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J
INTRODUCTION.

1. A great many if not all of the problems in mathematics

may be so formulated that they consist in finding from given

data the values of certain unknown quantities subject to certain

conditions. We may distinguish different stages in the solution

of a problem. The first stage we might say is the proof that the

quantities sought for really exist, that it is possible to satisfy

the given conditions or, as the case may be, the proof that it is

impossible. In the latter case we have done with the problem.

Take for instance the celebrated question of the squaring of the

circle. We may in a more generalized form state it thus: Find

the integral numbers, which are the coefficients of an algebraic

equation, of which IT is one of the roots. Thirty years ago
Lindemann showed that integral numbers subject to these con

ditions do not exist and thus a problem as old almost as

human history came to an end. Or to give another instance

take Fermat s problem, for the solution of which the late Mr.

Wolfskehl, of Darmstadt, has left $25,000 in his will. Find the

integral numbers x, y, z that satisfy the equation

Tn -4- 7/
n 7nx T y - z ,

where n is an integral number greater than two. Fermat main

tained that it is impossible to satisfy these conditions and he is

probably right. But as yet it has not been shown. So the

solution of the problem may or may not end in its first stage.

In many other cases the first stage of the solution may be so

easy, that we immediately pass on to the second stage of finding

methods to calculate the unknown quantities sought for. Or

even if the first stage of the solution is not so easy, it may be

expedient to pass on to the second stage. For if we succeed in

finding methods of calculation that determine the unknown quan-
v
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VI GRAPHICAL METHODS.

titles, the proof of their existence is included. If on the other

hand, we do not succeed, then it will be time enough to return

to the first stage.

There are not a small number of men who believe the task of

the mathematician to end here. This, I think, is due to the

fact that the pure mathematician as a rule is not in the habit of

pushing his investigation so far as to find something out about the

real things of this world. He leaves that to the astronomer, to

the physicist, to the engineer. These men, on the other hand,

take the greatest interest in the actual numerical values that

are the outcome of the mathematical methods of calculation.

They have to carry out the calculation and as soon as they do so,

the question arises whether they could not get at the same result

in a shorter way, with less trouble. Suppose the mathematician

gives them a method of calculation perfectly logical and con

clusive but taking 200 years of incessant numerical work to

complete. They would be justified in thinking that this is not

much better than no method at all. So there arises a third stage

of the solution of a mathematical problem in which the object is

to develop methods for finding the result with as little trouble as

possible. I maintain that this third stage is just as much a

chapter of mathematics as the first two stages and it will not do

to leave it to the astronomer, to the physicist, to the engineer or

whoever applies mathematical methods, for this reason that

these men are bent on the results and therefore they will be apt

to overlook the full generality of the methods they happen to

hit on, while in the hands of the mathematician the methods

would be developed from a higher standpoint and their bearing

on other problems in other scientific inquiries would be more

likely to receive the proper attention.

The state of affairs today is such that in a number of cases the

methods of the engineer or the surveyor are not known to the

astronomer or the physicist, or vice versa, although their prob

lems may be mathematically almost identical. It is particularly

so with graphical methods, that have been invented for definite
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problems. A more general exposition makes them applicable

to a vast number of cases that were originally not thought of.

In this course I shall review the graphical methods from a

general standpoint, that is, I shall try to formulate and to teach

them in their most generalized form so as to facilitate their

application in any problem, with which they are mathematically

connected.1 The student is advised to do practical exercises.

Nothing but the repeated application of the methods will give

him the whole grasp of the subject. For it is not sufficient to

understand the underlying ideas, it is also necessary to acquire a

certain facility in applying them. You might as well try to learn

piano playing only by attending concerts as to learn the

graphical methods only through lectures.

1 For the literature of the subject see
&quot;

Encyklopadie der mathematischen

Wissenschaften,&quot; Art. R. Mehmke,
&quot; Numerisches Rechnen,&quot; and Art. F

Willers and C. Runge, &quot;Graphische Integration.&quot;
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CHAPTER I.

GRAPHICAL CALCULATION.

2. Graphical Arithmetic. Any quantity susceptible of mensu

ration can be graphically represented by a straight line, the

length of the line corresponding to the value of the quantity.

But this is by no means the only possible way. A quantity

might also be and is sometimes graphically represented by an

angle or by the length of a curved line or by the area of a square

or triangle or any other figure or by the anharmonic ratio of four

points in a straight line or in a variety of other ways. The

representation by straight lines has some advantages over the

others, mainly on account of the facility with which the ele

mentary mathematical operations can be carried out.

What is the use of representing quantities on paper? It is a

convenient way of placing them before our eye, of comparing

them, of handling them. If pencil and paper were not as cheap
as they are, or if to draw a line were a long and tedious under

taking, or if our eye were not as skillful and expert an assistant,

graphical methods would lose much of their significance. Or,

on the other hand, if electric currents or any other measurable

quantities were as cheaply and conveniently produced in any
desired degree and added, subtracted, multiplied and divided

with equal facility, it might be profitable to use them for the

representation of any other measurable quantities, not so easily

produced or handled.

The addition of two positive quantities represented by straight

lines of given length is effected by laying them off in the same

direction, one behind the other. The direction gives each line a

beginning and an end. The beginning of the second line has to

coincide with the end of the first, and the resulting line represent

ing the sum of the two runs from the beginning of the first to

2 1



2 GRAPHICAL METHODS.

the end of the second. Similarly the subtraction of one positive

quantity from another is effected by giving the lines opposite direc

tions and letting the beginning of the line that is to be subtracted

coincide with the end of the other. The result of the subtrac

tion is represented by the line that runs from the beginning of

the minuend to the end of the subtrahend. The result is positive

when this direction coincides with that of the minuend, and nega
tive when it coincides with that of the subtrahend. This leads

to the representation of positive and negative quantities by lines of

opposite direction. The subtraction of one positive quantity from

another may then be looked upon as the addition of a positive and

a negative quantity. I do not want to dwell on the logical explana

tion of this subject, but I want to point out the practical method

used for adding a large number of positive and negative quantities

represented by straight lines of opposite direction. Take a

straight edge, say a piece of paper folded over so as to form a

straight edge, mark a point on it, and assign one of the two

directions as the positive one. Lay the edge in succession over

the different lines and run a pointer along it through an amount

equal in each case to the length of the line and in the positive

or negative direction according to the sign of the quantity. The

pointer is to begin at the point marked. The line running from

this point to where the pointer stops represents the sum of the

given quantities. The advan

tage of this method is that the

intermediate positions of the

pointer need not be marked pro

vided only that the pointer keeps

its position during the move-
* ment of the edge from one line

to the next. As an example take

the area, Fig. 1. A number of

rectangular strips J cm. wide are substituted for the area so that,

measured in square centimeters, it is equal to half the sum of

the lengths of the strips measured in centimeters. The straight

FIG i.
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edge is placed over the strips in succession and the pointer is

run along them. The edge is supposed to carry a centime

ter scale and the pointer is to begin at zero. The final position

of the pointer gives half the value of the area in square centi

meters. The drawing of the strips may be dispensed with, their

lengths being estimated, only their width must be shown. If

the scale should be too short for the whole length, the only thing

we have to do is to break any of the lengths that range over the

end of the scale and to count how many times we have gone

over the whole scale. I have found it convenient to use a little

pointer of paper fastened on the runner of a slide rule so that it

can be moved up and down the metrical scale on one side of the

FIG. 2.

slide rule. The area is in this manner determined rapidly and

with considerable accuracy, very well comparable to the ac

curacy of a good planimeter. If the area of any closed curve

is to be found, the way to proceed is to choose two parallel

lines that cut off two segments on either side (see Fig. 2), to

measure the area between them by the method described above

and to estimate the two segments separately. If the curves of

the segments may with sufficient accuracy be regarded as arcs

of parabolas the area would be two thirds the product of length

and width. If not they would have to be estimated by substitut

ing a rectangle or a number of rectangles for them.
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In the same way the addition and subtraction of pure numbers

may also be carried out. We need only represent the numbers

by the ratios of the lengths of straight lines to a certain fixed

line. The ratio of the length of the sum of the lines to the length

of the fixed lines is equal to the sum of the numbers. The con

struction also applies to positive and negative numbers, if we

represent them by the ratio of the length of straight lines of

opposite directions to the length of a fixed line.

In order to multiply a given quantity c by a given number,

let the number be given as the ratio of the lengths of two straight

lines a/6. If the quantity c is also represented by a straight line,

all we have to do is to find a straight line x whose length is to

the length of c as a to b. This can be done in many ways by

FIG. 3. FIG. 4.

constructing any triangle with two sides equal to a and b and

drawing a similar triangle with the side that corresponds to b made

equal to c. As a rule it is convenient to draw a and b at right

angles and the similar triangle either with its hypotenuse parallel

(Fig. 3) or at right angles (Fig. 4) to the hypotenuse of the first

triangle. Division by a given number is effected by the same con

struction; for the multiplication by the ratio a/b is equivalent

to the divisions by the ratio b/a.

If a, b, c are any given numbers, we can represent them by the

ratios of three straight lines to a fixed line. Then the ratio of
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the line constructed in the way shown in Fig. 3 and Fig. 4 to

the fixed line is equal to the number

ac

b

Multiplication and division are in this way carried out simul

taneously. In order to have multiplication alone, we need only

make b equal 1 and in order to have division alone, we need only

make a or c equal 1.

In order to include the multiplication and division of positive

and negative numbers we can proceed in the following way. Let

the lines corresponding to a, x, Fig. 3, be drawn to the right side

of the vertex to signify positive numbers and to the left side to

signify negative numbers. Similarly let the lines corresponding

to 6, c be drawn upward to signify positive numbers and down
ward to signify negative numbers. Then the drawing of a

parallel to the hypotenuse of the rectangular triangle a, b through

the end of the line corresponding to c will always lead to the

number
ac

x =
~b

whatever the signs of o, 6, c may be.

The same definition will not hold for the construction of Fig. 4.

If the positive direction of the line corresponding to a is to the

right and the positive direction of the line corresponding to b is

upwards then the positive directions of x and c ought to be such

that when the right-angled triangle x, c is turned through an

angle of 90 to make the positive direction of x coincident

with the positive direction of a, the positive direction of c coin

cides with the positive direction of b. If we wish to have the

positive direction of x upward, the positive direction of c would

have to be to the left, or if we wish to have the positive direction

of c to the right, the positive direction of x would have to be

downward. If this is adhered to, the construction for division

and multiplication will include the signs.
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3. Integral Functions. We have shown how to add, subtract,

multiply, divide given numbers graphically by representing them

as ratios of the lengths of straight lines to the length of a fixed

line and finding the result of the operation as the ratio of the

length of a certain line to the same fixed line. By repeating

these constructions we are now enabled to find the value of any

algebraical expression built up by these four operations in any

succession and repetition. Let us see for instance how the values

of an integral function of x, that is to say, an expression of the form

may be found by geometrical construction, where ao, a\ an , x

are any positive or negative

numbers. We shall first as

sume that all the numbers are

positive, but there is not the

least difficulty in extending

the method to the more gen

eral case.

Now let
#o&amp;gt; Ui) &L&amp;gt;

an

signify straight lines laid off

on a vertical line that we call

the y-axis, one after the other

as if to find the straight line

FIG. 5.
a + ai + 02 + + a,

The lengths of these lines measured in a conveniently chosen

unit of length are equal to the numbers designated by the same

letters. In Fig. 5 a runs from the point to point Ci, ai from

Ci to C2 , an from Cn to Cn+i-

Let x be the ratio of the lines Ox and 01, Fig. 5, drawn hori

zontally from to the right. The length 01 is chosen of con

venient size independent of the unit of length that measures the

lines a , ab a. The length Ox is then defined by the value
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of the ratio x. Through x and 1 draw lines parallel to the ?/-axis.

Through Cn+i draw a line parallel to Ox, that intersects those two

parallels in Pn and Bn .\ Draw the line BnCn that intersects the

parallel through x in Pn-i. Then the height of Pn-i above Cn

will be equal to anx. For if we draw a line through Pn_i parallel

to Ox intersecting the ?/-axis in Dn , the triangle (7nZ)nPn_i will be

similar to CnCn+iBn and their ratio is equal to x, therefore

CnDn = anx. Consequently the height of Pn_i above Cn-i is

equal to Cn-iDn = anx + an-i. Now let us repeat the same

operation in letting the point Dn take the part of Cn+i. Through
Dn draw a line parallel to Ox, that intersects the parallels through
x and 1 in Pn_i and Bn-\. Draw the line Bn-iCn-i that intersects

the parallel through x in Pn-2-

Then the height of Pn_2 above

Cn-i will be equal to

Cn-iDn X = (anx + an-i)x,

and the height above (7n_2 will be

equal to
:

anx an_2 .

B3

Continue in the same way. Draw

Pn-zBn-z parallel to Ox, draw

Bn-2Cn-2 and find the point Pn-s-

Then the height of Pn-3 above Cn-z will be

(anx* H

and the height of Pn-s above

FIG. 6.

Finally a point PO is found (see Fig. 6 for n = 4) by the inter

section of Bid with the parallel to the 2/-axis through x, whose

height above is equal to

ax a

Let us designate the line xPo by y, so that
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y = anx
n + an-ix

n~l + + a\x + a ,

in the sense that y is a vertical line of the same direction and

length as the sum of the vertical lines anx
n

, dn-ix
11 1

,
-

a\x, a .

The same construction holds good for values of x greater than

1 or negative. The only difference is that the point x is beyond
the interval 01 to the right of 1 or to the left of 0. The negative

sign of

anx, anx + ttn-i, anx
2 + an-ix, etc.,

will signify that the direction of the lines is downward. Nor are

any alterations necessary in order to include the case that several

or all of the lines a , a\ t an are directed downward and corre

spond to negative numbers. They are laid off on the y-axis in

the same way as if to find the sum

ao + ai + 02 + + On,

(7a+i lying above or below Ca according to aa being directed

upward or downward. The construction can be repeated for a

number of values of x. The points PQ will then represent the

curve, whose equation is

y = a + aix + - + anx
n

,

x and y measuring abscissa and ordinates in independent units

of length.

In order to draw the curve for large values of x a modification

must be introduced. It will not do to choose 01 small in order

to keep x on your drawing board; for then the lines BaCa will

become too short and thus their direction will be badly defined.

The way to proceed is to change the variable. Write for instance

X =
z/10, so that X is ten times as small as x and write

Aa
= aa -10

ft

.

Then as
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we find

y = A + AiX + A2X2 + + A nX\

Lay off the lines A , AI, An in a convenient scale and let

X play the part that x played before. The curve differs in scale

from the first curve and the reduction of scale may be different

for abscissas and ordinates but may if we choose be made the

same so that it is geometrically similar to the first curve reduced

to one tenth. It is evident that any other reduction can be

effected in the same manner. By increasing the ratio x/X we

enhance the value of A n in comparison to the coefficients of lesser

index, so that for the figure of the curve drawn in a very small

scale all the terms will be insignificant except A nXn
. In this

case the points Ci, Cz, , Cn will very nearly coincide with

and only Cn+i will stand out.

It is interesting to observe that the best way of calculating an

integral function

for any value of x proceeds on exactly the same lines as the

geometrical construction. The coefficient an is first multiplied

with x and an_i is added Call the result an-i . This is again

multiplied by x and an_2 is added. Call this result an-2 . Con

tinuing in this way we finally obtain a value of a f

,
which is equal

to the value of the integral function for the value of x considered.

Using a slide rule all the multiplications with x can be effected

with a single setting of the instrument. The coefficients aa and

the values aa are best written in rows in this way

an an-i an-2 a\ CLQ

anx an-i x - -
az x a\x

The accuracy of the slide rule is very nearly the same as the

accuracy of a good drawing. But the rapidity is very much

greater. When therefore only a few values of the integral func

tion are required, the geometrical construction will not repay
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the trouble. It is different, however, when the object is to make

a drawing of the curve. The values supplied by calculation

would have to be plotted, while the geometrical construction

furnishes the points of the curve right away and in this manner

gains on the numerical method.

There is another geometrical method, which in some cases

may be just as good. Let us propose to find the value of an

integral function of the fourth degree.

and let all coefficients in the first instance be positive.

The coefficients a , i, 02, a3 , &amp;lt;z4 are supposed to be represented

by straight lines, while x will be the ratio of two lines. The lines

do, cti, 0%, ds, tt4 are laid off in a

broken line do to the right from

Co to Ci, di upward from Ci to

Cz 9 0% to the left from C2 to Cz, a3

downward from C3 to C4 ,
a4 again

to the right from C4 to C5 (Fig. 7).

Through (75 draw a line C&A to

a point A on C3 (74 or its prolonga

tion and let x be equal to the

FJQ 7 ratio C\A : C^C^ taken positive

when CA has the same direc

tion as C3C4 . Then we have

and
/&quot;Y A I

LsA = a4x -f- 3 .

C\A and C$A are positive or negative according to their direction,

being the same as the direction of (73(74 or opposite to it. Through
A draw the line AB forming a right angle with C&A to a point B
on C2C3 or its prolongation. Then we have

and
C3B = a3) x
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ax + CL^X + 02.

C^B and C%B are positive or negative according to their direction

being the same as the direction of C^Cs or opposite to it. Simi

larly we get

and finally

C E = a .

I

FIG. 8.

is positive, when E is on the right side of CQ and negative

when on the left side. When the point A moves along the line

ftft, the point E will move

along the line ftft and its

position will determine the

values of the integral function.

To find the position of E for

any position of A, we might

use transparent squared paper, /

that we pin onto the drawing

at ft, so that it can freely be

turned round ft. Following

the lines of the squared paper

along C&ABDE after turning it through a small angle furnishes

the position of E for a new position of A (Fig. 8).

To include the case of negative coefficients we draw the corre

sponding line in the opposite direction. If for instance as is

negative ftft would have to lie above ft; but C^A would have

to be counted in the same way as before, positive in a downward,

negative in an upward direction.

The extension of the method to integral functions of any degree

is obvious and need not be insisted on. It may be applied with

advantage to find the real roots of an equation of any degree.

For this purpose the broken line C&ABDE would have to be

drawn in such a way that E coincides with ft. In the case of

Fig. 7, for instance, it is easily seen that no real root exists.

Fig. 9 shows the application to the quadratic equation. A circle
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is drawn over CQC3 as diameter. Its intersections with CiCz
furnish the points A and A that correspond to the two roots.

Both roots are negative in this case.

The first method of constructing

the values of an integral function can

be extended to the case where the

function is given as the sum of a

number of polynomials of the form

C2

/ \ y = aQ + ai(x p) + (h(xp)(x q)

+ a3 (x
-

p)(x
-

q)(x
-

r) +

Let us again suppose CLQ, a\, 0%,

FlQ 9 to represent straight lines laid off as

before on the ?/-axis upwards or down

wards as if to find their sum. x,p,q,r - are meant, to be num
bers represented by the ratio of certain segments on the axis of

abscissas. Let us consider the case of four terms, the highest poly

nomial being of the third degree. The fixed distance between the

points marked p and p + 1, q and q + 1, r and r + 1 on the

axis of abscissas, Fig. 10 is chosen arbitrarily and the position

2 r x p+\ q\

FIG. 10.

of the points marked p, q, r, x is made such that the ratio of

Op, Oq, Or, Ox to that fixed distance is equal to the numbers

p, q, r, x. For negative values the points are taken on the left

of 0.
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Draw parallels to the t/-axis through p, q, r, x, p + 1, q + 1,

r + 1. On the parallel through r+1 find the point Q of the

same ordinate as C* and on the parallel through r find the point

AQ of the same ordinate as 3. Join AQ and Qo by a straight

line and find its intersection PI or that of its prolongation with

the parallel through x. The height of PI above Cs or A Q is

equal to az(x r) and the height above C2 is equal to az(x r)

+ 02. On the parallel through q + 1 find a point Qi of the same

ordinate as PI and on the parallel through q a point A\ of the

same ordinate as C2 . Join A\ and Qi by a straight line and find

its intersection P2 or that of its prolongation with the parallel

through x. The height of P2 above 0% or A\ is equal to

[as(x r) + (h}(x q),

and the height above C\ is equal to

az(x r}(x q) + a%(x q) + cti.

Finally find a point Q2 on the parallel through p + 1 of the

same ordinate as P2 and a point A2 on the parallel through p of

the same ordinate as C\. Join A2 and Q2 by a straight line and

find its intersection P3 or that of its prolongation with the par

allel through x. The height of P3 above Ci or AZ will then be

equal to

[ctz(x r)(xq) + (h(x
-

q) + ai](x
-

p)

and the ordinate of P3 will be equal to the given integral function

y = az(x
-

r)(x
-

q)(x
-

p) + (h(x
-

q)(x
-

p)

+ ai(x p) + ao.

For large numbers p, q, r, x we use a similar device as before by
introducing new numbers P, Q, R, X equal to one tenth, or one

hundredth or any other fraction of pqrx. For instance

P =
p/10, Q =

g/10, R = r/10 Z =
r/10.

We then write

= a , Ai = lOoi, ^2
= 10002, A3

= 1000a3,



14 GRAPHICAL METHODS.

and obtain

y = A Q + A,(X - P) + A2(X - P)(X - Q)

+ AS(X - P)(X - Q)(X - R).

The scale for the lines A , AI, A2 ,
As and y must then be reduced

conveniently and the values are constructed in the same way as

before.

Now let us consider the inverse problem. The values of the

integral function are given for

x = p, q, r, 5;

find the lines o, 0i, (h, &z, so that the value of the integral function

may be found for any other value of x in the way shown above.

Let us designate the given values of the integral function for

x= p, g, r, s by yp , yq , yr) ys and the points on the parallels through

p, q, r, s with these ordinates by P, Q, R, S (see Fig. 12).

For x = p the integral function

y = + ai(x
-

p) + (k(x p)(x q) + a*(x p)(x-q)(x-r)

reduces to ao. Therefore we have yp = do. The point C\ is

found by drawing a parallel to the axis of abscissas through P
and taking its intersection with

the axis of ordinates.

In order to find C% draw a

straight line through P and Q
and find its intersection A with

the parallel through p + 1 (Fig.

11). A parallel to the axis of

abscissas through A intersects

the axis of ordinates in C*. For

the differences yq yp and ya yp

(writing ya for the ordinate of

A) are proportional to the differences of the abscissas and con

sequently in the ratio (q p) : 1. Therefore
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In the same way as the point Q on the parallel through q we

might join any point X on a parallel through x with the point P,

find the intersection with the parallel through p + 1 and draw a

parallel to the axis of abscissas. The point of intersection of

p

FIG. 12.

this parallel with the vertical through x let us call X and its

ordinate y
f
. Then we have

i + 02(3
-

g) + osfc
-

g)(*
-

r).
a:

- p

Let us carry out this construction not only for x = g but also

for a: = r and # = s. This leads us to three points Q , Rf

, S
on the verticals through q, r, s, whose ordinates are the values

of the integral functions

y =
(oo + a&amp;gt;i) + &amp;lt;h(x q) + a3 (x q)(x r).

In this way we have reduced our problem. Instead of having
to find an integral function of the third degree from four given

points P, Q, R, S, we have now only to find an integral function

of the second degree from three given points Q , R f

,
S . A second

reduction is effected in exactly the same manner. Q is joined

with R and S by straight lines and through their intersection

with the vertical through q + 1 parallels to the axis of abscissas

are drawn that intersect the verticals through r and s in the

points R&quot; and S&quot; respectively. The ordinates of these points

are the values of the integral function
y&quot;

defined by
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y&quot;

-
x q

for x = r and x = s, or

y&quot;

= aQ + ai + 02 + flsfc
-

r).

The horizontal through R&quot; intersects the axis of ordinates in the

point 63. Finally we find d by drawing a parallel to the axis

of abscissas through the intersection of R&quot;S&quot; or its prolongation

with the vertical through r + 1.

Having found the points CiCzCsC* we can now for any value

of x construct the ordinate

y = a + ai(x p) + (h(x
-

p)(x
-

q)

+ a*(x
-

p)(x
- q)(x- r),

and thus draw the parabola of the third degree passing through

the four points P, Q, R, S.

The construction may be somewhat simplified first by making

p+ 1 = q. Our data are the points P, Q, R, S, and we are

perfectly at liberty to make the vertical through p -f- 1 coincide

with the vertical through Q. In this case the point Q will

coincide with Q. The parabola of the second degree through the

points Q R S is again independent of the distance between the

verticals through q and q -\- 1 and at the same time independent

of the point P. Therefore we are perfectly at liberty, for the

construction of any point of this parabola, to make the vertical

through q + 1 coincide with the vertical through R even if the

distance of the verticals through P and Q is different from that

of the verticals through Q and R. R&quot; will in this case coincide

with R . The procedure is shown in Fig. 12. Starting from

the points P, Q, R, S the first step is to find R ,
S f

by connecting

R and S with P and drawing horizontals through the inter

sections A r ,
A 8 with the vertical through q. The next step is to

find S&quot; by connecting Q (identical with Q ) with S and drawing

a horizontal through the intersection with the vertical through r.

Now the straight line R&quot;S&quot; can be drawn (R&quot; being identical
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with R r

). On the vertical through any point x take the inter

section with R&quot;S&quot; and pass horizontally to the point Ax
f on the

vertical through r. Draw the line Q AX and find its intersection

with the vertical through x. This point is on the parabola

through Q R S . Pass horizontally to the point Ax on the

vertical through q and draw the line AXP. Its intersection with

the vertical through x is a point on the parabola of the third

degree through P, Q, R, S.

The method is evidently applicable to any number of given

points, the degree of the parabola being one unit less than the

number of points.

The methods for the construction of the values of an integral

function may be applied to find the value of any rational function

y = R(x).

For a rational function can always be reduced to the form of a

quotient of two integral functions

R(x) = gi(x)/gz(x).

Now after having constructed curves whose ordinates give the

values of gi(x) and gz(x) for any abscissa x (Fig. 13), R(x) is found

in the following manner.

Through a point P on the

axis of abscissas draw a

parallel to the axis of or-

dinates. Let GI and Gz

be the points whose ordi

nates are equal to g\(x)

and gz(x). Pass horizon

tally from Gi to GI on the

vertical through P and

from Gz to Gz on the axis of ordinates. Draw a line through
P and Gz and produce it as far as A where it intersects the

horizontal through ft. Then R(x) is equal to the ratio Gi A
to PO. Gi A may then be set off as ordinate on the vertical

3

Xlf

a; Axis .

FIG. 13,
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through x and defines the point M whose ordinate is equal to

R(x) in length, when OP is chosen as the unit of length.

4. Linear Functions of Any Number of Variables. Let us

consider a linear function of a number of variables xi, xz xnt

a + aixi + 04X2 + ----
f- anxn,

where a , ai, 0%, an are given numbers positive or negative.

The question is how the value of this linear function may be

conveniently constructed for various systems %i, x2 , xn .

Suppose ao, a\, an to represent horizontal lines directed to

the right or left according to the sign of the corresponding number

and to be laid off on an horizontal axis in succession as if to find

the sum

aQ begins at and runs to Ci, 02 begins at d and runs to C2 and

so on (Fig. 14). The numbers x\t x%, xn let us represent

FIG. 14.

by ratios of lengths. We draw a vertical line through and

choose a point P on the horizontal axis. Then let xi be equal

to the ratio 01/PO, a* = 02/PO, etc. If P is chosen on the left

of 0, we take the point 1 above for a positive value of Xi and

below for a negative one and the same for the other points.

Mark a point above in the same distance from as P. Join

the point P with the points 0, 1, 2, 3, 4, and draw a broken
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line OAoAiAzA^Ai in such a manner that A is on the vertical

through Ci and OA is parallel to PO, A\ on the vertical through

Cz and A Ai parallel to PI, At on the vertical through Cs and A\AZ

parallel to P2 and so on. Then the ordinate y of A will have

the same length as ao and will be directed upward when the

direction of a is to the right, and downward when the direction

of O,Q is to the left. The difference y\ yQ of the ordinates of A\
and AQ is equal in length to CL\XI, as y\ yQ and a\ have the same
ratio as 01 and PO. A\ will be above or below AQ according to

the line aiXi being directed to the right or to the left and it is

understood that a\x\ has the same direction as a\ for positive

FlG. 15.

values of Xi and a direction opposite to i for negative values

of Xi. Thus the ordinate y\ has the same length as the line

a + a\x\ and its direction is upward or downward according to

the direction of the line a + a\x\ being to the right or to the left.

In the same way it is shown that the ordinate yz of the point Az

is equal in length to

a + aiXi + 02^2,

and 2/3 to

aQ + 0,1X1 + 02X2 +

and so on, the direction upward or downward corresponding
to the positive or negative value of the linear function.

If the values of xi f #2, xn satisfy the equation

+ anxn =

the ordinate yn must vanish, that is to say, the point A n must
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coincide with Cn+i, the end of the line an . And vice versa if An

and Cn+i coincide the equation is satisfied. Consequently if we
know all the values but one of the numbers xi, z2 , xn the

unknown value can be found graphically. For suppose x$ to be

/IT
An-i

&amp;lt;J\ Ca Cn-iCn CWi=4n

FIG. 16.

the unknown value we can, beginning from 0, find the broken

line as far as A% and beginning from the other end An we

can find it as far as AS (Fig. 15). A parallel to A^Az through P
furnishes the point 3 on the axis of ordinates. If xi, x%, xn-i

are known and only xn not, we can draw the broken line as far

as An-i and as An has to coincide with Cn+i, we can draw a parallel

to An-iAn through P and find the point n on the axis of ordinates

FIG. 17.

that determines the value xn by the ratio On/PO or On/Oo. In

Figs. 15 and 16 all the coefficients a^ ai, , are positive. A
negative coefficient #5 is shown in Fig. 17. The only difference

is that CQ lies to the left of C& and consequently the broken line

passes from AI back to A 5 .

If we keep the points 0, 1, 2, , in their positions but change

the position of P to P (Fig. 18) and repeat the construction of
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the broken line, we obtain OAdA\A&amp;lt;i instead of OAoA
The ordinate ya

r
of the point A a

r
is evidently

00 01
+ ...+

Oa
P O

and therefore

PO
P O

That is to say, by changing the position of P without changing

the position of the points 0, 1, 2, we can change the scale of

the ordinates of the broken line. They change inversely pro-

FIG. 18.

portional to PO. It may be convenient to make use of this

device in order to make the ordinates a convenient size inde

pendent of the scale that we have chosen for the points 0, 1, 2,

that determine the values

01 02

00

A linear equation with only one unknown quantity

do + CLiXi
=

is solved by drawing a parallel to A QAi through P. Let a second

equation be given with two unknown quantities

b + bixi + 62*2 = 0.

The lines 6 , &i, 2 are laid off as before. Knowing xi as the

solution of the first equation we can construct the broken line

OB Bi corresponding to the second equation and as #2 must
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coincide with the end of b2 , we can draw a parallel to ftft

through P and find x2 . In a similar manner we can find z3
from a third equation

C + CiXi + C2X2 + C3Z3 = 0,

and so we can find any number of unknown quantities, if

each equation contains one unknown quantity more than those

before.

In the general case when n unknown quantities are to be

determined from n linear equations each equation will contain

all the unknown quantities, and therefore we cannot find them
one after the other as in the case just treated. But it can be

shown that by means of very simple constructions the general case

is reduced to a set of equations, such as has just been treated.

A A Let us begin with two
~l -&quot;-ft &quot;! -A2

equations and two un-

known quantities.

tr \ v - - oo+M+_ ,

FlG - = 0.

The lines a
, i, &amp;lt;h

are laid off on a horizontal line OA AiA2 and

the lines bo, 61, b2 on another horizontal line O fB BiB2 (Fig. 19).

Now let us join and , A and # , AI and ft, ^42 and B2 by

straight lines and let us draw a third horizontal line intersecting

them in the points 0&quot;CQCiC2 . These points correspond to a

certain linear function

C + CiXi + C2X2,

and it can be shown that it vanishes when x\ and x2 are the same

values for which the first two linear functions vanish. Let the

distance of the first two horizontal lines be I and the distance of

the third from the first and second h and k. Then it can readily

be seen that

i

* /L ^
.

* r
Co = o +

-y
(oo o)

=
y

a + 7
&
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For a parallel to 00 through A defines with the line AoBQ on

the third and second horizontal line segments equal to CQ ao

and bo o and as these segments have the ratio h/l, it follows

that

,

h . k . h
CQ = 0o + y (0o ao)

=
y o + y 0o-

By drawing a parallel to ^4o#o through A\ and to ^4i#i through

AI or through $2 (which comes to the same thing), we convince

ourselves in the same way that

. h , N
k h -

Ci
= Oi +

y (61
-

tti)
=

y i + y 63

and

,
h . k h

2
= 02 + y (02 02)

=
y 02 H- y

o2 .

Multiplying the equation

a + ai#i + 02X2 =

by k/l and the equation

60 + b&i + 62^ =

by h/l and adding the two products, we obtain

C + CiXi + C2X2 = 0.

The third horizontal need not lie between the first two. If it

lies below the second we have merely to give k a negative value

and if it lies above the first we have to give h a negative value

and the same formulae for c
, Ci, c2 hold good. Consequently the

conclusion remains valid, that from the first two equations the

third follows.

Now as we are perfectly at liberty to draw the third horizontal

line where we please, we can let it run through the intersection

of the straight lines A\B\ and ^2^2. In this case the points C\

and C^ must coincide and consequently c^, must vanish. If Ci

does not vanish we can by what has been shown above find .TI

and with x\ we can find a^ from either of the two first horizontal
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lines. In case ci also vanishes, that is to say, in case the three

straight lines A2B2 , AiBi, A B all pass through the same point,

while 00 does not pass through it, the two given equations
cannot simultaneously be satisfied. For if they were, it would
follow that

c + CiXi + 2X2 = 0,

and as ci and &amp;lt;%
are zero CQ would have to be zero, which it is not

as 00 is supposed not to pass through the intersection of A2B2 ,

AiBi and A B . If on the other hand all four lines A2B2 , AiBi,
A Bo, 00 pass through the same point, Co, Ci and c2 will all three

vanish. In this case the two given equations do not contradict

one another, but &o&A will be proportional to ao^ic^. The

-

j
.

A k \ \ n \

/ \ \ \ \

Bo ^i \BS
\f*fBi

Vfls

C& C6

FIG. 20.

second equation will therefore contain the same relation between

xi and Xz as the first, so that there is only one condition for xi

and Xz to be satisfied. We may then assign any arbitrary value

to one of them and determine the value of the other to satisfy the

equation.

In the case of two linear equations of any number of quantities

Xi, Xz, xn we can by the same graphical method eliminate one

of the quantities. In Fig. 20 this is shown for two linear equa

tions with six unknown quantities. The two horizontal lines

OAoAiA2A3A^A 5A 6 and BoBiB2B3B^B5B6 represent two linear

equations. Through the intersection of A3B3 and A^B^ a third

horizontal line is drawn intersecting the lines 00
,
A Bo, AiBi,

A 6B& in 0&quot;CoCi C& . As C3 and 4 coincide, the line C4

vanishes and #4 is eliminated, so that the equation assumes the

form
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Suppose now that a set of six equations with six unknown quan
tities is represented geometrically on six horizontal lines. We shall

keep one of these; but instead of the other five we construct five

new ones from which one of the unknown quantities has been

eliminated by means of the first equation. Now it may happen
that at the same time another unknown quantity is eliminated,

then this quantity remains arbitrary. Of the five new equations

we again keep one that contains another unknown quantity and

replace the four others again by four new ones from which this

unknown quantity has been eliminated. Going on in this

manner the general rule will be that with each step only one

quantity is eliminated, so that at last one equation with one un

known quantity remains. Instead of the given six equations

with six unknown quantities each, we now have one with six,

one with five and so on down to one with one. The geometrical

construction shows that this system is equivalent to the given

system, for we can just as well pass back again to the given

system. We have seen above how the unknown quantities

may now be found geometrically. It may however happen in

special cases that with the elimination of one unknown quantity

another is eliminated at the same time. To this we may then

assign an arbitrary value without interfering with the possibility

of the solution. Finally all unknown quantities may be elimi

nated from an equation. If in this case there remains a term

different from zero it shows that it is impossible to satisfy the

given equations simultaneously. If no term remains, the two

equations from which the elimination takes its origin contain the

same relation between the unknown quantities and one of them

may be ignored.

5. The Graphical Handling of Complex Numbers. A complex
number

z = x + yi

is represented graphically by a point Z whose rectangular coordi

nates correspond to the numbers x and y. The units by which
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the coordinates are measured, we assume to be of equal length.

We might also say that a complex number is nothing but an

algebraical form of writing down the coordinates of a point in a

plane. And the calculations with complex numbers stand for

certain geometrical operations with the points which correspond

to them.

By the &quot;sum&quot; of two complex numbers

zi = xi + yii and Zz
=

we understand the complex number

+

where

and we write
3= xi + xz and y3

23
= 2i + 22.

+ y2,

Graphically we obtain the point Z$ representing zz from the

points Zi and Z2 representing z\ and z2 by drawing a parallel

to OZ2 through Z\ and making ZiP

(Fig. 21) equal to OZ2 in length

and direction or by drawing a paral

lel through Z2 and making Z2P

equal to OZ\ in length and direc

tion. The coordinates of P are

evidently equal to x\ + #2 and

FIG. 21.

Two complex numbers z and z

are called opposite, when their sum

is zero.

z + z or x = x and y = / or z = z .

The corresponding points Z and Z are at the same distance from

the origin but in opposite directions.

The difference of two complex numbers is that complex

number, which added to the subtrahend gives the minuend
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Therefore

22
=

(xi
-

xt) + (i/i
-

yfii.

This may also be written

zi + z2 where Z2
/=

Z2
= x% y&.

That is to say, the subtraction of the complex number Z2 from zi

may be effected by adding the opposite number 22 . For the

geometrical construction of the point Z corresponding to zi Z2

we have to draw a parallel to OZ2 through Zi and from Zi in

the direction from Z2 to we have to lay off the distance Z20.

Or we may also draw from a line equal in direction and in length

to Z2Zi. This will also lead to the point Z representing the

difference zi 2fc.

The rules for multiplication and division of complex numbers

are best stated by introducing polar coordinates. Let r be the

positive number measuring the distance OZ in the same unit

of length in which x and y measure the abscissa and ordinate, so

that

and let
&amp;lt;p

be the angle between OZ and the axis of x, counted in

the direction from the positive axis of x toward the positive

axis of y through the entire

circumference (Fig. 22). Then

we have

x r cos
&amp;lt;pf y = r sin

&amp;lt;p

and

z = x -\-yi- r(cos&amp;lt;p+ sin&amp;lt;pi).

Let us call r the modulus

and
&amp;lt;p

the angle of z. The an- FlG 22.

gle may be increased or di

minished by any multiple of four right angles without altering

z, but any alteration of r necessarily implies an alteration of z.
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According to Moivre s theorem, we can write

2 = I***.

By the product of two complex numbers

Zi = ne* 1* and Zz

we understand that complex number 23 whose modulus r3 is

equal to the product of the moduli r\ and r2 and whose angle ^
is the sum of the angles &amp;lt;pi

and
&amp;lt;pz

or differs from the sum only by
a multiple of four right angles

23
= z& =

The definition of division follows from that of multiplica

tion. The quotient 21 divided by Zz is that complex number,
which multiplied by Zz gives z\. Therefore the product of its

modulus with the modulus of Zz must be equal to the modulus of

zi and the sum of its angle with the angle of Zz must be equal to

the angle of 21. Or we may also say the modulus of the quotient

2i/Z2 is equal to the quotient of the moduli ri/r2 and its angle is

equal to the difference of the angles &amp;lt;pi &amp;lt;pz.
An addition or

subtraction of a multiple of four right angles we shall leave out

of consideration as it does not affect the complex number nor

the point representing it.

The geometrical construction corresponding to the multi

plication and division of complex numbers is best described by

considering two quotients each of two complex numbers that

give the same result. Let us write

= 23/24 .

The geometrical meaning of this is that

= r3/r4,

and

&amp;lt;Pl &amp;lt;P2

=
&amp;lt;P3 &amp;lt;?*

That is to say, the triangles ZiOZ2 and Z3OZ4 are geometrically
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similar (Fig. 23). When three of the points Zi, Z2 , Z3, Z4 are

given the fourth can evidently be found. For instance let

Zi, Z2 , 4 be given. Draw a parallel to ZiZ2 intersecting 0Z2

at a distance r4 from 0. This point together with the inter

section on OZi and with will form the three corners of a tri

angle congruent to the triangle Z4Z30. It will be brought into

FIG. 23. FIG. 24.

the position of Z^ZZ by being turned round so as to bring the

direction of the side in OZ2 into the position of 0Z4. Thus the

direction of 0Z3 and its length may be found.

This construction contains multiplication as well as division as

special cases. Let Z4 coincide with the point x = 1, y = 0, so

that z4 = 1 (Fig. 24), then we have

Zl/2fc
= 23 Or Zi

=
SfcZs-

From any two of the points Zi, Z2 , Z3 a simple construction gives

us the third.

The geometrical representation of complex numbers may beused
to advantage to show the properties of harmonic oscillations.

Let a point P move on the axis of x, so that its abscissa at the

time t is given by the formula

x = r cos (nt + a),

n, r and a being constants. We call r the amplitude and nt + a
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the phase of the motion. The point P moves backwards and

forwards between the limits x r and x = r. The time

T = 2Tr/n is called the period of the oscillation, it is the time in

which one complete oscillation backwards and forwards is per

formed.

Now instead of x let us consider the complex number

z = r cos(nt + a) + f sm(nt + &amp;lt;*)*

or

z = re(nt+a ,

of which x is the abscissa and let us follow the movement of

the point Z. For t = we have

z re
ai

.

Designating this value by 2 , we can write

z = z e
nti

.

The geometrical meaning of the product

z e
nti

is that the line OZ is turned round through the angle nt. For

the modulus of e
nti

being equal to 1 the modulus of ZQ is not

changed by the multiplication. The

movement of the point Z therefore

t=r,A consists in a uniform revolution of

f=0 OZ round 0. At the moment t=

\ the position is OZQ and after the
*

1 *- time T 2w/n the same position is

\ / occupied again. The revolution goes

-v \ / on in the direction from the positive
x
--

I
- *=% axis of x to the positive axis of y

(Fig. 25).

FIQ 25
The movement of Z is evidently

simpler than the movement of the

projection P of Z on the axis of x.

Let us consider a motion composed of the sum of two harmonic
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motions of the same period but of different amplitudes and

phases
x = n cos (nt + i) + **2 cos (nt + 2),

and let us again substitute the motion of the point Z correspond

ing to the complex number

For t = the first term is

and the second term

Introducing Zi and 22 into the expression for z we have

2 = Zie + 226?*&quot;
=

(zi + &)e
nti = z3e

n &amp;lt;*

where

23
=

Zi + 22-

This shows at once that the movement of Z is a uniform circular

movement consisting in a uniform revolution of OZ round 0.

The position at the moment t = is 0Z3 corresponding to the

complex number
23 = zi + 22.

The projection of Z on the axis of x has the abscissa

x = TS cos (nt + as)

where r3 and 3 designate modulus and angle of z3 . Thus the

sum of two harmonic motions of the same period is shown also

to form a harmonic motion.

The same holds for a sum of any number of harmonic motions

of the same period. For the complex number

where n, r2, rx ; ai, a2 ,
ax and w are constants may be

written

or
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2 = zoe
nti

,

where

20 = 2i + 22 + + 2A.

The movement of Z therefore, excepting the case ZQ = 0, consists

in a uniform revolution of OZ round 0, OZ always keeping the

same length equal to the modulus of 2 . The position of OZ at

the moment t = is OZ .

The motion of a point P whose abscissa is

x = ae~kt cos (nt + a)

where a, k, n, a are constants (a and k positive) is called a damped
harmonic motion. It may be looked upon as a harmonic motion,

whose amplitude is decreasing. To study this motion let us

again substitute a complex number

2 = ae~kt cos (nt + a) + ae~kt sin (nt + d)i,

or

or

2 = z e-kt -enti,

where 2 is written for the complex constant aeai
.

The product

is a complex number corresponding to a point Zi on the same

radius as ZQ, coincident with ZQ at the moment t = but ap

proaching in a geometrical ratio after t = 0. In unit of time

the distance of Z: from decreases in the constant ratio e~k : 1.

The multiplication with e
nti turns OZ\ round through an angle

nt. We may therefore describe the motion of Z as a uniform

revolution of OZ round 0, Z at the same time approaching

at a rate uniform in this sense that in equal times the distance

is reduced in equal proportions (Fig. 26). At the moment t =
the position coincides with ZQ. We speak of a period of this

motion meaning the time T = 2ir/n in which OZ performs an

entire revolution round 0, although it does not come back to its
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original position. Any part of the spiral curve described by Z
in a given time is geometrically similar to any other part of the

curve described in an interval of equal duration. For suppose
the second interval of time hap

pens r units of time later, we
shall have for the first interval

z = zQe~
kt

-e
nti

and for the second interval

Now if Zi and Zz are the values

of z at two moments ti and k of

the first interval and z\ and z%

the corresponding values of z

at the moments t\ + T and U + T of the second interval, we have

FIG. 26.

Therefore the triangle Z\OZ&amp;lt;i is geometrically similar to the

triangle ZiOZ2 . As Z\ and Z2 may coincide with any points
of the first part of the curve, the two parts are evidently geo

metrically similar.

The projection of Z on the axis of x performs oscillations

decreasing in amplitude. The turning-points correspond to those

points of the spiral curve described by Z, where its tangent is

parallel to the axis of y, that is to say, where the abscissa of dz/dt

vanishes.

Now

or

= (- k + ni)e-
kt
e
nti = (- & + ni)z

dz

dt = k + m =
z
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where p and X are the modulus and angle of the complex number
- k + ni.

Consequently, if we represent dz/dt by a point Z , the triangle

Z OZ will remain geometrically similar to itself. The turning

points of the damped oscillations correspond to the moments

when OZf

is directed vertically upward or downward or when the

angle of dz/dt is equal to 7r/2 or 3ir/2. The angle of z will then

be 7T/2 X or 3?r/2 X plus or minus any multiple of 2r. As

the angle of z, on the other hand, is changing in time according

to the formula

nt+ a,

we find the moments where the movement turns by the equation

nt + a = 7T/2
- X + 2N-7T,

or

nt + a = 37T/2
- X + 2Nirt

N denoting any positive or negative integral number. The time

between two consecutive turnings is therefore equal to v/n, that

is, equal to half a period. All the points Z corresponding to

turning points lie on the same straight line through the origin

forming an angle 3r/2 X with the direction of the positive axis

of x. The amplitudes of the consecutive oscillations therefore

decrease in the same proportion as the modulus of z, that is

to say, in half a period in the ratio e~--

Let us consider the vibrations of a system possessing one

degree of freedom when the system is subjected to a force varying

as a harmonic function of the time and let us limit our considera

tions to positions in the immediate neighborhood of a position

of stable equilibrium. If the quantity x determines the position

of the system the oscillations satisfy a differential equation of

the form

where m, k, n, p, F are positive constants.

1 See for instance Rayleigh, Theory of Sound, Vol. I, chap. Ill, 46.
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This is another case where the introduction of a complex

variable

z = x + yi

and the geometrical representation of complex numbers helps to

form the solution and to survey the variety of phenomena that

may be produced.

In order to introduce z let us simultaneously consider the

differential equation

and let us multiply the second equation by i and add it to the

first. We then have

^ I

], + n2~ = FePti
dt

2 ^ dt^

The movement of the point Z representing the complex number

z then serves as well to show the movement corresponding to x.

We need only consider the projection of Z on the axis of x.

A solution of the differential equation may be obtained by

writing
z = z epti .

Introducing this expression for z and cancelling the factor epti

we have

*o(- mp2 + kpi + n2
)
= F,

or

F

mp2 + kpi+ n2

ZQ is a complex constant, that may be represented geometrically

as we shall see later on.

This solution

z = zQe
pti

is not general. If z
r
denotes any other solution so that
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we find by subtracting the two equations

or writing
z z = u,

d?u du

The general solution of this equation is

u = u^ + u^e^y

where ui and u^ are arbitrary constants and Xi and \2 are the

roots of the equation for X

mX2 + k\ + n2 =
0,

2m&quot;

If &2
/4ra

2
is greater than n2

, so that the square root has a real

value, l/&2

/4m
2 n2

will certainly be smaller than k/2m. There

fore Xi and \2 will both be negative and the moduli of the complex
numbers u\e

K* and utf
K* will in time become insignificant. If,

on the other hand, &2
/4m

2
is smaller than n2

, both complex
numbers u\e

Klt and u^* correspond to points describing spirals that

approach the origin, as we have seen above, in a constant ratio

for equal intervals of time. Therefore they will also in time

become insignificant.

After a certain lapse of time the expression

z = zQe
pti

will therefore suffice to represent the solution.

The point Z moves uniformly in a circle round of a radius

equal to the modulus of ZQ , completing one revolution in the

period Zir/p, the period of the force acting on the system. The
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movement of the projection of Z on the axis of x is given by

X = TQ COS (pt + a),

where r is the modulus and a the angle of z . It is a harmonic

movement with the same period as that of the force* Fcospt,

but with a, certain difference of phase and a certain amplitude

depending on the values of F, m, k, n, p.

It is important to study this relation in order to survey the

phenomena that may be produced. For this purpose the geo

metrical representation of complex numbers readily lends itself.

In the expression for ZQ

F
z - -

let us consider the denominator

mp2 + kpi + n2
,

and let us suppose the period of the force acting on the system

not determined, while the constants of the system m, k, n and

the amplitude of the force F have given values. The quantity p
is the number of oscillations of the force during an interval of

2ir units of time. This quantity p we suppose to be indeter

minate and we intend to show how the amplitude and phase

of the forced vibrations compare with the amplitude and phase

of the force for different values of p.

Let us plot the curve of the points corresponding to the complex

number
n2 mp2 + kpi,

where p assumes the values p = to +
This curve is a parabola whose axis coincides with the axis of

x and whose vertex is in the point x = n2
, y = 0. We find its

equation by eliminating p from the equations

p} y
_

viz.,
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n2_,
k2

p-3

But it is better not to eliminate p and to plot the different points

for different values of p. In Fig. 27 the curve is drawn for p =
to 3 and the points for

&amp;gt;=0, 1, 2, 3 are marked.

The ordinates increase in

proportion to p; they are

equal to 0, k, 2k, 3k for

p = 0, 1, 2, 3. The dis

tance between the projec

tion of any point of the

curve on the axis of x and

the vertex is proportional to p
2
. It is equal to 0, m, 4m, 9m for

p = 0, 1, 2, 3.

For any point P on the parabola let us denote the distance

from by r and the angle between OP and the positive axis of

x by &amp;lt;p

so that

n2 mp2 + kpi = re**.

Then we have

and consequently

FIG. 27.

and

= re*

-
F
-t
r

x
F-

cos (pt

The amplitude F/r of the forced vibration is inversely propor

tional to r. Thus our Fig. 27 shows us what the period of the

force must be to make the forced vibrations as large as possible.

It corresponds to the point on the parabola whose distance from

is smallest. It is the point where a circle round touches the

parabola. In Fig. 27 this point is marked R. It may be called

the point of maximum resonance. When the constants of the

system are such that the ordinate of the point, where the parabola

intersects the axis of y is small in comparison with the abscissa
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of the vertex, then OR will lie close to the axis of y (Fig. 28). In

this case the angle between OR and the positive axis of x will be

very nearly equal to 90, that is to say, the forced oscillations will

lag behind the force oscil

lations by a little less than a

quarter of a period. Keep

ing m and n constant, this

will take place for small val

ues of k, i. e., for a small

damping influence. A small FlG 2g.

deviation of p from the fre

quency of maximum resonance will throw the pointP awayfrom R,
so that r increases considerably and

&amp;lt;p

becomes either very small

(for values of p smaller than the frequency of maximum resonance)

or nearly equal to 180 (for values of p larger than the frequency

of maximum resonance). In other words for small values of k the

maximum of resonance is very sharp. A deviation of the period

of the force from the period of maximum resonance will lessen the

amplitude of the forced vibration considerably. The lag of its

phase behind that of the force will at the same time nearly vanish,

when the frequency of the force is decreased or it will become nearly

as large as half a period, when the frequency of the force is in

creased. For larger values of k the parabola opens out and this

phenomenon becomes less marked. The minimum of the radius r

becomes less pronounced. The angle between OR and the axis of

x becomes smaller and smaller and for a certain value of k and all

larger values the point R will coincide with the vertex of the para

bola. In this case, there is no resonance. When the period of

the force increases indefinitely (p becoming smaller and smaller)

the amplitude of the forced vibration will increase and will

approach more and more to the limit

but there will be no definite period for which the forced vibra

tions are stronger than for all others.



CHAPTER II.

THE GKAPHICAL REPRESENTATION OF FUNCTIONS OF ONE OR

MORE INDEPENDENT VARIABLES.

6. Functions of One Independent Variable. A function y of

one variable x

y =

is usually represented geometrically by a curve, in such a way
that the rectangular coordinates of its points measured in certain

chosen units of length are equal to x and y. This graphical rep

resentation of a function is exceedingly valuable. But there is

another way not less valuable for certain purposes, more used in

applied than in theoretical mathematics, which here will occupy
our attention.

Suppose the values of y are calculated for certain equidistant

values of x, for instance:

x = -
6,
-

5,
-

4,
-

3, -2, - 1, 0,

+ 1, + 2, + 3, + 4, + 5, + 6,

and let us plot these values of y in a uniform scale on a straight

line. Draw the uniform scale on

one side of the straight line and

mark the points that correspond

to the calculated values of y on

the other side of the straight line.

Denote them by the numbers x

that belong to them (Fig. 29).

The drawing will then allow us to

read off the value of y for any of

FlG 29 the values of x with a certain ac

curacy depending on the size of the

scale and the number of its partitions and naturally on the fine-

40
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ness of the drawing. It will also allow us to read off the value

of y for a value of x between those that have been marked, if

the intervals between two consecutive values of x are so small

that the corresponding intervals of y are nearly equal. We can

with a certain accuracy interpolate values of x by sight. On the

other hand, we can also read off the values of x for any of the

values of y. We shall call this the representation of a function

by a scale.

We can easily pass over to the representation of the same

function by a curve. We need only draw lines perpendicular

to the line carrying the scales through the points marked with

the values of x and make their length measured in any given

unit equal to the numbers x that correspond to them (Fig. 29).

In a similar way we can pass ,

from the representation of the

function by a curve to the rep

resentation by a scale.

The representation by a scale

may be imagined to signify the

movement of a point on a straight

line, the values of x meaning the

time and the points marked with

these values being the positions

of the moving point at the times

marked. By passing over to the curve the movement in the

straight line is drawn out into a curve with the time as abscissa

(Fig. 30).

The representation by a scale is used in connection with the

representation by a curve for the purpose of drawing a function

of a function.

Let y be a function of x and x a function of t. Then we wish

to represent y as a function of t.

Let y = f(x) be given by a curve in the usual way and let

x =
(f&amp;gt;(t)

be given by a scale on the axis of x marking the points

where t = 0, 1, 2, , 12. We then find the values of y corre-

FIQ. 30.
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spending to the values t = 0, 1, 2, -, 12 by drawing the ordi-

nates of the curve y = f(x) for the abscissas marked t = 0, 1, 2,

&quot;a?

, 12. These ordinates as a rule will not be equidistant. But
as soon as we move them so as to make them equidistant, they

form the ordinates of the curve

1- -6

I I

=/(*&amp;gt;))

with t as abscissa (Fig. 31).

The representation of a func

tion by a scale may be general-

k

ized in the respect that neither

of the two scales facing one an

other on the straight line need

necessarily be uniform. The in

tervals of both scales may vary
from one side of the scale to the

other. If the variation is suffi

ciently slow the interpolation can nevertheless be effected with

accuracy. We may look at this case as composed of two cases

of the first kind.

f(x)
= y and y = g(t).

FIG. 32.
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These scales are placed together, so that the scale x touches the

scale t

while the scale y is cut out (Fig. 32).

7. The Principle of the Slide Rule. Let us investigate how

the relation between x and t changes by sliding the x- and ^-scales

along one another.

If we slide the x-scale through an amount y = c so that a

point of the x-scale that was opposite to a certain point y of the

?/-scale, now is opposite y -\- c, then the relation between x and t

represented by the new position of the scales will be given by
the equation

f(x)
=

g(t) + c.

If x, t and x
, t , denote two pairs of values that are placed

opposite to one another, we shall have simultaneously

/Or) = g(t) + c,

/(* )

or by eliminating c

The ordinary slide rule carries two identical scales y = log x and

y = log t that are able to slide along one another, x and t running

through the values 1 to 100. We therefore have

log x log t = log x log t ,

or
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is the principle on which the use of the slide rule is founded.

It enables us to calculate any of the four quantities x, t, x , t

if the other three are given. Suppose, for example, x, t, x

known. We set the scales so that x appears opposite to ty

I i M ? ? i^prmo v y [

3p ^jff
L5 2 4156 78910 15 20 30 40 60 801&quot;

*-.
5 ? ? f

f
? T ? ?y

1.5 2 3 1 5 678 9 1*0 i

FIG. 34.

then t is read off opposite to x f

. On the other edges the slide

rule carries two similar scales one double the size of the other

(Fig. 34). We may write

y = 2 log X and y = 2 log T
7

.

By means of a little frame carrying a crossline and sliding over

the instrument, we can bring the scales x and T
7

or t and X op

posite each other. If, for example, for any position of the

instrument x, I
7

and x , T are two pairs of values opposite each

other, then

log x
- 2 log f = log x

- 2 log T ,

or

If any three of the four quantities x, T
7

,
x , T are known the

fourth may be read off. Thus we find the value

xT 2

by setting T opposite to x and reading off the value opposite to

T
7

. Or we can find the value of

by setting z opposite to T and reading off the value opposite x .
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Let us reverse the part that carries the scales t, T so that x

slides along T and X along t, but in the opposite order (Fig. 35).

FIG. 35.

The scales t, T may then be expressed by

y = I
-

log t and y = I
- 2 log T,

I being the entire length of the scales.

By setting the instrument to any position and considering the

scales x and t or X and T by means of the cross line we have

log x+ log t = log x + log t and logX+ log T = log X + log T
or

xt = x i and XT = ZT,

so that any two values opposite to one another have the same

product.

For x and T we have

log x + 2 log T
7 =

log x + 2 log T
7

,

or

Let us apply this to find the root of an equation of the form

u? + au = 6.

Divide by u so that

U

and set T
7 = 1 opposite to X = 6. Then taking T = u we find

on the same cross line t = u2 and Z =
b/u, so that we read the

two values u2 and b/u directly opposite to each other on the

scales t and X. If b/u is positive, it decreases while u2
increases.
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Running our eye along we have to find the place where the differ

ence b/u u2
is equal to a. Having found it the T-scale gives

us the root of the equation. For example take

u* - 5u = 3,

or

u2 -5=-.
u

We set T = 1 opposite X 3 and run our eye along the scales

X and t (Fig. 36), to find the place where t 5 = X. We find

X H 1
,2
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runs from oo to + GO for u = to + oo . In the first case

there may be two positive roots or none; in the second case there

may be two negative roots or none. For positive values of a

one root only exists in either case. This is easily seen in the first

form of the equation
u? + au = 6,

because from a positive value of a it follows that u* + au will

for u = oo to +00, run from oo to + oo without turning

and will therefore pass any given value once only.

In order to decide whether in the case of a negative value of a

there are three roots or only one let us write

iP
- = a.
u

For negative values of b we have to investigate whether there

are positive roots. For positive values of u the function u2
b/u

has a minimum, when the differential coefficient vanishes, i. e. y for

or

U

Having set our slide rule so that t gives us w2 and X gives us

b/u, we find the value u where the minimum takes place by

running our eye along and looking for the values X, t opposite

each other for which X is twice the value of t

2t = X.

Then t + X is the minimum of u2
b/u, so that there will be

two or no positive roots according to t + X being smaller or

larger than a. For positive values of b, we have to find out

whether there are negative roots. The criterion is the same.

After having set T = 1 opposite to b and having found the
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positive root, we find the place where

2t= X.

Then t + X is the minimum of all values that w2
b/u assumes

for negative values of u. If the minimum is smaller than a

there are two negative roots; if it is larger there are none. If it

is equal to a the two negative roots coincide.

For the equation

2_ K _ ?
u

for instance, we find t = 1.31 opposite to X = 2.62 (Fig. 36),

so that 2t = 2.62 = X. Now t + X = 3.93 is smaller than 5,

therefore u2
3/u will assume the value 5 for two negative

values of u on either side of the value u = T = 1.143

for which the minimum of u2
3/u takes place.

On the same principle as the slide rule many other instruments

may be constructed for various calculations. In all these cases

we have for any position of the instrument

/(*)
-

0(0 = /(* )
-

0(0,

where x, t are any readings of the two scales opposite each other

and x t the readings at any other place. f(x) and g(t) may be

any functions of x and t. It will only be desirable that they

be limited to intervals of x and t, which contain no turning

points. Else the same point of the scale corresponds to more

than one value of x or t and that will prevent a rapid reading

of the instrument.

Let us design an instrument for the calculation of the increase

of capital at compound interest at a percentage from 2 per cent,

upward. If x is the number of per cent, and t the number of

years, the increase of capital at compound interest is in the pro

portion
/
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We can evidently build an instrument for which

For taking first the logarithm and then the logarithm of the

logarithm, we obtain

log * + log log
(l
+~j

=
log f + log log

(l
+

^~)
.

We have only to make the or-scale

y = + log
log(l +155)- log log

(l
+ T|)

,

and the /-scale

y = log n log t.

For x = 2 we have y = and therefore in the normal position

of the instrument t = n. On the other end we have t = 1 and

therefore y = log n. Now let us take n = 100, so that y 2

for t = 1. Say the length of the instrument is to be about 24

cm., then the unit of length for the y-scale would have to be 12

cm. In the normal position of the instrument the readings xf t

opposite to each other satisfy the equation

Opposite t = 1, we read the value x\ = 624 and this gives us

A capital will increase in 100 years at two per cent, compound
interest in the proportion 7.24 : 1. Or we may also say the

number x\ = 624 read off opposite t = 1 is the amount which is

added to a capital equal to 100 by double interest of 2 per cent.

in 100 years. The same position of the instrument gives us the

number of years that are wanted for the same increase of capital

5
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at a higher percentage. For all the values x, t opposite to each

other satisfy the equation

7.24.

For any other given percentage x and any other given number

of years t the increase of capital is found by setting x opposite

to t and reading the z-scale opposite to t = 1. The only restric

tion is that the ratio is not greater than 7.24, else t 1 will

lie beyond the end of the a&amp;gt;scale.

For a given increase of capital the instrument will enable us

either to find the number of years if the percentage is given, or

the percentage if the number of years is given, subject only to

the restriction mentioned.

We can build our instrument so as to include greater increases

of capital by choosing a larger value of n. n = 1000, for in

stance, will make y = 3 for t = 1. If the instrument is not to

be increased in size the scales would have to be reduced in the

proportion 2 : 3.

Let us consider another instance

1 1 1

y=
x&amp;gt;

y= n-~f

In the normal position of the instrument the scale division

marked x = oo corresponds to y = and is opposite to t = n.

If we have t = oo on the other end, the length of the instrument

will correspond to y = l/n. Let us choose n = 0.1, so that the

length of the instrument is y = 10. That is to say, the unit of

length of the y-scale is one tenth of the length of the instrument.

For any position of the instrument we have

If the scale division marked x = oo is opposite to t = c we can

write x =
oo, t c and have
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The instrument will therefore enable us to read off any one of

the three quantities x, t, c, if the other two are given, the only

restriction being that all three lie within the limits 0.1 to oo.

The instrument may be used to determine the combined resistance

of two parallel electrical re

sistances, for the resistances

satisfy the equation I

1

R
FIG. 37.

Similarly it may be used

to calculate the distances of an object and its image from the

principal planes of any given system of lenses. For if / is the

focal length and x and t the distances of the object and its im

age from the corresponding principal planes (Fig. 37), the equa
tion is

On the back side of the movable part of an ordinary slide rule

there generally is a scale

y = 2 + log sin t.

When this part is turned round and the scale is brought into

contact with the scale

y = log x,

we obtain for any position of the instrument

log x log sin t = log x log sin / ,

or

_z tf_
sin t sin t

for any two pairs of values x, t that are opposite each other.
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Given two sides of a triangle and the angle opposite the larger

of the two the instrument gives at once the angle opposite the

other side. Similarly when two angles and one side are given,

it gives the length of the other side.

If x = a is the value opposite to t = 90, we have

x = a sin t

Thus we can read the position of any harmonic motion for any
value of the phase.

An instrument carrying the scales

y = log sin x and y = log sin t

enables us to find any one of four angles x, t, x , t for which

sin x _ sin x

sin t sin t

if the other three are given. Thus, knowing the declination,

hour angle and height of a celestial body, we can read the azimuth

on the instrument. We have only to take x = 90 height,

t = hour angle, x = 90 declination, then t = azimuth or

180 - azimuth.

It is not necessary to carry out the subtraction 90 height and

90 declination. The difference may be counted on the scale

by imagining written in the place of 90, 10 in the place of

80 and so on and counting the partitions of the scale backwards

instead of forward.

8. Rectangular Coordinates with Intervals of Varying Size.

The two methods of representing the relation between two

variables either by a curve connecting the coordinates or by
scales facing each other lead to a combination of both.

Suppose the rectangular coordinates x and y are functions of

u and v,

x =
&amp;lt;p(u)

and y = $(v).

The function x =
&amp;lt;p(u)

is represented by a uniform scale for x

on the axis of abscissae facing a non-uniform scale for u. The
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function y = \f/(v) is represented by a uniform scale for y on

the axis of ordinates facing a non-uniform scale for v. Through
the scale-divisions u let us draw vertical lines, and through the

scale-divisions v let us draw horizontal lines. These two systems

of parallel lines form a network of rectangular meshes of various

sizes (Fig. 38), and any equation between u and v may be repre

sented by a curve in this plane.

The usefulness of this method will be seen by some examples.

It enables us by a clever choice of the functions v(u) and \//(v)

FIG. 38.

1 .2 3 4 5

FIG. 39.

to simplify the form of the curve. It is easily seen, for instance,

that a curve representing an equation f(u, v)
= may always be

replaced by a straight line, if we choose the w-scale properly.
For when the points u = 1, 2, 3, 4, of the curve are not on

a straight line, let them be moved to a straight line without

altering their ordinates (Fig. 39). This will change the w-scale

but it will not alter the equation f(u, v)
= now represented by

the straight line.

Suppose we want to represent the relation

where a and b are given numbers. If u and v were ordinary

rectangular coordinates the curve would be an ellipse. But if we
make

x = u2 and y = $
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the equation of the line in rectangular coordinates becomes

and the curve will therefore be a straight line running from a

point on the positive axis of x to a point on the positive axis of

y. The point on the axis of x corresponds to the value u = a

on the w-scale, and the

point on the axis of y cor

responds to the value v =
=t b on the 0-scale (Fig. 40).

Any point on the straight

line corresponds to four

combinations -\-u, +0; u,

ti+i.5j* 2.5 3 5 it&quot;5o*) + ; u, v; u, v, be

cause x has the same values

for opposite values of u

and y for opposite values of v. We can read v as a function of

w or u as a function of v.

If a second equation

FIG. 40.

is given, we find the common solutions of the two equations by
the intersection of the corresponding straight lines. Fig. 40

shows the solutions of the two equations

u*

and
22

r
32

^ 2V
42
+

52
1,

approximately equal to u = =*= 1.2 and = 2.4.

Another function much used in mathematical physics

v = ae
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may also be represented by a straight line by means of the same

device.

By making
y = log v, x = w2

,

we obtain

2/
= loga- Jj,

where log v and log a are the natural logarithms of v and a.

The w-scale is laid off on the axis of x and the 0-scale on the axis

of y and we have to join the points u 0, v = a and u = m,

i)
= a/e. The point v = o/e is found by laying off the distance

v = 1 to v = e from v a downward (Fig. 41). We are not

obliged to take the same units of length for x and y.

T-^CK)

FIQ. 41.

Suppose we had to find the constants a and m from two equa

tions

Vi
== CL6~mi

and

Our diagram would furnish two points corresponding to u\, v\

and uz, ^. The straight line joining these two points intersects

the axis of ordinates at v = a and intersects the parallel through

v = a/e to the axis of abscissae at u = m.
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In applied mathematics the problem would as a rule present

itself in such a form that more than two pairs of values u, v

would be given but all of them affected with errors of observation.

The way to proceed would then be to plot the corresponding

points and to draw a straight line through the points as best we

can. A black thread stretched over the drawing may be used to

advantage to find a straight line passing as close to the points

as possible (Fig. 42).

In several other cases the variables u and v are connected with

the rectangular coordinates x and y by the functions

x = log u and y = log v.

10

2.5 3 3.5

FIG. 42.

10

Fio. 43.

&quot;Logarithmic paper&quot; prepared with parallel lines for equidistant

values of u and lines perpendicular to these for equidistant values

of v is manufactured commercially (Fig. 43).

By this device diagrams representing the relation

ur
v =

c,

where r, s, c are constants are given by straight lines. For by

taking the logarithm we obtain

rx + sy log c.

The straight line connects the point u = c1/r on the w-scale with

the point v = c1/8 on the 0-scale.

Logarithmic paper is further used to advantage in all those
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cases where a variety of relations between the variables u and v

are considered that differ only in u and v being changed in some

constant proportion. If u and v were plotted as rectangular

coordinates the curves representing the different relations be

tween u and v might all be generated from one of them by altering

the scale of the abscissae and independently the scale of the ordi-

nates, so that the appearance of all these curves would be very
different. Let us write

f(u, v)
=

0,

as the equation of one of the curves. The equations of all the

rest may then be written

&!)-
where a, b are any positive constants. The points u, v of the

first curve lead to the points on one of the other curves by taking

u a times as great and v b times as great. For if we write u au

and v = bu the equation f(u, v)
= leads to the equation

between u and v \

Using logarithmic paper the diagram of all these curves be

comes very much simpler. The equation/(w, v)
= is equivalent

to a certain equation &amp;lt;p(x, y)
=

0, where x = log u, y = log v.

Now let x
, y be the rectangular coordinates corresponding to

u
,
v so that

x log u =
log u + log a = x + log a,

y =
log =

log v + log b = y + log b.

The point x
, y is reached from the point x, y by advancing

through a fixed distance log a in the direction of the axis of x

and a fixed distance log b in the direction of the axis of y. The
whole curve

u, =



58 GRAPHICAL METHODS.

drawn on logarithmic paper is therefore identical with all the

curves

It can be made to coincide with any one of the curves by

moving it along the directions of x and y.

9. Functions of Two Independent Variables. When a func

tion of one variable y = f(x) is represented by a curve, the values

of x are laid off on the axis of x and the values of y are represented

by lines perpendicular to the axis of x. In a similar way a

function of two independent variables

* = f(x, y)

may be represented by plotting x and y as rectangular coordinates

and erecting lines perpendicular to the xy plane, in all the

points x, y, where f(x, y) is defined and making the lengths of

the perpendiculars proportional to z. In this way the function

corresponds to a surface in space. Now there are practical

difficulties in working with surfaces in space and therefore it

appears desirable to use other methods, that enable us to represent

functions of two independent variables on a plane. This may
be done in the following way.

Taking x, y as rectangular coordinates all the points for which

f(x, y) has the same value form a curve in the xy plane. Let

us suppose a number of these curves drawn and marked with the

value of f(x, y). If the different values of f(x, y) are chosen

sufficiently close, so that the curves lie sufficiently close in the

part of the xy plane that our drawing comprises, we are not only

able to state the value of f(x, y) at any point on one of the drawn

curves, but we are also able to interpolate with a certain degree

of accuracy the value of f(x, y) at a point between two of the

curves. As a rule it will be convenient to choose equidistant

values of f(x, y) to facilitate the interpolation of the values

between. The curves may be regarded as the perpendicular

projection of certain curves on the surface in space, the inter-
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sections of the surface by equidistant planes parallel to the

xy plane.

The method is the generalization of the scale-representation

of a function of one variable. For a relation between t and x

represented by a curve with t as ordinate and x as abscissa, is

transformed into a scale representation by perpendicularly

projecting certain points of the curve onto the axis of x, the

intersections of the curve by equidistant lines parallel to the axis

of x and marking them with the value of t. A scale division in

the case of a function of one variable corresponds to a curve in

the case of a function of two independent variables.

This method of representing a function of two independent

variables by a plane drawing or we might also say of representing

a surface in space by a plane drawing, is used by naval architects

to render the form of a ship and by surveyors to render the form

of the earth s surface and by engineers generally. Let us apply

the method to a problem of pure mathematics.

The equation
2* + pz + g

=

defines z as a function of p and q. Let us represent this function

by taking p and q as rectangular coordinates and drawing the

lines for equidistant values of z.

For any constant value of z we have a linear equation between

the variables p and q, and therefore it is represented by a straight

line. This line intersects the parallels p = 1 and p = 1 at

the points q
= z and q

= z3 + z. Let us calculate

these values for z = 0; ==0.1; == 0.2 ==1.3 and in this way
draw the lines corresponding to these values of z as far as they

lie in a square comprising the values p = 1 to + 1 and

q 1 to + 1. Fig. 44 shows the result. On this diagram
we can at once read the roots of any equation of the third degree

of the form
s
3 + pz + q

=
0,

where p and q lie within the limits 1 to + 1. For p = 0.4 and
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q 0.2, for instance, we read z = 0.37, interpolating the value

of z according to the position of the point between the lines

z = 0.3 and z = 0.4. We also see that there is only one real

root, for there is only one straight line passing through the point.

-oj

1.3 1.2 1.1 10 0.9 0.8 0.7

FIG. 44.

On the left side of the square there is a triangular-shaped region

where the straight lines cross each other. To each point within

this region corresponds an equation with three real roots. For

example, at the point p= 0.8 and q
= + 0.2 we read z =

1.00; + 0.28; + 0.72. On the border of this region two roots

coincide.

For values of p and q beyond the limits 1 to + 1 the diagram

may also be used. We only have to introduce z = z/m instead

of z and to choose m sufficiently large.

Instead of

z3 + pz + q
=
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we obtain

wY3 + pmz + q = 0,

or dividing by ra3
,

or

2
3 + p z +q = 0,

where

^ = ^ ^ = JL
p m2 3 m3

By choosing a sufficiently large value of ra, p
f and # can be

made to lie within the limits 1 to + 1 so that the roots z
r

may be read on the diagram. Multiplying them by m we
obtain the roots z of the given equation.

A function of two independent variables need not be expressed

in an explicit form, but may be given in the form of an equa
tion between three variables

g(u, v, w) =
0,

and we may consider any two of them as independent and the

third as a function of the two. The graphical representation

may sometimes be greatly facilitated by modifying the method

described before. The curves for constant values of one of the

three variables, say w, are not plotted by taking u and v as

rectangular coordinates, but they are plotted after introducing

new variables x and y, x a function of u and y a function of v and

making x and y the rectangular coordinates.

In some cases, for instance, we can succeed by a right choice

of the functions x =
&amp;lt;p(u)

and y = \j/(v) in getting straight lines

for the curves w = const. This will evidently be the case,

when the equation g(u, v, w) = can be brought into the form

a(w)&amp;lt;f&amp;gt;(u) + b(iv)\f/(v) + c(w) 0,

a, b, c being any functions of w, &amp;lt;p any function of u and
\f/ any

function of v.

For introducing
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X =
&amp;lt;f&amp;gt;(u), y = ^(fl)

the equation will become

ax + by + c = 0,

where a, b, c are constants for any constant value of w.

As an example let us consider the relation between the true

solar time, the height of the sun over the horizon, and the declina

tion of the sun for a place of given latitude. Instead of the

declination of the sun we might also substitute the time of the

year, as the time of the year is determined by the declination of

the sun. Our object then is to make a diagram for a place of

given latitude from which for any time of the year and any

height of the sun the true solar time may be read.

In the spherical triangle formed by
the zenith Z, the north pole P (if we sup

pose the place to be on the northern

hemisphere) and the sun S (Fig. 45), the

sides are the complements of the decli

nation 8, the height h, and the latitude

&amp;lt;p.

The angle t at the pole is the hour

angle of the sun, which expressed in

time gives true solar time.

The equation between these four quantities may be written in

the form
sin h = sin

&amp;lt;p

sin 5 + cos
&amp;lt;p

cos 6 cos t.

The latitude
&amp;lt;p

is to be kept constant, so that t, h, 5 are the only

variables.

Now let us write

x = cos t, y = sin h,

so that the equation takes the form

y = sin
&amp;lt;p

sin 5 + x cos
&amp;lt;f&amp;gt;

cos 5.

When x and y are plotted as rectangular coordinates, we obtain
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a straight line for any value of 5. Let us draw horizontal lines

for equidistant values of h = to 90 and vertical lines for equi

distant values of t = 180 to + 180 or expressed in time

from midnight to midnight (Fig. 46). In order to draw the

latitude= II

FIG. 46.

straight lines 5 = const., let us calculate where they intersect

the vertical lines corresponding to x = 1 and x + 1 or

expressed in time corresponding to midnight and to noon. For

x = 1 we have y = cos
(&amp;lt;p + 5), and for x = + 1 we have

y = cos
(&amp;lt;p 5). Let us draw a scale on the vertical x = 1

showing the points y = cos
(&amp;lt;p + 5) for equidistant values of

(&amp;lt;p + 5) and a scale on the vertical x + 1, showing the points

y = cos
(&amp;lt;p 6) for equidistant values of

&amp;lt;p

8. The scale is

the same as the scale for h, with the sole difference that the values

of
&amp;lt;p

5 are the complements of h and the values of
&amp;lt;p + 5 the

complements of h. For a latitude of 41, for instance, we
have

For 5
&amp;lt;p + 5

&amp;lt;f&amp;gt;

8

June 21 23.5 64.5 17.5

September 23 and March 21 41 41

December 21 . . . . . . -23.5 17.5 64.5
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The values of
&amp;lt;p + 5 and

&amp;lt;p

8 furnish the intersections with

the verticals x = 1 and x = + 1, so that the straight lines

can be drawn corresponding to these days of the year. The two

outward lines are parallel but the middle line is steeper. Their

intersections with the horizontal line h = show the time of

sunrise and sunset. 1
Strictly speaking the straight lines do

not correspond to certain days. The straight line determined

by any value of 5 changes its position continually as 5 changes

continually. But the changes of 6 during one day are scarcely

appreciable unless the drawing is on a larger scale.

If in the equation
ax + by + c =

a and b are independent of w, only c being a function of w, all

the straight lines w const, are parallel. In this case we are

not obliged to draw the

straight lines w = const.

It will suffice to draw a

line perpendicular to the

lines w = const, and a

scale on it that marks the

points corresponding to

equidistant values of w.

On the drawing we place a

5 x=&amp;lt;t&amp;gt;w sheet of transparent paper

or celluloid,on which three

straight lines are drawn is

suing from one point in the direction perpendicular to the w-scale,

0-scale and w-scale (Fig. 47). If we move the transparent material

without turning it and make the first two lines intersect the u-Sind-v

scale at given points, the w-scale will be intersected at the point

corresponding to the value of w. This method has the advantage

1 That is to say, the moment when the center of the sun would be seen on

the horizon, if there were no atmospherical refraction. To take account of

the refraction, the line h = 0.6 would have to be considered instead of

h = 0.

Fia. 47.
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that we can use the same paper for a great many relations of

three variables, as we can place a great many scales side by side.

Or, in the case of one relation only, we may divide the region of

the values u, v, w into a number of smaller regions and draw three

scales for each of them, placing all the w-scales or ^-scales or

^-scales side by side. The drawing will then have the same

accuracy as a drawing of very much larger size in which there

is only one scale for each of the three variables.

10. Depiction of One Plane on Another Plane. Let us now

consider two quantities x and y each as a function of two other

quantities u and v

x =
&amp;lt;p(u, v),

y = }(u, v).

In order to give a geometrical meaning to this relation between

two pairs of quantities let us consider x and y as rectangular

coordinates of a point in a plane and u, v as rectangular coordi

nates of a point in another plane. We then have a corre

spondence between the two points. When the functions (p(u, v)

and \f/(u, v) are defined for the values u, v of a certain region,

they will furnish for every point u, v of this region a point in

the xy plane. Let us call this a depiction of the uv plane on

the xy plane. Similarly a function of one variable x =
&amp;lt;p(u)

might be said to depict the u line on the x line. We may there

fore say that the depiction of one plane on another plane is, in

a certain way, the generalization of the idea of a function of one

variable. Let us suppose &amp;lt;p(u, v) and \f/(u, v) both to have only

one value for given values of u and v for which they are defined.

Then there will be only one point in the xy plane corresponding

to a given point in the uv plane. But to a given point in the

xy plane there may very well correspond several points in the

uv plane.

Let us try to explain this by a graphical representation of the

depiction of planes on each other. For this purpose we draw

the curves x = const, and y = const, in the uv plane for equi-

6
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distant values of x and y. In the xy plane they correspond to

equidistant lines parallel to the axis of x and to the axis of y.

The point of intersection of two lines x = a and y = b corre

sponds to the points of intersection of the curves

&amp;lt;p(u, v)
= a and \j/(u, v)

=
b,

in the uv plane. If in a certain region of the uv plane, that

we consider, they intersect only once there is only one point in

the region of the uv plane considered and one point in the xy

plane corresponding to each other. Fig. 48 shows the depiction

of part of the uv plane on part of the xy plane. We have a net

of square-shaped meshes in the xy plane and corresponding is a

net of curvilinear meshes in the uv plane.

Let us consider the curves x const, in the uv plane as the

perpendicular projections of curves of equal height on a surface

extended over that part of the uv plane. From any point P
of the surface corresponding to the values u, v we proceed an

N

3T0.7
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tion forms with the positive axis of x. Let PN be a straight line

whose projections on the u and v axis are equal to
d&amp;lt;p/du

and

d(f&amp;gt;/dv
and let us write

d&amp;lt;p d&amp;lt;p .

-=rcosX, ^-rsinX,

r being the positive length of PN and X the angle between its

direction and the positive axis of x. Then we have

dx = du + &amp;lt;fo
= refe cos (a X),cm ofl

or

dx .

-r = r cos (a X).

measures the steepness of the ascent. It is positive when

the direction leads upward and negative when it leads downward

and its value is equal to the tangent of the angle of the ascent.

From the equation
dx .

-7 = r cos (a X)

we see that the ascent is steepest for a = X, where dxlds = r.

The line PN in the u, 0-plane shows the perpendicular projection

of the line of steepest ascent on the surface x = (p(u, v) and the

length of PN measured in the same unit of length in which u and

v are measured is equal to the tangent of the angle of the ascent.

Let us call the line PN the gradient of the function
&amp;lt;p(u, v) at the

point u, v. The direction of the gradient is perpendicular to the

curve
&amp;lt;p(u, v)

= const, that passes through the point u, v; for in

the direction of the curve we have

dx

5-
and therefore

a - X = 90.

If PN is the gradient of the function \j/(u, v) at the point u, v, the

angle between PN and PN must be equal to the angle formed
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by the curves x = const, and y = const, that intersect at the

point u, v, or equal to its supplement according to the angle of

intersection that we consider.

Suppose the gradients PN and PN do not vanish in any of

the points in the region of the uv plane that we consider and

that their length and direction vary as continuous functions of

u and v. Let us further suppose that the gradient PN (com

ponents: ty/du, d^/dv) is for the whole region on the left side

of the gradient PN (components: d&amp;lt;p/du, d&amp;lt;p/dv),
or else for the

whole region on the right side of the gradient PN, then it fol

lows that any one of the curves x = const, and any one of the

curves y = const, can only intersect once in the region considered.

This may be shown by considering the directions of the curves

x const, and y = const, in the uv plane. Let us consider

that direction on the curve y = const, in which x increases. If

this direction deviates from PN the deviation must be less than

90, because dx/ds and therefore cos (a X) is positive. Let us

further consider that direction on the curve x = const, in which

y increases. If it deviates from the direction of PN the devia

tion must be less than 90. Let us call these directions the

direction of x (on the curve y = const.) and the direction of y

(on the curve x = const.). Now if the gradient PN is on the

left of the gradient PN the y direction must also be on the left

of PN (for if it were on the right of PN being perpendicular to

PN it would form an obtuse angle with PN ) and therefore it

must be on the left of the x direction (for if it were on the right,

PN being perpendicular to the x direction would form an obtuse

angle with the y direction, which we have seen to be impossible).

Similarly it may be seen, that if PN is on the right of PN, the

direction of y will also be on the right of the direction of x. If

therefore PN is on the same side of PN in the whole region

considered, the direction of y will also be on the same side of the

direction of x for the whole region considered. This excludes

the intersection of two curves x = const, and y = const, in more

than one point. For, suppose there are two points of inter-
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section and we pass along the curve y = const, in the direction of

x. At the first point of intersection we pass over the curve

x = const, from the side of smaller values of x to the side of

larger values of x. Now if the values of x go on increasing

as we go along the curve y = const, we evidently cannot get

back to a curve x = const, corresponding to a smaller value of x.

The only possibility of a second point of intersection would be

that the direction in which the value of x increases on the curve

y = const, becomes the opposite, so that in advancing in the

same direction in which we came x would decrease again.

The same holds for the curve

x= const. If we pass from one

point of intersection with a

curve y = const, along a curve

x = const, to a second point

of intersection with the same

curve the only possibility is

that the direction of y also be

comes opposite. This is ex

cluded as in contradiction with FIG. 49.

the direction of y being on the

same side of the direction of x throughout the whole region (Fig.49)

It will be useful to look at it from another point of view. Let

us consider a point A in the uv plane corresponding to the

values u, v and let us increase u and v by infinitely small positive

amounts du and dv, so that we get four points ABCD, forming a

rectangle corresponding to the coordinates.

A : u, v; B : u + du, v; C : u, v + dv; D : u + du, v + dv.

In the xy plane these points are depicted in the points A,

B, C, D, the intersections of two curves u and u + du with two

curves v and v + dv (Fig. 50).

The projections of the line AB in the xy plane on the axes of

coordinates are obtained by calculating the changes of x and y
for a constant value of v and a change du in the value of u



70 GKAPHICAL METHODS.

d&amp;lt;p~

Similarly the projections of AC are obtained by calculating the

changes of x and y for a constant value of u and a change dv in the

value of v

d&amp;lt;p. d\p j
dx2 = -j-dv, dy2 = -r afl.

dv dv

Denoting the lengths of AB and AC by dsi and ds2 and the angles

that the directions of AB and AC form with the direction of the

du

I

FIG. 50.

positive axis of x (the angles counted in the usual way) by 71

and 72 we have:

dxi = dsi cos 71, dyi
= dsi sin 71

and
dx2 = ds-2. cos 72, dyz

= ds2 sin 72,

or

dsi

and

We may call

T- = cos 71-T-j ^ = sm 71 -j-du du du du

d&amp;lt;p

du

the scale of depiction at A in the direction AB and
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the scale of depiction at A in the direction AC. It is here under

stood that the uv plane is the original, which is depicted on the

xy plane. If we take it the other way the scales of depiction

in the directions AB and AC are the reciprocal values dujds\

and dv/dsz.

The area of the parallelogram ABCD in the xy plane is

uft sm * -
71 = -- - --

According to the way in which the angles 72 and 71 are defined

sin (72 71) is positive, when the direction AC points to the left

of the direction AB (assuming the positive axis of y to the left

of the positive axis of x), and sin (72 71) is negative, when AC
points to the right. Now dudv is equal to the area of the rectangle

ABCD in the uv plane. Therefore the value of

d(p d\f/

du dv
~~

dv du

is the ratio of the areas ABCD in the two planes and its positive

or negative sign denotes the relative position of the directions

AB and AC in the xy plane. We may call this ratio the scale

of depiction of areas at the point A.

d&amp;lt;pd\j/

du dv dv du

is called the functional determinant of the functions
&amp;lt;p(u, v) and

t(u, v).

We have found the scale of depiction of lengths in the direc

tions AB and AC. Let us now try to find it in any direction

whatever. From any point A in the uv plane, whose coordinates

are u and v, we pass to a point D close by whose coordinates are

u + Aw, v + A0. In the xy plane we find the corresponding

points A and D with coordinates (Fig. 51).
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.
X =

&amp;lt;f&amp;gt;(u, 0)

y = 4&amp;gt;(u9 v)

AX =
Ay =

AW, fl

Aw,

We expand according to Taylor s theorem, and writing for

shortness

d&amp;lt;p dtp d\J/ &\f/

&amp;lt;Pu

=
&amp;gt; &amp;lt;Pv

== &quot;

9 TU ==
&amp;gt; Yv ==

du dv du dv

we find

Ax =
&amp;lt;puAu + &amp;lt;pvAv + terms of higher order,

Ay = \l/uAu + ^vAu + terms of higher order.

FIG. 51.

The length of AD and the angle of its direction we denote by
Ar and a in the wo plane and by As and X in the xy plane.

The limit of the ratio As/Ar, to which it tends, when D approaches

A without changing the direction AD is the scale of depiction

at the point A in the direction AD.

Writing
Au = Ar cos a,

Av = Ar sin a,

we obtain

Ax =
((f&amp;gt;u cos a + (pv sin a)Ar + terms of higher order,

ty (&u cos a. + fa sin a)Ar + terms of higher order.

Dividing by Ar and letting Ar decrease indefinitely, we have in

the limit

dx
~T- ==

&amp;lt;Pu
cos a -j- &amp;lt;pv sin a,
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dy~r^u cos a + \f/v sin a.

For dz/dr and dy/dr we may also write ds/dr cos X, efo/dr sin X.

ds
~r cos X =

&amp;lt;pu cos a -f- &amp;lt;pv
sin a,

-7- sin X =
\f/u cos a + \J/V sin a.

These equations show the scale of depiction ds/dr corresponding

to the different directions X in the x, y-plane and a in the u, v-

plane.

By introducing complex numbers we can show the connection

still better.

Let us denote

dx
, dy . ds w

z = -T+^r l = T e
&amp;gt;

dr dr dr

Zl
=

&amp;lt;Pu + tut,

22
=

&amp;lt;P* + &amp;lt;M-

Multiplying the second of the two equations by i and adding

both they may be written as one equation in the complex form:

z = Zi cos a + 22 sin a.

The modulus of z is the scale of depiction of the uv plane at the

point A in the direction a. The angle of z gives the direction in

the xy plane corresponding to the direction a. For a = we

have z = Zi and for a = 90, z = %%.

Let us substitute

COS a =-- , Sin QJ =-
J

and write

Zl + ZfcA , Zi Z2/1

so that the expression for z becomes
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z = aeai + be&quot;**.

This suggests a simple geometrical construction of the complex
numbers z for different values of a. The term aeai

is represented

by the points of a circle described by turning the line that

represents the complex number a round

the origin through the angles a=0- 2ir.

The term be~ai
is represented by the

points of a circle described by turning

the line that represents b round the ori

gin in the opposite direction through the

angles a = - 2ir (Fig. 52). The

addition of the two complex numbers

PJQ 52 aeai and be ai for any value of a is easily

performed. The points corresponding

to the complex numbers z describe an ellipse, whose two princi

pal axes bisect the angles between a and b. This is easily seen

by writing
a ^= T\B . o == i

ao corresponds to the direction bisecting the angle between a

and b and ai denotes half the angle between a and b (positive or

negative according to the position of a and b).

or

=
(ri + r2 ) cos (a i) + (ri r2) sin (a ai)i.

Denoting the coordinates of the complex number ze~a&amp;lt;&amp;gt;i

by and rj

we have

= cos (a on) and - = sin (a i),
TI+ r2

and consequently the equation of an ellipse

(ri + r2)
2

(TI r2)
2
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This ellipse turned round the origin through an angle equal to

&amp;lt;XQ gives us the points corresponding to z. The principal axes

are 2(r + r2) and 2(ri r2) (Fig. 53). The construction of

FIG. 53.

Fig. 53 is obvious. After plotting zi and 22 we find z^/i and

Z2/i by turning AZ2 through a right angle to the right and to

the left. From these points lines are drawn to Z\. The bisection

of these lines give a and 6.

The figure shows that in case a and 6 have the same modulus,

the triangle Z2/i, Z\, Z2/i becomes equilateral and AZi is per

pendicular to the line joining Zz/i and Zz/i. In this case AZ\
and AZi would have the same or the opposite direction. But as

21
=

&amp;lt;f&amp;gt;u + $ui, 22
=

&amp;lt;f&amp;gt;v
+ fai, this would mean that

&amp;lt;p
u \f/v &amp;lt;pv \fsu

= 0.

The radii of the ellipse (Fig. 53) measured in the unit used

give the different scales of depiction corresponding to the dif

ferent directions in the xy plane. We might also say the ellipse

is the image in the xy plane of an infinitely small circle in the

uv plane, magnified in the proportion of the infinitely small radius

to 1, with its center in A.

Zi corresponds to a = and Z2 to a 90 and for a to 90
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Z moves on the ellipse from Z\ to Z2 through the shorter way.

Zi corresponds to a = 180 and Z2 to a = 270. Now we

have shown above that a positive value of the functional deter

minant
&amp;lt;pu \I/v vv^u means that Z2 is on the positive side of Z\ t

so that in this case Z moves in the positive sense (that is, in the

direction from the positive axis of x to the positive axis of y) with

increasing values of a. With a negative value Z moves in the

opposite direction.

Let us now suppose that the curves x = const, and y = const, in

the uv plane intersect except on a certain curve where their direc-

V

D=o

u

FIG. 54.

D

AM

-V*

-1/4

-1/2

-1/1

tions coincide in the way shown in Fig. 54. On this curve the

functional determinant D =
&amp;lt;pu \f/v &amp;lt;pv \lsu must vanish because

the directions of the gradients coincide. Let us see what the

depiction on the xy plane is like.

Running along one of the curves y = const., say y y\,

toward the curve D we intersect the curves x = #4, x3) x2

until at the point A on the curve x = Xi we reach the curve D = 0.

In the xy plane the corresponding path is a parallel to the axis

of # at a distance y\ passing through #4, ar3, x2 and reaching a

point A at x\. If we now proceed on the curve y yi in the

uv plane beyond the curve D =
0, we again intersect the curves

X2, #3, etc., but in the inverse order. Thus the corresponding

path in the xy plane does not pass beyond A, but turns back
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through the same points Xz, yi; x3 , ylt etc. The same holds for

any of the other lines y = const. If we trace the line in the

xy plane that corresponds to the points in the uv plane, where

the curves x = const, and y = const, touch, we find the depiction

of the uv plane only on one side of the curve in the xy plane.

The other side has no corresponding points u, v. However to

every point C on this side of the curve, there are two correspond

ing points C in the uv plane, one on either side of the curve

D = 0. Imagine two sheets of paper laid on the xy plane; let

them both be cut along the curve AB. Retain only the two

pieces on this side of the curve and paste them together along
the curve. The uv plane is in this way depicted on the paper
in such a way that there is one point and one only on the paper

corresponding to each point in

the region of the uv plane con

sidered. The curve D = in

the uv plane corresponds to the

rim where the two pieces of pa

per are pasted together. Any
line straight or curved passing

over the curve D = in the uv

plane,corresponds to a line running from one of the sheets onto the

other. It need not change its direction abruptly when it reaches

the rim and passes onto the other sheet. For it may touch the

rim in the direction of its tangent. This is actually the rule

and the abrupt change of direction is the exception. Any line

LAL (Fig. 55) in the uv plane, whose tangent as it crosses the

curve D = at A does not coincide with the common tangent

of the curves x = const, and y = const, will correspond to a line

in the xy plane, that does not change its direction abruptly

when it touches the rim.

This is best understood analytically. Let us consider corre

sponding directions at the points A in the uv plane and in the

xy plane. We have seen above that corresponding directions

(Fig. 56) are connected by the equations
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dyfdr

dx/dr
-rl-

FIG. 56.

ds dx
cos

X^;
=

^-
=

^&amp;gt;u cos a + &amp;lt;pv sin a,

ds dy
sin A = =

\l/u cos a + ^ sm a.

u

At the point A we have

Assuming that the gradients at ^4 do not vanish, so that we
can write

&amp;lt;pu
= r cos 7 , &amp;lt;pv

= r sin 7,

^M = r cos 7 , &, = r
r

sin 7 ,

where r and r are positive quantities, the equation &amp;lt;pu ^v~~&amp;lt;pv^u
= Q

reduces to sin (7 7 )
=

0, that is, 7 = 7 or 7 = 7 + 180.

It follows therefore that:

ds
cos XT~ = r cos (a 7),

sin X-T- = r cos (a 7 )
= == r cos (a 7).

ctr

Consequently for all directions a in the uv plane for which

cos (a: 7) is not zero, we have

tgX
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That is to say, we have in the xy plane only one fixed direction

X and the opposite corresponding to all the different directions

a except only a direction for which cos (a 7) = 0. In the

latter case, that is, when the direction a is perpendicular to the

direction 7 of the gradient, i. e., in the direction of the curves

x = const, and y = const., we have

cos X -j-
=

0,
dr

ds
sin X T~ = 0.

dr

Therefore ds/dr
= and X remains indeterminate. Any direction

X for which tg X differs from + r /r corresponds to a fixed direction

a = y + 90 or a = 7 - 90, while ds/dr = 0.

As the curve D = is depicted on the rim of the two sheets

of paper, all those lines that intersect the curve D = in a

direction different from the direction of the curves x = const,

and y = const, are depicted in the xy plane as curves having

their tangent at A in common with the rim. All lines in one of

the sheets of paper that touch the rim at A in a direction differ

ent from that of the rim must be the depiction of lines in the uv

plane that reach A in the direction of the lines x const, and

y = const. The scale of depiction is zero in the direction of the

curves x const, and y const. In any other direction a

we find it different from zero for:

It is a maximum in the direction a = 7 or 7 -{- 180 perpendicular

to the curves x = const, and y = const.

It may help to understand all these details if we discuss an

example where the depiction of the uv plane on the xy plane

has a simple geometrical meaning, the planes being ground plan

and elevation of a curved surface in space. The rim in the

xy plane is the outline of the surface, the projection of those
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AB

points where the tangential plane is perpendicular to the plane
of elevation.

Suppose a cylinder of circular section cut in two half cylinders

by a plane through its axis. Suppose one of the half cylinders

in such a position that its axis

forms an angle 5 with the

ground plan, the plan of ele-

E ^ \ \GQ vation being parallel to its

\ ^br^T&quot; ax
is&amp;gt; Fig. 57. Let us intro

duce rectangular coordinates

u, v in the ground plan and

rectangular coordinates x, y
in the plan of elevation. A
point P on the cylinder is de

fined by certain values u, v

which define its ground plan

and certain values x, y which

define its elevation. It is

easily seen from Fig. 57 that

we have

x = u

and

1

where a is the radius of the section. Now let us consider the

elevation of the points P as a depiction of their ground plan.

The functions
&amp;lt;p(u, v) and \f/(u, v) in this case are

&amp;lt;p(u, v)
=

u,

and

i,v)
= utg5+- s l/a*-cos 5

= 0; tu = tg 5,
cos 5I/a2

cos 5I/a2
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c
A\

B

D

u

FIG. 58.

The functional determinant vanishes for v = on the line EF.

The lines y = const, are the intersections of the cylinder with

horizontal planes. In the plan of

elevation they are straight hori

zontal lines; in the ground plan

they are ellipses (Fig. 58). As we

pass along one of these curves we

cross the line EF in the ground

plan but we only touch it in the

plan of elevation, retracing the hori

zontal line back again. The lines

x = const, are straight lines in both

planes, but in space they corre

spond to ellipses. Again as we

cross EF in the ground plan we

only touch it in the plan of eleva

tion and retrace the vertical line down again. Any curve on

the cylinder that crosses EF in a direction not perpendicular to

the plan of elevation is projected in the plan of elevation with

EF as its tangent. For the real tangent in space lying in the

tangential plane of the cylinder can have no other projection, if

not perpendicular to the plan of elevation. In this latter case

the projection of the tangent is a point

and the tangent of the elevation is deter

mined by the inclination of the osculatory

plane.

There is a particular case to be consid

ered, when the curve D = in the uv plane

coincides with one of the curves x const,

or y = const. (Fig. 59), assuming the gra

dients of the functions (p(u, v) and \l/(u, v)

not to vanish at the points of this curve. We have seen that at

a point where D = the scale of depiction must vanish in the

directions of the curve x = const, or y = const. Let the curve

D = coincide with a line x = const., then it follows that the

7

FIG. 59.
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length of the depiction of this curve is zero and the depiction

must be contracted in a point. For the length of the depiction

of a curve x = const, is given by an integral

ds
-j-dr,
dr

where dr denotes an element of the curve and ds/dr the scale

of depiction in the direction of the curve. As ds/dr is zero all

along the curve the integral must necessarily vanish.

As an example let us con

sider

x = uv,

y = v.

The lines x = const, in the uv

plane are equilateral hyper

bolas, the lines y = const, are

parallels to the axis of u (Fig.

60). Along the axis of u we

have at the same time y = 0,

x= and D= v= 0. The

whole axis of u is depicted in

the point x = 0, y = of the xy plane.

Let us finally consider the case where the scale of depiction

at any point is the same in all directions, though it need not be

the same at different points.

Writing as before

FIG. 60.

=
&amp;lt;Pu

~
dr

dy ds

dr
1 ~

dr
6

&amp;gt;

the connection between the scale of depiction ds/dr and the

angles X, a determining corresponding directions in the xy plane

and in the uv plane is given by the equation

z = Zi cos a + 22 sin a,
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or

z = ae
ia + be~ia

,

where

In the case where the scale of depiction dsfdr, that is to say, the

modulus of z, is independent of a, one of the constants a or b

must vanish, as we see at once from the construction of z (Fig.

52). Let us consider the case 6 = 0,

2 = aeai =
-j- e

xt
.

dr

The complex number a may be written
|
a

\
e a&amp;lt;

*, where
|

a
\

denotes the modulus of a and aQ the angle. Both may vary
from point to point, but at every point they have fixed values.

Consequently we have

ds . ,

-j-

=
I

a
I

and X = a + o.

That is to say, from an angle a determining a direction in the

uv plane, we find the angle X determining the corresponding
direction in the xy plane by the addition of a fixed value CXQ.

Any two directions a, a will therefore form the same angle as

the corresponding directions X, X in the xy plane. The same is

true when a = and z = be~ai
. The only difference is that in

this latter case the direction of z rotates in the opposite sense

with increasing values of a.

Analytically depictions of this kind are represented by func

tions of complex numbers,

x + yi
= f(u + m) or x + yi

= f(u m).

Assuming the function to possess a differential coefficient we have

dx . dy.
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and therefore either

Hence in the first case

or =
%2/i.

a = +
and in the second case

=
zi, b = |(zi

a = 0, 6 =

11. Other Methods of Representing Relations between Three

Variables. The depiction of one plane on another may be used

to generalize the graphical representation of a function of two

variables or a relation between three variables, as we prefer

to say.

As we have seen before, an equation

g(x, y, z)
=

between three variables x, y, z can be represented by taking x

and y as rectangular coordinates and plotting the curves z =
const. (Fig. 61) for equidistant val

ues of z. Suppose now the xy plane

to be depicted on another plane.

The lines x = const., y = const, and

z = const, will be represented by
three sets of curves. The fact that

three values x, y, z satisfy the equa
tion g(x, y, z)

= is shown geo

metrically by the intersection of

the three corresponding curves in

one point.

Another method for representing certain relations between

three variables u, v, w consists in drawing three curves, each

curve carrying a scale. The values of u, v, w are read each on

one of the three scales. The relation between three values u, v,

w is represented geometrically by the condition that the corre

sponding points lie on a straight line (Fig. 62). This method is
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far more convenient than the one using three sets of curves. It is

less trouble to place a ruler over two points u, v of two curves

and read the value w on the scale of the third than to find the

intersection of two curves u = const, and v = const, among sets

of others, pick out the curve w = const, that passes through the

FIG. 62.

same point and read the value of w corresponding to it. For we

must consider that the curves corresponding to certain values

of u and v are generally not drawn, but must be interpolated and

so must the curve w = const. It is true that interpolations are

necessary with both methods, but the interpolation on scales

like those in Fig. 62 is easily done.

It must however be understood that while the three sets of

curves form a perfectly general method for representing any rela

tion between three variables, the other method is restricted to cer

tain cases. In order to investigate this subject more fully we

shall have to explain the use of line coordinates.

When we apply rectangular coordinates x, y to define a certain

point in a plane, we may say that x determines one of a set of

straight lines (parallel to the axis of ordinates) and y determines

one of another set of straight lines (parallel to the axis of abscissas)

and the point is the intersection of the two (Fig. 63, 7). A
similar method may be used to determine a certain straight line

in a plane. Let x determine a point on a certain straight line,

x being its distance from a fixed point A on the line measured

in a certain unit and counted positive on one side and negative

on the other. Let y define a point on another straight line
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parallel to the first, y being its distance from a fixed point B on

the line measured in the same way as x. The straight line

passing through the two points is thus determined by the values

(i) y (II).x

FIG. 63.

x and y and for all possible values of x and y we obtain all the

straight lines of the plane except those parallel to the lines on

which x and y are measured. For simplicity we choose AB
perpendicular to the two lines (Fig. 63, 77). Let us call x and y
the line coordinates of the line connecting the two points x and

y in Fig. 63, 77, in the same way as x and y in Fig. 63, 7, are

called the point coordinates of the point where the two lines

x and y intersect.

A linear equation between point coordinates

y = mx + n

is the equation of a straight line. That is to say, all the points

whose coordinates satisfy the equation lie on a certain straight

line. If, on the other hand, we regard x and y as line coordinates

we find the analogous theorem: all the straight lines whose

line coordinates satisfy the equation

y = mx + fj.

pass through a certain point. The equation is therefore called

the equation of the point.

In order to show this let us first draw the line x 0, y = ju

(APO in Fig. 64). If now for any value of x we make AR = x
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and PQ = mx, the point of intersection of RQ and AP must be

independent of x, for

PO _ mx
A0~~~x

m.

FIG. 64.

The ratio PO/AO determines the position of and as it is

independent of x and the positions of A and P are also inde

pendent of x, the same is true for 0.

For negative values of m, PO and

AO have opposite directions so that

lies between A and P.

For a given point 0, we can find

the corresponding values of m and M

by joining with the points A and

the point corresponding to x = I.

If P and Q are the intersections of

these lines with the line on which y

is measured, we have BP = n and PQ = m. Any point in the

plane thus leads to an equation

y = mx + IJL,

except the points on the line on which x is measured. For

m = the equation reduces to

y = M,

that is, the equation of a point on the line on which y is measured.

Instead of y = mx + /*, we might also write x = m y + /,

and go through similar considerations changing the parts of x

and y. This form does not include the points on the line on

which y is measured, but it does include the points on the line

on which x is measured. For these we have m = 0.

The general equation of a point in line coordinates is given in

the form
ax + by + c = 0,

from which we may derive either of the first-mentioned forms

dividing it by a or b.
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Dividing by c another convenient form is obtained,

ax byT ~
c c

or writing
c

_
c

a b

x v

XQ determining the point of intersection of the line BO (Fig. 64)

and the z-line, while y determines the point of intersection of

the line AO with the y-liue.

A curve may be given by an equation

ai(u)x + bi(ii)y + ci(u)
=

0,

in which a\(u), b\(u), Ci(u) are functions of a variable u. Any
value of u furnishes the equation of a certain point and as u

changes the point describes the curve. Let us suppose the curve

drawn and a scale marked on it giving the values of u in certain

intervals sufficiently close to interpolate the values of u be

tween them. Two other curves are in the same way given by
the equations

02(0)3 + bz(v)y + 02W =
0,

as(w)x + b3(w)y + c3(w) = 0,

and scales on these curves mark the values of v and w.

Now we are enabled to formulate the condition which must be

satisfied by the values u, v, w in order that the three corresponding

points lie in one straight line. If x and y are the line coordinates

of the line passing through the three points, x and y must satisfy

all three equations simultaneously.

Consequently the determinant of the three equations must

vanish

oi(62c3 6302) + 02(6301
~

6ic3 ) + 03(6102 62ci)
=

0,

and, vice versa, if the equation between u, v, w may be brought
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into this form where ai} bi, Ci are any functions of u, 0%, 62, cz any

functions of v and a3, 63, c3 any functions of w, we can form the

equations
aix + biy + ci = 0,

chx + b2y + & =
0,

a3x + b3y + c3 = 0,

and represent them graphically by curves carrying scales for

u, v, w. The relation between u, v, w is then equivalent to the

condition that the corresponding points on the three curves lie

on a straight line. But it must be remembered that only a

restricted class of relations can be brought into the required form,

so that the method cannot be applied to any given relation.

The equation of a point

ax + by + c =

remains of the same form, when the units of length are changed

for x and y. If x
f

denotes the number measuring the same length

as the number x but in another unit, the two numbers must have a

constant ratio equal to the inverse ratio of the two units. There

fore, by changing the units independently, we have

x = Xz , y = py ,

and the equation of the point may be written

oX* +W + c = 0,

or

a x + by + c = 0,

where a = Xa and & =
/z6.

It is sometimes convenient to define the line coordinates in

another way. Let and 77 denote rectangular coordinates

measured in the same unit, then the equation of a straight line

can be written

f\
=

tg vt + i?o,

where y is the angle between the line and the axis of and 770,
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the ordinate of the point of intersection with the axis of 77.

Now let us call tg &amp;lt;p

and 770 the line coordinates of the straight

line represented by the equation and let us denote them by x

and y. Thus the values of x and y define a certain straight line

and any straight line not parallel to the axis of ordinates may
be defined in this manner. The condition that a straight line

x, y passes through a point , rj is expressed by the equation

rj
= x + y,

or

y = - & + 77.

If we fix the values of x and y, all the values
, 77 that satisfy this

equation represent the points of the straight line x, y and we

therefore call it the equation of the straight line. If, on the

other hand, we fix the values of and 77, all the values x, y that

satisfy the equation represent the straight lines that pass through

the given point , 77, and therefore we call it the equation of the

point.

The more general form

ax + by + c =
can be reduced to

a c

y=.--x -~.

It therefore represents the equation of the point, whose rec

tangular coordinates are =
a/6 and 77

=
c/b. The case

where b = or

ax + c =

represents the equation of a point infinitely far away in the

direction
&amp;lt;p

or the opposite direction
&amp;lt;p + 180, &amp;lt;p being defined by

c

tg &amp;lt;p

= x = - -
.

ii

All the straight lines, whose coordinates x, y satisfy the equation

ax + c =
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correspond to the same value of x but to any value of y. That

is to say, they are all parallel and all the straight lines of this

direction belong to them.

Let us now discuss some of the applications of line coordinates

to the graphical representation of relations between three

variables.

The relation

uv = w

may be written in the form

10- v

or
log u + log v = log w,

x + y = log w,

FIG. 65.

when

x = log u and y = log v.

Let us plot x and y as line co

ordinates on two parallel lines (Fig.

65), with scales for the values of u
and v. The equations x = log u
and y = log v may be regarded as the equations of the points of

these two scales. The equation

x + y = log w

for any value of w is the equation of a point. It can easily be

constructed as the intersection of any lines x, y satisfying its

equation. For instance, the line x = log w, y and the line

x = 0, y = log w. The first line is found by connecting the

scale division u = w of the w-scale with the point B, the second

by connecting the scale division v = w of the 0-scale with the

point A. If the units of x and y are taken of the same length, the

point of intersection will lie in the middle between the two lines

carrying the u and v scales on a line parallel to the two other lines

and the w-scale will be half the size of the other two (Fig. 65).
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The relation

uv w
or

log u + log i)
=

log w

expresses the condition that the three equations

x = log u, y = log v, x + y = log w

are satisfied simultaneously by the same values of x and y, that

is to say, that the three points on the u, v, w scales corresponding

to the values of w, v, w lie on the same straight line x, y.

The more general relation

yO-yP
_ w^

where a. and are any given values, can be treated in the same

manner. Thus the pressure and volume of a gas undergoing

adiabatic changes may be represented. In this case we have

pv
k = w,

where p denotes the pressure, v the volume and k and w con

stants.

For a given gas k has a given value, but w depends on the

quantity of the gas considered.

We write

x = log p, y = log v.

The relation then takes the form

x + ky = log w,

and represents a point which may be con

structed by the intersection of any two

straight lines x, y, whose coordinates sat

isfy the equation, for instance

10

FIG. 66.

and
x = log w, y =

0, y=Jc
log
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f-o.5

+1.0

4-0.5

The first line connects the point B (Fig. 66) with the scale

division p = w of the p scale and the second line connects the

point A with the scale division of the v scale for which y = k log w.

A perpendicular from the point of intersection on AB meets it in

and as the ratio AO /O B is

equal to the ratio of the seg

ments on the p and v scales

log w/k log w =
l/k it is inde

pendent of w. All the points

corresponding to different val

ues of w lie on the same par

allel to the p and v scales and

the w scale may be obtained

by a central projection of the

p scale on this parallel from

the center B (Fig. 66). We
might dispense with the con

struction of the w scale as

long as the straight line for

the w scale is drawn. For in

using the diagram we gener

ally start with values p ,
v

and want to find other values

p, v, for which

-0.5

-4.0

-1.5

-2.0

-0.5

-1.0

-L5

-2.0

pv
k = p v

k
.

FIG. 67.

The straight line connecting the scale divisions p and v intersects

the w scale at the same point as the straight line connecting the

scale divisions po and VQ, so that we need not know the value of

poVQ
k

. It suffices to mark the point of intersection in order to

find the value of p, when v is given or the value of v when p is

given.

Another example is furnished by the equation

w2 + xw + y = 0.
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If we regard x and y as line coordinates any value of w determines

the equation of a point. We plot the curve formed by these

points with a scale on it indicating the corresponding values of w.

Any values of x and y determine a straight line whose inter

sections with the w scale furnish the roots of the equation. Each

point of the w scale may be constructed by the intersection of

two straight lines, whose coordinates x, y satisfy the equation,

for instance

# 0, y = w2 and x = w, y = O.
1

In Fig. 67 the w scale is shown for the positive values w = to

w = 2.5.

In the same manner a diagram for the solution of the cubic

equation
w* + xw + y = 0.

or of any equation of the form

wx + aW H~ y

may be constructed.

12. Relations between Four Variables. The method can be

generalized for relations between four variables.

Suppose four variables u, v, w, t are connected by the equation

g(u, v, w, t)
=

0,

and let us assume that for any particular value t = t the resulting

relation between u, v, w can be given by a diagram of the form

considered consisting of three curves carrying scales for u, v and

w. Let us further suppose that for other Values of t the scales

for u and v remain the same, but the scale for w changes. Then

we shall have a set of w scales corresponding to different values

of t. Connecting the points that correspond to the same value

of w we obtain a network of curves t = const, and w = const.

(Fig. 68). Any two values u, v furnish a straight line intersecting

1 For small values of w, this combination is not good because the angle of

intersection is small. One might substitute x =
2, y = w2 2w for the

first line.
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the network of curves. The points of intersection correspond to

values of t and w that satisfy the given relation.

Any relation of the form

, w) + h(t, w) =

may be represented in this way, &amp;lt;p(u} denoting any function of

u, \{/(v) any function of v and/0,

w), g(t, w), h(t, w) any functions

of t and w.

In this case we need only in

troduce the line coordinates x,

y, writing

x =
&amp;lt;p(u), y = \l/(v).

We then obtain a linear equation

between x and y,

f(t, w)x + g(t, w]y + h(t, w) = 0,

which for any given values of t

and w represents the equation of

a point. For a given value of t and variable values of w we obtain

a curve t = const, carrying a scale for w and for a series of values

of t we obtain a set of curves t const. Similarly for a given

value of w and variable values of t the equation furnishes a curve

w = const., carrying a scale for t and a series of values of w
furnishes a set of curves w = const. From any given values

of u and v the line coordinates x and y are calculated and the

points where this straight line defined by x and y intersects

the network of the curves t = const, and w = const, furnish

the values t, w that satisfy the relation together with the given

values of u and v. The relation between the height, azimuth,

declination of a celestial body and the latitude of the point of

observation may serve as an example. Let h, a, 8 denote the

height, azimuth and declination and
&amp;lt;p

the latitude. The angles

7T/2 (p, ir/2 h, 7T/2 8 are the three sides of a spherical
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Fio. 69.

triangle PZS (Fig. 69) formed by the pole P, the zenith Z and the

celestial body S. The azimuth is defined as the supplement of

z the angle PZS.

The equation is

sin 5 = sin
&amp;lt;p

sin h cos
&amp;lt;p

cos h cos a.

We write

x = cos a, ?/
= sin 5,

so that the equation becomes

y = sin
&amp;lt;p

sin h x cos ^ cos h.

We shall in this case use the second system of line coordinates

where x is the slope of the line measured by the tangent of the

angle formed with the axis of

abscissas and y is the ordinate

of the intersection with the axis

of ordinates. If
, 77 denote the

rectangular coordinates of the

point, the equation of the points

takes the form

rj
= x + y or y = 77

-
r,

so that in our case we have

= cos
&amp;lt;p

cos h, t\ sin
&amp;lt;p

sin h.

The curves
&amp;lt;p

= const, and h =
const, can be drawn by means

of these formulas. It is easily

seen that they are ellipses and

that the curves
&amp;lt;p

= const, are

the same as the curves h = const.

For a definite value of
&amp;lt;p

and a FlG 70

variable value of h we find

COS2
&amp;lt;f&amp;gt;

+ y
sin2

&amp;lt;p
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and for a definite value of h and a variable value of
&amp;lt;p

*&amp;gt; 7 *
*) 7 * *

cos2 h sin2 A

Any of the ellipses intersects all the others and in this way they

form a network. A point of intersection of the ellipse &amp;lt;p

=
GI

and the ellipse h = c2 also corresponds to the values h = c\ and

&amp;lt;p

= c2 , as the ellipse &amp;lt;p

=
Ci is identical with the ellipse h = c\

and
&amp;lt;p

= c2 identical with h = c2 (Fig. 70). The easiest way to

find this network consists in drawing the straight lines

+ 77
= cos O h),

and perpendicular to them the straight lines

77
= cos

(&amp;lt;p + h),

for equidistant values of
&amp;lt;p + h and

&amp;lt;p

h. The ellipses run

diagonally through the rectangular meshes formed by the two

systems of straight lines. The scales for (p and h are written

on the axis of coordinates, both scales being available for both

variables. The scale for 5 is written on the axis of ordinates

and is identical with the scale for t and h on this axis. For the

ordinate corresponding to a given value d = c is sin c, and this is

also the ordinate of the point where the ellipse &amp;lt;p

= c or h = c

intersects the axis of ordinates. The scale for the azimuth cannot

be laid down in exactly the same way as that for
&amp;lt;p,

h and 5

because cos a determines the slope of the straight line x, y.

Let us draw a parallel to the axis of ordinates through the point
=

1, rj
= and mark a scale for the azimuth on it, making

rj
= cos a (Fig. 70). A line connecting the origin with any scale

division of this scale has the slope of the line x = cos a, y = sin 5.

To bring it into the position of the line x, y it must be moved

parallel to itself, until its point of intersection with the axis of

ordinates coincides with the scale division 5. This suggests

another way of using the diagram. Let a pencil of rays be

drawn from the origin to the scale divisions of the azimuth scale

(Fig. 70), and let it be drawn on a sheet of transparent paper
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placed over the drawing of the ellipses. For any given value

of 8 it is moved up or down as the case may be so that the center

of the pencil coincides with the scale division 8. As long as the

celestial body does not materially alter its declination the dia

gram in this position will enable us to find any of the three

values v, h, a from the other two.

As a second example let us consider the relation between the

declination 8, the azimuth a, the hour angle t of a celestial body
and the latitude

&amp;lt;p

of the point of observation.

The relation is found by eliminating the height h from the

equation
sin 8 = sin

&amp;lt;p

sin h cos
&amp;lt;p

cos h cos a.

For this purpose we express sin h and cos h by the other angles

and substitute these expressions for sin h and cos h.

We have
cos h = cos 8 sin //sin a,

sin h = sin
&amp;lt;p

sin 5 + cos
&amp;lt;p

cos 5 cos t.

Substituting these values we find

sin 8= sin2
&amp;lt;p

sin 6+ sin
&amp;lt;p

cos
&amp;lt;p

cos 8 cos tf cos
&amp;lt;f&amp;gt;

cos 8 sin t ctg a, or

cos2
&amp;lt;p

sin 5 = sin
&amp;lt;p

cos
&amp;lt;p

cos 8 cos t cos
&amp;lt;p

cos 8 sin t ctg a.

Dividing by cos2
p cos 8 we finally obtain

sin t

tg 5 = tg (p cos t ctg a.

In order to represent this relation graphically we introduce line

coordinates

x = ctg a and y = tg 8

and find

sin t

y = tg &amp;lt;p

cos t x.
COS tp

Let us use the second system of line coordinates. The rec

tangular coordinates
, 77 of the point represented by the equation

are found from it equal to:
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sin t

99

The curves

^

COS&amp;lt;p

const, are ellipses,

tg &amp;lt;p

cos t.

The curves t = const, are hyperbolas,

?
sin

2
1 cos2

= 1.

The ellipses and hyperbolas are confocal, the foci coinciding

with the points = =*=
1, rj 0, so that the curves intersect at

right angles.

The scale for
&amp;lt;p may be written on the axis of ordinates at the

points where it intersects the ellipses. It is identical with the

scale for 5, the ordinate in both cases

being the tangent of the angle with the

only difference that 6 is negative on

the negative part of the axis and
&amp;lt;p

is

not. The scale for t may be written

on one of the ellipses corresponding to

the largest value of
&amp;lt;p

that is to be taken

account of. This ellipse forms the

boundary of the diagram, so that

larger values of
&amp;lt;p

are not represented.

Corresponding to the azimuth we draw

a pencil of rays on a sheet of trans

parent paper, which is laid on the draw

ing of the curves. The center of the

pencil is placed on the scale division 5

and the azimuth is equal to the angles

that the rays form with the positive direction of the axis of or

dinates (Fig. 71). It suffices to draw the curves and the rays

only on one side of the axis of ordinates. At the apex of the

10

FIG. 71.
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hyperbolas the value of t changes abruptly. The line t = 6h is

meant to start from the focus
(j
=

1, 17
= 0. When the center of

the pencil of rays is in the origin the rays form the asymptotic

lines of the hyperbolas, a = 15 corresponding to t = l
h

,
a= 30

to t = 2h and so on.



CHAPTER III.

THE GRAPHICAL METHODS OF THE DIFFERENTIAL AND

INTEGRAL CALCULUS.

13. Graphical Integration. We have shown how the ele

mentary mathematical operations of adding, subtracting, multi

plying and dividing and the inverse operation of finding the

root of an equation can be carried out by graphical methods and

how functions of one or more variables may be represented and

handled. But the graphical methods would lack generality and

would be of very limited use, if they were not applicable to the

infinitesimal operations of differentiation and integration. In

deed it is here that they are found of the greatest value. In

many cases, where the calculus is applied to problems of natural

science or of engineering, the functions concerned are given in a

graphical form. Their true analytical structure is not known

and as a rule an approximation by analytical expressions is not

easily calculated nor easily handled. In these cases it is of vital

importance that the operations of the calculus can be performed,

although the functions are only given graphically.

Let us begin with integration, because it is easier than differ

entiation and of more general application.

Suppose a function y = f(x) given by a curve whose ordinate is

y and whose abscissa is x. The problem is to find a curve, whose

ordinate Y is an integral of the function /(x),

=
ff(x)dx.
Jo.

Let us assume the unit of length for the abscissas independent
of the unit of length for the ordinates. The value of Y measures

the area between the ordinates corresponding to a and x, the

curve y = f(x) and the axis of x in units equal to the rectangle

formed by the units of x and y.

101
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In the simple case where /(or) is a constant the equation

f(x)
= c is represented by a line parallel to the axis of x and

Y = f cdx = c(x
-

a).

FIG. 72.

Y is the ordinate of a straight line intersecting the axis of x at

the point x = a. The constant c is the change of Y for an

increase of x equal to 1.

y\ If P is the point on the

axis of x for x = 1 and

Q the point where the line

y = c intersects the axis

of ordinates (Fig. 72) the

desired line is parallel to

PQ. It is constructed by

drawing a parallel to PQ
through the point x = a on the axis of x (Fig. 72, where a = 0).

When a given value ci is added, so that the equation becomes

Y = c (x a) + Ci

it amounts to the same as when the straight line is moved in the

direction of the axis of ordinates through a distance c\. For

x = a we then have Y c\, so that we obtain the line

Y = c(x a) + ci,

by drawing a parallel to PQ through the point x = a, y = Ci.

In the second place let us assume that the line y = f(x) consists

of a number of steps, that is to say, that the function has different

constant values in a number of intervals x = x\ to Xz, x2 to 3,

etc., while it changes its value abruptly at #2, #3&amp;gt;
etc. The

line presenting the integral

=
ff(x)dx

does not change its ordinate abruptly. It consists of a con

tinuous broken line, whose corners have the abscissas Xz, xz ,
etc.
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The directions of the different parts are found in the way just

described by the pencil of rays from P to the points a, 0, 7, etc.

(Fig. 73), where the horizontal lines intersect the axis of ordinates.

FIG. 73.

To construct the broken line we draw a parallel to Pa through

the point x = x\ (in Fig. 73 x\ is equal to 0) as far as the vertical

x = #2. Through the point of intersection with the vertical

x =
x&amp;lt;2

we draw a parallel to P/3 as far as the vertical x = x$.

Through the point of intersection with the vertical x = x% we

draw a parallel to Py and so on.

Finally let us consider the case of an arbitrary function y = f(x)

represented by any curve. In order to find the curve

y =

we substitute for y f(x) a function consisting of different

constant values in different intervals and changing its value

abruptly when x passes from one interval to the next, so that

the line representing this function consists of a number of steps

leading up or down according to the increase or decrease of /(a*).

These steps are arranged in the following way. The horizontal
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part AiA2 of the first step (Fig. 73) starts from any point A\

of the given curve. The vertical part A^Bi and the following

horizontal part BiBz are then drawn in such a manner that BiB2

intersects the curve and that the integral of the given function

as far as the point of intersection Kb is equal to the integral of the

stepping line as far as the same point. That is to say, the areas

between the stepping line and the given curve on both sides of

the vertical part A2Bi have to be equal. When Kb is fixed the

right position of A%Bi may be found by eye estimate. The eye

is rather sensitive for differences of small areas. Besides a shift

of AiB\ to the right or to the left enlarges one area and diminishes

the other so that even a slight deviation from the correct position

makes itself felt. In the same way the next step B^CiCz is

drawn with its vertical part B%Ci in such a position that the

areas on both sides are equal. The integral of the given curve

as far as Kc will again have the same value as that of the stepping

line as far as Kc . And so on for the other steps. The integral

of the stepping line is constructed in the way shown. It is

represented by a broken line beginning at the foot of the ordinate

of A\. The corners lie on the vertical parts of the steps or

their prolongations. It is readily seen that the broken line con

sists of a series of tangents of the integral curve

T7

and that their points of contact with the integral curve lie on

the same verticals as the points A\ t Kb, Kc , etc. (In Fig. 73 these

points are denoted 0, 2, 3, .) That these points lie on the

integral curve follows from the arrangement of the steps which

make the integral of the given function at Kb, Kc , equal to the

integral of the stepping line. Now in the points A if Kb ,
Kc

the ordinates of the given curve coincide with those of the

stepping line. Hence both integral lines must for these abscissas

have the same direction.

1 In Fig. 73 the lower limit is 0.
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Having constructed the broken line and marked the points

2, 3, 4, (Fig. 73), the integral curve is drawn with a curved

ruler so as to touch the broken line in the points, 0, 2, 3,

As the given curve does not change its ordinate abruptly the

integral curve does not change its direction abruptly. The

drawing shows how well the integral curve is determined by the

broken line. There is practically no choice in drawing it any
other way without violating the conditions.

The ordinate of the integral curve is measured in the same

unit as the ordinate of the given curve y = f(x). It may some

times be convenient to draw the ordinates of the integral curve

in a scale different from that of the ordinates of the given curve.

For instance the value of the integral may become so large that

measured in the same unit the ordinates of the integral curve

would pass the boundaries of the drawing board, or else they may
be so small that their changes cannot be measured with sufficient

accuracy. In the first case the scale is diminished, in the latter

case it is enlarged. This is done by altering the position of the

point P, the center of the pencil of rays that define the directions

of the broken line. If P approaches the directions Pa, P/3,
-

become steeper to the same degree as if keeping P unchanged we

had increased the ordinates of A\Ai, B\B&amp;lt;&amp;gt;,
in the inverse pro

portion of the two distances PO. Hence by diminishing the

distance PO the ordinates of the resulting broken line are enlarged

in the inverse proportion. On the other hand, by increasing the

distance PO the ordinates of the resulting broken line are di

minished in the inverse proportion of the distances, because the

change of the directions Pa, P/3, caused by a longer distance

PO is the same as if the ordinates of A\A^ BiB2 , were di

minished in the inverse proportion. The broken line constructed

by means of the longer distance P O will therefore be the same as

if the ordinates of the stepping line were diminished. It therefore

leads to an integral curve whose ordinates are diminished in the

same proportion (Fig. 74).

The graphical integration of
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=
ff(x)dx

tJa

is not limited to values x &amp;gt; a. The method is just as well applic

able to the continuation of the integral curve for x &amp;lt; a. The

H I

FIG. 74.

steps have only to be drawn from right to left. The lower limit

a determines the point where the integral curve intersects the

axis of x.

There is a method for the construction of the vertical parts

of the steps, which may in some cases be useful, though as a rule

we may dispense with it and fix their position by estimation.

Suppose that A and B (Fig. 75)

are two points where the curve is

intersected by the horizontal parts

of two consecutive steps and that

the curve between A and B is a

parabola whose axis is parallel to

the axis of x. The position of the

vertical part of the step between A
andB can be then found by a simple

construction. Through the center C of the chord AB (Fig. 75)

draw a parallel CD to the axis of or, D being the point of inter

section with the parabola. The vertical part EH of the step in

tersects CD in a point whose distance from C is twice the distance

FIG. 75.
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H I

from D. That this is the right position of EH is shown as soon

as we can prove that the area ADBGA is equal to the rectangle

EHBG. The area ADGBA can be divided in two parts, the tri

angle AEG and the part ADBCA between the curve and the

chord. The triangle is equal to the rectangle FIBG, while ADBCA
is equal to two thirds of the parallelogram MNBA, and hence

equal to the rectangle EHIF. Both together are therefore equal

to the rectangle EHBG, and the two areas between the stepping

line and the curve on both sides of EH are thus equal.

If the curve between A and B is sup

posed to be a parabola with its axis par

allel to the axis of ordinates the con

struction has to be modified a little.

Through the center C of the chord AB
(Fig. 76) draw a vertical line CD as far

as the parabola. On CD find the point

K whose distance from C is double the

distance from D and draw through it a

parallel to the chord AB. This parallel

intersects a horizontal line through C at a point L. Then EH
must pass through L. This may be shown in the following way.
The area between the parabola ADB and the chord AB is equal

to two thirds of the parallelogram MNBA, MN being the tan

gent to the parabola at the point D. If D is the point of inter

section of NN and the horizontal line through C, we have evi

dently
CL = fCD .

Therefore the rectangle EHIF is equal to the area ADBA be

tween the parabola and the chord and EHBG is equal to ADGBA.

Any part of a curve can be approximated by the arc of a

parabola with sufficient accuracy if the part to be approximated

is sufficiently small. When the direction of the curve is nowhere

parallel to the axis of coordinates, both kinds of parabolas may
be used for approximation, those whose axes are parallel to the

axis of x and those whose axes are parallel to the axis of y. But

FIG. 78.



108 GRAPHICAL METHODS.

when the direction in one of the points is horizontal (Fig. 76),

we can only use those with vertical axes and when the direction

in one of the points is vertical we can only use those with hori

zontal axes. Accordingly we have to use either of the two con

structions to find the position of the vertical part of the step.

Do not draw your steps too small. For, although the difference

between the broken line and the integral curve becomes smaller,

the drawing is liable to an accumulation of small errors owing
to the considerable number

of corners of the broken

line and little errors of

drawing committed at the

corners. Only practical ex

perience enables one to find

the size best adapted to

the method.

Statical moments of areas

may be found by a double

graphical integration. Let us consider the area between the curve

V /(X) (Fig. 77), the axis of x and the ordinates corresponding

to x = and x . The statical moment with respect to the

vertical through x = t- is the integral of the products of each

element ydx and its distance x from the vertical

FIG. 77.

M= f (f
-

x)ydx.
Jo

Let us regard M as a function of and differentiate it:

= + f ydx.
Jo

That is to say, a graphical integration of the curve y = f(x)

beginning at x = furnishes the curve whose ordinate is
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Hence a second integration of this latter curve will furnish

the curve M as a function of . As M vanishes for = the

second integration must also begin at the abscissa x = 0.

Fig. 78 shows an example. Each ordinate of the curve found

by the second integration is the statical moment of the area on

the left side of it with respect to the vertical through this same

ordinate. The ordinate furthest to the right is the statical

moment of the whole area with respect to the vertical on the

right. The statical moment of the whole area with respect to a

vertical line through any point 0*1 is the integral

x)ydx.

Considered as a function of Xi its differential coefficient is

* d &
X*

d C
-T- Oi - x)ydx = ydx.
axi JQ

That is to say, the differential coefficient is independent of x\,

hence the statical moment is represented by a straight line. As

its differential coefficient is represented by a horizontal line

through the last point on the right of the curve

I ydx,
Jo
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the direction of the straight line is found by drawing a line

through P and through the point of intersection Q of the hori

zontal line and the axis of ordinates (Fig. 78). The position of

the straight line is then determined by the condition that

XI(xi x)ydx
.

for 0*1
= is equal to the statical moment

f
1

Jo

We have therefore only to draw a parallel to PQ through the

last point R of the curve for M(Q found by the second integration.

The ordinates of this straight line for any abscissa xi represent

the values of
,-*

(xi x}ydx

measured in the unit of length of the ordinates. The point of

intersection E with the axis of x determines the position of the

vertical in regard to which the statical moment is zero, that is to

say, the vertical through the center of gravity.

The moment of inertia of the area

I

Jo
ydx

about the axis x = is found in a similar way. It is expressed

by the integral

Jo

Considered as a function of we find by differentiation

dT
2

C* d

= + 2
jf

({
-

x)ydx.
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That is to say, the differential coefficient is equal to double the

statical moment about the same axis. This holds for every value

of . Hence we obtain \T as a function of by integrating

the curve for M(). For = we have T 0, so that the curve

begins on the axis of x at = 0,

The integral
(*

x

ydx

is zero for x = a. The curve representing the integral has to

intersect the axis of x at x = a (admitting values of x
&amp;gt;

a and

x &amp;lt; a), and it is there that we begin the construction of the

broken line. If instead we begin it at the point x = a, y = c,

the only difference is that the whole integral curve is shifted

parallel to the axis of ordinates by an amount equal to c upwards
if c is positive, downwards if it is negative. But the form of the

curve remains the same. It is different when this curve is

integrated a second time. For instead of

jfV
we now integrate

ydx + c.

The ordinate of the integral curve is therefore changed by an

amount equal to c(x a) and besides if the second integral curve

is begun at x = a, y = ci instead of x = a, y = the change

amounts to

c(x a) + ci,

so that the difference between the ordinates of the new integral

curve and the ordinates of the straight line

y = c(x a) + ci

is equal to the ordinates of the first integral curve (Fig. 79).

This effect of adding a linear function to the ordinates of the

integral curve is also attained by shifting the pole P upward or
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downward. For it evidently comes to the same thing whether

the curve to be integrated is shifted upward by the amount c or

whether the point P is moved downward by the same amount, so

that the relative position of P and the curve to be integrated

is the same as before. Changing the ordinate of P by c adds

XX

fff(x)dxdx
a +C(X-CL)

C(x-a)

ffdx+C

fff(x)dxdx

C
cc

Jf(x)dx

FIG. 79.

c(x a) to the ordinates of the integral curve. c(x a) is the

ordinate of a straight line parallel to the straight line from the

new position of P to the origin.

By this device of shifting the position of P upward or down

ward the integral curve may sometimes be kept within the

boundaries of the drawing without any reduction of the scale of

ordinates. A good rule is to choose the ordinate of P about

equal to the mean ordinate of the curve to be integrated. The

ordinates of the integral curve will then be nearly the same at

both ends. The value of the integral

I ydx
J a

is equal to the difference between the ordinates of the integral

curve and the ordinates of a straight line parallel to PO through

the point of the integral curve whose abscissa is a.
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When the ordinate of P is accurately equal to the mean ordinate

of the curve to be integrated for the interval x = a to b the

ordinates of the integral curve will be accurately the same at the

two ends. But we do not know the mean ordinate before having

integrated the curve.

After having integrated we find the mean ordinate for the

interval x = a to b by drawing a straight line through P parallel

to the chord AB of the integral curve, A and B belonging to the

abscissas x=a and x=b. This

line intersects the axis of ordi

nates at a point whose ordinate

is the mean ordinate.

Suppose a beam AB is sup

ported at both ends and loaded

by a load distributed over the

beam as indicated by Fig. 80. That is to say, the load on dx is

measured by the area ydx. Let us integrate this curve graph

ically, beginning at the point A with P on the line AB. The

final ordinate at B
/

ydx

gives the whole load and is therefore equal to the sum of the two

reactions at A and B that equilibrate the load. Integrating this

curve again we obtain the curve whose ordinate is equal to

Y being written for

FIG. 80.

I

%Ja

The ordinate of this curve at any point x = % represents the

statical moment of the load between the verticals x = a and

x = about the axis x = . Its final ordinate BM, Fig. 81, is

the moment of the whole load about the point B, and as the reac

tions equilibrate the load it must be equal to the moment of the

9
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reactions about the same point and therefore opposite to the

moment of the reaction at A about B. If the reaction at A is

denoted by Fa we therefore have

Fa (b
-

a)
= C Ydx.

Ja

That is to say, Fa is equal to the mean ordinate of the curve

-jf
in the interval x = a to b. The mean ordinate is found by

drawing a parallel to AM through P which intersects the vertical

through A at the point F so that AF = Fa . As DB is equal to

FIG. 81.

the sum of the two reactions a horizontal line through F will

divide BD into the two parts BG = Fa and GD = Fb .

Shifting the position of P to P on the horizontal line FG
and repeating the integration

/t/a Ydx,

we obtain a curve with equal ordinates at both ends. If we

begin at A it must end in B. Its ordinates are equal to the

difference between the ordinates of the chord AM and the curve

AM (Fig. 81), and represent the moment about any point of
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the beam of all the forces on one side of the point (load and

reaction).

The area of a closed curve may be found by integrating over the

whole boundary. Suppose x = a and x b to be the limits of

the abscissas of the closed curve, the vertical x = a touching the

curve at A and the vertical x = b at B (Fig. 82). By A and B
the closed curve is cut in two, both parts connecting A and B.

Let us denote the upper part by y f\(x) and the lower part

by y = /2(#)- The whole area is then equal to the difference

FIG. 82.

f ft(x)dx
- f f2 (x)dx,

\J a / a

or equal to

We begin the integral curve over the upper part at the vertical

x = a at a point E, the ordinate of which is arbitrary, and draw

the broken line as far as F on the vertical x = b (Fig. 82). Then

we integrate back again over the lower part, continuing the

broken line from F to G. The line EG measured in the unit of

length set down for the ordinates is equal to the area measured

in units of area, this unit being a rectangle formed by PO and

the unit of ordinates. That is to say, the area is equal to the

area of a rectangle whose sides are PO and EG.



116 GEAPHICAL METHODS.

The method is not limited to the case drawn in Fig. 82, where

the closed curve intersects any vertical not more than twice. A
more complicated case is shown in Fig. 83. But in all those cases

FIG. 83.

where the object is not to find the integral curve but only to find

the value of the last ordinate the method, cannot claim to be

of much use, because it cannot compete with the planimeter.

Q X\ #2 &8 &

FIG. 84.

For the construction of the broken line we have drawn the

steps in such a manner that the areas on both sides of the vertical

part of a step between the curve and the stepping line are equal.
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It would have also been admissible to construct the stepping

line in such a way that the areas on both sides of the horizontal

part of a step are equal (Fig. 84). Only the broken line would

consist of a series of chords instead of a series of tangents of the

integral curve. The points Ka , Kb, -

, where the horizontal

parts of the steps intersect the curve would determine the ab

scissas of the points of the integral curve, where its direction is

parallel to the direction of the broken line. But this forms very

little help for drawing the integral curve. That is the reason

why the former method where the broken line consists of a series

of tangents is to be preferred. However where the object is only

to find the last ordinate of the integral curve the two methods

are equivalent.

14. Graphical Differentiation. The graphical differentiation

of a function represented by a curve is not so satisfactory as the

graphical integration because

the values of the differential

coefficient are generally not

very well defined by the curve.

The operation consists in

drawing tangents to the given

curve and drawing parallels

through P to the tangents
&quot;

(Fig. 85). The points of in

tersection of these parallels

with the axis of ordinates fur

nish the ordinates of the curve representing the derivative.

The abscissa to each ordinate coincides with the abscissa of the

point of contact of the corresponding tangent. The principal

difficulty is to draw the tangent correctly. As a rule it can be

recommended to draw a tangent of a given direction and then

mark its point of contact instead of trying to draw the tangent

for a given point of contact. A method of finding the point of

contact more accurately than by mere inspection consists in

drawing a number of chords parallel to the tangent and to

FIG. 85.
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bisect them. The points of bisection form a curve that inter

sects the given curve at the point of contact (Fig. 86). When a

number of tangents are drawn, their points of contact marked

and the points representing the differential coefficient constructed,

the derivative curve has to be

drawn through these points.

This may be done more accur

ately by means of the stepping

line. The horizontal parts of

the steps pass through the

points while the vertical parts

lie in the same vertical as the

point of intersection of two

consecutive tangents. The derivative curve connects the points

in such a way that the areas between it and the stepping line are

equal on both sides of the vertical parts of each step. Thus

the result of the graphical differentiation is exactly the same

FIG. 86.

FIG. 87.

figure that we get by integration, only the operations are carried

out in the inverse order.

A change of the distance PO (Fig. 87) changes the ordinates

of the derivative curve in the same proportion and for the same

reason that it changes the ordinates of the integral curve when we
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are integrating, but in the inverse ratio. Any change of the or-

dinate of P only shifts the curve up or down by an equal amount,

so that if we at the same time change the axis of x and draw it

through the new position of P the ordinates of the curve will

remain the same and will represent the differential coefficient.

When a function f(x, y) of two variables is given by a diagram

showing the curves f(x, y)
= const, for equidistant values of

f(x, y) the partial differential coefficients can be found at any

point XQ, ?/o by means of drawing curves whose ordinates represent

f(x, yo) to the abscissa x orf(xQ , y) to the abscissa y and applying

the methods explained above. For this purpose a parallel is

drawn to the axis of x, for instance, through the point XQ, yo

and at the points where it intersects the curves f(x, y)
= const,

ordinates are erected representing the values of f(x, y ) in any
convenient scale. A smooth curve is then drawn though the

points so found and the tangent of the curve at the point XQ

furnishes the differential coefficient df/dx for x = x
, y = y .

The differential coefficients df/dx, df/dy are best represented

graphically by a straight line starting from the point x, y to

which the differential coefficients correspond, and of such length

and direction that its orthogonal projections on the axis of x

and y are equal to df/dx and df/dy. This line represents the

gradient of the function f(x, y) at the point x, y.
1

It is normal

to the curve f(x, y)
= const, that passes through the point x, y,

its direction being the direction of steepest ascent. Its length

measures the slope of the surface z = f(x, y) in the direction of

steepest ascent. This is shown by considering the slope in any
other direction. Let us change x and y by

r cos a, r sin a.

and consider the corresponding change

Az =f(x+r cos a,y+r sin a) f(x, y)

of the function. By Taylor s theorem we can write it

1 See Chap. II, 10.
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T r cos a + r sin a. + terms of higher order in r,
&

a is the direction from the point x, y to the new point x + r cos a,

y -\- r sin a and r is the distance of the two points. Dividing
As by r and letting r approach to zero we find

,.
A* df cl/ .

lira = cos a + T- sin a.
r d dy

This expression measures the slope of the surface z f(xy)

in the direction a. Now let us introduce the length / and the

angle X of the gradient, and write

Af f)f
= I cos X,

= I sin X.
dx dy

Then we have
n_f nf

T~ cos a + sin a = I cos (a X).O# O2/

That is to say, the slope in any direction a is proportional to

cos (a X), it is a maximum in the direction of the gradient

(a = X) and zero in a direction perpendicular to it and negative

in all directions that form an obtuse angle with it. When all

three coordinates are measured in the same unit, the length of

/ measured in this unfit is equal to the tangent of the angle of

steepest ascent. Hence the length of the gradient varies with

the unit of length. When the unit of length in which the values

of f(xy) are plotted is kept unaltered, while we change the unit

of length corresponding to the values x and y, the length of the

gradient varies with the square of the unit of length.

15. Differential Equations of the First Order. In the problem
of solving a differential equation of the first order

!-**&amp;gt;

by graphical methods the first question is how to represent

the differential equation graphically. If x and y are meant to

be the values of rectangular coordinates, the geometrical meaning
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of the differential equation is that at every point x, y, where

f(x, y) is defined, the equation prescribes a certain direction for

the curve that satisfies it. Let us suppose curves drawn through

all those points for which f(x, y) has certain constant values.

Each curve then corresponds to a certain direction or the opposite

direction. Let us distinguish the curves by different numbers or

letters and let us draw a pencil of rays together with the curves

and mark the rays with the same numbers or letters in such a way
that each of them shows the direction corresponding to the

First approximation

2nd approximation

(lutegrationofthe
curve fcelow)

FIG. 88.

curve marked with that particular number or letter (Fig. 88).

Our drawing of course only comprises a certain region in which

we propose to find the curves satisfying the differential equation.

It may be that f(xy) is defined beyond the boundaries of our

drawing. Those regions have to be dealt with separately.

The graphical representation of the differential equation in

the region considered consists in the correspondence between

the curves and the rays. It is important to observe that this

representation is independent of the system of coordinates by
means of which we have deduced the curves from the equation
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We can now introduce any system of coordinates , 77 and find

from our drawing the equation

that is to say, we can find the value of
&amp;lt;p(l-, rf} at any point , 77

of our drawing. If, for instance, the unit of length is the same

for and 77 we draw a line through the center of the pencil of rays

in the direction of the positive axis of and a line perpendicular to

it at the distance 1 from the center. The segment on the second

line between the first line and the point of intersection with one

of the rays measured in units of length and counted positive in

the direction of positive 77 furnishes the value of
&amp;lt;?(%, 77) for all

the points , 77 corresponding to that particular ray. In this

respect the graphical representation of a differential equation

is superior to the analytical form, in which certain coordinates

are used and the transformation to another system of coordinates

requires a certain amount of calculation.

Now let us try to find the curve through a given point P on

the curve marked (a) (Fig. 88) that satisfies the differential equa

tion. We begin by drawing a series of tangents of a curve

that is meant to be a first approximation. Through P we draw

a parallel to the ray (a) as far as the point Q somewhere in the

middle between the curves (a) and (6). Through Q we draw a

parallel to the ray (6) as far as R somewhere in the middle

between the curves (6) and (c). Through R we again draw a

parallel to the ray (c) and so on. The curve touching this

broken line at the points of intersection with the curves (a),

(6), is a first approximation. But we need not draw this

curve. In order to find a better approximation we introduce a

rectangular system of coordinates x, y, laying the axis of x some

what in the mean direction of the broken line. Let us denote

by 2/1 the function of x that corresponds to the curve forming the

first approximation. The second approximation y2 is then ob

tained as an integral curve of f(x, y\) t that is, of dyi/dx
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I

Jxn
f(x,yi)dx,

denoting by xp) yp , the coordinates of P. For this purpose the

curve whose ordinates are equal to f(x, y\) or dyi/dx has to be con

structed first. The values of f(x, y\) are found immediately at

the points where the first approximation intersects the curve

(a), (6) by differentiation in the way described above. A
line is drawn through the center of the pencil of rays parallel to

the axis of x and a line perpendicular to it at a convenient dis

tance from the center. This distance is chosen as the unit of

length. The points of intersection of this line with the rays de

termine segments whose lengths are equal to the values of f(x, y\)

on the corresponding curves. These values are plotted as ordi-

nates to the abscissas of the points where the first approximation

intersects the curves (a), (6), and a curve

Y =
f(x, 2/1)

is drawn (Fig. 88). This curve is integrated graphically begin

ning at the point P and the integral curve is a second approxi

mation. Again we need not draw the curve. The broken line

suffices, if we intend to construct a third approximation. In

this case we have to repeat the foregoing operation. This can

now be performed much quicker than in the first case because the

values of f(x, y) on the curves (a), (6), have already been

constructed and are at our disposal. In order to find the curve

Y = f(x, yi)

we have only to shift the same ordinates to new abscissas and

make these coincide with the abscissas of the points where the

second approximation intersects the curves (a), (6), . The

curve

r-/(*,i&)

is then drawn and integrated graphically, beginning at the point

P.
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Suppose now the integral curve did not differ from the second

approximation, it would mean that

yp + I f(x,J*

or that

that is to say, that y2 satisfies the differential equation.

If there is a perceptible difference the integral curve represents

a third approximation. It has been shown by Picard that pro

ceeding in this way we find the approximations (under a certain

condition to be discussed presently) converging to the true solu

tion of the differential equation, so that after a certain number

of operations the error of the approximation must become

imperceptible.

Denoting by yn the function of the nth approximation we have

yn+i = J f(x, yn

The true solution with the same initial conditions y = yp for

x = Xp satisfies the equation

r
Hence

yn+i
-

y = J [f(x, yn)
-

f(x, y)]dx,

or

Let us now suppose that the absolute value of

f(x, yn)
-

f(x, y)

yn y

for all the values of x, y, yn within the considered region does
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not surpass a certain limit M, then it follows that a certain relation

must exist between the maximum error of yn , which we denote by
en and the maximum error of yn+i, which we denote by en+i.

The absolute value of the integral not being larger than

Men
|

x xn
|

( |

x xn
| denoting the absolute value of x xn) we have

en+i ^ M |

x xn
|

en .

Hence as long as the distance x xn over which the integration

is performed is so small that

M\X-Xn\ k&amp;lt;l,

k being a constant smaller than one, the error of yn+i cannot be

larger than a certain fraction of the maximum error of yn .

But in the same way it follows that the error of yn cannot be

larger than the same fraction of the maximum error of yn-\, and

so on, so that

en+i ^ ken ^ Wen-i ^ knd.

But as e\ is a constant and k a constant smaller than one, knei

must be as small as we please for a sufficient large value of n.

That is to say, the approximations converge to the true solution.

M being a given constant the condition of convergence

M\x xp \ ^ k &amp;lt; 1

limits the extent of our integration in the direction of the axis of x.

But it does not limit our progress. From any point P that we

have reached with sufficient accuracy we can make a fresh start,

choosing a new axis of x suited to the new situation. As a

rule it does not pay to trouble about the value of M and to try

to find the extent of the convergence by the help of this value.

The actual construction of the approximations will show clearly

enough how far to extend the integration. As far as two consecu

tive approximations show no difference they represent the true

curve.
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Suppose that

f(x, yn )
-

f(x, y)

yn
-

y

has the same sign for all values x, y, yn concerned. Say it is

negative. Suppose further that yn y is of the same sign for

the whole extent of the integration

yn+l
f-

y = I

jz y

that is to say, the approximative curve yn is all on one side of the

true curve. Then if x xp is positive, yni i y must evidently

be of the opposite sign from yn y, or the approximative curve

yn+i is all on the other side of the true curve from yn . For these

and all following approximations the true curve must lie between

two consecutive approximations. If the first approximation y\ is

all on one side of the true curve the theorem holds for any two

consecutive approximations. This is very convenient for the esti

mation of the error.

In Fig. 88

/(a, yn)
-

f(x, y)

yn
-

y

is negative from the point P as far as somewhere near S. The

first approximation is all on the upper side of the true curve.

Therefore the second approximation must be below the true

curve at least as far as somewhere near S.

When the sign is positive the same theorem holds for negative

values of x xp . If the integration has been performed in the

positive direction of or, it may be a good plan to check the result

by integrating backwards, starting from a point that has been

reached and to try if the curve gets back to the first starting

point. In this direction we profit from the advantage of the

true curve lying between consecutive approximations and are

better able to estimate the accuracy of our drawing.

We have seen that the convergence depends on the maximum
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absolute value of

/fo yn)
~

f(x, y)

yn
-

y

for all values of or, ?/, yn concerned. In order to find the maximum
value we may as well consider

SL
dy

for all values of x, y within the region considered. For if we
assume df/dy to be a continuous function of y, it follows that

the quotient of differences

f(x, yn)
-

f(x, y)

yn
-

y

must be equal to df/dy taken for the same value of x and a value

of y between y and yn . This is immediately seen by plotting

f(x, y) as ordinate to the abscissa y for a fixed value of x. The
value of the quotient of differences is determined by the slope

of the chord between the two points of abscissas y and yn . The

slope of the chord is equal to the slope of the curve at a certain

point between the ends of the chord. The value of df/dy at this

point is equal to the value of

/(a&amp;gt;yn) /(a, y)

yn- y

Now let us consider how the coordinate system may be chosen

in order to make df/dy as small as possible and thus obtain the

best convergence. For this purpose let us investigate how the

value of df/dy changes at a certain point, when the system of

coordinates is changed.

Let us start with a given system of rectangular coordinates ,

i) with which the differential equation is written

The direction of the curve satisfying the differential equation
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forms a certain angle a with the positive axis of determined by

tg a = ^
=

&amp;lt;p(S, 77)

(assuming the coordinates to be measured in the same unit).

Now let us introduce a new system of rectangular coordinates

x, y connected with the system , rj by the equations

x = cos co + i) sin co,

y = sin co + 77 cos co,

which are equivalent to

= x cos co y sin co,

77
= x sin co + y cos co,

w being the angle between the positive direction of x and the

positive direction of
, counted from towards x in the usual way.

The angle formed by the direction of the curve with the positive

direction of the axis of x is a. co, and therefore

jj-

=
tg (a

-
co)
=

f(x, y).

Consequently we obtain for a given value of co

df =_1_ _da
dy

~
cos2

(a co) dy

or remembering that a is given as a function of and 77,

df 1 f da .
]

da \=
5-7
-

; 1 sm co + - cos co
).

dy cos2
(a co) \ d dy )

For simplicity s sake we shall assume that the axis of is the

tangent of the curve ^(,77) = const, that passes through the

given point, so that da/d = 0.

We then have

df 1 da

and our object is to find how df/dy varies for different values of
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co. The value of da/drj is independent of w; it denotes the value

of the gradient of a, which we represent by a straight line drawn

from the origin A (Fig. 89) perpendicular to the curve a = const,

or
&amp;lt;p(, rf)

= const.

It is no restriction to assume the value of da/drj positive; it

only means that the direction of the positive axis of rj is chosen

FIG. 89.

in the direction of the gradient. Let us draw the line AB (Fig.

89) in the direction of the positive axis of and of the same length
as the gradient.

In order to show the values of df/dy for the different positions

of the axis of x let us lay off the value of df/dy as an abscissa.

For instance for co = a, df/dy assumes the value

da
cos a.

The abscissa corresponding to this value is AB (Fig. 89), the

10
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orthogonal projection of AB on the axis of x. For any other

position AC (Fig. 89) corresponding to some other value of co,

we find da/drj cos co by orthogonal projection of AB on AC. Then

the division by cos (a co) furnishes AC and a second division

by cos (a co) leads to AC. Thus a certain curve can be

constructed whose polar coordinates are r = dfjdy and co, the

equation in polar coordinates being

da COS CO

cos2
(a co)

or
r / \v&amp;gt;

[r cos (a co)] r cos co.

drj

In rectangular coordinates , rj the equation assumes the form

(cos a + sin m?)
2 = --

.

cfy

This shows that the equation is a parabola, the axis of which is

perpendicular to the direction a. AB is a chord and the gradient

\

FIG. 90.

AG is a tangent of the parabola. BisectingAW in E, drawing EK
perpendicular to AB f

as far as the axis of 77 and bisecting EK in

D, we find D the apex of the parabola. The three points A,B ,D
together with the gradient will suffice to give us an idea of the

size and sign of df/dy for the different positions of the positive

axis of x.
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df/dy vanishes when the axis of x is perpendicular to the curve

a. = const., so that it seems as if this were the most favorable

position. We must, however, bear in mind that the axis of x

is kept unaltered for a certain interval of integration. When we

pass on to other points the axis of x is no longer perpendicular

to the curve a = const, there. The position of the axis of x is

good when the average value of df/dy is small. In Fig. 90 the

parabolas are constructed for a number of points on the first

approximation of a curve satisfying the differential equation.

If we want to make use of the parabolas to give us the numerical

values of df/dy the unit of length must also be marked in which

the coordinates are measured. The numerical value of df/dy

varies as the unit of length and therefore the length of the line

representing it must vary as the square of the unit of length.

But if we draw a line whose length measured in the same unit is

equal to ~, , this line would be independent of the unit of

length. For if I is the line representing the unit of length and

/
, I&quot; the lines representing the values df/dy and ,, , df/dy

would be the ratio l /l and TTTT- the ratio I&quot;/I; hence I&quot;
=&amp;gt;//

.

Since V varies as P with the change of the unit of length I&quot; is

independent of the unit of length. This line I&quot; represents the

limit beyond which the product

becomes greater than 1. If df/dy remained the same this would

mean the limit beyond which the convergence of the process of

approximation ceases. We might lay off the length of ,, in

the different directions in the same way as df/dy has been laid

off. The result is a curve corresponding, point by point, to the

parabola, the image of the parabola according to the relation of

reciprocal radii. But all these preparations as a rule would not
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pay. It is better to attack the integration at once with an axis

of x somewhat perpendicular to the curves a = const, as long

as the direction of the curve forms a considerable angle with

the curve a = const, and to lose no time in troubling about the

very best position. The convergence will show itself, when the

operations are carried out. When the angle between the direction

of the curve that satisfies the differential equation and the curve

a. = const, becomes small the apex of the parabola moves far

away and when the direction coincides with that of the curve

a = const, the parabola degenerates into two parallel lines per

pendicular to the direction of the curve a = const. In this case

the best position for the axis of x is in the direction of the curve

a = const. Without going into any detailed investigation about

the best position of the axis of x we can establish the general rule

not to make the axis of x perpendicular to the direction of the

curve satisfying the differential equation, that is to say, not to

make it parallel to the axis of the parabola. But we hardly need

pronounce this rule. In practice it would enforce its own observ

ance, because for that position of the axis of x not only df/dy but

also f(x, y) are infinite and it would become impossible to plot

the curve Y =
f(x, yi).

There is another graphical method of integrating a differential

equation of the first order

which in some cases may well compete with the first method.

Like the first it is the analogue of a certain numerical method.

The numerical method starts from given values x, y and cal

culates the change of y corresponding to a certain small change

of x. Let h be the change of x and k the change of y, so that

x + h, y + Jc are the coordinates of a point on the curve satisfying

the differential equation and passing through the point x, y. k is

calculated in the following manner. We calculate in succession

four values fa, fe, ks , h by the following equations



DIFFEKENTIAL AND INTEGRAL CALCULUS.

ki = f(x, y)h,

133

4
= /(* + , y +

We then form the arithmetical means

+ k3 . KI ~\- #4
and Q = ~ &amp;gt;

and find with a high degree of approximation as long as h is

not too large
k = P + l(q

~
P).

1

The new values

X=x+h, Y=y+k
are then substituted for x and y and in the same way the coordi

nates of a third point are calculated and so on.

This calculation may be performed graphically in a profitable

manner, if the function f(x, y) is represented in a way suited to

FIG. 91.

1 See W. Kutta, Zeitschrift fur Mathematik und Physik, Vol. 46, p. 443.
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the purpose. Let us suppose a number of equidistant parallels

to the axis of ordinates : x = x
,
x = x\, x = x2 ,

x = xs ,

Along these lines f(x, y) is a function of y. Let us lay off the

values of f(x, y) as ordinates to the abscissa y, the axis of y being

taken as the axis of abscissas. We thus obtain a number of

curves representing the functions f(x , y), f(xi, y}, f(x2 , y),

Starting from a point A(XQ, yo) on the first vertical x = XQ (Fig.

91) we proceed to a point BI on the vertical x = x2 in the following

way. By drawing a horizontal line through A we find the

point A on the curve representing f(x , y). Its ordinate is equal

to /(XQ, 7/0). Projecting the point A onto the axis of x we find A&quot;

and draw the line PA&quot;. P is a point on the negative side of

the ?/-axis and PO is equal to the unit of length by which the

lines representing f(x, y) are measured. Thus

OA&quot;/PO
= /(*, yo).

Now we draw AB\ perpendicular to PA&quot;, so that if h and 1

denote the differences of the coordinates of A and B, we have

h/h = OA&quot;IPO,

h =
/(.TO, yQ)h.

From Ci the point of intersection of the line AB i and the vertical

x = Xi we find C\ and C\&quot; in the same way as we found A and A&quot;

from A, only that C\ is taken in the curve representing the

values of f(xi, y}, and draw the line AB2 perpendicular to PC/ .

Denoting the difference of the ordinates of A and B2 by fe we have

or

From
&amp;lt;?2

the point of intersection of the line AB% and the

vertical x = Xi we find in the same way a point Ba on the vertical
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x = x2 and the difference fe between the ordinate of #3 and that

of A is

=/ ( *o +
g #o &quot;^~ 2/

From #3 we pass horizontally to IV on the curve representing

f(x2y) and vertically down to $3 &quot;. The line AB^ is then drawn

perpendicular to PB^&quot;, so that the difference k between the

ordinates of B and A is

The bisection of BzBs and of B\B gives us the points EI and EZ

and the point B is taken between EI and E^, so that its distance

from EI is half its distance from E%. The point B is with a high

degree of approximation a point of the curve that passes through
A and satisfies the differential equation.

B is then taken as a new point of departure instead of A, and

in this manner a series of points of the curve are found.

In order to get an idea of the accuracy attained the distance

of the vertical lines is altered. For instance, we may leave out

the verticals x = x\ and x = xs ,
and reach the point on the

vertical x = x in one step instead of two. The error of this

point should then be about sixteen times as large as the error on

the same vertical reached by two steps, so that the error of the

latter should be about one-fifteenth of the distance of the two.

If their distance is not appreciable the smaller steps are evidently

unnecessarily small.

The values of f(x, y) may become so large that an incon

veniently small unit of length must be applied to plot them. In

this case x and y have to change parts and the differential

equation is written in the form

dx 1

dy
~

f(x, y)

The values of l/f(x, y) are then plotted for equidistant values of
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y as ordinates to the abscissa x and the constructions are changed

accordingly.

16. Differential Equations of the Second and Higher Orders.

Differential equations of the second order may be written in the

form

Let us introduce the radius of curvature instead of the second

differential coefficient. Suppose we pass along a curve that

satisfies the equation and the direction of our motion is deter

mined by the angle a it forms with the positive axis of x (counted

in the usual way from the positive axis of x through ninety

degrees to the positive axis of y and so on), s being the length of

the curve counted from a certain point from which we start.

We then have

dy dx

d~x

= isa ^ =COSa

Consequently

or

da/ds measures the
&quot;

curvature,&quot; the rate of change of direction

as we pass along the curve, counted positive when the change

takes place to the side of greater values of a (if the positive axis

of x is drawn to the right and the positive axis of y upwards a

positive value of da/ds means that the path turns to the left).

Let us count the radius of curvature with the same sign as da/ds

and let us denote it by p. Then we have

- = cos3 a/(z, y, tga).

Thus the differential equation of the second order may be said

to give the radius of curvature as a function of x, y, a, that is to

say, as a function of place and direction.

ffiy
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Let us assume that this function of three variables is repre

sented by a diagram, so that the length and sign of p may quickly

be obtained for any point and any direction.

Starting from any given point in any given direction we can

then approximate the curve satisfying the differential equation

by a series of circular arcs. Let A (Fig. 92) be the starting point.

We make MaA perpendicular to the given direction and equal to

p in length. For positive values of p,Ma must be on the positive

side of the given direction, for negative

values on the negative side. Ma is

the center of curvature for the curve

at A. With Ma as center and MaA
as radius we draw a circular arc AB
and draw the lineBMa . On this line

or on its production we mark the .

point Mb at a distance from B equal

to the value of p that corresponds to

B and to the direction in which the
FlG&amp;gt; 92 .

circular arc reaches B. With Mb as

center and MbB as radius we draw a circular arc BC and so on.

The true curve changes its radius of curvature continuously,

while our approximation changes it abruptly at the points

A, B, C,
-

. The smaller the circular arcs the less will accu

rately-drawn circular arcs deviate from the curve. But it must

be kept in mind that small errors cannot be avoided, when

passing from one arc to the next. Hence, if the arcs are taken

very small so that their number for a given length of curve

increases unduly, the accuracy will not be greater than with

somewhat longer arcs. The best length cannot well be defined

mathematically; it must be left to the experience of the draughts

man.

Some advantage may be gained by letting the centers and the

radii of the circular arcs deviate from the stated values. The

circular arc AB (Fig. 92) is evidently drawn with too small a

radius because the radius of the curve increases towards B. If
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we had taken the radius equal to MbB it would have been too

large. A better approximation is evidently obtained by making
the radius of the first circular arc equal to the mean of MaA and

MbB, and the direction with which it reaches B will also be closer

to the right direction.

To facilitate the plotting an instrument may be used consisting

of a flat ruler with a hole on one end for a pencil or a capillary

tube or any other device for tracing a line. A straight line

with a scale is marked along the middle of the ruler and a little

tripod of sewing needles is placed with one foot on the line and

two feet on the paper. Thus the pencil traces a circular arc.

When the radius is changed, the ruler is held in its position by

pressing it against the paper until the tripod is moved to a new

position. By this device the pencil must continue its path in

exactly the same direction, while with the use of ordinary com

passes it is not easy to avoid a slight break in the curve at the

joint of two circular arcs.

Another method consists in a generalization of the method

for the graphical solution of a differential equation of the first

order.

A differential equation of the second order

dy

may be written in the form of two simultaneous equations of the

first order:

*-
dx~

Z

dz
-*(*,*,).

Let us consider the more general form, in which the differential

coefficients of two functions y, z of x are given as functions of

x, y&amp;gt;

z:
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dz

Tx -g(x,y,z).

We may interpret x, y, z as the coordinates of a point in space

and the differential equation as a law establishing a certain

direction or the opposite at every point in space where f(x, y, z)

and g(x, y, z) are defined. A curve in space satisfies the dif

ferential equation, when it never deviates from the prescribed

direction. Its projection in the xy plane represents the function

y and its projection in the xz plane represents the function z.

Let us represent y and z as ordinates and x as abscissa in the

same plane with the same system of coordinates. Any point in

-JVf-

FIQ. 93.

space is represented by two points with the same abscissa. The

functions f(x, y, z) and g(x, y, z) we suppose to be given either

by diagrams or by certain methods of construction or calculation.

For any point that we have to deal with, the values of f(x, y, z)

and g(x, y, z) are plotted as ordinates to the abscissa x, but for

clearness sake not in the same system of coordinates as y and z,

but in another system with the same axis of ordinates and an

axis of x parallel to the first and removed far enough so that the

drawings in the two systems do not interfere with one another.
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Starting from a certain point P(xp , yp , zp) in space we represent

it by the two points P\(xp , yp) and P2 (xp , zp) in the first system
and the values of f(xp , yp ,

zp) and g(xp , yp , zp) by the two points

AI and A2 in the second system of coordinates (Fig. 93). The

points AI and A2 determine certain directions MA\, and MA2

of the curves x, y and x, z, the point M (Fig. 93) being placed at a

distance from the axis of ordinates equal to the unit of length by
which the ordinates representing f(x, y, z) and g(x, y, z) are

measured. Through PI and P2 we draw parallels to MA\ and

MA2 as far as Qi and Q2 with the coordinates xq , yq and xq , zg .

With these coordinates the values f(xq , yq ,
zq) and g(xq , yq) zq)

are determined, which we represent by the ordinates of the

points Bi r
B2 . These points again determine certain directions

parallel to which the lines QiRi and Q2R2 are drawn, etc. In this

manner we find first approximations y\ and zi for the functions

y and z and corresponding to these approximations we find

curves representing /(#, z/i, z\) and g(x, y\, Zi). These curves are

now integrated graphically, the integral curve of f(x, 2/1, zi)

beginning at PI and the integral curve of g(x, 2/1, Zi) at P2 and

lead to second approximations y2 and z2 :

2/2
= yp + I f(x, 2/1, zi)dx,

j
Xp

zz
= zp + I g(z, yi, zi)dx.

JrP

For these second approximations the values of f(x, y2 , 22) and

g(x, y2 , %) are determined at a number of points along the curves

x, y2 and x, z2 sufficiently close to construct the curves representing

f(x, 2/2, 22) and g(x, 2/2,
22 ). By their integration a third approxi

mation 2/3, 23 is obtained

I /(*
J

*P

2/3
=

2/P

= z I g(x, 2/2,
JXP
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and so on as long as a deviation of an approximation from the

one before can still be detected. As soon as there is no deviation

for a certain distance x xp the curve represents the true solu

tion (as far as the accuracy of the drawing goes). The curve is

continued by taking its last point as a new starting point for a

similar operation.

The distance over which the integral is taken can in general

not surpass a certain limit where the convergence of the approxi

mations ceases. But we are free to make it as small as we please

and accordingly increase the number of operations to reach a

given distance. It is evidently not economical to make it too

small. On the contrary, we shall choose it as large as possible

without unduly increasing the number of approximations.

In the case of a differential equation

&-* V*
y

&amp;lt;fc,

we have f(x, y, z)
=

z, and the curve z, x is identical with the

curve representing the values of f(x, y, z). We shall therefore

draw it only once.

The proof of the convergence of the approximations is almost

the same as in the case of the differential equation of the first

order.

For the n + 1
st

approximation we have

yn+i
= yp + I f(x, yn , zn)dx; zn+i

= zp + I g(x, yn , zn)dx.
J*p Jxp

For the true curve that passes through the point xp , yp , zp we
find by integration

y

hence

r* rx

= yp + I /fo 2/&amp;gt; *)*; 2 = *p + I g(*&amp;gt; y, *)&amp;lt;&;

Jxp Jfp

yn+i
-

y = I [f(x, yny zn )
-

f(x, y, z)]dx;
J xp

zn+i z =
I [g(x, yn, Zn) g(x, y, z)]dx.
JXP
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Now let us write

f x ff x f(*&amp;gt; Vn, Zn)
~ /O, y, Zn )

f(x, y, zn )
-

f(x, y, z)
= -

_ -
(y

-
y)

, /(a;, y, zn )
-
/fo y, 2) ,+ ~ -----

(Zn
zn z

and similarly

The quotients of differences

/O, yn , zn)
-

f(x, y,

g(x, y, zn)
-

g(x, y, z)

yn
-

y

and the three others are equal to certain values of df/dy, df/dz,

dg/dy, dg/dz for values of y, z between y and yn and between z

and zn (y, yn , z, zn not excluded). Let us assume that for the

region of all the values of x, y, z concerned the absolute value of

df/dy and df/dz, is not greater than M\, and that of dg/dy and

dg/dz not greater than M%, and that dn ,
en denote the maximum

of the absolute values of y y n and z zn in the interval

xp to x. Then it follows that the absolute values of

f(x, yn ,
zn ) f(x, y, z) and g(x, yn , zn) g(x, y, z)

are not greater than

Mi(8n -j- en) and M2 (Sn + en).

Hence for the maximum values of yn+i y and zn+i z, which

are denoted by 5n+i and en+i we obtain the limits

5n+i ^ Mi(dn + )
|

x xp |
, n+i ^ M2 (dn + en) \x xp \,

and
x - xp | (5n + 6n).

If therefore the interval x orp of the integration is so far

reduced that
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5n+i + en+i is not larger than the fraction k of (5 n + cn), but

from the same reason

( + en) ^ &(5n_i + n_i), (5n_i + Cn-l) &amp;lt; &(6n-2 + Cn-2 ), etc. J

therefore

That is to say, for a sufficiently large value of n 8n+i and en+i

will both become as small as we please.

As in the case of the differential equation of the first order it is

not worth while, as a rule, to investigate the convergence for the

purpose of finding a sufficiently close approximation by graphical

methods. It is better at once to tackle the task of drawing the

approximations and to repeat the operations until no further

improvement is obtained. The curve will then satisfy the

differential equation as far as the graphical methods allow it

to be recognized.

When the values of f(x, y, z) or g(x, y, z) become too large

we can have recourse to the same device that we found useful

with the differential equation of the first order. Instead of x,

one of the other two variables y or z may be considered as inde

pendent, so that the equations take the form

dx
=

1 dz = g(x, y, z)

dy
~

f(x, y, z) dy~ f(x, y, z)

or

fa 1 dy _ f(x, y, z)

dz
~

g(x, y, z) dz
~

g(x, y, z)

or we may introduce a new system of coordinates x , y
r

,
z and

consider the resulting differential equations.

The second method for the integration of differential equations

of the first order can also be generalized to include the second

order. Let us again consider the more general case

dy . dz ,

Tx =f(x,y,z), Tx
= g(x,y,z).

Starting from a point x, y, z the changes of y and z (denoted by
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k and /) can be calculated for a small change h of x by the fol

lowing formulas analogous to those used for one differential

equation of the first order:

h =
f(x, V, z)h; /i

=
g(x, y, z)h;

A .* j&amp;gt; Ji\i i ( .

*
&amp;gt; . Ai=

/I ar+ ^ , y+ TT &amp;gt;
*+

2 J
2= g

\
x^~

2 y~*~
&quot;2

*~*~
2 J

;

. . /

2 y+ ^ S+ 2J

=
/(a; + A, H- fe, 2 + k)h; k = ^ + h, y + h, 2 + A;

and with a high degree of approximation,

These calculations may be performed graphically. For this

purpose the functions f(x, y, z) and g(x, y, z) must be given in

some handy form. We notice that in our formulas the first

argument assumes the values x, x + h/2, x + h. In the next

step where x + h, y + k, z + / are the coordinates of the starting

point that play the same part that x, y, z played in the first

step, we are free to make the change of the first argument the

same as in the first step, so that in the formulas of the second

step it assumes the values x -}- h, x -}- %h, x -}- 2h and so on for

the following steps. All the values of the first argument can

thus be assumed equidistant. Let us denote these equidistant

values by
.TO, xi, xz, x3 ,

The values of f(x, y, z) and g(x, y, z) appear in all our formulas

only for the constant values

x = x0) xi, xz ,

For each of these constants / and g are functions of two inde

pendent variables and as such may be represented graphically
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by drawings giving the curves / = const, and g
= const., each

value of x corresponding to a separate drawing. These drawings

we must consider as the graphical form in which the differential

equations are given. It may of course sometimes be very tire

some to translate the analytical form of a differential equation

into a graphical form, but this trouble ought not to be laid to

the account of the graphical method.

The method now is similar to that used for the differential

equation of the first order, y and z are plotted as ordinates in

the same system in which x is the abscissa. Equidistant parallels

to the axis of ordinates are drawn

x = x = x = etc.

On the first x = XQ we mark two points with ordinates yo and ZQ,

and from the drawing that gives the values of /(XQ, y, z) and

FIG. 94.

g(xo, y, z) as functions of y and z we read the values /(XQ, yo, ZQ)

and g(xo, yo, z&amp;lt;j)
and draw the lines from XQ, yo, and XQ, ZQ to the

points

afe, 2/o + h and x2 ,
ZQ + h.

The intersections of these lines with the parallel x = x\ furnishes

the points
11
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.fa .
^1

xi, 2/o + -^
and xi, ZQ + -

.

With these ordinates we find from the second drawing the values

and by their help we can draw the lines from XQ, 2/0 and XQ, ZQ

to the points

2, 2/o + fa and x2 , 2/0 + k.

The intersections of these lines with the line x = Xi furnishes the

points

,

fa . k
xi, yo + ^ and xlf z + -

,

and with these ordinates we find the values

,

^2\ / ,fe ,/2\
, ^oH-^

J&amp;gt;

9( x* 2/o+*y,s +
^

J&amp;gt;

which enable us to draw the lines from XQ, 3/0 and XQ, ZQ to #2,

?/o + fe and x2 ,
z + /3 .

With these two ordinates we find from the third diagram (x
=

x%)

the values

f(x*, 2/o + fa, ZG + k) and gfa, y + fa, ZQ + /3),

which finally enable us to draw the lines from #o2/o and XOZQ to

22, 2/o + fa and z2 ,
2 + h-

On the vertical line x = #2 we thus obtain four points, BI, BZ,

#3, #4, corresponding to 2/0 + fa, 2/o + fe, 2/o + fe, 2/o + fa and

four points, BI, BI , BJ, B4
f

, corresponding to ZQ + /i, z + h,

20 + 4, ZQ + I, (Fig. 94).

$2#3 and BiBi are bisected by the points Ci and ft; Bz Bs

and ft ft by the points Ci , ft . Finally ftft and ft ft are

divided into three equal parts and the points B and B are found

in the dividing points nearest to ft and ft .

The same construction is then repeated with B and B as

starting points and furnishes two new points on the vertical
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x = 0-4 and so on. To test the accuracy the construction is

repeated with intervals of x of double the size. The difference

in the values of y and of z found for x = a-4 enables us to estimate

the errors of the first construction they are about one-fifteenth

of the observed differences.

Both methods are without difficulty generalized for the integra

tion of differential equations of any order. We can write a

differential equation of the nth order in the form

dnx ( dx dxn~^

Cut \ dt dt

or in the form of n simultaneous equations of the first order

dx

dt

A more general and more symmetrical form is

dx

~fa

=
fl(t, X, Xi, Xn-l)&amp;gt;

, xi, a?n-i),

xn-i

fa-
=

f(t, X, Xl, Zn_i).

The functions x, xi, x2 ,
xn-i are then represented as ordinates

to the abscissa t, so that we have n different curves. When the

function f(t, x, Xi, X&amp;lt;L,
xn-i) is given in a handy form, so that
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its value may be quickly found for any given values of t, x, x\,

Xn-ij there is no difficulty in constructing n curves whose

ordinates represent the functions x, Xi, x2 ,
xn-i. Starting

from given values of t, x, x\, x%, xn-i we have only to apply

the same methods that have been explained for the first and the

second order.
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215. Price, $1.50 net.
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net.

LEMCKE & BUECHNER, Agents
30-32 West 27th Street, New York



COLUMBIA UNIVERSITY PRESS
Columbia University in the City of New York

COLUMBIA UNIVERSITY LECTURES

HEWITT LECTURES

The Problem of Monopoly. By JOHN BATES CLARK, LL.D.,
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modern. 8vo, cloth, pp. viii-|-404. Price, $2.00 net.

Greek Literature. A series of ten lectures delivered at Columbia

University by scholars from various universities, in the spring of
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