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TBANSLATOE'S PKEFACE,

FOE some years I had used a rough English manuscript

summary of Professor CKEMONA'S works on the Graphical

Calculus and Reciprocal Figures, while reading with engineer-

ing students of University College, London. As English
versions were much wanted, I was advised by Professors

PEARSON and KENNEDY to ask the consent of Professor

CREMONA to my undertaking their translation, and at the

same time they supported my application to the Delegates of

the Clarendon Press that they should become the publishers.

To both applications a most cordial consent was given ;
and

I take the opportunity of thanking both the Author and the

Delegates for the trust they have reposed in me. The trans-

lations have been revised by Professor CREMONA and certain

portions (in particular Chap. I. of Reciprocal Figures) have

been entirely written by him for the present English edition.

I regret that a long delay has occurred in the appearance
of this book, due chieny to pressure of work both on the

part of myself and Professor CREMONA.

I feel sure that the translation will supply a long-felt want,

and be found extremely useful by students of engineering and

the allied sciences, especially by those whose work compels
them to pay attention to graphical methods of solving pro-

blems connected with bridges, roofs, and structures presenting

similar conditions.

THE TRANSLATOR.

HERIOT-WATT COLLEGE, EDINBURGH.
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ELEMENTS OF THE GRAPHICAL CALCULUS





AUTEOK'S PKEFACE

TO THE ENGLISH EDITION.

A GREAT many of the propositions, which form the Graphical

Calculus of the present day, have been known for a long

time
;
but they were dispersed in various geometrical works.

We are indebted to CULMANN for collecting and placing

them at the head of his Graphical Statics
;
a branch of science,

created by him, which is such a powerful help in engineering

problems.

The first chapter of this small work, which now appears in

English, treats of the use of signs in Geometry, as MOEBIUS

conceived them. The succeeding chapters, on Graphical

Addition and other arithmetical operations, contain chiefly

the graphical calculation of a system of forces in a plane

when they are represented by rectilinear segments. The

research on centroids, to which the reduction of plane figures

serves as an introduction, refers equally to the same subject,

being nothing else but the determining of the centres of

systems of parallel forces. A special chapter is dedicated to

LILL'S method of graphical resolution of numerical equations.

As MB. BEARE expressed a wish to translate my little

treatise II Calcolo Grafico, and also Le Figure Reciproche nella

Statica Grafica, for the use of English students, and as the

Clarendon Press authorities kindly agreed to publish them, I

have been happy to give my consent, as I gave it, some time

ago, to Mr. LEUDESDORF for the translation of my Geometria

projettiva. Whilst reading the translation I have profited by
the opportunity to revise the text, and to introduce some

improvements.

I take the opportunity of thanking both the Translator,

and the Delegates of the Clarendon Press.

THE AUTHOR.
ROME, July 1888.





ELEMENTS OF THE GKAPHICAL CALCULUS,

CHAPTEE I.

THE USE OF SIGNS IN GEOMETKY.

1. LET 0, A, X be three points in a given straight line

(Fig. i), of which and A are fixed points whilst X
moves from in the direc-

tion OA. Further let the _o o
A

segments (limited portions of

the straight line) OA, OX _2

contain a, x linear units

respectively^. Then as long ~xf~
as X remains between and Fig. i.

A, we have x < a
; when

X coincides with A, x = a
;
and as soon as X has passed

beyond A, we shall have x > a.

If the point X instead of moving from towards A, were

to travel in the opposite direction (Fig. 2), the number x of

linear units contained in

the segment OX would be o

considered negative, the

number a remaining posi-

tive. For example, if X
and A were equally dis-

tant from 0, we should have x a.

A straight line will always be considered to have been

described by a moving point. One of the two directions in

which the motion of the generating point can take place is

called positive, the other negative. Instead oipositive or negative

direction we may also speak of positive or negative sense.

When a segment of a straight line is designated by the

* The linear unit is supposed to be a segment of unit length measured in the

same direction as OA.

B



2 THE USE OF SIGNS IN GEOMETKY. [2-

number
(oo)

of linear units it contains, its sense is shown by the

sign + or of the number x.

A segment may also be designated by means of the two
letters which stand at its ends

; for example AB (Fig. 3). In

this case we agree to write

A c B AB or BA, according as

the generating point is

conceived to move from A
c A B to B, or in the opposite

j>- 3
sense. In accordance with

this convention, the sym-
bols AB, BA denote two equal magnitudes of opposite* sense,

hence the identity
AB + BA = 0,

or AB = -BA, BA = -AB.
Of the two points A, B, the extremities of the segment AB,

the one A is called the initial, and the other B the final point of

the segment. On the other hand for the segment BA, B is the

initial point, and A the final point.

2. Let A, B, C be three points in a straight line. If C lies

between A and B (Fig. 3), then

AB = AC+CB,
and therefore CB-AC + AB = 0,

or, since [Art. 1] -CB - BC, and -AC = CA,

BC+CA + AB= 0.

If C lies on the prolongation of AB, then

AB+ BC = AC,

hence BC-AC + AB=0,
and therefore BC+ CA + AB = 0.

And, finally, if C lies on the prolongation of BA,
CA + AB = CB,

hence -CB+CA +AB = 0,

or BC + CA + AB = 0.

We therefore conclude that f :

If A, B, C are three points (in any order whatever) in a

straight line, the identity

BC+CA +AB=0
always /tolas.

* That is to say, two magnitudes of equal arithmetical values, but with opposite

algebraical signs, such as + a and a.

^ M.OBivs
} J3arycentrisc?terCalcul (Leipzig, 1827), l.Gesammelte Werke,Bd. 1.
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3. From this proposition we obtain an expression for the

distance between two points A, B in terms of the distances

of these points from a third point collinear with them

which we choose as the initial point of the segments. In fact,

since 0, A, B are three points in a straight line, we have

OA + AB + BO = 0,

therefore AB = OB- OA,

or AB = AO+OB.
4. If A, B, C, ..., M, J\

r are n points in a straight line, and if

the theorem expressed by the equation
AB + BC+ ... +MN+NA =

is true for them
;
then the same theorem is true for n + 1 points.

For if is another point of the same straight line, then

since between the three points N, A, there exists the relation

the above assumed equation becomes

AB + BC+...+NO+OA = 0. Q. E. D.

Now it has already been proved (Article 2) that the theorem

is true for n = 3, therefore it is also true for n = 4, and

so on.

5. The sign of a segment AB is undetermined, unless a

positive segment of the same straight line has already been

given; the direction of this latter segment is called the

positive direction of the straight line.

For two different straight lines the positive direction of the

one is in general independent of that of the other. But if the

two straight lines are parallel, we can compare their directions

and say that they have the same positive direction when.

after having displaced the one line parallel to itself until it

coincides with the other, the two directions are found to be

identical.

Hence it follows, that two parallel segments AB, CD have

the same or opposite signs, according as the direction from

A to B coincides with the direction from C to D, or not. If.

for example, ABCD is a parallelogram, then

AB+CD = 0, and BC + DA = 0.

If we draw through n given points of a plane Alt A29 . .., A n ,

segments A
1
A

l', A^A^, ..., A H An
'

all parallel to some given
direction in the plane until they intersect a fixed straight line

AI A2

'

. . . An
'

,
then the sense of one segment determines that

B 2
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of all the others. Two segments A
r
A

r',
A

S
A' have the same

or opposite sense, according as the points Ar ,
A

s
lie on the same

or opposite side of the given straight line A^A^... An'.

Two equal parallel segments, with the same sign, are called

equipollent., after Bellavitis.

6. If A, B, C, D arefour collinear points, we have the identity

AD.BC + BD.CA + CD.AB = 0.

For the segments BC> CA, AB can be expressed as follows,

BC=BD-CD,
CA = CD-AD,
AB = AD-BD;

now multiply these three equations by AD, BD, and CD re-

spectively and add the results, the right-hand side vanishes,

and we obtain the identity we wished to prove.

7. Let p, q,
r be three straight lines intersecting in the

point (Fig. 4). Through any point M of the plane draw a

Fig. 4.

transversal, cutting p, q,
<r in A, B, and C respectively ;

then

from the proposition just proved, we have

MA.BC+MB.CA + MC.AB= 0.

Now draw, parallel to the transversal ABC, a straight line

cutting p, q, r in the points P, Q, R ;
then the segments BC,

CA, AB are proportional to the segments QR, EP, and PQ
respectively, and the above equation may therefore be written

.QR + MB.RP +MC.PQ = 0.
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If we now draw through any other point Mf
a new

transversal in the fixed direction PQR, cutting p, q, r in

A', B', and C', we have similarly

M'A'.Q +M''.RP+ M'C'.PQ = 0;

that is to say :

If we draw, through any point M, in a given direction, a trans-

versal which cuts three given concurrent straight lines in A, B, C

respectively, then the segments MA, MB, MC are connected by the

relation

where a, I, c are constants.

From the point M let fall perpendiculars ML, ME, MF
upon the three straight lines p, q,

r
;
and also from some

arbitrarily chosen point S of the line PQR perpendiculars SV,

SF, 7Fupon the same given straight lines. Then since the

triangles MAD, SPU are similar we have

= SP:SU.
op

Therefore MA = ^- MD,
Su

and similarly MB = ^%- ME,Sr

The equation
MA. QR +M3.RP + MC.PQ = 0,

may therefore be written ..
that is to say :

If ive dropfrom any point M perpendiculars MD, ME, MFupon
three concurrent straight lines, thefollowing relation holds

a.MD +p.ME+y.MF = 0,

where a, /3, y are constants.

The lines ML, ME, MF, instead of being perpendicular to

the given straight lines, may be inclined to them at any
the same arbitrarily chosen angle ;

we should then obtain a

relation of similar form, by merely altering the values of the

constants a, /3, y ;
the proof however remains the same.

The proof does not necessarily presuppose that the intersec-

tion of the three straight lines p, q, r lies at a finite distance ;
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the proposition is therefore true even if the three given straight

lines are all parallel to one another.

8. A plane has two sides which face the two regions into

which it divides space. Let a perpendicular be drawn through

any point of the plane, and let the positive direction of this

perpendicular be fixed. If 01 be any positive segment of this

straight line, then the region in which I lies is called the

positive region, and the side which looks toward I is called

the positive face.

Now let an observer, standing with his feet at 0, and his

head at I observe a rotational motion in the plane (Fig. 5) ;

this can take place in two senses, either from left to right [dex-

trorsum, in the sense of rotation of the hands of a watch], or

from right to left [sinistrorsum]. The former sense is called

positive, the latter negative.

Let P, Q,R be three points on a circle in the plane (Fig. 6) ;
the

points P, Q divide the circumference into two arcs PQ, one of

which contains 7^. If we take as positive the sense in which

one of the two arcs has been described, the other arc has

negative sense. If we fix the positive arc PQ, then the

sense of any arc, and of any rotational motion in the plane
will be fixed

;
and thereby the positive face of the plane is

also fixed, as it is the one on which the observer must stand

in order that the positive arcs may seem to him to be

described in the sense of the motion of the hands of a, watch.

The positive sense of a plane is that of its positive arcs.

9. Let a, b be the positive directions of two straight lines

in a plane, intersecting in the point (Fig. 7), and let OP,

OQ be two positive segments of these straight lines, each of

length equal to unity. By the angle ab between these two

lines, we mean the circular arc PQ described in the positive

sense of the plane. In order that the angle may be fixed
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it is necessary to fix both the positive directions of the two

straight lines and the positive sense of the plane; but we
may add to any angle any number of

complete rotations either positive or

negative, i. e. (if n is an integer),

ab360 xn = ab.

If OA, OS are two positive segments
of the straight lines a, 6, the angle ab

XX.

can also be denoted by OA . OB, or

more briefly by AOB.
The sum of the angles ab, la is equal

to any number of complete revolutions
;

we may therefore write Fig. 7.

ab + ba = 0,

or la = ab, or ab = da.

that is to say, ab and ba can be regarded as of equal magnitude
and opposite sense *.

This leads us to consider the positive rotation ab as equiva-
lent to the negative rotation ba; or in other words, the angle
ab is the circular arc PQ described in the positive sense of the

plane, or the circular arc QP described in the negative sense

and then taken with the sign : PQ = QP.
A negative angle is one described by a negative rotation, or

by negative arcs.

Analogously we have

AOB + BOA = 0;

that is, AOB, BOA are two angles of equal magnitude and

opposite sense.

10. Let the directions a, b, c of three straight lines in the

plane be given, and suppose them to be drawn from the same

point 0, and to be extended on only one side of it, for the

angle between two straight lines is independent of their

absolute position. Then if in turning round in the positive

sense of the plane, we meet with the three straight lines in

the order acb (Fig. 8), we have the identity

ca = cb + ba,

hence cb + ca ba = 0.

T But cb = be, ba = ab,

and therefore bc + ca + ab 0.

* BALTZEK, Analy. Geometric, 9.
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If the order of the succession is abc (Fig. 9),
then

bc + ca = ba,

or bc + ca ba = 0,

and therefore be + ca + ab = 0.

Accordingly we have this proposition :

If a, b, c are three straight lines in the same plane, in

order whatever^ the identity

be -\-ca-\-ab =
is always true.

Fig. 8. Fig. 9.

11. From this we obtain, by a procedure similar to that for

segments (Art. 3), an expression for the angle' between two

straight lines a, b, in terms of the angles, which they make
with a third straight line o, taken anywhere at pleasure in the

given plane. In fact if o, a, b are directions in one and the

same plane, we have
oa + ab + bo = 0,

therefore ab ob oa,

or ab = ao + ob.

12. Three points A, ,
C which do not lie in one straight line,

are the vertices of a triangle (Fig. 10). Let us consider that

we pass round its periphery con-

tinuously, that is, passing through
each point once and through no

point more than once : then each

vertex is the final point of one side

and the initialpoint of the follow-

ing side. This can be done in two

ways, that is to say in two opposite
directions

; namely in the sense ABC or in the sense ACB.

The sense BCA or CAB does not differ from ABC, and

similarly neither CBA nor BAG is different from ACB.

Fig. 10.
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The area of the triangle lies to the right or to the left hand,

according as we go round the periphery in the positive or

negative sense
;
for this reason we consider the areas ABC,

ACB as equal but opposite : the first as positive, the second

negative. We may suppose the area ABC (or ACB] to be de-

scribed by a revolving line of variable length, of which one end

is fixed at A, whilst the other describes the segment BC (or

CB). Now this rotation takes place in the positive (or nega-

tive) sense of the plane ;
for this reason also we consider the

area as positive (or negative) *.

The necessary and sufficient condition that three points

A, B, may lie in one straight line, is that the area ABC is zero.

13. PROPOSITION. If is any

point whateverp

,
in the plane of the

triangle ABC (Fig. 1
1),

we always

have the identity

OBC + OCA + AB = ABC f.

Proof. If lies within the

triangle ABC, then of course

the latter is the sum of the

triangles OBC, OCA, OAB.

If lies within the angle

BAG, but upon the other side

of BC, we have

OCA + OAB- OCB = ABC
;

but OCB = - OBC,
therefore OBC+ OCA + AB = ABC.

Finally, if lies within the opposite vertex siBAG, we have

OBC- OAC- OBA = ABC,
and hence OBC + OCA + OAB = ABC. Q. E. D.

It follows from the remark at the end of Art. 12, that if

A, B, C are three points in a straight line, then wherever

may be we have

OBC+OCA+OAB=0.
14. It follows from this proposition, that the area of the

triangle ABC may be regarded as generated by the motion of

a revolving line of variable length (radius vector), of which one

end is fixed at (the pole], whilst the other describes the

*
MO'BIUS, loc. cit. 17. t Ibid. 18. .
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Fig. 12.

periphery (outline) in the sense denoted by the given expres-
sion ABC.

This remark and the above proposition would remain un-

altered, even if BC were no longer a segment of a straight

line, but an arc of a curve *.

15. If is any point whatever in the plane of the parallelogram
ABCD (Fig. 12), we have

OAB + OCD = i ABCD,

For, using S to denote the point, in

which the side BC is cut by the

straight line, drawn through

parallel to AB, we have (Art. 13),

SAB + SBC+ SCA = ABC.

But SBC = 0, SCA = SCD,
SAB = OAB, SCD = OCD,

therefore

OAB + OCD = ABC = \ ABCD. Q. E. D.

Since ^ABCD = DAB, the above equation may also be written

ODC= OAB-DAB.
16. Let (Fig. 13) p, q, r be three straight lines, which form a

triangle ABC ;
and let and M be two points in its plane, of

which the first is considered as

fixed or given, and the other as

variable. Draw from the points

and M to the straight line p in

any direction the two parallels OU,

MD, and similarly to q the paral-

lels OF, ME, and to r the paral-

lels W, MF, also in any directions

whatever.

The areas of the triangles OBC,
MBC are proportional to the dis-

tances of their vertices 0, M from

the common base BC, and therefore

also to the segments U, MD
;

hence we have

OBC: MBC = OU-.MD,

Fig. 13-

* And therefore also, if BC, CA, AB were three arcs, which do not intersect,

see Art. 19.
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or MBC=~.MD,
OCA

and similarly MCA = ME,

But from (Art. 13)

MBC +MCA + MAB = ABC,

OBC OCA OAB
therefore MD + -_ . ME+ -^ . MF = ABC.

If we vary the position of the point M in the plane, whilst

keeping the directions V, 07, W fixed, then in the above

equation only the lengths MD, ME, MF change ;
we obtain

therefore this Theorem :

If we draw in given directions from any point M in the plane

of a given triangle, the straight lines MD, ME, MF meeting the sides

of this triangle, then these straight lines are connected by the relation

(f) a.MD + p.ME + y.MF=S,
the quantities a, (3, y, 8 being constants.

The proposition is still true if two of the three given

straight lines p, q, r are parallel to one another. For example,
let q, r be parallel, and let us draw a straight line s, which is

parallel neither to q, r, nor to p. If now we draw through

any point M, in directions chosen at pleasure, the straight

lines MD, ME, MF, MG to the straight lines p, q, r, s, then

from the proposition just proved, since p, q,
s form a triangle,

MD, ME, MG are related by an equation of the form (f),

which may be written thus

a.MD + (3.ME+MG = 8
;

and similarly since p, r, s form a triangle, we shall obtain

a relation of the same form

between MD, MF, MG.

Subtracting this equation from the foregoing one, we have

(a-a')MD + (3.ME-y.MF=b-b',
that is to say, MD, ME, MF are also connected by a relation of

the form (f). Q. E. D.

This proposition is a generalisation of the one (in Art. 7)
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concerning three straight lines p, q, r which intersect in a

point situated at either a finite or infinite distance. In the

special case mentioned the constant 6 is zero.

17. We shall call that line a circuit which a point describes

whilst it moves in a plane from one position (the initial) to

another position (the final) continuously, that is without

ever leaving the plane. The circuit is closed if the final

position coincides with the initial position ;
it is open if this

is not the case. If the circuit intersects itself, we call the

points of intersection nodes, and the circuit a self-cutting one.

If the circuit is formed of rectilinear segments, it is said to

be polygonal^ or simply a polygon.

Any circuit can be described, like the periphery of a triangle

(Art. 12), in two opposite senses. In order that the sense

of a circuit may be fixed, it is sufficient to know the order

of succession of two points of it, if the circuit is open, and oi

three, if it is closed.

18. A closed circuit without nodes encloses within itself an

internal finite region of the plane, and divides it from the rest

of the plane, which is external and infinite. The area bounded

by the circuit is the measure of the interior region, and it

is considered to be positive or negative, according as it lies to

the right or left of an observer on the plane, who passes along
the circuit in the given sense.

19. PROPOSITION. If ABCD...MNA (Fig. 14) is any closed

circuit., and a point in its plane, then the sum of all the triangles

(or sectors),

2 = OAB+OBC+ OC0+... + OMN+ ONA,
is a constant quantityfor any position whatever of the pole 0*.

Proof. Let 0' be another point in the plane ;
then from the

proposition in Art. 13,

O'AB = OAB + OBO'+OO'A,
O'BC = OJ3C + OCO' + 00'B,

0'CD = OCL+ODO'+OO'C,
&c. &c.

0'MN= OHN+ ONO'+OO'M,
O'NA = ONA + OAO' + OO'N.

* MOBIUS, Baryc. Calcul, 165, Ges. Werke, Bd. 1
;

Staiik (Leipzig, 1837),

45, Ges. Werke, Bd. 3.
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Adding we have,

O'AB + 0'$C + O'CD + . . . + 0'MN+ O'NA
= OAB + OBC + OCD + ... -f OMN 4- ONA = 2,

since all the other terms cancel, because they occur in pairs of

equal and opposite terms, as, for example, 00'A and OAO*, OO'B

and OBO'
} and so on. We may consider the magnitude 2 as

o
f

Fig. 14.

generated by the motion of a revolving line OX (radius vector)

of variable length, which has one end fixed at the pole 0,

whilst the other describes the given circuit in the given sense.

20. If a radius vector Yloe rotated in a given plane about

a fixed point 0, and if it pass over any point of the given

plane, we shall call the passage, positive or negative, accord-

ing as the radius vector F in passing through is in the

act of describing a positive or negative rotation.

Lemma. If a radius vector Y, moveable in a plane about

a fixed point 0, starting from the original position @A,
describes successively the angles al5 a2 , &c., &c...., and if after

having passed p times positively, and n times negatively,
over a given point it returns to its original position QA, then

the difference p n is independent of the order of succession of

the angles a.

It will be sufficient to show, that if we interchange ar ,
ar+1

the difference p n is unaltered. We are at liberty to suppose
that the angles a are less than 180, because if ar were greater

than 180 we could divide it into parts each less than 180.
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If a
r and ar+l are of the same sign, the radius vector &Y

will either describe the angle a
r + ar+1 ,

or the angle ar+l + ar ,

hence it will pass over the same positions and in the same

sense ;
and therefore neither p nor n will be changed.

Now suppose that a
r and ar+l are of opposite sign. Before

the interchange, let us suppose that at the completion of the

angles <z
r_l5 ar ,

ar+1 ,
the moving radius vector takes respec-

tively the positions Y
r_ Yr +i (Fig- I 4 a

)>
and after

the interchange at the completion of the angle ar+1 let it take

up the position Y
r'. Then, if the point lies in one of the

angles Yr Yr+l = F^j J/ = ar+l ,
the interchange will de-

crease or increase by unity each of the numbers ;;, n. If, on

the other hand, lies outside these angles, both these numbers
will be unaltered. In every case therefore the difference/? n

is unchanged.
COROLLARY. The difference p n is equal to the number

(positive or negative) of revolutions contained in the sum

aj + a
2 -f . . . In fact, let K . 360 + y be the sum of the positive

a's, and (h 360 + y') the sum of the negative a's. Now y and

y' are each less than 360, and as the final position of the
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radius vector Zis supposed to coincide with its original posi-

tion A, we must necessarily have y = y '. But by virtue of the

preceding lemma the difference p n will remain unaltered

if, instead of describing the angles a1? a
2 ,

a
3 , &c., in succession,

we describe the rotation y y +k 360 /$360, or the rotation

360 h 360 (as the equal and opposite angles y and y can

be neglected) ?

since this leaves the numbers p, n unchanged, or

increases or diminishes each of them by unity. Now, in describ-

ing each of the Jc (or 7i) positive (negative) rotations, we make a

positive (negative) passage through the point ;
therefore

p n = k h.

21. THEOREM. Let any given closed circuit whatsoever, in

a plane, be described in a given sense by a point X, returning
to its original position, after having passed over all the points
of the circuit. Take a point in the plane, and let 2 be the

algebraic sum of the sectors described in succession by the

radius vector OX. Then the sum 2 remains constant

wherever may be taken *.

Let us imagine the plane divided by a close network of

lines into very small areas, which we shall call elementary areas,

so small that the circuit does not pass through the interior

of any one of them, with the exception of those that form part
of the contour. If while the point X describes the circuit it

happens that the radius vector OX in passing through certain

positions changes its sense of rotation, we shall suppose that

the straight lines forming these special positions of the radius

vector form part of the network. Then it is not possible for

any elementary area to be partially described by the radius

vector OX, but it will be either totally described or not at all.

Having premised this, then, during the whole movement of

the point X in the circuit, let any elementary area whatever co

be described by the radius vector OX,p times positively, n times

negatively. Then the area <o will be contained pn times in

2, or 2 will be the sum of (p n) <o extending over all the

elementary areas of the plane. It will be therefore sufficient

to show that the coefficient pn does not vary with the

pole 0.

* DE MORGAN, Extension of the word area, (Cambridge and Dublin Math.

Journal, vol. v. 1850). For the treatment of this argument the author is indebted

to the suggestions of Professor Gabriele Torelli, of Naples.
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If we join the point X to a point taken inside the area

co, and if we produce the straight line QX beyond 0, for

example, to meet the circuit in 7, then it is evident that every
time the radius vector OX describes the area co in one sense, the

straight line 07 passes through in the same sense, and con-

versely. Therefore the number of times OX passes through
co will be equal, in sense and absolute value, to the number of

times 07 passes through 0. Therefore if (k Ji)
360 are the

number of complete rotations of the radius vector 7, the co-

efficient of the elementary area co in the sum 2 will be k k,

that is, is independent of the pole 0.

22. A given closed and self-cutting circuit (Fig. 15) divides

the plane into a definite number of finite spaces Slt $,,,...

contiguous to one another. Each of these is bounded by a

circuit without nodes
;

so that the whole plane consists of

(T

C

-o

M
Fig. 15-

these spaces and of the remaining (external) infinite region.

which latter we shall denote by SQ .

Let co and a/ be two elementary areas or elements of the

plane, which can be joined by a straight line that does not

cross the circuit, and let us take the pole upon the con-

tinuation of the straight line coV It is evident that the

radius vector OX cannot pass over co' without at the same time

passing over co in the same sense
;

co and co
'
will therefore enter

into with the same coefficient. The elements co", a/"... have

also this same coefficient, if the circuit does not pass between
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a/ and &>", or between &>" and a/", &c. Since we can thus

conjoin all the elements in succession of one and the same

space S, therefore all the elements of 8 will appear in the

sum 2 with the same coefficient c. That is to say, 8 appears
in the sum 2 with the coefficient c. If therefore c

lt c
2i ... are

analogous coefficients for the spaces 15 S2 , .,., we have

2 =^ +^+...,
if we understand that S

lt
S

2 ,
... at the same time express

the areas of the spaces represented by these symbols.
Next let CD, coj be two elements, between which the circuit

passes once
;

and let w lie on the right and u
1
on the

left of the circuit which passes between o> and <ol5 in the

given sense. Take the pole upon the continuation of the

straight line wjo)...; now if X traverses that part of the

circuit which lies between w and co l5 the radius vector OX
will describe o> once with a positive rotation, without describ-

ing o)
19 whilst for all other parts of the circuit the elements o>

and Wi will be described simultaneously in the same sense.

The coefficient of o> will therefore exceed that of o^ by 1
;

that is to say, if in passing from one space to a neighbouring
one we cross the circuit once from right to left*, then

the coefficient of the first space exceeds that of the other by
unity.

The infinite region $ has the coefficient zero
;
for if <D

O is

an element, which lies outside the spaces S
l ,
S
2t &c...., then it

is clear, that we can give the pole such a position, that

the (finite) radius OX never passes through co
,
wherever X

may lie on the circuit.

Any space from which we can get to S by crossing the

circuit only once, has the coefficient +1 or 1, according
as the crossing takes place from right to left, or from left to

right. In general if we draw from a point in any space 8 a

straight line to a point of SQ) and if this straight line crosses

the circuit m times from right to left and n times from left to

right, then the coefficient of 8 is equal to m n.

23. If the circuit has no nodes, we have a single finite space
8

t
and this has the coefficient 4-1 or 1, according as the

* From right to left is always to be taken in the sense of a person describing

the circuit in the given sense
;
the particular sense is indicated in the figure

by an arrow.

C
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circuit has been described positively (Fig. 15$) or negatively

(Fig. 15$). In this case therefore we have

* = 8
>

that is to say, If the circuit is not a self-cutting-one then the sum

2 is the area of the space enclosed by the circuit.

Fig. 15 1.

This property naturally leads us to consider the sum 2 as

defining the area of any self-cutting circuit*.

24. A self-cutting circuit can be decomposed into circuits

which are not self-cutting, by separating the (curvilinear)

Fig. 16 a. Fig. 1 6 b.

angles, formed by the branches which intersect at each node,

without altering at all the sense
(i.

e. the direction of the arrows)

Fig. 170. Fig. 1 7 ft.

of the branches themselves. Consider, for example, Figs. 16

and 17; in each a self-cutting circuit is resolved into two

* Besides the paper by DE MORGAN previously mentioned, see MOBIUS, Ueber

die Bestimmung des Inhalts eines Polyeders [Berichte der Konigl. Sachs Gesellsch.

der Wissenschaften zu Leipzig, 1865), 13 and following ; Ges. Werke, Bd. 2.]
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simple ones
;

also Fig. 1 8, where a self-cutting circuit is

resolved into four simple ones.

The spaces with negative coefficients are in this way
separated from those with positive coefficients

;
and of two

Fig. 18 a. Fig. 18 5.

spaces whose coefficients have the same sign, the one whose

coefficient is greater in absolute value, lies wholly within

the other. Thus, for example (if we denote by S
r the space

whose coefficient is
r),

S
2 is inside /S^;

S
B

inside S
2 ,..., _

2

inside _19 .... Hence it follows that the area 2 can be ex-

pressed as a sum of spaces, which all have positive or negative

unity for their coefficient. For this purpose it is sufficient to

take the area Sr once for itself, and once more with the

area S
r_ lt within which it lies; that is to say, we sum the

spaces Sr and Sr_ l + Sr instead of 2Sr and Sr-ly and so on.

Consider for example (Fig. 18) where the area is equal to

8* + (St + &) + (^ + S, + S
3 )
- S_*.

By the area of a system of closed circuits we understand the

algebraic sum of the areas of the single circuits. Thus, for

Fig. 19. Fig. 20.

example, the ring inclosed between the two oval curves in Fig.
1 9 is the area of the circuits ABC, A'C'Jl'; on the other hand, the

*
CULMANN, GrapMsche StatiJc, 2d ed. (Zurich, 1875), N r

. 26.

C 2
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area of the circuits ABC, A'B'C' (of Fig. 20) is equal to that ring

plus twice the internal area A'B'C'. In both cases we can sub-

stitute for the two circuits a single one AA'C'B'BCA (Fig. 19) or

AB'C'A'BCA (Fig. 20), where the points B, B' are considered

as infinitely near to A, A' respectively. In (Fig. 21) the two

Fig. 21. Fig. 22.

circuits intersect; the area of the circuits ABC, A'B'C' is equi-
valent to that of the circuits AA'B'C, ABB'C'. In Fig. 22 the

area of the circuits ABC, A'B'C' is equivalent to that of the

circuits ABA'B', AC'A'CA. The two circuits can, in each

case, be replaced by a single one.

25. If the two closed polygons CDE ... Hf, C
f
D'E'. . . M', in a

plane, have their sides CD, C'D', DE, D'E,' ... MC, M'C' re-

spectively equipollent, the sum of the parallelograms CDD'C'
DEE'D' ... MCC'M' is zero. It will be sufficient to prove
this for the case of the triangle CDE.

Taking D as the pole of the contour CC'D'E'E, we have

from the theorem of Art. 19,

DCC' + DC'D' + DD'E' + DE'E+DEC = CC'D'E'E.

But the two first triangles together form the parallelogram

DCC'D'\ similarly the third and fourth triangles form the

parallelogram EDD'E'. Also

CC'D'E'E-DEC = CC'D'E'E-D'E'C' = E'ECC',

which is a parallelogram.

Wherefore :

DCC'D' + EDD'E' + CEE'C' = 0.

From this it follows that if CDE . . . M is a closed polygon
whose n sides are the bases of n triangles whose vertices are the

points AI A2 ... An , respectively, (which are taken anywhere in

the plane of the polygon,) the sum of the triangles

does not change when the polygon is moved parallel to itself in
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its plane. In fact, if C'D'W ... Mf

is another polygon, whose

sides are equipollent to those of the given one, we have

A
1
CD = A

L C'D'+C'DD',
A

2
DE =

AnMC =
summing up we have,

because, as we have shown above, the sum

is equal to zero.

26. THEOREM. If the rectilinear segments A
1
B

1 ,
A

2
B

2 ,

A3B3 ,
... AnBn of given magnitude and position in a plane are

equipollent to the sides of a polygon (i.e. of any rectilinear closed

circuit, whether self-cutting or not), then the sum of the triangles

OA^ + OA
2
B

2 + OA3 S + . . . + OAnBn ,

is constant wherever the jwle may be taken, at a finite distance.

But if the given segments are not equipollent to the sides of a closed

polygon, then this sum is not constant except for such points 0, as

are equidistantfrom a fixed straight line*.

Proof. Construct the crooked line CDE . . . MN, of which the

successive sides CD, DE, . . . MN are respectively equipollent to

the given segments A-
[
B

l ,
A

2
B

2 ,
A

3 B%, ... A n Bn ;
so that the

figures A 1
B

1DC, A
2
B

2ED, ...
,
AnBnNM are parallelograms.

Then from (Art. 15),

OA^= OCD-A^CD,
OA

2
B

2
= ODE-A2DE,

&c. &c.

OAnBn= OMN-AnMN,
and also from the proposition in Art. 19

OCD+ODE+... OMN+ ONC = CDE ... MNC,
hence by addition we have

OA
l BI + OA

2
B

2 + . . . + OAnBn = CDE . . . MNC + OCN

-(Al CD^-A2DE+...+AnMN).
If the given equipollent segments form a closed polygon,

that is, if the point N coincides with C, then the area of OCN
is zero, provided that the point remains at a finite distance,

and therefore the sum OA
1
B

1 + OA
2
B

2 + . .. + OAnBn

*
APOLLONIUS, Loci Plani, lib. 1. L'HUILIER, Polygonometrie, 1789, p. 92.

MOBIUS, Statik, 46.
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has a value independent of the position of 0. Hence it

follows that, in the special case where ON is zero, the above-

mentioned sum either has the value zero for every point of

the plane, or else it vanishes for no single point (tying at a

finite distance).

If N does not coincide with C, the above sum will remain

unaltered, so long as the area of the triangle OCN does not

alter
;
that is, so long as the point remains at the same

distance from the straight line CN.

If we change this distance, and take a new pole 0', we shall

have

0'A
1
B

1 + 0'A
2
B

2 +... + 0'AnBn= CDE...NC+ O'CN

Take the pole 0' at such a distance from CN, that the

area of the triangle O'CN is equal to

A
1
CD + A2DS+ ... + AnMN-CDE ... NC,

then the sum O'A^ 1 +0'A z 2 + ... + 0'A nBn = 0.

The straight line (parallel to CN), which is the locus of those

points 0' for which this sum is zero, we call r. If we take

the point C, i. e. the arbitrary initial point of the crooked line

CDE ...
, upon r, then the area of O'CN is zero, and therefore

the sum of the triangles

A
1
CD + A2DE+ ... +AHMN

is equal to the area CDE . . . MNC. If we keep to this choice of

C, i.e. if we agree that C shall be a point in the line r, then

for any point whatever we shall have

OA
1 1 +OA2

B
2 +... = OCN.

27. Conversely, if the sum OA
1
B

1 ,
OA

2
B

2 ,
&c. ... is the

same for every point in the plane, the segments A
l
B

l
.
l

A
2
B

2 ,
&c. ... are equipollent to the sides of a closed polygon.

If there are two segments, they will therefore be parallel,

equal, and opposite in sense. If we take the point on one

of them, we see that the sum is half that of the parallelogram
formed by the two segments.

28. In the special case, where all the given segments meet

in a common point C, the sum of the triangles

A
1
CD + A 2DE+ ... +AnMN, or else CLE+... + CMN

is identical with the area of the polygon CDE ... NC (Art. 23) ;

and therefore the common point C must also be a point in the

straight line r. This is tantamount to saying that in this case
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/ coincides with the straight line CN, which joins the ex-

tremities of the crooked line CDE . . . MN.
The same conclusion holds good if the given segments lie

upon straight lines, which all intersect in the same point C
;

since we can substitute for the triangle OArBr the triangle

OCB
',.,

because the segments ArBr and CB'r lie on the same

straight line, and are equal to one another in magnitude and

similar in direction.

29. From this property of the straight line r, for the case

where all the segments lie upon straight lines which meet

in the same point, we obtain a construction for the straight

line ; in the general case, when the segments lie anywhere

upon the plane.

Let C be the point in which A
1
B

1 and A2
B

2 intersect. With
C as the initial point construct the triangle OLE, whose sides

CD, DE &YQ equipollent to the straight lines A
1
B

l , A2
B

2 ;
then

from what has just been proved for every position of the point
OCE= OA

1
J3

i +OA2
S

2
.

Now let P be the point, in which CE cuts the straight line

A
3
B3 ;

with P as initial point construct the triangle PQlt, whose

sides PQ, QR are equipollent to the segments CE, A
3
J3

3 ,
then

OPE = OCE+ OA
3 3

= OA
1
B

1 +OA 2
B

2 +OA3 3 .

And so we proceed continually until we ultimately reach a

segment AB such that

OAB = OA
l B! + OA

2
B

2 + . . . + OAnBn .

This segment AB lies on the required straight line r, and is

equipollent to the straight line CN, which joins the extremities

of the crooked line CDE . , . MN, whose sides are respectively

equipollent to the given segments.
30. As in the general case, when CN is not zero, all the

points 0, for which the sum
OA

1
B

1+OA2
B

2 +... OAnBn

has the same value, lie upon a fixed straight line (par. 26), so

there is only one straight line r, the locus of the points 0, for

which the above sum is zero. Hence it follows, that whatever

be the order, in which we take the given segments in the

above construction, we shall always arrive at one and the

same straight line r.



CHAPTER II.

GRAPHICAL ADDITION.

31. To geometrically add or combine a number of segments
1

,
2

,
3

,
. . .

,
ft given in direction and magnitude, we must con-

struct a polygonal circuit, whose sides, taken in order, are

equipollent to the given segments (Fig. 23).

The straight line *!,..., n which joins the first and last

points of the circuit so constructed, is called the geometrical sum

Fig. 23.

1
Fig. 24. Fig. 25.

or resultant of the given segments
*

; and these are called its

components. If the given segments are all parallel to one

another, the polygonal circuit reduces to a straight line,

whose successive segments 01, 12, 23, ... (Fig. 24), or 11, 22,

*
CHELINI, Saggio di Geometna Analitica, trattata con nuovo metodo (Koma,

1838), p. 35.
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33,... (Fig. 25) are respectively equipollent to the given

segments. In this case the resultant of the given segments is

identical with their algebraical sum. The two figures show

two different methods of denoting a series of segments which

follow one another consecutively upon a straight line.

32. From the definition given above, it follows that the

resultant *!,..., of the n given segments 1, 2, 3, ..., n is iden-

tical with the resultant of the two segments s
lt .,, ir *r+1 ,...,n> of

which s
lt . . . f

r is the resultant of the first r given segments, and

*
r +i,...,n of the n r remaining segments. For since the

straight lines <?L ...,
and *

lt ...,r
start from the same point as

the segment 1, and the straight lines 8
lt ..., n and *r+L ...,n end

in the same point as the segment n, therefore the straight line

*!,..., n begins at the same point

with #!,..., r and ends at the same

point with * r+1> ...,.

Fig. 26 corresponding to n = 8,

and r = 5
,
shows that the result-

ant of the segments 1,2,3,4,5,

6, 7, 8 coincides with the geo-

metrical sum of two components,
one of them the resultant of the

segments 1
,

. . .
, 5, the other the

resultant of the segments 6, 7, 8.

From this we infer that, if we
divide the given segments [always
taken consecutively, i.e. in the

given order] into any number of groups, and if we sum the

segments of each group, the sum of the partial resultants

thus obtained will coincide

with the resultant of all the

given segments.
33. The resultant of a number ^\$

of given segments is independent

of the position of the point as-

sumed as the initial point of
the circuit.

Fig 27
In fact the circuits drawn

from two different initial points, and O
lt

are equal

similar and similarly situated (congruent) figures, and the

Fig. 26.
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Fig. 28.

second may be found by moving the first parallel to itself, so

that each of its points describes a straight line equipollent to

the straight line 00
1 (Fig. 27).

34. THEOREM. The resultant *
lf ... jW of several given segments

1, 2, 3,..., n is independent of the order in which they are

combined.

Proof. We begin by proving that two consecutive seg-

ments, for example 3, and 4 (Fig. 28), can be interchanged.
In the given order, the resultant

of all the segments is also the

resultant of the three partial

resultants #
lf 2 ,

s
3> 4 ,

*
5> ...,. In

like manner, in the new order,

the resultant of all the segments
will be the resultant of the par-
tial resultants s

lt 2 , s^ s ,
s
5t . . .

t
n .

But #3,4 and *
4>3 are the same

straight line, namely the dia-

gonal of the parallelogram, which we obtain by drawing first

two consecutive segments equipollent to the given ones 3,

and 4
,
and then, starting from the same point, two other

consecutive segments equipollent to the same given seg-

ments with their order changed 4
'
3 '. Thus the interchange

of the segments 3, and 4 has no influence on the required

resultant.

If we interchange first 3 and 4, then 3 with 5
,
and finally

5 and 4
,
the total effect is the same as if we had interchanged

3 and 5 (Fig. 29). In gen-

.4' eral we interchange any
two non-consecutive seg-

ments we please by means

of interchanges of consecu-

tive segments. Therefore

the resultant of any num-

ber of segments is unal-

tered if we interchange any
two segments we please ;

or the resultant is inde-

pendent of the order inFig. 29.

which the segments are taken to form the figure.
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Fig. 30 shows several circuits, constructed with the same

segments, taken in the different orders 12345, 13254,
15234.

Fig. 30.

35. If a closed circuit can be constructed with the given

segments, then from the proposition just proved it follows, that

all the circuits obtained by changing the order of the seg-
ments have this same property. In this case the resultant

of the given segments is zero, or

The resultant of any number of segments vanishes when they are

equipollent to the sides of a dosed polygon.

The simplest case in which the resultant vanishes is that of

only two segments, one of which is equipollent to the other

taken in the opposite sense.

36. If, out of some of the segments whose resultant is

required, a closed polygon can be

formed, then all these may be neg-
lected without affecting the required
resultant.

In Fig. 31 the resultant of the seg-
ments 1 ... 9 coincides with that of

1
, 2,8, 9

,
because the resultant of

3
,
4

,
5

,
6

,
7 is zero.

If the component segments are in-

creased in any given ratio, then the

resultant is increased in the same

ratio, without changing its direction.

37. Two series of segments have equal (equipollent) result-

ants, if, after constructing the corresponding circuits starting

from the same point the final points of the two circuits coincide

(Fig. 32). If we combine the segments of the one series with



28 GKAPHICAL ADDITION. [38-

Fig. 32.

those of the other taken in the opposite sense, the total

resultant is zero.

38. Two series of segments have equal resultants, but of

opposite sense, when, the corresponding polygonal circuits being
so constructed that the initial

point of the second coincides

with the final point of the first,

the final point of the second

also falls on the initial point of

the first. If we combine the two
series of segments, their total

resultant is zero. Conversely,
if the resultant of several seg-

ments is zero, and if we split

them up into two distinct groups, the resultant of the one

group is equal, and of opposite sense, to that of the other

group.
39. Subtraction is not a distinct operation from addition.

To subtract a segment 1 from a segment 2 is the same as

adding to 2 a segment equipollent to the segment 1 taken in

the opposite sense.

40. If two series of segments have equal (equipollent)

resultants, by adding to, or taking away from, both the same

segment, we shall obtain two new series whose resultants will

also be equal (equipollent)*.

41. Given a segment AB (Fig. 33), and a straight line r
;
then

if we draw through A andB in any arbitrarily chosen direction

two parallel straight lines to

meet r in the points A' and B',

the points A', B' are called the

projections of the points A and

B, and the segment A'B' the

projection of the segment AB.

The straight lines AA' BB'
are called ihe projecting rays.

The projections of two equipollent segments are themselves

equipollent (so long as we neither change the direction of r,

nor that of the projecting rays).

* The properties of Art. 32 and Art. 40 can be both deduced without further

proof from those of Art. 30.

Fig. 33-
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42. Let ABC . . . MNA be a closed circuit (Fig. 34), and

A',B
f

,
C f

,
... M'

t
N' the projections of its vertices

;
then since

A', J5', &c. are points in a straight line, it follows, from (Art. 4),

that A'B' + B'C'+... M'N'+ N'A'= ;
i.e. the sum of the pro-

jections of the sides of a closed circuit is zero.

Let A
l
B

l ,
A

2
B

2 ,
. . . ,

AnBn be n segments in a plane, whose

resultant is zero, that is to say, n segments which are equal in

magnitude and direction to the sides

of a closed polygon. Then since the

sum of the projections of the sides

of a closed polygon is zero, and since

the projections of two equipollent

segments are equal, therefore the

sum of the projections of the given

segments will vanish.

A number of given segments to-

gether with a segment equal, but

of opposite sense, to their resultant,

form a system of segments whose

resultant is zero. Hence the following proposition :

The projection of the resultant of a number of given segments is

equal to the sum of their projections.

From this we at once conclude that :

If two series of segments have equal resultants., the sum of the

projections of the segments of the one series is equal to the sum of
the projections of the segments of the other.

43. Let A^B-L, A2
B

2 , ...,AnBn be n given segments in a

plane, whose resultant is zero (Fig. 35). If we take an

arbitrary point as pole, then we may suppose ArBr to be the

resultant of the segments Ar O, OBr -,
therefore the resultant

of the segments A,0, 03lt A2 0, OB2 ,
...

,
An O, OBn will vanish

(Art. 38), i.e. the resultant of the segments OAlt OA2 , ..., OAn

is equal to that of the segments OB-^ 2 , ...,OBn .

Conversely. Given two groups of n points A^ ,
A

2 , ...,An ,

and
lt
B

2 , ..., Bn ;
if the resultant of the straight lines

OA
l ,

OA
2 , ..., OAn ,

obtained by joining any pole to

the points of the first group, is equal to the resultant of the

straight lines OB
} ,
OB

2 ,
...

,
OBn , got by joining the same pole

to the points of the second group : then the resultant of the

segments A l
B

l ,
A

2
B

2 , ,.., AnBn ,
which join the points of the
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one group to those of the other, is zero. (It is here supposed
that the points of the one group can only be properly united

to those of the other, when no point is left out, or used more

than once.) In fact it follows from the proposition of Art. 37

Fig. 35-

that the resultant of the segments Afl ,
A

2 0, ...,An0,OBl ,

OB
2 , ..., OBn is equal to zero

;
but the resultant of ArO and

OBr is Ar
B

r , therefore also the resultant of the segments
A

l
B

l ,
A

2
B

2 ,
. . .

,
AnBn is zero.

44. Hence it follows from the first proposition (Art. 43),

that when a new pole 0' is assumed, the resultant of the

segments 0'A
lt

0'A
2 , ..., 0'An ,

is equal to the resultant of the

segments O'_#l5 0'B2 , ..., 0'Bn .

Wherefore *

If, for two groups of n points Ai ,
A

2 , . . . ,
An ;

B
,
B

2 , . . . ,
Bn

and a fixed pole 0, the resultant of the segments OA ,
OA

2 , ..., OAn

is equal to the resultant of the segments OB1 ,
OB

2 ,
. . . ,

OBn ; then

the same equality holds for any other pole 0''. Moreover the

resultant of the n segments, which join the points of the one group

with those of the other taken in any arbitrary order, is equal to zero.

45. Retaining the supposition just made as to the two

groups of n points, project them into the points J/, A2 , ..., An',

-^i> -^2') -Bn on a straight line r by means of rays parallel

to any arbitrarily chosen direction. Now take the pole

on the straight line rf, then we may suppose the ray OAr to

* GKASSMAN, Die Ausdehnungslehre (Leipzig, 1844), p. 41.

f See Fig. 35, and imagine the straight line r so displaced, that the points

and 0' coincide.
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be formed by combining the two lines OA'
r ,
A'r Ar , and so on

;

the resultant of the segments OA{, OA
2 , ..., OA U', A 1

fA
1 ,

A
2
A9 , ...,An'An is therefore equal to the resultant of the seg-

ments OJ?/, OS,', OSJ, ... OS,,', S&, 2
'3

2 , ..., S,;Sn . But

(Art. 41) the resultant or sum of the segments OA{, OA
2',

...

OA n
'
is equal to that of the segments OB{, OB2 , OBJ since

all these segments are the projections of two other series of

segments, whose resultants are equal ;

Therefore

Iffor two groups of n points Alt A2 , fyc. ; _Z?l5 B2 , fyc.
and a

fixed pole 0, the resultant of the segments OA
1 ,
OA

2 , fyc.
is equal to

the resultant of the segments OBl ,
OB

2 , fyc.,
and if we project all

the points by means of rays parallel to an arbitrarily chosen direction

on to the same straight line, the sum of the projecting rays of thepoints

of the one group is equal to the sum of the projecting rays of the

points of the other group.

46. So far, we have been speaking of the resultant of a

number of segments, considering only their magnitude,

direction, and sense, but not their absolute position. We shall

now give a more general definition, which includes the

one previously given (31), and takes account of all the

elements of the resultant straight line of a number of given

segments.
If n segments A

l
B

l ,
A

2
B

2 ,
. . . ,

AnBn ,
are given (in sense,

position, and magnitude) their resultant will mean a segment
AB of such magnitude, position, and sense, that, for any

pole 0, the area of OAB is equal to the sum of the areas

OA^ + OA
2
B

2 + ... + OAnBH (26, 30).

47. For shortness we shall call the triangle OAB, the triangle

which joins the segment AB to 0. The sense AB of this seg-

ment shows the way in which the circuit OAB is traced out,

and therefore shows the sense of the area OAB.

This being premised, our definition may be expressed as

follows. By the resultant of a number of given segments, we mean

a segment such that the area of the triangle which joins it to an

arbitrary pole 0, is equal to the sum of the areas of the triangles

which join the given segments to the same pole.

Since the area of the triangle OAB does not change, if we

displace the segment AB along the straight line on which it

lies, therefore the resultant of a number of segments will not
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change, if we displace each of them in an arbitrary manner

along the straight lines on which they respectively lie.

48. We know already from Art. 26 that if we construct a

polygonal circuit CDE . . . MN, the sides of which are respect-

ively equipollent to the given straight lines A
L
B

L , ..., A n Bn ,

then its closing side NC is equipollent to the resultant AS.

If the circuit is closed, i. e. if N coincides with C, but if the

sum of the areas Al
B + A

2
B

2 4- . . . OAn Bn is not zero, then

the magnitude of the required resultant is zero and it is

situated at an infinite distance. If the circuit is closed, and

the above sum also zero, then the magnitude of the resultant

is still zero, and. its position is indeterminate. In this case

therefore it may be asserted that the given series of segments
has no resultant.

49. But if C does not coincide with N, then the problem
is uniquely solved by a segment AB of finite magnitude,
situated at a finite distance. As we already know its magni-

tude, its direction, and its sense, it will be sufficient, in order

to completely determine its position, to find one point in the

straight line of which it forms a part. For this purpose we

may use either the construction in Art. 29, or else the much

simpler one following (Fig. 36).

Fig. 36.

We begin by constructing a polygonal circuit, with its sides,

which we shall now denote by 1, 2, ...,n, respectively, equi-

pollent to the given segments ;
then their resultant is equi-

pollent to the segment ,
which closes the circuit, taken in

the opposite sense, i.e. it is equal, but of opposite sense, to
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the segment which joins the final point of the side n to the

initial point of the side 1. We now choose at pleasure a pole

U, and draw from it the rays UT
01 ,

U712 , ..., UFn0 * to the

vertices of the circuit; where 77.i+i means the vertex which

is the final point of the side i (equipollent to A
i
B

i \ and the

initial point of the side i+ 1 (equipollent to Ai+l .Z?/+1 ).

We next construct a second polygonal circuit with its

vertices 1,2, ..., n lying respectively on the lines to which

the segments A-^B^ A
2
B

2 , ..., AnBn belong, and with its

sides 01, 12, ..., nO respectively parallel to the rays UT01J

UT[2 , ..., U7HQ . The extreme sides 01,wO of this polygon will,

if sufficiently produced, meet in a point which lies on the

required line of the resultant f .

Proof. We suppose the segment A l
S

l
to be resolved into 2

others, situated in the sides 01, 12 of the second polygon,
and equipollent to the rays T

01 U, Uf^.2 of the first; in like

manner we suppose the segment A^B2
resolved into two

others, situated in the sides 12, 23 of the second polygon,
and equipollent to the rays T\2 U, UY^ of the first

;
and so on,

till finally AnBn is resolved into two segments situated on the

sides n 1 -n, nQ, and equipollent to the rays 7
>

n _ 1 >n 7, U"FH0 .

If we take any pole ,
then the area of the triangle, which

joins it to one of the given segments, is equal to the sum of

the two triangles which join its two component segments
to the same pole ;

and consequently the resultant of the n

given segments A
l
B

l ,
A

2
B

2 ,
. . .

,
AnBn coincides with the re-

sultant of the 2 n component segments into which the given
ones have been resolved. Now the first of these 2 n segments
is situated on 1

,
and equipollent to 7Ql U, and the last is situated

on n
,
and equipollent to UJ'n ,

whilst all the rest, 2 (n 1
)

in number, are equal to one another in pairs, are of opposite

sense, and are situated on the same side of the second polygon.
For example, the second and third component segments lie

on the side 12, and are respectively equipollent to UT19 and

fn u.

The areas of the two triangles, which join these pairs of

segments to 0, are equal to one another but of opposite

sense
;
the resultant of the given segments is therefore no other

* In Fig. 36 all the letters V, A, B are left out, and n = 4.

t CULMANN, 1. c.
;
Nos. 41 & 42.

D
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than the resultant of the first and last component segments,
of which the first is situated in 01 and equipollent to T'

01 U,

and the other is situated in nO and equipollent to UPn0 .

But the resultant of two segments passes through the common

point of (Art. 28) the straight lines to which they belong,

therefore the required resultant passes through the common

point of the two extreme sides 01
,
?iO of the second polygon.

50. If the pole U were taken in a straight line with the

two extreme points J
r

olt 7nQ of the first polygon, then the

two extreme rays VFol , UT^ would coincide, and therefore

the two extreme sides 01, nO of the second polygon would be

parallel. In this case therefore the construction would not

give a point at a finite distance in the required resultant.

But this inconvenience could at once be remedied by choosing
a new pole Uf

not lying in the straight line ^13 ^ and then

proceeding as above.

61. Even if that is not so, it may happen (Fig. 37) that the

points VnQ and T'
01 coincide, and then, wherever U may be,

Fig- 37-

the extreme rays coincide, and therefore the sides 1
,
#0

are either parallel or coincident. If they are parallel, the

sum OA
1
B

1 + CL4
2
7?

2 + &c. is equal to the sum of the two

triangles whose common vertex is 0, and whose bases are

equipollent to the equal and opposite rays F
ol U, UT'Ql and

lie in the sides 01
, 0, or is equal to the half of the parallelo-

gram (Art. 15), of which those bases are the opposite sides.
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In this case the resultant is zero and situated at an infinite

distance; and the sum OA
l
B

1 + &c. has a constant value not

zero, wherever (at a finite distance) the pole may lie.

52. If, on the contrary, the sides (Fig. 38) 01, nO coincide,

i.e. if the opposite sides of the parallelogram coincide, then the

sum OA1
B

1+OA2
B

2 +&e. vanishes for every position of the

pole 0. In this case any one segment taken in the reverse

sense is the resultant of the remaining (nl) segments.

53. If we take the given segments A^B^ A2
B

2 ,
... all parallel

to one another, then the first polygon ?01 f
12

T
23 ... ?n0

(Fig. 39) reduces to a straight line, but the construction of the

1 V

Fig. 39-

Fig. 38.

second polygon is just the same as in the general case. The

resultant is parallel to the components.
54. If there are only two segments A^B^, A 2

B
2 ,

the con-

struction may be simplified as follows (Figs. 40, 41). In the

unlimited straight line A
1
B

l . . . take a segment CD equipollent

to A
2
B

2 ,
and in the unlimited straight line A2

B
2

... a segment
Cflf equipollent to A^BV Then the common point of the

straight lines CD', and CfD lies on the required resultant. For

if we draw IfIE parallel to C'D and join to E, then C, D, E

represent the vertices F
Ql ,

J
12 ,

7
20

of the first polygon, and

takes the place of the point U ;
the points D'

,
E are the vertices

1, 2 of the second polygon, which is here represented by the

D 2
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triangle OD'E, and represents also the point of intersection

of the extreme sides of this second polygon.

-C'

XD'

Fig. 40. Fig. 41.

From the similar triangles OCD, OD'C' we have

OC': OD= CfIf -.DC

that is to say :

The ratio of the distances of the resultant of two parallel segments

from these segments is the negative reciprocal of the ratio of the

component segments.



CHAPTER III.

GRAPHICAL MULTIPLICATION.

55. To multiply a straight line a by the ratio of two other

straight lines 6:c, we must find a fourth straight line so such

that the geometrical proportion holds :

c : I a : x.

For this purpose it is sufficient to construct two similar

triangles OLM and O'PQ with the following properties.

In the first there are two lines (two sides, or base and

altitude, and so on) equal or proportional to c, I
;
and in the

second the line homologous to c is a
;
then co is the line in the

second triangle homologous to b
;
or else

In the first there are two lines proportional or equal to c

and a
;
and in the second the line homologous to c is b

;
then

x is the line of the second triangle homologous to a.

56. The relative position of the two triangles is purely

a matter of choice ;
and the particular choice made gives rise

to different constructions. The choice will be chiefly deter-

mined by the position occupied by the given segments a, b, c,

or of that which we wish x to occupy.

(a) In (Fig. 42), for example, the two triangles have the angle

in common and the sides opposite to it parallel. If in them

Fig. 42, Fig. 43-

we take OP, OM, OL to represent the segments , I, c, then

OQ = x. But if OL = c, OP = a, LM= I, then PQ = x.
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(b) In (Fig. 43), on the contrary, the sides opposite to the

common angle are antiparallel, i.e. the angles OML and OQP
are equal (and therefore also the angles OLM and OPQ).

(c) (Fig. 44). We may take c and a to be the altitudes of the

two triangles ;
and then, on the supposition that b is a side

ON or LM of the first triangle, OQ or PQ will be equal to x.

(d) Or again, let c and a be represented by OL, OP, or by
OM, OQ, and let b be the altitude of the triangle OLM, then x

is the altitude of the triangle OPQ.

M

M

Fig. 44.

(e) If (Fig. 45) the lines OM = b and O'P = a are drawn per-

pendicular to one another, supposing that <? >#, we may proceed

as follows. Construct the triangle OLM, so that the side LM
is parallel to O'P, whilst the hypothenuse OL = c. Then if

we drawPQ parallel to OL, and O'Q perpendicular to PQ, the

right-angled triangles OLM, O'PQ are similar because of the

equal angles L and P
;
and therefore O'Q x.

The straight line O'Q, the orthogonal projection of O'P

upon a straight line at right angles to OL, is called the Anti-

projection of O'P on OL. If therefore a and b are perpen-
dicular to one another, then x is the antiprojection of a upon <?.

57. To divide a straight line a by the ratio of two other

straight lines b : c, is just the same as to multiply a by the

ratio c : b.

The division of a straight line a into n equal parts is the

same thing as multiplying a by the ratio c : b, where c is

an arbitrary segment, and b is equal to c repeated n times.

If a straight line b is to be divided into parts, which are

proportional to the given segments alt a
2 ,

a3) ...,a n , lying in
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the same straight line, then we have only to multiply these

segments by the ratio b : c, where c = a
l + a

2 + ... + a n

(Art. 59).

58. If we draw from a centre or pole radii vectores, each

consecutive pair of which contains the constant angle w, their

lengths forming the Arithmetical Progression,

a, a + b, a + 2d, &c., &c.
;

then their extremities 31, J/x ,
J/

2 ,
&c. are points on a curve,

called the Spiral of Archimedes
;
which is the name given to the

curve described by a pointM which moves uniformly along the

radius OMwhilst the radius itself rotates about with constant

velocity, in such a manner that Mdescribes the rectilinear seg-

ment b in the same time that the radius OJfdescribes the angle o>.

If we take the angle o> small enough, we shall obtain

points sufficiently close together to be able to draw the curve

with sufficient accuracy for all practical purposes.
After we have drawn the Spiral of Archimedes, we are able

to reduce the problem of dividing an angle to that of the

division of a straight line. For iftwo radii vectores are drawn,
which enclose the angle we wish to divide into n parts pro-

portional to n given straight lines, we need only divide the

difference of the radii vec-

tores into n parts propor-
tional to the same magni-
tudes

;
and then the dis-

tances of the point
from the n\ points of

division will be the lengths

of the n\ radii vectores

to be inserted between

the two given ones, in

order to obtain the divi-

sion of the angle. Fig. 46
shows the division of the

angle MOM
5 into five Fig. 46.

equal parts *.

59. If several segments AB, AC, ... , BC, ... of a straight line

u have to be multiplied by a constant ratio 6 : c, the problem

* PAPPUS, Collectiones Matliematicae, Lib. iv. Prop, xx, xxxv.
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resolves itself into finding a series of points A', B', C', &c. on

another straight line u'
;
such that the equations

A'Bf
A'C' B'C' b .

-Tn= ^777= ~T^ = ... = - hold.
AB AC BC c

The straight lines u, u' are called similar point-rows, and the

points A and A', B and B',..., and also the segments ^J5 and

A'B'..., are said to be corresponding.

60. If the straight lines n,

n are parallel (Fig. 47), then

all the joining lines AA', BB',

CC', &c., pass through a fixed

point (the centre of projec-

tion). If, for example, we make
AP = c, ^'P' = b, then ^^' and

PP' give by their intersection

the point 0, and every radius

vector drawn through the point

cuts u and u' in two corre-

sponding points.

61. If u and u
f
are not parallel (Fig. 48), and if their common

point represents two coincident corresponding points A and

A', then the straight lines BB*, CCf
. &c. are all parallel to one

another. The common direction of these parallel lines may be

Fig. 48.

found, for example, by taking AB =
c, A'B' = b

;
then every

straight line parallel to BB' cuts u and u
f
in two corresponding

points.

62. If, finally (Fig. 49), u and u' are not parallel, and their

common point represents two non-corresponding points P, Q',

then all the straight lines AA\ BB', CC'
,

... are tangents to the

same parabola. If, for example, we take PQ =
c, P'Q' = b,

then the parabola is determined from the fact that, it must
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touch u in Q, and u' in P f
. Every tangent of this parabola

cuts u and u in two corresponding points.

In order to obtain pairs of corresponding points, such as A
and A', B and B f

, &c., we need only draw from the different

Fig. 49.

points A", B", &c. of the straight line P'Q the straight lines A'A,

B"B, &c. parallel to u'
,
and the straight lines A"A', B"B', &c.

parallel to u. For then clearly we have

A'B' P'Q' AB
_ PQ m

'

A"B"
"

P'Q
'

A f
7?' P' O f

and therefore ^=r =

Fig. 50.

If we wish to avoid drawing parallels
*

it is sufficient to

consider two tangents (Fig. 50) of the parabola as given, i. e.

two straight lines u, u", in which two similiar point-rows (they

*
COUSINEKY, Le calculpar le trait (Paris, 1840), p. 20. For another method

of solving this problem see SACHERI, Sul tracciamento delle pur.tegyiate projettive

aimili (Atti dell' Accademia di Torino, Novembre, 1873).



42 GRAPHICAL MULTIPLICATION. [63

may be equal) ABODE, ..., A"B"C", &c. are so situated that

the common point of the two straight lines represents two

non-corresponding points E, A", and that the segment AE of u

[which is contained between the parabola and u"~\
is equal to

the denominator c of the given ratio. If we want now to

multiply the segments of u by the ratio I : c, we must place a

line A'E' of length b between u and u" in such a manner that

it joins two corresponding points BB". Then the straight

lines CC", DD", &c. which join corresponding points of u and

u", determine upon A'E' the required segments
B'C':C'D':D'E'iA'W =
BC : CD : DE : AE.

If, for example, it were required to divide a given length
BE into n equal parts, we should draw through B the straight

line u'> and lay off on it n + 1 equal segments,
A'B'=B'C'= C'D',&c.;

then having joined E to E' we should, in like manner, lay off

upon the joining line u", n+I segments each equal to EE f

,
or

A"B"= B"C"= C"D"= &c ., &c. The n + 1 straight lines C'C",

D'D", &c., &c. will meet BE in the required division-points

C, D, &c.

63. Let (Fig. 51) a
l ,

a
2 ,

. . . ,
an be n segments given in magni-

tude, direction, and sense, which have to be respectively

multiplied by the ratios

*i, i, &c., !.
C\ C

2
Cn

We construct a polygonal circuit Pat whose sides are re-

spectively equipollent to the given segments a
lt

a
2 , &c., and

call its successive vertices 1, 12, 23, ... nl.n, n, beginning
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at the initial point of the first side a
1
and ending with the

final point of the last side an .

Then we construct two other circuits Pc and Puc ;
of which

the first is formed by the n straight lines 1, 2, ..., respectively

parallel to the sides of Pa ,
and at the respective distances ^ ,

c
2 ,

. . . ,
cn from them, each measured in a constant direction which

may be fixed arbitrarily, provided that cr be not parallel to ar
*

;

and the second Pac must have its vertices 1
,
2

,
. . .

,
n respect-

ively upon the sides ofPci and its sides 1, 12, 23, ...,nl.n,n-\

must respectively pass through the similarly named vertices

of Pa . The combination of these three circuits is called
' the

First Figure.'

Now construct a ' Second Figure,' which similarly consists

of three circuits Px ,
Pb ,

Pxb , having the following properties

(Fig. 51*):

Fig. 51 a.

i. The sides of Px are respectively parallel to the sides of

Pa \
the sides of Pb parallel to those of Pc (and therefore to

those of Pa and Px) ;
the sides of Pxb to those of Pac .

1, The distances of the sides 1, 2, ... ,
n of Pb

from the

similarly named ones of Px are #15 #
2 ,

... ,
bn measured parallel

to the distances c
l9 c

2 , ..., cn .

3. Each of the vertices 1, 2, ..., n of Pxb lies on the

*
According as cr is positive or negative, we draw the straight line r to the

right or left of a person who travels along ar in the sense belonging to that segment.

t The side 1 is that which goes through the vertex 1
;
the side 12 joins the

vertices 1, 2 ; . . . ; the side n passes through the vertex . In order to construct this

polygon, we can take the side 1 at pleasure, provided it passes through the vertex

lof PfL .
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similarly named side of Pb ,
and each of its sides 1 , 12,23,

..., nl n, n must pass through the similarly named vertex

of Px .

In order to construct the * Second Figure
' we may, for ex-

ample, proceed thus. The vertex 1 of Px is taken arbitrarily,

and through it two straight lines are drawn, respectively

parallel to the side a^ of Pa ,
and the side 1 of Pac . These

determine the positions of the side 1 of Px and the side 1 of

Pxb If now, at a distance l
l
from the side 1 of Px ,

a straight

line is drawn parallel to this side, then this line will be the

first side of Pb ,
and the point where it meets the side 1 of Pxb

will be the vertex 1 of Pxb .

From this point draw (parallel to the side 1 2 of Iac)
the side

12 of Pxb) then the intersection of this with the side 1 of

Px ,
will be the vertex 12 of Px . From this point we draw the

side 2 of the polygon Px in the direction of the segment a
2 ,

and afterwards the side 2 of Pb in the same direction, but at a

distance
2
from it, then the intersection of this with the side

12 of Pxb , gives the vertex 2 of Pxb ,
and so on.

The polygon Px ,
whose sides we shall call #!, #

2 , ...,#,

gives the result of the required multiplication. For the

triangle, which has xr for its base, and for its opposite angle
the vertex r of Pxb) is, on account of the parallelism of the

sides, similar to the triangle of the ' First Figure/ which has

ar for base, and the vertex r of Iac for the opposite angle. The

dimensions of these triangles in the chosen directions are l
r ,

cr)

and therefore

Q. E. D.

64. With regard to the sense of the segment xr we remark,

that the two triangles are similarly situated when cr and b
r

have the same sense, i.e. when the vertices r lie both to the

right or both to the left of the bases (ar or a?r) respectively

opposite to them
; if, on the contrary, cr and lr are of opposite

sense, then the two triangles have opposite positions. For this

reason in the first case the segments ar and xr are of the same

sense, in the second case of opposite sense. Hence it follows,

that the segments x are placed consecutively taking account

of their sense, i.e. in the way which is required by Geo-
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metrical addition. Wherefore their resultant, i.e. the re-

sultant of the segments a
r -, will be, in magnitude, sense, and

Cr

direction, the straight line which closes the polygonal contour

Px (i.e.
the straight line which joins the initial point of x to

the final point of #).

65. Special cases.

Let all the segments a become parallel ;
then each of the two

circuits Pa and Px reduces to a rectilinear point-row (Fig. 52)

Fig. 52. Fig. 520?.

and each of the circuits Pc and Pb becomes a pencil of parallel

rays. That is to say, the construction reduces to the following.

We set off the consecutive segments 01= ls 12 = 2 ,
23 = a

z ,

&c., along a straight line a
; parallel to this line and at

distances <?
x ,

c
2 ,

c
3 ,

. . .
,
c n (measured in some constant direc-

tion, different from the direction of the as, but otherwise

arbitrary) we draw as many straight lines 1
, 2, . . .

, ft, which we

may consider as rays of a pencil whose centre lies at infinity ;



46 GRAPHICAL MULTIPLICATION. [66-

then draw a polygonal circuit, with its vertices 1, 2,...,n on
the similarly named parallel rays, and with its sides 01

, 12,

23, ..., nl n, n passing through the corresponding points

0, 1, 2, ..., n of the point-row a [i.e. through the extremities

of the segments 15 2 , ...,].
Now construct the second figure, by drawing, first, a pencil

of rays 1, 2, ...,#, parallel to a, and at distances b
lt

b
2 , ..., bn

respectively from a straight line x (also parallel to a); and
then a circuit whose sides are respectively parallel to the

sides of the first polygon, and whose vertices fall on the rays
of the second pencil. The segments 01, 12, 23, &c. of x, which
are enclosed between the successive sides of this new polygon,
will be

a?!
= a

x
.

, #
2
= a

2 ,
#
3
= a

B , &c., respectively,c
i

J

^2 ^3

and the segment, that lies between the side r 1-r and the

side S'S+1, is equal to

i=r

In the case just considered it is an immediate deduction

from the remarks made about the sense of the segment a?r ,

that two segments a?r ,
oc

s
have the same or opposite sense,

according as amongst the three pairs ar a
s ,

l
r
b
s ,

cr c
s ,
an even

number (none or two) or an odd number (one or three) are

formed by segments of opposite sense. This agrees with the

rule of signs in algebraic multiplication.

66. If all the cs become equal, in addition to all the a's

being parallel, then the first pencil of rays reduces to a

single straight line, and therefore all the vertices of the first

polygon coincide in a single point of this straight line
;

i.e.

the first polygon degenerates into a pencil of rays proceeding
from a point situated at a distance c from the straight line a.

In this case the problem may be stated thus. To reduce

the given products a^ . blt a
2

. #
2 ,..., an . ln to a common base c

t

by determining the segments a?15 a?
2 , ..,, xn proportional to

them.

The solution is as follows (Fig. 53). Draw the rectilinear

point-row a, whose consecutive segments are 01 = a
3 ,

1 2 = a
2 ,

* JAEGEK, Das Graphische Rechnen (Speyer, 1867), p. 15.
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&c., &c., and join each of the points 0, 1, 2, ..., nl, n of

this point-row to a point taken at a distance c from a
;

the distance being measured perpendicularly, or obliquely

Fig. 53- Fig. 53 a-

at pleasure. Then construct a pencil of rays 1, 2, ...,w,

parallel to a, and at distances bl9 2 ,..., #, respectively,

measured in the direction of c from a given line x, also

parallel to a. Finally, draw a polygon whose vertices fall

respectively on the above-mentioned parallel rays 1
, 2, . . .

, n,

and whose sides 01, 12, 23, ..., nl.n, n are respectively

parallel to the rays 00, 01, 02, ..., OnI, On of the pencil

0. The segments 01, 12, 23, ..., which the sides of this

polygon intercept upon the straight line #, will be the re-

quired segments a?1} a?
2 , .,., xn *.

67. If instead of all the c's, all the b's are equal, and all the

as still parallel, then the problem may be stated thus :

Given the ratios

a, a,, a,,

to determine segments x
l ,

#
2 ,

a?
3 , ..., # M , proportional to

them, so that the product of the multiplication of any x by its

/?

corresponding ratio - shall be the constant segment b.

*
CULMANN, 1. C., No. 2.
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After we have constructed (Fig. 54) the point-row a, with

the segments 01 = 15 12 = a
2 , &c., and the pencil of rays

1, 2, 3, ..., n parallel to the straight line a
t
their respective dis-

tances from it being c
1 ,

c
2 ,

c
3 ,

&c. (all measured in a constant

direction), we draw a polygonal circuit, whose vertices 1, 2, ...
,

n fall on these rays respectively, and whose sides 1, 12, 23, ...,

n I n, n pass through the similarly named points of the

point-row a.

We then construct a second pencil of rays, diverging from

a point 0, and respectively parallel to the sides of the poly-

Fig. 54 a.

54-

gonal contour
; finally, cut this second pencil by a straight line

a?, parallel to a, and at a distance b from measured in the

direction of the <?'s. The segments 01, 12, 23... which we thus

obtain on x are those required.

The first and last sides of the polygonal circuit intersect in

a point whose distance from a in the direction of the cs we

shall call d, and then we shall have -- = 2 -
. For it is clear

d c

that 2 - = -7-, and from the two similar triangles, one of which

is bounded by a and the first and last sides of the polygonal

circuit, and the other by x and the first and last rays pro-

ceeding from 0, we have = -.
cl U

This problem is substantially the same as that of trans-

forming a number of given fractions,

a.

oa
&c..
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rp fy*

into equivalent ones =,-, &c., with a common denom-

inator b.

68. PROBLEM. To multiply a straight line a by the ratios

b* bn $,.

j. j

Draw (Fig. 55} two straight lines or axes bb, cc which cut

one another, at any angle whatever, in the point 0.

Fig. 55-

From set off along the first axis the segments b, and along
the second the segments c, so that we have on the first axis

bb: 0\ = b
l ,

2 b% ,
On = bn ;

and on the second axis

cc: 01 q, 02 = c
2 ,

On = cn . Join the homonymous

points of the two axes, i.e. 1 and 1, 2 and 2, and so on, and

parallel to the joining lines draw through the same number

of straight lines 1
1 ,

1
2 ,

1
3 &c. (which are only denoted in the

figure by the numerical index). Two segments b
r ,

c
r with the

same index, and the line rr which joins their final points, form

a triangle. Construct a triangle similar to this, in which

the two sides corresponding to c
r and rr are set off from

along cc and lr respectively ;
the third side corresponding to

b
r and parallel to bb, is called a

r . In order to completely deter-

mine this triangle, we need only fix one side, that lying on

cc
;
this is equal to a in the first triangle, a^ in the second, a

2

in the third, and an-l in the last. Then a n ,
that is, that side

of the last triangle which is parallel to bb, is the result of the

multiplication we wished to perform.
For comparing the rih triangle of the second set, of which the

sides parallel to cc and bb are ar-19
ar ,

with the similar triangle

E
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of the first set, whose corresponding sides are cr and br ,
we

have : =
;
and therefore

a
<?! ! 2 -i ,.

Multiply all these equations together, and we have

q. E. D.

69. We shall now prove that the result is not altered by the

interchange of two factors, for example, and . Taking

them in the order and
,
the construction is as follows

C
l

C
2

(Fig. 56) : on cc take A = a
;
from A draw a parallel to bb,

cutting I, in A, ;
the segment AA, = a, , carry this over on to

cc, i.e. set off OA
1
= a

l ,
and from this new point A l

draw a

parallel to 66, cutting 1
2
in A

2 \
the segment A, A 2

thus obtained

is a.
2

. Now take the factors in the other order and
;

C
2 C,

and proceed as follows :

Make OA a as before, and

draw through A a parallel to

66, let it cut 1
2
in the point A2 ,

and call the segment so ob-

tained a''; then set off on cc

the segment OA 2
= a'

',
and draw

A
2 A, parallel to 66 cutting I,

in A^\ the straight line A
2 A,

ris- 56. is a
ff

. The similar triangles
contained between I,

and cc, OA, A2 , OA, A give the following

relations, A A OA //' //
^2^*1 "-^2 '

and the similar triangles OA,A2 ,
OAA

2 lying between 1
2 and

cc, give in like manner

A,A2
AA

2
a
2

a'

TJA^
:=
OA>

cr
^
=
7'

And therefore a"= a
2

. Q. E. D.*

* EGGEES, Grundzilge einer grapMschen AritJimetik (Scliaffhausen, 1865), p. 12.

JAEGER, 1. c., p. 11.
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70. In constructing the triangles of the first set, instead of

setting off the segments b on the straight line bb, we might, after

taking on cc the side 01 = c
l ,
find on Ob a point 1

,
such that the

joining line 11 would be equal in absolute length to br Then

having drawn through 0, ^ parallel to 1 1 we might,, as above,

construct a triangle of the second set, similar to 01 1, setting off

on cc a side equal to a. Then the product (Fig. 57) a
l
= a .

Fig- 57-

is given not by the side parallel to ll
t
but by the side lying

on
/j ;

and similarly for the other triangles.

In this construction the signs of the segments b are not

taken account of, since they are all set off in different directions ;

it is therefore necessary in carrying over the segments, for

example 1} upon cc, in order to proceed with the construction

of the next triangle in the series, to give a
the same sign as a, or

the opposite according as b^ and c
l
have the same or opposite

signs.

In this method the segments 15
a
2 , ..., ,

which we have

respectively obtained on llt /
2 , ..., ln (the parallels to bl9 -b

2 ,

..., ln), are carried over to cc by means of circular arcs de-

scribed around as centre.

71. A third method of performing the required multipli-

cation is as follows. Set off from the common point along-

one of the two axes (bb) the segments b
l ,

#3 ,
#
6 , &c., and

c
2 ,

c4 ,
C
G ,

&c.
;
and along the other axis (cc) (Fig. 58), b

2 , 4 ,
&c.

and c
1 ,

<?
3; c

1

.-. &c., always joining the extremities 11, 22, 33, &c.

E 2
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of the segments b and c with the same index. Then it is only

necessary to inscribe between the two axes a crooked line

whose successive sides are respectively parallel to the

joining lines 11, 22, &c., and whose vertices lie alternately on

cc and bb.

Fig. 58.

If we take the first vertex, so that it is the final point of

that segment of cc which is equal to a, and has its initial point

at 0, then the second vertex, and the third, fourth, &c., are

likewise the final points of the segments

b-, b<y b
#, == a ) a = a-, > a* = a^ &c.,

r 2 r 2 rc
1

<?
2

c3

whose common initial point is *.

This is evident, when we consider that in this construction

all the triangles of the second set have one side on cc and the

other on bb, whilst the third side, on the crooked line, is parallel

to the third side of the similar triangle of the first set.

72. When there is no need to take account of the signs of

the segments , d, c, i. e. when they may all be considered

positive, we can so order. the construction, that both the

triangles of the first and of the second sets are placed con-

secutively around a common vertex (Fig. 59) (just like a

* In Figs. 58, 59, and the following, each of the segments whose common
initial point is 0, is marked at its final point with the letter a, b, or c, which

indicates its measure.
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fan). Through draw n+1 straight lines, or radii vectores,

making arbitrary angles with one another. Between the first

and second radii construct the first triangle of the first set,

and the first of the second ;
between the second and the

third radius vector the second triangles of both sets
;
between

the third and the fourth radius vector the third triangles ;

and so on
;
in such a manner that two consecutive triangles

of the second set always have

one side in common. That is to

say, starting from 0, take on

the first radius two segments

equal to a and ^ respectively;

on the second radius a segment,

with the same initial point, equal

to 1
1 ; join the final points of &19

c\, and draw a parallel to the

joining line through the final

point of the segment a, this de-

termines a segment a
l
on the

second radius, such that

= a-
Fig. 59.

Now take, in the same way, the segment c
2
on the second

radius, and the segment 2
on the third radius, and we deter-

mine on the latter a segment

^2 ^1 ^2 O
a9 = a-, = a . &c.

c
2 q c

2

Continuing this construction, we finally get, on the (+ l)
th

radius, a segment with its initial point at 0, whose value

will be



CHAPTER IV.

POWERS.

73. IF, in the last problem, we make all the 's equal to one

another, as also all the cs, then the constructed segment an is

the result of multiplying a by the nih power of the ratio -

In this case, either in the first construction Art. 68 (Fig. 60),

Fig. 60.

or in the second, Art. 70 (Fig. 61), all the triangles of the

first set coincide, and form a single triangle, two of whose

Fig. 61.

sides are the given segments b and c. The n triangles of

the second set are all similar to one another and to the
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single triangle Obc. The sides lying on Oc are respectively

a, a
l9 2 , ..., an-v whilst the sides parallel to b are a

lt
a
2 ,

..., a n) and therefore

b ,b*
f
b*

f
b.

*! = -, *
=

*(-), %=(-),..., =
(-)

'

This series of similar triangles can also be prolonged on the

opposite side, so as to give the product of a by the negative

powers of - In fact, constructing the triangle whose side

parallel to b is equal to a, the side which lies upon Oc is

6 b
~ l

next, constructing a triangle with its side parallel to b = _
x ,

7 _ O

the side on OC = a_ 2
= #

(-)
> and so on*.

74. In the third method (Art. 71) the triangles of the first

set reduce to two equal, but differently situated, triangles Obc

(Fig. 62) ;
the one has its side c on the first axis and its

Fig. 62

side b on the second
;
whilst the other has its side b on the

first axis and c on the second. The directions of the third

sides are therefore antiparallel, and the sides of the crooked

line, inserted between the two axes, are parallel to them.

*
EGGERS, 1. c., p. 15. JAEGER, 1. c., pp. 18-20.
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The vertices of this crooked line determine on the first axis

segments, measured from 0, which have the values

and on the other axis

Moreover the sides of the crooked line form a geometrical pro-

gression ; for, if we call the first side a
1

',
the second is a' -

,

u

72 7 ^

the third
'(-),

the fourth a'
(-) , &c.

Hence we conclude that the given segment, which has to be

multiplied by (-\
,
instead of being set off on the first axis,

may be placed in the angle between the axes so as to form the

first side of the crooked line; its (?-fl)
th side will then be

the result of the multiplication.

Continuing the crooked line in the opposite direction we
obtain the products of the given segment (a or a'] by the

negative powers of the given ratio

If we wish to continue the progression between two suc-

cessive sides of the crooked line, for example, between the

two first (of and a' .
-
) ,

then we need only draw between them

a new crooked line, whose sides are alternately parallel to

the axes
;
and we obtain a figure analogous to the foregoing

one.

Let the segment of the first axis, which is intercepted by
the first two sides of the first crooked line, be called #", then

the sides of the new crooked line are respectively

*","*, "(^,&c.t

75. Finally, if we employ the fourth method of construction

* COTTSINERT, 1. c., p. 24, 25.

t COTTSINERY, 1. C., p. 24. CULMANN, 1. C., No. 3.
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(Art. 72) and take the angle between consecutive radii vectores

constant (Fig. 63), all the triangles of the first series become

equal and their vertices (opposite 0) lie on two concentric

circles whose radii are respectively equal to b and c. The

triangles of the second series are all similar to one another,

because each is similar to the corresponding triangle of

Fig. 63.

the first series
;
their vertices (opposite 0), and their sides

(lying opposite 0} are the vertices and sides of a polygonal

spiral circuit.

The radii vectores of this spiral, i.e. the straight lines drawn

from to the vertices, are the terms of a geometrical pro-

gression 2

a, % = a -
,

a
2
= a

(
-
J ,

&c.

This progression may be continued in the opposite direction, so

as to give the products of a by the negative powers of
(
-
)

:

Also the sides of the polygonal circuit form a geometrical

progression with the same common ratio - *.

JAEGER, 1. c., p. 20.
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If the constant angle between two consecutive radii vectores

is a commensurable fraction of four right angles, which has the

denominator p when reduced to its lowest terms, then the

Fig. 64.

(p + l)
th radius coincides with the first, the (p + 2)

ih with the

second, and so on. If, for example, the given constant angle

were a right angle
*

;
the angles between every pair of conse-

cutive sides of the spiral polygon would also be right angles

(Kg. 64).

* REULEAUX, Der Constructeur, 3rd edition (Braunschweig, 1869), p. 84.

K. VON OTT, Grundziige des grapMschen Rechnens und der yraphischen StatiJc,

(Prag.1871), p. 10.



CHAPTER V.

EXTKACTION OF EOOTS.

76. CONSIDER the spiral polygon ABCDEFG ... (Fig. 65),

whose radii vectores OA, OB, OC, OD, &c. represent the pro-

ducts of a constant segment OA by the powers (corresponding

to the indices 0, 1,2, 3, &c.) of a given ratio - =
jr- , and

c \JA
whose sides AB, BC, CD, &c. subtend a constant angle at the

Fig. 65.

pole (Art. 75). As already remarked, all the elementary

triangles, which have for a vertex and a side of the polygon
as base, are similar

;
also all the figures, obtained by combining

2, 3 or 4, &c. consecutive triangles, are similar, because they
are made up of the same number of similar and similarly

situated triangles. Therefore all the angles ABO. BCO, CDO,

&c. are equal; also the angles AGO, BDO, CEO, &c. ;
and so

on. In general all the triangles around the vertex 0, the

bases of which are chords, joining the extreme points of the

same number of consecutive sides of the polygon, are similar ;

these chords also subtend equal angles at the pole 0.

These properties are quite independent of the magnitude
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of the angle AOB, which in the construction of the first

elementary triangle is chosen at pleasure. They would not

therefore cease to be true if this angle were made infinitely

small : in which case the polygonal circuit becomes a curve.

From the similarity of the elementary triangles we have

already deduced the equality of the angles at the bases OAB,
OBC, &c.

;
but if the angles at the point become infinitely

small, the sides of the elementary triangles lying opposite
to will become tangents to the curve

;
the curve obtained

has therefore the property, that its tangents (produced in

the same sense, for example, in that of the increasing radii

vectores) meet"*" the radii vectores, drawn from the pole to

the point of contact, at equal angles. From this property
this curve is called The Equiangular Spiral f .

77. Since the figures, which are made up of an equal
number of successive elementary triangles, are similar, so

also, if we draw in the equiangular spiral the radii vectores

OA, OB, OC, &c., at equal angular intervals, the triangles

OAB, OBC, OCD, &c., will be similar to one another. There-

fore the radii vectores in question form a geometrical pro-

gression, i.e. the polygonal circuit ABCD... inscribed in

the spiral is exactly the same as the one constructed by
the rule of Art. 75, starting from the elementary triangle

AOB. If therefore we
take the triangle AOB at

pleasure, and construct

the polygonal circuit

ABCD..., all its vertices

lie on the same equi-

angular spiral with its

pole at 0. Hence it

follows, that the pole

and two points of the

curve completely deter-

mine an equiangular spiral.

78. Any two points B, C (Fig. 66) of an equiangular spiral,

* COUSINEKY, 1. C., p. 41, 42. CULMANN, 1. C., No. 5.

t WHITWORTH, The equiangular spiral, its chief properties proved geome-

trically (Oxford, Cambridge, and Dublin Messenger of Mathematics, vol. i. p. 5,

Cambridge, 1862).
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the pole 0, the point of intersection T of the tangents at those

points, and the point of intersection N of the corresponding

normals, are five points on the circle whose diameter is NT.

Of the truth of this we are easily convinced if we consider,

(i) that the circle drawn on NT as a diameter will pass

through the points B and C, since the angles NET and

NCT are right angles ; (2) that the angles OBT and OCT being

supplementary (since the angle made by a tangent with the

radius vector drawn to its point of contact is constant), the

four points OTBC belong to the same circle. Hence it

follows that NOT is a right angle.

79. Now take the points B and C so close together, that

the spiral arc between them can be replaced by a circular

arc. Since this arc must touch BT and CT in the points

B and C, its centre lies at N
;
the tangents BT, CT are equal,

and therefore the chord BC is bisected at right angles by the

straight line NT; hence also, N and T are the points of

bisection of the arcs BC of the circle OBC, i.e. OT is the

internal, and ON the external bisector of the angle BOC.

The point N, which will serve as a centre from which to

describe the arc BC substituted for the spiral arc, can there-

fore be constructed as the extremity of that diameter of the

circle OBC, which is perpendicular to the chord BC. The

centre P of the next arc CD, which must be the point of

intersection of the normals at C and D
t
will be the point of

intersection of the straight line CN
9
with the straight line

which bisects the chord CD at right angles, or with the

external bisector of the angle COD. And so on.

80. From this we obtain a construction for the equiangular

spiral by means of circular arcs. We divide (Fig. 67) the

angular space (four right angles) round the pole into a

certain number of equal parts, so small that the spiral arc

corresponding to each part can be replaced by a circular arc.

On two consecutive radii vectores points A and B are taken,

through which the spiral must pass. The centre M for the

arc AB is then the end of that diameter of the circle OAB,
which is at right angles to the chord AB. Let N be the point

where BM cuts the external bisector of the angle between OB
and the next radius vector. With the centre N describe the

arc BC. Similarly let P be the point, in which CN cuts the
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external bisector of the angle between 0(7and the radius vector

immediately following it
;
then with P as centre we describe

the arc CD ;
and so on*.

Fig. 67.

81. Instead of assuming the point A (as well as and B),

we may suppose the constant angle between the tangent
and radius vector to be given. In this case, having drawn

BS inclined to OB at the given angle, let 8 be the point
of intersection of this tangent B8 with the internal bisector

of the angle between OB and its pre-

ceding radius vector
;
then the point

A is given by the intersection of that

radius vector with the circle OBS.

After we have found the point M
of this circle, which is diametrically

opposite to S, we proceed with the

construction in the manner explained
above f.

82. We are often able to avoid

drawing these circular arcs, and to

restrict ourselves to finding a series

of points on the curve sufficiently

near together to be united to oneFig. 68.

another by a continuous line. For this purpose we take the

* For this construction I am indebted to Prof. A. SAYNO, of Milan,

f For this construction I ana also indebted to Prof. A. SAYNO.
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elementary triangle OA 1
B

1 (Fig. 68), of which the angle at is

very small, and between the sides OA
t
and OB

l construct the

crooked line A
l
B

l 6^ D1
. . .

,
with its sides alternately parallel

and antiparallel to A
l
Br Then, upon the radii vectores

OA, OB, OC, &c., drawn at angular intervals each equal to

the constant angle A^ Bv take points A, B, C, &c., in such a

manner, that OA
l
= OA, OB

l
= OB, &c.

83. This spiral when drawn serves for the solution of

problems involving the extraction of roots.

We want, say, the i
ih root of the ratio between two given

segments a
it a. Write a

{
= a

(-) ,
then the question becomes

7
^

that of finding the ratio - Take on the spiral (Fig. 69,

where i = 5) the radii vectores a and a
{ ,
and divide the angle

included between them into i equal parts. The i 1 dividing-

radii vectores a^ ,
a
2 , &c,, will be the intermediate terms of a

geometrical progression of i + 1 terms, the first of which is

a and the last a.
t
. The ratio a

i
:a of the two first terms is

therefore the required ratio
(-)

.

84. Two radii vectores containing a constant angle have

a constant ratio. From this

it follows, that, if we take

the sum or difference of the

angles contained by two pairs

of radii vectores a
1 ^ and

a
2
b
2 ,

the resulting angle is

contained by two radii vec-

tores, whose ratio is in the

first case equal to the pro-

duct, in the second to the

quotient, of the ratios a
:

: ^ ,

and a
2

: b
2

. That is to say, the

equiangular spiral renders

the same service in graphical
Fig. 69.

calculations which a table of logarithms does in numerical

methods. The ratios of the radii vectores correspond to

the numbers, the angles to their logarithms.
On account of this property the curve we are speaking of is

also called the Logarithmic Spiral. If we take a radius vector



64 EXTRACTION OF ROOTS. [85-

equal to the linear unit as the common denominator of these

ratios, it is obvious that the radii vectores themselves may be

considered instead of their ratios to unity.

If, for example, we wish to construct the segment x, given

by the equation

x=^/al
.a

2
an ,

then SG is the radius vector of the spiral, which makes with the

radius 1 an angle equal to the arithmetic mean of the angles,

which the radii #
! ,

#
2 , ... an make with the same radius 1 .

85. But when the extraction of a square root only is

wanted, instead of employing the spiral, it is much easier to

use the known constructions of elementary geometry. If,

for example, x = Vab, we construct x as the geometric mean of

the segments a and b.

If the segments OA = a, OB = b are set off on a straight

line in the same sense, then (Fig. 70) as is the length of the

tangent OX, drawn from to a circle described through A and

B
;
or (Fig. 700) a circle may be drawn with diameter = OA

(the greater segment), and then x is the chord OX, whose pro-

jection on the diameter is the other segment b.

Again, if the segments OA a, OB = b lie in a straight

line, but have opposite sense (Fig. 71), we describe a semi-

circle on AB, and then x is the ordi-

nate erected at the point .

86. The same ends for which the

equiangular spiral serves, are easily
A

attained by using another curve called

7 1 - < The Logarithmic Curve!

Draw (Fig. 72) two axes Ox and Oy ;
and on the first of

them, starting from the origin 0, take the segments 00, #1,

02
,
03

, &c., respectively equal to the terms

m f m \
2

f
m

\

3

-, *
2
= *> (- ) ,

#3
= *o (-.) >
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of a geometrical progression, of which the first term is #
,
and

the common ratio (where m is supposed greater than n) ;

and on the second axis take the segments 00,01, 02, 03,

&c., also measured from 0,

and respectively equal to

the terms y =
, y^ = I,

O 7 o 7

2/2
= yz~^'i &c.j 01

an arithmetical progres-

sion, with its first term

equal to zero, and the

common difference* = /.

The terms of the two

progressions, which corre-

spond to the index r, are

Fig. 72.

and therefore
,m

"A. &{\ I
"~~*

Between each pair of consecutive terms in each of the

two progressions we can interpolate a new term, so as to

obtain two new progressions, of which the first has a common

ratio ( ) or -
> and the other a common difference

v n ' n 2

This follows, from the fact that in every geometrical (arith-

metical) progression any term whatever is the geometrical

(arithmetical) mean between the terms preceding and follow-

ing it.

If we construct, for example, the geometrical mean between

#V, and #r+1 ,
and the arithmetical between yr and ^v+1 ,

we
obtain the two corresponding terms

of the two new progressions.
In these progressions we can in like manner interpolate a

* In the succession of numbers on Oy, the zero coincides with the origin 0,

because y ti
was taken = 0.
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term between each pair of consecutive terms, and so on, until we
i

arrive at two progressions, for which the ratio
( )

and the

difference . are as small, as we please *. If we use x and y

to denote two corresponding terms, we have always

ff\ T r (\ ,

(I) X XQ I I ,

or (a) ,-

the logarithms being taken in any system whatever. We
shall call those points of the axes Ox, Oy corresponding points,

in which corresponding segments x and y terminate. We
draw parallels to the axes through these corresponding points,

i.e. through the final point of x a parallel to Oy, and through the

final point of y a parallel to Ox. The straight lines so drawn

will intersect in a point M\ x and y are then called the co-

ordinates of the point M, and in particular as is called the

'abscissa' and y the ' ordinateJ The equation (i) or (2) ex-

pressing the relation between the co-ordinates of the point M,
is called the equation to the curve which is the locus of all

points analogous to M. We call this curve the '

Logarithmic

Curve' because the ordinate is proportional to the logarithm
of a number which is proportional to the abscissa.

87. We construct this curve 'by points' in the following

manner. After drawing the two axes Ox, Oy (Fig. 73) (usually

at right angles) we take on Oy a segment OB = (2 *)
=

I, where

I may be considered as the unit of the scale of lengths on Oy ;

tYl

and, upon Ox we take a' segment OA = (2*)
= OCQ ~, where

n

00 = xQ is the unit of length of the scale for 0#f, and -

%

the base of the logarithmic system (the number 10).

*
i is the number of interpolations.

t Since x increases much faster than y, it is convenient, in order to keep
the construction within reasonable limits, to take the unit xt much smaller than

I, for ex.,
Xo =l.
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Let OB be divided into 2* equal parts, and let 1,2, 3,

2*" 1
,
... ,

2*
(
= B) be the points of division.

01 2 3 4 5 6

Fig. 73-

In order to find the corresponding points of Ox, take the
M9

geometrical mean between # and #
, i.e. describe a semicircle

on OA as diameter, and set off along OA, starting from 0, the

length of the chord of this semicircle, which has for a pro-

jection ;
we shall thus obtain the point 2 i~ 1 of Ox, which

corresponds to the similarly named point of Oy (i.e. to the middle

point of 0). Similarly by taking the geometrical mean of

and 2 *~\ and the geometrical mean between 2 *~1 and OA
,

we shall obtain the points on Ose, corresponding to the middle

points of the segments 02*" 1
,
and 2 i~ 1 of Oy ;

and so on.

Now draw parallels to Oy through the points of division of

Ox, and parallels to Ox through the points of division of Oy ;

the points, in which the lines drawn through similarly named

points intersect, lie on the logarithmic curve we are con-

structing. Since to the value y = y =
corresponds the value x = OCQ

=
,
the

curve passes through the point marked
on Ox.

88. It is also very easy to construct

a tangent to the curve at any one of

its points (Fig. 74). Let M and N be Fis- 74-

any two points on the curve, at a small distance from one

F 2
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another ; J/P, NQ parallels to Ox
,
MR a parallel to Oy ,

and T
the point in which Oy is cut by the chord MN. The similar

triangles TPM and MRN give

or TP : MP = OQ- OP : NQ-MP.
Let OP = y, PQ = h, then MP and NQ are the abscissae

corresponding to the ordinates y , ^ + /, and therefore

.v y+fe

Jff-=' *-='.

whence TP = = I

Now let the point N approach continually nearer and nearer

to the point M, i. e. until li approximates to the value zero,

then J\
JMTwi\l also continually approach towards the position

of the tangent at M, and the segment TP ,
the projection of

TM upon Oy, has for its limiting value what is usually called

the '

subtangentJ But the limit * which the fraction

h

1

approaches, when h tends towards zero, is the natural
/W) AM

logarithm of , which we shall denote by \
; therefore in the

n J n

limit we have /

TP = -~

n

i.e. the subtangent is constant for all the points on the curve f.

Hence it follows, that a single construction suffices for

drawing tangents at all the different points on the curve.

89. Having thus constructed the logarithmic curve, we
can solve by its aid all those problems for which the

ordinarylogarithmic tables are used. We want for instan ce

*
BALTZER, Elements der MathematiJc, i. 4ed. (Leipzig, 1872), p. 200.

f SALMON, Higher plane curi-en, 2nd ed. (Dublin, 1873), p. 314.
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to construct the fth root of the ratio between two straight lines

p,q. Take upon Ox the abscissae of = p, x" = q, and find by
means of the curve the corresponding ordinates y' and y".

The abscissa corresponding to the ordinate -{tf y"} has the

value r
/In

*oA/ -V q

Secondly, say we want the ?
>th root of the product of the r

straight lines pl , p2 ,
. . .

, pr . Take on Ox the abscissae x^ =p1 ,

x
2 =p2 , &c., and find the corresponding ordinates y15 y2 ,

yz yr 5
tnen the abscissa a? corresponding to the ordinate

1

T

is equal to the required quantity



CHAPTEE VI.

SOLUTION OF NUMEEICAL EQUATIONS*.

90. LET
,
fl

x , 2 , . . . ,
an be n + 1 numbers given in magnitude

and sign, and let (Fig. 75) a polygonal right-angled circuit

be constructed, the lengths of whose successive sides 01, 12,

23, ... are proportional to the given
numbers. The sense of each side

is determined by the following law :

the rih and the (r + 2)
ih

sides, which

are parallel to one another, have the

same or opposite sense, according as

the signs of the numbers a
r_ lt

ar+l ,

which are proportional to these sides,

are unlike or alike f.
Fig- 75-

Assume a point A
1

in the straight line 12, and take

OA
1
as the first side of a second right-angled circuit of n sides,

whose respective vertices Alt A 2 ,
A

3 , ... lie on the sides 12,

23, 34, ... of the first circuit.

*
LILL, Resolution grapMque des equations mtmerique <Xun degre quelconque a

line inconnue (Nouvelles Annales de Mathe'matiques, 2 e
serie, t. 6, Paris, 1867),

p. 359.

t In order to fix with the greatest possible precision the sense of each side of

the crooked line, the following convention is useful. We take two rectangular
axes XOX, YOY

}
and determine for each of them the positive sense ; and we

agree to give the number, which expresses the length of a segment, the coefficient

+ 1, or 1, according as it is in the positive or negative direction of XOX, and

the coefficient +i, or i (where i */ 1, i. e., %
2

1), according as it is in

the positive or negative direction of YO Y. Now let a circuit be formed whose

successive sides,

01, 12, 23, 34, 45, 56, ... .

a0) ia, i?a2 i
3 a3 ,

*
4

4 ,
i
5 a5t ... ,

a
, ial} a2 ,

ia 3 ,
at ,iait ... ,

sides will be parallel to XOX, and the others to YOY-,

are equal to

i.e. equal to

then the l^
}
3rd

,
5th ,

moreover two parallel sides, separated by a single side at right angles to both,

will have the same, or opposite sense according as the corresponding numbers a

have opposite signs or the same sign.
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The triangles QlA
l ,Al

2A
2 ,A2

3A
3,A3

4A
4: ,...ali'Q all similar

to one another, and therefore give

01 A A
2
3

__
A

3
4

whence, remembering the identities,

,
01 =
12 = !,

23 =a

A.

A^ = A
l l+alJ

A3 =

n 1, ft = fln_

n.n+ 1 =
,

and putting

we obtain :

An .n+l =

y-
=

a?, or Jx
1 = o?,

A
2
2 =a

(

A
2
3 = #

An .n = a SB
n + x

xn
~ l + . . . + _!?,

An .n+l = a
()
xn + a

l
xn- l +...+an

Thus the segment ^n.+l, included between the final

points of the first and second polygonal circuits, represents

the value which the polynomial

takes, when we substitute for x the ratio of the segment A^ 1 to

the segment 1 or a . Keeping a
Q positive, the signs of x and

a
l will be equal or opposite, according as A

l l, 12 have the

same or opposite sense.

If the final points of the two circuits coincide, we have the

identity F(x} = ;
and then x is called a root of the equation

F(z) = 0. The real roots of the equation F(z) = are there-

fore the ratios A
l
1 : 1

,
which correspond to those right-angled

inscribed circuits whose final points coincide with the point

On account of this property we say, that the circuit

0123 ... w-f 1, represents the whole polynomial F(z).

91. If in 01 23 ... n+ 1 we inscribe a new right-angled circuit,

4
UK. I r\
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OS
1
S

2
...Sn ,

and if we denote the ratio of B
L
l :01 by^, we

shall have in like manner

Bn.n+l = F(y) = a y
n + a

l ?/

n-i + ...+an .

For the coefficients a we substitute their values

a = 01,

^ = 12 = A
1
2-A

1
1 = y42-01 .a?,

a
2

23 = J
2
3 J

2
2 = J

2
3 ^2.^,

# = 34 = A4 A3 = A4A3.x

-i = n-l.n = An_ l
.n-An_ l .n~l = An_ l

,n~An__2 .n-
= A nn+ \An n = Ann+ I An_^ .n.se;

an = n.n +
and thus obtain

tn.n+l =

+ (A-i-^~A-2^-"
+ (Ann + 1 A n_^n.x)

01

But Bnn+l An n +

and y x

therefore

01. -~-f 01
"i ^i

01

Fig. 76.

This result may be expressed as follows (Fig. 76, where
n = 6): In a rectangular circuit of n+1 sides 0123...W + 1,
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two other rectangular circuits of n sides OA^A^... An , OB^B^,

...Bn are inscribed; we then form a new rectangular circuit

01 %'3
f

...n' of n sides, which are respectively parallel to the sides of

the frst circuit and equal to 01, A 1 2, A2 3,... ,
An_ l

n. In this

inscribe the rectangular circuit of n 1 sides OJ3
l
B

2'. . . J3'n~i 5

having the side OB
l

in common with the circuit already described

Then we have

That is to say, the segment S/

n_ l .n
/
is the result of the division of

~F(y) F(x) by yx: where F signifies the Polynomial represented

by the first circuit 0123. . .n + 1, and x and y are the ratios ^1:01;
J&jliOl.

Or, in other words,
The circuit 01 2

/
3
/
...^

/

represents the polynomial

or, in the case where x is a root of the equation F(z) = 0, the

polynomial F(z) : (z sc).

92. The similar triangles considered above give

so that our equation may also be written,

This result may be interpreted as follows (Fig. 77) :

A.

If we inscribe in the rectangular circuit 0123...W+1 of n-\-\
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(Fig. 77, where n = 6) two new rectangular circuits of n sides

OA
l
A

2 ...An , OjBjj^g... .B
tt ,

and then inscribe in the Jirst of these

a rectangular circuit ofnl sides OC^ C2 . . . Cn_ l ,

, <v*i .V
-oA^

==
-oT'

then
B, A, QA,X JL 1

that is to say, Cn_l
An is also equal to the quotient

F(y}-F(x)

y-x
'

A
multiplied however by

-

In other words :

The circuit OA^ A2 ... An represents the polynomial

F(z)-F(x),
z x

or, in the case where x is a root of the equation F (z)
= 0, the poly-

nomial F(z):z x, provided the lengths be reduced in the ratio

OA
1 :Ol.

Every rectangular circuit of n sides inscribed in the given

circuit, and having the same extremities, is therefore a re-

solvent circuit in regard to the given one, because it represents
the quotient, obtained by the division of the Polynomial

represented by the given circuit, by one of its linear

factors.

93. Again, let the entire polynomial of the th
degree F(z] be

represented by the circuit 0123...0+1. In it let the two

circuits OA^...An , OB^B2 ...Bn (Fig. 78) be inscribed. We
assume that both the points An ,

Bn coincide with the extremity
n+1 of the given circuit; i.e. let OA

1
A

2
...An) OB^B2 ...Bn

be two resolvent circuits of the given circuit. Moreover let

L
19 L2 ,... 9

Ln_ 2 be the points of intersection of the pairs of sides

A
1
A

2 ,
H

l 2 ;
A

2
A

3 ,
B

2
B

3 ; ...
;
An_ 2

An_l9 Bn_ 2
Bn _-^.

Then the

triangles QA^B^ L1
A

2
B

2
are similar, since their corresponding

sides are perpendicular to one another
;
for the same reason the

triangles A^B^L^ A
2
B

2
L

2
are similar, and therefore also the

quadrilaterals 0^1
^

1
Z

1 ,
L

1
A

2
B

2
L

2 are similar, whence it

follows that the sides OZ15 L^L2 are perpendicular to one
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another. In the same way we show that the angles L1
L

2
L

3 ,

L
2L.^L^ ...,L n^Ln_2 n+l are right angles.

Fig. 78.

Hence it follows that the points OL
1
L

2 ...Ln_2
n + I are the

vertices of a circuit of n I sides, which is right-angled, and

is inscribed both in the circuit QA
1
A

2t ...
9
and in Ol^-Z^... ;

that is to say, OL1
L

2 ... is a resolvent circuit in regard to each

of the circuits OA^..., OjB
1 2 .... In other words, if we

reduce the lengths in the ratio ~
,
the circuit

represents the polynomial of the (n 2)
th

degree

L ... -Z/_n_2

where oc = OA
:

: 1
, y = J5

X
: 1 .

94. Let an equation of the second degree
be given

After constructing the circuit 0123 (Fig*.

79), whose sides 01, 12, 23 represent the

coefficients a
,
#

2 ,
it is sufficient, in

Fig. 79.

order to find a root, to construct a right

angle, with its vertex A upon 12, and its

legs passing through 03. We describe therefore a semicircle
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on 03 as diameter
;
if this cuts 12 in the points A19 A^ the roots

of the given equation will be

A
2
l

From known properties of the circle we have :

A
2

l = 2A^
and therefore

= 2A
1 + A 1

1 = 21,

or

that is to say, the sum of the roots is
a
o

Further the similar triangles 01^15 ^23 give

01:^1=^2:32,
or a :A

1
l=A

2
l:a

2 ,

and therefore '-- =
,

o
2

i.e. the product of the roots is equal to
a
o

A simple apparatus depending on the foregoing theorem

(Art. 91) has been designed by Lill, with the object of

determining the roots of a given numerical equation. The

apparatus consists of a perfectly plane circular disc, which

may be made of wood
; upon it is pasted a piece of paper

ruled in squares. In the centre of the disc, which should

remain fixed, stands a pin, around which as a spindle another

disc of ground glass of equal diameter can turn. Since the

glass is transparent, we can, with the help of the ruled paper

underneath, immediately draw upon it the circuit corresponding
to the given equation. If we now turn the glass plate, the

ruled paper assists the eye in finding the circuit which deter-

mines a root. A division upon the circumference of the ruled

disc enables us, by means of the deviation of the first side of

the first circuit from the first side of the second, to immediately
determine the magnitude of the root. For this purpose the

first side of the circuit corresponding to the equation must be

directed to the zero point of the graduation.



CHAPTER VII.

REDUCTION OF PLANE FIGURES*.

95. To reduce a given figure to a given base I, we must

transform the figure into a rectangle whose base is b, or deter-

mine a straight line /, which when multiplied by b gives the

area of the given figure. Instead of constructing a rectangle

on the base b we may construct a triangle on the base 2 b
;

the height of this triangle is the straight line /. The segment
b is called the base of reduction.

When several figures are reduced to the same base b, their

areas are proportional to the corresponding straight lines

/i /2 5 /a >
&c -

5
whence it follows, that the reduction of a

figure to a given base is the same thing as finding its area.

Let the given figure be the triangle OAB (Fig. 80), whose base

OA is denoted by a, and its height by li. Then, since the area

must remain unaltered by the transformation, fb = \ah,

and therefore f = a .

j
= Ji . r

,

that is to say, we have either to multiply a by the ratio Ji : 2 b,

or k by the ratio a : 2 b.

We therefore take OC = 2 b, B

join C to B, and draw AD
parallel to CB.

Or else, take on OB the

point D, whose distance from

OA = 2 b, join DA, and draw
BC parallel to DA. Fis- 8o -

If we join CD, the triangles OAB, and OCD are equivalent,

because we obtain them, if we subtract the equal triangles

ADB, ADC from, or add them to the same triangle OAD

(according as OC is smaller than, or greater than OA). The

required segment / is therefore in the first construction the

* CULMANN, 1. c., No. 15 ct scqq.
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height of the point D above OC, and in the second is the

length OC.

96. It is not necessary that one of the dimensions / or 2 #,

should fall along a side of the given triangle. We may take

as the doubled base 2b a straight line BC (Fig. 81) drawn

from the vertex B to the opposite side OA, provided 2 b is not

less than the distance of B from OA
;

the corresponding

height f will then be OD, the antiprojection of OA on BC*.

Or if 2 b is not greater than OA, we can take as the doubled

base 2 b a chord OD of the semicircle drawn on OA as

diameter In this case the parallel BC to the supplementary
chord DA is the required height/.

p

Fig. 81.

97. Let it be required to reduce the quadrilateral ABCD to

the base I (Fig. 82). Draw CO parallel to the diagonal BD ;

then the quadrilateral reduces to the triangle OAB, and we

proceed as above, viz. we make BC' = 2b, and the antipro-

jection OB' of OA upon BC' is the required length/.
98. The reduction may also be performed without first

reducing the given quadrilateral ABCO to a triangle. Take

the diagonal OB (Figs. 83, 84, 85, 86), which must not be

less than 2 b, as hypothenuse, and construct the right-angled

triangle ODE of which the side BD = 2 b. Let the points

A and C be projected, by means of rays parallel to OB,

into A', Cf on OD, the other side of the triangle OBD
;
the

* The triangles SPC, DOA are similar, hence SP : C = OD : OA, or

h : 2 b =/ : a ; therefore/ = a . -7 . Q. E. D.
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triangles OCB, OBA are equivalent to the two triangles OC B,

and OBA'
;
but in each of these the distance of the base OC', or

OA', from the opposite vertex =. 2 #, and therefore the required

height /for the quadrilateral is equal to OC' + A'O = A'C'.

Fig. 85.

Fig. 86.

In the crossed quadrilateral (Fig. 87) if AC is parallel to

BO, the points A and C' coincide, and therefore /=. 0. In

fact, in this case the area ABCO is equal
to the sum of the two triangles UAB,
and UCO, which are of equal area but

of opposite sign.

99. The length / is also equal to that

segment of the straight line drawn

through A or C parallel to A C' which is

intercepted by the straight lines AAf

,
CO'.

100. The foregoing construction assumes that 2 1 is not

greater than the greatest diagonal OB of the quadrilateral.

If 2 b is > OB, the lengths 2 b and / can be interchanged.
We draw, namely, AE parallel to OB and make CE = 2 I

;

Fig. 87.
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then, construct on the hypothenuse OB a right-angled triangle

ODB, of which the side 01) is parallel to CE
; and then the

other side BD = f.

101. In order to reduce a polygon to a given base, whether

its periphery is self-cutting or not, we begin by reducing it

to an equivalent quadrilateral. We then apply the above

construction to the quadrilateral and thus obtain the segment

f, which multiplied by the base b gives the area of the

polygon proposed.

Fig. 88.

Let the given polygon be 0123456780 (Fig. 88). Draw
the straight line 8 7' parallel to the diagonal 07

,

33 3
7'6' 06,

33 33
6'5'

3J 35
05

3

54 04
33 33 33 33

U ^
3

33 33
43

,, ,,
03

,

and the polygon is successively transformed into the equiva-
lent polygons 01234567', 0123456', 012345', 01234', 0123',

each of them having a side less than the preceding one"*. We
finally arrive at the quadrilateral 0123'.

102. In this construction the new sides 07', 06', 05',... of the

reduced polygons are rays proceeding from the fixed vertex

0. But we can also proceed in such a manner, that all the

new vertices 7', 6', 5', &c. lie on a specified side. If we have,

for example, the polygon Aabcde (7012345, and if we draw

11' parallel to 20

22' 31'

33' 42'

44' 53'

52) A4'

>. till each intersects the side OC,

* The triangles 087, 077' are equivalent, because the straight lines 07, 87' are

parallel ;
if we take the first triangle away from the given polygon, and add the

second one to it, we obtain the new polygon 012345 67'0. And so on.
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we determine a straight line AD which, can be substituted for

the crooked line A 5 43210.

For, since 11', 20 are parallel, the triangles 120 1'20 are

equivalent, and if we subtract the former from the given

polygon, and add the latter to it, the polygon reduces to

Aabcde Cl'2345. Similarly, from the equivalence of the tri-

angles 1'23, 1'2'3 the latter polygon reduces to Aabcde C2'345,

and proceeding in this manner we finally arrive at the poly-

gon Aabcde CD.

D

In order to effect a like transformation for the crooked line

AabcdeC, we draw
IV parallel to ca \

cc' dV\
,7,7' Oj \ till each intersects the side Aa,

35 VL

eB Cdf)

and now the whole polygon Aabcde (7012345 is reduced to the

equivalent quadrilateral ABCD.

103. This is the easiest and most convenient way of

finding the areas of figures, the perimeters of which take the

most different forms. With a little practice we learn to

perform the reduction quite mechanically, and without paying

any attention to the actual form of the proposed circuit. This

construction moreover permits us to take account of signs,

so that in dealing with areas of different signs, the result

gives the actual sign belonging to their sum without further

G
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trouble*. Take, for example, the self-cutting circuit (Fig. 90)
ABC 01234, which represents the cross section of an embank-
ment and excavation in earthwork.

Draw

Fig. 90.

'

parallel to 20
,

22'

33'

4D

31',

42'

until they meet the side CO, then the given polygon is re-

duced to the equivalent quadrilateral ABCD, which there-

fore represents the difference between the areas ABC'2 4 of the

embankment and 70123 of the excavation, which have neces-

sarily different signs. The circuit ABCD has the same sign
as the circuit ABC14, or as the circuit 70123, according as the

embankment or the excavation is the larger.

104. Circular Figures. A sector of a circle (Fig. 91) OAB is

equivalent to a triangle OAC, with its vertex at the centre

and its base a portion AC of the tangent equal to the arc AB.
In order to obtain approximately the length of the arc AB

measured along the tangent, we take an

arc a, so small that it can without any
sensible error be replaced by its chord

a
;
we then apply the chord a to the given

arc AB starting from its extremity 7?,

and continue doing so as long as necessary
till we reach A or a point A' very near A.

Then starting from A or A' we set off the chord a the same

number of times along the tangent AC-\. The sector OAB is

now replaced by the rectilinear triangle OAC.

* CULMANN, 1. C., No. 17.

f CULMANN, 1. c., No. 21. In Chapter IX is given a method of Rankine for the

approximate rectification of circular arcs, and also some methods of Professor

Sayno.

Fig. 91.
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The segment AB (i.e. the area between the arc AB and its

chord) is the difference of the two triangles OA C, OAB, and is

equivalent therefore to the crossed quadrilateral OBAC.
105. It is not necessary that the tangent upon which we

set off the arc should pass through an extremity of the arc ;

instead of doing so it may (Fig. 92) touch the arc at any other

point T. In such case we set off the arc AT on CT, and BT
on DT. The sector OAB is transformed into the triangle OCD,
and the segment AB is the difference between OCD and OAB,
i.e. is equal to the doubly crossed figure OCDOBAO, which

may be considered as a hexagon (Fig. 93) with two coinci-

dent vertices at 0. If we draw OB/
and OA' respectively

parallel to AC emd BD, the triangles OAC, OBD are transformed

into the two other triangles B'AC, A'BD, and therefore the

segment is equal to the quadrilateral A'B'CD.

106. Example
Let the figure to be reduced be the four-sided figure ACD3,

contained between two

non-concentric circular

arcs, AC and 3 D, and the

straight lines CD, A 3

(Fig- 94).

Let 0, 1 be the centres of

the two circles
;
the given

figure is then equal to the

sector AC the sector

13 D the quadrilateral

QAlC, Change the sectors

into the triangles OAB, Fir

132, by setting off the two

arcs along their respective tangents AB and 32, starting from

corresponding extremities A, 3
;
and now the given figure is

G 2
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equal to the triangle OAB the area 0.4321 Co, i.e. is equal to

the self-cutting polygon ABOC123A.
Draw 11' parallel to 2C\

22' 31' ( till they cut the fixed side CO,

3C' A2'l

and the polygon reduces to the crossod quadrilateral AB C'.

The area If of this quadrilateral is found in the usual manner
;

i.e. on the diagonal AO as hypothenuse a right-angled triangle

is constructed, of which one side AE = 2 b
;
the length f is

then the distance, measured parallel to the other side, of the

point B from a straight line parallel to AO and passing

through C'.

107. As another example suppose we wish to determine the

area of Fig. 95, which represents the cross section of a so-called

C/-iron.

It consists; (i) of a lime-shaped area AEA'F, bounded bytwo

circular arcs, one having ?7as centre, the other 0\ (2) of a

crown-shaped piece CBFIfC' bounded by two concentric cir-

cular arcs Btf, CCf drawn with as centre
; (3) of two equal

rectilinear pieces
* BCJIH and B'C'JTH', symmetrically

situated with regard to the straight line OUFE, which is an

axis of symmetry for the whole figure.

r

Fig. 95-

The lune is equal to the sector UAEA' plus the quadrilateral

OAUA' minus the sector OAFA', i.e. it equals the sum

UAEA'+ OA UA' + A OA 'F. After transforming the two sectors

spoken of into the triangles UAD, OAG (where AD, AG are

the arcs AEA' and AFA f

set off along their respective initial

* We say rectilinear, because we suppose the small arcs CJ, C'J' to be

replaced by their chords.
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tangents), the lime becomes equal to the sum UAD -f OA UA'

+ AOG, or finally, if we merge these three circuits in one, it is

equal to the area of the circuit ADUA'OAOGA, Here we can

neglect the part OA, which is twice passed over in opposite
senses

;
and consequently (Art. 23) the lune is equal to the

self-cutting hexagon ADUA'OGA.
The crown-piece we consider as the difference of the sectors

0ff, OCC f
. After setting off the arcs along their middle

tangents PP
/

, QQ', since PQ, P'Q' both pass through 0, the

crown becomes equal to the trapezium PP'Q'Q, which is the

difference between the two triangles OPP', OQQ', equivalent
to the two sectors in question.

If we now reduce the hexagon ADUA'OG, the trapezium

PP'Q'Q, and the two pentagons BCJIH to a common base >

and find their corresponding segments to be/ , /15 2f2 , then

(/o+/i + 2/2) will be the required area of the given figure*.

Or we may consider the given figure as an aggregate of

triangles and trapeziums made up in the following way
UAJ)+2 OAV- OAG+OPP'- OQQ'+ 2BCKH+ 2CJ1K,

where CK is drawn parallel to BHt and JL We consider the

areas of these triangles and trapeziums as the products of two

Fig-. 95 a.

Fig. 95 a.

factors, and reduce these products to a base I by means of the

multiplication polygon (Fig. 95 a). It is, of course, understood

that for each area to be subtracted, one of the two factors

must be taken negatively.
* In Fig. 95 we find 2/2 directly, if in the reduction of the figure B'C'J'TH'

we substitute b for 2 b.
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108. Curvilinear figures in general*. It is a well-known

property of the parabola, that a parabolic segment (Fig. 96) is

equivalent to -J of the triangle, whose base

is that chord of the parabola which forms

the base line of the segment, and the

vertex of which is that point of the arc
Fig. 96.

where the tangent is parallel to the base
;

that is to say, the segment of a parabola is equal to a triangle

whose base is the chord, and whose altitude is f the Sagitta :

where we understand by Sagitta the perpendicular distance

between the chord and that tangent of the arc which is

parallel to the chord.

109. One method then of reducing curvilinear figures, con-

sists in considering each small portion of the curved periphery
to be a parabolic arc.

If a curved line (Fig. 97) is divided into small arcs each of

which may be approximately regarded as a parabolic arc, and

if the parabolic segments between these arcs and their respec-

tive chords are reduced to triangles on these chords as bases
;

then the vertices of all these triangles can be taken anywhere
at pleasure on the straight lines drawn parallel to the chords

at distances from them equal to their respective Sagittae.

r^ Let these vertices be taken so that

the vertex of each new triangle lies

on the prolongation of one side

of the preceding triangle, i.e. so

that the vertices of two successive

triangles and the point of intersec-

lg ' 97 '

tion of their bases always lie in the

same straight line. Then the curvilinear circuit is reduced to

an equivalent rectilinear circuit formed of sides whose number
is equal to that of the parabolic segments into which the given
circuit was divided. The rectilinear circuit or polygon is next

reduced to its equivalent quadrilateral, and finally this is

reduced to the given base in the manner previously explained.

110. Suppose, for example, we wish to replace the irregular

boundary line AB between two fields by another consisting

of two rectilinear segments which form an angle with its

extremities at A and B (Fig. 98). We consider the curve AB
*
CULMANN, 1. C., No. 23.
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and the straight line BA as a circuit, and reduce it to a triangle

on the base BA.

For this purpose we divide the curve into small arcs
;
draw

their chords and for the segments thus formed substitute

triangles, by the method we have just given above. In this

way we transform the given circuit into the rectilinear polygon
AQ12345B. Then we draw

11' parallel to 20

22' 31'

33' 42'
I

till each cuts the fixed line Ao
;

44' 53''

5C 34')

and thus transform the polygon into the triangle ACB. We
have therefore substituted the two rectilinear segments AC, CB
for the given irregular line. The point C can be displaced at

pleasure along a line parallel to AB, since by doing so we
do not alter the area ABC.

111. The reduction of areas to a given base furnishes another

construction for the resultant of a number of segments A
l
B

l ,

A
2
B

2 , &c., &c. given in magnitude, sense, and position (Fig. 99).

Take a point as the initial point of a polygonal circuit whose

sides are respectively equipollent to the given segments ;
letN

be its final point. Now transform the triangles OA 1
B

1 ,
OA.

2B^
&c., by reducing them to a common base ON, and let them be

so transformed that they have a vertex at 0, and the side

opposite to it equipollent to ON. Then the sum,

OA^ + OA
2R2 + &c., &c.,

will also have been transformed into a triangle OAB, where AB
is equipollent to ON. The segment AB is the required re-

sultant (Art. 46).
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In order to effect the above-mentioned transformation, it

will be convenient to take the initial points Aly
A

2 , &c., &c. of

Fig. 99.

the segments in a line with 0. Project the points I?15 _Z?
2 ,

&c., &c. into the points J9/, _Z?/, &c., &c. upon ON, by rays

parallel to OA
1
A

2 ...
,
and then the triangles OA1

B
1 ,
OA

2
B

2 , &c.,

are transformed into the triangles OA
l
J3

l',
OA

2
B9', &c. Then

draw the straight lines B^ C^ BJ C.^ &c., parallel to -A^15 ^V"^,

&c., respectively, and let the points in which they cut the

straight line OA
l
A

2 ... be Clt C2 ,
&c.

We thus obtain the triangles OC-^N, OC.2N, &c., respectively

equivalent to OA
1 1

f

,
OA 9B2 , &c., &c. Therefore, if the seg-

ment A OC
l+OC2 is taken on OA

1
A

2 ...
J
and if

through A the straight line AB is drawn equipollent to ON,
then OAB is equal to OA

1
B

1 + OA
2
B

2



CHAPTER VIII

CENTEOIDS.

112. LET us suppose that, in the theorems of Articles 43 and

44, all the points 1 ,
H

2 , ..., Bn coincide in a single point G
;

these theorems may then be stated as follows :

If A1 G, A 9 G, A3 G,..., An G are n segments, whose resultant

vanishes, and is any arbitrarily assumed point in the plane, the

resultant of tlie segments OA^ OA
2 ,..., OAn is equal (equipollent)

to n times the segment OG (Fig. 100).

Fig. 100. Fig. 101.

Conversely :

Let there be given n points Al ,
A

2 , ...
,
An) and let the resultant

of the straight lines OA^ ,
OA

2 ,
. . .

,
An ,

which join the pole to

the given points, be equal to n times the straight line OG drawn

from to G, then the same equality holds for any other pole 0' ;

that is to say, the resultant of the straight lines 0'A
l ,

0'A
2 ,

...
,

0'An is equal to n times the segment Of

G; and the resultant of the

straight lines GA^ GA
2 ,

...
,
GAn is equal to zero*.

113. The point G is called the Ceniroid of the points Av
A

2 , ...,An . Let the (Fig. 101, where n = 4) points Aj^,A2 , ...,

An be given, to construct their centroid G we proceed as

follows. An arbitrary pole is taken, and a circuit

*
GRASSMANN, 1. c., p. 141. CHELINI, Sui centri de* sistemi geometrici

Raccolta scientifica; Roma, marzo 1849), 1.
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OA
:
23 ... n constructed, whose initial point is and whose

successive sides are equipollent to the segments OA^ OA
2 , ... ,

OAn . The straight line On, which closes the circuit, passes

On
through the point G

} and OG "-. Instead of dividing On

into n equal parts in order to obtain G, we may construct a

second circuit starting from another initial point 0'; the

straight line which closes this new circuit will cut On in theO

required point G.

114. The system of n given points cannot have another

centroid G'. For if both the resultant of GA 19
GA2) ... ,

GAnt

and the resultant of G/A
1 ,
G'A

2 ,
. . . ,

G'An should vanish, then the

general resultant of all the segments GA
1 ,
A

1 G', GA2 ,
A2 G', . . .

,

GAn ,
An G' would also vanish. But if we combine the two

segments GArt Ar G', we obtain the segment GG
/

;
and therefore

GG' must vanish, that is to say, G' must coincide with G.

115. Again, if in the proposition of Article 45, all the points

B
1 ,
B

2 ,
. . .

,
Bn are supposed to coincide with a single point G,

the theorem may be stated as follows :

If G is the centroid of the points 1, 2, 3, ..., n, and if all these

points are projected by means of parallel rays into the points G'
,

l', 2', 3', ..., n' upon one straight line, then the sum of the straight

lines 11', 22', 33', ..., nn' is equal to n times the straight line GG'

(Fig. 102).

As a result of this proposition, since rr' is

the (oblique) distance of the point r from the

straight line upon which we project, the point
G is also called the centre of mean distances * of

the given points 1, 2. 3, . .., n.

116. Instead of supposing in the pro-

positions of Articles 43 and 44, that all the

jfl* 102 points Blt
B

2 , ..., Bn coincide with a single

point G, we now imagine some of them Bl ,
_Z?

2 ,

..., Bi
to remain distinct, and the rest to coincide with a

single point G\ so that the resultant of the segments A^B^,
A

2
B

2 ,
. . .

,
A

i
B

t ,
Ai+1 G, . , . ,

An G vanishes
; and, whatever the

position of may be, the resultant of OA
1 ,
OA

2 , ..., OAn is

equal to the resultant of OBlt
OR2 , ... ,

OBit . (n-i) . OG. The

* CARNOT, Correlation de* figures de geomttrie (Paris, 1801), No. 209.
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first of these equalities does not change, if we substitute for the

segment ArBr the two others A r G, GBr or A
r G,-Br G\ the

second equality will also continue to subsist if we add to both

resultants the segments B^O, B2 0, ..., B{ 0, so that it becomes

an equality between the resultant of OA
i}
OA

2 , ..., OAn ,
B

1 0,

B
2 0, ..., .0 and the resultant of OB^ OB

2 , ...
,
OEi9 B^O,

B
2 0, ..., Bi

O
t (n i).OG; that is, between the resultant of

OA
19
OA

2 , ..., OAn ,
OB19

-OB
2 , ..., -O^and (n-i) . OG.

Hence :

If the resultant of the segments A
L G, A2 G, ... ,

An G, B
1 G,

B
2 G,..., B

{
G vanishes; then

, for any point whatever
,
the

resultant of the segments OA^, OA
2 ,

. .., OAn ,
OB

l ,
OB2 , ...

,

OB
i
is equal to (n i)

. OG: ami conversely if this equality sub-

sists for any pole 0, it will also holdfor any other pole 0', and the

resultant of the segments A l G, A 2 G, . . .
,
An G,

- B^ G,
-B

2 G, . . .
,

Bfi will vanish.

117. Now let us assume that of the n points AI}
A

2 , ..., AH

some coincide with one point, others (in like manner) with a

second point, and so on; and that the points Blt B2 , ..., B L

also unite in groups and coincide. Then if we use a
l9 a

2 ,
u
s ,

. . .

to denote positive or negative integral numbers whose sum
is m, the foregoing proposition may be stated as follows :

Jf the points Alt A 2 ,
A

3 ,
... and the point G are so situated, that

the resultant of the segments a
l
.A

: G, a.
2
,A

2 G, az . A^G,... vanishes,

then, wherever thepole way be, m . OG ivill be equal to the resultant

of the segments a
1

. OA1} o
2

. OA
2 , 3

. OA3 , ... &c.

And conversely :

Jf this property holds for anypole 0, viz. that m .OG is equal to the

resultant of a
l

. OA
l ,

o
2

. OA
2 , 3 . OA3 , ..., then the same property

holdsfor every other pole O
'

,
that is to say, the resultant of 04 . 0'A

l

o
2

. 0'A
2 ,

a3 . OfA
z ,

... is equal to m ,0'G\ and the resultant of
the segments a

1
.GA

l ,
o
2

. GA
2 ,

o
3 . GA

3 ,
... vanishes.

118. The point G is called the centroid of thepoints A1 ,
A

2 ,
A

3 ,

... weighted with the coefficients alt a
2 ,

o
3 ,

.... For shortness

however we say that G is the centroid of the points a
x

. A
l ,

a
2
.A

2 ,
a3 .A3 ,

. . .
, writing before each point the coefficient

which belongs to it.

119. Furthermore, from the proposition of Article 45 we
obtain the following theorem :

If G is the centroid of thepoints a
l

. A
1 ,

a
2
.A

2 , a^.A3 ,
... and if,
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by means of parallel rays, the points G, A l ,
A

2 ,
A

3) ... are projected

into the points G', A\, A'
2 ,

A'
3 ,

... which lie on a straight line, then

the sum of the straight lines a
x

. J^/, o
2

. A
2
4

2

'
t
a3 . A3 A3 ,

... is

equal to m . GG\ where m =
a^ + a^ + o^ + ....

On account of this property G is also called the centre of

mean distances of the points a
l
.A

1 ,
a
2

. A
2 ,

a3 . A 3 ,
. . . *.

120. Hitherto the coefficients a15 a
2 ,

a
3 ,

... have been positive

or negative integral numbers; we shall now extend the idea of a

Centroid to the case where a
1 ,

o
2 ,a3 , ... are any numbers whatever

',

or rather parallel segments proportional to any given homo-

geneous magnitudes
Let then the points A

l ,
A

2 ,
A

3 ,
. . . be given, weighted with

the numbers or parallel segments a
1?

a
2 , 3 ,

.... Project the

given points on to a straight line p', by means of rays parallel

to some arbitrarily chosen direction, into A\, A'
2 ,

...
;
and by

means of rays parallel to another direction chosen at pleasure,

project the same points into A'\, A"
2 , A"*, ... on a second

straight line p", not parallel to j/. Now determine a straight

line / parallel to p' t
such that the distance from / to //

measured parallel to the rays A1A\, A2
A f

2 ,
A

3 AS, . . ., is equal to

similarly determine a straight line /" parallel to //', such

that the distance from /' top", measured parallel to the rays

A
1
Af

\, A2
A

2", ..., is equal to

Let G denote the point of intersection of the straight lines

/, /', and Gf

,
G" the projections of G upon the straight lines

p', p" (by means of rays parallel to AA', AA" respectively),

then we shall have :

a
l
.A

1
A

l

' + a
2
.A

2
A'

2 + a
3
.A3

A'
3 +... =(a1 + a

2 + o
3 + ...).

GG'

a, . A^A'\ + a
2

. A
2
A"

2 + o
3

. A.^\ + ... =(% + o
2+ as+ ...)

. GG".

Next, let //" be any third given line, let us project upon it

the given points and the point G, into the points A"\, A'"
2 ,

A'"3,..., G'"> by rays parallel to a new direction. Between the

three rays which project the same point A l
or J

2
or A.

6 , there

*
L'HUILIEE, EUmens cVanalyse gtomttrique et d'analyse algclrique etc.

(Paris, 1809), 2.
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exists (Article 16) a linear relation with constant coefficients,

i. e. we have :

k'. A^A\ + k". A
1 A'\ + k'". A^A"\ = /;,

K An A 2 ~}~ fC -"2 2 * *
>' 2

^=
'

ft -/I o J--L o -J- A/ . ^l o J-L o ~P A> -^J.o -^L o A1

k'. G G' + /&". G G". + k'". G G"' = k.

Multiply these equations by 04 ,
a9 ,

a
3 ,

. . ., (ax + a
2 + a

3 + . .
.)

respectively, and add the products ;
then we obtain, taking

the equations already established into account,

tf". {al
.A

l A"\ + a
2
.A

2
Am .

2 + a
3 . ^3A

"'
^ + ...

-(04 + 02 + 03 + . ..).'"} = 0,

or,

QI . A.A'^ + a^ A2
Am,4 a

3
.A

3
A'"3 +... = (ai + a2 + a 3 +...).6^

w
.

That is to say :

If we project the points A19
A

2 ,
A3) ..., G upon any straight line

whatever ly means of rays, which are parallel to an arbitrarily

chosen direction, then the product of the ray which projects G

bt/ ( 1 + 2 + 3 + ...) is equal to the sum of the products formed Ijy

multiplying each of the rays which project Alt A2t AB . tt ly alt a.,,

3 , ... respectively.

We call the point G, so defined, the centroid of the points A1 ,

A.
2 ,
A

3 ,
. . . loaded with the numbers or segments 04 ,

a.
2 ,

a
3 , ....

The centroid does not change if we substitute for the coeffi-

cients 04, a.,, 0.3, ... others proportional to them, for by so doing
we do not change the ratios of 04 ,

a
2 ,

a3 . . . ,
to 04 + a.2 + a3 + . . . .

121. If the points A19 J2 ,
A

3 ,
. . .

,
and G are projected, by means

of raysparallel to a straight linep"',
on to another straight linep',

and

if we use 0' to denote any point whatever of'p
l

\ we have identically :

a, . C/A\ + a, . 0'A'2 + a
3 . VA'^ + . . .

=
(ax + a

2 + o 3 + . ..)VG'.

If we draw through 0' a straight line parallel to p", and pro-

ject on to it, by rays parallel toX, the points Alt A.
2 ,
A3 , ...

,
G

into the points A'\, A".,, A"3 , ...
, ", we have the identities

A^A'\ = A\a, A.
2
A"

2
= A\V> A

3
A"3

= A'3 0' ..., GG" = G'0'>,

but from the foregoing theorem we have

and therefore the above proposition is true.

122. If is an arbitrary point ,
the resultant of the segments

a, . OA 19 a
2

. OA
2 , 0-3. OJ3 , ..., is

(ai + a
2 + az + ...).OG.

By the segment a . OA we understand a segment parallel to
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OA, drawn either in the sense of OA or in the opposite sense,

according as a is positive or negative, and whose magnitude is

equal to that of OA increased in the ratio of a : 1 . Draw

through the point a straight line p', and project upon it, by
means of parallel rays, the points Alt A2 , A3 , ..., G into the

points A\ , A\ ,A'3 ,..,, G'. Then the segment OA is the resultant

of the segments OA', A'A, and therefore if we increase these

segments in the ratio a : 1, the resultant of a . OA', a . A'A will

be a . OA. It follows, that the resultant of c^ . OA
1 ,

a.2 . OA
2 ,

a
3

. OA
3 , ..., may be obtained by combining all the segments

a
x

. OA\ ,
a
2

. OA'... ,
a 3 . OA'

B , ... with the segments a
l

. A^A^ ,

a2 .A'2A2 ,a3 .A'sA3) .... But the resultant (i.e. the sum) of

a
x

. OA\, a.2
. OA'.2 ,

a3 . OA'3 ... is (a 1 + a
2 + a3 + ...)

. OG', and the

resultant (or sum) of c^ . A\ Al} a
2

. A'2
A

2 ,
a 3 . A'

3
A

3 ,
... is

(aj + a
2 + a

3 +...). G
r

G\ therefore the resultant of the segments

ctj
. OA

1 ,
a.
2

. OA
2 ,

a3 . 0^3 ,
. . .

,
can be obtained by combining

the two segments (%-f o
2 -\-a3 ...) . 0r', (a 1 + a

2 + a
3 ...) . G 1

'^, and

consequently, it coincideswiththe segment (al + a
2 + a

3 + ...).OG.

123. j?jf -H" is the centroid of the points a
1

. A13 a.2
. A

2 ,
a
3 . A3 , ...,

and K the centroid of the points ftl .Sl ^ (32
. J3

2 ,
. . .

,
then the centroid

of all tJie givenpoints a
1
.A

1 ,
ct2 . A2 ,

. . . , f3lt j$
lt /32

. J3
2 ,. . . coincides

with the centroid of the two points m . H, n . K, where

w = (o1 + o
2 + ...),

=
(ft + /32 + ...).

For, taking an arbitrary pole 0, if we combine the straight

line m. OH, the resultant of the segments a
l
OA

1 , a,OA.2 , ...,

with the straight line n . OK, the resultant of the segments

ft1
.

l , p.2 . B
2 , ..., we find that (m + n).OG, the resultant of

m . Oil, and n . OJT, is also the resultant of all the segments

a^OA^a^OA,, ...,ft.0^15 /32 .0^, ....

124. If all the points A^, A.
2 ,
A

3 , ... lie on a straight line, their

centroid G lies in the same straight line.

This is clear, if we take the pole upon the straight line

A^A^A^ . . . ;
for then all the segments a^ . OA

l ,
a.; . OA

2 ,
a3 . OA3,., .

lie in this straight line, and therefore also their resultant

m . OG lies in the same straight line.

From this it follows :

If we project A l ,
A

2 ,
A3 , ..., An ,

G upon an arbitrarily chosen

straight line into the points A\ ,A'2 ,A'3 ..., A'n , G', then the point

G' is the centroid of the points a
l

. A\ ,
o
2

. A'
2 ,

a
3

. A'3 ..., aH . A'n .

Let there be only two points A
1 ,
A

2 (Fig. 1033 where the
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segments a
l5

a
2 are simply denoted by the numbers 1, 2) with

coefficients al9 a
2 ,

then their centroid G is a point of the

straight line A1
A

2
. Since the resultant

of the straight lines 04 . GA
l ,

a
2

. GA
2

is equal to zero, we have

or A
:
G: GA

2
= a

2
: a

19

and therefore

AIG '. GA
2

i AI A2
= a

2
i

cij
i c?

2 -f- QJ j

that is to say, the point G divides the segment A
1
A

2 into

two parts, which are inversely proportional to the numbers

a
x ,

o
2 ,
and it lies inside or outside the given segment, according

as alt a
2 have the same or opposite signs.

If aj
= a

2 ,
then A

1
G = GA

2 ,
i. e. G is the middle point of

A^Ay If a
l+ a

2
= Q, we obtain from the proportion A

l
G :

A^A^ = a
2
:a

1 + a
2 the value A

1
G = cc, i.e. G is the point at

infinity of the straight line A
l
A

2 .

125. Let there be three given points A19 A29 A3 not in one

straight line (Fig. 104); and let a
l9

a
2 ,

a
3 ,

whose sum is not zero, be their coefficients.

The centroid of the points c?
2

. A
2 ,

a3 . A3

is a point l
on the straight line A

2
A

3 ,

and the centroid of the given points 04 . Alt

a
2

. A
2 ,

a
3

. ^43 is therefore the centroid of

the points a
x

. A
1 , (a 2 + a

3)
. -Sj ,

that is, it

is the point G on the straight line A^B^
which is determined by the relation

But the triangles A
1
A

2
A

3 ,
GA

2
A

3
are proportional to

their altitudes, therefore also to the oblique distances A^B^
GB

l
of their vertices from the common base A2

A
3 ;

therefore

Similarly we prove that

GA
1
A2 :A3A1

A
2
= a

3 : a
1 -\-a 2 -\- 3 ,

and therefore

GA
2
AS : GA3 Al

: GA
1
A

2
=

a-^:
a
2

: o 3 .

That is to say ;
the centroid G of the three points o

l
. A

l ,
a
2

.

o
3
.^

3 divides the area A^2
A3 into three triangles GA^
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GA%Aly
GA

1
A

2 ,
which are proportional to the coefficients a19

cr
2 ,

a
3 .

Given the points Al ,
A

2 ,
J

3 , every system of values for the

loads a
ls

a
2 ,

a3 ,
determines a point G on the plane A1

A
2
A3 ,

and

conversely to every point G of the plane there corresponds

a fixed system of values equivalent to the above. This is the

principle of the calculus of the centroid of Mobius.

126. It follows (from the foregoing articles) that if we wish

to find the centroid G of the given points Al ,A2 ,A^... (Fig. 1 05)

weighted with the coefficients

(numbers or segments) a
x ,

a
2 ,

a
3 ,

. . . ,
we must construct two

circuits starting from two

different initial points 0, 0'
;

the sides of the first being

equipollent to c^ . OA
l ,

a
2

. A
2 ,

a3
. A3 ,

. . .
,
and those of the

second to a
x

. O'A^ ,
a
2

. 0'A
2 ,

Fig. 105. a
3

. 0'A3 , .... The straight

lines OR, O'R' which respect-

ively close the two circuits, intersect in the required point

G, and we have

If the coefficients a
l5

a
2 , &c., &c. are proportional to given

segments %, a
2 , &c., &c. they will also be proportional to

loads -r>-f' &c., &c. where h is any arbitrary segment; we
Us fls

can therefore make the sides of the first circuit equal to

the lengths T
T OA

L,^OA2 , &c., &c., and if OR is the closing
/ /

line then h. OR (a l
+ a2 + a

3 +...). OG. Hence it follows,

that G is found, without constructing a second circuit, by

determining on the closing line the segment

OG=- h - R '-.

If the coefficients al9 a
2 , &c., ... are proportional to the areas

9
lt

*
2 , &c., &c., which when reduced to a common arbitrary base

k are equivalent to the rectangles ka
l ,
ka

2 , ..., &c.
; they will

* GRASSMANN, 1. c., p. 142.
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also be proportional to the segments a
x ,
a

2 ,
. . .

,
or to the loads

Y , ~r> '
'
anc^ ^ the circuit be constructed with the sides

ib Ib

C
OA OA

2 , &c.,...,&c., then OG =-^?- .

127. If G is the centroid of the points a
1
.A

1 ,
a.2

.A
2 ,

a
3 .A3 ,

, . . ,
and any point whatever, we have seen that the resultant

OR of the segments o
x

. OJ15 a
2 . OA2) a

3
. OA3 , .,., is given by

the equation

whence OR

If a
l + a

2+a 5 + ...= 0, while OR is not zero, then

OG = oo, or the centroid is at an infinite distance. To

find in what direction G lies, let B be the centroid of the points

a2A2 ,
a
3
A3 , ..., anAn . Then B

l
is at a finite distance, because

a
2 -|- #3 4. . . .

,
an is not equal to zero, but is equal to ar Let

0.Z2 be the resultant of a
x 0-Sj and c^0^ x ,

this resultant will

be equipollent to a^^, that is it will be independent of

the point 0. Consequently the resultant of a
l
OA

l ,
a.2
OA

2 , ... ,

anOA n ,
where a

l + a
2 , ..., a n

= 0, is constant in direction and

in magnitude wherever may be, and is equipollent to the.

segments a^A, = a
2
R

2
A

2
= ... anBnAn ;

where Br is the centroid of the points a^A^ a
2
A

2 ,
...

,
ar_ 1

^
r_ 1 ,

ar+1Ar+lt ..., anAn . The point at infinity common to the

segments BA^ B
2
A

2 , ..., is the centroid G of the given

points.

Let parallel straight lines be drawn through each of the

points A
lt A2 , ..., -Z?

1;
B

2 , ... in any arbitrary direction, and

let them be cut by a transversal in J/, A2 , ..., B^ B2 ..., the

theorem of Art. 121 applied to the points a2A2 ,
a
3
,4

3 ...an

to their centroid Bl gives

a
2
A

2
A

2 +a3A3
A

3', ...,anAnA n
'

[a2 + o
3 , ...,oj B1

B
l

'

Therefore a^A^A{ + a
2
A

2AJ + . . .
= Oj [J^/-^1

^
1

/

],

consequently a^jJ/ + a
2
^

2
^

2

7 + ... anA nA n
' = Q

if the transversal is parallel to B^A^ i.e. is drawn towards the

centroid G at infinity.

In the particular case when OR =
,
or when B1

coincides

H
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with A
l ,
B

2 will also coincide with A2 , &c., &c. The centroid

G is then quite indeterminate
; or, in other words, the system

of points a
1
A

l ,
a
2
A

2 ,
... has no centroid. The sum

c^A1A1

'+ a2A2A2

'+ .
3

<*n d-nA^
is then zero, whatever the direction of the parallel lines

A
1
A

l

/

)
A2
A

2 ..., and of the transversal A^A2 ...*.

128. Through the points A
1 ,
A

2 ,'A3 , ..., and through their

centroid G segments A
l
B

lt A2
B

2 ,
A3 JB3 , ..., Gil are drawn in

an arbitrary direction parallel to one another, and proportional

to the co-efficients a
l3
a
2 ,
a
3 ,

. . .
,
m = a + a

2 + . . .
, taking account

of signs ;
that is, having chosen the positive direction of the

segments, let the segments proportional to the positive co-

efficients be drawn in that direction, and those proportional to

the negative coefficients in the opposite direction. Let be

an arbitrary point, and through it draw a straight line parallel

to the segments AS, and upon this line project the points

A
19
A

2 ,
A

3 , ..., G by parallel rays into A^ t
A2i A3t .... G'

;

then by the theorem of Art. 1 1 9 we have

a^.A^ + a
2
.A

2
A

2 +a 3 .A3
A

3 + ... = m.GG'.

But the numbers a
: ,

a
2 ,

a3 , ...,m are proportional to the bases

of the triangles OA^, OA
2
B

2 ,
OA

3
R

3 , ..., OGIT, and the

segments Al
A

l

/

,
A

2A2 ,
A3
A

3', ..., GGf

to the heights of the

same triangles, hence the following theorem
;

The sum of the triangles which join the segments A1
B

l ,
A

2
B

2 ,

A
3
J3

3,..., to 0, is equal to the triangle which joins the straight

line GH to the same pole 0. Whence it follows that GH is the

resultant of the segments Al
B

l >
A

2
B

2 ,
A3 B3 , ..., (Art. 47).

129. This furnishes another construction for the centroid G.

After drawing through A19 A2 ,A3 ,
... (Fig. 106) the segments

20-

.*&

Fig. 106.

a
15 a

2 ,a3 , ..., in an arbitrarily chosen direction, we combine

them in the manner of Article 53.

* MOBIUS, Bary. Calcul, 9, 10. BALTZER, Stereom., 11.



-131] CENTKOIDS. 99

We shall thus obtain a straight line r, in which the result-

ant segment lies, and which must therefore pass through G.

We now repeat this combination, only changing the common
direction of the segments a

15 o
2 ,

o
3 , ..., and obtain another

straight line r'
;
the lines r and / intersect in the required

centroid.

130. A figure (linear, superficial, or solid) is called homogeneous

if all its points are weighted with equal coefficients. Geo-

metrical figures are understood to be homogeneous, unless the

contrary is stated.

If the points in a figure are collinear two and two with a

fixed point, and situated at equal opposite distances from it
;

the fixed point is evidently the centroid of the figure. For

instance, the centroid of a rectilinear segment is its middle

point ;
the centroid of a parallelogram is the point of inter-

section of its diagonals ;
the centroid of a circle, of a circum-

ference, and of a regular polygon, is the geometrical centre of

the figure (Figs. 107 and 108).

Fig. 108.

If the figure has an axis of symmetry, that is, if its points
are two and two on chords bisected normally by an axis, this

axis will also contain the centroid.

131. Let the figure be the triangle ABC (Fig. 109). IfD is the

middle point of BC, the straight line AD divides the area ABC
into two equal parts. To every point X in one half there cor-

responds a point X' in the other half, such that the segment
XX' is parallel to BC, and bisected by AD.
The centroid of every couple XX' is there-

fore on AD, hence the centroid G of the

area ABC lies on AD. Therefore G is the f

point of concourse of the three median
lines AD, BE, CF. It divides each of the

three median lines into two segments which are in the pro-

portion of 2:1. For, since the triangle ABD is cut by the

transversal FGC, we have

H 2
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AF BC DG_

[132-

But AF= FB, BC = 2 DC, therefore

or GD = i AD, and similarly GE = i BE, GF = CF. The

point G is also the centroid of the three points A, J3,C.

132. If a (linear or areal) figure is made up of a system of

rectilinear segments, or triangular areas, then its centroid

is that of the points a
1
.A

lJ
a
2
.A2 ,

a
3
.A3 , ..., where A^A^A^ ...

are the centroids of the segments or triangles, of which the

figure is made up, and the (numerical or segmental) co-

efficients als o
2 ,

a3 ,
... are proportional to the segments or

triangles themselves.

133. Let the figure be a circuit with rectilinear sides. Let

A
19
A

2 ,
A3 ,

... be the middle points of the sides, and alt a
2 ,

a3 ,
... segments proportional to the sides. Then, if we find

by one of the methods already described (Articles 126, 129)

the centroid G of the points A
1 ,
A

2 ,
A.

3 , ..., weighted with

the segments o^ ,
a
2 ,

a3 ,
. . .

;
G is the centroid of the given

circuit.

134. If the circuit is part of the perimeter of a regular

polygon (Fig. 1 10), its centroid can be found in a much simpler

way. Draw a diameter of the inscribed circle, and let the

sides of the circuit be projected orthogonally upon it. Let <r

be a side, A its projection, r the radius of the circle which is

drawn through the middle point of o-, and p the perpendicular
let fall from the latter point on to the diameter

;
then the

right-angled triangle of which a- is the hypothenuse and A one

Fig. no.

of the other sides, is similar to the triangle, whose hypo-
thenuse is r and one of its other sides p.
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Therefore we have

A cr- - or Xr = p(r.
p r

Write down equations corresponding to these for all the sides

of the circuit, and by addition we get

rl=p l
o-

l +p2
o-
2 + ...,

where I is the projection of the whole circuit.

Let G be the centroid, y the perpendicular let fall from

G upon the diameter. Since G is the centroid of the middle

points of the sides, supposed to be loaded with the co-

efficients <r
l ,

o-
2 ,

&c. respectively, we have (120, 133)

where * means the length of the whole circuit. Therefore

rl
rl = ys, i.e. y = T -

s

This equation gives the distance of the point G from the

diameter; the point G must also lie on that radius (OC) of

the circle, which bisects the circuit, since this radius is an axis

of symmetry of the circuit. Draw a straight line EF = s, of

which one extremity E lies on the diameter, and the other

extremity F upon the tangent of the circle, which is parallel

to this same diameter
;
and then take upon EF a segment

EH I, and through H draw a parallel to 1)F, cutting the

axis of symmetry OC in G
; then, since the straight line EF is

cut by the parallels EO, HG, DF, we obtain :

EF_ _ distance of DF&om EO
1S~ distance of HG from EO

'

s r r

I distance of EO from G y

and therefore G is the required centroid. We notice in the

formula obtained above, that I is the projection of the (unclosed)

circuit upon any diameter chosen at pleasure, and y is the per-

pendicular distance of the point G from the same diameter.

Another construction. Upon the tangent CM, drawn at right

angles to the axis of symmetry OC, set off a segment
CM \s, join OM, and draw from that extremity (A) of the

given circuit, which lies on the same side of the axis of

symmetry as M, a parallel to OC, to cut OM in N; through N
draw a parallel to CM, till it cuts OC in G. In the similar
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s I

triangles OCM, OGN the bases are respectively -> -, where
2-

by I we understand the projection of the circuit upon the

diameter perpendicular to OC. The altitude of the first

triangle is r, and therefore that of the second is equal to the

distance of G from the centre 0*.

135. This construction is applicable even when the regular

polygon, of whose perimeter the given circuit is a part, has

an infinite number of sides, that is, when it becomes a circle.

Hence let the given line be an arc AB of a circle whose centre

is (Fig. in); let s be the length of the arc, the half of

which CM is set off along the tangent at

its middle point. Project the extremity
A into N upon OM by means of a parallel

to the axis of symmetry OC, and through
N draw a parallel to MC cutting OC in G,

then G is the centroid of the arc AB.

For we have

CM:CO = GN: GO,

A j?

Fig. in.

therefore GO = y.

136. If the given circuit is the perimeter of a triangle

ABC (Fig. 112), its centroid G is the centre of the circle

inscribed in the triangle DEF, whose vertices are the middle

points of the sides of the given

triangle. For, D, E, F are the cen-

troids of the rectilinear segments

BC, CA, AB ;
and therefore G is the

centroid of the points a.D,{$ .E,y . F,

where

a:(3:y = BC:CA:AB.
The centroid A f

of the points

(3.E, y.F divides the segment EF
into two segments EA', A'F, such that

EA':A'F= y:(3 = AB:CA = AB:^CA = ED : DF.

Therefore DA' is the bisector of the angle EDF, and conse-

quently G, which is the centroid of the points a . D, (fi + y). A',

lies on the (internal) bisector of the angle D of the triangle

Fig. 112.

* CULMANN, 1. c., No. 94.
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DEF. Similarly G must also lie upon the bisectors EB', FC'

of the other two angles, and therefore G is the centre of the

circle inscribed in the triangle DEF. Q. E. D.

137. Let the given figure be the quadrilateral ABCD (Figs.

113, 114, 115), which may be regarded as the algebraical sum
of the two triangles ABD, CDB into which it is divided by the

diagonal BD. Let E be the middle point of BD. The centroids

G! ,
G

2 of the two triangles are respectively so situated on the

Fig. 114.

straight lines AE, CE, that G
1
E= \AE and G

2
E= CE. There-

fore the centroid G of the quadrilateral is the centroid of the

two points a
l
.G

i ,o 2
.G

2 ,
where a-

L
: a

2
= ABD : CBD = AF: FC,

where F is the point of intersection of the two diagonals BD,
AC. Since G

l
G

2
divides two sides of the triangle AEG into

proportional parts, it is* parallel to the third side AC ; whence

it follows, that the straight line EG divides G^ G2 ,
and AC in

the same ratio, namely GG-^: GG2
a
2

: a
l
= FC:AF. In

order to divide AC in the ratio FCiAF, it is sufficient to
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interchange the segments AF, FC, that is, to make AH = FC,

and IIC = AF. The line joining E to H divides G
1
G

2
in the

required point G.

The parallels G
l
G

2
and AC divide FA, FC, FH in the same

ratio; and therefore GF=%HF, since G
1
F = ^ AF, and

G
2
F= CF.

If instead of BD we employ the diagonal AC, whose middle

point is K, and if we interchange the segments BF, FD of BD
(i.

e. if we take BL = FD, and LD = BF) ;
then the point G

is so situated on LK, that GK = \LK.
But F, the middle point of BD, is also the middle point of

FL, and similarly K is the middle point of FH\ hence is

the centroid of the triangle FLU, that is to say :

The centroid of a quadrilateral coincides with that of the triangle,

whose vertices are the point of intersection of the diagonals, and

the two points obtained by interchanging the segments on each of the

two diagonals.

Hence it follows that the straight line FG passes through
the middle point / of HL *.

138. If AD, BC are parallel (Figs. 116, 117), and if we draw

through the centroids of the triangles BCD, ABD parallels to

Fig. 1 1 6.

AD, these parallels divide tne straight line MN which joins

the middle points of AD, BC into three equal parts. Since

the straight line MN contains the middle points of all

* CULMANN, 1. c., No. 95. Cfr. Quarterly Journal of Mathematics, vol. 6

(London 1864), p. 127.
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chords parallel to AD, it is a diameter of the figure,

and therefore the point G lies in it, and divides its central

segment into two parts proportional to the areas of the

triangles in question, i. e. proportional to BC, AD. The parts

of this central segment (since their sum is %MN, and their

ratio AD : BC) are respectively equal to

MN.AD MN.BC
3(AD + BC)' 3(AD + BC)'

and consequently
MN x AD MN (BC+ 2 AD)

3(AD + BC)~ 3(AD+ BC)
MNx BC MN(AD + 2BC],

whence MG : GN = BC+ 2 AD : AD + 2 BC.

Every straight line therefore which passes through G, and is

contained between the parallels AD, BC, will be divided by G

into two parts proportional to BC+2AD and AD+2BC re-

spectively. If now on BC we take CP = AD, and if on AD
we take AQ = CB, it follows that the straight line PQ will be

divided by MNinto two segments proportional to MP, QN; but

MP = ^BC+AD, QN = BC+^AD,
or MP : QN = BC+2AD :AD + 2 BC.

Hence PQ passes through G. Since BP, QD are equal and

parallel, PQ and BD bisect one another; therefore PQ passes

through E the middle point of BD, that is, PQ coincides

with HE.

If moreover we take on AD
D8 = CB, AA' = $ AS,

and if on BC we take CC' AA'
; then, because

A'N=AN-AAr = \AD-l(AD-BC] = l(AD + 2BC)
and MC = MC+ CC' = \BC + % (AD-BC) = l(BC+2AD)

therefore A'N: Mtf=JD + 2BC: BC+ 2 AD,
that is A'C' passes through G.

Hence we obtain two simple constructions for the centroid

of a quadrilateral with two parallel sides (i.e. a trapezium),

either as the intersection of MN with PQ, or as the intersection

* CULMANN, ibid. WALKER, On an easy construction of the centre of

gravity of a trapezium. (Quarterly Journal of Mathematics, vol. 9, London,

1868, p. 339.)
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139. The construction given above for the centroid of a

quadrilateral fails in the case where the diagonals AC,BD are

parallel (Fig. 118). But in this case the

triangles ABD, CD are equivalent, and of

opposite sign, so that a
x -f o

2
0. It fol-

lows that the area of the figure is zero, and

the centroid lies at infinity in the direction

common to AC and BD.

140. Now let it be required to find the centroid of any recti-

linear figure whatever. We may consider the area of the figure

to be the algebraic sum of the triangles, formed by joining the

sides of the circuit to an arbitrary point 0. Having found

the centroids J15 A2 ,
A3 ,

... of these triangles, and reduced their

areas to a common base so that they are proportional to the

segments a
13 a.,, a 3 , ..., the centroid in question is the centroid

of the points a
1

. /^ ,
o
2

. A
2 ,

a3 . A3 ,
... which may be constructed

by one or other of the methods already explained.
If the pole is taken quite arbitrarily, then the number

of triangles is equal to the number of sides of the circuit ;

but if we take upon one of the sides, or at the point of

intersection of two of them, then the number of triangles is

reduced by one or two units respectively.

Instead of regarding the proposed figure as the sum of

triangles, we may also consider it as the aggregate of the

quadrilaterals and triangles, into which it can be decom-

posed by means of straight lines conveniently drawn.

141. Example. Let the given figure be the self-cutting

hexagon ABCDEF(Y\g. 119), which is the sum of the triangles

OBC, OCX), ODE, OFA, being the point of intersection of

the sides A, EF. Of these four triangles, the first and last

are positive, the other two negative. Let their centroids

6r
1?
G

2 ,
6r

3 ,
6r4 be found, and let the areas of the triangles,

reduced to a common base, be proportional to the segments
a19 a

2 ,0 3 ,
a4 . These segments a have the same signs as the

triangles, the first and last of them are positive, the second

and third negative. If now we wish to employ the method of

Art. 126, we must first reduce the four products a r . OGr to a

common base fi. In the figure, an arbitrary straight line as is

drawn through 0, its positive direction is fixed, and upon it

the segments //,
a
l5

o
2 ,

a3 ,
a 4 are set offfrom their common initial
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point (/i,
a
15

a4 in one sense; o
2 ,a3 in the opposite sense*).

Then the final point of h is joined to Gr) and through the

D

Fig. 119.

final point of r a parallel is drawn to this joining line cutting

OGr
in //,.. Thus we obtain OGr \h = OH

r
:a r ,

and therefore

ar . OGr
= h . OHr . Now construct a circuit starting from

with its sides equipollent to 0//
15
0//

2 ,
0//

3 ,
O7/4 ;

the closing

line is OR. Finally to construct the point G, given by the

relation
/, . R

U(jr = j

a
1 + a

2 + a3 + a4

we set off along Ox from its initial point the segment

08 = a
1 + a 2 + a

3 + a4 ,

join its final point to R, and draw through the final point

of k a parallel to this joining line cutting OR in G.

142. Again, let the figure be the cross-section of a so-called

Angle-iron (Fig. 120). Divide it into six parts, four trapeziums,

one triangle, and one parallelogram, denoted in the figure by
the numbers 1, 2, 3, 4, 5, 6. Construct the centroids of these six

parts, and reduce the areas to a common base, determining the

proportional segments 1, 2, 3, 4,5, 6
;
and set offthese six segments

* In Fig. 119 the final points of the segments h, a are denoted by these letters

themselves. Some of the straight lines mentioned in the text are not drawn in

the figure.
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in succession along a straight line zz. Then through an arbi-

trarily chosen pole U draw rays to the points of zz, which

Fig. 1 20.

bound the segments ;
next draw through the centroids of the six

component figures parallels to zz
t
and construct a polygon, with

its vertices lying on these parallels, and its sides respectively

parallel to the rays emanating from U. The two extreme sides

of this polygon will intersect in a point; through which if

a parallel to zz is drawn, then this straight line must

contain the required centroid. In order to obtain a second

straight line, possessing the same property, we either repeat the

above detailed operations for another direction different to zz
;

or else construct, as shown in the figure, a new polygon, whose

vertices lie upon straight lines drawn through the centroids

1, 2, 3, 4, 5, 6 perpendicular to zz, and whose sides are respect-

ively perpendicular to the corresponding rays of U. It is quite

clear that this is just the same thing, as if we drew a new

straight line zz perpendicular to the first, and then dealt

with it just as we formerly dealt with the first zz. It should
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1 2

12I

be remembered, that in setting off the segments 1, 2, ...

along zz, attention must be paid to their signs if the partial

areas into which the figure is divided are not all of the same

sign *.

143. In the foregoing construction two polygons were used

for the purpose of finding two straight lines, passing through
the centroid we were in search of.

But whenever we know a priori one

straight line in which the centroid

must lie, one polygon is sufficient,

for example, when the figure has a

diameter. This case is illustrated

by the example (Fig. 121), where

the figure possesses an axis of

symmetry.
The figure represents the cross-

section of a double Tee-iron.

144. We proceed now to the case of centroids of curvilinear

figures, and first we examine that of a circular sector OAB

(Fig. 122). We consider it to

be divided into an indefinitely

large number of concentric ele-

mentary sectors. The centroid

of each of these, regarded as a

triangle, lies upon a circle

drawn with radius OA' = %OA.
The required centroid is there-

fore the centroid G of the arc A'E' . In order to find that

point (Art. 135), set off the semi-

arc CA along the tangent CM, join

OM, and draw A'N parallel to

OC until it intersects OM in N.

Then G is the foot of the perpen-
dicular let fall from N upon the

mean radius OC f.

145. Next, let the circular seg-
ment ABC (Fig. 123) be given.
This is the difference between the

sector OAB and the triangle OAB, or the sum of the sector OAB

Fig. 123.

*
CULMANN, 1. c., Nos. 96 & 116. t CCLMANX, 1. c., No. 96.
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and the triangle OBA. Therefore the centroid G of the segment
lies on the straight line (the mean radius OC) joining the

centroids G
l ,

G
2
of the sector and triangle, and divides the

segment Gr

1
G

2 into two parts inversely proportional to the

areas of these figures. If we take OA' = ^OA, and find the

point N as just shown (Art. 144), then G
l ,

G
2 are the feet

of the perpendiculars let fall from 'N and A' upon the mean
radius OC. Let F be the point of intersection of AB and OC,

and II the foot of the perpendicular let fall from F upon OA.

Then the areas of the sector and triangle are respectively

equal to CM. OA, and FH . OA, that is to say, they are pro-

portional to the lengths CM smd FH; therefore, if through G
l

and G
2 two parallel segments G

1
I and G

2
K are drawn in the

same sense, equal or proportional to FH, and CM respectively,

KI and OC will intersect in G, the required centroid. In

fact from the similar triangles GG1 I, GG2
K we have

G
l
G : G

2
G =GJ: G

2
K = FH: CM*.

146. If the perimeter of the figure, whose centroid we are

finding, consists of rectilinear segments and circular arcs, we

decompose the figure by drawing the chords of these arcs

or radii to their extremities
;
then we know how to find the

centroid and area of each part, and are able to apply the

process of Art. 142.

Example. Let us find the centrcid of the figure already
dealt with in Art. 107 (Fig. 124). For this purpose we first

consider it to be broken up into three parts, the lune, the

crown-piece, and the sum of the rectilinear parts ; then,

regarding the lune as the algebraic sum of two sectors and

one quadrilateral, the crown-piece as the algebraic sum of

two sectors, and having divided the rectilinear parts by means

of the straight line KCC'K', we finally have the given figure

equal to the sum of the following parts :

1 ...... Sector UAEA',

2 ......Quadrilateral OAUA',

3 ...... Sector AOA'F,

4 ...... Sector OB'B,

5 ...... Sector

CULMANN, Hid.
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. . . Trapeziums BCKH+ H'K'C'ff,

...Trapeziums CJIK+K'I'J'C'.

Fig. 124.

We know how to determine the areas of all these, and by

reducing them to a common base we are also able to construct

their centroids. In order to find the centroid of the sum of

ECKR and R'K'C'B, it is sufficient (Art. 138), to find the

centroid of the trapezium BCKH, and then to draw through
it a parallel to KG until it intersects the axis of symmetry
EO-, the point of intersection is the centroid required.

Now to apply the process of Art. 142, we draw, in a direction

different to EO, say in that of KCC'K', a straight line zz, on

which we set off in succession the segments 1, 2, 3, 4, 5, 6, 7

respectively proportional to the areas of the seven partial

figures, noticing that the segments 3 and 5 must be set off in

the opposite direction to the others, because they represent

negative areas. Through any point whatever V lying outside

zz, draw rays to the limiting points of the above segments ;

then draw lines parallel to zz through the centroids of the

partial figures, and construct a polygon whose vertices lie on

these parallels, and whose successive sides are parallel respec-

tively to the rays emanating from V. Now draw through the

point of intersection of the first and last sides of this polygon a

parallel to zz
;
this line cuts the axis OU in the required

centroid of the given figure. This point G falls in our figure
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very near to the point 2, the centroid of the quadrilateral

OAUA'. If we produce the sides of the polygon sufficiently, in

order to find the point in which the first side cuts the fourth,

and also that in which the fourth and sixth intersect, and if

through these points we draw parallels to zz till they intersect

the axis of symmetry, these latter points of intersection will

be the centroids of the lune and the crown-piece.



CHAPTEE IX.

RECTIFICATION OF CIRCULAR ARCS.

147. IN order to develope a circular arc AB along its

tangent (Fig. 125) we may proceed in the following way.
On BA produced mark off a part

AC J BA, and with C as centre and

CB as radius, describe an arc cutting

the tangent AD in D. Then AD is the

length of the given arc, with a negative

error, whose ratio to the whole arc is

Fig. 125.

1080 54432

being the ratio of the arc to the

radius *.

Otherwise (Fig. 126) : let J9 be the middle point of the arc

AB, and E the middle point of the arc AD ;
let the radius

OE intersect the tangent at A in

C, and join CB
;

then AC+CB
is the length of the given arc with

a positive error, whose ratio to

the whole arc is

o
---=0

Fig. 126.

4320 3484648"
Since 4320=4x1080, if we

add to | of the length found by
the second construction i of that found by the first, the sum
obtained will be very approximately equal to the length

of the arc, with a positive error, whose ratio to the whole

length of the arc is

lie*

870912
"

*
RANKINE, On the approximate drawing of circular arcs of given length

(Philosophical Magazine, October, 1867), p. 286.

f RANKINE, On the approximate rectification of circular arcs (Philoso-

phical Magazine, November, 1867), p. 381.

I
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For the proof of these rules we refer the reader to the

original memoirs of Professor Rankine, cited in the foot-

notes.

148. In regard to this question, it will be convenient to

mention at this point some methods suggested by Professor

A. Sayno, of Milan.

The method given by Culmann for developing a circular

arc AB along the tangent at one of its points is much too long.

The length of a circular arc may be found graphically in

a much simpler fashion, by having recourse to auxiliary

curves, which drawn once for all can be employed in every

example.
Consider a convolution OMRS of the Spiral of Archimedes,

which when referred to its polar axis OX and its pole 0, has

Fig. 127.

the equation p = a o> *, and the circle drawn with centre and

radius OA' = a. Let OM be any radius vector of the spiral,

which cuts the circle in Mf

;
then the arc A'M'= ON. If now

we wish to find the length of an arc A"M" of any radius what-

ever OA", it is sufficient to place the spiral (supposed moved
from its previous position) so that its polar axis coincides with

the radius OA" of the given arc, to mark on OA" the point A',

and on the other radius OM" the point M in which it cuts

the curve. Now take the spiral away and draw through A"
a parallel to A'M, cutting OM" in M'", then OM'" is the

required length of the arc. We can construct this spiral

upon a thin plate of brass, horn, or ivory; it is sufficient

*
p is the radius vector OM, and ca the corresponding vectorial angle A'OM.
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to mark upon it the pole and the point A'. This would be a

new instrument, which might be added as a '

Graphometer
'

to

the case of drawing implements of an Engineer.
The Spiral of Archimedes p = ao> (Fig. 128) enables us also

to develope the arc along the tangent. Having drawn the

Fig. 128.

circle whose radius OA = a, and the circle whose diameter OC

OA, if i>, II are the points in which these circles are

cut by any radius vector OM, then OM= the &TcAH =
arc Off. Therefore, if we wish to set off the arc 0V along
the tangent OX, we need only place the spiral in such a

manner that the pole and the polar axis coincide respectively

with the point of contact and the tangent OX of the given

arc, and then mark the points ff, M in which the chord 07
cuts the circle on OC as diameter, and the spiral. We then take

away the spiral, and mark off on OX the segment OM' = OM\
draw through V a parallel W to ffM', and OF' is the

required length of the arc.

In order .to increase the stiffness of the plate which

forms the instrument, it is best to use the circle of radius

I 2
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OC' = OC, and then, supposing the chord FO to be produced,

we obtain OH' = HO.

Another curve, which serves the same purpose, is the hyper-

bolic spiral, whose equation in polar coordinates is a = p o>.

Draw (Fig. 129) a convolution of this curve NMDCBA, and

M'"

Fig. 129.

mark off a point A' on the polar axis, such that OA' = a. Then

the length of the circular arc MM', of radius OM, is OA'
;
hence

the length of any circular arc whatever M" M"', drawn with its

centre at 0, is OA", where A" is got by drawing M"A" parallel

to MA'. This curve however is of no use in determining the

lengths of small arcs, so that for practical purposes the first

curve is to be preferred.

The hyperbolic spiral enables us also to divide angles in a

very elegant manner. Thus, to find the arc M'N'= - M'M

(Fig. 129), we need only produce the radius vector OM, take

OM" = n - OM, and draw an arc of radius OM" to cut the spiral

in N\ the radius ONmeets

the arc M'Min the required

point N'.

In order to set off the

arc along the tangent we
can also employ another

auxiliary curve, namely the

involute of the circle. Take

(Fig. 130) a circle of radius

OA', and let A'M'ff(fff

be its involute. From the

figure we have at once

the arc MA'=MM', where
'
is the tangent of the circle at M. If now it is required

X 3<>.
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to set off the arc N" M'" (whose centre is 0), along its

tangent from M", we need only draw OH', which if sufficiently

produced cuts the tangent in question in Mfy
,
and M" H'\

is the required length of the arc.

149. By far the simplest method of rectifying the semi-

circumference is that of a Polish Jesuit, Kochansky, which was

published in the Acta Eruditorum Lipsise, year 1685, page

397, according to Dr. BoUcher*. Let be the centre and

Fig. 131.

AB a diameter of the circle of radius = 1
,
the angle COA = 30

Then if we take CD = three times the radius, we have

i.e. 3D 3-14153,

a value of the semi-circumference true to four places of decimals.

By means of this method, the rectification of an arc greater

than 90 can be reduced to the rectification of its supplementary
arc.

*
[In the XVI vol. (Leipsic, ] 883) of Hoffmann's Zeitschrift fur math, und

naturl. Unterricht.]
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AUIHOK'S PEEFACE

TO THE ENGLISH EDITION.

AT a time when it was the general opinion that problems

in engineering could be solved by mathematical analysis only,

Culmann's genius suddenly created Graphical Statics, and

revealed how many applications graphical methods and the

theories of modern (projective) geometry possessed.

No section of Graphical Statics is more brilliant or shows

more effectually the services that geometry is able to render

to mechanics, than the one dealing with reciprocal figures and

framed structures with constant load.

It is to this circumstance that I owe the favourable

reception my little work (Le figure reciproche nella statica

grajica, Milano, 1872) met with everywhere; and not the

least from Culmann himself. It has already had the honour

of being translated into German and French. Having been

requested to allow an English version of it, to be published

by the Delegates of the Clarendon Press, I consented with

pleasure to Professor Beare undertaking the translation.

I have profited by this occasion to introduce some improve-

ments, which I hope will commend themselves to students of

the subject.

L. CREMONA.
ROME, October, 1888.





CHAPTEE I.

POLE AND POLAR PLANE.

1. THAT dual and reciprocal correspondence between figures

in space, discovered by Mobius *, in which, to any plane what-

soever, corresponds a pole situated in the same plane, and all

planes passing through any one point have their poles on the

polar plane of that point is called a Null-system by German

mathematicians-.

Such a correspondence is obtained in the following manner.

Let there be a plane S, and four points in it A, B, C, D ,
no three

of which are in one straight line
;
and let there be three

other planes a, /3, y passing through AD,BD, CD, respectively.

These will be the fixed elements in the construction.

Draw any plane whatever a- cutting the straight lines /3y,

ya, a/3 in P, Q, R respectively, then the planes PBC, QCA,
EAB will all intersect in the same point S of the plane a-.

Demonstration. Let X, Y, Z, Xlt T15
Z

l be the points in

which the straight line 0-6 intersects the sides DC, CA, AB,

AD, BD, CD of the complete quadrilateral ABCD; these

points form three pairs of conjugate points of an involution f,

by Desargue's Theorem. Since the planes 8, <r, a, meet in

Xj the straight line QR common to the planes <r, a passes

through that point; similarly RP passes through Y
ly and

PQ through Z
l

. Of the six points in involution, taken now
in the plane o-, three, Xl ,

Y
l ,
Z

l , belong to the sides QR, RP,

PQ of a triangle PQR', therefore { the straight lines XP,

YQ, ZR meet in one point S, which with PQR forms a com-

plete quadrilateral.

* MOBIUS, Ueber eine besondere Art dualer Verhaltnisse zivisclien Figuren in

Raume, in vol. x. of Crelle's Journal, Berlin, 1833, or in vol. i. p. 489, G-esam-

melte Werke, Leipzig, 1883.

In reality this system of reciprocal figures in space had been already discovered

by GIORGINI (1827), (Meinorie della Societa Italiane delle Scienze Modena, vol. xx).

t CREMONA, Protective Geometry (Oxford, 1885), Art. 131.

J CREMONA, Protective Geometry (Oxford, 1885), Art. 135.
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Therefore the planes BCPX, CAQT, ABRZ meet in a point
8 of the plane PQR.

This theorem may be expressed as follows.

If the faces of a tetrahedron ABC8 pass respectively through
the vertices of another tetrahedron PQRD, and if three faces

of the latter pass through three vertices of the former, then

the fourth face of the second tetrahedron will pass through
the fourth vertex of the first (Theorem of Mobius*).

2. Starting from the fixed elements A, B, C, a, /3, y, let any

plane a- whatever be given, and let it be required to determine

by means of this theorem the point S lying in it.

The plane a- meets the straight lines /3y, ya, a/3 in three

points P, Q, R, and the three planes PBC, QCA, RAB inter-

sect in the required point S.

Conversely, given any point S whatever, to determine the

corresponding plane <r, which passes through S.

The planes SBC, SCA, SAB intersect /3y, ya, afi in three

points P, Q, R, the plane of these points is the required

plane.

The point S is called ihepole of the plane o-, and the latter

is termed the polar plane of S.

3. If the plane o- change its position, the points Q, R in it

remaining fixed, the planes QCA, RAB will remain fixed, and

therefore the point S will move on the straight line (which

passes through A) common to these two planes. When
the point P falls on D, that is, when o- coincides with

QRZ) (i.e. a), the plane PBC coincides with ABCD, and 8

falls on A. Then A is the pole of the plane a, and similarly

B and C are the poles of /3, y.

If the arbitrary plane o- passes through BC, the traces of the

planes QCA ,
RAB on it, will be the straight lines QC, RB

which are the traces of the planes y, (S ;
therefore the pole

falls in the straight line /3y, i.e. on P. The points P, Q, R
are consequently the poles of the planes PBC, QCA, RAB.

If the arbitrary plane coincides with ABC, the point P falls

on D, i.e. D is the pole of the plane ABC.
*
MOBIUS, Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die

andere um und ein-geschreiben zugleich heissen! vol. iii. of Crelle's Journal

(Berlin, 1828), or Gesammelte Werke, vol. i. p. 439.
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4. The pole S of the arbitrary plane o- (or conversely the polar

plane o- of the arbitrary point S) has been determined starting
from the system, supposed given, of three planes a, (3, y

(having no straight line in common) and their poles A , ,
O.

But in the tetrahedron ABCS the relations between the vertices

(or the faces) are perfectly reciprocal, that is, are interchange-
able

;
so that just as 8 has been deduced from ABCa(3y ,

so A
may be determined from SBC<j(3y ;

and so on. From this it

follows that if Slt S2 ,
$

3 are the poles of any three arbitrary

planes o-l9 cr
2 ,

<r
3 (not passing through the same straight line),

deduced in the manner above described from the system

ABCapy, the pole S of the plane a, determined from this

same system, coincides with that which would be determined

by a similar construction starting from S
l
S
2
S
3

a-
1
a-
2

cr3 as the

given system.

5. From the theorem of Mobius it follows that if the plane a-

be drawn through the pole P of a plane TT = PBC, the pole S
of the plane a- falls in TT ; therefore :

If a plane passes through the pole of another plane, con-

versely the latter contains the pole of the former, that is

to say :

If a point lies in the polar plane of a second point, the latter

lies in the polar plane of the former.

From this it follows that the poles of all the planes passing

through a point S lie in a single plane <r
,
the polar plane of S

;

and the polars of all the points of a plane a pass through one

and the same point S, the pole of o-.

6. Let a, /3 be two planes, and A, B their poles. Any plane
whatever through AB will have its pole in a and in /3, that

is, in the straight line a/3 ; conversely, the polar plane of any
point whatever of a/3 will pass through A and B, i.e. through
the straight line AB. And any plane whatever through the

straight line a/3 ,
which contains the poles of the planes through

AB, will have its pole on the straight line AB
;
and conversely,

any point whatever of AB, being on the polar plane of the

points of a/3 ,
will be the pole of a plane through a/3 .

Two straight lines, such as aft and AB, each of which is the

locus of the poles of planes passing through the other, are

called reciprocal straight lines.

\
UNIVERSITY
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Hence it follows that if a straight line r passes through a

point A, its reciprocal r' lies in a, the polar plane of A
;
and

conversely.

7. A straight line r, which lies in a plane a and passes

through A, the pole of a, coincides with its reciprocal, that is

to say, it is reciprocal to itself. In fact, if M is any other

point whatever of r
,
since M lies in a, the polar plane of A

,

then //, the polar plane of M, passes through A. And since /u

must also pass through M, the polar plane of it or of any

point whatever of the given straight line, r passes through
the straight line r.

From this it follows, that two reciprocal straight lines

r and r', which are non-coincident, cannot lie in one plane. If

a plane a passes through both r and /', the pole A of the plane
will be on both r and r', and r would lie in a plane and

contain its pole, therefore r would be reciprocal to itself.

All straight lines reciprocal to themselves and passing

through a given point A lie in a, the polar-plane of A. All

straight lines reciprocal to themselves and lying in a given

plane a pass through A, the pole of a.

A system of straight lines reciprocal to themselves is

called a linear complex, and the straight lines are called rays oi

the complex.
Each ray of the complex which meets a given straight line

r (not itself a ray) meets also its reciprocal straight line /.

In fact, if A is the point common to the ray and to r, the

plane a, the polar of A, must pass through the ray and

the straight line /.

Conversely, if a straight line t meets two reciprocals r and

/, the straight line t is necessarily a ray. For, the point tr

is the pole of a plane which passes through this point, and

through / ;
therefore the plane also passes through t. Hence

t lies in a plane polar to one of its own points, or t is a ray.

From this it follows that all the straight lines (necessarily

rays) cutting two reciprocal straight lines r and /, and

another line <?, also meet the straight line / reciprocal to s.

Two pairs r/, $s' of reciprocal straight lines are therefore

situated on the same hyperboloid, the generators of which are

all rays of the complex of another system.
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8. All planes parallel to the same plane may be considered *

as having in common a line / situated at infinity, therefore

their poles all lie on a straight line r, the reciprocal of /.

Changing the bundle of parallel planes, the straight line r re-

mains parallel to itself, because it passes through a fixed point
/ lying at infinity, that is, through the pole of the plane i at

infinity, in which the straight line r' is always situated.

Such lines r, whose reciprocals lie at infinity, are called

diameters of the complex.
Planes perpendicular to the common direction of the dia-

meters are parallel to each other, therefore their poles are on

a diameter. This diameter a, which is distinguished from the

other diameters by being perpendicular to the planes whose

poles it contains, is called the central axis of the complex.

Straight lines parallel to the central axis are reciprocals

to straight lines in the plane at infinity t
;
and in particular

the central axis is reciprocal to the line at infinity common to

all planes perpendicular to the central axis itself. The point

/, at infinity on the central axis, is the pole of the plane
at infinity.

9. If r and / are any two reciprocal straight lines whatever,

the straight line which passes through their points at infinity

will be a ray of the complex, and will therefore pass through
the pole / of the plane at infinity ;

that is, the points at

infinity of two reciprocal straight lines and of the central axis

are all three in one straight line. Hence it appears that

two reciprocal straight lines and the central axis are parallel

to the same plane.

Therefore, planes parallel to the central axis and passing

through two reciprocal straight lines are parallel to each

other.

From this it follows that :

If two reciprocal straight lines are projected parallel to

the central axis, on a plane, not containing the direction of

the central axis, their projections will be two parallel straight

lines.

We shall suppose that the projection is made on a plane

perpendicular to the central axis.

* CEEMONA, Protective Geometry (Oxford, 1885), Art. 26.



128 POLE AND POLAR PLANE. [10-

Moreover, it follows that the straight line meeting two

reciprocal straight lines and perpendicular to them cuts the

central axis orthogonally.

10. Suppose the central axis horizontal, and let us call that

plane of projection which intersects the central axis in its

own pole the orthographic plane.

Take that point as the origin of a system of rectangular
coordinates x, y , z, and let the axis of z coincide with the

central axis : then the preceding theorems and laws of re-

ciprocity will be expressed by the following equations.
The point (x,yl , z-^)

is the pole of the plane

xy l yx l -\-k(z~zl]
=

where k is some constant.

Conversely the plane
ax + by + cz -f d =

corresponds to the pole
kb ka d

c c c

The straight line

px + qy + rz =
is reciprocal to the straight line

ax + ly + c' =0
px + gy + r'z

where re' r'c = k(aq bp).

11. Hence :

(a) To any number of straight lines r in space, the projections of

which coincide in a single straight line, straight lines / correspond,

whose projections are coincident or parallel, according as the straight

lines r (necessarily lying in a plane parallel to the central axis) are

parallel or not.

(b) To any number of straight lines r in space, the projections of

which areparallel, straight lines r correspond, whose projections are co-

incident orparallel, according as the straight lines r (necessarilyparallel

to a plane passing through the central axis) are parallel or not.

12. If the points A, B, C, D . . .in space are considered as

vertices of a polyhedron, the polar planes a, ft, y, 8, ... are

the faces of a second polyhedron, whose vertices a/3y,...

are the poles of the faces ABC,... of the first. The two
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polyhedra are called reciprocal
'

to the vertices of each corre-

spond the faces of the other, to the edges the edges. Each

polyhedron is simultaneously inscribed and circumscribed to

the other (Art. 1).
Two corresponding edges are reciprocal

straight lines (Art. 6).

Let the two polyhedra be projected on the orthographic

plane ;
the projections will be two figures possessing reciprocal

properties. To each side of the first figure there will cor-

respond a parallel side of the other, since two corresponding-

sides are the projections of two reciprocal edges of the two

polyhedra. If one of the polyhedra has a solid angle, at

which m edges meet, the other will have a polygonal face of

m sides; and therefore, if in one of the orthographic figures

there are m sides diverging from a point or node, the m

corresponding sides of the other orthographic figure will be

the sides of a closed polygon.
In a polyhedron, each edge is common to two faces, and

joins two vertices ;
each face has at least three edges, and

in each vertex at least three edges meet
;

hence in both

orthographic figures, each side is common to two polygons,
and joins two nodes, three sides at least meet in every

node, and each polygon has at least three sides.

Suppose that one of the polyhedra, and consequently the

other, belongs to the class of Eulerian polyhedra"*; then the sum
of the numbers of vertices and faces exceeds by two the number

of edges, from the well-known theorem of Euler. Hence, if

the first orthographic figure possesses p nodes, p
r

polygons, and

* sides, we have
p +y _ s + 2 .

The second figure will have yf nodes, p polygons, and s

sides.

13. If one polyhedron has a vertex at infinity, the other

has a face perpendicular to the orthographic plane, and con-

versely ; consequently, if one of the orthographic figures has

a vertex at infinity, the other contains a polygon whose sides

all lie in the same straight line, and conversely.

If the point / at infinity on the central axis is a vertex

common to n faces of the first polyhedron, then the other

*
TODHUNTEB, Spherical Trigonometry, Chapter xiii, Polyhedra.

K
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polyhedron has in the plane at infinity a polygonal face of

n sides. In this case, the first orthographic figure has p 1

nodes, p' n polygons, and s n sides; and the second (not

reckoning the straight line at infinity) possesses p 1 polygons,

p' n nodes, and s n sides: where the numbers jo, j' s are

connected by the relation



CHAPTER II.

POLYGON OF FORCES AND FUNICULAR POLYGON AS

RECIPROCAL FIGURES.

14. THOSE reciprocal diagrams, which are obtained as the

orthographic projections of two reciprocal polyhedra, present

themselves directly in the study of graphical statics. The

mechanical property of reciprocal diagrams is expressed in the

following theorem due to the late Professor Clerk Maxwell * :

'

If forces represented in magnitude by the lines of a figure lie

made to act between the extremities of the corresponding lines of the

reciprocalfigure, then thepoints of the reciprocal figure will all be in

equilibrium under the action of theseforces'

The truth of the theorem is at once apparent, if we observe

that the forces applied at any node whatever of the second

diagram are parallel and proportional to the sides of the corre-

sponding closed polygon of the first diagram.
The theorem is particularly useful, in the graphical deter-

mination of the stresses, which are developed in frame-work
structures.

15. The first germs of the theory are met with in the

properties of the polygon of forces, whose sides represent in

magnitude and direction a system of forces in equilibrium

applied at any point ;
and also in the well-known geometrical

constructions which enable us to determine the tensions of the

sides of a plane funicular polygon f . But the first to apply
the theory to frame-work structures was the late Professor

Macquorn Eankine, who, in Art. 150 of his excellent work
Manual of Applied Mechanics (1857), proved the following
theorem :

'

If lines radiatingfrom a point be drawn parallel fo the lines of
resistance of the bars of a polygonal frame, then the sides of any

*
Philosophical Magazine, April 1864, p. 258.

f VARIGNON, Nouvelle Mecanique on Statique, dont le projet fat donne en

1687: Paris, 1725.

K 2
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polygon wJiose angles lie in these radiating lines will represent a

system of forces, which, Icing applied to the joints of the frame,
fmll balance each other ; each such force being applied to the joint

between the bars whose lines of resistance are parallel to the pair of

radiating lines that enclose the side of the polygon of forces, repre-

senting theforce in question. Also, the lengths of the radiating lines

will represent the stresses along the bars to whose lines of resistance

they are respectively parallel*'.'

Rankine afterwards published an analogous theorem for a

system of polyhedral frames f.

16. The geometrical theory of reciprocal diagrams is specially

clue to the late Professor Clerk Maxwell, who first in 1864J,
and again in 1870, defined them generally, and obtained

them from the projections of two reciprocal polyhedra.
But his polyhedra are reciprocal in respect to a certain paraboloid

of revolution, in the sense of the theory of reciprocal polarfgures

of Poncelet
|| ;

so that, projecting orthogonally and parallel to

the axis, the corresponding sides of their projections are not

parallel, but perpendicular to one another. Hence we must

rotate one of the diagrams through 90 in its own plane, in

order that it may assume that position which it ought to take

in statical problems.
On the contrary, by the more general process, explained in

this treatise, the orthographic projections of two reciprocal

polyhedra give precisely those diagrams which occur in

graphical statics.

17. The practical application of the method of reciprocal

figures was made the subject of a memoir by the late Professor

Fleeming Jenkin, communicated in March 1869 to the Royal

Society of Edinburgh^. In that memoir, after quoting

* Page 142 of the sixth edition (1872).

t Philosophical Magazine, Feb. 1864, p. 92.

* On reciprocal figures and diagrams offerees (Philosophical Magazine, April

1864, p. 250).

On reciprocal figures, frames and diagrams offorces (Transactions of the

Hoyal Society of Edinburgh, vol. xxvi. p. 1). See -also a letter of Professor

Kankine in the Engineer' Feb. 1872.

|| Or, rather, that of MONGE. (See CHASLES, Aperqu historique, p. 378.)

H On the practical application of reciprocal figures to the calculation of
strains onframework (Transactions of the Royal Society of Edinburgh, vol. xxv.

p. 441). See also, by the same author: On braced arches and suspension bridges,
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the definition of reciprocal figures, and their statical pro-

perty, as enunciated by Maxwell in his memoir of 1864, he

adds :

' Few engineers would, however
^ suspect that the two paragraphs

quoted put at their disposal a remarkably simple and accurate method

of calculating the stresses inframework ; and the author s attention

was drawn to the method chiefly by the circumstance that it was

independently discovered by a practical draughtsman, Mr. Taylor,

working in the Office of the well-known contractor Mr.. J. H. Cochrane.'

He also presents several examples, accompanied by figures,

and finishes with this observation :

' When compared with algebraic methods, the simplicity and

rapidity of execution of the graphical method is very striking ; and

algebraic methods applied to frames, such as the Warren girders, in

which there are numerous similar pieces, are found to result in

frequent clerical errors, owing to the cumbrous notation which is

necessary, and especially owing to the necessary distinction between

odd and even diagonals'

18. But, whilst speaking of the geometrical solution of

problems relating to the science of construction, it is impos-
sible to pass over in silence the name of Professor Culmann,

the ingenious and esteemed creator of graphical statics*, for

to him are due the elegant methods of that science, which,

issuing from the Polytechnic School at Zurich, are now taught
in technical schools throughout the world.

Numerous questions of theoretical statics, as well as many
others which relate more particularly to certain branches of

practical science, are solved by Professor Culmann by a simple

read before the Royal Scottish Society of Arts (Edinburgh, 1870) ;
and the memoir

On the application of graphic methods to the determination of the efficiencies of

machinery (Transactions of the Royal Society of Edinburgh, vol. xxviii. p. 1,

1877).
* Die graphische StatiJc, Zurich, 1866. In 1875 appeared the second edition of

vol. i. with rich additions. The reader is advised to read the Preface to that second

German edition, also Nos. 81 and 82. Graphical Statics have been treated since

in a whole series of elementary works. See UNWIN, Wrought Iron Bridyes

and Roofs, London, 1869
; Bow, Economies of construction in relation toframed

structures, London, 1873 ; CLAKKE, Graphic Statics, London, 1880 ; EDDY, New
constructions in Graphical Statics, in Van Nostrand's Engineering Magazine, New

York, 1877-8, and American Journal of Mathematics, vol. i., Baltimore, 1878,

&c., &c.
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and uniform method, which reduces itself in substance to the

construction of two figures, which he calls Kraftepolygon, and

Seilpolygon. And although he has not considered these figures

as reciprocal, in Maxwell's sense, still they are so sub-

stantially ;
in particular the geometrical constructions which

Culinann gives in Chapter V of his work, devoted to systems
of framework (Das Fachwerk), almost always coincide with

those derived from Maxwell's own methods.

Moreover Culmann's constructions include certain cases,

(which are not treated by the English geometer,) in which it is

impossible to construct the reciprocal diagrams.

19. First of all, I wish to show that the Kraftepolygon and

the Seilpolygon (polygon of forces and funicular polygon) of

Culmann can be reduced to reciprocal diagrams.
Let there be given in a plane (which suppose always

to be the orthographic plane) n forces P
l ,
P
2 ,

. . .
,
Pn in

equilibrium, then by the polygon of forces we understand a

polygon, whose sides 1, 2, . .., n are equipollent* to the straight

lines which represent the forces f.

Take in the same plane a point 0, which will be called the

pole of the polygon of forces, and join the vertices of the

above polygon to that pole ;
denote by (rs) the ray connecting

with the vertex common to the two sides r and s. The

funicular polygon corresponding to the pole is a polygon,
whose vertices lie in the lines of action (which we shall

call 1,2, ,.., n) of the forces P^ P2 , P^, ..., Pn ,
and whose

sides are respectively parallel to the rays proceeding from

OJ, in such a manner that the side comprised between

the lines of action of Pr and Ps ,
is parallel to the ray (rs) ,

this side will be denoted by the symbol (rs).

The funicular polygon will be a closed one, like the

polygon of forces.

20. If the lines of action of the given forces meet in the

same point (Fig. la), we have two reciprocal diagrams, since

evidently the two polygons will be the orthographic pro-

*
Equipollent, that is, equal in magnitude, direction and sense, a term due to

Professor Bellavitis.

t The position of the first side of that polygon is a matter of choice.

J The direction only of the first side of that polygon is determinate.
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jections of two pyramids, having each a polyhedral angle
of n faces.

If the forces are parallel, the polygon of forces is reduced to a

straight line, which corresponds to the case where the base of

Fig. i a.

the first pyramid is perpendicular to the orthographic plane,

and the vertex of the second is at infinity, that is to say, the

second polyhedron is a prism having only one base at a finite

distance. This case is illustrated in Figure 2 a, in which the

Fig. 2 a.

sides of the polygon of forces are not designated by one

number only, but by two numbers, placed at the ends of

each segment; so that the segments 01, 12, 23, 34, ..., cor-

respond to the straight lines 1, 2,3, 4 of the second diagram.
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Here, as in all which follows, we adopt in the text two

series of numbers, 1
,
2

,
3

,
r . . .

,
s . . . ;

1
,
2

,
3

,
r

,
s

,
to distinguish

the lines of the one diagram from the corresponding lines

of the other.

21. Let us consider now the general case, in which the forces

do not all meet in the same point.

Take a second pole 0'; join it by straight lines to the

vertices of the polygon of forces, and construct a second

Fig. 3 a.

funicular polygon corresponding to the new pole 0', that

is to say, a polygon with its sides parallel to the rays

proceeding from 0'
', and its vertices situated in the lines of

action of the forces. See Figs. 3 and 5, in which the rays

proceeding from the second pole O f

,
and the corresponding

sides of the funicular polygon, are denoted by dotted lines.
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By operating in this way, it is plain that the two diagrams,

the one formed by the polygon of forces and the rays issuing

from the poles and 0'
',
and the other formed by the

two funicular polygons and the lines of action of the forces,

are two reciprocal figures. The first is the projection of a

polyhedron*, formed by two solid angles of n faces, whose

corresponding faces form by their respective intersections

a twisted polygon f of n sides; the second is the projection

of a polyhedron comprised within two plane polygons of

n sides, in such a way that the sides of the one meet

the corresponding sides of the other. The straight line, in

space, which joins the vertices of the two solid angles of

n faces of the first polyhedron is conjugate to the straight

line, which the two planes of the bases of the second

polyhedron have in common. As a result of this, and

of the property that two conjugate straight lines are or-

thographically projected into two parallel straight lines,

it follows, that any two corresponding sides whatever (rs),

(rs)' of the two funicular polygons, intersect in a fixed

straight line, parallel to that which joins the two poles

and 0'.

This theorem is fundamental in Culmann's methods.

22. If we make the two poles and 0' coincide, the corre-

sponding sides of the two funicular polygons are parallel

(Fig. 40). In this case the straight line which joins the

vertices of the solid angles of the first polyhedron is per-

pendicular to the orthographic plane, whilst the bases of

the second polyhedron are parallel.

23. The diagonal which joins the vertices of two tetra-

hedral angles of the first polyhedron (Art. 21), or what is the

same thing, the diagonal between two vertices of the twisted

polygon, is conjugate to the line of intersection of the corre-

sponding quadrilateral faces of the second polyhedron, which

* This polyhedron has 3 n edges, 2 n triangular faces, 2 polyhedral angles
of n faces, and n of 4 faces

;
the other polyhedron has 3 n edges, 2 n trihedral

angles, 2 bases which are polygons of n sides, and n quadrilateral faces.

t If this polygon degenerates into a continuous curve, the polygon of forces,

and the funicular polygon become respectively the curve of forces, and the

funicular curve (catenary) of a plane continuous system of forces.
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line unites the point common to two sides of the one of the

bases to the point common to the corresponding two sides

of the other base. In an orthographic projection, the first

straight line is a diagonal joining the two vertices (r, r+ 1),

(5,5+1) of the polygon of forces, that is to say, a straight

line equipollent to the resultant of the forces Pr+1 ,
Pr+2 ..., Pg ;

the second straight line is the line of action of the same

resultant. Hence the line of action of the resultant of any

Fig. 4 a.

number whatever of consecutive forces Pr+ i, Ir+2 ,..., P
s

passes through the point common to the sides (r ,
r + 1) (s ,

s + 1)

of the funicular polygon ;
another fundamental theorem of

graphical statics. (See, for example, Fig. 30, the resultant of

the forces 6,1,2.)

24. If the diagonal in question of the first polyhedron is

perpendicular to the orthographic plane, the conjugate straight

line is at infinity. Two vertices of the polygon of forces

(r, r+1), (s , <?+!) will then coincide in one point A (see

Fig. 5 a, where r = 1
,
s = 4), and the sides (r, r + l), (s, s + l)

of each of the funicular polygons are parallel.

The magnitude of the resultant of the forces Pr+ ^ ,
Pr+2 ,

. . .
,
P

8

will be infinitely small, and its line of action the straight

line at infinity of the orthographic plane ;
it is consequently
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an infinitely small force, acting at infinity, equivalent to a

couple acting in the aforesaid parallel sides of the funicular

polygon, and represented in magnitude by the straight line

which joins the corresponding pole to the point A. Since

these two forces are equivalent to the system of forces Pr+ i,

Pr+2 ,...,Ps ,
the one which acts along the side (r, r + l)

is

n*

Fig. 5 a.

directed from A towards
;
and the one which acts along the

side (s, s + l) is directed from towards A.

25. Given the forces Pl9 2̂ ,
P
3 ,..., P

tt_^ (Art. 19), the

two polygons (that is the force and funicular polygons) serve

to determine the force Pn , equal and opposite to the resultant

of the given forces (see Fig. 3, in which n = 6).
In fact, if we

construct a crooked line 1
,
2

,
3

,
. . .

, (n 1
),
whose sides are

equipollent to the given forces : it is clear that the straight

line n which joins the extremities of the crooked line (when
its direction is from the final to the initial point) is equipollent
to Pn . Next take a pole 0, and construct a funicular polygon,
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whose first n 1 vertices 1
,
2

,
3

,
, . .

, (n l) ,
lie in the lines

of action of the given forces P^ P
2 ,
P
3 , ..., J^ ;

and whose

sides (n , l) (l , 2) (2 , 3) . . . (n 1
, n) are respectively parallel to

the rays connecting with the similarly named vertices of

the first polygon. Then the straight line drawn through the

last vertex n of the funicular polygon, (that is to say through
the point where the first side (n.l) meets the last (n 1, n),)

parallel to the last side n of the polygon of forces, is the line

of action of Pn .

If the first side of the funicular polygon passes through a

fixed point, and the pole moves in a straight line, then all

the sides pass through fixed points situated on a straight line

parallel to the one described by the pole (Art 21). This

is contained in the celebrated porism of Pappus :

'Si quotcnmque rectae lineae sese mutuo secent, non plures quam
duae per idem pimctum, omnia autem in una ipsarum data sint, et

reliqiiorum multitudinem liabentium triangulum numerum, kujus lotus

singida habet puncta tangentia rectam linearn positions dafam, quorum
trium non ad ongulum existens trianguli spatii unumquodqiie reli-

quum punctnm rectam lineam positione datam tanget*!

26. If we consider the point to be capable of occupying

any position whatever in the plane, the properties of the two

polygons (that is the polygon of forces and the funicular

polygon) may be compendiously stated in the following geo-

metrical enunciation:

Let a plane polygon be given of n sides 1
,
2

,
3

, ...,(!),
n\ and, in the same plane, n\ straight lines 1, 2, 3,...,

(n l) , respectively parallel to the first n\ sides of the poly-

gon. Join the point (i.
e. a pole, moveable in any manner

whatever in the plane) to the vertices of the given polygon.

Imagine further a variable polygon of n sides, the first,n\
vertices of which 1

,
2

,
3

,
. . .

, (n l) ,
lie in the corresponding

similarly named straight lines, whilst its n sides (n.l), (1.2),

(2.3) ...,(n 1, n) are parallel to the rays which join the simi-

larly named vertices of the given polygon to the pole 0.

Then the intersection of any two sides whatever (r, r + l),

*
\_Mathematlcae Collectiones, preface to Book VII. p. 162, of the edition of

COMMANDING (Venice, 1689). See also the translation or paraphrase of the porism,

given by PONCELET in No. 498 of his Traitt des propridtes projectives (Paris,

1822)].
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(s . s + 1) ,
of the variable polygon lies on a determinate straight

line, parallel to the diagonal which joins the vertices (r.r+ 1),

(,?,s+l) of the given polygon.
This theorem, which is not very readily proved by means

of the resources of Plane Geometry alone, is on the contrary

self-evident, if we consider the two plane figures as ortho-

graphic projections of two reciprocal polyhedra.
27. The polygon of forces is the projection of a plane poly-

gon, or twisted polygon, according as the directions of the

forces P do or do not meet in the same point. As we have

seen in Art. 20, one of the two reciprocal diagrams in the first

case is formed by the polygon of forces and the pole 0, the

other, by the lines of action of the forces, and the funicular

polygon corresponding to the pole 0. In the second case,

on the contrary, another pole 0' must be added to the first

diagram, and to the second a funicular polygon corresponding
to this pole O f

;
we have further seen from Art. 22 that the

two poles may be made to coincide, and that then the first

diagram becomes as simple as possible. But, if we wish on

the other hand to simplify the second, it is best to remove the

pole 0' to infinity in an arbitrary direction
;
and then the

polyhedron, of which the first diagram is the orthographic

projection, has the vertex of one of its polyhedral angles at

infinity ;
and since the polar plane of a point at infinity is

parallel to the central axis, the new funicular polygon cor-

responding to O f
has all its sides on the same straight line

(whose point at infinity is 0'\ The absolute position of this

straight line in the orthographic plane is still arbitrary, and

therefore it may be removed to infinity.

Very simple results are also obtained by the following
method :

Suppose that the previously mentioned polyhedral angle of

the first solid coincides with the infinite point of the central

axis
;
in the first diagram the pole alone appears, since the

edges corresponding to the other polyhedral angle are pro-

jected orthographically into the vertices of the polygon of

forces. The polar plane of the vertex
'

is now at infinity ;

hence the whole of the second funicular polygon is at an infi-

nite distance (see Art. 13).

28. We conclude from these very simple cases, that it is
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possible to consider the polygon of forces, and the funicular

polygon, of a system of forces in equilibrium, situated in a

plane (the orthographic plane), but not meeting in the same

point, as reciprocal diagrams. The one diagram is formed by
the polygon of forces and the rays joining its vertices to a

pole 0, and the other by the lines of action of the forces,

the funicular polygon relative to the pole 0, and the straight

line at infinity; the first diagram is simply the projection

of a polyhedron, whose faces are obtained by projecting the

n sides of a twisted polygon perpendicularly to the orthogra-

phic plane, from a point in space at infinity. The reciprocal

polyhedron, which has for its projection the second diagram,
is the infinite portion of space, limited by a plane polygon
and the n planes passing through the sides of that polygon
and prolonged everywhere to the plane at infinity.



CHAPTER III.

APPLICATION OF RECIPROCAL DIAGRAMS TO FRAMEWORK.

29. LET us pass on now to the study of the more com-

plicated diagrams, which present themselves in the theory of

frames'*. Consider two polyhedral reciprocal surfaces 2 and

2', which possess an 'edge,' are simply connected f, and whose

edges are two closed twisted polygons J; let IT be the poly-

hedron enclosed by the surface 2, and the pyramidal sur-

face whose vertex is a point 1
,
taken arbitrarily in space, and

whose base-line is the polygonal edge of 2
;

let FI' be the

polyhedron reciprocal to n
,

i. e. the polyhedron enclosed by
the surface 2', the polar plane o> of H, and the planes of the

angles of the polygonal edge of 2'. Project orthographically

the two polyhedra, and we obtain two reciprocal diagrams,

which we will now proceed to study.

Suppose that the polygonal edge of 2 has n sides, and that

the surface has besides these m ordinary edges ,
and p faces.

The polyhedron IT will have n+p faces, and 2n + m edges,

and therefore m +np + 2 vertices. Hence 2 has, besides

those on its polygonal edge, m p + I vertices
||.

* A Frame is a structure composed of bars or rods attached together by

joints, which are considered merely as hinges or pivots. Let AB be any one

bar (whose weight is neglected) of such a frame ;
and assume that no force

acts upon it, except at the joints A ,
B. Then the whole of the forces (some

external, some consisting of pressures from the bar or the bars which meet it at

the joint A] acting on it at the joint A can be reduced to a single resultant : so

may those at the joint IB
;
and these resultants being necessarily equal and

opposite, must act along the bar AS. Hence the bar is in a simple state of

tension, when these resultants act outwards
;
or of compression, or thrust, when

they act inwards. A bar is called a tie when in tension ; a strut when in com-

pression (CEOPTON, Lectures on Applied Mechanics, at the Royal Military

Academy, London, 1877).

\" A surface with an edge is simply connected, if its edge is a single closed

continuous line which does not intersect itself.

J If the edge of 2 is a plane polygon of n sides, that of 2' will be a point,

the vertex of a polyhedral angle of n faces.

We have evidently m ~~! n.

J|
Therefore m can never be less than p 1.
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Reciprocally, FT has m +np + 2 faces, n+p vertices, and
2 n + m edges.

30. Suppose now that the projection of 2 '
is the skeleton of

a frame with p joints, and m rectilinear bars, and that the

external forces which are applied to it have for their lines of

action the projections of the sides of the polygonal edge of 2',

and are represented in magnitude by the n sides of the pro-

jection of the polygonal edge of 2*. Then the projection of

the face of n ', which lies in the plane co
,
will be the funicular

polygon of the external forces, corresponding to the pole 0,

the projection of 2,
;
and the projections of the m edges of

2, not pertaining to its polygonal edge, represent the values

of the internal forces or stresses to which the corresponding
bars of the structure are subjected, in consequence of the

given system of external forces.

31. If the point il is removed to infinity in a direction per-

pendicular to the orthographic plane, the plane o> will coincide

with the plane at infinity. Then the first diagram reduces to

the projection of 2, i.e. to the entire system of the straight

lines which represent the magnitudes of the external and

internal forces
;

and the second diagram, from which the

funicular polygon has completely disappeared, merely contains

the skeleton of the structure (i.e. the lines of actions of the

internal forces), and the lines of action of the external forces.

In the figures which accompany the text, the first diagram is

indicated by the letter b
,
and the second by the letter a .

32. If the external forces are all parallel to one another, as

very frequently happens in practice, the edge of 2 will be

a polygon situated entirely within a plane perpendicular to

the orthographic plane ;
and therefore the sides of the polygon

of external forces will all fall on one and the same straight

line.

33. The diagrams may be formed by other degenerate poly-

gonal figures arising from analogous degenerations of the

figures in space.

Suppose, for example, that we have in space a solid tetra-

hedral angle, corresponding to a quadrilateral face in the

* This is only possible when 2 has no vertex at infinity ;
i.e. when 2' has no

face perpendicular to the orthographic plane.
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reciprocal figure; and let two edges (not opposite) of the

solid angle approach one another indefinitely, in their plane,

and ultimately coincide. The solid tetrahedral angle will

be replaced by a system composed of a trihedral angle and a

plane passing through one of its edges. Consequently the

quadrilateral face of the reciprocal figure will have twro sides

which, without ceasing to have a common vertex, will be super-

posed and may have either the same or the contrary direction.

Passing from the figures in space to their orthographic

projections, we shall have in one of the diagrams a point from

which four straight lines diverge, two of which will be super-

posed ;
and in the other diagram a quadrilateral with three

collinear vertices'*.

34. Given the skeleton of a framework and the system of

external forces, it is necessary first of all to construct the

polygon of these forces, i.e. a polygon whose sides are equi-

pollent to them. In the figures contained in this work both

the external forces and the sides of their polygon are denoted

by the numbers 1
,
2

,
3

,
. . . ,

so disposed that, if we go round

the contour of the polygon in the increasing order of the

numbers, each side is passed over in the sense of the force

which it represents. This way of going round the polygon is

called the cyclical order of its contour.

When we wish to construct the diagram reciprocal to the

one formed by the bars of the frame and by the lines of

action of the external forces, the order in which the forces

are made to follow one another when their polygon is con-

structed is not arbitrary; this order is determined by the

following considerations :

In the polygon of externalforces >
whichforms part of the diagram

b, the sides equipollent to two forces will be adjacent, when the lines

of action of thoseforces belong to the contour of the same polygon in

diagram a, because that polygon corresponds to the vertex which is

common to those two sides.

Let us then give the index 1 to any one whatever of the

external forces
;
the line of action of the selected force is a

side common to two polygons of diagram a
;
the contour of

*
Examples of these degenerate forms are to be found at p. 444 and in the first

two tables of the memoir of Professor Fleeming Jenkin, already cited on p. 132,

1869, and in Fig. 9 of our examples.

L
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each of these contains the line of action of another external

force
;
thus there are two external forces which may be re-

garded as contiguous to the force 1
,
and the index 2 may

be attributed to either of them indifferently, and the index

n to the other, where n is the number of external forces.

After this, the order of the other sides of the polygon of

external forces is completely determined. Suppose that

the joints, to which the external forces are applied, all lie

on the contour* of the skeleton of the framework, then

the forces must be taken in the order in which we meet

them in passing round the contour. When we do not follow

these rules, as well as those previously laid down, we are

still able to determine the internal forces graphically, but

we no longer have two reciprocal diagrams, and the figures

will be very complicated ;
since any segment which does not

lie in its proper place will have to be repeated or removed

to another place in view of further f constructions
; just

what happens in the old method, which consists in con-

structing a polygon of forces for each separate joint of

the framework.

35. The polygon of external forces being thus constructed,

we complete the diagram b, by constructing successively the

polygons which correspond to the different joints of the

framework.

The problem, of constructing a polygon all of whose sides

have given directions, is soluble when only two of the sides

are unknown. For this reason we ought to commence at

a joint through which only three straight lines pass ;
the

lines of resistance of two bars, and the line of action of an ex-

ternal force. The segment equipollent to the external force will

be a side of the triangle corresponding to the joint in question,

and consequently we are able to construct the triangle.

* The contour of certain structures (trusses) is composed of two systems of

bars, an upper and lower. The bars which unite the joints of one of these systems
to those of the other (we consider them as going from the upper to the lower) are

diagonals or braces, if they are inclined from left to right, and if inclined in

the opposite sense contra-diagonals. We call the upright bars verticals.

"t* For this reason Figs. I and 3 of PI. xvi. in the atlas of Culmann's Graphical
Statics are not reciprocal, and similarly Figs. 7 and 7, of pi. xix., &c.

;
on

the other hand, diagrams 168 and 169 of p. 422 (1st edition) are perfectly

reciprocal.
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The construction presents no ambiguity, if we remember

that to a bar of the framework belonging to the contour of a

polygon of the diagram a, to which the lines of action of two

external forces also belong, corresponds in the diagram b a

straight line passing through the vertex common to the sides

equipollent to those two forces.

Then we pass on successively to the other joints, taking
them in such an order that in each new polygon to be

constructed only two unknown sides remain.

In the figures given, all the lines of each of the diagrams
have numbers attached to them indicating in what order the

operations are to be performed.
1 Thefigure can be drawn in a feio minutes, whereas the algebraic

computation of the stresses, though offering no mathematical diffi-

culty, is singularly apt,from mere complexity of notation, to result

in error*'

36. A superficial consideration might lead us to conclude

that the solution of the above problem is possible and deter-

minate, even in the case where the frame has no joint at which

three straight lines only intersect f.

Suppose, for example, that the skeleton of the structure is

formed by the sides 5,6,7,8 of a quadrilateral and the

straight lines 9,10,11,12 which join its vertices to a fifth

point; and let the external forces 1,2,3,4 be applied at

the vertices (8, 5, 9), (5, 6,10), (6, 7, ll), (7, 8, 12) of the

quadrilateral J. Construct the polygon 1,2,3,4 of external

forces and through the points (1 , 2), (2, 3), (3, 4), (4, 1) re-

spectively, draw the indefinite straight lines 5,6, 7
,
8 .

Then our problem is, to construct a quadrilateral, whose

sides 9,10,11,12 are respectively parallel to the lines denoted

by these numbers in the given diagram, and whose vertices

(9, 10), (10, 11), (11 , 12), (12,9) lie respectively on the straight

lines 5,6,7,8. Since the problem of constructing a quadrila-

teral whose sides have given directions (or pass through given

* Professor Fleeming Jenkin, p. 443 of the volume of the Transactions of Edin-

burgh already cited on p. 132.

t The frame or truss is always supposed to be formed by triangles only.

J Exactly the same reasoning applies to the structure formed by any polygon

whatever, and the straight lines joining its vertices to a fixed point.

We have given no figures for this article, but the reader can easily supply

them for himself.

L 2
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points on the same straight line), and whose vertices lie on

four fixed straight lines admits in general of one, and only

one, solution
;
we might at first sight suppose that the diagram

of forces is completely determined.

But this illusion vanishes when we remember that the geo-
metrical problem presents certain cases which are impossible
and indeterminate. In a word, suppress one of the con-

ditions, that is, assume that the quadrilateral has its sides

parallel to the given directions, and that its first three vertices

only lie on given straight lines 5
,
6

,
7

;
then we know that

the fourth vertex describes a straight line r* whose point of

intersection with the given straight line 8
,
will determine

the fourth vertex, and give the required solution. Now if the

data are such that r is parallel to 8
,
we arrive at an impossi-

bility. Again, making a still more special hypothesis, if the

straight line r coincides with 8, the problem is indeterminate,

and an infinite number of quadrilaterals will satisfy the con-

ditions of the problem.
In order to show that the construction of the diagram reci-

procal to the given diagram is indeterminate or impossible, it

is enough to reflect, that if we consider the given diagram as

the polygon of forces whose magnitudes are represented by
the segments 5, 6, 7, 8, the pole of the polygon being the

point (9, 10, 11, 12), then the reciprocal diagram (9, 10, 11,

12) is simply the corresponding funicular polygon. But,

in order that the construction of the funicular polygon

may be possible, it is necessary that the forces should be in

equilibrium : if then we suppose the magnitude of the forces

5, 6, 7, 8 given, and also the lines of action 5,6,7 of three of

them, the line of action of the fourth is perfectly determined,

and is the straight line r of which we have just spoken.

Hence if r and 8 do not coincide, the forces in question 5,6,7, 8

are not in equilibrium, but are equivalent to an infinitely

small force at an infinite distance, and the problem is impos-
sible

; if, however, r and 8 do coincide, that is to say, if

the forces in question are in equilibrium, the problem is inde-

terminate, since for a given pole and system of forces we are

able to construct an infinite number of funicular polygons.

* This is the Porism of PAPPUS, for which see CEEMONA'S Protective Geometry,
Art. 114.
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In the first of these two cases, equilibrium might be

obtained by combining the forces 5, 6, 7, 8 with a force

equal and opposite to their infinitely small resultant, situated

at infinity, i.e. by considering the polygon 5, 6,7,8 as the

projection not of a quadrangle but of a pentagon, two succes-

sive vertices of which project into one and the same point

(7, 8, 12). The straight line 12 would then be the projection

of two distinct straight lines in space, and consequently in

the reciprocal diagram, to the point (9 , 10, 11, 12) there would

correspond an open pentagon 9, 10, 11, 12,12', having its

vertices (9, 10), (10, 11), (11 , 12), (12'- 9) situated respectively

on the straight lines 5,6,7,8, and its vertex 1 2, 1 2' at infinity.

37. Each rectilinear bar of a framework is the line of

action of two equal and opposite forces, applied respectively

at the two joints connected by the bar. The common magni-
tude of these two forces, that is to say, the measure of the

stress which they exert on the bar, is given by the length of

the corresponding straight line of diagram b. These two

forces may either be considered as actions or as reactions :

to pass from one case to the other, it is only necessary to

reverse their directions'*.

38. Each joint of the framework is the point of application
of a system of at least three forces, in equilibrium ;

one of them

may be an external force, the others are the reactions which

are called into play in the bars which meet at the joint in

question. It is sufficient to know the sense of one of these

forces in order to obtain that of all the others. Two cases are

possible.

First, if an external force be applied at the joint con-

sidered
;
then if we pass along the corresponding side of the

polygon of forces in the sense of that force, each of the other

sides of the polygon will be passed over in the sense which

belongs to its corresponding internal force, considered as a

reaction applied at the joint in question. If, on the con-

trary, we wish to find the sense in which the internal forces

would act when considered as actions, it is sufficient to reverse

the direction of the external force.

* In the figures of this work the ties are shown by finer lines than the struts.

In the figures of Culmann and Reuleaux the struts are shown in double lines, the

ties fey single ones. See the first note on p. 143.
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If the only forces which act at the joint in question are

internal forces, it is likewise sufficient to know the sense of

one of them in order to find by the process just explained the

sense of all the others.

We shall call that order which corresponds to the internal

forces considered as actions the cyclical order of the contour of

a polygon of the diagram b. We see then, that by commenc-

ing at any joint at which an external force is applied, we are

able to determine in succession the magnitude and sense of all

the internal forces. By considering one of the internal forces

as an action applied at one of the two joints between which it

acts, we are able to recognise at once whether the bar connect-

ing the same joints is in compression or tension.

Every straight line in diagram I is a side common to two

polygons : in going round the contour of each of them in their

respective cyclical order, the sides will be described once in

the one sense, and once more in the contrary sense *.

This corresponds to the fact that the straight line in ques-

tion represents two equal and opposite forces acting along
the corresponding bar of the framework.

39. We know that the algebraic sum of the projections of

the faces of a polyhedron is equal to zero. By applying this

theorem to the polyhedron IT (Art. 29), remembering that the

projection of the surface 2 forms the polygons of the diagram
#, corresponding to the joints of the structure, whilst the pro-

jection of the rest of the polyhedron IT is simply the polygon
of external forces, we arrive at the following theorem :

Regarding the area of a polygon as positive or negative according

as that area lies to the right or to the left of an observer passing

round its contour in the cyclical order which belongs to it, then the

sum of the areas of the polygons of diagram b which correspond

to the joints of theframework is equal and opposite to the area of
the polygon of externalforces.

Clerk Maxwell has arrived at this theorem in another

* This property is in accordance with the so-called Law of Edges (KANTEN-
GESETZ) of polyhedra possessing one internal surface and one external.

See M&BIUS, Ueber die Bestimmiing des InJialts eines Polyeders (Leipziges

Berichte, 1865, vol. 17, p. 33 and following), or Gesammelte Werke, 2nd Baud,

p. 473 ;
also BALTZEE, Stereometric, 8, Art. 16.
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way by investigating whether it is possible or not to con-

struct the diagrams of forces * for any plane frame whatever.

40. The method of sections generally employed in the study
of variable systems furnishes a valuable means of verification.

If an ideal section le made in the structure, then in each of the

parts so obtained, the external forces are in equilibrium with the

reactions of the Lars cut across
liij

the section.

If only three of the reactions are unknown, we can deduce

them from the conditions of equilibrium, since the problem
of decomposing a force P into three components, whose lines

of action 1,2,3 are given and form with 0, the line of action of

P, a complete plane quadri-

lateral, is a determinate pro-

blem and admits of only one

solution.

In fact (Fig. 6) it is only

necessary to draw one of the

diagonals of the quadrilate-

ral, for example, the straight

line 4 which joins the points

(0,1), (2,3); to decompose
the given force into two

components along the straight
lines 1, 4 (we do this by con-

structing thetriangle offerees

,
4

,
1 of which the side o is

given in magnitude and direction) ;
and finally to decompose

the force 4 along the straight lines 2 and 3 (by constructing
in like manner the triangle of forces 4,3,2).

This method, which may be called the static method, is all-

sufficient for the graphical determination of the internal forces,

equally with the geometrical method, previously explained,
which is deduced from the theory of reciprocal figures, consists

in the successive construction of the polygons corresponding
to the different joints of the structure. The static method is

at least as simple, it can be rendered very useful in combina-

tion with the latter method, and it permits the rapid verifica-

tion of the constructions. The external forces applied to a

portion of the structure, obtained by means of any section

* Memoir of 1870, p. 30, already cited on p. 132.

Fig. 6.
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whatever, and the reactions of the bars that are cut, must have

the property that the corresponding lines of diagram b form a

closed polygon. This polygon must be the projection of a

closed twisted polygon, and not merely of an open crooked

line whose extremities are situated in a straight line perpen-
dicular to the orthographic plane ;

this condition requires

that the twisted reciprocal polygon shall also be closed, i.e. we
are able to unite the corresponding lines of the diagram a by
a closed funicular polygon.
The method of sections may also be presented in another

form. Denoting again by the resultant of all the known
forces applied to the portion of the structure considered, and

by 1, 2, 3 the three unknown reactions, the sum of the moments

of these four forces in regard to any point whatever is zero.

Now, by taking as the centre of moments the point where

two lines of resistance meet, for example, the point (2 , 3), the

moment of the third reaction 1 will be equal and opposite

to that of the force 0. We thus obtain a proportion between

four magnitudes (the two forces and their moments) among
which the only unknown quantity is the magnitude of the

force 1. This is the method of statical moments, by which

the internal forces developed in the different bars of a frame-

work can be calculated numerically, instead of being con-

structed graphically *.

* See A. KITTEK, Elementdre Theorie und BerecJinung eiserner Dach- und

BrucJcen-Constructionem, 2nd edition (Hannover, 1870).



CHAPTEE IV.

EXAMPLES OF FRAME- AND STEESS- DIAGRAMS.

41. WE will now pass on to the study of some suitable

examples to show the simplicity and elegance of the graphic

method. We do not always adhere to regularity and sym-

metry of form in the structures which we are about to study,

although in practice engineers hardly ever depart from these

conditions. But the symmetrical forms of practice are only par-

ticular cases of the irregular ones of abstract geometry : and there-

fore the forms which we shall treat include all the cases

which are possible in practice. In what follows, the expres-

sion 'framed structure' will be used in the general and

theoretical sense which Maxwell attributed to the word

frame.

* Aframe is a system of lines connecting a number of points. A

stiff frame is one in which the distance between any two points

cannot be altered without altering the length of one or more of the

connecting lines of the frame. A frame of s points in a plane

requires in general 2s 3 connecting lines to render it stiff*'

We confine ourselves to the study of plane figures formed

by triangular parts.

42. As a first (general and theoretical) example, let 1,2,

3
,

. . .
,
10 (Fig. 7 a) be a system of ten external forces in equi-

librium
;
construct the corresponding polygon of forces, and

join its vertices to an arbitrary pole (Fig. 7 &, in which the

polygon of forces is represented by double lines). Draw next

a funicular polygon, having its sides respectively parallel to

the rays from (Fig. I),
and its vertices lying in the lines of

action of the forces 1,2,3, . . .
,
10 . The forces in question are

applied at the different joints of a framed structure, the bars

of which are numbered from 11 up to 27 (Fig. 7 a).

*
Page 294, Phil. Mag., April 1864.
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We commence by constructing the triangle corresponding
to the joint (10,11, 12), drawing through the extremities

of the straight line 1 two straight lines 11, 12, respectively

Fig. 7 a.

Fig. 76.

parallel to 11 and 12
;
we notice that the straight line 1 1

must pass through the point (1, 10), because in the dia-

gram ,
the lines 1, 10, 11 belong to the contour of the same

polygon* ;
for the same reason 12 must pass through the

point (9 , 10) . Passing round the contour of the triangle just

* This polygon is a quadrilateral, whose fourth side is the side of the funi-

cular polygon comprised between the forces 1 and 10. As previously stated

(Arts. 27, 31) the whole of the funicular polygon might have been removed to

infinity.
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obtained, in a sense contrary to that of the force 10, we
obtain the sense of the actions called into play at the joint we
are dealing with, along the lines 11 and 12

;
and it is thus seen

that the bar 11 is in a state of compression and the bar 12 of

tension.

Now construct the quadrilateral corresponding to the joint

at which the force 9 is applied, and for this purpose, draw 1 3

through the point (11, 12) and 14 through the point (8,9).

The bar 13 is in compression, 14 in tension.

Next construct the pentagon corresponding to the joint at

which the force 1 is applied, by drawing 1 5 through the point

(13, 14), and 16 through the point (1,2). The pentagon thus

obtained is a crossed one. The bar 15 is in tension, 16 in

compression.
Then construct the pentagon corresponding to the joint at

which the external force 8 is applied ; by drawing the line

17 through the point (15, 16), and the line 18 through the

point (7, 8). The bar 17 is in compression, 18 in tension.

Continuing in this manner we find all the other internal

forces. The last partial construction gives the triangle which

corresponds to the point of application of the force 5 . The

bars 20, 21, 24, 25, 27 are in compression; 19, 22, 23, 26

are in tension.

43. Figure 8 a represents a bridge girder, at the joints of

which are applied the forces 1
,
2

,
3

,
. . .

,
8

,
9

,
1

,
. . .

,
16 all

vertical; the forces 1 and 9 acting upwards represent the

reactions of the supports ;
the forces 2,3, ...

,
8 are the weights

applied at the joints on the upper platform; and 10,11,...,

16 the weights applied at the joints of the lower platform.

These forces are taken in the order in which they are met

with in going round the contour of the structure
;
and in

diagram b the sides of the polygon of external forces are

disposed in the same order. This polygon has all its sides

lying in the same vertical straight line
;

the sum of the

segments 1
,
9 is equal and opposite to that of the segments

2, 3,.. .8. 10, 11, ...,16, because the system of external forces

is necessarily in equilibrium.

The diagram I is completed by following precisely the same

rules as those just laid down. Commence at the joint (l, 17,

18) ;
draw the straight line 17 through the point (1,2), where
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the upper extremity of the segment 1 meets the upper

extremity of the segment 2
;
and the straight line 1 8 through

the point (16, 1), which is both the lower extremity of the

segment 1 6 and that of the segment 1 .

Fig. So.

Pass on to the joint (2, 17, 19, 20). Draw 19 through the

point (17,18), and 20 through the point (2, 3), the lower end

of 2 and upper extremity of 3
;
and we obtain the polygon

2,17,19,20, which is a rectangle.

Fig. SI.

Construct the polygon corresponding to the joint (16, IS,

19, 21, 22). For this purpose draw 21 through the point

(19, 20), and 22 through the point (15, 16) ;
we thus obtain

a crossed pentagon. Continue to deal in the same manner

with each of the points of application of the forces 3
,
15

,
4

,

14
,
13

,
5

,
12

,
6

,
11

,
7 . 10

,
9

,
taken in succession.

Since the diagram a, which represents the skeleton of the

structure and all the external forces, has for its axis of sym-

metry the vertical which passes through the centre of the

figure, the diagram b has for its axis of symmetry the median

horizontal line. For example, the triangle 9, 45, 44 is sym-
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metrical to the triangle 1, 17, 18
;
the rectangle 8, 45, 43, 42

to the rectangle 2, 17, 19, 20: and so on.

All the upper bars are in compression, and all the lower

ones are in tension.

The diagonals and contra-diagonals are all in compression ;

finally two of the verticals 23, 39 are in tension, and all the

rest in compression.

44. Figure qa* represents one half of a locomotive shed.

The external forces are the weights 1,2,3,4,5 applied at

the upper joints of the frame, and the reactions 6 and 7 of the

wall and column. Again, all the external forces are parallel,

and consequently the polygon of forces reduces, in diagram

#, to one straight line. The force 6 (taken in the opposite

sense to that in which it really acts) is equal to a certain part
of the weight 5

; by adding the difference

to the other weights we get the magni-
tude of the force 7 .

In the diagram b the direction of the

lines 8 and 1 3 coincide
;
the first is a

part of the second. Here then we have

for the polygon corresponding to the joint

(8, 10, 12, 13) one of those degenerate

forms about which we spoke in Art. 33
;
the

polygon is in fact a quadrilateral 8, 10,

12, 13, having three of its vertices (13,8),

(8, 10), (12, 13) in one straight line.

The polygon 5
, 17, 18, 6

, corresponding to the point where

* This example is taken from PI. xix. of the atlas of Graphische StatiJc ofCULMANN,
1st edition. As previously stated, the two diagrams are not rigorously reciprocal.
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the roof is supported by the wall, presents an analogous

degenerate form, since the vertices (6 , 5), (upper point of the

segment (6) ,(5,17), and (1 8 , 6) all lie in the same straight line.

The lower bars 8, 13, 18 are in compression, as well as

the diagonals 10
,
14

,
16

,
the column 7 and the wall 6

;
while

the upper pieces 9
,
11

,
15

,
17 and the diagonal 12 are in tension.

45. Diagram a of Fig. 10 represents a truss at the upper

joints of which are applied the oblique forces 1,2, . . .
,
7

,
which

Fig. ioa. Fig. lob.

may be considered as the resultants of the dead-loads and

wind pressure ;
the forces 8

,
9 represent the reactions at

the supports.

The polygon of external forces is drawn in diagram l> with

double lines.

We construct successively the triangle 1, 10, 11
,
the quad-

rilateral 9,10,12,13, the pentagon 2,11,12,14,15, the

quadrilateral 13, 14, 16, 17, the crossed pentagon 3, 15,16,

18, 19
;
the crossed quadrilateral 4, 19, 20, 21, the pentagon

17, 18, 20, 22, 23, and so on.

The upper bars 15, 19, 21, 25 are in compression, as well as

the lower bars 1O, 13, 30, and the verticals 12, 16, 24, 28
;

whilst all the remaining bars of the structure are in tension.

46. The diagram a of Fig. 1 1 represents a suspension

bridge, loaded at each of its upper joints with weights 1,2,

...
, 8, and at each of its lower joints with weights 10, 11, 21,

...,16; the weights are kept in equilibrium by the two
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oblique reactions 9, 17 at the two extreme points of the

structure *.

The polygon of external forces has its first eight sides in

succession along the same vertical straight line, and its seven

3')

/w\wv /W V2

'24 \/2S \/32 \/j6 \/4
^ 37

\

I r I

JJ 12 11

Fig. 1 1 a.

last sides situated in another vertical straight line. The

oblique sides 9 and 17 intersect, so that the polygon is a

crossed one. We construct successively the polygons 1,17,

19, 18; 16, 19,20, 21
; 2, 18,20, 22, 23; 15, 21, 22, 24, 25;

3, 23, 24, 26, 27
;
and so on

;
most of which are crossed.

Diagram b shows that the upper bars are all in tension,

and that the tension decreases from the ends towards the

Fig. 1 1 1.

middle of the structure ;
the bars of the lower boom are also

all in tension, but in them the tension decreases from the

middle towards the ends.

The extreme diagonals and contra-diagonals are in tension
;

in the portion situated to the left of the axis of symmetry, the

diagonals or braces are alternately in tension and compression ;

similarly they are on the right but in the reverse order. Con-

sidering separately the ties and struts, we see that the internal

* This example is analogous to one of those studied by Maxwell in his memoir

of 1870.
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forces decrease from the ends towards the middle of the

structure.

In this example again the diagrams have axes of symmetry.
4

Fig. 12.

47. Diagram a of Fig. 1 2 represents a framed crane-

post; the weight of the machine is distributed over the
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different joints, and is represented by the sum of the forces

1. 2, 3, ..., 9 ;
the force 5 also includes the load the crane is

required to lift.

All these forces are kept in equilibrium by the reactions at

the supports, the magnitudes of which are obtained by re-

solving the resultant weight into three forces acting along the

lines 10
,
11

,
12 . These forces, taken in the contrary sense,

furnish the pressures which are supported by the strut 10,

and the column 11
,
and the tension in the tie 12.

48. These external forces may be determined as follows :

We take on the same vertical line segments representing

the magnitudes of the forces 1
, 2,3 ... 9

,
and choose a pole

arbitrarily; join the pole to the points (0, l), (1, 2), (2, 3),

... (8, 9), (9, 0)*, and construct the corresponding funicular

polygon. The vertical through the point where the extreme

sides (0,1), (9, 0) meet will be the line of action of the total

weight of the crane and load, a weight represented in magni-
tude by a segment, which has the same initial point as the

segment 1, and the same final point as the segment 9. If now
we decompose the resultant weight, which is now known,

into three components, whose lines of action are the straight

lines 10, 11, 12, employing the construction of Art. 40 (Fig. 6),

we obtain the three forces 10, 11, 12. That is to say, these

taken in the opposite sense and the given weights complete
the system of external forces.

In order to obtain the diagram b, we construct first the

polygon of the external forces, taking these forces in the order

in which we encounter them in going round the contour of the

structure. Then construct in succession the polygons corre-

sponding to the joints : (5, 13, 14), (4, 13, 15, 16), (6, 14, 15, 17,

18), and so on in the manner just described.

The diagram thus obtained enables us to see that the bars

of the upper part are in tension, and those of the lower

part in compression ;
while the diagonals are alternately in

tension and compression.

* Here (0, 1) represents the initial point ot the segment 1, and (9,0) the

final point of segment 9. In the figure the rays, from the pole and the sides of

the corresponding funicular polygon, are shown by dotted lines
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