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PREFACE

It is now generally conceded that graphic methods are not

only of great importance for practical work and scientific

investigation, but also that their educational value for sec-

ondary instruction is very considerable. Consequently, an

increasing number of schools have introduced graphic algebra

into their courses, and several elementary text-books on graphs

have been published.

This book gives an elementary presentation of all the funda-

mental principles included in such courses, and contains in

addition a number of methods which are shorter and require

less numerical work than those usually given. Thus, for the

solution of a cubic or biquadratic by the customary method

a great deal of calculation is necessary to determine the co-

ordinates of a number of points. To avoid these calculations

and to make the work truly graphic, the author has devised a

series of methods for solving quadratics, cubics, and biquad-

ratics by means of a standard curve and straight lines or

circles.

Two of these methods— the solution of quadratics by a

parabola (§ 30) and of incomplete cubics by a cubic parabola

(§ 49)
— are but slight modifications of methods previously

known
;
the others are original with the author, who first pub-

lished them in a paper read before the American Mathematical

Society in April, 1905.

The author desires to acknowledge his indebtedness to

Mr. Charles E. Deppermann for the careful reading of the

proofs and for verifying the results of the examples.

ARTHUR SCHULTZE.
New York, December, 1907.
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PAET I

GENERAL GRAPHIC METHODS

CHAPTER I

DEFINITIONS

A

N

A"

1. Location of a point. If two fixed straight lines XX' and

YY meet in at right angles, and PM _L XX', and PN± YY,
then the position of the point P is determined if the lengths

of PM and PN are given.

2. Coordinates. The
lines PN and PM are

called the coordinates of

point P; PN, or its equal

OM, is the abscissa; and

PM, or its equal ON, is

the ordinate of point P.

The abscissa is usually-

denoted by x, the ordinate

by y-

The line XX' is called

the jr-axis or the axis of

abscissas, YY' the y-zxis
or the axis of ordinates.

The point is the origin, and M and N are the projections of

P upon the axes. Abscissas measured to the right of the ori-

gin, and ordinates above the x-axis, are considered positive;

hence coordinates lying in opposite directions are negative.

-(P
& 3 M4

D



2 GRAPHIC ALGEBRA

3. The point whose abscissa is x, and whose ordinate is y, is

usually denoted by (x, y). Thus the points A, B, C, and D are

respectively represented

by (3,4), (-2, 3), (-3,
-

2), and (2,
-

3).

The process of locating

a point whose coordinates

are given is called plotting

the point.

4. Since there are other

methods of determining
the location of a point,

the coordinates used here

are sometimes, for the

sake of distinction, called

rectangular coordinates.

Note 1. While usually the same length is taken to represent the unit

of the ahscissas and the unit of the ordinates, it is sometimes convenient

to draw the x and the y on different scales.

Note 2. Graphical constructions are greatly facilitated by the use of

cross-section paper, i.e. paper ruled with two sets of equidistant and par-

allel lines intersecting at right angles. (See diagram on page 29.)



DEFINITIONS 3

8. Wliere do all points lie whose abscissas equal zero ?

9. "Where do all points lie whose ordinate equals zero?

10. What is the locus of (x, y) if y = 3?

11. If a point lies in the o^axis, which of its coordinates is

known?

12. What are the coordinates of the origin?



CHAPTER II

GRAPHIC REPRESENTATION OF A FUNCTION OF ONE
VARIABLE

5. Definitions. An expression involving one or several let-

ters is called a function of these letters.

x2 — x + 7 is a function of x.

q
Vy y

2 is a function of y.
y

2 xy — y
2 + 3 y

3 is a function of x and y.

If the value of a quantity changes, the value of a function

of this quantity will change, e.g. if x assumes successively the

values 1, 2, 3, 4, x 2 — x + 1 will respectively assume the values

7, 9, 13, 19. If x increases gradually from 1 to 2, x2 — x + 7

will change gradually from 7 to 9.

A variable is a quantity whose value changes in the same
discussion.

A constant is a quantity whose value does not change in the

same discussion.

In the example of the preceding article, x is supposed to change, hence

it is a variable, while 7 is a constant.

6. Temperature graph. A convenient method for the repre-

sentation of the various values of a function of a letter, when
this letter changes, is the method of representing these values

graphically ;
that is, by a diagram. This method is frequently

used to represent in a concise manner a great many data refer-

ring to facts taken from physics, chemistry, technology, eco-

nomics, etc.

To give first an example of one of these applications, let

us suppose that we have measured the temperatures at all

4



FUNCTION OF ONE VARIABLE

hours, from 12 m. to 11 p.m., on a certain day, and that we
have found :

At 12 m.
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hence every graph constructed in the above manner is only an

approximation, whose accuracy depends upon the number of

points constructed.

To find from the diagram the temperature at any time, e.g.

at 2.30, measure the ordinate which corresponds to the

abscissa 21; to find when the temperature was 4°, measure

the abscissa that corresponds to the ordinate 4, etc.
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2. Construct a diagram containing the graphs of the mean

temperatures of the following four cities :
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d. If the same air was cooled to 5°, how many grams of

moisture would be condensed per cubic meter ?

e. How much more moisture per cubic meter can air of

the kind mentioned in Ex. a hold ? *

[For more statistical data suitable for graphic representation

see Appendix II.]

8. Graph of a function. The values of a function for the va-

rious values of x may be given in the form of a numerical table.

Thus the table on page 84 gives the values of the functions

r- 1
x2

,
x3

, Vas,
- for x = 1, 2, 3,

• • • up to 100. The values of

functions may, however, be also represented by a graph.

E.g. to construct the graph of x2 construct a series of points

whose abscissas represent

x, and whose ordinates are

x% i.e. construct the point

(-3,9), (-2,4), (-1,1),

(0, 0)
• • •

(3, 9), and join

the points in order.

If a more exact diagram
is required, plot points

which lie between those

drawn above, as (^, \),

C4, 21), etc.

Since the squares of the numbers increase very rapidly, it is convenient

to make the scale unit of the x2 smaller than that of the x. The graph

on page 29 was constructed in this manner.

To find from the graph the square of — 2.5, measure the

ordinate corresponding to the abscissa —2.5, i.e. 6.25. To

* Many meteorological facts can be explained by the graph of Ex. 3,

e.g. the meaning of "dew-point," relative and absolute humidity, the fact

that the mixing of two masses of saturated air of different temperatures

produces precipitation, etc.

L_



FUNCTION OF ONE VARIABLE

find VT, measure the abscissa whose ordinate is 7, i.e. +2.6
or - 2.6.

Ex. Draw the graph of i x2 — A x — 3.

To obtain the values of the functions for the various values

of x, the following arrangement may be found convenient :

(Compute each column before commencing the next, and see table on

page 84.)

X
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10. The graph of an equation of the form of ax? + bx + c is

called a parabola.

Thus the graph of \ x
2 —

\ x — 3 is a parabola.
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27. Draw the graph oiy = 2 -\-2x-x2
,
from x = — 2 to x = 4,

and from the diagram determine :

(a) The values of y, i.e. the function, if x—%, — 1£, 2\.

(b) The values of x if y = — 2.

(c) The greatest value of the function.

(d) The value of a; that produces the greatest value of y.

(e) The values of x if the function equals zero.

(/) The roots of the equation 2 + 2 x - x2 = 0.

(#) The values of x if y = 1.

(/i)
The roots of the equation 2 + 2cc— a^ = l.

28. The formula for the distance traveled by a falling body-

is S = ±gt
2
.

(a) Eepresent i
gt

2

graphically from t = to t = 5. (Assume

g = 10 meters, and make the scale unit of the t equal to 10

times the scale unit of the ^ gt
2

.)

(b) How far does a body fall in 2\ seconds ?

(c) In how many seconds does a body fall 25 meters ?

11. A function of the first degree is an integral rational func-

tion involving only the first power of the variable.

Thus, 4x + 7orax + 6 + c are functions of the first degree.

12. It can be proved that the graph of a function of the first

degree is a straight line, hence two points are sufficient for the

construction of these graphs. (This is true if the abscissas and

ordinates are drawn on different scales or on the same scale.)

It can easily he shown that the preceding proposition is true for any

particular example, e.g. 3 x + 2.

If a; =-3, -2, -1, 0, 1, 2, 3,

then 3x+ 2=-7, — 4,
—

1, 2, 5, 8, 11;
i.e. if x increases hy 1, 3 x + 2 increases hy 3. Hence if a straight line

be drawn through (—3,-7) and (
—

2,
—

4), this line will ascend 3 units

from x = — 3 to x = — 2. Obviously the prolongation of this line will

ascend at the same rate throughout, and it will pass through (— 1,
—

1),

(0, 2), etc.
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Instead of plotting (—3, —7) and (—2, —4), any other two points

may be taken. It is advisable not to select two points which lie very

closely together.

EXERCISE 4

Draw the graph of

1. 3 a? -10. 3. 2 a;— 7. 5. 6+ a.

2.5^ + 2. 4. 2 — 3 x. 6. | x — 5.

7. Degrees of the Fahrenheit scale are expressed in degrees

of the Centigrade scale by the formula C. =
-| (F.

—
32).

(a) Draw the graph of f (F.
-

32), from F. = - 5, to F. = 40.

(6) From the diagram find the number of degrees of Centi-

grade equal to - 1° F., 9° F., 14° F., 32° F.

(c) Change to Fahrenheit readings:
- 10° C, 0° C, 1° C.

8. Show that the graphs of 3 x + 2 and 3 x — 1 are parallel

lines.



CHAPTER III

GRAPHIC SOLUTION OF EQUATIONS INVOLVING ONE
UNKNOWN QUANTITY

13. Degree of an equation. A rational integral equation which

contains the nth. power of the unknown quantity, but no

higher power, is called an equation of the 7ith degree.

x5 — 5 x3 + 2 x2 — 7 = is an equation of the fifth degree.

Xs — 2 x2 — 5 x + 1 = is an equation of the third degree.

A quadratic equation is an equation of the second degree.

A cubic equation is an equation of the third degree.

A biquadratic equation is an equation of the fourth degree.

x3 + 2x + 3=0isa cubic equation.

x4 + 3 x3 + 2 x — 7 = is a biquadratic equation.

14. Solution of equations. Since we can graphically deter-

mine the values of x that make a function of x equal to zero,

it is evidently possible to find graphically the real roots of

an equation.

Ex. Find graphically the real roots of the equation

!B
8
4-aj

8-9a!-7= 0.

(In computing the values of y use table on page 84.)

X
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Obviously the values of the fuuction for x > 4 will increase

rapidly, and for values of x < — 4 will be less than — 19.

Locating the points (-4, -19), (-3, 2) (-2, 7) ... (4, 37)
and joining produces the

graph ABC.
Since ABC intersects

the avaxis at three points,

P, P', and P", three

values of x make the

function zero. Hence
there are three roots

which, by measuring OP",

OP', and OP, are found

to be approximately —3.1,

-.8, and 2.9.

To find a more exact answer for one of these roots, e.g. OP, we
draw the portion of the diagram which contains P on a larger scale.

If x = 2.9, the function equals —.301, i.e. it is negative. Hence it

appears from the diagram that the roots must be larger. Substituting
x = 3 produces x3 + x'2 — 9 x — 7 = 2, a positive quantity. The root there-

fore must lie between 2.9 and 3.

Making the unit of length ten times as large as before, we locate the

points (2.9,
—

.301) and (3, 2), i.e. B' and C
,

in diagram II. Since in

nearly all cases small portions of the curve are almost straight lines,

we join the two points by a straight line B'C, which intersects the x-axis

in P.

The measurement of P gives the root

x = 2.915.

If a greater degree of accuracy is required, a third drawing on a still

larger scale must be constructed.

15. The diagram of the last exercise may also be used to

find the real roots of an equation of the form a^-f x
2—9x— 7= ra,

when m represents a real number.

To solve, e.g., the equation a^ + ar — 9 x — 7 = 2, determine

the points where the function is 2. If cross-section paper is

used, the points may be found by inspection, otherwise draw
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through (0, 2) a line parallel to the £-axis, and determine the

abscissas of the points of intersection with the graph, viz.

-3,-1,3.

16. It can be proved that every equation of the nth degree

has n roots
;
hence if the number of the points of intersection

is less than n, the remaining roots are imaginary.

Thus, x* + x2 — 9x — 7 = 13 has only one real root, viz. 3.4; hence

two roots are imaginary.

If, however, the line parallel to the x-axis is tangent to

the curve, the point of tangency represents at least two roots,

and hence the preceding paragraph cannot be applied.

EXERCISE 5

Solve graphically the following equations :

1. 4a;— 7 = 0. 14. 2 x2 - 4 x -15=0.

2. 2 z + 5 = 0. 15. 2 x2 + 10 a;-7 = 0.

3. 6-x = 0. 16. 3ar2 -6cc-13 = 0.

4. 8-3 a; = 0. 17. Xs - 3^-1 = 0.

5. x2_ a;_ 6 = 18< ar?- 12 £ + 18 = 0.

6. ar-£-5 = 0. 19. £3-4« + l=0.

7. a? — 2 x— 7 = 0. 20. x3 + £-3 = 0.

8. £2 -6£ + 9 = 0. 21. £3 + 3£-ll = 0.

9. x2+ 5 aj_4 = o. 22. 2£3 -6£ + 3=0.

10. £2 -5£-3 = 0. 23. £3 -5a;2 -9£ + 50 = 0.

11. x2 -Sx-6 = 0. 24. x3 - 13 £- + 38 £ + 17=0.

12. £2 -2£-9 = 0. 25. X4 -10x2 +8 = 0.

13. 3£2 -3£-17 = 0. 26. £4 -4£2 + 4x-4 = 0.

27. x4 -6x3 + 7x2 + 6x-7 = 0.

28. x5 - x4 - 11 x5 + 9 x2 + 18 x - 4 = 0.

29. 2x + x — 4 = 0.
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30. If y = xs + 5 x2 -
10,

(a) Solve y= 0. (c) Solve y = — 5.

(6) Solve y = 5. (d) Solve?/ = -15.

(e) Determine the number of real roots of the equation

y=-2.
(/) Determine the limits between which m must lie, iiy = m

has three real roots.

(g) Find the value of m that will make two roots equal if

y = m.

(h) Find the greatest value which y may assume for a

negative x.

(i) Which negative value of x produces the greatest value

ofy?
31. Ify=za?— 7x+ 3,

(a) Solve y = 0. (d) Solve y = 10.

(6) Solve y= 3.
. (e) Solve y = -15.

(c) Solve y = — 3.

(/) Determine the number of real roots if ?/ equals 15,

10, 5, or - 7.

(#) Determine the number of imaginary roots if y = — 10,

if ?/ =12, if y = 2.



CHAPTER IV

GRAPHIC SOLUTION OF EQUATIONS INVOLVING TWO
UNKNOWN QUANTITIES

17. Graphs of functions of two unknown quantities. In § 8

the graph of the function \ x2 — \x — 3 was discussed. If

£ ajS_ £ x
— 3 is denoted by y, then

the ordinate represents the various

values of y, and the annexed diagram

represents the equation

y = hx*-\x-3. (1)

The coordinates of every point of the

curve satisfy equation (1), and every

set of real values of x and y satisfying

the equation (1) is represented by
the coordinates of a point in the

curve.

Similarly, to represent
—^— = 2 graphically solve for y, i.e.

y-5
x2 + x + 10

\
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Ex. 1. Eepresent graphically 3 x — 2 y = 2.

3z-2
Solving for y, y =

2
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16. A body moving with a uniform velocity of 3 yds. per

second moves in t seconds a distance cl = 3 1.

Kepresent this formula graphically.

17. If two variables x and y are directly proportional, then

y = ex, where c is a constant.

Show that the graph of two variables that are directly pro-

portional is a straight line passing through the origin (assume

for c any convenient number).

18. If two variables x and y are inversely proportional, then

y — -, where c is a constant.
x

Draw the locus of this equation if c = 12.

19. The temperature remaining the same, the volume v of a

gas is inversely proportional to the pressure p. For a certain

body of gas, v = 2 cubic feet, if p = 15 lbs. per square inch.

Represent the changes of p and v graphically.

22. Graphical solution of a linear system

To find the roots of

the system :

2x + 3y = 8, (1)

x-2y = 2. (2)

By the method of

the preceding article

construct the graphs
AB and CD of (1)

and (2) respectively.

The coordinates of

every point in AB
satisfy the equation

(1), but only one point

in AB also satisfies

equation (2), viz. P,

the point of intersection of AB and CD.

\

__J_
—
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By measuring the coordinate of P, we obtain the roots,

x = 3.15, y = .57.

23. The roots of two simultaneous equations are represented

by the coordinates of the point (or points) at which their

graphs intersect.

24. Since two straight lines which are not coincident nor

parallel have only one point of intersection, simultaneous

linear equations have only one pair of roots.

If two equations are inconsistent, as2x + ?/
— 2 = and 2x + y — 4 = 0,

their lines are parallel lines (§21).

If two equations are dependent, their graphs are identical, as

* + 1 = l &n&Sx + 2y = 6.

2 3

Obviously inconsistent and dependent equations cannot he used to deter-

mine the roots of a system of equations.

25. Equations of higher degree can have several points of

intersection, and hence several pairs of roots.

Ex. 1. Solve graphically the following system :

x> + f = 25, (1)

[3x-2y=-6. (2)

Solving (1) for y, y = V25 - x2
.

Therefore, if x equals -5,-4,-3,-2,-1, 0, 1,2, 3, 4, 5, y equals

respectively 0, ± 3, ± 4, ± 4.5, ± 4.9, ± 5, ± 4.9, ± 4.5, ± 4, ± 3, 0.

Locating the points (-5, 0), (-4,

+ 3), (_4, -3), etc., and joining, we

obtain the graph (a circle) ABC of the

equation x2 + y
2 = 25.

Locating two points of equation (2),

e.g. (- 2, 0) and (0, 3), and joining by a

straight line, we obtain DE, the graph of

3x-2y=-Q.
Since the two graphs meet in two

points P and Q, there are two pairs of

roots, which we find by measurement,

x s: 1J, y = 4$, or x =- 4, y =- 3.
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Ex. 2. Solve graphically the following system:

xy 12, (1)

(2)

From (1) y =
12

x —y = 2.

Hence, by substituting for x the values — 12, — 11,

• •• to + 12, we obtain the following points : (— 12,
—

1), (— 11,
— 1^),

(- 10,
-

1|), (- 9,
- H), (-8, -li), (- 7,

-
If), (- 6,

-
2), (- 5,

-2|), (-4, -3), (-3, -4), (-2, -6), (-1. -12), (0, ±ao), (1,

12), (2, 6), etc., to (12, 1).

Locating these points and joining them produces the graph of (1), which

consists of two separate branches, CD and EF.

Locating two points

of equation (2) and

joining by a straight

line, we have the graph
AB of the equation (2).

The coordinates of

the two points of inter-

section P and P' are the

required roots. By act-

ual measurement we
find x = 4.5+, y =2.5+,
or x = — 2.5, y = — 4.5.

To obtain a greater

degree of accuracy, the

portion of the diagram
near P is represented
on a larger scale in the

small diagram. Since

the small part of CD
which is represented is almost a straight line, it is sufficient to locate two
or three points of this line. By actual measurement we find :

x - 4.606, y = 2.606.

Evidently the second pair is

as = —2.606, y = -4.606.

By increasing the scale further, any degree of accuracy may be

obtained.



22 GRAPHIC ALGEBRA

EXERCISE 7

4
Ux + 3y=12,
\ x + 5y=6.

5.
3x + 5y = 7.

5 x — y = 7.

3.

Solve graphically the following simultaneous equations

3x + 4y = 8,

2x-3y = 6.

3x + 4y = 10,

4 x + y = 9.

2a;-32/ = 7,

3z + 2?/=-8.
6. Show graphically that the following system cannot have

finite roots :

\2x-y=2,
[2x-y = 6.

7. Show graphically that the following system is satisfied by
an infinite number of roots :

4
+

3 '

3x + 4y=12.

8. Without constructing the graphs, determine the relative

positions of the loci of 14 x — 7 y -f 2 = and 14 x — 7 y + 5 = 0.

Solve graphically :

10.

11.

12

r^ + 2/

2

=i6,

# + 2/
= 5,

./•//
= 6.

«-y= l,

x2 + 2/

2 = 25.

* - y = 2
>

xy = 8.

13.

14.

15.
\

16.

(4x-5y = 10,

\xy = 6.

x2 — y
2 = 4,

25.

= 12,

= 8.

a- = 2 y.

f.r//= 6,

x2 + xy--

x2 - y
2

:

26. The equation of the circle. 77ie locus of an equation of the

form x2
-\- y

2 = r2 (1) is a CiYcZe whose center is the origin and

whose radius is r.
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For the distance from the origin of a point P in the locus,

OP=V.?+? (1)

= Vr2 = r.

But if the distance of every point
in the locus from is equal to r, then

the locus is a circle whose center is

and whose radius is r.

Thus, x2 + y
2 — 16 is a circle whose center

is and whose radius equals 4, x2 + y
2 ~ 10

is a circle whose center is and whose radius is VlO.

Note. The square root of a number can often be represented by the

hypotenuse of a right triangle whose arms are rational numbers. Thus,

VlO = V32 + l2
,
hence VlO, equals a line joining (0, 0) and (3, 1).
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Ex. 1. Construct the locus of

x2 + 2x+y2 -4y-5 = 0.

Transpose and complete the squares of the expressions involving x

and y,

(x2+2x + l) + ( 2/2-4 2/ + 4) = 5 + 6,

(x +1)2 + 0-2)2 = 10.

I.e. the required locus is a circle *vhose center is (
—

1, +2) and whose

radius is vTo.

0.

3 l 9 l 9
2 + TS T" ?J

Ex. 2. Construct the locus of

2a;2 + 2?/
2 -3a; + 6?/ + 3

Dividing by 2, and transposing,

X2_3 x + 2/2 + 3 2/= _3 <

Completing the squares,

X2_3 x+( 3
)2 + 2/

2 +3 y +(|)2= .

(^-f) 2
+(2/ + l)

2 =
fi-

I.e. the locus is a circle whose center is (f ,
—

|) and whose radius

IV21.

28. The preceding examples show that the locus of a quad-
ratic function involving two variables is a circle, if the func-

tion does not contain xy and if the coefficients of x2 and y
2 are

equal.

EXERCISE 8

is

Solve graphically :

*2 + 2/

2 = 4,

x + y = 3.

x2 + y
2 = 16,

x— y= 4.

a;
2+ 2/

2 = 50,

x — y = — 6.

fx2 + 2/

2 = 9,

[x— 2y= 2.

x? + y
2
=16,

2y-3a = 6.

6.

7.

4.

5.

9.

10.

[x2 -2x + y
2 -± y = 0,

[y = 2x.

x2 -4: x+ y
2+2y+3=0,

x— y= 3.

x 2-10x + y
2 = 0,

x2 + 6 a; + y
2 = 16.

(x-r-l)
2 -(2/ -l)

2 = 2,

(o;-l)
2

+(2/ + l)
2 = 8.

'aj
2+ 2/

2= l,

(a:-l)
2+ y

2= 2.



PART II

SOLUTION OF EQUATIONS BY MEANS OF
STANDARD CURVES

29. A disadvantage of the preceding graphic methods is the

fact that they often require a great deal of numerical calcula-

tion, and that the necessary curves are difficult to draw. In

the following chapters, methods will be given for the solu-

tion of quadratics, cubics, and biquadratics by means of one

standard curve, and straight lines or circles
;

i.e. one curve

may be used to solve all quadratics or all cubics, etc. The
construction of these curves requires very little calculation,
and once constructed, each curve may be used for the solution

of many problems.
Three curves are used in the following chapters, viz. a

parabola y = x2
,

a cubic parabola y = oc?, and an equilateral

hyperbola y = -.

y = x2 was drawn and discussed in § 8.

A locus of the form y = - was given in § 25, Ex. 2, and the graph of
x

y-=xz will be given in § 49.

Any one of these three curves may be used to solve with

rules and compasses either quadratics or cubics, but only the

parabola and equilateral hyperbola yield simple solutions for

biquadratics.
25



CHAPTER V

QUADRATIC EQUATIONS

30. To solve the quadratic

ax2 + bx + c = (1)

by means of a standard curve, we split the equation (1) into

two simultaneous equations, one of which is the standard

curve, while the other is a straight line or circle.

Thus, if ax2 + bx + c = 0, (1)

Let y= x*. 1 (2)

Substituting in (1), ay + bx + c = 0.
J (3)

The solution of the system (2), (3) for x produces the

required roots of (1).
x But the graph of (3) is a straight line, while the graph of

(2) is identical for all quadratic equations. Hence, after the

graph y = x2

(see annexed diagram) has been constructed, any

quadratic equation may be solved by the Construction of a

straight line, provided the roots lie within the limits of the

represented abscissas (—6 and + 6).

Ex. 1. Solve 11 x2 + 30 x - 165 = 0. (1)

Let y = x2
. (2)

Then 11 y + 30 x— 165 = 0. (3)

In (3), if x = 0, then y = 15
;

if y = 0, then x = 5 J. Tbe straight line

joining the points (0, 15) and (5|, 0) is the graph of (3), which intersects

the graph of (2) in P and P'. By measuring the abscissas of P and P',

we have x = 2.7, or x = — 5.5.

Ex.2. Solve 5 x? - 14 x- 65 = 0. (1)

Let y = a;
2

. (2)

Then by- 14* -65 =0. (3)

26
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Locating two points of the equation (3), e.g. (0, 13) and (5, 27), and

joining by a straight line produces the graph of (3), which intersects the

graph of (2) in Q and Q'. Measuring the abscissas of Q and Q', we

obtain
a = 5.3, or x =— 2.5.

:"::::::::::::""::x"::^-
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EXERCISE 9

Solve the following equations by the graphical method :

1. xt-x-6 = 0. 8. 4x2 -25« + 20 = 0.

2. ^_|_a;_2 = 0. 9. 3ar + 20o; + 12 = 0.

3. a2- 3 a -18 = 0. 10. a^+ aj— 5= 0.

4. a?
2+3aj-10 = 0. 11. x3— 2x— 9= 0.

5. a2 -2a;-8 = 0. 12. 3x*+7x-42 = 0.

6. ^ + 2^-4 = 0. 13. 2^ + 5^-20 = 0.

7 . ar
! _5a;-15 = 0. 14. 5r-4a;-5 = 0.

32. Solution for large roots. By changing the unit of the

abscissas and the unit of the ordinates, the same diagram may be

used to represent y = v? for various values of x. For in the dia-

gram we may assign any values to the abscissas, provided the

corresponding ordinates are made equal to the squares of the

abscissas. Thus after the graph of y = x2 has been drawn from

x = — 10 to x = 10, we may multiply the numbers on the «-axis

by any number, e.g. 3, and thereby extend the diagram from

x = — 30 to x = 30, provided we multiply the numbers on the

?/-axis by 32

,
or 9.

This change of scale units does not affect the character of

the locus ay + bx + c = 0, for this equation is a straight line

whether the abscissas and ordinates are drawn on the same or

different scales.

The annexed diagram can be used directly for roots between

— 10 and + 10. If the roots are larger, but lie between — 100

and +100, multiply the units by 10 and 102

respectively; i.e.

omit the decimal points in the diagram.

For roots still larger, add another cipher to the values of

the abscissas and two ciphers to the values of the ordinates.

Ex. 1. Solve graphically x2— 16 x - 4400 = 0.

Let 2/
= x2

;

then y- 16 x- 4400 = 0.
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Obviously the regular diagram does not contain the required roots.

Hence multiply the values of the abscissas by 10 and the values of the

ordinates by 102
;
i.e. disregard the decimal points.
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C

b
Since ^ is very large, locate two points as follows

If x = 0, y = 4400.

If x = 100, y = 6000.

The line joining (0, 4400) and (100, 6000) intersects y = a?m

>^3 1 S-pvgH—5--r--S—
-S--
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P and P. By measuring the abscissas of Panel P, we obtain

x = 74+ and x = - 59+ .

33. Small roots. Tor small roots multiply the values of the

abscissas by a fraction, most conveniently by .1, and the values

of the ordinates by .01
;

i.e. place the decimal point in front of

each number given in the diagram (except x = 10 and y = 100,

which become 1.0 and 1.00 respectively).

Thus, 1.0, 2.0, 3.0, etc., become .10, .20, .30, etc. As this

shifting of the decimal point is a simple operation, it may be

done mentally, without any actual alterations of the numbers

in the diagrams.

Ex. 2. Solve 10 ar> + 5a?= l.

Let
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11. 2 or
2

4- 3 a -1500 = 0. •

12. 3 or
2 + 10 a;= 3000.

13. ar + 29 a =210.

14. 3x£ + 200 a- 1200 = 0.

15. 50^-15^-6 = 0.

16. 10a^-6a;-l=0.

17. 4af! + 5a;-l = 0.

18. 20 x2 + 3 x -1 = 0.

19. 50ar-5.r-3 = 0.

20. 25 a2 + 10 a- 3 = 0.

21. 50.c2 + 5a;-l = 0.

22. 8 x2 -2 x — 1 = 0.

(1)

(2)

(3)

34. Graphic representation of a quadratic function.

Consider the equation
x2 +px + q = 0.

Let y = x2
.

Then y +px + g = 0,

or
2/
= — pa — q.

In the annexed diagram, let COD represent the parabola
y — x2

,
andBRthe straight line y + px + q = Q,ov y = — px — q.

Let CL4 or x' be any particular
value of x,

then (L4 = x'
2
,

and 2L1 = —px' — g.

Hence

CB=OA-BA = x'
2 + px' + g.

I.e. the value of the function
x2 + px + q for any particular
value x' is represented by that part

of the corresponding ordinate which

is intercepted between the straight
line y + px + q = 0, and the parabola y = x2

. The distance is

measured from the straight line, and is taken positive if it

extends upward, negative if it extends downward.

Thus, in the annexed diagram,

y = x2 — \x — 1
,
and we have :

\
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Note. If we consider the distances cut off from SB by the ordinates,

as abscissas, e.g. SK= x = 1, then the parabola represents the function

x2 + px + q in so-called "
oblique coordinates."

Ex. 1. Find the values of x which will make the function

x2—\x — \ equal to 2, i.e.

x2 \x-l = 2.

On YY' lay off SL = 2, and through L draw PQ II BE, meeting the

parabola in P and Q. By measuring the abscissas of P and Q we find

x —— |, or 2.

Ex. 2. Find the smallest value of the function x2 — 2 x — 1.

Construct AB, the locus of y — 2x — 1=0. (See next diagram.)
Draw a tangent parallel to AB, touching the parabola in C ;

then

DC = — 2 is the required value.

35. To construct the graph of

x2 + px + q in the usual manner

(rectangular coordinates), make
H'G' = HG, E'F'=EF, I'K'= IK,
etc. The curve G'F'C'L' is the

required locus of x2 +px + q (i.e.

of x2 — 2a:— 1).

Note. § 35 makes it possible to con-

struct the locus of a quadratic function

without any computation.

36. The value of the function ax2

+ bx + c is equal to a times the

part of the corresponding ordinate

ivhich is intercepted by the straight

line ay + bx + c = 0, and the pa-

rabola y = x2
.

For ax2+bx+c =a(x2
-\-

b c
But the function x2

H— sc+ - is represented by that part of
a a ,

the ordinate that lies between y — x2 and y + -x +- = or
a a

ay + bx + c = 0. Hence ax2 + bx + c is equal to a times this

intercept.

-x+
c-

a a
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EXERCISE 11

Find graphically :

1. The value of x2 - 2 x - 2, if x equals
-

3,
-

2, .5, 1±.

2. The value of x?-\- x — 3, if a; equals
—

1.5,
—

1, 0, 2.

3. The value of x2 — 5 x — 12, if x equals
—

2.1,
—

1.5, 3.5„

4. The value of x2 + 4 x + 5, if sc equals
—

7.5, 9.4,
— 8.8.

5. The values of x if x2 — 2 x — 10 = 4.

6. The values of x ii x2 + 10 x + 10 = 5.

7. The smallest value of x2 — 4 a; + 3.

8. The smallest value of x2 + 10 x — 5.

9. The smallest value of x2
-f 7 a; — 3.

10. The smallest value of cc
2 — 5 x + 2.

11. The value of 2 x2 + 6 a + 7, if a; equals
-

3, 6.5, 7.

Without calculating the various values of the function, con-

struct the loci of :
,

12. x2 + Qx + 10. 15. tf + hx—'S.

13. a^ + 4a;-5. 16. a2 — 3 a; + 7.

14. a;
2 — 4 a; + 7. 17. a'

2 + .c + l.

18. a;
2 + 4 a; — 7.

37. Equal roots. If the line ay + bx + c = is a tangent
to the parabola y = x2

,
the two points of intersection coincide,

and the two roots of ax2 + bx + c — are equal.

Ex. 1. Solve jb
2- 8 x + 16 = 0.

Let 2/
= x'2.

Then ?/-8x+l6 = 0.

If x = 0, ?/
= -16.

If * = 10, y = G4.

The line RR', which joins (0, —16) and (10, 64), is tangent to the

parabola at the point R.

Measuring the abscissa of R, we obtain two equal roots, 4 and 4.
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39. Complex roots. If the line ay + bx + c = does not

intersect the parabola y = x2

,
the roots are complex, and their

values may be found by means of the following theorems.

40. Let x2+px + q = represent an equation whose roots are

equal; then these roots are, by the general formula:

Hence

Assuming that d is a positive' quantity, it can easily be

shown that

x2

-\-px-\-q
— d = has the roots — - ± y^~. n\

x2 +px + q = has the equal roots — -P,
— ^; (2)

— —

x2 +px + q + d = has the roots — -2 ± A/_ ci /$\

The roots of (3) are complex and cannot be found directly

by the graphic method, but if we solve (1) instead, we only
have to multiply the irrational parts of the answer by V — 1

to obtain the roots of (3). The straight line which serves to

solve (1) can be obtained from the one which solves (3) by
means of the following proposition.

41. If x2

-\-px + q = has equal roots, the three straight lines

y+px + q-d = 0, (la)

y+px+ q =0, (2 a)

y+px + q + d = 0, (3 a)

are parallel, and the second one is equidistant from the other two.

These lines (AB, CD, and EF in annexed diagram) are parallel by

§21.

By making x = 0, we obtain :

OA = -q + d,

OC = -q,

* Schultze's Algebra, p. 269.
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OE- -q-d.
Hence AC=CE = d;

I. e. CD is equidistant from AB and EF.

42. Hence if EF is known, draw the tangent CD || EF,make
CA=EC, and construct AB

\\ EF;
then AB is the required line whicli

produces the roots of (1).

43. The construction, however, is

simplified by the following theorems:

1. TJie abscissa of the point of con-

tact (Gr) is equal to the rational part of

the roots of (1) and (3) .

For this abscissa = — "
•

2

2. A parallel to YY' through the

point of contact (G) bisects the chord KB, and hence any chord

parallel to the tangent.

For the abscissas of K, H, and B are respectively

OL

OM-.

-P-Vd;
2

_£•'

2'

2

Hence LM = MN = Vd.

Therefore, according to a geometric theorem,* KH= HB.

To solve the equation

(1)

44. Graphic solution for complex roots.

x2 + bx + c = 0,

which has imaginary roots.

Construct the locus EF of y -f- bx -f- c = 0,

and draw any chord PQ \\
EF. (See diagram, page 38.)

Through M, the midpoint of PQ, draw RI
||
YY' intersecting

* Schultze and Sevenoak's Geometry, § 144.
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the parabola in G, and EF in J. Make GH = IG, and through
.H" draw i£B

||
-Ei^

7
.

Then the abscissa of H is the

real part, and the difference of

the abscissas of B and H mul-

tiplied by V— 1 is the imagi-

nary part of the required roots
;

i.e. x = 031 ± MN x V— 1.

Note. The line RI may also be

constructed by drawing an ordinate

b
|,

or ifthrough one point [0,
V 2 a l

o = l, through (o,
--Y

45. If the coefficient of x2
is

a, the solution is the same as if

this coefficient was unity; for

by dividing ax2 + bx + c = by a, we obtain

aj
2
+^aj + -=0. (2)

a a

The straight line which serves to solve (2) is therefore

a a

or a?/ + 6x + c =
;

t'.e. we may substitute y = x2

directly into the given equation.

Ex. l. Solves8 -4 a; + 13 = 0.

Let

Then
If

If

y = %'.

y- 4x + 13 = 0.

x = 0, y = - 13.

x = 5,y= 7.

Join (0,
-

13) and (5, 7) by line EF,
and through the midpoint (R) of any

parallel chord draw RIWYY'. Make
GH = IG and draw KB II EF.

By measuring we obtain :

The abscissa of H — 2.

\
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The difference of the abscissas of B and H= 3.

Hence the required roots are

x = 2 ± 3 V~^l or 2 ± 3 j.

Ex.2. Solve 2 a;
2 +5 a; + 15 = 0.

(1)

Let y
— X2. (2)

Then 2 y + 5 a; + 15 = 0. (3)
Construct the line (3), i.e. LN, and through the midpoint (M) of any

parallel chord draw MP\] YY'. Make QS = PQ and draw SU\\ LN.
The roots produced by TUare - 1.3 ± 2.4. Hence the required roots are
- 1.3 ±2.4V- 1, or - 1.3 ± 2.4 i.

EXERCISE 12

Solve the following equations graphically :

1. x2 - 10a; + 25 = 0. 8. a;
2 - 5a; + 15 = 0.

2. x2 - 6 x + 13 = 0. 9. x2 + 3 x + 27 = 0.

3. a;
2 + 4 a; + 8 = 0. 10. a;

2
4- 9 a; + 36 = 0.

4. 0^ + 8 a; + 20 = 0. 11. x2 + x + 1 = 0.

5. ar
9 - 8 a; + 25 = 0. 12. a;

2 + 2 a; + 1 = 0.

6. x2 - 10a; + 29 = 0. 13. 2 2
a; + 2^ + 3 = 0.

7. ar + 7a; + 21 =0. 14. 4 a^ - 12 a; + 25 = 0.

46.* Solution of quadratic equations by means of the standard

curve y = -.

x

As stated in § 29,"the parabola y = a;
2
is not the only curve that

may be used for the graphic solution of quadratic equations by
means of straight lines. A curve that gives a very convenient

solution is the equilateral hyperbola y = -, which is plotted in

the annexed diagram. It consists of two disconnected branches

which approach the axes indefinitely.

Note. To plot this curve exactly, it is^necessary to locate several

points between x = and x = 1. Thus, if y'= 2, x = J ;
If y = 3, x = I ;

if y = 4, x = \ ;
etc. (See table on page 84.)

*
Paragraphs marked by asterisk * may be omitted.
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47.* To solve the equation

ax2 + bx+ c = 0.

Let
1 1

y = -, or x = ~.
x y

(1)

(2)

Partly substituting this value for x in equation (1),

Or

y y

ax + b + cy=0.
1

(3)

(2)

The solution of the system (2), (3) for x produces the re-

quired roots of (1).*

Ex. 1. Solve x2 + 2x- 8 = 0.



QUADRATIC EQUATION'S 41

48.* Complex roots can be found by a method similar to

tlie one given in § 44.

Students who wish to derive this method may be guided by the follow-

ing suggestions :

1. Consider the same equations

as in § 40.

2. These equations are repre-

sented by the lines

x+p + (q-d)y -0, (la)

x+p + qy = 0, (2 a)

x+p + (q + d)y = 0. (3 a)

3. Instead of being parallel (as

in § 41) the lines (la), (2 a), and

(3 a) meet in a point (B) on the

x-axis whose abscissa is —p.
4. The lines (1 a), (2 a), (3 a) intercept equal parts on any line parallel

to the x-axis.

5. A parallel to the y-axis through the midpoint of OB intersects

y = - at C, the point of contact of (2 a),
x

The annexed diagram solves the equation x2 — x + 2 =0. The line

x — 1 + 2y — 0, or BA, does not intersect the curve, but the correspond-

ing line BB produces the roots .5 ± 1.3. Hence the required roots are

.5 ±1.3 xV^l.

EXERCISE 13

Solve by means of the equilateral hyperbola the following

equations :

1. a?— 2x—W — 0. 4. 35*+ 5a;+ 4= 0.

2. x2 -x-6 = 0. 5. a2— 2»+ 10= 0.

3. ar-6a + 5 = 0. 6. ar + 6a;+ 6 = 0.

[For more examples see Exs. 9 and 12.]

Note. The solution of quadratics by means of the cubic parabola

y — x3 is given in § 60.
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CUBIC EQUATIONS

49. Solution of incomplete cubics. To solve an incomplete

cubic of the form ax3 + bx + c = 0, the method that was used

for quadratics (§ 30) may be employed.* Thus, to solve

ax2 + bx + c = 0, (1)

let y=
rf.)

(2)

Then ay + bx + c = 0.
J (3)

The solution of the system (2), (3) for x produces the re-

quired roots.

But the graph of (3) is a straight line, while the graph of

(2) is a cubic parabola which is identical for all cubic equa-

tions. Hence after the graph of the cubic parabola (AOP in

the diagram) has been constructed, any cubic may be solved

by the construction of a straight line.

Ex.1. Solve 4 ^-39 x + 35 = 0. (1)

Let y = x3
. (2)

Then 4 y - 39 x + 35 = 0. (3)

In (3), if x = 0, then y - — 8|, and if x = 4, then y = 30J. The line

joining (0,
—

8J) and (4, 30£) intersects the graph of (2) in P, P', and

P". By measuring the abscissas of P, P', and P", we find x = — 3£, or

+ 1, or 2\.

50. In the equation ay -f bx + c, if x = 0, then y =— ;
if

c
a

y = 0, then x = — r. Hence, by taking on the a>axis the point
G C

—r, on the ?/-axis the point
—

,
and applying a straight edge,

the roots of the equation ax3 + bx + c = can frequently be

* This method may be used for any equation of the form af(x) + bx +
c =

; e.g. ax5 — bx + c = 0, or x — e sin x — 0, etc.

42



CUBIC EQUATIONS 43

determined by inspection. If the two points thus constructed

on the axes lie very closely together, the drawing is liable to

be inaccurate, and it is better to locate one or both points out-

side the axes.

Ex. 2. Solve z3 + 6 x- 15 = 0. (1)

Let y = %%
. (2)

Then y + 0x-15 = 0. (3)

Hence, the distances cut off by (3) on the x- and y-axes are respec-

tively 2\ and 15, and the line (3) is easily constructed. As there is only

one point of intersection, Q, the equation has only one real root, viz. 1.7+.
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51. Solution for large roots. One diagram may be used for

the solution of large and small roots. For in the diagram we

may assign any values to the abscissas, provided the corre-

sponding ordinates are the cubes of the abscissas.

Thus, after the cubic parabola y = a,*
3 has been drawn, we

may multiply the numbers on the x-axis by any convenient

number, e.g. 3, provided we multiply the values of the ordi-

nates by the cube of the number, i.e. 27.

Similarly, to find small roots, mnltiply the values of the

abscissas by a

r~ fraction e.g. \,

and the values

of the corre-

sponding ordi-

nates by the

cube of this

fraction, i.e. i.

Ex. 3. Solve

graphically x*+

2^-320=0.(1)
Let y = x3

. (2)

Then y + 2 x -
320 = 0. (3)

If x= 0, y = 320,

and if x = 8, y =
304.

Obviously the preceding diagram cannot contain the roots, and the

position of (3) shows that there cannot be a negative root.

Hence, multiply the values of the abscissas in the diagram by 2. Then

the values of the ordinates must be multiplied by 8. (The resulting

values are given in parenthesis.)

Joining the points (0, 320) and (8, 304), we obtain the real root 6.8",

while the other roots are imaginary.

Note. The student should draw the graph of y = x3 from x = — 3| to

x = + 31 (or from - 4 to + 4) on a large scale, and use one curve for the

solution of a number of equations. The table on page 84 will be found

useful for the construction.
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In the annexed diagram, let COD represent the cubic pa-

rabola y = x3
,
and BE the straight line y -{- px + q = 0, or

y= —px—q.
Let OA or x' be any particular value of x.

Then CA = x'
3
,

and BA = —px'— q.

Hence CB = CA- BA = x'
s
+px' + q.

I.e. the value of the function x3

-{-px + q for any particular

value x' is represented by that part of the corresponding ordinate

which is intercepted between the straight line y+px + q = 0, and
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Construct AB, the locus of y
— 7 x+ 6 =0. Draw CD parallel to AB,

touching the cubic parabola in E
;
then FE, or 14, is the required value.

Ex. 2. Which values of x will make the function Xs — 7 x + 6

equal to 4, ie.

3^—735+ 6=4?

On any ordinate, from the straight line AB, lay off 4 units upward, as

JFT^. Through G draw HI parallel to AB, intersecting the cubic parabola

in P, P', and P". By measuring the abscissas of P, P', and P", we

find x =— 2f ,
or

J,
or 2J.

Note. If we consider the distances cut off from SB by the ordinates,

as abscissas, e.g. ST=1%, then the cubic parabola represents the function

x3 +px + q in so-called "
oblique coordinates."

53. To construct the graph of x?+px + q in the usual

manner (rectangular coordinates), make K'L'=KL, M'N'
= MN, 0'B'=OR, etc. The curve L'N'B' is the required

graph of Xs +px + q.
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54. Tlie value of the function ax3 + bx + c is equal to a times

the part of the corresponding ordinate which is intercepted by the

straight line ay + bx + c — 0, and the cubic parabola y = x3
.

The proof is similar to that of § 36.

EXERCISE 15
Find graphically :

1. The value of a3 + 4 a; — 16, if x equals —3, —2.5,

-2.1, 3.5.

2. The value of x3 + 4 x — 8, if x equals
—

1.6,
—

1.5, 2, 1.5.

3. The value of xs - 6 x - 15, if x = - 3,
-

2, 1.5, 3.5.

4. The value of x3 - 5 x + 18, if a? = - 8,
-

5, +3, +1.

5. The value of x, if x3 — 5 x — 12 = 5.

6. The value of
a-,

if x3 - 5 a; - 12 = - 10.

7. The value of
a?,

if x3 - 5 a; -12 = -40.

8. The value of x, if a,-
3- 5 x— 12= 10.

9. The smallest value of x3 — 5 a; — 12 for a positive a?.

10. The greatest value of ar
3 — 5 x + 10 for a negative a\

11. Construct the graph of ar
3 — 12 x — 30 = 0.

12. Construct the graph of x3 — 8 = 0.

Find :

13. The value of 2 x3 + 9 a; + 20 = 0, if x equals 3, 2.5,
- 1.5.

14. The value of 3 x3 + 9 x — 25 = 0, if x equals —3,-5,-2.
15. The smallest value of 3 x3 — 9 a* —25, for a positive a,\

55. The preceding paragraphs may be used to locate the

line ay -\-bx-{-c = by determining two values of the function

ax3
-f bx + c. In applying this method it is advisable to

reduce the coefficient of a;
3 to unity by dividing by a.

E.g., let 2ari -12a,-+ 3 = 0.

Dividing by 2, a;
3 — 6 x + f = 0.

If a; = 3, a3 -6a; + ! = 10J.

If ic = -3, flJ»_6a; + 4 = — 74.
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Through the point A (whose abscissa = 3) draw an ordinate

meeting the cubic parabola in B, and on BA lay off downward

jBC=101 Similarly, through

the point E (whose abscissa

= —3) draw a perpendicular

EF upward equal to 1\\ join

FC, which is the required

line.

56. Equal roots. If the

line ay+ bx+ c= is tan-

gent to the cubic parabola,

two points of intersection

coincide, and two roots of

the equation ax3 + bx + c =
are equal.

The straight line must intersect the parabola at least once
;
hence every

cubic equation has at least one real root.

57. It can be proved that the sum of the roots of an in-

complete equation of the form axs + bx + c = is equal to zero.

Hence if one root is m, and the other two are equal, then these

equal roots are each — ^; i.e. if the abscissa of P=m, the

abscissa of C, the point of contact, equals
— —

.

Since it is difficult to locate

graphically a point of contact with

accuracy, it is advisable to deter-

mine equal roots by the preceding

relation.

58. Complex roots of incomplete

cubics; If the line ay + &.r + c =
meets the cubic parabola in only one

point, then two roots are complex. To find complex roots

of the form n ± V^i, we employ the same method as for
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quadratic equations ;
viz. we determine the line that produces

the roots n ±V£.

If the equation ax3 + bx + c = has one root equal to m, the

left member is divisible by x — m, and the equation may be

represented in the form

a(x — m)(x
2

+px-{-q) = 0.

Supposing that x2 +px + q = has equal roots, and that d is

a positive quantity, we consider the equations :

a(x — m)(x
2 +px+q— d) = 0, (1)

a( x — m)(x
2
-{-px + q) =0, (2)

a(x — m^x2 +px + q + d) =0. . (3)

In the same manner as in § 40 it follows that the roots of

the equations (1), (2), and (3) are respectively

m, - 1
± Vd ;

P V
m, —-, - 1-

;'

2' 2'

m, V ± V^d.

Hence the roots of (3) can

be found by solving (1).

But the three straight lines

(l
a
), (2°), and (3

a
)
which serve

to solve (1), (2), and (3) re-

spectively are connected by
the following geometric rela-

tions :

1. TJie three lines (1°), (2°),

and (3°) meet in a point (m,

m3

),
i.e. P.

For m is a root of the three equa-

tions (1), (2), and (3).

2. Tlie three lines intercept equal parts on an ordinate drawn

through the point of contact C, or DC— CE.
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2
For according to § 52, CD is equal to the value of (3) if x =

mrt
Similarly, it follows from (1) that CE =

-^;
i.e. CD and OE are equal

and lie on opposite sides of C.

3. 77ie line (2
a
)

is tangent to the cubic parabola at C.

This follows from § 56.

4. 77*e abscissas of D, C, and E are equal to — —, hence EF
= |FP(§57).

59. Construction of complex roots.

Let ax3 + bx + c = have two com-

plex roots.

Substitute y = x3
.

Then ay + bx + c = 0. (3)

Construct PF, the locus of (3), and

let it meet the parabola in one point,

P, and the ?/-axis in F. Produce

PF by one half its length to E, and

through E draw an ordinate, meeting the cubic parabola in C.

Produce EC by its own length to D and draw PD, intersecting

the curve in Q and R.

Then the abscissa of D
is the real part, and

the difference of the

abscissas of Q and D is

the imaginary part of

the required roots
;

i.e.

x=OG±GSV^l.
Ex. 1. Solve

a? + x - 10 = 0. (1)

Let y = x3
. (2)

Then y+x- 10= 0. (3)

Construct the locus of (3), i.e. FF, which intersects the cubic

parabola in one point, viz. P.



52 GRAPHIC ALGEBRA

Hence the equation has one real root, which equals 2, and two

imaginary roots.

Produce PF by one half

its length to E. Through
E draw an ordinate which

meets the curve in C.

Produce EC by its own

length to Z>, and draw

PD, intersecting the cubic

parabola in Q and R.

The abscissa of Z>= — 1,

the difference of the ab-

scissas of Q and D = 2.

Hence the complex
roots are — 1 ± 2 V— 1.
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take in the cubic parabola a point P whose abscissa =$> =4, and on OT
layoff OB =pq = 12.

The line PB determines the roots (P' and P").
x = — 1 or — 3.

Note. For examples see Exercise 9.

61. Complete cubic equations. To determine a method for

the graphic solution of complete cubic equations, consider first

a concrete example.
To solve or

5 + 9 a? + 20 x + 12 = 0. (1)

Substitute x = z — (i X second coefficient).

Or x = z - 3. (2)

Then 0-3)3 + 9 (2 -3)
2 + 20 (2- 3) +12 = 0. (3)

If (3) were simplified, it would not contain the second power
of z, for the first term produces

— 9 z
2

,
the second term + 9 z

2

,

and the other terms do not contain z
2

.

Hence equation (3) can be solved by one of the methods for

incomplete cubic equations, but the one given in § 55 is the

more convenient, since it does not require the simplification of

the equation.

If z= 3, z - 3 = 0,

and (2 _3)
3 + 9(z-3)

2 + 20(2-3) + 12 = 12.

If 2= -l,z-3==-4,
and (z_3)

3 + 9(2-3)
2 + 20(z-3) +12 = 12.

Consider z as abscissa, y as ordinate, and construct the cubic

parabola y = z
s
.

Through (3, 0) and (-1, 0)

draw ordinates and let them meet

the curve in A and C. On the

ordinates lay off downward AB
= 12, and CD = 12, and draw BD.

By measuring the abscissas of

the points of intersection, we

obtain the roots :

z= 2, 1,

Hence x = — 1, —2,

and

and

3.

6.
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62. In the preceding diagram z represents the abscissas, but

by changing the location of the ?/-axis we can obtain abscissas

which equal x.

On OX lay off 00' = 3. Consider 0' as the new origin,

and the ordinate Y Y
',
drawn

through 0', as the new ?/-axis.

Then the abscissa of any point
is smaller by 3 than the old ab-

scissa z, or the new abscissa is

2 — 3, i.e. x. By thus introduc-

ing a new axis, the entire work

of the preceding paragraph can

be done without introducing z at all.

Thus, instead of saying :

If z - 3 = -
4, (z

-
3)

3 + 9 (2
-

3)
2 + 20 (z- 3) + 12 = 12,

we have briefly :

If *=-4, ar
3 + 9a;2 +20a + 12 = 12.

Similarly, instead of measuring the z, we may directly meas-

ure the x, and thus obtain the roots of (1).

63. A change in the position of the axes is called a trans-

formation of coordinates.

To solve x3
-+- bx

2 + ex + cZ = 0, (4)

we locate 0', the new origin, at the point (
^,

V and consider

the ordinate through 0' as the new y-axis. If z is the old

abscissa, then the new abscissa x = z—
^,

and this value sub-

stituted in (4) produces an equation without z
2
.

Similarly, to solve

aa? + bx2 + ex + d = 0,

_6
3a*

make 00'

64. The method for solving complete cubics, which was derived

in the preceding paragraphs, may be summarized as follows :
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To solve the complete cubic,

ace
3 + bx2 + ex + d = 0,

divide by a :

or + -or -j
— x+ - = 0.

a a a

Construct the standard cubic parabola, and a/Yer ££ *'s cow-

structed change the origin to the point (

—
, ].

\3a )
Locate two points by the method of § 55. The line which

joins these points intersects the cubic parabola in one or more

points whose abscissas are the required roots.

Note. In finding real roots, all work except the construction of the

cubic parabola refers to the new y-axis, and the old axis may be omitted.

Ex.1. Solve 2 x3 - 15 ar + 31 x - 12 = 0.

Dividing by 2, and denotiug the left member by y, we have

2x3 - 15x2 + 31x-12
y = 2

= 0.

After drawing the standard cubic parabola {i.e. y = z3), lay off on the

x-axis 00' = | (— -V
5
-), i- e-

—
2\, and consider 0' as

the new origin.

If a5= 0, y = -6.
If x = 2,y= 3.

Let the new y-axis (i.e.

Yo To') meet the cubic parab-

ola in A, and the ordinate

through (2, 0) meet the

curve in C. On AO' lay

off upward AB = 6, and on tffe ordinate through C lay off downward
CD = 3. Draw BD and measure the abscissas of the points of inter-

section P, P', and P". Thus we obtain :

x = \, 3, and 4.

65. Complex roots of complete cubics are determined by

applying §§59 and 64. In using § 59 we find the ordinate
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through the point of contact by producing the line PF from P
to the ?/-axis by one half its own length. The student should

bear in mind that this refers to the old y-axis, or that F lies

in TY'.

Ex.2. Solve 4 «3 + 18 a2 + 24 a -17 = 0.

4x3 + 18x2 + 24x-17
Dividing by 4, y = :0.

2/=-8f.

Construct the cubic parabola, lay off on the x-axis 00' = % of
*£-, i.e. 1J,

and consider 0' the new origin.

If x = 0,

If K= -3,.
Locate the points .4

and ^4' in the usual

manner (AB = —
4J,

A'B'=-8%), and draw

^1^1', which meets the

cubic parabola in P and

the old y-axis in F.

Produce PF by one

half its own length to

E, and let the ordinate

through E meet the

curve in C. Produce

EC by its own length

to Z>, and draw PD meeting the cubic parabola in P' and P".

The abscissa of D is — f ,
and the difference of the abscissas of P' and D

is Hence the required roots are

_
| + 3 v^i, _

| -| V^T, and

EXERCISE 17

Find graphically the real roots of the following equations :
*

1. x3 -3x2 -x + S = 0. 3. z3 -6x2 + 3a; + 10 = 0.

2. x3 -9 z2 + 23x- 15 = 0. XT 8 a2 4- 17 a -10 = 0.

*For most of the following examples, a graph of the cubic parabola

from x =— 3J to x = 3\ is sufficient. In other cases, apply the method

of § 51.
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5. ar* +7 a;
2 + 14 a + 8 = 0. 12 . 5ar5-3a;2-20a:+12=0.

6 . a3 -2a: 2-5a;+ 6 = 0. 13. 2ar5 -4a;2 - 10x + 9=0.

7. x3 -2x2 -4: x + 2 = 0. 14. 2ar3 -5ar2 -4a; + 3 = 0.

8 . a*-3xi+ x+7= 0. 15. 4x3 -12»2-19x+12=0.

9. ar
5 + 4arJ -2x-5 = 0. 16. 4ar5 -12a;2-31a;+18=0.

10. a? + x2 + x + 5 = 0. 17. ^+6 a;
2 -24 x + 60=0.

11. 2a;3 + 8a;2 + 2a;-3 = 0.

Find the real and complex roots of the following equations :

18. a?-3xi + x + 5=0. 22. a;
3 -6 x2 + 11 a; -12 = 0.

19. a^ + 6a;
2 + 10a: + 8 = 0. 23. x3 + x2 - 2x + 12 = 0.

20. a3 -3ar7 + 2a; + 6 = 0. 24. ar
3 + ar-7z + 15 = 0.

21. a;
3 + 6a;2 + 13a: + 20 = 0. 25. x3 -9ar + 28x-20 = 0.

66. Values of a complete cubic function. The method for

finding the values of a function for various values of x, as

given in § 52, is true also for the complete cubic equation.

Thus, in the example of § 65 :

If x = -3, 4a;3+ 18a;2 + 24a-17 = 4(yl'B') = -35.

If x = 1, 4 ar
5 + 18 a;

2 + 24a; - 17 = 4 (IK) = 29, etc.

Note. In order to make the new y-axis coincide with one of the

lines of the cross-section paper, it is sometimes advisable to take the

unit of the abscissas equal to the length of three squares of the paper.

67. Construction of the graph of a complete cubic function.

f
Ex. 3. Construct the graph of

y = xs + 4:X2 — x— 4.

00' = |-4 = f.

Take the unit of abscissas equal to the length of three squares

(Note, §66).
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Construct the cubic parabola, and place the new origin at the point OK

If x = 0, y = - 4.

If x=-2,y = 6.

Locate the points A and B in the usual manner, and draw AB. Draw
a new x-axis X X ', and make CD' = CD, E'F> = EF, G'W = GH, etc.

By joining the points Z>', F', N', etc., in succession the required

graph IF'KL is obtained.

68. If the coefficient of x3 is a, the student should keep in

rnind that in applying the above method every ordinate has

to be multiplied by a.

EXERCISE 18

1. If y = x3 — 4 ar + 2 x + 5, determine graphically the

value of y if

(a) x = i
(6) x = If, (c) x = 2.

Construct, by means of the standard curve, the graphs of the

following functions in rectangular coordinates :

2. y = xi + 2a?-5x-l. 6. y = x3 + 6a;2 - x - 30.

3. y = x3 + 5 x2 — 3. 7. y = x3 + x2 — x + 15.

4. ?/
= aj*+ 4 x2 + x + 2. 8. ?/

= ar
3 — 3 x*

2 + 7 a; + 5.

5. y = 4 ar
3 - 12 x2 - 19 x + 12. 9. ?/

= x* + 6 x2 + 2 a- - 9.

Note. The solution of a cubic equation by means of a parabola or a

rectangular hyperbola is given on §§ 75 and 84.
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BIQUADRATIC EQUATIONS

69. Solution of biquadratics in which the second term is want-

ing. To solve an incomplete biquadratic of the form

x* + bx2 + ex + d = 0, (1)

write this equation as follows :

xA + (6
-

1) x
2 + x2 + ex + d = 0.

Let y = ^\ (2)

Then f + (6
- ±)y + sc

2 + ex + cZ = 0.
f

(3)

The solution of the system (2), (3) for x produces the re-

quired roots. But the graph of (2) is a parabola which is

identical for all biquadratic equa-

tions, while the graph of (3) is a

circle (§ 27).

Ex. 1. Solve x* - 15 x2 - 10 x +
24 = 0. (1)

Separate — 15 x2 into two parts, one of

which is x2 :

x* - 16 x2 + x2 - lOx + 24 = 0.

Let 2/=x
2

. W2)
Then ?/

2-16y+x2-10x+24=0. J (3)

To construct (3) transpose 24 and com-

plete the squares,

y
2- 16 y + 64 + x2 - 10 x + 25

= - 24 +64 + 25.

Or ( 2/ _8) 2 + (x-5) 2 =(V65)
2

. (3)

I.e. (3) is a circle whose center C is the

point (5, 8) and whose radius equals V65.*

1
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Equation (2) is the standard parabola, which is intersected by the

circle in four points, P, P, P", and P". The abscissas of P, P, P",
and P'" are the required roots. .-. x = —

3,
—

2, 1, or 4.

Note. The student should remember that in problems involving cir-

cles, the same scale unit must be used for abscissas and ordinates.

70. Formulae for radius and origin. According to the preced-

ing paragraph, the equation

a4 + bx2 + ex + d = (1)

is solved by the system
y =

«?,\
(2)

v? + cx + f+(b-l)y + d = 0.
J (3)

Transposing and completing the squares in (3),

2

^ + «+(5Y+^+(&-i) y+^Y«(|Y+feiY-d
Or r+

i'

2

&-1V +

2

-d.

IT
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There are only two points of intersection, and hence two roots are real,

and two complex.

The real roots are - .6 and— 2.1.

71.* The expression Vx2 + y
2 — d can be con-

structed geometrically. If C is the center of the

circle, lay off on the x-axis OD = 0(7, and draw the

ordinate DE, which equals x2 + y
2

. On ED lay off

EF = d and draw FH || XO. The segment HG in-

tercepted on this parallel by the y-axis and the "*

parabola, equals r.

EXERCISE 19

Find the real roots of the following equations :
*

1. z4 + 5a2 + 4;c-28 = 0.

2. a;
4 -15ar + 10a; + 24 = 0.

3. xA — x2 + 4 x — 4 = 0.

4. 3^-19^ + 2 x + 56 = 0.

5. x4 -5r + 4=0.

6. a4 -7 a;
2 -12 a + 18=0.

7. a;
4 — 4a? + 12ar + 9=0.

8. a4 -7ar-6a; + 12 = 0.

9. z4 - 9 «2 -2^ + 6 = 0.

10. a;
4 + 4 x2 — 5 x — 55 = 0.

11. x-
4 - 6^ + 30; + 2 = 0.

12. x4 - 15a2 - 10x + 24 = 0.

72. Solution for large roots. To use the same diagram of

the standard curve for the finding of large and small roots of

the equation
x* + bx2 + ex + d = 0, (1)

multiply the values of the abscissas and ordinates in the dia-

gram by any number, as p. Then the equation of the parabola

becomes

PV = *?• (2)

, Equation (1) may be written in the form

x* + (b -p 2

)
x 2 +p 2x2 + ex + d = 0.

Partly substituting py for x2

,

p
2

y
2 + (b

— p^py +p2x2 + ex + d = 0.

* For the following exercises a graph from x — — 4 to x = + 4 is

sufficient.
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The last equation is easily transformed into the following

one (§ 27) :

x + + [y +
2p

0\ 9
-

jr y _

2^
2
+ 5 — p'

2p

2\ 2

-|.
(3)

Xn

Equation (3) represents a circle whose center and radius are

determined by the formulae

(4)

(5)

(6)

2p
2 '

_p
2 — 6

2p

r2 = x 2 + ?/

2

p2

The abscissas of the points of in-

tersection of the circle (3) and the

parabola (2) are the required roots.

Ex. Solve

xi _ 37 x2 - 24 x 4- 180 = 0.

Since obviously x and y are very large,

multiply the values on the two axes by 2
;

i.e. make p = 2. (The new values are given

in parentheses.)

Applying formulae (4), (5), and (6), we
have :

x =3,
2/o
= 10J,

r = 8.3+.*

Construct the circle and measure the abscissas of the points of inter-

section. Hence
x = -5, -3, 2, 6.

EXERCISE 20

Solve graphically:

1. x4 - 45 jc
2 - 40 a; + 84 = 0. 3. xA - 23 a2 - 18 x + 40 = 0.

2. ic* - 42 x2 - 64^ + 105 = 0. 4. z4 -37ar-24x + 180 = 0.

* To compute »•, use table of squares and square roots in Appendix III.



BIQUADRATIC EQUATIONS 63

5. a**- 75 x2- 70 x+ 144= 0. 8. z4 -58a2 + 441 =0.

6. a4 - 63 cc
2 + 50 x + 336=0. 9. a?*-49 a?+ 36 a?+ 252 = 0.

7. z4 -55a;2 -30£ + 504 = 0. 10. a,-
4 -49ar -36x-+ 252 = 0.

73. Complex roots. If an equation has two real and two

complex roots, the roots may be found by a method similar to

the one employed for quadratics and cubics (§§41 and 59).

Let the equation x2

+px-\-q = have equal roots, and d be

a positive quantity. Consider the following three equations

which are supposed not to contain x3 when simplified :

(x-a)(x-b)(x
2 +px + q + d)

= 0, (1)

(x-a)(x-b)(x
2 +px + q)=0, (2)

(a: -a){x- b) (x
2 +px + q-d)=Q. (3)

Then the roots are (§ 58) respectively :

P
a,b,- T} ±V-d

a, b,

a

P P.

V
,b, —r>± Vd.

I.e. the roots of equation (1) are complex, but they may be

found by solving (3) instead.

The circles C, C, and C", which represent respectively equa-

tions (1), (2), and (3), are connected

by simple geometric relations, which

make it possible to construct the

third circle (C") when the first one

(O) is given.

1. The three circles C, O, and C",

pass through two points, P and P', in

the parabola, the abscissas of P and

P' being a and b.

Obviously a and b are roots of the equations (1), (2), and (3).
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2. TJie three centers C, C, and C", lie in the perpendicular
bisector of PP.

3. The second center, C, bisects the line joining the other two,

Cand C",orCC'=C'C".

If the ordinate of C" is m, then the ordinate of C is m — -
,
for the

coefficient of x2 in (1) is greater by d than the coefficient of x2 in (2)

(§ 70). Similarly, the ordinate of Cn equals m + -.

74. Hence if circle C is given and it intersects the parabola
in P and P, construct AB, the perpendicular bisector of PP,

and in AB determine C, the center

of the circle that passes through P
and P, and touches the parabola in

another point, E. Produce CC by
its own length to C", and from C",

with a radius equal to C"P, draw a

circle. This circle intersects the

parabola in two other points, Q and

Q'. If the abscissas of Q and Q' are

m + n and m — n, the required roots

are respectively m + n V — 1 and m — n V — 1.

The abscissa of E is always equal to m, and the difference of

the abscissas of Q and E (or E and Q') is equal to n.

A convenient method for constructing the circle C, which

touches the parabola and passes through P and P, is the fol-

lowing :

Let the perpendicular bisector of PP' meet PP in A, and

the ?/-axis in B. Produce AB by its own length to D, and

let the ordinate through D meet the parabola in E. Then E
is the point of contact, and the perpendicular bisector of DE
meets CD in the required point C".

Ex. Solve the equation

x* — x2 — 4 x — 4 0.
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According to § 70,
x = 2,y = l,r = 3.

The circle drawn from (2, 1), or C, as center with a radius equal to 3

intersects the parabola in only two

points, P and P'. Hence there are only
two real roots, viz. — 1 and 2.

Draw AB, the perpendicular bisector

of PP', and let it meet the y-axis in B.

Produce AB by its own length to D,
and draw the ordinate DE, E being a

point in the parabola. The perpen-
dicular bisector of DE meets AB in C,
the center of the second circle. Produce

CC by its own length to C" and from

C" as a center draw a circle through P
and P'. This circle, C", meets the parabola in two other points, Q and Q'.

The abscissa of E, i.e. — |, is the real part, and the difference of the

abscissas of E and Q (or E and Q'), i.e. 1.3, is the imaginary part of the

required roots.

Hence the roots are :

\
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Hence, applying § 70, we have

d
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and obtain the equation of a circle (§ 70),

(x-x )
2 + (y-y )

2 -r2 = 0.

If any point P, whose coordi-

nates are x' and y\ is joined to

(x , y )
i.e. C, we have (Geometry,

§ 310)

2/o)

2
-

(3)

pc- =
(x^-xQy + <y

Hence PC2 - r2

=
(x>
- xoy + (y'

- y )
2 - r2

.

I.e. if we substitute the coor-

dinates of any point P in the

left member of (3), this member becomes equal to the power
of P with reference to circle (3).

If the point P is located in the parabola, then y'
— x'

2 and

the left member of (3) becomes equal to the left member of (1).

Hence, the value of the function (1) for any particular value x' is

equal to the poiver ofpoint (x', x'
2

)
ivith respect to circle (3).

78. Thus, to find the various values

of the function

y = x* — 11 x2 — 4 x + 6, construct a

circle so that

3^= 2, 2fo
= 6,r= V34. (§70)

To find y if x=— 3|, locate in the

parabola a point R, whose abscissa is

—
31, and draw the tangent EH to

circle C. The required value equals

(RHy = (6-)
2 = 36-.

Similarly, if x = — 1-i, locate in the

parabola a point S whose abscissa

equals
—

1\, and draw ST1. CS, then

y = _ (ST)
2

. To find (ST)
2

graphi-

cally, make OA= ST, then the ordi-

nate AB = (ST)
2
,
or the function equals

— AB = — 7.7.
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Many other problems relating to the value of the functions

may be solved by such a diagram.

Thus, to find which value of x be-

tween x = — 4 and x= produces the

smallest value of y, determine in the

parabola the point nearest to C by

drawing an arc EFD from C, touch-

ing the parabola in F. The abscissa

of F, i.e. — 2.2, is the required value.

Similarly, we can determine the

greatest value of the function, the

value of x, if the function is given, etc.

79. The graph of a biquadratic func-

tion in rectangular coordinates can be

constructed by means of § 77. Since

y = PC2 —^, construct first the curve

whose ordinates are PC2
;

i.e. make AP' = CP2
,
EB' = CB2

,

etc. (Use table in Appendix III, and draw new ordinates on

smaller scale.)

Locate in this manner a sufficient

number of points, P', B', F, D, etc.,

and draw the curve P'B'FD. Make

O'O" = r2 and through 0" draw XX'
±0'0". Then the curve P'B'CD re-

ferred to
" as origin is the required

graph.

EXERCISE 22

If y = x*- 3 x2+ 4 x + 3, find graphi-

cally the value of y,

1. If a: = 2. 3. Ifz = 4.

2. Ifa = 3. 4. Ifa; = 3.2.

5. Ifx = 2.7.
A E O'

6. Construct the graph of y in rectangular coordinates.
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80. Complete biquadratic equations. The complete biquad-

ratic equation
x* + ax* -f bx2 + cx + d = (1)

is transformed into another equation without the cubic term

by the substitution

x — z
a

4"

a
The resulting equation can be solved, and by subtracting

~ from the answers the roots of (1) are obtained.
4 w

Ex. Solve

aj*+ 4sc3 -5£c2 -22a;-8=:0. (1)

Substituting x=z — \=z — 1, (2)

(3_l)4+ 4(2-l)3-6(s-l)2 -22(S-l)
-8 = 0.

Simplifying,

24_ii 22_ 4 .~ + g = o.*

•'• 2o = 2,y = 6
: r = V§4.

Drawing tbe circle and measuring tbe

abscissas of the points of intersection, we
obtain

s=-3, -1, .6,3.4.

Hence, from (2),

x=-4, -2, -.4, 2.4.

81. In most cases, the method of the

preceding exercise is the best. It is possible, however, to

derive general formulae.
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Then equation (1) becomes

y
A + (6 p

2 + 3 ap + b)z
2 + (4p

3 + 3 ap
2 + 2bp + c)z

+p4 + op
3 + &p

2 + op + d = 0. (3)

a
Considering that p= — j,

we can easily obtain the following

values :

a

—2 ap
2 — 2 ftp

— c
*°

2
'

2/o
:

2-3ap-2 6

r2 = # ? + 2/o

2 -
(j?

4 + ap
3 + ftp

2 + <%> + d)*

Constructing the circle (z , y , r) and measuring the abscissas

of the points of intersection, produces
the roots of (3), and hence those of

(1).

Thus, in the preceding equation,

a!*+4^-5^ -22 x— 8= 0,

we obtain

p = -l.

-8-10 + 22
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Hence p = —
1,

z = 5f>

2/o
= 7f,

r = 8.8.

The construction of the circle produces the values z = —
3,
—

1£, ^, 4.

Hence a; = z +p = s — 1.

Or x = -
4,
-

2£,
-

i, 3.

EXERCISE 23

Solve the equations :

1. x4 + 4ar5 -9ar2 -16x + 20 = 0.

2. z4 -4ar5 -17aj2 + 24a: + 36 = 0.

3. z4 - 8 af
3 + z2 + 78 .r- 72 = 0.

4. xi + 8x* + Uxi -8x-15 = 0.

5. a;
4 + 4a;3 -4ar2 -16a; = 0.

6. o;
4 -2a;3 -16ar9 + 2a; + 15 = 0.

7. a4 + 4x3 -21ar-64a + 80 = 0.

8. x4 + Sx3 -3x2 -62x + 56 = 0.

9. a;
4 -10 a3 +35 a,- -50 a; + 24 = 0.

10. a;
4 + 3 a3 - 8 x2 - 12 x + 16 = 0.

11. a:
4 -4ars -5ar + 22a,--8 = 0.

82.* Solution of biquadratics by means of the hyperbola y = -.
x

Let us first consider the equation

x4 + ax3 + bx2 + ex +1 = 0. (1)

Partly replacing x by->
y

x_.ax.J>.c.j _
o,

y-2 y2 yl y

Or x2 + ax + b + q/ + y
2 = 0.

Applying § 27,

7.e. the required roots are determined by the points of intersection of the

standard curve y = -
(2) and the circle (3).
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The circle is determined by the formula

xo
— ~

n ' ^o — _^.r2r2 = x 2 + 2/
2 - 6.

83.* The equation
x4 + ax3 + 6x2 + ex + d =

may be solved by the circle :

a

•2 dP
2/o= --^,^

2 =V + 2/o
2

--i
2d* d 2

i

The abscissas of the points of intersection multiplied by d¥ are the

required roots.

84.* Solution of a cubic by the hyperbola y = -

To solve xs + 6x2 + ex + d = 0, (1)

+ 1 = 0.

multiply by x + -
,

i.e. introduce the new root
d d

Hence, by § 82, we have to construct the circle that is determined by the

formulge :

Vo

The formula for the radius is not necessary, since the circle must pass

through the point f
—

,
— d

]

•

Ex. Solve a;
3- ar- 4 a + 4 = 0.

^0 = —
2 (

—" 1 + ?) = 8»

2/ =-K 4-1) = -i.

From (x , y ) as center draw a circle

through (— J, —4), r.e. A. By meas-

uring the abscissas of the other points

of intersection, we obtain

x = - 2, 1, 2.

Note. The preceding construction

can be used advantageously for large

roots, since the ordinates do not become as large as in the case of the

cubic parabola.
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I. GRAPHIC SOLUTION OF PROBLEMS

85. Problems are usually solved in algebra by expressing
the conditions of the problems in the form of equations. By
using the graphic method, however, many problems can be

solved directly, without obtaining equations.

The fact that the graph of two proportional variables is a

straight line is often useful. Thus, if x and y are the coordi-

nates of a point, the following variables are represented by

straight lines : x — time, y = distance covered by body moving

uniformly ;
x = time, y = work done by a person ;

x = volume,

y = weight of a body ;
x = time, y= quantity of water flowing

through a pipe at a uniform rate, etc.

86. Uniform motion. To represent graphically the motion

of a person traveling three

miles per hour, it is only

necessary to locate one

point, e.g. (1, 3) or A, and

to connect this point to

the origin.

The increase of the or-

dinate per hour equals the

rate of travel, i.e. 3 miles

per hour.

Similarly, CD repre-

sents the motion of another person who started two hours later

and traveled 1\ miles per hour.

EFOH represents graphically that a third person had a

start of 4 miles, traveled for 2 hours at the rate of 4 miles per
73

F
(0
HI

£
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hour, then rested 2 hours, and finally returned to the starting

point at the rate of 2 miles per hour.

IK represents graphically the motion of a fourth person
who started 3 hours after the first and traveled in the opposite
direction at the rate of 1 mile per hour.

Ex. 1. A and B start walking from two towns 15 miles

apart, and walk toward each other.

A walks at the rate of 3 miles per

hour, but rests 1 hour on the way;
B travels at the rate of 4 miles per
hour and rests 3 hours. In how

many hours do they meet ?

Construct the graphs OA'A"A'" and

BB'B"B'". The abscissa of C, the point

of intersection, is the required time.

Hence A and B meet in 4^+ hours.

Ex. 2. A stone is dropped into a

well, and the sound of its impact

upon the water is heard at the top of the well 5 seconds

later. If the velocity of sound is assumed as 360 meters

per second, and g = 10 meters, how deep is the well ?

(A body falls in t seconds
f-

1
2

meters.)
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2. A and B set out walking at the same time in the same

direction, but A has a start of 3 miles. If A walks at the rate

of 2\ miles per hour, and B at the rate of 3 miles per hour,
how far must B walk before he overtakes A ? , ,

h
3. A train traveling 30 miles per hour starts

\]
of an hour

before a second train that travels >'? miles an hour. In how

many hours will the first train be overtaken by the second ?

4. A sets out walking at the rate of 3 miles per hour, and

one hour later B starts from the same point, traveling by coach

in the opposite direction at the rate of 6 miles per hour.

After how many hours will they be 27 miles apart ?

5. A and B start walking at the same hour from two towns

17^ miles apart, and walk toward each other. If A walks at

the rate of 3 miles per hour and B at the rate of 4 miles per

hour, after how many hours do they meet, and how many miles

does A walk ?

6. An accommodation train runs according to the following

schedule :

'

Station



(a)
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II. STATISTICAL DATA SUITABLE EOR GRAPHIC
REPRESENTATION

1. Table of Population (in Millions) of United States, France,

Germany, and British Isles

Tear
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3. Population of New York City— Continued

1805 75,587
1810 96,373
1816 100,619
1820 123,706
1825 166,136
1830 202,589
1835 253,028
1840 312,710
1845 358,310
1850 515,547
1855 629,904
1860 813,669
1865 726,836
1870 942,292

1875 1,041,886
1880 1,206,299
1890 1,515,301
1893 1,891,306
1898 (all Boro's) . . 3,350,000
1899 (all Boro's) . . 3,549,558
1900 (all Boro's) . . 3,595,936
1901 (all Boro's) . . 3,437,202
1902 (all Boro's) . . 3,582,930
1903 (all Boro's) . . 3,632,501
1904 (all Boro's) . . 3,750,000
1905 (all Boro's) . . 3,850,000
1906 (all Boro's) . . 4,014,304

Population (in Hundred Thousands) of Illinois, Massachu-

setts, New York, and Virginia

State
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5. Table of Mortality— Continued

Com-
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6. Table of Mortality— Continued

Com-
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7. Amount of $1 at Compound Interest from One to Thirtt Years

Tears
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8. Amount of $1 Annually Deposited at Compound Interest

Years
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III. TABLES

TABLE 1

Squares, Cubes, Square Roots and Reciprocals of Numbers
from 1 to 100

The squares, cubes, and reciprocals of decimal frac-

tions can be obtained by shifting the decimal point. Thus

4.22 = 17.64, 4.23 = 74.088,
— = .24. For square roots, how-

ever, this method fails, and Table 2 has to be used.
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TABLE 2

Square Roots of Numbers from 1 to 9.9





ANSWERS TO EXERCISES

Exercise 1. Pages 2, 3

5. 5.66. 6. 5. 7. In a line II XX' passing through (0, 4).

8. In the ?/-axis. 9. In the x-axis.

10. The line II XX' passing through (0, 3).

11. The ordinate. 12. (0, 0).

Exercise 2. Pages 6, 7, 8

1. (a) 6°, 5.9°, 5.25°, 2.5°. (6) 1 : 40 p.m. and 5 p.m; 1 p.m. and

6 p.m.
;
11 a.m. and 8.40 p.m.

;
10 p.m. ; 9.20 p.m.

(c) 3.15 p.m. (d) 7+°. (e) 1 p.m. to 6 p.m.

(/) 12 m. to 12.30 p.m.
;
6.40 p.m. to 7.20 p.m.

(g) 11 a.m. to 9.20 p.m. (h) 9.20 p.m. on. (£) 4.75°. (&) 6 p.m.

(Z) 11 a.m. to 3.15 p.m. (m) 3.15 p.m. on.

(n) Between 3 p.m. and 4 p.m.

(o) Between 12 m. and 1 p.m.
;
and between 11 a.m. and 12 m.

2. (a) San Francisco. (&) Bismarck. (c) April 20 and Sept. 20.

(d) During April. (e) 25°.

3. (c) 18° C. (d) 8.1 grams. (e) 15 grams.

Exercise 3. Pages 10, 11
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Exercise 9. Page 28

.i-"5

1.
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l.

2.

3.

4.

5.

6.

7.

1.

2.

3.

4.

5.

6.
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ELEMENTARY ALGEBRA

By ARTHUR SCHULTZE, Assistant Professor of Mathematics, New York Univer-

sity, Head of the Mathematical Department, High School of Commerce,
New York City. i2mo. Half leather, xi + 373 pages. $1.10 net.

The treatment of elementary algebra here is simple and practical, without

the sacrifice of scientific accuracy and thoroughness. Particular care has been

bestowed upon those chapters which in the customary courses offer the great-

est difficulties to the beginner, especially Problems and Factoring. The intro-

duction into Problem Work is very much simpler and more natural than the

methods given heretofore. In Factoring, comparatively few methods are

given, but these few are treated so thoroughly and are illustrated by so many
varied examples that the student will be much better prepared for further

work, than by the superficial study of a great many cases. The Exercises are

very numerous and well graded; there is a sufficient number of easy examples
of each kind to enable the weakest students to do some work. A great many
examples are taken from geometry, physics, and commercial life, but none of

the introduced illustrations is so complex as to require the expenditure of

time for the teaching of physics or geometry. To meet the requirements of

the College Entrance Examination Board, proportions and graphical methods

are introduced into the first year's course, but the work in the latter subject

has been so arranged that teachers who wish a shorter course may omit it.

ADVANCED ALGEBRA

By ARTHUR SCHULTZE, Ph.D. i2mo. Half leather. xiv+ 562 pages.

$1.25 net.

The Advanced Algebra is an amplification of the Elementary. All subjects

not now required for admission by the College Entrance Examination Board

have been omitted from the present volume, save Inequalities, which has been

retained to serve as a basis for higher work. The more important subjects

which have been omitted from the body of the work— Indeterminate Equa-
tions, Logarithms, etc.— have been relegated to the Appendix, so that the

book is a thoroughly practical and comprehensive text-book. The author

has emphasized Graphical Methods more than is usual in text-books of this

grade, and the Summation of Species is here presented in a novel form.

THE MACMILLAN COMPANY
PUBLISHERS, 64-66 FIFTH AVENUE, NEW YORK



PLANE AND SOLID GEOMETRY
By Arthur Schultze and F. L. Sevenoak. i2mo. Half leather. xii+

370 pages. $1.10 net.

PLANE GEOMETRY
Separate. i2mo. Cloth, xii + 233 pages. 80 cents net.

This Geometry introduces the student systematically to the solution of geo-
metrical exercises. It provides a course which stimulates him to do original
work and, at the same time, guides him in putting forth his efforts to the best

advantage.
The Schultze and Sevenoak Geometry is in use in a large number of the

leading schools of the country. Attention is invited to the following impor-
tant features : I. Preliminary Propositions are presented in a simple manner ;

2. The numerous and well-graded Exercises — more than 1200 in number in

the complete book. These are introduced from the beginning ; 3. State-

ments from which General Principles may be obtained are inserted in the

Exercises, under the heading
"
Remarks"; 4. Proofs that are special cases

of general principles obtained from the Exercises are not given in detail.

Hints as to the manner of completing the work are inserted ; 5. The Order

of Propositions has a distinct pedagogical value. Propositions easily under-

stood are given first and more difficult ones follow ; 6. The Analysis of
Problems and of Theorems is more concrete and practical than in any other

text-book in Geometry ; 7. Many proofs are presented in a simpler and
more direct manner than in most text-books in Geometry ;

8. Difficult Prop-
ositions are made somewhat easier by applying simple ATotation ; 9. The

Algebraic Solution of Geometrical Exercises is treated in the Appendix to the

Plane Geometry ; 10. Pains have been taken to give Excellent Figures

throughout the book.

KEY TO THE EXERCISES
In Schultze and Sevenoak's Plane and Solid Geometry. By Arthur

SCHULTZE, Ph.D. i2mo. Cloth. 200 pages. #1.10 net.

This key will be helpful to teachers who cannot give sufficient time to the

solution of the exercises in the text-book. Most solutions are merely out-

lines, and no attempt has been made to present these solutions in such form

that they can be used as models for class-room work.

THE MACMILLAN COMPANY
PUBLISHERS, 64-66 FIFTH AVENUE, NEW YOKK
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