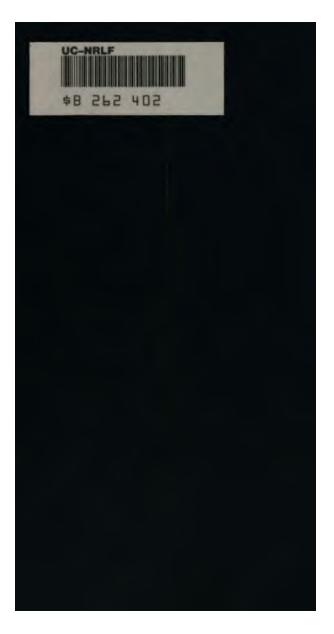


This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

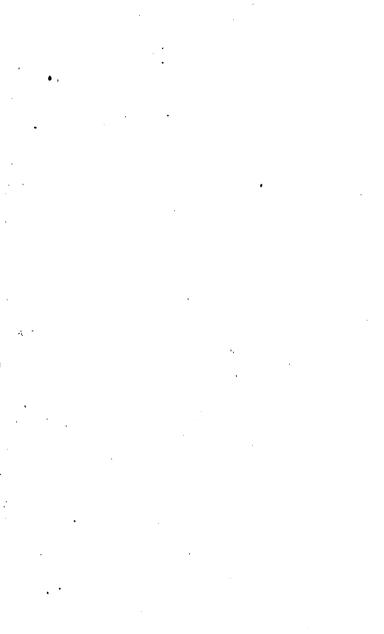
It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

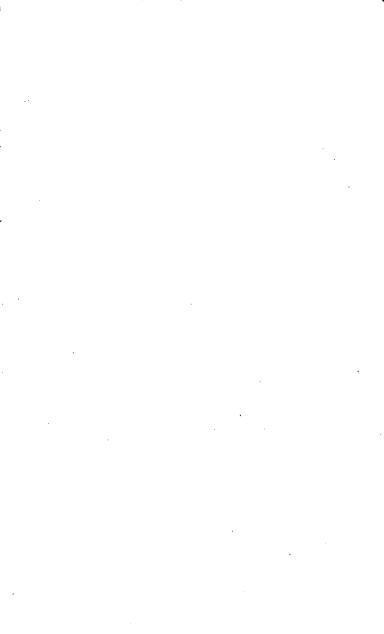
Usage guidelines

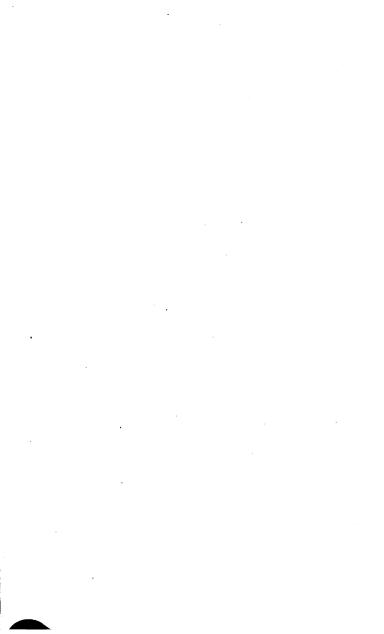

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.


We also ask that you:


- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search


Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



HANDBOOK

OF

ENGINEERING MATHEMATICS

BY

WALTER E. WYNNE, B.E.

The Anaconda Copper Mining Company. Formerly of the Research Section, Electrical Engineering Department, Massachusetts Institute of Technology

AND

WILLIAM SPRARAGEN, B.E.

Instructor of Electrical Engineering, University of Washington

SECOND EDITION, REVISED AND ENLARGED

NEW YORK D. VAN NOSTRAND COMPANY Eight Warren Street 1920

TAISI WX

Copyright, 1916, 1920, by D. VAN NOSTRAND COMPANY

AUTHORS' PREFACE

In the present edition, the handbook has been revised to include a number of additions to the mathematical sections and to the tables of mathematical functions, and the values of physical and chemical constants have been revised to agree with recent investigation.

The authors are especially indebted to Professor W. D. Ennis of the United States Naval Academy, Annapolis, for a critical reading of the revised manuscript and for valuable suggestions; and for the section on aeronautics which has been contributed by Professor Ennis; also to Professor Ernst J. Berg and John N. Vedder of Union College for advice in connection with certain sections.

The authors wish to express their thanks to Professors Irving P. Church, G. A. Goodenough, and William A. Granville, who have kindly given permission for the use of special material, tables, and constants from their works, and to whom proper credit is given where such material appears.

NOVEMBER, 1919.

Ĥ

TABLE OF CONTENTS

. •

	PAGE
Algebra	I
Exponents	I
Binomial theorem	2
Proportion	2
Progressions	3
Logarithms	4
Series	6
Complex imaginary quantities	9
Geometry	12
Plane figures	12
Solids	14
PLANE TRIGONOMETRY	15
Numerical values	16
Trigonometric formulæ	17
Plane triangles	19
SPHERICAL TRIGONOMETRY	21
Formulæ	21
Application to navigation	22
PLANE ANALYTIC GEOMETRY	24
Straight line	24
Rectangular and polar coördinates	26
Circle	26
Parabola	27
Ellipse	20
Hyperbola	20

v



Ĺ

?

ENGINEERING MATHEMATICS

Special and Indeterminate Forms

$$a^{0} = 1$$

$$a^{\infty} = \infty, \quad a > 1$$

$$a^{-\infty} = \frac{1}{a^{\infty}} = \frac{1}{\infty} = 0, \quad a > 1$$

$$\frac{a}{0} = \infty \qquad \frac{a}{\infty} = 0$$

$$\frac{\infty}{a} = \infty \qquad \frac{0}{a} = 0$$

 $0 \cdot \infty, \frac{0}{0}, \frac{\infty}{\infty}, 0^0, 1^\infty, \infty^0, \infty - \infty$ are indeterminate.

For the evaluation of indeterminate forms, see page 50.

Binomial Theorem

$$(x + y)^{n} = x^{n} + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \cdots$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!}x^{3} + \cdots$$

Proportion

If	a:b=c:d or	$\frac{a}{b} =$	$\frac{c}{d}$
		•	

then

If

$$ad = bc \qquad \frac{a}{c} = \frac{b}{d} = \frac{a+b}{c+d} = \frac{a-b}{c-d}$$
$$\frac{b}{a} = \frac{d}{c} = \frac{b+d}{a+c} = \frac{b-d}{a-c}$$
$$\frac{a}{b} = \frac{c}{d} \quad \text{and} \quad \frac{e}{f} = \frac{g}{h}$$

then

$$\frac{ae}{bf} = \frac{cg}{dh} \quad \text{and} \quad \frac{ag}{bh} = \frac{ce}{df}$$
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$

If then

$$\frac{a+c+e}{b+d+f} = \frac{ma+nc+pe}{mb+nd+pf} = \frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$

Arithmetical Progression

An arithmetical progression is one whose terms increase or decrease by a common difference,

$$a, a + d, a + 2d, a + 3d, \ldots$$

the last term is L = a + (n - 1) dthe sum of the terms is

$$S = \frac{n}{2}(a + L) = \frac{n}{2}[2a + (n - 1)d]$$

$$a = \text{first term}$$

$$n = \text{number of terms}$$

$$d = \text{common difference}$$

Geometrical Progression

Quantities are in **geometrical progression** when each term is equal to the preceding term multiplied by a constant,

 $a, ar, ar^2, ar^3, \ldots$ the last term is $L = ar^{n-1}$ the sum of the terms is

$$S = \frac{a (r^{n} - 1)}{r - 1} = \frac{a (1 - r^{n})}{1 - r} = \frac{rL - a}{r - 1}$$

$$a = \text{first term}$$

$$r = \text{constant ratio}$$

$$n = \text{number of terms}$$

The sum of an infinite number of terms in geometrical progression is

$$S = \frac{a}{1-r}$$

in which the ratio r must be less than 1 if the series is to be convergent (see Infinite Series).

Logarithms

The logarithm of any number to a given base is the power to which the base must be raised in order to produce the given number, thus:

if $x^m = y$, then $m = \log_x y$,

that is, m is the logarithm of y to the base x. The following relations hold for any base:

$$\log ab = \log a + \log b$$
$$\log \frac{a}{b} = \log a - \log b$$
$$\log a^{n} = n \log a$$
$$\log \frac{1}{a} = -\log a$$

The base of the common system of logarithms is 10.

The base of the natural system of logarithms (also called Naperian or hyperbolic logarithms) is $e = 2.7182818284 \dots$

A logarithm may be transformed from any given base to any other desired base by the relation:

$$\log_b N = \frac{\log_a N}{\log_a b} \cdot$$

To transform a logarithm from base 10 to base e,

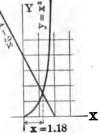
multiply by $2.302585 \ldots$ (where $2.302585 \ldots$ is the logarithm of 10 to the base e):

$$\log_{a}a = 2.302585 \log_{10}a$$

To transform a logarithm from base e to base 10, divide by 2.302585:

$$\log_{10}a = \frac{1}{2.302585}\log_{e}a = 0.434294\log_{e}a$$

Special forms:


$\log 1 = 0$	(to any base)
$\log_a a = 1$	$\log_e e = 1$
$\log_b 0 = -\infty$	$\log_b \infty = \infty$
b :	>1

Cubic and Higher Degree Equations

The approximate values of the real roots of an algebraic equation containing only one variable may be found graphically.

For instance, let it be required to solve the equation $x^3 + Ax - B = 0$. This may be written as $x^3 = -Ax + B$, or as two simultaneous equations $y = x^3$ and y = -Ax + B. The graph of each of these equations being plotted, the abscissas of their points of intersection give the real roots of the cubic. The curve $y = x^3$ should be plotted on cross-section paper by the aid of a table of cubes. The curve y = -Ax + B is the equation of a straight line, and is therefore determined by plotting two points. A

Illustrative Example. Solve the equation $x^3 + 2x - 4 = 0$ graphically. Write the equation in the form $x^3 = 4 - 2x = y$ and plot the equations $y = x^3$ and y = 4 - 2x. Their intersection gives the solution x = 1.18.

Algebraic equations of any degree may be solved by Newton's method of approximation; see page 51.

Transcendental Equations

The graphic method given under Cubic and Higher Degree Equations is also applicable to many transcendental equations. Thus, the equation $Ax - \sin x =$ 0 may be solved by plotting the two simultaneous equations y = Ax and $y = \sin x$. The curve $y = \sin x$ is readily plotted with the aid of a table of sines, while the other curve y = Ax is a straight line passing through the origin.

Infinite Series

An infinite series is one containing an unlimited number of terms. Such a series is convergent if the sum of its terms is a finite quantity. It is divergent when the sum of its terms does not approach a finite limit.

Comparison Test. A series is converging if each term in it is equal to or less than the corresponding term of a known converging series.

Converging series for comparison:

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots \qquad [r < 1]$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} + \dots$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} + \dots$$

$$1 + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \dots + \frac{1}{n^{p}} + \dots \qquad [p > 1]$$

A series is diverging if each term in it is equal to or greater than the corresponding term of a known diverging series.

ALGEBRA

Diverging series for comparison:

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots \quad [r \ge 1]$$

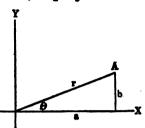
$$1 + 1 + 1 + 1 + 1 + \dots$$

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$

Ratio Test. If, as the number of terms approaches infinity as its limit, the ratio of the (n + 1)th term to the *n*th term approaches some finite limit (a), the series is convergent if (a) is less than 1, divergent if (a) is greater than 1, and indeterminate by this method if (a) = 1.

Oscillating Series. A series whose terms are alternately positive and negative is convergent if each term is numerically less than the preceding term.

Standard Series


$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$
$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \cdots$
$e^{jx} = e^{\sqrt{-1}x} = 1 + jx - \frac{x^2}{2!} - \frac{jx^3}{3!} + \frac{x^4}{4!} + \cdots$
$e^{-jx} = e^{-\sqrt{-1}x} = 1 - jx - \frac{x^2}{2!} + \frac{jx^3}{3!} + \frac{x^4}{4!} - \cdots$
$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$
$= 2.7182818 \ldots$
$a^{x} = 1 + x \log a + \frac{(x \log a)^{2}}{2!} + \frac{(x \log a)^{3}}{3!} + \cdots$
$\log x = 2 \left[\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1} \right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1} \right)^5 + \cdots \right] [x > 0]$

 $\log x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x} \right)^2 + \frac{1}{3} \left(\frac{x-1}{x} \right)^3 + \dots$ $[x>\frac{1}{2}]$ $\log x = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-3)^3 - \dots$ [2>x>0] $(1\pm x)^{-1}=1\mp x+x^2\mp x^3+x^4\mp x^5+\ldots$ $[x^2 < 1]$ $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{2} - \frac{x^4}{4} + \dots \quad [1 \ge x > -1]$ $\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots [1 > x \ge -1]$ $\sin x = x - \frac{x^3}{31} + \frac{x^5}{51} - \frac{x^7}{71} + \frac{x^9}{61} - \dots$ $\cos x = 1 - \frac{x^3}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{9!} - \cdots$ $\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{215} + \frac{62x^9}{2925} + \cdots$ $\left|\frac{\pi}{2} > x > -\frac{\pi}{2}\right|$ $\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{045} - \frac{x^7}{4725} - \cdots$ $[x^2 < \pi^2]$ $\sin^{-1}x = x + \frac{x^3}{6} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{7} + \cdots$ [1>x>-1] $\cos^{-1}x = \frac{\pi}{2} - \sin^{-1}x$ $\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$ [1 > x > -1] $\tan^{-1}x = \frac{\pi}{2} - \frac{1}{\pi} + \frac{1}{3\pi^3} - \frac{1}{5\pi^5} + \cdots$ $[x^{2} > 1]$ $\sinh x = x + \frac{x^3}{2!} + \frac{x^{9}}{5!} + \frac{x^{7}}{7!} + \frac{x^{9}}{9!} + \cdots$ $\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!} + \cdots$

Complex Imaginary Quantities

The imaginary unit = $\sqrt{-1} = j$

In representing complex imaginary quantities, it is usual to represent real quantities in the direction of the horizontal or Xaxis, and imaginaries in the direction of the vertical or Y-axis. Multipli-

cation by the imaginary unit, j, revolves a quantity through 90 degrees, in counter-clockwise direction.

A complex number is the sum of a real and an imaginary, thus:

$$A = a + jb = a + \sqrt{-1} b$$

is a complex number.

A complex number may be written in any of the following identical forms:

 $A = a + jb = r(\cos\theta + j\sin\theta) = re^{j\theta} \quad [\theta \text{ in radians}]$ in which $\begin{cases} a = r\cos\theta, \\ b = r\sin\theta. \end{cases}$

The magnitude of the complex number, a + jb, is $r = \sqrt{a^2 + b^2}$

Addition and Subtraction of complex quantities:

To add two complex quantities, combine the real parts, and then the imaginaries, thus:

$$(a+jb) + (c+jd) = (a+c) + j(b+d)$$

In the same way, to subtract two complex quantities:

(a+jb) - (c+jd) = (a-c) + j(b-d)

Multiplication of complex quantities:

To find the product of two complex numbers, multiply out as in ordinary algebra, remembering that $j^2 = -1$, thus:

$$(a+jb) (c+jd) = (ac-bd) + j (ad+bc)$$

Division of complex quantities:

To divide two complex quantities, rationalize the denominator as follows:

$$\frac{a+jb}{c+jd} = \frac{a+jb}{c+jd} \times \frac{c-jd}{c-jd} = \frac{(ac+bd)+j(bc-ad)}{c^2+d^2}$$

Logarithms of complex quantities:

To obtain the logarithm of a complex quantity, use the following formulæ:

$$\log_{e}(a+jb) = \log_{e} r(\cos \theta + j \sin \theta), \text{ where } r = \sqrt{a^{2}+b^{2}}$$
$$= \log_{e} (r e^{j\theta})$$
$$= \log_{e} r + \log_{e} e^{j\theta}$$
$$= \log_{e} r + j\theta$$

 $\log_n(a+jb) = \log_n (r e^{j\theta}) = \log_n r + j\theta \log_n e$

Complex Imaginary Formulæ

$$j = \sqrt{-1}$$
$$j^2 = jj = -1$$
$$e = 2.71828 +$$

 $e^{jax} = \cos ax + j \sin ax = \cosh jax + \sinh jax$ $e^{-jax} = \cos ax - j \sin ax = \cosh jax - \sinh jax$ $e^{ax} = \cos jax - j \sin jax = \cosh ax + \sinh ax$ $e^{-ax} = \cos jax + j \sin jax = \cosh ax - \sinh ax$

ALGEBRA

 $\sin ax = \frac{e^{jax} - e^{-jax}}{2j} = \frac{\sinh jax}{j}$ $\cos ax = \frac{e^{jax} + e^{-jax}}{2} = \cosh jax$ $\sin jax = j\frac{e^{ax} - e^{-ax}}{2} = j \sinh ax$ $\cos jax = \frac{e^{ax} + e^{-ax}}{2} = \cosh ax$ $e^{u \pm j\theta} = e^{u}(\cos v \pm j \sin v)$ $(\cos \theta + j \sin \theta)^n = \cos n\theta + j \sin n\theta$ (De Moivre's theorem) $e^{j\frac{\pi}{2}} = \cos \frac{\pi}{2} + j \sin \frac{\pi}{2} = j$ $e^{-j\frac{\pi}{2}} = \cos \frac{\pi}{2} - j \sin \frac{\pi}{2} \Rightarrow -j$ $e^{j\left(\theta + \frac{\pi}{2}\right)} = e^{j\theta}e^{j\frac{\pi}{2}} = je^{j\theta}$

$$e^{j\left(\theta-\frac{\pi}{2}\right)} = e^{j\theta}e^{-j\frac{\pi}{2}} = -je^{j\theta}$$

Permutations and Combinations

The number of **permutations** of n different things taken r at a time is

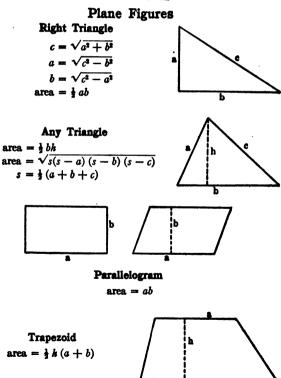
$$P_r = n(n-1) \dots (n-r+1) = \frac{n!}{(n-r)!}$$

For n different things taken all at a time, the number of **permutations** is

$$P_n = n (n-1) \dots (2) (1) = n!$$

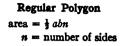
The number of **permutations** of n things taken all at a time, n_1 being alike, n_2 alike, n_3 alike, etc., is

$$P=\frac{n!}{n_1! n_2! n_3!} \cdots$$


The number of combinations of n things taken r at a time is

 $C_r = \frac{n(n-1) \dots (n-r+1)}{r!} = \frac{n!}{r! (n-r)!}$

For n things taken 1, 2, 3, . . . n at a time, the total number of combinations is


$$C=2^n-1$$

GEOMETRY

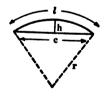
Ь

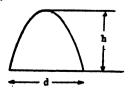
Circle circumference = $2\pi r$ = πd area = πr^2 = $\pi \frac{d^2}{4}$

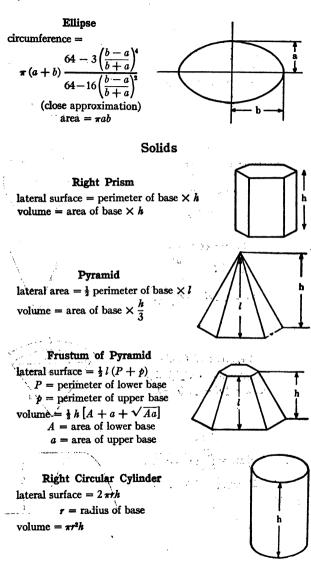
Sector of Circle
arc =
$$l = \pi r \frac{\theta^{\circ}}{180^{\circ}}$$

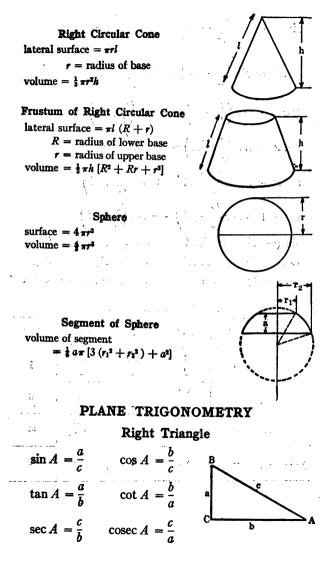
area = $\frac{1}{2}rl = \pi r^2 \frac{\theta^{\circ}}{360^{\circ}}$

Segment of Circle chord = $c = 2\sqrt{2hr - h^2}$ area = $\frac{1}{2}rl - \frac{1}{2}c(r - h)$


Parabola


length of arc $\simeq \frac{d^3}{8 h} \left[\sqrt{c (1+c)} + 2.0326 \log_{10} \left(\sqrt{c} + \sqrt{1+c} \right) \right]$ in which $c = \left(\frac{4 h}{d} \right)^2$


area $=\frac{2}{3}dh$



PLANE TRIGONOMETRY

$$\sin A = \cos\left(\frac{\pi}{2} - A\right) = -\cos\left(\frac{\pi}{2} + A\right)$$

$$\cos A = \sin\left(\frac{\pi}{2} - A\right) = \sin\left(\frac{\pi}{2} + A\right)$$

$$\tan A = \cot\left(\frac{\pi}{2} - A\right) = -\cot\left(\frac{\pi}{2} + A\right)$$

$$\cot A = \tan\left(\frac{\pi}{2} - A\right) = -\tan\left(\frac{\pi}{2} + A\right)$$

$$\sec A = \csc\left(\frac{\pi}{2} - A\right) = -\tan\left(\frac{\pi}{2} + A\right)$$

$$\csc A = \sec\left(\frac{\pi}{2} - A\right) = \csc\left(\frac{\pi}{2} + A\right)$$

$$\csc A = \sec\left(\frac{\pi}{2} - A\right) = -\sec\left(\frac{\pi}{2} + A\right)$$

$$\sin\left(-A\right) = -\sin A \quad \cos\left(-A\right) = \cos A$$

$$\tan\left(-A\right) = -\tan A \quad \cot\left(-A\right) = -\cot A$$

$$\sec\left(-A\right) = \sec A \quad \csc\left(-A\right) = -\csc A$$

Angle	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	- 1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	æ
cot	ø	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

PLANE TRIGONOMETRY

SIGNS OF THE FUNCTIONS

	sin	COS	tan	cot	sec	cosec
rst Quadrant 2nd Quadrant 3rd Quadrant 4th Quadrant	++	+ - - +	+ - + -	+ -+ -	+ - + +	+++

Trigonometric Formulæ

 $\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$ $\sec x = \frac{1}{\cos x}$ $\csc x = \frac{1}{\sin x}$ $\tan x = \frac{1}{\cot x} \qquad \cot x = \frac{1}{\tan x}$ $\sin^2 x + \cos^2 x = 1$ $\sec^2 x = 1 + \tan^2 x$ $\csc^2 x = 1 + \cot^2 x$ $\sin(x + y) = \sin x \cos y + \cos x \sin y$ $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$ $\cot(x+y) = \frac{\cot x \cot y - 1}{\cot x + \cot y}$ $\sin(x-y) = \sin x \cos y - \cos x \sin y$ $\cos(x - y) = \cos x \cos y + \sin x \sin y$ $\tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$ $\cot(x-y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$ $\sin 2x = 2\sin x \cos x$

ENGINEERING MATHEMATICS

 $\cos 2x = \cos^2 x - \sin^2 x$ $\tan 2x = \frac{2\tan x}{1-\tan^2 x}$ $\cot 2x = \frac{\cot^2 x - 1}{2 \cot x}$ $\sin\frac{1}{2}x = \sqrt{\frac{1-\cos x}{2}}$ $\cos\frac{1}{2}x = \sqrt{\frac{1+\cos x}{2}}$ $\tan \frac{1}{2}x = \frac{1 - \cos x}{\sin x}$ $\sin x + \sin y = 2 \sin \frac{1}{2} (x + y) \cos \frac{1}{2} (x - y)$ $\sin x - \sin y = 2 \cos \frac{1}{2} (x + y) \sin \frac{1}{2} (x - y)$ $\cos x + \cos y = 2 \cos \frac{1}{2} (x + y) \cos \frac{1}{2} (x - y)$ $\cos x - \cos y = -2 \sin \frac{1}{2} (x + y) \sin \frac{1}{2} (x - y)$ $\sin x = \sqrt{1 - \cos^2 x} = \frac{1}{\csc x} = \frac{\cos x}{\cot x} = \frac{\tan x}{\sec x}$ $= \cos x \tan x = \frac{\tan x}{\sqrt{1 + \tan^2 x}} = \frac{1}{\sqrt{1 + \cot^2 x}}$ $=\frac{\sqrt{\sec^2 x - 1}}{\sec x} = \frac{\sin 2 x}{2\cos x} = \sqrt{\frac{1}{2}(1 - \cos 2x)}$ $= 2 \sin \frac{x}{2} \cos \frac{x}{2}$ $\cos x = \sqrt{1 - \sin^2 x} = \frac{1}{\sec x} = \frac{\sin x}{\tan x} = \frac{\cot x}{\csc x}$ $=\sin x \cot x = \frac{\cot x}{\sqrt{1+\cot^2 x}} = \frac{1}{\sqrt{1+\tan^2 x}}$ $=\sqrt{\frac{\sec^2 x - 1}{\csc x}} = \frac{\sin 2 x}{2 \sin x} = \sqrt{\frac{1}{2}(1 + \cos 2 x)}$ $= \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = 2\cos^2 \frac{x}{2} - 1 = 1 - 2\sin^2 \frac{x}{2}$

18.

PLANE TRIGONOMETRY

Equivalent expressions for $\tan x$ and $\cot x$ may be obtained by taking any of the above expressions for $\sin x$ and $\cos x$ and substituting in the equations

$$\tan x = \frac{\sin x}{\cos x} \qquad \cot x = \frac{\cos x}{\sin x}$$

Solution of Any Plane Triangle

I. Given any two sides b and c and their included angle A.

Use any one of the following sets of formulas: 3 A ··· (1) $\frac{1}{2}(B+C) = 90^{\circ} - \frac{1}{2}A$ $\tan \frac{1}{2}(B-C)$ c $=\frac{b-c}{b+c}\tan\frac{1}{2}\left(B+C\right)$ $B = \frac{1}{2}(B+C) + \frac{1}{2}(B-C)$ $C = \frac{1}{2} (B + C) - \frac{1}{2} (B - C)$ $a = \frac{b \sin A}{\sin B}$ (2) $\tan C = \frac{c \sin A}{b - c \cos A}$ $B = 180^\circ - (A + C)$ $a = \frac{c \sin A}{\sin C}$ (3) $a = \sqrt{b^2 + c^2 - 2 bc \cos A}$ $\sin B = \frac{b \sin A}{a}$ $C = 180^\circ - (A + B)$

II. Given any two angles A and B and any side c.

$$C = 180^{\circ} - (A + B)$$
$$a = \frac{c \sin A}{\sin C}$$
$$b = \frac{c \sin B}{\sin C}$$

III. Given the three sides a, b, and c. Use either of the following sets of formulas.

(1)
$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc}$$

 $\cos B = \frac{a^2 + c^2 - b^2}{2 ac}$
 $C = 180^\circ - (A + B)$
(2) $s = \frac{1}{2} (a + b + c)$
 $r = \sqrt{\frac{(s - a)(s - b)(s - c)}{s}}$
 $\tan \frac{1}{2} A = \frac{r}{s - a}$

$$\tan \frac{1}{2}B = \frac{r}{s-b}$$

 $\tan \frac{1}{2}C = \frac{r}{s-c}$

IV. Given any two sides a and b and an angle Aopposite either one of these.

$$\sin C = \frac{c \sin A}{a}$$

$$B = 180^{\circ} - (A + C)$$
$$b = \frac{a \sin B}{\sin A}$$

NOTE. There may be two values for the angle C. If, however, one solution is such that $A + C > 180^{\circ}$, use other value only.

SPHERICAL TRIGONOMETRY Right Spherical Triangles

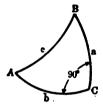
$$\cos c = \cos a \cos b$$

$$\sin a = \sin c \sin A$$

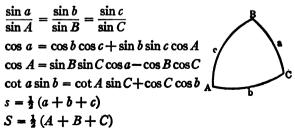
$$\sin b = \sin c \sin B$$

 $\cos A = \cos a \sin B$

 $\cos B = \cos b \sin A$


 $\cos A = \tan b \cot c$

 $\cos B = \tan a \cot c$

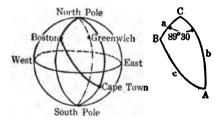

 $\sin b = \tan a \cot A$

 $\sin a = \tan b \cot B$

 $\cos c = \cot A \cot B$

Oblique Spherical Triangles

$$\sin\left(\frac{A}{2}\right) = \sqrt{\frac{\sin\left(s-b\right)\sin\left(s-c\right)}{\sin b \sin c}}$$
$$\cos\left(\frac{A}{2}\right) = \sqrt{\frac{\sin s \sin\left(s-a\right)}{\sin b \sin c}}$$
$$\tan\left(\frac{A}{2}\right) = \sqrt{\frac{\sin s \sin\left(s-a\right)}{\sin b \sin c}}$$
$$\tan\left(\frac{A}{2}\right) = \sqrt{\frac{-\cos\left(s-b\right)\sin\left(s-c\right)}{\sin s \sin\left(s-a\right)}}$$
$$\sin\left(\frac{a}{2}\right) = \sqrt{-\frac{\cos S \cos\left(S-A\right)}{\sin B \sin C}}$$
$$\cos\left(\frac{a}{2}\right) = \sqrt{\frac{\cos\left(S-B\right)\cos\left(S-C\right)}{\sin B \sin C}}$$
$$\tan\left(\frac{a}{2}\right) = \sqrt{-\frac{\cos S \cos\left(S-A\right)}{\cos\left(S-B\right)\cos\left(S-C\right)}}$$
$$\tan\frac{1}{2}\left(a-b\right) = \frac{\sin\frac{1}{2}\left(A-B\right)}{\sin\frac{1}{2}\left(A+B\right)}\tan\frac{1}{2}c$$
$$\tan\frac{1}{2}\left(a+b\right) = \frac{\cos\frac{1}{2}\left(A-B\right)}{\cos\frac{1}{2}\left(A+B\right)}\tan\frac{1}{2}c$$
$$\tan\frac{1}{2}\left(A-B\right) = \frac{\sin\frac{1}{2}\left(a-b\right)}{\sin\frac{1}{2}\left(a+b\right)}\cot\frac{1}{2}C$$
$$\tan\frac{1}{2}\left(A+B\right) = \frac{\cos\frac{1}{2}\left(a-b\right)}{\cos\frac{1}{2}\left(a+b\right)}\cot\frac{1}{2}C$$
$$\tan\frac{1}{2}c = \frac{\sin\frac{1}{2}\left(A+B\right)\tan\frac{1}{2}\left(a-b\right)}{\sin\frac{1}{2}\left(A-B\right)}$$


Application of Spherical Trigonometry to Navigation

To find the shortest distance between two points on the earth's surface and the bearing of each from the other, the latitude and longitude of each being given. (From W. A. Granville's "Plane and Spherical Trigonometry.") (1) Subtract the latitude of each place algebraically from 90°, taking North latitudes as positive and South latitudes as negative. The results will be the two sides of a spherical triangle.

(2) Find the difference of longitude of the two places by subtracting the lesser longitude from the greater if both are East or both are West; but adding the two if one is East and the other West. This gives the included angle of the triangle. If the difference of longitude found is greater than 180°, then subtract it from 360° and use the remainder as the included angle.

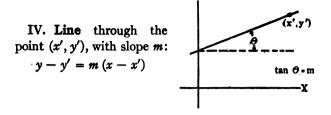
(3) Solving the triangle by the formulæ for $\tan \frac{1}{2}$ (A - B), $\tan \frac{1}{2}(A + B)$, and $\tan \frac{1}{2}c$, the third side gives the shortest distance between the two points in degrees of arc, and the angles give the bearings. The number of minutes in the arc will be the distance between the places in nautical miles.

Illustration. Find the shortest distance along the earth's surface between Boston (latitude 42° 21' N.,

longitude 71° 4' W.) and Capetown (latitude $33^{\circ} 56'$ S., longitude $18^{\circ} 26'$ E.) and the bearing of each city from the other.

(1)
$$a = 90^{\circ} - 42^{\circ} 21' = 47^{\circ} 39'$$

 $b = 90^{\circ} - (-33^{\circ} 56') = 123^{\circ} 56'$


ENGINEERING MATHEMATICS

- (2) $C = 71^{\circ} 4' + 18^{\circ} 26' = 89^{\circ} 30' = \text{difference in longitude.}$
- (3) Solving the triangle as explained above, we get $c = 68^{\circ} 14' = 68.23^{\circ} = 4094$ nautical miles.
 - $A = 52^{\circ} 43' =$ bearing of Boston from Capetown.
 - $B = 116^{\circ} 43' = \text{bearing of Capetown from}$ Boston.

PLANE ANALYTIC GEOMETRY The Straight Line

I. The slope equation: y = mx + b $m = \text{slope} = \tan \theta$ tan $\theta = m$ b =intercept on Y-axis II. The intercept equation: $\frac{x}{a} + \frac{y}{b} = 1$ where a and b are the intercepts on the X and Y-axes. III. Line through the points (x', y') and (x'', y''): (x',y') $\frac{y-y'}{x''-x'} = \frac{x-x'}{x''-x'}$ x

24

V. Distance from the point (x', y') to the line Ax + By + C = 0:

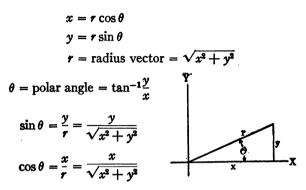
$$d = \frac{Ax' + By' + C}{\pm \sqrt{A^2 + B^2}}$$

VI. Distance between the points (x', y') and (x'', y''):

$$d = \sqrt{(x' - x'')^2 + (y' - y'')^2}$$

VII. Area of a triangle with vertices at points $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) .

$$A = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

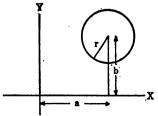

VIII. Angle between two lines with slopes m_1 and m_2 .

$$\tan\theta=\frac{m_2-m_1}{1+m_1m_2}$$

NOTE. If $m_1 = m_2$ lines are parallel and if $m_1 = -\frac{1}{m_2}$ lines are perpendicular.

ENGINEERING MATHEMATICS

Transformation from Rectangular to Polar Coördinates



I. Circle of radius r with center at origin:

 $x^2 + y^2 = r^2$

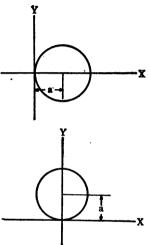
II. Circle of radius rwith its center at the point (a, b): $(x-a)^2 + (y-b)^2 = r^2$

26

III. Tangent at the point (a, b) of the circle $x^2 + y^2 = r^2$ is

 $ax + by = r^2$

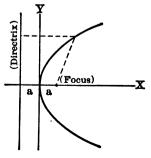
IV. Slope equation of the **tangent** to the circle $x^2 + y^2 = r^2$ is


$$y = mx \pm r \sqrt{m^2 + 1}$$

V. Polar equation of circle of radius *a* passing through the origin, and having its center on the *X*-axis:

$r = 2 a \cos \theta$

VI. Polar equation of circle of radius *a* passing through the origin, and having its center on the *Y*-axis:


 $r = 2 a \sin \theta$

Parabola

Definition. The parabola is the curve generated by a point moving so as to remain always equidistant from a given fixed point and a given fixed line.

The fixed point is called the focus; the fixed line is called the directrix.

I. **Parabola** with its axis along the X-axis and vertex at origin:

$$y^2 = 4 ax$$

where a is the distance from the origin to the focus.

II. **Parabola** having its axis along the *Y*-axis and vertex at origin:

$$x^2 = 4 ay$$

where a is the distance from the origin to the focus.

III. General equation of a parabola with axis parallel to the X-axis:

$$x = ay^2 + by + c$$

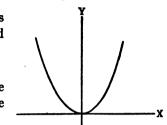
the vertex is at the point

 $\left(-\frac{b^2-4\,ac}{4\,a},\,-\frac{b}{2\,a}\right)$

IV. General equation of a parabola with axis parallel to the Y-axis:

 $y = ax^2 + bx + c$

the vertex is at the point


$$\left(-\frac{b}{2a},-\frac{b^2-4ac}{4a}\right)$$

V. Slope equation of the tangent to the parabola $y^2 = 4 ax$ is

$$y = mx + \frac{a}{m}$$

VI. Slope equation of the tangent to the parabola $x^2 = 4 ay$ is

 $y = mx - am^2$

Ellipse

Definition. The ellipse is the curve generated by a point moving so that the sum of its distances from

two fixed points is always constant. The fixed points are called the **foci**.

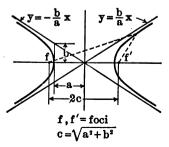
I. Equation of ellipse with center at origin:

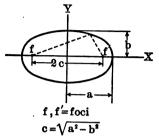
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

where a and b are one-half the major and minor axes.

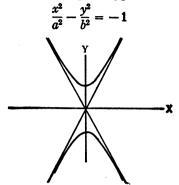
II. Slope equation of the **tangent** to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

$$y = mx \pm \sqrt{a^2m^2 + b^2}$$


Hyperbola


Definition. The hyperbola is the curve generated by a point moving so that the difference of its dis-

tances from two fixed points is always constant.

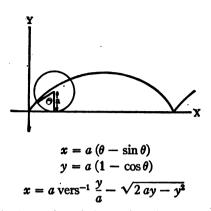

I. Equation of hyperbola with center at origin:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

II. Equation of conjugate hyperbola:

III. Equations of **asymptotes** of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are

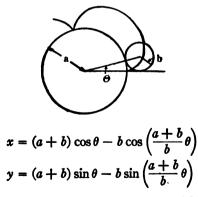
$$y = \frac{b}{a}x$$
 $y = -\frac{b}{a}x$


IV. Slope equation of the **tangent** to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

$$y = mx \pm \sqrt{a^2 m^2 - b^2}$$

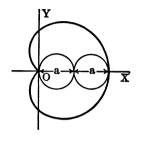
V. Slope equation of the **tangent** to the conjugate hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is $y = mx \pm \sqrt{b^2 - a^2m^2}$

Cycloid


Definition. The cycloid is the curve generated by a point on the circumference of a circle as the circle rolls along a straight line.

where a is the radius of the rolling circle.

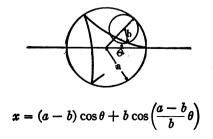
Epicycloid


Definition. The epicycloid is the curve generated by a fixed point on the circumference of a circle which rolls **externally** on the circumference of a fixed circle.

where a is the radius of the fixed circle, and b the radius of the rolling circle.

Cardioid

The cardioid is an epicycloid, with the radius of the fixed circle equal to that of the rolling circle.

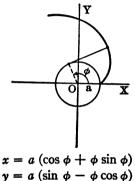

$$r = a (1 + \cos \theta)$$

$$x = a \cos \theta (1 + \cos \theta)$$

$$y = a \sin \theta (1 + \cos \theta)$$
Area = $\frac{3\pi a^2}{2}$ Length = 8a

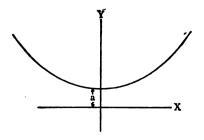
Hypocycloid

Definition. The hypocycloid is the curve generated by a point on a circle which rolls **internally** along the circumference of a fixed circle.



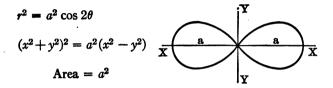
$$y = (a - b) \sin \theta - b \sin \left(\frac{a - b}{b} \theta\right)$$

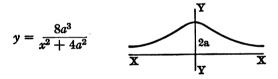
where a is the radius of the fixed circle and b the radius of the rolling circle.


Involute

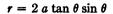
The **involute of a circle** is the curve traced by the end of a taut string which is unwound from the circumference of a fixed circle.

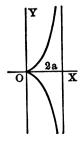
The Catenary


The catenary is the curve which a heavy cord or perfectly flexible chain of uniform density forms, due


to its own weight, when freely suspended between two points.

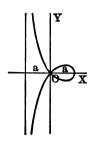
$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) = a \cosh \frac{x}{a}$$



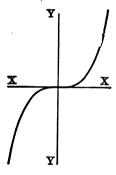

Witch of Agnes

Cissoid

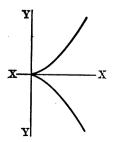
$$y^2 = \frac{x^3}{2 a - x}$$



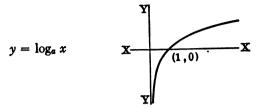
34


Strophoid

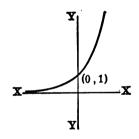
 $y^{2} = x^{2} \left(\frac{a-x}{a+x}\right)$ $r = a \left(\cos \theta - \sin \theta \tan \theta\right)$ Area of loop = $\frac{a^{2}}{2}(4-\pi)$



Cubical Parabola

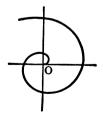


Semi-cubical Parabola



 $av^2 = x^3$

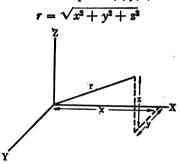
Logarithmic Curve



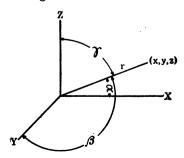
Exponential Curve

 $v = a^{\mathbf{z}}$

Spiral of Archimedes



 $r = a \theta$


SOLID ANALYTIC GEOMETRY

The direction cosines of a line in space passing through the origin are the cosines of the angles which the line makes with the rectangular coördinate axes. The direction cosines of **any line** in space are the direction cosines of a line parallel to it and passing through the origin.

I. Distance from the point (x, y, z) to the origin:

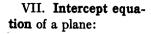
II. The direction cosines of the line from the point (x, y, z) to the origin are:

$$\cos \alpha = \frac{x}{r} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
$$\cos \beta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$$
$$\cos \gamma = \frac{z}{r} = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

III. The sum of the squares of the direction cosines of a line is equal to 1,

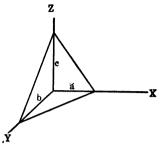
$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

IV. Distance between the points (x, y, z) and (x', y', z'):


$$d = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$

V. Direction cosines of a line joining the points (x, y, z) and (x', y', z'):

$$\cos \alpha = \frac{x - x'}{d} = \frac{x - x'}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$
$$\cos \beta = \frac{y - y'}{d} = \frac{y - y'}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$
$$\cos \gamma = \frac{z - z'}{d} = \frac{z - z'}{\sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}}$$


VI. The **angle between** two lines in terms of their direction cosines:

 $\cos\theta = \cos\alpha\cos\alpha' + \cos\beta\cos\beta' + \cos\gamma\cos\gamma'$

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

where a, b, and c are the intercepts of the plane on the X, Y, and Z axes.

VIII. General equation of a plane:

Ax + By + Cz + D = 0

IX. Distance from the point (x', y', z') to the plane Ax + By + Cz + D = 0:

$$d = \frac{Ax' + By' + Cz' + D}{\pm \sqrt{A^2 + B^2 + C^2}}$$

X. Straight line through the two points (x'', y'', z'')and (x', y', z'):

$$\frac{x-x'}{x''-x'} = \frac{y-y'}{y''-y'} = \frac{z-z'}{z''-z'}$$

XI. Straight line through the point (x', y', z'), and making the angles α , β , and γ with the coördinate axes:

$$\frac{x-x'}{\cos\alpha} = \frac{y-y'}{\cos\beta} = \frac{z-z'}{\cos\gamma}$$

XII. General equation of a straight line is given by the equations of two intersecting planes:

$$A'x + B'y + C'z + D' = 0$$

 $A''x + B''y + C''z + D'' = 0$

CALCULUS

Application of Differential Calculus

The following list includes some of the principal formulæ necessary for the solution of geometrical and physical problems, relating to any curve y = f(x).

Rectangular Coördinates:

Slope of the tangent at the point $(x, y) = \frac{dy}{dx}$

Slope of the normal $= -\frac{dx}{dy}$

Equation of the tangent at the point (x_o, y_o) , x_o and y_o being the coördinates of the given point, is

$$y_o - y = \frac{dy_o}{dx_o}(x_o - x)$$

Equation of the normal at (x_o, y_o) is

$$(y_o - y) = -\frac{dx_o}{dy_o}(x_o - x)$$

The intercept of the tangent on the X-axis is $x - y \frac{dx}{dy}$ The intercept of the tangent on the Y-axis is $y - x \frac{dy}{dx}$ The intercept of the normal on the X-axis is $x + y \frac{dy}{dx}$ The intercept of the normal on the Y-axis is $y + x \frac{dx}{dy}$ Length of the tangent from its point of contact with the curve to the X-axis is

$$y\sqrt{1+\left(\frac{dx}{dy}\right)^2}$$

CALCULUS

Length of the tangent from its point of contact with the curve to the *Y*-axis is

$$x\sqrt{1+\left(\frac{dy}{dx}\right)^2}$$

Length of the normal from its point of contact with the curve to the X-axis is

$$y\sqrt{1+\left(\frac{dy}{dx}\right)^2}$$

Length of the normal from its point of contact with the curve to the Y-axis is

$$x\sqrt{1+\left(\frac{dx}{dy}\right)^2}$$

Length of the subtangent = $y \frac{dx}{dy}$

Length of the subnormal $= y \frac{dy}{dx}$

Differential length of the arc = $ds = \sqrt{(dx)^2 + (dy)^2}$

$$= dy \sqrt{1 + \left(\frac{dx}{dy}\right)^2} = dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

Radius of curvature = $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$

Curvature is the reciprocal of radius of curvature.

Length of the perpendicular from the origin on the tangent (to the curve) is

$$\frac{x\frac{dy}{dx} - y}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}$$

Polar Coördinates:

 $\tan \psi = r \frac{d\theta}{dr}$, where ψ is the angle between the radius vector and that part of the tangent to the curve at (r, θ) drawn back toward the initial line.

Length of polar subtangent = $r^2 \frac{d\theta}{dr}$

Length of polar subnormal $= \frac{dr}{d\theta}$

Differential length of arc = $ds = \sqrt{(dr)^2 + r^2 (d\theta)^2}$

$$= dr \sqrt{1 + r^2 \left(\frac{d\theta}{dr}\right)^2} = d\theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}$$

Length of the perpendicular from the pole on the tangent = $p = r^2 \frac{d\theta}{ds}$, also, $\frac{1}{b^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$

Formulæ of Differential Calculus

$$d (au) = a du$$

$$d (u + v) = du + dv$$

$$d (uv) = v du + u dv$$

$$d \left(\frac{u}{v}\right) = \frac{v du - u dv}{v^2}$$

$$d (x^n) = nx^{n-1} dx$$

$$d (x^y) = yx^{y-1} dx + x^y \log_e x dy$$

$$d (e^x) = e^x dx$$

$$d (a^u) = a^u \log_e a du$$

$$d (\log_e x) = \frac{1}{x} dx$$

 $d(\sin x) = \cos x \, dx$ $d\left(\cos x\right) = -\sin x\,dx$ $d(\tan x) = \sec^2 x \, dx$ $d(\cot x) = -\csc^2 x \, dx$ $d(\sec x) = \sec x \tan x \, dx$ $d(\operatorname{cosec} x) = -\operatorname{cosec} x \cot x \, dx$ $d\left(\sin^{-1}x\right) = \frac{dx}{\sqrt{1-x^2}}$ $d\left(\cos^{-1}x\right) = -\frac{dx}{\sqrt{1-x^2}}$ $d\left(\tan^{-1}x\right) = \frac{dx}{1+x^2}$ $d\left(\cot^{-1}x\right) = -\frac{dx}{1+x^2}$ $d(\sec^{-1}x) = \frac{dx}{x\sqrt{x^2 - 1}}$ $d\left(\operatorname{cosec}^{-1} x\right) = -\frac{dx}{\sqrt{x^2 - 1}}$

Maxima and Minima

The **maximum** or **minimum** values of a given function y = f(x) are obtained as follows:

(1) Find the first derivative $\frac{dy}{dx}$ and equate it to zero. (2) Solve the resulting equation for values of x.

(3) In order to determine whether these values of x make y maximum or minimum, obtain the second derivative $\frac{d^2y}{dx^2}$ of the given function.

(4) Substitute separately in the expression for $\frac{d^2y}{dx^2}$

each of the values of x found above. Values of x that make $\frac{d^2y}{dx^2}$ positive correspond to minimum values of the function, and values of x that make $\frac{d^2y}{dx^2}$ negative correspond to maximum values of the function.

(5) Substituting these values of x in the given function y = f(x), we obtain the maximum or minimum values of y.

Illustrative Example. Find the values of x which will make the function $y = 6x + 3x^2 - 4x^3$ a maximum or a minimum, and find the corresponding values of the function y.

(1) The first derivative of y is

$$\frac{dy}{dx} = 6 + 6x - 12x^2$$

(2) The values of x which make y maximum or minimum will make $\frac{dy}{dx} = 0$; therefore

 $6 + 6x - 12x^2 = 0$, or $x^2 - \frac{1}{2}x = \frac{1}{2}$

solving, $x = \frac{1}{4} \pm \frac{3}{4} = +1$ or $-\frac{1}{2}$ Hence, the maximum or minimum values of y must occur when x = 1 or $-\frac{1}{2}$.

(3) To determine whether these values are maxima or minima, we obtain the second derivative of y; thus:

$$\frac{d^2y}{dx^2}=6-24\,x$$

(4) When x = 1, $\frac{d^2y}{dx^2} = -18$, which corresponds to a maximum value of y.

44

CALCULUS

When $x = -\frac{1}{2}$, $\frac{d^2y}{dx^2} = +18$, which corresponds to a minimum value of y.

(5) Substituting these values of x in the given function, we have

when x = 1, y = 6 + 3 - 4 = 5, a maximum when $x = -\frac{1}{2}$, $y = -3 + \frac{3}{4} + \frac{1}{2} = -\frac{7}{4}$, a minimum

Taylor's and Maclaurin's Series

Taylor's Series:

$$f(x) = f(a) + \frac{(x-a)}{1!}f'(a)$$

$$+\frac{(x-a)^2}{2!}f''(a)+\frac{(x-a)^3}{3!}f'''(a)+\ldots$$

or

$$f(a+x) = f(a) + \frac{x}{1!}f'(a) + \frac{x^2}{2!}f''(a) + \frac{x^3}{3!}f'''(a) + \dots$$

where f(a) denotes the value of the function when a is substituted for x, f'(a) the value of the first derivative when a is substituted for x, f''(a) the value of the second derivative when a is substituted for x, etc.

Illustrative Examples. Expand $\cos(a + x)$ in powers of x. Here

$$f(a+x)=\cos\left(a+x\right)$$

Placing x = 0, $f(a) = \cos a$ $f'(a + x) = -\sin (a + x)$, $f'(a) = -\sin a$ $f''(a + x) = -\cos (a + x)$, $f''(a) = -\cos a$ $f'''(a + x) = \sin (a + x)$, $f'''(a) = \sin a$ Substituting in Taylor's formula,

$$\cos (a+x) = \cos a - \frac{x}{1!} \sin a - \frac{x^2}{2!} \cos a + \frac{x^3}{3!} \sin a + \dots$$

Maclaurin's Series.

$$f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$$

where f(0) denotes the value of the function when 0 is substituted for x, f'(0) the value of the first derivative when 0 is substituted for x, etc.

Illustrative Example. Expand $\cos x$ in powers of x.

Here
$$f(x) = \cos x$$

 $f(0) = \cos 0 = 1$
 $f'(x) = -\sin x, \quad f'(0) = 0$
 $f''(x) = -\cos x, \quad f''(0) = -1$
 $f'''(x) = \sin x, \quad f'''(0) = 0$
 $f^{tv}(x) = \cos x, \quad f^{tv}(x) = 1$

Substituting in Maclaurin's formula,

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots$$

APPLICATION OF INTEGRAL CALCULUS

Lengths of Curves

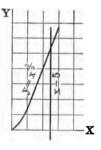
Rectangular Coördinates:

length of curve =
$$s = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

From the equation of the given curve, find y in terms

CALCULUS

of x; then differentiate in order to obtain $\frac{dy}{dx}$, and substitute its value in the formula. The lower limit *a* is the initial value of x, and the upper limit *b* the final value of x.


Or, similarly, by solving for x in terms of y, and obtaining $\frac{dx}{dy}$, the length of the curve is given by the formula

$$s = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

where c and d are the initial and final values of y.

Illustrative Example. Find the length of the arc of the semicubical parabola $y^2 = x^3$ from the origin to the ordinate x = 5.

$$y = x^{3/2}, \qquad \frac{dy}{dx} = \frac{3}{2}x^{1/2},$$
$$\left(\frac{dy}{dx}\right)^2 = \frac{9x}{4}$$

The required length of arc is

$$S = \int_0^5 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^5 \sqrt{1 + \frac{9x}{4}} dx$$
$$= \frac{8}{27} \sqrt{\left(1 + \frac{9x}{4}\right)^3} \Big]_0^5 = \frac{335}{27}$$

Polar Coördinates:

length of curve =
$$s = \int_{a}^{b} \sqrt{1 + r^2 \left(\frac{d\theta}{dr}\right)^2} dr$$

where a and b are the limiting values of r.

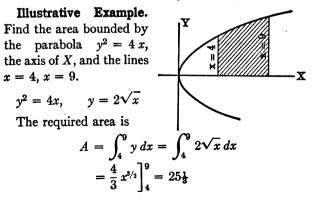
Or,

length of curve = $s = \int_{\theta'}^{\theta''} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$ where θ' and θ'' are the limiting values of θ .

Plane Areas

Rectangular Coördinates:

The area included between a curve, the X-axis, and the vertical lines x = a and x = b is


area =
$$A = \int_{a}^{b} y \, dx$$

The value of y in terms of x is found from the given equation and substituted in the formula. The initial value of x is a, and the final value b.

Similarly, the area included between a curve, the Yaxis, and the horizontal lines y = c and y = d is

area =
$$A = \int_{c_1}^{d} x \, dy$$

where c and d are the limits of y.

48

CALCULUS

Polar Coördinates:

The area included between a given curve and two given radii is

area =
$$A = \frac{1}{2} \int_{\theta'}^{\theta''} r^2 d\theta$$

where θ'' and θ' are the limiting values of θ .

Areas of Surfaces of Revolution

For revolution about the X-axis,

area =
$$A = 2\pi \int_{a}^{b} y \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

where the value of $\left(\frac{dy}{dx}\right)$ is found from the given equation. The initial value of x is a, and the final value b.

For revolution about the Y-axis,

area =
$$A = 2\pi \int_{c}^{d} x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

where c and d are the limiting values of y.

Volumes of Solids of Revolution Rectangular Coördinates:

volume =
$$V_x = \pi \int_a^b y^2 dx$$

is the formula for the volume generated by revolving the given curve about the X-axis. The limiting values of x are a and b.

Similarly, the volume generated by revolving the plane figure about the Y-axis equals

$$V_{\boldsymbol{y}} = \pi \int_{c}^{d} x^{2} \, dy$$

where c and d are the initial and final values of y.

Polar Coördinates:

When the plane figure is revolved about the X-axis, the volume generated is

$$V_x = 2\pi \int \int r^2 \sin\theta \, d\theta \, dr$$

For revolution about the Y-axis, the volume generated is

$$V_{y} = 2\pi \iint r^{2} \cos\theta \, d\theta \, dr$$

INDETERMINATE FORMS

If the fraction $\frac{f(x)}{F(x)}$ gives rise to the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, when x approaches a as a limit, the indeterminate form may be replaced by a new fraction, $\frac{f'(x)}{F'(x)}$, the numerator of which is equal to the derivative of the given numerator, and the new denominator is equal to the derivative of the given denominator. The value of this new fraction, as x approaches a, is the limiting value of the given fraction. If this again becomes indeterminate, it may be necessary to repeat the process several times.

Example. Find the limiting value, when x = 1, of the fraction

$$\frac{\frac{x^2 + x - 2}{x^2 - 1}}{\frac{f(x)}{F(x)} = \frac{x^2 + x - 2}{x^2 - 1} = \frac{0}{0}, \text{ when } x = 1$$

$$\frac{f'(x)}{F'(x)} = \frac{2x + 1}{2x} = \frac{3}{2}, \text{ when } x = 1$$

Hence, the required limiting value is $\frac{3}{2}$.

SOLUTION OF EQUATIONS

Algebraic equations may be solved by Newton's method of approximation. Thus, let it be required to solve an equation of the form $Ax^3 + Bx^2 + Cx = D$. Find, by trial, a number, r, nearly equal to the root sought, and let r + h denote the exact value of the root, where h is a small quantity the value of which must be determined. Substituting r + h for x in the given equation and neglecting all powers of h higher than the first, we have, approximately,

$$h = \frac{Ar^3 + Br^2 + Cr - D}{-3 Ar^2 - 2 Br - C}$$

It will be observed that the numerator of the above fraction is the first member of the given equation after D has been transposed and x changed to r, and the denominator is the **first derivative** of the numerator with its sign reversed. The correction h added, with its proper sign, to the assumed root r, gives a closer approximation to the value of x. Repeat the operation with the corrected value of r, and a second correction will be obtained which will give a nearer value of the root; two corrections generally give sufficient accuracy.

Illustration. Find a root of the equation

$$x^3 + 2 x^2 + 3 x = 50$$

The value of h is

$$h = \frac{r^3 + 2r^2 + 3r - 50}{-3r^2 - 4r - 3}$$

By trial, we find that x is nearly equal to 3. On substituting 3 for r, we have

$$h = -\frac{2}{21} = -0.1$$
, approximately

Hence, x = 2.9, nearly. If we substitute this new value of r, the new value of h equals +0.00228. Hence x = 2.90228. If we repeat the operation with this last value of r, the value of h is then found to be +0.0000034. Hence x = 2.9022834.

CURVE TRACING

The usual method of tracing curves consists in assigning a series of different values to one of the variables, and calculating the corresponding series of values of the other, thus determining a definite number of points on the curve. By drawing a curve through these points, we obtain a graphical representation of the given equation.

The general form and peculiarities of the curve can be easily determined and sketched by the following steps:

(1) If possible, solve the equation of the given curve for one of its variables, y for example. If the equation then contains only even powers of x, it is symmetrical with the Y-axis.

Or if, when solved for x, it contains only even powers of y, it is symmetrical with the X-axis.

(2) Find the points in which the curve cuts the axes by solving the equation of the given curve in turn with the equations x = 0 and y = 0.

(3) Find the values of x, if any, which make y infinite; similarly, test for infinite values of x.

(4) Find the value of the first derivative $\frac{dy}{dx}$; and

CALCULUS

thence deduce the maximum and minimum points of the curve.

In tracing polar curves, write the equation, if possible, in the form $r = f(\theta)$; and give θ such values as make r easily found, as for example, $0, \frac{1}{2}\pi, \pi, \frac{3}{2}\pi$, etc.

Putting $\frac{dr}{d\theta} = 0$, we find the values of θ for which r is a maximum or minimum.

METHODS OF INTEGRATION

(By parts, substitution, etc.)

When the numerator of a fraction contains a variable to an **equal** or a **higher** power than the denominator, the fraction must be reduced to a mixed quantity (by actually dividing the denominator into the numerator) before it can be integrated.

If an expression cannot be integrated by the formulæ given in the table of integrals, one of the following methods may be used to obtain a solution.

Partial Fractions

A fraction may be resolved into partial fractions, which can be integrated separately.

Example. To integrate

$$\frac{1}{(x+a)(x+b)}\,dx$$

Let

$$\frac{1}{\left(x+a\right)\left(x+b\right)} = \frac{A}{\left(x+a\right)} + \frac{B}{\left(x+b\right)}$$

where we must determine A and B.

Clearing of fractions,

$$J = A (x + b) + B (x + a) = (A + B) x + (bA + aB)$$

The coefficients of like powers of x on both sides of the equation are equal; therefore,

$$A + B = 0$$

$$bA + aB = 1$$

whence $A = \frac{1}{b-a}$ and $B = \frac{1}{a-b}$
and

$$\int \frac{1}{(x+a)(x+b)} dx = \int \frac{\left(\frac{1}{b-a}\right)}{(x+a)} dx + \int \frac{\left(\frac{1}{a-b}\right)}{(x+b)} dx$$

These forms are now integrable by the table of integrals, the result being

$$\int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \log(x+a) + \frac{1}{a-b} \log(x+b) + C$$

where C is the constant of integration

where C is the constant of integration.

Integration by Parts

To integrate by parts, apply the formula

$$\int u\,dv = uv - \int v\,du$$

The method of integration by parts is most effective in dealing with the integration of **products**, involving logarithms, and trigonometric and inverse circular functions.

Generally, the most complicated quantity which can be integrated directly by one of the fundamental formulæ (see Table of Integrals, page 57) is equated, with the differential, to dv, and the remaining part is equated to u.

Example. To find

54

CALCULUS

Let
$$u = \log x$$
 and $dv = x dx$
then $du = \frac{dx}{x}$ $v = \int x dx = \frac{x^2}{2}$

Substituting in the formula

$$\int u\,dv = uv - \int v\,du$$

we have

$$\int x \log (x) \, dx = \log (x) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \frac{dx}{x}$$
$$= \frac{x^2}{2} \log (x) - \frac{x^2}{4} + C$$

Integration by Substitution

I. Differentials containing fractional powers of x may be integrated by the substitution

 $x = z^n$

where n is the least common denominator of the fractional exponents of x.

II. Expressions involving only fractional powers of (a + bx) may be rationalized by the substitution

$$(a+bx)=z^n$$

where n is the least common denominator of the fractional exponents of (a + bx).

III. To integrate expressions containing

$$\sqrt{x^2+ax+b},$$

use the substitution

$$\sqrt{x^2 + ax + b} = z - x$$

IV. Expressions containing $\sqrt{-x^2 + ax + b}$ may be rationalized by the substitution

 $\sqrt{-x^2+ax+b}=(x-\theta)\,z$

where $(x - \theta)$ is a factor of $(-x^2 + ax + b)$.

4

V. A differential containing $\sin x$ and $\cos x$ can be transformed by means of the substitution

$$\tan\frac{x}{2}=z$$

from which

 $\sin x = \frac{2 z}{1+z^2}$ $\cos x = \frac{1-z^2}{1+z^2}$ $dx = \frac{2 dz}{1+z^2}$

VI. A very useful substitution is

$$x=\frac{1}{z}$$

VII. Differentials involving $\sqrt{a^2 - x^2}$ may be rationalized by the substitution

$$x = a \sin \theta$$

VIII. Differentials involving $\sqrt{a^2 + x^2}$ may be rationalized by the substitution

 $x = a \tan \theta$

IX. Differentials involving $\sqrt{x^2 - a^2}$ may be rationalized by the substitution

 $x = a \sec \theta$

Reduction Formulæ

The purpose of the following reduction formulæ is to simplify an integral of the form

$$\int x^{m} (a + bx^{n})^{p} dx$$

$$\int x^{m} (a + bx^{n})^{p} dx = \frac{x^{m-n+1} (a + bx^{n})^{p+1}}{(np+m+1) b}$$

$$- \frac{(m-n+1) a}{(np+m+1) b} \int x^{m-n} (a + bx^{n})^{p} dx$$

This formula enables us to lower the exponent of x by n, without affecting the exponent of $(a + bx^n)$.

TABLE OF INTEGRALS

Method fails when (np + m + 1) = 0.

II.
$$\int x^m (a + bx^n)^p dx = \frac{x^{m+1} (a + bx^n)^p}{(np + m + 1)} + \frac{npa}{(np + m + 1)} \int x^m (a + bx^n)^{p-1} dx$$

By this formula, the exponent of $(a + bx^n)$ is lowered by 1, without affecting the exponent of x.

Method fails when (np + m + 1) = 0.

III.
$$\int x^m (a + bx^n)^p dx = \frac{x^{m+1} (a + bx^n)^{p+1}}{(m+1)a} - \frac{(np + m + 1 + n) b}{(m+1) a} \int x^{m+n} (a + bx^n)^p dx$$

By this formula, the exponent of x is increased by n, without affecting the exponent of $(a + bx^n)$.

Method fails when m = -1.

IV.
$$\int x^m (a + bx^n)^p dx = -\frac{x^{m+1} (a + bx^n)^{p+1}}{n (p+1) a} + \frac{(np+n+m+1)}{n (p+1) a} \int x^m (a + bx^n)^{p+1} dx$$

This formula enables us to increase the exponent of $(a + bx^n)$ by 1, without affecting the exponent of x. Method fails when p = -1.

TABLE OF INTEGRALS Fundamental Forms

$$\int x^n dx = \frac{x^{n+1}}{n+1}$$
$$\int \frac{dx}{x} = \log x$$

$$\int e^{x} dx = e^{x}$$

$$\int a^{x} dx = \frac{a^{x}}{\log_{e} a}$$

$$\int \frac{dx}{1 + x^{2}} = \tan^{-1} x$$

$$\int \frac{dx}{\sqrt{1 - x^{2}}} = \sin^{-1} x$$

$$\int \frac{dx}{\sqrt{x^{2} - 1}} = \sec^{-1} x$$

$$\int \sin x \, dx = -\cos x$$

$$\int \cos x \, dx = \sin x$$

$$\int \tan x \, dx = \log (\sec x)$$

$$\int \cot x \, dx = \log (\sec x)$$

$$\int \sec x \, dx = \log (\sin x)$$

$$\int \sec x \, dx = \log \left[\tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right]$$

$$\int \csc x \, dx = \log \left[\tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right]$$

$$\int \tan x \sec x \, dx = \sec x$$

$$\int \cot x \csc x \, dx = \sec x$$

$$\int \cot x \csc x \, dx = -\csc x$$

$$\int \sec^{2} x \, dx = \tan x$$

$$\int \csc^{2} x \, dx = -\cot x$$
Expressions involving $(a + bx)$:
$$\int \frac{dx}{(a + bx)} = \frac{1}{b} \log (a + bx)$$

$$\begin{split} \int \frac{dx}{(a+bx)^2} &= -\frac{1}{b(a+bx)} \\ \int \frac{x \, dx}{(a+bx)} &= \frac{1}{b^2} [a+bx-a\log{(a+bx)}] \\ \int \frac{x \, dx}{(a+bx)^2} &= \frac{1}{b^2} \Big[\log{(a+bx)} + \frac{a}{a+bx} \Big] \\ \int \frac{x^2 dx}{a+bx} &= \frac{1}{b^3} [\frac{1}{2} (a+bx)^2 - 2 \, a \, (a+bx) \\ &+ a^2 \log{(a+bx)}] \\ \int \frac{x^2 dx}{(a+bx)^2} &= \frac{1}{b^3} \Big[(a+bx) - 2 a \log{(a+bx)} - \frac{a^2}{a+bx} \Big] \\ \int \frac{dx}{(a+bx)^3} &= -\frac{1}{2 \, b \, (a+bx)^2} \\ \int \frac{dx}{(a+bx)^3} &= -\frac{1}{2 \, b \, (a+bx)^2} \\ \int \frac{x^2 \, dx}{(a+bx)^3} &= \frac{1}{b^2} \Big[-\frac{1}{a+bx} + \frac{a}{2 \, (a+bx)^2} \Big] \\ \int \frac{x^2 \, dx}{(a+bx)^3} &= \frac{1}{b^3} \Big[\log{(a+bx)} + \frac{2a}{a+bx} - \frac{a^2}{2(a+bx)^2} \Big] \\ \int \frac{dx}{x \, (a+bx)^3} &= -\frac{1}{a} \log \frac{a+bx}{x} \\ \int \frac{dx}{x \, (a+bx)^2} &= -\frac{1}{a \, (a+bx)} - \frac{1}{a^2} \log \frac{a+bx}{x} \\ \int \frac{dx}{x^2 \, (a+bx)^2} &= -\frac{1}{ax} + \frac{b}{a^2} \log \frac{a+bx}{x} \\ \int \frac{dx}{x^2 \, (a+bx)^2} &= -\frac{a+2 \, bx}{a^2 x \, (a+bx)} + \frac{2b}{a^3} \log \frac{a+bx}{x} \\ \int (a+bx)^n dx &= \frac{1}{b^2 \, (n+1)} \, (a+bx)^{n+1}, \\ \int x \, (a+bx)^n \, dx &= \frac{1}{b^2 \, (n+2)} \, (a+bx)^{n+2} \\ &- \frac{a}{b^2 \, (n+1)} \, (a+bx)^{n+1} \end{split}$$

$$\int x^{2} (a + bx)^{n} dx = \frac{1}{b^{3}} \left[\frac{(a+bx)^{n+3}}{n+3} - 2 a \frac{(a+bx)^{n+2}}{n+2} + a^{2} \frac{(a+bx)^{n+1}}{n+1} \right]$$

$$\int \frac{dx}{(a+bx)(c+dx)} = \frac{1}{ad-bc} \log \frac{c+dx}{a+bx}$$

$$\int \frac{dx}{(a+bx)^{2}(c+dx)} = \frac{1}{ad-bc} \left[\frac{1}{a+bx} + \frac{d}{ad-bc} \log \frac{c+dx}{a+bx} \right]$$
Expressions involving $(a + bx^{2})$ or $(a^{2} \pm x^{2})$:
$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{dx}{a^{2} - x^{2}} = \frac{1}{2a} \log \frac{a+x}{a-x}$$

$$\int \frac{dx}{a+bx^{2}} = \frac{1}{\sqrt{ab}} \tan^{-1} \left(x \sqrt{\frac{b}{a}} \right) \text{ or }$$

$$\int \frac{dx}{a+bx^{2}} = \frac{1}{2\sqrt{-ab}} \log \frac{\sqrt{a} + x\sqrt{-b}}{\sqrt{a-x\sqrt{-b}}} \text{ if } a > 0, b < 0$$

$$\int \frac{dx}{(a+bx^{2})^{2}} = \frac{x}{2a(a+bx^{2})} + \frac{1}{2a} \int \frac{dx}{a+bx^{2}}$$

$$\int \frac{x}{a+bx^{2}} = \frac{1}{2b} \log \left(x^{2} + \frac{a}{b} \right)$$

$$\int \frac{x^{2} dx}{a+bx^{2}} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a+bx^{2}}$$

$$\int \frac{dx}{(a+bx^{2})^{n}} = \frac{1}{2a} \log \frac{x^{2}}{a+bx^{2}}$$

$$\int \frac{dx}{(a+bx^{2})^{n}} = \frac{1}{2(n-1)a} \frac{x}{(a+bx^{2})^{n-1}} \quad (n \text{ integer} > 1)$$

$$\int (a + bx^{2})^{n} x dx = \frac{1}{2b} \frac{(a + bx^{2})^{n+1}}{n+1}$$

$$\int \frac{x^{2} dx}{(a + bx^{2})^{n}} = -\frac{1}{2(n-1)b} \frac{x}{(a + bx^{2})^{n-1}} + \frac{1}{2(n-1)b} \int \frac{dx}{(a + bx^{2})^{n-1}} \quad (n \text{ integer } > 1)$$

$$\int \frac{dx}{x^{2} (a + bx^{2})^{n}} = \frac{1}{a} \int \frac{dx}{x^{2} (a + bx^{2})^{n-1}} - \frac{b}{a} \int \frac{dx}{(a + bx^{2})^{n}} + \frac{b}{a} \int \frac{dx}{\sqrt{a + bx}} = \frac{2}{\sqrt{a + bx}} + \frac{b}{a} \int \frac{dx}{\sqrt{a + bx}} = \frac{2(8a^{2} - 4abx + 3b^{2}x^{2})}{15b^{3}} \sqrt{a + bx}$$
or
$$\int \frac{dx}{\sqrt{a + bx}} = \frac{1}{\sqrt{a}} \log \left[\frac{\sqrt{a + bx}}{\sqrt{a + bx} + \sqrt{a}} \right] \quad (a \text{ pos.})$$
or
$$\int \frac{dx}{x\sqrt{a + bx}} = \frac{2}{\sqrt{-a}} \tan^{-1} \sqrt{\frac{a + bx}{-a}} \quad (a \text{ neg.})$$

$$\int \frac{dx}{x^2 \sqrt{a+bx}} = -\frac{\sqrt{a+bx}}{ax} - \frac{b}{2a} \int \frac{dx}{x\sqrt{a+bx}}$$

$$\int \frac{dx}{(a+bx)(c+dx)} = \frac{1}{ad-bc} \log \frac{c+dx}{a+bx}$$

$$\int \frac{c+dx}{\sqrt{a+bx}} dx = \frac{2}{3b^2} (3 bc - 2 ad + b dx) \sqrt{a+bx}$$

$$\int \frac{\sqrt{a+bx}}{c+dx} dx = \frac{2\sqrt{a+bx}}{d}$$

$$-\frac{2}{d} \sqrt{\frac{bc-ad}{d}} \tan^{-1} \sqrt{\frac{d(a+bx)}{bc-ad}} \quad (d \text{ pos } bc > ad)$$

$$\int \frac{\sqrt{a+bx}}{c+dx} dx = \frac{2\sqrt{a+bx}}{d}$$

$$+\frac{1}{d} \sqrt{\frac{ad-bc}{d}} \log \left(\frac{\sqrt{d(a+bx)} - \sqrt{ad-bc}}{\sqrt{d(a+bx)} + \sqrt{ad-bc}}\right)$$

$$(d \text{ pos } ad > bc)$$

$$\int \frac{dx}{(c+dx)\sqrt{a+bx}} = \frac{2}{\sqrt{d}\sqrt{bc-ad}} \tan^{-1} \sqrt{\frac{d(a+bx)}{bc-ad}} \quad (d \text{ pos } bc > ad)$$

$$\int \frac{dx}{(c+dx)\sqrt{a+bx}} = \frac{1}{\sqrt{d}\sqrt{ad-bc}} \log \frac{\sqrt{d}(a+bx) - \sqrt{ad-bc}}{\sqrt{d}(a+bx) + \sqrt{ad-bc}} (d \text{ pos } ad > bc)$$

Expressions involving
$$\sqrt{a^2 - x^2}$$
 or $\sqrt{a^2 + x^2}$:

$$\int \sqrt{a^2 - x^2} dx = \frac{1}{2} \left[x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \frac{x}{a} \right]$$

 $\int \frac{dx}{\sqrt{x^2 - x^2}} = \sin^{-1} \frac{x}{a}$ $\int \frac{dx}{x \sqrt{a^2 \pm x^2}} = -\frac{1}{a} \left[\log \frac{a + \sqrt{a^2 \pm x^2}}{r} \right]$ $\int \frac{\sqrt{a^2 \pm x^2}}{x} dx = \sqrt{a^2 \pm x^2} - a \log \left[\frac{a + \sqrt{a^2 \pm x^2}}{x} \right]$ $\int \frac{x \, dx}{\sqrt{a^2 \pm a^2}} = \pm \sqrt{a^2 \pm x^2}$ $\int x \sqrt{a^2 - x^2} \, dx = -\frac{1}{3} \sqrt{(a^2 - x^2)^3}$ $\int \sqrt{(a^2 - x^2)^3} \, dx = \frac{x}{9} \left(5 \, a^2 - 2 \, x^2 \right) \sqrt{a^2 - x^2} + \frac{3}{9} \, a^4 \sin^{-1} \frac{x}{2}$ $\int x^2 \sqrt{a^2 - x^2} \, dx = -\frac{x}{4} \sqrt{(a^2 - x^2)^3}$ $+\frac{a^2}{g}\left[x\sqrt{a^2-x^2}+a^2\sin^{-1}\frac{x}{a}\right]$ $\int \frac{x^2 \, dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a}$ $\int \frac{x^2 \, dx}{\sqrt{(a^2 - x^2)^3}} = \frac{x}{\sqrt{a^2 - x}} - \sin^{-1}\left(\frac{x}{a}\right)$ $\int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x}$ $\int \frac{\sqrt{a^2 - x^2}}{x^2} dx = -\frac{\sqrt{a^2 - x^2}}{x} - \sin^{-1}\frac{x}{a}$ Expressions involving $\sqrt{x^2 + a^2}$ or $\sqrt{x^2 - a^2}$: $\int \sqrt{x^2 \pm a^2} \, dx =$

 $\frac{1}{2} \left[x \sqrt{x^2 \pm a^2} \pm a^2 \log \left(x + \sqrt{x^2 \pm a^2} \right) \right]$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \log \left[x + \sqrt{x^2 \pm a^2} \right]$$

$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \cos^{-1} \frac{a}{x}$$

$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \cos^{-1} \frac{a}{x}$$

$$\int \frac{x \, dx}{\sqrt{x^2 - a^2}} = \sqrt{x^3 - a^2}$$

$$\int \frac{x \, dx}{\sqrt{(x^2 \pm a^2)^3}} = -\frac{1}{\sqrt{x^2 \pm a^2}}$$

$$\int x\sqrt{x^2 \pm a^2} dx = \frac{1}{3}\sqrt{(x^2 \pm a^2)^3}$$

$$\int \sqrt{(x^2 \pm a^2)^3} dx = \frac{x}{8}(2x^2 \pm 5a^2)\sqrt{x^2 \pm a^2}$$

$$+\frac{3a^4}{8}\log(x + \sqrt{x^2 \pm a^2})$$

$$\int \frac{dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{\pm x}{a^2\sqrt{x^2 \pm a^2}}$$

$$\int x^2\sqrt{x^2 \pm a^2} dx = \frac{x}{8}(2x^2 \pm a^2)\sqrt{x^3 \pm a^2}$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \frac{x}{2}\sqrt{x^2 \pm a^2} \mp \frac{a^2}{2}\log(x + \sqrt{x^2 \pm a^2})$$

$$\int \frac{x^2 \, dx}{\sqrt{(x^2 \pm a^2)^3}} = -\frac{x}{\sqrt{x^2 \pm a^2}} + \log(x + \sqrt{x^2 \pm a^2})$$

$$\int \frac{x^2 \, dx}{\sqrt{(x^2 \pm a^2)^3}} = -\frac{x}{\sqrt{x^2 \pm a^2}} + \log(x + \sqrt{x^2 \pm a^2})$$

$$\int \frac{dx}{\sqrt{(x^2 \pm a^2)^3}} = \frac{x}{\sqrt{x^2 \pm a^2}} + \frac{\sqrt{x^2 \pm a^2}}{a^2x}$$

.

.

. .

$$\int \frac{\sqrt{x^2 \pm a^2} \, dx}{x^2} = -\frac{\sqrt{x^2 \pm a^2}}{x} + \log \left(x + \sqrt{x^2 \pm a^2} \right)$$

Expressions involving $ax^2 + bx + c$.

,

$$\int \frac{dx}{ax^2 + bx + c} = \frac{1}{\sqrt{b^2 - 4ac}} \log \frac{(2ax + b) - \sqrt{b^2 - 4ac}}{(2ax + b) + \sqrt{b^2 - 4ac}}$$

if $b^2 > 4ac$

$$\int \frac{dx}{ax^2 + bx + c} = \frac{2}{\sqrt{4}ac - b^2} \tan^{-1} \frac{2ax + b}{\sqrt{4}ac - b^2}$$

if $(b^2 < 4ac)$

$$\int \frac{dx}{ax^2 + bx + c} = \frac{-2}{2ax + b} \qquad \text{if } b^2 = 4ac$$

$$\int \frac{x \, dx}{ax^2 + bx + c} = \frac{1}{2a} \log \left(ax^2 + bx + c\right) - \frac{b}{2a} \int \frac{dx}{ax^2 + bx + c}$$

$$\int \frac{x^2 \, dx}{ax^2 + bx + c} = \frac{x}{a} - \frac{b}{2 \, a^2} \log \left(ax^2 + bx + c \right) + \frac{b^2 - 2 \, ac}{2 \, a^2} \int \frac{dx}{ax^2 + bx + c}$$

Expressions involving $\sqrt{\pm ax^2 + bx + c}$:

$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \log \left(2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right)$$
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a}\sqrt{ax^2 + bx + c}$$
$$- \frac{b^2 - 4ac}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

$$\int \frac{dx}{\sqrt{-ax^2+bx+c}} = \frac{1}{\sqrt{a}} \sin^{-1} \left(\frac{2ax-b}{\sqrt{b^2+4ac}}\right)$$

$$\int \sqrt{-ax^2+bx+c} \, dx = \frac{2ax-b}{4a} \sqrt{-ax^2+bx+c}$$

$$+ \frac{b^2+4ac}{8a} \int \sqrt{-ax^2+bx+c}$$

$$\int \frac{dx}{\sqrt{(ax^2+bx+c)^3}} = -\frac{2(2ax+b)}{(b^2-4ac)\sqrt{ax^2+bx+c}}$$
Formulæ involving $\sqrt{2ax-x^2}$:
$$\int \sqrt{2ax-x^2} \, dx = \frac{x-a}{2} \sqrt{2ax-x^2} + \frac{a^2}{2} \sin^{-1} \frac{x-a}{a}$$

$$\int x\sqrt{2ax-x^2} \, dx = -\frac{3a^2+ax-2x^2}{6} \sqrt{2ax-x^2}$$

$$+ \frac{a^3}{2} \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{dx}{\sqrt{2ax-x^2}} = \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{dx}{\sqrt{2ax-x^2}} = -\sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \frac{\sqrt{2ax-x^2}}{x} \, dx = \sqrt{2ax-x^2} + a \operatorname{vers}^{-1} \frac{x}{a}$$

$$\int \sqrt{\frac{a-x}{b+x}} dx = \sqrt{(a-x)(b+x)} + (a+b)\sin^{-1}\sqrt{\frac{b+x}{a+b}}$$
$$\int \frac{dx}{x(a+bx^n)} = \frac{1}{an}\log\frac{x^n}{a+bx^n}$$
$$\int \frac{dx}{x\sqrt{a+bx^n}} = \frac{1}{n\sqrt{a}}\log\frac{\sqrt{(a+bx^n)} - \sqrt{a}}{\sqrt{a+bx^n} + \sqrt{a}} \quad (a \text{ pos.})$$
$$\int \frac{dx}{x\sqrt{a+bx^n}} = \frac{2}{n\sqrt{-a}}\sec^{-1}\sqrt{\frac{-bx^n}{a}} \quad (a \text{ neg.})$$

Expressions involving trigonometric forms:

$$\int \sin^{2} x \, dx = \frac{x}{2} - \frac{1}{4} \sin (2x)$$

$$\int \sin^{n} x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

$$\int \cos^{2} x \, dx = \frac{x}{2} + \frac{1}{4} \sin (2x)$$

$$\int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

$$\int \sin x \cos x \, dx = \frac{1}{2} \sin^{2} x$$

$$\int \sin^{2} x \cos^{2} x \, dx = -\frac{1}{8} \left[\frac{1}{4} \sin (4x) - x \right]$$

$$\int \sin x \cos^{m} x \, dx = -\frac{\cos^{m+1} x}{m+1}$$

$$\int \sin^{m} x \cos x \, dx = \frac{\sin^{m+1} x}{m+1}$$

$$\int \cos^{m} x \sin^{n} x \, dx = \frac{\cos^{m-1} x \sin^{n+1} x}{m+n}$$

$$+ \frac{m-1}{m+n} \int \cos^{m-2} x \sin^{n} x \, dx$$

$$\int \cos^m x \sin^n x \, dx = -\frac{\sin^{n-1} x \cos^{m+1} x}{m+n}$$

$$+ \frac{n-1}{m+n} \int \cos^m x \sin^{n-2} x \, dx$$

$$\int \frac{\sin^m x}{\cos^n x} \, dx = \frac{\sin^{m+1} x}{(n-1) \cos^{n-1} x}$$

$$+ \frac{n-m-2}{n-1} \int \frac{\sin^m x}{\cos^{n-2} x} \, dx$$

$$\int \frac{\cos^n x}{\sin^m x} \, dx = -\frac{\cos^{n+1} x}{(m-1) \sin^{m-1} x}$$

$$+ \frac{m-n-2}{m-1} \int \frac{\cos^n x}{\sin^{m-2} x} \, dx$$

$$\int \frac{dx}{\sin^m x} = -\frac{\cos x}{(m-1) \sin^{m-1} x} + \frac{m-2}{m-1} \int \frac{dx}{\sin^{m-2} x}$$

$$\int \frac{dx}{\cos^n x} = \frac{\sin x}{(n-1) \cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$$

$$\int \tan x \, dx = -\log \cos x$$

$$\int \tan x \, dx = -\log \sin x$$

$$\int \cot^2 x \, dx = \tan x - x$$

$$\int \sec x \, dx = \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) = \frac{1}{2} \log \frac{1+\sin x}{1-\sin x}$$

$$\int \sec^2 x \, dx = \tan x$$

$$\int \csc^2 x \, dx = \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$$

k

TABLE OF INTEGRALS

$$\int \csc^2 x \, dx = -\cot x$$

$$\int \frac{dx}{1+\sin ax} = -\frac{1}{a} \tan\left(\frac{\pi}{4} - \frac{ax}{2}\right)$$

$$\int \frac{dx}{1-\sin ax} = \frac{1}{a} \cot\left(\frac{\pi}{4} - \frac{ax}{2}\right)$$

$$\int \frac{dx}{b+c\sin ax} = \frac{-2}{a\sqrt{b^2-c^2}} \tan^{-1} \left[\sqrt{\frac{b-c}{b+c}} \tan\left(\frac{\pi}{4} - \frac{ax}{2}\right)\right]$$

$$\int \frac{dx}{b+c\sin ax} = -\frac{1}{a\sqrt{c^2-b^2}} \log\left(\frac{c+b\sin ax + \sqrt{c^2-b^2}\cos ax}{b+c\sin ax}\right)$$

$$\int \frac{c^2 > b^2}{b+c\sin ax}$$

$$\int \sin ax \sin bx \, dx = \frac{\sin (a-b)x}{2(a-b)} - \frac{\sin (a+b)x}{2(a+b)}$$

$$(a^2 \neq b^2)$$

$$\int \frac{dx}{1+\cos ax} = \frac{1}{a} \tan \frac{ax}{2}$$

$$\int \frac{dx}{b+c\cos ax} = -\frac{1}{a} \cot \frac{ax}{2}$$

$$\int \frac{dx}{b+c\cos ax} = \frac{2}{a\sqrt{b^2-c^2}} \tan^{-1} \left(\sqrt{\frac{b-c}{b+c}} \tan \frac{ax}{2}\right)$$

$$\int \frac{b^2}{b+c\cos ax}$$

$$= \frac{1}{a\sqrt{c^2-b^2}} \log\left(\frac{c+b\cos ax + \sqrt{c^2-b^2}\sin ax}{b+c\cos ax}\right)$$

$$\int \cos ax \cos bx \, dx = \frac{\sin (a-b)x}{2(a-b)} + \frac{\sin (a+b)x}{2(a+b)}$$

$$a^2 \neq b^2$$

$$\int \sin ax \cos bx \, dx = -\frac{1}{2} \left[\frac{\cos (a-b) x}{a-b} + \frac{\cos (a+b)x}{a+b} \right]$$

$$a \neq b^{2}$$

$$\int \frac{dx}{b \sin ax + c \cos ax}$$

$$= \frac{1}{a \sqrt{b^{2} + c^{2}}} \log \left[\tan \frac{1}{2} \left(ax + \tan^{-1} \frac{c}{b} \right) \right]$$

$$\int x \sin x \, dx = \sin x - x \cos x$$

$$\int x^{2} \sin x \, dx = 2x \sin x - (x^{2} - 2) \cos x$$

$$\int x \cos x \, dx = \cos x + x \sin x$$

$$\int x^{2} \cos x \, dx = 2x \cos x + (x^{2} - 2) \sin x$$

$$\int \frac{\sin ax \, dx}{x} = ax - \frac{(ax)^{3}}{3 \cdot 3} + \frac{(ax)^{5}}{5 \cdot 5} - \dots$$

$$\int \frac{\cos ax \, dx}{x} = \log ax - \frac{(ax)^{2}}{2 \cdot 2} + \frac{(ax)^{4}}{4 \cdot 4} - \dots$$

Transcendentals

$$\int \log x \, dx = x \log x - x$$

$$\int \frac{(\log x)^n}{x} \, dx = \frac{1}{n+1} (\log x)^{n+1}$$

$$\int \frac{dx}{x \log x} = \log \log x$$

$$\int \frac{dx}{x (\log x)^n} = -\frac{1}{(n-1) (\log x)^{n-1}}$$

$$\int x^m \log x \, dx = x^{m+1} \left[\frac{\log x}{m+1} - \frac{1}{(m+1)^2} \right]$$

$$\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$

$$\int x^m e^{ax} dx = \frac{x^m e^{ax}}{a} - \frac{m}{a} \int x^{m-1} e^{ax} dx$$

$$\int \frac{e^{ax}}{x^m} dx = -\frac{1}{m-1} \frac{e^{ax}}{x^{m-1}} + \frac{a}{m-1} \int \frac{e^{ax}}{x^{m-1}} dx$$

$$\int e^{ax} \sin(nx) dx = e^{ax} \left[\frac{a \sin(nx) - n \cos(nx)}{a^2 + n^2} \right]$$

$$\int e^{ax} \cos(nx) dx = e^{ax} \left[\frac{a \cos(nx) + n \sin(nx)}{a^2 + n^2} \right]$$

HYPERBOLIC FUNCTIONS Hyperbolic Transformations

$$\sinh x = \frac{e^x - e^{-x}}{2} = -j \sin (jx)$$

where

$$\cosh x = \frac{e^x + e^{-x}}{2} = \cos\left(jx\right)$$

 $j = \sqrt{-1}$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = -j \tan (jx)$$
$$\coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}} = j \cot (jx)$$
$$e^x = \cosh x + \sinh x$$
$$e^{-x} = \cosh x - \sinh x$$
$$\sin x = -j \sinh (jx)$$
$$\cos x = \cosh (jx)$$

Hyperbolic Formulæ

 $\cosh^2 x - \sinh^2 x = 1$ $\operatorname{sech}^2 x + \tanh^2 x = 1$

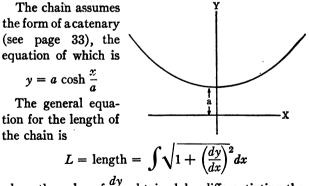
 $\operatorname{coth}^2 x - \operatorname{cosech}^2 x = 1$ $\sinh (x + y) = \sinh x \cosh y + \cosh x \sinh y$ $\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$ $\sinh (x - y) = \sinh x \cosh y - \cosh x \sinh y$ $\cosh(x - y) = \cosh x \cosh y - \sinh x \sinh y$ $\tanh (x + y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$ $\coth (x + y) = \frac{\coth x \coth y + 1}{\coth y + \coth x}$ $\tanh (x - y) = \frac{\tanh x - \tanh y}{1 - \tanh x \tanh y}$ $\coth(x-y) = \frac{\coth x \coth y - 1}{\coth y - \coth x}$ $\sinh(2x) = 2\sinh x \cosh x$ $\cosh(2x) = \cosh^2 x + \sinh^2 x$ $\tanh\left(2\,x\right) = \frac{2\,\tanh x}{1+\tanh^2 x}$ $\coth\left(2\,x\right) = \frac{\coth^2 x + 1}{2\coth x}$ $\sinh\left(\frac{x}{2}\right) = \sqrt{\frac{\cosh x - 1}{2}}$ $\cosh\left(\frac{x}{2}\right) = \sqrt{\frac{\cosh x + 1}{2}}$ $\tanh\left(\frac{x}{2}\right) = \sqrt{\frac{\cosh x - 1}{\cosh x + 1}}$ $\operatorname{coth}\left(\frac{x}{2}\right) = \sqrt{\frac{\cosh x + 1}{\cosh x - 1}}$ $\sinh x + \sinh y = 2 \sinh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)$

$$\sinh x - \sinh y = 2 \cosh\left(\frac{x+y}{2}\right) \sinh\left(\frac{x-y}{2}\right)$$
$$\cosh x + \cosh y = 2 \cosh\left(\frac{x+y}{2}\right) \cosh\left(\frac{x-y}{2}\right)$$
$$\cosh x - \cosh y = 2 \sinh\left(\frac{x+y}{2}\right) \sinh\left(\frac{x-y}{2}\right)$$
$$\sinh (3x) = 3 \sinh x + 4 \sinh^3 x$$
$$\cosh (3x) = -3 \cosh x + 4 \cosh^3 x$$

Inverse Hyperbolic Functions

 $\sinh^{-1} x = \log (x + \sqrt{1 + x^2})$ $\cosh^{-1} x = \log (x + \sqrt{x^2 - 1})$ $\tanh^{-1} x = \frac{1}{2} \log \left[\frac{1 + x}{1 - x}\right]$ $\coth^{-1} x = \frac{1}{2} \log \left[\frac{x + 1}{x - 1}\right]$

$$\operatorname{sech}^{-1} x = \log\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1}\right)$$
$$\operatorname{cosech}^{-1} x = \log\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right)$$


Differentials of Hyperbolic Functions

 $d (\sinh x) = \cosh x \, dx$ $d (\cosh x) = \sinh x \, dx$ $d (\tanh x) = \operatorname{sech}^2 x \, dx$ $d (\coth x) = -\operatorname{cosech}^2 x \, dx$ $d (\operatorname{sech} x) = -\operatorname{sech} x \tanh x \, dx$ $d (\operatorname{cosech} x) = -\operatorname{cosech} x \coth x \, dx$

$$d (\sinh^{-1} x) = \frac{dx}{\sqrt{1+x^2}}$$
$$d (\cosh^{-1} x) = \frac{dx}{\sqrt{x^2-1}}$$
$$d (\tanh^{-1} x) = \frac{dx}{1-x^2}$$
$$d (\coth^{-1} x) = \frac{dx}{1-x^2}$$
$$d (\operatorname{sech}^{-1} x) = -\frac{dx}{x\sqrt{1-x^2}}$$
$$d (\operatorname{cosech}^{-1} x) = -\frac{dx}{x\sqrt{x^2+1}}$$

Use of Hyperbolic Functions

Illustrative Example. Deduce an expression for the length of a perfectly flexible chain suspended between two supports; assume that both points of support are the same height from the ground.

where the value of $\frac{dy}{dx}$, obtained by differentiating the equation of the catenary, is

$$\frac{dy}{dx} = \frac{d\left(a\cosh\frac{x}{a}\right)}{dx} = a\left[\left(\sinh\frac{x}{a}\right)\left(\frac{1}{a}\right)\right] = \sinh\frac{x}{a}$$

Substituting the value of $\frac{dy}{dx}$ in the formula for the length, L, we have

$$L = \int \sqrt{1 + \sinh^2 \frac{x}{a}} \, dx = \int \sqrt{\cosh^2 \frac{x}{a}} \, dx$$
$$= \int \cosh \frac{x}{a} \, dx = a \sinh \frac{x}{a}$$

which is the required expression for the length of the chain.

DIFFERENTIAL EQUATIONS

A differential equation is a relation involving derivatives or differentials.

A solution of a differential equation is a relation between the variables which satisfies the given equation.

ORDINARY DIFFERENTIAL EQUATIONS

Equations of the **First Order** and **First Degree** I. An equation of the form

 $f_{1}(x) dx + f_{2}(y) dy = 0$

can be integrated immediately.

Its solution is

$$\int f_1(x) \, dx + \int f_2(y) \, dy = C$$

An equation may sometimes be changed to the above form by separation of the variables.

II. Homogeneous Equation. An equation is homogeneous in respect to its variables when the

sum of their exponents is the same for each term of the equation.

Homogeneous equations are reduced to the form of Method I, by substituting vx for y, and then separating the variables.

III. Non-homogeneous Equation of First Degree in x and y. This type occurs in the form:

(ax + by + c) dx = (a'x + b'y + c') dySubstitute for x, (x' + h), and for y, (y' + k). The equation then becomes:

(ax'+by'+ah+bk+c)dx' = (a'x'+b'y'+a'h+b'k+c')dy'Equating and ah+bk+c = 0and a'h+b'k+c' = 0

the original equation now takes the form:

$$(ax' + by') dx' = (a'x' + b'y') dy'$$

which is homogeneous and solvable by Method II.

In the solution thus obtained, substitute

$$x' = x - h$$
 and $y' = y - k$

where h and k are determined from the two equations:

$$ah + bk + c = 0$$
$$a'h + b'k + c' = 0$$

IV. Linear Equation. A linear differential equation (of first order and first degree) is of the general form:

$$\frac{dy}{dx} + Py = Q$$

where P and Q are functions of x alone or constants. The solution of this equation is

$$ye^{\int P\,dx} = \int e^{\int P\,dx} Q\,dx + C$$

V. Equations Reducible to the Linear Equation. This type occurs in the form:

$$\frac{dy}{dx} + Py = Qy^n$$

where P and Q are functions of x alone. The given equation may be written:

$$\frac{dv}{dx} + (1-n) Pv = (1-n) Q$$

where $v = y^{-n+1}$. This equation is linear in v, and solvable by Method IV. In the solution, resubstitute for v its value y^{-n+1} .

VI. Exact Differential Equation. An equation of the form

$$M\,dx + N\,dy = 0$$

is exact if the derivative of M with regard to y is equal to the derivative of N with regard to x. The solution then is:

$$\int M\,dx + \int \left[N - \frac{\partial}{\partial y}\int M\,dx\right]dy = C$$

where $\int M \, dx$ is the integral of M with respect to x (regarding y as constant), and the term

$$\left[N-\frac{\partial}{\partial y}\int M\,dx\right]$$

is found by subtracting from N the derivative in respect to y of $\int M dx$. The term $\left[N - \frac{\partial}{\partial y} \int M dx\right]$ is integrated with regard to y (considering x constant). The complete solution is then given by the formula above.

VII. Integrating Factors. If a differential equation of the form

$$M\,dx + N\,dy = 0$$

is multiplied through by a certain expression called an integrating factor, the equation will become exact. It is then solvable by Method VI.

(a) When an equation is homogeneous, $\frac{1}{Mx + Ny}$ is an integrating factor.

(b) When the condition exists that $\frac{dM}{dy} - \frac{dN}{dx} = F(x) \quad \text{[an expression containing only x]}$ then $e^{\int F(x) dx}$ is an integrating factor.

(c) Similarly when

$$\frac{\frac{dN}{dx} - \frac{dM}{dy}}{M} = F(y)$$

then $e^{\int F(y) dy}$ is an integrating factor.

Equations of the First Order but Higher than the First Degree

In the following formulæ, $\frac{dy}{dx}$ will be denoted by p.

An equation of first order and of *n*th degree is of the general form

$$p^n + Ap^{n-1} + Bp^{n-2} + \cdots + Jp + K = 0$$

where the coefficients $A, B, \dots J, K$ are functions of x and y.

I. Clairaut's Equation. When an equation is of the form

$$y = px + f(p)$$

the solution is obtained by substituting for p a constant c,

$$y = cx + f(c)$$

II. Solution by Factoring. The given equation may sometimes be resolved into rational factors of the first degree. Each factor is equated separately to zero, and its solution found by one of the preceding methods, using the same constant of integration in each case. The complete solution is then the product of the separate solutions.

III. Equations Containing only x and p. When an equation is of this type, solve for p, and substitute its value $\frac{dy}{dx}$. The resulting equation can be integrated immediately.

IV. Equations Containing only y and p. Solve for p, and substitute its value $\frac{dy}{dx}$. This equation is immediately integrable.

V. Equations Involving x, y, and p. A solution can be obtained by one of the following methods:

(a) Solve for x in terms of y and p. Then differentiate in respect to y, remembering that $\frac{dx}{dy} = \frac{1}{p}$.

The solution of this equation, together with the given equation, constitutes the complete solution.

(b) Solve for y in terms of x and p. Differentiate with respect to x, and in place of $\frac{dy}{dx}$ substitute its value p. The complete solution consists of the solution of this equation, together with the original equation.

(c) Solve for p, and replace it with its value $\frac{dy}{dx}$. From this equation it may be possible to obtain a solution.

Linear Differential Equations with Constant Coefficients

A linear differential equation is of the first degree in the dependent variable and all of its derivatives.

The **particular integral** is the solution of the equation obtained without the introduction of constants of integration.

The complementary function is the solution obtained by temporarily equating to zero all those terms of the equation that do not contain the dependent variable or derivatives thereof.

The complete solution is the sum of the particular integral and the complementary function.

A linear equation with constant coefficients is of the form:

$$\frac{d^n y}{dx^n} + P \frac{d^{n-1} y}{dx^{n-1}} + Q \frac{d^{n-2} y}{dx^{n-2}} + \cdots + Ry = X$$

where the coefficients $P, Q, \dots R$ are constants; and X is a function of x. Replacing $\frac{d}{dx}$ by the symbol D, the equation becomes

 $(D^n + PD^{n-1} + QD^{n-2} + \cdots + R)y = X.$

Case I. Method of Solution when X = o. Write the given integral in its symbolic form, replacing $\frac{d}{dx}$ by D. Then solve this equation for D as if it were an ordinary algebraic quantity.

When the **roots** of the equation (i.e., the values of D) are **real**, the solution is

 $y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \cdots$

where c_1 , c_2 , etc., are the constants of integration, and m_1 , m_2 , etc., are the roots of the equation.

When two or more real roots of the equation are equal, the solution is

$$y = (c_1 + c_2 x + c_3 x^2 + \cdots) e^{mx} + \cdots$$

where m is the value of the repeated root, and c_1 , c_2 , c_3 , etc., are the constants of integration (introduced in the manner shown in the above equation) and equal in number to the number of times the root m is repeated.

When the equation has imaginary roots (which always occur in pairs) the solution is

$$y = e^{m_1 x} [A \cos (a_1 x) + B \sin (a_1 x)] + e^{m_1 x} [C \cos (a_2 x) + D \sin (a_2 x)] + \cdots$$

where A and B, C and D, etc., are the constants of integration, and $(m_1 \pm a_1 \sqrt{-1})$, $(m_2 \pm a_2 \sqrt{-1})$, etc., are the complex imaginary roots of the equation.

When two or more pairs of complex imaginary roots are equal, the solution is

$$y = [(c_1 + c_2 x + \cdots) \cos (ax) + (c_3 + c_4 x + \cdots) \sin (ax)] e^{ma}$$

where $(m \pm a \sqrt{-1})$ is the repeated pair of complex imaginary roots.

Case II. Method of solution when X is not equal to zero. In this case, the complete solution is the sum of the complementary function and the particular integral.

The complementary function is found by temporarily equating X = 0, and obtaining the solution by the method of Case I.

The particular integral is obtained as follows.

The given equation is of the general form:

 $(D^n + PD^{n-1} + QD^{n-2} + \cdots + R) y = X$

in which D is used in place of $\frac{d}{dx}$.

In symbolic notation, this equation may be expressed

$$f\left(D\right)y=X$$

The particular integral can then be written:

$$y = \frac{X}{f(D)} =$$
particular integral

A. Method of obtaining the particular integral when the term X is of the form e^{ax} .

particular integral $= \frac{X}{f(D)} = \frac{e^{ax}}{f(D)} = \frac{e^{ax}}{f(a)}$

which is found by substituting the constant a in place of D.

This method for evaluating $\frac{e^{ax}}{f(D)}$ fails when the term (D-a) is a factor of f(D). The particular integral is then found by substituting the constant a for D in all terms of f(D) except in the factor (D-a). The solution is then completed by the general method given under case F (page 84).

B. Solution for the particular integral when X has the form x^m .

particular integral
$$= \frac{X}{f(D)} = \frac{x^m}{f(D)} = [f(D)]^{-1} x^m$$

To evaluate this expression, expand $[f(D)]^{-1}$ into a series of ascending powers of D, by use of the binomial theorem. It is only necessary to carry out this expansion to the *m*th power of D, since operation on x^m by higher powers of D would produce zero (since the symbol D stands for $\frac{d}{dx}$, the operation by D on a quantity denotes its derivative with respect to x, the operation by D^2 denotes its second derivative, etc.). In obtaining the solution of the given particular integral, x^m is operated on separately by each term of the expansion of $[f(D)]^{-1}$.

C. Method of obtaining the particular integral when X has the form sin (ax).

particular integral $= \frac{X}{f(D)} = \frac{\sin(ax)}{f(D)}$

In order to evaluate this integral, substitute $-a^2$ for D^2 wherever D^2 occurs in f(D). The particular integral will then be a fraction, whose numerator is sin (ax), and whose denominator is the value assumed by f(D) when D^2 is replaced by $-a^2$.

This method fails if f(D) becomes zero when $-a^2$ is substituted for D^2 . The particular integral is then evaluated by writing the term e^{iax} (in which $i = \sqrt{-1}$) in place of sin (ax). The solution of this new integral is obtained by method A for the evaluation of the particular integral. In the result, e^{iax} is replaced by $[\cos (ax) + i \sin (ax)]$, producing a result containing both real and imaginary terms. The required particular integral is the coefficient of i (i.e., $\sqrt{-1}$) in this expression.

D. Particular Integral when $X = \cos(ax)$. The

particular integral is obtained as in method C, with the exception that $\cos(ax)$ is used in place of $\sin(ax)$.

When this method fails, e^{iax} is written in place of $\cos(ax)$, and this new integral is evaluated by method A. In the solution of this integral, e^{iax} is replaced by $[\cos(ax) + i\sin(ax)]$. The required particular integral is the real part of this result.

E. Particular integral when X is of the form $e^{ax}Q$.

particular integral
$$= \frac{X}{f(D)} = \frac{e^{ax}Q}{f(D)} = e^{ax}\frac{Q}{f(D+a)}$$

To evaluate the given integral, (D + a) is substituted for *D*, wherever *D* occurs in f(D); and the term e^{ax} is treated as a constant multiplier. The new integral $\frac{Q}{f(D+a)}$ is evaluated by one of the preceding methods, or by the general method F. The required particular integral is then equal to the product of e^{ax} by the evaluation of $\frac{Q}{f(D+a)}$.

F. General method for finding the particular integral.

$$\frac{1}{f(D)}X$$

The denominator of $\frac{1}{f(D)}$ may be resolved into factors of the first degree. The given integral then becomes:

$$\frac{1}{(D-a)} \frac{1}{(D-b)} \frac{1}{(D-c)} \frac{1}{(D-d)} \cdots \frac{1}{(D-m)} X$$

The term X is operated on successively by each of these fractional operators, beginning at the right. The

operation on X by the first factor $\frac{1}{(D-m)}$ produces the expression $e^{mx} \int e^{-mx} X dx$. This result is operated on in a similar manner by each remaining factor (proceeding from right to left). The solution of the given particular integral is then:

$$e^{ax}\int e^{-ax}e^{bx}\int e^{-bx}e^{cx}\int e^{-cx}$$
 . . . $e^{mx}\int e^{-mx}X(dx)^m$

Homogeneous Linear Equation

The homogeneous linear equation is of the form

$$x^{n}\frac{d^{n}y}{dx^{n}}+Px^{n-1}\frac{d^{n-1}y}{dx^{n-1}}+\cdots+Ry=X$$

in which the coefficients P, . . . R are constants, and X is a function of x.

On assuming the relation, $x = e^{x}$, this equation may be transformed by the substitutions:

$$x^{n} \frac{d^{n} y}{dx^{n}} = \theta (\theta - 1) (\theta - 2) \cdots \text{ to } n \text{ terms}$$
$$x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} = (\theta - 1) (\theta - 2) (\theta - 3) \cdots \text{ to } (n-1) \text{ terms,}$$

and so forth; where the symbol θ stands for $\frac{d}{dz}$.

The complementary function is then found as in the case of the linear equation with constant coefficients. (In obtaining this solution, the term θ is treated in exactly the same manner in which the term D was treated in the preceding cases.)

In order to obtain the **particular integral**, the term X (which involves only x) is changed to an expression

involving z, by the substitution $x = e^z$. The particular integral is then found by one of the methods given under the case of the linear equation with constant coefficients.

The complete solution is the sum of the complementary function and the particular integral. In the result, z is replaced by its value log x.

Exact Differential Equations

An exact differential equation is one which can be derived directly by differentiation of an equation of the next lower order.

If the given equation is of the form:

$$A \frac{d^n y}{dx^n} + B \frac{d^{n-1} y}{dx^{n-1}} + \dots + Q \frac{d^3 y}{dx^3} + R \frac{d^2 y}{dx^2}$$
$$+ S \frac{dy}{dx} + Ty = X$$

where A, B, \ldots, Q, R, S, T , and X are functions of x, we then have as the condition for exactness that:

$$T - \frac{dS}{dx} + \frac{d^2R}{dx^2} - \frac{d^3Q}{dx^3} + \cdots = 0$$

The first integral of the given equation then is:

$$A\frac{d^{n-1}y}{dx^{n-1}} + \left(B - \frac{dA}{dx}\right)\frac{d^{n-2}y}{dx^{n-2}} + \left(C - \frac{dB}{dx} + \frac{d^2A}{dx^2}\right)\frac{d^{n-3}y}{dx^{n-3}} \cdot \cdot \cdot$$
$$= \int X \, dx + C$$

This formula may be reapplied successively as long as each resulting equation satisfies the condition for exactness.

Equations of the Second Order and the First Degree

General form is

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = X$$

where P, Q, and X are functions of x.

I. When one solution of the equation is known (or can be found by inspection).

Let y_1 equal the known integral. In the given equation, substitute vy_1 in place of y; and then, in the transformed equation, replace $\frac{dv}{dx}$ by p. This equation can be solved by one of the preceding methods.

II. Change of the Independent Variable.

The purpose of this change and of the removal of the first derivative (see III) is to transform a given equation into a new equation which may happen to be easily integrable.

The given equation is of the form:

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = X$$

By changing the independent variable, it may be transformed into the following equation:

$$\frac{d^2y}{dz^2} + P_1\frac{dy}{dz} + Q_1y = X_1$$

where Q_1 becomes equal to 1, if

$$\frac{dz}{dx} = \sqrt{Q}$$

$$P_1 = \frac{\frac{d^2z}{dx^2} + P\frac{dz}{dx}}{Q}$$

$$X_1 = \frac{X}{Q}$$

when also

or where P_1 may be made equal to zero, if

when also

$$z = \int e^{-\int P \, dx} dx$$
$$Q_1 = \frac{Q}{\left(\frac{dz}{dx}\right)^2}$$
$$X_1 = \frac{X}{\left(\frac{dz}{dx}\right)^2}$$

and

III. Removal of the First Derivative.

To remove the first derivative from an equation of

the form

$$\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = X$$

 $y = v e^{-\frac{1}{2} \int P \, dz}$ make the substitution The given equation then becomes

$$\frac{d^2v}{dx^2} + Q_1v = X_1$$

where $Q_1 = Q - \frac{1}{2}\frac{dP}{dx} - \frac{1}{4}P^2$
and $X_1 = Xe^{\frac{1}{2}\int P dz}$

and

THEORETICAL MECHANICS Center of Gravity

The center of gravity of a body is a point so situated that the force of gravity produces no tendency in the body to rotate about any axis passing through this point.

Center of Gravity of the Arc of a Plane Curve

$$\bar{x} = \frac{\int x \, ds}{\int ds} = \frac{\int x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx}{\int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx}$$

$$\bar{y} = \frac{\int y \, ds}{\int ds} = \frac{\int y \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy}{\int \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy}$$

where \bar{x} and \bar{y} are the coördinates of the center of gravity.

Solve for y in terms of x from the equation of the given curve. Then differentiate in order to obtain $\frac{dy}{dx}$, and substitute its value in the formula for \bar{x} .

Similarly, find x in terms of y, obtain $\frac{dx}{dy}$, and substitute in the formula for \overline{y} .

Center of Gravity of Plane Areas Rectangular Coördinates:

$$\bar{x} = \frac{\int \int x \, dA}{\int \int dA} = \frac{\int \int x \, dx \, dy}{\int \int dx \, dy}$$
$$\bar{y} = \frac{\int \int y \, dA}{\int \int dA} = \frac{\int \int y \, dx \, dy}{\int \int dx \, dy}$$

where \bar{x} and \bar{y} are the coördinates of the center of gravity.

In evaluating the expression for \overline{x} , we may integrate first either in respect to x or y, according to which method is more convenient.

If dy is integrated first, the limits of y are expressed in terms of x (from the given equation); and the limits of x are its initial and final values. Similarly, if dx is first integrated, the limits of x are expressed in terms of y; and the limits of y are then its initial and final values.

Polar Coördinates:

$$\bar{x} = \frac{\int \int r^2 \cos \theta \, d\theta \, dr}{\int \int r \, d\theta \, dr}$$
$$\bar{y} = \frac{\int \int r^2 \sin \theta \, d\theta \, dr}{\int \int r \, d\theta \, dr}$$

Generally, it is more convenient to integrate first with respect to r. In this case, the limits of r are found in terms of θ from the equation of the given curve. The limits of θ are its initial and final values, expressed in radians.

Center of Gravity of Solids of Revolution. When a solid of uniform density is formed by the revolution of a plane curve about the X-axis, the center of gravity is on the X-axis (because of symmetry). Its x-coordinate is

$$\bar{x} = \frac{\int \int xy \, dx \, dy}{\int \int y \, dx \, dy}$$

where the limits are found as in the case of plane areas.

When a solid is formed by the revolution of a plane figure about the Y-axis, the y-coördinate of its center of gravity is

$$\bar{y} = \frac{\int \int xy \, dx \, dy}{\int \int x \, dx \, dy}$$

Center of Gravity of Any Section Composed of Two or More Simple Plane Figures

In order to find the center of gravity of such figures as tee-bars, channels, rails, etc., divide them up into their component rectangles or triangles. Then, obtain , the center of gravity and the area of each separate figure. Choose any convenient axis in the plane of the given section and find the turning moment of each figure about this axis. Each turning moment is the product of the area of the figure by the distance from its center of gravity to the chosen axis. The sum of all these separate turning moments gives the turning moment of the total figure. On dividing this total moment by the total area of the figure, we obtain the distance from the chosen axis to the center of gravity of the figure. Care must be used, if the chosen axis passes through the given figure, to take distances on one side of this axis as positive, and on the other side as negative.

Generally, one coördinate of the center of gravity can be determined by the symmetry of the given section. When the figure is unsymmetrical, it may be necessary to take moments about two different axes in order to locate the center of gravity.

Moment of Inertia of Plane Areas

The moment of inertia of a plane figure about any given axis is equal to the integral of the product of each elementary area of the figure by the square of its distance from the axis.

Rectangular Moment of Inertia:

The rectangular moment of inertia of a plane figure

is its moment of inertia about any axis in the plane of the figure. The rectangular moment of inertia of a plane area about the X-axis is

$$I_x = \int \int y^2 \, dx \, dy$$

The rectangular moment of inertia of a plane area about the Y-axis is

$$I_y = \int \int x^2 \, dx \, dy$$

In either case, the limits of the variable first integrated are expressed in terms of the other variable.

The moment of inertia of a plane figure about the gravity axis (I_o) is its rectangular moment of inertia about any axis in the plane of the figure, passing through its center of gravity.

The moment of inertia of a plane figure about any axis parallel to the gravity axis and in the plane of the figure is equal to (I_g) plus the product of the area of the figure by the square of the distance between the two axes, thus: $I = I_g + Fd^2$

Polar Moment of Inertia:

The polar moment of inertia (I_p) is the moment of inertia about any axis perpendicular to the plane of the given figure.

It is equal to the sum of the rectangular moments of inertia about two mutually perpendicular axes in the plane of the figure, passing through the foot of the polar axis.

In rectangular coördinates, the polar moment of inertia equals

$$I_p = I_x + I_y = \int \int (x^2 + y^2) \, dx \, dy$$

In **polar coördinates**, the formula for the polar moment of inertia is

$$I_p = \int \int R^3 \, dR \, d\theta$$

It is generally more convenient to integrate first with respect to R, expressing its limits in terms of θ . The limits of θ are then its initial and final values.

Moment of Inertia of Solids

The moment of inertia of a solid (with center at origin) about the X-axis is

$$I = m \int \int \int (y^2 + z^2) \, dx \, dy \, dz$$

where *m* is the density, that is, the mass per unit volume.

Radius of Gyration

The **center of gyration** is that point in a revolving body at which, if the entire mass of the body were concentrated, the moment of inertia about the axis of rotation would be the same as that of the body.

The radius of gyration, k, is the distance from the axis of rotation to the center of gyration.

1-

For plane sections,
$$k = \sqrt{\frac{I}{A}}$$

For solids, $k = \sqrt{\frac{I}{M}} = \sqrt{\frac{\frac{I}{W}}{\frac{W}{g}}}$

in which
$$k$$
 = radius of gyration,
 I = the moment of inertia about the axis of
rotation,

A = area of section, M = mass of body, W = weight of body.

Center of Percussion

The **center of percussion** or oscillation of a pendulum or other body vibrating or rotating about a fixed axis or center is that point at which, if the entire weight of the body were concentrated, the body would continue to vibrate in the same intervals of time.

The radius of oscillation is

$$h = \frac{I}{Md} = \frac{I}{\left(\frac{W}{g}\right)d}$$

in which I = the moment of inertia of body about axis of rotation,

- d = distance from center of gravity of body to the axis of rotation,
- h = distance from center of percussion or oscillation to the axis of rotation,

M = mass of body,

W = weight of body.

Motion of a Body

velocity at any instant $= v = \frac{ds}{dt}$ acceleration at any instant $= a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$ In rectangular coördinates,

 $v_{x} = \frac{dx}{dt} = \frac{ds}{dt} \cos \theta = \text{velocity in a direction parallel to}$ the X-axis $v_{y} = \frac{dy}{dt} = \frac{ds}{dt} \sin \theta$ $v = \frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}$ For motion with **uniform**velocity,

$$v = \frac{s}{t}$$

For uniformly accelerated motion,

$$s = \frac{1}{2} (u + v) t$$

$$s = ut + \frac{1}{2} at^{2}$$

$$2 as = v^{2} - u^{2}$$

- u = initial velocity,
- v = final velocity,
- a = constant acceleration,
- s =space passed over,
- t = time of motion.

If the body starts from rest, the initial velocity u equals 0, and these equations become:

$$s = \frac{1}{2} vt$$
$$s = \frac{1}{2} at^{2}$$
$$2 as = v^{2}$$

Rotation of a Rigid Body

velocity at any instant $= \omega = \frac{d\theta}{dt}$

acceleration at any instant = $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$

For motion with uniform velocity,

$$\omega = \frac{\theta}{t}$$

For uniformly accelerated motion,

$$\theta = \frac{1}{2} (\omega_0 + \omega) t$$

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$2 \alpha \theta = \omega^2 - \omega_0^2$$

 θ = angular space through which the body rotates, ω_0 = initial angular velocity,

$$\omega = \text{final angular velocity,}$$

 α = angular acceleration,

t = time.

For a body initially at rest, the velocity ω_0 is 0, and these equations become

$$\theta = \frac{1}{2} \omega t$$
$$\theta = \frac{1}{2} \alpha t^{2}$$
$$2 \alpha \theta = \omega^{2}$$

Falling Bodies

Equations of motion of a **body falling from rest** under the action of gravity:

$$v = gt$$

$$s = \frac{1}{2} gt^{2}$$

$$2 gs = v^{2}$$

v = velocity after time t,

s =height through which body falls,

 $g = (approx.) 32.16 \text{ feet/sec.}^2 = 981 \text{ cm/sec.}^2$ = acceleration of gravity.

The value of g for any latitude and any altitude is

$$g = 32.0894 \left(1 + 0.0052375 \sin^2 \theta\right)$$

 $\times (1 - 0.000000957 E)$

in which

 θ = latitude of place in degrees,

E = elevation above sea-level in feet.

Projectiles

Equations of a body projected vertically upward with an initial velocity u (resistance of air not considered):

- (1) Velocity at any time = u gt.
- (2) Velocity at any height = $\sqrt{u^2 2 gh}$.
- (3) Height at any time $= ut \frac{1}{2}gt^2$.
- (4) Greatest height $= \frac{u^2}{2g}$. (5) Time of flight $= \frac{2u}{g}$.

Equations of a body projected with an initial velocity u at an angle θ° to the horizontal (resistance of air not considered):

The curve described by the projectile is the parabola whose equation is

$$y = x \tan \theta - \frac{gx^2}{2 u^2 \cos^2 \theta}$$

where θ is positive when the body is projected above

the horizontal and negative when the body is projected below the horizontal.

Horizontal-component of acceleration $= \frac{d^2x}{dt^2} = 0$ Vertical-component of acceleration $= \frac{d^2y}{dt^2} = -g$ (1) Velocity at any time $= \sqrt{u^2 - 2 utg \sin \theta + g^2 t^2}$. (2) Velocity at any height $= \sqrt{u^2 - 2 gh}$. (3) Height at any time $= ut \sin \theta - \frac{1}{2} gt^2$. (4) Time of flight $= \frac{2 u \sin \theta}{g}$. (5) Range $= \frac{u^2 \sin (2\theta)}{g}$.

If the friction of the air is taken into account, the curve described by the projectile is given by the empirical relation:

$$y = x \tan \theta - \frac{gx^2}{2 \cos^2 \theta} \left(\frac{1}{u^2} + \frac{kx}{u} \right)$$
$$k = 0.000000458 \frac{d^2}{w}$$

where d = diameter of projectile in inches. w = weight of projectile in pounds.

Angular Measure

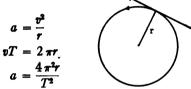
A radian is the angle subtended at the center of any circle by an arc equal in length to its radius.

1 radian = $\frac{180}{\pi}$ degrees = 57.296+ degrees 1 degree = $\frac{\pi}{180}$ radian = 0.017453+ radian

The relation between the central angle of a circle and its subtended arc is given by the formula:

$$l = r\theta$$

l =length of arc,


r = radius of circle,

 θ = central angle in radians.

Circular Motion

A body moving with **uniform velocity** in a circular path experiences a constant acceleration toward the center of the circle. This acceleration is expended in changing the direction of motion of the body.

The equations of motion of the revolving body are

- v = constant velocity of particle in feet per second,
- a = constant acceleration toward center in feet per sec.²,
- r = radius of circular path in feet,
- T = time of 1 revolution in seconds,
- $\pi^2 = 9.8696 + .$

If the body moves with a variable velocity, then:

tangential acceleration
$$= \frac{dv}{dt}$$

normal acceleration $= \frac{v^2}{r}$

Centrifugal Force

The centrifugal force of a revolving body, in pounds, is

$$F = \frac{Wv^2}{gr} = \frac{4\pi^2 Wr}{gl^2}$$

or in terms of the number of revolutions, N_1 , per minute

$$F = 0.00034 Wr N_1^2$$

W = weight of revolving body in pounds,

- v = velocity of body in feet per second,
- t = time of 1 revolution in seconds,
- r = distance from axis of rotation to the center of gravity of the body, in feet,

g = acceleration of gravity (32.16).

Flywheel

The energy of rotation of a flywheel is

$$K.E. = \frac{I\omega^2}{2} = 2\pi^2 IN^2$$

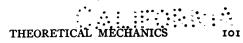
I = polar moment of inertia about the axis of rotation,

 ω = angular velocity in radians per second,

N = number of revolutions per second.

The **energy** stored in a rim flywheel by a variation in speed is

$$E = \frac{W}{2 g} (S^{2}_{\max} - S^{2}_{\min}) \text{ foot-pounds,}$$


W = weight of flywheel in pounds,

 S_{max} = maximum rim speed in feet per second,

- S_{\min} = minimum rim speed in feet per second
 - g =acceleration of gravity (32.16).

The rim speed in feet per second is $S = 2\pi RN$, where N is the speed in revolutions per second, and R is the radius of the wheel in feet, measured from the center of gravity of the rim section.*

* This value of R is approximately correct. The exact value of R is the radius of gyration of the flywheel.

Hence, the energy stored is

$$E = \frac{W}{g} \frac{4 \pi^2 R^2 \left(N^2_{\text{max}} - N^2_{\text{min}}\right)}{2} \text{ foot-pounds}$$

and the weight of the flywheel is

$$W = \frac{Eg}{2 \pi^2 R^2 \left(N^2_{\max} - N^2_{\min} \right)}$$

Substitute for E the required stored energy in footpounds. Assume some convenient value for R, in feet; then solve for the weight W in pounds. If the rim speed is too high (average about 35 feet per second for cast iron or 150 feet per second for steel), the value of R must be reduced. The ratio of the speed variation, $N_{\max} - N_{\min}$, to the average speed may be taken as follows for different types of machines:

Hammers	0.20
Punches	0.05
Ordinary machinery	0.03
Textile and paper machinery	0.02
Electric generators	0.005

* This value of R is approximately correct. The exact value of R is the radius of gyration of the flywheel.

Simple Pendulum

The time of oscillation in seconds from one extreme position to the other is

$$t = \pi \sqrt{\frac{l}{g}}$$

l =length of pendulum in feet,

g = acceleration of gravity (32.16 approx.).

The **period** of the pendulum is

$$P=2t=2\pi\sqrt{\frac{l}{g}}$$

The seconds-pendulum makes one oscillation per

second from one extreme position to the other; its length in feet is

$$l = \frac{g}{\pi^2}$$

Work and Energy

For a uniform force,

$$F = ma = \frac{W}{g}a$$

$$Fi = mv = \frac{W}{g}v$$

$$Fs = \frac{1}{2}mv^{2} = \frac{Wv^{2}}{2g}$$

F = constant applied force in pounds,

 $a = \text{constant acceleration in feet/sec.}^2$,

m = mass of body,

W = weight of body in pounds,

v = velocity acquired after t seconds,

mv = momentum,

s = space passed over in feet,

g = acceleration of gravity (32.16 feet/sec.²).

The impulse I of the constant force F during the time t equals the change of momentum,

$$I = Ft = mv - mu$$

where u is the initial velocity and v the final velocity.

If the force is variable, then impulse equals

$$I=\int_0^t F\,dt$$

The work done by a uniform force is

$$W = Fs = \frac{1}{2}mv^2$$

The work done by a variable force equals

$$W = \int_0^{\bullet} F \, ds$$

The kinetic energy of a body of mass m, moving with a velocity v, equals $\frac{1}{2}mv^2$.

Direct Central Impact

For the impact of two bodies of the same material, weighing respectively W and W_1 pounds, the velocities after impact are

$$v = \frac{Wu + W_1u_1 - eW_1(u - u_1)}{W + W_1}$$
$$v_1 = \frac{Wu + W_1u_1 + eW(u - u_1)}{W + W_1}$$

- u =original velocity of W in feet/second,
- v = velocity of W after impact,
- u_1 = original velocity of W_1 ,
- v_1 = velocity of W_1 after impact,
- e = coefficient of restitution.

Values of e, the coefficient of restitution, for different materials are as follows:

glass on glass	e = 0.94
ivory on ivory	e = 0.81
cast iron on cast iron	<i>e</i> = 0.66
lead on lead	e = 0.2

The sum of the momenta of two bodies after impact equals the sum of their momenta before impact,

$$\frac{Wv}{g} + \frac{W_1v_1}{g} = \frac{Wu}{g} + \frac{W_1u_1}{g}$$

Two inelastic bodies after impact move with a common velocity

$$v = \frac{W_1 v_1 + W_2 v_2}{W_1 + W_2}$$

in which

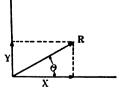
forces.

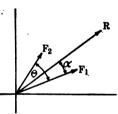
 W_1 = weight of first body, W_2 = weight of second body, v_1 = original velocity of first body, v_2 = original velocity of second body.

Composition and Resolution of Forces

The **resultant** of the forces F_1 and F_2 acting at a point is $R = \sqrt{F_1^2 + 2F_1F_2\cos\theta + F_2^2}$ in which θ is the angle in degrees between the two

. The direction of R is determined by the relation

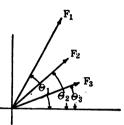

$$\tan \alpha = \frac{F_2 \sin \theta}{F_1 + F_2 \cos \theta}$$


in which α is the angle in degrees between F_1 and R.

The rectangular components of a force R acting in a given direction are

$$\begin{aligned} X &= R \cos \theta \\ Y &= R \sin \theta \end{aligned}$$

in which X is the horizontal component of R, Y is the normal component of R, and θ is the angle in degrees between R and X.

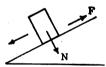


The **resultant** of several forces acting in different directions at a point is

$$R=\sqrt{X^2+Y^2}$$

in which

$$X = F_1 \cos \theta_1 + F_2 \cos \theta_2 + F_3 \cos \theta_3 + \cdots , Y = F_1 \sin \theta_1 + F_2 \sin \theta_2 + F_3 \sin \theta_3 + \cdots ,$$



where F_1 , F_2 , F_3 , etc., are the given forces, and θ_1 . θ_2 , θ_3 , etc.,

are the angles in degrees between the given forces and the horizontal axis.

Friction

F = friction in pounds, N = normal force in pounds, f = coefficient of friction. F = f NAngle of friction = $\phi = tax$

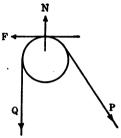
Angle of friction = $\phi = \tan^{-1} \frac{F}{N} = \tan^{-1} f$

Average values for f, the coefficient of friction, for motion are as follows:

Character of contact	J
Wood on wood Metal on wood Metal on metal, dry Metal on metal, lubricated Leather on metal, dry Leather on metal, lubricated	

Belt Friction

P and Q are the forces at the ends of the belt, P being the greater force.

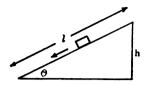

- F = resultant force of friction,
- N =normal reaction of pulley,
 - θ = angle in radians subtended by the arc of contact,

f = coefficient of friction.

$$\log_{\theta} \frac{P}{Q} = f\theta$$

or in common logarithms

$$\log_{10}\frac{P}{Q} = 0.434 \, f\theta$$


The value of f varies from 0.15 to 0.6 depending on the condition of belt and pulley, but, in general, it is approximately correct to assume f = 0.3.

Inclined Plane

Equations of motion of a body sliding down an incline under the action of its own weight.

For a frictionless plane:

(1) acceleration along plane = $a = \frac{d^2s}{dt^2} = g \sin \theta$, (2) velocity after t seconds = $tg \sin \theta$, (3) velocity at bottom of plane = $\sqrt{2} \frac{gh}{gh}$, (4) distance traveled in t seconds = $\frac{t^2g \sin \theta}{2}$, (5) time of sliding down plane = $l\sqrt{\frac{2}{gh}}$.

For an inclined plane with friction:

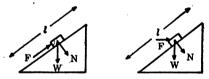
(1) acceleration along plane = $a = \frac{d^2s}{dt^2}$

$$= g [\sin \theta - f \cos \theta],$$

in which

f = coefficient of friction.

Conditions for the equilibrium of a body resting on an incline:


W =weight of body,

F = applied force,

N =normal pressure on plane,

 θ = inclination of plane in degrees,

f = coefficient of friction.

For a frictionless plane:

(1) When the balancing force is applied parallel to the inclined plane,

$$F = W \sin \theta$$
$$N = W \cos \theta$$

(2) When the applied force acts horizontally,

$$F = W \tan \theta,$$

$$N = W \sec \theta.$$

For an inclined plane with friction:

(1) When the balancing force acts parallel to the incline,

$$F = \frac{W\sin\left(\theta \pm \theta'\right)}{\cos\left(\theta'\right)}$$

in which

 $\theta' = \tan^{-1} f$

(2) When the applied force acts horizontally,

 $F = W \tan\left(\theta \pm \theta'\right)$

MECHANICS OF MATERIALS

Stress is distributed force; its intensity per unit area is generally expressed in pounds per square inch.

The **elastic limit** of a material is the maximum stress in pounds per square inch that will be followed by a complete recovery of form, after the removal of the stress.

Permanent set is the change in form of a member when stressed beyond its elastic limit.

The ultimate strength of a material is the least stress in pounds per square inch that will produce rupture.

Modulus of elasticity is the number obtained by dividing the actual stress in pounds per square inch by the corresponding elongation per inch.

The **factor of safety** is the factor obtained by dividing the ultimate strength by the actual stress in pounds per square inch.

Tension and Compression

For direct stress, uniformly distributed,

$$p = \frac{P}{F}$$

- p = stress in pounds per square inch,
- P =total load in pounds,

÷

F = cross-sectional area in square inches.

$$E = \frac{p}{\epsilon} \qquad \epsilon = \frac{\lambda}{l}$$
$$E = \frac{\frac{P}{F}}{\frac{\lambda}{l}} = \frac{Pl}{F\lambda}$$

- E = modulus of elasticity in tension or compression,
 - l =length of member in inches,
 - $\epsilon = \text{elongation per inch length},$
- λ = total elongation in inches.

LS
Ľ
4
5
24
Э
F
2
1
2
0F 0
0
H
Σ
5
Ū.
z
E
2
巴
F
S

	Den-	Elastic	Б	Ultimate strength	gth	Modulus of elasticity	elasticity	Fac	Factor of safety	ety _
Material	sity	limit	Tension	Comp.	Shear	Tens. and comp.	Shear	Steady load	Var. load	Shocks
Brick	2			3,000	1,000	2,000,000		15	25	40
Stone.	2.0 2.0			6,000	1,500	6,000,000		15	22	\$;
Timber along	0.0	3,000	10,000	8,000	:	1,500,000		ø	2	2
grain	0.6	:	:	:	500	:	:	:	:	:
grain	0.6		:		3,000		400,000	:		
Cast iron	7.2	6,000	20,000	90,000	18,000	15,000,000	6,000,000	9	10	20
Wrought iron	7.7	25,000	50,000	50,000	40,000	25,000,000	10,000,000	4	6	10
Structural steel	7.8	35,000	60,000	60,000	50,000	30,000,000	12,000,000	4	9	10
Strong steel	7.8	50,000	100,000	120,000	80,000	30,000,000	12,000,000	ŝ	ø	15
Note. — The e	lastic lim	it of 6,000	for cast iro	n holds only	for tension	Note The elastic limit of 6,000 for cast iron holds only for tension; for compression, the elastic limit is 20,000	on, the elastic	limit is 2	0,000,0	

ENGINEERING MATHEMATICS

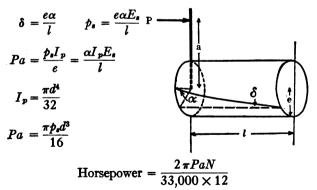
Angular Distortion and Shear

Shearing stress, uniformly distributed equals

$$p_{\bullet} = \frac{P}{F}$$

P = load,F = area.

For torsion:


$$E_{\bullet} = \frac{p_{\bullet}}{\delta}$$

 $E_s =$ modulus of elasticity in shear,

 δ = angle of distortion in radians.

Note. The modulus of elasticity in shear is $\frac{2}{3}$ as great as in compression or tension.

Torsion of Circular Shafts

 δ = helix angle of distortion in radians,

- α = radial angle of distortion in radians,
 - l =length of shaft in inches,
- e = radius of shaft in inches,

ENGINEERING MATHEMATICS

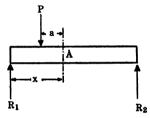
- **p**_s = greatest shearing stress in pounds per square inch existing in shaft,
- $E_s =$ modulus of elasticity in shear,
- I_p = polar moment of inertia of circular section (see table of standard sections),
- P = force in pounds producing torsion, that is, the turning force,
- a =lever arm of force P in inches,
- d = diameter of shaft in inches,
- N = revolutions per minute.

In deriving the above formulæ, the torsion is treated as due to a couple of the same turning moment, Pa, as the single force P with lever arm a. This eliminates the consideration of any stresses other than shearing stresses, and, in applying these formulæ to the case of a single driving force, bending stresses and bearing friction are neglected.

Flexure of Beams

When a beam is strained by a vertical load, the greatest strain will be in the extreme upper and lower fibers of the beam. The intensity of the strain that can be borne by the extreme fibers is the limit of the strength of the beam. The upper fibers are compressed and the lower fibers are stretched when a beam is loaded between supports; the converse holds when it is loaded between supports. Somewhere along or near the center of the beam the fibers are neither extended nor compressed; the plane of these fibers is called the **neutral surface**. The line of intersection of the neutral surface with any cross-section of the beam is the **neutral axis** of the section.

If the stresses remain within the elastic limits of the material in both tension and compression, and provided the modulus of elasticity is the same for both kinds of stress, then the **neutral axis** of the section passes through its **center of gravity**.


The **elastic curve** is the curve assumed by a beam under load.

The **bending moment** for any section of a beam is the algebraic sum of the moments of the external or applied forces acting on the beam on one side of the

section. Thus, for the beam shown, the bending moment about A is

$$M = R_1 x - P a$$

The bending moment, M, of any section is numerically equal to the moment of resistance of

the section, which is the resistance which the particles of the beam offer to distortion.

The moment of resistance equals

 $\frac{pI}{e} = M =$ bending moment

- p = stress per unit area at the outermost element of the section,
- e =distance of extreme element of beam from neutral axis,
- I = rectangular moment of inertia of beam section about its horizontal gravity axis.

In designing the proper cross-section for a beam, the maximum bending moment (given for standard cases under Beam Loadings) is equated to $\frac{pI}{e}$. The term $\frac{I}{e}$, called the section modulus, may be obtained from the table of standard sections of beams. The value of p must not exceed the maximum allowable stress per unit area for the material of the beam. The **maximum** allowable stress equals the ultimate strength divided by the factor of safety.

The equation of the elastic curve and its radius of curvature may be found from the relations:

$$M = \frac{pI}{e} = \frac{EI}{\rho} = EI \frac{d^2y}{dx^2} \text{ (approx.)}$$

E = modulus of elasticity of material of beam in tension or compression,

 ρ = radius of curvature of the elastic curve,

(x, y) =coördinates of any point on the elastic curve.

The **deflection** of a beam at any point is obtained by substituting, in the equation of the elastic curve, the particular value of x in question, and solving for the corresponding value of y, which equals the deflection. The **maximum deflection** occurs at the section for which $\frac{dy}{dx} = 0$.

Shear

The vertical shear in a beam is equal to the first derivative of the bending moment in respect to x, thus

Vertical shear =
$$J = \frac{dM}{dx}$$

where M is the bending moment (expressed as a function of x).

The value of the vertical shear for any particular

section is found by substituting the corresponding value of x in the expression for $\frac{dM}{dx}$. The result is the required vertical shear.

The maximum bending moment is found by equating $\frac{dM}{dx} = 0$, and then solving for the corresponding value of x. This particular value of x is substituted in the equation of the bending moment, M, and the resulting expression equals the maximum bending moment.

The horizontal shear in a plane parallel to the neutral surface (that is, the surface in which neither tension nor compression occurs), and at a distance z'' from it, equals

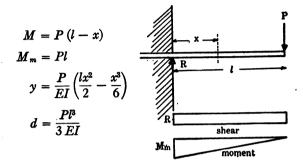
X (in pounds/sq. inch) =
$$\frac{J}{y''I}\int_{z''}^{z} dF$$

where J = total vertical shear in pounds,

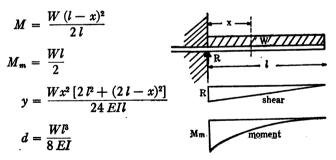
- y'' = width of beam section at z'' in inches,
 - I = rectangular moment of inertia of entire section about the horizontal gravity axis,

 $\int_{z''}^{z} z \, dF = \text{area in square inches of that portion of the}$ section above z'' multiplied by the distance in inches of its center of gravity

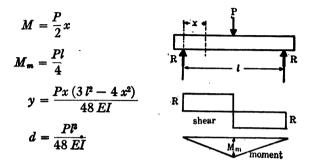
above the neutral axis.

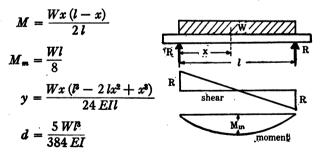

Beam Loadings

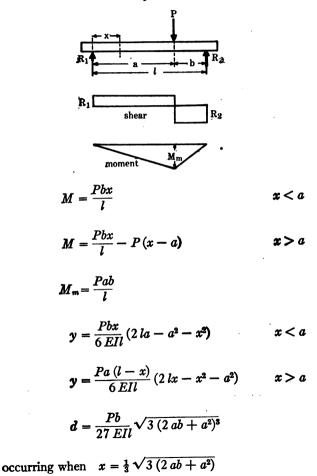
M =bending moment,

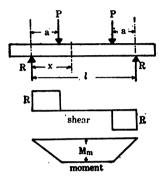

 M_m = maximum bending moment,

- y = deflection at any point,
- d = maximum deflection,
- P = concentrated load,
- W = uniformly distributed load.


Cantilever Beam with Concentrated Load at the Free End


Cantilever Beam with Uniform Load


Beam Supported at Both Ends and Loaded with a Concentrated Load at Center

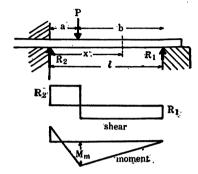

Beam Supported at Both Ends and Uniformly Loaded

Beam Supported at Both Ends and Loaded at Any Point

Beam Supported at Both Ends and Loaded with Two Concentrated Loads at Equal Distances from Each End

$$M = Px \qquad x < a$$

$$M = Pa \qquad \qquad x > a$$


 $M_m = Pa$

$$y = \frac{Px}{6 EI} (3 la - 3 a^2 - x^2) \qquad x < a$$

$$\mathbf{y} = \frac{Pa}{6 EI} \left(3 \, lx - 3 \, x^2 - a^2 \right) \qquad x > a$$

$$\boldsymbol{d} = \frac{Pa}{6 \, EI} \left(\frac{3}{4} l^2 - a^2 \right)$$

Beam Fixed at One End, Supported at the Other, and with a Concentrated Load at Any Point

$$R_{1} = \frac{Pa^{2} (3l - a)}{2l^{3}}$$

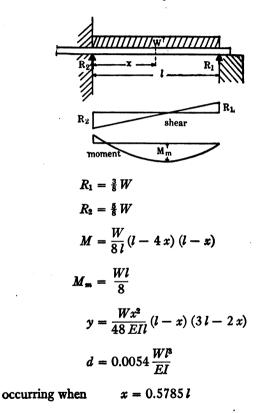
$$R_{2} = P - R_{1}$$

$$M = P (a - x) - R_{1} (l - x) \qquad x < a$$

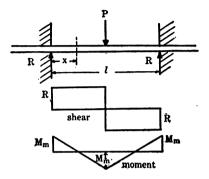
$$M = R_{1} (x - l) \qquad x > a$$

$$M_{m} = R_{1} (l - a)$$

$$y = \frac{1}{6EI} (R_{1}x^{3} - 3R_{1}lx^{2} + 3Pax^{2} - Px^{3}) \qquad x < a$$


$$y = \frac{1}{6EI} (R_{1}x^{3} - 3R_{1}lx^{2} + 3Pa^{2}x - Pa^{3}) \qquad x > a$$

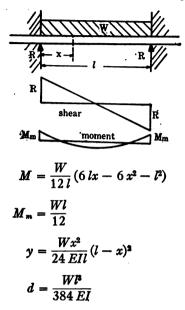
$$d = \frac{Pa^{2}}{6EI} (l - a) \sqrt{\frac{(l - a)}{(3l - a)}}$$


occurring when

$$x = l\left(1 - \sqrt{\frac{l-a}{3\,l-a}}\right)$$

Beam Fixed at One End, Supported at the Other and Uniformly Loaded

Beam Fixed at Both Ends and Loaded at the Center


$$M=\frac{P}{8}\left(4\,x-l\right)$$

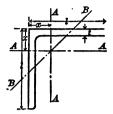
$$M_m = \frac{Pl}{8}$$

$$y=\frac{Px^2}{48\,EI}(4\,x-3\,l)$$

$$d=\frac{Pl^3}{192\,EI}$$

Beam Fixed at Both Ends and Uniformly Loaded

PROPERTIES OF STANDARD I BEAMS *


pes	spun	inches ¹	hes	iches	A	kis A	A	A	xis B–	в
Depth of beam, d inches	Weight per foot, w pounds	Area of section, A inc	Width of flange, b inches	Thickness of web, <i>l</i> inches	Moment of inertia, I inches ⁴	Radius of gyration, k inches	Section modulus, s inches ³	Moment of inertia	Radius of gyration, k inches	Section modulus, s inches ³
20	75.0 70.0 65.0	22.06 20.59 19.08	6.399 6.325 6.250	0.649 0.575 0.500	1268.8 1219.8 1169.5	7.58 7.70 7.83	126.9 122.0 117.0	30.3 29.0 27.9	1.17 1.19 1.21	9.5 9.2 8.9
18		26.47 25.00 23.53 22.05	7.082	0.807 0.725 0.644 0.562	1260.4 1220.7 1181.0 1141.3	6,90 6,99 7,09 7,19	140.0 135.6 131.2 126.8	52.0 50.0 48.1 46.2	1.40 1.42 1.43 1.45	14.4 14.0 13.6 13.2
18	65.0	20.59 19.12 17.65 15.93	6.177	0.637	921.2 881.5 841.8 795.6	6.69 6.79 6.91 7.07	102.4 97.9 93.5 88.4	24.6 23.5 22.4 21.2	1.09 1.11 1.13 1.15	7.9 7.6 7.3 7.1
15	70.0	22.06 20.59 19.12 17.67	6.194 6.096	0.784 0.686	691.2 663.7 636.1 609.0	5.60 5.68 5.77 5.87	92.2 88.5 84.8 81.2	30.7 29.0 27.4 26.0	1.18 1.19 1.20 1.21	9.8 9.4 9.0 8.7
15	55.0 50.0 45.0 42.0	14.71 13.24	5.550	0.656 0.558 0.460 0.410	511.0 483.4 455.9 441.8	5.62 5.73 5.87 5.95	68.1 64.5 60.8 58.9	17.1 16.0 15.1 14.6	1.02 1.04 1.07 1.08	5.9 5.7 5.4 5.3
12	55.0 50.0 45.0 40.0	14.71	5.366	0.821 0.699 0.576 0.460	321.0 303.4 285.7 269.0	4.45 4.54 4.65 4.77	53.5 50.6 47.6 44.8	17.5 16.1 14.9 13.8	1.04 1.05 1.06 1.08	6.2 5.9 5.6 5.3
12	35.0 31.5	10.29 9.26	5.086 5.000	0.436 0.350	228.3 215.8	4.71 4.83	38.0 36.0	10.1	0.99	4.0 3.8

MECHANICS OF MATERIALS

PROPERTIES OF STANDARD I BEAMS * (Continued)

thes	spun	ches ¹	thes	iches	A	kis A-A	1	A	xis B	В
Depth of beam, d inches	Weight per foot, w pounds	Area of section, A inches ^a	Width of flange, b inches	Thickness of web, t inches	Moment of inertia, I inchest	Radius of gyration, k inches	Section modulus, s inches ³	Moment of inertia, I inches ⁴	Radius of gy ra tion, k inches	Section modulus, s inches ⁶
10	40.0	11.76	5.099	0.749	158.7	3.67	31.7	9.5	0.90	3.7
	35.0	10.29	4.952	0.602	146.4	3.77	29.3	8.5	0.91	3.4
	30.0	8.82	4.805	0.455	134.2	3.90	26.8	7.7	0.93	3.2
	25.0	7.37	4.660	0.310	122.1	4.07	24.4	6.9	0.97	3.0
9	35.0 30.0 25.0 21.0	10.29 8.82 7.35 6.31	4.609	0.732 0.569 0.406 0.290	111.8 101.9 91.9 84.9	3.29 3.40 3.54 3.67	24.8 22.6 20.4 18.9	7.3 6.4 5.7 5.2	0.84 0.85 0.88 0.90	3.1 2.8 2.5 2.4
, 8	25.5 23.0 20.5 18.0	7.50 6.76 6.03 5.33	4.087	0.541 0.449 0.357 0.270	68.4 64.5 60.6 56.9	3.02 3.09 3.17 3.27	17.1 16.1 15.2 14.2	4.8 4.4 4.1 3.8	0.80 0.81 0.82 0.84	2.2 2.1 2.0 1.9
7	20.0	5.88	3.868	0.458	42.2	2.68	12.1	3.2	0.74	1.7
	17.5	5.15	3.763	0.353	39.2	2.76	11.2	2.9	0.76	1.6
	15.0	4.42	3.660	0.250	36.2	2.86	10.4	2.7	0.78	1.5
6	17.25	5.07	3.575	0.475	26.2	2.27	8.7	2.4	0.68	1.3
	14.75	4.34	3.452	0.352	24.0	2.35	8.0	2.1	0.69	1.2
	12.25	3.61	3.330	0.230	21.8	2.46	7.3	1.9	0.72	1.1
5	14.75	4.34	3.294	0.504	15.2	1.87	6.1	1.7	0.63	1.0
	12.25	3.60	3.147	0.357	13.6	1.94	5.5	1.5	0.63	0.92
	9.75	2.87	3.000	0.210	12.1	2.05	4.8	1.2	0.65	0.82

PROPERTIES OF STANDARD ANGLES WITH EQUAL LEGS *

		ounds	ches ³		Axi	s A-A	*	Axis B-B
Size, l inches	Thickness, <i>t</i> inches	Weight per foot, w pounds	Area of section, A inches ^a	Distance from back of angle to center of gravity, x ins.	Moment of inertia, I inches ⁴	Radius of gyration, k inches	Section modulus, s inches ³	Minimum radius of gyration, k ins.
6×6		37.4 35.3 33.1 31.0 28.7 26.5 24.2 21.9 19.6 17.2 14.9	11.00 10.37 9.73 9.09 8.44 7.78 7.11 6.43 5.75 5.06 4.36	1.86 1.84 1.82 1.80 1.75 1.75 1.75 1.73 1.71 1.68 1.66 1.64	35.5 33.7 31.9 30.1 28.2 26.2 24.2 22.1 19.9 17.7 15.4	1.80 1.80 1.81 1.82 1.83 1.83 1.83 1.84 1.85 1.86 1.87 1.88	8.6 8.1 7.6 7.2 6.7 6.2 5.1 4.6 4.1 3.5	1.16 1.16 1.17 1.17 1.17 1.17 1.17 1.17
4×4		18.5 17.1 15.7 14.3 12.8 11.3 9.8 8.2	5.44 5.03 4.61 4.18 3.75 3.31 2.86 2.40	1.27 1.25 1.23 1.21 1.18 1.18 1.16 1.14 1.12	7.7 7.2 6.7 6.1 5.6 5.0 4.4 3.7	1.19 1.20 1.21 1.22 1.23 1.23 1.23 1.24	2.8 2.6 2.4 2.2 2.0 1.8 1.5 1.3	0.77 0.77 0.77 0.78 0.78 0.78 0.78 0.79 0.79
3 <u>1</u> ×31	ŧ .↑* ! !	13.6 12.4 11.1 9.8 8.5 7.2	3.98 3.62 3.25 2.87 2.48 2.09	1.10 1.08 1.06 1.04 1.01 0.99	4.3 4.0 3.6 3.3 2.9 2.5	1.04 1.05 1.06 1.07 1.07 1.08	1.8 1.6 1.5 1.3 1.2 0.98	0.68 0.68 0.68 0.68 0.69 0.69

MECHANICS OF MATERIALS

٠

		ounds	inches ¹		Axis	A-A		Axis B-B
Size, l inches	Thickness, t inches	Weight per foot, w pounds	Area of section, A inc	Distance from back of angle to center of gravity, x ins.	Moment of inertia, I inches ⁴	Radius of gyration, k inches	Section modulus, s inches ³	Minimum radius of gyration, k ins.
3 ×3	***	9.4 8.3 7.2 6.1 4.9	2.75 2.43 2.11 1.78 1.44	0.93 0.91 0.89 0.87 0.84	2.2 2.0 1.8 1.5 1.2	0.90 0.91 0.91 0.92 0.93	1.1 0.95 0.83 0.71 0.58	0.58 0.58 0.58 0.59 0.59
21 × 21	1 1 1 1	5.9 5.0 4.1 3.07	1.73 1.47 1.19 0.90	0.76 0.74 0.72 0.69	0.98 0.85 0.70 0.55	0.75 0.76 0.77 0.78	0.57 0.48 0.39 0.30	0.48 0.49 0.49 0.49
2×2	1 1 1	4.7 3.92 3.19 2.44	1.36 1.15 0.94 0.71	0.64 0.61 0.59 0.57	0.48 0.42 0.35 0.28	0.59 0.60 0.61 0.62	0.35 0.30 0.25 0.19	0.39 0.39 0.39 0.40

PROPERTIES OF STANDARD ANGLES WITH EQUAL LEGS * (Continued)

* Manufactured by the Carnegie Steel Company, Pittsburg, Pa.

127

.

•

PROPERTIES OF STANDARD CHANNELS *

		1	1	1	A	xis A-	A		Axis I	B-B	
Depth of channel, d inches	Weight per foot, w pounds	Area of section, A inches ²	Width of flange, b inches	Thickness of web, t inches	Moment of inertia. I inches ⁴	Radius of gyration, k inches	Section modulus, s inches ⁸	Distance from back of webtocenter of gravity. <i>x</i> inches	Moment of inertia. I inches ⁴	Radius of gyration, k inches	Section modulus, s inches ³
12	40 35 30 25 20.5	11.76 10.29 8.82 7.35 6.03	2.940	0.758 0.636 0.513 0.390 0.280	196.9 179.3 161.7 144.0 128.1	4.09 4.17 4.28 4.43 4.61	32.8 29.9 26.9 24.0 21.4		6.6 5.9 5.2 4.5 3.9	0.75 0.76 0.77 0.79 0.81	2.5 2.3 2.1 1.9 1.7
10	35 30 25 20 15	10.29 8.82 7.35 5.88 4.46		0.823 0.676 0.529 0.382 0.240	115.5 103.2 91.0 78.7 66.9	3.35 3.42 3.52 3.66 3.87	23.1 20.7 18.2 15.7 13.4	0.70 0.65 0.62 0.61 0.64	4.7 4.0 3.4 2.9 2.3	0.67 0.67 0.68 0.70 0.72	1.9 1.7 1.5 1.3 1.2
9	25	7.35	2.815	0.615	70.7	3.10	15.7	0.62	3.0	0.64	1.4
	20	5.88	2.652	0.452	60.8	3.21	13.5	0.59	2.5	0.65	1.2
	15	4.41	2.488	0.288	50.9	3.40	11.3	0.59	2.0	0.67	1.0
	13.25	3.89	2.430	0.230	47.3	3.49	10.5	0.61	1.8	0.67	0.97
. 8	21.25	6.25	2.622	0.582	47.8	2.77	11.9	0.59	2.3	0.60	1.1
	18.75	5.51	2.530	0.490	43.8	2.82	11.0	0.57	2.0	0.60	1.0
	16.25	4.78	2.439	0.399	39.9	2.89	10.0	0.56	1.8	0.61	0.95
	13.75	4.04	2.347	0.307	36.0	2.98	9.0	0.56	1.6	0.62	0.87
	11.25	3.35	2.260	0.220	32.3	3.11	8.1	0.58	1.3	0.63	0.79
7	19.75	5.81	2.513	0.633	33.2	2.39	9.5	0.58	1.9	0.56	0.96
	17.25	5.07	2.408	0.528	30.2	2.44	8.6	0.56	1.6	0.57	0.87
	14.75	4.34	2.303	0.423	27.2	2.50	7.8	0.54	1.4	0.57	0.79
	12.25	3.60	2.198	0.318	24.2	2.59	6.9	0.53	1.2	0.58	0.71
	9.75	2.85	2.090	0.210	21.1	2.72	6.0	0.55	0.98	0.59	0.63
6	15.5	4.56	2.283	0.563	19.5	2.07	6.5	0.55	1.3	0.53	0.74
	13.0	3.82	2.160	0.440	17.3	2.13	5.8	0.52	1.1	0.53	0.65
	10.5	3.09	2.038	0.318	15.1	2.21	5.0	0.50	0.88	0.53	0.57
	8.0	2.38	1.920	0.200	13.0	2.34	4.3	0.52	0.70	0.54	0.50
5	11.5	3.38	2.037	0.477	10.4	1.75	4.2	0.51	0.82	0.49	0.54
	9.0	2.65	1.890	0.330	8.9	1.83	3.6	0.48	0.64	0.49	0.45
	6.5	1.95	1.750	0.190	7.4	1.95	3.0	0.49	0.48	0.50	0.38
4	7.25	2.13	1.725	0.325	4.6	1.46	2.3	0.46	0.44	0.46	0.35
	6.25	1.84	1.652	0.252	4.2	1.51	2.1	0.46	0.38	0.45	0.32
	5.25	1.55	1.580	0.180	3.8	1.56	1.9	0.46	0.32	0.45	0.29

COLUMNS

Note. The breaking load in Euler's and in Gordon's formula, and the safe load in Ritter's formula are in pounds. In all of the formulæ for columns, the length, l, and radius of gyration, k, must be expressed in the same units (generally inches).

Euler's Formula

(1) Column with round ends,

breaking load =
$$EI\frac{\pi^2}{l^2} = \pi^2 EF\left(\frac{k^2}{l^3}\right)$$

(2) Column with flat ends,

breaking load =
$$4 EI \frac{\pi^2}{l^2} = 4 \pi^2 EF \left(\frac{k^2}{l^2}\right)^2$$
.

(3) Pin-and-square column (column with one end round and the other flat),

breaking load =
$$\frac{9}{4} EI \frac{\pi^2}{l^2} = \frac{9}{4} \pi^2 EF \left(\frac{k^2}{l^2}\right)$$

in which

- E =modulus of elasticity of material of column in tension or compression,
 - I = rectangular moment of inertia of cross-section about neutral axis,
 - l =length of column,
- F = area of cross-section in sq. inches,
- k = least radius of gyration of section.

Gordon's or Rankine's Formula

(1) Column with flat ends,

breaking load =
$$\frac{FC}{1 + \beta \left(\frac{l}{\bar{k}}\right)^2}$$

(2) Column with rounded ends,

breaking load =
$$\frac{FC}{1 + 4\beta \left(\frac{l}{\bar{k}}\right)^2}$$

(3) Pin-and-square column,

breaking load =
$$\frac{FC}{1 + 1.78 \beta \left(\frac{l}{k}\right)^2}$$

in which

- F = area of cross-section in square inches,
- C = ultimate compressive strength of material of column in pounds per square inch,
 - l =length of column,
- k =least radius of gyration of section,
- β = empirical constant.

Values of β and of C, in Gordon's formula, are as follows for different materials:

Material {	Hard steel	Medium steel	Soft steel	Wrought iron	Cast iron	Timber
C (lbs./ sq. in.).	70,000	50,000	45,000	36,000	70,000	7200
β	1 25,000	$\frac{1}{36,000}$	$\frac{1}{36,000}$	$\frac{1}{36,000}$	$\frac{1}{6400}$	$\frac{1}{3000}$

Ritter's Formula

(1) Column with flat ends,

safe load =
$$\frac{FC}{1 + \frac{C'}{4\pi^2 E} \left(\frac{l}{k}\right)^3}$$

(2) Column with rounded ends,

safe load =
$$\frac{FC}{1 + \frac{C'}{\pi^2 E} \left(\frac{l}{k}\right)^2}$$

(3) Pin-and-square column,

safe load =
$$\frac{FC}{1 + \frac{1.78 C'}{4 \pi^2 E} \left(\frac{l}{k}\right)^2}$$

in which

- F = area of cross-section in square inches,
- C = maximum safe compressive stress of material of column in pounds per square inch,
- C' =compressive stress at elastic limit in pounds per square inch,
- E = modulus of elasticity for tension or compression,
 - l =length of column,
 - k =least radius of gyration.

J. B. Johnson's Formula

Breaking load in pounds; cross-section in square inches.

For mild steel:

(1) Pin-ends,

breaking load =
$$\left[42,000-0.97\left(\frac{l}{k}\right)^2\right]F, \left(\frac{l}{k}\right)$$
 not > 150

(2) Flat ends,
breaking load =
$$\left[42,000 - 0.62 \left(\frac{l}{\bar{k}}\right)^2\right] F$$

 $\left(\frac{l}{\bar{k}}\right)$ not > 190

For wrought iron:

(1) Pin-ends,
breaking load =
$$\left[34,000 - 0.67 \left(\frac{l}{k}\right)^2\right] F$$

 $\left(\frac{l}{k}\right) \text{ not } > 170$

(2) Flat ends,
breaking load =
$$\left[34,000 - 0.43 \left(\frac{l}{\bar{k}}\right)^2\right] F$$

 $\left(\frac{l}{\bar{k}}\right) \text{ not } > 210$

Notation same as in Ritter's formula.

Straight-line Formula

Breaking load in pounds; cross-section in square inches.

For mild steel:

- (1) Hinged ends, breaking load = $\left[52,000 - 220\binom{l}{k}\right]F$
- (2) Flat ends, breaking load = $\left[52,000 - 179 \left(\frac{l}{k}\right)\right]F$

For wrought iron:

(1) Hinged ends,
breaking load =
$$\left[42,000 - 157 \left(\frac{l}{k}\right)\right]F$$

(2) Flat ends,

breaking load =
$$\left[42,000 - 128\left(\frac{l}{k}\right)\right]F$$

Notation same as in Ritter's formula.

Wooden Columns

The breaking load in pounds for solid wooden columns with square ends is

$$P = \frac{(700 + 15 m) FC}{700 + 15 m + m^2}$$

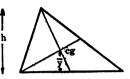
F = cross-section in square inches, $m = \text{ratio of the length}, l, \text{ of the column to the least dimension } d, \text{ of the cross-section } \left(\text{that is, } m = \frac{l}{d}\right),$ C = ultimate compressive strength of material of

column in pounds per square inch.

Values of C, the ultimate compressive strength, for different kinds of timber are as follows:

White oak and Georgia yellow pine	5000 lb./sq. in.
Douglas fir and short-leaf yellow pine	4500 lb./sq. in.
Red pine, spruce, hemlock, cypress, chest-	
nut, California redwood, and Cali-	
fornia spruce	4000 lb./sq. in.
White pine and cedar	3500 lb./sq. in.

The proper factor of safety for yellow pine varies from 3.5 to 5, according to the amount of moisture present in the timber, being greater for larger amounts of moisture. For all other timbers, the proper factor of safety varies from 4 to 5.

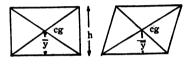

CENTERS OF GRAVITY

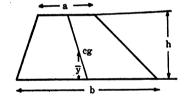
Plane Figures

Triangle

The C.G. is on a median line of the triangle, two-thirds of its length from the vertex,

$$\bar{y} = \frac{h}{3}$$

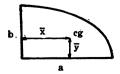


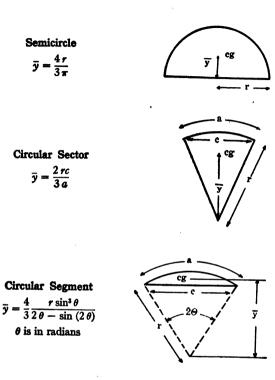

Parallelogram

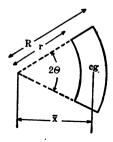
The C.G. is at the intersection of the diagonals,

 $\bar{y} = \frac{h}{2}$

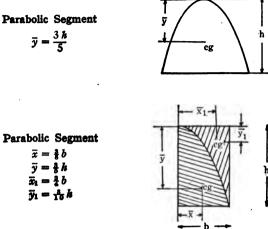
ÿ:

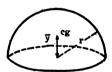

Quadrant of Circle


Trapezoid = $\frac{h(2a+b)}{3(a+b)}$

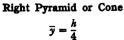

$$\bar{x} = \frac{4r}{3\pi} = \bar{y}$$
$$\bar{r} = \frac{4r\sqrt{2}}{3\pi}$$

Quadrant of Ellipse $\overline{x} = \frac{4 a}{3 \pi}$ $\overline{y} = \frac{4 b}{3 \pi}$




Sector of a Circular Ring $\overline{x} = \frac{2}{3} \frac{R^3 - r^3}{R^2 - r^2} \frac{\sin \theta}{\theta}$

•



١

Hemisphere $\overline{y} = \frac{3r}{8}$

MECHANICS OF MATERIALS

MOMENT OF INERTIA OF SOLIDS

$M = \text{mass of body} = \frac{W}{g}$

Shape of figure	Descrip- tion	Axis of rotation	Moment of inertia
	uniform thin rod	 through center perpendicular to length through end per- pendicular to length 	$M \frac{l^2}{12}$ $M \frac{l^3}{3}$
	thin rec- tangular plate	 through center of gravity per- pendicular to plate through center of gravity paral- lel to side b 	$M \frac{a^2+b^2}{12}$ $M \frac{a^2}{12}$
•••	thin circular plate	 through center perpendicular to plane any diameter 	$M \frac{r^2}{2}$ $M \frac{r^2}{4}$
	solid cylinder, radius, r	 axis of cylinder through center of gravity, perpen- dicular to axis of cylinder 	$M \frac{r^3}{2}$ $M \left(\frac{l^2}{12} + \frac{r^3}{4}\right)$
	hollow cylinder, R=outer radius, r=inner radius	 axis of cylinder through center of gravity per- pendicular to axis 	$M\left(\frac{R^2+r^3}{2}\right)$ $M\left(\frac{l^2}{12}+\frac{R^2+r^3}{4}\right)$
	solid sphere, r=radius	through center	$M\frac{2r^2}{5}$
ð	hollow sphere, R = exter- nal ra- dius r=inter- nal ra- dius	through center	$M\frac{2}{5}\left(\frac{R^{4}-r^{4}}{R^{4}-r^{4}}\right)$

	PROPE	PROPERTIES OF	STANDARD SECTIONS	SECTIONS	
Shape of section	Area of section	Rectangular moment of inertia about horizontal gravity axis I	Square of radius of gyration $k^{3} = \frac{I}{A}$	Section modulus $s = \frac{I}{e}$	Polar moment of inertia, I _p about center of gravity
*-@-> 	b1	<u>6</u> 12	64 12	1 0	<u>8</u> 4
	рү	<u>bh</u> ³ 12	<u>h</u> ³ 12	<u>9</u>	<u>bk</u> (b²+k²) 12
- q	$b^{2}-b_{1}^{2}$	$\frac{b^4 - b_1^4}{12}$	$\frac{b^2+b_1^2}{12}$	$\frac{b^4 - b_1^4}{6 b}$	<u>b4-b1</u> 4
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>bh</i> - <i>b</i> ₁ <i>h</i> ₁	$\frac{bh^{\mathbf{s}}-b_1h_1^{\mathbf{s}}}{12}$	$\frac{bk^{2}-b_{1}k_{1}^{3}}{12(bk-b_{1}k_{1})}$	$\frac{bh^3 - b_1 h_1^3}{6 h}$	$\frac{bk(h^3+b^4)}{12} - \frac{b_1h_1(h_1^3+b_1^4)}{12}$
	nd ³	n d ⁴ 6 <u>4</u>	d ² 16	a d ^a 32	ad ⁴ <u>32</u>

.

$\frac{\pi (d^4 - d_1^4)}{32}$				$\frac{\pi}{4}\left(a^{i}b+b^{i}a ight)$	
$\frac{\pi}{32}\frac{(d^4-d_1^4)}{d}$	<u>bk²</u> 24	0.12 d ^a	0.109 d ³	$\pi \frac{ba^2}{4}$	$\frac{bh^3 - b_1h_1^3}{6\ h}$
$\frac{d^3+d_1^3}{16}$	<u>h²</u> <u>18</u>	ep 7690.0	0.066 d²	6 4	$\frac{1}{12} \left(\frac{bk^3 - b_1k_1^3}{bk - b_1k_1} \right)$
$\frac{\pi (d^4 - d_1^4)}{64}$	<u>36</u>	0.06 44	0.055 d ⁴	a ba t 4	$\frac{bk^{*}-b_{1}h_{1}^{*}}{12}$
$\frac{\pi \left(d^3 - d_1^3\right)}{4}$	<u>bk</u>	0.866 d³	0.828 d²	rab	<i>bk</i> - <i>b</i> ₁ <i>k</i> ₁
			\bigcirc		

	PROPERTIE	S OF STAN	PROPERTIES OF STANDARD SECTIONS-Continued	ONS – Contin	ned
	¹ 4 ¹ <i>q</i> -4 <i>q</i>	$\frac{bk^{2}-b_{1}k_{1}^{2}}{12}$	$\frac{bh^3 - b_1 h_1^3}{12} \left \frac{1}{12} \left(\frac{bh^3 - b_1 h_1^3}{bh - b_1 h_1} \right) \right \frac{bh^3 - b_1 h_2^3}{6 h}$	$\frac{bh^3 - b_1 h_1^3}{6 h}$	
	140+410	$\frac{b_1 h^3 + b h_1^3}{12}$	$\frac{1}{12}\left(\frac{b_1\dot{h}^3+b\dot{h}_1^3}{b_1\dot{h}+b\dot{h}_1}\right)$	<u>bıks+bhı</u> z 6 k	
The moment of inertia of inspection, may be obtaine Composite Sections. Then of inertia of each rectangle a	f such sections as d as follows: Firs divide the section bout its base is ca	T-beams and a tt, find the positi n into its compor dculated by the	agle-bars, the center ion of the horizontal nent rectangles, with formula $I = \frac{b\mu}{3}$ whe	of gravity of w gravity axis by the their bases along the bases along the base of the b	The moment of inertia of such sections as T-beams and angle-bars, the center of gravity of which cannot be determined by inspection, may be obtained as follows: First, find the position of the horizontal gravity axis by the method given on page 74, for Composite Sections. Then divide the section into its component rectangles, with their bases along the gravity axis. The moment of inertia of each rectangle about its base is calculated by the formula $I = \frac{bk}{3}$ where b is the base of the rectangle and k its altitude.

The total moment of inertia of the section about its gravity axis is the sum of the moments of inertia of the component rectangles. If there is a rectangular space in the figure, the corresponding moment of inertia is subtracted from that of the solid section.

ENGINEERING MATHEMATICS

140

HYDRAULICS

Head and Pressure

The difference in level of water between two points is called the head.

The **pressure** in pounds per square inch at any depth is

$$p = 0.433 h$$

in which

h = head or depth in feet of water,

0.433 = weight of a column of water 1 foot high and 1 inch in cross-section.

The pressure on a submerged surface is always normal to the surface, and equals

$$P$$
 (in pounds) = 0.433 hF

- h = depth of water in feet from the surface of the liquid to the center of gravity of the submerged surface,
- F = area of submerged surface in square inches.

Center of Pressure

The center of pressure of a submerged surface is the point of application of the resultant of all the fluid pressures on such surface.

The distance of the center of pressure of a vertical submerged plate below the liquid surface is

$$d$$
 (in feet) $= \frac{I_{\bullet}}{F\bar{z}}$

- F = area of plate in square feet,
 - \bar{z} = distance in feet from the liquid surface to the center of gravity of the plate,
- I_{\bullet} = rectangular moment of inertia of plate about the line of intersection of its plane with the surface of the liquid.

The distance of the center of pressure of a submerged plate inclined at an angle θ with the surface is

$$d \text{ (in feet)} = \frac{I_g \sin^2 \theta}{F\bar{z}} + \bar{z}$$

- \bar{z} = distance from the liquid surface to the center of gravity of the plate in feet,
- F = area of plate in square feet,
- I_g = moment of inertia of plate about its gravity axis parallel to the liquid surface.

Flow through Apertures

Due to friction, the velocity of discharge through an aperture in a thin plate or plank is reduced about 3 per cent below its theoretical value. Further, on leaving the orifice, the jet contracts to approximately 64 per cent of the area of the aperture.

The theoretical velocity of discharge through a small aperture, in feet per second, is

$$v = \sqrt{2 gh}$$

g = acceleration of gravity = 32.16,

h = head in feet.

The actual velocity of discharge in feet per second is

$$v = \phi \sqrt{2 gh} = 0.97 \sqrt{2 gh}$$

 ϕ = coefficient of velocity.

HYDRAULICS

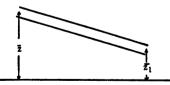
The **discharge** through the aperture in cubic feet per second is

$$Q = CF\phi\sqrt{2\,gh} = 0.62\,F\sqrt{2\,gh}$$

C = 0.64 (approx.) = coefficient of contraction,

F = area of aperture in square feet.

FLOW OF WATER IN PIPES


Bernoulli's Theorem

A general method for calculating the flow of water in pipes is given by Bernoulli's theorem:

$$\frac{v^2}{2g} + \frac{p}{\gamma} + \bar{z} = \frac{v_1^2}{2g} + \frac{p_1}{\gamma} + \bar{z}_1 + k$$

that is, the sum of the velocity head $\frac{v^2}{2g}$, the pressure

head $\frac{p}{\gamma}$ and the potential head \bar{z} at any given section of flow is equal to the sum of the corresponding heads at any other section, plus the various losses between the two sections considered.

- v = velocity in feet per second at first section,
- v_1 = velocity at second section,
- p = pressure in pounds per square inch at first section,
- p_1 = pressure at second section,

144 ENGINEERING MATHEMATICS

- \bar{z} = potential head at first section in feet, that is, the distance of the center of the section above a chosen horizontal reference plane,
- \bar{z}_1 = potential head at second section,
- g = 32.16 (approx.),
- γ = weight in pounds of a column of water 1 foot high and 1 square inch in cross-section = 0.433,
- k = various losses in feet of head between the two sections of pipe considered.

Losses in Pipes

The following formulæ for losses in pipes enable us to find the value of the term k appearing in Bernoulli's theorem. If several losses occur in a section of pipe, the total loss, k, is the sum of the separate losses.

Loss Due to Friction

The loss of head in feet due to friction in a section of pipe is

$$4f\frac{l}{d}\frac{v^2}{2g}$$

where

- d = diameter of pipe in feet,
- l =length of pipe in feet,
- v = velocity in feet per second,
- f =coefficient of friction, depending on the velocity, and on the size of pipe.

Values of f, the coefficient of friction, for water in clean iron pipes are as follows (condensed from I. P. Church's "Mechanics of Engineering"):

Veloc- ity in feet per second		Diam. =1 in. = 0.0834 ft.	Diam. =2 in. =0.1667 ft.	Diam. =4 in. =0,333 ft.	Diam. =8 in. =0.667 ft.	Diam. = 12 in. = 1.00 ft.	Diam. = 16 in. = 1.333 ft.	Diam. =20 in. =1.667 ft.
0.1	0.0150	0.0119	0.00870	0.00763	0.00704	0.00669	0.00623	19111
0.3	0.0137	0.0113	0.00850	0.00750	0.00693	0.00657	0.00614	0.00578
0.6		0.0104	0.00822	0.00732	0.00677	0.00642	0.00603	0.00567
1.0		0.00950		0.00712	0.00659	0.00624	0.00588	0.00555
2.0	0.00862	0.00810	0.00731	0.00678	0.00624	0.00593	0.00559	0.00529
3.0	0.00753	0.00734	0.00692	0.00650	0.00600	0.00570	0.00538	0.00509
6.0	0.00689	0.00670	0.00640	0.00605	0.00562	0.00534	0 00507	0.00482
12.0	0.00630	0.00614	0.00590	0.00560	0.00522	0.00500	0.00478	0.00457
20.0	0.00615	0.00598		0.00549	0.00508	0.00485		

Loss at Entrance

The loss of head in feet due to entrance from a reservoir into a pipe is equal to

$$\left(\frac{1}{\phi^2}-1\right)\frac{v^2}{2g} = L_e \frac{v^2}{2g}$$

in which ϕ^* is the co-
efficient of friction and
is dependent on the
angle θ° which the pipe

makes with the inner surface of the reservoir.

Values of $L_{\theta} \left(= \frac{1}{\phi^2} - 1 \right)$ in the above formula are as follows for different values of θ° (from Church):

θ°	90°	80°	70°	60°	50°	40°	30°
Le	0.505	0.565	0.635	0.713	0.794	0.870	0.987

Thus, when the discharge is through a pipe normal to the inner surface of the reservoir, then θ° equals 90° and L_{s} is, therefore, 0.505, the loss at entrance then being

$$0.505 \frac{v^2}{2g}$$

where v = velocity of flow in pipe in feet per second.

Loss Due to Sudden Enlargement

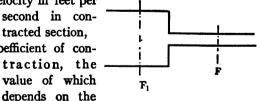
The loss of head in feet due to the sudden enlargement of a pipe is

$$\left(\frac{F}{F_1} - 1\right)^2 \frac{v^2}{2g}$$

F_1 = cross-section area of the smaller pipe in square feet, F_1

F = area of enlarged

- section in square feet,
- v = velocity in feet per second in the enlarged section.


Loss Due to Sudden Contraction

The loss of head in feet due to the sudden contraction of a pipe is

$$\left(\frac{1}{C}-1\right)^2\frac{v^2}{2g}$$

in which

v = velocity in feet per second in contracted section. C =coefficient of contraction. the value of which

ratio, $\frac{F}{F_{\star}}$, of the small section to the large section.

Values of C, the coefficient of contraction, for

different values of $\frac{F}{F_1}$ are given in the following table (from Church):

$\frac{\overline{F}}{\overline{F_1}}$	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.0
									0.892	

Loss Due to Bends

The loss of head in feet due to a bend in a circular pipe is

$$\left[0.131 + 1.847 \left(\frac{a}{r}\right)^{\frac{7}{2}}\right] \frac{v^2}{2g} = L_b \frac{v^2}{2g}$$

a = radius of pipe in feet,

r = radius of bend in feet,

v = velocity of flow in feet per second.

Values of L_{0} for different values of $\frac{a}{a}$ are as follows:

a r	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
Lb	0.131	0.138	0.158	0.206	0.294	0.440	0.661	0.977	1.40	1.98

Flow Through Straight Cylindrical Pipes

- Q = discharge in cubic feet per second,
- v = velocity of discharge in feet per second,
- l =length of pipe in feet,
- d = diameter of pipe in feet,
- L_e = coefficient of loss at entrance. In general, the pipe is normal to the inner surface of the reservoir and then L_e = 0.505. For other cases see Loss at Entrance.
 - f = coefficient of friction, obtained from the table on page 145.

(1) Required the head in feet necessary to keep up a given flow of Q cubic feet per second in a clean iron pipe of given length l and diameter d.

The required head is

$$h \text{ (in feet)} = \frac{v^2}{2g} \left(1 + L_e + 4f \frac{l}{d} \right)$$

ch $v = \frac{4Q}{\pi d^2}$

in which

(2) Required the velocity in the pipe, having given the head h and the length l and the diameter d of the pipe; also required the discharge Q in cubic feet per second.

The velocity in feet per second is:

$$v = \sqrt{\frac{2 g h}{1 + L_{e} + 4 f \frac{l}{d}}}$$

and after solving for v,

$$Q = \frac{1}{4}\pi d^2 v$$

Since the value of f depends on the unknown v as well as the known d, we may first put f = 0.006 for a trial approximation and solve for v; then take the value of f corresponding to this velocity and substitute again in the given formula for v. One trial is generally sufficient for ordinary accuracy.

(3) Required the proper diameter d for the pipe to discharge a given quantity Q cubic feet per second, having given the length of pipe and the head h.

The proper diameter in feet is

$$d = \sqrt[b]{\frac{(1+L_e)d+4fl}{2gh} \left(\frac{4Q}{\pi}\right)^2}$$

and d being solved for,

:

$$v=\frac{4Q}{\pi d^2}$$

Since the radical contains d, we must first assume a trial value for d, and taking f = 0.006, substitute in the above formula for the diameter. Having obtained a value for d, we solve for the velocity v. With the approximate values of d and v thus obtained, we find the corresponding new value of f from the table of friction, and then substitute again in the formulæ. One or two trials generally give sufficient accuracy.

Flow Through Very Long Pipes

When a pipe is very long (1000 feet or more), the head, velocity, or discharge, etc., may be calculated from the formulæ:

$$h = 4f \frac{l}{d} \frac{v^2}{2g} \qquad \text{(Chézy's formula)}$$
$$v = \frac{4Q}{\pi d^2}$$
$$h = \frac{64}{\pi^2} f \frac{lQ^2}{d^5 2g}$$

Notation same as in preceding section.

FLOW THROUGH OPEN CHANNELS Bazin's Formula

The velocity of flow in a channel in feet per second is

$$v = \frac{87\sqrt{rs}}{0.552 + \frac{m}{\sqrt{r}}}$$

ENGINEERING MATHEMATICS

- r = mean hydraulic radius in feet, which is found by dividing the area of the fluid cross-section in square feet by the wetted perimeter in feet (that is, the perimeter of the channel section in contact with the water),
- s = slope of stream (that is, the difference in elevation between two points of the water surface divided by the distance between the two points measured along the surface),
- m =coefficient of roughness, the values of which are given in the following table.

Character of channel	Value of m
Very smooth cement surfaces or planed boards Concrete, well-laid brick, unplaned boards Ashlar, good rubble masonry, poor brickwork Earth beds in perfect condition Earth beds in ordinary condition Earth beds in bad condition covered with débris	0.16 0.46 0.85 1.30

Kutter's Formula

The velocity of flow in a channel in feet per second equals

$$v = \frac{41.65 + \frac{0.00281}{s} + \frac{1.811}{n}}{1 + \left(41.65 + \frac{0.00281}{s}\right)\frac{n}{\sqrt{r}}}\sqrt{rs}$$

where r and s are as in Bazin's formula.

Values for n, the coefficient of roughness, are as follows:

150

Character of channel	Value of n
Planed timber, glazed or enameled surfaces Smooth clean cement Unplaned timber, new well-laid brickwork Smooth stonework, ordinary brickwork, iron Rough ashlar and good rubble masonry Firm gravel Earth in ordinary condition Earth with stones, weeds, etc Earth or gravel in bad condition	$\begin{array}{c} 0.009\\ 0.010\\ 0.012\\ 0.013\\ 0.017\\ 0.020\\ 0.025\\ 0.030\\ 0.035\\ \end{array}$

FLOW OVER WEIRS

Contraction is **complete** when no edge of the weir is flush with the sides or bottom of the channel.

Contraction is **incomplete** when one or more sides of the weir have an interior border flush with the sides or bottom of the channel.

Francis' Formula

The flow over a weir in cubic feet per second is

$$Q = \frac{2}{3} \left[0.622 h \left(b - \frac{1}{10} nh \right) \sqrt{2 gh} \right]$$

in which

$$h$$
 = head in feet of water on weir,

b = width of weir in feet,

- n = 2 for complete contraction,
- n = 1 for one end of weir flush with side of channel,
- n = 0 for both ends of weir flush with sides of channel.

Bazin's Formula for Weirs

For overfall-weirs with end contractions suppressed, the flow in cubic feet per second is

$$Q = \frac{2}{3}n\left[1 + 0.55\left(\frac{h}{p+h}\right)^2\right]bh\sqrt{2\,gh}$$

in which the coefficient n has the value

$$n = 0.6075 + \frac{0.0148}{h}$$

- h =depth in feet of water on weir,
- b = width of weir in feet,
- p = height in feet of the sill of the weir above the bottom of the channel of approach.

STRESSES IN PIPES AND CYLINDERS Pressure in Pipes

The tensile stress in pounds per square inch in a pipe due to internal fluid pressure is:

For thin pipes, $p' = \frac{rp}{t}$

For thick pipes or cylinders,

$$p'=\frac{p(r+i)}{i}$$

r = inside radius of pipe in inches,

t = thickness of pipe in inches,

- p = excess of internal over external pressure in pounds per square inch.
- If S is the required factor of safety, then:

For thin pipes, $t = S \frac{rp}{P}$

For thick pipes or cylinders,

$$t = S \frac{rp}{P - pS}$$

in which r and p are as above, and

P = ultimate tensile strength of material of pipe (see Table of Strength of Materials).

152

Collapsing of Tubes

The collapsing pressure for Bessemer steel lapwelded tubes, for lengths greater than six diameters, is

$$p = 1000 \left(1 - \sqrt{1 - 1600 \frac{t^2}{d^2}}\right) \text{ when } \frac{t}{d} < 0.023$$

or
$$p = 86670 \frac{t}{d} - 1386 \qquad \text{ when } \frac{t}{d} > 0.023$$

(Stewart's equations)

in which

p =excess of external over internal pressure in pounds per square inch,

- d = outside diameter of tube in inches,
- t =thickness of tube wall in inches.

FLOW OF FLUIDS

Flow of Air Through Apertures

The weight of air in pounds discharged per second from a reservoir into the atmosphere is

or

$$M = 0.53 F \frac{p_1}{\sqrt{T_1}} \quad \text{when} \quad p_1 > 2 p_a$$

$$M = 1.06 F \sqrt{\frac{p_a(p_1 - p_a)}{T_1}} \quad \text{when} \quad p_1 < 2 p_a$$
Fliegner's equations

- p_1 = reservoir pressure in pounds per square inch absolute,
- p_a = atmospheric pressure (14.7 pounds per square inch),
- F =cross-section of aperture in square inches,
- T_1 = absolute temperature of reservoir (degrees Fahr. + 459.6).

Flow of Steam Through Apertures $M = 0.0165 F p_1^{0.97}$ (Grashof's formula) $M = \frac{F p_1}{70}$ when $p_1 > \frac{5}{3} p_2$ $M = \frac{F p_2}{42} \sqrt{\frac{3 (p_1 - p_2)}{2 p_2}}$ when $p_1 < \frac{5}{3} p_2$ Rapier's equations

Grashof's formula applies when the final pressure is less than 58 per cent of the reservoir pressure.

M = pounds of steam discharged per second, p_1 = reservoir pressure in pounds per square inch, p_2 = final pressure in pounds per square inch, F = cross-section of aperture in square inches.

Flow of Gas in Pipes

 $Q = 1000 \sqrt{\frac{d^{5}h}{sl}}$ (Molesworth)

- Q = quantity of gas in cubic feet per hour,
- d = diameter of pipe in inches,
- l =length of pipe in yards,
- h =pressure in inches of water,
- s = specific gravity of gas relative to air.

Flow of Air in Pipes

$$v = 114.5\sqrt{\frac{hd}{L}}$$

(Hawksley)

- v = velocity in feet per second,
- h = head in inches of water,
- d = diameter of pipe in inches,

L =length of pipe in feet,

$$Q=\frac{\pi}{4}\frac{d^2}{144}u$$

Q = quantity in cubic feet per second.

Flow of Compressed Air in Pipes

$$Q = 217.5 \sqrt{\frac{pd^{5}}{rL}}$$

$$d = 0.1161 \sqrt[5]{\frac{LQ^{2}r}{p}} = 0.1161 \sqrt[5]{\frac{LQ_{1}^{2}}{pr}}$$

- Q = volume in cubic feet per minute of compressed air, at 62° F.,
- Q_1 = volume before compression, at 62° F.,
 - r =pressure in atmospheres,
 - p = difference in pressures in pounds per sq. inch, causing the flow,
 - d = diameter of pipe in inches,
 - L =length of pipe in feet.

Flow of Steam in Pipes

 $W = 87 \sqrt{\frac{w(p_1 - p_2)d^5}{L\left(1 + \frac{3.6}{d}\right)}}$ (Babcock)

- W = weight of steam flowing in pounds per minute, w = density in pounds per cubic foot of the steam at the entrance to the pipe,
- p_1 = pressure in pounds per square inch at the entrance,

$$p_2 = \text{pressure at exit},$$

- d = diameter in inches,
- L =length of pipe in feet.

ELECTRICITY

OHMIC RESISTANCE

The resistance of a uniform electric conductor at 0° Centigrade is given by the formula:

$$R \text{ (in ohms)} = \rho \frac{L}{A}$$

- L =length of conductor in inches,
- A =cross-section in square inches,
- ρ = resistivity of conductor at 0° C., values of which are given in the following table.

TABLE OF RESISTIVITIES

(Resistivity is the resistance in ohms between any two opposite faces of a 1 inch cube of the material)*

Metal	Resistivity at 0° C.
Aluminium (annealed) Aluminium (commercial) Aluminium bronze Bismuth (compressed) Brass Copper (drawn) Copper (annealed) Gold (annealed) Gold (annealed) Iron (wrought) Lead (compressed) Magnesium Mercury Nickel (annealed) Platinum (annealed) Silver (annealed) Tin Tungsten Zinc (pressed)	$\begin{array}{c} 1.14 \times 10^{-6} \\ 1.05 \times 10^{-6} \\ 4.96 \times 10^{-6} \\ 51.2 \times 10^{-6} \\ 2.82 \times 10^{-6} \\ 0.637 \times 10^{-6} \\ 0.625 \times 10^{-6} \\ 8.23 \times 10^{-6} \\ 0.803 \times 10^{-6} \\ 3.82 \times 10^{-6} \\ 7.68 \times 10^{-6} \\ 1.72 \times 10^{-6} \\ 37.1 \times 10^{-6} \\ 4.89 \times 10^{-6} \\ 3.53 \times 10^{-6} \\ 5.16 \times 10^{-6} \\ 5.16 \times 10^{-6} \\ 2. \times 10^{-6} \\ 2.8 \times 10^{-6} \end{array}$

• This definition applies to English units and to the numerical values given in the table. In general, resistivity is the resistance of a unit cube.

ELECTRICITY

The resistance of a conductor at any temperature is

$$R_2 = R_1 \frac{(1+\alpha t_2)}{(1+\alpha t_1)}$$

in which

- $R_1 =$ known resistance at a temperature l_1 degrees Centigrade,
- R_2 = required resistance at a temperature t_2 degrees Centigrade,
 - α = temperature coefficient of electrical resistance, the value of which is given for different metals in the following table.

TEMPERATURE COEFFICIENTS OF ELECTRI-CAL RESISTANCE

Metal	Temp. coeffi- cient (approx.) for 1° C.
Aluminium (commercial) Copper (annealed) German silver Gold (annealed) Iron (wrought) Mercury Platinum Silver Tungsten	0.00388 0.00036 0.00365 0.00463 0.00072 0.00247 0.00377

Note. — The temperature coefficient of a material is its increase in resistance for each degree Centigrade rise in temperature, and it is expressed as a decimal fraction of the resistance at 0° C.

WIR
COPPER
ANNEALED
NO
DATA

щ

Gauge No.		Diameter in mils	iis	Cross-section of bare wire	of bare wire	Resistance 1000	Resistance in ohms per 1000 feet	Pounds per
(B. & S.)	Bare	Single cotton covered	Double cot- ton covered	Circular mils	Sq. inches	Cold (25° C. =77° F.)	Hot (65° C. =149° F.)	1000 feet
888	8 458 8658			212,000 168,000 133,000	0.166 0.132 0.105	0.0500 0.0630 0.0795	0.0577 0.0727 0.0917	288
0-0	288 288 28			106,000 83,700 66,400	0.0829 0.0657 0.0521	8 8 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9	0.00 1160 1810	652 IQ
₩ 4 ₩	8782 8782 8782	211 189		52,600 41,700 33,100	0.0413 0.0328 0.0260	0.201 0.253 0.319	0.232 0.292 0.369	<u>888</u>
978	<u>348</u>	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	174 156	26,300 20,800 16,500	0.0206 0.0164 0.0130	0.403 0.508 0.641	0.465 0.586 0.739	8.09 2.09 2.09
¢62	107 102	121 108 27	126 112 101	13,100 10,400 8,230	0.0103 0.00615 0.00647	0.808 1.28 1.28	0.932 1.18 1.48	39.6 31.4 24.9
132	223	68R	282	6,530 5,180 4,110	0.00513 0.00407 0.00323	1.62 2.58 2.58		19.8 15.7 12.4
225	823	3XR	ଟନ୍ଦନ	3,260 2,580 2,050	0.00256 0.00203 0.00161	3.25 5.16 5.16	3.73 5.88 2.88	9.8 7.82 6.20

158

ENGINEERING MATHEMATICS

		1000 feet	4.6.6 2888		1.22 0.970 0.769	0.610	0.304	0.152 0.120 0.0954	0.0757 0.0600 0.0476	0.0377
DATA ON ANNEALED COPPER WIRE (Continued)	hms per 1000 ft.	Hot (65° C. = 149° F.)	7.51 9.48 11.9	15.1 19.0 24.0	30.2 38.1 48.0	9. 2 8 9.4.6	121 153 193	243 307 387	488 616 776	626 1230
	Resistance in ohms per 1000 ft.	Cold (25° C. =77° F.)	6.51 8.21 10.4	13.1 16.5 20.8	26.2 33.0 41.6	88.2 86.2 8	105 133 167	335 335	588 688 69	848 1070
	of bare wire	Sq. inches	0.00128 0.00101 0.000802	0.000636 0.000505 0.000400	0.000317 0.000252 0.000200	0.000158 0.000126 0.0000995	0.0000789 0.0000626 0.0000496	0.0000394 0.0000312 0.0000248	0.0000196 0.0000156 0.0000123	0.000096
VLED COPF	Cross-section of bare wire	Circular mils	0791 0791 0791	810 542 509	4 87	202 1991	101 79.7 63.2	39.65 1.5 2.15	25.0 19.8 15.7	12.5 9.9
DATA ON ANNE	Diameter in mils	Double cot- ton covered	888	33.0 33.0 90.6	200 1.6 0 0	27.2 8.6 9.3 6.6	18.0 16.9 15.9	15.1 14.3 13.6	12.0	
		Single cotton covered	న లన	32.5 28.6 28.6	24.1 21.9 19.9	18.2 16.6 15.3	14.0 12.9 11.9	1.1 9.6	8.5	
		Bare	8 %%	22:32	20.1	14.2 12.6 11.3	0.0 8.8 0.0	7.1 6.3 5.6	0.44 0.70	3.5 3.1
	Course No.	(B. & S.)	<u>858</u>	ลสล	⊼ N8	ឯងង	828	***	ጽጽጽ	£. 2

ELECTRICITY

159

DATA ON ANNEALED COPPER WIRE

Pounds per 1000 feet 828 2002 2.4.6 9.7.8 \$\$8 388 2222 Hot (65°C. =149°F.) Resistance in ohms per 1000 feet 0.0577 0.0727 0.0917 222 29.50 29.50 29.50 1.68 ~~~~ 22.8 8%5 Cold (25° C. 0.0500 0.0630 0.0795 8%<u>%</u> 0.253 583 828 25.5 282 000 ö Sq. inches Cross-section of bare wire 0103 0.00513 0.00407 0.00323 00256 0.0206 0829 0657 0521 0328 0260 0.135 000 000 000 Circular mils 88.92 88.92 98.92 13,100 10,400 8,230 212,000 168,000 133,000 52,600 41,700 33,100 5,530 1,180 288 Double cot-ton covered 825 288 *** 282 Diameter in mils Single cotton covered 282 288 3%% 38 82% Bare 318 122 충흥뛋 ក្តន្តភ្ល 822 223 554 Gauge No. (B. & S.) 888 <u>~9</u>= 202 0-0 (n) (n) 500 285

158

ENGINEERING MATHEMATICS

(Continued)
WIRE
COPPER
ANNEALED
NO
DATA

	F	Founds per 1000 feet	4.6.6 28.8		1.22 0.970 0.769	0.610 0.484 0.384	0.304	0.152 0.120 0.0954	0.0757 0.0600 0.0476	0.0377 0.0299
	hms per 1000 ft.	Hot (65° C. =149° F.)	7.51 9.48 11.9	15.1 19.0 24.0	30.2 38.1 48.0	8.9 8.4 9.4 9.4	322	243 267 287	488 616 776	626 0821
	Resistance in ohms per 1000 ft.	Cold (25° C. =77° F.)	6.51 8.21 10.4	13.1 16.5 20.8	26.2 33.0 41.6	52.5 89.25	105 133 167	211 266 335	53 53 53 53 53 53 53 55 55 55 55 55 55 5	848 1070
	Cross-section of bare wire	Sq. inches	0.00128 0.00101 0.000802	0.000636 0.000505 0.000400	0.000317 0.000252 0.000200	0.000158 0.000126 0.0000995	0.0000789 0.0000626 0.0000496	0.0000394 0.0000312 0.0000248	0.0000196 0.0000156 0.0000123	0.000096
	Cross-section	Circular mils	388	810 642 692	\$ 87	299 29 29 29	101 79.7 63.2	20.1 8.98 2.15	25.0 19.8 15.7	12.5 9.9
	lits	Double cot- ton covered	4 44	88.88 2.0.9	88.52 1.6.52 1.6.6	27.5 89.6 9.3	18.0 16.9 15.9	15.1 13.6 13.6	12.0	
	Diameter in mils	Single cotton covered	సికిష	28.93 28.92 28.92	24.1 21.9 19.9	18.2 15.3 15.3	14.0 12.9 11.9	1.11 9.6	8.5	
		Bare	8%8	883 5.5.9	20.1 17.9 15.9	14.2 12.6 11.3	0.0 8.9 8.0	7.1 6.3 5.6	5.0 4.5	3.5
	No.	(B. & S.)	202 8	ឝឌឌ	***	ឯងង	855	***	***	£\$

ELECTRICITY

1 5 Ç

Ohm's Law

$$I = \frac{E}{R} \qquad R = \frac{E}{I}$$
$$E = IR$$

or

I =current in amperes,

E = electromotive force in volts,

R = resistance in ohms.

The proper size of wire in circular mils for any direct current circuit on a two-wire system consisting of copper conductors is given by the formula:

$$\text{c.m.} = \frac{10.8 \times 2 \, d \times I}{E}$$

or if the resistance is required,

$$r = \frac{E}{2\,d \times I}$$

where

r = resistance per foot of wire in ohms,

E =volts drop in line,

I = total line current in amperes,

d = distance from source to load in feet,

c.m. = cross-section of conductor in circular mils.

Resistance of Circuits

The resultant of several resistances in series equals

$$R=r_1+r_2+r_3+\cdot\cdot\cdot$$

where r_1 , r_2 , r_3 , etc., are the separate resistances.

The resultant of several resistances in **parallel** or **multiple** is given by the relation:

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \cdots$$

160

R is the total or combined resistance; and r_1, r_2, r_3 , etc., are the separate resistances.

Power and Energy in Direct Current Circuits

The power in watts expended in a resistance is

$$P = EI = I^2 R$$

E = electromotive force in volts,

I =current in amperes,

R =resistance in ohms.

The energy transformed into heat in a time t seconds is

$$\epsilon = EIt = I^2Rt$$

when the current, I, is constant; or, if the current is variable, energy equals

$$\epsilon = \int_{t_1}^{t_2} i^2 R \, dt$$

where i is the instantaneous value of the current, expressed as a function of t.

The power in any two-wire direct current circuit is

P (in watts) = EI

where E is the volts between the terminals of the circuit and I is the current in amperes.

MOTORS AND GENERATORS

The **frequency** in cycles per second is given by the relation:

$$f = \frac{\text{R.P.M.}}{60} \times \frac{P}{2}$$

R.P.M. = speed in revolutions per minute, P = number of poles.

Equations of Direct Current Motor

The armature current of a motor, during starting, is

$$I_a = \frac{E-e}{R_a + R_x}$$

in which

E =impressed voltage,

e =counter-electromotive force,

 R_a = armature resistance in ohms,

 R_x = resistance of grid or rheostat in series with armature.

At full speed,

$$I_{a} = \frac{E - e}{R_{a}}$$

$$e = K\phi f$$

$$E = I_{a}R_{a} + e = I_{a}R_{a} + K\phi f$$

$$I_{a} = \frac{E - K\phi f}{R_{a}}$$

$$f = \frac{E - I_{a}R_{a}}{K\phi}$$

- f =frequency in cycles per second,*
- ϕ = total field flux in magnetic lines, cutting armature conductors,
- K = constant for any given machine. Its value is $\frac{4 t}{10^8}$, where t is the number of armature turns in series.

* Frequency, in the case of a direct current machine, refers to the frequency of alternation in the armature windings, not, of course, in the external circuit.

ELECTRICITY

Equations of Direct Current Generator

 $E = e - I_a R_a$

e = generated voltage,

E = terminal voltage,

 I_a = armature current in amperes,

 R_a = armature resistance in ohms.

$$I_a = \frac{E}{R}$$

R = resistance of load in ohms.

$$E = RI_a$$

$$e = E + I_a R_a = I_a (R + R_a)$$

Torque

The torque of a dynamo in foot-pounds equals

$$T = KI\phi$$

where

- ϕ = total field flux in magnetic lines, cutting armature conductors,
- I =armature current in amperes,
- K = constant term for any given dynamo. Its value is $K = \frac{2.348}{10^9} tP$, *t* being the number of armature turns in series, and *P* the total number of poles.

The torque of a motor in terms of the horsepower is

$$T=\frac{33,000\,\mathrm{H.P.}}{2\,\pi n}$$

or solving for horsepower,

H.P.
$$= \frac{2\pi Tn}{33,000} = \frac{2\pi RFn}{33,000}$$

n = number of revolutions per minute,

- T =torque in foot-pounds,
- R =radius of pulley in feet,
- F =turning force in pounds.

Induced Voltage

$$e = -\frac{N}{10^8} \frac{d\phi}{dt}$$
 volts

N = number of turns.

If the turns cut across a uniform field, at right angles to the lines of force, then $\frac{d\phi}{dt}$ equals the number of lines cut per second. Otherwise, $\frac{d\phi}{dt}$ is the first derivative of ϕ in respect to t, ϕ being expressed as a function of t.

The effective voltage induced in the windings of a generator, motor, or transformer, etc., is given by the relation:

$$E = \frac{\sqrt{2}\pi f n\phi}{10^8} = \frac{4.44 f n\phi}{10^8} \text{ volts}$$

This formula is generally quite accurate, being derived on the assumption of uniform flux distribution.

- f = frequency in cycles per second,
- ϕ = total number of lines of magnetic force,
- n = effective number of turns. If all the turns are grouped in one coil, then n equals the total number of turns. Otherwise, if the winding is distributed over k electrical degrees (as in the armature of a motor or generator), then $\sin \binom{k}{k}$

the effective number of turns is $n = N \frac{\sin\left(\frac{k}{2}\right)}{\frac{k}{2}}$,

N being the total number of turns.

164

ELECTRICITY

The average induced voltage of a dynamo is

$$E = \frac{4 f n \phi}{10^8} \text{ volts}$$

where n is the number of armature turns in series.

Inductance

Inductance, L, is the number of interlinkages of flux with turns, per unit current,

$$L (\text{henrys}) = \frac{N\phi}{10^8 I}$$

in which

N = number of turns,

I =current in amperes,

 ϕ = number of lines of magnetic force interlinking with the turns.

The theoretical unit of inductance is the centimeter.

The **practical unit** of inductance is the henry, which equals 10^9 centimeters.

The counter-electromotive force in an inductive circuit is

$$\dot{e} = -L\frac{di}{dt}$$

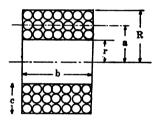
provided the inductance, L, is constant.

The total voltage consumed by an inductive circuit

$$E = ir + L\frac{di}{dt}$$

the inductance, L, being constant.

r is the resistance of the circuit in ohms, and $\frac{di}{dt}$ is the first derivative of *i* with respect to *t*, the current *i* being expressed as a function of *t*.


The inductance in henrys of an air-core circular coil is

$$L = \frac{0.366 \left(\frac{l}{1000}\right)^2}{b+c+R} \times F' F''$$

$$F' = \frac{10 \ b+12 \ c+2 \ R}{10 \ b+10 \ c+1.4 \ R}$$

$$F'' = 0.5 \log_{10} \left(100 + \frac{14 \ R}{2 \ b+3 \ c}\right)$$

l =length of conductor in feet.¹

All other dimensions are in inches and as indicated in the diagram.

The inductance, L, of a concentric cable in henrys per 1000 feet is

 $L = \frac{3.048}{10^5} \times \left\{ \frac{1}{2} + 4.6 \log_{10} \frac{R}{r} + \frac{4.6 R_0^4}{(R_0^2 - R^2)^2} \log_{10} \frac{R_0}{R} - \frac{1}{2} \frac{3 R_0^2 - R^2}{(R_0^2 - R^2)} \right\}$

where

- r = radius of inner metallic conductor,
- R = distance from center of cable to the inner surface of the outer metallic conductor,
- R_0 = distance from center of cable to the outer surface of the outer metallic conductor.

The values of r, R, and R_0 must be expressed in the same units.

The total inductance, L, of a two-wire transmission circuit in henrys per 1000 feet is

$$L = \frac{3.048}{10^5} \left\{ 9.2 \,\mu \log_{10} \frac{D-r}{r} + \mu_1 \right\}$$

where

l

- $\mu_1 = \text{permeability of the metal conductor; for copper,}$ $\mu_1 = 1,$
 - μ = permeability of medium separating wires; for air, $\mu = 1$,
- D = distance between the two lines, measured from center to center,
- r = radius of conductor, in same unit as D.

Capacity

The unit of capacity is the farad. Since the farad is very large, the microfarad, which is one-millionth of a farad, is used as the practical unit. The **theoretical** unit of capacity is the centimeter, 9×10^{11} centimeters being equal to 1 farad.

The **charge** of a condenser, Q, is measured in ampereseconds or coulombs, and may be calculated by the formula:

from which
$$Q = CE$$

and $E = \frac{Q}{E}$

where

C =capacity in farads,

E = potential across the terminals of the condenser in volts.

The capacity of a plate condenser is

$$C = \frac{2248 \, KA}{d \times 10^{10}} \, \text{microfarads}$$

where

- A =total area in square inches of **all** the dielectric sheets separating the condenser plates,
- d = average thickness in inches of one sheet of the dielectric,
- K = inductivity of the dielectric, average values of which are given in the following table for different materials.

Materials	Induc- tivity K
Air (at standard pressure). Manilla paper Paraffin, solid Ebonite India rubber Shellac Oil Glass Mica	1.00 1.50 2.50 2.50 3.00 3.00 3.10 6.00

Condensers in Parallel. When two or more condensers are connected in parallel, the resultant capacity, C, equals the sum of the separate capacities, thus

$$C = C_1 + C_2 + C_3 + \ldots$$

Condensers in Series. When two or more condensers of capacities C_1 , C_2 , C_3 , etc., are connected in series, the resultant capacity is given by the formula:

$$C = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots}$$

ELECTRICITY

The capacity, C, of a concentric cable per 1000 feet in microfarads is

$$C = \frac{7.37}{1000 \log_{10} \frac{\rho_0}{\rho}}$$

in which

 ρ = radius of inner metallic conductor,

 ρ_0 = distance from center of cable to the inner surface of the outer metallic conductor, in the same unit as ρ .

The capacity, C, of a two-wire transmission line per 1000 feet in microfarads is given approximately by the formula:

$$C = \frac{3.68}{1000 \log_{10} \frac{D-r}{r}}$$

if the lines are not close to the ground.

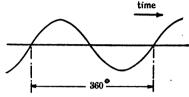
- D = distance between the two wires of the transmission line, measured from center to center,
 - r = radius of conductor, in same unit as D.

The differential equations of a condenser are

$$dq = i dt$$

$$q = charge = \int i dt$$

$$dq = cde$$


$$i = c \frac{de}{dt}$$

Alternating Current Circuits

The shape of the voltage or current wave produced by an alternator is, in general, nearly that of a sine curve. Alternating current calculations are, therefore, usually worked out on this assumption. The number of cycles or complete waves per second is the **frequency** of the current, and the time required

for the current to complete one cycle is a **period**.

The **average** value of the current or voltage is the average of all the

ordinates of the curve of one half-wave. The **effective** value of an alternating current or voltage is the square root of the sum of the squares of the instantaneous values of a half-wave.

If E is the maximum voltage of a half-cycle of a sine wave,

average voltage
$$=\frac{2}{\pi}E = 0.636 E$$

effective voltage $=\frac{1}{\sqrt{2}}E = 0.707 E$

Similarly, if the maximum current is I,

average current
$$=\frac{2}{\pi}I = 0.636 I$$

effective current $=\frac{1}{\sqrt{2}}I = 0.707 I$

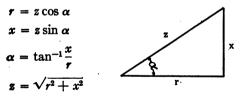
When the voltage reaches a definite value in the cycle sooner than the current reaches its corresponding value, the voltage and current are **out of phase** with each other; the voltage is said to be **leading**, and the current to be **lagging**. Phase difference is always expressed in degrees; a complete cycle equals 360 degrees.

Alternating Voltage and Current

$$I = \frac{E}{Z} \qquad Z = \frac{E}{I}$$
$$E = IZ$$

or

I = current in amperes,


E = electromotive force in volts,

Z =impedance in ohms.

Impedance and Reactance

- r = resistance in ohms
- x =reactance in ohms
- z = impedance in ohms

The relation between resistance, reactance, and impedance is the same as that between the three sides of a right triangle.

Inductive Circuits

The inductive reactance in ohms is

$$x_L = 2\pi f L$$

where f = frequency in cycles per second, L = inductance in henrys.

The impedance in ohms is

$$z = \sqrt{r^2 + x_L^2} = \sqrt{r^2 + 4\pi^2 f^2 L^2}$$

Circuits having Capacity

The capacity reactance in ohms is.

$$x_C = -\frac{1}{2\pi fC}$$

where f = frequency in cycles per second, C = capacity in farads.

The impedance in ohms is

$$z = \sqrt{r^2 + x_C^2} = \sqrt{r^2 + \frac{1}{4\pi^2 f^2 C^2}}$$

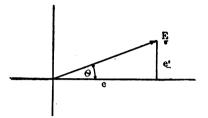
<u>Circuits having Inductance and Capacity</u> The reactance in ohms is

$$x = x_L + x_C = 2\pi fL - \frac{1}{2\pi fC}$$

The impedance in ohms equals

 $z = \sqrt{r^2 + (x_L + x_C)^2}$

Vector Representation of Sine Waves


A sine wave of voltage or current may be represented by a vector, the magnitude or length of which is equal to the effective value of the sine wave. It is sometimes more convenient to let the length of the vector equal the maximum value of the sine wave. The vector is generally denoted by a capital letter, with a dot directly beneath it; it is expressed in terms of its rectangular components, which determine the magnitude of the vector and its direction relative to the coördinate axes. Thus, the vector E is written

in which
$$E' = e + je'$$

 $j = \sqrt{-1}$

where e denotes the horizontal or real component of the

ELECTRICITY

vector, and e' the vertical or imaginary component. The imaginary unit, j, in the above equation, merely denotes the direction of measurement of e'.

The magnitude of E is

$$E = \sqrt{e^2 + e'^2}$$

and the angle θ which the vector E makes with the horizontal axis is

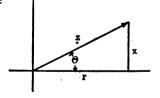
$$\theta = \tan^{-1}\frac{e'}{e}$$

The angle in degrees between two vectors is the **phase difference** between the two sine waves which the vectors represent.

In vector notation, the **impedance** is

$$Z = r + jx$$

and its magnitude is


$$Z = \sqrt{r^2 + x^2}$$

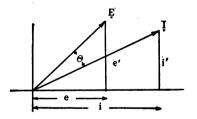
The admittance is

$$Y = \frac{1}{Z} = \frac{1}{r+jx} = \frac{r}{Z^2} - j\frac{x}{Z^2} = g + jb$$

where $g = \frac{r}{Z^2} =$ conductance,

$$b = -\frac{x}{Z^2} =$$
susceptance.

The current equals


$$I = \frac{E}{Z} = EY = (e + je') \left(\frac{r}{Z^2} - j\frac{x}{Z^2}\right) = i + ji'$$

and the voltage is

$$E = IZ = (i + ji') (r + jx) = e + je'$$

Power in Alternating Current Circuits

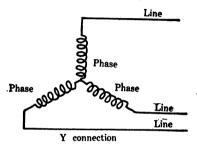
If the effective voltage and current are represented by the vectors

the real power is

$$W = ei + e'i' = EI\cos\theta$$

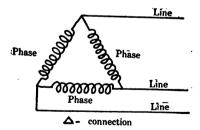
the wattless power is

 $W_i = e'i - ei' = EI\sin\theta$


the volt-amperes equals EI.

The **power-factor** is the cosine of the angle between the voltage and current vectors,

power-factor =
$$\cos \theta = \frac{ei + e'i'}{EI}$$


Balanced Three-phase Circuits

- E = volts between lines
 - e = volts per phase
- I =current in each line
- i =current in each phase

For Y-connections,

 $E = e\sqrt{3}; e = \frac{E}{\sqrt{3}}; \text{ and } I = i$

For Δ -connections,

$$E = e; I = i\sqrt{3}; \text{ and } i = \frac{I}{\sqrt{3}}$$

In either case, for non-inductive load, the power in watts is

$$W = \sqrt{3} EI$$

If the load is inductive, then the power is $W = \sqrt{3} EI \cos \theta$

where $\cos \theta$ is the power-factor of the phase.

MAGNETISM

Equations of Magnetic Circuits

F = attractive or repellent force in dynes,

$$nmf = magnetomotive$$
 force in ampere turns,

- N = number of turns,
 - I =current in amperes,
 - β = density in magnetic lines per square centimeter,
 - ϕ = total number of lines of flux,
- A = cross-section of magnetic path in square centimeters,

 $\mu = permeability,$

H =intensity of field,

- l =length of magnetic circuit in centimeters,
- ρ = reluctance,
- m = pole strength,
 - r = distance between poles.

$$\phi = \frac{0.4 \pi NI}{\rho}$$

$$\rho = \frac{l}{\mu A}$$

$$\phi = \frac{0.4 \pi NI \mu A}{l}$$

$$\beta = \frac{\phi}{A}$$

$$\beta = \frac{0.4 \pi NI \mu}{l}$$

$$mmf = 0.4 \pi NI$$

$$\mu = \frac{\beta}{H}$$

MAGNETISM

Magnets and Magnetic Fields

F = mH $F = \frac{mm'}{\mu r^2}$ $\phi = 4 \pi m$

The attractive force in pounds exerted by a two pole magnet is $P = \frac{SB^2}{72,134,000}$, where S is the total area of both pole faces in square inches, and B is the density in magnetic lines per square inch.

The **ampere-turns** required to maintain a flux density of *B* lines per square inch in an **air gap** is IN = 0.313 Bl, in which *l* is the length of the gap in inches.

Hysteresis Loss

The power in watts lost in hysteresis is

$$W = k \frac{fVB^{1.6}}{10^7}$$

- f = frequency in cycles per second,
- V = volume of iron in cubic inches,
- B = magnetic density in lines per square inch,
- k =empirical constant, values of which are given in the following table.

Character of iron	Value of k
Silicon steel Annealed sheet iron Cast steel Cast iron	0.0008 to 0.0011

Eddy Current Loss

The power in watts lost due to eddy currents in iron or steel laminations is approximately

$$W = \frac{0.00135}{10^7} f^2 l^2 B^2 V$$

- f = frequency in cycles per second,
- l = average thickness of lamination in inches,
- B = magnetic density in lines per square inch,
- V = volume of iron in cubic inches.

This formula holds for ordinary temperatures, and if the thickness of the lamination is not greater than 0.025 inch. In silicon steel, the eddy current loss is approximately $\frac{1}{3}$ of that given above.

STANDARD SATURATION CURVES

B = density in lines per square inch AT/in. = ampere-turns per inch

Values of ampere-turns per inch for densities not included in the following tables may be determined approximately by interpolation. Thus, the AT/in. for silicon steel for B/sq.in. = 65,500 is

 $AT/in. = 4.5 + \frac{5500}{10,000}$ (6.4 - 4.5) = 5.5 (approx.)

SILICON	STEEL	ANNEALED S	heet Iron	
Saturation curve		Saturation curve		
В	AT/in.	В	AT/in.	
30,000	2.1	30,000	4	
40,000	2.7	40,000	4.4	
50,000	3.4	50,000	5	
60,000	4.5	60,000	9	
70,000	6.4	70,000	12	
80,000	10	80,000	20	
90,000	23	90,000	33	
100,000	35	100,000	60	
110,000	100		· · · · · · · · · · · · · · · · · · ·	
120,000	225			
130,000	520			
135,000	1000			
140,000	2200			
145,000	3770			
150,000	5330			
155,000	6900			
CAST	Steel	Cast I	RON	
Saturatio	on curve	Saturation	curve	
В	AT/in.	В	AT/in.	
50,000	11	5,000	8	
60,000	15	10,000	12	
70,000	20	15,000	17	
80,000	29.5	20,000	23	
90,000	50	25,000	30	
100,000	105	30,000	43	
105,000	165	35,000	60	
		40,000	85	
		45,000	110	
		50,000	145	
	1	55,000	190	

AERONAUTICS

Balloons

For either rigid or non-rigid airships, in vertical equilibrium,

 $W + Vd' = Vd, \quad W = V(d - d')$

where W = gross weight in lb., exclusive of gas,

V = volume of gas bag, cu. ft.,

d, d' = densities of external air and internal gas, lbs. per cu. ft.

If P = absolute pressure, lb. per sq. ft.: T = absolutetemperature (Fahr. temp. + 460), m = molecularweight of gas, then,

$$d' = P'm' \div 1544 T', \qquad d = P \div 53.36 T,$$
$$W = V \left(\frac{P}{53.36 T} - \frac{P'm'}{1544 T'}\right)$$

The lift (W) per cu. ft. of gas is $\frac{W}{V} = \frac{P}{53.36 T} - \frac{P'm'}{1544 T'}$, say A - Bm', where P, T, P' and T' are standardized. The ratio of lifts per cu. ft. of two gases is then $r = (A - Bm_2') \div (A - Bm_1')$, under like conditions. The ratio of lifts per lb. of two gases under like conditions is $r \frac{m_1'}{m_2'}$.

Values of P and T are determined chiefly by the altitude (see page 202). Up to 10,000 ft., P decreases about 70 lb. from its sea-level value per 1000 ft. of

180

ascent. The value of T also decreases, and the seasonal variations in T decrease as altitude increases. The excess of P' over P is usually equivalent only to a few ounces per sq. in. This excess determines the tearing stress in the fabric (see page 153) which may be of the order of 100 lb. per lineal inch. Values of T' and T will differ somewhat, although the gas bag is painted with a non-absorbent coating.

Altitude control is most simply accomplished by dropping ballast (decreasing W) or by venting gas. The range of control is then greatest at the start and dampens down gradually by leakage or by the use of control. *Ballonets* (air bags), pumped full when it is desired to descend, prolong the control. There is a maximum allowable altitude (corresponding with a definite value of P) for every assigned set of conditions.

Resistance to flight in dirigible balloons at sealevel is given by $R = K V_0^n \sqrt{A^n}$, where R is in lb., A = total surface area of gas bag, sq. ft., $V_0 =$ speed, ft. per sec., *n* is around 1.9 and K around 0.000015 for usual shapes from 4 to 8 diameters long. This must be somewhat increased to cover resistance to forward motion of car, structure, etc., The power required (thrust h.p. at the propeller) is $RV_0 \div 550$.

For minor items of resistance, if S = projected area on a transverse plane, sq. ft., and V is in miles per hr., $R' = K' S V^2$, where K' has the following values at sea-level:

Smooth wires normal to air,	K' = .0026
Cables normal to air,	K' = .003
	77/ 000

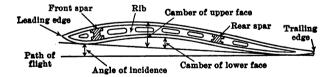
Average for wheels uncovered, K' = .002

covered, K' = .001

Values of K, K', R and R' are directly proportional to the atmospheric density.

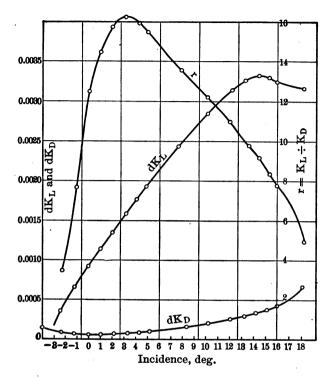
Airplanes

Wing Characteristics:


 $L = d k_L A V^2, \qquad D = d k_D A V^2,$

where d =atmospheric density,

- L =lift, in lb., at right angles with the flight path,
- D =drift or wing resistance, in lb., parallel with the flight path,
- A =area of wing, sq. ft.,

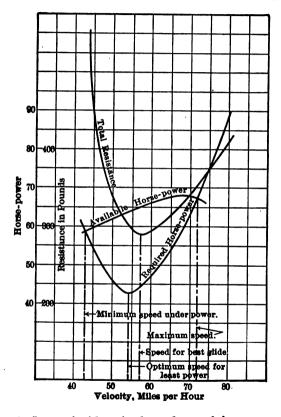

 k_L and k_D = lift and drift coefficients.

Values of k_L and k_D depend on size, shape, camber, etc. They are determined by wind tunnel experiments. The chief factor in determining the values of the coefficients is the **incidence** of the bottom chord of the wing against the flight path. Lift and drift are com-

ponents of an approximately normal force acting at the center of pressure. This force is mainly a suction on the upper face. The position of the center of pressure varies with the incidence.

As indicated in the diagram, maximum values of k_L are around 0.043 and maximum values of $r = k_L/k_D$

around 16. There is positive lift at slight negative incidences. The incidence of maximum lift (usually around 14°) is called the **critical incidence** or **burble point**. It should not be approached too closely. In horizontal flight, L = W, the weight of the plane, and speeds increase as incidences decrease. Minimum speed is determined by maximum k_L and should be low for safe landing. Least resistance (wing resistance alone) is realized at incidences around 0°, but here the lift is low. The best ratio of lift to drift occurs

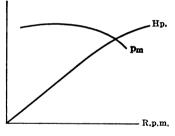

184 ENGINEERING MATHEMATICS

around 3° incidence and this determines the economical cruising speed, though lower incidences are generally used at maximum speeds.

If L/A = W/A = l (the "wing loading"), $dV^2 = \frac{l}{k_L}$ and $\frac{D}{A} = \frac{l}{r}$. A given wing at a given incidence is subject to drift which is directly proportional to its loading. Also, since $V^2 = \frac{l \P}{d k_L}$, the landing speed is low (safe) for a given critical incidence when the wing loading is low.

Parasitic resistances (struts, bars, etc.) are determined as for balloons. Very roughly, $P = WV^2 \div$ 50,000 lb. at sea-level, where P = total parasitic resistance, lb. Parasitic resistance varies directly as the density, but is practically independent of the incidence or wing area. Writing $P = d k_P V^2$, the total resistance is $R = D + P = d V^2 (A k_D + k_P)$. Parasitic resistance becomes very important at high speeds and low incidences. The ratio $\frac{L}{R}$ is commonly around 5 or 6 at usual incidences, where $\frac{L}{D}$ may be as high as 12 to 16. For a given plane, greatest distance of flight is realizable when R is a minimum. Since h.p. = $H = R V \div 375$, efficiency, which is proportional to $\frac{L}{R}$, is also proportional to $\frac{W V}{H}$, which fraction really expresses $\frac{\text{effect}}{\text{cause}}$.

The h.p. required has a definite value, for a given plane, corresponding with each speed or incidence. At a given incidence, the power to propel any particular plane varies directly as the atmospheric density: therefore inversely with the altitude. The diagram shows that minimum resistance occurs at a higher


speed (lower incidence) than does minimum power required. The latter condition is the condition of maximum endurance (hours in the air). Since W(=L) decreases during flight, the speeds of least power and

least resistance will vary: hence (whether the aim is greatest radius or greatest endurance) speed and incidence should vary during long horizontal flights.

During a **glide** at an angle θ with the horizontal, the plane is subject to forces R along the flight path and $L = R \tan \theta$, perpendicular to R, both due to its speed. A minimum gliding angle is reached, for a given plane, when R is a minimum. The incidence and speed for best glide are thus determined.

As to curve of **available horse-power** see page 188.

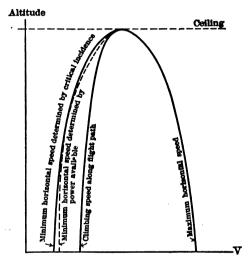
Engines. These are vertical, Vee, radial: stationary or rotary. Most are water-cooled. Radial sta-

tionary engines are sometimes, and rotary engines always, aircooled. Nearly all engines are four-cycle. Weights of present standard engines range somewhat beyond the limits 2 to $4\frac{1}{2}$ lb. per h.p.

Up to 16 cylinders or more are used. The 6-cylinder vertical, 8-cylinder 90° Vee and 12-cylinder 60° Vee, with 9-cylinder rotaries, are favorite assemblies. About 30 h.p. is the maximum size of cylinder: and this is reached only with water-cooling. Mean effective pressures, p_m , referred to the brake, reach 110 lb. in water-cooled and 80 lb. in air-cooled types. Speeds may be as high as 2000 R. P. M., but a reduction gear between engine and propeller is commonly employed for speeds exceeding 1600 R. P. M. Mean effective pressures (at sea-level) are constant over a considerable

speed range. Horse-power varies directly with the speed, up to a rather high limit. For one single-acting four-cycle cylinder of d in. diameter, and s in. stroke, at $n \in \mathbb{R}$. P. M., brake h.p. = $0.7854 \text{ snd}^2 p_m \div (24 \times 33,000)$.

Propellors are usually of wood, two-bladed. For similar propellors,


$$T = an^{2} D^{4} d, \quad Q = bN^{2} D^{5} d = \frac{Ed^{2} s p_{m}}{96}, \quad e = c,$$

where $T =$ thrust, lb.,
 $Q =$ torque, lb. at 1 ft. radius,
 $E =$ number of engine cylinders,
 $n = R. P. M.$
 $D =$ diameter, ft.,
 $e =$ propeller efficiency $= \frac{TV}{375} \div \frac{\pi Qn}{33,000},$
 $a, b, and c =$ factors depending on the slip.

a
 $\left| \begin{array}{c} & & \\ &$

The values of a, b, and c are usually determined from wind tunnel experiments, and plotted on the base, $S = \frac{V}{nD}$, which may be called the **effective pitch ratio** and is equal in homologous units to $p(1-s) \div D$, where p = pitch, s = slip. In a given wheel, D is constant. Hence for constant efficiency, $\frac{V}{n} = \text{constant}$. As will be shown, such constant ratio cannot be preserved: hence the propellor efficiency, which has a maximum value around 0.70, will seriously decrease at conditions other than those of the design.

Horizontal Power and Speed. Flying horizontally at sea-level, the engine and propellor torque remaining constant (because p_m is constant), $a_2n_2^2 = a_1n_1^2$ and *n* decreases as *S* decreases. Then $\frac{V_2}{V_1} = \frac{S_2 n_2}{S_1 n_1}$, or decreasing V leads to decreasing S and n, and (if the propellor was designed for a maximum value of e at the highest value of V) it also leads to decreasing e. Reduced plane speed decreases engine output because it decreases n. It may further decrease propellor output by decreasing e. These considerations explain the shape of the "available horse-power" curve of the diagram on page 185. The speed limits are determined by the intersections of this curve with that for "power required." For a given plane, a low loading lowers the latter curve and increases the speed range.

High Level Flight. Curves similar to that last mentioned may be plotted for various altitudes and corresponding densities. It will be found that the power required for horizontal flight at a high altitude is less than that at sea-level at a high velocity and greater at a low velocity. Minimum power required is greater and is realized at a greater velocity, as the altitude increases. The power available from the engine decreases. The indicated power varies in **AERONAUTICS**

almost direct proportion with the atmospheric density. The engine friction losses remain about constant. Hence the torque power falls off rather more rapidly than the density, as the altitude increases. This alone might be sufficient to decrease the speed range, with increasing alticude. As a matter of observed fact,

the maximum horizontal speed does decrease as the altitude increases. The value of n also decreases, though only slightly. Hence S decreases and in general e falls off, so that the "power available" curve is decidedly lowered at high altitudes. Eventually there is reached an altitude (ceiling or absolute ceiling) at which only one speed is possible and above which flight is impossible.

Climbing. The best condition for climbing is that at which there is the greatest surplus of power avail-

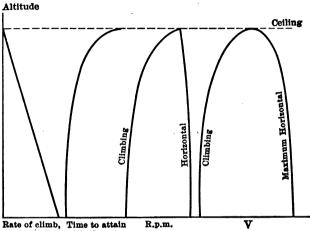
CHARACTERISTICS

					Din	Wing		
Service	Name	Form Power Nation ality			Chord	Length	Area, sq. ft.	
Scout	Spad 13C1	в	TRA	F	26.3		20.4	215
"	Martinsyde	в		Е				327
"	Christmas Bullet	B	Tra	A {	28.0 14.0	5.0 2.5}	21.0	170
Combat	De Haviland 9	в	TRA	Е	42.4	5.5	30.8	434
Scout	Sopwith-Dolphin			E		••		263
Combat	Le Pere	В	TRA	A	39.0	5.6	25.4	392
"	Loening	м	TRA	A	33.3	7.0		239
"	Curtiss 18-2	т	TRA	A	31.9	3.5	23.3	309
Observation	Albatross C3	В	TRA	G {	38.8 36.7	5.9 5.6}	26.0	407
Bomber	Caproni	в	2Tra,1P	Ι	76.8	9.1		1420
" …	Handley-Page	в	TRA	A	100.0	10.0		1648
" …	Martin	В	TRA	A	71.4	7.8		107 0
Training	Standard El	В	Tra	A	24.0	3.5		153
"	U. S. Std	В	TRA	A	43.8	6.0		455
"	Curtiss R4 •	в	TRA	A {	48.3 38.4	} 6.3		505
Mail plane.	Standard	в	TRA	A	31.4	6.0	26.6	337

B = biplane; TRA = tractor; F = French; A.I. = "Automotive Industries;" Age; M = monoplane; Av. = "Aviation;" T = triplane; G = German; E =

able over power required. The amounts of *power* required for horizontal flight at this condition do not vary much with the altitude, for a given plane. Hence, low weight per h.p. of engine capacity favors rapid climb. The excesses of power available will be found to decrease in a straight-line relation with the altitude. But $H' = W c \div 33,000$, where H' = power available,

OF AIRPLANES


Weigh	Weights, lb.		peed	Engine		Loa	dings, b.	Ratio, Useful	
Gross	Use- ful	Miles per hr.	Alti- tude, ft.	Name	h.p.	Per sq.ft.	Per h.p.	Weight +Gross Weight	Reference
1815	556	130	6,500	Hispano	200	8.4	9.1	0.31	A.I., Jan. 16, 1919
2289	••	143	10,000	Hispano	300	7.0	7.5		
2100	280	175	S.L.	Hall-Scott, L6A	200	12.3	10.5	0.13	Fl., Feb. 13, 1919
3725		••	•••	Lion	420	8.5	8.8	••	Fl., Jan. 9, 1919
2358	792	140	10, 000	Hispano	300	9.0	7.9	0.34	Fl., Feb. 6, 1919
3655	1187	136	S.L.	Liberty	400	9.3	10.2	0.33	A.A., Jan. 13, 1919
2368	1040	145	S.L.	Hispano	300	9.9	7.9	0.44	Av., Jan. 15, 1919
2901	1076	151	S.L.	Curtiss K12	400	9.4	7.3	0.37	Av., Feb. 15, 1919
2790	960			Mercedes	160	6.8	12.4	0.34	AE., Mar. 6, 1918
9900	3300	91	S.L.	Fiat	750	7.0	13.2	0.33	
13700	5430	93	S.L.	Liberty	800	8.3	17.1	0.40	
9663	3801	119	S.L.	Liberty	800	9.0	12.0	0.39	
1144	316	100	S.L.	Le Rhone	80	7.5	14.3	0.30	
1950	600	68	S.L.	Curtiss	90	4.3	21.7	0.31	
3242	1017	90	S.L.	Curtiss	200	6.4	15.9	0.31	
2400	834	100	S.L.	Hispano I	170	7.1	14.2	0.35	Av., Jan. 1, 1919

E = English; A = American; S.L. =sea-level; Fl. = "Flight;" A.A. = "Aerial Aeronautics; P = pusher; I = Italian. * Also used as a 2-seater mailplane, when equipped with a 400 h.p. Liberty engine.

c = climb in ft. per min. Hence for a given plane, cbears a straight-line relation with the altitude. During the climb the plane speed (along its flight path) increases, the incidence being 6° to 8° at the start and usually 10° or 12° at the ceiling. The low speed at the start implies a low R. P. M. of the engine, which increases during the climb. The time-altitude

ENGINEERING MATHEMATICS

curve becomes horizontal at the ceiling. The service ceiling is that altitude at which the rate of climb becomes 100 ft. per min.

ft. per min. altitude. min.

High ceiling is associated with rapid climbing. Both are favored by (a) low weight per h.p.; (b) low weight per sq. ft. of wing; (c) low parasitic resistance; (d) low engine friction.

Weights include structure, power plant, fuel and oil, crew and equipment. The two last mentioned rarely constitute over 35 per cent. of the total weight. The power plant weight includes radiator and water (for water-cooled engines), fuel and oil tanks, piping, and ignition apparatus. Water-cooled engines use about 0.55 lb. of fuel and 0.05 lb. of oil per h.p.-hr.: air-cooled, 50 per cent. more fuel and three times as much oil. On account of their lower weight per h.p., the latter engines have an advantage for short flights.

192

MEASUREMENT

English Weights and Measures

Length

1000 mils = 1 inch
12 inches = 1 foot
3 feet $= 1$ yard
5280 feet $= 1$ mile
4 inches $= 1$ hand
9 inches $= 1$ span
$2\frac{1}{2}$ feet = 1 pace
$16\frac{1}{2}$ feet or $5\frac{1}{2}$ yards = 1 rod
1 knot or nautical mile = 6080.26 feet
$= \frac{1}{3}$ league
7.92 inches = 1 link
25 links = 1 rod
100 links or 66 feet or $4 \text{ rods} = 1 \text{ chain}$
10 chains $= 1$ furlong
8 furlongs $= 1$ mile

Surface

144 square inches	= 1 square foot
9 square feet	= 1 square yard
30 ¹ / ₄ square yards	= 1 square rod
160 square rods	= 1 acre
640 acres	= 1 square mile
625 square links	= 1 square rod
16 square rods'	= 1 square chain
10 square chains	= 1 acre
640 acres	= 1 square mile
36 square miles	= 1 township

Volume

1728 cubic inches	=	1 cubic foot
27 cubic feet	-	1 cubic yard
128 cubic feet	=	1 cord
24 ² cubic feet	=	1 perch

Troy Weight

24 grains (gr.)	= 1 pennyweight (dwt.)
20 pennyweights	= 1 ounce (oz.)
12 ounces	= 1 pound (lb.)

Avoirdupois Weight

16 drams (dr.)	= 1 ounce (oz.)
16 ounces	= 1 pound (lb.)
25 pounds	= 1 quarter (qr.)
4 quarters	= 1 hundred weight (cwt.)
20 hundred we	ight (2000 pounds)
= 1 ton (T.))

Apothecaries' Weight

20 grains (gr.)	=	1 scruple (sc. or))
3 scruples	=	1 dram (dr. or 3)
8 drams	=	1 ounce (oz. or 5)
12 ounces	=	1 pound (lb)

Dry Measure

2 pints (pt.)	=	1 quart (qt.)
8 quarts	=	1 peck (pk.)
4 pecks	=	1 bushel (bu.)
36 bushels	=	1 chaldron (ch.)

Liquid Measure

4 gills (gi.)	=	1 pint (pt.)
2 pints	=	1 quart (qt.)
4 quarts	=	1 gallon (gal.)
31 ¹ / ₂ gallons	=	1 barrel (bar.)
63 gallons	=	1 hogshead (hhd.)

Apothecaries' Fluid Measure

60 minims	=	1	fluid-drachm
8 fluid-drachms	-	1	fluid-ounce
16 fluid-ounces	=	1	pint
8 pints	=	1	gallon

Circular Measure

60 seconds (") = 1 minute (') 60 minutes = 1 degree (°) 30 degrees = 1 sign (s) 12 signs, or 360 degrees = 1 circle (cir.)

English and Metric Conversion Tables

Length

1 millimeter	= 39.370 mils
	= 0.039370 inch
1 centimeter	= 0.39370 inch
	= 0.032808 foot
1 inch	= 2.5400 centimeters
	= 0.083333 foot
1 foot	= 30.480 centimeters
	= 0.30480 meter
1 yard	= 91.440 centimeters
	= 0.91440 meter
1 meter	= 39.370 inches
	= 3.2808 feet
	= 1.0936 yards
1 kilometer	= 3280.8 feet
	= 1093.6 yards
	= 0.62137 mile
1 mile	= 5280 feet
	= 1609.3 meters
	= 1.6093 kilometers

Surface

1 circular mil	= 0.78540 square mil
	= 0.00050671 square millimeter
1 square mil	= 1.2732 circular mils
	= 0.00064516 square millimeter
	= 0.000001 square inch
1 sq. millimeter	= 1973.5 circular mils
	= 1550.0 square mils
	= 0.0015500 square inch
1 sq. centimeter	= 197,350 circular mils
	= 0.15500 square inch
1 sq. inch	= 1,273,240 circular mils
	= 6.4516 square centimeters
1 sq. foot	= 929.03 square centimeters
-	= 144 square inches

.

ENGINEERING MATHEMATICS

1 sq. yard	= 1296 square inches
••	= 9 square feet
	= 0.0083613 are
	= 0.00020661 acre
1 sq. meter	= 1550.0 square inches
-	= 10.764 square feet
	= 1.1960 square yards
1 are	= 1076.4 square feet
· .	= 100 square meters
1 acre	= 43,560 square feet
	= 4840 square yards
	= 4046.8 square meters
	= 0.40468 hectare
	= 0.0015625 square mile
1 hectare	= 107,640 square feet
	= 100 ares
	= 2.4711 acres
1 sq. kilometer	= 10,764,000 square feet
	= 1,196,000 square yards
	= 247.11 acres
	= 0.38610 square mile
1 square mile	= 27,878,400 square feet
	= 3,097,600 square yards
	= 640 acres
	= 2.5900 square kilometers
	Volume
1 cu. centimeter	= 0.061024 cubic inch
	= 0.0021134 pint (liquid)
	= 0.0018162 pint (dry)
1 cu. inch	= 16.387 cubic centimeters
	= 0.017317 quart (liquid)
	= 0.014881 quart (dry)
	= 0.016387 liter or cubic decimeter
	= 0.0043291 gallon
	= 0.00057870 cubic foot
1 quart (liquid)	
	= 946.33 cubic centimeters
	= 57.749 cubic inches
	= 0.94633 liter or cubic decimeter

196

MEASUREMENT

1 quart (dry)	= 2 pints (dry)
- 1 ()/	= 1101.2 cubic centimeters
	= 67.199 cubic inches
	= 0.038889 cubic foot
1 liter	= 1000 cubic centimeters
	= 61.024 cubic inches
	= 1.0567 quarts (dry)
	= 0.26418 gallon
1 cubic foot	= 1728 cubic inches
	= 28.317 liters or cubic decimeters
	= 0.028317 cubic meter
1 cubic yard	= 27 cubic feet
	= 0.76456 cubic meter
1 gallon	= 3785.3 cubic centimeters
•	= 230.99 cubic inches
	= 4 quarts (liquid)
	= 3.7853 liters
	= 0.13368 cubic foot
1 cubic meter	= 35.315 cubic feet
	= 10 liters
	= 1.3080 cubic yards
	= 1 stere

Nore.—Pints, quarts, and gallons in this table refer to U. S. measures.

Weight

1 milligram	= 0.015432 grain
	= 0.001 gram
1 grain *	= 64.799 milligrams
-	= 0.0022857 ounce (av.)
1 gram	= 15.432 grains
-	= 0.035274 ounce (av.)
	= 0.0022046 pound (av.)
1 ounce (av.)	= 437.50 grains
	= 28.350 grams
	= 0.062500 pound (av.)

* The troy grain and the apothecaries' grain are of the same weight as the avoirdupois grain.

.

۶,

1 ounce (troy)*	= 31.103 grams
1 pound (av.)	= 6999.97 grains
	= 453.59 grams
	= 16 ounces
	= 0.45359 kilogram
1 kilogram	= 35.274 ounces (av.)
	= 2.2046 pounds (av.)
1 ton (short)	= 2000 pounds (av.)
•	= 907.18 kilograms
	= 0.89286 ton (long)
	= 0.90718 ton (metric)
1 ton (metric)	= 2204.6 pounds
	= 1000 kilograms
	= 1.1023 ton (short)
	= 0.98425 ton (long)
1 ton (long)	= 2240 pounds
	= 1.1200 ton (short)
	= 1.0160 ton (metric)

Force

Equivalents of force given below are dependent on the value of g, the acceleration of gravity. The standard value of g adopted by the International Committee on Weights and Measures, is g = 980.665, corresponding to 45° latitude and sea-level.

1 dyne	= 0.01574 grain
	= 0.00102 gram
	= 0.00007233 poundal
	= 0.000002248 pound (av.)
1 gram	= 980.6 dynes
-	= 0.07093 poundal
1 poundal	= 13,825 dynes
	= 0.03108 pound
	= 0.01410 kilogram
1 pound	= 444,800 dynes
-	= 32.17 poundals

* The apothecaries' ounce is of the same weight as the troy ounce.

1 kilogram = 980600 dynes . = 70.93 poundals

Storage of Water

1 acre-foot	x = 325,800 gallons
	= 43,560 cu. feet
	= 1613 cu. yards
	= 1233 cu. meters
1 gallon	= 0.000003069 acre-foot
1 cu. foot	= 0.00002298 acre-foot
1 cu. yard	= 0.00062 acre-foot

5

Temperature

1 degree Centigrade	$=$ $\frac{2}{5}$ (= 1.8) degree Fahrenheit
1 degree Fahrenheit	$=$ $\frac{1}{2}$ (= 0.556) degree Centigrade
temperature Fahr.	$= t_f = \frac{2}{5} t_c + 32$
temperature Cent.	$= t_c = \frac{1}{2} (t_f - 32)$

Heat, Electric, and Mechanical Equivalents

	Energy
1 erg	= 1 dyne-cm.
	= 0.0000001 joule
	= 0.0000007376 foot-pound
1 gram-centimeter	= 980.6 ergs
	= 0.00009806 joule
	= 0.00007233 foot-pound
1 joule	= 10,000,000 ergs
	= 0.7376 foot-pound
	= 0.2389 gram-calorie
	= 0.102 kilogram-meter
	= 0.0009480 B.t.u.
	= 0.0002778 watt-hour
1 foot-pound	= 13,560,000 ergs
	= 1.356 joules
	= 0.3239 gram-calorie
	= 0.1383 kilogram-meter
	= 0.001285 B.t.u.
	= 0.0003766 watt-hour
	= 0.0000005051 horsepower-hour

ENGINEERING MATHEMATICS

1 kilogram-meter	= 9.806 joules
· ·	= 7.233 foot-pounds
	= 0.009296 B.t.u.
	= 0.002724 watt-hour
1 B.t.u.	= 1055 joules
	= 778.1 foot-pounds
	= 252 gram-calories
	= 107.6 kilogram-meters
	= 0.2930 watt-hour
	= 0.0003930 horsepower-hour
1 watt-hour	= 3600 joules
	= 2655.4 foot-pounds
	= 860 gram-calories
	= 3.413 B.t.u.
	= 0.001341 horsepower-hour
1 kilogram-calorie	= 4186 joules
-	= 3088 foot-pounds
	= 426.9 kilogram-meters
	= 1.163 watt-hours
1 horsepower-hour	= 2,684,000 joules
•	= 1,980,000 foot-pounds
	= 745.6 watt-hours

Power

1 erg per second	= 1 dyne-centimeter per second
	= 0.0000001 watt
1 gram-centimeter per second	= 0.00009806 watt
1 foot-pound per minute	= 0.02260 watt
	= 0.00003072 horsepower (metric)
	= 0.00003030 horsepower
1 watt	= 44.26 foot-pounds per minute
	= 6.119 kilogram-meters per minute
1 horsepower	= 33,000 foot-pounds per minute
-	= 745.6 watts
	= 550 foot-pounds per second
	= 1.01387 horsepower (metric)
1 horsepower (metric)	= 32,550 foot-pounds per minute
• • •	= 735.5 watts
•	= 75 kilogram-meters per second
	= 0.9863 horsepower

.

1 kilowatt

= 44,256.7 foot-pounds per minute

= 1.3597 horsepower (metric)

= 1.341 horsepower

Electric Units

1	abvolt	=	10-8 volt
1	abampere	-	10 amperes
1	abohm	=	10-• ohm

Pressure Equivalents

1 atmosphere (standard)	 = 29.9212 inches of mercury at 32° F. = 760 millimeters of mercury at 32° F. = 33.901 feet of water at 39.1° F. = 14.6969 pounds per sq. inch = 2116.35 pounds per sq. foot
1 inch of mercury at 32° F.	= 0.491187 pound per sq. inch = 70.7310 pounds per sq. foot = 1.13299 feet of water at 39.1° F.
1 foot of water at 39.1° F.	 = 0.8826 inch of mercury at 32° F. = 62.425 pounds per sq. foot = 0.4335 pound per sq. inch = 0.0295 atmosphere
1 pound on the sq. foot 1 pound on the sq. inch	 = 0.016018 foot of water at 39.1° F. = 2.307 feet of water at 39.1° F.

PRESSURE AND VOLUME CORRECTION, ETC.

Reduction of Barometer Readings to o° C.

corrected height
$$H_0 = H\left\{1 - \frac{(\beta - \alpha)t}{(1 + \beta t)}\right\}$$

H = observed height of barometer,

- t = observed temperature of barometer in degrees Centigrade,
- $\beta = 0.0001818$, the coefficient of cubical expansion of mercury,

 α = coefficient of linear expansion of the material of the scale (0.0000085 for glass, 0.0000184 for brass).

Reduction of Gaseous Volumes to o° C., and I Atmosphere Pressure

corrected volume
$$v_0 = \left\{\frac{v}{1+0.00367 t}\right\} \frac{p}{760}$$

- v = observed volume,
- t = observed temperature in degrees Centigrade,
- p = pressure in millimeters of mercury.

Determination of Altitudes by the Barometer

For heights not exceeding 2000 feet, relative altitude is given by the approximate formula:

X (in feet) = 52,500
$$\left\{1 + \frac{2(T+T_1)}{1000}\right\} \frac{H-H_1}{H+H_1}$$

- X = vertical distance between the two stations,
- T = Centigrade temperature at lower station,
- T_1 = Centigrade temperature at upper station,
- H = height of barometer at lower station reduced to 0° C.,
- H_1 = height of barometer at upper station reduced to 0° C.

For any altitude,

 $X = 60,346\{1+0.00256\cos(2\theta)\}\left\{1 + 2\frac{(T+T_1)}{1000}\right\}\log_{10}\frac{H}{H_1}$ in which θ = latitude in degrees.

Velocity of Sound

The velocity of sound in gases is

$$V = \sqrt{\frac{\gamma P}{\rho}}$$

- P = pressure,
 - $\rho = \text{density},$

 γ = ratio of specific heat at constant pressure to that at constant volume. (See Table, page 214.)

VELOCITY OF SOUND IN AIR AND WATER

Substance	Temperature, Degrees C.	Velocity in meters per second	Velocity in feet per second
Air	0	331.7	1088
Air	20	344	1129
Air	100	386	1266
Water	13	1441	4728
Water	19	1461	4794
Water	31	1505	4938

Geodetic and Astronomical Data

Velocity of light = 186,330 miles per second = 299,870 kilometers per second Equatorial radius of the earth * = 3963.339 miles = 6378.388 kilometers Polar semi-diameter of the earth *= 3949.992 miles = 6356.909 kilometers Mean distance from the earth to the moon = 238,854 miles = 384,393 kilometers Mean distance from the earth to the sun = 92,900,000 miles = 149,500,000 kilometers

PHYSICAL AND CHEMICAL CONSTANTS **INTERNATIONAL ATOMIC WEIGHTS (1919)**

<u> </u>		r · · · · · ·	1		
Element	Sym- bol	Atomic weight	Element	Sym- bol	Atomic weight
Aluminum	Al	27.1	Molybdenum.	Мо	96.0
Antimony	Sb	120.2	Neodymium	Nd	144.3
Argon	Ā	39.88	Neon	Ne	20.2
Arsenic	As	74.96	Nickel	Ni	58.68
Barium	Ba	137.37	Niton	Nt	222.4
Bismuth	Bi	208.0	Nitrogen	N	14.01
Boron	B	11.0	Osmium	Os	190.9
Bromine	Br	79.92	Oxygen	0	16.00
Cadmium	Cd	112.40	Palladium	Pd	106.7
Cæsium	Ċs	132.81	Phosphorus	P	31.04
Calcium	Ca	40.07	Platinum	Pt	195.2
Carbon	Č	12.005	Potassium	ĸ	39.10
Cerium	Če	140.25	Praseodymium	Pr	140.9
Chlorine	CÌ	35.46	Radium	Ra	226.0
Chromium	Čr	52.0	Rhodium	Rh	102.9
Cobalt	Čo	58.97	Rubidium	Rb	85.45
Columbium *	ČĎ	93.1	Ruthenium	Ru	101.7
Copper	Čũ	63.57	Samarium	Sa	150.4
Dysprosium	Dy	162.5	Scandium	Šc	44.1
Erbium	Ēř	167.7	Selenium	Še	79.2
Europium	Eu	152.0	Silicon	Ši	28.3
Fluorine	F	19.0	Silver	Äg	107.88
Gadolinium	Gd	157.3	Sodium	Na	23.00
Gallium	Ga	69.9	Strontium	Sr	87.63
Germanium	Ğē	72.5	Sulphur	ŝ	32.06
Glucinum †	ĜĨ	9.1	Tantalum	Ta	181.5
Gold	Au	197.2	Tellurium	Te	127.5
Helium	He	4.00	Terbium	ŤĎ	159.2
Holmium	Ho	163.5	Thallium	ŤĨ	204.0
Hydrogen	H	1.008	Thorium	Th	232.4
Indium	In	114.8	Thulium	Tm	168.5
Iodine	I	126.92	Tin	Sn	118.7
Iridium	Īr	193.1	Titanium	Ti	48.1
Iron	Fe	55.84	Tungsten	Ŵ	184.0
Krypton	Kr	82.92	Uranium	Ü	238.2
Lanthanum	La	139.0	Vanadium	Ň I	51.0
Lead	Pb	207.20	Xenon	Xe	130.2
Lithium	Lĩ	6.94	Ytterbium	Yb	173.5
Lutecium	Lu	175.0	Yttrium	Ŷť	88.7
Magnesium	Mg	24.32	Zinc	Zn	65.37
Manganese	Mn	54.93	Zirconium	Zr	90.6
Mercury	Hg	200.6			
	0		· · · · · · · · · · · · · · · · · · ·		

* Columbium or Niobium (Nb). † Glucinum or Beryllium (Be).

PHYSICAL AND CHEMICAL CONSTANTS 205

WEIGHTS AND DENSITIES

Element	Tempera- ture, Degrees C.*	Density in grams per cu. centimeter †
Aluminium	20	2.70
Antimony, pure	20	6.618
Compressed	20	6.691
Argon, liquid	- 183	1.3845
Arsenic, crys	14	5.73
Barium		3.78
Bismuth	20 .	9.781
Boron, crystal		2.535
Amorphous		2.45
Bromine, liquid	• • • • •	3.12
Cadmium	20	8.648
Cæsium	20	1.873
Calcium	••••	1.54
Carbon, diamend		3.52
Graphite		2.25
Cerium		7.02
Chlorine, liquid	-33.6	1.507
Chromium	20	6.92
Cobalt	21	8.71
Columbium	15	8.4
Copper	20	8.89
Erbium		4.77
Fluorine, liquid	-200	1.14
Gallium.	23	5.93
Germanium	20	5.46
Glucinum		1.85
Gold		9.33
Helium, liquid	-269	0.15
Hydrogen, liquid	-252	0.070
Indium		7.28
Iridium	17	22.42
Iodine	20	4.940
Iron, pure	· · · · •	7.86
Wrought		7.8 to 7.9
Krypton, liquid	 146	2.16
Lanthanum		6.15
Lead	20	11.347
	325	10.645
Lithium	20	0.534
Magnesium		1.741
Manganese		7.42
Mercury	0	13.596

WEIGHT AND DENSITIES

Element	Tempera- ture, Degrees C.*	Density in grams per cu. centimeter †
Mercury	20	13.546
Liquid	-38.8	13.690
Solid	-38.8	14.193
Molybdenum		9.01
Neodymium		6.96
Nickel		8.9
Nitrogen, liquid	- 195	0.810
Osmium		22.5
Oxygen	-184	1.14
Palladium		12.16
Phosphorus, red		2.20
Yeliow		1.83
Platinum	20	21.37
Potassium	20	0.870
Praseodymium		6.475
Rhodium		12.44
Ru bidium	20	1.532
Ruthenium	0	12.06
Samarium		7.7 to 7.8
Selenium		4.3 to 4.8
Silicon, crys	20	2.42
Amorphous	15	2.35
Silver	20	10.503
Sodium	20	0.9712
Strontium		2.50 to 2.58
Sulphur		2.0 to 2.1
Tantalum		16. 6
Tellurium, amorphous	20	6.02
Thallium		11.86
Thorium	17	12.16
Tin	• • • • •	7.29
Titanium	18	4.5
Tungsten		18.6 to 19.1
Uranium	13	18.7
Vanadium		5.69
Xenon, liquid	- 109	3.52
Zinc	20	7.13
Zirconium		6.44

* Where temperature is not given, the value of density is for ordinary atmospheric temperatures. † To reduce density in grams per cubic centimeter to pounds per cubic inch, multiply by 0.0361. To reduce density in grams per cubic centimeter to pounds per cubic foot, multiply by 62.4.

,

Density in Pounds per Miscellaneous substances grams per cubic centimeter cubic foot 2.5 to 2.7 156 to 168 Agate..... Asbestos 2.0 to 2.8 125 to 175 Aspahlt.... 1.1 to 1.5 69 to 94 2.7 to 3.0 170 to 190 Chalk. 1.9 to 2.8 118 to 175 1.8 to 2.6 Clay..... 122 to 162 Coal. anthracite..... 1.4 to 1.8 87 to 112 75 to 94 Soft.... 1.2 to 1.5 Coke..... 1.0 to 1.7 62 to 105 Dolomite.... 2.84 177 Ebonite..... 1.15 72 Feldspar.... 2.55 to 2.75 159 to 172 Flint..... 2.63 164 Fluorite..... 3.18 198 Glass. common..... 2.4 to 2.8 150 to 175 2.64 to 2.76 165 to 172 Granite Graphite.... 2.30 to 2.72 144 to 170 Hornblende 3.0 187 Ice..... 0.917 57.2 1.83 to 1.92 114 to 120 Lime, mortar..... 1.65 to 1.78 103 to 111 Slaked. 1.3 to 1.4 81 to 87 Limestone..... 2.68 to 2.76 167 to 171 4.9 to 5.2 306 to 324 Magnetite..... Malachite..... 231 to 256 3.7 to 4 1 Marble.... 2.6 to 2.84 160 to 177 Mica..... 2.6 to 3.2 165 to 200 Paraffin.... 0.87 to 0.91 54 to 57 Pvrite..... 4.95 to 5.1 309 to 318 2.65 Ouartz..... 165 Ouartzite..... 2.73 170 Sandstone..... 2.14 to 2.36 134 to 147 Slate..... 2.6 to 3.3 162 to 205

WEIGHTS AND DENSITIES (Continued)

ENGINEERING MATHEMATICS

Woods *	Density in grams per cubic centimeter	Weight in pounds per cubic foot
 Ash	0.65 to 0.85	40 to 53
Beech	0.70 to 0.90	43 to 56
Cedar	0.49 to 0.57	30 to 35
Cork	0.22 to 0.26	14 to 16
Elm	0.54 to 0.60	34 to 37
Fir	0.48 to 0.70	30 to 44
Lignum-vitæ	1.17 to 1.33	73 to 83
Mahogany	0.85	53
Maple	0.62 to 0.75	39 to 47
Oak	0.60 to 0.90	37 to 56
Pine, yellow	0.37 to 0.60	23 to 37
Pine, white	0.35 to 0.50	22 to 31
Poplar	0.35 to 0.50	22 to 31
Spruce	0.48 to 0.70	30 to 44
Walnut	0.64 to 0.70	40 to 43

WEIGHTS AND DENSITIES (Continued)

* Seasoned and of average dryness.

Values for gases given below are for 0° Cent. (32° Fahr.) and a pressure of one atmosphere.

Gases	Density relative to air	Weight in grams per liter	Weight in pounds per cubic foot
Acetylene, C_2H_2	0.920	1.1620	0.07254
Air	1.000	1.2928	0.08071
Ammonia, NH3	0.597	0.7706	0.04811
Carbon monoxide, CO	0.9672	1.2506	0.07807
Carbon dioxide, CO ₂	1.5291	1.9768	0.12341
Ethane, C_2H_6	1.0494	1.3567	0.08470
Hydrochloric acid, HCl	1.2684	1.6398	0.10237
Hydrogen, H ₂	0.0696	0.09004	0.005621
Hydrogen sulphide, H ₂ S	1.1895	1.5230	0.09508
Methane, CH4	0.5576	0.7160	0.04470
Nitrous oxide, N ₂ O	1.5298	1.9777	0.12347
Nitric oxide, NO	1.0367	1.3402	0.08367
Nitrogen, N_2	0.9673	1.2514	0.07812
Oxygen, O ₂	1.1053	1.4292	0.08922
Sulphur dioxide, SO ₂	2.2639	2.9266	0.18271

PHYSICAL AND CHEMICAL CONSTANTS 200

WEIGHTS AND DENSITIES (Continued)

Liquids	Tempera- ture, Degrees C.	Density in grams per cubic centimeter	Pounds per cubic foot
Acid, hydrochloric		1.20	74.8
Acid, nitric		1.22	76.0
Acid, sulphuric		1.84	116.5
Alcohol, ethyl	0	0.807	50.4
Alcohol, methyl	0	0.810	50.5
Carbolic acid	15	0.95 to 0.965	59.2 to 60 2
Carbon disulphide	0	1.293	80. 6
Gasoline		0.66 to 0.69	41 to 43
Glycerine	0	1.26	78.6
Naphtha	15	0.665	41.5
Oil, linseed	15	0.942	58.8
Oil, olive	15	0.918	57.3
Petroleum	0	0.878	54.8
Turpentine	16	0.873	54.2
Water (freezing-point)	0	0.99987	62.417
(maximum density)	4	1.0000	62.425
(standard 62° F.)	16.7	0.99886	62.354
	20	0.99823	62.315
	100	0.9584	59.70
Water, sea (62° F.)	16.7	1.0260	63.976

MELTING AND BOILING POINTS OF ELEMENTS

Element	Meltin	Boiling point at atmospheric pressure		
	Degrees C.	Degrees F.	Degrees C.	Degrees F.
Aluminium	657	1215	1800	3272
Antimony	630	1166	1440	2624
Argon		-306	-186	- 303
Arsenic	(vola)	tilizes)		imes)
	•		(450	842)
Barium	850	1562	::::	
Bismuth	269	516	1420	2590
Boron		3630 to 4530	$\binom{\text{sub}}{3500}$	imes 6330)
Bromine	-7.3	18.9	63	145.5
Cadmium	321	610	778	1432
Cæsium	26.4	79.5	670	1238
Calcium	780	1436		
Carbon	4000	7230		
Cerium	623	1153	• • • • •	
Chlorine	-102	-151.6	-33.6	-28.5
Chromium	1520	2768	2200	3992
Cobalt	1480	2696	••••	
Columbium	1950	3542		
Copper	1083	1982	2310	4190
Fluorine	-223 30.2	369 86, 4	-187	-305
Glucinum	1430	2606	••••	
Gold	1063	1945	2530	4586
Helium.	below -272			
Hydrogen	-259	-434	-252.7	-423
Indium	155	311	1000	1830
Iodine	113	235	184.4	364
Iridium	2290	4150	2550	4610
Iron	1530	2786	2450	4442
Krypton	-169	-272	-151.7	-241.1
Lanthanum	810	1490		
Lead	327	621	1525	2779
Lithium	186	367	1400	2552
Magnesium	633	1171	1120	2048
Manganese	1260	2320	1900	3452
Mercury	-38.87	-37.98	356.7	674
Molybdenum	2450	4440	3200	5790
Nickel	1452	2646	2330	4226

PHYSICAL AND CHEMICAL CONSTANTS 211

Boiling point at atmospheric Melting point pressure Element Degrees Degrees Degrees Degrees -210.5-347 -195.7 -320Osmium..... 2700 4890 -219 -362 -182.9 - 297 2820 4600 Palladium 1549 2540 44.1 Phosphorus..... 111.4 287 549 1755 3190 Platinum..... 2450 4440 Potassium..... 62.5 144.5 758 1396 Praseodymium 940 1724 Radium..... 700 1290 Rhodium..... 1907 3465 2500 4530 Rubidium..... 111.3 38.5 696 1285 3450 2520 4570 Ruthenium 1900 Samarium 1350 2460 Selenium 690 1274 217 423 Silicon 1420 2588 3500 6330 Silver..... 961 1762 1955 ·3551 Sodium 97.0 206.6 750 1380 Strontium 900 1650 115 239 444.6 832.3 Sulphur..... 5270 Tantalum 2910 Tellurium 840 1390 3530 450 2790 Thallium..... 301 574 1280 Thorium.... 1690 3070 **Tin**..... 232 449.6 2270 4118 1795 3440 Titanium..... 6330 3500 3700 6690 Tungsten..... Vanadium..... 1720 3130 -164.4 -220 - 140 -109.1 784 1684 418 918 4170 Zirconium 2300

MELTING AND BOILING POINTS OF ELEMENTS (Continued)

SPECIFIC HEATS

, Element	Temperature, Degrees C.	Specific heat
	16 to 100	0.2122
Antimony	17 to 92	0.0508
Arsenic, cryst	0 to 100	0.0861
Arsenic, amorphcus	0 to 100	0.0822
Barium	-185 to 20	0.068
Beryllium	0 to 100	0.425
Bismuth	20 to 100	0.0302
Bismuth, fluid	280 to 380	0.0363
Boron.	0 to 100	0.307 0.0843
Bromine, solid	-78 to -20 13 to 45	0.107
Bromine, fluid	13 to 43	0.055
Cæsium	0 to 26	0.0482
Calcium	0 to 100	0.149
Carbon, graphite	11	0.160
Carbon, diamond	ii	0.113
Cerium	0 to 100	0.0448
Chlorine, liquid	0 to 24	0.2262
Chromium	0	0.1039
Chromium	100	0.1121
Cobalt	15 to 100	0.1030
Copper	20 to 100	0.0936
Gallium, solid	12 to 23	0.079
Gallium, liquid	30 to 113	0.080
Germanium	0 to 100	0.0737
Gold	0 to 100	0.0316
Indium	0 to 100	0.0570
Iodine	9 to 98	0.0541
Iridium	18 to 100	0.0323
Iron, cast	20 to 100	0.1189
Iron, wrought	15 to 100	0.1152
Iron, wrought	0 to 1100	0.153 0.11 46
Iron, hard-drawn	20 to 100	0.0448
Lanthanum	0 to 100 20 to 100	0.0305
Lead	300	0.0303
Lead	0 to 100	1.093
Lithium	20 to 100	0.2492
Manganese	20 to 100	0.1211
Mercury	20 10 100	0.0333
Molybdenum	20 to 100	0.0647
Nickel	18 to 100	0.109
Osmium	19 to 98	0.0311
Palladium	0 to 100	0.0592

PHYSICAL AND CHEMICAL CONSTANTS 213

SPECIFIC HEATS (Continued)

Element Temperature, Degrees C. Specific heat Phosphorus, red. 0 to 51 0.1829 Phosphorus, yellow 13 to 36 0.202 Platinum 0 to 100 0.0323 Potassium -78 to 23 0.166 Rhodium 10 to 97 0.0580 Ruthenium, cryst 22 to 62 0.084 Selenium, amorphous 18 to 38 0.095 Silicon 57.1 0.1833 Silver 0 to 54 0.1728 Sulphur, rhombic 0 to 52 0.1809 Sulphur, monoclinic 0 to 52 0.1809 Sulphur, liquid 119 to 147 0.235 Tantalum 58 0.036 Tellurium, cryst 15 to 100 0.0326 Thorium 0 to 100 0.237 Tungsten 0 to 100 0.232 Tanalum 250 0.0552 Tin, molten 250 0.05799 Titanjum 0 to 100 0.0336 Zincc 300 0.1040			
Phosphorus, yellow 13 to 36 0.202 Platinum 0 to 100 0.0323 Potassium -78 to 23 0.166 Rhodium 0 to 100 0.0580 Ruthenium 0 to 100 0.0611 Selenium, cryst 22 to 62 0.084 Selenium, amorphous 18 to 38 0.095 Silicon 57.1 0.1833 Silver 0 to 100 0.297 Sulphur, rhombic 0 to 54 0.1728 Sulphur, inonoclinic 0 to 52 0.1809 Sulphur, liquid 119 to 147 0.235 Tantalum 58 0.036 Tellurium, cryst 15 to 100 0.0483 Thallium 20 to 100 0.0326 Tin, molten 250 0.05799 Titanium 0 to 100 0.1125 Zinc 300 0.1040 0.1133 Zinc 0 to 100 0.1336 Uranium 0 to 100 0.340 Benzene 40 0.443 Alcohol, ethyl 15 to 50 0.560 Glyceri	Element		
Platinum 0 to 100 0.0323 Potassium -78 to 23 0.166 Rhodium 10 to 97 0.0580 Ruthenium 0 to 100 0.0611 Selenium, cryst 22 to 62 0.084 Selenium, amorphous 18 to 38 0.095 Silicon 57.1 0.1833 Silver 0 to 100 0.0559 Sodium 0 to 54 0.1728 Sulphur, rhombic 0 to 52 0.1809 Sulphur, ilquid 119 to 147 0.235 Sulphur, ilquid 119 to 147 0.235 Tantalum 58 0.036 Tellurium, cryst 15 to 100 0.0483 Thallium 20 to 100 0.0326 Tin 19 to 29 0.0557 Tin, molten 250 0.05799 Titanium 0 to 100 0.125 Tungsten 0 to 100 0.1153 Zinc 300 0.1040 Zirconium 0 to 100 0.340 Benzene 40 0.423 Brine (density 1.2) -20	Phosphorus, red	0 to 51	0.1829
Platinum 0 to 100 0.0323 Potassium -78 to 23 0.166 Rhodium 10 to 97 0.0580 Ruthenium 0 to 100 0.0611 Selenium, cryst 22 to 62 0.084 Selenium, amorphous 18 to 38 0.095 Silicon 57.1 0.1833 Silver 0 to 100 0.0559 Sodium 0 to 54 0.1728 Sulphur, rhombic 0 to 52 0.1809 Sulphur, ilquid 119 to 147 0.235 Sulphur, ilquid 119 to 147 0.235 Tantalum 58 0.036 Tellurium, cryst 15 to 100 0.0483 Thallium 20 to 100 0.0326 Tin 19 to 29 0.0557 Tin, molten 250 0.05799 Titanium 0 to 100 0.125 Tungsten 0 to 100 0.1153 Zinc 300 0.1040 Zirconium 0 to 100 0.340 Benzene 40 0.423 Brine (density 1.2) -20	Phosphorus, yellow	13 to 36	0.202
Rhodium 10 to 97 0.0580 Ruthenium 0 to 100 0.0611 Selenium, cryst 22 to 62 0.081 Selenium, amorphous 18 to 38 0.095 Silicon 57.1 0.1833 Silver 0 to 100 0.0559 Solium 10 0.297 Sulphur, rhombic 0 to 54 0.1728 Sulphur, monoclinic 0 to 52 0.1809 Sulphur, monoclinic 0 to 100 0.0326 Tantalum 58 0.036 Tellurium, cryst 15 to 100 0.0326 Thorium 0 to 100 0.0276 Tin 19 to 29 0.0552 Tin, molten 250 0.0799 Tungsten 0 to 100 0.1125 Tungsten 0 to 100 0.1125 Zinc 300 0.1040 Zirconium 0 to 100 0.0336 Zinc 300 0.1040 Zinc 300 0.1040 Zinconium 15 to 20 0.601 Benzene 40 0.423	Platinum	0 to 100	0.0323
Ruthenium. 0 to 100 0.0611 Selenium, cryst. 22 to 62 0.084 Selenium, amorphous. 18 to 38 0.095 Silicon. 57.1 0.1833 Silver. 0 to 100 0.0559 Sodium. 10 0.297 Sulphur, rhombic. 0 to 54 0.1728 Sulphur, monoclinic. 0 to 52 0.1833 Silver. 0 to 54 0.1728 Sulphur, liquid. 119 to 147 0.235 Tantalum. 58 0.036 Tellurium, cryst. 15 to 100 0.0483 Thallium. 20 to 100 0.0326 Thorium. 0 to 100 0.0276 Tin. 19 to 29 0.0552 Tin, molten. 250 0.05799 Titanium. 0 to 100 0.1125 Tungsten. 0 to 100 0.1133 Zinc. 300 0.1040 Zinc. 300 0.1040 Zinc. 300 0.1040 Zinc. 10 0.340 Benzene. 40 0.423	Potassium	-78 to 23	0.166
Ruthenium. 0 to 100 0.0611 Selenium, cryst. 22 to 62 0.084 Selenium, amorphous. 18 to 38 0.095 Silicon. 57.1 0.1833 Silver. 0 to 100 0.0559 Sodium. 10 0.297 Sulphur, rhombic. 0 to 54 0.1728 Sulphur, monoclinic. 0 to 52 0.1833 Silver. 0 to 54 0.1728 Sulphur, liquid. 119 to 147 0.235 Tantalum. 58 0.036 Tellurium, cryst. 15 to 100 0.0483 Thallium. 20 to 100 0.0326 Thorium. 0 to 100 0.0276 Tin. 19 to 29 0.0552 Tin, molten. 250 0.05799 Titanium. 0 to 100 0.1125 Tungsten. 0 to 100 0.1133 Zinc. 300 0.1040 Zinc. 300 0.1040 Zinc. 300 0.1040 Zinc. 10 0.340 Benzene. 40 0.423	Rhodium	10 to 97	0.0580
Selenium, cryst. 22 to 62 0.084 Selenium, amorphous. 18 to 38 0.095 Silicon 57.1 0.1833 Silver. 0 to 100 0.0559 Sodium 0 to 54 0.1728 Sulphur, rhombic. 0 to 54 0.1728 Sulphur, monoclinic. 0 to 52 0.1809 Sulphur, liquid. 119 to 147 0.235 Tantalum 58 0.036 Tellurium, cryst. 15 to 100 0.0326 Thorium 0 to 100 0.0277 Tin, molten. 19 to 29 0.0552 Tin, molten. 250 0.05799 Titanium. 0 to 100 0.125 Tungsten 0 to 100 0.125 Vanadium 0 to 100 0.0336 Uranium 0 to 100 0.1153 Zinc. 300 0.1040 Zirconium 0 to 100 0.0660 Liquids Temperature Degrees C. Specific heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 50 0.576		0 to 100	0.0611
Selenium, amorphous. 18 to 38 0.095 Silicon 57.1 0.1833 Silver. 0 to 100 0.0559 Sodium. 0 to 54 0.1728 Sulphur, rhombic. 0 to 52 0.1809 Sulphur, rhombic. 0 to 52 0.1809 Sulphur, ilquid. 119 to 147 0.235 Tantalum. 58 0.036 Tellurium, cryst. 15 to 100 0.0276 Tin. 19 to 29 0.0326 Thorium. 0 to 100 0.0276 Tin. 19 to 29 0.05799 Titanium. 0 to 100 0.125 Tungsten. 0 to 100 0.125 Vanadium. 0 to 100 0.0336 Uranium. 0 to 100 0.0336 Zinc. 300 0.1040 Zirconium. 0 to 100 0.0343 Benzene. 40 0.423 Brine (density 1.2) -20 0.6601 Benzene. 10 0.340 Benzene. 7 0.47 Petroleum. 7 0.47	Selenium, cryst	22 to 62	0.084
Silicon 57.1 0.1833 Silver 0 to 100 0.0559 Sodium 10 0.297 Sulphur, rhombic 0 to 54 0.1728 Sulphur, monoclinic 0 to 52 0.1809 Sulphur, liquid 119 to 147 0.235 Tantalum 58 0.006 Tellurium, cryst 15 to 100 0.0326 Thorium 0 to 100 0.0276 Tin 19 to 29 0.0552 Tin, molten 250 0.0799 Titanium 0 to 100 0.1125 Tungsten 0 to 100 0.125 Zinc 300 0.1040 Zinc 300 0.1040 Zinc 300 0.1040 Zinc 300 0.1040 Zinc 10 0.340 Benzene 40 0.648 Alcohol, methyl 15 to 20 0.601 Benzene 10 0.340 Benzene 7 0.47 Petroleum 7 0.47 Petroleum 21 to 58	Selenium, amorphous.	18 to 38	0.095
Silver. 0 to 100 0.0559 Sodium. 10 0.297 Sulphur, rhombic. 0 to 54 0.1728 Sulphur, monoclinic. 0 to 52 0.1809 Sulphur, liquid. 119 to 147 0.235 Tantalum. 58 0.036 Tellurium, cryst. 15 to 100 0.0483 Thallium. 20 to 100 0.0276 Tin. 19 to 29 0.0552 Tin, molten. 250 0.0799 Titanium. 0 to 100 0.1125 Tungsten. 0 to 100 0.1133 Zinc. 0 to 100 0.1532 Zinc. 0 to 100 0.1533 Zinc. 300 0.1040 Zirconium. 0 to 100 0.0660 Ibenzene 10 0.340 Benzene 40 0.423 Brine (density 1.2) -20 0.69 Glycerine. 15 to 50 0.57 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0		57.1	
Sodium. 10 0.297 Sulphur, rhombic. 0 to 54 0.1728 Sulphur, monoclinic. 0 to 52 0.1809 Sulphur, liquid. 119 to 147 0.235 Tantalum 58 0.036 Tellurium, cryst. 15 to 100 0.0483 Thallium 20 to 100 0.0326 Thorium. 0 to 100 0.0276 Tin. 19 to 29 0.0552 Tin, molten. 250 0.05799 Titanium. 0 to 100 0.125 Tungsten. 0 to 100 0.1336 Uranium. 0 to 100 0.1153 Zinc. 300 0.1040 Zirconium. 0 to 100 0.0660 Zirconium. 15 to 20 0.601 Benzene. 40 0.423 Brine (density 1.2) -20 0.691 Glycerine. 15 to 50 0.576 Glycerine. 7 0.447 Petroleum. 21 to 58 0.511 Sea-water (density			
Sulphur, rhombic 0 to 54 0.1728 Sulphur, monoclinic 0 to 52 0.1809 Sulphur, liquid 119 to 147 0.235 Tantalum 58 0.036 Tellurium, cryst 15 to 100 0.0483 Thallium 20 to 100 0.0326 Thorium 0 to 100 0.0276 Tin 19 to 29 0.0527 Tin, molten 250 0.05799 Titanium 0 to 100 0.1125 Tungsten 0 to 100 0.0336 Uranium 0 to 100 0.0336 Vanadium 0 to 100 0.1153 Zinc 0 to 100 0.0935 Zinc 300 0.1040 Zirconium 0 to 100 0.0660 Liquids Temperature Degrees C. Specific heat Alcohol, ethyl 40 0.423 Brine (density 1.2) -20 0.691 Glycerine 15 to 50 0.576 Glycerine 7 0.447 Pet			
Sulphur, liquid. 119 to 147 0.235 Tantalum. 58 0.036 Tellurium, cryst. 15 to 100 0.0483 Thallium. 20 to 100 0.0326 Thorium. 0 to 100 0.0326 Thorium. 19 to 29 0.0552 Tin, molten. 250 0.0376 Tin, molten. 250 0.0326 Tungsten. 0 to 100 0.1125 Tungsten. 0 to 100 0.1125 Zinc. 0 to 100 0.1133 Zinc. 0 to 100 0.1133 Zinc. 0 to 100 0.0935 Zinc. 300 0.1040 Zirconium. 0 to 100 0.0660 Istaiua 40 0.648 Alcohol, ethyl. 40 0.6448 Alcohol, methyl. 15 to 20 0.601 Benzene. 10 0.340 Benzene. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.42 </td <td></td> <td></td> <td></td>			
Tantalum 58 0.036 Tellurium, cryst. 15 to 100 0.0483 Thallium 20 to 100 0.0326 Thorium 0 to 100 0.0276 Tin 19 to 29 0.0552 Tin, molten 250 0.05799 Titanium 0 to 100 0.1225 Tungsten 0 to 100 0.0328 Vanadium 0 to 100 0.0328 Vanadium 0 to 100 0.0328 Zinc 0 to 100 0.0328 Zinc 0 to 100 0.0328 Zinc 300 0.10440 Zirconium 0 to 100 0.0660			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Tungsten	Titonium		
Uranium 0 to 98 0.028 Vanadium 0 to 100 0.1153 Zinc 0 to 100 0.0935 Zinc 300 0.1040 Zirconium 0 to 100 0.0600 Liquids Temperature Degrees C. Specific heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 20 0.601 Benzene 10 0.340 Benzene 40 0.423 Brine (density 1.2) -20 0.69 Glycerine 7 0.47 Petroleum 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.42 Water 0 1.0094			
Vanadium 0 to 100 0.1153 Zinc. 0 to 100 0.0935 Zinc. 300 0.1040 Zirconium 0 to 100 0.0660 Liquids Temperature Degrees C. Specific heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 20 0.601 Benzene 40 0.423 Brine (density 1.2) -20 0.69 Glycerine 15 to 50 0.576 Oil, olive 7 0.47 Petroleum 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 0 1.0094 Water 20 1.0000			
Zinc. 0 to 100 0.0935 Zinc. 300 0.1040 Zirconium. 0 to 100 0.0660 Liquids Temperature Degrees C. Specific heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 20 0.601 Benzene 40 0.423 Brine (density 1.2) -20 0.69 Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.429 Water. 0 1.0094			
Zinc. 300 0.1040 Zirconium. 0 to 100 0.0660 Liquids Temperature Degrees C. Specific heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 20 0.601 Benzene. 10 0.340 Benzene. 40 0.423 Brine (density 1.2). -20 0.69 Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024). 17.5 0.938 Turpentine. 18 0.42 Water. 0 1.0094			
Zirconium 0 to 100 0.0660 Liquids Temperature Degrees C. Specific heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 20 0.601 Benzene. 40 0.423 Brine (density 1.2) -20 0.69 Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine. 0 1.0094 Water. 20 1.0000			
Liquids Temperature Degrees C. Specific heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 20 0.601 Benzene. 10 0.340 Benzene. 40 0.423 Brine (density 1.2) -20 0.69 Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine. 18 0.42 Water. 0 1.0094			
Degrees C. heat Alcohol, ethyl. 40 0.648 Alcohol, methyl. 15 to 20 0.601 Benzene. 10 0.340 Benzene. 40 0.423 Brine (density 1.2). -20 0.69 Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024). 17.5 0.938 Turpentine. 18 0.422 Water. 0 1.0094 Water. 20 1.0000		0 to 100	0.0000
Alcohol, methyl. 15 to 20 0.601 Benzene. 10 0.340 Benzene. 40 0.423 Brine (density 1.2) -20 0.69 Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine. 18 0.42 Water. 0 1.0094 Water. 20 1.0000	Liquids		
Benzene 10 0.340 Benzene 40 0.423 Brine (density 1.2) -20 0.69 Glycerine 15 to 50 0.576 Oil, olive 7 0.47 Petroleum 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.42 Water 0 1.0094 Water 20 1.0000			0.648
Benzene 40 0.423 Brine (density 1.2) -20 0.69 Glycerine 15 to 50 0.576 Oil, olive 7 0.47 Petroleum 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.42 Water 0 1.0094 Water 20 1.0000		15 to 20	
Brine (density 1.2) -20 0.69 Glycerine 15 to 50 0.576 Oil, olive 7 0.47 Petroleum 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.42 Water 0 1.0094 Water		10	
Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine. 18 0.42 Water. 0 1.0094 Water. 20 1.0000	Benzene	40	0.423
Glycerine. 15 to 50 0.576 Oil, olive. 7 0.47 Petroleum. 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine. 18 0.42 Water. 0 1.0094 Water. 20 1.0000	Brine (density 1.2)	-20	0.69
Oil, olive 7 0.47 Petroleum 21 to 58 0.511 Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.42 Water 0 1.0094 Water 20 1.0000	Glycerine	15 to 50	0.576
Petroleum. 21 to 58 0.511 Sea-water (density 1.024). 17.5 0.938 Turpentine. 18 0.42 Water. 0 1.0094 Water. 20 1.0000	Oil, olive	7	
Sea-water (density 1.024) 17.5 0.938 Turpentine 18 0.42 Water 0 1.0094 Water 20 1.0000	Petroleum	21 to 58	0.511
Turpentine 18 0.42 Water 0 1.0094 Water 20 1.0000		17.5	0.938
Water 0 1.0094 Water 20 1.0000		18	0.42
Water		0	
		20	
water I.UU/4	Water	100	1.0074

ENGINEERING MATHEMATICS

Gases	Specific h constant p		Ratio, $\frac{C_p}{C_{\theta}}$, of the specific heat at constant pressure to that of constan volume	
	Tempera- ture range, Degrees C.	Specific heat	Tempera- ture range, Degrees C.	Ratio, <u>Cp</u> Co
Air	0 to 200	0.2375	0	1.402
Air			500	1.399
Alcohol, ethyl	108 to 220	0.4534	53	1.133
Alcohol			100	1.134
Ammonia	24 to 216	0.5125	0	1.317
Ammonia	• • • • • • •		100	1.277
Benzene	34 to 115	0.2990	60	1.403
Carbon monoxide	26 to 198	0.2426	0	1.403
Carbon monoxide			100	1.395
Carbon dioxide	11 to 214	0.2169	4 to 11	1.300
Carbon dioxide			500	1.260
Carbon disulphide	86 to 190	0.1596	3 to 67	1.205
Ethylene	·	0.4040		1.264
Hydrogen	12 to 198	3.4090	4 to 16	1.408
Methane	18 to 208	0.5929	11 to 30	1.316
Nitrogen	0 to 200	0.2438		1.410
Oxygen	13 to 207	0.2175	5 to 14	1.398
Oxygen	20 to 440	0.2240	1 1	

SPECIFIC HEATS (Continued)

Miscellaneous substances	Temperature, Degrees C.	Specific heat	
Asbestos	20 to 98	0.195	
Brass	14 to 98	0.0862	
Charcoal	0 to 224	0.238	
Glass, crown	10 to 50	0.161	
Glass, flint	10 to 50	0.117	
Granite		0.192	
Ice	-21 to -1	0.502	
India rubber	15 to 100	0.27 to 0.48	
Limestone	15 to 100	0.216	
Marble	0 to 100	0.21	
Masonry		0.20	
Paraffin wax, solid	0 to 20	0.694	
Paraffin wax, fluid	60 to 63	0.712	
Porcelain.	15 to 1000	0.255	
Quartz	20 to 98	0.191	
Sandstone		0.22	
Vulcanite	20 to 100	0.331	

SPECIFIC HEATS (Continued)

NOTE.—The specific heat of a material is the number of British Thermal Units necessary to raise the temperature of I pound of the material 1° Fahrenheit.

Coefficients of Linear Expansion of Solids

The length of a solid at any temperature is $l_t = l_o (1 + \alpha t)$, l_o being the known length at some given temperature, t the variation of temperature in degrees, and α the coefficient of linear expansion of the material. This formula holds approximately when the temperature interval is not large. The coefficient of surface expansion equals 2α ; the coefficient of cubical expansion equals 3α .

ENGINEERING MATHEMATICS

COEFFICIENTS OF LINEAR EXPANSION (α)

The values given for α are the mean coefficients of expansion between 0° and 100° C., when some other temperature is not specified.

Elements	Temperature	Coefficient of linear expansion	
		For 1° C.	For 1º F.
Aluminium		0.00002220	0.00001233
Antimony		0.00001056	0.00000587
Arsenic	40	0.00000559	0.00000311
Bismuth		0.00001316	0.00000731
Cadmium		0.00003159	0.00001755
Carbon, diamond	* 40	0.00000118	0.00000066
Carbon, anthracite	40	0.00002078	0.00001154
Carbon, graphite	40	0.00000786	0.00000437
Cobalt	40	0.00001236	0.00000687
Copper		0.00001666	0.00000926
Gold		0.00001470	0.00000817
Indium	40	0.00004170	0.00002317
Iron, cast	40	0.00001061	0.00000589
Iron, annealed		0.00001089	0.00000605
Lead		0.00002709	0.00001505
Magnesium	40	0.00002694	0.00001497
Nickel	40	0.00001279	0.00000710
Osmium	40	0.00000657	0.00000365
Palladium	40	0.00001176	0.00000653
Phosphorus	0 to 40	0.00012530	0.00006961
Platinum	40	0.0000899	0.00000499
Potassium	0 to 50	0.00008300	0.00004611
Rhodium	40	0.00000850	0.00000472
Ruthenium	40	0.00000963	0.00000535
Selenium	40	0.00003680	0.00002044
Silicon	40	0.00000763	0.00000424
Silver	40	0.00001921	0.00001067
Sulphur		0.00011800	0.00006556
Tellurium		0.00003687	0.00002048
Thallium	40	0.00003021	0.00001678
Tin		0.00002296	0.00001276
Zinc		0.00002976	0.00001653

PHYSICAL AND CHEMICAL CONSTANTS 217

COEFFICIENTS OF LINEAR EXPANSION (a) (Continued)

Miscellaneous			Coefficient of linear expan	
substances	Temperat	ure	For 1º C.	For 1º F.
Brass, cast			0.00001875	
Brass, wire			0.00001930	0.00001072
Bronze	16.6 to	100	0.00001844	0.00001024
Ebonite	25 to 3	5	0.0000842	0.0000468
German silver			0.00001836	0.00001020
Glass, crown			0.00000897	0.00000498
Glass, flint	50 to 6	0	0.00000788	3 0.00000530
Glass, plate			0.00000891	0.00000495
Glass, tube			0.0000833	0.00000463
Gutta percha	20		0.0001983	0.0001102
Ice	-20 to	-1	σ.000051	0.000028
Marble	15 to 10	00	0.0000117	0.0000065
Paraffin wax	0 to	16	0.00010662	2 0.00005923
Paraffin wax	16 to 3	8	0.00013030	0.00007239
Porcelain	20 to 7	90	0.00000413	
Ouartz:				
Parallel to axis	0 to a	80	0.00000797	0.0000443
Perpend. to axis.		80	0.00001337	
		С	oefficient of lin	near expansion
Woods *		For 1º C.		For 1º F.
(1) Along grain:				
Beech		0	00000257	0.00000143
Chestnut Elm. Mahogany Maple. Oak.		0.	00000649	0.0000361
		0.	.00000565	0.00000314
		0.	.00000361	0.00000201
		0.	00000638	0.0000347
		0.00000492		0.00000273
Pine	Pine		00000541	0.00000301
Walnut		0.	.00000658	0.00000366
(2) Across grain:				
Beech				
		0.	0000614	0.0000363
Chestnut		0.	0000325	0.0000181
Chestnut		0.		
Chestnut Elm		0.	0000325	0.0000181
Chestnut Elm Mahogany		0. 0. 0.	0000325 0000443	0.0000181 0.0000246
Chestnut Elm Mahogany Maple		0 0 0	0000325 0000443 0000404	0.0000181 0.0000246 0.0000224
Chestnut Elm Mahogany	· · · · · · · · · · · · ·	0 0 0 0	0000325 0000443 0000404 0000484	0.0000181 0.0000246 0.0000224 0.0000269

* For temperature range 2° to 34° Cent.

STEAM
SATURATED
OF
ROPERTIES

Tables condensed with permission from G. A. Goodenough's "Properties of Steam and Ammonia," published by Messrs.

at in B.t.u. I of vapor,
of liguid, of vapor, Total, L or r
47.11 1095.0 1047.9 69.16 1105.1 1036.0 83.04 1111.4 1028.3
37 1115.9 68 1119.6
14.6 1122.6 1013.9 14.6 1122.6 1013.9 28.2 1127.5 1000.5 28.4 1002.4 28.4 1002.4
1133.1 1134.7 1136.1
1137.5 1138.8
149.9 1140.0 990.0 152.7 1141.1 988.3 155.4 1142.1 986.7 155.6 1142.1 986.7
1.44.1

218

ENGINEERING MATHEMATICS

PROPERTIES OF SATURATED STEAM (Continued)

of vapor, N or s''2222 1981 1981 1981 7589 1221 of vaporiza Entropy r |F1 4573 4573 4573 € ₹ 3690 3690 3570 3570 tion, þ HIF of liquid, 0.2858 0.2855 0.2924 0.2955 0.3135 0.3184 0.3230 0.3274 0.3316 0.3356 0.3430 0.3563 0.3563 0.3563 320 Internal, J or ρ Latent heat in B.t.u. 8,5,28 911.1 396.8 898.1 895.8 891.4 889.3 887.3 883.6 889.1 876.8 873.7 L or r 976.1 974.9 973.8 972.7 979.4 979.8 978.5 978.5 977.3 71.7 958.4 958.4 955.3 of vapor, Heat content in B.t.u. 1126.8 1126.8 1126.8 151.7 1152.2 1153.4 1155.7 157.7 of liguid, 9.0.0. 20.05 20.00 173.0 174.8 178.4 80.0 2100.0 200.0 210.0 210.0 210.0 210.0 210.0 210.0 210.0 210.0 210.0 200.0 one pound in cu. ft., v''Volume of 82928 88823 オガガザオ 22:22 8 288853 **** 8885 Ŕ 8000+ 202 80 206 87 206 87 206 87 Temp. Fahr. 88888 212.0 2223 213.0 216.3 219.4 2222.4 288828 in pounds per sq. inch 14.7° Absolute pressure in inches of mercury 22286 สสลสม 2222 ลถุรุสุส

PHYSICAL AND CHEMICAL CONSTANTS 219

(Continued	
STEAM	
SATURATED	
OF	
OPERTIES	

of vapor, N or s'' 6788 6712 6676 6676 6676 3.3**3**33 \$555\$ Entropy of vaporiza-~ IF1 888588 22222222 2133 ion, 5 HIE 5 of liquid. 0.3917 0.3958 0.3998 0.4036 0.4075 0.4108 0.4142 0.4174 0.4237 0.4237 0.4267 000 Internal, I or *p* Latent heat in B.t.u. 867.9 867.9 862.2 862.7 860.2 837.8 836.0 834.3 832.7 831.1 857.8 855.5 853.3 859.3 849.1 222228 935.5 933.5 929.6 927.7 L or r 9000 928.9 5**1**385 22121 Heat content in B.t.u. of vapor, 1171.3 1172.2 1174.0 1174.0 1175.6 1176.4 1177.1 -010 222252 228885 of liguid. 241.7 8.222.32 33338 ะสลลส Volume of ene pound in cu. ft., v'88738 22228 22222 PR Temp. Fahr. 7.200 Sta 2000 222283 Absolute pressure in pounds per sq. in. 82228 66448 82288 33283

220

ENGINEERING MATHEMATICS

(Continued
STEAM
SATURATED
OF
PROPERTIES

	of vapor, N or s"	1.6236 1.6291 1.6291 1.6291 1.6289		1.60% 1.60% 1.60%	1.6045 1.6028 1.6028 1.5996 1.5981
Entropy	of vaporization, tion, $T \to T$	1. 1931 1. 1883 1. 1883 1. 1789 1. 1744	- 1700 - 1574 - 1574 - 1574	1. 1495 1. 1495 1. 1419 1. 1381 1. 1345	1.1209 1.1274 1.1239 1.1239 1.1205
	of liquid, n or s	0.4405 0.4405 0.4431 0.4456 0.4460 0.4400 0.4400	0.4527 0.4550 0.4550 0.4594 0.4615	0.4636 0.4657 0.4657 0.4677 0.4717 0.4717	0.4736 0.4736 0.4773 0.4773 0.4709 0.4809
Latent heat in B.t.u.	Internal, I or $ ho$	829.5 827.9 826.4 826.4 828.9	821.9 820.5 819.1 817.7 816.3	815.0 813.7 813.4 811.1 809.8	808.6 807.4 806.1 806.3 809.9
in B.t.u. Latent hes	Total, L or r	909.8 906.3 905.5 904.2	902.8 901.5 890.2 896.9	896.4 895.2 892.8 892.8	890.5 889.3 887.1 887.1 887.1 885.9
	of vapor,	1182.0 1182.5 1183.5 1183.5	1186.7 1185.3 1185.3	1186.5 1186.9 1187.3 1187.3 1187.3	1188.7 1188.7 1189.0 1189.4
Heat content	of liquid,	222.2 274.2 276.1 278.0 279.8	281.6 285.1 286.8 286.8 286.8 288.5	290.1 291.7 294.8 294.8	297.9 209.4 302.3 302.3 302.3
Heat co	Volume of one pound in cu. ft., v''	6.5 5.58 6.23 8.53 8.53 8.53	5.538 5.12338 2.12338	4, 905 4, 709 4, 709 4, 528	+ + + 2359 + - 2359 + - 2029 + - 2029
	Temp. Fahr.	302.9 306.7 306.7 300.3 300.3	312.0 313.7 315.4 315.4 318.7	328.38 321.38 328.58 328.58 328.58 328.58 328.58 328.58 328.58 328.58 328.58 328.58 328.58 328.58 328.58 328.53 328.55 32	327.8 329.2 330.7 333.4
	Absolute pressure in pounds per sq. in.	8272 8	83238	82238	88588

PHYSICAL AND CHEMICAL CONSTANTS 221

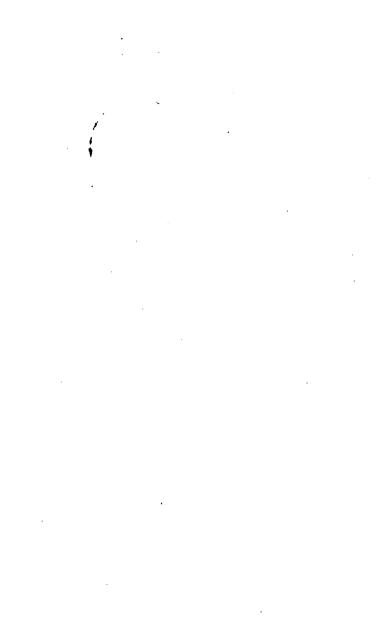
(Continued)
STEAM
LTURATED
S OF SA
PROPERTIE

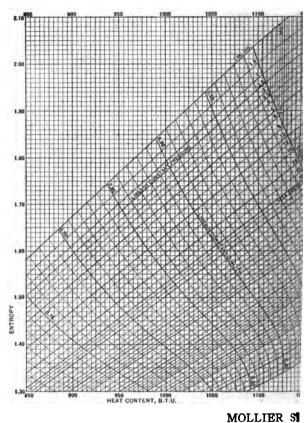
of vapor, N or s'' ££3338 5725 of vaporiza Entropy -16 .1136 .1074 882228 0636 0721 0727 tion, 5 116 of liquid, 0.500 0.5062 00000 00000 Internal. I or p Latent heat in B.t.u. 795.9 795.8 793.7 792.6 791.6 94000 22822 **** L or r 874.4 873.5 872.5 872.5 870.5 870.5 80000 879.5 878.5 875.4 875.4 \$\$\$\$ Heat content in B.t.u. vapor, 0.061 9.061 9.061 1.061 1191.4 1191.6 1192.1 1192.6 1192.9 1193.1 1193.3 22233 ÷ of liquid. 5.2382. 2382. 2982. 2982. 2982. 2982. 2982. 2982. 2982. 2992. 2092. 2002. 2092. 200. 318.2 319.4 321.8 321.8 ****** Volume of one pound in cu. ft., v''4.057 3.252 3.252 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.2555 3.25555 3.2555 3.2555 3.25555 3.25555 3.25555 3.25555 3.25555 3.25555 3.25555 3.25555 3 22.58.95.5 25.68.95.5 25.75.5 1288888 1288888 128888 128888 128888 128888 128888 128888 128888 222288 2222888 Temp. Fahr. +10 347.4 **~**---***** 87888 8 Absolute pressure in pounds per sq. in. 22222 88388 88228 65188

222

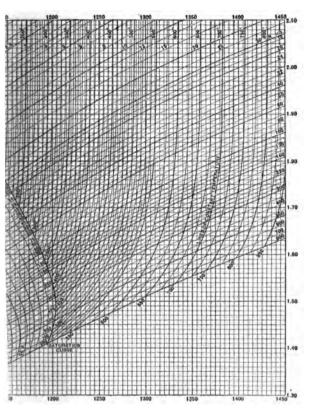
ENGINEERING MATHEMATICS

SATURATED STEAM (continued)		of vapor, N or s"			1.5597 1.5587 1.5587 1.5587 1.5587	1.5538 1.5538 1.5528 1.5519 1.5509
	Entropy	of vaporization, $\frac{L}{T}$ or $\frac{r}{T}$	1.0573 1.0548 1.0524 1.0500 1.0476	1 0453 1 0429 1 0406 1 0384	1 0339 1 0317 1 0295 1 0274	1.0231 1.0210 1.0169 1.0169
		of liquid, # or s'	0.5131 0.5144 0.5157 0.5183	0.51%	0.5258 0.5270 0.5281 0.5293	0.5316 0.5328 0.5339 0.5339 0.5350
	Latent heat in B.t.u.	Internal, I or ρ	779.6 779.6 779.7 778.7 778.7 777.8	76.9 776.9 775.1 774.2 773.3	772.4 771.5 770.6 768.9	768.0 767.2 766.4 766.5
	Latent her	Total, L or r	864.9 864.9 863.1 863.1 862.3 861.4	860.5 859.6 857.9 857.9 857.9	855.2 855.2 853.5 853.5 853.5 853.5 853.6	852.0 851.2 850.4 849.5 848.7
	Heat content in B.t.u.	of vapor,	1194.7 1194.7 1195.1 1195.3	1195.7 1195.8 1196.0 1196.2	1196.5 1196.6 1196.6 1196.9 1196.9	1197.2 1197.5 1197.6 1197.6
RTIES OF		of liguid,	329.8 330.9 333.1 333.1	335.2 337.2 338.3 339.3 339.3 339.3		335.2 335.2 336.1 338.1 348.1
PROPERTIES	Volume of one pound in cu. ft., v',		3.020 2.982 2.945 2.945	2,710 2,771 2,771 2,771	2.5610	52233 5233 5233 523 523 523 525 525 525
	Temp. Fahr.		358.5 359.5 360.5 361.6 361.6	365.6 366.6 366.6 366.6 366.6	368.5 370.4 371.3 372.2	373.1 374.0 374.9 375.8 376.7
		Absolute pressure in 8q. in.	<u>88788</u>	992558 882 882 882 882 883 883 883 883 883 88	82122 82122 82122 821	182 182 188 188 188 188 188


PROPERTIES OF SATURATED STEAM (Continued)


PHYSICAL AND CHEMICAL CONSTANTS 223

(Continued)
STEAM
SATURATED
OF
PROPERTIES


224

ENGINEERING MATHEMATICS

Reproduced with permission from G. A. Goodenough Messrs. John

EAM CHART

s "Properties of Steam and Ammonia," published by Wiley & Sons.

PROPERTIES OF SATURATED STEAM (Continued)

		of vapor, N or S"	1.5125 1.5136 1.5139 1.5139 1.5108		- 4949 - 4922 - 4871 - 4871 - 4871	1.421 1.4706 1.4706 1.4414 1.4250
	Entropy	of vaporization, tion, $\frac{L}{T}$ or $\frac{r}{T}$	0. 9405 0. 9369 0. 9333 0. 9298 0. 9263	0.9229 0.9162 0.9097 0.9034	0.8912 0.8854 0.8796 0.8741 0.8686	0.8631 0.8377 0.8146 0.7735 0.7736
(momentation)		of liquid, # or \$'	0.5767 0.5787 0.5806 0.5826 0.5826 0.5845	0.5863 0.5990 0.5970 0.6004	0.6036 0.6036 0.6130 0.6130 0.6130	0.6190 0.6329 0.6455 0.6679 0.6874
	Latent heat in B.t.u.	Internal, I or <i>p</i>	732.7 739.7 728.5 729.5 728.5 729.5 720.5 770.5 770.5 770.5 770.5 770.5 770.5 770.5 770.5	724.7 721.6 718.5 715.6 712.6	7 6 7 7 7 7	695.9 683.1 683.1 648.5 648.5
		Total, L or r	817.4 815.8 814.2 812.6 811.0	809.4 800.3 797.4	794.5 791.6 788.8 786.1 783.3	780.6 767.4 755.0 731.8 710.3
THINK INA	ıt in B.t.u.	of liguid.	1201.5 1201.5 1201.6 1201.6	1201.9 1202.0 1202.3 1202.3	1202.5 1202.5 1202.6 1202.6 1202.6	1202.5 1202.2 1201.7 1199.8
IO OTHING ION	Heat content in B.t.u.	of vapor,	385.7 385.7 389.4 399.1	392.4 395.7 402.0 405.0	408.0 410.9 419.3 419.3 419.3	422.0 434.8 486.6 487.1
	Volume of one pound in cu. ft., v''			545 1470 1.365 1.365 1.365 1.365	22 22 22 22 22 22 22 22 22 22 22 22 22	1.162 1.033 0.770 0.656
		Temp. Fabr.	409.6 411.2 412.8 414.4	417.5 423.5 423.4 429.3 429.1	431.9 434.6 439.8 442.3	444.8 456.5 466.5 503.4
		Absolute pressure in sq. in.	225 286 286 290 290 290 290 290 290 290 290 290 290	3320	£36588	\$\$ <u>\$</u> \$

PHYSICAL AND CHEMICAL CONSTANTS 225

ENGINEERING MATHEMATICS

TABLES

CIRCUMFERENCES AND AREAS OF CIRCLES

Diam- eter	Circum- ference	Area	Diam- eter	Circum- ference	Area
1	3.1416	0.7854	26	81.681	530.93
	6 2832	3.1416	27	84.823	572.56
3	9.4248	7.0686	28	87.965	615.75
2 3 4 5 6 7	12.5664	12.5664	29	91.106	660.52
5	15.7080	19.635	30	94.248	706.86
6	18.850	28.274	31	97.389	754.77
7	21.991	38.485	32	100.53	804.25
8 9	25.133	50.266	33	103.67	855.30
9	28.274	63.617	34	106.81	907.92
10	31.416	78.540	35	109.96	962.11
11	34.558	95.033	36	113.10	1017.88
12	37.699	113.10	37	116.24	1075.21
13	40.841	132.73	38	119.38	1134.11
14	43.982	153.94	39	122.52	1194.59
15	47.124	176.71	40	125.66	1256.64
16	50.265	201.06	41	128.81	1320.25
17	53.407	226.98	42	131.95	1385.44
18	56.549	254.47	43	135.09	1452.20
19	59.690	283.53	44	138.23	1520.53
20	62.832	314.16	45	141.37	1590.43
21	65.973	346.36	46	144.51	1661.90
22	69.115	380.13	47	147.65	1734.94
23	72.257	415.48	48	150.80	1809.56
24	75.398	452.39	49	153.94	1885.74
25	78.540	490.87	50	157.08	1963.50

Note. — The surface of a sphere of given diameter may be found directly from the above table, since it is equal to the area of a circle of twice the diameter of the sphere.

.

.

TABLES

Diam- eter	Circum- ference	Area	Diam- eter	Circum- ference	Area
51	160.22	2042.82	76	238.76	4536.46
52	163.36	2123.72	77	241.90	4656.63
53	166.50	2206.18	78	245.04	4778.36
54	169.65	2290.22	79	248.19	4901.67
55	172.79	2375.83	80	251.33	5026.55
56	175.93	2463.01	81	254.47	5153.00
57	179.07	2551.76	82	257.61	5281.02
58	182.21	2642.08	83	260.75	5410.61
59	185.35	2733.97	84	263.89	5541.77
60	188.50	2827.43	85	267.04	5674.50
61	191.64	2922.47	86	270.18	5808.80
62	194.78	3019.07	87	273.32	5944.68
63	197.92	3117.25	88	276.46	6082.12
64	201.06	3216.99	89	279.60	6221.14
65	204.20	3318.31	90	282.74	6361.73
66	207.34	3421.19	91	285.88	6503.88
67	210.49	3525.65	92	289.03	6647.61
68	213.63	3631.68	93	292.17	6792.91
69	216.77	3739.28	94	295.31	6939.78
70	219.91	3848.45	95	298.45	7088.22
71	223.05	3959.19	96	301.59	7238.23
72	226.19	4071.50	97	304.73	7389.81
73	229.34	4185.39	98	307.88	7542.96
74	232.48	4300.84	99	311.02	7697.69
75	235.62	4417.86	100	314.16	7853.98
	235.62	4417.86	100	314.16	7853.98

ε,

CIRCUMFERENCES AND AREAS OF CIRCLES (Continued)

POWERS, ROOTS, AND RECIPROCALS

FOWERS, ROOTS, AND RECEIRCOMES					
Number	Square	Cube	Square root	Cube root	Reciprocal
1	1	1	1.000000	1.000000	1.0000000
	4	8	1.414214	1.259921	.5000000
2 3	9	27	1.732051	1.442250	.33333333
4	16	64	2.000000	1.587401	.2500000
5	25	125	2.236068	1.709976	
6	36	216	2.449490	1.817121	.1666667
ž	49	343	2.645751	1.912931	.1428571
8	64	512	2.828427	2.000000	.1250000
ğ	81	729	3.000000	2.080084	.1111111
10	100	1000	3.162278	2.154435	.1000000
10	100	1000	5.102270	2.131133	
11	121	1331	3.316625	2.223980	.0909091
12	144	1728	3.464102	2.289429	.0833333
13	169	2197	3.605551	2.351335	.0769231
14	196	2744	3.741657	2.410142	.0714286
15	225	3375	3.872983	2.466212	.0666667
10	220	0010			
16	256	4096	4.000000	2.519842	.0625000
17	289	4913	4.123106	2.571282	.0588235
18	324	5832	4.242641	2.620741	
19	361	6859	4.358899	2.668402	.0526316
20	400	8000	4.472136	2.714418	
20	400	8000	4.4/2130	2.71410	.000000
21	441	9261	4.582576	2.758924	.0476190
22	484	10,648	4.690416	2.802039	.0454545
23	529	12,167	4.795832	2.843867	.0434783
23 24	576	13,824	4.898980	2.884499	.0416667
24	625		5.000000	2.924018	
25	025	15,625	5.00000	2.924010	.040000
26	676	17,576	5.099020	2.962496	.0384615
27	729	19,683	5.196152	3.000000	.0370370
28	784	21,952	5.291503	3.036589	.0357143
29	841	24,389	5.385165	3.072317	.0344828
30	900	27,000	5.477226	3.107233	.0333333
31	961	29,791	5.567764	3.141381	.0322581
32	1024	32 769	5.656854	3.174802	.0312500
32	1024	32,768 35,937	5.744563	3.207534	.0303030
33 34	1156	39,304	5.830952	3.239612	.0294118
34 35				3.239012	.0294118
33	1225	42,875	5.916080	5.271000	.0203714
36	1296	46.656	6.000000	3.301927	.0277778
37	1369	50.653	6.082763	3.332222	.0270270

TABLES

POWERS, ROOTS, AND RECIPROCALS (Continued)

		 	1_		
Number	Square	Cube	Square root	Cube root	Reciprocal
38	1444	54,872	6.164414	3.361975	.0263158
39	1521	59,319	6.244998	3.391211	.0256410
40	1600	64,000	6.324555	3.419952	.0250000
41	1681	68,921	6.403124	3.448217	.0243902
42	1764	74,088	6.480741	3.476027	.0238095
43	1849	79,507	6.557439	3.503398	.0232558
44	1936	85,184	6.633250	3.530348	.0227273
45	2025	91,125	6.708204	3.556893	.0222222
46	2116	97,336	6.782330	3.583048	.0217391
47	2209	103,823	6.855655	3.608826	.0212766
48	2304	110,592	6.928203	3.634241	.0208333
49	2401	117,649	7.000000	3.659306	.0204082
50	2500	125,000	7.071068	3.684031	.0200000
51	2601	132,651	7.141428	3.708430	.0196078
52	2704	140,608	7.211103	3.732511	.0192308
53	2809	148,877	7.280110	3.756286	.0188679
54	2916	157,464	7.348469	3.779763	.0185185
55	3025	166,375	7.416199	3.802953	.0181818
56	3136	175,616	7.483315	3.825862	.0178571
-57	3249	185,193	7.549834	3.848501	.0175439
58	3364	195,112	7.615773	3.870877	.0172414
59	3481	205,379	7.681146	3.892997	.0169492
. 60	3600	216,000	7.745967	3.914868	.0166667
61	3721	226,981	7.810250	3.936497	.0163934
62 ·	3844	238,328	7.874008	3.957892	.0161290
63	3969	250,047	7.937254	3.979057	.0158730
64	4096	262,144	8.000000	4.000000	.0156250
65	4225	274,625	8.062258	4.020726	.0153846
66	4356	287,496	8.124038	4.041240	.0151515
67	4489	300,763	8.185353	4.061548	.0149254
68	4624	314,432	8.246211	4.081655	.0147059
69	4761	328,509	8.306624	4.101566	.0144928
70	4900	343,000	8.366600	4.121285	.0142857
71	5041	357,911	8.426150	4.140818	.0140845
72	5184	373,248	8.485281	4.160168	.0138889
73	5329	389,017	8.544004	4.179339	.0136986
		· · ·	1		

POWERS, ROOTS, AND RECIPROCALS (Continued)

Number	Square	Cube	Square root	Cube root	Reciprocal
74	5476	405,224	8.602325	4.198336	.0135135
75	5625	421,875	8.660254	4.217163	.0133333
76	5776	438,976	8.717798	4.235824	.0131579
77	592 9	456,533	8.774964	4.254321	.0129870
78	6084	474.552	8.831761	4.272659	.0128205
79	6241	493,039	8.888194	4.290840	.0126582
80	6400	512,000	8.944272	4.308870	.0125000
81	6561	531,441	9.000000	4.326749	.0123457
82	6724	551,368	9.055385	4.344482	.0121951
83	6889	571,787	9.110434	4.362071	.0120482
84	7056	592,704	9.165151	4.379519	.0119048
85	7225	614,125	9.219545	4.396830	.0117647
86	7396	636,056	9.273619	4.414005	.0116279
87	7569	658,503	9.327379	4.431048	.0114943
88	7744	681.472	9.380832	4.447960	.0113636
89	7921	704,969	9.433981	4.464745	.0112360
9 0	8100	729,000	9.486833	4.481405	.0111111
91	8281	753,571	9.539392	4.497941	.0109890
92	8464	778.688	9.591663	4.514357	0108696
93	8649	804.357	9.643651	4.530655	.0107527
94	8836	830.584	9.695360	4.546836	.0106383
95	9025	857,375	9.746794	4.562903	.0105263
96	9216	884,736	9.797959	4.578857	.0104167
97	9409	912.673	9.848858	4.594701	.0103093
98	9604	941.192	9.899495	4.610436	.0102041
99	9801	970.299	9.949874	4.626065	.0101010
100	10,000	1,000,000	10.000000	4.641589	.0100000
	1	1	I	I	1

Logarithmic Cross-section Paper

Cross-section paper the rulings of which are proportional to the logarithms of the scale is called logarithmic cross-section paper. This paper is most convenient for plotting equations with constant exponents since they are straight lines on logarithmic paper while

TABLES

they are curves if plotted on ordinary graph paper, in which case they must be plotted point by point.

The chief use of logarithmic cross-section paper is for plotting equations of the form:

$$y = ax^n$$

If two pairs of values of x and y are known, the corresponding points may be plotted on logarithmic paper and joined by a straight line. The value of the coefficient a is equal to the intercept of this line on the Y-axis, and the value of the exponent n is equal to the slope of the line (that is, the tangent of the angle which the line makes with the X-axis). The reason for this is that plotting on logarithmic paper is equivalent to taking logarithms, in which case we would obtain:

$$\log y = \log a + n \log x$$

which is the equation of a straight line, $\log a$ being the intercept and n the slope.

In case the values of a and n are known, that is, the intercept and the slope, we may plot the line, and from it obtain any pair of values of x and y.

Use of Logarithm Tables

Every logarithm consists of two parts: a positive or negative whole number called the **characteristic**, and a **positive** fraction, called the **mantissa**. The mantissa is always expressed as a decimal, and is the part which is given in the tables.

To find the common logarithm of a given number:

If the number is greater than 1, the characteristic of the logarithm is one unit less than the number of figures on the left of the decimal point. If the number is less than 1, the characteristic of the logarithm is negative, and one unit more than the number of zeros between the decimal point and the first significant figure of the given number.

Thus,

To find the number corresponding to a given common logarithm:

If the characteristic of a given logarithm is positive, the number of figures in the integral part of the corresponding number is one more than the number of units in the characteristic.

If the characteristic is negative, the number of zeros between the decimal point and the first significant figure of the corresponding number is one less than the number of units in the characteristic.

COMMON LOGARITHMS OF NUMBERS (Base 10)

N	0	1	2	3	4	5	6	7	8	9
100 101 102	00 432	00 043 00 475 00 903	00 518	00 561	00 173 00 604 01 030	00 647	00 689	00 732	00 346 00 775 01 199	ÓÖ 81
103 104	01 284 01 703	01 326 01 745	01 368 01 787	01 410 01 828	01 452 01 870	01 494 01 912	01 536 01 953	01 578 01 995	01 199 01 620 02 036	01 66 02 07
105 106 107	02 938	02 979	03 019	03 060	03 100	03 141	03 181	03 222	02 449 02 857 03 262	03 30
108 109	03 342 03 743	03 383 03 782	03 423 03 822	03 463 03 862	03 503 03 902	03 543 03 941	03 583 03 981	03 623 04 021	03 663 04 060	03 70 04 10
110 111 112 113 114	04 532 04 922 05 308	04 571 04 961 05 346	04 610 04 999 05 385	04 650 05 038 05 423	04 689 05 077 05 461	04 727 05 115 05 500	04 766 05 154 05 538	04 805 05 192 05 576	04 454 04 844 05 231 05 614 05 994	04 88 05 26 05 65
115 116 117 118 119	06 070 06 446 06 819 07 188	06 108 06 483 06 856 07 225	06 145 06 521 06 893 07 262	06 183 06 558 06 930 07 298	06 221 06 595 06 967 07 335	06 258 06 633 07 004 07 372	06 296 06 670 07 041 07 408	06 333 06 707 07 078 07 445	06 371 06 744 07 115 07 482 07 846	06 40 06 78 07 15 07 51
120 121 122 123 124	07 918 08 279 08 636 08 991	07 954 08 314 08 672 09 026	07 990 08 350 08 707 09 061	08 027 08 386 08 743 09 096	08 063 08 422 08 778 09 132	08 099 08 458 08 814 09 167	08 135 08 493 08 849 09 202	08 171 08 529 08 884 09 237	08 207 (08 565 (08 920 (09 272 (09 621 (08 24 08 60 08 95 09 30
125 126 127 128 129	10 037 10 380 10 721	10 072 10 415 10 755	10 106 10 449 10 789	10 140 10 483 10 823	10 175 10 517 10 857	10 209 10 551 10 890	10 243 10 585 10 924	10 278 10 619 10 958	09 968 1 10 312 10 653 1 10 992 11 327 1	0 34
130 131 132 133 134	11 727 12 057 12 385	11 760 12 090 12 418	11 793 12 123 12 450	11 826 12 156 12 483	11 860 12 189 12 516	11 893 12 222 12 548	11 926 12 254 12 581	11 959 12 287 12 613	11 661 1 11 992 1 12 320 1 12 646 1 12 969 1	2 02 2 35 2 67
135 136 137 138 139	13 354 13 672 13 988	13 386 13 704 14 019	13 418 13 735 14 051	13 450 13 767 14 082	13 481 13 799 14 114	13 513 13 830 14 145	13 545 13 862 14 176	13 577 13 893 14 208	13 290 1 13 609 1 13 925 1 14 239 1 14 551 1	3 64 3 95 4 27
140 141 142 143 144	15 229	15 259 15 564	15 290 15 594	15 320 15 625	15 351 15 655	15 381 15 685	15 412 15 715	15 442 15 746	14 860 1 15 168 1 15 473 1 15 776 1 16 077 1	5 50 5 80

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	.4	5	6	7	8	9
145 146 147 148 149	16 435 16 732 17 026	16 465 16 761 17 056	16 495 16 791 17 085	16 524 16 820 17 114	16 554 16 850 17 143	16 286 16 584 16 879 17 173 17 464	16 613 16 909 17 202	16 643 16 938 17 231	16 673 16 967 17 260	16 702 16 997 17 289
150 151 152 153 154	17 898 18 184 18 469	17 926 18 213 18 498	17 955 18 241 18 526	17 984 18 270 18 554	18 013 18 298 18 583	17 754 18 041 18 327 18 611 18 893	18 070 18 355 18 639	18 099 18 384 18 667	18 127 18 412 18 696	18 156 18 441 18 724
155 156 157 158 159	19 312 19 590 19 866	19 340 19 618 19 893	19 368 19 645 19 921	19 396 19 673 19 948	19 424 19 700 19 976	19 173 19 451 19 728 20 003 20 276	19 479 19 756 20 030	19 507 19 783 20 058	19 535 19 811 20 085	19 562 19 838 20 112
160 161 162 163 164	20 412 20 683 20 952 21 219 21 484	20 439 20 710 20 978 21 245 21 511	20 466 20 737 21 005 21 272 21 537	20 493 20 763 21 032 21 299 21 564	20 520 20 790 21 059 21 325 21 590	20 548 20 817 21 085 21 352 21 617	20 575 20 844 21 112 21 378 21 643	20 602 20 871 21 139 21 405 21 669	20 629 20 898 21 165 21 431 21 696	20 656 20 925 21 192 21 458 21 722
165 166 167 168 169						21 880 22 141 22 401 22 660 22 917				
170 171 172 173 174						23 172 23 426 23 679 23 930 24 180				
175 176 177 178 179	24 304 24 551 24 797 25 042 25 285									
180 181 182		25 551 25 792 26 031	25 575 25 816 26 055	25 600 25 840 26 079	25 624 25 864 26 102	25 648 25 888 26 126	25 672 25 912 26 150	25 696 25 935 26 174	25 720 25 959 26 198	25 744 25 983 26 221
187	26 717 26 951 27 184 27 416 27 646	26 975 27 207 27 430	26 998 27 231 27 462	27 021 27 254 27 485	27 045 27 277 27 508	27 300	27 091 27 323 27 554	27 114 27 346 27 577	27 138 27 370 27 600	27 161 27 393 27 623

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
190 191 192 193 194	27 875 28 103 28 330 28 556 28 780	28 126	28 149	27 944 28 171 28 398 28 623 28 847	28 104	28 217	28 240	28 262	28 285	28 302
195 196 197 198 199	29 667	29 688	29 710	29 070 29 292 29 513 29 732 29 951	29 754	29 776	29 798	29 820	29 842	29 86
200 201 202 203 204	30 320 30 535 30 750	30 341 30 557 30 771	30 363 30 578 30 792	30 168 30 384 30 600 30 814 31 027	30 406 30 621 30 835	30 428 30 643 30 856	30 449 30 664 30 878	30 471 30 685 30 899	30 492 30 707 30 920	30 51 30 72 30 94
205 206 207 208 209	31 597 31 806	31 618 31 827	31 639 31 848	31 239 31 450 31 660 31 869 32 077	31 681 31 890	31 702 31 911	31 723 31 931	31 744 31 952	31 765 31 973	31 78 31 99
210 211 212 213 214	32 428 32 634 32 838	32 449 32 654 32 858	32 469 32 675 32 879	32 284 32 490 32 695 32 899 33 102	32 510 32 715 32 919	32 531 32 736 32 940	32 552 32 756 32 960	32 572 32 777 32 980	32 593 32 797 33 001	32 61 32 81 33 02
215 216 217 218 219	33 244 33 445 33 646 33 846 34 044	33 264 33 465 33 666 33 866 34 064	33 284 33 486 33 686 33 885 34 084	33 304 33 506 33 706 33 905 34 104	33 325 33 526 33 726 33 925 34 124	33 345 33 546 33 746 33 945 34 143	33 365 33 566 33 766 33 965 34 163	33 385 33 586 33 786 33 985 34 183	33 405 33 606 33 806 34 005 34 203	33 42 33 62 33 82 34 02 34 22
220 221 222 223 224	34 635	34 655 34 850	34 674 34 869	34 301 34 498 34 694 34 889 35 083	34 713 34 908	34 733 34 928	34 753 34 947	34 772 34 967	34 792 34 986	34 81 35 00
225 226 227 228 229	35 603	35 622 35 813	35 641 35 832	35 276 35 468 35 660 35 851 36 040	35 679 35 870	35 698 35 889	35 717 35 908	35 736 35 927	35 755 35 946	35 77 35 96
230 231 232 233 234	36 549	36 568 36 754	36 586 36 773	36 229 36 418 36 605 36 791 36 977	36 624	36 642 36 829	36 661 36 847	36 680 36 866	36 698 36 884	36 71 36 90

COMMON LOGARITHMS OF NUMBERS Continued)

N	0	1	2	3	4	5	6	7	8	9
235	37 107	37 125 37 310	37 144	37 162	37 181	37 199	37 218	37 236	37 254	37 27
236	37 291	37 310	37 328	37 346	37 365	37 383	37 401	37 420	37 438	37 45
237 238	27 4/2	37 493 37 676	37 511	37 330	27 721	37 740	37 767	37 795	37 802	37 03
239	37 840	37 858	37 876	37 804	37 912	37 031	37 040	37 967	37 085	38 00
		1								
240	38 021	38 039	38 057	38 075	38 093	38 112	38 130	38 148	38 166	38 18
241	38 202	38 220 38 399	38 238	38 256	38 274	38 292	38 310	38 328	38 346	38 36
242 243	38 382	38 399	38 41/	38 433	38 433	38 4/1	38 489	38 507	38 525	38 24
244	38 730	38 578 38 757	38 775	38 702	38 810	38 878	38 846	38 863	38 881	38 80
FT		1								
245	38 917	38 934	38 952	38 970	38 987	39 005	39 023	39 041	39 058	39 07
246	39 094	39 111	39 129	39 146	39 164	39 182	39 199	39 217	39 235	39 2
247	39 270	39 287 39 463	39 305	39 322	39 340	39 358	39 375	39 393	39 410	39 4
248 249	30 470	39 637	30 655	20 672	30 600	39 222	20 724	39 200	20 750	30 7
697	39 020	160 76	22 22	77 072	77 090	57 707	57 129	57 /42	77 7 79	77 11
250	39 794	39 811	39 829	39 846	39 863	39 881	39 898	39 915	39 933	39 9
251		39 985								
252	40 140	40 157	40 175	40 192	40 209	40 226	40 243	40 261	40 278	40 2
253 254	40 312	40 329	40 540	40 304	40 381	40 398	40 415	40 432	40 449	40 4
639	10 403	40 500	70 310	70 333	70 352	70 209	70 200	70 005	70 020	70 03
255	40 654	40 671	40 688	40 705	40 722	40 739	40 756	40 773	40 790	40 80
256	40 824	40 841 41 010	40 858	40 875	40 892	40 909	40 926	40 943	40 960	40 97
257	40 993	41 010	41 027	41 044	41 061	41 078	41 095	41 111	41 128	41 14
258 259	41 102	41 179 41 347	41 190	41 212	41 207	41 240	41 430	41 200	41 290	
637	1 350	1 54/	71 202	71 500	71 377	71 717	1 100	71 77/	11 101	71 70
260	41 497	41 514	41 531	41 547	41 564	41 581	41 597	41 614	41 631	41 64
261	41 664	41 681	41 697	41 714	41 731	41 747	41 764	41 780	41 797	41 8
262	41 830	41 847 42 012	41 863	41 880	41 896	41 913	41 929	41 946	41 963	41 97
263 264	41 990	42 012	42 029	42 045	42 062	42 0/8	42 095	42 111	42 12/	42 14
204	1									
265	42 325	42 341 42 504	42 357	42 374	42 390	42 406	42 423	42 439	42 455	42 47
266	42 488	42 504	42 521	42 537	42 553	42 570	42 586	42 602	42 619	42 63
267	42 651	42 667	42 684	42 700	42 716	42 732	42 749	42 765	42 781	42 7
268 269		42 830 42 991								
209	42 9/5	42 991	42 000	42 024	45 040	45 050	43 0/2	43 000	101 64	15 12
270	43 136	43 152	43 169	43 185	43 201	43 217	43 233	43 249	43 265	43 28
271	43 297	43 313 43 473	43 329	43 345	43 361	43 377	43 393	43 409	43 425	43 44
272	43 457	43 473	43 489	43 505	43 521	43 537	43 553	43 569	43 584	43 60
273	43 616	43 632	43 648	43 664	43 680	43 696	43 712	43 727	43 743	43 75
274	13 775	43 791	93 807	45 623	860 64	75 67	9) 5 CF	42 000	43 902	42 9
275	43 933	43 949	43 965	43 981	43 996	44 012	44 028	44 044	44 059	44 07
276	44 091	44 107	44 122	44 138	44 154	44 170	44 185	44 201	44 217	44 23
277	44 248	44 264	44 279	44 295	44 311	44 326	44 342	44 358	44 373	44 38
278	44 404	44 420	44 436	44 45	44 467	44 483	44 498	44 514	44 529	11 54
279	144 200	44 576	77 372	199 00/	177 025	99 030	44 034	99 007	77 002	149 /L

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
280 281 282 283 284	45 025	44 731 44 886 45 040 45 194 45 347	45 056 45 209	45 071	45 086 45 240	45 102 45 255	45 117 45 271	45 133 45 286	45 148 45 301	45 16 45 31
285 286 287 288 288 289	45 939	45 500 45 652 45 803 45 954 46 105	45 969	45 984	46 000	46 015	46 030	46 045	46 060	46 07
290 291 292 293 294	46 389 46 538 46 687	46 255 46 404 46 553 46 702 46 850	46 419 46 568 46 716	46 434 46 583 46 731	46 449 46 598 46 746	46 464 46 613 46 761	46 479 46 627 46 776	46 494 46 642 46 790	46 509 46 657 46 805	46 52 46 67 46 82
295 296 297 298 299	47 129 47 276 47 422	46 997 47 144 47 290 47 436 47 582	47 159 47 305 47 451	47 173 47 319 47 465	47 188 47 334 47 480	47 202 47 349 47 494	47 217 47 363 47 509	47 232 47 378 47 524	47 246 47 392 47 538	47 26 47 40 47 55
300 301 302 303 304	47 857 48 001 48 144	47 727 47 871 48 015 48 159 48 302	47 885 48 029 48 173	47 900 48 044 48 187	47 914 48 058 48 202	47 929 48 073 48 216	47 943 48 087 48 230	47 958 48 101 48 244	47 972 48 116 48 259	47 98 48 13 48 27
305 306 307 308 309	48 572 48 714 48 855	48 444 48 586 48 728 48 869 49 010	48 601 48 742 48 883	48 615 48 756 48 897	48 629 48 770 48 911	48 643 48 785 48 926	48 657 48 799 48 940	48 671 48 813 48 954	48 686 48 827 48 968	48 70 48 84 48 98
310 311 312 313 314	49 276 49 415 49 554	49 150 49 290 49 429 49 568 49 707	49 304 49 443 49 582	49 318 49 457 49 596	49 332 49 471 49 610	49 346 49 485 49 624	49 360 49 499 49 638	49 374 49 513 49 651	49 388 49 527 49 665	49 40 49 54 49 67
315 316 317 318 319	49 969 50 106 50 243	49 845 49 982 50 120 50 256 50 393	49 996 50 133 50 270	50 010 50 147 50 284	50 024 50 161 50 297	50 037 50 174 50 311	50 051 50 188 50 325	50 065 50 202 50 338	50 079 50 215 50 352	50 09 50 22 50 36
320 321 322 323 324	50 651 50 786 50 920	50 529 50 664 50 799 50 934 51 068	50 678 50 813 50 947	50 691 50 826 50 961	50 705 50 840 50 974	50 718 50 853 50 987	50 732 50 866 51 001	50 745 50 880 51 014	50 759 50 893 51 028	50 77 50 90 51 04

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
325 326 327 328 329	51 455	51 468 51 601	51 481 51 614	51 495 51 627	51 508 51 640	51 521 51 654	51 534 51 667	51 548 51 680	51 295 51 428 51 561 51 693 51 825	51 574 51 700
330 331 332 333 334	51 983 52 114 52 244	51 996 52 127 52 257	52 009 52 140 52 270	52 022 52 153 52 284	52 035 52 166 52 297	52 048 52 179 52 310	52 061 52 192 52 323	52 075 52 205 52 336	51 957 52 088 52 218 52 349 52 479	52 101 52 231 52 362
335 336 337 338 339	52 634 52 763 52 892	52 647 52 776 52 905	52 660 52 789 52 917	52 673 52 802 52 930	52 686 52 815 52 943	52 699 52 827 52 956	52 711 52 840 52 969	52 724 52 853 52 982	52 608 52 737 52 866 52 994 53 122	52 750 52 879 53 007
340 341 342 343 344	53 148 53 275 53 403 53 529 53 656	53 161 53 288 53 415 53 542 53 668	53 173 53 301 53 428 53 555 53 681	53 186 53 314 53 441 53 567 53 694	53 199 53 326 53 453 53 580 53 706	53 212 53 339 53 466 53 593 53 719	53 224 53 352 53 479 53 605 53 732	53 237 53 364 53 491 53 618 53 744	53 250 53 377 53 504 53 631 53 757	53 263 53 390 53 517 53 643 53 769
345 346 347 348 349	53 908 54 033 54 158	53 920 54 045 54 170	53 933 54 058 54 183	53 945 54 070 54 195	53 958 54 083 54 208	53 970 54 095 54 220	53 983 54 108 54 233	53 995 54 120 54 245	53 882 54 008 54 133 54 258 54 382	54 020 54 149 54 270
350 351 352 353 354	54 654	54 667 54 790	54 679 54 802	54 691 54 814	54 704 54 827	54 716 54 839	54 728 54 851	54 741 54 864	54 506 54 630 54 753 54 876 54 998	54 76. 54 888
355 356 357 358 359	55 267 55 388	55 279 55 400	55 291 55 413	55 303 55 425	55 315 55 437	55 328 55 449	55 340 55 461	55 352 55 473	55 121 55 242 55 364 55 485 55 606	55 376 55 497
360 361 362 363 364	55 751 55 871 55 991	55 763 55 883 56 003	55 775 55 895 56 015	55 787 55 907 56 027	55 799 55 919 56 038	55 811 55 931 56 050	55 823 55 943 56 062	55 835 55 955 56 074	55 727 55 847 55 967 56 086 56 205	55 859 55 979 56 098
365 366 367 368 369	56 467 56 585	56 478 56 597	56 490 56 608	56 502 56 620	56 514 56 632	56 526 56 644	56 538 56 656	56 549 56 667	56 324 56 443 56 561 56 679 56 797	56 573 56 691

238

•

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
370 371 372 373 374	57 054	57 066 57 183	57 078 57 194	57 089	57 101	57 113	57 124 57 241	57 136	56 914 57 031 57 148 57 264 57 380	57 15
375 376 377 378 379	57 519 57 634 57 749	57 530 57 646 57 761	57 542 57 657 57 772	57 553 57 669 57 784	57 565 57 680 57 795	57 576 57 692 57 807	57 588 57 703 57 818	57 600 57 715 57 830	57 496 57 611 57 726 57 841 57 955	57 62 57 73 57 85
380 381 382 383 384	58 206	58 218 58 331	58 229 58 343	58 240 58 354	58 252 58 365	58 263 58 377	58 274 58 388	58 286 58 399	58 070 58 184 58 297 58 410 58 524	58 30 58 42
385 386 387 388 388 389	58 771	58 782 58 894	58 794 58 906	58 805 58 917	58 816 58 928	58 827 58 939	58 838 58 950	58 850 58 961	58 636 58 749 58 861 58 973 59 084	58 87 58 90
390 391 392 393 394	59 106 59 218 59 329 59 439 59 550	59 118 59 229 59 340 59 450 59 561	59 129 59 240 59 351 59 461 59 572	59 140 59 251 59 362 59 472 59 583	59 151 59 262 59 373 59 483 59 594	59 162 59 273 59 384 59 494 59 605	59 173 59 284 59 395 59 506 59 616	59 184 59 295 59 406 59 517 59 627	59 195 59 306 59 417 59 528 59 638	59 20 59 3 59 4 59 5 59 5
395 396 397 398 398	59 770 59 879 59 988	59 780 59 890 59 999	59 791 59 901 60 010	59 802 59 912 60 021	59 813 59 923 60 032	59 824 59 934 60 043	59 835 59 945 60 054	59 846 59 956 60 065	59 748 59 857 59 966 60 076 60 184	59 8 59 9 60 0
400 401 402 403 404	60 314 60 423 60 531	60 325 60 433 60 541	60 336 60 444 60 552	60 347 60 455 60 563	60 358 60 466 60 574	60 369 60 477 60 584	60 379 60 487 60 595	60 390 60 498 60 606	60 293 60 401 60 509 60 617 60 724	60 4 60 5 60 6
405 406 407 408 409	60 853 60 959 61 066	60 863 60 970 61 077	60 874 60 981 61 087	60 885 60 991 61 098	60 895 61 002 61 109	60 906 61 013 61 119	60 917 61 023 61 130	60 927 61 034 61 140	60 831 60 938 61 045 61 151 61 257	60 9 61 0 61 1
410 411 412 413 414	61 384 61 490 61 595	61 395	61 405 61 511 61 616	61 416 61 521 61 627	61 426 61 532 61 637	61 437 61 542 61 648	61 448 61 553 61 658	61 458 61 563 61 669	61 363 61 469 61 574 61 679	61 47 61 51 61 69

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
415	61 805	61 815	61 826	61 836	61 847	61 857	61 868	61 878	61 888	61 899
416	61 909	61 920	61 930	61 941	61 951	61 962	61 972	61 982	61 993	62 003
417			62 034							
418	62 118	62 128	62 138	62 149	62 159	62 170	62 180	62 190	62 201	62 211
419	62 221	62 232	62 242	62 252	62 263	62 273	62 284	62 294	62 304	62 315
420	62 325	62 335	62 346	62 356	62 366	62 377	62 387	62 397	62 408	62 418
421 422	62 420	62 429	62 449 62 552	62 409	42 572	62 400	62 490	62 200	62 211	02 221
423	62 634	67 644	62 655	62 665	62 675	62 685	67 696	62 706	62 716	62 726
424	62 737	62 747	62 655 62 757	62 767	62 778	62 788	62 798	62 808	62 818	62 829
425	62 839	62 849	62 859	62 870	62 880	62 890	62 900	62 910	62 921	62 931
426	62 941	62 951	62 961	62 972	62 982	62 992	63 002	63 012	63 022	63 033
427	63 043	63 053	63 063	63 073	63 083	63 094	63 104	63 114	63 124	63 134
428			63 165							
429	63 246	63 256	63 266	63 276	63 286	63 296	63 306	63 317	63 327	63 337
430	63 347	63 357	63 367 63 468	63 377	63 387	63 397	63 407	63 417	63 428	63 438
431	63 448	63 458	63 468	63 478	63 488	63 498	63 508	63 518	63 528	63 538
432	63 548	63 558	63 568 63 669	64 579	63 589	63 599	63 609	63 619	63 629	63 639
433 434			63 769							
•								· ·		
435	63 849	63 859	63 869	63 879	63 889	63 899	63 909	63 919	63 929	63 939
436	63 949	63 959	63 969 64 068	63 9/9	63 988	63 998	64 008	04 018	64 028	04 038
437 438	64 147	64 157	64 167	64 177	64 187	64 107	64 207	64 217	64 227	64 227
439	64 246	64 256	64 266	64 276	64 286	64 296	64 306	64 316	64 326	64 335
440	64 345	64 355	64 365	64 375	64 385	64 395	64 404	64 414	64 424	64 434
441	64 444	64 454	64 464	64 473	64 483	64 493	64 503	64 513	64 523	64 532
442	64 542	64 552	64 562 64 660	64 572	64 582	64 591	64 601	64 611	64 621	64 631
443	64 640	64 650	64 660	64 670	64 680	64 689	64 699	64 709	64 719	64 729
444	64 738	64 748	64 758	64 768	64 777	64 787	64 797	64 807	64 816	64 826
445	64 836	64 846	64 856	64 865	64 875	64 885	64 895	64 904	64 914	64 924
446	64 933	64 943	64 953	64 963	64 972	64 982	64 992	65 002	65 011	65 021
447	65 031	65 040	65 050	65 060	65 070	02 079	05 089	65 099	65 108	65 118
448 449	65 225	65 234	65 147 65 244	65 254	65 263	65 273	65 283	65 292	65 302	65 312
450			65 341							
450			65 437							
452	65 514	65 523	65 533	65 543	65 552	65 562	65 571	65 581	65 501	65 600
453	65 610	65 619	65 629	65 639	65 648	65 658	65 667	65 677	65 686	65 696
454			65 725							
455	65 801	65 811	65 820	65 830	65 839	65 849	65 858	65 868	65 877	65 887
456	65 896	65 906	65 916	65 925	65 935	65 944	65 954	65 963	65 973	65 982
457	65 992	66 001	66 011	66 020	66 030	66 039	66 049	66 058	66 068	66 077
458	66 087	66 096	66 106	66 115	66 124	66 134	66 143	66 153	66 162	66 172
459	00 101	00 131	66 200	00 210	00 219	00 229	00 238	00 Z47	00 257	00 206

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
460	66 276	66 285	66 295	66 304	66 314	66 323	66 332	66 342	66 351	66 36
461	66 370	66 380	66 389	66 398	66 408	66 417	66 427	66 436	66 445	66 4
462						66 511				
463						66 605				
464	66 652	66 661	66 671	66 680	66 690	66 699	66 708	66 717	66 777	66 71
465	66 745	66 755	66 764	66 773	66 783	66 792	66 801	66 811	66 820	66 82
466	00 839	00 040	00 85/	00 80/	00 8/0	66 885	00 894	00 904	00 913	00 9
467	66 932	66 941	66 950	66 960	66 969	66 978	66 987	66 997	67 006	67 0
468	67 025	67 034	67 043	67 052	67 062	67 071	67 080	67 089	67 099	67 10
469	67 117	67 127	67 136	67 145	67 154	67 071 67 164	67 173	67 182	67 191	67 20
470	67 210	67 219	67 228	67 237	67 247	67 256	67 265	67 274	67 284	67 2
471	67 302									
472	167 394	67 402	67 412	47 422	47 421	67 440	67 440	67 450	67 449	47 4
473	47 484	47 405	67 504	67 514	47 572	67 532	67 541	67 550	67 540	47 6
474	27 579	47 597	47 504	47 405	67 614	67 624	67 622	67 642	67 481	27 2
7/7	0/ 5/0	0/ 30/	07 390	07 005	07 014	0/ 024	07 055	0/ 042	07 051	0/ 0
475	67 669	67 679	67 688	67 697	67 706	67 715	67 724	67 733	67 742	67 7
476	67 761	67 770	67 779	67 788	67 797	67 806	67 815	67 825	67 834	67 8
477						67 897				
478						67 988				
479						68 079				
480	69 124	49 122	69 147	49 151	49 140	68 169	68 178	68 187	68 104	68.2
481	69 215	60 133	49 222	60 131	69 761	49 340	49 240	49 270	40 190	60 2
482	00 213	00 247	00 233	00 272	00 221	68 260 68 350	00 209	100 2/0	00 20/	00 2
483	100 303	00 214	00 343	00 224	00 271	00 330	60 339	60 200	60 5/7	00 3
484	68 485	68 494	68 502	68 511	68 520	68 440 68 529	68 538	68 547	68 556	68 5
485	1					68 619		I .	1	
486	49 44	48 472	69 691	49 400	69 600	68 708	68 717	69 774	69 725	40 7
487	149 752	40 74 7	40 771	60 090	40 700	68 797	60 004	40 012	60 755	100 /
488										
	00 042	00 021	00 000	00 009	00 0/0	68 886	00 093	00 904	00 913	00 3
489	00 321	00 940	00 949	00 950	09 200	68 975	00 904	00 993	09 002	09 0
490	69 020	69 028	69 037	69 046	69 055	69 064	69 073	69 082	69 090	69 0
491	69 108	69 117	69 126	69 135	69 144	69 152	69 161	69 170	69 179	69 1
492	69 197	69 205	69 214	69 223	69 232	69 241	69 249	69 258	69 267	69 2
493	69 285	69 294	69 302	69 311	69 320	69 329	69 338	69 346	69 355	69 3
494	69 373	69 381	69 390	69 399	69 408	69 417	69 425	69 434	69 443	69 4
495	69 461	69 469	69 478	69 487	69 496	69 504	69 513	69 522	69 531	69 5
496	60 548	60 557	60 566	69 574	69 583	69 592	69 601	69 600	69 618	60 6
497	60 626	60 644	60 652	60 661	60 671	69 679	60 689	60 607	69 709	60 7
498	60 722	60 721	60 740	60 740	60 750	69 767	60 775	60 794	60 702	60 9
499						69 854				
				· ·						1
500	169 897	109 906	09 914	09 923	70 019	69 940 70 027	70 024	70 044	70 062	09 9
501	107 984	07 992	70 001	170 010	70 010	70 02/	70 000	70 121	70 000	
502	1/0 0/0	1/0 0/9	10 000	170 090	10 103	70 114	70 122	10 13	1/0 140	
503	1/0 157	1/0 165	10 174	1/0 183	10 191	70 200	10 209	10 217	10 226	1/0 2
504	170 743	170 757	0/0 760	870 769	170 778					

24I

COMMON LOGARITHMS OF NUMBERS (Continued)

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
550 551 552 553 554	74 194	74 202	74 210 74 288	74 218 74 296	74 225	74 233 74 312	74 241 74 320	74 249	74 099 74 178 74 257 74 335 74 414	74 26
555 556 557 558 559	74 429 74 507 74 586 74 663 74 741	74 437 74 515 74 593 74 671 74 749	74 445 74 523 74 601 74 679 74 757	74 453 74 531 74 609 74 687 74 764	74 461 74 539 74 617 74 695 74 772	74 468 74 547 74 624 74 702 74 780	74 476 74 554 74 632 74 710 74 788	74 484 74 562 74 640 74 718 74 796	74 492 74 570 74 648 74 726 74 803	74 5 74 5 74 6 74 7 74 7 74 8
560 561 562 563 564									74 881 74 958 75 035 75 113 75 189	
565 566 567 568 569	75 205 75 282 75 358 75 435	75 213 75 289 75 366 75 442	75 220 75 297 75 374 75 450	75 228 75 305 75 381 75 458	75 236 75 312 75 389 75 465	75 243 75 320 75 397 75 473	75 251 75 328 75 404 75 481	75 259 75 335 75 412 75 488	75 266 75 343 75 420 75 496 75 572	75 2 75 3 75 4 75 5
570 571 572 573 573	75 587 75 664 75 740 75 815 75 891	75 595 75 671 75 747 75 823 75 899	75 603 75 679 75 755 75 831 75 906	75 610 75 686 75 762 75 838 75 914	75 618 75 694 75 770 75 846 75 921	75 626 75 702 75 778 75 853 75 929	75 633 75 709 75 785 75 861 75 937	75 641 75 717 75 793 75 868 75 944	75 648 75 724 75 800 75 876 75 952	75 6 75 7 75 8 75 8 75 9
575 576 577 578 578 579									76 027 76 103 76 178 76 253 76 328	
580 581 582 583 584	76 343 76 418 76 492 76 567	76 350 76 425 76 500 76 574	76 358 76 433 76 507 76 582	76 365 76 440 76 515 76 589	76 373 76 448 76 522 76 597	76 380 76 455 76 530 76 604	76 388 76 462 76 537 76 612	76 395 76 470 76 545 76 619	76 403 76 477 76 552 76 626 76 701	76 4 76 4 76 5 76 6
585 586 587 588 588	76 716 76 790 76 864 76 938 77 012	76 723 76 797 76 871 76 945 77 019	76 730 76 805 76 879 76 953 77 026	76 738 76 812 76 886 76 960 77 034	76 745 76 819 76 893 76 967 77 041	76 753 76 827 76 901 76 975 77 048	76 760 76 834 76 908 76 982 77 056	76 768 76 842 76 916 76 989 77 063	76 775 76 849 76 923 76 997 77 070	76 7 76 8 76 9 77 0 77 0
590 591 592 593 594			77 100 77 173 77 247 77 320 77 393							

.

COMMON LOGARITHMS OF NUMBERS (Continued)

600 77 815 77 822 77 830 601 77 815 77 822 77 830 7 601 77 887 77 895 77 927 601 77 887 77 895 77 927 601 77 887 77 974 7 927 602 77 800 78 327 8037 80467 604 78 104 78 111 78 1837 605 78 176 78 338 78 4007 70 78 197 836 78 4507 78 476 609 78 462 78 4507 78 476 75 78 618 76 578 78 476 75 78 618 76 77 78 77 78 77 78 77 78	0 1 2 3	4 5	6 7	89
597 77 605 77 612 598 77 670 77 7617 77 7685 599 77 743 77 600 77 815 77 6857 599 77 743 77 500 77 757 7 600 77 815 77 822 77 830 7 601 77 815 77 822 77 9747 603 78 060 77	77 452 77 459 77 466 77 47	77 481 77 488	77 495 77 503	77 510 77 5
597 77 605 77 612 598 77 670 77 7617 77 7685 599 77 743 77 600 77 815 77 6857 599 77 743 77 500 77 757 7 600 77 815 77 822 77 830 7 601 77 815 77 822 77 9747 603 78 060 77	77 525 77 532 77 539 77 54	5 77 554 77 561	77 568 77 576	77 583 77 59
599 77 743 77 750 77 757 600 77 815 77 822 77 830 601 77 887 77 850 77 902 601 77 887 77 850 77 902 602 77 960 77 974 77 974 603 78 032 78 039 78 046 604 78 104 78 11 78 118 605 78 176 78 137 78 254 78 262 606 78 247 78 254 78 262 76 607 78 319 78 326 78 476 7 608 78 307 78 547 78 547 78 547 7 610 78 537 78 760	77 597 77 605 77 612 77 61	77 627 77 634	77 641 77 648	77 656 77 6
599 77 743 77 750 77 757 600 77 815 77 822 77 830 601 77 887 77 850 77 902 601 77 887 77 850 77 902 602 77 960 77 974 77 974 603 78 032 78 039 78 046 604 78 104 78 11 78 118 605 78 176 78 137 78 254 78 262 606 78 247 78 254 78 262 76 607 78 319 78 326 78 476 7 608 78 307 78 547 78 547 78 547 7 610 78 537 78 760	77 670 77 677 77 685 77 69	77 699 77 706	77 714 77 721	77 728 77 7
601 77 887/77 895/77 9027 602 77 9607 967/77 974 602 77 9607 967/77 974 603 78 032 78 039 78 046 7 604 78 104 78 111 78 190 7 605 78 176 78 18 78 190 7 606 78 247 78 254/78 254/78 254 606 78 319<78	77 743 77 750 77 757 77 76	77 772 77 779	77 786 77 793	77 801 77 8
601 77 887/77 895/77 9027 602 77 9607 967/77 974 602 77 9607 967/77 974 603 78 032 78 039 78 046 7 604 78 104 78 111 78 190 7 605 78 176 78 18 78 190 7 606 78 247 78 254/78 254/78 254 606 78 319<78	77 815 77 822 77 830 77 83	77 844 77 851	77 859 77 866	77 873 77 8
602 77 960/77 977/97 974/2 603 78 032/78 039/78 046/78 032/78 039/78 046/78 032/78 039/78 046/78 032/78 039/78 046/78 110 78 111 78 118 7 060 78 104/78 111 78 118 7 8 126 7 8 126 7 8 126 7 8 139 78 262/7 633 78 740 7 640 78 178 746 78 747 7 640 78 610 78 533 78 740 78 74 76 76 78 78 746 78 74 76 76 78 746 78 747 7 610 78 74 76 78 746 78 74 76 78 747 7 76 74 76 78 76 78<	77 887 77 895 77 902 77 90	77 916 77 924	77 931 77 938	77 945 77 9
604 78 104 78 111 78 118 605 78 176 78 133 78 190 606 78 247 78 254 78 262 607 78 319 78 262 78 378 608 78 390 78 462 78 405 609 78 462 78 467 78 476 610 78 533 78 540 78 476 611 78 677 78 682 78 689 611 78 675 78 682 78 689 612 78 767 78 888 78 895 78 902 613 78 746 78 78 78 727 617 902 79 78 79 78 727 617 902 79 78 </td <td>77 960 77 967 77 974 77 98</td> <td>77 988 77 996</td> <td>78 003 78 010</td> <td>78 017 78 0</td>	77 960 77 967 77 974 77 98	77 988 77 996	78 003 78 010	78 017 78 0
604 78 104 78 111 78 118 605 78 176 78 133 78 190 606 78 247 78 254 78 262 607 78 319 78 262 78 378 608 78 390 78 462 78 405 609 78 462 78 467 78 476 610 78 533 78 540 78 476 611 78 677 78 682 78 689 611 78 675 78 682 78 689 612 78 767 78 888 78 895 78 902 613 78 746 78 78 78 727 617 902 79 78 79 78 727 617 902 79 78 </td <td>78 032 78 039 78 046 78 05</td> <td>78 061 78 068</td> <td>78 075 78 082</td> <td>78 089 78 0</td>	78 032 78 039 78 046 78 05	78 061 78 068	78 075 78 082	78 089 78 0
606 78 247 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 253 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 406 78 440 78 440 78 440 78 440 78 440 78 440 78 440 78 417 88 78 78 76 78 76 78 76 78 76 78 78 76 78 78 77 78 78 78 77 78 78 78 77 78 78 78 77 78 78 78 77 78 79 78	78 104 78 111 78 118 78 12	78 132 78 140	78 147 78 154	78 161 78 1
606 78 247 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 254 78 253 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 405 78 406 78 440 78 440 78 440 78 440 78 440 78 440 78 440 78 417 88 78 78 76 78 76 78 76 78 76 78 78 76 78 78 77 78 78 78 77 78 78 78 77 78 78 78 77 78 78 78 77 78 79 78	78 176 78 183 78 190 78 19	78 204 78 211	78 219 78 226	78 233 78 2
009 78 462 78 476 7 610 78 533 78 540 78 547 611 78 640 78 517 78 746 78 573 78 760 76 760 76 760 76 760 76 77 78 78 77 78 78 77 78 77 78 77 78 78 77 78 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78 77 78 78 77 78 78 77 78 78 77 78 78 78 77 78 78 78 78 77 78 78 78	78 247 78 254 78 262 78 26	78 276 78 283	78 290 78 297	78 305 78 3
009 78 462 78 476 7 610 78 533 78 540 78 547 611 78 640 78 517 78 746 78 573 78 760 76 760 76 760 76 760 76 77 78 78 77 78 78 77 78 77 78 77 78 78 77 78 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78 77 78 78 77 78 78 77 78 78 77 78 78 78 77 78 78 78 78 77 78 78 78	78 319 78 326 78 333 78 34	78 347 78 355	78 362 78 369	78 376 78 3
009 78 462 78 476 7 610 78 533 78 540 78 547 611 78 640 78 517 78 746 78 573 78 760 76 760 76 760 76 760 76 77 78 78 77 78 78 77 78 77 78 77 78 78 77 78 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78 77 78 77 78 77 78 77 78 77 78 77 78 77 78 78 77 78 78 77 78 78 77 78 78 77 78 78 78 77 78 78 78 78 77 78 78 78	78 390 78 398 78 405 78 41	78 419 78 426	78 433 78 440	78 447 78 4
611 78 604/78 611/78 618 612 78 675 78 68278 6890 613 78 746 78 753 78 6890 614 78 817 78 824 78 8317 615 78 817 78 824 78 8317 614 78 817 78 824 78 8317 615 78 958 78 9627 78 9627 616 78 958 78 9627 78 9727 617 79 029 79 036 79 043 7 618 79 099 79 106 79 1133 619 79 169 79 176 79 1832 620 79 239 79 246 79 2353 621 79 309 79 346 79 333 622 79 309 79 386 79 333 623 79 449 79 4565 79 4632 624 79 518 79 555 79 602 7 625 79 588 79 595 79 602 7 626 79 657 79 664 79 671 70 711 627 79 727 79 7347 9 741 7 628 79 967 803 79 810 7 629 79 847 79 941 79 948 7 631 80 038 00 108 80 0178 80 051 7 633 80 147 80 147 80 154 634 80 209 80 216 80 123 80 134 635 80 277 80 284 80 294 81	78 462 78 469 78 476 78 48	78 490 78 497	78 504 78 512	78 519 78 5
611 78 604/78 611/78 618 612 78 675 78 68278 6890 613 78 746 78 753 78 6890 614 78 817 78 824 78 8317 615 78 817 78 824 78 8317 614 78 817 78 824 78 8317 615 78 958 78 9627 78 9627 616 78 958 78 9627 78 9727 617 79 029 79 036 79 043 7 618 79 099 79 106 79 1133 619 79 169 79 176 79 1832 620 79 239 79 246 79 2353 621 79 309 79 346 79 333 622 79 309 79 386 79 333 623 79 449 79 4565 79 4632 624 79 518 79 555 79 602 7 625 79 588 79 595 79 602 7 626 79 657 79 664 79 671 70 711 627 79 727 79 7347 9 741 7 628 79 967 803 79 810 7 629 79 847 79 941 79 948 7 631 80 038 00 108 80 0178 80 051 7 633 80 147 80 147 80 154 634 80 209 80 216 80 123 80 134 635 80 277 80 284 80 294 81	78 533 78 540 78 547 78 55	78 561 78 569	78 576 78 583	78 590 78 5
613 78 746 (78 753 78 760 614 78 817 78 824 78 831 615 78 888 78 895 78 902 76 615 78 888 78 895 78 902 76 616 78 958 78 865 78 902 76 617 79 958 78 78 79 902 70 9133 70 9133 79 133 72 73 79 73 73 74 73	78 604 78 611 78 618 78 62	5 78 633 78 640	78 647 78 654	78 661 78 6
613 78 746 (78 753 78 760 614 78 817 78 824 78 831 615 78 888 78 895 78 902 76 615 78 888 78 895 78 902 76 616 78 958 78 865 78 902 76 617 79 958 78 78 79 902 70 9133 70 9133 79 133 72 73 79 73 73 74 73	78 675 78 682 78 689 78 69	78 704 78 711	78 718 78 725	78 732 78 7
614 78 817 78 824 78 831 615 78 988 78 965 78 972 616 78 958 78 965 78 972 616 78 958 78 965 78 972 617 79 029 79 036 79 979 137 618 79 029 79 106 79 133 79 169 79 133 620 79 239 79 246 79 233 79 323 79 246 79 333 72 27 333 72 27 333 72 27 333 72 360 79 333 72 27 363 79 363 79 363 79 363 79 363 79 363 79 363 79 37 79 747 74 74	78 746 78 753 78 760 78 76	78 774 78 781	78 789 78 796	78 803 78 8
620 79 239 79 246 79 253 621 79 309 79 316 79 333 622 79 379 79 386 79 333 623 79 449 79 450 79 453 624 79 518 79 525 79 522 625 79 588 79 595 79 602 626 79 557 79 664 79 717 627 79 779 79	78 817 78 824 78 831 78 83	78 845 78 852	78 859 78 866	78 873 78 8
620 79 239 79 246 79 253 621 79 309 79 316 79 333 622 79 379 79 386 79 333 623 79 449 79 450 79 453 624 79 518 79 525 79 522 625 79 588 79 595 79 602 626 79 557 79 664 79 717 627 79 779 79	78 888 78 895 78 902 78 90	78 916 78 923	78 930 78 937	78 944 78 9
620 79 239 79 246 79 253 621 79 309 79 316 79 333 622 79 379 79 386 79 333 623 79 449 79 450 79 453 624 79 518 79 525 79 522 625 79 588 79 595 79 602 626 79 557 79 664 79 717 627 79 779 79	78 958 78 965 78 972 78 97	78 986 78 993	79 000 79 007	79 014 79 0
620 79 239 79 246 79 253 621 79 309 79 316 79 333 622 79 379 79 386 79 333 623 79 449 79 450 79 453 624 79 518 79 525 79 522 625 79 588 79 595 79 602 626 79 557 79 664 79 717 627 79 779 79	79 029 79 036 79 043 79 05	79 057 79 064	79 071 79 078	79 085 79 0
620 79 239 79 246 79 253 621 79 309 79 316 79 333 622 79 379 79 386 79 333 623 79 449 79 450 79 453 624 79 518 79 525 79 522 625 79 588 79 595 79 602 626 79 557 79 664 79 717 627 79 779 79	79 099 79 106 79 113 79 12	79 127 79 134	79 141 79 148	79 155 79 1
622 79 379 79 386 79 387 623 79 449 79 451 79 451 624 79 518 79 525 79 532 625 79 588 79 595 79 602 626 79 657 79 664 79 671 627 79 727 79 747 741 7 628 79 766 79 803 79 810 629 79 650 79 872 79 879 79 630 79 934 79 941 79 948 7 631 80 032 80 140 80 154 6 633 80 140 80 147 80 154 6 634 80 207 80 148 223 6 635	79 169 79 176 79 183 79 19	79 197 79 204	79 211 79 218	79 225 79 2
622 79 379 79 386 79 387 623 79 449 79 451 79 451 624 79 518 79 525 79 532 625 79 588 79 595 79 602 626 79 657 79 664 79 671 627 79 727 79 747 741 7 628 79 766 79 803 79 810 629 79 650 79 872 79 879 79 630 79 934 79 941 79 948 7 631 80 032 80 140 80 154 6 633 80 140 80 147 80 154 6 634 80 207 80 148 223 6 635		1 1		1 1
622 79 379 79 386 79 393 2 623 79 449 79 456 79 532 7 624 79 518 79 525 79 532 7 625 79 588 79 525 79 532 7 625 79 588 79 595 79 602 7 626 79 657 79 664 79 671 7 727 79 741 79 741 7 741 7 741 7 742 7 747 741 7 747 741 7 747 741 7 747 7 747 741 7 747 741 7 747 7 747 747 747 747 747 748 7 747 7 7 748 7 747 748 7 748 <	79 309 79 316 79 323 79 33	79 337 79 344	79 351 79 358	79 365 79 3
624 79 518 79 525 79 532 625 79 588 79 595 79 602 626 79 657 79 664 79 671 627 79 727 79 7347 79 741 628 79 796 79 803 79 810 629 79 865 79 872 79 879 630 79 934 79 941 79 948 631 80 038 0.0180 0.0180 633 80 172 80 079 80 080 0.14 634 02 09 80 216 0.238 60 238 635 80 277 80 284 80 291 8	79 379 79 386 79 393 79 40	79 407 79 414	79 421 79 428	79 435 79 4
624 79 518 79 525 79 532 625 79 588 79 595 79 602 626 79 657 79 664 79 671 627 79 727 79 7347 79 741 628 79 796 79 803 79 810 629 79 865 79 872 79 879 630 79 934 79 941 79 948 631 80 038 0.0180 0.0180 633 80 172 80 079 80 080 0.14 634 02 09 80 216 0.238 60 238 635 80 277 80 284 80 291 8	79 449 79 456 79 463 79 47	70 477 70 ARA	70 401 70 408	79 505 79 5
029 79 863 79 872 79 879 630 79 934 79 941 79 948 631 80 003 80 108 80 17 860 17 632 90 072 80 079 80 085 633 80 140 80 154 634 80 209 80 16 80 233 633 80 209 80 16 80 231 634 80 209 80 16 80 233 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 80 80 160	79 518 79 525 79 532 79 53	79 546 79 553	79 560 79 567	79 574 79 5
029 79 863 79 872 79 879 630 79 934 79 941 79 948 631 80 003 80 108 80 17 860 17 632 90 072 80 079 80 085 633 80 140 80 154 634 80 209 80 16 80 233 633 80 209 80 16 80 231 634 80 209 80 16 80 233 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 277 80 284 80 291 635 80 80 80 160	79 588 79 595 79 602 79 60	79 616 79 623	79 630 79 637	79 644 79 6
029 79 863 79 872 79 879 630 79 934 79 941 79 948 7 631 80 003 80 10 808 17 808 17 80 154 633 80 072 80 072 80 075 80 080 140 80 147 80 154 634 80 223 633 80 277 80 284 80 291 8 635 80 277 80 284 80 291 8 50 277 80 284 80 291 8 50 277 80 284 80 291 8 50 277 80 284 80 291 8 50 50 277 80 84 80 291 8 50 50 50 277 80 84 80 291 8 80	79 657 79 664 79 671 79 67	8 79 685 79 692	79 699 79 704	79 713 79 7
029 79 863 79 872 79 879 630 79 934 79 941 79 948 7 631 80 003 80 10 808 17 808 17 80 154 633 80 072 80 072 80 075 80 080 140 80 147 80 154 634 80 223 633 80 277 80 284 80 291 8 635 80 277 80 284 80 291 8 50 277 80 284 80 291 8 50 277 80 284 80 291 8 50 277 80 284 80 291 8 50 50 277 80 84 80 291 8 50 50 50 277 80 84 80 291 8 80	79 727 79 734 79 741 79 74	8 79 754 79 761	79 768 79 779	79 782 79 7
029 79 863 79 872 79 879 630 79 934 79 941 79 948 7 631 80 003 80 10 808 17 808 17 80 154 633 80 072 80 072 80 075 80 080 140 80 147 80 154 634 80 223 633 80 277 80 284 80 291 8 635 80 277 80 284 80 291 8 50 277 80 284 80 291 8 50 277 80 284 80 291 8 50 277 80 284 80 291 8 50 50 277 80 84 80 291 8 50 50 50 277 80 84 80 291 8 80	79 796 79 803 79 810 79 81	70 874 70 831	79 837 79 RAA	79 851 70 A
631 80 003 80 010 80 017 632 80 072 80 079 80 085 633 80 140 80 147 80 154 634 80 209 80 216 80 223 635 80 277 80 284 80 291	79 865 79 872 79 879 79 88	6 79 893 79 900	79 906 79 913	79 920 79 9
631 80 003 80 010 80 017 632 80 072 80 079 80 085 633 80 140 80 147 80 154 8 634 80 209 80 216 80 223 8 635 80 277 80 284 80 291 8	79 934 79 941 79 948 79 95	5 79 962 79 969	79 975 79 982	79 989 79 9
632 80 072 80 079 80 085 633 80 140 80 147 80 154 634 80 209 80 216 80 223 635 80 277 80 284 80 291	80 003 80 010 80 017 80 02	180 030 80 037	80 044'80 051	80 058 80 0
633 80 140 80 147 80 154 8 634 80 209 80 216 80 223 8 635 80 277 80 284 80 291 8	80 072 80 079 80 085 80 00	80 099 80 104	80 113 80 120	80 127 80 1
635 80 277 80 284 80 291 8	80 140 80 147 80 154 80 14	1 80 168 80 175	80 182 80 199	80 105 80 2
635 80 277 80 284 80 291 8	80 209 80 216 80 223 80 22	80 236 80 243	80 250 80 257	80 264 80 2
424 100 244 00 252 00 250	80 277 80 284 80 291 80 29			1 1
	80 346 80 353 80 359 80 36	6 80 373 80 380	80 387 80 39	80 400 80 4
637 80 414 80 421 80 428 8	80 346 80 353 80 359 80 36 80 414 80 421 80 428 80 43	4 80 441 80 448	80 455 80 44	80 468 80 4
	80 482 80 489 80 496 80 50			
	80 550 80 557 80 564 80 57			

COMMON LOGARITHMS OF NUMBERS (Continued)

	l . '	D		1		2		3		4		5		6		7		8		9
640	80	618	80	625	80	632	80	638	80	645	80	652	80	659	80	665	80	672	80	67
641	180	686	ŘŇ	603	Ř	600	Ř	706	iñn	713	Ř	720	ŝ	776	Řň	733	80	740	Ř	74
642		754	ěň	740	100	767	en	774	100	781	20	787	500	704	80	601	00	200	000	67
643	80	27	80	200	00	025	80	641	100	201		101	80	177	00	001	00	000	80	21
644	00	041	80	020	00	022	00	041	00	010	80	855	00	002	00	000	00	8/2	00	00
044	80	009	00	092	00	902	00	909	80	A10		922	00	929	00	930	00	943	00	74
645	80	956	80	963	80	969	80	976	80	983	80	990	80	996	81	003	81	010	81	01
646	81	023	81	030	81	037	81	043	81	050	81	057	81	064	81	070	81	077	81	80
647	181	090	81	097	181	104	81	111	181	117	81	124	181	131	81	137	j81	144	81	15
648	81	158	81	164	81	171	181	178	81	184	81	124 191	181	198	81	204	81	211	181	21
649	81	224	81	231	81	238	81	245	81	251	81	258	81	265	81	271	81	278	81	28
650	81	201	81	298	81	305	81	311	81	318	81	325	81	331	81	338	81	345	81	35
651	21	358	ěi	365	ě.	271		278	lě i	285	le i	391	. RI	208	lăi	405	Ri	411	81	41
652		425		421	01	420		3/0		461		458		146		471		479		
	81	161	21	100	01	120	81	772		510	101	270	101	203		220		244	101	20
653	01	771	Ö!	770	81	202	81	211		210	01	525	101	221	21	220	181	244	101	22
654	18	228	81	204	81	571	81	5/8	81	564	81	591	01	598	81	004	01	011	01	01
655	81	624	81	631	81	637	81	644	81	651	81	657 723	81	664	81	671	81	677	81	68
6 56	81	690	81	697	81	704	81	710	81	717	81	723	81	730	81	737	81	743	81	75
657	81	757	81	763	81	770	81	776	81	783	81	790	81	796	81	803	81	809	81	-81
658	81	823	81	829	81	836	81	842	81	849	81	856	81	862	81	869	81	875	181	88
659	81	889	81	895	81	902	81	908	81	915	81	921	81	928	81	935	81	941	81	94
660	81	954	81	961	81	968	81	974	81	981	81	987	81	994	82	000	82	007	82	01
661	82	620	82	ó27	82	033	ĂŻ	640	87	646	87	653	87	660	182	066	187	073	87	07
662	22	ñãč	22	002	82	000	22	105	82	112	82	053	182	125	187	137	187	138	87	1
663	62	161	82	168	02	164	82	171	82	170	82	184	102	101	22	107	182	204	102	21
664	82	217	82	223	82	230	82	236	82	243	82	249	82	256	82	263	82	269	82	27
665	0.7	202	07	700	• 1	2015	07	202	0.2	200	0.2	215	0.2	221	0.2	220	6.	224	0.2	24
	02	202	04	207	04	272	02	202	02	200	02	315 380	02	241	02	240	02	227	04	2
666	04	27/	82	227	02	200	82	201	02	2/2	02	200	02	201	02	272	02	400	02	- 11
667	82	413	82	419	82	426	82	432	82	439	82	445 510	82	452	82	458	82	402	8Z	4/
668	82	473	82	484	82	491	82	497	82	504	82	510	82	517	82	523	82	530	82	53
669	82	543	82	549	82	556	82	562	82	569	82	575	82	582	82	588	82	595	82	60
670	82	607	82	614	82	620	82	627	82	633	82	640	82	646	82	653	82	659	82	66
671	82	672	82	679	82	685	82	692	82	698	82	705	82	711	82	718	82	724	82	73
672	82	737	82	743	82	750	82	756	82	763	82	705 769	182	776	182	787	82	789	82	79
673	87	802	87	808	87	814	87	821	82	827	87	834	87	840	87	847	82	853	182	86
674	82	866	82	872	82	879	82	885	82	892	82	898	82	905	82	911	82	918	82	92
675	22	020	82	027	82	042	22	050	87	054	82	963	82	060	82	075	82	087	82	0.9
	04	770	04	77/	24	773	82	730	02	7.70	202	703	02	707	02	AA	02	704	82	70
676	02	772	ŝ		20	000	20	014	20	020	20	027	20	222	202	104	201	110	202	102
677	83	029	63	005	65	0/2	65	0/8	20	005	65	091	63	140	60	104	201	110	20	11
678	83	123	83	129	83	136	83	142	63	149	63	155	83	101	65	108	65	1/4	60	10
679	83	187	83	193	83	200	83	206	83	213	83	219	83	225	83	232	83	238	83	24
680	83	251	83	257	83	264	83	270	83	276	83	283	83	289	83	296	83	302	83	30
681	83	315	83	321	83	327	83	334	83	340	83	347	83	353	83	359	83	366	83	37
682	83	378	83	385	83	391	83	398	83	404	83	410	83	417	83	423	83	429	83	43
683	83	442	83	448	83	455	83	461	83	467	83	410 474	83	480	83	487	83	493	83	49
84	82	ŝ	83	512	83	518	83	525	83	531	83	537	83	544	83	550	83	556	83	56

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
685	83 569	83 575	83 582	83 588	83 594	83 601	83 607	83 613	83 620	83 6
686 687	83 696	83 702	83 708	83 651 83 715	83 721	83 727	83 734	83 740	83 746	83 7
688	83 759	83 765	83 771	83 778	83 784	83 790	83 797	83 803	83 809	83 8
689	83 822	83 828	83 835	83 841	83 847	83 853	83 860	83 866	83 872	83 8
690	83 885	83 891	83 897	83 904	83 910	83 916	83 923	83 929	83 935	83 9
691	83 948	83 954	83 960	83 967 84 029	83 973	83 979	83 985	83 992	83 998	84 0
692 693	84 073	84 080	84 086	84 092	84 098	84 105	84 111	84 117	84 123	84 1
694	84 136	84 142	84 148	84 155	84 161	84 167	84 173	84 180	84 186	84 i
695	84 198	84 205	84 211	84 217	84 223	84 230	84 236	84 242	84 248	84 2
696	84 261	84 267	84 273	84 280	84 286	84 292	84 298	84 305	84 311	84 3
697	84 323	84 330	84 330	84 342 84 404	84 548	84 417	84 473	84 420	84 435	84 3
698 699	84 448	84 454	84 460	84 466	84 473	84 479	84 485	48 491	84 497	84 5
700	84 510	84 516	84 522	84 528	84 535	84 541	84 547	84 553	84 559	84 5
701	184 572	84 578	84 584	84 590	84 597	84 603	84 609	84 615	84 621	84 6
702 703	84 634	84 640	84 540	84 652 84 714	84 020	84 002	84 733	84 0//	84 745	84 0
704	84 757	84 763	84 770	84 776	84 782	84 788	84 794	84 800	84 807	84 8
705	84 819	84 825	84 831	84 837	84 844	84 850	84 856	84 862	84 868	84 8
706	84 880	84 887	84 893	84 899	84 905	84 911	84 917	84 924	84 830	84 9
70 7 708				84 960 85 022						
709	85 065	85 071	85 077	85 083	85 089	85 095	85 101	85 107	85 114	85 1
710	85 126	85 132	85 138	85 144	85 150	85 156	85 163	85 169	85 175	85 1
711	85 187	85 193	85 199	85 205	85 211	85 217	85 224	85 230	85 236	85 2
712 713	85 309	85 315	85 321	85 266 85 327	85 333	85 339	85 345	85 352	85 358	85 3
714	85 370	85 376	85 382	85 388	85 394	85 400	85 406	85 412	85 418	85 4
715	85 431	85 437	85 443	85 449	85 455	85 461	85 467	85 473	85 479	85 4
716	85 491	85 497	85 503	85 509 85 570	85 516	85 522	85 528	85 534	85 540	85 5
717 718	85 552	85 538	85 625	85 631	85 637	85 643	85 649	85 655	85 661	85 6
719	85 673	85 679	85 685	85 691	85 697	85 703	85 709	85 715	85 721	85 7
720	85 733	85 739	85 745	85 751	85 757	85 763	85 769	85 775	85 781	85 7
721	85 794	85 800	85 806	85 812	85 818	85 824	85 830	85 836	85 842	85 8
722 723	85 014	85 920	85 926	85 812 85 872 85 932	85 93A	85 944	85 950	85 956	85 962	85 9
724	85 974	85 980	85 986	85 992	85 998	86 004	86 010	86 016	86 022	86 Ó
725	86 034	86 040	86 046	86 052	86 058	86 064	86 070	86 076	86 082	86 0
726	86 094	86 100	86 106	86 112	86 118	86 124	86 130	86 136	86 141	86 1
727 728	86 713	86 219	86 225	86 171 86 231	86 237	86 243	86 249	86 255	86 261	86 2
729	86 273	86 279	86 285	86 201	86 297	86 303	86 308	86 314	86 320	86 2

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
730 731 732 733 734	86 392 86 451 86 510	86 398 86 457 86 516	86 404 86 463 86 522	86 350 86 410 86 469 86 528 86 587	86 415 86 475 86 534	86 421 86 481 86 540	86 427 86 487 86 546	86 433 86 493 86 552	86 439 86 499 86 558	86 44 86 50 86 56
735 736 737 738 739	86 747 86 806	86 753 86 812	86 759 86 817	86 646 86 705 86 764 86 823 86 882	86 770 86 829	86 776 86 835	86 782 86 841	86 788 86 847	86 794 86 853	86 80 86 85
740 741 742 743 744	86 982	86 988	86 994	86 941 86 999 87 058 87 116 87 175	87 005 87 064	87 011 87 070	87 017 87 075	87 023 87 081	87 029 87 087	87 03 87 09
745 746 747 748 749	87 274 87 332 87 390	87 280 87 338 87 396	87 286 87 344 87 402	87 233 87 291 87 349 87 408 87 466	87 297 87 355 87 413	87 303 87 361 87 419	87 309 87 367 87 425	87 315 87 373 87 431	87 320 87 379 87 437	87 32 87 38 87 44
750 751 752 753 754	87 564 87 622 87 679	87 570 87 628 87 685	87 576 87 633 87 691	87 523 87 581 87 639 87 697 87 754	87 587 87 645 87 703	87 593 87 651 87 708	87 599 87 656 87 714	87 604 87 662 87 720	87 668 87 726	87 67 87 67 87 73
755 756 757 758 759	197 010	87 015	87 021	87 812 87 869 87 927 87 984 88 041	87 033	187 938	87 944	187 950	87 955	187 96
760 761 762 763 764	88 138 88 195	88 144 88 201 88 258	88 150 88 207 88 264	88 098 88 156 88 213 88 270 88 326	88 161 88 218 88 275	88 167 88 224 88 281	88 173 88 230 88 287	88 235 88 292	88 241 88 298	88 19 88 24 88 30
765 766 767 768 769	88 423 88 480	88 429 88 485	88 434 88 491	88 383 88 440 88 497 88 553 88 610	88 446 88 502 88 550	88 451 88 508 88 564	88 457 88 513 88 570	88 463 88 519 88 576	88 468 88 525 88 581	88 53 88 55
770 771 772 773 774	88 649 88 705	88 655 88 711 88 767	88 660 88 717 88 773	88 666 88 722 88 779 88 835	88 672 88 728 88 784 88 840	88 677 88 734 88 790 88 846	88 683 88 739 88 795 88 852	88 689 88 745 88 801 88 857	88 694 88 750 88 807 88 863	88 70 88 7 88 8 88 8

COMMON LOGARITHMS OF NUMBERS . (Continued)

N	0	1	2	3	4	5	6	7	8	9
175	88 930	88 936	88 941	88 947	88 953	88 958	88 964	88 969	88 975	88 9
776	88 986	88 992	88 997	89 003	80 000	80 014	80 020	80 025	80 031	NO Ó
777	80 042	89 048	80 053	80 050	80 064	80 070	80 076	90 081	80 087	Ró ň
778	00 000	89 104	07 000	07 017	07 007	07 070	07 070	07 001	07 00/	07 0
779	07 070	07 104	07 107	09 113	09 120	09 120	09 131	09 12/	07 142	09 1
179		89 159								
780	89 209	89 215 89 271	89 221	89 226	89 232	89 237	89 243	89 248	89 254	89 2
781	89 265	89 271	89 276	89 282	89 287	89 293	89 298	89 304	89 310	893
782	89 321	89 326	89 332	89 337	89 343	89 348	89 354	89 360	89 365	89 3
783	89 376	89 326 89 382	89 387	89 393	89 398	89 404	89 409	89 415	89 421	89 4
784	89 432	89 437	89 443	89 448	89 454	89 459	89 465	89 470	89 476	89 4
785	89 487	89 492	89 498	89 504	89 509	89 515	89 520	89 526	89 531	89 5
786	80 547	89 548	80 553	80 550	80 564	80 570	80 575	80 581	80 586	80 5
787	80 507	89 603	80 600	80 614	80 420	80 425	00 621	00 414	00 442	66 2
788	07 377	07 005	07 007	07 017	07 020	07 023	07 021	07 030	07 042	07 0
789	80 708	89 658 89 713	89 007	09 009	09 0/3	09 000	89 080	80 744	09 09/	07 /
	1									
190	89 763	89 768	89 774	89 779	89 785	89 790	89 796	89 801	89 807	89 8
91	89 818	89 823	89 82 9	89 834	89 840	89 845	89 851	89 856	89 862	89 8
792	89 873	89 878	89 883	89 889	89 894	89 900	89 905	89 911	89 916	89 9
793	89 927	89 933	89 938	89 944	89 949	89 955	89 960	89 966	80 971	80 0
794	89 982	89 988	89 993	89 998	90 004	90 009	90 015	90 020	90 026	90 C
795	90 037	90 042	90 048	90 053	90 059	90 064	90 069	90 075	00 080	on r
796	00 001	90 097	00 102	00 108	00 112	00 110	00 124	00 120	00 195	60 1
797	00 146	90 151	00 157	00 142	00 149	00 172	00 124	70 127	00 100	20 1
798	00 200	00 204	00 211	70 102	90 100	90 173	90 179	90 104	90 109	90 1
799	90 255	90 206 90 260	90 266	90 271	90 222	90 227	90 233	90 298	90 244	90 4
800										
	90 209	90 314	90 320	90 325	90 331	90 336	90 342	90 347	90 352	903
301	90 303	90 369	90 374	90 380	90 385	90 390	90 396	90 401	90 407	90 4
502	90 417	90 423	90 428	90 434	90 439	90 445	90 450	90 455	90 461	90 4
303	90 472	90 477	190 482	90 488	90 493	901499	90 504	90 509	90 515	90 5
804	90 526	90 531	90 536	90 542	90 547	90 553	90 558	90 563	90 569	90 5
805	90 580	90 585	90 590	90 596	90 601	90 607	90 612	90 617	90 623	00 6
306	90 634	90 639	90 644	00 650	00 655	00 660	00 666	00 671	00 677	lón A
807	00 687	90 693	00 608	00 702	00 700	00 714	00 720	00 725	00 720	00 7
808	00 741	90 747	00 752	00 767	00 762	00 740	70 720	00 770	70 7 70	20 4
809	90 795	90 800	90 806	90 811	90 705	90 700	90 775	90 779	90 704	90 8
B10	100 000	90 854	20 859	90 865	90 870	90 875	90 881	90 886	90 891	90 8
811	190 902	90 907	90 913	40 418	90 924	90 929	90 934	90 940	90 945	90 9
B12	90 956	90 961	90 966	90 972	90 977	90 982	90 968	90 993	90 998	91 0
313	91 009	91 014	91 020	91 025	91 030	91 036	91 041	91 046	91 052	91 0
814	91 062	91 068	91 073	91 078	91 064	91 069	91 094	91 100	91 105	91 1
815	91 116	91 121	91 126	91 132	91 137	91 142	91 148	91 153	91 158	91 1
B16	191 169	91 174	91 180	91 185	91 190	91 196	01 201	01 206	91 212	01 2
817	91 222	91 228 91 281	91 233	91 238	91 243	91 249	91 254	91 259	91 265	91 2
318	91 275	91 281	91 286	91 291	91 297	91 302	91 307	91 312	91 318	91
19		101 001							9i 37i	111 1

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
820 821 822 823 824	91 487 91 540	91 492 91 545	91 498 91 551	91 503 91 556	91 508 91 561	91 514 91 566	91 519 91 572	91 524 91 577	91 424 91 477 91 529 91 582 91 635	91 53 91 58
825 826 827 828 828 829	91 698 91 751 91 803	91 703 91 756 91 808	91 709 91 761 91 814	91 714 91 766 91 819	91 719 91 772 91 824	91 724 91 777 91 829	91 730 91 782 91 834	91 735 91 787 91 840	91 687 91 740 91 793 91 845 91 897	917 917 918
830 831 832 833 834	91 960 92 012 92 065	91 965 92 018 92 070	91 971 92 023 92 075	91 976 92 028 92 080	91 981 92 033 92 085	91 986 92 038 92 091	91 991 92 044 92 096	91 997 92 049 92 101	91 950 92 002 92 054 92 106 92 158	92 0 92 0 92 1
835 836 837 838 838 839	92 221 92 273 92 324	92 226 92 278 92 330	92 231 92 283 92 335	92 236 92 288 92 340	92 241 92 293 92 345	92 247 92 298 92 350	92 252 92 304 92 355	92 257 92 309 92 361	92 210 92 262 92 314 92 366 92 418	92 2 92 3 92 3
840 841 842 843 844	92 480 92 531 92 583	92 485 92 536 92 588	92 490 92 542 92 593	92 495 92 547 92 598	92 500 92 552 92 603	92 505 92 557 92 609	92 511 92 562 92 614	92 516 92 567 92 619	92 469 92 521 92 572 92 624 92 675	92 5 92 5 92 6
845 846 847 848 848	92 737 92 788 92 840	92 742 92 793 92 845	92 747 92 799 92 850	92 752 92 804 92 855	92 758 92 809 92 860	92 763 92 814 92 865	92 768 92 819 92 870	92 773 92 824 92 875	92 727 92 778 92 829 92 881 92 881 92 932	92 7 92 8 92 8
850 851 852 853 854	93 044	93 049 93 100	93 054 93 105	93 059 93 110	93 064 93 115	93 069 93 120	93 075	93 060 93 13	92 983 93 034 93 085 93 136 93 136	93 0 93 1
855 856 857 858 858 859	93 349	93 354	193 359	93 364	93 369	93 374	93 379	93 384	93 237 93 288 93 339 93 389 93 389 93 440	93 3
860 861 862 863 864	93 500 93 551 93 601	93 505 93 556	93 510 93 561 93 61	93 515 93 566 93 616	93 520 93 571 93 621	93 526 93 576 93 626	93 53 93 58 93 63	93 530 93 580 93 630	93 490 93 541 93 591 93 641	93 5 93 5 93 6

COMMON LOGARITHMS OF NUMBERS (Continued)

865 866 867 868 869 870 871 872 873 874 874	93 94 94 94	902 952 002 052	93 93	907	93	912	93 93 93 93 93 93	717 767 817 867 917	93 93 93 93	722 772 822 872	93 93 93	727	93 93	732 782	93 93	737	93 93	742	93 93	74
867 868 869 870 871 872 873 873 874	93 94 94 94	902 952 002 052	93 93	907	93	912	93 93 93 93	767 817 867 917	93 93 93	772 822 872	93 93	777	93	782	93	787	93	792	93	-
868 869 870 871 872 873 873	93 94 94 94	902 952 002 052	93 93	907	93	912	93 93 93	817 867 917	93 93	822 872	93	017	02							79
868 869 870 871 872 873 873	93 94 94 94	902 952 002 052	93 93	907	93	912	93 93	867 917	93	872		02/	175	832	93	837	193	842	93	84
869 870 871 872 873 873 874	93 94 94 94	902 952 002 052	93 93	907	93	912	93	917	02		93	877	93	882	93	887	93	892	93	89
871 872 873 874	94 94 94	002	93 94	957	03				22	922	93	927	93	93 <u>2</u>	<u>93</u>	937	93	942	9 3	94
871 872 873 874	94 94 94	002	94			962	93	967	93	972	93	977	93	982	93	987	93	992	93	99
873 874	94	052		007	94	012	94	017	94	022	94	027	94	032	94	037	94	042	94	04
873 874	94		94	057	94	062	94	067	94	072	94	077	94	082	94	086	94	091	94	09
874	94	101	94	106	94	111	94	116	94	121	94	126	94	131	94	136	94	141	64	14
875		151	<u>94</u>	156	94	161	94	166	94	iži	94	176	94	181	<u>9</u> 4	186	94	191	94	19
	94	201	94	206	94	211	94	216	94	221	94	226	94	231	94	236	94	240	94	24
876	94	250	94	255	94	260	94	265	94	270	94	275	94	280	94	285	94	290	94	29
877	94	300	94	305	94	310	94	315	94	320	94	325	94	330	94	335	94	340	94	34
878	ó4	349	ó4	354	64	359	ó4	364	64	369	94	374	ó.	379	ģ4	384	ó.	380	ó.	20
879										419										
880	94	448	94	453	94	458	94	463	94	468 517	94	473	94	478	94	483	94	488	94	49
881	94	498	94	503	94	507	94	512	94	517	94	522	94	527	94	532	94	537	Ó4	54
382	ó.	547	óż	552	۱ó،	557	ó4	562	ó.	567	ó4	571	ó4	576	ó4	581	ίά.	586	ó.	50
883	64	506	64	601	64	606	64	611	64	616	64	621	67	676	ół.	620	67	426	67	44
384										665										
885		60A	04	600	04	704	04	700	04	714	40	710		774	•	720	04	724	04	72
886	64	742	64	748	64	752	64	758	64	762	ó.	768	64	772	64	778	64	792	67	13
887	27	702	21	707	67	602	21	007	67	763 812	64	017	24	**	21	617	21	202	27	10
00/	27	041	27	171	27	002	24	001	21	861	27	01/	27	044	27	041	27	024	27	02
888 889	94	890	94 94	895	94	900	94	820 905	94 94	910	94	915	94	%	94	924	94	880 929	94 94	88 93
890		020				n 40	0.4	054	0.4	959	••	042	04	n 40	•	072		070		~
	27	727	27	744	27	777	22	7.74	77.	007	74	202	27	700	27	7/2	22	2/0	22	20
891	22	200	22	222	22	220	22	002	22	00/	72	012	25	21/	22	022	22	027	22	03
892	22	036	25	041	22	046	22	051	25	056 105	95	061	25	066	<u>95</u>	071	95	075	95	08
893	95	085	95	090	95	095	95	100	95	105	95	109	95	114	95	119	95	124	95	12
894	95	134	95	139	95	143	95	148	95	153	95	158	95	163	95	168	95	173	95	17
895	95	182	95	187	95	192	95	197	95	202 250	95	207	95	211	95	216	95	221	95	22
896	95	231	95	236	95	240	95	245	95	250	95	255	95	260	95	265	95	270	95	27
897	95	279	95	284	95	289	95	294	95	299	95	303	95	308	95	313	95	318	95	32
898	95	328	95	332	95	337	95	342	95	347	95	352	95	357	95	361	95	366	95	37
899	95	376	95	381	95	386	95	390	95	395	95	400	95	405	95	410	95	415	95	41
900	95	424	95	429	95	434	95	439	95	444	95	448	95	453	95	458	95	463	95	46
901	95	472	95	477	95	482	95	487	95	492 540	95	497	95	501	95	506	95	511	95	51
902	95	521	95	525	95	530	95	535	95	540	95	545	95	550	95	554	95	559	95	56
903	95	569	95	574	95	578	95	583	95	588	95	593	95	598	95	602	95	607	95	61
904	95	617	95	622	95	626	95	631	95	636	95	641	95	646	95	650	<u>95</u>	655	95	66
905	95	665	95	670	95	674	95	679	95	684	95	689	95	694	95	698	95	703	95	70
906	95	713	95	718	95	722	95	727	95	732	95	737	95	742	95	746	95	751	95	74
907	95	761	95	766	95	770	95	775	95	780	95	785	95	789	95	794	95	799	195	80
908	95	809	95	813	95	818	95	823	95	780 828	95	832	95	837	95	847	95	847	195	85
909	195	856	195	861	195	866	95	871	165	875	195	880	105	885	05	800	105	805	lóś	Ř

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0	1	2	3	4	5	6	7	8	9
910	95 904	95 909	95 914	95 918	95 923	95 928	95 933	95 938	95 942	95 94
911	195 952	195 957	95 961	195 966	95 971	95 976	95 980	95 985	95 990	195 QQ
912	195 999	96 004	196 009	96 014	96 019	96 023	96 028	96 033	96 038	06 04
913	96 047	96 052	96 057	96 061	96 066	96 071	96 076	96 080	96 085	96 09
914	96 095	96 099	96 104	96 109	96 114	96 118	96 123	96 128	96 133	96 13
915	96 142	96 147	96 152	96 156	96 161	96 166	96 171	96 175	96 180	96 18
916	96 190	96 194	96 199	96 204	96 209	96 213	96 218	96 223	96 227	96 23
917	96 237	96 242	96 246	96 251 96 298	96 256	96 261	96 265	96 270	96 275	96 28
918 919	96 332	96 289	96 294	96 298	96 303	96 308	96 313 96 360	96 317	96 322	96 32
920										
921	06 476	06 431	04 425	96 393 96 440	90 390	90 402	90 40/	90 412	90 417	96 42
922	06 473	06 478	06 483	96 487	04 402	04 407	04 601	70 429	90 404	90 40
923	06 520	06 525	06 530	96 534	06 530	06 544	06 548	90 200	90 211	70 21
92 4	96 567	96 572	96 577	96 581	96 586	96 591	96 595	96 600	96 605	96 60
925	96 614	96 619	96 624	96 628	96 633	96 638	96 642	96 647	96 652	96 64
926	96 661	96 666	96 670	96 675	96 680	96 685	96 689	96 694	96 699	96 70
927	96 708	96 713	96 717	96 722	96 727	96 731	96 736	96 741	96 745	96 7
928	96 755	96 759	96 764	96 675 96 722 96 769	96 774	96 778	96 783	96 788	96 792	96 79
929	96 802	96 806	96 811	96 816	96 820	96 825	96 830	96 834	96 839	96 8
930	96 848	96 853	96 858	96 862 96 909	96 867	96 872	96 876	96 881	96 886	96 89
931	96 895	96 900	96 904	96 909	96 914	96 918	96 923	96 928	96 932	96 93
932	96 942	96 940	96 951	96 956 97 002	96 960	96 965	96 970	96 974	96 979	96 98
933 934	97 035	96 995 97 039	96 997	97 002	97 007	97 011 97 058	97 016 97 063	97 021 97 067	97 025	97 0
935				97 095						
936	07 128	07 122	07 127	97 142	97 144	97 107	97 109	97 114	97 110	97 12
937	07 174	07 170	07 183	97 188	07 102	07 107	97 100	97 100	97 102	97 10
938	07 220	07 225	07 230	97 234	07 230	07 242	97 202	97 200	97 211	97 2
939	97 267	97 271	97 276	97 280	97 285	97 290	97 294	97 299	97 304	97 30
940	97 313	97 317	97 322	97 327	97 331	97 336	07 340	07 345	07 350	07 34
941	197 359	97 364	97 368	97 373	97 377	97 382	97 387	97 391	97 396	97 44
942	97 405	97 410	97 414	97 419	97 424	97 428	97 433	97 437	07 447	07 4
943	97 451	97 456	197 460	97 465	97 470	97 474	97 479	97 483	97 488	97 4
944	97 497	97 502	97 506	97 511	97 516	97 520	97 525	97 529	97 534	97 5
945	97 543	97 548	97 552	97 557	97 562	97 566	97 571	97 575	97 580	97 58
946	97 589	97 594	97 598	97 603	97 607	97 612	97 617	97 621	97 626	97 6
947	197 635	97 640	97 644	97 649	97 653	97 658	97 663	97 667	97 672	97 67
948	97 681	97 685	97 690	97 695	97 699	97 704	97 708	97 713	97 717	97 72
949	97 727	97 731	97 736	97 740	97 745	97 749	97 754	97 759	97 763	97 70
950	97 772	97 777	97 782	97 786	97 791	97 795	97 800	97 804	97 809	97 8
951	9/ 818	9/ 823	97 827	97 832	97 836	97 841	97 845	97 850	97 855	97 8
952 953	07 004	07 014	7/ 8/3	97 832 97 877 97 923	97 882	97 886	97 891	97 896	97 900	97 90
955	07 055	07 050	07 064	97 925	07 072	97 932	7/ 93/	97 941	97 946	97 9
7,37	11 222	77 739	77 704	7/ 700	'71 713	17/ 7/0	7/ 702	7/ 90/	197 991	97 99

COMMON LOGARITHMS OF NUMBERS (Continued)

N	0			1		2		3		4		5		6		7		8		9
955	98 0	00	0.8	005	98	009	0.8	014	98	019	0.0	023	98	028	-	037	98	037	98	0
956	98 ŭ																			
	170 0	10	70	000	120	333	70	1079	70	100	70	114	20	112	20	122	120	104	170	1
957	98 0	<u>91</u>	98	696	98	100	98	105	98	109	98	114	98	118	98	123	98	12/	198	1
958	98 1																			
959	98 1	82 ₁	98	186	98	191	98	195	98	200	98	204	98	209	98	214	98	218	98	2
960	98 2	27	98	232	98	236	98	241	98	245	98	250	98	254	98	259	98	263	98	2
961	98 2	72	9Ř	277	98	281	98	286	98	290	98	295	98	299	98	304	98	308	98	3
962	98 3																			
963	98 3	42	20	247	00	272	20	274	áě	201	ñě	285	60	200	60	204	60	200	60	1
964	98 4																			
n/ e		- 1	~~	457		40				471		476	~	-	~~	404		400		
965	98 4	22:	70	12/	20	402	20	100	20	<u>*</u> !!	20	1/2	20	100	90	101	20	407	20	2
966	98 4	48	98	202	138	207	78	211	98	210	98	520	190	525	98	529	198	234	98	Ş
967	98 5	43	98	547	98	552	98	556	98	561	98	565	98	570	98	574	;98	579	98	5
968	98 5 98 5	88	98	592	98	597	98	601	98	605	98	610	98	614	98	619	98	623	98	6
969	98 6	32	98	637	98	641	98	646	98	650	98	655	98	659	98	664	98	668	98	6
970	98 6	77	98	682	98	686	98	691	98	695	98	700	98	704	98	709	98	713	98	7
971	98 7	22	98	726	98	731	98	735	98	740	98	744	98	749	98	753	98	758	98	Ž
872	98 7	67	óĕ	771	ÓŘ	776	óĕ	780	óĕ	784	ÓŘ	780	óš	701	ÓŘ	708	óě	607	óĕ	é
973	98 8																			
974	98 8	56	98	860	98	865	98	869	98	874	98	878	98	883	98	887	98	892	98	8
975	98 9	00	98	905	98	909	98	914	98	918	98	923	98	927	98	932	98	936	98	9
976	98 9	45	98	949	98	954	98	958	98	963	98	967	98	972	98	976	98	981	98	9
977	98 9	89	98	994	98	998	99	003	99	007	99	012	99	016	99	021	99	025	99	0
978	99 Ó	34	99	038	90	043	90	047	lóó	052	00	056	90	061	90	065	90	669	90	ő
979	99 ŏ																			
980	99 1	23	90	127	99	131	90	136	00	140	00	145	90	149	00	154	90	158	90	1
981	166 4	67	óó	171	lóó	176	óó	180	lóó	185	lóó	180	óó	102	lóó	100	lóó	202	66	5
	99 1 99 2		27		22	220	22	224	22	100	22	107	22	172	27	170	27	347	122	5
982	99 2	11	99	210	22	220	22	229	22	129	22	222	99	230	22	141	77	14/	199	4
983	99 2	55	99	260	99	264	99	269	99	273	99	277	99	28 2	99	286	79	291	99	Z
984	99 3	00	99	304	99	308	99	313	99	317	99	322	99	326	99	330	99	335	99	3
985	99 3	44	99	348	99	352	99	357	99	361	99	366	99	370	99	374	99	379	99	3
986	99 3	88	99	392	99	396	99	401	199	405	99	410	99	414	99	419	99	423	99	4
987	99 4																			
988	99 4																			
989	99 5																			
990	99 5																			
	100 2	27	77	200	27	212	27	211	27	201	22	202	77	720	22	379	22	377	122	ò
991	99 6	W /	77	012	144	010	27	021	27	02)	27	029	99	024	27	950	22	042	122	Ó
992	99 6 99 6	51	99	656	99	660	99	664	199	669	99	673	99	677	99	682	99	686	199	6
993	99 6	95	99	699	99	704	99	708	99	712	99	717	99	721	99	726	99	730	99	7
994	99 7	39	99	743	99	747	99	752	99	756	99	760	99	765	99	769	99	774	99	7
995	99 7	82	99	787	99	791	99	795	99	800	99	804	99	808	99	813	99	817	99	8
996	99 8	56	óó	830	óó	835	lóó	830	lóó	842	lóó	848	60	857	lóó	844	lán.	861	lóó	ž
997	99 8	50	66	074	-00	976	66	007	66	007	66	601	100	60 /	66	300	67	201	66	2
998	99 9	15	99	917	99	922	99	926	199	320	22	935	99	939	199	744	99	748	199	9
999	99 9	57	99	961	99	965	99	970	99	974	99	978	99	983	99	987	99	991	99	9
000	00 0	200	00	004	00	000	00	013	00	017	00	022	00	076	00	020	0	025	6	•

NATURAL LOGARITHMS OF NUMBERS FROM

1 TO 10 (Base e)

N	0	1	2	3	4	5	6	7	8	9
1.0 1.1 1.2 1.3 1.4	0.0953 0.1823 0.2624	0.1044 0.1906 0.2700	0.0198 0.1133 0.1989 0.2776 0.3507	0.1222 0.2070 0.2852	0.1310 0.2151 0.2927	0.1398 0.2231 0.3001	0.1484 0.2311 0.3075	0.0677 0.1570 0.2390 0.3148 0.3853	0.0770 0.1655 0.2469 0.3221 0.3920	0.0862 0.1740 0.2546 0.3293 0.3988
1.5 1.6 1.7 1.8 1.9	0.4700 0.5306	0.4762 0.5365 0.5933	0. 4187 0. 4824 0. 5423 0. 5988 0. 6523	0.4886 0.5481 0.6043	0.4947 0.5539 0.6098	0.5008 0.5596 0.6152	0.5068 0.5653 0.6206	0.4511 0.5128 0.5710 0.6258 0.6780	0.4574 0.5188 0.5766 0.6313 0.6831	0.4637 0.5247 0.5822 0.6366 0.6881
2.1 2.2 2.3	0.6932 0.7419 0.7885 0.8329 0.8755	0.7467 0.7930 0.8373	0.7514 0.7975 0.8416	0.7561 0.8020 0.8459	0.7608 0.8065 0.8502	0.7655 0.8109 0.8544	0.7701 0.8154 0.8587	0.7276 0.7747 0.8198 0.8629 0.9042	0.7324 0.7793 0.8242 0.8671 0.9083	0.7372 0.7839 0.8286 0.8713 0.9123
2.6	0.9163 0.9555 0.9933 1.0296 1.0647	0.9594 0.9970 1.0332	0.9632	0.9670 1.0043 1.0403	0.9708 1.0080 1.0438	0.9746 1.0116 1.0473	0.9783 1.0152 1.0508	0.9439 0.9820 1.0189 1.0543 1.0886	0.9478 0.9658 1.0225 1.0578 1.0919	0.9517 0.9895 1.0260 1.0613 1.0953
3.0 3.1 3.2 3.3 3.4	1.1314 1.1632 1.1939	1.1346 1.1663 1.1970	1.1053 1.1378 1.1694 1.2000 1.2296	1.1410 1.1725 1.2030	1.1442 1.1756 1.2060	1.1474 1.1787 1.2090	1.1506 1.1817 1.2119	1.1217 1.1537 1.1848 1.2149 1.2442	1.1249 1.1569 1.1878 1.2179 1.2470	1.1282 1.1600 1.1909 1.2208 1.2499
3.7 3.8 3.9	1.2809 1.3083 1.3350 1.3610	1.2837 1.3110 1.3376 1.3635	1.3137 1.3403 1.3661	1.2892 1.3164 1.3429 1.3686	1.2920 1.3191 1.3455 1.3712	1.2947 1.3218 1.3481 1.3737	1.2975 1.3244 1.3507 1.3762	1.2726 1.3002 1.3271 1.3533 1.3788	1.2754 1.3029 1.3297 1.3558 1.3813	1.2782 1.3056 1.3324 1.3584 1.3838
4.1 4.2 4.3 4.4	1.3863 1.4110 1.4351 1.4586 1.4816	1.4134 1.4375 1.4609	1.4159 1.4398 1.4633	1.4183 1.4422 1.4656	1.4207 1.4446 1.4679	1.4231 1.4469 1.4702	1.4255 1.4493 1.4725	1.4036 1.4279 1.4516 1.4748 1.4974	1.4061 1.4303 1.4540 1.4770 1.4996	1.4085 1.4327 1.4563 1.4793 1.5019
4.6 4.7 4.8 4.9	1.5041 1.5261 1.5476 1.5686 1.5892	1.5282 1.5497 1.5707	1.5304 1.5518 1.5728	1.5326 1.5539 1.5749	1.5347 1.5560 1.5769	1.5369 1.5581 1.5790	1.5390 1.5603 1.5810	1.5195 1.5412 1.5624 1.5831 1.6034	1.5217 1.5433 1.5644 1.5852 1.6054	1.5239 1.5454 1.5665 1.5872 1.6074
5.1 5.2 5.3	1.6094 1.6292 1.6487 1.6677 1.6864	.6312 .6506 .6696	1.6332 1.6525 1.6715	. 6351 1. 6545 1. 6734	1.6371 1.6563 1.6753	1.6390 1.6582 1.6771	1.6409 1.6601 1.6790	1.6233 1.6429 1.6620 1.6808 1.6993	1.6253 1.6448 1.6639 1.6827 1.7011	1.6273 1.6467 1.6658 1.6846 1.7029

-

NATURAL LOGARITHMS OF NUMBERS

(Continued)

N	0	1	2	3	4	5	6	7	8	9
5.5 5.6 5.7 5.8 5.9	1.7228 1.7405 1.7579	1.7246 1.7422 1.7596	1.7263 1.7440 1.7613	1.7281 1.7457 1.7630	1.7299 1.7475 1.7647	1.7138 1.7317 1.7491 1.7664 1.7834	1.7334 1.7509 1.7682	1.7174 1.7352 1.7527 1.7699 1.7868	1.7192 1.7370 1.7544 1.7716 1.7884	1.72 1.738 1.750 1.77 1.790
6.0 6.1 6.2 6.3 6.4	1.8083 1.8246 1.8406	1.8099 1.8262 1.8421	1.8116 1.8278 1.8437	1.8132 1.8294 1.8453	1.8148 1.8310 1.8469	1.8001 1.8165 1.8326 1.8485 1.8641	1.8181 1.8342 1.8500	1.8034 1.8197 1.8358 1.8516 1.8672	1.8050 1.8213 1.8374 1.8532 1.8687	1.800 1.822 1.839 1.854 1.854
6.5 6.6 6.7 6.8 6.9	1.8871 1.9021 1.9169	1.8733 1.8886 1.9036 1.9184 1.9330	1.8901 1.9051 1.9199	1.8916 1.9066 1.9213	1.9228	1.8795 1.8946 1.9095 1.9243 1.9387	1.9257	1.8825 1.8976 1.9125 1.9272 1.9416	1.8840 1.8991 1.9140 1.9286 1.9431	1.88 1.900 1.91 1.930 1.944
7.0 7.1 7.2 7.3 7.4	1.9601 1.9741 1.9879	1.9615 1.9755 1.9892	1.9629 1.9769 1.9906	1.9643 1.9782 1.9920	1.9657 1.9796 1.9933	1.9530 1.9671 1.9810 1.9947 2.0082	1.9685 1.9824 1.9961	1.9559 1.9699 1.9838 1.9974 2.0109	1.9573 1.9713 1.9851 1.9988 2.0122	1.950 1.972 1.980 2.000 2.013
7.5 7.6 7.7 7.8 7.9	2.0149 2.0282 2.0412 2.0541 2.0669	2.0162 2.0295 2.0425 2.0554 2.0681	2.0176 2.0308 2.0438 2.0567 2.0694	2.0189 2.0321 2.0451 2.0580 2.0707	2.0202 2.0334 2.0464 2.0592 2.0719	2.0216 2.0347 2.0477 2.0605 2.0732	2.0229 2.0360 2.0490 2.0618 2.0744	2.0242 2.0373 2.0503 2.0631 2.0757	2.0255 2.0386 2.0516 2.0643 2.0769	2.03 2.03 2.05 2.05 2.05 2.05
8.0 8.1 8.2 8.3 8.4	2.0794 2.0919 2.1041 2.1163 2.1282	2.0807 2.0931 2.1054 2.1175 2.1294	2.0819 2.0943 2.1066 2.1187 2.1306	2.0832 2.0956 2.1078 2.1199 2.1318	2.0844 2.0968 2.1090 2.1211 2.1330	2.0857 2.0980 2.1102 2.1223 2.1342	2.0869 2.0992 2.1114 2.1235 2.1354	2.0882 2.1005 2.1126 2.1247 2.1365	2.0894 2.1017 2.1138 2.1259 2.1377	2.09 2.10 2.11 2.12 2.13
8.5 8.6 8.7 8.8 8.9	2. 1401 2. 1518 2. 1633 2. 1748 2. 1861	2.1645 2.1759	2.1656 2.1770	2.1668 2.1782	2.1679 2.1793	2.1691 2.1804	2.1702 2.1816	2. 1483 2. 1599 2. 1713 2. 1827 2. 1939	2.1494 2.1610 2.1725 2.1838 2.1950	2.150 2.162 2.173 2.173 2.184 2.196
9.0 9.1 9.2 9.3 9.4	2.1972 2.2083 2.2192 2.2300 2.2407	2.1983 2.2094 2.2203 2.2311 2.2418	2.1994 2.2105 2.2214 2.2322 2.2428	2.2006 2.2116 2.2225 2.2332 2.2339	2.2017 2.2127 2.2235 2.2343 2.2450	2.2028 2.2138 2.2246 2.2354 2.2354 2.2460	2.2039 2.2149 2.2257 2.2365 2.2471	2.2050 2.2159 2.2268 2.2375 2.2481	2.2061 2.2170 2.2279 2.2386 2.2492	2.207 2.218 2.228 2.239 2.250
9.5 9.6 9.7 9.8	2.2513 2.2618 2.2721 2.2824	2 2522	2.2534 2.2638 2.2742 2.2844	2.2544 2.2649 2.2752 2.2854	2.2555 2.2659 2.2762 2.2865	2.2565 2.2670 2.2773 2.2875	2.2576 2.2680 2.2783 2.2885	2.2586 2.2690 2.2793 2.2895 2.2996	2.2597 2.2701 2.2803 2.2905 2.3006	2.260 2.271 2.281 2.291 2.301

.

NATURAL LOGARITHMS (EACH INCREASED BY 10) OF NUMBERS FROM 0.00 TO 0.99

No.	0	1	2	3	4	5	6	7	8	9
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	7.697 8.391 8.796 9.084 9.307 9.489 9.643 9.777 9.895	5.395 7.793 8.439 8.829 9.108 9.327 9.506 9.658 9.789 9.906	8.861 9.132 9.346 9.522	8.530 8.891	6.781 8.034 8.573 8.921 9.179 9.384 9.554 9.699 9.826 9.938	7.004 8.103 8.614 8.950 9.201 9.402 9.569 9.712 9.837 9.949	7.187 8.167 8.653 8.978 9.223 9.420 9.584 9.726 9.849 9.959	7.341 8.228 8.691 9.006 9.245 9.438 9.600 9.739 9.861 9.970	7.474 8.285 8.727 9.032 9.266 9.455 9.614 9.752 9.872 9.980	7.592 8.339 8.762 9.058 9.287 9.472 9.629 9.764 9.883 9.990

NATURAL LOGARITHMS OF WHOLE NUMBERS FROM 10 TO 209

No.	0	1	2	3	4	5	6	7	8	9
1 2 3 4 5	2.303 2.996 3.401 3.689 3.912	2.398 3.045 3.434 3.714 3.932	2.485 3.091 3.466 3.738 3.951	3.136 3.497	2.639 3.178 3.526 3.784 3.989	3.219	2.773 3.258 3.584 3.829 4.025	2.833 3.296 3.611 3.850 4.043	2.890 3.332 3.638 3.871 4.060	2.944 3.367 3.664 3.892 4.078
6 7 8 9 10	4.094 4.249 4.382 4.500 4.605	4.111 4.263 4.394 4.511 4.615	4.127 4.277 4.407 4.522 4.625	4.143 4.291 4.419 4.533 4.635	4.159 4.304 4.431 4.543 4.644	4.174 4.318 4.443 4.554 4.654	4.331 4.454 4.564	4.344	4.220 4.357 4.477 4.585 4.682	4.234 4.369 4.489 4.595 4.691
11 12 13 14 15	4.701 4.788 4.868 4.942 5.011	4.710 4.796 4.875 4.949 5.017	4.719 4.804 4.883 4.956 5.024	4.727 4.812 4.890 4.963 5.030	4.736 4.820 4.898 4.970 5.037	4.745 4.828 4.905 4.977 5.043	4.754 4.836 4.913 4.984 5.050	4.762 4.844 4.920 4.990 5.056	4.771 4.852 4.927 4.997 5.063	4.779 4.860 4.935 5.004 5.069
16 17 18 19 20	5.075 5.136 5.193 5.247 5.298	5.081 5.142 5.199 5.252 5.303	5.088 5.148 5.204 5.258 5.308	5.094 5.153 5.210 5.263 5.313	5.100 5.159 5.215 5.268 5.318	5.106 5.165 5.220 5.273 5.323	5.112 5.171 5.226 5.278 5.328	5.118 5.176 5.231 5.283 5.333	5.124 5.182 5.236 5.288 5.338	5.130 5.187 5.242 5.293 5.342

THE EXPONENTIAL e²

For values of x from 0.000 to 0.099

x	0	.001	.002	.003	.004	.005	.006	.007	.003	.009
.00									1.0080	
.01	1.0101	1.0111	1.0121	1.0131	1.0141	1.0151	1.0161	1.0171	1.0182	1.0191
.02									1.0284	
.03									1.0387	
.04	1.0408	1.0419	1.0429	1.0439	1.0450	1.0460	1.0471	1.0481	1.0492	1.0502
.05	1.0513	1.0523	1.0534	1.0544	1.0555	1.0565	1.0576	1.0587	1.0597	1.0608
.06									1.0704	
.07	1.0725	1.0736	1.0747	1.0757	1.0768	1.0779	1.0790	1.0800	1.0811	1.0822
.08									1.0920	
.09	1.0942	1.0953	1.0964	1.0975	1.0986	1.0997	1.1008	1.1019	1.1030	1.1041

For values of x from 0.10 to 2.99

x	0	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.1	1.1052	1.1163	1.1275	1 1388	1.1503	1.1618	1.1735	1.1853	1,1972	1.2092
0.2				1.2586						
0.3				1.3910						
0.4				1.5373						
0.5	1.6487	1.6653	1.6830	1.6989	1.7160	1.7333	1.7507	1.7683	1.7860	1.8040
0.6	1.8221	1.8404	1.8589	1.8776	1.8965	1.9155	1.9348	1.9542	1.9739	1.9937
0.7	2.0138	2.0340	2.0544	2.0751	2.0959	2.1170	2.1383	2.1598	2.1815	2.2034
0.8				2.2933						
0.9	2.4596	2.4843	2.5093	2.5345	2.5600	2.5857	2.6117	2.6379	2.6645	2.6912
				0 0044						
1.0				2.8011						
1.1 1.2				3.0957						
1.3				3.4212 3.7810						
1.4				4.1787						
1.4	4.0552	4.0700	1.1.57.1	4.1707	7.6407	7.2051	7.5000	4.3472	4.3767	1.1.7.7.7
1.5	4.4817	4.5267	4.5722	4.6182	4.6646	4.7115	4.7588	4.8066	4.8550	4.9087
1.6				5.1039						
1.7				5.6407						
1.8	6.0496	6.1104	6.1719	6.2339	6.2965	6.3598	6.4237	6.4883	6.5535	6.6194
1.9	6.6859	6.7531	6.8210	6.8895	6.9588	7.0287	7.0993	7.1707	7.2427	7.3155
2.0	7.3891	7.4633	7.5383	7.6141	7.6906	7.7679	7.8460	7.9248	8.0045	8.0849
2.1	8.1662	8.2482	8.3311	8.4149	8.4994	8.5849	8.6711	8.7583	8.8463	8.9352
2.2				9.2999						
2.3	9.9/42	10.0/4	10.1/0	10.278	10.301	10.400	10.391	10.097	10.805	10.913
2.4	11.025	11.134	11.240	11.359	11.4/2	11.200	11.705	11.622	11.941	12.001
2.3	10 100	19 905	19 490	12.554	19 690	19 907	19 096	12 066	18 107	18 890
2.6	13 464	13 500	13 736	13.874	14.013	14.154	14 296	14 440	14 585	14 732
2.7	14 880	15.029	15,180	15.333	15.487	15.643	15.800	15.959	16.119	16.281
2.8	16.445	16.610	16.777	16.945	17.116	17.288	17.462	17.637	17.814	17.993
2.9	18.174	18.357	18.541	18.728	18.916	19.106	19.298	19.492	19.688	19.886

For values of x from 3.0 to	For	values	of	x	from	3.0	to	8.9
--------------------------------------	-----	--------	----	---	------	-----	----	-----

x	0	.1	.1	.3	.4	.5	.6	.7	.8	.9
										49.402
4				73.700						
5				200.34						
6				544.57						
7				1480.3						
8	2981.0	3294.5	3641.0	4023.9	4447.1	4914.8	5431.7	6002.9	6634.2	7332.0

THE EXPONENTIAL e-=

For values of x from 0.000 to 0.099.

x	0	.001	.002	.003	.004	.005	.006	.007	.008	.009
.00	1.0000	.9990	.9980	.9970	.9960	.9950	.9940	.9930	.9920	.9910
.01	.9900	.9891	.9881	.9871	.9861	.9851	.9841	.9831	.9822	.9812
.02	.9802	.9792	.9782		.9763					.9714
.03	.9704	.9695			.9666					.9618
.04	.9608	.9598	.9589	.9579	.9570	.9560	.9550	.9541	.9531	.9522
.05	.9512	.9502	.9498				.9465	.9446	.9436	.9427
.06	.9418	.9408						z.9352		.9333
.07	.9324	.9315			.9287	.9277			.9250	.9240
.08	.9231	.9222								.9148
.09	.9139	.9130	.9121	.9112	.9103	.9094	.9085	.9076	.9066	.9057

For values of x from 0.10 to 2.99

x	0	.01	.02	.08	.04	.05	.06	.07	.08	.69
0.1	.9048	.8958	.8869	.8781	.8694	.8607	.8521	.8437	.8353	.8270
0.2	.8187	.8106	.8025	.7945	.7866	.7788	.7711	.7634	.7558	.7483
0.3	.7408	.7334	.7261	.7189	.7118	.7047	.6977	.6907	.6839	.6771
0.4	.6703	.6637	.6570	.6505	.6440	.6376	.6313	.6250	.6188	.6126
0.5	.6065	.6005	.5945	.5886	.5827	.5769	.5712	.5655	.5599	.5543
0.6	.5488	.5434	.5379	.5326	.5273	.5220	.5169	.5117	.5066	.5016
0.7	.4966	.4916	.4868	.4819	.4771	.4724	.4677	.4630	.4584	.4538
0.8	.4493	.4449	.4404	.4360	.4317	.4274	.4232	.4190	.4148	.4107
0.9	.4066	.4025	.3985	.3946	.3906	.3867	.3829	.3791	.3753	.3716
1.0	.3679	.3642	.3606	.8570	.3535	.3499	.3465	.3430	.3396	.3362
1.1	.3329	.3296	.3263	.3230	.3198	.3166	.3135	.3104	.3073	.3042
1.2	.3012	.2982	.2952	.2923	.2894	.2865	.2837	.2808	.2780	.2753
1.3	.2725	.2698	.2671	.2645	.2618	.2592	.2567	.2541	.2516	.2491
1.4	.2466	.2441	.2417	.2393	.2369	.2346	.2322	.2299	.2276	.2254
1.5	.2231	.2209	.2187	.2165	.3144	.3122	.\$101	.2060	.2060	.2059
1.6	.2019	.1999	.1979	.1959	.1940	.1920	.1901	.1882	.1864	.1845
1.7	.1827	.1809	.1791	.1773	.1755	.1738	.1720	.1703	.1686	.1670
1.8	.1653	.1637	.1620	.1604	.1588	.1572	.1557	.1541	.1526	.1511
1.9	.1496	.1481	.1466	.1451	.1437	.1423	.1409	.1395	.1381	.1367
2.0	.1353	.1340	.1327	.1313	.1300	.1287	.1275	.1262	.1249	.1237
2.1	.1225	.1212	.1200	.1188	.1177	.1165	.1153		.1130	.1119
2.2	.1108	.1097	.1086	.1075	.1065	.1054	.1044	.1033	.1023	.1013
2.3	.1003	.0993	.0983	.0973	.0963	.0954	.0944	.0935	.0926	.0916
2.4	.0907	.0898	.0889	.0880	.0872	.0863	.0854	.0846	.0837	.0829
2.5	.0621	.0613	.0605	.0797	.0789	.0781	.0778	.0765	.0756	. 07 50
2.6	.0743	.0735	.0728	.0721	.0714	.0707	.0699	.0693	.0686	.0679
2.7	.0672	.0665	.0659	.0652	.0646	.0639	.0633	.0627	.0620	.0614
2.8	.0608	.0602	.0596	.0590	.0584	.0578	.0573	.0567	.0561	.0556
2.9	.0550	.0545	.0539	.0534	.0529	.0523	.0518	.0513	.0508	.0503

For values of x from 8.0 to 8.9

x	e	.1	.2	.8	.4	.5	.6	.7	.8	.9
3	.0498	.0450	.0408	.0368	.0334	.0302	.0?73	.0247	.0224	.0202
4	.0183	.0166	.0150	.0136	.0123	.0111	.0101	.0091	.0082	.0074
5	.C067	.0061	.0055	.0050	.0045	.0041	.0037	.0033	.0030	.0027
6									.0011	
7	.0009	.0008	.0007	.0007	.0006	.0006	.0005	.0005	.0004	.0004
8	.0003	.0003	.0003	.0002	.0002	.0002	.0002	.0002	.0002	.0001

	AN	D COTAI	NGENTS		
Degrees	sin	COS	tan	cot	
0° 00'	$-\infty$	10.0000	$-\infty$	$+\infty$	90° 00'
0° 10'	7.4637	9.9999	7.4637	2.5363	89° 50'
0° 20'	7.7648	9.9999	7.7648	2.2352	89° 40'
0° 30'	7.9408	9.9999	7.9409	2.0591	89° 30'
0° 40'	8.0658	9.9999	8.0658	1.9342	89° 20'
0° 50'	8.1627	9.9999	8.1627	1.8373	89° 10'
1° 00'	8.2419	9.9999	8.2419	1.7581	89° 00'
1° 10' 1° 20' 1° 30' 1° 40' 1° 50'	8.3088 8.3668 8.4179 8.4637 8.5050	9.9999 9.9999 9.9999 9.9998 9.9998 9.9998	8.3089 8.3669 8.4181 8.4638 8.5053	1.6911 1.6331 1.5819 1.5362 1.4947	88° 50' 88° 40' 88° 30' 88° 20' 88° 10'
2° 00'	8.5428	9.9997	8.5431	1.4569	88° 00'
2° 10'	8.5776	9.9997	8.5779	1.4221	87° 50'
2° 20'	8.6097	9.9996	8.6101	1.3899	87° 40'
2° 30'	8.6397	9.9996	8.6401	1.3599	87° 30'
2° 40'	8.6677	9.9995	8.6682	1.3318	87° 20'
2° 50'	8.6940	9.9995	8.6945	1.3055	87° 10'
3° 00'	8.7188	9.9994	8.7194	1.2806	87° 00'
3° 10'	8.7423	9.9993	8.7429	1.2571	86° 50'
3° 20'	8.7645	9.9993	8.7652	1.2348	86° 40'
3° 30'	8.7857	9.9992	8.7865	1.2135	86° 30'
3° 40'	8.8059	9.9991	8.8067	1.1933	86° 20'
3° 50'	8.8251	9.9990	8.8261	1.1739	86° 10'
4° 00'	8.8436	9.9989	8.8446	1.1554	86° 00'
4° 10'	8.8613	9.9989	8.8624	1.1376	85° 50'
4° 20'	8.8783	9.9988	8.8795	1.1205	85° 40'
4° 30'	8.8946	9.9987	8.8960	1.1040	85° 30'
4° 40'	8.9104	9.9986	8.9118	1.0882	85° 20'
4° 50'	8.9256	9.9985	8.9272	1.0728	85° 10'
5° 00'	8.9403	9.9983	8.9420	1.0580	85° 00'
5° 10'	8.9545	9.9982	8.9563	1.0437	84° 50'
5° 20'	8.9682	9.9981	8.9701	1.0299	84° 40'
5° 30'	8.9816	9.9980	8.9836	1.0164	84° 30'
	COS	sin	cot	tan	Degrees

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS

	AND C	OTANGE	INTS (CO	mtinued)	
Degrees	sin	COS	tan	cot	
5° 40'	8.9945	9.9979	8.9966	1.0034	84° 20'
5° 50′	9.0070	9.9977	9.0093	0.9907	84° 10'
6° 00′	9.0192	9.9976	9.0216	0.9784	84° 00′
6° 10′	9.0311	9.9975	9.0336	0.9664	83° 50′
6° 20′	9.0426	9.9973	9.0453	0.9547	83° 40'
6° 30′	9.0539	9.9972	9.0567	0.9433	83° 30'
6° 40′	9.0648	9.9971	9.0678	0.9322	83° 20'
6° 50′	9.0755	9.9969	9.0786	0.9214	83° 10′
7° 00′	9.0859	9.9968	9.0891	0.9109	83° 00′
7° 10′	9.0961	9.9966	9.0995	0.9005	82° 50'
7° 20′	9.1060	9.9964	9.1096	0.8904	82° 40'
7° 30′	9.1157	9.9963	9.1194	0.8806	82° 30'
7° 40′	9.1252	9.9961	9.1291	0.8709	82° 20'
7° 50′	9.1345	9.9959	9.1385	0.8615	82° 10′
8° 00′	9.1436	9.9958	9.1478	0.8522	82° 00′
8° 10′	9.1525	9.9956	9.1569	0.8431	81° 50′
8° 20′	9.1612	9.9954	9.1658	0.8342	81° 40′
8° 30′	9.1697	9.9952	9.1745	0.8255	81° 30'
8° 40′	9.1781	9.9950	9.1831	0.8169	81° 20'
8° 50′	9.1863	9.9948	9.1915	0.8085	81° 10′
9° 00′	9.1943	9.9946	9.1997	0.8003	81° 00′
9° 10′	9.2022	9.9944	9.2078	0.7922	80° 50'
9° 20'	9.2100	9.9942	9.2158	0.7842	80° 40'
9° 30′	9.2176	9.9940	9.2236	0.7764	80° 30'
9° 40′	9.2251	9.9938	9.2313	0.7687	80° 20'
9° 50′	9.2324	9.9936	9.2389	0.7611	80° 10′
10° 00′	9.2397	9.9934	9.2463	0.7537	80° 00′
10° 10'	9.2468	9.9931	9.2536	0.7464	79° 50'
10° 20'	9.2538	9.9929	9.2609	0.7391	79° 40'
10° 30'	9.2606	9.9927	9.2680	0.7320	79° 30'
10° 40'	9.2674	9.9924	9.2750	0.7250	79° 20'
10° 50′	9.2740	9.9922	9.2819	0.7181	79° 10'
11° 00′	9.2806	9.9919	9.2887	0.7113	79° 00′
11° 10′	9.2870	9.9917	9.2953	0.7047	78° 50′
<u></u>	cos	sin	cot	tan	Degrees

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

	ANDC	UTANG	ENTS (Co	ont inue a)	
Degrees	sin	cos	tan	cot	
11° 20' 11° 30' 11° 40' 11° 50'	9.2934 9.2997 9.3058 9.3119	9.9914 9.9912 9.9909 9.9907	9.3020 9.3085 9.3149 9.3212	0.6980 0.6915 0.6851 0.6788	78° 40' 78° 30' 78° 20' 78° 10'
12°00' 12°10' 12°20' 12°30' 12°40' 12°50'	9.3179 9.3238 9.3296 9.3353 9.3410 9.3466	9.9904 9.9901 9.9899 9.9896 9.9893 9.9893 9.9890	9.3275 9.3336 9.3397 9.3458 9.3517 9.3576	0.6725 0.6664 0.6603 0.6542 0.6483 0.6424	78°00' 77°50' 77°40' 77°30' 77°20' 77°10'
13° 00' 13° 10' 13° 20' 13° 30' 13° 40' 13° 50'	9.3521 9.3575 9.3629 9.3682 9.3734 9.3786	9.9887 9.9884 9.9881 9.9878 9.9875 9.9875 9.9872	9.3634 9.3691 9.3748 9.3804 9.3859 9.3914	0.6366 0.6309 0.6252 0.6196 0.6141 0.6086	77° 00' 76° 50' 76° 40' 76° 30' 76° 20' 76° 10'
14° 00' 14° 10' 14° 20' 14° 30' 14° 40' 14° 50'	9.3837 9.3887 9.3937 9.3986 9.4035 9.4083	9.9869 9.9866 9.9863 9.9859 9.9856 9.9856 9.9853	9.3968 9.4021 9.4074 9.4127 9.4178 9.4230	0.6032 0.5979 0.5926 0.5873 0.5822 0.5770	76° 00' 75° 50' 75° 40' 75° 30' 75° 20' 75° 10'
15° 00' 15° 10' 15° 20' 15° 30' 15° 40' 15° 50'	9.4130 9.4177 9.4223 9.4269 9.4314 9.4359	9.9849 9.9846 9.9843 9.9839 9.9839 9.9836 9.9832	9.4281 9.4331 9.4381 9.4430 9.4479 9.4527	0.5719 0.5669 0.5619 0.5570 0.5521 0.5473	75° 00' 74° 50' 74° 40' 74° 30' 74° 20' 74° 10'
16° 00' 16° 10' 16° 20' 16° 30' 16° 40' 16° 50'	9.4403 9.4447 9.4491 9.4533 9.4576 9.4618	9.9828 9.9825 9.9821 9.9817 9.9814 9.9810	9.4575 9.4622 9.4669 9.4716 9.4762 9.4808	0.5425 0.5378 0.5331 0.5284 0.5238 0.5192	74° 00' 73° 50' 73° 40' 73° 30' 73° 20' 73° 10'
	COS	sin	cot	tan	Degrees

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

			NTS (Co	ntinued)	
Degrees	sin	cos	tan	cot	
17° 00' 17° 10' 17° 20' 17° 30' 17° 40' 17° 50' 18° 00' 18° 10' 18° 20' 18° 30' 18° 40'	9.4659 9.4700 9.4741 9.4781 9.4821 9.4861 9.4900 9.4939 9.4977 9.5015 9.5052	9.9806 9.9802 9.9798 9.9794 9.9790 9.9786 9.9788 9.9778 9.9778 9.9770 9.9765	9.4853 9.4993 9.4943 9.5031 9.5075 9.5118 9.5161 9.5203 9.5245 9.5287	0.5147 0.5102 0.5057 0.5013 0.4969 0.4925 0.4882 0.4882 0.4839 0.4797 0.4755 0.4713	73° 00' 72° 50' 72° 40' 72° 30' 72° 20' 72° 10' 72° 00' 71° 50' 71° 40' 71° 30' 71° 20'
18° 50' 19° 00' 19° 10' 19° 20' 19° 30' 19° 40' 19° 50'	9.5090 9.5126 9.5163 9.5199 9.5235 9.5270 9.5306	9.9761 9.9757 9.9752 9.9748 9.9743 9.9739 9.9734	9.5329 9.5370 9.5411 9.5451 9.5451 9.5531 9.5531 9.5571	0.4671 0.4630 0.4589 0.4549 0.4509 0.4509 0.4469 0.4429	71° 10' 71° 00' 70° 50' 70° 40' 70° 30' 70° 20' 70° 10'
20° 00' 20° 10' 20° 20' 20° 30' 20° 40' 20° 50'	9.5341 9.5375 9.5409 9.5443 9.5477 9.5510	9.9730 9.9725 9.9721 9.9716 9.9711 9.9706	9.5611 9.5650 9.5689 9.5727 9.5766 9.5804	0.4389 0.4350 0.4311 0.4273 0.4234 0.4196	70° 00' 69° 50' 69° 40' 69° 30' 69° 20' 69° 10'
21° 00' 21° 10' 21° 20' 21° 30' 21° 40' 21° 50'	9.5543 9.5576 9.5609 9.5641 9.5673 9.5704	9.9702 9.9697 9.9692 9.9687 9.9682 9.9677	9.5842 9.5879 9.5917 9.5954 9.5991 9.6028	0.4158 0.4121 0.4083 0.4046 0.4009 0.3972	69°00' 68°50' 68°40' 68°30' 68°20' 68°10'
22° 00' 22° 10' 22° 20' 22° 30'	9.5736 9.5767 9.5798 9.5828	9.9672 9.9667 9.9661 9.9656 	9.6064 9.6100 9.6136 9.6172	0.3936 0.3900 0.3864 0.3828 	68° 00' 67° 50' 67° 40' 67° 30' Degrees

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

- .

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

Degrees	sin	COS	tan	cot	
22° 40′	9.5859	9.9651	9.6208	0.3792	67° 20'
22° 50′	9.5889	9.9646	9.6243	0.3757	67° 10'
23° 00′	9.5919	9.9640	9.6279	0.3721	67° 00′
23° 10'	9.5948	9.9635	9.6314	0.3686	66° 50'
23° 20′	9.5978	9.9629	9.6348	0.3652	66° 40′
23° 30' 23° 40'	9.6007 9.6036	9.9624 9.9618	9.6383	0.3617 0.3583	66° 30' 66° 20'
23° 40' 23° 50'	9.6030	9.9618	9.6417 9.6452	0.3583	66° 10'
23 30	9.0005	9.9013	9.0432	0.3340	00 10
24° 00′	9.6093	9.9607	9.6486	0.3514	66° 00'
24° 10′	9.6121	9.9602	9.6520	0.3480	65° 50'
24° 20'	9.6149	9.9596	9.6553	0.3447	65° 40'
24° 30'	9.6177	9.9590	9.6587	0.3413	65° 30'
24° 40′ 24° 50′	9.6205 9.6232	9.9584 9.9579	9.6620 9.6654	0.3380 0.3346	65° 20' 65° 10'
24 50	9.0232	9.9579	9.0054	0.3340	05 10
25° 00′	9.6259	9.9573	9.6687	0.3313	65° 00′
25° 10'	9.6286	9.9567	9.6720	0.3280	64° 50'
25° 20'	9.6313	9.9561	9.6752	0.3248	64° 40'
25° 30′	9.6340	9.9555	9.6785	0.3215	64° 30'
25° 40′	9.6366	9.9549	9.6817	0.3183	64° 20′
25° 50′	9.6392	9.9543	9.6850	0.3150	64° 10′
26° 00′	9.6418	9.9537	9.6882	0.3118	64° 00'
26° 10'	9.6444	9.9530	9.6914	0.3086	63° 50'
26° 20′	9.6470	9.9524	9.6946	0.3054	63° 40'
26° 30'	9.6495	9.9518	9.6977	0.3023	63° 30'
26° 40'	9.6521	9.9512	9.7009	0.2991	63° 20'
26° 50′	9.6546	9.9505	9.7040	0.2960	63° 10′
27° 00′	9.6570	9.9499	9.7072	0.2928	63° 00′
27° 10'	9.6595	9.9492	9.7103	0.2897	62° 50'
27° 20'	9.6620	9.9486	9.7134	0.2866	62°40'
27° 30'	9.6644	9.9479	9.7165	0.2835	62° 30'
27° 40′	9.6668	9.9473	9.7196	0.2804	62°20'
27° 50′	9.6692	9.9466	9.7226	0.2774	62° 10′
28° 00′	9.6716	9.9459	9.7257	0.2743	62°00'
28° 10'	9.6740	9.9453	9.7287	0.2713	61° 50′
	cos	sin	cot	tan	Degrees

LOGARITHMI	C SINES,	COSINES,	TANGENTS,
AND	COTANGE	ENTS (Conti	inued)

Degrees	sin	cos	tan	cot	
28° 20′	9.6763	9.9446	9.7317	0.2683	61° 40′
28° 30'	9.6787	9.9439	9.7348	0.2652	61° 30'
28° 40'	9.6810	9.9432	9.7378	0.2622	61° 20'
28° 50'	9.6833	9.9425	9.7408	0.2592	61° 10′
29° 00′	9.6856	9.9418	9.7438	0.2562	61° 00′
29° 10′	9.6878	9.9411	9.7467	0.2533	60° 50′
29° 20′	9.6901	9.9404	9.7497	0.2503	60° 40′
29° 30'	9.6923	9.9397	9.7526	0.2474	60° 30'
29° 40′	9.6946	9.9390	9.7556	0.2444	60° 20'
29° 50′	9.6968	9.9383	9.7585	0.2415	60° 10′
30° 00′	9.6990	9.9375	9.7614	0.2386	60° 00'
30° 10′	9.7012	9.9368	9.7644	0.2356	59° 50'
30° 20′	9.7033	9.9361	9.7673	0.2327	59° 40′
30° 30′	9.7055	9.9353	9.7701	0.2299	59° 30'
30° 40′	9.7076	9.9346	9.7730	0.2270	59° 20′
30° 50′	9.7097	9.9338	9.7759	0.2241	59° 10′
31° 00′	9.7118	9.9331	9.7788	0.2212	59° 00′
31° 10′	9.7139	9.9323	9.7816	0.2184	58° 50′
31° 20′	9.7160	9.9315	9.7845	0.2155	58° 40′
31° 30′	9.7181	9.9308	9.7873	0.2127	58° 30'
31° 40′	9.7201	9.9300	9.7902	0.2098	58° 20'
31° 50′	9.7222	9.9292	9.7930	0.2070	58° 10′
32° 00′	9.7242	9.9284	9.7958	0.2042	58° 00′
32° 10′	9.7262	9.9276	9.7986	0.2014	57° 50'
32° 20′	9.7282	9.9268	9.8014	0.1986	57° 40'
32° 30'	9.7302	9.9260	9.8042	0.1958	57° 30'
32° 40′	9.7322	9.9252	9.8070	0.1930	57° 20'
32° 50′	9.7342	9.9244	9.8097	0.1903	57° 10′
33° 00′	9.7361	9.9236	9.8125	0.1875	57° 00′
33° 10′	9.7380	9.9228	9.8153	0.1847	56° 50'
33° 20′	9.7400	9.9219	9.8180	0.1820	56° 40'
33° 30′	9.7419	9.9211	9.8208	0.1792	56° 30'
33° 40′	9.7438	9.9203	9.8235	0.1765	56° 20'
33° 50′	9.7457	9.9194	9.8263	0.1737	56° 10′
	cos	sin	cot	tan	Degrees

34° 10'9.74949.91779.83170.168355° 34° 20'9.75139.91699.83440.165655° 34° 30'9.75319.91609.83710.162955° 34° 40'9.75509.91519.83980.160255° 34° 50'9.75689.91429.84250.157555° 34° 50'9.75869.91349.84520.154855° 35° 00'9.76229.91169.85060.149454° 35° 20'9.76229.91169.85060.149454° 35° 20'9.76579.90989.85330.146754° 35° 40'9.76579.90989.85860.141454° 36° 00'9.76929.90809.86130.138754° 36° 00'9.76929.90809.86130.138754° 36° 00'9.77279.90619.86660.133453° 36° 00'9.77619.90429.87180.122553° 36° 30'9.77749.90339.87450.125553° 37° 00'9.78289.90239.87710.122953° 37° 00'9.78289.90049.88240.117652° 37° 00'9.78289.90049.88240.117652° 37° 00'9.78779.89759.89220.109852° 37° 00'9.78779.89559.89280.102051° </th <th colspan="7">AND COTANGENTS. (Communed)</th>	AND COTANGENTS. (Communed)						
34° 10'9.74949.91779.83170.168355° 34° 20'9.75139.91699.83440.165655° 34° 30'9.75319.91609.83710.162955° 34° 40'9.75509.91519.83980.160255° 34° 50'9.75689.91429.84250.157555° 34° 50'9.75869.91349.84520.154855° 35° 00'9.76229.91169.85060.149454° 35° 20'9.76229.91169.85060.149454° 35° 20'9.76579.90989.85330.146754° 35° 40'9.76579.90899.85860.141454° 36° 00'9.76929.90809.86130.138754° 36° 00'9.76929.90809.86130.138754° 36° 00'9.77279.90619.86660.133453° 36° 00'9.77619.90429.87180.128253° 36° 30'9.77789.90339.87450.125553° 37° 00'9.78289.90449.88240.117652° 37° 00'9.78289.90049.88240.117652° 37° 00'9.78289.90049.88240.112452° 37° 00'9.78779.89759.89200.109852° 37° 00'9.78939.89459.88540.102051° </td <td>Degrees</td> <td>sin</td> <td>cós</td> <td>tan</td> <td>cot</td> <td></td>	Degrees	sin	cós	tan	cot		
$34^{\circ} 20'$ 9.75139.91699.83440.1656 55° $34^{\circ} 30'$ 9.75319.91609.83710.1629 55° $34^{\circ} 40'$ 9.75509.91519.83980.1602 55° $34^{\circ} 50'$ 9.75689.91429.84250.1575 55° $35^{\circ} 00'$ 9.75869.91429.84250.1575 55° $35^{\circ} 00'$ 9.76869.91349.84520.1548 55° $35^{\circ} 10'$ 9.76049.91259.84790.1521 54° $35^{\circ} 20'$ 9.76229.91169.85060.1494 54° $35^{\circ} 30'$ 9.76409.91079.85330.1467 54° $35^{\circ} 40'$ 9.76579.90899.85860.1414 54° $36^{\circ} 00'$ 9.76929.90809.86130.1387 54° $36^{\circ} 00'$ 9.77109.90709.86390.1361 53° $36^{\circ} 00'$ 9.77279.0619.86660.1334 53° $36^{\circ} 30'$ 9.77449.90529.86660.1334 53° $36^{\circ} 50'$ 9.77789.90339.87450.1255 53° $37^{\circ} 00'$ 9.78289.0049.88240.1176 52° $37^{\circ} 00'$ 9.78289.90049.88240.1176 52° $37^{\circ} 00'$ 9.78449.89959.88500.1124 52° $37^{\circ} 00'$ 9.78779.89759.89280.1072 52° <t< td=""><td>. 34° 00' . 34° 10'</td><td></td><td></td><td></td><td></td><td>56° 00' 55° 50'</td></t<>	. 34° 00' . 34° 10'					56° 00' 55° 50'	
$34^{\circ} 40'$ 9.7550 9.9151 9.8398 0.1602 55° $34^{\circ} 50'$ 9.7568 9.9142 9.8425 0.1575 55° $35^{\circ} 00'$ 9.7586 9.9142 9.8425 0.1575 55° $35^{\circ} 10'$ 9.7604 9.9125 9.8479 0.1521 54° $35^{\circ} 20'$ 9.7622 9.9116 9.8533 0.1467 54° $35^{\circ} 30'$ 9.7640 9.9107 9.8533 0.1441 54° $35^{\circ} 40'$ 9.7657 9.0098 9.8559 0.1441 54° $35^{\circ} 40'$ 9.7657 9.0089 9.8586 0.1414 54° $36^{\circ} 00'$ 9.7692 9.9080 9.8613 0.1387 54° $36^{\circ} 00'$ 9.7777 9.9061 9.8663 0.1361 53° $36^{\circ} 20'$ 9.7727 9.9061 9.8662 0.1308 53° $36^{\circ} 20'$ 9.7727 9.9061 9.8692 0.1308 53° $36^{\circ} 20'$ 9.7727 9.9023 9.8711 0.1225 53° $36^{\circ} 50'$ 9.7778 9.9023 9.8771 0.1229 53° $37^{\circ} 00'$ 9.7828 9.9044 9.8824 0.1176 52° $37^{\circ} 00'$ 9.7828 9.9044 9.8826 0.1124 52° $37^{\circ} 00'$ 9.7877 9.8975 9.8928 0.1072 52° $37^{\circ} 00'$ 9.7893 9.8955 9.8954 0	34° 20′	9.7513				55° 40'	
34° 50'9.75689.91429.84250.157555° 35° 00'9.75869.91349.84520.157555° 35° 10'9.76049.91259.84790.152154° 35° 20'9.76229.91169.85060.149454° 35° 30'9.76409.91079.85330.146754° 35° 40'9.76579.90989.85860.141454° 35° 40'9.76759.90899.85860.141454° 36° 00'9.76929.90809.86130.138754° 36° 00'9.77729.90619.86660.133453° 36° 20'9.77279.90619.86660.133453° 36° 20'9.77619.90429.87180.128253° 36° 30'9.77789.90339.87450.125553° 37° 00'9.77959.90239.87710.122953° 37° 20'9.78289.90049.88240.117652° 37° 20'9.78249.89759.89200.109852° 37° 40'9.78619.89859.88760.112452° 37° 50'9.78779.89759.89280.107252° 38° 00'9.79269.89459.89540.104651° 38° 00'9.79739.89559.89540.104651° 38° 00'9.79739.89259.90320.096851° </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>55° 30'</td>						55° 30'	
35° 00'9.75869.91349.84520.154855° 35° 10'9.76049.91259.84790.152154° 35° 20'9.76229.91169.85060.149454° 35° 30'9.76409.91079.85330.146754° 35° 40'9.76579.90989.85590.144154° 35° 50'9.76759.90899.85860.141454° 36° 00'9.76929.90809.86130.138754° 36° 20'9.77279.90619.86390.136153° 36° 20'9.77279.90619.86660.133453° 36° 30'9.77449.90529.86920.130853° 36° 30'9.77619.90429.87180.128253° 36° 50'9.77789.90339.87450.125553° 37° 00'9.77959.90239.87710.122953° 37° 00'9.78289.90449.88240.117652° 37° 20'9.78289.90049.88240.117552° 37° 40'9.78619.89859.88760.112452° 37° 40'9.78619.89559.89280.107252° 38° 00'9.78939.89559.89280.107252° 38° 00'9.78939.89559.89860.102051° 38° 00'9.79339.89559.90320.096851° </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>55° 20'</td>						55° 20'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 30	9.1500	9.9144	9.0125	0.1575	55 10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						55° 00'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						54° 50'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						54° 20'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						54° 10'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.400-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						54° 00'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						53° 50'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9.7744				53° 30'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36° 40'				0.1282	53° 20'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36° 50'	9.7778	9.9033	9.8745	0.1255	53° 10′	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37° 00'	9 7795	9 9023	9 8771	0 1229	53° 00′	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						52° 50'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						52° 40′	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37° 30'					52° 30'	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						52° 20' 52° 10'	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 30	9.1011	9.0913	9.0902	0.1090	52 10	
38° 20' 9.7926 9.8945 9.8980 0.1020 51° 38° 30' 9.7941 9.8935 9.9006 0.0994 51° 38° 40' 9.7957 9.8925 9.9032 0.0968 51° 38° 50' 9.7973 9.8915 9.9058 0.0942 51° 39° 00' 9.7989 9.8905 9.9084 0.0916 51° 39° 10' 9.8004 9.8895 9.9110 0.0890 50° 39° 20' 9.8020 9.8884 9.9135 0.0865 50° 39° 30' 9.8035 9.8874 9.9161 0.0839 50° 39° 40' 9.8050 9.8864 9.9187 0.0813 50°						52° 00′	
38° 30' 9.7941 9.8935 9.9006 0.0994 51° 38° 40' 9.7957 9.8925 9.9032 0.0968 51° 38° 50' 9.7973 9.8915 9.9058 0.0942 51° 39° 00' 9.7989 9.8905 9.9084 0.0916 51° 39° 00' 9.7989 9.8905 9.9084 0.0916 51° 39° 10' 9.8004 9.8895 9.9110 0.0890 50° 39° 20' 9.8020 9.8884 9.9135 0.0865 50° 39° 30' 9.8035 9.8874 9.9161 0.0839 50° 39° 30' 9.8050 9.8864 9.9187 0.0813 50°						51° 50'	
38° 40' 9.7957 9.8925 9.9032 0.0968 51° 38° 50' 9.7973 9.8915 9.9058 0.0942 51° 39° 00' 9.7989 9.8905 9.9084 0.0916 51° 39° 10' 9.8004 9.8895 9.9110 0.0890 50° 39° 20' 9.8020 9.8884 9.9135 0.0865 50° 39° 30' 9.8035 9.8874 9.9161 0.0839 50° 39° 40' 9.8050 9.8864 9.9187 0.0813 50°						51° 40'	
38° 50' 9.7973 9.8915 9.9058 0.0942 51° 39° 00' 9.7989 9.8905 9.9084 0.0916 51° 50° 39° 10' 9.8004 9.8895 9.9110 0.0890 50° 39° 20' 9.8020 9.8884 9.9135 0.0865 50° 39° 39° 30' 9.8035 9.8874 9.9161 0.0839 50° 39° 30' 9.8035 9.8874 9.9161 0.0835 50° 39° 30' 9.8050 9.8864 9.9187 0.0813 50° <td< td=""><td></td><td></td><td></td><td></td><td></td><td>51°20'</td></td<>						51°20'	
39° 10' 9.8004 9.8895 9.9110 0.0890 50° 39° 20' 9.8020 9.8884 9.9135 0.0865 50° 39° 30' 9.8035 9.8874 9.9161 0.0839 50° 39° 40' 9.8050 9.8864 9.9187 0.0813 50°						51° 10'	
39° 10' 9.8004 9.8895 9.9110 0.0890 50° 39° 20' 9.8020 9.8884 9.9135 0.0865 50° 39° 30' 9.8035 9.8874 9.9161 0.0839 50° 39° 40' 9.8050 9.8864 9.9187 0.0813 50°		0 7000	0.0007	0.0001	0.0017	F10.004	
39° 20' 9.8020 9.8884 9.9135 0.0865 50° 39° 30' 9.8035 9.8874 9.9161 0.0839 50° 39° 40' 9.8050 9.8864 9.9187 0.0813 50°						51°00' 50° 50'	
39° 30′ 9.8035 9.8874 9.9161 0.0839 50° 39° 40′ 9.8050 9.8864 9.9187 0.0813 50°						50° 50'	
39° 40′ 9.8050 9.8864 9.9187 0.0813 50° 2						50° 30'	
39° 50' 9.8066 9.8853 9.9212 0.0788 50°	39° 40′	9.8050	9.8864	9.9187	0.0813	50° 20'	
	39° 50'	9.8066	9.8853	9.9212	0.0788	50° 10′	
cos sin cot tan Deg		cos	sin	cot	tan	Degrees	

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS. (Continued)

AND COTANGENTS (Continued)						
Degrees	sin	cos	tan	cot		
40° 00′	9.8081	9.8843	9.9238	0.0762	50° 00′	
40° 10′	9.8096	9.8832	9.9264	0.0736	49° 50'	
40° 20′	9.8111	9.8821	9.9289	0.0711	49° 40'	
40° 30′	9.8125	9.8810	9.9315	0.0685	49° 30′	
40° 40′	9.8140	9.8800	9.9341	0.0659	49° 20'	
40° 50′	9.8155	9.8789	9.9366	0.0634	49° 10′	
41° 00′	9.8169	9.8778	9.9392	0.0608	49° 00'	
41° 10′	9.8184	9.8767	9.9417	0.0583	48° 50′	
41° 20'	9.8198	9.8756	9.9443	0.0557	48° 40'	
41° 30'	9.8213	9.8745	9.9468	0.0532	48° 30'	
41° 40′	9.8227	9.8733	9.9494	0.0506	48° 20'	
41° 50′	9.8241	9.8722	9.9519	0.0481	48° 10'	
42°00′	9.8255	9.8711	9.9544	0.0456	48° 00′	
42° 10'	9.8269	9.8699	9.9570	0.0430	47° 50'	
42° 20'	9.8283	9.8688	9.9595	0.0405	47° 40'	
42° 30'	9.8297	9.8676	9.9621	0.0379	47° 30'	
42° 40'	9.8311	9.8665	9.9646	0.0354	47°20'	
42° 50'	9.8324	9.8653	9.9671	0.0329	47° 10′	
43° 00′	9.8338	9.8641	9.9697	0.0303	47° 00′	
43° 10′	9.8351	9.8629	9.9722	0.0278	46° 50'	
43° 20'	9.8365	9.8618	9.9747	0.0253	46° 40'	
43° 30′	9.8378	9.8606	9.9772	0.0228	46° 30'	
43° 40′	9.8391	9.8594	9.9798	0.0202	46° 20'	
43° 50′	9.8405	9.8582	9.9823	0.0177	46° 10′	
44° 00′	9.8418	9.8569	9.9848	0.0152	46° 00'	
44° 10'	9.8431	9.8557	9.9874	0.0126	45° 50'	
44° 20'	9.8444	9.8545	9.9899	0 0101	45° 40'	
44° 30'	9.8457	9.8532	9.9924	0.0076	45° 30'	
44° 40'	9.8469	9.8520	9.9949	0.0051	45° 20'	
44° 50'	9.8482	9.8507	9.9975	0.0025	45° 10'	
45° 00'	9.8495	9.8495	0.0000	0.0000	45° 00'	
	cos	sin	cot	tan	Degrees	

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

CUTANGENTS							
Degrees	sin	[,] CQS	tan	cot			
0° 00′	.0000	1.0000	.0000	80	90° 00′		
0° 10′	.0029	1.0000	.0029	343.77	89° 50'		
0° 20′	.0058	1.0000	.0058	171.89	89° 40'		
0° 30′	.0087	1.0000	.0087	114.59	89° 30'		
0° 40′	.0116	.9999	.0116	85.940	89° 20'		
0° 50′	.0145	.9999	.0145	68.750	89° 10'		
• 50	.0110		.0110	00.000	07 10		
1° 00′	.0175	.9998	.0175	57.290	89° 00'		
1° 10′	.0204	.9998	.0204	49.104	88° 50'		
1° 20'	.0233	.9997	.0233	42.964	88° 40'		
1° 30'	.0262	.9997	.0262	38,188	88° 30'		
1° 40′	.0291	.9996	.0291	34.368	88° 20'		
1° 50′	.0320	.9995	.0320	31.242	88° 10'		
2.° 00′	.0349	.9994	.0349	28.636	88° 00′		
2° 10′	.0378	.9993	.0378	26.432	87° 50'		
2°20′	.0407	.9992	.0407	24.542	87° 40'		
2° 30'	.0436	.9990	.0437	22.904	87° 30'		
2° 40′	.0465	.9989	.0466	21.470	87° 20'		
2° 50'	.0494	.9988	.0495	20.206	87° 10'		
- •••					0. 10		
3° 00′	.0523	.9986	.0524	19.081	87° 00'		
3° 10′	.0552	.9985	.0553	18.075	86° 50'		
3° 20′	.0581	.9983	.0582	17.169	86° 40'		
3° 30′	.0610	.9981	.0612	16.350	86° 30'		
3° 40′	.0640	.9980	.0641	15.605	86° 20'		
3° 50′	.0669	.9978	.0670	14.924	86° 10'		
4° 00′	.0698	.9976	.0699	14.301	86° 00′		
4° 10′	.0727	.9974	.0729	13.727	85° 50'		
4° 20′	.0756	.9971	.0758	13.197	85° 40'		
4° 30′	.0785	.9969	.0787	12,706	85° 30'		
4° 40′	.0814	.9967	.0816	12.251	85° 20'		
4° 50′	.0843	.9964	.0846	11.826	85° 10'		
5° 00′	.0872	.9962	.0875	11.430	85° 00'		
5° 10'	.0901	.9959	.0904	11.059	84° 50'		
5° 20′	.0929	.9957	.0934	10.712	84° 40'		
5° 30'	.0958	.9954	.0963	10.385	84° 30′		
	cos	sin	cot	tan	Degrees		

NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS

COTANGENTS (Continued)						
Degrees	sin	CO6	tan	cot		
5° 40'	.0987	.9951	.0992	10.078	84° 20'	
5° 50′	. 1016	.9948	. 1022	9.7882	84° 10′	
6° 00′	.1045	.9945	. 1051	9.5144	84° 00′	
6° 10′	.1074	.9942	.1080	9.2553	83° 50'	
6° 20'	.1103	.9939	.1110	9.0098	83° 40'	
6° 30′	.1132	.9936	.1139	8.7769	83° 30'	
6° 40′	.1161	.9932	.1169	8.5555	83° 20'	
6° 50′	.1190	.9929	.1198	8.3450	83° 10″	
7° 00′	.1219	.9925	.1228	8.1443	83° 00'	
7° 10′	.1248	.9922	.1257	7.9530	82° 50'	
7° 20'	.1276	.9918	.1287	7.7704	82° 40'	
7° 30′	.1305	.9914	.1317	7.5958	82° 30'	
7° 40'	.1334	.9911	.1346	7.4287	82° 20'	
7° 50'	.1363	.9907	.1376	7.2687	82° 10′	
8° 00′	.1392	.9903	.1405	7.1154	82° 00′	
8° 10'	.1421	.9899	.1435	6.9682	81° 50′	
8° 20′	.1449	.9894	.1465	6.8269	81° 40′	
8° 30'	.1478	.9890	.1495	6.6912	81° 30′	
8° 40'	.1507	.9886	.1524	6.5606	81° 20′	
8° 50′	.1536	.9881	.1554	6.4348	81° 10′	
9° 00′	.1564	.9877	.1584	6.3138	81° 00′	
9° 10′	.1593	.9872	.1614	6.1970	80° 50′	
9° 20′	.1622	.9868	. 1644	6.0844	80° 40′	
9° 30′	.1650	.9863	.1673	5.9758	80° 30′	
9° 40′	.1679	.9858	.1703	5.8708	80° 20′	
9° 50′	.1708	.9853	.1733	5.7694	80° 10′	
10° 00′	.1736	.9848	.1763	5.6713	80° 00′	
10° 10'	.1765	.9843	.1793	5.5764	79° 50′	
10° 20'	.1794	.9838	.1823	5.4845	79° 40'	
10° 30′	.1822	.9833	. 1853	5.3955	79° 30'	
10° 40′	.1851	.9827	.1883	5.3093	79° 20'	
10° 50′	.1880	.9822	. 1914	5.2257	79° 10′	
11° 00′	.1908	.9816	. 1944	5.1446	79° 00′	
11° 10′	, 1937	.9811	. 1974	5.0658	78° 50′	
	COS	sin	cot	tan	Degrees	

NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

ENGINEERING MATHEMATICS

	COI	ANGENI	l'S (Contin	iued)	
Degrees	sin	cos	tan	cot	
11° 20'	.1965	.9805	.2004	4.9894	78° 40'
11° 30'	.1994	.9799	.2035	4.9152	78° 30'
11° 40'	.2022	.9793	.2065	4.8430	78° 20'
11° 50'	.2051	.9787	.2095	4.7729	78° 10'
12° 00'	.2079	.9781	.2126	4.7046	78° 00'
12° 10'	.2108	.9775	.2156	4.6382	77° 50'
12° 20'	.2136	.9769	.2186	4.5736	77° 40'
12° 30'	.2164	.9763	.2217	4.5107	77° 30'
12° 50'	.2193	.9755	.2247	4.4494	77°20'
12° 50'	.2221	.9750	.2278	4.3897	77°10'
13° 00'	.2250	.9744	.2309	4.3315	77°00'
13° 10'	.2278	.9737	.2339	4.2747	76°50'
13° 20'	.2306	.9730	.2370	4.2193	76°40'
13° 30'	.2334	.9724	.2401	4.1653	76°30'
13° 40'	.2363	.9717	.2432	4.1126	76°20'
13° 50'	.2391	.9710	.2462	4.0611	76°10'
14° 00'	.2419	.9703	.2493	4.0108	76° 00'
14° 10'	.2447	.9696	.2524	3.9617	75° 50'
14° 20'	.2476	.9689	.2555	3.9136	75° 40'
14° 30'	.2504	.9681	.2586	3.8667	75° 30'
14° 40'	.2532	.9674	.2617	3.8208	75° 20'
14° 50'	.2560	.9667	.2648	3.7760	75° 10'
15° 00'	.2588	.9659	.2679	3.7321	75° 00'
15° 10'	.2616	.9652	.2711	3.6891	74° 50'
15° 20'	.2644	.9644	.2742	3.6470	74° 40'
15° 30'	.2672	.9636	.2773	3.6059	74° 30'
15° 40'	.2700	.9628	.2805	3.5656	74° 20'
15° 50'	.2728	.9621	.2836	3.5261	74° 10'
16° 00'	.2756	.9613	.2867	3.4874	74°00'
16° 10'	.2784	.9605	.2899	3.4495	73°50'
16° 20'	.2812	.9596	.2931	3.4124	73°40'
16° 30'	.2840	.9588	.2962	3.3759	73°30'
16° 40'	.2868	.9580	.2994	3.3402	73°20'
16° 50'	.2896	.9572	.3026	3.3052	73°10'
	cos	sin	cot	tan	Degrees

	CO	'ANGEN'	rs (Conti	nued)	
Degrees	sin	cos	tan	cot	
17° 00' 17° 10' 17° 20' 17° 30' 17° 40' 17° 50' 18° 00' 18° 10' 18° 20'	.2924 .2952 .2979 .3007 .3035 .3062 .3090 .3118 .3145	.9563 .9555 .9546 .9537 .9528 .9520 .9511 .9502 .9492	.3057 .3089 .3121 .3153 .3185 .3217 .3249 .3281 .3314	3.2709 3.2371 3.2041 3.1716 3.1397 3.1084 3.0777 3.0475 3.0178	73°00' 72°50' 72°40' 72°30' 72°20' 72°10' 72°00' 71°50' 71°40' 71°30'
18° 30'	.3173	.9483	.3346	2.9887	71° 30'
18° 40'	.3201	.9474	.3378	2.9600	71° 20'
18° 50'	.3228	.9465	.3411	2.9319	71° 10'
19° 00'	.3256	.9455	.3443	2.9042	71°00'
19° 10'	.3283	.9446	.3476	2.8770	70°50'
19° 20'	.3311	.9436	.3508	2.8502	70°40'
19° 30'	.3338	.9426	.3541	2.8239	70°30'
19° 40'	.3365	.9417	.3574	2.7980	70°20'
19° 50'	.3393	.9407	.3607	2.7725	70°10'
20° 00'	.3420	.9397	.3640	2.7475	70° 00'
20° 10'	.3448	.9387	.3673	2.7228	69° 50'
20° 20'	.3475	.9377	.3706	2.6985	69° 40'
20° 30'	.3502	.9367	.3739	2.6746	69° 30'
20° 40'	.3529	.9356	.3772	2.6511	69° 20'
20° 50'	.3557	.9346	.3805	2.6279	69° 10'
21° 00'	.3584	.9336	.3839	2.6051	69° 00'
21° 10'	.3611	.9325	.3872	2.5826	68° 50'
21° 20'	.3638	.9315	.3906	2.5605	68° 40'
21° 30'	.3665	.9304	.3939	2.5386	68° 30'
21° 40'	.3692	.9293	.3973	2.5172	68° 20'
21° 50'	.3719	.9283	.4006	2.4960	68° 10'
22° 00'	.3746	.9272	.4040	2.4751	68° 00'
22° 10'	.3773	.9261	.4074	2.4545	67° 50'
22° 20'	.3800	.9250	.4108	2.4342	67° 40'
22° 30'	.3827	.9239	.4142	2.4142	67° 30'
	cos	sin	cot	tan	Degrees

NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

~

	0.	ANGEN	IS (Contin	(11104)	
Degrees	sin	cos	tan	cot	
22° 40′	.3854	.9228	.4176	2.3945	67° 20′
22° 50'	.3881	.9216	.4210	2.3750	67° 10′
23° 00′	.3907	.9205	.4245	2.3559	67° 00′
23° 10′ 23° 20′	.3934 .3961	.9194 .9182	.4279 .4314	2.3369	66° 50' 66° 40'
23° 20' 23° 30'	.3901	.9171	.4348	2.2998	66° 30'
23° 40'	.4014	.9159	.4383	2.2817	66° 20'
23° 50'	.4041	.9147	.4417	2.2637	66° 10'
24° 00′	.4067	.9135	.4452	2.2460	66° 00′
24° 10'	.4094	.9124	.4487	2.2286	65° 50'
24° 20'	.4120	.9112	.4522	2.2113	65° 40'
24° 30′	.4147	.9100	.4557	2.1943	65° 30'
24° 40'	.4173	.9088	.4592 .4628	2.1775	65° 20'
24° 50′	.4200	.9075	.4028	2.1009	65° 10′
25° 00′	.4226	.9063	.4663	2.1445	65° 00'
25° 10'	.4253.	.9051	.4699	2.1283	64° 50'
25° 20'	.4279	.9038	.4734	2.1123	64° 40'
25° 30'	.4305	.9026	.4770	2.0965	64° 30'
25° 40'	.4331	.9013	.4806	2.0809	64° 20'
25° 50'	.4358	.9001	.4841	2.0655	64° 10'
26° 00′	.4384	.8988	.4877	2.0503	64° 00′
26° 10'	.4410	.8975	.4913	2.0353	63° 50'
26° 20'	.4436	.8962	.4950	2.0204	63° 40′
26° 30'	.4462	.8949	.4986	2.0057	63° 30'
26° 40'	.4488	.8936	.5022	1.9912	63° 20′
26° 50′	.4514	.8923	. 5059	1.9768	63° 10′
27° 00′	.4540	.8910	. 5095	1.9626	63° 00′
27° 10'	.4566	.8897	.5132	1.9486	62° 50′
27° 20′	.4592	.8884	.5169	1.9347	62° 40′
27° 30′	.4617	.8870	. 5206	1.9210	62° 30′
27° 40′	.4643	.8857	.5243	1.9074	62° 20′
27° 50'	.4669	.8843	.5280	1.8940	62° 10'
28° 00′	.4695	.8829	.5317	1.8807	62° 00'
28° 10'	.4720	.8816	.5354	1.8676	61° 50'
	COS	sin	cot	tan	Degrees

	COI	ANGENI	S (Contin	inea)	
Degrees	sin	cos	tan	cot	
28° 20′	.4746	.8802	.5392	1.8546	61° 40′
28° 30′	.4772	.8788	.5430	1.8418	61° 30′
28° 40′	.4797	.8774	.5467	1.8291	61°20'
28° 50′	.4823	.8760	.5505	1.8165	61°10'
29° 00'	.4848	.8746	.5543	1.8040	61°00'
29° 10'	.4874	.8732	.5581	1.7917	60°50'
29° 20'	.4899	.8718	.5619	1.7796	60°40'
29° 20' 29° 30' 29° 40' 29° 50'	.4899 .4924 .4950 .4975	.8718 .8704 .8689 .8675	.5658 .5696 .5735	1.7675 1.7556 1.7437	60° 30' 60° 20' 60° 10'
30° 00'	.5000	.8660	.5774	1.7321	60°00'
30° 10'	.5025	.8646	.5812	1.7205	59°50'
30° 20'	.5050	.8631	.5851	1.7090	59°40'
30° 20' 30° 30' 30° 40' 30° 50'	.5050 .5075 .5100 .5125	.8031 .8616 .8601 .8587	.5890 .5930 .5969	1.6977 1.6864 1.6753	59° 30' 59° 20' 59° 10'
31° 00'	.5150	.8572	.6009	1.6643	59° 00'
31° 10'	.5175	.8557	.6048	1.6534	58° 50'
31° 20'	.5200	.8542	.6088	1.6426	58° 40'
31° 30′	.5225	.8526	.6128	1.6319	58° 30'
31° 40′	.5250	8511	.6168	1.6212	58° 20'
31° 50′	.5275	.8496	.6208	1.6107	58° 10'
32° 00'	.5299	.8480	.6249	1.6003	58°00'
32° 10'	.5324	.8465	.6289	1.5900	57°50'
32° 20'	.5348	.8450	.6330	1.5798	57°40'
32° 30'	.5373	.8434	.6371	1.5697	57° 30'
32° 40'	.5398	.8418	.6412	1.5597	57° 20'
32° 50'	.5422	.8403	.6453	1.5497	57° 10'
33° 00'	.5446	.8387	.6494	1.5399	57° 00'
33° 10'	.5471	.8371	.6536	1.5301	56° 50'
33° 20'	.5495	.8355	.6577	1.5204	56° 40'
33° 30'	.5519	.8339	.6619	1.5108	56° 30'
33° 40'	.5544	.8323	.6661	1.5013	56° 20'
33° 50'	.5568	.8307	.6703	1.4919	56° 10'
<u>.</u>	cos	sin	cot	tan	Degrees

272. ENGINEERING MATHEMATICS

COTANGENTS (Continued)					
Degrees	sin	cos	tan	cot	
34° 00′	. 5592	.8290	.6745	1.4826	56° 00′
34° 10′	.5616	.8274	.6787	1.4733	55° 50'
34° 20′	.5640	.8258	.6830	1.4641	55° 40'
34° 30′	.5664	.8241	.6873	1.4550	55° 30′
34° 40'	. 5688	.8225	.6916	1.4460	55° 20'
34° 50′	.5712	.8208	.6959	1.4370	55° 10'
35° 00′	.5736	.8192	.7002	1.4281	55° 00′
35° 10′	. 5760	.8175	.7046	1.4193	54° 50'
35° 20'	.5783	.8158	.7089	1.4106	54° 40'
35° 30′	.5807	.8141	.7133	1.4019	54° 30′
35° 40'	.5831	.8124	.7177	1.3934	54° 20'
35° 50′	.5854	.8107	.7221	1.3848	54° 10′
36° 00′	.5878	. 8090	.7265	1.3764	54° 00′
36° 10'	. 5901	.8073	.7310	1.3680	53° 50'
36° 20'	.5925	.8056	.7355	1.3597	53° 40'
36° 30'	. 5948	.8039	.7400	1.3514	53° 30'
36° 40'	.5972	.8021	.7445	1.3432	53° 20'
36° 50'	. 5995	.8004	.7490	1.3351	53° 10'
37° 00′	.6018	.7986	.7536	1.3270	53° 00′
37° 10′	.6041	.7969	.7581	1.3190	52° 50′
37° 20′	.6065	.7951	.7627	1.3111	52° 40'
37° 30'	.6088	.7934	.7673	1.3032	52° 30'
37° 40′	.6111	.7916	.7720	1.2954	52° 20'
37° 50′	.6134	.7898	.7766	1.287ó	52° 10′
38° 00'	.6157	.7880	.7813	1.2799	52° 00'
38° 10′	.6180	.7862	.7860	1.2723	51° 50'
38° 20'	.6202	.7844	.7907	1.2647	51° 40′
38° 30'	.6225	.7826	.7954	1.2572	51° 30'
38° 40'	.6248	.7808	.8002	1.2497	51° 20'
38° 50'	.6271	.7790	.8050	1.2423	51° 10′
39° 00'	.6293	.7771	. 8 098	1.2349	51° 00′
39° 10'	.6316	.7753	.8146	1.2276	50° 50'
39° 20'	.6338	.7735	.8195	1.2203	50° 40'
39° 30′	.6361	.7716	.8243	1.2131	50° 30'
	cos	sin	cot	tan	Degrees

NATURAL SINES, COSINES, TANGENTS, AND COTANGENTS (Continued)

k.

COTANGENIS (Continuea)						
Degrees	sin	COS	tan	cot		
39° 40′	.6383	.7698	.8292	1.2059	50° 20′	
39° 50′	.6406	.7679	.8342	1.1988	50° 10′	
40° 00'	.6428	.7660	.8391	1.1918	50° 00'	
40° 10'	.6450	.7642	.8441	1.1847	49° 50'	
40° 20'	.64¥2	.7623	.8491	1.1778	49° 40'	
40° 30'	.6494	.7604	.8541	1.1708	49° 30'	
40° 40'	.6517	.7585	.8591	1.1640	49° 20'	
40° 50'	.6539	.7566	.8642	1.1571	49° 10'	
41°00'	.6561	.7547	.8693	1.1504	49°00'	
41°10'	.6583	.7528	.8744	1.1436	48°50'	
41°20'	.6604	.7509	.8796	1.1369	48°40'	
41°30'	.6626	.7490	.8847	1.1303	48°30'	
41°40'	.6648	.7470	.8899	1.1237	48°20'	
41°50'	.6670	.7451	.8952	1.1171	*48°10'	
42°00'	.6691	.7431	.9004	1.1106	48° 00'	
42°10'	.6713	.7412	.9057	1.1041	47° 50'	
42°20'	.6734	.7392	.9110	1.0977	47° 40'	
42°30'	.6756	.7373	.9163	1.0913	47° 30'	
42°40'	.6777	.7353	.9217	1.0850	47° 20'	
42°50'	.6799	.7333	.9271	1.0786	47° 10'	
43° 00'	.6820	.7314	.9325	1.0724	47° 00'	
43° 10'	.6841	.72 94	.9380	1.0661	46° 50'	
43° 20'	.6862	.7274	.9435	1.0599	46° 40'	
43° 30'	.6884	.7254	.9490	1.0538	46° 30'	
43° 40'	.6905	.7234	.9545	1.0477	46° 20'	
43° 50'	.6926	.7214	.9601	1.0416	46° 10'	
44° 00'	.6947	.7193	.9657	1.0355	46° 00'	
44° 10'	.6967	.7173	.9713	1.0295	45° 50'	
44° 20'	.6988	.7153	.9770	1.0235	45° 40'	
44° 30'	.7009	.7133	.9827	1.0176	45° 30'	
44° 40'	.7030	.7112	.9884	1.0117	45° 20'	
44° 50'	.7050	.7092	.9942	1.0058	45° 10'	
45° 00'	.7071	.7071	1.0000	1.0000	45° 00'	
	COS	sin	cot	tan	Degrees	

HYPERBOLIC SINES AND COSINES

*	cosh n	sinh n	n -	cosh n	sinh n
0.00	1.0000	0.0000	2.05	3.9484	3.8196
0.05	1.0013	0.0500	2.10	4.1443	4.0219
0.10	1.0050	0.1002	2.15	4.3507	4.2342
0.15	1.0112	0.1506	2.20	4.5679	4.4571
0.20	1.0201	0.2013	2.25	4.7966	4.6912
0.25	1.0314	0.2526	2.30	5.0372	4.9369
0.30	1.0453	0.3045	2.35	5.2905	5.1952
0.35	1.0619	0.3572	2.40	5.5569	5.4662
0.40	1.0811	0.4108	2.45	5.8373	5.7510
0.45	1.1030	0.4653	2.50	6.1323	6.0502
0.50	1.1276	0.5211	2.55	6.4426	6.3645
0.55	1.1551	0.5782	2.60	6.7690	6.6947
0.60	1.1855	0.6367	2.65	7.1123	7.0417
0.65	1.2188	0.6967	2.70	7.4735	7.4063
0.70	1.2552	0.7586	2.75	7.8533	7.7894
0.75	1.2947	0.8223	2.80	8.2527	8.1919
0.80	1.3374	0.8881	2.85	8.6728	8.6150
0.85	1.3835	0.9561	2.90	9.1146	9.0596
0.90	1.4331	1.0265	2.95	9.5791	9.5268
0.95	1.4862	1.0995	3.00	10.0677	10.0179
1.00	1.5431	1.1752	3.05	10.5814	10.5340
1.05	1.6038	1.2539	3.10	11.1215	11.0765
1.10	1.6685	1.3356	3.15	11.6895	11.6466
1.15	1.7374	1.4208	3.20	12.2866	12.2459
1.20	1.8107	1.5097	3.25	12.9146	12.8758
1.25	1.8884	1.6019	3.30	13.5748	13.5379
1.30	1.9709	1.6984	3.35	14.2689	14.2338
1.35	2.0583	1.7991	3.40	14.9987	14.9654
1.40	2.1509	1.9043	3.45	15.7661	15.7343
1.45	2.2488	2.0143	3.50	16.5728	16.5426
1.50	2.3524	2.1293	3.55	17.4210	17.3923
1.55	2.4619	2.2496	3.60	18.3128	18.2855
1.60	2.5775	2.3757	3.65	19.2503	19.2243
1.65	2.6995	2.5075	3.70	20.2360	20.2113
1.70	2.8283	2.6456	3.75	21.2723	21.2488
1.75	2.9642	2.7904	3.80	22.3618	22.3394
1.80 1.85 1.90 1.95 2.00	3.1075 3.2583 3.4177 3.5855 3.7622	2.9422 3.1013 3.2682 3.4432 3.6269	3.85 3.90 3.95 4.00	23.5072 24.7113 25.9773 27.3082	23.4859 24.6911 25.9581 27.2899

HYPERBOLIC TANGENTS AND COTANGENTS

n	tanh #	coth #	*	tanh #	coth #
0.00 0.05 0.10	0.00000 0.04996 0.09967	∞ 20.017 10.033	2.05 2.10	0.96740 0.97045	1.0337 1.0304
0.15	0.14889	6.7166	2.15	0.97323	1.0275
0.20	0.19738	5.0665	2.20	0.97574	1.02 49
0.25	0.24492	4.0830	2.25	0.97803	1.0225
0.30	0.29131	3.4327	2.30	0.98010	1.0203
0.35	0.33638	2.9729	2.35	0.98197	1.0184
0.40	0.37995	2.6319	2.40	0.98367	1.0166
0.45	0.42190	2.3702	2.45	0.98522	1.0150
0.50	0.46212	2.1640	2.50	0.98661	1.0136
0.55	0.50052	1.9979	2.55	0.98788	1.0123
0.60	0.53705	1.8620	2.60	0.98903	1.0111
0.65	0.57167	1.7493	2.65	0.99007	1.0100
0.70	0.60437	1.6546	2.70	0.99101	1.0091
0.75	0.63515	1.5744	2.75	0.99186	1.0082
0.80	0.66404	1.5059	2.80	0.99263	1.0074
0.85	0.69107	1.4470	2.85	0.99333	1.0067
0.90	0.71630	1.3961	2.90	0.99396	1.0061
0.95	0.73978	1.3517	2.95	0.99454	1.0055
1.00	0.76159	1.3130	3.00	0.99505	1.0050
1.05	0.78181	1.2791	3.0	0.99505	1.0050
1.10	0.80050	1.2492	3.1	0.99595	1.0041
1.15	0.81775	1.2229	3.2	0.99668	1.0033
1.20	0.83365	1.1995	3.3	0.99728	1.0027
1.25	0.84828	1.1789	3.4	0.99777	1.0022
1.30	0.86172	1.1605	3.5	0.99818	1.0018
1.35	0.87405	1.1441	3.6	0.99851	1.0015
1.40	0.88535	1.1295	3.7	0.99878	1.0012
1.45	0.89569	1.1165	3.8	0.99900	1.0010
1.50	0.90515	1.1048	3.9	0.99918	1.0008
1.55	0.91379	1.0943	4.0	0.99933	1.0007
1.60	0.92167	1.0850	4.1	0.99945	1.0005
1.65	0.92886	1.0766	4.2	0.99955	1.0004
1.70	0.93541	1.0691	4.3	0.99963	1.0004
1.75	0.94138	1.0623	4.4	0.99970	1.0003
1.80	0.94681	1.0562	4.5	0.99975	1.0002
1.85	0.95175	1.0507	4.6	0.99980	1.0002
1.90	0.95624	1.0458	4.7	0.99983	1.0002
1.95	0.96032	1.0413	4.8	0.99986	1.0001
2. 00	0.96403	1.0373	4.9	0.99989	1.0001

Numerical Constants

 $\pi = 3.141 592 654$ $\log_{10} \pi = 0.497$ 149 873 $\frac{1}{-} = 0.318 \ 309 \ 886$ $\pi^2 = 9.869 604 401$ $\sqrt{\pi} = 1.772 453 851$ $\frac{1}{\sqrt{2}} = 0.564$ 189 583 $\sqrt{\frac{\pi}{2}} = 1.253 \ 314 \ 137$ $\sqrt{\frac{2}{\pi}} = 0.797 \ 884 \ 561$ e = 2.718 281 828 $\frac{1}{2} = 0.367 879 441$ $\log_{10} e = 0.434$ 294 482

 $\log_{e} 10 = 2.302 585 093$ $\log_{10} \log_{10} e = 9.637 784 311$ $\log_{e} \pi = 1.144 729 886$ $\log_{e} 2 = 0.693 147 181$

 $\log_{10} 2 = 0.301 \ 029 \ 996$

A

Acceleration of gravity, 102 Acre, 196 Aeronautics, 180-192 Air, flow in pipes, 154-155 -, compressed, 155 Airplanes, 182-192 Algebra, 1 Alternating currents, 169-176 Altitudes, determination by barometer, 202 Altitude, value of g, 97 Analytic geometry, 24-39 Angle, between two lines, 25 Angular measure, 98–99 Apertures, flow of water, 142-143 Apothecaries' fluid measure, 194 Apothecaries' weight, 194, 197, 198 Archimedes' spiral, 36 Are, 196 Area, bounded by curves, 48-49 -, of circles, 13, 226-227 -, of plane figures, 12-14 Arithmetical progressions, 3 Asymptotes of hyperbola, 30 Atmosphere, pressure of, 201 Atomic weights, 204 Avoirdupois weight, 194

B

Balloons, 180-182 Barometer, corrections for, 201-202 Base, of logarithms, 4, 5 Bazin's formula, 149-150 Beams, flexure of, 112-114 Beam loadings, 115-123 Bending moment, 113 Binomial thereom, 2 Boiling-points, 210-211 British thermal unit, 200

С

Calculus, 40-71 Cantilever beam, 116 Capacity, electric, 167-169, 172 -, measures of, 194 Cardioid, 32 Catenary, 33, 74 Center of gravity, 88-91, 134-136 -----, of arc of curve, 88-89 ----, of plane figures 89-90, 91, 134-136 – —, of solids, 90, 136 Center of gyration, 93-94 Center of percussion, 94 Centigrade scale, 199 Centimeter, 195 Centrifugal force, 99-100 Channels, 128 Characteristic of a logarithm, 231-232 Charge, of condensers, 167 Chemical constants, 204-225 Circle, circumference and area of. 13, 226-227 -, equation of, 26 —, quadrant of, 134 -, sector of, 13 -, segment of, 13 , tangent to, 27

Circular measure, 194 -, mil, 195 -. motion. 99 Circumference of circles, 13, 226-227 Cissoid, 34 Clairaut's equation, 79 Climbing, of airplanes, 189-192 Coefficients, of friction, 105, 106 -, of linear expansion, 215-217 Collapsing of tubes, 153 Columns, 129–133 -, wooden, 133 Combinations, 11, 12 Common logarithms, 4, 231, 232 Comparison test, 6, 7, Complementary function, 80 Complex imaginary quantities, 9тт Compressed air, 155 Compression, 109 Concentrated loads, 117, 118, 119, 120 Condensers, electric, 167-169 Cone, 15 -, center of gravity of, 136 Conjugate hyperbola, 30 Constants, numerical, 276 Convergent series, 6 Coordinates, 26 Copper wire tables, 158-159 Cosecant, 15, 16 Cosine, 15, 16 Cotangent, 15, 16 Cubes of numbers, 228-230 Cubical parabola, 35 Cubic equations, 5,6, 51 Curvature, 41 —, radius of, 41 Curves, length of, 46-48 Curve tracing, 52-53 Cycloid, 30-31 Cylinder, right circular, 14 - pressure in, 152

D

De Moivre's theorem, 11 Deflection of a beam, 114 Densities of substances, 205-209 Differential calculus, 40-46 --, equations, 75-88 Direction cosines, 37, 38 Directrix of parabola, 27 Discriminant, 1 Distance, between two points, 25, 38 --, from point to straight line, 25 Distortion, 111 Divergent series, 6 Dry measure, 194 Dyne, 198

E

e, base of natural logarithms, 4, 5. e^x, 256 e-x, 257 Earth, diameter of, 203 Eddy current loss, 178 Effective voltage, 164, 170 Elastic curve, 113 —, limit, 108, 110 Electric equivalents, 199-201 Electricity, 156-176 Ellipse, area of, 14 -, circumference of, 14 -, equation of, 29 - quadrant of, 134 Energy, 102, 103 —, electric, 161 -, kinetic, 103 English weights and measures, 193-194 Epicycloid, 31 Equations, cubic, 5, 6, 51 -, differential, 75-88 —, quadratic, 1 -, solution of, 51 -, transcendental, 6 Erg. 199 Euler's formula for columns, 129 Exact differential equations, 77, 86 Exponential curve, 36 -, functions, 256-257 -, series, 7 Exponents, 1

F

Factor of safety. 108, 110 Farad, 167 Fahrenheit scale, 199 Falling bodies, 96-97 Fixed beam, 122, 123 Flexure of beams, 112-114 Fliegner's equation, 153 Flow of fluids, 153-155 Flow of water, in open channels, 149-151 Fluid measure, 194 Fluids, flow of, 153-155 Flywheel, 100 Focus, of ellipse, 29 -, of hyperbola, 29 -, of parabola, 27 Force, 102, 103 -, centrifugal, 99-100 Forces, composition of, 104 Friction, 105 -, coefficients of, 105 -. of belts, 106 Frustum, of cone, 15 -, of pyramid, 14 g, acceleration of gravity, 96, 97, 198 Gallon, 197 Gas, flow in pipes, 154 Generators, electric, 163-164 Geometrical progression, 3 Geometry, 12-15 Gordon's formula for columns, 130 Grain, 197 Gram, 197 Graphs, 52-53 Gravity, 96, 97, 198 -, center of, 134-136

—, radius of, 93–94, 100, 138–140 H

Head of water, 141 Heat equivalents, 199-201

Gyration, center of, 93, 100

Hectare, 196 Hemisphere, 136 Homogeneous differential equations, 75-76, 85-86 Hydraulics, 141-155 Hyperbola, 29 Hyperbolic formulæ, 71-73 --, functions, 71-75, 274-275 --, logarithms, 4, 253-255 Hypocycloid, 32 Hysteresis loss, 177

I

I-beams, 124-125 Imaginary numbers, 9 Impact, 103, 104 Impedance, electric, 171, 172 Inclined plane, 106-108 Indeterminate forms, 2 — —, evaluation of, 50 Induced voltage, 164, 165 Inductance, 165-167, 172 Inertia, moment of, 91-93, 137-1 AO Infinite series, 6-8 Integrals, table of, 57-71 Integrating factors, 78 Integration, methods, of, 53-57 Intercept equation of line, 25 Inverse hyperbolic functions, 73 Involute of circle, 33

J

j, imaginary unit, 9, 10 Johnson's formula for columns, 131–132 Joule, 199 K

Kutter's formula, 150–151

L

Latitude, value of g, 97 Lemniscate, 34 Length, measures of, 193 —, of curves, 46–48 Linear differential equations, 76, 77, 80–85 — expansion of solids, 215–217

Liquid measure, 194 Loadings of beams, 115-123 Logarithmic cross-section paper, 230-231 -, curve, 36 -, trigonometric functions, 25&-265 Logarithms, 4 -, common, 233-252 -, natural, 253-255 -, use of tables, 231-232 Loss of pressure in pipes, 144-147

М

Maclaurin's series, 45 Magnetism, 176-179 Mantissa of a logarithm, 231-232 Maxima and minima, 43-45 Measurement, tables, 193-201 Mechanical equivalents, 199-201 Mechanics of materials, 108-140 Melting points of elements, 210-211 Meter, 195 Metric conversion tables, 195-201 Microfarad, 167 Millimeter, 195 Minimum, 43-45 Modulus of elasticity, 108, 110 — —, in shear, 111 Mollier steam chart, after 218 Moment of inertia, 91-93 — —, of plane figures, 91–93 Moment of resistance, 113 Momentum, 102 Moon, distance from earth, 203 Motion of a body, 94-95 -, circular, 99 Motors, electric, 161-162

N

Napierian logarithms, 4, 253–255 Napier's equations, 154 Natural hyperbolic functions, 274– 275 --, logarithms, 4, 253–255 Natural trigonometric functions, 266-273 Navigation, 22 Neutral axis, 112 --, surface, 112 Newton's method of solving equations, 51 Normal lines, 40, 41 Numerical constants, 276

0

Oblique triangles, 19-21 — —, spherical, 21-22 Ohm, 156, 160 Ohm's law, 160 Oscillating series, 7 Oscillation of pendulum, 101 —, radius of, 94

P

Parabola, area of, 13 -, cubical, 35 -, equation of, 27, 28 -, length of arc, 13 ---. semi-cubical, 35 Parallel circuits, electric, 160 Parallelogram, area of, 12 -, center of gravity, 134 Partial fractions, 53 Particular integral, 80 Parts, integration by, 54-55 Pendulum, 101, 102 Percussion, center of, 94 Permanent set, 108 Permeability, magnetic, 176 Permutations, 11 Physical constants, 204-225 Pipes, pressure in, 152 Plane, analytic geometry, 24-36 —, equation of, 39 -, geometry, 12-14 -, inclined, 106-108 -, triangles, solution of, 19-21 -, trigonometry, 15-21 Polar coordinates, 26 Polygon, 13 Pound, 198 Poundal, 198

Power, electric, 161, 174, 175 — factor, 174 Powers of numbers, 228-230 Pressure, center of, 141-142 —, corrections, 201-202 —, equivalents, 201 —, water, 141 Prism, 14 Progressions, arithmetical, 3 —, geometrical, 3 Projectiles, 97-98 Proportion, 2 Pyramid, 14 —, center of gravity of, 136 —, frustum of, 14

Q

Quadrant, 17 —, of circle, 134 —, of ellipse, 134 Quadratic equations, 1

R

Radian, 98-99 Radius of curvature, 41 -, of gyration, 93-94, 100, 138-140 -, of oscillation, 94 Rankine's formula for columns, 1.30 Ratio test, 7 Reactance, electric, 171, 172 Reciprocals of numbers, 228-230 Rectangular coordinates, 26 Reduction formulæ for integration, 56-57 Regular polygon, 13 Reluctance, magnetic, 176 Resistance, electric, 156, 157, 160, 161 -, moment of, 113 Resistivity, electric, 156 Restitution, coefficient of, 103 Resultant of forces, 105 Right cone, 15 — cylinder, 14 – prism, 14 - triangle, 12, 15-16, 21 Ritter's formula for columns, 131

Roots of equation 1 ---, of numbers, 228-230 Rotation, 96

S

Safety, factor of, 108, 110 Saturated steam tables, 218-225 Saturation curves, magnetic, 178-179 Secant, 15, 16 Seconds-pendulum, 101, 102 Section modulus, 138-140 Sector, of circle, 13, 135 -, of circular ring, 135 Segment, of circle, 13, 135 -, of parabola, 136 -, of sphere, 15 Semi-circle, 135 Semi-cubical parabola, 35 Series circuits, electric, 161 Series, exponential, 7 -, infinite, 6-8 -, logarithmic, 8 Shear. 111 -, horizontal 115 -, vertical, 114-115 Signs, of trigonometric functions, 17 Simple pendulum, ro1, 102 Sine, 15, 16 -, waves, 172-174 Slope equation of straight line, 25 -, of normal, 40 -, of tangent, 40 Solid analytic geometry, 37-39 -, geometry, 14-15 Solids of revolution, 49-50 Solution of triangles, 19–21 Sound, velocity of, 203 Specific heats of elements, 212-213 215 Sphere, segment of, 15 -, surface area of, 15 -, volume of, 15 Spherical triangles, 21-22 -, trigonometry, 21-24

Spiral of Archimedes, 36 Steam, chart, after 218 -, flow in pipes, 155 -, tables, 218-225 Steel, strength of, 110 Stewart's equations, 153 Straight line, 39 133 Strength of materials, 110 Stress, 108, 109, 114 Strophoid, 35 Subnormal, 41, 42 Substitution, integration by, 55-56 Subtangent, 41, 42 Sun, distance from earth, 203 Surface, measures of, 193 Surfaces of revolution, 49

т

Tangent, 15, 16, 40, 41 —, to circle, 27 -, to ellipse, 29 -, to hyperbola, 30 -, to parabola, 28 Taylor's series, 45 Temperature coefficient, electric, 157 — scales, 199 Tension, 109 Test, for convergency, 6, 7, Theoretical mechanics, 88-108 Three-phase circuits, 175-176 Timber, strength of, 110, 133 Ton, 198 Tortion. 111 — of circular shafts, 111–112 Tracing curves, 52-53 Transcendental equations, 6 Transformation of coordinates, 26 Trapezoid, area of, 12 -. center of gravity, 134

Triangle, area of, 12, 25 -, center of gravity, 134 -, solution of, 19-21 Trigonometric formulæ, 17-19 -, logarithmic functions, 258-265 -, natural functions, 266-273 Trigonometry, plane, 15-21 -, spherical, 21-24 Troy weight, 194, 197, 198 Tubes, collapsing of, 153

U

Ultimate strength, 108, 110 Uniform acceleration, 95 —, loads, 117, 121, 123 Units, 193, 194

V

Velocity of light, 203 —, of sound, 203 Voltage, 164, 165 Volt-ampere, 174 Volume corrections, 201-202 —, measures of, 193

W

Watt, 200 Weights and measures, 193-194 Weights of elements, 205-206 --, of gases, 208 --, of liquids, 209 --, of miscellaneous substances, 207 --, of woods, 208 Weirs, 151-152 Wing characteristics of air-planes, 182 Wire, copper, tables, 158-159 Witch of Agnes, 34 Work, 102, 103 Z

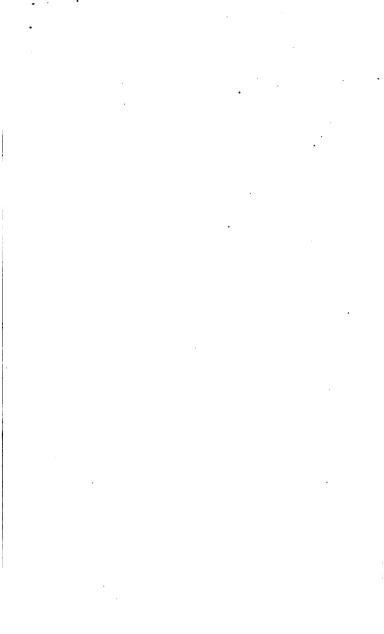
2

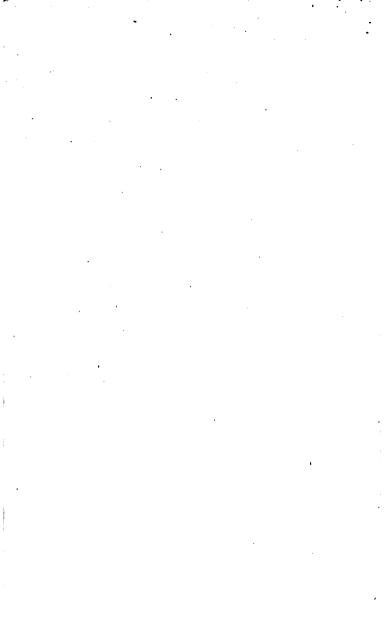
Zone, of sphere, 15

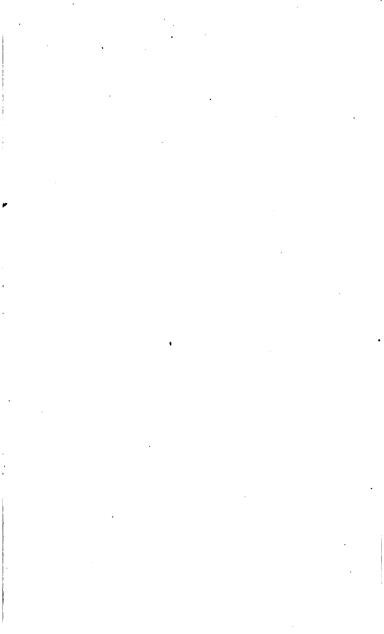
D.VAN NOSTRAND COMPANY

are prepared to supply, either from their complete stock or at short notice,

Any Technical or Scientific Book


In addition to publishing a very large and varied number of SCIENTIFIC AND ENGINEERING BOOKS, D. Van Nostrand Company have on hand the largest assortment in the United States of such books issued by American and foreign publishers.


All inquiries are cheerfully and carefully answered and complete catalogs sent free on request.


8 WARREN STREET

New York

. . •

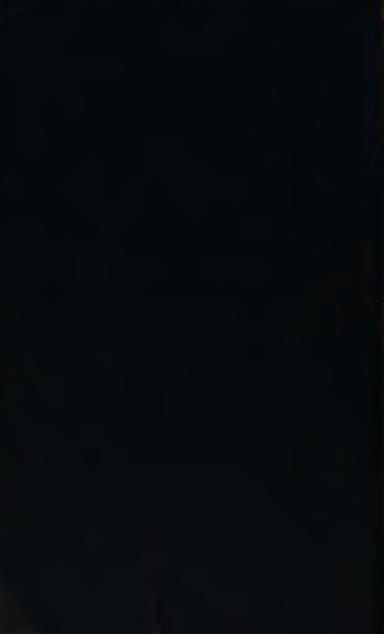
THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

067 22 1940 D	EC 5 1946	
MAR 24 1941 M	FEB 6 1947	1
APR 21 1941 M	9 May 4981	
MOV 7 1	41 M. 341	
DEC 12 19414		
AUG 11 1942	-	
FEB 13 1943	LD 21-100m-7,'40(6936s)	

YA 02263


L.

Y

456486

UNIVERSITY OF CALIFORNIA LIBRARY

