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TRANSLATOR'S PREFACE

Notwithstanding the great number of scientific papers and articles

which have been published at various periods, on the subject of sags and

stresses in overhead electric line conductors, and also on scientific methods

of installing such conductors, it is a fact that the great majority of over-

head electric lines are laid, one might say, with utter disregard of all scien-

tific principle or method. Every storm of any consequence breaks down

thousands of overhead electric lines, and after the storm the lineman has

more "trouble " on his hands. He is kept busy for days and perhaps weeks

in repairing and rebuilding the broken lines. These troubles entail im-

portant outlay on the part of the companies owning the lines, which is

charged to repairs, maintenance, depreciation, and other "expense" ac-

counts. These line breakdowns, being directly due to the "action of the

elements" wind, snow, hail, frost, cold, heat are usually classed, not

only by the general public, but by the lineman, the accountant and the

manager, in the category of "dispensations of Providence,
"
which, as such,

cannot be foreseen or avoided. Indeed, only the engineer who is well in-

formed in the science and art of electric line-construction realizes that a

very large proportion of these troubles could be avoided and without

difficulty because they are due so largely to the fact that the lines are put

up without reference to the physical principles upon which then1

stability

depends, under all conditions and at all times. In the case of expensive

high-tension transmission-lines, the sags and stresses have, as a rule, re-

ceived proper attention, and efforts have been made to follow proper en-

gineering methods in the installation of such lines. In the case of the

smaller and less expensive, but far more numerous, overhead lines, used for

telegraph, telephone, lighting, and power circuits, there is lamentable in-

difference to anything approaching scientific methods of installation. In

the great majority of cases, the method is empirical, and the. work is done

by rule-of-thumb. The "instrument of precision" most relied upon is the

"eye" of the lineman or the foreman, and the criterion of quality of the

work is the "looks" of the line at the time it is installed. Unfortunately,

as scientific engineers know, the real, criterion of the quality is not its ap-

pearance when it has just been constructed usually at a time when the

weather conditions are favorable but it is the appearance of the line under

the worst possible conditions, namely, when it is subjected to the greatest

strains from the action of the elements, such as during the months when
the temperature is lowest, and when high winds and storms are more

prevalent. The great fault with the lineman's rule-of-thumb method of

stringing the lines and adjusting the sag "by the eye" is precisely the fact

v
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that it fails to provide for the conditions and requirements at the time

when the line is subjected to the worst strains. It provides for the best

instead of the worst conditions.

Unfortunately, as the lineman is usually not an engineer or a technical

man, the efforts made to have him recognize and follow scientific principles

and adopt scientific methods in giving the lines the proper sags and

stresses have proved unsatisfactory, because the methods tried expected

too much from non-technical men, and could not be applied successfully

by them.

The purpose of this work is to provide a method for determining sags

and stresses which, while based rigorously and solidly upon sound scien-

tific principles, is so simple in its application and in its practical use that an

intelligent lineman or foreman of construction can use it without diffi-

culty to obtain the most accurate and satisfactory results.

The subject of line sags and stresses has been handled by the authors in

a very novel, ingenious and simple manner. It could not have been al-

lotted to persons more competent and better qualified for the purpose.

The senior author, Cavvaliere Guido Semenza, one of the most dis-

tinguished electrical engineers in Italy, was one of the pioneers, and he has

continued to be a leader, in long-distance, high-tension, electrical trans-

mission engineering. The transmission-lines in Italy and in other parts

of Europe, designed by him, have all been models of their kind, of ac-

knowledged originality and merit. Caw. Semenza is recognized as one of

the leading electrical transmission engineers in the world. The junior

author, Signor Marco Semenza, whose experience covers a period of many
years in electric line engineering and construction, under the direction of

the senior author, is also a highly competent and experienced specialist.

The method of treating the subject of sags and stresses, adopted by the

authors, is graphical. The work comprises some twenty-four pages of text

and thirteen charts.

The text is divided into five parts:

PART I sets forth briefly the general character of the work. Its specific

purpose, as clearly pointed out on Page 1, is "to provide curves for

the installation of copper conductors which require no calculation

on the part of those using them."

PART II deals with the scientific principles underlying the construction

of these curves and their arrangement into groups or sets on "charts"

suitable for convenient practical use.

PART III contains explanations and examples of the practical use of the

charts.

PART IV contains information in regard to the allowances considered

adequate in different countries for the extra loading effects due to

wind and ice on line-conductors; and it gives the rules and regulations

which are in force or in vogue in certain countries for the calculations

of stresses and sags in electric line-conductors.
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PART V contains the derivation and theoretical discussion of various for-

mulae used in Part III.

The presentation and discussion of the subjects treated are very simple.

The mathematics employed in Part II and Part V are quite simple, in-

volving merely elementary knowledge of algebra. Moreover, inasmuch

as the parts (II and V) containing the mathematics are of special interest

only to those who may desire to obtain a complete idea of the scientific

principles underlying the method of the authors and the charts used by
them for the practical application of this method, these portions may be

passed over by those who have neither taste nor aptitude for such inquiries

and investigations into fundamental principles and theories. In reality,

Parts I and III will be found to contain all the instruction and explanation

necessary to enable the charts to be used practically in the field by the

men in charge of line-construction, to guide them in pre-determining the

stresses and sags which must be given to lines at the time of their construc-

tion, in order that the sags and stresses may not exceed the prescribed

limits at the time when the weather conditions are most unfavorable and

severe. The value of the loading ratio, m, which is determined by the aid

of chart No. I may be determined beforehand by the consulting engineer,

instead of its determination being left to the foreman of line-construction.

Under these circumstances, the person in charge of line-construction can

use the charts with ease and precision for determining the amount of ten-

sion which must be given to the line, and the sag that will result therefrom,

when the line is being strung, and for pre-determining, at the same time,

what the tension and also what the corresponding sag will be, either at the

time of maximum summer temperature, or of lowest winter temperature,

and, in general, under the most severe weather and storm conditions.

The charts used for the English edition have been specially prepared
for the purpose, to take into account the change from metric to English

units. The text has been correspondingly modified wherever necessary.

The translator desires to acknowledge his indebtedness to Mr. H. W.
Buck for certain changes and additions made by him to the text in Part IV,

so as to make the reference to American conditions and practice complete.

THE TRANSLATOR.
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GRAPHICAL DETERMINATION OF SAGS AND STRESSES
FOR OVERHEAD LINE CONSTRUCTION

PART I

GENERAL CONSIDERATIONS

In the case of wires suspended between

two supports, the value of the mechanical

tension or stress, and, consequently, the am-

plitude of the sag of the wires, undergo

continual variations due to changes in tem-

perature, and to the action of the wind

blowing against them and of the snow and

ice which may accumulate on them.

Engineering principles and methods enter

into the predeterminations of the conditions

and requirements for the proper installation

of electric lines and their stability in a man-

ner which it is the purpose of this work to

set forth.

It is admitted generally that there is, for

each metal wire, a limiting specific tension

or stress which must not be exceeded. More-

over, the strain on the wire increases with a

fall of temperature, and with an increase in

extra load. Having assumed the lowest

local temperature, and the maximum extra

load which are to be expected, then, inas-

much as the wires are usually put up under

temperature-conditions which are far from

the lowest temperature, and with the wire

unloaded, it is desirable to give to the

wire, at the time of stringing it, a sag

such that, under the most unfavorable

conditions to be provided for, the stress

attained may be neither greater nor less

than the limiting tension which is allow-

able. It should not be greater for obvious

reasons of safety, and it should not be

less because this would necessitate building

the supports unnecessarily high.

It is evident that the basic data which

enter into the calculations vary within wide

limits with the locality. Thus, while, in

Southern climes, such as along the shores of

Florida, the minimum temperature will rarely

fall down to zero, and only the wind will

have any effect on the mechanical strength of

the wires, in Northern climes, especially in

high altitudes, the temperatures will be

very much lower, and it will be necessary

to anticipate the formation of large coatings

of ice.

The purpose of the set of charts or dia-

grams contained in this volume is to provide

curves for the installation of copper conductors

which require no calculations on the part of

those using them. All that is necessary

is to know the diameter of the conductor, the

maximum limit of stress allowed, the dis-

tance between supports (length of span), the

minimum temperature, and the additional

load (wind-velocity and diameter of the ice-

coating expected), in order to be able to

determine, at once, by the diagrams, the

curve representing the amplitude of the sag

which should be given to the wire as a func-

tion of the temperature at the time the wire

is strung.

An additional load applied to a line-wire

always has the effect of increasing the stress

on the wire; whether this additional load be

due to the wind or to ice, it may always be

considered as a virtual increase in the weight

of the conductor itself.

To take these additional loads into ac-

count, it will be sufficient, therefore, to know

what is the relation between the virtual

weight of the loaded wire, and the actual
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weight of the unloaded wire. This ratio

will be designated by the letter TO. Chart

No. 1 serves precisely for calculating this

ratio m, for all conditions of additional load

which may be reasonably anticipated in the

great majority of cases.

Chart No. 2, and those which follow, give

the curves for installing the wires when the

value of TO is known, taking into account the

variations of temperature and of additional

load, due to ice and wind.

PART II

CONSTRUCTION OF CHARTS

I. CHART No. 1. CALCULATION OF M

(a) Symbols Used

d = diameter of the wire (when solid), in

inches,

s = sectional area of the line-conductor

(solid or stranded), in inches.

w = weight per foot of naked (unloaded)

wire, in pounds (= 0.321 X 12 =

3.852 Ib. for hard-drawn copper).

W = weight per foot of loaded wire, in

pounds.

p = unit-weight of wire unloaded (
=

3.852 Ib.)

P = unit-weight of wire, loaded.

D = diameter of ice-covering, in inches.

A = weight, in pounds, of a cylinder or

cylindroid of ice, 1 ft. in length and 1

sq. in. in sectional area.

v = wind-velocity, in miles per hour.

V = xvzd = total action of the wind on 1 ft.

of the line-wire, in pounds.
Wm = ratio of weights of unit-lengths of

loaded and unloaded line-conductor.

TOI = value of the ratio m when the wind is

not horizontal.

7 = angle between the direction of the

wind and the direction of gravity.

a = = ratio of weights of the unit-
P

lengths of ice-cylinder and line-con-

ductor denned hereinabove.

= ratio between the density of ice and

the density of the metal used for the

wire.

0.3852
o
. .= o oco := "* m the case of copper.

k =
-j
= ratio between the external di-

d

ameter of the ice-covering and the

diameter of the line-conductor.

b = 1 - = 1 - .1 = .9
P

x = a constant determined by experiment

(= effect, in pounds, produced on a

wire 1 ft. in length having a diameter

1 in., by a wind having a velocity of 1

mile per hour).

(b) Assumptions Made

It is assumed that the wind acts on the side

of the wire, and that its action is normal to

that produced by the actual weight of the

wire and of the covering of ice upon it. Con-

sequently, the sag-curves determined for a

loaded wire will not give sags in a vertical

plane passing through the supporting points

(i.e., through the insulators), but in a plane
determined by the points of support and the

resultants of the actions just mentioned.

Inasmuch as the amount of sag for a loaded

wire is of no importance for our determina-

tions, at least in ordinary cases the maxi-

mum strain due to extra loading being alone

of importance (see Appendix, page 17), the

assumption made does not in any way affect

the results. Nevertheless, since the suppo-
sition of a wind having any direction what-

ever and making an angle 7 with the vertical

direction, might be of interest, in certain

cases, especially for lines located in moun-
tainous regions, we will give, later, the for-

mula which may be used in such cases for
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determining the value of the ratio P/p,

which ratio will then be called TOI, this ratio

being calculated after the value of m has

been obtained, by means of the Chart (No.

1), for the same velocity of the wind on the

supposition that it acts horizontally.

(c) Construction of Chart No. i

From the demonstrations given in the

Appendix (see page 17) it is seen that the

value of m is expressed in a general form by
the equation

vz

m =
V(afc

2 + 6)
2 + Jf*V, where y = ^'

When it is et desired to take the action

of the wind into account, we make k =
1,

and the equation becomes

m = Vl + XV;
and, when, on the other hand, it is desired

to take only the ice-covering into account,

we then take v = 0, and we have

TO = a/c
2 + b

From the general equation, solving for y,

we have

y =
-

(ak*
(D

Let us note that we have already assumed

v - V- (2)
d

These two are the equations of the curves

given in Chart No. 1.

Equation (1), when k is made constant, is

the equation of a hyperbola whose axis is

the axis of abscissae, and in which the ab-

scissae represent successive values of TO and

the ordinates the corresponding values of y ;

Equation (2), when v is made constant, is the

equation of an equilateral hyperbola, whose

abscissae represent successive values of d

and whose ordinates represent the corre-

sponding values of y.

It is evident that, by means of these two

equations, two sets of curves can be drawn,

taking as abscissae, for the first set, succes-

sive values of k, and, for the second set, sue-

cessive values of v. The ordinate-values are

the same in both sets. These values of y,

which serve merely to correlate the two sets

of curves, have no importance by themselves,
and for that reason no scale is given for them
on the diagrams. The useful values are

represented by the abscissae, namely, the

values of the wire-diameter, d, for one set of

curves, and the values of TO for the other set.

NOTE. Parallel to the scale of diameters

d, a scale of sectional areas (s) of the conduc-

tors has also been indicated. For these

sectional areas the resistance offered to the

wind is assumed to be 25 per cent, higher
than that offered by a smooth wire of the

same diameter; hence the scale of sectional

areas of the conductors is displaced with re-

spect to that of their diameters in such a

way as to take into account that increase

in wind-resistance.

II. CALCULATION OF SAGS AND STRESSES

(a) Symbols Used
1. Case of spans with supports at same level

I = length of span (distance between line-

supports), in feet.

L = ml = length of hypothetical span, in

feet.

/ = true sag, in feet.

F = mf = hypothetical sag, in feet.

T = stress in the wire, at its lowest point,

in pounds per square inch.

a = coefficient of expansion of the metal of

the line-wire, per degree Fahrenheit.

E = modulus of elasticity of the metal of

the line-wire, in pounds per square

inch.

p = weight per unit-length of the metal

used for the line-wire (= weight, in

pounds, of a wire 1 ft. in length, and

having a sectional area of 1 sq. in.).

m = ratio between the weights of a con-

ductor of unit-length when loaded

and when unloaded.
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C = 6 t = a constant.

A0 - 0! 2
= actual range of tempera-

ture to be anticipated, in degrees

Fahrenheit.

t = 6 C = hypothetical temperature, in

degrees Fahrenheit.

2. Case of spans with supports at different levels

Symbols, same as in Case 1, with the fol-

lowing additions:

c = hypothetical span, in feet.

h = difference of level between line-sup-

ports, in feet.

Ai' =
t'i t' = range of temperature, ex-

pressed in degrees Fahrenheit on the

scales used in the diagrams.

I = length of span, in feet, when projected

on a horizontal plane.

/ = actual vertical distance, in feet, be-

tween the higher point of support and

the lowest point of the curve made by
the line-conductor.

F = TO/ = hypothetical vertical distance,

in feet, between the higher point of

support and the lowest point of the

curve made by the line-conductor.

(b) Assumptions Made in the Calculations

1. A parabola has been substituted for the

catenary curve, Equation (1). The error

thereby introduced in the measurement of

the sag is less than 2 per cent, when the value

of L/T is not greater or is less than 0.125

(see Appendix, page 18).

2. The length, I, of the span, i.e., the dis-

tance between the two points of support of

the wire, has been taken instead of the actual

length of the wire, X, Equation (2), (see Ap-

pendix, page 19). The error thereby intro-

duced is negligible.

3. It has been assumed that the stress at

the center of the span is equal to that at the

point of support. The errors introduced by
that assumption are likewise negligible (see

Appendix, page 19).

(c) Construction of Charts

1. Case of spans with supports at same level

The fundamental equations for spans of

line wires strung between two supports (see

Appendix, pages 20 and 18) are:

p/2

f-%* (3)

V247V

Equation (3) gives the amount of sag

which is obtained with a wire, in a span of

length I, when the stress is equal to T and

the unit-weight of the wire is equal to P.

Equation (4) gives the relation between the

variations in the value of the stress T (and,

consequently, also, in the value of the sag, /),

and the variations of either the atmospheric

temperature or the unit-weight of the wire,

due to wind or ice.

From the Appendix (page 20) it will be

seen that if the wire in a span of length I is

subjected to a strain (due to wind, ice, or

any mechanical force) that increases its

virtual weight from p to mp, the sag pro-

duced will be equal to I/TO of that which

would be produced in a span of length ml =

L, when the specific stress in the wire remains

the same in both cases.

Consequently, the process of passing from

an extra load corresponding to a given value

of the ratio TO = TOI to an extra load corre-

sponding to another value TO = TO O ,
is equiva-

lent to passing from the consideration of a

span of length LI = mil to that of a span of

length LO = mol, provided, however, that the

sags thus found be divided by the correspond-

ing value of TO. Hence, inasmuch as this

observation applies to any value of m, we
will have, in general,

F =
8T (5)

\24a7V

\24aTT1 aEl
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and also (see Appendix, page 20)

2r 2 FT
p LJ L

~~ O A W} ftHal aKi

wherein

t = 6 - C

(6)

(7)

C being a constant.

It is important to note that, in (5) and in

(6) ,
we have L = ml, and that we may have

m

In (5), since F = mf, all that is necessary,

in order to obtain the value of /, the actual

sag, is to take the value of F, the hypothet-

ical sag, given in the diagrams, and divide it

by the corresponding value of m.

In (6), t is not a temperature, but a quan-

tity differing from the actual temperature, 6,

by a constant, C (see Equation (7)).

In (5), solving for L 2
,
and substituting in

(6), we have

Fp T_
Eat = (8)

In this equation p, a, and E are physical

constants; hence, when T is also constant,

(5) is the equation of a straight line contain-

ing T, but not L, and whose co-ordinates

are F and t.

In (5), solving now for T, and substitut-

ing in (6), we have

t =
8FEa (9)

This equation, when L is constant, is that

of a curve of the third degree in F, which

contains L but not T, and whose co-ordinates

are again F and t.

Equations (8) and (9) are the actual equa-

tions of the two sets of curves contained in

Diagrams Nos. 2 to 13, inclusive.

The first set is obtained from Equation

(8), and consists of straight lines, each of

which represents the variations of F with

respect to t, for successive values of T.

The second set is obtained from Equation

(9), and consists of curves, each of which

represents the variations of F with respect to

t, for successive values of L.

In the diagrams, the abscissae represent

successive values of t = 6 C and the ordi-

nates represent successive values of F = mf.

The values of t, as already seen, are not

true temperatures, but differ therefrom by a

constant, C. However, as we always have

to deal with differences (representing ranges

of temperature), M = 61 2 ,
the value of

the constant (C), is of no importance in the

practical use of the diagrams.

Therefore, if, in the diagrams, we find the

intersection of the curve for a given value of

L, with the straight line corresponding to a

given value of T, the abscissa of the point of

intersection will represent a certain value

of t which will be a starting point for the

measurement of differences of temperature;

that is to say, it will constitute a point of

origin for a scale of temperatures.

If the value of the stress, T, which was

employed in determining this intersection,

is the maximum allowable for the wire for

the span of length I (neglecting, at first, the

additional loads due to ice and wind on the

wire, i.e., making TO = 1, which gives L =
I),

then the value obtained for t, which we will

call t
, may, evidently, be regarded as corre-

sponding to the lowest temperature which,

it is assumed, is likely to be attained in the

particular locality under consideration, since

it is precisely at that minimum temperature

that, as a rule, the maximum stress occurs.

The ordinate of the point of intersection will

represent the sag corresponding to that

minimum temperature.

Still neglecting additional loads on the

wire, the portion of the curve of the values of

L =
I, comprised between t and the value of

t which is obtained on adding to t the maxi-

mum range (rise) of temperature assumed

for the locality, represents the variation of

the sag with respect to the temperature; and

this portion of the curve is precisely that
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which is of practical use in stringing the line-

conductors.

In the more general case, in which the

additional loads due to ice and wind have

to be taken into account, we will have m > 1,

and it will be necessary to determineL = ml.

Even in such a case, if we find, on the dia-

gram, the curve for that value of L, then the

intersection of that curve with the straight

line of the maximum value allowable for T
will be a point whose abscissa determines

the value of t .

The sag F, which is given by the ordinate

of the point of intersection found, is equal to

TO times the actual sag for the loaded wire

(see Equation (5)). This hypothetical sag is

not, as a rule, of practical interest. On the

contrary, it is the sag for unloaded wires that

is of practical interest, when the wires are

being strung.

We now proceed to determine the sag for

an unloaded wire at the lowest temperature
assumed to be reached, i.e., at the very tem-

perature at which the .maximum loading due

to ice and wind is supposed likely to occur.

We have stated that in a span of length I,

having an extra load which increases the

actual weight of the wire by the ratio m, the

sag is I/TO of that of a span of unloaded wire

of length ml, when T is the same in both

cases.

Starting from this consideration, we have

sought to determine the sag corresponding
to the extra-load ratio TO, for a span of length

I, at the minimum temperature to, and at the

maximum stress Tm ,
on the curve of values of

L = ml. If, for that same span of length I,

we now assume the mechanical load to be

reduced so as to give TOI < TO, the tempera-
ture t remaining the same, the result will be

a decrease of the stress to a value TI, and a

decrease of the sag to a value /i. In that

new condition, we can always resort to the

consideration of a span of unloaded wire

whose length is mj, = L, in which the stress

will be TI and the sag TO/I. The curve corre-

sponding to that span is to be found on the

diagram and in the very same manner that

the diagrams were constructed; and the point

which is to be considered is always on the

vertical line corresponding to t
,

since it

has been assumed that the temperature is

maintained constant.

On reducing gradually the extra load, and,

therefore, the ratio TO, the stress and the sag

will continue to decrease
;
and the length of

the hypothetical span will approach more

and more to that of the actual span, until

the two coincide, when TO becomes equal to

1. In doing this we will have arrived at the

curve of values for L =
I, the actual length

of the span.

Therefore, to pass from the consideration

of a line wire which is loaded to that of one

which is unloaded, when the temperature

remains unchanged, all that is necessary is

to follow downward, on the diagram, the

vertical line corresponding to that tempera-

ture, until it meets the curve of values of L

corresponding to the actual length, I, of the

span. The ordinate of that point gives the

true sag for the wire, when unloaded, at the

same temperature, i -

This point being determined, the portion

of the curve of values of L =
I, comprised

between the ordinates of t and of t\
= t +

Af, where A( = A0 represents the maximum

range of temperature that is assumed and is

likely to occur in the locality; and it will give

the range of variation of the sag for the

unloaded wire, as a function of the tempera-

ture, that is to say, the amounts of sag which

should be given to the wire as a function of its

actual temperature at the time when it is being

strung.

2. Case of spans with supports not placed at the same
level

It will be seen, from page 20 of the Appen-

dix, that in calculating the amount of sag,
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the actual span, of length I, can be replaced

by a hypothetical span of length c, the

second (lower) support being then supposed

to be at the level of the higher support. The

length of that hypothetical span is given by

the following relation:

c = I + ^ T (10)
mp I

If, for a given case, we have

i --Mr,
mp I

which gives c =
21,

then the lowest point of the curve of sag

described by the wire falls on the lower sup-

port of the actual span; and if we have

i >:--- j T,
mp I

then the lowest point of the wire falls in the

space inside the actual span; and if, on the

other hand, we have

mp
(11)

then the lowest point of the wire falls outside

(beyond) the space of the actual span.

The last condition (11) is that which ob-

tains in the greater number of practical

cases, for reasons which can be readily made

apparent. The quantity 2/p represents a

physical constant (which, in the case of

copper, has a value 2/p = 0.519). The

quantity h/l, representing the percentage of

the "grade" to which the difference in levels

(h) is due, will have a still smaller decimal

value. Their product will be a small deci-

mal quantity which will be further decreased

as m increases. However, while the com-

bined product of the three factors (l/m, 2/p,

and h/l) will usually be a quantity ranging

between hundredths and thousandths, the

fourth factor T, representing the stress in

the wire, will range in value between

thousands and tens of thousands; hence, the

total product may still have a value in the

hundreds or even in the thousands.

It is necessary, therefore, to have high

values of TO and I and low values of h and T
to avoid the inequality (11).

When this condition occurs it is evident

that there is no interest in knowing the suc-

cessive values of the sag, since the lowest

part of the curve then falls outside the actual

span, and the sag-values refer to the hypo-
thetical part of the curve. It will be neces-

sary, therefore, in the greater number of cases,

to string the wires by reference to the values of

the stress, T.

The values of T corresponding to various

temperatures and extra loads can be readily

determined by means of the diagrams. If

desired, at any time, a special curve repre-

senting the sag-variations can be constructed

by the aid of the diagrams and on the dia-

grams themselves. Such curves cannot be

put beforehand on the diagrams, because the

value of c varies continually for the same

span.

We know (see Appendix, pages 22-23)

that, for calculating the stresses by the aid

of the diagrams, a span with supports at

different levels can be replaced by the same

span with supports at the same level. Hence,

to determine the successive values of the

stress, when the values of I, Tm ,
A 6 and 6 are

given, we may proceed as in the case of a

span with supports at the same level.

If the minimum value of T thus found

leads to the inequality (11), all higher values

of T will, obviously, do it also, and it will be

useless to consider the corresponding sag-

values. In other words, the only sag-values

which it is necessary to know are those corre-

sponding to values of T which do not lead

to the inequality (11) When these values

of T have been determined, then, by means

of Equation (10), we will find the hypothet-

ical spans, c, with supports at the same level,

which correspond to those values, and, there-

fore, we can obtain the successive sag-values

by means of Equation (3) and the diagrams.
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PART III

MANNER OF USING THE CHARTS

Diagram No. i. Calculation of m

Diagram No. 1 serves for hard-drawn cop-

per-wires whose physical constants have the

following values:

a = 00.00010 = coefficient of expansion per

degree Fahrenheit.

E = 16,800,000 = modulus of elasticity.

In calculating the values plotted in the

curves shown in the diagram, the following

constants and coefficients were assumed:

A = 0.3852 Ib. = weight of ice-covering 1 ft.

long, 1 sq. in. in sectional area (12

cu. in. at 0.0321 Ib. per cubic inch),

value of x in the formula, P, = xvzd =
pres-

sure in pounds per square foot:

x = 0.0002 when v = miles per hour, and

d = diameter of wire, in inches.

The curves in the diagram are applicable

within the following limits:

Diameter of cable; from No. 2 to No.

000000 B. & S. G.

Diameter of wire; from No. 12 to No. 0000

B. & S. G.

Sectional area of wire; from 6530 to 212,-

000 circular mils.

Ratio (k = D/d) between the diameter of

the ice-coating and that of the wire, from 1

to 10.

Wind-velocity, v; from 20 miles per hour

to 120 miles per hour.

Value of ratio m; from 1 to 17.

Data necessary for using Chart No. 1

(a) The gauge number (B. & S. G.) or the

diameter, d, or the sectional area, s, of the

wire; (b) the wind-velocity, v (in miles per

hour) ; (c) the ratio, k, between the external

diameter of the ice-coating and the diameter

of the conductor.

Directions

Find the point corresponding to the number

(B. & S, G.) of the wire, i.e., to the value

of d or of s, on the scale of abscissae at the

bottom of the diagram; from this point rise

along a vertical line until the line meets the

hyperbola corresponding to the value of the

assumed maximum wind-velocity (v); from
this point of intersection follow a horizontal

line to the curve of the assumed ice-loading

ratio (k); from this point of intersection follow

a vertical line to the upper scale of abscissae;

the desired value of m can be read off directly

by reference to that scale.

NOTE 1. When it is desired to take into account only
the extra loading due to wind-pressure (and to neglect

the ertra loading due to ice), proceed as follows: after

having found the point of intersection of the ordinate

from d or s with the curve of v, follow a horizontal line

from this point of intersection until it meets the curve

corresponding tok 1; the abscissa of the point of inter-

section, read off at the upper scale, will give the desired

value of m.

NOTE 2. When, on the other hand, it is desired to

take into account only the extra loading due to ice (and to

neglect the loading due to wind-pressure), all that is neces-

sary is to read off directly on the upper scale of abscissae

the value of m corresponding to the intersection of the

curve of the assumed ice-loading ratio (k) with the axis

of abscissae itself, since in such a case the extra-load ratio

m is independent of the diameter of the wire.

NOTE 3. // it were desired to know the direction

of the resultant of the loading actions exerted upon the

wire, i.e., the direction of the straight line which, with

the two points of support, determines the plane in which

the wire lies when subjected to the action of the wind

all that would be necessary would be to construct the

right-angled triangle having for its hypothenuse the

value of m and for its vertical side the value of (ak* +
b), both of these values being obtainable from the chart,

since ak* + b = m, when only the loading action of the

ice-covering is considered.

Examples

Suppose the following conditions:

Wire = No. 6 B. & S. G.
;
v = 90 miles per

hour; k = 3.

EXAMPLE I. From the point correspond-

ing to No. 6 B. & S. G., at the bottom of

the chart, rise vertically to the point of

intersection with the curve for v = 90; then

follow a horizontal line to the point of inter-

section with the curve for k = 3
;
thence rise
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vertically to the scale of TO values at the top

of the chart, and find the value TO = 10.

If only the loading effect of the wind is to

be considered, then k =
1, and, in that case,

from the intersection with the line for v,

follow a horizontal line to the curve for k =

1; thence rise vertically to the top of the

chart and find the value of TO, which is =

3.4. If only the loading effect of ice is to be

considered then v = 0, and all that is neces-

sary is to follow the curve for k = 3 to the

upper end of the chart and read the value

for TO, which is = 1.8.

EXAMPLE II. Suppose the following con-

ditions:

Wire = No. 2 B. & S.; v = 70 miles per

hour; k = 5.

When both wind and ice loading are to be

considered, the value of TO will be found to be

m = 7.1.

When the wind-loading alone is considered,

the value of TO will be = 1.6.

When the ice-loading alone is considered,

the value of TO will be = 3.4.

Charts Nos. 2 to 13. Calculation of Sags

and Stresses

Charts Nos. 2 to 13 serve for copper wires

having the physical constants given on page 8.

Chart No. 2 *
is a general diagram which

covers the entire range of conditions. It

serves as an index for Charts Nos. 3 to 13,

inclusive, which show portions of the same

general diagram on an enlarged scale. The

particular portion reproduced on each en-

larged diagram is indicated by red lines on

Chart No. 2. After locating on Chart No.

2 the portion of the general diagram which is

most suitable for a given case, it will be easy,

by reference to the chart outlines and num-

bers in red, to select the particular enlarged

chart which is most suitable for a given pur-

pose. The enlarged diagrams provided in

*NOTE Subdivided, for convenience, into two

parts, A and B, shown on separate sheets.

Charts Nos. 3 to 13 should be sufficient for

nearly all practical purposes. In a few

exceptional cases, if the portion of the gen-

eral diagram to be utilized is not comprised
in any enlarged diagram, Chart No. 2 itself

can be utilized for determining the data

required. The charts are applicable to all

cases comprised within the following limits:

Hypothetical spans, L = ml, from 80 ft.

to 4000 ft.

Hypothetical sags, F =
TO/, from ft. to

300 ft.

Mechanical stresses, T, from 1000 Ib.

to 27,000 Ib. per square inch.

1. Case of spans with supports at the same level

Data required

I = the span.

TO = the coefficient of extra load at the

minimum temperature, determined by
the aid of Chart No. 1.

Tm = the maximum stress allowable.

6 = the lowest winter temperature.

6'i
= the highest summer temperature.

Directions

Multiply TO by I, which givesL; find on Chart

No. 2 the point of intersection ofthe straight line

for the value of Tm with the curve for the value of

L; it willfall in one or more of the enlarged dia-

grams; select the one which contains the whole

range of temperature variation allowable, start-

ingfrom the point ofintersectionjust mentioned.

On that enlarged diagram the point of intersec-

tion determines a value of t which we will call t
,

and which is to be taken as the minimum tem-

perature, i.e., as being equal to 6 .

The steps of this operation will be simpli-

fied by using a scale made of paper or card-

board, like those furnished with the charts.

These scales give divisions in degree of tem-

perature, from - 10 F. to + 110 F. This

scale is to be laid on the scale of abscissae in

such a way that the lowest value selected for

the local temperature (namely, = 32, or

15, or 0, etc., according to the case) shall
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coincide with the point t
,
determined as

already explained.

The following relations will be found to

hold:

1. The ordinate of the point of intersection

between the straight line for the value of Tm

and the curve for the value ofL is a hypothetical

sag-value equal to m times the actual sag, when

the wire has its maximum extra load, and

when it is at the lowest winter temperature B .

2. The ordinate of the curve of L = I

(effective span) corresponding to the value of

ta ,
is equal to the sag / which the wire assumes

when unloaded and at the lowest temperature, .

3. For each value of 6 that is higher than 6
,

and which is to be read off, either directly or by

means of the auxiliary scale, the ordinate of

the curve of effective span L =
I, gives the

value of the actual sag for the wire at that tem-

perature, 6, when not loaded.

4. The maximum sag for the unloaded wire

is therefore that which corresponds to J} the

maximum temperature for the locality.

5. The mechanical tension in the wire is

measured off at some point along the curve of

L = I by the straight line of T-values passing

through that point.

EXAMPLE. It is required to find the curve for erect-

ing a line which is to be subject to the following

conditions:

I = span = 180 ft.; Tm = maximum allowable

stress = 13,500 Ib. per square inch; = lowest win-

ter temperature = 5F.;0i = maximum summer tem-

perature = 105 F.; TO = coefficient of extra loading

(obtained from Chart No. 1)
= 3.

We will have:

L = hypothetical span = ml = 3 X 180 = 540 ft.

On referring to Chart No. 2, it is found that the

point of intersection of the straight line for T =

13,500, with the curve for L = 540, lies in the space of

Chart No. 3, and also of Chart No. 5. We select

Chart No. 3. (The reason for this choice is that

Chart No. 5 does not contain the curve for L =1 =
180 = actual span, which is also needed.) The
abscissa of the point mentioned gives ta

= 179; the

ordinate of the same point gives Fm = 10.42; whence,
we have

F, 10.42

m
~

3
~ 3 '47 ft>>

which is the sag for the wire when loaded, at the lowest

winter temperature (50 F.).

The intersection of <o with the curve L = 180 gives:

/o
= 2.57 ft.; and T<, = 6000 Ib. per square inch.

These values represent the sag and the stress for

the wire, when not loaded, at the lowest winter tempera-

ture.

We now place the movable scale of ^-values on the

scale of abscissae on the. chart in such manner that the

lowest winter temperature assumed (5 F.) corresponds
to the abscissa 179. Then the portion of the curve

for L = 180 which is comprised between 5 and 105

on the movable scale of lvalues (or between 179

and 279 on the <-scale of the chart) will be the por-

tion of curve that is required and is useful for string-

ing the wire.

By reference to the ordinate scale on the chart, it

will be found that the sag to be given to the spans in

stringing the wire will vary between 2.57 ft. for 5 F.,

and 4.3 ft. for 105 F.; and by reference to the T-

curves intersected by the portion of L-curve above

mentioned, it will be found that the corresponding
stresses will be: 6000 Ib. per square inch for 5 F., and

3800 Ib. per square inch for 105 F.

2. Case of spans with supports at different levels

Data required

I = length of horizontal projection of

span.

h = difference of level between the two

supports.

m = coefficient of extra load.

Tm = maximum allowable stress.

= lowest winter temperature for the

locality.

01 = highest summer temperature for the

locality.

Directions

Proceed as in the case of a span with sup-

ports at the same level, of length I, seeking to

ascertain only the values of the stress, T, and

paying no attention at all to the sag-values;

determine, in this manner, the lowest value of

the stress and call it T\. Next, calculate the

product (2/p X h/l X 2J). // that product

be equal to or greater than the value of the effec-

tive span, I, no attention need be paid to the sag;

if the product be less than the value of I, then

it will be necessary to determine the correspond-



MANNER OF USING THE DIAGRAMS 11

ing sag-value, by finding, on Chart No. 2, the

point of intersection of the straight line of T-

values with the curve of the values of c\, bear-

ing in mind that c t
= I + 2/p X h/l X T.

NOTE. It may happen that the inequality (11*
is not produced by the value of Tm ;

and this may be

due to the existence of extra load, giving a high value

for m (see Equation (10)). In such a case, it will be

well to ascertain the value of the sag for the wire when

loaded, to serve for subsequent comparison with the

sag for the wire when not loaded, at the lowest stress-

value, T (see page 18).

EXAMPLE I. Suppose a span of length I = 200 ft.,

with a difference of level between supports of h = 18

ft. It is required to find the variations of stress, and,

incidentally, the variations of sag, between the lowest

winter temperature of 10 F., and the highest
summer temperature of 100 F., i.e., for a temperature

range A 6 = 110 F. Let m =
2.5, and let the maxi-

mum allowable stress Tm = 15,000 Ib. per square
inch.

We have L = ml = 2.5 X 200 = 500ft. On refer-

ring to Chart No. 2, the point of intersection of the

curve of L = 500 with the straight line of T = 15,000
is found to be in the portion corresponding to Chart

No. 3. From the latter we obtain, directly, t = 139.

Following along the ordinate of ta , downward, we meet

the curve of L = 200. From the point of intersec-

tion, we obtain the value T = 8850 Ib. per square
inch. (The point lies between the T-curves for 9000

and 7500, being nearer the former in the proportion of

approximately nine-tenths the distance between the

two curves; hence adding 9/10 of (9000-7500) to

7500 gives 8850) . Adding < to A t, we have ti
= 139

+ 110 = 249; or else, placing the movable <-scale

on the chart in such manner that 10 coincides

with 139, we will have + 100, coinciding with 249.

From the point of intersection of the ordinate of ii
=

249 (corresponding to + 100) with the curve of L =

200, it will be found that TI = 4650 Ib. per square
inch for that value of

t, which is the minimum value

of the stress (corresponding to the highest tempera-

ture). Now, calculating the value of the product

2/P X h/l X Ti, we find

2 18

3^52
X

200
X 465 = 21? ft '

which is greater than I = 200 ft. Hence it is not

necessary to find the sag-values.

EXAMPLE II. Suppose a span of length I = 300 ft.

with a difference of level between supports of h = 22

ft. Let the maximum allowable stress be T m

17,000 Ib. per square inch, at the lowest temperature

80 = 15 F., with a coexistent extra loading that

corresponds to m 3. It is required to find the vari-

ations of sag and of stress that will occur between the

minimum winter temperature of 15 F. and the maxi-
mum summer temperature, 0i = 115F. From equa-
tion (10), taking 2/p = 0.5192 (for copper) and in-

serting values for m, h, I, T, we have

0.5192 22
c t
= 300+ - X X 17,000 = 300 + 216 = 516

o oUU

Since 216 < 300, it will be necessary to ascertain the

sag-value. We look on Chart No. 2 to find the point
of intersection of the curve giving the values of mc m =
3 X 516 = 1548 ft., with the straight line represent-

ing Tm = 17,000. That point is found in the space
which corresponds to Chart No. 9. The ordinate of

the point of intersection on Chart No. 9, gives, by the

scale of F-values, F m = mf* = 66.6 ft.; whence,

dividing by m, we have/m = 66.6/3 = 22.2 ft.

We have L = ml = 3 X 300 = 900 ft. We look

on Chart No. 2 for the point of intersection of the

curve corresponding to L = 900 with the straight line

corresponding to T m = 17,000. This point is in the

space corresponding to Chart No. 7. From that chart,

we obtain, directly, i = 233. The next step is to

find the point of intersection of the ordinate through
t with the curve of the actual span L = 300 ft. As
Chart No. 7 does not contain the L curves for spans
under 500 ft., we refer to Index Chart No. 2; we find

that Chart No. 3 is the proper chart. The point of

intersection between the ordinate through { and the

curve for L = 300 determines a value of the stress, T,

which is that corresponding to the lowest winter tem-

perature assumed (15 F.), when the wire has no extra

load.

We will have

We also have

7000

A 8 = <?i
-

0o = 115 - 15 100

and also

= t + A e = 233 + 100 = 333

We look on the Index Chart (No. 2) for the intersec-

tion of the curve for L 300 with the ordinate of i\
=

333, and find it in the space corresponding to Charts

No. 3 and 4. From either of these charts we obtain

directly

TI = 5300 Ib. per square inch.

This is the minimum stress to which the wire will be

subjected. By means of (10) we calculate the corre-

sponding hypothetical span
0.5192 22

ci = 300 + - - X^ X 5300 = 300 + 67.3 = 367.3
o oOU

Since 67.3 < 300, it will be necessary to calculate the

sag. On Chart No. 2, we find that the intersection

of the curve forL = 367.3 with the straight line corre-

sponding to T 5300 is on Chart No. 5. From that

chart we obtain

/i
= 12.3 ft.
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Degree of Accuracy Attainable by Means of the

Charts

The charts were designed on the assumption that

it is possible, with the naked eye, to distinguish lines

which are one-fiftieth of an inch apart; and the scales

were varied in the different charts in such a way as to

enable the values to be read off within 1 per cent.

This degree of accuracy is sufficient, considering the

fact that the systematic errors incidental to the use of

simplified formulae involve errors which may amount

to 2 percent, for large spans and heavy extra loading

(see page 19, etc.).

The value of m can be obtained from the charts

with an error not exceeding 5 per cent.

PART IV

NOTES CONCERNING THE SELECTION
AND THE VALUES OF COEFFICIENTS

AND CONSTANTS
1. Wind-velocity and pressure. Ice-coverings

Efforts have been made, by certain public

authorities and electrotechnical societies,

to prescribe definite values, more or less

related to local conditions, for use in making
calculations and allowances for the addi-

tional loading on line wires, due to wind and

ice. This has been done, notably, by the

Public Works Department in France, by the

Italian State Railways, by the Italian, Ger-

man and Austrian Electrotechnical societies,

etc.

These attempts at standardization are

intended to simplify calculations, but they
are not very successful, and they are scarcely

warranted, in countries where meteorological

conditions vary greatly, as is the case in

Italy, in Northern Europe, in America, etc.

Rules for simplifying calculations become

unnecessary when it is possible to prepare
and use charts which, like those contained

in this book, enable all conditions to be taken

into account.

The engineer who is planning the construc-

tion of an electric line will be able, easily,

to deduce, from the meteorological data for

the locality in which the line is to be built,

the maximum wind-velocity and the maxi-

mum thickness of ice-covering for which pro-

vision must be made, and to base his calcu-

lations on those data. In doing this, he

should bear in mind that, as a rule, the condi-

tions for maximum wind-velocity and pres-

sure do not occur at the same time as the

conditions for the formation of ice-coverings.

Indeed, in those countries where the maxi-

mum wind-pressure is due to summer storms

(tornadoes, gales, wind storms, etc.), it

would be allowing too much to combine, in

the calculations, the effects of maximum

loading due to both wind and ice. In such

cases, therefore, it is the maximum wind-

velocity and pressure during the winter only

that should be taken into account in the

calculations.

In every case, Chart No. 1 will show clearly

the influence and effect produced on the

value of the coefficient of extra loading, m,
under all conditions, imposed or assumed,

which can possibly affect the result; and it

enables the conditions under which m is

really a maximum to be determined and util-

ized for the calculations.

In temperate regions, where there is snow

but no formation of ice-coverings on wires,

it will be necessary to consider only the maxi-

mum wind-velocity during the winter. In

fact, for falling snow, k cannot exceed the

value of 2, and it is not to be expected that

any deposit of fallen snow can form on the

wire when a wind of high velocity is blowing

against it.

When it is a question of providing for ex-

treme conditions, and there are no mete-

orological statistics and data at hand for the

locality, it is necessary to have recourse to

general data. A partial summary is given,

herein below, of observations made at dif-

ferent times and places, concerning maxi-

mum wind-velocity and ice-formation.

(a) Maximum Wind-velocity. The most

recent investigations tend to demonstrate

that the maximum wind-velocities assumed
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hitherto are, as a rule, exaggerated. (In

Italy, the most violent winds in the valley

of the River Po, certainly do not exceed

100 km. (62 miles) per hour, and it is only in

mountain gorges and on the sea-coast that

wind-velocities of more than 120 km. (74.6

miles) per hour may be expected. The maxi-

mum wind-velocities occur only in summer

everywhere except in localities exposed to

winds from the sea. In making calculations

for extreme conditions, for Italy, it would be

safe to take 80 km. (49.7 miles) per hour for

inland localities, and 120 km. (74.6 miles)

per hour for lines exposed directly to sea-

winds or to winds in mountain gorges, as in

the Alps and the Apennine Mountains).
In America, the records of the U. S.

Weather Bureau contain much detailed in-

formation in regard to the maximum wind-

velocities attained in different parts of the

country. The most complete and authorita-

tive investigations of the effect of wind-pres-

sure on electric lines are those conducted by
Mr. H. W. Buck and reported in the paper
on "Aluminum as a Conductor" presented

by him at the St. Louis International Elec-

trical Congress in 1904. The following

points are noted by Mr. Buck: (1) The

actual wind-velocity is lower than that indi-

cated by the instruments used in measuring it

because of the inherent characteristics of the

anemometer; thus, an indicated velocity of

100 miles per hour was found to correspond

to an actual velocity of only 76.2 miles per

hour; (2) maximum velocities do not occur

at very low temperature; (3) the highest

regular winds occur on the actual sea-coast,

the exception being tornadoes, which usu-

ally occur inland and which blow at un-

known velocities, probably 200 miles per

hour, or more; (4) with the exception of

tornadoes and of gales which blow on the

tops of high peaks in places which might
be considered "freak localities," the highest

winds recorded do not exceed 100 miles per

hour indicated, or about 76 miles per hour

of actual velocity; (5) the records of the

U. S. Weather Bureau are all taken at

points which are high 100 ft. or more

above the ground ;
the wind-velocity decreases

rapidly as the ground-level is approached,

and, at the level of an ordinary transmission

line, the velocity is about 30 per cent, less than

at a point 100 ft. or more above the ground;

on this basis, amaximum velocity of 100 miles

per hour indicated velocity at an elevation

of 100 ft. would be only about 55 miles per

hour actual velocity, for an ordinary trans-

mission-line. Mr. Buck's calculations as

given in his paper were based upon a maxi-

mum actual wind-velocity of 65 miles per

hour, at the minimum temperature, which

corresponds to about 80 miles per hour at the

maximum temperature, in the stress which

it produces in the wire. In regard to torna-

does, he considers that, owing to their high

velocity, it is commercially impossible to

build all lines strong enough to withstand

them.

(6) Formation of Ice. In Italy, it is only

in the high portions of the Alps and Apen-
nines that coverings of sleet and ice are

formed on electric wires. The coverings

vary greatly in importance, because their

formation depends upon the concurrence of

so many conditions. Thus, while no sleet or

ice-coverings have ever been noticed on some

of the very high points in the Alps, they have

been found repeatedly in certain high places

in the Apennines (which are farther South

than the Alps), the size of covering being

large enough to raise the value of & to 5 or 6.

In the United States it is customary to

make allowance for sleet-covering in calcu-

lating transmission lines, although sleet is

rarely experienced. This is probably due, as

elsewhere, to the static repulsion of the par-

ticles of water away from the conductor,

caused by the high electric stress, thus pre-

venting the accumulation of water on the
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conductor surface necessary for sleet-for-

mation. Furthermore, lines carrying electric

power currents, as distinguished from tele-

phone and telegraph lines and lighting dis-

tribution circuits, which usually carry no

load during the day, are appreciably heated

by the current; and this heat tends to melt

the sleet, if formed. A rise in temperature
of even only one degree above the atmos-

phere might make the formation of sleet

impossible. Sleet has been known to form

at times on high tension lines in America,

but rarely more than a thin film in thickness.

In mountain regions in still damp cold

weather, a light frost fabric has been ob-

served to form on conductors at certain

critical elevations, in the mountains. This,

however, is a light open crystalline structure,

although it has been observed to form to a

thickness of as much as two inches around

the conductor. It is, however, thrown off

readily by any agitation due to wind. It

may be regarded as probable, therefore, that

the effect of ice and sleet will seldom if ever

raise the value of "k" to as much as 5.

There may be a few exceptional cases where

"k" would rise above 5. In the great major-

ity of cases, the value of "k" will probably
remain below 3.

2. Maximum stress allowable in copper conductors

Different rules are followed in determin-

ing the values of the maximum stress al-

lowable.

In some cases, the "factors of safety"

required for iron serve as the basis for the

rules, which limit the stress to one-fourth

or one-fifth the tensile strength of the metal.

This rule does not do justice to the difference

in physical properties of iron and copper.
The limit of elasticity is proportionately
nearer to the ultimate tensile strength for

copper than for iron; and it is the limit of

elasticity rather than the ultimate strength
that is of importance.

A method frequently followed in Italy,

is to take, as the maximum or limiting value

of stress, 80 per cent, of the stress corre-

sponding to the elastic limit. The limit of

stress, T, vaies with the quality of the copper

used and with the diameter of the wire, the

mechanical constants of the wire being al-

tered somewhat by the process of drawing
the wire.

In practice, the load at the elastic limit

ranges between 12 and 20 kg. per square
millimeter (i.e., between 17,000 to 28,000 Ib.

per square inch) ; hence, the maximum value

of T may range between 9.6 and 16 kg. per

square millimeter (i. e., between about 14,000

and 23,000 Ib. per square inch). The values

recommended for use in calculations for

limiting conditions are, for large wires, 10

kg. per square millimeter (about 14,000 Ib.

per square inch); for small wires, and

stranded conductors, 12 kg. per square mil-

limeter (about 17,000 Ib. per square inch).

As a general rule, it is desirable to assume

for T the maximum value allowable or agreed

upon, in order to reduce the height of sup-

ports as much as possible.

In the United Stages it is becoming com-

mon practice to assume certain maximum
wind stresses, ice coverings, and a minimum

probable temperature coincident therewith,

and then to construct the line so that under

these conditions the stress in the conductor

will just equal its elastic limit. The justi-

fication for this is that even if some abnormal

conditions of stress arose above those al-

lowed for in the design, where the conductor-

tension should exceed the elastic limit, it

would merely result in a slight increase in

conductor sag through stretching without

risk of breakage.

3. Notes on the calculation of supports

It should be remembered that the expres-

sion for the wind-pressure exerted on the

wires is derived from the formula
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P
t

= Q.QQ02vHd (see page 8).

where P, = total pressure, in pounds, ex-

erted against the area Id.

v = wind-velocity, in miles per hour.

d = diamere of wire in inches.

/ = length of wire in feet.

In the calculations for the line-supports,

it will be necessary to use, for v, the very

highest wind-velocity attained in the locality

traversed by the line.

4. Measurement of temperature

While the wires are being strung, the tem-

perature will be measured, generally, with a

thermometer kept in the shade. However,

a copper wire exposed to the mid-day sun in

summer may attain a temperature that is

sensibly higher than that of the air. It will

therefore be desirable, under those conditions,

to provide a thermometer whose bulb is

enclosed in the hollow of a coil of copper

wire that is exposed to the sun.

6. Regulations prescribed by various societies, etc.

I. Regulations of the Italian Electrotech-

nical Association (Associazione Elettrotec-

nica Italiana).

Calculations of the mechanical resistance

of over-head wires must be based on a wind

exerting a pressure of 72 kg. per square

meter (14.75 Ib. per square foot) of longitu-

dinal projected area of the wire. This cor-

responds to a wind-velocity of 126.5 km.

per hour (78.6 miles per hour). The lowest

temperature attained in the locality is taken

for calculating the total range of tempera-

ture; and, in the absence of reliable data, a

temperature of 15 C. (5 F.) is assumed,

and the additional loading due to ice should

also be taken into account, when there is a

possibility of such loading. The maximum
stress to which the wire is subjected must not

exceed one-third the ultimate tensile strength,

or two-thirds of the elastic limit.

II. Regulations of the Society of German
Electricians (Verband Deutscher Elektro-

techniker) .

Additional loading due to wind-pressure

is not taken into account. The calculations

are to be made in two ways, based upon dif-

ferent assumptions, and the figures to be

used will be those giving the most unfavor-

able result in respect to the stress on the wire.

The maximum stress Tm ,
allowable is: (1)

For annealed copper, 5 kg. per square milli-

meter = 7,112 Ib. per square inch; (2) for

hard-drawn copper, 12 kg. per square milli-

meter = 17,068 Ib. per square inch.

Method I. This is to be based upon the

following assumptions:

Lowest temperature, t = 5 C.

An ice-covering of weight, in kilograms

per meter of wire, equal to 0.115s, where s

= sectional area of wire, in square milli-

meters. The value of m, calculated on that

basis, will be

m = 0.0089 + 0.15 = 2.685
0.0089

The value of m will therefore be constant,

independently of the size of the wire. Tak-

ing that value of m, and selecting the value

of Tm ,
the calculations can all be made by

means of the charts.

Method II. This is to be based upon the

following assumptions:

Lowest temperature, 20 C. (
= 4

F.), without extra loading.

In that case, m = 1
; hence, L =

I, and the

charts may be used directly.

It is interesting to note that the second

method of calculation gives higher stress-

values for short spans up to 40 meters

(128 ft.) in length while the first method

gives higher stress-values for longer spans.

III. Regulations of the Society of Aus-

trian Electricians (Verein Oesterreischischer

Elektrotechniker) .

Maximum stress allowable for hard-drawn

copper wire
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Tm = 8 kg. per square millimeter,
= 11,379 Ib. per square inch.

No extra loading due to ice-covering is

taken into account, and the calculation is to

be based upon the following assumptions:

Lowest temperature, 6 = 25 C. (
=

- 13 F.).

The wind is supposed to produce a pres-

sure of 150 kg. per square meter (
= 30.72 Ib.

per square foot) of longitudinal projection

of the wire; which corresponds, according

to our system of calculation, to a wind-

velocity of 182.6 km. (= 113.5 miles) per

hour. The value of m, in this case, evi-

dently, depends upon the diameter of the

wire.

IV. Regulation of the French Govern-

ment.

Two methods of calculation are prescribed,

and the figures corresponding to the greater

stress-value are those to be used.

Method I. The mean temperature in the

locality is to be taken, with a wind produc-

ing a pressure of 72 kg. per square meter

(= 14.75 Ib. per square foot) of longitudinal

projection of the wire, which corresponds to

a wind-velocity of 126.5 km. (
= 78.6 miles)

per hour.

Method II. The lowest temperature in

the locality is to be taken, with a wind pro-

ducing a pressure of 18 kg. per square meter

(= 3.69 Ib. per square foot) of longitudinal

projection of the wire; which corresponds to

a wind-velocity of 63.3 km. (= 39.3 miles)

per hour. The value of TO can be found, for

each case, by means of Chart No. 1.

V. Regulations in the United States.

Topographical and climatic conditions vary
to such an extent throughout various sec-

tions of the United States that no line con-

struction constants can be considered as

standard. Assumptions which would be

good engineering in one locality would be

extravagant construction in another. The

requirements vary over such a wide range

that each instance is usually calculated as a

special problem.

PART V

APPENDIX

I. CALCULATION OF THE RATIO m

Case I. Additional loading due to ice only

Suppose a wire of diameter d, on which a

covering of ice of diameter D has been

formed. The weight, per unit-length, of the

naked wire, is:

ird*

~T P '

and the weight, per unit-length, of the wire

when loaded with ice, is:

W
The ratio m = -

w

will have the following value:

(a)

D 2 A Am =
-35

- - + 1
a2 p p

D
and, taking

A A=
a, also 1 =

o, also -; = k,

we can write

m = ak* + b (1)

In the case of copper, we have p =
3.852,

the density of the ice is assumed to be such

that A = 0.3852 (i.e., less than that, of solid

ice), because the ice-covering which forms on

wires does not have, as a rule, a compact
structure. In such a case, therefore, we will

have
A

a =
P

0.1

and, consequently,

b =
(l
-

)
=

(1
-

a) =
(1
-

0.1) = 0.9
h

' P '

Introducing the values of a and b in (1), we
have

m =
(0.1A;

2 + 0.9)
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Case II. Additional loading due to wind only

A wind-velocity v acts upon a unit-length

of a wire of diameter d, with a force equal to

P, = xv 2d

where x is a constant whose value is to be

determined by experiment. If the wind is

supposed to act horizontally against the

wire, the resultant of the forces acting upon
the wire is equal to

W = VwJM-T2 = Vw^+lz^dT2

We can now re-write (a) as follows:

m-5-^S-sP
16

1 +
ir-u,-p~

The constants, x, IT, p can be grouped into a

single constant factor; we can take

X =
irp

= a constant.

We can also take

y =
-\ I -V-

= "

\d2 a

Substituting these values in the last expres-

sion for TO, we have

m = Vl + X*y* (2)

The value of the constant, x, may be

obtained from experiments made in Europe

by Rebora, and in America by Marvin,

Buck and others. Its mean value, when v is

given in miles per hour and d in inches, is

found to be

x = 0.0002

Inserting this value, and the value for p

(= 0.321 X 12 = 3.852), in the expression

for X, we have

4X 4 X 0.0002 n nnnnfifi1A = =
9
= 0.0000661 =

jrp 3.1416 X o.ooZ

661X10-'

Therefore

X2 = (0.0000661)
2 = 0.437 X 10~ 8

Inserting this value in (2), we have

m = Vl + (0.437 X lQ-*)y*~

17

Case III. Joint effect of both kinds of additional
loading

In that case, the force, acting vertically

on a unit-length of the wire is

= w (ak
2 + 6);

and the force acting horizontally is

Hence, the resultant force will be

W = V - by + xVD 2

Substituting this value in (a), we have

TO = =
=r- W

From the relation D/d =
k, we have D 2 =

Substituting for D 2 and w 2 in (6), we have

m = = V(ofc* + &)* + JSr'ATv (3)w

Introducing the constants for copper and

ice, this becomes

TO = V(0.1fc
2 + 0.9)

2 +'0.437 X IQ-^k-y*

Suppose, now, that the wind, instead of

acting horizontally, acts in a direction which

makes an angle, 7, with the vertical plane of

the span. In that case the resultant force

will be

W= Vw 2
(afc

2 + 6)
2

cos 7

This modified value for W, when substi-

tuted in (a), leads to an expression for m
which differs from (3) and which may be

designated by mi. Making the same sub-

stitutions and transformations as before, we
will have

f b)
2 + X 2k 2

y*
- 2X(ak 2

+b)kycos y

The first two terms under the radical sign

are the same as in (3) ;
hence we can write

TOI= Vrra2 -
2(afc

2 + b)Xky cos 7 (4)

It is important to note that the sign of the

second term under the radical will depend

upon the value of the angle 7.

When the wind has an upward direction,

i.e., when 7 < 90, then cos 7 has the posi-

tive sign and the second term retains the
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negative sign, which means that there will

be a reduction, in the loading ratio, and that

we will have TOI < TO. When the wind has a

downward direction, i.e., when 7 > 90, then

cos 7 takes the negative sign; hence, the sign

of the second term under the radical will be

changed to positive (+ ) ;
which means that

there will be an increase in the loading ratio

and that we will have TOI > TO. (Inciden-

tally, it may be noted that when 7 = 90,

i.e., when the wind has a perfectly horizontal

direction, then cos 7 =
0, and the second

term vanishes, which makes TOI =
TO, since

(4) is then identically the same as (3)).

Equation (4) enables the value of TOI to be

calculated after the value of TO has been

obtained on the assumption that the wind is

acting horizontally.

It should be noted that the value of the

sag /, for the wire when loaded has no impor-

tance except in the case when it is greater

than the value of the sag/i, for the unloaded

wire at the maximum temperature.

In the event that we found / > /i, and

also fm cos /3 >/i, (in the case when the

action of the wind is taken into account)

then the height of the supports would have to

be calculated not by reference to the value

of the summer sag f\, but by reference to the

value of fm cos /3, where ft > and there-

fore cos /3 ^ 1 .

In practice, however, for the extra loads

ordinarily assumed, such a case would rarely

happen.

II. CALCULATION OF SAGS AND STRESSES

Case I. Spans with supports at the same level

The general equation of the catenary of a

suspended wire, expressed in cartesian co-

ordinates and taking the lowest point of the

wire as the axis of abscissae, is :

T < ,Px
y
=

p cos h -^
-

between the origin and any point whose

abscissa is x, is expressed by the relation

X T . , Px
2
=
p sin h

jr (6)

Developing cos h and sin h into series, we
have

cosfc a = a*
,
a"----

a
,

a
, ,

.

smh a = a + 3J+Ft+y7

From these, we have

smha=a

When a > 0.48, the error made in taking
a2

cosh a 1 =^r (7)
m

is less than 2%; and the error made in taking

sin/i a = a + -,

o
(8)

is less than 1/20 of 1%.
In our case we have:

= P̂

Hence, if

Px < 0.48 T (see Note*) (9)

equation (5) can be written, with an error of

less than 2%, under the form

T ( P 2z2
} Px2

(10)

y ==

P\2T*I 2T
Ifx = 1/2, then?/ =

/;

hence
PZ2

'
"

8T

which is the equation of a parabola.

*NoTE. -Taking P = mp and x = 1, the inequality

(9) may be written as follows:

mpl < 0.48 T, or else pL < 0.48 T
where L = ml; but, in the case of copper, p = 0.321

X 12 = 3.852, hence

L

The length of the portion of wire extending

which condition is realized in the greater number of

cases.
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In like manner, if, in equation (6), we

substitute for sink Px/T its value obtained

from (8) ,
we have

X _ PV
2

x "
h
6712

and if x = 1/2

then
X = _! +

,.3

2 2
' 48T2

From (10) we have

(11)

64r2

or else

31 24712 '

and, substituting in (11) and multiplying

by 2, we have

X = 1 +
I* (12)

The symbol P, in (10), represents the spe-

cific weight of unit-length of the wire when

loaded; i.e., adopting the symbol previously

used
P = mp, where m ^> 1.

We can write

/ = ^j^ (See Note*). (13)

This equation gives the sag, /, in feet, of a

span of length I, in feet, when the stress at

the lowest point of the wire is = T, in

pounds per square inch, and the wire, un-

loaded or loaded, weighs mp pounds per

foot of length and per square inch of sec-

tional area; and this relation is independent
of any considerations whatever regarding the

temperature conditions.

*NOTE. Equation (13) involves the assumption
that the stress is constant at all points in the wire,

which is not true. It can be demonstrated that the

horizontal component T of the stress remains constant

at all points of the wire, being equal to the stress at

the lowest point. The vertical component is:

1 L
~mp= - p

The resultant stress at the point of support is

\ 4

which, when L/T = 0.125 and in the case of copper,

becomes

T, = 1.028T

Therefore, for L/T < 0.125, we have T, < 1.028T.

The mechanical stress, T, varies, however,
either with the temperature or with the addi-

tional loading; consequently, by Equation

(13), the value of the sag, /, will also vary.

In passing from the temperature to the

temperature 0i > 0o, the wire stretches, and

the stress, T, decreases; i.e., we will have

TO > TI, which produces an elastic short-

ening in the wire.

The stretching of the wire is, therefore, of

two kinds, the first kind being due to thermal

expansion, and the second kind being due to

the elasticity of the wire itself; and the two

oppose each other.

Therefore, neglecting infinitesimals of the

second order, we can write
m

i
- TV

X =
(0i

-
)aXo + E

"\
Ad,

and then, substituting the length of the span
I for the initial length of the wire (see Note*),

we will have
/TT fjl

i N 7 I

J 1 *

E I (14)

On applying Equation (11) successively to

the two conditions of the wire designated by
the subscripts o and 1, and adopting the sym-
bols already used, we have

, m*p
2
l
3

,
, m*pH 3

Xl = l +
243V

' and X = l +
247V

and, supposing the extra load and, hence, the

value of m, to vary, we will have

= 1 + ,

and
o- M --

Substituting these values in Equation (14),

and dividing by I, we have

_ , T, - T

which may also be written thus

f OTI*P*P _ TI \ f m pH* _ To
1

~
1 247V ~[aE I

"
1 ~2aT~<)*~aE

*NOTE. The percentage of the error made by tak-

ing the length of the span instead of the actual length

of the wire is given by the relation

8f 2

e = -J *

(see Equation (12))
o /

when / =
0.061, t = 0.01 ;

but / = 0.061 corresponds

(see Equation (10)) to L/T = 0.125. Therefore, for

L/T < 0.125 we have < 0.01.



20 GRAPHICAL DETERMINATION OF SAGS AND STRESSES

and, taking, in general, ml = L, and, in

particular, m,il= LI, and m l = L
, we have

aE
T

(15)
24a7V aE

This equation embodies the idea due to

Blondel of the "hypothetical span,"

namely, that a span of length I, weighted by
an additional load which multiples by TO the

unit-weight, p, of the naked wire, may be

replaced by a, span of lengthL = ml, so far as

the calculation of line-stability is concerned,

since the value of T remains the same for

both.

In Equation (13), multiplying both sides

by TO, and substituting L = ml, we have

ra2p/
2 pi 2

V o frt
~ o fr\

oJ. oJ.

and, if we take F = mf, we have, in general

F = (16)

This means that replacing the actual span, I,

by the hypothetical span, L, amounts to the

same thing as multiplying all the sags by the

value of TO.

It is well to bear in mind that in all the

equations thus far written, and in those

which follow, in which the coefficient TO

appears, the latter may take any value

whatever greater than 1, but that it cannot

be less than 1. When we have m =
1,

then we have L =
I, and F =

/.

Equation (15) can be written in the fol-

lowing form

P
2la 2 T

24a7Y aE 24a7V
To

aE

or, since that equation applies for infinite

values of 0, we will have, in general

/ P
2^ 2 JM = r"

I 24T2 aE }

'

where c = a constant. If we take
t = 6 - C (17)

we can write

P
2L 2

-
-TV (18)

in which t is not a temperature, but differs

from a temperature by a constant, c (equa-
tion (17)). The difference, however, be-

tween two values of t is equal to the differ-

ence between the corresponding values of 6;

in fact, from equation (17) we can write
A< = /!

-
t =

(0!
- C) - (6

-
C) = 0!

-
0o = A0

The practical application of the principles

demonstrated in the preceding section is to

be found in Part I, Construction of Charts.

Case II. Spans with supports at different levels

Suppose a span whose length, projected on

a horizontal plane, is 1 ft., and whose sup-

ports have a difference of level of h feet.

Such a span is equivalent, for the purpose
of calculating the variations in sag, to the

span with supports at the same level that

is obtained by prolonging the assumed cate-

nary of the wire until it meets the horizontal

line passing through the higher support.

The length of that hypothetical span, for

a given stress, T, in the wire of the span I, is

given by the relation

mp I
(19)

In fact, if Ix = the distance between the

lowest point of the curve described by the

wire and the vertical line passing through
the lower support, we have

c = 2(1
- y (20)

and also

, = rapjx
2

J * n rri

and also, in the case of the span,, c

, __ rape
2

rap(Z
- k)*

8T 2T

From this, substituting for fx ,
and solving

for lt ,
we have

and, substituting in (20), we obtain (19),

again.

Referring to Equation (19), it is seen that

when

i -
rap I (21)
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the lowest point of the curve described by
the wire coincides with the lower support;

whereas, when

When T l
= T

,
we have

I
4

mp
(22)

the lowest point of the wire falls inside the

span I; and, when

7 -
" T (9"*}

mrt T

the lowest point of the curve described by the

wire falls beyond the span, I.

The hypothetical span, c, which takes the

place of the actual span I, in the calculation

of the sag, is different for different values of

T and of TO; in reality, it increases when T

increases, and when m decreases. In conse-

quence, when Equation (16) is used for calcu-

lating the sag-values (which in that case are

equal to the vertical distances between the

higher support and the lowest point of the

curve described by the wire), if the inequal-

ity (23) obtains for the initial value of T,

then, as T decreases, the sag will continue

to decrease until the equality (21) obtains,

after which it will go on increasing. The

contrary will be the case if the value of T
increases.

In general, therefore, there will be, for

constant additional loading, two equal values

of / corresponding to values of T which are

very different from each other. For this

result it is only necessary that the condi-

tions of the following equation (see Equation

(13)) should be fulfilled:

2 h
1-' 7

7 'l f
< ' -1-

( mp I

from which we have

r1r =
rt"

However, one of the sags corresponding to

all the stresses given by this last equation is

hypothetical, because the lowest point of the

curve described by the wire falls beyond the

span I.

whence

T =

which is only another form of the Inequality

(21) already found.

When the values of T and of m are fixed,

the value of c can be obtained by Equation

(19), and, taking L = me, Equation (16)

is then available for calculating the sag.

Passing to the variations of temperature

and of additional loading, and to the corre-

sponding variations of stress and sag, we

substitute for L, in (15), the value of me

obtained by Equation ( 19) . Inserting values

and taking, as before, t' = 6 c, we arrive

at the equation

, _ tjPL?_ _ T\
1^ ph m_~

to^f
~

uEl
' H

6 "a T

where L = ml, and TO ^ 1, and, therefore,

(see Equation (18)),

t'=t + \^^ (24)

This equation, together with Equation

(19), shows that, unless it be done in a special

way, it is not possible to use for spans with

supports at different levels, the charts made

for spans with supports at the same level,

because the hypothetical span is a function

of the stress T existing in the wire (Equa-

tion (19)), and, therefore, it varies at all

times as T varies, and t' differs from t by a

quantity which is a function of the value of

T, and is, therefore, always variable.

We may note, at the outset, that, when we

wish to make use of the charts, the scale of

F-values can be used just as it is, because

Equation (16) was used in making the cal-

culations for these tables. On the other

hand, the scale of ^-values will evidently

require to be modified in some way (see

Equation (24)).

Now, as we cannot modify the scale of t-

values used in the charts, it will be necessary
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to interpret them in a different way. To this

end, we will call At' the portion of the scale

which represents, on the charts, the range of

temperature having the value A 9 = At, when,

instead of a span with supports at the same

level, we have to deal with a span of the same

horizontal length but with supports at differ-

ent levels.

In like manner, we will call t' and t'i the

extreme points of the portion of scale for

values of At' which correspond, respectively,

to t and ti, the extreme limits of the range of

temperature.

In general, therefore, we will call t' that

point on the scale of the chart which corre-

sponds, for a span with supports at different

levels, to the point t of the same span when

it is supposed to be with supports at the same

level (see Equation (24)).

Aided by these considerations, we will now

be able to use the charts even in the case of

spans with supports at different levels.

We shall see that the charts may be used

just as they are for the calculation of stresses

in the wire. If the curve of sags is also

desired (for spans with supports at different

levels) it will be necessary to construct it

point by point, since the hypothetical span,

c, varies continuously.

The extra loading is, at first, neglected.

Suppose a span of horizontal length, I,

with a difference of levels, h, and suppose

the maximum stress to be limited to a given

value, Tm ,
which must not be exceeded, at

the lowest temperature, - From these

data, we calculate the hypothetical span, c,

by means of Equation (19). On the charts,

the straight line corresponding to Tm and

the curve for c determine, by their point of

intersection, a sag, F =
f, which is the actual

sag, measured from the highest point to the

lowest point of the curve described by the

wire; and the abscissa of that point fixes

a value of t' which we will call i'
,
and which

will be the starting point of a section of the

scale of values of At', for the span with sup-

ports at different levels.

That point of intersection will be also the

starting point of the curve of sags.

To that value of t'
, corresponds a value

t , which is the initial point of the actual

range of temperature Ad =
At, for the span

of lengthL =
I, with supports supposed to be

at the same level, and with the same stress,

Tm . To find that point, we look for the

point of intersection of the curve L I,

with the straight line for Pm ;
and the abscissa

of that point of intersection determines ta .

The difference (t' tQ), in the scale of the

chart, is proportional to the term

I ? )
(see Eiuation (24)) -

The maximum range of temperature, A 6

At, assumed for the locality, is to be measured

off, in degrees Fahrenheit, starting from the

point t and ending at the point ti, on the

scale of abscissae, on the chart.

The ordinate corresponding to t\ will inter-

sect the curve of L = I at a point through

which passes a straight line of stress-values

which may be designated TI. To that stress

corresponds a span c\, which can be calcu-

lated by means of Equation (19). The

point of intersection of the straight line of

TI with the curve of Ci is the last point of the

curve sought. The ordinate of that inter-

section determines, on the scale of ^-values

(i.e., on the scale of abscissae) a value of t'i

which is the last (highest) point of the rise

along the scale At'.

The difference (t'i tj on the scale of

the charts is proportional to the term

(e ? T) (see Eiuation

It is sufficient to take a few intermediate

points, making the value of A6 vary, to ob-

tain the different values of T, and, conse-

quently, the, different points of the curve

desired. In the curve thus constructed,

the whole of the scale of At'i, in accordance
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with what has already been stated, will be

divided into as many degrees as are com-

prised in the range of temperature A0 =
At,

and the scale will vary from point to point

in accordance withEquation (24) . However,
it is evident that if the sag-values do not

really need to be known (see remark on page

7, Part I. Construction of Charts), then

the practical use of the charts becomes quite

simple in that case also. In fact, in such a

case, we deal with the curve of L =
I, as if

it related to a span with supports at the same

level; to each value of Ai corresponds a value

of T, and the portion of the curve L =
I,

comprised between t and t\ gives the differ-

ent values of the stress.

We proceed in similar manner when we

wish to take into account the extra loading.

In that case, there will be, in addition to

the preceding data, a coefficient of extra

loading having the value m. We determine,

by the aid of Equation (19), the hypothetical

span cm , corresponding to the maximum
stress Tm allowed in the wire.

On the charts, the ordinate of the point of

intersection of the curve of L = mcm with

the straight line for Tm gives, for the wire

when loaded, the true sag multiplied by TO;

and the abscissa of that point gives a value

of t' which we will call t'm .

We must now find the stress T to which

the wire is subjected when, while keeping

the temperature constant, the extra load is

removed. Equation (24), when applied to

the condition of the wire which corresponds

to an additional load corresponding to TO,

gives

24T4, aE } '6 a Tm

which may be also written as follows :

t>m =
{ 24aTm\

~
~aE

j
o

,1 ph m

^ ph m
6 T

This means that, on the chart, a certain

value (to) of t, given by Equation (25), corre-

sponds to the value (t'm) of t', already found.

To find that value on the chart, all that is

necessary, evidently, is to follow the straight

line of Tm to its intersection with the curve

of L = ml; the abscissa of that point corre-

sponds to the value of t which satisfies the

equation

"
aE

that is to say (see Equation (25)), it represents

the desired value, t . Under these circum-

stances, we can proceed as in the case of

spans with supports at the same level. In

fact, to unload the wire, while maintaining
the temperature constant, is equivalent to

changing from the span L = ml to the span
L = I by following downward along the

ordinate of
to', the point of intersection of

that ordinate with the curve of L = I deter-

mines the value of the stress T to be found.

For that value we have

_'

Tn\

aE)
__ __ __
\247Y aEJ

"
\24a7V

The value of t' corresponding to tQ will be

determined by the abscissa of the point of

intersection of the straight line of T with

the curve of L = c
,
where c has the value

For that point, by Equation (24) ,
we can

write

=
*0

24a7V aE 6 a T

whence
1 ph

6 a T

(25)

Therefore, neglecting the extra load, we

find the same result as before.
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