

THE LIBRARY OF

THE UNIVERSITY OF CALIFORNIA LOS ANGELES

GIFT OF

Gift U.C. Library

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

We keep on sale the largest stock of FINE SHOES in the city．

Making to Measure，for Ladies，Gents， and Children，a specialty．

Sea－faring men and their families will receive special attention．Any orders they may favor us with will be promptly and carefully filled．

Kast＇s

Fashionable

Corner of Market and Dupont Streets．

PIONEER SHIRT ．FACTORY，

No． 233 Kearny Street．

For the Best Fitting Shirt

со то

S．POP卫上上，

233 Kearny Street，bet．Bush and Sutter． A FINE ASSOR＇TMEMT OF
Gents F＇urnishing Goods
SHIRTS MADE TO ORDER，A SPECIALTY．
Special Attention given to Masters and Officers of Ships，

11

W.W. MONTAGUE \& C0.

IMPORTERS OF

Metals, Stoves

RANGES 景CABOOSES,

SHEET AND BOLT COPPER,
SHEET IRON, WIRE,

Rivets, Lead, Tin Plate

 RUBBER HOSE,SIDE IルIGEITS, ETO.
manufactuvers or
COPPER, SHEET IRONGTIN WARE PROMPT ATTENTION GIVEN TO

SHIP WORK OF ALL KINDS.
ilo, ili, il4, ilf \& iif Battery Strect SAN FRANCISCO.

T. LUNDY,

Importer and Jobber of
AMERICAN AND FOREIGN

Clocks, Jewelry
 AND

OPTICAL GOODS,
 SAN FRANCISCO.

SILBERSTEIN'S
 SHIRT FACTORY

 Nos. 950 and 952 Market Street, UNDER THE BALDWIN,(Formerly of 506 Kearny Street,)
SAN FRANCISCO, CAL.
IMPORTER OF
Men's Fine Furnishing Goods, HOSIERY, ETC, ETC.
SPECIALTY-SHIRTS TO ORDER.
Sea Captains and Officers will do well to inspect our goods before purchasing elsewere their outfits.

চT.S.ERA Y de CO.

12 and I4 Market St.
9 and ir Sacramento St.
SAN FRANCISCO, CAL.
Manufacture and keep constantly on hand, -

SHIPS' STOVES

Nos, $0,1,2,3,4,5,6$ and 7.
SUITABLE FOR VESSELS OF FROM 20 TO 2000 TONS.
MLISSISSIPI'I STOVES (Sheet Iron) FOR STEAMSHTPS
Also Manufacture and keep an assortment of the following on hand:
Sidelights, Lanterns, Binnacle Lamps, Ships'Water Closets
Tin, Copper, Sheet Iron Ware, Store Linings of all kinds, Extra Castings and Brick for all kinds of Ships' Stoves, Extra Basing and all Repairs for

Water Closets, also Head Fumps; Red, Green and Round Fresual Glasses for all styles Sidelights and Lanterns.
Repairs Executed in the Best Possible Manner at Reasonable Ratrs.
Pottery; Antioch, Cal. Foundry; 228 Main St., S. F.
Special Attention to Masters and Officers of Ships. UNIFORM CAPS MADE TO ORDER.

Branch, gio Market Street, above Stockton. THE FINEST GOODS: THE LARGEST STOCK! THE LOWEST PRICES!

JOS. POIFEIM, Merchant Tailor,

203 Montgomery St., and 103 Third St., San Francisco the best fit, lowest prices and finest goods in the world.

FROM NEW YORK.
203 Montgomery St., and 103 Third St., San Francisco

LORENTZ FOARD，

Dealer in New and Second－Hand

SHIP MATERIAL

The Highest Cash Price paid for Copper，Metal， Zinc，Lead，Sails，Rope，Etc． 3 Steuart Street，

NEAR MARKET， \qquad SAN FRANCISCO．

All kinds of Blocks and Flags，old and new，always on hand．

salls rented out by the day，week or month

IMPORTANT NOTICE TO OWNERS AND MASTERS OF VESSELS．

巴A「卫世INT
 METALINE BUSHING F（）R BLOCKS．

CAN BE RUN AT QUICK SPEED WITHOUT OIL．
A new improvement in the Bushing of Blocks，which acting as its own lubricator，overcomes all friction，at the same time allowing a heavier strain and workng easier than any other Bushing ever introduced in the market．For all places where a heavy strain and quick hoisting is required，it far excels all other kinds of Bushing．
It is Admirably Aclapted for Wheel Blocks on Account of its Durability．
We also have all kinds of Blocks and Lignum－vite Work for Ship＇s Use
And we would be pleased to rececive a call from you．Our Goods can be found at
No． 18 Market St．，San Francisco，Cal．
bagnall \＆LOUD，Boston，Mass．Joseph Chessman，Agent，

CHARLES PACE,

CHRONOMETER

AND

 Watch Mąufaćturer

 Watch Mąufaćturer
 418 Battery Street,
 Between Washington and Merchant.
 SAN FRANCISCO, CALIFORNIA

A LARGE ASSORTMENT OF CHARTS

PUBLISHED BY

The U. S. Hydrographic Office The British Admiralty
The U. S. Coast Survey
Messrs. Inray \& Sons, Etc., Etc.

SAILING DIRECTIONS,
McNEVIN'S PRACTICAL NAVIGATION, SHIPPING LAWS, WORKS ON NAVIGATION, LOG BOOKS AND SLATES MARINE是OPERA GLASSES TELESCOP\#S,
Sextants, Octants, and Quadiants, MESSRS. JOHN BLISS \& CO'S PATENT TAFFRAIL LOG and
MCNEVIN'S LEE WAY INDICATOR.
AGENT FOR
MASSEY'S AND WALKER'S PATENT LOGS AN ASSORTMENT OF
Chronometers by approved makers for sale or to hire.
CHRONOMETERS REPAIRED, CLEANED AND RATED BY TRANSIT OBSERYATIONS.

ANDERSON \& RANDOLPH,

MANUFACTURING

Jewelers and Silversmiths

 101 \& 103 MONTGOMERY ST.

THE LARGEST STOCK IN THE CITY
Gold and Silver Watches, Diamonds, Jewelry and Silverware AT MANUFACTURERS' PRICES.

Special Attention paid to the Repairing and Regulating of FINE WATCHES, ETC.

PLAZA STORES

OF

C.P.VanSchaack \& Co

Nos. 706 то 716 KEARNY STREET,
\qquad SAN FRANCISCO, CAL.
Importers, Wholesale and Retail Dealers in

FURNISHING GOODS,
 Ciotifing, HATS, CAPS, ETC., ETC.

Captains and Officers of Ships would do well to call before making their purchases.

SLOP-CHESTS FITTED UP ON REASONABLE TERMS.
EXCELLENT OILSKINS, ETC., ETC.

DR. SPINNEY \& CO.

Treat all Chronic and Special Diseases.
 YOUNG MEN

Who may be suffering from the effect of youthful follies or indiscretion, will do well to avail themselves of this, the greatest boon ever laid at the alter of suffering humanity.

DR. SPINNEY

will guarantee to forfeit $\$ 500$ for every case of seminal weakness, or private disease of any kind or character which he undertakes and fails to cure.

MIDDLE-AGED MEN.

There are men of the age of thirty to sixty years who are troubled with too frequent evacuation of the bladder, often accompanied by a slight smarting sensation and a weakening of the system in a manner the patient cannot account for. On examining the urinary deposits a ropy sediment will often be found, and sometimes small particles of albumen will appear, or the color be of a thin and milkish hue, again changing to a dark and torpid appearance. There are many men who die of this difficulty, ignorant of the cause, which is the second stage of seminal weakness. Dr. S. \& Co. will guarantee a perfect cure in all such cases, and a healthy restoration of the genito-urinary organs.

Medicine Chests fitted up on reasonable terms.
OFFICE HOURS:-10 to 4 and 6 to 8 . Sundays from io to 11 a. m. Consultation free. Thorough examination and advice, $\$ 5$. Call or address.

DR. SPINNEY \& CO.
No. II Kearny Street, San Francisco

T玱莥

HAMMAM

FINEST BATH HOUSE IN THE WORLD．
Improved Turkish，
Imperial Russian，
Medicated AND

Electric

BATHS 号 ALL KINDS． no Charge for medical servićes．

Single Baths，－－\＄ 1.50 Ten Tickets，－－\quad Io．00

A．M．LORYEA，M．D． PROPRIETOR．

Il and 13 Dupont St．
SAN FRANCISCO，CALIFORNIA．

A. L. BANCROFT \& CO.

PRINTERS and PUBLISHERS.

Manufarturing and Publishing of Books for Authors.

In addition to a large number of law-books, school-books, and pamphlets that we have published during the last year or so, the following are among those which were published more particularly for authors, for which we will be pleased to receive orders:
A La California. Sketches of Life in the Golden State. By Col. Albert S. Evans. 379 pages. 8vo. Cloth.

Almond-Eyed. A Story of the Day. By Atwell Whitney. With 17 fullpage illustrations. 170 pages. 12mo. Paper. 1878. 50 cts.
Behind the Arras. By C. M. Neville. ${ }^{251}$ pages. 8vo. Paper. 1877. \$1.00.
Birthday Ode to Her MIost Gracious Majesty Queen Victoria of England. By Mrs. Theresa Corlett. 8 pages. 8vo. 8877 . 50 cts.
Caxton's Book. A Collection of Essays, Poems, Tales and Sketches. By the late W. H. Rhodes. Edited by Daniel O^{\prime} Comnell. 300 pages. Large ramo. Cloth. 83.00 .
Checkered Life; in the Old and New World. By Rev. J. L. Ver Mehr. 476 pages. 8vo. Cloth. 1877. ${ }^{3} 3.00$.
Fidelite. By Edna Verne. 125 pages. . 12 mo . Paper. 1877. 50 cts.
Ho! for Elf-Land. By Alice Kingsbury. i 36 pages. Small square 4 to. 9 full-page illustrations. $\mathbf{1} 877$. $\$ 1.50$.
Journal of Army Life. By R. Glisan. 511 pages. 8vo. Illustrated. \$3.00.
Madame Jane Junk and Joe. By Oraquill. 539 pages. Large 12 mo . Cloth. \$3.00.
Semi-Tropical California. By Major Ben. C. Truman. 204 pages. 8vo. Cloth. st.5o.
Silver Shimmer. By William Darwin Crabb. 92 pages. 16 mo . Cloth, \$t.oo. Paper, 50 cts .
The New Penelope, and other Stories and Poems. By Frances Fuller Victor. 39 pages. Small 8 vo. Cloth. $1877 . \$ 2.00$.
The Coal Mines of the Western Coast of the United States. By W. A. Goodyear. 153 pages. Large 12 mo . 1877 . \$2.50.
The Log of an Ancient Mariner. Being the Life and Adventures of Captain Edgar Wakeman. 378 pages. 8vo. Cloth. Illustrated. 2878 . ${ }^{3} 3.00$.
The Poison Fountain, or Anti-Parental Education. By Zach. Montgomery. r89 pages. 8vo. Cloth. 1878 . $\$ \mathrm{Fr}$.50.

> [just published.]

A Guide to Practical Navigation. Containing the rules and methods of solving problems in the most practical manner; the simplest and most complete method of finding a ship's position at sea, as well as a thoroughly approved method of finding the latitude and longitude at the same instant of time by double altitudes. By Capt. E. McNevin. 348 pages. 8vo. Cloth. 1878. \$4.00.
Any of the above sent by mail, post paid, on receipt of advertised price.
[in press.]
History of San Francisco, and Incidentally of California. By John S. Hittell. 8\%o. Cloth. \$5.00.
Apache-Land. By Chas. D. Poston. I 2 mo . Cloth. 150 pages. $\$ 2.00$.

A. L. BANCROFT \& CO.

721 Market Street, San Francisco, Cal.

A GUIDE

T0

PRACTICAL NAVIGATION.

CONTAINIING
THE RULES AND Methods of solving problems in the most practical manNER; THE SIMPLEST AND MOST COMPLETE METHOD FOR FLNDING A SHIP'S POSITION AT SEA, AS WELL AS A THOROUGHLT APPROVED METHOD of finding the latitude and longitude at the same INSTANT OF TIME: BY DOUBLE ALTITUDES.

BY
CAPTAIN E. MoNEVIN.

SAN FRANCISCO:
A. L. BANCROFT \& COMPANY, PRINTERS,

721 Market Street.
1878.

Copyright, 18i7, by CAPTAIN E. MCNETIN.

PREFACE.

This treatise has been written, not for scientists but for seamen; to enable the navigator to find at any time quickly and accurately, his position at sea. By carefully studying the rules, and solving the problems herein given, he will assuredly be able to do so. The problems are solved in the simplest manner, and are only such as an experience of twenty years in the mercantile service has shown me to be necessary.
This book is therefore not encumbered with matter and tables seldom or never used, at least by those in command of merchant vessels; all extra methods of determining latitude and longitude, either difficult in themselves or of doubtful accuracy, (such as lunar and steilar observations) being wholly omitted. This book, it is hoped will enable a seaman of ordinary education to instruct himself in all that is really necessary for him to know, while at the same time it will aid rather than repel (as many works have done) those desirous of subsequently attaining in this fine science a higher degree of skill than is needed for ordinary navigation.
To polar-star observations for finding latitude, (of which some examples are given) I do not attach muchimportance, as the pole star is too dim for observation, demanding, (what is seldom to be had,) a well defined horizon, and is besides; available only in the Northern hemisphere. As to lunars, aside from the expense of the requisite tables, and the fact that they would not be understood by more than one out of twenty, they are rendered still less necessary since the perfecting of chronometers. In my long career I have met but few men who could take, accurately, distances by lunar observations; though every master, when questioned as to his ability in this respect, can do so to perfection. There are a number of lunar tables published, but to those wanting such I would recommend Thompson's as being both simple and accurate.
I have given Napier's logarithmic tables of natural numbers, being indispensable for accuracy in nautical calculations. These tables, Captain Thom, in his treatise, not only omits, but repudiates, telling us, forsooth, that they "are never used at sea !" He might almost
as well have said that the compass had been rendered obsolete by some "method" of his for finding the north. I mention this that no one may be led astray by statements so absurd. Moreover, we should never rely (as does this author) upon the crude approximations of inspection. The necessary rules, however, for working by this method, are given for those who wish to employ them.
For finding latitude by stellar altitudes (which circumstances not infrequently render desirable at sea) I have referred to the American Ephemeris for the declination of the fixed stars instead of to the English tables; and have also followed the star-notation of the former. I have used a portion of the latter only in the problems for exercise in this work.

I would call the student's special attention to the system of finding simultaneously latitude and longitude by double altitude; a system not to be found in any American work that I have seen, and one upon which too much stress can scarcely be laid.
In this work I would also call attention to a leeway indicator, (of.which a diagram is given) and which I have long used with great satisfaction at sea. This it is believed will be found highly useful to the mariner.
In conclusion I would say, that as I have had in the preparation of this work only the needs and interests of sea-faring men in riew, I trust that it will fulfill its mission and be thought worthy of their patronage.

EDIIUND McNEVIN.

CONTENTS.

Preface
page
Definitions3
Table of Angles 9
Multiplication by Logarithms 10
Division by Logarithms 11
Reduction 12
Compound Addition 13
Compound Subtraction 13.
Latitudes 14
Traverse Sailing 18.
Parallel Sailing 19
Middle Latitude Salling 20
Mercator's Sailing 30
Deviation of the Compass 39
Variation of the Compass 41
Leeway 43
Day's Work 49
Tine 55
Amplitude 58.
Correction of the Compass by an Azimuth 62
Latirude by Meridian Altitude of Sun 65
Latitude by Reduction to the Meridian 68
Latitude by Star's Meridian Altitude 71
Longitude by Chronometer 73
Rules for Finding the Longitude 75
Examination Papers as Worked out for the Board of Trade 81
Latitude and Longitude by Double Altitudes. 94
Latitude by Pole Star 104
To Find the Time of a Star's Passing the Meridian, also, its Approximate Altitude. 106
Finding the Time at a Given Meridian 108
To Find the Error of a Watch or Chronometer by Equal Alti- tudes of the Sun 111
Equations of Equal Alititudes 112
To Find the Ship's Position from two Bearings of the same Object 115.
Table for Same 117.
Explanation of the Tables 118
Tables 127.

CONTENTS.

CONTENTS OF THE TABLES.

PAGE:
I. Logarithars of Numbers 127
II. Logarithmic Sines, Tangents, Secants, Etc 143
III. Difference of Latitude and Departure for Points 188
IV. Difference of 'Latitude and Departure for Degrees. 204
V. Meridional Parts 249
VI. Refraction 257
VII. Dip of the Horizon 257
VIII. Sun's Parallax 257
IX. To Reduce the Equation of Tine to any Time Under the Meridian of Greeniwich 258
I. To Obtain the Proportional Part of the Rate of a Chrononeter from Noon, to any Given Hour at Greenwich. 258
NI. Turning Degrees into Time, and Vice Versa. 259
XII. To Reduce the Sun's Declination at any Meridian 260
XIII. Correction for Apparent Altitude of Sun or Star 262
XIV. Natural Sines and Cosines 265
XV. For Finding the Distaice of Terrestrial Objects at Sea. 274
NVI. Logs A and B for Computing the Equation of Equal Al'titudes. 276
XVII. Log-Risinge, for Latitude by Reduction to the Meridian. 277
XVIII. Logarithms for Finding the Apparent Time or Horary Axgle. 285
NIX. Latitude by Altitude of Pole Star. 294
XX. Antlitude. 295
NXI. Nautical Almanac for 1878 298
XAII. Listitcdes and Longitldes of the Princtpal Ports, Har- bors, Capes, etc., in the World 322

DEFINITIONS.

1. The Equator is a circle passing round the Earth, equally distant from the poles, dividing the globe into the northern and southern hemispheres.
2. The Poles are the extremities of the earth's axis.
3. A Meridian is a great circle passing through both poles, crossing the equator at right angles, and dividing the globe into two parts, called eastern and western hemispheres.
4. The Ecliptic is the apparent annual path of the sun in the heavens.
5. The Tropics are that portion of the earth between $23 \frac{1}{2}^{\circ} \mathrm{N}$. and $23 \frac{1}{2}^{\circ}$ S.
6. Latitude is the number of degrees N. or S. of the equator.
7. Parallels of Latitude are circles parallel to the equator.
8. Longitude is the number of degrees E. or W. of Greenwich.
9. The Visible Horizon is the circle that bounds the observer's view at sea.
10. The Sensible Horizon is the circle that passes through the eye of an observer whose poles are in the zenith and Nadir.
11. The Rational Horizon is the circle parallel to the sensible horizon, whose plane passes through the center of the earth.
12. The True Course of a ship is the compass course corrected for deviation, lee-way and variation.
13. A Magnetic Course is a compass course corrected for lee-way and deviation.
14. A Compass Course is the course steered by a compass.
15. Variation of the compass is the angle between the true north and the magnetic north.
16. Deviation of the compass is the angle between the magnetic north and the compass north.
17. The Error of the compass is the sum of the deriation and variation.
18. Lee-way is the angle between the ship's course by compass' and her path through the water.

DEFINITIONS.

19. The Meridian Altitude of a celestial object is the highest altitude it attains, or its altitude when on the observer's meridian.
20. Azimuth is the angular distance of a body from the meridian, measured on the horizon.
21. Amplitude is the complement of azimuth, or the true bearing of an object, east or west, on the horizon.
22. Declination is the number of degrees any celestial "object is north or south of the equator: similar to latitude.
23. Polar Distance is the number of degrees an object is from the elevated pole.
24. Right Ascension is the distance of a celestial object from the first point of Aries, measured in time eastward on the equinoctial.
25. The Dip or Depression of the horizon is the angle contained between the sensible and the visible horizon.
26. Refraction is the difference between the real and the apparent place of a heavenly body, produced by the passage of the rays of light through the atmosphere.
27. Parallax is the difference between an altitude of a celestial body observed at the center of the earth and on the surface of the earth. Semi-diameter is half the angle under which the heavenly. bodies appear to an observer on the earth.
28. An Observed Altitude is the height of the sun, moon, planet or star above the horizon, as measured by a quadrant or seatant.
29. The Apparent Altitude is the observed altitude corrected for index error and dip.
30. The True Altitude is the apparent altitude corrected for refraction and parallax.
31. Zenith Distance is the distance of a heavenly body from the zenith, or point of the heavens over our heads.
32. Vertical Circles are great circles passing through the zenith and Nadir; perpendicular to the horizon.
33. The Prime Vertical is a great circle passing through the zenith and Nadir, cutting the horizon in the east and west points.
34. Civil Time begins and ends at midnight; the first 12 hours called A. м. ; the last 12 hours called P. m.
35. Astronomical Time is the time between two successive transits of the sun's mean center over the same meridian, which nlways begins at noon, and is reckoned through the 24 hours to noon again:
36. Nean Time is the hour angle of the mean sun westward of the meridian.
37. Apparent Time is the interval hetween the sun's departure from and his return to the same meridian; or time shown by the sun according to his altitude, reckoned westward of the meridian.
38. Equation of Time is the difference between mean time and apparent time.
39. The Hour Angle of a celestial object is an arc of the equator contained between the meridian of the place and that of the object.
40. The Complement of an arc or angle is what that are or angle is short of being 90°.
41. The Supplement of an arc or angle is what that arc or angle requires to make it 180°.
42. The Co-latitude is the difference between a given latitude and 90°. Polar distance is a celestial object's distance from the north pole.
43. The difference of latitude of two places is the portion of the meridian included between their parallels.
44. The difference of latitude of a ship is the distance she makes from any point, north or south.
45. The difference of longitude of two places is the portion of the equator included between their meridians.

RIGHT-ANGLED TRIANGLE.

46. The course steored is the angle between the meridian and the ship's head; the course made good is the angle between the meridian and the ship's real track on the ocean.
47. The course is reckoned from the meridian accordingly, north or south towards the east or west, if less than eight points, or 90°.
48. The course is measured in points of $11^{\circ} 15^{\prime}$ each.
49. The rhumb line is the ship's track when crossing all the meridians at the same angle.
50. The distance between two places, or the distance sailed by the ship on a certain course, is measured in nautical miles of 60 to the degree of latitude, each containing 6082 feet.
51. Three such miles make a league.
52. The departure is the distance sailed due east or west, or the distance from the ship's first meridian, and is always equal to the difference of latitude in miles. It is also called easting or westing, and is always expressed in miles. When a ship sails due east or west she makes no difference of latitude.
53. The difference of latitude is the space contained between two parallels of latitude, and is counted on the meridian. When a ship sails north or south she makes no departure.
54. Taking a departure means taking the bearing of any object by compass, or its angle with the meridian, and estimating its distance from the ship on leaving the land.

Given the True Course, to Find the Magnetic Course.

Easterly variation allow to the left hand.
Easterly deviation allow in the same way.

Westerly variation allow'to the right hand.

Westerly deviation allow in the same way.

Given the Magnetic Course, to find the True Course.

Easterly variation allow to the right hand.
Easterly deviation allow in the sane way.

Westerly variation allow to the left hand.
-Westerly deviation allow in the same way.

ALLOW LEEWAY FROM THE WIND.

A TABLE OF THE ANGLES

Which every point and quarter point of the compass makes with the meridian.

NORTH.		POINTS.	- "	POINTS.	SOUTH.	
N be	N b W	07	$\begin{array}{rrrr}\text { D. } & \text { M. } & \text { S. } \\ 2 & 48 & 45\end{array}$	01		
		$0 \frac{1}{2}$	53730	$0 \frac{1}{2}$		
		$0{ }^{3}$	82615	$0{ }^{4}$		
		1	11.1500	1	S b E	S b W
N N E	N N W	11.	140345			
		$1 \frac{1}{2}$	165230	$1 \frac{1}{2}$		
		$1{ }^{\text {a }}$	194115	$1 \frac{3}{4}$		
		2	223000	2	S S E	S S W
NEbN	N Wb N	21	251845	$2 \frac{1}{2}$		
		$2{ }_{2}^{1}$	280730	$2 \frac{1}{2}$		
		$2 \frac{3}{4}$	305615	$2{ }^{3}$		
		3	334500	3	SEbS	S W b S
NE	N W	31	363345	37		
		$3 \frac{1}{2}$	392230	3 $\frac{1}{2}$		
		$3{ }^{\text {a }}$	421115	$3 \frac{3}{4}$		
		4	450000	4	SE	S W
NEbE	N Wb W	4	474845	41		
		$4 \frac{1}{2}$	503730	$4 \frac{1}{2}$	4	
		$4 \frac{3}{4}$	532615	$4 \frac{3}{4}$		
		5	561500	5	S EbE	S W b W
ENE	W N W	$5 \frac{1}{4}$	590345	$5 \frac{1}{4}$		
		$5 \frac{1}{2}$	615230	$5 \frac{1}{2}$		
		$5{ }^{\text {a }}$	644115	$5 \frac{3}{4}$		
		6	673000	6	E S E	W S W
EbN	WbN	6	701845	67		
		$6 \frac{1}{2}$	730730	$6 \frac{1}{2}$		
		$6{ }^{3}$	$75 \quad 5615$	63		
		7	784500	7	EbS	W b S
EAST	WEST	$7 \frac{1}{4}$	813345	71		
		$7 \frac{1}{2}$	84. 2230	71		
		$7{ }^{4}$	871115	$7 \frac{3}{4}$		
		8	900000	8	EAST	WEST

PRACTICAL NAVIGATION.

MULTIPLICATION BY LOGARITHMS.

Place the numbers one under the other, the same manner as if they were to be multiplied by common multiplication.

Give to each number its own index, which will always be one less than the figures in the whole number.
Next, in Table I (logarithms of numbers), find the log. corresponding to each number, and place as in the worked example opposite; then add the logarilhms and indexes together, and the inceex now obtained will show how many figures are wanted in the answer, which is always one more than the index.

Rule for getting Five, or more Figures in the Answer.

Find the Logarithm next less to the given log. which will point out the first four figures of your answer--three on the left side, and the other at the head of the column you find the next less in; then take the next less log. found from yours, to which annex as many ciphers as there are figures wanted more than four, divide this by the difference, which is found in the column on the right hand side, and the quotient will be the remaining figures required; and if you want to turn the remainder into a decimal, annex a cipher and divide again by the same difference as before.

Rule for taking out a Loyarithm for a number consisting of Five, or more figures.
Take out a log. for the first four figures and set it out to one side; then multiply the figures that there are more than four in your numVer, by the difference on the right hand side of Table I. Cut off from the product to the right hand as many as you had over four in your number, and what remains being added to the logarithm
taken out for the first four figures, makes the logarithm required for the whole number.

When the first of the figures pointed off is five, or exceeds five, add one to the figures you are going to apply to the log. of the first four figures.

Multiply 7235 by 820, by Common Logarithms.
$\left.\begin{array}{r}7235 \\ 822\end{array}=3.814872\right\}$ Add in Multiplication.
Ans. $5947164=6.774310$
774298 nearest less log.
Diff. 73) $12000 \quad$ (164
$\frac{73}{470}$
438
320
292
28 Remainder.

Multiply 7890	by 987,	by Common Logarithms.	Ans.	7787428.
Multiply 4789	by 976,	by Common Logarithms.	Ans.	4674064
Multiply 5648	by 765,	by Common Logarithms.	Ans.	4320720
Multiply 6979	by 878,	by Common Logarithms.	Ans.	6127549
Multiply 7898	by 549,	by Common Logarithms.	Ans.	4336000
Multiply 348.25	by 71.25,	by Common Logarithms.	Ans.	$24812.8^{* \prime}$
Multiply 7298	by 3.475, by Common Logarithms.	Ans.	$25360.5 S^{*}$	
Multiply 3650.0	by 208.0, by Common Logarithms.	Ans.	759200	
Multiply 65703 by 475,	by Common Logarithms.	Ans.	31208920	

Note.-A decimal is got by annexing a cipher and dividing again. Read explanation of Table I carefully.

DIVISION BY LOGARITHMS.

Place the number and their indexes as in multiplication, and get out the Logarithms, which are subtracted in division.

When dividing for the figures wanted more than four, remember you do not use more than one cipher at a time, viz: Suppose the difference between the logs is 15 , and you annex three ciphers which make 15,000 ; now, if this is to be divided by say, 160$) 15,000(0$ is the first figure because it will not go in 150, that is, taking one of the ciphers only at a time; and should it not go with another cipher taken in, as it may sometimes occur, then the second figures will also be 0 . And again, slould the logs, when looking for the next less, agree exactly, then, where they agree, it gives you the first four, and any more wanted will be ciphers annesed to make the required number; for example-the index is 8 and the first four got out is 7799 , then the proper answer is 779900000 .

Divide- $\$ 756403$ by 228 by Common Logarithms.
Log. of 1st 4 figures.

D	5678465 by	425, by Common Logarithms.	Ans.	13361.
Divide	8789786 by	540, by Common Logarithms.	Ans	627%
Divide	4785895 by	487, by Common Logarithms.	Ans	9827.
Divide	34650 by	185, by Common Logarithms.	Ans.	187.297.
Divide	3876000 by	.12, by Common Logarithms.	Ans.	323000 -4.
Divide	8247877 by	789, by Common Logarithms.	Ans.	10453.
Divide	248.603 by	3910, by Common Logarithms.	Ans.	.0635s.
Divide	8.50078 by	890.1, by Common Logarithms.	Ans.	0095
Divid	84361912	1, by Common Logarithn	Ans.	73960227.

REDUCTION.

To reduce Degrees, Minutes and Seconds of Arc, to Minutes or Seconds of Arc.
Multiply the degrees by 60 , and to the product add the minutes. This sum is the whole of the minutes.

Again multiply this sum by 60 , and to the product add the seconds.

This last sum is the whole of the seconds.

Ex. 1. Reduce to minutes.
Ans. $\times^{12^{\circ} \quad 60^{27^{\prime}}}{ }^{747}$ miles.

Ex. 2. Reduce to seconds.
$\times \frac{35^{\circ} 00^{\prime} 26^{\prime \prime}}{}$
$\times \frac{600}{2100}$
$126026^{\prime \prime}$

To reduce Seconds or Minutes of Arc, to Degrees, Minutes and Seconds.
Divide the seconds by 60 , and the remainder, if there be any, will be the odd seconds.

Again divide the preceding quotient by 60, and the remainder will be the odd minutes.

And the last quotient will be the degrees, minutes and seconds.

Ex. 1. Reduce 046 minutes to degrees and minutes.

$$
\frac{\text { 60) } 946^{\prime}}{15^{\circ} 46^{\prime}}
$$

Ex. 2. Reduce 5674 sceonds to degrees, minutes and seconds.

$$
\begin{aligned}
& \frac{60) 5674^{\prime \prime}}{6 0 \longdiv { 9 4 ^ { \prime } 3 4 ^ { \prime \prime } }} \frac{1^{\circ} 34^{\prime} 34^{\prime \prime}}{}
\end{aligned}
$$

COMPOUND ADDITION.

To add Degrees, Minutes and Seconds of Arc.
Place degrees under degrees, minutes under minutes, and seconds under seconds.

Add the seconds together, and if their sum be 60 or upwards, reduce it to minutes and seconds.

Place the seconds that remain under the other seconds, and add the minutes to the other minutes. If the sum of the minutes equal 60 , or more, reduce it to degrees and minutes.

Place the minutes that remain under the other minutes, and add the degrees to the other degrees.

Ex. 1. Add $49^{\circ} 38^{\prime}$ and $22^{\circ} 58^{\prime}$ together.

Ans. | $49^{\circ} 38^{\prime}$ |
| ---: |
| $22 \quad 58$ |
| $72^{\circ} 36^{\prime}$ |

Ex. 2. Add $105^{\circ} 32^{\prime} 1 S^{\prime \prime}$ and $158^{\circ} 02^{\prime} 10^{\prime \prime}$.

Ans. $\frac{$| $105^{\circ} 32^{\prime} 18^{\prime \prime}$ |
| :--- |
| 1580210 |}{$263^{\circ} 34^{\prime} 28^{\prime \prime}$}

COMPOUND SUBTRACTION.

To take the Difference between Degrees, Minutes and Seconds of Arc.
Place the quantities as in addition.
Begin at the seconds of the lesser quantity, and subtract them from those of the greater.

If the seconds of the lesser quantity be more than those of the greater, add 60 to those of the greater, and subtract those of the lesser from the sum.

In the same manner subtract the minutes of the lesser quantity from those of the greater.

If 60 has been added to the minutes of the lesser quantity before subtracting them, proceed in the following manner with the degrees:

Ex. 1. Subtract $4^{\circ} 15^{\prime} 40^{\prime \prime}$ from $8^{\circ} 22^{\prime} 26^{\prime \prime}$ 。

Ans. $\quad \begin{aligned} & 8^{\circ} 22^{\prime} 26^{\prime \prime} \\ & 4 \\ & \frac{4}{} 4^{\circ} 06^{\prime} 46^{\prime \prime}\end{aligned}$

Ex. 2. Subtraet $30^{\circ} \quad 28^{\prime} 54^{\prime \prime}$ from $80^{\circ} 40^{\prime} 20^{\prime \prime}$.

Ans. $\frac{\begin{array}{l}50^{\circ} 40^{\prime} 00^{\prime \prime} \\ 3028 \\ 50^{\circ} 11^{\prime} 20^{\prime \prime}\end{array}}{\frac{10}{\prime \prime}}$

LATITUDES.

To find the Difference of Latitude between Two Places whose Latitude is given.
When both latitudes are of the same name, that is, when they are both north or both south, take their difference by subtracting one from the other, for the difference of latitude.

When the latitudes are of different namas, that is, when one is north and the other south, take their sum by adding both latitudes together for the difference of latitude.

To name the different latitudes, consider whether the place bound to is north or south of the ship's place, and mark the different latitude north or south accordingly.

Ex. 2. Given Point Bonita in latitude $37^{\circ} 49^{\prime} \mathrm{N}$. and Callao in latitude $12^{\circ} 04^{\prime} \mathrm{S}$. Required the difference of latitude.

Latitude Point Bonita.... $37^{\circ} 49^{\prime} \mathrm{N}$. Latitude Callao.......... 1204 S .
Difference of latitude $=\frac{{ }^{49} 53^{\prime} \mathrm{S} .}{\frac{\times 60}{2993 \text { miles }} .}$

Given the Latitude Left and Difference of Latitude, to find the Latitude In.
When the latitude left and the difference of latitude are of the same name, add them together, their sum is the latitude in, and of the same name as the latitude left.

When the latitude left and difference of latitude are of different names, subtract the lesser from the greater, and their difference is the latitude in, of the same name as the greater.

Ex. 1. Given the latitude left $19^{\circ} 06^{\prime}$ N , and difference of latitude $2^{\circ} 24^{\prime} \mathrm{N}$. Required the latitude in.
$\begin{array}{ccccc}\text { Latitude left... } & 19^{\circ} & 06^{\prime} & \mathrm{N} . \\ \text { Difference lat. } & 2 & 24 & \mathrm{~N} . \\ \text { Latitude in } & 21^{\circ} 30^{\prime} & \mathrm{N} .\end{array}$

Ex. 2. Given the latitude left $8^{\circ} 04^{\prime}$ N . and difference of latitude $6^{\circ} 05^{\prime} \mathrm{S}$. Required the latitude in.

$$
\begin{aligned}
& \text { Latitude left... } 8^{\circ} 04^{\prime} \mathrm{N} \text {. } \\
& \text { Difference lat... } 6 \text { 05 } \mathrm{S} \text {. } \\
& \text { Latitude in } \overline{1^{\circ} 59^{\prime}} \mathrm{N} \text {. }
\end{aligned}
$$

Having the Latitude In,.and Latitude Left, to find the Middle Latitude.
Add the latitudes together and divide the sum by 2 , and the result is the middle latitude.
When the latitudes are of different names, add the half of the greater latitude to the half of the less latitude, and take their half sum for the middle latitude.

If one latitude be great and the other small, take the half of the greater latitude for the middle latitude.

Ex. 1. Given latitude left $19^{\circ} 05^{\prime} \mathrm{N}$. and latitude in $6^{s} 04^{\prime} N$. Required the middle latitude.

Latitude left. . $19^{\circ} 05^{\prime} \mathrm{N}$.
Latitude in... 6 0t N .
Ans. $\quad \overline{2 \overline{25} 09} \sqrt{12^{3} 34^{\prime}}$ mid. lat.

Ex. 2. Given latitude left $32^{\circ} 19^{\prime} \mathrm{S}$. and latitude in $57^{\circ} 24^{\prime}$ S. Required the middle latitude.

$$
\begin{aligned}
& \text { Latitude left... } 32^{\prime 2} 19^{\prime} \mathrm{S} \text {. } \\
& \text { Latitude in.... } 5724 \text { S. } \\
& 2 \longdiv { 5 9 4 3 } \\
& 44^{\circ} 51^{\prime} \text { mid. lat. }
\end{aligned}
$$

Ex. 3. Latitude of A. $40^{\circ} 43^{\prime}$ N.-Half of A. $20^{\circ} 21^{\prime}$
Latitude of B. $34^{\circ} 22^{\prime}$ S. -Half of $\mathrm{B} .17^{\circ} 11^{\prime}$

$$
\text { Niddle latitude, } \overline{2) \longdiv { 3 7 ^ { \circ } 3 z ^ { \prime } }} 18^{\circ} 46^{\prime}
$$

Tu take out of the talles the Meridional Parts for a Giren Latitude.
Look for the number of degrees of latitude at the top of the table, and for the number of the minutes of latitude in the column marked miles. Then look down the column of figures under the degrees, until it meets the line of figures opposite the minutes.

Take out the number at the point of meeting, which will be the meridional parts for the given latitude.
Ex. 1. Find the meridional parts of $36^{\circ} 58^{\prime} \ldots \ldots \ldots \ldots \ldots$.................. 2390.
Ex. 2. Find the meridional parts of $28^{\circ} 10^{\prime} \ldots$. . Ans. 1762.
Ex. 3. Find the meridional parts of $46^{\circ} 48^{\prime} \ldots \ldots$. . Ans. 3185.
Ex. 4. Find the meridional parts of $38^{\circ} 59$............................... 2544 .

Given the Latitude Left and Latitude In, to find the Meridional Difference of Latitude.

Take out the meridional parts for both latitudes.
When both latitudes are of the same name, take the difference of the meridional parts for the mericional difference of latitude.

When the latitudes are of different names, take the sum of the meridional parts for the meridional difference of latitude.

Fx. 1. Given latitude left $39^{\circ} 44^{\prime} \mathrm{N}$. and latitude in $46^{\circ} 24^{\prime} \mathrm{N}$. Required the meridional difference of latitude.
Lat. left $39^{\circ} 44^{\prime}$ N. meer. parts 2 C 02.
Lat. in 4624 N. mer. parts 3150.

$\frac{640}{40}$ Mer. diff. lat. 548 mls .
$\times 60$
400 miles.

Ex. 2. Given latitude left $4^{\circ} 28^{\prime} \mathbf{N}$. and latitude in $2^{\prime \prime} 58^{\prime} \mathrm{S}$. Required the meridional differerce of latitude.
Lat. left $4^{\circ} 28^{\prime}$ N. mer. parts 268 .
Lat. in 258 S. mer. parts 178.
$\frac{720}{7}$ Mer. diff. lat. 446 mls.
$\times 60$
$\frac{446}{}$ niles.

Given the latitude left in, as follows; required the meridional difference of latitude:

No.	Lat. left	Lat. in	Ans.	No.	Lat. left	Lat. in	Ans.
1	$28^{\circ} 40^{\prime} \mathrm{N}$	$30^{\circ} 31^{\prime} \mathrm{N}$	127		$2^{\circ} 48^{\prime}$ s	$2^{\circ} 52^{\prime} \mathrm{N}$	340
2	$19^{\circ} 46^{\prime} \mathrm{s}$	$26^{\circ} 30^{\circ} \mathrm{s}$	440	5	$4^{\circ} 28^{\prime \prime}$	$2^{\circ} 58^{\prime}$ s	4416
3	$22^{\circ} 50^{\prime} \mathrm{N}$	$26^{\circ} 22^{\prime} \mathrm{s}$	3049	6	$65^{\circ} 27^{\prime \prime} \mathrm{S}$	$1^{\circ} 08^{\prime} \mathrm{s}$	5175

Given the Longitude of Two Places, to find their Difference of Longitude.
When both longitudes are of the same name, that is, both east or west, take their difference for the difference of longitude.

When the longitudes are of different names, that is, one east and the other west, take their sum for the difference of longitude.

When the difference of longitude exceeds 180° take it from 360° and the remainder will be the difference of longitude.

Ex. 1. Given Nemen's Island in longitude $179^{\circ} 07^{\prime}$ E. aud Drummond's Island in longitude $174^{\circ} 53^{\prime} \mathrm{E}$. Required their difference in longitude. Longitude Nemen's Is. $179^{\circ} 07^{\prime} \mathrm{E}$. Longitude Drum. Is. .. 17453 E. Difference longitude... $\begin{gathered}4^{\circ} 14^{\prime} \mathrm{E} . \\ \times 60\end{gathered}$ $\times 60$
254 miles.

Ex. 2. Given Vomo Island in longitude $177^{\circ} 14^{\prime}$ E. and the Eddystone in longitude $4^{\circ} 16^{\prime} \mathrm{W}$. Required their difference in longitude. Longitude Vomo Is... $177^{\circ} 14^{\prime} \mathrm{E}$. Longitude Eddystone. 416 W.

Difference longitude. \begin{tabular}{c}

$\overline{18130}$
$\frac{36000}{178^{\circ} 30^{\prime}}$
$\times 60$

| 10710 |
| :--- | miles.

\end{tabular}

Given the longitudes of two places, A and B , as follows; required their difference in longitude.

No.	Longitude.		Ans.	No.	Longitude.		Ans.
	A	B			A	B	
1	$128^{\circ} 32^{\prime}$ w	$138^{\circ} 23^{\prime} \mathrm{E}$	$93^{\circ} 05^{\prime}$	4	$113^{\circ} 42^{\prime} \mathrm{E}$	$99^{\circ} \underline{\sim} 6^{\prime}$ w	$146^{\circ} 5 \underline{1}^{\prime}$
2	$66^{\circ} 24^{\prime} \mathrm{E}$	$78^{\circ} 37^{\prime} \mathrm{w}$	$145^{\circ} 01^{\prime}$	5	$3^{\circ} 10^{\prime} \mathrm{E}$	$4^{\circ} 05^{\prime} \mathrm{E}$	$0^{\circ} 5{ }^{\prime}$
3	$46^{\circ} 28^{\prime} \mathrm{w}$	$52^{3} 46^{\prime} \mathrm{E}$	$99^{\circ} 14^{\prime}$	6	$0^{\circ} 16^{\prime}$ w	$0^{\circ} 32^{\prime}$ E	$0^{\circ} 48^{\prime}$

Given the Longitude Left and Difference of Longitude, to find the Longitude In.
When the longitude left and difference of longitude are of the same name, take their sum for the longitude in, and it is of the same name as the longitude left.

When the sum exceeds 180°, take it from 360°, and the remainder will be the longitude in, of contrary name to the longitude left.

When the longitude left and difference of longitude are of contrary names, take their difference, which will be the longitude in, and of the same name as the greater.

Ex: 1. Given longitude left 44 $4^{\circ} 16^{\circ}$ W., and difference of longitude $1^{\circ} 20^{\prime}$ W. Required the longitude in. Longitude left......... $44^{\circ} 16^{\prime} \mathrm{W}$. Difference of lougitude 120 W .
Longitude in. $\overline{45^{\circ} 36^{\prime}} \mathrm{W}$.

Ex. 2. Given longitude left $165^{\circ} 18^{\prime}$ W., and difference of longitule $7^{\circ} 46^{\prime}$ W. Required the longitude in.

Longitude left....... $175^{\circ} 18^{\prime} \mathrm{W}$.
Difference longitude.
746 W.
$\overline{183} \quad 04 \mathrm{~W}$.
$360 \quad 00$
Longitude in........ $\overline{176^{\circ} 56^{\prime}} \mathrm{E}$.

Given longitude left and difference of longitude, as follows; required the longitude in.

No.	Long. left	Diff. long	Ans.	No.	Long. left	Diff. long	Ans.
1	$3^{\circ} 40^{\prime}$ w	$2^{\circ} 10^{\prime}$ E	$1^{\circ} 30^{\prime} \mathrm{w}$	4	$182^{\circ} 00^{\prime}$ E	$53^{\circ} 20^{\prime} \mathrm{E}$	$124^{\circ} 40^{\prime} \mathrm{w}$
$\stackrel{2}{2}$	$12^{\circ} 42^{\prime} \mathrm{E}$	$6^{3} 20^{\prime}$, w	$6^{\circ} 22^{\prime} \mathrm{E}$	5	$14^{\circ} 22^{\prime} \mathrm{E}$	$5^{\circ} 00^{\prime}$ E	$19^{\circ} 22^{\prime}$ E
3	$59^{\circ} 16^{\prime} \mathrm{w}$	$3^{\circ} 53^{\prime} \mathrm{E}$	55. 23^{\prime} w	6	$10^{\circ} 20^{\prime} \mathrm{w}$	$0^{\circ} 35^{\prime}$ w	$10^{\circ} 55^{\prime} \mathrm{w}$

Given the Course and Distance to talce out of Table III, for the Difference of Latitude and Departure.
If the course does not exceed 4 points or 45°, look for it at the head or top of the page; but if it exceed 4 points or 45°, look for it at the bottom of the page.
Find the distance in one of the columns marked "Dist.," and take out of the two adjoining columns, to the right hand, the numbers in the same line with it.

Observe whether the course is found at the top or bottom of the page, and mark the numbers taken out according as they are marked at the part of the page the course is found in.
Given course 23 points, distance 28 miles; to find difference of latitude and departure. (Table III.) Ans. Difference latitude 24.0; departure 14.4.

Given course 34°, distance 253 miles; to find difference latitude and departure. Ans. Difference latitude 209.7; departure 141.5.

Given the Difference of Laitude and Departure, to find the Course and Distance in Table IV.

Look in Table IV, until the differefice latitude and departure, or numbers near to them are found together; take out the course and distance corresponding thereto.
Given difference latitude 55.4, departure 35.9 ; to find the course and distance. Ans. Course 33°; distance 66 miles.

Given difference latifude 71.0, departure 123.0; to find the course and distance. Ans. Course 60; distance 142 miles.

[^0]
TRAVERSE SAILING.

Traverse sailing is the finding of a single course or distance, such that it would hare brought a ship to the same place that several courses and distances have done.

Form it table similar to the one annexed to the first example. The first column contains the several courses, the second contains the distance run on each course, the third and fourth are headed N . (for north) and S . (for south), and the fifth and sixth are headed E. (for east) and W. (for west). Find by inspection, the difference of latitude and departure for every course and distance. Proceed in the following manner: If the course does not exceed 4 points, or 45°, look for it at the top of the page; but if it exceeds 4 points, or 45°, look for it at the bottom of the page. (Table III.)

Find the distance in one of the columns (of Table III) marked "Dist.," and take out of the adjoining columns, to the right hand, the numbers in the same line with it.

Observe whether the course is found at the top or bottom of the page, and mark the numbers taken out according as they are marked at the part of the page the course is found in.
Set the difference of latitude under N. or S., according as the course is towards the north or south, and the departure under E. or W., according as the course is towards the east or west.

Then add the sums up carefully of the columns N., S., E. and W. Take the difference between the sums of N. and S., which will be the difference of latitude made good, of the same name as the greater. Then as before, take the difference between the sums of E. and W., which will be the departure made good, and to be named the same as the greater.

With the difference of latitude and departure made good, find the course and distance.
Look in Table IV, until the difference latitude and departure, or numbers near to them, are found together; take out the course and distance corresponding thereto.

1. A ship sails E. S. E. 14 miles, and then W. N. W. 28 miles; required the course and distance made good.

Course.	Dist.	$\begin{aligned} & \text { Diff. } \\ & \mathrm{N} . \end{aligned}$	Lat. S.	${ }_{\text {E. }}^{\text {Dep. }}$ W.	
S 6 E	14	"	5.4	12.9	،
N6 W	28	10.7	،	"	25.9
	"	5.4	"	"	12.9
	،	5.3	،	"	13.0

Difference latitude 5.3, departure 13.0, give Table in IV. Course 68°. Distance 14^{\prime}.
2. A ship sails N. W. 30 miles, N. N. E. 21 miles, and S. E. 17 miles; required the course and distance made good.

Difference latitude 25.6 N ., dcparture 1.2 W ., gives the course N. 2° W. Distance 29 miles.

PARALLEL SAILING.

To log. secunt of the latitude add the log. of the departure, their sum less 10 from the index is the log. of the difference of longitude.

1. In latitude $66^{\circ} 40^{\circ}$ north. The departure made good was 357 miles. Required the difference of longitude by Parallel Sailing.

Secant...... Latitude	$66^{\circ} 40^{\prime}$	=	10.402217	
Log......... Departure	387	$=$	2.587711	
Difference of longitude	7.1		2.95	Table

2. In latitude $36^{\circ} 17^{\prime}$ sonth. The departure made good was 187 miles. Required the difference of longitude by parallel sailing. Ans. 232.0 miles.
3. In latitude $63^{\circ} 39^{\prime} \mathrm{N}$. The departure made good was 8.25 miles. Required the difference of longitude by parallel sailing. Ans. $18^{\prime} .59$.
4. In latitnde $53^{\circ} 52^{\prime}$. The departure made good was 6.75 miles. Required the difference of longitude by parallel sailing. Ans. 11'.44
5. In latitude $54^{\circ} 12^{\prime} \mathrm{N}$. The departure made good was 596 miles. Requived the difference of longitude by parallcl sailing. Aus. 1019'.
6. In latitude $69^{\circ} 11^{\prime} \mathrm{S}$. The departure made good was 64.75 miles. Required the difference of longitude by parallel sailing. Ans. 182'.2.
7. In latitude $43^{\circ} 35^{\prime} \mathrm{S}$. The departure made good was 99 miles. Required the difference of lougitude by parallel sailing. Ans. $136^{\prime} .7$.
8. In latitude $66^{\circ} 40^{\prime} \mathrm{S}$. The departure made good was 387 milcs. Required the difference of longitude by parallel sailing. Aus. 977.1.

MIDDLE LATITUDE.

SAILING.

Middle latitude is half the sum of the two latitudes when they are of the same name, or half their difference if of contrary names.

Find the difference of latitude by subtracting if they are both north or both south, or adding, if one north and the other south.
Then reduce this difference of degrees to miles by multiplying the degrees by sixty (60) and call it proper difference of latitude.
Find the difference of longitude thus:-if both east or both west, subtract them; if one is east and the other west, add them, and if their sum exceeds 180° subtract the sum from 360°, and the remainder will be the difference of longitude.

Reduce this difference of degrees to miles in the same way as the latitude and call it difference of longitude.

The course must be named the same as the longitude left, when the sum of the longitudes has to be taken from 360°.
In working, proceed as per example.
Nors.-The tables for working out all problems by Midale Latitude, sailing, are Tables I and II.

```
TO FIND THE DEPARTURE.
```

Find the logarithm of the difference of longitude, Table I of this book, call the index one less than the number of figures in the difference of longitude; find the first three figures in the left hand column, and opposite to them, and under the fourth figure at head of the column will be the required log., to which prefix the index, and this will give the log. required; and to find the log. co-sine of middle latitude, enter Table II, and with the degrees at the top or bottom of the page, and miles in the column of miles, will be found the log. wanted, the sum of these logs. Subtracting the radius will give the log. of the departure.

The index of radius is always 10 .

TO FIND THE COURSE.

Find the log. of the difference of latitude by the same rule as the above, also the \log. of the departure; add the log. of departure to the radius, and subtract the log. of the difference of latitude, and this will give the log.-tangent of the course. To find the tangent look in the column marked tangent at the top or bottom of the page, run up this column until the log. nearest to the given one is found, which will be the tangent of the course in degrees, the miles will be found in column of miles.

Having found the course, name it north or south, and east or west, accoräing as you have to make northing or southing, easting or westing, to arrive at the place hound to.

TO FLND THE DISTANCE.

Add the log. of the difference of latitude to the log.-secant of the course, and subtract the radius, the difference will give the log. of the distance in Table I, if the index be 3, the answer will require 4 figures. Look in the column of logs. and find the nearest log., having done so, you will find the first three figures in the left hand column, and the fourth figure at the top over the column where the log. is found.

Case 1.

Ex. 1. Required the conrse and distance from A. to B. by calcnlation of middle latitude, sailing principle.
The latitude of A . is $51^{\circ} 01^{\prime} \mathrm{N}$., and longitude is $122^{\circ} 27^{\prime} \mathrm{W}$.; the latitude of B. is $4^{\circ} 22^{\prime} \mathrm{S}$., and longitude is $144^{\circ} \mathrm{W}$.

	$51^{\circ} 0{ }^{0} 1^{\prime}$	$\left.\right\|^{\text {Long. }}$. $122^{\circ} 27^{\prime} \mathrm{W}$.
B. lat.. 422 S .	422	Long. 14430 W .
Dif. lat. . $\overline{55^{\circ} 23}$	2)	2203
Dif. lat. miles. 3323		13 ¢3 Dif. lon. mls.

TO FIND THE DEPARTORE.		To find the course.	TO FIND THE DIBTANCE. Radius \qquad 10.norron	
Radius	10.00000	Dif. lat. 3323. . 3.521520		
Dif. long. 1323........ Mid. lat. $23^{\circ} 19^{\prime}$ Cos.	3121560	Radius 10.000000	Dif. lat. 3323.......... Course $20^{\circ} 0{ }^{\prime}$.. .Sec.	3.521.5.
	9.962999	Departure 1215........3.081559		10.02\%245
	13.084559			13.5487.5
	10.000000			10.600000
Dep. 1215..	3.034559	C'rses S. $20^{\circ} 05 \mathrm{~W}^{\prime} ., \tan .9 .5 \div 3029$	Distance 3J38.	3.548775

Ex. 2. Required the course and distance from A. to B. by calculation on middle latitude, sailing priuciple.
The latitude of A . is $31^{\circ} 01^{\prime} \mathrm{S}$. and its longitnde $102^{\circ} 10^{\prime} \mathrm{W}$.; the latitude of B. is $35^{\circ} 55^{\prime} \mathrm{S}$. and its longitude $152^{\circ} 00^{\prime} \mathrm{E}$.

, Lat. of $\mathrm{A} . .31^{\circ} 01^{\prime} \mathrm{S}$.	$31^{\circ} 01^{\prime}$	Long. $162^{\circ} 10^{\prime} \mathrm{W}$.
Lat. of B.. 3555 S .	3855	Long. 15200 E .
Dif. lat.... $\overline{.754}$	$\text { 2) } \lcm{69 \quad 56}$	$\begin{aligned} & 31410 \\ & 360 \end{aligned}$
Dif. lat. miles.. $\overline{474}$	84 5s Mid. lat.	$4550 \mathrm{Dif}$. lon. 60
		$2750 \mathrm{Dif}$.

TO FIND TEE DEPARTURE.		TO FIND THE COURSE.		to FIND THE DIETANCE.Radius $10.000 C 00$	
Radius	10.000000	Dif. lat. 474.	2.675778		
Dif. lung. 2:50...... Mid. lat. $34^{\circ} 58^{\prime}$ Cos.	3.439333	Radius	10.000100	Dif. lat. 474	2.67 .378
	9.913511	Dep, 2254...	3.352874	Course $78^{\circ} 07^{\prime} . . .$. erec.	10.686302
	13.352874		13.352874		$13.362(180$
	10000000		2.675778		10.000000
Dep. 2254............	3.352874	C'rse S. $78^{\circ} 07^{\prime}$ W. tan.	10677096	Distance 2302.	3.362080

Ex. 3. Required the course and distance from a place in the latitude of 36° $55^{\prime} \mathrm{S}$. and longitude of $20^{\circ} 0^{\prime} \mathrm{E}$., to another place in the latitude of $32^{\circ} 38^{\prime}$ S. and longitude of $8^{\circ} 54^{\prime} \mathrm{W}$.
Ans. N. $79^{\circ} 46^{\prime}$ W.; distance, 1447 miles; departure, 1424^{\prime}.
Ex. 4. Required the course and distance from a place in the latitude of 37° $55^{\prime} \mathrm{N}$. and longitude of $54^{\circ} 23^{\prime} \mathrm{W}$., to another place in the latitude of $32^{\circ} 38^{\prime} \mathrm{N}$. and longitude of $17^{\circ} 05^{\prime} \mathrm{W}$.
Ans. Course S. $80^{\circ} 09^{\prime} \mathrm{E}$; distance, $18 \breve{4} 4$ miles; departure, 1827^{\prime}.

Case II.

The Latitude, Course, and Distance being given, to find the Departure, Latitude and Longitude.
Ex. 1. A ship from latitude $29^{\circ} 47^{\prime}$ N. and longitude $24^{\circ} 36^{\prime}$ W., sails S. S. W. ${ }_{3} \frac{3}{4}$ W. 960 miles. Required the departure, difference of latitude and lengitude. (From compass card, S. S. W. $\frac{3}{4} \mathrm{~W}$. is $30^{\circ} 56^{\prime}$.)

Ex. 2. A ship from latitude $2^{\circ} 5^{\prime} \mathrm{N}$., longitude $22^{\circ} 30^{\prime} \mathrm{W}$., sails W. S. W. 256 leagues; required her present latitude and longitude.
Ans. Latitude $2^{\circ} 49^{\prime} \mathrm{S}$.; longitude $34^{\circ} 20^{\prime} \mathrm{W}$.
Ex. 3. A ship from latitude $34^{\circ} 35^{\prime} \mathrm{N}$. and longitude $45^{\circ} 16^{\prime}$ W.; course $\mathrm{S} .83^{\circ}$ 36 E.; distance 101 miles. Required the latitude and longitude in.

Ans. Latitude in $34^{\circ} 24^{\prime} \mathrm{N}$.; longitude in $43^{\circ} 15^{\prime} \mathrm{W}$.
Ex. 4. A ship from San Francisco in latitude $37^{\circ} 48^{\prime} \mathrm{N}$; longitude $122^{\circ} 27^{\prime} \mathrm{W}$., sails S. W. 200 miles. Required the latitude and longitude in.
Ans. Latitude in $35^{\circ} 27^{\prime} \mathrm{N}$.; longitude in $125^{\circ} 23^{\prime} \mathrm{W}$.

Case III.

Both Latitude and Departure from the Meridian being given, to find the Course, Distance and Difference of Longitude.
Ex. 1. A ship in latitude $56^{\circ} 50^{\prime} \mathrm{N}$., and longitude $20^{\circ} 10^{\prime} \mathrm{W}$., sails south-easterly until she makes 210 miles departure, and her latitude in is $49^{\circ} 15^{\prime} \mathrm{N}$. Required the course, distance and longitude in.

TO FIND The COURSE. \mid TO FIND THE DISTANCE. \mid TU FIND THE DIF. OF LONG.

Dif. latitude 455..... 2.658011	Course $24^{\circ} 47^{\prime}$ sine...	9.622409	Mid. lat. $53^{\circ} 02 \operatorname{cos...~9.7791\% 8~}$
12adius 10.0u\%000	Dep. 210	2322219	Vep. 210... 2.322219
Dep. 210............. 2.322219	liadius	10.000000	Radius 10.0000c0
12.322219		12.322219	12.322219
2.658011		9.62\%4 9	9.77 ¢128
Courso S. $24^{\circ} 47^{\prime}$ E.tan. 9.66420	Distance 501.........	2.699810	Dif long. 60)349 2.543091
			$5^{\circ} 49^{\prime}$
!			Long. sailed from. . $20^{\circ} 10^{\prime} \mathrm{W}$. Dif. long. 549 E.
			Longitude in....... $14^{\circ} 21^{\prime}$ W.

Ex. 2. A ship in latitude $4^{\circ} 57^{\prime} \mathrm{N}$.; longitude $30^{\circ} 10^{\prime}$ E., sails south-westerly until her departure is 740 miles, and her latitude in $2^{\circ} \mathrm{S}$. Required her course, distance and longitude in.

TO FIND TAE COCRSE.

Ex. 3. A ship in latitude $49^{\circ} 57^{\prime} \mathrm{N}$., and longitude $15^{\circ} 16^{\prime}$ W., sails southwesterly until her departure is 780 miles, and latitude in is $39^{\circ} 20^{\prime} \mathrm{N}$. Required course, distance, longitude in.
Ans. Course S. $51^{\circ} 05^{\prime}$ W.; distance 1014 miles; longitude in, $33^{\circ} 45^{\prime} \mathrm{W}$.

Case IV.

Both Latitudes and Course given, to find the Departure, Distence and Difference of Longitude.

Ex. 1. A ship from latitude $49^{\circ} 57^{\prime} \mathrm{N}$. and longitude $30^{\circ} 00^{\prime}$ W., sails S.W. $\frac{1}{2}$ S. and after sailing several days finds by observation that her latitude is $45^{\circ} 31^{\prime} \mathrm{N}$. Required distance sailed and longitude in.

Turn the given course into degrees by Compass Table, find the departure, distance, and then the difference of longitude.

Latitude left...... $49^{\circ} 57^{\prime} \mathrm{N}$.	$49^{\circ} 57^{\prime} \mathrm{N}$.
Latitude in...... 4531 N .	4531 N.
${ }_{4}^{4} 26$	2)95 28
	Middle la

Ex. 2. A ship from latitude $42^{\circ} 25^{\prime} \mathrm{N}$, and longitude $15^{\circ} 6^{\prime}$ W., sails N. E. by E. for two days and then finds by observation that she is in latitude $46^{\circ} 20^{\prime} \mathrm{N}$.; required the distance she has made and the longitude in.
Ans. Departure, 351.7; distance, 423 miles; longitude in $6^{\circ} 54^{\prime} \mathrm{W}$.
Ex. 3. A ship from Cape Flattery in latitude $48^{\circ} 23^{\prime} \mathrm{N}$., longitude $124^{\circ} 22^{\prime} \mathrm{W}$., sails until she is in latitude $40^{\circ} 10^{\prime} \mathrm{N}$, ; her course is S . W. $\frac{1}{2} \mathrm{~W}$.; find longitude in and distance made.

Ans. Longitude in, $138^{\circ} 21^{\prime}$ W.; distance, 777 miles.
Ex. 4. A ship from Cape Mendocino in latitude $40^{\circ} 29^{\prime}$ N., longitude $124^{\circ} 29^{\prime}$ W., sails S. W. by W. until she is in latitude $34^{\circ} 18^{\prime} \mathrm{N}$.; required distance and longitude in.

Ans. Distance, 668; longitude in. $136^{\circ} 08^{\prime}$ W.

Case V.
 Both. Latitudes and Distance given, to find the Course and Difference of Longitude.

Ex. l. A ship sails from latitude $6^{\circ} 50^{\prime}$ N., south-casterly 800 miles, when she arrives in latitude $5^{\circ} 00^{\prime} \mathrm{S}$. liequired her course and difference of longitude.

TO FIND THE COURSE.

As the distauce 800.	2.903090
Is to radius.	10.000000
So is dif. of lat. 710	2.831258
	12.851258
	2.903050
To cossine of course \$. $27^{\circ} 26^{\prime} \mathbf{E}$	9.948168

TO FIND THE DIFFERENCE OF LONGITUEE.
As co-sine mid. 1at. $2^{2} 57^{\prime} \ldots$. .. 9.999 ± 24
Is to tang, of course $27^{\circ} 20^{\prime} \ldots$.
so is dif. lat. $710 . .-$...................... 2.851258
-12.
$9.9994: 24$
Difference of longitude 369.

Ex. 2. Λ ship from latitude $56^{\circ} 30^{\prime} \mathrm{N}$. has sailed south-easterly 257 miles, when she arrives in latitude $54^{\circ} 47^{\prime} \mathrm{N}$. Required the course and difference of longitude.

Ans. Course S. $66^{\circ} 22^{\prime} \mathrm{E}$. ; difference of longitude 417 miles.
Ex. 3. Λ ship sails from the latitude of $3^{\circ} 20^{\prime} \mathrm{N}$. and longitude $29^{\circ} 37^{\prime} \mathrm{W}$., 960 miles south-westerly, and then by observation finds that her latitude is 10^{6} $40^{\circ} \mathrm{S}$. Liequired the course and longitude in.

Ans. Course S. $29^{\circ} 00^{\prime}$ W.; longitude in $37^{\circ} 24^{\prime} \mathrm{W}$.
Ex. 4. A ship sails from Santa Clara in latitude $3^{\circ} 14^{\prime}$ S. north-westerly 300 miles, uatil it is found by observation that she is on the equator. Reguired the course and difference of longitude.

Ans. Course N. $49^{\circ} 43^{\prime} \mathrm{W}$.; difference of longitude $3^{\circ} 49^{\prime} \mathrm{W}$.

Case VI.

One Latitude, Course and Departure given, to find the Distance and Differtnce of Latitude and Difference of Longitude.
Ex. 1. Λ ship sails E. S. E. from latitude $50^{\circ} 10^{\prime} \mathrm{S}$. and longitude $30^{\circ} 00^{\prime} \mathrm{E}$. until her depariure is 957 miles; required distance sailed, and latitude and longitude in.
(From Compass Table the course E. S. E. is $6 r^{\circ} 30^{\prime}$.)

As sine of course $67^{\circ} 30^{\prime}$ \qquad ls ts cleparture 957. su is co-sine of course $67^{\circ} 30^{\circ} \ldots$...		$9.965<15$
		2.980912
		9.582840
		$\begin{array}{r} 12.563752 \\ 9.965615 \end{array}$
To dif. of latitude,	60) 396.4....	2.598137
	$6^{2} 36^{\prime}$	

THIND: TO FIND THE DISTANCE.

Lat. left...... $50^{\circ} 10^{\prime} \mathrm{S}$.	Lat. left.... $50^{\circ} 10^{\prime} \mathrm{S}$.
Dif. of lat.... 636 S .	Lat. in..... $56 \pm 6 \mathrm{~S}$.
Lat. in....... $56^{\circ} 46^{\prime} \mathrm{S}$.	Sum....... .2) $106^{\circ} 5 \sigma^{\prime}$ Mitadelat.. $53^{\wedge} 28^{\prime}$
	-

FOURTH: TO FAND DIFFERENCE OF LONGITCDE.

As co-sine mid. lat. $53^{\circ} 28^{\prime}$		977429
Is to the departure 957'		2.9801912
So is radius.		10.000000
To dif. of lo.n,	60)1608	3.206183
	$26^{\circ} 48^{\prime} \mathrm{E}$ 。	
J.ongitude left.		$30^{\circ} 00{ }^{\prime} \mathrm{E}$.
Difference of lo	itude.	2648 E.
Longitude in.		$56^{\circ} 48^{\prime} \mathrm{E}$.

Ex. 2. A ship sails S. S. W. from latitude $51^{\circ} 15^{\prime} \mathrm{N}$., and longitude $9^{\circ} 50^{\prime \prime} \mathrm{W}$. . until her departure is 250 miles. Required the distance sailed and the latitude and longitude in.

Ans. Latitude in, $41^{\circ} 12 \mathrm{~N}$. ; longitude in, $15^{\circ} 51^{\prime} \mathrm{W}$.; distance, 653.3
Ex. 3. A ship from latitude $38^{\circ} 40^{\prime}$ S., and longitude, $1^{\circ} 15^{\prime}$ W., sails N. E. $\frac{1}{2}$ E. until her departure is 250 miles. Required the latitude and longitude in.

Ans. Latitude in, $35^{\circ} 14^{\prime} \mathrm{S}$.; longitude in, $3^{\circ} 57^{\prime} \mathrm{E}$. ; distauce, 324 miles.
Ex. 4. A ship from latitude $30^{\circ} 15^{\prime}$ S., longitude, $178^{\circ} 10^{\prime}$ E., sails on a course N. 4 points E. until her departure is 150 miles. Required the distance sailed and longitude and latitude in.

Ans. Distance sailed, 212 miles: latitude in, $27^{\circ} 45^{\prime}$ S., and longitude, 178° $58^{\prime} \mathrm{W}$.

Case VII.

One Latitude, Distance, and Departure given, to find the Course, Difference of Latilude, and Difference of Longitude.
Ex. l. A ship from latitude $49^{\circ} 30^{\prime} \mathrm{N}$. and longitude $25^{\circ} 00^{\prime} \mathrm{W}$., sails southeasterly 645 miles until her departure is 500 miles. Required the course steered, and her latitude and longitude in.

Ex. 2. A ship from latitude $54^{\circ} \mathrm{N}$. and longitude $33^{\circ} 20^{\prime} \mathrm{W}$., sails 350 miles between nortlı and east, until she has made 220 miles of departure. Required the course, and latitude and longitude in.

Ans. Course, N. $38^{\circ} 57^{\prime}$ E.; latitude in, $58^{\circ} 3 \underline{y}^{\prime} \mathrm{N}$. ; and longitude, $26^{\circ} 44^{\prime} \mathrm{W}$.
Ex. 3. A ship from latitude $23^{\circ} 50^{\prime} \mathrm{N}$.; longitude $23^{\circ} 30^{\circ} \mathrm{W}$., sails between the south and west, 375 miles, until her departure is 200 miles. Required the course, latitude and longitude in.

Ans. Course, S. $32^{\circ} 14^{\prime} \mathrm{W}$.; latitude in, $18^{\circ} 33^{\prime} \mathrm{N}$.; longitude in, $27^{\circ} 05^{\prime} \mathrm{W}$.

Case VIII.

One Latitucie, Departure, and Difference of Longitude given, to find the other Latitude, Course and Distance.
Ex. 1. A ship from latitude $37^{\circ} 00^{\prime} \mathrm{N}$., sails south-westerly until she has made 483 miles of departure, and 565 miles difference of lowgitude. Required her present latitude, course stecred, and distance rin.

Ex. 2. A ship sails from latitude $42^{\circ} 30^{\prime} \mathrm{N}$., south-casterly until her departure is 167 miles, and differenec of longiture is 252 miles. Required present latitude, course stecred, and distance.

Ans. Latitude in, $47^{\circ} 30^{\prime}$ N.; course, S. $54^{\circ} 18^{\prime}$ E.; distance, 205 miles.
Ex. 3. A ship sails from latitude $50^{\circ} 10^{\prime}$ S., between the south and east until her departure is 160 miles, and her dificrence of longitude 253 miles. Required her present latitude, course and distance.

Ans. Latitude in, $51^{\circ} 16^{\prime}$ S.; course, E. S. E.; distance, 175.2 miles.

General Rules-Tables 1 II and IV.

Solutions of the different cases by Inspection.

If seeking a course which is under 45° it will be found at the top of the pages, but if it is over 45° it will be found at the bottom of the pages. If the departure, or difference of latitude, or distance, are too great to be found in the tables, divide them by 10 or by 100 , and then multiply the quantities found (not the course or middle latitude) by the same number you used in dividing. To find the difference of longitude, use either of these two methods. (In looking in the table use the nearest number and nearest angle.) With the middle latitude as a course, and the departure in the latitude column, the difference of longitude will be found in the distance column. Or with the co-middle latitude (90° lat.) as a course, and with the difference of latitude in its own column, or the departure in its own column, will be found the difference of longitude in the distance column.

Case 1. Look for the middle latitude 23° as if it were a course,
and for 132.3 (one-tenth the difference of longitude) in the distance column, opposite to which in the difference of latitude column will be found 121.5 which being multiplied by 10 , gives 1215 the departure. With 12.15 (one hundredth the departure) in the departure column and 33.23 (one hundredth of the difference of latitude) in the latitude column, will be found at the top of the page 20° the course; and 35.00 in the distance column, which being multiplied by 100 , gives 3500 the distance. This can be also solved by taking the co-middle latitude ($90^{\circ} 23^{\prime}$) 67° as a course and the difference of longitude in the distance column will be found the departure in the departure column. Then proceed as before.

CASE 2. Look for the course 31° at the top of the page, and 96.0 (one-tenth the distance) in its column opposite to the distance, in their columns will be the difference of latitude 822 and the departure 494. Then with the middle latitude 23° as a course, and the departure 49.4 (one-tenth) in the difference of latitude column, will be found 54.0 in the distance column; this multiplied by 10 , gives the difference of longitude, 540.

Case 3. Look in the departure and latitude columns until they are found nearly to agree, 45.3 and 21.1 ; the course is found at the top of the page, it is 25°. The distance, 50 , is opposite in its column; this multiplied by 10 , gives the correct distance, 500 . With the middle latitude 53° as a course, and one-tenth the departure in the latitude column, 35 is found in the distance column; this multiplied by 10 , gives 350 , the difference of longitude.

Case 4. With the course 39°, and one-tenth the difference of latitude, 26.6 in its column, in the departure column will be found 21.4, and in the distance column 34; these multiplied by 10 , give the departure 214 and the distance 340. Then with the middle latitude, 48° as a course, and with 21.4 in the latitude column, 32 will be found in the distance column; this multiplied by 10 , gives 320 for difference of longitude.
Case 5. With one-tenth the distance, 80 , and one-tenth the difference of latitude, 71 , in their columns at the top of the page, the course 27° will be found. Then with the middle latitude 1° (nearly) as a course, and the departure 36.3 in the latitude column, the difference of longitude, 36.3 , (one-tenth) will be opposite in the distance column.

Case 6. Find the course 67°, and one-tenth the departure, 95.7 in its column, these will be in the latitude and distance columns, 104 and 40.6 , but as this course is $67^{\circ} 30^{\circ}$, take half the sum columns of 67° and those of 68°; this will give the correct difference of lati-
tude 396 , (39.6 multiplied by 10) and the correct distance 1035 , (103.5 $\times 10$), then with the middle latitude as course, and departure in latitude column, the difference of longitude 1590 will be found in the distance column.

Case 7. With one-tenth the distance and departure, 64.5; 50, agreeing in their columns, the course, 51°, will be found, and at the same time the difference of latitude $408(40.8 \times 10)$ in its column. Then with the middle latitude 46° as a course, and the departure 50 (one-tenth) in the latitude column, one-tenth of the difference of longitude will be found in the distance column $720,(72 \times 10)$.

Case 8. With one-tenth the difference of longitude, 56.5 in the distance column, and one-tenth the departure, 48.3 in the latitude column agreeing, will be found the middle latitude 31°, at the top of the page. Then with the difference of latitude in its column, and the departure in its columns will be found the course, 35°, at the top of the page, and the distance 850 in the distance column.

LOGARITHMIC SINES, TANGENTS AND SECANTS.
This table contains the logarithmic, or, the artificial sines, tangents and secants, to each degree and minute of the quadrant, with their complements or co-sines, co-tangents and co-secants, to six places of figures, besides the index; but it may be observed, as of the last table, that five places being generally sufficient in the common practice of navigation, when the sisth is omitted, and it is five or above, the preceding or fifth figure is to be increased by a unit.

To find the Logarithmic Sine, Co-sine, etc., of any given. Arc in Degrees and Minutes.
If the given degrees be under 45°, they are to be taken from the top, and the minutes from the left side column; opposite to which, in that column with the name of the logarithm at top, will be found the required logarithm.

But if the degrees be more than 45°, they will be found at the lottom of the page, and the minutes in the right-side column; likewise the name of the logarithm is to be taken from the bottom of the page.

When the given degrees exceed 90°, they are to be subtracted from 180° degrees, and the logarithm of the remainder taken out as before, or the logarithmic sine, tangent, etc., of an arc more than 90° is the logarithmic co-sine, co-tangent, etc., of its excess above 90°.

To find the Arc in Degrees and Minutes nearest corresponding to a given Logarithmic Sine, Co-sine, etc.
Look in the column marked at the top or bottom with the name of the given logarithm, and, when the nearest to it is found, the corresponding degrees and minutes will be those required; observing, that when the name is at the top of the column, the degrees are to be taken from the top, and the minutes from the left-side column; but, if the name be at the bottom, the corresponding degrees will be there likewise, and the minutes in the right-side column.

MERCATOR'S SAILING.

Case 1.
To find the Course and Distance by Mercator's Sailing.
To this sailing apply the same rules as in middle latitude sailing, for finding difference of latitude and difference of longitude.

To get the meridional difference of latitude enter Table V, with degrees sought at top of column, and miles in the left-liand side marked miles, and opposite miles and under degrees will be found the meridional number required.

Having taken out the meridional parts for both latitudes, add or subtract them in the same manner as adding or subtracting to find the true difference of latitude, and the sum or difference will give the meridional difference of latitude. Then proceed as per example.
Note.-Tables required for working Mercator's Sailing.--Tables I, II, and V.
The Latitudes and Longitudes of Two Places giren, to find the Course and Distance between them.
Ex. 1. Required the course and distance from Buena Vista to Rio Janeiro.

$$
\begin{array}{lll}
\text { Latitude Buena Vista } 15^{\circ} 57^{\prime} & \text { N. } & \text { Longitude } 29^{\circ} 53^{\prime} \mathrm{W} . \\
\text { Latitude Rio Janciro } 2254 & \mathrm{~S} . & \text { Lougitude } 43 \\
16
\end{array}
$$

Lat. Buena Vista $15^{\circ} 57$	Meridional parts. . 970	Lon. Bun Jista2 ${ }^{\text {W }}$
Lat. Rio Janciro 2254	Meridional parts. . 1412	Loug. Rio Janciro 4316 W
iff. Latitude 3851 60	Mcr. Diff. Lat.... 2382	Diff. Long. ... 2023
In miles 2331		In miles. 1223

TO FIND THE COURSE.
As mer. diff. lat. 23S2. 3.376942
Is to radius................. . . . 10.000000
So is diff. long. 1223.
To tang. course S $27^{\circ} 11^{\prime} \mathrm{W}$ W $\begin{array}{r}\overline{13.057426} \\ \hline 3.376942 \\ \hline 9.710454\end{array}$

TO FIND THE DISTANCE.
As radius. 10.000 CCO
Is to prop. diff. lat. $2331 . . . \quad 3.367 .542$
So is secant course $27^{\circ} 11^{\prime}$.. 10.050830
13.41E3.2
10.000000

To distance 2620 .
3.415372

Er. 2. Required the course and distance from A. to B.

Lat. of A.... $50^{\circ} 30{ }^{\prime} \mathrm{S}$.	Meridional p	part.... 3521	Longitude...	147°	
Lat. of B.... $482^{20} \mathrm{~S}$.	Meridional p	part.... 3322	Longitude...	138	
$\begin{array}{r}210 \\ \times \quad 60 \\ \hline\end{array}$	Mer. dif. of 1	lat..... 199			
In miles 130				$\begin{array}{r}73 \\ \times \quad 60 \\ \hline\end{array}$	
			In miles	439	
to find the cou		TO FI	N THE DISTA	NCE.	
As mer. dif. of lat. 199.	2.298853	As radius.			
Is to radius.	10.000000	Is to prop. di	f. of lat. 130..	2.	394
So is dif. of long. 4392.	3.642662	So is secant	f eourse. $87^{\circ} 2$	${ }^{\prime} 11$.	
	13.642662				
	2.298853				000
To tang. of course N $87^{\circ} 24^{\prime}$	W 11.343809	To the distan	ce 2866. . .	3.4	41

Ex. 3. Required the course (in degrees and miles) and distance from A. to B. Latitude of A.... $55^{\circ} 22^{\prime}$ N.............. Longitude.... $7^{\prime \prime} 24^{\prime}$ WV. Latitude of B.... 4940 N............. Longitude.... 5354 W.

Ans. Course S. $78^{\circ} 3 \bar{J}^{\prime} \mathrm{W}$.; distance 172 S .
Ex. 4. Required the course (in degrees and miles) and distance from A. to B.
Latitude of $\mathrm{A} . . .4^{\circ} 44^{\prime} \mathrm{N}$. . Longitude.... $63^{\circ} 36^{\prime} \mathrm{W}$.
Latitude of $\mathrm{B} . \ldots .{ }^{2} 3307$ S............... Longitude..... 17 58 E.
Ans. Course S. $43^{\circ} 44^{\prime}$ E. ; distance 6464.
Ex. 5. Required the course (in degrees and miles) and distance from C to D.
Latituue of C.... $54^{\circ} 32^{\prime}$ S. Longitude.... $36^{\prime} 12^{\prime}$ W.
Latitude of D.... 3854 S............... Longitude.... 14340 E .
Aus. Course N. $82^{\circ} 42^{\prime}$ E. ; distance 7352.

Case II.

One Latitude, Course and Distance given, to find the difference of Latilude and difference of Longitude.
Ex. l. A ship from latitude $52^{\circ} 06^{\prime} \mathrm{N}$. and lougitude $35^{\circ} 06^{\prime}$ W., sails N. W. by W. $\left(56^{\circ} 15^{\prime}\right) 229$ miles. Required the latitude and longitude in.

As radius.	10.000000
Is to distance 229.	2.359835
So is co-silue of course $56^{\circ} 15^{\prime}$	9.744739
	12.104574
	10.000000
To dif. of lat. 60)127.2.....	2.104574
$2^{\circ} 07$	

TO FIND THE DIFFERENCE OF LONG.
As radins. 10.000000
Is to mer. dif. of lat. $212 \ldots, 2.326036$
Su is tang of course $56^{\circ} 15^{\prime}$

TO FIND THE LATITUDE IN.
Lat. left $52^{6} 06^{\prime}$ N....Mer. pts. 3675 Dif. of lat 27 N .
Lat. in. . . $54^{\circ} 13^{\prime}$ N.... Mer. pts. $3 \$ 87$
Mer dif of lat. 212

TO FIND THE LONGITUDE 1N.
Longitude left. $35^{\circ} 06^{\prime} \mathrm{W}$.
Dif. of long.................. 517 WV.
Longitude in
$40^{-3} 23^{\prime} \mathrm{W}$.
12.501443
10.000000

To dif. of long. 60)317.3.... $\overline{2.501443}$

$$
\overline{5^{\circ} 17^{\circ}}
$$

Ex. 2. A ship from latitnde $42^{\circ} 30^{\circ} \mathrm{N}$. and longitude $58^{\circ} 51 \mathrm{~W}$., sails S. W. by S. 591 miles. Required the latitude and longitude in.

Ans. Latitude $34^{\circ} 19^{\prime} \mathrm{N}$.; longitude $65^{\circ} 51^{\prime} \mathrm{W}$.

Case III.

Both Latitudes and Departure given, to find the Course, Distance and Difference of Longitude.
A ship from latitude $9^{\circ} 10^{\prime} \mathrm{N}$. and longitude $19^{\circ} 32^{\prime}$ W., sails in the S. E. quarter until she has made 415 miles of departure, and is by observation in latitude $2^{\circ} 19^{\prime} \mathrm{S}$. Required her course, steered, distance run, and longitude in.
Note.-Find first proper difference of latitude, meridional difference of latitude, course, distance, difference of longitude and longitude in.

TO FIND THE COU゙RSE.
TO FIND THE DISTANCE.

TO FIND THE DIFFERENCE OF LONG.

As radius. 10.000000
Is to mer. dif. of lat. 691.... 2.839478
So is tang. of course $31^{\circ} 04^{\prime}$..

TO FIND THE LONGITUDE IN.
Longitude left. $19^{\circ} 32^{\prime}$ W. Dif. of longitude $416^{\prime} \ldots .$. . 656 E .

Longitude in......... $12^{\circ} 36^{\prime}$ W.

To dif. of long. 60)416.2 E. $\overline{2.619296}$ $\overline{6^{\circ} 56^{\prime}}$ E.

Ex. 2. A ship from latitude $49^{\circ} 57^{\prime} \mathrm{N}$. and longitude $15^{\circ} 16^{\prime}$ W., sails southwesterly until her departure is 750 miles, and is in by observation, latitude 39° $20^{\prime} \mathrm{N}$. Required her course, distance and longitude in.

Ans. Course S. $51^{\circ} 05^{\prime} \mathrm{W}$.; longitude in $33^{\circ} 50^{\prime} \mathrm{W}$.; distance 1014 miles.
Ex. 3. A ship from latitnde $49^{\circ} 57^{\prime} \mathrm{N}$. and longitude $5^{\circ} 11^{\prime} \mathrm{W}$., sails betweeu the soutl and west until she arrives in latitude $38^{\circ} 27^{\prime} \mathrm{N}$., and finds she has made 440 miles of departure. Required the course she has steered, distance run and longitude the ship is in.

Ans. Course S. $32^{\circ} 31^{\prime} \mathrm{W}$.; distance 818.5 miles; longitude in $15^{\circ} 27^{\prime} \mathrm{W}$,

Case IV.

Both Latitudes and Course given, to find the distance and Difference of Longitude.

Ex. l. A ship from latitude $49^{\circ} 57^{\prime} \mathrm{N}$. and longitude $30^{\circ} 00^{\prime} \mathrm{W}$., sails S. W. $\frac{1}{2} \mathrm{~S}$. for several days, and then finds by observation that she is in latitude $45^{\circ} 31^{\prime}$ N. Required the distance she has made and her present longitude.

Note.-First find proper difference of latitude, meridional difference of latitude, distance, difference of longitude and longitude in.

Latitude left.	$49^{\circ} 57^{\prime}$	3470.
Latitude in.	4531	3074.
	$\begin{aligned} & 4^{\circ} 26^{\prime} \\ & 60 \end{aligned}$	396
In miles	266	

TO FIND THE DISTANCE.
As co-sine of course $39^{\circ} 22^{\prime} . . \quad 9.888237$
Is to dif. of lat. $266 \ldots \ldots .$.
So is radius................. . . 10.000000
To the distance $344.1 \ldots \ldots . \begin{gathered}\begin{array}{r}12.424882 \\ 9.888237 \\ 2.536645\end{array}\end{gathered}$

TO FIND DIFFERENCE OF LONGITUDE.
As radius. 10.000000
Is to mer. dif. of lat. $396 \ldots 2.597695$
So is tang. of course $39^{\circ} 22^{\prime}$.. 9.914044
12.511739
10.000000

To dif. of long. 60)324.9 . . . 2.511739

Longitude left. $30^{\circ} 00^{\prime}$ W. Difference of longitude.... 524 W.
Longitude in. $35^{\circ} 24^{\prime}$ W.

Ex. 2. A ship from latitude $42^{\circ} 40^{\prime} \mathrm{N}$. and longitude $16^{\circ} 20^{\prime} \mathrm{W}$., sails N. E., and then finds by observation that she is in latitude $50^{\circ} 50^{\prime} \mathrm{N}$. Required the distance sailed, and present longitude.

Ans. Distance, 693 miles; longitude in, $4^{\circ} 23^{\prime} \mathrm{W}$.
Ex. 3. A ship from latitude $30^{\circ} 10^{\prime} \mathrm{N}$. and longitude $5^{\circ} 10^{\prime}$ E., sails S. by E., and then finds by sun's observation that she is in latitude $42^{\circ} 25^{\prime} \mathrm{S}$. Required the distance sailed and longitude in.

Ans. Distance, 1440 miles; longitude in, $20^{\circ} 48^{\prime}$ E.
Ex. 4. A ship from latitude $42^{\circ} 25^{\prime} \mathrm{N}$. and longitude $15^{\circ} 06^{\prime}$ W., sails N. E. 'by E., and finds by observation that she is in latitude $46^{\circ} 20^{\prime} \mathrm{N}$. Required the distance sailed, and longitude in.

Ans. Distance, 423 miles; longitude in, $6^{\circ} 54^{\prime} \mathrm{W}$.

Case V.

Both Latitudes and Distance given, to find the Course and Difference of Longitude.
Ex. 1. A ship from latitude $50^{\circ} 30^{\prime} \mathrm{N}$. has sailed south-easterly 300 miles, when she arrives at latitude $45^{\circ} 40^{\prime} \mathrm{N}$. Required her course steered, and difference of longitude.

Note.-First find proper difference of latitude, meridional difference of Iatitude, course, and difference of longitude.

TO FIND THE COURSE.
As the distance, $300 . \ldots . .$.
Is to radius. 10.000000
. So is dif. of lat., 290......... 1.462398

TO FIND DIFFERENCE OF LONGITUDE.
As co-sine of course, $14^{\circ} 50^{\prime} . \quad 9.985280$
Is to mer. dif. of lat., $434 \ldots \quad 2.637490$
So is sine course, $14^{\cup} 50^{\prime} \ldots . .9 .408254$
12.045744
9.985280

To co-sine of course $14^{\circ} 50^{\prime} . . \overline{9.985277}$ To dif. of long., 114.9...... $\overline{2.060464}$

Ex. 2. A ship from latitude $36^{\circ} 20^{\prime} \mathrm{N}$., and longitude $22^{\circ} 30^{\prime} \mathrm{W}$., sails S . by W. 960 miles and finds her latitude is $10^{\circ} 40^{\prime} \mathrm{S}$. Required the course and longitude in.

Ans. S. $28^{\circ} 57^{\prime}$ W., and longitude in, $30^{\circ} 17^{\prime} \mathrm{W}$.
Ex. 3. A ship from latitude $56^{\circ} 30^{\prime} \mathrm{N}$. has sailed south-easterly 257 miles, when she arrives at latitude $54^{\circ} 47^{\prime} \mathrm{N}$. Required the course steered, and difference of longitude.
Ans. Course, S. $66^{\circ} 22^{\prime}$ E. ; difference of longitude, 418.2.

Case VI.

One Latitude, Course, and Departure given, to find the Distance, Difference of Latitude and Difference of Longitude.
Ex. 1. A ship from latitude $50^{\circ} 10^{\prime}$ S., and longitude $30^{\circ} 00^{\prime}$ E., sails E. S. E., until her departure is 957 miles. Required the distance sailed and her present latitude and longituds.

Note.-First find the difference of latitude, latitude in, snd meridional difference of latitude, the distance and difference of longitude.

TO FIND DIFFERENCE OF LONGITUDE.

	As co-sine of course $67^{\circ} 30^{\prime}$ Is to mer. dif, of lat. 667. So is sine of course $67^{\circ} 30^{\prime}$.		$\begin{aligned} & 9.582840 \\ & .824120 \\ & 9.965615 \end{aligned}$
			$\begin{array}{r} 12.789741 \\ 9.582840 \end{array}$
Longitude left............ $30^{\circ} 00^{\prime}$ E. Difference of longitude..... 2650 E .	To dif. of long.	$\frac{60) 1610}{26^{\circ} 50^{\prime}}$	3.206901
Longitude in........... $\overline{566^{\circ} 50^{\prime} \mathrm{E} \text {. }}$			

Ex. 2. A ship from latitude $51^{\circ} 15^{\prime}$ N., and longitude $9^{\circ} 50^{\prime}$ W., sails S. S. W. until her departure is 250 miles. Required the distanee sailed, and latitude and longitude in.
Ans. Latitude in, $41^{\circ} 11^{\prime} \mathrm{N}$.; longitude in, $15^{\circ} 53^{\prime} \mathrm{W}$., and distance 653.3 miles.

Ex. 3. A ship from latitude $40^{\circ} 20^{\prime}$ S., and longitude $20^{\circ} 40^{\prime}$ E., sails N. N. E. until her departure is 500 miles. Required the distance sailed, and latitude and longitude in.

Ans. Latitude in, $28^{\circ} 13^{\prime}$ S.; distance, 1307 miles; lougitude in, $30^{\circ} 24^{\prime} \mathrm{E}$.

Case VII.

On Latitude, Distance, and Departure given, to find the course, Difference of Latitude, and Difference of Longitude.
Ex. 1. A ship from latitude $54^{\circ} \mathrm{N}$. and longitude $33^{\circ} 20^{\prime} \mathrm{W}$., sails 350 miles between north and east, until she has made 220 miles of departure. Required the course steered, and her present latitude and longitude.

Note.-First find the course, difference of latitude, latitude in and meridional difference of latitude, difference of longitude and longitude in.

TO FIND THE COURSE.

As the distance 350 .	2.544068	As radius.	10.000000
Is to radius.	10.000000	Is to distance 350 .	2.544088
So is departure 220	2.342423	So is co-sine course $38^{\circ} \stackrel{\circ}{ } 57^{\prime} \cdot$.	9.890809
	12.342423		12.434877
	2.544068		10.000000
To sine course $38^{\circ} 57$	9.798355	To difference latitude 272.2.	2.434877

Ex. 2. A ship in latitude $49^{\circ} 30^{\prime} \mathrm{N}$. and longitude $25^{\circ} \mathrm{W}$., sails south-easterly 215 miles, making 167 miles departure. Required the course steered, and latitude and longitude in.

Ans. Course, $50^{\circ} 58^{\prime}$; latitude in $47^{\circ} 15^{\prime} \mathrm{N}$.; longitude in $20^{\circ} 50^{\prime} \mathrm{W}$.
Ex. 3. A ship in latitude $49^{\circ} 30^{\prime} \mathrm{N}$. and longitude $25^{\circ} 00^{\prime}$ W., sails south-easterly 645 miles, making 500 miles departure. Required the course steered, and latitude and longitude in.

Ans. Course, S. $50^{\circ} 49^{\prime}$ E.; latitude in. $42^{\circ} 42^{\prime}$ N.; longitude in, $12^{\circ} 57^{\prime}$ W.

Case VIII.

One Latitude, Course and Difference of Longitude given, to find the Distance and Difference of Latitude.

Note.-This case cannot be solved by middle latitude sailing.
Ex. 1. A ship from latitude $34^{\circ} 29^{\prime}$ N., sails S. 41° W., until the difference of longitude is 680 miles. Required latitude in and distance sailed.

Note.- First find meridional difference of latitude, then latitude in, and difference of latitude in miles, then the distance.

TO FIND THE DISTANCE.

As co-sine course 41°	9.877780
Is to dif. lat. 683.	2.834421
So is radius....	10.000000
	12.834421
	9.877780
To the distance 905'.	2.956641

Ex. 2. A ship from latitude $50^{\circ} 40^{\prime}$ S., sails N. $50^{\circ} 00^{\prime}$ E., until her difference of longitude is 550 miles. Required the latitude in and distance sailed.

Ans. Latitude in, $45^{\circ} 32^{\prime} \mathrm{S}$.; difference of latitude in miles 308 ; distance 479.2 miles.

MERCATOR'S SAILING.

Solutions of the Cases by Inspection.

Case I. Find the course from the tables by using the meridional difference of latitude, and difference of longitude, as difference of latitude and departure. Thus, with 23.8 in the latitude column, and 12.23 in the departure, 27° as a course will be found at the top of the page. With 27° as a course and the proper difference of latitude 23.31 (one hundredth) gives in the distance column 26 , which multiplied by 100 , gives 2600 as distance.

Case II. With the course three points at the top of the page and opposite the distance 59.1 (one-tenth) will be found the difference of latitude 49.1, which multiplied by 10, gives 491 . Then with the same course and the meridional difference of latitude 628 in the latitude column, will be found the corresponding difference of longitude 42.0 , which multiplied by 10 , gives as difference of longitude 420.

Case III. With the proper difference of latitude 68.9 (one-tenth) and departure 41.5 (one-tenth) in their proper columns, find the course 31° at the top of the page, and the distance 800 in the distance column. Then, with this course 31°, and the meridional difference of latiturle in the latitude column, the difference of longitude will be found in the departure column 41.4 , multiplied by 10, gives 414.

Case IV. Find the course S. W. $\frac{1}{2}$ S. among the points or degrees, and the proper difference of latitude 26.6, adjoining to which will be the distance 340 and departure 21.4 in their respective columns. Then, in the same table, find the meridional difference of latitude 396 in the latitude column, stands 321 , in the departure column, which is the difference of longitude.

Case. V. Look in table IV until 30.0, one-tenth the distance, is found opposite 29.0 , one-tenth the difference of latitude, in their columns. The course 15° is found at the top of the page, and the departure $78(78 \times 10)$ in the departure column. With 43.4 , onetenth the meridional difference of latitude in the latitude column, and the course 15°, the difference of longitude $116(11.6 \times 10)$ will be found in the departure column.

Case VI. Find the course 6 points at the bottom of the page, and the departure 96.7 (one-tenth) in its column, corresponding in their columns will be fornd the distance $1040(104.0 \times 10)$, and the difference of latitude $398(39.5 \times 10$.) With the same course and the meridional difference of latitude 66.7 (one-tenth) in the latitude column, opposite in the departure column will be found the difference of longitude $1608(160.8 \times 10)$.

Case VII. Look in the tables until the distance 35.0 (one-tenth) and the departure 22.0 (one-tenth) are found in their columns to nearly agree (if not to agree), opposite to them in the latitude column will be found the difference of latitude $2720(27.20 \times 10)$ and the course 39° at the top of the page. With this course and onetenth the meridional difference of latitude 49.0 in the latitude column, 39.6 will be found adjoining in the departure column, this multiplied by 10 , will give 396 , the difference of longitude.

Case VIII. With the course 41° at the top of the page, and the difference of longitude 68.0 (one-tenth) in the departure column, the meridional difference of latitude 785 will be found in the latitude column. Then with the difference of latitude 683 in its column, the distance 910 will be found in the distance column.

DEVIATION OF THE COMPASS.

Deviation of the compass is caused by the attraction of the iron in and on board the ship, such as her equipment, or cargo, etc. It depends, both for its amount and direction, on the position of the ship's head; it is named easterly when the north end of the needle is drawn, by the attraction of the ship's iron, to the right of the correct magnetic north, westerly when the north end of the needle is drawn to the left of the correct magnetic north.

Method fur finding the Deviation.

Every ship ought to be provided with a good Azimuth Compass, which should be placed on the mid-ship line of the poop, or quarter deck, and as far as possible from all iron, and in such a position as to allow the bearings to be clearly observed. This is called the Standard Compass, and by it all bearings should be taken, and the Binnacle Compass frequently compared with it. When the ship is ready to proceed on a voyage, the deviation of the Standard Compass is to be ascertained by one of the following methods:

First method. By the known correct magnetic bearing of a distant object. Select an object, the correct magnetic bearing of which is known, and at not less than six or seven miles distant, if the ship be lying in a roadstead; but if in a dock a less distance will suffice, and swinging the ship's head very evenly, take the bearing of the object by the Standard Compass as the ship's head comes up to each point in succession, and the difference between the known and observed bearing will be the amount of deviation on each point of compass. (See table 1 for finding the deviation.)

The second method is fully explained in Table I (deviation card) with this difference only, that the correct magnetic bearing nothaving been given, it has to be found by taking the mean of the bearings of the distant object; this method of determining the deviation is sufficiently correct for practical purposes, but bear in mind that there is no such thing as an accurate "flying" bearing, and therefore it is preferable to swing the ship for adjustment while in a dock, or at anchor in a tide-way; and now to determine when the deviation is easterly or westerly. Rule: when the correct magnetic bearing of the distant object is to the right of the reading by compass on board, the deviation is east, and when to the left the deviation is west.

Thus, the rule is precisely the same as that for finding the variation of the compass from an Azimuth, or Amplitude, substituting correct magnetic for true bearing. The rule for applying the deviation is the same as that for applying the variation,'that is, easterly to the right-hand and westerly to the left-hand.

When the deviation is to be added to the compass course to find the correct magnetic course made good, if the sum exceeds 90 degrees take it from 180 degrees, and the remainder will be named N . if previously S., but S. if previously N.; see example worked out:

When the deviation is subtractive, and it exceeds the course, subtract the course from the deviation, and name the remainder East if the course is West; but West when the course is East.

Course by Standard Compass S. W. by S. or S.. $33^{\circ} 45^{\prime} \mathrm{W}$.
Deviation of Standard Compass................. 141400 W .
Correct magnetic course made good............. $\overline{19^{\circ} 45^{\prime}}$ W. or S. by W. $\frac{8}{4}$ W. Course by Standard Compass N. by W. or N. $11^{\circ} 15^{\prime}$ W. Deviation by Standard Compass............ 1400 E.
N. $2^{\circ} 45^{\prime}$ E. or N. $\frac{1}{4}$ E.

VARIATION.

Next in order comes variation. We will say but little on the subject, as it is well understood by most seamen. Variation is the angle which the direction of the horizontal magnetic needle, when unaffected by deviaton, makes with the geographical meridian, and is named easterly when the magnetic north is to the right of the true north, and westerly when the magnetic north is to the left of the true north; and to know how to apply it, suppose yourself placed at the centre of the compass and looking directly forward to the point you are to allow the variation from, then, if the variation is easterly, allow it to the right-land of the course steered; but, if westerly, to the left-hand. Precisely the same as deviation.

To find the True Course made good, with the Deviation on the Course steered, and the Variation proper to the locality.

If the deviation and variation are of the same name, take their sum; but, if one is east and the other west, take their difference and give the remainder the name of the greater quantity. Apply this sum or difference to the course steered, easterly to the right-hand, westerly to the left. (See example.)

Ex. 1.	Course steered W. S. W. or S. $67^{\circ} 30^{\prime}$ W. Correction.............. 3130 W.	Deviation...... 15° ou W Var. per chart. . 1630 W .
	True course.......... S. $36^{\circ} 00^{\prime} \mathrm{W}$.	Correction (sim) $31^{1} 30^{\prime} \mathrm{W}$.
Ex. 2.	Course steered N. E. or N.... $45^{\circ} 00^{\prime}$ E. Correction...................... \& 40 E.	Deviation $22^{\circ} 00^{\prime} \mathrm{E}$. Var. per chart. 1800 W
	True course.............. . . ${ }^{47^{\circ} 40^{\prime} \mathrm{E} \text {. }}$	Correction (dif.). $4^{\circ} 00 \mathrm{E}$.

The True Course given to find the Compass Course to steer, knowing the Variation and Deviation.

The variation and deviation must be used separately; first, apply the variation to the true course to ascertain the correct magnetic course, and then find (from the deviation table) what compass course will make that correct magnetic.

The only exception to this method is when the variation and deviation are numerically the same, but bave different names, in which case the one cancels the other, and the compass course is the true course. In shaping the course to steer, having given the true course, deviation and variation, apply them in the opposite way to which they were applied in finding the true course from the compass, that is easterly to the left, and westerly to the right.

Suppose the true course to be S. $40^{\circ} \mathrm{W}$. , with a correction of deviation $5^{\circ} 00^{\prime} \mathrm{E}$. and the variation $20^{\circ} 00^{\prime} \mathrm{W}$. Subtract the east-
erly deviation from westerly variation and the net result will be $15^{\circ} 00^{\prime} \mathrm{W}$. to apply to the right hand, that will give the magnetic course to steer S. $55^{\circ} 00^{\circ} \mathrm{W}$. or S. W. by W.

First. A true course is the angle between the geographical meridian and the ship's real track on the surface of the sphere. Knowing the true course, it may be converted into a magnetic course by the application of the variation, viz: easterly variation to the left, westerly variation to right of the true course.

Second. A true bearing is the angle which the direction of an object makes with the geographical meridian. Knowing the true bearing, it may be converted into a magnetic bearing by the application of the variation, viz: easterly variation to the left, westerly variation to the right of the true bearing.

Third. A magnetic course is the angle which a ship's track makes with the magnetic meridian, as a magnetic bearing is the angle between the magnetic meridian and the direction of an object; such an angle can only be shown by a compass unaffected with deviation; but as the compasses of all iron ships have more or less deviation, and as any course steered, or bearing taken by any such compass is in a certain sense magnetic, it has been found necessary to distinguish these when corrected for deviation, as cornect magnetic course or bearings.

Fourth. A compass course is the angle which the ship's track makes with the direction of the magnetic needle of the compass; such a course is affected with deviation and variation; applying the former. it becomes the correct magnetic course; applying both, it becomes the true course.

Fifth. A compass bearing is similarly the angle contained between the direction of the object and the direction of the magnetic needle of the compass; like the compass course, it is affected with deviation and variation; but the deviation to be applied in this case, is that due to the Azimuth of the ship's head, not that on the point of bearing; when this correction is made it becomes the correct magnetic, and the further application of the variation turns it into a true bearing; easterly deviation and variation to the right, westerly deviation and variation to the left.

Sixth. In "cross-bearings," both bearings must be corrected for the deviation due to the direction of the ship's head at the instant of making the observation. The correction or error of the compass obtained by means of an Amplitude or Azimuth of the Sun, or any celestial object, is the variation and deviation combined on the course or direction of the ship's head at the moment of making the observation; therefore, knowing the variation of the compass at any place, the deviation can readily be eliminated by one of the following rules:

First. If the correction is greater than the variation, subtract the variation from the correction, and the remainder, which is the deviation, will be the same name as the correction. Correction and variation of the same names both east or both west:

Second. If the correction is less than variation, subtract the correction from the variation, and the remainder, which is the deviation, will be east when the correction is west, but west when the correction is east.

Correction and variation of different names, one east and the other west. Add together the correction and variation, their sum, which is the deviation, will be the same now as the correction.

Third. If the variation is $00^{\circ} 00^{\prime}$ the correction is the deviation.
Fourth. If the correction is $00^{\circ} 00^{\prime}$ the deviation is of the same amount as the variation, but of an opposite name; that is, east when the deviation is west, but west when the variation is east.

Note.-For correcting courses for deviatlon, see trble 3, for deviation of Standard Compass, N. III.

LEEWAY.

When a ship is close-hauled and the wind blowing fresh, that part of the wind which acts upon the hull and rigging together with a considerable part of the force exerted on the sails, tend to drive her immediately from the direction of the wind, or as it is called to leeward; but as the bow of a ship exposes less surface to the water than the side, the resistance will be less in the first case than in the second; the velocity, therefore, in the direction of the head, will in most cases, be greater than the velocity in the direction of her side, and the ship's real course will be between the two directions. Now the angle contained between the line of the ship's apparent course, and the line she really describes through the water is termed the leeway.

The quantity of leeway to bo allowed will depend upon a variety of circumstances, such as the mould or build of a ship, the draught or the trim of the ship, the quantity of sail she may be under, her
speed through the water, and the sails being properly set and trimmed to the wind, etc. No general rule can, be laid down that will determine the quantity of leeway at all times. The most accurate method is to draw a semicircle on the taffrail with its diameter at right angles with the ship's keel, and apply as directed by the following plate:

The semicircle A. consists of a small piece of polished brass upon which the points of the compass are correctly laid off; this semicircle is attached to the taffrail of the ship. On the face of this semicircle or dial plate, we have a suitable pointer C., one end of which turns on the pin B., and to the other end we attach the line running to the log. It wil be seen by the above sketch, the manner in which the $\log \operatorname{line}$ is fastened to the pointer. When the lig is to be drawn in, the line is slipped into the crutch and is held tight against the kuot, as in sketch D., and the quantity of leeway is equivalent to the number of points indicated from the center line of the dial plate, which is to be applied to the ship's course as per rule. The leeway being determined it is to be allowed from the wind; that is, to the right of the course steered, when the wind is on the port side, and to the left when the wind is on the starboard side.
How to apply the Variation, Deviation and Leeway.
First. The calculator should suppose himself to be placed at the centre of the compass card, and looking outward in the direction of the ship's head; for example, suppose a ship is on the starboard tack with her head at north by compass, and the variation to be 2 points easterly, the deviation 2 points westerly and 1 point leeway; now 2 points east of north will give the course N.N.E., because easterly variation is always applied to the right hand; 2 points westerly deviation gives the course north again, because westerly deviation is always applied to the left hand, and 1 point leeway with the wind on the starboard side will give the corrected course N. by W., because the wind throws the ship to the left hand, (1 point).

Second. Suppose a ship's head S.E. by compass variation $1 \frac{1}{2}$ points east, deviation $1 \frac{1}{4}$ points east and 2 points leeway, the wind being from the N.E. Now $1 \frac{1}{2}$ points easterly variation gives S.S. E. 1 IE . $; 1 \frac{1}{4}$ points easterly deviation gives S. by E. $\frac{1}{4} \mathrm{E}$., and 2 points leervay with the wind from the eastward gives the course S. $\frac{3}{4} \mathrm{~W}$.

Third. Suppose a ship's head by compass to be N.N.W., the variation to be 2 points west, the deviation $1 \frac{1}{2}$ points east, and leeway $\frac{3}{4}$ point, the wind being from the S.W., 2 points westerly variation gives N.W.; $1 \frac{1}{2}$ points easterly deviation gives N.N.W. $\frac{1}{2}$ W., and $\frac{3}{4}$ point leeway, wind from S.W. gives the course N. by W. $\frac{3}{4}$ W.

Easterly variation and easterly deviation go together; that is, to the right-hand; westerly rariation and westerly deviation go together; that is, to the left-hand, and leeway from the wind.

The following examples, where the courses steered, and the variation, deviation and leeway to be allowed on each, are given, from thence to find the true courses, will serve to exercise the learner in the foregoing rules.

If any corrected course exceed 8 points or 90°, it must be suttracted from 16 points or 180°, and the name changed from north to south, or vice versa.

Ex. 1. Ship' head N.; variation, 2 points E.; deviation, 2 points W.; leeway 1 point starboard tack.

Ex. 2. Ship's head S.E.; variation, $1 \frac{1}{2}$ point E.; deviation, $1 \frac{1}{4}$ point E. and 2 points leeway; wind from N.E.

Ex. 3. Ship's head N.N.W.; variation, 2 points W.; deviation, $1 \frac{1}{2}$ point E.; leeway, $\frac{3}{4}$ point; wind from S.W.

These examples are marked out in degrees, instead of points, as it is more correct, so when points are given turn them into degrees and then apply deviation, variation and leeway, as per rules.

Ex 1. Given a ship's head, N. $85^{\circ} 15^{\prime}$	Ex. 2.
W.; variation, $16^{\circ} \mathrm{W}$.; deviation, 19°	Ship's head....... . S. $788^{\circ} 45^{\prime} \mathrm{E}$.
${ }^{41} 1^{\prime}$ E. ; leeway, $22^{\circ} 30^{\prime}$; wind being from	Variation........ 17 E.
S. S. W.	
Ship's head. N. $85^{\circ} 15^{\prime} \mathrm{W}$.	S. $61{ }^{\circ} 45^{\prime} \mathrm{E}$.
Variation........ 15 W.	Deviation........ 2230 W.
$\begin{aligned} & 101^{\circ} 15^{\prime} \\ & 180 \end{aligned}$	$\text { W'd W.S.W. l'w'y. } 54^{\circ} 15 \mathrm{E} \text {. }$
	True course.S. $90^{\circ} 00^{\prime}$ E. $=$ East.
$\begin{aligned} & 98^{\circ} 26^{\prime} \\ & 80 \end{aligned}$	
True course.... N. $59^{\circ} 04^{\prime} \mathrm{W}$.	

drses Steered and Corrections Given.					To FIND Corrected Course.
Courses steered.	Wind.	Variation.	Deviation.	Leeway.	Corrected course.
N. $30^{\circ} 45^{\prime}$ E.	N. W.	$11^{\circ} 15^{\prime} \mathrm{W}$.	$20^{\circ} 30^{\prime} \mathrm{WV}$.	$11^{\circ} 15^{\prime}$	N. $13^{\circ} 15^{\prime} \mathrm{E}$.
N. $45^{\circ} \mathrm{W}$.	N. E.	$22^{\circ} 30^{\prime} \mathrm{W}$.	$18^{\circ} \mathrm{E}$.	$22^{\circ} 30^{\prime}$	N. $72^{\circ} 90^{\prime} \mathrm{W}$.
N. $45^{\circ} \mathrm{E}$.	S. E.-	$19^{\circ} 41^{\prime} \mathrm{WV}$.	$11^{\circ} 15^{\prime} \mathrm{W}$.	$33^{\circ} 45^{\prime}$	N. $19^{\circ} 41^{\prime} \mathrm{W}$.
S. $22^{\circ} 30^{\prime} \mathrm{W}$.	West.	$16^{\circ} \mathrm{W}$.	$22^{\circ} 30^{\prime} \mathrm{W}$.	$33^{\circ} 45^{\prime}$	S. $49^{\circ} 45^{\prime} \mathrm{E}$.
South.	E. by N.	$22^{\circ} 30^{\prime} \mathrm{W}$.	$11^{\circ} 15^{\prime} \mathrm{WV}$.	$22^{\circ} 30^{\prime}$	S. $11^{\circ} 15^{\prime} \mathrm{E}$.
N. $11^{\circ} 30^{\prime} \mathrm{W}$.	W. N. W.	$16^{\circ} 45^{\prime} \mathrm{E}$.	$22^{\circ} 30^{\prime} \mathrm{E}$.	$33^{\circ} 45^{\prime}$	N. $61^{\circ} 30^{\prime} \mathrm{E}$.

NO. 1.-TABLE FOR FINDING DEVIATION.
Form of registering the observations for determining the deviation of the Standard Compass by means of a known Correct Magnetic Bearing of a distant object. Read the rules on deviatlon carefully.

Ship's Head by Standard Compass.	Bearing of Distant Object from Standard Compass on Board.	Correct Magnetic Bearing of the Distant Object.		Deviati	tion of Stan Compass.
North.	N. $76^{\circ} 00^{\prime} \mathrm{W}$.	N.	$30^{\prime} \mathrm{W}$.		$15^{\circ} 30^{\prime} \mathrm{E}$.
N. by E.	N. 7825 W .				1755 E.
N. N. E.	N. 8050 W.		"		2020 E .
N. E. by N.	N. 8110 W.	،	"		2040 E.
N. E.	N. 8130 W.	"	"		2100 E .
N. E. by E.	N. 7937 W.	"	"		1907 E .
E. N. E.	N. 7745 W.	"	"		1715 E.
E. by N.	N. 7402 W.	"	" 6		1332 E .
East.	N. 7020 W.	"6	"،		950 E .
E. by S.	N. 6600 W .	"	"		530 E .
E. S. E.	N. 6140 W.	"	"		110 E.
S. E. by E.	N. 5735 W.	"6	"		225 W.
S. E.	N. 5336 W .	"6	" 6		700 W.
S. E. by S.	N. 5037 W.	"،	"،		952 W.
S. S. E.	N. 4745 W.	"	"		1245 W.
S. by E.	N. 4622 W.	" 6	"،		407 W.
South.	N. 4500 W.	"6	"'		530 W.
S. by W.	N. 4440 W .	"	" 6		550 W
S. S. W.	N. 4420 W.	"	"		610 W.
S. W. by S.	N. 4453 W.	"	"		535 W.
S. W.	N. 4530 W .	"	" ${ }^{\prime \prime}$		500 W.
S. W. by W.	N. 4630 W .	"	"		400 W.
W. S. W.	N .4730 W.	"'	"6		300 W.
W. by S.	N. 4900 W.	"	"		130 W.
West.	N. 5030 W.	"	"		000 W.
W. by N .	N. 5250 W :	"	"		740 W.
W. N. W.	N. 5510 W.	"	"6		520 W.
N. W. by W.	N. 5820 W.	"	"		210 W.
N. W.	N. 6131 W.	"			100 W.
N. W. by N.	N. 6515 W.	"			445 W.
N. N. by W.	$\begin{aligned} & \text { N. } \\ & \mathrm{N} . \\ & 70 \\ & 70\end{aligned} 000 \mathrm{~W}$.		" ${ }^{\prime \prime}$		$8{ }_{2} 300 \mathrm{WV}$ W.

Name the deviation east, when the correct magnetic bearing stands to right of that taken on board, and west when to the left. Look at compass in this table.

No. 2.-TABLE FOR FINDING DEVIATION.

To determine the deviation at sea by the bearing of a distant object, its correct magnetic bearing being unknown, take the bearing of a distant object by compass, on 32 points, and divide the sum of the bearings by 32 , the result will be the correct magnetic bearing, approximately. Then the difference between the correct magnetic and compass bearing on each point, will be the deviation. Name the deviation Last, when the correct magnetic is greater than bearing from ship. Name the deviation West, when correct magnetic is less than bearing from ship. Remember that easterly deviation goes to the right hand and westerly to the left hand. Look at compass in this table.

Ship's Head by Standard Compass.	Bearing of Distant Object by Standard Compass.	Corre B	$\begin{aligned} & \text { Magnetic } \\ & \text { ring. } \end{aligned}$	Deviation of Standard Compass.
North.	N. $59^{\circ} 50^{\prime} \mathrm{W}$.	N. 6	$00^{\prime} \mathrm{W}$.	$3^{\circ} 10^{\prime} \mathrm{W}$.
N. by E.	N. 6535 W.			235 E
N. N. E.	N. 7110 W.	،	'6	810 E.
N. E. by N.	N. 7610 W.	، 6	"	1310 E.
N. E.	N. 7950 W.	6	، 6	1650 E.
N. E. by E.	N. 8230 W.	6	،	1930 E.
E. N. E.	N. 8330 W.	،	،	2030 E .
E. by N.	N. 8405 W.	"	6	2105 E .
East.	N. 8320 W.	،	، 6	2020 E.
E. by S.	N. 8215 W.	6	'6	1915 E .
E. S. E.	N. 8105 W.	6	6	1805 E .
S. E. by E.	N. 7930 W.	'6	'6	1630 E .
S. E.	N. 7740 W.	6 6	" 6	1440 E .
S. E. by S.	N. 7505 W.	${ }^{6}$	'6	1205 E .
S. S. E.	N. 7240 W.	،	"	940 E.
S. by E.	N. 6900 W.	6	"	600 E.
South.	N. 6610 W.	${ }^{6}$	'6	310 E .
S. by W.	N. 6305 W.	'6	"	0005 E .
S. S. W.	N. 6000 W .	6	6	300 W.
S. W. by S.	N. 5630 W.	"	"	630 W.
S. W.	N. 5320 W.	،	6	940 W.
S. W. by W.	N. 5000 W .	'6	،	1300 W.
W. S. W.	N. 4650 W.	"	،	1610 W.
W. by S.	N. 4345 W.	'6	'6	1915 W.
West.	N. 4150 W.	6	،	2110 W.
W. by N.	N. 3940 W.	6	" 6	2320 W.
W. N. W.	N. 3900 W.	'6	'6	2400 W.
N. W. by W.	N. 3925 W.	6	"6	2335 W.
N. W.	N. 4100 W.	'	6	2200 W.
N. W. by N .	N. 4400 W.	\%	" 6	1900 W.
N. N. W.	N. 4810 W.	"	" 6	1450 W.
N. by W.	N. 5345 W.	"	6	915 W.
	$32) 2009^{\circ} 45^{\prime}\left(62^{\circ} 48^{\prime}\right.$			

Call the magnetic bearing 63° as there is 48^{\prime} over.

No. 3.-deviation table for standard compass.

Ship's Head (or Course) by Standard Compass.	Deviation of the Standard Compass	Correct Magnetic Course made good by Steering as in the First Column.			
North.	$15^{\circ} 30^{\prime} \mathrm{E}$.	N. $15^{\circ} 30^{\prime} \mathrm{E}$.	or	N. by E. ${ }^{8} \mathrm{E}$. ne	nearly.
N. by. E.	1820 E .	N. 2935 E .		N. N. E.	
N. N. E.	2020 E .	N. 4250 E .		N. E. $\frac{1}{4}$ N.	
N. E. by N.	2115 E .	N. 5500 E .		N. E. 7 E.	"
N. E.	2100 E .	N. 6600 E .		N. E. by E. $\frac{7}{8}$ E.	
N. E. by E.	1945 E.	N. 7600 E .		E. by N. $\frac{1}{4}$ N.	
E. N. E.	1715 E.	N. 8145 E .		E. $\frac{1}{2}$. N.	
E. by N.	1350 E.	S. 8725 E .		E. $\frac{1}{4}$ S.	
East.	950 E .	S. 8010 E .		E. $\frac{7}{8}$ S.	،
E. by S.	530 E .	S. 7315 E .	"	E. by S. $\frac{1}{2} \mathrm{~S}$.	'
E. S. E.	110 E.	S. 6620 E .		S. E. by E. 7 E.	
S. E. by E.	310 W.	S. 5925 E .		S. E. by E. $\frac{1}{4} \mathrm{E}$.	
S. E.	700 W.	S. 5200 E .		S. E. $\frac{5}{8}$ E.	
S. E. by S.	1015 W.	S. 4400 E .		S. E. $\frac{1}{8}$ S.	
S. S. E.	1245 W.	S. 3515 E .		S. E. $\frac{7}{8}$ S.	
S. by E.	1430 W.	S. 2545 E .		S. S. E. $\frac{1}{4} \mathrm{E}$.	
South.	1530 W.	S. 1530 E .	"	S. by E. $\frac{3}{8}$ E.	
S. by W.	1615 W.	S. 500 E .		S. $\frac{1}{2} \mathrm{E}$.	
S. S. W.	1610 W.	S. 620 W		S. 5iv.	
S. W. by S.	1540 W.	S. 1805 W	"	S. by W. $\frac{5}{8} \mathrm{~W}$.	
S. W.	1500 W.	S. 3000 W	"	S. S. W. $\frac{2}{3}$ W.	
S. W. by W.	1420 W.	S. 4155 W	"	S. W. $\frac{1}{\text { S }}$ S.	
W. S. W.	1300 W.	S. 5430 W	"	S. W. $\frac{7}{7}$ W.	'
W. by S .	1130 W.	S. 6715 W	،	W. S. W.	
West.	1000 W.	S. 8000 W		W. $\frac{7}{8}$ S.	
W. by N .	750 W.	N. 8635 W		W. $\frac{1}{3} \mathrm{~N}$.	
W. N. W.	520 W.	N. 7250 W	"	W. by N. ${ }^{\frac{1}{2}} \mathrm{~N}$.	""
N. W. by W.	220 W.	N. 5835 W		N. W. by W. $\frac{1}{4}$ W.	
N. W.	100 E .	N. 4400 W		N. W. ${ }^{\frac{1}{8} \text { N. }}$	
N. W. by N.	440 E.	N. 2905 W		N. N. W.	
N. N. W. N. by W.	$\begin{array}{r}8 \\ 12 \\ 120 \mathrm{E} \\ \hline\end{array}$			N. by W. $\frac{1}{8}$ E.	

METHOD OF WORKING DEAD RECKONING, OR WHAT IS COMMONLY CALLED DAY'S WORK.

To Correct the Courses for Variation, Deviation and Leeway.
When the variation is westerly allow it to the left hand of the course steered. When variation is easterly allow it to the right hand of the course steered.

When the deviation is westerly allow it to the left hand of the course steered. When deviation is easterly allow it to the right hand of the course steered.

If an azimuth be observed, the correction will be the variation and deviation combined on the azimuth due the ship's head on that course.

To Correct the Course for Leeway.

When on the starboard tack allow the leeway to the left hand of the compass course. When on the port tack allow it to the right hand of the compass course.

First Course on Leaving the Land.

Take the bearing of an object, whose position, or latitude and longitude are known, and estimate its distance off shore as a distance, the opposite point to which is taken as a course, and being corrected for variation and deviation due the ship's head on that course.

This is entered in the traverse table along with the other courses.
If there is a current, the set and driit of which is known, allow the variation only on its set, and enter it in the traverse table as a course and distance.

Each course is to be corrected for variation, deviation and leeway, and entered in the traverse table, and set against each the distance run on that course.

T'averse Table.

Make a table which divide into six columns, in the first of these set down the several courses, and opposite to them in the second column enter the distance run on each course.

The third and fourth columns are to be marked north and south, and are to contain the difference of latitude.

The fifth and sixth are to be marked east and west, and to contain the departures.
Find the difference of latitude and departure corresponding to each course and distanco in Table III; set these down in their proper columns; if the difference of latitude is north, it must be placed in the north column; and if south in the south column; if the departure is easterly place it in the east column, and if westerly place it in the west column.

When the course is due north, south, east or west, set down the distance in its respective column.

Sum up the columns of northing, southing, easting and westing, of each column separately, then if the northing be less than the southing, subtract it from the southing, and the remainder will be the whole difference of latitude made good, and of the same name as the greater; in the same manner the difference between the sums of the east and west column is the whole departure made, and of the same name as the greater.

Then the whole difference of latitude and departure will give the direct course and distance in Table IV.
To find the course and distance, with the difference of latitude and departure made good, enter Table IV; seek in the columns until they are found to agree; opposite to which will be found the distance in its column.

If the departure be greater than the differesce of latitude, the course will be found at the bottom of the table, but if the departure be less than the difference of latitude, the course will be found at the top of the table.

To find Latitude in.

If the latitude of the place from which the departure has been taken and the difference of latitude made be both north or both south, their sum will be the latitude of the same name; but if the difference of latitude is of a contrary name to the latitude left, their difference will be the latitude in, and of the same name as the greater.

To find the Difference of Longitude.

Add together the latitude left and latitude in, and take half their sum for the middle latitude; then, with the middle latitude as a course, enter Table IV and seek for the departure made good in the latitude column, and in the distance column opposite, will be found the difference of longitude made, which divided by 60 ; if over 60 , will give the degrees and minutes to be named east or west, according to the departure.

To find the Longitude in.

If the longitude left and difference of longitude made be both east or west, their sum will be the longitude in and of the same name; but if the difference of longitude be of contrary name to the longitude left, their difference will be the longitude in and of the same name as the greater; but when their sum exceeds 180° degrees the ship has crossed the opposite meridian to that of Greenwich, in that case subtract it from 360° degrees, and the remainder will be the longitude in of a different name. In example No. 1, the courses are
given in points, the learner however, will derive greater advantage by turning the points into degrees, and practicing that system only, as it will facilitate the application of the variation and deviation which is generally given in degrees.

Ex. 1. A ship from a port in latitude $35^{\circ} 42^{\prime} \mathrm{N}$., and longitude $51^{\circ} 32^{\prime} \mathrm{W}^{\prime}$., bound to another port in latitude $43^{\circ} 27^{\prime} \mathrm{N}$. and longitude $65^{\circ} 19^{\prime} \mathrm{W}$., sails the following courses: S.W. $\frac{3}{4}$ W. 54 miles, S.W. by S. 38 miles, S. by E. $\frac{1}{3}$ E. 37 miles, S. E. by E. $\frac{1}{3}$ E. 40 miles, N. by E. $\frac{1}{2}$ E. 50 miles, S. by E. $\frac{1}{4}$ E. 31 miles. Liequired the course, the distance and latitude and longitude in, also the course and distance to the port bound to by Mercator sailing.

Course.	Distance.	Diff, of Lat.		Departure.	
N.W. $\frac{3}{2}$ W. S.W. by S. S. by E. $\frac{1}{2}$ E. S.E. by E. $\frac{1}{2}$ E. N. by E. $\frac{1}{2}$ E. S. by E. 4 E.	54	N.	S.	E.	W.
	38		31.6		
	37		35.4	10.7	
	40		18.9	35.3	
	50	47.8		14.5	
	31		30.1	07.5	
			148.2	68.0	64.5
			47.8	64.5	
	Course S. $2^{\circ} 00^{\prime}$ E. $=1 \overline{00.4}$			3.5	
	Distance 101 miles.				

The difference of latitude 100.4 miles and the departure 3.5, being looked for till they are found opposite each other in their respective columns in Table IV, gives the course S. $2^{\circ} 00^{\prime}$ E., and the distance 101 miles.

To Find the Latitude and Longitude.

The course to the port bound to, will be found to be N. $58^{\circ} 09^{\prime} \mathrm{W}$., and the distance 729.6. Work it ont as per rule in case I, example 1, page 30 .

Correct the Following Courses for Leeway and Variation.

given.				$\frac{\text { To Find answer }}{\text { Conrses correct'd }}$
Courses steered.	Winds.	Leeway.	Variation.	
E.N.E. W. liys. N. W. by N. South. N. W. S.s. W. E. ly N. West.	$\begin{aligned} & \text { N.W. } \\ & \text { N.W. by N. } \\ & \text { N.E. by N. } \\ & \text { E.S.E. } \\ & \text { W.S.W. } \\ & \text { S.E. } \\ & \text { N. by E. } \\ & \text { N.N.W. } \end{aligned}$	$\begin{aligned} & 1 \\ & 1_{2}^{2} \\ & \frac{1}{2} \\ & 2^{2} \\ & 1+ \\ & 2 \frac{1}{4} \\ & \frac{1}{4} \end{aligned}$	$\begin{array}{ll} 13 & \mathrm{~W} \\ 2 & \mathrm{~W} \\ 2 & \mathrm{~W} . \\ 14 & \mathrm{E} . \\ 1 & \mathrm{~W} . \\ 1+ \\ \hline \end{array}$	

Ex. 2. April 11, 1876, Steamship "City of Panama," W. B. Seabury, Commander, from San Francisco, toward Victoria, at noon took our departure from Point Bonita in latitude $37^{\circ} 49^{\prime}$ N., and longitude $122^{\circ} 31 \mathrm{~W}$.; bearing by compass E. $\frac{2}{2}$ S., distant 3 miles.

$2^{\prime} 00^{\prime} \mathrm{N}$.

Latitude	$39^{\circ} 49^{\prime} \mathrm{N}$.	Longitude left....... $122^{\circ} 31^{\prime} \mathrm{W}$.
Difference of latitude	200 N.	Difference of longitude. . 203 W .
Latitude in. Sum.	$\begin{aligned} & 39^{\circ} 49^{\prime} \mathrm{N} . \\ & \text { 2) } 77 \mathrm{c}^{38} \end{aligned}$	Longitude in............ $124^{\circ} 34^{\prime} \mathrm{W}$.
Middle latitude. .	$38^{\circ} 49$	

True course, N. $38^{\circ} 00^{\prime}$ W.; distance, 153 miles.
The middle latitude $38^{\circ} 49^{\prime}$ (call it $39^{\circ} 00^{\prime}$ as you have 49^{\prime} over) as a course in Table IV, and the departure 95^{\prime} in a latitude colunn, gives the difference of longitude 123 miles in a distance column, which divide by 60 gives $2^{\circ} 03^{\prime} \mathrm{W}$., to be added to the longitude because the ship has been going to the westward.

Ex. 3.

[^1]Ex. 4.

TIME.

Time is measured by the motions of the heavenly bodies. Its divisions are years, months, days, hours, minutes and seconds. The day is the interval between two successive transits of the sun, moon, or a star over the same meridian.
The solar, or apparent day, is the interval between the sun's departure from, and its return to the same meridian. This day is divided into 24 hours, each hour into 60 minutes, and each minute into 60 seconds. The length of the day is subject to continual changes, owing to the obliquity of the plane of the sun's path to the equinoctial, and to the eccentricity of the earth's orbit. Astronomers, so as to have a uniform measure of time, use, what is named, a mean solar day, the length of this day is equal to the average of all the apparent solar days in a year; in other words, it is the day that would be shown by the sun if it moved uniformly in its path, the ecliptic.

As only apparent time can be obtained from observations, a correction must be applied to this in order to reduce it to mean time, this correction is called the equation of time. When it is required to reduce apparent time to mean time, the equation of time must be taken from the first page of the Nautical Almanac for the given month and opposite the given day.
This equation must be applied as directed at the head of its column. To find the corrected equation of time take it out of its column opposite the required day, also take out the hourly difference for the same day, and multiply it by the number of hours and decimals of an hour that are given as a part of that day, add this correction for hourly difference if the equation of time is increasing, or subtract if decreasing.

Suppose the apparent time is three hours p.m., March 5, 1878, at the meridian of Greenwich, that is, the sun has passed this meridian three hours, it is required to find the corresponding mean time.

March 5, 1878, equation of time, N. Alm. Correction for 3 hours, decreasing (sub.)	$11 \mathrm{~m}: \underset{1.71}{40.95 \mathrm{~s} .}$	Hourly. dif.	$\begin{array}{r} 0.573 \\ \hline \end{array}$
To be added to app. ti	$\begin{aligned} & 1 \mathrm{~mm}: 39.24 \mathrm{~s} . \\ & 00 \mathrm{~m}: \\ & \hline 00.00 \mathrm{~s} \end{aligned}$		1.71

Mean time -

When it is required to change mean into apparent time find the equation of time from the second page of the almanac for that month. Find the correction the same way as above, and apply the equation of time as directed at the head of the column.

March 5,1878 , mean time at the meridian of Greenwich 3hr. p.м. Required the apparent time.

March 5, 1878, equation of time, N. Alm. Correction for 3 hours decreasing (sub.)	$\begin{gathered} 11 \mathrm{~m}: 41.06 \mathrm{~s} . \\ -\quad 1.71 \mathrm{~s} . \end{gathered}$	Hourly dif.	0.573
To be subtracted from mean time	11m: 39.35s.		1.719
Mean time.	00m: 00.00s.		
Apparent time	4Sm: 20.25s.		

There are three ways of reckoning time, called civil, astronomical and nautical, the last is now obsolete.

The civil day begins at midnight and ends the following midnight; it is divided into two parts, each of twelve hours; the first part is called A.м., meaning ante-meridian or before noon; the latter part is called p.m., meaning post-meridian or afternoon.

The astronomical day begins at noon and ends the following noon; that is, it begins 12 hours after the civil day, it is reckoned through the whole 24 hours from noon to noon. Thus from noon to midnight the day of the month and the hours of the day are the same for both methods, but from midnight to noon the civil day is 12 hours ahead of the astronomical day. So to turn A.m. civil time into astronomical time add 12 hours to it, and call it the day before, civil date, for example:

10 o'clock a.m., June 5, civil time, is June 4, 22, astronomical time, and 23 hours June 4, astronomical day, is 12 o'clock A.nr. June 5 , civil time.

All the computations of the Nautical Almanac are made for astronomical time at the meridian of Greenwich, it is therefore necessary, in taking quantities out of the almanac to reduce the ship's time to Greenwich time. One complete revolution of a heavenly body, over three hundred and sixty degrees of longitude takes place in 24 hours. This is at the rate of 15° in one hour of time, therefore at any place situated eastward of the meridian of Greeuwich it will be noon before it is noon at the meridian of Greenwich, ancl at any place situated to the westward of Greenwich it will be noon after it is noon at the meridian of Greenwich. All the reduction of time must be made at the rate of 15° to an hour. The rule for applying longitude in time is this: Reduce the given longitude by multiplying loy 4 and dividing by 6 , Table XI, into time, and add it to the astronomical time of the given place, if the longitude in is west, and subtract it from the astronomical time if the longitude in is east, the sum or the remainder is the corresponding Greenwich time. If the longitude in is west, and the sum of the longitude in time, and the time at the given meridian is more than 24 hours, subtract 24 hours from it and call the remainder the time past noon of
the day that follows. If the longitude in is east and the longitude in time is more than time at the given meridian, add 24 hours to the latter, and subtract the longitude in time, the remainder must be called the time past noon of the day before.

What will be the Greenwich time when it is 5 hours p.m. in longitude $50^{\circ} \mathrm{W}$.

Required the time at Greenwich when it is $7 \mathrm{~h}: 30 \mathrm{~m}: 15 \mathrm{~s}:$ p.m., in longitude $100^{\circ} 30^{\prime}$

Time at the given m	7h: $30 \mathrm{~m}: 15 \mathrm{~s}:$ P.m
Longitude in time	-6li: 42m: 00s: E
	0h:

Required the astronomical time at Greenwich corresponding to $7 \mathrm{~h}: 50 \mathrm{~m}: 25 \mathrm{~s}:$ A.m., civil time; $145^{\circ} 16^{\prime} \mathrm{W}$. longitude; May 5.

May 5.	Time at the given meridian.....	7h: 50 m : $25 \mathrm{~s}:$ civil time. 12h:
May 4.		19h: 50n: 25 s: astron. time.
	Longitude in time	+9h: 41m: 04s:
	,	$\begin{aligned} & 29 \mathrm{~h}: 31 \mathrm{~m}: 29 \mathrm{~s}: \\ & 24 \mathrm{~h}: 00 \mathrm{~m}: 00 \mathrm{~s} \end{aligned}$
May 5.	Astronomical time at Greenwich	5h: 31m:

February 18; longitude $116^{\circ} 37^{\prime}$ E.; time at ship, 11h:37m:14s: A.r. civil time; required the astronomical time.

Feb. 18.	Time at the given mer	11h: 37 m : 14 s : civil time. 12h:
Fcb. 17.	Longitude in time..	$\begin{aligned} & \text { 23h: } 37 \mathrm{~m}: 14 \mathrm{~s} \text { astron, time. } \\ & -7 \mathrm{~h}: 46 \mathrm{~m}: 2 \mathrm{~s}: \text { E. } \end{aligned}$
Feb.	Gr	15h: $50 \mathrm{~m}: 46 \mathrm{~s}$:

May 17; in longitude $125^{\circ} 25^{\prime}$ E.; astronomical time at ship, 3h: 10 m ; required the astronomical time at Greenwich.

May 17.	Time at ship............	$\begin{aligned} & \text { 3h1: } 10.00 \mathrm{~m}: \text { г.м. } \\ & 24 \mathrm{~h}: \end{aligned}$
May 16.	Lougitude in time.	$\begin{aligned} & 27 \mathrm{~h}: 10 \mathrm{~m}: 4 \\ & -8 \mathrm{~h}: 21 \mathrm{~m}: 40 \mathrm{~s}: \mathrm{E} . \end{aligned}$
May 16.	Greenwich	18h

AMPLITUDE.

To find the Correction and Deviation of the Compass by an Amplitude.

(Table II, secant and sine for amplitude.)
First. To the apparent astronomical time at ship apply the longitude in time; adding west, and subtracting east longitude for the apparent astronomical time at Greenwich.
(Note.-Turn the degrees into time by multiplying the degrees by 4, and dividing by 60 . Or by Table XI.)

Ex. | $35^{\circ} 25^{\prime}$ |
| :---: |
| $\times \quad 4$ |
| 60) $1 \frac{141^{\circ} 40^{\prime}}{25}$ |
| $\frac{2 \mathrm{~h}: 21 \mathrm{~m}: 40 \mathrm{~s}:}{}$ |

Second. P.M. time is astronomical; A.M. is civil time, and requires 12 hours added to make it astronomical time of the day before, (therefore add 12 hours when the time is A.m. and call it a day back) then apply the longitude; when west, add; when east, subtract.

Ex. June 20th, A.M. at ship time............. 9h:35m:
$\frac{12 \mathrm{~h}:}{21 \mathrm{~h}: 35 \mathrm{~m}:}$
Third. In adding west longitude the time may exceed 24 hours, when it is so take 24 hours from it, and call the day one more.
(Note.-Read carefully the rules on time.)
Fourth. In subtracting east, the lougitude (in time) may exceed the time at ship; then borrow 24 hours to the time at ship, and subtract as before, but call the day one less, as you have borrowed a day by adding the 24 hours to the ship's time. This case only happens when it is p.m. at ship. For example: January 20 , $6 \mathrm{~h}: 40 \mathrm{~m}$: p.m., and longitude in time $10 \mathrm{~h}: 40 \mathrm{~m}$: east, you require 24 h : to the 6 h : making $30 \mathrm{~h}: 40 \mathrm{~m}$: and take $10 \mathrm{~h}: 40 \mathrm{~m}$: from that, leaves 20 h : on January 19. Again January 20, 6h:40m: A.M., you will always ada 12h: to A.m., making 18h:40m: on January 19; the longitude $10 \mathrm{~h}: 40 \mathrm{~m}$: west added on to $18 \mathrm{~h}: 40 \mathrm{~m}$: makes 29 h : and 29 m : then take 24 h : from the 29 h : and you have 5 h : and 20 m : on January 20 .

Fifth. To the apparent astronomical time at Greenwich, correct the sun's declination taken from first page of the month in the Nautical Almanac, by the hourly difference in adjoining column; multiply the hourly difference by Greenwich time, turning the minutes
into tenths of an hour by dividing them by 6 , and if any over, annex a cipher, and divide by 6 again for a second decimal. For example: Should the time be $10 \mathrm{~h}: 33 \mathrm{~m}$: then 6 into $33=5$ times and 3 over; to the 3 over annex a cipher, and you have 6 into 30,5 times, making the time to multiply the hourly difference by $10 \mathrm{~h}: 55 \mathrm{~m}$.

It will be seen by the above example that there are four decimals; viz: Two in the hourly difference, and two in the longitude in time; therefore, cut off four from the right hand of the product, and you have left 135', and after dividing by 60 there will be a correction of $2^{\prime} 15^{\prime \prime}$ to apply to the declination, and as the declination is decreasing subtract the correction, but if the declination is increasing add the correction and you have the correct declination. This rule is to be observed in all cases except in a meridian allitude.

Sisth. To the secant (Table 2) of the latitude add the sine (Table 2) of the reduced declination. Their sum less 10 of the index is the log. sine (Table 2) of the true amplitude; to be reckoned from the west when p.m. at ship, and east when a.m.; toward the north when the declination is north, or south when the declination is south.

Seventh. Under the true amplitude place the sun's bearing by compass, and take notice how you put it down, because it is given in points, and you must turn it into degrees, counting from the east or west, toward the north or south. If in the example the bearing is given W. by S. that would be 1 point from west toward the south. Turn 1 point into degrees and it will be W. $11^{\circ} 15^{\prime} \mathrm{S}$.; or suppose the bearing was given S.S.E., in this case it would be 6 points from east, and turned into degrees would be E. $67^{\circ} 30^{\prime} \mathrm{S}$. After getting the bearing by compass into proper form, proceed to find the correction of the compass in the following manner.

Eighth. If the true amplitude and sun's bearing from ship are both north or both south, subtract the less from the greater for the correction of the compass.

Ninth. If the true amplitude and sun's bearing are one north and the other south, add them for the correction.

Tenth. If the true amplitude is reckoned from the east, and the sun's bearing by compass from the west, or vice versa, add them together and take the sum from 180°, the remainder will be the correction of the compass.

Eleventh. Name this correction east, when the sun's true amplitude is on the right-hand of the sun's bearing from ship, and west when it is on the left-hand.

Twelfth. The correction of the compass is deviation and variation combined.

Thirteenth. To find the deviation underneath the correction of the compass, place the variation for that locality from the chart. Then if one is east and the other west, add them together, and the sum is the deviation; but if they are of like names, that is, both east or both west, subtract them for the deviation.

Fourteenth. To know if the deviation is east or west, draw the compass and lay off the variation to the left of north if westerly, but to the right of north if easterly; lay off the correction in the same manner; then if the correction is on the right-hand of the variation, the deviation is easterly, but if to the left, it is westerly deviation.

Note.-The deviation thus found must only be applied to that point of the compass the ship's head was at when the observation was made. Observe carefully how the examples are worked out, and you will seldom make a mistake.

Ex. 1. 1878, April 28th, at $6 \mathrm{~h}: 56 \mathrm{~m}:$ P.M., apparent time at ship in latitude $43^{\circ} 40^{\prime} \mathrm{S}$., and longitude $6^{\circ} 30^{\prime} \mathrm{E}$. The sun's bearing setting was W. t S. Required the true amplitude, the correction and deviation of the compass. Variation per chart $22^{\circ} \mathrm{W}$.
н. м.

Deviation... $44^{\circ} 46^{\prime}$ E. for the point of the compass her head was at when the - observation was made.

Ex. 2. 1878, Jauuary 1st, $9 \mathrm{~h}: 12 \mathrm{~m}:$ A.m., apparent time at ship in latitude $62^{\circ} 10^{\prime} \mathrm{S}$., longitude $138^{\circ} 00^{\prime} \mathrm{W}$. The sun's bearing rising was S . $\frac{1}{2} \mathrm{~W}$. Required the true amplitude, the correction and deviation of the compass. Variation per chart $45^{\circ} \mathrm{W}$.

Jan. 1, App. T. ship 912 A.m. A.M. at ship... +12
Dcc. 31, Ast. time 2112 Longitude $138^{\circ} 00^{\prime} \mathrm{W} .912$

$$
\begin{aligned}
& \text { Sun............. } 3024 \\
& \text { Less, } 24 \mathrm{~h} . \mathrm{C}24
\end{aligned}
$$

Gr'h time. Jan. 1st, 624

$$
\text { Deviation } \overline{6^{\circ} 07^{\prime}} \text { E. for the point her head was at. }
$$

Ex. 3. 1878, May 31 st , $7 \mathrm{~h}: 10 \mathrm{~m}$: P. M., apparent time at ship, in latitude $40^{\circ} 26^{\prime} \mathrm{N}$., longitude $68^{\circ} 15^{\prime} \mathrm{W}$., the sun's bearing setting was W. $\frac{3}{4} \mathrm{~N}$. Rcquired the true amplitude, the correction and deviation of the compass. Variation per chart, $8^{\circ} \mathrm{W}$.

Ans. True amplitude W. $29^{\circ} 30^{\prime}$ N.; correction, $21^{\circ} 04^{\prime}$ E.; deviation, $29^{\circ} 04^{\prime}$ E.
Ex. 4. 1878, September 5th, 6h:20: A.m., apparent time at ship, in latitude $46^{\circ} 05^{\prime} \mathrm{N}$., longitude $37^{\circ} 45^{\prime}$ E., the sun's bearing rising was E. $\frac{3}{4} \mathrm{~S}$. Required the correction and deviation of the compass. Variation per chart, $4^{\circ} \mathrm{W}$.

Ans. $14^{\circ} 24^{\prime}$ West.
Ex. 5. 1878, September 23d, 5h:43m: A.M., apparent time at ship, in latitude $53^{\circ} 57^{\prime}$ N., longitude $17^{\circ} 15^{\prime} \mathrm{E}$., the sun's bearing rising was E. Required the correction and deviation of the compass. Variation per chart, $11^{\circ} \mathrm{W}$.

Ans. $11^{\circ} 0^{\prime} \mathrm{E}$.
Ex. 6. 1878, October 15th, 6h:39m: P.m., apparent time at ship, in latitude $58^{\circ} 04^{\prime} \mathrm{N}$., longitude $173^{\circ} 30^{\prime} \mathrm{E}$., the sun's bearing setting was W. $\frac{1}{4} \mathrm{~N}$. Required the correction and deviation of the compass. Varirtion per chart $10^{\circ} \mathrm{E}$.

Ans. True amplitude W. $16^{\circ} 14^{\prime} \mathrm{S}$. ; correction, $19^{\circ} 03^{\prime} \mathrm{W}$.; deviation, $29^{\circ} 03^{\prime} \mathrm{W}$.
Ex. 7. 1878, May 29th, $6 \mathrm{~h}: 33 \mathrm{~m}:$ A.M., apparent time at ship, in latitude $0^{\circ} 0^{\prime}$, longitude $126^{\circ} 45^{\prime} \mathrm{W}$., the sun's bearing rising E. $\frac{1}{2} \mathrm{~S}$. Required the correction and deviation of the compass. Variation of the chart, 5° E.

Ans. $32^{\circ} 17^{\prime} \mathrm{W}$.
Ex. 8. 1878, June 21st, $9 \mathrm{~h}: 40 \mathrm{~m}$: P.M., apparent time at ship, in latitude 62° 29^{\prime} N., longitude $60^{\circ} 45^{\prime}$ W., the sun's bearing setting was N.N.E. $\frac{1}{2}$ E. Required the correction and deviation of the compass. Variation per chart, $53^{\circ} \mathrm{W}$.

Ans. $5^{\circ} 40^{\prime} \mathrm{W}$.

Note. - When the latitude is $0^{\circ} 0^{\prime} 0^{\prime \prime}$ the doclination is the sun's true amplitude, reckoned from the east when the observation is made in the moruing; west if made in the afternoon; north or south according to the declination. When the sun's declination is $0^{\circ} 0^{\prime} 0^{\prime \prime}$ the sun's true amplitude is east when the observation is made in the morning; west if inade in the sfternoon.

CORRECTION AND DEVIATION OF THE COMPASS BY AN AZIMUTH.

(Use Table II. for working out Azimuth.)

First. To the mean time at ship add the longitude if west, and subtract it if east, in the same manner as shown in working amplitude, for finding the mean time at Greenwich; be sure and always date it.

Secont. To the observed altitude apply the index error first (if any); next the dip (Table VII.), always to be subtracted; then the refraction (Table VI.), also subtracted. Sun's parallax (Table VIII.) that add always. Sun's semi-diameter for the day of the month, from the Nautical Almanac, always to be added to the sun's lower limb, and subtracted from the upper limb, that will give the sun's true altitude.

Third. Take the sun's declination from page $2 d$ of the month, and correct it by the hourly difference as before shown in amplitude, and find the polar distance as follows: if the declination and the latitude are of the same name, take the declination from 90°; but if of contrary names add the declination to 90°. Then add together the sun's true altitude, the latitude and the polar distance, divide this sum by 2 and call it the half sum, then take the difference between the half sum and the polar distance and call it the remainder.

Fourth. Now add together the
Secant (Table II.) of the true altitude.
Secant (Table II.) of the latitude. To the nearest mile only. Co-sine (Table II.) of the half sum. Co-sine (Table II.) of the remainder.

Fifth. Half the sum of these four logarithms will give the sine (Table II.) of half the true azimuth, which double and call it north in south latitude, and south in north latitude; east when the time is A.m.; west when the time is P.m.

Sixth. Subtract the true bearing and bearing by compass when they have the same name for the correction.

Seventh. If one bearing is north and the other south, take the true azimuth (that is, the true bearing) from 180°, and change the north or south name only. Then the difference is the correction;
except one bearing is east and the other west, when the sum of the two bearings is the correction.
Note.-Be careful when taking the true bearing from 180°, you do not change the east or west 1:ame, only the north and south.

Eighth. The correction will be easterly when the true bearing is on the right-hand of the bearing by compass; westerly when on the left.

Ninth. If the correction and variation are of the same name, subtract them for the deviation. But if they are of different names, add them for the deviation.

Tenth. To know if the deviation is easterly or westerly, draw the compass and lay off the variation to the left of north if westerly, but to the right of north if easterly; lay off the correction in the same manner; then if the correction is on the right-hand of the variation, the deviation is easterly, but if to the left-hand, it is westerly deviation.

Note.-Bear in mind that azimuths reckon from north and south points of the compass, not the same as amplitudes. When the latitude is 0 in an azimuth, assume a name for $i t$, taking care to use the name when naming the true azimuth. Name the true azimuth opposite to the name you have assumed, and proceed without any latitude.

Ex. 1. 1878, June 4th, 6h: 8m: p.M., mean time at ship, iu latitude $47^{\circ} 30^{\prime}$ N., longitude $16^{\prime} 00^{\prime} \mathrm{W}$. The sun's bearing by compass was W. $\frac{1}{4} \mathrm{~N}$. Altitude of sun's lower limb $33^{\circ} 44^{\prime} 40^{\prime \prime}$. Index error - $2^{\prime} 20^{\prime \prime}$. Eye 19 feet. Required the true azimuth, eorrection and deviation of the compass. Variation per chart, $4^{\circ} \mathrm{W}$.

Ex. 2. 1878, July 2d, 8h:17m: P. M., mean time at ship in latitude $61^{\circ} 10^{\prime} \mathrm{N}$. , longitude $51^{\circ} 15^{\prime} \mathrm{W}$. The sun's bearing by eompass was N. $\frac{1}{2} \mathrm{E}$. Altitude of the sun's lower limb $5^{\circ} 35^{\prime} 15^{\prime \prime}$. Eye 19 feet. Requircd the true azimuth, correetion and deviation of the compass. Variation per ehart, $56^{\circ} \mathrm{W}$.

Ex. 3. 1878, August 20th, $9 \mathrm{~h}: 40 \mathrm{~m}$: A. m., mean time at ship in latitude $38^{\circ} 30 \mathrm{~S}$., longitude $95^{\circ} 15^{\prime}$ E., the sun's bearing by compass was N.E. by E. Altitude sun's lower limb $25^{\circ} 30^{\prime} 00^{\prime \prime}$. Eye 20 feet. Required the true azimuth, correction and deviation of the eompass. Variation per chart, $16^{\circ} \mathrm{W}$.
Ans. True azimuth N. $46^{\circ} 22^{\prime}$ E.; correction, $9^{\circ} 53^{\prime}$ W.; deviation, $6^{\circ} 07^{\prime}$ E.
Note.-When the correction and variation per chart are contrary names, add them for the deviation.
Ex. 4. 1878, November 11th, $4 \mathrm{~h}: 5 \mathrm{5m}$: p.m., mean time at ship in latitude $32^{\circ} 30^{\prime} 45^{\prime \prime} \mathrm{N}$., longitude $45^{\circ} 30^{\prime} \mathrm{W}$., the sun's bearing by eompass was $\mathrm{W} . \frac{1}{2} \mathrm{~N}$. Altitude sun's lower limb $15^{\circ} 55^{\prime} 30^{\prime \prime}$. Index crror $+1^{\prime} 40^{\prime \prime}$. Eye 20 feet. Required the true azinuth, correction and deviation of the compass. Variation per chart, $14^{\circ} \mathrm{W}$.

Ans. True azimuth S. $56^{\prime} 12^{\prime} \mathrm{W}$.; correction, $39^{\circ} 26^{\prime} \mathrm{W}$.; deviation, $23^{\circ} 26^{\prime} \mathrm{W}$.
Ex. 5. 1878, Dceember 15th, $8 \mathrm{~h}: 51 \mathrm{~m}:$ A.m., mean time at ship in latitude $48^{\circ} 56^{\prime} \mathrm{N}$., longitude $59^{\circ} 17^{\prime} 30^{\prime \prime} \mathrm{W}$., the sun's bearing by eompass was S . Altitude sun's lower limb $12^{\circ} 16^{\prime} 30^{\prime \prime}$. Index error - $3^{\prime} 10^{\prime \prime}$. Eye 20 feet. Required the true azimuth, correction and deviation of the compass. Variation per eliart, $31^{\circ} \mathrm{W}$.

Ans. True azimuth S. $29^{\circ} 5 \beth^{\prime}$ E.; correction $29^{\circ} 52^{\prime}$ W.; Deviation, $1^{\circ} 08^{\prime}$ E.
Ex. 6. 1878, June 17th, $3 \mathrm{lh}: 40 \mathrm{~m}$: P.m., mean time at ship in latitude $29^{\circ} 30^{\prime} \mathrm{N}$., longitude $125^{\circ} 45^{\prime}$ E., the sun's bearing by eompass was N. W. $\frac{1}{2} \mathrm{~N}$. Altitude sun's lower limb $11^{\circ} 30^{\prime} 20^{\prime \prime}$. Index error $+1^{\prime} 29^{\prime \prime}$. Eye 20 feet. Required the true azimuth, correction and deviation of the compass. Variation per ehart, $2^{\circ} \mathrm{W}$.

Ans. True azimuth S. $110^{\circ} 26^{\prime} \mathrm{W}$.; correetion, $30^{\circ} 12^{\prime} \mathrm{W}$.; deviation, $28^{\circ} 12^{\prime} \mathrm{W}$.
Ex. 7. 1878, December 10th, $9 \mathrm{~h}: 10 \mathrm{~m}:$ A.m., mean time at ship in latitude $60^{\circ} 10^{\prime} \mathrm{N}$., longitude $169^{\circ} 10^{\prime} 30^{\prime \prime}$ E., the sun's bearing by compass was S.E. by S. Altitude sun's lower limb $4^{\circ} 20^{\prime} 30^{\prime \prime}$. Index error $+1^{\prime} 20^{\prime \prime}$. Eye 20 feet. Required the true azimuth, correction and deviation of the eompass. Variation per elart, 12° E.
Ans. True azimuth S. $23^{\circ} 26^{\prime}$ E.; correction, $10^{\circ} 19^{\prime}$ E.; dcviation, $1^{\circ} 41^{\prime}$ W.
Nore. - The deviation found is for that point of the compass the ship's head was at when the observation was made.

LATITUDE BY THE MERIDIAN ALTITUDE OF THE SUN.

First. Reduce the ship's longitude into time by multiplying the degrees by 4 and dividing by 60.

Second. In page one of the month, Nautical Almanac (in this book) find the sun's declination for that day, and the hourly difference from the column of difference on the right; multiply this hourly difference by the hours and tenths of an hour of the longitude in time; point off from the right, the number of figures equal to the number of decimals on the hourly difference and longitude in time, the remaining figures will be seconds, which divide by 60 when it exceeds 60 , and you have the correction, to be added to the declination when the declination is increasing, but subtracted when decreasing and in west longitude only. When the longitude is east, you must reverse the way of applying the correction; that is, when the declination is increasing subtract the correction, and when decreasing add the correction.
Note.-See Table XII. for reducing the sun's declination at any meridian.
Third. To the observed altitude apply the index error of the sextant (if any) according to the sign + add, or - subtract.

Fourth. From Table VII. get the dip for the height of the eye, which is always subtracted.

Fifth. From Table XIII. get the correction for apparent altitude, this, alșo, always subtracted, (this correction is the refraction and parallax,) or take out the refraction from Table VI. which subtract, and the sun's parallax, Table VIII. which is always to be added.

Sixth. From page two of the month, Nautical Almanac (this book), get the sun's semi-diameter for that day, and add it to the altitude of the sun's lower limb, but subtract it if the upper limb is observed. This is called the true altitude of the sun's centre.

Seventh. Take the true altitude from 90°, which will give the sun's zenith distance, and give it the opposite name to the bearing of the sun; that is, if the sun bears north the zenith distance will be south, and if south call it nortll.

Eighth. To find the latitude, add the zenith distance and declination together when they are of the same name, but if one is north and the other south, subtract the less from the greater and call the latitude the same name as the greater.

Ex. 1. 1878, August 10th, in longitude $124^{\circ} 30^{\circ}$ W. the observed meridian altitude of the sun's lower limb was $37^{\circ} 10^{\prime} 30^{\prime \prime}$, bearing north, the index error + $2^{\prime} 40^{\prime \prime}$. Height of the eye 20 feet; required the latitude.

$\begin{gathered} \text { Longitude } . .124^{\circ} 30^{\prime} \mathrm{W} . \\ \times \quad 4 \\ 60) 498^{\circ} 00 \end{gathered}$	Sun'sdec.Aug. 10 15 $5^{\circ} 32^{\prime} 46^{\prime \prime} \mathrm{N}$. Cor. dec........ $15^{\circ} 26^{\prime} 41^{\prime \prime} \mathrm{N}$.
Long. in time 8h: 18 m :	

Ex. 2. I878, January 14th, in longitude $51^{\circ} 00^{\prime}$ W. the observed meridian altitude of the sun's lower limb was $78^{\circ} 14^{\prime} 10^{\prime \prime}$, bearing south, index error $-5^{\prime} 50^{\prime \prime}$. Eye 18 feet; required the latitude.

Ans. Sun's cor. dec. $21^{\circ} 15^{\prime} 10^{\prime \prime} \mathrm{S}$. ; latitude $9^{\circ} 35^{\prime} 34^{\prime \prime} \mathrm{S}$.
Ex. 3. 1878, September 23d, in longitude $159^{\circ} 00^{\prime}$ W. the observed meridian altitude of the sun's lower limb was $70^{\circ} 54^{\prime} 20^{\prime \prime}$, bearing north, index error - 3^{\prime} $45^{\prime \prime}$. Eye 21 feet; required the latitude.

Ans. Sun's cor. dec. $0^{\circ} 17^{\prime} 35^{\prime \prime} \mathrm{S}$. ; latitude $19^{\circ} 15^{\prime} 41^{\prime \prime} \mathrm{S}$.
Ex. 4. 1878, May 20th, in longitude $5^{\circ} 43^{\prime}$ W. the observed meridian altitude of the sun's upper limb was $54^{\circ} 23^{\prime} 10^{\prime \prime}$, bearing south, index error $+2^{\prime} 10^{\prime \prime}$ Eye 20 feet; required the latitude.

Ans. Sun's cor. dec. $20^{\circ} 01^{\prime} 00^{\prime \prime} \mathrm{N}$.; latitude $55^{\circ} 56^{\prime} 23^{\prime \prime} \mathrm{N}$.
Ex. 5. 1878, January 20th, in longitude $5^{\circ} 20^{\prime}$ W. the observed meridian altitude of the sun's lower limb was $22^{\circ} 10^{\prime} 30^{\prime \prime}$, bearing south; index error $-3^{\prime} 10^{\prime \prime}$. Eye 20 feet; required the latitude.

Ans. Sun's cor. dee. $20^{\circ} 04^{\prime} 59^{\prime \prime}$ S.; latitude $47^{\circ} 37^{\prime} 53^{\prime \prime} \mathrm{N}$.
Ex. 6. 1878, March 20th, in longitude $139^{\circ} 20^{\prime}$ W. the observed meridian altitude of the sun's upper limb was $31^{\circ} 19^{\prime} 40^{\prime \prime}$, bearing south, index error $+4^{\prime} 15^{\prime \prime}$. Eye 20 feet; required the latitude.

Aus. Cor. dec. $0^{\circ} 3^{\prime} 38^{\prime \prime} \mathrm{N}$.; latitude $59^{\circ} 01^{\prime} 31^{\prime \prime} \mathrm{N}$.

Ex. 7. 1878, November 16th, in longitude $171^{\circ} 0 y^{\prime}$ E., the observed meridian altitude of the sun's lower limb was $71^{\circ} 43^{\prime} 10^{\prime \prime}$, bearing Sonth, index error $1^{\prime} 20^{\prime \prime}$. Height of the cye 24 feet; required the latitude.

Ex. 8. 1878, March 31st, in longitude $155^{\circ} 45^{\prime}$ E., the observed meridian altitude of the sun's lower limb was $68^{\circ} 55^{\prime} 10^{\prime \prime}$, bearing south, index error $-5^{\prime} 40^{\prime \prime}$. Eye 19 feet; required the latitude.

Ans. Sun's cor. dec., $4^{\circ} 3^{\prime} 3^{\prime \prime} \mathrm{N}$.; latitude, $25^{\circ} 02^{\prime} 01^{\prime \prime} \mathrm{N}$.
Ex. 9. 1878, September 23rd, in longitude $168^{\circ} 00^{\prime}$ E., the observed meridian altitude of the sum's upper limb was $56^{\circ} 12^{\prime} 20^{\prime \prime}$, bearing north, index crror $+3^{\prime}$ $3 S^{\prime \prime}$. Eye 20 feet; required the latitude.

Ans. Sun's cor. dec., $0^{\circ} 3^{\prime} 40^{\prime \prime} \mathrm{N}$.; latitude, $34^{\circ} 01^{\prime} 12^{\prime \prime} \mathrm{S}$.
Ex. 10. 1878, Mareh 20th, in longitude $45^{\circ} 30^{\prime}$ E., the observed meridian altitude of the sun's lower limb was $63^{\circ} 5^{\prime} 10^{\prime \prime}$, bearing north, index error $-4^{\prime} 20^{\prime \prime}$. Eye 22 feet; required the latitude.

Ans. Sun's cor. dec., $0^{\circ} 8^{\prime} 30^{\prime \prime} \mathrm{S}$. ; latitude, $26^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{S}$.
Ex. 11. 1878, July 15th, in longitude $151^{\circ} 22^{\prime}$ E., the observed meridian altitude of the sun's lower limb was $34^{\circ} 30^{\prime} 20^{\prime \prime}$, bearing north, index error $+4^{\prime} 30^{\prime \prime}$. Eye 20 feet; required the latitude.

Ans. Sun's cor. dce., $21^{\circ} 35^{\prime} 34^{\prime \prime} \mathrm{N}$.; latitude, $33^{\circ} 39^{\prime} 22^{\prime \prime} \mathrm{S}$.
Ex. 12. 1878. June 10th, in longitude $130^{\circ} 55^{\prime}$ E., the observed meridian altitude of the sun's npper limb was $55^{\circ} 25^{\prime} 40^{\prime \prime}$, bearing north, index crror $-2^{\prime} 57^{\prime \prime}$. Eye 20 fect; required the latitude.

Ans. Sun's cor. dlec., $23^{\circ} 0^{\prime} 27^{\prime \prime}$ N. ; latitude, $11^{\circ} 57^{\prime} 28^{\prime \prime}$ S.

TO FIND THE LATITUDE BY REDUCTION TO THE MERIDIAN.

Nore.-Tables required: \log rising Table XVII; log co-sine Table 1I; log co-sine Table II; log natural number Table $1 ; \log$ natural sine Table X1V; natural co-sine Table XIV.
First. Correct the watch for what it is slow or fast for apparent time, and then apply the ship's run, viz: The difference of longitude made (in time) to the apparent time. If the time thus made is east, add, and if west, subtract; remember going east your time is behind, going west, your time will be too fast for the place you have got to. This will give the hour, angle, or time from noon. If the observation was made in the afternoon that is P.3.

Second. Find the apparent time at Greenwich by turning the longitude into time by the usual method, viz: Multiplying by 4 and dividing by 6 ; if the longitude in time is west, add it to the hour angle (or apparent time at ship); and if east, subtract it.

Third. If the time is a.m. add 12 hours to the time shown by watch, and change the date (as per rule) then apply the rate of the watch; if slow, add; if fast, subtract; next the ship's run if east, add; if west, subtract. This will give the apparent time at ship, which is to be subtracted from 24 hours, for the hour angle (or time from noon.)

Fourth. To the apparent time at ship apply the longitude (in time), add if west, subtract if east; should the sum exceed 24 hours subtract 24 hours from the sum, and the remainder will be the Greenwich apparent time of the same name as date at ship.

Fifth. Correct the sun's declination for the Greenwich time (as per rule), from page one of the month, Nautical Almanac, by the hourly difference.

Sixth. Find the sun's true altitude by applying the index error, dip. correction from Table XIII and sun's semi-diameter.

Seventh. Add together the log rising of the hour angle (Table XVII), log co-sine of the latitude, and co-sine of the sun's corrected declination (Table II). The sum of these logs (less tens in their index) will be the log of a natural number (Table I), to be added to the natural sine of the sun's true altitude (Table XIV), which gives the natural co-sine (Table XIV) of the sun's meridian zenith distance, of the opposite name to the bearing of the sum.

Eighth. The zenith distance and the sun's corrected declination will give the latitude. If of the same name add them; if one north and the other south, subtract the less from the greater, and call the latitude after the greater.

Ex. 1. 1878, June 20th, P.M. at ship, in latitude by account $27^{\circ} 30^{\prime}$ S., longitude $75^{\circ} 30^{\prime} \mathrm{W}$. The observed altitude of the sun's lower limb north of the observer was $38^{\circ} 20^{\prime} 00^{\prime \prime}$. Eye 16 feet. Time by watch $0 \mathrm{~h}: 29 \mathrm{~m}: 01 \mathrm{~s}$: P.m., which had been found fast for apparent time at ship $1 \mathrm{~m}: 12 \mathrm{~s}$. The difference of longitude made since to the East was 9 miles; required the latitude by the reduction to the incridian.

Latitude..... 27° 34́s.

Ex. 2. 1878, October 28th, A.M. at ship, in latitude by account $25^{\circ} 40^{\prime}$ N., longitude $45^{\circ} 35^{\prime} \mathrm{W}$. The observed altitude of the sun's lower limb south of the obscrver was $50^{\circ} 53^{\prime} 20^{\prime \prime}$. Eye 20 feet. Time by watch $11 \mathrm{~h}: 23 \mathrm{~m}: 30 \mathrm{~s}:$ A.m., which was slow to apparent time at ship $19 \mathrm{~m}: 00 \mathrm{~s}$., and the difference of longitude made since to the east was 40 miles; required the latitude by the reduction to the meridian.

Ex. 3. 1878, January 1st, A.m. at ship in latitude by account $6^{\circ} 0^{\prime}$ N., longitude $87^{\circ} 45^{\prime}$ west. The observed altitude of the sun's lower limb was $60^{\circ} 20^{\prime} 10^{\prime \prime}$ south of the observer. Eye 16 feet. Time by watch $11 \mathrm{~h}: 38 \mathrm{~m}: 20 \mathrm{~s}:$ A.m., which was slow for apparent time at ship $1 \mathrm{~m}: 20 \mathrm{~s}$; the difference of longitude made since to the west was 2 miles; reguired the latitude by reduction to the meridian.

Ans. $6^{\circ} 3^{\prime} \mathrm{N}$.
Ex. 4. 1878, March 6th, P.m. at ship in latitude by account $42^{\circ} 2^{\prime}$ S., longitude $166^{\circ} 0^{\prime}$ west. The observed altitude of the sun's lower limb north of the observer was $52^{\prime} 48^{\prime} 30^{\prime \prime}$. Index error $+1^{\prime} 20^{\prime \prime}$. Eye at 20 feet. Time by watch $0 \mathrm{~h}: 25 \mathrm{~m}$: 30s: PM., which was fast for apparent time at ship 1 m : 40 s . The difference of longitude made since to the east was 38 miles; required the latitude by reduction to the meridian.

Ans. $41^{\circ} 55^{\prime} \mathrm{S}$.
Ex. 5. 1878, October 20th, A.M. at ship in latitude by account $23^{\circ} 32^{\prime}$ N., longitude $135^{\circ} 50^{\prime}$ east. The observed altitude of the sun's lower limb south of the observer was $55^{\circ} 20^{\prime} 10^{\prime \prime}$. Index error $+1^{\prime} 10^{\prime \prime}$. Eye 20 feet. Time by watch $0 \mathrm{~h}: 20 \mathrm{~m}: 00 \mathrm{~s}$: which was fast $48 \mathrm{~m}: 00 \mathrm{~s}$: for apparent time at ship. The difference of longitude made since to the west was 25 miles; required the latitude by the reduction to the meridian.

An. $23^{\circ} 26^{\prime} \mathrm{N}$.
Ex. 6. 1878, September 24th, A.M. at ship in latitude by account $36^{\circ} 00^{\prime}$ S., longitude $159^{\circ} 30^{\prime}$ east. The observed altitude of the sun's lower limb north of the observer was $53^{\circ} 45^{\prime} 35^{\prime \prime}$. Eye at 20 fcet. Time by watch $10 \mathrm{~h}: 20 \mathrm{~m}: 30 \mathrm{~s}$: A.m., which had been found to be slow $1 \mathrm{lh}: 20: 10 \mathrm{~s}$: of apparent time at ship. The difference of longitude made to the east was 25 miles after the error on apparent time at ship was determined. Index error $-1^{\prime} 20^{\prime \prime}$; required the latitude by the reduction to the meridian.
Ans. $36^{\circ} 11^{\prime}$ S.

TO FIND THE LATITUDE BY THE MERIDIAN ALTITUDE OF A STAR.

First. Correct the observed altitude for index error (when any).
Second. Dip of the horizon (Table VII).
Third. Correction for apparent altitude (Table XIII).
Note.- Be careful in taking out the correction from this table not to take out the sun's correction, in place of the star's correction.

Fourth. Take the star's true altitude from 90° for the zenith distance, and call it of contrary name to the bearing of the star when observed.

Fifth. To the zenith distance apply the star's declination, found in the (Table of Fixed Stars) pages (242 to 245) of the American Ephemeris and Nautical Almanac for 1878.

Note.-The sign +* (placed before the declination) stands for north declination. The sign -* stands for south declination.

Sixth. If the declination and zenith distance are of same name, add them for the latitude; when of contrary names, subtract them, and call the latitude of the same name as the greater.

Ex. 1. January 1st, 1878, the meridian altitude of the star, a Virginis (Spica) was $31^{\circ} 27^{\prime} 40^{\prime \prime}$ bearing south, index error $+5^{\prime} 20^{\prime \prime}$. Eye at 20 feet. Required the latitude in.

Observed altitude Index error.	$\begin{aligned} & 31^{\circ} 27^{\prime} 40^{\prime \prime} \mathrm{S} . \\ & +\quad 520 \end{aligned}$		
Dip. Table VII.		33	
Correctio	312843		
Star's true altitude...... .	$\begin{array}{lll} 31 & 27 & 10 \\ 90 & 00 & 00 \end{array}$		
Zenith distance........... Star's declination.	$\begin{array}{lll} 58 & 32 & 50 \mathrm{~N} . \\ 10 & 31 & 25+\mathrm{S} . \end{array}$		
atitude		${ }^{\circ} 01^{\prime}$	$5^{\prime \prime}$

Ex. 2. January 1st, 1878, the meridian altitude of the star, a Aurigæ (Capella) was $87^{\circ} 30^{\prime} 40^{\prime \prime}$ bearing north. Eye 20 feet. Required the latitude in.

Ans. Latitude, $43^{\circ} 18^{\prime} 38^{\prime \prime} \mathrm{N}$.

Ex. 3. January 1st, 1878, the meridian altitude of the star, a Geminor (Castor) was $70^{\circ} 50^{\prime} 30^{\prime \prime}$ bearing south, index error $-3^{\prime} 10^{\prime \prime}$ to subtract. Eye 20 feet. Required the latitude in.

Ans. $51^{\circ} 26^{\prime} 12^{\prime \prime} \mathrm{N}$.
Ex. 4. January 1st, 1878, the meridian altitude of the star, b Orionis (Rigel) was $50^{\circ} 31^{\prime} 50^{\prime \prime}$ bearing north, index error $+2^{\prime} 10^{\prime \prime}$ to add. Eye 18 feet. Required the latitude in.
Ans. $47^{\circ} 51^{\prime} 39^{\prime \prime} \mathrm{S}$.
Ex. 5. January 1st, 1878, the meridian altitude of the star, b Geminor (Pollux) was $33^{\circ} 30^{\prime} 20^{\prime \prime}$ bearing north. Eye 18 feet. Required the latitude in.
Ans. $28^{\circ} 16^{\prime} 01^{\prime \prime}$ S.
Ex. 6. January 1st, 1878, the meridian altitude of the star, a Argus (Conopus) was $30^{\circ} 10^{\prime} 15^{\prime \prime}$ bearing south, index error-- $3^{\prime} 15^{\prime \prime}$ to subtract. Eye 16 feet. Required the latitude in.

Ans. $7^{\circ} 20^{\prime} 42^{\prime \prime} \mathrm{N}$.
Ex. 7. January 1st, 1878, the meridian altitude of the star, a Aquilæ (Altair) was $67^{\circ} 42^{\prime} 30^{\prime \prime}$ bearing south, index error $-3^{\prime} 40^{\prime \prime}$ to subtract. Eye at 20 feet. Reqnired the latitude in.

Ans. $30^{\circ} 58^{\prime} 42^{\prime \prime} \mathrm{N}$.

TO FIND THE LONGITUDE BY CHRONOMETER.

Rules for finding the Accumulated Rate, and whether the Chronometer is Losing or Gaining, etc.

First. Take the given time by the chronometer, and apply the error given on the last date.

Second. If fast the error is to be subtracted, if slow the error is to be added; then you have the chronometer regulated up to the time the last error was given.

Third. Get the difference between the two errors and their dates; when both errors are slow or both fast, subtract; one slow and the other fast add them together, then bring this difference into seconds (if in minutes and seconds) by multiplying by 60 , then the difference in seconds between the two errors is to be divided by the number of days between the given errors, and to what remains annex a cipher, and divide again for the tenths or decimal part of the daily rate.

Fourth. Next, the number of days from the date of the last error and date of the chronometer is to be multiplied by the daily rate, (taking in the hours of the chronometer time as a decimal of a day by annexing a cipher to the hours, and dividing by 24), after cutting off the decimals, you have the accumulated rate from the last error given to the time shown by chronometer, which is to be added to the chronometer time when losing and subtracted when gaining.

Fifth. To know when gaining or losing, use the following rules:
Losing. $\left\{\begin{array}{l}\text { When the chronometer is slow at lst date, and at } 2 \mathrm{~d} \text { date still slower. } \\ \text { When the chronometer is fast at lst date, and at } 2 \mathrm{~d} \text { date not so fast. } \\ \text { When the }\end{array}\right.$ (When the chronometer is fast at lst date, and at 2 d date is slow.
GAining. $\left\{\begin{array}{l}\text { When the chronometer is fast at } 1 \text { st date, and at } 2 \mathrm{~d} \text { date still faster. } \\ \text { When the chronometer is slow at lis date, and at } 2 \mathrm{~d} \text { date not so slow. } \\ \text { When the chronometer is slow at lst date, }\end{array}\right.$ When the chronometer is slow at lst date, and at 2 d date is fast.

Ex.1. Suppose the first date to be July 1st, and the second date September 20th. Interval or elapsed time 81 days.

Days elapsed...... 81)113.4(1s. 4 daily rate losing. 81

Ex. 2. H. Mr. S.	н. M. s.
January 28th...... 32718	Slow, January 1st........ 12555 , Gaining
January lst, slow.. 12555	Slow, January llth...... . 12520$\}$ Gaining.
M. T. G., Jan. 1st. 45313	As 10 days is to. $\ldots \ldots \ldots \ldots \ldots=35.27 .2$
Gain in 27d:5h.... - 135.2	Days from Jan. 1 to Jan. 28th. 27.2
M. T. G., Jan. 28th 45137.8	$\begin{aligned} & 247^{70} \\ & 70 \end{aligned}$
	1.0)95.2.0
	6.0)9.5.2
	Gain in 27.2 days........ 1.35

Ex. 3.

Difference lost.. . $153.4=1 \mathrm{~s} .4$ losing daily.

* Fast and slow, the sum is the difference.

Ex. 4.

Ex. 5.

> | July 1st, slow...... $\stackrel{\text { M. }}{5} 13.5$ |
| :--- |
| Sept. 20th, slow.... | 20.4 Slow and less slow, gaining.

Difference gained. $153.4=1 \mathrm{~s} .4$ gaining daily.
Ex. 6.

* Slow and fast, the sum is the difference.

RULES FOR FINDING THE LONGITUDE.

First. After finding the mean time at Greenwich take out the declination from page two of the month, Nautical Almanac (this book) (or from the American Almanac, 1878) and correct it by the hourly difference found on page one of the month; multiply this hourly difference by the mean time at Greenwich, after dividing the minutes by 6 , same as in azimuth; this will give the correction to be added to the declination when increasing, and subtract when decreasing. If correcting back from the following day, which may be done (when the hours of Greenwich time exceed 15); then by taking the mean time at Greenwich from 24 hours, you can get the next day's declination, and correct it back for what it wants (in time) of being noon of the next day, in which case you must subtract the correction when increasing, and add it when decreasing; this method has to be done on account of the difference for an hour in the Almanac being different in quantity
Second. Take out the equation of time from page two in the Almanac also, and correct it in the same manner as the declination; but when applying it to the apparent time at ship, always go by the rule at top of page one of the month in the Nautical Almanac.
Third. If the declination and latitude are both north or both south, the declination is to be taken from 90° for the polar distance; but if one is north and the other south, the declination must be added to 90° for the polar distance.

Fourth. Correct the sun's altitude in the same way as for the meridian altitude, first for index error (if any,) next the dip of the horizon (Table VII,) then the correction from (Table XIII), and sun's semi-diameter from the Nautical Almanac.

Fifth. Add together the true altitude, the latitude, and polar distance, divide this sum by 2 , and call it the half sum, then take the true altitude from this half sum and call it the remainder.

Note, -If the polar distance exceeds 90°, take the secant of the corrected declination, in place of the co-secant of the polar distance.

Sixth.
Add together.

Secant of the latitude. Co-secant of the polar distance. Co-sine of the half sum. Sine of the remainder.

To seconds.

Seventh. The sum of these four logs, rejecting 10 in their index, being added together will give the apparent time at ship in (Table XVIII), when a p.r. sight, and of the same date as the question; but if the sight be A.mr., the time thus found is to be taken from 24 hours for the apparent time at ship, which date one day back of the date at the head of the question.

Eighth. To the apparent time at ship apply the equation of time (according to the rule found at the top of page one, Nautical Almanac), and this will give the mean time w. ship.

Ninth. If the mean time at Greenwich is of the same date as mean time at ship, subtract the less from the greater, and that will be the longitude in time; but should either of the two times be of different dates, add 24 hours to whichever, is the greatest date before subtracting, then turn the time into degrees by Tatble XI, and name the longitude east, if Greenwich time is least ; and west, if Greenwich time is best.
Tenth. Should the longitude in time exceed 12 hours, take it from 24 hours, before turning it into degrees; do not forget to change its name. Ex. 1.

Mean time at ship. Mareh 5th. Mean time at Greenwich, Mareh 5th.	H. M. s. 201436
	71336
$=$	$\begin{aligned} & 130100 \\ & 2400 \end{aligned}$
Longitude in time	1059

Eleventh. To find the logs. for seconds, take the difference between the logs. for the given minutes, and the next higher number of minutes; multiply this difference by given number of seconds, and divide by 60 ; add the quotient to the \log. found for degrees and minutes, in the case of sine and secant; subtract it in the case of co-sine and co-secant. (See explanation of Table II.)
Twelfth. To reduce the latitude to the time of observation. Remember the latitude must always be reduced to the time of observation, and the usual method of doing this at sea, is to find the difference of latitude the ship has made in the interval between the time the sights were taken and the correct latitude obtained by observation at noon. With the course and distance sailed from time of sights enter (Table III) and find the difference of latitude in the latitude column, this difference is to be applied according to the course the slip has been steering; viz: When the sights are taken in the afternoon, and in north latitude, and sailing north, add the difference of latitude; when sailing south, subtract the difference of latitude. Thus you will have the correct latitude of the ship at the time of sights. To apply this rule in south latitude simply substitute south for north.

Thirteenth. To reduce the longitude by chronometer at time of sights to noon. Take the latitude in as a course, and the cleparture made in the interval, in the latitude column, the difference of longitude is found in the distance column. Apply this as follows:
Observation taken in the morning, in west longitude. Observation tafen in the afternoon, in west longitude.
\{ Sailing west, add.
\{ Sailing east, subtract. \{ Sailing west, subtract. \{ SuLing east, add.

To or from the longitude by chronometer, will give the longitude in at noon.
By substituting east for west, the same rule may be applied in east longitude.

Fourteenth. When the latitude and declination is $0^{\circ} 0^{\prime} 0^{\prime \prime} \mathrm{t}$ take the true altitude from 90°, and the zenith distance turned into time is the apparent time at slip if P.m., or taken from 24 hours for the apparent time if s.m. sights.

Ex. 1. 1878, January 2Sth, P.M., at ship in latitude $32^{\circ} 44^{\prime} 34^{\prime \prime}$ N. The observed altitude of the sun's lower limb was $22^{\circ} 3^{\prime} 20^{\prime \prime}$; index error $+1^{\prime} 02^{\prime \prime}$. Eye 20 feet Time by chronometer, 28d:3h:27m:18s., which was slow for mean noon at Greenwich, $1 \mathrm{~h}: 25 \mathrm{~m}: 555 \mathrm{~s}$., January lst.; and on Jauuary llth was slow for mean noon at Greenwich $1 \mathrm{~h}: 25 \mathrm{~m}: 20 \mathrm{~s}$. Required the longitude by elironometer.

	Slow Jan. Ist.... $\begin{array}{r}\text { H. M. } \\ \text { M. } \\ \text { 2. } \\ \text { S }\end{array}$	Sun's dec .. $18^{\circ} 9^{\prime} 9^{\prime \prime}$ s. Cor. for	H. dif. 39"٪ 4.86
Slow Jan. 11th... 12520	Slow Jan. 11th.. 12320	4h:52m.	
Gain in 17.2 days. $\begin{array}{r}46238 \\ -100 \\ \hline\end{array}$	Gain 10 days.... $=35$	$\text { Cor. dec..... } 18 \underset{9}{18} 50 \mathrm{c} 5 .$	$\begin{gathered} 318150 \\ 15900 \end{gathered}$
M. T. G., Jan. 28. 45138	Jan. 11th to 28th. $=17.2$	Pol. dis...... $108^{\circ} 5^{\prime} 56^{\prime \prime}$.0) $193^{\prime \prime} .1850$
	$\begin{aligned} & 24.0 \\ & 35 \end{aligned}$		8.18
	6.0)6.0.20		
-	Accumulated rate. 1.0.2		

Nots.-When p.ar, the sum of the four logarithms gives (in Table 18) the Apparent Time at ship of the same date.

Ex. 2. 1878, April 1st, A.m., at ship, in latitude $32^{\circ} 16^{\prime} 32^{\prime \prime}$ S. The observed altitude of the sun's lower limb was $32^{\circ} 16^{\prime} 20^{\prime \prime}$; index error $+1^{\prime} 35^{\prime \prime}$. Eye 18 feet. Time by chronometer, March 31st, Sh:30:32s., which was slow for mean noon at Greenwich 1h:24m: 12s., January 14th; and on February 13th, was slow $1 \mathrm{~h}: 20 \mathrm{~m}: 27 \mathrm{~s}$. for mean noon at Greenwich. Required the longitude by chronometer.

H. M. S.	Declination. $\AA^{\circ} 13^{\prime} 0^{\prime \prime} 3 \mathrm{~N}$ Correction.. +926\qquad	Hr. dif. . $\mathrm{F}^{\prime \prime} .03$
Slow............ 12027		$9 \mathrm{~h}: 45 \mathrm{~m} .=9.75$
" "		،6.،6،
Gain in 46.4 days $\times 7.5$ s. - 548	90	،6،
M. T. G., March 31st... 94511	Sun's P. D. 942229	
		$6.0) 56.5 .7925$
Jan. 14th, slow. . 12412		9.26
Feb. 13th, slow.. 12027		

Chr. gained in 30 dys 3.45
60
Divide by days, 30$) 222$ (7.5 gaiuing daily.

	$\underline{150}$	Eq. of time. Cor. for $9 \mathrm{~h}: 45 \mathrm{~m}$ -	$\begin{gathered} \text { S. } \\ 14.00 \\ 7.38 \end{gathered}$	Hr. dif. . . ${ }^{\text {0. }} .757$ $9 \mathrm{~h}: \mathbf{4 5 m}=9.75$
Obs. altitude..	... 32 16 ${ }^{2 \prime} 0$			
	+ " "	Cor.eq. time... 4	6.62	, , , ,
	" ، "			, , , , ,
	-			7.38075
	" "، "			
	$32{ }^{38} 381$			
	"، "،	$\begin{aligned} & \text { Secant } \\ & \text { Co-Sec. } \\ & \text { Co............ } \end{aligned}$		
	" ،، ،		Logarithms to Seconds.	
	" " "	Co-sine. 9.		
	470515	Sine.. . 0.		
-	$\begin{gathered} \text { H. M. S. } \\ 3.659 \end{gathered}$	Log.... $9 \underline{\underline{9.196961}}$		
	24			

A. T. ship, March 31st.

205301
"، "،

Longitude
$\overline{11157}=167^{\circ} 59^{\prime} 15^{\prime \prime}$ E. because Greenwich time is least.
Note. When A.M. sights, take the time (the four logarithms gives) from 24 hours for the apparent time at ship, and date it one day less than the date at head of question.

Ex. 3. $18 / \mathrm{s}$, December 10 th, P.M., at ship in latitude $40^{\circ} 20^{\prime}$ S. The observed altitude of the sun's upper limb was $28^{\circ} 45^{\prime} 20^{\prime \prime}$; index error, $+2^{\prime} 10^{\prime \prime}$. Lye 20 feet. Time by the chronometer, December 9 th, $19 \mathrm{~h}: 5 \mathrm{zm}: 3 \mathrm{ls}$: which was fast for mean noon at Greenwich 23m:00s: September 30th, and October 20th was fast for mean noon at Greenwich $25 \mathrm{~m}: 30 \mathrm{~s}$: Required the longitude by chronometer.

[^2]Ex 4. 1878, April 20th, A.M., at ship in latitude $46^{\circ} 15^{\prime}$ N. The observed altitude of the sun's lower limb was $29^{\circ} 8^{\prime} 20^{\prime \prime}$; index error - $1^{\prime} 22^{\prime \prime}$. Eye 20 feet. Time by chronometer, April 20th, 0h:50m:55s: which was fast for mean noon at Greenwich $50 \mathrm{~m}: 25 \mathrm{~s}$: Febrnary 21 st and on March 3 d was $50 \mathrm{~m}: 00 \mathrm{~s}$: fast for mean noon at Greenwich. Required the longitude by chronometer.

A.T.S. Apr. 19th, 200210

M.T.G. Apr.19th 24255 date before getting their difference for the longitude.

Longitude $\ldots . . .4 \mathrm{~h}: 1 \mathrm{~m}: 53 \mathrm{~s}:=60^{\circ} 28^{\prime} 15^{\prime \prime} \mathrm{W}$.

Ex. 5. 1878, September 22d, P.M., at ship in latitude $12^{\circ} 18^{\prime}$ S. The observed altitude of the sun's lower limb was $35^{\circ} 38^{\prime} 50^{\prime \prime}$; index error $+2^{\prime} 10^{\prime \prime}$. Eye at 20 feet. Time by chronometer, Sept. 21st, 17h:28m:30s., which was slow for mean noon at Greenwhich, 1h: $12 \mathrm{~m}: 56 \mathrm{~s}$. June 27 th, and on July 7th was slow 1h: 14m: 20 s. for mean noon at Greenwich. Required the longitude by chronometer.

[^3]Ex. 6. 1878, May 20th, A.M., at ship in latitude $56^{\circ} 50$ N. The observed altitude of the sun's upper limb was $30^{\circ} 12^{\prime} 30^{\prime \prime}$; index error $+2^{\prime} 40^{\prime \prime}$. Eye at 20 feet. Time by chronometer, May 19th, 22h: 17 m : 20s., which was slow for mean noon at Greenwich, 1h:21m:14s. February 18th, and on March 10th was slow $1 \mathrm{~h}: 20 \mathrm{~m}: 18 \mathrm{~s}$., for mean noon at Greenwich. Required the longitude by chronometer.

	(Mean time at Greenwich, May 19th.	23h :34m:19s.
	Polar distance	$69^{\circ} 59^{\prime} 23^{\prime \prime}$
Ans.	Sum of four logarithms	9.468138
	Mean time at ship, May 19th...	$19 \mathrm{~h}: 33 \mathrm{~m}: 41 \mathrm{~s} .$

Ex. 7. 1878 , November 18th, A.m., at ship in latitude $46^{\circ} 10^{\prime}$ S. The observed altitude of the sun's lower limb was $39^{\circ} 7^{\prime} 40^{\prime \prime}$; index error $+2^{\prime} 10^{\prime \prime}$. Eye 19 feet. Time by chronometer, November 17th, 13h:5m:10s., which was fast for mean noon at Greenwich, $16 \mathrm{~m}: 35 \mathrm{~s}$. September 4th, and on Scptember 14th was fast 15m: 10s. for mean noon at Greenwich. Required the longitude by chronometer.

Ex. 8. 1878, April lst, A.m., at ship in latitude $33^{\circ} 58^{\prime} 44^{\prime \prime}$ S. The observed altitude of the sun's lower limb was $33^{\circ} 14^{\prime} 50^{\prime \prime}$; index error - $1^{\prime} 30^{\prime \prime}$. Eye 21 feet. Time by chronometer, March 31 st , $7 \mathrm{~h}: 56 \mathrm{~m}$: 20 s. which was slow for nean noon at Greenwich, 1h:15m:07s. December 11th, 1877, and on January 10th was slow $1 \mathrm{~h}: 12 \mathrm{~m}$: 40 s . for mean noon at Greenwich. Required the longitude by chronometer.

	(Mean time at Greenwich, March 31st................. 9h:2m:26s.
	Sum of four logarithms. 9.150628
	Mean time at ship, March
	Longitude................................... $178^{\circ} 46^{\prime} 0^{\prime \prime}$ W.

EXAMINATION PAPERS.

The following six papers contain each, nine problems, and as the learner is supposed to have mastered in the foregoing pages all the rules necessary for their solution, it is now desirable that he work out successively the problems in these papers (calculating to within a few seconds), as they will be needed in his examination for master. or mate.

Ex． 1.
No． 1.

$\begin{aligned} & \text { 包 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	Coursms．		$\begin{array}{\|l\|} \hline \dot{4} \\ \stackrel{y}{\mathrm{H}} \end{array}$	Winds．		宏 育 A	Remaris，Etc．
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	S．by ${ }_{\text {\％}}$ W．	$\begin{array}{\|l} 4 \\ 5 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	West．	1	$8^{\circ} \mathrm{E}$ ．	A point． In latitude．．．．．．．．．． $10^{\circ} 1^{\prime} \mathrm{N}$ ． In longitude ．．．．．．． $9^{\circ} 40^{\prime} \mathrm{W}$ ． Bcaring by Comp．，N．by W．
5	S．by．E．$\frac{9}{4} \mathrm{E}$ ．	3	5	S．W．by W．	$1 \frac{1}{4}$	$14^{\circ} 15^{\prime}$ W	Head at N．N．W．Dev． $8^{\circ} 40^{\prime}$ W
6	＂،	3	5				Distance 20 miles．
7 8	＂	3 2 2	5	＂			Variation， $6^{\circ} \mathrm{E}$ ．
9	E．$\frac{1}{2}$ S．	4	5	N．by E．$\frac{1}{2}$ E．	$\frac{3}{4}$	$17^{\circ} 8^{\prime}$	
10		4	5				
11	＂	5	5	＂			
12	＂	5	5	＂			
1	S．E．${ }^{1} \mathrm{~S}$ S．	5	5	N．E．	$1 \frac{1}{2}$	$22^{\circ} 41^{\prime} \mathrm{W}$	，．－
2	＂${ }^{4}$	5	5	＂			
3	＂	5	5	＂			
4	＂	6	5	＂			
5	S．${ }^{\frac{1}{4} \mathrm{E}}$ ．	3	5	E．$\frac{1}{2}$ S．	13	$3^{\circ} 15^{\prime}$ \％．	
6 7		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	${ }_{5}^{5}$				
8	＂	4	${ }_{5}^{5}$	＂			A current set by compass S ．
9	S．S．E．$\frac{1}{4} \mathrm{E}$ ．	2	5	E．$\frac{1}{4} \mathrm{~N}$ ．	$\frac{3}{4}$	$9^{\circ} \mathrm{W}$ ．	$25^{\circ} \mathrm{W}$ ．（correct magnetic）
10	＂	3	5	＂			18 miles from the time the
11	＂	4	5	＂			departure was taken to the
12	＂	4	5	＂			end of the day．

Ex．2．1878，March 20th，in longitnde $148^{\circ} 45^{\prime}$ W．The observed meridian altitude of the sun＇s upper limb was $45^{\circ} 35^{\prime} 00^{\prime \prime}$ bearing S ．；index error－ $7^{\prime} 56^{\prime \prime}$ ． Height of eye 22 feet．Required the latitude．
Ans．$\left\{\begin{array}{l}\text { Sun＇s correctcd declination ．．} 44^{\circ} \\ \text { Latitude } \\ 58^{\prime} \\ 4^{\prime} \\ 37^{\prime \prime} \\ 17^{\prime \prime} \\ \mathrm{N} .\end{array}\right.$
Ex．．3．In latitude $36^{\circ} 17^{\prime}$ ，the departure madc good was 187 miles．Required the difference of longitude by parallel sailing．

Ans．Difference of longitude
232.0

Ex．4．Required the course and distance front A to B by calculation on Mer－ cator＇s principle．

Ex. 5. 1878, June 10th, 6h:30m: P.M. apparent time at ship in latitude $60^{\circ} 10^{\circ}$ N ., longitude $180^{\circ} 00^{\prime} \mathrm{E}$. The sun's magnetie amplitude was N.W. by W. $\frac{8}{4} \mathrm{~W}$. Required true amplitude and error of the eompass, aud supposing the variation to be 15° E., required the deviation of the compass for that position of the ship's head.

Ans.	(Suu's corrected declination............................ $23^{\circ} 1^{\prime} 02^{\prime \prime} \mathrm{N}$.
	True amplitude. W. $5.51^{\circ} 49^{\prime} \mathrm{N}$.
	Compass correction.................................. $26^{\circ} 30$
	Deviation of the eompass............ $11^{\circ} 30^{\prime} \mathrm{E}$.

Ex. 6. 1878, April Ist, A.m. at ship in latitude $33^{\circ} 18^{\prime} 15^{\prime \prime}$ S., the observed altitude of the sun's lower limb was $33^{\circ} 14^{\prime} 50^{\prime \prime}$, index error - $1^{\prime} 10^{\prime \prime}$. Eye at 20 feet. Time by ehronometer March 31st, 8h:30m:32s: which was slow for mean noon at Greenwieh lh:14m:13s: January 29th, and on February 13th was slow for mean noon at Greenwieh $1 \mathrm{~h}: 12 \mathrm{~m}: 25 \mathrm{~s}$: Required the longitude by chronometer.

Ans.	(Mean time at Greenwich March 31st.	9h:37m:23:
	Polar distance.	$94^{\circ} 22^{\prime} 21^{\prime \prime}$
	Sum of four logarithms	9.160121
	Mean time at ship March 31st.	$\mathrm{h}: 5 \mathrm{~m}: 20 \mathrm{~s}$
	Longitude	$59^{\prime} 50^{\prime \prime}$ E

Ex. 7. 1878, November 8th, $2 \mathrm{~h}: 4 \mathrm{~m}:$ P.M. mean time at ship in latitude $57^{\circ} 25^{\prime}$ $40^{\prime \prime}$ N., longitude $133^{\circ} 18^{\prime}$ W., the sun's magnetic azimuth was S.W. 4 S . Observed altitude of the sun's lower limb $10^{\circ} 26^{\prime} 15^{\prime \prime}$. Eye at 20 feet. Index crror $+2^{\prime} 50^{\prime \prime}$. Required the true azimuth, eorreetion and deviation of the compass. Variation per chart $5^{\circ} \mathrm{W}$.

Ans.	Mean time at Greenwieh November 8th.	10h:57m:12s:
	Polar distance.	$106^{\circ} 45^{\prime} 54^{\prime \prime}$
	Sum of four logarithms.	18.907871
	True azimuth.	S. $33^{\circ} 02^{\prime} \mathrm{W}$.
	Compass correction	$9^{\circ} 9^{\prime} \mathrm{W}$.
	Deviation of the compas	$4^{\circ} 09^{\prime} \mathrm{W}$.

Ex. 8. 1878, June 15th, P.M. apparent time at ship, latitude by aeeount $59^{\circ} 10^{\prime}$ N., longitude $20^{\circ} 00^{\prime}$ W., the observed altitude of the sun's lower limb bearing S . was $53^{\circ} 45^{\prime} 45^{\prime \prime}$. Eye at 20 feet. Index error - $0^{\prime} 00^{\prime \prime}$. Time by wateh 0 h : $15 \mathrm{~m}: 26 \mathrm{~s}$ P.M., whieh was found to be slow $4 \mathrm{~m}: 12 \mathrm{~s}$ for apparent time at ship. The differenee of longitude made to the east was 13 miles. Required the latitude by reduction to the meridian.

Ex. 9. 1878. The observed meridian altitude of the star A. Geminor was 70° $50^{\prime} 30^{\prime \prime}$, bearing S . Index error - $3^{\prime} 10^{\prime \prime}$. Eye 20 feet. Required the latitude.

[^4]Ex. 1.

	(Bearing corrected.	N. $70^{\circ} \mathrm{E}$	
	Current	S. 3 W	
	1st course	N. 42 E.	- Distance 16 miles.
	2nd "	S. 48 E .	18 "
	3rd " "	S. 65 E.	" 18 "
Ans.	4th "	N. 59 W.	14 "
	5th " "	.S. 17 W	" 17 "
	6th " "	N. 3 W .	18
	Difference of latitude.. $\quad 0^{\prime} .2$	Departure	$45^{\prime} .5$
	True courses......... S. S. $89^{\circ}{ }^{\text {E }}$ E.	Distance.	46 miles.
	Latitude in.......... . $10^{\circ} 20^{\prime} \mathrm{N}$.	Longitude $19^{\circ} 44^{\prime} \mathrm{W}$.

Ex. 2. 1878, March 30th, in longitude $155^{\circ} 45^{\prime}$ E., the observed meridian altitude of the sun's upper limb was $69^{\circ} 27^{\prime} 00^{\prime \prime}$, bearing south. Index error $-5^{\prime} 24^{\prime \prime}$. Height of the eye 19 feet. Required the latitude.

Ex. 3. In latitude $53^{\circ} 5 z^{\prime}$ the departure made good was $6^{\prime} .75$ miles. Required the difference of longitude by parallel sailing.

Ans. . Difference of longitude.. $11^{\prime} .44$
Ex.4. Required the course and distance from A. to B., by calculation on Mercator's principle.

Ans.	Latitude of A....... $12^{\circ} 46^{\prime} \mathrm{N}$.	Longitude $45^{\circ} 10^{\prime} \mathrm{E}$.
	Latitude of B....... $18^{\circ} 34^{\prime} \mathrm{N}$.	Longitude $72^{\circ} 53^{\prime} \mathrm{E}$.
	Difference of latitude	348
	Meridian difference latitn	362
	Difference of longitude	166
	(Course.......... N. N. $77^{\circ} 43^{\prime} \mathrm{E}$.	1ce 1636 miles.

Ex. 5. 1878, May 29th, 6h:30m:A.M., apparent time at ship, in latitude 29° $46^{\prime} \mathrm{N}$., longitude $0^{\circ} 15^{\prime} 40^{\prime \prime} \mathrm{E}$. The sun's magnetic amplitude was $\mathrm{E} . \frac{3}{4} \mathrm{~S}$. Required the true amplitude, and error of the compass, and supposing the variation to be $19^{\circ} \mathrm{W}$., required the deviation of the compass for that position of the ship's head.

Ex. 6. 1878, August 25th, A.m., at ship in latitude $9^{\circ} 50^{\prime} 15^{\prime \prime}$ S., the observed altitude of the sun's lower limb was $32^{\circ} 15^{\prime} 20^{\prime \prime}$, index error $+3^{\prime} 40^{\prime \prime}$. Eye at 20 feet. Time by chronometer, 24d:18h:58nn:20s., which was slow for mean noon at Greenwich $2 \mathrm{~h}: 7 \mathrm{~m}: 33 \mathrm{~s}$. May 11th, and on June 10th was slow for mean noon at Greenwich $2 \mathrm{~h}: 5 \mathrm{~m}: 4 \mathrm{~S}$. Required the longitude by chronometer.

Ex. 7. 1878, April 15th, $7 \mathrm{~h}: 21 \mathrm{~m}$: A.m., mean time at ship, in latitude $24^{\circ} 4^{\prime}$ N., longitude $91^{\circ} 00^{\prime}$ W., the sun's magnetic azimuth was E. $\frac{\circ}{4} \mathrm{~N}$., observed altitude of the sun's lower limb was $22^{\circ} 10^{\prime} 40^{\prime \prime}$. Eye at 20 feet. Index error$0^{\prime} 00^{\prime \prime}$. Required the true azimuth, correction, and deviation of the compass. Variation per chart, 9° east.

(Mean time,at Greenwich, April 15th.	1h:20゙m.
Polar distance.	$80^{\circ} 09^{\prime} 24^{\prime \prime}$
Sum of four logarithms.	19.705025
True azimuth.	S. $90^{\circ} 48^{\prime} \mathrm{E}$.
Compass correction.	$7^{\circ} 38^{\prime} \mathrm{E}$.
Deviation of the compass	$1^{\circ} 22^{\prime} \mathrm{W}$.

Ex. 8. 1878, January 1st, A.M., apparent time at ship, latitude by account $6^{\circ} 10^{\prime}$ N., longitude $87^{\circ} 45^{\prime} \mathrm{W}$. , the observed altitude of the sun's lower limb bearing south was $60^{\circ} 20^{\prime} 10^{\prime \prime}$. Eye at 16 feet. Index error- $0^{\prime} 00^{\prime \prime}$. Time by watch, $11 \mathrm{~h}: 38 \mathrm{~m}: 20 \mathrm{~s}:$ A.m., which was found to be slow $1 \mathrm{~m}: 20 \mathrm{~s}$. for apparent time at slip. The difference of longitude made since to the west was 2 miles. Required the latitude by reduction to the meridian.

Ex. 9. 1878, the observed meridian altitude of the star B. Geminor was 33° $30^{\prime} 20^{\prime \prime}$, bearing north. Index crror $+0^{\prime} 0^{\prime \prime}$. Eye at 18 feet. Required the latitude.

[^5]Ex. 1.
No. 3.

Ans.	(Bearing corrected.	N. $84^{\circ} \mathrm{E}$.	
	Current	N. 42 W.	
	lst course	.S. 22 W	Distance 24 miles
	2d " "	S. 84 E.	" 38 "
	$3 \mathrm{~d} \cdot{ }^{\text {e }}$	S. 82 E.	" 39 "
	4th "	.N. 56 E.	" 43 "
	5th " "	N. 42 E.	" 29 "
	6th " "	.S. 59 W .	16 "
	Difference of latitudc.. $\quad 27^{\prime} .0$	Departure	$110^{\prime} .2$
		Distance..	113 miles
	Latitude in $48^{\circ} 52^{\prime} \mathrm{N}$.	Longitude in. $54^{\circ} 31^{\prime} \mathrm{W}$.

Ex. 2. 1878 , December 1st, in longitude $114^{\circ} 45^{\prime}$ E. The observed meridian altitude of the sun's upper limb was $69^{\circ} 26^{\prime} 40^{\prime \prime}$ bearing S . ; index error - $5^{\prime} 43^{\prime \prime}$. Height of eyc 21 feet. Required the latitudc.

Ex. 3. In latitude $69^{\circ} 11^{\prime} \mathrm{S}$. the departure made good was 64.75 miles. Required the difference of longitude by parallel sailing.
Ans. Difference of longitude
182.2

Ex. 4. Required the course and distance from A to B by calculation on Mcrcator's principle.

Ans.	(Latitude of A...... $17^{\circ} 36^{\prime} \mathrm{N}$.	Longitude $146^{\circ} 5^{\prime}$ E E.
	Latitude of B....... $23^{\circ} 46^{\prime} \mathrm{N}$.	Longitude $121^{\circ} 55^{\prime}$ W.
	Difference of latitnde.	370
	Meridian differcnce latitude	396
	Difference of longitude	5520
	Course N. N5 $55^{\text { }}$ E.	Distancc 5175 miles

Ex. 5. 1878, October 21st, 5h:23m: A.m. apparent time at ship in latitude $47^{\circ} 51^{\circ}$ S., longitude $30^{\circ} 17^{\prime} \mathrm{E}$. The sun's magnetic amplitude was S.E. $\frac{1}{4} \mathrm{E}$. Required true amplitude and error of the compass, and supposing the variation to be $32^{\circ} \mathrm{W}$., requircd the deviation of the compass for that position of the ships head.

$$
\begin{aligned}
& \text { Sun's corrected declination } \\
& 10^{\circ} 37^{\prime} 39^{\prime \prime} \mathrm{S} \text {. }
\end{aligned}
$$

Ex. 6. 1878, December 28th, A.M. at ship in latitude $50^{\circ} 55^{\prime}$ N., the observed altitude of the sun's lower limb was $10^{\circ} 58^{\prime} 30^{\prime \prime}$, index error - $1^{\prime} 20^{\prime \prime}$. Eye at 20 fect. Time by chronometer $27 \mathrm{~d}: 20 \mathrm{~h}: 10 \mathrm{~m}: 54 \mathrm{~s}:$, which was slow for mean noon noon at Greenwich 2h:35m:53s: October 3d, and on October 21st was slow for mean noon at Greenwich $2 \mathrm{~h}: 34 \mathrm{~m}: 50 \mathrm{~s}$: Required the longitude by chronometer.

Ex. 7. 1878, November 4th, $2 \mathrm{~h}: 46 \mathrm{~m}$: P.m. mean time at ship in latitude $53^{\circ} 55^{\prime}$ $15^{\prime \prime} \mathrm{N}$., longitude $163^{\circ} 49^{\prime} 30^{\prime \prime}$ E., the sun's magnetic azimuth was S.W. ${ }^{4} \mathrm{~S}$. Obscrved altitude of the sun's lower limb $11^{\circ} 13^{\prime} 10^{\prime \prime}$. Eye at 18 feet. Index error - $1^{\prime} 20^{\prime \prime}$. Required the true azimuth, correction and deviation of the compass. Variation of the compass $8^{\circ} \mathrm{E}$.

Ans.	(Mean time at Greenwich November 3d	15h:50m:42s:
	Polar distance.	$105^{\circ} 19^{\prime} 54^{\prime \prime}$
	Sum of four logarithms.	19.126310
	True azimuth.	S. $42^{\circ} 54^{\prime} \mathrm{W}$.
	Compass correction	$6^{\circ} 20^{\prime} \mathrm{E}$.
	Deviation of the compass	$\mathrm{l}^{\circ} 40^{\prime} \mathrm{W}$.

Ex. 8. 1878, June 21st, P.m. apparent time at ship, latitude by account $8^{\circ} 10^{\prime}$ N., longitude $100^{\circ} 33^{\prime}$ E., the observed altitude of the sun's lower limb bearing N. was $73^{\circ} 45^{\prime} 30^{\prime \prime}$. Eye at 12 feet. Index error - $0^{\prime} 00^{\prime \prime}$. Time by watch 11 h : $54 \mathrm{~m}: 10 \mathrm{~s}$ P.M., which was found to be slow $26 \mathrm{~m}: 46 \mathrm{~s}$ for apparent time at ship. The difference of longitnde made to the west was 20 miles. Required the latitude by reduction to the meridian.

Ex. 9. 1878, the observed meridian altitude of the star A. Aquilæ was $67^{\circ} 42$ $30^{\prime \prime}$, bearing S. Index error-3' $10^{\prime \prime}$. Eye 20 feet. liequired the latitude.

Ex． 1.
No． 4.

	Courses．	皆	咅	－Winds．	葛	去	Remaris，Etc，
1	S．by W．$\frac{1}{4}$ W．	3	9	West．	${ }^{1}$	$3^{\circ} 26^{\prime}$ w．	
2	S．${ }^{\text {a }}$	3	8				In latitude ．．．．．．．． $49^{\circ} 3^{\prime} \mathrm{S}$ ．
3	＂	4	3	＂			In longitude ．．．． $166^{\circ} 12^{\prime} \mathrm{E}$ ．
4	＂	4		＂			Bearing by comp．SWby W $\frac{3}{4} \mathrm{~W}$
5	South	5	3	W．by S．	$\frac{3}{4}$	$5^{\circ} 20^{\prime} \mathrm{E}$ ．	Head S by E．Deviat＇n $8^{\circ} \mathrm{E}$ ．
6	＂	5	7				Distance 21 miles．
7	＇6	5	4	، 6			Variation $20^{\circ} \mathrm{E}$ ．
8	＂	6	6	＊			
9	N．by E．	8	3	East．	1	$5^{\circ} \mathrm{E}$ ．	
10		8	9	＂			
11	،	8	9	＂			
12	،	8	9	＂			
1	W．byN．$\frac{1}{2} \mathrm{~N}$ ．	9	9	S．S．W．$\frac{1}{2}$ W．	$1 \frac{1}{4}$	$26^{\circ} \mathrm{W}$ ．	
2		10	3				
3	6	10	4	6			
4	＂	10	4	＂			
5	W．by N．	10	4	North．	$\frac{1}{4}$	$22^{\circ} 30^{\prime}$ w	
6		10	4				
7	، 6	10	3	6			
8	＂	9	9	＂			A current set by compass
9	W．N．W．	9	9	S．W．by S．	$\frac{3}{4}$	$23^{\circ} \mathrm{W}$ ．	N． $39^{\circ} \mathrm{E}$. （correct magnetic） 8
10	＂6	9	9				miles from the time the de－
11	، 6	10	1	،			parture was taken to the end
12	＂	10	1	＂			of the day．

Ex．2． 1878 ，November 16 th，in longitude $171^{\circ} 14^{\prime}$ E．，the observed meridian alti－ tude of the sun＇s lower limb was $71^{\circ} 43^{\prime} 20^{\prime \prime}$ ，bearing south．Index error $-1^{\prime} 30^{\prime \prime}$ ． Height of the cye 24 feet．Required the latitude．

Ans．$\left\{\begin{array}{l}\text { Sun＇s corrected declination．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} 18^{\circ} 40^{\prime} 22^{\prime \prime} \\ \text { Latitude．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．} 0^{\circ} 33^{\prime} 27^{\prime \prime} \\ \text { S．}\end{array}\right.$
Ex．3．In latitude $68^{\circ} 49^{\prime}$ N．the departure made good was 677 miles．Required the difference of longitude by parallel sailing．

$$
\text { Ans. Difference of longitude. } 1873
$$

Ex．4．Required the course and distance from A．to $13 .$, by calculation on Mercator＇s principle．

Ans．	Latitude of A．．．．．．． $4^{\circ} 22^{\prime} \mathrm{S}$ ．	Longitude ．．．．．．．．． $188^{\circ} 21^{\prime}$ E．
	Latitude of B．．．．．．． $65^{\circ} 20^{\prime} \mathrm{S}$ ．	Longitude ．．．．．．．．． $142^{\circ} 15^{\prime} \mathrm{E}$ ．
	Difference of latitude．	3S38
	Meridian difference latitude．	5423
	Difference of lougritude	7434
	（Course ．．．．．．．．S．S． $53^{\circ} 53^{\prime}$ E．	Distance ．．．．．．．． 6511 miles．

Ex. 5. 1878 , March 21st, $91: 10 \mathrm{~m}:$ A.m., apparent time at ship, in latitude 10° $10^{\prime} \mathrm{N}$., longitude $118^{\circ} 10^{\prime} \mathrm{E}$. The sun's magnetic amplitude was E . $\frac{1}{\mathrm{~L}} \mathrm{~N}$. Required the true amplitude, and error of the compass, and supposing the variation to be 2° E., required the deviation of the compass for that position of the ship's head.

Ans.	Sun's corrceted declination.	$0^{\circ} 7^{\prime} 36^{\prime \prime} \mathrm{N}$
	True amplitude	E. $0^{\circ} 8^{\prime} \mathrm{N}$.
	Compass correction	$2^{\circ} 41^{\prime}$ E.
	Deviation of the compa	$0^{\circ} 41^{\prime}$ E.

Ex. 6. 1878, March 21st, A.m., at ship in latitude $0^{\circ} 0^{\prime} 0^{\prime \prime}$ S., the observed altitude of the sun's lower limb wais $36^{\circ} 15^{\prime} 10^{\prime \prime}$. Index error $+2^{\prime} 38^{\prime \prime}$. Eye at 20 feet. Time by chronometer, $20 \mathrm{~d}: 13 \mathrm{~h}: 21 \mathrm{~m}: 50 \mathrm{~s}$., which was fast for mean noon at Greenwich 7m:03.7s: January 11th, and January 20th was fast for mean noon at Greenwich 6m:205. Required the longitude by chronometer.

Ex. 7. 1878, March 30th, 3h:40m:46s: P.M., mean time at ship, in latitude $28^{\circ} 30^{\prime} 15^{\prime \prime}$ S., longitude $174^{\circ} 20^{\prime} \mathrm{W}$., the sun's magnetic azimuth was N. 80° $52^{\prime} 50^{\prime \prime} \mathrm{W}$., observed altitude of the sun's lower limb was $28^{\circ} 23^{\prime} 40^{\prime \prime}$. Eye at 18 feet. Index error $+5^{\prime} 10^{\prime \prime}$. Required the true azimuth, correction, and deviation of the compass. Variation per chart, $12^{\circ} 10^{\prime}$ east.

Ans.	(Mean time at Greenwich, March 30th	15h: 18m:6s.
	Polar distance.	$94^{\circ} 4^{\prime} 37^{\prime \prime}$
	Sum of four logarithnis.	19.485071
	True azimuth.	N. $67^{\circ} 06^{\prime} \mathrm{W}$.
	Compass correction.	$13^{\circ} 46^{\prime} 50^{\prime \prime} \mathrm{E}$.
	Deviation of the compas	$1^{\circ} 36^{\prime} 50^{\prime \prime} \mathrm{E}$.

Ex. 8. 1878, November 16th, P.m., apparent time at ship, latitude by account $1^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{S}$., longitude $171^{\circ} 00^{\prime}$ E., the observed altitude of the sun's lower limb bearing sonth was $71^{\circ} 43^{\prime} 20^{\prime \prime}$. Eye at 24 fect. Index crror- $l^{\prime} 30^{\prime \prime}$. Time by watch on the $16 \mathrm{th}, 10 \mathrm{~h}: 31 \mathrm{~m}: 8 \mathrm{~s}:$ P. M., which was fast $10 \mathrm{~h}: 10 \mathrm{~m}: 12 \mathrm{~s}$. for apparent time at ship. The difference of longitude made since to the east was 10 miles. Required the latitnde by reduction to the meridian.

Ex. 9. 1878, the observed meridian altitude of the star A. Spica was 31° $27^{\prime} 40^{\prime \prime}$, bearing nortl. Index error $+5^{\prime} 20^{\prime \prime}$. Eye at 20 feet. Required the latitude.

Ex. 1.
No. 5.

Ex. 2. 1878 , June 10th, in longitude $30^{\circ} 30^{\prime} \mathrm{W}$. The observed meridiau altitude of the sun's lower limb was $78^{\circ} 19^{\prime} 40^{\prime \prime}$ bearing N .; index error $-4^{\prime} 30^{\prime \prime}$. Height of eye 20 feet. Required the latitude.
Ans. $\left\{\begin{array}{l}\text { Sun's corrected declination } \\ \text { Latitude }\end{array}\right.$ $23^{\circ} 2^{\prime} 28^{\prime \prime} \mathrm{N}$.
\{ Latitude $11^{\circ} 28^{\prime} 58^{\prime \prime} \mathrm{N}$.

Ex. 3. In latitude $48^{\circ} 28^{\prime} \mathrm{N}$., the departure made good was 187 miles. Required the difference of longitude by parallel sailing.
Ans. Difference of lougitude 282^{\prime}

Ex. 4. Required the course and distance from A to B by calculation on Mercator's principle.

Ans.	Latitude of A...... $30^{\circ} 00^{\prime} \mathrm{N}$.	Longitude $30^{\circ} 00^{\prime}$ E.
	Latitude of B...... . $60^{\circ} 00^{\prime} \mathrm{S}$.	Longitude $150^{\circ} 00^{\prime} \mathrm{W}$
	Difference of latitude.	5400
	Meridian difference latitude	$6+15$
	Difference of longitude	10800
	(Course S. $59{ }^{\text {² }} 17^{\prime}$ E.	10571 m

Ex. 5. 1878, Jannary 1st, 6li:40m: A.m. apparent time at ship in latitude $30^{\circ} 10^{\prime}$ S., longitude $100^{\circ} 10^{\prime} \mathrm{W}$. The sun's maguctie amplitude was E. ${ }^{3} \mathrm{~S}$. Required true amplitude and error of the compass, and supposing the variation to be 12° E., required the deviation of the compass for that position of the ship's head.

	(Sun's eorrected declination......................... . $22^{\circ} 59^{\prime} 45^{\prime \prime} \mathrm{S}$.
Ans.	True amplitude........... E. $26^{\circ} 52^{\prime}$ S.
	Compass correction.................................. $18^{\circ} 26^{\prime} \mathrm{E}$.
	Deviation of the compass........... $6^{\circ} 26^{\prime} \mathrm{E}$.

Ex. 6. 1878, March 29th, P.m. at ship in latitude $33^{\circ} 8^{\prime} 15^{\prime \prime}$ N., the observed altitude of the sun's lower limb was $27^{\circ} 58^{\prime} 15^{\prime \prime}$, index crror $2^{\prime} 45^{\prime \prime}$ to subtract. Eyc at 20 fect. Time by ehronometer $28 \mathrm{~d}: 17 \mathrm{~h}: 16 \mathrm{~m}: 28 \mathrm{~s}$:, which was slow for mean noon noon at Greenwich 1h:32m:17s: November 30, 1877, and on December 30th, 1877, was slow for mean noon at Greenwich $1 \mathrm{~h}: 28 \mathrm{~m}: 56 \mathrm{~s}$: Required the longitude by chronometer.

Ex. 7. 1878, April 11th, $2 \mathrm{~h}: 7 \mathrm{~m}: 25 \mathrm{~s}: ~ \mathrm{p} . \mathrm{m}$. mean time at ship in latitude $55^{\circ} 27^{\prime}$ $45^{\prime \prime}$ S., longitude $52^{\circ} 06^{\prime}$ E., the sun's magnetic azimuth was N. $\frac{1}{2} \mathrm{E}$. Obscrved altitude of the sun's lower limb $20^{\circ} 56^{\prime} 45^{\prime \prime}$. Eyc at 20 feet. Index error- $3^{\prime \prime} 40^{\prime \prime}$. Required the true azimuth, correction and deviation of the compass. Variation of the compass $36^{\circ} \mathrm{W}$.

Ex. 8. 1878, March 20th, P.m. apparent time at ship, latitude by account 44° $30^{\prime} \mathrm{N}$. , longitude $119^{\circ} 00^{\prime} \mathrm{W}$., the observed altitude of the sun's lower limb bearing S. was $45^{\circ} 2^{\prime} 50^{\prime \prime}$. Eye at 22 feet. Index crror $-7^{\prime} 55^{\prime \prime}$. Time by watch $0 \mathrm{~h}: 20 \mathrm{~m}: 5 \mathrm{Ss}$: P.M., which was found to be fast $3 \mathrm{~m}: 30 \mathrm{~s}$: for apparent time at ship. The difference of longitude made to the east was 24 miles. Required the latitnde by reduction to the meridian.

Ex. 9. 1878, January 1st, the observed meridian altitnde of the star A. Regulus was $84^{\circ} 47^{\prime} 20^{\prime \prime}$ bearing N. Index crror $+4^{\prime} 20^{\prime \prime}$. Eyc 11 feet. Required the latitudc.
Ans. $\left\{\begin{array}{l}\text { Star's declination. } \\ \text { Latitude.......... }\end{array}\right.$
$12^{\circ} 33^{\prime} 40^{\prime \prime}$ N.
$7^{\circ} 22^{\prime} 11^{\prime \prime} \mathrm{N}$.

Ex． 1.
No． 6.

$\begin{aligned} & \text { 嵬 } \\ & \text { O} \end{aligned}$	Courses．	$\begin{array}{\|l\|l} \hline \stackrel{y}{6} \\ \stackrel{y y y}{n} \end{array}$	$\begin{gathered} \text { 惫 } \\ \text { 熍 } \end{gathered}$	Wisps．	䓓	紧	Remaris，Etc．
$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$		$\begin{array}{\|l} \hline 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \end{array}$	$\left.\begin{array}{\|l\|} \hline 8 \\ 9 \\ 8 \\ 5 \\ 5 \\ 3 \\ 3 \\ 3 \end{array} \right\rvert\,$		14 2	120 E ．	A point． In latitude ．．．．． $30^{\circ} 15^{\prime} \mathrm{S}$ ． In longitude ．．．．． $40^{\circ} 20^{\prime}$ W． Bearing by compass S．S．E． Head N．W．Dev． $4^{\circ} 30^{\prime} \mathrm{W}$ ． Distance 10 miles． Variation $10^{\circ} \mathrm{E}$ ．
$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \end{array}$	$\begin{gathered} \text { N.E. } 1 \mathrm{CE} . \\ " ، \\ " ، \end{gathered}$	$\begin{aligned} & 0 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$		$\begin{gathered} \text { S.E. } 1 \text { E. } \mathrm{E} \text {. } \\ ، " \\ " ، \end{gathered}$	$2 \frac{1}{2}$	$12^{\circ} 15^{\prime} \mathrm{E}$	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$		$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \\ & 8 \\ & 5 \end{aligned}$	W．by N． ＂ ＂	23	$2^{\circ} \mathrm{E} .$	
$\begin{aligned} & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$		$\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	E．by N． ＂، ＂	$2 \frac{1}{4}$	$13^{\circ} \mathrm{W}$	A current set by compass N ．
$\begin{array}{r} 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	N．E． ＂، ＂．	$\begin{aligned} & 5 \\ & 5 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \\ & 8 \\ & 9 \\ & 9 \end{aligned}$	$\begin{gathered} \text { N.W. by N. } \\ \text { "، } \\ \text { "، } \end{gathered}$	1	$7{ }^{\circ} \mathrm{E}$.	$25^{\circ} \mathrm{W}$ ．（correct magnetic） 48 miles from the time the de－ parture was taken to the end of the day．

	（ Bearing	N． $17^{\circ} \mathrm{W}$ ．	
	Current	N． 15 W．	
	1st course＂	N． 39 E．	－Distance 20 miles．
	2nd＂＂	N． 3 W ．	＂ 21.4 ＂
	3rd＂6	N． 42 E ．	13.6
Ans．	4th＂＂	N． 37 E．	25
	5th＂＂	N． 20 W.	26
	6th＂	N． 73 E．	20
	Difference of latitude．． $152^{\prime} .8$	Departure．	30.1
	True courses．．．．．．．．．N． $11{ }^{\circ} \mathrm{E}$ ．	Distance．	156 miles．
	（Latitude in．．．．．．．．．．． $27^{\circ} 42^{\prime} \mathrm{S}$ ．	Longitude i	$39^{\circ} 46^{\prime} \mathrm{W}$ ．

Ex．2．1878，January 14 th，in longitude $51^{\circ} 54^{\prime} \mathrm{W}$ ．，the observed meridian alti－ tude of the sun＇s upper limb was $78^{\circ} 35^{\prime} 00^{\prime \prime}$ ，bearing sonth．Index error $+5^{\prime} 55^{\prime \prime}$ ． Height of the eye 18 feet．Required the latitude．

Ex．3．In latitude $66^{\circ} 40^{\prime} \mathrm{S}$ ．the departure made good was 387 miles．Required the difference of longitude by parallel sailing．
Ans．Difference of longitude 977.1

Ex．4．Required the course and distance from A．to l．，by calculation on Mercator＇s principle．

	（ Latitude of A．．．．．． $52^{\circ} 30^{\prime}$ S．	Longitude ．．．．．．．． $166^{\circ} 30^{\prime} \mathrm{E}$ ．
Ans．	Latitude of B．．．．．．． $12^{\circ} 20^{\prime} \mathrm{N}$ ．	Longitude ．．．．．．．． $92^{\circ} 32^{\prime} \mathrm{W}$ ．
	Difference of latitude．	3890
	Meridian difference latitude	4460
	Difference of longitude．	5998
	Course．．．．．．．．．N． $53^{\circ} 22^{\prime} \mathrm{E}$ ．	Distance ．．．．．．．．． 6519 mile

Ex. 5. 1878, September 6th, $6 \mathrm{~h}: 40 \mathrm{~m}:$ A.M. apparent time at ship in latitude $38^{\circ} 40^{\prime} \mathrm{N}$., longitude $25^{\circ} 45^{\prime} \mathrm{E}$. The sun's magnetic amplitude was E . by N. Required the true amplitude and error of the compass and supposing the variation to be $8^{\circ} \mathrm{W}$., required the deviation of the compass for that position of the slip's head.

Ex. 6. 1878, August 20th, P.M. at ship in latitude $36^{\circ} 41^{\prime} 20^{\prime \prime}$ N., the obseryed altitude of the sun's lower limb was $23^{\circ} 27^{\prime} 30^{\prime \prime}$, index error $-3^{\prime} 10^{\prime \prime}$. Eye at 19 feet. Time by chronometer 19d: 18h:10m:20s., which was slow for mean noon at Greenwich 24m:46s: June 12th, and on June 20th, was slow for mean noon at Greenwich 25 m :30s. Required the longitude by chronometer.

Ex. 7. 1878, June 4th, 6h:8m: P.m. mean time at ship, in latitnde $47^{\circ} 30^{\prime} \mathrm{N}$. , longitude $16^{\circ} 20^{\prime} \mathrm{W}$., the sun's magnetic azimuth was W. $\frac{1}{4} \mathrm{~N}$. Observed altitude of the sun's lower limb was $33^{\circ} 44^{\prime} 40^{\prime \prime}$. Eye at 19 feet. Index error- 2^{\prime} $20^{\prime \prime}$. Required the true azimuth, correction and deviation of the compass. Variation per chart, $3 \varkappa^{\rho} \mathrm{W}$.

Ans.	(Mean time at Greenwich, Junc 4th.	7h:13m:20s:
	Polar distance.	$67^{\circ} 30^{\prime} 22^{\prime \prime}$
	Sum of four logarithms.	19.676223
	Trine azimuth.	S. $87^{\circ} 04^{\prime} \mathrm{W}$.
	Compass correction.	$5^{\circ} 45^{\prime} \mathrm{W}$.
	Deviation of the compass	$26^{\circ} 15^{\prime} \mathrm{E}$.

Ex. 8. 1878, November 23d, P.M. apparent time at ship, latitude by account $50^{\circ} 30^{\prime} \mathrm{N}$., longitude $38^{\circ} 30^{\prime} \mathrm{W}$., the observed altitude of the sun's lower limb bearing S. was $18^{\circ} 49^{\prime} 14^{\prime \prime}$. Eye at 20 feet. Index error $-4^{\prime} 19^{\prime \prime}$. Time by watch $0 \mathrm{~h}: 26 \mathrm{~m}: 12 \mathrm{~s}:$ P. M., which was found to be slow $2 \mathrm{~m}: 20 \mathrm{~s}$: for apparent time at ship. The difference of longitude made since to the west was 18 miles. Required the latitude by reductiou to the meridian.

$$
\begin{aligned}
& \text { Hour angle } \\
& \text { 27m: 20s: }
\end{aligned}
$$

Ex. 9. 1878, the observed meridian altitude of the star Λ Taurus was 50° $17^{\prime} 20^{\prime \prime}$ bearing S . Index error $+3^{\prime} 10^{\prime \prime}$. Eye 20 feet. Required the latitude.

TO FIND THE LÁTITUDE AND LONGITUDE BY Two OBSERVED ALTITUDES, THE RESULT OF EACH COMPUTATION BEING AT THE TIME AND PLACE WHERE THE GREATER ALTITUDE WAS TAKEN.

The system of double altitudes herein introduced has not heretofore been published in any American work, and its great advantage is that both latitude and longitude are thereby obtained simultaneously.

First. Be careful to note the times by the same chronometer at each observation, and apply its error to the time shown when the greater altitude was taken, to obtain the mean time at Greenwich.

Second. Take out the sun's declination on the given day from page two of the month of the nautical almanac, and correct it for Greenwich mean time by the hourly difference; the correction thus obtained is to be added when declination is increasing, but subtracted if decreasing.

Third. Then ascertain the angle between the ship's course and sun's bearing at the time of taking the least altitude, with which, and the ship's run between the observations, find the correction for change of position, and apply the same, if any, to the least altitude.

Fourth. If the less altitude be observed in the forenoon, add the correction thus found; if the angle is less than eight points, but if more, then subtract it.

Fifth. If the less altitude is taken in the afternoon, then subtract the correction, if the angle is less than eight points; but if greater, then add $i t$.

Sixth. Should the angle between the ship's course and sun's bearing be equal to eight points or 90° degrees, then there is no correction to apply, because the lesser altitude is neither raised nor depressed.

Seventh. In sailing directly towards or from the sun, apply the correction for the change of position in the following manner, viz:

Eighth. When the lesser alitude is observed in the forenoon and sailing towards the sun, add the correction to the lesser altitude; but when sailing from the sun then subtract the correction from the lesser altitude.

Ninth. When the less altitude is taken in the afternoon and sailing but toward the sun, subtract the correction from the least altitude; when sailing from the sun, then add the correction to the least altitude.

Tenth. Correct each of the altitudes for index error, if any; dip of the horizon, (Table VII, Refraction Table VI, Parallax Table VIII), and sun's semi-diameter, Page 1 Nautical Almanac,) to be added to the sun's lower limb, but subtracted from the sun's upper limb to obtain the true altitude. Then proceed to find the latitude and longitude of the ship when the greater altitude was observed, by the following rules:

Eleventh. Add together the true altitudes and take half their sum; subtract the less altitude from the greater, and take half their difference.

Twelfth. Find the interval between the times of observing the two altitudes, which call elapsed time; take half of the elapsed time and reduce it to degrees, by Table XI.

Thirteenth. Add together the co-secant (Table II) of half the elapsed time, reduced as before, and the secant of the declination; their sum will be the co-secant of arc first.

Fourteenth. Add together the co-secant of arc first, the co-sine of half the sum of the altitudes and the sine of half their difference; the sum of these logarithms will be the sine of arc second.

Fifteenth. Add together the secant of arc first, the sine of half the sum of the altitudes, and the co-sine of half their difference, and the secant of arc second; their sum will be the co-sine of arc third.

Sixteenth. Add together the secant of arc first, already found, and the sine of the declination; their sum will be the co-sine of arc fourth, when the latitude and declination are of the same name; but when they are of contrary names take the supplement for arc fourth, that is from 180°.

Seventeenth. Take the sum or difference of arcs third and fourth, for arc fifth. (See rule 20.)

Eighteenth. Add together the secants of arc second (already found) and are fifth, their sum will be the co-secant of the latitude when the greater altitude was observed, and the nearer it is taken to noon, the better. Having obtained the true latitude of the ship when the greater altitude was observed, proceed in the following manner to ascertain the longitude at the same instant.

Nineteenth. To the co-secant of arc second add the co-sine of the latitude just found, their sum will give the co-secant of an arc in degrees and minutes, which, converted into time by Table XI, produces $\operatorname{arc} A$; the difference between it and the half elapsed time will give the apparent time at ship when the greater altitude is taken in the afternoon; but, should the greater altitude be observed in the forenoon, then subtract it from 24 hours to obtain the apparent time past the preceding noon, to which apply the corrected equation for the mean time at ship; the difference between it and the mean time at Greenwich by the chronometer will be the longitude in time when the greater altitude was observed, which being converted into degrees and minutes by Table XI, will produce the east longitude of the ship, if the time at ship be greater than Greenwich, but west, if less.

Twentieth. When the sum of arcs third and fourth is equal to, or greater than 90°, their difference is always arc fifth; but when their sum is less than 90°, which will rarely happen, it may be doubtful whether their sum or difference ought to be taken for arc fifth, but the computation is soon made on both suppositions, for the secant of are fifth is the last logarithm which is taken from the table, and the other parts of the calculation are therefore not affected by the change; one of the results must certainly be the required latitude, and the latitude by account will generally be sufficient to determine which of them ought to be taken.

It may be useful to remark, the preceding not only applies to cases when the latitude and declination are of the same name, and very nearly alike in amount, in which case it becomes doubtful whether the sum or difference of arcs third and fourth should be taken to obtain arc fifth; hence it follows, such instances only occur between the tropics where the latitude by double altitudes is rarely observed, but should this method of ascertaining the ship's position be practiced when the sun is vertical, or nearly so, then it becomes absolutely requisite to work the ares very rigidly to the nearest second, on account of the difference of the sines answering to small arcs, and co-sines of large ones varying so considerably; hence it is deemed advisable not to practice this method when the sun is within 5° of being vertical.

Ex. 1. April 13th, 1878, r.m., ship time at both observations in latitude by account $9^{\circ} 50^{\prime} \mathrm{S}$., and longitude $10^{\circ} 24^{\prime} \mathrm{W}$. Suppose the following true altitudes and times by chronometer were taken, to find the true latitude and longitude of the slip, the chronometer being $12 \mathrm{~m}: 36 \mathrm{~s}$. slow of Greenwich time.

Ex. 2. April 11, 1878, A.M. ship time at both observations, in latitude by account $49^{\circ} 10^{\prime} \mathrm{N}$., and longitude $6^{\prime \prime} 32^{\prime}$ W., when a chronometer showed 9 h : $58 \mathrm{~m}: 36 \mathrm{~s}$. A.M. being $10 \mathrm{~m}: 42 \mathrm{~s}$. slow of Greenwich mean time, the altitude of the sun's lower limb $39^{\prime} 45^{\prime} 50^{\prime \prime}$, and at $11 \mathrm{~h}: 4 \mathrm{Sm}: 3$ ts. A.m. By the same chronometer, the altitude of the sum's lower limb was $48^{\circ} 15^{\prime} 25^{\prime \prime}$, the sun bearing at least altitude S. E. $-\frac{1}{4}$ E., and the ship's course between the observations was N.E. 4 N. The distance run being 14 miles; the height of the cye 18 feet, and index error $2^{\prime} 10^{\prime \prime}$ to subtract. Required the true latitude and longitude of the ship, at the time of taking the greater alititule.

Note.-Take out the equation for the 11th of April. Name the latitude same name as latilude by account,

Ex. 3. April 23, 1878, A. M. ship time at greater, and P.M. at lesser altitude, in latitude by account $39^{\circ} 30^{\prime} \mathrm{S}$., and longitude $30^{\circ} 12^{\prime} \mathrm{W}$. Time by elronometer, $1 \mathrm{~h}: 36 \mathrm{~m}: 15 \mathrm{~s}$. P. M., which was fast for Greeuwich mean time $7 \mathrm{~m}: 15 \mathrm{~s}$. when first altitude of the sun's upper limb was observed to be $38^{\circ} 10^{\prime} 30^{\prime \prime}$, and at 3_{-}° : $3 \mathrm{~m}: 36 \mathrm{~s}$. P.M. the second altitude of the sun's lower limb was $36^{\circ} 20^{\prime} 45^{\prime \prime}$. Sun's bearing N. by W. .9. Ship's course between the observations N.N.E. $\frac{1}{2}$ E. Distanee run during the interval 10 miles. Index error $2^{\prime} 30^{\prime \prime}$ to subtract. Height of the eye 22 fect. Required the latitude of the ship at the time of taking the greater altitude.

H. 3r. S.	Sun's dec. April 23,... $12 \begin{array}{r}\circ \\ 31 \\ 14 \\ 1 \\ 146 \\ 14\end{array}$	Hourly diff...	19.851,5			
April 23, chr. showed... 13615 Fast for G. M. time.... - $\mathbf{7 1 5}$						
12900	Correct declination... . 123610					
240000			$\begin{aligned} & 24925 \\ & 4985 \end{aligned}$			
G. M. time, April 22.... 252900						
		-	6.0)7.4.775			
			$1^{\prime} 14^{\prime \prime}$			
Sun's bearing when last observation was taken. N.byW. $3 / \mathrm{W} .=\mathrm{N} .13 / 4$ points W. Ship's course during the elapsed time N.N.E. $1 / 2$ E. $=$ N. 213 points E.						
Angle between the ship's course and sun's bearing.............						

The angle between the ship's course and sun's bearing $4 \frac{1}{4}$ pnints is to be taken as a course in Table III.. and the distance run during the clapsed time (10 miles), as a distance, gives in the latitnde column, $6^{\prime} 7^{\prime \prime}=0^{\prime} 42$, which is to be subtracted from the less altitude, the angle being less than eight points, and the less altitude having been taken in the afternoon.

Index error.......................... - 230	Index error.......................... - 230
380800	361815
Dip.................................. . - 430	Dip.............. - 430
386330	361345
Ref.................................. - 113	Ref................................... - 118
380217	361227
Parallax............................ + + 08	Parallax.... + + 8
380225	361235
Semi-diameter...................... - 15.0	Semi-diameter....................... +1556
True altitude........................ 374629	True altitude sun's centcr........... 362831
	Correction for change of position.. - 642
	Suu's correct altitude... 362149

Altitudes.

Ex. 4. September 8, 1878 , A.m., at ship in latitude $60^{\circ} 10^{\prime}$ S. by account, and longitude $178^{\circ} 45^{\prime}$ E., the altitude of the sun's lower limb was observed to be $19^{\circ} 42^{\prime}$ at $10 \mathrm{~h}: 04 \mathrm{~m}: 20 \mathrm{~s}$: apparent time, the sun's center bearing N.N.E. by compass, and at lh:32m:36s: P.M. by same chronometer, the second altitude was $21^{\circ} 08^{\prime} 10^{\prime \prime}$ (being the greater). The ship's course during the elapsed time was S.W. by S., and the distance run in the interval was 31 miles. Height of the eye 16 feet. Required the latitude of the ship at the time of taking the greater altitude.

Note.- The observation being in the forenoon, and angle more than 8 points, subtract the correc. tion, $30^{\circ} 24^{\prime}$.

True Altitudes.

Thises.
H. M. s.

100420 A.M. less altitude observed.
(Add 12 hours.) 13236 p.m. greater altitulie obs.
328 16.. Elapeed time.
14408 ..Half elap. time, $26^{\circ} 02^{\prime}$.

Ex. 5. September 9, 1878, A.M. at ship in latitude by account $6^{\circ} 30^{\prime}$ N., at $1 \mathrm{Sh}: 16 \mathrm{~m}: 20 \mathrm{~s}$: by a chronometer showing Greenwich mean time, the altitude of the sun's lower limb was $35^{\circ} 10^{\prime} 30^{\prime \prime}$, and at $20 \mathrm{~h}: 36$: 20 s : by the same chronometer the altitude was $69^{\circ} 49^{\prime} 30^{\prime \prime}$; the height of the observer's cye 18 feet. Required the latitude at the time of taking the greater altitude.

Note.-The sum of the third and fourth arcs being less than 90°, this example admits of two answers. Ilead carcfully the note in rules.

Ex. 6. November 10, 1878 , in latitude by account $32^{\circ} 32^{\prime} \mathrm{N}$., at $9 \mathrm{~h}: 30 \mathrm{~m}$. A.m. the altitude of the sun's lower limb was $28^{\circ} 14^{\prime}$, the bearing of its eenter by compass being S.E. $\frac{1}{2}$ E.; and at the $11 \mathrm{~h}: 17 \mathrm{~m}: 42 \mathrm{~s}$. A.M. the altitude of the upper limb was $39^{\circ} 08^{\prime}$, the height of the observer's eye being 18 feet, and the ship's course between the observations S. by E., rumning 7 knots per hour; required the latitude of the ship at the time of the greater altitude.

The elapsed time between the observation is $13 / 4$ hours nearly, and the rate of sailing 7 miles per hour; that will give the distance run 12 miles, to be taken out as in example 3.

True Altitudes.

First alt..... $2^{\circ} 8^{3} 33$ 4' 47 ..Less altitude.
Second alt.. 3846 41..Greater altitude.
Sum........ . . 6720 28. .Half sum alt $33^{\circ} 40^{\prime} 24^{\prime \prime}$
Difference... $101254 .$. Half diff, alt.. $5^{\circ} 6^{\prime} 27^{\prime \prime}$

Times.

H. M. s.
$93000 \mathrm{~A}, \mathrm{M}$.
111742 A.M.
147 42..Elapsed time.
05351 .. Half elapsed $\operatorname{tim} \theta=13^{\circ} 27^{\prime} 45^{\prime \prime}$

Ex. 7. July 7 th, 1878 , in latitude by aecount $55^{\circ} 25^{\prime}$ N. and longitude 122° $30^{\prime} \mathrm{W}$. at $11 \mathrm{~h}: 02 \mathrm{~m}: 00 \mathrm{~s}:$ A.m. per watch, the altitude of the sun's lower limb was $52^{\circ} 53^{\prime}$, and at $1 \mathrm{~h}: 25 \mathrm{~m}: 00 \mathrm{~s}$: P.M. the altitude was $52^{\circ} 44^{\prime}$, the sun at that time bearing S.W. by W. by compass; height of the observer's eye being 20 feet, and the ship's course during the elapsed time S.S.W. $\frac{1}{2}$ W., the distance made in the interval was 18 miles; required the ship's true latitude at the time the greater altitude was observed.

Ex. 8. August 30th, 1878 , in latitude $12^{\circ} 43^{\prime}$ S. by aecount, and longitude 24° 15^{\prime} E. time by wateh, $1 \mathrm{ll}: \ 3 \mathrm{~m}: 30 \mathrm{~s}:$ r.m., the altitude of the sun's lower limb was $66^{\circ} 09^{\prime} 30^{\prime \prime}$, and at $3 \mathrm{~h}: 15 \mathrm{~m}: 12 \mathrm{~s}$: P.m it was $62^{\circ} 00^{\prime} 15^{\prime \prime}$, bearing at that time N.W. $\frac{1}{2}$ W.; course during the elapsed time S.W. by W. and distance sailed being 8 miles; height of the observer's eye, 28 feet; required the true latitude at the time of taking the greater altitude.

Ex. 9. November 11th, 1878, in latitude by aceount $32^{\circ} 34^{\prime}$ N. at $9 \mathrm{~h}: 30 \mathrm{~m}: \mathrm{A}$. M., the altitude of the sun's lower limb was $28^{\circ} 18^{\prime}$, bearing by compass S.E., and at $11 \mathrm{~h}: 17 \mathrm{~m}: 42 \mathrm{~s}:$ A.m., the second altitude of the sun's upper limb was $39^{\circ} 10^{\prime}$; height of the observer's eye, 18 feet; and the ship's course between the observations was S. by E.; distance ruu during the interval, 12 miles. Required the latitude and longitude of the slip at the time of takiug the greater altitude.

$$
\begin{aligned}
& \text { Longitude in.. } 3^{3} 10^{\circ} 15^{\prime} \mathrm{W} .
\end{aligned}
$$

Ex. 10. Febrnary 25 th, 1878 , latitude in by account $49^{\circ} 36^{\prime}$ N.; time by chronometer 0h: $33 \mathrm{~m}: 00 \mathrm{~s}:$ P.m., the observed altitude of the sun's lower limb was 28° 53^{\prime}, and at $2 \mathrm{~h}: 43 \mathrm{~m}: 00 \mathrm{~s}:$ r.m., by the same chrouometer, the second altitude was $19^{\circ} 14^{\prime}$, the height of the observer's eye being 14 feet. Required the latitude and lougitude in at the time of taking the greater altitude.

$$
\begin{aligned}
& \text { Longitude in . } \text { on }^{\prime 2} 12^{\prime} 45^{\prime \prime} \text { E. }
\end{aligned}
$$

TO FIND THE LATITUDE BY THE POLE STAR.

The latitude by the meridian altitude of the pole star can be found at any time on a clear night in the northern hemisphere, by the following rules:

First. Correct the altitude for index error, if any, dip of the horizon and refraction; after being thus corrected, the altitude is increased if the star is below the pole, or decreased if the star is above the pole. This correction is found in Table XV, and applied thus:

Second. Find the sun's right ascension for the given day in the Nautical Almanac, to which add the apparent time at ship; if the sum of these exceeds 24 houre, reject 24 hours, and that will be the right ascension of the meridian.
Third. Enter Table XV, and in one of the side columns, opposite in the center column, will be found the correction in degrees and minutes.
Fourth. If the right ascension of the meridian is found in one of the righl-kand columns, add the correction to the altitude; but if found in one of the left-hand columns, subtract the correction, and you have the latitude to be named North, always.
Ex. 1. December 31, 1878, mean time at ship $10 \mathrm{~h}: 50 \mathrm{~m}: 00 \mathrm{~s}$. P.M., in longitude $32^{3} 30^{\prime} \mathrm{W}$. The observed altitude of the Pole star out of the meridion was $40^{\circ} 20^{\prime} 10^{\prime \prime}$. Index error, $+1^{\prime} 10^{\prime \prime}$, eyc 20 feet. Required the latitude in.

Ex. 2. February 12, 1878, mean time at ship, at 1th:09:00s. P.m. in longitude $35^{\circ} 12^{\prime} \mathrm{W}$. The observed altitude of the Pole star was $41^{\circ} 12^{\prime}$. Required the latitude. Eye 17 feet.

Ex. 3. September 10,1878 , mean time at ship at $2 \mathrm{~h}: 30 \mathrm{~m}: 15 \mathrm{~s}$. A.m. in longitude $30^{\circ} 17^{\prime} \mathrm{W}$. The observed altitude of the Pole star, out of the meridian was $54^{\circ} 00^{\prime} 30^{\prime \prime}$; eye 18 feet; required the latitude in.

Ex. 4. July 16, 1878 , mean time at ship at $4 \mathrm{~h}: 37 \mathrm{~m}: 11 \mathrm{~s}$. A.M. - longitude 18° $30^{\prime} \mathrm{W}$. The observed altitude of the Pole star out of the meridian was $39^{\circ} 54^{\prime}$ $20^{\prime \prime}$; eye at 16 feet; index error $+5^{\prime} 10^{\prime \prime}$; required the latitude in.

Ex. 5. August 31, 1878 , mean time at $2 \mathrm{~h}: 40 \mathrm{~m}: 20 \mathrm{~s}:$ A.m. in longitude 85° $30^{\prime} \mathrm{E}$; the observed altitude of the Pole star off the meridian was $20^{\circ} 10^{\prime} 40^{\prime \prime}$. Index error- $1^{\prime} \mathrm{I}^{\prime \prime}$. Eye 20 feet. Required the latitude in.

Ans. Latitude in, $18^{\circ} 38^{\prime} 38^{\prime \prime} \mathrm{N}$.
Ex. 6. December 10, 1878, mean time at ship at $2 \mathrm{~h}: 16: 04 \mathrm{~s}:$ A.m. in longitude $76^{\circ} 12^{\prime}$ E.; the observed altitude of the Pole star off the meridian was 47° $50^{\prime} 20^{\prime \prime}$. Index error $-4^{\prime} 05^{\prime \prime}$. Eye 13 feet. Required the latitude in.

Ans. Latitude in, $47^{\circ} 48^{\prime} 57^{\prime \prime} \mathrm{N}$.
Ex. 7. Mareh 6, 1878, mean time at ship at 7h:43n:40s: P.M. in longitude $36^{\circ} 58^{\prime} 45^{\prime \prime}$ W.; the observed altitude of the Pole star off the meridian was 44° $30^{\prime} 30^{\prime \prime}$. Eye 20 feet. Required the latitude in.

Ans. Latitude in, $44^{\circ} 08^{\prime} 14^{\prime \prime} \mathrm{N}$.
Ex. S. January 16, 1878 , mean time at ship at $9 \mathrm{~h}: 38 \mathrm{~m}: 00 \mathrm{~s}:$ P. M. in longitude $59^{\circ} 15^{\prime} \mathrm{E}$.; the observed altitude of the Pole star off the meridian was $67^{\circ} 30^{\prime} 22^{\prime \prime}$. Eye 20 feet. Required the latitude in.

Ans. Latitude in, $66^{\circ} 49^{\prime} 41^{\prime \prime} \mathrm{N}$.

TO FIND THE TIME OF A STAR'S PASSING THE MERIDIAN, ALSO, ITS APPROXIMATE ALTITUDE.

First. Find the star's right ascension as given in pages 242 to 245 in the American Nautical Almanac, next the sun's right ascension in page one for the month in the Almanac.

Second. Subtract the sun's right ascension from the star's right ascension, increasing the star's right ascension by 24 hours when the sun's right ascension is greater than the star's right asdension.

Ex. At what time will Arcturus be on the meridian on April 27, 1878.

By this method the time of any particular star passing the meridian can be found, and knowing at what time a star will pass tho meridian, and having its approximate altitude at that time (as shown in the following example) there will be no difficulty in determining the latitude.

Third. To find the approximate allitude of a star, subtract the latitude in by account at the time of observation, from 90° which will give the co-latitude of the place of observation, find the star's declination in Nautical Almanac, as per rule, and remember that the sign thus - placed before the declination stands for south declination, and thus + stands for north declination.

Fourth. If the co-latitude and the star's declination are of tho same name, take their sum, but if contrary namies take their difference, for the altitude; the star will be found in the south part of the Heavens when the latitude is north, and in the north part when the latitude is south. When the sum of the co-latitude and the star's declination exceed 90°, subtract it from 180° and the remainder will be the altitude, but in this case the star will be found in the north part of the Heavens in north latitude and in the south part when the latitude is south.
Fifth. To find the star from its approximate altitude and meridian passage, set the index of the sextant to the approximate altitude, and a few minutes before the time of its meridian passage, direct the sight towards the north or south points of the liorizon and the reflected image of the star will be perceived in the horizon glass, upon or near the horizon, the star then being brought in contact with the horizon and kept so until it arrives at its greatest or
meridian altitude. There is not the least danger of mistaking the star as no two stars will have the same meridian altitude at the same time.

Abstract

Note.-Tho best time for obtaining a correct altitude of a star is at twilight, for the horizon is then distinctly visible, and the latitude thus found is nearly ss true as that obtained by an altitudo of the sun, in dark nights, and in consequence of tho obscurity of the horizon a large errcr may be found in the altitude; to counteract this the latitude should be found from an altitude of a star to the southward, snd another to the northward, aud balf the sum of the two latitudes thus found will be the correct latitude.

Ex. 1. February 27, 1878, at ship in latitude by aeeount, $40^{\circ} 50^{\prime} 10^{\prime \prime} \mathrm{N} .$, required the time of the meridian passage of the star Aldebaran, and its approximate altitude.

February 27. Right aseension of Aldebaran from pa eal Almanac. Add 24 hours as the snn?s right ascension is greate	$\begin{array}{rl} \text { II. M. S. } \\ 42 S & 55 \\ 2400 & 00 \end{array}$
Sun's right ascension (page 1, Nautieal Almanae)	$\begin{array}{llll} 28 & 28 & 55 \\ 22 & 41 & 41 \end{array}$
Time of Aldebaran meridian passage	54714

Latitude by aeeount 4050110 N. 900000

Co-latitude
490950 N.
Star's declination, Nautieal Almanae page 242................. $160545+\mathrm{N}$.
Approximate altitude
651535
Set the index of the sextant to this altitude and sweep the horizon to the southward, as the latitude is north, and the star will be distinctly seen near the horizon; watch it closely, and when it has ceased to rise, it is on its meridian, then apply the usual rules to find the latitude.

Ex. 2. March 21, at ship, in latitude by account, $1^{\circ} 30^{\prime} 25^{\prime \prime}$ S., at what time will the star Sirius pass the meridian, and what will be its approximate altitude?

Ex. 3. May 1, 1878, at ship, in latitude by account, $20^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}$., required the meridian passage of the star, Vega, and its approximate altitude.
May 21. Vega right ascension. is 32 4́ 48

155843
120000
Time of Vega meridian passage........................... 35843 A.м.
Latitude in by account...................................... $200_{0}^{0} 00_{00}^{010} \mathrm{~N}$.
900000
Co-latitude... 700000 N .
Star's declination. .. 3840 16+N.
1084016
1800000
Approximate altitude.. 711944 Thoward

TO FIND THE TIME AT ANY GIVEN MERIDIAN BY THE SUN'S ALTITUDE.

Take any number of altitudes with their corresponding times by watch, or chronometer, when the sun bears as nearly east or west as possible, of which take the " means," add them all logether and divide the number of observations.

To these means of the altitudes apply the corrections, as usual, and get the true altitude of the sun's centre.

Take the sun's declination (page 2, Nautical Almanac), and correct it by the hourly difference for the mean time at Greenwich, and get the sun's polar distance, adding the declination to 90° when the latitude and declination are of contrary names; subtracting it from 90° when they are of the same uame, N. or S.

Correct the equation (page 1, Nautical Almanac) for the mean time at Greenwich.

Add together the sun's polar distance, ship's latitude and sun's true allitude; take half the sum, and, lastly, the difference between that and the true altitude; call this the remainder.

Add together the secant of the latitude; co-secant of the polar distance; co-sine of the half sum; sine of the remainder; and the sum, rejecting tens in the index, will be the log. (Table XVIII.) answering to the hour angle or apparent time, from noon, at which the observation was taken.

If the observations be made in the morning, the time thus found
mast be taken from 24 hours to obtain the apparent time from the preceding noon.

To the apparent time thus found, apply the reduced equation of time, by addition or sultraction, as directed at the head of its column on page 1 of the Nautical Almanac, and the sum or remainder will be the mean time at the ship or place of observation. Hence, the error of the watch at the meridian of the place may be found for both apparent and mean time.

Ex. 1. August 16th, apparent time at ship $4 \mathrm{~h}: 42 \mathrm{~m}: 06 \mathrm{~s}$: in latitude $36^{\circ} 31^{\prime} \mathrm{N}$. and longitude by account $152^{\circ} \mathrm{C} 0^{\prime}$ E., the observed altitude of the sun's lower limb was $23^{\circ} 50^{\prime} 24^{\prime \prime}$; height of the observer's eye being 18 feet. Required the true, apparent and mean time at ship, and the error of the watch.

Take the declination out for the 16 th of Aurust, and correct it for 5 h : 2 im : from the noon of the 16th, towards the 15th, the first being the nearest noon, and add the correction as the declination is decreasing, that will give the declination at Greenwich mean time on August 15 th.

Ex. 2. March 15, 1878, A.M. at ship, when a watch showed $6 \mathrm{~h}: 44 \mathrm{~m}: 49 \mathrm{~s}$: latitude in at time of observation $16^{\circ} 29^{\prime} \mathrm{N}$., and longitude $99^{\circ} 30^{\prime} \mathrm{W}$., the observed altitude of the sun's lower limb was $10^{\circ} 36^{\prime} 10^{\prime \prime}$; the error of the sextant was $2^{\prime} 50^{\prime \prime}$ to subtract; eye 22 feet. Required the apparent and mean time at the meridian of ship, and the error of the watch.

H. M. S. Time by watch $\begin{array}{r}644 \\ 120000\end{array}$	Sun's dec. March 15.. $\stackrel{\circ}{2}^{2} 04{ }^{\prime} 4$ Correction for lh:23m - 117	Hr. dif. 59.118 1.3
Apparent time at ship, March 14.184449 Loug. in time.... © 3300 W .	Sun's declination at Green. mean time. $\begin{array}{r}20250 \mathrm{~S} \text {. } \\ 90 \\ 00 \\ 00\end{array}$	$\begin{aligned} & \overline{17754} \\ & 5918 \end{aligned}$
$\begin{aligned} & 252249 \\ & 240000 \end{aligned}$	Sun's polar distance. . $\overline{920250}$	1
Apparent time at Greenwich 12249		

TO FIND THE ERROR OF A WATCH OR CHRONOMETER BY EQUAL ALTITUDES OF THE SUN.

Subtract the first time from the second, for the interval.
Add the two times, and divide the sum by 2 , for the middle time by chronometer. Get the difference between the declination of the day before and day after, for the change of declination in two days, and multiply the difference by 60 , which will give seconds.

Correct the sun's declination for the Greenwich time and date, and the longitude in time, if west, it is the Greenwich time; but if east, take the longitude in time from 24 hours, and call the day one back.

Correct the equation of time for the Greenwich time, as usual; taking it out of page 2, Nautical Almanac. From Table XVI. take out \log. A. and B. for the interval, and place the \log. of natural number (Table I.), for the change of declination in two days under both log. A. and B. The log. tangent (Table II.) of the latitude under log. A. and log. tangent of the declination under \log. B .
*Se note for Table XVI.
The sum of the first three logs. is the log. in logarithms of numbers (Table I.) of the first part of the equation of equal altitudes, and the sum of the last three logs., that is, log. B., log. of change of declination, and log. tangent (Table II.) of the corrected declination, will be the second part of the equation of equal altitudes.

The first part of the equation is additive when the declination is decreasing, and of the same name with the latitude, or increasing, and of a different name from the latitude; but subtractive when the declination is increasing, and of the same name with the latitude, or decreasing, and of a different nome from the latitude.
The second part of the equation is additive when the declination is increasing, but sultractive when the declination is decreasing.

When both parts are additive or subtractive, get the sum of them and apply them to the middle time by chronometer (according to the sign + or -). But if one is additive and the other subtractive, take their difference and apply it to the middle time by chronometer, according to the sign of the greater.

Apply the equation of time corrected for longisade to the apparent noon at place, as directed at head of column, page 1 of the month Nautical Almanac, for the mean time at place of observation.

Get the difference between the time by chronometer at apparent noon and mean time at piace, and call the chronometer fast or slow, as shown by the times.

EQUATIONS OF EQUAL ALTITUDES.

Ex. 1. August 5, 1878 , in latitude $37^{\circ} 35^{\prime} \mathrm{N}$. and lougitude $60^{\circ} 00^{\prime} \mathrm{W}$., the following times were noted down when the sun had equal altitudes. Required the error of the watch for mean time at place of observation.

Sun's declination Augnst 4
17 1́3 411 N.
Sun's declination August 6 164108 N.
Difference of declinations in two days. 03233
$\times 60$
In seconds
1953

Dec. Aug. 5. ${ }^{\circ} 65^{\prime} 733 \mathrm{~N}$. H. dif. 40.70	Eq. of time Aug. 5. ${ }^{\text {Mr. }}$ S ${ }_{4}$ S.73	H. dif. 248
Cor. for long. - 240	Cor. for lon. in time - . 99	4
Reduced dec. 165453 N : 6)162"S0	Red'd eq. of time. . 545.74	99.2
$2^{\prime} 40^{\prime \prime}$		
Longitude......... $60^{\circ} \begin{array}{r}00^{\prime} \\ 4\end{array}$.	
$6 0 \longdiv { 2 4 0 \quad 0 0 }$		
4h:00 W.		

Interval of time (Table XVI). 6h:06m:. .Log. A. 7.7719. .Opp. Log. B.. 7.6156 Change of declination for two

days, log. of ummbers Ta. I Latitude (Tangent Table II)	$\begin{aligned} 1953 \\ 37^{\circ} 35^{\prime} \end{aligned}$	$\begin{aligned} & 3.2907 \\ & 9.8863 \end{aligned}$	$\begin{aligned} & 3.2907 \\ & 9.4831 \end{aligned}$
First part.	$+8^{\prime \prime} .59$	0.9489	
Second part			0.3894
Equation of equal altitudes..	$6^{\prime \prime} .44$		

H. M. S.

Cliron. slow for mean time. 13616 at place of observation.

Ex. 2. October 4, 1878, in latitude $39^{\circ} 19^{\prime}$ S. and longitude $90^{\circ} 00^{\prime}$ E., the following times were noted when the sun had equal altitudes. Required the error of the watch for mean time at place of observation.

Ex. 3. April 6, 1878, in latitude $32^{\circ} 40^{\prime}$ S. and longitude $153^{\circ} 00^{\prime}$ E., the following times were noted when the sun had equal altitudes. Required the error of the watch for mean time at place of obserration.

II. M. S.	H. M. S.
First time.. 263207	263207
Second time 212959	212959
Interval... 50208	Sum of times......2)480806
	Middle time by chronometer. 2401

Declination April 5
${ }^{\circ}$ ós $0^{\prime \prime \prime} \mathrm{z}$ N.
Declination April 7....... 65321
Difference of declination in two days
4518
$\begin{array}{r} \\ \times 60\end{array}$

In seconds
$\overline{2718}$

	H. M. S.	II. M. S.
Middle time by cliron	2401 03.0. Mid. ap. time at ship noon.	240000.0
Equation of equal altitudes.	$\div 0$ 11.3. Equation of time...	+ 234.6
Time by cliron. at ap. noon.	2401 14.3. Mean middle time at ship.	240234.6
Mean middle time at place.	240234.6	

Chronometer slow......... $0 \quad 120.3$

TO FIND THE SHIP'S POSITION FROM TWO BEARINGS OF THE SAME OBJECT.

This method of finding the position of the ship when in sight of land, by two bearings of the same object, will be found of great value when a cross-bearing cannot be obtained:

Select an object, the latitude and longitude of which is known; take a correct bearing of it by the compass (apply the variation and deviation due the compass bearing), and note the time by watch. After the bearing has altered not less than three points, take a second bearing, and note the time by watch. Having the interval of time between the first and second bearings, and the rate of sailing per hour, the distance sailed in the interval of time between the first and second bearings, and the rate of sailing per hour, the distance sailed in the interval may easily be obtained, and the ship's correct latitude and longitude found, as explained in the following example and table:
Ex. 1. April 15. at 8h. P.m., a light-house bore by compass N.W. $\frac{1}{2}$ N.; ship's course, W.; sailing at the rate of 7 miles per hour till 10 h : P.M., when the same light bore N.N.E. $\frac{1}{2}$ E. Required her distance at both places:

With $4 \frac{1}{2} \mathrm{pts}$. at the top of table, and $10 \frac{1}{2} \mathrm{pts}$. at the side of table, give the tabular number.

084
Distance sailed iu 2 hours.. +14
1176
The tabular number multiplied by 14 , the distance run in two hours, and the two right-hand figures struck off (being ,decimals) gives the distance off at 10 h : p.M., $11 \frac{3}{4}$ miles.

To find the distance:

The first angle being.. $4 / 1 / \mathrm{pts}$ Subtracted from....... 16	The second angle. . $101 / 2 \mathrm{pts}$. Subtracted from... 16	The tabular number is.. 095 Distance made............ - 14
Taken from cide table. $111 / 8$	Taken at the top...51/3	380 95
Gives the distance at 8 h	.M., $13 \pm$ miles.	330

Ex. 2. At 5 o'clock A.m., a light-house bore by compass W. by S. $\frac{1}{2}$ S. Ship then sailed on a S. $\frac{1}{2} \mathrm{~W}$. coursc, at the rate of $5 \frac{1}{2}$ knots an hour, until 7 A.m., when the same object bore N. W. by N., variation $\frac{1}{2}$ point west. Required the ship's latitude and longitude at the time of each bearing.
ist bearing W. by S. y_{2} S. by compass. $2 d$ bearing N.W. by N. by compass.

2 hours and $51 / 2$ knots=Distance sailed........ 11
Distance off at time of second bearing at 7 A.s........... 1067 miles.
 Latitude of light-house. .. 4024 N. Long of light....... 735848 W

Dist. Wat time of ist bear. 5 A. M........7.26 , or $7 / / \frac{1}{4}$ miles, nearly.
 Latitude of light-house.......... 4024 N . Lon.. 735848 W .

At 5 A.M. the latitude of the ship was............ 4027 N.
Lon. 73568 W .
The ship having made ber true south course, she has sailed on the meridian of $73^{\circ} 50^{\prime} 3^{\prime \prime}$ west, and was in the same longitude at 7 A.m. as at 5 A.M. and her difference of latitude is equal to the distance sailed.

Ex. 3. At noon a point of land bore SE. by E. by compass. Ship then sailed on a south course, at the rate of 10 knots an hour, until 4 P.M., at which time the same point of land bore N.E. by E. $\frac{1}{2}$ E., the magnetic variation here being $1_{\frac{1}{2}}$ points westerly. Required the latitude and longitude of the ship at the time of each bearing.

The 1st Bear. SE. by E. by compass. $2 d$ Bear. N.E. by E. 份 E. by compass.

\qquad
4 hours at 10 knots.. 40
Dist. off at the time of the $2 d$ bearing, at 4 P.m..... 37.60 miles.

Latitude of NW. point of land................... 17120 N . and Lon.......... 25190 W .
At 4 P.M. latitude of the ship was........ . 164530 N. and Lon........... 254650 W.

To Find the Position of Ship at Noon, or Time of First Bearing.

 Lat. N.W. point of land is.... 1712 N.

Lat. of the ship at noon was.. 172336 N .

Lon. 2519 W .

Lon.. 25 59W.

TABLE FOR FINDING THE DISTANCE OF AN OBJECT BY TWO BEARINGS，AND THE DISTANCE BETWEEN THEM．

First．To find the distance of the object when the last bearing was taken，enter the table with the number of points at the top，con－ tained between the first bearing and the ship＇s head，and the num－ ber of pointsat the side contained between the second bearing and the ship＇s head．At the angle of meeting take out the tabular num－ ber which multiply by the number of miles of distance made good by the ship．The result is the distance in miles off shore at the time the last bearing was taken．
Second．To find the distance when the first bearing was observed， enter the table with the difference between these bearings and 16 points；the second bearing in this case must be taken from the top， and the first bearing from the side column．Take out the tabular number corresponding and multiply it by the number of miles of distance made good by the ship．The result is the distance of the ship off shore at the time of the first bearing．

Difference between the course and 2nd bearing．	difference between the course and the firsi bearing．																
	POLNTS OF THE COMPASS．																
points．	2	21／3	3	31／2	4	41／2	5	51／2	6	61／3	7	73／2	8	81／2	9	93／2	10
${ }_{4}^{31 / 2}$	$\begin{aligned} & 1.00 \\ & 1.10 \end{aligned}$																
43	0.81	1.23															
51／8	0.60	0.85	1.17	1.66													
6	0.54	0.74	1.00	1.35	1.85												
61／2	0.49	0.67	0.88	1.14	1． 20	2.02											
$71 / 2$	0.46 0.43	${ }^{0.51}$	0．79	1.00	1.11	1.64	2，77	2.30									
8	0.41	0.53	0.67	0.82	1.00	1.22	1.50	187	2.41								
	0.40	0.51	0.63	0.76	0.92	1.08	1.31	1.58		2.50							
8	0.39	0.49	0.60	0.72	0.85	1.00	1.18	1.39	1.66	2.03	2.56						
$93 / 2$	0.38	0.48	0.58	0.69	0.80	0.93	1.08	1.25	1.461	1.72	2.08	2.60					
10	0.38	6.47	0.57	1.66	0.76	0.88	1.00	1.14	1.31	1.51	1.76	2.11	2.61				
103／2	0.38	0.47	0.56	0.65	0.74	084	0.94	1.06	1.191	1.35	1.53	1.79	2.12	2.60			
11	0.39	0.47	0.56	0.64	0.72	0.810	0.90	1.00			1.39	1.57			2.56		
113／8	0.40	0.48	0.56	0.63	0.71	0.79	0.87	0.95	1.05	1.15	1.27	1.41	1.58	1.79	2.08	2.50	
12	0.41	0.49	0.57	0.64	0.71	0.78	0.85	0.92	1.001	1.08	1.18	1.29	1.41	$1 . ⿱ 亠 䒑 ⿱ ⿻ 土 ㇒ 日 勺 十$	1.76	2.03	2.41
121／2	0.43	0.51	0.58	0.65	0.71	0.770	0.83	0.90	0.97	1.03	1.11	1.29	1.29	1.41	1.35	1.72	1.96

EXPLANATIONS OF THE TABLES.

Table I.-Logarithms of numbers.

The decimal point separates the two parts of a logarithm, the integer before it, called the index, and the decimal part after it.

The index is governed by the number of figures in the whole number, being always one less than this number. The index of 12 is 1 ; of 999 , it is $2 ; 1999$, it is 3 .

If the number is a mixed decimal, the decimal is not taken into account in finding the index, the whole part only being used. Index of 23.45 is one; of 235.507 is 2 . If the number consists of a decimal only, count the number of ciphers before the first figure, and then subtract this number from 9 for the index. The index of .45 is 7 ; of .045 is 8 ; of .000045 is 5 .

To find the logarithm of a natural number, If the number has only one or two places of figures in the whole part, look in the first page of logarithms, and in the column marked "No." at the top, until the required number is found; the corresponding logarithm, with its index, will be found in the first column on the right, and opposite the number. The log of 75 is 1.875061 ; of 99 is 1.905635.

If the number is of three figures, look in the column of numbers for it, and then under the column marked " 0 " at the top will be the required logarithm. The log. of 158 is 2.198657.

If the number is of four figures, find the first three in the lefthand column, and the fourth at the top of the page. Under the fourth and opposite the first three figures will be the required logarithm. The logarithm of 158.4 is 3.200029 .

If the number is of more figures than four, find the log. of the first four, then multiply the difference, opposite in the column marked "Dif.," by the figures which follow the first four, point off as many places from the right as there were figures in the multiplier, add the remaining figures to the log. first found; this will give the true logarithm.
Find the \log of 519468: \log of first four figures is.
The difference is 84 , which, multiplied by 68, gives.
\log of 519468 5.7155059
Find the \log of $4496345: \log$ of first four figures is 6. 652826
Difference, 97 , multiplied by 345 , gives. 33
Log of 4496345 is .6.652859

 345

 97

 2415
 3105

33.467 Cor.

If the number is a mixed decimal, find same as if it was a whole number, and point off for the whole part only, Log. of 51.94 is 1.715502 ; of 4496343 , is 2.652859 .

If the number is a decimal only, find the decimal part of the logarithm in the same way as if it was a whole number; then prefix the index, which is 9 less the number of ciphers before the first figure. The log. of . 2641 is 9.421768 ; the log. of .002641 is 7.421768 ; the \log of . 00002641 is 5.421768 .

To find the natural number corresponding to any logarithm:
If the index is 3 , the required number will have four figures in its whole part. Look in the columns of logarithms for the decimal part of the logarithm, and find the logarithm that is nearest to the given logarithm; take the three figures in the column of numbers opposite, and the figure at the top of the column in which the logarithm lies. This will be the required number.

Find the number corresponding to log. 3.421770. Opposite to 421768 (the nearest log.) is 264 , and over it is 1 . The number corresponding to 3.421770 is 2641.

If the index is 4 or over, find the log. which is next less than the given log; take the three figures opposite and the one over, as the first four figures of the required number. Then take the difference between that log. nearest the given log. and the given log., annex as many ciphers as there are figures required in the number to be found, and divide by the difference opposite in the "Dif." column.

From the logarithm 5.879242 find the number corresponding. The first four figures are 7572; the difference between the given and required log. is 31 ; the difference from the "Dif." column is 57.
57) $3100(54$ The number, then, is 757254.

$$
\begin{aligned}
& \frac{285}{250} \\
& 228
\end{aligned}
$$

If the log. is that of a decimal, such as 9.681241 , find the number just as if were a whole number, 480 , and point off for the index 9 , the whole as a decimal; for the index 8 , prefix 0 and point off the whole as a decimal.

$$
\operatorname{Logs.}\left\{\begin{array}{lr}
9.681241 \ldots \ldots \ldots . . & .480 \\
8.681241 \ldots \ldots \ldots & .0480 \\
7.681241 \ldots \ldots \ldots & .00480 \\
6.681241 \ldots \ldots \ldots & .000480
\end{array}\right\} \text { Numbers Correspondingo. }
$$

Table II.-To find the log. sine, tangent, etc., of any are or angle, in degrees and minutes.
If the number of degrees is under 45 , they will be found at the top of the page, and the minutes in the left-hand column of the page, marked " M." at the top and bottom; the required logarithm will be found opposite the minutes, and in the column with the name of the function that you want to find at the top. But if the number of degrees is over 45 , they will be found at the bottom of the page, with the minutes in the right-hand side column of the page, marked "M." at bottom and top; opposite the minutes, and in the column with the name of the required function at the bottom, will be found the required logarithm. If it is required to find the log. co-sine of $9^{\circ} 51^{\prime}$, look for the page marked with 9° at the top, and. then down the side column for 51^{\prime}; opposite to this, and in the column marked " Co-sine " at the top, will be found 9.993550 , which is the log. co-sine of $9^{\circ} 51^{\prime}$. The log. tangent of $80^{\circ} 11^{\prime}$ is found in the same way, with the 80 degrees at the bottom of the page, the minutes in the right-hand side column, and in the column marked "Tang." at the bottom; it is 10.761880 .

When the given degrees exceed 90 , they are to be subtracted from 180 degrees, and the logarithm of the remainder taken out, as before. Or the logarithmic sine, tangent, etc., of an arc more than 90 is the logarithmic co-sine, co-tangent, etc., of its excess above 90 degrees.

Examples:

To find the log., sine, co-sine, secant, etc., of any arc or angle, in degrees, minutes and seconds.
Take the difference between the logs. for the given minutes and the next higher number of minutes; multiply this difference by the given number of seconds, and divide by 60 ; add the quotient to the log. found for degrees and minutes, in the case of sines, tangents and secants; subtract it in the case of co-sines, co-secant and cotangent. For example.

Required the log. sceant for $32^{\circ} 44^{\prime} 34^{\prime \prime}$.

Required the log. co-sine to seconds for $81^{\circ} 32^{\prime} 199^{\prime \prime}$.			
The co-sine for $81{ }^{\circ} 32^{\prime}$ is	.9.168008	=	9.168008
And for $81^{\circ} 33^{\prime}$ is.	. 9.167159	Correction	269
Difference .	$\begin{array}{r} 849 \\ \times \quad 19 \end{array}$	Correct log	. 9.167739
-	$\begin{aligned} & 7641 \\ & 849 \end{aligned}$		
	60)1613.1		
Correction	268.51		

To find the arc or angle, in degrees and minutes, which corresponds the nearest to any given logarithmic sine, tangent, secant, ctc.:
Look in the column marked at the top or bottom with the name of the given logarithm, and find the logarithm which agrees the nearest with the given logarithm; then, if the name at the top of the column corresponds with the name of the given logarithm, take the degrees from the top of the page and the minutes (opposite the nearest logarithm) in the left-hand side column; but if the name at the bottom of the page corresponds with that of the given log., take the degrees from the bottom of the page, and the minutes (opposite the nearest logarithm) in the right-land side column.
Required the arc corresponding to log. sine 9.595435 . The nearest log. is 9.595432 ; the arc 23° at the top of the page, and $12^{\prime \prime}$ in the left-hand side column. Log. sine $9.595435=23^{\circ} 12^{\prime}$.

Required the are corresponding to log. co-secant, 10.044160. The nearest logarithm in the co-secant column is 10.044151; the arc is 64°, from the bottom of the page, and 36^{\prime} from the right-hand side column. Log. co-secant $10.044161=64^{\circ} 36^{\prime}$.
Tables III. axd IV.-Difference of làtitude and departure for points and degrees.
These tables are the same except one contains points and the other degrees. The difference of latitude and departure are in miles and tenths for distances of less than 300 miles. The courses are set
down in points and degrees, at the top of the pages, if they are less than 4 pts . or 45°; but the courses are at the bottom of the pages if they are over 4 pts , or 45°. The distances are in the column marked "Dist." at the top and bottom; opposite to these distances, and to the right of them, are the difference of latitude and departure. If the courses are under 45°, the "Lat." and "Dep." are marked at the top of the columns. But if the courses are over 4 pts. or 45°, the "Lat." and "Dep." are at the bottom of the columns; that is, if the course is at the bottom, read the column from the bottom; but if the course is at the top, read the columns from the top.

Table V.-Table of meridional parts.

This table is used in solving problems by Mercator's sailing. The meridional parts are found in the columns with the degrees at the top and bottom of the pages, and the minutes at the sides. It is also used in Mercator's projections in constructing charts. The meridional part corresponding to $37^{\circ} 18^{\prime}$ is 2415 .

Tables VI., VII., VIII.-Refraction, dip and parallax tables.
These are to be applied to all observed altitudes. Refraction is subtractive from the observed altitude and must be taken out for the altitude which is nearest the given one. Dip is subtractive from a fore observation and additive to a back one. It is given to 100 feet height of the eye. Parallax is always additive and must be taken out to the nearest degree.

Table XI.-For reducing longitude into time, and the contrary.

This table has been added to quicken the reduction of degrees, etc., of longitude into time, or of hours, etc., into longitude. Now suppose you want to convert $160^{\circ} 20^{\prime}$ into time, first look in the column marked degrees until you come to 160°, then in nest column on the right hand and directly opposite 160° you will see $10 \mathrm{~h}: 40 \mathrm{~m}$: which is equal in time to 160°, then in the seventh column marked minutes of degrees you will find 20 minutes, and directly opposite in the next column on the right hand you will see $1 \mathrm{~m}: 20 \mathrm{~s}$: which added to $10 \mathrm{~h}: 40 \mathrm{~m}$: will make $10 \mathrm{~h}: 41 \mathrm{~m}: 20 \mathrm{~s}$: in time, which is equal $160^{\circ} 20^{\circ}$ of longitude.
Ex. 1. Required the degrees, etc., corresponding to $\mathrm{Sh}: 32 \mathrm{~m}: 45 \mathrm{~s}$.

Longitude answering	II. M. S. 3245 is 120800
Longitude answering	45 is 3
Hence the longitude an	83246 is 12

Table XII.-For reducing the sun's declination to noon at any given meridian, and to any time at the meridian of Greenwich.
This table contains the corrections to be applied to the sun's declination as given in the Nautical Almanac; which is computed for apparent or mean noon at Greenwich; it is to be entered with the declination for noon of the given day as found in page one or two of the Nautical Almanac, at the top, and the longitude of the place or time at Greenwich, in the side columns; corresponding to these will be found the minutes and seconds to be applied to the above declination ly addition or subtraction, as directed at the head of the column table; that is, when the declination is increasing, the correction to be added in west longitude, but to be subtracted in east longitude, or to be added for Greenwich time; but when the declination is decreasing the correction is to be subtracted in west longitude but to be added in east longitude, or to be subtracted for Greenwich time. When the declination and longitude, or time at Greenwich, are not nearly found in the table, proportional parts may be used. When the given time at the meridian of Greenwich exceeds 12 hours, the correction must be taken out twice as in example three. It must be observed that this table is subject to an error of a few seconds, from the sun's unequal motion in the elliptic; but it is nevertheless in general, sufficiently exact for observations taken at sea.
Ex. 1. Required the sun's declination at apparent noon on August 17, 1877, in longitude $122^{\circ} 21^{\prime}$ west.
Sun's declination at apparent noon by p. 1 N. A. (deereasing)..... 21 of $0^{\prime} 3$ ñ N. Correction for longitude $122^{\prime} 21^{\prime}$ W................................... - 344
Sun's declination when passing the meridian of the given place.... 210544 N .
Ex. 2. Required the sun's declination on Juue 12, 1877, at 6h:24m: apparent time at Greenwieh.
Sun's dec. on June 12th at apparent noon, p. 1 N. A. (inereasing). . 23 lí 1" N.
Correction 6h:24m: apparent time.................................. +5
Sun's declination at Greenwich time................................. 231212 N.
Table XIII.-Corrections for the apparent altitudes of sun and stars.
Enter the columns marked at the top "App. Alt.," with the apparent altitude which you have, and find the nearest arc to the one you have. Take the correction opposite. If the sun was observed, the correction is in the first column to the right of the apparent altitude, but if the altitude is that of star, the correction is in the second column to the right of the app. altitude. This correction is always subtractive, and is only the refraction and parallas combined.

Table XIV.-Natural sines and co-sines.

The degrees for the natural sine are found at the top of the page,
and the minutes in the left-hand column of the page. But for the co-sines the degrees are at the bottom of the page, and the minutes in the right-hand side column. The sines are under the degrees and opposite the minutes, while the co-sines are over the degrees and opposite the minutes. The natural sine or co-sine of any number of degrees over 90° is the same as the natural sine or co-sine of its supplement, that is, 180°-the angle.
If the angle or arc is given in degrees, minutes and seconds, multiply the difference at the bottom of the column by the number of seconds, point off two places, and add or subtract the quotient, according as the natural sine or natural co-sine is increasing or decreasing.

Required the natural sine of $9^{\circ} 30^{\prime} 10^{\prime \prime}$. Natural sine of $9^{\circ} 30^{\prime}$ is 165048; difference for $100^{\prime \prime}$ is 478 , which, multiplied by 10 and point off two places $=47.80 ; 165048+47=165095$. Natural sine of $9^{\circ} 30^{\prime} 10^{\prime \prime}$.

Arc corresponding to natural co-sine 032289 is $88^{\circ} 9^{\prime}$.

Table XV.-For finding the distance of terrestrial objects at sea.

When the eye is elevated above the surface of the adjacent land or water, we not only see the surrounding objects more distinctly, but also see those which are more remote the higher we advance. Now, although the irregularity of the surface of the land will not admit of any one rule that will give the distance to which objects may be seen at different elevations, yet at sea, where the currature of the water is uniform, those distances may be easily computed by means of this table, in which the distances are exhibited in nautical miles and decimal parts; answering to the height of the eye, or that of the given remote object, allowance having been made for terrestrial refraction.

Example. Being at the mast head looking out for land, and clevated 130 feet above the surface of the sea, I discovered the top of a light-house in the horizon, whose height above the level of the sea is known to be 300 feet: required my distance from the light-house.

In the table opposite
Ditto
130
300 feet is... 13.1 miles. 19.9
Sum gives the distance of the ship from the light-house... $\underline{\underline{33.0}}$
Table XVI.-Equations of equal altitudes.
Observations of the sun, taken when at equal altitudes, afford an easy and accurate method of ascertaining the time shown by a chronometer at apparent or mean noon; and from thence its error; but since the sun changes his declination during the interval between the corresponding altitudes, the middle of the times by the chronometer when they were taken, will not be that shown by it when the sun passes the meridian; and hence it becomes necessary to apply a correction, called the equation of equal altitudes, to the
middle of the times, which may be easily computed as follows, by means of this Table:

1. Opposite the interval between the observations, take out the logarithms marked A and B at the head of the columns.
2. To log. A add the log. (Table I) of the seconds in the change of the sun's declination between the noons of the preceding and following days (taken from the Nautical Almanac), and the log. tangent (Table II) of the given latitude; the sum of these three logs. will be the log. (Table I) of the first part of the equation.
3. To log. B. add the log. of the above seconds, and the log. co-tangent of the sun's declination to the ucarest minute of the given day; their sum will be the log. of the second part of the equation.
4. The first part of the equation additive when the declination is decreasing, and of the same name with the latitude; or increasing, and of a different name from the latitude; but subtractive, when the declination is increasing, and of the same name with the latitudc; or decreasing, and of a different name from the latitude.
5. The second part of the equation is additive when the declination is increasing; but subtractive when the declination is decreasing.

Tables XVII. and XVIII.-Log. rising and horary angle.
Enter this table with the hours, minutes and seconds. The hours will be found at the head of the page, the minutes in the left-hand column, and the seconds at the head of the column of logarithms. In the right-hand column will be found a column of proportional parts, there being five seconds of difference between each column.

Required the log. rising corresponding to $1 \mathrm{~h}: 55 \mathrm{~m}$: 55 s .
Ans. Index $4.09762=$ required the log. rising of $57 \mathrm{~m}: 57 \mathrm{~s}$.

$$
\begin{aligned}
& \text { For } 57 \mathrm{~m} \text { : } 5 \text { 5s: we have........................ . } 50190 \\
& \text { For 2s: we have............................. } \times 50 \\
& 3.50240
\end{aligned}
$$

Table XIX.-Required the apparent time corresponding to 8.302\%0. The angle corresponding this log. is $1 \mathrm{~h}: 05 \mathrm{~m}: 10 \mathrm{~s}$. Required the log. corresponding to horay angle $2 \mathrm{~h}: 15 \mathrm{~m}: 36 \mathrm{~s}$: $2 \mathrm{~h}: 15 \mathrm{~m}: 35 \mathrm{~s}$: gives 8.92928 ; 1 s : gives 10 , additive.

Log. 8.92928
$+10$
8.92938

Tabie XX.-To reduce the equation of time to any time under the meridian of Greenwich.
This table is entered with the daily variation or cliange of the equation of time (being the difference of the equations at the preceding and the following noons, taken from pages 1 or 2 of the month in the Nautical Almanac, when they are both additive or both subtractive, but their sum when one is subtractive and the other additive) at the top, and the Greenwich time in the left sido column. The corresponding correction is then to be applied to the equation at the preceding noon, by addition or subtraction, according as the equation is increasing or decreasing. But should the
equation be less than the correction at the preceding noon, the former is to be substracted from the correction, and the remainder will be the reduced equation of time, to be applied in the same way as directed in the Nautical Almanac, for the equation at the following noon. When the Greenwich time exceeds twelve hours, the correction must be taken out twice, as in second example.

Ex. 1. Required the equation of time, Augnst 17, 1877, at 4 hours apparent time at Greenwich.

$$
\begin{aligned}
& \text { Equation of time at app. noon, Aug. 17, page 1, Nant. Alm.... M. S. } \\
& \text { Eqnation of time at app. noon, Aug. 18, page 1, Naut. Alm...... } 336 \\
& \text { Daily change of variation (deereasing)............................... } 013 \\
& \text { Equation of time (as above) Aug. 17............................... } 349 \\
& \text { Correction to differenee } 13 \text { seeonds and } 4 \text { hours....................- } 002 \\
& \text { Reduced equation time (to be added to apparent time)............ } 347
\end{aligned}
$$

Hence the mean time at 4 hours apparent time at Greenwieh on August 17, 1877 , is $4 \mathrm{~h}: 3 \mathrm{~m}: 47 \mathrm{~s}$.

Ex. 2. Required the equation of time on September 17, 1877, at 16h: 35m: mean time at St. Helena, in lougitude $5^{\circ} 45^{\prime} \mathrm{W}$.

Redueed equation (to be added to mean time) 554

Table XXI.-Amplitude.

This table shows a method of finding the variation of the compass by comparing the magnetic with the true amplitude. The true amplitude is taken from this table, which has the declination at the top of the pages, and the latitude at the left hand.

When the minutes of latitude or declination are over 20 , the mean of the amplitude for the two nearest degrees will give the required amplitude, nearly.
Required the true amplitude in latitude $40^{\circ} 31^{\prime} \mathrm{N}$., when the deelination is 16°.

True amplitude for latitnde 40°, dee. 16°.	$2110{ }^{2}$
True amplitude for latitude 41°, dee 16°.	2125
	2)42 30
True amplitude.	2115

Required the true amplitude in latitude $2^{\circ} 50^{\prime} \mathrm{S}$., deelination $10^{\circ} 25^{\prime}$.
True amplitude in latitude 3°, dee. $10^{\circ} \ldots \ldots \ldots$.
True amplitude in latitude 3°, dee. $11^{\circ} \ldots . . . \ldots$.
2) 2109

True amplitude lat. 3° S., dec. $10^{\circ} 25^{\prime} \ldots \ldots \ldots \ldots \ldots$........... 10

TABLES.

TABLE I．
 Logarithmo Sines，Tangents，and Secants，to every Point and Quarter Point of the Compass．

$\begin{aligned} & \text { ro } \\ & \text { or } \\ & \text { 范 } \end{aligned}$	Sine．	Co－sine．	Tangent．	Co－tang．	Secant．	Co－sec．	－
0	0．	，					
O $1 / 4$	8．690796 8.991302	9．99947	8.691319 8.93398 8	${ }_{11}^{11.3086}$		11．309204	78
08	9.166520	9.955274	9.171247	10.828753	10.004726	10.833480	7 1／4
1	9.2902	9.991	9298662	10.701	10.008426	4	
$1 /$	9.385571	9．9867	9．398785	${ }^{10.6012}$	10.013214	10.614429	
11／3	9．462824 9.527488	9.980885 9.973841	9.481939 9.553647	10.518061 10.446353	10.019115 10.023159	10.537176	左
		－	9．6748	10			
		9.945	9．727937	272	10.054570		
	9.711050	9.933350	9．777700	10.222300	10.066650		
	9.7447	9.9198 ± 6	9.824893	10.175107	10.080154	10.255261	
	9．775027	8	${ }_{9} 98714199$	10．129310	10．095	${ }^{10.224973}$	
$33 /$	${ }_{9} .827084$	${ }_{9.869790}$	${ }_{9}^{9.9514295}$	1	${ }_{10.130210}^{10}$	$1{ }_{10.172916}^{10.197641}$	
4	9849485	9.819485	10.000000	10.00000	10.15051	10.150515	4
	Co－sine	Sine．	Co－tang．	Tangent．	Co－se	Seca	

logarithms of numbers．

No．1－100				Log． $0.000000-2.000000$					
No．	Log．								
1	0.000000	21	1.322219	41	1.612784	61	1.785330	81	1.908485
2	0.301030	22	1.312423	42	1.623249	62	1.792392	82	1.913814
3	0.477121	23	1.361728	43	1.633468	63	1.799341	83	1.919078
4	0.602060	24	1.380211	44	1.643453	64	1.806180	84	1.924279
5	0.698970	25	1.397940	45	1.653213	65	1.812913	85	1.929419
6	0.778151	26	1.414973	47	1.662758	66	1.819544	86	$1.93 \dot{498}$
7	0.845098	27	1.431364	47	1.672098	67	1.826075	87	1.939519
8	0.903090	28	1.447158	48	1.681241	68	1．832509	88	1.944483
9	0.954243	29	1.462398	49	1.690196	69	1.838849	89	1.949390
10.	1.000000	30	1.477121	50	1.698970	70	1.845098	90	1.951243
11	1.041393	31	1.491362	51	1.707570	71	1.851258	91	1．959041
12	1.079181	32	1.505150	52	1716003	72	1.857332	92	1.963788
13	1.113943	33	1.518514	53	1.724276	73	1.863323	93	1.968483
14	1146128	34	1.531479	54	$173239 \pm$	74	1.869232	94	1.973128
15	1.176091	35	1.544068	55	1.740363	75	1.875061	95	1.977724
16	1.204120	36	1556302	56	1.748188	76	1.880814	90	1.982271
17	1.230449	37	1.568202	57	1.755875	77	1.886491	97	198677^{2}
18	1.255273	38	1.579784	58	1.763428	78	1．89209コ	98	1.991226
19	1.278754	39	1.591065	59	1.770852	79	1.897627	99	1995635
20	1.301030	40	1.602060	60	1.778151	80	1.903090	100	2.000000

TABLE I.

LOGATIIHMS OF NUMBERS.
No. 1600-2200 Log. 204120——342423

No.	0	1	2	3	4	5	6	7	8	9	Diff.

160
161
162
163
16.4

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
183
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
20')
210
211
212 213 214 215 216 217
218
$2041202043912146622049331205204205 \pm 75205745206016206286206556$ 206826207095207365207634207903208172208441208710208978209247 209515 209783 $210051,210318,210586210853211120,211388211654,211921$ 112188 212454 212720 $212986|213252| 213518213783214049214314214579$ 214844 215109 $215373215638215902 』 16166216430216694216957 / 217221$ $217484|217747| 218010-218273 / 218535218798 \cdot 219060,219322219584219846$ $220108 \cdot 220370$ 22 1631 220892 221153221414221675 221936 222196222456 $222716|222976| 223236|223496| 223755224015224274 \mid 224533224792,225051$
 227887228144228400228657228913229170229426229682,229938230193 230449 230704 230960 231215 231470 231724 $\overline{231979}$ 232233 232488 23274ะ $232996233250|233504| 233757234011 \mid 234264234517234770235023235276$

 240549 240799 241048 241297|241546|241795 242044242293242541242790 243038243286243534243782244030244277244524247772245019245266
 $247973248219248464248709248954249198249443249687 \mid 249932250176$ $250420 \cdot 250664 \mid 250908 \cdot 251151 \quad 251395251638 \cdot 251881 \quad 252125,252367 / 252610$ $252853253096|253338-253580| 253822.254064254306254548254790255031$ $\overline{255273} \overline{255514} 255755$
 260071 260310, 260548,260787261025 261263 261501 261738 261976262214

 $269513|269746269980| 270213370446 \mid 270679$ 270912 $271144|271377| 271609$ 271842 272074 272306 272538,272770 273001 $273233|273464| 273696 \mid 273927$ 274158274389274620274850 275081 $275311|275542| 275772 \mid 276002276232$
 278754 $27898 \approx 279210$ 279439 274667 279895 280123 280351 280578 280506

 285557 285782 286007 $286232,286456 / 286681286905$ 287130 287354287578
 $290035 \cdot 290257|290480| 290702|290925 \cdot 291147| 291369291591 ~ 291813292034$ $292256 \mid 292478$ 292699 292920 293141 263363293583293804294025294246

 298853299071 299289 299507 299725 299943,300161300378 300595300813 $\overline { 3 0 1 0 3 0 } \longdiv { 3 0 1 2 4 7 } \overline { 3 0 1 4 6 4 } \overline { 3 0 1 6 8 1 } \overline { 3 0 1 8 9 8 } \overline { 3 0 2 1 1 4 } 3 0 2 3 3 1 / 3 0 2 5 4 7 \overline { 3 0 2 7 6 4 } \widehat { 3 0 2 9 8 0 }$ $303196|303412| 303628 \mid 303844304059304275304491304706304921305136$ $305351305566 \mid 305781305996306211306425306639306854307068307282$ $307496307710307924308137808351308564308778308991 \mid 309204309417$ $309630 \mid 309843310056310268310481 / 310693310906311118311330311542$ $311754311966|312177| 312389312600 \mid 312812313023313234313445313656$ 313867 3 [4078 $314289|314499314710| 314920315130|315340| 315550 \mid 315760$ $315970316180316390316599316809317018317227317436 \mid 317645317854$ $318063318272|81841318689318898319106319314| 31952231973031 \ni 938$ $320146320354|320562320769320077| 321184321391 ; 321598 \mid 321805322012$ $\overline{322219} \overline{322426} \overline{322633} \overline{322839} \overline{323046} \overline{323252} \overline{323458} \overline{323665} \overline{323871} 324077$ 324282324488324694324899325105325310325516325721325926326131 326336 $326541|326745326950327155327359327563327767| 327972328176$ 328380,328583 328787328991329194329398329601329805330008330211 330414 330617 330819331022331255331427331630331832332034332236 $332438332640332842 \mid 333044333246333447333649333850334051334253$ $334454334655|334856335056| 335257335458335658335859336059336260$ $336460336660336860,337060337260337459337659337858,338058338257$ 338456338656338855,339054339253339451339650339849340047340246 $340444340642340841,341039 \quad 341237 \quad 341435 \quad 341632341830 \mid 342028342225$

LOGARITHMS OF NUMBERS.
No. $2800-3400$ Log. $447158-531479$

No.	0	1	2	3	4	5	6	7	8	9	Diff.
280	417158	447313	44746	447683	44778	447933	448088	448242	44×397	14855	1
281	44870	448861	149015	449170	4493	449478	449633	449787	449941	150095	154
282	150249	450403	450557	450711	145086	451018	451172	451326	451479	451633	154
283	¢51786	451940	152093	352247	752400	452553	452706	452859	453012	453165	153
284	453318	453171	45:624	453777	753930	454082	454235	454387	154540	154692	158
285	454845	454297	45.5149	155302	2455454	455606	455758	455910	456062	556214	152
285	456366	456518	456670	456821	1456973	457125	457276	457428	457579	457730	152
287	457882	458033	158184	458336	6458487	458638	458789	458940	459091	459242	151
288	459392	459543	459694	459845	459995	460146	160296	460447	460597	160747	151
289	160838	461048	451198	161348	461498	461649	461799	461948	462098	16.9.48	150
290	46239	462548	162691	462847	46297	463146	463296	463445		63741	150
291	463893	164042	464191	464340	464489	464639	464787	464936	163085	165234	149
292	465383	165532	165680	165829	465977	466126	466274	166423	466571	466719	149
293	466868	467016	467164	467312	467460	467008	467756	467904	468052	468200	148
294	468347	168495	468643	468790	4C8938	469085	469233	169380	469527	469675	148
295	463822	469969	170116	470263	170410	170557	470704	470851	470998	471145	147
296	171292	471438	171585	171732	471878	472025	472171	472317	472464	472610	147
297	472756	172903	173049	473195	173341	173487	473633	473779	473925	474070	146
298	474216	± 74362	474508	474653	474799	474944	475090	475235	475381	475526	146
293	175671	475816			176252	476397	476512	476687	476832	476976	145
30 J	47712	477266	477411	177555	477700	177844	77989	478133	478	78422	145
301	478566	178711	178855	478999	479143	479287	479431	479575	479719	479863	144
302	480097	480151	$48029 \pm$	480438	180582	480725	480869	481012	181156	481299	144
303	481443	481586	481729	481872	482016	482159	482302	482445	482588	482731	143
301	482874	183016	483159	483302	483445	483587	483730	483872	484015	481157	143
305	184300	484442	484584	481727	184869	485011	485153	485295	485437	485579	142
306	485721	485863	486005	486147	486289	486430	486572	486714	486855	486997	142
307	487138	187280	487421	187563	487704	4878	487986	488127	488269	488410	141
308	488551	488692	88833	488973	189114	48925	489396	489537	489677	489818	141
309	189958	490099		490380		490661	490801			491222	140
310	491362	491502	191642	491782	491922	4920\%2	192201	492341	492481	492621	140
311	492760	192900	493040	49317	493319	493458	493597	493737	493876	494015	139
312	494155	494291	494433	494572	494711	494850	194989	495128	495267	495406	139
313	495544	495683	495822	495960	496099	496237	496376	496514	496653	496791	139
314	496930	497068	497206	497344	497482	497621	497759	497897	498035	498173	138
315	498311	498448	498586	493724	498862	49S999	499137	499275	499412	499550	138
316	499687	499824	499962	500099	500236	500374	500511	500648	5007	00922	137
317	501059	201196	501333	01470	501607	01744	501880	502017	5021	02290	137
318	502427	502564	502700	502837	502973	503109	503246	503382	503518	03654	136
319	503791	503927	504063	504199	504335	504471	504607	04743	504878	014	136
320	50515	505286		05557				0609	506	06370	136
321	506515	506640	50677	506911	50704	50718	5073	507451	507586	07721	135
322	$5078{ }^{\circ}$	507991	50812	50826	50839	508530	5086	50879	508933	09068	135
323	509202	509337	509471	09606	509740	509874	510008	510143	510277	10411	134
324	-510545	510679	510813	10947	511081	511215	511348	511482	511616	511750	134
325	511883	512017	512150	ธ12284	512417	512551	512684	512818	512951	513084	133
326	513218	513351	513484	513617	513750	5138835	514016	514149	514282	514415	133
327	514548	514680		14946	515079	15211	515344	515476	515609	515741	133
328	51587	516006	516139	516271	5164035	516535	516668	516800	516932	517064	132
329	5171	517328	517460	517592	51772	7855	517987	5181195	518251	518382	132
330	5185	5186	5181	51890	519040	51917		,	5195	519697	131
331	519828	519959	5200905	520221	520352	520483	520614	520745	520876	521007	131
332	521138	5212695	521400	521530	521661	521792	521922	522053	522183	522314	131
333	52244		5227055	522835	52296		523226	523356	52348	523616	130
334	523746	22386	524006	524136	524266	-2436	524526	524656	524785	524915	130
335	$52504{ }^{\text {¢ }}$	525174	5253045	525434	525563 J	5256935	5258225	525951	526081	526210	129
336	5263395	526468	5265985	526727	5268565	526985	527114	527243	527372	527501	129
337	5276305	527759	527888	528016	528145	528274	528402	528531	528660	อ28788	129
338	5289175	529045	529174	529302	5294305	5295595	529687	529815	529943	530072	128
339	5302005	530328	530456	530584	530712	53084 C 5	530968	531095	5312	53135	128

132

TABLE I.

LOGARITHMS OF NUMBERS.

No. $3400-4000$				Log. 531479	-602060						
No.	0	1	2	3	4	5	6	7	8	9	Diff.

341 532745 532882533009533136533263533391 Б33518533645533772533899
342 534026534153534280,534407534531534661534787534914535041535167 127
343 535294 335421535547535674535800.535927536053536179536306536432126
344 536558536685536811 536937537063537189537315537441537567537693126
345 537819537945538071538197538322538448538574538699538825,538951 126
346 Б39076539202539327539452539578 539703539829539954540079540204
125
540329540455 540580540705540830 540955 541080541205541330541454 125
$541579541704541829541953542078542203542327542452542576542701 \quad 125$
542825 542950,543074543199543323543447543571543696543820543944124
 545307 545431545554545678545802545925546049546172546296546419124 546543546666546789546913547036547159547282547405547529547652123 547772547898548021548144548266548389548512 548635548758548881 $549003549126549249549371549494549616 \mid 549739549861549984550106$ $550228[550351550473550595550717550840550962551084551206551328$ 5514505515725516945518165519385520099552131552303552425552546 $552668,552790552911553033553154553276,553398,5535191553640553762$ $553883554004554126554247554368,554489554610,554731554852554973$ 555094555215555330555457 555578 ,555699 $555820,555940 \mid 556061556182$

123
123
122
122
357
358
359
556302 $556423 \overline{556544} \overline{556664} 556785 \overline{556905} \overline{557026} \overline{557146} \overline{557267} \overline{557387}$ $557507557627557748557868557988,558108 \mid 558228558348558469558589$ 558709558829558948559068559188559308559428559548559667559787 559907560026560146560265560385560504560624560743560863560982 561101561221561340561456561578561698561817561936562055562174 562293562412562531562650562769562887563008563125563244563362 563481563600563718563837563955564074564192564311564429564548 564666564784564903565021565139565257565378565494565612565730 565848565966566084 566202566320566437566555,566673566791566909 567026,567144567262567379567497 567614 $567732,567849567967,568084$ 568202568319568436568554568671568788568905569023569140569257 569374569491569608569725569842569959 (570076570193570309570426 $570543570660,570776570893571010571126571243571359,571476571592$ $571709571825571942572058572174572291572407572523 / 572639572755$ 572872572988573104573220573336573452573568573684573800573915 574031574147574263574379574494574610574726574841574957575072 575188575303575419575534575650,575765575880575996576111576226 $576341576457{ }^{57} 555725766875768025769175770321577147577262577377$ 577492577607577721577836577951578066578181578295578410578525 $578639578754,578868,578983579097$ 579212 579326579441579555,579669

360
362
363
364
30
367
368
369
371
372
374
375
376
377
378
375
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
 580925581039581153581267581381581495 581608551722581836281950 5820635821775822915824045825185526315827455582858582972583055 $583199583312583426583539583652583765 \quad 583879 \quad 583992584105584218$ 584331584444584557584670 584783584896 5850095585122585235558534 585461585574585686585799585912586024586137586250586362586475 586587586700586812586925587037587149557262587374587486587599 557711557823587935588017588160588272588384588496588600588720 588832588944589056589167589279589391589503589615589726589838 589950590061590173590284 590396 590507590619590730 590842 590953 $59106 \overline{5} 591176591287591399591510591621591732591843591955592066$ 592177592288592399592510592621592732592843592954593064593175 593286 593397 593508593618593729593840 593950594061594171594282 5943935945035946135947245978345949455950555951655952776595336 595496595606595717595827 595837 596047596157596267590377596487 596597 596707 596817 596927 597037 597146597256597366597476597585 597695597805597914598024598134598243598353598462599572598681 598790 598900 599009, 599119599228599337 599446599556599665599774 599883599992600101600210600319600428600537600644600755600864 600973601082 601190,601299601408601517601625 601734601843601951

LOGARIIHMS OF N゙UMBERS.

No. $4000 _$- 4600					Log. 602060-662758						
No.	0	1	2	3	4	5	6	7		9	Di
400											
	6031446032536033616034696035777603686,603794603902604010604118108										
403											
	607455607562607669607777607884607901608098608205608312608419 107										
406	608526605633608740608847608954609061609167609274609381609488107										
	609594609701609808609914600021610128610234610341610447610554 107										
408	610660610767,610873610979611086,611192611298611405611511611617 106										
409											06
	$\longdiv { 6 1 2 7 8 4 6 1 2 8 9 0 } \overline { 6 1 2 9 9 6 } \overline { 6 1 3 1 0 1 6 1 3 2 0 7 } \overline { 6 1 3 3 1 3 } \overline { 6 1 3 4 1 9 } \overline { 6 1 3 5 2 5 } \overline { 6 1 3 6 3 0 } \overline { 6 1 3 7 3 6 }$										
411	613842613947614053 614159614264614370614475614581614686614792106										
412											
414	$617000617105617210617315617420617524617629617734617839617943{ }^{\text {a }} 105$										
41											
417	620136,620240,620344620448620552 620656 620760 620864620968,621072 104										
418											
420	623249 623353 623456 623559 623663 6237666623869 623972 624076 624179										103
421	624282624385624488624591624694624798624901625004625107625209										103
42											10
423											103
424											102
	628389 628491 228593 628695 628797 628909 629002629104 629206629308										
426	629410629511629613629715629817629919630021630123630224630326										102
42	630425 630530 6306316307336308346300366631038631139631241631342										102
429	632457632558632660632761632862632963633064633165633266633367										101
430	633468 633569 633670 633771 633872 633973 634074 634175 63427663437										,
31											
432											100
	636488636588636688636789 636889 636989637089637189637289637300										100
434	637490'637590 637690 637790 637890'637990 638090 (638190 638289$]^{638389}$										100
435	638489 638589 638689 638789 638888 638988,639088 639188 639287639387										100
	639486639586639686639785639885639984640084640183640283640382										
	$\left\lvert\, \begin{aligned} & 640481640581,640180640179,640879,640978641077,64176641276641375 \\ & 641474,641573,641672 \\ & 641771,641870,641970,642069642168642267642366\end{aligned}\right.$										99
438											99
	642464642563642662642761642860642959643058643156,643255643354										
440	643453 643551643650643749643847 643946 644044 644143644242644340										
41											98
443											8
444	$6473836474816475796476766477744^{647872} 647969648067$ (648165 648262										98
	648360648458648555,648653648750648848 648945,643043,649140,643237										
446											97
447											97
	651278 651375651472 '651569'651666'651762 651859 '651956'652053'652150										
449											97.
	$\overline{653213} \overline{653309}$ 653405 $653502 \overline{653598} \overline{653695}$ 653791 653898 653984.6540s0										
	6541766652736543691654465654562654658,654754654850654946655042										
452	$655138,655234655331,655427 / 655523655196551465510659906656002$656098656194656290656386656481656577656673656769656864656960										96
454	657056657151657247, 6573436574386575346576296577251657820657916										
455											95
45											
	661813										
			2					7		9	

No. $4600-5200$					Log. 662758 - 716003						
No.	0	1	2	3	4	5	6	7	8	9	Diff.

$4 6 0 \longdiv { 3 6 2 7 5 0 } \overline { 6 6 2 8 5 亡 } 6 6$ 461 663701 $663795663889663983664078664173664 \approx 66 \mid 664360664454664548 \quad 94$
$462664642664736664830664924665018665112665206665299665393665487 \quad 91$
463 665581|665675 665769665862665956666050666143666237666331666424
464666518666612666705666799666892666986667079667173667266667359
465 667453667546667640667733667826 $667920668013666_{8} 1066681991668293$
463 668386 668479668572668665668758668852668945609038669131669224
467 669317 669410669503669596669689669782669875669967670060670153
468 670246 670339670431670524670617670710670802670895670988671080
469 671173671265,671358671451671543671636671728671821671913672005
470 67 093672190 672283 672375672467672560672652672744672836672929 $471673021673113673205673297673391 / 673482673574673666673758673850$ 472673942674034674126674218674310674402674494674586674677674769 473 674861 374953 675045 675136 (675228675320 $67541267550 " 375595675687$
 475 676694 $976785676876 \mid 676968677059677151677242677333677424677516$ 476 G77607 977698 677789677881677972678063678154 678245678336678427 477 378518 678609 678700678791678882678973679064679155679246679337 478 67942S 679519679610679700679791679882679973680063680154680245 479 680335 680426680517680607680698680789680879680970681060681151
706718706803706888706974707059707144707229707315707400707485
\square

No. $5200 \sim-5800$					Log. 716003-763428						
No.	0	1	2	3	4	5	6	7	8	9	Diff.
520	716	7	7		716337	,	716504	8	716671	51	83
521	7168387	7169217	717004	7170887	7171717			7174217	717504	717587	83
522	7176717	717754	717837	7179207	7180037	7180867	7181697	718253	718336	718419	83
523	7185027	7185857	718668	7187517	7188347	7189177	719000	7190837	719165	719248	83
524	7193317	7194147	719497	7195807	7196637	719745, 7	719828	719911	719994	720077	83
525	7201597	7202427	720325	7204077	7204907	7205737	720655	720738	720821	720903	83
526	720986	7210687	721151	7212337	7213167	7213987	721481	7215637	721646	721728	82
527	721811	218937	721975	7220587	722140	722222	7223057	722387	722469	722552	82
528	722634	7227167	722798	722881	7229637	7230457		7232097	723291	723374	82
529	723456							724030	724112	724194	82
530	72427	7243587	724440	$72452 \div 7$	724603	724685	724	724849	724931	725013	82
531	725095	725176	725258	7253407					725748	725830	82
532	725912	7259937	726075	726156	7262387	7263207	7264017	726483	726564	726646	82
533	726727	7268097	726890	7269727	7270537	727134	727216	7272977	727379	727460	81
534	7275417	7276237	727704	727785	727866	7279487	7280297	7281107	728191	728273	81
535	328354	7284357	728516	728597	7286787	7287597	7288417	728922	729003	729084	81
533	729165	729246	729327	729408	7294897	7295707	729651	729732	729813	729893	81
537	729974	730055	730136	730217	730298	730378	7304597	730540	730621	730702	81
533	730782	7308637	730944	731024	7311057	7311867	731266	731347	731428	731508	81
539	731589	731669		7318307	7319117			732152	732233	732313	81
$54{ }^{\prime}$	732391	73247	-	732635	73	73.796	732	732	733037	733117	80
541	733197	733278	733358	7334387	73351×7	7335987	733679	733759	733839	733919	80
542	733999	734079	734159	7342407	7343207	734400	7344807	7345607	734640	734720	80
543	734800	734880	734960	735040	7351207	7352007	735279	7353597	735439	735519	80
544	735599	735679	735759	7358387	735918	7359987	736078	736157	736237	736317	80
545	736396	736476	736556	736635	736715	7367957	736874	736954	737034	737113	80
546	737193	737272	737352	737431	437511	737590	737670	737749	737829	737908	79
5.7	737987	738067	738146	738225	738305	738384	738463	738543	738622	635701	79
548	738781	738860	738939	739018	739097	739177	739256	7393357	739414	739493	79
549	739572										79
500	74036	4044	位	740592	740678	740757	740836	740915	740994	741073	79
551	74115	41230	741309	741388	741467	741546	74162	7417037	74178	741860	79
552	741939	742018	742096	742175	742254	742332	742411	742489	742568	742647	79
553	742725	742804	742882	742961	7430397	743118	74319	743275	743353	743431	78
554	743510	743588	743667	743745	743823	743902	743980	744058	744136	744215	78
555	744293	744371	774449	744528	744606	744684	744740	744819	744917	744997	78
556	74507	745153	745231	745309	745387	74546	745543	745621	745699	745777	78
557	645855	745933	746011	746089	746167	746245	746323	746401	746479	746556	78
558	746634	746712	746790	746868	746945	747023	747101	747179	747256	747334	78
559	747412	747887	747567	74764	747722	747800	747878	747955	74	3748110	78
560	748	8266	74							748885	77
561	748963	749040	749118	749195	749272	74935	74942	749504	749582	749659	77
502	749736	749814	749891	749968	750045	750123	750200	750277	750354	750431	77
563	750508	750586	750663	750740	750817	750894	750971	751048	751125	751202	77
561	751279	751356	751433	751510	751587	751664	751741	751818	751895	751972	77
565	752048	752125	752202	752279	752356	752433	752509	752586	752663	752740	77
566	752816	752893	752970	753047	753123	3753200	753277	753353	753430	753506	77
567	753583	753660	753736	153813	753889	753966	754042	754119	754195	754272	77
568	754348	754425	754501	1754578	754654	454730	754807	754883	754960	755036	76
569	755112	755189	755265	755341	755417	755494	755570	755646	755722	755799	76
570	755875										
571	756636	756712	756788	8756864	456940	\%57016	757092	757168	757244	757320	76
57.	757396	757472	757548	8757624	457700	075775	757851	757927	758003	758079	76
573	758155	758230	758306	658382	2758458	758533	758609	758685	758761	1758836	76
574	758912	758988	759063	3759139	,759214	1759290	759366	759441	759517	759592	76
575	759668	759743	759819	9759894	1759970	0760045	760121	760196	760272	760347	75
576	760422	760498	760573	3760649	760724	1760799	760875	760950	761025	761101	75
577	761176	761251	1761326	6761402	761477	7761552	761627	761702	761778	761853	75
578	761928	762003	762078	8762153	3762228	8762303	762378	762453	762529	762604	75
579	762679	762754	462829	9762904	4,762978	8763053	763128	763203	763278	763353	75

logarithms of numbers.

LOGARIIHMS OF NUMBERS.

No. $6400-7000$					Log. 806180-845098						
No.	0	1	2	3	4	5	6	7	8	9	Diff.
640	8061	-			806451	806519	8U6587	80665	5u67	U	68
641	806858	806926	806991	, 807061	807129	807197	307264	807332	807400	807467	68
642	807535	807603	807670	807738	807806	807873	807941	808008	808076	308143	68
643	808211	808279	S08346	808414	808481	808549	808616	808684	808751	808818	68
644	808886	803953	809021	809088	809156	809223	809290	809358	809425	809492	67
645	809560	809627	809694	809762	809829	809896	809964	810031	310095	810165	67
646	810233	810300	810367	810434	810501	810569	810636	810703	810770	810837	67
647	810904	310971	811038	811106	811173	811240	811307	811374	811441	811508	67
648	811575	811642	811709	811776	811813	811910	811977	312044	812111	812178	67
649	812.45	812312	812378	812445	812512	812579	812646	512713	812780	812847	67
650	812413	ช129 ${ }^{\text {¢ }}$	813047	813114	813181	813247	813314	813381	813	13514	67
651	813581	813648	813714	813781	813848	813914	813981	314048	81411	814181	67
652	81424881	814314	814381	814447	814514	814581	\|814647	814714	81478	814847	67
653	814913	8149 ${ }^{\text {0 }}$	815046	815113	815179	815246	815312	815378	81544	815511	66
654	815578	815644	815711	815777	815843	815910	815976	81G042	816109	816175	66
655	8162418	816308	816374	816440	316506	816573	816639	$81670{ }^{5}$	81677	816838	66
656	316904	816970	817036	817102	817169	817235	817301	817367	81743	817499	66
657	817565	817631	817698	817764	817830	817896	817962	818028	81809	818160	66
658	81822681	818292	818358	818424	818190	818556	815622	818688	8187	818819	66
659	818885	818951	819017	819083	,819149	819215	819281	819346		819478	66
600	819544	819610	819675	81974	819807	81	819939	820004	820	820136	66
661	820201	820267	820333	820399	820464	820530	820595	820661	82072	820792	66
662	8208J8	820924	820989	821055	821120	821186	821251	821317	82138	821448	66
663	821514	821579	821644	821710	821775	821841	821906	821972	822037	822103	65
664	822168	822233	822299	822364	822430	822495	822560	82262	822691	822756	65
665	S22822	822887	822952	823018	823083	823148	823213	82327	82334	823409	65
666	823474	823539	823605	823670	823735	823800	823865	823930	82399	824061	65
667	324126	S24191	324256	824321	824386	824451	824516	824581	824646	824711	65
668	824776	824841	824906	824971	825036	825101	825166	825231	825296	825361	65
669	325426	825491	825556	825621	825686	825751	825815	825880			65
670	826	826140	82			826399		8265×8	82	8	65
671	826723	26787	826852	826917	826981	82704	827111	827175	8272	827305	65
672	327369	827434	827498	827563	827628	827692	827757	827821	82788	827951	65
673	328015	28080	828144	828209	828273	828338	828402	828467	828531	828595	64
674	328660	28724	828789	,828853	828918	828982	829046	829111	829175	829239	64
675	829304	829368	829432	829497	829561	829625	829690	829754	82981	829882	64
676	829947	830011	830075	830139	830204	830268	830332	830396	830460	830525	64
677	830589 8	830653	830717	830781	830815	830909	830973	831037	831102	831166	64
678	831230	831294	831358	831422	831486	831550	831614	831678	83174	831806	64
679	831870	831934	831998	832062			832253			832445	64
680	832509	8			32		8328			833083	64
681	833147	833211	833275	833338	833102	833466	833530	833593	83365	833721	64
682	833784	833848	833912	833975	834039	834103	834166	83423 c	834293	834357	64
683	834421	834484	834548	834611	834675	834739	834802	834866	834929	834993	64
681	835056	835120	835183	835247	835310	835373	835437	835500	835564	835627	63
685	83 J 691	835754	835817	835881	835944	836007	836071	836134	836197	836261	63
686	836324	836387	836451	836514	836577	836641	836704	836767	836830	836894	63
687	836957	837020	837083	837146	837210	837273	837336	837399	837462	837525	63
688	837588	837652	837715	837778	837841	837904	837967	838030	838093	838156	63
689	838219	838282	838345	838108	838171	838534	838597	838660	838723	838786	63
640	838849	8389	838975	839038	839101	8391	839227	839289	83935	839415	63
691	839478	839541	839604	339667	839729	839792	839855	839918	839981	840043	63
692	$81(1063$	810169	840232	810294	840357	840420	840482	840545	840608	840671	63
693	840733,8	810796	840859	840921	8409848	841046	841109	841172	841234	841297	63
694	8413598	841422	841485	8415478	841610	841672	841735	841797	841860	841922	63
695	841985	842047	842110	842172	8422358	842297	842360	842422	842484	842547	62
696	8426098	842672	842734	842796	842859	842921	842983	843046	843108	843170	62
697	8432338	843295	843357	843420	843482	843544	843606	843669	843731	813793	62
698	843855	843918	843980	8440428	844104	844166	844229	844291	844353	844415	62
699	841477\|8	844539	844601	844664	844726	844788	84480	844912	813974	845036	62

LOGARITHMS OF NUMBERS.

LOGARITHMS OF NUMBERS.

No. $7600-8200$	Log. 880814 - 913814

No.	0	1	2	3	4	5	6	7	8	9	Diff

76088081488087188092888098588104288109988115688121388127 C 881328 761881385881442881499881556881613881670881727881784881841881898 762 881955 $882012882069882126882183882240|882997| 882354882411882468$ 763 8825:4 882581 882638 $88269588275 \div$ 882809 $882866882923882980 \mid 883037$ 764883093883150883207883264883321883377883434883491883548883605 765883661883718883775883832,883888883945884002884059884115894172
766884229884285884342884399884455884512884569884625884682884739 $767884795884852884909884965885022885078 \mid 885135885192885248885305$ $768|885361| 385418885474885531885587|885644885700885757| 88581 \% 885870$
769 885926 $885983|886639| 886096886152 \mid 886209886265 / 886321 / 886378 / 886434$
$7 7 0 \longdiv { 8 8 6 4 9 1 } \overline { 8 8 6 5 4 7 } \overline { 8 8 6 6 0 4 } \overline { 8 8 6 6 0 } 8 8 6 7 1 6 8 8 6 7 7 3 8 8 6 8 4 9 8 8 6 8 8 5 8 8 6 9 4 2 8 8 6 9 9 8$ 771887054387111887167887223887280887336887392887445887505887561 $77.2887617|387674| 88773088778688784 £ 887898887955888011888067888123$ 888179 888236888292888348888404888460888516888573888629888685 388741888797888853 『88909 888965889021889077889134889190889246
 359362389918889974890030890086890141890197890253890304890365 390421 S90477 890533890589890644890700890756890812890868890924 890980 |991035 891091891147891203891259891314891370891426891482 391537891595891649891705891760891816891872891928891983892039

7813926518927074392762892818892873892929892985893040893096893151
782
783 393207 893262 893318893373893429893484 203540 893595893651893706 893762893817893873893928893984894039894094894150894250894261
784 394316 394371 394427 874482 '945388 894593894648894704894759894814
785 394870 394925 S94980 895036 895091 895146895201895257895312895367
786 394423895478 395533895588895643895699895754895809895864895920 787 895975 896036896085896140896195896251896306896361896416896471
758 396526896581 | 396636896692896747 | 896802896857896912896967897022
789 397077 897132897187 897242 897297897352897407897462897517897572
 791 898176 898231 898286 898341898396898451898506898561898615898670 792 398725 898780898835898890898944898999899054899109899164899218 793 399273899328 899383899437899492899547 б99602 899ㄷ́6 899711 899766 794899820899875899930899985900039900094900149900203900258900312
795 900367 900422900476900531900586900640900695900749900804900858
790 900913 900968901022901077 901131 901186901240901295901349901404
797 901458901513 901567 901622 901676901731 901785901840901894901948
798 902003 $902057902112902166902221 \mid 902275002329902384902438902491$
$799|902547| 902601902655902710902764902818,902873902927902981903036$
800 903090 903144403198,903203 903307, 903361903416,903470903524903078 802 904174 904228904283904337 904391 904445904499904553901607 904661 803 904715 904770904824904878904932904986905040905094905148905 5ै202 804 905256 905310905364905418905472905526905580905634905688905742 805 905796905850 9059049059589060129060659061199061739016227906281 806 906335:906389 906443906497 906550 006604906658906712906766906820 906873906927 906981 907035907089 907142 907196907250907304907358
808 907411 907465907519907573907626907680907734907787907841907895
809 907948,908002 908056908109 908163 908217908270908324908378908431

811 909021 909074909128909181909235909288909342909395909449909502
812 909556 909609 909663 909716909770909823909877909930909981910037
813 910090 $910144|910197910251910304| 910358910411910464910518910571$
814910624910678910731910784910838910891910944910998911051911104
815911158911211911264911317911371911424911477911531911584911637
816 91169091174391797911850911903011956912009912063, 912116912169
817 912222 9122 -5 012328912381912435012488912541912494 91264斤 912700
818 912753912806912859912913912966913019913072913125913178913231
819913284913337 913390 913143913496913549913502913655913708913761

0	1	2	3	4	5	6	7	8	9

Logarithus of numbers.

$\overline{820} \overline{913814} \overline{913867} \overline{913920} \overline{913973} \overline{914026} \overline{914079} \overline{914131} \overline{914184} \overline{914237} \overline{914 \times 91}$
821914343914396914449914502914555914608914660914713914766914819
822 914872 914925914977915030915083915136915189915241915294915347 915400915453915505915558915611915664915716915769915822915874 915927 915980916033 916085916138916191 916243916296 916349916401
916454916507916559916612916664916717 916770916822916875916927 916980 917033917085917138917190917243917295917348917400917453 917505917558917610917663917715917768917820917873917925917978
828 918030 $91808391813591818891824091829 \times 918345918397918450918502$ 918555918607918659918712918764918816918869918921918973919026
$\overline{91907 \diamond} \overline{919130} \overline{919183} \overline{919235 ̄} \overline{919287} \overline{919340} \overline{919392} 919444 \overline{919496} \overline{9195} 49$ 919601919653919705919758919810919862919914919967920019920071 920123920175920228920280920332920384920436920489920541920593 920645920697920749920801920853920906920958921010921062921114 $92116692121892127092132292137492142692147892153092158 \% 921634$ 921686 921738 921790 921842921894921946921998922050922102922154 $922206|922258922310| 922362922414922466922518922570922622922674$ 922725 922777922829922881922933922985923037 923088 923140923192 923244923296923348923399923451923503923555923607923658923710 $92376 \div 923814923865923917923969924021924072924124924176924228$ 924279 92 1331 924383 924434 924486 924538 924589 924641 924693 924744 924796924848924899924951925002925054925106925157925209925260 925312925364925415925467925518925570925621925673925724925776 9258289255799259319259829260349260859261371926188926239926291 926342926394926445926497926548926600926651926702926754926805 926857926908926959927011927062927114927165927216927268927319 927370927422927473927524927576927627927678927730927781927832 927883 927935927986 928037 928088 928140 928191928242928293928345 $928396 \mid 928447928498$ 928549 928601 928652 928703928754928805928856 928908928959929010929051929112929163929214929266929317929368
830 919078 919130 919183 919230 919287 919340 919392 919444 919496 919549
831 919601919653919705919758919810919862919914919967920019920071 52
832
833

51
$929930929981 \mid 930032930083$ 930134 930185 9302369302879303389930389 930440930491930541930592930643930694930745930796930847930898 930949931000931051931102931153931203931254931305931356931407 931458 93150993156 C 931610931661931712931763931814931864931915
 932474 932524 932575 932626 932677 932727 932778 932829 932879 932930 $932931\left|933031933082{ }^{9} 933133933183933234933285933335\right| 933386933437$ 933487933538933588933639933690933740933791933841933892933943 $933993|934044934094934145934195034246934296934347| 934397934448$ 934498934549934599934650934700934751934801934852934902934953 935003935054935104935154935205935255935306935356935406935457 ${ }^{935507} 935558893560893 \overline{\mathrm{E} 658} 9357099357599358099935860935$ 910 935960 ${ }^{936011}{ }^{936061}{ }^{936111}|936162| 956212936262936313936363936413936463$ ${ }^{936514}|936564| 936614|936664936715936765936815| 936865936916936966$ $937016937066937116|937167| 937217|937267| 937317|937367| 937418 \mid 937468$ 9375189375689937618937668937718937769937819937869937919937969 938019938069938119938169938219938269938319938370938420938470 9385209385709386209386701938720938770938820938870938920938970
869 939020 939070939120939170,939220939270939319939369939419939469

	0	1	2	3	4	5	6	7	8	9	-

TABLE I.

LOGARITHMS OF NUMBERS.
No. 8800-9400 Log. 944483——973128

No.	0	1	2	3	4	5	6	7	8	9	Diff.

ठ8U $\overline{944483} \overline{44532} \overline{944581} \overline{y \pm 4631} \overline{44468 \cup} \overline{944729} \overline{444774} \overline{444828} \overline{9446^{77}} \overline{944927} 49$

883 945961 946010946059946108946157946207946256946305946354946403
884 946452 $946501|946550946600| 946649946698946747|946796946845| 946894$
49
$885946943946992947041|947090| 947139947189947238947287 \mid 947336947385$
886 947434 947483947532947581947630947679947728947777947826947875
887 947924 $947973948021948070948119948168948217 \mid 948266948315948364$
888 948413 948462948511948560948608948657948706948755948804948853
889 948902 948951948999949048949097949146949190949244949292949341

891 949878 949926 J49975 $950024950073950121 \mid 950170950219950267950316$
$892950365950413950462950511950560950608950657 \mid 950705950754950803$
893 950851 950900 $950949|950997| 951046951095|951143| 951192951240 \mid 951289$
894 951337 951386951435951483951532951580951629951677951726951774
$895951823951872951920951969952017952066,952114,952163952211952259$
896952308952356952405952453952502952550952599952647952696952744
897 952792 952 2841952889952938952986953034953083953131953180953228
898953276953325953373953421953470953518953566953615953663953711
899953760953808953856953905953953954001954042954098954146954194
$900 \overline{9 j 424 \div} \overline{454291} \overline{9 j 433 y} \overline{954387} \overline{954435} \overline{954484} \overline{954532} \overline{454580} \overline{954628} \overline{454677}$
901 954725954773 954821954869 954 918954966955014955062955110 955158
902 955206955255 $955303955351955399955447 \mid 955495955543955592955640$
903 95J688955736955784955832955880955928955976956024956072956120
904 956168956216 956264 956312 956361956409956457956505956553956601
905 9Ј $6649956697956745956792956840956888956936956984957032957 С 80$
906957128957176957224957272957320957368957416957464957511957559
907 957607 $957655957703957751957799957847 \mid 957894957942957990958038$
908 958086 958134958181958229958277958325958373958420958468958516
909 958564 958612958659958707958755958803958850958898958946958994
$910 \overline{959041} \overline{959085} \overline{959137} 459181459232959280$ 95צ320 954375959423 959+71
911 959518 959566959614959661959709959757959804959852959900959947
912 959995 960042960090960138960185960233960281960328960376960423

914 960946960994961041 961089961136961184961231961279961326961374
915 961421 961469961516961563961611961658961706961753961801961848
916 961895 961943961990962038962085962132962180962227962275962322
917 962369 962417962464962511962559962606962653962701962748962795
918962843962890962937962985963032963079963126963174963221963268
919 963315 963363963410963457963504963552963599963646963693963741
$920 \overline{963788} \overline{963835} \overline{963882} \overline{963929} \overline{963977} \overline{964024} \overline{964071} \overline{964118} \overline{964165} \overline{964212}$
921 964260964307964354 964401 964448964495964542964590964637964684
922964731964778964825964872964919964966965013965060965108965155
923 965202,965249965296 965343 965390965437965484965531965578965625
924 965672 965719965766965813965860965907965954966001966048966095
925966142966189966236966283966329966376966423966470966517966564
926 966611 966658966705966752966798966845966892966939966986967033
927 967080967127967173 967220967267 967314967361967408967454967501
928 967548,967595 967642967688967735967782967829967875967922967969
929 968016,968062968109 968156968203 968249 968296968343968389968436
930 96848 968530 968576 968623 968670 968716968763968810968856968903
931 968950968996 969043969090969136969183969229969276969323969369
932 969416969462 969509,969556 969602969649969695969742969788969835
933 969882969928969975970021970068970114970161970207970254970300
934 970347 970393970440,970486970533970579970626970672970719970765
935 970812970858970904970951970997971044 971090971137971183971229
936 971276971322 971369971415 971461 $971508971554,971600,971647971693$
937 971740971786971832971879971925971971972018972064972110972156
938 972203972249972295972342972388972434 972480972527, 972573972619
939 972666,972712972758,972804,972851 972897,972943,972989,973035,973082

48
48
48
48
48
48
48
48
48
48

TABLE I.

LOGARITHMS OF NCMBERS.

No. $9400 \sim 10000$					Log. 973128-000000						
No.	0	1	2	3	4	5	6	7	8	9	Diff.
940	97	9		973326	973	97			; 473497	3	46
941	973590	973636	973682	973728	973774	97382	073866	973913	973959	974005	46
942	974051	974097	974143	974189	974235	97428	1974327	974373	974420	974466	46
943	974512	974558	974604	974650	197469	9747	274788	874834	974880	974926	46
944	974972	975018	97506	97511	97515	975	975248	975294	19753	975386	46
945	975432	975478	-75524	37557	97561	975	975707	975753	975799	975845	46
946	975891	975937	975983	976029	97607	9761	1976166	976212	976258	976304	46
947	976350	97639	7644	976487	97653	9765	976625	'97667	97671	976762	46
948	976805	97685	-	976946	976091	-	77	9771	771	977220	46
949	977266									977678	46
950	97	47		977861	977906	97793	977998	97	78	778135	46
951	978180	97822	18272	78317	978363	9784	978454	978500	97854	978591	46
952	978637	978683	97872	978774	978819	9788	978911	$97895 ¢$; 97900	979047	46
953	979093	979138	7918	979230	97927	?793	97936	97941	9794	979503	46
954	97954s	979594	979639	979685	979730	9797	979821	979867	97991	979958	46
955	980003	980049	980091	980140	980185	9802	980276	980322	98036	980412	45
956	980458	980503	980549	980594	980640	9806	980730	980776	98082	980867	45
957	93091E	980957	981003	981048	981093	9811	981184	981229	98127	981320	45
958	931365	981411	981456	981501	981547	9815	2981637	981683	98172	,981773	45
959	931819	981864									45
960	9 s 2271	982		82	48			-48258			45
961	982723	982769	82814	982859	98290	9829	982994	983040	98308	983130	45
962	933175	983220	98265	98331(98335	9834	983446	983491	98353	983581	45
963	983626	983671	983716	983762	983807	9838	983897	983942	9839	984032	45
964	984077	984122	984167	984212	984257	98430	984347	984392	98443	984482	45
935	984527	934572	884617	984662	984707	9847	984797	984842	98488	984932	45
966	984977	98502?	98.5067	985112	985157	9852	985247	985292	985337	985382	45
967	985426	985471	985516	985561	1985606	9856	985696	985741	98578	985830	45
968	985875	985920	985965	986010	986055	9861	986144	986189	98623	986279	45
969	986324	936369	986113	986458	986503	1986	986593	986637			45
970	$48{ }^{\text {4 }}$	9868	88		V	86	987010		987130		45
971	987219	987264	987309	98735	98739	987	987487	987532	9875	987622	45
972	987666	987711	987756	987800	987845	98789	987934	987979	988024	988068	45
973	988113	988157	988202	988247	988291	98833	988381	988425	988470	988514	45
974	988559	935603	988648	988693	988737	9887	988826	988871	98891	988960	45
975	989005	989049	989094	989138	989183	9892	989272	989316	989361	989405	45
976	989450	989494	989539	989583	989628	98967	989717	989761	989806	989850	44
977	989895	989939	989983	990028	990072	9901	990161	990206	990250	990294	44
978	990339	990383	990428	990472	990516	9905	990605	990650	990694	990738	44
979	990783	990827	990871	990916	990960	991	991049	991093	991137	991182	44
980	951	991270	991	99135	9914	99		99	9915	991625	44
981	991669	991713	991757	991802	991846	9918	991934	991979	99202	992067	44
982	992111	992156	992200	992244	992288	9:233	9923-7	992421	992465	992509	44
933	992553	392598	992642	992686	992730	9927	992818	992863	99290	992951	44
984	992995	993039	993083	993127	993172	9932	993260	993304	993348	993392	4.
985	993436	993480	993524	993568	993613	9936	993701	993745	993789	993833	44
986	993877	993921	993965	994009	994053	99409	994141	994185	994229	994273	44
987	994317	994361	994405	994449	994493	99453	994581	994625	994669	994713	44
988	994757	$9948(11$	994845	994859	994933	99497	995021	995064	995108	995152	44
989	995196	995240	995284	99532 S	985372						44
990	995635	,		,	5958		99.5898	995942	995986	996030	44
991	996074	996117	996161	996205	996249	996293	996336	996380	996424	996468	44
992	996512	996555	996599	996643	996687	996730	996774	996818	996862	996905	44
993	996949	996993	997037	997080	997124	99716	997212	997255	997299	997343	44
994	997386	997430	997474	997517	997561	99760	997648	997692	997736	997779	44
995	997823	997867	997910	997954	997998	99804	998085	998128	998172	998216	44
996	998259	998303	998346	998390	998431	99847	998521	998564	998608	998652	44
997	998695	998739	998782	998826	998869	99891	998956	999000	999043	999087	44
993	999130	999174	999218	999261	999305	999348	999392	999435	999478	999522	44
993	99956	999609	999652	999696	999739		999826	999870	9999	999957	43

TABLE II.
LOGARITHMIƠ SINES, TANGENTS, AND SECANTS.
0 Derree.

M.	Sine.	Co-sine.	T'angent.	Co-tand.	Secant.	Co-sec.	M.
0	U.vouvun	11.000000	u.vuvous	Intinte.	10.6U0U00	Jutimite.	60
1	6.463726	10.000000	6.463726	$13.53 ; 274$	10.00.000	13.536274	59
2	6.764756	10.000000	6.764756	13.235244	10.000000	13235244	58
3	6941547	10.000000	6.940847	13.059153	10.001000	13.059153	57
4	7.065786	10.000000	7.065786	12.93 ± 214	10.00000	12934214	56
5	7.162696	10.000000	7.162696	12.837304	$10.000!100$	12.837304	55
6	7.241877	9.939999	7.241878	12.758122	10.000001	12.758123	54
7	7.308524	9999999	7.303825	12.691175	10.000001	12.691176	53
8	7.366816	9.999999	7.366817	12.633183	10.000001	12633184	52
9	7.417963	9.999999	7.417970	12.582030	10.000001	12 58:032	51
10	7463726	9.993938	7.463727	12536273	10 (100002	12.536274	50
11	7.505118	9.999993	$7.5 \cup 51 \% 0$	12.494080	11.000012	12.49485\%	49
12	7542906	9.969997	7545909	12.457091	10.000003	12.457094	48
13	7.577668	9.999597	7.577672	12.422328	10.000003	12422332	47
14	7.609853	9.999996	7609357	12.390143	10.000004	12390147	46
15	7.639816	9.999996	7.639820	12360180	$10.00000 \pm$	12.330184	45
16	7667845	9.990995	7.667849	12.332151	10000005	12.332155	41
17	7.694173	9.999995	7.694179	12.305821	10.000005	12.305827	43
18	7.718997	9.990494	7.719003	12.280997	10.000006	12.281003	42
19	7.742478	9.999993	7742481	12.257516	10.000007	12.257522	41
20	7.764754	9.999993	7.764761	12.235239	10.000007	12.235246	40
21	7.785443	$9.99 y \pm 92$	7 780951	12.214449	10.0001008	12.214057.	39
22	7.806146	9.999991	7.803155	12.193815	10.000009	12.193854	£8
23	7.825451	9.999990	7.825160	12.174540	10.000010	12.174549	37
24	7843934	9.999989	7.813944	12.156056	10.000011	12.156066	36
25	7.861662	9.999989	7.861674	12.138326	10.006011	12.138338	35
26	7.878695	9.999988	7.878708	12.121292	10.000012	12.121305	34
27	7.895085	9.999987	7.895099	12.104901	10.000013	12.104915	33
28	7.910879	9.999986	7.910594	12.089106	10.003014	12.089121	32
29	7.926119	9.999985	$7.92613!$	12.073866	10.000015	12.073881	31
30	7.910842	9.999983	7940858	12.059142	10.000017	12.059158	30
31	7.955082	9.9y94s2	7.955100	$120 \pm 4 \pm 00$	10.000018	12.044918	29
32	7.968870	9.999981	7.968889	12.031111	10.000019	12.031180	28
33	7.982233	9.999980	7082253	12.017747	10.000020	12.017767	27
31	7.995198	9.939979	7.995219	12.004781	10.000021	12.004802	20
35	8007787	3.999977	8.007809	11.992191	40.000023	11.992213	25
36	8.020021	0.999976	8.020045	11.979955	10.000024	11.979979	24
37	8.031919	צ. 999975	8.031945	11.968055	10.000025	11.968081	23
38	80 ± 3501	9.999973	8.043527	11.956473	10.000027	11.956499	22
39	8.054781	9.999972	8.054819	11.945191	10.000028	11.945219	21
40	8.065776	9.999971	8.065806	11.934191	10.000029	11.934224	20
41	8.076500	9.999969	8.076531	11.923469	10.0041131	11.923500	19
42	8.086965	9.999968	8.086997	11.913003	10.000032	11.913035	18
43	8.097183	9.909966	8.097217	11.902783	10.000034	11902817	17
44	8.107167	9.999164	8.107202	11.892798	10.000036	11.892833	16
45	8.116926	9.999963	8.116963	11.883037	10.000037	11.883074	15
46	8.126471	9.999961	8.126510	11.873490	10.000039	11.873529	14
47	8.135810	9999959	8.135851	11.864149	10.000041	11.864190	13
48	8.1449.53	9.9999 .58	8.144996	11.855004	10.000042	11.855047	12
4.1	8.153907	9.9999 ¢¢	8.153952	11.846048	10.000044	11.846093	11
50	8-162681	9.999951	8.162727	11.837273	10.000046	11.837319	10
51	$\bigcirc .171280$	ソ. $949 \% 52$	8.171328	11.828672	10.000048	11.828720	9
52	8.179713	9.999950	8.179763	11.820237	10.000050	11820287	8
53	8.187985	9.999948	8.188036	11.811964	10.000052	11.812015	7
51	8.193102	9999916	8.196156	11.803844	10.000054	11.803888	6
55	8.204070	9999944	8.204126	11.795874	10.000056	11.795930	5
56	8.211895	99999 ¢2	8.211953	11.788047	10.000058	11.788105	4
57	8.219581	9.999940	8.219641	11.780359	10.000060	11.780419	3
58	$8.22713 \pm$	9.999938	8.227195	11.772805	10.000062	11.772866	2
59	8.234557	9.999936	8.231621	11.765379	10.000064	11.765443	1
60	8.241855	9.999934	8.211922	11.758078	10.000066	11.758145	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
89 Degrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

1 Degree.							
M.	Sine.	Co-sine.	TTangent.	Co-tang.	Secant.	Co-sec.	M.
U	8.241855	4.499931	¢.241921	$11.755 \cup 79$	10.000066	11.758145	60
1	8.249033	9.999932	8.249102	11.750898	10.000068	11.751967	59
2	8.256094	9.999929	8.256165	11.743835	10.000071	11.743906	58
3	8.263042	9.999927	8.263115	11.736885	10.000073	11.736958	57
4	8.263881	9.999925	8.269956	11.730044	10.000075	11.730119	56
5	8.276614	9.999922	8.276691	11.723309	10.000078	11.723386	55
6	8.283243	9.999920	8.283323	11.716677	10.000080	11.716757	51
7	8.289773	9.999918	8.289856	11.710144	10.000082	11.710227	53
8	8.206207	9.999915	8.296292	11.703708	$10.00008{ }^{\circ}$	11.703793	52
9	8.302546	9.999913	8.302631	11.697366	10.000087	11.697454	51
10	8.308794	9.999910	8.308884	11.691116	10.000090	11.691206	50
11	8.314954	9.999907	8.315046	11.684954	10.000093	11.685046	49
12	8.321027	9.999905	8.321122	11.678878	10.000095	11.678973	48
i3	8327016	9.999902	8.327114	11.672886	10.000098	11.672984	47
14	8.332924	9.939899	8.333025	11.666975	10.000101	11.667076	46
15	8.338753	9.999897	8.338856	11.661144	10.000103	11.661247	45
16	8.344504	$9.999 \bigcirc 94$	8.344610	11.655390	10.000106	11.655496	44
17	8.350181	9.999891	8.350289	11.649711	10.000109	11.649819	43
18	8.355783	9.999888	8.355895	11.644105	10.000112	11.644217	42
19	8.361315	9.999885	8.361430	11.638570	10.000115	11.638685	41
20	8.366777	9.999832	8366895	11.633105	10.000118	11.633223	40
21	8.372171	9.999874	8.372242		10.U00121	11.627829	39
22	8.377499	9.99 J 876	8377622	11.622378	10.000124	11.622501	38
23	8.3327602	9.999373	8.382889	11.617111	10.0010127	11.617238	37
24	8.387962	9.999570	8.388092	11.611908	10.000130	11.612038	36
25	8.393101	9.999867	8.393234	11.606766	10.000133	11.606899	35
26	8.398179	9.999864	8.398315	11.601685	10.000136	11.601821	$3 \pm$
27	8.403199	9.999561	8.403338	11.596662	10.000139	11.596801	33
28	8.408161	9.993858	8.408304	11.591696	10.000142	11.591839	32
29	8.413068	9.939854	8.413213	11.586787	10.000146	11.586932	31
30	8.417919	9.999851	8.418068	11.581932	10.000149	11.582081	30
31	8.422717	9.993848	8.422869	11.577131	10.006152	11.577283	29
32	8.427462	9.999844	8.427618	11.572382	10.000156	11.572538	28
33	8432156	9.999841	8.432315	11.567685	10.000159	11.567844	27
34	8.436800	9999838	8.436962	11.563038	10.000162	11.563200	26
35	8.441394	9.999834	8.441560	11.558440	10.000166	11.558606	25
36	8.445941	9.999831	8.446110	11.553890	10.000169	11.554059	24
37	8.450440	9.999827	8.450613	11.549387	10.000173	11.549560	23
38	8.454893	9.999824	8.455070	11.544930	10.000176	11.545107	22
39	8.459301	9.999820	8.459481	11.540519	10.000180	11.540699	21
40	8.463665	9.999816	8.463849	11.536151	$10.00018 \pm$	11.536335	20
41	8.467985	9.949813	8.460172	11.531828	10.600187	11.532015	19
42	8.472263	9.9998 C 9	8.472454	11.527546	10.000191	11.527737	18
43	8.476495	9.999805	8.476693	11.523307	10.000195	11.523502	17
44	8.480693	9.999801	8.480892	11.519108	10.000199	11.519307	16
45	8. 484848	9.999797	8.485050	11.514950	10.000203	11.515152	15
46	8.488963	$9.99979 \pm$	8.489170	11.510830	10.000206	11.511037	14
47	8.493040	9.999790	8.493250	11.506750	10.000210	11.506960	13
48	8.497078	9.999786	8.497293	11.502707	10.000214	11.502922	12
49	8.501080	9.999782	8.501298	11.498702	10.000218	11.498920	11
50	8.505045	9.999778	8.505267	11.491733	10.000222	11.494955	10
51	8.508974	9.999774	8.509200	11.490 ¢00	10.000226	11.491026	9
52	8.512867	9.999769	8.513098	11.486902	10.000231	11.487133	8
53	8.516726	9.999765	8.516961	11.483039	10.000235	11.483274	7.
54	8.520551	9.999761	8.520790	11.479210	10.000239	11.479449	6
55	8.524343	9.999757	8.524586	11.475414	10.000243	11.475657	5
56	8.528102	9.999753	8.528349	11.471651	10.000247	11.471898	4
57	8.531828	9.999748	8.532080	11.467920	10.000252	11.468172	3
58	8.535523	9.999744	8.525779	11.464221	10.000256	11.464477	2
59	8.539186	9.999740	8.539447	11.460553	10.000260	11.460814	1
60	8.542819	9.999735	8.543084	11.456916	10.000265	11.457181	0
Mr.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
88 Degrees.							

LOGARITHMIC SIGNS, TANGENTS AND SECANTS.
2 Degrees.

2 Degrees.								
M.	Sine.	Co-sine.	\|Tangent.		Co-tang.	Secant.	Co sec.	31.
0	8.542819	4.499	8.643084	11.450916	10.0U0265	11.457181	ω	
1	8.546422	9999731	8.546691	11.453309	10.000269	11.453578	5	
2	8.549995	9.999726	8.550268	11.449732	10.000274	11.450005	58	
3	8.553539	9999722	8.553817	11.446183	10.000278	11.446461	57	
4	8.557054	9.999717	8.557336	11.442664	10.000283	11.442946	56	
5	8.560540	9.999713	8.560828	11.439172	10.000287	11.439160	55	
6	8.563999	9 - 999708	8.564291	11.435709	10.000292	11.436001	54	
7	8.507431	9.999704	8.567727	11.432273	10.000229	11.432569	53	
8	8.570836	9999699	8.571137	11.428863	10.000301	11.429164	52	
9	8.574214	9.999694	8574520	11.425480	10.000306	11.425786	51	
10	8.577566	9.999689	8.577877	11.422123	10.00¢311	11.422434	50	
11	४. 50.0092	9999685	8.581208	11.418792	10.000315	11.419108	49	
12	¢. 584193	9.999680	8584514	11.415486	10.000320	11.415807	48	
13	8.587469	9999675	8.587795	11.412205	10.000325	11.412531	47	
14	8.590721	9999670	8.591051	11.405949	10.000330	11.409279	46	
15	8.593918	9.999665	8.594283	11.405717	10.000335	11.406052	45	
16	8.597152	9.999660	8.597492	11.402508	10.000340	11.402848	44	
17	8.600332	9.999655	8.610677	11.399323	10.000345	11.399668	43	
18	8.603489	9.999650	8.603839	11.396161	10.060350	11.396511	42	
19	8.606623	9.999645	8.606978	11.393022	10.000355	11.393377	41	
20	8609734	9.999640	8.610094	11.389906	10.000360	11.390266	40	
21	8.612823	9.999635	8.613109	11.386811	10.000365	11.387177	39	
22	8.615891	9999329	8.616262	11.383738	10.000371	11.3841C9	38	
23	8.618937	9.999624	8.619313	11.380687	10.000376	11.381063	37	
24	8.621962	9.999619	8.622343	11.377657	10.000381	11.378038	36	
25	8.624965	9.999614	8.625352	11.374648	10.000386	11.375035	35	
26	8.627918	9.999608	8.628340	11.371660	10.000392	11.372052	34	
27	8630911	9.999603	8.631308	11.368692	10.000397	11.369089	33	
28	8.633854	9.999 997	8.634256	11.365744	10.000403	11.366146	32	
29	8.636776	9.999592	8.637184	11.362816	10.000408	11.363224	31	
30	8.639380	9.999586	8.640093	11.359907	10.000414	11.360320	30	
31	8.64\% 563	9.999581	8.642982	11.357018	10.000419	11.357437	29	
32	8.645428	9.999575	8.645853	11.354147	10.000425	11.351572	28	
33	8.648274	9.999570	8.648704	11.351296	10.000430	11.351726	27	
34	8.651102	9.999564	8.651537	11.348463	10.000436	11.348898	26	
35	8.653911	9.999558	8.654352	11.345648	10.000442	11.346089	25	
36	8.656702	9.999553	8.657149	11.342851	10.000447	11.343298	24	
37	8.659175	9.999547	8.659928	11.340072	10.000453	11.340525	23	
38	8.652230	9.999541	8.662689	11.337311	10.000459	11.337770	22	
39	8.664968	9999535	8.665433	11.334567	10.000465	11.335032	21	
40	8.667689	9.999529	8.668160	11.331840	10.000471	11.332311	20	
41	8.6703	9.999524	8.67087	11.329130	10.000476	11.3*9607	9	
42	8.673080	9.999518	8.673563	11.326437	10.000482	11.326920		
43	867.5751	9.999512	8.676239	11.323761	10.000488	11.324249	17	
44	8.678405	9.999506	8.678900	11.321100	10.000494	11.321595	16	
45	8.681043	9.999500	8.681544	11.318456	10.000500	11.318957	15	
46	8.683665	9.999493	8.684172	11.315828	10.000507	11.316335	14	
47	8.686272	9.999487	8.686784	11.313216	10.000513	11.315728	13	
48	8.689863	9.999481	8.689381	11.310619	10.600519	11.311137	12	
49	8.691438	9.999475	8.691963	11.308037	10.000525	11.308562	11	
50	3.693998	9.999169	8.694529	11.305471	10.0¢0531	11.306002	10	
51	8.696543	9.999463	8.697081	11.302919	10.000537	11.303457	9	
52	8.699073	9.999456	8.699617	11.300383	10.000544	11.300927		
53	8.701589	9.999450	8.702139	11.297861	10.000550	11.298411		
5.	8. 704090	9.999443	8.704646	11.295354	10.000557	11.295910	6	
55	8.705577	9.999437	8.707140	11.292860	10.000563	11.293423	5	
56	8.709049	9.999431	8.709618	11.290382	10.000569	11.290951	4	
57	8.711507	9.999424	8.712083	11.287917	10.000576	11.288493	3	
58	8.713952	9.999418	8.714534	11.285466	10.000582	11.286048	2	
59	8.716383	9.999111	8.716972	11.283028	10.000589	11.283617	1	
60	8.718800	9.999404	8.719396	11.280 COL	10.000596	11. 281200	0	
m.	Co-sine.	Sine.	-tang.	'Iangent.	Co-sec.	Secant.	3 s .	
87 Degrees.								

TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SECANTS.

3 Denrees.							
M.	- Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
U	8.718800	9. 999 ± 04	8.719 .96	11 28U6U4	10.000596	11.281200	L0
1	8.721204	9.999398	8.721806	11.278194	10.000602	11.278796	59
2	8.723595	9.999391	8.724:04	11.275796	10.000609	11.276405	58
3	8.725972	9.999384	8.726588	11.273412	10.000616	11.274028	57
4	8728337	9.999378	8.728959	11.271041	10.000622	11.271663	56
5	8.730688	9.999371	8.731317	11.268683	10.000629	11.269312	55
6	8.733027	9.999364	8.733663	11.266337	10.000636	11.266973	54
7	8.735354	9.999357	8.735996	11.264004	10.000643	11.264646	53
8	8.737667	9.999350	8.738317	11.261683	10.000650	11.262333	52
9	8.739969	9.999343	8.740626	11.259374	10.000657	11.260031	51
10	8.742259	9.999336	8.742922	11.257078	10.000664	11.257741	50
11	8.744036	9 999329	8.745207	11.254793	10.000671	11.255464	49
12	8746802	9.999322	8.747479	11.252521	10.000678	11.253198	48
13	8.749055	9.999315	8.749740	11.250260	10.000685	11.250945	47
14	8.751207	9999308	8.751989	11.248011	10.000692	11.248703	46
15	8753528	9.999301	8.754227	11.245773	10.000699	11.246472	45
16	8.755747	9.999294	8.756453	11.243547	10.000706	11.244553	44
17	8.757955	9999287	8.758668	11.241332	10.000713	11.242045	43
18	8.760151	9.999279	8.760872	11.239128	10.000721	11.239849	42
19	8.762337	9999272	8763065	11.236935	10.000728	11.237663	41
20	8.764511	9.999265	8.765246	11.234754	10.000735	11.235489	40
21	8.7666 .75	9.999257	8.767417	11.232583	10.000743	11.233325	35
22	8.768828	9.999250	8.769578	11.230422	10.000750	11.231172	38
23	8.770970	9.999242	8.771727	11.228273	10.000758	11.229030	37
24	8773101	9.999235	8.773866	11.226134	10.000765	11.226899	36
25	8.775223	9999227	8.775995	11.224005	10.000773	11.224777	35
26	8.777333	9999220	8778114	11.221886	10.000780	11.222667	34
27	8.779434	9993212	8.780222	11.219778	10.000788	11.220566	33
28	8.781524	9.999205	8.782320	11.217680	10.000795	11.218476	32
29	8.783605	9.999197	8784408	11.215592	10.000803	$11.21639 J$	31
30	8.785675	9.999189	8.786486	11.213514	10.000811	11.214325	30
31	8.787736	9.949181	8.788554	11.211446	10.000819	11.212264	± 9
32	8789787	9999174	8790613	11.209387	10.000826	11.210213	28
33	8.791828	9.999166	8.792662	11.207338	10.000834	11.208172	27
34	8.793859	9.999158	8.794701	11.205299	10.000842	11.206141	26
35	8.795881	9.999150	8.796731	11.203269	10.000850	11.204119	25
36	8797894	9.999142	8.798752	11.201248	10.000858	11.202106	24
37	8.799897	9999134	8.800763	11.199237	10.000866	11.200103	23
38	8.801892	9.999126	8.802765	11.197235	10.000874	11.198108	22
39	8.803876	9.999118	8.804758	11.195242	10.000882	11.196124	21
49	8.805852	9.999110	8.806742	11.193:58	10.000890	11.194148	20
41	8.807819	9.999102	8.80 ± 717	11.191283	10.000898	11.192181	19
42	8.809777	9.999094	8.810683	11.189317	10.000906	11.190223	18
43	8.811726	9.999086	8.812641	11.187359	10.000914	11.188274	17
44	8.813667	9.999077	8.814589	11.185411	10.000923	11.186333	10
45	8.815599	9.999069	8.816529	11.183471	10.000931	11.184401	15
46	8.817522	9.999061	8.818461	11.181539	10.000939	11.182478	14
47	8.819436	9.999053	8.820384	11.179616	10.000947	11.180564	13
48	8.821343	9.999044	8.822298	11.177702	10.000956	11.178657	12
49	8.823240	9.999036	8.824205	11.175795	10.000964	$11.17{ }^{\text {d }} 760$	11
50	8.825130	9.999027	8.826103	11.173897	10.000973	11.174870	10
51	8.827011	9.999019	8.821992	11.172008	10.000981	$11.17 \% 909$	9
52	8.828884	9.999.10	8.82987.	11.170126	10.000990	11.171116	8
53	8.830749	9.999002	8.831748	11.168252	10.000998	11.169251	7
54	8.832607	9.998993	8.833613	11.166387	10.001007	11.167393	6
55	8831456	9.998984	8.835471	11.164529	10.001016	11.165544	5
56	8.836297	9.998976	8.837321	11.162679	10.001024	11.163703	4
57	8.838130	9998967	8.839163	11.160837	10.001033	11.161870	3
58	8.839956	9.998958	8.840998	11.159002	$10.001(142$	11.160044	2
59	8.841774	9.998950	8.842825	11.157175	10.001050	11.158226	1
60	8.843585	9.998941	8.844644	11.155356	10.001059	11.156415	0
M.	Co-sine.	Sine.	Co-tang.	'langent.	Co-sec.	Secant.	M.
8 g vegrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.
4 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	$8.843 \overline{5} 85$	4.995941	8.844644	11.1553556	$10.00105 y$	$11.106+15$	6
1	8.845387	9.998932	8.846455	11.153545	10.001068	11.154613	59
2	8.847183	9.995923	8.848260	11.151740	10.001077	11.152817	58
3	8.848971	9.998914	8.850057	11.149943	10.001086	11.151029	57
4	8850751	9.998905	8.851846	11.148154	10.001095	11.149249	50
5	8.852525	9.938896	8.853628	11.146372	10.001104	11.147475	55
6	8.854291	9.998887	8.855403	11.144597	10.001113	11.145709	54
7	88515049	9.998878	8.857171	11.142829	10.001122	11.143951	53
8	8.857801	9.998869	8.858932	11.141068	10.001131	11.142199	52
9	8.859546	9.998860	8.8611686	11.139314	10.001140	11.140454	51
10	8.861283	9.998851	8.862433	11.137567	10.001149	11.138717	50
11	8.863014	$99 \cup 8841$	8.86 ± 173	11.135827	10.001159	11.136986	49
12	8.864738	9.998832	8.865906	11.134094	10.001168	11.135262	48
13	8.866455	9.998823	8.867632	11.132368	10.001177	11.133545	47
14	8.868165	9.998813	8869351	11.130649	10.001187	11.131835	46
15	8.869868	9.993804	8.871064	11.128936	10.001196	11.130132	45
36	8.871565	9.998795	8.872770	11.127230	10.001205	11.128435	44
17	8.873255	9.998785	8.874469	11.125531	10.001215	11.126745	43
18	8.874938	9.998776	8.876162	11.123838	10.001224	11.125062	42
19	8.876615	9.998766	8.877849	11.122151	10.001234	11.123385	41
20	8.878285	9995757	8.879529	11.120471	10.001243	11.121715	40
21	8.879949	$9.998 \% 47$	¢ 881202	11.118798	10.001253	11.120051	\%
22	8.881607	9.998738	8.882869	11.117131	10.001262	11.118393	38
23	8.883258	9998728	8.884530	11.115470	10.001272	11.116742	37
24	8.884903	9.998718	8.886185	11.113815	10.001282	11.115097	35
25	8.886542	9.998708	8887833	11.112167	10.001292	11.113458	35
26	8858174	9.998699	8.889476	11.110524	10.001301	11.111826	31
27	8889801	9.998689	8891112	11.108888	10.001311	11.110199	33
28	8.891421	9.998679	8.892742	11.107258	10.001321	11.108579	32
29	8.893035	9.998669	8.894366	11.105634	10.001331	11.106965	31
30	8.894643	9.998659	8.895984	11.104016	10.001341	11.105357	37
31	8.896246	9.998649	8.897596	11.102404	10.001351	11.103754	29
32	8.897842	9.998639	8.899203	11.100797	10.001361	11.102158	28
33	8.899432	9.998629	8.900803	11.099197	10.001371	11.100568	27
$3!$	8.901017	9.998619	8.902398	11.097602	10.001381	11.098983	26
35	8.902596	9.998609	8.903987	11.096013	10.001391	11.097404	25
36	8.904169	9.998599	8.905570	11.094430	10.001401	11.095831	24
37	8905736	9.998589	8.907147	11.092853	10.001411	11.094264	23
38	8.907297	9.998578	8.908719	11.091281	10.001422	11.092703	22
33	8.908853	9.998568	8.910285	11.089715	10.001432	11.091147	21
40	8910404	9.998558	8.911846	11.088154	10.001442	11.089596	20
41	8.911949	9.995548	8.913401	11.686599	10.001452	11.088051	19
42	8.913488	9.998537	8.914951	11.085049	10.001463	11.086512	18
43	8.915022	9.998527	8.916495	11.083505	10.001473	11.084978	17
44	8.916550	9.998516	8.918034	11.081966	10.001484	11.083450	16
45	8.918073	9.998506	8.919568	11.080432	10.001494	11.081927	15
46	8.919591	9.998495	8.921096	11.078904	10.001505	11.080409	14
47	8.921103	9.998485	8.922619	11.077381	10.001515	11.078897	13
48	8.922610	9.998474	8.924136	11.075864	10.001526	11.077390	12
49	8.924112	9.998464	8.925649	11.074351	10.001536	11.075888	11
50	8.925609	9.998453	8.927156	11.072844	10.001547	11.074391	10
51	8.927100	9.998442	8.928658	11.071342	10.001558	11.072900	9
52	8.928587	9.998431	8.930155	11.069845	10.001569	11.071413	8
53	8.930068	9.998421	8.931647	11.068353	10.001579	11.069932	7
54	8.931544	9.998410	8.933134	11.066866	10.001590	11.068456	
55	8.933015	9.998399	8.934616	11.065384	10.001601	11.066985	5
56	8.934481	9.998388	8.936093	11.063907	10.001612	11.065519	,
57	8.935942	9.998377	8.937565	11.062435	10.001623	11.664058	
58	8.937398	9.998366	8.939032	11.060968	10.001634	11.062602	2
59	8.938850	9.998355	8.940491	11.059506	10.001645	11.061150	1
60	8.947296	9.998314	8.911952	11.0 .98048	$10.00165\}$	11.059704	0
M.	Co-sine.	Sine.	Co-tanc.	'I'angent.	Co-sec.	Secant.	1.
85 Degrees.							

TABLE II.

logarithmic sines, tangents, and secants.

5 Degrees.								
m.	Sinc.	Co-sine.	\|'Tangent.		Co-tang.	Secant.	Co-sec.	M.
0	3.940 46	9.	$8.94195:$	11.058048	10.0016	11.059701	60	
1	8941738	9.998333	8.943101	11.056596	10.001667	11.058262	59	
2	8943174	9.995322	8.944852	11.055148	10.001678	11.056826	58	
3	8944606	9.998311	8.946295	11.053705	10.001689	11.055391	57	
4	8946034	9998360	8.947734	11.052266	10.001700	11.053966	56	
5	8.947456	9.998289	8949168	11.050832	10001711	11.052544	55	
6	8.948874	9.938277	8.950597	11.049403	10.001723	11.051126	54	
7	8.950:87	9.938266	8.952021	11.047979	10.001734	11.049713	53	
8	8.951696	9.998255	8.953441	11.046559	10.001745	11.048304	52	
9	8.953100	9.995243	8.954856	11.045144	10.001757	11.046900	51	
10	8 צ54493	9.998232	8956267	11.043733	10.001768	11.045501	50	
11	$8.55589 \pm$	9.998220	8.957674	11.042326	10.001780	11.044106	4	
12	8.957284	9.998209	8.959075	11.040925	10.001791	11.042716	48	
13	8.958670	9.998197	8.960473	11.039527	10.001803	11.041330	47	
14	8.960052	9.998186	8961866	11.038134	10.001814	11.039948	46	
15	8.961429	9.938174	8.963255	11.033745	10.001826	11.038571	45	
16	8.962801	9.998163	8964639	11.035361	10.001837	11.037199		
17	8.964170	9.998151	8.966019	11.033981	10.001849	11.035830	43	
18	8965934	9.998139	8967394	11.032606	10.001861	11.034466	2	
19	8.966893	9.998128	8.968766	11.031234	10.001872	11033107		
20	8.968249	9.998116	8970133	11.029867	10.001884	11.031751	43	
21	8.06960J	9.998101	8.971496	11.028504	10.0018	11.0304		
22	8.970947	9.998092	8.972855	11.027145	10.001908	11.029053	38	
23	8.972289	9.998080	8.974209	11.025791	10.001920	11.027711	¢7	
24	8.973628	9998068	8.975560	11.024440	10.001932	11.026372		
25	8.974962	9.993056	8.976906	11.023094	10001944	11.025038	35	
26	8.976293	9.998044	8.978248	11.021752	10.001956	11.023707	34	
27	8.977619	9.998032	8.979586	11.020414	10.001968	11.022381		
28	8.978941	9.998020	8980921	11.019079	10.001980	11.021059	32	
29	8.980259	9.998038	8.982251	11.017749	10.001992	11.019741	31	
S0	8.981573	9.997993	8.983577	11.016423	10.002004	11.018427		
31	8.98:883	9.997984	8.984899	11.015101	10.002016	11.017117	$2 y$	
33	8981189	9 997972	8.986217	11.013783	10.002028	11.015811		
33	8.985491	9.997959	8.987532	11.012468	10.002041	11.014509		
34	8980783	9.997947	8.988842	11.011158	10.002053	11.013211	26	
35	8.938083	9.997935	8.990149	11.009351	10.002065	11.011917		
36	8.959574	9.997922	8.991451	11.008549	10.002078	11.010626	24	
37	8.9903:0	9997910	8.992750	11.007250	10.002090	11.009340	23	
38	8.991943	9.997897	8.994045	11.00 วั955	10.002103	11.008057	24	
39	8.993222	9.997885	8.995337	11.004663	10.002115	11.006778	21	
40	8994457	9.957872	8.996624	11.003376	10.002128	11.005503	$\because 0$	
41	8.995763	9) 997860	8997908	11.002092	10.002140	11.004238	19	
42	8.997036	9997847	8.999188	11.000812	10.002153	11.002961		
43	8.993299	9.997835	9.000465	10.999535	10.002165	11.001701	17	
44	8.939500	9.997822	9.001733	10.998262	10.002178	11.000440	16	
45	9.000316	9.997809	9.003007	10996993	10.002191	10.999184		
46	ソ.002069	9997797	9004272	10.995728	10.002203	10.997931	14	
47	9.003318	9.997784	9.005534	10.994466	10.002216	10.996682	13	
48	9.004563	9.997771	9.006792	10.993208	10.002229	10.995437	12	
49	9.005805	9 997758	9.008047	10.991953	10.002242	10.994195	11	
50	9007044	9.997745	9009298	10.990702	10002255	10.992956	10	
51	9.605878	9.997732	9.010546	10.989454	10.002268	10.991722		
52	9.009510	9997719	9.011790	10.988210	10.002281	10.990490		
53	9.010737	9.997 T 06	9.013031	10.986969	10.002294	10.989263		
54	9.011962	9.997693	9.014268	10.985732	10.002307	10.988038		
55	9.013182	9.997680	9.015502	10.984498	10.002320	10.986818		
56	9.014400	9.997667	9.016732	10.983268	10.002333	10.985600		
57	9.015613	9.997651	9017959	10.982041	10.002316	10.984387		
58	9.016824	9.997641	9.019183	10.980817	10.002359	10.983176		
59	9.018031	9.997628	9.020403	10.979597	10.002372	10.981969		
60	9.019235	9.987614	9.021620	10.	10.002386	.887¢5	0	
II	Co-sine	Sine.	Co-tang.	Taugent.	Co-sec.	Secant.	.	
84110								

TABLE II.
LOGARITHMC SINES, TANGENTS, AND SECANTS.
6 Degrees.

M.	Sine.	Co-sinc.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.619230	9. 2 Ji614	9.021620	10.978380	10.002386	10.980105	(1)
1	9.020435	9.997601	9.022834	10.977166	10.002399	10.979565	
2	9.021632	9.997588	9.024044	10.975956	10.002412	10.978368	58
3	9022825	9297574	9.025251	10.974749	10.002426	10977175	57
4	9.024016	9.997561	9.026455	10.973545	10.002439	10.975984	£6
5	9.025203	9.997547	9.027655	10.972345	10.002453	10.974797	55
6	9.026386	9.997534	$0.02885{ }^{2}$	10.971148	10.002466	10.973614	54
7	9.027567	9.997520	9.030046	10.969954	10.002480	10.972433	53
8	9.028744	9997507	9.031237	10.968763	10.002493	10.971256	52
9	9.029918	9.997493	9.032425	10.967575	10.002507	10.970082	51
10	9.031089	9.997480	9.033609	10.966391	10002520	10.968911	50
11	9.03 ± 257	9.997466	9.034791	10.965209	10.002534	10967743	49
12	9.033421	9.997452	9.035969	10.964031	10.002548	10.966579	48
13	9.034582	9.997439	9.037144	10.962856	10.002561	10.965418	47
14	9035741	9.997425	9.038316	10.961684	10.002575	10.964259	46
15	9.036896	9.937411	0.039485	10.960515	10.002589	10.963104	45
16	9.038048	9.997397	9.040651	10.959349	10.002603	10961952	44
17	9.039197	9.997383	9.041813	10.958187	10.002617	10.960803	43
18	9010342	9.997369	9.042973	10.957027	10.002631	10.959658	42
19	9.041485	9997355	9044130	10.955870	10.002645	10.958515	41
20	9042625	9.997341	9.045284	10.954716	10.002659	10.957375	40
<1	9.043762	9.997327	9.046434	10.953566	10.002673	10.956238	39
22	9.044895	9.997313	9.047582	10.952418	10.002687	10.955105	33
23	9.016026	9.997299	9.048727	10.951273	10.002701	10.953974	37
24	9047154	9.997285	9049869	10.950131	10.002715	10.952846	36
2.5	9.048279	0.997271	9051008	10.948992	10.002729	10.951721	35
26	9.049400	0.997257	9.052144	10.947856	10.002743	10.950600	$3!$
27	0.050519	9.997242	9053277	10.946723	10.002758	10.949481	33
28	9051635	9997228	9.054407	10.945593	10.002772	10.948365	32
29	9.0 ¢2749	0.997214	9.055535	10.944465	10.002786	10.947251	31
30	9053859	9.997199	9.056659	10.943941	10.002801	10.946141	30
31	9054936	9.997185	9.057781	11.942219	10.002815	$10.9+5031$	$\div 9$
32	9.156071	9.997170	9.058900	10.941100	10.002830	10.913929	28
33	9.057172	9.997156	9.080016	10.939984	10.002844	10.942828	27
31	9.058271	0.997141	9.061130	10.938870	10.002859	10.941729	26
35	9.059357	9.997127	9.062240	10.937760	10002873	10.940633	25
33	9.060460	9.997112	9.053348	10.936652	10.002888	10.939540	24
37	3061551	9997098	9.664453	10.935547	10.002902	10.938449	23
38	9.062639	9997083	9.065556	10934444	10.002917	10.937361	22
33	9.063724	9997068	9.066659	10.933345	10.002932	10.936276	¢1
40	9.064806	99970 ¢3	9.067752	10.932248	10.002917	10.935194	20
41	y 06588	$99970{ }^{\text {a }}$	906384	10.931154	10.002961	10.93	
42	9.066962	9.997024	9.069938	10.930062	10.60:976	10.933038	18
43	9068036	9 997009	9.071087	10.928973	10.002991	10.931964	17
44	9.069107	9.996994	9.072113	10927887	10.003006	10.930893	16
45	9.070176	9.996979	9.073197	10.926803	10.003021	10.929824	15
46	9.071242	9.996964	9.074278	10.925722	10.003036	10.928758	14
47	9.072306	0.996949	9.075356	10.924644	10.003051	10.927694	13
48	9.073366	9.996934	9.076432	10.923568	10.003066	10.926634	12
49	9.074124	9.995919	9.077505	10.922495	10.003081	10.925576	11
50	9.675480	9.936904	9.078576	10.921424	10.003096	10.924520	10
51	9.076553	$9.9 \mathrm{Jiz8}{ }^{\text {¢ }}$	9.079644	10920356	10.003111	10.923467	9
52	9.077583	9.996374	9.080710	10.919290	10.003126	10.922417	8
53	9.078631	9.99fi858	9.081773	10.918227	10.003142	10.921369	7
54	9.079676	9.996843	9.082833	10.917167	10.003157	10.920324	6
55	9.080719	9.996828	9.083891	10.916109	10.003172	10.919281	5
56	9.081759	9.996812	9.084947	10.915053	10.003188	10.918241	4
57	9.082797	9.996797	9.086000	10.914600	10.003203	10.917203	3
08	9.083832	9.996782	9.087050	10.912950	10003218	10.916168	2
59	9.084864	9.996766	9.088098	10.911902	10.003234	10.915136	
C0	9.085894	9.996751	9089144	10910856	10.003249	10.914106	0
Mr.	Co-sine.	Sine.	Co-tang.	I'angent.	Co-sec.	Secant.	м.
si3 Degrees.							

LOGARITHMIO SINES, TANGENTS, AND SECANTS.

7 Degrees.								
M.	Sine.	Co-sine.	\|Tangent.		Co-tang.	Secant.	Co-sec.	M.
0	1) 08,0.34	9.9 v 7 J 1	9.489144	10.9100 .6	10.60c:49	10.914166	ω	
1	9.086922	9.996735	9.090 .87	10.909813	10.003265	10.913078	¢9	
2	9.187947	9.996720	9.091228	10.908772	10.003280	10.912053	58	
3	9.088970	9.996704	9.092266	10.907734	10.003296	10.911030	57	
4	9.089990	9.996688	9093302	10.906698	10.003312	10.910010	56	
5	9.091008	9.996673	9.094336	10.905664	10.003327	10.908592	55	
6	9.092024	9.996657	9.095367	10.904633	10.003343	10.907976	54	
7	9093037	9996641	9.096395	10.903605	10.003359	10.906963	53	
8	9.094047	9.996625	9.097422	10.902578	10.603375	10.905953	52	
9	9.095056	9.996610	9.098446	10.901554	10.003390	10.904944	51	
10	9.096062	9.996594	9.099468	10.900532	10.003406	10.903938	50	
11	9.097065	9.996578	9.100487	10.899513	10.003422	10.902935	49	
12	9.098066	9.996562	9.101504	10.898496	10.003438	10.901884	48	
13	9.099065	9.996546	9.102519	10.897481	10.003454	10.900935	47	
14	9.100062	9.996530	9.103532	10.896468	10.003470	10.899938	46	
15	9.101056	9996514	9.104542	10.895458	10.003486	10.898944	45	
16	9.102048	9.996498	9.105550	10.894450	10.003502	10.897952	44	
17	9.103037	9.996482	9.106556	10.893444	10003518	10.896963	43	
18	9.104025	9.996465	9.107559	10.892441	10.003535	10.895975	42	
. 19	9.105010	9.996449	9.108560	10.891440	10.003551	10.894990	41	
20	9.105992	9.996433	9109559	10.890441	10.003567	10.894008	40	
21	4.106973	9.996417	9.110556	10.889444	10.003583	$10.8930 \angle 7$	39	
22	9.107951	9.996400	9.111551	10.888449	10.603600	10.892049	38	
23	9.108927	9.996384	9.112543	10.887457	10.003616	10.891073	37	
$2 t$	9.109901	9.996368	9.113533	10.886467	10.003632	10.890(199	36	
25	9.119873	9996351	9.114521	10.885479	10.003649	10.889127	35	
26	9.111842	9.996335	9.115507	10.884493	10.003665	10.888158	34	
27	9.112809	9.996318	9.116491	10.883509	10.003682	10.887191	33	
28	9113774	9996302	9.117472	10.882528	10.003698	10.886226	32	
29	9.114737	9.996285	9.118452	10.881548	10.003715	10.885263	31	
30	9.115698	9.996269	9.119429	10.880571	10.003731	10.884302	30	
31	9.116656	9.996252	9.1204144	10.879596	10.003748	10.883344	29	
32	9.117613	9.996235	9.121377	10.878623	10.003765	10.882387	28	
33	9.118567	9.906219	9.122348	10.877652	10.003781	10.881433	27	
34.	9.119519	9.996202	9.123317	10.876683	10.003798	10.880481	26	
35	9.120469	9.996185	9.124284	10.875716	10.003815	10.879531	25	
36	9.121417	9.996168	9125249	10.874751	10.003832	10.878583	24	
37	9.122362	9.996151	9126211	10.873789	10.003849	10.877638	23	
33	9.123306	9.996134	9.127172	10.872828	10.003866	10.876694	22	
39	9.124248	9.996117	9.128130	10.871870	10.003883	10.875752	21	
45	9.125187	9.996100	9.129087	10.870913	10.003900	10.874813	20	
41	9.126125	9.996083	9130041	10.869954	10.003917	10.873875	19	
42	9.127060	9.996166	9.130994	10.869006	10.003934	10.872940	18	
43	9.127993	9.996049	9131944	10.868056	10.003951	10.872007	17	
44	9.128925	9.996032	9132893	10.867107	10.003968	10.871075	16	
45	9.129854	9.996015	9.133839	10.866161	10.003985	10.870146	15	
46	9.130781	9.995998	9.134784	10.865216	10.004002	10.869219	14	
47	9.131706	9.995980	9.135726	10.864274	10.004020	10.868294	13	
48	9.132630	9.995963	9.136667	10.863333	10.004037	10.867370	12	
49	9.133551	9.995946	9.137605	10.862395	10.004054	10.866449	11	
50	9.131470	9.995928	9.138542	10.861458	10.004072	19.865530	10	
51	4.135387	9.995911	9.139476	10.8605 .24	10.004089	10.864613	9	
52	9.136303	9.995894	9.140409	10.859591	10.004106	10.863697	8	
53	9.137216	9.995876	9.141340	10.858660	10.004124	10.862784	7	
54	9.138128	9.995859	9.142269	10.857731	10.004141	10.861872	6	
55	9.139037	9.995841	9.143196	10.856804	10.004159	10.860963	5	
56	9.139944	9.995823	9.144121	10.855879	10.004177	10.860056	4	
57	9.140850	9.995806	9.145044	10.854956	10.004194	10.859150	3	
53	9.141754	9.995788	9.145966	10.854034	10.004212	10.858246	2	
59	9.142655	9.995771	9.146885	10.853115	10.004229	10.857345	1	
10	9.14355.)	9.995753	9.147803	10.852197	10.004247	10.856445	0	
Mr.	C'o-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.	
x: facrees.								

LOGARITHMIC SINES, TANGENTS, AND SECANTS.
8 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	4.143555	Y.995753	9.147803	10.852197	10.004247	10.856445	60
1	9.144453	9.995735	9.148718	10.851282	10.004265	10.855547	59
2	9.145349	9.995717	9.149632	10.850368	10.004283	10.854651	58
3	9.146243	9.995699	9.150544	10.849456	10.004301	10.853757	57
4	9.147136	9.995681	9.151454	10.848546	10.004319	10.852864	56
5	9.148026	9.995664	9.152363	10.847637	10.004336	10.851974	55
6	9.148915	9.995646	9.153269	10.846731	10004354	10.851085	54
7	9.149802	9.995628	9.154174	10.845826	10.004372	10.850198	53
8	9.150686	9.995610	9.155077	10.844923	10.004390	10.849314	52
9	9.151569	9.995591	9.155978	10.844022	10.004409	10.848431	51
10	9.152451	9.995573	9.156877	10.843123	10.004427	10.847549	50
11	9.153330	9.995555	9.157775	10.842225	10.004445	10.846670	49
12	9.154208	9.995537	9.158671	10.841329	10.004463	10.845792	48
13	9.155083	9.995519	9.159565	10.840435	10.004481	10.844917	47
14	9.155957	9.995501	9.160457	10.839543	10.004499	10.844043	46
15	9.156830	9.995482	9.161347	10.838653	10.004518	16843170	45
16	9.157700	9.995464	9.162236	10.837764	10.004536	10.842300	44
17	9.158569	9.995446	9.163123	10.836877	10.004554	10.841431	43
18	9.159435	9.995427	9.164008	10.835992	10.004573	10.840565	42
19	9.160301	9.995409	9.164892	10.835108	10.004591	10.839699	41
20	9.161164	9.995390	$9.165^{\prime} 774$	10.834226	10.004610	10.838836	40
21	9.162025	9.995372	9.166654	10.833346	10.004628	10.837975	39
22	9.162885	9.995353	9.167532	10.832468	10.004647	10.837115	38
23	9.163743	9.995334	9.168409	10.831591	10.004666	10.836257	37
24	9.164600	9.995316	9.169284	10.830716	10.004684	10.835400	36
25	9.165454	9.995297	9.170157	10.829843	10.004703	10.834546	35
26	9.166307	9.995278	9.171029	10.828971	10.004722	10.833693	34
27	9.167159	9.995260	9.171899	10.828101	10.004740	10.832841	33
28	9.168008°	9.995241	9.172767	10.827233	10.004759	10.831992	32
29	9.168856	9.995222	9.173634	10.826366	10.004778	10.831144	31
30	9169702	9.995203	9.174499	10.825501	10.004797	10.830298	30
31	9.170547	9.995184	9.175362	10.624638	10.04816	10.829453	29
32	9.171389	9.995165	9.176224	10.823776	10.004835	10.828611	28
33	9.172230	9.995146	9.177084	10.822916	10.004854	10.827770	27
34	9.173070	9.995127	9.177942	10.822058	10.004873	10.826930	26
35	9.173908	9.995108	9.178799	10.821201	10.004892	10.826092	25
36	9.174744	9.995089	9.179655	10.820345	10.004911	10.825256	24
37	9.175578	9.995070	9.180508	10.819492	10.004930	10.824422	23
38	9.176411	9.995051	9.181360	10.818640	10.004949	10.823589	22
39	9.177242	9.995032	9.182211	10.817789	10.004968	10.822758	21
40	9.178072	9.995013	9.183059	10.816941	10.004987	10.821928	$\because 0$
41	9.178900	9.994993	9.183907	10.816093	10.005007	10.821100	119
42	9.179726	9.994974	9.184752	10.815248	10.005026	10.820274	18
43	9.180551	9.994955	9.185597	10.814403	10.005045	10.819449	17
44	9.181374	9.994935	9.186439	10.813561	10.005065	10.818626	16
45	9.182196	9.994916	9.187280	10.8127 20	10.005084	10.817804	15
46	9.183016	9.994896	9.188120	10.811880	10.005104	10.816984	14
47	0.183834	9.994877	9.188958	10.811042	10.005123	10.816166	13
48	9.184651	9.994857	9.189794	10.810206	10.005143	10.815349	12
49	9.185466	9.994838	9.190629	10.809371	10.005162	10.814534	11
50	9.186280	9.994818	9.191462	10.808538	10.005182	10.813720	10
51	9.187092	9.994798	9.192294	10.807706	10.005202	10.812908	9
52	9.187903	9.994779	9.193125	10.806876	10.005221	10.812097	8
53	9.188712	9.994759	9.193953	10.806047	10.005241	10.811288	7
54	9.189519	9.994739	9.194780	10.805220	10.005261	10.810481	6
55	9.190325	9.994720	9.195606	10.804394	10.005281	10.809675	5
56	9.191130	9.994700	9.196430	10.803570	10.005300	10.808870	4
57	9.191933	9.994680	9.197253	10.802747	10.005320	10.808067	3
58	9.192734	9.994660	9.198074	10.801926	10.005340	10.807266	2
59	9.193534	9.994640	9.198894	10.801106	10.005360	10.806466	1
60	9.194332	9.994620	9.199713	10.800287	10.005380	10.805668	0
M.	Co-sinc.	Sine.	Cu-tang.	Tangent.	Co-sec.	Secant.	M.
81 Hegrees.							

TABLE II.

LOGARITHMIC SINES, TANGENTS, AND SECANTS.
9 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
u	9.194332	9.9946	9.199713	10.800287	10.005380	10.80566\%	(.0)
1	9.195129	9.991600	9.200529	10.799471	10.005400	10.804871	¢9
2	9.195925	9.994580	9.201345	10.798655	10.005420	10.804075	58
3	9.196719	9.994560	9.202159	10.797841	10.005440	10.803281	57
4	9.197511	9.994540	9.202971	10.797029	10.005460	10.802489	56
5	9.198302	9.994519	9.203782	10.796218	10.005481	10.801698	55
6	9.199091	9.994499	9.204592	10.795408	10.005501	10.800909	54
7	9.199879	9.994479	9.205400	10.794600	10.005521	10.800121	53
8	9.200666	9.994459	9.206207	10.793793	10.005541	10.799334	52
9	9.201451	9.994438	9.207013	10.792987	10.005562	10.798549	51
10	9.202234	9.994418	9.207817	10.792183	10.005582	10.797766	50
11	9.203017	9.994398	9.208619	10.791381	10.005602	10.796983	49
12	9.203797	9.994377	9.209420	10.790580	10.005623	10.796203	48
13	9.204577	9.994357	9.210220	10.789780	10.005643	10.795423	47
14	9.205354	9.994336	9.211018	10.788982	10.005661	10.791646	46
15	9.206131	9.994316	9.211815	10.788185	10.005684	10.793869	45
16	9.206906	9.994295	9.212611	10.787389	10.005705	10.793094	44
17	9.207679	9.994274	9.213405	10.786595	10.005726	10.792321	43
18	9.208452	9.994254	9.214198	10.785802	10.005746	10.791548	42
19	9.209222	9.994233	9.214989	10.785011	10.005767	10.790778	41
20	9.209992	9.994212	9.215780	10.784220	10.005788	10.790008	40
21	9.210760	9.994191	4.216568	10.783432	10.0058	10.789	39
22	9.211526	9.994171	9.217356	10.782644	10.005829	10.788474	38
23	9.212291	9.994150	9.218142	10.781858	10.005850	10.787709	37
24	9.213055	9.994129	9.218926	10.781074	10.005871	10.786945	36
25	9.213818	9.994108	0.219710	10.780290	10.005892	10.786182	35
26	9.214579	9.991087	9.220492	10.779508	10.005913	10.785421	$3 \pm$
27	9.215338	9.994066	9.221272	10.778728	10.005934	10.784662	3
28	9.216097	9.994045	9.222052	10.777948	10.005955	10.783903	32
29	9.216854	9.994024	9.222830	10.777170	10.005976	10.783146	31
30	9.217609	9.994003	9.223607	10.776393	10.005997	10.782391	30
31	9.218363	9.993982	9.224382	10.775618	10.006018	10.781638	29
32	9.219116	9.993960	9.225156	10.774814	10.005640	10.780884	29
33	9.219868	9.993939	9.225929	10.774071	10.006061	10.780132	27
31	9.220618	9.993918	9.226700	10.773300	10.006082	10.779382	26
35	9.221367	9.993897	9.227471	10.772529	10.006103	10.778633	25
36	9.222115	9.993875	9.228239	10.771761	10.006125	10.777885	24
37	9.222861	9.993854	9.229007	10.770993	10.006146	10.777139	23
33	9.223606	9.993832	9.229773	10.770227	10.006168	10.776394	22
39	9.224349	9.993811	9.230539	10.769461	10.006189	10.775651	21
40	9.225092	9.993789	9.231302	10.768698	10.006211	19.774908	20
41	9.225833	9.9Y3768	9.232065	10.7679	10.00623:2	10.7741	19
42	9.226573	9.993746	9232826	10.76717	10.006254	10.77342	18
43	9.227311	9.993725	9.233586	10.766414	10.006275	10.772689	17
44	9.228048	9.993703	9.234345	10.765655	10.006297	10.771952	16
45	9.228784	9.993681	9.235103	10.764897	10.006319	10.771216	15
46	9.229518	9.993660	9.235859	10.764141	10.006340	10.770482	14
47	9.230252	9.993638	9.236614	10.763386	10.006362	10.769748	13
48	9.230984	9.993616	9.237368	10.762632	10.006384	10.769016	12
49	9.231715	9.993594	9.238120	10.761880	10.006406	10.768285	11
50	9.232444	. 9.993572	9.238872	10.761128	10.006428	10.767556	10
51	9.233172	9.993550	9.239622	10.7603	10.006450	10.766828	9
52	9.233899	9.993528	9.240371	10.759629	10.006472	10.766101	
53	9.234625	9.993506	9.241118	10.758882	10.006494	10.765375	
54	9.235349	9.993484	9.241865	10.758135	10.006516	10.764651	
55	9.236073	9.993462	9.242610	10.757390	10.006538	10.763927	
56	9.236795	9.993440	9.243353	10.756646	10.006560	10.763205	
57	9.237515	9.993418	9.244097	10.755903	10.006582	10.762485	3
58	9.238235	9.993396	9.244839	10.755161	10.006604	10.761765	2
59	9.238953	9.993374	9.245579	10.754421	10.006626	10.761047	
60	9.239670	9.993351	246319	10.753681	.006649	10.760330	0
м.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	I.
80 Degrees.							

LOGARITHMIC SIGNS, TANGENTS AND SECANTS.

10 Degrees.

м.	Sine.	Co-sine.	'T'angent.	Co-tang.	Secant.	Co-sec.	M.
0	9.239670	$9.9 \because 3351$	9.246819	10.743681	10.005649	10.r6uosu	u
1	9.240386	9993329	9.247057	10.752943	10.006671	10.759814	59
2	9.241101	9.993307	9.247794	10.752206	10.006693	10.758899	58
3	9.241814	9.993285	9.248530	10.751470	10.006715	10.758186	57
4	9242526	9.993262	9.249264	10.750736	10.006738	10.757474	56
5	9.243237	9.993240	9.249998	10.750002	10.006760	10.756763	55
6	9.243947	9.993217	9.250730	10.749270	10.006783	10.756053	54
7	9.244656	9.993195	9.251461	10.748539	10.006805	10.755344	53
8	9.245363	9.993172	9.252191	10.747809	10.006828	10.754637	52
9	9.246069	9.993149	9.252920	10.747080	10.006851	10.753931	51
10	9.246775	9.993127	9.253648	10.746352	10.006873	10.753225	50
11	9.247478	9.993104	9.254374	10.745626	10.006896	10.754524	49
12	9.248181	9.993081	9.255100	10.744900	10.006919	10.751819	48
13	9.248883	9.993059	9.255824	10.744176	10.006941	10.751117	47
14	9.249583	9.993036	9.256547	10.743453	10.006964	10.750417	46.
15	9.250282	9.993013	9.257269	10.742731	10.006987	10.749718	45
16	9.250980	9.992990	9.257990	10.742010	10.007010	10.749020	44
17	9.251677	9992967	9.258710	10.741290	10.007033	10.748323	43
18	9.252373	9.992944	9.259129	10.740571	10.007056	10.747627	42
19	9.253067	9.992921	9.260146	10.739854	10.007079	10.746933	41
20	9.253761	992898	9.260863	10.739137	10.007102	10.746239	40
21	9.2544	9.9928	9.2615	10.7384	10.007	10.745	39
22	9255144	9.992852	9.262292	10.737708	10.007148	10.7448	38
23	9.255834	9932829	9.263005	10.736995	10.007171	10.744166	37
24	9.256523	9.992806	9.263717	10.736283	10.007194	10.743477	36
25	9.257211	9.992783	9.264428	10.735572	10.007217	10.742789	35
26	9 257898	9.992759	9.265138	10.734862	10.007241	10.742102	34
27	9258583	9.992736	9.265847	10.734153	10.007264	10.741417	33
28	9.259268	9.992713	9.266555	10.733445	10.007287	10.740732	32
29	9.259951	9.992690	9.267261	10.732739	10.007311	10.740049	31
30	9.260633	9.992666	0.267967	10.732033	10.007334	10.739367	3 J
31	9.261314	9.992643	9.268671	10.731329	10.0073	10.73	
32	9.261994	9.992619	9.269375	10.730625	10.007381	10.738006	28
33	9.262673	9.992596	9.270077	10.729923	10.007404	10.737327	27
34	9.263351	9.992572	9.270779	10.729221	10.007428	10.736649	26
35	9.264027	9.992549	9.271479	10.728521	10.007451	10.735973	25
36	9.264703	9.992525	9.272178	10.727822	10.007475	10.735297	24
37	9.265377	9.992501	9.27287 ô	10.727124	10.007499	10.734623	23
38	9.266051	9.992478	9.273573	10.726427	10.007522	10.733949	22
39	9.266723	9.992454	9.274269	10.725731	10.007546	10.733277	21
40	9.267395	9.992430	9.274964	10.725036	10.007570	10.732605	20
41	9.268065	9.994406	9.275658	10.724342	10.007594	10.731935	14
42	9.268734	9.992382	9.276351	10.723649	10.007618	10.73126	18
43	9.269402	9.992358	9.277043	10.722957	10.007642	10.730598	17
44	9.270069	9.992335	9.277734	10.722266	10.007665	10.729931	16
45	9.2\%0735	9.992311	9.278424	10.721576	10.007689	10.729265	15
46	9.271400	9.992287	9.279113	10.720887	10.007713	10.728600	14
47	9.272064	9.992263	9.279801	10.720199	10.007737	10.727936	13
48	9.272726	9.992239	9.280488	10.719512	10.007761	10.727274	12
49	9.273388	9.992214	9.281174	10.718826	10.007786	10.726612	11
50	9.274049	9.992190	9.281858	10.718142	10.007810	10.725951	10
51	Y. 27470	9.992166	9.2825	10.7174	10.0078	10.725	9
52	9.275367	9.992142	9.283225	10.716775	10.007858	10.724633	8
53	9.276025	9.992118	9.283907	10.716093	10.007882	10.723975	7
54	9.276681	9.992093	9.284588	10.715412	10.007907	10.723319	6
55	9.277337	9.992069	9.285268	10.714732	10.007931	10.722663	5
56	9.277991	9.992044	9.285947	10.714053	10.007956	10.722009	4
57	9.278645	9.992020	9.286624	10.713376	10.007980	10.721355	3
58	9.270297	9.991996	9.287301	10.712699	10.008004	10.720703	2
59	9.279918	9.991971	9.287977	10.712023	10.008029	10.720052	1
60	9.280599	9.991947	9.288652	10.711348	10.008053	10.719101	0
M.	Co-sine.	Sine.	Co-tang.	'T'angent.	Co-sec.	Secan	r.
as Degrees							

154 TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SECANTS.

11 Degrees.							
м.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
u	y. 280099	9.991947	9.28865%	10711348	10.008053	10.7	SU
1	9.281248	9.991922	9.289326	10.710674	10.008078	10.718752	59
2	9.281897	9.991897	9.289999	10.710001	10.008103	10.718103	58
3	9.282544	9.991873	9.290671	10.709329	10.008127	10.717456	57
4	9283190	9.991848	9.291342	10.708658	10.008152	10.716810	56
5	9.283836	9.991823	9.292013	10.707987	10.008177	10.716164	55
6	9.284480	9.991799	9.292682	10.707318	10.008201	10.715520	54
7	9.285124	9.991774	9.293350	10.706650	10.008226	10.714876	53
8	9.285766	9.991749	9.294017	10.705983	10.008251	10.714234	52
9	9.286408	9.991724	9.294684	10.705316	10.008276	10.713592	51
10	9287048	9.991699	9295349	10.704651	10.008301	10.712952	50
11	9.287688	9991674	9.296013	10.703987	10.008326	10.712312	49
12	9288326	9.991649	9.296677	10.703323	10.008351	10.711674	48
13	9.288964	9.991624	9.297339	10.702661	10.008376	10.711036	47
14	9.289600	9991599	9.298001	10.701999	10.008401	10.710400	46
15	9290236	9.991574	9. 298662	10.701338	10.008126	10.709764	45
16	9.290870	9.991549	9.299322	10.700678	10.008151	10.709130	44
17	9.291504	9991524	9.299980	10.700020	10.008476	10.708496	43
18	9.292137	9.991498	9.300638	10.699362	10.008502	10.707863	42
19	9.292768	9991473	9301295	10.698705	10.008527	10.707232	41
20	9.293399	9.991448	9.301951	10.698049	10.008552	10.706601	40
21	9.2940ะ9	9.991422	9.302607	10.697393	10.008578	10.705971	39
2.2	9.294658	9.991397	9.303261	10.696i739	10.008603	10.705342	38
23	9.295286	9.991372	9.303914	10.696086	10.008628	10.704714	37
24	9295913	9.991346	9.304567	10.695433	$10.00865 \pm$	10.704087	36
25	9.296539	9991321	9.305218	10.694782	10.008679	10.703461	35
26	9.297164	9.991295	9.305869	10.694131	10.008705	10.702836	34
27	9.297788	9.991270	9.306519	10.693481	10.008730	10.702212	33
28	9.298412	9.991244	9.307168	10.692832	10.008756	10.701588	32
29	9.299034	9.991218	9307815	10.692185	10.008782	10.700966	31
30	9.299655	9.991193	9.308463	10.691537	10.008847	10.710345	30
31	9.300276	9.991167	9.309109	10.690891	10.048833	10.699724	29
32	9300895	9.991141	9309754	10.690246	10.008859	10.699105	28
33	9.301514	9.991115	9.310398	10.689602	10.008885	10.698486	27
34	9.302132	9.991090	9.311042	10.688958	10.008910	10.697868	26
35	9302748	9.991064	9.311685	10.688315	10.008936	10.697252	25
36	9.303364	9.991038	9.312327	10.687673	10.008962	10.696636	24
37	9.303979	9991012	9.312967	10.687033	10.008988	10.696021	23
38	9.304593	9.990986	9.313608	10.686392	10.009014	10.695407	22
39	9.305207	9.990960	9.314247	10.685753	10.009040	10.694793	21
40	9.305819	9.991934	9314885	10.685	10.009066	10.694181	0
41	9.306	9.99	9.315523	10.684477	10.04909:2	10.6	
42	9.307041	9.990882	9.316159	10.683841	10.009118	10.692959	18
43	9.307650	9.990855	9.316795	10.683205	10.009145	10.692350	17
44	9 308259	9.990829	9.317430	10.682570	10.009171	10.691741	16
45	9.308567	9.990803	9.318064	10.681936	10.009197	10.691133	15
46	9.309174	9.990777	9.318697	10.681303	10.009223	10.690526	14
47	9310080	9.990750	9.319329	10.680671	10.009250	10.689920	13
48	9.310685	9.990724	9.319961	10.680039	10.009276	10.689315	12
49	9.311289	9.990697	9.320592	10.679408	10.009303	10.688711	11
50	9.3	9.990	9.321222	10.678778	10.009329	10.688107	10
51	9.312495	9.990645	9.321851	10.678149	10.009355	10.687505	9
52	9313097	9.99:618	9.322479	10.677521	10.009382	10.686903	
53	9.313698	9.990591	9.323106	10.676894	10.009409	10.686302	
54	9.314297	9.990565	9.323733	10.676267	10.009435	10.685703	6
55	9314897	9.990538	9. 324358	10.675642	10.009462	10.685103	
56	9.315495	9.990511	9.324983	10.675017	10.009189	10.684505	
57	9.316092	9990485	9.325607	10.674393	10.009515	10.683908	
58	9.316689	9.990458	9.326231	10.673769	10.009542	10.683311	
59	9.317284	9.990431	9.326853	110.673147	10.009569	10.682716	,
GU	9. 317879	9.990404	9.327475	10.672525	10.009596	10.682121	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	m.
28 Degrees.							

LOGARITHMIO SINES, TANGENTS, AND SECANTS.
12 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	4.317879	ソ.9Y0tu4	9.327474	10.602026	10.009596	10.68\%121	60
1	9.318473	9.990378	9.328095	10.671905	10.009622	10.681527	59
2	9.319066	9.990351	9.328715	10.671285	10.009649	10.680934	58
3	9.319658	9.990324	9.329334	10.670666	10.009676	10.680342	57
4	9.320249	9.990297	9.329953	10.67, 047	10.009703	10.679751	56
5	9.320840	9.990270	9.330570	10.669430	10.009730	10.679160	55
6	9.321430	9.990243	9331187	10.668813	10.009757	10.678570	54
7	9.322019	9.990215	9.331803	10.668197	10.009785	10.677981	53
8	9.322607	9990188	9.332418	10.667582	10.009812	10.677393	52
9	9.323194	9.990161	9.333033	10.666967	10.009839	10.676806	51
10	9.323780	9.990134	9.333646	111.666354	10.009866	10.676220	50
11	4.324366	9990107	9.334259	10.665741	10.009893	10.675634	40
12	9.324950	9.990079	9.334871	10.665129	10.009921	10.675050	48
13	9.325534	9.990052	9.335482	10.664518	10.009948	10.674466	47
14	9.326117	9.990025	9.336093	10.663907	10.009975	10.673883	46
15	9.326700	9.989997	9.336702	10.663298	10.010003	10.673300	45
16	9.327281	9.989970	9.337311	10.662689	10.010030	10.672719	44
17	9.327862	9.989942	9.337919	10.662081	10.010058	$10.67{ }^{2} 138$	43
18	9.328442	9.989915	9.338527	10.661473	10.010085	10.671558	42
19	9.329021	9.989887	9.339133	10.660867	10.010113	10.670979	41
20	9.329599	9.989860	9.339739	10.660261	10.010140	10.670401	40
21	9.330176	9.989832	9.340344	10.659656	10.010168	10.669824	34
22	9.330753	9.989804	9.340948	10.659052	10.010196	10.669247	38
23	9.331329	9.989777	9.341552	10.658448	10.010223	10.668671	37
24	9.331903	9.989749	9.342155	10.657845	10.010251	10.668097	36
25	9.332478	9.989721	9.342757	10.657243	10.010279	10.667522	35
26	9.333051	9.989693	9.343358	10.656642	10.010307	10.666949	-34
27	9.333624	9.989665	9.343958	10.656042	10.010335	10.666376	33
28	9334195.	9.989637	9.344558	10.655442	10.010363	10.665805	32
29	9.334767	9.989610	9.345157	10.654843	10.010390	10.665233	31
3)	9.335337	9.989582	9.345755	10.654245	10.010418	10.664663	30
31	4.335906	9.989553	9.346353	10.653647	10.010447	10.664094	29
32	9.336475	9.989525	9.346949	10.653051	10.010475	10.663525	28
33	9.337043	9.989497	9.347545	10.652455	10.010503	10.662957	27
34	9.337610	9.989469	9.348141	10.651859	10.010531	10.662390	26
35	9.338176	9.989441	9.348735	10.651265	10.010559	10.661824	25
36	9.338742	9.989413	9.349329	10.650671	10.010587	10.661258	24
37	9.339307	9.989385	9.349922	10.650078	10.010615	10.660693	23
88	9.339871	9.989356	9.350514	10.649486	10.010644	10.660129	22
39	9.340434	9.989328	9.351106	10.648894	10.010672	10.659566	21
40	9.340996	9.989300	9.351697	10.648303	10.010700	10.659004	20
41	9.341558	9.989271	9.352287	10.647713	10.010729	10.658442	19
42	9.342119	9.989243	9.352876	10.647124	10.010757	10.657881	18
43	9.342679	9.989214	9.353465	10.646535	10.010786	10.657321	17
44	9.343239	9.989186	9354053	10.645947	10.010814	10.656761	16
45	9.343797	9.989157	9.354640	10.645360	10.010843	10.656203	15
46	9.344355	9.989128	9.355227	10.644773	10.010872	10.655645	14
47	9.344912	9.989100	9.355813	10.644187	10.010900	10.655088	13
48	9.345469	9.989071	9.356398	10.643602	10.010929	10.654531	12
49	9.346024	9.9890142	9.356982	10.643018	10.010958	10.653976	11
50	9.316579	9.989014	9.357566	10.642434	10.010986	19.653421	10
51	9.347134	9.988985	9.358149	10.641851	10.011015	10.652866	9
52	9.347687	9.988956	9.358731	10.641269	10.011044	10.652313	8
53	9.348240	9.988927	9.359313	10.640687 .	10.011073	10.651760	7
54	9.348792	9.988898	9.359893	10.640107 ,	10.011102	10.651208	6
55	9.349343	9.988869	9.360474	10.639526	10.011131	10.650657	5
56	9.349893	9.988840	9.361053	10.638947	10.011160	10.650107	4
57	9.350443	9.988811	9.361632	10.638368	-10.011189	10.649557	3
58	9.350992	9.988782	9.362210	10.637790	10.011218	10.649008	2
59	9.351540	9.988753	9.362787	10.637213	10.011247	10.648460	1
60	9.352088	9.988724	9.363364	10.636636	10.011276	10.647912	0
M.	Co-sine.	Sine.	Co-tang.	'l'angent.	Co-sec.	Secant.	M.
7\% Degrees.							

TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SECANTS.
13 Degrees.

13 Degrees.							
M.	Sine.	Co-sine.	\|Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	Y.35* 308	y 908121	リ.3630u4	10.63ut33	10.011.76	10.64,912	w
1	9.352635	9.988695	9.363940	$10.6360 C 0$	10.011305	10.647365	59
2	9353181	9288666	9.264515	10.635485	10.011334	10) 616819	58
3	9.3537ะ6	9.988636	9.365090	10.634910	10.011364	10.646274	57
4	$9.354 \subset 71$	9.988607	9.365664	10.634336	10.011393	10.6457\%9	E6
5	9.354815	9.988578	9.366237	10.633763	10.011422	10.645185	55
6	9.355358	9.988548	9.366810	10.633190	10.011452	10.644642	54
7	9.355901	9.988519	9.367382	10.632618	10.011481	10.644099	53
8	9.356443	9.983489	9.367953	10.632047	10.011511	10.643557	52
9	9.356984	9.988460	9.368524	10.631476	10.011540	10.643016	51
10	9.357524	9.988430	9.369394	10.630906	10.011570	10.642476	50
11	9.355064	9.98j401	9.369603	10.630337	10.011599	10.641936	49
12	9.358603	9.988371	9.370232	10.629768	10.011629	10.641397	48
13	9.359141	9.988342	9.370799	10.629201	10.011658	10.640859	47
14	9.359678	9.988312	9.371367	10.628633	10.011688	10.640322	46
15	9.360215	9.988282	9.371933	10.628067	10.011718	10.639785	45
16	9.360752	9.988252	9.372499	10.627501	10.011748	10.639248	44
17	9. E 61287	9.988223	9.373064	10.626936	10.011777	10.638713	43
18	9361822	9.988193	9.373629	10.626371	10.011807	10.638178	42
19	9.362356	9988163	9374193	10.625807	10011837	10.637644	41
20	9.362889	9988133	9.374756	10.625244	10.011867	10.657111	40
21	9.363122	9.958103	9.375319	10.624681	10.011897	10.636578	9
22	9.363954	9.985073	9.375881	10.624119	10.011927	10.636046	38
23	9.364485	9.988043	9.376442	10.623558	10.011957	10.635515	37
24	9365016	9.988013	9377003	10.622997	10.011957	10.634984	36
25	9.365546	9.987983	9377563	10.622437	10.012017	10.634454	35
26	9.366075	9.987953	9.378122	10.621878	10.012047	10.633925	34
27	9.366604	9.987922	9378681	10.621319	10.012078	10.633396	33
28	9367131	9.987892	9.379239	10.620761	10.012108	10.632869	32
29	9.367659	9.987862	9.379797	10.620203	10.012138	10.632341	31
30	9 363185	9.987832	9.380354	10.619646	10.012168	10.631815	30
31	9..66>711	9.987801	9.380910	10.619090	10.012199	10631284	$\stackrel{4}{ }$
32	9.369236	9.987771	9.381466	10.618534	10.012229	10.630764	28
33	9.369761	9.987740	9.382020	10.617980	10.012260	10.630239	27
34	9.370285	9.987710	9.382575	10.617425	10.012290	10.629715	26
35	9.3i0c08	9.987679	9.383129	10.616871	10.012321	10.629192	25
36	9.371330	9.987649	9.383682	10.616318	10.012351	10.628670	24
37	9.371852	9.987618	9.384234	10.615766	10.012382	10.628148	23
38	9.372373	9987588	9.384786	10.615214	10.012412	10.627627	22
39	9.372894	9.987557	9.385337.	10.614663	10.012443	10.627106	21
40	9.373414	9.987526	9.385888	10.614112	10.012474	10.626586	$\underline{0}$
41	9373933	9.987496	9.386438	10.613562	10.012504	10.626067	19
42	9.374452	9.987465	9.386987	10.613013	10.012535	10.625548	18
43	9374970	9.987434	9.387586	10.612464	10.012566	10.625030	17
44	9.375487	9.987403	9.388084	10.611916	10.012597	10.644513	16
45	9.376003	9.987372	9.388631	10.611369	10.012628	10.623997	15
46	9.376519	9.987341	9.389178	10.610822	10.012659	10.623481	14
47	9.377035	9.987310	9.389724	10.610276	10.012690	10.622965	13
48	9.377549	9.987279	9.390270	10.609730	10.012721	10.622451	12
49	9.378063	9.987248	9.390815	10.609185	10.012752	10.621937	11
50	9.378577	9.987217	9.391360	10.608640	10.012783	10.621423	10
51	9.379089	9.987186	9.391903	10.608097	10.012814	10.620911	9
52	9.379601	9.987155	9.392447	10.607553	10.012845	10.620399	8
53	9.380113	9.987124	9.392989	10.607011	10.012876	10.619887	7
54	9.380624	9.987092	9.393531	10.606469	10.012908	10.619376	6
55	9.381134	9.987061	9.394073	10.605927	10.012939	10.618866	5
56	9.381643	9.987030	9.394614	10.605386	10.012970	10.618357	4
57	9.382152	9.936998	9.395154	10.604846	10.013002	10.617848	3
58	9.382661	9.986967	9.395694	10.604306	10.013033	10.617339	2
59	9.383168	9.986936	9.396233	10.603767	10.013064	10.616832	1
60	9.383675	9.98690 t	9396771	10.603229	10.013096	10.61C325	0
м.	Co-sine.	Sine.	Co-tang.	'l'angent.	Co-sec.	Secant.	m.
76 Degrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

14 Degrees.							
M.	Sine.	Co-sine.	\|Taugent.	Co-tang.	Secant.	Co-sec.	M.
0	9.383675	9.956904	9.396771	10.6032 29	10.013096	10.616525	60
1	9.384182	9.986873	9.397309	10.602691	10.013127	10.615318	¢9
2	9.384687	9.986841	9.397846	10.602154	10.013159	10.615313	58
3	9.385192	9.986809	9.398383	10.601617	10.013191	10.614808	57
4	9.385697	9.986778	9.398919	10.601081	10.013222	10.614303	56
5	9.386201	9.986746	9.399455	10.600545	10.013254	10.613799	55
6	9.386704	9.986714	9.399990	10.600010	10.013286	10.613296	54
7	9.387207	9.986683	9.400524	10.599476	10.013317	10.612793	53
8	9.387709	9.986651	9.401158	10.598942	11).013349	10.612291	52
9	9.388210	9.986619	9.401591	10.598409	10.013381	10.611790	51
10	9.388711	9.986587	9.402124	10.597876	10.013413	10.611289	50
11	9.389211	9.986555	9.402656	10.597344	10.013445	10.610i89	49
12	9.389711	9.986523	9.403187	10.596813	10.013477	10.610289	48
13	9.390210	9.986491	9.403718	10.596282	10.013509	10.609790	47
14	9.390708	9.986459	9.464249	10.595751	10.013541	10.609292	46
15	9.391206	9.986427	9.404778	10.595222	10.013573	10608794	45
16	9.391703	9.986395	9.405308	10.594692	10.013605	10.608297	44
17	9.392199	9.986363	9.405836	10.594164	10.013637	10.607801	43
18	9.392695	9.986331	9.406364	10.593636	10.013669	10.607305	42
19	9.393191	9.986299	9.406892	10.593108	10.013701	10.606810	41
20	9.393685	9.986266	9.407419	10.592581	10.013734	10.606315	40
21	9.394179	9.986234	9.407945	10.592055	10.013766	10.6058 .21	¢9
22	9.394673	9.986202	9.408471	10.591529	10.013798	10.605327	38
23	9.395166	9.986169	9.408997	10.591003	10.013831	10.604834	37
24	9.395658	9.986137	9.409521	10.590479	10.013863	10.604342	36
25	9.396150	9.986104	9.410045	10.589955	10.013896	10.603850	35
26	9.396641	9.986072	9.410569	10.589431	10.013928	10.603359	34
27	9.397132	9.986039	9.411092	10.588908	10.013961	10.602868	33
28	9.397621	9986007	9.411615	10588385	10.013993	10.602379	32
29	9.398111	9.985974	9.412137	10.587863	10.014026	10.601889	31
30	9.398600	9.985942	9.412658	10.587312	10.014058	$10.6014 \cup 0$	30
31	9.399088	9.985909	9.413179	10.586821	10.014691	10.600912	$\therefore 9$
32	9.399575	9.985876	9.413699	10.586301	10.014124	10.600125	28
33	9.400062	9.985843	9.414219	10.585781	10.014157	10.599938	27
34	9.400549	9.935811	9.414738	10.585262	10.014189	10.599151	26
35	9.401035	9.985778	9.415257	10.584743	10.014222	10.598965	25
36	9.401520	9.985745	9.415775	10.584225	10.014255	10.598480	24
37	9.402005	9.985712	9.416293	10.583707	10.014288	10.597995	23
33	9.402489	9.985679	9.416810	10.583199	10.014321	10.597511	22
39	9.402972	9.985646	9.417326	10.582674	10.014354	10.597028	21
40	9.403455	9.985613	9.417842	10.582158	10.014387	10.593545	20
41	9.403938	9.9855×0	9.418358	10.581642	10.014420	10.596062	19
42	9.404420	9.985547	9418873	10.581127	10.014453	10.595530	18
43	9.404901	9.985514	9.419387	10.580613	10.014486	10.595099	17
44	9.405382	9.985480	9419901	10.580099	10.014520	10.594618	16
45	9.405862	9985447	9.420415	10.579585	10.014553	10.594138	15
46	9.406341	9.985414	9420927	10.579073	10.014586	10.593659	14
47	9.406820	9.985381	-9.421440	10.578560	10.014619	10.593180	13
48	9.467299	9.985347	9.421952	10.578018 .	10.014653	10.592701	12
49	9.407777	9.985314	9.422463	10.577537	10.014686	10.592223	11
50	9.408254	9.985280	9.422974	10.577026	10.014720	10.591746	10
51	9.408731	9.985 .47	9.423484	10.576516	10.014753	10.591269	9
52	9.409207	9.985213	9.423993	10.576007	10.014787	10.590793	8
53	9.409682	9.985180	9.424503	10.575497	10.014820	10.590318	7
54	9.410157	9.985146	9.425011	10.574989	10.014854	10.589843	(
55	9.410632	9.985113	9.425519	10.574481	10.014887	10.589368	5
56	9.411106	9.985079	9.426027	10.573973	10.014921	10.588894	4
57	9.411579	9.985045	9.426534	10.573466	10.014955	10.588421	3
58	9.412052	9.985011	9.427041	10.572959	10.014989	10.587948	2
59	9.412524	9.984978	9.427547	10.572453	10.015022	10.587476	1
60	9.412993	9984944	9.429052	10.571918	10.015056	10.587004	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
75 begrees.							

158		TABLE II. Logarithmic sines, tangents,			and secants.		
15 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.41\%996	9.984914	9.4-800	10.571918	10015000	10.5i:004	cio
1	9.413467	9.984910	9.428557	10.571443	10.015090	10.586533	59
2	9.418938	9.984876	9.429062	10.570938	10.015124	10.586062	58
3	9.414403	9.984842	9.429566	10.570434	10.015158	10.585592	57
4	9.414878	9.984808	9.430070	10.569930	10.015192	10.585122	56
5	9.415347	9.984714	9.430573	10.569427	10.015226	10.5846:3	55
6	9.415815	9.984740	9.431075	10.568925	10015260	10.584185	54
7	9.416283	9.984706	9.431577	10.568123	10.015294	10.583717	53
8	9.416751	9.984672	9.432079	10.567921	10.015328	10.583249	52
	9.417217	9.984638	บ. 432580	10.567420	10.015362	10.582783	51
10	9.417684	9.984C03	9.433080	10.566920	10.015397	10.582316	50
11	Y.418150	9.984069	9.433580	10.5664<0	10.015431	10.5818 .0	49
12	9.418615	9.981535	9.434050	10.565920	10.015465	10.581385	48
13	9.419079	9.981500	9.434579	10.565421	10.015500	10.580921	47
14	9.419544	9.984466	9.435078	10.564922	10.015534	10.580456	46
15	9.420007	9.984432	9.435576	10.564424	10.015568	10579993	45
16	9.420470	9.981397	9.436073	10.563927	10.015603	10.579530	44
17	9.420933	9.984363	9.436570	10.563430	10.015637	10.579067	43
18	9.421395	9.984328	9.437067	10.562933	10.015672	10.578605	42
19	9.421857	9.984294	9.437563	10.562437	10.015706	10.578143	41
20	9.422318	9.984259	9.438059	10.561941	10.015741	10.577682	40
21	9.422i78	9.98424	9.430554	10.561446	10.015776	10.577×22	39
22	9.423238	9.984190	9.439048	10.5C0952	10.015810	10.576762	38
23	9.423697	9.984155	9.439543	10.560457	10.015845	10.576303	37
24	9.424150	9.984120	9.440036	10.559964	10.015880	10.575844	36
25	9.424615	9.984085	9.440529	10.559471	10.015915	10.575385	35
26	9.425073	9.984050	9.441022	10.558978	-10.015950	10.574927	34
27	9.425530	9.984015	9.441514	10.558486	10.015985	10.574470	33
28	9.425987	9983981	9.442006	10.557994	10.016019	10.574013	32
29	9.426443	9.983946	9.442497	10.557503	10.016054	10.573557	31
30	9426899	9.983911	9.442988	10.557012	10.016089	10.573101	30
31	9.427354	9.983875	9.443479	$10.556 \mathrm{j} \dot{2}$	10.0161125	10.572646	\therefore
32	9.427809	9.983840	9.443968	10.556032	10.016160	10.572191	28
33	9.428263	9983805	9.444458	10.555542	10.016195	10.571737	27
34	9.428717	9.933770	9.444947	10.555053	10.016230	10.571283	26
35	9.429170	9.983735	9.445435	10.554565	10.016265	10.570830	25
36	9.429623	9.983700	9.445923	10.554077	10.016300	10.570377	24
37	9.430075	9.983664	9.446411	10.553589	10.016336	10.569925	¢3
38	9.430527	9.983629	9.446898	10.553102	10.016371	10.569473	22
39	9.430978	9.983594	9.447384	10.552616	10.016406	10.569022	21
40	9.431429	9.983558	9.447870	10.552130	10.016442	10.568571	-0
41	9.431079	9.9835123	9.448356	10.551644	10.016477	10.5681 21	19
42	9.432329	9.983487	9.448841	10.551159	10.016513	10.567671	18
43	9432778	9.983452	9.449325	10.550674	10.016548	10.567222	17
44	9.433226	9.983416	9.449810	10.550190	10.016584	10.566774	16
45	9.433675	9.983381	9.450294	10.549706	10.016619	10.566325	15
46	9.43112\%	9.983345	9.450777	10.549223	10.016655	10.565878	14
47	9.434569	9.983309	9.451260	10.548740	10.016691	10.565431	13
48	9.435016	9.983273	9.451743	10.548257	10.016727	10.564984	12
49	9.435462	9.983238	9.452225	10.547775	10.016762	10.564538	11
50	9.435908	9.983202	9.452706	10.547294	10.016798	10.564092	10
51	9.436353	9.983166	9.453187	10.546813	10.016834	10.563647	
52	9.436798	9.983130	9.453668	10.546332	10.016870	10.563202	8
53	9.437242	9.983094	9.454148	10.545852	10.016906	10.562758	7
54	9.437686	9.983058	9.454628	10.545372	10.016942	10.562314	6
55	9.438129	9.983022	9.455107	10.544893	10.016978	10.561871	5
56	9.438572	9.982986	9.455586	10.544414	10.017014	10.561428	4
57	9.439014	9.982950	9.456064	10.543936	10.017050	10.560986	3
58	9.439456	9.982914	9.456542	10.543458	10.017086	10.560544	2
59	9.439897	9.982878	9.457019	10.542981	10.017122	10.560103	1
60	9.440338	9.982842	9.457496	2504	. 017158	10559662	0
м.	Co-sine.	Sine.	Cu-tang.	'langent.	Co-sec.	Secant.	M.
74 vegrees.							

TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SECANTS.
16 Degrees.

m.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.440338	Y.98-842	9.4:74:6	10.54-50.	10.017158	10.059662	60
1	9.440778	9.982805	9.457973	10.54:027	10.017195	10.559222	59
2	9441218	9.982769	9.458449	10.541551	10.017231	10.558782	58
3	9.441658	9.98:733	9.458925	10.541075	10.017267	10.558312	57
4	9442096	9082696	9.459400	10.540600	10.017304	10.557904	56
5	9.442535	9.982660	9459875	10.540125	10017340	10.557465	55
6	9.442973	9.982624	9.460349	10.535651	10.017376	10.557027	54
7	9.443410	9.982587	9.466823	10.539177	10.017413	10.55 C 590	53
8	9.443847	9.982551	9.461297	10.538703	10.017449	10.556153	52
-	9.444£84	9.982514	9.461770	10.5388230	10.017486	10.555716	51
10	9.444720	9.982477	9.462 .42	10.537758	10.017523	10.555280	50
11	9.445155	9 98:441	9.46 .714	10.53i:80	10.01655	10.554845	49
12	9.445590	9.982404	9.463186	10.533814	10.017596	10.554410	48
13	9.446625	9.982367	9.463658	10.536342	10.017633	10.553975	47
14	9.446459	9.982331	9464128	10.535872	10.017669	10.553541	46
15	9.446893	9.982294	9.464599	10.535401	10.017906	10.553107	45
16	9.447326	9.982257	9465069	10.534931	10.017743	10.55267t	44
17	9.447759	9.982220	9.465559	10.634461	10.017780	10.552241	43
18	9.448191	9.982183	9466008	10.533992	10.017817	10.551809	42
19	9.448623	9.982146	9.466476	10.533524	10.017854	10.551377	41
20	9.449054	9.982109	9466945	10.5330 55	10.017891	10.550946	40
41	9.449480	9.402072	9.467413	10.53% \% 7	10.017 LCL 8	10.500515	34
22	9.449915	9.982035	9.467880	10.532120	10.017965	10.550085	38
23	9.450345	9.981998	9.468347	10.531653	10.018002	10.549655	37
24	9.450775	9.981961	9.468814	10.531186	10.018039	10.549225	36
25	9.451204	9.981924	9.469280	10.530720	10.018076	10.548796	35
26	9.451632	9.981886	9469746	10.530254	10.018114	10.548368	34
27	9.452060	9.981849	9.470211	10.529789	10.018151	10.547910	33
28	9.452488	9.981812	9470676	10.529324	10.018188	10.547512	32
29	9.452915	9.981774	9.471141	10.528859	10.018226	10.547085	31
30	9.453342	9.981737	9.471605	10.528395	10.018263	10.546658	30
31	4.453168	9.981760	9.47\%068	10.524932	10.018360	10.546232	29
32	9.454194	9.981662	9.472532	10.527468	10.018338	10.545806	28
33	9.454619	9.981625	9.472995	10.527005	10.018375	10.545381	27
34	9.455044	9.981587	9.473457	10.526543	10.018413	10.544955	26
35	9.455469	9.981549	9.473919	10.526081	10.018451	10.544531	25
36	9.455893	9.981512	9.474381	10.525619	10.018488	10.544107	24
37	9.45 ¢316	9981474	9.474842	10.525158	10.018526	10.543084	23
38	9.456739	9.981436	9.475303	10.524697	10.018564	10.543261	22
39	9.457162	9.981399	9.475763	10.524237	10.018601	10.542838	21
40	0.457584	9.981361	9.476223	10.523777	10.018639	10.542416	20
41	9.450uc 6	9.981323	9476683	10.523317	10.018677	10.541994	19
42	9.458427	9981285	9.477142	10522858	10.018715	10.541573	18
43	9.458848	9.981247	9.477601	10.522399	10.018753	10.541152	17
44	9.459268	9.981209	9.478059	10.521941	10.018791	10.540732	16
45	9.459688	9.981171	9.478517	10.521483	10.018829	10.540312	15
46	ฯ.460108	9.981133	9478975	10.521025	10.018867	10.539892	14
47	9.460527	9.981095	9.479432	10.520568	10.018905	10.539473	13
43	9.460946	9.981057	9.479889	10.520111	10.018943	10.539054	12
49	9.461364	9.981019	9.480345	10.519655	10.018981^{1}	10.538636	11
50	9461782	9.980981	9480801	10.519199	10.019019	10.538218	10
	9.462199	9.98642	9.481257		10.01500\%	10.53'601	9
52	9.462616	9980804	9.481712	10.518288	10.019096	10.537384	8
53	9.463032	9.880866	9.482167	10.517833	10.019134	10.536968	7
54	9.463448	9.980827	9.482621	10.517379	10.019173	10.536552	6
55	9.463864	9.9807 S9	9.483075	10.516925	10.019211	10.536136	5
56	9.464279	9.980750	9.483529	10.516471	10.019250	$10.53 \overline{5} 21$	4
57	9.464694	9.980712	9483982	10.516018	10.019288	10.535306	3
58	9.465108	9.980673	9.484435	10.515 ¢¢f	10.019327	10.534892	2
59	9.465522	9.980635.	9.484887	10.515113	10.019365	10.534478	1
60	9.465935	9.980596	9.485339	10.514661	10.019404	10.534065	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
73 Degrees.							

TABLE II.

logarithmic signs, tangents and secants.
17 Degrees.

3 m .	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.460935	9.9 .059	$9.485 \dot{5}$	10.,146ic1	10.019404	10.0344065	60
1	9.466348	9 980.j58	9.485791	10.514209	10.019442	10.533652	59
2	9.46 L 761	9.930.519	9.486242	10.513758	10.019481	10.533229	58
3	9.467173	9.950480	9.486693	10.513207	10.019520	10.532827	57
4	9467585	9.980442	9.487143	10.512857	10.019553	10.532415	56
5	9.467996	$9.9804 \mathrm{L3}$	9.487593	10.512407	10.019597	10.532004	55
6	9.468407	9.980364	9.483013	10.511957	10.019636	10.531593	54
7	9.468817	9.980.32	9.488492	10.511508	10.019075	10.531183	53
8	9.469227	9.930286	9.488941	10.5110 59	10.019714	10.530773	52
9	9.469337	9.980247	9.489 '90	10.510610	10.019753	10530363	51
10	9.470046	9.930208	9.489833	10.510162	10.0197:2	10.529954	50
11	9.4 .0455	9. .880169	$9.4902<6$	10.509714	10.019031	10.524545	49
12	9.470863	9.980130	9490733	10.509267	10.019870	10.529137	48
13	9.471×71	9.930091	9.491180	10.508820	10.019909	10.528729	47
14	9.471679	9.980052	9.491627	10.508373	10.019948	10.528321	46
15	9.47:086	9.980012	9.492073	10.507927	10.01!.988	10.527914	45
16	9.472492	9.979773	9.492519	10.507481	10.020027	10.527508	44
17	9.472898	9979934	9.492965	10.507035	10.02C066	10.527102	43
18	9.473304	9.979895	9.493410	10.506590	10.0:0105	10.526696	42
19	9.473710	9.979355	9.493854	10.506146	10.020145	10.526:20	41
20	9.474115	9979316	9.491299	10.505701	10.020184	10.525885	40
21	9.474519	9) 97:176	9.494743	10.500.57	10.020:24	10.5\%0481	$3{ }^{3}$
22	9 4749-3	9.979737	9.495186	10.501814	10 0:20263	10.525077	38
23	9.475327	9979697	9.495630	10.501370	10.020303	10.524673	37
24	9.475730	9.979558	9.496973	10.503927	10.020342	10.524270	36
25	9.476133	9.979618	9490515	10.503485	10.020382	10.523867	35
26	9 476Ј:36	9.979579	9.499957	10.503043	10.020421	10.523464	34
27	9476938	9.979 -39	9497399	10.502601	10.020461	10.523062	33
28	9477310	9.979499	9497841	10.502159	10020501	10.522660	32
29	9.477741	9.979459	9.498282	10.501718	10.020541	10.522259	31
30	9.478142	9.979420	9.498722	10.501278	10.020580	10.521858	30
31	1) 4i¢542	9.979080	9.49:103	$10.500 \leq 37$	10.020 $0 \div 0$	10.521458	29
32	9.478942	9979310	9.499603	10.500397	10.020660	10.521058	28
33	9.479342	9 979300	9.500042	10.499958	10.020700	10.520658	27
31	9.479741	9.979ミ60	9.501481	10.499519	10.020740	10.520259	26
35	9.480140	9.970220	9.500920	10.499080	10.020750	10.519860	25
36	9.480:339	9.979180	9.501359	10498641	10.020820	10.519461	24
37	9.480937	9.979140	9.501797	10.498203	10.020860	10.519063	23
38	9.481334	9.979100	9.502235	10.497765	10.020900	10.518666	22
39	9.481731	9.9790 วั	9.502672	10.497328	10.020941	10.518269	21
40	9482128	9.979019	9. 50.3109	10.496391	10.020981	10.517872	20
41	9.482525	4 970914	9.503546	16.496454	10.621021	10.617475	19
42	9.482921	9.978939	9.503982	10.496018	10.021061	10.517079	18
43	9.483316	9.978898	9.504418	10.49 -552	10.021102	10.516684	17
44	9.483712	9.978858	9.504854	10.495146	10.021142	10.516288	16
45	9.484107	9.978817	9.505289	10494711	10.021183	10.515893	15
46	9.484501	9.978777	9.505724	10.494276	10.021223	10.515499	14
47	9.481895	9.978737	9.506159	10.493811	10.021263	10.515105	13
48	9.485289	9.97 C 696	9.506593	10.493107	10.021304	10.514711	12
49	9.435682	9.978655	9.507027	10492973	10.021345	10.514318	11
59	9.488075	9.978615	9.507460	10.492540	10) 021385	10.513925	10
51	Y. 486167	9.978574	9.607893	10.492107	10.021426	10.513533	
52	9.486860	9.978533	9518326	10.491674	10.021467	10.513140	8
53	9.487251	9.978493	9.508759	10.491241	10.021507	10.512749	7
54	9.487643	9.978152	9.509191	10490809	10.021548	10.512357	6
55	9.488034	9.978411	9.509622	10.490378	10.021589	10.511966	5
56	9.488424	9.978370	9.510054	10.489946	10.021630	10.511576	4
57	9.488814	9.978329	9.510485	10.489515	10.021671	10.511186	3
58	9.489204	9.978288	9.510916	10.489084	10.021712	10.510796	2
59	9.489593	9.978247	9.511316	10.48865 t	10.021753	10.510407	1
60	9.489982	9.978206	9511776	10.488224	10.021794	10.510018	0
M.	Co-sine.	Sine.	Cu-tang.	'T'angent.	Co-sec.	Secant.	r.
72 Degr							

LOGARTTHMIC SINES, TANGENTS, AND SECANTS.

18 Degrees.

m.	Sine.	Co-sine.	I''angent.	Co-tang.	Secant.	Co-sec.	M.
U	9.489982	9.978206	9.511776	10.488:2\%4	10.0:1794	10.510018	60
1	9.490371	9.978165	9.512206	10.487794	10.021835	10.509629	59
2	9.490759	9.978124	9.512635	10.487365	10.021876	10.509241	58
3	9.491147	9.978083	9.513064	10.486936	10.021917	10.508853	57
4	9491535	9.978042	9.513493	10.486507	10.021958	10.508465	56
5	9.491922	9.978 -01	9.513921	10.486079	10.021999 *	10.508078	55
6	9.492308	9.977959	9.514349	10.485651	10.022041	10.507692	54
7	9.492695	9.977918	9.514777	10.485223	10.022082	10.507305	53
8	9.493081	9.977877	9.515204	10.484796	10.022123	10.506919	52
9	9.493466	9.977835	9.515631	10.484369	10.022165	10.506534	51
10	9.493851	9.977794	9.516057	11.483943	10.022206	10.506149	50
11	9.494236	9977752	9.516484	10.483516	10.022:248	10.505764	49
12	9.494621	9.977711	9.516910	10.483090	10.022289	10.505379	48
13	9.495005	9.977669	9.517335	10.482665	10.022331	10.504995	47
14	9.495388	9.977628	9.517761	10.482239	10.022372	10.504612	46
15	9.495772	9.977586	9.518185	10.481815	10.022414	10.504228	45
16	9.496154	9.977544	9.518610	10.481390	10.022456	10.503846	'44
17	9.496537	9.977503	9.519034	10.480966	10.022497	10.503463	43
18	9.496919	9.977461	9.519458	10.480542	10.022539	10.503081	42
19	9.497301	9.977419	9.519882	10.480118	10.022581	10.502699	41
20	9.497682	9.977377	9.520305	10479695	10.022623	10.502318	40
21	9498064	9.977335	9.520728	10.479272	10.022665	10.501936	39
22	9.498444	9.977293	9.521151	10.478849	10.022707	10.501556	38
23	9.498825	9.977251	9.521573	10.478427	10.022749	10.501175	37
24	9.499204	9.977209	9.521995	10.478005	10.022791	10.500796	36
25	9.499584	9.977167	9.522417	10.477583	10.022833	10.500416	35
26	9.499963	9.977125	9.522838	10.477162	10.022875	10.500037	34
27	9.500342	9.977083	9.523259	10.476741	10.022917	10.499658	33
28	9500721	9.977041	9.523680	10.476320	10.022959	10.499279	32
29	9.501099	9.976999	9.524100	10.475900	10.023001	10.498901	31
30	9.501476	9.976957	9.524520	10.475480	10.023043	10.498524	30
31	9.501854	9.976914	9.524939	10.475061	10.023086	10.498146	29
32	9.502231	9.976872	9.525359	10.474641	10.023128	10.497769	28
33	9.502607	9.976830	9.525778	10.474222	10.023170	10.497393	27
34	9.502984	9.976787	9.526197	10.473803	10.023213	10.497016	26
35	9.503360	9.976745	9.526615	10.473385	10.023255	10.496640	25
36	9.503735	9.976702	9.527033	10.472967	10.023298	10.496265	24
37	9.504110	9.976660	9.527451	10.472549	10.023340	10.495890	23
38	9.504485	9.976617	9.527868	10.472132	10.023383	10.495515	22
39	9.504860	9.976574	9.528285	10.471715	10.023426	10.495140	21
40	9.505234	9.976532	9.528702	10.471298	10.023468	10.494766	20
41	9.505608	9.976489	9529119	10.470881	10.023511	10.494392	19
42	9.505981	9.976446	9.529535	10.470465	10.023554	10.494019	18
43	9.506354	9.976404	9529950	10.470050	10.023596	10.493646	17
44	9.506727	9.976361	9530366	10.469634	10.023639	10.493273	16
45	9.507099	9.976318	9.530781	10.469219	10.023682	10.492901	15
46	9.507471	9.976275	9.531196	10.468804	10.023725	10.492529	14
47	9.507843	9.976232	9.531611	10.468389	10.023768	10.492157	13
48	9.508214	9.976189	9.532025	10.467975	10.023811	10.491786	12
49	9.508585	9.976146	9.532439	10.467561	10.023854	10.491415	11
50	9.508956	9.976103	9.532853	10.467147	10.023897	10.491044	10
51	9.509326	9.976060	9.533266	10.466734	10.023940	10.490674	9
52	9.509696	9.976017	9.533679	10.466321	10.023983	10.490304	
53	9.510065	9.975974	9.534092	10.465908	10.024026	10.489935	7
54	9.510434	9.975930	9.534504	10.465496	10.024070	10.489566	6
55	9.510803	9.975887	9.534916	10.465084	10.024113	10.489197	5
56	9.511172	9.975844	9.535328	10.464672	10.024156	10.488828	4
57	9.511540	9.975800	9.535739	10.464261	10.024200	10.488460	3
53	9.511907	9.975757	9.536150	10.463850	10.024243	10.488093	2
59	9.512275	9.975714	9.536561	10.463439	10.024286	10.487725	1
60	9.512642	9.975670	$9.53 \mathrm{C972}$	10.463028	10.024330	10.187358	0
M.	Co-sine.	Sine.	Co-tang.	T'angent.	Co-sec.	ecan	\%.
71 Degrees.							

TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SECANTS.

19 Degrees.							
M.	Sine.	Co-sine.	Tangent.\|	Co-tang.	Secant.	Co-sec.	M.
0	9.512642	9.975670	9.536972	10463028	10.0243i30	10.487358	60
1	9.513009	9.975627	9.537382	10.462618	10.024373	10.486991	59
2	9.513375	9.975583	9.537792	10.462208	10.024417	10.486625	58
3	9.513741	9.975539	9.538202	10.461798	10.024461	10.486259	57
4	9.514107	9.975496	9.538611	10.461389	10.024504	10.485893	56
5	9.514472	9.975452	9.539020	10.460980	10.024548	10.485528	55
6	9.514837	9.975408	9.539429	10.460571	10.024592	10.485163	54
7	9.515202	9.975365	9.539837	10.460163	10.024635	10.484798	53
8	9.515566	9.975321	9.540245	10.459755	10.024679	10.484434	52
9	9.515930	9.975277	9.540653	10.459347	10.024723	10.484070	51
10	9.516294	9.975233	9541061	10.458939	10.024767	10.483706	50
11	9.516657	Y.975189	9.541468	10.458532	10.024811	10.483343	49
12	9.517020	9.975145	9.541875	10.458125	.10.024855	10.482980	48
13	9.517382	9.975101	9.542281	10.457719 .	10.024899	10.482618	47
14	9.517745	9.975057	9.542688	10.457312	10.024943	10.482255	46
15	9518107	9.975013	9.543094	10.456906	10.024987	10.481893	45
16	9.518468	9.974969	9.543499	10.456501	10.025031	10.481532	44
17	9.518829	9.974925	9.543905	10.456095	10.025075	10.481171	43
18	9.519190	9.974880	9.544310	10.455690	10.025120	10.480810	42
19	9.519551	9.974836	9.544715	10.455285	10.025164	10.480449	41
20	9.519911	9.974792	9.545119	10.454881	10.025208	10.480089	40
21	9.520271	9.974748	9.545524	10.454476	10.025252	10.479729	39
22	9.520634	9.974703	9.545928	10.454072	10.025297	10.479369	38
23	9.520990	9.974659	9.546331	10.453669	10.025341	10.479010	37
24	9521349	$\theta .974614$	9.546735	10.453265	10.025386	10.478651	36
25	9.521707	9974570	9.547138	10.452862	10.025430	10.478293	35
26	9.522066	9.974525	9.547540	10.452460	10.025475	10.477934	34
27	9.522424	9.974481	9.547943	10.452057	10.025519	10.477576	33
28	9.522781	9.974436	9.548345	10.451655	10.025564	10.477219	32
29	9.523138	9.974391	9.548747	10.451253	10.025609	10.476862	31
30	9.523495	9.974347	9.549149	10.450851	10.025653	10.476505	30
31	9 5\%3852	9.974302	9.549550	10.450450	10.025698	10.476148	29
32	9524208	9.974257	9.549951	10.450049	10.025743	10.475792	28
33	9.524564	9.974212	9.550352	10.449648	10.025788	10.475436	27
34	9.524920	9.974167	9.550752	10.449248	10.025833	10.475080	26
35	9525275	9.974122	9.551152	10.448848	10.025878	10.474725	25
36	9.525630	9.974077	9.551552	10.448448	10.025923	10.474370	24
37	9.525984	9974032	9.551952	10.448048	10.025968	10.474016	23
38	9.526339	9.973987	9.552351	10.447649	10.026013	10.473661	22
39	9.526693	9.973942	9.552750	10.447250	10.026058	10.473307	21
40	9.527046	9.973897	9.553149	10.446851	10.026103	10.572954	20
41	9.527400	9.973852	9.553548	10.446452	10.026148	10.472600	19
42	9.527753	9.973807	9.553946	10.446054	10.026193	10.472247	18
43	9.528105	9.973761	9.554344	10.445656	10.026239	10.471895	17
44	9.528458	9.973716	9.554741	10.445259	10.026284	10.471542	16
45	9.528810	9.973671	9.555139	10.444861	10.026329	10.471190	15
46	9.529161	9.973625	9.555536	10.444464	10.026375	10.470839	14
47	9.529513	9.973580	9.555933	10.444067	10.026420	10.470487	13
48	9.529864	9.973535	9.556329	10.443671	10.026465	10.470136	12
49	9.530215	9.973489	9.556725	10.443275	10.026511	10.469785	11
50	9.530565	9.973444	9.557121	10.442879	10.026556	10.469435	10
51	9.530915	9.973398	9.557517	10.442483	10.026602	10.469085	9
52	9.531265	9.973352	9.557913	10.442087	10.026648	10.468735	8
53	9.531614	9.973307	9.558308	10.441692	10.026693	10.468386	7
54	9.531963	9.973261	9.558702	10.441298	10.026739	10.468037	6
55	9532312	9.973215	9.559097	10.440903	10.026785	10.467688	5
56	9.532661	9.973169	9.559491	10.440509	10.026831	10.467339	4
57	9.533009	9.973124	9.559885	10.440115	10.026876	10.466991	3
58	9.533357	9.973078	9.560279	10.439721	10.026922	10.466643	2
59	9.533704	9.973032	9.560673	10.439327	10.026968	10.466296	1
60	9.534052	9.972986	9.561066	10.438934	10.027014	10.465948	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
\%o Degrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

20 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.534052	9.972956	9.561066	10.438934	10.027014	10.465948	co
1	9.534399	9.972940	9.561459	10.438541	10.027060	10.465601	E9
2	9.534745	9.972894	9.561851	10.438149	10.027106	10.465255	58
3	9.535092	9.972848	9.562244	10.437756	10.027152	10.464908	57
4	9.535438	9.972802	9.562636	10.437364	10.027198	10.464562	56
5	9.535783	9.972755	9.563028	10.436972	10.027245	10.464217	55
6	9.536129	9.972709	9.563419	10.436581	10.027291	10.463871	54
7	9.536474	9.972663	9.563811	10.436189	10.027337	10.463526	53
8	9.536818	9.972617	9.564202	10.435798	119.027383	10.463182	52
9	9.537163	9.972570	9.564592	10.435408	10.027430	10.462837	51
10	9.537507	9.972524	9.564983	10.435017	10.027476	10.462493	50
11	9.537851	9.972478	9.565373	10.434627	10.027522	10.462149	49
12	9.538194	9.972431	9.565763	10.434237	10.027569	10.461806	48
13	9.538538	9.972385	9.566153	10.433847	10.027615	10.461462	47
14	9.538880	9.972338	9.566542	10.433458	10.027662	10.461120	46
15	9.539223	9.972291	9.566932	10.433068	10.027709	10.460777	45
16	9.539565	9.972245	9.567320	10.432680	10.027755	10.460435	44
17	9.539907	9.972198	9.567709	10.432291	10.027802	10.460093	43
18	9.540249	9.972151	9.568098	10.431902	10.027849	10.459751	42
19	9.510590	9.972105	9.568486	10.431514	10.027895	10.459410	41
20	9.540931	9.972058	9.568873	10.431127	10.027942	10.459069	40
21	9.541272	9.972011	9.569261	10.430739	10.027989	10.458728	39
22	9.541613	9.971964	9.569648	10.430352	10.028036	10.458387	38
23	9.541953	9.971917	9.570035	10.429965	10.028083	10.458047	37
24	9.512293	9.971870	9.570422	10.429578	10.028130	10.457707	36
25	9.542632	9.971823	9.570809	10.429191	10.028177	10.457368	35
26	9.542971	9.971776	9.571195	10.428805	10.028224	10.457029	34
27	9.543310	9.971729	9.571581	10.428419	10.028271	10.456690	33
28	9.513649	9.971682	9.571967	10.428033	10.028318	10.456351	32
29	9.543987	9.971635	9.572352	10.427648	10.028365	10.456013	31
30	9.544325	9.971588	9.572738	10.427262	10.028412	10.455675	30
31	9.544663	9.971540	9.573123	10.426877	10.028460	10.455337	29
32	9.545000	9.971493	9.573507	10.426493	10.028507	10.455000	28
33	9.545338	9.971446	9.573892	10.426108	10.028554	10.454562	27
34	9.545674	9.971398	9.574276	$10.42 \overline{724}$	10.028602	10.454326	26
35	9.546011	9.971351	9.574660	10.425340	10.028649	10.453989	25
36	9.546347	9.971303	9.575044	10.424956	10.028697	10.453653	24
37	9.546683	9.971256	9.575427	10.424573	10.028744	10.453317	23
38	9.547019	9.971208	9.575810	10.424190	10.028792	10.452981	22
39	9.547351	9.971161	9.576193	10.423807	10.028839	10.452646	21
40	9.547689	9.971113	9.576576	10.423424	10.028887	10.452311	20
41	9.548024	9.971066	9.576958	10.423012	10.028934	10.451976	19
42	9.548359	9.971018	9577341	10.422659	10.028982	10.451641	18
43	9.548693	9.970970	9.577723	10.422277	10.029030	10.451307	17
44	9.519027	9.970922	9.578104	10.421896	10.029078	10.450973	16
45	9.549360	9.970874	9.578486	10.421514	10.029126	10.450640	15
46	9.519693	9.970827 -	9.578867	10.421133	10.029173	10.450307	14
47	9.550026	9.970779	9.579248	10.420752	10.029221	10.449974	13
48	9.550359	9.970731	9.579629	10.420371	10.029269	10.449641	12
49	9.550692	9.970683	9.580009	10.419991	10.029317	10.449308	11
50	9.551024	9.970635	9.580389	10.419611	10.029365	10.448976	10
51	9.551356	9.970586	9.580769	10.419231	10.029414	10.448644	9
52	9.551687	9.970538	9.581149	10.418851	10.029462	10.448313	8
53	9.552018	9.970490	9.581528	10.418172	10.029510	10.447982	7
54	9.552349	9.970442	9.581907	10.418093	10.029558	10.447651	6
55	9.552680	9.970394	9.582286	10.417714	10.029606	10.447320	5
56	9.553010	9.970345	9.582665	10.417335	10.029655	10.446990	4
57	9.553341	9.970297	9.583043	10.416957	10.029703	10.446659	3
58	9.553670	9.970249	9.583422	10.416578	10.029751	10.446330	2
59	9.554000	9.970200	9.583800	10.416200	10.029800	10.446000	1
60	9.554329	9.970152	9.584177	10.415823	10.029848	10.445671	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	I.
69 Degrees.							

TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SECANTS.
21 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.554329	9.970152	9.584177	10.415823	10.029848	10.445671	60
1	9.554658	9.970103	9.584555	10.415445	10.029897	10.445342	59
2	9554987	9.970055	9.584932	10.415068	10.029945	10.445013	58
3	9.555315	9.970006	9.585309	10.414691	10.029994	10.444685	57
4	9.555643	9.969957	9.585686	10.414314	10.030043	10.444357	56
5	9.555971	9.969909	9.586062	10.413938	10.030091	10.444029	55
6	9.556299	9.969860	9.586439	10.413561	10.030140	10.443701	54
7	9.556626	9.969811	9.586815	10.413185	10.030189	10.443374	53
8	9.556953	9.969762	9.587190	10.412810	10.030238	10.443047	52
9	9.557280	9.969714	9.587566	10.412434	10.030286	10.442720	51
10	9.557606	9.969665	9.587941	10.412059	10.030335	10.442394	50
11	9.557932	9.969616	9.588316	10.411684	10.030384	10.442068	49
12	9.558258	9.969567	9.588691	10.411309	10.030433	10.441742	48
13	9.558583	9.969518	9.589066	10.410934	10.030482	10.441417	47
14	9.5588909	9.969469	9.589440	10.410560	10.030531	10.441091	46
15	9.0559234	9.969420	9.589814	10.4101 .86	10.030580	10.440766	45
16	9.559558	9.969370	9.590188	10.409812	10.030630	10.440442	44
17	9.559883	9.969321	9.590562	10.409433	10.030679	10.440117	43
18	9.560207	9.969272	9.590935	10.409065	10.030728	10.439793	42
19	9.560531	9.969223	9.591308	10.408692	10.030777	10.439469	41
20	9.560855	9.969173	9.591681	10.408319	10.030827	10.439145	40
21	9.561178	9.969124	9.592054	10.407946	10.030876	10.4388 .24	39
22	9.561501	9.969075	9.592426	10.407574	10.030925	10.438499	38
23	9.561824	9.969025	9.592798	10.407202	10.030975	10.438176	37
24	9.562146	9.968976	9.593171	10.406829	10.031024	10.437854	36
25	9.562468	9.968926	9.593542	10.406458	10.031074	10.437532	35
26	9.562790	9.968877	9.593914	10.406086	10.031123	10.437210	$3 \pm$
27	9.563112	9.968827	9.594285	10.405715	10.031173	10.436888	33
28	9563433	9.968777	9.594656	10.405344	10.031223	10.436567	32
29	9.563755	9.968728	9.595027	10.404973	10.031272	10.436245	31
30	9.564075	9.968678	9.595398	10.404602	10.031322	10.435925	30
31	9564396	9.968628	9.595768	11.404232	10.031372	10.435604	49
32	9.564716	9.968578	9.596138	10.403862	10.031422	10.435284	28
33	9.565036	9.968528	9.596508	10.403492	10.031472	10.434964	27
34	9.565356	9.968479	9.596878	10.403122	10.031521	10.434644	26
35	9.565676	9.968429	9.597247	10.402753	10.031571	10.434324	25
36	9.565995	9.968379	9.597616	10.402384	10.031621	10.434005	24
37	9.566314	9.968329	9.597985	10.402015	10.031671	10.433686	23
38	9.566632	9.968278	9.598354	10.401646	10.031722	10.433368	22
39	9.566951	9.968228	9.598722	10.401278	10.031772	10.433049	21
40	9.567269	9.968178	9.599091	10.400909	10.031822	10.432731	20
41	9567587	9.968148	9.599459	10.400541	14.03187%	10.432413	14
42	9.567904	9.968078	9.599827	10.400173	10.031922	10.432096	18
43	9.568222	9.968027	9.600194	10.399806	10.031973	10.431778	17
44	9.568539	9.967977	9.600562	10.399438	10.032023	10.431461	16
45	9:568856	9.967927	9.600929	10.399071	10.032073	10.431144	15
46	9.569172	9.967876	9.601296	10.398704	10.032124	10.430828	14
47	9.569488	9.967826	9.601662	10.398338	10.032174	10.430512	13
48	9.569804	9.967775	9.602029	10.397971	10.032225	10.430196	12
49	9.570120	9.967725	9.602395	10.397605	10.032275	10.429880	-1
50	9.570435	9.967674	9.602761	10.397239	10.032326	10.429565	10
51	9.570751	9.967624	9.603127	10.396873	10.032376	10.429249	9
52	9.571066	9.967573	9.603493	10.396507	10.032427	10.428934	8
53	9.571380	9.967522	9.603858	10.396142	10.032478	10.428620	7
54	9.571695	9.967471	9.604223	10.395777	10.032529	10.428305	6
55	9.572009	9.967421	9.604588	10.395412	10.032579	10.427991	5
56	9.572323	9.967370	9.604953	10.395047	10.032630	10.427677	4
57	9.572636	9.967319	9.605317	10.394683	10.032681	10.427364	3
58	9.572950	9.967268	9.605682	10.394318	10.032732	10.427050	2
59	9.573263	9.967217	9.606046	10.393954	10.032783	10.426737	1
60	9.573575	9.967166	9.606410	10.393590	10.032834	10.426425	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
68 Degrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.
22 Degrees.

м.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.573575	9.957166	9.606410	10.393590	$1003!834$	10.426425	60
1	9.573888	9.967115	9.606773	10.393227	10.032885	10.426112	59
2	9.574200	9.967064	9.607137	10.392863	10.032936	10.425800	58
3	9.574512	9.967013	9.607500	10.392500	10.032987	10.425488	57
4	9.574824	9.966961	9.607863	10.392137	10.033039	10.425176	56
5	9.575136	9.966910	9.608225	10.391775	10.033090	10.424864	55
6	9.575447	9.966859	9.608588	10.391412	10033141	10.424553	54
7	9.575758	9.966808	9.608950	10.391050	10.033192	10.424242	53
8	9.576069	9.966756	9.609312	10.390688	10.033244	10.423931	52
9	9.576379	9.966705	9.609674	10.390326	10.033295	10.423621	51
10	9.576689	9.966653	9.610036	10.389964	10.033347	10.423311	50
11	9.576999	9.966602	9.610397	10.389603	10.033398	10.423001	49
12	9.577309	9. 966550	9.610759	10.389241	10.033450	10.422691	48
13	9.577618	9.966499	9.611120	10.388880	10.033501	10.422382	47
14	9.577927	9.966447	9.611480	10.388520	10.033553	10.422073	46
15	9.578236	9.966395	9.611841	10.388159	10.033605	10.421764	45
16	9.578545	9.966344	9.612201	10.387799	10.033656	10.421455	44
17	9.578853	9.966292	9.612561	10.387439	10.033708	10.421147	43
18	9.579162	9.966240	9.612921	10.387079	10.033760	10.420838	42
19	9.579470	9.966188	9.613281	10.386719	10.033812	10.420530	41
20	9.579777	9.966136	9.613641	10.386359	10.033864	10.420223	40
21	9.580085	9.966085	9.614000	10.386000	10.033915	10.419915	39
22	9.580392	9.966033	9.614359	10.385641	10.033967	10.419608	38
23	9.580699	9.965981	9.614718	10.385282	10.034019	10.419301	37
24	9.581005	9.965929	9.615077	10.384923	10.034071	10.418995	36
25	9.581312	9.965876	9.615435	10.384565	10.034124	10.418688	35
26	9.531618	9.965824	9.615793	10.384207	10.034176	10.418382	$3 \pm$
27	9.581924	9.965772	9.616151	10.383849	10.034228	10.418076	33
28	9.582229	9965720	9.616509	10.383491	10.034280	10.417771	32
29	9.582535	9965668	9.616867	10.383133	10.034332	10.417465	31
30	9582840	9965615	9.617224	10.382776	10.034385	10.417160	30
31	$9.5 ¢ 3145$	9.965563	9.617582	10.382418	10.0344	10.416855	49
32	9.583449	9.965511	9.617939	10.382061	10.034489	10.416551	28
33	9.583754	9965458	9.618295	10.381705	10.034542	10.416246	27
34	9.584058	9965406	9.618652	10.381348	10.034594	10.415942	26
35	9.584361	9.965353	9.619008	10.380992	10.034647	10.415639	25
36	9.584665	9.965301	9.619364	10.380636	10.034699	10.415335	24
37	9.584968	9.965248	9.619721	10.380279	10.034752	10.415032	23
38	9.585272	9.965195	9.620076	10.379924	10.034805	10.414728	22
39	9.585574	9.965143	9.620432	10.379568	10.034857	10.414426	21
40	9.585877	9.965090	9.620787	10.379213	10.034910	10.414123	2
41	9.586179	9.965037	9.621142	10.378858	10.034963	10.413521	15
42	9.586482	9.964984	9.621497	10.378503	10.035016	10.413518	18
43	9586783	9.964931	9.621852	10.378148	10.035069	10.413217	17
44	9.587085	9.964879	9.622207	10.377793	10.035121	10.412915	16
45	9.587386	9.964826	9.622561	10.377439	10.035174	10.412614	15
46	9.587688	9.964773	9.622915	10.377085	10.035227	10.412312	14
47	9.587989	9.964720	9.623269	10.376731	10.035280	10.412011	13
48	9.588289	9.964666	9.623623	10.376377	10.035334	10.411711	12
49	9.588590	9.964613	9.623976	10.376024	10.035387	10.411410	11
50	9.588890	9.964560	9.624330	10.375670	10.035440	10.411110	10
51	9.589190	9.964507	9.624683	10.375317	10.035493	10.410810	
52	9.589489	9.964454	9.625036	10.374964	10.035546	10.410511	8
53	9.589789	9.964400	9.625388	10.374612	10.03.5600	10.410211	7
54	9.590088	9.964347	9.625741	10.374259	10.035653	10.409912	6
55	9.590387	9.964294	9.626093	10.373907	10.035706	10.409G13	5
56	9.590686	9.964240	9.626445	10.373555	10.035760	10.409314	4
57	9.590984	9.964187	9.626797	10.373203	10.035813	10.409016	3
58	9.591282	9.964133	9.627149	10.372851	10.035867	10.408718	2
59	9.591580	9.964080	9.627501	10.372499	10.035920	10.408420	1
60	9.591878	9.964026	9.627852	148	974	10.408122	0
m.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	.
67 De							

23 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.591878	9.964026	9.627852	$10.37 \% 148$	10.035974	10.408122	60
1	9.592176	9.963972	9.628203	10.371797	10.036028	10.407824	59
2	9.592473	9.963919	9.628554	10.371446	10.036081	10.407527	58
3	9.592770	9.963865	9.628905	10.371095	10.036135	10.407230	57
4	9.593067	9963811	9.629255	10.370745	10.036189	10.406933	56
5	9.593363	9.963757	9629606	10.370394	10.036243	10.406637	55
6	9.593659	9.963704	9.629956	10.370044	10.036296	10.406341	54
7	0.593055	9.963650	9.630306	10.369694	10.036350	10.406045	53
8	9.594251	9.963596	9.630656	10.369344	10.036404	10.405749	52
9	9.594547	9.963542	9.631005	10.368995	10.036458	10.405453	51
10	9.594842	9.963488	9.631355	10.368645	10.036512	10.405158	50
11	9.59 .5137	9.963434	9.631704	10.368296	10.036566	10.404863	49
12	9.595432	9.963379	9.632053	10.367947	10.036621	10.404568	48
13	9.595727	9.963325	9.632401	10.367599	10.036675	10.404273	47
14	9.596021	9.963271	9632750	10.367250	10.036729	10.403979	46
15	9.596315	9.963217	9.633098	10.366902	10.036783	10.403685	45
16	9.596609	9.963163	9633447	10.366553	10.036837	10.403391	44
17	9.596903	9.963108	9.633795	10.366205	10.036892	10.403097	43
18	9.597106	9.963054	9.634143	10.365857	10.036946	10.402804	42
19	9.597490	9.962999	9.634490	10.365510	10.037001	10.402510	41
20	9.597783	9.962945	9634838	10.365162	10.037055	10.402217	40
21	9.598075	9.962890	9.635185	10.364815	10.037110	10.401925	39
22	9.598368	9.962836	9.635532	10.364468	10.037164	10.401632	38
23	9.598660	9.962781	9.635879	10.364121	10.037219	10.401340	37
24	9.598952	9.962727	9.636226	10.363774	10.037273	10.401048	36
25	9.599244	9.962672	9.636572	10.363428	10.037328	10.400756.	35
26	9.599536	9.962617	9.636919	10.363081	10.037383	10.400464	34
27	9.599827	9.962562	$9.63726{ }^{\circ}$	10.362735	10.037438	10.400173	33
28	9.600118	9.962508	9.637611	10.362389	10.037492	10.399882	32
29	9.600409	9.962453	9.637956	10.362044	10.037547	10.399591	31
30	9.600700	9.962398	9.638302	10.361698	10.037602	10.399300	30
31	9.600990	9.962343	9.638647	10.361353	10.037657	10.399010	29
32	9.601280	9.962288	9.638992	10.361008	10.037712	10.398720	28
33	9.601570	9.962233	9.639337	10.360663	10.037767	10.398430	27
34	9.601860	9.962178	9.639682	10.360318	10.037822	10.398140	26
35	9.602150	9.952123	9.640027	10.359973	10.037877	10.397850	25
36	9.602439	9.962067	9.640371	10.359629	10.037933	10.397561	24
37	9.602728	9962012	9.640716	10.359284	10.037988	10.397272	23
38	9.603017	9.961957	9.641060	10.358940	10.038043	10.396983	22
39	9.603305	9.961902	9.641404	10.358596	10.038098	10.396695	21
40	9.603594	9.961846	9.641747	10.358253	10.038154	10.396406	20
41	4.603888	9.961791	9.642091	10.357009	10.038209	10.396118	19
42	9.604170	9961735	9.642434	10.357566	10.038265	10.395830	18
43	9.604457	9.961680	9.642777	10.357223	10.038320	10.395543	17
44	9.604745	9.961624	9.643120	10.356880	10.038376	10.395255	16
45	9.605032	9.961569	9.643463	10.356537	10.038431	10.394968	15
46	9.605319	9.961513	9.643806	10.356194	10.038487	10.394681	14
47	9.605606	9.961458	9.644148	10.355852	10.038542	10.394394	13
48	9.605892	9.961402	9.644490	10.355510	10.038598	10.394108	12
49	9.606179	9.961346	9.644832	10.355168	10.038654	10.393821	11
50	9606465	9.961290	9645174	10.354826	10.038710	10.393535	10
51	9.606751	9.961235	9.645516	10.354484	10.038765	10.393249	9
52	9.607036	9.961179	9.645857	10.354143	10.038821	10.392964	8
53	9.607322	9.961123	9.646199	10.353801	10.03×877	10.392678	7
54	9.607607	$9.961{ }^{1} 67$	9.646540	10.353460	10.038933	10.392393	6
55	9.607892	9.961011	9.646881	10.353119	10.038989	10.392108	5
56	9.608177	9.960955	9.647222	10.352778	10.039045	10.391823	4
57	9.608461	9.960899	9647562	10.352438	10.039101	10.391539	3
58	9.608745	9.960843	9.647903	10.352097	10.039157	10.391255	2
59	9.609029	9.960786	9.648243	10.351757	10.039214	10.390971	1
60	9.609313	9.960730	9.648583	10.351417	10.039270	10.390687	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
66 Degrees.							

LOGARITHMO SINES, TANGENTS, AND SECANTS.
24 Degrees.

M.	Sine.	Co-sine.	Tancent.	Co-tang.	Secant.	Co-sec.	M.
0	9.609313	9.960730	9.648583	10.351417	10.039270	10.390687	60
1	9.609597	9.960674	9.648923	10.351077	10.039326	10.390403	59
2	9.609880	9.960618	9.649263	10.350737	10.039382	10.390120	58
3	9.610164	9.960561	9.649602	10.350398	10.039439	10.389836	57
4	9.610447	9.960505	9.649942	10.350058	10.039495	10.389553	56
5	9.610729	9.960448	9.650281	10.349719	10.039552	10.389271	55
6	9.611012	9.960392	9.650620	10.349380	10.039608	10.388988	54
7	9.611294	9.960335	9.650959	10.349041	10.039665	10.388706	53
8	9.611576	9960279	9.651297	10.348703	10.039721	10.388424	52
9	9.611858	9.960222	9.651636	10.348364	10.039778	10.388142	51
10	9.612140	9.960165	9.651974	111.348026	10.039835	10.387860	50
11	9.612421	9.960109	9.652312	10.347688	10.039891	10.387579	49
12	9.612702	9.960052	9.652650	10.347350	10.039948	10.387298	48
13	9.612983	9.959995	9.652988	10.347012	10.040005	10.387017	47
14	9.613264	9.959938	9.653326	10.346674	10.040062	10.386736	46
15	9.613545	9.959882	9.653663	10.346337	10.040118	10.386455	45
16	9.613825	9.959825	9.654000	10.346000	10.040175	10.386175	44
17	9.614105	9.959768	9.654337	10.345663	10.040232	10.385895	43
18	9.614385	9.959711	9.654674	10.345326	10.040289	10.385615	42
19	9.614665	9.959654	9.655011	10.344989	10.040346	10.385335	41
20	9.614944	9.959596	9.655348	10.344652	10.040404	10.385056	40
21	9.615223	9.950539	9.655684	10.344316	10.040461	10.384777	39
22	9.615502	9.959482	9.656020	10.343980	10.040518	10.384498	38
23	9.615781	9.959425	9.656356	10.343644	10.040575	10.384219	37
24	9.616060	9.959368	9.656692	10.343308	10.040632	10.383910	36
25	9.616338	9.959310	9.657028	10.342972	10.040690	10.383662	35
26	9.616616	9.959253	9.657364	10.342636	10.040747	10.383384	34
27	9.616894	9.959195	9.657699	10.342301	10.040805	10.383106	33
28	9617172	9.959138	9.658034	10.341966	10.040862	10.382828	32
29	9.617450	9.959080	9.658369	10.341631	10.040919	10.38.2550	31
30	9.617727	9.959023	9.659704	10.3 ± 1296	10.040977	10.382273	30
31	9.618004	9.958965	9.659039	10.340961	10.041035	10.381996	29
32	9.618281	9.958908	9.659373	10.340627	10.041092	10.381719	28
33	9.618558	9.958850	9.659708	10.340292	10.041150	10.381442	27
34	9.618834	9.958792	9.660042	10.339958	10.041208	10.381166	26
35	9.619110	9.958734	9.660376	10.339624	10.041266	10.380890	25
36	9.619386	9.958677	9.660710	10.339290	10.041323	10.38 (1614	24
37	9.619662	9.958619	9.661043	10.338957	10.041381	10.380338	23
38	9.619938	9.958561	9.661377	10.338623	10.041439	10.380062	22
39	9.620213	9.958503	9.661710	10.338290	10.041497	10.379787	21
40	9.620488	9.958445	9.662013	10.337957	10.041555	10.379512	20
41	9.620763	9.958387	9.662376	10.337624	10.041613	10.379237	19
42	9.621038	9.958329	9.662709	10.337291	10.041671	10.378962	18
43	9.621313	9.958271	9.663042	10.336958	10.041729	10.378687	17
44	9.621587	9.958213	9663375	10.336625	10.041787	10.378413	16
45	9.621861	9.958154	9.663707	10.336293	10.041846	10.378139	15
46	9.622135	9.958096	9.664039	10.335961	10.041904	10.377865	14
47	9.622409	9.958038	9.664371	10.335629	10.041962	10.377591	13
48	9.622682	9.957979	9.664703	10.335297	10.042021	10.377318	12
49	9.622956	9.957921	9.665035	10.334965	10.042079	10.377044	11
50	9.623229	9.957863	9.665366	10.334634	10.042137	10.376771	10
51	9.6235142	9.957804	9.665697	10.334303	10.042196	10.376498	9
52	9.623774	9.957746	9.666029	10.333971	10.042254	10.376226	8
53	9.624047	9.957687	9.666360	10.333640	10.042313	10.375953	7
54	9.624319	9.957628	9.666691	10.333309	10.042372	10.375681	6
55	9.624591	9.957570	9.667021	10.332979	10.042430	10.375409	5
56	9.624863	9.957511	9.667352	10.332648	10.042489	10.375137	4
57	9.625135	9.957452	9.667682	10.332318	10.042548	10.374865	3
58	9.625406	9.957393	9.668013	10.331987	10.042607	10.374594	2
59	9.625677	9.957335	9.668343	10.331657	10.042665	10.374323	1
60	9.625948	9.957276	9.668672	10.331328	10.042724	10.374052	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
65 Degrees.							

TABLE II.

LOGARITHMIC SIGNS, TANGENTS AND SECANTS.

25 Degrees.							
M.	Sine.	Co-sine.	'Tangent.\|	Co-tang.	Secant.	Co-sec.	M1.
0	9.625948	$9.957 \cdot 2^{7} 6$	9.668073	10.331327	10.042724	10.3740.2	60
1	9.626219	9.957217	9.669002	10.330998	10.042783	10.373781	59
2	9.626490	9.957158	9.669332	10.330668	10.042842	10.373510	58
3	9.626^{6760}	9.957099	9.669661	10.330339	10.042901	10.373240	57
4	9627030	9.957040	9.669991	10.330009	10.042960	10.372970	56
5	9.627300	9.956981	9.670320	10.329680	10.043019	10.372700	55
6	9.627570	9.956921	9.670649	10.329351	10.043079	10.372430	54
7	9.627840	9.956862	9.670977	10.329023	10.043138	10.372160	53
8	9.628109	9.956803	9.671306	10.328694	10.043197	10.371891	52
9	9.628378	9.956744	9.671634	10.328366	10.043256	10.371622	51
10	9.628647	9.956684	9.671963	10.328037	10.043316	10.371353	50
11	9.628916	9.956625	9.672291	10.327709	10.043375	10.371084	49.
12	9.629185	9.956566	9.672619	10.327381	10.043434	10.370815	48°
13	9.629453	9.956506	9.672947	10.327053	10.043494	10.370547	47
14	9.629721	9.956447	9.673274	10.326726	10.043553	10.370279	46
15	9.629989	9.956387	9.673602	10.326398	10.043613	10.370011	45
16	9.630257	9.956327	9.673929	10.326071	10.043673	10.369743	44
17	9.630524	9956268	9.674257	10.325743	10.043732	10.369476	43
18	9.630792	9.956208	9.674584	10.325416	10.043792	10.369208	42
19	9.631059	9.956148	9.674910	10.325090	10.043852	10.368941	41
20	9.631326	9.956089	9.675237	10.324763	10.043911	10.368674	40
21	9.631593	9.956029	9.675564	10.324436	10.043971	10.368407	39
22	9.631859	9.955969	9.675890	10.324110	10.044031	10.368141	38
23	9.632125	9.955909	9.676217	10.323783	10.044091	10.367875	37
24	9.632392	9.955849	9.676543	10.323457	10.044151	10.367608	36
25	9.632658	9.955789	9.676869	10.323131	10.044211	10.367342	35
26	9632923	9.955729	9.677194	10.322806	10.044271	10.367077	34
27	9.633189	9.955669	9.677520	10.322480	10.044331	10.366811	33
28	9.633454	9.955609	9.677846	10.322154	10.044391	10.366546	32
29	9.633719	9.955548	9.678171	10.321823	10.044452	10.366281	31
30	9.633984	9.955488	9.678496	10.321504	10.044512	10.366016	30
31	9.634249	9.955428	9.678821	10.321179	10.044572	10.365751	29
32	9.634514	9.955368	9.679146	10.320854	10.044632	10.365486	28
33	9.634778	9.955307	9.679471	10.520529	10.044693	10.365222	27
34	9.635042	9.955247	9.679795	10.320205	10.044753	10.364958	26
35	9.635306	9.955186	9.680120	10.319880	10.044814	10.364694	25
36	9.63 .5570	9.955126	9.680444	10.319556	10.044874	10.364450	24
37	9.635834	9.955065	9.680768	10.319232	10.044935	10.364166	23
38	9.636097	9.955005	9.681092	10.318908	10.044995	10.363903	22
39	9.636360	9.954944	9.681416	10.318584	10.045056	10.363640	21
40	9.636623	9.954883	9.681740	10.318260	10.045117	10.363377	20
41	9.636886	9.954823	9.682063	10.317937	10.045177	10.363114	19
42	9.637148	9.954762	9.682387	10.317613	10.045238	10.362852	18
43	9.637411	9.954701	9.682710	10.317290	10.045299	10.362589	17
44	9.637673	9.954640	9.683033	10.316967	10.045360	10.362327	16
45	9.637935	9.954579	9.683356	10.316644	10.045421	10.362065	15
46	9.638197	9.954518	9.683679	10.316321	10.045482	10.361803	14
47	9.638458	9.954457	9.684001	10.315999	10.045543	10.361542	13
48	9.638720	9.954396	9.684324	10.315676	10.045604	10.361280	12
49	9.638981	9.954335	9.684646	10.315354	10.045665	10.361019	11
50	9.639242	9.954274	9.684968	10.315032	10.045726	10.360758	10
51	9.639503	9.954213	9.685290	10.314710	10.045787	10.360497	9
52	9.639764	9.954152	9.685612	10.314388	10.045848	10.360236	8
53	9.640024	9.954090	9.685934	10.314066	10.045910	10.359976	7
54	9.640284	9.954029	9.686255	10.313745	10.045971	10.359716	6
55	9.640544	9.953968	9.686577	10.313423	10.046032	10.359456	5
56	9.640804	9.953906	9.686898	10.313102	10.046094	10.359196	4
57	9.641064	9.953845	9.687219	10.312781	10.046155	10.358936	3
58	9.641324	9.953783	9.687540	10.312460	10.046217	10.3588676	2
59	9.641583	9.953722	9.687861	10.312139	10.046278	10.358417	1
60	9.611842	9.953660	9.688182	10.311818	10.046340	10.358158	0
M.	Co-sine.	Sine.	Co-tang.	'l'angent.	Co-sec.	Secant.	M.
64 Degrees.							

TABLE II.
ĹOGARITHMIO SINES, TANGENTS, AND SECANTS.
26 Degrees.

26 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	Ir.
0	9.641842	9.953660	9.688182	10.311818	10.046340	$10.35 \overline{7} 158$	0
1	9.612101	9.953599	9.688502	10.311498	10.046401	10.357899	59
2	9.642360	9.953537	9.688823	10.311177	10.046463	10.357640	8
3	9.642618	9.953475°	9.689143	10.310857	10.046525	10.357382	7
4	9.642877	9.953413	9.689463	10.310537	10.046587	10.357123	56
5	9.643135	9.953352	9.689783	10.310217	10.046648	10.356865	55
6	9.643393	9.953290	9.690103	10.309897	10.046710	10.356607	54
7	9.643650	9.953228	9.690423	10.309577	10.046772	10.356350	53
8	9.643908	9.953166	9.690742	10.309258	10.046834	10.356092	52
9	9.644165	9.953104	9.691062	10.308938	10.046896	10.355835	51
10	9644423	9.953042	9.691381	10.308619	10.046958	10.355577	50
11	9.644680	9.952980	9.691700	10.308300	10.047020	10.3553\%0	49
12	9.644936	9.952918	9.692019	10.307981	10.047082	10.355064	48
13	9.645193	9.952855	9.692338	10.307662	10.047145	10.354807	47
14	9.645450	9.952793	9.692656	10.307344	10.047207	10.354550	46
15	9.645706	9.952731	9.692975	10.307025	10.047269	10.354294	45
16	9.645962	9.952669	9.693293	10.306707	10.047331	10.354038	44
17	9.646218	9.952606	9.693612	10.306388	10.047394	10.353782	43
18	9.646474	9.952544	9.693930	10.306070	10.047456	10.353526	42
19	9.646729	9.952481	9.694248	10.305752	10.047519	10.353271	41
20	9.646984	9.952419	9.694566	10.305434	10.047581	10.353016	40
21	9.647	9.9523	9.694883	10.305117	10.047644	10.35\%760	39
22	9.647494	9.952294	9.695201	10.304799	10.047706	10.352506	38
23	9.647749	9.952231	9.695518	10.304482	10.047769	10.352251	37
24	9.648004	9.952168	9.695836	10.304164	10.047832	10.351996	36
25	9.648258	9.952106	9.696153	10.303847	10.047894	10.351742	35
26	9.648512	9.952043	9.696470	10.303530	10.047957	10.351488	34
27	9.648766	9.951980	9696787	10.303213	10.048020	10.351234	33
28	9.649020	9.951917	9.697103	10.302897	10.048083	10.350980	32
29	9.649274	9.951854	9.697420	10.302580	10.048146	10.350726	31
30	9.649527	9.951791	9.697736	10.302264	10.048209	10.350473	30
31	9644781	9.951728	9.698053	10.301947	10.048272	10.350219	29
32	9.650034	9.951665	9.698369	10.301631	10.048335	10.349966	28
33	9.650287	9.951602	9.698685	10.301315	10.048398	10.349713	27
34	9.650539	9.951539	9.699001	10.300999	10.048461	10.349461	26
35	9.650792	9.951476	9.699316	10.300684	10.048524	10.349208	25
36	9.651044	9.951412	9.699632	10.300368	10.048588	10.348956	24
37	9.651297	9.951349	9.699947	10.300053	10.048651	10.348703	23
38	9.651549	9951286	9.700263	10.299737	10.048714	10.348451	22
39	9.651800	9.951222	9.700578	10.299422	10.048778	10.348200	21
40	9.652052	9.951159	9.700893	10.299107	10.048841	10.347948	20
41	9652304	9.951096	9.701208	10.298792	10.048904	10.347696	19
42	9.652555	9.951032	9.701523	10.298477	10.048968	10.347445	18
43	9.652806	9.950968	9.701837	10.298163	10.049032	10.347194	17
44	9.653057	9.950905	9.702152	10.297848	10.049095	10.346943	16
45	9.653308	9.950841	9.702466	10.297534	10.049159	10.346692	15
46	9.653558	9.950778	9.702780	10.297220	10.049222	10.346442	14
47	9.653808	9.950714	9.703095	10.296905	10.049286	10.346192	13
48	9.654059	9.950650	9.703409	10.296591	10.049350	10.345941	12
49	9.654309	9.950586	9.703723	10.296277	10.049414	10.345691	11
50	9.654558	9.950522	9.704036	10.295964	10.049478	10.345442	10
51	9.654808	9.950458	9.704350	10.295650	10.049542	10.345192	
52	9.655058	9.950394	9.704663	10.295337	10.049606	10.344942	8
53	9.655307	9.950330	9.704977	10.295023	10.049670	10.344693	7
54	9.655556	9.950266	9.705290	10.2 24710	10.049734	10.344444	6
55	9.655805	9.950202	9.705603	10.294397	10.049798	10.344195	5
56	9.656054	9.950138	9.705916	10.294084	10.049862	10.343946	4
57	9.656302	9.950074	9.706228	10.293772	10.049926	10.343698	3
58	9.656551	9.950010	9.706541	10.293459	10.049990	10.343449	2
59	9.656799	9.949945	9.706854	10.293146	10.050055	10.343201	1
60	9.657047	9.949881	9.707166	10.292834	10.050119	10.342953	0
м.	Co-sine.	Sine.	Co-tang.	'Tangent.	Co-sec.	Secant.	M.
			63 N	egrees.			

TABLE II.

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

27 Degrees.							
M.	Sine.	Co-sine.	\|Tangent.	Co-tang.	Secant.	Co-sec.	M.
v	9.657047	9.949881	U.707166	10.242834	10.050119	10.342953	60
1	9.657295	9.949816	9.707478	10.292522	10.050184	10.342705	59
2	9.657542	9.949752	9.707790	10.292210	10.050248	10.342458	58
3	9.657790	9.949688	9.708102	10.291898	10.050312	10.342210	57
4	9.658037	9.949623	9.708414	10.291586	10.050377	10.341963	56
5	9.658284	9.949558	9.708726	10.291274	10.050442	10.341716	55
6	9.653531	9.949494	9.709037	10.290963	10.050506	10.341469	54
7	9.658778	9.949429	9.709349	10.290651	10.050571	10.341222	53
8	9.659025	9.949364	9.709660	10.290340	10.050636	10.340975	52
9	9.659271	9.949300	9.709971	10.290029	10.050700	10.340729	51
10	9.659517	9.949235	9.710282	10.289718	10.050765	10.340483	50
11	9.659763	9.949170	9.710593	10.289407	10.050830	10.340:237	49
12	9.660009	9.949105	9.710904	10.289096	10.050895	10.339991	48
13	9.660255	9.949040	9.711215	10.288785	10.050960	10.339745	47
14	9.660501	9.948975	9.711525	10.288475	10.051025	10.339499	46
15	9.660746	9.948910	9.711836	10.288164	10.051090	10.339254	45
16	9.660991	9.948845	9.712146	10.287854	10.051155	10.339009	44
17	9.661236	9.948780	9.712456	10.287544	10.051220	10.338764	43
18	9.661481	9.948715	9.712766	10.287234	10.051285	10.338519	$42 \cdot$
19	9.661726	9.948650	9.713076	10.286924	10.051350	10.338274	41
20	9.661970	9.948584	9.713386	10.286614	10.051416	10.338030	40
21	9.662214	9.418519	9.713696	10.286304	10.051481	10.337786	¢9
22	9.662459	9.948454	9.714005	10.285995	10.051546	10.337541	38
23	9.662703	9.948388	9.714314	10.285686	10.051612	10.337297	37
24	9.662946	9.948323	9.714634	10.285376	10.051677	10.337054	36
25	9.663190	9.948257	9.714933	10.285067	10.051743	10.336810	35
26	9.663433	9.948192	9.715242	10.284758	10.051808	10.336567	34
27	9.663677	9.948126	9.715551	10.284449	10.051874	10.336323	33
28	9.663920	9.948060	9.715860	10.284140	10.051940	10.336080	32
29	9.664163	9.947995	9.716168	10.283832	10.052005	10.335837	31
30	9.664406	9.917929	9.716477	10.283523	10.052071	10.335594	30
31	9.664648	9.947863	9.716785	10.283215	10.052137	10.335352	29
32	9.664891	9.947797	9.717093	10.282907	10.052203	10.335109	28
33	9.665133	9.947731	9.717401	10.282599	10.052269	10.334857	27
31	9.665375	9.947665	9.717709	10.282291	10.052335	10.334625	26
35	9.665617	9.947600	9.718017	10.281983	10.052400	10.334383	25
36	9.665859	9.947533	9.718325	10.281675	10.052467	10.334141	24
37	9.666100	9.947467	9.718633	10.281367	10.052533	10.333900	23
38	9.666342	9.947401	9.718940	10.281060	10.052599	10.333658	22
39	9.666583	9.947335	9.719248	10.280752	10.052665	10.333417	21
40	9.666824	9.947269	9.719555	10.280445	10.052731	10.333176	20
41	9.667065	9.947203	9.719862	10.280138	10.052797	10.332935	19
42	9.667305	9.917136	9720169	10.279831	10.052864	10.332695	18
43	9.667546	9.947070	9.720476	10.279524	10.052930	10.332454	17
44	9.667786	9.947004	9720783	10.279217	10.052996	10.332214	16
45	9.668027	9.946937	9.721089	10.278911	10.053063	10.331973	15
46	9.668267	9.946871	9721396	10.278604	10.053129	10.331733	14
47	9.668506	9.946804	9.721702	10.278298	10.053196	10.331494	13
48	9.668746	9.946738	9.722009	10.277991	10.053262	10.331254	12
49	9.668986	9.946671	9.722315	10.277685	10.053329	10.331014	11
50	9.669225	9.946604	9.722621	10.277379	10.053396	10.330775	10
51	9.669164	9.916538	9.722927	10.277073	10.053462	10.330536	9
52	9.669703	9.946471	9.723232	10.276768	10.053529	10.330297	8
53	9.669942	9.946404	9.723538	10.276162	10.053596	10.330058	7
54	9.670181	9.946337	9.723814	10.276156	10.053663	10.329819	$\stackrel{6}{5}$
55	9.670419	9.946270	9.724149	10.275851	10.053730	10.329581	5
56	9.670658	9.946203	9.724454	10.275546	10.053797	10.329342	4
57	9.670896	9.946136	9.724759	10.275241	10.053864	10.329104	3
58	9.671134	9.946069	9.725065	10.274935	10.053931	10.328866	2
59	9.671372	9.946002	9.725369	10.274631	10.053998	10.328628	1
60	9.671609	9915935	9.725674	10.274326	10.054065	10.328391	0
M.	Co-sine.	Sine.	Co-tanc.	Tancent.	Co-sec.	Secant.	M.
62 Begrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

28 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.671609	9.945935	9.725674	10274326	10.054065	10.328391	60
1	9.671847	9.945868	9.725979	10.274021	10.054132	10.328153	59
2	9.672084	9.945500	9.726284	10.273716	10.054200	10.327916	58
3	9.672321	9.945733	$9.7 \cdot 26588$	10.273112	10.054267	10.327679	57
4	9.672558	9.945666	9.726892	10.273108	10.054334	10.327442	56
5	9.672795	9.945598	9.727197	10.272803	10.054402	10.327205	55
6	9.673032	9.945531	9.727501	10.272499	10.054469	10.326968	54
7	9.673268	9.945464	9.727805	10.272195	10.054536	10.326732	53
8	9.673505	9.945396	9.728109	10.271891	10.054604	10.326495	52
9	9.673741	9.945328	9.728412	10.271588	10.054672	10.326259	51
10	9673977	9.945261	9728716	10.271284	10.054739	10.326023	50
11	9.674213	9.945193	9.729020	10.270950	10.054807	10.3:25787	49
12	9.674448	9.945125	9.729323	10.270677	10.054875	10.325552	48
13	9.674684	9.945058	9.729626	10.270374	10.054942	10.325316	47
14	9.674919	9944990	9.729929	10.270071	10.055010	10.325081	46
15	9 675155	9.944922	9.730233	10.269767	10.055078	10.324815	45
16	9.675390	9.944854	9.730535	10.269465	10.055146	10.324610	44
17	9.675624	9944786	9.730838	10.269162	10.055214	10.324376	43
18	9.675859	9.944718	9.731141	10.268859	10.055282	10.324141	42
19	9.676094	9944650	9.731444	10.268556	10.055350	10.323906	41
20	9.676328	9.944582	9.731746	10.268254	10.055418	10.323672	40
21	9.676562	9.944514	9.732048	10.267952	10.055486	10.3233438	39
22	9.676796	9.944446	9.732351	10.267649	10.055554	10.323204	38
23	9.677030	9.944377	9.732653	10.267347	10.055623	10.322970	37
24	9.677264	9.944309	9.732955	10.267045	10.055691	10.322736	36
25	9.677498	9.944241	9.733257	10.266743	10.055759	10.322502	35
26	9.677731	9.944172	9.733558	10.266442	10.055828	10.322269	34
27	9.677964	9.944104	9.733860	10.266140	10.055896	10.322036	33
28	9.678197	9.944036	9.734162	10.265838	10.055964	10.321803	32
29	9.678430	9.943967	9.734463	10.265537	10.056033	10.321570	31
30	9.678663	9.943899	9.734764	10.265236	10.056101	10.321337	30
31	9.678895	9.943830	9.735056	10.264934	10.056170	10.321105	29
32	9.679128	9.943761	9735367	10.264633	10.056239	10.320872	28
33	9.679360	9.943693	9.735668	10.264332	10.056307	10.320640	27
34	9.679592	9.943624	9.735969	10.264031	10.056376	10.320408	26
35	9679824	9.943555	9.736269	10.263731	10.056445	10.320176	25
36	9680056	9.943486	9.736570	10.263430	10.056514	10.319944	24
37	9.680288	9943417	9.736871	10.263129	10.056583	10.319712	23
38	9.680519	9.943348	9.737171	10.262829	10.056652	10.319481	22
39	9.680750	9.943279	9.737471	10.262529	10.056721	10.319250	21
40	9.680982	9.943210	9.737771	10.262229	10.056790	10.319018	20
41	9.681213	9.913141	9.738071	10.261929	10.056859	10.318787	19
42	9.681443	9.943072	9.738371	10.261629	10.056928	10.318557	18
43	9.681674	9.943003	9.738671	10.261329	10.056997	10.318326	17
44	9.681905	9.942934	9.738971	10.261029	10.057066	10.318095	16
45	9.682135	9.942864	9.739271	10.260729	10.057136	10.317865	15
46	9.682365	9.942795	9.739570	10.260430	10.057205	10.317635	14
47	9.682595	9.942726	9.739870	10.260130	10.057274	10.317405	13
48	9.682825	9.942656	9.740169	10.259831	10.057344	10.317175	12
49	9.683055	9.942587	9.740468	10.259532	10.057413	10.31 ט่945	11
50	9.683284	9.942517	9.740767	10.259233	10.057483	10.316716	10
51	9.683514	9.942448	9.741066	10.258934	10.057552	10.316486	9
52	9.683743	9.942378	9.741365	10.258635	10.057622	10.316257	8
53	9.683972	9.942308	9.741664	10.258336	10.057692	10.316028	7
54	9.684201	9.942239	9.741962	10.258038	10.057761	10.315799	6
55	9684430	9.942169	9.742261	10.257739	10.057831	10.315570	5
56	9.684658	9.942099	9.742559	10.257441	10.057901	10.315312	4
57	9.684887	9942029	9.742858	10.257142	10.057971	10.315113	3
58	9.685115	9.941959	9.743156	10.256844	10.058041	10.314885	2
59	9.685343	9.941889	9.743454	10.256546	10.058111	10.314657	1
60	9.685571	9.941819	9.743752	10.256248	10.058181	10.314429	0
M.	Co-sine.	Sine.	Co-tang.	'langent.	Co-sec.	Secant.	M.
i1 Degrees.							

172		TABLE II.					
29 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.685571	9.941819	9.743752	10.256248	10.0u8181	1U.3144:9	60
1	9.685799	9.941749	9.744050	10.255950	10.058251	10.314201	59
2	9686027	9.941679	9.744348	10.255652	10.058321	10.313973	58
3	9.686254	9.941609	9.744645	10.255355	10.058391	10.313746	57
4	9.686482	9.941539	9.744943	10.255057	10.058461	10.313518	56
5	9.686709	9.941469	9.745240	10.254760	10.058531	10.313291	55
6	9.686936	9.941398	9.745538	10.254462	10.058602	10.313064	54
7	9.687163	9.941328	9.745835	10.254165	10.058672	10.31:837	53
8	9.687389	9.941258	9.746132	10.253868	10.058742	10.312611	52
9	9.687616	9.941187	9.746429	10.253571	10.058813	10.312384	51
10	9.687813	9.941117	9.746726	10.253274	10.058883	10.312157	50
11	9.6881169	9.941046	9.747023	10.252977	10.058954	10.311931	49
12	9.688295	9.940975	9.747319	10.252681	10.059025	10.311705	48
13	9.688521	9.910905	9.747616	10.252384	10.059095	10.311479	47
14	9.688747	9.940834	9.747913	10.252087	10.059166	10.311253	46
15	9.688972	9.940763	9.748209	10.251791	10.059237	10.311028	45
16	9.689198	9.910693	9.748505	10.251495	10.059307	10.310802	44
17	9.689423	9.940622	9.748801	10.251199	10.059378	10.310577	43
18	9.689648	9.940551	9.749097	10.250903	10.059449	10.310352	42
19	9.689873	9.940480	9.749393	10.250607	10.059520	10.310127	41
20	9.690098	9.940409	9.749689	10.250311	10.059591	10.309902	40
21	$9.69 \cup 323$	9.940338	9.749985	10.250015	10.059662	10.309677	39
22	9.690548	9.940267	9.750281	10.249719	10.059733	10.309452	38
23	9.690772	9.940196	9.750576	10.249424	10.059804	10.309228	37
24	9.690996	9.910125	9.750872	10.249128	10.059875	10.309004	36
25	9.691220	9.940054	9.751167	10.248833	10.059946	10.308780	35
26	9.691444	9.939982	9.751462	10.248533	10.060018	10.308556	34
27	9.691668	9.939911	9.751757	10.248243	10.060089	10.308332	33
28	9.691892	9.939840	9.752052	10.247948	10.060160	10.308108	32
29	9.692115	9.939768	9.752347	10.247653	10.060232	10.307885	31
30	9692339	9.939697	9.752642	10.247358	10.060303	10.307661	30
31	9.692562	9.939625	9.752937	10.247063	10.060375	10.307438	<9
32	9.692785	9.939554	9.753231	10.246769	10.060 ± 46	10.307215	28
33	9.693008	9.939182	9.753526	10.246474	10.060518	10.306992	27
34	9.693231	9.939110	9.753820	10.246180	10.060590	10.306769	26
35	9.693453	9.939339	9.754115	10.245885	10.060661	10.306547	25
36	9.693676	9.939267	9.754409	10.245591	10.060733	10306324	24
37	9.693898	9.939195	9.754703	10.245297	10.060805	10.306102	23
35	9.691120	9.939123	9.754997	10.245003	10.060877	10.305880	22
39	9.694342	9.939052	9.755291	10.244709	10.060948	10.305658	21
40	9.694564	9.938980	9.755585	10.244415	10.061020	10305436	20
41	9.691786	9.938908	9.755878	10.244122	10.061092	$10.305 \% 14$	19
42	9.695007	9.938836	9.756172	10.243828	10061164	10.304993	18
43	9.695229	9.938763	9.756465	10.243535	10.061237	10.304771	17
44	9.695450	9.938691	9.756759	10.243241	10.061309	10.304550	16
45	9.695671	9.938519	9.757052	10.242948	10.061381	10.304329	15
46	9.695892	9.938547	9.757345	10.242655	10.061453	10.304108	14
47	9.696113	9.938475	9.757638	10.242362	10.061525	10.303887	13
48	9.696334	9.938402	9.757931	10.242069	10.061598	10.303666	12
49	9.696554	9.938330	9.758224	10.241776	10.061670	10.303446	11
50	9.696775	9.938258	9.758517	10.241483	10.061742	10.303225	10
51	9.696995	9.938185	9.758810	10.241190	10.061815	10.303005	9
52	9.697215	9.938113	9.759102	10.240898	10.061887	10.302785	8
53	9.697435	9.938040	9.759395	10.240605	10.061960	10.302565	7
54	9.697654	0.937967	9.759687	10.240313	10.062033	10.302316	6
55	9.697874	9.937895	9.759979	10.240021	10.062105	10.302126	5
56	9.698094	9.937822	9.760272	10.239728	10.062178	10.301906	4
57	9.698313	9.937749	9.760564	10.239436	10.062251	10.301687	3
58	9.698532	9.937676	9.760856	10.239144	10.062324	10.301468	2
59	9.698751	9.937604	9.761148	10.238852	10.062396	10.301249	1
60	9.698970	9.937531	9.761439	10.238561	10.062469	10.301030	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
60 Degrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.
30 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.698970	4.937531	9.761439	10.2385561	10.062469	10.301030	60
1	9.699189	9.937458	9.761731	10.238269	10.062542	10.300811	59
2	9.699407	9.937385	9.762023	10.237977	10.062615	10.300593	58
3	9.699626	9.937312	9.762314	10.237686	10.062688	10.300374	57
4	9.699844	9.937238	9.762606	10.237394	10.062762	10.300156	56
5	9.700062	9.937165	9.762897	10.237103	10.062835	10.299938	55
6	9.700280	9.937092	9.763188	10.236812	10.062908	10.299720	54
7	9.700198	9.937019	9.763479	10.236521	10.062981	10.299502	53
8	9.700716	9.936946	9.763770	10.236230	10.063054	10.299284	52
$\stackrel{9}{9}$	9.700933	9.936872	9.764061	10.235939	10.663128	10.299067	51
10	9.701151	9.936799	9.764352	10.235648	10.063201	16.298849	50
11	9.701368	9.936725	9.764643	10.235357	10.063275	10.298632	49
12	9.701585	9.936652	9.764933	10.235067	10.063348	10.298415	48
13	9.701802	9.936578	9.765224	10.234776	10.063422	10.298198	47
14	9.702019	9.936505	9.765514	10.234486	10.063495	10.297981	46
15	9.702236	9.936431	9.765805	10.234195	10.063569	10.297764	45
16	9.702452	9.936357	9.766095	10.233905	10.063643	10.297548	44
17	9.702669	9.936284	9.766385	10.233615	10.063716	10.297331	43
18	9.702885	9.936210	9.766675	10.233325	10.063790	10.297115	42
19	9.703101	9.936136	9.766965	10.233035	10.063864	10.296899	41
20	9.703317	9.936062	9.767255	10.232745	10.063938	10.296683	40
21	9.703533	4.935988	9.767545	10.232455	10.064012	10.296467	39
22	9.703749	9.935914	9.767834	10.232166	10.064086	10.296251	38
23	9.703964	9.935840	9.768124	10.231876	10.064160	10.296036	37
24	9.704179	9.935766	9.768414	10.231586	10.064234	10.295821	36
25	9.704395	9.935692	9.768703	10.231297	10.064308	10.295605	35
26	9.704610	9.935618	9.768992	10.231008	10.064382	10.295390	34
27	9.704825	9.935543	9.769281	10.230719	10.064457	10.295175	33
28	9.705040	9.935469	9.769570	10.230430	10.064531	10.294960	32
29	9.705254	9.935395	9.769860	10.230140	10.064605	10.294746	31
30	9.705469	9.935320	9.770148	10.229852	10.064680	10.294531	30
31	9.705683	9.935246	9.770437	10.229563	10.064754	10.2494317	29
32	9.705898	9.935171	9.770726	10.229274	10.064829	10.294102	28
33	9.706112	9.935097	9.771015	10.228985	10.064903	10.293888	27
34	9.706326	9.935022	9.771303	10.228697	10.064978	10.293674	26
35	9.706539	9.934948	9.771592	10.228408	10.065052	10.293461	25
36	9.706753	9.934873	9.771880	10.228120	10.065127	10.293247	24
37	9.706967	9.934798	9.772168	10.227832	10.065202	10.293033	23
38	9.707180	9.934723	9.772457	10.227543	10.065277	10.292820	22
39	9.707393	9.934649	9.772745	10.227255	10.065351	10.292607	21
40	9.707606	9.934574	9.773033	10.226967	10.065426	10.292394	20
41	9.707819	9.934499	9773321	10.226679	10.065501	10.292181	19
42	9.708032	9.934424	9.773608	10.226392	10.065576	10.291968	18
43	9.708245	9.934349	9.773896	10.226104	10.065651	10.291755	17
44	9.708458	9.934274	9774184	10.225816	10.065726	10.291542	16
45	9.708670	9.934199	9.774471	10.225529	10.065801	10.291330	15
46	9.708882	9.934123	9.774759	10.225241	10.065877	10.291118	14
47	9.709094	9.934048	9.775046	10.224954	10.065952	10.290906	13
48	9.709306	9.933973	9.775333	10.224667	10.066027	10.290694	12
49	9.709518	9.933898	9.775621	10.224379	10.066102	10.290482	11
50	9.709730	9.933822	9.775908	10.224092	10.066178	10.290270	10
51	9.719941	9.933747	9.776195	10.223805	10.066253	10.290059	
52	9.710153	9.933671	9.776482	10.223518	10.066329	10.289847	8
53	9.710364	9.933596	9.776769	10.223231	10.066404	10.289636	7
54	9.710575	9.933520	9.777055	10.222945	10.066480	10.289425	6
55	9.710786	9.933445	9.777312	10.222658	10.066555	10.289214	5
56	9.710997	9.933369	9.777628	10.222372	10.066631	10.289003	4
57	9.711208	9.933293	9.777915	10.222085	10.066707	10.288792	3
58	9.711419	9.933217	9.778201	10.221790	10.066783	10.288581	2
59	9.711629	9.933141	9.778487	10.221513	10.066859	10.288371	1
60	9.711839	9.933066	9.778774	10.221226	10.066934	10.288161	0
M.	Co-sine.	Sine.	Co-tang.	'Tangent.	Co-sec.	Secant.	m.
59 Degrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

31 Degrees.							
M.	Sine.	Co-sine.	Tangent.\|	Co-tang.	Secant.	Co-sec.	M.
0	9.711839	9.933066	9.778774	10.221226	10.066934	10.288161	60
1	9.712050	9.932990	9.779060	10.220940	10.067010	10.287950	59
2	9.712260	9.932914	9.779346	10.220654	10.067086	10.287740	58
3	9.712469	9.932838	9.779632	10.220368	10.067162	10.287531	57
4	9.712679	$99327 \mathrm{C2}$	9.779918	10.220082	10.067238	10.287321	56
5	9.712889	9.932685	9780203	10.219797	10.067315	10.287111	55
6	9.713098	9.932609	9.780489	10.219511	10.067391	10.286902	54
7	9.713308	9.932533	9.780775	10.219225	10.067467	10.236692	53
8	9.713517	9.932457	9.781060	10.218940	10.067543	10.286483	52
9	9.713726	9.932380	9.781346	10.218654	10.067620	10.286274	51
10	9.713935	9.932304	9.781631	10.218369	10.067696	10.286065	50
11	9.714144	9.932228	9.781916	10.218084	10.067772	10.285856	49
12	9.714352	9.932151	9.782201	10.217799	10.067849	10.285648	48
13	9.714561	9.932075	9.782486	10.217514	10.067925	10.285439	47
14	9.714769	9.931998	9782771	10.217229	10.068002	10.285231	46
15	9.714978	9.931921	9.783056	10.216944	10.068079	10.285022	45
16	9.715186	9.931845	9783341	10.216659	10.068155	10.284814	44
17	9.715394	9.931768	9.783626	10.216374	10.068232	10.284606	43
18	9.715602	9.931691	9783910	10.216090	10.068309	10.284398	42
19	9.715809	9.931614	9.784195	10.215805	10.068386	10.284191	41
20	9.716017	9.931537	9.784479	10.215521	10.068463	10.2839 E3	40
21	9.716224	9.931460	צ. 784764	10.215236	10.06×540	10.283776	39
22	9.716432	9.931383	9.785048	10.214952	10.068617	10.283568	38
23	9.716639	9.931306	9.785332	10.214668	10.068694	10.283361	37
24	9.716846	9.931229	9.785616	10.214384	10.068771	10.283154	36
25	9.717053	9.931152	9.785900	10.214100	10.068848	10.282947	35
26	9.717259	9.931075	9.786184	10.213816	10.068925	10.282741	34
27	9.717466	9.930998	9.786468	10.2135032	10.069002	10.282534	33
28	9.717673	9.930921	9.786752	10.213248	10.069079	10.282327	32
29	9.717879	9.930843	9.787036	10.212964	10.069157	10.282121	31
30	9.718085	9.930766	9.787319	10.212681	10.069234	10.281915	30
31	9.718291	9.930688	4.787603	10.212397	10.069312	10.281709	29
32	9.718497	9.930611	9.787886	10.212114	10.069389	10.281503	28
33	9.718703	9.930533	9.788170	10.211830	10.069467	10.281297	27
34	9.718909	9.930456	9.788453	10.211547	10.069544	10.281091	26
35	9.719114	9.930378	9.788736	10.211264	10.069622	10.280886	25
36	9.719320	9.930300	9.789019	10.210981	10.069700	10.280680	24
37	9.719525	9.930223	9.789302	10.210698	10.069777	10.280475	23
38	9.719730	9.930145	9.789585	10.210415	10.069855	10.280270	22
39	9.719935	9.930067	9.789868	10.210132	10.069933	10.280065	21
40	9.720140	9.929989	9.790151	10.209849	10.070011	10.279860	20
41	9.720345	9.929911	9.790433	10.209567	10.070089	10.279655	19
42	9.720549	9929833	9.790716	10.209284	10.070167	10.279451	18
43	9.720754	9.929755	9.790999	10.209001	10.070245	10.279246	17
44	9.720958	9.929677	9.791281	10.208719	10.070323	10.279042	16
45	9.721162	9.929599	9.791563	10.208437	10.070401	10.278838	15
46	9.721366	9.929521	9.791846	10.208154	10.070479	10.278634	14
47	9.721570	9.929442	9.792128	10.207872	10.070558	10.278430	13
48	9.721774	9.929364	9.792410	10.207590	10.070636	10.278226	12
49	9.721978	9.929286	9.792692	10.207308	10.070714	10.278022	11
50	9722181	9.929207	9792974	10.207026	10.070793	10.277819	10
51	9.722385	9.929129	9.793256	10.206744	10.070871	10.277615°	9
52	9.722588	9.929050	9.793538	10.206462	10.070950	10.277412	8
53	9.722791	9.928972	9.793819	10.206181	10.071028	10.277209	7
54	9.722994	9.928893	9.7941 (1)	10.205899	10.071107	10.277006	6
55	9.723197	9.928815	9.794383	10.205617	10.071185	10.276803	5
56	9.723400	9.928736	9.794664	10.205336	10.071264	10.276600	4
57	9.723603	9.928657	9.794945	10.205055	10.071343	10.276397	3
58	9.723805	9.928578	9.795227	10.204773	10.071422	10.276195	2
59	9.724007	9.928499	9.795508	10.204492	10.071501	10.275993	1
60	9.724210	9.928420	9.795789	10.204211	10.071580	10.275790	0
M.	C'o-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	M.
58 Dregrees.							

LOGARITHMIO SINES, TANGENTS, AND SECANTS.

32 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	$\underline{9.724210}$	9.928420	9.795789	10.204211	10.071580	10.275790	60
1	9.724412	9.928342	9.796070	10.203930	10.071658	10.275588	59
2	9.724614	9.928263	9.796351	10.203649	10.071737	10.275386	58
3	9.724816	9.928183	9.796632	10.203368	10.071817	10.275184	57
4	9.725017	9.928104	9.796913	10.203087	10.071896	10.274983	56
5	9.725219	9.928025	9.797194	10.202806	10.071975	10.274781	55
6	9.725420	9.927946	9.797475	10.202525	$10.07205 \pm$	10.274580	54
7	9.725622	9.927867	9.797755	10.202245	10.072133	10.274378	53
8	9.725823	9 927787	9.798036	10.201964	10.072213	10.274177	52
9	9.726024	9.92708	9.798316	10.201684	10.072292	10.273976	51
10	9.726225	9.927629	9.798596	10.201404	10.072371	10.273775	50
11	9.7264 460	99.27549	9.798877	10.2011 23	11.072451	10.273574	49
12	9.726626	9.927470	9.799157	10.200843	10.072530	10.273374	48
13	9.726827	9.927390	9.799437	10.200563	10.072610	10.273173	47
14	9.727027	9.927310	9.799717	10.200283	10.072690	10.272973	46
15	9.727228	9.927231	9.799997	10.200003	10.072769	10.272772	45
16	9.727428	9.927151	9.800277	10.199723	10.072849	10.272572	44
17	9.727628	9.927071	9.800557	10.199443	10.072929	10.272372	43
18	9.727828	9.926991	9.800836	10.199164	10.073009	10.272172	42
19	9.728027	9.926911	9.801116	10.198884	10.073089	10.271973	41
20	9.728227	9.926831	9.801396	10.198604	10.073169	10.271773	40
21	9.728127	9.926751	9801675	10.1903225	10.073249	10.271573	
22	9.728626	9.926671	9.801955	10.198045	10.073329	10.271374	38
23	9.728825	9.926591	9.803234	10.197766	10.073409	10.271175	37
24	9.729024	9.926511	9.802513	10.197487	10.073489	10.270976	36
25	9.729223	9.926431	9.802792	10.197208	10.073569	10.270777	35
26	9.729422	9.926351	9.803072	10.196928	10.073649	10.270578	34
27	9.729621	9.926270	9803351	10.196649	10.073730	10.270379	33
28	9729820	9.926190	9.803630	10.196370	10.073810	10.270180	32
29	9.730018	9.926110	9.803908	10.196092	10.073890	10.269982	31
30	9.730217	9.926029	9.804187	10.195813	10.073971	10.269783	30
31	9730415	9.925949	9.804466	11.195534	10.074051	10.269585	29
32	9.730613	9.925868	9.804745	10.195255	10.074132	10.269387	28
33	9.730811	9.925788	9.805023	10.194977	10.074212	10.269189	27
31	9.731009	9.925707	9.805302	10.194698	10.074293	10.268991	26
35	9.731206	9.925626	9.805580	10.194120	10.074374	10.268794	25
36	9.731404	9.925545	9.805859	10.194141	10.074455	10.268596	24
37	9.731602	9.925465	9.806137	10.193863	10.074535	10.268398	23
38	9.731799	9925384	9.806415	10.193595	10.074616	10.268201	22
33	9.731996	9.925303	9.806693	10.193307	10.074697	10.268004	21
40	9.732193	9.925222	9.806971	10.193029	10.074778	10.267807	20
41	- 73\%	9.925141	9.807249	10.19:751	19.074859	10.267610	
42	9.732587	9.925060	9.807527	10.192473	10.074940	10.267413	18
43	9.732784	9.924979	9.807805	10.192195	10.075021	10.267216	17
44	9.732980	9.924897	9.808483	10.191917	10.075103 *	10.267020	16
45	9.733177	9.924816	9.808361	10.191639	10.075184	10.266823	15
46	9.733373	9.924735	9.808638	10.191362	10.075265	10.266627	14
47	9.733569	9.924654	9.808916	10.191084	10.075346	10.266431	13
48	9.733765	9.924572	9.809193	10.190807	10.075428	10.266235	12
49	9.733961	9.924491	9.809471	10.190529	10.075509	10.266039	11
50	9.734157	9.924409	9.809748	10.190252	10.075591	10.265843	10
51	9.734353	9.924328	9.810025	10.189975	10.075672	10.265647	9
52	9.734549	9.924246	9.810302	10.189698	10.075754	10.265451	8
53	9.734744	9.924164	9.810580	10.189420	10.075836	10.265256	7
54	9.734939	9.924083	9.810857	10.189143	10.075917	10.265061	6
55	9.735135	9.924001	9.811134	10.188866	10.075999	10.264865	5
56	9.735330	9.923919	9.811410	10.188590	10.076081	10.264670	4
57	9.735525	9.923837	9.811687	10.188313	10.076163	10.264475	3
58	9.735719	9.923755	9.811964	10.188036	10.076\%45	10.264281	2
59	9.735914	9.923673	9.812241	10.187759	10.076327	10.264086	1
60	9.736109	9.923591	9.812 ¢17	10.187483	10.076409	10.263891	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	
57 Degrees.							

TABLE II.

LOGARTTHMTC SINES, TANGENTS, AND SECANTS.

33 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.736109	9.923591	9.812517	10.187483	10.076409	10.263891	60
1	9.736303	9.923509	9.812794	10.187206	10.076491	10.263697	59
2	9.736498	9.923427	9.813070	10.186930	10.076573	10.263502	58
3	9.736692	9.923345	9.813347	10.186653	10.076655	10.263308	57
4	9736886	9.923263	9.813623	10.186377	10.076737	10.263114	56
5	9.737080	9.923181	9.813899	10.186101	10.076819	10.262920	55
6	9.737274	9.923098	9.814175	10.1858 .25	10.076902	10.262726	54
7	9.737467	9.923016	9.814452	10.185548	10.676984	10.262533	53
8	9.737661	9.922933	9.814728	$10.185 \ddot{272}$	10.077067	10.262339	52
9	9.737855	9.922851	9.815001	10.184996	10.077149	10.262145	51
10	9.738048	9.922768	9.815279	10.184721	10.077232	10.261952	50
11	9.738241	9.922686	9.815555	10.184445	10.017314	10.2617.9	49
12	9.738434	9.922603°	9.815831	10.184169	10.077397	10.261566	48
13	9.738627	9.922520	9816107	10.183893	10.077480	10.261373	47
14	9.738820	9.922438	9.816382	10.183618	10.077562	10.261180	46
15	9.739013	9.922355	9.816658	10.183342	10.077645	10.260987	45
16	9.739206	9.922272	9.816933	10.183067	10.077728	10.260794	44
17	9.739398	9.922189	9.817209	10.182791	10.077811	10.260602	43
18	9.739590	9.922106	9.817484	10.182516	10.077894	10.260410	42
19	9.739783	9.922023	9.817759	10.182241	10.077977	10.260217	41
20	9.739975	9.921940	9818035	10.181965	10.678060	10.260025	40
21	9.740167	9.921857	9.818310	10.181690	10.018143	10.259833	59
22	9.740359	9.921774	9.818585	10.181415	10.078226	10.259641	38
23	9.740550	9.921691	9.818860	10.181140	10.078309	10.259450	37
24	9.740742	9.921607	9.819135	10.180865	11.078393	10.259258	36
25	9.740934	9.921524	9.819410	10.180590	10.078476	10.259066	35
26	9.741125	9.921441	9.819684	10.180316	10.078559	10.258875	34
27	9.741316	9.921357	9.819959	10.180041	10.078643	10.258684	33
28	9.741508	9.921274	9.820234	10.179766	10.078726	10.258492	32
29	9.741699	9.921193	9.820508	10.179492	10.078810	10.258301	31
30	9.741889	9.921107	9820783	10.179217	10.078893	10.258111	30
31	9.742680	9.921023	9.821057	10.178943	$10.07 \cup 977$	10.257920	$\stackrel{9}{ }$
32	9.742271	9.920939	9.821332	10.178668	10.079061	10.257729	28
33	9.742462	9.920856	9.821606	10.178394	10.679144	10.257538	27
34	9.742652	9.920772	9.821880	10.178120	10.679228	10.257348	26
35	9.742842	9.920688	9.822154	10.177846	10.079312	10.257158	25
36	9.743033	9.920604	9.822429	10.177571	10.079396	10.256967	24
37	9.743223	9920520	9.822703	10.177297	10.079480	10.256777	23
38	9.743413	9.920436	9.822977	10.177023	10.079564	10.256587	22
39	9.743602	9.920352	9.823250	10.176750	10.079648	10.256398	21
40	9.743792	9.920268	9.823524	10.176476	10.079782	10.256208	20
41	9.743982	9.920184	9.823748	10.176202	10.079816	10.256018	19
42	9.744171	9.920099	9.824072	10.175928	10.079001	10.255829	18
43	9.744361	9.920015	9.824345	10.175655	10.079985	10.255639	17
44	9.744550	9.919931	9.824619	10.175381	10.080069	10.255450	16
45	9.744739	9.919846	9824893	10.175107	10.080154	10.255261	15
46	9.741928	9.919762	9.825166	10.174834	10.080238	10.255072	14
47	9.745117	9.919677	9.825439	10.174561	10.080323	10.254883	13
48	9.745306	9.919593	9.825713	10.174287	10.080407	10.254694	12
49	9.745494	9.919508	9.825986	10.174014	10.080492	10.254506	11
50	9.745683	9.919424	9.826259	10.173741	10.080576	10.254317	10
51	9.745871	9.919339	9.826532	10.173468	10.080661	10.254129	9
52	9.746060	9.919254	9.826805	10.173195	10.080746	10.253940	8
53	9.746248	9.919169	9.827078	10.172922	10.080831	10.25:752	7
54	9.746436	9.919085	9.827351	10.172649	10.080915	10.253564	6
55	9.746624	9.919000	9.827624	10.172376	10.081000	10.253376	5
56	9.746812	9.918915	9.827897	10.172103	10.081085	10.253188	4
57	9.746999	9.918830	9.828170	10.171830	10.081170	10.253001	3
58	9.747187	9.918745	9.828442	10.171558	10.081255	10.252813	2
59	9.747374	9.918659	9.828715	10.171285	10.081341	10.252626	1
60	9.747562	$9.91857 \pm$	9.828987	10.171013	10.081426	10.252438	0
M.	Co-sine.	Sine.	Co-tang.	'I'angent.	Co-sec.	Secant.	M.
56 Degrees.							

TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SECANTS.
34 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
u	9.747562	9.918574	9.828987	10.171013	10.081426	10.252438	S0
1	9.747749	9.918489	9.829260	10.170740	10.081511	10.252251	59
2	9.747936	9.918404	9.829532	10.170468	10.081596	10.252064	8
3	9.748123	9.918318	9.829805	10.170195	10.081682	10.251877	57
4	9.748310	9.918233	9.830077	10.169923	10.081767	10.251690	56
5	9.748497	9.918147	9.830349	10.169651	10.081853	10.251503	55
6	9.748683	9.918062	9.830621	10.169379	10.081938	10.251317	54
7	9.748870	9.917976	9.830893	10.169107	10.082024	10.251130	53
8	9.749056	9.917891	9.831165	10.168835	11.082169	10.250944	52
	9.749243	9.917805	9.831437	10.168563	10.082195	10.250757	51
10	9.749429	9.917719	9.831709	10.168291	10.08:2281	10.250571	50
11	9.749615	9.917634	9.831981	10.168019	10082366	10.250385	49
12	9.749801	9.917548	9.832253	10.167747	10.082452	10.250199	48
13	9.749987	9.917462	9.832525	10.167475	10.08:2538	10.250013	47
14	9.750172	9.917376	9.832796	10.167204	10.082624	10.249828	46
15	9.750358	9.917290	9.833068	10.166932	10.082710	10.219642	45
16	9.750543	9.917204	9.833339	10.166661	10.082796	10.249457	44
17	9.750729	9.917118	9.833611	10.166389	10.082882	10.249271	43
18	9.750914	9.917032	9.833882	10.166118	10.082968	10.249086	42
19	9.751099	9.916946	9.834154	10.165846	10.083054	10.248901	41
20	9.751284	9.916859	9.834425	10.165575	10.083141	10.248716	40
21	9.751469	9.916773	9.834696	10.165304	10.043427	10.248531	39
22	9.751654	9.916687	9.834967	10.165033	10.083313	10.248346	38
23	9.751839	9.916600	9.835238	10.164762	10.083100	10.248161	37
24	9.752023	9.916514	9.835509	10.164491	10.083486	10.247977	36
25	9.752208	9.916427	9.835780	10.164220	10.083573	10.247792	35
26	9.752392	9. 916341	9.836051	10.163949	10.083659	10.247608	34
27	9.752576	9.916254	9.836322	10.163678	10.083746	10.247424	33
28	9.752760	9916167	9.836593	10.163107	10.083833	10.247240	32
29	9.752944	9.916081	9.836864	10.163136	10.083919	10.247056	31
30	9.753128	9.915994	9.837134	10.162866	10.081006	10.246872	30
31	9.753312	9.915907	9.837405	10.162595	10.081093	10.246688	4
32	9.753495	9.915820	9.837675	10.162325	10.084180	10.246505	28
	9.753679	9.915733	9.837946	10.162054	10.084267	10.245321	27
34	9.753862	9.915646	9.838216	10.161784	10.084354	10.246138	26
35	9.754046	9.915559	9.838487	10.161513	10.084441	10.245954	25
36	9.754229	9.915472	9.838757	10.161243	10.081528	10.245771	24
37	9.754412	9.915385	9.839027	10.160973	10.084615	10.245588	23
38	9.754595	9.915297	9.839297	10.169703	10.084703	10.245405	22
39	9.754778	9.915210	9.839568	10.160432	10.084790	10.245222	21
40	9.754960	9.915123	9.839838	10.160162	10.081877	10.245040	20
41	9.755143	9.915035	9.840108	10.159892	10.084965	10.244857	19
42	9.755326	9.914948	9840378	10.159622	10.085052	10.244674	18
43	9.755508	9.914860	9.810617	10.159353	10.085140	10.244492	17
44	9755690	9.914773	9840917	10.159083	10.685227	10.244310	16
45	9.755872	9.914685	9.841187	10.158813	10.085315	10.244128	15
46	9.756054	9.914598	9841457	10.158543	10.085402	10.243946	14
47	9.756236	9.914510	9.841726	10.158274	10.085490	10.243764	13
48	9.756418	9.914422	9.841996	10.158004	10.085578	10.243582	12
49	9.756600	9.914334	9.842266	10.157734	10.085666	10.243400	11
50	9.756782	9.914246	9.842535	10.157465	10.085754	10.243218	10
51	9.756963	9.914158	9.842805	10.157195	10.085842	10.243037	9
52	9.757144	9.914070	9.843074	10.156926	10.085930	10.242856	8
53	9.757326	9.913982	9.843343	10.156657	10.086018	10.242674	7
54	9.757507	9.913894	9.843612	10.156388	10.086106	10.242493	6
55	9.757688	9.913806	9.843882	10.156118	10.086194	10.242312	5
56	9.757869	9.913718	9.844151	10.155849	10.086282	10.242131	4
57	9.758050	9.913630	9.841420	10.155580	10.086370	10.241950	3
58	9.758230	9.913541	9.844689	10.155311	10.086459	10.241770	2
59	9.758411	9.913453	9.844958	10.155042	10.086547	10.241589	1
60	9758591	9913365	9.845227	10.154773	10.086635	10.241409	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	m.
55 Degrees.							

178		TABLE II. LOGARITHMIC SIGNS, TANGENTS			ND SECANTS.		
35 Degrees.							
Mr.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.758591	9.91336	9.845×27	10.154773	10.08663	10.241409	60
1	9.758772	9913276	9.845496	10.154504	10.086724	10.241228	59
2	9.758952	9.913187	9.845764	10.154236	10.086813	10.241048	58
3	9.759132	9.913099	9.846033	10.153967	10.086901	10.240868	57
4	9759312	9.913010	9.846302	10.153698	10.086990	10.240688	56
5	9.759492	9.912922	9.846570	10.153430	10.037078	10.240508	55
6	9.759672	9.912833	9.846839	10.153161	10.087167	10.240328	54
7	9.759852	9.912744	9.847107	10.152893	10.087256	10.240148	53
8	9.760031	9.912655	9.847376	10.152624	10.087345	10.239969	52
9	9.760211	9.912566	9.847644	10.152356	10.087434	10.239789	51
10	9.760390	9.912477	9.847913	10.152087	10.087523	10.239610	50
11	9.760569	9.912388	9.848181	10.151819	10.087612	10.239431	49
12	9.760748	9.912299	9.848449	10.151551	10.087701	10.239252	48
13	9.760927	9.912210	9.848717	10.151283	10.087790	10.239073	47
14	9.761106	9.912121	9.848986	10.151014	10.087879	10.238894	46
15	9.761285	9.912031	9.849254	10.150746	10.087969	10.238715	45
16	9.761464	9.911942	9.849522	10.150478	10.088058	10.238536	44
17	9.761642	9911853	9.849790	10.150210	10.088147	10.238358	43
18	9.761821	9.911763	9.850058	10.149942	10.088237	10.238179	42
19	9.761999	9.911674	9.850325	10.149675	10.088326	10.238001	41
20	9.762177	9.911584	9.850593	10.149407	10.088416	10.237823	40
21	9.76235	9.9114	9.85086	10.14	10.0888505	10.2	39
22	9.762534	9.911405	9.851129	10.148871	10.088595	10.23746	38
23	9.762712	9.911315	9.851396	10.148604	10.088685	10.237288	37
24	9.762889	9.911226	9.851664	10.148336	10.088774	10.237111	36
25	9.763067	9.911136	9.851931	10.148069	10.088864	10.236933	35
26	9763245	9.911046	9.852199	10.147801	10.088954	10.236755	34
27	9.763422	9.910956	9852466	10.147534	10.089044	10.236578	33
28	9.763600	9.910866	9.852733	10.147267	10.089134	10.236400	32
29	9.763777	9.910776	9.853001	10.146999	10.089224	10.236223	31
30	9.763954	9.910686	9.853268	10.146732	10.089314	10.236046	30
31	9.764131	9.910596	9.853535	10.146465	10.089404	10.2355869	29
32	9.764308	9.910506	9.853802	10.146198	10.089494	10.235692	28
33	9.764485	9.910415	9.854069	10.145931	10.089585	10.235515	27
34	9.764662	9.910325	9.854336	10.145664	10.089675	10.235338	26
35	9.764838	9.910235	9.854603	10.145397	10.089765	10.235162	25
36	9.765015	9.910144	9.854870	10.145130	10.089856	10.234985	24
37	9.765191	9.910054	9.855137	10.144863	10.089946	10.234809	23
38	9.765367	9.909963	9.855404	10.144596	10.090037	10.234633	22
39	9.765544	9.909873	9.855671	10.144329	10.090127	10.234456	21
40	9.765720	9.909782	9.855938	10.144062	10.090218	10.234280	20
41	9.765896	9.909691	9.856204	10.143796	10.090309	10.234104	19
42	9.766072	9.909601	9.856471	10.143529	10.090399	10.233928	18
43	9.766247	9.909510	9.856737	10.143263	10.090490	10.233753	17
44	9.766423	9.909419	9.857004	10.142996	10.090581	10.233577	16
45	9.766598	9.909328	9.857270	10.142730	10.090672	10.233402	15
46	9.766774	9.909237	9.857537	10.142463	10.090763	10.233226	14
47	9.766949	9.909146	9.857803	10.142197	10.090854	10.233051	13
48	9.767124	9.909055	9.858069	10.141931	10.090945	10.232876	12
49	9.767300	9.908964	9.858336	10.141664	10.091036	10.232700	11
50	9.767475	9.908873	9.858602	10.141398	10.091127	10.232525	10
51	9.767649	9.908781	9.858868	10.141132	10.091219	10.23\%351	
52	9.767824	9.908690	9.859134	10.140866	10.091310	10.232176	8
53	9.767999	9.908599	9.859400	10.140600	10.091401	10.232001	7
54	9.768173	9.908507	9.859666	10.140334	10.091493	10.231827	6
55	9.768348	9.908416	9.859932	10.140068	10.091584	10.231652	5
56	9.768522	9.908324	9.860198	10.139802	10.091676	10.231478	4
57	9.768697	9.908233	9.860464	10.139536	10.091767	10.231303	3
58	9.768871	9.908141	9.860730	10.139270	10.091859	10.231129	2
59	9.769045	9.908049	9.860995	10.139005	10.091951	10.230955	1
60	9.769219	9.907958	9.861261	10.138739	10.092042	10.230781	0
Co-sine.		Sine.	tang.	'Tangent.	Co-sec.	Secant.	.
54 Degrees.							

LOGARITHMIO SINES, TANGENTS, AND SECANTS.
36 Degrees.

36 Degrees.							
m.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	3r.
0	9.769219	9.907958	9.861261	10.138739	10.092042	10.230781	0
1	9.769393	9.907866	9.861527	10.138473	10.092134	10.230607	59
2	9.769566	9.907774	9.861792	10.138208	10.092226	10.230434	58
3	9.769740	9.907682	9.8620 \% 8	10.137942	10.092318	10.230260	57
4	9.769913	9.907590	9.862323	10.137677	10.092410	10.230087	56
5	9.770087	9.907498	9.862589	10.137411	10.092502	10.229913	55
6	9.77 (1260	9.907406	9.862854	10.137146	10.092594	10.229740	54
7	9.770433	9.907314	9.863119	10.136881	10.092686	10.229567	53
8	9.770606	9.907222	9.863385	10.136615	10.092778	10.229394	52
9	9.770779	9.907129	9.863650	10.136350	10.092871	10.229221	50
10	9.770952	9.907037	9.863915	10.136085	10.092963	10.229048	50
11	9.771125	9.906945	9.864180	10.135820	10.093055	10.228875	49
12	9.771298	9.906852	9.864445	10.135555	10.093148	10.228702	48
13	9.771470	9.906760	9.864710	10.135290	10.093240	10.228530	47
14	9.771643	9.906667	9.864975	10.135025	10.093333	10.228357	46
15	9.771815	9.906575	9.865240	10.134760	10.093425	10.228185	45
16	9.771987	9.906482	9.865505	10.134495	10.093518	10.228013	44
17	9.772159	9.906389	9.865770	10.134230	10.093611	10.227841	43
18	9.772331	9.906296	9.866035	10.133965	10.093704	10.227669	42
19	9.772503	9.906204	9.866300	10.133700	10.093796	10.227497	41
20	9.772675	9.906111	9.866564	10.133436	10.093889	10.227325	40
21	9.7728 ± 7	9.906018	9.866829	10.133171	10.093988	10.2271	39
22	9.773018	9.905925	9.867094	10.132906	10.094075	10.226982	38
23	9.773190	9.905832	9.867358	10.132642	10.094168	10.226810	37
24	9.773361	9.905739	9867623	10.132377	10.094261	10.226639	36
25	9.773533	9.905645	9.867887	10.132113	10.094355	10.226467	35
26	9.773704	9.905552	9.868152	10.131848	10.094448	10.226296	34
27	9.773875	9.905459	9.868416	10.131584	10.094541	10.226125	33
28	9.774046	9.905366	9.868680	10.131320	10.094634	10.225954	32
29	9.771217	9.905272	9.868945	10.131055	10.094728	10.225783	31
30	9.774388	9.905179	9.869209	10.130791	10.094821	10.225612	30
31	9.774558	9.905085	9.869473	10.130527	10.094915	10.225442	
32	9.774729	9.904992	9.869737	10.130263	10.095008	10.225271	28
33	9.774899	9.904898	9.870001	10.129999	10.095102	10.225101	27
34	9.775070	9.904804	9.870265	10.129735	10.095196	10.224930	26
35	9.775240	9.904711	9.870529	10.129471	10.095289	10.224760	25
36	9.775410	9.904617	9.870793	10.129207	10.095383	10.224590	24
37	9.775580	9.904523	9.871057	10.128943	10.095477	10.224420	23
38	9.775750	9:904429	9.871321	10.128679	10.095571	10.224250	22
39	9.775920	9.904335	9.871585	10.128415	10.095665	10.224080	21
40	9.776090	9.904241	9.871849	10.128151	10.095759	10.223910	20
41	9.776259	9.904147	9.87×112	10.127088	10.095853	10.223741	19
42	9.776429	9.904053	9.872376	10.127624	10.095947	10.223571	
43	9.776598	9.903959	9872640	10.127360	10.096041	10.223402	17
44	9.776768	9.903864	9872903	10.127097	10.096136	10.223232	16
45	9.776937	9.903770	9.873167	10.126833	10.096230	10.223063	15
46	9.777106	9.903676	9.873430	10.126570	10.096324	10.222894	14
47	9.777275	9.903581	9.873694	10.126306	10.096419	10.222725	13
48	9.777444	9.903487	9.873957	10.126043	10.096513	10.222556	12
49	9.777613	9.903392	9.874220	10.125780	10.096608	10.222387	11
50	9.777781	9.903298	9.874484	10.125516	10.096702	10.222219	10
51	9.777950	9.903203	9.874747	10.125253	10.096797	10.222050	
52	9.778119	9.903108	9.875010	10.124990	10.096892	10.221881	8
53	9.778287	9.903014	9.8752 i 3	10.124727	10.096986	10.221713	7
54	9.778455	9.902919	9.875536	10.124464	10.097081	10.221545	6
55	9.778624	9.902824	9.875800	10.124200	10.097176	10.221376	5
56	9.778792	9.902729	9.876063	10.123937	10.097271	10.221208	
57	9.778960	9.902634	9.876326	10.123674	10.097366	10.221040	3
58	9.779128	9.902539	9.876589	10.123411	10.097461	10.220872	2
59	9.779295	9.902444	9.876851	10.123149	10.097556	10.220705	1
60	9.779463	9.902349	9.8 77114	10.122886	10.097651	10.220537	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	m.
53 Degrces.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

37 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.779463	9.902349	9.877114	10122886	10.097651	10.220537	60
1	9.779631	9.902253	9.877377	10.122623	10.097747	10.220369	59
2	9.779798	9.902158	9.877640	10.122360	10.097842	10.220202	58
3	9.779966	9.902063	9.877903	10.122097	10.097937	10.220034	57
4	9780133	9.901967	9.878165	10.121835	10.098033	10.219867	56
5	9.780300	$\cdot 9.901872$	9.878428	10.121572	10.099128	10.219700	55
6	9.780467	9.901776	9.878691	10.121309	10.098224	10.219533	54
7	9.780631	9.901681	9.878953	10.121047	10.098319	10.219366	53
8	9.780801	9.901585	9.879216	10.120784	10.098415	10.219199	52
9	9.780968	9.901490	9.879478	10.120522	10.098510	10.219032	51
10	9.781134	9.901394	9879741	10.120259	10.098606	10.218866	50
11	9.781301	Y 901298	9.880003	10.119997	10.098702	10.218699	49
12	9781468	9.901202	9.880265	10.119735	10.098798	10.218532	48
13	9.781634	9.901106	9.880528	10.119472	10.098894	10.218366	47
14	9.781800	9901010	9.880790	10.119210	10.098990	10.218200	46
15	9 781966	9.900914	9.881052	10.118948	10.099086	10.218034	45
16	9.782132	9.900818	9.881314	10.118686	10.099182	10.217868	44
17	9.782298	9900722	9.881576	10.118424	10.099278	10.217702	43
18	9.782464	9.900626	9.881839	10.118161	10.099374	10.217536	42
19	9.782630	9.9005229	9.882101	10.117899	10.099471	10.217370	41
20	9.782796	9.900433	9.882363	10.117637	10.099567	10.217204	40
21	リ.782961	9.900337	9.882625	10.117375	10.099663	10.217089	39
22	9.783127	9.900240	9.882887	10.117113	10.099760	10.216873	38
23	9.783292	9.900144	9.883148	10.116852	10.099856	10.216708	37
24	9.783458	9.900047	9.883410	10.116590	10.099953	10.216542	36
25	9.783623	9899951	9.883672	10.116328	10.100049	10.216377	35
26	9.783788	9.899854	9.883934	10.116066	10.100146	10.216212	34
27	9.783953	9.899757	9.884196	10.115804	10.100243	10.216047	33
28	9.784118	9.899660	9.884457	10.115543	10.100340	10.215882	32
29	9.784282	9.899564	9.884719	10.115281	10.100436	10.215718	31
30	9.784447	9.899467	9.884980	10.115020	10.100533	10.215553	30
31	9.784612	9.899370	9.885242	10.114758	10.100630	10.215388	29
32	9.784776	9.899273	9855503	10.114497	10.100727	10.215224	28
33	9.784941	9.899176	9.885765	10.114235	10.100824	10.215059	27
34	9.785105	9.899078	9.886026	10.113974	10.100922	10.214895	26
35	9785269	9.898981	9.886288	10.113712	10.101019	10.214731	25
36	9.785433	9.898884	9.886549	10.113451	10.101116	10.214567	24
37	9.785597	9898787	9.886810	10.113190	10.101213	10.214403	23
38	9.785761	9.898689	9.887072	10.112928	10.101311	10.214239	22
39	9.785925	9.898592	9.887333	10.112667	10.101408	10.214075	21
40	9.786089	9.898494	9.887594	10.112406	10.101506	10.213911	20
41	9.786252	9.898397	9.887855	10.112145	10.101603	10.213748	19
42	9.786416	9.898299	9.888116	10.111884	10.101701	10.213584	18
43	9.786579	9.898202	9.888377	10.111623	10.101798	10.213421	17
44	9.786742	9.898104	9888639	10.111361	10.101896	10.213258	16
45	9.786906	9.898006	9.888900	10.111100	10.101994	10.213094	15
46	9.787069	9.897908	9.889160	10.110840	10.102092	10.212931	14
47	9.787232	9.897810	9.889421	10.110579	10.102190	10.212768	13
48	9.787395	9.897712	9.889682	10.110318	10.102288	10.212605	12
49	9.787557	9.897614	9.889943	10.110057	10.102386	10.212443	11
50	9.787720	9.897516	9.890204	10.109796	10.102484	10.212280	10
51	9.787883	9.897418	9.890465	10.109535	10.102582	10.212117	9
52	9.788045	9.897320	9.890725	10.109275	10.102680	10.211955	8
53	9.788208	9.897222	9.890986	10.109014	10.102778	10.211792	7
54	9.788370	9.897123	9.891247	10.108753	10.102877	10.211630	6
55	9.788532	9.897025	9.891507	10.108193	10.102975	10.211468	5
56	9.788694	9.896926	9.891768	10.108232	10.103074	10.211306	4
57	9.788856	9896828	9.892028	10.107972	10.103172	10.211144	3
58	9.789018	9.896729	9.822289	10.107711	10.103271	10.210982	2
59	9.789180	9.896631	9.892549	10.107451	10.103369	10.210820	1
60	9.789342	9.896532	9.892810	10.107190	10.103468	10.210658	0
M.	Co-sine.	Sine.	Co-tang.	'langent.	Co-sec.	Secant.	M.
$5: 8$ vegrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.
38 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.789332	9.89053 .2	9.892810	10.107190	10.103468	10.210658	60
1	9.789504	9.896433	9.893070	10.106930	10.103567	10.210496	59
2	9.789665	9.896335	9.893331	10.106669	10.103665	10.210335	8
3	9.789827	9.896:36	9.893591	10.106409	10.103764	10.210173	57
4	9.789988	9.896137	9.893851	10.106149	10.103863	10.210012	56
5	9.790149	9.896038	9.894111	10.105889	10.103962	10.209851	55
6	9.790310	9.895939	9.894371	10.105629	10.104061	10.209690	54
7	9.790471	9.895840	9.894632	10.105368	10.104160	10.209529	53
8	9.790632	9895741	9.844892	10.105108	10.104259	10.209368	52
9	9.790793	$9.89 \overline{5} 641$	9.895152	10.104848	10.104359	10.209207	51
10	9.790954	9.895542	9.895412	10.104588	10.104458	10.209046	50
11	9.791115	9895443	9.895672	10.104328	10.104557	10.208885	49
12	9.791275	9.895313	9.895932	10.104068	10.104657	10.208725	48
13	9.791436	9.89 ¢ั244	9.896192	10.103808	10.104756	10.208564	47
14	9.791596	9.895145	9.896452	10.103548	10.104855	10.208404	46
15	9.791757	9.895045	9.896712	10.103288	10.104955	10.208243	45
16	9.791917	9.894945	9.896971	10.103029	10.105055	10.208083	44
17	9.792077	9.894846	9.897231	10.102769	10.105154	10.207923	43
18	9.792237	9.894746	9.897491	10.102509	10.105254	10.207763	42
19	9.792397	9.894646	9.897751	10.102249	10.105354	10.207603	41
20	9.792557	9.894546	9.898010	10.101990	10.105454	10.207443	40
21	9.744716	9.894446	9.898270	10.101730	10.105554	10.207284	39
22	9.792876	9.894346	9.898530	10.101470	10.105654	10.207124	38
23	9.793035	9.894246	9.898789	10.101211	10.105754	10.206965	37
24	9.793195	9.894146	9.899049	10.100951	10.105854	10.206805	36
25	9.793354	9.891046	9.899308	10.100692	10.105954	10.206646	35
26	9.793514	9.893946	9.899568	10.100432	10.106054	10.206486	34
27	9.793673	9.893846	9899827	10.100173	10.106154	10.206327	33
28	9.793832	9.893745	9.900086	10.099914	10.106255	10.206168	32
29	9.793991	9.893645	9.900346	10.099654	10.106355	10.206009	31
30	9.794150	9.893544	9.900605	10.099395	10.106456	10.205850	30
31	9794308	9.893444	9.900864	11.099136	10.106556	10.205692	29
32	9.794467	9.893343	9.901124	10.098876	10.106657	10.205533	28
33	9.794626	9.893243	9.901383	10.098617	10.106757	10.205374	27
34	9.794784	9.893142	9.901642	10.098358	10.106858	10.205216	26
35	9.794942	9.893041	9.901901	10.098099	10.106959	10.205058	25
36	9.795101	9.892940	9.902160	10.097840	10.107060	10.264899	24
37	9.795259	9.892839	9.902419	10.097581	10.107161	10.204741	23
38	9.795417	9892739	9.902679	10.097321	10.107261	10.204583	22
39	9.795575	9.892638	9.902938	10.097062	10.107362	10.204425	21
40	9.795733	9.892536	9.903197	10.096803	10.107464	10.204267	20
	9795591	9.89243	9.903455	10.096545	10.107565	10.204109	
42	9.796049	9.892334	9.903714	10.096286	10.107666	10.203951	18
43	9,796206	9.892233	9.903973	10.096027	10.107767	10.203794	17
44	9.796364	9.892132	9.904232	10.095768	10.107868	10.203636	16
45	9.796521	9.892030	9.904491	10.095509	10.107970	10.203479	15
46	9.796679	9.891929	9.904750	10.095250	10.108071	10.203321	14
47	9.796836	9.891827	9.905008	10.094992	10.108173	10.203164	13
48	9.796993	9.891726	9.905267	10.094733	10.108274	10.203007	12
49	9.797150	9.891624	9.905526	10.094474	10.108376	10.202850	11
50	9.797307	9.891523	9.905784	10.094216	10.108477	10.202693	10
51	9.797464	9.891421	9.906043	10.093957	10.108579	10.202536	9
52	9.797621	9.891319	9.906302	10.093698	10.108681	10.202379	8
53	9.797777	9.891217	9.906560	10.093440	10.108783	10.202223	7
54	9.797934	9.891115	9.906819	10.093181	10.108885	10.202066	6
55	9.798091	9.891013	9.907077	10.092923	10.108987	10.201909	5
56	9.798247	9.890911	9.907336	10.092664	10.109089	10.201753	4
57	9.798403	9.890809	9.907591	10.092406	10.109191	10.201597	3
58	9.798560	9.890707	9.907852	10.092148	10.109293	10.201440	2
59	9.798716	9.890605	9.908111	10.091889	10.109395	10.201284	1
60	9.798872	9.890503	9.908369	10.091631	10.109497	10.201128	0
M.	Co-sine.	Sine.	Co-tang.	'Iangent.	Co-sec.	Secant.	M.
51 Degrees.							

182		TABLE II. LOGARITHMTC SINES, TANGENTS,			nd secants.		
39 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	Y. 798872	9.890503	9.908369	10.091631	10.109497	10.201128	60
1	9.799028	9.890400	9.908628	10.091372	10.109600	10.200972	. 59
2	9799184	9.890298	9.908886	10.091114	10.109702	10.200816	58
3	9.799339	9.890195	9.909144	10.090856	10.109805	10.200661	57
4	9799495	9890093	9.909402	10.090598	10.109907	10.200505	56
5	9.799651	9.889990	9909660	10.090340	10.110010	10.200349	55
6	9.799806	9.889888	9.909918	10.090082	10.110112	10.200194	54
7	9.799962	9.889785	9.910177	10.089823	10.110215	10.200038	53
8	9.800117	9.889682	9.910435	10.089565	10.110318	10.199883	52
9	9.800272	9.889579	9.910693	10.089307	10.110421	10.199728	51
10	9.800427	9.889477	9.910951	10.089049	10.110523	10.199573	50
11	9.800582	9.880374	9.911209	10.088791	10.110626	10.199418	49
12	9.800737	9.889271	9.911467	10.088533	10.110729	10.199263	48
13	9.800892	9.889168	9.911724	10.088276	10.110832	10.199108	47
14	9.801047	9.889064	9911982	10.088018	10.110936	10.198953	46
15	9.801201	9.888961	9.912240	10.087760	10.111039	10.198799	45
16	9.801356	9.888858	9.912498	10.087502	10.111142	10.198644	44
17	9.801511	9.888755	9.912756	10.087244	10.111245	10.198489	43
18	9.801665	9.888651	9913014	10.086986	10.111349	10.198335	42
19	9.801819	9.888548	9.913271	10.086729	10.111452	10.198181	41
20	9.801973	9.888444	9913529	10.086471	10.111556	10.198027	40
21	9.80:128	9.888341	9.913787	10.086213	10.111659	10.197872	39
22	9.802282	9.888237°	9.914044	10.085956	10.111763	10.197718	
23	9.802436	9.888134	9.914302	10.085698	10.111866	10.197564	37
24	9.802589	9.888030	9.914560	10.085440	10.111970	10.197411	36
25	9.802743	9.887926	9.914817	10.085183	10.112074	10.197257	35
26	9.802897	9.887822	9.915075	10.084925	10.112178	10.197103	34
27	9.803050	9.887718	9.915332	10.084668	10.112282	10.196950	33
28	9.803204	9.887614	9.915590	10.084410	10.112386	10.196796	32
29	9.803357	9.887510	9.915847	10.084153	10.112490	10.196643	31
30	9.803511	9.887406	9.916104	10.083896	10.112594	10.196489	30
31	9.803664	9.887302	9.916362	10.083638	10.112698	10.196336	29
32	9.803817	9.887198	9.916619	10.083381	10.112802	10.196183	28
33	9.803970	9.887093	9.916877	10.083123	10.112907	10.196030	27
34	9.804123	9.886989	9.917134	10.052866	10.113011	10.195877	26
35	9.804276	9.886885	9.917391	10.082509	10.113115	10.195724	25
36	9.804428	9.886780	9.917648	10.082352	10.113220	10.195572	24
37	9.804581	9886676	9.917905	10.082095	10.113324	10.195419	23
38	9.804734	9.8865i1	9.918163	10.081837	10.113429	10.195266	22
39	9.804886	9.886466	9.918420	10.081580	10.113534	10.195114	21
40	9.805039	9.886362	9.918677	10.081323	10.113638	10.194961	20
41	9.805191	9.886:257	9.918934	10.081066	10.113743	10.194809	19
42	9.805343	9886152	9.919191	10.080809	10.113848	10.194657	18
43	9.805495	9.886047	9.919448	10.080552	10.1139 د̄3	10.194505	17
44	9.805647	9.885942	9.919705	10.080295	10.114058	10.194353	16
45	9.805799	9.885837	9.919062	10.080038	10.114163	10.194201	15
46	9.805951	9.885732	9.920219	10.079781	10.114268	10.194049	14
47	9.806103	9.885627	9.920476	10.079524	10.114373	10.193897	13
48	9.806254	9.885522	9.920733	10.079267	10.114478	10.193746	12
49	9.806406	9.885416	9.920990	10.079010	10.114584	10.193594	11
50	9806557	9.885311	9.921247	10.078753	10.114689	10.193443	10
51	9.806709	9.885205	9.921503	10.078497	10.114795	10.193291	9
52	9.806860	9.885100	9.921760	10.078240	10.114900	10.193140	8
53	9.807011	9.884994	9.922017	10.077983	10.115006	10.192989	7
54	9.807163	9.884889	9.922274	10.077726	10.115111	10.192837	6
55	9.807314	9.884783	9.922530	10.077470	10.115217	10.192686	5
56	9.807465	9.884677	9.922787	10.077213	10.115323	10.192535	4
57	9.807615	9.884572	9.923044	10.076956	10.115428	10.192385	3
58	9.807766	9.884466	9.923300	10.076700	10.115534	10.192234	2
59	9.807917	9.884360	9.923557	10.076443	10.115640	10.192083	1
60	9.808067	9.884254	9.923813	10.076187	10.115746	10.191933	0
M	Co-sine.	Sine.	Co-tang.	Tangeni.	Co-sec.	Secant.	м.
50 Degrees.							

TABLE II.

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

40 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.808067	9.884254	9.923813	10.076187	10.115746	10.191933	60
1	9.808218	9.884148	9.924070	10.075930	10.115852	10.191782	E9
2	9.808368	9.884042	9.924327	10.075673	10.115958	10.191632	58
3	9.808519	9.883936	9.934583	10.075417	10.116064	10.191481	57
4	9.808669	9.883829	9.924840	10.075160	10.116171	10.191331	56
5	9.808819	9.883723	9.925096	10.074904	10116277	10.191181	55
6	9.808969	9.883617	9.925352	10.074648	10.116383	10.191031	54
7	9.809119	9.883510	9.925609	10.074391	10.116490	10.190881	53
8	9.809269	9.883404	9.925865	10.074135	11.116596	10.190731	52
9	9.809419	9.883297	9.926122	10.073878	10.116703	10.190581	51
10	9.809569	9.883191	9.926378	10.073622	10.116809	10.190431	50
11	9.809718	9.883084	9.926634	10.073366	10.116916	10.190282	49
12	9.809868	9.882977	9.926890	10.073110	10.117023	10.190132	48
13	9.810017	9.882871	9.927147	10.072853	10.117129	10.189983	47
14	9.810167	9.882764	9.927403	10.072597	10.117236	10.189833	46
15	9.810316	9.882657	9.927659	10.072341	10.117343	10.189684	45
16	9.810465	9.882550	9.927915	10.072085	10.117450	10.189535	44
17	9.810614	9.882443	9.928171	10.071829	10.117557	10.189386	43
18	9.810763	9.882336	9.928427	10.071573	10.117664	10.189237	42
19	9.810912	9.882229	9.928683	10.071317	10.117771	10.189088	41
20	9.811061	9.882121	9.928940	10.071060	10.117879	10.188939	40
21	9.811210	9.882014	9.929196	10.070804	10.117986	10.188790	39
22	9.811358	9.881907	9.929452	10.070 - 48	10.118093	10.188642	38
23	9.811507	9.881799	9.929708	10.070292	10.118201	10.188493	37
24	9.811655	9.881692	9.929964	10.070036	10.118308	10.188345	36
25	9.811804	9.881584	9.930220	10.069780	10.118416	10.188196	35
26	9.811952	9.881477	9.930475	10.069525	10.118523	10.188048	34
27	9.812100	9.881369	9.930731	10.069269	10.118631	10.187900	33
28	9.812248	9.881261	9.930987	10.069013	10.118739	10.187752	32
29	9.812396	9.881153	9.931243	10.068757	10.118847	10.187604	31
30	9.812544	9.881046	9.931499	10068501	10.118954	10.187456	30
31	9.812692	9.880938	9.931755	10.068245	10.119062	10.187308	¢9
32	9.812840	9.880830	9.932010	10.067990	10.119170	10.187160	28
33	9.812988	9.880722	9.932266	10.067734	10.119278	10.187012	27
34	9.813135	9.880613	9.932522	10.067478	10.119387	10.186865	26
35	9.813283	9.880505	9.932778	10.067222	10.119495	10.186:17	25
36	9.813430	9.880397	9.933033	10.066967	10.119603	10.186570	24
37	9.813578	9.880289	9.933289	10.066711	10.119711	10.186422	23
38	9.813725	9.880180	9.933545	10.066455	10.119820	$10.1862 \overline{5}$	22
39	9.813872	9.880072	9.933800	10.065200	10.119928	10.186128	21
40	9.814019	9.879963	9.934056	10.065944	10.120037	10.185981	20
41	9.814166	9.879855	9.934311	10.065689	10.120145	10.185834	19
42	9.814313	9.879746	9934567	10.065433	10.120254	10.185687	18
43	9.814460	9.879637	9.934823	10.065177	10.120363	10.185540	17
44	9814607	9.879529	9935078	10.064922	10.120471	10.185393	16
45	9.814753	9.879420	9.935333	10.064667	10.120550	10.185247	15
46	9.814900	9.879311	9935589	10.064411	10.120689	10.185100	14
47	9.815046	9.879202	9.935844	10.064156	10.120798	10.184954	13
48	9.815193	9.879093	9.936100	10.063900	10.120907	10.184807	12
49	9.815339	9.878984	9.936355	10.063645	10.121016	10.184661	11
50	9.815485	9.878875	9.936610	10.063390	10.121125	10.184515	10
51	9.815632	9.878766	9.936866	10.063134	10.121234	10.184368	9
52	9.815778	9.878656	- 9.937121	10.062879	10.121344	10.184222	8
53	9.815924	9.878547	9.937376	10.062624	10.121453	10.184076	7
54	9.816069	9.878438	9.937632	10.062368	10.121562	10.183931	6
55	9.816215	9.878328	9.937887	10.062113	10.121672	10.183785	5
56	9.816361	9.878219	9.938142	10.061858	10.121781	10.183639	4
57	9.816507	9.878109	9.938398	10.061602	10.121891	10.183493	3
58	9.816652	9.877999	9.938653	10.061347	10.122001	10.183348	2
59	9.816798	9.877890	9.938908	10.061092	10.122110	10.183202	1
60	9816943	9877780	9.939163	10.060837	10.122220	10.183057	0
M.	Co-sine.	Sine.	Co-tang.	'langent.	Co-sec.	Secant.	3 H .
49 Degrees.							

LOGARITHMIC SINES, TANGENTS, AND SECANTS.

41 Degrees.							
M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	m.
0	9.816943	9.877780	9.939163	10.060837	10.12222 0	10.183057	S0
1	9.817088	9.877670	9.939418	10.060582	10.122330	10.182912	59
2	9.817233	9.877560	9.939673	10.060327	10.122440	10.182767	58
3	9.817379	9.877450	9.939928	10.060072	10.122550	10.182621	57
4	9.817524	9.877340	9.940183	10.059817	10.122660	10.182476	56
5	9.817668	9.877230	9.940438	10.059562	10.122770	10.182332	55
6	9.817813	9.877120	9.940694	10.059306	10.122880	10.182187	54
7	9.817958	9.877010	9.940949	10.059051	10.122990	10.182042	53
8	9.818103	9.876899	9.941204	10.058796	10.123101	10.181897	52
9	9.818247	9.876789	9.941458	10.058542	10.123211	10.181753	51
10	9.818392	9.876678	9.941714	10.058286	10.123322	10.181608	50
11	9.818536	9.876568	9.941968	10.058032	10.123432	10.181464	49
12	9.818681	9.876457	9.942223	10.057777	10.123543	10.181319	48
13	9.818825	9.876347	9.942478	10.057522	10.123653	10.181175	47
14	9.818969	9.876236	9.942733	10.057267	10.123764	10.181031	46
15	9.819113	9.876125	9.942988	10.057012	10.123875	10.180887	45
16	9.819257	9.876014	9.943243	10.056757	10.123986	10.180743	44
17	9.819401	9.875904	9.943498	10.056502	10.124096	10.180599	43
18	9.819545	9.875793	9.943752	10.056248	10.124207	10.180455	42
19	9.819689	9875682	9.944007	10.055993	10.124318	10.180311	41
20	9.819832	9875571	9944262	10.055738	10.124429	10.180168	40
21	9.819976	9.875459	9.944517	10.055483	10.124541	10.180024	39
22	9.820120	9.875348	9.944771	10.055229	10.124652	10.179880	38
23	9.820263	9.875237	9.945026	10.054974	10.124763	10.179737	37
24	9.820406	9.875126	9.945281	10.054719	10.124874	10.179594	36
25	9.820550	9.875014	9.945535	10.054465	10.124986	10.179450	35
26	9.820693	9.874903	9.945790	10.054210	10.125097	10.159307	34
27	9.820836	9.874791	9.946045	10.053955	10.125209	10.179164	33
28	9.820979	9.874680	9.946299	10.053701	10.125320	10.179021	32
29	9.821122	9.874568	9.946554	10.053446	10.125432	10.178878	31
30	9.821265	9.874456	9.946808	10.053192	10.125544	10.178735	30
	9.821407	9.874344	9.947063	10.052937	10.125656	10.178593	29
32	9.821550	9.874232	9.947318	10.052682	10.125768	10.178450	28
33	9.821693	9.874121	9.947572	10.052428	10.125879	10.178307	27
34	9.821835	9.874009	9.947826	10.052174	10.125991	10.178165	26
35	9.821977	9.873896	9.948081	10.051919	10.126104	10.178023	25
36	9.822120	9.873784	9.948336	10.051664	10.126216	10.177880	24
37	9.822262	9.873672	9.948590	10.051410	10.126328	10.177738	23
38	9.822404	9.873560	9.948844	10.051156	10.126440	10.177596	22
39	9.822546	9.873448	9.949099	10.050901	10.126552	10.177454	21
40	9.822688	9.873335	9.949353	1.0.050647	10.126665	10.177312	20
41	9.822831)	9.873223	9.949607	10.050393	10.126777	10.177170	19
42	9.822972	9.873110	9.949862	10.050138	10.126890	10.177028	18
43	9.823114	9.872998	9.950116	10.049884	10.127002	10.176886	17
44	9.8232 55	9.872885	9.950370	10.049630	10.127115	10.176745	16
45	9.823397	9.872772	9.950625	10.049375	10.127228	10.176603	15
46	9.823539	9.872659	9.950879	10.049121	10.127311	10.176461	14
47	9.823680	9.872547	9.951133	10.048867	10.127453	10.176320	13
48	9.823821	9.872434	9.951388	10.048612	10.127566	10.176179	12
49	9.823963	9.872321	9.951642	10.048358	10.127679	10.176037	11
50	9.824104	9.872208	9.951896	10.048104	10.127792	10.175896	10
51	9.824245	9.872095	9.952150	10.047850	10.127905	10.175755	9
52	9.824386	9.871981	9.952405	10.047595	10.128019	10.175614	8
53	9.824527	9.871868	9.952659	10.047341	10.128132	10.175473	7
54	9.824668	9.871755	9.952913	10.047087	10.128245	10.175332	6
55	9.824808	9.871641	9.953167	10.046833	10.128359	10.175192	5
56	9.824949	9.871528	9.953421	10.046579	10.128472	10.175051	4
5	9.825090	9.871414	9.953675	10.046325	10.128586	10.174910	3
58	9.825230	9.871301	9.953929	10.046071	10.128699	10.174770	2
59	9.825371	9.871187	9.954183	10.045817	10.128813	10.174629	1
60	9.825511	9.871073	9.954437	10.0455	10	. 174489	0
M.	Co-sine.	Sine.	Co-tang.	Tangent.	Co-sec.	Secant.	I.
48 Degrees.							

TABLE II.
LOGARITHMIO SINES, TANGENTS, AND SECANTS.
42 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.825511	9.871073	9.954437	10.045563	10.1284.27	10.174	60
1	9.825651	9.870960	9.951691	10.045309	10.129040	10.174349	59
2	9825791	9870816	9.954945	10.015055	10.129154	10.174209	58
3	9.825931	9.870732	9.955200	10.044800	10.129268	10.174069	57
4	9.826071	9.870618	9955154	10.044546	10.129382	10.173929	56
5	9.826211	9.870504	9955707	10.044293	10.129496	10.173789	55
6	9.826351	9.870390	9.955961	10.044039	10.129610	10.173649	54
7	9.826491	9.870276	9.956215	10.043 785	10.129724	10.173509	53
8	9.826631	9.870161	9.956469	10.043531	10.129839	10.173369	52
	9.826770	9.870047	9.956723	10.043277	10.129953	10.173230	51
10	9.826910	9.869933	9.956977	10.043023	10.130067	10.173090	50
11	9.827119	9.869818	9.957231	10.042769	10.13018°	10.172951	49
12	9.827189	9.869704	9.957485	10.042515	10.130296	10.172811	48
13	9.827328	9.869589	9.957739	10.042261	10.130411	10.172672	47
14	9.827467	9.869474	9.957993	10.042007	10.130526	10.172583	46
15	9.827606	9.869360	9.958246	10.041754	10.130640	10.172394	45
16	9.827745	9.869245	9.958500	10.041500	10.130755	10.172255	44
17	9.827884	9.869130	9.958754	10.041246	10.130870	10.172116	43
18	9.828023	9.869015	9.959008	10.040992	10.130925	10.171977	42
19	9.828162	9.868900	9.959262	10.040738	10.131100	10.171838	41
20	9.828301	9.868785	9.959516	10.040484	10.131215	10.171699	40
21	9.828439	9.868670	9.959769	10.040:31	10.131330	10.171561	39
22	9.828578	9.868555	9.960023	10.039977	10.131445	10.171422	38
23	9.828716	9.868440	9.960277	10.039723	10.131560	10.171284	37
24	9.828855	9.868324	9.960531	10.039469	10.131676	10.171145	36
25	9.828993	9.868209	9.960784	10.039216	10.131791	10.171007	35
26	9.829131	9.868093	9.961038	10.038962	10.131907	10.170869	$3 \pm$
27	9.829269	9.867978	9.961291	10.038709	10.132022	10.170731	33
28	9.829407	9867862	9.961545	10.038455	10.132138	10.170593	32
29	9.829545	9.867747	9.961799	10.038201	10.132253	10.170455	31
30	9829683	9.867631	9.962052	10.037948	10.132369	10.170317	30
31	9.8298 1	9.867515	9.962306	10.037694	10.132485	10.170179	9
32	9.829959	9.867399	9.962560	10.037440	10.132601	10.170041	28
33	9.830097	9.867283	9.962813	10.637187	10.132717	10.169903	27
34	9.830234	9.867167	9.963067	10.036933	10.132833	10.169766	26
3 J	9.830372	9.867051	9.963320	10.036680	10.132949	10.169628	25
36	9.830509	9.866935	9.963574	10.036426	10.133065	10.169491	24
37	9.830646	9.866819	9.963827	10.036173	10.133181	10.169354	23
38	9.830784	9.866703	9.964081	10.035919	10.133297	10.169216	22
39	9.830921	9.866586	9.964335	10.035665	10.133414	10.169079	21
40	9.831058	9.866470	9.964588	10.035412	10.133530	10.168942	20
41	9.831195	9.866353	9.964842	10.035158	10.133647	10.168805	19
42	9.831332	9.866237	9.965095	10.034905	10.133763	10.168668	18
43	9.831469	9.866120	9.965349	10.034651	10.133880	10.168531	17
44	9.831606	9.866004	9.965602	10.034398	10.133996	10.168394	16
45	9.831742	9.855887	9.965855	10.034145	10.134113	10.168258	15
46	9.831879	9.865770	9.966109	10.033891	10.134230	10.168121	14
47	9.832015	9.865653	9.966362	10.033638	10.134347	10.167985	13
48	9.832152	9.865536	9.966616	10.033384	10.134464	.10.167848	12
49	9.832288	9.865419	9.966869	10.033131	10.134581	10.167712	11
50	9.832425	9.865302	9.967123	10.032877	10.134698	10.167575	10
51	9.832561	9.865185	9.967376	10.032624	10.134815	10.167439	
52	9.832697	9.865068	9.967629	10.032371	10.134932	10.167303	8
53	9.832833	9.864950	9.967883	10.032117	10.135050	10.167167	7
54	9.832969	9.864833	9.968136	10.031864	10.135167	10.167031	6
55	9.833105	9.864716	9.968389	10.031611	10.135284	10.166895	5
56	9.833241	9.864598	9.968643	10.031357	10.135402	10.166759	4
57	9.833377	9.864481	9.968896	10.031104	10.135519	10.166623	3
58	9.833512	9.864363	9.969149	10.030851	10.135637	10.166488	2
59	9.833648	9.864245	9.969403	10.030597	10.135755	10.166352	1
60	9.833783	9.864127	9.969656	10.030344	55873	17	0
M.	Co-sine.	Sine.	Co-tang.	'Tangent.	Co-sec.	Secant.	\%.
47 Degree							

TABLE II.
LOGARITHMIC SINES, TANGENTS, AND SEOANTS.
43 Degrees.

| м. | Sine. | Co-sine. | \|'Tangent.| | Co-tang. | Secant. | Co-sec. | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| u | 9.833783 | 9.864127 | 9.969650 | 10 U30344 | 10.135873 | 10.166217 | 60 |
| | 9.833919 | 9.864010 | 9.969909 | 10.030091 | 10.135990 | 10.166081 | 59 |
| 2 | 9.831054 | 9.863892 | 9.970162 | 10.029838 | 10.136108 | 10.16594 | |
| 3 | 9.834189 | 9.863774 | 9.970416 | 10.0299584 | 10.136226 | 10.165811 | 57 |
| 4 | 9.834325 | 9.863656 | 9.970669 | 10.029331 | 10.136344 | 10.165675 | 56 |
| 5 | 9.834460 | 9.863538 | 9.970922 | 10.029078 | 10.136462 | 10.165540 | 55 |
| 6 | 9.834595 | 9.863419 | 9.971175 | 10.028825 | 10.136581 | 10.165405 | 54 |
| 7 | 9.831730 | 9.863301 | 9.971429 | 10.028571 | 10.136699 | 10.165270 | 53 |
| 8 | 9.834865 | 9.863183 | 9.971682 | 10.028318 | 10.136817 | 10.165135 | 52 |
| | 9.834999 | 9.863064 | 9.971935 | 10.028065 | 10.136936 | 10.165001 | 51 |
| 10 | 9835134 | 9.862946 | 9972188 | 10.027812 | 10.137054 | 10.164866 | 50 |
| 11 | 9.83526 | $9.86: 827$ | 9.972441 | 10.0:7559 | 10.137173 | 10.164731 | 49 |
| 12 | 9835403 | 9.862709 | 9.972694 | 10.027306 | 10.137291 | 10.164597 | 48 |
| 13 | 9.835538 | 9.862596 | 9.972948 | 10.027052 | 10.137410 | 10.164462 | 47 |
| 14 | 9.835672 | 9862471 | 9.973201 | 10.026799 | 10.137529 | 10.164328 | 46 |
| 15 | 9835807 | 9.862353 | 9.973454 | 10.026546 | 10.137647 | 10.164193 | 45 |
| 16 | 9.835941 | 9.862234 | 9.973707 | 10.026293 | 10.137766 | 10.164059 | 44 |
| 17 | 9.836075 | 9862115 | 9.973960 | 10.026040 | 10.137885 | 10.163925 | 43 |
| 18 | 9.836209 | 9.861996 | 9.974213 | 10.025787 | 10.138004 | 10.163791 | 42 |
| 18 | 9.830343 | 9861877 | 9.974466 | 10.025534 | 10.138123 | 10.163657 | 41 |
| 20 | 9.836477 | 9.861758 | 9.974719 | 10.0 | 10.138242 | 10.163523 | 40 |
| 21 | 9.83 | 9.801638 | . 9749 | 10.025 | . 1 | | 39 |
| 22 | 9.836745 | 9.861519 | 9.975226 | 10.024774 | 10.138481 | 10.1632 | 38 |
| 23 | 9.836878 | 9.861400 | 9.975479 | 10.024521 | 10.138600 | 10.163122 | 37 |
| 24 | 9837012 | 9.861280 | 9.975732 | 10.024268 | 10.138720 | 10.162988 | 36 |
| 2 | 9.837146 | 9861161 | 9.975985 | 10.024015 | 10.138839 | 10.162854 |) |
| 26 | 9.837279 | 9.861041 | 9.976238 | 10.023762 | 10.138959 | 10.162721 | 34 |
| 27 | 9.837412 | 9.860922 | 9.976491 | 10.023509 | 10.139078 | 10.162588 | 33 |
| 28 | 9.837546 | 9.860802 | 9.976744 | 10.023256 | 10.139198 | 10.162454 | 32 |
| 29 | 9.837679 | 9.860682 | 9.976997 | 10.023003 | 10.139318 | 10.162321 | 31 |
| 30 | 9.837812 | 9.860562 | 9.977250 | 10.022750 | 10.139438 | 10.162188 | 30 |
| | 9.837945 | 9.860442 | 9.977503 | 10.0224497 | 10.13955 | 10.162 | と9 |
| 32 | 9.833078 | 9.860322 | 9.977756 | 10.022244 | 10.139678 | 10.161922 | 28 |
| 33 | 9.838211 | 9.860202 | 9.978009 | 10.021991 | 10.139798 | 10.161789 | 27 |
| 34 | 9.838344 | 9.860082 | 9.978262 | 10.021738 | 10.139918 | 10.161656 | 26 |
| 35 | 9838477 | 9.859962 | 9.978515 | 10.021485 | 10.140038 | 10.161523 | 25 |
| 36 | 9838810 | 9.859842 | 9.978768 | 10.021232 | 10.140158 | 10.161390 | 24 |
| 37 | 9.838742 | 9859721 | 9.979021 | 10.020979 | 10.140279 | 10.161258 | 23 |
| 38 | 9.838375 | 9.859601 | 9.979274 | 10.020726 | 10.140399 | 10.161125 | 22 |
| 39 | 9.839007 | 9.859480 | 9.979527 | 10.020473 | 10.140520 | 10.160993 | 21 |
| 40 | 9.839140 | 9.859360 | 9.979780 | 10.020 $2: 2$ | 10.140640 | 10.160860 | 20 |
| 41 | 9.8392i | 9.859239 | 9.90 U | 10.01 | 10.140761 | 10.16 | 19 |
| 42 | 9.839404 | 9.859119 | 9.980286 | 10.019714 | 10.140881 | 10.16059 | 18 |
| 43 | 9.839536 | 9.858998 | 9.980538 | 10.019462 | 10.141002 | 10.160464 | 17 |
| 44 | 9.839668 | 9.858877 | 9. 980791 | 10.019209 | 10.141123 | 10.160332 | 16 |
| 45 | 9.839800 | 9.858756 | 9.981044 | 10.018956 | 10.141244 | 10.160200 | 15 |
| 46 | 9.839932 | 9.858635 | 9.981297 | 10.018703 | 10.141365 | 10.160068 | 14 |
| 47 | 9.810064 | 9.855514 | 9.931550 | 10.018450 | 10.141486 | 10.159936 | 13 |
| 48 | 9.840196 | 9.858393 | 9.981803 | 10.018197 | 10.141607 | 10.159804 | 12 |
| 49 | 9.840328 | 9.858272 | 9.982056 | 10.017944 | 10.141728 | 10.159672 | 11 |
| 50 | 9.840459 | 9.858151 | 9.982309 | 10.017691 | 10.141849 | 10.159541 | 10 |
| | 9.8405 | 85 | 9.98\%20 | 10.0 | 0.141971 | 0.1 | |
| 52 | 9.810722 | 9.857908 | 9.982814 | 10.017186 | 10.142092 | 10.159278 | 8 |
| 53 | 9.840854 | 9.857786 | 9.983067 | 10.016933 | 10.142214 | 10.159146 | |
| 5 | 9.810985 | 9.857665 | 9.983320 | 10.016680 | 10.143335 | 10.159015 | 6 |
| 55 | 9811116 | 9.857543 | 9.983573 | 10.016427 | 10.142457 | 10.158584 | 5 |
| 50 | 9.841247 | 9.857422 | 9.983826 | 10.016174 | 10.142578 | 10.158753 | 4 |
| 5 | 9.841378 | 9857300 | 9.984079 | 10.015921 | 10.142700 | 10.158622 | 3 |
| 58 | 9.841509 | 9.857178 | 9.981331 | 10.015669 | 10.142822 | 10.158491 | 2 |
| 59 | 9.841640 | 9.857056 | 9.984584 | 10.015416 | 10.142944 | 10.158360 | 1 |
| 60 | 9.841771 | 9.856934 | 9.981837 | 10.015163 | 10.143066 | 10.158229 | 0 |
| 3 m . | Co- | e. | Co-tang. | Tangent. | Co-sec. | Secant. | M. |

TABLE II.
LOGARITHMIC SIGNS, TANGENTS AND SECANTS.
44 Degrees.

M.	Sine.	Co-sine.	Tangent.	Co-tang.	Secant.	Co-sec.	M.
0	9.8 ± 1771	9.856934	9.984837	10.015163	10.148000	10.1582\%9	60
1	9.841902	9856812	9.985090	10.014910	10.143188	10.158098	59
2	9.842033	9.856690	9.985343	10.014657	10.143310	10.157967	58
3	9.842163	9.856568	9.985596	10.014404	10.143432	10.157837	57
4	9842294	9.856446	9.985848	10.014152	10.143554	10.157706	56
5	9.842424	9.856323	9.986101	10.013899	10.143677	10.157576	55
6	9.842555	9.856201	9.956354	10.013646	10.143799	10.157445	54
7	9.842685	9.856078	9.986607	10.013393	10.1439:2	10.157315	53
8	9.842815	9.855956	9.986860	10.013140	10.144044	10.157185	52
9	9.842916	9.855833	9.987112	10.012888	10.144167	10.157054	51
10	9.843076	9.855711	9.987365	10.012635	10.144289	10.156924	50
11	9.843206	9.853588	9.987618	10.012382	10.144414	10.156794	49
12	9.843336	9.855465	9.987871	10.012129	10.144535	10.156664	48
13	9.843466	9.855342	9.988123	10.011877	10.144658	10.156534	47
14	9.843595	9.855219	9.988376	10.011624	10.144781	10.156405	46
15	9.843725	9.855096	9.988629	10.011371	10.144904	10.156275	45
16	9.843855	9.854973	9.988882	10.011118	10.145027	10.156145	44
17	9.843984	9.854850	9.989134	10.010866	10.145150	10.156016	43
18	9.814114	9.854727	9.989387	10.010613	10.145273	10.155886	42
19	9.844243	9.854603	9.989640	10.010360	10.145397	10.155757	41
20	9.844372	9.854480	9.989893	10.010107	10.145520	10.155628	40
21.	9.844502	9.854356	9.990145	10.009855	10.145644	10.155448	39.
22	9.844631	9.851233	9.990398	10.009602	10.145767	10.155369	38
23	9.844760	9854109	9.990651	10.009349	10.145891	10.155240	37
24	9.844889	9.853986	9.990903	10.009097	10.146014	10.155111	36
25	9.845018	9.853862	9991156	10.008844	10.146138	10.154982	35
26	9845147	9.853738	9.991409	10.008591	10.146262	10.154853	34
27	9845276	9.853614	9991662	10.008338	10.146386	10.154724	33
28	9.845405	9.853490	9991914	10.008086	10.146510	10.154595	32
29	9.845533	9.853366	9.992167	10.007833	10.146634	10.154467	31
30	9.845662	9.853242	9.992420	10.007580	10.146758	10.154338	30
31	9.845740	9.853118	9.992672	10.007328	10.146882	10.154:10	$\div 9$
32	9.845919	9.852994	9.992925	10.007075	10.147006	10.154081	28
33	9.846047	9.852869	9.993178	10.006822	10.147131	10.153953	27
34	9.846175	9.852745	9.993430	10.006570	10.147255	10.153825	26
35	9.846304	9.852620	9.993683	10.006317	10.147380	10.153696	25
36	9.846432	9.8 .52496	9.993936	10.006064	10.147504	10.153568	24
37	9.846560	9.852371	9.994189	10.005811	10.147629	10.153440	23
38	9.846688	9.852247	9.994441	10.005559	10.147753	10.153312	22
39	9.846816	9.852122	9.994694	10.005306	10.147878	10.153184	21
40	9.846944	9.851997	9.994947	10.005053	10.148003	10.153026	20
41	9.847071	9.851872	9.995199	10.004801	10.148128	10.152929	19
42	9.847199	9.851747	9.995452	10.004548	10.148253	10.152801	18
43	9.847327	9.851622	9.995705	10.004295	10.148378	10.152673	17
44	9.847454	9.851497	9.995957	10.004043	10.148503	10.152546	16
45	9.847582	9.851372	9.996210	10.003790	10.148628	10.152418	15
46	9.847709	9.851246	9.996463	10.003537	10.148754	10.152291	14
47	9.847836	9.851121	9.996715	10.003285	10.148879	10.152164	13
48	9.847964	9.850996	9.996968	10.003032	10.149004	10.152056	12
49	9.848091	9.850870	9.997221	10.002779	10.149130	10.151909	11
50	9.848218	9.850745	9.997473	10.002527	10.149255	10.151782	10
51	9.848345	9.850619	9.997726	10.002274	10.149381	10.151655	9
52	9.848472	9.850493	9.997979	10.002021	10.149507	10.151528	8
53	9.848599	9.850368	9.998231	10.001769	10.149632	11.151401	7
54	9.848726	9.850242	9.998484	10.001516	10.149758	10.151274	6
55	9.848852	9.850116	9.998737	10.101263	10.149884	10.151148	5
56	9.848979	9:849990	9.998989	10.001011	10.150010	10.151021	4
57	9.849106	9849864	9.999242	10.000758	10.150136	10.150894	3
58	9.849232	9849738	9.999495	10.000505	10.150262	10.1507c8	2
59	9.849359	9.849611	9.999747	10.000253	10.150389	10.150641	1
60	9.849485	9.849485	0.000000	10.000000	10.150515	10.150515	0
M.	Co-sine.	Sine.	Co-tang.	'Jangent.	Co-sec.	Secant.	3.
45 Degrees.							

difference of latitude and departure for $\frac{1}{2}$ point.

		61		06.0	12			181		17.7	241	232	23.
2	02.000.2	62	617	06	122	121.4	12	182	181.	17.	24	240	23.
3	03.000.3	63	62.7	06.2	123	122.4	12.1	18	182.1	17.9	243	241	23.
	04.000.4	64	63.7	06.3	124	123.4	12.2	184	183.1	18.	244	242	23
5	05.000 .5	65	64.7	06.4	125	124.4	12.3	185	184.1	18.1	245	243.	24
6	06.000 .6	66	65.	06.5	126	125.4	12.3	18	185.1	18.2	24	244.8	24.1
7	07.000 .7	67	66.7	066	127	126.4	12.4	187	186.1	18.3	247		24
8	08.000.8	68	67.7	06.7	128	127.4	12.5	18	187.1	18.4	248	246	24.3
	09.000 .9	69		06.8	129	128	,	18	188.1	18.5	249	247.3	24.4
10	10.601 .0	70	69.7	06.9	130	129.4	12.7	19	189.1	18.6	25	248.8	24
11	10.90	71	70.7	07.0	131	. 4	12.8	191	190.	18.7	251	249.8	4.
12	11.901	72	71.7	-7	132	131.4	12.	19	191.	18.8	252	250	24
13	12.901 .3	73	72.6	07.2	133	132.4	13.0	19	192.1	18.9	253	251	24.8
14	13901.4	74	73.6	07.3	134	133.4	13.1	19	193.1	19.0	254	252.	24
15	14.901 .5	75	74.6	07.4	135	134.	13.2	195	194.	19.1	255	253.8	25.0
16	15.901 .6	76	75.6	07	136	135.	13.3	19	195	19.2	25	254	
17	16.901 .7	77	76.6	07.5	137	136.	13.4	19	196.1	19.3	257	255.	25.2
18	17.901 .8	78	77.6	07.6	138	137	13.5	19	197.	19.4	258	256	25.3
19	18.901 .9	79	78	07.7	139	133	13.6	19	198.0	19.5	259	25	25.4
20	19.9020	80			140		.	200	199	19.	26	258	25.5
21	20.9 02.1	81	80.6	07	141	140	13	20	zu0	14	261	25	. 6
22	21.902 .2	82	81.6	08.0	142	141	3.9	20	201.0	19.8	262		.
23	22.902.	83	82.	08.1	143	142	14.0	20	202.0	19.	26	261	
24	23.902 .4	81	83.	08.2	144	143.	14.1	20	203.0	20.0	26	262	25.9
25	24.902 .4	85	84.6	08.3	145	144.	14.2	20	204.0	20.1	26	263.	26.0
26	25.9025	86	85.	08.4	146	145.	14.3	20	205.0	20.	26	264.	26.1
27	26.902 .6	87	86.6	08.5	147	146.	14.4	20	206.	20	267	265	
28	27.902 .7	85	87.6	08.6	148	147.3	14.5	20	207.0	20.	26	266	26.3
29	28.902 .8	89	88	8.7	149	148	14.6	20	208.0	20.	26	267	26.4
30	29.902	90	85		150	149	14.7	21	209.	20.	27	268	26.5
31	30.90	91		08.9	151	150.3	4.8	21	210	20.7	271	,	
32	31.803	92	91.6	09.0	152	151.3	14.9	21	211.0	20.	27	270.	26.7
33	32.8103 .2	93	92	09	153	152		21	212	20	27	71	
34	33.803 .3	94	93	09.2	154	153.3	5.1	214	213.0	21.	27	272	26.9
35	34.803 .4	95	94.5	09.3	155	154.	15.2	215	214.0	21.	27	273	27.0
36	35.803 .5	96	95.5	- 4	156	155.		21	215	21.	27		
37	36.803 .6	97		09.5	157	156		217	216.	21.	27	275	27.2
38	37.803 .7	98	97.5	09.6	158	157	15.	218	216.9	21.	27	276.	27.3
39	38.803.8	99			159			21	217	21	27	277	
40	803	100			160		15.7	220	218.9	21.6	280	278	27.4
41	40.804 .0	101	100.	. 9	161	160	15.8	22	219	21.7	281	279	27
42	41.804 .1	102	101.5	.	162	161.2	13.	22	220	21.8	282	280.	
43	42.804.2	103		10.1	16			22	221.	21.9	28	281.	
44	43.804 .3	104	103.5	10.2	164	163.2	16.1	22	222.9	22.0	28	282	
45	44.804 .4	105	104.5	10.3	165	164.2	16.	225	223.9	22.1	285	283.	27
46	45.804.5	10	105.	10.4	16	165	6	226	224.	22.2	28	284.	
47	46.804 .6	107	106.5	10.5	167	166.2	16.	227	225.	22.2	287	283.	
48	47.804 .7	108	107.5	10.6	168	167.	16.5	22	226.9	22.3	28	286.	28
49	48.804 .8	109	108.	10.7	169	168.2	16.6	22	227.	22.4	28	287.6	28.3
50	49.804 .9	110	109.5	10.8	170	169	16.7	230	228.9	22.5	29	288.6	28.4
5	50.805 .0	11			171	170	16.8	23	229.	22.6	,	89	
52	51.705 .1	112	111.	11.0	172	171.2	16.9	232	230.9	22.7	292	290.6	28.6
53	52.705.2	113	112.5	11.1	173	172.2	17.0	23	231.9	22.8	293	291.	28.7
5	53.705 .3	114	113.	11.2	174	173.	17.1	234	232.9	22.9	294	292.6	28.8
5	54.705	115	114.4	11.3	175	174.2	17.2	235	233.9	23.0	295	293.6	28.9
56	55.705 .5	116	115.4	11.4	176	175.2	17.3	236	234.	23.1	29	294.	29.0
57	56.705 .6	117	116.	11.5	17	176.1	17.4	237	235.	23.2	29	295.	2.1
58	57.705 .7	118	117.4	11.6	178	177.1	17.4	238	236.	23.3	29	296.	29.2
59	58.705 .8	119	118.4	11.7	179	178.1	17.5	23	237.	23.4	29	297.	29.3
60	59.705	12	119.4	11.8	180	179.1	17.	240	238	23	300	298.6	29.4
Dist. Dep Lat. Dist.			Dep.		Dist	Dep	La	Dist.	Dep.	Lat	Dist.	Dep	
For 72 Points.													

difference of latitude and departure for 1 point.

Dep	Lat.	Dist	Dist	La	Dep	Dist.	Lat.		ist.	La	Dep.	Dist.	L	Dep.
		00.2	61		11.9	21	118.7	23	181		$3 \overline{3} .3$	241		
		0	62		12.1	122	119.7	23.6	182	17	35.5	242	237.4	47.2
	02.9	00.6	63		12.3	12	120.6		18		35.7	243		
	03.9	$00 . \varepsilon$	64	62.8	812.5	124	121.	24.2	18	180	35.9	244		
	04.9	01.0	65		12.7	125	122.6	24.	18	181	36	245	240	
	05.9	01.2	66		12.9	126	123.6	24.	18	182.	36	24	241.	
7	06.9	01.4	67	65.7	13.1	127	124.	24.8	18	183.	36	247	242.	48.2
	07.	01.6	68	66.7	13.3	128	125.	25.	18	184.	36	248	243.	48.4
	08.8	01.8	70	67.7	13.5	129	126	25.	189	185.	37	249	244	6
10	09.8	02.0	70		13.7		127		190	186.	37	250	245	8
11	10.8	U2.2	71	69.6	9	131	128.5	25.6	191	187.3	37.3	251		49.0
12	12.	22.	72	70.6	14.0	132	129	25.	192	188.	37	25	247	49.2
13	12.	02.5	73	71.6	14.2	13	130.		19	189.	37	25	248	49.4
14	13	02	74		14.4	134	131.	26.1	19	190.3	37.8	25	249	9.
15	14.7	02.9	75	73.6	14.6	135	132.	26.3	195	191.3	38.	255	250	
16	15.7	03.1	76	74.5	14.8	136	133.4	26.5	19	192.2	38.	25	251	. 9
17		03	77	75.5	15.0	137	134.	26.7	19	193.	38.	25	252.	
18	17.7	33.5	78	76.5	15.2	138	135.	26.9	19	194.2	38.	25	253.0	
19	18.6	03.7	80	77.5	15.4	13	136.	27.1	19	195.2	38.	25	254.	50.5
20	19.	03.9	80		15.6	140	137	27	200	196	39.0	260	255	50.7
21	20.6	04	81	79	15.8	141	138.3	27.	20	197	33.	26	256	.9
22	21.6	04		80.4	116.0	142	139.3	27.7	29	198.	39	26	257	1
		04	83	81.4	16.2	143	140.	27.9	20	199.	39.	26	258	51.3
24	23.	04.7	81	82.4	16.4	144	141.	28.1	20	200.	39.	264	258	51.5
25	24.	04.9	85	83.4	16.6	145	142.	28.3	20	201.1	40.0	碞	259	51.7
	25	5	86	84.4	16.8	146	143.2	28.5	20	202.0	40.	26	260	51.9
27	26	5. 3	87	85.31	17.0	147	144.2	28.7	20	203.0	40.	267	261	
28		5		86.3	17.2	148	145.	28.9	20	204.0	40.	268	262	52.3
29 30		5.7		87.3	317.4	149	146	29.1	20	205.0	40.8	${ }_{27}^{27}$	26	
31			91				148.1	29.5	211	207	41.			
32	31.1	06.2	92	90.2	18.0	152	149.1	29.7	21	207.	41.	27	266	
33		06.4	93	91.2	18.1	15	150.1		21	208.	41.6			
34				92.	18.3	154	151.0	30.0	21	209.	41.	27	68	
35	34.	6.8	95	93.2	18.5	155	152.0	30.2	215	210.0	41.	27	269.	53.6
3	35	7. 6	96	94.2	18.7	156	153.0	-	21	211.	42.1			
37		7.2		95.1	18.9	157	154.0	30.6	217	212.	42.3		271	
38	37.3	07.4	98	96.1	19.1	158	155.0	30.8	218	213.	42.	27	${ }^{272}$.	
39	38	07	99	97.1	19.3	15	.	31.0	21	214	42.7	27	273	
40		07	100		19.5	160	156	31	220	215.8	42.9	28	274.6	54.6
41	40	08.0	101	99.1	19.7	161	157.9	31.4	221	216	43.1	28	275.	
4	11	88	102	100.0	19.9	16	158.9	31.6	22	217.	43.3	咗	276	
43		08.4		101.0	20.1	163	159.9	31.	22	218.	43.5	28		
44	43.2	08.6	104	102.0	20.3	164	160.9	32.0	22	219.	43.7	28	278	
45	44.1	08.8	105	103.0	20.5	16	161.8	32.2	225	220.7	43.	285	279	
	.	09.0	100	104.0	20.7	16	162.8	32.4	22	221.7	44.1	28	280	
47	46.1	09.2	107	104.9	20.9	167	163.8	32.6	22	222.	44.3	28	281	
48	47.100	09.4	108	105.9	21.1	168	164.8	32.8	228	223.6	44.5	28	282.	56.2
50	48	O.	109	106.9	21.3	169	165.8	33.0	229	224.6	44.7	28	283.5	56.4 56.6
50		09	11		21.5	170		$\frac{33.2}{33.4}$	230	225	44.9	29	281.	$\frac{56.6}{568}$
	,	10.0	111	108.9	21.7	171	167.7	33.4	${ }_{232}^{231}$	226.	45.	21		7
$\begin{aligned} & 52 \\ & 53 \end{aligned}$	1.0	10.1	112	1109.8	82	173	168.7	${ }^{33.6}$	233	228.5	45.	$\begin{aligned} & 299 \\ & 293 \end{aligned}$	286	57.0 57.2
54	53.0	10.5	114	111.8	82.2	174	170.7	34.0	23	229.	45.	29	288.4	
55	53.9	10.7	115	112.8	822.4	175	171.6	34.1	23	230.5	45.	29	289.	57
56	54.9	10.9	116	113.8	8.22.6	176	172.6	34.3	236	231.5	46.0	29	290.	5.
57	55.9	11.1	117	114.8	822.8	377	173.6	34.5	23	232.5	46.2	29	291.3	57.9
58	56.9	11.3	118	115.7	23.0	178	174.6	34.7	23	233.	46.4	29	292.3	58
59	57.9	11.5	119	116.7	23.2	179	175.6	34.9	23	234.4	46.6	299	293.	58.
60	58.8	11.	120	11	23.4	180	176.5	35	240	235	46.8	30	294	58.5

Dist. Dep Lat. Dist. Dep. Lat. Dist. Dep. Lat. Dist. Dep. Lat. Dist. Dep. Lat.
For 7 Points.
difference of lattude and departure for $1 \frac{1}{4}$ point.

st.	Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1		00	61	59	.	1	117		181	175.	44.0	241	233	
2	01.	00.5	62	60.1	15.1	122	118	29.6	182	176	44.2	242	234.	58.8
3	12.9	00.7	63	61.1	15.3	123	119.	29.9	183	177.5	44.5	243	235.	59.0
4	03.9	01.0	61	62.1	15.6	124	120.3	30.1	184	178.5	44.7	244	236.	
5	04.9	01.2	65	63.1	15.8	125	121.3	30.4	185	179.	45.0	245	237.	
6	05.8	01.5	66	64.0	16.0	126	122.2	30.6	18	180.4	45.2	246	238.	59.8
7	06.8	.01.7	67	65.0	163	127	123.2	30.9	18	181.4	45.4	247	239.6	60.0
8	07.8	01.9	68	66.0	16.5	128	124.2	31.1	18	182.	45.7	248	240.	60.3
	08.7	02.2	69		16.8	129	125.1	31.3	18	183.3	45.9	249	241.	60.
10	09.	02.4	70	67.	17.0	130	126.1	316	19	184.3	46.2	250	242	60.8
11	10	$\overline{02.7}$	71	68.	17.3	131	127.1	$\overline{31.8}$	191	185.3	46.4	25	243	61
12	11.6	02.9	「2	69.9	17.5	132		32.1	192	186.	46.7	252	241	61
13	12.6	03.2	73	70.8	17.7	133	129.0	32.3	19	187.	46.9	253	245.	61.5
14	13.6	03.4	74	71.8	18.0	134	130.0	32.6	19	188.2	47.1	254	256.4	61
15	14.6	03.6	75	72.8	18.2	135	131.0	32.8	19	189.2	47.4	255	247.4	
16	15.5	03.9	76	73.7	18.5	136	131.9	33.1	19	190.1	47.	25	248.3	62.2
17	16.5	04.1	77	74.7	18.7	137	132.9	33.3	19	191.1	47.9	257	249.3	62.5
18		04.4	78	75.7	19.0	138	133.9	33.5	198	192.1	48	258	250.	
19	18.	04.6	79	76.6	19.2	139	134	33.8	19	193.0	48.4	259	251.3	9
20	19.	04.9	80	77.6	19.4	140	135.	34.0	200	194.0	48.6	260	252.2	63.2
21	20.4	05.1	81	78.6	19.7	141	136	31.3	20	195.	48.8	261	253.2	63.4
22	21.	054	82	79.6	19.9	142	137.	34.5	20	196.	49.1	26	254	63.7
23	22.3	05.6	83	80.5	20.2	143	138.7	34.8	20	196.9	49.3	26	255.1	63.9
24	23.3	05.8	84	81.5	20.4	144	139.7	35.0	20	197.9	49.	264	256.	64.2
25	24.3	06.1	85	82.	20.7	145	140.7		20	198.9	49.	20	257.	64
26	25.2	06.3	86	83.4	20.9	146	141.6	35.5	20	199.8	50.1	26	258.0	64.6
27	26.2	06	87	84.4	21.1	147	142.	35.7	207	200.	50.3	267	259.0	64.9
28	27.2	06. 8	88	85.	21.4	148	143.	36.0	20	201.	50.5	$2 \mathrm{C8}$	260.0	65.
29	28.1	07.1	89		21.6	149	144.	36.2	20	202.7	50.8		261.0	5.4
30	29.	07.3	90	87	21.9	150	145.5	36	210	203.7	5.	27	261.9	,
31	30.1	$\overline{07.5}$	91	88.3	22.1	151	146.5	$\overline{36.7}$	211	204.	51.3	27	26	65.9
32	31.0	07.8	92		22.4	152	147	36.9	212	205.7	51.5	27	263.9	66.1
33	32.0	08.0	93	90.	22.6	153	148.	37.2	213	206.6	51.8	273	264.8	66.3
34	33.0	08.3	94	91.	22.8	154	149.	37.4	214	207.6	52.0	274	265.8	
35	34.0	08.5	95		23.1	155	150.4	37.7	215	208.6	52.	275	260.8	66.8
36	34.9	08.8	96	93.1	23.3	156	151.	37.9	216	209.5	52.5	27	267.7	67.1
37	35.9	-	97	94.	23.6	157	152.	38.2	217	210.5	52.7	277	268.7	67.3
38		09.2	8		23.8	158	153.3	38.4	218	211.5	53.0	27	269.7	67
39	37.	09.5	99	96.0	24.1	159	154	38.6	219	212.5	53.2	279	270.7	67
40	38	03.7	100	97.0	. 3	160			220	213.4	53.5	280	271.	68.0
41		10.0	101		24.5	161	156	39.1	221	214.4	53.7	28	272.6	68.3
42	40.7	10.2	102	99.	24.8	162	157.2	39.4	222	215.4	53.9	282	273.6	68.5
43	41.7	10.5	103	93.	20.0	163	158.1	39.6	223	216.3	54.2	283	274.5	68.8
44	42.7	10.7	104	100.9	25.3	164	159.1	39.9	224	217.3	54.4	28	275.5	69.0
45	43.7	10.9	105	101.9	25.5	165	160.1	40.1	225	218.3	547	28	276.5	69.3
46	44.6	11.2	106	102.8	25.8	166	161.0	40.3	226	219.2	54.9	2	277.4	69.5
47		11.4	107	103.	26.0	16	162.0	40.6	227	220.2	55.	28	278,4	69.7
48	16.6	11.7	108	104.8	26.2	168	163.0	40.8	228	221.2	55.4	28	279.4	70.0
49	47.5	11.9	109	103.	26.5	169	163.9	41.1	229	2222		28	280.4	70.2
50		12.2	110	106.	26.7	170		41.3	230	223.1	55.9	290	281.3	70.5
51	9.5	12.4	111	107.	27.0	171	165.9	41.6	23	224.1	56.1	29	28:3	70.7
52	50.4	12.6	112	108.7	27.2	172	166.	41.8	23	225.1	56.	29	283.3	71.0
53	51.	12.9	113	109.6	27.5	173	167.8	42.0	233	226.0	56.6	293	284.2	71.2
54	52.4	13.1	114	110.	27.7	174	168.8	42.3	23	227.0	56.9	29	285.2	71.4
55	3.4	13.4	115	111.6	27.9	175	169.	42.5	235	228.0	57.	29	286.2	71.7
56	54.3	13.6	116	112.5	28.2	176	170.	42.8	230	228.9	57.3	29	287.1	71.9
57	55.3	13.9	117	113.	28.4	177	171.7	43.0	237	229.9	57.6	29	288.1	72.2
58		14.1	118	114.	28.7	178	172.7	43.3	238	230.9	5	298	289.1	
59	57.2	14.3	119	115.	28.9	179	173.6	43.5	239	231.8	58.	29	290.1	
60	58.	14.6	120	116.	29.2	180	174.6	43.7	240	232.8	58.	30	291.0	72
Dist. Dep		L	Di	Dep.		Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist	Dep.	Lat.
For $6 \frac{3}{4}$ Points.														

TABLE III.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR $1 \frac{1}{2}$ POINT.

1		6			121	115	35.1	18	. 2		,	230	
2	01.900 .6	62	593	180	122	116.8	35.4	182	174.2	52.8	242	231.6	70.3
3	02.900 .9	63	60.3	18.3	123	117.7	35.7	183	175.1	53.1	243	232	70.5
4	03.801 .2	64	61.2	18.6	124	118.7	36.0	184	176.	53.	24	233.5	70.8
5	04.8.01.5	65	62.2	18.9	125	119.6	$3{ }^{\text {a }}$	185	177.0	53.7	245	234.	¢1.1
6	05.701 .7	66	63.2	19.2	126	120.6	36.6	18	178.0	54.0	24	235.	71.4
	06.702.1	67	64.1	195	127	121	36.9	187	179.0	54.	21	236.	71.7
8	07.702.3	68	65.1	19.7	128	122.5	37.2	18	179.9	54.6	24	237	72.0
	08.602 .6	69	66.	20.0	129	123.5	37.5	18.	180.	54.9	249	238.	72.3
10	09.602.9	70		20.3	130	124.4	37.7	190	181.8	55.2	25	239.	72.6
11	10.503 .2	71	67.9	-	131	125	38.0	191	182	55.	201	240	72.9
12	11.503 .5	72	68.9	20.9	132	126	38.3	192	183.	55.7	252	241	73.2
13	12.403 .8	73	69.9	21.2	133	127.3	38.6	193	184.7	56.0	25	242.	73.4
14	13.404 .1	74	70.8	21.5	134	128.2	38.9	194	185.7	56.	25	243.	73.7
15	14.404 .4	75	71.	21.8	135	129	39.2	195	186.	56.	25	244	74.0
16	15.304 .6	76	72.7	22.1	136	130.1	39.5	196	187.	56.	25	245	74.3
17	16.304 .9	77	73.7	22.4	137	131.	39.8	197	188.	57.	25	245.	74.6
	17.205.2	78		22.6	138	132.1	40.1	19	189.5	57.	25	246	74
19	18.205 .5	79	75.	22.9	139	133.0	40.4	199	190.	57.	25	247.9	
20	19.105 .8	80	76.	23.2	140	134.0	40.6	200	191.4	58.1	20	248.8	. 5
21	20.106 .1	81	7 F .5	23.5	141	134.	40.9	201	192	58.			75.8
22	21.106 .4	82	78.5	23	142	135	11.2	20	193	58	262	250	76
23	22.006 .7	83	79.4	24.1	143	136	41.5	20	194.	58.	26	251.	76.3
24	23.007.0	84	80.	24.4	144	137.	41.8	20	195.	59	26	252	76.
25	23.907 .5	85	81.	24.7	145	138	12.1	20	196.	59	26	253.6	76.9
26	24.9076	86	82	25.0	146	139.7	42.4	20	197.	59.	26	254.	77.2
	25.807.8	87	83.3	25.3	147	140.7	42.7	20	198.	60.	26	255.	77.5
28	26.808 .1		84.2	25.5	148	141.6	43.0	20	199.	60.	26	256	
29	27.808 .4	89	85.2		148	142.	43.3	20	200.0	60.7	26	257.	8.1
30	28.708 .7	90	86.1	26.1	150	143.5	43.5	21	201.0	61.0	27	258	78.
31	29.7	91	87.1	26.4	151	144.5	43.8	21	201	61.3	271	259.3	78.7
32	30.609 .3	92	. 0	26.7	152		4.1	212	202.	61.	272	260	
33	31.609 .6	93	89.0	270	153	146.	14.4	21	203.	61.	27	261.	79.3
34	32.509 .9	94		273	15	147.		21	204	62.	274	262.	79.5
35	33.510 .2	95	0.9	27.6	15		5.0	21	205.	62.	27	263.	9.
36	34.510 .5	96	91.9	27.9	15	149	45.3	21	206.	62.7	27	264	80.1
37	35.4107	97	2.	28.2	15	15	45.6	21	207.	63	27		
	36.411 .0		93.8	28.5	15	151.2	45.9	21	208.	63.	27		O.
39	37.511 .3	99	94.7	28.7	159	152.2	46.2	21	209.6	63.	27	267	81.
40	33.311 .6	100	95.7	29.0	160	153	46.	22	210.5	63.9	28	267.9	81.3
	39.211 .9	101	96.	29.3	161	154	46.7	22	211.	64	281		
42	40.212 .2	10̇	97.6	29.6	16	155	47.0	22	212.4	64.	28	269.9	1.
43	41.212 .5	103	98.	29.9	163			2	213.4	64.	28	270	82.2
44	42.112 .8	$10 \pm$		30.2	16	156	7.6	22	214.4	65.	28	271	82.
45	43.113 .1	105	100.5	30.5	16	157	7.9	22	215.3	65.	285	272	
46	14.013 .4	106	101.4	30.8	16	158	8.2	22	216.3	65.	286	273.7	3.
47	45.013 .6	107	102.4	31.1	16	159	48.5	227	217.2	65.	28	274.6	
48	45.913.9	108	103.4	31.4	168	160	48.8	22	218.2	66.	28	275.	
49	46.914 .2	109	104.	31.6	16	161.7	49.1	22	219.1	66.5	284	276.	83.
50	17.914 .5	110	105	31.9	17	162.7	49.4	23	220.1	66.8	290	277.	81.
51	45.814.	111	6	32.	17	3	49.6	23	221.	67.	29	278	81.5
52	49.815 .1	112	107.2	32.5	172	,	.	232	222.0	67.	292	279	
53	50.715 .4	113	108.1	32.8	173	165	50.2	233	223.0	67.6	293	280.	85
54	51.715 .7	114	109.1	33.1	174	166	50.5	23	223.9	67.9	29	281.	85.3
55	52.616.0	115	110.1	33.4	175		50.8	23	$22 \pm .9$	68.	29	282.	85.6
56	53.616 .3	116	111.	33.7	176	168.4	51.1	236	225.8	68.5	29	283.	85.
57	54.616.6	117	112.	34.0	177	169.4	51.4	23	226.8	68.8	29	284.	86.
58	55.516 .8	118	112.	34.	17	171	51.7	23	227.	69.1	29	285	86.5
59	56.517.	119	113.9	34.5	178	171.3	52.0	23	228.	69.4	299	87	
60	57.417	120	114.	34.8	180	172.3	52.3	24	229.	69.7	300	287.	87
Dis	. Dep L	Dist	Dep		is	Dep.	Lat	Dist	De	tat	Dist	Dep	La
For $6 \frac{1}{2}$ Points.													

194

TABLE III.

difference of latitude and departure for $1 \frac{3}{4}$ point.

				Lat.		Dist.	Lat.	Dep	Di	Lat.	Dep.	Dist.		Dep
		00	61		20.6	121	113.9	40.8	18	170.4	61.0	241	226.9	81.
2			62	58.4	20.9	122	114.9	41.1	182	171.	61.3	242	227	
3	02	01.0	63	59.3	21.2	123	115.8	41.4	18	172	61.7	243	228	
4	03	01	64	60.3	21.6	124	116	41.8	18	173.	62.0	244	229	
5	04	01.	65	61.2	21.9	125	117.7	42.	185	174.	62.3	245	230.7	
6	0.3	02.	66	62.1	22.2	126	118.6	42.5	186	175.	62.7	24	231.	
7		02	67	63.1	22.6	127	119	42.8	18	176.	63.0	247	232	83.2
8	07	02	68	64.0	22.9	12	120		18	177.	63.3	248	233.	
9	08	03	69	65	23.3	129	121	43.5	18		63.7	249	234	
10	09.4	03.1	70		23.6	130	122.4	43.8	190	178.	64.0	250	235.	84.2
11	10.4	U3	71	66.9	3.9	131	123.3	44	191	179.8	64.4	251	236	81
12	11	04.0	72	67.	24.3	132	124.3	44.	19		64.	252	237	
13	12		73	68.7	24.6	133	125.2	44.8	193	181	65.	53	238	
14	13.2	04.7	74	69.7	24.9	134	126	45.	19	182	65	254	239	85
15	14.1	5	75	70.6	25.3	135	127.1	45.	195	183	65.7	255	240.1	
16	15.1		76	71.6	25.6	136	128.1	45.8	19	184	66.0	256	241.	6
17	16.0	5.	77	72.5	25.9	137	129.	46.	19	185.	66.	257	242.	
18	17.0	06.1	78	73.4	26.3	138	129		19	186	66	258	242	
13	17		79	744	26.6	139	130.9		19	187.	67.0	259	243.9	
20	18.	06.	80	75.3	27	140	13	47	20	188.3	67.	260	244.	
21		07.1	81	76	27.3	141	132.8	47.5	20	180	67.7	261	245.	9
2.				77.2	27.6	142	133.7	47.8		190	68	2	46	
23	21.7	07.8	83	78.2	28.0	143	134.	48.2	20	191.	68	26	247	
24	22.6	8	84	79.1	28.3	144	135	48	204	192.	88	264	248	
25		08.4	85	80.0	28.6	145	136	48.9	20	193.	69.	265	249	89.3
20	24.	08.8	86	81.0	29.0	146	137.5	49.	20	194.	69.	26	250	
27			87	81.9	29.3	147	138	49.	207	194	69.	267	251	90.0
28		09.4	88	82.9	29.7	14	139	49.9		19	70.	26	22	
29	27.3	09.8	89	83.8	30.0	149	140.3	50.2	20	196	70.	269	253.	
30	28	10.1	90	84.7	30.3	150	141	50.5	210	197.	70.8	270	254.2	91.0
31				85.			42.2		21	198	71	71		
32	30.	10.8	92	86.6	31.0	152	143.1	51	212	199.	71	27	256	
33		11	93	87.6	31.3	153			21	200	71	273		
		11	91	88.5	31.7	154	145		21	201.	72	274	258	
35	33.0	11.8	95	89.5	32.0	155	145.9	52.2	215	202.	72.	27	258.	
36	33		9	90.4	32.3	150	146	52	216	203.	72.	276	259	
37	11			91.3	32.7	157	147	52	217	204.	73.	27	260	
38	35.	12.8	98	92.3	33.0	158	148.8	53	218	205	73.4	278	261	
39	36.7	13	0	93.			1818		218	206	73.8	279	262.	
49	37.7	13	100	94.2	33.7	160				207			c3	
41	38.6	13.	101	95.1	34.0	161	151.	54.2	$2: 21$	208.	74.5	281	264	仡
	-	1.	102	96.0	34.4	1	152		22	209.0	74.8	281	200	
43		14.5	10	97.0	34.7	163	153.	54	22	210.	75.1	28	26.	
44	41.4	14.8	104	97.9	35.0	164	154	55.3	22	210.	75.	284	267	
45	42.4	15.2	105	98.9	35.4	165	155.4	55.	22	211.	5.8	28	268.	
46	13.3	15.5	106	99.	35.7	166			22	212.	76.1	28	269	
47	44.3	15.8	107	100.7	36.1	167	157.2	56.	22	213.	76.5	287	270	
48	45.2	16.2	108	101.7	36.4	168	158.2	56.6	2	214.	76.8	288	271	7
49	46.1	16.5	109	102.6	36.7	169	159.1	56.9	229	215.	77.2	289	272	. 97.4
50	47.1	16.8	110	103.6	37.1	170	160.1		230	216.	77.5	290	273.0	
51			11	104.5	-	171	161.0	57.	2	217.5	78.8	,		
52	49.0	17.5	112	105.5	37.7	1	161.9	58.0		218.	78.2	292	,	98.
53	49.9	17.9	113	106.4	38.1	173	162.9	58.3	23	219.	78.5	293	275	98.
54	50.8	18.2	114	107.3	8.4	174	163.8	58.6	23	220.3	78.	29	276.	99.
55	51.8	18.5	115	108.3	38.7	175	164.8	59.0	23	221.	79.2	292	277.	9.
	52.	18.9	116	109.2	39.1	176	165.7	59.3	23	222.	79.5	29	278	99
57	53.7	19.2	117	110.2	39.4	177	166.7	59.6	2	223.	79.	297	279.	100
	,	19.5	118	111.1	39.8	178	167.6	60.0	238	224.1	80.	298	280	100
	5	19.9	119	112.0	40.1	179	168.5	60.3	23	225.	80	299	281.	100
60		20.2	120	113.0		180		60.6	24	226	80.9		282.5	10
Dis			Dist.	Dep.			Dep.		Dist	Dep	Lat.	Dist.	-p.	Lat.

TABLE III.
difference of latitude and departure for 2 points.

1	00.900 .4	61	56.423 .3	121	111.846 .3	181	167.2	69.3	241	222.7	92
2	01.900 .8	62	57.323 .7	122	112.746 .7	182	168.2	69.7	242	223.6	92.6
3	U2.801.2	63	58.224 .1	123	113.647 .1	183	169.1	70.0	243	224.5	93.0
4	03.701 .5	64	59.124 .5	124	114.647 .5	184	170.0	70.4	244	225.4	93.4
5	04.601 .9	65	60.124 .9	125	115.547. ¢	185	170.9	70.8	245	226.4	938
6	05.502 .3	66	61.025 .3	126	116.448 .2	186	1718	71.2	24.6	227.3	94.1
7	06.502 .7	67	61.925 .6	127	117.3.48.6	187	172.8	71.6	247	228.2	94.5
8	07.403 .1	68	62.826 .0	128	118.349 .0	188	173.7	71.9	248	229.1	94.9
9	08.303 .4	69	63.826 .4	129	119.249 .4	189	174.6	72.3	249	230.1	95.3
10	09.203 .8	70	64.726 .8	130	120.149	190	175.5	72.7	250	231.0	95.6
11	10.204 .2	71	65.627 .2	131	121050	191	176	73.1	251	231.9	96.1
12	11.104 .6	72	66.527 .6	132	122.050.5	192	177.4	735	252	232.8	96.4
13	12.005 .0	73	67.427 .9	133	122.950 .9	193	178.3	739	253	233.7	96.8
14	12.905 .4	74	68.428 .3	134	123.851 .3	194	179.2	74.2	254	234.7	97.2
15	13.905 .7	75	69.328 .7	135	124.751 .7	195	180.2	74.6	255	235.6	97
16	14.806 .1	76	70.229 .1	136	125.752 .0	196	181.1	75.0	256	236.5	98.0
17	15.706 .5	77	71.129 .5	137	126.652 .4	197	182.0	75.4	257	237.4	98.4
18	16.606 .9	78	72.129 .9	138	127.552 .8	198	182.9	75.8	258	238.4	98.7
19	17.607 .3	79	73.030 .2	139	128.4 53.2	199	183.9	76.2	259	239.3	99.1
20	18.507 .7	80	73.930 .6	140	129.353 .6	200	184.8	76.5	260	2402	93.5
21	19.408 .0	81	74.831 .0	141	130.3	201	185	76.9	261	241.1	50.
22	203084	82	75.831 .4	142	131.254 .3	202	186.6	77.3	262	242.1	100.3
23	21.308 .8	83	76.731 .8	143	132.154.7	203	187.6	77.7	263	243.0	100.6
24	22.209 .2	84	77.632 .2	144	133.055 .1	204	188.5	78.1	264	243.9	101.0
25	23.109 .6	85	78.532 .5	145	134.055 .5	205	189.4	78.5	265	244.8	101.4
26	24.010 .0	86	79.532 .9	146	134.955 .9	206	190.3	78.8	266	245.8	101.8
27	24.910 .3	87	80.433 .3	147	135.856.	207	191.2	79.2	267	246.7	102.2
28	25.910 .7	88	81.333 .7	148	136.756 .6	208	192.2	79.6	268	247.6	102.6
29	26.811 .1	89	82.234 .1	149	137.757 .0	209	193.1	80.0	269	248.5	102.9
30	$\underline{27.7} 11.5$	90	83.234 .4	150	138.657 .4	210	194.0	80.4	270	249.5	103.3
31	24.611 .9	91	84.134 .8	151	$139.5 \overline{57.8}$	211	194.9	80.8	271	250.4	103.7
32	29.612 .3	92	85.035 .2	152	140.458 .2	212	195.8	81.1	272	251.3	104.1
33	30.512 .6	93	85.935 .6	153	141.458 .6	213	196.8	81.5	273	252.2	104.5
34	31.413 .0	94	86.936 .0	154	142.358 .9	214	197.7	819	274	253.1	104.9
35	32.313 .4	95	87.836 .4	155	143.259 .3	215	198.6	82.3	275	254.1	105.2
36	33.313 .8	96	88.736 .7	156	144.159 .7	216	199.6	82.7	276	255.0	1056
37	34.214 .2	97	89.637 .1	157	145160.1	217	200.5	83.0	277	255.9	106.0
3צ	35.114 .5	98	90.537 .5	158	146.060 .5	218	201.4	83.4	278	256.	106.4
39	36.014 .9	99	91.537 .9	159	146.960 .9	219	202.3	83.8	279	$2 \overline{5} 7.8$	106.8
40	37.615 .3	100	92.438 .3	160	147.861 .2	220	2033	84.2	280	258.7	107.2
41	37.910 .7	101	$93.3 \overline{38.7}$	161	148.7 ¢1.6	421	204.2	84.6	281	259.6	107.5
42	38.816 .1	102	94.239 .0	162	149.762 .0	222	205.1	85.0	282	260.	107.9
43	39.7165	103	95.239 .4	163	150.662 .4	223	206.0	85.3	28	261.5	108.3
44	40.716 .8	104	95.139 .8	164	151.562 .8	221	207.0	85.7	284	262.4	108.7
45	41.617 .2	105	97.040 .2	165	152463.1	225	207.9	86.1	285	263.3	109.1
46	42.517 .6	106	97.940 .6	166	153463.5	226	2088	86.5	286	264.2	109.5
47	43.418 .0	107	98.841 .0	167	154.3639	227	209.7	86.9	287	265.2	109.8
48	44.418 .4	108	99.841 .3	168	155.264 .3	228	210.6	87.3	288	266.1	110.2
49	45.318 .8	109	100.741 .7	169	156.164 .7	229	211.6	87.6	289	267.0	110.6
50	46.219 .1	110	101.642 .1	170	157.165 .1	230	212.5	88.0	290	267	111.0
51	47.1 19.5	111	102.642 .5	171	158.065 .4	231	213.4	88.4	291	268.9	111.4
52	48.019 .9	112	103.542 9	172	158.965 .8	232	214.3	88.8	292	269.8	111.7
53	49.020 .3	113	104.443 .2	173	159.8,66.2	233	215.3	89.2	293	270.7	112.1
54	49.920 .7	114	105.343 .6	174	160.866 .6	234	216.2	89.6	294	271.6	112.5
5	50.821 .1	115	106.344 .0	175	161.767 .0	235	217.1	89.9	29	272.5	112.9
56	51.721 .4	116	107.244 .4	176	162.667 .4	236	218.0	90.3	296	273.5	113.3
57	52.721 .8	117	108.144 .8	177	163.567 .7	237	219.0	90.7	297	274.	113.7
58	53.622 .2	118	109.045 .2	178	164.568 .1	238	219.9	91.1	298	275.3	114.0
59	54.522 .6	119	109.945 .5	179	165.468 .5	239	220.8	91.5	299	276.2	114.4
60	55.423 .0	120	110.945.9	180	166.368 .9	240	221.7	91.8	300	277.2	114.8
Dist.	Deplat.	Dis	Dep. Lat.	Dist.	Dep. Lat	Dist.	Dep.	Lat.	Dist	Dep	Lat.

For 6 Points.

TABLE III．

difference of latitude and departure for $2 \frac{1}{4}$ point．

			Dist	Lat．D		Dist．			Dist		Dep．	Dist．	Lat．	Dep．
2		00	6		26.5	122	110.3	5	182		7.	242	218	103
3		$1{ }^{1}$	63	57	26．	123	111.		183	165.	78.3	243	219.	103
	03.60	01.7	64	57	27.4	124	112.1	53.0	184	166	78.7	4	220	101
		02.1	65	58.	27.8	125	113.0	53.5	185	167.2	79.	45	221	104.8
6		02 6	66			126	113.	53.			79.5	246	222	105.2
	06.3	30．0	67		28	127	114		187	169.0	80.0	247	223.	105.6
8		J3．4	68		29.1	128	115	54.7	188	169.	80.	248	224	
			69							170.	8	249	225	106.5
10			70						190	171	81	250	226	106
11	9		71	64.2	30.4	131	118	5	19	172.	81.7	51	22	107
12	10.8	05	72			18	11	56	192	173.			22	107
13	11.8	O5	73	66.03					193		82	253	22	
14	12.70	06.0	74	66	31.6	134	121.	57.3	19	175	83.	254	229	108.6
15	13.6	06.4	75			135	122	57.7	195	176	83	255	230	． 0
16	14．50	06	76			136		58.2	196	177.2	83.8	25	231	
17	15.	07.3	77	69	32.9	13	123	58.6	197	178.1	84.2	25	232	109
18	16.3	07	78				12	59.0	198	179.	84.7		233	110.3
19		0	79			139						25		
20	18	108.6	80		3.	140	126	59	200	18.		260	235	111
21				73.			127.5							
		－		74.		1	128	60	20	182		26		
	20.8	09		75		143	129	61	20	183		26	23	12
	${ }^{2}$	10		75.9		14			20	18	87.	26	238	12.9
		10.		76		145	131	62.0	20	185	87.7	2	239	
26	23.51	11.	86	77		146	132	62.4		186	88.	26	240	113.7
	，	11				147	13		20	187	88.	仡	241	1142
	5.	12	88	79.		148	133		20	188	88.9	26	242	
	26.2	12	89			149	134		20		89.4	26	243	0
30		12	90				135		210	189		27	24	
31		13.3	91	82	38	151	136	64．6	21	190	90	27	245	
	1	13	92						21			仡		
		14							21		91			
	30.71	14.	94	85.	40.2	15	139	65.9	21	193.	91.	27	247	117.
	31.6	15	95			15			21			275		117.6
		，							11		92	276	249	
37	33.4	15.	97	87.	41.5	15	141	67	21	196.	92.	27	250	18．
	34.4	16	98			15						278		18
											93.		252	
40		17	100	90.4	42.8	16	144.6	68	22	198.9	94.	28	253	119.7
41			1			16			2	199	94.5			
		18	10	，						200.	94.9		254	
43	38.91	18.	103	93.	4.	16	147	69.7	22	201.6	95	28	255	121
44	39.8	18.	104	94.0	4.	16		． 1	22	202	95.	28	256	121
	40.7	19.2	10						225	203.4	96.		257	
46	41.6	19.7	106	95.	45.	16	150	71.0	22	204.3	96.	28	258	122
47	42.5	20.1	107	96.7	45.8	167		71.4	227	205.	97.	28	259	122.
	． 42	20.			46.2					206.	97.5		260	23.2
49	44.3	21.0	109	98	46.6	169	152	72.3	22	207.0	97.	28	261	． 6
50		1.4	110	99	47.	170	153	72.7	230	207.9	98.4	29	262	． 0
51	46.1	21.8	111	100.3	47.5	171	154	73.	23	208.	98.	29	263	
	47.02	22.2	112	101.2	47.9	172		73.6	22	209	99	29	264	24
	47.9	22.	113	102.2	．	173		4.6		210.	9.		64	
	48.8	23.1	114	103.	48.7	174	157	74.4	23	211.	100.1	29	265	125.7
	49.7	23.5	115	104.	49.2	175	158	1	23	212.	100.	29		26.2
		23.9	116	104.	9.6	176			2	213.3	100.	29	67	
	51.5	24.4	117	105	50.0	177	160.	75.7	23	214.2	101.	29	268	127.
	52.4	24	118	106	505	178	160	76.1	238	215.	101.		269	127
50	53.3	25.2	119	107.6	50.9	180		76.5	239	216.	102.	290	271	127.9
60	54		120	108		180	162	77	仡	217.	102.	300	271.	128.3
										cn	Lat．			

For $5 \frac{3}{4}$ Points．
difference of latitude and departure for $2 \frac{1}{2}$ point.

bist.	Lat. Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat	Dep.	Dist.	Lat.	Dep.
	,	61		28	121			1	159.6	85.3	1	212.5	113.6
2	01.800			29.2	122	107.6	5	182	160.5	85.8	242	213.4	114.1
3	02.601 .4	63		29.7	123	108.5	58.0	183	161.4	86.3	243	214.3	114.6
4	03.501.9	64	56.4	30.2	124	109.	58.4	184	162.3	86.7	244	215.2	115.0
5	04.402 .4	65	57.3	30.6	125	110.2	58.9	185	163.2	87.	245	216.1	115.5
6	05.302 .8	66	58.2	31.1	127	111.1	59.4	186	164.0	87.7	246	217.0	116.0
7	06.203 .3	67	59.1	31.6	127	112.0	59.9	187	164.9	88.1	247	217.8	116.4
	07.103 .6	68		32.1	128	112.9	C0.3	188	165.8	88.6	248	218.7	116.9
10	$\begin{aligned} & 07.904 .2 \\ & 08.804 .7 \end{aligned}$	69	$\begin{gathered} 60.9 \\ 61.7 \end{gathered}$	32.5	$\begin{aligned} & 129 \\ & 130 \end{aligned}$	113	60.8	189	$\begin{aligned} & 166.7 \\ & 167.6 \end{aligned}$	$\begin{aligned} & 89.1 \\ & 89.6 \end{aligned}$	$\begin{aligned} & 249 \\ & 250 \end{aligned}$	220.6	117.4 117.8
11	705.2	71	62.6	33	131	115	61.7	191	168.5	90.0	251	221.4	
12	10.605 .7	72	63.5	33.9	132	116	62	192	169.3	90.5	252	222.2	118.8
13	11.506 .1	73	64.4	34.4	133	117	C2.7	193	170.2	91.0	253	223.1	119.3
14	12.306.	74	65.3	34.9	134	118.2	63.2	194	171.1	91.4	254	224.0	119.7
15	13.207 .1	75	66.1	35.4	135	119.1	63.6	195	172.0	91.	255	224.9	120.2
16	14.107.5	76	67.0	35.8	136	119.9	64.1	196	172.9	92.	256	225.8	120.7
17	15.008 .0	77	67.9	36.3	137	120.8	64.6	197	173.7	92.	25	226	121.1
18	15.908 .5	78	68.8	36.8	138	121	65.0	198	174.6	93.	258	227.5	121.6
19	16.809.0	79	69.7	37.2		122	65.5	199	175.5	93.8	259	228.4	122.1
20	17.609 .4	80	70.6	37.7	140	123.5	66.0	200	176.4	94	260	229.3	122.6
21	18.509 .9	81	71	38:2	141	124	66.5	201	177.3	94.7	261	230.2	123.0
22	19.410 .4	82	72.3	38.6	142	125	66.9	202	178.2	95.	262	231.1	123.5
23	-0:310.8	83	73.2	39.1	143	126.	167.4	203	179.0	95.7	${ }^{263}$	231.9	124.0
24	21.211 .3	84	74.1	39.6	144	127.	67.9	204	179.9	96.	264	232.8	124.4
25	22.111 .8	85	75.0	40.1	145	127.	68.3	205	180.8	96.	265	233.	124.9
26	22.912 .3	86	75.9	40.5	146	128.8	68.8	206	181.7	97.1	266	234.	125.4
	23.812 .7	87	76.7	41.0	147	129.6	69.3	207	182.6	97.6	26	235.	125.9
28	24.713 .2	88	77.6	41.5	14	130.5	69.8	208	183.4	98.	268	236	126.3
$\begin{aligned} & 29 \\ & \hline \end{aligned}$	25.613 .7 26.514 .1		78.5	41.9 ${ }_{4}$	149	$\begin{aligned} & 131 . \end{aligned}$		21	184	98	$\begin{aligned} & 269 \\ & 270 \\ & \end{aligned}$	237.2 238.1	126.8
31	27.314 .6	91	80.3	42.9	151	133.2	71.2	211	186		271	239	127.7
32	28.215 .1	92	81.1	13.4	152	134.1	71.6	212	187	99.9	272	239.9	128.2
33	29.115 .6	93	82.0	43.8	153	134.9	72.1	213	187.8	100.4	273	240.8	128.7
34	30.016 .0	94	82.9	44.3	154	135.8	72.6	21	188.7	100.	27	241.	129
35	30.916 .5	95	83.8	44.8	155	136.7	73.1	21	189.6	101.3	275	242.	129.
3 3	31.817 .0	96	84.7	45.2	156	137.6	73.5	21	190.5	101.8	27	243.	130.1
37	32.617 .4	97		45.7	157			21	191.4	102.	277	244.	130.
38	33.517 .9	98	86.4	46.2	158	139.3	74.5	21	192.3	102.8	278	245.2	131.0
39	34.418 .4	99	87.3	46.7	159	140.2	74.9	21	193.1	103.2	279	246.1	131.5
40	35.318 .9	100	88.2	47.1		141.1	75.			103.			132.0
41	36.2	101	89.1	47.6	161	142.0	75.9	221	194.9	104.2	281	247	132.
4	37.019 .8	102	90.0	48.1	162	142.9	76.4	222	195.	104.6	282	248.	132
43	37.920 .3	103	90.8	48.5	163	143.8	76.8	223	196.7	105.1	283	249.6	133.4
44	38.820 .7	104	91.7	49.0	164	144.6	77.3	22	197.6	105.6	28	250.5	133.9
45	39.721 .2	105	92.6	49.5	165		77.8	22	198.4	106.	285	251.	134
46	10.621 .7	106	93.5	50.0	166	144.4	78.2	220	199.3	106.5	286	252.2	134.
47	41.522 .2	107	94.4	50.4	167	147.3	78.7	227	200.2	107.0	287	253.	135.3
49	42.322 .6	108		50.	160	148.2	79.2	22	201.1	107.5	288	254.0	135.8
59	$\left\lvert\, \begin{aligned} & 43.223 .3 \\ & 44.123 .6 \end{aligned}\right.$	109		51.4	170	$\begin{aligned} & 149.0 \\ & 149.9 \end{aligned}$		229	202.0	107.9 108.4	289 290	254.9 255.8	136.2
51	45.0	111	97.9	$\overline{52.3}$	171	150.8	$8{ }^{8} 8$	231	203.7	108.	291	256.	137.
	45.924.5	112	98.8	52.8	172	151.7	781.1	232	204.6	109.4	292	257.	137.
	46.725 .0	113	99.7	53.3	173	152.6	81.5	233	205.5	109.8	93	258.	138
	17.625 .5	114	100.5	553.7	174	153.5	82.0	234	206.4	110.3	294	259.	138
	18.525 .9	115	101.4	54.2	175	154.3	382.5	23	207.3	110.8	29	260.2	139.
	19.426 .4	116	102.3	54.7	176	155.2	83.0	236	208.1	111.2	296	261.	139.5
	-0.3.26.9 51.227 .3	117	103.2	55.1	178	156.1	183.4	${ }^{23}{ }^{2}$	209.0	111.7	297.	261.9	140.0
	52.027.	119	105.0	56.1	179	157.9	84.4	23	210.	112.	,	263.	140.9
60	52.928	120	105.8	856.6	180	158.8	884.8	24	211.7	113.	300	264.	141.4
	Dep. L	Dis	Dep.	La	Dis	Dep.	Lat.	Dist.	Dep	La	Dist.	Dep.	
For $5 \frac{1}{2}$ Points.													

difference of latitude and departure for $2 \frac{3}{4}$ point.

Dist.	Lat.	Dep	list.	Lat.	Dep ${ }^{\prime \prime}$	Dist.	La	Dep' ${ }^{\prime}$	Dist.	La	Dep.	Dist.	t.	Dep.
	0.9	00.5	61		31.4	121	103.8	62.2	81	155.3	93.0	241	206.7	123.9
2	01.	01.0	62		31.9	122	104.6	62.7	182	156.1	93.6	242	2076	124.4
3	02.6	01.5	63	54.0	\|32.4	123	105.5	63.2	183	157.0	94.1	243	208.4	124.9
4	03.4	021	64	54.9	\|32.9	124	106.4	63.7	184	157.8	94.6	244	209.	125.4
5	04.3	02.6	65		133.4	125	107.2	64.3	185	158.7	95.1	245	210.1	125.9
6	05.1	03.1	66			126	108.1	64	186	159.5	95.6	246	211.0	1265
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 06 \\ & 06.9 \end{aligned}$	03 04.1	67 68	$\begin{aligned} & 57.5 \\ & 58.3 \end{aligned}$	334.4	128	11889 109.8	65.3	188	160.4 161.2	96.1 96.6	247	211.9	127.0
9	07	04.6	69	59.2	235.5	129	110	66.3	189	162.1	97.	249	213.6	
10	08.6	05.1	70		36.0	130	111.5	66.8	190	163.0	97.7	250	214.4	128.5
11	09.4	05	71	60.9	6.5	131	112.4	67	191	163	98.2	251	21	129.0
12	10	06.2	72	61.8	837.0	132	113.2	67.9	192	164.7	98.7	252	216.1	129
13	11.	06.7	73	62.6	637.5	133	114.1	68.4	193	165.5	99.2	253	217.	130.1
14	12	07.2	74		58.0	134	114	68.9	19	166.4	99.7	254	21%	130.6
15	12.9	07.7	75	64.3	38.6	135	115.8	69.4	19	167.3	100.2	25	218.7	131.1
16	13.7	08.2	76	65.2	39.1	13	116.6	69.9	19	168.1	100.	256	219.6	131.6
17		08.7	77		39.6	137		70	197	169.0	101.	257	220.4	132.1
18	15.4	09.3	78	669	94.1	138	118.4	70.9	19	169.8	101.8	25	221	132.6
19	16.3	09.8	79	67.8	840.6	139	119.2	71.5	19	170.7	102.3	259	22.2	133.1
20		10	80	68.6	641.1	140	120	72.0	200	171.5	102.8	260	223.0	133.7
21	18.6	10	81	69.5	541.6	141	120.9	72.5	201	172.4	103.3	261	223.9	134.2
$2 \cdot$		11.		70.3	342.1	142	121.8	730	202	173.3	103	262	224.7	134.7
23	19.7	11.8	83	71.2	42.7	14	122.7	73.5	20	174.	104.	263	225	135.2
24	20.6	12.3	84	72.0	. 43.2	144	123.5	74.0	204	175.	104.9	264	226.4	135.7
25	21.4	12.9	85	72.9	93.7	145	124.4	74.5	205	175.8	105.4	26	227.3	136.2
26		13			844.2	146	125		20	176.	105.	266	228.	136.7
27	23.2	13.9	87	74.6	644.7	147	126.1	75.6	207	177.5	106.4	267	229.0	137.3
28	24.0	14.4	88	75.5	545.2	148	1269	76.1	20	178.4	106.	268	229.9	137.8
${ }_{30} 29$	24.9	14.9	89	76.3	345.7	149	127	76.6	20	17	107	269	230	138.3
30		5.4	90	77.2	46.3	150	12	77.1	21	180.1	108	270	23	138.8
31	26.6	15.4	91	78.	146	151	129.5	77.6	21	18	108	271	23	13
32	2	16.5	92	78.9	97.3	152	130.	78.1	21	181	109.	27	233	139
33	28.3	17.0	93	T9.8	847.8	153	131.2	78.7	213	182.7	109.	273	234.2	140.5
34	-	17.	94	80.6	648	154	132.1	79.2	214	183.5	110.	274	235.0	140.9
35	30.0	18.0	95	81.5	548.8	155	132.9	79.7	215	184	110.	275	235	14
30	30.9	18.5	96	82.3	349.3	156	133.8	80.2	216	185.3	111.0	276	236.7	141.9
37	31.7	19.0	97	83.2	19.9	157	134.7	80.7	217	188.1	1116	277	237.6	142.4
	32.6	19.5	98		150.4									142.9
39 40	33.5	20.1	99	84.9	950.9	159	136	81.7	219	187	112.6	279	239	143.4
40	34.3	20	100	85.8	8	160	137.2	82	220	18	113.1	280	240	143.9
41	35.2	21.1	101	86.6	$6 \overline{51.9}$	161	138.1	82.8	22	189.6	113.6	281	241	144
42	36.	21.6	102	87.	5j5 5	162	138.9	83.3	22	190.4	114.1	282	241	145
43		22.1	103	88.3	352.9	163	139.8	83.8	223	191.	114.6	283	242.	145
44	37.7	22.6	104	89.2	253.5	164	140.7	84.3	224	192.	115.2	284	243.	146.
45	38.6	23.1	105	90.1	154.0	165	141.5	84.8	22	193.0	115.7	285	244.4	146.5
46	39.5	23.6	106	90.9	954.5	166	142.4	85.3	22	193.	116.2	286	245.	147
47	40.3	24.2	107	91.8	855.0		143.2		227	194.	116.7	287	246.	147.
48	41.2	24.7	108	92.6	655.5	168	144.1	86.4	22	195.6	117.2	288	247.0	148.
49	42.0	25.2	109	93.5	556.0	169	145.0	86.9	22	196.4	117	288	247.9	148.
50	429	25.7	110	94.3	356.5	170	145.8	87.4	23	197.3	118.2	290	248.7	149.1
51	43.7	26	111	95.2	257.1	171	146.7	87.9	23	1981	118.8	291	249.	149
52	4.	26.7	112		157.6	172	147.5	88.4	232	199.0	119.3	292	250	150
53	45.5	27.2	113	96.9	9.58 .1	173	148.4	88.9	233	199.8	119.8	293	251.3	150.6
55	46.3	27.8	114	97.8	858.6	174	149.2	89.4	23	200.	120.3	29	252.	151.1
55	47	28.3	115	98.	59.1	175	150	90.0		201.6	120.	295	253.	151.
56	48.0	${ }^{28.8}$	116	99.5	559.6	176	151.0	90.5	23	202.4	121.3	296	253.9	152.2
57	48.9	293	117	100.4	460.1	177	151.8	91.0	23	203.3	121.8	297	254.7	152.7
58	49.	29.8	118	101.2	260.7	178	152.7	91.5	23	204.1	122.4	2	255.	153.2
59	50	30.3	119	102.1	161.2	179	153.5	92.0	238	205.0	122.9	299	256	153.7
60	51	30.8	120	102.9		180		92	24		123			154.
Dis		Lat.	Dist.	Dep	Lat.	Dist	D	La	Dist.	Dep.	Lat.	Dist.	Dep	Lat.
For $5 \frac{1}{4}$ Points.														

TABLE III.
DIFFERENCE OF LATITUDE AND DEPARTURE FOR 3 POINTS.

Dist.	Lat. Dep	Dist. Lat. Dep	Dist	Lat	Dep.	Dist.	La	Dep.	Dist.	Lat.	Dep.
				100			15	100	241	200	133.9
2	01.701.1	34.4	122	101.4	67	18	151	101	24	201	134.4
3	02.501 .7	6352.435 .0	123	102.3	68.3	1	152.2	101.7	243		
	03.302.2	6453.235 .6	124	103.1		184	153.0	102.2	244	202	
5	04.202 .8	6554.036 .1		103.9		185	153.	102.8	245	203	136
6	05.003 .3	6654.936 .7	126	104.	70.0	186			246	20	
7	05.803.9	55.737	127	105.6	70.6	18	155	113.9	247	205	137.2
8	06.704 .4	6856.537 .8		106.4			156	104.4	248	206	137.8
	505	6957.438 .3	129			189	157		249		9
10	08.305 .6	70-8.288	130	1081	72.2	190	158	105	250		9
11	09.106.1	,	131	108.9	72.8	191	158	106.1		208	139
12		,	132	109	73.	9	,	106	25	02	
13	10.807.2	7360.740 .6	133	110.	73.9	193	160	107.2	253	210	
14	11.607	7461.541 .1	134	111.	74.4	194	161	107.8	54	211	
15	508	75.62 .441 .7	135	112.	75.0	95	162.	108.3	55	212	141.7
16	13.308.9	7663.242 .2		113.	75	196	163.	108.9	256	21	
17	14.109	7764.042 .8	137	113.	76	197	163.8	109.	257	213	
18	15.010 .0	7864.843 .3	138	114	76.7	198	164.	110.0	25	214	
19	15810.6	7965.743 .9	139	115		199	165.	110.6	25	21	
20	16.611 .1	8066.544 .4	140	116	77	200	16	111.1	260	21	
21	17.511.	8167.345.	141	117	78	201	167.1	111	261	21	145.0
22	18.312	68.245	14	118	78		168	112	262	217	
23	19.112.8	69.046.	143	118	79.4	20	168		26		
24	20.013.3	8469.846 .7	144	119.7	80.0	204	169	113	264	21	
25	20.813.9	8570.747 .2	145	120.6	80.6	205	170.	113.	26	220	47.
26	21.614 .4	8671.547	146	121.	81.	20	171	$1 \pm$	266	221	
27	22.415 .0	8772.348 .3	147	122.	81.7	207	172	115	267	222	48.3
28	23.315 .6	73.248 .9		123.	82.2	20	172	115	268	222	189
29	116.	8974.049 .4	145	123	82.				269	223	49.4
30	24.916 .7	9074.850 .0	150	124.7	83.3	21	174.	116.	270	224	0.0
31	20.817 .2	917	15	5.	83.9	11	硡	17	271		
	617.	9276.551	15.	126.	84.4	212	176	117	27	226	
33	27.418.3	9377.351 .7	153	127.2		21			27		
$3 \pm$	28.318 .9	78.252 .2	154	128	85.6	21	177	118.	274		
35	29.119	9579.052 .8	155	128.	86.	215	178	119	275	228	52.
36	29.920 .0	9679.8 ®̃3.3	15			21		120	276		
37	30.820.6	80.653 .9	15^{\prime}	,	7.2	217	180	120	27	230	
38	31.621 .1	9881.554 .4	158	131.4	87.8	218	181	121	278	231	154.4
39	32.421 .7	9982	15			219		12	279	232	
40	33.322	1008		133.0	88.9		182.9	122.2	280	232	
41	12	10184.056	161	133.	89.4	221	183	122.	281		
	34.923 .3	10284.856	162			22	18	123.	28	234	
	823.9	385	163	135.5			185	123.	28	235	
44	36.624 .4	10486.557 .8	16	136.	91.	22	186	124.	28		
	37.425 .0	10587.358 .3	165	137.	91.	225	187	125	28	237	50.
46	225.6	10688.158 .9		138.0	92.		187	125.	28	237	158.9
47	39.126 .1	10789.059 .4	167	1389	92.	22	188	126.	28	238	
48	39.926 .7	108,89.860.0	168	139.7	93.	22	189.	126.		239.	160.0
49	40.727 .2	10990.660.6	169	140.5	93.9		190.	127.		240	
50	41.627 .8	11091.561 .1	170	141.3	94.4	230	191.2	127.		241	61
51	424	$111{ }^{92.3} \overline{61.7}$	171	142	95.	2s					
5	43.228 .9	11293.162 .2	172	143.0	95.	23	192.	128.	292	242	162.2
53	44.129 .4	11394.062 .8	173	143	96	23	193.	129.	29	243	162.8
	44.930 .0	11494.863 .3	174	144.	96.		194.	130.	29	+4	$1{ }^{\text {a }}$
5	45.730 .6	11595.663 .9	175	145.	97.	23	195	130	29	245	10.
	46.631 .1	11696.464 .4	176	146.	97.	23	196	131.	296	246	164
57	47.431.7	11797.365.	177	147.2	98.	23	197.	131.	297	46	
58	48.232 .2	11898.165	17	148	98	23	197	132	29	247	
	49.132 .8	11998966.1	179	148.		23	198	132.	299		
60	49.933	12099.866	10	149.	10	24	199	133	30		166.7
		Dist. Dep Lat.	Dis	Dep	Lat.	Dist.	Dep	Lat.	Dist.	De	

For 5 Points.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR $3 \frac{1}{4}$ POINT.

Dist.	D	Dist.		Dep	Dist.	Lat.	Dep.	Dist.	La	Dep.	Dist.	La	
2	01.601 .2			36.9	122	98	72.	182	146	108.4	242	194	144.2
3	U2.401.8				123	98	73.3	18	147.0	109	243	195	141.8
4	03.202		51.4	38	124		73.9	18			244	196	
5	04.0 .13			88	125	100	74.5	18	148.	110.2	245	196	146
6	04.803.6		153		12	101.2	75	18	149	110.8	246	197	146.5
7	05.604 .2	5	53.8	39.	12	102.0	75.	187	150	111	2	198	17
8	U6.404.8		4	40.5		102.	76.3	18	151.	112.	248	199	147.7
	5				129	103.6	76.9		151.8	112.	249	200	8.
10	. 06	705			130	104.4	77.4	190	152.	113	250		
11						105.	78		153				
12						106.0	78.6	19	154	114			
13	10.407 .7		.	43	133	106.8	79.2	193	155	115.		203	0.
14	11.208		59.4	44.1	134	107	79.8	19	155	115.0	25	20	51
15	12.048.9		60.24		135	108.4	80.4	19	156	116	25	204	51
16	12.909 .5		61		13	109.2	81.0	190	157	116.	25	205	152.5
17	13.710 .1		61	4		110.0	81.6	19	158.	117.	25	20	153.1
18	14.510 .7		2.64				82.2	198	159.	118	25	207	
19	15.311 .3		63.4		13	111.6	82.8	19	159	118	25	208	154.3
20	16.111 .9				140	112.4	83.4	200	160	119.1	26	208	
21	16.912 .5			8.		113.2	84.	201	161.	119.		269.6	
22	17.7131			48.	142	114.0	81	20	162	120	26	210	
23	18.513 .7			49.	143	114.8	85.2	20	16	120	26	211	156.7
24	19.314.3		67.55	50	14	115.		20	163	121.	26	212	
25	2.114 .9		68	50	145	116.5	86	0	164	122	26	212	. 9
26	20.915 .5		69.15		14	117.3	87.	20	165	122.	26	213	158.5
27	21.716 .1		69.95	51	147	118.	87.6	20	166	123.	26	214	
28	22.516 .7		70.7	52	148	118.9	88		167.	123	26	215	1596
29	23.317.				14	119	88	20	167.	124	26	216	.
30	24.117 .9		35	53.6		120.5	89.4		168.	125	27	216	
1	44.		73.15	54.6		12	90.0	21	169.	125.		217.7	16
32	25.719						90.	21	170	26		18	
33	26.519 .7		74.	55	15	122.	1.	21	171.	126	27	219	,
34	27.320 .3		75	56.0		123	91	21	171		27	220	
35	28.120 .9					124	92.3	21	172	128	27	220	163.8
30	28.921 .4			5	15	125.	92.9	21	173	128.	27	221	164.4
37	29.722 .0		77.95	57.			93	21			27	222	
38	30.522 .6						94.	21	175	129		223	
39	31.323.2		79	59.	15	127.7	94.7	219	175	130.	27	224	166
40	32.123 .8	1008	80.3	59	16	128.5	95.3	220	176	131.1	28	22	160.8
41													
42	. 725	1028	81	60.	162	130.	96	22	178	132	28	226	68
43	34 ¢ 25.6	1038	82.76	61.4	16	130		22	179	132.	28	227	
44	26.2				1	131.	97.7	22		133		2	9.
45	36.126	105	84.3	62	165	132.5	98.3	225	180	134.0	28	228.	169
46	36.927.4	1068	85	63.		133.	98	22	181	134	28	229	170.4
47	728.				1	134	99.5	22	182	135	28	230	17.
48	38.628 .6	108	86	64	168	134.	100.1	22	183.	135	28	231	171.6
49	39.429 .2	1098	8		16	135	100.7	22	183.	136.4	28	232	172.2
50	40	1108			1	136.5	101.3	230	184.7	137.0	290	232.	172.8
51	41.030	111	89.2	66	17	137.3	101.	23	185	137.6	2	233	173
52	41.831	1129	90.0	6	172	138	102.	23	186	138.2	29	234	173.
	631.6	113		67.3	1	138.	103.1	2	187.	138.	29	235	174.5
54	13.432 .2	1149	91.6	67.9	17	139.8	103.7	23	187	139	29	236	
	44.232 .8	1159	92.4	68.5	17	140.	104.2	23	188.	140.0	29	236.	75.
	45.033 .4	116	93.26		1	141.	104.8	23	189.	140	20	237	176.3
57	45.834 .0	1179	94.0	69.7	17	142.2	105.	23	190	141.	29	238	
	46.634 .6	1189	94.8	70.3	178	143.0	106.0	23	191.2	141.8		239	177.
5	47.435 .1	1199	9.6	71	18	143.8	106.6	238	192.	142.4	29	240	78
60	48.23	1209	96	71.	18	144.6	107.2	240	192.	143.0	300	241	178.7
			DepI	La		Dep	Lat		Dep	Lat.		Dep	

For $4 \frac{3}{4}$ Points.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR $3 \frac{1}{2}$ POINTS.

	Lat. Dep	Di		Dis	Lat.	Dep.	t.	La	Dep.	Dist.	L	De
2	01.501 .5	6217.9	39.3	122		77.4	182	140		242	187	153.5
3	02.301	63	10	123	95	78.0	183	141	116.1	243	187	154.2
	03.102 .5			12		78.7	18	142	116.7	244	188	
5	03.903 .2		11.2	12	96	79.3	18	143	117	245	189.	155.4
6	04.603.8	66	11.	12	97	79.9	188	143	118	24	190	156.1
7	บ̌. 404.4	6751		127	98.	80	187			24	19	
8	6.205 .1	-	3.1	128	98.	81.2	18	145	119	24	191	157.3
					99.7	81.8		146	119.	24	192	
10				130	10		190			250	193	158.6
11	,				10	83.1	191	147	121.2	251	194.0	159.
12	0930			132	102	3.7	192			25	194.8	
13	10.0082	73 J 6	46.3	133	102.	84.4	19	149	122	25	195	
14	10.808 .9	74 37	16.9	13	103.	85.0	19	150	123	254	196	61.1
15	11.609 .5	755	47.6	135	104.	5 6	195	150	123	255	197	
16	12.410 .1	7658	48.2	134	105.	6.3	19	151	124	25	197	62.4
17	13.110 .8	7759	18		105.	6	197	15	125	25	198	. 0
18	13.911 .4	7860			106	7.5		153		25	199	
19	14.712 .0	7961	501	139	107.4	88.2	199	153.	126.	259	200	
20	15.512 .7	80		140	108.2	88.8	200	154.6	126.	260	201	,
21	16.213 .3			14	109.	89.		155.				
2	17.014 .0	8	-	142	11.	90.1		156	128	26	202	166.2
23	17.814.	8364.2	52	14	110		203	156		碞	203	6.
	18.615 .2	8464.9		14	111.					26		
	19.315 .9	856	53		112.	2.0	20	158	130	265	204	
	20.116 .5				112.	92.	20	159	130	266	205	
	20.917.		55	14	113.	3.3	20			267	206	
	21.617 .8	88	55		114.	93.9		160	132	26	207	170.0
29	22.418 .4				115.	1		161		269	207	
30	23.219				115	95.2		162.3				
31	1	9170.3			116	95.8	21	163	133	271	209	171.9
			-		117	6.4	21	163			210	1
33	25.500 .9	9371.95	59	15	118.	97.1	21	64	135	273	211	
34	26.321 .6	9472.75	59		119.	97.7		165	135	27	211	
	122.2				19	8.3	21	106		27	212	
36	27.822.	87.2	60	15	120	99.0	21	167		276	213	
	28.623.	75.0	61		121		21	167	137	27	214	
	424.1				122	100					214	
39	$30.12 \pm .7$	9976.5	62.	159	122.9	100.9	21	169	138	279	215	77.
40	30.925 .4	10077		160	123.7	101.5	22	170	139.	28	21	177.
41	31.720											
42	32.526.	0278.8	6	162	125.	102	22	171	140	28	218.	178.9
4	33.227	10379.6		163	126	103	22	172		28	218	
	.027.	10480.4			126.					28	19	
45	34.828 .5	10581.2	66	16	127.	104.7	22	173	142.7	285	220	
46	35.629 .2	106	67	16	12	105	22	174	143	28	221	
	36.329.8					105.		175.		28	221.	
48	37.130 .4	108,83.56	68	168	129	106.	22	176.	144	28	222.	182.7
49	37.931 .1	10984.3	69	169	130	107.2	22	177.	145	28	223.	183.3
50	38.631 .7	110		170	131	107.8		177.8	145.0	290	224	
	39.432 .3	1118		171	132.	108.		178	146	,	2	
	40.233 .0	112		172	133	.	23	79	仡	292	225	185.
53	41.033 .6	11387.3	71.7	173	133.	109.7	23	180	147.	293	226	
	11.734 .3	11488.1	72.3	17	134.	110.4	23	180	148.	29	227	
	. ${ }^{\text {a }}$	115	73.0	175	135	1.	23	181.	49	29	228	187.
56	43.335 .5	11689.7	73.6	176	136.	111.6	23	182.	149.	29	228	187.8
$\stackrel{57}{58}$	44.136 .2	11790.4	74.2	17	136.	112.3	23	183.	150.	29	229	188.
58	44.836 .8	11891.2	75	178	138.	112.9			51	29	230	
	15.637 .4	11992.0	75	179	138.	113.6	23.	$18 \pm$.	151.	29	231	
	16.438 .1	12092	76	180	139.	114	24	185	152.3	300	231	190
	ep La	st. D		Dist.	Dep	Lat		Dep	Lat.		Dep	Lat.

For $4 \frac{1}{2}$ Points.

TABLE III.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR $3 \frac{3}{4}$ POINT.

Dist.	Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1	00.7	00.7			,	121	89.6	81.3	181	134.1	121.5	241	178.6	161.8
2	01.50	01.3	6\% 4	45	11.6	122	90.4	81.9	182	134.8	122.2	242	179.3	162.5
3	02.20	02.0		46.7	42.3	123	91.1	82.6	183	135.6	122.9	243	180.0	163.2
4	03.0	02.7		47.4	13.0	124	91.9	83.3	184	136.3	123.6	244	180.8	163.8
5	03.70	03.4		48.24	43.6	125	92.6	83.9	185	137.1	124.2	245	181.5	164.5
6	04.40	04.1		48	44.3	126	93.4	84.6	186	137.8	124.9	246	182.3	165.2
7	05.20	04.7			45.0	$12 \overline{7}$	94.1	85.3	187	138.6	125.6	247	183.0	165.9
8	05.9	05.4			45.7	123	94.8	86.0	188	139.3	126.2	248	183.8	166.5
9	06.70	06.0			46.3	129	95.6	86.6	189	140.0	126.9	249	184.4	167.2
10	07.4	06.7	705	5	47.0	130	96.3	87.3	190	140.8	127.6	250	185.2	167.9
11	U8.2 0	07.4		52.6	17.7	131	97.1	88.0	19	141	128.3	251	186.0	168.5
12	08.90	08.1		3	48.3	132	97.8	88.6	192	142.3	128.9	252	186.7	169.2
13	09.60	08.7		54	19.0	133	98.5	89.3	193	143.0	129.6	253	187.5	169.9
14	10.4	09.4			19.7	134	99.3	90.0	194	143.7	130.3	254	188.2	170.6
15	11	10.1			50.4	13 J	100.0	90.7	195	144.5	130.9	255	188.9	171.2
16	11.9	10.7			51.0	136	100.8	91.3	196	145.2	131.6	256	189.7	171.9
17	12.611	11.4			. 51.7	137	101.5	92.0	197	146.0	132.3	257	190.4	172.6
18	13	12.1			2̃2.4	138	102.2	92.7	198	146.7	133.0	258	191.2	173.2
19	14.1	12.8			53.0	139	103.0	93.3	199	147.4	133.6	259	191.9	173.9
20	14.8	13.4			53.7	140	103.7	94.0	200	148.2	134.3	260	192.6	174.6
21	10	14.		60.0	54.4	14	10	94.7	201	148	135.0	26	193.4	175.3
22	16.3	14.8		.	55.1	142	10 ± 2	95.4	202	149.	135.6	262	194.1	175.9
23	17	15.4			55.7	143	106.0	96.0	203	150.	136.3	263	194.8	176.6
24	17.8	16.1		62.2	56.4	144	106.7	96.7	204	151	137.0	264	195.6	177.3
25	18.5	16.8			57.1	145	107.4	97.4	205	151.9	137.7	265	196.3	178.0
26	19	17.5			57.7	146	108.2	98.0	206	152.6	138.3	266	197.1	178.6
27	20.0	18.1		64.5	58.4	147	108.9	98.7	207	153.4	139.0	267	197.8	179.3
28	20.7	18.8		65.25	,59.1	148	109.7	99.4	208	154.1	139.7	268	198.6	180.0
29	21.5	19.5		-	59.8	149	110.4	100.1	209	154.9	140.3	269	199.3	180.6
30	22.2	20.1	90		60.4	150	111.1	100.7	210	155	141.0	270	200.1	181.3
31	23.0	20.8			61	151	111.9	101.4	211	156.	141.7	271	200.8	182.0
32	23.72	21.5		68.2	261.8	152	112.6	102.1	21.	157.	142.4	272	201.5	182.7
33	24.4	22.2		68.9	92.4	153	113.4	102.7	213	157	143.0	273	202.3	183.3
34	25.2	22.8		69.6	63.1	154	114.1	103.4	214	158.6	143.7	274	203.0	184.0
35	25.	23.5		70.4	463.8	155	114.8	104.1	215	159.3	144.4	275	203.8	184.7
36	26.	24.2		71.1	164.5	156	115.6	104.8	216	160.0	145.0	276	204.5	185.3
37	27.4	24.8		71.9	965.1	157	116.3	105.4	217	160.8	145.7	277	205.2	186.0
38	28	25.5		72.6	65.8	158	117.1	106.1	218	161.5	146.4	278	206.0	186.7
39	28.9	26.2		73.3	366.5	159	117.8	106.8	219	162.3	147.1	279	206.7	187.4
40	29.6	26.9	100		167.2	160	118.5	107.4	220	163.0	147.7	280	207.5	
41	30.4	27			67	161	119.3	108.1	221	163.7	148.4	281	208.2	188.7
42	31.12	28.2		75.6	688.5	162	120.0	108.8	222	164.	149.1	282	208.9	189.4
43	31.9	28.9	103	76.3	369.2	163	120.8	109.5	223	165.2	149.7	283	209.7	190.0
44	32.6	29.5	1047	77.1	169.8	164	121.5	110.1	224	166.0	150.4	284	210.4	190.7
45	33.3	30.2	105	77.8	870.5	165	122.3	110.8	225	166.7	151.1	285	211.2	191.4
46	34.1	30.9		78.5	71.2	166	123.0	111.5	226	167.4	151.8	286	211.9	192.1
47	34.8	31.6		79.3	371.8	167	123.7	112.1	227	168.2	152.4	287	212.6	192.7
48	35.6	32.2		80.0	0,72.5	168	124.5	112.8	228	168.9	153.1	288	213.4	193.4
49	36.3	32.9	109,8	80.8	873.2	169	125.2	113.5	229	169.7	153.8	28	214	194.1
50	37.0	33.6	1108		, 73.9	170	126.0	114.2	230	170.4	154.5	290	214.9	194.7
51	37.8	34.	11		274	171	126.7	114	231	171.2	155.1	291	215.6	195.4
52	38.5	34.9	112	83.0	075	172	127.4	115.5	232	171.9	155.8	292	216.4	196
53	39.3	35.6	1138	83.7	75.9	173	128.2	116.2	233	172.6	156.5	293	217.1	196.8
54	40.0	36.3	114	84.5	576.5	174	128.9	116.8	234	173.4	157.1	294	217.8	197.4
55	40.7	36.9	115	85.2	277.2	175	129.7	117.5	235	174.1	157.8	295	218.6	198.1
56	41.5	37.6	1168	85.9	977.9	176	130.4	118.2	236	174.9	158.5	296	219.3	198.8
57	42.2	38.3	117	86.7	78.6	177	131.1	118.9	237	175.6	159.1	297	220.1	199.4
58	43.0	38.9		874	479.2	178	131.9	119.5	238	176.3	159.8	298	220.8	200.1
59	43.7	39.6	1198	88.2	79.9	179	132.6	120.2	239	177.1	160.5	299	221.5	200.8
60	44.5	40.3	1208	88.9	80.6	180	133.4	120.9	240	177.8	161.2	300	222.3	201.5
Dist.	Dep	Lat	Dist.	Dep	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.

For $4 \frac{1}{4}$ Points.

TABLE III.
difference of latitude and departure for 4 points.

	Lat. Dep												
2	01.401 .4							18	128.7	128	24		
	02.10					87.					24	17	
	02.802 .8		-	45.3	12	8	8.	18		130	24	72	
	03.503 .5		16.	46.0	12			18	130	130	24	173	
	04.204.2									131	24		
7	04.904 .9		17.4	47	127			18	132.2	132	24	1	
8	05.705 .7					90			132.8	132.			
10	07.10				13	91.9	91	190		134	25		
11	47.807.8					2.6			135.	135			
	,												
13	09.209 .2		5			94.	94.	,	136	13		178	
14	09.909		5			9	94.		137	13			
15	10.610		53		135	95.5	95.	19		137			
16	11.311 .3		53			96.2	96.2	19	138	138			
17	12.012 .0		54.4			.	96.9		139			18	
18	12.712 .7		55			97		19		140			
19	13.413 .4		55	5.9		98.3		193				18	
20	14.114 .1		50			99.0		200	141.4	141.4		18	
21	14.814 .8		$\overline{57}$	7.	141	99	99.7	20	142.	142		184.6	
22	15.		58			,	100						
						01.	101			143			
24	17.017		59.4		14	101	101	20	144	144	26	18	
25	17.717.		60	60.	145	102	102			145			
	18.418.					3							
27	19.119 .1		61.56	61	147	103.2	103	20	146	146			
28	19.819.		1		148	104	104						
30	20.52						105					190	
30	21.2												
31	21.						106		149				
	2				15	107.	07.	21		150			
33	23.323					108.2				150			
34	,				15	108	108.		51	151			
	24.724		C7. 2		15	c9	03	21	152	152			
36	25.525		67.91		15	110	110						
37	2				15	111.	11	21	153.4			195	
38	26.926		69.	69.3	15	111	111	21	154	15		190	
39	27.627		70										
40	28.328 .3	10	,			113.1	113.1		155.6			198.0	
41		1	7		16	113	13	22	156	156			
42	29.72	1027	72	72.	16	114	114	22				199	
	0.43					115.	,						
44	31.131	1047	73.5	73.	16	116	116.	22	158	158		200	
45	31.831	57	74		16	117	116	22	159	159		201	201.
47	33		75.07		16	118	118.	22	59	159		02	202.2
49	. 6					119	119.5	22	161.	161.			204.
50	35.4354	1107	78	.	17	120	120.2	23	62	162.		205	5
5.													
52	36.8	1127	79.27	79.2	17	121.	121.	23	4.	164	29		
53	37.53	1137	79.97	79.9	17	122	122.3	23	164	16	29		
	38.238					,	33.		165.	,	2	207	
	88.938 .3	1158	81.3	81.3	175	123.	123.	23	166.	166	29	208	208.6
	39.639.	1168	82		17	24.		23	166.	166	29	209	
	10.340 .3				17	12.	125.	23	167.			10	
58	41.041 .0	1188	83.48	83.4	17	125.	125.	23	168		29	210	210
	41.741 .7	1198	84	. 1	179	126.6	125	23	169.0		29	211.	
60	42.442 .4				18	127.	127.3	24	169.7				
	ep La		DepI			Dep.	Lat.	Dist.	Dep.			Dep.	

For 4 Points.

TABLE IV.
difference of latitcde and departure for 1 degree.

11	11.000 .2	71	
12		72	
13	13.000 .2	73	73
14	14.000 .2	74	74.001
15	15.000 .3	75	75.001.3
16	16.000.	76	76.001.3
17	17.000 .3	77	77.001.3
18	18.000	78	78.001 .4
	19	79	

21		81	81.001 .4
22		32	
23	23.		
24	24.000	84	
25	25.000	85	
	$\because 6.000 .5$	86	86.001.5
	27.000	87	87
	28.000.		
		89	

31	31.0	00.5	91
32	91.0	01.6	
32.000 .6	92	92.001 .6	
33	33.000 .6	93	93.001 .6
$3 \pm$	34.000 .6	94	94.001 .6
35	33.000 .6	95	9.001 .7
36	36.000 .6	96	96.001 .7
37	37.000 .6	97	97.001 .7
38	38.000 .7	98	98.001 .7
39	39.000 .7	99	99.001 .7
40	40.000 .7	100	100.001 .7

		10	
		102	
	43.0	10	
	44.	104	
	45.000.	105	
	46.000.	106	106.
	17.000.8	10	
			108.0
	49.00	109	10
	. 0		

$\frac{51}{51.0}-0.9 \quad 111 \quad 111.0 \quad 1.9$

52	52.000 .9	112	112.000 .0	
53	53.0	00.9	113	113.002 .0

54	54.0	00.9	114	114.002 .0

55 55.001.0 115 115.002.0

| 56 | 56.001 .0 | 116 | 116.002 .0 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}57 & 57.001 .0 & 117 & 117.002 .0\end{array}$
$\begin{array}{lllll}58 & 58.001 .0 & 118 & 118.000 .1 \\ 59 & 59.001 .0 & 119 & 119.002 .1\end{array}$
$60 \quad 60.001 .0 \quad 120120.002 .1$
Dist. Dist. Lat. Dep Dist. Lat. Dep Dist. Lat. De

121	121.002 .1
122	122002.1
123	123.002 .1
124	124.002.2
5	125.002 .2
126	126.002.2
127	127.002.2
128	128.002.2
129	129.002 .2
130	130.002

Dist.	Lat.	D	
181	181.0		
182	182.0		
1	183	183.0	
2	184	184.0	
2	185	185.0	
2	186	186.0	
2	187.0	188.0	
2	189	189.0	
3	190	190.0	

61	61.001 .1						
62	62.001 .1						
63	63.001 .1						
64	64.001 .1						
65	65.001 .1						
66	66.001 .2						
67	67.001 .2						
68	68.001 .2						
69	69.001 .2						
70	70.001 .2			Dist.	Lat.		
:---	:---	:---	ep.	.2	241	241.0	04.2
:---:	:---	:---	:---	:---			
.2	242	242.0	04.2				
.2	243	243.0	04.2				
.2	244	244.0	04.3				
.2	245	245.0	04.3				
.2	246	246.0	04.3				
.3	247	247.0	04.3				
.3	248	248.0	04.3				
.3	249	249.0	04.3				
.3	250	250.0	04.4				

II

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 2 DEGREES.

	La	Dist.	Lat. Dep D	Dist.	Lat. Dep Dis	Dist.		Dep.	Dist.	L	Dep
	,	62	62.002	122	121.90	182		06.4	242		
3	$03.0 \cup 0.1$	63	63.002	123	122.904.3	18	182.		243	24	
4	04.000 .1	64	64002	124	123.904 .3	184	183.	06.4	24	24	
5	05.000	65	65.002 .3	12	124.904 .4	185		06.5	24		
6	06.000	66	66.002 .3	12	125.904 .4	18	185		24		
	07.000.2	67	67.0102 .3	127	126.914	187	186.	06.	24	24	
	Os. 00	68	68.002 .	12	127.904 .5	188		06.	24		
9	09.00		69.0024	12	128.904 .5	18	188	0	248	248	
10	10.00	70	70.002 .4	130	129.904	190	189	06	250	249.	08.7
11	11400	71	71.002	131	130.9	191	190	06.	251	25	
12	12.000	72	72.002		131.904 .6	19		06	25	25	
13	13.60	73	73.002		1329	19	192	06.	25	252	
14	14.0 - 0	74	74.002 .	134	133.904 .7	194	193	06.	25	253	08.9
15	15.000	7	75.002 .		134.904 .7	19	194	06.	25	254	08.9
16	16.000		76.0		135.904		195		25	25	
17	17.000	77	77.002 .	13	136.904 .8	197	196	06.	25	256	
18	18.000	78	78.002		137.904 .8	19	197		25	257	09.0
19	19.000		79.002 .8		138.9049		198		25	258	
20	20000	80	80.002 .8	14	139.904	20	199.	07.0	26	259	
21	21.0		81.002 .8		140.904 .9	20	20	07.0	26	260.	
	22.000						201				
23	23.100.	83	82.902 .9	14	142.905 .0	20	202	07	26	262	
24	24.000	81	83.902 .9	144	143.905 .0		203		261	263	09.
25	25.		84		144.905		204	07		264	
	26000.	80	85.9030	14	145.905.	20	205.	07	26	265	
27	27.1000	87	86.903 .0	147	146.905.	20	206.		26		093
	28.00		87		147		207	07		267	
29	29.001 .0	89	88.903 .1	149	148.905 .2	20	208	07.3	26	268	
30	30.001 .0	90	89903.1	15	149.905 .2	21	209.	07.3	27	269	
31	\square						210				
32	32.001		91.903	152	151.905	21	211		27		
	33.00	93	92.903		152.905	21	212.		27	27	
34	34.00		93903		153.905	21	213		274	273	
35	35.001.	95	94.903.	15	154.905	21	214		27	274	
33	33.001 .3	96	95.903		155.905	21		07	27	275	
	37.601		96.90		156.905		216			276	
	38.601	98	97.903	15	157.90	21	217			277	
3	P3.4010		-9.0		158.90		218.		279	278	
40	10.001	10	99.9		159.905 .6		10.				
41	11.6	101	100.903	16	160.905	2	220				
		102	101.	162	161.9	2	221	07.		281	
43	43.001		102.903		162.9		222			282	
44	44.001.	104	103.903	164	163.905	22	223		28		
5	15	10	104.903	165	164.905		224	07.			
46	46.001.		105.903		165.905		225	07.	28	285	
47	17.001.	107	1069037	16	166.905	227	22	07.			
48	4800	108	107.903 .8	168	167.905 .9	22	227	88.	288	287	
49	19.00	10	108.903 .8	169	168.905 .9		228	08		288	
			1109.9		170.9						
52	52.001	112	111.903 .9	172	171.906.	23	231		29	291	
53	53.001	113	112.903 .9	173	172.906		232	08	293	292	
	. 001	13	113.9	174	173.900			88.	29	29	
5	55.001 .8	115	114.904 .0	175	174.906	23	234.	08.	2	294	
	56.002	116	115.904 .0	17	175.906	23	235.	08.	29	295	10
	. 002.0	117	116.904 .1	17	176.906	23	236.	08.	2	20	10
5	88.002.0	118	117.904 .1	17	177.9006	23			29		
59	59.002 .1	119	118.904 .2	178	178.906	23	238.	88	299	208	10.4
60	60.002	120	0	180	179.906		239.	08.		299	10.5
			Dep. Lat.		Dep. Li						

For 88 Degrees.
difference of lattude and departure for 3 degrees.

	Lat.		Dis			Lat.		Dist.		Dep.	Dist.		Dep
2		00.1	62	61.903 .2	122	121	06.4	182		09.5	242		
3	03	00.2	63	62.903 .3	123	122		18	182.7	09.	243	242	
	04		6	63.903.	12	123		184	183	09	244	24	12
5	05	00.3	65	64.903 .4	125	124.		185	184	09.	245	244.7	12
6		0	6	65.93 .5	12			18	185	09.7	24		12.9
7			67	.903.	12	126		18	186	09.8	247		12.9
8		0	68	67.903 .6	128	127	06.7	188	187.	09.	24	247	
9		0	co	68.903 .6	120				188.	09.	249	248	
10			70	90	130	12		190	189	09.	250	24	
11	11.0	00.6	71	11.903 .7	131	130.8	. 9	19	190	10.0	251	250	13.
1.			72	1.903 .8	132			19	191	0.	5		13.2
13			73	72.903	133			193		10	25		
14	14.0	00.7	74	73.903 .9	134	133		19	193	10	25	25	13.3
15			75	74.903 .9	135			195	194	10.2	5	5	13.3
16			76	75.904 .0	13			196		10	256		
17	17	0.9	7	76.904 .0	137	136		1	196	10	25	25	13.
18	18		78	77.904 .1				19	197	10.4	25	25	13.5
19				78904.	138			19		10	25		13.6
20	20	01.0	80	79904.2	140			20	190	10.5	260	259	13
21				80.904 .2									
				1.904	142			20	201	10.	26		
23	23.00	01.2	83	82.904	143	142		20	202	10.	26		13.8
24				83.904.	14			204	203	10.7	26		13.8
	5.		85	4.904	145	144		205	204	10.	26		13.
26	26	01.4	86	5.904	146			20	205	10	26		13
27				6.904 .				20		10.	26		14.0
28	8.			7.904	148	147		20	207	10.	26		
29	,	1.	89	88.904	149			209	208	10.	26		
30			90	89.904					209	11.0	析		
31			91	. 904	15	150	07.9	21	210	11.	27	270	14.2
3				904				21		11	27		1.
				92.904				21		1.	27		14.3
34	34.	01.8	94	3.904	15	153	08.	21	213	11.	27	273	14.
35			9	.905		154.8		21		11.	27		
				. 905						1.			
37	36	1.9	97	96.905	15	156		21	216	11.	27	276	1
38			98					218		11.	27		
39			99	98.905						11.			
40	39.9	02.1	100	99.905	16	159.8		22	219.7	11.		279	14.7
41			101	100.9				22					
42				1.9						11.			
43	12.9	02.	10	102.905	16	162		22	222	11.7	28		
44			10	905		163		2	22	11.7	28		
45				4.9						11.			
46	45.	2.	106	105.905	16			22	225	11.	28		
4	16		108	106.9	16	16		22	226	11.9	28	286	
48	17.	2.5		7.					227.	11.		287	
49	48.2	2.	109	108.905 .7	169	168		22	228.	12.		288	15.1
50	49.9	02.	110	109.805 .8	170	¢	08.	23	229.7	12.	29	28	
5		,	11	110.805.	1	171	U8	2	230	12.	29	20	,
	51.9	22	112	111.805	172	171		23	231	12.	29		
53			12	2.8	173	172.8			232.	12.	29	292	
54	53.9	02.8	114	113.806	174	173		23	233.	12.	29	293.	
			115	114.8	17	174		23	234	12.	29	294	15.
			116	115.806.	176	175.8		23	235	.		295.	15
57	56	03.0	117	116.806.	177	176	09	23	236	12.	29	296	15.
58			118	117.806	178	177		23	237	12.	29	297.	15.
60		3	112	118.806.	178	179		2	238.	12	29	298	15.6
60	59	3.	12	119.806.	18	179			239	12			
			Dis	p. La	Dist.	Del		Dist.	Dep	Lat.	Dist.	Dep.	

For 87 Degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 4 DEGREES.

difference of latitude and departure for 5 degrees.

Dist.	D	Dist.		Dep	Dist.			Dist.		Dep.	Dist.		Dep.
	2.0,00.2	6			122			18		15.9	24		
	03.000	63			123	122	10.7	18	182	15	243	24	
	04.000				12			18		16.0	24		
	05	65		05.7	12	124	10.9	18		16.	24		
6	06.000	66			126	125	11.0	18	185	16.	24	24	
	07.0,00	67			127		11.1	18	186	16.	24		
	08.000	68		. 9	128	127	11.2		187	16.	24	247	
	09.0				129					16.	249		
	10.0	70						190			250	249.0	
11	11.6	71	70.7						190.	16.6			21
1	001	72							191	6.			
13	13.001 .1	73		06.4	13	132	11.	19	192	16.	25		
14	13.901 .2	1							193	16.			
	14.901 .3				135				194	17.	25		
16	15.901 .4	76	75	.	136	135	11.	19	195	17.	25		
17	16.901 .5	77	76	O6. 7	13	136	11.	19	196	17.	25		
18	17.901.									7.3	$2 \overline{5}$		
19	18.901 .7	79	78	06.9	13	138	12.1	19	198.2	17.3	25		
20	19.901.	80.			140		12.2	20	199.2	17.4	20		
21										17.			
22	21.901 .8	8	81						201	17.			
	22.902.	8	82.		143	142	12		202	17.			
	23.902	8		.	14	143	12.		,				
25	24.902 .2	85	84		145	144	12.6	20	204	17	26	264	
	25.902 .3	86			140	145			205	18			
	26.902.	87			14	146	12.			18.			
28	27.902	88				147	12.9	20	207				
29	28.902								208.	18	26		
30	29.90	90											
31	30.902	9				150.4	13.		210	18.			
32						151.4			211				
33	32.902.			8.1		152.	13.	21	212			272	
34	33.9 U3.	94				153		21	213		27		
35	34.903								214		27		
36	35.903	96			15	155	13.	21	215		27	274	
37	36.903		. 96			156		21	216		27		
38		98							217.				
39	38.903.	99			159	158.	13.9		218.			277	24
40	39.803 .5	100	99.		16	159	. 9	22	219.	19.	28	278	
42	41.803	102	101	8.	16	161.4	14.		221.	19.	28	280	
43	12.803	10			163	162			222				
44	± 3.8	,				,	14		2				
45	44.8 U3.	105	104		165	164.4	14		224.	19			
46	45.804.	100			166	,		22	225		28		
47	104	107											
48	47.804.	108	107		168	167.4	14.	22	227.	19			
49	48.80	109			169	168.	14.7	22	228				
50	8	1			170	169.4	14.8					288.	25.3
51	,	111			17	170.3	14.	231	230.	20	29	209	
52	04.	112	11		172	171.3	15.	23	231.	20.	29	290	
53	804.	13	,		1	172			232.	.		91.	
54	3.804 .7	114	113.	9.3	17	173.3	15.	23	233.	.	29	292	
55	1.804.8	115	114.	0.0	175	174.3	15.	23	234.	20.	29	293	25.
56	804.9	116	115.6	.	176	175.31	15		235		29	294.	
	5.0	117	116	0.2	17	176.	15	23	236.	20.	29		
58		118	117	0.3	178	177		23	237.	20.	29	296	
	.805.1			. 4	179	178.3	15.6		238.	0.		297.	
60	805	120	119.	10.5	180	179.31	15.7	24	239.1	20.9		298.	
	Dep Lat.					p.	Lat.		Dep				

For 85 Degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 6 DEGREES.

	Dep	Dist.		Dist.	Lat. Dep	Dist.			Dist.	Lat.	Dep.
1											
				122		182			242		
3	03.000 .3	63	62.7 ,06	123	122.312 .9	18		19.1	243		
4	04.000.	61	63.606	124	123.313 .0	184	183	19.2	244	242	
	05.000	65	64.606	125	124.313 .1	185	184.	19.	24	24	
6	06.000	66	65.606 .9	12	125.313 .2		185.	19	24	24	
7	07.000.	67	66.607.	12	126.313 .3	187	186.0	19	24	245	
	8. 000	68	67.6	128	127.313 .4	188	187.	19.	24	24	
9	9.0.0		$6 \times .607 .2$			189	188.0	19.8	${ }^{249}$	247	
10	09.901 .0	70	69.607 .3	130	129.313 .6	90	189.0	19.9	250		
11	10.9	1	70.607 .4	131	130313.7	19	190	20.0	201	249	
12	11.931.	-	71.60	132	131.313	192	190	0.			
13	9	73	72		132.313 .9	193	191	0.	25	25	
	13.90	74	73.607.	13	133.3140	19	192.	20	25	25.	
15	14.001.	75	74.607.	13	134.314 .1		193.	20.	25	253	
	15.901.	76	75.607.		135.314 .2	190		20	25	25	
17	16.901.	77	76.608 .0	13	136.214 .3		195.	20.	25	255	
18	17.901 .9	78	77.608 .2		137.214 .4		196.	20.			
19	18.902 .0	79	78.608 .3		1	199	197				
20	19.9	80	79.608 .4	14	,	200	198.	20.	26	258	
2	9	8	80.6								
					14.214.	20	200	21.			
23	$22.9 J 2$	8	82.508 .7	143	142.214 .9	20	201	21.	26		
24	23.902		83508.8	144	143.215 .1	204	202	21	26	262	
	2190		815	14	144.215.	20	203	21.			
26	25.902.	8	85.509.	14	145215.	20	204	21.			
27	26.902.		86.509.	14	146.215.	20	205	21.		265	
	77		87.509		147.215 .5		206	21.			
20	28.803 .0	89	88.509.	14	148.215 .6		207	21.			
30	29.803 .1	90	89.509 .4		149.215 .7	210	208	22			
31	30.8	91	5	15	50			22			
32	31.803		91.509		151						
	32.$\} 03$		92.509.		152.216.	21	211	22.		271	
34	33.803	9	93.509.	15	153.216.	21	212	,			
35	34.843.		94.509.		154.216 .2						
	35.803		95.51	15	155.116.		214	22			
37	36.803	97	96.510 .1	15	156116.	217	215	2.			
38	37.804.	98	97.510 .2		157.116.						
39	38.80	99	98.510 .3		8.116 .6		217	22			
40	39.804	100	99.5		159.116 .7		218	23.		278	29.3
41	10.8		100.410		160.116		219				
	8		.		161.116 .9			23.		硅	
43	42.804	103	102.410 .8	16	162.117.	22	221	23.	28	28	
44	¢3.804.6	104	103.410 .9	16	163.11	22		23		282	
	14.801		11		.1		223	23.			
$4{ }^{1}$	45.704 .8	100	105.411 .1	16	165117.4	22	224	23.	28	284	
47	46.704.	107	106.411 .2	16	166.117	22	225	23		285	30.
			11.3					3.			
49	48.705 .1	109	108.411 .4	16	168.117 .7	22	227.	23.	289	287	
50	49.705 .2	110	9,411.5	17	169.117 .8		228.	24.	290	28	30.3
5	05	11			17.		,			20,	
	51.705	112	111.411.	17	171.118 .0	23	230	24.	29		
	05	113	112.411 .8	1	172.118.	23	231	1.	29	291.	
	53.705	114	113.411 .9	174	173.018 .2	23	232	24.	29	292	30.7
	34.705	115	114.412.	17	174.018 .3	23	233	24		293	
	705	116	5.412.1	17	.018.4		234.	,		29.	
	5.706	117	116.412 .2	17	176.018 .5	23	235	24.	29	295	31.0
	57.706	118	117.412 .3	178	177.018 .6	23		24.		296.	
59 60	58.706 .2	119	118312	17	178.018 .7	23	237	25.	29		31.3
	706.3	120	119.312.		. 018			25		298	
			Dep. Lat.		p. L			Lat.			

For 84 Degrees.
difference of latitude and departure for 7 degrees.

Dist. Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	Lat.

		O0	61		121						241	239	
2	02.0	00	62	61	122		4.9	182	18	22	242	24	
	03.0	00.4	63	62.507 .7	123	122.	5.0	18	18	22.3	24	241	29
	04.0	00.5	64	63.507.8	124	123.1	15.1	184		22.4	24	242.2	29
5	05.0	00.6	63	64.507 .9	125	124.1	5.	18	183	22.5	24	243.2	
6	06.0	00.7	65	65.508 .0	126	125.	15.4	186	184.	22.7	24	244	
7	06	00.9	67	66.508 .2	127	126	15.5	187	185	22.	247	245	
8	07.9	01.6	68	67.508 .3	128	127	5.6		186	22.9	24	246.	30
		01.1	69	68.508 .4	129	128.	5.7	18	187.	230	249	247	
10)	09	1. ${ }^{2}$	70	69.508	130	129		191		23.2	250	248.	
11		1	7	70.50	131	130.0	16.0	191	189.	23.	25	249	
12		.	72	71.508.	132		16.1	192	iP0.	23	25	250	
13	12.0	01.6	73	72.508 .9	133	132	16.2	193	191	23	25	251	30
14		01.	74	73.409 .0	134	133	.	194	192.	23.	25	252.	31.
15	14.9	01.8	75	74.409 .1	135	131	16.5	195	193.	23.	25	253	
16	15.9	1.9	76	75.409.	136	13	16.6	19	194	23.	25	254	31.
17	16.9		77	76.409 .4	137	136	6.	19	195	24.0	25	255	31
18	17.5	02.2		77409.5	138	137		19	196	24.	25	256	31
19	18.9	2.3	79	78.409 .6	139	138	6.3	199	197.	24	25	257	
20		02	80	79.409 .7	140	139	17	20	198.5	24.	26	258.1	
21	20	02.6	81	80.409 .9	141	139.9	17.2	201	99	24	261	25	
22	21	02.		81.410 .0	142	140	17.3	20	200	24	26	260	
2	22.8	(18	83	83.410 .1	143	141	17.4	20	201.	24.	26	261	32.1
24	23.8	02.9	81	83.410 .2	144	142		20	202	24.	26	262	
25	24.8	03.6	85	84.410 .4	145	143	17.	205	203.	25	20	263	32.3
26	25.		86	$85.410 . t$	146	144		20	204	25	26	264.	32.
27	26.	03.3	87	86.410 .6	147	145	1	20	205.	25.	26	265	32.
28	27		85	87.310 .7	148	146		20	206.	25	26	266	
29			89	88.310 .8	149	147	18.2	20	207.	25.	26	267	32.8
30	29.8	03.5	90	89311.0	50	148	8.3	210	208.	25.	27	268.0	32
31			91	90.311.	151	14	18.4	21	209	25	271	269.0	33.
3			92	91.311 .2	152	150	8.	212	210.	5	27	270	
33	32.8	4.0	93	92.311 .3	153	151	18.	21	211.	26	27	271	33.3
31	33	4.1	94	93.311 .5	15	152	18	21	212.	26.	27	2	
35			95	94.311 .6	155	153	18.9	215	213.	26.	27	273	33
35	35.7	4.4	96	95.311 .7	156	154	19.0	21	214.	26.	27	273.	33.
37	33	04.	97	96.311.8	157	155	19.1	21	215.	26	27	27	
38			98	97.311 .9	158		19.3	218	216.	26.	27	275.	33.2
39	38.7	04.8	99	98.312 .1	159	157	19.4	219	217.	26.7	27	276.	34.0
40	39.7	04.9	100	99.312 .2	160		0.	220	218.	26	28	277	
41	10	05.0	10	100.2	161		9.6	22	219.	26			
42	41.7	05.1	102	101.212.	162	160	9.7	222	220	27	28	279	
43	42.7	05.2	103	102.212 .6	163	161	19.9	223	221.	27.2	28	250	34.5
41	43.7	03.4	10	103.212.7	164	1	20.0	224	222.	27.	8	281	
45	14.7	05.5	105	104.212 .8	163	163.	20.1	225	223.	27.	28	28.	34.7
45	45.7	5.6	106	105.212.9	166	164	20.2	22	224.	27	28	283	
47	46.6	05.7	10	106.213 .0	167		0.4	227	225.3	27.	28	284	
48	17.6	15.8	108	107.213 .2	168	166	20.5	22	226.3	27.8	28	28.	
49	48	06.0	10	108.213.3	160	167	20.6	229	227.3	27.	28	28	
50	49.6	06	110	109.2:13.4	170	168.7	20.	230	22	28.0	290	287.	.j.
51	50	06.	111	110.213 .5	171	169	20.8	231	229.3	28.2	29	288	
52	51	6.	112	111.213 .6	172	170	21.	232	230.	28.	29	289	35.6
53		06.5	113	112.213 .8	173	171	1.1	233	231.3	28.	293	200.	
54	-		114	113.213 .9	174	172.	21.2	234	232.3	28.5	291	291	
5		6.7	115	$114.114^{\circ} 0$	175	173	21.3	235	233.2	28.	29	292.	5.
5		.	116	115.114 .1	176		1.4	236	234.	28.	2	293.	帾
57		6.9	117	116.114 .3	177	175	21.6	237	235.2	28.9	29	294	
58	57.	7.1	118	117.114 .4	178	176	21.7	23	236.2	29.	29	295	36.
50		7.2	112	118.114 .5	179		1.8	238		29.	29	20.	
60	59		120	119.114	180	178.	21	240	238.2	29.2	300	297	
	De	La	Dis	Dep. La		Dep.			Den	La	his	Dep	

For 83 Degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 8 DEGREES.

difference of latitude and departure for 9 degrees.

	Lat. Dep	Dist.	Lat. Dej	Dist.	Lat. Dep	Dist.		p.	Dist.		Dep.
	02.000 .3		-	122	120.519			28	242		
	03.	63	62.209 .9	123	121.519 .2	183		28.	24	$2 \pm$	
4	04.000	64	63.210 .0	12	122.519 .4	18	181	28	244	241	
5	04.900	65	64.210 .2	125		18		28	24		
6	05.900 .9		65.210 .3	12	124.419.	18		29	24		
	O6.901.1		66.210 .5	12	125.419.		18	9	24	24	
	07.901 .3		67.21	128	126	18					
10			68	2	127	190			24		
11	.901.7	71	70.	13	129.420.	19	18	,	25	247	
12	11.901 .9	72	71.111.	13	130						
13	12.802 .0	73	72.111		131.420.		190	0			
14	13.802.	74	73.111.	134	132.421	9	191			25	
15	14.802 .3	75	74.111	13	133.321.		192	0.			
16	15.8	76	75.111.		134.321.		193	30.		5	
17	16.802.7	77	76.112 .0	137	135.321.	197	19			25	
18	17.802 .8	78	77.012 .2		136.321.		19	31.			,
19	18803.0		78.012		,						
20	19.803	80	12		1.9	200	19	31			
21	20.703 .3		80.0		139.322.		198.	31.		257	
	21.703		81.012		140.322.						
23	22.7113	83	82.013	14	11.222	20	200			259	
24	23.703	84	83.01		12.		20				
25	24.703.		,		22.		202				
26	25.704.	86	84.913.	14	144.222 .8		203	32		26	
27	26.704.		85.913	14	145.223 .0		204				
	27.704		13				205				
29	28.604.	89	87.913	14	147.223 .3	209	206	32.7	26		
30	29.604 .7	90			148.223 .5	210	207	32.8	270		
31	,	91					208				
32	31.605	92	90	15	150.123.	21	209				
$3:$		93	14		1.123 .9		210				
34	33.605	94	14		2.124 .1		211.			270	
35	34.605		93.814	15	153.124 .2		212		27		
¢7			15.						27		
37	36.		15		155.124.		214				
38	37		15	15	156.124						
\pm	8,						216				
40	39506	100									
41	10.506				59		218				
42			18.								
43	12.506 .7	103	101.716 .1	16	161.025	22	220	34	28	279	
44	43.506	10	102.716.	16	162	22			28		
	14.407 .0						222				
46	45.407 .2	106	4.716.	166	164.026.	22	223.	35.	28	282	
47	16.407 .4	107	105.716 .7	167	164926.	227	224		28		
45			16.9				225				
49	48.4108 .7	109	107.717 .1	16	166.926 .4	220	226.2	5	28	285.	
50	49.407 .8	110	108.617 .2	170	167.926.6	2	227.5	36.		286.	
51				1							
5	51.408.	112	110.617	172	169.926 .9	23	229.	,	29	88	
53	52.308	113	111.6	17	170.927	23	230	36.	,	289	5.
		114	,	175	171.9	23	231.		29	290	
55	54.308.	115	113.618 .0	175	172.827	23	232.		29		
56	.	116	114.618 .1	17	173.827	23		36.	29	,	46.
	56.308.9	117	5.618.3	17	174.827 .7		25	1.	29		
58	57.309	118	116.518	178	175.827 .8	23	235	\%	29		
5	309.	119	18.6	179	176.828.0	239		37.	29	295.3	
60	309.4	120	18	180	$177.88{ }^{2}$				300		
	Dep Lat. 1	Dist.	Dep. L		Dep.						

For 81 Degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 10 DEGREES.

Dist.	Lat. Dep	Dist.	L	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	La	Dep.
	,		60	10.6	121	119.2	21.0	181	178	31.4		23	
2	02.00	62	61.1	10.8	122	120.1	21.2	182	179.2	31.6	,	238.	
3	03.000 .5	63	62.0	10.9	123	121.1	21.4	183	180.2	31.8	243	239	42
4	03.9'00.7	64	63.0	11.1	124	122	21.5	184	181.2	32.0	244	240	42
5	04.900 .9	65	64.0	11.3	125	123.1	21.7	18	182.2	32.1	245	241.3	42
	05.901.0	66	65.0	11.5	126	124.1	21.9	186	183.2	32.3	246	242	42
7	06.901.2	67	66.0	11.6	127	125	22.1	187	184.2	32.5	24	243	42
	07.901.4	68	67.0	11.8	128	126.	22.2	18	185	32.	24	244.	43
	08.901.6	69	68.0	12.0	12	127.0	22.4	189	186.1	32.		245.	
10	09.801 .7	70	68.9	12.2	130	128.0	22.6	190	187.1	33.0	250	246.2	43
11	10.801 .9	71	69.9	12	131	29	22.7	191	188	33	1	247	43.6
12	11.802 .1	72	70.9	12.5	132	130.0	22.9	192	189	33.	252	248	43
13	12.802 .3	73	71.9	12.7	133	131.0	23.1	193	190.	33.5	253	249	43
14	13.802 .4	74	72.9	12.8	134	132	233	194	191.0	33	25	250.1	
15	14.802 .6	75	73.9	13.0	135	132	23.4	19	192.	33	$2 \overline{5}$	251	4
16	15.802 .8	76	74.8	13.2	136	133.9	23.6	19	193.	34.0	25	252.1	44
17	16.703 .0	77	75.8	13.4	137	134	23.8	19	194.	34	25	253.1	41.
18	17.703 .1	78	76.	13.5	138	135	24.0	198	195.	34.	25	254	44.
19	18.703 .3	79	77.8	13.7	138	136	24.1	19	196.	34.6	25	255.1	
20	19.703 .5	80	78.8	13.9	140	137.9	24.3	20	197.0	34.	26	256.	45
21	20.703	81	79.8	14.1	14		24.	20	197.	34.9		207	45.3
22	21703	82	80.8	14.2	142	1	24.	202	198.	5		258	
23	22.704 .0	83	81.7	14.4	143	140	24.8	203	199.	35	26	259.	
24	-23.604.2	84	82.7	146	14	141	25.	20	200	55	26	260.	45.8
	24.604.	85	83.7	14.8	145	142	25.	20	201.	35.		261	46.0
26	25.604 .5	86	84.7	14.9	146	143.	25.4	206	202.	35	26	262.	46.
27	26.604 .7	87	85.7	15	147	144		20	203.	35		262	46.4
	27.604 .9	88	86.		148		25.7	20	204.			263	46.5
29	28.605 .0	89	87.	15	145	146	25.9	209	205		26	264.	
30	29.505 .2	90	88.			147.7	26.0	210	206.	36.	27	265	46.9
31	5	91	89.6	15.	151	148	26.	211	207.	36			
3.	31.505	92		16.0	152	149	,	212	208			267	
3	32.505	93		16.	15	150		213	209.	37	27	268	47
3	33.505.	94	92.	16.3	15	151	26.7	21	210	37	27	269	
35	34.506	95	93	16.5	15	152		21	211.		27	270	
36	35.506	96		16.7	150	153.6		216	212.	37.5	27	271	47.9
37	36.406	97	95.5	16.8	15	154.		217	213.	37.7	27	272	
38	37.406	98			158	155		218	214.	37.9		273	
39	38.406	99			158			212	215.	38.0		274	48
40	39.406	100	98	17.4	160	157	27	20	216.	38.2		275.	48.6
41	40.407	101		17.5	161	158.6	28	2	217.	38.	281	276	48
	. 407	102		17				222	28				
43	42.307	103	101.	17.9	163	160	28.3	223	219.	38.7	28	278	49.1
44	43.307	104	102.4	18.1	164	161		22	220.	38.	28	279	49.3
45	. 307	105	103.4	18.2				22	221.	39.1		280	
46	45.308 .0	106	104.4	18.4	166	163.5	288	226	22.	39.2	28	281.	49
47	46.308.	107	105	18.	16	164	29.0	22	223.	39.4	28	282.	49.8
48	17.308.	108	106	,		1		228	224.	3).		283	
49	48.308 .5	109	107.3	18.9	165	166.4	29.3	229	225.	39.	28	284.	50
50	49.808 .7	110	108.3	19	17	167.4	29.5	230	226.	39.	290	285	50.4
51	208	111	19.3	13	171	168.4	29.7	231	227.	,	291	286	5.
	209	112	110.3	19.	172	169.4	29.9	23	228	40.	29	287	5
	209	113	111.3	19.6	173	170.4	30.0	233	229.	40.	29	288	
54	33.209.4	114	112.	19.8	174	171.4	30.2	234	230.4	40.	29	289	51.
	4.209.6	115	113.	20.0	175	172.3	30.4	23	231.	40.	29	290	51
	.109.'	116	114.2	20.1	176	173.3	30.6	230	232.	41.0	29	291.	
5	56.109 .9	117	115.2	20.3	177	174.3	30.7	237	233.4	41.2	29	292	516
59	57.110 .1	118	116	20.	178	175.3	30.9	23	234.	41.	29	293	51.7
	. 1110.2	119	118	2	179	177	31.1	239	235.	41.5	299	294.	51.9
	110.4	120	118	20.		177			236.	41.7		295	
	Deplat	Dis	Dep.		Dist	Dep.	Lat.	Dist.	Dep	Lat.	Dist.	Dep	

difference of latitude and departure for 11 degrees.

Dist.	L	De	Dis	Lat.	ep	Dist.	L	Dep	Dis	Lat.	p.	Dist.	La	
2		,	62		11.8	122	119	.	182		34.7	242	237.	
3		00.6	63	1	12.0	123			183	179	34.	24	238	
			64	62.	12.2	124		23.7	184	180.	35	244	239	
5	04.9	01.0	65	63.8	12.4	125	122	23.9	18		35	24	240	
6	05.9	1.			12.6	126				182	35	24	241	
			67	65		127			18		35.7	247	242	
8	07.90	01.5	68		13.0	128	125	24.4	188	184	35	248	243.	
					13.	129			18		36.	24	244.	47.
10			70			130			190	186	36.	250	245	
11	10.8	02	71	69.7	13.5	131	12		19	18	36	251	246	47.9
12	11.80		72		13	132			192	188	36		247	
13	12.8		73	71	13.	133	130.6		19	189	36.	25	248.4	
14	13.70	02	74	72.	14.1	134	131	5	19	190.	37	25	249	
15	14.7	02.9	75	73		135	132	25	19	191.	37	25	250	
16	15.70	03.	76	74	14.5	136	133	26	19		37.	25	251	
17	16.7	03.2	77	75	14.7	137	134	26	19	193.	37	25	252	
18	17.7	03	78		14.9	13	135	26		194.	37		253	
19	18.70	0	79			139	136		19	195		25	254.	
20	19.6	03	80			140			200	196	38.	26	255	
21										197.				
						142	139.4	27	20	198	38		257.	
23	22.6	04	83			14	140	27	20	199			2 J 8	
24	23.60				.	144	141	,	20	200	38.		259	
25	24.5	24.		8	16.2	145	142.3	27.	20	20	39	26	260	
26	25.5	05.				14	143			20	39.		261	
27					.	147	144	28		203	39		262	
28	27.5	O		86	16.8	148	145.3	28	20	204	39.		263.	
29	28.5	05				14				205				
30			90							206				
31			91		17.4		148.2	28	21	207		27	266	
32	31	06					149.2	29			40.			
				91.	17.7	15	50	29	21	209	,		268	
34	33.4		94	92.3	17.9	15	151.2	29	21	210	40.	27	269	
35	34.4	-	95	93.			152	9			41.			
				94.2		15	53.1	29	21	212	1.		70	
37	36.3	07	97	95	18.5	15	154.1	30.	21	213.	41.	27	271	
38	37.30	07	98				155				41.		272	
					1			30.	21	215.	11.		73	
40	30	07	100		19.1	160		30	22	216.0	42.		274.	
41	10.20									17			275	
				100	19.5		59.13	30		217	.		76	
43	12.20	8.2	103	101	19	16	160.0	31	22	218.	帾		277	
44	13.2		10	102.	19.8	16	,	31.3	2	219.	42.	28	78.	
45	44			103.	,		162.0	31		220.	42.		79	
46	45.20	08.8	100	104.	20.2	16	163.0	31.	22	221	43.			
47	46.1		10			16	,	31.9	22	222.	43.		281	
48	47.10	09.2	108	106		16	164.9	32.		223.	43.		282.	
49	48.10	09.	109	107	0.8	16	165	32.2	22	224.	43.7	28		
50	49.1	09.5	110		21.0	170	166	. 4	230	225.8	43.9	290	284.	
5			11		1.2	17	167	32.	23	226	44.		285.	
	51.00)	112	109.9	1.4	17	168		23		44.	29	286	
	2.0		113	110.9	21.6	17	169.8		研	228	4.	29	,	
54	3.01	10.	114	111	21.8	174	170	33.	23	229.	44.	29	288	
	54	10.5	115	112	1.9	17	171		23	230	44	29	289	
	0	0.7	116	,	2.1	1				231.	5.	2	290	
57	5.0	10.9	117	114.9	22.3	17	173.	.	23	232.	45.	29	291.	
58	569	11.1	118	115	22	17	174	4.0	23	233.	45.	29	292.	
59	7.9	11.3	119		22.7	1			239	234.6	45.6	2	,	
60	8.	11.4	120	117.	22.	180			240	235.	.		294.	
							Dep			De			ep	

For 79 Degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 12 DEGREES.

1	01.00	00.2	61	59.712 .7	121	118.4	25.2	181	177.0	37	241	235.	
2	02. 0	00.4	6	60.612 .9	122	119.3	25.4	182	178.0	37.8	242	236.7	50.3
3	02.90	00.6	63	61.613 .1	123	120.3	25.6	183	179.0	38.0	243	237.7	50.5
4	03.90	00.8	64	62.613 .3	124	121.3	25.8	184	180.0	38.3	244	238.7	50.7
5	04.90	01.0	65	63.613 .5	125	122.3	26.0	185	181.0	38.5	245	239.6	50.9
6	05.90	01.2	66	64.613 .7	126	123.2	26.2	186	181.9	38.7	246	240.6	51.1
7	06.80	01.5	67	65.513 .9	127	124.2	26.4	187	182.9	38.9	247	241.6	51.4
8	07.80	01.7	68	66.514 .1	128	125.2	26.6	188	183.9	39.1	248	242.6	51.6
9	08.80	01.9	69	67.514 .3	129	126.2	26.8	189	184.9	39.3	249	243.	51.8
10	J9.8	12.1	70	68.514 .6	130	127.2	27.0	190	185.8	39.5	250	244.5	52.0
11	10.8	J2.3	71	69.4	131	128	27.2	191	186	39.7	251	245.5	52.2
12	11.70	02.5	72	70.415 .0	132	129	27.4	192	187.8	39.9	252	246.5	52.4
13	12.70	02.7	73	71.415 .2	133	130.1	27.7	193	188.8	40.1	253	247.5	52.6
14	13.70	02.9	74	72.415 .4	134	131.1	27.9	194	189.8	40.3	254	248.4	52.8
15	14.70	03.1	75	73.415 .6	135	132.0	28.1	195	190.7	40.5	255	249.4	53.0
16	1 L .70	03.3	76	74.315 .8	136	133.0	28.3	196	191.7	40.8	256	25 '). 4	53.2
17	16.6)3.5	77	75.316 .0	137	134.02	28.5	197	192.7	41.0	257	251.4	53.4
18	17.60	03.7	78	76.316 .2	138	135.0	28.7	198	193.7	41.2	258	252.4	53.6
19	18.60	04.0	79	77.316 .4	139	136.0	28.9	199	194.7	41.4	259	253.3	53.8
20	19.6	04.2	80	78.316 .6	140	136.9	29.1	200	195.6	41.6	260	254.3	54.1
21	20.50	04.4	81	79.216 .8	141	137.9	29.3	201	196.6	41.8	261	255.3	54.3
22	21.50	04.6	82	80.217 .0	142	138.	29.5	202	197.6	42.0	262	256.3	54.5
23	≤ 2.50	04.8	83	81.217 .3	143	139.	29.7	203	198.6	42.2	263	257.3	54.7
24	23.50	05.0	81	82.217 .5	144	140.9	29.9	204	199.5	42.4	264	258.2	54.9
25	24.5	35.2	85	83.117 .7	145	141.8	30.1	205	200.5	42.6	265	259.2	55.1
26	25.40	05.4	86	84.117 .9	146	142.8	30.4	206	201.5	42.8	266	260.2	55.3
27	26.40	05.6	87	85.118 .1	147	143.8	30.6	207	202.5	43.0	267	261.2	55.5
28	27.4	05.8	88	86.118 .3	148	144.8	30.8	208	203.5	43.2	268	262.1	55.7
29	28.40	06.0	89	87.118 .5	149	145.7	31.0	209	204.4	43.5	269	263.1	55.9
30		06.2	90	88.018 .7	150	146.7	31.2	210	205.4	43.7	270	264.1	56.1
31	30.3	06.4	91	89.018 .9	151	147.7	314	211	206.	43.9	271	265.1	56.3
32	31.3	06.7	92	90.019 .1	152	148.7	31.6	212	207.4	44.1	272	266.1	56.6
33	32.30	06.9	93	91.019 .3	153	149.7	31.8	213	208.3	44.3	273	267.0	56.8
31	33.3	07.1	91	91.919 .5	154	150.	32.0	214	209.3	44.5	274	268.0	57.0
35	34.2	07.3	95	92.919 .8	155	151	32.2	215	210.3	44.7	275	269.0	57.2
36	35.2	07.5	96	93.9,20.0	156	152.	32.4	216	211.3	44.9	276	270.0	57.4
37	36.5	07.7	97	91.920 .2	157	153.6	32.6	217	212.3	45.1	277	270.9	57.6
38	37.2	07.9	98	95.920 .4	158	154.5	32.9	218	213.2	45.3	278	271.9	57.8
39	38.10	08.1	99	96.820 .6	159	155.5	33.1	219	214.2	45.5	279	272.9	58.0
40	39.1	08.3	100	97.820 .8	160	156.5	33.3	220	215.2	45.7	280	273.9	58.2
41	40.1	U8.5	101	98.8 21.0	161	157.5	33.5	221	216.2	45.9	281	274.9	58.4
42	11.1	08.7	102	99.821 .2	162	158.	33.7	222	217.1	46.2	282	275.8	58.6
43	12.1	08.9	103	100.721 .4	163	159.	33.9	223	218.1	46.4	283	276.8	58.8
44	43.0	09.1	104	101.721 .6	164	160.4	34.1	224	219.1	46.6	284	277.8	59.0
45	44.0	09.4	105	102.721 .8	165	161.4	34.3	225	220.1	46.6	285	278.8	53.3
46	45.0	09.6	106	103.722 .0	166	162.4	34.5	226	221.1	47.0	286	279.8	59.5
47	46.0	09.8	107	104.722.2	167	163.4	34.7	227	222.0	47.2	287	280.7	597
48	47.0	10.0	108	$105.622 \quad 5$	168	164.3	34.9	228	223.0	47.4	288	281.7	59.9
49	47.9	10.2	109	106.622 .7	169	165.3	35.1	229	2240	47.6	289	282.7	60.1
50	489	10.4	110	107.622 .9	170	166.3	35.3	230	225.0	47.8	290	283.7	60.3
51	14.4	10.6	111	108.623 .1	171	167	35.6	231	226.0	48.0	291	284.6	60.5
52	50.9	10.8	112	109.623.3	172	168.2	35.8	232	226.9	48.2	292	285.6	60.7
53	51.8	11.0	113	110.523 .5	173	169.2	36.0	233	227.9	48.4	293	286.6	60.9
54	J2.8	11.2	114	111.523 .7	174	170.2	36.2	23	228.9	48.7	$29 \pm$	287.6	61.1
55	-3.8	11.4	115	112.523 .9	175	171.2	236.4	235	229.9	48.9	295	288.6	61.3
56	54.8	11.6	116	113.524 .1	176	172.2	36.6	236	230.8	49.1	296	289.5	61.5
57	5 j .8	11.9	117	114.424 .3	177	173.1	136.8	237	231.8	49.3	297	290.5	61.7
58	26.7	12.1	118	115.424 .5	178	174.1	137.0	238	232.8	49.5	298	291.5	62.0
59	57.7	12.3	119	116.424 .7	179	175.1	137.2	239	233.8	49.7	299	292.5	62.2
60	38.7	12.5	120	117.424 .9	180	176.1	137.4	240	234.8	49.9	300	293.4	62.4

Dist. Dep Lat. Dist. Dep. Lat.|Dist. Dep. Lat. Dist. Dep. Lat. Dist. Dep. Iat.
For 78 Degrees.
difference of latitude and departure for 13 degrees.

1	01.000.2	61	59.413 .7	121	117.927 .2	181	176.4	40.7	241	234.8	54.2
2	01.900 .4	62	60413.9	122	118.927 .4	182	177.3	40.9	242	235.8	54
3	02.900.7	63	61.414 .2	123	119.827 .7	183	178.3	41.2	243	236.8	54.7
	03.900.9	64	62.414 .4	124	120.827.9	184	179.3	41.4	244	237.7	54.9
5	04.901 .1	65	63.314 .6	125	121.828.1	185	180.3	41.6	245	238.7	55.1
6	05.801.3	66	64.314 .8	126	122.828 .3	186	181.2	41.8	246	239.7	553
	06.801 .6	67	65.315 .1	127	123728.6	187	182.2	42.1	247	240.7	55.6
8	07.801.8	68	66.315 .3	128	124.7 28.8	188	183.2	42.3	248	241.6	55.8
9	08.8.02.0	69	67.215 .5	129	125.729 .0	189	184.2	42.5	249	242.6	56.0
10	09.702.2	70	68.215 .7	130	126.7-29.2	1901	185.1	42.7	250	243.6	56.2
11	10.702 .5	71	69.216 .0	131	127.629 .5	191	186.1	43.0	201	244.6	56.5
12	11.702 .7	72	70.216 .2	132	128.629 .7	192	187.1	43.2	252	245.5	56.7
13	12.702 .9	73	71.116 .4	133	129.629 .9	193	188.1	43.4	253	246.5	56.9
14	13603.1	74	72.116 .6	134	130.630 .1	194	189.0	43.6	254	247.5	57.1
15	14.603 .4	75	73.116 .9	135	131.530 .4	195	190.0	43.9	255	248.5	57.4
16	15.603 .6	76	74.117 .1	136	132.530 .6	196	191.0	44.1	256	249.4	57.6
17	16.603 .8	77	75.017.3	137	133.5 30.8	197	192.0	44.	257	2504	57.8
18	17.504 .0	78	76.017 .5	138	134.531 .0	198	192.9	44.5	258	251.4	58.0
19	18.504 .3	79	77.017 .8	139	135.431 .3	199	193.9	44.8	259	252.4	58.3
20	19.504 .5	80	77.918 .0	140	136.4 31.5	200	194.9	45.0	260	253.3	58.5
21	20.504 .7	81	78.918 .2	141	137.431 .7	201	195.8	45.2	261	254.3	58.7
22	21.404 .9	82	79.918 .4	142	138.4319	202	196.8	45.4	262	255.3	58.9
23	22.405 .2	83	80.918 .7	143	139.332 .2	203	197.8	45.7	263	256.3	59.2
24	23.405 .4	84	81.818 .9	144	140.332 .4	204	198.8	45.9	264	257.2	59.4
25	24.405 .6	85	82.819.1	145	141.332 .6	205	199.7	46.1	265	258.2	59.6
26	25.3058	86	83.8193	146	142.332 .8	20	200.7	46.3	266	259.2	¢9.8
27	26.306 .1	87	84.819 .6	147	143.233 .1	207	201.7	46.6	267	260.2	60.1
28	27.306.3	88	85.719 .8	148	144.233 .3	208	202.7	46.8	268	261.1	60.3
29	28.306 .5	89	86.720 .0	149	145.233 .5	209	203.6	47.0	269	2621	60.5
30	29 206.7	90	87.720 .2	150	146.233 .7	210	204.6	47.2	270	263.1	60.7
31	30.207 .0	91	88.720 .5	151	147.134 .0	211	205.6	47.5	271	264.1	61.0
32	31.267 .2	92	89.620 .7	152	148.134 .2	212	206.6	47.7	272	265.0	61.2
33	32.207 .4	93	90.620 .9	153	149.134 .4	213	207.5	47.9	273	266.0	61.4
34	33.107 .6	94	91621.1	154	150.134 .6	214	208.5	48.1	274	267.0	61.6
35	34.107 .9	95	92.621 .4	155	151.034 .9	215	209.5	48.4	275	268.0	61.9
36	35.108 .1	96	93.521 .6	156	152.035 .1	216	210.5	48.6	276	268.9	62.1
37	36.108 .3	97	94.521 .8	157	153.035 .3	217	211.4	48.8	277	269.9	62.3
38	37.008 .5	98	95.522 .0	158	154.035 .5	218	212.4	49.0	278	270.9	62.5
39	38.0 ט8.8	99	96.522 .3	159	154.935 .8	219	213.4	49.3	279	271.8	62.8
40	39.009 .0	100	97.422 .5	160	155.936 .0	220	214.4	49.5	280	272.8	63.0
41	39.909 .2	101	98.422 .7	161	156.936 .2	221	215.3	49.7	281	273.8	63.2
42	40.909 .4	102	99.422 .9	162	157.836 .4	222	216.3	49.9	282	274.8	63.4
43	41.909 .7	103	100.423 .2	163	158.836 .7	223	217.3	50.2	283	275.7	63.7
44	42.909.9	104	101.323.4	164	159.836 .9	224	218.3	50.4	284	276.7	63.9
45	43.810 .1	105	102.323 .6	16	160.837 .1	225	219.2	50.6	285	277.7	64.1
46	44.810 .3	106	103.323 .8	166	161.737 .3	226	220.2	50.8	286	278.7	64.3
47	45.810 .6	107	104.324 .1	167	162.737 .6	227	221.2	51.1	287	279.6	64.6
48	46.810 .8	108	105.224 .3	168	163.737 .8	228	222.2	51.3	288	280.6	64.8
49	17.711 .0	109	106.224 .5	169	164.738 .0	229	223.1	51.5	289	281.6	65.0
50	48711.2	110	107.224 .7	170	165.638 .2	230	224.1	51.7	290	282.6	65.
51	49.711 .5	111	108.225 .0	171	166.638 .5	231	225.1	52.0	291	283.5	65.5
52	50.711 .7	112	109.1252	172	167.638 .7	232	226.1	52.2	292	284.5	65.7
53	51.611 .9	113	110.125 .4	173	168.638.9	233	227.0	52.4	293	285.5	65.9
54	52.612 .1	114	111.125 .6	174	169.539 .1	234	228.0	52.6	294	286.5	66.1
55	53.612 .4	115	112.125 .9	175	170.539 .4	235	229.0	52.9	295	287.4	66.4
56	54.612 .6	116	113.026 .1	176	171.539 .6	236	230.0	53.1	296	288.4	66.6
57	5.512 .8	117	114.026 .3	177	172.539.8	237	230.9	53.3	297	289.4	66.8
58	56.513.0	118	115.026 .5	178	173.440 .0	238	231:9	53.5	298	290.4	67.0
59	57.513 .3	119	116.026 .8	179	174.440 .3	239	232.9	53.8	299	$2 \triangleleft 1.3$	67.3
60	58.513.	120	116.927	180	175.440 .5	析	233.8	54.0	300	292.3	67.5
Dist	Dep Lat.	Dist.	Dep. Lat.		Dep. Lat.	Dist. 1	Dep.	Lat.	Dist.	Dep.	Lat.
For 77 Degrees.											

DIFFERENCE OF LATITUDE AND DEPARTCRE FOR 14 DEGREES.

Dist.	Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1						12			181				233.8	
2		00.5	62		15.	122	118	,	182	176.6	44.0	242	234.8	58.5
	02	00.7	63	61.	15.2	123	119.3	39.8	183	177.6	44.3	243	235.8	58.8
4		01.	64		15	124	120	30.0	184	178.5	44.5	244	236.8	59
5		01.2	65		15.7	125	121	330.2	185	179.5	44.8	245	237.7	59.3
		01.5	66	64.	16.0	126	122.3	330.5	186	180.5	45.0	246	238.7	59
7		01.7	67	65	16.2	127	123.2	30.7	187	181.	45.2	247	259.7	59.8
8		01.	68		6.5	128	124	31.0	188	182.4	45.5	248	240.6	
9	08.7	02.2	69		6.7	129	125	1.2	189	183.	45.7	249	241.6	60.2
10	09.7	02.4	70		16.	130	126	,	190	184	46.0	250	242.6	605
11	10.7	02.7	71	68.9	17.2	13	12	,	19	1	16.2	1	243.5	60.7
12		02.9	72	69	17.4	132	128	31.9	192	186.3	46.4	25	244.5	
13	12.6	03.1	73	70.	17.7	133	129	32.2	193	187.3	46.7	25	245.5	61.2
14		03.4	74	71.	17.9	134	130	32	194	188.2	46.9	25	246.5	61.4
15	14.6	03.6	75	72.	18.1	135	131	32.7	195	189.2	47.2	25	247.4	. 7
16	15.5	03.9	76	73.	18.4	136	132	32.9	196	190.2	47.4	256	248.4	61.9
17		04.1	77		18	137	132	331	197	191.1	47.7	257	249.4	62.2
18	17.5	04.4	78		8.9	138	1339	933.4	198	192.1	47.9	258	250.3	62.4
19		04.6	79	76	9.1	139	134	336	199	193.1	48.1	25	251.3	
20			80	77	19.4	140	135		200	194.1	48.4	260	252.3	62.9
21	20	05.1	81	78.	9.	141			201	19		261	253.2	63.1
22	21.30	053	82	79.	19.8	142	137	1	202	196	48	262	254	63.4
23	22.30	05.6	83	80	0.1	143	138		203	197.0	49.1	263	255.2	63.6
24		05.8	84	81	0.	144	139	34.8	204	197	49.4	264	256	. 9
25	24.3	06.0	85	82.	20.6	145	140	35.1	205	198.9	49.6	265	257.1	64
26		06.3	86	83.	20.8	146	141	35.3	206	199.9	49.8	266	258.1	64.4
27		06	87		21.0	147	142		207	200.	50.1	267	259	
28	27.2	06.8	88	85	21.3	148	143		208	201.8	50.3	268	260.0	
29		07.0	89	86.	21.5	149	144	6.0	209	202.8	50.6	269	261.6	65.1
30	29.	07	90		21.8	150			210	203.8	50.8	270	262.0	65.3
31	30.	V7	91	88		151			211	204	51	2	26	
32	31.	07.7	92	89.3	22.	152		36.	212	205	51.3	27	263.9	65.8
33		08.0	93	90		153	148	37	213	206	51	273	264.4	
34	33.0	08.2	94	91.2	2.	154	149	37.3	214	207.6	51.8	274	265	66.3
35	34.	08.5	95	92.2	23.0	155	150	37.5	215	208.6	52.0	275	266.8	66.5
36	34.	08.7	96	93.1	23.2	156	151	37.7	216	209.6	52.3	276	267.8	66.8
37	35.9	09.0	97		3.5	157	152.3	38.0	217	210.6	52.5	277	268.8	67.0
38	36.9	09.2	98		3.7	158	153	38.2	218	211.5	52.7	278	269.7	67.3
39	37.8	09.4	99	96	4.0	159	154	38.5	219	212.5	53.0	279	270.7	67.5
40	38.8	09.7	100			160	15	38.7	220	213.5	53.2	280	271.7	T
41	39.8	09.9	101			161			1	214	53.5		2	
42	40.8	10.2	102	99.	24.7	162	157	239.2	22.2	215	53.7	282	273.6	68.2
43	41.7	10.4	103	99	4.4	163	158.2	239.4	223	216.4	53.9	283	274.6	68.5
44	42.7	10.6	104	100.9	25.2	164	159.1	139.7	224	217.3	54.2	284	275.6	68.7
45	43.7	10.9	105	101.9	25.4	165	160.1	139.9	225	218.3	544	28	276.5	68.9
46	44.6	11.1	106	102.	5.	166	161.1	140.2	226	219.3	54.7	286	277.5	69.2
47	45.6	11.4	107	103.	.	167	162.0	. 40.4	227	220.3	54.9	287	278.5	69.4
48	46.6	11.6	108	104.	26.1	168	163.0	. 406	228	'221.2	55.2	288	279.4	69.7
49	47.5	11.9	109	105.	82.4	169	164.0	U40.9	229	222.2	554	289	280.4	69.9
50	48	12.1	110	106		170	165	41.1	230	223.2	55.6	290	281	
51		12.3	11	107	26	171	165	11.4	231	224		2	,	\%.
52	50.5	512.6	112	108.	27.1	172	166	41.6	232	225.1	56.1	292	283	70.6
53	51.4	12	113	109.	27.3	173	167	41.9	233	226.1	56	29	284	70.9
54	52.4	413.1	114	110.6	.27.6	174	168.8	842.1	234	227.0	56.6	294	2×5	71.1
55	53.4	413.3	115	111.6	627.8	175	169.8	842.3	235	228.0	56.9	295	286.	71.4
56	54.3	313.5	116	112.	68.1	176	170.8	842.6	236	229.0	57.1	296	287.	71.6
57	55.	313.8	117	113.	28.3	177	171.7	742.8	237	230.0	57.3	297	288.2	71.9
58	56.3	314.0	118	114.	528	178	172.7	743.1	238	230.9	57.6	298	289.1	72.1
59	57.2	214.3	119			179	173.7	743.3	239	231.9	57.8	299	290.1	72.3
60	2	14.	120	11		18		743.5	240	232.9	58.1	300	291.1	72
	. Dep	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.		Dep.	lat.
For 76 Degrees.														

difference of latitude and departure for 15 degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 16 DEGREES.

Dist.	Lat. Dep			ep	Dist.								Dep
									174.0				
2	1.90.6						33.6	18	174	50.2	24		
	02.900.8		60.6		123			18			243	23	
	03.801		61.		124	119		18		50.7	244	234	
5	104.801.4			. 9	125			18	177	51.0	24		
	05.801 .7		63.4		126			18		51.3	246	23	
	06.701	67	64.	8.5	12	122		187	179	51.	24	237.	
8	07.702								180	51	24	238	
	8.702				129			189		52.1	243		
10	99.602	70		. 3	130			19.	182	2	250		
11	10.603 .0												
12	11.5									5			
13	12.503 .6	73		20.1	13				185		25	24	
14	13.5039	7		20.4	134				186	53.		24	
15	14.404.	75		,	135			19.		53.			
16	15.404 .4	76	73	20.9		130			188.	54.0		24	
17	16.304 .7	77	74	21.2		131			189.	54.3			
18	17.305.			21.5	138	13.		198	190	54.			
18	18.305 .2	79	75	1.8		133		19	191	5			
¢0	19.205 .5	80		22.1	140			20	192	55			
21	- ${ }^{2}$		77.9	22.3	141				938	55			
22	106								19				
23	22.106											252	72
24	23.106			23.2	14			20	196	56.		25	
25	-4.000.			23.4	145				197				
26	25.007				146				198			255	73
27	26.007				14	141		20	199				
28	26.907 .7	88			148				199				
29	27.908												
30	808	90		24.8	150				20	57.9			
31	29.808.								202	58.2		260	
33	31.709	93	89.	25.6	15		12.	21	04	8.		262	
34	32.709												
3 3	34.609	97	92		15			21	207			65	
37	35.610												
										60.			
40	37.510 .7	99	95		15			21	210	60.	27	268	
40	38.511 .0	100			16				211	60		269.	\%
42	40.411.	102	98.0	28.1	162			22	213	61.	28	71	
43	11.311	103			16				214	61.5			
44	42.312.	104											
45	43.312 .4	105	100	28.9	165	158		22	216	62.0	28	${ }^{27}$	
46	44.212	106			166			22	217	研		24	
47	45.213.			.					18.				
48	16.113 .2	108	103	29.8	168	161	46.3	22	219.	62.8	28	270	
49	47.113.	109	10		16			22	220	63.1		277	
50	48.113.	110			170				221.			278.	79.9
	,	111		31.6	1				2 ± 2.			2,	
	0.01	112		30.9	172			23	22	63.9	2		
53	30.914 .6	113	.	31.1	17				224.			281	
	1.911.9	114	109.	31.4	174	167.3	48.	23	224.	64.	29	282	
	2.915	,		31.7	175	168.2		23	225			283	
	53.815 .4	116	111	32.0	17	169	48	23	220			284	
	4.815.	117	112	32.	17	170.1	8	23	22				
	816.0	118		32.5	178								
60	56.716 .3	119	114.	32.8	179	172.14	49	23	229.	${ }^{6}$		287	
60	716.5	120			180			24	230.	66			
ist.	L			Lat	Dis				Dep	Lat.		De	

For 74 Degrees.

TABLE IV.

difference of lattude and departure for 17 degrees.

Dist.	Lat. Dep	Dist.	Lat. D	Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1	01.000 .3	61		17.8	121	115.7	35.4	181	173.1	52.9	241	230.5	70.5
2	$019,00.6$	62	59.31	18.1	122	116.7	35.7	182	174.0	53.2	242	231.4	70.8
	02.900 .9	63	60.21	18.4	123	117.6	36.0	183	175.0	53.5	243	232.4	71.0
4	03.801.2	64	61.21	18.7	124	118.6	36.3	184	176.0	538	244	233.3	71.3
5	04.801 .5	65	62.21	19.0	125	119.5	36.5	185	176.9	54.1	245	234.3	716
	05.7, 1.8	68	63.11	19.3	126	120.5	36.8	186	1779	54.4	246	235.3	71.9
7	06.702.0	67	64.11	19.6	127	121.5	37.1	187	178.8	54.7	247	236	72.2
8	07.702.3	68	65.01	19.9	128	122.4	37.4	18	179.8	55.0	218	${ }_{238}^{238.2}$	72.5
10	08.602.6	69	66.02 66.92	20.5	129	123.4		189 190	180.7 181.7	55.3	249	${ }_{239.1}^{238.1}$	${ }_{7}^{72.8}$
10	09.602 .9	70		20.5	130		38.0	190	181.7	55.6	250	239.1	73.1
11	10.503 .2	71	67.92	20.8	131	125	38.3	191	182.7	55	251	24	73.4
12	11.503 .5	72	6.5 .9	21.1	132	126.2	38.6	192	183.6	56.1	252	241.0	73.7
13	12.403 .8	73	69.82	21.3	133	127.2	38.9	193	184.6	564	253	241.9	74.0
14	13.4,04.1	74	70.82	21.6	134	128.1	39	194	185.5	56.7	254	242.9	74.3
15	14.304 .4	75	71.72	21.9	135	129.1	39.5	195	186.5	57.1	255	243.9	74.6
16	15.304 .7	76	72.72	22.2	136	130.1	39.8	196	187.4	57.3	256	244.8	74.8
17	16.305.0	77	73.6	22.5	137	131.0	40.1	197	188.4	576	257	245.8	75.1
18	17.205 .3	78	74.6	22.8	138	132.0	40.3	198	189.3	57.9	258	246.7	75.4
19	18.205 .6	79	75.5	23.1	139	132.9	40.6	199	190.3	58.2	259	247.7	75.7
20	19.105 .8	80	76.5	23.3	140	133.9	40.9	200	191	58.5	260	248.6	760
21	20.106 .1	81	77.5	23.7	141	134.8	41.2	201	192.2	58.8	261	249.6	. 3
22	210064	82	78.4	24.0	142	135.8	41.5	202	193.2	59.1	262	250.6	76.6
23	22.006 .7	83	79.4	24.3	143	136.8	41.8	203	194.1	59.4	263	251	76.9
24	23.007 .0	84	80.3	246	144	137.7	42.1	204	195.1	59.6	261	252.	77.2
25	23.907 .3	85	81.3	24.9	145	138.7	42.4	205	196.0	59.9	265	253.4	77.5
26	24.907 .6	86	8.2	25.1	146	139.6	42.7	206	197.0	60.2	266	254.	77.8
27	25.8,07.9	87	83.2	25.4	147	140.6	43.0	207	198.0	60.5	267	255.3	78.1
28	26.808 .2	88	84.2	25.7	148	141.5	43.3	208	198.9	60.8	268	256.3	78.4
29	27.708.5	89	85.1	26.0	149	142.5	43.6	209	199.9	61.1	269	257.2	78.6
30	28.708 .8	90	86.1	26.3	150	143.4	43.9	210	200.8	61.4	270	258.2	78.9
31	29.609 .1	91	87.0	26.6	151	144.4	44.1	211	201.8	61.7	271	259.2	79.2
32	30.609 .4	92	88.0	26.9	152	145.4	44.4	212	202.7	62.0	272	260.1	79.5
33	31.609.6	93	88.9	27.2	153	146.3	44.7	213	203.7	62.3	273	261.1	79.8
34	32.509 .9	94	89.9	27.5	154	147.3	45.0	214	204.6	62.6	274	262.0	80.1
35	33.510 .2	95	90.8	27.8	155	148.2	45.3	215	20.6	62.9	275	263.0	80.4
36	\|34.410.5	96	91.8	28.1	156	149.2	45.6	216	206.6	63.	276	263.9	80.7
37	35.410.8	97	92.8	28.4	157	150.1	145.9	217	207.5	63.4	277	264.9	81.0
38	36.311 .1	98	93.7	28.7	158	151.1	146.2	218	208.5	63.7	278	265.9	81.3
39	37.311 .4	99	94.7	28.9	159	152.1	146.5	219	209.4	64.0	279	266.8	81.6
40	38.311 .7	100	95.6	29.2	160	15	46.8	22	210	64.3	280	267.8	81.9
41	39.212 .0	101	96.6	29.5	161	154.0	47.1	421	211.3	64.6	281	268.7	8.2
42	40.212 .3	102	97.5	29.8	162	154.9	47.4	222	212.3	64.	282	269.7	8.2 .4
43	41112.6			30.1	163		97.7	223	213.3	65.2		270.6	82.7
44	42.112 .9	104	99.5	30.4	164	156.8	847.9	224	214.2	65.	284	271.6	83.0
45	43.013 .2	105	100.4	30.7	165	157.8	48.2	220	215.2	65.8	28.	272.5	83.3
46	+4.013.4	106	101.4	31.0	166	158.7	48.5	226	216.1	66.1	286	273.5	83.6
47	44.913 .7	107	102.3	31.3	167	1597	48.8	227	217.1	66.4	287	274.5	83.9
48	45.914 .0	108	103.3	31.6	168	160.7	49.1	228	218.0	66.7		275.4	84.2
49	16.914 .3	109	104.2	31.9	169	161.6	649.4	229	219.0	67.0	280	276.4	84.5
50	$\underline{47.8} 14.6$	110	105.2	32.2	170	162.6	649.7	230	220.0	67.2	290	277.3	84.8
51	48.814 .9	111	106.1	32.5	171	163.5	50.0	231	220.9	67.5	291	278.3	85.1
52	49.715 .2	112	107.1	32.7	172	164.5	50.3	232	221.9	67.8	292	279.2	85.4
53	50.715 .5	113	108.1	33.0	173	165.4	450.6	233	22.8	68.1	293	280.2	85.7
54	51.615 .8	114	109.0	33.3	174	166.	450.9	234	223.8	68.4	294	281.2	86.0
55	${ }^{52} 2.616 .1$	115	110.0	33.6	175	167.4	451.2	235	224.7	68.7	295	282.1	86.2
56	53.616 .4	116	110.9	33.9	176	168.3	351.5	236	225.7	69.0	296	283.1	86.5
57	54.516 .7	117	111.9	34.2	177	169.3	51.7	237	226.6	69.3	297	284.0	86.8
58	55.517 .0	118	112.8	34.5	178	170.2	52.0	238	227.6	69.6	298	285.0	87.1
59	56.417 .2	119	113.8	34.8	179	171.2	52.3	239	228.6	69.9	293	285.9	
60	57.417 .5	120	114.8		180	172.1	152.6	24	229.5	70.	300	286.9	87.7
Dist. Dep Lat.		Dist.	Dep.	Lat.	Dist.	Dep.		bist	Dep.	Lat.	Dist.	Dep.	Lat.
For 73 Degrees. .													

difference of lattude and departure for 18 degrees.

TABLE IV.

difference of latitude and departure for 19 degrees.

Bis	Lat. Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep ${ }^{\prime \prime}$	Dist.	Lat.	Dep.	Jist.	Lat.	Dep.
1	00.900 .3	61	57.71	199	121	114.4	39.4	181	171.1	58.9	241	227.9	78.5
	01.9 ن0.7	62	586	-0.2	122	115.4	39.7	182	172.1	59.3	242	228.8	788
3	02.801 .0	63	59.6	20.5	123	116.3	40.0	183	173.0	59.6	243	229.8	79.1
4	33.801 .3	64	60.5	20.8	121	117.2	40.4	184	174.0	59.9	244	230.7	79.4
5	04.701.6	63	61.5	21.2	125	118.2	40.7	185	174.9	60.2	245	231.7	79.8
6	05.702 .0	66	62.4	21.5	126	119.1	41.0	186	175.9	60.6	246	23.2 .6	80.1
7	06.602 .3	67	63.3	21.8	127	1201	11.3	187	176.8	60.9	247	233.5	80.4
8	07.602.6	68	64.3	22.1	128	121.0	41.7	188	177.8	61.2	248	234.5	80.7
10	(18.502.9	$\begin{aligned} & 69 \\ & 70 \end{aligned}$	65.22 63.2	22.5	129	122.0	12.0 42.3	189	178.7	61.5 61.9	249 250	235.4 236.4	811 81.4
11	$\underline{10.4} \sqrt{33.6}$	71		\%3.1	131	123.9	42.6	191	180.6	62.2	251	237.3	81.7
12	11.303 .9	72	68.1	23.4	132	124.8	43.0	192	181.5	62.5	252	238.3	82.0
13	12.3 J4.2	73	69.0	123.8	133	125.8	43.3	193	182.5	62.8	253	239.2	82.4
14	13.204 .6	74	70.0	.24.1	134	126.7	43.6	194	183.4	63.2	254	240.2	82.7
15	14.204 .9	75	70.9	924.4	135	127.6	44.0	195	184.4	63.5	255	241.1	83.0
16	15.105.2	76	71.9	, 24.7	136	128.6	44.3	196	185.3	63.8	256	242.1	83.3
17	16.105 .5	77	72.8	8.25.1	137	129.5	44.6	197	186.3	64.1	257	243.0	83.7
18	17.005.9	78	73.8	8.25.4	138	130,5	44.9	198	187.2	64.5	258	243.9	84.0
19	18.006 .2	79	74.7	.25.7	139	131.4	45.3	199	188.2	64.8	259	244.9	84.3
20	18906.5	80	75.6	26.0	140	132.4	45.6	200	189.1	65.1	0	245.8	84.6
21	19.906	81	7 C .6	\%26.4	141	133.3	45.9	201	190.0	65.4	261	246.8	.1
23	$20.8 \cup 7.2$	82	77.5	126.7	142	134.3	46.2	202	191.0	65.8	262	247.7	85.3
23	21.707 .5	83	78.5	57.0	143	135.2	46.6	203	191.9	66.1	263	248.7	85.6
24	22.707.8	84	79.4	427.3	144	136.2	46.9	204	192.9	66.4	264	249.6	86.0
25	23.608 .1	85	80.4	427.7	145	137.1	17.2	205	193.8	66.7	265	250.6	86.3
26	24608.5	86	81.3	280	146	138.0	47.5	206	194.8	67.1	266	251.5	86.6
27	25.508 .8	87	82.3	328.3	147	139.0	17.9	207	195.7	67.4	267	252.5	86.9
28	26.509.1	88	83.2	28.7	148	139.9	43.2	20	196.7	67.7	26	253.4	87.3
29	27.409 .4	89	84.2	29.0	149	140.9	48.5	209	197.6	68.0	26	254.3	87.6
30	23.4098	90		129.3	150	141.8	18.8	21	198.6	68	270	255.	87.8
31	29.310 .1	91	86.0	29.6	151	142.8	49.2	211	199.5	68.7	271	250	88.2
32	30.310 .4		87.0	. 30.0	152	143.7	49.5	212	200.4	69.0	272	257.2	83.6
33	31.210 .7	93	87.9	90.3	153	144.7	49.8	213	201.4	69.3	273	258.1	88.9
34	32.111 .1	94	88.9	930.6	154	145.6	50.1	214	202.3	69.7	274	259.1	89.2
35	33.111 .4	95	89.8	830.9	155	146.6	50.5	215	203.3	70.0	275	260.0	89.5
36	34.011 .7	96	90.8	831.3	156	147.5	50.8	216	204.2	70.3	276	261.4	89.9
37	35.012.0	97	91.7	731.6	157	148.4	51.1	217	205.2	70.6	277	261.6	90.2
33	35.912 .4	98	92.7	731.9	158	149.4	51.4	218	206.1	71.0	278	262.9	90.5
39	36.912 .7	99	93.6	632.2	159	150.3	51.8	219	207.1	71.3	279	263.8	90.8
40	37.813 .0	100	$9 \pm .6$	62.6	160	151.3	52.1	22	208.0	71.6	28	264.7	91.2
41	38.813 .3	101	95.5	52.9	161	152.2	52.4	221	209.0	72.0	281	265.	91.5
42	39.713 .7	102	96.4	433.2	162	153.2	52.7	222	209.9	72.3	282	266.6	91.8
43	40.714 .0	103	97.4	433.5	163	154.1	53.1	223	210.9	72.6	283	267.6	92.1
41	41.614 .3	104	98.3	333.9	164	155.1	53.4	224	211.8	72.9	284	268.5	92.5
45	12.514 .7	105	99.3	334.2	165	156.0	53.7	225	212.7	73.3	285	269.5	92.8
46	43.515 .0	106	100.2	234.5	166	157.0	54.0	226	213.7	73.6	28	270.4	93.1
47	$4 \pm .415 .3$	107	101.2	234.8	167	157.9	54.4	227	214.6	73.9	287	271.4	93.4
48	15.415 .6	108	102.1	135.2	168	158.8	54.7	228	215.6	74.2	288	277.3	93.8
49	16.316 .0	109	103.1	135.5	169	159.8	55.6	229	216.5	74.6	28	273.3	94.1
50	17.316 .3	110	104.0	035.8	170	160.7	55.3	230	217.5	74.9	288	274.2	91.4
51	48.216	111	105.0	436	171	161.7	$\overline{55.7}$	231	218.4	75.	291	275.1	94.7
52	49.216:9	112	105.9	936.5	172	162.6	56.0	$22 \cdot$	219.4	75.5	292	276.	95.1
53	50.117 .3	113	106.8	836.8	173	163.6	56.3	233	220.3	75.9	293	277.0	95.4
54	51.117 .6	114	107.8	837.1	174	164.5	56.6	234	221.3	76.2	291	278.0	95.7
55	52.017.9	115	108.7	737.4	175	165.5	57.0	235	222.2	76.5	295	278.9	96.0
56	52.918 .2	116	109.7	737.8	176	166.4	57.3	236	223.1	76.8	296	279.9	96.4
57	53.918 .6	117	110.6	638.1	177	167.	57.6	237	224.1	77.2	297	280.8	96.7
58	54.818 .9	118	111.6	6384	178	168.3	58.0	238	225.0	77.5	298	281.8	97.0
60	55.819.2	119	112.5	538.7	179	169.2	58.	239	226.0	77.8	299	282.7	97.3
60	56.719 .5	120	113.5	53.1	180	170.2	58.6	240	226.9	78.1	300	283.7	97.7
Dis	Dep Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat. 1		Dep.	Lat.	Dist	Dep.	Lat.
					For	- 71	egre	rees.					

difference of latitude and departure for 20 degrees.
Dist. Lat. Dep Dist. Lat. Dep Dist. Lat. Dep Dist. Lat. Dep. Dist. Lat. Dep.

1	00.900 .3	61	57.320 .9	121	113.7	41.4	181	170.1	61.9	241	226.5	82.4
2	01.900 .7	62	58.321 .2	12\%	114.6	41.7	182	171.0	62.2	242	227.4	82.8
3	02.801 .0	63	59.221 .5	123	115.6	12.1	183	172.0	62.6	243	228.3	83.1
4	03.801 .4	64	60.121 .9	124	116.5	42.4	184	172.9	62.9	244	229.3	83.5
5	04.701 .7	65	61.122 .2	125	117.5	42.8	185	173.8	63.3	245	230.2	83.8
6	05.602 .1	66	62.022 .6	126	118.4	43.1	186	174.8	63.6	246	231.2	81.2
7	06.602 .4	67	63.0229	127	119.3	13.4	187	175.7	640	247	232.1	84.5
8	07.502 .7	68	63.923 .3	128	120.3	13.8	188	1767	64.3	248	233.0	84.8
9	08.503 .1	69	64.823 .6	129	121.2	44.1	189	177.6	64.6	249	234.0	85.2
10	$09.4 \cup 3.4$	70	65.823 .9	130	1222	44.5	190	178.5	65.0	250	234.9	855
11	10.3 .3.8	71	66.724	131	123.1	44.8	191	174.5	65.3	251	235.9	85.8
12	11.301 .1	72	67.724 .6	132	124.0	45.1	192	180.4	65.7	25	236.8	86.2
13	12.204 .4	73	68625.0	133	125.0	45.5	193	181.4	66.0	253	237.7	86.5
14	13.2048	74	69.525 .3	134	125.9	45.8	194	182.3	664	254	238.7	86.9
15	14.1 U5. 1	75	70525.7	135	126.9	46.2	195	183.2	66.7	255	239.6	87.2
16	15.003 .5	76	71.4 -26.0	136	127.8	46.5	196	184.2	67.0	256	240.6	87.6
17	160005.8	77	72.426 .3	137	128.7	46.9	197	185.1	67.4	257	241.5	879
18	16.906 .2	78	73.326 .7	138	1297	47.2	198	186.1	67.7	258	242.4	88.2
19	17.9065	79	74.2 27.0	139	130.6	475	199	187.0	68.1	259	243.4	88.6
20	18.8 U6.8	80	75.27 .4	140	131.6	47.9	200	187.9	68.4	260	244.3	88.9
21	19.7 07.2	81	76.127 .7	141	132.5	48.2	201	188.9	68.7	261	245.3	89.3
22	20707.5	82	77.128 .0	142	133.	48.6	202	189.6	691	262	246.2	89.6
23	21.607 .9	83	78.028 .4	143	134.4	48.9	203	1908	69.4	263	247.1	90.0
24	22.608 .2	84	78.928 .7	144	135.3	49.3	204	191.7	69.8	264	248.1	90.3
25	23.508 .6	85	79.929 .1	145	136.3	19.6	205	192.6	70.1	265	249.0	90.6
26	24.408 .9	86	80.829 .4	146	137.2	49.9	206	193.6	70.5	266	250.0	91.0
27	25.409 .2	87	81.829 .8	147	138.1	50.3	207	194.5	70.8	267	250.9	91.3
28	26.309 .6	88	82.730 .1	148	139.1	-0.6	208	195.5	71.1	268	251.8	917
29	27.3 39.9	89	83.630 .4	149	140.0	31.0	209	196.4	71.5	269	$2 \overline{2} 2.8$	92.0
30	23.210 .3	90	84.630 .8	150	141.0	51.3	210	197.3	71.8	270	253.7	92.3
31	29.110 .6	91	85.531 .1	151	141.9	$\overline{51.6}$	211	198.3	72.2	271	254.7	92.7
32	30.110 .9	92	86.531 .5	152	142.8	52.0	212	199.2	72.5	272	255.6	93.0
33	31.011 .3	93	87.431 .8	153	143.8	52.3	213	200.2	72.9	273	256.5	93.4
$3 \pm$	31.911 .6	94	88.332 .1	154	144.7	52.7	214	201.1	73.2	274	257.5	93.7
35	32.9 i2.0	95	89.332 .5	155	145.7	-3.0	215	202.0	73.5	275	258.4	94.1
36	33.812 .3	96	90.232 .8	156	146.6	53.4	216	203.0	73.9	276	259.4	94.4
37	34.812 .7	97	91.233 .2	157	147	53.7	217	203.9	$7 \pm .2$	277	260.3	94.7
38	35.713 .0	98	92.133 .5	158	148	54.0	218	204.4	74.6	278	261.2	95.1
39	36.61313	99	93.033 .9	159	149	54.4	219	205.8	74.9	279	262.2	95.4
40	37.613 7	100	94.034 .2	160	150.4	54.7	220	206.7	75.2	280	263.1	95.8
41	38.514 .0	101	94.934	161	151.3	$\overline{55.1}$	221	207.7	75.6	281	264.1	96.1
42	39514.4	102	95.834 .9	162	152.2	55.4	222	208.6	75.9	282	265.0	96.4
43	40.414 .7	103	96.835 .2	163	153.2	55.7	223	209.6	76.3	283	265.9	96.8
44	41.315 .0	104	97.735 .6	164	154.1	56.1	224	210.5	76.6	284	266.9	97.1
45	42.315 .4	105	98.735 .9	165	155.0	56.4	225	211.4	770	285	267.8	97.5
46	43.215 .7	106	99.636 .3	166	156	56.8	226	212.4	77.3	286	268.8	97.8
47	44.216 .1	107	100.536 .6	167	156.9	-7.1	227	213.3	77.6	287	269.7	98.2
48	45.116 .4	108	101.536 .9	168	157.9	57.5	228	214.2	78.0	288	270.6	98.5
49	46.016 .8	109	102.437 .3	169	158.8	57.8	229	215.2	78.3	289	271.6	98.8
50	47.017 .1	110	103.437 .6	170	159.7	58.1	230	216.1	78.7	290	272.5	99.2
51	17.917 .4	111	104.338	171	160.7	58.5	231	217.1	79.1	291	273.5	99.5
52	48.917 .8	112	105.238 .3	172	161.6	38.8	232	2180	79.3	292	274.4	999
53	49.818 .1	113	106.238 .6	173	162.6	59.2	233	218.9	79.7	293	275.3	100.2
51	50.718 .5	114	107.139 .0	174	163.5	59.5	234	219.9	80.0	294	276.3	100.6
55	51718.8	115	108.139 .3	175	164.4	59.9	235	220.8	80.4	295	277.2	100.9
56	52.619 .2	116	109.039 .7	176	165.4	60.2	236	221.8	80.7	296	278.1	101.2
57	53.6195	117	109.940 .0	177	166.	60.5	237	-222.7	81.1	297	279.1	101.6
58	54.519 .8	118	110.940 .4	178	167.3	60.9	238	223.6	81.4	298	280.0	101.9
59	50.4×20.2	119	111.840 .7	179	168.2	61.2	239	224.6	81.7	299	281.0	102.3
60	$56.4: 20.5$	120	112.841 .0	180	169.1	61.6	240	225.5	82.1	300	281.9	102.6
	Depluat	ist.	Dep.	ist	Dep.	La	Dist	Dep.	Lat.	ist.	Dep.	Lat.

TABLE IV.

difference of latitude and departure for 21 degrees.

difference of Latitude and departure for 22 degrees．

	Lat．	D	Di						Dist．		p．	t．	Lat．	Dep．
						121			181	167	67.8			
						22			182		． 2	242		
3		01	63		423.6	123	114		183		8.6	243		
	03.7	01.5	64		32	124			18	170	68.	244	226	
5			5			125					69.	245	22	
		02.2	66	61.2	24.7	126	116	47.2	18	172	69.7	21	228.	
7		02.6			125	127	117			173	70.1		229	
			68		225． 5	128		17	18	174	70.4	248	229	
			69		025.8	130	119	48.3 48	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	175	70.8 71.2	$3 \begin{aligned} & 249 \\ & 250 \end{aligned}$	${ }_{231}^{230}$	
11			71			131			19	177	71	5	232	
12			72		27	132	122		192		71.		233	
13			73	67.7	727.	133	123		193	178	72.3		234	
14			74		．	134	124		194		72.7	5	235	
15	13	5.6	75	69.5	528.1	135	12	0.	19	180	73.0	5	236	
16			76	70.5	528.5					181	73.4	25	237	
17			77		．	13	127		19	182	73.	5	238	
18	16.	06.	7	72.3	329．2	138	128	51	19	183	74.2		239	
19						13				184			240.	
20		07.5	80	74		140				185.	，		241	
21				75						186			42	
									20					
23			8	77.		143	132		20	188		26	243	
24	2	09.	84	77	1.5	14				189.			244	
25										19			245	
26	24.	d	86	79.	22．	146	135		20	191	77	26	246	
27				80.7	，	147	136		20	191.	77	26	47	100.
28										192.	77.9		48	100
	26.	10.9		82.5	533．3	149	138		20	193.	78.3	26	249.	
30	27.	11.	90	83.4	；33．7	150			21	194.	78	27	250	101.1
31														
32	29.	12.	92	85.3	－	15	140		21	196	79	27	252	
33			93						21	197		27		102.
						15			21	8	80.2			
35	32.5	13.1	95	88.1	135.		143		21	199.	80.	27	255	，
36						15						27	－5	
						15			21	201				
38		14.2	98	90.	36.	15			21	202.	1	27	257	104
，			99						21			27		
40				92.7	2rs				22	201			259.6	1010
41			1	．6	， 37.8				2	204	2.		60	
42			10	6	8							28	261	
4				5	38．6	16	151			206		28	262	
44	40.		104	96.4	39.0	16	152	61.	22	207		28	263	
45	11		105	7.4	9.				22	208.	84.	28	264	，
46	42			98.3	339.7	166			22	209.			265	
47	43.	17.6	107	99.2	40.1	167		62.	22	210.		28	硣	
49	15	18.	108	100.1	10.5	169			22	211.			267	107
49	45.4	18.4	1	101.1	10.8	169			硅	212.		28	268.	．
50	46.4	18.7	110	102.0	41.2	170			准	213.3	6.	29	268	
51														
52	13.2	9.5	112	103.8	842.0	172			2	215.	8.	29	270	，
53	49.11		113	104.8	42.3	173			23	216.		29	271	109
54			114	5.	12.7	1			23	17	87.	29		
55	51.0	20.6	115	106.6	43.1	175	162		23	217.	88.	29	273	10.5
56	1.3		116	107.	3.5	17			236	218.	88.	29	274.	110.9
57			11	108.5		178			23	．		29	275.	111.3
58		21.	118	109.	4.2	178			23	220	9.	29	70	111.6
59		22.1	119	110.3	44.6	179			238	221.6		293	7.2	112.6
60	55	22	120	111.3	45.0	180			240	22	89.9	30	278.2	112.4

For 68 Degrees．

TABLE IV.

difference of latitude and departure for 23 degrees.

Dist.	t.	Dist.	L	Dep	Dist.			Bist.	Lat.	Dep.	Dist.	Lat.	Dep.
									166.6	70.7	241	221	
2	01.800.8	62	57.1	24.2	122	112.3	47.7	182	167.5	71.1	2	222.8	
3	12.801 .2	63		24	123	113.2	48 1	183	168.5	71.5	243	223.7	94.9
	03.701 .6	64		25.0	124	114.1	48.5	184	169.	71.9	244	224.6	95.3
5	01.602 .0	65	59.	25.4	125	115.1	48.8	185	170.3	72.3	245	225.	957
6	05.502.3	66		25	126	116.0	49.2	186	1712	72.7	246	226	
7	06.402 .7	67	61.7	26.2	127	116.9	19.6	18	172.1	73.1	$24{ }^{7}$	227.	96.
8	07.403 .1	68	62.6	26.6	128	117.8	50.0	18	173.1	73.5	248	228	96
9	08.303 .5	69		70	129		50.4	189	174.0	73.	249	229.2	
10	09203.9	70			130	119.7	50.8	190	174.9	74.2	250	230.1	
11	10.104 .3	71	65.4	27.7	131	120	51.2	191	175.	74.6	251	431	98.1
12	11.004 .7	72	66.3	. 8	13.	121.5	51.6	192	176.	75.0	252	232	
13	12.005.1	73	67.2	28.5	133	122.4	52.0	193	177.	75	253	232	
14	12.905 .5	74	$6 \times .1$	28.9	134	123.3	524	194	178.6	75.8	254	233.	99.
15	13.805.9	75	69.0	29.3	135	124.3	52.7	195	179	76.2	255	234	
16	14.706.3	76	70.0	29.7	136	125	53.1	196	180.4	76.6	256	235.	100
17	15.606 .6	77	709	30.1	137	126.1	53.5	197	181.3	77	257	236	100.
18	16.607 .0	78	71.8	30.5	138	127.0	53.9	198	182.3	77.	258	237	100.
19	17.507 .4	79	72.7	309	13	128.0	54.3	199	183.2	77.8	259	238.4	01.2
20	18.4	80	73	31.3	140	128.9	54.7	200	184.1	78.	260	239	01.6
21	19.3, 08.	81	74.	31.6	14	129	55.1	201	185	78.5	261	24	102.
	203086	82	75.	32.0	142	130.7	55.5	202	185.	78.9	262	241	
23	21.209 .0	83	76.4	32.4	143	131.6	655.9	203	186.9	79.	263	242.1	122.8
24	22.109 .4	84	77.3	328	144	132.6	,56.3	204	187.8	79.7	264	243.0	3. 2
	23.009 .8	85	78.2	33.2	145	133.5	56.7	205	188.	80.	265	243	
26	23.910 .2	80	79.2	33.6	146	1344	457.0	206	189.6	80.	266	244.9	103.9
27	24.910 .5	87	80.1	34.0	147	135.3	57.4	207	190.5	80.		245.	104
	25.810 .9	88		34.4	148	136.2	57.8	208	191.5	81.	268	246	104
29	26.711 .3	89	81.9	34.8	149	137.2	58.2	209	192.4	81.7	269	247.6	105
30	27.611 .7	90	82.8	35.2	150	138.1	158.6	210	193.3	82.1	7	248.5	105.5
31	28.51	,		35.6	151	139.0	59.0	211	194.2	82.	271	249	105
32	29.512 .5	92	84.7	35.9	152	139.9	959.4	212	195.1	82.	272	250	
33	30.412 .9	93	85.6	36.3	153	140.8	¢9.8	213	196.1	83.2	273	251.	106
	31.313.3	94	86.5	36.7	154	1418	80.2	214	1970	83.	274	252.	107
35	32.213 .7	95	87.4	37.1	155	142.7	760.6	215	197.9	84.	275	253.1	07
36	33.114 .1	-	88.4	37.5	156	143.6	61.0	216	198.8	84	276	254.1	107.
	34.114 .5	97	89.3	37.9	157	144.5	513	217	199.7	84	277	255.	108.2
33	35.014 .8	98	90.2	38.3	158	145.4	461.7	21	200.7	85	278	255.9	108
39	35.915 .2	9	91.1	38.7	159	146.	62.1	219	201.6	85.	279	256	109.0
40	36.815 .6		1	39.1		117	62.5		202.			257.7	109.
41	37.716	101	93.0	39.5	161	148.2	26.9	221	203.4	86.4	281	258	109
42	38.716	102	93.9	39.9	162	149.1	163.3	222	204.	86.7	282	259.	110
43	39616.8	103	94.8	40.2	163	150.0	63.7	223	205.	87.	283	260.	110.6
44	40.517 .2	104	95.7	40.6	164	151.0	64.1	224	206.2	87.	284	261.4	111.0
45	41.417 .6	105	96.7	41.0	165	151.9	64.5	225	207.1	87.	28.	262.3	11
46	42.318 .0	100	97.6	41.4	166	152.8	649	226	208.0	88.3	286	263.3	111.7
47	43.318 .4	107	98.5	41.8	167	1537	65.3	227	209.0	88.	28	264.2	112.1
48	44.218 .8	108	99.4	42.2	168	154.6	65.6	228	209.9	89.1	288	265.1	12.
49	45.119 .1	109	100.3	42.6	169	155.6	66.0	229	210.8	89.5	288	266.0	112.9
50	46.019 .5	110	101.3	43.0	170	156.5	66.4	230	211.7	89.9	290	266.	113.
51	46.9	11	,		17	157		2	212.		硅	267	113
52	47.920 .3	112	103.1	438	172	158.3	67.2	232	213.6	90.6	292	268.	114
53	48.820 .7	113	104.0	44.2	173	159.2	, 67.6	233	214.	91.0	29	269.7	114.
	49.721 .1	13	104.9	44.5	174	160.2	68.0	231	215.	91.4	29	70.	14
55	50.621 .5	115	105.9	44.9	175	161.1	168.4	235	216.3	91.8	295	271.	115
	51.512 .9	116	106.8	45.3	176	162.0	68.8	230	217.2	92.2	29	272.	115.
	52.522 .3	117	107.7	45.7	178	162.9	69.2	237	218.2	92.6	20	73.	16
	53.422 .7	118	108.6	46.1	178	163.8	869.6	238	219.1	93.0	29	274.	116
59	54.323 .1	119	109.5	45.5	179	164.8	89.9	239	220.0	93.	299	270	116
60	. 2	120	5	46	180	65.7	70.3	240	220.9	93.8		27	117
Dist.	Depluat	Dist	Dep.	Lat	Dist.	Dep.		Dist	De	La	Dist.	Dep.	La
For 67 Degrees.													

difference of latitude and departure for 24 degrees.

Bist.	Lat.	Dep	Dist.	Lat.	D	Dist.	Lat.	Dep	Dist.	Lat	De	Dist.	Lat.	Dep.
2		800.8	62			122	111.5	19.6	182	166.3	0	242	221.1	95.4
		01.2	63		2.	123	112.4	50.0	183	167	74.4	243	222	
4	03.71	01.6	64		26.0	124	113.3	50.4	184	168.	74.8	244	222	
5	04.6	02.0	65			125	114.2	50 8	185	169.	75.2	245	223	99
		.02.4	66			12		51.1	186	169	75.7	246	22	00
7		402.8	67	61.2	27.3	127	116.0	51.7	18	170	76.1	24	225	100.5
	7.30	303.3	68		27.7	128	116.9	52.1	18	171.	76.5	248	226	100.9
			69			129		852.5	18		76	249		101.3
10		104.1	70		28.5	130		52.9	190	173.	77.3	250	228.4	101.7
11			71			131			191	174	77.7	251		102.1
12		-	72					-	192		78	252		
13	11.90	05.	73	66.7	29.7	133			1	176	78.5	253	231	102.9
14	12.8	805.	74	67	30.1	134	122.4	-1 5	19	177	78.9	254	232	103.3
15	13.7	06.	75			135	123	54	195		79	25	23	103.7
16	14.6	606.5	76	69.4	30.9	136	124		196	179.	79.7	25	233	104.1
17	15.5	50.9	77	70.3	31.3	137	12 L .2	5	19	180.	80.1	25	234	104.5
18	16.4	407.3			31.7	138	126.1	56.	198		80	25	23	
19	17.40	407.7	79	72.2	32.1	139		56.5	19	181	80.9	259	236	105
20		308.1	80	73.1	32.5	140			200	182.	81.3	26	237	102
21	19.2	08.5	81		32.	141	128	$\overline{57.3}$	201	183	81.	26	238	106
22	20.1	108.9	8	74.9'	'3	142	129	757	202	184	82	26		106
23	21.0	09.4	83		33	143	130	58	203	185	82.6	26	240	7.0
24	21.9	909.8	8	76.73	34.2	14	131.6	¢58.6	20	186.	83.0	26	241	107.4
25	22.8	810.2	85	77.7	34.6	14	132	559.0	205	187.	83.4	265	242	107.8
26		10.6			35.	14		59	20	188.	83.	26	24	108.2
27	24.7	711.0	87	79.5	35.	147	134.3	59.8	20	189.	84.2	26	243	108
28	25.6	611.4	88	80.	5	148	135	${ }^{\text {c }}$	208	190.	$8 \pm$.	26	244	109
					36.2	14				190	85.	26	245	
30	27	12.2	90	82	136.6	150		61.0	210	191.	85.	27	246	109.8
31		12.6	91	83.1	137.	15	137.9	1614	211	192.	85.8	27	247.	110.2
3.	29.2	13.0	92			15		81.8	212	193	8	27	48	11
33	30.1	113.4	93	85.	,	15	139	62.2	21	194.	86.	27	249	111.
3	31.1	113.8	9	85.	88.	15	140.7	762.8	21	195.	87.0	27	250	111
3 3		14.2	95			15	141		215	196	87.4	27	251	
3	32.9	14.6	9	87.7	39.	15	142	56	21	197.	87.	27	25	112
37	33.	15.0	98	88.6	39.5		14	cr	21	198.	88.3	27	253	112.
38		15.5	98							199	88.		254	113.1
40	35.	15.9	99	90.4	40.3	15	145	364.7	219	200	89.1	27	25	113.5
40	36.5	16	100	91.4	40.7	160		65.	220	201	89.	280	255	113.9
41	37.5	16.	101	2.3	41	16	147.1	16	22	201	89.		25	
42	38.	17	102	93.2	11.5	16	148	65.	22	202	90	28	257	11
		317.5	103						223	203	0.7	28	258	
44	40.2	17.9	$10 \pm$	95.0	42.3	164	149.8	86	224	204	91.1	28	259	115.5
4	41.1	18.3	105	95.9	42.7	165	150	67	225	205	91.5	28	260	115.9
46		18.7	106						2		1.3			16.
47	42.9	19.1	107	97.7	43.5	167	152.6	667.	227	207.	92.3	28	262	1167
48	43.9	19.5	108	98.7	43	168	15	568	22	208.	92.7	28	263	117.1
49	44.8	8,	10						2	209	93.1		264	118.
50	457	20.3	110	100.5	44.7	170		369.1		210.1	93.5	290	264	118.
51			1	1.4	45.	1		b.	2	11	4.	2	\%	118.
52	47.5	51.2	12	102.3	.	173	157.1	170.0	232	211.	94.	29		118.
53	48.4	421.6	113	103.2	46.	17	158.0	70.	23	212.	94.8	29	267	119.2
54	49.3	$3 \cdot 2$	114	104.	6.	17	159.0	870.8	23	213.	95.2	2	68	19.6
55	50	22.4	115	105.1	46.8	17	159.9	71.2	235	214.	95.6	29	269.	120.0
56	51.2	22.8	116	106.0	17.2	17	160.8	71.6	23	215.	96.0	29	270	120
57	52.1	123.2	117	106.	7.6	177	161.7	772.0	23	216.	\%	29	71	120
59	53.0	023.6	118	107.8	48.0	178	162.6	72.4	研	217.	96.	29	272	121.2
59	53.9	924.0	119	1087	48	179	163	72.	23	218.	97.	29	273	1216
		24.4	120	109.6		180	164.4	73	24	21	97.6	30	27	122.0
		Lat.	Dis	Dep.										

For 66 Degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 25 DEGREES.

difference of lattude and departure for 26 degrees.

	Lat.		Dist.	Lat.		bist.			Di		Dep.	Dist.	La	Dep.
2		00.9	62		27.2	122			182			242	217.5	
3		01	cr		27.6	123			18	164.	8	243	218.	106.5
4		018	64		28.1	124			18	165.	80	244	219.	10
5			65	58.		12			18	166.	81.	245	220	
6	0	2.6	66		28.9	12			18	167.	81.	24	221.1	107.8
7	03		67		29	127			18	168	82	24	222	108.3
			c8	61.		128			18	169.	82	248	22	108.7
			-		.					169	82.	24		109.2
10	09	04.4	70	62.9	30.7	130			190	170.	83.	250	224.7	109
11	09	04.8	71		31.1	131	11		191	171	83.7	251	225	110
12			72		31.6	132			192	172	84	252	226	110
13			73			133			19	173	84.6	253	227	110
14		6. 1	7			13	120		19	174.	85	254	228	111
15	13	06.6	75	67	32.9	135	121			175	85.	25	229	111.8
16			76		.	136				176.	85.9	250	230.1	112.2
17		,	7	69	33.8	137			19	177.	86.	$2 \overline{7}$	231.	112.7
18	16	7.	78	-	4.2	138	12		19	178.	86	25	231.	113.1
19	171		-9			139			19	178.	87.	25.	232.	.
20	18	08.8	80	71.9	35.1	140			20	179.	87	260	233	
21	18.9	09.2	81	72.8	35.5	141	126.7	61.8		180.	88.1	261	234.6	114.4
		09	82			142			20	181	88.	26	235	
23		10.				143			20	182.	89	26	236.	115
$2 \pm$	21.	10.5	8			14	129		20	183.	89	264	237.	115
			85			145				184	89.	2	238.	16.2
26	13.4	11.4	86	77	.	146	131		20	185	90	260	239.	116.6
	24.3	11.	87		,	14	132			186	90	267	240.	117.0
						148				186	91		240	117
29	-6.1	12.7	89		39.0	149	133		20	187	1.	269	241	117.9
30	27.	13.2	90	80	39.5	150		65	210	188.	92.	270	242.7	118.4
32		14.0	92	82.	40.3	15.	136	66	21	190	92.	27	24	119
			93			1				191	93	27	245	
					41.2	154			21	192	3.		246	
3	31.	15.3	95		1.6	155	139		21	193	94	275	247	120
	32		7			15	140		21			276	248	
37			97.			15	141	68	21	195	5		249	
3	34	16.7		88.	43.C	158	142	69	218	195	5	27	249	121
35			0			15	14		21					
40	360	17	00	89.9	± 3.8	160				107.	96.4		5	
41			101			161	144	71.	22	198	96.			
42			102			162	145			199			253	123
43										200			254	12
44	39.5	19.	104	93.	. 6	164	147	71	22	201.	98	28	5	121
4.5	10.		105			163	148		22	202.	98	28	256.2	124
46										203	93.		257	125
47	12,	20.	107	96		167	150	73.	22	204	99	29	258	
48	13		108			168	151	73	22	204	99	28	258	. 7
49	44.0	21.5	109		47.8	1			229	205	100.	280	259.	126.7
50	14.9	21.9	110	93.9	48.2	17	152	74	23	206	100.8	29	260.7	127.
5	15.8		111								101.		261.5	
52	17.	2.8	12	100.7		112	5		23	208	101.	2	262	
	17	23.2	113	101	. 5	173	155		2	209	102.	29	263.	128.4
	18.5	23.7	14			174			23	210	102.	29	264.	28.
5	19.	21	115	103	0	175	157.3	76.7	23	211.	103.	29	265	129.
	-	24.5	116		0.9	176	158	77.2	23	212.	103.	29	266.	29.8
		5.	117			177	159.			213.	103.	29	266	30.2
58	52.	-	118	106.	1.7	178	160.0	78.0	23	213.	104.	29		,
59	53.	25.9	119		2.2	17	160.9	78.5	23	214.8	104.	299	68.	,
60	3.	26.3	120			18	161.8	78.9		215.7	105.2		269.6	131.5

For 64 Degrees.
difference of latitude and departure for 27 degrees.

Wist.	Lat. Dep	Dist.	Lat.	Dep	Dist.	Lat.	Dep D	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
					121			181	161.3	82.2	241	214	109.4
2	018.00 .9	62	55.2	28.1	122	108.7	\|55.4	182	162.2	82.6	242	215.6	109.9
3	02.701 .4	63	561	128.6	123	109.6	55.8	183	163.1	83.1	243	216.5	110
	03.601 .8	64	57.0	29.1	124	110.5	563	184	163.9	83.5	244	217.4	110
5	04.502 .3	65	57.9	29.5	125	111.4	56.7	185	164.8	84.0	245	218.3	111.2
6	05.302 .7	66	58.8	30.0	126	112.3	57	180	165.7	84.4	246	219.2	111.7
	-6.203.2	67	59.73	730.4	127	113.2	57.7	187	166.6	84.9	247	220.1	112.1
8	07.103.6	68	60.6	$\mathrm{g}^{30} 9$	128	114.0	58.1	188	167.5	85.	248	221.0	112.6
	08 (004.11	69	61.5	31.3	129	114.9	\% 5	18	168.4	85.8	249	221.9	113.0
10	08.904.5	70	6.24	431.8	130			19	169.3	86.3	250	222.8	113.5
11	09.805 .0	71	63.3	332.2	131	116.7	59.5	191	170	86.7	251	223	114.0
12	10.705 .4	72	64.2	32.7	132	117.6	59.9	192	171.1	87.2	252	224	114.4
13	11605.9	73	65.0	033.1	133	118.5	60.4	193	172.0	87.6	253	225	114.9
14	12.506 .4	74	65.9	933.6	134	119.4	60.8	191	172.9	881	254	226	115.3
15	13.406 .8	75	66.8	834.0	135	120.3	61.3	195	173.7	88.5	255	227.	115.8
16	14.307 .3	76	67.7	734.5	136	121.2	61.7	196	174.6	89.0	256	228	116.2
17	15.1)7.7	77	68.6	635.0	137	122.1	62.2	197	175.5	89.4	257	229	116.7
18	16.008 .2	78	69.5	$5{ }^{35.4}$	138	123.0	62.7	198	176.4	89.9	258	229	117.1
19	16.998 .6	79	70 43	435.9	139	123.8	63.1	199	177.3	90.3	259	230	117
20	17.809 .1	80	713	336.3	140	124.7	+	200	178	90.	260	231.7	118
21	18.7 09.5	81	72.2	236.8	141	125.6	64.0	201	179	91	26	23	118.5
22	19.610 .0	8	73.1	137.2	142	126.5	64.	202		91		233	
23	20.510 .4	83	74.0	97.7	143	127.4	64.9	203	180.9	92.2	263	234	119.4
24	21.410 .9	84	74.8	838.1	144	128.3	365.4	204	181.8	92.6	264	235.	119.9
25	22.311 .3	85	75.7	738.6	145	129.2	65.8	205	182.7	93.	26	236	120
26	23.211 .8	86	76.6	639.0	146	130.1	166.3	206	183.5	93.5	266	237	120
27	24.112 .3	87	77.5	59.5	147	131.0	66.7	207	184.4	94.0	267	237.9	121.2
28	24.912.7	88	78.4	40.0	148	131.9	67.2	208	185.3	94.	26	238	121.7
29	25.813.2	89	79.3	340.4	149	132.8	67.6	209	186.2	94.9	269	239.7	122.1
30	26.713 .6	90	80.2	240.9	150	133.7	68.1	210	187.1	95.3	270	240.6	122.6
31	27.614 .1	91	81.1	$1{ }^{11.3}$	151	131.5	588.6	211	188.0	95.	271	241.5	123.6
32	28.514 .5	92	82.0	41.8	152	135.4	469.0	212	188.9	96.2	272	242	123.5
33	-9.415.0	93	82.9	92.2	153	136.3	369.5	213	189.8	96.7	273	243.2	123.9
31	30.315 .4	94	83.8	842.7	154	137.2	69.9	214	1907	97.	274	244.	124.4
35	31.215 .9	95	84.6	643.1	155	133.1	170.4	215	1916	97.6	275	245.	124.8
36	32.116 .3	96	85.5	543.6	156	133.0	70.8	216	192.5	98.1	276	245.8	125
37	33.016 .8	97	86.4	44.0	157	139.9	71.3	217	193.3	98.	277	246	125
38	33.917 .3	98	87.3	34.5	158	140.8	71.7	218	194.2	99	278	247	126
39	34.717 .7	99	88.2	244.9	159	141.7	72.2	219	195.1	99.4	279	248.6	126.7
40	35.618 .2	100	89.1	145.4	160	142	72.6	220	196.0	99.9	280	249.5	127.1
41	36.518	101	90.0	$\overline{45.9}$	161	143.5	731	221	196	100.3	281	250.4	127
	419	102	90.9	916.3	162	144.3	73.5	222	197.8	100.8	282	251	
43	38.319 .5	103	91.8	8168	163	145.2	74.0	223	198.7	101.2	283	252.2	128.5
44	39.220 .0	104	927	74.2	164	1461	174.5	224	199.6	101.7	284	253.0	128.9
45	40.120 .4	105	93.6	647.7	165	147.0	74.9	225	200	102.1	285	253.	129
46	41.020 .9	106	94.4	481	166	1479	75.4	226	201.4	102.6	286	254.8	129.8
47	41.9 1. 3	107	95.3	348.6	167	148.8	875.8	227	202.3	103.1	287	255.7	130.3
48	42.821 .8	108		49.0	16	149.7	76.3	228	203.1	103.5	28	256	131.
49	43.722 .2	109	97.1	149.5	169	150.6	76.7	229	204.0	104.0	289	257.5	131.2
50	44.622 .7	110	98.0	49.9	170	151.5	77.2	230	204.9	104.4	29	258.4	131.7
51	45.4 23.2	11	93.9	950.4	171	152	77.6	231	$20 \overline{5}$	104.	291	259.3	132.1
52	46.323 .6	112	99.8	850.8	172	153.3	78.1	232	206.7	105.3	292	260.2	132.
53	47.224.1	113	100.7	$7{ }^{\text {J1.3 }}$	173	154.1	178.5	233	207.6	105.8	293	261.1	133.
5	49.124 .5	114	101.6	651.8	174	155.0	79.0	234	208.5	106.2	294	262.0	133.5
5	49.025 .0	115	102.5	552.2	175	155.9	79.4	235	209.4	106.7	295	262.8	133.9
56	49.925 .4	116	103.4	452.7	176	156.8	79.9	236	210.3	107.1	290	263.7	131.
57	50.825 .9	117	104.2	253.1	177	157.7	780.4	237	211.2	107.6	29	264.	134
	51.726 .3	118	105.1	153.6	178	158.6	680.8	238	212.1	108.0	29	265.	135
${ }^{5}$	52.626 .8	119	106.0	054.0	179	159.5	, 81.3	239	213.0	108.5	299	266.	135
	53.5	12	106.9	954	180	160.4	. 81.7	240	21	109.		267	136
Dist. Dep Lat.		Dist.	Den.	Lat	Dist	Dep.		Dist.	Dep.	La	Dist	Dep.	La
					For	- 63	Deg	es.					

difference of lattudde and departure for 28 degrees.

Dist.	Lat.		Dist.			Dist.			Dist.			Dist.		Dep.
2						122			182		85.	42	213.7	
						12			18		85	23		
	03	1.9	64			124	109		18	162	86.	44		114
5	04	02.3	65			125	110		$18:$	163.	86	24	21	115
			66			12	111	59.2	180		87.3	24	21	
7	06	3.	67	59.2	31.5	127	112		18	165	87.8	247	218	116
		3.	68		31.9						88.	24	219	116
			69			129	113		188			24		
10			70			130			19	167	89.2	250		117.4
11			71			131		61.	19		9.			
			72			132			192		0.1	25		
13	11		73						193	170		2		18
14			74	65.3	34.	134	118		194	171	91.1	25		
15	13.		75	.2	,	3	119.2		195	17.	91	5		
16	14.	07.5	76	67.1	35.	136	121		19	173	92.	25		20.2
17			77	63.0		137			197	173		25		
18	硅	8.5	78	.9	36				88	174	93	5		
19	16.		79						19	17	93.4	25		121.6
20			8						200	176	93.9	260	229.6	122.1
21		09.9	81	71.5	38	141	124.5	66.2	20	77	94	26	230.4	122
						142						26		
			8	7	39.	14			0			26	232	
2	21	11	81	74.2	3.	144	127		20	180	95.	26	233	
	22		85	75.	99,	145	128					26		124.4
			86	75.	40.	146				18	96.			
2	23	12.7	87	76.	10.	147	129		20	182		26		
				77.										
						14					88.1			
30		14.1	90	79	42.3	150			21	185		27		
						151			21	186	9,	27		
			92	1.2	43.	152			21					
		15.	93						21	188	100	27		
				,		15			21		100	27		
	30.	16.4	95	.9	44.	15			11		,			
	31.8		96	4.8	45.				21	190	101.	27		
			97						21	191	101	27		
38	33.			6.	16.		139			92.				
39	32.		99		46.5				21	193	102.	27		
40			100	88.3					22	咗	103.		24	131.5
41				4	4	16			22	195	103			
42			102	. 1	7.	162			22	196	104			
				90.9										
44	33	20	104	91.8	48.	164	144		22	197	105	28	250	
45		1.1	105	92.7	49.3	165			22		105.	28		133.8
46					49.8						106.		252	
17	11	22.1	107	94.5	50.2	16	147		22	200	06.	28	25	
48	12	22.5	108	95.4	.				22	201	107			
40	13.	23.0								202.2	,			
50	41.	23.5	110	97.1	51.6				230	203.1	108.		256	36
						17								
52	45.9	4.	12	95	52	1	151.9			$0 \pm$,	29		
53			113	99.8	53.1	17	152	81.	23	205	109.	29		
54			114	100.		17			23		09	29		
55	8.	.	115	101.	4.0	175	154	82	2	207.	10.		,	
			116	102.		17			23	208.	110.	29	261	139
			117	3.						,	11.			
	1	27.2	118	104.	5.	17			23	210.	11.7	29	263.	139.9
59	-	27.7	119	15		17			23	211.	112.2	29	264.0	140.
	. 30	28.2	120			18			24	211.	112			140.8

For 62 Degrees.
difference of latitude and departure for 29 degrees.

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 30 DEGREES.

	Lat.		Dist.	Lat.	Dep	Dist.	Lat.	Dep	list.		Dep.	bist.	Lat.	Dep.
2		01	62			122		.	182		91.0	242	209	12
3		01.5	63		31.5	123	106.5	61. 5	18	158	91.5	243	210	12
		02.0	64			124	107		18	159.	92.	24	211	12
5		102.5	65			125	108		18	160	92.5	245	212.2	122
6		03				126	109		18	161	93.0	24	213.0	123
						127	110		18	161	93.5	247	213	123.5
8		04.0	68			128	110	64.0	18	162	94.	248	214	124.0
9						129	1117		188	163	94	249	215	
10			70						190			250	210	
11	09.5	05	71			131	113		19	165.	95.5	251	217.4	12
12	10.4	c	72			132	114		192		96	252	21	126.0
13			73	63.		133			19	167.	96	253	219	
14	12.1	,	74	64.	,	13	116		19		97.0	254	220	12
15	13.0		75	65		135				168.	7.	255	220	
16			7	65.	38.0	136	117.8	68.0	19	169.	98	256	221.	
17	14.	(18.5	77	66		137	118	68.5	19	170		25	22.2	12
18	15.6	09.0	-	67.	. 0	138	119	9.		171	99.0	258	223.	12
19						139	120		190	172	99	${ }_{260}^{259}$	224.	
20		10.0	80			140	121	70.0			100			
21			8			141	122	70.5		174.	100.5			
22		1.	82	71.	1.0	142	123		20	174	101	26	226	131
23	19.9	11.5	83	71.		143	123	1.	20	175	101	263	227	
24		,		72.	2.0	144	124	72.	20	176	102	26		
25		12.	85	73.	42.5	145	125.6	72.5	20	177	102	26	229	
26		3.0	8	74.5	3.0	146	126	,	20	178.	103		230	
					43.5	147	127		20	179	103		231	
28		14.	88	76.	44.0	148	128	74.0	20	180	104	26	232.	
						149	129		20	181	104		233.	
30									21				233	
31		15.5	91		45.5	151	130.8	75.5	21	18	105		234.7	
			92			152		76.0	21	183	106		235	136
		6.	93	80.	46.5	153	132	76.5	21	184	106	27	23	
34	29.	17.0	91		77	15	133		21	185	107	27	237	137.
			95			155	134		21	186	107	275	238	137
36	31.2	18.	96	83.	48.0	156	135	78	21	187	108	27	239	38
37	32.0	8.5	97	84.	48.5	157			2	187			239	
38			98							188	109		240	
39	33.8	19.5		85.	49.5	159	137.7		21	189	109.	27	241	139.5
40	34.	20.0	100		50.0	160	138.6	80.0	22	190	110	280	242	140.0
										191	110			
42	36.4	21	102		1.0	162	140.3	381	22	192.	111	28	244	141
43	37.2	21.	103			163	141	281.5	2	193	111.		25	141
44		,				164			22		12		246	142.
45	39.0	22.5	105	90.	52.5	165	142.9	82	22	194	112.	28	246	142
46	39.		106			166	143		22	195	113	28	247	143
47		3.				167					11.		248	
48	41.6	44.0	108	93.	540	168	1455	84.0	22	197	114		249.	14
49	42.	4.5	108			169	146	84.	22	198	114.5	280	250.	144.5
50	43.	25	11		55.0	170	147			199	115		251	145.0
51	44.	25.5	11		5.5	171	148			200	115	20	252	145
52		26.0	112			172	149		2	20	16.	29	252	146.0
53	45.9	26.	113	97	56.5	173	149.8	86	23	201.	116.5	29	253.	146.
5	46.	27.0	114			174	150	87.0	23	202	117.	29	25	147.0
55			115			175	151		23	203.	117.	29	255	
56	48.5	28.	116	100.	58.0	176	152.4	88	23	204.	118	29	256	
	49.	28.5	117	101	8.5	177	153.3		23	205.	118.	29	257.	148
58		9.	118			178			23	206.	19.		258.	
59	. 1	29.5	112	103.	59.5	178	155	89.5	23.	207	119.	29	258	
60	52.0	0.0	120	103.	0.0	180	155.9	90.0	240	207.	120.	300	259	150.0
Dis		Lat.	ist	Dep.	Lat.	Dist.	Dep.	L	Dist.	Dep	Lat.	Dist.	Dep	Lat.

For 60 Degrees.

difference of latitude and departure for 31 degrees.

Dist.	Lat. Der D	Dist. I	Lat.	Dep D	Dist.	Lat. D	Dep D	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
	00.900 .5	61	52.3	31.4	121	103.76	62.3	181	155.1	93.2	241	206.6	124.1
2	01.701 .0	62	53.1	31.9	122	104.66	62.8	182	156.0	93.7	242	207.4	124.6
3	02.601 .5	63	54.0	32.4	123	105.46	63.3	183	156.9	94.3	243	208.3	125.2
4	03.402.1	64	54.9	33.0	124	106.36	63.9	184	157.7	94.8	244	209.1	125.7
5	04.302 .6	65	55.7	33.5	125	107.16	64.4	185	158.6	9 cos	245	210.0	126.2
6	03.103.1	66	56.6	34.0	126	108.06	64.9	186	159.4	95.8	246	210.9	126.7
7	06.003 .6	67	57.4	34.5	127	10896	65.4	187	160.3	96.	247	211.7	127.2
8	06.904 .1	68	58.3	35.0	128	109.76	65.9	188	161.1	96.8	248	212.6	127.7
10	07.704.6	69	59.1	35.5	129	110.66	66.4	189	162.0	97.3	249	213.4	128.2
11	09.4 05.7	71	60.9	36.6	131	112.	67.5	191	163	98.4	251	215.1	129.3
12	10.306.2	72	61.7	37.1	132	113.16	68.0	192	164.6	98.9	252	216.0	129.8
13	11.106 .7	73	62.6	37.6	133	114.06	68.5	193	165.	99.4	253	216.9	130.3
14	12.0107 .2	74	63.4	38.1	134	114.96	69.0	194	166.3	99.9	254	217.7	130.8
15	12.907 .7	73	64.3	38.6	135	115.76	69.5	195	167.1	100.4	255	218.6	131.3
16	13.708 .2	76	65.1	39.1	13	116.67	70.0	196	168.0	100.9	256	219.4	131.8
17	14.608 .8	77	66.	39.7	137	117.47	70.6	197	168.9	101.5	257	220.3	132.4
18	15.409 .3	78	66.9	40.2	138	118.37	71.1	19	169.7	102.0	258	221.1	132.9
19	15.309.8	79	67.7	40.7	139	119.17	71.6	199	170.6	102.5	259	222.0	133.4
20	17.110 's	80	68	41.2	140	120.07	72.1	200	171.4	103.0	260	222.9	133.9
21	18.010 .8	81	69.4	41.7	141	120.97	72.6	201	172.3	103.5	261	223.7	134.4
22	18.911 .3	82	70.3	42.2	142	121.77	731	202	173.1	104.0	262	224.6	134.9
23	19.711 .8		71.1	43.7	143	122.67	73.7	203	174.0	104.6	26	225.4	135.5
24	20.612 .4	81	72.1	43.3	144	123.47	74.2	20	174.9	105.1	264	226.3	136.0
25	21.412 .9	85	72.9	43.8	145	124.37	74.7	20	175.7	105.6	265	227.1	136.5
26	22313.4	86	73.7	443	146	125.17	75.2	206	176.6	106.1	26	228.0	137.0
27	23.113 .9	87	74.6	44.8	147	126.07	75.7	207	177.4	106.6	267	228.9	137.5
28	24.014 .4	85	75.4	45.3	148	12697	76.2	208	178.3	107.1	268	229.7	138.0
29	24.914 .9	89	76.3	45.8	149	127.77	76.7	209	179.1	107.6	269	230.	138.5
30	25.715 .5	90	77.1	43.4	15	128.6	77.3	210	180.	108.2	270	231.4	139.1
31	25.616 .0	91	. 0	43.9	151	129.	7.8	211	180	108	271	23	139.6
32	27.416 .5	92	78.9	47.4	152	130.37	78.3	212	181.7	109.	272	233.1	140.1
33	23.317 .6	93	79.7	47.9	153	131.17	78.8	213	182.6	109.7	273	234.0	140.6
34	29.117 .5	94	$80 . C$	43.4	151	132.07	79.3	214	183.4	110.2	274	234.9	141.1
35	33.618 .0	93	81.4	48.9	15.	132.97	79.8	215	184.3	110.7	275	235.7	141.6
33	30.918 .5	96	82.3	49.4	156	133.7	80.3	216	18J. 1	111.2	276	236.6	142.2
37	31.719 .1	97	83.1	50.0	157	134.6	80.9	217	186.0	111.8	277	237.4	142.7
38	32.619 .6	98	81.	50.5	158	135.48	81.4	21.	186.9	112.3	278	238.3	143.2
39	33.420 .1	99	$8 \pm .9$	51.1	159	133.38	81.9	219	187.7	112.8	279	2391	143.7
40	31.3	100	8 8. 7	51.5	160	137.1	82.	220	188	113	0	240.	144.2
41	35.121 .1	101	86.6	52.0	161	138.0	82.9	221	189.4	113.8	281	240.9	144.7
42	36.021 .6	102	87.4	52.5	162	138.9	83.4	222	190.3	114.3	282	241.7	145.2
43	33.9,22.1	103	88.3	53.0	163	139.7	84.0	223	191.1	114.9	283	242.6	145.8
44	37.722 .7	$10 \pm$	89.1	-3.6	164	140.6	84.5	224	192.0	115.4	284	243.4	146.3
45	33.623 .2	105	90.0	54.1	165	141.4	85.0	225	192.9	115.9	285	244.3	146.8
46	39.423 .7	106		54.6	166	142.3	385.5	220	193.7	116.4	280	245.1	147.3
47	40.321 .2	107	91.7	551	167	143.1	860	227	191.6	116.9	287	246.0	147.8
45	41.124 .7	108	92.6	55.6	168	144.0	86.5	228	195.4	117.4	288	246.9	148.3
49	42.025 .2	109	93.4	56.1	169	144.9	87.0	229	196.3	117.9	289	247.7	148.8
50	42.9258	110	94.3	56.7	170	145.7	87.6	230	197.1	118.5	290	248.6	149.4
51	43.726	111	95.1	57.2	171	146.6	88.1	231	198.0	119	291	249.4	149.9
5	44.626.	112	96.0	57.7	172	147.4	88.6	232	198	119.5	29	250	1504
53	45.427 .3	113	96.9	58.2	173	148.3	89.1	233	199.7	120.0	293	251.2	150.9
54	46.327 .8	114	97.7	58.7	174	149.1	1896	234	200.6	120.5	294	252.0	151.4
55	47.128.3	115	98.6	59.2	175	150.0	90.1	235	201.4	121.0	29	252.9	151.9
56	48.028 .8	116	99.4	59.7	176	150.9	90.6	236	202.3	121.5	296	253.7	152.5
57	48.9294	117	100.3	60.3	177	151.7	91.2	237	203.1	122.1	297	254.6	153.0
58	49.729 .9	118	101.1	60.8	178	152.6	61.7		204.0	122.6		255.4	153.5
59	50.630 .4	119	102.0	61.3	179	153.4	492.2	239	204.9	123.1	299	256.	154.0
60	51.430 .9	120	102.9	61.8	180	154.3	92.7	240	205.7	123.6	300	257	154.5
Dist. Dep Lat.		Dist.	Dep.	Lat.	Dist	Dep.	Lat.	Dist.	Dep.	Lat.	Dist.	Dep.	Lat.
For 59 Degrees.													

DIFFERENCE OF LatITUDE AND DEPARTURE FOR 32 DEGREES.

	La	D	Dist.	Lat.	De	Iist.	Lat.	Dep	Dist.	Lat	Dep.	Dist.	Lat.	Dep.
									181			241	20	
2		01.1	6	52.6	32.9	122	103		182		96.4	42	205	128.2
3		01.	63	53.4	33.4	123	104		183	15	97.0	243	206	12
4		02.1	64	54.3	33.9	124	105		18	156.0	97.	244	206.9	129
5	04	02.6	65	55.1	31.4	125	106		18		94	24	207.	129
6	05.	03. 2	66	56.0	35.0	126	106	66	18	157.	98	246	208	130
7		103.7	67	56.8	35.5	127	107		18	158.6	99.	247	209	130
8	06	04.	68	57.7	36.0	128	108		18		99	24	210	131.4
9			69		36.6	12	109		18	160.3	100.2	249	211	131
10			70	59	37.1	130			191	161.1	100.7	250	212.	132.5
11			71	60.		131			19	162.	101	25	212.9	133.0
12		106	72	61.	138.2	132			10		101.	252	213	133
13		06.	73	61.9	38.7	133	112		19	163.	102	25	214	134.1
14	11.9	07.4	74	62.8	39.2	$13 \pm$	113	71.0	19	164.5	102.	25	215	134.6
15		07	75		39.7	133	114	71.	19	165.	103.	255	21	135
16			76	64.5	40.3	136	115	72.1	19	166.2	103.	25	217	135.7
17	14.4	09.0	77		40.8	137	116	72	19	167.1	104	25	21	136.2
18		09	78		11.3	138			198	167.3	104	25	218	
19	16	10.1			41.9	139	117		199	168.	105.	253	219	137.2
20	17.0	10.6	80		82.4	140	118		20	169.6	106.	260	220	137.8
21	17.8	11.1	81	63.7	42	141		4.7	20	170.5	106	261	221	138.3
22	18.7	11.7	82	69.5	43.5	142	120		20	171	107	26	22.2	138
23	19.5	12.2	83	70.4	44.0	143	121	75	20	172.2	107.	26	223	139.
24		12.7	84	71.2	44.5	144	122	76.	20	173.0	108.	26	223.9	139.3
25	21.2	13.2	85	72.1	15.0	145	123	6		173.	108	26	224	140.4
26	22.0	13.		72.9	45.6	146	123	77.4	20	174	109.2	26	225.	14
27	22.9	14.3	87	73.8	46.1	147	124	7	20	175.	109.7	26	226.	14
29	23.7	14.8		74.6	46.6	148	125	78		176	110		227	142
29	24.6	15.	89		47.2	149	126	79.0	20	177.	110.8	26	228.1	142
30	25.4	15.	90	76	47.7	50	12	7	21	178.1	111.	27	229.	143.1
31			91	77	28.2	151	128		21	178.	111	27	229	143.6
31					48.	152			21	179	112	27	230	
33	.	17.5	9	78.9	49.3	153	129	81	21	180.	112.3	27	231	
3	28.	18.0	94	79.7	49.8	154			21		12	27		
3 J	29.7	18.5			50.3	155			21	182.	113	27	233	
35	30.5	19.1	96		50.9	156	132	82.7	21	183.	114	276	234.	146
37	31.4	19.6	97		,	157			217	184.0	115		234	
38		2.1			51.9	158	134.0		21	184.	115		235	
39	33.1	20.7	99	81.0	52.5	159	134		21	185.	116.1	27	236	
40	33.9	21.2	100	84.8	53.	160	135	84.	220	186.6	116.6	280	237	148.4
41		21			3.	161		5	2	187	117		238	
42	35.6	22.3	102	86.5	54.1	162			22	188.3	117	28	239	
43		22.8	103		4.6	163			2	189.	118.2	28	240	150
44	3	23.3	104		55.1	164	139		22	190.	118	28	240	150
45	38.2	43.8	105		-55.6	165	139		22	190	119	28	241	151
46	39.0	24.4	106	89	5.2	166	140		22	191.7	119.	28	242.	151
48	39	34.9	107	90.7	56.7	167	14		22	192.5	120.3	28	243	152.
48	10.7	25.4	108	91.6	657.2	168			228	193.	120.8	28	244	152
49	41.6	26.0	109	92	57.8	169		89.6	22	194.2	121.4	28	245.	
50	12	26.	110	93.3	558.3	170	144	90.1	23	195.1	121.9		245.	53
51	13.3	27	111	1	158	171		0.	2	195.	122.	2	246	154
5	14.1	27.6	112		59.4	172			23	196.	122.	29	247	
5	44.9	28.1	113	95.8	859.9	173	146	91.	23	197.	123.5	29	248	
54	45	28.6	114	96.7	7.60.4	174	147	92.2	23	198.4	124.0	29	249	
	46	29.1	115	97.5	50.9	175	148	92.7	23	199	124.	29	250.	
56	17.5	29.7	116	98.4	.61.5	176	149	3.3	23	200	125.	29	251.	156
57	18.3	30.2	117	99.2	62.0	177	150.1	93.8	237	201.0	125.6	29	251.9	157
58	49.2	30.7	118	100.1	162.5	178	151	94.3	238	201.	126.1	298	252.	157
59	50.	31.3	119	100.9	9,63.1	179	15	94.9	23	202.	126.7	29	253.	158
60	50.9	318	120	101	863.	180	152.6	95.4	240	203.	127.	300	254.	15
			Dis				Dep.				Lat.			

DIFFERENCE OF LATITUDE AND DEPARTURE FOR 33 DEGREES.

Dist.	Lat. Dep	Dist.	Lat. Dep	Dist.	Lat. Dep	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
1	00.800 .5	61	51.233 .2	121	101.565.9	181	151.8	98.6	241	202.1	131.3
2	01.701 .1	62	52.033 .8	122	102.366 .4	182	152.6	99.1	242	203.0	131.8
3	02.501 .6	63	52834.3	123	103267.0	183	153.5	99.7	243	203.8	132.3
	03.402.2	64	53.734 .9	124	104.0675	18	154.3	100.2	244	204.6	132.9
5	04.202.7	65	54.535.4	125	104.868 .1	18	155.2	110.8	245	205.5	133.4
6	05.003 .3	66	55.435 .9	126	105.768 .6	186	156.0	101.3	24	206.3	134.0
	05.9038	67	56.236 .5	127	106.569 .2	187	156.8	101.8	247	207.2	134.5
8	06.701 .4	68	57.037 .0	128	107.369.7	188	157.7	102.4	24	208.0	135.1
9	07.5049	69	57.937 .6	129	108.270 .3	189	158.5	102.9	249	208.8	135.6
10	08.405 .4	70	58.738 .1	130	109.070 .8	190	159.3	103.5	250	209.7	136.2
11	09.206.0	71	59.538 .7	131	109.971 .3	191	160.2	104.0	251	210.5	136.7
12	10.106 .5	72	60.439 .2	132	110.771 .9	192	161.0	104.6	25	211.3	137.2
13	10.907 .1	73	61.239 .8	133	111.572 .4	193	161.9	105.1	25	212.2	137.8
14	11.707 .6	74	62.140 .3	134	112.473 .0	19	162.7	1057	25	213.0	138.3
15	12.608 .2	75	62.940 .8	135	113.273 .5	195	163.5	106.2	25	213.9	138.9
16	13.408 .7	76	63.741 .4	136	114.174 .1	19	164.4	106.7	25	214.7	
17	14.309 .3	77	64.641 .9	137	114.974 .6	19	165.2	107.5	25	215.5	140.0
18	15.109 .8	78	65.442 .5	138	115.775 .2	198	166.1	107.8	258	216.4	140.5
19	15.910 .3	79	66343.0	139	116.675 .7	199	166.9	103.4	259	217.2	141.1
20	$\frac{16.8}{17.6} \frac{10.9}{11.4}$	80	671	140	117.4	200	167.7	108.9	26	218.1	141.6
21	17.611 .4	81	67.944 .1	141	118.376 .8	201	168.6	109.5	26	218.9	142.2
22	18.512 .0	82	68.814 .7	142	119.177 .3	202	169.4	110.0	26	219.7	142.7
23	19.312 .5	83	69.645 .2	143	119.977 .9	20	170.3	110.6	26	220.6	143.2
24	20.1113 .1	84	71.445 .7	144	120.878.4	20	171.1	111.1	26	221.4	143.8
25	21.013 .6	85	71.346 .3	145	121.679 .0	20	171.9	111.7	265	222.2	144.3
26	21.814 .2	86	72.146 .8	146	122.479 .5	20	172.8	112.2	26	223.1	144.9
27	22.614 .7	87	73.047 .4	147	123.380 .1	207	173.6	112.7	26	223.9	145.4
28	23.515 .2	88	73.847 .9	148	124.180 .6	208	174.4	113.3	268	224.8	146.0
29	24.315 .8	89	74.648 .5	149	125.081 .2	20	175.3	113.8	26	225.	146.5
$3{ }^{3}$	25.216 .3	90	75.549 .0	150	125.881 .7	210	176.1	114.4	27	226.4	147.1
31	26.016 .9	91	76.3 49.6	151	126.688 .2	211	177.0	1149	271	227.3	147.6
32	26.817 .4	92	77.250 .1	152	127.582 .8	212	177.8	115.5	27	228.1	148.1
33	-7.718.0	93	78.050 .7	153	128.383.3	213	178.6	116.0	27	229.0	148.7
34	28.518.5	94	78.851 .2	154	129.283 .9	214	1795	116.6	27	229.8	149.2
35	-29.419.1	95	79.751 .7	155	130.084 .4	215	180.3	117.1	27	230.6	149.8
36	30.2196	90	80.552 .3	156	130.885 .0	216	181.2	117.6	276	231.5	150.3
37	31.020 .2	97	81.452 .8	157	131.785 .5	217	182.0	118.2	277	232.3	150.9
38	31.920 .7	98	82.253 .4	158	132.586.1	218	182.8	118.7	27	233.2	151.4
39	32.721.2	99	83.053 .9	159	133.386 .6	219	183.7	119.3	27	234.0	152.0
40	33.521 .8	100	83.954 .5	160	134.287 .1	220	184.5	119.8	28	234.8	152.5
41	34422.3	101	84.755	161	135.0×7	221	185.3	120.4	281	235.7	153.0
42	35.224 .9	102	85.555 .6	162	135.988 .2	222	186.2	120.9	28	236.5	153.6
43	36.123 .4	103	86.456 .1	163	136.788 .8	223	187.0	121.5	28	237.3	154.1
44	30.924 .0	104	87256.6	164	137589.3	224	187.9	122.0	28	238.2	154.7
45	37.724 .5	105	88.157 .2	165	138.489 .9	225	188.7	122.5	28	239.0	155.2
46	33.625 .1	106	88.957	166	139290.4	226	189.5	123.1	28	239.9	155.8
47	39.425.6	107	89.758 .3	167	140.191 .0	227	190.4	123.6	28	240.7	156.3
48	40.326.1	108	90.658.8	168	140.991 .5	228	191.2	124.2	288	241.5	156.9
49	41.126 .7	109	91.459 .4	169	141.792 .0	229	192.1	124.7	289	242.4	157.4
50	41.927 .2	110	92.359 .9	170	142.692.6	230	192.9	125.3	29	243.2	157.9
51	42.8 27.8	111	93.160 .5	171	143.493 .1	231	193.7	125.8	29	244.1	158.5
52	43.628.3	112	93.961 .0	172	144.393.7	232	194.6	126.	292	244.9	159.0
53	44.428.9	113	94.861 .5	173	145.194 .2	233	195.4	126.9	293	245.7	159.6
54	45.329.4	114	95.662 .1	174	145.994 .8	234	196.2	127.4	294	246.6	160.1
55	46.130 .0	115	96.462 .6	175	146.895 .3	235	197.1	128.0	29	247.4	160.7
56	47.030 .5	116	97.363.2	176	147.695 .9	236	197.9	128.5	29	248.2	161.2
57	47.831 .0	117	98.163 .7	177	148.496 .4	237	198.8	129.1	297	249.1	161.8
58	48.631 .6	118	99.064 .3	178	149.396.9	238	199.6	129.6	298	249.9	162.3
59	49.532.1	119	99.864 .8	179	150.197 .5	239	200.4	130.2	299	250.8	162.8
60	50.332 .7	120	100.665 .4	180	151.098 .0	240	201.3	130.7	300	251.6	163.4
Dist. Dep Lat.		D	ep. La	Dist.	Dep. Lat	.	ep.	La	Dist.	ep.	Lat.
For 57 Degrees.											

difference of latitude and departure for 34 degrees.

Dist.	La	Dep	Dist	La	Dep D	Dist.	Lat	Dep.	Dist.	Li	Dep.	Dist.	La	Dep.
											101			
2		01.1		J1	34	122	101	68.	182	150.9	101	242	200	135
3		01.7			35.2	123	102.0	68	183	151	102	243	291.	135
4		302.2				124	102.8	69.3	18	152.5	102.3	24	202.	
5	04.	02.8			教	125	103.6	69.9	18	153.4	103.5	24	03	137
6	U5.	03.4				126	104.5	70.5	186	154.2	104.	246	203	137
	05.8	83.9				127	105.	71.0	18	155.0	104	247	204	138
8		04.5			38	128	106.1	71.	18	155	105	248	20	138
							106.9	72.1	18	156.7	105.	249	206	
10						130	1078	72.7	190	157.5	106.	250	207	1398
11	09	06.2			39.7	131	108.6	73.3	19	158.3	106	251	208.1	140.4
						132	109	73	19	159	107	252	208	
13		17.3		60	40.8	133	110.3	74.4	19	160	107.	253	209.	141.5
14	11.6	67.8				134	111.1	74.9	19	160	108	25	210.	142
15	12.4	08.4			41.9	135	111.9	75.	19	161	109.	255	211	
16	13.3	308.9	76	63	42.5	136	112.7	76.1	19	162	109.	25	212.	13.2
17	14.1	09.5			43.1	137	113.6	76.6	19	163.	110.2	257	213.	143.7
18	14.9	10.1				138	114.4	77.	19	164	110	25	213.	
18	15.8	10			,	138	115.2	77	195	165	111.3	259	214	
20		11.2		60	44.7	140	116.1	78.3	20	165	111.8	260	215	
21							116.9	78.8	20	166.	112.4			
22		12.3			45.9	142	117.	79	20	167	113	262		
23	19.1	12.9				143	118.	800	20	168	113		218	
	19.9	13.4				14	119.4	80.	20	169	114		218	
25	20.7	14.0		70	47.5	145	120.2	81.1		170	114		219	
20	21.6	14.5				146	121.0	81.6	20	170	115.	266	220	
	22.4	15.1				147	121.	82.	20	171	115		221	
28		15.7			49	148	122.7	82.8		172	116		222	
29		16.2				14	123.5	83.3	20	173	116	269	223.	
30								83.9	21					
31		17			50.	15		$8 \pm$		174	118			
3	26.	17.				15.	126	85	21		118	27	225	
33						15	126.	85.	21	176	119	27	226	
31	28.2	19.0		77	52.	15	127.	86.	21	177	119		227	153.2
35		19.				15.	8.	86.7	215	178	120	27	228	
		0.1			53.7	15	129.	87	21	179	120	27	228	
	30.7	20.7		-	54.2	15	130.	87.8	21	179	121		229	
38		1.2				15	131	88.4	21		121		230	
39	32.3	21.8				150	131.8	88.9	21	181.	122.	27	231	
40	33.	22.4	100	S	55.9	160	132.6	89.	22	182	123.	280	232	156.6
41								90.0			23			
42	34.8	2				162	134.	90.	22	184	124	28	233	
43	35.6	24.	103		7.	16		91	22	184	124		234	
4	36.	24.6			8.	164	13	91.7	22	18.	125.	28	235	
45	37.3	25.			58.7	105	136.	92.	22	186.	125	28	236.	59
46	38.1	25.7	106		9.3	160	137	92.8	22	187.	126.4		237	159
47	39.0	26.			.	1	138	93.4		188.	126.	2	237.	
48	39.8	86.8	1088	89	-	168	139.3	93.9	22	189.0	127.	288	238.	161
49	10.6	27.	109		61.0	169	140	91.	229	189	128	28	239	101
50			110			170	140	95.	23	190.7	128.6		24	62
51	12.3	28.5	111		62.1	171	141.	95.	23	191.	129	2,	241	162
52	13.1	29.				172	142.6	96.2	23	192	129.	29	242.	163
53	43.9	29.6			63.2	173	143.4	96.7	23	193.2	130.	2	242.	
51	14.8	30.2	114	94.	63.7	174	144.	97.8	23	191.	130.9	29	243.	164
55	15.6	\|30.8	115		4.3	17.	145.	97.9	2	194.	131.	29	244.	165
	16.4	31.3	116	96	4.	170	145.9	98.4	2	195.7	132.0	29	245.	165.
	17.3	31.9	117		5.4	177	146.	99.0	23	196.5	132.5	29	246.	
58	18.1	32.4	118		66.0	178	147.6	99.5	23	197.3	133.1	29	247.1	166.6
0	189	33.0	119	98	66.5	10	48.	100.1	23	198.1	133.6	29	247.	167.2
60	19	33	120			1 S	149	100.7	24	199.0	134.2		248.	167.

For 56 Degrees.

difference of latitude and departure for 36 degrees．

	Lat．	Dep	D	Del	Dist	La	Dep．	Dist．	Lat．	p．	Dist．		Dep．
										106	24	19 J	
2					122	98.7	71.7	182	147	107	242	195	
3		01.8			123		72.3	183			43		
4	03.2	02.4	6451.83	； 37	124	100.3	73.9	184	148	108	244	197	143.4
5	0	02.9	65	38.2	125	101.1	73.5	185	149	105.	45	198	144.0
6		03.5	53.43	38	12	101.3	74.	188	150		246	199	
7	0	04.1	6754.23	39.4	12	102.7	74.	187	151.	109.9	247	199	145.2
8		04.	6855.04	40.0	128	103.6	75.2	88	152.	110.	248	200	145
			6955.84	40	129	104.4	75	189	152		249	01	146.9
10	08	05			13	105.2	76	19	153.	111.	250	202	． 9
11			7157.4		131	103.	77.	191	154	11.2	25		147
12			1	12	13	106.8	77.	192	155	仡	25	203	48.1
13		07.6	73，9	42.2	133	107	78.	19	156	113.4	253	204	18
14			74.50 .91	13	13	108.4	78	19	156	114	25	205	
15		08.8	75.	44.	135	109.2	79	195	157	11	5	203	149.9
16	12.	09.4	761.51	14		110.	79.	190	158	115	25	207	150.5
17			77	15	137	110.8	83	197	15	115	5	207	
18	4.	10.6	7833		13	111.6	81.	19	160	16	5	208	51
19	15.	11.2	7963		139	112.	81	199	161	117	259		152
20	16.	11.				113	82.3	200	161		260	10	152.8
21	17.0	12.3	81	77	141	114.1	82.9	20	162	118	26	211	153.4
22		12	8236.34	48	142	114.		20	16	118	262	21	154.0
23				．	143	115	1.1		164	19		212	
21	19.	14.1	8163.01	19.4	144	116.5	84.	20	165	119	261	213	155
25	20	14.7	8508.85	80.0	145	117.3	85	205	165	120	26	214	155.8
26			$86,69.65$	50	146	118.		20	16	121.	26	15	56.4
27	2.	15.9	$87 / 70.45$	51	147	118.9	86.	29	167	121	26	216	56.9
，	2．		71.25	51	148	119.			168	122			157.5
99					149			20		122.			53．
33	24.31	17.6	90	5	150	121.4	88.2	21	169.9	23.	270	218	158.7
31					151	12.2		211	170	124			159.3
3.		18.8			152	123	89.	21	171	124		20	159.9
33	6.	19.4	937	－		123	89	21	172	125	仡	$2 \cdot 2$	160.5
31		20.	9176.05		154	124.6	90.			125	27	21	161.1
					150	125.	91.	21		126		22．	161.6
33	29.	21.2	9377.75	55.4	150	125.2	91.7	21	174	127.	2	223	
37	29.9	21.7	9778.55	－	157	127.0	92.	21		127		221	162.8
33	3.7	22.	987	57．6	158	127	92.9	21		128		22	163.
39	31.	22.9		58.2	159	128.	93	21	177	128.	27	－	1640
40	32	23.5	100		160	129	91.0	22	178	129		22	164.6
41			18		161		94		178	29	281	227	165
43	31.	24.7	10232.56	，60	162	131.		2		130			165.8
43			10383.36		1	131.		2		，			166.3
44	35． 6	25.9	10481.16	161.1	164	132.7	96.4	22	181	131	284	229	166.9
45	36	26.	10581．96	61.7	165	133.5	97.	22	182	132	28	230	167
						析		226		32		231	168.1
47	38.	27.6	10786.6	＇62．9	167	135.	98.	22	183	133.	28	232.2	168.7
48	33.	28.2	10387.4	163.5	168	135.	98.	228	184	131.0		233.0	169.3
49		28.8	109，88．26	64.1	170	137．	9．	229	185	34.	28	233.8	169.9
50	10.	29.4	11089.06	64.7		137.	99.	23	186	135.	290	231.	170.5
51					17	5．	100	2s		งo．	2		1.
52	，	33.6	112．	，	172	139.2	101.1	23	187	136	29	36	71
53	43.	31.2	11391.4	466.4	173	140.0	101.7	23	183.	137.	29	237	172
51	43.	31.7	11492.26	67	174	149.8	102.3	23	189.	137.5	29	237.	72.8
5.	14.	32．3	115，93．06	（	175	141.6	102.9	23	190.	135.	29	238.	173.4
	45.	2.9	11693.86	68.2	176	142.4	103.5	23	190	138.	29	239.	174.6
57	46.1	3.5	11794.76	68．8	177	143.2	104.0	23	191.	139.	析	240	74.
58	16.	31.1	11895.518	，69．4	178	141.0	104.	23	192.	139	29	211.	175.
59	47.	31.7	119，96．36	69.9	179	144.8	105.	23	193.	140.	29	241.	175.
60	48	35.	120		180	145.6	10.	24	191.	141		242.7	176.3
									Dep				

For 54 Degrees．
difference of lattude and departure for 37 degrees.

Dist.	Lat. Dep	Dist. Lat.	Dep D	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
						72.8		144.	108.9	1	19	
2	01.601 .2	6219.5	37	122	97.4	73.4	182	145.4	109.5	242	193.3	145.6
3	12.401.8	63 50	37	123	98.2	74.0	183	146.2	110.1	243	194.1	146.2
	03.202 .4	6451	38.5	124	99.0	74.6	184	146.9	1107	244	194.9	146.8
5	01.0030	65.51 .9	39.1	125	99.8	75.2	185	147.7	111.3	245	195.7	1474
6	04.8,03.6	6652.7	39	126	100.6	75.8	186	148	111.9	246	196.5	148.0
7	O5 604.2	67.5	10.3	127	101.4	76.4	187	149.3	112.5	247	197.3	148.6
8	:36. 401.8	68.54 .3	10.9	128	102.2	77.0	185	150.1	113.1	248	193.1	149.3
9	07.205 .4	6955.1	11.5	129	103.0	77.6	189	150.9	113.7	249	198.9	149.9
10	08.006	70.55 .9	42.1	130	103.8	78.2	190	151.7	114.3	250	199.7	150.5
11	U8.800.6	7156	42.7	131	1446	78.8	191	152.5	1149	251	200	151.1
12	00.607.2	72.57 .5	13	132	105.4	79.4	192	153.3	115.5	252	201	151.7
13	10.407 .8	73 ธ8	13.9	131	103.2	80.0	193	154, 1	116	25	202	152.3
14	11.208 .4	74.59 .1	44.5	134	107.0	80.6	194	154.9	116.8	251	202.9	152.9
15	12.009 .0	75.59 .9	45.1	135	107.8	81.2	195	155.7	117.4	255	203	153.5
16	12.8199	76.60 .7	45.7	136	108.6	81.8	196	156	118.	5	204	154.1
17	$13.6 \mid 10.2$	77,61.	16.3	137	109.4	82.4	197	157.3	118	257	205	154.7
18	14.410 .8	78.62 .3	16.9	138	110.2	83.1	198	158.1	119.2	258	206.0	155.3
19	15.211 .4	7963	17.5	139	111.0	83.7	199	158.8	119.	259	206	155.9
20	16.012 .0	80,63	43.1	140	111.8	843	200	159	120.	260	207.	1565
21	16.812 .6		18.7	141	112.6	84.9	20	160.	121	261	208	157.1
22	176132	82,65.54	49.3	142	113.4	85.5	202	161.3	121.6	262	209	157.7
23	18.413.8	8366	50	143	114.2	86.1	203	162.1	122.2	26	210	158.3
24	19.214 .4		50.6	144	115.0	86.7	204	162.9	122.8	264	210.	158.9
25	20.0115 .0	856	51.2	145	1158	87.3	205	163.7	123.4	265	211.	159.5
20	20.815 .6	8663	51.8	146	1166	87.9	206	164.	124.0	26	212	160.1
27	21.616 .2		2.4	147	117.4	88.5	207	165.	124.6	267	213.	160.7
28	22.416 .9	88,70	O3	148	1182	89.1	208	166.1	125.2	268	214.	161.3
29	23.217 .5	89,71.1	53	149	1190	89.7	209	166.9	125.8	269	214.	161.9
30	24.018 .1	9071.9		150	119.8	90.3	210	167.7	126.4	270	215	162.5
31	24.818 .7	9172	54.8	151	120.6	90.9	211	168.5	127.0	271	216.	163.1
32	25.c)19.3	92,73.5	55.4	152	121	91.5	212	169.	127	272	217	163.7
33	26.419 .9	9374		153	122.2	92.1	213	170.	128.2	273	218	164.3
34	27.220 .5	9475	56	154	1230	92.7	214	170	128.8	274	218.	164.9
3 3	28.021 .1	9575	7	150	123.8	933	215	171.7	129.4	27	219.	165.5
36	28.8 21.7			156	124.6	93.9	216	172.5	130.0		220.	66.1
37	29.5 22.3	97,77.5	58.	157	125.4	945	217	173.3	130.6	277	221.2	166.7
38	30.322 .9	98.78 .3	59	158	126.2	95.1	218	174.1	131.2	279	222.0	
39 40	31.1 31.9 3124.5 1.1	9979		159 160	127.0	95.7 96.3	220	174.9	131.8	279 280	223.	167.9 168.5
	32.78	101	00.8	16	128.6	90	321	176.	133	28	224	169.1
42	33.525 .3	10281	61.	162	129.4	97.5	222	177	133.6	28	225.	169.7
43	34320.9	10382.3	62.1	163	130.2	98.1	223	178.1	134.2	283	226.	170.3
44	35.126 .5	104'83.1\|6	62 ¢	164	131.0	95.7	224	178.9	1348	284	226.	170.9
45	3 S 927.1	100.83	63	165	131.8	99.3	225	179.7	135.4	28	227.	171.5
46	36.727 .7	10684.7	63.8	16 C	132.6	999	2:2	180.	136.0	286	228.	172.1
47	37.528 .3	107,85	4.4	167	1334	100.5	227	181.3	136.6	287	229.2	172.7
48	38.328 .9	10886.3	65.0		134.2	101.1	228	182.	137.2	288	230.0	173.3
49	39.129 .5	10987.16	65.6	169	135.0	101.7	229	182.9	137.8	28	230.	173.7
50	39.930 .1	11087	66.2	170	135.8	102.3	23	183.7	138.4	290	231	1745
51	10730.7	111	$6{ }^{60}$	171	136.6	102.9	231	184.	139.0	291	232.	175.1
52	11.531 .3	112,39.4	67.4	172	137.4	103.5	232	185.	139.6	292	233	175.7
53	12.331.9	11390.2	68.0	173	138.2	104.1	233	186.1	140.2	293	234.0	176.3
54	+3.1323.5	11491.0	68.6	174	139.0	104.7	234	186.9	140.8	291	234.8	176.9
55	43.933 .1	11591.8	69.2	175	139.8	105.8	235	187.7	141.4	29	235.	177.5
5	44.733 .7	11692.6	69.8	176	140.6	105.9	236	188.5	142.0	296	236.4	1781
57	45.534 .3	11793.4	70.4	177	141.4	106.5	237	189.3	142.6	297	237.2	1787
58	46.334 .9	11894	71.0	178	142.2	107.1	238	190.	143.2	298	2380	179.3
59	47.135 .5	11990 07	71.	179	143.0	107.7	239	190.9	143.3	292	238.8	1799
60	47936.1	12095	72.	180	143.8			191.7	144.4	30	239.	180.5
						Lat.	Dist.	Dep	Lat.		Dep.	Lat.

For 53 Degrees.

DIFFERFACE OF LATITUDE AKD DEPARTURE FOR 38 DEGREES.

Dist.	Dep D	Dist.	De	Dist.		De	Dis	Lat.		Dist.		D
							182			242		
	401		49.638	12			183	144.2	112	24	19	49
4	03.202.5		50.439.4	12		76	184	145.0	113.	24	192	150
	03.903.1		40.0			77.	185			24	193	
6	04.7.03.7		52.040 .6	126			186	146	214.	24		
7	05.504 .3		52. 811.		100	78.2	187	147	115		19	
8	06.304 .9		53.611 .9	128	100.9	78	188	148.1	115	248	195.4	152.7
11	, 0	71	5.943 .7	131	103.2	80.7	19	15	117.6	2	197	
12	09 507.4	72	56.714 .3		104	81.3	192		118			
13	10.208	73				1		152	118		199	
14	11.008	7	345	3	10.		194	152.9	119	25	200	
15	11.809.2	75	146		106.			153.7	120	25	200	
16	12.609 .9	76	-		107.2	83.7			120		20	
17	13.410 .5	77	747.4	137	108.	4.3	197	155	121	25	202.	
18	14.211 .1	78	548.0		108.			156	121		203.	
19	15.011 .7		348.6						122		204	
20	81		63.0493		110.3				123		204	
21	16.512 .9	81	63.849		111.	86.		158	123.7			
	13											
23	18.114 .2	83	65.4	14	112		20	160.0	125		207	161.9
24	18.914 .8	84	66.25	14	113	8.7	204	160.	125		208	162
	19.715 .4						205		12		208	
20	20.516 .0	86	85.9	14	115			162.3	126	26	20	
27	21.316 .6	87	68			90.	207	163.1	127	26	210	
	22.117										211	
20	22.917 .9		15	149	117.4	1.		164	128	26	212	
30	23.618 .5							165.5	129	270	212	
31				151	,		211					
32	25.219 .7		56	15	119		212	167	130			
33	26.020.3		357	15	120.6	94.2	213	167.	131	27	215	
	26.820 .9		157	154	121.		214		,		215	
35	27.621.		958	15	122.1	95.4		169.4	132			
36	28.4		6		122.9		216	170.2	133	27	217	169
	29.2:22.8		59		123.7		217	171			218	
38	29.923 .4	98	77.260 .3	158	12			171	134			
39	30.724							172.6	134		20	
40	31.5	100	78.861 .6		126	98.5		17.				
41	3.	10	79.662					174				
	125					.						
43	33.926	103	81.263.	163	128.4	100.4	22	175		28	223.	74
44	34.727	10	82064.0	164	129	101.						
	52				130.0						2	
46	36.228 .3	106	83565.	16	1308	102.2	22	178.	139	28	225	17
47	37.028	107	84.365	167	131.6	102.		178	139	28	226	176
48	37.829	10	6G		132.4	103.4		170	40.		226.	17
50	33.630 .2 39.430 .8	10	67	16	133.2 134.0	104	22	180	141.	28	227	
5	10.231.	111	56		131.	105.3		182	寺		2	
	41.032 .0	112	3'69	17	135	105.		182	142	29	230	
		113	, 69	13	13	106.5	233		143.	29	30	
	12.633 .2	114	39.870.2	17	137.	107.1	234	184	144	29	231	81
	43.333 .9		0.670 .8	17	137.	107.7		185	144		232	81
	44.134	111	. 471.4	17		08.4		,		29	233	
	14.935.	117	92.272.0	17	133.	109.0	23	186.	145.	29	234	82
	45.735 .7	118	93.072.6	17	140.	109.6	238	187.	146.		23	183.
	46.536.	119	93.873 .3	180		110.2	239	188	17		235	
	47.336.	120			141	110.		189	147			184
	L											

For 52 Degrees.

11	U85 50.9
12	09.307 .6
13	10.108.2
14	115.908.8
15	11.709.4
16	12.410 .1
17	13.210 .7
18	14.011 .3
19	14.812 .0
20	15.512 .6

$\overline{21} \overline{16: 3} \overline{13.2}$ | 22 | 17.1 | 13. |
| :--- | :--- | :--- |
| 23 | 17.9 | 14.5 |
| 2 | 1.5 | |

26	$\vdots 0$	2	16.4
27	21.0	17.0	
2			

28	21.8
27	17.6

$\begin{array}{lll}29 & 22.518 .3 \\ 30 & 23.3 & 18.9\end{array}$
$\frac{30}{31} \frac{23.3}{24.1} \frac{18.9}{19.5}$

31
32
33
34
35
36
37
38
39
40
41

41.125 .2

41	31.925	1	161	125.	101.3	22	171.	139.	281		
42	32.626	102	162	125.9	101.9	222	172	139.7	282	219	
43	33.427 .1	10380.064 .8	163	126.7	102.	223	173.	140	283	219	
44	34.227.7	10480.865.	164	127.5	103.2	224	174.1	141.0	284	220	17
45	35.028 .3	10581.666 .1	165	128.2	103.8	22	174.9	141.6		221	17
46	35.728 .9	10682.466.7	166	129.0	104.5	22	175.	142.2	28	222	18
47	36.529.	10783.267 .3	167	129.8	105	22	176	142.9	287	22	180
48	37.330.	10883.968.0	168	130.6	105.7	22	177.	143.		223	
49	33.130.8	10984.768 .6	169	131.3	106.4	229	178.	144.1	28	224	181.9
50	38.9315	11085.569 .2	170	132.1	107.0	230	178	144.7	29	225	
51	59.632.1	11186.369 .9	171	132.9	107.6	23	179.	145.4	29	226.	183
52	10.432 .7	11287.070 .5	172	133.7	108.2	23	180	146	29	226	
53	41.233 .4	11387.871 .1	173	134.4	108.9	233	181.1	146.	29	227	184
54	42.034.0	11488.671 .7	174	$13 \overline{2}$.	109.5	23	181.	147.	29	228	185
55	42.734.6	11589.472 .4	175	136.0	110.1	2	182.	147.	29	229	
56	43.535 .2	11690.173 .0	176	136.8	110.8	23	183.	148.	29	230	
57	44.335 .9	11790.973 .6	177	137.6	111.4	23	184.2	149.1	29	230	186
58	45.136 .5	11891.7743	178	138.3	112.0	23	185.	149.	29	231	187
59	45.937 .1	11992.574 .9	179	39.1	112.6	2	185.	15	299	23.2	
60	46.637	1293	180	139.9	113.3	240	186.	151.0	仡	233	
								Lat.			

For 51 Degrees.

Dist.	L	D	Dist. L		Dist.					Dep.	Dist.		Dep.
2	01.50				122	93.5	78.4	182			242		
		01		48.340	12	94.2	79.1	183	140		243		156.2
	03	02.6	644	49.041.	12	55	79.7	184	141	118	4		
	03	03	654	49.811	12	95.		185			245	188	157.5
	04.6				12	96.5	81.0	186			246	188	
7	55	04	67.	51.343 .1	12	97.	81.6	188		120	24	189	158
		-		-2 143.	128	98.1	82	188	144	120	24	190	169.4
				2.944 .4	12	98.8	82.9	189	14	121.5	249 250	190	
11					131	10		19	14	122	251	192.3	
12		07.7			13	101.1		192	147	123		193.0	
13	10.0	08		55.946		1019	85.5	193	147	124	253	193	
14				.	13	102.6	86.1	194	148	124	25	194	
15	11.5	,	755	57.548.2		103.4		19	149	125	25		63.9
16	12	10.3		248.9		104.2	87.4	19	150	126.0	25	190	164.6
17				50.850	13	104.	88.1	197	150	126	25	19	165.2
18	13.	11	78.5	59.850 .1		105.		198	15	127			
19	14.	12				106	89.3		152	127.9	25	198	166.5
20		12.9		1.351.4									
21	16.1	13.5		62.052 .1		108.	90.6	20	154.0	129.2	261		67
						108		20					
				63.653.	143	109.	1.3	20	15	130	26	20	
24		15		64.354.	14	110		20		131.1	26		
						111				131		203	
				6	146	111.	93	20		32.	26	203	
27		17		66		112.		20			267		171.6
						113	95						
				65	149	114.1	95.	20	160	134	269	20	
30	23	19.3		68.957	150	114	96.4	21	160	135	27	206	
3	24.5			10.559.	15	116	97.	21	162	136	27		
				71.259		117	88				27		
				7.	154	118	99.	21			27		
3	26.8	22.		72.861	15	118	99	21					
				73.5,61		119	100.	21	165			211	
				-1.3-2	157	120	100.	217		39	27	21	78.1
39				7		121	101			140			78.7 79
40		25.7	10			12	102.8	22		1		21	80.0
41			1017	7.		1	103	22					
			102	i			4.						
43	32.9		1037	78.96	163	124	104.	22				216	
44			104	79.76	16	125	105	22		144			
			1053			120	100	22				218	
46	35.2	29.	1068	81.268	16	127	106.		173	45		219	
		30.	107,	32.068.	16	127	107	22	173		28	219	
				82.769.4								,	
49	37	31.5	1098	83.570 .1	169	129.	108.6	22	175	147.	28	221	
50	38.3	32.1	1108	84.370.7	170	130	109.3	23	176	147.8		22.2	86.
	39.8	33	1128	85.872 .0	172	131	110.	23	177	149	29	223	
			113	36.672.	173	132	111.	23			29		
	1.	31.7	1148	87.373 .3	17	133.	111.	23			29		
	12.1		115,	88.173 .9	17	134	112	23	180	151	29	226	189
			116	88	16	131.8	113.	23	80,	151	29	22	190
	43.4	36	117	59.675.2	17	135	113	23		52	29	22	O
		37.	118	90.4	17	136			18	153			191
		37.9	1199	91.276	178				183.1		29		
			1209	91.977	180	137.9			183.9	154	30	229	

For 50 Degrees.
difference of lattudde and departure for 41 degrees．

								Dep．	Dist．		Dep．	Dist．		Dep．
		501.3					92.	80.0				242		
3		302.0				12	92.	80.7	18			243	183.4	
		－03 6				12	93.	81.4	18	138	120	24	184	
		803.3		549					18			245		
6	04.5	503.9						82.	18	140	122.	246	18	
		． 04.6					95		18	141	120	24	186	
	06.0	，05		851			96.6	84.0	， 188	141	123.	248	18	
10									1			$\begin{array}{\|l\|l\|} \hline 249 \\ 250 \end{array}$		
11	08.3	307．2		153		13	989	85.9	191	144	125	251	18	164
12	，	I 07					99.6			14	126	252		
13	09.8	808.5					100.4		19	145	， 6		90	
14	10.6	609.2		45		13	101.1	87	19	146	127	25	191	
15	13.3	309.8		55			101.9		19	147	127	25	192	
16	12.1	1105					102.6		19	147	128		193	
17	12.8	811.2		75.1		137	103.4	89	19	148	129	25	194	
18	13.6	． 11.8		858.9	51.		104.1	90	19	149	129.			
15		312．5					104		19	150.				1699
20	15	13			52.5		105.7		20	150				
21											31．		197.0	171
		64．					107		20	15	研			
23	17.4	415.		362	51	143	107.9		20	153	133	26	198	172
2	181	115.				144	108.7	94	20	154	133		199	173
	18.9	916．					109				34			
26	19.6	617.1		664	56		1102		20	155	135	26	200	
	20.4	417．7		65		147	110.9	96		156	，		201	175
	21.1	18.4					$111 ?$			157	136		20	
30	21.2	19.0					1125 113.2		21			270		
31						15	14			159	138.		20	
3		1.0		269			114							
33		21.6		370			115	100			99			
34		22.3		17	1.	154	116	101	21	161	140		200	
35	26	23.0		57		15	117.			162				
		23．6				15	117.		21	163.0	141.		208	
37		24.3				15	118.	103	21	163	142		209	
35	28	24					119							
30		425．6					0.	104.3					，	
40				（		160	0.	105.		166.	144.		11.	183.7
41													212	
											，		，	
43		282		37		163	123.	106.	22	168	146	28	213	
碞		28.9				164	12	107	22	169	14		21	
							124.	10.			，			
46	3．	30.2		680		16	125.3	1089	22	170	148	28	215	
47		30，8		780	0	167	1260	109.6	22	171	148		216	188
		1.					126.			172.	14.		217	
49		32.1		98	71.5	169	127.5	110.9	22	172.8	150.		218.	
50		32.8				170	128.3	111.5	23	173.6	150.		218.	190
51							29	112		1	151		219	，
52	．	34.1		硅		1	129.8	112.	23	175	152		220	
53		34．8		85		173	130.6	113.5	23	75.	152.	29	21.	192.2
54		35.		486		1	131.3	114.	23	176	153.	29	221.	，
55	11.5	，		，	．	175	132.	114.	23		154	99	222.	
	1.	336.7				17	132.8	115.5	23		154.	29	23.4	1942
	．	37． 4	117	788	76.8	17	133.	116.	23	178.	155	29	224	94
58	43.8	838.1		8891		178	134.	116.	23		156		224	
59	4.5	538.7		89		18			239		，	29	25.	1962
60		339							240		57		226	196.8
											Lat．			

For 49 Degrees．
difference of latitude and departure for 42 degrees.

Dist. Lat. Dep Dist. Lat. Dep "Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.

				12	89		18		121.	241		1
2	01501	62	46.14	122	90.7	81.	18	13	121.	242	179	16
3	02.202 .0	63	46.812.2	123	91.4	82.3	18		122.	243	180	16
4	03.002 .7	64	17.642.8	124	92.1	83	18		123.1	24		163.3
5	13.703.3	65	18.313 .5	125	92.9	83.6	18	137.	123.8	245	182.1	163.9
6	04.5.4.0	66	19.044.2	126	93.6	84.	18	138.	124.	24	182	164
	15.204 .7	6	49814.8	127	94.4	85	18	139	125.1	247	183.6	165.3
8	05.905 .4	68	50.545 .5	128	95.1	85.6	18	139.	125.8	248	$18 \pm .3$	165.9
	06.7 ¢6	69	51.346.2	129	95.9	86.3	180		126.	249		66
10	97.406.7	70.	.52.016.8	130	96.6	87.0	19	141	127	2 50	185	167.3
11	J5.207.4	71.	2.817 .5	131	97.	87.7	191	141.	127.8	251	186.5	168
12	98.9118	72	3.548	132	98.1	8.3	192		128.	252	187	168
13	09708.7	73	54.248.	133	98.8	89.0		143	129.	253	188.0	1
14	10.409 .4	74	-55049.	134	99.6	89.7	19	144.2	129	$25 \pm$	188	
15	11.110 .0	75	55.750 .2	135	100.3	90.	19	144.	130.5	255	189	170.6
16	11.910 .7	76	56.550 .9	13	101.1	91		145.	131.1	25	190.2	171.3
17	12.611 .4	77	57.251.5	137	101.8	91.7	197	146.4	131.8	257	191.0	17
18	13.412 .0	78	58.052 .2	138	112.6	92.	198	147.	132.5	25	191	172.6
19	14.112.7	79	752.9	139	103	93.0		147	133	2.9	19	173.3
20	14.913 .4	80.	59.553	140	104.0		200		133	260	193.2	
21	15.614 .1	81	$\overline{50.2} \overline{54.2}$	141	104	94	20	149	134	261	194.0	17
22	16.314 .7	82	60.954.9	142	105	95.0	202	150	135	26	19	17
23	17.115 .4		61.755	14	106.	05	20	150	135.		19	
24	17.816.1	84	62.456 .2	144	107.0	96	20	151	136.	264	196.2	
25	18.616.7		3.256 .9	145	107.8	97.	20	152.	137	265	196.	17
20	19.317 .4		33.957	146	1085	97.7		153.	137.8	26	197	178
27	$30118: 1$	87	4.758.2	147	109.2	98.4	20	153.	138	26	198.	
28	20.818 .7	88	5.458. 9	148	110.0	99.0	20	154.	139.	26	199.	17
29	21.619.4		6.159.6	149	110.7	99.	20	155	139.8	26	199	.
30	22.320.1	90	60.2	150	111.5	100	21	15	140.5		200.6	180.7
31	23.020.	91	7.6	151	112.2	101.0	21	15	1412	27	20	181.3
32	23.821 .4	92	88.461 .6	15	113.	101.7	21	157	141.	2	202	18
33	2.5.22.1		9.162.2	15	113.7	102.4	21	158.	142.5	27	202.9	
34	25.322.8		39.962.9	15	114.	103.0	21	159	143.2	27	203.6	18
35	26.023.4		0.663.6	155	115.2	103.7	21	159	143.	275	204.	18
36	26.8241		1.364.2	15	115.9	104.	21	160.5	144.5	27	205	
37	27.524 .8		2.164 .9	15	116	105.1	21	161.3	145.2	277	205	
38	28.225 .4	98	2.865 .6	15	117.	105.7	218	162.	145.	27	206	186.0
39	29.0.26.1		3.6,66.2	159	118.2	106.4	21	162.7	146	2	207	
40	29.726	100	74.366 .9	16		107	220	16	147		1	
41	335	101	5.167 .6	161	119	107.7	22	164	147.9	28	208	188.0
42	31.228.1	102	75.868	162	120.	108.4	22	165	148	28	20	188
43	32.028 .8		568.9	16	121.1	109.	22	165	149.2	283	210	18
4	32.729 .4	104	77369	16	121	109.7	22	166	149.9	28	211.1	190.0
45	33.430 .1	105	8.070.3	165	122.6	110.4	2	167.2	150.6	28	211.	190
46	34.230 .8	10	8870.9		123	111.1	22		151.2		212.	191
47	31.931 .4	107	79.571 .6	167	124.1	111.7	227	168.7	151.9	287	213.3	192.0
48	35.732 .1	108	80.372 .3	168	124.8	112.4	2	169.4	152.6	28	214.	192
49	36.432 .8	109	81.072 .9	17	125.6	113.1		170.2	153.2		214	193.4
50	[37.233.5	110	81.773 .6	170	126.3	113	23	170.9	153.9		215.	194.0
51	37.934	11	82.511 .3	171	127.	114.4	23	171.	154.	2	217.	,
52	38.634 .8	112	83.2749	172	127	115.1	23	172	155.2	29	217	195
53	39.435 .5	113	34.075 .6	173	128.6	115.8	23	173.2	155.9	29	217.	196
54	40.136.	114	84.776 .3	174	129.3	116.4	23	173.9	156.6	2	218.	196.7
55	40.936 .8	115	85.577 .0	175	130.1	117.1	23	174.	157.2	29	219.2	197.4
56	41.6.37.5	116	6.277.6	176	130.	117.8	23	175.4	157.9	29	220.0	193.1
	42.438	117	86.978 .3	J7	131.5	118.4	23	176.1	158.	29	220	198.7
58	43.138 .8	118	87.779 .0	178	132.3	119.1	23	176.	159.3		221.	199.4
59	43.839 .5	11	88.479 .6	17	133.0	119.8	23	177.	159.9	299	222.	200
60	44.610 .1	120	280	180	133.8	120.4	24	17	160.6		222.3	200.7
	Dep L	In	L	bist.	Dep.	Lat	Dist.		Lat			
					r	De						

difference of latitude and departure for 43 degrees.

Dist.	La	Dep	Dist	Lat.	Dep	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.	Dist.	Lat.	Dep.
									181	132.4	123.4	241	176	16
2		01.4		45	42.3	122	89	83.2	18	133.1	124.1	242	177	
3	02.2	02.0		46.1	13.0	123	90.0	83.9	1	133.8	124.8	243	17	16
4	02.90	02.7		46.8	13.6	124	90.7	84.6	18	134.6	125.5	244	178.5	16
5	03.7	03.4	65	47	44.3	125	91.4	85.2	18	135.3	126.2	245	179.2	167
6	04.4	04.1	66	18.3	45.0	126	92.2	85.9	18	136.0	126.9	24	179.9	167
	05.10	104.8		49	45.7	127	92.9	86.6	187	136.	127.5	247	180.6	
8	15.9	.05.5	68	19.7	46.4	128	93.6	87.3	18	137.	128.2	248	181.	16
9		d		50.5	17.1	129	94.3	88.0	188	138.2	128.9	249	182	169
10		06.8		51	17.7	130	951	88.7	190	139.0	129.6	250	182.8	170
11	08.0	07.5		51.9	18.4	131	95.8	89.3	19	139.7	130.	251	183	171.2
12	08.8	08.2		52.7	19.1	132	96.	90.0	19	140.	130.	252		171
13	09.5	108.9		53	49.8	133	97	90.7	193	141	131	253	18	
14	10.2	209.5		34.1	50.5	134	98.0	91.4	19	141.9	1323	254	185	173
15	11.0	10.2		549	51.1	135	98.7	92.1	19	142.	1330	25	186.	173
16	11.7	10.9		5̈5	51.8	136	99.5	92.8	196	143	133.7	256	187	
17	124	11.6		56.3	52.5	137	100.2	93.4	197	144.	134.4	25	188.0	175.3
18	13.2	12.3		57.0	53.2	138	100	94.1	198	144.	135.0	25	188.7	17
19	139	13.0		57	53.9	139	101.7	94.8	19	145.	135.7	25	189.	
20	14	13.6	805	-	54.6	140	102.4	95.		146.	136.4		190	
21				59		141	103.	96.2	20	147.0	137		19	
22	16.1	150		60	55.	12	103.9	96.	20	14	137.	26	191	
23		15.7		60	56.6	143	104.6	97.	20	148	138.4	26	192	
24	17.6	16.4		61.4	57	144	105.3	98.2	20	149.	139.1	26	193	
25		17.0		62	58.6	145	106.0	98.9	20	149.	139.	26		
26	19.0	17.7		62	58.7	146	106	99.6		150	140.5	26	194	
27	19.7	18.4		63	59	147	107.5	100.3	20	151.	141.2	26	195	182
28	20.5	19.1		64	60.0	148	108.2	100.9	20	152.	141.		196	
29	21.2	19.8		65		149	109	101.6	20	152	142			
30	,	20.5		65	61.4		109	102.3	21	153	143		197	
31	22.7	21.1		66.6	62.1	151	110.4	103.0	21	154.	143.9	27	198.	
32	23.4	421.8		67	62.7	15.	111.2	103.	21	155	144			
33	24.1	122.5		68	63.4	153	111.9	104.	21	155	145	27	199	
$3 \pm$	24.9	23.2		68	64.1	154	112.6	105.0	21	156.	145.9	27	200.	186
35	25.6	-23.9		69		155	113.	105.7	21	157.	146	27	201	
		324.6		70		156	114.	1064	21	158	147		201.	
37	27.1	25.2		70.9	66.2	157	114.	107.1	21	158.	148.0	27	202.	
38	27.8	25.9		71		158	115.	107.8	21	159	148	27	203.	
39		-		72.4		159	116.3	108.4		160	149.		204.	
40	29.3	27.3	1007	73.1	68	160	117.0	109.1		160.	150.	2	204	191
41		28.0	17	73.4	68.9	161	117.	109.8	2	161	150		205	
42	30.7	28.6	27	74	69.6	162	118.5	110.5	22	162	151.		206	
43	31.4	29.3	1037	75	70.2	163	119.2	111.2	22	163.	152.1	28	207	193
44	32.2	30.0	1047	76	70.9	164	119.8	111.8	22	163.	152.	28	207.	19
45	32.93	30.7	105	76	71.6	16	120.7	112.5	22	164.	153		208.	
46	33.6	31.4	1067	77	72.3	166	121.4	113.2	22	165.	154.1	28	209.	19
47	34.4	32.1	1077	78	73.0	167	122	113.9	22	166.	154.8	28	209.	195
48	35.13	32.7	108		73.7		122.9	1146		166.	155.5			196
49	35.8	83.4	1097	79	74.3	179	123.6	115.3 115	2	167.5	156.2	29	211.4	197.
51	3	34	111	81		171	125.	116.6	23	168.	157	29	212.	
51	38.0	35.5	112	81	76.4	172	125.	117.3	23	169.	158.2	29	213	99
53	38.8	36.1	1138	82	77.1	173	126.5	118.0	233	170.4	158.9	293	214.	199
54	39.5	36.8	114	83.4	77.7	174	127.3	118.7	23	171.1	159.6	29	215.	200.5
55	102	37.5	1158	84.1	784	175	128.0	119.3	23	171.	160.3	29	215.	201.2
56	41.0	38.2	1168	84.8	79.1	176	128.7	120.0	23	172.6	161.0	29	216.5	201.9
57	41.7	389	1178	85.6	79.8	177	129.4	120.7	23	178.3	161.6	29	217.2	202.6
58	12.4	33.6	1188	86.3	80.5	178	130.2	121.4	23	174.1	162.3	29	217.	203.2
59	43.11	102	1198	87.0	81.2	179	130.9	122.1	23	174.8	163.0	29	218.7	203
60	43.9	40.9	12		81.8	180	131.6	122.8	240	175.5	163.	30	219.	,
	Dep	Lat. ${ }^{\text {d }}$	Dist.	De		ist.	Dep.	Lat.	mist.	Dep	Lat.	Dis	Dep.	

TABLE IV．
difference of latitude and departure for 44 degrees．

Dist．Lat．Dep Dist．Lat．Dep Dist．

1
2
3
4
4
5
6
7
8
9
10

6 04．304．2
7 05．004．9
8 05．805．6
9 06．506．3
0 07．206．9

$\overline{11} 07.9 \overline{07.6}$ 12 08． 508.3 13 09．409．0 | 14 | 10.1 | 09.7 |
| :--- | :--- | :--- | :--- | 15 10．8 10.4 16 11．5 11.1 17 12．2 11.8

18 12．9 12.5
$19 \quad 13.713 .2$

20 14．4 $\frac{13.9}{14}$ $21 \overline{15.1} 14.6$ 15.815 .3 15.516 .0 417.316 .7 18．0 17.4 （18．718．1 19.418 .8 20.119 .5 20.920 .1 21.620 .8 $2 2 . 3 \longdiv { 2 1 . 5 }$ 23.023 .2 24.523 .6 25.224 .3 $25.9 \mid 25.0$ 26.625 .7 27.326 .4 28.127 .1 28.827 .8 $\frac{29.8}{29.5} \frac{27.8}{28.5}$ ${ }^{29.5} 2{ }_{29}^{29.5}$ | 3 | 30.9 | 29.9 |
| :--- | :--- | :--- | :--- | 31.730 .6 32．431．3 33.132 .0 33.832 .6 34．533．3 $\begin{array}{ll}35.2 & 34.0 \\ 36.0 & 34.7\end{array}$

$51 \overline{36.7} \overline{35.4}$
$\begin{array}{llll}52 & 37.4 & 36.1\end{array}$
$\begin{array}{llll}53 & 38.1 & 36.8\end{array}$

55 39.6 38.2
$\begin{array}{llll}56 & 40.3 & 38.9\end{array}$
57 41.039.6
$58 \quad 41.7403$
$59 \quad 12.441 .0$
6043.241 .7

ist．Lat．De		Lat	Dep．						
			4.7	182	130.		242		
	12	88.5	85.4	183	131.	127	24	174	
6446.044	18	8	86.1	18	132.	7	24		
		89.9	86.	18	133		245		
6647.545	12	0	87.	18	133		24	17	
6718.246		91.	88.2	18	134	129	24	177	
		92.1	88.9		135				
69，49．647．3	12	92.		189	136.	131.3	24		
	130		90.3	190	136.	132.0	25		
7151.149 .3	13	94.2	91.0	19	137	132	251	180	
7251.850	13		91.7	192			25		
			9						
51	13	96.4	93.1	19	139	134	25	18	
52	13	7	93.8	195	140	135	25	18	
52		97	91					184	
53	13	8．5	95.2	197	141	136	25	184	
51			． 9	198	14				
－		100.			14	极．			
	14	10		20	14	18，	26		
		101.4		20	144	139			
		101．							
8359.757	143	102.9	99.3	20	146	141	26	18	
58	144	103	100.0	20		11.		18	
8561.159		104.	100.7						
8661.959	146	105.	101.4	20	148	143.	26	191	
62．660	147	105	102.1	20				192	
		106	102.8					192	
8961.061 .8		107	103.5	20	150	145.2	26		
9064.762 .5			104.2	21	151.1	145.9		194	
01	15	108	104		151				
9266.263		109	105	212	152	147			
9366.96		110	106	213	153.	148	27		
05	15	110	107.0	21	153	148.			
cc．	15	111	107.7	21	154	149			
69.166		112	108.4		155	，			
69．867	15	112.	109.1	217	156	150		199	
		113	109	218		151			
－			0.5			，			
10071.969	16	115.1	1			152.		201	
7									
70									
10374.171 .5	163	117.	113.2	22	160	154.9	28	203	
10474.872	16	118.0	113	2	161			204	
						156			
10676.373 .6	160	119.4	115.3	22	162.	157.0	28	205	
10777.074 .3	167	120.1	11	227	163	157.7	28	206	
1077．775								207	
10978.475 .7	16	121.6	117	229	164	159.1	28	207	
11079.176 .4	170	122.	118.1	230	165	159.8	290	208.	
11179.877.	171	123.	118	，	166	160		209.	
11280.677	172	123.	119	硅	166	161.2	倍	210	
11381.378 .5	1	124.						10.	
11482.079 .2	17	125.2	120.9	234	168.	162.	29	211.	
11582.779 .9	175	125.9	121	23	169.	163.2	29	212.	
11683．480．	170	126.6	122.3		199．8．		29	12.	
11784.281 .3	177	127.	123.0	23	170.	164.6	297	213.	
11884．982．0	178	128.0	123.	23	171.	165.3	298	214.	
11985.682 .7			4.3	239	17．				
12086.38	18	1295	125.0	240	172.	166	300	215	

Dist．Dep Lat．Dist．Dep Lat．Dist．Dep．Lat．Dist．Dep．Latt．Dist．Dep．Lat．
For 46 Degrees．
difference of latitude and departure for 45 degrees.

	Lat.		Dist.											
2						122			182		128.			
3		02.1				123		87	18		129.4			
		802									130.	244	172	
5		03.5				12	88.	88.	18		130	245	17	
		,								131	131.5			
									18	32				
8		705.7			18.1	128	0	90.	18	132	132.9	248	17	
										133	133.6			
10		107.1					91.	91.9		13	131.3	250		
11			71			131	42.	92.	19	135.1	35		177.5	177
							3	93.	192		53			
						133	4.		1					
14	09.9	909.9				134	t.		19	137	137.2		179	
15	10.6	610.6				135	.			137	137.9			
16														
17	12.0	012.0				13	96.	96.9	19	139	139.3		18	
18	12.7	\% 12.7				138	27		19	140	140.0		18	
20	14	14				140	99.	99	20		141.4			
21							99.	99.7						
							100	100						
23	16	16.				143	101.	101.	20	143	143			
24	17.0	17.					101	101.8		144	14			
		17				145	102	102.	20					
26		418.				146	103	103		145			188	
	19.1	119.				147	103	103	20					
29		20.5				148	105	105	210				10.	
30									21			270		
31						151								
32		22												
		323					108	108	21				193	
34		24.				15	108		21	151	51			
35		24.						,						
		525. 5					110	110.	21	152.	52		193	
		26				15	111	111	21	153	153			
38		26						111						
								112.4						
40														
4														
						1	1	114.	2	157			199	199
43	30.4	430					115		22		57		200	
44	31.1	131.							22				200	
45		31									159.		201	
46	32.5	53.					117	117	22	159.	159.8	28	202	202
47	33.2	23.				16	118	118.1	22	160	160.		202	
							18			61.				
40	34.6	631.6				169	119.5	119.5	220	161.	161.9	28	204.	204.3
50		35.4				170	120	120.	220	-			205.	
										163.				
5	36.8	.		79.27	.	172	121.	121.	2	164.	164	29	20	研
					79.9	173	122	122.3	23	164.	164.	29	207.2	7.
						17	,						0	207.
	9	938.9		81.38	11.3	175	123.	123		166		29	208	20
	39.			2.	32.0	176	124.	124.4		166.	166	29	209	209
						17	125.2	2.			167.6	29		10
	41.0	41.0		81		178	125	25.9		16		29	10.	10
	11.7	71.7		84	84.1	179	127	. 6	239	169.0		29	212	
	12	2.				180							212	21

For 45 Degrees.

TABLE V. MERIDIONAL PARTS.

M.	16°	17°	18°	19°	20°	21°	22°	23°	240	25°	26°	M.
0	973	1035	1098	1161	12:5	1289	1354	1419	1484	1550	1616	0
1	974	1036	1099	1163	1226	1290	1355	1420	1485	1551	1618	1
2	975	1037	1100	1164	1227	1291	1356	1421	1486	1552	1619	2
3	976	1038	1101	1165	1228	1292	1357	1422	1487	1553	1620	
4	977	1039	1102	1166	1229	1293	1358	1423	1488	1554	1621	
5	978	1041	1103	1167	1230	1295	1359	1424	1490	1556	1622	5
6	979	1042	1105	1168	1232	1295	1360	1425	1491	1557	1623	6
7	950	1043	1106	1169	1233	1297	1361	1426	1492	1558	1624	7
8	981	1044	1107	1170	1234	1298	1362	1427	1493	1559	1625	8
9	982	1045	1108	1171	1235	1299	1363	1423	1494	1560	1626	8
10	983	1046	1109	1172	1236	1300	1364	14311	1495	1561	1628	10
11	984	1047	1110	1173	1237	1301	1366	1431	1496	1562	1629	11
12	985	1048	1111	1174	1238	1302	1367	1432	1497	1563	1630	12
13	986	1049	1112	11.5	1239	1303	1368	1433	1498	1564	1631	13
14	987	1050	1113	1176	1240	1304	1369	1434	1499	1565	1632	14
15	988	1051	1114	1177	1241	1305	1370	1435	1500	1567	1633	15
16	989	1052	1115	1178	1242	1306	1371	1436	1502	1568	1634	16
17	990	1053	1116	1179	1243	1307	1372	1437	1503	1569	1635	17
18	991	1054	1117	1181	1244	1308	1373	1438	1504	1570	1637	18
19	993	1055	1118	1182	1245	1310	1374	1439	1505	1571	1638	19
20	994	1050	1119	1183	1246	1311	1375	1440	1506	1572	1639	20
21	995	1057	1120	1184	1248	1312	1376	1441	1507	1573	1610	21
22	996	1058	1121	1185	1249	1313	1377	1443	1508	1574	1641	22
23	997	1059	1122	1186	1250	1314	1379	1444	1509	1575	1642	23
24	998	1060	1123	1187	1251	1315	1380	1445	1510	1577	1643	24
25	939	1061	1125	1188	1252	1316	1381	1446	1511	1578	1644	25
20	1000	1063	1126	1189	1253	1317	1382	1447	1513	1579	1645	26
27	1001	1064	1127	1190	1254	1318	1383	1448	1514	1580	1647	27
28	1002	1065	1128	1191	1255	1319	1384	1449	1515	1581	1648	28
29	1003	1066	1129	1192	1256	1320	1385	1450	1516	1582	1649	29
30	1604	1067	1130	1193	1257	1321	1386	1451	1517	1583	1650	30
31	1005	1068	1131	1194	1258	1322	1387	1452	1518	1584	1651	31
32	1006	1069	1132	1195	1259	1324	1388	1453	1519	1585	$16 \overline{2} 2$	32
33	1007	1070	1133	1196	1260	1325	1389	1455	1520	1586	$16 \overline{3} 3$	33
34	1008	1071	1134	1198	1261	1326	1390)	1456	1521	1588	1654	34
35	1009	1072	1135	1199	1262	1327	1392	1457	1522	1589	1656	35
36	1010	1073	1136	1200	1264	1328	1393	1458	1524	1590	1657	36
37	1011	1074	1137	1201	1265	1329	1394	1459	1525	1591	1658	37
38	1012	1075	1138	1202	1266	1330	1395	1460	1526	1592	1659	38
39	1013	1076	1139	1203	1267	1331	1396	1461	1527	1593	1660	39
40	1014	1077	1140	1204	1268	1332	1397	1462	1528	1594	1661	40
41	1015	1078	1141	1205	1269	1333	1398	1463	1529	1595	1662	41
42	1016	1079	1142	1206	1270	1334	1399	1464	1530	1596	1663	42
43	1018	1080	1144	1207	1271	1335	1400	1465	1531	1598	1664	43
44	1019	1081	1145	1208	1272	1336	1401	1467	1532	1599	1666	44
45	1020	1082	1146	1209	1273	1338	1402	1468	1533	1600	1667	45
46	1021	1084	1147	1210	1274	1339	1403	1469	1535	1601	1668	46
47	1022	1085	1148	1211	1275	1340	1405	1470	1536	1602	1669	47
48	1023	1086	1149	1212	1276	1341	1406	1471	1537	1603	1670	48
49	1024	1087	1150	1213	1277	1342	1407	1472	1538	1604	1671	49
50	1025	1058	1151	1215	1278	1343	1408	1473	1539	1605	1672	50
51	1026	1089	1152	1216	1280	1344	1469	1474	1540	1606	1673	51
52	1027	1090	1153	1217	1281	1345	1410	1475	1541	1608	1675	52
53	1028	1091	1154	1218	1282	1346	1411	1476	1542	1609	1676	53
54	1029	1092	1155	1219	1283	1347	1412	1477	1543	1610	1677	54
55	1030	1093	1156	1220	1284	1348	1413	1479	1544	1611	1678	55
56	1031	1094	1157	1221	1285	1349	1414	1480	1546	1612	1679	56
57	1032	1095	1158	1222	1286	1350	1415	1481	1547	1613	1680	57
58	1033	1096	1159	1223	1287	1352	1416	1482	1548	1614	1681	58
59	1034	1097	1160	1224	1288	1353	1418	. 1483	1549	1615	1682	59
M.	16°	$17{ }^{\circ}$	18°	19°	20°	21°	22	23°	24°	25°	26°	M.

TABLE V.
meridional parts.

M.	270	28°	29°	30°	31°	32°	33°	34°	35°	36°	37°	m.
0	1684	1751	1819	1888	1958	$20: 28$	2100	2171	2244	2318	2393	
1	1685	1752	1821	1890	1959	2030	2101	2173	2246	2319	2394	1
2	1686	1753	1822	1891	1960	2031	2102	2174	2247	2320	2395	2
3	1687	1755	1823	1892	1962	2032	2103	2175	2248	2322	2396	3
4	1688	1756	1824	1893	1963	2033	2104	2176	2249	2323	2398	4
5	1689	1757	1825	1894	1964	2034	2105	2178	2250	2324	2399	5
6	1690	1758	1826	1895	1965	2035	2107	2179	2252	2325	2400	6
7	1691	1759	1827	1896	1966	2037	2108	2180	2253	2327	2401	7
8	1693	1760	1829	1898	1967	2038	2109	2181	2254	2328	2403	
9	$169 \pm$	1761	1830	1899	1969	2039	2110	2182	2255	2329	2404	9
10	1695	1762	1831	1900	1970	2010	2111	2184	2257	2330	2405	10
11	1696	1764	1832	1901	1971	2041	2113	2185	2258	2332	2406	11
12	1697	1765	1833	1902	. 1972	2043	2114	2186	2259	2333	2408	12
13	1698	1766	1834	1903	1973	2044	2115	2187	2260	2334	2409	13
14	1699	1767	1835	1905	1974	2045	2116	2188	2261	2335	2410	14
15	1700	1768	1837	1906	1976	2046	2117	2190	2263	2337	2411	15
16	1701	1769	1838	1907	1977	2047	2119	2191	2264	2338	2413	16
17	1703	1770	1839	1908	1978	2048	2120	2192	2265	2339	2414	17
18	1704	1772	1840	1909	1979	2050	2121	2193	2266	2340	2415	18
19	1705	1773	1841	1910	1980	2051	2122	2194	2:68	2312	2416	19
20	1706	1774	1812	1912	1981	2052	2123	2196	2269	2343	2418	20
21	1707	1775	1843	1913	1983	2053	2125	2197	2270	2344	2419	21
22	1708	1776	1845	1914	1984	2054	${ }^{2126}$	2198	2271	2345	2420	22
23	1709	1777	1846	1915	1985	205́	2127	2199	2272	2346	242.	23
24	1711	1778	1817	1916	1986	2057	2128	2200	2274	2348	2423	24
25	1712	1780	1818	1917	1987	2058	2129	2202	2275	2349	2424	$\bigcirc 5$
26	1713	1781	1849	1918	1988	2059	2131	2203	2276	2350	2425	26
27	1714	1782	1850	1920	1990	2060	2132	2204	2277	2351	2427	27
28	1715	1783	1852	1921	1991	2061	2133	2205	2279	2353	2428	28
29	1716	1784	1853	1922	1992	2063	2134	2207	2280	2354	2429	29
30	1717	1785	1854	1923	1993	2064	2135	2208	2z81	2355	2430	30
31	1718	1786	1855	1924	1994	2065	2137	2209	2282	2356	2432	31
32	1720	1787	1856	1925	1995	2066	2134	2210	2283	2358	2433	32
33	1721	1789	1857	1927	1997	2067	2139	2211	2285	2359	2434	33
34	1722	1790	1858	1928	1998	2069	2140	2213	2286	2360	2435	34
35	1723	1791	1860	1929	1999	2070	2141	2214	2287	2361	2437	35
36	1724	1792	1861	1930	2000	2071	2143	2215	2288	2363	2438	36
37	1725	1793	1862	1931	2001	2072	2144	2216	2290	2364	2439	37
38	1726	1794	1863	1932	2002	2073	2145	2217	2291	2365	2440	38
39	1727	1795	1864	1934	2004	2075	2146	2219	2292	2366	2442	39
40	1729	1797	1865	1935	2005	2076	2147	2×20	2293	2368	2443	40
41	1730	1798	1866	1936	2006	2077	2149	2221	2295	2369	2444	41
42	1731	1799	1868	1937	2007	2078	2150	2222	2296	2370	2445	42
43	1732	1800	1869	1938	2008	2079	2151	2224	2297	2371	2447	43
44	1733	1801	1870	1939	2010	2080	2152	2225	2298	2373	2448	44
45	1734	1802	1871	1941	2011	2082	2153	2226	2293	2374	2449	45
46	1735	1803	1872	1942	2012	2083	2155	2227	2301	2375	2451	46
47	1736	1805	1873	1943	2013	2034	2156	2228	2302	2376	2452	47
48	1738	1806	1875	1944	2014	2085	2157	2230	2303	2378	2453	48
49	1739	18	187	194	2015	20	2158	2231	230	2379	245	49
50	1740	180y	1877	1946	2017	2088	2159	223	2306	2380	2456	50
51	1741	1809	1878	1948	2018	2089	2161	2233	2307	2381	2457	51
52	1742	1810	1879	1949	2019	2090	2162	2235	2308	2383	2458	52
53	1743	1811	1880	1950	2020	2091	2163	2230	2309	2384	2459	53
54	1744	1813	1881	1951	2021	2092	2164	2237	2311	2385	2461	54
55	1746	1814	1883	1952	2022	2094	2165	2238	2312	2386	2462	55
56	1747	1815	1884	1953	2024	2095	2167	2239	2313	2388	2463	56
57	1748	1816	1885	1955	2025	2096	2168	2241	2314	2389	2464	57
58	1749	1817	1886	1950	${ }_{2027}^{2026}$	${ }_{2098}^{2097}$	2169 2170	${ }_{2243}^{2242}$	${ }_{2317}^{2316}$	${ }_{2}^{2390}$	2466	58
59	$\underline{1750}$	1818	$\frac{1887}{60}$	1957	2027	$\frac{2098}{3.2}$	$\frac{2170}{330}$	224	$\frac{2317}{35}$	2391	$\frac{2467}{37^{\circ}}$	59
M	27°	28°	29°	30°	31°	32°	33°	34	35°	36°	37°	

TABLE V.
MERIDIONAL PARTS.

M.	38°	39°	40°	41°	42°	43°	44°	45°	46°	47°	48°	M.
0	2468	2545	2623	2702	2782	2863	2946	3030	3116	3203	3292	0
1	2470	2546	2624	2703	2783	2864	2917	3031	3117	3204	3293	1
2	2471	2548	2625	2704	2784	2866	2919	3033	3118	3206	3295	2
3	2472	2549	2627	2706	2786	2867	2950	3034	3120	3207	3296	3
4	2473	2550	2628	-2707	2787	2869	2951	3036	3121	3209	3298	4
5	2475	2551	2629	2708	2788	2870	2953	3037	3123	3210	3299	5
6	2476	2553	2631	2710	2790	2871	2954	3038	3124	3212	3301	6
7	2477	2554	2632	2711	2791	2873	2956	3040	3126	3213	3302	7
8	2478	2555	2633	2712	2792	2874	2957	3041	3127	3214	3303	8
9	2480	2557	2634	2714	2794	2875	2958	3043	3129	3216	3305	9
10	2481	2558	2636	2715	2795	2877	2960	3044	3130	3217	3366	10
11	2482	2559	2637	2716	2797	2878	2961	3046	3131	3219	3308	11
12	2484	2560	2638	2718	2798	2880	2963	3047	3133	3220	3309	12
13	2485	2562	2640	2719	2799	2881	2964	3048	3134	322.	3311	13
14	2186	2563	2641	2720	2801	2882	2965	3050	3136	3223	3312	14
15	2487	2564	2642	2722	2802	2881	2967	3051	3137	3225	3314	15
16	2489	2566	2644	2723	2803	2885	2968	3053	3139	3226	3316	16
17	2490	2567	2645	2724	2805	2886	2970	3054	3140	3228	3317	17
18	2491	2568	2646	2726	2806	2888	2971	3055	3142	3229	3319	18
19	2492	2569	2648	2727	2807	2889	2972	3057	3143	3231	3320	19
20	$24 y 4$	2571	2649	2728	2809	2891	2974	3058	3144	3232	3322	20
21	2495	2572	2650	2729	2810	2892	2975	3060	3146	3234	3323	21
22	2496	2573	2651	2731	2811	2893	2976	3061	3147	3235	3325	22
23	2498	2575	2653	2732	2813	2895	2978	3063	3149	3237	3326	23
24	2499	2576	2654	2733	2814	2896	2979	3064	3150	3238	3328	24
25	2500	2577	2655	2735	2815	2897	2981	3065	3152	3240	3329	25
26	2501	2578	2657	2736	2817	2899	2982	3067	3153	3241	3331	26
27	2503	2580	2658	2737	2818	2900	2983	3068	3155	3242	3332	27
28	2504	2581	2659	2739	2820	2902	2985	3070	3156	3244	3334	28
29	2505	2582	2661	2740	2821	2903	2986	3071	3157	3245	3335	29
30	2506	2584	2662	2742	28 22	$290 t$	2988	3013	3159	3247	$3 \because 37$	30
31	2508	2585	2663	2743	2824	2906	2989	3074	3160	3248	3338	31
32	2509	2586	2665	2744	2825	2907	2991	3075	3162	3250	3310	32
33	2510	2588	2666	2746	2826	2908	2992	3077	3163	3251	3341	33
$3 \pm$	2512	2589	2667	2747	2828	2910	2993	3078	3165	3253	3343	34
35	2513	2590	2669	2748	2829	2911	2995	3080	3166	3254	3344	35
36	2514	2591	2670	2750	2830	2913	2996	3081	3168	3256	3316	36
37	2515	2593	2671	2751	2832	2914	2998	3083	3169	3257	3347	37
38	2517	2594	2673	2752	2833	2915	2999	3084	3171	3259	3349	38
39	2.518	259.5	2674	2754	2834	2917	3000	3085	3172	3260	3350	39
40	$2 \overline{2} 19$	2597	26.5	27.5	2836	2918	3002	3087	3173	326:2	3352	40
41	2521	2593	2676	2756	2837	2919	3003	3088	3175	3263	3353	41
42	2522	2599	2678	2758	2839	2921	3005	3090	3176	3265	3355	42
43	2523	2601	2679	2759	2840	2922	3006	3091	3178	3266	3356	43
44	2524	2602	2680	2760	2841	2924	3007	3093	3179	3268	3358	44
45	2526	2603	2683	2762	2813	2925	3009	3094	3181	3269	3359	45
46	2527	2604	2683	2763	2844	2926	3010	3095	3182	3271	3361	46
47	25.28	2606	2684	2764	2845	2928	3012	3097	3184	3272	3362	47
48	2530	2607	2686	2766	2817	2929	3013	3098	3185	3274	3364	48
49	2531	2608	2687	2767	2848	2931	3014	3100	3187	3275	3365	49
50	$2 \overline{5} 32$	2610	2688	2768	2849	2932	3016	3101	3188	$3: 77$	3367	50
51	2533	2611	2690	2770	2851	2933	3017	3103	3190	3278	3368	51
52	2535	2612	2691	2771	2852	2935	3019	$310 \pm$	3191	3280	3370	52
53	2533	2614	2692	2772	2854	2936	3020	3105	3192	3281	3371	53
54	2537	2615	2694	2774	2855	2937	3021	3107	3194	3283	3373	54
55	2538	2616	2695	2775	2856	2939	3023	3108	3195	$328 \pm$	3374	55
56	2510	2617	2696	2776	2858	2940	3024	3110	3197	3286	3376	56
57	2541	2619	2698	2778	2859	2912	3026	3111	3198	3287	3378	57
58	2512	2620	2699	2779	2860	2913	3027	3113	3200	3289	3379	58
- 59	$2 \overline{5} 44$	2621	2700	2780	2862	2944	3029	3114	3201	3290	3381	59
M.	38°	39°	40°	41°	42°	43°	44°	45°	46°	47°	48°	M.

TABLE V.
meridional parts.

м.	49°	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	M.
	3382	3474	3569	3665	3764	3065	3968	4074	4183	4:94	4409	0
1	3334	3476	3570	3667	3765	3866	3970	4076	4184	4296	4411	1
2	3385	3478	3572	3668	3767	3868	3971	4077	4186	4298	4413	2
3	3387	3479	3574	$36 \overline{0}$	3769	3870	3973	4079	4188	4300	4415	3
4	3388	3481	3575	3672	3770	3871	3775	4081	4190	4302	4417	4
5	3390	3482	3577	3673	3772	3873	3977	4083	4192	4304	4419	5
6	3391	3484	3578	3675	3774	3875	3978	4085	4194	4306	4421	G
7	3393	3485	3580	3677	3775	3877	3980	4086	4195	4308	4423	7
8	3394	3487	3582	3678	3777	3878	3982	4088	4197	4309	4425	8
	3396	3488	3583	3680	3779	3880	3984	4090	4199	4311	4427	8
10	3397	3490	3585	3681	3780	3882	3サ85	4092	4:01	4313	44:29	10
11	3399	3492	3586	3683	3782	3883	3987	4094	4203	4315	4431	11
12	3100	3493	3588	3685	3784	3885	3989	4095	4205	4317	4433	12
13	3402	3495	3590	3686	3785	3887	3991	4097	4207	4319	4434	13
14	3403	3496	3591	3688	3787	3889	3992	4099	4208	4321	4436	14
15	3105	3498	3593	3690	3789	3890	3994	4101	4210	4323	4438	15
16	3107	3499	3594	3691	3790	3892	3996	4103	4212	4325	4440	16
17	3408	3501	3596	3693	3792	3894	3998	4104	4214	4327	4442	17
18	3410	3503	3598	3695	3794	3895	3999	4106	4216	4328	4441	18
19	3411	3504	3599	3696	379.)	3807	4001	4108	4218	4330	4446	19
20	3413	3506	3601	3698	3797	3899	4003	4110	4\%20	4332	4448	20
21	3414	3507	3602	3699	3799	3901	4005	4112	4221	4334	4450	21
22	3416	3509	3604	3701	3800	3902	4006	4113	4223	4336	4452	22
23	3417	3510	3606	3703	3802	3904	4008	4115	4225	4338	4454	23
24	3419	3512	3607	3704	3804	3906	4010	4117	4227	4310	4456	21
25	3420	3514	3609	3706	3806	3907	4012	4119	4229	4312	4458	25
26	3422	3515	3610	3708	3807	3909	4014	4121	4231	4344	4460	26
27	3423	3517	3612	3709	3809	3910	4015	4122	4232	43 ± 6	4162	27
28	3425	3518	3614	3711	3811	3913	4017	4124	4234	4347	4464	28
29	3427	3520	3615	3713	3812	3914	4019	4126	4236	4349	4466	29
30	3428	3521	3617	3714	3814	3916	4021	4128	4238	4351	4468	30
31	3430	3523	3618	3716	3816	3918	4022	4130	4240	4353	4470	31
32	3431	3525	3620	3717	3817	3919	4024	4132	4242	4355	4472	32
33	3433	3526	3622	3719	3819	3921	4026	4133	4244	4357	4474	33
34	3434	3528	3623	3721	3821	3923	4028	4135	4246	4359	4476	34
35	3436	3529	3625	3722	3822	3925	4029	4137	4247	4361	4478	35
36	3437	3531	3626	3724	3824	3926	4031	4139	4249	4363	4480	36
37	3139	3532	3628	3726	3826	3928	4033	4141	4251	4365	4482	37
38	3410	3534	3630	3727	3827	3930	4035	4142	4253	4367	4484	38
39	3442	3536	3631	3729	3829	$3: 132$	4037	4144	4255	4369	4486	39
40	3443	3537	3633	3731	3831	3933	4038	4146	4 25 57	4370	4488	40
41	3445	3539	3634	3732	3832	3935	4040	4148	4259	4372	4490	41
42	3447	3510	3636	3734	3834	3937	4042	4150	4260	4374	4492	42
43	3418	3542	3638	3736	3836	3938	4014	4152	4262	4376	4494	43
41	3450	3543	3639	3737	3838	3910	4045	4153	4264	4378	4495	44
45	3451	3545	36 ± 1	3739	3839	3942	4047	4155	4266	4380	4497	45
46	3453	3547	3643	3741	3811	3914	4049	4157	4268	4382	4499	46
47	3454	3548	3644	3742	3813	3915	4051	4159	4270	4384	4501	47
48	3456	3550	3646	3744	3814	3947	40.52	4161	4272	4386	4503	48
49	3457	3551	3647	3746	3846	3949	4054	4162	4274	4388	4505	49
50	3459	3553	3649	3747	3848	3951	4056	4164	4275	4390	4507	50
51	3460	3555	3651	3749	3849	3952	4058	4166	4277	4392	4509	51
52	3462	3556	3652	3750	3551	3954	4060	4168	4279	4394	4511	52
53	3164	3558	3654	375	3853	3956	4061	4170	4281	4396	4513	53
5.4	3465	3559	3655	3754	3854	3958	4063	4172	4283	4398	4515	54
55	3467	3561	3657	3755	3856	3959	4065	4173	4285	4399	4517	55
56	3468	3552	3659	3757	3858	3961	4067	4175	4287	4401	4519	56
57	3170	3564	3660	3759	3860	3963	4069	4177	4289	4403	4521	57
58	3471 3173	${ }^{3566}$	3663	3760	3861	3964	4070	4179	4291	4405	4523	58
59	3473	3567	3664	3762	3863	3966	4072	4181	4292	4407	4525	59
3 m	49°	50^{2}	51°	52°	53°	54°	55°	56°	57°	58°	59°	M.

254					TABLE V. meridional parts.							
M.	60°	61°	62°	63°	64°	65°	66°	670	68°	69°	70°	M.
0	4527	4649	4775	4905	5039	5179	5324	5474	5631	5795	5966	0
1	4529	4651	4777	4907	5042	5181	5326	5477	5633	5797	5969	1
2	4531	4653	4779	4909	5044	5184	5328	5479	5636	5800	5972	2
3	4533	4655	4781	4912	5046	5186	5331	5482	5639	5803	5975	3
4	4535	4657	4784	4914	5049	5188	5333	5484	5642	5806	5978	4
5	4537	4660	4786	4916	5051	5191	5336	5487	5644	5809	5981	5
6	4539	4662	4788	4918	5053	5193	5338	5489	5647	5811	5981	6
7	4541	4664	4790	4920	5055	5195	5341	5492	5650	5814	5986	7
8	4543	4666	4792	4923	5058	5198	5343	5495	5652	5817	5989	8
9	4545	4668	4794	49.5	5060	5200	5346	5497	5655	5820	5992	9
10	4517	4670	4796	4927	5462	5203	5348	5500	5658	5823	5995	10
11	4549	4672	4798	4929	5065	5205	5351	5502	5660	5825	5998	11
12	4551	4674	4801	4931	5067	5207	5353	5505	5663	5828	6001	12
13	4553	4676	4803	4934	5069	5210	5356	5507	5666	5831	6001	13
14	4555	4678	4805	4936	5071	5212	5358	5510	5668	5834	6007	14
15	4557	4680	4807	4938	5074	5214	5361	5513	5671	5837	6010	15
16	4559	4682	4809	4940	5076	5217	5363	5515	5674	5839	6013	16
17	4562	4684	4811	4943	5078	5219	5366	5518	5676	5812	6016	17
18	4564	4687	4814	4945	5081	5222	5368	5520	5679	5845	6019	18
19	4566	4689	4816	4947	5083	5224	5371	5523	5682	5848	6022	19
20	4568	4691	4818	4949	5085	5226	5373	5526	5685	5851	6025	20
21	4570	4693	4820	4951	5088	5229	5376	5528	5687	5854	6028	21
22	4572	4695	4822	4954	5090	5231	5378	5531	5690	5856	6031	22
23	4574	4697	4324	4956	5092	5234	5380	5533	5693	5859	6034	23
24	4576	4699	4826	4958	5095	5236	5383	5536	5695	5862	6037	24
25	4578	4701	4829	4960	5097	5238	5385	5539	5698	5865	6040	25
26	4580	4703	4831	4963	5099	5241	5388	5541	5701	5868	6043	26
27	4582	4705	4833	4965	5102	5243	5390	5544	5704	5871	6016	27
28	4584	4707	4835	4967	5104	5246	5393	5546	5706	5874	60 ± 9	28
29	4586	4710	4837	4969	5106	5248	5395	5549	5709	5876	6052	29
30	4588	4712	4839	4972	5108	5250	5398	5552	5712	5879	6055	30
31	4590	4714	4812	4974	5111	5253	5401	5554	5715	5882	6058	31
32	4592	4716	4844	4976	5113	5255	5403	5557	5717	5885	6061	32
33	4594	4718	4816	4978	5115	5258	5406	5559	5720	5888	6004	33
34	4596	4720	4848	4981	5113	5260	5408	5562	5723	5891	6067	31
35	4598	4722	4850	4983	5120	5263	5111	5565	5725	5894	6070	35
36	4600	4724	4352	4985	5122	5265	5413	5567	5728	5896	6073	36
37	4602	4726	4855	4987	5125	5267	5116	5570	5731	5899	6076	37
38	4604	4728	4857	4990	5127	5270	5418	5573	5734	5902	6079	38
39	4606	4731	4859	4992	5129	5272	¢. 421	5575	5736	5905	6082	39
40	4608	4733	4361	4994	5132	5275	5423	5578	5739	5908	6085	40
41	4610	4735	4863	4996	5134	5277	5426	5580	5742	5911	6088	41
42	4612	4737	4865	4999	5136	5280	5423	5583	5745	5914	6091	42
43	4614	4739	4868	5001	5139	5282	5431	5586	5747	5917	6094	43
44	4616	47 ± 1	4870	5003	5141	5284	5433	5588	5750	5919	6097	44
45	4618	4743	4872	5005	5143	5287	5436	5591	5753	5922	6100	45
46	4620	4745	4874	5008	5146	5289	5438	5594	5756	5925	6103	46
47	4623	4747	4876	5010	5148	5292	5441	5596	5758	5928	6106	47
48	4625	4750	4879	5012	5151	5294	5443	5599	5761	5931	6109	48
49	4627	4752	4881	5014	5153	5297	5446	5602	5764	5934	6112	49
50	4629	4754	4883	5017	5155	5293	5448	5604	57087	5937	6115	50
51	4631	4756	4885	5019	5158	5301	5451	5607	5770	5940	6118	51
52	4633	4758	4887	5021	5160	5304	5454	5610	5772	5943	6121	52
53	4635	4760	4890	5023	5162	5306	5456	5612	5775	5946	6124	53
54	4637	4762	4892	5026	5165	5309	5459	5615	5778	5948	6147	54
55	4639	4764	$48 \cup 4$	5028	5167	5311	5161	5617	5781	5951	6130	55
56	4641	4766	4896	5030	5169	5314	5464	5620	5783	5954	6133	. 56
57	4643	4769	4898	5033	5172	5316	5466	5623	5786	5957	6136	57
58	4645	4771	4901	5035	5174	5319	5469	5625	5789	5960	6140	58
59	4647	4773	4903	5037	5176	5321	5471	5628	5792	5963	6143	59
M.	60°	61°	62^{3}	63°	64°	65°	66°	67°	68°	69°	70°	M.

TABLE V. meridional parts.												
M.	71°	72°	73°	74°	75°	76°	770	$78{ }^{\circ}$	79°	80°	81°	M.
0	6146	6335	6534	6746	6970	7210	7407	7745	8046	8375	8739	0
1	6149	6338	6538	67 ± 9	6974	7214	7472	7749	8051	8381	8745	1
2	6152	6341	6541	6753	6978	7218	7 ± 76	7754	8056	8387	8752	2
3	6155	6345	6 ¢5 5	6757	6982	7222	7481	7759	8061	8393	8758	3
4	6158	6348	6548	6760	6986	7227	7485	7764	8467	8398	8765	4
5	6161	6351	6552	6764	6990	7231	7490	7769	8072	8404	8771	5
6	6164	6354	6555	6768	6994	7235	7494	7:74	8077	8410	8778	6
7	6167	6358	6558	6771	6997	7239	7498	7778	8083	8116	8781	7
8	6170	6361	6562	6775	7001	7243	7503	7783	8088	8422	8791	8
9	6173	6364	6565	6779	7005	7247	7507	7788	8093	8127	8797	9
10	6177	63561	$6{ }^{6} 69$	6782	7009	725	7512	7793	8099	8433	8801	10
11	6180	6371	6572	6786	7013	7256	7516	7798	8104	8439	8810	11
12	6183	6374	60^{776}	6790	7017	7260	7521	7803	8109	8445	8817	12
13	6186	6377	6579	6793	70.1	7264	7525	7808	8115	8451	8823	13
14	6189	6380	6583	6797	7025	7268	7530	7813	8120	8457	8830	14
15	6192	6384	6586	6801	7029	7273	7535	7817	8125	8463	8836	15
16	6195	6387	6590	6804	7033	7277	7539	7822	8131	8469	8843	16
17	6198	6390	6593	6808	7037	7281	7544	7827	8136	8474	8849	17
18	6201	6394	6597	6812	7041	7285	7518	7832	8141	8480	8856	18
19	6205	6397	6600	6815	7045	7289	7053	7837	8147	8486	8863	19
20	6208	6400	6603	6819	70 ± 8	7294	755	7842	8152	8491	8869	20
21	6211	6403	6607	68.3	7052	7298	7562	7847	8158	8498	8876	21
22	6214	6407	6610	68:6	7056	7302	7566	7852	8163	8こ04	8883	22
23	6217	6410	6614	6830	7060	7306	7571	7857	8168	8510	8889	23
24	6220	6413	6617	6834	7064	7311	7576	7862	8174	8 ± 16	8896	24
25	6223	6417	6621	6838	7068	7315	7580	7867	8179	8522	8903	25
26	6226	6420	6624	6811	7072	7319	7585	7872	8185	8528	8909	26
27	6230	6423	6628	6845	7076	7323	7589	7877	8190	9534	8916	27
28	6233	6427	6631	6849	7080	7328	7594	7882	8196	8540	8923	28
29	6236	6430	$\underline{6635}$	6853	$708 \pm$	7332	7599	7887	8201	8546	8930	29
30	6239	6 ± 33	6635	6850	7088	'7336	7CU3	7892	8:07	8552	8936	30
31	6242	6437	6642	6860	7092	7341	7608	7897	8212	8558	8943	31
32	6245	6440	6646	6864	7096	7345	7612	7902	8218	8565	8950	32
33	6249	6443	6649	6868	7100	7349	7617	7907	8223	8571	8957	33
34	6252	6447	6653	6871	7104	7353	762.	7912	8229	8577	8963	34
35	6255	6450	6656	6875	7108	7358	7626	7917	8234	8583	8970	35
36	6258	6453	6660	6879	7112	7362	7631	7922	8240	8 ± 89	8977	36
37	6261	6457	6663	6883	7116	7366	7636	7927	8245	8595	8984	37
38	6264	6460	6667	6886	7120	7371	7649	7932	82.51	8601	8991	38
39	6268	6463	6670	6890	7124	7375	7645	7937	8256	8607	8998	39
40	6:71	6 ± 61	6674	6894	7128	7379	7650	7942	8:62	¢614	9005	40
41	6274	6470	6677	6898	7132	7384	7654	7948	8267	8620	9012	± 1
42	6277	6473	6681	6901	7136	7388	7659	7953	8273	8626	9018	42
43	6280	6477	6685	6905	7140	7392	7664	79j8	8279	8632	9025	43
44	6283	6480	6688	6909	7145	7397	7668	7963	8281	8638	9032	44
45	6287	6483	6692	6913	7149	7401	7673	7968	8290	8644	9039	45
46	6290	6187	6695	6917	7153	7406	7678	7973	8295	8651	9046	46
47	6293	6490	6699	6920	7157	7410	7683	7978	8301	8657	$90-3$	47
48	6296	6494	6702	6924	7161	7414	7687	7983	8307	8663	9060	48
49	6z99	6497	6706	6928	7165	7419	7692	7989	8312	8669	9067	49
50	6303	6500	6710	6932	7169	7423	76 ± 7	7994	8318	8676	$907 \pm$	50
51	6306	6504	6713	6936	7173	7427	7702	7999	8324	8682	9081	51
52	6309	6507	6717	6940	7177	7432	7706	8004	8329	8688	9083	52
53	6312	6511	6720	6943	7181	7436	7711	8009	8335	8695	9096	53
54	6315	6514	6724	6947	7185	7441	7716	8014	8341	8701	9103	$5 t$
55	6319	6517	6728	6951	7189	7445	7721	8020	8347	8707	9110	55
56	6322	6521	6731	6955	7194	7449	7725	8025	8352	8714	9117	56
57	6325	6524	6735	6959	7198	7454	7730	8030	8358	8720	9124	57
58	6328	6528	6738	6963	7202	7458	7735	8035	8364	8726	9131	58
59	6332	6531	6742	6966	7206	7463	7740	8040	8309	8733	9138	59
M.	71°	72°	73°	74°	75°	76°	770	78°	79°	80°	81°	M.

MERIDIONAL PARTS.

M.	82°	83°	84°	85°	86°	87°	88°	89°	M.
U	9145	9606	10137	10765	11533	12522	13916	16300	0
1	9153	9614	10147	10776	11547	12541	13945	16357	1
2	91C0	9622	10156	10788	11561	12561	13974	16416	2
3	9167	9631	10166	10799	11576	12580	14004	16476	3
4	9174	9639	10175	10811	11590	12599	14033	16537	4
5	9182	9617	10185	10823	11605	12619	14063.	16599	5
6	9189	9655	10195	10834	11620	12639	14093	16662	6
7	9196	9664	10205	10846	11634	. 12659	14123	16726	7
8	9203	9672	10214	10858	11649	12679	14154	16792	8
9	9211	9680	10224	10870	11664	12699	14185	16858	9
111	4218	9689	10234	10881	11679	12719	14216	169 6	10
11	9225	9697	10244	10893	11694	12739	14247	16996	11
12	9233	9706	10254	10905	11709	12759	14279	17067	12
13	9240	9714	10264	10917	11724	12780	14311	17139	13
14	9218	9723	10274	10929	11739	12801	14343	17213	14
15	9255	9731	10284	10941	11755	12821	14376	17289	15
16	9262	9740	10294	10953	11770	12842	14409	17366	16
17	9270	9748	10304	10965	11785	12863	14442	17445	17
18	9277	9757	10314	10978	11801	12885	14475	17526	18
19	9285	9765	10324	10990	11816	12906	14509	17609	19
20	9242	9774	10334	11602	11832	12927	14543	17694	20
21	9300	9783	10344	11014	11818	12949	14578	17781	21
22	9307	9791	10354	11027	11863	12970	14613	17870	22
23	9315	9800	10364	11039	11879	12992	14648	17962	23
24	9322	9809	10374	110ご2	11895	13014	14684	18056	24
25	9330	9817	10385	11064	11911	13036	14720	18153	25
26	9337	9826	10395	11077	11927	13059	14756	18252	26
27	9345	9835	10405	11089	11943	13081	14793	18355	27
28	9353	9344	10416	11102	11959	13104	14830	18461	28
29	9360	9852	10426	11115	11976	13126	14868	18570	29
30	9368	9861	10437	11127	11992	13149	14906	18683	30
31	9376	9870	10447	11140	12008	13172	14944	18799	31
32	9383	9879	10457	11153	12025	13195	14983	18920	32
33	9391	9888	10468	11166	12041	13219	15022	19045	33
34	9399	9897	10478	11179	12058	13242	15062	19174	34
35	9107	9903	10189	11192	12075	13266	15102	19309	35
36	9415	9915	10500	11205	12092	13290	15143	19450	36
37	94.22	9924	10510	11218	12109	13314	15184	19596	37
38	9430	9933	10521	11231	12126	13338	15226	19749	38
39	9437	9912	10532	11244	12143	13362	15268	19909	39
40	2445	9951	10542	11257	12160	13386	15311	20076	40
41	9453	9960	10553	11270	12177	13411	15354	20253	41
42	9461	9969	10564	11284	12194	13436	15398	20439	42
43	9469	9978	10575	11297	12212	13461	15442	20635	43
44	9477	9987	10586	11310	12229	13486	15487	20814	44
45	9485	9996	10597	11324	12247	13511	15532	21065	45
46	9493	10005	10608	11338	12265	13537	15579	21303	46
47	9591	10015	10619	11351	12282	13563	15625	21557	47
48	9509	10024	10630	11365	12300	13589	15673	21833	48
49	9517	10033	10641	11378	12318	13615	15721	22132	49.
51	9525	10043	10652	11392	12336	13641	15770	22459	50
51	9533	10052	10663	11406	12354	13668	15819	22822	51
52	9541	10061	10674	11420	12373	13695	15869	23226	52
53	9549	10071	$10 \stackrel{3}{85}$	11434	12391	13722	15920	23685	53
54	9557	10080	10696	11448	12409	13749	15972	24215	54
55	9565	10089	10708	11462	12428	13776	16024	24812	55
56	9573	10099	10719	11476	12440	13804	16078	25609	56
57	9581	10108	10730	11490	12465	13832	16132	26598	57
58	9589	10118	10742	11504	12484	13860	16187	27992	58
59	9598	10127	10753	11518	12503	13888	16243	30375	59
M.	82°	83°	84°	85°	86°	87°	88°	89°	M.

TABLE VI. MEAN REFRACTION.										TABLE VII. DIP OF THE HORIZON	
$\begin{aligned} & \text { App } \\ & \text { Alt. } \end{aligned}$	Refr.	App	Ref.	$\begin{aligned} & \text { App. } \\ & \text { Alt. } \end{aligned}$	Ref.	$\begin{aligned} & \text { App. } \\ & \text { Alt. } \end{aligned}$	Ref.	$\begin{gathered} \text { App. } \\ \text { Alt. } \\ \hline \end{gathered}$	Ref.		
										Height.	Dip.
0	33		951	10 ú	515		¢ 235		1́ 24	Feet.	
	3210	5	946	1010	510	2010	234	3 ± 30	30123	1	058
010	3122	510	933	1020	5	2020	232		0121	2	121
015	3035	515	930	1030	5	2030	231	3530	30120	3	140
020	2950	520	923	1040	456	2040	2 29	36	0118	4	156
025	296	525	915	1050	451	2050	228	3630	30117	5	29
030	2823	530	9	110	447	210	0227		0.116	6	221
035	2741	535	91	1110	443	2110	${ }^{2} 26$	3730	30114	7	233
040	270	549	851	1120	439	2120	225		01113	8	241
045	2620	545	847	1130	431	2130	224		30111	9	253
050	2542	550	841	1140	431	2140	223		0110	10	
055	255	555	834	1150	427	2150	221		3019	11	310
10	2429	60	828	120	423	220	0220	40	0118	12	319
	2354	65	821	1210	420	2210	219	41	015	13	327
110	2320	6108	815	1220	416	2220	218	42	$0{ }^{0} 13$	14	336
115	2247	615	89	1230	413	2230	117	43	0 0 11	15	342
120	2215	620	83	1240	4 9	2240	216	4	0059	16	350
125	2144	6257	757	1250	4	2250	115	45	0057	17	357
130	2115	6307	751	130	4	230	0214	46	0055	18	44
135	2046	6357	745	1310	4	2310	113	47	0053	19	411
140	2018	640	740	1320	$\overline{357}$	2320	212	48	$0{ }^{051}$	20	417
145	1951	6457	735	1330	354	2330	111	49	0049	21	23
150	1925	6507	730	1340	351	2340	210	50	0048	22	430
155	190	6557	725	1350	348	2350	29		0046	23	436
	1835	707	720	140	345	240	028	52	0044	24	442
	1811	75	715	1410	343	2410	27	53	0043	26	452
210	1748	7107	711	1420	340	2420	$2{ }^{2}$	54	0041	28	55
215	1726	7157	7	1430	338	2430	25	55	0040	30	515
220	174	7207	72	1440	335	2 ± 40	24	56	0038	35	539
225	1644	725	657	1450	333	2450	23	57	0035	40	64
230	$\overline{1624}$	730	653	150	$\overline{30}$	250	2		003	45	627
235	164	735	649	1510	328	2510	21	59	0034	50	646
240	1545	740	645	1520	326	25.20	20	60	0033	60	725
245	1527	745	C 41	1530	324	2530	159	61	0032	70	81
250	159	750	637	1540	321	2540	158	62	C 030	80	834
255	1452	7556	633	1550	3 19	2550	157	63	0029	90	
	1436	80	6 29	16	317	260	0) 156	$6 \pm$	0028	100	935
	1420	85	625	1610	315	2610	155	65	0026		
310	144	810	622	1620	312	2620	155	66	0025		
315	1349	815	618	1630	310	2630	154	67	024	TAB	III.
3 20	1334	820	615	1640	3	2640	153	68	0023	x's	llay in
$\begin{array}{ll}3 & 25 \\ 3\end{array}$	1320	825	${ }_{6}^{6} 11$	1650	${ }^{3}$	2650	152	69	0 0 022		
330	136	830	6	170	3	270	151	70	0021		
335	1253	8350	6	1710		2715	150	71	0019	titude.	Paralla
340	1240	840	61	1720	31	2730		72	0018		
345	1227	845	558	1730	259	2745	148	73	0 017		
350	1215	850	555	1740	257	280	147	74	0016	0	9
355	123	855	552	1750	255	2815	146	75	0015	10	9
40	1151	$9 \quad 0$	548	180	254	2830	145	76	$0{ }^{0} 14$	20	8
+ 5	1140	$9 \quad 5$	545	1810	252	2845	144	77	0013	30	8
410	1129	510	5 42	1820	251	${ }^{29} 9$	142	78	$0{ }^{0} 12$		
$\|$4 15 4 5	1118	915	5 39	1830	$2 \cdot 49$	2930	1 140	79	$\begin{array}{lll} 0 & 0 & 11 \\ 0 \end{array}$	$\begin{aligned} & 50 \\ & 55 \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \end{aligned}$
(1204 4 4 25	11 11 11 58	${ }^{9} 205$	5	1850	2 $\begin{aligned} & 24 \\ & 2\end{aligned}$	$\begin{array}{rrr}30 \\ 30 & 0 \\ 30\end{array}$	011 $\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 37\end{aligned}$		$\begin{array}{rrrr}0 & 0 & 10 \\ 0 & 0 \\ 0\end{array}$	60	
[4 4	1048	930	${ }_{5}^{5} 31$		2 44		${ }^{1} 135$	82	$0{ }^{0} 8$	65	4
435	1039	9355	528	1910	243	3130	133	83	00	70	3
440	1029	940	525	1920	241	320	131	84	006	75	2
445	1020	945	523	1930	240	3230	130	86	00	80	2
450	1011	950	520	1940	238	330	-128	88	0	85	1
455	$10{ }^{2}$	9555	518	1950	237	3330	126		00	90	0

258																
Green Time.	DAILY. VARIATION.															
	1 s.	2s.	4s.	6s.	Ss.	10s.	12 s.	14 s .	16s.	18 s.	20s.		s.	26 s.	2Ss.	s.
h. m.	s.	s.	s.	S.	S.	S.		0.3	0.3	${ }^{\text {s. }}$	S.	. 5				
$\begin{array}{lll}0 & 30 \\ 1 & 0\end{array}$	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.6
$1{ }^{1} 0$	0.0	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.8	0.9	1.0	1.1	1.2	1.2
130	01	0.1	0.2	0.4	0.5	0.6	0.8	09	1.0	1.1	1.3	1.4	15	1.6	1.7	1.8
20	0.1	0.2	0.3	0.5	07	0.8	1.0	1.2	1.3	1.5	1.7	1.8	2.0	2.2	2.3	2.5
230	0.1	0.2	0.4	0.6	0.8	1.0	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7	2.9	3.1
30	0.1	0.3	0.5	0.7	1.0	1.2	1.5	1.8	2.0	2.2	2.5	2.7	3.0	3.2	3.5	3.7
330	- 0.1	0.3	0.6	0.9	1.2	1.5	1.8	2.0	2.3	26	2.9	3.2	3.5	3.7	4.1	4.4
40	0.2	0.3	0.7	1.0	1.3	17	2.0	2.3	2.6	3.0	3.3	3.7	4.0	4.3	4.7	5.0
430	0.2	0.4	0.7	1.1	15	1.9	2.3	2.6	3.0	3.4	3.7	4.1	45	4.9	5.2	5.6
50	0.2	0.4	0.8	1.2	1.7	2.1	2.5	29	3.3	3.8	4.2	4.6	5.0	54	5.8	6.2
530	0.2	0.5	0.9	1.4	1.8	2.3	2.8	3.2	3.7	4.1	4.6	5.0	5.5	5.9	6.4	6.8
60	0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5
630	0.3	0.5	1.1	1.6	2.2	27	3.3	3.8	4.3	4.9	5.4	5.9	6.5	7.0	7.6	8.1
70	0.3	0.6	1.2	17	2.3	2.9	3.5	4.1	4.7	5.2	5.8	6.4	7.0	7.5	8.1	8.7
730	0.3	0.6	1.2	19	2.5	3.1	3.8	4.4	5.0	56	6.3	6.9	7.5	8.1	8.7	9.4
$8 \quad 0$	03	0.7	13	2.0	2.7	3.3	4.0	4.7	5.3	6.0	6.7	7.3	8.0	8.6	9.3	10.0
830	0.4	0.7	1.4	2.1	2.8	35	4.3	5.0	5.7	6.4	7.1	7.8	8.5	9.2	9.9	10.6
$9 \quad 0$	0.4	0.7	1.5	2.2	3.0	3.7	4.5	5.2	6.0	6.8	7.5	8.2	9.0		10.4	11.2
930	0.4	0.8	1.6	2.4	3.2	4.0	4.8	55	6.3	7.1	7.9	8.7	9.5			11.8
10	0.4	0.8	1.7	2.5	3.3	4.2	5.0	5.8	6.7	7.5	8.3		10.0	10.8	11.6	12.5
1030	0.4	0.9	1.7	2.6	3.5	4.4	5.3	6.1	7.0	7.9	8.7	9.6	105	11.4	12.2	13.1
110	0.5	0.9	1.8	2.7	3.7	4.6	5.5	6.4	7.3	8.2	9.2	10.0	11.0	11.9	12.8	13.7
1130	0.5	1.0	1.9	2.9	3.8	4.8	5.8	6.7		8.6	9.6	10.5	11.5		13.4	14.4
120	0.5	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0		14.0	15.0

TABLE X.

TO OBTAIN THE PROPORTIONAI PART OF THE RATE OF A CHRONOMETER, FROM NOON, TO ANY GIVEN HOUR AT GREENWICH.

Green Time.	DAILY RATE OF CHRONOMETER															
	1 s.	2 s .	4s.	6 s	8s.	10s.	12s.	14 s .	16s.	18s.	20s.	22s.	24s.	26s.	28s.	30s.
h. m.		S.	s.	s.	,	s.			S.	s.	0	0			,	,
030	0.0	0.0	0.1	0.1	0.2	0.2	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.6
10	0.0	0.1	0.2	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.8	0.9	1.0	1.1	1.2	1.2
130	0.1	0.1	0.2	0.4	0.5	0.6	0.8	0.9	1.0	1.1	1.	1.4	1.5	1.6	1.7	1.8
20	0.1	0.2	0.3	0.5	0.7	0.8	1.0	1.2	1.3	1.5	1.7	1.8	2.0	2.2	2.3	2.5
230	0.1	0.2	0.4	0.6	0.8	1.0	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7	2.9	3.
30	0.1	0.3	0.5	0.7	1.0	1.2	1.5	1.8	2.0	2.2	2.5	3.7	3.0	3.2	3.5	3.7
330	0.1	0.3	0.6	0.9	1.2	1.5	1.8	2.0	2.3	2.6	2.9	3.2	3.5	3.7	4.1	4.4
	0.2	0.3	0.7	1.0	1.3	1.7	2.0	23	2.6	3.0	3.3	3.7	4.0	4.3	4.7	5.0
430	0.2	04	0.7	.1.1	1.5	1.9	2.3	2.6	3.0	3.4	3.7	4.	4.5	4.	5.2	5.6
50	0.2	0.4	0.8	1.2	1.7	2.1	2.5	2.9	3.3	3.8	4.2	4.6	5.0	5.4	5.8	6.2
530	0.2	0.5	0.9	1.4	1.8	2.3	2.8	3.2	3.7	4.1	4.6	5.0	5.5	5.9	6.4	6.8
$\begin{array}{ll}6 & 0 \\ 0\end{array}$	0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5
630	0.3	0.5	1.1	1.6	2.2	27	3.3	3.8	4.3	4.9	5.4	5.9	6.5	7.0	7.6	8.
70	0.3	0.6	1.2	1.7	2.3	29	3.5	4.1	4.7	5.2	5.8	6.4	7.0	7.5	8.1	8.7
730	03	0.6	1.2	1.9	2.5	3.1	3.8	4.4	5.0	5.6	6.3	6.9	7.5	8.1	8.7	0.4
80	0.3	0.7	1.3	2.0	2.7	3.3	4.0	4.7	5.3	6.0	6.7	7.	8.0	8.6	9.3	10.0
830	0.	0.7	1.4	2.1	2.8	3.5	4.3	5.0	5.7	6.4	7.1	7.8	8.5	.	9.9	10.6
90	0.4	0.7	1.5	2.2	3.0	3.7	4.5	5.2	6.0	6.8	7.5	8.2	9.0	9.7	10.4	11.2
930	0.4	0.8	1.6	2.4	3.2	4.0	4.8	5.5	6.3	7.1	7.9	8.7	9.5	10.2	11.0	11.8
100	0.4	0.8	1.7	2.5	3.3	4.2	5.0	5.8	6.7	7.5	8.3	9.2	10.0	10.8	11.6	12.5
1030	0.4	0.9	1.7	2.6	3.5	4.4	5.3	6.1	7.0	7.9	8.7	9.6	10.5	11.4	12.2	13.1
11 0 11 30	0.5	0.9	1.8	2.7	3.7	4.6	5.5	6.4	7.3	8.2	9.2	100	11.0	11.9	12.8	13.7
-1130	0.5	1.0	1.9	2.9	3.8	4.8	5.8	6.7	77	8.6	9.6	10.5	11.5	12.4	13.4	14.4
120	0.5	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.6

TABLE XI.
TO TURN DEGREES INTO TIME, OR TMME INTO DEGREES.

Degrees.	Time.	Degrees.	Time.	Degrees.	Time.	Minutes of Deg.	Time.	Seconds of Deg.	$\frac{\text { Time. }}{\text { s. т. }}$
	H. м.		H, M.		H. м.		M. A.		
1	0.4	61	4. 4	121	8. 4	1	0.4	1	0.4
2	0.8	62	4. 8	122	8. 8	2	0. 8	2	0.8
3	0.12	63	4.12	123	8.12	3	0.12	3	0.12
4	0.16	64	4.16	124	8.16	4	0.16	4	0.16
5	020	65	4.20	125	8.20	5	0.20	5	0.20
6	0.24	66	4.24	126	8.24	6	0.24	6	0.24
7	0.28	67	4.28	127	8.28	7	028	7	0.28
8	0.32	68	4.32	128	8.32	8	0.32	8	0.32
9	0.36	63	4.36	129	8.36	9	0.36	9	0.36
10	0.40	70	4.40	130	8.40	10	0.40	10	040
11	0.44	71	4.44	131	8.44	11	0.44	11	0.44
12	0.48	72	4.48	132	8.48	12	0.48	12	0.48
13	0.52	73	452	133	852	13	0.52	13	0.52
14	0.56	74	4.56	134	8.56	14	0.56	14	0.56
15	1. 0	75	5. 0	135	9. 0	15	1. 0	15	1. 0
16	1. 4	76	5. 4	136	9. 4	16	1. 4	16	1. 4
17	1. 8	77	5. 8	137	9.8	17	1. 8	17	1. 8
18	1.12	78	5.12	138	912	18	1.12	18	1.12
19	1.16	79	5.16	139	9.16	19	1.16	19	116
20	1.20	80	5.20	140	9.20	20	1.20	20	1.20
21	1.24	81	5.24	141	9.24	21	1.24	21	1.24
22	1.28	82	5.28	142	9.28	22	1.28	22	1.28
23	1.32	83	5.32	143	9.32	23	1.32	23	1.32
24	1.36	- 84	5.36	144	9.36	24	1.36	24	1.36
25	1.40	85	540	145	9.40	25	1.40	25	1.40
46	1.44	86	$5.4 \pm$	146	9.44	26	1.44	26	1.44
27	1.48	87	5.48	147	9.48	27	1.48	27	1.48
28	1.52	88	5.52	148	9.52	28	1.52	28	1.52
29	1.56	89	5.56	149	9.56	29	156	29	1.56
30	2. 0	90	6. 0	150	10. 0	30	2. 0	30	2. 0
31	2. 4	91	6.4	151	10. 4	31	2. 4	31	2. 4
32	2, 8	92	6.8	152	10. 8	32	2. 8	32	2. 8
33	2.12	93	6.12	103	10.12	33	2.12	33	2.12
34	2.16	94	6.16	154	10.16	34	2.16	34	2.16
35	2.20	95	6.20	155	10.20	35	2.20	35	2.20
36	2.24	96	6.24	156	10.24	36	2.24	136	2.24
37	2.28	97	628	157	10.28	37	2.28	37	2.28
38	2.32	98	6.32	158	10.32	38	2.32	38	2.32
39	2.36	99	6.36	159	10.36	39	2.36	39	2.36
40	2.40	100	6.40	160	10.40	40	2.40	40	2.40
41	2.44	101	6.44	161	10.44	41	2.44	41	2.44
42	2.48	102	6.48	162	10.48	42	2.48	42	2.48
43	2.52	103	6.52	163	10.52	43	2.52	43	2.52
44	2.56	104	6.56	164	10.56	44	2.56	44	2.56
45	3. 0	105	7. 0	1605	11. 0	45	3. 0	45	3. 0
46	3.4	106	7. 4	166	11. 4	46	3. 4	46	3.4
47	3. 8	107	7. 8	167	11. 8	47	3. 8	47	3. 8
48	3.12	108	7.12	168	11.12	48	3.12	48	3.12
49	3.16	109	7.16	169	11.16	49	3.16	49	3.16
50	3.20	110	7.20	170	11.20	50	3.20	50	3.20
51	3.24	111	7.24	171	11.24	51	3.24	51	3.24
52	3.28	112	7.28	172	11.28	52	3.28	52	3.28
53	332	113	7.32	173	11.32	53	3.32	53	3.32
54	3.36	114	7.36	174	11.36	54	3.36	54	3.36
55	3.40	115	7.40	175	11.40	55	3.40	55	3.40
56	3.44	116	7.44	176	11.44	56	3.44	56	3.44
57	3.48	117	7.48	177	1148	57	3.48	57	3.48
58	3.52	118	7.52	178	11.52	58	3.52	58	3.52
59	3.56	119	7.56	179	11.56	59	3.56	59	3.56
60	4. 0	120	8. 0	180	120	60	4. 0	60	4. 0

 and to any thme at the meridian of greenwich.

Corrections of the apparent altitudes of the sun and stars.

App.		Star' Corr	Diff,	$\begin{aligned} & \text { App. } \\ & \text { Alt. } \end{aligned}$	Sun's Curr.	Star's	$\left\lvert\, \begin{aligned} & \text { App. } \\ & \text { Alt: } \end{aligned}\right.$	$: \begin{aligned} & \text { Sun's } \\ & \text { Corr. } \end{aligned}$	Star's Corr.	$\begin{gathered} \text { App. } \\ \text { Alt. } \end{gathered}$	Sun's Corr.	$\begin{aligned} & \text { Star's } \\ & \text { Corr. } \end{aligned}$
	3251		10.0		944	52	60	818	826	70	712	721
5	32	3210	9.6		942	951		817	825		711	720
10	3113	3122	9.4		941	949			824		710	719
15	3026	3035	9.1		939	948		814	823			718
20	2941	2949	8.9		937	946		813	822		78	717
25	2856	295	8.6		936	944		812	820	5		716
030	28	2822	84	56	934	943	6	810	819			715
35		2740	8.1		932	941			818			714
40	26	2659	.		931	940			817			713
45	2611	2620	7.7		929	938			815			712
50		2541	7.4	10	928	936	10	86	814	10		711
55	24	254	7.2	11	926	935	11	8	813	11		710
10	24	2 ± 28	7.0	512	925	933	12	8	812	12	7	710
5		2353	6.7	13	923	932	13	8	811	13		
10	23	2318	6.5	14	921	930	14	81	810	14	659	
15	2238	2246	6.4	15	920	929	15	8			658	
20	226	2215	6.2	16	918	927	16	759		16	657	
25	2135	2144	6.1	17	917	925	17	757		17	656	
130	21	2114	5.7	518	915	924	618	756	8		655	
	2036	2045	5.6	19	914	922	19			19		
40	208	2017	5.3	20	912	921	20			,	654	
45	1941	1950	5.2	21	911	919	21		8	21	653	
50	1915	1924	5.0	22		918	22	752	8 8		652	
55	18	1859	4.9	23		916	23	50	759	23	51	
	18	18	4.7	524	9	915		749	758	24	50	${ }_{6} 659$
5		18	4.5	25		913	2	748		25	649	
10	1739	1748	4.5	26		912		747	7		648	657
15	1717	1725	4.3	27		911	27	746	75	27	6	6
20	1655	174	4.2				28	745	754		647	655
25	16	1643	4.0	29	859		29	744	753	29	646	654
230	16	1623	3.9	530	8		630	743	751	30	45	54
35		163	3.8	31			31	742	750	31		
40	1536	1544	3.6	32			32	74	749			652
45	1517	1526	3.5	33	85		33	740	748			
50	15	158	3.4			91	3	738	747			50
55	14	1451	3.4	35	8	859	35	737	746	5	641	649
30			3.3	536			3	736		36		
			3.2									
10	1354	143	3.1	38	846		38	734	743	38	638	647
15	13	1348	3.0	39	845			73	742	39		
20		1333	2.8	40	84		40	732	741		析	
25	13	1319	2.8	41	842	851	41	731	740	41	636	644
330		135	2.7	542	841		642		39	$\overline{72}$		
5	12	1251	2.6	4			43	7		43		
40	1230	1238	2.6	44	838	847	44	728	737	44	633	642
45	1217	1226	2.5	15	837	846	45	727	730	45	633	641
50	12	1213	2.4	46	836			726	73	46	632	
55	1153	121	2.3	47	834	843	47	725	734	47	631	640
40		11	2.3	548			4			48	30	
	1130	1138	2.2	4	8		49	,	3	49		
10	1119	1127	2.1	50	830	839	50	72	731	50	629	
15	11	1117	2.1	51	829	838		721	730		62	
20	1058	11.6	2.0	52	828	836	52	720	729	5	627	636
25	1048	1056	2.0	53	827	835	53	319	728	53	626	635
430		10	1.9							754		
	1028	1037	1.9	55	824	833	5	717	726	55	625	633
40	1019	1028	1.8	56	823	831	56	716	725	50	62	633
45	1010	1018	1.8	57	821	830		715	724		6	632
	10	1010	1.7		820	829	58	714	723	58	622	631
55	952	101	1.7		81	829	9	971	72	59	62	630

TABLE XIII.
263
corrections of the apparent alttudue of the sun and stars.

App. Alt.	Sun's Corr.	Star's Corr.	App. Alt.	$\begin{aligned} & \text { Sun's } \\ & \text { Corr. } \end{aligned}$	Star's Corr.	App. Alt.	Sun's Corr.	Star's Corr.	$\begin{aligned} & \text { App. } \\ & \text { Alt. } \end{aligned}$	Sun's Corr.	Star's Corr.
\bigcirc	"	, "	\bigcirc	' $/ 1$	' 11	\bigcirc	, "	, "		"	
	621	630		540	548		438	447		354	43
1	620	629	2	539	547	2	437	446	2	354	42
2	619	628	4	537	546	4	437	445	4	353	$4 \quad 2$
3	619	627	6	535	545	6	436	444	6	353	41
4	618	627	8	534	544	8	435	443	8	352	41
5	617	628	10	531	542	10	434	443	10	351	40
86	616	625	912	533	541	1112	433	442	1314	351	359
7	616	624	14	531	540	14	432	441	14	350	359
8	615	624	16	530	539	16	432	440	16	350	358
9	614	623	18	529	538	18	431	439	18	349	357
10	613	622	20	528	536	20	430	439	20	348	357
11	613	621	22	527	535	22	429	438	22	348	356
812	612	621	924	526	534	1124	428	437	13 24	347	356
13	611	620	26	524	533	26	428	436	26	347	355
14	610	619	28	523	532	28	427	435	28	346	354
15	610	618	30	522	531	30	426	435	30	345	354
16	69	618	32	521	530	32	425	434	32	345	353
17		617	34	520	529	34	424	433	34	344	353
818		616	936	519	527	1136	424	432	$13 \quad 36$	344	352
19	67	616	38	518	526	38	423	431	38	343	352
20	66	615	40	517	525	40	422	431	40	343	351
21	65	614	42	516	524	42	421	430	42	342	351
22	65	613	44	515	523	44	421	429	44	341	350
23		613	46	513	522	46	420	428	46	341	349
824		612	948	512	521	1148	419	428	1348	340	349
25	63	611	50	511	520	50	418	427	50	340	348
26	$6 \quad 2$	611	52	510	519	52	418	426	52	339	348
27	61	610	54	59	518	54	417	425	54	339	347
28		69	56	58	517	56	416	425	56	338	347
29			58		516	58	415	424	58	338	346
830	559		$10 \quad 0$	56	515	$12 \quad 0$	415	423	14	337	345
31	559	67	2	$5 \quad 5$	514	2	414	422	2	336	345
32	558	67	4	54	513	4	413	422	4	336	344
33	557	66	6	$5 \quad 3$	512	6	412	421	6	335	344
34	557	65	8	5	511	8	412	420	8	335	343
35	556	65	10		510	10	411	420	10	334	343
836	555		1012	50	59	1212	410	419	1412	334	342
37	555	63	14	459	58	14	410	418	14	333	342
38	554	63	16	458	57	16	49	417	16	333	341
39	553	62	18	457	56	18	48	417	18	332	341
40	553	61	20	456	55	20	48	416	20	332	340
41	552	61	22	455	54	22	47	415	22	331	340
842	551	60	1024	454	53	124		415	1424	331	339
43	551	559	26	453	$5 \quad 2$	26	46	414	26	330	339
44	550	553	28	453	51	28	45	413	28	330	338
45	549	558	30	452	50	30	4	413	30	329	338
49	549	557	32	451	459	32	43	412	32	329	337
47	548	557	34	450	458	34	43	411	34	328	337
848	547	556	1036	449	457	1236	42	411	1436	328	336
49	547	555	38	448	457	38	42	410	38	327	336
50	546	555	40	447	456	40	41	49	40	327	335
51	545	554	42	446	455	42	40	49	42	326	335
52	545	553	44	445	454	44	40	48	44	326	334
53	544	553	46	444	453	46	359	4	46	325	331
854	544	552	1048	443	452	1248	358		1448	325	333
55	543	552	50	443	451	50	358	46	50	324	393
56	542	551	52	442	450	52	357	45	52	324	332
57	542	550	54	4.41	449	54	356	45	54	323	332
58	541	550	56	440	449	56	356	44	56	323	331
59	540	549	58	439	448	58	355	44	58	322	331

264

TABLE XIII.
CORRECTIONS OF THE APPARENT ALTITUDES OF THE SUN AND STARS.

App. Alt.	Sun's Corr.	Star's Corr.	$\begin{aligned} & \text { App. } \\ & \text { Alt. } \end{aligned}$	Sun's Corr.	Star's Corr.	App. Alt.	Sun's Corr.	Star's Corr.	App. Alt.	Sun's Corr.	Star's Corr.
0 ,	"	"		"	"					' 11	"
150	322	330	$20 \quad 0$	227	235	$30 \quad 0$	131	138	$50 \quad 0$	042	048
5	321	329	10	226	234	20	130	137	30	041	047
10	319	328	20	225	233	40	128	136	510	041	046
15	318	327	30	223	231	310	127	135	30	040	045
20	317	326	40	222	230	20	126	133	$52 \quad 0$	039	044
25	316	324	50	221	229	40	125	132	30	038	044
$15 \quad 30$	315	323	210	219	2 27	32	124	131	53	438	043
35	314	322	10	218	226	20	122	130	30	037	042
40	313	321	20	217	225	40	121	129	$54 \quad 0$	036	041
45	311	320	30	216	224	330	120	127	30	036	041
50	310	319	40	214	223	20	119	126	550	035	040
55	3	318	50	213	221	40	118	125	30	034	039
160		317	22	212	220	340	117	124	56	034	038
5	$\begin{array}{lll}3 & 7\end{array}$	316	10	211	219	20	116	123	30	033	038
10	36	315	20	210	218	40	115	122	570	032	037
15	35	314	30	29	217	350	114	121	30	032	036
20	31	313	40	28	216	20	113	120	580	031	036
25		312	50	27	215	40	112	119	30	030	035
1630	32	311	$23 \quad 1$	26	214	36	111	118	$59 \quad 0$	030	034
35	31	310	10	24	213	20	110	117	30	$0<9$	031
40	30	39	20	23	211	40	19	116	$60 \quad 0$	029	033
45	259	38	30	22	210	$37 \quad 0$	19	115	30	028	032
50	258	37	40	$2 \begin{array}{ll}2 & 1\end{array}$	29	20	18	115	610	027	032
55	257	36	50	20	28	40		114	30	027	031
17 U	256	35	240	159		380	16	113	620	426	030
5	255	34	10	158	26	20	15	112	30	026	030
10	254	33	20	157	25	40	14	111	630	025	029
15	254	32	30	157	24	$39 \quad 0$	13	110	30	024	028
20	253	31	40	156	24	20	13	19	64 0	024	028
25	252	30	50	155	$2 \quad 3$	40			30	023	027
1730	251	259	$\overline{25}$	154	22	$40 \quad 0$	1	18	65 U	023	027
- 35	250	258	10.	153	21	20	10	17	30	022	026
40	249	257	20	152	20	40	059	16	660	022	025
45	248	256	30	151	159	410	059	15	30	021	025
50	247	256	40	150	158	20	058	15	$67 \quad 0$	021	024
55	246	255	50	149	157	40	057		30	020	024
180	246	254	260	149	156	$42 \quad 0$	057	13	68	020	023
	245	253	10	148	156	20	056	12	690	019	022
10	244	252	20	147	155	40	055	12	$70 \quad 0$	018	021
15	243	251	30	146	154	430	055	11	710	017	020
20	242	251	40	145	153	20	054	10	720	016	018
25	241	250	50	144	152	40	053	10	730	015	017
1830	241	249	27	144	151	$44 \quad 0$	053	059	74	014	016
35	240	248	10	143	151	20	052	058	750	013	015
40	239	247	20	142	150	40	051	058	760	012	014
45	238	247	30	141	149	450	051	057	770	011	013
50	238	246	40	141	148	20	050	056	780	010	012
55	237	245	50	140	148	40	049	056	$79 \quad 0$	0	011
190	236	244	280	139	147	$46 \quad 0$	1) 49	055	80		010
5	235	244	10	138	146	20	048	054	810	08	0
10	235	243	20	138	145	40	048	054	820	07	08
15	234	242	30	137	145	$47 \quad 0$	047	053	830	06	07
20	233	241	40	136	144	20	047	052	840	05	06
25	232	241	50	135	143	40	046	052	85	04	$0 \quad 5$
1930	232	240	$29 \quad 0$	135	142	$48 \quad 4$	045	051	86	03	
35	231	239	10	134	142	20	045	051	870	03	0
40	230	238	20	133	141	40	044	050	88 0	0	$0 \quad 2$
45	229	238	30	133	140	$49 \quad 0$	044	049	89	0 0 1	0
50	229	237	40	132	140	20	043	049	90	$0 \quad 0$	0
55	228	236	50	131	139	40	043	048			

TO FIND LATITUDE BY REDUCTION TO THE MERIDIAN.
Natural Sines.

M.
0

 000582018024 03548105291707033708773510510712244713974915700958 $000873018325035772053207070627088025|105396| 22735140037157296 \mid 57$

 002036019488036934054369071788,089184106553123890141189158445 0023270197791037225054660072078089474106843124179141477158732 $002618020070037516054950072368,089763107132 \mid 124467141765159020$ 002909020361037806055241072658,090053107421124756142053159307 $00320002065 \approx 038097055531072948090343107710125045142341159594$ $003491020942038388055822073238090633107999 \mid 125333142629159881$ 003782021233038678056112073528090922108289125622142917160168 004072 $02152403896900 ๊ 6402073818091212108578 \mid 125910143205160455$ $004363(021815039260056693074108091502108867126199143493160743$ 004654 022106 $039550|056983074399091791| 109|56| 126488|143780| 161030$ $004945022397|039841057274074689| 092081109445 \mid 126776144068161317$ $0052360226870401320575641074979092371109734|127065| 144356 \mid 161604$ $005527022978040422057854075269092660 \mid 110023127353144644161891$ 005818023269040713058145075559092950110313127642144932162178 $\overline{006109} 0 \overline{023560} 041004058135075849093239 \quad 11(602127930,145220162465$ $006399023851041294058726076139|093529110891| 128219145507 \mid 162752$ $006690024141041585059016076429093819 \mid 11180128507145795163039$ $006981,024432041876059306076719094108 \mid 11469128796,146083163326$ 007272024723042166059597077009094398111758129084146371163613 $007563025014042457059887077299094687112047 \mid 129373146659163900$ $007854,025305042748,060177077589094977,112336129661 \mid 146946164187$ 008145025595043038,060468077879095267112625129949147234164474 008436025886043329060758078169095556112914130238147522164761 008727026177043619061049078459095846113203130526147809165048
$\overline{009017} \overline{026468} \overline{043910} \overline{061339} \overline{078749} \overline{096135} \overline{113492} \overline{130815} \overline{148097} \overline{165334}$ $009308026759014201061629079039096425113781 \mid 131103148385165621$ $009599027049044491061920079329096714114070 \mid 131391148672165908$ 009390,027340044782062210079619097004114359131680148960166195 010181027631045072062500079909097293114648131968149248166482 $010472027922045363062791080199097583114937 \mid 132256149535166769$ $010763028212045654063081080489097872115226 \mid 132545149823167056$ $0110540285030459440633711080779098162 \mid 115515132833150111167342$ $011344|028794046235| 063661081069,098451|115804| 133121 \mid 50398167629$ 011635029085046525063952081359098741116093133410150686167916 $\overline{011926} \overline{029375} \overline{046816} \overline{064242} \overline{081649} 0990301163821133698150973168203$ $012217029666047106064532081939099320 \mid 16671133986151261168489$ 012508 029957 (147397064823082228099609116960134274151548168776 012799030248047688065113082518099899117249134563151836169063 $013090030539047978065403082808|100188| 117537134851152123169350$ $013380030829048269065693083098|100477| 17826 \mid 135139152411169636$ $013671031120048559065984083388100767|118115| 135427152698169923$ $013962031411048850066274083678|101056| 118404 \mid 135716152986170209$ $014253031702(149140066564083968101346118693136004153273170496$

014835 $032283 \overline{049721} \overline{067145} \overline{084547} 1019241 \overline{19270} \overline{136580} \overline{153848} \overline{171069}$ 52015126,032574050012067435084837102214119559135868154136171356 015416032864050302067725085127102503119848137156154423111943 015707033155050593068015085417102793120137137445154710171929 015938,033446050883068306085707103082120426137733154998172216 016289033737051174068596,085997103371120714138021155285172502 016580034027051464068886086286103661121003138309155572172789 016871034318051755069176086576103950121292138597155860173075 $017162034609,052045069466086866104239121581138885 \mid 156147173362$ $017452034899052336069756087156104528 \mid 121869139173156431173648$4242

TABLE XIV.

TO FIND LATITUDE BY REDUCTION TO THE MERIDIAN.
Natural Sines.

M.	10°	11°	12°	13°	14°	15°	16°	17°	18°	19°	м.

173648 190509 $207912 \cdot 224951$ 241922 258819 275637 292372 309017 325568 60 $173935191095|208196225234| 242204259100275917|292650| 309294325843-59$
 174508191666 20876ゴ225801 242769259662 276476 293206309847326393 174791 191951 209050 226085 243051259943 276756 293484310123226668 175080192237 209334 $226368.243333260224277035 \quad 293762310400326943$ 175367192522 209619 226651 243615 260505 - $277315 \mid 294040310676327218$ 175653192807 209903 226935 |243897 260785 277594 294318 3109533327493 175939193093210187227218 244179 $261060277874 \mid 294596311229327768$ $176226|193378| 210472$ 227501-244461 $261347|278153| 294874311506328042$
 17679819394921040228068 245025 $26190827871229543031 \div 059328592$ $177085194234|211325228351| 245307|262189| 278991 \mid 295708312335328867$ 177371194520 $211609228634|245589-262470279270| 295986312611,329141$
 177944 195090 $212178229200 \mid 246153263031 \quad 279829296542313164329691$
 $178516 \mid 195661$ 212746229767 246717 263592 280388 297097 313716 ; 330240 $178802195946 \mid 213030230050246999263873280667$ 297375 313992330514 179088196231213315230333247281264154280946297653314269330789 $179375|196517| 213599230616|247563264434| 281225 \mid 297930314545331063$ 58 57 56 55 54

 $180519|197657 / 214735231748 / 248690| 265556|282341| 299041 \mid 315649332161$ 180805197942 215019.232031 248972265837282620 299318 315925332435
 $181377198513215588232597{ }^{249535}$ 266397 283179 299873 316477332984
 $181950199083216156233163|250098| 266958$ 283736 300428317029333533
 182522 199653 216724233728 250662 267519 284294 300983317580334081 $182808199938|217008234011| 250943 \mid 267799284573301261317856334355$ $183094200223 \mid 217292$ 234294 251225 268079 281852 301538 $31813 \approx 334629$
 183665 200793 $217859234559251788268640 \quad 285410302093318684335178$

 $184523 \mid 201648$ 218711 235708 252632 269480286246302924319511336000 $184509201933218995235990 \quad 252914269760286525303202319786336274$
 $185381 / 202502 \overline{219562}$ 236556 $\overline{253477}$ 270320 287082 303756 $320337 / 336821$ $185667|202787| 219846236838|253758| 270600287361301033320613337095$
 186238 203357 $220414237403|254321| 271160287918|304587| 321164337643$ 186524 203642 220697 237686 254602 271440 $288196 \mid 3048643: 31439337917$ 186810 $203927|220981,237968| 254883271720288475305141321715338190$ 187096 204211 221265 238251 255165 272000,288753 305418321990338464 $187381 \cdot 204496$ 221548'238533-255446 272280 289032 305695 322266338738
 187953205065 222116.239098 256008272840289589306249322816339285
$\overline{188238} \overline{205350} \overline{222399} \overline{239381} \overline{256289} \overline{253120} \cdot \overline{284867} \overline{306526} 323092339559$ 188524 205635 222683 239663 256571 273400 290145 [306803 $323367 / 339832$
 189095 206204 223250,240228 257133/273959 290702 |307357 323917340380
 189667 206773 $2223817|240793| 257695|274519,291259| 307910324468,340927$
 $190238|207343224384241357| 258257275078291815308464325018341473$ 190523 $207627224668241640 \cdot 258538275358 / 292094305740325293341747$

TABLE XIV.

TO FIND LATITUDE BY REDUCTION TO TEE MERIDLAN.
Natural Sines.

M.	20°	21°	22.	23°	24°	25°	26°	270	28°	29°	3 M .
0	342020	3583688	374607	390731	406737	422618	438371	453990	46947:	484810	60
1	342293	358640	374876	390999	407002	422882	438633	454250	169728	485064	59
2	342567	358911	375146	391267	407268	423145	138894	454509	469985	485318	58
3	342840	359183	375416	391534	407534	4234094	439155	454768	470242	485573	57
4	343113	3594543	375685	391802	407799	423673	439417	455027	470499	485827	56
5	343387	359725	375955	392070	408065	423936	439678	455286	470755	486081	55
6	343660	3599973	376224	392337	408330	424199	439939	155545	471012	486335	54
7	343933	3602683	376494	392605	408596	4244631	440200	455804	471268	486590	53
8	344206	3605403	376763	392872	408861	124726	440462	456063	471525	486844	52
9	344479	3608113	377033	393140	409127	4249904	440723	456322	471782	487098	51
10	344752	3610823		393407	409392	425253	440984		472038	487352	50
11	345025	3613	75	393675	409658	425516	441245	456839	472.94	487606	49
12	345298	3616253	377841	393942	409923	425779	141506	457098	472551	487860	48
13	345571	3618963	378110	394209	410188	426042	441767	457357	4728074	488114	47
14	345844	362167,	378379	394477	410454	4263064	442028	457615	473063	188367	46
15	346117	362438	378649	394744	410719	426569	442289	457874	473320	488621	45
16	346390	3627093	378918	395011	410984	426832	442550	458133	473576	488875	44
17	346663	3629803	379187	395278	411249	427095	142810	458391	473832	489129	43
18	346936	363251	379456	395546	411514	427358	443071	458650	474088	489382	42
19	347208	363522	379725	395813	41179	427621	443332	458908	474344	489636	41
20	347481		379994	396080	412045	427884	443593	459166	474600	489890	40
21	34775	364	380263	396347	412310	428147	443853	459425	474856	490143	39
22	348027	3643353	380532	396614	412575	4284104	444114	459683	475112	490397	38
23	348299	3646063	380801	396881	412840	428672	444375	459942	175368	490650	37
24	348572	3645773	381070	397148	413104	42893 - 4	444635	460200	475624	490904	36
25	348840	365148	381339 ,	397415	413369	429198	444896	460458	475880	491157	35
26	349117	3654183	381605	397682	413634	429461 4	445156	460716	476136	491411	34
27	349390	3656893	381877	397949	413899	429723,	445417	460974	476392	491664	33
28	349662	3659603	382146	398215	414164	429986	445677	461232	476647	491917	32
29	349935	366231	382415	398482	414429	430249	445937	461491	176903	492170	31
30	350207	3665013	382683	398749	414693	430511	446198	461749	477159	492424	30
31	350480	36677	382952	39901	414958	4307	446458	46200	77414	492677	29
32	350752	3670423	383221	399283	415223	431036	446718	462265	477670	492930	28
33	3 5 1025	367313	383490	399549	415487	431299	446979	462523	477925	493183	27
34	351297	367584	383758	399816	115752	4315614	447239	462780	478181	493436	26
35	351569	367854	384027	400082	416016	4318231	147499	463038	178436	493689	25
36	351842	368125	384:95	400349	416281	4320864	447759	453296	478692	493942	24
37	352114	363395	384564	400616	$41654{ }^{\circ}$	432348	148019	463554	17894.7	494195	23
38	352380	368665	384832	400882	416810	4326104	448279	463812	479203	494448	22
39	352658	368936	385101	401149	417074	432873	448539	464069	479458	494700	21
40	3 302931	369206	385336	401415	417338	433135	448799	464327	479713	494953	20
41	353203	369476	3856 ${ }^{\text {a }}$	401681	417603	433397	449059	464584	479968	495206	19
42	353475	3697473	385906	401918	417867	433659	449319	464842	480223	495459	18
43	353747	370017	386174	102214	418131	4339214	449 อ79	465100	480479	495711	17
44	354019	370287	386443	402480	418396	434183	449839	165357	480734	495964	16
45	354291	370557	386711	402747	418660	431445	450098	465615	480989	496217	15
46	354563	370828	386979	403013	418924	434707	450358	465872	481244	496469	14
47	354835	3710983	$38724{ }^{\circ}$	403279	419188	434969	450618	466129	481499	496722	13
48	355107	371363	387516	403545	419452	435231	450878	466387	481754	496974	12
49	355379	371638	387784	403811	419716	435493	451137	466644	482009	497226	11
50	355651	371908	388052	404078	419980	435755	451397	466901	482263	497479	10
51	355923	37217	388320		420244	436017	451656	467158	482518	497731	9
52	356194	372448	388588	404610	420508	436278	451916	467416	482773	497983	8
53	356466	372718	388856	404876	420772	436540	452175	467673	483028	498236	7
54	356738	372988	389124	405142	421036	436802	452435	467930	483282	498488	6
55	357010	373258	389392	105408	421300	437063	452694	468187	483537	498740	5
56	357281	373528	389660	405673	121563	437325	452953	468441	483792	498992	4
57	357553	373797	389928	405939	421827	437587	453213	468701	484046	499244	3
58	357825	374067	390196	406205	422091	437848	453472	468958	484301	499496	2
59	$3 \overline{8093}$	374337	390463	406471	422355	438110	453731	469215	484555	499748	1
60	358368	374607	390731	106737	422618	438371	453990	469472	484810	500000	0
M.	69^{-}	68°	67°	66°	65°	64°	63°	62°	61°	60°	M.
Natural Co-sines.											

TABLE XIV．

TO FIND LATITUDE BY REDUCTION TO THE MERIDIAN．
Natural Sines．

M．	30°	31°	32°	33°	34°	35°	36°	37°	38°	39°	M．
0	500000	515038	549919	544639	559193	573576	587785	601815	615661	629320	60
1	500252	515287	5301665	544883	559434	573815	588021	602047	615891	629546	59
2	a00501	515537	530413	545127	559675	574053	58856	602280	616120	629772	58
3	500756	515786	530659	5453715	55.9916	574291	5884916	602512	616349	629998	57
4	501007	516035	530906	545615	20157	574529	588726^{\prime}	602744	616578	630224	56
5	501259	516284	5311525	545858	560398	574767	588961	602976	616807	630450	55
6	501511	516533	531399	546102	560639	575005	589196	603208	617036	630676	54
7	501762	516782	こ31645	546346	560880	575243	589431	603440	617265	630902	53
8	502014	517031	5318915	546589	51121	575481	589666	603672	617494	631127	52
9	502266	517280	532138	546833	561361	575719	589901	603904	617722	631353	51
10	502517	517529	532384	547076	561602		590136		617951	631578	50
11	50276	517	532630	54		57		604367	618180	61804	49
12	503020	518027	532876	547563	562083	576432	5906066	604599	618408	632029	48
13	503271	518276	ธ33122	547807	562324	כ76670	590840	604831	618637	632255	47
14	503523	518525	533368	548050	562564	576908	591075	605062	618865	632480	46
15	503774	518773	Ј33615	5482935	562805	577145	591310	605294	619094	632705	45
16.	504025	519022	533861	548536	563045	577383	591544	605526	619322	632931	44
17	504276	519271	534106	5487805	563286	577620	Ј91779	605757	619551	$63315{ }^{\circ}$	43
18	504528	519519	534352	549023	563526	577858	5920136	605988	619779	633381	42
19	504779	519768	こ34598	549266	53766	578095	592248	606220	620007	633606	41
20	505030	520016	534844	549509					620235	633831	40
21	505281	52026	535090	549752	564247	578	592716	606682	620464	634056	39
22	505532	520513	ธ35335	549995	564487	578807	592951	606914	620692	634281	38
23	505783	520761	535581	550238	－ 64727	579044	593185	607145	620920	634506	37
24	506034	521016	535827	550481	5̃64967	579281	593419	607376	621148	634731	36
25	506285	521258	．536072	550724	565207	579518	593653	607607	621376	634955	35
26	506535	521506	536318	550966	565447	579755	593887	607838	621604	635180	34
27	506786	52175	536563	551209	565687	579992	594121	608069	621831	635405	33
28	507037	522002	5：36809	551452	565927	580229	594355	608300	622059	635629	32
29	507288	522251	537054	551694	566166	580466	594589	608531	622287	635854	31
30	507538	522499	537300	551937			594823	608761		636078	30
31	507789	522747	537545	552180	5 66646	580940	595057	608992	622742	636303	29
32	508040	522995	537790	552422	566886	581176	595290	609223	622970	636527	28
33	508290	523242	538035	552661	567125	581413	595524	609454	623197	636751	27
34	508541	523490	538281	552907	567365	581650	595758	609684	623425	636976	26
35	508791	523738	538526	553149	567604	581886	595991	609915	623652	637200	25
36	509041	こ23986	538771	5533925	567844	582123	596225	610145	623880	637424	24
37	509292	524234	539016	553634	568083	582359	596458	610376	624107	637648	23
38	509542	524481	539261	553876	J68323	582596	596692	610606	624334	637872	22
39	อ09792	524729	539506	554118	568562	อ 82832	5969.56	610836	624561	638096	21
40	510043	524977	539751	554360		583069				638320	20
41	51029	52522	539996	$\overline{554602}$	$\overline{569040}$	583305	597392	61129 ${ }^{7}$	6：250	638544	19
42	510543	525472	540240	554844	569280	583541	597625	611527	625243	638768	18
43	510793	525719	540485	555086	569519	583777	597858	611757	625470	638992	17
44	511043	525967	540730	5553285	569758	584014	598092	611987	625697	639215	16
45	511293	526214	540974	555570	－ 69997	584250	5983256	612217	525923	639139	15
46	511543	526461	541219	555812	570236	584486	598558	612447	626150	639663	14
47	511793	526709	541464	556054	570475	584722	598791	612677	626377	639886	13
48	512043	526956	041708	556296	570714	581958	299024 6	612907	626604	640110	12
49	512293	5.27203	541953	556537	570952	585194	599256 6	613137	626830	640333	11
50	512543	527450	542197	556779	ธ̃1191	585429		613367	627057	640557	10
51	512792	527697	$\overline{542242}$	$\overline{557021}$	571430	585665				40780	9
52	513042	527944	542686	557262	571669	585901	599955	613826	627510	641003	8
53	513292	528191	542930	557504	571907	586137	6001886	614056	627737	641226	7
54	513541	528438	543174	557745	572146	586372	6004206	614285	627963	641450	6
55	513791	528685	513419	557987	572384	586608	600653	614515	628189	641673	5
56	514040	528932	543663	558228	572623	586844	6008856	614744	628416	641896	4
57	514290	529179	543907	558469	572861	587079	601118	614974	628642	642119	3
58	514539	529426	544151	558710	573100	587314	601350	615203	628868	642342	2
59	514789	529673	544395	558952	573338	587550	6015836	615432	629094	642565	1
60	515038	529919	544639	559193	573576	587785	601815	615661	629320	642788	0
M．	59°	58°	57°	56°	55°	54°	53°	52°	51°	50°	M．
，	Natural Co－sines．										

TO FIND LATITUDE BY REDUCTION TO THE MERIDIAN.
Natural Sines.

M.
0
1
2
3
4
5
6
7
8
9
10

$\overline{645 \div 36} \overline{658471} \overline{671505} \overline{684335} \overline{696957} \overline{709366} 721559733532 \overline{7452 \times 2756805} 49$

 $645902659127672151684971697582709981722163734125745864757375 \quad 46$ $646124659346672367685183697790710185722364734323746057757565 \quad 45$ $\begin{array}{lllll}646346659565672582685395687999710390722565734520746251757755 ~ & 44\end{array}$ $\begin{array}{llll}646568659783672797685607698: 07710595722766734717746445757945 ~ & 43\end{array}$

 $647233660439673443686242698832711209723369735309717025758514 \quad 40$
647455664657673658686453699040711413723570735506747218758703

 648120661312674302687088699663712026724172736097747798759271 36

 $\overline{649669} \overline{662838} \overline{675805} \overline{688566} \overline{701117} \overline{713454} \overline{725575} \overline{737474} \overline{749148} \overline{760595}-29$
 650111663273676233688987701531713862725975737867749534760972 650332663491676448689198701739714066726175738063749726 761161 6 อั0553663709 676662689409701946714269726375738259749919761350 650774663926 676376,689620702153714473726575738455/750111761538 650995664144 677090689830702360714676726775738651/750303761727 651216664361677304690041702567714880726974738848750496761915 651437664579677518690251702774715083727174739042750688762104 651657664796677732690462702981715286727374739239750880762292 $\overline{651878} \overline{665013} \overline{677946} \overline{690672} \overline{703188} \overline{715490} \overline{727573} 739435 \overline{751072762480}$ 652098665230678160690882703395 715693727773739631751264762668 652319,665448678373691093703601715896727972739827751456762856 652539665665678587691303703808716099728172740023751648763044 652760,665882678801691513704015716302728371740218751840763232 652980 666099679014 691723704221716505728570740414752032763420 653200666316679228691933704428716708728769740609752223763608 653421666532679441692143704634716911728969740805752415763796 653641666749679655632353704841717113729168741000752606763984 653861 666966, 679868; 692563705047717316729367741195752798764171
654081 667183 680081 692773 705253 717519729566 741391 752989761359 654301667399680295692983705459717721729765741586753181764547 654521667616680508693192705665717924729963741781753372764734 654741667833680721693402705872718126730162741976753563764921 654961668049680934693611706078718329730361742171753755765109 655180668265681147693821706281718531730560742366753946765296 655400,668482,6813606940307064897187337730758742561754137765483 655620668698 681573694240706695718936730957 742755754328765670 655839668914681786694449706901719138731155742950754519765857 $656059669131681998691658707107 / 719340731354743145754710766044$

270	TABLE XIV. by reduction										
Natural Sines.											
M.	50°	51°	52°	53°	54°	55°	56°	57°	58°	59°	M.
0	. 66044	$\overline{77146}$	$7 \bigcirc 8011$	798636	809017	819152	8×9038	838671	848048	557167	60
1	766231	777329	788190	798811	809188	819319	829200	838829	848202	857317	59
2	766418	777512	788369	798985	809359	819486	829363	838987	848356	857467	58
3	766605	777695	788548	799160	869530	819652	829525	839146	848510	857616	57
4	766792	77i878	788727	799335	809700	819819	829688	839304	848664	857766	56
5	766979	778060	788905	799510	809881	819985	829850	839462	848818	857915	55
6	767165	778243	789084	799685	810042	820152	830012	839620	848972	858065	54
7	767352	778426	789263	799859	810212	820318	830174	839778	849125	858214	53
8	767538	778608	789441	800031	810383	820485	830337	839936	849279	858364	52
9	767725	778791	789620	800208	810 553	820651	830499	840094	849433	858513	51
10	767911	778973		800383	810723	820817	830661	840251	849586	858662	50
11	768097	779156	789977	800557	810894	820983	830823	840409	84	55811	49
12	768284	779338	790155	800731	811064	821149	830984	840567	84989	S58960	48
13	768470	779520	790333	800906	811234	821315	831146	840724	850046	859109	47
14	768656	779702	790511	801080	811404	821481	831308	840882	850199	859258	46
15	768842	779884	790690	801254	811574	821647	831470	841039	850352	859406	45
16	769028	780067	790868	801428	811744	821813	831631	841196	850505	859555	44
17	769214	780249	791046	801602	811914	821978	831793	841354	850658	859704	43
18	769400	780430	791224	801776	812084	822144	831954	841511	850811	1859852	42
19	769585	780612	91401	801949	812253	822310	832115	841668	850964	860001	41
20	769771	780794	791579	802123	812423	822475	832277	841825	851117	860149	40
21	769957	780976	91757	802.297	812592	822641	83243	841982	8512	860297	39
22	770142	781157	791935	802470	812762	822806	832599	$84: 139$	851422	860446	38
23	770328	781339	792112	802644	812931	822971	832760	842296	851575	860594	37
24	770513	781520	792290	802817	813101	823136	832921	842452	851727	860742	36
25	770699	781702	792467	802991	813270	823302	833082	842609	851879	860890	35
26	770884	781883	792644	803164	813439	823467	833243	842766	852032	861038	34
27	771069	782065	792822	803337	813608	823632	833104	842922	852184	/861186	33
28	771254	782246	792999	803511	813778	823797	833565	843079	852336	861334	32
29	771440	782427	793176	803684	813917	823961	1833725	843235	852488	861481	31
30	771625	782608	793353	803857	814116	824126	833886	843391	852640	861629	30
31	771810	78278	793530	804030	814284	824291	834046	843548	852792	861777	29
32	771995	782970	793707	804203	814453	824456	834207	843704	852944	861924	28
33	772179	783151	793881	804376	814622	824620	834367	843860	853096	862072	27
34	772364	783332	791061	80454 S	814791	824785	834527	844016	853248	862219	26
35	772549	783513	794238	804721	314959	S24949	834688	844172	853399	862366	25
36	772731	783693	794415	804894	815128	825113	834848	844328	853551	862514	24
37	772918	783874	794591	805066	815296	825278	835008	844484	853702	862661	23
38	773103	784055	794768	805239	815465	325442	835168	844640	853854	862808	22
39	773287	784235	794944	805411	815633	825606	835328	844795	854005	862955	21
40	773472	784416	795121	805584	815801	825770	835488	844951		863102	20
41	773656	784596	795297	805756	815969	825934	8 835648	845106	8543		19
42	773840	781776	795473	805928	816138	826098	835807	845262	854459	863396	18
43	774024	781957	795650	806100	816306	826262	835967	845417	854610	'863542	17
44	774209	785137	795826	806273	816474	826426	836127	845573	854761	863689	16
45	774393	785317	796002	806445	816642	826590	836286	845728	854912	863836	15
46	774577	785497	796178	806617	81 ¢809	826753	¢36446	845883	855063	863982	14
47	7747617	785677	796354	806788	816977	826917	836605	846038	855214	864128	13
48	774944	785857	796530	806960	817145	827081	836764	846193	855364	864275	12
49	775128	786037	796706	807132	817313	827244	836924	846348	855515	864421	11
50	775312	786217	796882	807304	817480	827407	837083		855665	864567	10
51	775496	786396	797057	807475	817648	827571	837242			864713	9
52	775679	78657	797233	807647	817815	827734	837401	846813	855966	864860	8
53	775863	786756	797408	807818	817982	827897	837560	846967	856117	865006	7
54	776046	786935	797584	807990	818150	828060	837719	847122	856267	865151	6
55	7762307	787114	797759	808161	818317	828223	837878,	847277	856417	865297	5
56	7761137	787294	797935	808333	818484	828386	838036	847431	856567	865443	4
57	7765967	787473	798110	808504	818651	828549	838195	847585	856718	865589	3
58	7767807	787652	79828:5	808675	818818	828712	838354	847740	856868	$8 \mathrm{BLS}^{\circ} 5734$	2
59	776963	787832	798460	808846	818985	828875	838512	847894	857017	865880	1
60	777146	788011		809017	819152	829038	838671	848048	857167	866025	0
M.	39°	38°	37°	36°	35°	34°	33°	32°	31°	30°	M.
					atural	Co-sine					

TO FIND LATITUDE BY REDUCTION TO THE MERIDIAN.
Natural Sines.

M.	60°	61°	62°	63°	64°	65°	66°	67°	1. 68°	69°	M.
0	5660:25		882448	891007	898794	906308	\$13545	J		0	60
1	8661718	874761	883084	481139	898922	906431	913664	920618	92729	933685	59
2	866316	874902,	883221	891270	899049	906554	913782	920732	927402	933789	58
3	866461	875042	883357	891402	899176	906676	,913900	920846	927510	,933893	57
	866607	875183	883492	891534	899304	906799	914018	920959	927619	933997	56
5	866752	875324	883629	89166	899431	906922	914136	921072	9277	'934101	55
6	869897	875465	883766	¢91798	899558	907044	$1{ }^{\text {d }}$	921185	, 927836	934204	54
7	867042	875605	883902	891929	899685	907166	914372	921299	927945	934308	53
8	86718			89206	993812	9072	1449	921412	9280	934412	52
9	86733	8758		89219	899939					934515	51
10	367476	876026	884309	892323	9900065					934619	50
11	867611	876167	88	89.4455	20					2	49
12	8677658	876307	884581							934826	48
13	867910	876447	881717	892717,	, 900445	907899	915077	921976	92859	934929	47
14	8880ご	76587	384852	89284	900572	90802	915191	922088	92870	935032	46
15	868199,	8767278	884988	8929	,900698		915311	922201	92881	935135	45
16	868313	876867	885123	893110	, 900825	90826 5	915429	922313	928917	935238	44
17	868487,	877006	885258	893241	900951	908387	915546	922426	929025	935341	43
18	868632	77146	885394	89337	901077	908508	915663	922538	92913	935444	42
19	868176,	877286	885529	89350	1203	908636	915779	922650	929240	935547	41
20	868920	877425	885664					922762		935650	40
21	869	37755	8		5	90	-		929455	2	39
22	86920	37704	88593	8938	901581	90899	916130	92: 2986	929 ธ	935855	38
23	369351	877844	8606	894024	901707	909115	16246	923098	9296	935957	37
24	86919	8779838	8862	89		909236	916363	923210	92	936060	36
25	8696398	8781228	886338	89428	901958	909357	916479	923322	92988	986162	35
26	869782	878261	886473	894415	902084	909478	918595	923434	92999	936264	34
27	869926	878400	8866	894545	902209	909599	916712	92	930	936366	33
28	870069	8785398	883742	89467	-2335	909720	91682	9236	93020	936468	32
29	8702128	878678	886876	894805	902460	909841	916944	923768	930311	936570	31
30	870356		887011				917060			936672	30
31	870	89	887145	895064	90271	91008:	917176	923991	930524	936774	29
32	87064	909	,	5019	O283	910202	17292	924102	930631	936876	28
33	870785	879233	887413	895323	902961	910323	917408	924213	930737	936977	27
34	870928	879372	887548	395453	903086	910443	917523	924324	930843	937079	26
35	871071	879510,8	887681	895532	903210	910563	917639	$92443{ }^{\text {j }}$	930950	937181	25
36	S71214	8796498	887815	895712	903335	91) 1084	917755	924546	931056	937282	24
37	871357	$87978{ }^{-1}$	887919	895841	90346	910804	917870	92465	931162	937383	23
38	8714998	879925	888033	895970	903585	910921	917986	924768	931268	937485	22
39	8716428	8810038	888217	896099	903705	911044	918101	924878	93137	937586	21
40	871781	880201	888350	896229	90383		18216	924989	931480	937687	20
41	87										19
42	8520698	8804.78	888617		004083	$9114(53$	18446	925210	93169	937889	18
43	872212	8806158	888751	896615	904207	911523	918501	925320	931797	937990	17
44	872354'	\$80753	888834	396744	204331	911643	918676	925430	931902	938091	16
45	872496	880891	889017	896873	904455	911762	918791	925.541	932008	938191	15
46	8726388	881028	889150	897001	904579	911881	918306	$9 \cdot 25651$	932113	938292	14
47	872780	881166	889283	897130	904703	912001	919021	$925 \div 1$	932219	938393	13
48	872922	881303.	889416	897258	901827	912120	919135	925871	932324	938493	12
49	873064	881441	989.549	897387	904951	912239	919250	925930	93242	938593	11
50	873206	881578	889682	897515			9192	926090		938691	10
51	873										9
52	37318	81053	889948	39777	905322	912596	919593	92631	9327	38894	8
53	8736318	881990	8900s0	,397300	900415	912715	919707	926419	932849	938994	7
54	8737728	8821278	890213	898028	905569	912834	919821	926529°	932954	939094	6
55	873914	82264	890315	898156	905692	912953	919936	926838	933058	939194	5
56	874055	882401	390478	898283	905815	913072	9200 50	926747	933i 63	939294	4
57	874196	882538	890810	, 898411	905939	913190	920164	926857	933267	939394	3
58	874338,	,882674	890742	898539	906062	913309	920277	926966	933372	939493	2
59	874479	882811	890874	898666	906185	913427	920391	927075	933476	939593	1
60	874620	882948	891007	898794	906308	913515	920505	927181	933580	939693	- 0
M.	29°	28°	27°	26°	25°	24°	23°	22°	21°	20°	

Natural Co-sines.

TABLE XIV.

TO FIND LATITUDE BY REDUCTION TO THE MERIDIAN.
Natural Sines.

м. $\left|19^{\circ}\right| 18^{\circ}\left|17^{\circ}\right| 16^{\circ}\left|15^{\circ}\right| 14^{\circ}\left|13^{\circ}\right| 12^{\circ}\left|11^{\circ}\right| 10^{\circ}$
to find latitude by reduction to the meridian.
Natural Sines.

M.
0
1
2
3
4
5
6
7
8
9

 $981858987731990309992582,994552996220997581998645,99940199935$
 999858
999863 985009, 987870990429992687994643996295997645998690999431 985059,987915990469992722994673996320997664998705999441 985109 987950 090509 992757 994703996345997684998719999450 999867 999872 $985159988000^{-1} 990549992792994733996370997704998734999460$ 985209988050990589992827994762996395997724998749999469 $98525998809499062999286299179 亡 996419$,997743 998763 999479 985309988139990669 992896991822996444997763998778999488 99987 939881 999886 999890 ¢9989459
$\overline{985358} \overline{988181} \overline{990708} \overline{992931} 994851$ 996468 997782 998792 צ99497
49989 $\overline{8}$ 98510S 988228990748992966991881996493997801998806999507 985457 988273990787 993000 994910096517997821998820,999516 98550798831799082799303498493999654199784 (998834999525 985556988362900866993086994969996505997859998818999534 985605988406990905933103994998996589997878998862999542 985̈654988150 990944993137 995027 996614997897 998876 999551 985703988494990983993171995056990637 997916 998890 999560 999903 999907 999910 999914 999918 9857529835389910229932059950819966 C 1997931 998904 999568 9999:2 999925 985801988582991061 993238 995113996685997953998917999577 $98585098862690110099327290514 ะ 996749997972998931995$ 9995を 985899988669991138993306995170996732997990998944999591999939 985947988713991177993339995199996756998008098957999602999992 985996988756091216,993373995227996779998027998971999610 936045988800991254993406995256996802998045998984999618 986093988813991292993439995284996825998063998997899026 999915 999918 $986141988886991331993473995312996848998081999010999634 \mid 999954$ 986189988930991369993506995340956872998099999023999642 98623898897 s 991407 993539 995368996894993117999035999650 986286989016991445993572995396996917998135 999048999657 999962

999962
$999044-29$ 986381989102991521993638995452996963998170999073999672999967
 999969 999971 999974
999976 986525989230991634993735995535997030998223999111,999694 986572989272991671993768995562997053998240999123999701 986620989315991709 993800 99558999707599825799135999709 986G67 989357 991746 993833 995617 997097 998274999147999716 999978 999980 999931 999983 $986762,989442,991820993897,995671997141998308999171999729$ 9ช6809 989481991857993929995698997163998325999183999736 986856989526991894 993961995725997185998342999194999743 986903989568,991931 993993 995752,997207998859999206999749 986950,98961099196899102599577,997229998375999218999756 986996989651 992005 994056 995805 997250998392999229999762 987043, 989693, 992042 991088 995832997272998408903240999768 987090989735992078994120995858997293998425999252999775 987136,989776992115994151 995881997314998441 999263999781 987183989818992151991182995911997336998457999274999787 $98722998985999218799421499593799735 \overline{7} 998173999285999793$

999985
999986 999988 999989 999990 999992 999993 13 $999994 \quad 12$ 999995 11 $999996 \quad 10$
 987322 9899429922C0994276,995989 997399,998505 999307999804 999997 957368989983,992296 994307, 996015997420998521999318999810 $987414990024992332991338,996041997441,998537999328,999816$ 987460990065992368991369996067997462998552999339 999821 999998 999998 999999 987506990105992404 $994400996093,997482998568999350999827.999999$ $987551990146992439994430996118,997503,9985839993609998321000000$ 987597990187992475994461996144,9975239985999993709998371000000 9876439902289925119944919961699975449986149993819998431000000 $95768899026899254699452 \overline{2} 995195997549986309993919998481000000$8
8
7
6
5
4
3
2
1
0

FOR FINDING THE DISTANCE OF TERRESTRIAL OBJECTS AT SEA.

Height in Feet.	Distance in Miles.	Height in Feet.	Distance in Miles.	Height in Feet.	Distance in Miles.
1	1.15	85	10.6	660	29.5
2	1.62	90	10.9	680	30.0
3	1.99	95	11.2	700	30.4
4	2.30	100	11.5	720	30.8
5	2.57	105	11.8	740	31.2
6	2.81	110	12.1	760	31.7
7	3.04	115	12.3	780	32.1
8	3.25	120	12.6	800	32.5
9	3.45	125	12.8	820	32.9
10	3.63	130	131	810	33.3
11	3.81	135	13.3	860	33.7
12	3.98	140	13.6	880	34.1
13	4.14	145	13.8	900	34.5
14	4.30	150	14.1	920	34.8
15	4.45	160	14.5	940	35.2
16	4.60	170	15.0	960	35.6
17	4.73	180	15.4	980	36.0
18	4.87	190	15.8	1000	36.3
19	5.01	200	16.2	1100	38.1
20	5.14	210	16.6	1200	39.8
21	5.26	220	17.0	1300	41.4
22	5.39	230	17.4	1400	43.0
23	5.51	240	17.8	1500	44.5
24	5.62	250	18.2	1600	46.0
25	5.74	260	18.5	1700	47.3
26	5.86	270	18.9	1800	48.7
27	5.97	280	19.2	1900	50.1
28	6.08	290	19.6	2000	51.4
29	6.18	300	19.9	2100	52.6
30	6.30	310	20.2	2200	53.9
31	6.40	320	20.6	2300	55.1
32	6.50	330	20.9	2400	56.2
33	6.60	340	21.2	2500	57:4
34	6.70	350	21.5	2600	58.6
35	6.80	360	21.8	2700	59.7
36	6.90	370	22.1	2800	60.8
37	6.99	380	22.4	2900	61.8
38	7.09	390	22.7	3000	63.0
39	7.17	400	23.0	3100	64.0
40	7.27	410	23.3	3200	65.0
41	7.36	420	23.5	3300	66.0
42	7.44	430	23.8	3400	67.0
43	7.54	440	24.1	3500	68.0
44	7.62	450	24.4	3600	69.0
45	7.70	460	24.6	3700	69.9
46	7.79	470	24.9	3800	70.9
47	7.88	480	25.2	3900	71.7
48	7.96	490	25.4	4000	72.7
49	8.0	500	25.7	4100	73.6
50	8.1	520	26.2	4200	74.4
55	8.5	540	26.7	4300	75.4
60	8.9	560	27.2	4400	76.2
65	9.3	580	27.7	4500	77.0
70	9.6	600	28.1	4700	88.8
75	9.9	620	28.6	5000	81.2
80	10.3	610	291	1 mile	83.5

dip of the horizon-at different distances from the observer.

Distance of Land in Miles.	HEIGHT OF THE EYE IN FEET.									
	5	10	15	20	25	30	35	40	45	50
$\begin{gathered} \mathrm{Mr} \\ 0.1 \end{gathered}$	28	56	84	112	140	166	197	225	256	280
0.2	14	28	42	56	70	85	99	113	126	140
0.3	9	19	28	37	47	56	65	75	84	93
0.4	7	14	21	28	35	42	49	56	63	70
0.5	6	11	17	22	28	34	39	45	50	56
0.6	5	9	14	19	23	28	33	37	42	47
0.7	4	8	12	16	20	24	28	32	36	40
08	4	7	10	14	17	21	25	28	31	35
0.9	3	6	9	12	15	19	22	25	28	31
1.0	3	6	8	11	14	17	20	23	25	27
1.2	3	5	7	9	12	14	16	19	21	23
1.4	3	4	6	8	10	12	14	16	18	20
1.6	3	4	5	7	9	11	13	14	16	18
1.8	2	3	5	6	8	10	12	13	14	16
2.0	2	3	5	6	7	9	11	12	13	15
2.2	2	3	5	6	7	8	10	11	12	14
2.4	2	3	5	6	7	8	9	11	12	13
2.6	2	3	4	5	6	8	9	10	11	12
2.8	2	3	4	5	6	7	8	9	10	11
3.0	2	3	4	5	6	7	8	8	9	10
3.5	2	3	4	5	6	6	7	8	9	9
4.0	2	3	4	4	5	6	7	7	8	8
4.5	2	3	4	4	5	5	6	6	7	8
5.0	2	3	4	4	5	5	6	6	7	7
6.0	2	3	4	4	5	5	6	6	7	7
7.0	2	3	4	4	5	5	6	6	7	7

table, Showing the nember of minetes and seconds contained in EACH DEGREE OR 60 miles of LONGITUDe for every degree of Latitude.

LAT.	MIN. SEC.								
\bigcirc	, "	\bigcirc	' "	\bigcirc	' "	-	, "	\bigcirc	, "
1	59.59	19	56.44	37	47.55	55	34.25	73	17.33
2	59.58	20	56.23	38	47.15	56	33.30	74	16.33
3	59.55	21	56.00	39	46.38	57	32.41	75	15.31
4	59.51	22	55.38	40	45.58	58	31.48	76	14.31
5	59.46	23	5514	41	45.17	59	30.54	77	13.30
6	5940	24	54.49	42	44.35	60	30.00	78	12.28
7	59.33	25	54.23	43	43.53	61	29.06	79	11.27
8	59.25	26	53.56	44	43.10	62	28.10	80	10.25
9	59.16	27	53.28	45	42.26	63	27.15	81	9.24
10	59.06	28	52.59	46	41.41	64	26.18	82	8.21
11	58.54	29	52.29	47	40.55	65	2522	83	7.19
12	58.41	30	51.58	48	40.09	66	24.24	84	6.16
13	58.28	31	51.26	49	39.22	67	23.26	85	5.14
14	5814	32	50.53	50	38.44	68	22.28	86	4.12
15	57.58	33	50.19	51	37.46	69	21.30	87	3.09
16	57.41	34	49.45	52	36.57	70	20.31	88	2.02
17	57.23	35	49.09	53	36.07	71	1932	89	1.03
18	57.04	36	48.33	54	35.13	72	18.33	90	0.00

TABLE XVI.

LOGARITHMS FOR COMPUTING THE EQUATION OF EQUAL ALTITUDES.

Inter- val.	$\log A \mid \log B$	
$\mathrm{~h} . \mathrm{m}$.		
2	07.7297	7.7146
27.7298	7.7143	
4	7.73007 .7139	
6	7.73027	7136
87.73047 .7132		
107.73057 .7128		
127.73077 .7125		
147.73097 .7121		
167.73117 .7117		
187.73137 .713		

$\overline{2 \quad 207.73157 .7109}$ 227.73177 .7105 247.73197 .7101 267.73217 .7097 287.73237 .7092 307.73257 .7088 327.73277 .7083 347.73297 .7079 367.73317 .7075 387.73337 .7070
$\begin{array}{ll}2 & 40 \\ 7.7336 \\ 7.7065\end{array}$ 427.73387 .7061 447.73407 .7056 467.73 ± 27.7051 487.73457 .7046 507.73477 .7041 527.73497 .7036 547.73527 .7031 567.73547 .7026 587.73577 .7021
$3 \quad 47.73597 .7015$ 27.73627 .7010 47.73647 .7005 67.73677 .6999 87.73697 .6993 107.73727 .6988 127.73747 .6982 147.73777 .6976 $167.738(7.6970$ 187.738376964
$\begin{array}{ll}3 & 20 \\ 7.7386 \\ 7.6958\end{array}$ 227.73887 .6952 247.73917 .6946 267.73917 .6910 287.73977 .6934 307.74007 .6927 327.740376021 347.74067 .6914 367.74097 .6908 387.74127 .6901
$3 \quad 407.74157 .6894$ 427.74187 .6888 44774217.6881 467.74247 .6874 487.74287 .6867 507.74317 .6859 52774347.6852 547.74377 .6845 567.741176838 587.74447 .6830 $4 \quad 07.74477 .6823$

Inter- val.	Log A	Log B
h. m.		
40	7.7447	7.6823
	7.7451	7.6815
	7.7454	7.6807
	7.7458	7. 6800
	7.7461	7.6792
	7.7464	7.6784
	7.7468	7.6776
	7.7472	7.6768
	7.7475	7.6759
18	7.747	7.6751

$4 \quad 207.74827 .6743$ 227.74867 .6734 247.74907 .6726 267.74947 .6717 287.74977 .6708 307.75017 .6700 327.75057 .6691 347.75097 .6682 367.75137 .6673 387.751776663
\qquad
4
$5 \quad 07.756: 7.6556$ 27.75667 .6546 47.75707 .6536 67.75757 .6525 87.75797 .6514 107.75837 .6504 127.75887 .6493 $147.759 \cdot 7.6482$ 167.75977 .6471 187.76017 .6460
$\begin{array}{lll}5 & 207.7606 \\ 7.6448\end{array}$ 227.76107 .6437 247.76157 .6425 267.76207 .6414 287.76247 .6402 307.76297 .6390 327.76347.6378 317.76387 .6366 367.76437 .6354 387.76487 .6342
$5 \quad 407.76537 .6329$ 427.76587 .6317 447.76637 .6304 $467.7668 / 7.6291$ 487.76737 .6278 507.76787 .6265 527.76837 .6252 547.76887 .6239 567.76937 .6225 $58,7.76987 .6212$
$\begin{array}{ll}6 & 07.77037 .6198\end{array}$

\section*{| $\begin{array}{c}\text { Inter- } \\ \text { val. }\end{array}$ | $\log A$ | $\log B$ |
| :---: | :---: | :---: |} h. m.

| 6 | $0,7.7703$ | 7.6198 |
| :--- | :--- | :--- | :--- | 27.77087 .6184 47.77137 .6170 67.77197 .6156 87.77247 .6142 107.77297 .6127 127.773576113 147.77407 .6098 167.77457 .6083 187.77517 .6068

$6 \quad 207.77567 .6053$ 227.77627 .6038 247.77677 .6023 267.77737 .6007 287.77797 .5991 30777847.5975 327.77907 .5959 347.77967 .5943 367.78017 .5927 387.78077 .5910
$6 \quad 40 \overline{7.7813} 7.5894$ 427.78197 .5877 447.78257 .5860 467.7831 7. 5843 487.78367 .5825 507.78127 .5808 527.78487 .5790 547.78547 .5772 567.78607 .5754 587.78677 .5736
$7 \quad 47.78737 .5717$ 27.78797 .5699 47.78857 .5680 67.78917 .5661 87.78987 .5641 107.79047.5622 127.79107 .5602 147.79167 .5582 167.79237 .5562 187.792975542
$7 \quad 7 \quad 7.7036$ 227.79427 .5501 247.79497 .5480 267.79557 .5459 287.79627 .5437 307.79697 .5416 327.79757 .5394 347.79827 .5372 367.79897 .5350 387.79957 .5327
$7 \quad 407.80027 .5304$ 427.80097 .5281 447.80167 .5258 467.80237 .5234 487.80307 .5211 507.80377 .5186 527.80147 .5162 547.80517 .5137 567.80587 .5112 587.80657 .5087
$8 \quad 07.80727 .5062$

$\overline{8 \quad 20} \overline{7.8140} \overline{7.47 ゃ 9}$ 227.81537 .47 CO 247.81607 .4731 267.816874701 287.81767 .4671 307.81837 .4640 327.81017 .460 347.81997 .4578 367.82067 .4516 387.82147 .4514
$8 \quad 4 0 \longdiv { 7 . 8 4 2 2 } 7 . 4 4 8 2$
427.82307 .4449
$447.82: 87.4415$
467.82467 .4381
48782547.4347 507.82627 .4312 52782707.4277 547.82787 .4241 567.82867 .4200 587.82947 .4168
$\overline{9} \quad \overline{7.8302} \overline{7.4131}$ 27.83117 .4093 47.83197 .4055 $67.83: 87.4016$ 87.83367 .3977 107.83447 .3937 $127.83537 .38 \pm 6$ 147.83617 .3855 167.83707 .3813 18783787.3771
$\begin{array}{llll}9 & 20 \\ 7.8387 & 73728\end{array}$ 227.83967 .3684 $247.84047 .36 \leq 9$ 267.84137 .3591 287.84227 .3548 307.84307 .3501 327.84397 .3454 347.84487310 し 367.84577 .3557 387.84667 .3307
$\overline{9 \quad 40} 7.84757 .3256$ 427.84847 .320 ธ 447.84937 .3152 467.85027 .3099 487.85117 .3045 507.85207 .2989 527.85307 .293 C 547.853972876 567.85487 .2817 587.85587 .2758 10

TABLE XVII.
log rising-To find the latitude by reduction to the meridian.
0 Hour.

M.	0s.	5 s.	10s	15 s	20s.	25 s .	30s.	35 s .	40s.	45 s .	50s.	55s.	P. P.
0	9. 078				02	21	37654	4	6	72873	8:024	90303	
1	${ }_{0}^{9} .97860$	04813	1250	17242	22	281	3	775	42230	46368	50509	54370	
2	0.58066	61612	65019	68297	71	74503	774	80296	83054	85726	88319	90837	
3	1.93284	95661	97980	00236	0243	045	066	08717	10714	12666	145	6443	
4	1.18271	20062	21817	23537	25224	26878	28502	30095	31660	33198	34708	36193	
	1.37 c 5	39088	,	110	4325	4405	45931	17237	48524	9192	1041	2273	
6	5348						-0140	1					
7	66							7382	74778	75	66	565	
	784	(93	2	811	32019	\$2881	837	45	85	8625		7896	
9	8870				91862	92634	93	94157					
10	$\frac{1}{2} .9785$	9857	19289	9999	00701	01399	02091	0.77i	03458	04134	0480	U5470	
11	2.06131	06786	7437	08082	18723	09359	09991	10618	11240	1185	12472	13082	
12	13687	14288	14895	15477	1606	16651	17232	17809	1838	18951	1951		$2{ }^{2} 238$
13	20638	21192	21744	22292	22830	23377	23915	24449	24980	25508	2603	26554	
14	2707	2758	28	609	2911	290		-		1	-	-25-2	
15	2.3306	33544	340	34	34	-	35910	36376	36839	37299	3775	38213	
16	38667	39118	39567	40013	40457	40899	41339	11776	42211	42644	13075	43504	
17	43930	4435	4477	45198	45616	46033	46447	16859	17270	17678	4808	48190	
18	48893	49294	19693	50090	50486	50879	51271	51661	52050	52436	52821	53205	$3{ }^{3}$
19	53586	53966	5434	54721	55096	55469	55841	56211	56580	$\overline{5694}$	57313	57676	
	2.5803									c1234		9̇9	
21	6227	,	62960	63302	63641	63979	64316	64652	64987	65320	65652	65982	$1{ }^{1} 65$
22	66312		6967	67202	6761	67910				69221		-5	130)
23	701				71418	71		231	72619	7251	73258	73561	
24	73							5917					260

$\overline{2.77405} \overline{77694} \overline{77982} \overline{75269} \overline{78555} \overline{78840} \overline{79124} \overline{79407} \overline{79689} \overline{79970} \overline{30251} \overline{30530}$ s 8080981086813638163981914821888246182734830058327683546838151 $8408384350,846178488385148,854128567585937 / 861998646086720869792$ 8723887496877538800988265885198877389027892798953189782900323 9028290531907799102791273 91520 $917659201092254|92497| 9273992981 \mid 4$
$\overline{2.93223} \overline{93463} \overline{93703} \overline{93942} \overline{94181} \overline{94419} \overline{94656} \overline{94893} \overline{55129} \overline{95364} \overline{95599} \overline{95833}$ s 96067 9629996532 9676396994972249745497683979129814098367985941
$\frac{2}{3} .9882090(459927009495997199994200164003860060800 \triangleleft z y 0104901269$
3.0148801707019250214302360025760279203008032220343703651038643 0407704289045010471204922051330534205551057600596806176063831
$3.06590 \overline{06796} 07001072070741107616078190502308225084280862908831$ $09032092320943209632098311002910227|10425| 106221081911015112111$ $11406116011179611990|12184123771257012762129541314613337135027| 2$ $137181390814097|14286| 144751466314850|15038| 15225|15411| 15597|15783| 3$ $15969161541633816522|16706168891707217255174371761917800179824| 154$
3.18162 $1834318522 / \overline{18702} 1888119060102381941719594197711994920125$

$\overline{3.28363} \overline{28524}-28683 \overline{28843} \overline{29002} \overline{29101} \overline{29320} 29478 / \overline{29037} \overline{29191} \overline{29952} \overline{30109} /$ s $30266304233057930735|3089131047| 31202|31357| 31512316663182031974 \mid 1$ $32128322813243432587|3273932892| 330443319533347|334983364933800| 2$ 3395034100 $34250344003454934698348473499535144352923543935587 / 3$ 3573435881 '36028 $3617536321364673661336758|36903| 37048 \mid 37193373384$
 3919539336394773961839759398994003940179403194045840597407361 4087541013411524129041427415654170241839419761211342950423862 4252242658427944292943064431994333443469436034373743871440053

$\overline{3.45724} \overline{45855} \overline{45986} \overline{16116} \overline{46247} \overline{46377} \overline{46507} \overline{46636} 46766 / 46895 / \overline{47024} \overline{47153}$ s 4728247410475391466747795379234805048177483054843248558486851 4881148938 19064 $4919019315|494414956549691| 198164994150066501902$ $5031450438-505625068650809509335105651179513015142451547516693$

LOG RISING-TO FIND THE LATITUDE BY REDUCTION TO THE MERIDIAN.

1 Hour.

M.	
0	3
1	
2	
3	
4	

$\overline{3.6015260262} 60373604836059367636081360923610326114361251613 \div 0$ 614696157861686017956190362012621206222562336624436255162659 62766 62873, 6298063087 63194, 6330163407 635136362063726,6383263935 64043641496425464360644656457061675647806488564989,6509465198 65302,6540665510656146571765821659246602866131662346633766440
3.665426664566747658496692267054671566725767359674616756267663 677656786667967680676816868269683696846968570686706877068870 68909690696916969268,6936769467695666966569763698626996170059 7015870256703547045270550706487074570843709407103871135071232 $71329,714267152371620717167181371909720057210172197 / 7229172389$
$\overline{3.72485} \overline{72580} \overline{72676} \overline{72771} \overline{72367} \overline{72962} \overline{73057} \overline{73152} \overline{73247} \overline{73341} \overline{73436} \overline{73530}$ 7362 T 37107381373907740017409574189,7428374376744707456374657 747507484374936750297512175214753077539975491755817567675768 7586075952760437613576227 76318764097650176592766837677476865 76955770467713777227 77318 77408774987708877678777687785877947
$\overline{3.78037} \overline{78127} \overline{78216} \overline{78305} \overline{78395} \overline{78481} \overline{78573} \overline{78662} \overline{78750} \overline{78839} \overline{78928} \overline{79016}$ 791957919379282793707945879546796317972279809798977998580072 80159 80247 80334804218050 S 805958068280768 S0855 809428102881115 $81201812878137381459815458163181717 \mid 818028188881974,8205982144$ 82230,8231582400824858257082655827398282482908829938307783162
$\overline{3.83246} 83334834148$ 83498 8358283666837498383383917840008408384167 $84250843338441684499,84582,84665817488483084913849958507885160$ $8524285325854068548885570856528573485816858978597986060861 \star 1$ 862238630486385864668654786628867095679086870869518703187112 8719287272 S7352 87433875138759387672 87752 87832879128799188071
$3.8815088229 \quad 88309883888846788546866258704887838886288940,89019$ 8909789176892548933389411894898956789645897238980189879 ऽ9956 $90034901129018990267903449042130498905769065 ๊ 3907309080790884$ 90960910379114911909126791313914209149691572916489172491800 918769195292028921049217992255923319240692482925579263292707
$\overline{3.92782} \overline{92858} \overline{92933} \overline{93007} \overline{9308^{2} 2} 93157,93232 \overline{93306} \overline{93381} \overline{93456} 93530 \overline{93605}$ 93'゙799375393827 939019397594049941239419794271943459441894492 945669463994712947869485994932950059507895152952249529795370 95443955159558895661 95733 9580695878,9595096023960959616796239 963119638396455965279659996670967429681396885909569702897099
 980219809198162982329830298372984439851398583986539872398793 988629893299002990729914199211992809935099419994889955799627 $3 / 499696997659983499903999720004000109001780024700315,0038400452$ $4.00521005 S 900657007260079100862009300099801066011310120201270$
 $021460221302280|02347| 024140248102547|026140268102717| 0281402880$ $02947,0301303080,031460321203278033440341103477035420360803674$ 037400380603871039370400304068041340419904265043300439504460 045260450104656047210478604851049160498005045051100517505239
4.05301 $\overline{05368} \overline{05433} \overline{05497} \overline{05561} \overline{U 5626} \overline{05690} \overline{05754} \overline{05818} \overline{U 5882} \overline{05946} 06010$ 060740613806202062660633006393064570652106581066480671106775 06838,0690106965070280709107154072170728007343074060746907532 $075950765707720: 077830781507908079700803308095081570822008282$ 083440840608468085300859208654087160877808840089020896109025 4.09087 $09148 \overline{09210} \overline{09272} \overline{09333} \overline{05394} \overline{09456} \overline{09517} \overline{09578} \overline{09640} \overline{09701} \overline{09762}$

 112751133511395114551151511575116341169411754118131187311932 119921205112111121701222912289 1234812407124661252512584126434

LOG RISING-TO FIND THE LATITUDE BY REDUCTION TO THE MERIDIAN.

2 Hours.

1888318938 18:52 1904 19101 191561921019260 19019 1937319427$\overline{4.19482} \overline{19536} \overline{19590} \overline{19644} \overline{19698} 19152 \overline{19806} \overline{19860} 19914$ 19968 20022 20075

 $21409214612151421567|21620| 21673|21725| 2177821831|21883| 2193621988$

 $23290 \cdot 23342 \cdot 23393 \cdot 2344523496|23545 \cdot 23599 \cdot 23651 \quad 23702| 237542380523856$ $23907 \cdot 23959 \cdot 24010 \cdot 24061|24112| 24163|24214| 2426524316 \mid 24367 / 2441824469$

$4.25731 \overline{25781} \overline{25831} \overline{25881} \overline{25931} \overline{25981} \frac{26031}{26051} \frac{26131}{26181} \frac{26231}{26281}$

$\overline{4.28651} \overline{28729}$ 28777 $\overline{28525} \overline{28873} \overline{28921}$ 28963 $\overline{29017} \overline{29066} \overline{29114} \overline{29161} \overline{29209}$

$4.31523 \overline{31569} \overline{31616} \overline{31662} \overline{31709} \overline{31755} \overline{31801848} \overline{31891} \overline{31940} \overline{31987}$ $32079|32125| 32171|32217| 32264|32310| 32356|32402| 32448 \mid 324943254032586$ 32631 32677 $32723 \mid 32769$ 32815 $3286032906|32952| 32997 \mid 330433308933134$ 33180 33225 $33271|33316| 33362|33407| 33453|3349833543| 335893363433679 \mid$

$\overline{4.34265} \overline{34310} \overline{34355} \overline{34400} \overline{34444} \overline{34489} \overline{34534} \overline{34579} \overline{34623} \overline{34668} 34713 \overline{3457}$

 $3639136435|36475| 36522|365653660936653| 36696|36740| 367833632736870$
$\overline{4.36913} \overline{36957} \overline{37000} \overline{37043} \overline{37087} \overline{37130} \overline{37173} \overline{37216} \overline{37260} \overline{37303} \overline{37346} \overline{37385}$

 $3816038502|35545| 38587|38629| 38672|38714| 38757|38799| 38811 \mid 3888138926$ 389683301039052 39095 39137 39179 $392213926339305|39347| 39389394314$

 4096941010 |10

$\overline{4.41950} \overline{41990} \overline{42031} \overline{42071} \overline{42112} \overline{42153} 42193 \overline{42233} \overline{42274} \overline{42314} \overline{42355} 42395$

 438744391443953439934403244072441114415144190442294426944308
4.44348 44387 $\overline{44426} \overline{44465} \overline{44505} \overline{44544} \overline{44583} \overline{44622} \overline{44662} \overline{44701} \overline{44740} \overline{44779} \mathrm{~s}$ $44818448574489644935|4974| 45013450524509145130451694520845247$ $45286453254536345402454414548045518|455574559645634| 4567345712$

s

 s-35
$0 \mathrm{s}$. 5s. $10 \mathrm{~s} .15 \mathrm{~s} .20 \mathrm{~s} .25 \mathrm{~s} .20 \mathrm{~s} .35 \mathrm{~s} .40 \mathrm{~s} .45 \mathrm{~s} . ~ 50 \mathrm{~s} .25 \mathrm{~s}$. P. P
4.127021276112820128791293812996130551311413172132311328913348

 $1882918883|18938| 18992|19047| 19101|19156| 1921019265|19319| 1937319427$

\mathbf{s}				
	11			
2	21			
3	32			
4	32			
8				
2	10			
2	20			
3	31			
4	41		4	
:---	:---			
\mathbf{s}				
1	10	20 29 20		

39 \begin{tabular}{l|l|}
1 \& 10

2 \& 19

\& 1

3 \& 29

\hline

 | 38 138

1 \& 9

 $2 \mid 18$ 28 $4 \quad 37$

11

23

34

46

1 \& 11

2 \& 22

3 \& 33

4 \& 44

\hline
\end{tabular}

TABLE XVII.

LOG RISING-TO FIND THE LATITUDE BY REDUCTION TO THE MERIDIAN.

3 Hours.

M.
0
1
2
3
4
5
6
7
8
9

$0 \mathrm{~s} . \quad 5 \mathrm{~s} .10 \mathrm{~s} .15 \mathrm{~s} .20 \mathrm{~s} .25 \mathrm{~s} .30 \mathrm{~s} .35 \mathrm{~s} .40 \mathrm{~s} .45 \mathrm{~s} .50 \mathrm{~s} .55 \mathrm{~s}$. P. P.
 47127471654720347241472784731647354473924743047467,4750547543 475804761847656476934773147768478064784347881479184795647993 480314806848106481434818048218482554829248330483674840448441 484794851648553485904862748664487014873948766488134885048887
$\overline{4.489: 4} \overline{4 \times 961} \overline{4899 \pi} \overline{49035} \overline{49071} \overline{49108} \overline{49145} \overline{49182} \overline{49219} \overline{49256}$. 493664940349440494764951349550495864962349660496964973349769 498064984249879499154995249988500255006150098501345017050207 5024350279 50316 503525038850424504615019750533505695060550641 506775071450750507865082250858508940093050966510025103851073
$4.51109 \overline{51145} \overline{51181} \overline{51217} \overline{51253} 512 \circ 9, \overline{51324} 5136051396 \overline{51432} \overline{5146751503}$ 515395157451610516465168151717517535178851824518595189551930 5196652001 อั2037 520725210752143521785221352249522845231952355
 $52812528475283252917529525 \div 98753022530.7753092531275316253197$
$\overline{4.53231} \overline{53266} \overline{53301} \overline{53336} \overline{53371} \overline{53405} \overline{53440} \overline{53475} \overline{53510} \overline{53544} \overline{53579} \overline{53614}$
 5406354097 .J4132 541665420154235542695430454338543725440754441 54475 54509 54544 Ј $457854612 \overline{2} 4646546805471554749547835481754851$ $54880549195495354987550215505555089551235515 \pi 551915022505259$
$4.55293 \overline{55327} \overline{55360} \overline{55394} \overline{55428} \overline{55462} 55496 \quad \overline{55529} \overline{55563} \overline{55597} \overline{55630} \overline{55664}$ 55698557325576555799 55832 55866559005593355967560015603156067

-4.57296 $\overline{57329} \overline{57362} \overline{57395} \overline{57428} \overline{57460} \overline{57493} \overline{57526} \overline{57559} \overline{57592} \overline{07625} \overline{57657}$ 57690 57723 57755577885782157854578865791957951579845801758049
 $584715850415853658568586015863358665 \quad 58698$ 58730 587625879158827 5885958891 5882358955 5898859020 ธั052 59084 ธั9116 591485918059212

 600086001060072601036013560167601986023060261602936032460356 $6038860419604506048260513,60545605766060-6063960670,6070160733$ 607646079660827608586089060921609526098361015610466107761108
4.61139 $\overline{61171} \overline{61202} \overline{61233} \overline{61264} 61295613266135751388614196145061481$ $615126154361574 \mid 6160561636 / 61667616986172961760617916182261852$ $61883|61914| 61945|61976| 6200662037620686209962129621606219162222$ 62252622836231362344623756240562436624666249762528,6255862589 626196265062680627116274162771628026283262863628936292362954
$4.62981 \overline{63014} \overline{63045} \overline{63075} \overline{63105} \overline{63136} \overline{63166} \overline{63196} \overline{63226} \overline{63257} \overline{63287} \overline{63317}$
 63708637386376863798 63828, $63858638886391863948,63978,6400864038$ 6406864097641276415764187,64217642466427664306643366436564395 644256445564484645146454464573646036463264662646926472164751
$4.64780 \overline{64810} \overline{64839} \overline{64869} \overline{64898} \overline{64928} \overline{64957} \overline{64987} \overline{65016} \overline{65045} \overline{65075} \overline{65105}$ 651346516365193652226525165281653106533965369653986542765456 6548665515 '65544 655736560365632656616569065719657486577765806 658366586565894659236595265981660106603966068660976612666155 661846621366242662706629966328663576638666415664446647266501 $\overline{4.66530} \overline{66559} \overline{66588} \overline{66616} \overline{66645} \overline{66674} \overline{66702} \overline{66731} \overline{66760} \overline{66789} \overline{66817} \overline{66846}$ 668756690366932669606698967018670466707567103671326716067189 6721767246672746730367331 (67360673886741667445674736750267530 67558 67587 67615 67643 67672 67700,67728,67756 6778j, 678136784167869 678976792567954679826801068038680666809468123681516817968207 . $68235 \overline{68263} \overline{68291} \overline{68319} \overline{68347} \overline{68375} \overline{68405} \overline{68431} \overline{68459} \overline{68487} \overline{68515} \overline{68543}$ $6857168599,6862768654,6868268710687386876668794688216884968877$ $6890568933,6896068988,69016,6904369071690996912769154,6918269210$ 69237 6926569292693206934869375 '69403 69430694586948669513,69540 695̄6869595゙ 69623696506967869705697336976069788.6981569842.69870
69568.69595.6962369650.6967869705 69733.69760 .6578 .65815 .69842 .698704
log rising-to find the latitude by reduction to the meridin.

4 Hours.

M.	0 s .	5 s.	10s.	15 s.	20s.	25 s.	30s.	35 s .	40s.	45 s .	50 s .	55s.
0	4.69897	$\overline{69924}$	69952	69979	70006	70034	70061	70	70115	70143	70	
1	70224	70252	0279	0306	70333	70360	70387	70415	704	7046	70496	70523
2	70550	70577	70604	70631	7065	7068	70712	7073	7076	7079	$\overline{0820}$	70847
3	70874	70901	0928	0955	093	1008	71036	7106	710	7111	71143	71170
4	71197	7124	50	1277	130	331	1357	71384	1411	71438	71464	1491
5	4.71518	71544	71571	71598	71624	1651	71678	71701	7173	1757	71784	1810
6	71837	1864	71890	71917	71943	71970	71996					72128
7	72155	2181	72208	72231	7226	72287					72418	72445
8	7247	72497	72523	725	72576							72759
9	727											

$4.730997 \overline{73125} \overline{73151} 73177 \overline{73203} \overline{73228} \overline{73254} \overline{73280} 7330673332 \overline{73355} 73384$ 734107343673462734887351473539735657359173617736437366873694 73720737467377273797 7382373849738747390073926739517397774003 7402874054740307410574131741577418274208742337742597428474310 743357436174386744127443774463744887451474539745657459074616
$4.74641 \overline{74666} \overline{74692} \overline{74717} \overline{74742} \overline{74768} \overline{74793} \overline{74818} \overline{74844} \overline{74869} \overline{74894} \overline{74920}$ 749457497074995750217504675071750967512275147751727519775222 75247752737529875323 7534875373753987542375448754737549875523 755497557475599756247561975674756997572375748757737579875823 758487587375898759237594875973750977602276047760727609776121
$\overline{4.76146} \overline{76171} \overline{76196} \overline{76221} \overline{76245} \overline{76270} \overline{76295} \overline{76320} \overline{76344} \overline{76369} \overline{76394} \overline{76418}$ 7644376468 764927651776542 76566 76591 7661576640766657658976714 767387676376787768127683676861768857691076931769597698377008 770327705777081771057713077154771797720377227772527727677300 77325773497737377398 7742277446774707749577519775437756777592
$\overline{4.77616} \overline{77640} \overline{\overline{77664}} \overline{77688} \overline{77713} \overline{77737} \overline{77761} \overline{77785} \overline{77809} \overline{77833} \overline{77857} \overline{77882}$ 77906 F7930 77954779787800278026780507807478098 78122 7814678170 781947821878242782667829078314783387836178385784097843378457 78481 785057 78529785527857678600786247864878671786957871978743 787677879078814788387886178885789097893378956789807900479027

10
16
17
18
19
20
21
22
23
24
24

LOG RISING- $م$ FO FIND THE LATITUDE BY REDUCTION TO THE MERIDIAN.

5 Hours.

$0 \mathrm{~s} . \quad 5 \mathrm{~s} .10 \mathrm{~s} .15 \mathrm{~s} .20 \mathrm{~s} .25 \mathrm{~s} .30 \mathrm{~s} .35 \mathrm{~s} .40 \mathrm{~s} .45 \mathrm{~s} .50 \mathrm{~s} .25 \mathrm{~s}$. P. P
4.8699287013870348705487075 87095 871168713687157871778719887218 s 8723987259,87280873008732187341873628738287402874238744387464 874848750587525875458756687586876068762787647876678768887708 87728 87749 87769 $877898780987830,87850 \mid 87870,87890879118793187951$ 879718799288012880328805288072880938811388133881538817388193
$\overline{4.88213} \overline{88234} \overline{88254} \overline{88274} \overline{88291} \overline{88314} \overline{88334} \overline{85354} \overline{88374} \overline{88394} \overline{8 \times 414} \overline{88434}$ $88454|88474,85494885148853488554| 8857488594,88614886348865488674$ $88694887148873488754|85774| 88794888148883488853888738889388913$ 889338895388973889928901289032890528907289091891118913189151 $8917189190,8921089230892508926989289,88309,89328,893488936889388$
 89643 89662 8968289702 S9721 $8974189760 / 8978089799 / 598198983889858$ 89877 89897 $8991689936 ~ 5995589975899949001490033900539007290091$ 901119013090150,901699018890208902279024790266902859030590324 903439036390382904019042190440904599047590498905179053690555
$4.90575 \overline{90594} \overline{90613} \overline{90632}$ 90ن52 $\overline{40071} \overline{90690} \overline{90709} \overline{90728} 90748$ 90767 90786 90S0 0 90824 9084390863 90882 90901909209093990958909779099691015 910349105191073910929111191130911499116891187912069122591244 912639128291301913209133991358913779139691414914339145291471 914909150991528915479156691585916039162291641916609167991698
$4.91716,91730$ צ1754 91773 91792 91811 1829 9184891867918869190491923 $9194291961|9197991998| 92017920359205492073|9209292110| 9212992148$ 921669218592203922229224192259922789229792315923319235292371 92390 9240s 92427924459246492483925019251992538,925569257592593 926129263092649926679268692704927239274192760927789279692815
$\overline{4.92833} \overline{92851} \overline{92870} \overline{92888} \overline{92907} \overline{92425} \overline{92944} \overline{92962} \overline{92980} \overline{92999} \overline{93017} \overline{93035}$ 930519307293090931099312793145931649318293200932189323793255 93273,9329193310933289334693364933829310193419934379345593473
 937099372793745937639378193809938179383693854938729389093908
$\overline{4.93926} \overline{93944} \overline{939 \dot{32} 93980} \overline{93968} \overline{94016} \overline{94034} \overline{94052} \overline{94069} \overline{94088} \overline{94105} \overline{94123}$ $941419415994177941959421 ऽ 91231942499426794281943029432094338$ 943569437494392944109442794445944639448191498945169453494552 $915709455791605916239464194658946709469494711947 \Sigma 99474794765$ 947829480034818948359485394871948889490694924949419495994976
4.91944 $\overline{95012} \overline{95029} \overline{95047} \overline{95065} \overline{55082} \overline{95100} \overline{95117} \overline{95135}, 9515395170,95188$ 952059522395240952589527595293953109532895345953639538095398 954159543395450354689548595502955209553795555955729558995607 956249564295659956769569495711957289574695763957809579895815 958329585095867958849590295919959369595395971959889600536022
$\overline{4.96040} \overline{96057} \overline{96074} \overline{96091} \overline{96109} \overline{96126} \overline{96143} \overline{96160} \overline{96177} \overline{96195} \overline{96212} \overline{96229}$ 962469626396280962979631596332963499636696383964009641796431 9645190469 Э6486 965039652096537965549657196588966059662296639 9665696673966909670796724 96741 9675896775 96792968099682696343 968609387796894959109692796944969619697896995970129702997046
4.97062 $\overline{47079} \overline{97036} \overline{97113} \overline{97130} \overline{97147} \overline{97163} \overline{97180} \overline{97197} \overline{97214} \overline{97231} \overline{97247}$ 972649728197298973159733197348973659738297398974159743297449 97465974829749997.5159753297519975659758297599976159763297649 976659768297699977159773297749977659778297798978159783297848 978609788197898979149793197917979649798197997980149803098047
$\overline{4.98063} \overline{98080} \overline{48, J 96} \overline{98113} \overline{98129} \overline{98145} \overline{98162} \overline{98178} \overline{98195} \overline{98211} \overline{98228} \overline{98244}$ 98261982779829398310983269834398359983759.3392984089842598441 $9845798174 \mid 98490985069852398539985559557298588986049862098637$ 9865398669986869870298718,98734987519876798783987949881698832 9884898864 98880 98897 38913 95929989459896198977989949901099026
$\overline{4.99042} \overline{99 \cup 5 〕} \overline{99074} \overline{99090} \overline{99107} \overline{99123} \overline{99139} \overline{99155} \overline{99171} \overline{99187} \overline{99203} \overline{99219}$ 992359925199267992819930099316993329934899364993809939699312 994239914499460991769949299508995249954099556995729958799603 9301999635996519966799683 9969099715 9973199747997639977899794 $9931099826.9981299858 .998739988999905999219993799953: 9996899984$

TABLE XVII.

LOG RISING-TO FIND THE LATITUDE BY REDCCTION TO THE MERIDIAN.
6 Hours.
 $00189,00205002210023600252,00268002830029900315003300034600362$ $003770039300409,0042400440,004560047100487,005020051800534,00549$ 0056500580 (105960061200627 $006430065800674,006890070500720,00736$ 007510076700782007980081300829008440086000875008910090600922
$5.00937 \overline{00953} \overline{00968} \overline{06984} 0099901014010300104001061010760169101107$ 01122,0113801153011680118401199012140123001245012600127601291 0130601322013370135201368,01383013980141201429014440145901474 $014900150501520015360155101566015810159 G 0161201627$ (164201657 016720168801703017180173301748017630177901791018090182401839
$\overline{5.01854} \overline{01869} \overline{01884} \overline{01900} \overline{01915} \overline{01930} \overline{01945} \overline{01960} \overline{01975} \overline{01930} \overline{02605} \overline{02020}$ 020350205002065020800209502110021250214002155021700218502200 022150223002245022600227502500023050232002335023500236502380 $02395,0241002425024400245502469,024840249902514025290254402559$ 0257402588 U2603 $02618,0263302648,026630267702692027070272202737$

- $\overline{5.02751} \overline{02766} \overline{02781} \overline{02796} \overline{02811} \overline{02825} \overline{0 \div 840} \overline{02855} 02870$ U2884 $\overline{02899}$ 02914 $029280294302958029730298703002,0301703031030460306103075,03090$ $03105^{-1} 0311903134031490316303178,03193,03207|0322203237| 0325103266$ 032800329503310033240333903353033680338203397034120342603441 0345003470034840349903513003528,0354203557 (03571035860360003615
$\overline{5.03629} \overline{03644} \overline{03658} \overline{0367 \&} \overline{03687} \overline{03701} \overline{03716}$ 03730 $03745 \overline{03759} \overline{43774} 03788$ 038020381703831038460386003874038890390303918039320394603961 039750398904004040180403204047040610407504090041040411804132 $04147,041610417504190042040421804232,0424704261,042750428401303$ $043180133204346(043600437504389044030441704431044450446004474$
$\overline{5.04488} \overline{04502} \overline{04516} \overline{04530} \overline{04545} \overline{04559}, \overline{04573}, 01587 \overline{U 4601} \overline{04615} \overline{04629} \overline{U 4643}$ 046570467204686047000471404728047420475604770,047840479804812 $0482604840,04854048680488204896,04910,0492404938049520496604980$ 049940500805022050360505005064050780509205106051200513405148 051620517505189052030521705231052450525905273052860530005314
$\overline{5.05328} \overline{05342} \overline{05356} \overline{05370} \overline{05383} \overline{05397} \overline{05411} \overline{05425} \overline{05439} \overline{05452} \overline{05466} 05480$ 054940550805521055350554905563055770559005604056180563205645 $056590567305686057000571405728,057410575505769,057820579605810$ 058230583705851 05864 058780583205905059190593305946,0596005973 059870600106014060280604106055060690608206096061090612306136
$5.06150061630617706191 \overline{06201} \overline{06218}, 06231 \overline{06245} \overline{06258} \overline{06272} \overline{06285} \overline{06249}$ C63120632G0633905353 063660637906393,0640606420064330644706460 0647406487065000651406527065410655406567005810659406608,06621 0663406648066610667406688067010671406728,06741067540676806781 067910680806821068340684806861068740688706901063140692706941
5.06954 $\overline{06967} \overline{06980} \overline{06994} \overline{07007} \overline{07020} \overline{07033} \overline{07046} \overline{07060} \overline{07073} \overline{07086} \overline{07099}$ 0711207126071390715207165,07178071920720507218072310724407257 072700728407297073100732307336073490736207375073880740107415 $07428074410745407467,0748007493,0750607519075320754507558,07571$ 075840759707610076230763607649076620767507688077010771407727
$\overline{5.07740} \overline{07753} 07766 \overline{07779} \overline{07792} \overline{07805} \overline{07818} 0783107844 \overline{07857} \overline{07869} \overline{07882}$ $0789507908,0792107934079470796(1079730798507998080110802408037$ $08050,08063,0807508088,0810108114,08127,08140,081520816508178,08191$ $0820408216,0322908242082550826708280,0829308306,08318,08331,08344$ 083570836908382083950840808420084330844608458084710848408496
$\overline{5.08509}-08522,08534-08547$ 08560 $0857208585,08598,0861008623$ 086610867308686086990871108724087360874908762087740878708799 $08812088240883708850088620887508887,08900,08912089250893708950$ 089620897508987090000901209025090370905009062090750908709100 091120912409137091490916209174091870919900211092240923609249
$\overline{5.09261} \overline{09273} \overline{09286} \overline{09208} \overline{09311} \overline{09323}, \overline{09335} \overline{09348}, 09360009372$ $0940909422,094340944609459094710948309496,095080952009533,09545$
 $09704097100,097290974109753,097650977109790,0930200814,0982609838$ 098 Bí 098630987509887.0989909911099210993609918099600997209384

TABLE XVII.

LOG RISING-TO FIND THE LATITUDE BY REDUCTION TO THE MERDIAN.

7 Hours.

M.	0 s.	5 s.	10s.	15 s.	20s.	25 s .	30 s .	35 s .	40 s .	45 s.	50 s .	55 s.
0	5.0 ± 996	10008	10021	10033	$\overline{1045}$	10057	10069	10081	10093	10105	$\overline{10117}$	10129
1	10141	1015:	10166	10178	10190	10202	10214	10226	10238	10250	10262	10274
2	$1028 C$	1029	10310	$1032 ¢$	10334	$1034 ¢$	10358	10370	1038	10394	10400	0418
3	10430	10441	10454	10465	10477	10488	10501	10513	10525	10537	10549	10561
4	10575	10585	10597	1060ع	10620	10632	10644	10656	10668	10680	10691	10703
5	5.10715	1072'	10739	10751	10763	10774	$\overline{10786}$	16798	10510	10822	10833	10845
6	10357	1086S	10881	1089	10904	10916	10928	10941	10351	10963	10975	10986
7	10998	1101C	11022	1103:	11045	11057	11069	11050	11092	11104	11115	11127
8	11135	11150	1116:	11174	11185	11197	11209	11220	11232	11244	11255	11267
9	11270	11290	11302	11314	11325	11337	11348	11360	11372	11383	11395	11406
10	5.11418	114\%9	11441	11453	11464	11476	11487	11499	11510	1152^{2}	11533	1545
11	11557	11568	11580	11591	11603	11614	11626	11637	11649	11660	1167	1683
12	11695	11706	L1717	11729	11740	11752	11763	11775	11786	11793	1180t	11820
13	1183:	11845	11855	11866	11878	11889	11900	11912	11923	11931	11946	11957
14	11969	11980	11991	12003	12014	12025	12037	12048	12059	1207	12082	12093

5.12105 $\overline{12116} \overline{12127} \overline{12139} \overline{12150} \overline{12161} \overline{12173} \overline{12184} \overline{12190} \overline{12204} \overline{12218} \overline{122 \div 9}$

 $12509|12520| 12532|1254312554| 256512576|12587| 12598|1261012621| 12632$

 $12908|12919| 12930|12941| 12952|2963| 1297412985|12996| 13007|13018| 13029$

$\overline{5.1343-1344-} \overline{13450} \overline{13464} \overline{13475} \overline{13486} \overline{13496} \overline{13507} \overline{13518} \overline{13529} 13539$ 13550

 139451395613967139771398813998140091401914030140411405114062
$\overline{5.1407 ะ} \overline{14085} \overline{14093} \overline{14104} \overline{14114} \overline{14125} \overline{14136} \overline{14146} \overline{14157} \overline{14167} \overline{14178} \overline{14188}$

 $1444914460|14470| 14481|14491| 14501|14512145221453314543| 1455314564$

5.146981470814719147291473914750147501477014780147901480114811 148211483214842148521486214872148831489314903149131492414934

 151881519 S 15208152181522815238152481525815269152791528915299
$\overline{5.15309} \overline{15319} \overline{15329} \overline{15339} \overline{15349} \overline{15359} \overline{15369} \overline{15379} \overline{15389} \overline{15399} \overline{15409} \overline{15419}$
 $155491505915569155791558915599 \mid 156091561915629156391564915659$ $15668|15678| 15688|15698| 15708|15718| 15728|1573815748| 157581576715777$

 $16372|16382| 16391|16401| 1641016420 \mid 164301643916449164591646816478$

5.16487 $\overline{16497} \overline{16506} \overline{16516} \overline{16526} \overline{16535} \overline{16545} \overline{16554} \overline{16564} \overline{16573} 16583-16592$ $16602166121662116631164016650 \mid 166591666916678166881669716707$ $1671616726|1673516745| 1675416764|1677316782| 16792|1680116811| 16820$ $16830|16839| c 84916858|1686716877| 168861689616905169151692416933$ 169431695216961169711698016990169991700817018170271703617046 | \mathbf{s} | |
| :--- | :--- |
| 1 | 2 |
| 2 | 4 |
| 3 | 6 |
| 4 | 8 |
| \mathbf{s} | |
| 1 | 2 |
| 2 | 4 |
| 3 | 6 |
| 4 | 8 |

$\overline{5.17055} \overline{17065} \overline{17074} \overline{17083} \overline{17093} \overline{17102} \overline{17111} \overline{17121} \overline{17130} \overline{17139} \overline{17148}$ 17158
 17278172881729717306173151732 อ 173341734317352173621737117380
 174991750917518175271753617545175541756317573175821759117600

TABLE XVIII.

LOGARITIIMS FOR FINDING THE APPARENT TIME OR HORARY ANGLE.

0 Hour.

M.
0
1
2
3
4
5
6
7
8
9

	5 s.	10s.	15 s .	20s.	25 s .	30 s .	35 s.	40s.	45 s .	50 s.	05
	5192	12127									
5.279							519	0,			
631								80611			
881	899					8	99992	557	030		C090
6.075	08985	10		13155	14502	15828	17	18421	1968		
238			26931	28081	29217	30337					
	80	3881	39821	40814	41795	42766	13	16	15614		47462
		501									

$\overline{6.67751} \overline{68471} \overline{69186} 6989570598712967198872674 \overline{73355} 740317470275367$ s $7602876683773347797978620792567988880515811378175682369829791 \mid 119$
 $905359108991641921899273393274938129434694877954059593096451|3| 358$ ${ }_{7}^{6} .969709748597997$ 9850699013995160001700514010090150101990024764 1476
$\overline{7.02960} \overline{03411} \overline{03920} \overline{04395} \overline{04869} \overline{03339} \overline{05807} \overline{06273}, 06736 \overline{07196}, \overline{07655} \overline{08110}$ s $08564090150946409910|1035410796| 1236|1673| 1210812541129721340111$

 $36209365373686437189375143783738159384803880 \| 39118394353975 \% 2$ 4006740350406931100541315416254193342240425464285143155434583 $4376044061443614465944957 / 45254455494584146138464304672247013$
$7.47302 \overline{47591} \overline{47879} \overline{48166} \overline{48452} \overline{48737} \overline{49021} \overline{49301} \overline{49586} \overline{49867} \overline{50148} \overline{50427}$ s 507065098351260515365181152085 52358 52631529025317353443537121 $539805424754514547805504555308555725583456096563575661756876 \times 2$ 57135 57393 576505790658162584165867058924591765942859679599293 60179, 60428606766092461170614176166261907621516239462636628784$)$
7.631206336063600638396407864316645536479065026652616549665730 s $659646619666429666606689167121,67351675806780968037682646819111 \mid 45$ $687176894269167693926961669839,7006170283705057072670946711662 \mid 90$ 71385716047182272040722577247372689729047311973334735487376031131 73974741867439874609748197503075239754487565775865760737628041.178
7.76487 $\overline{76693} \overline{76898} \overline{77104} \overline{77308} \overline{77513} \overline{77716} \overline{77920} \overline{78122} \overline{78325} \overline{78526} \overline{78725} \mathrm{~s}$ 78929,$7912979329795297972879926 ; 80124|8032280519| \$ 0716,8091281108|1| 39$
 8361583804839948418384372845608474784935851228530885494856803116

$\overline{7.88059} \overline{88240} \overline{88119} \overline{88599} \overline{88778} \overline{88957} \overline{89135} \overline{89314} \overline{89491} \overline{89668} \overline{89846} \overline{90022}$

 $94324944919465994826949929515995325954910565695821 \mid 95986961503102$ $963159647896642968059696897131972939745597617977789793998100 \pm 137$
$\overline{7 / 8.98260} \overline{98421} \overline{98580}, \overline{98740} \overline{98899} \overline{99058} \overline{99217} \overline{99375} \overline{99534} \overline{99091} \overline{99849} \overline{00006}$ s
 0202502178023310248402636027890294103092032440339503546036972 0384703997041470429704446045950474404892050410518905336,05481 3 $0563105778059250607206218063640651006655068000694507090072354 \mid 122$
$8.07379 \overline{07523} \overline{07667} \overline{07811} \overline{07954} \overline{08097} \overline{08240} \overline{08383} \overline{U 8525} \overline{08667} \overline{08805} \overline{08951}$ s $09092092330937409515096560979609936|10076| 102161035510494106331$ $107721091011048|111871132411462| 159911736 \mid 118731201012147122832$

 1717917337174361756417692178201794718074182021832918455185861 $1870818535189(11190871921219338194631958819713198381996320087 / 2$ $2021120335 \cdot 20459,205832070620830 \cdot 20953 / 21076 \cdot 21198213212144421566.3$ $21688.218102193222053221752229629417225382265822779 .22899: 230194$

LOGARITHMS FOR FINDING THE APPARENT TIME OR HORARX ANGLE.

1 Hour.

MI.	
0	
1	8
2	
3	
4	
5	8
6	
7	
8	
9	

$0 \mathrm{~s} . \quad 5 \mathrm{~s} .10 \mathrm{~s} .15 \mathrm{~s} .20 \mathrm{~s} .25 \mathrm{~s} .30 \mathrm{~s} .35 \mathrm{~s} .40 \mathrm{~s} .45 \mathrm{~s} .50 \mathrm{~s} .55 \mathrm{~s}$. P. P.
8.2314023259 23379 23499 23618 23737 23856 23975 24094 $\overline{24212} \overline{24331}$ 24449

 2871128823 -8935 29047 29159, 29271 $2938329494296052971629827-9938$
8.300493015930270303803019030600 30710 $\overline{30820} 309 \div 93103931148312.57$ $31366|31470315833169231800| 319093201632125|32233| 32340 \mid 3244832556$ 32363 32770 32877 $32984|3309133198333043341033517| 336233372933835$ $3394034046|34151| 34257|3436234467| 31572|34677| 34782|34886| 3499135095$

$\overline{8.36439} \overline{36542} \overline{36644} \overline{36746} \overline{36549} \overline{36951} \overline{37053} \overline{37154} \overline{37256} \overline{37358} \overline{37459} \overline{37560}$

 52127522125229752382.5216752552526365272152805052890 .5297453059
$\overline{8.53140} \overline{33227} \overline{53311} \overline{53395} \overline{53479} \overline{53563} \overline{53616} \overline{53730} \overline{53814} \overline{53897} \overline{53980} \overline{54064}$

 $57089571695724957330 \quad 5741057490575695764957729578095788857968$
$\overline{8.58147} \overline{58126} \overline{58206} \overline{58285} \overline{58364} \overline{58413} \overline{58522} \overline{56601} \overline{58680} \overline{58759} \overline{58837} \overline{58916}$
 59931 ;0009 50086 30164 60241 6031860395 60473 605506062760701 60781
 6177 B 61849 3192562001020766215262228 32303 6237962451 6252962604 8.6267: 52755 62830 52901 6:979 63054 63129 $\overline{63203} \overline{63276} \overline{63353} \overline{63427} 63502$ 63576 33650 63724 63798 63872 63946 6402064094 64168 64242 64315 64389

 66208 66280 6635266424 (66496 $6656766639667106678: 668536692506996$
$\overline{8.67067} \overline{67139} \overline{67209} \overline{67 \pm 81} \overline{67352} \overline{67423} \overline{67494} \overline{67561} \overline{67635} \overline{67706} \overline{67777} \overline{67847}$ 67918 37988 68059 $68129,68199,68269683406841068480685506862068690$ 63759 3882968899689696903869108691776924769316693856945469521 69593 $6936269731698006986969937700067007570144 / 702127028170349$ 704187048670554706237069170759708277089570963710317109971167
$\overline{8.71234} \overline{713 \cup 2} \overline{71370} \overline{71437} \overline{71505} \overline{71572} \overline{71640} \overline{71707} \overline{71774} \overline{71842} \overline{71904} \overline{71976}$ 72043 72110721777224472311723787244472511772578726447271172777 728147291072977730437310973175732417330873374734397350573571 73637 737037376873834 7390073965 74031 7409674162742277429274357 74123 7448874553746187468374748748137487774942750077507275136
$\overline{8.75201} \overline{7526575330} \overline{75391} \overline{75458} \overline{7552 \triangleleft} \overline{75587} \overline{75651} \overline{75715} \overline{75774} \overline{75843} \overline{75907}$ $7597176035760997616376227762907635 \pm 7641876481765457660876672$ 7673 J 76738 76562 769257698877051771147717777240773037736677429 7749 7755477617776807774277805778677793077992780547811778179 782117830378365784277848978551786137867578737787997886178922
 797207978179842799037996480025800858014680207,802688032880389
 $8117281232,81292813528141281472 \bigcirc 15318159181651817108177081829$ 81889.3194882008 .82067321268218682245823041823638242218248182540 .

s | 14 | 14 |
| :--- | :--- | 28 42 56 $4 \mid 56$

\square 13 26 40 53

TABLE XVIII.

LOGARITHMS FOR FINDING THE APPARENT TIME OR HORARY ANGLE.

2 Hours.

Mr.	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

$0 \mathrm{~s} . \quad 5 \mathrm{~s} .10 \mathrm{~s} .15 \mathrm{~s} .20 \mathrm{~s} .25 \mathrm{~s} .30 \mathrm{~s} .35 \mathrm{~s} .40 \mathrm{~s} .45 \mathrm{~s} .50 \mathrm{~s} .55 \mathrm{~s} . \mathrm{P} . \mathrm{P}$. 8.82599 $\frac{52658}{32717}{ }_{82776}$ 82835
 84001 | $8105984117 \mid \leq 41758423384291843188440634464845218457984636$ 8469484751 | $48088486634923849308503785095 \mid 351528520985266 / 85323$ 853808513785194855508560785664857218577735831858913591786004
8.86060 $8 \overline{6117} \overline{36173} \overline{862: 29} \overline{86286} \overline{86342} \overline{66398} / \overline{36451} \overline{36511} \overline{86567} \overline{86623} \overline{86679}$
 $874043746037515|37570376268768137736| 3779237817879028795788013$ 83068 88123 $88178|3823388288| 8834288397|881528850788562438616| 88671$

$\overline{8.89574} \overline{89433} \overline{89407} \overline{89541} \overline{89545} \overline{89649} \overline{89703} \overline{89757} \overline{89811} 898658991889972$ 90026900809013390187902419029490348904019045.5905089056290615 $906683072290773 \sim 03289088190934909889104191094911479120091253$
 9193891901 92043 920950214792200922529230492356924089246192513
 93187 9323993290933429339393445934969354893599936519370293753 93804 93856 33907 93958 9400 ? 9406 © 9411 i 9416294213912649431594366
 95025950750951269517605222795277 95327 9537895428954789552895578
 9622 〒 96277 96326 9637696426964759652559057406624966739672396772 9382196871939209696997018970389711 P $^{97166} 97215972649731397362$ 97411 97460975039755897607 97656 977019775397802978519789997918 $9799695015080919814298191982399828898336 \mid 98381984339843198529$

${ }_{9}^{8} .99727$ 99774 99822998690991709964000120005900108001540020100248 9.002950031200390004370018100531005780002500672007190076600813 018500090600953010000101701091011400118701234012800132701373
$9.01420 \overline{01466} 01513 / \overline{1559} \overline{01606} \overline{01652} \overline{01698} \overline{01745} \overline{01791} \overline{1837} \overline{01884} 01930$ $019760202202065021140216102207022 \cdot 330229202345023910243702483$ U2J28025740262002 $36 G 0271202757028030284902891029400298603031$ 030 न7 0312203168032130325903301033500339503440034860353103576 036210366703712037570380203847038920393703982040270407204117

 0523205277,053211053650540905453054930554205586056300567405718 05762058060585005891059380598206025060691061130615700620006244 062880633206375064190646209506065500659301637066800672406767
 07329073720741507458075010754407587076300767307716,0775907802 078450788 I 07930079730801608058081010814108186082290827108314 083570839908442034810852603569036110865408696087380878108823 $08865089070894908992 \cup 9334090760911809180092 ว 2092440925600328$
 $098720991409955099971003910030|10122| 10163102051024610288 \mid 10329$
 $10866|10907| 10948|10989| 10301107111112111531119411235$ 1127611317 11358 $113991144011480115211156211603 \mid 164311684117251176511806$
9.118471183711928 $11968120091205012090121301217112211 / 225212292$ 123321237312413124531240412531125741261412655126951273512775 128151285512895129351297513015130551309513135131751321513255 $13295|1333413374| 13414|13454131911353313573136131365213692| 13732$ $13771138111385013 \times 901392913969140051404814057141261416614205$
$9.14215142811432314362 \overline{14102} 14411 / 44801451914559145951463714676$ 147151475414793148321487114910149191498815027150661510515144 $1518315221|1526015299| 1533815377|1541515451| 1549315531|15770| 15609$ $15647 \mid 15686157241576315802158401587915917159.55159941603216071$
55

TABLE XVIII.

LOGARITHMS FOR FINDING THE APPARENT TIME OR HORART ANGLE.

3 Hours.

M.	Os.	5 s.	10s.	15 s.	20s.	25 s .	30 s .	35 s .	40s.	45 s.	50 s.	55 s
0	9.16508	1660	17	16682		16758	16796	1683	16872	$16 J 1$	1694	698
1	17024	1706	1710	1713	171	1721	17.251	1728	7326	173	174	
2	17477	1751	,	7590	17628	766	17703	177	7778	178	78	89
3	17928	1790	800	8040	18077	18115	18152	1818	18227	1820	18301	1833
4	18376	18113	18150	18487	18524	18561	18598	186	18673	1871	18747	187
5	9.18821		18095	1893\%		1900:	2		9116	11153		1922
6	19263	1930	1933	19373	19410	19147	19483	1952	9557	19593	19630	60
7	1970	1573	1971	19812	19849	19885	1992\%	1995	19995	20031	(
8	201	201	202	0249	285	20321	-0358		12	-1		
	205											

(2100 $\overline{1040}$ च1070 $\overline{21150}$ $214362147121507215432157821614216502168521721 \cdot 217562179221827$ $21863218982193421969220012201022075 \quad 22111221462218122216 \mid 22252$ 22287 22322 223582239322428 22463 22498 22533 22569 22604 2263922674 $2270922744227792281422849,2288422919229542298923024 \cdot 2305923094$
$9.23128 \cdot \overline{23163} \overline{23198} \overline{23233} \overline{23268} \cdot \overline{23302} \overline{23337} \overline{23372} \overline{23407} \overline{23441} \overline{23511}$ $23.5452358 \cup 236152364923684 \cdot 23718237532378823822238572389123926$ $23960 \cdot 23994240292406324098 \cdot 24132$ 24166 $2420124235 \cdot 24265 \cdot 2430424338$ 2437224406244112445245092454324577 24612 24646-246802471424748 $24782.24816248502488434918 \cdot 24952$ 24986 25020 25054-25088 2512225156
$9.25190 \overline{25224} \overline{25257} \overline{25241} \overline{25325} \overline{25359} \overline{25393} \overline{25426} \overline{25460} \overline{25494} \overline{25527} \overline{25561}$ 25595 2502925662 $256962572925763257962583025864 \cdot 258972593125964$ 2599826031 26065 26019S 26132 26165 26198 26232 26265 26298 26332 26365 $20398 \cdot 26432 \cdot 2646526498 \cdot 26532$ 26565 26598 26631 $26664 \cdot 26697 \cdot 2673120764$ 26797 26830 $268632689626929 \cdot 2696226955 \cdot 27028-27061 \cdot 27094 \cdot 27127 \cdot 27160$
 27587 27620 $2765227685 \cdot 27718,27751-77832781627848278812791427946$ $27979280112804428076-28109281412817428206 \cdot 28239-282712830428336$ $28368-2810128433284652819 S^{2}-28530 \cdot 2856228595 \quad 28627286592869128724$ 287562878828820285522888528917289492898129013290452907729109
9.29141 $\overline{29173} \overline{29205} \overline{29237} \overline{29269} \overline{29301} \overline{29333} \cdot \overline{29365} \overline{29397} \overline{29429} \cdot \overline{29461} \overline{29493}$ $29524 \cdot 2955 \mathrm{C} \cdot 29588 \cdot 296202965229683 \cdot 2971529747$ 29779 298102984229874 $29905 \mid 29937$ 29969 3000030032 30064300953012730158301903022130253 $3028530316303473037930410 ; 30442304733050530536305673059930630$ 30661 30693 30721 $307553078730818 ; 308493085() 309123091330974,31005$
$9.31036 \overline{31068} \overline{31094} \overline{31130} \overline{31161} \overline{31192} \overline{31223} \overline{31254} \overline{31285} \overline{31316} \overline{31317} 31378$ 314093144031471315023153331564315953162631657316883171931749 317503181131842318733190331934319653199632026 32057 3208832119 $321493218032210 \mid 3224132272$ 32302, $3233332363323943242532455 ; 32486$ 3251C $3254732577 \mid 326053263832668326993272932760327903282032851$
$9.32881 \overline{32911} \overline{32942} \overline{329 \div 2} \overline{33002} \overline{330 \because 3} 33063 \overline{33093} \overline{33123} \overline{33154} 3318433214$ $33244|3327433304| 333353336533395334253345533485335153354533575$ 33605 33635 33665 336953372533755337853381533845338753390533935 339653399434024340543408434114341433417334203342333426234292 343223435231381344113444134470345003452934559345893461834648

s	
1	6
2	12
3	18
4	25

$9.34677 \overline{34707} \overline{34736} \overline{31766} \overline{34795} \overline{34825} \overline{34854} \overline{34884} \overline{34913} \overline{34943} \overline{34972} \overline{35002}$ 350313506035090351193514835178352073523635266352953532435353 3538i 3541235141354703549935529355583558735616 P5C45 3567435703 $3573335762357913582035849358783590735936 \mid 35965359943602336052$ 360813611036139361673619636225362543628336312363413636936398
$\overline{9.36427} \overline{36456} \overline{36485} \overline{36513} \overline{36542} \overline{36571} \overline{36599} \overline{36628} \overline{36657} \overline{36686} \overline{36714} \overline{36743}$ 367713680036829368573688636915369433697237000370293705737086 37114371433717137200372283725737285373133734237070,3729937427 374553748137512375403756837597376253765337682377103773837766 3779437823378513787937907 :37935 379633799138020380483807638104
$9.38132 \overline{38160} \overline{38188} \overline{38216} \overline{38244} \overline{38272} \overline{38300} \overline{38328} \overline{38356} \overline{38384} \overline{38412} 38440$ 3846838496385243855138579 38607 3863538663,38691 38718,38746 38774 $3880238830388573888538913389403896838996 \mid 39024390513907939107$ 39131391623918939217392453927239300393273935539382,2941039437 3946539492395201395473957539602396303965739684397123973939767

| s | |
| :--- | ---: | ---: |
| 1 | 6 |
| 2 | 11 |
| 3 | 17 |
| 4 | 23 |
| s | |
| 1 | 6 |
| 2 | 11 |
| 3 | 17 |
| 4 | 22 |

TABLE XVIII.

LOGARITEMS FOR FLNDING THE APPAREXT TIME OR HORARY ANGLE.

4 Hours.

M.	
0	9
1	
2	
3	
4	

9.39794 $398213954939576399333931399583998540012 \overline{4004040067} \overline{40094}$ s 401214014940176402034023040257402814031240339403664039340420 40447 10 47410501405284055540582406091063640663406904071740744 407714079840825408 jे $24087940906409334096040986 \mid 110134104041067$ 410944112141147411744120141228412544128141308413354136141388
9.414154144141684149 .24152141548415754160141628416514168141707 $41734+1.6141787$ \& $1814418404186741893419204194641972419991202^{\circ} 5$ 4205242678 12105 421311215742181422104223642263422894231542312 $4236812394+242042447124734249942525) 4255242578126041263012656$ 426824270912735427614275742813428394286542891429174294342939
$9.42996 \overline{13022} \overline{43018} \overline{43074} 43100 \overline{43125} \overline{43151} \overline{13177} \overline{43203} \overline{43229} \overline{43255} \overline{43281}$

 44842 44867 44892449184494344968449934501945044450694509445119
 454464547145196455211554645571455954562045645456704569545720 457454577045795458204584545870458944591945944459694599446018
$\overline{9.46043} \overline{46068} \overline{16093} \overline{46118} \overline{16142} \overline{46167} \overline{46192} \overline{46217} \overline{46211} \overline{46266} \overline{46291} \overline{46315}$
 46635 16660 16684467094673316758467824680746831468564688046905
 $4722217 \cdot 461727047295473194734347367473924746474404746447489$
9.47513 $\overline{17537} \overline{17561} \overline{17585} \overline{47610} \overline{17631} \overline{47658} \overline{17682} \overline{47706} \overline{47 i 30} \overline{47754} \overline{17774}$

 $483784340 \div$

 49793498164983949862 19886 49909499324995649979 50002 ${ }^{5} 002 \overline{5} 50048$

$9.50349 \overline{50372} \overline{50395} \overline{50418} \overline{50441} \overline{50465} \overline{50188} \overline{50511} \overline{50534} \overline{\boxed{50557}} \overline{50580} \overline{50603}$ 50626.50619506725039450717 .50740507635078650809508325085550878

$\overline{9.51718} \overline{51741} \overline{51763} \overline{\overline{51766}} \overline{\mathrm{~J} 1808} \overline{51831} \overline{51853} 51876 \overline{51898}$ 51921 $\overline{51943} 51466$ $519885: 01152033520.665207852100521235214552168521905221252235$
 $5252552547525695259152613526365265852680527025272452 \overline{4} 4752769$ 527915281352835528575287952901 529235294652968529905301253034
9.53056 $\overline{33078} \overline{53100} \overline{53122} \overline{53144} \overline{53166} \overline{53188} \overline{53210}, \overline{33232} \overline{5325453276} \overline{53298}$

 54104.512654147541695419054212542345425554277542985432054341
 548785489954920 - 49415496354984550055502755048 55069 5509155112
 553875540955430554515547255493555145553555556555775559855619
$\overline{9.55641} \overline{55662} \overline{55683} \overline{55704} \overline{55725} \overline{55746} \overline{5576755788} \overline{55809} \overline{55830} \overline{55851} \overline{55872}$

TABLE XVIII．

LOGARITHMS FOR FINDING THE APPARENT TIME OR HORARY ANGLE．

5 Hours．

M．	Os．	5 s.	10s．	15 s.	20s．	25 s.	30 s ．	35 s ．	40 s ．	45 s.	50 s ．	55 s.
0	4.56889	$\overline{56910}$	$\overline{56931}$	56951	56972	56992	$\overline{57013}$	$\overline{57033}$	57054	5	7095	5
1	57136	57156	57177	57197	57218	7238	57259	57279	57299	57320	57340	7361
2	57381	57402	57422	57442	57463	57483	57503	57524	57544	57564	57585	7605
3	57625	57646	57666	57686	57706	57727	57747	57767	57787	57808	57828	7818
4	57868	57889	j7909	57929		57969	57990	58010	58030	58050	58070	090
5	9.58110	8131	$\overline{58151}$	5817	58191	8211	$\overline{58231}$	$\overline{58251}$	$\overline{58271}$	$\overline{\text { j8291 }}$	5831	3331
6	58351	58371	58391	58411	58131	j8451	58471	58491	58511	58531	5855	571
7	58591	58611	58631	－88651	58671	58691	58711	58731	58750	5877		810
8	58830	こ8850	58870	j8889	58909	58929	58949	． 38969	58988	59008	59028	048
9	59068	． 99087	59107	59127	59147	59166	59186	59206	5922	5924	2	285
10	9．59304	5932	59344	－93	59383	9403	59422	59442	59461	59481		520
11	59540	59559	59579	5959	59618	－9638	59657	59677	59696	5971	97	755
12	59774	59794	59813	5983	59852	59872	59891	¢9911	59930	5995		988
13	60008	0027	60017	6006	60085	60105	50124	6014	60163	6018	6020	221
14	60240	30260	60279		30318	60337	6035 C	6037	6039	604	1	0452
15	9.60472	60491	50510	605	60549	60568	60－587	606	606			（83
16	60702	30721	60740	60760	50779	60798	60817	6083	085	087	8	0912
17	60931	30951	60370	60989	61008	61027	31016	61065	61084	61103	112	1141
18	61160	51179	61198	61217	61236	61255	61274	61293	61311	61330	61349	1368
19	61387	51406	$6142 \overline{3}$	61444	61463	61482	61500	61519	（1538	61557	61576	61595

9． 568895691056931569515697256992570135703357054570745709557115 s 571365715657177571975721857238572595727957299573205734057361 573815740257422574425746357483575035752457544575645758557605 576255764657666576865770657727577475776757787578085782857848
－ 110 583515837158391 －5841158431 58451584715849158511585315855158571 585915861158631 J8651 $58671 \mid$ J8691 587115873158750 58770，58790，58810

59068 －9087 59107 50127 5914709166
$.59304 \overline{59324} \overline{59344} \overline{59363} \overline{59383} \overline{59403} \overline{59422} \overline{59442} \overline{59461} \overline{59481} \overline{59501} \overline{59520}$
 600083002760017600666008560105501246014460163601826020260221 602403026060279 KO298 30318 G0337 6035G 6037560395604146043360452
$9.616136163-61651$ ©1670 6168961708617266174561764617836180161820
 $6206362082621(106211932138621566217562194622126223162249,62268$ 6228762305623246234262361623796239862416624356245362472,62490 625093252762546625643258362601626206263862657626756269362712

9．60472 60491 $\overline{50510} \overline{6052960549}$ 60568 60587 606U6 60625 60645 60664 60683 60931 O 1 $61160511796119861217 \mid 6123661255612746129361311613306134961368$ $61387614066142 \bar{j} 6144461463614826150061519 / 61538615576157661595$ | 8 | 4 |
| ---: | ---: |
| 1 | 4 |
| 3 | 8 |
| 3 | 11 |
| 4 | 15 |

$9.62730 \overline{j 2749} \overline{j 2767} \overline{52785} \overline{j 2801} \overline{62822} \overline{62841} 62859 / 62877 / 62896 \overline{62914} 62932$ 629516296932987630063302463042630616307963097631156313163152 6317063188632076322 ご 3324363261632796329863316633346335263370 633896340763425 （6344363161 33479） 634976351663531635526357063588 636066362463642036606367863696637156373363751637696378763805

 $64467344846450264520,64538,64555645736459164609646266464464662$ 646796469761715647326475064768647856480364821648386485664873

Y．64891 $\overline{34909 ~} \overline{64926} \overline{64944} \overline{64962} \overline{64979} \overline{64997} \overline{65014} \overline{65032} \overline{65050} \overline{65067} \overline{65085}$ $651026512065137651556517265190 \mid 652076522565242652606527765295$ 653126533065347653656538265399654176543465452654696548665504 655216553965556 65573 6559165608656256564365660656776569565712 657290574765764657816579965816658346585065868658856590265919
 661436616066177 j6194 66212 66229 66246 66263 6628066297 6631466331 6634866366663836640066417664346645166468664856650266519,66536 66553665706658766604666216663866655 66672 66689 667066672366740 66757667746679166807668246684166858668756689266909669266943
$\overline{9.66959} \overline{66976} \overline{66993} \overline{67010} \overline{67027} \overline{67044} \overline{67060} \overline{67077} \overline{67094} \overline{67111} \overline{67128} \overline{67144}$ $6716167178671956721267228672456726267279672956731267329^{\prime} 67346$ 673626737967396674126742967446674626747967496675126752967546 675626757967596676126762967646676626767967695677126772967745 677626777867795678116782867844678616787867894679116792767914
$\overline{9.67960} \overline{67977} \overline{67993} \overline{68010} \overline{68026} \overline{68042} \overline{68059} \overline{68075} \overline{68022} \overline{68108} \overline{68125} \overline{68141}$ 681586817468190682076822368240682566827268289683056832268338 6835468371683876840368420,684366815268469684856850168517 G8534 $6855068566,68583685996861568631686486866468680,686966871368729$ 687456876168777687946881068826688426885868874688916890768923
$9.68939 \overline{68955} \overline{68971} \overline{68987} \overline{69004} 600206036$ 691326914869164691816919769213692296924569261692776929369309 693256934169357693736938969405604216943769153694696948160500 $69516695326954869564,6958069596696126962869614,696606967569691$ 6970769723697391697556977069786698026981869834698506986669881

TABLE XVIII．

LOGARITHMS FOR FINDING THE APPARENT TIME OR HORARY ANGLE．

6 Hours

M．	0s．	5 s ．	10s．	15 s	20s．	25 s ．	30s．	35s．	40s．	45 s.	50 s ．	55 s ．	P．
0	9.69	9913											
1	700	7010	11	70133	014	70165	018	019	0211	70227	7024	259	
2	702								031	70415	70431	70446	20
3	704	70	70193	70509				051	－0586	602	0617	7063	
4		70664	70680					757				19	
5	9.708	7085	，	Ossi	．	0911	0927	70	70958 7	709737	709	1004	
6	71019	71035	7105	1065	710				1142	71157	71173	71188	
7	71203	1219	7123	1249	1265	12	129	13	1326	71341	7135	71371	
8	7138	1402	71417	1433	1448	7146	714	14	7150	715247	715	1554	
9	71		71600		7163	716						36	
10	9.717	1766	7178	179		182	18					1917	
11	71932	1947	7196	19	19	200	20	203	2052	72067	720	097	
12	7211	127	7214		217			221		722	72.	277	
13	722	－	232										
14	72			72	25	25		7257					
15	7264	66	678	263	708								
16	7282	，	咗			28	29	2928	，	29	29	987	
17	7300	301	3031	30	3060	307	30	31	73119	7313	31	3163	
18	7317	3192	3207	32	323		，	32	3294	73309	7332	338	3
19	7335	，	7338	7339	3410	3	7313	73454	7	7348	734	512	
20	9.735	73511	73	73569	73581	73598	73613	736	73642	3656	73671	73685	
	7369	37	372		75	377	37	38		7382		3858	
22	7387	硅		91	3929	391	39	397	3987	40	740	29	
23	740	403	107	408	4101	4115	7412		74158	741	1180	20	
24													
25	9.7438	74399	74137	44	44	44	74470	744	74498	74512	45	540	
26	7455	550	7458	459						74681	710	709	
27	7472	1737	775	476			－						
28	7489	190	74919	1933	991	496	49	7498	5003	75017	75031	75045	
29	750	75072		75100	5114				－		－		
30	． 752		25		52	5		53		753			
31	7539	750	541	5432	54	510	547	7548	75501	75515	75528	5542	
32	7555	－	7558				563	565		7567		5707	
33	757							58		758			
34	758	75898	75911		593			7597 ？		6006		033	
35	9.760	（0）	600										
36	7620									763		5	
37	76371	76384	76397	6411	642	04	615	640		76491			
38	7653	76545	\％65s	6571		5				76651	766		38
39	7669	70		673			6771			76811	768		
40	9.76851	7686t	87	7689	7690		693	694	76957	76970	析	¢	
41	770	02	－	77049				71		7712	77	77154	
42	77167	77181	77191	720	722	723	724	7725	77272	77285	77298	77312	
43	77325	77338	77351	7736	7377	739	7740	774	7429	7742	7745	77468	
44	$77 \pm$		77507	77520			77559	7157		77	77611	77624	
45	9.77637	7760	77663					772	77741	77754	77766	77779	
46	77792	803	81	778			8	788	78	7790	792	793	
47	779	77960					802	80		780		808	
48	\％10	78113	7812	81	15	816	8177	81		78215		824	
49	782	7	－			8317	1	8343	78	78368	7838	8393	
50	0.78406	78412	784	78144	78	7816	7848：	78195	78507	785.2	78533	78545	
51	7855	857	808				78633	86		78671	888	8696	
52													
53	788		7888		－	89	8934	894	8959	789727	78981	78997	$3{ }^{3} 7$
54	79009				90	79071	9081	79090	79108	79121	79133	79146	
	9.791					79	79：322		79257	79269	79：82	294	
56	793									79417	－	442	$1{ }^{1} 2$
57										，		58	
5									969	79711	79723	79735	37
													4 10

TABLE XVIII.

LOGARITHMS FOR FINDING THE APPARENT TXME OR HORARY ANGLE.

7 Hours.

ㅍ.	
0	
8	9
2	
3	
4	
5	9
6	
7	
8	
9	

-10~ - -
$\overline{y .81315} \overline{31326} \overline{31338} \overline{31350} \overline{81361} \overline{81373} \overline{81384} \overline{81396} \overline{81407} \overline{81419} \overline{81430} \overline{31442}$ $81454314658147 / 314883150031511|31523| 81531|3154681557| 3156981580$ $8159281603|816143162631637| 316493166081672$ 81683 $3169 う 81706 \mid 31717$ $8172981740 \mid 81752 / 3176331775317863179731809818203183131843318 \stackrel{\circ}{4} 4$ $8183631877|31888| 3190081911819228193181945 \mid 81956319688197931950$

 82272 82283 $3229418230632317 \$ 2328823393235082362$ S2373 8238432395 $8210632417|32420| 32440|8245132462824738248482495| 32507 / 82518 \mid S 2529$ $82510|32: 51| 32562|325738258: 32595| 8260682618826293264032651 \mid 32662$
 82805 $32816|82827| 32838|82849| 82860|32871| 32882|82893| 8290182915 \mid 32926$
 $830688307933090|331018311283123| 8313483144|83155| 8316683177 \mid 83188$ 831923321083220833213324283253832648327583285332968330783318
$\overline{9.83329} \overline{8: 3339} \overline{33350} \overline{\$ 3361} \overline{83372} \overline{33383} \overline{33393} \overline{33104} \overline{83415} \overline{83426} \widetilde{33436} \overline{83147}$ $83458 \$ 3346933179$ 93490, $8350183512|3352233533 ; 83544| 83555,83565,83576$
 8371583725837363374783757 33768 $8377983789 / 83800|33811 \leq 3821| 83832$

 $840968110634117|34127| 84138|34148841598416984179| 34190|84200| 84211$ 8422134232 34242 $812 J 381263$ 34274 $312843129484305|84315| 84326 \mid 34336$ $84346843 \overline{5} 734367 / 84378$ S4388884398 814098441934430844108445034461 844713448184492815028451284523845333454384554345648457481585
$9.84595 \overline{34605} \overline{34616}, \overline{81626} \overline{34636} \overline{81646} \overline{81657} \overline{84667} \overline{81677} \overline{31687} \overline{81698} \overline{84708}$
 84841 84551 818518187234882 8489: 819028491284923349338494384953 $84963849738198434991 ; 8500435014$ S5024 $850318501485051 \mid 5506585075$

 85326 85336/35316 85356 ' $8536685376 / 85386 / 8539685406 / 35416 \$ 542685436$
 $855651855758555858559518560585615 / 856258563585645856548566485674$ 85681 ' $85691 \mid 8570485714$ ' $\odot 5724|8573385743| 8575385763857738578385792$
 85920 , 85930 ' 85939 85919, $\$ 59598596935978, \$ 598885998 \$ 600886017 \mid 86027$ 86037 \$6016 8605686066 86076 86085 860958610586114861248613486143 $8615386163>36172 \mid 8618286192862018621186221862308624086250$ ' 86259 86269,96279862888629886307 S6317 863278933686346 36356 8636586375
 86499 86509 , 86518 8652s" 66537865478655686566 S6575 865858659486604 86613 |86623 86632 26642 8665186661 86670 $86679 \mid 866993669886708186717$ 867278673686746 86755 $86764867748667838679386802 \mid 8681286821186830$ 8684086819,86858 8686886877 86887 86896,86905 $86915 / 869248693386913$
$\overline{9.86952} \overline{8696^{2}} \overline{86971} \overline{86980} 86990 \overline{86999} \overline{87008} \overline{87018} \overline{87027} \overline{87036} \overline{87045} \overline{87055}$ 870615707387083870928710137111871208712987138871488715787166 871758718 戸 57191872038721287222872318724087249572598726887277 87286 \&7C95 873058731487323873328731157351 S7360 8736987378887387 87395 87406 ' $87415 \cdot \$ 74248743387442$ - 87451.87460 .87470 .8747987488 .87497

TABLE XVIII．

logarithms for finding the apparent time or horary angle．

8 Hours．

m．$\quad 0 \mathrm{~s}$ ．
$\overline{9.87506} \overline{87515} \overline{87524} \overline{87534} \overline{87543} \overline{87552} \subset 7 \overline{561} 1 \overline{87570} \overline{57579} \overline{87588} \overline{87597} \overline{87606}$ $876158762487633876438765287661 \mid 876708767937688876978770687715$ $87724877338774287751 \mid 8776087769877788778787796878058781487823$ $878328784187850|87859 \$ 78688787787886| 3789587904879138792187930$ $87939879488795787966 \mid 8797587984379933800288011880208802988038$
$9.800468805588064880738808258091 / 8810088109 / \overline{38117} \overline{88126} \overline{88135} \overline{88144}$ $881538316288170|38179| 38188 / 88197|3820688215| 88223882323824138250$

$\overline{9.88 .73} \overline{8858 \%} \overline{88590} \overline{85594} \overline{88607} \overline{38616} \overline{88625} \overline{38634} \overline{38642} \overline{38651} \overline{38659} \overline{38668}$ 83677 8868 $88694188703|387113872038728| 38737887458875438763 \mid 88772$

 $88984889938900139010 \mid 3901839027890353904439052890618906939078$
 $89187891963920489213 / 892213922989237|3924639254| 392658927139279$ $8928739290|8930139313| 39321393303933889346|39354| 393633937180379$ $8938789396|39401| 39413494213942989437|39446| 894543946289470 \mid 39479$ $8948789495895033951 \approx 8952089528$ 39536 8954539553895613956989577
$\overline{9.89586} \overline{89.596} \overline{39602} \overline{39611} \overline{39619} \overline{89527} \overline{39635} \overline{89643} \overline{89651} \overline{39666} \overline{89666} \overline{89676}$

 8987989888 39896 89904 3991 39920 ，9928 89936 39944 $8995 \approx 8906089968$ 8997639981 39992 90000 9000太 9001690024 90032 90040 9001ะ 9005690064
$9.90072 \overline{90080} \overline{30058} \overline{90096} \overline{90104} \overline{90112}$ 90120 $\overline{90126} \overline{90136}$ 90144 90152

$\overline{9.90546} \overline{90551} \overline{30562} \overline{90570} \overline{J 0577} \overline{90585} \overline{90593} \overline{90601} \overline{90608} \overline{90616} \overline{90624} \overline{30632}$

 90824 90832 $90840 \mid 90848$ 00855 $9086390870|908789088590893| 9090190909$ 9091690921 30331 30939 90946 $90954909629097099977|30985| 3093291000$
$\overline{9.91007} \overline{91015} \overline{91022} \overline{J 1030} \overline{91037} \overline{J 1015} \overline{91052} \overline{91060} \overline{91067} \overline{91075} \overline{91083}$ 91091 $91098|31106| 1113$ 31121 $31128|911369114331151| 91158|91166| 91173 \mid 91181$ $911889119691203|91211| 912189122691233912419124891255 \mid 91262912 \%$ $91277912850129201300 \mid 3130791315013229133091337913450135291360$ $9136791374|01381| 01389|91396| 914049141191419|91426| 91433 \mid 9144091448$
$\overline{9.91455} \overline{914} \overline{91470} \overline{31478} \overline{31480} \overline{91492} \overline{91493} \overline{91507} \overline{91514} \overline{91522} \overline{91529} \overline{91536}$ 910゙4391551 21558915663157391580915879159591602916099161691624 $91631916389164591653916609166791674916829168991696 \mid 9170391711$
 918059181291819018269183391841918489185591862918699187691884
$\overline{9.91891} \overline{9189 〕} \overline{91900} \overline{91912} \overline{91919} \overline{91927} \overline{91934} \overline{91941} \overline{91948} 91955$ Э1962 $\overline{91469}$ 919769198491991 91938 $9200-520129201992026920339204092047 \mid 92054$ 9206192069 92076 9208392090 92097 921049211192118921259213292139 $921469215392160|92167| 92174|921819218892195| 92202|92209| 9221692223$
 $\overline{9.92314} \overline{92321} \overline{92328} \overline{92335} \overline{92342} \overline{92349} \overline{92355} \overline{92362} \overline{92369} \overline{92376} \overline{92383} \overline{92390}$ $9239792404924119241892425,924329243892445924.52924599246692473$ $924809248792493925009250792514925219252892 \overline{5} 34925419254892555$ 92562 925 99 92575 92582 $925 S 992596926039261092616926239263092637$ 926439265092657926649267092677926849269192698927059271192718 $9280{ }^{-1} 9281292819928269283202839928459285292859928669287292879$ 9288j92892，92899，929069291292919929259293292939929469295292959 929659297292978929859299292999930059301293018930259303193038 9304493051930579306493071930789208493091930979310493110.93117

294

TABLE XIX.

qo find the latitcde by an altitude of the pole star.

TABLE XX. AMPLITUDES.														
declination.														
Lat.	1°	2°	3^{\bigcirc}	4°	5°	6°	70	8°	9°	10°	110	120	13	
1	10	20	30	40	50	$6 \quad 0$	70	$8 \quad 0$	90	$10 \quad 011$	11012	$12 \quad 013$	301	
3		20	30	40		$6 \quad 0$	$7 \quad 1$	81	91	10 111	1111	$12 \quad 113$		
5		20	31	41	51	61	$7 \quad 2$	$8 \quad 2$	92	102	1131	12313	3	
7		21	31	42			$7 \quad 3$	84	94	$10 \quad 51$	1151	$12 \quad 513$	361	
9		21	32	43			$7 \quad 5$	$8 \quad 6$	97	$10 \quad 81$	11812	$12 \quad 913$	3101	
10		22	$3 \quad 3$	4			76	$8 \quad 8$	9	1010	$1111 \mid 1$	121113	1312	
11		22	3 3		56		$7 \quad 7$	$8 \quad 9$	910	10111	11131	121313	3101	
12		23	34	4	5		$7 \quad 9$	811	912	1013	11151	121613	318	
13				4		610	711	$\bigcirc 13$	414	1016	1118	1219	1321	
14	12	24	36	47	59	611	713	815	917	$10 \quad 191$	11201	122213	1324	
15	12	24	36	4.8	511	613	715	817	919	10211	1121	122613	3281	
16	12	$2 \quad 5$	37	410	512	615	717	819	922	1024	11271	122913	3221	
17	$1 \begin{array}{ll}1 & 3\end{array}$	25	38	411	514	617	719	822	925	1028	11311	123313	13361	
18	13	26		412	515	619	722	825	928	1031	11341	123813	3411	
19	$1 \begin{array}{ll}1 & 3\end{array}$	27	310	414	517	621	724	828	931	10351	11391	124213	13461	
20			312	415	519	623	727	831	935	103911	11431	124713	13511	
21			313	417	521	626	730	834	939	1043	1148	12521	1357	
24	1	49	314	419	521	628	733	838	443	1045	1153	1257	$14 \quad 2$	
23		210	316	421	520	631	736	84	947	1052	11581	13 31	1491	
24	16	211	317	423	528	631	740	846	952	10571	$12 \quad 313$	$13 \quad 91$	14151	
25	16	212	319	42.3	531	637	744	85	956	$11 \begin{array}{ll}11\end{array}$	$12 \quad 91$	131614	14221	
26	17	214	320	427	534	641	74 E	854	101	1181	121513	13221	14301	37
27		215	322	429	537	644	752	859	$10 \quad 7$	11141	12221	13301	1437	
. 28	18	216	324	432	540	648	750	94	1012	11211	12291	13371	14461	I
29	19	217	326	431	543	652	8.1		1018	$11 \quad 27$	12361	13451	14541	
30		219	325	437	547	650		915	1024	1134	1244	1353		
31	110	220	330	440	550		810	921	1031	1141	1252	$14 \quad 2$	1513	
32	111	22.2	332	443	554	$7 \quad 5$	810	927	1035	11491	1301	141115	523	
33	112	223	335	446	558	710	821	93 3	1045	11 571	$\begin{array}{ll}13 & 9\end{array} 1$	142115	1534	
34	112	225	337	450	62	715	827	94 C	1058	$12 \quad 51$	13181	1431	45	58
35	113	227	340	453	66	720	833	947	111	12141	13281	144215	5561	
36	114	228	343	457	611	725	840	954	1118	12.211	$13 \quad 39$	1454	1691	
37	115	230	345		616	731	8471	102	1118	1233	1349	$15 \quad 5$	122	
38	116	232	348	$5 \quad 5$	621	737	8511	1010	1127	12441	141	151816	6351	3
39	117	231	352	5	626	744	$9 \quad 11$	1019	1137	12551	141315	153176	65	
40	118	237	355	513	632	751	9	1028	1147	136	1420	154517		
41	120	235	359	518	638	758	9181	1038	1158	1318	1439	155917	720	
42	121	242	42	523	644	$8 \quad 5$	9261	1048	129	$13 \quad 311$	145316	161517	737	
43	122	241	46	528	651	813	$93 C 1$	1058	1221	13441	$15 \quad 716$	163117	755	
44	123	247	410	531	658	821	9451		1234	13581	1523	14818	813	39
45	125	250	415	540		830	9551	1121	1245	1413	153917	7618	8332	
46	126	253	419	546	712	8391	$10 \quad 61$	1133	131	14291	155517	172518	854 ?	
47	128	$25 C$	424	552	721	8491	10181	1146	1316	144516	161517	7451 ?	915.2	
48	130	259	429	559	729	8591	10301	$12 \quad 0$	$13 \quad 31$	$15 \quad 216$	$163: 18$	$8 \quad 615$	939	
40	131		435		738	9101	1042		1348	15.21	1654	1829		
50	133	37	440	614	748	9221	10561	123	$\begin{array}{ll} 14 & 5 \end{array}$	154017	171618	85220	0292	
51	135	311	446	622	758	9341	11101	1247	1424	$\begin{array}{ll}16 & 117\end{array}$	173915	91720	0572	
52	137	315	453	630		9471	11251	134	1443	162318	$18 \quad 319$	94421	1262	
53	140	319	459	639	8201	$10 \quad 01$	11411	1322	154	164618	182920	01321	1572	
54	142	321	5	649	8321	10151	11581	13 42	1526	171318	185720	04322	2302	
55	145	329	514	659	84410	10301	12161	14 3	1550	173719	1926	11523		
56	147	3.35	522	710	8581	10461	12351	1425	1515	$18 \quad 519$	957	15023	3432	
57	150	340	531	722	91311	1141	1256		10	183620	03022	22624	4242	
58	153	347	540	731	928	11231	1318	1514	$\overline{1710}$	1982	116	36	$5{ }^{5} 7$	
59	157	353		747	9451	11431	134115	1541	1741	1942	145	349.25	55428	
60			60	811	$10 \quad 2$	12 4/1	$14 \quad 61$	1610	1814	20192	22624	± 3426	64428	
61	2	48	$\begin{array}{lll}6 & 12\end{array}$	816	10211	12271	143416	1641	1849	20592	31125	- 2427	73929	
62	28	416	$\begin{array}{lll}6 & 24 \\ 6\end{array}$	833	10421	12521	$15 \quad 317$	1715	1928	2142	35926	61728	83831	
63	212	425	637	850	1141	13191	153417	1751		22292	45127	71529	94232	
$6 \pm$	217	431	651	$9 \quad 9$	11281	13481	16818	1831	2054	23202	5 48	81930	05233	
65	222	444	7	930	1154	14191	164615	1914	2144	241626	6502	92832	2103	
66	228	455	724	953	12221	14511	17262		12237	251027		04533	$35^{-1} 3$	

CALENDAR FOR 1878.

TABLE XXI.

JANUARY, 1878.-Page 1.

AT APPARENT NOON.

		The Sun's Right Ascension and				Equation of Time, to be added to Apparent I'ime.	Var. is 1 hour.
		Apparent RightAscension			Var. in 1 hour.		
		h. m. s.				52	S.
Tuesda	1	184753.62		S. 23 0-12.1		352.25	1.185
Wednes'y	2	$18 \quad 5218.53$	11.030	225445.0	13.78	420.52	171
Thursday	3	185643.08	11.015	22490.5	14.92	448.44	155
	4	$\begin{array}{lll}19 & 1 & 7.24\end{array}$	10.99	224248.7	16.05	515.96	138
Saturda	5	$19 \quad 530.97$	10.972	22369.9	17.18	543.06	1.119
Surday	6	$19 \quad 954.23$	10.959	$22 \quad 294.2$	18.29	$6 \quad 9.69$	1.100
Monday	7	191417.01	10.938	222131.9	19.40	635.84	1.079
Tuesday	8	191839.26	10.916	221333.2	20.49	71.46	1.056
Wednes'		$19 \quad 230.96$	10.892	$\begin{array}{lll}22 & 5 & 8.4\end{array}$	21.57	726.54	1.033
Thurs	10	192722.09	10.868	215617.7	22.65	751.05	1.009
Friday	11	193142.63	10.843	21471.4	23.71	814.95	0.983
Saturd	12	$1936 \quad 2.54$	10.816	213719.7	24.76	838.24	0.957
Sund	13	$1940{ }_{4}^{7} 21.81$	10.789	212713.0	25.80	$9 \quad 0$.	930
Monday	14	194440.41	10.761	211641.5	26.83	922.88	0.902
Tuesday	15	194858.34	10.732	21545.6	27.83	944.19	0.873
Wednes'y	16	195315.57	10.703	205425.6	28.83	104.80	0.844
Thursday	17	195732.08	10.673	204241.7	29.82	1024.71	0.814
Friday .	18	$\begin{array}{lll}20 & 1 & 47.87\end{array}$	10.643	203034.4	30.79	1043.89	0.784
Satur	19	$\begin{array}{lll}20 & 6 & 2.93\end{array}$	10.612	$2018 \quad 3.9$	31.75	$11 \quad 2.33$	0.753
Sunday	20	201017.24	10.581	$20 \quad 510.5$	32.69	1120.04	0.722
Monday	21	201430.80	10.549	195154.6	33.62	1136.99	0.690
Tuesclay	22	201843.59	10.517	193816.6	34.54	1153.18	0.659
Wednes'y	23	$20 \quad 2255.62$	10.485	192416.6	35.45	128.61	0.627
Thursday	24	$20 \quad 27 \quad 6.88$	10.453	$19 \quad 955.0$	36.34	12 23.28	
Trida	25	203117.37	10.421	185512.3	37.21	1237.17	0.562
Saturday	26	203527.07	10.388	18408.7	38.07	1250.24	0.50 J
S'unday	27	203935.98	10.355	182444.7	38.92	$13 \quad 2.59$	0.497
Monday	28	204344.10	10.321	$18 \quad 9 \quad 0.6$	39.75	1314.12	0.464
Tuesday	29	204751.41	10.288	175256.9	40.55	1324.85	0.430
Wednes'y	31	$20 \quad 5157.91$	10.254	$17: 3634.1$	41.34	13 3t.7i	0.396
Thursday	31	$20 \quad 56 \quad 3.59$	10.220	171952.4	42.12	1343.87	0.362

TABLE XXI.
JANUARY, 1878.-Page 2.

AT MEAN NOON.					
		The Sun's Right Ascension andDeclination.			Equation of Time, to be subtracted from Mean Time.
		Apparent RightAscension	Apparent Declination.	Semidiameter.	
	1		S. 23 0' ${ }^{\text {¢ }}$ 2゙9 9		
Tuesday ...	1	184752.91	S. $23-12.9$	1618.2	352.17
Wednesday	2	$18 \quad 5217.73$	225446.0	1618.2	420.44
Thursday :	3	185642.20	22491.7	1618.2	448.35
Friday	4	$\begin{array}{lll}19 & 1 & 6.27\end{array}$	224250.1	1618.2	515.86
Saturday	5	$19 \quad 5 \quad 29.92$	223611.5	1618.2	542.95
Sunday	6	$19 \quad 953.11$	22296.1	1618.1	$6 \quad 9.58$
Monday	7	191415.81	222134.1	1618.1	635.72
Tuesday	8	191837.98	221335.6	1618.1	$7 \quad 1.34$
Weduesday	9	$19 \quad 2259.61$	$22 \quad 511.1$	1618.0	726.41
Thursday	10	$\begin{array}{lll}19 & 27 & 20.67\end{array}$	215620.7	1618.0	750.91
Friday	11	193141.14	21474.6	1618.0	814.82
Saturda	12	19360.98	213723.3	1617.9	838.10
Sunday	13	194020.19	212716.9	1617.9	$\begin{array}{lll}9 & 0.75\end{array}$
Monday	14	194438.73	211645.7	1617.8	922.73
Tuesday	15	194856.60	$21 \quad 550.1$	1617.8	944.04
Wednesday	16	$19 \quad 5313.77$	205430.4	1617.7	10466
Thursday	17	195730.23	204246.9	1617.6	1024.56
Friday.	18	$\begin{array}{lll}20 & 145.97\end{array}$	203039.9	1617.5	1043.75
Saturday	19	$\begin{array}{lll}20 & 6 & 0.98\end{array}$	20189.8	1617.4	$11 \quad 2.20$
Sunday	20	201015.24	$20 \quad 516.7$	1617.3	1119.90
Monday	21	201428.76	19521.1	1617.2	1136.85
Tuesday	22	201841.51	193823.4	1617.1	1153.05
Wednesday	23	$20 \quad 2253.50$	192423.8	1617.0	$12 \quad 849$
Thursday .	24	$20 \quad 274.72$	19102.5	1616.9	1223.16
Friday	25	203115.17	185520.1	1616.8	1237.05
Saturday	26	$2035 \quad 24.84$	184016.8	1616.6	1250.16
Sunday	27	203933.73	182453.1	1616.5	$13 \quad 2.49$
Monday	28	204341.82	$18 \quad 9 \quad 9.4$	1616.4	1314.02
Tuesday	29	204749.11	17536.0	1616.2	1324.75
Wednesday	30	205155.59	173643.5	1616.1	1334.68
Thursday .	31	$20 \quad 56 \quad 1.26$	17202.1	1615.9	1343.79

300							
AT APPARENT NOON.							
	$\left\|\begin{array}{c} \text { a } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	The Sun's Right Ascension and				$\begin{array}{\|c} \left\lvert\, \begin{array}{c} \text { Equation } \\ \text { of Time } \\ \text { to be } \\ \text { added } \\ \text { to } \\ \text { Apparent } \end{array}\right. \\ \text { Time. } \end{array}$	Var. in 1 hour.
		Apparent RightAscension	Var. in 1 liour.	Apparent Declination.	Var. in 1 hour.		
Fr		$\begin{array}{ccc}\text { h. } & \text { m. } & \text { s. } \\ 21 & 0 & 8.46\end{array}$	$10 \cdot 186$	S. $17 \quad 2{ }^{\text {2 }}$ 52.3	42.88	m. s.	0.328
Saturday.	2	$21 \quad 412.50$	10.151	164534.4	43.61	$13 \quad 59.62$	0.294
Sunday ..	3	$21 \quad 815.71$	10.116	162758.9	44.34	$14 \quad 6.26$	0.259
Monday	4	211218.09	10.082	$1610 \quad 6.2$	45.04	1412.07	0.225
Tuesday .	5	211619.65	10.048	155156.9	45.73	1417.06	0.191
Wednes'y	6	212020.38	10.013	153331.3	46.39	1421.22	0.156
Thursday	7	212420.29	9.979	151450.0	47.04	1424.56	0.122
Friday...	-	212819.38	9.945	145553.3	47.68	1427.09	0.089
Saturday.	9	213217.66	9.912	143641.6	48.69	1428.82	0.055
Sunday..	10	213615.14	9.879	141715.4	48.88	1429.74	0.022
Monday.	11	214011.83	9.846	135735.0	49.47	1429.87	0.011
Tuesday	12	$2144 \quad 7.73$	9.813	133741.0	50.03	1429.21	0.044
Wednes'y	13	$2148 \quad 2.85$	9.781	131733.8	50.57	1427.78	0.076
Thursday	14	215157.20	9.749	125713.8	51.09	1425.58	0.107
Friday...	15	215550.80	9.718	123641.3	51.60	1422.63	0.138
Saturday.	16	215943.66	9.688	121556.8	52.10	141895	0168
Sunday . .	17	$22 \quad 335.81$	9.658	111550.7	52.58	1414.55	0.198
Monday	18	$22 \quad 727.25$	9.629	113353.2	53.04	$14 \quad 9.45$	0.227
Tuesday	19	221118.00	9.601	111234.9	53.48	$14 \quad 3.67$	0.225
Wednes'y	20	$2215 \quad 8.09$	9.574	10516.1	53.91	$13 \quad 57.22$	0.282
Thursday 2	21	221857.53	9.547	102927.0	54.33	1350.13	0.308
Friday. . .	22	222246.35	9.521	10738.2	54.73	1342.42	0.334
Saturday.	23	222634.57	9.496	94539.9	55.11	$13 \quad 34.10$	0.359
Sunday	24	223022.19	9.472	92332.7	55.48	1325.19	0.383
Monday	25	$2234 \quad 9.24$	9.449	$\begin{array}{llll}9 & 1 & 16.9\end{array}$	55.83	1315.71	0.407
Tuesday . 2	26	223755.72	9.425	83853.0	56.16	$13 \quad 5.67$	0.430
Wedues'y 2	27	224141.66	9.403	81621.3	56.47	1255.08	0.452
Thursday 2	28	224527.07	9.381	75342.3	56.77	1243.96	0.474

TABLE XXI. FEBRUARY, 1878.-Page 2.					
AT MEAN NOON.					
Day of the Week.		The Sux's Right Ascension and Declination.			$\begin{gathered} \text { Equation } \\ \text { of Time, } \\ \text { to be } \\ \text { subtracted } \\ \text { from } \\ \text { Mean Time. } \end{gathered}$
		Apparent RightAscension	Apparent Declination.	Semidiameter.	
Friday	1	$\begin{array}{ccc}\text { h. } & \text { m. } & \text { s. } \\ 21 & 0 & 6.10\end{array}$	S. 17×3	16150	${ }_{13} \quad{ }_{52} \quad \text { s. } 08$
Saturday	2	$\begin{array}{llll}21 & 4 & 10.13\end{array}$	164544.5	1615.6	1359.55
Sunday.	3	$\begin{array}{llll}21 & 813.33\end{array}$	16289.3	1615.5	$14 \quad 6.19$
Monday	4	211215.71	161016.9	1615.3	1412.01
Tuesday	5	211617.26	$15 \quad 527.8$	1615.2	$14 \quad 17.01$
Wednesday	6	$21 \quad 2017.99$	153342.4	1615.0	1421.18
Thursday	7	212417.90	15151.3	1614.8	$14 \quad 24.53$
Friday...	8	212816.99	14564.7	1614.7	11427.07
Saturday	9	213215.27	143653.2	1614.5	1428.80
Sunday	10	213612.76	141727.2	1614.3	1429.73
Monday	11	$2140 \quad 9.45$	135747.0	1614.1	1429.87
Tuesday	12	$2144 \quad 5.36$	133753.1	1613.9	1429.92
Weduesday	13	$21 \quad 48 \quad 0.49$	131746.0	1613.7	1427.80
Thursday .	14	215154.86	125726.0	1613.6	1425.61
Friday.... .	15	215548.47	123653.6	1613.4	1422.67
Saturday	16	215941.35	12169.2	1613.2	1418.99
Sunday.	17	$22 \quad 333.51$	115513.2	1613.0	1414.60
Monday	18	$22 \quad 724.97$	11345.8	1612.7	$14 \quad 9.50$
Tuesday ...	19	221115.75	111247.5	1612.5	$14 \begin{array}{ll}14 & 3.72\end{array}$
Wednesday	20	$22 \quad 15 \quad 5.86$	105118.6	1612.3	1357.28
Thursday .	21	221855.33	102939.5	1612.1	1350.20
Friday.	22	22.2244 .18	$10 \quad 750.7$	1611.8	$\begin{array}{ll}13 & 42.49\end{array}$
Saturday	23	$22.26 \cdot 32.42$	94552.4	1611.6	13134.18
Sunday .	24	223020.07	92345.1	1611.4	1325.28
Monday	25	$2234 \quad 7.15$	$\begin{array}{llll}9 & 1 & 29.2\end{array}$	1611.1	1315.80
Tuesday . .	26	223753.67	8395.2	1610.9	$13 \quad 5.76$
Wednesday	27	224139.64	81633.5	1610.6	1255.18
Thursday ...	28	$2245 \quad 25.08$	75354.4	1610.4	1244.07

302							
AT APPARENT NOON.							
	$\left\|\begin{array}{c\|} \mid \\ 0 \end{array}\right\|$	The Sux Apparent Right Ascension	's Righ Declin Var. in 1 hour.	Ascension A ation. Apparent Declination.	AND Var. in 1 hour.	Equation of Time, to be added to Apparent Time.	Var. in 1 hour.
Frida	1	$\begin{array}{llc} \mathrm{h} . & \mathrm{m} . & \mathrm{s} . \\ 22 & 49 & 11.96 \end{array}$	9.360	S. $730566^{\prime \prime} .4$	57.05	$\left\|\begin{array}{cc} \mathrm{m} . & \mathrm{s} . \\ 12 & 32.33 \end{array}\right\|$	$\stackrel{\text { s. }}{0.495}$
Saturday		225256.35	9.339	$\begin{array}{llll}7 & 8 & 4.0\end{array}$	57.31	1220.20	0.516
Surday.	3	225640.25	9.319	$645 \quad 5.6$	57.55	$12 \quad 7.58$	0.536
Monday	4	$23 \quad 0 \quad 23.68$	9.300	6221.5	57.78	1154.49	0.555
Tuesday		$23 \quad 4 \quad 6.66$	9.282	55852.2	57.99	1140.95	0.573
Wednes'y	,	$\begin{array}{ll}23 & 749.20\end{array}$	9.264	53538.0	58.18	1126.98	0.591
Thursday	7	231131.32	$9.24{ }^{7}$	51219.4	58.36	1112.58	0.608
Friday...	8	231513.04	9.230	44856.8	58.52	1057.79	0.624
Saturday.	9	231854.37	9.215	42530.5	58.66	1042.61	0.6 ± 0
Sunday	10	$\begin{array}{lll}23 & 22 & 35.34\end{array}$	9.200	$\begin{array}{llll}4 & 2 & 1.0\end{array}$	58.79	1027.07	0.655
Monday	11	$23 \quad 2615.97$	9.186	33828.7	58.90	1011.19	0.669
Tuesclay	12	$23 \quad 2956.26$	9.172	31453.9	58.99	954.97	0.682
Wednes'y	13	233336.24	9.160	25117.0	59.07	938.45	0.695
Thursday	14	233715.94	9.148	22738.4	5913	921.63	0.706
Friday...	15	234055.36	9.137	2358.6	59.18	$9 \quad 4.55$	0.717
Saturday	16	234434.53	9.127	14017.7	59.22	847.22	0.727
Sunday.	17	234813.48	9.119	11636.2	5924	829.66	0.736
Monday	18	235152.23	9.111	05254.4	59.24	811.90	0.744
Tuesday	19	$23 \quad 55 \quad 30.80$	9.104	02912.6	59.23	753.97	0.750
Wednes'y	20	$23 \quad 59 \quad 9.23$	9.099	S. $0 \quad 531.2$	59.21	735.89	0.756
Thursday	21	$\begin{array}{llll}0 & 2 & 47.54\end{array}$	9.094	N. $018 \quad 9.6$	59.18	717.70	0.760
Friday	22	$\begin{array}{lll}0 & 6 & 25.75\end{array}$	9.091	04149.5	59.14	659.41	0.764
Saturday.	23	$\begin{array}{llll}0 & 10 & 3.89\end{array}$	9.088	1528.1	59.08	641.05	0.766
Sunday	24	01341.99	9.087	1295.1	59.00	622.64	0.768
Monday	25	$\begin{array}{lll}0 & 17 & 20.05\end{array}$	9.086	15240.0	58.90	$6 \quad 4.20$	0.769
Tuesday	26	$\begin{array}{llll}0 & 20 & 58.10\end{array}$	9.086	$2{ }^{1} 1612.5$	58.80	545.75	0.769
Wednes'y	27	02436.16	9.086	23942.3	58.68	527.31	0.768
Thursday	28	02814.25	9.088	$\begin{array}{llll}3 & 3 & 9.0\end{array}$	58.54	$5 \quad 8.89$	0.766
Friday.	29	$\begin{array}{lllllllllll}0 & 31 & 52.38\end{array}$	9.090	32632.2	58.39	450.52	0.764
Saturday.	30	03530.58	9.093	34951.6	58.22	432.21	0.761
Sunday.		0398.85	9.097	4136.7	58.03	413.98	0.757

TABLE XXI. MARCH, 1878. -Page 2.					
AT MEAN NOON.					
		The Sun's Right Ascension and Declination.			Equation of Time, to be subtracted from Mean T'ime.
		Apparent RightAscension	Apparent Declination.	Semidiameter.	
Friday..	1	$\left\lvert\, \begin{array}{llc} \text { h. m. } & \text { s. } \\ 22 & 49 & 10.00 \end{array}\right.$	S. ${ }^{\circ} 7310808$	1610.1	$\begin{array}{lc} \mathrm{m} . & \mathrm{s} . \\ 12 & 32.44 \end{array}$
Saturday	2	225254.43	$\begin{array}{llll}7 & 8 & 15.8\end{array}$	16	1220.31
Sunday.	3	225638.37	64517.2	$16 \quad 9.6$	$12 \quad 7.69$
Monday	4	$23 \quad 021.83$	62213.0	16	1154.60
Tuesday .	5	$\begin{array}{lll}23 & 4 & 4.85\end{array}$	$5 \begin{array}{llll}5 & 59.5\end{array}$	16	1141.06
Wednesday	6	$23 \quad 747.43$	53549.1	1688	1127.09
Thursday	7	231129.59	51230.3	1688	1112.69
Friday . .	8	231511.35	$449 \quad 7.5$	1688	1057.90
Saturday	9	231852.73	42541.0	168.1	1042.73
Sunday	10	$\begin{array}{llll}23 & 22 & 33.74\end{array}$	$4 \quad 211.3$	$16 \quad 7.9$	1027.19
Monday	11	$\begin{array}{llll}23 & 26 & 14.41\end{array}$	33838.7	$16 \quad 7.6$	101130
Tuesday	12	232954.74	$\begin{array}{llll}315 & 3.6\end{array}$	167.3	955.08
Wednesday	13	233334.77	25126.5	167	938.56
Thursday . .	14	$\begin{array}{lllll}23 & 37 & 14.51\end{array}$	22747.7	166	921.74
Friday..	15	234053.98	2487.5	$16 \quad 6.5$	$9 \quad 4.66$
Saturday	16	234433.20	14026.4	$16 \quad 6.3$	84732
Sunday	17	$\begin{array}{lllllll}23 & 48 & 12.19\end{array}$	11644.6	$16 \quad 6.0$	$8 \quad 29.76$
Monday	18	235150.98	0532.5	$16 \quad 5.7$	812.00
Tuesday	19	$2355 \quad 29.60$	02920.4	$16 \quad 5.5$	754.07
Wednesday	20	235988.08	S. $0 \quad 5 \quad 588.7$	16	735.99
Thursday ...	21	$0 \quad 246.43$	N. 018182.4	164.9	717.79
Friday....	22	$\begin{array}{llll}0 & 6 & 24.69\end{array}$	04142.6	$16 \quad 4.7$	659.50
Saturday	23	$\begin{array}{lll}0 & 10 & 2.88\end{array}$	$1 \begin{array}{llll}1 & 5 & 21.5\end{array}$	$16 \quad 4.4$	64113
Sunday .	24	01341.02	12858.8	164.1	622.72
Mondny	25	01719.13	15234.1	$\begin{array}{ll}16 & 3.8\end{array}$	$6 \quad 4.27$
Tuesday	26	02057.23	$\begin{array}{llll}2 & 16 & 6.9\end{array}$	16	$\begin{array}{llll}5 & 45 & 82\end{array}$
Wednesday	27	02435.34	23937.0	$16 \quad 3.2$	527.38
Thursday	28	$\begin{array}{lll}0 & 2813.47\end{array}$	$\begin{array}{llll}3 & 3 & 4.0\end{array}$	$16 \quad 3.0$	$5 \quad 8.96$
Friday .	29	03151.65	$3 \quad 2627.5$	$16 \quad 2.7$	450.58
Saturday	30	$\begin{array}{llll}0 & 35 & 29.89\end{array}$	34947.2	$16 \quad 2.4$	432.27
Sunday.	31	$\begin{array}{lll}0 & 39 & 8.21\end{array}$	4132.6	$16 \quad 2.1$	414.04

TABLE XXI. APRIL, 1878.-Page 1.							
at apparent noon.							
		$\begin{aligned} & \text { The Sun's Right Ascension and } \\ & \text { Declination. } \end{aligned}$				Equation of Time to be added to subt. from Apparent Time.	Var. in 1 hour
	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Apparent } \\ \text { Right Ascension } \end{gathered}\right.$	$\begin{aligned} & \text { Var. in } \\ & 1 \text { hour. } \end{aligned}$	Apparent Declination.	Var. in 1 hour		
Monday		$\begin{array}{rrr} \text { h. m. } & \mathrm{s} . \\ 0 & 42 & 47.23 \end{array}$	9•101	N. 43617 \% 2	57.84	${ }_{3}^{\mathrm{m}} \mathrm{S}_{55.85}^{\text {s. }}$	0.753
Tuesday	2	04625.72	9.106	45922.8	57.62	337.84	0.748
Wednes'y	3	0504.34	9.112	52223.1	57.39	319.95	0.742
Thursday	4	05343.11	9.119	54517.7	57.15	$3 \quad 2.22$	0.735
Friday.	5	05722.04	9.126	$\begin{array}{lll}6 & 8 & 6.2\end{array}$	56.89	244.65	0.728
Saturday.		$1 \begin{array}{lll}1 & 1 & 1.16\end{array}$	9.134	63048.3	56.61	227.26	0.720
Sunday	7	1440.47	9.143	65323.7	56.33	210.07	0.712
Monday	8	11 8 20.00	9.152	71552.0	56.02	153.08	0.703
Tuesday	9	11159.75	9.161	73812.8	55.70	136.33	0.693
Wednes'y	10	11539.74	9.172	8025.7	55.36	119.81	0.683
Thursday	11	11919.99	9.182	82230.4	55.02	13.55	0.672
Friday..	12	1230.50	9.194	84426.7	54.66	047.55	0.661
Saturday	13	12641.30	9.206	9614.1	54.29	031.84	0.648
Sunday.	14	13022.41	9.220	92752.4	53.90	016.44	0.635
Monday	15	1343.84	9.234	94921.2	53.50	$0 \quad 1.36$	0.621
Tuesday	16	13745.62	9.249	1010402	53.08	01338	0606
Wednes'y	17	14127.77	9.264	103149.2	52.66^{4}	027.75	0.591
Thurstay	18	14510.30	9.281	105247.8	52.22	041.73	0.574
Friday.	19	14853.24	9.298	111335.9	51.77	055.31	0.557
Saturday	20	15236.61	9.316	113413.0	51.31	18.46	0.539
Sunday	21	15620.42	9.335	115438.8	$50.8 \pm$	121.17	0.520
Monday	22	$\begin{array}{llll}2 & 0 & 4.69\end{array}$	9.354	121453.1	50.35	13343	0.501
Tuesday	2	$\begin{array}{llll}2 & 3 & 49.42\end{array}$	9.374	123455.4	49.85	145.22	0.481
Wedues'y	24	2734.63	9.394	125445.5	49.33	156.53	0.461
Thursday	25	21120.34	9.415	131423.0	48.79	27.35	0.440
Friday.	20	215065	9.436	133347.5	48.24	217.67	0.419
Saturday.	27	21853.26	9.457	135258.7	47.69	227.48	0.398
Sunday	28	22240.50	9.478	141156.4	47.11	236.77	0.376
Monday	29	22628.27	9.501	143040.0	46.52	245.53	0.354
Tnesday	30	23016.57	9.524	14499.4	45.92	253.76	0.332

TABLE XXI. APRIL, 1878.-Page 2.					
AT MEAN NOON.					
		The Sun's Right Ascension and Declination.			Equationof Time,to besubtractedfrom
		Apparent Right Ascension	Apparent Declination.	Semidiameter.	
Monday	1	h. m. s. 04246.63	N. ${ }^{\circ} 436{ }^{13 \prime}$	1'6 1̈.8	$\begin{gathered} \mathrm{m} \cdot \mathrm{~s} . \\ 3 \\ 55.90 \end{gathered}$
Tuesday . .	2	04625.16	45919.3	161.6	$3 \quad 37.88$
Wednesday	3	0503.83	52219.9	1611.3	319.99
Thursday	4	05342.65	54514.8	$16 \quad 1.0$	$3 \quad 2.25$
Friday...	5	05721.63	$\begin{array}{llll}6 & 8 & 3.6\end{array}$	160.7	244.68
Saturday.	6	$\begin{array}{lll}1 & 1 & 0.79\end{array}$	63046.0	$16 \quad 0.5$	227.29
Sunday	7	$1 \begin{array}{lll}1 & 4 & 40.14\end{array}$	65321.7	16.0 .2	210.09
Monday	8	$\begin{array}{lrl}1 & 8 & 19.71\end{array}$	$\begin{array}{llll}7 & 15 & 50.3\end{array}$	$15 \quad 59.9$	153.10
Tuesday	9	11159.50	73811.3	1559.7	136.34
Weduesday	10	11539.54	$8 \quad 024.5$	1559.4	119.82
Thursday .	11	11919.83	82229.5	1559.1	$1 \begin{array}{ll}1 & 3.56\end{array}$
Friday......	12	1230.38	84426.0	1558.9	047.56
Saturday	13	12641.22	$\begin{array}{llll}9 & 6 & 13.6\end{array}$	1558.6	031.85
Sunday	14	13022.37	92752.1	1558.3	016.44
Monday	15	1343.84	94921.1	1558.1	$0 \quad 1.36$
Tuesday . .	16	13745.66	101040.4	1557.8	$0 \quad 13.38$
Wednesday	17	14127.84	103149.6	1557.6	$0 \quad 27.76$
Thursday .	18	14510.41	105248.4	$15 \quad 57.3$	041.74
Friday..	19	14853.39	111336.7	1557.0	055.32
Saturday	20	$\begin{array}{llll}1 & 52 & 36.79\end{array}$	113414.0	1556.8	18.47
Sunday.	21	15620.63	115440.0	1556.5	121.18
Monday	22	2044.93	121454.4	1556.2	133.44
Tuesday	23	$2 \quad 3 \quad 49.69$	123456.9	1556.0	145.23
Wednesday	24	2734.94	125447.1	1555.7	156.54
Thursday	25	21120.67	131424.7	1555.5	$2 \quad 7.36$
Friday.....	26	$\begin{array}{lll}2 & 15 & 6.91\end{array}$	133349.3	1555.2	217.68
Saturday...	27	21853.65	13530.7	1555.0	227.49
Sunday	28	22240.92	141158.4	$15 \quad 54.7$	236.78
Monday	29	22628.71	143042.2	1554.5	245.55
Tuesday	30	23017.03	144911.6	$15 \quad 54.2$	253.78

306							
AT APPARENT NOON.							
		The Sun's Pight Ascension andDeclination.				Equation of Time, to be subtracted from Apparent Time.	Var. in 1 hour.
		Apparent RightAscension	Var. in 1 hour.	Apparent Declination.	Var. in 1 hour.		
		h. m. s.				3.15	. 300
Wednes'y	1	$\begin{array}{llll}2 & 34 & 5.42\end{array}$	9.547	$\begin{array}{lll}15 & 7 & 24.1\end{array}$	45.29	31.45	0.309
Thursday	2	$\begin{array}{llll}2 & 37 & 54.81\end{array}$	9.570	$\begin{array}{llll}15 & 25 & 23.9\end{array}$	44.67	$\begin{array}{lr}3 & 8.59\end{array}$	0.286
Friday...	3	24144.76	9.593	$15 \quad 438.5$	44.03	315.19	0.263
Saturday	4	24535.26	9.616	$16 \quad 037.4$	43.37	321.23	0.240
Sunday ..	5	24926.31	9.639	161750.3	42.70	326.72	0.217
Monday	6	25317.91	9.662	163447.0	42.02	331.65	0.194
Tuesday .	7	25710.07	9.685	$\begin{array}{llll}16 & 51 & 27.1\end{array}$	41.32	336.04	0.171
Wednes'y	8	$\begin{array}{llll}3 & 1 & 2.79\end{array}$	9.708	$17 \quad 750.3$	40.61	339.87	0.148
Thursday	9	$\begin{array}{lll}3 & 4 & 56.06\end{array}$	9.731	172356.4	39.89	343.15	0.125
Friday.	10	$\begin{array}{lll}3 & 8 & 49.88\end{array}$	9.754	173944.9	39.15	345.87	0.102
Saturday	. 11	312.44 .25	9.777	175515.7	38.40	348.06	0.080
Sunday .	12	$\begin{array}{lllllllllllll}3 & 16 & 39.17\end{array}$	9.800	181028.3	37.64	349.69	0.056
Monday	13	$\begin{array}{llll}3 & 20 & 34.65\end{array}$	9.824	182522.6	36.88	350.76	0.033
Tuesday	14	32430.70	9.847	183958.4	3610	351.27	0.010
Wednes'y	15	$\begin{array}{llll}3 & 28 & 27.31\end{array}$	9.870	185415.3	35.31	351.22	0.014
Thursday	16	$\begin{array}{llll}3 & 32 & 24.48\end{array}$	$9.89 \pm$	$\begin{array}{llll}19 & 8 & 13.1\end{array}$	34.51	350.60	0.038
Friday..	17	$\begin{array}{llll}3 & 36 & 22 & 23\end{array}$	9.918	192151.6	33.70	349.41	0.061
Saturday	. 18	34020.54	9.941	193510.5	32.87	347.66	0.085
Sunday	19	34419.42	9.965	1948	32.04	345.35	0.108
Monday	20	34818.86	9.988	$20 \quad 048.4$	31.20	342.47	0.131
Tuesday	21	35218.86	10.012	$2013 \quad 7.0$	30.34	339.04	0.155
Wednes'y	22	35619.42	10.035	$\begin{array}{llll}20 & 25 & 4.9\end{array}$	29.48	335.05	0.178
Thursday	23	$4 \quad 0 \quad 20.52$	10.057	203642.0	28.60	330.52	0.200
Friday...	24	$4 \quad 422.15$	10.079	204757.9	27.72	325.46	0.222
Saturday	25	$\begin{array}{llll}4 & 8 & 24.31\end{array}$	10.101	205852.4	26.82	319.87	0.244
Sunday	26	41226.98	10.122	$21 \quad 925.3$	25.91	313.76	0.265
Monday	27	41630.17	10.143	211936.3	25.00	37.15	0.286
Tuesday	28	42033.86	10.163	212925.3	24.08	$3 \quad 0.05$	0.306
Wednes'y	29	42438.01	10.182	213851.9	23.14	252.48	0.325
Thursday	3	42842.62	10.201	214756.1	22.20	244.45	0.344
Friday.	31	43247.63	10.220	215637.5	21.25	235.97	0.362

TABLE XXI.$\text { MAY, 1878.-Page } 2$					
AT MEAN NOON.					
		The Sun's Right Ascension and			Equation of Time, to be added to Mean T'ime.
		Apparent Right Asceusion	Apparent Declination.	Semidiameter.	
Wednesday	1	h. m. 2 34	N. $15 \quad 7^{\prime} 26$ ¢'. 4	15.5400	$\begin{array}{cc}\text { m. } & \text { s. } \\ 3 & 1.46\end{array}$
Thursday .	2	$\begin{array}{llllllllllll}2 & 37 & 55.31\end{array}$	$15 \quad 2526.3$	$15 \quad 53.7$	$\begin{array}{ll}3 & 1.46 \\ 3 & 8.61\end{array}$
Friday...	3	24145.28	154310.9	1553.5	315.20
Saturday	4	24535.79	$16 \quad 039.8$	$15 \quad 53.3$	321.24
Sunday.	5	24926.86	161752.8	1553.1	326.73
Monday .	6	25318.48	163449.5	1552.8	331.67
Tuesday ...	7	25710.65	165129.6	1552.6	336.05
Wednesday .	8	$\begin{array}{llll}3 & 1 & 3.38 \\ 3 & 4 & \end{array}$	$17 \quad 752.8$	$15 \quad 52.4$	339.88
Thursday . .	9	$3 \quad 456.66$	$17 \quad 2358.9$	$15 \quad 52.2$	343.16
Friday.	10	$\begin{array}{rrr}3 & 8 & 50.49\end{array}$	173947.4	1552.0	345.88
Saturday....	11	31244.86	175518.1	1551.8	348.06
Sunday	12	31639.79	181030.7	1551.6	349.69
Monday	13	32035.28	18 25•25.0	$15 \quad 51.4$	350.76
Tuesday .	14	32431.33	$1840 \quad 0.7$	$15 \quad 51.2$	351.27
Wednesday	15	32827.94	185417.5	1551.0	351.21
Thursday	16	$\begin{array}{lll}3 & 32 & 25.11\end{array}$	$19 \quad 815.3$	1550.8	35060
Friday...	17	33622.86	192153.7	$15 \quad 50.6$	349.41
Saturday...	18	34021.17	193512.5	1550.4	347.66
Sunday	19	34420.04	194811.5	1550.2	345.34
Monday	20	34819.48	$20 \quad 050.4$	1550.0	342.46
Tuesday	21	35219.47	$\begin{array}{llll}20 & 13 & 8.9\end{array}$	1549.9	339.03
Wednesday	22	35620.02	$\begin{array}{llll}20 & 25 & 6.7\end{array}$	1549.7	$\begin{array}{lll}3 & 35.04\end{array}$
Thursday	23	$4 \quad 021.11$	203643.7	1549.5	$\begin{array}{llll}3 & 30 & 51\end{array}$
Friday...	24	$4 \quad 422.73$	204759.5	1549.3	325.44
Saturday	25	$\begin{array}{llll}4 & 8 & 24.87\end{array}$	205853.9	1549.2	319.85
Sunday .	26	41227.53	$21 \quad 926.7$	1549.0	313.75
Monday	27	41630.70	211937.6	1548.8	37.14
Tuesday	28	42034.36	212926.5	1548.7	$\begin{array}{lll}3 & 0.04\end{array}$
Wednesday .	29	42438.49	213853.0	1548.5	252.47
Thursday . .	30	42843.09	214757.1	15	244.48
Friday...	31	43248.12	215638.5	1548.2	235.96

TABLE XXI. JUNE, 1878.—Page 1.

AT APPARENT NOON.

TABLE XXI. JUNE, 1878.-Page 2.					
AT MEAN NOON.					
		The Sun's Rigiit Ascension and Declination.			Equation of Time, to be added to subtracted from Mean Time.
		Apparent Right Ascension	Apparent Declination.	Semidiameter.	
S	1	h. m. s. $436 \quad 53.57$	N. ${ }^{2} 24$ 4 5 ¢̈. 9	1548.1	${ }_{2} \mathrm{~m} .87 .06$
Sunday	2	44059.43	221252.3	1548.0	217.76
Monday.	3	$445 \quad 5.67$	222024.4	1547.9	28.08
Tuesday	4	44912.26	222733.0	1547.7	158.05
Wednesday	5	45319.18	223418.1	1547.6	147.69
Thursday . .	6	45726.40	224039.5	1547.5	137.02
Friday.	7	$\begin{array}{lll}5 & 1 & 33.92\end{array}$	224637.0	1547.4	126.06
Saturday	8	$5 \quad 541.70$	22.5210 .4	1547.3	114.84
Sunday .	9	$5 \quad 5 \quad 49.73$	225719.8	1547.2	$1 \begin{array}{ll}1 & 3.37\end{array}$
Monday	10	$\begin{array}{llll}5 & 13 & 57.98\end{array}$	$\begin{array}{lll}23 & 2 & 5.0\end{array}$	1547.1	$\begin{array}{ll}0 & 51.68\end{array}$
Tuesday	11	$\begin{array}{lll}518 & 18.45\end{array}$	$23 \quad 6 \quad 25.9$	15.47 .0	039.77
Wednesday	12	52215.11	231022.4	1546.9	027.67
Thursday	13	$\begin{array}{lll}5 & 26 & 23.94\end{array}$	231354.5	1546.8	015.39
Friday....	14	53032.93	23172.1	1546.7	$0 \quad 2.96$
Saturday	15	53442.06	231945.1	1546.6	0 0.62
Sunday	16	53851.31	$23 \quad 223.5$	1546.6	022.31
Monday	17	5430.66	$23 \quad 2357.3$	1546.5	035.10
Tuesday	18	54710.09	$2325 \quad 26.3$	1546.5	047.96
Wednesday	19	55119.57	232630.6	1546.4	${ }_{1}{ }^{\wedge} 0.89$
Thursday .	20	55529.09	232710.1	1546.3	113.85
Friday..	21	$5 \quad 5938.63$	$23 \quad 2724.7$	1546.3	126.83
Saturday	22	$\begin{array}{llll}6 & 3 & 48.16\end{array}$	$23 \quad 2714.5$	1546.2	139.80
Sunday	23	$6 \quad 757.66$	232639.5	1546.2	152.74
Monday	24	6127.11	232539.7	1546.1	25.63
Tuesdry	25	61616.48	232415.1	1546.1	218.44
Wednesday	26	62025.75	232225.8	1546.1	231.15
Thursday...	27	62434.89	232011.8	1546.0	243.74
Friday	28	62843.89	231733.1	1546.0	256.18
Saturday	29	63252.71	231429.8	1546.0	$\begin{array}{ll}3 & 8.44\end{array}$
Sunday	30	6371.32	23112.1	1546.0	320.50

TABLE XXI. JULY, 1878.-Page 2.					
AT MEAN NOON.					
$\begin{aligned} & \text { 券 } \\ & 0 \end{aligned}$	荮	The Sun's Right Ascension andDeclination.			Equation of Time, to be subtracted from Mean T'ime.
$\begin{aligned} & \text { H } \\ & \text { مٍ } \\ & \text { م } \end{aligned}$	-	Apparent RightAscension	Apparent Declination.	Semidiameter.	
Monday	1	$\begin{array}{rcc}\text { h. } & \text { m. } & \text { s. } \\ 6 & 41 & 9.71\end{array}$	N. 23 7 ${ }^{\prime} 100$	$1546 \prime .0$	m. 3 3 $3^{\text {S. }}$. 32
Tuesday ..	2	64517.83	$\begin{array}{llll}23 & 2 & 53.7\end{array}$	1546.0	343.88
Weduesday	3	64925.66	225813.2	1546.0	3.55 .15
Thursday	4	65333.17	$\begin{array}{llll}22 & 53 & 8.6\end{array}$	1546.0	46.11
Friday...	5	65740.35	224740.2	1546.0	416.73
Saturday.	6	$\begin{array}{lll}7 & 1 & 47.17\end{array}$	224148.1	1546.0	427.00
Sunday	7	$7 \begin{array}{lll}7 & 5 & 53.61\end{array}$	223532.3	1546.0	436.88
Monday	8	$\begin{array}{llll}7 & 9 & 59.66\end{array}$	222853.1	1546.1	446.37
Tuesday	9	$\begin{array}{lll}7 & 14 & 5.30\end{array}$	222150.7	1546.1	455.45
Wednesday	10	$7 \begin{array}{lll}7 & 18 & 10.51\end{array}$	221425.1	1546.1	$\begin{array}{ll}5 & 4.10\end{array}$
Thursday .	11	$7 \begin{array}{llll}7 & 22 & 15.28\end{array}$	$\begin{array}{llll}22 & 6 & 36.7\end{array}$	1546.2	$5 \quad 1231$
Friday...	12	$\begin{array}{llll}7 & 2619.60\end{array}$	215825.5	1546.2	520.07
Saturday	13	73023.45	214951.8	1546.3	527.37
Sunday.	14	73426.82	214055.8	1546.3	534.18
Monday .	15	73829.71	213137.6	1546.4	540.51
Tuesday ..	16	74232.10	$\begin{array}{llll}21 & 21 & 57.4\end{array}$	1546.4	$5 \begin{array}{llll}5 & 46 & 34\end{array}$
Wednesday	17	74633.98	211155.3	1546.5	551.66
Thursday . .	18	$7 \begin{array}{llllllllll}7 & 50 & 35.35\end{array}$	$21 \quad 131.7$	1546.5	556.47
Friday...	19	$\begin{array}{llll}7 & 54 & 36.19\end{array}$	205046.7	1546.6	$\begin{array}{ll}6 & 0.76\end{array}$
Saturday.	20	75836.50	203940.6	1546.7	$6 \quad 4.51$
Sunday.	21	$8 \quad 236.28$	202813.5	1546.7	$6 \quad 7.73$
Monday	22	$8 \quad 635.51$	201625.7	1546.8	610.40
Tuesday	23	81034.18	$20 \quad 417.5$	1546.9	612.52
Wednesday	24	81432.30	195149.0	1547.0	614.08
Thursday	25	81829.86	$1939 \quad 0.6$	1547.1	615.08
Friday..	26	82226.84	192552.5	1547.2	${ }_{6}^{6} 15.51$
Saturday....	27	82623.25	191224.9	1547.3	615.36
Sunday	28	83019.06	185838.3	1547.4	614.62
Monday	29	83414.28	184432.8	1547.5	613.28
Tuesday	30	$\begin{array}{lll}8 & 38 & 8.90 \\ 8 & 48 & 2.90\end{array}$	$\begin{array}{lll}18 & 30 & 8.8\end{array}$	1547.6	611.34
Wednesday .	31	8422.90	181526.6	1547.7	$6 \quad 8.78$

TABLE XXI. AUGUST, 1878.-Page 2.					
AT MEAN NOON.					
		The Sun's Right Ascension andDeclination.			Equation of Time, to be subtracted from added to Mean Time.
		Apparent Right Ascension	Apparent Declination.	Semidiameter.	
Thursday	1	h. m. s. 84556.29	N. 18 0' 26 6́. 5	15 ¢ 47.9	$\begin{array}{cc}\text { m. } & \text { s. } \\ 6 & 5.61\end{array}$
Friday...	2	84949.05	$\begin{array}{lll}17 & 45 & 8.7\end{array}$	1548.0	${ }_{6}^{6} \quad 1.82$
Saturday.	3	85341.20	$17 \quad 2933.7$	1548.1	557.41
Sunday	4	85732.72	171341.7	1548.3	$5 \quad 52.38$
Monday	5	$9 \quad 123.63$	165733.0	1548.4	546.73
Tuesday	6	$\begin{array}{llll}9 & 5 & 13.92\end{array}$	16418.0	1548.6	540.47
Wednesday	7	$\begin{array}{llll}9 & 9 & 3.61\end{array}$	162426.9	1548.7	533.60
Thursday ..	8	91252.69	$16 \quad 730.0$	1548.9	$5 \quad 26.12$
Friday...	9	91641.17	155017.7	1549.0	518.04
Saturday	10	92029.06	153250.1	1549.2	$\begin{array}{ll}5 & 9.38\end{array}$
Sunday	11	92416.37	15157.7	1549.4	$5 \quad 0.14$
Monday	12	9283.12	145710.7	1549.5	450.33
Tuesday	13	93149.30	143859.4	1549.7	439.95
Wednesday	14	93534.93	142034.0	1549.9	429.03
Thursday ..	15	93920.03	$14 \quad 154.9$	1550.1	417.58
Friday..	16	9434.61	$1343 \quad 2.4$	1550.2	$4 \quad 5.60$
Saturday	17	94648.68	132356.7	1550.4	353.11
Sunday .	18	95032.25	$13 \quad 438.1$	1550.6	340.13
Monday	19	$\begin{array}{llll}9 & 54 & 15.35\end{array}$	$1245 \quad 7.0$	1550.8	326.67
Tuesday	20	95757.97	122523.5	$15 \quad 51.0$	312.74
Wednesday.	21	$\begin{array}{lll}10 & 140.14\end{array}$	$\begin{array}{llll}12 & 5 & 28.2\end{array}$	1551.2	258.36
Thursday	22	$\begin{array}{lll}10 & 5 & 21.87\end{array}$	114521.2	$15 \quad 51.4$	243.53
Friday...	23	$\begin{array}{llll}10 & 9 & 3.17\end{array}$	$1125 \quad 2.9$	$15 \quad 51.6$	228.27
Saturday....	24	101244.05	11433.6	1551.8	212.60
Sunday	25	101624.52	104353.7	1552.0	156.52
Monday.	26	$10 \quad 20 \quad 4.60$	10233.5	1552.2	140.04
Tuesday	27	$10 \quad 2344.29$	$10 \quad 23.3$	$15 \quad 52.4$	123.18
Wednesday	28	$10 \quad 27 \quad 23.61$	94053.5	$15 \quad 52.6$	$1 \quad 5.94$
Thursday ..	29	$1031 \quad 2.57$	91934.5	15.52 .8	048.34
Friday.....	30	103441.17	8586.6	1553.1	030.39
Saturday ..	31	103819.43	83630.1	1553.3	012.10

TABLE XXI. SEPTEMBER, 1878.-Page 1.

AT APPARENT NOON.

		The Sun's Apparent RightAscension	's Right DECLIN Var. in 1 hour.	Ascension a ation. Apparent Declination.	Var. in 1 hour.	Equation of Time, to be subtracted from Apparent Time.	Var. in 1 hour.
Sund	1	$\begin{array}{llc} \text { h. } & \text { m. } & \text { s. } \\ 10 & 41 & 57.35 \end{array}$	9.072	N. $814145^{\prime \prime} .6$	54.51	$\begin{array}{cc}\text { m. } & \text { S. } \\ 0 & 6.52\end{array}$	0.782
Monday	2	$1045 \quad 34.93$	9.060	75253.4	54.83	025.44	0.794
Tuesday	3	104912.22	9.048	73053.6	55.14	044.65	0.806
Wednes	4	105249.23	9.037	$7 \quad 846.7$	55.43	14.14	0.817
Thursday	5	105625.98	9.026	64632.9	55.71	123.89	0.828
Friday...	6	$\begin{array}{lll}11 & 0 & 2.49\end{array}$	9.017	62412.6	55.97	143.88	0.838
Saturday	. 7	$11 \quad 3 \begin{array}{lll}11 & 38.78\end{array}$	9.008	$6{ }_{6} 1146.1$	56.23	24.10	0.846
Sunday	8	$11 \begin{array}{llll}11 & 7 & 14.86\end{array}$	9.000	53913.7	56.47	224.51	0.854
Monday	9	111050.76	8.993	51635.6	56.70	245.11	0.861
Tuesd	10	111426.50	8.986	45352.2	56.91	$3 \quad 5.86$	0.868
Wednes'y	11	$1118 \quad 2.10$	8.981	4313.8	57.11	326.76	0.873
Thursday	12	112137.59	8.977	4810.7	57.30	347.76	0.877
Friday	13	$11 \quad 2512.99$	8.974	34513.2	57.48	$4 \quad 8.86$	0.881
Saturday	14	11284832	8.971	32211.5	5765	4.30 .03	0.883
Sunday	15	113223.61	8.970	2596.1	57.80	451.24	0.884
Monday	16	113558.87	8.969	23557.2	57.94	512.47	0.885
Tuesday	17	113934.13	8.970	21245.1	5806	533.70	0.884
Wednes'y	18	$11 \quad 43$	8.971	14930.2	58.17	554.91	0.883
Thursday	19	114644.74	8.973	12612.8	58.27	616.08	0.881
Friday	20	115020.13	8.976	1253.2	58.36	637.19	0.878
Saturday	. 21	115355.61	8.980	03931.7	58.43	65821	0.874
Sunday	. 22	115731.19	8.985	$\begin{array}{lll}0 & 16 & 8.8\end{array}$	58.48	719.12	0.869
Monday	23	$12 \quad 16.89$	8.990	0	58.52	739.92	0.864
Tuesday	24	$12 \quad 442.73$	8.997	03040.1	58.54	$8 \quad 0.58$	0.858
Wednes'y	25	128818.73	9.003	$\begin{array}{lll}0 & 54 & 5.3\end{array}$	58.55	821.08	0.851
Thursday	26	121154.89	9.011	11730.5	58.54	841.41	0.843
Friday	27	121531.25	9.019	14055.3	58.52	$9 \quad 1.55$	0.835
Satur	. 28	12197.82	9.028	$2 \quad 419.4$	58.48	921.48	0.826
Sunday	29	122244.61	9.038	22742.4	58.43	941.18	0.816
Monday	3.	122621.65	9.049	2513.9	58.36	$10 \quad 0.64$	0.806

TABLE XXI. SEPTEMBER, 1878.-Page 2.

AT MEAN NOON.

		The Sun's Right Ascension and			Equation of Time, to be added to Mean Time.
		Apparent RightAscension	Apparent Declination.	Semidiameter.	
Sunday	1	h. m. s. 104157.37	N. ${ }^{\circ} 814^{\prime} 45.5$	15 53. 5	$\begin{gathered} \mathrm{m} . \\ 0 \end{gathered} \quad \mathrm{~s} .52$
Monday	2	104535.00	75253.0	1553.8	025.44
Tuesday	3	104912.33	73052.9	15540	034.66
Wednesday	4	$10 \quad 5249.39$	$7 \quad 845.7$	1554.2	14.16
Thursday	5	$\begin{array}{llllll}10 & 56 & 26.19\end{array}$	64631.6	1554.5	123.91
Friday.	6	$11 \quad 0 \quad 2.75$	62 ± 11.0	$15 \quad 54.7$	143.91
Saturday		$\begin{array}{llll}11 & 3 & 39.09\end{array}$	$6 \quad 144.2$	1555.0	24.13
Sunday	8	$\begin{array}{llll}11 & 7 & 15.22\end{array}$	53911.4	1555.2	224.55
Monday	9	111051.17	51633.0	1555.5	245.15
Tuesday	10	111426.97	45349.2	1555.7	$3 \quad 5.91$
Wednesday	11	$\begin{array}{lll}11 & 18 & 2.62\end{array}$	4310.5	1556.0	$\begin{array}{lll}3 & 2681\end{array}$
Thursday	12	112138.16	$\begin{array}{lll}4 & 8 & 7.0\end{array}$	1556.3	347.82
Friday	13	$11 \quad 2513.61$	$\begin{array}{lll}3 & 45 & 9.2\end{array}$	1556.5	$4 \quad 8.92$
Saturday	14	112848.99	3227.2	1556.8	430.09
Sunday	15	113224.33	2591.4	1557.0	451.31
Monday	16	$11 \begin{array}{lll}11 & 35 & 59.64\end{array}$	23552.2	1557.3	51255
Tuesday	17	$11 \begin{array}{llll}11 & 39 & 34.96\end{array}$	21239.8	1557.5	533.79
Wednesday	18	114310.30	14924.5	1557.8	555.00
Thursday	19.	114645.68	1266.7	1558.0	616.18
Friday	20	$\begin{array}{llll}11 & 50 & 21.12\end{array}$	1246.7	1558.3	637.29
Saturday	21	115356.65	03924.9	1558.6	658.31
Sunday	22	115732.29	N. 0161.6	1558.8	719.23
Monday	23	$\begin{array}{lll}12 & 1 & 8.04\end{array}$	S. 00722.8	1559.1	740.03
Tuesday	24	$12 \quad 443.93$	03047.9	1559.4	$8 \quad 069$
Wednesday	25	12819.98	05413.5	1559.6	821.19
Thursday	26	121156.20	11739.0	1559.9	841.53
Friday.	27	121532.61	1414.2	160.2	$9 \quad 1.68$
Saturday	28	$\begin{array}{lll}12 & 19 & 9.23\end{array}$	2428.6	160.5	921.61
Sunday	29	1222.46 .07	22751.8	160.7	941.31
Monday	30	$1226^{\circ} 23.16$	25113.6	161.0	$10 \quad 0.77$

TABLE XXI. OCTOBER, 1878.-Page 1.

AT APPARENT NOON.

	$\left.\begin{array}{\|c\|} \hline \frac{1}{3} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	The Sun's Right Ascension and				Equation of Time to be subtracted from Apparent Time.	Var. in 1 hour.
		Apparent RightAscension		Apparent Declination.	Var. in 1 hour		
		h. m. s .				1019	
Tues	1	$12 \begin{array}{llll}12 & 29 & 58.95\end{array}$	9.060	S. 31423.5		10	
Wednes'y	2	123336.52	9.072	33740.8	58.17	1038.78	0.783
Thursday	3	123714.39	9.084	4055.6	58.06	1057.41	0.770
Friday	4	124052.57	9.098	$424 \quad 7.5$	57.93	1115.73	0.756
Saturday.	5	124431.09	9.112	44716.0	57.78	1133.72	0.742
Sunday	6	$1248 \quad 9.96$	9.127	51020.9	57.62	1151.35	0.727
Monday	7	125149.21	9.144	53321.8	57.45	$12 \quad 8.61$	0.711
Tuesday	8	125528.86	9.161	55618.4	57.26	1225.47	0.694
Wednes'y	9	$12 \quad 59 \quad 8.93$	9.179	61910.3	57.06	1241.91	0.676
Thurs	10	$\begin{array}{lll}13 & 2 & 49.45\end{array}$	9.198	64157.2	56.84	1257.90	0.657
Friday	11	$\begin{array}{llll}13 & 6 & 30.43\end{array}$	9.218	$7 \quad 438.7$	56.61	1313.43	0.637
Saturday .	12	131011.91	9.239	72714.5	56.36	1328.46	0.616
Sund	13	131353.90	9.261	74944.2	56.10	1342.99	0.594
Monday	14	$1317 \begin{array}{llll}136.43\end{array}$	9.284	8127.5	55.83	1356.98	0.571
Tuesday	15	1312119.51	9.307	83424.0	55.54	1410.41	0.548
Wednes'y	16	$13 \quad 25 \quad 3.16$	9.331	856334	55.23	1423.27	0524
Thursday	17	$13 \quad 2847.42$	9.357	91835.2	54.91	1435.54	0.498
Friday	18	$13 \quad 3232.29$	9.383	94029.2	54.57	1447.19	0.472
Saturda	19	$13 \quad 3617.79$	9.409	$10 \quad 214.8$	54.22	1458.22	0.446
S'unday	20	$13 \quad 40$	9.437	102351.8	53.85	$15 \quad 8.60$	0.419
Monday	21	134350.75	9.465	104519.6	53.46	$15 \quad 18.31$	0.390
Tuesd	22	134738.24	9.493	11637.9	53.06	$15 \quad 27.34$	0.362
Wednes'y	23	$13 \quad 5126.43$	9.523	112746.3	52.63	$15 \quad 35.69$	0.333
Thursday	24	135515.33	9.552	114844.3	52.19	1543.33	0.303
Triay	25	$13 \quad 594.94$	9.582	$12 \quad 931.5$	51.73	$15 \quad 50.24$	0.274
Saturday.	26	$14 \quad 255.29$	9.613	$1230 \quad 7.5$	51.26	1556.44	0.243
Sunday	27	$14 \quad 646.37$	9.644	125031.9	50.76	$16 \quad 1.90$	0.212
Monday	28	141038.20	9.675	131044.2	50.25	$16 \quad 6.61$	0.181
Tuesday	29	141430.78	9.706	133044.0	49.72	1610.58	0.149
Wednes'y	30	141824.11	9.738	135030.9	49.18	1.613 .78	0.118
Thursday	31	$14 \quad 2218.21$	9.770	14104.6	48.62	1616.23	0.086

TABLE XXI.
OCTOBER, 1878.-Page 2.

AT MEAN NOON.

		The Sun's Right Ascension andDeclination.				$\begin{gathered} \text { Equation } \\ \text { of Tome, } \\ \text { to be } \\ \text { added } \\ \text { to } \\ \text { Mean T'ime. } \end{gathered}$
		Apparent Right Ascension	Apparent Declination.		mieter.	
Tuesday	1	h. m. s. $1230 \quad 0.51$	S. $314{ }^{\prime} 33$ ́ 5	16	1.3	$\begin{array}{lc} \text { m. } \\ 10 & \text { s. } \end{array}$
Wednesday	2	123338.13	33751.2	16	1.6	1038.92
Thursday	3	123716.05	$\begin{array}{llll}4 & 1 & 6.2\end{array}$	16		1057.55
Friday	4	124054.28	42418.3	16	2.1	1115.87
Saturday	5	124432.85	44727.1	16	2.4	1133.86
Sunday	6	124811.77	51032.3	16		1151.50
Monday	7	125151.06	53333.4	16	3.0	$12 \quad 8.76$
Tuesday	8	125530.76	55630.2	16	3.3	1225.61
Wednesday.	9	125910.87	61922.4	16		1242.05
Thursday	10	$13 \quad 251.44$	6429.5	16	3.8	1258.04
Friday.	11	$13 \quad 632.47$	$7 \begin{array}{llll}7 & 4 & 51.2\end{array}$	16	4.1	1313.57
Saturday	12	131013.99	72727.1	16	4.4	1328.60
Sunday	13	131356.02	74957.0	16	4.7	1343.12
Monday	14	131738.58	81220.5	16	4.9	1357.11
Tuesday	15	132121.70	83437.1	16	5.2	1410.54
Wednesday	16	$\begin{array}{lll}13 & 25 & 5.40\end{array}$	85646.6	16	5.5	1423.40
Thursday	17	132849.69	91848.6	16	5.7	1435.66
Friday.	18	133234.60	94042.6	16		1447.31
Saturday	19	133620.13	$10 \quad 228.3$	16	6.3	1458.33
Sunday	20	$13 \quad 40 \quad 6.32$	10245.3	16	6.5	$15 \quad 8.70$
Monday	21	134353.17	104533.2	16	6.8	1518.41
Tuesday	22	134740.69	11651.6	16	7.0	1527.44
Weduesday	23	135128.91	$1128 \quad 0.0$	16	7.3	1535.77
Thursday	24	135517.83	114857.9	16	7.6	1543.40
Friday	25	$\begin{array}{lll}13 & 59 & 7.47\end{array}$	12945.1	16	7.8	$15 \quad 50.31$
Saturday	26	$14 \quad 2 \begin{array}{lll}14 & 57.84\end{array}$	123021.1	16	8.1	$15 \quad 56.50$
Sunday	27	$14 \quad 648.95$	125045.4	16	8.4	$16 \quad 1.95$
Monday	28	141040.80	131057.6	16	8.6	$16 \quad 6.66$
Tuesday	29	141433.40	133057.4	16	8.9	$16 \quad 10.62$
Weduesday	30	141826.75	135044.2	16	9.1	$\begin{array}{llll}16 & 13 & 82\end{array}$
Thursday	31	142220.86	$1.410 \quad 17.7$		9.4	1616.26

318 TABLE							
AT APPARENT NOON.							
		The Sun's Right Ascension and				$\|$Equation of Time, to be subtracted from Apparent Time.	$\begin{aligned} & \text { Var. in } \\ & 1 \text { hour. } \end{aligned}$
		Apparent Right Ascension	Var. in $\text { i) } 1 \text { hour. }$	Apparent Declination.	$\begin{aligned} & \text { Var. in } \\ & 1 \text { hour. } \end{aligned}$		
		h. m. s.					
		(14 $14 \begin{array}{lrr}14 & 26 & 13.09 \\ 14 & 30 & 8.74\end{array}$	9.835	144830.3	47.04	$1 \begin{array}{ll}16 & 17.91 \\ 16 & 18.81\end{array}$	0.054
S'unday ..	3	$\begin{array}{llll}14 & 34 & 5.19\end{array}$	9.869	$15 \quad 7 \quad 21.5$	46.83	1618.92	0.012
Monday		14382.43	9.902	152557.9	46.20	1618.23	0.045
Tuesday		11420.49	9.936	154418.9	45.55	1616.74	0.079
Wednes'y		144559.36	9.970	$16 \quad 224.2$	44.89	1614.43	0.114
Thursday		144959.06	10.005	162013.4	44.21	1611.29	0.148
Friday..		145359.59	10.040	163746.2	43.51	$16 \quad 7.33$	0.183
Saturday.		14580.97	10.075	$1655 \quad 2.1$	42.80	$16 \quad 2.52$	0.218
Sunday		$\begin{array}{llll}15 & 2 & 3.19\end{array}$	10.110	17120.8	42.08	1556.86	0.253
Monday		15	10.146	172841.8	41.34	1550.36	0.289
Tuesday	12	151010.21	10.182	$\begin{array}{lll}17 & 45 & 4.9\end{array}$	40.58	1543.00	0.325
Wednes'y		151415.00	10.218	$\begin{array}{lll}18 & 1 & 9.5\end{array}$	39.80	1534.78	0.360
Thursday	14	151820.66	10.254	181655.3	3901	$15 \quad 25.71$	0.396
Friday..	15	152227.18	10.290	183222.0	38.21	1515.77	0.432
Saturday	16	152634.57	10.326	184729.2	37.38	154.97	0.468
Sunday	17	153042.81	10.361	$19 \quad 216.3$	36.54	1453.32	0.503
Monday		153451.91	10.397	191643.1	35.68	1440.81	0.539
Tuesday	12	15391.85	10.432	193049.1	34.81	1427.46	0.574
Wednes'y	1	154312.64	10.467	194433.9	33.92	1413.27	0.609
Thursday	21	154724.27	10.502	195757.2	33.01	1358.24	0.643
Friday		155136.72	10.535	201058.6	32.10	1342.40	0.677
Saturday	23	155549.97	10.569	202337.8	31.16	1325.75	0.710
Sunday.	24	16 0 4.01	10.601	203554.3	30.21	138.31	0.743
Monday	25	$\begin{array}{lll}16 & 4 & 18.82\end{array}$	10.633	204747.7	29.24	1250.10	0.774
Tuesday	26	$16 \quad 834.38$	10.664	205917.9	28.26	1231.15	0.805
Wedues'y	-	161250.67	10.691	211024.4	27.27	1211.47	0.835
Thursday 2		$16 \quad 17 \quad 7.67$	10.722	21216.8	26.26	1151.09	0.863
Friday..	24	$16 \quad 2125.34$	10.750	213125.0	25.24	1130.03	0.891
Saturday 3		162543.68	10.777	214118.5	24.21	118.31	0.918

TABLE XXI.$\text { NOVEMBER, 1878.-Page } 2 .$					
AT MEAN NOON.					
		The Sun's Right Ascension and			$\left\{\begin{array}{c} \text { Equation } \\ \text { of Time, } \\ \text { to be } \\ \text { added } \\ \text { to } \\ \text { Mean Time. } \end{array}\right.$
		Apparent RightAscension	Apparent Declination.	Semidiameter.	
Friday	1	$\begin{array}{lll}\text { h. m. } \\ 14 & \text { s. } \\ 14 & 15.75\end{array}$		$16 \quad 9.7$	$\left\lvert\, \begin{array}{lc} \mathrm{m} . & \mathrm{s} . \\ 16 & 17.92 \end{array}\right.$
Saturday	2	143011.42	144843.1	169.9	1618.81
Sunday	3	$1434 \quad 7.87$	$15 \quad 734.2$	1610.2	1618.92
Monday	4	$\begin{array}{lll}14 & 38 & 5.12\end{array}$	$15 \quad 2610.4$	1610.4	1618.22
Tuesday	5	14423.18	154431.2	1610.6	1616.71
Wednesday	6	$1446 \quad 2.06$	$16 \quad 236.3$	1610.9	1614.39
Thursday	7	$1450 \quad 1.76$	$16 \quad 2025.3$	1611.1	1611.25
Friday...	8	$\begin{array}{lllll}14 & 54 & 2.29\end{array}$	163757.9	1611.3	$16 \quad 7.28$
Saturday.	9	$14 \quad 58 \quad 3.66$	165513.5	1611.6	$16 \quad 2.46$
Sunday	10	$\begin{array}{lll}15 & 2 & 5.88\end{array}$	171211.9	1611.8	1556.80
Monday	11	$\begin{array}{lll}15 & 6 & 8.95\end{array}$	$17 \quad 2852.7$	1612.0	$15 \quad 5028$
Tuesday	12	151012.88	174515.5	1612.3	1542.91
Wednesday	13	151417.66	$\begin{array}{llll}18 & 1 & 19.8\end{array}$	1612.5	1534.69
Thursday .	14	$1518 \quad 23.30$	$1817 \quad 5.4$	1612.7	1525.60
Friday..	15	$\begin{array}{llll}15 & 22 & 29.80\end{array}$	183231.7	1612.9	1515.66
Saturda	16	$15 \quad 2637.16$	184738.5	1613.1	$15 \quad 485$
Sunday	17	153045.38	$\begin{array}{lll}19 & 2 & 25.3\end{array}$	1613.3	1453.19
Monday	18	$15 \quad 3454.45$	191651.8	1613.5	1440.68
Tuesday . .	19	$15 \quad 39 \quad 4.36$	193057.5	1613.7	1427.32
Wednesday	20	154315.12	194442.0	1613.9	1413.12
Thursday .	21	154726.71	19584.9	1614.1	1358.09
Friday.	22	$15 \quad 5139.12$	$2011 \quad 6.0$	1614.3	1342.24
Saturday	23	155552.33	202344.8	1614.4	1325.59
Sunday.	24	$\begin{array}{llll}16 & 0 & 6.33\end{array}$	$2036 \quad 0.9$	1614.6	$\begin{array}{ll}13 & 815\end{array}$
Monday	25	$16 \quad 421.10$	204754.0	1614.8	1249.94
Tuesday ...	26	$\begin{array}{ll}16 & 8 \\ 166.61\end{array}$	205923.8	1615.0	1230.98
Wednesday .	27	161252.85	211029.9	1615.1	1211.30
Thursday	28	$\begin{array}{lll}16 & 17 & 9.79\end{array}$	212112.0	1615.3	1150.92
Friday......	29	$\begin{array}{llll}16 & 21 & 27.40\end{array}$	213129.8	1615.5	1129.86
Suturday ...	30	162545.68	214123.0	1615.6	$11 \quad 8.14$

TABLE XXI.

DECEMBER, 1878.—Page 1.

AT APPARENT NOON.

	$\left\|\begin{array}{c} \mid \\ \mid \end{array}\right\|$	The Sux's Right Ascension and				Equation of Time to be subt. from added to Apparent Time.	Var. in 1 hour.
	1	$\begin{array}{ccc} \mathrm{h} . & \mathrm{m} . & \mathrm{s} . \\ 16 & 30 & 2.66 \end{array}$	10.804	2150 47'. 1	23.16	1045.95	0.944
Monday	,	163422.27	10.829	215950.4	22.11	1022.96	0.970
Tuesday	3	163842.47	10.854	$22 \quad 828.4$	21.05	959.38	0.994
W	4	$1643 \quad 3.25$	10.878	221640.7	19.97	935.23	1.018
Thursday	5	164724.59	10.900	222427.0	18.88	910.52	41
Friday	6	165146.46	10.922	223147.0	17.79	845.27	1.063
	,	165688.84	10.943	223840.7	16.68	819.52	1.083
S'unday	8	$17 \quad 031.71$	10.963	2245	15.57	753.28	1.103
Monday		$17 \quad 455.04$	10.981	22518.0	14.45	726.58	1.122
Tv	10	$17 \quad 918.81$	10.999	225641.2	13.32	659.44	1.139
Wednes'y	11	$17 \quad 1342.99$	11.015	23147.3	12.18	631.90	1.155
Thursday	12	171878	11.031	$23 \quad 626.0$	11.04	$6 \quad 3.98$	1.171
Fria	13	$17 \quad 2232.46$	11.045	231037.2	9.89	535.70	85
Saturday	14)	172657.71	11.058	231420.8	8.74	$5 \quad 7.09$	1.198
Sunday	15	173123.25	11.070	231736.6	7.58	438.19	1.210
Monday	16	$17 \quad 3549.06$		2320244	6.41	$4 \quad 902$	20
Tuesday	17	$17 \quad 4015.11$	11.090	232244.1	5.24	339.61	1.230
Wednes'y	18	174441.36	11.098	232435.7	4.06	$3 \quad 9.99$	1.238
Thurs	19	$17 \quad 49$	11.104	$23 \quad 25 \quad 59.1$	2.88	240.21	1.244
Friday	20.	$17 \quad 53$	11.109	232654.1	1.70	210.29	1.249
Saturda	21	$17 \quad 581.01$	11.112	232720.8	0.52	140.26	1.252
Sunday	22	$18 \quad 2 \quad 27.74$	11.114	232719.2	0.66	110.18	1.254
Monday	23	$18 \quad 654.49$	11.114	232649.2	1.84	040.07	1.254
Tuesday	24	181121.21	11.112	232550.9	3.02	$0 \quad 9.99$	1.252
Wednes	25	181547.87	11.109	232424.3	4.20	020.03	1.249
Thursday	26	182014.43	11.104	232229.4	5.37	049.95	1.244
Friday	27	182440.84	11.097	$23 \quad 206.3$	6.55	119.73	1.237
Saturday	28	$18 \quad 29 \quad 7.08$	11.089	231715.1	7.72	1. 49.32	1.229
Sunday	29	183333.11	11.079	231355.8	8.89	218.71	1.219
Monday	30	183758.88	11.068	23108.6	10.05	247.85	1.208
Tuesday	31	184224.38	11.056	23553.6	11.20	316.71	1.196

TABLE XXI. DECEMBER, 1878.-Page 2.					
AT MEAN NOON.					
	Day of the Month.	The Sun's Right Ascension andDeclination.			$\begin{aligned} & \text { Equation } \\ & \text { of Time, } \\ & \text { to be } \\ & \text { added to } \end{aligned}$
		$\left\lvert\, \begin{gathered} \text { Apparent } \\ \text { RightAscension } \end{gathered}\right.$	Apparent Declination.	Semidiameter.	$\begin{array}{\|l} \text { added to } \\ \hline \text { subt. Jrom } \\ \text { Mean T'ime. } \end{array}$
Sunday	1	$\begin{array}{lll} \text { h. m. } & \text { s. } \\ 16 & 30 & 4.60 \end{array}$		16150	$\left\lvert\, \begin{array}{cc} \mathrm{m} & \mathrm{~s} . \\ 10 & 45.78 \end{array}\right.$
Monday	2	163424.14	$\begin{array}{llll}21 & 59 & 54.2\end{array}$	1615.9	$10 \begin{array}{ll}10 & 22.80\end{array}$
Tuesday	3	163844.28	$22 \quad 831.9$	1616.1	959.22
Wednesday	4	$16 \quad 434.99$	221643.9	1616.3	935.07
Thursday .	5	164726.25	222429.8	1616.4	910.36
Friday...	6	16 51-48.05	223149.6	1616.5	845.12
Saturday	7	165610.36	223843.0	1616.6	819.37
Sunday	8	$\begin{array}{lll}17 & 0 & 36.15\end{array}$	22459.8	1616.8	753.13
Monday	9	$17 \quad 456.41$	22519.8	1616.9	726.44
Tuesday	10	$17 \quad 920.09$	225642.8	1617.0	659.31
Wednesday .	11	$17 \quad 1344.19$	231488	1617.1	631.78
Thursday ...	12	$\begin{array}{llll}17 & 18 & 8.66\end{array}$	$\begin{array}{llll}23 & 6 & 27.2\end{array}$	1617.2	$6 \quad 3.86$
Friday	13	$17 \quad 2233.49$	231038.2	1617.3	535.59
Saturday	14	$17 \quad 2658.65$	231421.5	1617.4	$5 \quad 6.99$
Sunday.	15	173124.10	231737.1	1617.5	438.09
Monday	16	$17 \quad 3549.82$	232024.8	1617.5	$4 \quad 8.93$
Tuesday	17	174015.78	232244.4	1617.6	339.53
Weduesday	18	174441.94	232435.9	1617.7	$3 \quad 9.93$
Thursday	19	$\begin{array}{llll}17 & 49 & 8.28\end{array}$	$23 \quad 2559.2$	1617.7	240.15
Friday.	20	$17 \quad 5334.75$	$23 \quad 2654.2$	1617.8	210.24
Saturday.	21	$\begin{array}{llll}17 & 58 & 1.32\end{array}$	232720.9	1617.9	140.23
Sunday	22	$18 \quad 227.95$	$23 \quad 2719.2$	1617.9	110.15
Monday	23	$18 \quad 654.61$	232649.2	1618.0	040.06
Tuesday	24	181821.24	$2325,50.9$	1618.0	0-9.98
Wednesday.	25	181547.81	23 24 24.3	1618.1	020.03
Thursday	26	$18 \quad 2014.28$	$23 \quad 2229.5$	1618.1	049.93
Friday..	27	$18 \quad 2440.60$	$23 \quad 20 \quad 6.5$	1618.1	119.70
Saturday	28	18296.75	$\begin{array}{lll}23 & 17 & 15.3\end{array}$	$16 \quad 18.2$	149.29
Sunday	29	183332.68	231356.2	1618.2	218.66
Monday	30	18183758.37	$2310 \begin{array}{ll}23 & 9.1\end{array}$	16 18.2	247.79
Tuesday	31	184223.78	$23 \quad 5 \quad 54.2$	1618.2	316.64

Latitudes and longitudes
Of the Principal Ports, Capes, and Lights in the World.

East Coast of United States of America					
Quoddy-head Lisht.	Lıt.	LOMG.		Lat.	Long.
	$4449 \mathrm{~N}$	6058 W	Philadelphia (St. H.)	3957	$77^{\circ} 090 \mathrm{~W}$
Mt. Desert-rock	4358	6808	Cape Charles	3707	7558
Martinicus Island Lt.	4347	6851	Cape Henry Light.	3655	7600
Portland Light.	4337	7012	Richmond	3732	7726
Cape Ann (Thatcher's			Washington City	3853	7700
Island)Light.	4238	7034	Baltimore.	3918	7637
Salem (City Hal	4231	7054	Cape Hatteras	3515	7531
Boston L. H.	4220	7053	Cape Lookout Light.	3437	7631
Boston (State Honse)	4221	7104	Cape Fear	3352	7800
Cape Cod Light.....	4202	7003	Georgetown	3313	7911
Nantucket harbor Lt.	4116	7004	Charleston	3242	7952
New Bedford L. H. .	4135	7054	Tybee	3201	8051
Newport Spire	4129	7118	Savannah	3205	8105
Block Island Light. .	4113	7134	Cape Carnaveral	2828	8034
New London L. II..	4119	7205	Cape Florida Light.	2540	8009
Montauk Point L. H.	4104	7151	Key West	2433	8148
New York (City Hall)	4043	7400	Pensacola	3021	8717
Sandy Hook Light	4028	7400	Mobile Point	3014	8800
Neversink Light	4024	7359	New Orleans.	2957	9000
Cape May Light	3856	7457	Galveston (entrance).	2920	9445
Cape Henlopen L. H	3847	7505			
Islands in tee West Indies.					
Trinidad (Pt. Galiote)	1010 N	6100 W	Port au Prince.	1833 N	7216 W
Tobago (N.E. Point)	1120	6027	Cape Hayti City	1946	7211
Grenada (S. W. Point)	1200	6149	Kingston	1758	7646
BarLadoes (S. Point)	1303	5937	St. Jago de Cuba Lt.	1958	7552
Martinico	1427	6055	Manzanillo	2020	7711
Dominica (N. Point).	1538	6126	Havana (the Moro). .	2309	8222
Guadeloupc (NE.Pt.)	1630	6129	Matanzas..	2303	8140
Porto Rico (St. A. Bt.)	1829	6607	Hole-in-the-wall	2551	7711
St. Domingo Light.	1828	6952	Georgetown	3222	6438
East Coast of America.					
Vera C	19 12N	9609 W	Para	128 S	4829 W
Balizc	1729	8812	Pernambuco	804	3452
Campeche	1949	9033	Cape St. Roqu	528	3517
Porto Bell	934	7940	Cape St. Augustin	821	3457
Cartagena	1026	7538	Bahia, St. Antonio Lt.	1301	3832
Maracayb	1039	7145	Cape St. Thomas....	2203	4100
Porto Cab	1028	6807	Cape Frio.	2301	4159
Caraccas	1030	6701	Rio Janeiro	2256	4309
Georgctown	649	5811	Monte Vide	3453	5613
Paramaril	548	5500	Buenos Ayr	3436	5822
Cayenne	456	5213	Cape Horn.	555	6716
River Amazon l 10 5000					
West Coast of America.					
Valpara	3302 S	7141 W	Acapulco...	1655 N	9948 W
Lima	1203	7706	San Francisco	3748	12226
Callao	1204	7713	Nootka.	4936	12635
Gnayan	213	7953	Icy Cape	7029	16142
Panama	857 N	7931			
east Coast of North america.					
Cape Sable	4324 N	6536 W	Cape Race.	4639 N	5305 W
Halifax.	4439	6355	St. Johns.	4734	5243
Cape Canso	4519	6055	Quebcc.	4649	7116
Cape Breto	45 45 45 42	5948	Cape Farcwel	5949	4354
Gut of Cal	4542	6129	\|		

Latitudes and longitudes
Of the Principal Ports, Capes, and Lights in the World.

Englayd, Scotuand, and Ireland.					
	lat.	Lovg.		lat.	Lowg.
Lizard Point.	4958 N	512 W	Glasgow	5552 N	416 W
Plymouth	5022	410	Carlisle	5454	256
Portsmouth	5047	106	Liverpool	5325	300
Dover.	5108	119 E	Bristol.......	5127	$\stackrel{35}{2}$
London.	5131	006 W	Cape Clear Light	5126	929
Yarmouth	5237	144 E	Limeriek.....	5240	839
Hull	5345	020 W	Londonderry	5500	719
Berwiek Light	5546	159	Belfast	5435	557
Dunbar.	5600	229	Dublin	5323	620
Edinburgh	5557	312	Cork.	5148	815
Aberdeen	5709	208	Baltimore	5129	922
Duncansby Head	5840	308			

From Gibraltar to the Scaw.

Gibraltar	3607 N	521 W	Ushant Light .	4829 N	503 W
Cadiz Light	3632	618	Cherbourg	4938	137
Seville.	3659	558	Paris	4850	220 E
Cape St. Vineent lt.	3703	900	Havre de Grace	4929	006
Lisbon	3842	909	Boulogne	5044	137
Oporto Light.	4109	837	Calais.	5058	151
Corunna	4322	824	Dunkirk	5103	222
Ferrol.	4330	813	Ostend	5114	255
Santander Light	4330	347	Antwerp.	5113	424
Bilbao	4315	254	Flushing	5127	335
Bayonne.	4329	129	Rotterdam.	5154	429
Bordeaux	4450	034	Amsterdam	5222	453
Cordouan Light	4535	110	Embden	5322	712
Roehefort.	4556	058	Bremen.	5305	849
Roohelle Light.	4609	109	Hamburgh.	5333	958
Nuntes.	4713	133	Seaw Light	5743	1037
Brest	4823	429			

Cattegat and Sound, the Baltic, and the Gulfs of Finland and Bothnia.

TESTIMONIALS.

From a long list of subscribers we select the following names as evidencing that our "Guide" has won the patronage of the best nautical men:
W. B. Seabury, Commanding Steamship Alaska, P. M. S. S. Co.
W. H. MeLean, First Offiecr
T. E. Thompson, Second Officer " " "

James E. Hunter, Third Officer "، "
D. E. Friele, Commanding Steamship China, P. M. S. S. Co.

Thos. Golding, First Officer
C. Basset, Second Officer
" " "
I. M. Dow, Third Officer
" " "
H. C. Dearborn, Commanding Stearnship City of Sydney.
F. H. Johnson, First Officer
$66 \quad 66$
William Danol, Secoud Officer
$66 \quad 66$
A. II. Panzes, Third Officer
$66 \quad 66$
J. Metealfe, Commanding Steamship Belgic, O. O. S. S. Co.

Louis Meyer, First Offieer
Daniel Joyce, Second Offiecr
G. A. Williams, Fourth Officer
A. G. Jones, Commanding Steamship Salvador, P. M. S. S. Co.
D. Clark, First Officer " " "
M. Connolly, Commanding Steamship Granada, P. M. S. S. Co.
F. W. Hart, First Officer " " "
G. Foster, Sceond Officer " " "
C. T. Rode, Third Officer " " "
D. C. Griffiths, First Officer Steamship Dakota, P. M. S. S. Co.
W. Lascombe, Sceond Officer
D. Berry, Third Officer
L. B. Walls, First Officer Steamship City of Tokio, P. M. S. S. Co.
J. H. Powell, Second Officer " " " "
J. Luke, Third Officer "، " " "
D. S. Austin, Commanding Steamship Wilmington, P. M. S. S. Co.
A. N. M. Tulloh, First Officer Steamship Australia, P. M. S. S. Co.

Francis Connor, Commanding Steamslip Oregon, Oregon S. S. Co.
W. H. Kidley, Commanding Steanship Gaelic, O. \& O. Line.
H. Davison, First Officer
$66 \quad 66 \quad 66$
T. Suafton, Second Officer

6666
J. M. Cavarly, Commanding Steamship Georgia.

Wm. Cargill, Commanding P. M. S. Australia.
Robert R. Searle, Commanding Steamship Colima, P. M. S. S. Co.
Thos. Chapman, First Officer
Thos. P. Deering, Second Offieer "، "
W. Ward, Third Officer " " "
G. G. Berry, Comnanding Steamship China, P. M. S. S. Co.
J. T. Malcohm, First Officer Steamship Los Angeles, P. M. S. S. Co.

This work, the first of its kind published within the last half-century, seems, upon even cursory glance, admirably calculated to effect the professed object, viz., to enable the navigator to find at any time, quickly and accurately, his position at sea. The text-matter is exceedingly clear and concise. The rules and instructions, throughout, though based on theory, are altogether practical, and will iu no wise repel the uon-scientific seafarer from attaining (as far as can be done from a book), a trustworthy knowledge of what he most needs. Only a man who knows by experience the sailor's wants, could have written this book, which, from the arrangement of its matter as well as from its numerous original prob-lems-all carefully worked out-and valuable practical suggestions, will we think, make it prized wherever it finds its way. We certainly think that all navigators, no matter what their attainments, but especially those who have yet to advance in their profession, will find it advantageous to make thenselves acquainted with the contents of this work. Its typographical execution is admirable, and reflects great credit on the publishers.-Alta California, May 20, 1878.

This book, prepared by Captain E. McNevin, appears, after a careful survey of its pages, to be all that it claims on its title page. It gives the rules for solving all necessary nautical problems in the simplest and most practical manner, and enables the seaman to find, without other aid than that of an ordinary education, his positiou at sea. It attracts from the first, beginning with the matter that a sailor should first know, viz., the compass and a table of the angles which its points and quarter-points make with the meridian. The book is interspersed with practical and original suggestions that cannot fail to be appreciated by seamen. The method of finding simultaneously, latitude and longitude by double altitudes has not, we believe, heretofore been published in any American work. The same good judgment is observable in the arrangement of the the tables as of the text. The first gives the logarithmic lines, tangents, etc., for the points and quarter-points of the compass, and the second the logarithms of the natural numbers. The typographical appearance of the tables is excellent, the colunins being so well spaced and the figures so distinct that they can be used with facility and without danger of error-an important point for both student and navigator. A great deal has been written about the deviation of the compass; but we venture to say that the few paragraphs of this book on the subject will be all that the student need ever seek to know, either as to its theory or use. We predict for this book, which must have cost its author much time and thought, a large patronage.-Morning Call, June 7, 1878.

```
7
```


MARINE DRUG COMPANY,

JAMES CURTIS $A G^{\prime} T$ DRUGGIST,
 CORNER MARKET AND SPEAR STS.

 SAN FRANCISCO.Particular attention paid to furnishing and refitting Ship's Medicine Chests PU゙RE WINES AND IIQUORS.

MARINE DRUG STORE.
 N. S. THOMPSON舅DRUGGIST, COR. STEUART AND MARKET STS.

Parlicular Attention paid to replenishing Ship's Chests reith Pure Medicine A Good Assortment of Medicine Chests always on hand, at Reasonable l'riacs.

SAN FRANCISCO CORDAGE CO.

Established 1856.
MANUFACTURERS OF ALL SIZES OF

CORDAGE and HAY ROPE

A full assortment constantly on hand, and extra sizes and lergths made at short notice.

TUBBS de CO.

6if and 6iz Front St.
San Francisco, Cal.

Rubber Goods for Steamboat Use!

 HOSE, PACKING, VALVES, GASKETS, ETC.WE MAKE VALVES AND (BASKETS TO ORDER,
Thus saving the waste which occurs by cutting them from the sheet.
also, mis. kinds of
RUBBER CLOTHING, INCLUDING SOU-IVESTERS, LEGGGINS
Factory and Warerooms; $\{501$ Market Street, cor. First, San Francisco.
(327 Broadway, New York.
The Gutta Percha and Rubber Manufacturing Company, jOHN W. TAYLOR, MANAGER.

I. L. MERRELL \& CO.

WIRE-BOUND
Utilized Asbestos

BOILER COVERING and

ROOFING MATERIAL.

(Patented November 16 th, 1875 .)
Office and Factory, 314 Townsend St. SAN FRANCISCO, CALIFORNIA.

This is the best non-conductor of heat in use. For covering Steam Boilers and Pipes it has no equal. It has the highest endorsement for durability, lightness, elasticity, ease of application, and all desirable qualities.

It cffects u LARGE SAVING OF FUEL,-lusts as long as the iron on which it is applical, ame is reasomable in cost.

Steatite Felting.

WE REFER TO TII: FOLLOWING:

Bay Soap and Candle Works, Mission Woolen Mills, Chemical Works,
Nicholas Goetjen Jelly Factors;
P. M.S.S. Millen Griffith,

Colima,
City of New York, City of Sydney,
" City of San Francisco,
" City of Panama,
Neustadter Bros. Shirt Factory, Steam Tug Jos. H. Redmond,
Frear Stone Company.
Steamer Centernial,
" Coquille,
" Hope,
Steam Tug Columbia,
Lick Honse,
Steam Tug Monarch
S. F. Gold and Silver Refinery,

Coffee and Spice Mills,
Cal. Wine Cooperage and Mill Co.
St'r Rabboni, Black Diamond Coal Co. •
Steam Tug Continental,
North Beach Dry Dock Works,
Pioneer Woolen Mills,
Steam Tug Lookout,

San Francisco

California Cutlery Company, . San Francisco Bay View Sugar Refinery, Price \& Lee's Wool Bleaching Mill
State Harbor Dredgers,
Tug Anasha,
Fire Commissioners' Tug (Yov. Irwin,
Sacramento Coffee and Spice Mills,
M. C. Hawley's Agricultaral Warehouse "

Mrs. Johnson's Building,
P. M. S. S. Belgic,

Steanter Washington,
" Harriett,
Reform,
Occidental Hotel
Gould \& Curry Mine,
Consolidated Virginia Mine,
Conc. Shaft,
Stockton Steamer Centennial.
". " City of Stockton.
" " Alice Garratt.
Sacramento Sawing \& Planing Mills, Sacr.amento Sacramento Flouring Mills,
Pioneer Box Factory
Phomix Flouring Mills,
H. S. Crocker \& Co.
R. F. Barnes \& Co.
Brooklyn Jute Works,
"
a
Brooklyn Brooklyn

That our customers may understand our true position in the suits recently brought against us by the U.S. Salamander Felting Co., for alleged infringement of their patents, we beg to say that the charge is absurd for the simple reason that our interest lay in carefully avoiding the use of any of their material, our own patented one being much superior. The move against us is merely an advertising dodge and a futile attempt to injure our business by deceiving the public. They had the effrontery of notifying our customers not to pay us for work done, just as if we were not responsible to our patrons for all our acts.

We hope our friends will stand by us, and we assure them that the Salamander Felting Company will be glad to get off by paying the costs of suit. Our opinion is that they never intend to allow the case to come to trial, knowing full well that we have never used their material. Our success in business has driven them to their wits' end and their only resource is to commence suit to frighten away from us the patronage of the timid and ignorant.

I. L. MERRELL \& CO.

Office and Factory, 314 Townsend Strect.

The undersigned having formed a partnership under the firm name of

JENNINGS. CARR \& CO.

for the purpose of conducting the Wholesale Grocery Business, have purchased the stock and good will of Fordham \& Jennings, and will continue the same at the old stand,

Nos. 600 . and 602 Front Street, and desire to call your attention to their large and well selected stock of

GROCERIES.

We are able to offer inducements such as can be surpassed by no house in the trade, and respectfully solicit your orders.

Vessels supplied with the best quality of goods on the most reasonable terms.

We refer, by permission, to the author of this work.

> JENNINGS, CARR \& CO.

San Francisco, May Sth, 1878.

ALEX. MACKAY,

No. 1110 IMarket Street, and No. 11 Turk Street, importer' and dealer in

OIL CLOTHS, RUGS, MATS,
LACE CURTAINS, WINDOW SHADES, ETC. MANUFACTURER OF COCOA MATTING AND RAG CARPET.

G. W. SMITH, UPHOLSTERER WITH ALEX. MACKAY.
 Furniture and Bedding

Spring Mattresses, Bedding, Curtains, Draperies, Parlor Furniture, and all kinds of Upholstery Work done in the Best Style, and at Moderate Prices.
Particular Attention paid to Upholstering \& Furnishing Steamers \& Vessels CARPETS CLEANED BY STEAM BEATING MACHINE, AND RELAID.

YOU CAN SEE HOW IT IS YOURSELF

Are sold Cheaper at Houseworth's than anywhere else.

IIs Optical Parlors being on the first floor up stairs, his rent is cheaper than any other dealer in the same goods. You can save twenty-five per cent. by purchasing of him. He has heen established in San Francisco since 1851. The most prominent Oculists send their patients to him with prescriptions for Glasses that require great care and skill in fitting.

Houseworth's Optical Parlors are at 12 Mont. gomery Street, up-stairs, San Francisco.
HOUSEWORTH, THE LEADING
PHOTOGRAPHER

HAS RECEIVED THE

Higest Prize Medals
At Paris, Vienna, Centennial and San Francisco, for the finest photographs in the world.

All the prominent Celebrities, who visit this coast, have their Portraits taken at his studio to insure a perfect likeness. He invites all who appreciate artistic Photography to visit his parlors and inspect his large collection of portraits, copies of fine paintings, and views and curiosities of Calfornia.

HOUSEWORTH,
Artist Photographer,
12 Montgomery Strect,
San Francisco.

HENRY BRÜGGEMANN,

Late with J. EISENBERG,

Merchant Tailor

No. 526 Montgomery Street,

Abstract

Near corner of Clay, SAN FRANCISCO, CAL.

I keep in stock an elegant assortment of NOVELTIES, both Foreign and Domestic, Including

FRENCH COATINGS : CASSIMERES

 and all that appertains to a full line of
Clothing Goods.

I make a Specialty of Military

OFFICERS' 空 MARINERS' OUTFITS,

and am convinced that it will be advantageous for all to call on us.

Masters of Ships can be supplied with Outfits for Seamen.

> Sé Habla Español. $$
\begin{array}{l}\text { Man Spricht Deutsch. } \\ \\ \\ \text { On Parle Français. }\end{array}
$$

asbestos coativa FOR

STEAM BOILERS, PIPES, ETC.

UNITED STATES AND FOREIGN

Salamander Felting Company PACIFIC BRANCH.

(Patents issued Sept. 4, 1869; Oct. 5, 1869; Oct. 4, 1870; May 9, 1871.)

SEWARD COLE,

MANAGER.

OFFICE,
No. 317 California Street, S. F.
FACTORY,
Berry Street, between 4th and 5th, S. F.
IT SAVES FUEL, SAVES LABOR AND IS REASONABLE IN COST.
This is the best non-conductor of heat in use. For covering Steam loilers and lipes it las no equal. It has the highest endorsements for durability, lightness, elasticity, case of application, and all desirable qualities. It has been adopted by the several Departments of Govermment of the United States, and is in general use in the Atlantic States.

PAINTER \& CO.

SAN FRANCISCO CALIFORNIA

Type Foundry 510-512 CLAY STREET,
 SAN FRANCISCO, CALIFORNIA.

Printers' Furnishing Warehouse

This Old Established Foundry having a Large Stock and Complete Assortment of the Modern Faces of

BOOK, NEWS, JOB AND ORNAMENTAL TYPE
is prepared to flle all orders promptly.

PRINTING MATERIAL

OF EVERY DESCRIPTION, INCLUDING

POWER, HANDミJOB PRESSES

of the popular manufacturers.

ELEETROTYPING AND STEREOTYPING.

Capt. McNevin's"Practical Navigation"is printed from Stereotype Plates made by Painter \& Co.

Milton Andros,

COUNSELLOR AT LAW

$A N D$
PROCTOR IN ADMIRALTTY,

Rooms 18, 19 and 20
UNITED STATES COURT BUILDING,

NORTH-EAST CORNER

Washington and Battery Streets, SAN FRANCISCO, CALIFORNIA.

Atkinson's Wine House.

JAMES ATKINSON,
Importer and Dealer in
Fine Wines ${ }^{\widetilde{\pi}}$ Liquors,
1021 Market Street,
ABOVE SIXTH, SAN FRANCISCO, CAL.

BASS' PALE ALE IN PINTS AND HALF-PINTS.
French Wines of all Descriptions, California Wines, Etc.

SINGER

Sewing Machine

Nearly Three Million in Use.
EVERY. MACHINE WARRANTED PERFECT.

The Singer Manufacturing Co.
118 SUTTER STREET,
San Francisco, Cal.

> J. HOLLAND, GROCERIES
hams and bacon,
EGGS, BUTTER AND CHEESE,
PERFUMERY AND TOILET ARTICLES
FINE WINES FOR FAMILY USE.
south-west
Cor. Folsom and Fremont Streets, SAN FRANCISCO, CALIFORNIA.

SOUTHE University of California REGIONAL LIBRARY FACILITY

QL-uniess recalled
OCT 181999
GEL CHEMISTRY

SEC CHEMISTRY
DUE 2 WK FROM DATE RECEIVED
rif

UCLA ACCESS SERVICES
Interlibrary Loan
11630 University Research Library
Box 951575
Los Angeles, CA 90095-1575

[^0]: Prac. Nav.-2

[^1]: Ans. True course, N. 66° E.; distanee, 38 miles; differenee of latitnde, 15.2 departure, 34.6 ; latitude in, $56^{2} 12^{\prime} \mathrm{N}$.; longitude in, $15^{\circ} 02^{\prime} \mathrm{W}$.

[^2]: * When the ship's date is one day more than the Greenwich date, you will add 24 hours to the hour angle, and call that the apparent time at ship on the day before; next apply the equation of time, and you will have the mean time at ship and mean time at Greenwich reckoned from the same noon.

[^3]: Accumulated rate for 76.8 days....................... $+10 \mathrm{~m}: 45 \mathrm{~s}$.
 Mean time at Greenwich, September 21st......... 18h:53m: 35s.
 Ans.
 Polar distance. $90^{\circ} 21^{\prime} 01^{\prime \prime}$
 Sum of four logarithms 9.300063
 Mean time at ship, September 2lst 27h:25m:01s.
 Longitude $127^{\circ} 51^{\prime} 30^{\prime \prime} \mathrm{E}$

[^4]: Ans.Star's deelination
 Latitude........ $32^{\circ} 09^{\prime} 17^{\prime \prime} \mathrm{N}$. $51^{\circ} 26^{\prime} 32^{\prime \prime} \mathrm{N}$.

[^5]: Ans. $\left\{\begin{array}{l}\text { Star's declination } \\ \text { Latitude......... }\end{array}\right.$ $28^{\circ} 19^{\prime} 10^{\prime \prime} \mathrm{N}$.
 $28^{\circ} 16^{\prime} 10^{\prime \prime} \mathrm{S}$.

