32
29	. 00884	188.540	. 02589	38.6177	. 04337	23.0577	. 06087	16.4283	. 078841	82.7536	31
30	. 00873	114.589	.02619	38.1885	. 04366	22.9038	.06116	16.3499	. 07870	12.7062	3 a
31	. 00902	110.892	.02648	37.7686	. 04395	22.7519	.06r45	16.2722	.07899	12.6591	09
32	. 00931	107.426	. 02677	37.3579	. 04424	22.6020	.06175	16.1952	. 07929	12.6124	28
33	. 00960	104.171	. 02706	36.9560	. 04454	22.4541	.06204	16.1190	. 07958	12.5660	27
85	.00989	102.107	. 02735	36.5627	. 04483	22.3081	. 06233	16.0435	. 07987	12.5199	26
35	. 01018	98.2179	. 02764	36.1776	. 04512	22.1640	. 06262	15.9687	.08017	12.4742	比
36	. 01047	95.4895	. 02793	35.8006	. 04541	22.0217	.06291	15.8045	.08046	12.4288	29
37	. 01076	92.9085	. 02822	35.4313	. 04570	21.8813	.06321	15.8211	.08075	12.3838	23
34	. 01105	90.4633	. 02851	35.0695	. 04599	21.7426	.06350	15.748_{3}	.08104	12.3390	32
39	. 01135	88.1436	.0288it	34.7151	. 04628	21.6056	. 06379	15.6762	. 08134	12.2946	11
40	.01164	85.9398	. 02910	34.3678	. 04658	21.4704	. 06408	15.6048	. 08163	12.2505	0
41	. 01193	8.8 .8435	. 02939	34.0273	. 04687	28.3369	. 06437	15.5340	. 08192	12.2067	19
43	. 01222	81.8470	. 02968	33.6935	. 04716	21.2049	. 06467	15.4638	.08221	12.1632	明
43	. 01251	79.9434	. 02997	33.3663	. 04745	21.0747	.06496	15.3943	.08251	12.1201	17
4	. 01280	78.1263	. 03026	33.04 .52	. 04774	20.9460	. 06525	15.3254	. 08280	12.0772	16
45	. 01309	76.3900	. 03055	32.7303	. 04803	20.8188	. 06554	15.2571	.08309	12.0346	15
46	. 0133°	74.7292	. 03084	32.4213	. 04833	20.6932	.06584	\$5.1893	. 08339	13.9923	14
	.01367	73.1390	. 03114	32.1181	. 04863	20.5691	. 066613	15.1222	.08368	11.9504	13
43	. 01396	71.6151	. 03143	31.8205	.04891	20.4465	. 06642	15.0557	. 08397	11.9087	12
49	. 01425	70.1533	. 03172	31.5284	. 04920	20.3253	. 06671	14.9898	.08427	11.8673	11
50	. 01455	68.7501	.03208	31.2416	. 04949	20.2056	.06700	14.9244	.08456	11.8263	31
31	. 01484	67.4019	. 03230	30.9599	. 04978	20.0872	. 06730	14.8596	.08485	11.7853	8
52	. 01513	66.1055	. 03259	30.683 .3	. 05007	19.9702	. 06759	14.7954	. 08514	81.7448	8
53	. 01542	64.8580	. 03288	30.4116	. 05037	19.8546	. 06788	14.7317	. 08544	11.7045	$?$
54	. 01571	63.6567	. 03317	30.1446	. 05066	19.7403	.068:7	14.6685	. 08573	11.6645	6
55	. 01600	63.4992	. 03346	29.8823	. 05095	19.6373	.06847	14.6059	. 08603	13.6248	5
56	$.08629$	61.3829	. 03376	29.6245	. 05124	29.5156	.06876	14.54.38	. 086832	$11.58<3$	1
57	. 01658	60.3058	. 03405	29.3711	. 0515.3	19.4051	.06905	14.4823	. 08661	11.5461	3
54	. 01687	59.2659	. 03434	29.1220	.05182	19.2959	. 06934	14.4212	. 08690	11.5072	2
59	$.01716$	58.2613	. 03463	28.8771	. 05212	19.1879	.06963	84.3607	$.08720$	11.4685	1
60	.01746	57.2900	.03492	28.6363	. 05341	19.0811	. 06993	14.3007	.08749	11.4301	0
	Cotang	Tang	Cotans	Tang	Cotang	Tang	Cotang	Tang	Cotans	Tang	7
	89°		88°		87°		86°		85°		

34 NATURAL TANGENTS AND COTANGENTS

1	10°		11°		12°		13°		14°		,
	Tang	Cotang									
0	17633	5.67828	. 39438	5.14455	. 31256	4.70463	. 23087	4.33148	. 24933	4.01078	60
1	. 17663	5.66165	. 19468	5.13658	. 21286	4.69791	. 23117	4.32573	. 24964	4.00588	5
3	. 17693	5.65205	. 19448	5.12862	. 21316	4.69121	. 23148	4.32001	. 24995	4.00086	85
3	.17723	5.64248	. 19529	5.12069	. 21347	4.68452	. 23179	4.31430	. 25026	3.99593	57
4	. 17753	5.63295	. 19559	5.11279	. 213777	4.67786	. 23209	4.30860	. 25056	3.09009	56
5	.17983	${ }_{5}^{5.62344}$. 19589	5.10490	. 21408	4.67121	. 23240	4.30291	. 25087	3.98607	55
6	.17813 .17843	5.61397 5.60452	. 19619	5.09704 5.08921	. 21438	4.66458 4.65797	. 23271	4.29724 4.29159	.25118 .25149	3.98117 3.97627	54 53
8	.17873	5.59518	.19680	5.08139	. 21499	4.65138	.23332	4.28595	.25180	3.97627 3.97139	58
9	. 17903	5.58573	. 19710	5.07360	. 21529	4.64480	.23363	4.28032	. 25211	3.96651	51
10	. 17933	5.57638	. 19740	5.06584	. 21560	4.63825	. 23393	4.27471	. 25243	3.96165	50
11	. 17963	5.56706	. 19770	5.05809	. 21590	4.63171	. 23424	4.26911	. 25273	3.45680	9
12	. 17993	5.55777	. 19801	5.05037	. 21621	4.62518	. 23455	4.26353	. 25304	3.95196	48
13	.18023	5.54851	. 19831	5.04267	. 21651	4.61868	. 23485	4.25795	. 25335	3.94713	47
14	. 18053	5.53927	. 19861	5.03499	. 21683	4.61219	. 23516	4.25239	. 25366	3.94232	46
15	. 18083	5.53007	.19891	5.02734	. 21712	4.60572	. 23547	4.24685	. 25397	3.93751	45
16	.18113	5.52090	. 19921	5.01971	. 21743	4.59927	. 23578	$4.2413{ }^{2}$. 25428	3.93271	4
37	. 18143	5.51176	. 19952	5.01210	. 21773	4.59283	. 23608	4.23580	. 25459	3.92793	63
18	.18173	5-50264	.19982	5.0045 !	. 21804	4.58641	. 23639	4.23030	. 25490	3.92316	42
19	.18203	5-49356	. 20012	4.99695	. 21834	4.58001	. 23670	4.22481	. 25521	3.91839	41
20	. 18233	5.48451	. 20042	4.98940	. 21864	4.57363	. 23700	4.21933	. 25552	3.91364	411
21	. 18263	5.47548	. 20073	4.98188	. 21895	4.56726	. 23731	4.213^{87}	. 25583	3.90890	39
32	. 18293	5.46648	. 20103	4.97438	. 21925	4.56091	. 23763	4.20842	. 25614	3.90417	35
23	.18323	5.45751	. 20133	4.96690	. 21956	4.55458	. 23793	4. 20298	. 25645	3.89945	37
4	. 18353	5.44857	. 20164	4.95945	. 21986	4.54826	. 23823	4.19756	. 25676	3.89474	36
35	.18384	5.43966	. 20194	4.95201	. 22017	4.54196	. 23854	4.19215	. 257707	3.89004	15
\%	. 18414	5.43077	. 20224	4.94460	. 22047	4.53568	. 23885	4.18675	. 25738	3.88536	34
27	. 18444	5.42192	:20254	4.93721	. 22078	4.52941	. 23916	4.18137	. 25769	3.88068	33
\% 8	. 18474	5.41309	. 20285	4.92984	. 22108	4.52316	. 23946	4.17600	. 25800	3.87601	32
29	. 18504	5.40429	. 20315	4.92249	. 22139	4.51693	. 23977	4.17064	.25831	3.8736	31
10	.18534	5.39552	. 20345	4.91516	. 22169	4.51071	. 24008	4.16530	. 25863	3.86671	50
32	. 18564	5.38677	. 20376	4.90785	. 22200	4.50451	. 24039	4.15997	. 25893	3.86208	20
32	. 18594	5.37805	. 20406	4.90056	.2223i	4.49832	. 24069	4.15465	. 25924	3.85745	28
33	. 18624	5.36936	. 20436	4.89330	. 22261	4.49215	. 241100	4.14934	. 25955	3.85284	27
34	.18654	5.36070	. 20466	4.88605	. 22292	4.48600	. 24131	4.14405	. 25986	3.84824	26
35	. 18684	5.35206	. 20497	4.87882	. 22322	4.47986	. 24162	4.13877	. 26017	3.84364	25
36	. 18714	5.34345	. 20527	4.87162	. 22353	4.47374	. 24193	4.13350	. 26048	3.83906	84
37	. 18745	5.33487	. 20557	4.86444	. 22383	4.46764	. 24223	4.12825	. 26079	3.83449	23
70	. 18775	5.32631 5.31788	. 205888	4.85727 4.85013	. 222144	4.46155	. 24254	4.12301	. 26110	3.82992	23
70 60	.18805 .18835	5.31778 5.30928	.20618	4.85013 4.84300	. 222444	4.45548 4.44942	. 24285	4.11778 4.11256	.26141 .26172	3.82537 3.82083	${ }^{21}$
60	. 18835	5.30928	. 20648	4.84300	. 22475	4.44942	. 24316	4.11256	. 26173	3.82083	\%
48	. 18865	5.30080	. 20679	4.83590	. 22505	4.44338	. 24347	4.10736	. 26203	3.81630	19
42	. 18895	5.29235	. 20709	4.82882	. 22536	4.43735	. 24377	4.10216	. 26235	3.81177	28
41	. 18925	5.28393	. 20739	4.82175	. 22567	4.43134	. 24408	4.09699	. 26266	3.80726	17
44	. 18955	5.27553	. 20770	4.81471	. 22597	4.42534	. 24439	4.09182	. 26297	3.80276	16
45	. 18986	5.26715	. 20800	4.80769	. 22628	4.4:336	. 24470	4.08666	. 26328	3.79827	15
46	. 19016	5.25880	.20830	4.80068	. 22658	4.41340	. 24501	4.08152	. 26359	3.79378	14
47	. 19046	5.25048	. 20881	4.79370	. 222889	4.40745	. 24533	4.07639	. 26390	3.78031	13
薙	. 19076	5.24218	. 20891	4.78673	. 22719	4.40152	. 24563	4.67127	. 26421	3.78485	12
40	. 29106	5.23395	. 20921	4.77978	. 22750	4.39560	. 24593	4.06616	. 26453	3.78040	11
80	. 19136	5.32566	. 20953	4.77286	.22781	4.38969	. 24624	4.06107	. 26483	3.77595	10
51	. 19166	5.21744	. 20983	4.76595	. 22811	4.38381	. 24655	4.05599		3.77152 3.76709	8
52	. 19197	5.20925	. 21013	4.75906	.22842	4.37793	. 24686	4.05092	$.26546$	3.76709	8
53	. 19227	5.20107	. 21043	4.75219	.22872	4.37207	. 24717	4.04586	. 265777	3.76268	$?$
54	. 192257	5.19293	. 21073	4.74534	.22903	4.36623	. 247478	4.04081 4.03578 4.056	26608 .2663	3.75828 3.75388	6
55 56	.19287 .19317	5.188880 5.17671	.21104 .21134	4.73851 4.73170	. 222934	4.36040 4.35459	.24778 .24809	4.03578 4.03076	. 26639	3.75388 3.74950 3.751	5
57	.19317 .19347	5.17671 5.6863	.21134 .21164	4.73170 4.73490	. 2229094	4.35459 4.34879	. 248880	4.03076 4.02574	. 26701	3.74512	3
50	. 19378	5.16058	. 21195	4.71813	. 23026	4.34300	. 24871	4.02074	. 26733	3.74075	2
5	. 19408	5.15256	. 21225	4.71137	. 23056	4.33723	. 24903	4.01576	. 26764	3.73640	1
60	. 19438	5.14455	. 21256	4.70463	.23087	4.33148	. 24933	4.01078	. 26795	3.73205	\square
,	Cotang Tang		Cotang Tang		Cotang		Cotang Tang		Cotang Tang		,
	79°		78°		77°		76°		75°		

,	15°		16°		17°		18°		19.		,
	Tang	Cotang									
-	. 26795	3.73205	. 28675	3.48748	. 30573	3.27085	. 32493	3.07768	. 34433	2.90421	60
1	. 268826	3.72771	. 28706	3.48359	. 30605	3.26745	. 32524	3.07464	. 34465	2.00147	59
2	. 26857	3.72338	.28738	3.47977	. 30637	3.26406	. 32556	3.07160	. 34498	2.89873	58
3	. 208688	3.71907 3.71476 3.715	. 288898	3.47596 3.47216	.30669 .30700	3.26067 3.25729	.32588 .32621	3.06857 3.06554 3.6054	.34530 .34563	2.89600 2.80327	57 56
5	. 26951	3.71046	. 28832	3.46837	. 30732	3.25392	. 32653	3.06252	. 34596	2.89055	55
6	. 26982	3.70616	. 28864	3.46458	. 30764	3.25055	. 32685	3.05950	. 34628	2.88783	54
7	. 27013	3.70188	. 28895	3.46080	. 30796	3.24719	. 32717	3.05649	. 34661	2.88511	53
8	. 27044	3.69761	. 28927	3.45703	. 30828	3.24383	. 32749	3.05349	. 34693	2.88240	53
9	. 27076	3.69335	. 28958	3.45327	. 30860	3.24049	.32782	3.05049	. 34772	2.87970	51
10	. 27107	3.68909	. 28990	3.44951	. 30891	3.23714	. 32814	3.04749	. 34758	2.87700	50
11	.27138	3.68485	. 29021	3.44576	. 30923	3.23381	. 32846	3.04450	. 34791	2.87430	49
12	. 27169	3.68061	. 29053	3.44202	. 30955	3.23048	. 32878	3.04152	. 34824	2.87161	48
13	. 27201	3.67638	. 29084	3.43829	. 30987	3.22715	. 32911	3.03854	. 34856	2.86892	47
14	. 27232	3.67217	. 29116	3.43456	. 31019	3.22384	- 32943	3.03556	. 34889	2.86624	46
15	. 27263	3.66796	. 29147	3.43084	. 31051	3.22053	. 32975	3.03260	. 34922	2.86356	45
16	. 27294	3.66376	. 29179	3.42713	. 31083	3.21722	. 33007	3.02963	. 34954	2.86089	4
17	. 27326	3.65957	. 29210	3.42343	. 31115	3.21392	. 33040	3.02667	. 34987	2.85822	${ }^{61}$
18	. 27357	3.65538	. 292243	3.41973	. 311147	3.21063	. 33072	3.02372	.35020	2.85555	${ }^{41}$
19	. 27388	3.65121	. 29274	3.41604	. 31178	3.20734 3.20406	. 33104	3.02077 3.01783	. 35052	2.85589 2.85023	${ }_{40}^{41}$
20	. 27419	3.64705	. 29305	3.41236	. 31210	3.20406	. 33136	3.01783	. 35085	2.85023	40
21	. 27451	3.64289	. 29337	3.40869	. 31242	3.20079	. 33169	3.01489	. 35118	2.84758	39
23	. 27482	3.63874	. 29368	3.40502	. 31274	3.19752	. 33201	3.01196	. 35150	2.84494	38
4	. 27513	3.63461	. 29400	3.40136	. 31306	3.19426	. 33233	3.00903	. 35183	3.84229	37
34	. 27545	3.63048	. 29432	3.39771	. 31338	3.19100	. 33226	3.00618	. 35216	2.83965	36
25	. 27576	3.62636	. 29463	3.39406	. 31370	3.18775	. 33298	3.00319	. 35248	2.83702	35
26	. 27607	3.62224	. 29495	3.39042	. 31402	3.18451	. 33330	3.00028	.35281	2.83439	34
27	. 27638	3.61814	. 29526	3.38679	. 31434	3.18127	. 33333	2.99738	. 35314	2.83176	33
28	. 27670	3.61405	. 29558	3.38317	. 31466	3.17804	. 33395	2.99447	. 35346	2.82914	32
39	. 27701	3.60096	. 29590	3.37955	. 31498	3.17481	. 33427	2.99158	. 35379	2.82653	$3 \mathrm{3x}$
10	.27732	3.60588	.29621	3.37594	. 31530	3.17159	. 33460	2.98868	.35412	${ }^{2.82391}$	30
31	. 27764	3.60181	. 29653	3.37234	. 31562	3.16838 3.16517	. 33492	2.98580	.35445 .35477	2.82130 2.81870	29 38
32	. 27795	3.59775	. 29685	3.36875	. 31594	3.16517	. 33524	2.98292	. 354578	2.81870	28
33	. 27882	3.59370	. 29716	3.36516	. 31626	3.16197	. 33555	2.98004	. 35510	2.81610	27
14 35	.27858 .27889	3.58066 3.58562	. 29748	3.36158 3.35800	.31658 .31690	3.15877 3.1558	.33589	2.97717 2.97430	. 35543	2.81350	26
35	. 27889	3.5862 3.58160	. 29780	3.35800 3.35443	- 31690	3.15558	.33621	2.97430	. 35576	2.81091	25
36	. 27921	3.58160	. 29811	3.35443	. 31722	3.15240 3	.33654	2.97144	. 35608	2.80833 3.80574	23
37	. 27992	3.57758	. 298843	3.35087	. 31754	3.14923	. 333686	2.96858	. 35641	2.80574	${ }^{23}$
38	. 27983	3.57357	. 29875	3.34732	-31786	3.14605	. 33788	2.96573	. 35674	2.80316	[2]
19	. 28015	3.56957	. 29906	-3.34377	. 31818	3.14288	. 33751	2.96288	. 35707	2.80059	21
46	. 28046	3.56557	. 29938	3.34023	. 31850	3.13972	.33783	2.96004	. 35740	2:79802	20
41	. 28077	3.56159	. 29970	3.33670	. 31882	3.13656	.33816	2.95721	. 35772	2.79545	19
42	. 28109	3.55761	. 30001	3.33317	. 31914	3.13341	. 33848	2.95437	. 35805	2.79289	18
41	. 28140	3.55364	. 30033	3.32965	. 31946	3.13027	. 33881	2.95155	. 35838	2.79033	17
44	. 28172	3.54968	. 30065	3.32614	. 31978	3.12713	. 33913	2.94872	. 35871	2.78778	16
45	. 28203	3.54573	. 30097	3.32264	. 32010	3.12400	. 33945	2.94591	. 35904	2.78523	15
46	. 28234	3.54179	. 30128	3.31914	. 32042	3.12087	. 33978	2.94309	. 35937	2.78269	14
47	. 28326	3.53785	. 30160	3.31565	. 32074	3.11775	. 34010	2.94028	. 35969	2.78014	13
45	. 28297	3.53393	. 30192	3.31216	. 32106	3.11464	. 34043	2.93748	. 36002	2.77761	12
49	. 28329	3.53001	. 30224	3.30868	. 32139	3.11153	. 34075	2.93468	. 36035	2.77507	11
50	. 28360	3.52609	. 30255	3.30521	. 32171	3.10842	. 34108	2.93189	. 36068	2.77254	10
58	. 28391	3.52219	. 30287	3.30174	. 32203	3.10532	. 34140	2.92910	. 36108	2.77002	,
53	. 28423	3.51829	. 30319	3.29829	. 32235	3.10223	. 34173	2.92633	. 36134	2.96750	8
53	. 28454	3.51441	. 30351	3.29483	. 32267	3.09914	. 34205	2.92354	. 36167	2.76498	7
54	. 28486	3.51053	. 30382	3.29139	. 32299	3.09606	. 34238	2.92076	. 36199	2.76247	6
55 56	. 28517	3.50666	. 30414	3.28795	. 32331	3.09298	. 34373	2.91799	. 36232	3.75996 .7596	5
56	. 28549	3.50279	. 30446	3.28452	. 32363	3.08991	.34303	2.91523	. 36265	2.75746	4
87	. 28880	3.49894	. 30478	3.28109	. 32396	3.08685	. 34335	2.91246	. 36298	3.75496	3
58	. 28612	3.49509	. 30509	3.27767	. 32428	3.08379	. 34368	2.90971	. 36331	3.75246	3
59	. 28843	3.49125	. 30541	3.37426	.32460 .32493	3.08073 3.07968	.34400 .34433	2.90696	. 363634	2.74997	1
50	. 28675	3.48748	. 30573	3.27085	. 32492	3.07768	. 34433	2.90421	. 36397	2.74748	0
1	Cotang Tang		Cotang Tang		Cotang		Cotang Tang		Cotang Tang		,
	74°		73°		72°		71°		70°		

1	20°		21°		22°		23°		24°		7
	Tang	Cotang									
0	. 36397	2.74748	. 38386	2.60509	. 40403	2.47509	. 42447	2.35585	. 44533	2.24604	60
1	. 36430	2.74499	. 38420	2.60283	. 40436	2.47302	. 43482	2.35395	. 44558	2,24428	59
2	. 36463	2.74251	. 38453	2.60057	. 40470	2.47095	. 42516	2.35305	. 44593	2.24252	88
3	. 36496	2.74004	. 38487	2.59831	. 40504	2.46888	. 42551	2.35015	. 44627	2.24077	57
1	. 36529	2.73756	. 38530	2.59606	. 40538	2.46682	. 42585	2.34825	. 44662	2.23902	56
5	. 36562	2.73509	.38553	2.59381	. 40572	2.46476	. 42619	2.34636	. 44697	2.23727	55
6	.36595	2.73263	. 38587	2.59156	. 40606	2.46270	. 43654	2.34447	. 44732	2.23553	54
8	. 36628	2.73017	. 38620	2.58933	. 40640	2.46065	. 42688	2.34258	. 44767	2.23378	53
8	. 36661	2.72771	. 38654	2.58708	. 40674	2.45860	. 42722	2.34069	. 44802	2.23204	52
9	. 36694	2.72526	. 38687	2.58484	. 40707	2.45655	. 42757	2.3388 s	. 44837	2.23030	51
10	. 36737	2.73381	. 38721	2.58261	. 40741	2.45451	. 43791	2.33693	. 44872	2.22857	50
11	. 36760	2.72036	. 38754	2.58038	. 40775	2.45246	. 42826	2.33505	. 44907	2.22683	59
13	. 36793	2.71793	. 38787	2.57825	. 40809	2.45043	. 42860	2.33317	. 44942	2.22510	49
13	. 36826	2.71548	. 38821	2.57593	. 40843	2.44839	. 42894	2:33130	. 44977	2.22337	47
14	. 36859	2.71305	. 38854	2.57371	. 40877	2.44636	.42929	2.32943	. 45012	2.22164	46
15	.36892	2.71062	. 38888	2.57150	. 40911	2.44433	. 42963	2.32756	. 45047	2.21992	45
16	. 36925	2.70819	. 38921	2.56928	. 40945	2.44230	. 42998	2.32570	. 45082	2.21839	44
17	. 36958	2.70577	. 38955	2.56707	. 40979	2.44027	. 43032	2.32383	. 45117	2.21647	43
18	- 36991	2.70335	. 38988	2.56487	.41013	3.43835	. 43067	2.32197	. 45152	3.21475	42
19	. 37024	2.70094	. 39023	2.56266	. 41047	2.43623	. 43101	2.32012	. 45187	2.21304	41
20	. 37057	2.69853	. 39055	2.56046	. 41081	2.43422	.43136	2.31826	. 45233	2.21132	40
31	. 37090	2.69612	. 39089	2.55827	.41115	2.43220	. 43170	2.31641	. 45257	2.20961	39
13	. 37123	2.69371	. 39122	2.55608	. 41149	2.43019	. 43205	2.31456	. 45292	2.20790	31
23	. 37157	2.69131	. 39156	2.5538 g	.41183	2.42819	. 43230	2.31271	. 45327	2.20619	37
24	. 37190	2.68892	. 39190	2.55170	. 41217	2.42618	. 43274	2.31086	. 45362	2.20449	36
25	. 37223	2.68653	. 39223	2.54952	. 41251	2.42418	. 43308	2.30902	. 45397	2.20378	35
36	. 37256	2.68414	. 39257	2.54734	. 41285	2.42218	. 43343	2.30718	. 45432	2.20108	34
37	. 37289	2.68175	. 39290	2.54516	. 41319	2.42019	. 43378	2.30534	. 45467	2.19938	85
2	. 37322	2.67937	. 39324	2.54299	. 41353	2.41819	. 43412	2.30351	-45502	2.19769	32
29	. 37355	2.67700	. 39357	2.54082	. 41387	2.41620	. 43447	2.30167	. 45538	3.19599	31
315	. 37388	2.67462	. 39398	2.53865	. 41421	2.41428	. 43481	2.29984	. 45573	2.19430	70
31	. 37422	2.67225	-39425	2.53648	. 41455	2.41223	. 43516	2.29801	. 45608	$2.1926!$	29
32	. 37455	2.66989	-39458	2.53432	. 41490	2.41025	. 43550	2.29619	. 45643	2.19093	48
13	. 37488	2.66753	-39492	2.53217	. 41524	2.40827	. 43585	2.29437	-45678	2.18923	27
34	. 37521	2.66516	. 39526	2.53001	. 41558	2.40629	. 43620	2.29254	. 45713	2.18755	26
35	-37554	2.66281	. 39559	2.53786	. 41592	2.40432	. 43654	2.29073	. 45748	2.18587	25
36	. 37588	2.66046	. 39593	2.52571	. 41626	2.40235	. 43689	2.28891	. 45784	2.18419	24
37	-37621	2.65811	. 39626	2.52357	. 41660	2.40038	. 43724	2.28710	. 45819	2.18251	23
38	. 37654	2.65576	. 39660	2.52142	. 41694	2.39841	. 43758	2.28528	. 45854	2.18084	21
50	. 37687	2.65342	. 39694	2.51929	. 41728	2.39645	. 43793	2.28348	. 45889	2.17916	21
46	. 37720	2.65109	. 39727	2.51715	.41763	2.39449	. 43828	3.28167	. 45924	2.17749	20
41	. 37754	2.64875	. 39761	2.51502	.41797	2.39253	. 43863	2.27987	. 45960	2.17582	19
42	. 37787	2.64643	. 39795	2.51289	. 41831	2.39058	. 43897	2.27806	. 45995	2.17416	18
63	. 37820	2.64410	. 39829	2.51076	. 41865	2.38863	. 43933	2.27626	. 46030	2.17249	17
44	.37853	2.64177	- 39862	2.50864	. 41899	2.38668	. 43966	2.27447	. 46065	2.17083	16
45	. 37887	2.63945	. 39896	2.50652	. 41933	2.38473	. 44001	2.37367	.46101	2.16917	15
46	. 37920	2.63714	- 399.30	2.50440	. 41968	2.38279	. 44036	2.27088	. 46136	2.16751	14
47	. 37953	2.63483	-39963	2.50229	. 42002	2.38084	. 14071	3.36909	. 46171	2.16585	13
68	. 37986	2.63253	- 39997	2.50018	. 42036	2.37891	. 44105	2.26730	. 46206	2.16430	13
69	-38020	2.63021	. 40031	2.49807	. 42070	2.37697	. 44140	2.26552	. 46243	2.16355	18
53	. 38053	2.62791	. 40065	2.49597	. 42105	2.37504	. 44175	2.26374	. 46277	2.16090	10
51	. 38086	2.62561	. 40098	2.49386	. 42139	2.37311	. 44210	2.26196	.46313	2.15925	8
52	. 38120	2.62332	. 40132	2.49177	. 42173	2.37118	. 44244	2.26018	. 46348	2.15760	8
13	.38153	2.62103	. 40166	2.48967	. 42207	2.36925	. 44279	2.25840	.46383	2.15596	7
54	. 38186	2.61874	. 40200	2.48758	. 42242	2.36733	. 44314	2.25663	. 46418	2.15433	6
55	. 38320	2.61646	. 40234	2.48549	.42276	2.36541	. 44349	2.25486	. 46454	2.35268	5
56	. 38253	2.61418	. 40267	2.48340	. 42310	2.36349	.44384	2.25809	. 46489	2.15104	4
57	. 38286	2.61190	. 40301	2.48132	. 42345	2.36158	.44418	2.25132	. 46525	2.14940	3
59	.38320	2.60963	. 403335	2.47924	. 42379	2.35967	. 44453	2.24956	. 46560	2.14777	3
80	$.38353$	2.60736	. 40369	2.47716	. 42413	2.35776	. 44488	2.24780	. 46595	2.14614	1
6	. 38386	2.60509	. 40403	2.47509	. 42447	2.35585	. 44523	2.24604	. 46631	2.14451	0
1	Cotang	Tang	Cotang Tang		Cotang Tang		Cotang Tang		Cotang	Tang	,
	69°		68°		67°		66°		65°		

1	25°		26°		27°		28°		29°		,
	Tang	Cotang									
\square	. 46631	2.14451	. 48773	2.05030	. 50953	1.96261	. 53171	1.88073	. 55431	8.80405	60
1	. 46666	2.14288	. 48809	2.04879	. 50989	1.96120	. 53208	1.87941	. 55469	1.80281	59
1	. 46702	2.14125	. 48885	2.04728	. 51026	1.95979	. 53246	1.87809	. 55507	1.80158	58
3	. 46737	2.13963	. 48881	2.04577	. 51063	1.95838	. 532883	1.87677	- 55545	1.80034	57
4	. 46772	2.13801	. 48917	2.04426	-51099	1. 95698	. 533320	1.87546	${ }^{-55583}$	1.79911	56 55
5	.46808 .46843	2.13639 2.13477	. 489853	2.04276	.51136 .51173	1.95557 1.95417	. 533358	1.87415 1.87283	. 556621	1.79788 1.79665	55
7	. 46879	2.13316	. 49026	2.03975	. 51209	1.95277	. 534332	1.87152	55697	1.79542	53
H	. 46974	2.13154	. 49063	2.03825	. 51246	1.95137	. 53470	1.87028	. 55736	1.79419	52
9	. 46950	2.12993	. 49098	2.03675	.51283	1.94997	. 53507	1.86891	. 55774	1.79296	51
10	. 46985	2.12832	. 49134	2.03526	. 51319	1.94858	. 53545	1.86760	.55812	1.79174	50
11	.47021	2.12678	. 49170	2.03376	. 51356	1.94718	. 53582	1.86630	. 55850	1.79051	40
12	. 47056	2.12511	. 49206	2.03227	. 51393	1.94579	. 53620	1.86499	. 55888	1.78929	48
13	. 47092	2.12350	. 49242	2.03078	. 51430	1.94440	. 53657	1.86369	. 55926	1.78807	47
14	. 47128	2.12190	. 49278	2.02929	. 51467	1.94301	. 53694	1.86239	. 55964	1.78685	46
15	. 47163	2.12030	. 49315	2.02780	. 51503	1.94162	. 53732	1.86109	. 56003	1.78563	45
16	. 47199	2.11871	. 49351	2.02631	.51540	1.94023	. 53789	1.85979	. 56041	1.78441	44
17	. 47234	2.11711	. 49387	2.02483	. 51577	1.93885	. 53807	1.85850	. 56079	1.78319	4.3
8	.47270	2.11552	. 49423	2.02335	. 51614	1.93746	. 53884	1.85720	. 56117	1.78198	42
19	.47305	2.11393	. 49459	2.02187	. 51651	1.93608	. 53882	1.85591	. 56156	1.78077	41
20	. 47341	2.11233	. 49495	2.02039	. 51688	1.93470	. 53920	1.85462	. 56194	1.77935	40
21	. 47377	2.11075	. 49533^{2}	2.01891	. 51724	1.93332	. 53957	1.85333	. 56232	1.77834	39
22	. 47412	2.10916	. 49568	2.01743	. 51761	1.93195	. 53995	1.85204	. 56270	1.77713	38
23	. 47448	2.10758	. 49604	2.01596	. 51798	1.93057	- 54032	1.85075	. 56309	1.77592	37
24	. 47483	2.10600	. 49640	2.01449	. 51835	1.92920	. 54070	1.84946	. 56347	1.77471	36
25	. 47519	2.10442	. 49677	2.01302	. 51872	1.92782	. 54107	1.84818	. 56385	1.77351	35
26	. 47555	2.10284	. 49713	2.01155	. 51909	1.92645	. 54148	1.84689 1.8467	. 56424	1.77230	34 3 3
27	. 47590	2.10126	. 49749	2.01008	. 51946	1.92508	. 54183	1.84561	. 56462	1.77110	33
24	. 47626	2.09969	. 49786	2.0086	.51983	1.92371	. 54220	1.84433	. 56501	1.76990	32
29	. 476662	2.09811 2.09654	.49822 .49858	2.00715 2.00569	. 52020	1.92235 1.92098	.54258 .54296	1.84305 1.84177	. 56539	1.76869	31
30	. 47698	2.09654	. 49858	2.00569	. 52057	1.92098	. 54296	1.84177	. 56577	1.76749	30
31	. 47733	2.09498	. 49894	2.00423	. 52094	1.91962	. 54333	1.84049	. 56616	1.76629	29
32	. 47769	2.09341	. 49931	2.00277	. 52131	1.91826	.54371	1.83922	. 56654	1.76510	28
33	. 47805	2.09184	. 49967	2.00138	. 52168	1.91690	. 54409	1.83794	. 56693	1.76390	27
34	. 47889	2.09028	. 50004	1.99986	. 52205	1.91554	. 54446	1.83667	. 56731	1.76271	26
35	. 47876	2.08872	. 50040	1.99841	. 52242	1.91418	. 54484	1.83540	. 56769	1.76151	25
36	.47912	2.08716	. $500 \% 6$	1.99695	. 52279	1.91282	. 54522	1.83413	. 50808	1.76032	24
37	.47948	2.08560	. 50113	1.99550	. 52316	1.91147	. 54560	1.83286	. 56846	1.75913	23
38	.47984	2.08405	. 50149	1.99406	. 52353	1.91012	. 545979	1.83159	. 56885	1.75794	22
39	. 48019	2.08250	. 50185	1.99261	. 52390	1.90876	. 54635	1.83033	. 56923	1.75675	31
40	. 48055	2.08094	. 50223	1.99116	. 52427	1.90741	. 54673	1.82906	. 56962	1.75556	20
41	. 48091	2.07939	. 50258	1.98972	. 52466	1.90607	. 54711	1.82780	. 57000	1.75437	19
42	. 48127	2.07785	. 50295	1.98828	. 52501	1.90472	-54748	1.82654	. 57039	1.75319	18
43	. 48183	2.07630	. 503331	1.98684	. 52538	1.90337	. 54786	1.82528	. 57078	1.75200	17
44	. 48198	2.07476	. 50368	1.98540	. 52575	1.90203	. 54824	1.82402	. 57116	1.75082	16
45	. 48234	2.07321	. 50404	1.98396	. 52213	1.00069	. 54862	1.82276	. 57155	1.74964	15
46	. 48270	2.07167	. 50444	1.98253	. 52650	1.89935	-54900	1.82150	. 57193	1.74846	14
47	. 48306	2.07014	. 50477	1.98110	. 52687	1.89801	. 549388	1.82025	. 577232	1.74728	13
48	. 48343	2.06860	. 50514	1.97966	. 52724	1.89667	-54975	1.81899	. 57371	1.74610	12
$4{ }^{4}$. 48378	2.06706	. 50550	1.97823	.52761	1.89533	. 55013	1. 81774	. 57309	1.74492	11
50	. 48414	2.06553	. 50587	1.97681	. 52798	1.89400	.55051	1.81649	. 57348	1.74375	10
51 53 53	. 488450	2.06400	. 50623	1.97538	. 52838		. 55089	1.81524	. 57388	1.74257	
52 53 53	. 488885	2.06247 2.06094	. 50660	1.97395 1.97253	. 52873	1.89133 1.89000	.55127 .55165	1.81399 1.81274	. 578825	1.74140 1.74022	8
54	. 48557	2.05942	. 50733	1.97111	. 52947	1.88867	${ }^{-55203}$	7.81150	. 57503	1.73905	6
55	. 48593	2.05790	. 50769	1.96969	. 52985	1.88734	.55241	1.81025	.57541	1.73788	5
56	. 48629	2.05637	. 50806	1.96827	. 53022	1.88602	. 55279	-. 80901	. 57580	1.73671	4
57	. 48665	2.05485	. 50843	1.96685	. 53059	1.88469	. 55317	1.80777	. 57619	1.73555	3
58	. 48901	2.05333	. 50879	1.96544	. 53096	1.88337	. 55355	1.80653	. 57657	8.73438	3
50	. 48737	2.05182	. 50916	1.96402	. 53134	1.88303	. 55393	1. 80529	. 57696	8.73321	1
60	. 48773	2.05030	. 50953	1.96261	. 53178	1.88073	. 55431	1.80405	. 57735	1.73205	\bigcirc
,	Cotang Tang		,								
	64°		63°		62°		61°		60°		

1	30°		31°		32°		33°		34°		1
	Tang	Cotang									
\square	-57735	1.73205	B6ank	8.66428	. 62487	1.60033	. 64941	1.53986	. 67451	4.48256	60
1	. 57774	1.73089	. 60126	1.66318	. 62527	1.59930	. 64988	1.53888	. 67493	1.48163	59
a	. 57813	1.72973	. 60163	1.66209	. 62568	2. 598.26	. 65024	2.53798	. 67536	1.48070	58
3	. 57851	1.72857	. 60205	1.66099	. 62608	1. 59723	. 65065	1.53693	. 67578	1.47979	57
4	. 57890	1.72741	. 60245	1.65990	. 62649	1.59620	. 65106	1.53595	. 67620	1.47885	86
-	. 57929	1.72625	. 60284	${ }^{1.65881}$. 62689	${ }^{1} 59517$. 65148	1.53497	. 67663	1.47792	55
5	. 57968	1.72509	. 60324	1.65772	. 63730	1.59414	. 65189	1.53400	. 67705	8.47699	54
7	. 58007	1.72393	. 60364	1.65663	. 62779	1.59311	.65238	1.53302	. 67748	8.47607	53
8	. 580046	1.72278	. 60403	${ }^{1.65554}$. 62811	1.59208	. 65272	1.53205	. 67790	1.47514	52
$\underline{8}$	-58085	1.72163	. 600443	1.65445	. 628853	1. 59105	. 65314	1.53107	. 67832	1.47423	51
10	. 58124	1.72047	. 60483	1.65337	. 62892	1.59002	. 65355	1.53010	. 67875	1.47330	50
11	. 58162	1.71932	. 60522	1.65228	. 62933	1.58900	. 65397	1.52913	. 67917	1.47238	19
12	. 58201	1.71817	. 60563	1.65120	. 62973	1.58797	. 65438	1.52816	. 67960	1.47146	41
13	. 58240	1.21702	. 60603	1.65011	. 63014	1.58695	. 65480	1.52719	. 68002	1.47053	47
14	. 58279	1.71588	. 60642	8.64903	. 63055	1.58593	. 65521	1.52623	. 68045	1.46963	46
15	. 58318	1.71473	. 60681	1.64795	. 63095	1.58490	. 65563	1.52525	888083	1.46890	45
16	. 58357	1.71358	.60721	1.64687	. 63136	1.58388	. 65604	1.52429	. 68130	1.46778	44
87	. 58396	1.71244	. 60761	1.64579	. 63177	1.58286	. 65646	1.52332	. 68173	1.46686	W3
18	. 58435	1.71129	. 60801	1.64471	. 63217	1. 58184	. 65688	1.52235	. 68215	1.46595	42
19	. 58474	1.71015	. 60884	1.64363	. 63258	1.58083	. 65729	1.52139	. 68258	1.46503	41
20	. 58513	1.70901	. 60881	3.64256	. 63299	1.57981	. 65771	1.52043	. 68301	1.46411	40
31	. 58553	1.70787	. 60921	1.64148	. 63340	1.57879	. 65813	1.51946		1.46320	37
21	. 58591	1.70673	. 60960	1.64041	. 63380	1.57778	. 65854	1.51850	. 68383	1.46229	310
23	. 58631	1.70560	. 61000	1.63934	. 63421	1.57676	. 65896	1.51754	. 68429	1.46137	37
24	. 58670	1.70446	. 61040	1.63826	. 63463	1.57575	. 65938	1.51658	. 68471	1.46046	36
25	. 58709	1.70332	. 61080	1.63719	. 63503	1.57474	. 65980	1.51563	. 68514	1.45955	35
26	. 58748	1.70219	. 61120	1.63612	. 63544	2.57372	. 66021	1.51466	. 68557	1.45864	34
27	. 5878	1.70106	. 61160	1.63505	. 635884	1.57278	. 66063	1.51370	. 68860	1.45773	33
$2{ }^{\text {a }}$. 58826	1.69992	. 61200	1.63398	. 63625	1.57170	. 66105	1.51275	. 68642	1.45682	32
89	. 58865	1.69879	. 61240	1.63292	. 63666	1.57069	. 66147	1.51179	. 68685	1.45592	31
30	. 58905	1.69766	. 61280	1.63185	. 63707	1.56969	. 66189	1.51084	. 68728	1.45501	30
38	. 58944	1.69653	. 61320	1.63079	. 63748	1.56868	. 662330	8.30988	. 68771	8.45410	29
32	. 58983	1.69541	. 61360	1.62973	. 63789	1.56767	. 663737	1.50893	. 68814	1.45320	3
33	. 59022	1.69428	. 61400	1.62866	. 63830	1.56667	. 663314	1.50797	. 68857	5229	37
34	. 59061	1.69316	. 61440	1.62760	. 63871	1.56566	. 66356	1.50702	. 68900	8.45139	26
35	. 59101	1.69203	. 61480	1.62654	. 63912	1.56466	. 66398	1.50607	. 68942	8.45049	23
36	. 59140	1.69091	. 61520	1.62548	. 63953	1.56366	. 66440	1.50512	. 68985	3.44958	84
37	. 59179	1.08979	. 61561	1.62442	. 63994	1.56265	. 66482	1.50417	. 69028	8.44868	23
38	. 59218	1.088t6	.61601	1.62336	. 64035	3.56165	. 66524	1.50322	. 69071	1.44778	22
30	. 59258	1.68754	.61648	1.62230	. 64076	1.56065	. 66566	1.50228	. 69114	1.44688	31
40	. 59297	1.68643	.6168ı	1.62125	. 64117	1.55966	. 66608	1.50133	. 69157	1.44598	20
48	. 59336	1.68531	. 61721	1.62019	. 64158	1.55866	. 66650	1.50038	. 69200	1.44508	19
43	. 59376	1.68419	. 61761	1.61914	. 64199	1.55766	. 666993	1.49944	. 69243	1.44418	17
43	. 59415	1.68308	. 61801	1.61808	. 64240	1.55666	. 66734	1.49849	. 69286	1.44329	17
44	. 59454	1.68196	. 618842	1.61703	.64281	1.55567	. 667776	1.49755	. 69329	8.44239	16
45	. 59494	1.68085	. 61882	1.61598	. 64322	1.55467	. 668818	1.49661	. 69372	8.44149	15
46	. 59533	1.67974	. 61923	1.61493	. 64363	1.55368	. 68886	1.49566	. 69416	1.44060	14
47	. 59573	1.67863	. 61962	1.61388	. 64404	1.55269	. 66903	1.49472	. 69459	1.43970	13
43	. 59612	1.67752	. 62003	1.61283	. 64446	1.55170	. 669944	1.49378	. 69502	1.4388 s	12
47	. 59651	1.67641	. 62043	1.61179	. 64487	${ }^{1.55071}$. 66986	1.49284	. 69545	1.43792	81
50	. 59691	1.67530	. 62083	1.61074	. 64528	1.54972	. 67028	1.49190	. 69588	1.43703	10
51	. 59730	1.67419	. 62124	1.60970	. 64569	1.54873	. 67071	1.49097	. 69631	1.43614	\%
53	. 59770	1.67309	. 62164	1.60865	. 64610	1.54774	. 67113	1.49003	. 69675	1.43525	8
53	. 59809	1.67198	. 62204	1.60761	. 64652	1.54675	. 67155	1.48909	. 69718	1.43436	7
54	. 59849	1.67088	. 62245	1.60657	. 64693	1.54576	. 67197	1.48816	. 69761	1.43347	,
55	. 59888	1.66978	. 62285	1.60553	. 64734	1.54478	. 67239	1.48722	. 69804	1.43258	5
56	. 59928	1.66867	. 62325	1.60449	. 64775	1.54379	. 67282	1.48629	. 69884	1.43169	4
57	. 59967	1.66757	. 62366	1.60345	. 64817	1.54283	. 67324	1.48536	.69891	1.43080	3
9	. 60007	1.66647	. 62406	1.60241	. 64858	${ }^{1.54183}$. 67366	8.48442	. 69934	1.12902	3
59	. 60046	1.66538	. 62446	1.60137	. 64899	1.54085	. 67409	1.48349	. 69977	1.42903	1
60	. 60086	1.66428	. 62487	1.60033	.64941	1.53986	.67451	1.48256	. 70021	1.42815	-
I	Cotang	Tang	Cotang		Cotang		Cotang Tang		Cotang Tang		,
	59°		58°		$\cdots 57^{\circ}$		56°		55°		

,	35°		36°		37°		38°		39°		,
	Tang	Cotang									
0	.70021	1.42815	. 72654	1.37638	. 75355	1.32704	. 78129	1.27994	. 80978	1.23490	60
1	. 70064	1.42726	. 72699	1.37554	. 75401	1.32624	. 78175	1.27917	. 81027	1.23416	59
2	. 70107	1. 42638	. 72743	1.37470	. 75447	1. 32544	. 7^{82223}	1.27841	. 81075	3.23343	58
3	. 70151	1.42550	. 72788	1.37386	. 75492	1.32464	. 78269	1.27764	.81123	8.23270	57
4	. 70194	1.42462	. 728832	1.37302	. 75538	1.32384	. 78316	1.27688	81171	1.23196	56
5	${ }^{.70238}$	1.423	. 72877	1.37218	.75584	1.32304	-78363	1.27611	. 812200	1.23123	55
	. 70281	1.42286 1.42198 1	.72921 .72966	1. 37134 I. 37050 2	.75629	1.32224 1.32144	. 784810	1.27535 1.27458 1	.81268 .81316	1.23050 $\mathbf{1 . 2 2 9 7 9}$ 1.2004	54
1	. 70368	1.42110	. 73010	1.36967	. 75721	1.32064	. 78504	1.27382	.81364	1.22904	53
9	. 70412	1.42022	. 73055	1.36883	. 75767	1.31984	. 78551	1.27306	. 81413	1.22831	51
10	. 70455	1.41934	. 73100	1.36800	. 75812	1. 31904	.78598	1.27230	.81461	1.23758	50
11	. 70499	1.41847	. 73144	1.36716	. 75858	1.31825	. 78645	1.27153	.81510	1.22685	69
12	. 70542	1.41759	. 73189	1.36633	. 75904	1.31745	. 78692	1.27077	. 81558	1.22612	48
13	.70586	1.41672	. 73234	1.36549	. 75950	1.31666	. 78739	1.27001	. 81606	1.22539	47
14	. 70629	1.41584	. 73278	1. 36466	. 75996	1.31586	. 78786	1.26925	. 818555	1.22467	46
15	. 70673	1.41497	. 73323	1.36383	. 76042	1.31507	. 78834	1. 26849	. 81703	1.22394	45
16	. 70717	1.41409	. 73368	1.36300	. 76088	1.31427	.78881	1.26774	. 81752	1.22321	44
17	. 70760	1.41322	. 73413	1.36217	. 76134	1.31348	. 78928	1.26698	. 81800	1.22249	43
18	. 70804	1.41235	. 73457	1.36134	. 76180	1.31269	. 78975	1. 26622	. 81849	1.22176	42
19	. 70348	1.41148	. 73502	1.36051	. 76226	1.31190	. 79023	1. 26546	. 81898	1.22104	41
\cdots	.70891	1.41061	. 73547	1.35968	.76272	1.31110	. 79070	1.26471	.81946	1.22038	40
21	. 70935	1.40974	.73592	1.35885	. 76318	1.31031	. 79117	1.26395	${ }^{.81995}$	1.21959 1.21886 1	39
± 3	. 70979	1.40887	. 73637	1.35802	. 76364	1.30952	.79164	1.26319	. 82044	1.21886	38
23	. 71023	1.40800	. 73681	1.35719	. 76410	1.30873	. 79212	1.26244	. 822092	1.21814	37
24	. 71066	1.40714	. 73726	1.35637	.76456	1.30795	. 79259	1.26169	. 82141	1.21742	36
25	. 71110	1.40627	. 73771	1.35554	.76502	1.30716	. 79306	1.26093	. 82190	1.21670	35
26	. 71154	1.40540	. 73816	1.35472	. 76548	1.30637	. 79354	1.26018	. 82238	1.21598	34
27	. 71198	1.40454	. 73886	1.35389	. 76594	1. 30558	.7940x	1.25943	. 822287	1.21526	33
28	. 71242	1.40367	. 73906	1.35307	. 76640	1.30480	. 79449	1.25867	. 823336	1.21454	33
29	. 71285	1.40281	.73951	1.35224	.76686	1.30401	.79496	1.25792	. 82385	1.21383	31
30	. 71329	1.40195	. 73996	1.35142	.76733	1.30323	. 79544	1.25717	. 82434	1.21310	30
31	. 71373	$1.40{ }^{1} 09$. 74041	1.35060	. 76779	1. 30244	. 79591	1.25642	. 82483	1.21238	29
32	. 71417	1.40022	. 74086	1.34978	. 76825	1.30166	. 79639	1.25567	. 825331	1.21166	28
33	. 71461	1.39936	. 74131	1.34896	.76871	1.30087	.79686	1.25492	. 82580	1.21094	37
34	. 71505	1.39850	. 74176	1.34814	. 76918	1.30009	. 79734	1.25417	. 82629	1.21023	26
35	. 71549	1. 39764	.74221	1.34732	.76964	1.29931	.79781	1.25343	. 82678	1.20951	± 5
36	.71593	1.39679	. 74267	1.34650	.77010	1. 29853	.79829	1.25268	. 822727	1. 20879	24
37	. 71637	1.39593	. 74312	1.34568	. 77057	1.29775	. 79877	1.25193	. 82776	1. 20808	23
38	. 71681	1.39507	. 74357	1.34487	. 77103	1.29696	. 79924	1.25188	. 82825	1.20736	32
39	. 71725	1.39421	. 74402	1.34405	. 77149	1.29618	. 79972	1.25044	. 82874	1. 20665	21
40	.71769	1.39336	. 74447	1.34323	. 77196	1.29541	. 80020	1.24969	. 82923	1.20593	20
41	.71813	1.39250	. 74492	1.34242	. 77242	1.29463	. 80067	1.24895	. 82972	1.20522	19
42	. 71857	1.39165	. 74538	1.34160	. 77289	1.29385	. 80115	1.24820	. 83023	1.20451	18
43	. 71901	1.39079	. 74583	1.34079	. 77335	1. 29307	. 80163	1.24746	. 83071	1.20379	17
44	. 71946	1.38994	. 74628	1. 33998	. 77382	1.29229	. 80211	1.24672	. 83120	1.20308	16
45	. 71990	1.38909	. 74674	1.33916	. 77428	1.29152	. 80258	1. 24597	. 831169	1.20237	85
46	. 72034	1.38824	. 74719	1.33835	. 77475	1.29074	. 80306	1.24523	. 83218	1.20166	14
47	. 72078	1.38738	. 74764	1.33754	. 77521	1.28997	. 80354	1.24449	. 83368	x.20095	13
48	. 72122	1. 38653	. 74810	1.33673	. 77568	1.28919	. 80402	1.24375	. 83317	1. 20024	12
49	. 72167	1.38568	. 74855	8.33592	. 77615	1.28842	. 80450	1. 24301	. 833366	1.19953	11
50	. 72211	1.38484	. 74900	1.33511	.77661	1.28764	. 80498	1.24227	. 83415	1.19882	10
51	. 72255	1.38399	. 74946	1.33430	. 77708	1.28687	. 80546	1.24153	.83465	1.19811	
52	. 72299	1.38314	. 74991	1.33349	. 77754	1.28610	. 80594	1.24079	. 83514	1.19740	8
53	. 72344	1.38229	. 75037	1.33268	. 77801	1.28533	. 80642	1.24005	. 83564	1.19669	1
54	. 72388	1.38145	. 75082	1.33187	.77848	1.28456	80690	1.23931	. 83613	1.19599	6
55	. 72432	1.38060	. 75128	1.33107	. 77895	1.28379	. 80738	1.23858	. 83662	1.19528	5
56	. 72477	1.37976	. 75173	1.33026	. 77941	1.28303	. 80786	1.23784	. 83712	1.19457	4
57 58	. 72521	1.37891	. 75219	1.32946	. 77988	1.28225	. 80834	1.23710	. 837761	8.19387	3
58	. 72565	1.37807	. 75264	1.32865	. 78035	1. 28148	. 80888	1.23637	. 83811	1.19316	2
59	. 72610	1.37722	. 75310	1.32785	. 78082	1.28071	. 80930	1.23563	. 83860	8. 19246	1
60	. 72654	1.37638	. 75355	1.32704	.78129	1. 27994	. 80978	1.23490	. 83910	1.19175	-
,	Cotang Tang		Cotang Tang		Cotamg Tang		Cotang Tang		Cotang Tang		,
	54°		53°		52°		51°		50°		

1	40°		41°		42°		43°		44°		,
	Tang	Cotang									
-	. 83910	1.19175	. 86929	1.15037	. 90040	8.15061	. 93252	1.07237	. 96569	8.03553	,
1	. 83960	1.19105	. 86980	1.14969	. 90093	1.10996	.93306	1.07174	. 96625	1.03493	59
-	. 84009	1.19035	.87038	1.14902	. 90146	1.10931	. 93360	1.07112	. 96681	1.03433	58
3	. 8.4059	1.18064	. 87082	1.14834	. 90199	1.10867	. 93415	1.07049	. 96738	8.03372	57
4	. 841108	1. 18894	. 87133	1.84767	. 90251	1.10802	. 93469	1.06987	. 96794	1.03312	56
${ }_{6}$.84158 .84208	1.18824 1.18754	. 878184	1.14699 1.14632	. 90304	1.10737 1.10672 1.0607	. 93524	1.06925	. 96850	1.03252	55
7	. 84258	1.18684	. 87287	1.84565	.90410	1.10607	. 935633	1.068800	. 966963	1.03192 1.03132	54 54
8	. 84307	1.18614	.87338	1.14498	. 90463	1.10543	. 93688	1.06738	. 97020	1.03072	52
0	. 84357	1.18544	. 87389	1.14430	. 90536	1.10478	. 93742	1.06676	. 97076	1.03012	51
10	. 84407	1.88474	. 87441	8.84363	. 90569	1.10414	. 93797	1.06613	. 97133	1.02952	50
11	. 84457	1.18404	. 87492	1.84296	. 90621	1.10349	. 93853	1.06551	. 97189	1.02892	49
12	. 84507	1.18334	. 87543	1.14229	. 90674	1.10285	. 93906	1.06489	. 97246	1.02832	48
13	. 84556	1.18264	. 87595	1.14162	. 90727	1.10220	. 93961	1.06427	. 97302	1.02772	47
14	. 84606	8.18194	. 87646	1.14095	. 90781	1.10156	. 94016	1.06365	. 97359	1.02713	46
85	. 84656	1.18125	. 87698	1.14028	. 90834	1.10091	. 94071	1.06303	. 97416	1.02653	45
16	. 84706	1.18055	. 87749	1.13961	. 90887	1. 10027	. 94125	1.06241	. 97472	1.02593	14
17	. 84756	1.17986	. 87801	1.13894	. 90940	1.09963	. 94180	1.06179	. 97529	1.02533	43
18	. 84806	8.17916	. 87853	1.13828	. 90993	1.09399	. 94235	1.06117	. 97586	1.02474	42
19	. 84856	1.17846	. 87904	1.13761	. 91046	1.09834	. 94290	1.06056	. 97643	1.02414	41
20	. 84906	1.17777	. 87955	1.13694	. 91099	1.09770	. 94345	1.05994	. 97700	1.02355	40
21	. 84	1.17708	. 880007	1.13627	. 91153	1.09706	. 94400	1.05933	. 97756	1.02295	19
31	. 85006	1.17638	. 88059	1.13561	. 91206	1.09642	. 94455	1.05870	. 97813	1.02236	38
23	. 85057	8.17569	. 88110	1.13494	.91259	1. 095578	. 94510	1.05809	. 97870	1.02176	37
24	. 85107	1.17500	. 88162	1.13428	.91313	1.09514	. 94565	1.05747	. 97927	1.02117	36
25	. 85157	1.17430	. 88214	1.13361	. 91366	1.09450	. 94620	1.05685	. 97984	1.02057	35
26	. 85207	1.17361	. 88265	1.13295	.91419	1.09386	. 94676	1.05624	. 98041	1.01998	34
27	. 85257	1.17292	. 88315	1.13228	. 91473	1.09322	. 94731	1.05562	. 98098	1.01939	33
28	. 85308	1.17223	. 88369	1.13162	. 91526	1.09258	. 94786	1.05501	. 98155	1.01899	32
29	. 85358	8.17154	.88421	1.13096	. 91580	1.09195	. 9484 t	1.05439	. 98213	1.01820	38
30	. 85408	1.17085	. 88473	1.13029	. 91633	1.09131	. 94896	1.05378	. 98270	1.01761	31
31	. 85458	1.17016	. 88524	1.12963	. 91687	1.09067	. 94952	1.05317	. 98327	1.01702	29
32	. 85509	1.16947	. 88576	1.12897	. 91740	1.09003	. 95007	1.05255	. 98384	1.01642	20
33	. 85559	1.16878		1.12831	. 91794	1.08940	. 95063	1.05194	. 98441	1.01583	27
34	. 85609	1.16809	. 88880	1.12765	. 91847	1.08876	. 95118	1.05133	. 98499	1.01524	26
35	. 85660	8.16741	. 88732	1.12699	.91901	1.08813	. 95173	1.05072	. 98556	1.01465	25
36	. 85710	1.16672	. 88784	1.12633	.91955	1.08749	. 95229	1.05010	. 98613	1.01406	34
37	.85761	8.16603		1.12567	. 92008		. 95284	1.04949	. 98671	1.01347	23
38	. 85811	1.16535	. 888888	1.12501	. 92062	1.08622	. 95340	1.04888	. 98728	1.01288	22
39 40	.85862	1.16466 1.16308	. 88980	1.12435 1.12360	. 92116	1.08559 1.08496	. 953395	1.04827 1.04766	. 98788	1.01229	21
40		1.16398	.8899	1.12	. 921	1.08496	.9545	1.047	. 98843	1.01170	20
41	. 85963	1.16329	. 890045	1.12303	. 92224	1.08432	. 95506	1.04705	. 98908	1.08112	19
42	. 86014	1.16261	. 89097	1.12238	.92277	1.08369	. 955662	1.04644	. 98958	1.01053	18
43	. 86064	8.16192	. 89149	1.12172	.92338	1.08306	. 95618	1.04583	. 99016	1.00994	17
44	. 86115	1.16124	. 89201	1.12106	. 92385	1.08243	. 95673	1.04523	. 99073	1.00935	16
45	. 86166	1.16056	. 89253	1.12041	. 92439	1.08179	. 95729	1.04461	. 99131	1.00876	15
46	. 86216	1.15987	. 89306	1.11975	. 92493	1.08116	. 95785	1.04401	.99189	1.00818	14
47	. 862637	1.15919	. 89358	3.11909	. 92547	1.08053	. 95881	1.04340	. 99247	1.00759	13
4 4	. 86318	1.15851	. 89410	1.11844	.92608	1.07990	. 95897	1.04279	. 99304	1.00701	12
49	. 86368	1.15783	. 89463	1.11778	. 92655	1. 07927	. 95952	1.04218	. 99363	1.00643	18
50	. 86419	1.15715	. 89515	1.11713	. 92709	1.07864	. 96008	1.04158	. 99420	1.00583	10
51	. 86479	1.15647	. 89867	1.11648	. 02763	1.07801	. 96064	1.04097	. 99478	1.00525	8
52	. 86521	1.15579	. 89620	1.11582	. 92817	1.07738	. 96120	1.04036	. 99536	1.00467	8
53 54	. 865752	1.15511	. 890772	1.11517	. 928872	1.07676	. 96176	1.03976	. 99594	1.00408	$\frac{7}{8}$
54	. 86663	1.15443	. 89735	1.11452	. 92926	$1.076{ }^{1} 3$. 96233	1.03915	. 99652	1.04350	6
55	. 86674	1.15375	. 89777	1.11387	. 92980	1.07550	. 96288	1.03855	. 999710	1.00291	5
56	. 867725	1.15308	. 898330	1.11321	. 93034	1.07487	.96344	1.03794	. 99768	1.00233	4
57		1.15240	. 89883	3.11256	. 93088	1.07425	. 96400	1.03734	. 99826	1.00175	3
0	. 86827	1.15172	. 89935	8.11191	. 93143	1.07362	. 96457	1.03674	. 99884	1.00116	3
59	. 86878	1.15104	189988	1.11526	. 93197	1.07299	. 96513	1.03613	. 99942	1.00058	1
60	. 86929	1.15037	. 90040	1.1	. 93253	1.07237	.96569	1.03553	1.00000	1.00000	0
	Cotan	Tang	Cotang Tang		Cotang Tang		Cotang Tang		Cotang Tang		
	49°		48°		47°		46°		45°		

LOGARITHMIC TRIGONOMETRIC FUNCTIONS

88°

"	,	$\log \sin$	d		T	$\log \tan$	c. d.	\log cot	C	$\log \cos$	
				6.685					5.314	1.99074	*at
7200	0	2.54282		49	7575	2.54308		1.45692	2525		
7260	1	2.546s2		79		2.54669	358 358	1.45331		I. 99973	595858
7330 7380	3	${ }^{3} \mathbf{3} 54.54990$	355	48	76 76	3. 25029 $\mathbf{2} .55382$	355	1.44973 1.44618	24	I. 99973	
7380	3	${ }^{2} \mathbf{2 . 5 5 3 5 4}$	351	48	76 76	2.55382 3.55734	352	1.44266	24 24	I. I .909972	57 56
74500	5	2.56054	349	48	77	${ }_{2} .56083$	349346	1.43917	23	T. 99971	
7560	6	2.56.400	40	48	77	2.56429		1.43573	23	T. 99971	55 84
7620	,	2.56743	3	48	77	${ }^{2} .56773$	344	1.432271.42886	2323	I. 2.99970T. 9×9970	535252
7680	8	2.5708 .4	341	47	78	2.57114	341338				
$\begin{aligned} & 7740 \\ & 7800 \end{aligned}$	10	3.57421	337 336	47	78	2.57452		1.42548	22	I. 949969	50
		2. 57757	336			2.57788	336333	1.42212			
7860		3.58089	332	47		3.58121		1.41879	24	I. 99968	49
7920	12	2.58419	$\begin{aligned} & 3.30 \\ & 328 \\ & 328 \end{aligned}$	47	79	2.58451	$\begin{aligned} & 330 \\ & 328 \end{aligned}$	1.415491.41221			
7980	13	2. 58747		47	79	2.58779			21 21	T. T.999668 T	48
8040	14	2.59072	325	46	79 79	2.59105	$\begin{aligned} & 328 \\ & 326 \end{aligned}$	1.40895	21 21		47 46
8100	15	2.59395	323 320	46 80		3.59428	$\begin{aligned} & 323 \\ & 321 \end{aligned}$	1.40572	20	1. 99997	46 45
8160	16	2.59715	320 318	46	80	2.59749		1.40251	20	I. 99966	4
8220	17	${ }^{2} .60033$	316	46	${ }_{81}^{80}$	2.60068	319 316	1.39932	x1	I. 99966	4
8280	18	${ }^{2} .60349$	313	46		${ }_{3}^{2} .60384$	314	${ }^{1} 39616$	19	I. 99965	42
8340	19	$\underline{2} .60662$		45	82	${ }_{3}^{2} .60698$	311	1.39302	19	1.99964	42 41
8400	30	$\overline{2} .60973$	31			2.61009		1.38991	18	I. 99964	40
8460	21	3.61282		4582		2.61319	310	1.386	18	I. 99963	
8520	22	3.61589	305	45	82	2.61626	307 305	1.38374	18	I.99963	38
8580	23	3.61894	302	45	83	2.61931	305	1.38069	17	I. 99963	37
8640	24	${ }_{3}^{2} .62196$	301	45	83	3.62234	301	1.37766	17	I. 99962	36
8700	25	3.62497	298	45	83	3.62535	299	1.37465	17	T. 99961	35
8760 8820	26 37	2.62795 2.63091	296	44 44	84 84 84	2.62834 2.63131	297	1.37166 1.36869	16	T. T .99961	34
8820	27	2.63091 3.63385	204	44	84 84	2.63131 3.63426	295	1.36869 1.36574	16 16	I. T .99960	33
8940	29	2. 2.63678	293	44	85	2.63718	292	1.36282	15	I. 99959	31
5000	30	2.63968		44	85	2.64009		1.35991	15	T. 99959	130
9060	31	2.64256	288	4485		2.64298		1.35702	15	T.99958	
9120	32	2.64543	287 284	43	86	2.64585	287	1.35415	14.	I. 99958	28
9180	33	2.64827	283	43	86	2.64870	285 284	1.35130	14	T. 99957	27
9240	34	$\underline{2} .65110$	281	43	87	2.65154	281	1.34846 1.34565	13	T. 99956	36
9300	35	${ }^{2} .653910$	279	43	87	${ }_{3}^{3} .65435$	280	1.34565	13	I. 99956	25
9360 9420	36 37	3.65670 3.65947	277	43 42	8% 88	3.65725 3.65993	278	1.34285 1.34007 1.3	13 12	I. 999955	38
9420	37	2.65947 2.66223	276	42 42	88	$\frac{3}{2.65993}$ 2.66 .69	276	1.34007 1.33731	12 12	T. T .99955	23
9540	39	2.66497	274	42	88	2.66543	274	1.33731 3.33457	12	T. T .99954	21
9600	40	2.66769		42	89	2.66816	273	1.33184	11	T.99953	20
9660	41	2.67039	270	4280		$\overline{2.67087}$		1.32913	11	T.9995 ${ }^{2}$	10
9720	42	2.67308	269	41	go	2.67356	269	1.32644	10	1.9995	18
9780	43	2.67575	266	41	po	2.67624	266	1.32376	10	F.9995!	17
9840	44	3.67841	263	41	00	3.67890	264	1.32110	10	I.9995	16
99006	45	2.68104		41	91	2.68154		1.31846	00	I. 99950	85
9060	46	2.68367	260	41	91	2.68417	263	\%.31583	09	I. 99949	14
10020	47	${ }^{2} .688627$	259	40	92	2.68678	260	1.31322	08	T. 99949	13
10080	48	2.68886	259 258	40	92	${ }^{2} .68938$	260 208	1.31062	08	I. 09948	12
10141	40	3.69144	256	40	92	${ }^{2} \mathbf{3} .69196$	257	1.30547		I. 99948	10
10200	50	2.69400		40	93	2.69453			07.	1.99947	
10260	51	3.69654		$40 \quad 93$		2.69708	255	1.30292		I.99946	087543310
10320	52	3.69907	253 252	39	94	2.69962	254 252	1.30038	06	1.99946	
10380	53	3.70159	250	39	94	3.70214	251	1.29786	86	1.99945	
10440	54	3.70409	249	39	95	2.70465	249	1.29535	05	1. 99944	
10500	55	${ }^{2} .7 .70658$		39 39	95	2.70714	248	1.29286	05	8.99944	
10560	56	3.70905	$\begin{aligned} & 247 \\ & 246 \end{aligned}$	39	98	2.70962	246	1.200.38	05	I. 99943	
10620	57	3.71151	$\begin{aligned} & 240 \\ & 244 \end{aligned}$	38	96	3.71208	245	1.28792	04	I.99942	
10680	58	3.71305	243	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	96	2.71453	244	1.28547	${ }^{04}$	I.99942	
10740 10800	59 50	3.71638 3.71880	242	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	97 97	$\begin{aligned} & 2.71697 \\ & 2.71940 \end{aligned}$	243	1.28303 1.28060	03 03 03	1.99941 $\mathbf{1} .99940$	
				$\overline{6} .685$					5.314		
		log cos	¢	S	T	$\log \cot$	c. d.	log tan	C	$\log 8 \mathrm{sin}$,

t	$\log \sin$	d	$\log \tan$	c. d.	$\log \cot$	$\log \cos$		P. D.			
0	2.8.4358	8 8	2.84964	182	1.15536	I. 99894	60		181	178	177
1	2.84539		2.84646	180	1.15354	T. 90893	59	6	18.1	17.9	17.7
2	2. 8.8718	179	2.84826	180	1.15174	1.99892	58	8	21.1	20.9	20.7
3	2.888997	178	2.85006	179	1.14994	\%.99891	57	8	24.8	23.9	23.6
4	3.850775	178	2. $\mathrm{K}_{518} \mathrm{M}_{5}$	178	1.14815	1.90891	56	9	27.2	26.9	16.6
5	2.85252	177	2.85 .303	178	1.14637	1.90890	55	10	30.2	29.8	29.5
6	3.85429	177	3. 85540	177	1.14460	T. 00 ¢0880	54	20	60.3	59.7	59.0
7	3.85605	170	2.85717	1776	1.14283	1.99888	53	30	90.5	89.5	88.5
8	$\frac{2.85780}{2}$	175	2.85803	176	1.14107	T. 99887	52	40	120.7	119.3	138.0
0	2. 85955	175 173	2.86069	174	1.13931	1.99886	51	50	\$0.8	149.2	147.5
10	2.86128	173	2.86243		1.13757	1.99885	50				
		173		174					175	173	171
11	2.86301	173	2.86417	174	1.13582	1.99884	69	6	17.5	17.3	17.1
12	2.86474	173 171	$\underline{2}$	179 172	1.13409	1.99883	48	7	20.4	20.2	20.0
13	2. 2.800 .45	371	2. 867763	172	1.13237	1.99888	47	8	23.3	23.1	22.8
14	$\frac{2.80816}{2} 868$	871	2.869 .35 2.87106	171	1.13065	1.99881	46	9	26.3	26.0	25.7
15	2.86987 $2.8-156$	169	2.87106 3.87277	171	1.12894	1.99880	45	10	29.2	28.8	28.5
16	2.87156	169	$\underline{3.87277}$	170	1.12723	1.99879	44	20	58.3	57.7	57.0
17	2.87335	369	2.878747 3.87616	169	1.12553	1.99879	43	30	87.5	86.5	85.5
18	2.87494	167	2.87616 2.87785	169	1.12384	T. 998878	42	40	116.7	115.3	114.0
19	$\underline{2} .87601$	168	2.87785 $\mathbf{2 . 8 7 0 5 3}$	168	1.12215	7.99877	41	50	145.8	144.2	142.5
20	2.87829		2.87953		1.12047	1.99876	40				
		166		167					168	166	184
21	2.87995	166	2.88120	167	1.11880	\%. 99875	39	6	16.8	16.6	16.4
22	2.88161 $\frac{2}{2} .88326$	165	2.881887 $\frac{2}{2} .88 .153$	166	1.11713 1.11547	T. 299874	38	5	19.6	19.4	39.3
24	2.88326 $\mathbf{2} .88490$	164	2.88453 2.88618	165	1.11547 1.11382	1.99873 7.99872	38 36	8	22.4	22.1	21.9
25	2.88654	164	2.88783	165	1.11217	1.99871	36 35	9	25.2	24.9	24.6
26	2.88817	163	2.88948	165	1.11052	T. 1.99870	35 34	10	28.0	27.7	27.3
27	$\overline{2} .88980$	163 162	2.89111	163	1.10889	7.99869	33	${ }^{3}$	56.0	55.3	54.7
28	$\overline{2} .89142$	162	2.89274	163	1.10726	$\overline{\mathrm{T}} .99868$	32	30	84.0	83.0	82.0
29	$\overline{2} .89304$	160	$\overline{2} .89437$	163 861	1.10563	1. 9.9867	31	50	112.0	310.7	109.3
30	2.89464	160	2.89598	81	1.10402	ז. 99866	30	50	1		
		161		162					162	159	157
31	3.89625	159	2.89760	160	8.10240	I. 99865	29	6	16.2	15.9	157
32	2.89784	159	$\overline{2} .89920$	160	1.10080	I. 94864	28	7	18.9	18.6	18.3
33	2.89943	159	$\overline{2} .90080$	160	1.09920	T. 99863	27	8	21.6	21.2	20.9
34	2.90102	$\begin{array}{r}159 \\ 158 \\ \hline\end{array}$	2.90240 3.00390	160 159	1.09760	I. 99862	26	9	24.3	23.9	23.6
35	2.90260	158 157	$\mathbf{2} .90399$ $\mathbf{2} .90557$	158	1.09601	T. 99861	25	10	27.0	26.5	26.2
36	2.90417	157 157	2 $\mathbf{2} .90557$.90715	158	1.09443 1.09285	T. 99860	24	m	54.0	53.0	52.3
37	2.90574	157 156	2.90715 2.00872	158 157	1.09285 1.09128	I. 99859	23	30	81.0	79.5	73.5
38	2.90730 3.90885	155	2.90872 2.91029	157	1.09128 1.08971	1.99858 1.99857	22	40	108.0	106.0	104.7
39	3.90885	155	2.91029	156	1.08971	1.99857	21	50	135.0		330.8
46	2.91040	155	$\overline{2.91185}$		1.08815	1.99856	20		135.0		
		155		155					155	158	151
48	2.91195		$\overline{2} .91340$		1.08660	1.99855	19	6	15.5	15.3	15.1
42	2.91349 3.91502	153 153	2.91495 3.91650	155	1.08505	1.998554 $\mathbf{T} .99853$	18	7	15.5 18.1	17.3	17.6
43	2.91502	154 153	2.91650 3.91803	153	1.08350	1.99853	17	8	18.1 20.7	17.9 20.4	17.6 20.1
41	2.91655	153 15	2.91803 3.91957	154	1.08197 1.08043	T. 99852 T. 90851	16	9	20.7	23.0	22.7
45	2.91807 3.91959	152	2.91957 $\mathbf{2} .92110$	153	1.08043 1.07800	1.99851 7.99850	15	10	2.8 .8 25.8	25.5	25.2
46	3.91959 3.92110	151	2.92110 2.92263	152	1.07890 1.07738	1.99850 T. 99888	14 13	20	51.7	51.0	50.3
47	3.92110 3.92261	151	2.92263 $\mathbf{2} .92414$		1.07738 1.07586	I. I .99848	13	30	77.5		75.5
48	2.92261	150	2.92414	151	1.07586	I. 998.47	12	40	17.5 103.3	102.0	
49	2.92 .511	150	2.92565	151	1.07435	T. 9988	11	40	103.3	102.0	100.7
50	2.92561	150	2.92716	15	1.07284	I. 99845	10	50	129.2	127.5	125.0
		149		「50							
51	2.92710		2.92866		1.07134	1.99844	9		140	147	I
52	2.92859	+1988	2.93016	149	1.06984	1.998 .43	8	6	14.9	14.8	0.1
53	2.93007	148	2.93165	149	1.06835	T. 998.42	7	7	17.4	17.2	0.1
54	2.93154	147	2.93313	149	1.06687	T.908s1	6	8	19.9	19.6	0.1
55	2.95301	147	2.9346 .2	149	1.06538	T.99840	5	9	22.4	22.1	0.2
56	2.93448	147	2.93609	147	1.06391	1.908.39	4	10	24.8	24.5	0.2
57	2.93594	146	2.93756	147	1.06244	1.90838	3	20	49.7	49.0	0.3
58	2.93740		2.93903	146	1.06097	1.99837	2	30	74.5	73.5	0.5
59	2.9 .3885	145	2.93049		1.05951	1.99836	1	40	99.3	98.0	0.7
60	2.94030	145	2.94195		1.05805	1.99834	0	50	124.2	122.5	0.8
	$\log \cos$	d	loge cot	c. d.	$\log \tan$	$\log 8$,			p.	

1	$\log \sin$	d	$\log \tan$	c. d.	$\log \cot$	$\log \cos$		D. p.			
0	$\overline{2} .94030$		2.94195		1.05805	1.998.34	60		145	14.	141
1	$\mathbf{3} .94174$	134	2.94340	145	1.05660	1.99833	59	6	14.5	14.	14.1
2	2.94317	143 144	3.94485	145 145	1.05515	1.99832	58	7	16.9	16.7	16.5
3	3.94461	14.4	3.94630	145	1.05370	1.99831	57	11	19.3		18.8
1	2.94603	143	2.94773	144	1.65227	I. 99830	56	9	21.8	21.	21.2
5	2.94746	141	2.94917	143	1.05083	I. 99829	55	10	24.2	23.8	23.5
5	2.94887	142	3.95060	142	1.04940	T. 90888	54	Tin	48.3		47.0
7	2.95029	142	2.95202	142	1.04798	I. 99827	53	30	72.5		70.5
8	2.95170	140	2.95344	142	1.04656	I. 99825	52	40	96.7	95.3	94.0
5	줄.95310	140	2.95486	141	1.04514	I. 99824	51	50	120.8		1178
10	2.95450		2.95627		1.04373	I. 99823	50				
		139		140					139	138	186
11	2.95589	139	3.95767	141	1.04233	1. 99822	40	6	13.9	13.8	13.6
12	2.95728 $\mathbf{2}$ $\mathbf{2}$	139	2.95908	139	1.04092	I. 99821	48	3	16.2	16.1	85.0
13	$\overline{2} .95867$	138	2.96047	140	1.03953	I. 99820	47	B	18.5	18.4	18.1
14.	2.96005 2.96143	138	2.96187 2.96325	138	1.03813 1.03675	I. 1.99819	46	9	20.9	20.7	20.4
15	2.96143 $\mathbf{2} .96280$	137	2.96325 $\mathbf{2 . 9 6 4 6 4}$	$\begin{array}{r}139 \\ \hline\end{array}$	1.03675 1.03536	1.99817	45	10	23.2	23.0	22.7
17	2.96817	137	2.96464	138	1.03530 1.03398	I.99816	44	20	46.3	46.0	45.3
18	$\overline{2} .96553$	136 136	2.96739	138 138	1.03261	I. I .99814	42	30 40	69.5 92.7	69.0	80.7
19	2.96689	136 136	2.96877	138 136	1.03123	İ.99813	41	50	115.8	115.0	113.3
20	2.96825	136	$\mathbf{2 . 9 7 0 1 3}$		1.02987	$\overline{1} .99812$	40				
		135		137					135	133	131
21 22	2.96960 $\overline{2} .97095$	135	2.97150 3.97285	135	1.02850 1.02715	T. 99810	39 38	6	13.5	13.3	13.1
22 23	2.97095 $\mathbf{2} .97229$	134	$\mathbf{2} .97285$ $\mathbf{2} .97421$	136	1.02715 1.02579	I. T .998098	38		15.8	15.5	15.3
24	2.97229 3.97363	134	2.97421 $\mathbf{2 . 9 7 5 5 6}$	135	1.02579 1.02444	I. I. 998808	37 36	8	18.0	17.7	17.5
25	2.97496	${ }^{3} 33$	2.97691	135	1.02434	I. 1.998806	35	9	20.3	20.0	19.7
20	2.97629	${ }^{133}$	$\mathbf{2 . 9 7 8 2 5}$	134	1.02175	I. 99804	34	10	22.5	22.2	1.8
27	2.97762	133	$\overline{2} .97959$	134	1.02041	T. 99803	33	20	45.0	44.3	43.7
27	2.97894	132	$\overline{2} .98093$	133	1.01908	$\overline{1} .99802$	32	30	67.5	66.5	65.5
29	2.98026	132	$\overline{2} .98225$	133	1.01775	$\overline{\mathbf{T}} .99801$	31	40	90.0	88.7	87.3
30	$\mathbf{2 . 9 8 1 5 7}$	131	2.98358	133	1.01642	I. I 98800	30	50	112.5	110.8	109.2
		131		132					129	128	126
32	2.98288	131	2.98490 $\mathbf{2} .98622$	132	1.01510 1.01378	I. 999798	29 28	6	12.9	12.8	12.6
3.	2.98549	130	$\underline{2} .98753$	131	1.01247	I. 999796	27	8	15.1	14.9	14.7
34	2.98679	130	2.98884	131	1.01116	I. T .99795	26	8	17.2	17.1	16.8
35	2.98808	129	2.99015	131	1.00985	I. 1.99793	25	9	19.4	19.2	18.9
36	2.98937	129	2.99145	130	1.00855	T. 99792	24	10	21.5	21.3	21.0
37	2.99066	129 128	2.9914275	130 130	1.00725	I. 99791	23	20	43.0	42.7	42.0
36	2.99194	128	2.99405	130	1.00595	I. 99790	22	30	64.5	64.0	63.0
39	2.99322	128 128	2.99534	129 128	1.00466	T. 99788	21	40 50		85.3 106.7	84.0
10	2.99450	128	2.99662	128	1.00338	I. 99787	20		107.5	100.7	105.0
		127		129					185	28	122
41	2.99577		2.99791		1.00209	T. 99786			125		122
42	2.99704	126	2.99919	128 127	1.00081	I. 99788	18	7	12.5	12.3	12.2 14.2
43	2.99830	126	İ.00046	128 128	0.999 : 1	T. 99783	17	7	14.6 16.7	14.4	14.2 16.3
44	2.99956	126	I.00174	128	0.998 06	I. 99788	16	18	16.7 18.8	16.4 18.5	16.3 18.3
45	I. 000082	125	T.00301	126	0.99699	1.99781	15	10	18.8 20.8	10.5 20.5	20.3
46	Y.00207	125	T.00427	126	0.99573 0.99447	1.99780 I. 99778	14	20	41.7	41.0	40.7
48	T.00450	124	T.00679	126	0.99321	T. 99777	12	30	62.5	61.5	61.0
49	T.00581	125	I.00805	126	0.99195	I. 99776	11	40	83.3	82.0	81.3
30	I.00704	123	I.00930	125	0.99070	$\mathbf{1} .99775$	10	50	10.4 .2	102.5	101.7
		124		125							
51	T. 000828		T. 01055		0.98945	I. 99773	9		121	120	1
52	I.00951	123	1.01179	124	0.98821	T. 99772	8	6	12.1	12.0	0.1
53	İ.01074	122	I.01303	124	0.98697	1.99771	7	7	14.1	14.0	0.1
54	I. 01196	122	1.01427	123	0.98573	1.99769	6	8	16.1	16.0	0.1
55	T.01318	122	I. 1.1550	123	0.98450	I. 99768	5	9	18.2	18.0	0.2
56	I. 01440	122	1.01673	123 123	0.98327	I. 99767	4	10	20.2	20.0	0.2
57	1.01561	121	1.01796	123 122	0.988 .204	1.99765	3	20	40.3	40.0	0.3
58	1. 01682	121	İ.01918	122	0.98082	1.99764	2	30	60.5	60.0	0.5
50	1.01803	120	1.02040	122	0.97960	1.99763	1	40	80.7	80.0	0.7
60	1.01923		I. 02162		0.97838	1.99761	0	50	100.8	100.0	0.8
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log 8 \mathrm{sta}$	8			p.	

,	$\log \sin$	I	$\log \tan$	c. d.	$\log \cos$	$\log \cos$		D. D .			
II	1.01923	120	$\begin{aligned} & \mathrm{Y} .02162 \\ & \mathrm{~T} .02283 \end{aligned}$	821	0.97836 0.97717	$\begin{aligned} & \text { Y. } 99761 \\ & \text { I. } 99760 \end{aligned}$	60	121		120	118
1	8.02043						59	6	12.1	12.0	11.9
2	1.02163	120	Y.02404		0.97596	I. I .99759	58	7		12.0 11.9 14.0 13.9	
3	7.02283	119	I. 02525 I. 02645	120	0.97475	I. 99757	57	8	16.1	$\begin{array}{lll}16.0 & 15.9\end{array}$	
4	1.02402	118		$\begin{aligned} & 120 \\ & 121 \end{aligned}$	0.97355	7.99756	56	9	18.2	18.0 17.9	
5	8.02520	119	Y. 02766	119	0.97234	I. 99755	55	10	20.2	80.0 19.8	
6	1.02639	118	I. 028885		0.97115	I. 99753	54	\%	40.3	40.0 39.7	
7	1.02757	117	1.03005	120	0.96995	1.99752	53	30	60.5	60.0 59.5	
8	1.02874	118	I. 03124	119 118	0.96876	1.99751	52	40	80.7	80.0	79.3
0	1.02992	117	I. 03242	119	$\begin{aligned} & 0.96758 \\ & 0.96639 \end{aligned}$	$\begin{aligned} & \overline{1} .99749 \\ & \mathbf{1} .99748 \end{aligned}$	5150	50	100.8	100.0	99.2
10	I. 03109		I.03361								
		117		118				118		117	116
11	I. 03226	116	I. 03479		0.96521	I. 99747	49	6	11.8	11.7	11.6
12	I.03342	116	T.03597	117	0.96403	1. 99745	48	8	13.815.7	$13.7 \quad 13.5$	
13	I. 03458	116	T.03714	$\begin{aligned} & 118 \\ & 116 \end{aligned}$	0.962860.96168	I. 99744	47			$15.6 \quad 15.5$	
14	T. 03574	116	1.03832			I. 99742		9		$17.6 \quad 17.4$	
15	7.03690	115	1.03948	$\begin{aligned} & 116 \\ & 117 \end{aligned}$	0.96052	I. 99740	$\begin{aligned} & 45 \\ & 44 \end{aligned}$	1020	7.7 9.7	$19.5 \quad 19.3$	
16	1.03805 $\mathbf{1 . 0 3 9 3 0}$	115	1.03965 I. 04181	116	0.95935				19.7 39.3		38.7
17	1.03920 1.04034	114	1.04181 X.04297	116	0.95819	I. 99738	43	30	59.0	$58.5 \quad 58.0$	
19	1.04149	11	I. 04413		$\begin{aligned} & 0.95703 \\ & 0.95587 \end{aligned}$	$\begin{aligned} & \text { I. } 99737 \\ & \text { I. } 99736 \end{aligned}$	$\begin{aligned} & 42 \\ & 41 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 78.7 \\ & 98.3 \end{aligned}$	78.0	77.3 06.7
20	1.04262		I.04528		0.95472	I. 99734	40				
		114	Y.04643	115	0.95357	I. 99733	39	115		114	118
21	T. 04376	114113						7	11.513.4	11.413.3	11.313.2
22	1.04490		$\begin{aligned} & \text { Y. } 04758 \\ & \text { I.04873 } \end{aligned}$	115	$\begin{aligned} & 0.95242 \\ & 0.95127 \end{aligned}$	İ. 99731	38				
23	I. 04603	112				1.997301.99728	3736	8	15.3	15.2	15.1
24	1.04715		I. I .04987	114	0.95013			9	17.3	17.1	17.0
25	I.04828	112	I. 05101	113	$0.94899$$0.94786$	1.99727	35	10	19.2	19.0	18.8
26	I. 04940	112	I.05214	114		I. 99726	34	20	38.3	38.0	37.7
27	1.05052	112	I.05328		$\begin{aligned} & 0.94786 \\ & 0.94672 \end{aligned}$	1.99724	33	30	57.5	57.0	56.5
28	1.05164	111	1.05441 $\mathbf{1} 05553$	$\begin{aligned} & 113 \\ & 112 \end{aligned}$	$\begin{aligned} & 0.94559 \\ & 0.94447 \end{aligned}$	1.99723	32	40	76.7	76.0	75.3
19	1.05275	111	I. 05553	113		I. 99721	31	50	95.8	95.0	94.2
30	1.05386	117	I. 05666	113	0.94334	1.99720	30				
		111		112					112	111	110
31 32	1.05497 1.05607	110	1.05778 1.05800	112	0.94222 0.94110	1.99718	29 28	6	11.2	11.1	11.0
32	1.05007 1.05717	110	1.05000 1.06002	112	0.94110 0.93998	1.99717	28	8	13.1	13.0	12.8
34	I. 05827	110	$\overline{1} .06113$	111	0.93887	$\overline{\mathrm{I}} .99714$	26	8	14.9	14.8	14.7
35	1.05937	110 109	Y. 06224	111	0.93776	$\overline{\mathrm{I}} .99713$	25	9	16.8	16.7	16.5
36	1.06046	109	I. 06335	1110	0.93665	I. 99711	24	\%	18.7	18.5 37.0	18.3
37	1.06155	109	I. 06445	1111	0.93555	$\underline{1} .99710$	23	\% ${ }^{6}$	37.3	37.0	36.7
38	1.06264	108	Y. 06556	1110	0.93444	I. 99708	22	30	56.0	55.5	55.0
39	1.06372	109	I. 06666	110	0.93334	I. 99707	21	40	74.7	74.0	73.3
40	İ.06481	109	Y. 06775	109	0.93225	I. 99705	18	50	93.3	92.5	91.7
41	1.06589	108	1. 06885	110	0.93115	1.99704	19		109	108	107
42	1.06636	107	I. 1.06994	109	0.93006	I. 99702	18	6	10.9	10.8	10.7
43	1.06804	107	Y. 07103	109	0.92897	I. 99701	17	8	12.7	12.6	12.5
44	1.06911	107	1.07211	108	0.92789	T. 99699	16	8	14.5	14.4	14.3
45	1.07018	107	I. 1.07320	109	0.92680	I. 99698	15	星	16.4	16.2	16.1
46	1.07124	107	I. 07428	108	0.92572	I. 99696	14	10	18.2	18.0	17.8
47	1.07231	107	I. 07536	108	0.92464	I. 99695	13	[1]	36.3	36.0	35.7
48	1.07337	105	I. 07643	108	0.92357	1. 99693	12	30	54.5	54.0	53.5
40	1.07442	105	1.07751	108	0.92249	I. 99692	11	40	72.7	72.0	713
50	1.07548	100	1.07858		0.92142	I. 99690	10	50	90.8	90.0	89.2
		105		106							
51	1.07653		1.07964		0.92036	T. 99689	8		106	105	104
52	1.07758		1.08071	-07	0.91929	I. 99687	8	6	10.6	10.5	10.4
58	7.07863	105	1.08177	106	0.91823	1.99686	6	7	12.4	12.3	12.1
54	1.07968	105	T.08283	106	0.91717	T. 99684	6	8	14.8	14.0	13.9
55	1.08072	104	T.08389	106	0.91611	I. 99683	5	,	15.9	15.8	15.6
56	1.08176	104	1.08495	8	0.91505	1.90681	4	10	17.7	17.5	17.3
57	1.08280	103	1. 08600	105	0.91400	7. 90680	3	20	35.3	35.0	34.7
58	T.08383	103 103	$\overline{1} .08705$	105	0.91295	1. 99678	2	30	53.0	52.5	52.0
59	7.08486	103	İ.08810	105 104	0.91190	I. 99677	1	40	70.7	70.0	69.3
60	1.08589	103	I.08914	104	0.91086	T. 99675	\bigcirc	50	88.3	87.5	86.7
	$\log \cos$	d	log cot	c. 4 .	$\log \tan$	$\log \sin$,			D.	

\%	$\log \sin$	d	$\log \tan$	c. d.	$\log \cot$	$\log \cos$		p. p.		
\square	1. 23967		8.24632		0.75368	1.99335	60		74	78
1	1.24039	72 78	1.24706	74 73	0.75294	I. 99333	59	\%	7.4	7.3
2	T. 24110	71	1.24779	73 74 74	0.75221	7.99331	58	8	8.6	8.5
3	T. 24181	73	I. 24853	74 73	0.75147	Y. 993328	57	8	9.9	9.7
4	Y.24253	71	Y.24926	74	0.75074	Y.99326	56	9	11.1	11.0
6	Y.24324 I.24395	71	1.25000 I. 25073	73	0.75000 0.74927	\% 8.99324 7.99322	55	10	12.3	12.2
7	I. 24466	71 70	I. 25146	73 73 73	0.74854	1.99322 8.99319	54 53	30	24.7 37.0	24.3 36.5
8	1.24536	71	7. 25219	73 73 73	0.74781	I. 99317	52	40	49.3	48.7
0	I. 24607	71 70	I. 25293	73 73	0.74708	I. 999315	51	80	61.7	608
10	1.24677	70	1.25365	73	0.74635	I. 99313	50			
	1. 24748	71		72					72	71
12	1. 1.24818	70	1.25437 $\mathbf{1} .25510$	73	0.74563 0.74490	1.99310 1.99308	48	,	7.2 8.4	7.3 8.3
13	7. 24888	70 70	1.25582	72 73 73	0.74418	I. 99306	47	8	8.4	8.3 9.5
14	Y. 24958	70 70	1.25655	73 73	0.74345	I. 99304	46		10.8	10.7
15 16	T. 25028 1. 25098	70	Y. 25727 $\mathbf{Y} .25799$	72 72	0.74273 0.74201	I. 999301	45	10	12.0	11.8
17	I. 1.250968	70 69	1.25799 1.25871	72 72	0.74201 0.74129	1.99299 I. 99297	44 48	50	24.0	23.7
18	I. 25237	69	1.25943	72 72 72	0.74057	I. 99294	42	40	30.0 48.0	35.5 47.3
19	T.25307	69	1. 26015	72 71	0.73985	I. 99292	41	50	60.0	47.3 59.2
211	Y.25376		1. 26086		0.73914	1. 99290	40			
21	1.25445	69	Y. 36158	72	0.73842				70	00
22	1.25514	69	1.26239	71	0.73842 0.73771	1.99288 1.99285	19 38	6	7.0	6.9
23	1.25583	69	I. 26301	72 71	-0.73699	I. 99283	37	7	8.2	8.1
24	I. 25652	69	Y. 26373	71	0.73628	1. 99281	36	9	9.3 10.5	9.3 10.4
25 26	1.25721 1.25790	69	Y .26443 I .26514	71	0.73557 0.73486	I. 99278 $\mathbf{Y} .99276$	35 34	10	11.7	11.5
27	1.25858	68	I. 26585	71 70	0.73466 0.73415	1.99278 $\mathbf{I} .99274$	33	30	23.3	23.0
24	I. 25927	68	I. 26655	78	0.73345	T. 99271	32.	30 40	35.0 46.7	34.5 46.0
39	1.25995 $\mathbf{T} .26063$	68	1. 26726	71	0.73274	1.99269	31	50	58.3	57.5
30	1.26063	68	1.26797	70	0.73203	1.99267	30			
31	1.26131		Y. 26867	70	0.73133	1.99264	29	6	68 6.8	
32 33 3	I. 26199 I. 26267	68	I. 269937 I .27008	71	0.7306:	1.99262 1.99260	28 27	8	7.9	6.7 7.8
34	1. 263335	68	1. 27008 $\mathbf{1} 27078$	70	0.72992 0.72922	1.99260 1.99257	27	8	9.1	8.9
35	Y. 26403	67	7.37148	70 70	0.72852	I. 99255	25	9	10.2	10.1
36 37	7. 26470 T .26538	68	I. 27218 $\mathbf{1} .27288$	70 70	0.72782	7. 99253	24	10	11.3 22.7	11.2 22.3
37 38	I. 26538 $\mathbf{Y} .26605$	67	1.27288 $\mathbf{1} .27357$	69	0.72712 0.72643	1.99250 1.99248	23 22	30	34.0	33.5
39	T. 26672	67	I. 27427	70 69	0.72573	I. 99245	21	40	45.3	4.7 55
40	1. 26739	6	1.37496	69	0.72504	I. 99243	20	50	56.7	55.8
41	1. 26806	67		70					66	65
42	1.26873	67	1.27566 1.27635	69 69	0.72434 0.72365	1.99241 1. 99238	18	6	6.6	6.5
43	T. 26940	67	I. 27704	69 69	0.72296	T. 99236	17	?	7.78	7.6
44	Y. 37007	66	1.27773	69	0.72227	1. 99233	16	8	8.8 9.9	8.7 9.8
45	1.27073 $\mathbf{T} .27140$	67	T. 27842	69	0.72158	7.99231	15	10	9.9 11.0	9.8 10.8
47	1.27206	66	1.27911 I. 27980	69	0.72089 0.72020	1.99229 I. 99226	14 13	20	22.0	21.7
4	T. 27273	66	1. 28049	68	0.71951	I. 99224	12	30	33.0	32.5
49 50	1.27339 $\mathbf{1} .27405$	66	T. 28117 $\mathbf{7 . 2 8 8 6}$	69	0.71883 0.71814	I. 99221 I. 90219	11	50	44.0 55.0	43.3 54.2
		66		68	0.71814	1.99219	10			
58	1. 27471		Y. 28254		0.71746	7. 99217			3	2
52	T. 27537	65	7. 28323	68	0.71677	I. 99214	8	6	0.3	0.2
53 54	1.27602 7. 27668	65	1.28391 Y. 28459	68	0.71609	I. 99212	7	7	0.4	0.2
55	T. 27734	66	1.82859 7.28527	68	0.71548 0.71473	1.99209 I. 99207	5	\%	0.4	0.3 0.3
56	1. 27799	65	7. 28895	67	0.71405	I.99204	4	10	0.5	0.3
57	Y. 27864	66	7. 28662	67	0.78338	I. 99202	3	20	1.0	67
59	7.27930	65	7. 28730	68	0.71370	T. 99200	a	30	1.5	1.0
69	1.27995 $\mathbf{1} .28060$	65	1.28798 7. 28865	67	0.71202 0.78135	1.99197 1.99195	1		2.0 2.5	1.3 1.7
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	'		D. p .	

'	$\log \sin$	d	$\log \tan$	c. d.	$\log \cot$	$\log \cos$		p. p.		
0	7. 28060		1.28865	68	0.91135	T. 99195	60		88	17
1	T. 28125	65	I. 28933	67	0.71067	I. 99192	59	6	6.8	6.7
3	Y. 28190	65 64	I. 29000	67	0.71000	I. 99190	58	8	7.9	7.8
3	T. 28.254	65	I. 29067	67	0.70933	I. 99187	57	8	9.1	8.9
4	7. 28319	65	Y. 29134	67	0.70866	T. 99185	56	9	10.2	10.1
8	T. 28.384	${ }_{6} 6$	I. 29201	67	0.70799	T. 99182	55	10	11.3	31.2
6	I. 28448 I .28512	64	I. 292688 I. 29335	67	0.70732 0.70665	1.99180 I .99177	54 53	${ }^{200}$	22.7	22.3 33.5
8	1.28577	65	I. 29402	67	0.70598	1.99175	52	40	34.0 45.3	33.5 44.7
0	I. 28641	64	Y. 29468	67	0.70532	I. 99172	51	50	56.7	55.8
10	1.28705	64	I. 29535	67	0.70465	1.99170	50			
		64		66					66	65
11	7. 28769	64	T. 29601	67	0.70399	I. 99167	49	,	6.6	6.5
12	I. 28833 I. 28896	63	I. 296688	66	0.70332 0.70266	I. 99165 I .99162	48 47	8	7.78	7.6
13	I. 28896 I. 28960	64	1.29734 1.29800	66 66	0.70266 0.70200	1.99162 1.99160	47	8	8.8 9.9	8.7 9.8
15	I. 29024	63	I. 29866	66	0.70134	I. 99157	45	10	11.0	10.8
16	I. 29087	63 63	7. 29932	66 66	0.70068	İ. 99155	44	20	22.0	21.7
17	7. 29150 1.29214	64	I. 29998	66	0.70002 0.69936	I. 99152 I .99150 \mathbf{I}	43	30	33.0	32.5
19	I. 29277	63 63	I. 1.30130	66 65	0.69870	İ. 99147	41	50	44.0 55.0	43.3 54.2
00	I. 29340	63	I. 30195		0.69805	I. 99145	40			
		63		66					64	53
21 22	T. 29403	63	T. 30261	65	0.69739 0.60674	I. I .99142	39 38	6	6.4	6.3
22 23	I. 29.466 I. 29529	63	I. 30326 T .30391	65	0.69674 0.69609	1.99140 I .99137	38 37	8	7.5	7.4
24	I. 29591	62 63	I. 30457	${ }^{616}$	0.69543	I. 99135	36	8	8.6	8.4
25	I. 29654	62	T. 30522	${ }_{6}^{65}$	c. 69478	I. 99132	35	10	10.7	${ }_{10.5}$
26	I. 29716	63	I. 30587 I. 30652	65	c. 69413 0.69348	İ.99130	34		21.3	21.0
27	1.29779 $\frac{1}{1} .29845$	62 62	I. 30652	65	0.69348 0.69283	1.99127 1.99124	33 32	30	32.0	31.5
29	1. 29903	62 63	I. 30782	65	0.69218	İ.99122	31	40 50	42.7 53.3	42.0 52.5
30	1. 29966	63	I. 30846		0.69154	I. 99119	30			
		62		65					82	61
31 32 32	T. 30028 I. 30090		T. 30911 I. 30975		0.69089 0.69025	Y. 99117 I. 99114	29 28	6	6.2	6.1
32 33 3	1.30090 I. 30151	62 62	1.30915 $\mathbf{1} .30975$ $\mathbf{1} .31040$	65	0.69025 0.68960	I.99114	28 27	7	7.2	7.1
34	\%. 30213	62 62	I. 31104	64 64	0.68896	I. 1.99109	26	8	8.3	8.1
35	T. 30275	${ }_{61}$	I. 31168	64 65	0.68832	I. 99106	25	10	8.3 10.3	9.2 10.2
36 37	T. 30336 T. 30398	62	T. 31233 T. 31297	64	0.68767 0.68703	I. I .99104	24 23	20	20.7	20.3
37 38	T. 30398 I. 30459	61 62	I. 31297 I. 31361	64	0.68703 0.68639	1.99101	23 23	30	31.0	30.5
39	I. 30521	62 61	I. 31425	64 64	0.68575	I. 99096	21		41.3 51.7	40.7 50.8
40	I. 30582	61	T. 31489	64	0.68518	I. 99093	20			50.8
		61		63					60	50
41 42	T. 30643 I. 30704	61	1.31552 1.31616	64	0.68448 0.68384	1.99091 1.99088	19 18	6	6.0	5.9
43	I. 30765	61 61	I. 31679	63 64	0.68321	I. 999086	17	8	8.0	6.9
44	T. 30826	61	I. 31743	64 63	0.68257	1.99083	16	8	8.0	8.7 .9
45	I. 30887 I. 30947	50	İ.31806 $\mathbf{T} .31870$	64	0.68194 0.68130	I. 1.9908078	15	10	9.0 10.0	9.8
47	1.31008		I. 1.31933	63 63	0.68067	İ.99075	13	20	20.0	19.7
48	7.31068	60 61	I. 31996	63 63	0.68004	I. 99072	12		30.0	29.5
49	7.31129	601	I. 32059	63 63	0.67941	I. 99070	11	40 50	40.0 50.0	39.3 49.2
so	1.31189		1.32122		0.67878	1.99067	10			
51	I. 31250		1.32185		0.67815	1.99064			1	2
52	T. 31310		I.32248		0.67752	I. 99062	8	6	0.3	0.3
53	I. 31370	60	I. 32311	63 63	0.67689	I. 99059	7	8	0.4	0.2
54 55	I. 31430 I. 31490	60	Y. 3232373 $\mathbf{Y} .32436$	6.3	0.67627 0.67564	I. I .9905054	6	8	0.4 0.5	0.3 0.3
56 56	1.31390 I. 31549	59 60	I. I 24988	62 63	0.67503	Y. I .99051	4	10	0.5	0.3
57	T. 31609	60	7. 32561	63	0.67439	I. 99048	3	30	1.0	0.7
58	1.31669	59	Y .32623 I .32685	63	0.67377	8.99046	3	30	1.5	1.0
59 60	$\begin{array}{r} \mathrm{I} .31728 \\ \mathrm{I} .31788 \end{array}$	60	1.32685 1.32747	62	0.67315 0.67253	1.99043 $\mathbf{Y} .99040$	0	40	2.5 2.5	1.3 8.7
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$,		p. p	

,	$\log 8 \ln$	d	$\log \tan$	c. d.	$\log \cot$	\log cos		p. p.		
0	T.31788		1.32747		0.67253	T. 99040	60		68	62
1	I. 31847	69	7.32810	63	0.67190	I. 99038	50	σ	6.3	6.3
2	7.31907	\%	P. 32872	6	0.67128	J.99035	58	7	7.4	7.2
3	1.31966	59 59	I. 32933	62	0.67067	I.99032	57	8	8.4	8.3
1	1.32025	59	I. 32995	62	0.67005	1.99030	56	9	9.5	9.3
5	1.32084	59 59	I. 33057	62	0.66943	I. 99027	55	10	10.5	10.3
6	I. 32143	59	1.33119	61	0.66881	I. 99024	54	20	21.0	20.7
7	I. 32202	59	T. 33180	62	0.66820	Y. 99022	53	30	31.5	31.7
8	I. 32261	S8	I. 33243	61	0.66758	I. 99019	52	40	42.0	41.3
9	I. 32319	59	I. 33303	62	0.66697	J. 99016	51	50	52.5	51.7
10	1. 32378	59	T. 33365		0.66635	1.99013	50			
11	I.32437	59	T. 33426	61	0.66574	J.990 18	49	6	61	80 6.0
12	I. 32495	58 58 8	T. 33487	61	0.66513	I. 99008	48	7	7.1	7.0
13	I. 32553	50	7. 33548	61	0.66452	I. 99005	47	8	8.1	8.0
14	1.32612	58	I. 33609	61	0.66391	I. 99002	46	9	9.2	9.0
15	J. 32670	58	I. 33670	61	0.66330	I. 99000	45	10	10.2	10.0
16	I. 32728	58	I. 33731	61	0.66269	I. 98999	44	20	20.3	20.0
17	1. 32786	58	I. 33792	61	0.66208	1.98994	43	30	30.5	30.0
18	I. 32844	58	1. 33853	60	0.66147	1.98991	42	40	40.7	40.0
19	I. 32902	58	Y. 33913	61	0.66087	1.98989	41	50	50.8	50.0
20	I. 32960	58	Y. 33974		0.66026	1.98986	40			
21	F. 33018	58	T. 34034	60	0.65966	I.98983	39			
22	I. 33075	57	I. 34095	61	0.65905	5.98980	38			
23	I. 33133	50	T. 34155	60	0.65845	I. 98978	37			
24	T. 33190	58	I. 34215	61	0.65785	$\overline{1} .98975$	36			
25	1.33248	57	I. 34276	60	0.65724	F. 98972	35			
36	I. 33305	57	T. 34336	60	0.65664	7.98969	34			
27	I. 33362	58	I. 34396	60	0.65604	7.98967	33			
38	I. 33420	57	I. 34456	60	0.65544	1.98964	32			
29	I. 33477	57	I. 34516	60	0.65484	1.98961	31			
30	I. 33534	57	1. 34576	60	0.65434	I. 98958	30			
		57		59					50	57
31	T.33591	56	I. 34635	60	0.65365	1. 98955	29	6	5.8	5.7
32 33	1.33647 $\mathbf{T} .33704$	57	I. 34695	60	0.65305	1.98953	29	7	6.8	6.7
34	I.33704	57	I. 34755 I. 34814	59	0.65245 0.65186	1.90950	27	8	7.7	7.6
35	T. 33818	57	I 34874	60	0.65186 0.65126	I.98944	25	9	8.7	8.6
36	T. 33874	56	I. 34933	59	0.65067	I. 98941	24	10	9.7	9.5
37	I. 33931	57	I. 34992	56	0.65008	İ.98938	23	30	19.3 29.0	19.0 28.5
38	I. 33987	56	I. 35051	69	0.64949	1.98936	22	40	38.7	38.0
19	I. 34043	57	I. 35111	59	0.64889	I. 98933	31	80	48.3	47.5
40	1. 34100	57	1.35170	59	0.64830	I. 98930	20	so		47.5
41	T. 34156	56	1. 35229	59	0.64771	T. 98927	19		56	55
42	I. 34212		1.35289 $\mathbf{Y} .35288$	59	0.64712	I. 98924	18	6	5.6	5.5
43	I. 34268	56	I. 35347	59 58	0.64653	I. 98921	17	7	6.5	6.4
14	I. 34324	56	I. 35405	50	0.64595	1.98919	16	8	7.5	9.3
45	I. 34380	56	T. 35464	80	0.64536	1.98916	15	9	8.4	8.3
46	I. 34436	56	I. 35523	88	0.64477	I.98913	14	10	9.3	9.2
47	I. 34491	55 56	I. 35581	50	0.64419	I. 98910	13	20 30	18.7 28.0	18.3 27.5
tef	I. 34547	55	Y. 35640	58	0.64360	I. 98907	12	+10	38.0	36.7
50	I. 34602	56	I. 35698	59	0.64302	1.98904	11		37.3 46.7	36.7 4.8
50	I. 34658	56	I. 35757	59	0.64243	1.98901	III			45.8
		55		58						
51	Y. 34713	56	I. 35815		0.64185	1.98828	9		3	1
52	I. 34769	55	I. 35873	58	0.64127	1.98896	9	6	0.3	0.2
53	7.34824	55	Y.35931	58	0.64069	1.98893	7	7	0.4	0.2
54	J. 34879	55 55	I. 35989	58	0.64011	1.98890	6	1	0.4	0.3
55	T. 34934	55	I. 36047	58 58	0.63953	1.98887	5	0	0.5	0.3
56	T. 34489	55	T. 36105	58	0.63895	1.98884	4	10	0.5	0.3
57	1. 35044	55	I. 36163	58	0.63837	1.98881	3	30	1.0	0.7
58	I. 35099	55	T. 36221	58	0.63779	1.98878	2	30	1.5	1.0
89	T. 35154	55	I. 36279	58	0.63721	I. 98875	1	40	2.0	1.3
60	I. 35209	55	I. 36336	57	0.63664	1.98872	0	50	2.5	1.7
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	*		P. p	

1	$\log \sin$	d	$\log \tan$	c. d.	109. 60 :	$\log \cos$	¢		D. D.		
0	1.38368		7.396\%,		0.60323	1.98690		60			
8	I. 38418	50	1.39731	54	0.60269	1.98687	3	59			
\pm	1. 38.469	51	I. 39785	54	0.60215	1.98684	3	59		54	53
3	7.38519	50 51	T. 398.38	58.	0.60162	1.98681	3 3	57		5.4	$5 \cdot 3$
7	1. 38570	50	T. 39892	54 53	0.60108	1.98678	3	56	7	6.3	6.2
5	1.38620	50	I. 39945	53 54	0.60055	1.98675	3	55	8	7.2	7.1
6	1.38670	51	T. 39999	53	0.60001	I. 98671	1	54	9	8.1	8.0
2	Y. 38721	50	T. 40052	53 54	0.59948	I. 98668	1	53	10	9.0	8. ${ }^{\text {er }}$
5	I. 38771	50	7.40106	53	0.59894	T. 98665	3	52	24	18.0	17.7
9	1.38831	50	Y. 40159	53	0.59841	T. 98662	3	51	30	27.0	26.5
10	1.38871	5	1.40212		0.59788	T. 98659	3	53		36.0	35.3
		50		54			1			45.0	44.2
11	1. 38928	50	7. 40266	53	0.59734	1.98656	4	49			
12	1. 38971	50	I. 40319	53 53	0.59681	1.98652	3	48			
13	I. 39021	50	1.40372	53	0.59628	T. 98649	3	47			
14	I. 39071	50	7. 40425	53	0.59575	T. 98646	3	46		52	51
15	I. 39121	19	I. 404788	53	0.59522	I. 98643	3	45		5.2	5.1
16 17	1.39170 $\mathbf{Y} .39220$	50	1. T .40531	53	0.59469	1.98643 1.98636	4	44	7	6.1	6.0
18	Y. 39370	50	I. 40636	52	0.59364	1.98633	3	42	4	7.8	6.8
19	I. 39319	49	I. 40689	53	0.59311	1.98630	3	41	11	8.7	8.5
20	I. 39369	50	7. 40742	53	0.59258	I. 98627	3	40	20	17.3	17.0
		49		53			A		30	26.0	25.5
21	I. 39418		1.40795		0.59205	1.98623		39	40	34.7	34.0
22	Y. 39467	59	7. 40847	52	0.59153	1.98620	3	38	50	$43 \cdot 3$	42.5
23	1. 39517	49	I. 40900	53 52	0.59100	T. 98617	3 3	37			
24	1. 39566	49	I. 40952	53	0.59048	1.98614	4	36			
25	I. 39615	49	İ. 41005	52	0.58995	I. 28610	3	35			
26	7. 39664	49	Y. 41057	52	0.58943	1.98607	3	34		60	19
27	I. 39713	49	T. 41109	52	0.58891 0.58839	\%. 98604	3	33	6	5.0	4.9
28	I. 39762	49	1.41161	53	0.58839	I. 98601	-	32	8	5.8	5.7
29	1.39811 I. 39860	49	1.41214 1.41266	52	0.58786	I. 98597	3	31		6.7	6.5
30	1.39860	49	1.41200	52	0.58734	1.98594	3	10		7.5 8.3	7.4 8.2
31	I. 39909		I. 41318		0.58682	Y. 98591		28	410	16.7	16.3
32	I. 39958	48	I. 41370	53	0.58630	1.98588	3	28	30	25.0	24.5
33	7. 40006	49	8.41422	52	0.58578	1.98584	3	27		33.3	32.7
34	I. 40055	48	1.41474	52	0.58526	I. 98581	3	126		41.7	40.8
35	1.40103	49	1.41526	52	0.58474	1.98578	4	25			
36	1.40152	48	1.41578	51	0.58422	T. 98574	3	24			
37	1.40200	49	1.41629	52	0.58371	1. 98571	3	23			
38	7.40249	48	I.41681	52	0.58319	1.98568	3 3	22		48	47
59	1.40297	4 4	1.41733	51	0.58267	T. 98565	4	21	6	4.8	4.7
411	1.40346	48	1.4i784	52	0.58216	1.98561	3	20	8	5.6 6.4	5.5 6.3
41	1.40394	8	I.41836		0.58164	1.98558		19	${ }_{10}^{5}$	7.2 8.0	7.1 7.8
42	7. 40442	48	1. 41887	52	0.58113	1.98555	3	18		8.0 16.0	7.8 15.7
43 44	1.40490 T. 40538	48	I. 41939 T .41990	51	0.58061	1.98551 T .08548	3	17 16		16.0 24.0	15.7 23.5
44	T. 40538	48	T. 41990	51	0.58010	I. 98548	3	16		32.0	21.3
45	7. 40586	48	I. 42041	52	0.57959	I. 98545	4	15		40.0	39.3
46	1.40634	48	I. 42093	51	0.57907	1.98541	4 3	14			39.2
47	I. 40683	18	Y.42144	51	0.57856	1.98538	3	13			
48	Y. 40730	48	1.42195	51	0.57805	1.98535	4	12			
49	I. 40778	47	T. 42246	51	0.57754	I. 98531	3	11			
50	1.40825	48	T.42297	51	0.57703	1.98528	3	10	6	0.4	0.3
51	7.40873		1. 42348		0.57652	1.98525	4	9	8	0.5	0.4
52	I. 40931	48	I. 42399	51	0.57601	J. 98521	4 3	8	8	0.5	0.4
53	I. 40968	48	I. 42450	51	0.67550	I. 98518	3	7	9		0.5
54	1.41016	47	I.42501	51	0.57499	1.98515		6	10		0.5
55	1.41063	48	I.42552	51	0.57448	1.98511	4	5	30		1.0 1.5
56	1.41111	47	I. 42603	50	0.57397	1.98508	3	4	40		2.0
57 58	1.41158	47	I. 42653 Y. 42704	51	0.57347 0.57296	I. 98505 I .08501	4	3			
58	Y.41205 Y.41253	47	Y.42704	51	0.57296	1.98501 1.98498	3	1			
59	1.41253 7.41300	48	Y. 42755 Y. 42805	50	0.57245 0.57195	1.98498 $\mathbf{1 . 9 8 4 9 4}$	4	1			
60	1.41300		Y. 42805		0.57195	1.98494		\bigcirc			
	$\log \cos$	d	loge cot	c. d.	$\log \tan$	$\log \sin$	d	\%		D. D	

,	log sin	d	$\log \tan$	c. d.	\log cot	$\log \cos$	d		D. p.		
0	1.44034		1.45750		0. 54250	1.98284		60			
1	1.44098	44	1.45797	47	0.54203	I. 98281		59			
3	I.44122	$\stackrel{44}{44}$	1.45845		0.54155	I. 98377	4	58		41	47
3	7.44166	44 44	1.45892	4	0.54108	1. 98273	3	57	6	4.8	4.7
4	7.44210	43	1.45940	47	0.54060	I. 98270	$\frac{3}{4}$	56	3	5.6	5.5
5	8.44253	4	I. 45987	48	0.54013	I. 98266	A	55	8	6.4	6.3
7	1.44297	44	1.46035 I .46082	47	0.53965 0.53918	1.98262 T. 98259	3	54 53	-10	7.2 8.0	7.1 7.8
8	7.44385	4.4	1. 46130	48	0.53870	I. 98255	1	5	20	16.0	7.8 35.7
9	I. 44428	44	T. 46177	47	0.53823	I. 9825 !	3	51	30	24.0	23.5
10	T. 44473	44	1. 46224	47	0.53776	I. 98248	3	50	40	32.0	31.3
		44		47			4		50	40.0	39.2
81	T. 44516	43	1.46271	48	0.53729	I. 98244		45			
12	T. 44559	43	I. 46319	47	0.53681	I. 98240	3	48			
13	I. 44602	44	1.46366	47	0.53634	I. 98237	3	47			
14	$\begin{array}{r}1.44646 \\ \hline\end{array}$	43	1.46413 .46460	47	0.53587	1.98233	4	46		46	45
15 16	1.44689 I. 44733	44	1.46460 1.46507	47	0.53540 0.53493	I. .98229 T .98226	3	45 44	6	4.6	4.5 5.3
17	1.44776	43 43	I. 46554	47	0.53446 0.5349	I. 98232	4	43	8	5.1	5.3
18	I. 44819	43	I. 46601	47	0.53399	1.98218	4	42	9	6.9	6.8
19	1.44862	43	Y. 46648	47	0.53352	I. 98215	3	41	10	7.7	7.5
so	I. 44905	4	1. 46694		0.53306	I. 98211	4	40	20	85.3	15.0
		43		47			4		30	23.0	22.5
21 31	I. 4.49488 I. 4496.2	44	T.46741	47	0.53259 0.53212	1.98207 1.98204	3	39 38	50	30.7 38.3	30.0 37.5
23	T. 45035	43	1.46835	47	0.53165	I. 98200	4	37			
24	- 45077	42	Y. 46881	47	0.53119	$\overline{1} .98196$	4	36			
25	T. 45120	43 43	1. 46928	47	0.53072	I. 98192	4	35			
26	7.45163	43 43	1.46975	46	0.53025	1.98189	4	34		44	48
27 28	Y 45206	43	147021	47	0.52979	1.98185	4	33	6	4.4	4.3
29	I. 4.45292	43	I. 1.471114	46	0.52932 0.52886	1.98181 T .98177	4	32 31	7	5.1	5.0
$\underline{3}$	1.45334	42	1.47160	46	0.52840	1.98174	3	30	9	6.6	6.5
		43		47			4		10	7.3	7.2
31	T. 45377	42	1.47207		0.52793	I. 98170		29	80	14.7	14.3
32	I. 45419	43	1.47253	46	0.52747	1. 88166	4	28	30 40	22.0 29.3	21.5
33	Y. 4.45462	42	T. 47299		0.52701	1.98162	3	27	50	29.3 36.7	35.8
34 35	1.45504 T .45547	43	1.47346	46	0.52654 0.52608	1.98159	4	25			
36	T. 4.4589	42	I. 47438	46	0.52562	I. 98151	4	24			
37	I. 45633	43	8.47484	46	0.52516	I. 98147	4	23			
38	Y.45674	42	I. 47530		0.52470	I. 98144	3	23		12	41
39	Y.45716	42	1.47576	46	0.52424	1.98140	4	21	6	4.2	4.1
40	Y.45758	43	1.47622	46	0.52378	1.98136	4	15	8	4.9 5.6	4.8 5.5
41	T. 45801		1.47668		0.52332	1.98132		19	0	6.3	6.2
43	Y.45843	42 42	1.47714		0.52286	1.98129	3	18	10	7.0	6.8
43	Y. 4.45885	42 42	7. 47760	46	0.52240	I. 98125	$\frac{1}{1}$	17	\%	14.0 21.0	13.9 20.5
44 45	1.45927 Y. 45969	42	1. 478806 1. 47852	46	0.52194 0.52148	1.98121 .98117	${ }_{4}^{\pi}$	16 15	40	21.0 28.0	20.5 27.3
45 46	1.45969 1.46011	42	1.48852 1.47897	45	0.52148 0.52103	1.98117 1.98113	4	15	50	35.0	34.2
47	1.46053	42	I. 47943	46	0.52057	7.98110	3	13			
48	I. 46095	42	1.47989	46	0.52011	I. .98106	4	12			
40	I. 46136	42	I. 48035	45	0.51965	J. 98102	4	11			
50	I. 46178	42	1.48080	45	0.51920	1. 98098	4	10		4	II
51	I. 46220	42	1.48126	46			4		6	0.4 0.5	0.3 0.4
52	T. 46262	42	7. 48171		0.51829	I. 98090	4	i	8	0.5	0.4
53	T.46303	42	1.48217	45	0.51783	T. 98087	3	7	9	0.6	0.5
54	I. 46345	42	I. 48263	45	0.51738	T. 98083	4	6	10	0.7	0.5
55	I. 46386	42	I. 48307	4	0.51693	T.98079	4	5	30	1.3	1.0
56 57	T. 46.428 T .46469	41	1.48353 T .48398	45	0.51647 0.51608	T. 28075 I .98071	4	4	40	2.7	2.5
58	I. 46511	42	I. 484443	45	0.51557	T. 98067	4	3	so	3.3	2.5
59	I. 46552	418	T. 48489	$\begin{aligned} & 46 \\ & 45 \end{aligned}$	0.51511	1.98063		1			
60	I. 46594	42	I. 48534		0.58406	1. 98060		-			
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	d	,		p. p	

,	$\log \sin$	d	$\log \tan$	c. d.	log cot	$\log \cos$	d		p. p.
0	1.68557		I. 74375		0.25625	T. 94182		60	
1	T68580	23 23	I. 74405	30	0.25595	1.94175		59	
2	¢.68603	23 22 23	1.74435	30 30	0.25565	I. 94168	7	58	50
3	T.08025	23 23	T. 74465	30 20	0.25535	T.94161	7	57	6. 3.0
4	1.68648	23 23	I. 74494	30	0.25506	I. 94154	7	56	$7 \quad 3.5$
5	1.68071	23	1.74524	30	0.25476	I. 94147	7	55	$8 \quad 4.0$
6	1.68694 $\mathbf{1} .08716$	22	1.74554 I .74583	29	0.25446 0.25417	1.04140 1.04133	7	54	9 4.5 10 5.0
8	$\overline{1} .68739$	${ }_{2}^{23}$	1.74613	30 30	0.2538 ?	J.94126	7	52	 20 10.0
9	1.68762	23 22	1.74643	30 30	0.25357	T. 94119	7	51	
10	1.68784	22	I. 74673	30	0.25327	Y. 94112	7	so	40 : 20.0
		23		29			7		$50 \mid 25.0$
11	7.68807	22	1.74;02	30	0.25298	7.94105		49	
12 13	1.68829 1.68852	23 23	I. 274732 I .74762	30	0.25268 0.25238	T. 94098 T .94090	8	48 47	
13	1.68852 $\mathbf{1} .6885$	23 22 22	1.84762 T .74791	29	0.25238 0.25209	1.94090 $? .94083$	7	478	28
15	I. 68897	22 23	T. 74821	30 30	0.25179	I. 94076	7	45	$6{ }^{6} \quad 2.9$
16	I. 68920	23 22	I.74851	30 29	0.25149	T. 94060	7	44	$7 \quad 3.4$
17	I.68942	23	I.74880	30	0.25120 0.25090	T. 9.94062	7	43	$8 \quad 3.9$
18	1.68965 $\mathbf{1} .68987$	22	i .78910 i .74939	29	0.25090 0.25061	$\frac{\mathrm{T}}{1} \mathrm{~T} .9405048$	7	42	$\begin{array}{rl}9 & 4.4 \\ 10 & 4.8\end{array}$
19 20	1.68987 $\mathbf{1} .69010$	23	1.74939 T .74969	30	0.25061 0.25031	i. T .9404041	7	41	10 4.8 z0 9.7
		22		29			7		30 14.5 0
21	I. 69032		I. 74998		0.25002	I.94034		39	40 19.3 50 24.2
22	I. 6905	22	Y.75028	30	0.24972	T. 94027	7	38	50
23 24	1.69077 $\overline{1} .69100$	23	1.75058 I .75087	29	0.24942 0.24913	I. 94020	8	37	
25	ㅈ.69122	22 22 22	T.75117	30 29	0.24883	T. i .94005	7	35	
26	$\overline{1} .69144$	${ }_{2}^{22}$	I. 75146	30	0.24854	I. 93998	\%	34	23
27	$\overline{\mathrm{T}} .69167$	22	I.75176	29	0.24824	T. 93991	7	33	6 2.3
A	I.69189	23	T .75205 T .75235	30	0.24795.	7.93984	7	32	$\begin{array}{lll}7 & 2.7\end{array}$
20	T. 69212	22	1.75235 1.75264	29	0.22765 0.24736	T .93977 $\mathbf{1} .93970$	7	31	8 3.1
30	1.69234	22	1.75264	30	0.24736	1.93970	7	30	9 3.5 10 3.8
31	I. 69256		1.75294		0.24706	T. 93963	8	29	20 7.7 30 11.5
32	İ.69279	22	1.75323	30	0.24677	I. 93955	7	28	30 11.5 40 15.3
33 34 34	İ.69301	22	1.75353 I .75382	29	0.24647 0.24618	I. 93948 T .9394 I	7	27 26	5019.2
35	$\overline{7} .69345$	22 23	I. 75411	29	0.24589	J. 93934	7	25	
36	$\overline{5} .69368$	23 22	T. 75441	30 29	0.24559	¢.93927	7	24	
37	I. 69390	22	T. 75470	30	0.24530	I. 93920	8	23	
38	I. 69412	22	J.75500	29	0.24500	$\overline{1} .93912$	8	22	22
39	$\overline{1} .69434$ $\mathbf{i} .69456$	22	İ.75529 I .75558	29	0.24471 0.24442	T. I. 938908	7	21 20	2.2 7 2.6
40	1.69456	23	1.755 .58	30	0.24442	1.93898	7	20	7 18 2.6
41	1.69479	22	1.75588		0.24412	T. 93891		19	9 3.3 10 3.7
42 43	$\overline{1} .69501$ $\mathbf{1} .69523$	22	1.75617 1.75647	30	0.24383 0.24353	I. .93884 T .93876	8	18	10 3.7 20 7.3
43 44	1.	22	1.75647 1.75676	29 29	0.24353 0.24324	1.93876 I. 93869	7	17	$30 \quad 11.0$
44	1.69545 T .69567	22 22	I.	29 30	0.24295	J. 938862	7	15	$40 \quad 14.7$
46	I. 69589	22 22	1.75735	30 29	0.24265	T. 93855	7	14	$50 \quad 18.3$
$4 *$	$\overline{1} .69611$	22 22	1.75764	29 29	0.24236	I. 93847	7	13	
48	I.69633	22	T. 75793	$\begin{array}{r} 29 \\ 29 \end{array}$	0.24207	I. 93840	7	12	
49	1.69655	22	1.75822	30	0.24178	I. 93833	7	11	
so	V. 69677		T.75852	29	0.24148	1.93826	7	10	8 7
		22		29			7		6 0.8 0.7 7 0.9 0.8
52	1.69099 $\mathbf{1} .69721$	22	1.75881 1.75910	29 29	0.24119 0.24090	1.93819	8	8	8 1.1 0.9
5	I. 69743	22 22	T. 75939	29 30	0.24061	I. 93804	7	;	9 1.2 1.1
54	1.69765	22	İ.75969	0	0.24031	1.93797	7	6	$\begin{array}{lllll}10 & 1.3 & 1.2\end{array}$
55	1.69787		1.75098		0.24002	Y. 93789		5	20 2.7 2.3 30 4.0 3.5
56	T. $69 \% 09$	${ }^{22}$	T. 76027	29	0.23973	I. 93782	7	4	30 4.0 3.5 40 5.3 4.7
57 58	T. 698831 T .69853	22	T. .76056 I. 76086	30	0.23944	I. 93775	7	3	40 5.3 4.7 50 6.7 5.8
59	i.69053	22	1.70086 I. 76115	29	0.23914 0.23885	1.93768 $\mathbf{Y} .93760$	8	$\stackrel{2}{1}$	
60	1.69897	22	T. 76144	29	0.23856	1.93753	7	0	
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	d	,	p. p.

60°

,	$\log \sin$	d	$\log \tan$	c. d.	log cot	$\log \cos$	d		p. p.
0	1.77946		1.87711		0.12289	I.90235		Bo	
1	1.77963	17	1.87738	26	0.12263	1.90225	9	59	
3	T. 777980	17	1.87764 I .87790	26	0.12236 0.12210	1.90216 1.90206	10	58 58 58	 6 27 2.7
3	T. 77997	16	1.87790 $=8-817$	27	0.12210	1.90206	10	57	6 2.7
4	1.78013	17	[. 8.87817	26	0.12883	8.90197	10	56	$7{ }^{7}$ 3.2
5	T. T .78030	17	1.8 .87843 1.87869	26	0.12157 0.12131	1.90187 1.90178	9	55 54	${ }_{0} 3.6$
\%	I. 78063	16	$\overline{1} 187895$	26	0.12131 0.12105	1.90178 1.90168	10	54 53	9 4.1 10 4.5
1	I. 78080	17	1.87922	27 26	0.12078	1.90159	${ }_{10}$	52	30.9 .0
0	1.78097	17	T.87948		0.12052	\%.90149	10	51	$30 \quad 13.5$
11	1.78113		I. 87974		0.12026	1.90139		50	$40 \quad 18.0$
		17		26			9		$50 \mid 22.5$
11	T. 78130		T. 880000		0.12000	I. 90130	10	48	
12 13		16	T .88027 T .88053	26	0.111973 0.11947	I. 1.9012011	\%	48 47	
14	I. 78180	17	1.880053 T .88079	26 26	0.11947 0.11921	T.90101	10	46	211
15	1. 78197	17	T. 88105	26 26	0.11895	T. 90001	10	45	6 2.6
16	I. 78213	17	T. ${ }^{1} .88131$	27	0.11869	I. 90082	10	44	$7 \quad 3.0$
17	I. .78230 I. 78246	16	-1.88158	26	0.11842 0.11816	1.90072		43	$8 \quad 3.5$
19	I. 78263	17	I. I .8821 c	26	0.11816 0.11790	1.90063	10	42 41	9 3.9 10 4.3
m	1.78280	17	$\overline{\mathrm{I}} .88236$	26	0.11764	$\overline{1} .90043$	10	40	二018.7
		16		26			0		$30 \quad 13.0$
21	1.78296		I. 88282		0.11738	I. 90034	10	39	40 17.3 50 21.7
22	i. .78313 T .78329	16	1.88289 1.88315	26	0.11711 0.11685	I	10	38 37	
23 24 24	1.78329 I. 78346	17	[1.88315	26	0.11685 0.11659	1.90014 $\mathbf{1} .90005$	9	37 36	
25	1.78362	16	I 1.88367	26	0.11633	1.89095	10 10	35	
26	I. 78379	17 16	I. 88393		0.11607	․ 89098	10	34	17
27	I. 78395	17	$\overline{1} .88420$	26	0.11580	1. 899976	10	33	6 1.7
28	I. 78412	16	I. I .88446	76	0.11554	I. 89966	10	32	78.0
29	I.78428	17	$\frac{1}{1} .884842$	26	0.11528	1. 1.89956	9	31	$8^{2.3}$
30	1.78445	16	1.88498	26	0.11502	1. 89947	10	30	9 2.6 10 2.8
31	1.78461		T. 888524	26	0.11476	7. 80937	10	29	20 5.7 10 8.5
32 33 3		16	1.88550 T .88577	27	0.11450 0.11423	1.89927 7.89918	9	28 27	30 5.5 40 11.3
33 34	T .78494 T .78510	16	1.88577 $\overline{1} .88603$	26	0.11423 0.11397	Y.89918	10	27 26	5014.2
35	1. 78527	17	$\overline{1} .88629$		0.11371	$\overline{\mathrm{I}} .89898$	10	25	
36	「.78543	16	1.88655	26 26	0.11345	1. 89888	10	24	
37	I. 78560	3	1.88681 \% 88707	26	0.11319	I. 89879	10	23	
38	I. 78576	16	I. 8.88707	26	0.11293	T. 89869	10	22	6.16
45	1.78592 I .78609	17	1.88733 1.88759	26	0.11267 0.11241	İ. 89859 I .80849	10	21 20	 7 1.6
		16	1.68759	27	0.11241	1.89849	0	20	$\begin{array}{lll}7 & 1.9 \\ 8 & 2.1\end{array}$
41	İ. 98625		¢. 888786		0.11214	I. 89840	10	19	$\begin{array}{ll}9 & 2.4 \\ 10 & 2.7\end{array}$
42	1.78642	16	1.88812 7.8888	$\begin{aligned} & 20 \\ & 26 \end{aligned}$	0.11188	1. 89830	10	18	$\begin{array}{lll}10 & 2.7 \\ 20 & 5.3\end{array}$
43	1.78658	16	1.88838 I .88864	26	0.11162 0.11136	1.89820 T .89810	10	17	$\begin{array}{ll}20 & 5.3 \\ 30 & 8.0\end{array}$
44 45	1.78674 1.78691	17	1.88864 1.88890	26 26	0.11136 0.11110	1.89810 1.89801	\%	16 15	 40 10.7
46	1.78707	16	I. 88916	26	0.11084	I.89791	10	14	$50 \mid 13.3$
47	1.88723	16	I. 8×942	26	0.11058	I. 89781	10	13	
48	I. 98739		1.88968	66	0.11032	1.89778	10	12	
49	1. 78756	18	1.88994	106	0.11006	1.89761	15	11	
50	1.78772		1.89020	6	0.10980	₹.89752	0	10	6) 10 9
		16		26			10		6 1.0 0.9
51	1.78788		I. 89046		0.10954	7.89742			7 1.2 1.8 8 1.3 1.2
52	I. 78805	16	I. 890073	26	0.10927	I. 89732	10	8	8 1.3 1.2
53	T.78821	16	1.89099 -89125	26	0.10901	I. 897272	10	7	10 1.5 1.4
54 55	1.78837 $\mathbf{1} .78885$	16	1.89125 $\mathbf{1} .89151$	26	0.10875 0.10849	1.89712 1.89702	10	$\begin{aligned} & 6 \\ & 5 \end{aligned}$	20 3.3 3.0
56	1. 78869	18	1.89177	26	0.10823	1.89693	${ }_{10}$	4	30 5.0 4.5
57	I. 78896	$\begin{array}{r}17 \\ 8 \\ \hline 16\end{array}$	T.89203		0.10797	T. 8 On 83	10 10	1	40 6.7 6.0 50 8.3 7.5
58	T. 78902	16 16	1.89229	- 616	0.10771	1. 89073	10	2	50 8.3
69	T. .78918 I. 78934	16	1.89255 I .8928 I	26	0.10745 0.10719	1.800663 1.89653	10	1	
	1.78934		1.89281		0.10719	1.29053		0	
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	d	,	p. p.

λ	$\log \sin$	d	$\log \tan$	c.d.	$\log \cot$	loges	d		D. D.				
\square	I. 78934	16	7.89281	26	0.10719	I. 89653		60					
1	I. 78950	17	1.89307	26	0.10693	I. 89643	10	59					
2	1. 78967	16	I. 89333	26	0.10667	I. 8063.3	10	58					
3	I. 7898.3	16	1. 89.359	26	0.10641	1.80,624	10	57	6	2.6	2.5		
4	1. 78909	16	1.84385	26	0.10615	T. 89614	10	56	7	3.0	2.9		
5	1.79015	16	T. 89411	26	0.10589	I. 89604	10	55	8	3.5	3.3		
6	I.79031	16	1.89437	26	0.10563	1.89594	10	54	9	3.9	3.8		
7	I. 79047	16	1.89.463	26	0.10537	7.89584	10	53	10	4.3	${ }_{8} 8.2$		
8	1.79063	16	1. 80489	26	0.10511	1.89574	10	52	20	8.7	8.3		
0	1.79079	16	T. 89515	26	0.10485	1.89564	10	51		13.0	12.5		
10	1.79095		I. 89541		0.10459	1.89554		50		17.3	16.7		
		16		26			10			21.7	20.8		
11	I.79111		I. 89567	26	0.10433	1.89544		49					
12	J. 79128	17	1. 89593	26	0.10407	1.89534	10	48					
13	T. 79144	16	1.89619	26	0.10381	7.89524	10	47	17				
14	I. 79160	16	T. 89645	26	0.10355	7.89514	10	46					
15	1.79176	16	$\begin{array}{r}1.89671 \\ \mathrm{~T} \\ \mathrm{I} \\ \hline\end{array}$	26	0.10329	F. 89504	9	45	\hbar				
16	1.79192	16	I. 89697	26	0.10303	I. 89495	10	44	7.0 8 2.0				
17	I. 79208	16	1.89723 +89749	26	0.10277	1.89485	10	4.3	9 1.6				
18	I. 79224	16	1.89749 T .89775	26	0.10251	1.89475	10	42					
19	I. 79240	16	1.89775 1.89801	26	0.10225	T. 89465	10	41			2.8		
20	X. 79256	16	1.89801	26	0.10199	İ.89455	10	40	m				
21	1.79272		1.89827		0.10173	7.89445		39	30		14.3		
22	I. 79288	16	$\overline{\mathrm{I}} .89853$	26	0.10147	T. 89435	10	38	50				
23	I. 79304	15	I. 89879	26	0.10121	1.89425	10	37					
24	1. 99319	16	1.89905	26	0.10095	7. 80415	10	36					
25	I. 79335	$1{ }^{16}$	7. 89931	26	0.10069	T. 89405	10	35	16		16		
26	I.7935	16	7.89957	26	0.10043	1.89395	10	34					
27	\%.79367	16	I. 89983	26	0.10017	T. 89385	10	33	6	1.6	1.5		
18	1.79383	16	I. 90009	26	0.09991	T. 89375	11	32	8		1.9 1.8		
29	I. 79399	16	1.90035	26	0.09965	T. 89364	10	31	8	2.13.4	2.0		
30	Y.79415		1.90061	26	0.09939	Y. 89354		30	0		$3.4 \quad 3.3$		
		16		25			10		10.2 .7		.7 7.5		
31	1.79431	16	I. 90086	26	0.09914	1.89344				5.3 5.0 8.0 7.5			
32	1. 79447	16	I. 90112	26 26	0.09888	T. 89334	10 10	28		8.0 10.7	7.5		
33	I. 79463	15	I.90138	26	0.09862	T. 89324	10	27		10.713.3	12.5		
34	1.79478	16	7.90164	26	0.09836	T. 89314	10	26					
35	T. 79494	16	T.90190	26	0.09810	T. 89304	10	25					
36	T. 79510	16	1.90216	26	0.09784	I. 89294	10	24					
37	\%. 79526	16	1.90242	26	0.09758	I. 89284	10	23	11				
38	1.79542	16	1.90268	26	0.09732	T. 89274	10	22					
39	I. 79558	15	T. 90298	26	0.09706	7.89264	10	21	$6{ }^{6} 11.1$				
40	1.79573	16	I.90320	26	0.09680	I.89254	10	20	7 1. 8 1.				
41	1.79589		1.90346		0.09654	7.89244		19	0				
42	1.79605	16 16	1.90371	25	0.09629	I. 89233	110	18	10 1.8 10 3.7				
43	1.79621	15	T.90397	26	0.09603	T. 89223	10	176	10.3.				
44	1.79636	16	T.90423	26	0.09577	T. 89213	10	16		30 5.			
45	1.79652	16	I. 90449	26	0.09551	T. 8.89203	10	15					
46	1.79668	16	1.90475	26	0.09525	T. 89193	10	14			. 2		
47	1.79684	15	1.90508	26	0.09499	I. 89183	10	13					
48	1.79699	16	I. 90527	26	0.09473	I. 89173	11	12					
40	1.79715	16	1.90553 $\mathbf{T} .90578$	25	0.09447	1.89162 T .89152	10	11	61010				
50	I. 79731	15	I. 90578	25	0.09422	1.89152	10	10					
51	1.79746		\%.90604		0.09396	1.89142			71.31 .1				
52	1.79762	16	Y.90630	26	0.09370	1.891 .32	10	8	8 1.3 9 1.5	1.2 1.1 $\mathbf{1 . 3}$ 1.3			
53	V.79778	15	I. 90656	26	0.09344	7.89822	10	7	10 1.7 1.5				
54	1.79793	15	1.90682	26	0.09318	7.89112	11	6					
55 56	1.74809	16	1.90708	26	0.09292	T.89101	10	5	30 5.0 4.5				
56	1.79825	15	1.90734	25	0.09266	1.80001	10	4	40	6.7 6.0 8.3 7.5			
57	1.79840	16	$\begin{array}{r}1.90739 \\ 1.90759 \\ \hline\end{array}$	26	0.09241	1.80081	10	$\begin{aligned} & 3 \\ & 2 \end{aligned}$					
58 59	1.79856 1.79872	16	1.90785 T. 90811	26	0.09215 0.09189	1.89071 1.89060	11	2					
69	1.79872 7.79887	15	1.90811 1.90837	16	0.09189 0.09163	1.89060 1.89050	10	0					
	$\log \cos$	d	$\log \mathrm{cot}$	c. d.	log tan	$\log \sin$	d	,		E. D			

,	$\log \sin$	a	$\log \tan$	c. d.	$\log \cot$	$\log \cos$	d		p. p.
0	T.79887	I6	8.90837	26	0.09163	1.89050		B0	
1	1.79903	15	I.90863	26	0.09137	1.89040	10	59	
2	1.79918	15	1.90889	26 25	0.09111	1.89030	10	58	${ }_{6}^{6} \stackrel{26}{26}$
3	1.79934 1.79950	16	I.90914 7.90940	26	0.09086 0.09060	1.89020 7.89009	11	57 56	6 2.6 7 3.0
5	1.79950 1.79965	15	1.90940 1.90966	26	0.09060 0.09034	1.89009 1.88999	10	56 55	7 8 3.0 3.5
6	1.7998i	16	Y. 90992	26	0.00008	T. 88989	10	54	$9 \quad 3.9$
8	1.79996	15 16	1.91018	26 25	0.08982	1.88978	11	53	$10 \quad 4.3$
8	7. 800012	15	1.91043	25	0.08957	1.88968	10	52	$\begin{array}{ll}20 & 8.7\end{array}$
9	1.80027 1.80043	16	1.91069 8.91095	26	0.08931	T 7.88958	10	51	$30 \quad 13.0$
10	1.80043	15	1.91095	26	0.08905	$\overline{1.88948}$	10	50	40 17.3 50 31.7
18	7.80058	16	1.91121	26	0.08879	1.88937	10	45	
12	1.80074	15	1.91147	25	0.08853	7.88927	10	48	
13	1.80089	16	1.91172	25	0.08828	1.88917	1	47	
14	1.80105 1.80120	15	1.91198 $\mathbf{T} .91224$	26	0.08802	I. 888906	10	46	25
16	1.80120 I. 80136	16	1.91224 1.91250	26	0.08776 0.08750	1.88896 $\mathbf{1} .88886$	10	45 44	6 7 2.9
17	1.80151	15	1.91276	26 25	0.08724	1.88875	11	43	$8 \quad 3.3$
18	T. 80166	15	T. 91301	25 26	0.08699	1.88865	10	42	$9 \quad 3.8$
19	T. 80182	85	I. 91327	26	0.08673	ī. 88855	11	41	10 4.2
10	1.80197	35	. 1.91353		0.08647	I. 88844	11	40	2088
21	7.80213	16	1.91379	26	0.08621	$\overline{1} .88834$	10		30 12.5 40 16.7
22	$\overline{1} .80228$	15 16	1.91404	25	0.08596	1.88824	10	38	$50 \mid 20.8$
23	I. 80244	15	1.91430	26 26	0.08570	İ.88813	11	37	
24	I. 80259	15	7. 91456	26	0.08544	I. 888803	10	36	
25	I. 80274	16	I. 91482	25	0.08518	I. 88793	11	35	
26	\%.80290	15	T. 91507	26	0.08493	1. 1.88782	10	34	16
27	1.80305	15	1.91533	26	0.08467	$\overline{1} .88772$	11	33	$6{ }^{6} 1.6$
20	1.80320 $\mathbf{Y} .80336$	16	1.91559 $\mathbf{1} .91585$	26	0.08441 0.08415	$\overline{1} .88761$ $\overline{1} .88751$	10	32 31	$\begin{array}{lll}8 & 1.9 \\ 8 & 2.1\end{array}$
30	$\overline{1} .80351$	15	1.91610	25	0.08390	$\overline{\mathrm{T}} .88741$	10	30	9
		15		26			11		10.2 .7
31	7.80366	16	1.91636		0.08364	I. 88730	ro	29	20 5.3 30 8.0
32 33 3	1.80382 T .80397	15	Y. 916662 T .91688	26	0.08338 0.08312	1.88720 $\mathbf{1} .88709$	11	28 29	30 8.0 00 10.7
34	1.80412	15 16	1.91688 7.91713	25	0.08312 0.08287	1.88709 $\mathbf{1} .88699$	18	27 26	50113.3
35	7.80428	16	I. 1.91739	26	0.08261	I. 88888	11	25	
36	I. 80443	15	T. 91765	26	0.08235	1.88678	10	24	
37	1.80458	15	1. 91791	26 25	0.08209	1.88668	$1{ }_{1}$	23	
38	1.80473	16	T. 91816	26	0.08184	1.88657	10	22	15
30	1.80489 1.80504	15	Y. 1.9184828	16	0.08158 0.08132	T. 888647 I .88636	11	21 20	6 6 1.5
40	1.80504	15	1.91868	25	0.08132	1.88636	10	20	8 8 $\begin{aligned} & 1.8 \\ & 8.0\end{aligned}$
41	7. 80519		T. 91893		0.08107	7. 888626		19	
42 43	I. 2050534 $\mathbf{I} .80550$	16	1.91919 $\mathbf{1 . 9 1 9 4 5}$	26	0.08081 0.08055	1.88615 7.88605	${ }^{11}$	18	10 2.5 20 5.0
43 44	1.805s0	15	1.91945 1.91978	26	0.08055 0.08029	1.88605 7.88594	11	17	$\begin{array}{ll}30 & 7.5\end{array}$
45	7.80580	15 15	7. 91996	25 26	0.08004	T. 88584	${ }_{18}^{18}$	15	40 10.0
46	I. 80595	15 15	7.92022	26 186	0.07978	Y. 88573	11	14	$50 \mid 12.5$
47	T.80610	15	Y. 922048	25	0.07952	7.88563 78852	11	13	
48	T. 8.80625	16	Y. .92073 T. 92099	26	0.07927	1.88552	III	12	
49 50	1.80641 1.80656	15	I. 9.92099 I. 92525	06	0.07901	Y.88542	11	${ }^{11}$	
50	1.80656	15	1.92525	25	0.07875	7.88538	1	[II	6 11 10
51	1.80671		T. 92150		0.07850	7.88521			
52	1.80686	15	I. 92176	26	0.07824	I. 88510	18	8	8 1.5 1.3
53	I. 80701	15	Y.92202	25	0.07798 0.07773	1.88499	1	6	9 10 1.8 1.5 1.7
54 55	1.80716	15	1.92227 I. 92253	16	0.07773	1.88489	1	6	$\begin{array}{llll} & 10 & 1.8 & 3.7 \\ 3.3\end{array}$
55 56	1.80746	15 16	1.92253	1.6	0.07747 0.07721	1.88478 1.88468.	1	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	30 5.5 5.0
57	1.80762	15	7.92304	25 26	0.07696	I. 88.8457	1	3	$40 \quad 7.3$ 6.7
58	$1.807{ }^{1} 7$	15 15	Y.92330		0.07670	7. 88447	1	2	50.2 9.3
598	1.80792 J .80807	15		$\begin{aligned} & 20 \\ & 25 \end{aligned}$	0.07644	1.88436 $\mathbf{1 . 8 8 4 2 5}$	1	1	
6	J.80807		1.92381		0.07619	1.88425		0	
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	d	,	p. p.

40°

\%	$\log \sin$	d	$\log \tan$	c. ${ }^{\text {d. }}$	log cot	$\log \mathrm{cos}$	d		D. p.
0	8.80807		7.92388		0.07619	1.88425		60	
1	1. 808823	15	7. 93407	26	0.07593	1.88 .415	11	59	
a		15	I. 92433	25	0.07567	1.88404	10	58	
3	T. 80852 T. 80867	15	T. .92458 T .92484	26	0.07542 0.07516	IT.88394	11	57 56	6 7 8.6
5	1.8067 1.80×82	15 15	1.92484 1.92510	26	0.07516 0.07490	1.88 .383 T .88372	11	50 55	7 3.0 8 3.5
6	1.80897	15	1.92535	25 26	0.07465	[.88.362	11	54	93.9
7	T. 8 enol2	15	Y.92561	26	0.07439	1.88351	11	53	$10 \quad 4.3$
\square	7. 80027	15	1.92587	25	0.07413	I. 88.8310	10	52	$20 \quad 8.7$
9	1.80942	15	I. 92612	26	0.07388	T. 888330	11	51	$\begin{array}{ll}30 & 13.0\end{array}$
10	T. 80957	15	I.92638		0.07362	1.88319		50	$40 \quad 17.3$
		15		25			11		$50 \mid 21.7$
11	T. 80972		1.92663	26	0.07337	7.88308	10	40	
12	T.80987	15	T. 1.92689	26	0.07311		11	48	
13	1.81002 $\mathbf{1 . 8 1 0 1 7}$	15	1.92715 1.92740	25	0.07285 0.07260	T 1.88287 T .88276	11	47 46	
14 15	8.81017 I .81032	15	1.92740 I. 92766	26	0.07260 0.07234	1.88276 I .88266	10	46	5- ${ }^{25}$
16	1.81047	15	I. 927892	06	0.07208	1.88255	11	45	9 2.5 7 2.9
17	7. 81061	14 15	1.92817	25	0.07183	Y. 88244	11	43	$8 \quad 3.3$
18	1.81076	15	T.92843	25	0.07157	Y. 88234	11	42	$9 \quad 3.8$
19	I. 81091	15	T. 92868	26	0.07132	1. 8×223	11	41	10.4 .2
20	1.81106	15	I. 92894		0.07106	1.88212		40	$20 \quad 8.3$
		15		26			11		30 12.5 40 16.9
21	T.81121		T.92920		0.07080	7. 788201	10	39 38	40 16.7 50 20.8
22	I. F .811361	15	1.92945 1.92971	25	0.07055	7.88191 1.88180	11	38 37	$50 \mid 20.8$
23 24 24	I. 811151 T .81166	15	1.92971 $\mathbf{1 . 9 2 9 6 6}$	25	0.07029 0.07004	T I .88180 T .88169	\because	37 36	
24 25	1.81160 7.81180	14	I. .92996 I 93022	26	0.07004 0.06978	1.86169 $\mathbf{1} .88158$	11	36 35	
26	T. 81195	15 15	T. 93048		0.06952	I. 88148	10	34	15
27	1.81210	15 15	I. 93073	26 26	0.06927	I. 888137	11	33	6 6 1.5
28	1.81225	15	I. 93099		0.06901	I. 88126	11	32	$7{ }^{7} 1.8$
29	I. 81240	14	1.93124	26	0.06876	1.88115	10	31	$8 \quad 2.0$
30	1.81254		I.93150		0.06850	1.88105		30	10.3
		15		25			11		$10 \quad 2.5$
31	1.81269	15	7.93175	26	0.06825	T. 88094	11	29	21 5.0 30 7.5
32 33 34	1.81284 7.81299	15	Y.93201 $\mathbf{1} .93227$	26	0.06799 0.06773	T. 8.88083	11	28 27	30 7.5 40 10.0
33 34 34	1.81299 7.81314	15	I. .93227 I .93252	25	0.06773 0.06748	1.88072 1.88061	11	27 26	20 10.0 50 12.5
35	T.81328	14	1.93258 $\mathbf{1 . 9 3 2 7 8}$	15	0.06748 0.06722	$\overline{\mathrm{T}} .88051$	10	25	
36	1.81343	15	I. 93303	25 26	0.06697	T. 88040	11	24	
37	1.81358	15	I.93329	25	0.06671	T. 38029	11	23	
38	1.81372	15	I. 93354	26	0.06646	I. 88018	11	22	14
39	1.81387	15	1.93380	26	0.06620	1.88007	11	21	$6{ }^{6} 1.4$
40	1.81403	15	I. 93406	25	0.06594	1.87996	11	20	 7 1.6 1.9
41	1.81417		8.93431	26	0.06569	1.87985			9.2 .1
42	1.81431	14	I. 93457		0.06543	1.87975	11	18	$10 \quad 2.3$
43	1.81446	15 15	I. 93488	26 26	0.06518	1.87964	11	17	20 4.7
44	1.81461	14	I. 93508	25	0.06492	1.87953	11	16	$30 \quad 7.0$
45	1.81475	15	1.93533 $\mathbf{1} 93559$	26	0.06467	7.87942	11	15	40 9.3 80 11.7
46	1.81490	15	${ }^{1} .93559$		0.06441	1.87931	11	14	80181.7
47	1.81505	14	${ }^{7} .93584$	26	0.06416	1.87920	11	13	
48	$\begin{array}{r}1.81519 \\ \hline 1.81534\end{array}$	15	Y .93610 1.93636	26	0.06390 0.06364	1.87909 1.87808	11	12	
49	1.81534		1.93636 8.93661		0.06364	1.87898	it	11	
50	1.81549	15	8.93661	25 106	0.06339	1.87887	11	10	$611 / 10$
		14		16			10		6 1.1 1.0
51 52	$\begin{aligned} & 1.81563 \\ & 181 \leqslant 78 \end{aligned}$	15	1.93687 7.93712	25	0.06313	1.87877 78.866	11	8	7 1.3 1.0 8 1.5 1.3
51 53 53	1.81578 1.81592	14	1.93712 I .93738	26	0.06288 0.06262	T.87855	11		9 1.7 1.5
53 54	1.81607	15	${ }_{1} 1.93763$	25	0.00232	T. 8.8 .844	11	6	$10 \quad 1.8$
55	1.81622	15	T. T .93789	26	0.06211	1.87833	11	5	20 3.7 3.3
56	I.81636	14	T.93814	25 26	0.06186	1.87832	11	4	30 5.5 5.0
57	8.81651	15	Y.93840		0.06160	1.87811		3	$\begin{array}{lllll}40 & 7.3 & 6.7\end{array}$
58	7.81665	15	1.93865	26	0.06135	7.87800	is	1	
59 60	1.81680 $\mathbf{1} .81694$	14	1.93891 $\mathbf{8 . 9 3 9 1 6}$		0.06109 0.06084	I. 287789 I .87778	11	1	
60	1.81694		1.93916		0.06084	1.87778		\bigcirc	
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	d	,	p. p.

,	$\log \sin$	d	$\log \tan$	c. d.	$\log \mathrm{cot}$	\log cos	d		p. D.
0	1.83378		1.96966		0.03034	Y.86413		60	
1	8.83392	14	İ.96991		0.03009	I. 8.86401	12	59	
2	i. 834405	13.	T. 97016	25 26	0.02984	T. 863889	12	58	26
3	T.83419	13.	1.97042	25	0.02958	7.86377	12	57	6 2.6
4	${ }_{\text {¢ }}^{1} 8.83432$	13	I. 97067	${ }_{25}^{25}$	0.02933 0.02088	I. 8.86366	12	56	7 3.0
5 6	i. 8.83446 $\mathrm{~T} .8,4.459$	13	T. .97092 T .97118	26	0.02908 0.02882	1.86354 T .86342	12	55 54	g 3.5 9 3.9
7	$\overline{1} .83473$	14	I. I .97143	25 25	0.02885	1.86330	12	54 53 54	9 3.9 10 4.3
8	¢ 1.83486	13	i. 97168	25 25	0.02832	1.86318	12	52	$\begin{array}{ll}30 & 8.7\end{array}$
9	I. 83500	13	T. 97193		0.02807	I. 8.8306	12	51	$\begin{array}{lll}30 & 13.0\end{array}$
10	1.83513	13	I. 97219		0.02781	1.86295	11	50	$49 \quad 17.3$
		14		25			12		$50 \mid 21.7$
11	1.83527 $\mathbf{7} .83540$	13	1.97244 T. 97269		0.02756 0.02731	7.86283 7.86271	12	49	
12	1.83540 1.83554	14	I. .97269 T .97295	25 25	0.02731 0.02705	1.86271 $\mathbf{1 . 8 6 2 5 9}$	12	48	
14	\% 7.83567	13	T. T .97320	25 25	0.02680	1.86247	12 12	46	25
15	I. 83581	14	I. 97345	25 26	0.02655	7.86235	12 12	45	$6{ }^{6} 2.5$
16	7.83594	14	Ti.97371	25 25	0.02629	1.86223	12	44	$7 \quad 2.9$
17		13	I.97396	25	0.02604	Ti.86211	11	43	$\begin{array}{lll}8 & 3.3 \\ 9 & 3.8\end{array}$
19	T. 83634	13	$\frac{1}{1.97421}$	26	0.02579	T 1.86188	12	41	10 3.8 10 4.2
20	1.83648	14	1.97472	25	0.02528	7. 86176	12	40	20) 8.3
		13		25			12		$30 \quad 12.5$
21	1.83661		T. 97497	26	0.02503	T. 8.86164		39	43 16.7 50 20.8
22 23 23	I. 836674 I .83688	14	İ.97523 I. 97548	25	0.02477 0.02452	T. 86152	12	38 38	
24 24 2	İ.83701	13 14 14	İ.97573	25 25 25	0.02452 0.02427	\% T .866128	12 12	36	
25	T. 83715	14	T. 97598	25 26	0.02402	I. 86116	12	35	
26	\$ 8.83728	13	1.97624	25	0.02376	\% 8.86104	12	34	$6{ }^{14}$
27	¢ 1.83741	14	1.97649	25	0.02351	I $1.86002{ }^{\text {I }}$	12	33	6 1.4 7 16
29	1.83755 Y .837688	13	1.97674 I .97700	26	0.02326 0.02300	I. T .860608	12	32	7 16 8 1.9
30	$\overline{\mathrm{I}} .8378 \mathrm{I}$	13	$\overline{\mathrm{I}} .97725$	25	0.02275	1.86056	12	30	$9 \quad 2.1$
		14		25			12		$10 \quad 2.3$
31	1.83795	13	I. 97750	26	0.02250	1. 86044	12	29	20 4.7 30 7.0
32 33 3	1.83808 I .83821	13	1.97776 7.97801 1	25	0.02224 0.02199	1.86032 \square	12	28 27	30 7.0 40 9.3
34	ग. 8.3834	13	I. 97826	25 25	0.02174	1.86008	12	26	$50 \mid 11.7$
35	T. 83848	14	T. 978851	25	0.02149	I. 85996	12 12	25	
36	ㄷ.83861	13	I. 97877	25	0.02123	1.85984	12	24	
37	$1.838 \% 4$ 183887	13	I. 97902	25	0.02098	T.85972	12	23	
38 38	1.83887 -83901 18891	14	1.97927	26	0.02073 0.02047	1.85960 1.85948	12	22 21	$6)^{13}$
38 40	1.83901 1.83914	13	1.97953 I .97978	25	0.02047 0.02022	1.85948 $\mathbf{1} .85936$	12	21 20	6 7 1.3
		13		25	0.02022		12		\% 1.7
41	I. 83927		1.98003		0.01997	I. 85924	12	19	9 2.0 10 2.2
42	1.83940 8.8954	13	I. $\mathrm{T}, 98029$ 1.98054	25	0.01971 0.01946	7.85912 T .85900	12	18	$\begin{array}{ll}10 & 2.2 \\ 20 & 4.3\end{array}$
43	1.83954 I. 83967	13	I. .98054 I. 28079	25 35	0.01946 0.01921	1.85900 7.85888	12	17 16	 30 4.3 0.5
44 45	1.83967 1.83980	13	1.98079 $\mathbf{1} .98104$	25	0.01921 0.01896	1.85888 1.85876	12	16 15	$40 \quad 8.7$
46	1.83993	13	T.98130	26 25	0.01370	T. 85864	12	14	50180.8
47	1.84006	13	1.98155	25 25	0.01845	1. 85851	13 12 12	13	
48	1.84020	13	I. 98180	25 26	0.01820	$\begin{array}{r}1.85839 \\ \hline\end{array}$	12 12	13	
49	1.84033	13	T. 98.006	25	0.01794	J. 85887	12	11	
so	1.84046	13	I. 98231	25 25	0.01769	1.85815	12	10	12 11 1.2 11
51	7.84059	13	I. $9^{8} 256$	25	0.01744		12		6 1.2 1.8 8 1.4 1.3
52	1.84072	13	1. $9^{8,281}$	25 26	0.01719	1.85791	12	B	8 8 $\quad 1.6$
53	1.84085	13 13 13	I. 98307		0.01693	1.85779	12	7	9 1.8 1.7 10 20 1.8
54	1.84098	14	I. 983332	25 25	0.01668	1.85766	13	5	10 2.0 1.8 20 4.0 3.7
55	T.84112	13	T. 98.357	25	0.01643 0.01617	1.85754	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	5	20 4.0 3.7 30 6.0 5.5
56 57	1.84125 1.84138	13	1.08483 I. 2×408	25	0.01617 0.01592	1.85742 I .85730	12	4	30 8.0 7.3
58	1.84151	13	T. 9×433	25 25	0.01567	I.85718	12	2	
59	1.84164	13	I. 88458	25 26	0.01542	I. 85706	12 13	1	
60	8.84177	13	I. 98.884		0.01516	1.85693	13	-	
	$\log \cos$	d	$\log \cot$	c. d.	$\log \tan$	$\log \sin$	d	,	p. D.

46°

TABLE
 OF
 COMMON LOGARITHMS

OF NUMBERS

From 1 to 10,000 .

N.	Log.	N.	Log.	N.	Log.	N.	Log.	N.	Log.
0	- $\quad \infty$	20	$30 \quad 103$	40	60206	60	77815	80	$90 \quad 309$
1	00000	21	32222	41	61278	61	78533	81	90849
2	30103	22	34242	42	62325	62	-79 239	82	9138 I
3	47712	23	36173	43	63347	63	79934	83	91908
4	60206	24	38021	44	64345	64	80618	84	92428
5	69897	25	39794	45	65321	65	81291	85	92942
6	77815	26	41497	46	66276	66	81954	86	93450
7	84510	27	43136	47	67210	67	82607	87	93952
8	$90 \quad 309$	28	44716	48	68124	68	83251	88	94448
9	95424	29	46240	49	69020	69	83885	89	94939
10	00000	30	47712	50	69897	70	84510	90	95424
II	04139	31	49136	51	70757	71	$85 \quad 126$	91	95904
12	07918	32	50515	52	71600	72	85733	92	$96 \quad 379$
13	11394	33	51 851	53	72428	73	86332	93	96848
14	14613	34	53148	54	73239	74	86923	94	97313
15	17609	35	54407	55	71036	75	87506	95	$97 \quad 772$
16	20412	36	55630	56	$7+819$	76	88 081	96	98227
17	23045	37	56820	57	$75 \quad 387$	77	88649	97	98677
18	25527	38	57978	58	76343	78	89209	98	99123
19	27875	39	59106	59	77085	79	89763	99	99564
20	30103	40	60306	60	77815	80	$90 \quad 309$	100	00000

N.	L. 0	1	2	3	4	5	0	7	8	9	P. P.			
100	00000	043	087	130	173	217	260	303	346	389				
101	432	475	518	501	604	647	689	732	775	817				
102	860	903	945	988	*030	*072	*115	*157	*199	*242		44		42
103	O1 284	326	368	410	452	494	536	578	620	662	1	4.4	4	4.2
104	703	745	787	828	870	912	953	995	\%36	${ }^{*} 078$	2	8.8	. 6	8.4
105	02119	160	202	243	284	325	366	407	449	490	3	13.2 17.6	12.9 17.2	12.6 10.6
106	531	572	612	653	694	735	776	816	857	898		17.6 22.0	17.2 31.5	120.6 21.0
107	938	979	*019	* 060	* 100	${ }^{*}+1$	* 181	*222	* 262	* 302	6	26.3	21.5	25.2
108	03342	383	423	403	503	543	583	623	663	703	8	30.8 35.2	30.1	24.4 33.6
lug	743	782	822	862	902	941	981	${ }^{\text {\% }} \mathrm{O} 21$	* 060	* 100	8	35.		33.6 37.8
110	04139	179	218	258	297	336	376	415	454	493				
111	532	571	0	650	689	727	766	805	844	883				
112	922	901	999	*038	*077	*115	* 54	*I $)^{2}$	*231	* 260				
113	05308	346	385	423	461	500	538	576	614	652	1	4. 8	4.0	39
114	690	729	767	805	843	881	918	956	994	-032	2	8.2	8.0	7.8
115	06070	108	145	183	221	258	296	333	371	408	3	12.3 16.4	12.0 16.0	11.7 15.0
116	446	483	52 I	558	595	633	670	707	744	781	5	16.4 30.5	16.0 20.0	15.0 19.5
117	819	856	893	930	967	${ }^{*} 004$	* ${ }^{4} 1$	*078	* I 15	* 151	6	24.6	24.0	23.4
118	07188	225	262	298	335	372	408	445	482	518	7	28.7 32.8	28.0 32.0	27.3 31.2
119	555	591	628	664	700	737	773	809	846	882	8		32.0 36.0	31.2 35.1
120	918	954	990	*027	*063	*099	${ }^{\text {\% } 135}$	${ }^{*} 171$	*207	${ }^{3} 243$				
12 I	082	314	O	386	422	45^{8}	493	529	565	600				
122	6	672	707	743	778	814	849	884	920	955		38		36
123	991	*026	*061	*og6	${ }^{+132}$	${ }^{*} 167$	*202	*237	*272	*307.	1	3.8	$3 \cdot 7$	3.6
124	09342	377	412	447	482	517	552	587	621	656	a	7.6	7.4	7.8
125	691	726	760	795	830	864	899	934	968	*OO3	3	11.4 15.2	21.1 14.8	10.8 14.4
126	$10 \quad 037$	072	106	140	175	209	243	278	312	346	5	15.2 19.0	14.8 18.5	14.4 18.0
127	380	415	449	483	517	551	585	619	653	687	6	22.8	22.2	${ }^{21.6}$
128	721	755	789	823	857	890	924	958	992	*025	7	26.6 30.4	25.9 24.6	25.2 28.8
129	11059	093	126	160	193	227	261	294	327	361	4			32.4
130	4	428	46	494	528	50	94	628	601	694				
131	727	760	793	826	860	893	926	959	992	*024				
132	12057	090	123	156	189	222	254	287	320	352		35	34	33
133	385	418	450	483	516	548	581	613	646	678	1	3.5	3.4	$3 \cdot 3$
134	710	743	775	808	8.40	872	905	937	969	*001	2	7.0 10.5	6.8 10.2	4.4
135	13033	066	098	130	102	194	226	258	290	322	4	14.0	10.2 13.6	4.4 13.2
136	354	386	418	450	481	513	545	577	609	640	5	17.5 21.0	17.0 20.4	
137	672	704	735	767	* 799	830	862	893	+925	*956	6	21.0 24.5	20.4	14.8 23.1
138	988	*or9	*05 I	*082	* 114	* 145	* 176	* 208	*239	*270	$?$	24.5 28.0 3.5	23.8 27.2	23.1 26.4
139	14301	333	364	395	426	457	489	520	551	582				29.7
140	613	64	675	706	737	768	799	829	860	8 y 1				
141	922	953	983	*OI4	${ }^{\text {* }} 045$	*076	${ }^{*} 106$	${ }^{\text {* }}$: 37	${ }^{*} 168$	${ }^{*} 198$				
142	$15 \quad 229$	259	290	320	351	381	412	442	473	503		32	31	30
143	534	564	594	625	655	685	715	746	776	806	1	3.2	3.1 3.2	
144	836	866	897	927	957	987	*017	* $0+7$	*077	${ }^{*} 107$	2	6.4 9.6	6.2 4.3	6.0 4.0
145	$16 \quad 137$	167	197	227	256	286	316	346	376	406	,	9.6 12.8	4.3 12.4	12.0 18.0
140	435	465	495	524	554	584	613	643	673	702	,	16.4	15.5 18.6	15.0 18.0
147	732	761	791	820	850	879	909	938	967	99\%	7	19.2 22.4	18.6 21.7	18.0 28.0
148	17026	056	085	114	143	173	202	231	260	289	8	25.6	24.8	24.0
149	319	348	377	406	435	464	493	522	551	580	9	28.8	27.9	27.0
150	609	6.38	667	696	725	754	782	811	840	869				
N	L. 0	1	2	3	4	5	6	7	8	9			P	

LOGARITHMS.

N.	L. 0	1	2	3	4	5	6	7	8	9		
250	39794	811	829	846	863	SSI	898	915	933	950		
251	967	985	*002	*O19	${ }^{\text {\% }} 037$	*054	*071	*085	${ }^{106}$	*123		
252	fo 140	157	175	102	209	226	243	261	278	295		18
253	312	329	346	364	381	398	415	432	449	466	1	1.8
254	483	500	513	535	552	569	586	603	620	637	2	3.6
255	654	071	688	705	722	739	756	773	790	807	3	5.4 7.2
253	S24	841	858	875	892	909	926	943	960	976	5	9.0
257	993	*010	*027	*044	*061	${ }^{*} 075$	*095	*111	*128	*145	6	10.8 12.6
258	+1 162	179	I, 6	212	229	246	263	280	296	313	7	12.6 14.4
259	330	347	363	380	397	+14	430	447	464	4^{81}	9	
260	497	514	531	547	564	551	597	$61+$	631	647		
261	664	681	697	714	731	747	764	780	797	814		
202	830	847	863	880	896	913	929	946	963	979		17
263	996	* 012	*029	* 045	*062	*078	*005	* IIt	*127	${ }^{*} 144$	2	1.7
264	$+2160$	177	193	210	226	243	259	275	292	308	3	
265	325	341	357	374	390	406	423	439	455	472	3 4	5.1
266	488	504	521	537	553	570	586	602	619	635	5	8.5
267	651	667	684	700	716	732	749	765	781	797	6	10.2
268	813	830	846	862	878	894	*11	. 927	943	959	$\stackrel{7}{8}$	11.9 18.6
269	975	991	*008	*024	*040	*056	*072	*088	*104	* 120	9	
270	43136	152	169	185	201	217	233	249	265	281		
271	297	313	329	345	361	377	393	409	425	441		
272	457	473	489	505	521	537	553	569	584	600		16
273	616	632	648	664	680	696	712	727	743	759	1	1.6
274	775	791	807	823	838	854	870 $*$	886	902	* 917	2 3	3.2 4.8
275	933	949	965	951	996	*O12	*028	\% 04	"059	*075	3 4 4	1.8 6.4
276	14091	107	122	138	154	170	185	201	217	232	5 6	8.0 9.6
277	248	264	279	295	311	326	342	35^{8}	373	389	6	9.6 11.2
278	404	420	436	451	467	483	49^{8}	5 I 4	529	545	7	11.2 12.8
279	560	576	592	607	623	638	654	669	685	700	9	14.4
280	716	731	747	762	778	793	809	824	840	855		
281	S71	886	902	917	932	948	963	979	994	*OIO		
282	45025	0.40	056	071	086	102	117	133	148	163		15
283	179	194	209	225	240	255	271	286	301	317	1	8.5
284	332	347	362	378	393	408	423	439	454	469	2	3.0 4.5
285	484	500	515	530	$5+5$	561	576	591	606	621	3	4.5 6.0
286	637	652	667	682	697	712	728	743	758	773	5	7.5
287	788	803	815	834	849	864	879	894	909	+924	6	9.0 10.5
288	939	954	969	984	*000	${ }^{*} 015$	*030	*045	*060	*075	7	10.5 12.0
289	46090	105	120	135	150	165	180	195	210	225	9	83.5
290	240	255	270	285	300	315	330	345	359	374		
291	389	404	419	434	449	464	479	494	509	523		
292	538	553	568	583	598	613	627	642	657	672		14
293	687	702	716	731	746	761	776	790	805	820	1	2.4
29.4	835	850	864	879	894	909	923	938	953	967	3	2.8
295	982	997	*012	* 026	*041	*056	*070	*OS5	*100	* 114	3	4.2 5.6
296	47129	144	159	173	188	202	217	232	246	261	5	7.0
297	276	290	305	319	334	349	363	378	392	407	6	8.4 9.8
298	422	436	451	465	480	494	509	524	538		?	9.8 18.2
299	567	582	596	6.11	625	640	654	669	683	698		12.6
300	712	727	741	756	770	784	799	813	828	$5+2$		
N.	L. 0	1	2	3	4	5	6	7	8	9		?

I L T $36 \mathrm{~F}^{-20}$

N.	L. 0	1	2	3	4	5	6	7	8	9		P
300	47712	727	741	756	770	784	799	813	825	8.42		
301	857	871	885	900	914	929	943	958	972	986		
302	48001	015	029	0.44	058	073	087	101	116	130		
303	144	159	173	137	202	216	230	2.44	259	273		
304	287	302	31%	330	344	359	373	387	(1)1	416		
305	430	444	45^{8}	473	487	501	515	530	544	558		
306	572	586	(x) 1	615	629	643	657	671	686	700		3.0
307	714	728	742	756	770	785	799	813	827	841	3	4.5
308	855	869	883	897	911	926	+940	-954	\%68	9^{82}	3 5	6.0
309	996	*)	*024	${ }^{*} 038$	*()52	:066	*080	${ }^{-} 094$	* 108	${ }^{*} 122$.	6	9.0
310	+9 136	150	104	173	192	206	220	234	248	262	7	10.5 12.0
311	276	290	304	318	332	346	360	374	388	402		13.5
312	415	429	443	457	471	485	499	513	527	54.1		
313	554	568	582	596	610	624	638	651	665	679		
314	693	707	721	734	748	762	776	790	803	817		
315	831	845	859	872	886	900	914	927	941	955		
316	969	9^{82}	996	*010	*024	*037	*051	*065	*079	*Og2		14
317	50106	120	133	147	161	174	188	202	215	229	1	1.4 2.8
318	243	256	270	284	297	311	325	33^{8}	352	365	3	
319	379	393	406	420	433	447	461	474	488	501	4	
320	515	529	542	556	569	583	596	610	623	637		
321	651	664	678	691	705	718	732	745	759	772	7	
322	786	799	813	826	840	853	866	880	893	907		12.6
323	920	934	947	961	974	987	*001	*014	${ }^{*} \mathrm{O} 28$	*041		
324	51055	068	081	095	108	121	135	148	162	175		
325	188	202	215	228	242	255	268	282	295	308		
326	322	335	348	362	375	388	402	415	$+28$	441		
327	455	468	481	495	508	521	534	548	56) 1	574		13
328	587	601	614	627	640	654	667	680	693	706	1	
329	720	733	746	759	772	786	799	812	825	838	3	3.9
330	851	865	878	891	904	917	930	943	957	970	1	
331	983	996	*(009	*O22	*O35	*045	*061	*O75	*088	${ }^{\text {\# }} 101$,	7.8
332	52 I14	127	140	153	166	179	192	205	218	231	7	9.1 20.4
333	244	257	270	284	297	310	323	336	349	362		12.7
334	375	388	401	414	427	440	453	466	479	492		
335	504	517	530	543	556	569	582	595	608	621		
336	634	647	660	673	686	699	711	724	737	750		
337	763	776	789	802	815	827	840	853	866	879		
338	892	905	917	930	943	956	969	982	994	*0r) 7		12
339	53020	033	046	058	071	084	097	110	122	135	3	1.2 2.4
340	148	161	173	186	199	212	224	237	250	263	,	3.6
341	275	288	301	314	326	339	352	364	377	39°	3 5	4.8 6.0
342	403	415	428	441	453	466	479	491	504	517	6	7.2
343	529	542	555	567	580	593	605	618	631	643	8	8.4 0.6
344	656	668	681	694	706	719	732	744	757	769	9	
345	782	794	807	820	832	845	857	870	\%82	*95		
346	908	920	933	945	958	970	983	995	*008	*O20		
347	54033	045	058	070	083	095	108	120	133	145		
348	158	170	183	195	208	220	233	245	258	270		
349	283	295	307	320	332	345	357	370	382	394		
350	407	419	432	444	456	469	481	494	506	518		
N.	L. 0	1	-	3	4	5	6	7	8	9		P.

N.	L. 0	1	2	3	4	5	6	7	8	9		P
400	60206	217	228	239	249	260	271	282	293	304		
401	314	325	336	347	358	369	379	390	401	412		
402	423	433	444	455	466	477	487	498	509	520		
403	531	541	552	563	574	584	595	606	617	627		
404	638	649	660	670	681	692	703	713	724	735		
405	746	756	767	778	788	799	810	821	831	842		
406	853	863	874	885	895	906	917	927	938	949		11
407	959	970	981	991	*002	*O13	*023	*O34	*045	*O55		8.1
408	61066	077	087	098	109	119	130	140	151	162	2	
409	172	183	194	204	215	225	236	247	257	268	\%	3.3 4.4
410	278	289	300	310	321	331	342	352	363	374	5	
411	384	395	405	416	426	437	44^{8}	458	469	479		
412	490	500	511	521	532	542	553	563	574	584		8.8 9.9
413	595	606	616	627	637	648	658	669	679	690		
414	700	711	721	731	742	752	763	773	784	79.4		
415	805	815	826	836	847	857	868	878	888	899		
416	909	920	930	941	951	962	972	982	993	*OO3		
417	62 O14	024	034	045	055	066	076	086	097	107		
418	118	128	138	149	159	170	180	190	201	211		
419	221	232	2.42	252	263	273	284	294	304	315		
420	325	335	346	356	366	377	387	397	408	418		
421	428	439	449	459	469	480	490	500	511	521		10
422	531	542	552	562	572	583	593	603	613	624	1	1.0
423	634	644	655	665	675	685	696	706	716	726	2	
424	737	747	757	767	778	788	798	808	818	829		
425	839	849	859	870	880	890	+900	*910	\% 921	.931		4.0
426	941	951	961	972	982	992	*002	*012	*O22	*O33	6	6.0
427	$63 \quad 043$	053	063	073	083	094	104	114	124	134		
428	144	155	165	175	185	195	205	215	225	236		
429	246	256	266	276	286	296	306	317	327	337		
430	347	357	367	377	387	397	407	417	428	438		
431	44^{8}	458	468	478	488	498	508	518	528	538		
432	54^{8}	558	568	579	589	599	609	619	629	639		
433	649	659	669	679	689	699	709	719	729	739		
434	749	759	769	779	789	799	809	819	829	839		
435	849	859	869	879	889	899	909	+19	929	939		
436	949	959	969	979	988	998	*008	*018	*028	*038		
437	64048	058	068	078	088	098	108	118	128	137		9
438	147	157	167	177	187	197	207	217	227	237		0.9
439	246	256	266	276	286	296	306	316	326	335	2	
440	345	355	365	375	385	395	404	414	424	434		
441	444	454	464	473	483	493	503	513	523	532	5	
442	542	552	562	572	582	591	601	611	621	631	7	
443	640	650	660	670	680	689	699	709	719	729	1	7.2 8.8
444	738	748	758	768	777	787	797	807	816	826		
445	836	846	856	865	875	885	895	904	914	924		
446	933	943	953	963	972	982	992	*002	*011	*O21		
447	$65 \quad 031$	040	050	060	070	079	089	099	108	118		
448	128	137	147	157	167	176	186	196	205	215		
449	225	234	244	254	263	273	283	292	302	312		
450	321	331	341	350	360	369	379	389	398	408		
N.	L. 0	1	2	3	4	5	6	7	8	9		P

LOGARITHMS.

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
450	65321	331	$3+1$	350	360	369	379	389	398	408	
451	418	427	437	447	456	466	475	485	495	504	
452	514	523	533	543	552	562	571	551	591	600	
453	610	619	629	639	648	658	667	677	686	696	
454	706	715	725	734	744	753	763	772	782	792	
455	801	SII	820	830	839	849	858	868	877	887	
456	896	,906	916	925	. 935	944	954	963	973	982	10
457	$6{ }_{6} 992$	*001	*OIt	*020	*030	*039	-049	*058	*ofs	*077	1 1.0 2 2.0
458	66087	096	106	115	124	134	I 43	153	162	172	2. 2.0 3 3.0
459	181	191	200	210	219	229	238	247	257	266	$\begin{array}{lll}3 & 3.0 \\ 4 & 4.0\end{array}$
460	276	285	295	304	314	323	332	34^{2}	351	361	5 5.0 6 6.0
461	370	380	389	39^{8}	408	417	427	436	445	455	7.0 8.0 8.0
462	464	474	483	492	502	511	521	530	539	549	8.0 9 8.0
463	558	567	577	586	596	605	614	624	633	642	
464	652	661	671	680	689	699	708	717	727	736	
465	745	755	764	773	783	792	801	811	820	829	
466	839	848	857	867	876	885	894	904	913	922	
467	932	$9+5$	950	960	969	978	987	997	*006	*015	
468	67025	034	043	052	062	071	080	089	099	IOS	
469	117	127	136	145	154	164	173	182	191	201	
470	210	219	228	237	247	256	265	274	284	293	
471	302	311	321	330	339	348	357	367	376	385	
472	394	403	413	422	431	440	449	459	468	477	810.9
473	486	495	504	514	523	532	541	550	560	569	2 I
474	578	587	596	605	6 I 4	624	633	642	651	660	3 2.7 4 3.6
475	669	679	688	697	706	715	72.4	733	742	752	4 3.6 5 4.5
476	761	770	779	788	797	806	815	825	834	843	5 4.5 6 5.4
477	852	86r	870	879	888	897	906	* 916	\% 925	. 934	
478	68943	952	961	970	979	988	997	*006	*OI 5	*024	 7.3 9.1
479	68034	043	052	061	070	079	088	097	106	115	
480	124	133	142	151	160	169	178	187	196	205	
481	215	224	233	2.42	251	260	269	278	287	296	
482	305	314	323	332	341	350	359	368	377	386	
483	395	404	413	422	431	440	449	458	467	476	
484	485	494	502	5 II	520	529	538	547	556	565	
485	574	583	592	601	610	619	628	637	646	655	
486	664	673	68 I	690	699	708	717	726	735	744	
487	753	762	771	780	789	797	806	815	824	833	8 y 0.8
488	842	85 I	860	869	878	886	895	904	913	922	${ }^{2} \mathrm{I} .6$
459	931	940	949	95^{8}	966	975	984	993	*(O)2	*OII	3 2.4 4 3.2
490	69020	028	037	046	055	064	073	082	Ogo	099	 5 3.2 4.0
491	108	117	126	135	144	152	161	170	179	188	$\begin{array}{l\|l} \hline 6 & 4.8 \\ 7 & 5.6 \end{array}$
492	197	205	214	223	232	2.1	249	258	267	276	7 10.4
493	285	294	302	311	320	329	338	346	355	364	
494	373	381	390	399	4103	417	425	434	443	452	
495	46 I	469	478	487	496	504	513	522	531	539	
496	548	557	566	574	583	592	601	609	618	627	
497	636	6.44	653	602	671	679	688	(1), 7	705	714	
498 +99	723 910	732 819	740 827	749 836	758 845	767 854	775 862	784 $8-1$	793 880	801 888	
499	910	819	827	836	845	854	862	871	380	888	
500	897	906	914	923	932	940	249	253	966	975	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
500	69897	906	91.4	923	932	240	949	958	966	975	
501	984	992	*001	*010	*018	${ }^{\text {co }} 1$	*036	*044	*053	*062	
502	70070	079	058	og6	105	114	122	131	140	148	
503	157	165	174	183	191	200	209	217	226	234	
504	243	252	260	269	278	286	295	303	312	321	
505	329	338	346	355	364	372	381	389	398	406	
506	415	424	432	441	449	458	467	475	484	492	
507	501	509	518	526	535	544	552	561	569	578	1
508	586	595	603	612	621	629	638	646	655	663	
509	672	680	689	697	706	714	723	731	740	749	3 2.8 2.7
510	757	766	774	783	791	800	808	817	825	834	4 3.6 5 4.5
511	842	851	859	868	876	885	893	902	910	919	
512	927	935	944	952	961	969	978	986	995	*003	
513	71012	020	029	037	046	054	063	071	079	088	18.2 .8
514	096	105	113	122	130	139	147	155	164	172	
515	181	189	19^{8}	206	214	223	231	240	248	257	
516	265	273	282	290	299	307	315	324	332	341	
517	349	357	366	374	383	391	399	408	416	425	
518	433	441	450	458	466	475	483	492	500	508	
519	517	525	533	542	550	559	567	575	584	592	
520	600	609	617	625	634	642	650	659	667	675	
521	684	692	700	709	717	725	734	742	750	759	
522	767	775	784	792	800	809	817	825	834	842	
523	850	858	867	875	883	892	900	908	917	925	1 0.8 2 1.6
524	933	941	950	958	966	975	983	991	999	*008	3 2.4 1 3
525	72016	024	032	041	049	057	066	074	082	O90	3.2 5 4.0
526	Og9	107	115	123	132	140	148	156	165	173	5 4.0 6 4.8
527	181	-89	198	206	214	222	230	239	247	255	77.6 6.4
528	263	272	280	288	296	304	313	321	329	337	17.4 1.8
529	346	354	362	370	378	387	395	403	411	419	
530	428	436	444	452	460	469	477	485	493	501	
531	509	518	526	534	542	550	558	567	575	583	
532	591	599	607	616	624	632	640	648	656	665	
533	673	681	689	697	705	713	722	730	738	746	
534	754	762	770	779	787	795	803	811	819	827	
535	835	843	852	860	868	876	884	892	900	908	
536	916	+925	933	941	449	$\times 57$	905	973	${ }^{9} 81$	989	
537	997	*006	\% 014	* 022	*030	*038	*046	*054	*062	* 070	7
538 539	$73 \quad 078$	086 167	094	102	III	119	127	135 215	143	151 231	${ }^{3} \left\lvert\, \begin{aligned} & 0.7 \\ & 1.4\end{aligned}\right.$
540	159 239	247	255	263	272	$\underline{280}$	288	296	304	312	3 2.8 4 2.8 2.8
541	320	328	336	$3+4$	352	360	368	376	384	392	
542	400	408	416	424	432	440	448	456	464	472	78.9 1.6
543	480	488	496	504	512	520	528	536	544	552	
544	560	568	576	584	592	600	608	616	624	632	
545	640	648	656	664	672	679	687	695	703	711	
546	719	727	735	743	751	759	767	775	783	791	
547	799	807	815	823	830	838	846	854	862	870	
548	878	886	894	902	910	918	* 926	* 933	941	949	
549	957	965	973	9^{81}	989	997	*(005	*013	*020	*028	
550	74036	044	052	O6r	068	076	084	00^{2}	O99	107	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

N.	1. 0	1	2	3	4	5	6	7	8	9	P. P.
550	$74 \quad 036$	0.44	052	060	065	076	054	092	099	107	
551	115	123	131	139	147	155	162	170	178	186	
552	194	202	210	218	225	233	241	249	257	265	
553	273	280	288	296	304	312	320	327	335	343	
554	351	359	367	374	$3^{8,2}$	390	398	406	414	421	
555	429	437	445	453	4 ()1	4,3	476	484	492	500	
556	507	515	523	531	539	547	554	502	570	578	
557	586	593	(*) 1	609	617	624	632	640	648	656	
558	663	671	679	687	695	702	710	718	726	733	
559	$7+1$	749	757	764	772	780	788	796	803	811	
560	819	827	834	842	850	858	865	873	881	889	8
561	896	904	912	920	927	935	943	950	958	966	2 0.8
562	974	981	989	997	*005	"O12	\%020	*028	*O35	*043	2 $\mathbf{8 . 6}$ 3 3.4
563	75051	059	066	074	082	089	097	105	113	120	3 3.6 4 3.2
564	128	136	143	151	159	166	174	$\square 82$	189	197	5 4.0 6 4.8
565	205	213	220	228	236	243	251	259	266	274	6 4.8 7 5.6
566	282	25_{9}	297	305	312	320	328	335	343	351	8 8.4
567	35^{8}	366	374	381	389	397	404	412	420	427	
568	435	442	45 C	458	465	473	4^{81}	488	496	504	
559	511	519	526	534	542	549	557	565	572	580	
570	587	595	603	610	618	626	633	641	648	656	
571	664	671	679	686	694	702	709	717	724	732	
572	740	747	755	762	770	778	785	793	800	808	
573	815	823	831	838	846	853	861	868	876	884	
574	891	899	906	914	921	929	937	944	952	959	
575	967	974	982	989	997	\%005	*O12	*020	*027	*O35	
576	$76 \quad 042$	050	057	065	072	080	087	095	103	110	
577	118	125	133	140	148	155	163	170	178	185	
578	193	200	208	215	223	230	238	245	253	260	
579	268	275	283	290	298	305	313	320	328	335	
580	343	350	358	365	373	380	388	395	403	410	
581	413	425	433	440	448	455	462	470	477	485	
582	492	500	507	515	522	530	537	545	552	559	
583	567	574	582	589	597	604	612	619	626	634	
584	641	649	656	664	671	678	686	693	701	708	
585	716	723	730	738	745	753	760	768	775	782	1 0.7 2 1.4
586	790	797	805	812	819	827	834	842	849	856	3 l
587	864	871	879	886	893	901	908	916	923	+930	4 2.8 5 3.5
588	938	945	953	960	967	975	982	989	997	*004	5 3.5 6 4.3
589	77012	019	026	034	$0+1$	048	056	063	070	078	$7{ }^{8} 4.9$
590	085	093	100	107	115	122	129	137	144	151	8 5.6 9 6.3
591	159	166	173	181	188	195	203	210	217	225	
592	232	240	247	254	262	269	276	283	291	298	
593	305	313	320	327	335	342	349	357	364	371	
594	379	386	393	401	408	415	422	430	437	444	
595	452	459	466	474	4^{81}	488	495	503	510	517	
596	525	532	539	546	554	5615	568	576	583	590	
597	597	605	612	619	627	634	641	648	656	663	
598	670	677	685	692	699	706	714	721	728	735	
599	743	750	757	764	772	779	786	793	801	508	
600	815	822	830	837	844	851	859	866	873	880	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

N.	L.	1	2	3	4	5	6	7	8	9	P. P.
600	7) 815	822	830	837	844	851	859	88.6	873	880	
601	887	895	902	909	916	924	931	938	945	952	
${ }_{6}^{602}$	960	967	974	9^{81}	988	996	-013	O10	,	*025	
603	$78 \quad 33$	039	046	053	oti	068	075	082	089	${ }^{097}$	
604 605	${ }_{1}^{104} 1$	111	118	125	132 204	${ }_{211}$	147	154 226	101	108	
606	247	254	262	269	276	283	290	297	305	312	${ }^{8}$
607	319	320	333	340	347	355	362	369	376	383	$\left.{ }_{2}^{1}\right)^{0.6}$
608 609	390	398	405	412	$411)$	426	433	44°	447	455	
	402	469	476	483	(4x)	497	504	512	519	526	3:2
610	533	540	547	554	561	569	576	583	590	597	$5{ }_{5}^{5} 4.8$
611 612	604 675	611 GS2	$\begin{aligned} & 618 \\ & 689 \\ & 68 \end{aligned}$	625 696	633 704	640 711	$\begin{aligned} & 647 \\ & 718 \end{aligned}$	654	661	668	 8 ¢. 8.4
613	746	753	760	767	774	781	789	$7{ }^{725}$	732 803	739 810 80	$8{ }^{8} 8.8$
$6{ }^{6} 4$	817	824	831	838	845	852	859	866	873	880	
615	838	895	902	909	916	923	*30	*37	*44	*51	
616	958	965	972	979	986	993	*oos		*O14	*021	
617 618	79029	036	043	050	057	${ }^{0}{ }_{4}$	071	078	085	$0_{0} 9^{2}$	
619	169 169	176	183	120	197	204	211	218	225	232	
620	239	246	253	260	267	274	281	288	295	302	
621	309	316	323	330	337	344	351	358	365	372	
622 623	379 4 4	386 456	393	400	407	414	421	428	435	442	${ }_{1}^{10.7}$
62.4	518	525	532	539	$5{ }^{4} 6$	553	560	567	574	581	
625	588	595	602	609	616	623	630	637	644	650	
${ }_{6} 62$	657	664	671	6,8	685	692	699	706	713	720	64.2
627 628	727	734 803	741 810 8	${ }^{7} 78$	${ }^{754}$	701 831	768 837	775 844	782 851	789 858 88	$7{ }^{7}$ ¢ 5.6
629	865	872	879	886	893	900	906	913	920	927	
630	934	941	94^{8}	955	962	969	975	982	989	996	
631	80003	010	017	024	030	037	044	051	058	065	
632	072	079	085	092	$\bigcirc 9$	106	113	120	127	134	
633	140 209	147	154	161	165	175	182	188	195	202	
635	277	284 284	291	298	236 305	243 312	318	325	324	271 339	
636	346	353	359	366	373	380	387	393	400	407	
637 638 63	414	421	428	434	441	44^{8}	455	462	468	475	
638 639	482 550	489 557	$\begin{aligned} & 496 \\ & 564 \end{aligned}$	502 570	509 577	516 584 54	$\begin{aligned} & 523 \\ & 591 \\ & \hline \end{aligned}$	530 598	536 604	543 611	
640	618	625	632	638	645	652	659	665	672	679	3 4 1.8 8.4 1.4
641	686	693	699	706	713	720	726	733	740		
642 643	754 821	760 828	767	774	781 848 8		794 862	801	808	8814	
644	889	895	902	909	916	${ }_{92}$	929	${ }_{936}$	943	849	${ }_{9}{ }_{5} 4$
645	956	963	969	976	983	990	996	*003	-10	* 017	
646	81 023	030	037	043	050	057	06_{4}	070	077	084	
647 648	090 158	${ }^{097}$	104	111	117	124	131	137	14.4	$15!$	
649	224	231	238	245	181 251	258	- 265	271	278	285	
650	291	29^{8}	305	311	318	325	331	33^{8}	345	351	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

318-2

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
700	84510	516	522	528	- 535	$5+1$	547	553	559	566	
701	572	578	584	590	597	603	609	6	621	628	
702	634	640	646	652	658	665	671	677	683	689	
703	696	702	708	74	720	726	733	739	745	751	
704	757	763	770	776	782	788	79.4	800	807	813	
705	819	825	831	837	844	850	856	862	868	874	
706	880	887	893	899	905	911	917	924	$93{ }^{\circ}$	936	
707	$8{ }^{9} 942$	948	954	960	967	973	979	985	991	997	
708	85003	009	016	022	028	034	040	046	052	058	
709	065	071	077	083	089	095	101	107	114	120	
710	126	132	138	144	150	156	163	16 y	175	181	
711	187	193	199	205	211	217	224	230	236	242	
712	248	254	260	266	272	278	285	291	297	303	
713	309	315	321	327	333	339	345	352	358	364	
714	370	376	382	388	394	400	406	412	418	425	
715	431	437	443	449	455	461	467	473	479	485	
716	491	497	503	509	516	522	528	534	540	546	
717	552	558	56	570	576	582	588	594	600	606	
718	612	618	625	631	637	643	649	655	661	667	
719	673	679	685	691	697	703	709	715	721	727	
720	733	739	745	751	757	763	769	775	781	788	
721	794	800	806	812	818	824	830	836	842	848	
722	854	860	866	872	878	884	890	896	902	908	
723	914	920	926	932	938	944	, 950	- 956	962	968	
724	974	980	986	992	99^{8}	*04	*ого	* 016	* 022	*028	
725	$86 \quad 334$	040	046	052	058	064	070	076	082	088	
726	094	100	106	112	118	124	130	136	141	147	
727	153	159	165	171	177	153	189	195	201	207	
728	213	219	225	231	237	243	249	255	261	267	
729	273	279	285	291	297	303	308	314	320	326	
730	332	338	344	350	356	362	368	374	380	386	
731	392	398	404	410	415	421	427	433	439	445	
732	451	457	463	469	475		487	493	499	504	
733	510	516	522	528	534	540	546	552	558	564	
734	570	576	58 I	587	593	599	605	611	617	623	
735	629	635	641	646	652	658	664	670	676	682	
736	688	694	700	705	711	717	723	729	735	741	
737	747 806	753 812	759	764 823	770	776	782	788	794	800	
738 739	806	812 870	817 876	823 882	829 888	835	841	847	853	859	
739	864	870	876	882	888	894	900	906	911	917	
740	923	929	935	941	947	953	95^{8}	964	970	976	
741	982	988	994	999	*005	*OII	*O17	\% 023	*029	*035	
742 743	87 090 099	046 105	O52	058	064	070	075 134	081 140	087 146	093 151 1	
744	157	163	169	175	181	156	192	19^{8}	204	210	
745	216	221	227	233	239	245	251	256	262	268	
746	274	280	286	291	297	303	309	315	320	326	
747	332	338	344	349	355	361	367	373	379	384	
748	390	396	402	408	413	419	425	431	437	442	
749	448	454	460	466	471	477	483	489	495	500	
N	[506	512	518	523	529	535	541	547	552	55^{3}	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
750	87506	512	518	523	529	535	541	547	552	55^{8}	
751	564	570	576	581	587	593	599	604	610	616	
752	622	628	633	639	645	651	656	662	668	674	
753	679	685	6×1	697	703	708	714	720	726	731	
754	737	743	749	754	760	766	772	777	783	789	
755	795	800	806	812	818	823	829	835	841	846	
756	852	858	864	869	875	881	887	892	898	904	
757	910	9) 15	921	927	933	938	944	950	955	961	
75^{8}	967	973	978	984	990	996	*ONI	*007	*O13	*018	
759	$\begin{array}{lll}88 & 024\end{array}$	030	036	0.41	047	053	058	064	070	076	
760	081	087	093	0,8	104	110	116	121	127	133	
761	135	$14+$	150	156	161	167	173	17^{8}	184	190	
762	195	201	207	213	218	224	230	235	241	247	1 ${ }^{6} 0.6$
763	252	258	264	270	275	281	287	292	298	304	2 E 8. 2
764	309	315	321	326	332	338	343	349	355	360	3 1.8 4 3.4
765	366	372	377	383	389	395	400	406	412	417	4.8 .4 5 3.0
766	423	429	434	440	446	451	457	463	468	474	5 3.6 3.6
767	480	485	491	497	502	508	513	519	525	530	7 4.2 8 4.8
768	536	5	. 547	553	559	564	570	576	581 638	587	8.8 9 5.4
769	593	598	. 604	610	615	621	627	632	638	643	
770	649	655	660	666	672	677	683	689	694	700	
771	705	711	717	722	728	734	739	745	750	756	
772	762	767	773	779	784	790	795	801	807	812	
773	818	824	829	835	840	846	852	857	863	868	
774	874	880	885	891	897	902	908	913	919	925	
775	930	936	941	947	953	958	964	969	975	9^{81}	
776	986	992	997	*003	*009	*014	*020	*025	*03I	*037	
777	$89 \quad 042$	048	053	059	064	070	076	081	087	092	
778	098	104	109	115	120	126	131	137	143	148	
779	154	159	165	170	176	182	187	193	19^{8}	204	
780	209	215	221	226	232	237	243	248	254	260	
781	265	271	276	282	287	293	298	304	310	315	5
782	321	326	332	337	343	348	354	360	365	371	
783	376	382	387	393	398	404	409	415	421	426	2 1.0 3 1.5
784	432	437	$4+3$	448	454	459	465	470	476	481	$\begin{array}{lll}3 & 1.5 \\ 4 & 3.0\end{array}$
785	487	492	49^{8}	504	509	515	520	526	531	537	
786	542	548	553	559	564	570	575	581	586	592	6 3.0 7 3.5
787	597	603	609	614	620	625	631	636	642	647	7 3.5 8 4.0
788	653	658	664	669	675	680	686	691	697	702	914.5
789	708	713	719	724	730	735	741	746	752	757	
790	763	768	774	779	785	790	796	801	807	8 ± 2	
791	818	823	829	834	840	845	851	856	862	867	
792	873	878	883	889	894	900	905	911	916	922	
793	927	933	93^{8}	944	949	955	960	966	971	977	
794	982	988	993	998	*004	*009	*OI 5	*020	*026	* ${ }^{\circ} \mathrm{S} 1$	
795	$90 \quad 037$	042	0.48	053	059	064	069	075	080	086	
796	091	097	102	108	113	119	124	129	135	140	
797	146	151	157	162	163	173	179	184	189	195	
798	200	206	211	217	222	227	233	238	244	249	
799	255	260	266	271	276	282	287	293	298	304	
800	309	314	320	325	331	336	342	347	352	35^{8}	
N.	L. 0	I	2	3	4	5	6	7	8	9	P. P.

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
800	90309	314	320	325	331	336	342	347	352	358	
801	363	369	374	380	385	390	396	401	407	412	
802	417	423	428	434	439	445	450	455	461	466	
803	472	477	482	488	493	499	504	509	515	520	
804	526	531	536	542	547	553	558	563	569	574	
805	580	585	590	596	601	607	612	617	623	628	
806	634	639	644	650	655	660	666	671	677	682	
807	687	693	698	703	709	714	720	725	730	736	
808	741	747	752	757	763	768	773	779	784	789	
809	795	800	806	811	816	822	827	832	838	843	
810	849	854	859	865	870	875	881	886	891	897	
811	902	907	913	918	924	929	934	940	945	950	
812	956	961	966	972	977	982	988	993	998	*004	
813	$91 \quad 009$	O14	020	025	030	036	0.41	046	052	057	$\mathbf{1}$ 0.6 $\mathbf{2}$ $\mathbf{8 . 2}$
814	062	068	073	078	084	089	094	100	105	110	1 8.6 3 8.8
815	116	121	126	132	137	142	148	153	158	164	4 2.4 5 3.0
816	169	174	180	185	190	196	201	206	212	217	5 3.0 6 3.6
817	222	228	233	238	243	249	254	259	265	270	3.6 7 4.2
818	275	281	286	291	297	302	307	312	318	323	8 4.8
819	328	334	339	344	350	355	360	365	371	376	
820	381	387	392	397	403	408	413	418	$42+$	429	
821	434	440	445	450	455	461	466	471	477	482	
822	487	492	498	503	508	514	519	524	529	535	
823	540	545	55 I	556	561	566	572	577	582	587	
824	593	598	603	609	614	619	624	630	635	640	
825	645	651	656	661	666	672	677	682	687	693	
826	698	703	709	714	719	724	730	735	740	745	
827 828	751	756	761	766	772	777	782	787	793	798	
828	803	808	814	819	824	829	834	840	845	850	
829	855	861	866	871	876	882	887	892	897	903	
830	908	913	918	924	929	934	939	944	950	955	
831	960	965	971	976	981	986	991	997	${ }^{*} \mathrm{OO} 2$	*007	
832	92012	O18	023	028	033	038	044	049	054	059	1 0.5 2 8.0
833	065	070	075	080	085	091	096	101	106	III	1 1.5 3 1.5 1.5
834	117	122	127	132	137	143	148	153	158	163	4 2.0 5 2.5
835 836	169	174	179	184	189	195	200	205	210	215	5 2.5 6 3.0
836 837	221	226	231	236	241	247	252	257	262	267	7 3.5
838	273 324	278	283	288	293	298	304	309	314	319	8 4.0 9 4.5
839	324 376	330 381	335 387	340 392	345 397	350 402	355 407	301 412	366 418	371 423	
840	428	433	438	443	449	454	459	464	469	474	
8.11	480	485	490	495	500	505	511	516	521	526	
842	531	536	542	547	552	557	562	567	572	578	
843	583	588	593	598	603	609	614	619	624	629	
844 845	634	639	645	650	655	660	665	670	675	681	
	686	691	696	701	706	711	716	722	727	732	
884	737	742	747	752 804	758 809	763 814	768 819	773 824	778 829	783 834	
848	840	845	850	855	860	865	870	875	881	886	
849	891	896	901	906	911	916	921	927	932	937	
850	942	947	952	957	962	967	973	978	983	9^{85}	
N.	L. 0	I	\square	3	4	- 5	6	7	8	9	P. P.

N.	I. 0	1	2	3	4	5	6	7	8	9	P. P.
850	92942	947	952	957	962	967	973	978	983	988	
851	993	998	*O03	*008	\%013	*018	W24	*029	"034	*039	
852	93044	049	054	059	064	069	075	080	085	ogo	
853	095	100	105	110	115	120	125	131	136	14 I	
854	146	151	156	161	166	171	176	181	186	192	
855	197	202	207	212	217	222	227	232	237	242	
856	247	252	258	263	268	273	278	283	288	293	
857	298	303	308	313	318	323	328	334	339	344	 7 0.6
858	349	354	359	364	369	374	379	384	389	394	18 0.6 2 1.2
859	399	404	409	414	420	425	430	435	440	445	31.8
860	450	455	460	465	470	475	480	485	490	495	1 2.4 5 3.0
861	500	505	510	515	520	526	531	536	541	546	5 3.0 6 3.6
862	551	556	561	566	571	576	581	586	591	596	7 4.2 8 4.8
863	601	606	611	616	621	626	631	636	641	646	$9 \quad 5.4$
864	651	656	66r	666	671	676	682	687	692	697	
865	702	707	712	717	722	727	732	737	742	747	
866	752	757	762	767	772	777	782	787	792	797	
867	802	807	812	817	822	827	832	837	842	847	
868	852	857	862	867	872	877	882	887	892	897	
869	902	907	912	917	922	927	932	937	942	947	
870	952	957	962	967	972	977	982	9^{87}	992	997	
871	94002	007	O12	017	022	027	032	037	042		
872	052	057	062	067	072	077	082	086	O9I	096	5
873	101	106	111	116	121	126	131	136	141	146	1 0.5 $\mathbf{2}$ 1.0
874	151	156	161	166	171	- 76	181	186	191	196	3 l
875	201	206	211	216	221	226	231	236	240	245	4 2.0 5 2.5
876	250	255	260	265	270	275	280	285	290	295	5 2.5 6 3.0
877 878	300	305	310	315	320	325	330	335	340	345	7 3.5 8 4.0
878 879	349 399	354 404	359 409	364 414	369 419	374 424	379 429	384 433	389 438	394 443	8 4.0 .9 4.5
880	44^{8}	453	458	463	468	424	478	483	488	$\frac{443}{493}$	
881	49^{8}	503	507	512	517	522	527	532	537	542	
882	547	552	557	562	567	571	576	581	586	591	
883	596	601	606	6 I	616	621	626	630	635	640	
884	645	650	655	660	665	670	675	680	685	689	
885	694	699	704	709	714	719	724	729	734	738	
886	743	748	753	758	763	768	773	778	783	787	
887	792	797	802	807	812	817	822	827	832	836	84
888	841	846	851	856	861	866	871	876	880	885	1 0.4 0.8
889	890	895	900	905	910	915	919	924	929	934	3 I .2
890	939	944	949	954	959	963	968	973	978	983	4 8.6 8.0
891	988	993	998	*002	*007	*O12	*O17	$\frac{}{\text { \% } \mathrm{O} 22}$	*027	*O32	
892	$95 \quad 036$	241	046	05I	056	061	066	071	075	080	7 2.8 8 3.8
893	085	090	095	100	105	109	114	119	124	129	8 3.8 3.6
894	134	139	143	148	153	158	163	168	173	177	
895	182	187	192	197	202	207	211	216	221	226	
896	231	236	240	245	250	255	260	265	270	274	
897	279	284	289	294	299	303	308	313	318	323	
898	328	332	337	342	347	352	357	361	366	371	
899	376	381	386	390	395	400	405	410	415	419	
900	424	429	434	439	444	44^{8}	453	45^{8}	463	468	
N.	L. 0	I	2	3	4	5	6	7	8	9	P. P.

N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.
900	95424	429	434	439	444	448	453	458	463	468	
gui	+72	477	482	487	492	497	501	506	511	516	
902	521	525	530	535	540	545	550	554	559	564	
903	569	574	578	583	588	593	598	602	607	612	
90.4	617	622	626	631	636	641	646	650	655	660	
905	665	670	674	679	68.	689	694	698	703	708	
906	713	718	722	727	732	737	742	746	751	756	
907	761	766	770	775	780	785	789	794	799	804	
908	809	813	818	823	828	832	837	842	847	852	
909	856	86 I	866	871	875	880	885	890	895	899	
910	904	909	914	-918	923	928	933	938	942	947	5
911	952	* 957	* 961	* 966	* 971	${ }_{*} 976$	*980	*985	*990	*995	
912	999	*004	*009	*014	*019	*023	*028	*033	*038	*042	2 1.0 3 1.5
913	96047	052	057	061	066	071	076	080	085	ogo	42.0
91.4	095	099	104	109	114	118	123	128	133	137	5 2.5 6 3.0
915	142	147	152	156	$16 \pm$	166	171	175	180	185	 7 $\begin{array}{l}\text { 3.0 } \\ 3.5\end{array}$
916	190	19.4	199	204	209	213	218	223	227	232	8 8 4.0
917	237	242	246	251	256	261 308	265	270	275	280	914.5
918 919	284 332	289 336	294	298 346	303 350	308 355	313 360	317 365	322 369	327 374	
920	379										
920	379	384	388	393	398	402	407	412	417	421	
92.1	426	43 I	435	440	445	450	454	459	464	468	
922	473	478	483	487	492	497	501	506	511	515	
923	520	525	530	534	539	544	548	553	558	562	
924	567	572	577	58 I	586	591	595	600	605	609	
925	614	619	624	628	633	638	642	647	652	656	
926	661	666	670	675	680	685	689	694	699	703	
927	708	713	717	722	727	731	736	741	745	750	
928	755	759	764	769	774	778	783	788	792	797	
929	802	806	811	816	820	825	830	834	839	844	
930	848	853	858	862	867	872	876	88I	886	890	
931	895	900	904	909	914	918	923	928	932	937	
932	942	946	951	956	960	${ }^{965}$	970	974	979	. 984	
933	988	993	997	*002	*007	*OII	*or6	*021	*025	*030	
934	$97 \quad 035$	039	044	049	053	058	063	067	072	077	
935	081	086	-90	095	100	$10+$	109	114	118	123	1 2 ${ }^{0} 0.4$
936	128	132	137	142	146	151	155	160	165	169	3 1.2 1 1
937	174	179	183	188	192	197	202	206	211	216	4 5 1.6 5 2.0
938	220	225	230	234	239	243	248	253	257	262	5 2.0 2.4
939	267	271	276	280	285	290	294	299	304	308	7 8 2.8 3.2
940	313	317	322	327	331	336	340	345	350	354	8.2 9.6
941	359	364	368	373	377	382	387	391	396	400	
942	405	410	414	419	424	428	433	437	442	447	
943	45 I	456	460	465	470	474	479	483	488	493	
944	497	502	506	511	516	520	525	529	534	539	
945	543	548	552	557	562	566	571	575	580	585	
946	589	594	598	603	607	612	617	621	626	630	
947	635	640	644	649	653	658	663	667	672	676	
948	681	685	690 736	695	699	704	708	713	717	722 768	
949	727	731	736	740	745	749	754	759	763	768	
N.	L. 0	1	2	3	4	5	6	7	8	9	P. P.

N.	L. 0	I	2	3	4	5	6	7	8	9	P. P.
950	97772	777	752	786	791	795	800	804	809	813	
951	818	823	827	832	836	841	845	850	855	859	
952	864	868	873	877	832	886	8 g 1	896	900	905	
953	909	914	913	923	928	932	937	941	946	950	
954	955	959	964	968	973	978	982	987	991	996	
955	98000	005	009	014	O19	023	028	032	037	0.41	
956	046	050	055	059	064	068	073	078	082	087	
957	091	096	100	105	109	114	118	123	127	132	
958	137	141	146	150	155	159	164	163	173	177	
959	182	186	191	195	200	204	209	214	218	223	
960	227	232	236	241	245	250	254	259	263	268	
961	272	277	281	286	290	295	299	304	308	313	
962	318	322	327	335	336	340	345	349	354	358	2 2 0.5
963	363	367	372	376	381	385	390	394	399	403	281.0
964	408	412	417	421	426	430	435	439	444	448	3 1.5 4 2.0
965	453	457	462	466	471	475	480	484	489	493	4. 2.0 5 2.5
966	49^{8}	502	50\%	5 II	516	520	525	529	534	538	63.0
967	543	547	552	556	561	565	570	574	579	583	7 3.5 8 4.0
968	588	592	597	601	605	610	614	619	623	628	8 4.0 9 4.5
969	632	637	641	646	650	655	659	664	668	673	
970	677	682	686	691	695	700	704	709	713	717	
971	722	726	731	735	740	744	749	753	75^{8}	762	
972	767	771	776	780	784	789	793	798	802	807	
973	8 II	816	820	825	829	834	838	843	847	851	
974	856	860	865	869	874	878	883	887	892	896	
975	900	905	909	914	918	923	927	932	936	941	
976	945	949	954	958	963	967	972	976	981	985	
977	989	994	998	*O03	*007	*012	*016	*02I	*O25	*029	
978	99034	038	043	047	052	056	061	065	069	074	
979	078	083	087	092	096	100	105	109	114	118	
980	123	127	131	136	140	145	149	154	158	162	
981	167	171	176	180	185	189	193	19^{8}	202	207	
982	211	216	220	224	229	233	238	242	247	251	1 0.4 2 0.8
983	255	260	264	269	273	277	282	286	291	295	2 0.8 3 1.2
984	300	304	308	313	317	322	326	330	335	339	$4{ }^{4} 1.6$
985	344	348	352	357	361	366	370	374	379	383	5 2.0 6 2.4
986	388	392	396	401	405	410	414	419	423	427	 7 2.8
987	432	436	441	445	449	454	458	463	467	471	8 3.8 9 3.0
988	476	480	484	489	493	498	502	506	511	515	913.0
989	520	524	528	533	537	542	546	550	555	559	
990	564	568	572	577	581	585	590	594	599	603	
991	607	612	616	621	625	629	634	638	642	647	
992	651	656	660	664	669	673	677	682	686	691	
993	695	699	704	708	712	717	721	726	730	734	
994	739	743	747	752	756	760	765	769	774	778	
995	782	787	791	795	800	804	808	813	817	822	
996	826	830	835	839	843	848	852	856	861	865	
997	870	874	878	883	887	S91	896	900	904	909	
998	913	917	922	926	930	935	939	944	948	952	
999	957	961	965	970	974	978	983	987	991	996	
1000	00000	004	009	013	017	022	026	030	035	039	
$\stackrel{\rightharpoonup}{*}$	L. 0	1	2	3	4	5	6	7	8	9	P. I'.

- 1 T 2718-4)

2.5400
 0.40483 1.03198
 $\overline{2} .96802$
 $0.061025 \overline{2} .78551$
 1.21449
 $\overline{1} .42190$ 3.7853
 0.57810 2.2046
 0.34333 0.45359
 $\overline{1} .65667$

.

1
$-$
(2)

[^0]: Example 2.-What is the entire area of the parallelopipedon men. tioned in the last question?

[^1]: Note. - In practice, only the significant figures of the differences forming the terms of the function are used, the decimal point being dispensed with. Thus, $57715-$ $.57691=24$, it being understood that this means 24 units of the fifth decimal order, or 00024 .

[^2]: Note. - In the majority of cases, the solution by logarithms is far more expeditious than the solution by natural functions. The student is strongly advised to form the habit of solving all trigonometric problems by means of logarithms and the logarithmic functions, whenever these functions can be used.

[^3]: Note.-This problem is given here as an illustration of the many problems that occur in practice requiring the exercise of some ingenuity and the performance of some transformations, both algebraical and trigonometrical, before the required results are obtained.

[^4]: *Sometimes called a perch or pole, and designated by the abbreviation P.

[^5]: Note.. Even if natural functions are used, the division is advantageously per formed by means of logarithms.

