GIFT OF

Professor B.I.Robertson

Engineering Library

TBurtis \&. Tobertoon

EANDBOOK

FOR

SURVEYORS.

BY
MANSFIELD MERRIMAN, Member of American Society of Civil Engineers,
AND

JOHN P. BROOKS,
President of the Clarison College of Technology.

$$
\begin{aligned}
& \text { FIFTH EDITION, REVISED. } \\
& \text { TOTAL ISSUE, TEN THOUSAND }
\end{aligned}
$$

NEW YORK
JOHN WILEY \& SONS, Inc. London: CHAPMAN \& HALL, Limited 1918

ENGINEERING LIBRARY

Copyright, 1895,
BY
MANSFIELD MERRIMAN
AND
JOHN P. BROOKS.

PREFACE TO FIRST EDITION.

This work is designed for the use of classes in technical schools, and also as a field book for surveyors. It is intended to embrace in concise form the ground that a student should cover in surveying before taking up the subject of railroad location. Hence it includes the fundamental theoretical principles, land and town surveying, leveling and simple triangulation, and topography. The attempt has been made to discuss each of these topics clearly and concisely, and in accordance with the best modern methods.

The need of the volume arose merely from the fact that no text-book on elementary surveying in pocket-book form can now be found in the market. While in the field a student should have a book of tables ever at hand, and if these are combined with the text a double advantage is often found, particularly in adjusting instruments and in ruling forms for notes.

In arranging the order of presentation the rule has been as far as possible to proceed from the simple to the complex in a natural order. For instance, the most difficult thing in surveying is the determination of a true meridian, and hence in this volume it comes last of all, although in most other books it is presented at an early stage.

As all persons likely to use the volume have access to sur. reying instruments, no illustrations of these are given. The effort has been made, however, to set forth methods of testing and comparing instruments more fully than is usually done in elementary books. As an instance of this, attention is called to the determination of the eccentricity of the graduated circle of a transit given in Article 27.

The old terms "latitude" and "departure," borrowed from navigation, are not here used, but instead " latitude difference" and "longitude difference" are employed, as is universally

$$
\text { Q AKOCH } 3
$$

done in geodetic surveying, the terms " latitude" and " longi. tude" are moreover used in the same sense as in geodesy and astronomy. That this method has advantages the experience of many years of teaching may bear witness.

The first field work done by a student is usually plotted to a large scale, and hence in Chapter IV the effort is made to clearly distinguish between large-scale and small-scale topography Both the transit and the plane-table method of stadia work are presented, but preference is given to the former. Hydrographic and mine surveying are briefly outlined, the latter being with especial reference to the practice in the anthracite regions of Pennsylvania.

The tables of natural functions are given to five decimal places, while logarithms and logarithmic functions are given to six decimals. The old-fashioned traverse table is omitted, as it is of little value when sines and cosines are at hand. The tables for stadia reductions are those computed by Professor Arthur Winslow for two minute intervals of vertical angles. For assistance in ;compiling Tables III, V, and VI, acknowledgments are due to the United States Coast and Geodetic Survey.

NOTE TO FIFTH EDITION.

This edition is mainly"characterized by new tables of positions of Polaris and by a new chart of lines of equal magnetic declination, the copy for which has been kindly furnished by the U. S. Coast and Geodetic Survey.

A few minor revisions have been made here and there. All known errors have been corrected.

CONTENTS.

Chapter I.
FUNDAMENTAL PRINCIPLES.
ART. PAEA

1. Geometry and Trigonometry 7
2. Lines, Angles, and Azimuths 10
3. Coordinates; Latitudes and Longitudes 13
4. Areas of Triangles and Trapezolds 15
5. Areas of Polygons 17
6. Computation of Areas 20
7. Division of Land 23
8. Inaccessible Distances 25
9. Elevations and Heights. 27
10. Errors of Measurements 29
Chapter II.
LAND SURVEYING.
11. Chains and Tapes 32
12. The Transit 35
13. The Magnetic Needle 40
14. Field Work 44
15. Survey of a Farm 47
16. Office Work 53
17. Random Lines 57
18. Resurveys 59
19. Traversing 62
20. United States Public-Land Surveys. 64
Chapter III.
LEVELING AND TRIANGULATION.
21. The Level 67
22. Adjustments of the Level 68
23. Comparison of Levels 70
24. Leveling 73
25. Contours and Profiles. 75
26. Adjustments of the Transit, 78
27. Comparison of Transits. 81
ART. PAGE
28. Standard Tapes. 84
29. Base Lines. 87
30. Triangulation Work 90
Chapter IV.
TOPOGRAPHIC SURVEYING.
31. Large-Scale Topography 94
32. Small-Scale Topography. 98
33. Theory of the Stadia. 100
34. Stadia Reductions 104
35. Field Work with the Stadia. 107
36. Office Work 110
37. The Plane Table 112
38. Hydrographic Surveying. 115
39. Mine Surveying. 119
40. The True Meridian. 124
41. Isogonic Chart of United States for 1915 123
42. Azimuth by Altitude of the Sun. 243
Tables.
I. Natural Sines and Cosines 129
II. Natural Tangents and Cotangents 139
Lengths of Circular Ares 151
III. Daily Variation of the Magnetic Needle. 152
IV. Degrees of Longitude and Time 153
V. Elongations and Culminations of Polaris 154
VI. Azimuths of Polaris at Elongation 156
VII. Metric and English Measures 158
VIII. Length of Ares of Latitude and Longitude 159
IX. Reduction of Inclined Distances to the Horizontal. 160
X. Stadia Reductions for Reading 100. 161
XI. Logarithms of Numbers 169
Constant Numbers and their Logarithms 196
XII. Logarithmic Sines, Cosines, Tangents, and Cotangents 197
XIII. Mean Refractions 245

A HANDBOOK FOR SURVEVORS.

CHAPTER I.

FUNDAMENTAL PRINCIPLES.

Art. 1. Geometry and Trigonometry.
Geometry and Surveying were originally synonymous, as the etymology of the former word indicates. They originated in Egypt, where monuments and boundary lines were annually obliterated by the inundation of the Nile. Euclid, professor of mathematics at Alexandria about 250 в.c., wrote a treatise on geometry which has never been equaled in logical methods. Geometry furnishes the principles on which the operations of surveying are founded, whereby line and angle measurements, the computation of areas, and the construction of maps are effected. Arithmetic and Trigonometry are the tools by which the principles of Geometry are applied.

The following theorems of plane geometry are perhaps those of greatest importance, but many others are constantly used in the field practice of engineers:

If two straight lines intersect, the opposite angles are equal.
Straight lines parallel to the same straight line are parallel to each other.

The sum of the interior angles of a polygon is equal to twice as many right angles as the polygon has sides minus four right angles.

The sum of the exterior angles formed by producing the sides of a polygon is equal to four right angles.

The square upon the hypothenuse of a right-angled triangle is equal to the sum of the squares upon the other two sides.

Angles at the center of a circle are in the same ratio as their intercepted arcs.

An angle at the circumference of a circle is measured by one half the arc intercepted by its sides.

If the angles of two triangles are equal each to each, the homologous sides are proportional and the triangles are similar.

The areas of similar polygons are as the squares of their homologous sides.
The area if a triangie is measured by one half the product of its base and altitude. The area of a trapezoid is measured hy one half the product of the sum of its parallel sides by its aititude.:

The area of a sector of a circle is measured by one half the product of its arc and radius.

The circumference of a circle is equal to its diameter multiplied by 3.1415927 . The area of a circle is equal to the square of its radius multiplied by 3.1415927 .

Trigonometry, or the solution of triangles by means of sines and tangents of the angles, originated in the thirteenth century, previous computations having been made with chords. The following rules for the solution of oblique triangles are here given for reference, but it should be remembered that no surveyor can attain success unless he is thoroughly conversant with all of them without the necessity of referring to a book.

Fig. 1.

In any triangle let a, b, c, be the sides opposite the angles A, B, C. These sides are proportional to the sines of opposite angles. The value of each side may be expressed in three ways in terms of the other
sides and angles; thus,

$$
\begin{aligned}
& a=b \frac{\sin A}{\sin B}=c \frac{\sin A}{\sin C}=\sqrt{b^{2}+c^{2}-2 b c \cos A} \\
& b=a \frac{\sin B}{\sin A}=c \frac{\sin B}{\sin C}=\sqrt{a^{2}+c^{2}-2 a c \cos B} \\
& c=a \frac{\sin C}{\sin A}=b \frac{\sin C}{\sin B}=\sqrt{a^{2}+b^{2}-2 a b \cos C}
\end{aligned}
$$

Also each angle may be expressed as follows :

$$
\sin A=\frac{a}{b} \sin B=\frac{a}{c} \sin C, \quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$$
\begin{aligned}
& \sin B=\frac{b}{a} \sin A=\frac{b}{c} \sin C, \quad \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} ; \\
& \sin C=\frac{c}{a} \sin A=\frac{c}{b} \sin B, \quad \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} .
\end{aligned}
$$

If A be made a right angle these reduce to the formulas for right triangles, which are too well known to be repeated here.
When two sides and their included angle are given, as a, b, \boldsymbol{C}, then the formulas

$$
\cot A=\frac{b}{a \sin C}-\cot C, \quad \cot B=\frac{a}{b \sin C}-\cot C,
$$

determine A and B, while as a check, $A+B+C=180^{\circ}$; the third side is then found from

$$
c=a \sin C / \sin A .
$$

When the three sides a, b, c are given, the cosines of the angles can be independently computed from the formulas above given. But some prefer to divide the triangle into two right-angled triangles by dropping a perpendicular from A upon the base a, thus dividing it into two segments, a_{1} and a_{2}. The sum of these segments is a, their difference is

$$
a_{1}-a_{2}=\frac{(b+c)(b-c)}{a}
$$

Let this difference be called d; then

$$
a_{1}=\frac{1}{2}(a+d) \quad \text { and } \quad a_{2}=\frac{1}{2}(a-d) .
$$

Lastly the angles are found by

$$
\cos B=a_{2} / c, \quad \cos C=a_{1} / b_{1}, \quad \text { and } \quad \sin A=a \sin B / b ;
$$

as a check $A+B+C=180^{\circ}$.
While the above expressions are sufficient for the solution of all plane triangles, there are other formulas more convenient for logarithmic computation for certain special cases. Tables of natural functions are generally used in ordinary surveying, particularly in the field, while logarithmic tables are perhaps better for rapid work in the office. The young surveyor should be prepared to solve triangles quickly and rapidly by either method.

In all kinds of computations a neat and orderly arrangement should be followed, and it is recommended that all problems given in these pages, as well as those arising in field practice, should be solved in ink in a special book and be preserved for reference. Check computations should in all cases be made; this can be done by finding the same quantity in different ways, by computing the three angles independently and taking their sum, or by using both natural functions and logarithmic tables.

Prob. 1. Given $a=227.52$ feet, $b=168.00$ feet, $C=137^{\circ} 25^{\prime}$; to compute independently the angles A and B.

Art. 2. Lines, Angles, and Azimuths.
The measurement of a line consists in finding how many times it contains the unit of measure. For several centuries the Gunter's chain of 66 feet has been the English linear unit for land measurements ; it is divided into 100 parts, called links, and lengths are expressed in chains aud links, the latter being written as decimals of a chain; thus 12 chains and 72 links is 12.72 chains. Although this chain is rapidly going out of use, the young surveyor should be acquainted with it, since a large part of the land records in the United States is based upon it.

In computing areas the chain has the advantage that square chains are easily reduced to acres by moving the decimal point one place to the left. This is because 66 feet $\times 66$ feet $=4856$ square feet, which is one tenth of an acre. For example, a rectangular lot 6.48 chains long and 2.15 chains wide contains 13.932 square chains, or 1.3932 acres.

The unit of linear measure now generally used in the United. States is the foot. In measuring lines a chain 100 feet long, divided into 100 links, is used, and distances are recorded in feet, decimals of a foot being estimated when possible. Tapes of various kinds, with the foot divided decimally, are also used, especially in cities where precise measurements are necessary.

Custom and civil laws have decided that the length of the
boundary line of a field is not the actual distance on the surface of the ground, but that it is the projection of that distance on a horizontal plane. In like manner, the area of a field is not the exposed superficial surface, but the projection of that surface on a horizontal plane. In all land surveying, therefore, horizontal distances are to be measured, and from these the areas are to be computed.

The angle between two boundary lines of a field is the horizontal angle between their horizontal projections. Angles are measured by means of a graduated plate which can be leveled so as to be brought-into a horizontal plane. Although it is possible to make complete surveys by means of the chain alone, it is much cheaper to make a number of angle measurements to be used in connection with a few measured linear distances.

The unit of angular measure is the degree, or the ninetieth part of a right angle. The degree is divided into sixty minutes and the minute into sixty seconds. In rough land surveying the angles are measured to the nearest quarter degree, in ordinary work to the nearest minute, and in triangulation they are expressed in seconds.

An arc of a circle containing 57.3 degrees, or more accurately 57.29578 degrees, is equal in length to the radius. At a distance of 1000 feet an angle of one degree subtends an arc of 17.453 feet, while an angle of one minute subtends 0.291 feet. The sine of one degree is 0.017452 , and the sine of one minute is 0.000291 . Thus for angles less than one degree the subtended arcs may be taken as closely proportional to their sines.

The angle which a line makes with a standard line of reference is called the azimuth of the line. The standard line is usuusually a north and south line, or meridian. In land surveying
 azimuths are measured from the north around through the east,
south and west in the direction of motion of the hands of a clock. Thus the azimuth of the north point is 0°, of the east 90°, of the south 180°, and of the west 270°. In Fig. 2 the azimuth of the line $A B$ is 60°, the azimuth of $A C$ is 150°, the azimuth of $A D$ is 250°, and the azimuth of $A H$ is 290°. When the azimuths of two lines are known, the angle between them is found by taking the difference of the azimuths ; thus $D A H$ $=290^{\circ}-250^{\circ}=40^{\circ}$.

The back azimuth of a line is its azimuth measured at the other end with reference to a meridian drawn through that end. In plane surveying all the meridians are parallel, and hence the back azimuth of a line differs by 180° from the azi-

Fia. 3. muth. For instance in Fig. 3 let the azimuth of $A B$ be 45°, then the back azimuth is 225°. In any case the back azimuth of a line $B A$ is the azimuth of $A B$, the initial letter indicating the end where the azimuth is measured. In geodetic surveying the meridians converge toward the pole, and hence the back azimuth of a line differs from its azimuth by an amount slightly greater or less than 180°; also the south is taken as the initial point, and the azimuths are measured around through the west, north, and east.

When the interior angles of a polygon have been measured and also the azimuth of one of its sides, the azimuths of the other sides are easily found. No special rules need be given for finding these, for no error can occur if a sketch be drawn in each particular case. For example, in Fig. 3, if the angle B is 75° and the azimuth of $A B$ is 45°, then the azimuth of $B C$ is 150°; if further the angle C is 40°, then the azimuth of $C D$ is 290°, and so on.

Prob. 2. A polygon of six sides has the interior angles A $=58^{\circ} 24^{\prime}, B=121^{\circ} 30^{\prime}, C=123^{\circ} 30^{\prime}, D=188^{\circ} 15^{\prime}, E=95^{\circ}$ $14^{\prime}, F=133^{\circ} 07^{\prime}$. Compute the azimuth of each of the sides when the azimuth of $A B$ is $0^{\circ} 00^{\prime}$. Also when the azimuth of $B C$ is $0^{\circ} 00^{\prime}$.

Art. 3. Latitudes and Longitudes.

In geography the latitude of a point is its angular distance north or south from the equator, and the longitude of a point is its angular distance west or east from an assumed meridian. In plane surveying the meanings of the words are analogous, but the distances are measured in feet from any two convenient lines of reference which intersect at right angles; one of these lines is generally a north and south line or meridian. Thus in Fig. 4 let $S N$ be a meridian and $W E$ be a line perpendicular to it. Let A and B be the ends of the line $A B$, and from each let perpendiculars be drawn to $N S$ and $W E$. Then $a_{1} A$ and $b_{1} B$ are the latitudes, and $a A$ and $b B$ are the longitudes of the points A and B. Latitudes of points north of $W E$ are regarded as positive, while

Fig. 4. those of points south of it are negative. Longitudes east of $N S$ are positive, while those west of $N S$ are negative. Thus the point C has a positive latitude and a negative longitude.

The difference of the latitudes of the ends of a line is called the latitude difference of that line; thus $a b$ is the latitude difference of $A B$. The difference of the longitudes of the ends of a line is called the longitude difference of that line; thus $a_{1} b_{1}$ is the longitude difference of $A B$. In general let L_{1} and L_{2} be the latitudes of two points, and M_{1} and M_{2} their longitudes; then $L_{1}-L_{2}$ is the latitude difference and $M_{1}-M_{2}$ is the longitude difference.

When the length and azimuth of a line are known its latitude and longitude differences are found by multiplying the length by the cosine and sine of the azimuth. Thus, from Fig. 4,

> Latitude difference of $A B=a b=l \cos Z$
> Longitude difference of $A B=a_{1} b_{1}=l \sin Z$

For example, let the length of a line be 457.69 feet and its azinuth be $279^{\circ} 01^{\prime} 44^{\prime \prime}$; then its latitude difference is +71.83 feet and its lonçitude difference is -45202 fcet.

When the latitude L_{1} and longitude M_{1} of a point are known, as also the length and azimuth of a line joining that point with another, the latitude L_{2} and the longitude M_{2} of the second point are

$$
L_{2}=L_{1}+l \cos Z, \quad M_{2}=M_{1}+l \sin Z
$$

The proof of these equations is readily seen from Fig. 4, taking A as the first point and B as the second.

The latitude and longitude of a line are often called coordinates, while the two standard reference lines $S N$ and $W E$ are called the coordinate axes, and their intersection O is known as the origin of coordinates. The latitudes and longitudes of points in the four quadrants formed by these axes have the same signs as sines and cosines in trigonometry. It is usual in land surveys to assume the coordinate axes in such positions that all the points of the survey will fall in the $N E$ quadrant where their latitudes and longitudes are positive. Thus Fig. 5 shows a field $A B C D$ with the coordinates of each corner positive with respect to the two axes.

A line whose azimuth is known is often called a course, the word course implying a definite direction. Lines or courses

Fig. 5. running northward, or toward the top of the page, are called north courses, while those that run southward are south courses; thus in Fig. 5 the lines $D A$ and $A B$ are north courses, while $B C$ and $C D$ are south courses. Lines running eastward, or toward the right of the page, are called east courses, while those running westward are west courses; thus $A B$ and $B C$ are east courses, while $C D$ and $D A$ are west courses.

The latitude difference of a north course is positive and is called a northing, while that of a south course is negative and is called a southing; thus $a b$ is positive, but $b c$ is negative. The longitude difference of an east course is positive and is called an easting, while that of a west course is negative and is called a
westing; thus $b_{1} c_{1}$ is positive, but $c_{1} d_{1}$ is negative. If attention be paid to the signs of the cosines and sines of the azimuth in making the computations, the latitude and longitude differences will always come out with their proper signs. In many books on surveying the northings and southings are called latitudes instead of latitude differences, while the eastings and westings are called departures instead of longitude differences; but the plan here adopted is more in accordance with the methods of geodesy.

Prob. 3. Given the latitude of one end of a line, as $+2804 . \dot{4}$, its longitude as +4661.3 , its length 797.2 feet, and its azimuth $115^{\circ} 44^{\prime} 28^{\prime \prime}$. Compute the latitude and longitude of the other end. (Draw a figure before beginning the solution.)

Art. 4. Areas of Triangles and Trapezoids.

The areas of fields are usually expressed in acres, square rods, and square feet, there being 160 square rods in an acre and 2721 square feet in a square rod. In rough land surveys the area is expressed in acres, roods, and square rods, a rood being one fourth of an acre. In speaking of areas a square rod is usually called simply a rod.

The area of any triangle is equal to one-half the product of the two sides into the sine of their included angle. Thus, if a, b, c, be the sides opposite the angles A, B, C, respectively, the area can be expressed in three ways,

$$
\text { Area }=\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B=\frac{1}{2} b c \sin A
$$

and if one of the angles, as A, is a right angle, the area is simply $\frac{1}{2} b c$. As an example, let $a=22.00$ chains, $c=13.20$ chains, and $B=53^{\circ} 08^{\prime}$; from Table I $\sin B$ is found to be 0.80003 , and then the area is 116.164 square chains, or 11 acres, 98 square rods, and 170 square feet.

When the three sides of a triangle have been measured its area may be found by the following rule: Add together the three sides and take half their sum, from the half-sum subtract each side separately, multiply together the half-sum and the three remainders, and take the square root of the product.

Or, let a, b, c, be the three sides, and s the half-sum $\frac{1}{2}(a+b$ $+c$; ; then

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

For example, let $a=220$ feet, $b=176$ feet, and $c=132$ feet; then $s=264, s-a=44, s-b=88, s-c=132$, and the area is 11616 square feet, or $42 \frac{2}{3}$ square rods.

If the latitudes and longitudes of the vertices of a triangle with respect to a meridian $O N$ and a parallel $O E$ are given,

Fia. 6. the area of the triangle is easily computed, it being the difference between the area of a rectangle and of three right-angled triangles. For example, let the latitudes of the points A, B, and C in Fig. 6 be 400, 250, and 100 feet respectively, and the corresponding longitudes be 500,700 , and 80 feet. Then the height of the rectangle is 300 feet and its width is 620 feet, which give 186,000 square feet for its area. The sum of the areas of the three right-angled triangles is 124,500 square feet. Hence the area of $A B C$ is 1 acre and 17,940 square feet.

The area of a trapezoid is equal to half the sum of the parallel sides multiplied by its altitude. The trapezoids of most common occurrence in surveying have two right angles, as for instance $a A B b$ in Fig. 5, whose area is $\frac{1}{2}(a A+b B) a b$. In order to determine the area of an irregular figure like that of $A B C D$ in Fig. 7, perpendiculars, or offsets, are sometimes erected upon the straight line $A D$ and their lengths measured as well as their distances apart, the distances $b c, c d$, etc., being

Fig. 7.
such that $B c_{1}, c_{1} d_{1}$, etc., may be regarded as practically straight. Then the total area is the sum of the areas of the
triangle $A B b$, and of the trapezoids $b B c_{1} c, c c_{1} d_{1} d$, etc. This method is particularly applicable to cases where the lengths of the offsets are less than one or two chains and where great precision is not required.

The area of any polygon may be determined by dividing it into triangles. Fig. 8 shows two ways of thus dividing a six-sided field, and many others are possible. In practice it is more advantageous to measure a number of angles and a few sides, rather than all the sides of all the tri-
 angles. But a better method for computing the area of a polygon is by means of trapezoids, as explained in the next article.

Prob. 4. Compute the area of the first diagram in Fig. 8 from the following data: $A B=317.8$ feet, $B F^{\prime}=284.3$ feet, $F^{\prime} A=250.5$ feet, $F C=512.7$ feet, $F D=510.0$ feet, $D E F^{\prime}=$ $90^{\circ} 00^{\prime}, E F D=69^{\circ} 45^{\prime}, D F C=61^{\circ} 12^{\prime}, C F B=49^{\circ} 30^{\prime}$.

Art. 5. Areas of Polygons.

To determine the area of a polygonal field it is customary to measure the length of each side and each of the interior angles. The azimuth of one side is also either determined or assumed; then by Art. 2 the azimuth of each of the other sides is readily found. Let $A B C D E A$ in Fig. 9 be a field in which the length and azimuth of each side is known. It is required to deduce a method for computing the area.

Let a meridian be drawn through the most westerly corner of the field, and from each of the other corners let perpendiculars $B b, C c$, $D d$, and $E e$ be drawn to it ; these are the longitudes of the corners (Art. 3). Then the area of the

Fig. 9. field is equal to the area $b B C D d$ minus the areas $A b B$ and
$A E D d$. The first area is formed by the two trapezoids $b B C_{c}$ and $c C D d$, the second is the triangle $A b B$, while the third is formed by the triangle $A E e$ and the trapezoid $e E D d$. Hence Area $=\frac{1}{2}(b B+c C) b c+\frac{1}{2}(c C+d D) c d$

$$
-\frac{1}{2} b B \cdot A b-\frac{1}{2} e E \cdot e A-\frac{1}{2}(d D+e E) d e_{1}
$$

and the double area of the field is

$$
\begin{aligned}
& 2 \text { Area }=(b B+c C) b c+(c C+d D) c d-b B \cdot A b \\
&-e E \cdot e A-(d D+e E) d e_{1}
\end{aligned}
$$

and it has been shown in Art. 3 how all the quantities in this expression can be computed.
The longitude of a point is its distance from the meridian (Art.3); thus $b B$ and $c C$ are the longitudes of the points B and C. The longitude of a line or course may now be defined to be the longitude of its middle point, thus $\frac{1}{2}(b B+c C)$ is the longitude of the course $B C$. Hence $b B+c C$ is the double longitude of $B C$, or the double longitude of any course is the sum of the longitudes of its ends.
Inspection of the above expression for the double area of a field shows two facts : First, that the double area is the difference of two quantities, one being the sum of the areas of the trapezoids included between the south courses and the meridian, while the other is the sum of the areas of the trapezoids and triangles included between the north courses and the meridian. Second, that each of these areas is the product of the double longitude of a course by its latitude difference. Hence let S_{1}, S_{2}, etc., be the double longitudes of the south courses and s_{1}, s_{2}, etc., their southings, and let N_{1}, N_{2}, etc., be the double longitudes of the north courses, and n_{1}, n_{2}, etc., their northings ; then

$$
2 \text { Area }=S_{1} s_{1}+S_{2} s_{2}+\text { etc. }-N_{1} n_{1}-N_{2} n_{2}-\text { etc. }
$$

gives a general rule for computing the area of any polygonal field. The areas $S_{1} s_{1}, S_{2} s_{2}$, etc., are often called south areas, while the others are called north areas.
The northings and southings of each course having been computed by Art. 3, as also the eastings and westings, it only remains to find the double longitudes. For the first course
$A B$ the double longitude is its easting $b B$. For the second course $B C$ the double longitude is $b B+c C$, that is, $b B+b B+$ $b_{1} C$. For the third course $C D$ the double longitude is $c C+d D$, that is, $b B+c C+b_{1} C-C d_{1}$. In general the following rule will be useful:

The double longitude of any course is equal to the double longitude of the preceding course plus the longitude difference of that course plus the longitude difference of the course itself.

When the longitude difference is negative, or a westing, it is used with the minus sign and hence subtracted instead of added. If the meridian is drawn through the most westerly corner of the field, as in Fig. 9, all the double longitudes are positive. As a check on the work the double longitude of the last course will be found equal to its westing; thus the double longitude of $E A$ is $e E$.

The following steps in the computation of the area of a polygonal field may now be enumerated :

1st. Measure the length of each side or course and each of the interior angles; these constitute the field notes. Also measure the azimuth of one of the courses, or if this is not measured assume any value for this azimuth.

2 d . Compute the azimuth of each of the other courses (Art. 2).
3d. Compute the latitude difference and the longitude difference for each course (Art. 3).

4th. Compute the double longitude for each course.
5th. Multiply each double longitude by its latitude difference; call the positive products north areas, and the negative products south areas.

6th. Take the sum of the south areas and the sum of the north areas; one half of their difference will be the area of the field.

In Art. 6 a numerical example will be given illustrating the computations in full.

Prob. 5. A triangle $A B C$ has sides with the following lengths and azimuths:

$$
\begin{array}{lll}
A B, & l=312.0 \text { feet, } & Z=45 \text { degrees. } \\
B C, & l=540.4 \text { feet, } & Z=135 \text { degrees. } \\
C A, & l=624.0 \text { feet, } & Z=285 \text { degrees. }
\end{array}
$$

Compute the latitude differences, the longitude differences and the double longitudes for each course.

Art. 6. Computation of Areas.
The following are the lengths of the sides and the interior angles of a polygon as measured in surveying a field:

$$
\begin{array}{lll}
A B=816.5 \text { feet, } & A=58^{\circ} 14^{\prime} \\
B C=510.0 \text { feet, } & B=120 & 00 \\
C D=204.0 \text { feet, } & C=125 & 00 \\
D E=102.1 \text { feet, } & D=200 & 00 \\
E F=612.0 \text { feet, } & E=83 & 34 \\
F A=714.7 \text { feet, } & F=133 & 12
\end{array}
$$

No azimuth was taken in the field, and hence for the purpose of computing the area the meridian is assumed to pass

Fig. 10. through $A B$, so that the azimuth of $A B$ is $0^{\circ} 00^{\prime}$.

The first step is to find the azimuths of the other sides by the method of Art. 3. In general the azimuth of any course is equal to that of the preceding course, plus 180 degrees, minus the interior arigle between the two courses. Thus the azimuth of $B C$ is $0^{\circ}+180^{\circ}-$ $120^{\circ}=60^{\circ}$; the azimuth of $C D$ is $60^{\circ}+180^{\circ}-125^{\circ}=115^{\circ}$, and so on. As a check on the work the azimuth of $A B$ computed from that of $F A$, should be found to be $0^{\circ} 00^{\prime}$.

The latitude and longitude differences of the courses are next computed as follows, by Art. 3 :

Lat. Diff. $A B=816.5 \cos 0^{\circ} 00^{\prime}=+816.50$
Lat. Diff. $B C=510.0 \cos 60^{\circ} 00^{\prime}=+255.00$
Lat. Diff. $C D=204.0 \cos 115^{\circ} 00^{\prime}=-86.21$
Long.Diff. $A B=816.5 \sin \quad 0^{\circ} 00^{\prime}=0.00$
Long. Diff. $B C^{\prime}=510.0 \sin 60^{\circ} 00^{\prime}=+441.67$
Long.Diff. $E F^{\prime}=612.0 \sin 191^{\circ} 26^{\prime}=-121.32$
In like manner all the latitude and longitude differences are computed and the results are tabulated, the positive latitude differences being northings and the negative ones southings,
while the positive longitude differences are eastings, and the negative ones westings.

Courses.	Lengths, feet.	Azimuths.	Lat. Differences.		Long. Differences.	
			Northings.	Southings.	Eastings.	Westings.
$A B$	816.5	$0^{\circ} 000$	816.50		0.00	0.00
$B C$	510.0	6000	255.00		441.67	
CD	204.0	11500		86.21	184.89	
DE	102.1	9500		8.89	101.71	
EF	612.0	19126		599.85		121.32
FA	714.7	23814		376.26		607.65
		Totals......	$10 \% 1.50$	1071.22	728.27	729.97
		Errors.....	0.28		0.70	

Since the survey was made by a circuit from A back to A it is evident that the sum of the northings should equal the sum of the southings; also the sum of the eastings should equal the sum of the westings. In practice this is rarely attained, but there is an error, called the error of closure, which should be adjusted before the double longitudes are computed. In this case the significance of the errors, 0.28 feet in latitude and 0.70 feet in longitude is that, if starting from A, the corners were to be accurately located from the above data, the end A^{\prime} of the line $F^{\prime} A^{\prime}$ would fall 0.28 feet to the north of A and 0.70 feet west of it.

The error of closure is caused by errors in the measurement of the lines, or in observing the angles, or in both. However, if the sum of the interior angles of the polygon equals 180° into the number of sides minus 360°, the probability is that the error of closure is mostly due to the linear measures. As the error in measuring a line increases with its length, the error in latitude should be distributed among all the latitude differences in proportion to their lengths, one half of it being applied to the northings and one half to the southings. The error in longitude is treated in the same way. Thus in this case the errors per foot in latitude and longitude are

$$
\frac{0.14}{1071}=0.000135, \quad \frac{0.35}{728}=0.000481
$$

and the adjusted latitude and longitude differences are found as follows:

$$
\begin{aligned}
& \text { Northing } A B=816.50-0.000135 \times 816=816.39 \\
& \text { Southing } \quad C D=86.21+0.000135 \times 86=86.22 \\
& \text { Easting } \quad B C=441.67+0.000481 \times 442=441.88 \\
& \text { Westing } \quad E F=121.32-0.000481 \times 121=121.26
\end{aligned}
$$

and their values are inserted in the table given below.
The double longitudes of the courses are next computed. For the course $A B$, the double longitude is its departure 0.00 , for the second course $B C$ it is 441.9 , for $C D$ it is $451.9+$ $441.9+185.0=1068.8$, and so on. As a check on the workthe double longitude of the last course will be found equal to its westing. The fifth column of the table gives all the double longitudes.

Courses.	Adjusted Lat. Differences		Adjusted Long. Differences		Double Longitudes.	Double Areas.	
	N.	S.	E.	W.		North.	South.
$A B$ $B C$	816.4 255.0		0.0 441.9	0.0	0.0 441.9	$\begin{gathered} 0 \\ 112685 \end{gathered}$	
$C D$		86.2	185.0		1068.8		92131
DE		8.9	101.8		1355.6		12065
EF		600.0		121.3	1336.1		801660
FA		$3{ }^{2} 6.3$		607.4	607.4		228565
	1071.4	1071.4	728.7	728.7		112685	1134421

The fifth step is to multiply the double longitude of each course by its adjusted latitude difference, and to place the products in the columns of double areas. Lastly each of these columns is added, and then the double area of the field is

$$
1134421-112685=1021736 \text { square feet, }
$$

and accordingly the required area is 510868 square feet, which is equal to 11 acres, 116 rods, and 127 square feet.

This result can be verified by making another computation in which the meridian is assumed to pass through some other side, as $B C$. Then the azimuth of $B C$ will be $0^{\circ} 00^{\prime}$, that of $C D$ will be $55^{\circ} 00^{\prime}$ and so on. A new set of latitude and longitude projections is computed and these are adjusted in the manner explained. The double longitudes of the courses are then found and each is multiplied by its corresponding northing or southing. Lastly one half of the difference of these products will give the area in square feet, which should closely agree with the result found above.

Prob. 6. Compute the area of the above field taking the azimuth of $B C$ as $0^{\circ} 00^{\prime}$; also taking the azimuth of $E F$ as $0^{\circ} 00^{\prime}$; also taking the azimuth of $A B$ as $90^{\circ} 00^{\prime}$.

Art. 7. Division of Land.

An infinite number of problems may arise in the division of a field. The simpler ones will be readily solved by the use of the principles of geometry. The more difficult ones can be solved after a complete survey of the field and the computation of its area has been made.

The first problem to be considered is that of dividing a field into two given parts by a line starting from a given point. As an example let the field whose area was computed in Art. 6 be taken, and let it be required to draw from the point D, a line $D P$ so that the area $B C D P$ shall be 5 acres, or 217800 square feet. The solution of the problem involves the determination of the distance $A P$ or $B P$, and of the length and azimuth of the dividing line $D P$. (Fig. 11.)

Let a line be drawn from D to the corner A, and suppose that the area $A B C D A$ can be found. Then the area

Fig. 11. of the triangle $A P D A$ is known, as this is equal to $A B C D A$ minus 5 acres. The longitude $d D$ of the point D is also known. Hence the length of $A P$ is

$$
A P=\frac{2 \text { area of } A P D A}{d D} ;
$$

and then $P B=A B-A P$. The length and azimuth of $D P$ are finally computed from the right triangle of $d D P$.

To perform the computations for finding the area $A B C D A$, the adjusted latitude and longitude differences of the courses from A to D are to be taken from Art. 6 and inserted in the new table given below. The latitude difference of the course $D A$ is then found from the principle that the sum of the northings must equal the sum of the southings, and the longitude

Courses.	Latitude Differences.		Longitude Differences.		Double Longitudes.	Double Areas.	
	N.	S.	E.	W.		North.	South.
$A B$	816.4		0.0	0.0	0.0	0	
BC $C D$	255.0	86.2	441.9 185.0		441.9 1068.8	112685	92131
DA		(985.2)		(626.9)	626.9		617628
	1071.4	$10 \% 1.4$	626.9	626.9		112685	709753

difference of $D A$ is supplied in like manner. Completing then the computations, the area $A B C D A$ is found to be 298534 square feet. The area of the triangle $A D P$ is this quantity minus 217800 square feet, and the distance $A P$ is

$$
A P=\frac{2 \times 80734}{626.9}=257.6 \text { feet; }
$$

whence $P B$ is 558.8 feet, and hence the point P can be located from either A or B. The azimuth of $P D$ is determined thus,

$$
\tan d P D=\frac{d D}{P d}=\frac{626.9}{558.8+255.0-86.2}
$$

from which the angle $d P D$ is found to be $40^{\circ} 45^{\prime}$ nearly, which is the azimuth of $P D$. Lastly the length of $P D$ is

Fig. 12.

$$
P D=\frac{d D}{\sin Z}=960.4 \text { feet },
$$

and thus the field is divided by the line $D P$ so that the area $B C D P$ is 5 acres.
A second problem is that of dividing a field into two parts by a line having a given direction. For example, let it be required to divide the field $A B C D E F$ into two parts by a line $P Q$ so that the azimuth of $P Q$ shall be 45 degrees and the area $P B C D Q$ shall be 5 acres (Fig. 12). First, the computation of the entire field is to be made as in Art. 6. Secondly, a line $D M$ is drawn from the corner D, parallel to $Q P$, and by the method above described the area $M B C D M$ is found to be 186224 square feet and the length of $D M$ to be
886.6 feet. The area of the trapezoid $P M D Q$ is hence to be 31576 square feet. Let x be the altitude of this trapezoid; its area is $\frac{1}{2}(M D+P Q) x$. But $P Q=M D+x \cot Q P M+$ $x \cot D Q P$. Hence

$$
\frac{1}{2}(2 M D+x \cot Q P M+x \cot D Q P) x=31576
$$

Since $Q P M=45^{\circ}$ and $D Q P=50^{\circ}$, this reduces to

$$
x^{2}+964.2 x=34338
$$

from which x is found to be 34.4 feet. Then

$$
\begin{aligned}
& M P=34.4 / \sin 45^{\circ}=48.6 \text { feet } \\
& D Q=34.4 / \sin 50^{\circ}=45-0 \text { feet } \\
& P Q=886.6+34.4-1.8391=949.8 \text { feet }
\end{aligned}
$$

and lastly the distance $A P$ is found to be 310.1 feet. Thus P and Q are located so that $P Q$ has the azimuth 45°, and the area $P B O D Q P$ is 5 acres. This computation may now be checked by computing the area of $A P Q E F A$, which should be found to be 293068 square feet.

Prob. 7. Divide the field $A B C D E F A$ into two equal parts by a line $P Q$ drawn from the middle point of $A B$. Also divide it into two equal parts by a line $P Q$ drawn perpendicular to the side $A B$.

Art. 8. Inaccessible Distances.
A common problem in surveying is to find the horizontal distance between two points when one or both of them are inaccessible. This can be solved in many ways by the application of the principles of geometry and trigonometry.

In Fig. 13 let A be an accessible point and X an inaccessible point on the other side of a river. It is required to find the distance $A X$ by means of the chain alone. Place a point D at any convenient position in the prolongation of $X A$, lay off a distance $A B$, make $B C$ equal to $A D$,

Fig. 13. and $D C$ equal to $A B$, thus forming a parallelogram $A B C D$.

Mark a point E where $X C$ cuts $A B$, measure $A E, E B$, and $B C$. Then from the similar triangles $C B E$ and $E X A$,

$$
A X=\frac{A E \times B C}{B E}
$$

by which the required distance can be computed.
By the use of an instrument for measuring angles the field operations become much simpler, and indeed the method by the chain is often impracticable when $A X$ is a long line. Let (in Fig. 13) a line $A E$ be measured, and also the two angles A and E; then the angle X is $180^{\circ}-A-E$, and

$$
A X=A E \frac{\sin E}{\sin \bar{X}}
$$

which is the required distance. The base line $A E$ should usually be nearly as long as the distance $A X$ in order to secure the most accurate result, and it is also well that the angles A and E should be approximately equal.

Fig. 14.

The problem of two inaccessible points is illustrated in Fig. 14. Here the distance $X Y$ is required, and for this purpose a base line $A B$ is measured in a convenient location, and as nearly parallel to $X Y$ as practicable. At A the angles $X A B$ and $Y A B$ are observed, and at B the angles $A B Y$ and $A B X$. Then in the triangie $X A B$,

$$
B X A=180^{\circ}-X A B-A B X, \quad A X=A B \frac{\sin A B X}{\sin B X A}
$$

Also in the triangle $Y A B$,

$$
B Y A=180^{\circ}-Y A B-A B Y, \quad A Y=A B \frac{\sin A B Y}{\sin B Y A}
$$

Thus $A X$ and $A Y$ are known, and the angle included beeween them is $X A Y=X A B-Y A B$; then in the triangle $X A Y$ the angles at X and Y can be found by either of the methods of Art. 1, and lastly the distance $X Y$. As a check on the work the sides $B X$ and $B Y$ may be computed, and the distance $X Y$ be again found from the triangle $X B Y$.

For example, let it be required to find the horizontal distance between two spires X and Y. The base $A B$ is laid off 406.2 feet in length, and the measured angles are $X A B=83^{\circ} 47^{\prime}$, $Y A B=42^{\circ} 32^{\prime}, A B Y=76^{\circ} 52^{\prime}$, and $A B X=36^{\circ} 20^{\prime}$. Then the side $B Y$ is found to be 315.2 feet, $B X$ to be 466.83 feet, and their included angle is $40^{\circ} 32^{\prime}$. The angles $B Y X$ and. $Y X B$ are next found to be $97^{\circ} 26^{\prime}$ and $42^{\circ} 02^{\prime}$, respectively Lastly, the required distance $X Y$ is 306.0 feet.

Prob. 8. In order to find the horizontal distance between the tops of two peaks a base line 5000 feet long was laid off. At one end of the line the angles between the base and the peaks were 120° and 50°, at the other end of the line they were 95° and 40°. Find the distance between the peaks, and check the computation.

Art. 9. Elevations and Heights.

The difference in level between two points on the ground which are accessible is usually found by means of a leveling instrument and a graduated rod. The level is placed in a horizontal plane by means of its bubble, and horizontal sights are taken upon the rod held vertical at each of the points. Thus in the figure to find the difference in level between A and

Fig. 15.
B the level is placed between them; the rod is first held at A, and the distance a is read between the foot of the rod and the point where the horizontal line through the level cuts it, the rod is next moved to B and the distance b_{1} is there read; then the difference in level of A and B, or the elevation of A above B, is $b_{1}-a$. When the difference of level between two points A and C is greater than the length of the rod, the level is set up twice, as shown in Fig. 15; then the difference of level between A and C is $b_{1}-a+c-b_{2}$. This process may be con.
tinued as many times as necessary, and the difference in level between the initial and final points is then the sum of the forward readings minus the sum of the backward readings.

The elevation of a point is its height above sea level or above some datum plane. In running levels it is customary to start from some point, called a bench-mark, whose elevation is known. Thus, in Fig. 15, let the point A be a bench-mark whose elevation is 328.72 feet, and let the reading a be 0.93 feet, b_{1} be 10.84 feet, b_{2} be 1.03 feet, and c be 11.47 feet. Then the elevation of B is 318.81 feet and the elevation of C is 308.37 feet.

The height of an inaccessible point is usually found by the help of vertical angles together with a measured base and

Fig. 16. certain horizontal angles. Let it be required to find the height of the top of the flag. pole X above the point Y at the base of the building. In any convenient position let a horizontal base $A B$ be measured, also let the horizontal angles
$C B A$ and $B A C$ be measured where C is a point vertically below X and at the same elevation as A; in reality no point C is established, but these angles are measured by pointing the instrument at X, the angle $C B A$ being the horizontal projection of the angle $X B A$. The horizontal angles $D B A$ and $B A D$ are likewise measured where D is a point vertically above Y. At A the vertical angles $X A C$ and $Y A D$ are also measured.

In the triangle $A B C$ two angles and one side are now known, and from these the horizontal line $A C$ is computed. Then in the right triangle $A C X$ the side $A C$ and the vertical angle at
A are known, and from these the vertical height $X C$ is compated. Again, in the triangle $A B D$ two angles and one side are known, from which the horizontal side $A D$ is found; then in the right triangle $A D Y$ the vertical side $D Y$ is computed from $A D$ and the vertical angle at A. Finally, the required height $X Y$ is the sum of $X C$ and $Y D$.

As an example, let the base $A B$ be 314.62 feet, $C B A=40^{\circ} 17^{\prime}$, $D B A=38^{\circ} 22^{\prime}, B A C=48^{\circ} 40^{\prime}, B A D=46^{\circ} 57^{\prime}$, while the vertical angles at A are $X A C=37^{\circ} 18^{\prime}$ and $Y A D=5^{\circ} 08^{\prime}$. Then the side $A C$ is

$$
A C=314.62 \frac{\sin 40^{\circ} 17^{\prime}}{\sin 91^{\circ} 03^{\prime}}=203.46 \text { feet }
$$

and in like manner $A D$ is found to be 195.80 feet. Then

$$
\begin{aligned}
& X C=A C \tan 37^{\circ} 18^{\prime}=154.99 \text { feet } ; \\
& Y D=A D \tan 5^{\circ} 08^{\prime}=17.59
\end{aligned}
$$

and, lastly, the height $X Y$ is $154.99+17.59=172.6$ feet, the $s \rightarrow$ cond decimal being omitted, as it is probably inaccurate.

In case that Y is a point on the building above the level of the instrument at A, as may often happen, then $X Y$ is the difference of $X C$ and $Y D$. In order to check the work vertical angles may also be observed at B.

Prob. 9. In order to find the difference in height of two peaks, M and N, a base-line $A B$ was laid off 5000 feet long, and the horizontal angles $B A M=120^{\circ} 30^{\prime}, B A N=49^{\circ} 15^{\prime}$, $A B M=40^{\circ} 35^{\prime}, A B N=95^{\circ} 07^{\prime}$, were read. At A the angle of elevation of M was $17^{\circ} 19^{\prime}$, and the angle of elevation of N was $18^{\circ} 45^{\prime}$. Compute the difference in height of the two peaks.

Art. 10. Errors of Measurements.
All measurements are subject to errors which may be divided into two classes, systematic or constant errors, and accidental errors. Systematic errors are those that always have the same value under the same circumstances, being due to known causes; for example, if a 100 -foot chain be one foot too long, all measurements made with it will be one per cent too short. Accidental errors are those that are equally likely to render the
measurement larger or smaller than the true value, being due to the combination of many unknown causes; for instance, variations in wind, imperfection of eyesight, and other similar causes render a measurement too great or too small.

Systematic or constant errors can be removed from measurements, when their causes are understood, either by a proper method of observing or by applying proper corrections to the numerical results. Methods of doing this for both linear and angular measures will be given in the following chapters.

After all the systematic errors are removed the numerical results are still affected by the accidental errors. As these are equally likely to increase or decrease the true value of the quantity they tend to balance one another, and hence if only one measurement be made it must be accepted as the most probable value. For instance, if one measurement of a line gives 618.5 feet, after the systematic errors are removed, that value must be taken as representing the true value.

When several measurements of a line are made under the same conditions each has the same degree of probability, and hence their arithmetical mean is to be taken as the most probable value; for example, if three measures of a line, made in the same manner, gives $618.5,619.1$, and 618.9 feet, there is no reason for preferring one to the other, and hence one third of their sum, or 618.83 feet, is to be taken as the most probable length.

If the three angles of a triangle are measured with equal care their sum should be 180 degrees. If this is not the case the results are to be adjusted by applying one-third of the error to each of the measured angles. So with a polygon of n sides, when the n interior angles are measured, their sum should equal $180 n-360$ degrees, and if this is not the case one- nth of the error should be applied to each of the measured values in order that their sum may equal the theoretic amount.

When the sides and angles of a field are measured the sum of the northings should equal the sum of the southings, and also the sum of the westings should equal the sum of the eastings. Owing to errors in measurement these conditions will
rarely occur, and hence an adjustment must be made, as ex: plained in Art. 6, to remove the accidental errors.

When three angles $A O B, B O C, A O C$ are measured at a station O with equal care, the sum of $A O B$ and $B O C$ should equal $A O C$. If this is noi the case an adjustment must be made by applying one-third of the error to each angle. For example, let the measured values be $A O B=32^{\circ} 16^{\prime}$, $B O C=55^{\circ} 43^{\prime}$, and $A O C=87^{\circ} 57^{\prime}$;

Fig. 17. then the adjusted values are $A O B=32^{\circ} 15^{\prime} 20^{\prime \prime}, B O C=55^{\circ}$ $42^{\prime} 20^{\prime \prime}$, and $A O C=87^{\circ} 57^{\prime} 40^{\prime \prime}$, which exactly satisfy the theoretic condition. It is always advantageous to measure the three angles even if only two are required, as thus a check is furnished on the work and opportunity is offered to eliminate the accidental errors of the measurements.

The young surveyor should always bear in mind that the results of his measurements in the field are not the true values of the quantities which they represent, but only approximate representations of the true values. He should seek to secure the greatest degree of precision consistent with the tools em. ployed and the end in view. A large part of the land surveys in the United States has been made by rough and imperfect methods, but the time has now come when precision is demanded. Hence care must be taken to make sufficient measurements so that the work can be checked, to remove all systematic sources of error, and finally to adjust the results when possible so that the accidental errors may be largely eliminated. In precise triangulation work the adjustment of measurements is especially important, and the principles and methods for doing this constitute a branch of science known as the method of least squares.

Prob. 10. At a point O four angles are measured as fol lows : $A O B=35^{\circ} \quad 07^{\prime}, B O C=60^{\circ} 43^{\prime}, C O D=22^{\circ} 01^{\prime}$; $A O D=117^{\circ} 53^{\prime}$. Find their adjusted values.

CHAPTER II.

LAND SURVEYING.

Art. 11. Chains and Tapes.

The chains used in land surveying are made of steel wire and have the joints brazed to prevent opening. Iron chains are seldom used, being heavier and in every way inferior to those made of steel. At intervals of 10 links brass tags are fastened, having one, two, three, or four points, indicating distances of ten, twenty, thirty, or forty links from either end; the middle of the chain is marked by a round tag. The chain is provided, at either end, with brass handles fastened to it by a nut and screw by which the length may be changed a small amount. The length of the chain includes the handles. In using the chain care must be taken to observe whether the distance is greater or less than half a chain, as forty links and sixty links are marked alike, and thirty links from seventy links, as also twenty links from eighty links, must be carefully distinguished.

The chain is folded by bringing the 49th and 51st links to gether, the 48 th and 52 d together, and so on until the ends arn reached, folding links equidistant from the middle together. To unfold the chain, hold both handles in the left hand and with the right hand throw it horizontally far enough so that it will become taut before it falls.

The chain possesses some advantages over the tape on account of its weight and strength, and because it can be more easily repaired. In chaining through brush the weight of the chain is serviceable in swinging it over the bushes and in making it straight and horizontal. If the chain is broken, a new link may be put in by the surveyor.

Steel tapes are made in various lengths up to 500 feet; thos6 having lengths of 50 feet or 100 feet are generally used in land surveying. The best tapes of these lengths are about 0.4 inches wide and, perhaps, 0.005 inches thick: they are gradu-
ated throughout the entire length into hundredths of a foot, and often the reverse side is divided into rods and links. These tapes are easily broken, and are only used where the value of the land warrants very careful measurements; they rust easily and should be wiped dry after using, and all small spots of rust removed with kerosene.

Tapes used in common land surveying are narrower and thicker than those described above; the first foot from either end is divided into tenths, the first and last five foot spaces are divided into feet, and the tape throughout is marked every five feet. When nickel-plated these tapes require much less attention to keep them from rusting than the finer grades. In nearly every point of difference between such a tape and the best chain the comparison is in favor of the tape; one great advantage is that wear does not increase its length to the same degree as in a chain.

Metallic tapes, so called, are made of cloth, and have strands of fine brass wire interwoven longitudinally. They are divided throughout into tenths of a foot, and are very useful in making short measurements when great accuracy is not required, as in finding the dimensions of buildings, taking offsets to locate paths, brooks, and other details of topography.

To use the tape or chain, two men are required, called respectively the head chainman and rear chainman. The chain is brought into the line and made level with the rear end over the first point; the head chainman, by means of a plumb-bob, finds the spot directly under the front end of the chain, and marks it by a nail or iron pin made for the purpose. This operation is repeated till the end of the line is reached.

If pins are used there should be eleven of them. The head chainman places a pin at the front end of the chain, and this is taken up by the rear chainman after the head chainman has placed a second pin. When the last pin is in the ground the rear chainman delivers his ten pins to the head chainman and the work is continued. Each delivery, which is generally called a tally, thus indicates ten chain lengths.

In using the plumb-bob with the chain, it is best to stand
facing across the line to be measured ; the string is held against the proper point on the chain with the thumb and forefinger of the right hand, and the left hand, pressing against them, helps in stretching the chain. The head chainman, after finding approximately where the point will be, should carefully clear away all leaves and grass, and prepare a smooth place on the ground, so that a slight touch of the plumb-bob may be suffi cient to mark the point.

In passing along the line the rear end of the chain is allowed to drag along the ground, and just before it reaches the pin the head chainman is notified of the fact by some preconcerted signal, such as "chain" or "chain out"; much time can be saved by stopping the head chainman at just the proper time.

On steep slopes it is best to chain down hill. When the difference in elevation of the ground along the line is more than six or seven feet in a hundred feet, the head chainman carries his end of the chain out as usual and puts it in line; he then goes back to a place which is not more than six feet lower than the rear end of the chain and proceeds in usual manner, except that a part instead of the whole of the chain is used. When the measurement of one of the short divisions is completed, the rear chainman holds the proper division over the point last determined, and the operation is repeated till the front end of the chain is reached. It is unnecessary to record or even to notice the lengths of the divisions, as the end of the chain will be a chain's length from the point of beginning. This operation is called "breaking the chain."

Instead of using the plumb-bob, the horizontal distance is often found in accurate work by measuring along the surface of the ground, and afterwards determining the difference in height of points between which the measurements were taken. The length along the chain then represents the hypothenuse of a right triangle, of which required distance is another side.

A chain should be frequently compared with a standard laid off on a floor or pavement. For common work in land surveying, such a standard may be laid off by a good steel tape which has not been used. For precise work in cities the steel tape
itself should be standardized, which can be done by the department of Weights and Measures of the U. S. Coast and Geodetic Survey at Washington (see Art. 28).

Many surveyors prefer to have a chain a little longer than the standard in order to compensate for lack of level and for lateral deviations. In good work, however, these sources of srror should be avoided, and the chain should agree exactly with the standard. If a chain is too long the measured length of a line is too small; thus, if the length 824.5 feet be obtained by a hundred foot chain which is 0.14 feet too long, the true length of the line is $8.245(100+0.14)=825.7$ feet. If a chain is too short the measured length is too large ; thus if the length 785.8 feet be obtained by a chain which is 0.07 feet too short, the true length of the line is $7.858(100-0.07)=785.25$ feet.

Prob. 11. A careless surveyor measured a field with a hundred-foot chain, and computed the area to be 8 acres, 12 rods, 146 square feet. It was afterwards found that the chain had lost one link, so that its true length was only 99 feet. If the computations of the surveyor were correct, what is the true area of the field.

Art. 12. The Transit.

The surveyor's transit consists primarily of two parts; the first, called the alidade, determines the line of sight, and the second, called the limb, affords means of determining the angular deviation of this line from any other. The alidade, including the telescope, the magnetic needle with its graduated circle and the vernier, is attached to a vertical spindle, and may be revolved while the limb remains stationary. The horizontal circle composing the limb is graduated into degrees, and sometimes into thirty minute or twenty minute spaces, and numbered from zero to 360 degrees in both directions. The limb is mounted upon a hollow cylindrical annulus which surrounds the spindle of the alidade. The instrument is supported by three legs, called the tripod, which are fastened together at the top by the tripod head.

The device used to measure fractional amounts of the divisions of the limb is called a vernier. Verniers are used either
on straight or circular scales, the former being employed on level rods and the latter on transits. In Fig. 18 is shown a vernier for a straight scale, where the length of the vernier is the same as the length of nine spaces of the limb. The vernier itself is divided into ten equal parts. Let a be the length of

Fig. 18.
one space on the limb, and b the length of one space on the vernier. On a level rod a is $\frac{1}{100}$ th of a foot, then b is $\frac{1}{10}$ th of ${ }_{100}{ }^{9}$ th of a foot, hence

$$
a-b=\frac{1}{100}-\frac{9}{1000}=\frac{1}{1000} \text { feet ; }
$$

and thus the space between the first division of the limb and the first division of the vernier in Fig. 18 is $\frac{1}{1000}$ of a foot, or one-tenth of a space of the limb.

If the vernier in the first diagram of Fig. 18 is moved until its first division coincides with the first division of the limb a distance of $\frac{1}{10} a$ or $\frac{1}{1000}$ feet has been passed over. If the third divisions coincide, as the second diagram, the vernier has moved a distance of $\frac{3}{10} a$ or $\frac{3}{100 \sigma}$ feet. Thus in moving the vernier fractional parts of the smallest space of the limb are read with precision by noting what division of the vernier coincides with a division of the limb.

If the length of the vernier is equal to 19 spaces of the limb and it is divided into 20 parts, the distance $a-b$ will be onetwentieth of one space of the limb, or a degree of precision twice as high as before. Hence a general rule for finding the smallest amount indicated by the vernier is this: Divide the value of the smallest space of the limb by the number of spaces on the vernier.

A vernier can be also made by making its length equal to 11
spaces of the limb and dividing it into 10 equal parts, or by making its length equal to 21 spaces of the limb and dividing it into 20 parts. Such an arrangement is called a retrograde vernier, and is not commonly used.

The verniers used on transits are, of course, circular instead of straight, and the divisions on the limb are degrees and fractions of degrees instead of feet, but the principles do not differ from those stated above. Such verniers are usually made double for convenience in reading angles in either direction. Such a vernier is shown in Fig. 19. Here it is seen that the zero point on the vernier, in moving from the right to the left, has passed the point a, which is $66^{\circ} 30^{\prime}$, and is at b. By using:

Fig. 19.
the vernier it is possible to measure the space $a b$. In the figure the limb is divided into thirty minute spaces, the vernier is of the same length as twenty-nine of these spaces, and is divided into thirty spaces. Hence the smallest amount indicated by such a vernier will be the difference between the lengths of a space on limb and on the vernier, or one minute. By referring to the figure it is seen that the fourth division on the vernier to the left of zero coincides with one on the limb, hence the zero point has moved four minutes after passing the point a, and the reading is $66^{\circ} 30^{\prime}+04^{\prime}$ or $66^{\circ} 34^{\prime}$.

In using the double vernier the beginner may be in some doubt as to which part to use. This can be guarded against by reading that side which is farthest away from zero on the limb, in the direction that the vernier has been turned.

The precision of the work done by an instrument depends as much upon the care taken of it as upon its original excellence.

In carrying the transit to and from work, care must be taken that the tripod is firmly attached; the telescope should be turned in line with the axis of the instrument, but not too rigidly clamped; the cap should be placed over the objective and the needle lifted from the centre pin. The instrument, while being carried, is held on the shoulder by the hand just in front with the elbow close to the side; in this way there is more freedom of movement and the least liability to accident.

In setting up the instrumentit is, in most cases, better to put two legs down hill and one leg up hill. The instrument is lifted bodily and set, as nearly as may be, over the point, with the plates parallel and horizontal. In bringing the transit into exactly the required position it-is only necessary to remember that the plumb-bob will follow the direction in which either leg is made to move-toward it or away from it according as the leg is carried out or in. It is not well to force the tripcd feet further into the ground than is necessary for rigidity; some tripods are wisely furnished with lugs to receive the pressure from the foot; thus the tripod head is relieved of much unnecessary strain.

After the instrument has been set up with the plumb-bob over the point, the next step is to level the plates. The instrument is first turned so that the bubble tubes are paralle] to the lines through the two opposite leveling screws; it is then leveled by turning the screws in opposite directions; this will be accomplished when the thumbs, in turning, move either toward or from each other. The bubble will be seen to move in the direction in which the left thumb moves. After all the leveling screws are brought to a bearing on the plates by turning one screw in each pair, they should only be turned in pairs and in opposite directions; in this way the bearing upon the plates will be preserved and the screws and plates will not become strained.

Suppose the transit to be set over the point 0 in Fig. 17 and that it is desired to measure the horizontal angle $A O B$. The telescope is directed, with the vernier clamped, toward either of the points B or A, and the limb clamped; the vernier is
then read and unclamped, and the telescope is directed toward the other point, the alidade clamped, and the vernier read again. It is evident that, as the vertical plane of the telescope and the vernier are relatively immovable, the angular distance passed over by the zero point on the vernier and by the plane of the telescope are the same, or the angle $A O B$. Hence, to measure an angle, readings of the vernier are made before and after the angle is turned, and the difference is taken. In ordinary work it is usual to set the vernier at zero before turning the angle, in which case the reading after the second sight has been taken is the angle itself.

It is only necessary to follow the above directions to correctly measure any angle, but the operation can seldom be done by a beginner so that no errors are involved. It is readily seen that the accuracy of the measurement of an angle depends upon the following :

The adjustment of the transit.
Setting the instrument over the exact point it is desired to have it occupy.

The reading of the vernier.
The bisection of the points toward which the telescope is directed.

The movement of the alidade due to defects in clamping.
In land surveying where angles are only read to the nearest minute these errors should be made as small as possible by seeing that the transit is in adjustment, that it is set over the exact centre of the station, that the vernier is accurately read, that the signals sighted upon are correctly placed and truly bisected, and that care is taken in using the clamps. Directions for adjusting a transit are given in Art. 27, but a beginner should never attempt to make them until he has used the instrument sufficiently to become thoroughly acquainted with all the manipulations.

In precise work where angles are needed to fractions of a minute the last three sources of error mentioned above, as well as some others, may be largely eliminated by the method of repetitions described in Art. 28. In land surveying repetitions are unnecessary, but it will be well to check each angle by
measuring also its explement. Thus, if the angle $A O B$ is read by pointing first on A and then on B, let the angle $B O A$ be read by pointing first on B and then on A; the sum of the two angles should be $330^{\circ} 00^{\prime}$.

An engineer's transit mainly differs from a surveyor's transit in having a vertical arc and a level bubble attached to the telescope for the determination of heights and elevations. Some engineers' transits have verniers reading to half-minutes, while transits for triangulation work sometimes read to twenty seconds or to ten seconds.

Prob. 12. If the limb is divided into 20 -minute spaces, show how the vernier must be made in order to read one minute? in order to read 20 seconds? Give diagrams of these verniers.

Art. 13. The Magnetic Needle.

Most of the early land surveys of the United States wer6 made by the compass. The compass is an instrument like the surveyor's transit, but without graduated limb and telescope ; the place of the latter is supplied by vertical sights, while angles are read by bearings of the magnetic needle. All the remarks here made regarding the magnetic needle apply equally to the compass and to the transit, although in the case of the transit the needle is used less than the graduated limb and vernier.

The compass plate is usually graduated to half-degrees; the north and south points, lettered N and S, are marked 0°, and the graduation runs from each in both directions to the east and west points which are marked 90°. The letters E and W are, however, on the west and east sides respectively, of the compass plate, in order that the direction of a line as read from the end of the needle may agree with its actual direction. The direction of a line as determined by the needle is called its magnetic bearing. The bearing is expressed by two of the letters N, E, S, or W, with the number of degrees which the line varies from the magnetic meridian; thus $N 35^{\circ} E$, which is read north thirty-five degrees east, means a line whose direction is thirty-five degrees east of north ; also $S 70^{\circ} W$ indicates
a line whose magnetic direction is seventy degrees west of south.

When the bearings of several lines are taken at the same point the angles between them are known. For example, let the bearing of $A C^{\prime}$ be $N 8 \frac{1}{2}^{\circ} E$, and that of $A D$ be $N 46^{\circ} E$, then the angle $C A D$ is $37 \frac{1}{2}$ degrees. Also if the bearing of $A F$ be $S 52 \frac{1}{2}^{\circ} E$, then the angle $D A F$ is $81 \frac{1}{2}$ degrees. The student should deduce his own rule for finding the angle from the bearings by drawing figures for a few special cases.

When the bearings of several

Fig. 20. courses are given the angles between them are also known. Thus, in Fig. 21 let the bearing of $A B$ be $N 42^{\circ} E$, and that of $B C$ be $S 294^{\circ} E$; then the angle $A B C$ is $71 \frac{1}{4}^{\circ}$. Here it is best to reverse the bearing of the first line, and thus consider both as taken at the point B where the bearing of $B A$ is $S 42^{\circ} W$.

The magnetic needle is, at the best, a rough and imperfect tool for measuring angles or for determining the directions of lines. The bearings can be read to quarters or eighths of a degree, but owing to the variations to which the needle is subject, a line will have different bearings at different

Fig. 21. times. The magnetic meridian at most places deviates from the true meridian, and the angle between them is called the declina tion of the needle. On the Atlantic coast of the United States the declination is to the west of the true meridian, while on the Pacific coast it is to the east, but its amount is very different in different places, as will be seen from the isogonic map of the United States for 1915 inserted at page 128 of this Handbook. An isogonic line is a curve passing through ali places which have the same magnetic meridian. Thus in 1915 the line of zero declination passes near Columbns, Ohio, and Charleston,

Ga., and during that year the magnetic meridian coincided with the true meridian at all places on that line. Thes 3 isogonic lines are now slowly shifting westward.

The secular variation of the magnetic needle is an oscillatory movement by which the declination varies back and forth from a mean value. The time of this oscillation in the United States is between two and three centuries, but a complete cycle has not yet been observed. For example, at New York, N. Y., the early observations indicate that in 1657 the needle was at its extreme western declination of $9 \frac{1}{2}$ degrees; this slowly decreased so that about 1795 it reached the minimum value of $4 \frac{1}{2}$

Fig. 22.
Legrees; during the nineteenth century it has slowly increased and will probably reach the extreme western declination about 1933 , the total period of the cycle thus being 276 years. Fig. 22 shows clearly to the eye these variations in declination, as also those at Washington, D. C., where the minimum value was ob served in 1810, while the maximum will probably occur in 1927.

The value of the declination for 1915 may be ascertained approximately from the isogonic map above referred to. Its value at any date may be found for a large number of places by means of the formulæ deduced by the U. S. Coast and Geodetic Survey, and given in the report for 1895, pages 167 to 320 . For example, the formula for Bethlehem, Pa., is

$$
D=5^{\circ} .27+3^{\circ} .05 \sin \left(1^{\circ} .46 m-34^{\circ} .8\right)
$$

in which D denotes west declination and m is the number of years counted from Jan. 1, 1850. If it be required to find the declination for April 30, 1887, the value of m is 37.3 years, and then,

$$
D=5^{\circ} .27+3^{\circ} .05 \sin 19^{\circ} .7=6^{\circ} .50 \text { west. }
$$

From the formula also can be found the values and the dates of the maximum and minimum declinations. The greatest declination will occur when the angle $1^{\circ} .46 m-34^{\circ} .8$ equals 90°, as the sine is then unity; this gives $D=8^{\circ} .32$ and $m=85.5$ years, so that the time of this occurrence will probably be in the year 1935. The least declination obtains when the sine is minus unity, and this gives $D=2^{\circ} .22$, and $m=-37.8$, which corresponds to the year 1812.

The daily variation of the needles is a small oscillation ranging from 5 to 10 minutes in different seasons and places. It is smaller in the winter than in the summer, and less in the southern part of the United States than in the northern part. Soon after sunrise the north end of the needle is at its most easterly deviation from the magnetic meridian. A westerly motion then begins, and about half-past ten o'clock it coincides with that meridian; the westerly motion continues until about half-past one o'clock in the afternoon when the most westerly deviation is reached. The easterly motion is then slowly resumed and by the next morning the needle again reaches its most easterly deviation. Table III, at the end of this book, gives the mean values of the daily variation for each hour of the day and each month of the year at Philadelphia, Pa., as also instructions for finding it for other places in the United States.

In addition to the secular and daily variations the magnetic needle is also subject to an annual variation of about $1 \frac{1}{2} \mathrm{~min}$ utes, and to other smaller variations caused by the moon and sun. Magnetic storms cause sudden variations of considerable amount. These minor variations, however, are of little importance in land surveying, compared to the local attraction that is liable to occur in rocky regions and which often causes discrepancies of several degrees in the bearings of a line taken at points only a few hundred feet apart. The method of
eliminating the effect of local attraction is explained in the next article.

Prob. 13. The formula for the west declination at New Brunswick, N. J., is

$$
D=5^{\circ} .11+2^{\circ} .94 \sin \left(1^{\circ} .30 m+4^{\circ} .2\right)
$$

Find the values of the maximum and minimum declinations with the dates of their occurrence. Find also the probable value of the declination on June 15, 1896.

Art. 14. Field Worki.

The field work in land surveying may be divided into two classes, original surveys, and resurveys. The first class includes not only the case of lands opened for the first time for settlement, but also the staking out and division of lands, ard all surveys which are made without particular reference to former records. Resurveys, on the other hand, are those made to trace boundaries that have been lost, and they require the knowledge of the former work which are either stated in deeds on maps, or in the records of towns or counties. In both cases the field work requires the measurement of such linas and angles as will enable a complete map of the property to be made, and the areas of the several portions to be computed.

A field party usually consists of three or four men, the surveyor who reads the angles or bearings and takes the notes, two chainmen, and perhaps an axman who sets the necessary stakes and poles and also assists with the tape. The poles which are used for ranging out the lines and to sight upon in measuring angles are generally about an inch in diameter, about eight feet long, each alternate foot being painted red and white, and they are pointed with steel to enable them to be easily set in the ground. In surveying a field it is an old custom for the party to go around the boundaries "in the direction of the sun," that is, so as to keep the field on the right hand. The bearings of lines can thus be written on a sketch in a natural order around the entire circuit.

It frequently happens that a surveyor is obliged to employ is chainmen men who have had no experience in such work. In
this event tt is well, even after having given them full instructions, that he should be constantly with them for several hours in order to ensure that the proper degree of precision shall be attained. Chaining indeed is far more difficult to do accurately than is the measurement of angles.

The point where a transit is set for the purpose of reading angles is called a station. In the survey of a field the corners are also often called stations, these being the initial points from which the linear measurements are taken. A line whose bearing is known is frequently called a course.

If the surveyor is provided with a transit it is advised that angles should be always measured, and only such bearings be taken as are necessary to check the work or to verify former records. If he has only a compass the bearings of the lines must be taken, but care should be exercised to avoid the errors due to local attraction. Fortunately the influence of this can be eliminated by always reading the back bearings of lines as well as their forward bearings. In doing this the instrument should be set at the ends of the lines so that the back bearing of one line and the forward bearing of the next one may be read at the same station. The bearings at one point being assumed to be correct, all the others can then be adjusted so as to be relatively correct.

As an example of the elimination of the effect of local attracion let the bearing of $A B$ be taken at A in Fig. 9, and also the back bearing of $E A$; then at B let the bearings of $B A$ and $B C$ be taken, and so on. Let the results obtained be those which are given in the second and third columns of the table.

Course.	Bearing.	Back Bearing.	Adjusted Bearing.	Azimuth.
$A B$	N $37^{\circ}{ }^{\circ} 5^{\prime} \mathbf{E}$	S $38^{\circ} 00^{\prime} \mathrm{W}$	N $3 i^{\circ}{ }^{\circ} 15^{\prime} \mathrm{E}$	$35^{\circ} 15^{\prime}$
$B C$	S $78 \quad 08$ E	N 7745 W	S 78 \% 3 E	10107
$C D$	S 3345 W	N 3315 E	S 3237 W	21237
DE	N 1437 W	S $15 \quad 30 \mathrm{E}$	N 15 15 W	34445
EA	N 8230 W	S $82 \quad 15 \mathrm{E}$	N 8215 W	27745

Now assume that there is no local attraction at A, then the bearing of $A B$ and the back bearing of $E A$ are correct. To adjust the other values proceed in order from A to B; at B the
result $38^{\circ} 00^{\prime}$ is 45^{\prime} too large, hence 45^{\prime} must be subtracted from all SW and NE lines starting from B and the same amount must be added to all SE and NW lines; thus the ad justed bearing of $B C$ is $78^{\circ} 53^{\prime}$. Next the result $77^{\circ} 45^{\prime}$ taken at C is seen to be $1^{\circ} 08^{\prime}$ too small, and this must be applied to the forward bearing of $C D$, giving the adjusted bearing as $\mathrm{S} 32^{\circ} 37^{\prime} \mathrm{W}$. Thus proceeding, the adjusted bearing of $E A$ comes out N $82^{\circ} 15^{\prime} \mathrm{W}$, and this, being the reverse of the back bearing taken at A, is a check on the correctness of both the field work and the adjustment.

The azimuth of each line is easily found from its adjusted bearing. If the meridian be taken to correspond with the magnetic meridian the results given in the last column of the table are the azimuths. They are found by adding or subtracting each bearing either to or from 180° or 360°, as the case may require.

The interior angles of a field are readily computed either from the adjusted bearings or from the azimuths of the lines. It is, however, no proof of the correctness of the field work if the sum of these angles equals the proper theoretic sum, for it will be found that any bearings whether correct or incorrect will give the correct amount. On the other hand if the angles be measured in the field with the transit, a valuable check is obtained by taking their sum which will only equal the theoretic sum in very good work. In such cases if no serious error is thought to exist the observed values should be adjusted by the method of Art. 10.

One of the most important details of the field work is the keeping of the notes. Nearly every surveyor has a system of his own for recording the measurements taken in the field, so no one method can be said to be the standard; the essential point is that they shall be readily legible to any person who is to use them. Better results will probably be obtained by making a sketch in the field book, showing objects in their relative positions and having the dimensions to be used in plotting marked on the sketch itself, than by a more elaborate system of symbols and abbreviations.
If the survey covers but a small area, as one or two lots of
town property, all the notes should be recorded on one sketch, which may, to make the scale larger, be extended across two pages. In the survey of a large tract it will be better to devote a page to one course; repeating, as the leaves are turned, part of the notes of one page on the next.

The notes should be made with a medium hard pencil and a straight-edge be used in drawing all lines intended to be straight. All writing should be in upright capitals, and no script should be used. Distances along the line are usually inclosed in a circle or parenthesis, and are written on a line perpendicular to the base. It will be generally more convenient to begin the notes at the foot of the page, as by so doing one can glance from the book to the field and see corresponding lines having the same direction and in front. Samples of field notes are given in Art. 15. The best books for notes have both sides of the leaves ruled alike with light-blue lines into squares about an eighth of an inch on a side. Such books are substantially bound in leather and cost about fifty cents.

Prob. 14. Find the adjusted bearings of the sides of the following field, assuming the bearing of $B C$ to be correct.

Course.	Bearing.	Back Bearing.	Length in Chains.	
$A B$	S $12^{\circ} 15^{\prime} \mathrm{W}$	N $12^{\circ} 30^{\prime} \mathrm{E}$	5.62	
$B C$	N 7645 W	S $7645 \cdot \mathrm{E}$	3.28	
$C D$	N 1215 W	S 1207 E	2.24	
$D E$	N 47	37 W	S 4800 E	3.05
$E F$	N 2430 E	S 2415 W	2.29	
$F A$	S 7515 E	N 7500 W	6.40	

diso compute the area of the field in acres, roods, and rods.

Art. 15. Survey of a Farm.

Fig. 31 is a reduced copy of a farm map plotted from the field notes of a survey. The farm is seen to comprise three divisions separated from each other by fences, and it is desired to locate the interior division lines as well as the boundaries, and also to mark the edge of the wood-land and the course of the brook.

The principal lines of the survey, usually called traverse-
lines, are measured outside or inside the boundaries according to circumstances; thus it is natural that measurement along the highway should be easier than along the inside of the fence, while another line might be more easily measured inside the boundary when the ground is there clear from trees. These traverse-lines should always be parallel and near to the boundary lines so that the lengths of the latter may be obtained with precision.

The manner of keeping the field-notes is shown in the following sketches (Figs. 23-30). On the first page of the notebook is given the date of the survey, the names of the surveyor and all his assistants, and also a sketch of the traverse-lines with letters at each station for the purpose of reference. On the second and succeeding pages of the note-book are the notes of the traverses. These are made by beginning at the bottom of the page and working upward, so that the surveyor always has the objects in the same relative position as the sketches.

The survey is begun by setting the transit over B and selecting stations A and D. The interior angle $A B D$ is read and recorded on the margin of the page, and as a check the exterior angle is also measured and written under the first; if the sum of the two angles is within one minute of 360 degrees, the first angle is recorded on an arc between $A B$ and $B D$, as shown in Fig. 24; if such agreement does not occur, the angles should be observed again. The chain is then drawn from A to B, and offsets taken with the tape to locate the ends of the boundary line and the corners of the buildings; the sides of the buildings and the width of the highway are also measured with the tape. The distances from A along the traverse are noted opposite to each offset, and the offsets themselves are always measured perpendicular to the traverse-line. The magnetic bearing of $A B$ is taken and recorded on it, while the length of the boundary line is seen from the distances noted opposite the offsets taken at its ends.

The instrument is now carried forward to D, where the angle $B D E$ is measured, and then the traverse-line $D E \prime$ is run par. sllel to the next side of the field. Thus the traverse-lines

2

Farm of George Webster Riverside, Pa.

Surveyed by John Doe, C.E.
September 15, 1900. Jas. Flynn $\}$
Wm. Roe \} Chainmen
A.Webster, Axeman.

Declination of Magnetic Needle $7^{\circ} 04^{\prime} W$.

Fig. 23.

Fig. 24.

LAND SURVEYING.

Fig. 27.

Fra. 28.

Fig. 29.
Fra. 80.
around the farm complete the polygon $A B D E F G H I K L M A$, and the interior angles of this polygon should equal twice as many right angles as the polygon has sides minus four right angles. A page of the note-book should be assigned to the description of some of the principal stations or corners of the farm, so that they may be found in case of a resurvey. The names of the owners of the adjoining fields should also be ascertained and recorded. The secondary traverse COVG is run to locate the edge of the woods, while $O P Q$ and $O R S T$ locate the brook and the pond.

- Great care should be taken to make the field-notes clear and complete so that they may be plotted by a person who has not seen the farm. In the above notes five angles were inadvertently omitted in Fig. 29 ; their values are $I T S=114^{\circ} 00^{\circ}$, $T S R=220^{\circ} 15^{\prime}, S R O=144^{\circ} 30^{\circ}, R O P=230^{\circ} 30^{\prime}$, and $O P Q=220^{\circ} 00^{\prime}$. Magnetic bearings should be taken on at least two of the traverse-lines, back and front readings being made so as to detect any local attraction. The surveyor should remember that the notes should not only be sufficient to plot and describe the boundaries of the farm, but also be so complete that the area of each part or lot can be computed.

Prob. 15. Find the bearings and lengths of each of the lines of the closed traverse $M N I K L M$ from the field-notes in Figs. 23-30, and compute its area.

Art. 16. Office Work.

Office work embraces computations and the drawing of maps. The method of computing the area of a polygon has been explained in Art. 6. It is, however, rarely practicable to have the lines of the survey coincide with the boundaries of the field or farm, and hence the areas of the trapezoids between the offsets are to be separately computed as explained in Art. 3 , and these are added to or subtracted from the area of the polygon, as the case may require. All computations should be checked so that the results may be relied upon.

In order to facilitate the work of plotting the map the latitudes and longitudes of the principal stations are often com-

Fig. 31.
puted. For exampie, in Art. 6, Fig. 10, it is most convenient to take the point A as the origin of coordinates. The latitude and longitude of B are then the same as the latitude and iongitude differences of $A B$. For the station C and D,

$$
\begin{aligned}
& \text { Lat. } C=799.94+249.98=1049.92 \\
& \text { Long. } C=0.00+433.07=433.07 \\
& \text { Lat. } D=1049.92-84.53=965.39 \\
& \text { Long. } D=433.07+181.29=614.36
\end{aligned}
$$

and in like manner the latitude and longitude of each station is found from those of the preceding station by simply adding or subtracting the adjusted latitude and longitude differences of the line.

To plot the field to a suitable scale, one of two methods is pursued : the sides of the polygon are laid off in succession by the angle with the preceding course, and the length of the course; or each corner is located independent of all the others by means of its previously computed co-ordinates.

In plotting by the first method the angles are laid off either by the protractor, or by their natural sines or tangents. Before using the protractor the azimuths of all the courses with reference to any one of them are computed. The direction of this course is drawn and the protractor is placed in position apon it and fastened; all the asimuths are pricked off around the edge of the protractor and the latter is removed. The directions of all the courses have now been plotted and they may be transferred to any part of the paper by using triangles. The direction of any course as $A B$ is drawn in the desired position on the paper and its length measured by the proper scale; the direction of $B C$ as determined by the protractor is transferred till it passes through B, and the position of station U found by measuring on this line the length of $B C$. In like manner all the courses are plotted and the accuracy of the work is proved if the point A, plotted in order after the others, coincides with the position assumed for it at first.

To lay off an angle by means of its natural sine an arc is drawn whose radius is 10 on any scale. A chord to this arc whose length is the sine of half the angle, measured with a
scale twice as large as before, will subtend the angle at the center. Thus to plot the angle $A B C$ of 40°, with B as a center, an arc is drawn with a radius of 10 to the scale of, say, 20 feet to the inch; with the intersection of this arc and $A B$ as a center strike an are with a radius 3.42 on the scale of 10 feet to the inch, cutting the first arc at C, then $A B C$ is the required angle.

To plot the same angle by using its tangent, mark a distance 10 to any convenient scale from B toward A; at that point erect a perpendicular, whose length is 8.39 to the same scale, to C, and $A B C$ is the angle desired.

The first method of plotting a map has the merit of being easy and rapid, but, as each point is established with reference to the preceding one, any error in the location of a station will affect the position of all that are fixed after that one, and it is to overcome this difficulty that the method by co-ordinates is used.

After the coordinates of the stations have been computed by taking the algebraic sum of the latitude and longitude projections of the preceding courses, the origin and axes of coordinates are plotted upon the paper. If the map is a large one the utmost care must be taken to make the angle between the axes exactly 90°; the right angle is first drawn in the usual way and then verified by measuring the hypothenuse of the triangle as large as the limits of the drawing will allow. Parallel to these axes lines are drawn dividing the paper into squares 100 feet, 200 feet, or 1000 feet on a side, according to the scale of the drawing, the object being to bring every point on the map within the length of the scale from two of these lines. The stations may now be located by measuring their coordinates from the nearest parallels and the accuracy tested by the length of the sides. In plotting the houses, fences, and brooks, the scale is placed on the traverse-line and all the distances along its length, to points where offsets are taken, are measured without moving it; the offsets are then measured and the figures completed.

The finished map should contain full information concerning the date of survey, scale of map, names of owners of adjoining
property, and of the surveyor ; if a portion of the plan has been compiled from other maps that fact should be stated and references given. The title, meridian point, and border are, in a measure, an opportunity for the exercise of artistic skill on the part of the draftsman, but legibility and simplicity must not be sacrificed for ornament. A title of Roman letters, well done, always presents a good appearance, and without other decoration, will be in good taste on maps both large and small. The meridian is usually represented by an arrow having the head at the north end, and by an elongated S at the south; the lines should be very light, that the direction may be well defined. When both the true and magnetic meridians are shown, the former is represented by a full arrow and the latter by one having but one side of the head drawn. The appearance of the border is sometimes improved by geometrical figures or some simple ornament in the corners, but a departure from the practice of using simply a light line on the inside and u heavy one outside, with a space between them as wide as the heavy line, will be for the worse oftener than for the better.

Prob. 16. Compute the coordinates of the stations for Fig. 33, and plot the map of the farm on a scale of 100 feet to one inch.

Art. 17. Random Lines.

A random line is a line run out in order to find a lost corner, or to locate a boundary line which has become obliterated. For example in Fig. 32, let A be a given corner and let it be known from an old record that a certain line $A P$ was once established having a bearing $\mathrm{N} 41^{\circ} 30^{\prime}$ W and a length of 32 chains. No traces of this line or of the corner P are now visible, and it is required, if possible, to relocate them. Between the date of the old survey and the present one the declination of the needle has changed several

Fig. 32. degrees, perhaps, and the first duty of the surveyor is to consider this question carefully and ascertain the probable amount
of change, so as to determine the present probable bearing of the line. Suppose that the result of this inquiry leads to $\mathrm{N} 38^{\circ} 15^{\prime} \mathrm{W}$ as this bearing.

Starting at the marked corner A the surveyor runs a random line $A B$ on the bearing $\mathrm{N} 38^{\circ} 15^{\prime} \mathrm{W}$, and measures along that line a distance of 32 chains, or 2112 feet, to a point B. He then proceeds to look over the ground on both sides of B for the lost corner, which is described in the old record as a marked tree, a stump, a pile of stones, or a monument. If it is impossible to find a trace of it nothing further can be done from the data in hand. If, however, it is found at P, a perpendicular $P E$ is dropped upon the line $A B$ and its length is measured, as also the distance $B E$. The distance $A E$ is thus known, and from the right triangle the angle $E A P$ can bc com. puted and the present magnetic bearing of $A P$ be determined. For example: Suppose that $P E$ is found to be 37.4 feet, while $A E$ is 2110.5 feet, then

$$
\tan E A P=\frac{P E}{A E}=\frac{37.4}{2110.5}=0.01772
$$

whence $E A P=1^{\circ} 01^{\prime}$, and hence the present magnetic bearing of $A P$ is $\mathrm{N} .39^{\circ} 16^{\prime} \mathrm{W}$. The distance $A P$ is

$$
A P=\frac{2110.5}{\cos 1^{\circ} 01^{\prime}}=2110.8 \text { feet }
$$

which indicates, if the present work is accurate, that the old survey was in error by 1.2 feet. However, it is a principle of law that established corners and monuments must control resurveys, and hence the new record for the line $A P$ is $\mathrm{N} 39^{\circ}$ $16^{\prime} \mathrm{W} 2110.8$ feet.

Intermediate points on the line $A P$ may now be established by starting at A and running it out with the new bearing. A quicker way, however, is to lay off perpendiculars from the stakes previously set on the line $A E$, marking their lengths proportional to the distances from A. For instance, if it be required to mark a point at the middle of $A P$, the perpendicular to be erected at the middle of $A E$ will be 18.7 feet in length.

Random lines are also frequently used to find the bearing and distance between two points which are not intervisible.

For example, let G and H in lig. 33 be two such points. Starting at G let a line $G A$ be run in a direction which is approximately toward H. On arriving at A, where H can be seen let $A H$ be run. Suppose that $G A$ is $\mathrm{N} 42^{\circ} 15^{\prime} \mathrm{E}, 714.5$ feet; and that $A H$ is $\mathrm{N} 1^{\circ} 08^{\prime} \mathrm{W}, 210.5$ feet. It is required to find the length and bearing of $G H$.

For this purpose the length of each line is multiplied by the sine and cosine of its bearing, and the results tabulated as below. The principle that the sum

Fig. 33. of the northings equals the sum of the southings, and the sum of the eastings equals the sum of the westings (Art. 7), gives 739.4 feet for the southing of $H G$ and 476.2 feet as its westing. Dividing the second of these by the first gives the tangent of Course. Bearing. Length. Northing. Southing. Easting. Westing. $\begin{array}{llllll}G A & \mathrm{~N} & 42^{\circ} & 15^{\prime} \mathrm{E} & 714.5 & 528.9\end{array}$ $\begin{array}{lllllll}A H & \mathrm{~N} & 1 & 08 & \mathrm{~W} & 210.5 & 210.5\end{array}$ $\begin{array}{llll}739.4 & \frac{(739.4)}{739.4} & \\ 480.4 & \frac{(476.2)}{480.4}\end{array}$
the angle between $H G$ and the meridian, while the square root of the sum of their squares is the length of $H G$. Thus the bearing of $H G$ is $\mathrm{S} 32^{\circ} 47^{\prime} \mathrm{W}$, and that of $G H$ is $\mathrm{N} 32^{\circ} 47^{\prime}$ E, while the length is 879.5 . This length can also be found by dividing 739.4 by the cosine of $32^{\circ} 47^{\prime \prime}$, or by dividing 496.2 by the sine of $32^{\circ} 47^{\prime}$.

Prob. 17. In order to find the direction and distance between two points K and L, the following lines are run : $K A$, S $87^{\circ} 37^{\prime} \mathrm{W}, 930.57$ feet; $A B$, West, 621.03 feet ; $B L$, $\mathrm{S} 88^{\circ} 15^{\prime} \mathrm{W}, 82.78$ feet. Compute the bearing and length of $K L$, and locate the point where it crosses $A B$.

Art. 18. Resurveys.

When several lines of the boundary of a farm or town have become obliterated and the corners lost, it is often necessary to make a resurvey in order to re-establish them. If the corners
can be found or be located by reliable evidence they must b_{*} accepted as correct even if the recorded bearings and lengths of the lines indicate different points. It sometimes happens that some corners can be found while others cannot. In such cases a series of random lines is to be run with the old bearings, or with the old bearings corrected for the change in declination of the needle between the two dates.

Fig. 34.
As an example let the records in an old deed give the bear ings and lengths of three lines as follows:

$A b$,	$\mathrm{N} 60^{\circ} \mathrm{E}$,	10 chains;
$b c$,	N 45 E,	4 chains;
$c d$,	S 45 E,	8 chains.

There being no definite data at hand to determine the change in magnetic declination between the dates of the two surveys, the lines $A B, B C$, and $C D$, are run with the given bearings and distances from the known corner A. The old corners b and c cannot be found, but on arriving at D the old corner d is discovered at a point distant 20.4 links and $\mathrm{S} 12^{\circ} \mathrm{W}$ from D. It is required to locate the old corners b and c.

By the method explained in Arts. 7 and 17, the bearings and the lengths of the lines $D A$ and $d A$ may be computed. These are :

$D A$,	$\mathrm{S} 82^{\circ} 47^{\prime} \mathrm{W}$,	17.29 chains;
$d A$,	S 8326 W,	17.22 chains.

Now the error $D d$ between the two corners is due to two causes : first, to a constant difference in the magnetic bear
ings of the two surveys; and second, to a difference in the lengths of the chains used. The first cause swings the polygon $A b c d A$ around the point A by a small angle. The second cause alters the lengths of the sides in a constant ratio. The difference between the bearings of $D A$ and $d A$ is the constant angle, while the ratio of the lengths of these lines is the constant ratio. To find the bearings of the old lines, therefore, each of the given bearings is to be corrected by the amount

$$
83^{\circ} 26^{\prime}-82^{\circ} 47^{\prime}=0^{\circ} 39^{\prime}
$$

and to find the lengths of the old lines each of the given lengths is to be multiplied by

$$
\frac{17.22}{17.29}=0.996
$$

All of this reasoning supposes that the new work is done with such precision that the errors in chaining must be regarded as being in the old survey.

Applying these corrections the adjusted bearings and lengths of the old lines are

$A b$,	N	60°	39^{\prime}	E,	9.96 chains;
$b c$,	N	45	39	E,	3.99 chains;
$c d$,	S	44	21	E,	7.97 chains,

and with these new data the lines may be rerun and the corners b and c be located, a check on the field work being that the last line should end exactly at the old corner d.

It is, however, not difficult to compute the lengths and bearings of $B b$ and $C c$, so that b and c may be located from the points B and C. The principle for doing this is that the polygons $A B C D A$ and $A b c d A$ are similar. Thus the triangles $A B b$ and $A D d$ are similar; hence the length of $B b$ is

$$
B b=D d \frac{A B}{A D}=\frac{20.4 \times 10}{17.29}=11.8 \text { links. }
$$

Also the angle $A B b$ equals the angle $A D d$, or $70^{\circ} 47^{\prime}$; hence the bearing of $B b$ is $\mathrm{S} 10^{\circ} 47^{\prime} \mathrm{E}$. In like manner, the triangle $A C c$ being similar to $A D d$, the length and bearing of $C c$ can be found, the length and bearing of $A C$ being first computed. The distance $C c$ is 16.4 links, and its bearing is
$\mathrm{S} 15^{\circ} 03^{\prime} \mathrm{E}$. 'The lines $B b$ and $C c$ are now run from B and C ', and thus the most probable location of the old corners b and c is made.

Prob. 18. The record of an old survey reads as follows Commencing at a post marked No. 5 and running N $62^{\circ} \mathrm{E}$, 14.00 chains, to a stake marked A; thence running $\mathrm{N} 43 \frac{1}{2} \mathrm{E}$, 8.00 chains, to a stake B; thence $\mathrm{N} 5^{c} \mathrm{~W}, 12.00$ chains, to a stake C; thence $\mathrm{N} 72 \frac{1}{2}^{\circ} \mathrm{E}, 10.25$ chains, to a stake D; thence $\mathrm{S} 12^{\circ} \mathrm{W}, 6.43$ chains, to a stone marked No. 3. On rerunning the lines the end of the last one, instead of being at the stone No. 3, was 0.62 chains due East from it. Find the adjusted bearings and lengths of the old lines; also find the distance and direction from each station of the new survey to the corresponding one of the old survey.

Art. 19. Traversing.

The term traverse, which was originally associated with navigation, is in common use by surveyors to define a series of lines whose lengths and relative directions are known. For example in Fig. 23 the lines $T ' S, S R, R P$, constitute a trayerse run for the purpose of locating a brook. Traversing is particulariy applicable to the survey of long and circuitovis routes through territory presenting natural obstructions to long sights. It is almost univerally adopted in filling in the interior of maps which are based upon a system of triangulation. As examples of traversing may be mentioned the survey of highways and railroads, river banks, shores of lakes, and property boundaries. In the United States Government surveys, when the traverse is run to mark the division between private estates and a body of water retained as public property it is called a Meander Line.

The most approved method of running a traverse is that in which the graduated plate, or limb, of the transit is so set at each station that the azimuth of each line there observed can be directly read. If the survey is made in a locality where no system of latitudes and longitudes has been established, the magnetic meridian may be taken as the meridian of the azimuths. At the first station the vernier is set at zero and by
means of the lower motion the instrument is turned so that the north end of the needle points to the N on the compass limb. The lower plate being then clamped the upper one is unclamped; now if a sight be taken at any object the reading on the vernier will be the azimuth corresponding to the bearing of that obiect. The last sight and reading taken at the first station is toward the second station of the traverse line. The instrument is then placed over the second station and the vernier set at the back azimuth of the first station; the azimuth of any line from the second station will now correspond with its bearing as before. The readings of the needle are recorded as a rough check on the azimuths, with which they should qgree to the nearest eighth of a degree.

For example, at the station A let the bearing of $A B$ be Ni $74^{\circ} 15^{\prime} \mathrm{E}$, and let its azimuth be $74^{\circ} 15^{\prime}$. On placing the instrument at B, the vernier is set at $254^{\circ} 15^{\prime}$, a sight taken on A, and the lower plate clamped. The azimuth of $B C$ being $143^{\circ} 02^{\prime}$, the vernier is set at $323^{\circ} 02^{\prime}$ on arriving at C and the li mb placod in proper position by sighting back to B. The i, lescope is not reversed during any part of the work. At eich of the stations sights may be taken to surrounding ob$j 1, c t s$, and if the distance to an object is measured this together with its azimuth locates it with respect to the station.

Bearing.	Azimuth.	Distance.	Object Sighted.
Notes	at Station	B	
S $74^{\circ}{ }^{15^{\prime}} \mathrm{W}$	$254^{\circ} 15^{\prime}$	528.3	Station A
	325 3 196 24	250.	Large pine tree
	196 24 194 10		NE corner of John Doe's House
S $37^{\circ} 00^{\prime} \mathrm{E}$	143	490.7	Station C -
Notes	at Station	C	
N $37{ }^{\circ} 05^{\prime} \mathrm{W}$	3230 $02^{\prime \prime}$	490.7	Station B
	${ }_{280}^{280} 13$		NE corner of John Doe's House
	276 104 15 07		SE corner of J.Doe's same House
$\mathrm{S} 42^{\circ} 45^{\prime} \mathrm{E}$	137	504.6	Fence corner Station D

The field notes, if offsets are taken from the traverse lines are best kept as in Figs. 24-31, the bearing of a line being written upon one side of it and the azimuth upon the other side.

If no offsets are taken a form like that given above may be used. It is seen that the large pine tree is located by aximuth and distance, at station B, as also is the fence corner at station C. The house of John Doe, however, is located by azimuths taken from both B and C, the line $B C$ forming a base by which its distance from either end can be computed.

It is always desirable that a traverse should have a check upon its accuracy. In a closed traverse like that around the boundaries of a farm this is obtained, since the sum of the northings must equal the sum of the southings, and the sum of the eastings that of the westings. In Fig. 23, the traverse $C N O P Q G$, which begins at C and ends at G, is checked in the field on arriving at G, for the azimuth of $G H$ must agree with that previcusly obtained; also in computation the differences of latitude and longitude between C and G must agree with those obtained from the main polygon.

It should be remarked that the object of taking the bearings is merely to check gross errors in the azimuths during the progress of the field work, and that an experienced engineer will usually prefor to take but few readings of the needle. If a true meridian has been established in the neighborhood of the survey the azimuths should be reckoned from it instead of from the magnetic meridian.

Prob. 19. Compute from the above notes the length of the west side of John Doe's house. Obtain the same distance without computation by plotting the notes.

Art. 20. United States Public Land Surveys.
The system adopted by the United States Government on May 20,1785 , for the survey of the public land which had been acquired from time to time, consists in dividing it into squares, called townships, six miles on a side, by meridians and east and west lines. A north and south row of townships is called a range. The townships are divided into square miles, called sections, which are subdivided into half and quarter sections.

The work of surveying the government land is begun by
carefully running a north and south line, called the principal meridian, and an east and west line called the standard parallel. Standard parallels and accurate guide meridians are run to divide the territory into 24 mile squares, and the principal meridians are at long intervals- 100 miles or more. On these lines every mile is marked by a stake or monument and called a section corner; every sixth section corner is called a township corner and is differently marked.

On the standard parallel the township corners are next marked; from each of these marks range lines are run to intersect the standard parallel next north. Owing to the convergence of meridians toward the pole, the points of their intersections with the standard parallel will not be at the township corners, but a little nearer the principal meridian; as the full six miles have been measured on the standard parallels, the convergence is corrected at each of those lines.
From the township corners on the principal meridian, east and west lines are run joining the range lines already fixed. The townships thus marked are six miles north and south by six miles, less the meridional convergence in the distance to the standard parallel, east and west.
Parallel to the eastern boundaries of the several townships, section lines through the section corners are run for five miles, then from the points where they intersect the fifth east and west section lines, oblique lines are run to the points previously established on the northern boundary of the township; when, however, the northern boundary of the township is one of the standard parallels, the section meridians are run directly the full six miles instead of deflecting at the fifth east and west line.
The convergence of the meridians is given, very nearly, by the following rules of geodesy:

The angular meridional convergence equals the difference in longitude into the sine of the latitude.

The linear convergence equals the distance along the meridian into the sine of the angular meridional convergence.

The townships are divided into 36 sections, numbered from

1 to 36, as shown in Fig. 35. The sections themselves are subdivided and designated as in Fig. 36; a represents the va-

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

Fig. ${ }^{35}$. rious ways of dividing an entire section, and b shows the method when a portion of the section is obstructed by water. In cases of this kind it is usual to add to an adjacent lot the salable part of the obstructed quarter section, and to state the total number of acres in both; but when only a small portion of the quarter section is unsalable it retains its own name, is called fractional, and the number of acres in it are given.

Fig. 36.
The methods of running the principal meridians and standard parallels are founded on the science of geodesy. The rules governing the running of township and section lines may be found in "Instructions to the Surveyors General of Public Lands," issued by the Land Office of the Interior Department, Washington, D. C. The principles of this chapter and the last are, however, directly applicable to the surveying and mapping of townships, sections, and their subdivisions.

Prob. 20. Compute the length of the northern and southern boundaries of a township in latitude $46^{\circ} 30^{\prime}$, the southern bo'indary being 18 miles north of a standard parallel.

CHAPTER III.

LEVELING AND TRIANGULATION.

Art. 21. The Level.

The Engineer's Level consists of a line of sight parallel to a spirit level and perpendicular to a vertical axis. The line of sight is fixed in a telescope by cross-hairs as in the transit. The spirit level is attached to the under side of the telescope and is protected except on top by a metal tube. The telescope is supported on vertical forks, called Ys (from which fact the instrument is called the Y level), and is clamped to them by collars which may be raised, allowing the telescope to be turned on its axis or taken out entirely. The Ys, which may be lengthened or shortened by screws for the purpose, are fastened to a horizontal bar which is rigidly attached to the vertical axis. The instrument is provided with leveling screws and mounted upon a tripod.

The Dumpy Level differs from the ordinary form in having the telescope firmly fixed on the horizontal bar so it cannot be turned either on its axis or end for end. This level is superior to the \mathbf{Y} type in every point of difference, being less costly, lighter, and more permanent in its adjustment. The superiority claimed for the Y level is the ease of adjustment by means of its movable telescope, but if such an advantage exists it is extremely slight.

The parts of the level of most importance are the telescope and the bubble. The character of the work to be done will determine whether or not magnifying power in the telescope is more desirable than illumination of the field of view and what was said on this subject in connection with the transit applies as well to the level. The upper part of the inside surface of the bubble tube is carefully ground in the form of a longitudinal circular curve, and upon the radius of this curve depends what is known as the sensitiveness of the level. If the radius of curvature of the bubble is large it will be very sensitive;
that is, a slight vertical displacement of the telescope will cause a considerable motion of the bubble. If the radius of curvature is short the bubble is not sensitive. A very sensitive bubble is not desirable since much time will then be lost in leveling the instrument.

The level rod is a graduated scale for measuring the vertical distance between the horizontal plane through the line of sight and that through the point upon which the rod is held. Target rods are used in precise work, and self-reading rods in cases where elevations need to be determined only to tenths of a foot. The target rod has a vernier on its movable target by which readings to the thousandth of a foot are taken by the rodman ; the New York rod, the Boston rod, and the Philadelphia rod are the most common forms in use. Self-reading rods have figures and graduations distinct enough to be read by the leveler as he sights through the telescope. A self-reading rod is divided into tenths of a foot, but if the figures are properly made readings to hundredths of a foot can easily be taken; the numbers marking the tenths should be 0.06 feet long and so placed that half the length is above and half below the line. The numbers marking the feet are 0.10 feet long, and each is bisected by the foot-mark.

Prob. 21. Sketch a part of a target rod showing a vernier reading 5.027 feet. Sketch a self-reading rod according to the above directions.

Art. 22. Adjustments of a Level.

The adjustment of an instrument consists in bringing the various parts into their proper relative positions so that all the geometrical conditions necessary for good work may be observed. When an instrument is received from the maker it should be in perfect adjustment, and with proper care it will remain so for a long time. It should, however, be examined at frequent intervals, and if found out of adjustment at any time, should be at once put into proper condition. The following description of the adjustments of the Y level follows the order in which they should be made.

Parallax.-rnis is an improper condition of focusing due to the fact that the image does not fall in the plane of the crosshairs. To ascertain if it exists, direct the telescope upon the sky and focus the eyepiece so that the cross-hairs are perfectly distinct. Then turn the telescope upon the object which is t be observed, and focus the object glass until the image is perfectly distinct. Move the eye from side to side and note whether there is any apparent movement of the cross-hairs and image. If any is seen the two operations are to be repeated until all parallax is removed. This adjustment depends upon the eye of the observer, and when made for one person may not be correct for another.

Collimation.-The line of signt, or collimation, should not deviate from the optical axis of the telescope. To ascertain if an error in collimation exists, loosen the collars on the Y's and focus the telescope upon a distant object. Slowly revolve the telescope in the Y's and note whether the intersection of the cross-hairs remains on the same point. If the horizontal hair deviates from the point adjust it by moving it over half the apparent error, by means of the capstan screws on the top and bottom of the telescope. If the vertical hair deviates adjust it by moving it over half the apparent error by means of the capstan screws on the sides of the telescope. The instrument is, of course, to be clamped while making this adjustment, but it need not be leveled.

The Attached Bubble.-The level bubble attached to the telescope must be parallel to the line of sight. To ascertain if this is the case, span the collars, carefully level the instrument and clamp it; lift the telescope out of the Y's, turn it end for end, and replace it. If the bubble does not settle in the middle turn the screws above and below one end of the bubbletube so as to bring the bubble half way back. Next see if the bubble is in the same plane as the telescope by slowly revolving the latter in the Y's and noting whether the bubble runs away from the middle; if it does correct half the apparent error by the screws on the sides of the other end of the bubbletube. Repeat these operations until perfect adjustment is secured.

The Horizontal Bar.-The telescope and level-bubble should be parallel to the horizontal bar supporting the Y's, or perpendicular to the vertical axis of the instrument. To ascertain if this is the case after the preceding adjustments have been made, level the instrument and revolve it 180 degrees on the vertical axis. If the bubble runs toward one end, the \mathbf{Y} on that end is too high, and the screws at the end of the horizontal bar are moved so as to correct one half of the apparent error. Then repeat the operation until the bubble remains in the middle of the scale for all positions of the telescope.

In adjusting an instrument great care must be taken not to turn the screws too tight, as by so doing the threads soon become injured. No student or beginner should be allowed to adjust a level or transit until he has become well acquainted with all its parts by actual use. The parallax adjustment, however, is an exception, since this varies for different eyes, and each student should see that this is made every time he uses the instrument.

The dumpy level cannot be adjusted by the above methods since the horizontal bar and telescope are rigidly connected. Both the bubble and the horizontal cross-hair are, however, movable. It is necessary, (a) that the bubble should be perpendicular to the vertical axis and (b) that the line of sight should be parallel to the bubble. The adjustment (a) is made exactly like that above described for the horizontal bar of the Y level. The adjustment (b) is made by the peg method of Art. 26, except that the horizontal cross-hair is moved instead of the bubble.

Prob. 22. Give the reasons for each of the adjustments of the Y level.

Art. 23. Comparison of Levels.

In buying an instrument it is desirable that the surveyor should be able to make such an examination as will indicate whether it is a good one of its class or whether it is the kind that he needs. The following tests, which are useful in addition to those of the last article, will be found valuable in
selecting an instrument, or in comparing one with another. In making them the instrument should be in good adjustment.

Magnifying Power.-The magnifying power of a telescope may be obtained by dividing the focal length of the object glass by that of the eyepiece. As these however, cannot be closely measured the following method is usually preferable: Place a rod, on which the divisions are very plainly marked, about 25 yards from the instrument and focus the telescope upon it. Turn the line of sight slightly away from the rod and focus the other eye upon it. Slowly turn the telescope again toward the rod, when the small image as seen by that eye will appear projected upon the larger one seen through the telescope. If, for instance, 100 divisions seen by the naked eye appear to cover 5 divisions seen by the other eye through the telescope, then the magnifying power is $100 \div 5$ $=20$. A high magnifying power implies a small field of view and hence is not desirable. For a surveyor's transit or level a magnifying power of from 15 to 20 is sufficient; for an engineer's transit it should be from 20 to 25 , and for an engineer's level perhaps from 25 to 30 .

Spherical Aberration.-This is a defect caused by combining lenses of different curvatures, so that objects on the sides of the field of view are seen less distinctly than those in the center. To test the object glass for this defect, cover the outer edge with an annular ring of paper and focus upon a distant object; then remove the ring and cover the central part of the glass; if no change of focus is needed the glass has no spherical aberration. To test the eyepiece, sight to a heavy black line drawn on white paper and held near the side of the field of view; if it appears perfectly straight the eye glass is a good one.

Chromatic Aberration.-This is a defect caused by combining lenses of improper varieties of glass so that yellow or purple colors appear on the edges of the field. To test a telescope for this defect, focus it upon a bright distant object and slowly move the object glass out and in; if no colors are observed around the edges of the field of view the telescope is free from this defect.

Definition.-The ability to show images with sharp, clear outlines is a valuable quality in a telescope. It may be tested by comparing the distinctness of the image with that of the object as seen by the eye at such a distance that it will seem the same in size as the image. Ordinary print when read by the eye and through the glass with equal ease should appear equally distinct.
Size of Field.-The angular diameter of the field of view is usually about one degree. The value for any telescope may be closely obtained by laying off a distance of 57.3 feet from the object glass, placing two pins in the ground at the extreme sides of the field, and measuring the distance between them in feet; this will be the size of the field of view in degrees. (Art. 2.)
Sensitiveness of Bubble.-For very fine work the radius of curvature of a level bubble should be about 100 feet, for ordinary good work 50 feet is preferable, and for common work 25 feet will do. To determine this radius let the instrument be set up and leveled, so that two screws will be in the line of sight to

Fig. 37.
a target rod placed 100 feet or more away. Let one end of the bubble be made to coincide with one of the division marks at a and a reading be taken on the rod at A. Then by the two screws let the telescope be raised in a vertical plane until the end of the bubble reaches the next division at b, when a second reading is taken on the rod at B. Now, if R be the radius of the level bubble and D the distance from the instrument to the rod, $R: D:: a b: A B$ very nearly. The distance $A B$ is the difference of the readings on the rod, while $a b$ is the length of one space of the bubble scale; thus D is known. For example, let the rod be 150 feet from the instrument, the two rod readings be 3.704 and 3.745 feet, and the bubble scale have 8 spaces in one inch, one space thus being $\frac{1}{88}$ of a foot long. Then

$$
R=\frac{D \times a b}{A B}=\frac{150}{0.041 \times 96}=38.1 \text { feet, }
$$

which is the radius of the level bubble. The uperation should now be repeated using a different distance D, and the mean of several results be taken as a final value.
Prob. 23. A level bubble has a radius of 125 feet and its scale has 10 spaces in an inch. What error in leveling will result at a distance of 250 feet if the bubble is $1 \frac{1}{2}$ spaces out of level ?

Art. 24. Leveling.

A Level Surface is that of a fluid at rest, and a Level Line is the intersection of such a surface with a vertical plane. The line of sight through the telescope of a properly leveled and adjusted leveling instrument, when revolved around the vertival axis, generates a plane which, for short distances, practically coincides with the level surface through the instrument.

Fig. 38.
The amount of deviation between the two surfaces, due to the curvature of the earth and to refraction, varies as the square of the horizontal distance from the instrument and at one mile is about .57 feet.

The field work of leveling consists in finding the relative elevations of two or more points. The elevations are referred to an assumed surface called the Datum Plane, or simply Datum, which is so selected that all points whose elevations are required shall be above it. A mean sea level is frequently taken as the datum plane. A Bench Mark is a monument, rock or other permanent object whose elevation above the datum has been determined. The method of carrying on the field work can best be explained by Fig. 38. The line $M N$ represents the datum plane; a is a bench mark whose elevation is known; b, c, d, e, f, are points whose elevations are desired;
A, B, and C are the successive positions of the instrument. The positions of the rod are indicated by the vertical lines and the lines of sight by the horizontal dotted ones. The instrument is leveled at A and the reading $a l$, on the bench mark at a, is taken; this is called a Back Sight and is added to the elevation Ma, to get the Height of Instrument. The rod readings at b, c, and d, subtracted from the height of instrument will give the elevations of those points above the datum $M N$; such readings are called Fore Sights. If the distance $A d$ is as far as can be seen, the rod is kept at d, which is called a Turning Point; the instrument is carried forward to B, and the back sight $d n$ is taken; the new height of instrument is then $P d+d n$, and fore sights at e and f, are taken to determine the elevations of the stations e and f. The instrument may then be carried forward to C and the elevations of g, h, and k determined in a similar manner. If the instrument is always set midway between the turning points, the errors in rod readings, due to the non-adjustment of the instrument and to the curvature of the earth, will be confined to the intermediate points as b, c, and e; this fact should always be remembered as upon it depends, in a great measure, the accuracy of the work. The turning points are not necessarily taken at places whose elevation is desired, but may be at any convenient location, either on or off the lines; they should be so selected that an unobstructed view of the rod may be had from any probable position which may be selected as the next place for the instrument, and be upon firm objects which cannot be readily disturbed while the instrument is being carried forward.
The field notes are kept as shown below; they are usually on the left-hand page of the note book while the opposite page is devoted to remarks. The first column gives the name or number of the point where the rod is placed; such a point is called a Station. If the stations are in a continuous line, as along the middle of a road, the distances between them are given in the second column. The back sights are given in the next column; then the height of instrument, foresight, and elevation, in the order named. This arrangement will be found most convenient in making the additions, for the height of instrument and
the subtractions for the elevations. It is seen that the rod is read to thousandths of a foot on the bench marks and turning points and to hundredths of a foot on the other points. In work of less precision than that in towns and cities the rod

Station	Dist.	B.S.	H.I.	F.S.	Eleva.	Remarks.
a	0	6.320	59099		584.674	Bench mark on monu-
b	150			2.12	588.87	[ment No. 51.
T.P. ${ }^{\boldsymbol{c}}$	200			6.38	584.61	
T.P.d	280	3.561	584.243	.0.312	580.682 583.04	On rock 50 ft . N.E. of c
T.P. ${ }^{\boldsymbol{f}}$	400	10.617	594.31^{\prime}	0.543	583.700	On rock.
	$4 \pi 5$			5.82	588.50	
\cdots	500 584			4.16	590.16	
k	584			3.245	591.072	B.M.on stump oak tree

readings are frequently taken only to hundredths on the benches and turning points and to tenths on the others. The final elevation of the bench mark k may be checked thus:

$$
584.674+20.498-14.100=591.072
$$

in which 20.498 is the sum of the back sights on the benches and turning-points and 14.100 is the sum of the fore sights on such points. (Art. 9.)

When levels are run merely to find the difference in elevation of two points a and k (Fig. 38) the column of distances is not needed in the notes, and there are no intermediate stations b, c, e, g, h. It is well, even in such cases, to fill out the column of height of instrument in the field, and to check the final result in the manner indicated above. The main note book is always kept by the leveler, but the rodman should also keep a book in which he records all readings on benches and turning points, finding their elevations and the heights of instrument so as to check the computations of the leveler.

Prob. 24. Explain, with a diagram, why it is that precision in levelling is promoted by setting the instrument midway between the turning points.

Art. 25. Contours and Profiles.
In Art. 2 it was stated that the dimensions of a field are the horizontal projections of the actual boundary lines and that
the area is that included between the projections of the boundaries. It is evident that a map made under these conditions, while giving a clear idea of the shape and size of the property, will convey no information as to the character of the surface, whether high and uneven or flat and low. These distinctions would be evident if the elevations of very many points in the field were written at the proper places on the map, but so many figures would render other features of the map indistinct, and hence another plan of indicating the elevations has been adopted. If the surface of the ground were cut by a series of horizontal planes at equal distances apart, the intersection of each plane and the ground would be an irregular line connecting all points having the elevation of that plane. These intersections called Contour Lines, are plotted on the map and show at a glance the elevations and slopes of all parts of the fie'd with a precision dependent upon the nearness of the planes to each other. A clear conception of the utility of the contous lines as the means of judging of the features of a surface is formed by considering the surface of a lake as the intersecting plane. The shore line is the contour having the elevation of the surface of the lake; if the water were to fall a certain distance, the horizontal movement of the shore line would depend, not only upon the vertical fall of the surface of the water, but also upon the declivity of the ground, being small where the latter is steep and great where it is nearly flat. Hence the slope of the ground is judged to be abrupt where the map shows the contour lines near together, while the slope is slight when they are far apart.

The position of the contour lines is not generally located in the field, but elevations are taken at points where the slope of the ground changes, or often at stakes set at regular intervals by the transit and chain. These elevations are then plotted in pencil on the map and the positions of points at the elevation of any contour are found by interpolating between two plotted elevations one of which is above and one below the required point; the contour lines are then drawn by connecting points of equal elevation by a curve; the elevation of the contour is marked on it and the plotted figures erased. Let the field
$A B C D$, Fig. 39, be divided into squares 100 feet on a side and elevations taken at all the corners as shown, and let it be required to locate the even ten-foot contours. Beginning at any, as the upper right-band corner, the ground along the upper line is seen to fall from elevation 133 to 122 in 100 feet, hence the 130 foot contour is $\frac{8}{1 \mathrm{I}}$ of the length of the square from the corner, and the 120 foot contour is seen to be $\frac{2}{12}$ of the distance from the second corner toward the third. In like manner all the lines are gone over and the contours are then sketched in.

If the ground is very uneven many complications will arise in drawing the contours from the plotted elevations, and the following general rules will be useful in preventing errors: Contour lines never cross each other; every contour on one side of the map must either be found on one of the other sides, or a second time on the first one; a contour not crossing any side of the map is one continuous line, returning into itself; a contour line never branches, forming a lood; the number of contours between two others whose elevations are alike is either two, four, or some other even number.

The intersection of the surface of the ground by a verical surface is called the Profile along that line. The profile is made by taking the elevations at known intervals along the desired course with the level; these intervals are plotted ti any suitable scale, and at each point where an elevation was taker: an ordinate is laid off whose length is the elevation at that point. The utility of the profile is increased by making the vertical larger than the horizontal scale, as by so doing the relative differences in elevation are made much more apparent. The profile is very important in determining the grade and the probable expense of building streets, railroads, sewers and drains. In the case of a street profiles of the middle and side lines are plotted together, using ink of different colors if necessary to distinguish the three lines, and the suitable position for the finished grade is selected; profiles at right angles to the street line, or cross-sections, at suitable distances, as every 50 feet, are plotted, and on them is marked the position of the grade line; the area between the latter and the surface indicates the amount of excavation or embankment necessary.

The profile of any line on a contour map can be drawn without any additional field work, since the elevations of the intersections of the line and the contours are known from the height of the contours themselves. Thus the profile of a line through the middle of the upper row of squares in Fig. 39 would be made by first drawing the line in pencil across the map, then the elevation at the right end is 130 ; at about 115 feet, going toward the left, the elevation is 120 ; 70 feet further 110 ; and so on across the map. The vertical distances on a profile are usually plotted on a scale from 5 to 20 times as large as the horizontal scale.

Prob. 25. Draw the profiles of the ground along the lines $A B$ and $C D$ in Fig. 39, making the vertical scale ten times the horizontal scale. Draw also the profile on the line $B C$.

Art. 26. Adjustments of a Transit.
The adjustment of the telescope for parallax, described in Art. 22, must be made every time it is used. With care in
fandling the following additional adjustments of the transit will only need attention at rare intervals, but the instrument should be frequently tested to see if it is in order.
Plate Bubbles.-The plane of each small level bubble must be parallel to the horizontal plate. To find if this is the cass, carefully level the instrument, turn the alidade through about 180 degrees, and note whether the bubble is still in the middle of the scale. If not, move the capstan screws at the end of the bubble tube until one half the apparent error is corrected. Then level the instrument again and repeat the operation. The other plate bubble is adjusted in the same way.

Coilimation. - The line of sight must be perpendicular to the horizontal axis of the telescope. To find if this is the case, set up the transit on nearly level ground and sight on a well-defined distant object, reverse the telescope and place a pin about 300 feet from the instrument in the opposite direction; revolve the alidade, sight to the same object, reverse the telescope, and note if the line of sight strikes the pin. If not, set another pin in the line of sight by the side of the first, measure the distance between them and place a third pin at the middle of that distance. Then turn the capstan screws on the side of the telescope until the vertical cross-hair has moved one half the distance from the second to the third pin. Next pull up all the pins and repeat the operation until adjustment is secured.

Horizontal Axis.-The horizontal axis of the transit telescope must be parallel to the horizontal plate, or in other words the standards must be of equal height. To find if this is the case, level the plate bubbles, elevate the telescope as high as practicable and sight to a sharply defined object, depress the telescope and mark a point on the ground at about the same elevation as the instrument; then reverse the telescope, take another sight upon the same object and mark another point on the ground. If these points do not coincide, move the screws at the top of one of the standards until the vertical hair bisects the distance between the points. Next repeat the operation until the adjustment is perfect.

Attached Bubble.-The attached level bubble mast be paral-
lel to the line of sight of the telescope. To ascertain if this is the case, set up the instrument and level the telescope; drive a stake A about a foot from the plumb-bob, hold a level rod upon it, and take the rod reading a_{1} by sighting through the large end of the telescope, or by measuring to the end of the middle of the axis of the telescope. Drive another stake B about 400 away and take the rod reading b_{1}. Next set the instrument as near B as possible, take the rod reading b_{2} upon it, and the rod reading a_{2} upon A. Now if $a_{1}-b_{1}$ equals $a_{2}-b_{2}$, the lines of sight are horizontal, and the attached bubble is in ad-

Fig. 40.
justment. If not, without moving the level, set the rod on the stake A, clamp the target so that the rod reads

$$
\frac{1}{2}\left(a_{1}+a_{2}+b_{2}-b_{1}\right)
$$

set the horizontal cross-hair on the target, and then move the bubble into the middle of the tube by the screws for that purpose at the end. The operation is then to be repeated until perfect adjustment is secured. This is called the peg method of adjustment.

Vertical Arc.-After the preceding adjustments are made, the vernier of the vertical are should read $0^{\circ} 00^{\prime}$ when the attached bubble is level. If this is not the case, the vernier may be moved by the screws at its ends until the zero points coincide. This adjustment is not very satisfactory, and instead of making it, the correction may be noted and applied to each angle when it is read, being positive for angles above and negative for angles below the horizontal when the vernier is too far toward the objective end of the telescope.

Magnetic Needle.-The number and freedom of the oscillations of the needle indicate the strength of its magnetism. If the needle becomes sluggish it may be remagnetized by passing over it, toward each end, the pole of a magnet by which that
end is attracted, returning the magnet for each stroke through a circle of about one foot diameter. The straightness of the needle is tested by reading the angle between the two ends, first with the needle is its normal position, then when turned end for end; the difference is double the real error and the needle should be bent by that amount. After the needle has been straightened, the two ends will be 180° apart, if the pin upon which it rests is in the center of the circle. If this is not the case, clamp the instrument in any position and bend the pin till the ends of the needle are opposite corresponding points; then turn the instrument through 90° and again make the correction.

Prob. 26. Give the reasons for each of the above adjustments, drawing a figure in each case.

Art. 2\%. Comparison of Transits.

The tests of the telescope and its attached level, described in Art. 23, may be applied also to the transit. All the tests of adjustments, given in Art. 26, should likewise be made upon a transit which the engineer is about to purchase. In addition to these there are others relating to the graduated circle which will here be explained. It is often incorrectly assumed that the larger and heavier the instrument the more accurate work it is capable of doing. There is some truth in this with respect to the level, but very little as respects the transit. For ordinary work a transit is large enough if it has a circle four inches in diameter. Such a circle can be made to read to halfminutes, and be practically as easily read as if its diameter were six inches. Moreover, the extra weight of the larger sizes does not materially affect the stability of the transit as that is mainly governed by the stiffness of the tripod and head. For the purposes of the land surveyor, a plain transit,-that is, one without attached bubble and vertical arc,-is perhaps sufficient. For work in towns and cities the engineers' transit, which has the level bubble and vertical arc and also two verniers, is to be preferred. Unless there be two verniers the following tests of the graduated circle cannot be made.

Angular Distance of Verniers.-The angular distance between the zeros of the two verniers should be exactly 180 degrees, but it sometimes varies from this by half a minute, owing to lack of care by the maker. To ascertain its amount the obsorver must be able to estimate halves or quarters of a minute; this is not difficult if the two lines on each side of the one that apparently coincides are also regarded. Vernier A is set exactly at 0° and then the amount which vernier B exceeds or lacks of 180° is read. Next, vernier A is set exactly at 20° and the amount which vernier B exceeds or lacks of 200° is read. The process is continued at intervals of twenty degrees over the entire circle, and the results are tabulated in the second and fourth columns of the table below, the plus and minus signs denoting the excess and deficiency of the supplement of the angle n as read on vernier B. The table is so arranged that the values of n from 0° to 180° are in the first column, while those from 180° to 360° are in the third column, and the respective discrepancies for the two parts of the circle are called d_{1} and d_{2}. The next step is to take the means of the corresponding values of these discrepancies, observing the

$D=+120.0$.
algebraic signs, and place them in the fifth column. The sum of these is $D=+120^{\prime \prime} .0$, and the angular distance of the verniers is 180 degrees plus one-ninth of D, or,

Angular distance of verniers $=180^{\circ}+\frac{1}{9} D=180^{\circ} 00^{\prime} 13^{\prime \prime}$,
which shows that an error of $13^{\prime \prime}$ exists. A more reliable result can be obtained by taking readings at intervals of ten de.
grees around the circle, in which case the sum D is to be divided by eighteen.

Eccentricity.-If the center of the alidade, to which the verniers are attached, does not coincide with the center of the graduated plate, it will revolve around the latter in a small circle. When the vernier is on a line joining these centers there is no error, but for any other position all the readings are affected by a greater or less error of eccentricity. The last column in the above table, which is found by taking the means of the differences of the two sets of discrepancies, shows roughly the errors of eccentricity. From it there appears to be no error when vernier A reads about 105° or 285°, and a maximum error at about 160° or 340°. A closer estimate of these quantities can, however, be made, and the distance between the two centers be computed. Let each of the quantities in the last column be multiplied by the sine of the angle in the first column and the algebraic sum of the products be called s. Let each quantity be also multiplied by the cosine of the angle, and the algebraic sum of the products be called t. Using only two decimals in the sines and cosines, these values are found to be $s=-20^{\prime \prime} .4$ and $t=-208^{\prime \prime} .3$. Then the probable angle n_{0} at which no error of eccentricity exists is found by

$$
\tan n_{0}=-\frac{t}{8}=-10.2
$$

whence $n_{0}=95 \frac{1}{2}^{\circ}$. Also the probable maximum value of the error of eccentricity is, if m be the number of readings on half the circle,

$$
E=-\frac{2 t}{m \sin n_{0}}=46^{\prime \prime} .5
$$

Lastly, the radius of the circle in which the center of the alidade revolves round the center of the limb is to be found. Let R be the radius of the graduated limb, which in this case is $2 \frac{1}{2}$ inches; then the radius of eccentricity is

$$
r=\frac{1}{2} R E \sin 1^{\prime \prime}=0.00028 \text { inches, }
$$

which is the distance between the two centers. Although this is a very small quantity, it yet produces sensible errors in the readings.

By taking several sets of readings in the manner described.
a fair idea can be obtained of the angular distance between the verniers and of the effect of eccentricity on readings in different parts of the circle. The theory of errors of eccentricity is not given here, as it belongs properly to higher surveying, but it has been thought well to explain the method of procedure in order to enable the owner of a transit to investigate its weaknesses. It fortunately happens that in precise angle measurements the effect of these sources of error can be largely eliminated by the method of repetitions described in Art. 30.

Prob. 27. Test two transits by the above methods and write a report giving the observations and computations in full, and comparing the two instruments.

Art. 28. Standard Tapes.

In town and city surveying linear measurements of a high degree of precision are often necessary, and it is also very important that all measures should be referred to the same standard. A steel tape duly certified by the Bureau of Weights and Measures at Washington, is the most convenient standard, and it should not be used for any purpose except for the comparison of other tapes. The standard tape is certified to be correct at a given temperature when under a given pull; or the error of its length is stated for a given temperature and pull. The coefficient of expansion, or the relative change in length for one degree Fahrenheit, should also be stated in order to render comparisons at other temperatures possible. For example, a certain tape 400 feet long is stated to be a standard at 56 degrees Fahrenheit when under a pull of 16 pounds, and its coefficient of expansion is given as 0.00000703 . At a temperature of 49 degrees the length of this tape will be

$$
400-0.00000703 \times 7 \times 400=399.980 \text { feet; }
$$

at a temperature of 70 degrees its length will be

$$
400+0.00000703 \times 14 \times 400=400.039 \text { feet }
$$

To compare another tape with the standard it is necessary to know its coefficient of expansion also. In order to determine this the tape should be stretched out on the floor of a large
room whose temperature can be varied or be kept tolerably uniform. With a spring balance at each end it is pulled to the proper tension, the thermometer noted, and a certain length marked on two tin plates temporarily fastened on the floor. The temperature is then raised or lowered, and the operation again repeated. The change of length as marked on the tin plates is accurately measured, and this divided by the total length and by the number of degrees of change gives the coefficient of expansion. For example, suppose that at a temperature of 41 degrees a length of 60 feet is marked off, and that this is done again at a temperature of 79 degrees, the pull being the same in both cases, and the change in length being 0.016 feet. Then the coefficient of expansion is

$$
(0.016 \div 60) \div(79-41)=0.00000701
$$

Owing to the delicacy of this operation, a single result is not reliable, and hence a number of observations should be made under different conditions and the mean of the various results be taken for the final coefficient.

The operation of comparing a tape with a standard consists in laying off the same distance by both and thus determining the temperature at which the former is correct. The pull on the tape may be selected to agree with its size, but the pull on the standard must always be the given assigned pull. As an example, let the standard be exactly 400 feet long at 56 degrees Fahrenheit when under 16 pounds pull, and its coefficient of expansion be 0.00000703 . Let the tape to be tested be 300 feet long, its coefficient of expansion being 0.00000690 . With the standard 300 feet is laid off with the pull of 16 pounds, and the temperature is noted as 63 degrees. With the tape 300 feet is also laid off under a pull of 18 pounds, the temperature being noted as 64 degrees. The second distance is found to be 0.039 feet longer than the first. Now let t be the temperature at which the tape is correct under 18 pounds pull, then

$$
\begin{gathered}
300\left[1+0.00000690\left(64^{\circ}-t\right)\right]-300\left[1+0.00000703\left(63^{\circ}-56^{\circ}\right)\right] \\
=0.039
\end{gathered}
$$

from which t is found to be 38 degrees. The tape is therefore
a standard at 38 degrees Fahrenheit when under 18 pounds
pull, and a measurement l made by it at any other temperature T will have the true value $l+0.00000690\left(T-38^{\circ}\right) l$.

If the tape is to be used under different pulls its coefficient of stretch, or relative change in length for one pound pull, should also be determined. The operation for doing this is similar to that above described for the coefficient of expansion, except that the temperature should be constant and the pull be varied. For example, let a length of 300 feet be marked off at 15 pounds pull and again at 19 pounds pull, and let the change in length be 0.026 feet. Then the coefficient of stretch is $(0.026 \div 300) \div(19-15)=0.0000216$. Any length l made under a pull P, other than the standard pull of 18 pounds, will then have the true value $l+0.0000216(P-18) l$, provided the standard temperature of 38 degrees exists.

Sometimes the tape is stretched over two supports A and B, and thus, owing to the sag, the measured distance is too long.

Fig. 41. Let l be the distance read on the tape under a pull P, let d be the deflection or sag at the middle, and w the weight of the tape $p \in r$ linear foot. The curve of the tape is closely that of a parabola, and if L be the horizontal distance $L=l-\frac{8}{3} \frac{d^{2}}{l}$, very nearly. Also taking moments at the middle of the span $P d=\frac{1}{2} w l \cdot \frac{17}{7^{7}}$. Eliminating d from these two equations the adjusted length is found $L=l-\frac{1}{6}\left(\frac{w l}{2 P}\right)^{2} l$. For example, let $w=0.0066$ pounds per foot, $P=16$ pounds, and $l=309.851$ feet, then $L=$ 309.642 feet. If the distance $A B$ be subdivided into n equal spaces by stakes whose tops are on the same level as those at A and B, then $L=l-\frac{1}{6}\left(\frac{v o l}{2 n P}\right)^{2} l$. For instance, if $n=7$, ${ }^{4}$ hen for the above data $L=309.847$ feet.

To recapitulate: Let t be the temperature and p the pull at which a tape is a standard, let T be the temperature and P the pull at which a measurement l is taken, let e be the coefficient of expansion and s the coefficient of stretch, let 20 be the
weight of the tape per linear foot, and if sag exists let n be the number of equal spaces in the distance l. Then

Correction for temperature $=+e(T-t) l$;
Correction for pull $=+s(P-p) l$;
Correction for sags $\quad=-\frac{1}{24}\left(\frac{v l}{n P}\right)^{2} l$.
For example, let $t=56$ degrees, $p=16$ pounds, $e=0.00000703$, $s=0.00001782, w=0.0066$ pounds per foot; let a distance 309.845 feet be measured at a temperature of $49 \frac{1}{2}$ degrees under a pull of 20 pounds, there being 7 subdivisions in the line. Then the correction for temperature is -0.0142 feet, that for pull +0.0221 feet, and that for sag -0.0028 feet. The adjusted measured distance is hence 309.850 feet.

Lastly, if the measurement is made upon a slope it must be reduced to the horizontal by multiplying it by the cosine of the angle of slope. It is, however, generally best to find the difference of elevation of the two ends of the line by leveling. If h be this difference and L the length on the slope, the horizontal distance is $\sqrt{L^{2}-h^{2}}$. For instance, if the length 309.850 feet has 2.813 feet as the difference of level of the ends, then the horizontal distance is 309.838 feet.

Prob. 28. A tape is a standard at 41 degrees Fahrenheit when under 16 pounds pull and no sag, its coefficient of expansion being 0.0000069 and its coefficient of stretch 0.000019 . Find the pull P so that no corrections will be necessary when measurements are made at a temperature of 38 degrees and with no sags.

Art. 29. Base Lines.

A triangulation necessarily starts from a measured base whose length must be known with precision if the territory to be embraced by the triangles is large. A long steel tape, duly standardized, is the best instrument for making the measurement. The base line should be divided into divisions, each shorter than the length of the tape, and stout posts be set at the ends of the base and at the points of division. On these posts are placed metallic plugs, each having drawn upon it a
fine line at right angles to the direction of the base. The elovations of these plugs should be carefully determined. Each division is then subdivided into equal parts by light stakes set in line and on grade, the distance between the stakes being fifty feet or less. On each stake two small nails may be placed to keep the tape in position.

The measurement should be done upon a cloudy day with little wind, in order to avoid errors due to change in temperature. The tape is suspended over two plugs and upon the intermediate stakes and pulled at both ends by spring balances to the desired tension. At one plug a ten foot mark on the tape is made to coincide with the fine line on the plug, and at the other end a mark is made on the tape directly over the fine line on that plug. The odd distance can then be measured with a separate scale to the nearest thousandth of a foot. Several measures of each division should be made with different pulls, and the temperature be noted at each reading.

The following field notes of a short base measured by students of Lehigh University will illustrate the method of operation. There were three divisions, designated as I, II, and III,

咎		Difference in Elevation of Ends.		Pull.	Observed Distance.	Remarks.
III	7	feet2.813	$51{ }^{\circ}$ $50 \frac{1}{2}$ $50 \frac{1}{2}$ 50	pounds 16 18 20 16	feet 309.865 309.857 309.842 309.870	Base EG. Oct. 3, 1888, P.M.
			50 $49 \frac{1}{2}$ 48	18 20 10	309.857 309.845	Cloudy, with slight wind.
	7	5.618	48	16	333.746	
			$47 \frac{1}{2}$ $47 \frac{1}{2}$	18 20	332.727 332.712	
			47^{2}	16	332.740	
			47	18	332726	
			47	20	332715	
I	6	7.924	47	16	2 29.850	
			47	18	279.843	
			47	20	279.832	
			48	16	279.848	
			$48{ }^{48}$	18 20	279.840 279.837	

the first having six and the others seven subdivisions. The steel tape used was about 400 feet long. It was stated by the
makers to be a standard at 56 degrees Fahrenheit when under a pull of 16 pounds and having no sag. By a series of experiments its coefficient of expansion had been determined to be 0.00000703 , its coefficient of stretch 0.00001782 , and its weight per linear foot 0.0066 pounds. In order to adjust the field results the expressions deduced in the last article hence are

Correction for temperature $=-0.00000703(56-T)$;
Correction for pull $=+0.00001782(P-16)$;
Correction for sag

$$
=-0.00001815 \frac{i^{3}}{n^{2} P^{2}}
$$

from which the corrections are computed. For example, for division III, where $n=7$, the mean of the observed distances

$\underset{T}{T}$	$\begin{gathered} \text { Pull } \\ P . \end{gathered}$	Observed Distance.	Corrections.			Adjusted Distance.
			Temp.	Pull.	Sag.	
51° $501 / 2$ $501 / 2$ 50 50 491/2	lbs.	feet	feet	feet	feet	feet
	16	309.865	-0.0109	0	- 00043	309.850
	18	. 857	- 0.0120	$+0.0110$	- 0.0034	. 853
	20	. 842	- 0.0120	$+0.0221$	-0.0028	. 849
	16	. 870	- 0.0131	0	-0.0043	. 853
	18	$\begin{array}{r}.857 \\ \\ \\ \hline 095\end{array}$	-0.0131	+0.0110	-0.0034	${ }_{309} .8515$
	20	309.845	-- 0.0142	+0.0220	-0.0028	309.850
$n=7 \quad \begin{aligned} \text { mean } & =309.856 \\ h & =2.813 \text { feet } \end{aligned}$					e2	309.851

is 309.856 feet, and this is taken as the value of l in all cases. The corrections being found, the adjusted inclined distances are obtained, and their mean 309.851 is the value of the inclined length. Lastly, this is reduced to the horizontal, giving $\sqrt{309.851^{2}-2.813^{2}}=309.838$ feet as the final result.

Proceeding in the same manner with divisions II and I the corrections are found and the sum of the three horizontal distances is 922.223 feet, which is the final result from the field work above given. The probable uncertainty of this result is less than 1 part in 150,000 , which shows that work of a high degree of precision can be done with a steel tape whose constants are known.

Prob. 29. Compute the adjusted inclined lengths and the inal horizontal lengths of divisions II and I of the above base line.

The process of triangulation, after the base is measured, ;onsists in observing the angles of all the triangles. The data are thus at hand for computing the lengths of all the sides. If the azimuth of one side is known, or has been obtained by the method of Art. 40, the azimuths of all the other sides are easily found. Lastly, the latitudes and longitudes of the stations of the triangulation are computed (Art. 3).

In triangulation angle measurements are required to have a precision greater than the least reading of the vernier will give, and the method of repetitions is to be used. To illustrate tle principle let $L O M$ be the angle to be measured. Setting the vernier at $0^{\circ} 00^{\prime}$ point first on L, unclamp the alidade, and point on M. Now, without reading the vernier, unclamp the limb, point on L, unclamp the alidade, and point on M. The vernier has thus traveled twice over the arc, and if it be now read the value of the angle is one half the reading. If, how. ever, a third repetition is made before reading, the value of the angle is one third of the final reading. Thus the effect of repeating an angle is to divide the error of the vernier reading by the number of repetitions. More than four repetitions are, however, not usually advisable, since the effort of clamping is to introduce a constant tendency to error in one direction.

The process of repetition in any important case should be so conducted as to eliminate the effects of the errsrs of non-adjust. ment, those due to imperfections of the graduated limb, and those due to pointing and clamping. Errors due to lack of level of the limb and those due to setting the instrument or signals in the wrong position cannot, however, be eliminated, and hence great care should be taken that these do not exist. Errors due to collimation and to the horizontal axis of the telescope may be eliminated by taking a number of repetitions with the telescope in the direct position and an equal number with it in the reverse position. Errors due to angular distance between the verniers and to eccentricity of the graduated limb may be eliminated by reading both verniers and taking their mean. Errors due to inaccurate graduation may be eliminated
by taking readings on different parts of the circle. Errors due so pointing and clamping may be largely eliminated by taking one half of the repetitions in one direction and the other half in the reverse direction.

The following form of field notes shows four sets of measurements of an angle $H O K$, each set having three repetitions. The first and fourth sets are taken with the telescope in the direct position, the second and third with it reversed. The first and second sets are taken by pointing first at H and secondly at K, the third and fourth are taken by pointing first at K and secondly at H. At each reading both verniers are read. The vernier is never set at zero, but the reading before beginning the set is taken, this being made to differ by about 90 degrees in the different sets so as to distribute the readings over the entire graduation. After completing a repetition both verniers are again read. In the first and second sets the mean fnal reading minus the mean initial reading is divided by 3 , the jumber of reperitions, to give the angle as determined by that set. In the third and fourth sets the initial reading minus the tinal reading is divided by 3 . If very accurate work is required four or eight additional sets may be taken on different parts of the circle, and the mean of all will be the probable value of the angle.

			Reading.			Angle.	Remarks.
			- ${ }^{\text {a }}$,	B	Mean		
H	3	D	$\begin{array}{ccc}20 & 04 & .00 \\ 207 & 19 & 30\end{array}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	15	62.2510	Angle at station O, Sept. 30, 1895, 3 p.m. Brandis Transit, No. 716.
κ			2071930				
H	3	R	$\begin{array}{ll} 110 & 12 \\ 257 & 27 \end{array}$		30	$62 \quad 2508$	John Doe, observer; R. Roe, recorder.
K					52		
K	3	R		15	07	$\begin{array}{llll}62 & 25 & 33\end{array}$	Air hazy, no wind.
H	3			30	22	625	
K	3	D		00	0822	$62 \quad 25 \quad 35$	$80+360=440^{\circ}$.
H							Mean of four sets, $H O K=62^{\circ} 25^{\prime} 21^{\prime \prime}$.

In repeating angles the following points should be noted: The instrument should never be turned on its vertical axis by taking hold of the telescope or of any part of the alidade; the limb should never be clamped when the verniers are read; the observer should not walk around the instrument to read the verniers, but standing where the light is favorable he should revolve the instrument so as to bring vernier A and then vernier B before him ; the observer should not allow his knowledge of the reading of vernier A to influence him in taking that of B; care must be taken to turn the clamps slowly and not too tightly. If these precautions be taken the value of an angle

can be obtained to a high degree of precision with a transit reading only to minutes.

The stations of the triangulation should be points which are not liable to be lost, such as holes drilled in rocks or in monuments firmly planted in the earth. In the survey of a town, however, some points may be used upon which the transit cannot be set, as for instance church spires, but these must be so selected that they can be seen from many other stations. Care should be taken that all the triangles are well proportioned, and in general this will be secured when no angle is less than 30 degrees or over 150 degrees.

A triangulation forms the framework of a map. All its stations being accurately located, a traverse may start at any one and take the notes necessary for a map of that vciniity, checlr-
ing the field work, perhaps, by ending at another station. Thus there is no trouble in joining different surveys, for all are connected with the same skeleton framework. In plotting the maps a coordinate system of lines 1000 feet apart is first drawn and upon it the triangulation stations are located; from these the various traverses or stadia lines are laid off as indicated by the field notes. The precision of triangulation work will depend upon the purpose for which it is to be used; for ordinary town or topographical surveys it will perhaps be sufficient if the lengths of the lines and the coordinates of the stations are found to the nearest tenth of a foot.

In Fig. 42 is represented a small triangulation system in which $E G$ is the base line and P a spire. All the angles, except those at P, were observed by the method of repetitions, and a part of the final results of the computations are given in the table below. Here, as in Chapters I and II, the azimuths

Line.	Azimuth.	Distance. feet.	Station.	Latitude. feet.	Longitude. feet.
$A Q$	$186^{\circ} 49^{\prime} 38^{\prime \prime}$	404.57	A	2014.83	3406.63
A E	1253607	778.95	E	2 217.30	3743.23
$A P$	$191 \quad 2554$	593.55	G	2804.40	4661.32
$E A$	2053607	778.95	H	2458.20	5379.37
$E G$	843448	922.22	K	2250.76	5733.05
$E P$	$160 \quad 18$	\%61.87	M	1290.02	5266.68
$G P$	2192528	1041.35	N	988.38	4435.91
$\boldsymbol{G H}$	1154428	797.15	Q	1613.13	3358.54
$H P$ $M P$	$\begin{array}{lll}251 & 37 & 29 \\ 299 & 16 & 15\end{array}$	1453.48 1452.09			
$M P$	2991615	1452.09			

are counted from the north around through the east, south, and west, while latitudes are positive toward the north and longitudes positive toward the east. This is the usual method in land and town surveying. It should be said, however, that in geodetic work and in extended topographical surveys the azimuths are often counted from the south around through the west, north, and east, while latitudes are taken as positive toward the north and longitudes as positive toward the west.

Prob. 30. Compute the latitude and longitude of \boldsymbol{P} from the above data by several different methods.

CHAPTER IV.

TOPOGRAPHIC SURVEYING.

Art. 31. Large-Scale Topography.

The scale to which topographic maps are drawn depends upon the use for which they are designed; if it is desired to show a large extent of territory at once, the scale will be determined by the size of the finished map which will be most convenient for use ; on the other hand, if it is desired to show a smaller territory but with more minuteness, a larger scale could be adapted to the same size sheet as before. The scale of the map influences the degree of accuracy employed in the field work and also the appearance of the signs used in representing the various topographic features.

Under the term large scale, it is intended to include maps plotted to a scale larger than 400 feet to an inch. Such maps are designed to show the contour lines with from 2 feet to 10 feet intervals, the former distance being applicable in case the sountry is flat, and the latter where the slopes are abrupt or where less precision is required. All roads and streets, whether highways or on private property, are shown and also the positions of the property lines. Dwellings and other buildings are represented in their true shape and with dimensions drawn to the scale of the map. The positions of isolated trees are located by measurement, as are also the boundaries of woods. If a stream is to be shown, both sides, instead of the middle line alone, are plotted unless the width is so small that one stroke of the pen would cover both sides. It sometimes happens that objects have to be plotted out of proportion to the rest of the map because, mechanically, it is impossible to represent them on the proper scale. It is quite impracticable to plot, or for the eye to distinguish, distances on the map of less than $\frac{1}{100}$ of an inch; if the scale of the map is 200 feet to an inch, $\frac{1}{100}$ of an inch represents 2 feet and hence objects of less size than that are indicated by one line. A specimen of a large-scale topographic map is shown in Fig. 43.

Fia. 43.

The conventional signs used in illustrating topographic characteristics, whether indicating the nature of the ground or of the crops growing upon it, are designed to bear some degree of resemblance to the objects they are to represent ; the motive in the use of the signs, however, is to convey information concerning the character rather than the actual appearance of the objects, and hence no attempt is made to draw the signs to the scale of the map, other than to make them of such size and weight as will harmonize with the other parts of the drawing. It is of the first importance that the topographic draftsman be entirely familiar with the exact appearance of the signs he wishes to use ; especially is this true if the drawing is to be on a large scale where no marks are made at random, but each one is to perform a definite part in producing the general effect of the whole. Some of the signs in most frequent use are shown in the sketches given in Fig. 44.

Care must be taken that the signs are so made as to avoid a flat appearance, which is a common fault of otherwise well executed dravings. It is a universal custom to consider the light as coming from the direction of the upper left-hand corner, in which case the shadow will be on the lower and righthand sides of the figures, and accordingly those parts are made with a somewhat heavier stroke. In making the signs for grass the shade is very slight, except in swamps where the sladow is drawn under each tuft, but in case of the forest it is of great importance in relieving the appearance of sameness which the map would otherwise have. In representing water and the shore, it is a common fault to make the line of the latter too light, the distinction between this line and the first shade line of the water should be very marked.

Scales are frequently designated as ratios; thus a scale of $2 \pi^{\frac{1}{0} 000}$ is such that any actual line in the field is 25,000 times as long as its representation on the map. A scale of 400 feet to an inch is the same as 4800 inches to an inch, or $\frac{1}{4800}$ as commonly expressed.

Prob. 31. How many feet are represented by one inch on a wale of $\frac{1}{1000}$? How many acres are represented by one square inch on a scale of $\frac{1}{\pi 000}$?

? Cleapino * * * * $\bigcirc \odot \circ \circ \circ \odot \circ$... Cotton. .. - $0 \circ \circ \circ \circ \circ \circ$ - $00000 \circ$

tisg. 44.

Art. 32. Small-Scale Topography.

In surveys covering very large areas the details are made subordinate to the general features of the country. In the previous article several reasons for so doing were stated, and in addition, the usefulness of the maps is not such as to warrant so great expenditure as would be involved in making the maps to a large scale. The saving in the cost is due, partly to the fact that less labor is necessary in plotting the maps, but more especially to the economy of time possible in making the survey, since objects need be located with only such precision as will make the errors on the map unobservable. The smaller the scale the less frequent will be the revisions necessary to keep the maps reliable since the objects subject to change are, for the most part, omitted on the small-scale maps.

The topographic maps made by the United States Coast and Geodetic Survey and by the United States Geological Survey are drawn to the scale of 1 to $62,500,1$ to 125,000 , or 1 to 250 ,000 , with corresponding contour intervals of 5 to 50 feet, 10 to 100 feet and 200 to 250 feet. These scales are seen to be approximately one, two, or four miles to the inch. The largest scales are used where the country is most densely populated or where it is flattest. Some small-scale maps show the streams, the state, county, and town divisions, the highwayis, railroads, and canals; but private ways and property lines are not represented; features of public importance being given, and those of a temporary nature omitted.

The conventional signs used on the small-scale maps are made to present approximately the appearance of those of larger scales when seen from a distance; the details can hardly be distinguished without the aid of a magnifying glass. Buildings are represented simply by black rectangles without much regard to the shape or size of the houses themselves. Isolated trees, small orchards, and groves are not shown, but the boundaries of forests are plotted to scale and the interior is filled in as shown in Fig. 45, with signs similar to those given in Fig. 44, but very much smaller. The highways are

Fig. 45.
represented by parallel lines of uniform distance apart, without regard to the actual width of the road. The scale of Fig. 45 is $\frac{1}{4800}$, while that of Fig. 53 is $\frac{1}{800000}$, both being taken from the maps of the Coast and Geodetic Survey.

The use of colors is not as frequent as formerly, but the appearance of any map is improved and its utility increased by the contrast thus made, if the land be covered with a light wash of burnt sienna with the contour lines of a darker shade of the same color, and the water colored blue; all other marks are in black.

Prob. 32. Draw a profile of the surface as cut out by a vertical plane through the $N E$ and $S W$ corners of Fig. 45.

Art. 33. Theory of the Stadia.

The fundamental principle of stadia measurements is that of similarity of triangles. In Fig. 46 let T represent a tube having three horizontal hairs and let vertical graduated rods be held in the positions $A B$ and $A_{1} B_{1}$. The eye being at the end E, the distances $C E$ and $C_{1} E$ of the rod from E are directly

Fig. 46.
proportional to the spaces $A B$ and $A_{1} B_{1}$ apparently intercepted on the rods by the cross-hairs. This simple proportion is modified somewhat in practice by the fact that a telescope replaces the plain tube.

In Fig. 47, the cross-hairs are at a and b, and i is the distance between them. Rays of light supposed to pass outward from a and b are, by refraction of the object glass, made to intersect at O, at a distance from the lens equal to the focal length of the telescope ; these rays intersect the rod at A and B, the points upon which the hairs a and b are apparently projected by the eye at E. If the rod is moved to any other
point distant d^{\prime} from O the space intercepted on the rod by the cross-hairs will have the same relation to $A B$ that d^{\prime} does to d, because of the similarity of triangles as in Fig. 46. The sotal distance from the instrument to the rod is $D=c+f+d$; in which c is the distance from the plumb-bob to the object glass and F is the focal length of the telescope. From the figure it is seen that
hence

$$
\begin{gathered}
d: A B:: f: i, \quad \text { or } \quad d=R \frac{f}{i} \\
D=(c+f)+R \frac{f}{i}
\end{gathered}
$$

From this equation it would appear that the determination of D depends upon very careful measurements of f and i, but

Fig. 47.
such measurements are impracticable and unnecessary since the value of $\frac{f}{i}$ can be determined by trial when c and f are approximately known. The distance c is found by measuring from the axis of the telescope to the rididle of the object glass when the telescope is focused for a dist inse of about 300 feet or a mean of all the distances that are to be measured, When the telescope is focused for an infitite sistarice fis tbe space between the object glass and the cross-hairs ; this can readily be measured with sufficient accuracy when the focus is for an object a mile or so distant. To find the value of $\frac{f}{i}$, measure from the center of the instrument any convenient distance, as $(c+f)+200$ feet, along level ground and hold the rod on the point thus found. Sight to the rod and count the number of spaces on it between the upper and lower hairs, then the constant number $\frac{f}{i}$ can be found from the equation
$D=(c+f)+R_{i}^{f}$. Thus let $c=5$ inches, $f=7$ inches, the measured distance to the rod 201 feet, and the space intercepted on the rod 2.02 feet ; then
or

$$
\begin{gathered}
201=(0.48+0.52)+2.02 \frac{f}{i} \\
\frac{f}{i}=\frac{200}{2.02}=99.01
\end{gathered}
$$

This would be a very awkward factor to use and hence it is desirable to either change the value of i by moving the horizontal hairs, or to substitute another rod on which the graduations are of such size that $\frac{f}{i}$ multiplied by one of the units will equal 100 .
To adjust the hairs to fit the rod, measure, on nearly level ground, some convenient distance, as $(c+f)+200$ feet from the plumb-bob, and sight upon the rod held at that distance from the instrument ; move the upper hair, by means of the capstan screw for the purpose, till one space is intercepted on the rod between the upper and middle hairs, then similarly apply the correction to the lower hair. In case an ordinary self-reading level rod is used the cross-hairs would intercept; two feet on it when the distance from the instrument is $(c+f)+200$ feet.

If the cross-hairs are fixed, the rod can be so graduated that the number of spaces intercepted on it by the hairs will aiways be the numbier of hundred feet that the rod is from a point $(c+f)$ feet in front of the instrument. Sight to the plain zod held at a cistance, say, $(c+f)+300$ feet from the instrument and mark where the upper and lower hairs intersect the rod ; this space divided, in this case, by three is then the unit by which the whole rod is to be graduated. After the units are marked on the rod they are sub-divided into ten or twenty equal parts to aid the eye in estimating distances other than the even hundreds.
When the rod is to be used in surveys which are to be plotted to a small scale, the constant $(c+f)$ is often disre. garded and the rod is graduated accordingly. The rod is held at distance from the plumb-bob which is supposed to be about
a mean of all distances to be measured, and so graduated that the rod reading will correctly indicate that particular distance. When the rod is held nearer the instrument the indicated distance is a little too small while distances greater than the mean are slightly too large. If the rod is graduated for 500 feet the maximum error for distances between 100 feet and 1000 feet will be about 1 foot.

If the rod is to be always used in open country where the whole of it can be seen the following method of graduation may be adopted. Hold the rod at 100 feet from the instrument and mark the space intercepted by the cross-hairs, the upper one being sighted to the uppermost mark on the rod or the lower one to the lowest mark; next hold the rod at 200 feet from the instrument, direct the same hair as before to the mark at the end of the rod and note the point intersected by the other hair. The graduations for the entire rod are made in a similar manner by marking the spaces actually intercepted at each successive 100 feet distance from the instrument, one hair always being on the beginning of the graduations.

When the line of sight is inclined to the horizontal it is evident that the distance indicated on the rod is not the required horizontal distance from the instrument. If the rod is held perpendicular to the line of sight, the reading will indicate the inclined distance from the instrument to it ; the hori-

Fig. 48.
zontal distance can then be found if the angle between the line of sight and the horizontal is known. In practice it is found to be impracticable to hold the rod at right angles to the line of sight ; it is hence placed vertical and an expression is found by which the horizontal distance is computed from the rod reading and the measured vertical angle v

In Fig. 48, $A B$ is the reading on the vertical rod and $A^{\prime} B^{\prime}$ that when the rod is perpendicular to the line of sight. Since the angle $A O B$ is small, no appreciable error will result if $A A^{\prime} B$ is considered as 90°; then

$$
A^{\prime} B^{\prime}=A B \cos v
$$

$A^{\prime} B^{\prime}$ indicates the distance $O P$, and $T P=c+f+O P$.

$$
\begin{aligned}
T S & =T P \cos v=(c+f+A B \cos v) \cos v \\
D & =(c+f) \cos v+R \cos ^{2} v
\end{aligned}
$$

when R is the distance indicated by the rod reading. The term $(c+f) \cos v$ may always be taken as one foot without any practical error.

The difference in elevation H is found by sighting the middle cross-hair to a point on the rod at the same height a above the ground that the telescope is, and observing the vertical angle v. Thus,

$$
\begin{aligned}
\text { or, } & P S
\end{aligned}=T P \sin v=(c+f+A B \cos v) \sin v ; ~ H=(c+f) \sin v+R \sin v \cos v . ~ l
$$

For values of v less than 4 degrees the terms $(c+f) \sin v$ may be neglected, and $(c+f)$ may generally be taken as one foot.

Prob. 33. Let $(c+f)=0.87$ feet, $R=465$ feet, and $v=3^{\circ}$, 32^{\prime}. Compute the horizontal distance D and the difference in elevation H. What error results if $(c+f)$ is not considered?

Art. 34. Stadia Reductions.
The formulas for D and H, deduced in the last article, invoive much labor in computation, and hence Table \mathbf{X} is given to facilitate the reductions. As an example of its use, suppose that $(c+f)$ for the instrument is 1 foot, and that a certain rod reading gives 680 feet for a vertical angle of $5^{\circ} 26^{\prime}$. Then, by the help of the table,

$$
\begin{aligned}
& D=0.99+6.8 \times 99.10=674.9 \text { feet } \\
& H=0.09+6.8 \times 9.43=64.2 \text { feet }
\end{aligned}
$$

or, $D=674$ feet and $H=64.1$ feet if the value of $(c+f)$ is not taken into account.

The work of reducing to horizontal distances and differences
of elevation the results of a single day's work in the field with the stadia is exceedingly tedious, even with the aid of Table \mathbf{X}, and many schemes designed to lighten this labor have been suggested. Of these devices the most common are in the form of diagrams or of the slide rule. The objection to diagrams is that lines crossing at very acute angles have an indefinite intersection and separate diagrams have to be constructed for, at most, every ten degrees of vertical angle and also separate ones for horizontal distances and differences of elevation. The slide rule performs the operations with considerable accuracy and dispatch, but the cost of such an instrument prohibits its use in many instances.

In Fig. 49 is shown a sketch of an apparatus whose efficiency has been tested by several years' use and which may be made

Fig. 49.
by any student of average manual skill. The apparatus consists of a large sheet of heavy paper, a movable wooden arm, and a triangle. Along the lower edge of the paper is a graduation to some convenient scale of equal parts and, about the zero of this as a centre, an arc of a circle is drawn through or near the other end and divided into degrees. The movable arm and the longer of the two perpendicular sides of the triangle are graduated to the same scale as that on the paper.

In making the reduction the movable arm is set to correspond
with the angle of elevation or depression, V, as indicated by the circular arc. The triangle is then placed as shown, so that it crosses the lower scale at the rod-reading on the latter. Since $A B$ is perpendicular to $O B$ the reading on the scale of the arm will be $R \cos V$. The triangle is then moved into the position shown by the dotted lines where the reading on the horizontal scale at B_{1} is the same as was noted at B or $R \cos V$. With the triangle in this position the horizontal distance $R \cos ^{9} V$ may be read at C on the scale of the arm and the difference in elevations at B, on the scale of the triangle. The constants for the instrument must be added to these results. Since $B C$ is small, usually less than an inch, the operation consists practically of one setting for the two reductions. The reductions for the transit stations should always be checked by the tables. As an example of reduction let V be $22^{\circ} 30^{\prime}$ and R be 200 feet. The arm is set at $22^{\circ} 30^{\prime}$, as shown in Fig. 49, and the triangle is so placed as to intersect the lower scale at the 200 mark. The reading on the arm is seen to be about 185 , so the triangle is slipped back till it crosses the lower scale at 185. The reading then at C is about 171 and at B_{1} on the triangle is slightly over 70. The horizontal distance and difference of elevation are respectively 171 feet and 70 feet plus corrections for instrumental constants.

The accuracy of the above example does not of course compare with that possible with a full-size apparatus. The particular one described has an arc of 40 inches radius divided into 5 -minute spaces, which are large enough to make readings to single minutes practicable. The other divisions are on the scale of 10 feet to the inch, so that tenths of a foot may be easily read. The apparatus was constructed at an expense of less than one dollar, and with it from 140 to 150 reductions per hour have been made. It is better for permanent use to make the graduations on a drawing-board instead of on paper, as the latter is liable to shrink or expand with changes of temperature.

Prob. 34. Construct an apparatus for stadia reductions like that above described, and compare the precision of its work with that of Table \mathbf{X}.

Art. 35. Field Work.

The topographic survey of a large territory is preferably based upon a system of triangulation, which will afford numerous checks upon the stadia traverses. The stations should be located, not only to secure well-conditioned triangles, but also so that they may be of the greatest use to the topographers. In a flat wooded country a triangulation system is carried on only at great expense of erecting towers, and in such cases it is sometimes advisable to locate the permanent reference stations by means of carefully conducted traverses. By whatever method they are established, the stations should be near enough together to furnish means of verifying, each day, the work of the topographical parties. The elevations of the stations are to be determined and other bench marks established at proper intervals by precise leveling, in order that the errors arising from the use of the stadia in determining heights may be confined to the short traverse lines between the principal stations.

The transit used in stadia surveying need not be of large size, but there are some features that are especially essential in instruments for this purpose. The telescope should have a perfectly flat field of view, since the lines of sight do not coincide with the optical axis; this defect furnishes the opponents to the use of the stadia with their strongest argument. The vertical arc should be of superior quality, the graduations being upon solid silver, and there should be means of adjusting the vernier so that the reading shall be zero when the telescope is level. A telescope having fixed stadia hairs gives the best results, but can, of course, be used only with a specially prepared rod. The horizontal circle should have its graduations numbered continuously from 0^{\prime} to 360° in the direction that azimuth is reckoned, and there should be means of setting off the magnetic declination so that the needle may indicate north or south when the line of sight is in the true meridian.

The stadia rod may be of the target variety or self reading; somewhat greater accuracy may perhaps be attained by the
target rod, but the self-reading ones are almost universally ursed. The rod is of pine, about 4 inches wide, and either 12 or 16 feet

Fig. 50. in length; it is sometimes stiffened by screwing to the back a longitudinal strip $1 \frac{1}{2}$ inches square, while the ends may be protected by a metal band or shoe. There are numerous designs, but the one in Fig. 50 has been known to give good satisfaction at distances as great as 2,000 feet. The five-, ten- and fifteen-foot marks are numbered V, X and V in red, but the other foot-numbers are Arabic and in black. The bottom and top of the numbers are on a level with $0 \frac{1}{2}$ and $4 \frac{1}{2}$ tenths so as to assist in readings, and the triangle marking $7 \frac{1}{2}$ tenths is 1 tenth on a side. The graduations begin at the bottom, so that the rod may be used for leveling as well as for stadia work. The edges of the rod are painted black on the alternate footmarks as shown. The graduations of the even feet are on the left side of the rod, and those of the odd feet on the right side.

A topographic surveying party is composed of a transit. man or observer, a recorder, one or more rodmen, and axmen, if they are required. In open country, where the topography is not very intricate, one observer can take sights as fast as two or even three rodmen can select points, and the amount of territory covered in a given time is very much increased by the use of the extra rods ; in more difficult territory the dispatch with which the work is done depends largely upon the skill of the recorder in keeping his notes and sketches in proper shape, and but one rodman is necessary. The work in the field consists of running traverse-lines between triangulation stations; at each of the transit points along the traverse the topography is taken within a radius of 500 feet to 1000 feet around the entire circle in azimuth. The traverses are so run that when the work is finished the entire territory within the limits of the survey has been covered by these circles. Before starting a traverse-line between two stations the elevations of the stations, the distance between them, and the azimuth of the line
joining them should have been determined. The transit is set over the first station, with the vernier at the azimuth of the line to the next triangulation station, and the telescope directed to some point on that line ; the instrument is then oriented, and the line of sight is brought into the meridian by setting the vernier at zero. The needle is allowed to settle and the magnetic declination set off, if there is an arrangement for so doing ; otherwise the reading of the needle should be noted. In locating the contours the rod is held at every place where there is a decided change in the slope of the ground ; in surveying a small ravine elevations are taken along the valley and along the top of the slope on each side. In work that is to be plotted on a large scale two points on each building are located, and it is well to have the dimensions measured with a tape. The rodman should have a knowledge of what it is desired to show on the map, so that he need not rely upon signals from the observer to select the points where observations are to be taken. When the work around the station has been completed, the rodman selects a suitable place for the next position of the transit and drives a stake there. The ubserver reorients the transit and reads the distance to the next stake ; in determining the azimuth the edge instead of the flat side of the rod is turned toward the instrument. The transit is then set over the new station while the rodman gives a backsight on the last one. The instrument is oriented by directing the telescope to the backsight, with the vernier reading the back azimuth of the line; an easy way to find what the reading should be is to add 180° to azimuths less than that amount and to subtract 180° from those that are greater. The rod reading and the vertical angle should be again observed, and the mean of the two corrected horizontal and vertical distances is taken as the length of the line and the difference in elevation; the reading of the needle may be used to detect any large errors in azimuth. Below is given the manner of recording the notes on the left-hand page ; the right-hand page is used for tho sketch, which should show all objects located, and be as near to scale as possible. If the sketch is well made, the points where the rod was held are numbered, and
the same numbers appear in the column of stations on the left page without any other explanation. The traverse is finished

Instrument at M.		Survey of$c+f=1.00 . \quad \text { Sept. } 24,1898$			H. I. at $M=491.7$ Elev. of $\cdot M=486.6$	
Point.	Azimuth.	Rod Reáding.	Vertical Angle.	Hor. Distance.	Diff. Elev.	Elev.
1	$81^{\circ} 12^{\prime}$	907	$-4^{\circ} 24^{\prime}$			
2 3	117 314 18	605 245	718 -047			
N	24610	723	- 312	721.8	$+40.3$	526.9

by connecting with another station on the triangulation system, which station should be occupied, and the azimuth of the last course be verified, while a check is also obtained on the elevations.

Prob. 35. Fill out the blanks in the above field-notes by the help of T'able X.

Art. 36. Office Work.

The stadia readings taken between stations of the traverses are usually reduced in the field by the assistance of Table X. The topographer thus has the elevations of the stations and is able to check his work whenever it is possible to connect with a station of known elevation. The horizontal distances to minor points and the corresponding differences of level are, however, often left to be filled out in the office. Graphical methods have been devised for making these reductions, but none has become so valuable as to displace the general use of the tables.

The work of making the map, like that in the field, is based upon the triangulation system, the stations of which are carefully plotted by their coordinates as described in Art. $\mathbf{1 6}$. The traverse lines are plotted by the protractor, as by this way the work on the map can be done as accurately as the measurements were made in the field. A suitable protractor is one of pardhoard 12 inches in diameter which is fastened to the paper
by weights, with the 0° and 180° marks on the meridian; azimuths are transferred to any part of the map by means of triangles or parallel rulers. If the work is carefully done, the traverse lines should close so that the discrepancy is not noticeable on the scale to which it is plotted. The error of closure may, with proper care, be kept less than 1 in 1000 , and much. better results than this have been attained.

After the traverse lines have been established the topography is plotted by orienting the protractor over each station and pricking off all the azimuths of the readings around it ; the protractor is then removed and the corresponding distances are measured on the proper scale. The sketch will show whether the point is merely to locate contours or is on some object to be plotted on the map; in the latter case the house or whatever the object is should be drawn as soon as enough points on it have been established, and all superfluous marks erased; if only the elevation is needed, that is written lightly in pencil. The contours cannot be sketched as fast as the elevations are marked, but this work should not be deferred after enough heights have been plotted to do it intelligently.

What was stated in Art. 16 about the lettering, title, meridian, and border applies as well to topographic drawings and need not be repeated. The execution of the topographic signs is of utmost importance in determining the appearance of the map. While experienced draughtsmen are able to dispense with such help, no student should attempt to make the conventional signs on a map without having before him a good copy. The tendency always is to make the signs much too large and without definite shape. No amount of practice will suffice where a clear knowledge is wanting of just how the figure should look.

Prob. 36. Draw in pencil six horizontal lines and twelve vertical lines on Fig. 43 at equal distances apart. Then make the same number of lines on drawing-paper at distances apart three fourths as great. Copy Fig. 43 on the reduced scale. (As an exercise in contour drawing Fig. 56 may be also copied, the scale being enlarged about one-half.)

Art. 37. The Plane Table.
The plane table is a small drawing-board mounted on a tripod head and tripod like those of the transit. On the board a sheet of paper can be fastened by clamps. On the paper a heavy ruler may be placed in any position. This ruler is furnished with level bubbles, and at its middle has a standard on which is mounted a telescope provided with a vertical arc and an attached bubble. The board, which can be moved in azimuth around the vertical axis of the tripod head, corresponds to the limb of the transit, while the ruler with its attachments corresponds to the alidade. The adjustments of the plane table are in principle the same as those of the transit. (Art. 26).

Although the plane table is an ancient surveying instrument, it is but little used except for topographical work based upon a triangulation. On the paper are plotted the stations of the triangulation, or as many as are contained in the area covered by the paper on the scale used. A common scale used is $\frac{1}{\delta \partial \sigma 0}$, so that on a board 24×30 inches in size an area of nearly $2 \times 2 \frac{1}{2}$ miles would be represented. In a thickly settled country a scale of $\frac{1}{2000}$ is often used.

In a topographical survey one of the first uses of the plane table is to locate on the sheet secondary triangulation poirts

Fig. 51.
such as spires, tall chimneys, or prominent trees. In Fig. 51 this process is illustrated. A and B are two triangulation stations which are plotted on the sheet at a and b, and it is required to locate the two secondary stations C and D. The
table is first set at A, the edge of the alidade ruler placed upon the line $a b$, the telescope pointed to B, and the table clamped in position. With the edge of the ruler on a the telescope is pointed to C and to D, and indefinite lines drawn in those directions. The table is then set up at B, the edge of the ruler placed upon the line $b a$, the telescope pointed to A, and the table clamped in position. With the edge of the ruler on b the telescope is pointed to C and to D, and indefinite lines drawn in those directions. The intersection of these with those previously drawn at A gives the points c and d, which are the locations on the sheet of the stations C and D.

The operation of placing the table so that each line on the sheet is parallel to the corresponding line on the ground is called orienting the table. After the table is set up and leveled it must always be oriented; one method of doing this is explained above, and this will apply whenever the table is placed over a point which is plotted on the sheet and from which other plotted points can be seen. The alidade is often provided with a magnetic needle which will give an approximate orientation, the edge of the ruler being placed on a magnetic meridian drawn on the sheet, and the table moved in azimuth until the needle points to N on the compass limb.

When the table is placed at a point on the ground not plotted on the sheet, it is to be oriented in general by the three-point problem. An approximate orientation is first made by the eye or by the magnetic needle. Three stations, A, B, and C, being visible and plotted on the sheet at a, b, and c, it is required to locate the point n corresponding to the point N over which the table is set. Placing the alidade ruler on a, b, and c in succession, and sighting on A, B, and C, lines are drawn on the sheet, and these intersect, if the table is not truly oriented, so as to form a small triangle of error. Now the angle between the lines $A a$ and $B b$ will not be sensibly altered by the slight movement necessary to effect orientation; hence the point n must lie on the circumference of a circle passing through a, b, and the point of intersection of these two lines. Similarly, the point n must be on a circumference passing through a, c, and the intersection of $A a$ and $C c$. It is not practicable to draw
these circles on the sheet, but by imagining them to be drawn a close estimate of the point where they intersect can be made, and n be marked on the sheet. Now place the edge of the ruler on this point n, and also on a. move the table until A is seen on the telescope hair, and a closer orientation is secured. Then sighting to B and C, and drawing new lines $B b$ and $C c$, a

Fig. 52.
smaller triangle of error results, from which a better position of n is found, and on the third trial the triangle of error should entirely vanish, thus giving both a correct orientation and the proper location of n corresponding to N on the ground.

It should be remarked that if the table is set up within the large triangle $A B C$, as in the first diagram of Fig. 52, the point n falls within the triangle of error. In other cases it falls outside the triangle of error. If N is situated on the circumference of a circle passing through A, B, and C, the prob lem is indeterminate, and another station D must be observed in connection with two of the others. For a fuller discussion of the three-point method of orientation see "A Treatise on the Plane Table," in Appendix No. 13 of the Report of the U. S. Coast and Geodetic Survey for 1880.

After the plane table is oriented the topography for several hundred feet around the station is put in with the help of the alidade and stadia rods. The alidade ruler gives the direction of any object, and the stadia reading its distance, so that it may be immediately plotted by a scale and a pair of dividers. For an inclined stadia reading the vertical angle is read, and th corresponding horizontal and vertical distances at once taken from a table, the latter giving the elevation of the observed
point above the table, which is noted on the sheet, so that the contours can be afterward sketched. In fact, all the operations are similar to those explained in Art. 33, except that no notes are kept. Traverses may be run along roads, or into localities where no triangulation points are visible, by drawing the lines successively on the sheet and moving the table from one station to another, orienting it by a back sight. Thus the entire map is finished in pencil in the field. The theory of all the operations is simple, but the practice requires some skill and experience, and the sheet is sometimes liable to become injured by dust or rain. Much more topographic work is done with the transit and stadia than with the plane table.

The three-point problem, above mentioned, also arises in secondary triangulation when a new station is to be established by means of angles there measured between lines drawn to three stations, whose positions are given. Thus if the co-ordinates of three stations A, B, and C are given, and N be the station where the angles $A N B$ and $B N C$ are measured, then the co-ordinates of N can be computed. Formulas for doing this are given in works on higher surveying; see Merriman's Precise Surveying and Geodesy (New York, 1899).'

Prob. 37. Given two stations A and B, which are plotted on the sheet at a and b. It is required to set the plane-table at two other points D and E, and to locate d and e on the sheet by sighting at A, B, E, and D.

Art. 38. Hydrographic Surveying.

When a topographic survey embraces rivers, harbors, or a part of the coast, the shore-lines are located and plotted by the methods above described. It is also generally necessary to indicate on the map the depths of water at various points, the position of shoals, rocks, and other sub-surface features, and also sometimes to determine the direction and velocity of currents; this part of the work constitutes hydrographic surreying.

116

Soundings in shallow water are made by means of rods gradu. ated to feet and tenths. When the current is not rapid, a boat may be rowed at a uniform speed in a straight line, which is determined by signals set in range on shore, and soundings be taken at uniform intervals of time. The position of the boat both at the start and finish is located by intersections from other signals on shore or by means of observations with transits. When this line is plotted on the map, it is divided into the same number of spaces as there were time intervals, and at each point of division the corresponding sounding is plotted. If the number of soundings is sufficient, contour curves for different depths below the water-level may be drawn, and thus a clear picture is presenter of the bottom surface of the river or harbor

In deep water where a rod cannot be used depths are obtained with a plummet attached to a line, the position of each sound ing being located by angles taken either on the boat between signals on the land, or by observers on shore. In the former case the sextant is generally used, two angles being measured between three known stations. This is a case of the threepoint problem (Art. 37). In plotting the position from the two observed angles computations are rarely necessary, but thrte lines may be drawn on tracing-cloth, intersecting at a point and making with each other the given angles; then placing the tracing on the map so that the three lines pass through the given stations the point will fall in the proper position and may be pricked through upon the map.

In all cases of sounding a water-gauge should be erected near the shore for the purpose of observing the variations in the water-level, and thus referring the soundings to the same plane, either of high or of low water. In tidal streams or harbors readings of such a gauge are necessary at quarter-hour intervals.

The sextant is a most useful instrument in all work done in the boat, where indeed measurement of angles with a transit would be almost impracticable. The principle of its use is that an object may be seen both by direct vision and by reflection from a mirror. For instance, in the first diagram of Fig. 53 let H and I be two parallel mirrors called the horizon glass and

Fig. 53.
the index glass, the upper part of H having an opening in it. Then the eye at E can see a distant object S, both by direct vision in the line $S H E$, and by the reflected ray which follows the path SIHE; in this position the two images coincide and the index arm $I A$ indicates zero on the graduated limb. In the second diagram the index arm is moved to the position $I D$ in order to measure the angle $S E T$, between two signals S and T; in this position T is seen by direct vision and S by reflection. As the angles of incidence and of reflection are equal on each mirror, the angle $A I D$ is one half the angle $S E T$. The arc is

hence graduated so that half a degree on it represents a whole degree of the measured angle; thus the reading at D gives at once the required angle $S E T$.

In measuring a horizontal angle the plane of the sextant should be kept as nearly horizontal as possible. Care should be taken that the reading of the vernier is zero when an object is viewed both by direct and reflected vision, as in the first diagram of Fig. 54 ; if this is not the case, the index error should be noted and be applied as a correction to the final reading.

The direction of currents may be noted by observing with the sextant the direction taken by a float thrown from a boat, and the velocity of the current may be found by noting the time required for the float to pass over a certain distance. The determination of velocities at points below the surface, and the gauging of streams to ascertain their discharge and mean veloc-
ity, is properly a branch of hydraulics rather than of surveying. Concerning these see Merriman's Treatise on Hydraulics (New York, 1916), Chapter 10.

Fig. 53 shows a part of a hydrographic map of the Delaware River on a scale of $\frac{1}{80000}$, reproduced from the chart of the U. S. Coast and Geodetic Survey. The numbers in the central part of the river show the depths in fathoms at mean low-water spring tides, thase on the shaded surface show depths in feet. The various lights and buoys are represented in proper position. The topography of the shores is a fine example of small scale work, although the copy does not fully represent the beauty of the original copper-plate chart.

Prob. 38. Prove that in Fig. 54 the angle $A I D$, moved over by the index arm, is one half the observed angle SET.

Art. 39. Mine Surveying.
Mine surveying is little more than ordinary surveying, rendered difficult by darkness and mud. The main object is to take measurements which will furnish accurate maps of the underground workings, so that the position of every point may be known relatively to points on the surface. These maps are necessary, both for the advantageous development of the mine in driving tunnels, slopes, and gangways, and for the safety of the miners. The maps of the anthracite coal regions of Pennsylvania are required by law to be drawn on a scale of 100 feet to 1 inch, and to be kept up as the work progresses.

Mine maps show the main features of the surface of the ground, such as streets and houses, with all the breakers, slopes, manway and air-shaft openings. The underground workings are shown in horizontal projection and proper position on the same sheet, different-colored inks being sometimes used to distinguish the different veins. Elevations of many points of the underground workings are given in figures, so that the difference of level between them and the surface is at once known, as well as the grades of the gangways and other passages. Sometimes the surface contours are also shown,
and by the help of these, and the elevations of the underground points, profiles and cross-sections may be drawn on different vertical planes.
The general methods of mine surveying are the same as those of land and topographical surveying. The most approved plan is to have on the surface triangulation stations referred to a system of coordinates (Art. 30). At some mines, however, coordinate lines are actually staked out on the surface. Start. ing at any station, a traverse may be run down a slope and through a gangway, coming out perhaps at another slope or manway, and checking on another triangulation station. This traverse is run by the transit and a long steel tape, two consecutive stations of the traverse being generally nearer together than the length of the tape. Offsets are taken to the sides of the slopes and gangways, and short lines are run up the breasts and openings. Thus all the data are obtained for computing the traverse and constructing the map. Elevations are determined by taking vertical angles, although when convenient the level and rod is sometimes used.
The stations of the underground traverse are placed in the roof on wooden plugs driven into holes drilled for that purpose. On these are hung the plummet lamps to which backsights and foresights are taken. To set up the transit at a station a point on the floor directly beneath the one in the roof is determined by the plumb-bob. A transit for mine surveys should have a shifting plate and adjustable tripod legs, while a universal joint is also often a great convenience. To illumine the cross-wires the transitman holds his copper lamp at arm'slength so that the light may shine into the objective end of the telescope; the same lamp enables him to read the vernier and the magnetic needle. The readings of the magnetic needle, which serve as checks on the horizontal angles, must be taken both backward and forward at each station, as marked local attractions occur in mines. Much time is often wasted in reading the needle; instead it would be better to check the azimuth by taking another angle. The linear measurements are made when the tape is tightly stretched by two men, offsets

Fig. 55.
being taken to the corners of pillars and the sides of the gangways. A mine survey corps usually consists of four or five men, a transitman, two chainmen, and one or two men for offsets and lights.
The form of field-notes may be the same as that given in Art. 15, but instead of measuring the interior angles it is best to carry on the azimuths as explained in Art. 19. Some prefer to reverse the telescopes and measure the defiection angle to the right or left, but this is inferior in accuracy and convenience to the method of azimuths. The form of notes is subject to so great variations in different localities, that it seems scarcely wise to attempt to give one of them here.
The computation of the coordinates of the stations of the traverse is next made. Lines being drawn on the paper 500 feet apart both vertically and horizontally, the stations are plotted in their proper positions. The offsets are then laid off and the sides of the slopes, gangways, air-passages, and breasts are drawn. The underground traverse-lines are usually plotted in red, and each station designated by its letter or number. The elevations are noted in figures at such stations where they may be likely to be needed. If surface features are to be also given, they are plotted from the notes of an outside survey.
Fig. 55 shows a part of a map of an anthracite coal mine, reduced from the original scale of 100 feet to 1 inch to about half that scale. It shows the buildings around a slope entrance, and the slope with a few gangways and breasts. The fine broken lines are the traverses of the survey and each station has its number; a traverse is seen to start at A near the pump house, run down the slope to station 4 , and then turn to the west along the upper lift gangway. The long pillars seen in each gangway separate it from the air way. In every fifth breast is written the number by which it is known.
Extended surface surveys in the mining regions come under the head of topography taken with especial reference to geologic features. Fig. 56 shows a small area near Carbondale, Pa., taken from Mine Sheet No. XXI of Part IV of the Atlas of
the Northern Anthracite Coal Field, issued by the Second Geological Survey of Pennsylvania. The scale is 1 inch to 800 feet and the contour interval is 10 feet, the elevations being given with reference to tide water. The coordinate lines, drawn as intervals of 2000 feet, give distances north and east from a

Fig. 56.
monument in the yard of the court-house at Wilkes Barre. Bore-holes, dips of strata, and outcrops of the formations are shown, as also property lines, and names of owners or lessees. The colors on the original map are not reproduced in the copy.

Prob. 29. By surveys and computations the following data were obtained concerning four points in a certain gangway driven around one end of a vein in

Fig. 57. a coal basin:

Station.	Latitude.	Longitude.
A	+2604.25	+2428.10
B	+2597.18	+2010.43
\boldsymbol{N}	+3345.65	+2904.18

Also, elevation of $A=783.84$, elevation of $N=807.90$, azimuth of $M N=92^{\circ} 17^{\prime}\left(\mathrm{S} 87^{\circ} 43^{\prime} \mathrm{E}\right)$. It is desired to drive a tunnel from A to N, and for this purpose the following quantities are required to be found: (1) Length of line $A N$, (2) azimuth of $A N$, (3) the horizontal angle $B A N$, (4) the horizontal angle $M N A$, (5) the grade of the line $A N$.

Art. 40. The True Meridian.
A true meridian is established by actually staking out a lina running due north and south, or by determining the true azimuth of a given line. The latter method is preferable in town and city work. From the azimuth found for the one line the azimuths of all other important lines are obtained by traversing or by triangulation. A meridian actually staked out is of no value except for determining the azimuths of lines. Three methods of determining the true meridian will be here explained.

By Polaris and Mizar.-The pole-star Polaris revolves around the pole in a small circle, and crosses the meridian, or culminates, twice each day. Mizar, the middle one of the three stars in the tail of the Great Bear or handle of the Great Dipper, revolves around the pole in a large circle and culminates a few minutes earlier than Polaris. In 1895 Polaris culminates about 50 seconds after it and Mizar are in the same vertical circle, in 1900 about $2 \frac{1}{2}$ minutes after, and in 1905 about $4 \frac{1}{3}$ minutes after, the annual increase being 21 seconds. To obtain the true meridian set up a transit about a quarter of an hour before the two stars are in the same vertical; the
transit must be in good adjustment, particularly in respect to collimation and horizontal axis of the telescope. Sight alternately upon Polaris and Mizar, and note by a watch the time when they are upon the same vertical. Then, after the expiration of the interval above mentioned, turn the vertical hair upon Polaris, and the line of sight coincides with the true meridian. The error of this method will probably be greater than one minute of angle, as the work must be done at night.

By Polaris.-The time of culmination of Polaris may be ascertained from Table V, and the vertical hair of a transit be set upon it at that instant. But a more accurate method is to observe Polaris at its east or west elongation, following it with the vertical hair until its motion in azimuth ceases. The approximate time of elongation may be found from Table V, and the astronomical azimuth of Polaris at elongation is found from 'rable VI. Thus the azimuth of the line of sight is known ; if ts point be marked beneath the plumb-bob and another several luandred feet away in the line of sight, a line is determined whose azimuth is known. By repeating the operation on seve ral days a mean result can be obtained which can be depended upon with an error not exceeding one minute of angle. This work need not be done at night, as Polaris can often be seen by a telescope of moderate power in the daytime.

By the Sun.-With a transit having a solar attachment the true meridian can be found by observing the sun at any time except between 11 A.m. and 1 P.m. Such an attachment can be placed upon any transit at a cost of about fifty dollars. Accompanying it is a pamphlet giving full directions for use and adjustment, together with tables of the declination of the sun for Greenwich noon on each day of the year. Both the transit and the solar attachment should be in correct adjustment in order to do good work in determining the true meridian.

In order to explain the theory of the solar attachment let the upper part of Fig. 58 be a section of the celestial sphere in the plane of the true meridian, N and S being the north and south points of the horizon, P the pole, Z the zenith, Q the celestial equator, and O the place of the sun at noon. Let A be the point where the instrument is set, which may be regarded
as the center of the celestial sphere. Then the angle $P A N$ or its equal $Q A Z$ is the latitude of the place of observation. The

Fic. 58. angle $Q A O$ is the declination of the sun, which is positive when the sun is north of the equator from March 21 to September 21, and negative when the sun is south of the equator from September 21 to March 21. The lower part of Fig. 58 is a plan, A being the place of the instrument, $N S$ the true meridian through A, W and E the west and east directions, $A O$ the direction of the sun about 10 o'clock in the morning, and $A L$ a line whose azimuth is required to be found.
Let $a b$ represent the telescope of the transit, placed in the meridian and elevated so as to point to the celestial equator; this will be the case when the angle of elevation $S A Q$ is equal to the co-latitude, or when $S A Q=90^{\circ}-Q A Z$. Let $c d$ be the telescope of the solar attachment pointing toward the sun; then the vertical angle between $a b$ and $c d$ is equal to the declination of the sun QAO. In this position the solar attachment is like an equatorial telescope, its axis pointing to the pole P, and as the sun moves the telescope $c d$ will follow it along the celestial sphere until the change in declination becomes appreciable.
Before beginning work a list of hourly declination settings is to be prepared by help of the teble of declinations which is furnished by the maker of the instrument. This table also gives for each hour the effect of refraction, this refraction always increasing the altitude of the sun. For example, let it be required to find the declination settings for the afternoon of September 19,1895 , for any place where eastern standard time is used. The table gives $+1^{\circ} 28^{\prime} 54^{\prime \prime}$ as the declination of the sun at Greenwich noon for that day, and $58^{\prime \prime}$ as the hourly decrease of declination. The declination at 7 A.M. of eastern standard time is then $+1^{\circ} 28^{\prime} 54^{\prime \prime}$, and that at 5 P.м. is $+1^{\circ} 28^{\prime} 54^{\prime \prime}-10 \times 58^{\prime \prime}=+1^{\circ} 21^{\prime} 14^{\prime \prime}$. Thus the declination
for each hour is found and given in the second column. In the third column is placed the refraction correction as given in the table, and the fourth column gives the final declination settings

Hour.	Declination.	Refraction Correction.	Declination Settings.	Remarks.
1 P.M.	$+1^{\circ} 25^{\prime} 06^{\prime \prime}$	$+0^{\prime} 48^{\prime \prime}$	$+1^{\circ} 25^{\prime} 54^{\prime \prime}$	For Eastern
2 P.M.	+12408	+054	+12452	Standard Time,
3 P.M.	$\begin{array}{lll}1 & 23 & 10\end{array}$	+105	+12415	September 19,
4 PM .	+1.2312	+132 +151	+12344	1885.
5 PM .	+1214	+251	+12305	

which are the apparent declinations for the respective hours. The refraction correction is always additive, and hence if the declination is south or negative its numerical value is decreased,

Hour.	Declination.	Refraction Correction.	Declination Settings.	Remarks.
8 A.m.	- $22^{\circ} 23^{\prime} 43^{\prime \prime}$	+ $6^{\prime} 31^{\prime \prime}$	- $22^{\circ} 17^{\prime} 12^{\prime \prime}$	For Eastern
9 A.M.	-22 2402	+ 259	-22 2103	Standard Time,
10 А.M.	-22 2421	+211	-22 2210	December 5,
11 A.M.	-22 2440	+154	-22 2246	1895.

as the example for December 5,1895 , shows; on that day the table gives the declination at Greenwich noon as $22^{\circ} 23^{\prime} 24^{\prime \prime}$ south and the hourly change as 19 seconds.

After this list is made out the observer sets up the transit over the point A in order to find the true azimuth of a line $A L$ (Fig. 58). The telescope is leveled by the attached bubble and pointed approximately toward the south. The declination setting for the hour is next laid off on the vertical arc, depressing the object glass if the declination is positive and elevating it if the declination is negative. The telescope of the solar is then leveled by means of its own bubble, and thus the angle between the two telescopes is the same as the apparent declination of the sun QAO. Both telescopes are then elevated until the vertical are reads an angle equal to the co-latitude of the place, or $S A Q$. The solar attachment is next turned on its axis, and the limb of the transit upon its axis, until the sun is seen inscribed in the square formed by the four extreme cross-hairs
in the focus of the solar telescope. When this is the case, the transit telescope is in the plane of the meridian, and if desired a point may be set out in the line $A S$ to mark that meridian.

It will be better, however, to read both verniers on the horizontal circle, then turn the alidade around to L and read both

Time.	Reading on Meridian.			Reading on L.			Angle SAL.			Remarks.
		A.	B.							
9:15 A.M.	$20^{\circ} 19$	$00^{\prime \prime}$	$30^{\prime \prime}$	$182^{\circ} 27^{\prime}$	$30^{\prime \prime}$	$30^{\prime \prime}$		081	$15^{\prime \prime}$	Oct. 28, 1895.
9:3C	8000	15	15	24308	30	00		09	00	R. Doe,
9:45	14059	30	15	30308	45	15		09	08	Observer.
3:15 P.M.	20001	60	45	209	45	30		07		$\text { Mean }=$
3:30	26013	45	30	6221	15	30			45	$162^{\circ} 08^{\prime} 38^{\prime \prime}$
4:00	32006	00	00	12214	45	60	162	08	53	$\begin{aligned} & \text { Azimuth } A L \\ & =17^{\circ} 51^{\prime} 22^{\prime \prime} \end{aligned}$

verniers again. The angle $S A L$, which is the azimuth of L, has thus been measured. Repeating again the operation with the solar another value of $S A L$ is determined, and by making several measures, both in the morning and afternoon, the mean result can be relied upon with a probable error of about one minute if the observer be skilled in such work. The above form indicates a method of keeping the field-notes.

By an Altitude of the Sun.-The altitude of the sun may be taken with a common transit, and this, together with the declination of the sun and the latitude of the place, gives the means of computing the azimuth of the sun at the moment of observation. This method is explained in full on page 243.

Art. 41. Isogonic Map of United States.

An Isogonic Line on a map is a curve passing through all places where the magnetic needle has the same declination. The chart on the next page shows these lines for the United States on January 1, 1915. At all places on the line marked 0° the magnetic needle then had no declination; that is, its north end pointed to the true north. East of the 0° the north end of the needle pointed west of the true north and west of the 0° line it pointed west of the true north. Thus at Boston, Mass., the declination in 1915 was about $14^{\circ} \mathrm{W}$, and at Helena, Mont., it was about $21^{\circ} \mathrm{E}$.

PLATE I. ISOGONIC MAP OF U. S. FOR 1915.

These isognomic lines are constantly shifting; the 0° line is moving westward at a rate between 1^{\prime} and 2^{\prime} per year. On the chart two parallel lines are seen extending through the middle west; at all places on that double line there was no yearly change in declination in 1915; at all places east of that double line the west declination was increasing; at all places westward the eastern declination"was decreasing: Thus, near Denver, Colo., the east declination in 1915 was decreasing at the rate of about 3^{\prime} per year.

A rough estimate of the magnetic declination for any place for any year between 1910 and 1920 can be made by the help of this chart. Thus, for Washington, D.C., the chart gives the declination in 1915 as $6^{\circ} \mathrm{W}$ and the annual change as $4^{\prime} .4 \mathrm{~W}$; hence the change in five years was $22^{\prime} \mathrm{W}$ or about $0^{\circ} .4 \mathrm{~W}$, and accordingly the declination in 1910 was approximately $5^{\circ} .6 \mathrm{~W}$ and that in 1920 will be approximately $6^{\circ} .4 \mathrm{~W}$. An estimate of this kind cannot be relied upon within $0^{\circ} .3$.

- Table I.

NATURAL SINES AND COSINES

TO

FIVE DECIMAL PLACES.

	5°		6°		7		$8{ }^{\circ}$		9°		,
	Sine	Cosin									
0	. 08716	. 99619	. 10453	. 99452	. 12187	. 99255	. 13917	. 99027	. 15643	.98i69	$\overline{60}$
1	. 08745	. 99617	. 10482	. 99449	. 12216	. 99251	. 13946	. 99023	. 15672	. 98764	59
2	. 08774	. 99614	. 10511	. 99446	. 12245	. 99248	. 13975	. 99019	.15\%01	. 98760	58
3	. 08803	. 99612	. 10540	. 99443	. 12274	. 99244	. 14004	. 99015	. 15730	. 98755	57
4	. 08831	. 99609	. 10569	. 99440	. 12302	. 99240	. 14033	. 99011	. 15758	. 98751	56
5	. 08860	. 99607	. 10597	. 99437	. 12331	. 99237	. 14061	. 99006	. 15787	. 98746	55
6	. 08889	. 99604	. 10626	. 99434	. 12360	. 99233	. 14090	. 99002	. 15816	. 98741	54
7	. 08918	. 99602	. 10655	. 99431	. 12389	. 99230	. 14119	. 98998	. 15845	. 98737	53
8	. 08947	. 99599	. 10684	. 99428	. 12418	. 99226	. 14148	. 98994	. 15873	98732	52
9	. 08976	. 99596	. 10713	. 99424	. 12447	. 9922	. 14177	. 98990	. 15902	. 98728	51
10	. 09005	. 99594	. 10742	. 99421	. 12476	. 99219			. 15931	. 98723	50
11	. 09034	. 99591	. 10771	. 99418	. 12504	. 99215	. 14234	. 98982	. 15959	98718	49
12	. 09063	. 99588	. 10800	. 99415	. 12533	. 99211	. 14263	. 98978	. 15988	. 98714	48
13	. 09092	. 99586	. 10829	. 99412	. 12562	. 99208	. 14292	. 98973	. 16017	. 98709	47
14	. 09121	. 99583	. 10858	. 99409	. 12591	. 99204	. 14320	. 98969	. 16046	.98704	46
15	. 09150	. 99580	. 10887	. 99406	. 12620	. 99200	. 14349	. 98965	. 16074	.98700	45
16	. 09179	. 99578	. 10916	. 99402	. 12649	. 99197	. 14378	. 98961	. 16103	. 98695	44
17	. 09208	. 99575	. 10945	. 99399	. 126	. 99193	. 14407	. 98957	. 16132	98690	43
18	. 09237	. 99572	. 10973	. 993936	. 12706	.99189	. 14436	. 98953	. 16160	98686	42
19	. 09266	. 99570	. 11002	. 99393	. 12735	. 99186	. 14464	. 98948	. 16189	98681	41
20	. 09295		. 11031	. 99390	. 12764	. 9918	. 14433	. 98944	. 16218	. 98676	40
21	. 0932	. 99564	. 11060	. 99386	. 12793	. 99178	. 14522	. 98940	. 16246	. 98671	39
22	. 09353	. 99562	. 11089	. 99383	. 12822	. 99175	. 14551	. 98936	. 16275	98667	38
23	. 09382	. 99559	. 11118	. 99380	. 12851	. 99171	. 14580	. 98931	. 16304	98662	37
24	. 09411	. 99556	. 11147	. 99377	. 12880	. 99167	. 14608	. 98927	. 16333	. 98657	36
25	. 09440	. 99553	. 11176	. 99374	. 12908	. 99163	. 14637	. 98923	. 16361	. 98652	35
26	. 09469	. 99551	. 11205	. 99370	. 12937	. 99160	. 14686	. 98919	. 16390	98648	34
27	. 09498	. 99548	. 11234	. 99367	. 12966	. 99156	. 1469	. 98914	. 16419	98643	33
28	. 0952	. 99545	. 11263	. 99364	. 12995	. 99152	. 14723	. 98910	. 16447	. 98638	32
29	. 09556	. 99542	. 11291	. 99360	. 13024	. 991	. 14752	. 98906	. 16476	. 98633	31
30	. 09585	. 99540	.11320	. 99357	. 13053	. 991	. 14781	. 98902	. 16505	. 98629	30
81	. 09614	. 99537	. 11349	99354	. 13081	. 991	. 14810	. 98897	. 16533	. 98624	29
32	. 09642	. 99534	. 11378	. 99351	. 13110	. 99137	. 14838	. 98893	. 16562	. 98619	28
33	. 09671	. 99531	. 11407	. 99347	. 13139	. 99133	. 14867	. 98889	. 16591	. 98614	27
34	. 09700	. 99528	. 11436	. 99344	. 13168	. 99129	. 14896	. 98884	. 16620	98609	26
35	. 09729	. 99526	. 11465	. 99341	. 13197	. 99125	. 14925	. 98880	. 16648	98604	25
36	. 09758	99523	. 11494	. 99333	. 13226	. 99122	. 14954	. 98876	. 16677	98600	24
37	. 09787	. 99520	. 11523	. 99334	. 13254	. 99118	. 14982	. 98871	. 16706	. 98595	23
38	. 09816	. 99517	. 11552	. 99331	. 13283	. 99114	. 15011	. 988867	. 16734	. 98590	22
39	. 09845	. 99514	. 115	. 993327	. 13312	. 99110	. 15040	. 98883	. 16763	98585	21
40	. 09	. 9	. 11609	. 99	. 13341	. 9	. 15069	. 98	. 16792	. 98580	20
41	. 09903	. 99508	. 1163	. 99320	. 13370	. 99102	. 15097	. 98854	. 16820	. 98575	19
4	. 09933	. 99506	. 11667	. 99317	. 13399	. 99098	. 15126	. 98849	. 16849	. 98570	18
43	. 09961	. 99503	. 11696	. 99314	. 13427	. 99094	. 15155	. 98845	. 16878	. 98565	17
44	. 09990	. 99500	. 11725	. 99310	. 13456	. 99091	. 15184	. 98841	. 16906	. 98551	16
45	. 10019	. 99497	. 11754	-99307	. 13485	. 99087	. 15212	. 98836	. 16935	98556	15
46	. 10048	. 999494	. 11788	. 993303	. 13514	. 99083	. 15241	. 98883	. 16964	${ }_{98546}^{9851}$	14
47	. 10077	. 99491	. 11812	.99300 .99297	. 13543	. 99079	. 15270	.98827 .98823	. 16992	${ }^{98546}$	13
49	. 10135	. 99488	. 118869	. 999293	. 13600	. 999071	. 15327	. 98818	. 17050	. 988536	11
50	. 10164	. 99482	. 11898	. 99290	. 13629	. 99067	. 15356	. 98814	. 17078	. 98531	10
81	. 10192	. 99479	. 11927	. 99286	. 13658	. 99063	15385	. 98809	. 17107	. 98526	9
52	. 10221	. 99476	. 11956	. 99283	. 13687	. 99059	. 15414	. 98805	. 17136	98521	8
53	. 10250	. 99473	. 11985	. 99279	. 13716	. 99055	. 15442	. 98800	. 17164	98516	7
55	.10279	. 99470	. 12014	. 99276	. 13744	. 99051	. 15471	. 98796	. 17193	98511	6
55	. 10308	. 99467	. 12043	. 99272	. 13773	. 99047	. 15500	. 98791	. 17222	98506	5
56	. 10337	. 99464	. 12071	. 99269	. 13802	. 99043	. 15529	. 98787	. 17250	98501	4
57	10366	. 99461	. 12100	. 99265	. 13831	. 99039	. 15557	. 98788	. 17279	98496	3
58 59 69	. 10395	. 999458	. 121215	${ }^{.99262}$. 13860	. 990355	. 15586	. 98778	. 17308	. 98491	2
	. 10424	. 999455	. 12158	. 99258	. 138889	. 999031	. 15615	. 98773	. 17336	86	
		. 9		. S Sine				$\frac{.98769}{\text { Sine }}$		S	
		4									

	10°		11°		12°		13°		14°		
	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosi	Sine	Cosin	
$\overline{0}$. 17365	. 98481	. 19081	. 98163	. 20791	. 97815	.22495	. 97437	. 24192	.97030	$\overline{60}$
	. 17393	. 988476	. 19109	. 98157	. 200820	. 97809	. 22523	. 97430	. 24220	. 97023	59
2	.13422	. 98471	. 19138	. 98152	. 20848	. 97803	.22552	. 97424	. 24249	. 97015	58
8	. 17451	. 98466	19167	. 98146	. 20877	. 97797	. 22580	. 97417	. 24277	. 97008	57
5	. 17479	. 98461	. 19195	. 98140	. 20905	. 97791	.22608	. 97411	. 24305	. 97001	56
5	. 17508	. 98455	. 19224	. 98135	. 209933	. 97784	. 226637	. 97404	. 21333	. 96994	55
6 7	. 177537	. 988450	. 192281	. 98129	. 209690	. 977778	. 226665	A7398 .97391	. 243838	. 969898	54
8	. 17591	. 98440	. 19309	. 98118	. 21019	. 97766	$22 \% 22$. 97384	. 24418	. 96973	52
9	. 17623	. 98435	. 19338	. 98112	. 21047	. 97760	. 22750	.973\%8	. 24446	. 96966	51
10	. 17651	. 98430		98107	21076	. 97754	. 22778	. 973 \% 1	. 24474	. 96959	50
11	1768	. 984	19	98101	. 21	. 97748	. 22807	. 97365	. 24503	. 96952	49
12	. 17708	. 98120	19423	. 98096	. 21132	. 97742	. 228835	. 97358	. 21531	. 96945	48
13	. 17737	. 98414	. 19452	. 98690	. 21161	. 97735	. 22863	. 97351	. 24559	. 96937	4
14	. 17766	. 98109	. 19481	. 98084	. 21189	. 97729	. 22892	. 97345	. 24587	. 96930	46
15	. 17794	. 98404	. 19509	. 98079	. 21218	. 97723	.22920	. 97338	. 24615	. 96923	45
16	. 17823	. 98399	. 19538	. 98073	. 21246	. 97717	. 22948	. 97331	. 24644	. 96916	44
17	. 17852	. 98394	. 19566	. 98067	. 21275	. 97711	. 22977	. 97325	. 24672	. 96909	43
18	. 17880	. 98389	. 19595	. 98061	. 21303	. 97705	. 23005	. 97318	. 24700	. 96902	42
19	. 17909	. 98383	. 19623	. 98056	. 21331	. 97698	23033	. 97311	. 24728	. 96894	41
20	. 17937	.98378	9652	. 98050	. 21360	. 97692	. 2	. 97304	. 24756	. 96887	40
21	. 17966	. 98373	. 19680	. 98044	. 21388	. 97686	. 23090	.97298	. 24784	. 96880	39
22	. 17995	. 98368	. 19709	. 98039	. 21417	. 97680	. 23118	. 97291	. 24813	. 96873	38
23	18023	. 98362	19737	. 98033	. 21445	. 97673	. 23146	. 97284	. 24841	. 96866	37
24	18052	. 98357	. 19766	. 98027	. 21474	. 97667	. 23175	. 97278	. 24869	. 96858	36
25	. 18081	. 98352	. 19794	. 98021	. 21502	. 97661	.23203	. $972 \sim 1$. 24897	. 96851	35
26	. 18109	. 98347	. 19823	. 98016	. 21530	. 97655	. 23231	. 9 \%264	. 2492	. 96844	34
27	. 18138	. 98341	. 19851	. 93010	. 21559	. 97648	23260	. 97257	. 24954	. 96837	33
28	. 18166	. 98333	. 19880	. 93004	. 21587	. 97642	. 23288	. 97251	. 24982	. 96889	32
29	. 18195	. 98331	. 19908	. 97993	. 21616	. 97635	. 23316	. 97244	. 25010	. 96822	31
30	. 18224	. 98	. 19937	97932	. 2	. 97630	. 23	. 97237	. 2	. 96815	30
31	. 18252	. 98320	. 19965	. 97987	. 21672	. 97623	. 23373	.97230	. 25066	. 96807	29
32	. 18281	. 98315	. 19994	. 97981	. 21701	. 97617	. 23401	.97223	. 25094	. 96800	28
33	. 18309	. 98310	. 20022	. 97975	. 21729	. 97611	. 23429	. 97217	. 25122	. 96793	27
34	. 18338	. 98304	. 20051	. 97969	. 21758	. 97604	. 23458	. 97210	. 25151	. $96 \sim 786$	26
35	. 18367	. 98299	. 20079	. 97963	. 21786	. 97598	. 23481	. 97203	. 25179	. $96 \sim 78$	25
36	. 18395	. 98294	. 20108	. 97958	. 21814	. 97592	. 23514	. 97196	. 25207	. 96771	24
37	. 18424	. 98288	. 20136	. 97952	. 21813	. 97585	. 23542	. 97189	. 25235	. 96764	23
38	. 18452	. 98883	. 20165	. 97946	. 21871	. 97579	. 23571	. 97182	. 25263	. $96 \% 56$	22
39	. 18481	. 98277	. 20193	. 97940	. 21899	. 97573	. 23599	. 97176	. 25291	. 96749	21
40	. 18	. 98	.20222	. 97934	. 21928	. 97566	. 23627	. 97169	. 25320	. 96	20
41	. 18538	. 98267	. 20250	. 97928	. 21956	. 97560	. 23656	. 97162	. 25348	. 96734	19
42	. 18566	. 98261	. 20279	. 97922	. 21985	. 97553	. 23684	. 97155	. 25376	. 96727	18
43	. 18595	. 98256	. 20307	. 97916	. 22013	. 97547	. 23712	. 97148	. 25104	. 96719	17
44	. 18624	. 98250	. 20336	. 97910	. 22241	. 97541	.23740	. 97141	. 25432	. 96712	16
45	. 18652	. 98245	. 20361	. 97905	. 22070	. 97534	. 23769	. 97134	. 25460	. 96705	15
46	. 18681	. 98240	. 20393	. 97899	. 22098	. 97528	. 23797	. 97127	. 25488	. 96697	14
47	. 18710	. 98334	. 20421	. 97893	. 22126	. 97521	. 23825	. 97120	. 25516	. 96690	13
48	. 18738	. 98229	. 20450	. 97887	. 22155	. 97515	. 23853	. 97113	. 25545	. 96682	12
49	. 18767	. 98223	. 20478	. 97881	. 22183	. 97508	. 23882	. 97106	. 25573	. 96675	11
50	. 18795	. 98218	. 20507	.978\%	. 2	. 97502	. 2	. 9 ¢100	. 25601	,	10
51	. 18824	. 98212	. 20535	. 97869	. 22240	. 97496	. 23938	. 97093	. 25629	96660	9
52	. 18852	. 98207	. 20563	. 97863	. 22268	. 97489	. 23966	. 97086	. 25657	. 96653	8
53	. 18881	. 98201	. 20592	. 97857	. 22297	. 97483	. 23995	. 97079	. 25685	. 96645	7
54	. 18910	. 98196	. 20620	. 97851	. 22325	. 97476	. 21023	. 97072	. 25713	. 966388	6
50	. 18938	. 98190	. 20649	. 97845	. 22353	. 97470	. 24051	. 97065	. 25741	. 96630	5
56	. 18967	. 98185	. 20677	. 97839	. 22382	. 97463	. 24079	. 97058	. 25769	. 96623	4
57	. 18995	. 98179	. 20706	. 97833	. 22410	. 97457	. 24108	. 97051	. 25798	. 96615	3
58	. 19024	. 98174	. 20734	. 97827	. 22438	. 97450	. 24136	. 97044	. 25886	. 96608	2
59	. 19052	. 98168	. 20763	. 97821	. 22467	. 97444	. 24164	. 97037	. 25854	. 96600	1
60	19081	. 98163	. 20791	. 97815	19.	. 97437	. 24192	. 97030	. 25882	96593	0
	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cos	Sin	Cosi	Sine	
	79										

	15°		16°		17°		18°		19°		-
	Sine	Cosin	Sine	Cosin	Sine	Cosin		Cosin	Sine	Cosin	
0	. 25882	. 96593	. 27564	. 96126	. 299337	. 95630	. 30902	. 95106	. 32557	. 91552	$\overline{60}$
1	25910	. 96585	. 27592	. 96118	. 29265	. 95622	. 30929	. 95×77	. 32584	. 94542	59
2	. 25938	. 96578	. 27620	. 96110	. 29293	. 95613	. 30957	. 95088	. 32612	. 94533	58
3	. 25966	. 96570	. 27648	. 96102	. 29321	. 95605	. 30985	. 95079	. 32639	. 94523	57
4	. 25994	. 96562	. 27676	. 96094	. 29338	. 955596	.31012 31040	. 95070	${ }^{.} 32666{ }^{7}$. 945514	56
6	. 26050	. 96547	. 27731	. 960008	. 294404	. 955579	. 31068	. 9506052	. 3272722	. 944495	5
7	. 26079	. 96540	.27759	-96070	. 29432	. 95571	. 31095	. 95043	. $32 \pi 49$. 94485	53
8	. 26107	. 96532	. 27787	. 96062	. 29460	. 95562	. 31123	. 95033	. 32777	. 94476	52
9	. 26135	.96524	. 27815	. 96054	. 29487	. 95554	. 31151	. 95024	. 32804	. 94466	51
10	. 26163	. 96517	. 27813	. 96046	. 29515	. 95545	. 31178	. 95015	. 32832	. 94457	50
11	. 26191	. 96509	. 27811	. 96037	. 29543	. 95538	. 31206	. 95006	. 32859	. 94447	49
12	. 26219	. 96502	. 27899	. 96029	. 29571	. 95528	. 31233	. 94997	. 32887	. 94438	48
13	. 26247	. 96494	. 27927	. 96021	. 29599	. 95519	. 31261	. 94988	. 32914	. 94428	47
14	. 26275	. 96486	. 27955	. 96013	. 29626	. 95511	. 31289	. 94979	. 32942	. 94418	46
15	. 26303	. 96479	. 27983	. 96005	. 29654	. 95502	. 31316	. 94970	. 32969	. 94409	45
16	. 26331	. 96471	. 28011	. 95997	. 29688	. 95493	. 31344	. 94961	. 32997	. 94399	44
17	. 26359	. 96463	. 28039	. 95989	. 29710	. 95485	. 31372	. 94952	. 33024	. 94390	43
18	. 26387	. 96456	. 28067	. 95981	. 29737	. 95476	. 31399	. 94943	. 33051	. 94380	42
19	. 26415	. 96448	. 28095	. 95972	. 29765	. 95467	. 31427	. 91933	.33079	. 94370	41
20	. 26443	. 96440	. 28123	. 95964	. 29793	. 95459		. 94924	. 33106		40
21	. 26471	. 96433	. 28150	. 95956	. 29881	. 95450	. 31482	. 94915	. 33134	. 94351	39
22	. 26500	. 96425	. 28178	. 95948	. 29849	. 95441	. 31510	. 94906	. 33161	. 94342	38
23	. 26528	. 96417	. 28206	. 95940	. $298 \% 6$. 95433	. 31537	. 94897	. 33189	. 94332	37
24	. 26555	. 96410	. 28834	. 95931	. 29904	. 95424	. 31565	. 94888	. 33216	. 94322	36
25	. 26581	. 96402	. 28282	. 95923	. 29932	. 95415	. 31593	. 94878	. 33244	. 94313	35
26	. 26612	. 96394	. 28290	. 95915	. 29960	. 95407	. 31620	. 91869	. 33271	. 94303	34
27	.. 26640	. 96386	. 28318	. 95907	. 29987	. 95398	. 31648	-94860	. 33298	. 94293	33
28	. 26668	. 96379	. 28346	. 95898	. 30015	. 95389	. 31675	. 94851	. 33326	. 94284	32
29	. 26696	. 96371	. 28374	. 95890	. 30043	. 95380	. 31703	. 94842	. 33353	. 94274	31
30	. 26724	. 96363	. 28402			. $953 \% 2$. 33381	. 94264	30
31	. 26752	. 96355	. 28429	. 95874	. 30098	. 95363	. 31758	. 94823	. 33408	. 94254	29
32	. 26780	. 96347	. 28457	. 95865	. 30126	. 95354	. 31786	. 94814	. 33436	. 94245	28
33	. 26808	. 96340	. 28485	. 95857	. 30154	. 95345	. 31813	. 94805	. 33463	. 94235	27
34	. 26836	. 96332	. 28513	. 95849	. 30182	. 95337	. 31841	. 94795	. 33490	. 94225	26
35	. 26864	. 96324	. 28541	. 95841	. 30209	. 95328	. 31868	. 94786	. 33518	. 94215	25
. 36	. 26892	. 96316	. 28569	. 95832	. 30237	. 95319	. 31896	. 94777	. 33545	. 94206	24
37	. 26920	. 96308	. 28597	. 95824	. 30265	. 95310	. 31923	. 94768	. 33573	. 94196	23
38 39	. 26948	. 96301	. 28685	. 95816	. 30292	. 95301	. 31951	. 947758	. 33600	. 94186	${ }_{21}^{22}$
39 40	. 267976	. 96293	. 288680	. 95807	. 30320	. 95.95293	. 31979	. 94749	. 33627	$.94176$	21
41	. 27032			95791	. 30376	.95275	. 32034	. 94730	. 33682		19
42	. 27060	. 96269	. 28736	. 95782	. 30403	. 95266	. 32061	. 94721	. 33710	. 94147	18
43	. 27088	. 96261	. 28764	. 95774	. 30431	. 95257	. 32089	. 94712	. 33737	. 94137	17
44	. 27116	. 96253	. 28792	. 95766	. 30159	. 95248	. 32116	. 94702	. 33764	. 94127	16
45	. 27144	. 96246	. 28880	. 95757	. 30486	. 95240	. 32144	. 94693	. 33792	. 94118	15
46	. 27172	. 96238	. 28847	. 95749	. 30514	. 95231	. 32111	. 94684	. 33819		14
47	. 27200	. 96230	. 28875	. 95740	. 30542	.95222	. 32199	. 94674	. 33846	. 91098	13
48	. 27228	. 96222	. 28903	. 95732	. 30570	. 95213	. 32227	. 94665	. 33874	. 94088	12
49	. 27256	. 96214	. 28931	. 95724	. 30597	. 95204	. 32254	. 94656	. 33901	. $940 \% 8$	11
50	. 27284	. 96206	. 28959	. 95715	-	. 95195	. 32282		. 33929	91068	10
51	. 27312	. 96198	. 28987	. 95707	. 30653	. 95186	. 32309	. 94637	. 33956	. 94058	9
52	. 27340	. 96190	. 29015	. 95698	. 30680	. 95177	. 32337	. 94627	. 33983	. 91049	8
53	. 27368	. 96182	. 29042	. 95690	. 30708	. 95168	. 32364	. 94618	. 34011	. 94039	7
54	. 27396	. 96174	. 29070	. 95681	. 30736	. 95159	. 32392	. 94609	. 34038	. 94029	
5.5	. 27424	. 96166	. 29098	. 95673	. 30763	. 95150	. 32419	. 94599	. 34065	. 94019	
56	. 27452	. 96158	. 29126	. 95664	. 30791	. 95142	. 32447	. 94590	. 34093	. 94009	4
57	. 27480	. 96150	. 29154	. 95656	. 30819	. 95133	. 32474	. 94580	. 34120	. 93999	3
58	. 27508	. 96142	. 29182	. 95647	. 30846	. 95124	. 32502	. 94571	. 34147	. 93989	2
59	. 27536	. 96134	. 29209	. 95639	. 30874	. 95115	. 32529	. 91561		. 93979	
60	64	. 96126	. 29237	.95630	. 30902	.95106	. 32557	. 94552	02	9390	0
	Cosi	Sine	Cosin	Sine	Cosin	Sine	Cosi	Si	Cosin	Sine	
							1				

	20°		21°		22°		23°		24°		
-	Sine	Cosin	Sine	Cosi	Sine	Cos	Sine	Cosin	Sine	Cosin	
0	. 34202	. 93969	. 35837	. 93358	. 37461	. 92718	. 39073	. 9205	. 40674	. 91355	$\overline{60}$
1	. 34229	. 93959	. 35864	. 93348	. 37488	. 92707	. 39100	. 92039	. 40700	. 91343	59
2	. 34257	. 93949	. 35891	. 93337	. 37515	. 92697	. 39127	. 92028	. 40727	. 91331	58
3	. 34284	. 93939	. 35918	. 93327	. 37542	. 926886	. 39153	. 92016	. 40753	. 91319	57
4	. 34311	. 939329	. 35945	. 93316	. 37569	. 926675	. 39180	. 92005	. 40780	. 9131307	56
5	$\begin{array}{r}.34339 \\ .34366 \\ \hline\end{array}$. 93919	.35973 .36000	.93306 .93295	. 37595	. 92664	. 39207	. 91994	. 40806	. 9121295	55
7	.34366 .34393	. 933909	. 36000	. 933285	. 37624	. 922654	. 39260	. 91971	. 40860	. 91272	54
8	. 34421	. 93889	. 36054	. 93274	. 37676	. 92631	. 39287	. 91959	. 40886	. 91260	52
9	. 34448	. 93879	. 3608	. 93264	. 3 \% 7	. 92620	. 39314	. 91948	. 40913	. 91248	51
10	. 34475	. 93869	. 36108	. 93253	. 377	. 92609	. 39341	. 91936	. 40939	. 91236	50
11	. 3	. 9	. 36135	. 93243	. 37757	. 92598	. 39367	. 91925	. 40966	. 91224	49
12	. 34530	. 93849	. 36162	. 93232	. 37784	. 92587	. 39394	. 91914	. 40992	. 91212	48
13	. 34557	. 93839	. 36190	. 93222	. 37811	. 92576	. 39421	. 91902	. 41019	. 91200	47
14	. 34584	. 93329	. 36217	. 93211	. 37838	. 92565	. 39448	. 91891	. 41045	. 91188	46
15	. 34612	. 93819	. 36244	. 93201	. 37865	. 92554	. 39474	. 91879	. 41072	911	5
16	. 3463	. 93809	. 36271	. 93190	. 37892	. 92543	. 39501	. 918	. 41098	. 91164	44
17	. 3466	. 93799	. 36298	. 93180	. 37919	. 92532	. 3952	. 91856	. 41125	. 91152	43
18	. 34694	. 93789	. 36325	. 93169	. 37946	. 92521	. 39555	. 91845	. 41151	91140	42
19	34721	.93779	. 36352	. 93159	. 37973	. 92510	. 39581	. 91833	. 41178	91128	41
20	3r	. 93769	. 36379	. 93148	. 379	. 92499	. 39	. 91822	. 41204	. 91116	40
21	. 34775	.93750	. 36406	. 93137	. 38026	. 92488	. 39635	. 91810	. 41231		39
22	34803	. 93748	. 36434	. 93127	. 38053	. 92477	. 3966	. 91799	. 41257	. 91092	38
23	34830	. 93738	. 36461	. 93116	. 38080	. 92466	. 3968	. 91787	. 41284	. 91080	37
24	. 34857	. 93728	. 36488	. 93106	. 38107	. 92455	. 39715	. 91775	. 41310	91068	36
25	. 34884	. 93718	. 36515	. 93095	. 38134	. 92444	. 39741	. 91764	. 41337	. 91056	35
26	. 34912	. 93708	. 3654	. 93084	. 38161	. 92432	. 39768	. 91752	. 41363	. 91044	34
27	. 34939	. 93698	. 36569	. $930 \% 4$. 38188	. 92421	. 39795	. 91741	. 41390	. 91032	33
28	. 34966	. 93688	. 36596	. 93063	. 38215	. 92410	. 3982	. 91729	. 41416	91020	32
29	. 34993	. 93677	. 36623	. 93052	. 38241	. 92399	. 39848	. 91718	. 41443	08	31
30	. 35	,	. 36650	. 93042	. 38268	. 92388	. 3	.91706			30
31	. 35048	. 93657	. 36677	. 93031	. 38295	. 92377	. 39902	. 91694	. 41496	. 90984	29
32	. 35075	. 93647	. 36704	. 93020	. 38332	. 92366	. 39928	. 91688	. 41522	.90972	28
33	. 35102	. 93637	. 36731	. 93010	. 38349	. 92355	. 39955	. $916{ }^{\text {r }} 1$. 41549	. 90960	27
34	. 35130	. 93626	. 36758	. 929999	. 38376	. 92343	. 39982	. 91660	. 41575	. 90948	26
35	. 3515	. 93616	. 36	. 92988	. 38403	. 92332	. 4000	. 91648	. 41602	. 909336	5
36	. 35184	. 93606	. 36812	. 92978	. 38430	. 92321	. 40035	. 91636		. 90924	4
37	. 35811	93596	. 36839	. 92967	. 38456	. 92310	. 40062	. 91625	. 41655	. 90911	3
38	. 35239	. 93585	. 36867	. 92956	. 38483	. 92299	. 40088	. 91613	. 41681	. 90899	22
39	. 35266	. 93575	. 36894	. 92945	. 38510	. 92288	. 40115	. 91601	. $4170{ }^{1}$. 90887	21
40	. 35	-35	. 36921	-		. 92276					20
41	. 35320	. 93555	. 36948	. 92924	. 38564	. 92265	. 40168		. 41760	. 90863	19
42	. 35347	. 93544	. 36975	. 92913	. 38591	. 92254	. 40195	. 91566	. 41787	. 90851	18
43	. 35375	. 93534	. 37002	. 92902	. 38617	. 92243	. 40221	. 91555	. 4181	. 90839	17
44	. 35402	. 93524	. 37029	. 92892	. 38644	. 92231	. 40248	. 91543	. 41840	. 90826	16
45	. 35429	. 93514	. 37056	. 92881	. 38671	. 92220	. 40275	. 91531	. 41866	90814	15
46	. 35456	. 93503	. 37083	. 92870	. 38698	. 92209	. 40301	. 91519	. 41892	90802	14
47	. 35484	. 93493	. 37110	. 92859	. 38775	. 92198	. 40338	91508	. 41919	. 90790	13
48	. 35511	. 93483	. 31137	. 92849	. 38752	. 92186	. 40355	. 91496	. 41945	.90778	12
49	. 3553	. 93477	. 37164	. 928838	. 3877	. 92175	. 40381	. 91484	. 41972	. 90766	11
50	. 3556	. 93162		. 92827	. 38	. 9			. 41998	$.9075$	10
51	. 35592	. 93452	. 37218	. 92816	. 38832	. 92152	. 40434	. 91461	. 42024	. 90741	9
52	. 35619	. 93441	. 37245	. 92805	. 38859	. 92141	. 40461	. 91449	. 42051	. 90729	8
53	. 35647	. 93431	. 37272	. 92794	. 38886	. 22130	. 40488	. 91437	. 42077	. 90717	7
54	. 35674	. 93420	. 37299	. 92784	. 38912	. 92119	. 40514	. 91425	. 42104	. 90704	6
55	. 35701	. 93410	. 37326	.92773	. 38939	. 92107	. 40541	. 91414	. 42130	. 90692	5
56	. 35728	. 93400	. 37353	. 92762	. 38966	. 92096	. 40567	. 91402	. 42156	. 90680	4
5	. 35755	. 93389	. 37380	.92751	. 38993	. 92085	. 40594	. 91390	. 42183	. 90668	${ }^{3}$
58	. 35	. 933379	. 37407	. $922 \pi 40$. 39020	${ }_{9}^{.92073}$. 40621	${ }^{.} 91378$. 422235	. 906545	1
60						. 92050	-4004	,	. 4226	9063	0
	Co	Sin	Cosin	Sin	Cosin	Sin	Cosin	Sine	O	Sine	

TABLE I. SINES AND COSINES.

	25°		26°		27°		28°		29°		,
	Sine	Cosin	Sine	Cosin	Sine	Cos	Sine	Cos	Sine	os	
0	. 42262	. 90631	. 43837	. 898879	. 45399	. 89101	. 46947	. 888295	. 48481	. 87462	$\overline{60}$
1	. 42288	. 90618	.43863	. 898867	. 45425	. 890087	. 46973	. 88281	. 48506	. 87448	59
2	. 42315	. 90606	. 43889	. 89854	. 45451	. 89074	. 46999	. 88267	. 48532	. 87434	58
3	. 42341	. 90594	. 43916	. 89841	. 45477	. 89061	. 47024	. 88254	. 48557	. 87420	57
4	. 423367	. 90582	. 439942	.89828	. 45503	. 89048	. 47050	. 888240	. 48588	. 87406	56
5	. 423894	. 90569	. 439998	. 898816	. 455529	. 890031	. 477101	.88226	. 486684	. 873973	55
7	. 42446	. 90545	. 44020	. 89790	. 45580	. 89008	. 47127	. 88199	. 48659	. 87363	53
8	. 42473	. 90532	. 44046	. 89777	. 45606	. 88995	. 477153	. 88185	. 48684	. 87349	52
9	. 42499	. 90520	. 44072	. 89764	. 45632	. 88981	. 47178	. 88172	. 48710	. 87335	51
10	. 42525	. 90507	. 44098	. 89752	. 45658	. 88968	. 47204	. 88158	. 48735	. 87321	50
11	. 42552	. 90495	. 44124	. 89739	. 45684	. 88955	. 47229	. 88144	. 48761	. 87306	49
12	. 42578	. 90483	. 44151	. 89726	. 45710	. 88942	. 47255	. 88130	. 48786	. 87292	48
13	. 42604	. 90470	. 44177	. 89713	. 45736	. 889228	. 47281	. 88117	. 48811	. 87278	47
14	. 42631	. 90458	. 44203	. 89700	. 45762	. 88915	. 47306	. 88103	. 48837	. 87264	46
15	. 42657	. 90446	. 44229	. 89687	. 45787	. 88902	. 47332	. 88089	. 48862	. 87250	45
16	. 42683	. 90433	. 44255	. 89674	. 45813	. 88888	. 47358	. 88075	. 48888	. 87235	44
17	. 42709	. 90421	. 44281	. 89662	. 45839	. 88875	. 47383	. 88062	. 48913	. 87221	43
18	. 42736	. 90408	. 44307	. 89649	. 45865	. 88862	. 47409	. 88048	. 48938	. 87207	42
19	. 42762	. 903936	. 44333	. 89636	. 45891	. 88848	. 47434	. 88034	. 48964	. 87193	41
20	. 42788	. 90383	. 44359	. 89	. 45917						40
21	. 42815	. 90371	. 44385	. 89610	. 45942	. 88822	. 47486	. 88006	. 49014	. 87164	39
22	. 42841	. 903538	. 44411	. 89597	. 45968	. 88808	. 47511	. 87993	. 49040	. 87150	38
2	42867	. 90346	. 44437	. 89584	. 45994	. 88795	. 47537	. 87979	. 49065	. 87136	37
24	42894	. 90334	. 44464	. 89571	. 46020	. 88782	. 47562	. 87965	. 49090	. 87121	36
25	. 42920	. 90321	. 44490	. 89558	. 46046	. 88768	. 47588	. 87951	. 49116	. 87107	35
26	. 42946	. 90309	. 44516	. 89545	. 46072	. 88755	. 47614	. 87937	. 49141	. 87093	34
27	. 42972	. 90296	. 44542	. 89532	. 46097	. 88741	. 47639	. 87923	. 49166	. 87079	33
28	. 42999	. 90284	. 44568	. 89519	. 46123	. 88728	. 47665	. 87909	. 49192	. 87064	32
29	. 43025	. 90271	. 44594	. 89506	. 46149	. 88715	. 47690	. 87896	. 49217	. 87050	31
30	. 43051	. 90	. 4	. 8	. 46175	. 88	. 47716	. 87882	. 49242	.87036	30
31	. 43077	. 90246	. 44646	. 89480	. 46201	. 88688	. 47741	. 87868	. 49288	. 87021	29
32	. 43104	. 90233	. 44672	. 89467	. 46226	. 88674	. 47767	. 87854	. 49293	. 87007	28
33	. 43130	. 90221	. 44698	. 89454	.46252	. 88661	. 47793	. 87840	. 49318	. 86993	${ }_{2} 7$
34	. 43156	. 90208	. 44724	. 89441	.46278	. 88647	. 47818	. 87826	. 49344	. 86978	26
35	. 43182	. 90196	. 44750	. 89428	. 46304	. 88634	. 47844	. 87812	. 49369	. 86964	25
36	. 43209	. 90183	. 44776	. 89415	. 46330	. 88620	. 47889	. 87798	. 49394	. 86949	24
37	. 43235	. 90171	. 44802	. 89402	. 46355	. 88607	. 47895	. 87784	. 49419	. 86935	23
38	. 43261	. 90158	. 44828	. 89389	. 46381	. 8859	. 47920	. 87770	. 49445	. 86921	22
39	. 43287	. 9014	. 44854	. 89376	. 46407	. 88580	. 47946	. 87756	. 49470	. 86906	21
40	. 43	. 90133		. 89363	.	-	-	. 87743	5	2	20
41	. 43340	. 90120	. 44906	. 89350	. 46458	. 88553	. 47997	. 87729	. 49521	. 86878	19
42	. 43366	. 90108	. 44932	. 89337	. 46484	. 88539	. 48022	. 87715	. 49546	. 86863	18
43	. 43392	. 90095	. 44958	. 89324	. 46510	. 88526	. 48048	. 87701	. 49571	. 86849	17
44	. 43418	. 90082	. 44984	. 89311	. 46536	. 88512	. 48073	. 876887	. 49596	. 86834	16
45	. 43445	. 90070	. 45010	. 89298	. 46561	. 88499	. 48099	. 87673	. 49622	. 86820	15
46	. 43471	. 90057	. 45036	. 89285	. 46587	. 88485	. 48124	. 87659	. 49647	. 86805	14
47	. 43497	. 90045	. 45062	.89272	. 46613	. 88477	. 48150	. 87645	. 49672	. 86791	13
48	. 43523	. 90032	. 45088	. 89259	. 46639	. 88458	. 48175	. 87631	. 49697	. 86777	12
49	. 43549	. 90019	. 45114	. 89245	. 46664	. 88445	. 48201	. 87617	. 49723	. 86762	11
50	. 43575	90007	. 45140	. 89232	. 46690	. 88431	. 48226	. 87603	. 49748	. 86748	10
51	. 43602	. 89994	. 45166	. 89219	. 46716		. 48252	. 87589	. 49773	. 86733	9
52	. 43628	. 89981	. 45192	. 89206	. 46742	. 88404	. 48277	. 87575	. 49798	. 86719	8
53	. 43654	. 89968	. 45218	. 89193	. 46767	. 88390	. 48303	. 87561	. 49824	. 86704	7
54	. 43680	. 89956	. 45243	. 89180	. 46793	. 88377	. 48328	. 87546	. 49849	. 86699	6
55	. 43706	. 89943	. 45269	. 89167	. 46819	. 88363	. 48354	. 87532	. 49874	. 86675	5
56	. 43733	. 89930	. 45295	. 89153	. 46844	. 88349	. 48379	. 87518	. 49899	. 86661	4
57	. 43759	. 89918	. 45321	. 89140	. 46870	. 88336	. 48405	. 87504	. 49924	. 86646	3
58	. 43785	. 89905	. 45347	. 89127	. 46896	. 88322	. 48430	. 87490	. 49995	. 86632	2
59	. 43811	. 89892	. 45373	. 89114	. 46921	. 88308	. 48456	. 87476	. 49975	. 86617	1
$\underline{60}$. 43837	. 89879	. 45399	. 89101	. 46947	-8205	. 48481	. 814	50000	6603	0
	Co	Sine	C	Sine		in	Cosin	Sine	Cosin	Sine	

	30°		31°		32°		33°		34°		
	Sine	Co	Sine	Cos	Sine	Co	Sine	Cosin	Sine	Cosin	
0	. 50000	. 86603	. 51504	. 85.17	.52992	. 84805	. 54464	. 83867	. 55919	82904	$\overline{60}$
1	. 50025	. 86588	. 51529	. 85702	. 53017	. 84789	. 54488	. 83851	. 55943	. 82887	59
2	. 50050	.86573	. 51554	. 85687	. 53041	. 84774	. 54513	. 83835	. 55968	. 82871	58
3	. 50076	. 86559	. 51579	. 85672	. 53066	. 81759	. 54537	. 83819	. 55992	82855	57
4	. 50101	. 86544	. 51604	. 855657	. 53091	. 84743	. 54561	. 83804	${ }^{.} 56016$	88839	56
6	. 50151	. 86515	. 51653	.85642	. 53140	. 81712	. 54610	. 83772	. 56064	. 828806	5
7	. 50176	. 86501	. $516 \% 8$. 85612	. 53164	. 81697	. 54635	. 83756	. 56088	. 82790	53
8	. 50201	. 86486	. 51703	. 85597	. 53189	. 84681	. 54659	. 83740	. 56112	82,73	52
9	. 50227	. 86471	. 517	. 8558	. 53214	. 84666	. 54683	.83\% 24	. 56136	82757	51
10	. 50252	. 86457	. 51753	. 85567	. 53238	. 84650	. 54708	.83748	. 56160	. 82741	50
11	. 5	. 86	. 5	. 8	. 53263	. 81	. 54732	. 83692	. 56184	. 82774	49
12	. 50302	. 86427	. 51803	. 85536	. 53288	. 84619	. 54756	. 83676	. 56208	.82\%08	48
13	. 50327	. 86413	. 51828	. 85521	. 53312	. 84604	. 54781	. 83660	. 56232	. 82692	47
14	. 50352	. 86398	. 51852	. 85506	. 53337	. 84588	. 54805	. 83645	. 56256	. 82675	46
15	.50377	. 86384	. 51877	. 85491	. 53361	. 84573	. 54829	. 83629	. 56280	. 82659	45
16	. 50403	. 86369	. 51902	. 85476	. 53386	. 81557	. 54854	. 83613	. 56305	. 82643	44
17	. 50428	. 86354	. 51927	. 85461	. 53411	. 84542	. 54878	. 83597	. 56329	. 82626	43
18	. 50153	. 86340	. 51952	. 85446	. 53435	84526	. 54902	. 83581	. 56353	. 82610	42
19	. 50478	. 86325	. 51977	. 85431	53460	. 84511	. 54927	. 83565	. 56377	. 82593	41
20	. 50503	. 86310		. 85416		. 81495		. 83549	. 56	. 82577	40
21	. 50528	. 86295	. 52026	. 85401	. 53509	. 8448	54975	. 83533	. 56425	. 82561	39
22	. 50553	. 86281	. 52051	. 85385	. 53534	. 84464	54999	. 83517	. 56449	. 82544	38
23	. 505%	. 86266	. 520 亿	. 85370	. 53558	. 81448	. 55024	. 83501	. 56473	. 82522	37
24	. 50603	. 86251	. 52101	. 85355	. 53583	. 84433	. 55048	. 83485	. 56497	. 82511	36
25	. 50628	. 86237	. 52126	. 85340	. 53607	. 84417	. 55072	83469	. 56521	. 82495	35
26	. 5065	.86222	. 52151	. 85325	. 536	. 84402	. 55097	. 83453	. 56545	. 82478	34
27	. 50679	.86207	. 52175	. 85310	. 53656	. 84386	. 55121	83437	. 56569	. 82462	33
28	. 50704	. 86192	. 52200	. 85294	. 53681	.843\%0	. 55145	. 83421	. 56593	. 82446	32
29	. 50729	. 86178	. 52225	.85279	. 53705	. 843355	. 55169	. 83405	. 56617	. 824129	31
30	. 507	. 86163	. 52	. 85264	. 53	. 81339		. 83389	56641	. 82413	30
31	. 50779	. 86148	. 52275	. 85249	. 53754	. 84324	. 55218	. 83373	. 56665	. 82396	29
32	. 50804	. 86133	. 52299	. 85234	. 53779	. 81308	. 55242	. 83356	. 56689		28
33	. 50829	. 86119	. 52324	. 85218	. 538	. 84292	. 552	. 83340	. 56713	.82363	27
34	. 50854	. 86104	. 52349	. 85203	. 53828	. 84277	. 55291	. 83324	. 56736	. 82347	26
35	. 50879	. 86089	. 52374	. 85188	. 53853	. 81261	. 55315	. 83308	. 56760	. 823330	25
36	. 50904	. 86074	. 52399	. 85173	. 53877	. 81245	. 55339	.83292	. 56784	. 82314	24
37	. 50929	. 86059	. 52423	. 85157	. 53902	. 81230	. 55363	.832\%6	. 56808	. 82297	23
38	. 50954	. 86045	. 52448	. 85142	. 53926	81214	. 55388	. 83260	. 56832	.82281	22
39	. 50979	. 86030	. 524	. 85127	. 53951	. 84198	. 55412	. 83244	. 56856	. 82264	21
40	. 51004	5	. 52498	. 8	. 53975	.		.	. 56880	8	20
41	.51029	. 86000	. 52522	. 85096	. 54000	. 84167	. 55460	. 83212	. 56904	. 82231	19
42	. 51054	. 85985	. 52547	. 85081	. 54024	. 84151	. 55484	. 83195	. 56928	. 82214	18
43	. 51079	. 85970	. $525 \% 2$. 85066	. 54049	. 8113	. 55509	. 83179	. 56952	82198	17
44	. 51104	. 85956	. 52597	. 85051	. 54073	. 81120	. 55533	. 83163	. $569 \sim 6$. 82181	16
45	. 51129	. 85941	. 52621	. 85035	.5409	. 81104	. 55557	. 83147	. 57000	. 82165	15
46	. 51154	. 85926	. 52646	. 85020	. 54122	. 84088	. 55581	. 83131	. 57024	. 82148	14
47	. 51179	. 85911	. 52671	. 85005	. 54146	. 84072	. 55605	. 83115	. 57047	. 82132	13
48	. 51204	. 85896	. 52696	. 84989	. $541 \% 1$. 81057	. 5563	. 83098	. 57071	. 82115	12
49	. 51229	. 85881	. $52 \% 20$. 84974	. 54195	. 81041	. 5565	. 83082	. 57095	.82098	11
50	.	. 85866	.	.		. 8	. 55678	.	. 5 ¢119		0
51	. 51279	. 85851	. $52 \sim 70$. 84943	. 54244	. 84009	.55\%02	. 83050	. 57143	. 82065	9
52	. 51304	. 8583	. $52 \% 94$.84928	. 54269	. 83994	. 55726	. 83034	. 51167	. 82048	8
	. 51329	. 85821	. 52819	. 84913	. 54293	.83978	. 55750	. 83017	. 57191	. 82032	7
54	. 51354	. 85806	. 52814	. 81897	. 54317	. 83962	. 557%	. 83001	. $5 \sim 215$. 82015	6
55	. 51379	. 85792	. 52869	. 84882	. 54342	. 83946	. 55799	. 82985	. 57238	. 81999	5
56	. 51404	. 85777	. 52893	. 84866	. 54366	. 83930	. 55823	.82969	. 57262	. 81982	4
57	. 51429	. 85762	. 52918	. 84851	. 54391	. 83915	. 55847	. 82953	. 57286	. 81965	3
58	. 51454	. 85747	. 52943	. 84836	. 54415	. 83899	. 55871	. 82936	. 57310	. 81949	2
59	. 51479	. 8573	. 52967	. 8482	40	. 83883	. 55895	829	. 51334	. 81932	1
60	. 5		. 52992	-		. 83867	. 55919	. 82904	8	. 81915	0
	Co	Sine		-				Sin		Si	
		9°									

TABLE I. SINES AND COSINES.

	35°		36°		37°		38°		39°		
	Sine	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosi	Sine	Cos	
0	. 57358	. 81915	. 58779	. 80902	. 60182	. 79864	. 61566	. 78801	. 62932	. 77715	$\overline{60}$
1	. 57381	. 81899	. 58802		. 60205	. 79846	. 61589	. 78783	. 62955	. 77696	59
2	. 57405	. 81882	. 58826	. 80867	. 60228	. 78829	. 61612	. 78765	. 62977	. 77678	58
3	. 57429	. 81865	. 58819	. 80850	. 60251	79811	61635	. 78747	. 63000	. 77660	57
4	. 57453	. 81848	.58873	. 80833	.60274	:79793	. 61658	. 78729	. 63022	. 77641	56
5	. 57477	. 81832	. 58896	. 80816	. 60298	. 79776	61681	. 78711	. 63045	.77623	55
6	. 57501	. 81815	. 58920	. 80799	. 60321	. 79758	. 61704	. 78694	. 63068	. 77605	54
7	. 57524	. 81798	. 58943	. 80782	. 60344	79741	61726	. 78676	. 63090	. 77586	53
8	. 57548	. 81782	. 58967	. 80765	. 60367	. 79723	. 61749	. 78658	. 63113	. 77568	52
9	. 57572	. 81765	. 58990	. 80148	. 60390	. 79706	. 61772	. 78640	. 63135	. 77550	1
10	. 57596	. 81748	. 59014	. 80730	. 60414				. 63158	. 77531	50
11	. 57619	. 81731	. 59037	. 80713	. 60437	79671	. 61818	. 78604	. 63180	. 77513	
12	. 57643	. 81714	. 59061	. 80696	. 60460	. 7965	. 61841	. 78586	. 63203	. 77494	48
13	. 57667	. 81698	. 59084	. 80679	. 60483	.7963	. 61864	. 7856	. 63225	. 77476	47
14	. 57691	. 81681	. 59108	. 80662	. 60506	. 79618	. 61887	. 78550	. 63248	. 77458	46
15	. 57715	. 81664	. 59131	. 80644	. 60529	. 79600	. 61909	. 78532	. 63271	. 77439	45
16	. 57738	. 81647	. 59154	. 80627	. 60553	. 79583	. 61932	. 78514	. 63293	. 77421	44
17	. 57762	. 81631	. 59178	. 80610	. 60576	. 7956	. 61955	. 78496	. 63316	. 77402	43
18	. 57786	. 81614	. 59201	. 80593	. 60599	. 79547	. 61978	.78478	. 63338	. 77384	42
19	. 57810	. 81597	. 59225	.80576	. 60622	. 79530	. 62001	. 78460	. 63361	. 77366	41
20	. 57833			. 80558		. 79512	. 62024	. 78442		. 77347	40
21	. 578						. 62046	. 78424	. 63406	77329	39
22	. 57881	. 81546	. 59295	. 80524	. 606	. 79477	. 62069	. 78405	. 63428	. 77310	38
23	. 57904	. 81530	59318	80507	. 60714	. 79459	. 62092	. 88387	. 63451	.77292	37
24	. 57928	. 81513	. 59342	. 80489	. 60738	. 79441	. 62115	78369	. 63	. 77273	36
25	. 57952	. 81496	. 59365	.804\%	. 60 ¢61	. 79424	. 62138	. 78351	. 63496	.77255	35
26	. 57976	. 81479	. 59389	. 80455	.60\%84	. 7940	. 62160	. 78333	. 63518	.7723	34
27	. 57999	. 81462	. 59412	. 80438	. 608	. 7938	. 62183	. 78315	. 63540	. 77218	33
28	. 58023	. 81445	. 59436	80420	. 608	. 7937	. 62206	. 78297	. 63563	. 77199	1
29	. 58047	. 81428	. 59459	. 80403	60853	. 79353	. 62229	. 78279	. 63585	. 77181	31
30	. 58	. 81412	. 59	. 80386	. 60876	. 793	. 6225	. 78261	-	T7102	30
31	. 58094	. 81395	. 59506	. 80368	. 60899	. 79318	. 62274	. 78243	. 63630	. 77144	29
32	. 58118	. 81378	. 59529	. 80351	. 60922	. 79300	. 62297	. 78225	. 63653	. 77125	28
33	. 58141	. 81361	. 59552	. 80334	. 60945	.r9282	. 62320	. 78206	. 63675	. 77107	27
34	. 58165	. 81344	. $595 \sim 6$. 80316	. 6096	. 79264	. 62342	. 78188	. 63698	77088	26
35	. 58189	. 81327	. 59599	. 80299	. 60991	. 79247	. 62	. 78170	. 63720	77070	25
36	. 58212	. 81310	. 59622	. 80282	. 61015	. 79229	. 6238	. 78152	. 63742	\%\%051	24
37	. 58236	. 81293	. 59646	. 80264	. 61038	. 79211	. 62411	. 78134	. 63765	. 77033	23
38	. 58260	.81276	. 59669	. 80247	. 61061	. 79193	. 6243	. 78116	. 63787	. 77014	22
39	. 58283	. 81259	. 59693	. 80230	. 61084	. 79176	. 62456	. 78098	. 63810	76996	21
40	. 583	.	.	. 8			-	-	-63832	T	20
41	. 58330		. 59739	. 80195	. 61130	. 79140	. 62502	. 78061	. 63854	. 6859	19
42	. 58354	. 81208	. 5976	. 80178	. 61153	. 79122	. 62524	. 78043	. 63877	76940	18
43	. 58378	. 81191		. 80160	. 61176	. 79105	. 6254	. 78025	. 63899	76921	17
44	. 58401	. 81174	. 59809	. 80143	. 61199	. 79088	. 625%	. 78007	. 63922	76903	16
45	. 58425	. 81157	. 59832	. 80125	. 61222	. 79069	. 62592	. 77988	. 63944	76884	15
45	. 58449	. 81140	. 59856	. 80108	. 61245	. 79051	. 6261	.77970	. 63966	76866	4
$4{ }^{7}$. 58472	.81123	. 59879	. 80091	. 61268	. 79033	. 62638	. 77952	. 63989	, 684	13
48	. 58496	81106	. 59902	. 80073	. 61291	. 79016	. 62660	. 77934	. 64011	, 688	12
49	. 58519	. 81089	. 59926	. 80056	. 61314	.78998	. 6268	.77916	. 64033	\%6810	11
50	. 58543	. 81072	. 59949	. 80038		. 78980		. 77897		\%ris	10
51	. 58567	. 81055	.59972	80021	. 61360	78962	. 62728	. 77879	. 64078	r6772	9
52	. 58590	. 81038	. 59995	80003	. 61383	. 78944	. 62751	. 77861	. 64100	76\%54	
53	. 58614	. 81021	. 60019	. 79986	. 61406	. 78926	. 62774	. 77843	. 64123	76735	
5	. 58637	. 81004	. 60042	\% 79968	. 61429	. 78908	. 62796	. 77824	. 64145	ror 17	6
50	. 58661	. 80987	. 60065	. 79951	. 61451	. 78891	. 62819	. 77806	. 64167	.6698	
56	. 58681	. 80970	. 60089	. 79934	. 61474	. 78873	. 62842	. 77788	. 64190	.76679	
5.	. 58708	. 80953	. 60112	. 79916	. 61497	. 78855	. 62864	. 77769	. 64212	76661	
58	. 58731	. 80936	. 60135	. 79899	. 61520	. 78837	. 62887	. 77751	. 64234	76642	1
59	. 58755	. 80919	. 60158	. 79881	. 61543	. 78819	. 62909	. 77733	. 64256	76623	1
60	. 58779	. 8	. 60182	1	-	78801	. 62932	. 77715	. 64279	76604	0
		Sine		Sine		Sine		Sin	Cosin	Sine	
	54	4°									

	40°		41°		420		43		44*		
	Sine	Cosin	Sine	Cosin	Sin θ	Cosi	Sine	Cosin	Sine	Cosin	
0	. 64279	. 76604	. 65606	. 75471	. 66913	. 74314	. 68200	. 73135	. 69466	. 7193	60
1	. 61301	. 76586	. 65628	. 75452	. 66935	. 74295	. 68221	. 73116	. 69487	. 71914	59
2	. 64323	. 76567	. 65650	. 75433	. 66956	. 74276	. 68242	.73096	. 69508	. 7189	58
3	. 64346	. 76548	. 65672	. 75414	. 66978	. 74256	. 68264	. 73076	. 69529	. 7187	57
	. 64368	. 76530	. 65694	. 75395	. 66999	. 74237	. 68285	. 73056	. 69549	. 7185	56
5	. 64390	. 76511	. 65716	. 75375	. 67021	. 74217	. 68306	. 73036	.695\%0	. 7183	55
	. 64412	. 76492	. 65738	. 75356	. 67043	. 74198	.68327	. 73016	. 69591	. 7181	54
7	. 64435	. 76473	. 65759	. 75337	. 67064	. 74178	. 68349	. 72996	. 69612	. 7179	53
	. 61457	. 76455	. $65 \% 81$. 75318	. 67086	. 74159	. 68370	. 72976	. 69633	. 7177	53
9	. 64479	. 76436	. 65803	. 75299	. 67107	. 74139	. 68391	. 72957	. 69654	. 7175	51
10	. 64501	. 76417	. 65825	. 75280	. 67129	. 74120	. 68412	.7293\%	. 69675	. 717	50
11	. 64	. 76398	. 65847	. 75261	. 67151	. 74100	. 68434	. 72917	. 69696		49
12	. 64546	. 76380	. 65869	.75241	. 67172	. 74080	. 68455	. 728897	. 69717	. 716	48
13	. 64568	. 76361	. 65891	. 75222	. 67194	. 74061	. 68476	. 72877	. 69.37	. 7167	47
14	. 64590	. 76342	. 65913	. 75203	. 67215	. 74041	. 68497	. 72857	. 69758	. 7165	46
15	. 64612	. 76323	. 65935	. 75184	. 67237	. 74022	. 68518	. 728837	. 69779	. 7163	45
16	. 64635	. 76304	. 65956	. 75165	. 67258	. 74002	. 68539	. 72817	. 69800	. 71610	44
17	. 64657	. 76286	. 65978	. 75146	. 67280	. 73983	. 68561	. 72797	. 69821	. 715	43
18	. 64679	. 76267	. 66000	. 75126	. 67301	. 73963	. 68582	. 72777	. 69842	. 715	42
19	. 64701	. 76248	. 66022	. 75107	. 67323	. 73944	. 68603	. 72757	. 69862	. 7154	41
20	. 64723	. 76229	. 66044	. 75088	. 67344	. 73924	. 68624	. 72737	. 69883	. 71529	40
21	. 64746	. 76210	. 66066	. 75069	. 67366	. 73904	. 68645	. 72717	. 69904	. 71508	39
22	. 61768	.76192	. 66088	. 75050	. 67387	. 73885	. 68666	. 72697	. 69925	. 7148	38
23	. 64790	. 76173	. 66109	. 75030	. 67409	. 73865	. 68688	. 72677	. 69946	. 7146	37
24	. 64812	.76154	. 66131	. 75011	. 67430	. 73846	. 68709	. 72657	. 69966	. 71447	36
25	. 64834	. 76135	. 66153	. 74992	. 67452	. 73826	. 68730	. 72637	. 69987	. 7142	35
26	. 64856	. 76116	. 66175	. 74973	. 67473	. 73806	. 68751	. 72617	. 70008	. 7140	34
27	. 64878	. 76097	. 66197	. 74953	. 67495	. 73787	. 68772	. 72597	. 70029	. 7138	33
28	. 64901	. 76078	. 66218	. 74934	. 67516	. 73767	. 68793	. 72577	. 70049	. 7136	32
29	. 64923	. 76059	. 66240	. 74915	. 67538	. 73747	. 68814	. 72557	. 70070	. 7134	31
30	. 64945	. 760	. 66262	.74896	. 67559	728	. 68835	. 72537	.70091	. 71325	30
31	. 64967		. 66284	. 74876	. 67580		. 68857	. 72517	0112	. 71305	29
32	. 64989	. 76003	. 66306	. 74857	. 67602	. 73688	. 68888	. 72497	70132	. 71284	28
33	. 65011	. 75984	. 66327	. 74838	. 67623	. 73669	. 68899	. 72477	70153	. 7126	27
34	. 65033	. 75965	. 66349	74818	. 67645	. 73649	. 68920	. 72457	. 70174	. 71243	26
35	. 65055	. 75946	. 66371	.74799	. 67666	. 73629	. 68941	. 72437	. 0195	. 71223	35
36	. 65077	.75927	. 66393	.74780	. 67688	.73610	. 68962	. 72417	. 70215	. 71203	24
37	. 65100	. 75908	. 66414	.74760	. 67709	. 73590	. 68983	. 72397	. 70236	. 71182	23
38	. 65122	. 75889	. 66436	. 74741	. 67730	$735 \% 0$. 69004	. 72377	. 70257	. 71162	22
39	. 65144	. 75870	. 66458	.74722	. 67752	. 73551	. 69025	. 72357	.70277	. 71141	21
40	. 65166	. 75851	. 66480	. 74703	-	31	. 69046	. 72337	.70298	. 71121	20
41	. 65188	. 7583	. 66501	. 74683	. 67795	. 73511	. 69067	. 72317	. 70319		19
42	. 65210	. 75813	. 66523	. 74664	. 67816	. 73491	. 69088	. 72297	.70339	. 71080	18
43	. 65232	.75\%94	. 66545	. 74644	. 67837	. 73472	. 69109	. 72277	.70360	. 71059	17
44	. 65254	. 75775	. 66566	. 74625	. 67859	. 73452	. 69130	. 72257	.70381	. 71039	16
45	. 65276	. 75756	. 66588	. 74606	. 67880	. 73432	. 69151	. 72236	. 70401	. 71019	15
46	. 65298	. 75738	. 66610	.74586	. 67901	. 73413	. 69172	. 72216	. 70422	. 70998	14
47	. 65320	. 75719	. 66632	. 74567	. 67923	. 73393	. 69193	. 72196	. 70443	. 70978	13
48	. 65342	. 75700	. 66653	. 74548	. 67944	. 73373	. 69214	. 72176	. 70463	. 70957	12
49	. 65364	. 77580	. 66675	. 74528	. 67965	. 73353	. 69235	. 72156	. 70484	. 70937	11
50	. 65386	T5601	. 66697	.74509	8	. 73333	. 69256	. 72136	. 70505	. 70916	10
51	. 65408	. 75642	. 66718	. 74489	. 68008	. 73314	. 69277	. 72116	. 70525	70896	9
52	. 65430	. 75623	. 66740	. 74470	. 68029	. 73294	. 69298	. 72095	. 70546	70875	8
53	. 65452	. 75604	. 66762	. 74451	. 68051	. 73274	. 69319	. 72075	. 70567	. 70855	7
54	. 65474	. 75585	. 66783	. 74431	. 68072	. 73254	. 69340	. 72055	. 70587	. 70834	6
55	. 65496	.75566	. 66805	.74412	. 68093	. 73234	. 69361	. 72035	. 70608	. 70813	5
56	. 65518	.75547	. 66827	.74392	. 68115	. 73215	. 69382	. 72015	. 70628	. 70793	4
57	. 65540	. 75528	. 668348	.74373	. 68136	. 73195	. 69403	.71995	. 70649	. 70772	3
58	. 65562	.75509	. 66870	. 74359	.68157	. 73175	. 69424	$.719{ }^{\circ} 4$. 70670	. 70752	2
59	. 65584	. 75490	. 66891	.74334	. 68179	. 73155	. 69445	. 71954	. 70690	.70731	1
60	. 65606	. 7	. 66913	. 74314	. 68200	. 73135	. 6946	17191	. 70711	. 70711	0
	Cosin	Sin θ	Cosin	Sine	Cosin	Sine	Cosin	Sine	Cosin	$\overline{\operatorname{Sin} \theta}$	
						7°			25		

Table II.

NATURAL TANGENTS AND COTANGENTS

TO

FIVE DECIMAL PLACES.

	0		$1{ }^{\circ}$		$2{ }^{\circ}$		$3{ }^{\circ}$		1,
	Tang	Cotang	Tang	Cotang	Tang.	Cotang	Tang	Cotang	
0	. 00000	Infinite.	. 01746	57.2900	. 03492	28.6363	. 05241	19.0811	$\overline{60}$
	. 000029	3437.75	. 01775	56.3506	.03521	28.3994	.05270	18.9755	59
2	. 00058	1718.87	. 01804	55.4415	. 03550	28.1664	. 05299	18.8711	58
3	. 00087	1145.92	. 01833	54.5613	. 03579	27.9372	. 05328	18.76r8	57
4	. 00116	859.436	. 01862	53.7086	. 03669	27.7117	. 05357	18.6656	56
6	. 00145	687.549 $5 \sim 2.957$. 01891	52.8821	. 03638	27.4899 27.2715	. 0538716	18.5645 18.4645	55 54
7	. 00204	491.106	. 01949	51.3032	. 03696	27.0566	. 054445	18.3655	54
8	. 00233	429.718	. 01978	50.5485	.03\%25	26.8450	. 05474	18.2677	52
9	.00262	381.971	.0200	49.8157	.03\% 54	26.6367	. 05503	18.1708	51
10	. 00291	343.774	. 02036	49.1039	. 03783	26.4316	. 05533	18.0750	50
11	. 00320	312.521	. 02066	48.4121	. 03812	26.2296	. 05562	17.9802	49
12	. 00349	286.478	. 02095	47.7395	. 03842	26.0307	. 05591	17.8863	48
13	.00378	264.441	. 02124	47.0853	. 03871	25.8348	. 05620	17.7934	47
14	. 00407	245.552	. 02153	46.4489	. 03900	25.6418	. 05649	17.7015	46
15	. 00436	229.182	. 02182	45.8294	. 03929	25.4517	. 05678	17.6106	45
16	. 00465	214.858	. 02211	45.2261	. 03958	25.2644	. 05708	17.5205	44
17	. 00495	202.219	. 02240	44.6386	. 03987	25.0798	. 05737	17.4314	43
18	.00524	190.984	. 02269	44.0661	. 04016	24.8978	. 05766	17.3432	42
19	. 00553	180.932	. 02298	43.5081	. 04046	24.7185	. 05795	17.2558	41
20	. 00582	171.885	. 02328	42.9641	. 04075	24.5418	. 05824	17.1693	40
21	. 00611	163.700	. 02357	42.4335	. 04104	24.3675	. 05854	17.0837	39
22	. 00640	156.259	. 02386	41.9158	. 04133	24.1957	. 05883	16.9990	38
23	. 00669	149.465	. 02415	41.4106	. 04162	24.0263	. 05912	16.9150	37
24	. 00698	143.237	. 02444	$40.91 \% 4$. 04191	23.8593	. 05941	16.8319	36
25	. 00727	137.507	. 02473	40.4358	. 04220	23.6945	. 05970	16.7496	35
26	-00756	132.219	.02502	39.9655	. 04250	23.5321	. 05999	16.6681	34
27	. 00785	127.321	. 02531	39.5059	. 04279	23.3718	. 06029	16.5874	33
28	. 00815	122.774	. 02560	39.0568	. 04308	23.2137	. 06058	16.5075	32
29	. 00844	118.540	. 02589	38.6177	. 04337	23.0577	. 06087	16.4283	31
30	. 00873	114.589	. 02619	38.1885	. 0436	22.9038	. 06116	16.3499	30
31	. 00902	110.892	. 02648	37.7686	. 04395	22.7519	. 06145	16.2722	29
32	. 00931	107.426	. 02677	37.3579	. 0442	22.6020	. 06175	16.1952	28
33	. 00960	104.171	. 02706	36.9560	. 0445	22.4541	. 06204	16.1190	27
34	. 00989	101.107	.02\%35	36.5627	. 04483	22.3081	. 06233	16.0435	26
35	. 01018	98.2179	. 02764	$36.17 \% 6$. 01512	22.1640	. 08262	15.9687	25
36	. 01047	95.4895	. 02793	35.8006	. 04541	22.0217	. 06291	15.8945	24
37	. 01076	92.9085	. 02822	35.4313	. 04570	21.8813	. 06321	15.8211	23
38	. 01105	90.4633	. 02851	35.0695	. 04599	21.7426	. 06350	15.7483	22
39	. 01135	88.1436	. 02881	34.7151	. 04638	21.6056	.08379	15.6762	21
40	. 0	85	910	34.3678	. 04658	,	. 06408	-	20
41	. 01193	83.8435	. 02939	34.0273	. 04687	21.3369	. 06437	15.5340	19
42	.01222	81.8470	. 02968	33.6935	. 04716	21.2049	. 06467	15.4638	18
43	. 01251	79.9434	.02997	33.3662	. 04745	21.0747	. 06496	15.3943	17
44	. 01230	78.1263	. 03026	33.0452	. 047774	20.9460	. 06525	15.3254	16
45	. 01309	r6.3900	. 03055	32.7303	. 04803	20.8188	. 06554	15.2571	15
46	. 01338	74.7292	. 03084	32.4213	. 04833	20.6932	. 06584	15.1893	14
47	. 01367	73.1390	. 03114	32.1181	. 04862	20.5691	. 06613	15.1222	13
48	. 01336	71.6151	. 03143	31.8205	. 04891	20.4465	. 06642	15.0557	12
49	. 01425	70.1533	. 03172	31.5284	. 04920	20.3253	. 06671	14.9898	11
50	. 01455	68.7501	. 03201	31.2416	. 04949	20.2056	.	14.9244	10
51	. 01484	67.4019	. 0323	30.9599	. 04978	20.08\%	. 06730	14.8596	9
5	. 01513	66.1055	. 03259	30.6833	. 05007	19.9702	. 06759	14.7954	8
53	. 01542	64.8580	. 03288	30.4116	. 05037	19.8546	. 06788	14.7317	7
54	. 01571	63.6567	. 03317	30.1446	. 05066	19.7403	. 06817	14.6685	6
55	. 01600	62.4992	. 03346	29.8823	. 05095	19.6273	. 06847	14.6059	5
56	. 01629	61.3829	. 03376	29.6245	. 05124	19.5156	. 06876	14.5438	4
57	. 01658	60.3058	. 03405	29.3711	. 05153	19.4051	. 06905	14.4823	3
58	. 01687	59.2659	. 03434	29.1220	. 05182	19.2959	. 06934	14.4212	2
59	. 01716	58.2612	. 03463	28.8771	. 05212	19.1879	. 06963	14.3607	1
60	. 01746	57.2900	. 03492	28.6363	. 05241	19.0811	. 06993	14.3007	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	

TABLE II. TANGENTS AND COTANGENTS.

	12°		13°		14°		15°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 21256	4.70463	. 23087	4.33148	. 24933	4.01078	. 26795	3.73205	$\overline{60}$
1	. 21286	4.69791	. 23117	4.32573	. 24964	4.00582	. 26826	3.72771	59
	. 21316	4.69121	. 23148	4.32001	. 24995	4.00086	. 26857	3.72338	58
,	. 21347	4.68452	. 23179	4.31430	. 25026	3.99592	. 26888	3.71907	57
4	. 21377	4.67786	. 23209	4.30860	. 25056	3.99099	. 26992	3.71476	56
5	. 21408	4.67121	. 23240	4.30291	. 25087	3.98607	. 26951	3.71046	55
6	. 21438	4.66458	. 23271	4.29724	. 25118	3.98117	. 26988	3.70616	54
7	. 21469	$4.65{ }^{\text {\% }} 97$. 23301	4.29159	. 25149	3.97627	. 27013	3.70188	53
8	.21499	4.65138	. 233332	4.28595	. 25180	3.97139	. 27044	3.69761	52
9	. $215 \% 9$	4.64480	. 23363	4.28032	. 25211	3.96651	. 27076	3.69335	51
10	. 21560	4.63825	. 23393	4.27471	. 25242	3.96165	. 27107	3.68909	50
11	. 21590	4.63171	. 23424	4.26911	.25273	3.95680	. 27138	3.68485	49
12	. 21621	4.62518	. 23455	4.26352	. 25304	3.95196	. 27169	3.68061	48
13	. 21651	4.61868	. 23485	4.25795	. 25335	3.94713	. 27201	3.67638	47
14	. 21682	4.61219	. 23516	4.25239	. 25366	3.94232	. 27232	3.67217	46
15	. 21712	4.60572	. 23547	4.24685	. 25397	3.93751	. 27263	3.66796	45
16	. 21743	4.59927	. 23578	4.24132	. 25428	3.93271	. 27294	3.66376	44
17	. 21773	4.59283	. 23608	4.23580	. 25459	3.92793	. 27326	3.65957	43
18	. 21804	4.58641	. 23639	4.23030	. 25490	3.92316	. 27357	3.65538	42
19	. 21834	4.58001	. 23670	4.22481	. 25521	3.91839	. 27388	3.65121	41
20	. 21864	4.57363	. 23700	4.21933	. 25552	3.91364	. 27419	3.64705	40
21	. 21895	4.56726	23731	4.21387	. 25583	3.90890	. 27451	3.64289	39
22	. 21925	4.56091	. 23762	4.20842	. 25614	3.90417	. 27482	3.63874	38
23	. 21956	4.55458	. 23793	4.20298	. 25645	3.89945	. 27513	3.63461	37
24	. 21986	4.54826	. 23823	4.19756	. 25676	3.89474	. 27545	3.63048	36
25	. 22017	4.54196	. 23854	4.19215	. 25707	3.89004	. 27576	3.62636	35
26	. 22047	4.53568	. 23885	4.18675	. 25738	3.88536	. 27607	3.62224	34
27	. 22078	4.52941	. 23916	4.18137	. 25769	3.88068	. 27638	3.61814	33
28	. 22108	4.52316	. 23946	4.17600	. 25800	3.87601	. 27670	3.61405	32
29	. 22139	4.51693	. 23977	4.17064	. 25831	3.87136	. 27701	3.60996	31
30	. 22169	4.51071	. 24008	4.16530	. 25862	3.86671	. 27732	360588	30
31	. 22200	4.50451	. 24039	4.15997	. 25893	3.86208	. 27764	3.60181	29
32	. 22231	4.49832	. 24069	4.15465	. 25924	3.85745	. 27795	3.59775	28
33	. 22261	4.49215	. 24100	4.14934	. 25955	3.85284	. 27826	3.59370	27
34	. 22292	4.48600	. 24131	4.14405	. 25986	3.84824	. 27858	3.58966	26
35	. 22323	4.47986	. 24162	4.13877	. 26017	3.84364	. 27889	3.58562	25
36	. 22353	4.47374	. 24193	4.13350	. 26048	3.83906	. 27921	3.58160	24
37	. 22383	4.46764	. 24223	4.12825	. 26079	3.83442	. 27952	3.57758	23
38	. 22414	4.46155	. 24254	4.12301	. 26110	3.82992	. 27983	3.57357	22
39	. 22444	4.45548	. 24285	4.11778	. 26141	3.82537	. 28015	3.56957	21
40	. 22475	4.44942	. 24316	4.11256	. 26172	3.82083	. 28046	3.56557	20
41	. 22505	. 4.44338	. 24347	4.10736	. 26203	3.81630	. 28077	3.56159	19
42	. 22536	4.43735	. 24377	4.10216	. 26235	3.81177	. 28109	3.55761	18
43	. 22567	4.43134	. 24408	4.09699	. 26266	3.80726	. 28140	3.55364	17
44	. 22597	4.42534	. 24439	4.09182	. 26297	3.80276	. 28172	3.54988	16
45	. 22628	4.41936	. 24470	4.08666	. 26328	3.79827	. 28203	3.54573	15
46	. 22658	4.41340	. 24501	4.08152	. 26359	3.79378	. 28234	3.54179	14
47	. 22689	4.40745	. 24532	4.07639	. 26390	3.78931	. 28266	3.53785	13
48	. 22719	4.40152	. 24562	4.07127	. 26421	3.78485	. 28297	8.53393	12
49	. 22750	4.39560	. 24593	4.06616	. 26452	3.78040	. 28329	3.53001	11
50	. 22781	4.38969	. 24624	4.06107	. 26483	3.77595	. 28360	3.52609	10
51	. 22811	4.38381	. 24655	4.05599	. 26515	3.77152	. 28391	3.52219	9
51	. 22842	4.37793	. 24686	4.05092	. 26546	3.76709	. 28423	3.51829	8
53	. 22872	4.37207	. 24717	4.04586	. 26577	3.76268	. 28454	3.51441	7
4	. 22903	4.36623	. 24747	4.04081	. 26608	3.75828	. 28486	3.51053	6
5	. 222934	4.36040	. 24778	4.03578	. 26639	3.75388	. 28517	3.50666	5
56	. 22964	4.35459	. 24809	4.03076	. 26670	3.74950	. 28549	3.50279	4
57	. 22995	4.34879	. 24840	4.02574	. 26701	3.74512	. 28580	3.49894	3
58	. 23026	4.34300	. 24871	4.02074	. 26733	3.74075	. 28612	3.49509	2
59	. 23056	4.33723	. 24902	4.01576	. 26764	3.73640	. 28643	3.49125	1
60	. 23087	4.33148	. 24933	4.01078	. 26795	3.73205	. 28675	$3.48 \% 41$	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	
	77°		76°		\% 5°		74°		

144 TABLE II. TANGENTS AND COTANGENTS.

	16°		17°		18°		19°		,
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
1	. 28675	3.48741	. 30573	3.27085	. 32492	3.07768	. 34433	2.90421	60
	.28706	3.48359	. 30605	3.26745	. 32524	3.07464	. 34465	2.90147	59
2	. 28738	3.47977	. 30637	3.26406	. 32556	3.07160	. 34498	2.89873	58
	. 28769	3.47596	. 30669	3.26067	. 32588	3.06857	. 34530	2.89600	7
	. 28800	3.47216	. 30700	3.25729	. 32621	3.06554	. 34563	2.89327	56
5	. 2883	3.46837	. 30732	3.25392	. 32653	3.06252	. 34596	2.89055	55
6	. 28864	3.46458	. 30764	3.25055	. 32685	3.05950	. 34628	2.88783	54
7	. 28895	3.46080	. 30796	3.24719	. 32717	3.05649	. 34661	2.88511	3
	. 288977	3.45703	. 30828	3.24383	. 32749	3.05349	. 344693	${ }_{2}^{2.88240}$	52
	. 28958	3.45327	. 30860	3.24049	. 32782	3.05049	34726	2.87970	51
10	. 28990	3.44951	. 30891	3.23714	. 32814	3.04749	. 34758	287700	50
11	. 29021	3.44576	. 30923	3.23381	. 32846	3.04450	. 34791	2.87430	49
12	. 29053	3.44202	. 3095	3.23048	. $328 \% 8$	3.04152	. 34824	2.87161	48
13	. 29084	3.43829	. 30987	3.22715	. 32911	3.03854	. 34856	2.86892	47
14	. 29116	3.43456	. 31019	3.22384	. 32943	3.03556	. 34889	2.86624	46
14	. 29147	3.43084	. 31051	3.22053	. 32975	3.03260	. 34922	2.86356	45
16	. 29179	3.42713	. 31083	3.21722	. 33007	3.02963	. 34954	2.86089	44
	. 29210	3.42343	. 31115	3.21392	. 33040	3.02667	. 34987	2.85822	43
$\begin{aligned} & 17 \\ & 19 \end{aligned}$. 29242	3.41973	. 31147	3.21063	. 33072	$3.023 \% 2$. 35020	2.85555	42
$\begin{aligned} & 18 \\ & 19 \end{aligned}$. 29274	3.41604	. 31178	3.20734	. 33104	3.02077	. 35052	2.85289	41
$\left\lvert\, \begin{aligned} & 19 \\ & 20 \end{aligned}\right.$. 29305	3.41236	. 31210	3.2	. 3313	3.01783	. 350	2.85023	40
	. 29337	3.40869	. 31242	3.20079	. 33169	3.01	. 35118	2.84758	39
21	. 29368	3.40502	. 3127	3.19752	. 33201	3.01196	. 35150	2.84494	38
	. 29400	3.40136	. 31306	3.19426	. 33233	3.00903	. 35183	2.84229	
$\begin{aligned} & 23 \\ & 24 \end{aligned}$. 29432	3.39771	. 31338	3.19100	.33266	3.00611	. 35216	2.83365	36
$\left[\begin{array}{l} 24 \\ 25 \\ 00 \end{array}\right.$. 29463	3.39406	. 31370	3.18775	. 33298	3.00319	. 35248	2.83702	35
25	29495	3.39042	. 31402	3.18451	. 33330	3.00028	. 35281	2.83439	34
$\begin{array}{\|l\|} 20 \\ 27 \\ 00 \end{array}$. 29526	3.38679	. 31434	3.18127	. 33363	2.99738	. 35314	2.83176	33
	. 29558	3.38317	. 31466	3.17804	. 3339	2.99447	. 35346	2.82914	32
$\begin{aligned} & 28 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	29590	3.37955	. 31498	3.17481	. 33427	2.99158	. 35379	2.82653	31
30	. 29621	3.37594	. 31530	3.17159		2.98868	541	2.82391	30
31	. 296	3.37234	31	3.16838	. 33	2.98580	. 35	2.82130	29
32	. 29685	3.36875	. 31594	3.16517	. 3352	2.98292	. 35477	2.81870	\%
33	. 29716	3.36516	. 31626	3.16197	. 33557	2.98004	. 35510	2.81610	27
34 34	. 29748	3.36158	. 31658	3.15877	. 33589	2.97717	. 35543	2.81350	26
34 35 30	. 29780	3.35800	. 31690	3.15558	. 33621	2.97430	. 35576	2.81091	45
$\begin{aligned} & 35 \\ & 36 \end{aligned}$. 29811	3.35443	. 31722	3.15240	. 33654	2.97144	. 35608	2.80833	24
$\begin{aligned} & 36 \\ & 37 \\ & \hline \end{aligned}$. 29843	3.35087	. 31754	3.14922	. 33686	2.96858	. 35641	$2.805 \% 4$	23
$\begin{aligned} & 37 \\ & 37 \\ & 38 \end{aligned}$. 29875	3.34732	. 31786	3.14605	. 33718	2.96573	. 35674	2.80316	22:
$\begin{aligned} & 38 \\ & 39 \\ & 39 \end{aligned}$. 29906	3.34377	. 31818	3.14288	. 33751	2.96288	. 35707	2.80059	21
$\begin{array}{r} 39 \\ 40 \end{array}$. 29938	3.34023	. 31850	3.13972	. 33783	2.96004	. 35740	2.79802	20
	. 29970	3.33670	. 31882	3.13656		2.95721	. 35772	2.79545	19
42	. 30001	3.33317	. 31914	3.13341	. 33848	2.95437	. 35805	2.79289	18
	. 30033	3.32965	. 31946	3.13027	. 33881	2.95155	. 35838	2.79033	17
44	. 30065	3.32614	. 31978	3.12713	. 33913	2.94872	. 35871	2.78778	16
	. 30097	3.32264	. 32010	3.12400	. 33945	2.94591	. 35904	2.78523	15
46	. 30128	3.31914	. 32042	3.12087	. 33978	2.94309	. 35937	2.78269	4
	. 30160	3.31565	. 32074	3.11775	. 34010	2.94028	. 35969	2.78014	
48	. 30192	3.31216	. 32106	3.11464	. 34043	2.93748	. 36002	2.77761	12
48450	. 30224	3.30868	. 32139	3.11153	. 34075	2.93468	. 3603	2.77507	11
	. 30255	3.30521	. 32171	3.10842	. 34108	2.93189	. 36068	2.77254	10
51	. 30287	3.30174	. 32203	3.10532	. 34140	2.92910	. 36101	2.77002	
	. 30319	3.29829	. 32235	3.10223	. 34173	2.92632	. 36134	2.76750	
53	. 30351	3.29483	. 32267	3.09914	. 34205	2.92354	. 36167	2.76498	7
54	. 30382	3.29139	. 32299	3.09606	. 34238	2.92076	. 36199	2.76247	6
	. 30414	3.28795	. 32331	3.09298	. 34270	2.91799	. 36232	2.75996	5
	. 30446	3.28452	. 32363	3.08991	. 3430	2.91523	. 36265	2.75\%46	
	. 30478	3.28109	. 32396	3.08685	.34335	2.91246	. 36298	2.75496	
	. 30509	3.27767	. 32428	3.08379	. 34368	2.90971 2.90696	. 363	2.75246 2.74997	1
60	. 30573	3.27085	. 32492	3.07768	. 34433	2.90421	. 36397	2.74748	0
	Cotang	Tang	Cotang	Tang	$\overline{\text { Cotang }}$	Tang	g	Tang	

TABLE II. TANGENTS AND COTANGENTS. 145

	20°		21°		22°		23°		
	Tang	Cotarig	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 36397	2.74748	. 38386	2.60509	. 40403	2.47509	. 42447	2.35585	$\widehat{60}$
1	. 36430	2.74499	. 38420	2.60283	. 40436	2.47302	. 42482	2.35395	59
2	.36463	2.74251	. 38453	2.60057	. 40470	2.47095	. 42516	2.35205	58
3	. 36496	2.74004	. 38487	2.59831	. 40504	2.46888	. 42551	2.35015	57
4	. 36539	2.73756	. 38520	2.59606	. 40538	2.46682	. 42585	2.34825	56
5	. 36562	2.73509	. 38553	2.59381	. 40572	$2.464 \% 6$. 42619	2.34636	55
6	. 36595	2.73263	. 38587	2.59156	. 40606	2.46270	. 42654	2.34447	54
7	. 36628	2.73017	. 38620	2.58932	. 40640	2.46065	. 42688	2.34258	53
8	. 36661	$2.727 \% 1$. 38654	$2.58 \% 08$. 406%	2.45860	. $427 \% 2$	2.34069	52
9	. 36694	2.72526	. 38687	2.58484	. 40707	2.45655	. 42757	2.33881	51
10	. 36727	2.72081	. 38721	2.58261	. 40741	2.45451	. 42791	2.33693	50
11	. 36760	2.72036	. 38754	2.58038	. 40775	2.45246	. 42826	2.33505	49
12	. 36793	2.71792	. $38 \sim 87$	2.57815	. 40809	2.45043	. 42860	2.33317	48
13	. 36826	2.71548	. 38821	2.57593	.40843	2.44839	. 42894	2.33130	47
14	. 36859	2.71305	. 38854	2.57371	. 40877	2.44636	. 42929	2.32943	46
15	. 36892	2.71062	. 38888	2.57150	. 40911	2.44433	. 42963	2.32756	45
16	. 36925	2.70819	. 38921	2.56928	. 40945	2.44230	. 42998	$2.325 \% 0$	44
17	. 36958	2.705\%\%	. 38955	2.56707	. 40979	2.44027	. 43032	2.32383	43
18	. 36991	2.70335	. 38988	2.56487	. 41013	2.43825	. 43067	2.32197	42
19	. 37024	2.70094	. 39022	2.56266	. 41047	2.43623	. 43101	2.32012	41
20	. 37057	2.69853	. 39055	2.56046	. 41081	2.43422	. 43136	2.31826	40
21	.37090	2.69612	. 39089	2.55827	.41115	2.43230	.431\%0	2.31641	39
22	. 3123	2.69371	. 39122	2.55608	. 41149	2.43019	. 43205	2.31456	38
23	. 37157	2.69131	. 39156	2.55389	. 41183	2.42819	. 43239	$2.312 \% 1$	37
24	. 37190	2.63892	. 39190	2.55170	. 41217	2.42618	. $432 \% 4$	2.31086	36
25	. 37223	2.68653	. 39223	2.54952	. 41251	2.42418	. 43308	2.30902	35
26	. 37256	2.68414	. 39257	2.54734	. 41285	2.42218	. 43343	$2.30 \% 18$	$34{ }^{4}$
27	. 37289	2.68175	. 39290	2.54516	. 41319	2.42019	. 43318	2.30534	33
28	. 37322	26793%	. 39324	2.54299	. 41353	2.41819	. 43412	2.30351	32
29	. 37355	2.67\%00	. 39357	2.54082	. 41387	2.41620	. 43447	2.30167	31
30	. 37388	2.67462	. 39891	2.53865	. 41421	2.41421	. 43481	2.29984	30
31	. 37422	2.67225	. 39425	2.53648	. 41455	2.41223	. 43516	2.29801	29
32	. 37455	2.66989	. 39458	2.53432	. 41490	2.41025	. 43550	2.29619	28
33	. 37488	2.66752	. 39492	2.53217	. 41524	2.40827	. 43585	2.29437	27
34	. 37521	2.66516	. 39526	2.53001	. 41558	2.40629	. 43620	2.29254	26
35	. 37554	2.66281	. 39555	2.52\%86	. 41592	2.40432	. 43654	2.29073	25
36	. 37588	2.66046	. 39593	$2.525{ }^{7} 1$. 41626	2.40235	. 43689	2.28891	24
37	. 37621	2.65811	. 39626	2.52357	. 41660	2.40038	. 43724	2.28710	23
38	. 37654	2.65576	. 39660	2.52142	. 41694	2.39811	. 43758	2.28528	22
39	. 37687	2.65342	. 39694	2.51929	. 41728	2.39645	. 43793	2.28348	21
40	. 37720	2.65109	. 39727	2.51715	. 41763	2.39449	. 43828	2.28167	20
41	. 37754	2.64875	. 39761	2.51502	. 41797	2.39253	.43862	2.27987	19
42	. 37787	2.64642	. 39795	2.51289	. 41831	2.39058	.43897	2.27806	18
43	. 37820	2.64410	. 39829	$2.510 \% 6$. 41865	2.38863	. 43932	2.27626	17
44	. 37853	2.6417%	. 39862	2.50864	41899	2.38668	.43966	2.27447	16
45	. 37887	2.63945	. 39896	2.50652	. 41933	2.38473	. 44001	2.27267	15
46	. 37920	2.63714	. 39930	2.50440	. 41968	2.38279	. 44036	2.2\%088	14
47	. 37953	2.63483	. 39963	2.50229	. 42002	2.38084	.44071	2.26909	13
48	. 37986	2.63252	. 39997	2.50018	. 42036	2.37891	. 44105	2.26730	12
49	. 38020	2.63021	. 40031	2.49807	. 42070	2.37697	. 44140	2.26552	11
50	. 38053	2.63791	. 40065	2.49597	. 42105	2.37504	.44175	2.26374	10
51	. 38086	2.62561	. 40098	2.49386	. 42139	2.37311	. 44210	2.26196	9
52	. 38120	2.62332	. 40132	2.49177	. 42173	2.31118	. 44244	2.26018	8
53	. 38153	2.62103	. 40166	2.48967	. $4220{ }^{7}$	2.36925	. 44279	2.25840	7
54	. 38186	$2.618 \% 4$. 40200	2.48758	. 42242	2.36733	. 44314	2.25663	6
55	. 38220	2.61646	. 40234	2.48549	. $422 \% 6$	2.36541	. 44349	2.25486	5
56	. 38253	2.61418	. 40267	248340	. 42310	2.36349	. 44384	2.25309	4
57	. 38286	2.61190	. 40301	2.48132	. 42345	2.36158	. 44418	2.25132	3
58	. 38320	2.60963	. 40335	2.47924	. 42379	2.35967	.44453	2.24956	2
59	. 38353	2.60736	. 40369	2.47716	. 42413	2.35776	. 44488	2.24780	1
60	. 38386	2.60509	. 40403	2.47509	. 42447	2.35585	. 44523	2.24604	0
	Cotang \rceil Tang		$\overline{\text { Cotang }} /$ Tang		$\overline{\text { Cotang }}$ Tang		Cotang	Tang	
	69°		68°		67°		66°		

	24°		25°		26°		27°		,
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 44523	2.24604	. 46631	2.14451	. 48773	2.05030	. 50953	1.96261	$\overline{60}$
1	. 44558	2.24428	. 46666	2.14288	. 48809	2.04879	. 50989	1.96120	59
2	. 44593	2.24252	. 46702	2.14125	. 48845	$2.04 \% 28$. 51026	1.95979	58
8	. 44627	2.24077	. 46737	2.13963	. 48881	2.04577	. 51063	1.95838	57
4	. 44662	2.23902	. 46772	2.13801	. 48917	2.04426	. 51099	1.95698	56
5	. 44697	2.23727	. 46808	2.13639	. 48953	2.04276	. 51136	1.95557	55
6	. 44732	2,23553	. 46843	2.13477	. 48989	2.04125	. 51173	1.95417	54
8	. 447867	2.23378	. 46879	2.13316	. 49026	2.03975	. 51209	1.95277	53
8	. 4448837	2.23204 2.23030	. 46914	2.13154 2.12993	.49062 .49098	2.03825 2.03675	.51246 .51283	1.95137	52
10	. 448%	2.22857	. 46985	2.12832	. 49134	2.03526	. 51319	1.94858	51 50
11	. 44907	2.22683	. 47021	$2.126 \pi 1$. 49170	2.03376	. 51356	$1.94{ }^{\prime \prime} 18$	49
12	. 44942	2.22510	. 47056	2.12511	. 49206	2.03227	. 51393	1.945%	48
13	. 44977	2.22337	. 47092	2.12350	. 49242	2.03078	. 51430	1.94440	47
14	. 45012	2.22164	. 47128	2.12190	. 49278	2.02929	. 51467	1.94301	46
15	. 45047	2.21992	. 47163	2.12030	. 49315	2.02\%80	. 51503	1.94162	45
16	. 45082	2.21819	. 47199	2.11871	. 49351	2.02631	. 51540	1.94023	44
17	. 45117	2.21647	. 47234	2.11711	. 49387	2.02483	. 51577	1.93885	43
18	. 45152	2.21475	. 47270	2.11552	. 49423	2.02335	. 51614	1.93746	42
19	. 45187	2.21304	. 47305	2.11392	. 49459	2.02187	. 51651	1.93608	41
20	. 45222	2.21132	. 47341	2.11233	. 49495	2.02039	. 5168	$1.934 \% 0$	40
21	. 45257	2.20961	. 47377	2.11075	. 49532	2.01891	. 51724	1.93332	39
22	. 45292	2.20790	. 47412	2.10916	. 49556	2.01743	. 51761	1.93195	38
23	. 45327	2.20619	. 47448	2.10758	. 49604	2.01596	. 51798	1.93057	37
24	.45362	2.20449	. 47483	2.10600	. 49640	2.01449	. 51835	1.92920	36
25	. 45397	2.20278	. 47519	2.10442	. 49677	2.01302	. $518 \% 2$	$1.92 \% 82$	35
26	. 45432	2.20108	. 47555	2.10284	. 49713	2.01155	. 51909	1.92645	34
27	. 45467	2.19938	. 47759	2.10126	. 49149	2.01008	. 51946	1.92508	33
28	. 45502	2.19769	. 47626	2.09969	. 49786	2.00862	. 51983	$1.923 \% 1$	32
29	. 45538	2.19599	. 47662	2.09811	. 49822	2.00715	. 52020	1.92235	31
30	. 45573	2.19430	. 47698	2.09654	. 49858	2.00569	. 52057	1.92098	30
31	. 45	2.19261	. 47733	2.09498	. 49894	2.00423	. 52094	1.91962	29
32	. 45643	2.19092	. 47769	2.09341	. 49931	2.002%	. 52131	1.91826	28
33	. 45678	2.18923	. 47805	2.09184	. 49967	2.00131	. 52168	1.91690	27
34	. 45713	2.18755	. 47840	2.09028	. 50004	1.99986	. 52205	1.91554	26
35	. 45 T48	2.18587	. 47886	$2.088 \% 2$. 50040	1.99841	. 52242	1.91418	5
36	. 45784	2.18419	. 47912	2.08716	. 50076	1.99695	.52279	1.91282	4
37	. 45819	2.18251	. 47948	2.08560	. 50113	1.99550	. 52316	1.91147	23
38	. 45854	2.18084	. 47984	2.08405	. 50149	1.99406	. 52353	1.91012	22
39	. 45889	2.17916	. 48019	2.08250	. 50185	1.99261	. 52390	1.90876	21
40	. 45924	2.17749	48055	2.08094	. 50222	1.99116	. 52427	1.90741	20
41	. 45960	2.17582	. 48091	2.07939	. 50258	1.98972	52464	1.90607	19
42	. 45995	2.17416	. $4812{ }^{7}$	2.07785	. 50295	1.98828	. 52501	$1.904 \% 2$	18
43	. 46030	2.17249	. 48163	2.07630	. 50331	1.98684	. 52538	1.90337	17
44	. 46065	2.17083	. 48198	2.07476	. 50368	1.98540	. 52575	1.90203	16
45	. 46101	2.16917	. 48234	2.07321	. 50404	1.98396	. 52613	1.90069	
46	. 46136	2.16751	.48270	2.07167	. 50441	1.98253	. 52650	1.89935	14
47	. 46171	2.16585	. 48306	2.07014	. 504 \%7	1.98110	. 52687	1.89801	13
48	. 46206	2.16420	. 48342	2.06860	. 50514	1.97966	. 52724	1.89667	12
49	. 46242	2.16255	. 48318	2.06706	. 50550	1.97823	.52761	1.89533	11
50	.46277	2.16090	. 48414	2.06553	. 50587	1.97681	. 52798	1.89400	10
51	. 46312	2.15925	. 48450	2.06400	. 50623	1.97538	. 52836	1.89266	
52	. 46348	2.15760	. 48486	2.06247	. 50660	1.97395	. 52883	1.89133	
53	. 46383	2.15596	. 48521	2.06094	. 50696	1.97253	. 52910	1.89000	7
54	. 46418	2.15432	. 48557	2.05942	. 50733	1.97111	. 52947	1.88867	6
65	. 46454	2.15268	. 48593	2.05790	. 50 ¢69	1.96969	. 52985	1.88734	5
56	. 46489	2.15104	. 48629	2.05637	. 50806	1.96827	. 53022	1.88602	4
57	. 46525	2.14940	. 48665	2.05485	. 50843	1.96685	. 53059	1.88469	3
58	. 46560	2.14777	. 48701	2.05333	. 50879	1.96544	. 53096	1.88337	2
59	. 46595	2.14614	. 48737	2.05182	. 50916	1.96402	. 53134	1.88205	1
60	. 46631	2.14451	. 48773	2.05030	50953	1.96261	5317	1.88073	0
	Cotang	Tang	$\overline{\text { Cotang }}$	Tang	ng	Tang	Cotang	Tang	,

TABLE II. TANGENTS AND COTANGENTS.

	32°		33°		34°		35°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 62487	1.60033	. 64941	1.53986	. 67451	1.48256	. 70021	1.42815	$\overline{60}$
,	. 62527	1.59930	. 64982	1.53888	. 67493	1.48163	. 70064	1.42726	59
2	. 62 ¢ّ68	1.59826	.650\%4	1.53791	. 67536	1.48070	. 70107	1.42638	58
3	. 62608	1.59723	. 65065	1.53693	. 67578	1.47977	. 70151	1.42550	57
4	. 62649	1.596\%0	. 65106	1.53595	. 67620	1.47885	. 70194	1.42462	56
	. 62689	1.59517	. 65148	1.53497	. 67663	1.47792	. 70238	1.42374	55
6	. 62730	1.59414	. 65189	1.53400	. 67705	1.47699	. 70281	1.42286	54
7	. 62770	1.59311	. 65831	1.53302	. 67748	1.47607	. 70325	142198	53
8	. 62811	1.59208	.65272	1.53205	. 67790	1.47514	. 70368	1.42110	52
9	.6285\%	1.59105	. 65314	1.53107	. 67832	1.47422	. 70412	1.42022	51
10	. 62892	1.59002	. 65335	1.53010	. 67875	1.47330	. 70455	1.41934	0
11	. 62953	1.58900	. 65397	1.52	. 679	1.472	. 70499	1.41847	49
12	. 62973	1.58797	. 65438	1.52816	. 6796	1.47146	. 70542	1.41759	48
13	. 63014	1.58695	. 65480	1.52719	. 68002	1.47053	. 70586	1.416	47
14	. 63055	1.58593	65521	1.52622	. 68045	1.46962	. 70629	1.41584	46
15	. 63095	1.58490	. 65563	1.52525	. 68088	1.46870	. 0673	1.41497	45
16	. 63136	1.58388	. 65604	1.52429	. 68130	1.46778	. 70717	1.41409	44
17	. 63177	1.58286	. 65646	1.52332	. 68173	1.46686	. 70760	1.41322	43
18	. 63217	1.58184	. 65688	1.52235	. 68215	1.46595	70804	1.41235	2
19	. 63258	1.58083	. 65729	1.52139	. 68258	1.46503	. 70948	1.41148	41
20	. 63299	1.57981	71	1.52043	6830	1.46411	0891	1.41061	40
21	. 63340	1.57879	. 65813	1.51946	. 68343	1.46320	. 70935	1.40974	39
22	. 63380	$1.577 \% 8$. 65854	1.51850	. 68386	1.46229	. 00979	1.40887	38
23	. 63421	$1.576 \pi 6$. 65896	1.51754	. 68429	1.46137	. 71023	1.40800	7
24 25	. 63462	1.57575	. 65938	1.51658	. 68471	1.46046	. 71066	1.40714	36
$\left\|\begin{array}{l} 24 \\ 25 \\ 26 \\ 26 \end{array}\right\|$. 63503	1.57474	. 65980	1.51562	. 68514	1.45955	. 71110	1.40627	35
	. 63544	1.573\%2	.66021	1.51466	. 68557	1.45864	. 71154	1.40540	4
$\left.\begin{aligned} & 26 \\ & 27 \end{aligned} \right\rvert\,$. 63584	1.572\%1	. 66063	1.51370	. 6860	1.45773	71198	1.40454	33
$\begin{aligned} & 27 \\ & 28 \end{aligned}$. 63625	1.57170	6610	1.51275	. 686	1.45682	. 71242	1.40367	32
29	. 63666	1.57069	. 66147	1.51179	. 68685	1.45592	. 71285	1.40281	31
30	. 63707	1.56969	6189	1.51084	. 68728	1.45501	.71329	1.40195	30
31	. 63748	1.56868	. 66230	1.50988	. 68771	1.45410	71373	1.40109	9
32	. 63789	1.56767	. $662 \% 2$	1.50893	. 68814	1.45320	. 71417	1.40022	8
334	. 63830	1.56667	. 66314	1.50797	. 68857	1.45229	. 71461	1.39936	7
	. 63871	1.56566	. 66356	1.50702	. 68900	1.45139	.71505	1.39850	6
$\left\|\begin{array}{l} 34 \\ 35 \\ 30 \end{array}\right\|$.63912	1.56466	. 66398	1.50607	. 68942	1.45049	. 71549	1.39764	5
36	. 63953	1.56366	. 66440	1.50512	. 68985	1.44958	. 71593	1.396\%9	24
37	. 63994	1.56265	. 66482	1.50417	. 69028	1.44868	. 71637	1.39593	
38	. 64035	1.56165	. 66524	1.50322	. 69071	1.44778	71681	1.39507	2
3940	. $640 \sim 6$	1.56065	. 66566	1.50228	. 69114	1.44688	. 71725	1.39421	21
	. 64	1.5	. 66608	1.50133	. 69157	1.	. 71769	1.39336	20
41	. 64158	1.55866	. 66650	1.50038	. 69200	1.44508	71813	1.39250	9
42	. 64199	1.55766	. 66692	1.49944	. 69243	1.44418	71857	1.39165	18
	. 64240	1.55666	. 66734	1.49849	. 69288	1.44329	\%1901	1.39079	17
44	. 64281	1.55567	. 66776	1.49755	. 69329	1.44239	. 71946	1.38994	16
45	. 64322	1.55467	. 66818	1.49661	. 69372	1.44149	. 71990	1.38909	15
46	. 64363	1.55368	. 66860	1.49566	. 69416	1.44060	. 72034	1.38824	14
47	. 64404	1.55269	. 66902	1.49472	. 69459	1.439\%0	$720 \% 8$	1.38738	
$\begin{aligned} & 48 \\ & 49 \end{aligned}$. 64446	1.55170	. 66944	1.49378	. 69502	1.43881	.72122	1.38653	12
	. 6448	1.55071	. 66986	1.49284	. 69545	1.43792	72167	1.38568	11
	. 64528	1.54972	. 67028	1.4	. 69588	1.43703	. 72211	38484	0
51	. 64569	1.54873	. 67071	1.49097	. 69631	1.43614	. 72255	1.38399	
52	. 64610	1.54774	. 67113	1.49003	. 69675	1.43525	. 72299	1.38314	
	. 64652	1.54675	. 6715	1.48909	. 69718	1.43436	. 72344	1.38229	
54	. 64693	1.54576	. 67197	1.48816	. 69761	1.43347	72388	1.38145	
55	. 64734	1.54478	. 67339	1.48722	. 69804	1.43258	77432	1.38060	
	. 64775	1.54379	. 67882	1.48629	. 69847	1.43169	. 72477	1.37976	
57	. 64817	1.54281	. 67324	1.48536	. 69891	1.43080	. 72521	1.37891	
58	. 64858	1.54183	. 67366	1.48442	. 69934	1.42992	. 72565	1.37807	
	64899	1.54085	. 67409	1.48349	. 69977	1.42903	72610	1.37722	
60	41	1.53986	451	. 48256	21	1.42815	. 72654	1.37638	0
,	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	
		57°		56°		5°		4°	

	36°		37°		$38^{\text {c }}$		39°		
	Tang	Cotang	Tang	Cotang	Tang	Cutang	Tang	Cotang	
$\overline{0}$. 72654	1.37638	. 75355	1.32704	. 78129	1.27994	. 80978	1.23490	$\overline{60}$
1	. 72699	1.37554	. 75401	1.32264	. 7817%	1.27917	. 81027	1.23416	59
2	. 72743	1.37470	. 75447	1.32544	. 75222	1.27841	. 81075	1.23343	58
3	. 72788	1.37386	. 75492	1.32464	. 78289	1.27764	. 81123	1.23270	57
4	. 72832	1.37302	. 75538	1.32384	. 78316	1.27688	. 81171	1.23196	56
5	. 72877	1.37218	. 75584	1.32304	. 78363	1.27611	. 81220	1.23123	55
6	.72921	1.37134	. 75629	1.32224	. 78410	1.27535	. 81268	1.23050	54
7	. 72966	1.37050	. 75675	1.32144	. 78457	1.27458	. 81316	1.22977	53
8	. 73010	1.36967	. 75721	1.32064	. 78504	1.27382	. 81364	1.22904	52
10	. 73055	1.36883 1.36800	.75767 .75812	1.31984 1.31904	. 785551	1.27306 1.27230	. 8141461	1.22831 1.22758	51 50
11	. 73144	1.36716	.75858	1.31825	. 78645	1.27153	. 81510	1.22685	49
12	. 73189	1.36633	. 75904	1.31745	. 78692	1.27077	. 81558	1.22612	48
13	. 73234	1.36549	. 75950	1.31666	. $78 \% 39$	1.27001	. 81606	1.22539	47
14	. 73278	1.36466	.75996	1.31586	. 78786	1.26925	. 81655	1.22467	46
15	. 73323	1.36383	. 76042	1.31507	. 78834	1.26849	. 81703	1.22394	45
16	. 73368	1.36300	. 76088	1.31427	. 78881	1.26774	. 81752	1.22321	44
17	. 73413	1.36217	. 6134	1.31348	. 78928	1.26698	. 81800	1.22249	43
18	. 73457	1.36134	. 76180	1.31269	. 78975	1.26622	. 81849	$1.221 \% 6$	42
19	. 73502	1.36051	. 76226	1.31190	. 79022	1.26546	. 81898	1.22104	41
20	. 73547	1.35968	. 76272	1.31110	. 79070	1.26471	. 81946	1.22031	40
21	. 73592	1.35885	. 76318	1.31031	. 79117	1.26395	. 81995	1.21959	39
22	. 73637	1.35802	. 76364	1.30952	. 79164	1.26319	. 82044	1.21886	38
23	. 73681	1.35719	. 76410	1.30873	. 79212	1.26244	. 82092	1.21814	37
24	. 73726	1.35637	. 76456	1.30795	. 79259	1.26169	. 82141	1.21742	36
25	. 73771	1.35554	. 76502	1.30716	. 79308	1.26093	. 82190	1.216\%0	35
26	. 73816	1.35472	. 76548	1.30637	. 79354	1.26018	. 822388	1.21598	34
27	. 73861	1.35389	. 76594	1.30558	. 79401	1.25943	. 82287	1.21526	33
28	. 73906	1.35307	. 76640	1.30480	. 79449	1.25867	. 82333	1.21454	32
29	. 73951	1.35224	. 76686	1.30401	. 79496	1.25792	. 82385	1.21382	31
30	. 73996	1.35142	. 76733	1.30323	9544	1.25717	. 82434	1.21310	30
31	. 74041	1.35060	. 76779	1.30244	. 79591	1.85642	. 82483	1.21238	29
32	. 74086	1.34978	. 76825	1.30166	. 79639	1.25567	. 82531	1.21166	28
33	. 74131	1.34896	. 76871	1.30087	. 79686	1.25492	.82580	1.21094	27
34	. 74176	1.34814	. 76918	1.30009	. 79734	1.25417	. 82629	1.21023	26
35	. 74221	1.34732	. 76964	1.29931	. 79781	1.25343	. 82678	1.20951	25
36	. 74267	1.34650	. 77010	1.29853	. 79829	1.25268	82727	1.20879	24
37	. 74312	1.34568	. 77057	1.29775	. 79877	1.25193	82776	1.20808	23
38	. 74357	1.34487	. 77103	1.29696	. 79924	1.25118	82825	1.20736	22
39	. 74402	1.34405	. 77149	1.29618	. 79972	1.25044	. 82874	1.20665	21
40	. 74447	1.34323	. 77196	1.	. 80020	1.24969	829	1.20593	20
41	. 74492	1.34242	. 77242	1.29463	. 80067	1.24895	. 88972	1.20522	19
4	. 74538	1.34160	.77289	1.29385	. 80115	1.24820	. 83022	1.20451	18
43	. 74583	1.34079	. 77335	1.29307	. 80163	$1.24 \% 46$	83071	1.20379	17
44	. 74628	1.33998	. 77382	1.29229	. 80211	1.24672	. 83120	1.20308	16
45	. 74674	1.33916	. 74428	1.29152	. 80258	1.24597	. 83169	1.20237	15
46	. 74719	1.33835	. 77475	$1.290 \% 4$. 80306	1.24523	. 83218	1.20166	14
47	. 74764	1.33754	. 77521	1.28997	. 80354	1.24449	. 83268	1.20095	13
48	. 74810	1.33673	. 77568	1.28919	. 80402	1.243\%5	. 83317	1.20024	12
49	. 74855	1.33592	. 77615	1.28842	. 80450	1.24301	. 83366	1.19953	11
50	. 74900	1.33511	. 77661	1.28764	. 80498	1.24227	. 83415	1.19882	10
51	. 74946	1.33430	.7\%708	1.28687	. 80546	1.24153	. 83465	1.19811	9
	. 74991	1.33349	. 77754	1.28610	. 80594	1.24079	. 83514	1.19740	8
53	. 75037	1.33268	. 77801	1.28533	. 80642	1.24005	. 83564	1.19669	7
54	. 75082	1.33187	. 77848	1.28456	. 80690	1.23931	. 83613	1.19599	6
55	. 75128	1.33107	. 77895	1.28379	. 80738	1.23858	. 83662	1.19528	5
56	. 75173	1.33026	. 77941	1.28302	. 80786	1.23784	. 83712	1.19457	4
57	. 75219	1.32946	. $7 ¢ 988$	1.28225	. 80834	1.23710	. 83761	1.19387	3
58	. 75264	1.32865	.78035	1.28148	. 80882	1.23637	. 83811	1.19316	2
59	. 75310	1.32785	. 78082	1.28071	. 80930	1.23563	. 83860	1.19246	1
60	355	1.32704	78129	1.27994	80978	1.23490	. 83910	1.19175	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotan	Tang	
		3°		2°		1°			

	40°		41°		420		43°		
	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	
0	. 83910	1.19175	. 86929	1.15037	. 90040	1.11061	93252	1.07237	60
1	. 83960	1.19105	. 86980	1.14969	. 90093	1.10996	. 93306	1.07174	59
2	. 84009	1.19035	. 87031	1.14902	. 90146	1.10931	. 93360	1.07112	58
3	. 84059	1.18964	. 87082	1.14834	. 90199	1.10867	. 93415	1.07049	57
4	. 84108	1.18894	. 87133	1.14767	. 90251	1.10802	. 93469	1.06987	56
5	. 84158	1.18824	. 87184	1.14699	. 90304	1.10737	. 93554	1.06925	55
6	. 84208	1.18754	. 87236	1.14632	. 90357	1.10672	. 93578	1.06862	54
7	. 84258	1.18684	. 87287	1.14565	. 90410	1.10607	. 93633	1.06800	53
8	. 84307	1.18614	. 87338	1.14498	. 90463	1.10543	. 93688	1.06738	52
9	. 84357	1.18544	. 87389	1.14430	. 90516	1.10478	. 93742	1.06676	51
10	. 84407	1.18474	. 87441	1.14363	. 90569	1.10414	. 93797	1.06613	50
11	. 84457	1.18404	. 87492	1.14296	. 90621	1.10349	. 93852	1.06551	49
12	. 84507	1.18334	. 87543	1.14229	. 90674	1.10285	. 93906	1.06489	48
13	. 84556	1.18264	. 87595	1.14162	. 90727	1.10220	. 93961	1.06427	47
14	. 84606	1.18194	. 87646	1.14095	. 90781	1.10156	. 94016	1.06365	46
15	. 84656	1.18125	. 87698	1.14028	. 90834	1.10091	. 94071	1.06303	45
16	. 84706	1.18055	. 87749	1.13961	. 90887	1.10027	. 94125	1.06241	44
17	. 84756	1.17986	. 87801	1.13894	. 90940	1.09963	. 94180	1.06179	43
18	. 84306	1.17916	. 87852	1.13828	. 90993	1.09899	. 94235	1.06117	42
19	. 84856	1.17846	. 87904	1.13761	. 91046	1.09834	. 94290	1.06056	41
20	. 84906	1.17777	. 87955	1.13694	. 91099	1.097\%0	. 94345	1.05994	40
21	. 84956	1.17708	. 88007	1.13627	. 91153	1.09706	. 94400	1.05932	39
22	. 85006	1.17638	. 88059	1.13561	. 91206	1.09642	. 94455	1.058\%0	38
23	. 85057	1.17569	. 88110	1.13494	. 91259	1.09578	. 94510	1.05809	37
24	. 85107	1.17500	. 88162	1.13428	. 91313	1.09514	. 94565	1.05747	36
25	. 85157	1.17430	. 88214	1.18361	. 91366	1.09450	. 94620	1.05685	35
26	. 85207	1.17361	. 88265	1.13295	. 91419	1.09386	. 94676	1.05624	34
27	. 85257	1.17292	. 88317	1.13228	. 91473	1.09322	. 94731	1.05562	33
28	. 85308	1.17223	. 88369	1.13162	. 91526	1.09258	. 94786	1.05501	32
29	. 85358	1.17154	. 88421	1.13096	. 91580	1.09195	. 94841	1.05439	31
30	. 85408	1.17085	. 88473	1.13029	. 9163	1.09131	. 94896	1.05378	30
31	. 85458	1.17016	. 88554	1.12963	. 91687	1.09067	. 94952	1.05317	29
32	. 85509	1.16947	.88576	1.12897	. 91740	1.09003	. 9500	1.05255	28
33	. 85559	1.16878	. 88628	1.12831	. 91794	1.08940	. 95062	1.05194	27
34	. 85609	1.16809	. 88680	1.12765	. 91847	1.08876	. 95118	1.05133	26
35	. 85660	1.16741	. 88732	1.12699	. 91901	1.08813	. 95173	1.05072	25
36	. 85710	1.16672	. 88784	1.12633	. 91955	1.08749	. 95229	1.05010	24
37	. 85761	1.16603	. 88836	1.12567	. 92008	1.08686	. 95284	1.04949	23
38	. 85811	1.16535	. 88888	1.12501	. 92062	1.08622	. 95340	1.04888	22
39	. 85862	1.16466	. 88940	1.12435	. 92116	1.08559	. 95395	1.04827	21
40	. 85	,	. 88992	1.12369	. 92170	1.08496	. 95451	1.04766	20
41	. 85963	1.16329	. 89045	1.12303	. 92224	1.08432	. 95506	1.04705	19
42	. 86014	1.16261	. 89097	1.12238	. 92277	1.08369	. 95562	1.04644	18
43	. 86064	1.16192	. 89149	1.12172	. 92331	1.08306	. 95618	1.04583	17
44	. 86115	1.16124	. 89201	1.12106	. 92385	1.08243	.956\%3	1.04522	16
45	. 86166	1.16056	. 89253	1.12041	. 92439	1.08179	. 95729	1.04461	15
46	. 86216	1.15987	. 89306	1.11975	. 92493	1.08116	. 95785	1.04401	14
47	. 86267	1.15919	. 89358	1.11909	. 92547	1.08053	. 95841	1.04340	13
48	. 86318	1.15851	. 89410	1.11844	. 22601	1.07990	. 95897	1.04279	12
49	. 86368	1.15783	. 89463	111778	. 92655	1.07927	. 95952	1.04218	11
50	. 86419	1.15715	. 89515	1.11713	. 92709	1.07864	. 96008	1.04158	10
51	. 86470	1.15647	. 8956	1.11648	. 92763	1.07801	96064	1.04097	0
52	. 86521	1.15579	. 89620	1.11582	. 92817	1.07738	. 96120	1.04036	
	. 86572	1.15511	. 89672	1.11517	. 92272	1.07676	. 96176	1.03976	7
54	. 86623	1.15443	. 89725	1.11452	. 92926	1.07613	. 96232	1.03915	6
55	. 86674	1.15375	. 89777	1.11387	. 92980	1.07550	. 96288	1.03855	5
56	. 86725	1.15308	. 89830	1.11321	. 93034	1.07487	. 96344	1.03794	4
57	. 86776	1.15240	. 89883	1.11256	. 93088	1.07425	. 96400	1.03734	3
58	. 86827	1.15172	. 89935	1.11191	. 93143	1.07362	. 96457	$1.036{ }^{4} 4$	
59	. 86878	1.15104	. 89998	1.11126	. 93197	1.07299	. 96513	1.03613	1
60	. 86929	1.15037	. 90040	1.11061	. 93252	1.07237	96569	1.03553	0
	Cotang	Tang	Cotang	Tang	Cotang	Tang	Cotang	Tang	
		${ }^{\circ}$							

	44°				44°			,	44°		,
	Tang:	Cotang			Tang	Cotang			Tang	Cotang	
0	. 96569	1.03553	60	20	.97700	1.02355	40	40	. 98843	1.01170	20
1	. 96625	1.03493	59	21	. 97756	1.02295	39	41	. 98901	1.01112	19
2	. 96681	1.03433	58	22	. 97813	1.02236	38	42	. 98958	1.01053	18
3	. 96738	1.03372	57	23	. 97870	1.02176	37	43	. 99016	1.00994	17
4	. 96794	1.03312	56	24	. 97927	1.02117	36	44	. 99073	1.00935	16
5	. 96850	1.03252	55	25	. 97984	1.02057	35	45	. 99131	1.00876	15
6	. 96907	1.03192	54	26	. 98041	1.01998	34	46	. 99189	1.00818	14
7	. 96963	1.03132	53	27	. 98098	1.01939	33	47	. 99247	1.00759	13
8	. 97020	1.03072	52	28	. 98155	1.01879	32	48	. 99304	1.00701	12
9	. 97046	1.03012	51	29	. 98213	1.01820	31	49	. 99362	1.00642	11
10	. 97133	1.02952	50	30	. 98270	1.01761	30	50	. 99420	1.00583	10
11	. 97189	1.02892	-49	31	. 98327	1.01702	29	51	. 994778	1.00525	9
12	. 97246	1.02832	48	32	. 98384	1.01642	28	52	. 99536	1.00467	8
13	. 97302	1.02772	47	33	. 98441	1.01583	27	53	. 99594	1.00408	7
14	. 97359	1.02713	46	34	. 98499	1.01524	26	54	. 99652	1.00350	6
15	. 97416	1.02653	45	35	. 98556	1.01465	25	55	. 99710	1.00291	5
16	. 97478	1.02593	44	36	. 98613	1.01406	24	56	. 99768	1.00233	4
17	. 97529	1.02533	43	37	. 98671	1.01347	23	57	. 99826	1.001 \% 5	3
18	. 97586	1.02474	42	38	. 98728	1.01288	22	58	. 99884	1.00116	2
19	. 97643	1.02414	41	39	. 98786	1.01229	21	59	. 99942	1.00058	1
20	. 97700	1.02355	40	40	. 98843	1.01170	20	60	1.00000	1.00000	0
	Cotang Tang			,	Cotang Tang			,	Cotang		
	45°										

LENGTHS OF CIRCULAR ARCS.
Radius $=1$

	Degrees.	Minutes.	Seconds.
1	0.017453293	0.000290888	0.000004548
2	. 034906585	. 0005581776	. 000009696
8	. 052359878	. 000872664	. 000014544
4	. 069813170	. 001163553	. 000019393
6	.087266463	. 001454440	. 000024241
	. 104 \%19 755	. 001745329	. 000090989
8	.122 173048	. 002036217	. 000033937
8	. 139626340	. 002327106	. 000038785
	-157 079633	. 002617994	. 000043633
10	. 174532925	.002 808882	. 000048431

Table III．

DAILY VARIATION OF THE MAGNETIC NEEDLE AT PHILADELPHIA，PA．

	ค゙	－	宝	4	宊	号	ミ	$\stackrel{80}{4}$	产	¢	8	－
	$+0$	$\begin{gathered} 1 \\ +1.2 \end{gathered}$	-1.8	$3+2.6$	$+3.7$		$+4.2$					
	＋1	＋1．9	＋2．8	＋3．5	＋4．7	＋5．0						
8	$+2.1$	$+2.5$	＋3．7	＋4．0	－4． 7	5.1					． 9	．
9	2.5		3.4									
10	＋1．6	1.5	＋1．8	＋1．5	＋0．8	＋1．2	＋1．5	＋0．6	－0．1	＋0．8	＋0	
11	－0．3	－0．2	－0．6	－1．1	－1．9	－1．	－1．5	－2．9	－3．2	－0．8	－1．1	0.3
Noon	－2．3	－2 0	－2．7	－3．6	－4．1	－4．0	－3．9	－5．4	－5．2	－2．6	－2．3	－1．9
	－3．4	－3．0	－3．9	－5．1	－5．1	－5．0	－5．3	－6．3	－5．5	－3．2	－ 2.8	－3．0
2	－3．3	－3．0	－3．9	－5．2	－4．9	－4．8	－5．4	－5．5	－4．5	－3．0	－2．6	－3．0
3	－2．5	－2．4	－3．2	－4．3	－3．9	－3．8	－4．5	－3．8	－3．0	－2．2	－1．9	－2．3
4	－1．5	－1．7	－2．3	－3．0	－2．5	－2．6	－3．3	－2．0	－1．7	－1．1	－1．2	－1．3
5	－0．9	－1．2	－1．6	－1．8	－1．2	－1．6	－2．0	－0．9	－0．8	－0．3	－0．6	－0．6
6	－0．6	－0．8	－1．0	－0．9	－0．4	－0．9	－1．2	－0．5	－0 3	＋0．4	－0．1	－0．1

The above table，which is taken from the U．S．Coast and Geodetic Survey Report for 1881，gives the mean results of five years＇observations of the daily variation of the magnetic needle at Philadelphia．A plus sign indicates a deviation of the north end of the needle to the eastward of the magnetic meridian，a minus sign indicates a deviation to the westward．

For other places in the United States the daily variation may be approximately ascertained by multiplying the values for Philadelphia by the numbers taken from the following supple－ mentary table．For example，at a place in latitude 45 degrees

and longitude 95 degrees the multiplier is 1.13 ．In southern latitudes，moreover，the maximum deviations occur about an hour later than in northern，and in any particular case the table cannot be depended upon within one hour on account of minor irregularities and disturbances．

Table V.

Local times of elongations of polaris in 1915.
For 40° North Latitude and 90° West Longitude.

Date in 1915.	Eastern Elongation.		Western Elongation.	
January 1	${ }_{12}$	$51.7 \mathrm{~m}_{\text {P.M. }}$	$\frac{\mathrm{h}}{\mathrm{~h}} 12$	$42.1{ }_{\text {m. }}^{\text {A.M. }}$
January 15	11	52.5 A.M.	11	46.8 ¢.M.
February 1	10	45. 3 A.m.	10	39.7 P.M.
March $\quad 15$	8	50.1 А.M.	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	
	7	59.6 A.m.	7	54.0 P.M.
April $\quad 1$	6	52.7 А.м.	6	47.1 р.м.
May $\quad 15$	5 4	57.7 54.8 A.M. A.	5 4	${ }_{\text {52. }}{ }_{\text {49. }}$ P. P.M.
May 15	3	54.8 A.M. 59.9 А.M.	${ }_{3}^{4}$	${ }_{54.2}{ }^{\text {P P.M. }}$ P.
June $\quad 15$	2	53.3 A.M.	1	
July 1	12	55.9 A.m.	12	
	12	01.1 P.m.	11	51.5 A.m.
August ${ }^{1}$	10	54.5 Р.м.	10	44.9 А.м.
	9	59.8 P.M.	9	50.2 A.M.
September ${ }_{1}^{15}$	8	53.2 58.3 P.M.M. P.	$\begin{aligned} & 8 \\ & 7 \end{aligned}$	43. 6 A.M. 48.7 A.M.
October 1	6	55.5 р.м.	6	45.9 A.m.
November ${ }^{15}$	4	00.6 53.7 P.M.M.	5	51.0 44.1 A.M. A.
November 15	3	58. 6 P.M. P.	3	49.0 A.m.
December $\frac{1}{15}$	${ }_{2}^{2}$	55.6 00.4 P.M.M.	,	46.0 A.M.

For other years than 1915 , the following quantities should be added or subtracted to the above tabular values:

For 1913	subtract	2.9 minutes
1914	subtract	1.5
1916, before	March 1, add	1.6
1916, after	Feb. 29, subtract 2.3	
1917	subtract	0.7
1918	add	0.9
1919	add	2.5
1920, before	March 1, add	4.0
1920, after	Feb. 29, add	0.1
1921	add	1.6
1922	add	3.1
1923	add	4.5
1924, before	March 1, add	5.9
1924, after	Feb. 29, add	2.0
1925	add	3.3
1926	add	4.6
1927	add	5.9

To obtain the time of elongation for any day not given in the table, add 3.93 minutes for every day from it to the day of the next following tabular value. For example, the eastern elongation on Nov. 12, 1915, occurred at $4^{\mathrm{h}} 10^{\mathrm{m}} .4$ P.M. in latitude 40° and longitude 90°.

For any latitude other than 40°, between 25° and 50° north, there should be added to the time of western elongation 0.10 minutes for every degree south of 40° and 0.16 minutes be subtracted for every degree north of 40°. For eastern elongations 0.10 minutes should be subtracted for every degree south of 40° and 0.16 minutes be added for every degree north of 40°. For any longitude other than 90° west of Greenwich, add 0.16 minutes for each 15 degrees east of the ninetieth meridian and subtract 0.16 minutes for each 15 degrees west of that meridian.

The time in Table V is local time, which is the same as mean solar time. Local time can be reduced to standard time by adding or subtracting 4.0 minutes for each degree of longitude west or east of the meridian of the standard.

As an example involving all these corrections, let it be required to find, for an observer in north latitude $42^{\circ} 06^{\prime}$ and west longitude $78^{\circ} 45^{\prime}$, the standard time of the eastern elongation of Polaris on Aug. 28, 1920. From the Table the local time $8{ }^{\mathrm{h}} 35^{\mathrm{m} .2}$ P.m. is found for Sept. 1, 1915, and to this is added the correction for 1920 , making $8^{\text {b }} 53^{\mathrm{m}} .3$ P.M. for Sept. 1, 1920. To this $15^{\mathrm{m}} .7$ are added for the four days from Aug. 28 to Sept. 1, giving $9^{\text {h }} 09^{\mathrm{m}} .0$ p.m. for Aug. 24, 1920. The corrections for latitude and longitude of the given station are $-0^{\mathrm{m}} .34$ and $+0^{\mathrm{m}} .12$; hence the eastern elongation will occur at that station on Aug. 28, 1920, at $9^{\mathrm{h}} 08^{\mathrm{m}} .8$ р.м. On a watch indicating eastern standard time the time of the eastern elongation for the given day and station will be $9^{\text {h }} 23^{\mathrm{m}} .8$ P.m. A result deduced in this manner will usually be correct within about 0 m .3 .]
Table V has been taken from "Principal Facts of the Earth's Magnetism," issued in 1914 by the U.S. Coast and Geodetic Survey.

Table VI.

AZIMUTHS OF POLARIS AT ELONGATION.

The azimuths in Table VI are reckoned from the true north toward the east for eastern elongation and from the true north toward the west for western elongation. For intermediate latitudes values may be obtained by interpolation; for example, in latitude $41^{\circ} 30^{\prime}$ the mean azimuth during 1913 is $1^{\circ} 32^{\prime} .8$, and for July 1,1913 , the azimuth is $1^{\circ} 33^{\prime} .2$. An azimuth deduced in this manner will in general be correct within $0^{\prime} .3$

This table has been taken from "Principal Facts of the Earth's Magnetism," issued in 1914 by the U. S. Coast and Geodetic Survey.

AZIMUTHS OF POLARIS AT ELONGATION.

Lat.	1919	1920	1921	1922	1923	1924	1925	1926
25°	$1^{\circ} 14^{\prime} .7$	$1^{\circ} 14^{\prime} .7$	${ }^{\circ} 14^{\prime} .0$	$1^{\circ} 13^{\prime} .6$	$1^{\circ} 13^{\prime} .3$	$1^{\circ} 13^{\prime} .0$	$1^{\circ} 12^{\prime} .6$	$1^{\circ} 12^{\prime} .3$
26	-15.3	14.9	14.7	14.2	13.9	13.6	13.2	12.9
27	15.9	15.6	15.2	14.9	14.6	14.2	13.9	13.5
28	16.6	16.3	15.9	15.6	15.2	14.9	14.6	14.2
29	17.4	17.0	16.6	16.3	16.0	15.6	15.2	14.9
30	19.1	18.8	17.4	17.0	16.7	16.4	16.0	15.6
31	19.9	18.6	18.2	17.9	17.5	17.2	16.8	16.4
32	19.8	18.4	19.1	18.7	18.3	18.0	17.6	17.2
33	20.7	20.3	19.9	19.6	19.2	18.8	18.5	18.1
34	21. 6	21.2	20.9	20.5	20.1	19.8	19.4	19.0
35	22.6	22.2	21. 8	21.5	21.1	20.7	20.4	20.0
36	23.6	23.3	22. 9	22.5	22.1	21.7	21.4	21.0
37	24.7	24.3	24.0	23.6	23.2	22.8	22.4	22.0
38	25.9	25.5	25.1	24.7	24.3	23.9	23.5	23.2
39	27.1	26.7	26.3	25.8	25.5	25.1	24.7	24.3
40	28.3	27.9	27.5	27.1	26.7	26.3	25.9	25.5
41	29.6	29.1	28.8	28.4	28.0	27.6	27.2	26.8
42	31.0	30.6	30.2	29.8	29.4	29.0	28.6	28.2
43	32.5	32.1	31.8	31.2	30.8	30.4	30.0	29.6
44	34.1	33. 6	33.2	32.8	32.4	31.9	31.5	31
45	35.7	35.3	34.8	34.4	34.0	33. 5	33.1	32.6
46	37.4	37.0	36.5	36.1	35.6	35.2	34.8	34.3
47	39.2	38.8	38.3	37.9	37.4	36.5	36.5	36
48	41.1	40.7	40.2	39.8	39.3	38.8	38.4	37.9
49	42.1	42.7	42.2	41.7	41.3	40.8	40.3	39.9
50°	$1^{\circ} 45^{\prime} .3$	$1^{\circ} 44^{\prime} .8$	$44^{\prime} .3$	$1^{\circ} 43^{\prime} .8$	$1^{\circ} 43^{\prime} .4$	$1^{\circ} 42^{\prime} .9$	$1^{\circ} 42^{\prime} .4$	$1^{\circ} 41^{\prime} .9$

When an azimuth is required with a precision less than one minute, a correction taken from the following supplementary table should be applied. For example, the azimuth as seen in latitude 42° on Dec. 1,1920 , is $1^{\circ} 29^{\prime} .9$. An azimuth deduced in this manner will generally be correct within $0^{\prime} .3$.

For middle of	Correction.	For middle of	Correction.
January..	-0.5	July.	+0.2
February.	-0.4	August.	± 0.1
April..	-0.3	Oeptemer.	-0.1
May.	$+0.1$	November	-0.6
June.	+0.2	December	-0.8

CONVERSION OF ENGLISH INCHES INTO CENTIMETRES.

Ins.	0	1	2	3	4	5	6	7	8	9
	Cm.									
0	0.000	2.540	5.080	7.620	10.16	12.70	15.24	17.78	20.32	22.86
10	25.40	27.94	30.48	33.02	35.56	38.10	40.64	43.18	45.72	48.26
20	50.80	53.34	55.88	58.42	60.96	63.50	66.04	68.58	71.12	\%3.66
30	76.20	78.74	81.28	83.82	86.36	88.90	91.44	93.98	96.52	99.06
40	101.60	104.14	106.68	109.22	111.76	114.30	116.84	119.38	121.92	124.46
50	127.00	129.54	132.08	134.62	137.16	139.70	142.24	144.78	147.32	149.86
60	152.40	154.94	157.48	160.02	162.56	165.10	167.64	170.18	172.72	175.26
70	177.80	180.34	182.88	185.42	187.96	190.50	193.04	195.58	198.12	200.96
80	203.20	205.74	208.28	210.82	213.36	215.90	218.44	220.98	223.52	226.06
90	228.60	231.14	233.68	236.22	238.76	241.30	243.84	246.38	248.92	251.46
100	254.00	256.54	259.08	261.62	264.16	266.70	269.24	271.78	$2 \% 4.32$	276.86

CONVERSION OF CENTIMETRES INTO ENGLISH INCHES.

Cm.	0	1	2	3	4	5	6	7	8	9
	Ins.									
0	0.000	0.394	0.787	1.181	1.575	1.969	2.362	2.756	3.150	3.543
10	3.937	4.331	4.742	5.118	5.512	5.906	6.299	6.693	7.087	7.480
20	7.874	8.268	8.662	9.055	9.449	9.843	10.236	10.630	11.024	11.418
30	11.811	12.205	12.599	12.992	13.386	13.780	14.173	14.567	14.961	15.355
40	15.748	16.142	16.536	16.929	17.323	17.717	18.111	18.504	18.898	19.292
50	19.685	20.079	20.473	20.867	21.260	21.654	22.048	22.441	22.835	23.229
60	23.622	24.016	24.410	24.804	25.197	25.591	25.985	26.378	26.772	27.166
70	27.560	27.953	28.347	28.741	29.134	29.528	29.922	30.316	30.709	31.103
80	31.497	31.890	32.284	32.678	33.071	33.465	33.859	34.253	34.646	35.040
90	35.434	35.827	36.221	36.615	37.009	37.402	37.796	38.190	38.583	38.977
100	39.370	39.764	40.158	40.552	40.945	41.339	41.733	42.126	42.520	42.914

CONVERSION OF ENGLISH FEET INTO METRES.

Feet.	0	1	2	3	4	5	6	7	8	9
	Met.									
0	0.000	0.3048	0.6096	0.9144	1.2192	1.5239	1.8287	2.1335	2.4383	2.7431
10	3.0479	3.3527	3.6575	3.9623	4.2671	4.5719	4.8767	5.1815	5.4863	5.7911
20	6.0959	6.4006	6.7055	7.0102	7.3150	7.6198	7.9246	8.2294	8.5312	8.8390
30	9.1438	9.4486	9.7534	10.058	10.363	10.668	10.972	11.277	11.582	11.88%
40	12.192	12.496	12.801	13.106	13.411	13.716	14.020	14.325	14.630	14.935
50	15.239	15.544	15.849	16.154	16.459	16.763	17.068	17.373	17.678	17.983
60	18.287	18.592	18.897	19.202	19.507	19.811	20.116	20.421	20.726	21.031
70	21.335	21.640	21.945	22.250	22.555	22.859	23.164	23.469	$23.7 \% 4$	24.079
80	24.383	24.688	24.993	25.298	25.602	25.907	26.212	26.517	26.822	27.126
90	27.431	27.736	28.041	28.346	28.651	28.955	29.260	29.565	29.870	30.174
100	30.479	30.784	31.089	31.394	31.698	32.008	32.308	32.613	32.918	33.222

CONVERSION OF METRES INTO ENGLISH FEET.

Met.	0	1	2	3	4	5	6	7	8	9
	Feet.									
0	0.000	3.2809	6.5618	9.8427	13.123	16.404	19.685	22.966	$26.24{ }^{7}$	29.528
10	32.809	36.090	39.371	42.651	45.932	49.213	52.494	55.775	59.056	62.337
20	65.618	68.899	72.179	75.461	78.741	82.022	85.303	88.584	91.865	95.146
30	98.427	101.71	104.99	108.27	111.55	114.83	118.11	121.39	124.67	127.96
40	131.24	134.52	137.80	141.08	144.36	147.64	150.92	154.20	157.48	160.76
50	164.04	167.33	17061	173.89	177.17	180.45	183.73	187.01	190.29	193.57
60	196.85	200.13	203.42	206.70	209.98	213.26	216.54	219.82	223.10	226.38
70	229.66	232.94	236.22	239.51	242.79	246.07	249.35	252.63	255.91	259.19
80	262.47	265.75	269.03	272.31	275.60	278.88	282.16	285.44	288.72	292.00
90	295.28	298.56	301.84	305.12	308.40	311.69	314.97	318.25	321.53	324.81
100	328.09	331.37	334.65	337.93	341.21	344.49	347.78	351.06	354.34	357.62

CONVERSION OF ENGLISH STATUTE-MILES INTO KILOMETRES.

Miles.	0	1	2	3	4	5	6	7	8	9
	Kilo	Kilo	Kilo.	Kilo.	Kilo.	Kilo.	Kilo	Kilo	Kilo.	
0	0.0000	1.6093	3.2186	4.8279	$6.43{ }^{\text {\% }}$	8.0465	9.6558	11. 2652	12.8745	4.4
10	16.093	17.702	19.312	20.921	22.530	24.139	25.749	27.358	28.967	30.577
20	32.186	33.795	35.405	37.014	38.623	40.232	41.842	43.451	45.060	46.670
30	48.279	49.888	51.498	53.107	54.716	56.325	57.935	ธ9.544	61.153	62.763
40	64.372	65.981	67.591	69.200	70.809	72.418	74.028	75.637	77.246	78.856
50	80.465	32.074	83.684	85.293	86.902	88.511	90.121	91.750	93.339	94.949
60	96.558	98.167	99777	101.39	102.99	104.60	10621	107.82	109.43	111.04
70	112.65	114.26	115.87	117.48	119.08	120.69	122.30	123.91	125.52	127.13
80	128.74	130.35	131.96	133.57	135.17	136.78	138.39	140.00	141.61	143.22
90	144.85	146.	148.05	149.66	151.26	152.87	154.48	156.09	157.70	159.31
100	160.9	162	1	165	167.35	168.96	170.57	172.18	173.79	175.40

CONVERSION OF KILOMETRES INTO ENGLISH STATUTE-MILES.

Kilom.	0	1	2	3	4	5	6	7	8	9
	Mi	M	M	M	M	Miles.		Mil		
10	0.0000	0.6214	1.242π	1.8641	2.4855	3.1069	3.7282	4.3497	4.9711	
10	6.2138	6.8352	7.4565	8.0780	8.6994	9.3208	9.9421	10.562	11.185	11.805
20	12.427	13.049	13670	14.292	14.913	15.534	16.156	16.776	17.399	18.019
30	18.641	19.263	19.884	20.506	21.127	21. 748	23.370	22.990	23.613	24.233
40	24.855	25.477	26.098	26.720	27.341	27.962	28.584	29.204	29.827	30.447
50	31.069	31.690	32.311	32.933	33.554	34.175	34.797	35.417	36.040	36.660
60	37.282	37.904	38.525	39.14~1	39.768	40.389	41.011	41.631	42.254	42.874
70	43.49 ¢	44.118	44.739	45.361	45.982	46.603	47.225	47.845	48.468	49.088
80	49.711	50.332	50.953	51.575	52.196	$52.81 \cdot$	53.439	54.059	54.682	55.302
90	55.924	56.545	57.166	57.788	58.409	59.030	59.652	60.272	60.895	61.515
00	62.					65.24	65.86	66.4	67.109	67.79

TABLE VIII.
LENGTH IN FEET OF 1' ARCS OF LATITUDE AND LONGITUDE.

Lat.	1^{\prime} Lat.	1^{\prime} Long.	Lat.	1^{\prime} Lat.	1 Long.
10 2° 0	6045 6045	6085	$31{ }^{\text {c }}$	6061	$52 \% 2$
3°	6045 6045	6083 6078	$33^{3}{ }^{\circ}$	6062 6063	5166 5109
4°	6045	6071	34°	6064	5051
5°	6045	6063	35°	6065	4991
6°	6045	6053	36°	6066	4930
7°	6046	6041	37°	6067	4867
8°	6046	6027	38°	6068	4802
9°	6046	6012	39°	6070	4736
10°	6047 6047	5994	40°	6071	4665
11°	6047	5975 5954	41°	6072	4600
$12{ }^{\circ}$	6048	5954	42°	6073	4530
13°	6048	5931	43°	6074	4458
14°	6049	5907	44°	6075	4385
15°	6049	5880	45°	6076	4311
16°	6050	5852	46°	6077	4235
17°	6050	5832	47°	6078	4158
18°	6051	5790	48°	6079	4080
19°	6052	5757	49°	6080	4001
20°	6052	5721	50°	6081	3920
21°	6053	5684	51°	6082	3838
22°	66^{64}	5646	52°	6084	3755
23°	6054	5605	53°	6085	3671
24°	6055	5563	54°	6086	3586
25°	6056	5519	55°	6087	3499
$22^{2}{ }^{\circ}$	6057 6058	5474 5427	$56{ }^{\circ}$ 57°	6088 6089	3413 3323
$27^{2} 8^{\circ}$	6058 6059	5427 5378	57° 58	6089 6090	3323 3233
29°	6060	5327	59°	6091	3142
30°	6061	52\%	60°	6092	3051

Table IX.

REDUCTION OF INCLINED DISTANCES TO THE HORIZONTAL.
Inclined Distance $=100$ feet .

\begin{tabular}{|c|c|c|c|c|c|}
\hline Slope. \& Correction. \& Horizontal Distance. \& Slope. \& Correction. \& Horizontal Distance. \\
\hline \(0^{\circ} \quad 00{ }^{\prime}\) \& \& 100.000 \& \(8^{\circ} 00{ }^{\prime}\) \& 0.978 \& 99.027 \\
\hline \({ }^{3} 3\) \& 0.004 \& 99.996 \& \({ }^{30}\) \& 1.098 \& \(98.90{ }^{2}\) \\
\hline \(1 \quad 00\) \& 0.015 \& 99.985 \& \(9 \quad 00\) \& 1.231 \& 98.669 \\
\hline - 30 \& 0.034 \& 99.966 \& 10 \& 1.371 \& 98.629 \\
\hline \(\begin{array}{r}2 \quad 00 \\ \\ \hline 0\end{array}\) \& 0.061
0.095 \& \begin{tabular}{l}
99.939 \\
\hline
\end{tabular} \& \(10 \quad 30\)

11 \& 1.675 \& 98.4815

\hline 300 \& 0.137 \& 99.863 \& 1100 \& 1.837 \& 98.163

\hline 30 \& 0.187 \& 99.813 \& 30 \& 2.008 \& 97.992

\hline 400 \& 0.244 \& 99.756 \& 1200 \& 2.185 \& 97.814

\hline 30 \& 0.308 \& 99.692 \& 13.30 \& 2.370 \& 97.630

\hline $5 \quad 00$ \& 0.381 \& 99.619 \& $13 \quad 00$ \& 2.563 \& 97.437

\hline $6 \quad$| 30 |
| :--- |
| | \& 0.460

0.548 \& 99.510

99.452 \&	30
14	\& 2.763

2.970 \& 97.237
97.030

\hline - 30 \& 0.643 \& 99.357 \& 1430 \& 3.185 \& 96.815

\hline $7 \quad 00$ \& 0.745 \& 99.255 \& 1500 \& 3407 \& 96.593

\hline 30 \& 0.856 \& 99.144 \& 30 \& 3.637 \& 96.363

\hline
\end{tabular}

ANSWERS TO PROBLEMS.

Prob. 1: $A=24^{\circ} 39^{\prime}, B=17^{\circ} 56^{\prime}$. Prob. 2: azimuth of $D E$ $=106^{\circ} 45^{\prime}$. Prob. 3: latitude $=+2458.2$ feet, longitude $=+5379.4$ feet. Prob. $4:$ area $=5$ acres, 104 rods, 84 square feet. Prob. 5: for $B C,+382.1$ feet, and +823.3 feet. Prob. $6:$ Area $=11$ acres, 116 rods, 126 square feet. Prob. 8: distance $=10340$ feet. Prob. 9: M is 226.6 feet above N. Prob. $10: A O D=117^{\circ} 52 \frac{1^{\prime}}{}, C O D=22^{\circ} 01 \frac{1_{2}^{\prime}}{2}$. Prob. 11 : true area $=7$ acres, 146 rods, 222 square feet. Prob. 13: maximum declination $8^{\circ} 03^{\prime}$ in January, 1916. Prob. 14: area $=3$ acres, 0 roods, 4.7 square rods. Prob. 18 : N $78^{\circ} 06^{\prime} \mathrm{W}, 26$ links, for A; S $74^{\circ} 35^{\prime} \mathrm{W}, 56$ links for C. Prob. $20: 476.954$ and 477.715 chains. Prob. $23:$ error $=0.025$ feet. Prob. $28:$ pull $=17.1$ pounds. Prob. 30 : latitude $=2000.000$ feet, longitude $=$ 4000.000 feet. Prob. 31 : $83 \frac{1}{2}$ feet, 398.6 acres. Prob. 34 : 902.6 and 417.1 for the first point.

Table X.

REDUCTION OF STADIA READINGS

TO

HORIZONTAL DISTANCES

AND TO

DIFFERENCES OF ELEVATION.

This table was computed by Professor Arthur Winslow, State Goologist of Missouri.

Table X.

STADIA REDUCTIONS FOR READING 100.

Minutes.	0°		1°		2°		3°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
0^{\prime}	100.00	. 00	99.97	1.74	99.88	3.49	99.73	5.23
2	.	. 06		1.80	99.87	3.55	99.73	5.28
4	"	. 12	"	1.86	"	3.60	99.71	5.34
6	"6	.17	99.96	1.92	99.86	3.66	" ${ }^{\text {\% }}$	5.40
88	"6	. 23	" 6	1.98 2.04	99.86	3.72	99.70 99.69	5.46 5.52
12	6	. 35	${ }^{66}$	2.09	99.85	3.84	6 6	5.57
14	"	. 41	99.95	2.15	"6	3.90	99.68	5.63
16	${ }^{6}$. 47	'6	2.21	99.84	3.95	6	5.69
18	"	. 58	"	2.27		4.01	99.67	5.75
20	"	. 58	"	2.33	99.83	4.07	99.66	5.80
22	"	. 64	99.94	2.38	"	4.13	16	5.86
24	"	. 70	"	2.44	99.82	4.18	99.65	5.92
26	99.99	. 76	"	2.50	،	4.24	99.64	5.98
28	"	. 81	99.93	2.56	99.81	4.30	99.63	6.04
30	6	. 87				4.36		6.09
32	6	. 93	"	2.67	99.80	4.42	99.62	6.15
34	"	. 99	"	2.73	"	4.48	.	6.21
36	"	1.05	99.92	2.79	99.79	4.53	99.61	6.27
38	6	1.11	،	2.85		4.59	99.60	6.33
40	"	1.16	،	2.91	99.78	4.65	99.59	6.38
42	"	1.22	99.91	2.97	${ }^{6}$	4.71	"	6.44
44	99.98	1.28	6	3.02	99.77	4.76	99.58	6.50
46	,	1.34	99.90	3.08	"	4.88	99.57	6.56
48	"	1.40	"	3.14	${ }^{99.76}$	4.88	99.56	6.61
50	"	1.45	6	3.20		4.94		6.67
	6	1.51	99.89	3.26	99.75	4.99	99.55	6.73
54	"	1.57	"	3.31	99.74	5.05	99.54	6.78
56	99.97	1.63		3.37	،	5.11	99.53	6.84
58	،	1.69	99.88	3.43	99.73	5.17	99.52	6.90
60	"	1.74	*	3.49	"	5.23	9951	6.96
$c+f=.75$. 75	. 01	. 75	. 02	. 75	. 03	. 75	. 05
$c+f=1.00$	1.00	. 01	1.00	. 03	1.00	. 04	1.00	. 06
$c+f=1.25$	1.25	.02	1.25	. 03	1.25	. 05	1.25	. 08

Table \mathbf{X}.

stadia reductions for reading 100.

Minutes.	4°		5°		6°		7°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
0^{\prime}	99.51	6.96	99.24	8.68	98.91	10.40	98.51	12.10
2		7.02	99.23	8.74	98.90	10.45	98.50	12.15
4	99.50	7.07	99.22	8.80	98.88	10.51	98.48	12.21
6	99.49	7.13	99.21	8.85	98.87	10.57	98.47	12.26
8 10	99.48 99.47	7.19 7.25	99.20 99.19	8.91 8.97	98.86 98.85	1062 10.68	98.46 98.44	12.32 12.38
12	99.46	7.30	99.18	9.03	98.83	10.74	98.43	12.43
14	\%.4	7.36	99.17	9.08	98.82	10.79	98.41	12.49
16	99.45	7.42	99.16	9.14	98.81	10.85	98.40	12.55
18	99.44	7.48	99.15	9.20	98.80	10.91	98.39	12.60
20	99.43	7.53	99.14	9.25	98.78	10.96	98.37	12.66
22	99.42	7.59	99.13	9.31	98.77	11.02	98.36	12.72
24	99.41	7.65	99.11	9.37	98. 76	11.08	98.34	12.77
26	99.40	7.71	99.10	9.43	98.74	11.13	98.33	12.83
28	99.39	7.76	99.09	9.48	98.73	11.19	98.31	12.88
30	99.38	7.82	99.08	9.54	98.72	11.25	98.29	12.94
32	99.38	7.88	99.07	9.60	98.71	11.30	98.28	13.00
34	99.37	7.94	99.06	9.65	98.69	11.36	98.27	13.05
36	99.36	7.99	99.05	9.71	98.68	11.42	98.25	13.11
38	99.35	8.05	99.04	9.77	98.67	11.47	98.24	13.17
40	99.34	8.11	99.03	9.83	98.65	11.53	98.22	13.22
42	99.33	8.17	99.01	9.88	98.64	11.59	98.20	13.28
44	99.32	8.22	99.00	9.94	98.63	11.64	98.19	13.33
46	99.31	8.28	98.99	10.00	98.61	11.70	98.17	1339
48	99.30	8.34	98.98	10.05	98.60	11.76	98.16	13.45
50	99.29	8.40	98.97	10.11	98.58	11.81	98.14	13.50
52	99.28	8.45	98.96	10.17	98.57	11.87	98.13	13.56
54	99.27	8.51	98.94	10.22	98.56	11.93	98.11	13.61
56	99.26	8.57	98.93	10.28	98.54	11.98	98.10	13.67
58	99.25	8.63	98.92	10.34	${ }^{98.53}$	12.04	98.08	13.73
60	99.24	8.68	98.91	10.40	98.51	12.10	98.06	13.78
$c+f=.75$	75	. 06	. 75	. 07	. 75	. 08	. 74	. 10
$c+f=1.00$	1.00	. 03	. 99	. 09	. 99	. 11	. 99	. 13
$c+f=1.25$	1.25	. 10	1.24	. 11	1.24	. 14	1.24	. 16

Table X .

stadia reductions for reading 100.

Minutes.	8°		9°		10°		11°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
$0{ }^{\prime}$	98.06	13.78	97.55	15.45	96.98	17.10	96.36	18.73
2	98.05	13.84	97.53	15.51	96.96	17.16	9634	18. 78
4	98.03	13.89	97.52	15.56	96.94	17.21	96.32	18.84
6	98.01	13.95	97.50	15.62	96.92	17.26	96.29	18.89
8	98.00	14.01	97.48	15.67	96.90	17.3\%	96.27	18.95
10	97.98	14.06	97.46	15.73	96.88	17.37	96.25	19.00
12	97.97	14.12	97.44	15.78	96.86	17.43	96.23	19.05
14	97.95	14.17	97.43	15.84	96.84	17.48	96.21	19.11
16	97.93	14.23	97.41	15.89	96.82	17.54	96.18	19.16
18	97.92	14.28	97.39	15.95	96.80	17.59	96.16	19.21
20	97.90	14.34	97.37	16.00	96.78	17.65	96.14	19.27
22	97.88	14.40	97.35	16.06	96.76	17.70	96.12	19.32
24	97.87	14.45	97.33	16.11	96.74	17.156	96.09	19.38
26	97.85	14.51	97.31	16.17	96.72	17.81	96.07	19.43
28	97.83	14.56	97.29	16.22	96.70	17.86	96.05	19.48
30	97.82	14.62	97.28	16.28	96.68	17.92	96.03	19.54
32	97.80	14.67	97.26	16.33	96.66	17.97	96.00	19.59
34	97.78	14.73	97.24	16.39	96.64	18.03	95.98	19.64
36	97.76	14.79	97.22	16.44	96.62	18.08	95.96	19.70
38	97.75	14.84	97.20	16.50	96.60	18.14	95.93	19.75
40	97.73	14.90	97.18	16.55	96.57	18.19	95.91	19.80
42	97.71	14.95	97.16	16.61	96.55	18.24	95.89	19.86
44	97.69	15.01	97.14	16.66	96.53	18.30	95.86	19.9!
46	97.68	15.06	97.12	16.72	96.51	18.35	95.84	19.96
48	97.66	15.12	97.10	16.77	96.49	18.41	95.82	20.02
50	97.64	15.17	97.08	16.83	96.47	18.46	95.79	20.07
52	97.62	15.23	97.06	16.88	96.45	18.51	95.77	20.12
54	97.61	15.28	97.04	16.94	96.42	18.57	95.75	20.18
56	97.59	15.34	97.02	16.99	96.40	18.62	95.72	20.23
58	97.57	15.40	97.00	17.05	96.38	18.68	95.70	20.28
60	97.55	15.45	96.98	17.10	96.36	18.73	95.68	20.34
$c+f=.75$. 74	. 11	. 74	. 12	. 74	. 14	. 73	. 15
$c+f=1.00$. 99	. 15	. 99	. 16	. 98	. 18	. 98	. 20
$c+f=1.25$	1.23	. 18	1.23	. 21	1.23	. 23	1.22	. 25

Table X.

stadia reductions for reading 100.

Minutes.	12°		13°		14°		15°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
0^{\prime}	95.68	20.34	94.94	21.92	94.15	23.47	93.30	25.00
2	95.65	20.39	94.91	21.97	94.12	23.52	93.27	25.05
4	95.63	20.44	94.89	22.02	94.09	23.58	93.24	25.10
6	95.61	20.50	94.86	22.08	9407	23.63	93.21	25.15
8	95.58	20.55	94.84	22.13	94.04	${ }^{23.68}$	93.18	25.20
10	95.56		94.81	22.18	94.01	23.73	93.16	25.25
12	95.53	20.66	94.79	22.23	9398	23.78	93.13	25.30
14	65.51	20.71	94.76	22.28	93.95	23.83	93.10	25.35
16	95.49	20.76	94.73	22.34	93.93	23.88	93.07	25.40
18	95.46	20.81	91.71	22.39	93.90	23.93	93.04	25.45
20	95.44	20.87	94.68	22.44	93.87	23.99	93.01	25.50
22	95.41	20.92	94.66	22.49	93.84	24.04	92.98	25.55
24	95.39	20.97	94.63	22.54	93.81	24.09	92.95	25.60
26	95.36	21.03	94.60	$2 \because .60$	93.79	24.14	92.92	25.65
28	95.34	21.08	94.58	22.65	93. 76	24.19	92.89	25.70
30	95.32	21.13	94.55	22.70	93. 73	24.24	92.86	25.75
32	95.29	21.18	91.52	22.75	93.\%0	24.29	92.83	25.80
34	95.27	21.24	94.50	22.80	93.67	24.34	92.80	2585
36	95.24	21.29	94.47	22.85	93.65	24.39	92.77	25.90
38	95.22	2134	94.44	22.91	93.62	24.44	92.74	25.95
40	95.19	21.39	94.42	22.96	93.59	24.49	92.71	26.00
42	95.17	21.45	94.39	2301	93.56	24.55	9268	26.05
44	95.14	21.50	94.36	23.06	93.53	24.60	92.65	26.10
46	95.12	21.55	94.34	23.11	93.50	24.65	92.62	26.15
48	95.09	21.60	94.31	23.16	93.47	24.70	92.59	26.20
50	95.07	21.66	94.28	23.22	93.45	24.75	92.56	26.25
52	95.04	21.71	94.26	23.27	93.42	24.80	92.53	26.30
54	95.02	21.76	94.23	23.32	93.39	24.85	92.49	26.35
56	94.99	21.81	94.20	2337	93.36	24.90	92.46	26.40
58	94.97	21.87	94.17	23.42	93.33	24.95	92.43	26.45
60	94.94	21.92	94.15	23.47	93.30	25.00	92.40	26.50
$c+f=.75$. 73	. 16	. 73		. 73	. 19		. 20
$c+f=1.00$. 98	. 22	. 97	. 23	. 97	. 25	. 96	. 27
$c+f=1.25$	1.22	. 27	1.21	. 29	1.21	. 31	1.20	. 84

Table X.

stadia reductions for reading 100.

Minutes.	16°		17°		18°		19°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	His. Dist.	Diff. Elev.
0^{\prime}	92.40	26.50	91.45	27.96	90.45	29.39	89.40	30.78
2	92.37	26.55	91.42	28.01	90.42	29.44	8936	30.83
4	92.34	26.59	91.39	28.06	90.38	29.48	89.33	
6	92.31	26.64	91.35	28.10	${ }_{90} 90.35$	29.53	89.29	30.92 31
8	92.28 92.25	26.69 26.74	91.32 91.29	28.15	90.31 90.28	29.58 29.62	89.26 89.22	$\begin{aligned} & 30.97 \\ & 31.01 \end{aligned}$
12	92.22	26.79	91.26	28.25	90.24	29.67	89.18	31.06
14	92.19	26.84	91.22	28.30	90.21	29.72	89.15	31.10
16	92.15	26.89	91.19	28.34	90.18	29.76	89.11	31.15
18	92.12	26.94	91.16	28.39	90.14	29.81	89.08	31.19
20	92.09	26.99	91.12	28.44	90.11	29.86	89.04	31.24
22	92.06	27.04	91.09	28.49	90.07	29.90	89.00	31.28
24	92.03	27.09	91.06	28.54	90.04	29.95	88.96	31.33
26	92.00	27.13	91.0:	28.58	90.00	30.00	88.93	31.38
28	91.97	27.18	90.99	28.63	89.97	30.04	88.89	31.42
30	91.93	27.23	90.96	28.68	89.93	30.09	88.86	31.47
32	91.90	27.28	90.92	28.73	89.90	30.14	88.82	31.51
34	91.87	27.33	90.89	28.77	89.86	30.19	88.78	31.56
36	91.84	27.38	90.86	28.82	89.83	30.23	88.75	31.60
38	91.81	27.43	90.82	28.87	89.79	30.28	88.71	31.65
40	91.77	27.48	90.79	28.92	89.76	30.32	88.67	31.69
42	91.74	27.52	90.76	28.96	89.72	30.37	88.64	31.74
44	91.71	27.57	90.72	29.01	89.69	30.41	88.60	31.78
46	91.68	27.62	90.69	29.06	89.65	30.46	88.56	31.83
48	91.65	27.67	90.66	29.11	89.61	30.51	88.53	31.87
50	91.61	27.72	90.62	29.15	89.58	30.55	88.49	31.92
59	91.58	27.77	90.59	29.20	89.54	30.60	88.45	31.96
	91.55	27.81	90.55	29.25	89.51	30.65	88.41	32.01
	91.52	27.86	90.52	29.30	89.47	30.69	85.38	32.05
	91.48	27.91	90.48	29.34	89.44	30.74	88.34	32.09
	91.45	27.96	90.45	29.39	89.40	30.78	88.30	32.14
$\begin{aligned} & c+f=.75 \\ & c+f=1.00 \\ & c+f=1.25 \end{aligned}$. 72	. 21	. 72	. 23	. 71	. 24	. 71	. 25
	. 96	. 28	. 95	. 30	. 95	. 32	. 94	.33
	1.20	. 36	1.19	. 38	1.19	. 40	1.18	. 42

Table X.

stadia reductions for reading 100.

Minutes.	20°		21°		22°		23°	
	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.
0^{\prime}	88.30	32.14	87.16	33.46	85.97	34.73	84.73	35.97
2	88.26	32.18	87.12	33.50	85.93	34.77	84.69	36.01
4	88.23	32.23	87.08	33.54	85.89	34.82	84.65	36.05
6	88.19	32.27	87.04	33.59	85.85	34.86	84.61	36.09
8	88.15	32.32	87.00	33.63	85.80	3490	84.57	36.13
10	88.11	32.36	86.96	33.67	85.76	34.94	84.52	36.17
12	88.08	32.41	86.92	33.72	85.72	34.98	84.48	36.21
14	88.04	32.45	86.88	33.76	85.68	35.02	84.44	36.25
16	88.00	32.49	86.84	33.80	85.64	35.07	84.40	36.29
18	87.96	32.54	86.80	33.84	85.60	35.11	84.35	${ }^{36.33}$
20	87.93	32.58	86.77	33.89	85.56	35.15	84.31	36.37
22	87.89	32.63	86.73	33.93	85.52	35.19	84.27	36.41
24	87.85	32.67	86.69	33.97	85.48	35.23	84.23	36.45
26	87.81	32.72	86.65	34.01	85.44	35.27	84.18	36.49
28	87.77	32.76	86.61	34.06	85.40	35.31	84.14	36.53
30	87.74	32.80	86.57	34.10	85.36	3536	84.10	36.57
32	87. 0	32.85	86.53	34.14	85.31	35.40	. 84.06	36.61
34	87.66	32.89	86.49	34.18	85.27	35.44	84.01	36.65
36	87.62	32.93	86.45	34.23	85.23	35.48	83.97	36.69
38	87.58	32.98	86.41	34.27	85.19	35.52	83.93	36.73
40	87.54	33.02	86.37	34.31	85.15	35.56	83.89	36.77
42	87.51	33.07	86.33	34.35	85.11	35.60	83.84	36.80
44	87.47	33.11	86.29	34.40	85.07	35.64	83.80	36.84
46	87.43	33.15	86.25	34.44	85.02	35.68	83.76	36.88
48	87.39	33.20	8621	34.48	84.98	35.72	83.72	36.92
50	87.35	33.24	86.17	34.52	84.94	35.76	83.67	36.96
52	87.31	33.28	86.13	34.57	84.90	35.80	83.63	37.00
54	87.27	33.33	86.09	34.61	84.86	35.85	83.59	37.04
56	87.24	33.37	86.05	34.65	84.82	35.89	83.54	37.08
58	87.20	33.41	86.01	34.69	84.77	35.93	83.50	3\%.12
60	87.16	33.46	85.97	34.73	84.73	35.97	83.46	37.16
$c+f=$. 70	. 26	. 70	. 27	. 69	. 29	. 69	. 30
$c+f=1.00$. 94	. 35	. 93	. 37	. 92	. 38	. 92	. 40
$c+f=1.25$	1.17	. 44	1.16	. 46	1.15	. 48	1.15	. 50

Tabie X.

stadia reductions for reading 100.

Minutes.	24°		25°		26°		27°	
	Hor. Dist.	Diff. Elev.	Hor. Dist	Diff. Elev.	Hor. Dist.	Diff. Elev.	Hor. Dist.	I)iff. Elev.
0^{\prime}	83.46	37.16	82.14	38.30	80.78	39.40	$\check{79.39}$	40.45
2	83.41	37.20	82.09	38.34	80.74	39.44	79.34	4049
4	83.37	37.23	82.05	38.38	80.69	39.47	79.30	40.52
6	83.33	37.27	8.01	38.41	80.65	39.51	79.25	40.55
-8	83.28 83.24	37.31 37.35	81.96 81.92	38.45 38.49	80.60 80.55	39.54 39.58	79.20 79.15	40.59 40.62
12	83.20	37.39	81.87	38.53	80.51	39.61	79.11	40.66
14	83.15	37.43	81.83	38.56	80.46	39.65	79.06	40.69
16	83.11	37.47	81.78	3860	80.41	39.69	79.01	40.72
18	8307	37.51	81.14	38.64	80.37	39.72	78.96	40.76
20	83.02	37.54	81.69	38.67	80.32	39.76	78.92	40.79
22	82.98	37.58	81.65	38.71	80.28	39.79	78.87	4082
24	82.93	$37.6{ }^{3}$	81.60	38.75	80.23	39.83	78.82	40.86
26	82.89	37.66	81.56	38.78	80.18	39.86	78.77	4089
28	82.85	37.70	81.51	38.82	80.14	39.90	78.73	40.92
30	82.80	37.74	81.47	38.86	80.09	39.93	78.68	40.96
32	82.76	37.77	81.42	38.89	80.04	39.97	78.63	40.99
34	82.72	37.81	81.38	38.93	80.00	40.00	78.58	41.02
36	82.67	37.85	81.33	${ }^{38.97}$	79.95	40.04	78.54	41.06
38	82.63	37.89	81.28	39.00	79.90	40.07	78.49	41.09
40	82.58	37.93	81.24	39.04	79.86	40.11	78.44	41.12
42	82.54	37.96	81.19	39.08	79.81	40.14	78.39	41.16
44	82.49	38.00	81.15	39.11	79.76	40.18	78.34	41.19
46	82.45	38.04	81.10	39.15	79.72	40.21	78.30	41.22
48	82.41	38.08	81.06	39.18	79.67	40.24	78.25	41.26
50	82.36	38.11	81.01	39.22	79.62	40.28	78.20	41.29
52	82.32	38.15	80.97	39.26	79.58	40.31	78.15	41.32
54	82.27	38.19	80.92	39.29	79.53	40.35	78.10	41.35
56	82.23	38.23	80.87	39.33	79.48	40.38	\%8.06	41.39
58	82.18	38.26	80.83	39.36	79.44	40.42	78.01	41.42
60	82.14	38.30	80.78	39.40	79.39	40.45	77.96	41.45
$c+f=.75$. 68	. 31	. 68	. 32	67	. 33	66	. 35
$c+f=1.00$. 91	. 41	. 90	. 43	. 89	. 45	. 89	. 46
$c+f=1.25$	1.14	. 52	1.13	. 54	1.12	. 56	1.11	. 58

Table XI.

LOGARITHMS OF NUMBERS

FROM

1 to 10000

TO SIX DECIMAL PLACES.

N.	Log.								
1	0.000000	21	1.322219	41	1.612\%84	61	1.785330	81	1.908485
2	0.301030	22	1.342423	42	1.623249	62	1.792392	82	1.913814
3	0.477121	23	1.361728	43	1.633468	63	1.799341	83	$1.9190 \% 8$
4	0.602060	24	1.380211	44	1.643153	64	1.806180	84	$1.9242 \% 9$
5	0.698970	25	1.397940	45	1.653213	65	1.812913	85	1.929419
6	0.778151	26	1.414973	46	1.662758	66	1.819544	86	1.934498
7	0.845098	27	1.431364	47	1.672098	67	1.826075	87	1.939519
8	0.903090	28	1.447158	48	1.681241	68	1.832509	88	1.944483
9	0.954243	29	1.462398	49	1.690196	69	1.838849	89	1.949390
10	1.000000	30	1.477121	50	1.698970	70	1.845098	90	1.954243
11	1.041393	31	1.491362	51	1.707570	71	1.851258	91	1.959041
12	1.079181	32	1.505150	52	1.716003	72	1.857332	92	1.963788
13	1.113943	33	1.518514	53	1.724276	73	1.863323	93	1.968483
14	1.146128	34	1.531479	54	1.732394	74	1.869232	94	1.973128
15	1.176091	35	1.544068	55	1.740363	75	1.875061	95	1.977724
16	1. 204120	36	1.556303	56	1.748188	76	1.880814	96	1.982271
17	1.230449	37	1.568202	57	1.755875	77	1.886491	97	$1.986 \% \% 2$
18	1.255273	38	1.579784	58	1.763428	78	1.892095	98	1.991226
19	1.278754	39	1.591065	59	1.770852	79	1.897627	99	1.995635
9	1.301030	40	1.602060	60	1.778151	80	1.903090	100	2.000000

N.	0	1	2	8	4	5	6	7	8	9	Diff.
$\begin{array}{r} 100 \\ 1 \\ 2 \end{array}$	$\begin{array}{r} 000000 \\ 4321 \\ 8600 \end{array}$	$\begin{aligned} & 0434 \\ & 4751 \\ & 9026 \end{aligned}$	$\begin{aligned} & 0868 \\ & 5181 \\ & 9451 \end{aligned}$	$\begin{aligned} & 1301 \\ & 5609 \\ & 98 \% 6 \end{aligned}$	$\begin{aligned} & 1734 \\ & 6038 \end{aligned}$	$\begin{aligned} & 2166 \\ & 6466 \end{aligned}$	$\begin{aligned} & 2598 \\ & 6894 \end{aligned}$	$\begin{aligned} & 3029 \\ & 7321 \end{aligned}$	$\begin{aligned} & 3461 \\ & 7748 \end{aligned}$	$\begin{aligned} & 3891 \\ & 81 \% 4 \end{aligned}$	432428
					$\begin{aligned} & 0300 \\ & 4521 \\ & 8700 \end{aligned}$	$\begin{aligned} & 0724 \\ & 4940 \\ & 9116 \end{aligned}$	$\begin{aligned} & 1147 \\ & 5360 \\ & 9532 \end{aligned}$	$\begin{aligned} & \hline 1570 \\ & 5779 \\ & 9947 \end{aligned}$	$\begin{aligned} & 1993 \\ & 6197 \end{aligned}$	$\begin{aligned} & 2415 \\ & 6616 \end{aligned}$	424420
34	$\begin{array}{r} 012837 \\ 7033 \end{array}$	$\begin{aligned} & 3259 \\ & 7451 \end{aligned}$	$\begin{aligned} & 3680 \\ & 7868 \end{aligned}$	$\begin{aligned} & 4100 \\ & 8284 \end{aligned}$							
	$\begin{array}{r} \hline 021189 \\ 5306 \\ 9384 \end{array}$	$\begin{aligned} & 1603 \\ & 5715 \\ & 9789 \end{aligned}$	$\begin{aligned} & 2016 \\ & 6125 \end{aligned}$	$\begin{aligned} & 2428 \\ & 6533 \end{aligned}$	$\begin{aligned} & 2841 \\ & 6942 \end{aligned}$	$\begin{aligned} & 3252 \\ & 7350 \end{aligned}$	$\begin{aligned} & 3664 \\ & 7757 \end{aligned}$	$\begin{aligned} & 4075 \\ & 8164 \end{aligned}$	$\begin{aligned} & 0361 \\ & 4486 \\ & 8571 \end{aligned}$	$\begin{aligned} & 0775 \\ & 4896 \\ & 8978 \end{aligned}$	416412408
			$\begin{aligned} & 0195 \\ & 4227 \\ & 8223 \end{aligned}$	$\begin{aligned} & 0600 \\ & 4628 \\ & 8620 \end{aligned}$	$\begin{aligned} & 1004 \\ & 5029 \\ & 9017 \end{aligned}$	$\begin{aligned} & 1408 \\ & 5430 \\ & 9414 \end{aligned}$	$\begin{aligned} & 1812 \\ & 5830 \\ & 9811 \\ & \hline \end{aligned}$	$\begin{aligned} & 2216 \\ & 6230 \end{aligned}$	$\begin{aligned} & 2619 \\ & 6629 \end{aligned}$	$\begin{aligned} & 3021 \\ & 7028 \end{aligned}$	404400
8	033424	3826									
9	04^{7426}	7825						0207	0602	0998	397

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
434	43.4	86.8	130.2	173.6	217.0	260.4	303.8	347.2	390.6
433	43.3	86.6	129.9	173.2	216.5	259.8	303.1	346.4	389.7
432	43.2	86.4	129.6	172.8	216.0	259.2	302.4	345.6	388.8
431	43.1	86.2	129.3	172.4	215.5	258.6	301.7	344.8	387.9
430	43.0	86.0	129.0	172.0	215.0	258.0	301.0	344.0	387.0
429	42.9	85.8	128.7	171.6	214.5	257.4	300.3	343.2	386.1
428	42.8	85.6	128.4	171.2	214.0	256.8	299.6	342.4	385.2
427	42.7	85.4	128.1	170.8	213.5	256.2	298.9	341.6	384.3
426	42.6	85.2	127.8	170.4	213.0	255.6	298.2	340.8	383.4
425	42.5	85.0	127.5	170.0	212.5	255.0	297.5	340.0	382.5
424	42.4	84.8	127.2	169.6	212.0	254.4	296.8	339.2	381.6
423	42.3	84.6	126.9	169.2	211.5	253.8	296.1	338.4	380.7
422	42.2	84.4	126.6	168.8	211.0	253.2	295.4	337.6	379.8
421	42.1	84.2	126.3	168.4	210.5	252.6	294.7	336.8	378.9
420	42.0	84.0	126.0	168.0	210.0	252.0	294.0	336.0	378.0
419	41.9	83.8	125.7	167.6	209.5	251.4	293.3	335.2	377.1
418	41.8	83.6	125.4	167.2	209.0	250.8	292.6	334.4	376.2
417	41.7	83.4	125.1	166.8	208.5	250.2	291.9	333.6	375.3
416	41.6	83.2	124.8	166.4	208.0	249.6	291.2	332.8	374.4
415	41.5	83.0	124.5	166.0	207.5	249.0	290.5	332.0	373.5
414	41.4	82.8	124.2	165.6	207.0	248.4	289.8	331.2	372.6
413	41.3	82.6	123.9	165.2	206.5	247.8	289.1	330.4	371.7
412	41.2	82.4	123.6	164.8	206.0	247.2	288.4	329.6	370.8
411	41.1	82.2	123.3	164.4	205.5	246.6	287.7	328.8	369.9
410	41,0	82.0	123.0	164.0	205.0	246.0	287.0	328.0	369.0
409	40.9	81.8	122.7	163.6	204.5	245.4	286.3	327.2	368.1
408	40.8	81.6	122.4	163.2	204.0	24.8	285.6	326.4	367.2
407	40.7	81.4	122.1	162.8	203.5	244.2	284.9	325.6	366.3
406	40.6	81.2	121.8	162.4	203.0	2436	284.2	324.8	365.4
405	40.5	81.0	121.5	162.0	202.5	243.0	283.5	324.0	364.5
404	40.4	80.8	121.2	161.6	202.0	242.4	282.8	323.2	363.6
403	40.3	80.6	120.9	161.2	201.5	241.8	282.1	322.4	362.7
402	40.2	80.4	120.6	160.8	201.0	2412	281.4	321.6	361.8
401	40.1	80.2	120.3	160.4	200.5	240.6	280.7	320.8	360.9
400	40.0	80.0	120.0	160.0	200.0	240.0	280.0	320.0	360.0
399	39.9	79.8	119.7	159.6	199.5	239.4	279.3	319.2	359.1
398	39.8	79.6	119.4	159.2	199.0	238.8	278.6	318.4	358.2
397	39.7	79.4	119.1	158.8	198.5	238.2	277.9	317.6	357.3
396	39.6	79.2	118.8	158.4	198.0	237.6	277.2	316.8	356.4
395	39.5	79.0	118.5	158.0	197.5	237.0	276.5	316.0	355.5

No. 110 L. 041.$]$

N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\begin{array}{r} 110 \\ 1 \\ 2 \end{array}$	$\begin{array}{r} 041393 \\ 5323 \\ 9218 \end{array}$	$\begin{aligned} & 1787 \\ & 5714 \\ & 9606 \end{aligned}$	$\begin{aligned} & 2182 \\ & 6105 \\ & 9993 \end{aligned}$	$\begin{aligned} & 2576 \\ & 6495 \end{aligned}$	$\begin{aligned} & 2969 \\ & 6885 \end{aligned}$	$\begin{aligned} & 3362 \\ & 72 \pi 5 \end{aligned}$	$\begin{aligned} & 3755 \\ & 7664 \end{aligned}$	$\begin{aligned} & 4148 \\ & 8053 \end{aligned}$	$\begin{aligned} & 4540 \\ & 8442 \end{aligned}$	$\begin{aligned} & 4932 \\ & 8830 \end{aligned}$	393390
				$\begin{aligned} & 0380 \\ & 4230 \\ & 8046 \end{aligned}$	$\begin{aligned} & \hline 0766 \\ & 4613 \\ & 8426 \end{aligned}$	$\begin{aligned} & 11153 \\ & 4996 \\ & 8805 \end{aligned}$	$\begin{aligned} & 1538 \\ & 5378 \\ & 9185 \end{aligned}$	$\begin{aligned} & 1924 \\ & 5760 \\ & 9563 \end{aligned}$	$\begin{aligned} & \hline 2309 \\ & 6142 \\ & 9942 \end{aligned}$	$\begin{aligned} & 2694 \\ & 6524 \end{aligned}$	386383
3	053078	34	3846								
4	6905	7286	7666								
5	$\begin{array}{r} 060698 \\ 4458 \\ 8186 \end{array}$	107548328557	145252068928	$\begin{aligned} & 1829 \\ & 5580 \\ & 9298 \end{aligned}$	$\begin{aligned} & 2206 \\ & 5953 \\ & 9668 \end{aligned}$	$\begin{aligned} & 2582 \\ & 6326 \end{aligned}$	$\begin{aligned} & 2958 \\ & 6699 \end{aligned}$	$\begin{aligned} & 3333 \\ & 70 r 1 \end{aligned}$	$\begin{aligned} & 3709 \\ & 7443 \end{aligned}$	$\begin{aligned} & 0320 \\ & 4083 \\ & 7815 \end{aligned}$	376376373
${ }^{6}$											
7											
8	$\begin{array}{r} 071882 \\ 5547 \end{array}$	$\begin{aligned} & 2250 \\ & 5912 \end{aligned}$	$\begin{aligned} & 2617 \\ & 6276 \end{aligned}$	$\begin{aligned} & 2985 \\ & 6640 \end{aligned}$	$\begin{aligned} & 3352 \\ & 7004 \end{aligned}$	$\begin{aligned} & 0038 \\ & 3718 \\ & 7368 \end{aligned}$	$\begin{aligned} & 0407 \\ & 4085 \\ & 7731 \end{aligned}$	$\begin{aligned} & 0 ; 6 \\ & 4451 \\ & 8094 \end{aligned}$	$\begin{aligned} & 1145 \\ & 4816 \\ & 8457 \end{aligned}$	$\begin{aligned} & 1514 \\ & 5182 \\ & 8819 \end{aligned}$	370366363
9											

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
395	39.5	79.0	118.5	158.0	197.5	237.0	276.5	316.0	355.5
394	39.4	78.8	118.2	157.6	197.0	236.4	$2 \% 5.8$	815.2	354.6
393	39.3	78.6	117.9	157.2	196.5	235.8	275.1	314.4	353.7
392	39.2	78.4	117.6	156.8	196.0	235.2	274.4	313.6	352.8
391	39.1	78.2	117.3	156.4	195.5	234.6	273.7	312.8	351.9
390	39.0	78.0	117.0	156.0	195.0	234.0	273.0	312.0	351.0
389	33.9	77.8	116.7	155.6	194.5	233.4	272.3	311.2	350.1
388	38.8	77.6	116.4	155.2	194.0	232.8	271.6	310.4	349.2
387	38.7	77.4	116.1	154.8	193.5	232.2	270.9	309.6	348.3
386	38.6	77.2	115.8	154.4	193.0	231.6	270.2	308.8	347.4
385	38.5	77.0	115.5	154.0	192.5	231.0	269.5	308.0	346.5
384	38.4	76.8	115.2	153.6	192.0	230.4	268.8	307.2	345.6
383	38.3	76.6	114.9	153.2	191.5	229.8	268.1	306.4	344.7
382	38.2	76.4	114.6	152.8	191.0	229.2	267.4	305.6	343.8
381	38.1	76.2	114.3	152.4	190.5	228.6	266.7	304.8	342.9
380	38.0	76.0	114.0	152.0	190.0	228.0	266.0	304.0	342.0
379	37.9	75.8	113.7	151.6	189.5	227.4	265.3	303.2	341.1
378	37.8	75.6	113.4	151.2	189.0	226.8	264.6	302.4	340.2
377	37.7	75.4	113.1	150.8	188.5	226.2	263.9	301.6	339.3
376	37.6	75.2	112.8	150.4	188.0	225.6	263.2	300.8	338.4
375	37.5	75.0	112.5	150.0	187.5	225.0	262.5	300.0	337.5
374	37.4	74.8	112.2	149.6	187.0	224.4	261.8	299.2	336.6
373	37.3	74.6	111.9	149.2	186.5	223.8	261.1	298.4	335.7
377	37.2	74.4	111.6	148.8	186.0	223.2	260.4	297.6	334.8
371	37.1	74.2	111.3	148.4	185.5	222.6	259.7	296.8	333.9
370	37.0	74.0	111.0	148.0	185.0	222.0	259.0	296.0	333.0
369	36.9	73.8	110.7	147.6	184.5	221.4	258.3	295.2	332.1
368	36.8	73.6	110.4	147, 2	184.0	220.8	257.6	294.4	331.2
367	36.7	73.4	110.1	146.8	183.5	220.2	256.9	293.6	330.3
366	36.6	73.2	109.8	146.4	183.0	219.6	256.2	292.8	329.4
565	36.5	73.0	109.5	146.0	182.5	219.0	255.7	292.0	328.5
364	36.4	72.8	109.2	145.6	182.0	218.4	254.8	291.2	327.6
363	36.3	72.6	108.9	145.2	181.5	217.8	254.1	290.4	326.7
362	36.2	72.4	108.6	144.8	181.0	217.2	253.4	289.6	325.8
361	36.1	72.2	108.8	144.4	180.5	216.6	252.7	288.8	324.9
360	36.0	72.0	108.0	144.0	180.0	216.0	252.0	288.0	324.0
359	35.9	71.8	107.7	143.6	179.5	215.4	251.3	287.2	323.1
358	35.8	71.6	107.4	143.2	179.0	214.8	250.6	286.4	322.2
357	357	71.4	107.1	142.8	178.5	214.2	249.9	285.6	321.3
356	-35.6	71.2	106.8	142.4	178.0	213.6	249.2	284.8	320.4

No. 120 L. 079.]									[No. 134 L. 130.		
N.	0	1	2	3	4	5	6	7	8	9	Diff.
120	079181	9543	9904	0266	0626	0987	1347	1707	2067	2426	360
1	082785	3144	3503	3861	4219	4576	4934	5291	5647	6004	357
2	6360	6716	7071	7426	7781	8136	8190	8845	9198	9552	355
	590	0258	0611	0963	1315	1667	2018	2370	2721	3071	352
4	093422	$37 \% 2$	4122	4471	4820	5169	5518	5866	6215	6562	349
5	6910	7257	7604	7951	8298	8644	8990	9335	9681		
6	100371	0715	1059	1403	1747	2091	2434	2777	3119	3462	343
7	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871	341
8	7210	7549	7888	8227	8565	8903	9241	95.9	9916		
9	110590	0926	1263	1599	1934	2270	2605	2940	3275	3609	335
130	3943	4277	4611	4944	52\%8	5611	5943	6276	6608	6940	333
1	7271	7603	7934	8265	8595	8926	9256	9586	9915		
2	120574	0903	1231	1560	1888	2216	2544	2871	3198	3525	328
3	3852	4178	4504	4830	5156	5481	5806	6131	6456	6781	325
4	13^{7105}	7429	7753	8076	8399	8722	9045	9368	9690	0012	323

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
35.5	35.5	71.0	106.5	142.0	177.5	213.0	248.5	284.0	319.5
354	35.4	70.8	106.2	141.6	177.0	212.4	247.8	283.2	318.6
353	35.3	70.6	105.9	141.2	176.5	211.8	247.1	282.4	317.7
352	35.2	70.4	105.6	140.8	176.0	211.2	246.4	281.6	316.8
351	35.1	70.2	105.3	140.4	175.5	210.6	245.7	280.8	315.9
3.50	35.0	70.0	105.0	140.0	175.0	210.0	245.0	280.0	315.0
349	34.9	69.8	104.7	139.6	174.5	209.4	214.3	279.2	314.:
348	34.8	69.6	104.4	139.2	174.0	208.8	243.6	278.4	313.2
347	34.7	69.4	104.1	138.8	173.5	208.2	242.9	$27 \% .6$	312.3
346	34.6	69.2	103.8	138.4	173.0	207.6	242.2	276.8	311.4
345	34.5	69.0	103.5	138.0	172.5	207.0	241.5	276.0	310.5
344	34.4	68.8	103.2	137.6	172.0	206.4	240.8	275.2	309.6
343	34.3	68.6	102.9	137.2	171.5	205.8	240.1	274.4	308.7
312	34.2	68.4	102.6	136.8	171.0	2052	239.4	273.6	307.8
341	34.1	68.2	102.3	136.4	170.5	204.6	238.7	212.8	306.9
310	34.0	68.0	102.0	136.0	170.0	204.0	238.0	272.0	306.0
339	33.9	67.8	101.7	135.6	169.5	203.4	237.3	271.2	305.1
338	33.8	67.6	101.4	135.2	169.0	202.8	236.6	$2 \pi 0.4$	304.2
337	33.7	$6 \% .4$	101.1	134.8	168.5	202.2	235.9	269.6	303.3
3:36	33.6	67.2	100.8	134.4	168.0	201.6	235.2	$2 \mathrm{CB.8}$	302.4
335	33.5	67.0	100.5	134.0	167.5	201.0	234.5	268.0	301.5
334	33.4	66.8	100.2	133.6	167.0	200.4	2338	267.2	300.6
333	33.3	66.6	99.9	133.2	166.5	${ }^{1} 99.8$	233.1	266.4	299.7
332	33.2	66.4	99.6	132.8	166.0	199.2	232.4	265.6	298.8
331	33.1	66.2	99.3	132.4	165.5	198.6	231.7	264.8	297.9
330	33.0	66.0	99.0	132.0	165.0	198.0	231.0	264.0	297.0
329	32.9	65.8	98.7	131.6	164.5	197.4	230.3	263.2	296.1
328	32.8	65.6	98.4	131.2	164.0	196.8	229.6	262.4	295.2
32%	32.7	65.4	98.1	130.8	163.5	196.2	228.9	261.6	294.3
326	32.6	65.2	97.8	130.4	163.0	195.6	228.2	260.8	293.4
325	32.5	65.0	97.5	130.0	162.5	195.0	227.5	260.0	292.5
324	32.4	64.8	97.2	129.6	162.0	194.4	226.8	259.2	291.6
323	32.3	64.6	96.9	129.2	161.5	193.8	226.1	258.4	290.7
322	32.2	64.4	96.6	128.8	161.0	193.2	22.4	257.6	289.8

No. 135 L. 130.]
[No. 149 L. 175.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
13	$\begin{array}{r} 130334 \\ 3539 \\ 6 \approx 21 \\ 9879 \end{array}$	$\begin{aligned} & 0655 \\ & 3858 \\ & 7037 \end{aligned}$	$\begin{aligned} & 0977 \\ & 4177 \\ & 7354 \end{aligned}$	1298	1619	1939	2260	2580	2900	3219	321
				4496	4814	5133	5451	5769	6086	6403	318
				$76{ }^{7} 1$	7987	8303	8618	8934	9249	9564	316
		$\begin{aligned} & 0194 \\ & 3327 \end{aligned}$	$\begin{aligned} & 0508 \\ & 3639 \end{aligned}$	0822	1136	1450	1763	$20 \sim 6$	2389	2702	14
	143015			3951	4263	4574	4885	5196	5507	5818	311
140	$\begin{aligned} & 6128 \\ & 9219 \end{aligned}$	$\begin{aligned} & 6438 \\ & 9527 \end{aligned}$	$\begin{aligned} & 6748 \\ & 9835 \end{aligned}$	7058	7367	7676	7985	8294	8603	8911	309
					0449	$0 \% 6$		13\%0	$16 \pi 6$	1982	307
$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 152288 \\ 5336 \\ 8362 \end{array}$	$\begin{aligned} & \hline 2594 \\ & 5640 \\ & 8664 \end{aligned}$	$\begin{aligned} & 2900 \\ & 5943 \\ & 8965 \end{aligned}$	3205	3510	3815	4120	4424	4728	5032	305
				6246	6549	6852	7154	7457	7759	8061	303
				9266	9567	980		9		1068	301
5	$\begin{array}{r} 151368 \\ 4353 \\ 7317 \end{array}$	1667	1967	2266	2564	2863	3161	3460	3758	4055	299
6		4650	4947	5244	5541	5838	6134	6430	6726	$70 \% 2$	297
7		7613	7908	8203	8497	8792	9086	9380	9674	9968	295
8	$\begin{array}{r} 170262 \\ 3186 \end{array}$	0555	0848	1141	1434	1726	2019	2311	2603	2895	293
9		3478	$3{ }^{\text {r }} 69$	4060	4351	4641	4932	5222	5512	5802	291

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
321	32.1	64.2	96.3	128.4	160.5	192.6	224.7	256.8	288.9
320	32.0	64.0	96.0	128.0	160.0	192.0	224.0	256.0	288.0
319	31.9	63.8	95.7	127.6	159.5	191.4	223.3	255.2	287.1
318	31.8	63.6	95.4	127.2	159.0	190.8	202.6	251.4	286.2
317	31.7	63.4	95.1	126.8	158.5	190.2	221.9	253.6	285.3
316	31.6	63.2	94.8	126.4	158.0	189.6	221.2	252.8	284.4
315	31.5	63.0	94.5	126.0	157.5	139.0	220.5	252.0	283.5
314	31.4	62.8	94.2	125.6	157.0	188.4	219.8	251.2	282.6
313	31.3	62.6	93.9	125.2	156.5	187.8	219.1	250.4	281.7
312	31.2	62.4	98.6	124.8	156.0	187.2	218.4	249.6	280.8
311	31.1	62.2	93.3	124.4	155.5	186.6	217.7	248.8	279.9
310	31.0	62.0	93.0	124.0	155.0	186.0	217.0	248.0	279.0
309	30.9	61.8	92.7	123.6	154.5	185.4	216.3	217.2	278.1
308	30.8	61.6	92.4	123.2	154.0	184.8	215.6	246.4	27.2
307	30.7	61.4	92.1	122.8	153.5	184.2	214.9	245.6	$2 \pi 6.3$
306	30.6	61.2	91.8	122.4	153.0	183.6	214.2	244.8	275.4
305	30.5	61.0	91.5	122.0	152.5	183.0	213.5	244.0	24.5
304	30.4	60.8	91.2	121.6	152.0	182.4	212.8	243.2	273.6
303	30.3	60.6	90.9	121.2	151.5	181.8	212.1	${ }^{2} 42.4$	$2 \% 2.7$
302	30.2	60.4	90.6	120.8	151.0	181.2	211.4	241.6	271.8
301	30.1	60.2	90.3	1204	150.5	180.6		240.8	
300	30.0	60.0	90.0	120.0	150.0	180.0	210.0	210.0	270.0
299	29.9	59.8	89.7	119.6	149.5	179.4	209.3	239.2	269.1
298	29.8	59.6	89.4	119.2	149.0	178.8	208.6	238.4	268.2
297	29.7	59.4	89.1	118.8	148.5	178.2	207.9	237.6	267.3
296	29.6	59.2		118.4	148.0	177.6	207.2	236.8	266.4
235	29.5	59.0	88.5	118.0	147.5	17.0	206.5	236.0	265.5
294	29.4	58.8	88.2	117.6	147.0	176.4	205.8	235.2	264.6
293	29.3	58.6	87.9	117.2	146.5	175.8	205.1	234.4	263.7
292	29.2	58.4	87.6	116.8	146.0	175.2	214.4	233.6	262.8
291	29.1	58.2	87.3	116.4	145.5	174.6	203.7	232.8	261.9
290	29.0	58.0	87.0	116.0	145.0	174.0	203.0	232.0	261.0
289	28.9	57.8	86.7	115.6	144.5	173.4	202.3	231.2	260.1
288	28.8	57.6	86.4	115.2	144.0	172.8	201.6	230.4	259.2
287	28.7	57.4	86.1	114.8	143.5	172.2	200.9	229.6	258.3
286	28.6	57.2	85.8	114.4	143.0	171.6	200.2	228.8	257.4

No. 150 L .176.$]$
[No. 169 L. 230.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
1501	$\begin{array}{r} 176091 \\ 8977 \end{array}$	$\begin{aligned} & 6381 \\ & 9264 \end{aligned}$	$\begin{aligned} & 6670 \\ & 9552 \end{aligned}$	$\begin{aligned} & 6959 \\ & 9839 \end{aligned}$	7248	7536	7825	8113	8401	8689	289
					01262985	04133270	0699	098	1272	1558	287285
3	181844	2129	2415	$2 \pi 00$			3555	3839	4123	7239	
	4691 7521	$\begin{aligned} & 4975 \\ & 7803 \end{aligned}$	$\begin{aligned} & 5259 \\ & 8084 \end{aligned}$	$\begin{aligned} & 5542 \\ & 8366 \end{aligned}$	$\begin{aligned} & 5825 \\ & 8647 \end{aligned}$	$\begin{aligned} & 6108 \\ & 8928 \end{aligned}$	$\begin{aligned} & 6391 \\ & 9209 \end{aligned}$	$\begin{aligned} & 6674 \\ & 9490 \end{aligned}$	$\begin{aligned} & 6956 \\ & 9771 \end{aligned}$		283
										00512846	
5	190332	0612	0892	1171	145	1730	2010	2289	2567		279
6	31255900	34036176	3681	39596729	$\begin{aligned} & 4237 \\ & 7005 \end{aligned}$		$\begin{aligned} & 4792 \\ & 7556 \end{aligned}$	$\begin{aligned} & 5069 \\ & 7832 \end{aligned}$	$\begin{aligned} & 5346 \\ & 8107 \end{aligned}$	$\begin{aligned} & 5623 \\ & 8382 \end{aligned}$	278276
7			6453								
8	8657	8932	9206	9481	9755	00292761	03033033	$\begin{aligned} & 0577 \\ & 3305 \end{aligned}$	08503577	1124	274
9	201397	1670	1943	2216	2488					3848	2%
160	$\begin{aligned} & 4120 \\ & 6826 \\ & 9515 \end{aligned}$	$\begin{aligned} & 4391 \\ & 7096 \\ & 9783 \end{aligned}$	$\begin{aligned} & 4663 \\ & 7365 \end{aligned}$	$\begin{aligned} & 4934 \\ & 7634 \end{aligned}$	$\begin{aligned} & 5204 \\ & 7904 \end{aligned}$	$\begin{aligned} & 5475 \\ & 8173 \end{aligned}$	$\begin{aligned} & 5746 \\ & 8441 \end{aligned}$	$\begin{aligned} & 6016 \\ & 8710 \end{aligned}$	$\begin{aligned} & 6286 \\ & 8979 \end{aligned}$	$\begin{aligned} & 6556 \\ & 9247 \end{aligned}$	271269
1											
			00512720	$\begin{aligned} & 0319 \\ & 2986 \end{aligned}$	05863258	08533518	${ }_{3783}^{1121}$	13884049	1654	1921	267
3	212188	2454							4314	45\%9	266
4	$\begin{array}{r} 4844 \\ 7484 \end{array}$	$\begin{aligned} & 5109 \\ & 7747 \end{aligned}$	$\begin{aligned} & 5373 \\ & 8010 \end{aligned}$	56388273	$\begin{aligned} & 5902 \\ & 8536 \end{aligned}$	$\begin{aligned} & 6166 \\ & 8798 \end{aligned}$	$\begin{aligned} & 6430 \\ & 9060 \end{aligned}$	$\begin{aligned} & 6694 \\ & 9323 \end{aligned}$	6957	7221	264
5									9585	9846	262
6	$\begin{array}{r} 220108 \\ 2716 \\ 5309 \\ 7887 \\ \hline 23 \end{array}$	$\begin{aligned} & 0370 \\ & 2976 \\ & 5568 \\ & 8144 \end{aligned}$	$\begin{aligned} & 0631 \\ & 3236 \\ & 5826 \\ & 8400 \end{aligned}$	$\begin{aligned} & 0892 \\ & 3496 \\ & 6084 \\ & 8657 \end{aligned}$	$\begin{aligned} & 1153 \\ & 3755 \\ & 6342 \\ & 8913 \end{aligned}$	$\begin{aligned} & 1414 \\ & 4015 \\ & 6600 \\ & 9170 \end{aligned}$	$\begin{aligned} & 1675 \\ & 4274 \\ & 6858 \\ & 9426 \end{aligned}$	$\begin{aligned} & 1936 \\ & 4533 \\ & 7115 \\ & 9682 \end{aligned}$	$\begin{aligned} & 2196 \\ & 4792 \\ & 7372 \\ & 9938 \\ & \hline \end{aligned}$	$\begin{aligned} & 2456 \\ & 5051 \\ & 7630 \\ & \hline \end{aligned}$	$\begin{aligned} & 261 \\ & 259 \\ & 258 \\ & 256 \end{aligned}$
7											
8											
9										0193	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
285	28.5	57.0	85.5	114.0	142.5	171.0	199.5	228.0	256.5
284	28.4	56.8	85.2	113.6	142.0	170.4	198.8	227.2	255.6
283	28.3	56.6	84.9	113.2	141.5	169.8	198.1	226.4	254.7
282	28.2	56.4	84.6	112.8	141.0	169.2	197.4	225.6	253.8
281	28.1	56.2	84.3	1124	140.5	168.6	196.7	224.8	252.9
280	28.0	56.0	84.0	112.0	140.0	168.0	196.0	224.0	252.0
279	27.9	55.8	83.7	111.6	139.5	167.4	195.3	223.2	251.1
$2 \% 8$	27.8	55.6	83.4	111.2	139.0	166.8	194.6	222.4	250.2
278	27.7	55.4	83.1	110.8	138.5	166.2	193.9	221.6	249.3
276	27.6	55.2	82.8	110.4	138.0	165.6	193.2	220.8	248.4
275	27.5	55.0	82.5	110.0	137.5	165.0	192.5	220.0	247.5
214	27.4	54.8	82.2	109.6	137.0	164.4	191.8	219.2	246.6
273	27.3	54.6	81.9	109.2	136.5	163.8	191.1	218.4	245.7
272	27.2	54.4	81.6	108.8	136.0	163.2	190.4	217.6	244.8
271	27.1	54.2	81.3	108.4	135.5	162.6	189.7	216.8	243.9
270	27.0	54.0	81.0	108.0	135.0	162.0	189.0	216.0	243.0
269	26.9	53.8	80.7	$10 \% .6$	134.5	161.4	188.3	215.2	242.1
268	26.8	53.6	80.4	107.2	134.0	160.8	187.6	214.4	241.2
267	26.7	53.4	80.1	106.8	133.5	160.2	186.9	213.6	240.3
266	26.6	53.2	79.8	106.4	133.0	159.6	186.2	212.8	239.4
265	26.5	53.0	79.5	106.0	132.5	159.0	185.5	212.0	238.5
264	26.4	52.8	79.2	105.6	132.0	158.4	184.8	211.2	237.6
263	26.3	52.6	78.9	105.2	131.5	157.8	184.1	210.4	236.7
262	26.2	52.4	78.6	104.8	131.0	157.2	183.4	209.6	235.8
261	26.1	52.2	78.3	104.4	130.5	156.6	182.7	208.8	234.9
260	26.0	52.0	78.0	104.0	130.0	156.0	182.0	208.0	234.0
259	25.9	51.8	77.7	103.6	129.5	155.4	181.3	207.2	233.1
258	25.8	51.6	77.4	103.2	129.0	154.8	180.6	206.4	232.2
257	25.7	51.4	โ7.1	102.8	128.5	154.2	179.9	205.6	231.3
256	25.6	51.2	76.8	102.4	128.0	153.6	179.2	204.8	230.4
255	25.5	51.0	76.5	102.0	187.5	153.0	178.5	204.0	229.5

No. 170 L. 230.] [No. 189 L. 278.

N.	0	1	2	3	4	5	6	7	8	0	Diff.
$\begin{array}{r} 170 \\ 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{r} 230449 \\ 2996 \\ 5528 \\ 8046 \end{array}$	$\begin{aligned} & 0704 \\ & 3250 \\ & 5781 \\ & 8297 \end{aligned}$	$\begin{aligned} & 0960 \\ & 3504 \\ & 6033 \\ & 8548 \end{aligned}$	$\begin{aligned} & 1215 \\ & 3757 \\ & 6285 \\ & 8799 \\ & \hline \end{aligned}$	$\begin{aligned} & 14770 \\ & 4011 \\ & 6537 \\ & 9049 \\ & \hline \end{aligned}$	$\begin{aligned} & 1724 \\ & 4264 \\ & 6789 \\ & 9299 \\ & \hline \end{aligned}$	$\begin{aligned} & 1979 \\ & 4517 \\ & 7041 \\ & 9550 \\ & \hline \end{aligned}$	$\begin{aligned} & 2234 \\ & 4770 \\ & 7292 \\ & 9800 \end{aligned}$	$\begin{aligned} & 2488 \\ & 5023 \\ & 7544 \end{aligned}$	$\begin{aligned} & 2742 \\ & 5276 \\ & 7795 \end{aligned}$	255253258
									$\begin{aligned} & 0050 \\ & 2541 \\ & 5019 \\ & 7482 \\ & 9932 \end{aligned}$	$\begin{aligned} & 0300 \\ & 2790 \\ & 5266 \\ & 7728 \end{aligned}$	
	$\begin{array}{r} 240549 \\ 3038 \\ 5513 \\ 7973 \end{array}$	$\begin{aligned} & 0799 \\ & 3286 \\ & 5759 \\ & 8219 \end{aligned}$	$\begin{aligned} & 1048 \\ & 3534 \\ & 6006 \\ & 8464 \end{aligned}$	1297378262528709	$\begin{aligned} & 1546 \\ & 4030 \\ & 6499 \\ & 8954 \end{aligned}$	$\begin{aligned} & 1795 \\ & 4277 \\ & 6745 \\ & 9198 \end{aligned}$	$\begin{aligned} & 2044 \\ & 4525 \\ & 6991 \\ & 9443 \end{aligned}$	$\begin{aligned} & 2293 \\ & 4772 \\ & 7237 \\ & 9687 \end{aligned}$			250249248246
5											
7											
8	2504202853	$\begin{aligned} & 0664 \\ & 3096 \end{aligned}$	$\begin{aligned} & 0908 \\ & 3338 \end{aligned}$	$\begin{aligned} & 1151 \\ & 3580 \end{aligned}$	13953822	$\begin{aligned} & 1638 \\ & 4064 \end{aligned}$	$\begin{aligned} & 1881 \\ & 4306 \end{aligned}$	2125	$\begin{aligned} & 2368 \\ & 4790 \end{aligned}$	017626105031	243242
9											
180	$\begin{aligned} & 5273 \\ & 7679 \end{aligned}$	$\begin{aligned} & 5514 \\ & 7918 \end{aligned}$	$\begin{aligned} & 5755 \\ & 8158 \end{aligned}$	$\begin{aligned} & 5996 \\ & 8398 \end{aligned}$	$\begin{aligned} & 6237 \\ & 8637 \end{aligned}$	$\begin{aligned} & 6477 \\ & 8877 \end{aligned}$	$\begin{aligned} & 6718 \\ & 9116 \end{aligned}$	$\begin{aligned} & 6958 \\ & 9355 \end{aligned}$	$\begin{aligned} & 7198 \\ & 9594 \end{aligned}$	$\begin{aligned} & 7439 \\ & 9833 \end{aligned}$	241239
1											
	$\begin{array}{r} 260071 \\ 2451 \\ 4818 \\ 7172 \\ 9513 \end{array}$	$\begin{aligned} & 0310 \\ & 2688 \\ & 5054 \\ & 7406 \\ & 9746 \end{aligned}$	$\begin{aligned} & 0548 \\ & 2925 \\ & 5290 \\ & 7641 \\ & 9980 \end{aligned}$	$\begin{aligned} & 0787 \\ & 3162 \\ & 5525 \\ & 78 \% 5 \end{aligned}$	$\begin{aligned} & 1025 \\ & 3399 \\ & 5761 \\ & 8110 \end{aligned}$	$\begin{aligned} & 1263 \\ & 3636 \\ & 5996 \\ & 8344 \end{aligned}$	$\begin{aligned} & 1501 \\ & 3873 \\ & 6232 \\ & 8578 \end{aligned}$	$\begin{aligned} & 1739 \\ & 4109 \\ & 6467 \\ & 8812 \\ & \hline \end{aligned}$	$\begin{aligned} & 1976 \\ & 4346 \\ & 6702 \\ & 9046 \end{aligned}$	$\begin{aligned} & 2214 \\ & 4582 \\ & 6937 \\ & 9279 \end{aligned}$	238237235234
4											
5											
				$\begin{aligned} & 0213 \\ & 2538 \\ & 4850 \\ & 7151 \end{aligned}$	$\begin{aligned} & 0446 \\ & 2770 \\ & 5081 \\ & 7380 \end{aligned}$	$\begin{aligned} & 0679 \\ & 3001 \\ & 5311 \\ & 7609 \end{aligned}$	$\begin{aligned} & 0912 \\ & 3233 \\ & 5542 \\ & 7838 \end{aligned}$	$\begin{aligned} & 1144 \\ & 3464 \\ & 5772 \\ & 8067 \end{aligned}$	$\begin{aligned} & 1377 \\ & 3696 \\ & 6002 \\ & 8296 \end{aligned}$	$\begin{aligned} & 1609 \\ & 3927 \\ & 6232 \\ & 8525 \end{aligned}$	$\begin{aligned} & 233 \\ & 232 \\ & 230 \\ & 229 \\ & \hline \end{aligned}$
	$\begin{array}{r} 271842 \\ 4158 \\ 6462 \\ \hline \end{array}$	$\begin{aligned} & 2074 \\ & 4389 \\ & 6692 \end{aligned}$	$\begin{aligned} & 2306 \\ & 4620 \\ & 6921 \end{aligned}$								
8											
9											

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
255	25.5	51.0	76.5	102.0	127.5	153.0	178.5	204.0	229.5
254	25.4	50.8	76.2	101.6	127.0	152.4	177.8	203.2	228.6
253	25.3	50.6	75.9	101.2	126.5	151.8	177.1	202.4	227.7
258	25.2	50.4	75.6	100.8	126.0	151.2	176.4	201.6	226.8
251	25.1	50.2	75.3	100.4	125.5	150.6	175.7	200.8	225.9
250	250	50.0	75.0	100.0	125.0	150.0	175.0	200.0	225.0
249	24.9	49.8	74.7	99.6	124.5	149.4	174.3	199.2	224.1
248	24.8	49.6	74.4	99.2	124.0	148.8	173.6	198.4	223.2
247	24.7	49.4	74.1	98.8	123.5	148.2	172.9	197.6	222.3
246	24.6	49.2	73.8	98.4	123.0	147.6	172.2	196.8	221.4
245	24.5	49.0	73.5	98.0	122.5	147.0	171.5	196.0	220.5
244	24.4	48.8	73.2	97.6	122.0	146.4	170.8	195.2	219.6
243	24.3	48.6	72.9	97.2	121.5	145.8	170.1	194.4	218.7
242	24.2	48.4	72.6	96.8	121.0	145.2	169.4	193.6	217.8
211	24.1	48.2	72.3	96.4	120.5	144.6	168.7	192.8	216.9
240	24.0	48.0	72.0	96.0	120.0	144.0	168.0	192.0	216.0
239	23.9	47.8	71.7	95.6	119.5	143.4	167.3	191.2	215.1
238	23.8	47.6	71.4	95.2	119.0	142.8	166.6	190.4	214.2
237	23.7	47.4	71.1	94.8	118.5	142.2	165.9	189.6	213.3
236	23.6	47.2	70.8	94.4	118.0	141.6	165.2	188.8	212.4
235	23.5	47.0	70.5	94.0	117.5	141.0	164.5	188.0	211.5
234	23.4	46.8	70.2	93.6	117.0	140.4	163.8	187.2	210.6
233	23.3	46.6	69.9	93.2	116.5	139.8	163.1	186.4	209.7
232	23.2	46.4	69.6	92.8	116.0	139.2	162.4	185.6	208.8
231	23.1	46.2	69.3	92.4	115.5	138.6	161.7	184.8	207.9
230	23.0	46.0	69.0	92.0	115.0	138.0	161.0	184.0	207.0
229	22.9	45.8	68.7	91.6	114.5	137.4	160.3	183.2	206.1
228	22.8	45.6	68.4	91.2	114.0	136.8	159.6	182.4	205.2
227	22.7	45.4	68.1	90.8	113.5	${ }_{1} 136.2$	158.9	181.6	204.3
226	22.6	45.2	67.8	90.4	113.0	135.6	158.2	180.8	203.4

TABLE XI. LOGARITHMS OF NUMBERS.
No. 190 L. 278.]
[No. 214 L. 332.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
190	278754	8982	9211	9439	9667	9895	0123	0351	05\%8	0806	
	281033	1261	1488	1715	1942	2169		2622		3075	
	3535	35275882	37536007	39796232	4205	4431	4656	4882	$510{ }^{\text {a }}$	5332	22.6
3							6905	7130	7354	7578	225223
4	7802	8026	$\begin{aligned} & 6007 \\ & 8249 \end{aligned}$	$\begin{aligned} & 6232 \\ & 8473 \end{aligned}$	$\begin{aligned} & 6456 \\ & 8696 \end{aligned}$	8920	9143	9366	9589	9812	
	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034	222
6	2256	2478	2699	2920	3141	33635567	3584	3804	4025	4246	221
7	44666665	4687 6881	$\begin{aligned} & 4907 \\ & 7104 \end{aligned}$	$\begin{aligned} & 5127 \\ & 7323 \end{aligned}$	$\begin{aligned} & 5347 \\ & 7542 \end{aligned}$		5487	$\begin{aligned} & 6007 \\ & 8198 \end{aligned}$	6226	6446	220
9						5567 7661	7979		8116	8635	
9		9071	9289	9507	9725	9943	0161	03\%8	0595	0813	218
200	301030	1247					2331			2980	
	31965351	3412 5566		$\begin{aligned} & 3844 \\ & 5996 \end{aligned}$	40596211	$\begin{aligned} & 2114 \\ & 4275 \\ & 6425 \end{aligned}$	$\begin{aligned} & 4491 \\ & 6639 \end{aligned}$	$\begin{aligned} & 4706 \\ & 6854 \end{aligned}$	$\begin{aligned} & 4921 \\ & 7068 \end{aligned}$	$\begin{aligned} & 5136 \\ & 7282 \\ & 72814 \end{aligned}$	216215213
		$\begin{aligned} & 7710 \\ & 9843 \end{aligned}$									
	7496		$\begin{aligned} & 5781 \\ & 7924 \end{aligned}$	8137	8551	8564	$8 \% 78$	8991		9417	
			00562177	$\begin{aligned} & 0268 \\ & 2389 \end{aligned}$	0181	0693	0906	1118	1330	1542	212
	311754	1966			2600	2812	$\begin{aligned} & 3023 \\ & 5130 \end{aligned}$	$\begin{aligned} & 3234 \\ & 5340 \end{aligned}$	3445	3656	211210209
6	3867	4078	4289	$\begin{aligned} & 4499 \\ & 6599 \end{aligned}$	$\begin{aligned} & 4710 \\ & 6809 \end{aligned}$				5551	5.60	
	5970	6180	6390			7018	7227	7436	7646	7854	
8	8063	82\%2	8481	8689	8898	9106	9314	95®2	9730	9938	208
9	320146	0354	0562	0769	0977	1184	1391	1598	1805	2012	207
210	$\begin{aligned} & 2219 \\ & 4282 \\ & 6336 \\ & 8380 \end{aligned}$	$\begin{aligned} & 2426 \\ & 4488 \\ & 6541 \\ & 8583 \end{aligned}$	$\begin{aligned} & 2633 \\ & 4694 \\ & 6745 \\ & 8787 \end{aligned}$	$\begin{aligned} & 2839 \\ & 4899 \\ & 6950 \\ & 8991 \end{aligned}$	$\begin{aligned} & 3046 \\ & 5105 \\ & 7155 \\ & 9194 \end{aligned}$	$\begin{aligned} & 3252 \\ & 5810 \\ & 7359 \\ & 9398 \end{aligned}$	$\begin{aligned} & 3458 \\ & 5516 \\ & 7563 \\ & 9601 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 3665 \\ 5721 \\ 7767 \\ 9805 \\ \hline \end{array}$	$\begin{aligned} & 3871 \\ & 5926 \\ & 79 \% 2 \end{aligned}$	$\begin{aligned} & 4077 \\ & 6131 \\ & 81 \% 6 \end{aligned}$	206205204
1											
3									$\begin{array}{r} 0008 \\ 2034 \\ \hline \end{array}$	$\begin{array}{r} 0211 \\ 2236 \\ \hline \end{array}$	$\begin{aligned} & 203 \\ & 202 \\ & \hline \end{aligned}$
4	330414	0617	0819	1022	1235	1427	1630	1832			

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
225	22.5	45.0	67.5	90.0	112.5	135.0	157.5	180.0	202.5
224	22.4	44.8	67.2	89.6	112.0	134.4	156.8	179.2	201.6
223	22.3	44.6	66.9	89.2	111.5	133.8	156.1	178.4	200.7
222	22.2	44.4	66.6	88.8	111.0	133.2	155.4	177.6	199.8
221	22.1	44.2	66.3	88.4	110.5	132.6	154.7	176.8	198.9
220	22.0	44.0	66.0	88.0	110.0	132.0	154.0	176.0	198.0
219	21.9	43.8	65.7	87.6	109.5	131.4	153.3	175.2	197.1
218	21.8	43.6	65.4	87.2	109.0	130.8	152.6	174.4	196.2
217	21.7	43.4	65.1	86.8	108.5	180.2	151.9	173.6	195.3
216	21.6	43.2	64.8	86.4	108.0	129.6	151.2	172.8	194.4
215	21.5	43.0	64.5	86.0	107.5	129.0	150.5	172.0	193.5
214	21.4	42.8	64.2	85.6	107.0	128.4	149.8	171.2	192.6
213	21.3	42.6	63.9	85.2	106.5	127.8	149.1	170.4	191.7
212	21.2	42.4	63.6	84.8	106.0	127.2	148.4	169.6	190.8
211	21.1	42.2	63.3	84.4	105.5	126.6	147.7	168.8	189.9
210	21.0	42.0	63.0	84.0	105.0	126.0	147.0	168.0	189.0
209	20.9	41.8	62.7	83.6	104.5	125.4	146.3	167.2	188.1
208	20.8	41.6	62.4	83.2	104.0	124.8	145.6	1664	187.2
207	20.7	41.4	62.1	82.8	103.5	124.2	144.9	165.6	186.3
206	20.6	41.2	61.8	82.4	103.0	123.6	144.2	164.8	185.4
205	20.5	41.0	C1.5	82.0	102.5	123.0	143.5	164.0	181.5
204	20.4	40.8	61.2	81.6	102.0	122.4	142.8	163.2	183.6
203	20.3	40.6	60.9	81.2	101.5	121.8	142.1	162.4	182.7
202	20.2	40.4	60.6	0.8	101.0	121.2	141.4	161.6	181.8

No. 215 L. 332.]
[No. 239 L. 380.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
21	332438	2640	2842	3044	3246	3417	3649	3850	4051	4253	202
	4454	4655	4856	5037	5257	5458	5658	5859	6059	6260	201
	6460	6660	6860	7060	7260	7459	7659	7858	8058	8257	200
8	8456	8656	8855	9054	9253	9451	9650	9849			
9	340444	0642	0841	1039	1237	1435	1632	1830	2028	2225	198
$\begin{array}{r} 220 \\ 1 \\ 2 \\ 3 \end{array}$	2423	2620	2817	3014	3212	3409	3606	3802	3999	4196	197
	4392	4589	4785	4981	5178	5374	55%	5766	5962	6157	196
	6353	6549	6744	6939	7135	7330	7525	7720	7915	8110	195
	8305	8500	8694	8889	9083	9278	$94{ }^{\text {a }}$	9666	9860		
	350248	0442	0636	0829	1023	1216	1410	1603	1796	1989	193
	2183	2375	2568	$2 \% 61$	2954	3147	3339	3532	374	3916	193
	4108	4301	4493	4685	4876	5068	5260	5452	5643	5834	192
	6026	6217	6408	6599	6790	6981	7172	7363	7554	7744	191
	7935	8125	8316	8506	8696	8886	9076	9266	9456	9646	190
		0025	0215	0404	0593	0783	$09 \% 2$	1161	1350	1539	189
230	361\%28	1917	2105	2294	2482	2671	2859	3048	3236	3424	188
1	3612	3800	3988	$41 \% 6$	4363	4551	4739	4926	5113	5301	188
2	5488	5675	5862	6049	6236	6423	6610	6796	6983	7169	187
3	7356	7542	7729	7915	8101	8287	8473	8659	8845	9030	186
4	9216	9401	9587	9772	9958						
56789						0143	0328	0513	0698	0883	185
	3\%1068	1253	1437	1622	1806	1991	2175	2360	2544	2728	184
	2912		3:80	3464	3647	3831	4015	4198	4382	4565	184
	4748 6577	4932	5115	5298	5481	5664	5816	6029	6212	6394	183
	6577 8398	6759 8580	6942 8761	7124	7306	7488	${ }^{7670}$	7852	8034	8216	182
	388838	8580	8761	8943	9124	9306	9487	9668	9849	0030	181

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
202	20.2	40.4	60.6	80.8	101.0	121.2	141.4	161.6	181.8
201	20.1	40.2	${ }^{60.3}$	80.4	100.5	120.6	140.7	160.8	180.9
${ }_{1}^{200}$	19.9	40.0 39.8	60.0 59 59	${ }_{79} 8.0 .0$	100.0	120.0	140.0 139.	160.0	180.0
198	19.8	${ }_{39.6}$	59.4	79.2	99.0	118.8	138.6	158.4	178.2
197	19.7	39.4	59.1	78.8	98.5	118.2	137.9	157.6	17\%.3
196	19.6	39.2	58.8	78.4	98.0	117.6	137.2	156.8	$1: 64$
195	19.5	39.0	58.5	78.0	975	117.0	136.5	156.0	175.5
194	19.4	38.8	58.2	77.6	97.0	116.4	135.8	155.2	174.6
193	19.3	38.6	57.9	77.2	96.5	115.8	135.1	154.4	1737
192	19.2	38.4	57.6	76.8	96.0	115.2	134.4	153.6	172.8
191	19.1	38.2	57.3	76.4	95.5	114.6	133.7	152.8	171.9
190	19.0	38.0	57.0	76.0	95.0	114.0	133.0	152.0	171.0
189	18.9	${ }_{37}^{37.8}$	56.7	75.6	94.5	113.4	132.3	151.2	170.1
188	18.8	37.6	56.4	75.2	94.0	112.8	131.6	150.4	169.2
187	187	${ }^{37} 4$	56.1	74.8	93.5	112.2	130.9	149.6	168.3
186	18.6	37.2	55.8	74.4	93.0	111.6	130.2	148.8	167.4
185	18.5	37.0	55.5	74.0	92.5	111.0	129.5	148.0	166.5
184	18.4	36.8	55.2	73.6	92.0	110.4	128.8	147.2	165.6
183	18.3	36.6	54.9	73.2	91.5	109.8	128.1	146.4	164.7
182	18.2	36.4	54.6	\%2.8	¢1.0	109.2	127.4	145.6	163.8
181	18.1	36.2	54.3	72.4	90.5	108.6	126.7	144.8	162.9
180	18.0	36.0	54.0	72.0	90.0	108.0	126.0	144.0	162.0
179	17.9	35.8	53.7	71.6	89.5	107.4	125.3	143.2	161.1

No. 240 L. 380.]
[No. 269 L. 431.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\left.\begin{array}{r} 240 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline \end{array} \right\rvert\,$	$\begin{array}{r} 380211 \\ 2017 \\ 3815 \\ 5606 \\ 7390 \\ 9166 \end{array}$	$\begin{aligned} & 0392 \\ & 2197 \\ & 3995 \\ & 5785 \\ & 7568 \\ & 9343 \end{aligned}$	$\begin{aligned} & 0573 \\ & 2377 \\ & 4174 \\ & 5964 \\ & 7746 \\ & 9520 \end{aligned}$	$\begin{aligned} & 0754 \\ & 2557 \\ & 4353 \\ & 6142 \\ & 7924 \\ & 9698 \end{aligned}$	$\begin{aligned} & 0934 \\ & 2737 \\ & 4533 \\ & 6321 \\ & 8101 \\ & 9875 \end{aligned}$	$\begin{aligned} & 1115 \\ & 2917 \\ & 4712 \\ & 6499 \\ & 8279 \end{aligned}$	$\begin{aligned} & 1296 \\ & 3097 \\ & 4891 \\ & 667 \% \\ & 8456 \end{aligned}$	$\begin{aligned} & 1476 \\ & 3277 \\ & 5070 \\ & 6856 \\ & 8634 \end{aligned}$	$\begin{aligned} & 1656 \\ & 3456 \\ & 5249 \\ & 7034 \\ & 8811 \end{aligned}$	$\begin{aligned} & 1837 \\ & 3636 \\ & 5428 \\ & 7212 \\ & 8989 \end{aligned}$	181180179178178
						$\begin{aligned} & 0051 \\ & 1817 \end{aligned}$	0228	0405	0582	0759	177
6789	$\begin{array}{r} 390985 \\ 2697 \\ 4452 \\ 6199 \end{array}$	1112	1288	1464	1641		1993	2169	2345	2521	176
		2873	3048	3224	3400	3575	3751	3926	4101	4277	176
		4627	4802	4977	5152	5326	5501	5676	5850	6025	175
		6374	6548	6722	6896	7071	7245	7419	7592	7766	174
$\begin{array}{r} 250 \\ 1 \end{array}$	$\begin{aligned} & 7910 \\ & 9674 \end{aligned}$	$\begin{aligned} & 8114 \\ & 9847 \end{aligned}$	8287	8461	8634	8808	8981	9154	9328	9501	173
			0020	0192	0365	0538	0711	0883	1056	1228	173
$\stackrel{2}{3}$	401401	1573	$\begin{aligned} & 1745 \\ & 3464 \end{aligned}$	$\begin{aligned} & 1917 \\ & 3635 \end{aligned}$	$\begin{array}{r} 2089 \\ .3807 \end{array}$	$\begin{aligned} & 2261 \\ & 39 \div 8 \end{aligned}$			2777	2949	172
	31214834	3292								4663	171
4		$\begin{aligned} & 5005 \\ & 6710 \end{aligned}$	$\begin{aligned} & 0404 \\ & 5178 \\ & 6881 \end{aligned}$	5346	$\begin{array}{r} .3807 \\ 5517 \end{array}$	$\begin{aligned} & 3978 \\ & 5688 \end{aligned}$	$\begin{aligned} & 4149 \\ & 5858 \end{aligned}$	$\begin{aligned} & 4320 \\ & 6029 \end{aligned}$	$\begin{aligned} & 4492 \\ & 6199 \end{aligned}$	6370	171
5	65408240			$\begin{aligned} & 7051 \\ & 8749 \end{aligned}$	$\begin{aligned} & 7221 \\ & 8918 \end{aligned}$	$\begin{aligned} & 7391 \\ & 9087 \end{aligned}$	$\begin{aligned} & 7561 \\ & 925 \% \end{aligned}$	$\begin{aligned} & 7731 \\ & 9426 \end{aligned}$	$\begin{aligned} & 7901 \\ & 9595 \end{aligned}$	8070	170
6		$\begin{aligned} & 6710 \\ & 8410 \end{aligned}$	$\begin{aligned} & 6881 \\ & 8579 \end{aligned}$							9764	
		0102	0271	0440	0609	$\begin{aligned} & 0777 \\ & 2461 \end{aligned}$	$\begin{aligned} & 0946 \\ & 2629 \end{aligned}$	1114	1283	1451	169
8	$\begin{array}{r} 411620 \\ 3300 \end{array}$	$\begin{aligned} & 1788 \\ & 3467 \end{aligned}$	$\begin{aligned} & 1956 \\ & 3635 \end{aligned}$	$\begin{aligned} & 2124 \\ & 3803 \end{aligned}$	$\begin{aligned} & 2293 \\ & 3970 \end{aligned}$			4472	$\begin{aligned} & 2964 \\ & 4639 \end{aligned}$	31324806	168
							4305				
$\begin{array}{\|r} 260 \\ 1 \\ 2 \\ 3 \end{array}$	$\begin{aligned} & 4973 \\ & 6641 \\ & 8301 \\ & 9956 \end{aligned}$	$\begin{aligned} & 5140 \\ & 6807 \\ & 8467 \end{aligned}$	$\begin{aligned} & 5307 \\ & 6973 \\ & 8633 \end{aligned}$	$\begin{aligned} & 5474 \\ & 7139 \\ & 8798 \end{aligned}$	$\begin{aligned} & 5641 \\ & 7306 \\ & 8964 \end{aligned}$	$\begin{aligned} & 5808 \\ & 7472 \\ & 9129 \end{aligned}$	$\begin{aligned} & 5974 \\ & 7638 \\ & 9295 \end{aligned}$	$\begin{aligned} & 6141 \\ & 7804 \\ & 9460 \end{aligned}$	$\begin{aligned} & 6308 \\ & 7970 \\ & 9625 \end{aligned}$	$\begin{aligned} & 6474 \\ & 8135 \\ & 9791 \end{aligned}$	$\begin{aligned} & 167 \\ & 166 \\ & 165 \end{aligned}$
		0121	0286	0451	0616	0781	0945	1110	1275	1439	165
4	421604	17683410	19333574	20973737	2261	2426	$\begin{aligned} & 2590 \\ & 4228 \end{aligned}$	27544392	2918	30824718	164
5	3246								4555		
6	4882	5045	$\begin{aligned} & 5208 \\ & 6836 \end{aligned}$	$\begin{aligned} & 5371 \\ & 6999 \end{aligned}$	$\begin{aligned} & 5534 \\ & 7161 \end{aligned}$	56977324	58607486	$\begin{aligned} & 60: 3 \\ & 7648 \end{aligned}$	6186	634979739591	163162162
7	6511								7811		
8	8135	8297	8459	8621	8783	8944	9106	9268	9429		
		9914	0075	0236	0398	0559	0720	0881	1042	1203	161

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
178	17.8	35.6	53.4	71.2	89.0	106.8	124.6	142.4	160.2
177	17.7	33.4	53.1	70.8	88.5	106.2	123.9	141.6	159.3
1;6	17.6	35.2	52.8	70.4	88.0	105.6	123.2	140.8	158.4
175	17.5	35.0	52.5	70.0	87.5	105.0	122.5	140.0	157.5
174	17.4	34.8	52.2	69.6	87.0	104.4	121.8	139.2	156.6
173	17.3	34.6	51.9	69.2	86.5	103.8	121.1	138.4	155.7
172	17.2	34.4	51.6	68.8	86.0	103.2	120.4	137.6	154.8
171	17.1	34.2	51.3	68.4	85.5	102.6	119.7	136.8	153.9
$1 \% 0$	17.0	34.0	51.0	68.0	85.0	102.0	119.0	136.0	153.0
169	16.9	33.8	50.7	67.6	84.5	101.4	118.3	135.2	152.1
168	16.8	33.6	50.4	67.2	84.0	100.8	117.6	134.4	151.2
167	16.7	33.4	50.1	66.8	83.5	100.2	116.9	133.6	150.3
166	16.6	33.2	49.8	66.4	83.0	99.6	116.2	132.8	149.4
165	16.5	33.0	49.5	66.0	82.5	99.0	115.5	132.0	148.5
164	16.4	32.8	49.2	65.6	82.0	98.4	114.8	131.2	147.6
163	16.3	32.6	48.9	65.2	81.5	97.8	114.1	130.4	146.7
162	16.2	32.4	48.5	64.8	81.0	97.2	113.4	129.6	145.8
161	16.1	32.2	48.3	64.4	80.5	96.6	112.7	128.8	144.9

TABLE XI. LOGARITHMS OF NUMBERS.

No. 270 L 431.$]$									[No. 299 L. 476.		
N.	0	1	2	3	4	5	6	7	8	9	Diff.
8%	431364	1525	1685	1846	2007	2167	2328	2488	2649	2809	161
1	2969	3130	3290	3450	3610	3770	3930	4090	4249	4409	160
2	4569	4729	4888	5048	5207	5367	5526	5685	5844	6004	159
3	6163	6322	6481	6640	6799	6957	7116	7275	7433	7592	159
4	7751	7909	8067	8226	8384	8542	8701	8859	9017	9175	158
5	9333	9491	9648	9806	9964						
6789	440909	1066	1224	1381	1538	1695	1852	2009	2166	2323	157
	2480	2637	2793	2950	3106	3263	3419	3576	3732	3889	157
	4045	4201	4357	4513	4669	4825	4981	5137	5293	5449	156
	5604	5760	5915	6071	6226	6382	6537	6692	6818	7003	155
$\begin{array}{\|r} 280 \\ 1 \end{array}$	7158	7313	7468	7623	7778	7933	8088	8242	8397	8552	155
	8706	8861	9015	9170	9324	9478	9633	9787	9941		
8	450249	0403	0557	0711	0865	1018	1172	1326	1479	1633	154
	1786	1940	2093	2247	2400	2553	2706	2859	3012	3165	153
	3318	3471	3624	3777	3930	4082	4235	4387	4540	4692	153
	4845	4997	5150	5302	5454	5606	5758	5910	6062	6214	152
	6366	6518	6670	6821	6973	7125	7276	7428	7579	7731	152
	7882	8033	8184	8336	8487	8638	8789	8940	9091	9242	151
	9392	9543	9694	9845	9995						
9	460898	1048	98	1348	149	0146 1649	${ }^{0} 296$	0447	0597	0748	151
290	2398	2548	2697	2847	2997	3146	3296	3445	3594	3744	150
1	3893	4042	4191	4340	4490	4639	4788	4936	5085	5234	149
2	5383	5532	5680	5829	5977	6126	6274	6423	6571	6719	149
3	6868	7016	7164	7312	7460	7608	7756	7904	8052	8200	148
4	8347	8495	8643	8790	8938	9085	9233	9380	9527	9675	148
	9822	9969	0116	0263	0410	0557	0704	0851	0998	1145	147
	471292	1438	1585	1732	1878	2025	2171	2318	2464	2610	146
7	2756	2903	3049	3195	3341	3487	3633	3779	3925	4071	146
	4216	4362	4508	4653	4799	4944	5090	5235	5381	5526	146
9	5671	5816	5962	6107	6252	6397	6542	6687	6832	6976	145

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
161	16.1	32.2	48.3	64.4	80.5	96.6	112.7	128.8	144.9
160	16.0	32.0	48.0	64.0	80.0	96.0	112.0	128.0	144.0
159	15.9	31.8	47.7	63.6	79.5	95.4	111.3	127.2	143.1
158	15.8	31.6	47.4	63.2	79.0	94.8	110.6	126.4	142.2
157	15.7	31.4	47.1	62.8	78.5	94.2	109.9	125.6	141.3
156	15.6	31.2	46.8	62.4	78.0	93.6	109.2	124.8	140.4
155	15.5	31.0	46.5	62.0	77.5	93.0	108.5	124.0	139.5
154	15.4	30.8	46.2	61.6	77.0	92.4	107.8	123.2	138.6
153	15.3	30.6	45.9	61.2	76.5	91.8	107.1	122.4	137.7
152	15.2	30.4	45.6	60.8	76.0	91.2	106.4	121.6	136.8
151	15.1	30.2	45.3	60.4	75.5	90.6	105.7	120.8	135.9
150	15.0	30.0	45.0	60.0	75.0	90.0	105.0	120.0	135.0
149	14.9	29.8	44.7	59.6	74.5	89.4	104.3	119.2	134.1
148	14.8	29.6	44.4	59.2	74.0	88.8	103.6	118.4	133.2
147	14.7	29.4	44.1	58.8	73.5	88.2	102.9	117.6	132.3
146	14.6	29.2	43.8	58.4	73.0	87.6	102.2	116.8	131.4
145	14.5	29.0	43.5	58.0	72.5	87.0	101.5	116.0	130.5
144	14.4	28.8	43.2	57.6	72.0	86.4	100.8	115.2	129.6
143	14.3	28.6	42.9	57.2	71.5	85.8	100.1	114.4	128.7
142	14.2	28.4	42.6	56.8	71.0	85.2	99.4	113.6	127.8
141	14.1	28.2	42.8	56.4	70.5	84.6	98.7	112.8	126.9
140	14.0	28.0	42.0	56.0	70.0	84.0	98.0	112.0	126.0

No. 300 L. 477.]									[No. 339 L. 531.		
N.	0	1	2	3	4	5	6	7	8	9	Diff.
300	477121	7266	7411	7555	7700	7844	7989	8133	8278	8422	145
1	8566	8711	8855	8999	9143	9287	9431	9575	9719	9863	144
23456789	480007	0151	0294	0438	0582	0725	0869	1012	1156	1299	144
	1443	1586	1729	1872	2016	2159	2302	2445	2588	2731	143
	2874	3016	3159	3302	3445	3587	3730	3872	4015	4157	143
	4300	4442	4585	4727	4869	5011	5153	5295	5437	5579	142
	5721	5863	6005	6147	6289	6430	6572	6714	6855	6997	142
	7138	7280	7421	7563	7704	7845	7986	8127	8269	8410	141
	8551	8692	8833	8974	9114	9255	9396	9537	967	9818	141
		0099	0239	0380	0520	0661	0801	0941	1081	1222	140
$\begin{array}{r} 310 \\ 1 \end{array}$	491362	15022900	16423040	1782	1922	2062	2201	2341	2481	2621	140
	2760			3179	3319	3458	3597	3737	38\%6	4015	139
1 2 2	4155	2900	$\begin{aligned} & 4433 \\ & 5822 \end{aligned}$	4572	4711	4850	4989	5128	5267	5406	139
3	5544	4294		5960	6099	6238	$63 \% 6$	6515	6653	6791	139
4	6930	7068	$\begin{aligned} & 5822 \\ & 7206 \end{aligned}$	\%344	7483	7621	7759	\%89\%	8035	8173	138
5	8311	$\begin{aligned} & 8448 \\ & 9824 \end{aligned}$	$\begin{aligned} & 8200 \\ & 8586 \\ & 9962 \end{aligned}$	$8 \% 24$	8862	8999	9137	92\% 5	9412	9550	138
6	9687			0099	$\overline{0236}$	0374	0511	0648	0785	0922	137
	501059	1196	1333	$\begin{aligned} & 1470 \\ & 2837 \end{aligned}$	$\begin{aligned} & 1607 \\ & 1973 \\ & 2973 \end{aligned}$	$\begin{aligned} & 1744 \\ & 3109 \end{aligned}$	$\begin{aligned} & 1880 \\ & 3246 \end{aligned}$	$\begin{aligned} & 2017 \\ & 3382 \end{aligned}$	$\begin{aligned} & 2154 \\ & 3518 \end{aligned}$	$\begin{aligned} & 2291 \\ & 3655 \end{aligned}$	137
8	2427	$\begin{aligned} & 2564 \\ & 3927 \end{aligned}$	$\begin{aligned} & 2 \pi 00 \\ & 4063 \end{aligned}$								186
9	3791			$\begin{aligned} & 2837 \\ & 4199 \end{aligned}$	$\begin{aligned} & 2973 \\ & 4335 \end{aligned}$	$\begin{aligned} & 3109 \\ & 4471 \end{aligned}$	$\begin{aligned} & 3246 \\ & 4607 \end{aligned}$	4743	4878	$\begin{aligned} & 3655 \\ & 5014 \end{aligned}$	126
$\begin{array}{r} 320 \\ 1 \\ 2 \\ 3 \end{array}$	5150	$\begin{aligned} & 5286 \\ & 6640 \\ & 7991 \\ & 9337 \end{aligned}$	$\begin{aligned} & 5421 \\ & 6776 \\ & 8126 \\ & 9471 \end{aligned}$	$\begin{aligned} & 55578 \\ & 6911 \\ & 8260 \\ & 9606 \end{aligned}$	$\begin{aligned} & 5693 \\ & 7046 \\ & 8395 \\ & 9740 \end{aligned}$	$\begin{aligned} & 5828 \\ & 7181 \\ & 8530 \\ & 9874 \end{aligned}$	$\begin{aligned} & 5964 \\ & 7316 \\ & 8664 \end{aligned}$	$\begin{aligned} & 6099 \\ & 7451 \\ & 8799 \end{aligned}$	$\begin{aligned} & 6234 \\ & 7586 \\ & 8934 \end{aligned}$	$\begin{aligned} & 63 \% 0 \\ & 7 \% 21 \\ & 9068 \end{aligned}$	136135135
	6505										
	7856										
	9203						$\begin{aligned} & 0009 \\ & 1349 \end{aligned}$	$\begin{aligned} & 0143 \\ & 1482 \end{aligned}$	02.7	0411	
	510545	06792017	0813	0947	1081	1215			1616	1750	184
5	1883		2151	2284	2418	2551	2684	4149	2951	3084	133
6	3218	3351	34844813	3617	3750	3883			42825609	4415	133
	4548	$\begin{aligned} & 4681 \\ & 6006 \end{aligned}$		$\begin{array}{r} 4946 \\ 6271 \end{array}$	$\begin{aligned} & 5079 \\ & 6403 \end{aligned}$	5211	53446668	4149			
8	5874		$\begin{aligned} & 6139 \\ & 7460 \end{aligned}$					$\begin{aligned} & 6800 \\ & 8119 \end{aligned}$	$\begin{aligned} & 6932 \\ & 8251 \end{aligned}$	$\begin{array}{r} 7064 \\ 8382 \end{array}$	132
9	7196	7328		$\begin{aligned} & 6271 \\ & 7592 \end{aligned}$	$\begin{aligned} & 6403 \\ & 7724 \end{aligned}$	$\begin{aligned} & 6535 \\ & 7855 \end{aligned}$	$\begin{aligned} & 6668 \\ & 7987 \end{aligned}$				
$\begin{array}{r} 330 \\ 1 \end{array}$	8514	$\begin{aligned} & 8646 \\ & 9959 \end{aligned}$	8777	8909	9040	9171	9303	$9434{ }^{\circ}$	9566	969%	31
			0090	0221	0353	0484	0615	0745	0816	1007	181
	521138	1269	14002705	$\begin{aligned} & 1530 \\ & 2835 \end{aligned}$	$\begin{aligned} & 1661 \\ & 2966 \end{aligned}$	17923096	1922	2053	2183	2314	131
3	2444	2575						3356	3486	3616	130
4	3746	$38 \% 6$	$\begin{aligned} & 4006 \\ & 5304 \end{aligned}$	$\begin{aligned} & 4136 \\ & 5434 \end{aligned}$	$\begin{aligned} & 4266 \\ & 5563 \end{aligned}$	$\begin{array}{r} 4396 \\ 5693 \end{array}$	$\begin{aligned} & 4526 \\ & 5822 \end{aligned}$	4656	4785	4915	
5	5045	5174						5951	6081$73 \uparrow 2$	6210	129
6	6339	6469	6598	6727	6856	6985	7114	7243		7501	129129
	7630	7759	7888	8016	8145	8274	8402	8531	8660	$8 \% 88$	
8	8917	9045	9174	9302	9430	9559	9687	9815	9943	$\begin{aligned} & 0072 \\ & 1351 \end{aligned}$	28
9	530\%00	0328	0456	0584	0712	0840	0968	1096	1223		

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
139	13.9	27.8	41.7	55.6	69.5	83.4	97.3	111.2	125.1
138	13.8	27.6	41.4	55.2	69.0	82.8	96.6	110.4	124.2
137	13.7	27.4	41.1	54.8	68.5	82.2	95.9	109.6	123.3
136	13.6	27.2	40.8	54.4	68.0	81.6	95.2	108.8	122.4
135	13.5	27.0	40.5	54.0	67.5	81.0	94.5	108.0	121.5
134	13.4	26.8	40.2	53.6	67.0	80.4	93.8	107.2	120.6
133	13.3	26.6	39.9	53.2	66.5	79.8	93.1	106.4	119.7
132	13.2	26.4	39.6	52.8	66.0	79.2	92.4	105.6	118.8
131	13.1	26.2	89.3	52.4	65.5	78.6	91.7	104.8	117.9
130	13.0	26.0	39.0	52.0	65.0	78.0	91.0	104.0	117.0
129	12.9	25.8	38.7	51.6	64.5	77.4	90.3	103.2	116.1
128	12.8	25.6	38.4	51.2	64.0	\%6.8	89.6	102.4	115.2

TABLE XI. LOGARITHMS OF NUMBERS.

No. 340 L. 531.]									[No. 379 L. 579.		
N.	0	1	2	8	4	5	6	7	8	9	Diff.
310123456	531479	1607	1734	1862	1990	2117	2245	2372	2500	2627	128
	2754	2882	3009	3136	3:264	3391	3518	3645	3772	3899	127
	4026	4153	4280	4407	4534	4661	4787	4914	5041	5167	127
	5294	5421	5547	$56{ }^{5} 4$	5800	5927	6053	6180	6306	6432	126
	6558	6685	6811	693\%	7063	7189	7315	7441	7567	7693	126
	7819	7945	8071	8197	8322	8418	8574	8699	88\%5	8951	126
	9076	9202	9327	9452	9578	9703	9829	9954			
789	540329	0455	0580	0705	0830	0955	1080	1205	1330	1454	125
	1579	1704	1829	1953	2078	2203	2327	2452	2576	2701	125
	2825	2950	3074	3199	3323	3447	35\%1	3696	3820	3944	124
$\begin{array}{r} 350 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	4068	4192	4316	4440	4564	4688	4812	4936	5060	5183	124
	5307	5431	5555	5678	5802	5925	6049	6172	6296	6419	124
	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652	123
	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	123
	9003	9126	9249	9371	9494	9616	9739	9861	9984		
9	550228	0351	0473	0595	0717	0840	0962	1084	1206	1328	122
	1450	1572	1694	1816	1938	2060	2181	2303	2425	2547	12\%
	2668	2790	2911	3033	3155	3276	3398	3519	3640	3762	121
	3883	4004	4126	4247	4368	4489	4610	4731	4852	4973	121
	5094	5215	5336	5457	5578	5699	5820	5940	6061	6182	121
$\begin{array}{\|r} 360 \\ 1 \\ 2 \\ 3 \end{array}$	6303	6423	6544	6664	6785	6905	7026	7146	7267	7387	120
	7507	7627	7748	7868	7988	8108	82:28	8349	8169	8589	120
	8709	$88: 2$	8948	9068	9188	9308	9 ± 28	9548	9667	9787	120
	9907	0026	0146	0265	0385	0504	0624	0743	0863	0982	119
4	561101	$12: 1$	1340	1459	1578	1698	1817	1936	2055	2174	119
56	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362	119
	3181	3600	3718	3837	3955	4074	4192	4311	4429	4548	119
7	4666	4784	4903	5021	5139	5257	5376	5494	5612	5730	118
89	5818	5966	6084	620	6320	6437	6555	6673	6791	6909	118
	7026	7144	7202	7379	7497	7614	7632	7849	7967	8084	118
370	8202	8319	8436	8554	8671	8788	8905	9023	9140	9257	117
	9374	9491	$96 \cup 8$	97\%	9812	9409					
234456789	570543						0076	0193	0309	0426	117
	- 1709	1825		2058	1174	1126	1243	1359	1476	1592	117
	2872	2988	3104	2220	3336	2 21	2408	2523	2639	2755	116
	4031	4147	4263	4379	4494	4610	3508	4	380	3915	116
	5188	5303	5419	5534	5650	5765	5880	5996	6111	5226	115
	6341	6457	65%	6687	6302	6917	7032	7147	7262	7377	115
	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	115
	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669	114

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9	
128	12.8	25.6	38.4	51.2	64.0		76.8	89.6	102.4	115.2
127	12.7	25.4	38.1	50.8	63.5	76.2	88.9	101.6	114.3	
126	12.6	25.2	37.8	50.4	63.0	75.6	88.2	100.8	113.4	
125	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100.0	112.5	
124	12.4	24.8	37.2	49.6	62.0	74.4	86.8	99.2	111.6	
123	12.3	24.6	36.9	49.2	61.5	73.8	86.1	98.4	110.7	
122	12.2	24.4	36.6	48.8	61.0	73.2	85.4	97.6	109.8	
121	12.1	24.2	36.3	48.4	60.5	72.6	84.7	96.8	108.9	
120	12.0	24.0	36.0	48.0	60.0	72.0	84.0	96.0	108.0	
119	11.9	23.8	35.7	47.6	59.5	71.4	83.3	95.2	107.1	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
118	11.8	23.6	35.4	47.2	59.0	70.8	82.6	94.4	106.2
117	11.7	23.4	35.1	46.8	58.5	70.2	81.9	93.6	105.3
116	11.6	23.2	34.8	46.4	58.0	69.6	81.2	92.8	104.4
115	11.5	23.0	34.5	46.0	57.5	69.0	80.5	92.0	103.5
114	11.4	22.8	34.2	45.6	57.0	68.4	79.8	91.2	102.6
113	11.3	22.6	33.9	45.2	56.5	67.8	79.1	90.4	101.7
112	11.2	22.4	33.6	44.8	56.0	67.2	78.4	89.6	100.8
111	11.1	22.2	33.3	44.4	55.5	66.6	77.7	88.8	99.9
110	11.0	22.0	33.0	44.0	55.0	66.0	77.0	88.0	99.0
109	10.9	21.8	32.7	43.6	54.5	65.4	76.3	87.2	98.1
108	10.8	21.6	32.4	43.2	54.0	64.8	75.6	86.4	97.2
107	10.7	21.4	32.1	42.8	53.5	64.2	74.9	85.6	96.3
106	10.6	21.2	31.8	42.4	53.0	63.6	74.2	84.8	95.4
105	10.5	21.0	31.5	42.0	52.5	63.0	73.5	84.0	94.5
105	10.5	21.0	31.5	42.0	52.5	63.0	73.5	84.0	94.5
104	10.4	20.8	31.2	41.6	52.0	62.4	72.8	83.2	93.6

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
105	10.5	21.0	31.5	42.0	52.5	63.0	73.5	84.0	94.5
104	10.4	20.8	31.2	41.6	52.0	62.4	728	83.2	93.6
103	10.3	20.6	30.9	41.2	51.5	61.8	721	82.4	92.7
102	10.2	20.4	30.6	40.8	51.0	61.8	71.4	81.6	91.8
101	10.1	20.2	30.3	40.4	50.5	60.6	707	80.8	90.9
100	10.0	20.0	30.0	40.0	50.0	60.0	700	80.0	90.0
99	9.9	19.8	29.7	39.6	49.5	59.4	69.3	79.2	89.1

No. 460 L. 662.]									[No. 499 L. 698.		
N	0	1	2	8	4	5	6	7	8	9	Diff.
460	662758	2852	2947	3041	3135	3230	3324	3418	3512	3607	
1	3701	3795	3889	3983	$40 \% 8$	41\%2	4266	4360	4454	4548	
2	4642	4736	4830	4924	5018	5112	5206	5299	5393	5487	04
3	5581	5675	5769	5862	5956	6050	${ }_{\sim}^{6143}$	6237	6331	6424	
4	6518	6612	6705	6799	6892	6986	7079	7173	7266	7360	
5	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293	
$\stackrel{6}{7}$	8386	8479	85\%2	8665	8759	8852	8945	9038	9131	9224	
7	9317	9410	9503	9596	9689	9782	9875	9967			
8	670246	0339	0431	0524	0617	0710	0802	0895	0988	1080	
9	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005	
470	2098	2190	2283	2375	2467	2560	2652	2744	2836	2929	
1	3021	3113	3205	3297	3390	3482	3574	3666	3758	3850	
2	3942	4034	4126	4218	4310	4402	4494	4586	$46{ }^{7} 7$	4769	82
3	4861	4953	5045	5137	5228	5320	5412	5503	5595	5687	
4	5778	5870	5962	6053	6145	6236	6328	6419	6511	6602	
5	6694	6785	6876	6968	7059	7151	7242	7333	7424	7516	
6	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427	
7	8518	8609	8700	8791	8882	8973	9064	9155	9246	9337	91
8	9428	9519	9610	9700	9791	9882	9973				
9	680336	0426	0517	0607	0698	0789	0879	0970	1060	1151	
480	1241	1332	1422	1513	1603	1693	1784	1874	1964	2055	
1	2145	2235	2326	2416	2506	2596	2686	2777	2867	2957	
2	3047	3137	3227	3317	3407	3497	3587	$36 \% 7$	3767	3857	90
3	3947	403\%	4127	4217	4307	4396	4486	4576	4666	4756	
4	4845	4935	5025	5114	5204	5294	5383	5473	5563	5652	
5	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547	
6	6636	6726	6815	6904	6994	7083	7172	7261	7351	7440	
7	7529	7618	7707	7796	7886	7975	8064	8153	8242	8331	89
8	8420	8509	8598	8687	8776	8865	8953	9042	9131	9220	8
9	9309	9398	9486	9575	9664	9753	9841	9930	0019	0107	
490	690196	0285	0373	0462	0550	0639	0728	0816	0905	0993	
1	1081	1170	1258	1347	1435	1524	1612	1700	1789	$18{ }^{7} 7$	
2	1965	2053	2142	2230	2318	2406	2494	2583	2671	2759	
3	2847	2935	3023	3111	3199	3287	3375	3463	3551	3639	88
4	3727	3815	3903	3991	4078	4166	4254	4342	4430	4517	
5	4605	4693	4731	4868	49.5	5044	5131	5219	5307	5394	
6	5482	5569	5657	5744	5832	5919	6007	6094	6182	6269	
7	6356	6444	6531	6618	6706	6793	6880	6968	7055	7142	
8	7229	7317	7404	7491	7578	7665	7752	7839	7926	8014	
9	8100	8188	8275	8362	8449.	8535	8622	8709	8796	8883	87

Proportional Parts.

Diff.	1.	2	3	4	5	6	7	8	9
98	9.8	19.6	29.4	39.2	49.0	58.8	68.6	78.4	88.2
97	9.7	19.4	29.1	38.8	48.5	58.2	67.9	77.6	87.3
96	9.6	19.2	28.8	38.4	48.0	57.6	67.2	76.8	86.4
95	9.5	19.0	28.5	38.0	47.5	57.0	66.5	76.0	85.5
94	9.4	18.8	28.2	37.6	47.0	56.4	65.8	75.2	84.6
93	9.3	18.6	27.9	37.2	46.5	55.8	65.1	74.4	83.7
92	9.2	18.4	27.6	36.8	46.0	55.2	64.4	73.6	82.8
91	9.1	18.2	27.3	36.4	45.5	54.6	63.7	72.8	81.9
90	9.0	18.0	27.0	36.0	45.0	54.0	63.0	72.0	81.0
89	8.9	17.8	26.7	35.6	44.5	53.4	62.3	71.2	80.1
88	8.8	17.6	26.4	35.2	44.0	52.8	61.6	70.4	79.2
87	8.7	17.4	26.1	34.8	43.5	52.2	60.9	69.6	78:3

No. 500 L. 698.]
[No. 544 L. 736.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
$\begin{array}{r} 500 \\ 1 \end{array}$	698970	$\begin{aligned} & 9057 \\ & 9924 \end{aligned}$	9144	9231	9317	9404	9491	9578	9664	9751	
			0011	0098	0184	0271	0358	0444	0531	0617	
2	700704	0790	0877	0963	1050	1136	1222	1309	1395	1482	86
3	1568	16.54	1741	1827	1913	1999	2086	2172	2258	2344	
4	2431	2517	2603	2689	2745	2861	2947	3033	3119	3205	
5	3291	3377	3463	3549	3635	3721	3807	3893	3979	4065	
6	4151	4236	4322	4408	4494	4579	4665	4751	4837	4922	
7	5008	5094	5179	5265	5350	5436	5522	5607	5693	5778	
8	5864	5949	6035	6120	62 Cb	6291	6376	6462	6547	6632	
9	6718	6803	6888	6974	7059	7144	「229	7315	7400	7485	
$\begin{array}{\|r} 510 \\ 1 \\ 2 \end{array}$	7570	\%655	7740	7826	7911	7996	8081	8166	8251	8336	85
	8421	8506	8591	8676	8761	8816	8931	9015	9100	9185	
	9270	9355	9440	9524	9609	9694	$97 \% 9$	9863	9948		
	710117	0202	0287	0871	0456	0540	0625	0710	0794	0879	84
4	0963	1048	1132	1217	1301	1385	14\%0	1554	1639	1723	
5	1807	1892	1976	2060	2144	2229	2313	2397	2481	2566	
5	2650	2734	2818	2902	2986	3070	3154	3238	3323	3407	
7	3491	3575	3659	3742	3826	3910	3994	4078	4162	4246	
8	4330	4414	4497	4581	4665	4749	4833	4916	5000	5084	
9	5167	5251	5335	5418	5502	5586	5669	5753	5836	5920	
5201233	6003	6087	61\%0	6254	6337	6421	6504	6588	6671	6754	83
	6838	6921	5004	7088	7171	7254	7338	7421	7504	7587	
	7671	7754	7837	7920	8003	8086	8169	8253	8336	8419	
	8502	8585	8668	8751	8834	8917	9000	9083	9165	9248	
	9331	9414	9497	9580	9663	9745	9828	9911	9994		
5	720159	0242	0325	0407	0490	05%	0655	0738	0821	0903	
6	0986	1068	1151	1233	1316	1398		1563	1646	1728	
7	1811	1893	1975	2058	2140	2222	2305	2387	2469	2552	
8	2634	2716	2798	2881	2963	3045	3127	3209	3291	3374	
9	3456	3538	3620	3702	3784	3866	3948	4030	4112	4194	82
530	4276	4358	4440	4522	4604	4685	4767	4849	4931	5013	81
1	5095	5176	5258	5340	5422	5503	5585	5667	5748	5830	
2	5912	5993	6075	6156	6238	6320	6401	6483	6564	6646	
3	6727	6809	6890	6972	7053	7134	7216	7297	7379	7460	
4	7541	7623	7704	7785	7866	7948	8029	8110	8191	8273	
5	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084	
6	9165	9246	9327	9408	0489	$95 \% 0$	9651	9732	9813	9893	
		00550863		0217	0298	0378	0459	0540	0621		
8	730782		0944	1024	1105	1186	1266	1347	1428	1508	
9	1589	1669	1750	1830	1911	1991	2072	2152	2233	2313	
540	2394	24.4	2555	2635	2715	2796	2876	2956	3037	3117	
1	3197	3278	3358	3438	3518	3598	3679	3759	3839	3919	80
2	3999	4079	4160	4240	43:20	4400	4480	4560	4640	4720	
3	4800	4880	4960	5040	5120	5200	5279	5359	5439	5519	
4	5599	5679	5759	5838	5918	5998	6078	6157	6237	6317	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
87	8.7	17.4	26.1	34.8	43.5	52.2	60.9	69.6	78.3
86°	8.6	17.2	25.8	34.4	43.0	51.6	60.2	68.8	77.4
85	8.5	17.0	25.5	34.0	42.5			68.0	76.5
84	8.4	16.8	25.2	33.6	42.0	50.4	58.8	67.2	75.6

No. 545 L. 736.]
[No. 584 L. 767.

Proportional Parts.

Diff.	1	2	8	4	5	6	7	8	9
83	8.3	16.6	24.9	33.2	41.5	49.8	58.1	66.4	74.7
82	8.2	16.4	24.6	32.8	41.0	49.2	57.4	65.6	73.8
81	8.1	16.2	24.3	${ }^{32.4}$	40.5	48.6	${ }_{56.0}^{56.7}$	${ }_{64}^{64.8}$	-729
${ }_{79} 8$	8.9	16.0 15.8	${ }_{23.7}^{24.0}$	32.0 31.6	49.0 39.5	47.4	55.3	64.2	71.1
78	7.8	15.6	23.4	${ }_{31.2}$	${ }_{39.0}$	46.8	54.6	62.4	70.2
77	7.7	15.4	23.1	30.8	38.5	46.2	53.9	61.6	69.3
76	7.6	15.2	22.8	30.4	38.0	45.6	53.2	60.8	68.4
75	7.5	15.0	22.5	30.0	37.5	45.0	52.5	$\stackrel{60.0}{5}$	67.5
74	7.4	14.8	22.2	29.6	37.0	44.4	51.8	59.2	68.6

N.	0	1	2	3	4	5	6	7	8	9	Diff.
58	767156	7230	7304	7379	7453	7527	7601	7675	7749	7823	74
	7898	7972	8046	8120	8194	8268	8342	8416	8490	8564	
	8638	8712	8786	8860	8934	9008	9082	9156	9230	9303	
8	9377	9451	9525	9599	9673	9746	9820	9894	9968	$\begin{aligned} & 0042 \\ & 0778 \end{aligned}$	
9	770115	0189	0263	0336	0410	0484	0557	0631	0705		
590	0852	0926	0999	1073	1146	1220	1293	1367	1440	1514	
1	1587	1661	1734	1808	1881	1955	2028	2102	2175	2248	
2	2322	2395	2468	2542	2615	2688	2762	2835	2908	2981	
3	3055	3128	3201	3274	3348	3421	3494	3567	3640	3713	
4	3786	3860	3933	4006	4079	4152	4225	4298	4371	4444	73
5	4517	4590	4663	4736	4809	4882	4955	5028	5100	5173	
6	5246	5319	5392	5465	5538	5610	5683	5756	5829	5902	
7	5974	6047	6120	6193	6265	6338	6411	6483	6556	6629	
8	6701	6774	6546	6919	6992	7064	7137	7209	7282	7354	
9	7427	7499	7572	7644	7717	7789	7862	7934	8006	8079	
$\begin{array}{r} 800 \\ 1 \\ 2 \end{array}$	$\begin{aligned} & 8151 \\ & 8874 \\ & 9596 \end{aligned}$	$\begin{aligned} & 8224 \\ & 8947 \\ & 9669 \end{aligned}$	$\begin{aligned} & 8296 \\ & 9019 \\ & \mathbf{9 7 4 1} \end{aligned}$	$\begin{aligned} & 8368 \\ & 9091 \\ & 9813 \end{aligned}$	$\begin{aligned} & 8441 \\ & 9163 \\ & 0885 \end{aligned}$	$\begin{aligned} & 8513 \\ & 9236 \\ & 9957 \end{aligned}$	$\begin{aligned} & 8585 \\ & 9308 \end{aligned}$	$\begin{aligned} & 8658 \\ & 9380 \end{aligned}$	$\begin{aligned} & 8730 \\ & 9452 \end{aligned}$	$\begin{aligned} & 8802 \\ & 9524 \end{aligned}$	
							0029	$\begin{aligned} & \hline 0101 \\ & 0821 \end{aligned}$	$\begin{aligned} & 0173 \\ & 0893 \end{aligned}$	0245	72
3	317	0389	0461	0533	0605	0677					
4	175	1109	1181	1253	1324	1396	1468	1540	1612	1684	
5		1827	1899	1971	2042	2114	2186	2258	2329	2401	
6	2473	2544	2616	2688	2759	2831	2902	2974	3046	3117	
7	$\begin{aligned} & 3189 \\ & 3904 \end{aligned}$	3260	3332	3403	3475	3546	3618	3689	3761	3832	
8		3975	4046	4118	4189	4261	4332	4403	4475	4546	
9	$\begin{aligned} & 3904 \\ & 4617 \end{aligned}$	4689	4760	4831	4902	4974	5045	5116	5187	5259	
610	$\begin{aligned} & 5330 \\ & 6041 \\ & 6751 \\ & 7460 \\ & 8168 \\ & 8875 \\ & 9581 \end{aligned}$	5401	5472	5543	5615	5686	5757	5828	5899	5970	
		6112	6183	6254	6325	6396	6467	6538	6609	6680	71
		6822	6893	6964	7035	71.6	7177	7248	7319	7390	
		7531	7602	7673	7744	\%815	7885	79.5	8027	8098	
		8239	8310	8381	8451	8522	8593	8663	8734	8804	
		8946	9016	9087	9157	9228	9299	9369	9440	9510	
		9651	9722	9792	9863	9933					
	790285	0356	0426	0496	0567	0637	$00_{0} 07$	$07 \% 8$	0848	0918	
8	$\begin{aligned} & 0988 \\ & 1691 \end{aligned}$	$\begin{aligned} & 1059 \\ & 1761 \end{aligned}$	1129	1199	1269	1340	1410	1480	1550	1620	
9			1831	1901	1971	2041	2111	2181	2252	2322	
620	2392	2462	2532	2602	2672	2742	2812	2882	2952	3022	70
1	3092	3162	3231	3301	3371	3441	3511	3581	3651	3721	
2	3790	3860	3930	4600	4070	4139	4209	4279	4349	4418	
3	$\begin{aligned} & 4488 \\ & 5185 \end{aligned}$	4558	4627	4697	4767	4836	4906	4976	5045	5115	
4		5254	5324	5393	5463	5532	5602	5672	5741	5811	
5	5880	5949	6019	6088	6158	6227	6297	6366	6436	6505	
${ }^{6}$	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198	
7	72687960	7337	7406	7475	7545	7614	7683	7752	7821	7890	
8		8029	8098	8167	8236	8305	8374	8443	8513	8582	
9	8651	8720	8789	8858	8927	8996	9065	9134	9203	9272	69

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
75	7.5	15.0	22.5	30.0	37.5	45.0	52.5	60.0	67.5
74	7.4	14.8	22.2	29.6	37.0	44.4	51.8	59.2	66.6
73	7.3	14.6	21.9	29.2	36.5	43.8	51.1	58.4	65.7
72	7.2	14.4	21.6	28.8	36.0	43.2	50.4	57.6	64.8
71	7.1	14.2	21.3	28.4	35.5	42.6	49.7	56.8	63.9
70	7.0	14.0	21.0	28.0	35.0	42.0	49.0	56.0	63.0
69	6.9	13.8	20.7	27.6	34.5	41.4	48.3	55.2	62.1

No. 630 L. 799.]
[No. 674 L. 829.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
630	799341	9409	9478	9547	9616	9685	9754	9823	9892	9961	
1	800029	0098	0167	0236	0305	0373	0442	0511	0580	0648	
2	0717	0786	0854	0923	0992	1061	1129	1198	1266	1335	
3	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	
4	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705	
5	2774	2842	2910	2979	3047	3116	3184	3252	3321	3389	
6	3457	3525	3594	3662	3730	3798	386\%	3935	4003	4071	
7	4139	4208	4276	4344	4412	4480	4548	4616	4685	4753	
8	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433	68
9	5501	5569	5637	5705	5773	5841	5908	$59 \% 6$	6044	6112	
640	806180	6248	6316	6384	6451	6519	6587	6655	6723	6790	
1	6858	6926	6994	7061	7129	7197	7264	7332	7400	7467	
2	7535	7603	7670	7738	7806	7873	7941	8008	$80 \sim 6$	8143	
3	8211	8279	8346	8414	8181	8549	8616	8684	8751	8818	
4	8886	8953	9021	9088	9155	9223	9290	9358	9425	9492	
5	9560	9627	9694	9762	9829	9896	9964				
6	810233	0300	0367	0434	0501	0569	0636	0703	0770	0837	
7	0904	0971	1039	1106	1173	1240	1307	1374	1441	1508	67
8	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	
9	2245	2312	2379	2445	2512	2579	2616	$2 \% 13$	2780	2847	
650	2913	2980	3047	3114	3181	3247	3314	3381	3448	3514	
1	3581	3648	3714	3781	3848	3914	3981	4048	4114	4181	
2	4248	4314	4381	4447	4514	4581	4647	4714	4780	4817	
3	4913	4980	5046	5113	5179	5246	5312	5378	5445	5511	
4	5578	5644	5711	5777	5843	5910	5976	6042	6109	6175	
5	6241	6308	6374	6440	6506	$65 \% 3$	6639	6705	6771	6838	
6	6904	6970	7036	7102	7169	7235	7301	7367	7433	7499	
7	7565	7631	7698	7764	7830	. 8856	\%962	8028	8094	8160	
8	8226 8885	8292	8358 9017	8124 9083	8490 9149	-8556	8622 9281	8688 9346	8754 9412	8820 9478	6
660	9544	9610	9676	9741	9807	987	9939				
								0004	00%	0136	
1	820201	0267	0333	0399	0464	0530	0595	0661	0727	0792	
2	0858	0924	0989	1055	1120	1186	1251	1317	1382	1448	
3	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	
4	2168	2233	2299	2364	2130	2495	2560	2626	2691	2756	
5	2822	2887	2952	3018	3083	3148	3213	$32 \% 9$	3344	3409	
6	3474	3539	3605	3670	3735	3800	3865	3930	3996	4061	
7	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	65
8	4776	4841	4906	4971	5036	5101	5166	5231	5296	5.361	
9	5426	5491	5556	5621	5686	$5 \% 51$	5815	5880	5945	6010	
$6 \% 0$	6075	6140	6204	6269	6334	6399	6464	6528	6593	6658	
1	6723	6787	6852	6917	6981	'7046	7111	7175	7240	7305	
2	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951	
3	8015	8080	8144	8209	$82{ }^{\text {2 }}$	8338	8402	8467	8531	8795	
4	8660	8124	8789	8853	8918	8982	9046	9111	9175	9239	

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
68	6.8	13.6	20.4	27.2	34.0	40.8	47.6	54.4	61.2
67	6.7	13.4	20.1	26.8	33.5	40.2	46.9	53.6	60.3
66	6.6	13.2	19.8	26.4	33.0	39.6	46.2	52.8	59.4
65	6.5	13.0	19.5	26.0	32.5	39.0	45.5	52.0	58.5
64	. 6.4	1 1 .8	19.2	25.6	32.0	38.4	44.8	51.2	57.6

No. 675 L. 829.]									[No. 719 L. 857		
N.	0	1	2	8	4	5	6	7	8	9	Diff.
$\begin{array}{r} 675 \\ 6 \end{array}$	$\begin{array}{r} 829304 \\ 9947 \end{array}$	9368	9432	9497	9561	9625	9690	9754	9818	9882	
		$\begin{aligned} & 0011 \\ & 0653 \end{aligned}$	0075	0139	0204	0268	0332	0396	0460	0525	
789	830589		0717	0781	0845	0909	0973	1037	1102	1166	
		1294	1358	1422	1486	1550	1614	1678	1742	1806	64
		1934	1998	2062	2126	2189	2253	2317	2381	2445	
	2509	2573	2637	$2 \% 00$	2764	2828	2892	2956	3020	3083	
68012	3147	3211	3275	3338	3402	3466	3530	3593	3657	3721	
	3784	3848	3912	39%	4039	4103	4166	4230	4294	4357	
2 3 3	$\begin{aligned} & 4421 \\ & 5056 \end{aligned}$	4484	4548	4611	4675	4739	4802	4866	4929	4993	
45		5120	5183	5247	5310	5373	5437	5500	5564	5627	
	5056	5754	5817	5881	5944	6007	6071	6134	6197	6261	
5 6	5691 6324	6387	6451	6514	6577	6641	6704	$676{ }^{7}$	6830	6894	
7	6957	7020	7083	7146	7210	7273	7336	7399	7462	7525	
8	$\begin{aligned} & 7588 \\ & 8219 \end{aligned}$	7652	7715	7778	7841	7904	7967	8030	8093	8156	
		8282	8345	8408	8471	8534	8597	8660	8723	8786	63
890	$\begin{aligned} & 8849 \\ & 9478 \end{aligned}$	$\begin{aligned} & 8912 \\ & 9541 \end{aligned}$	$\begin{aligned} & 8975 \\ & 9604 \end{aligned}$	$\begin{aligned} & 9038 \\ & 9667 \end{aligned}$	$\begin{aligned} & 9101 \\ & 9729 \end{aligned}$	$\begin{aligned} & 9164 \\ & 9792 \end{aligned}$	$\begin{aligned} & 9227 \\ & 9855 \end{aligned}$	$\begin{aligned} & 9289 \\ & 9918 \end{aligned}$	$\begin{aligned} & 9352 \\ & 9981 \end{aligned}$	9415	
2334567789	840106	0169	0232	0294	0357	0120	0482	0545	0608	0671	
		0796	0859	0921	0984	1046	1109	1172	1234	1297	
		1422	1485	1547	1610	1672	1735	1797	1860	1922	
	1985	2047	2110	2172	2235	2297	2360	2422	2484	2547	
	26093233	$26 \% 2$	2734	2796	2859	2921	2983	3046	3108	3170	
		3295	3357	3420	3482	3544	3606	3669	3731	3793	
	3233 3855	3918	3980	4042	4104	4166	4229	4291	4353	4415	
	4477	4539	4601	4664	4726	4788	4850	4912	4974	5036	
700	5098	5160	5222	5284	5346	5408	5470	5532	5594	5656	62
122	5718	5780	5842	5904	5966	6028	6090	6151	6213	6275	
	$\begin{aligned} & 6337 \\ & 6955 \end{aligned}$	6399	6461	6523	6585	6646	$6 \sim 08$	6770	6832	6894	
34		${ }_{7} 7017$	7079	7141	7202	7264	7326	7388	7449	7511	
	$\begin{aligned} & 6955 \\ & 7573 \end{aligned}$	7634	7696	7758	7819	7881	7943	8004	8066	8128	
56	8189	8251	8312	8374	8435	8497	8559	8620	8682	8743	
	$\begin{aligned} & 8805 \\ & 9419 \end{aligned}$	8866	8928	8989	9051	9112	9174	9235	9297	9358	
6 7		9481	9542	9604	9665	9726	9788	9849	9911	9972	
89	$\begin{array}{r} 850033 \\ 0846 \end{array}$	0095	0156	0217	0279	0340	0401	0462	0524	0585	
		0707	$0{ }^{1} 69$	0830	0891	0952	1014	1075	1136	1197	
710	1258	1320	1381	1442	1503	1564	1625	1686	1747	1809	
1	1870	1931	1992	2053	2114	2175	2236	2297	2358	2419	
2	2480	2541	2 2h02	2663	2724	2785	2846	2907	2968	3029	61
3	3090	3150	3211	3272	3333	3394	3155	3516	3577	3637	
4	$\begin{aligned} & 3698 \\ & 4306 \end{aligned}$	3759	3820	3881	3941	4002	4063	4124	4185	4245	
5		4367	4428	4488	4549	4610	4670	4731	4792	4852	
6	4913	4974	5034	5095	5156	5216	52\%7	5337	5398	5459	
7	5519	5580	5640	5701	5761	5822	5882	5943	6003	6064	
8	$\begin{aligned} & 6124 \\ & 6729 \end{aligned}$	6185	6245	6306	6366	6427	6487	6548	6608	6668	
9		6789	6850	6910	6970	7031	7091	7152	7212	7272	

Proportional Parts.

Diff.	$\mathbf{1}$	2	3	4	5	6	7	8	9
	$\mathbf{6 . 5}$	13.0	19.5	26.0	32.5	39.0	45.5	52.0	58.5
64	6.4	12.8	19.2	25.6	32.0	38.4	44.8	51.2	57.6
63	6.3	12.6	18.9	25.2	31.5	37.8	44.1	50.4	56.7
62	6.2	12.4	18.6	24.8	31.0	37.2	43.4	49.6	55.8
61	6.1	12.2	18.3	24.4	30.5	36.6	42.7	48.8	54.9
60	6.0	12.0	18.0	24.0	30.0	36.0	42.0	48.0	54.0

Proportional Parts.

Diff.	1	2	3		4	5	6	7	8	9
59	5.9	11.8	17.7	23.6		29.5	35.4	41.3	47.2	53.1
58	5.8	11.6	17.4	23.2	29.0	34.8	40.6	46.4	52.2	
57	5.7	11.4	17.1	22.8	28.5	34.2	39.9	45.6	51.3	
56	5.6	11.2	16.8	22.4	28.0	33.6	39.2	44.8	50.4	

N.	0	1	2	3	4	5	6	7	8	9	Diff.
765	883661	3718	3775	3832	3888	3945	4002	4059	4115	4172	
6	4229	4285	4342	4399	4455	4512	4569	4625	4682	4739	
7	4795	4852	4909	4965	5022	5078	5135	5192	5248	5305	
8	5361	5418	5474	5531	5587	5644	5700	5757	5813	5870	
9	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434	
770	6491	6547	6604	6660	6716	6773	6829	6885	6942	6998	
1	7054	7111	7167	7223	7280	7336	7392	7449	7505	7561	
2	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123	
3	8179	8236	8292	8348	8404	8460	8516	8573	8629	8685	
4	8741	8797	8853	8909	8965	9021	9077	9134	9190	9246	
5	9302	9358	9414	9470	9526	9582	9638	9694	9750	9806	56
6	98	9918	9974	0030	0086	0141	0197	0253	0309	0365	
7	890421	6477	0533	0589	0645	0700	0756	0812	0868	0924	
8	0980	1035	1091	1147	1203	1259	1314	1370	1426	1482	
9	1537	1593	1649	1705	1760	1816	1872	1928	1983	2039	
780	2095	2150	2206	2262	2317	2373	2429	2484	2540	2595	
1	2651	2707	2762	2818	2873	2929	2985	3040	3096	3151	
2	3207	3262	3318	3373	3429	3484	3540	3595	3651	3706	
3	3762	3817	3873	3928	3984	4039	4094	4150	4205	4261	
$\stackrel{4}{5}$	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814	
5	$48 \% 0$	4925	4980	5936	5091	5146	5201	5257	5312	5367	
6	5423	5478	5533	5588	5644	5699	5754	5809	5864	5920	
7	5975	6030	6085	6140	6195	6251	6306	6361	6416	6471	
8	6523	6581	6636	6692	6747	6802	6857	6912	6967	7022	
9	7077	7132	7187	7242	7297	7352	7407	7462	7517	7572	
790	7627	7682	7737	7792	7847	7902	7957	8012	8067	8122	
1	8176	8231	8286	8341	8396	8451	8506	8561	8615	8670	
$\stackrel{2}{2}$	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218	
3	9273	9328	9383	9437	9492	9547	9602	9656	9711	9766	
4	9821	9875	9930	9985							
	900367	0422	0476	0531	0586	0640	0695	0749	0258	0312	
6	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404	
7	1458	1513	1567	1622	1676	1731	1785	1840	1894	1948	
8	2003	2057	2112	2168	2221	2275	2329	2384	2438	2492	
9	2547	2601	2655	2710	2764	2818	2873	2927	2981	3036	
800	3090	3144	3199	3253	3307	3361	3416	3470	3524	3578	
1	3633	3687	3741	3795	3849	3904	3958	4012	4066	4120	
2	4174	4229	4283	4357	4391	4445	4499	4553	4607	4661	
3	4716	4770	4824	4878	4932	4986	5040	5094	5148	5202	54
4	5256	5310	5364	5418	5472	5526	5580	5634	5688	${ }_{6}^{5742}$	54
5	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281	
6	6335	6389	6443	6497	6551	6604	6658	6712	$6{ }^{\text {rin }} 6$	6820	
7	6874	6927	6981	7035	7089	7143	7196	7250	7304	7358	
8	7411	7465	7519	7573	7626	7680	7734	7787	7841	7895	
9	7949	8002	8056	8110	8163	8217	8270	8324	8378	8431	

Proportional Parts.

Diff.	$\mathbf{1}$	2.	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{8}$
57	5.7	11.4	17.1	22.8	28.5	34.2	39.9	45.6	51.3
56	5.6	11.2	16.8	22.4	28.0	33.6	39.2	44.8	50.4
55	5.5	11.0	16.5	22.0	27.5	33.0	38.5	44.0	49.5
54	5.4	10.8	16.2	21.6	27.0	32.4	37.8	43.2	48.6

[No. 899 L. 954.											
N.	0	1	2	8	4	6	6	7	8	9	Diff.
855	931966	2017	2068	2118	2169	2220	2271	2322	2372	2423	
6	2474	2524	2575	2626	2677	2727	2778	2829	2879	2930	
7	2981	3031	3082	3133	3183	3234	3285	3335	3386	3437	
8	3487	3538	3589	3639	3690	3740	3791	3841	3892	3943	
9	3993	4044	4094	4145	4195	4246	4296	4347	4397	4448	
860	4498	4549	4599	4650	4700	4751	4801	4852	4902	4953	
1	5003	5054	5104	5154	5205	5255	5306	5356	5406	5457	
2	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960	
3	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463	
4	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966	
5	7016	7066	7116	7167	7217	7267	7317	${ }_{7}^{7367}$	7418	7468	
6	7518	7508	7618	7668	7718	7769	7819	7869	7919	7969	50
8	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470	
8	8	8570 9070	8620 9120	8670 9170	8720 9220	8770 9270	8820 9320	8870 9369	${ }^{8920}$	8970	
870	9519	9569	9619	9669	9719	9769	9819	9869	8	8	
1	940018	0068	0118	0168	0218	0267	0317	0367	0417	0467	
2	0516	0566	0616	0666	$0 \sim 16$	0765	0815	0865	0915	0964	
3	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462	
4	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958	
5	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455	
6	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950	
7	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445	
8	3495	3544	3593	3643	3692	3742	3791	3841	3890	3939	
9	3989	4038	4088	4137	4186	4236	4285	4335	4384	4433	
880	4483	4532	4581	4631	4680	4729	4779	4828	4877	4927	
1	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419	
2	5469	5518	5567	5616	5665	5715	5764	5813	5862	5912	
3	5961	6010	6059	6108	6157	6207	6256	6305	6354	6403	
4	6452	6501	6551	6600	6649	6698	6747	6796	6845	6894	
5	6943	6992	7041	7090	7139	7189	7238	7287.	7336	7385	
6	7434	7483	7532	7581	7630	7679	7728	7777	7826	7875	49
7	7924	7973	8022	8070	8119	8168	8217	8266	8315	8364	
8	8413	8462	8511	8560	8608	8657	8706	8755	8504	8853	
9	8902	8951	8999	9048	9097	9146	9195	9244	9292	9341	
890	9390	9439	9488	9536	9585	9634	9683	9731	9780	9829	
1	9878	9926	99\%5								
2	950365	0414	0462	00\%4	$\begin{aligned} & 0073 \\ & 0560 \end{aligned}$	0121 0608	$\begin{aligned} & 0170 \\ & 0657 \end{aligned}$	0219 0706	0267	0316 0803	
3	0851	0900	0949	0997	1046	1095	1143	1192	1240	1289	
4	1338	1386	1435	1483	1532	1580	1629	1677	1726	1775	
5	1823	1872	1920	1969	2017	2066	2114	2163	2211	$2 ₹ 60$	
6	2308	2356	2405	2453	2502	2550	2599	264%	2696	2744	
7	2792	2841	2889	2938	2986	3034	3083	3131	3180	3228	
8	3276	3325	3373	3421	3470	3518	3566	3615	3663	3711	
9	3760	3808	3856	3905	3953	4001	4049	4098	4146	4194	-

Proportional Parts.

Diff.	1	2	3	4	5	6	7	8	9
51	5.1	10.2	15.3	20.4		25.5	30.6	35.7	40.8
50	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.9
49	4.9	9.8	14.7	19.6	24.5	29.4	34.3	39.2	44.0
48	4.8	9.6	14.4	19.2	24.0	28.8	33.6	38.4	43.2

No. 945 L. 975.]									[No. 989 L. 995		
N.	0	:	2	3	4	5	6	7	8	9	Diff.
945	975432	5478	5524	55\%\%	5616	5662	5707	5753	5799	5815	
6	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304	
7	6350	6396	6442	6488	6583	6579	6625	6671	6717	6763	
8	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	
9	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	
950	7724	7769	7815	7861	7906	7952	7998	8043	8089	8135	
1	8181	8226	8272	8317	8363	8409	8454	8500	8546	8591	
2	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047	
3	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503	
4	9548	9594	9639	9685	9730	9776	98\%1	9867	9912	9958	
5	980003	0049	0094	0140	0185	0231	0276	0322	0367	0412	
6	(458	0503	0549	0594	0640	0685	0730	0776	0821	0867	
7	0912	0957	1003	1048	1093	1139	1184	1229	1275	1320	
8	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773	
9	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	
960	2771	2316	2362	2407	2452	2497	2543	2588	2633	2678	
1	2723	2769	2814	2859	2904	2949	2994	3040	3085	3130	
2	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581	
3	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032	
4	4077	4122	4167	4212	4257	430\%	4347	4392	4437	4482	
5	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932	45
6	4977	5022	5067	5112	5157	5202	5247	5292	5337	5382	
7	5426	5471	5516	5561	5606	5651	5696	5741	5786	5830	
8	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279	
9	6324	6369	6413	6458	6503	6548	6593	6637	6682	6727	
970	6772	6817	6861	6906	6951	6996	7040	7085	7130	7175	
1	7219	7264	7309	7353	7398	7443	7488	7532	7577	7622	
2	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068	
3	8113	8157^{-}	8202	8247	8291	8336	8381	8425	8470	8514	
4	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960	
5	9005	9049	9094	9138	9183	9227	9272	9316	9361	9405	
6	9450	9494	9539	9583	9628	9672	9717	9761	9806	9850	
7	9895	9939	9983				0161	0206	0250		
8	990339	0383	0428	$\begin{aligned} & 0028 \\ & 0472 \end{aligned}$	${ }^{0072}$	0561	0605	0650	0694	0738	
9	0783	0827	0871	0916	0960	1004	1049	1093	1137	1182	
980	1226	1270	1315	1359	1403	1448	1492	1536	1580	1625	
1	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	
2	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509	
3	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951	
4	2995	3039	3083	3127	3172	3216	3260	3304	3348	3392	
5	3436	3480	3524	3568	3613	3657	3701	3745	3789	3833	
6	3877	3921	3965	4009	4053	4097	4141	4185	4229	4273	
7	4317	4361	4405	4449	4493	4537	4581	4625	4669	4713	44
8	4757	4801	4845	4889	4933	497%	5021	5065	5108	5152	
9	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591	

Proportional Parts.

Diff.	1	2	3	4 .	5	6	7	8	9
46	4.6	9.2	13.8	18.4	23.0	27.6	32.2	36.8	41.4
45	4.5	9.0	13.5	18.0	22.5	27.0	31.5	36.0	40.5
44	4.4	8.8	13.2	17.6	22.0	26.4		35.2	39.6
43	4.3	8.6	12.9	17.2	21.5	25.8	30.1	34.4	38.7

No. 990 L. 995.$]$
[No. 999 L. 999.

N.	0	1	2	3	4	5	6	7	8	9	Diff.
990	995635	5679	5\%23	5767	5811	5854	5898	5942	5986	6030	
1	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468	44
2	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906	
3	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343	
4	7386	7430	7474	7517	7561	7605	7648	7692	7736	7779	
5	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216	
6	8259	8303	8347	8390	8434	8477	8521	8564	8608	8652	
7	8695	8739	8782	8826	8869	8913	8956	9000	9043	9087	
8	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522	
9	9565	9609	9652	9696	9739	9783	9826	9870	9913	9957	43

Constant Numbers and their Logarithms.

Symbol.	Number.	Logarithm.
π	3.141592653590	0.497149872694
2π	6.283185307180	0.798179868358
3π	9.424777960769	0.974271127414
4π	12.566370614359	1.099209864022
5π	15.707963267950	1.196119877030
6π $.7 \pi$	18.849555921539	1.275 301123078
-7π 8π	21.991148575119 25.132741228718	1.342 1.40023989896868
9π	28.274333882308	1.451392382133
$\frac{1}{6} \pi$	0.523598775598	T. 718998628310
䢒 π	0.785398163397	T. 895089881366
${ }_{3}^{\frac{1}{3} \pi} \pi$	1.570796326795 4.1887904804	$\begin{aligned} & 0.196119877030 \\ & 0.622088609302 \end{aligned}$
π^{2}	9.869604401089	0.994299745388
π^{3}	$31.0062 \% 6680 \div 93$	1.491449618082
$\sqrt{\pi}$	1.772453850906	0.248574936347
$\sqrt[3]{\pi}$	1.464591887562	0.165716624231
$1 / \pi$	0.318309886184	T. 502850127306
180/ π	57.295779513025	1.758122632409
$1 / \pi^{2}$	0.101321183642	T. 005700254612
$1 / \sqrt{\pi}$	0.564189583548	T. 751425063653
$\log _{e} \pi$	1.144729885849	0.058703021240
$\operatorname{arc} 1^{\circ}$	0.017453292520	工. 241877367591
$\sin 1^{\circ}$	0.017452406417	2. 241855318418
are 1^{\prime}	0.000290888209	4.46:3 7:6117207
$\sin 1^{\prime}$	0.000290888205	4.46:3726 111082
arc $1^{\prime \prime}$	0.000004848137	6.685 574866824
$\sin 1^{\prime \prime}$	0.000004848137	6.685574866822
e	2.718281828459	0.434294481903
M	0.434294481903	T. 637784311301
1/M	2.302585092994	0.362215688699
$\sqrt{2}$	1.414213562373	0.150514997832
$\sqrt{3}$	1.732 050807569	0.238560627360
$\sqrt{5}$	2.236067977477	0.349485002168

Table XII.

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS.

Pages 198-242 give values of these functions to six decimal places for every minute of the first and second quadrants. The degrees are at the top and bottom of the pages and the minutes at the sides below or above the degrees. For example, on page 208, the angles $10^{\circ} 26^{\prime}$ and $169^{\circ} 34^{\prime}$ have $\log \sin =9.257898$, while $79^{\circ} 20^{\prime}$ and $100^{\circ} 40^{\prime}$ have $\log \cot =$ 9.274964 .

The columns headed D. $1^{\prime \prime}$ enable interpolation to be made for seconds; thus for $10^{\circ} 26^{\prime} 15^{\prime \prime}$ the D. $1^{\prime \prime}$ is 11.42 for $\log \sin$, whence $11.42 \times 15=171$ and log sin for this angle is $9.257898+171=9.258069$. Also for $163^{\circ} 38^{\prime} 15^{\prime \prime}$ the $\log \tan$ is $9.467880-117=9.467763$. The computed difference is to be added or subtracted according as the tabular values of the function increase or decrease with an increase in the angle.

The columns of D. $1^{\prime \prime}$ are omitted on pages 198 and 199, except for $\log \cos$; while other columns are added which enable intermediate values of the other functions to be found for small angles more accurately than can be done by interpolation. Thus to find $\log \sin A$ and $\log \tan A$, when A contains seconds, the equations

$$
\log \sin A=S+\log A^{\prime \prime}, \quad \log \tan A=T+\log A^{\prime \prime}
$$

are to be used, $A^{\prime \prime}$ signifying the number of seconds in the angle A. For example, let the angle A be $1^{\circ} 6^{\prime} 33^{\prime \prime}$ or $3993^{\prime \prime}$; for $1^{\circ} 6^{\prime}$ the value of S is taken from the fourth column on page 199 and $\log 3993$ from Table XI. Then

$$
\begin{array}{rlr}
\text { For } 1^{\circ} 6^{\prime} & S & =4.685548 \\
\log 3993 & =3.601299 \\
\log \sin 1^{\circ} 6^{\prime} 33^{\prime \prime} & =8.286847
\end{array}
$$

Similarly for $0^{\circ} 54^{\prime} 12^{\prime \prime}$ or $3252^{\prime \prime}$ the $\log \tan$ is found as follows:

$$
\begin{array}{lr}
\text { For } 0^{\circ} 54^{\prime} \quad T & =4.685611 \\
\log 3252 & =3.512151 \\
\log \tan 0^{\circ} 54^{\prime} 12^{\prime \prime} & =8.197762
\end{array}
$$

To find $\log \cot$ for a small angle the equation $\log \cot A=C-\log A^{\prime \prime}$ is to be used where C is taken from the eighth column. For example, for $1^{\circ} 0^{\prime} 16^{\prime \prime}$ or $3616^{\prime \prime}$ the value of C is 15.314381 and that of $\log 3616$ is 3.558228 , whence $\log \cot 1^{\circ} 0^{\prime} 16^{\prime \prime}=11.756153$.

To find the angle from a given logarithmic function, the eye must run along the table until the tabular value nearest to it is found. Thus, when $\log \tan$ is given as 9.516910 this is found on page 216 and the angle is either $18^{\circ} 12^{\prime}$ or $161^{\circ} 48^{\prime}$. Again, when $\log \tan$ is given as 9.526004 , this is found to lie between 9.525778 and 9.526197 ; to the first value corresponds the angle $18^{\circ} 33^{\prime}$ and the $D .1^{\prime \prime}$ is 6.98 ; the difference $9.526004-9.525778$ is 226 and $226 / 6.98=32.4^{\prime \prime}$, so that the required angle is $18^{\circ} 33^{\prime} 32^{\prime \prime} .4$.

When the given function falls on page 198 or 199, the number of seconds is found by the equations
$\log A^{\prime \prime}=\log \sin A-S, \quad \log A^{\prime \prime}=\log \tan A-T, \quad \log A^{\prime \prime}=C-\log \cot A$.
For example, given $\log \tan A$ as 8.465371 for which T is 4.685700 ; then $\log A^{\prime \prime}=8.465371-4.685700=3.779671$ from which by Table XI there is found $A^{\prime \prime}=6021^{\prime \prime}$, and hence $A=1^{\circ} 40^{\prime} 21^{\prime \prime}$.

1°

COSINES, TANGENTS, AND COTANGENTS.

"	,	Sine.		T	Tang.	Cotang.	C	D 1"	Cosine.	,
			4.685			15.314				
3600	1	8.241855	553	619	8.241921	11.758079	381	. 03	9.999934	60
3660	1	. 249033	552	620	. 249102	. 750898	380	. 03	. 999932	59
3720	2	. 256094	551	622	. 256165	. 743835	378	. 03	. 999929	58
3780	3	. 263042	551	623	263115	. 736885	377	. 03	.999927	57
3840	4	. 269881	550	625	.269956	730044	375	. 05	. 9999925	56
3900	5	. 276614	549	627	. 276691	.723309	373	. 03	. 999922	55
3960	6	. 283243	548	628	. 283323	. 716677	372	. 03	. 999920	54
4020	7	. 289773	547	630	. 289856	. 710144	370	. 05	. 999918	53
4080	8	. 296207	546	632	. 296292	. 703708	368	. 03	. 999915	52
4140	9	. 302546	546	633	. 302634	697366	367	. 05	. 999913	51
4200	10	. 308794	545	635	. 308884	. 691116	365	. 05	. 999910	50
4260	11	8.314954	544	637	8.315046	11.684954	363	03	9.999907	49
4320	12	. 321027	543	638	. 321122	. 678878	362		. 999905	48
4380	13	. 327016	542	640	. 327114	. 672886	360		. 999902	47
4440	14	. 332924	541	642	. 333025	. 666975	358	. 03	. 999899	46
4500	15	. 338753	540	644	. 338856	. 661144	356	. 03	. 999897	45
4560	16	. 344504	539	646	. 344610	. 655390	354	. 05	. 999894	44
4620	17	. 350181	539	648	. 350289	. 649711	352	. 05	. 999891	43
4680	18	. 355783	538	649	.355895	. 644105	351	. 05	. 9999888	41
4740	19	. 361315	537	651	. 361430	.6385\%0	349		. 999885	41
4800	20	. 366 r 77	536	653	. 366895	. 633105	347		. 999882	40
4860	21	8.372171	535	655	8.372292	11.627708	345	. 5	9.999879	39
4920	22	. 377499	534	657	. 377622	. 622378	343		. 999876	38
4980	23	. 382762	533	659	. 382889	.617111	341	. 05	. 999878	37
5040	24	. 387962	532	661	. 388092	.611908	339	. 05	. 999870	36
5100	25	. 393101	531	663	. 393234	. 606766	337	. 05	. 999886	35
5160	26	. 398179	530	666	. 398315	. 601685	334	. 05	. 9999864	34
5220	27	. 403199	529	668	. 4033338	. 5966662	332	. 05	. 9999861	33
5280	28	. 408161	527	670	. 408304	.591696	330	. 07	. 9998858	31
5340	29	. 413068	526	672	. 413213	.586787	328	. 05	.999854	31
5400	30	. 417919	525	674	. 418068	. 581932	326		. 999851	30
5460	31	8.42271	524	676	8.422869	11.577131	324	. 05	9.999848	29
5520	32	. 427462	523	679	. $42 \sim 618$. 512382	321		. 999844	28
5580	33	. 432156	522	681	. 432315	. 56 r685	319		. 999841	27
5640	34	. 436800	521	683	. 436962	. 563038	317	. 07	. 999838	26
5700	35	. 441394	520	685	. 441560	. 558440	315	. 05	. 999834	
5760	36	. 445941	518	688	. 446110	. 5538890	312	. 07	. 999831	
5820	37	. 450440	517	690	. 450613	. 549387	310	. 05	. 9998827	23
5880	38	. 454893	516	693	. 455070	. 544930	307	. 07	. 9999824	22
5940	39	. 459301	515	695	. 459481	. 540519	305	. 07	. 9999880	21
60	40	. 463665	514	697	. 4638	. 536151	3	. 07	. 999816	20
6060	41	8.467985	512	700	8.468172	11.531828	300		9.999813	19
6120	42	. 472263	511	702	. 4782454	. 527546	298		. 9998809	18
6180	43	. 476498	510	705	. 4776693	. 523307	295	. 07	. 999805	17
6240	44	. 480693	509	707	. 480892	. 519108	293	. 07	. 999801	16
6300	45	. 484848	507	710	. 485050	. 514950	290	. 05	. 9599797	15
6360	46	. 488963	506	${ }^{713}$. 489170	. 510830	287	. 07	. 9999794	14
6420	47	. 493040	505	715	. 493250	. 506750	285	. 07	. 9999790	13
6480 6540	48	. 497078	503	718	. 497293	.502707 .498702	282	. 07	. ${ }_{9997888}$	12
6540 6600	49 50	. 501080	502	${ }_{7}^{720}$.501298 .505267	. 498702	280	. 07	. 9999782	11
6660	51	8.508974	499	726	8.509200	11.490800	274	. 08	9.999774	
6720	52	. 512867	498	\%29	. 513098	. 486902	271		. 999769	
6780	53	. 516726	497	731	. 516961	. 483039	269		. 999765	
6840	54	. 520551	495	734	. 520790	. 479210	266	. 07	. 999761	
6900	55	. 524343	494	737	524586	. 475414	263	. 07	. 9999757	
6960	56	. 528102	492	740	528349	. 471651	260	. 08	. 9999753	
7020	57	. 531828	491	743	. 532080	. 467920	257	. 07	$.999748$	
7080	58	. 535523	490	745	$.535779$. 464221	255	. 07	. 9999744	
7200	60	8.54			8.543084	11.456916	24.9		9.59	
"	,	Cosine.			tang	Tang.		D 1*	Sine.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	8542819		9.999735		8.543094		11.456916	60
1	. 546422		. 999731	. 08	. 546691		. 453309	59
2	. 549995	${ }^{59.07}$. 999726	. 07	. 550268		. 449732	58
3	. 553539	58.58	. 999722	. 08	. 553817	$\stackrel{59.65}{ }$.446183	57
4	. 55.5054	58.10	. 999717	. 07	. 557336	58.20	. 4428664	56
5	. 560540	57.65	. 9997713	. 08	. 560828	57.72	. 439172	55
6	. 5639999	57.20	. 999708	. 07	. 564291	57.27	. 435709	54
	. 567431	56.75	. 9999704	. 08	. 5677727	56.83	. 432243	53
8	. 5708314	56.30	. 9999694	. 08	. 574520	56.38	. 42888480	52
10	. 577566	55.87	. 999689	. 08	. 577877	55.95	. 422123	50
11	8.580892		9.999685		8.581208		11.418792	49
12	. 584193		. 999680	08	. 584514		. 415486	48
13	. 587469	54.60	. 999675	. 08	. 587795	54.68	. 412205	47
14	. 590721	53.78	.999670	. 08	. 591051	53.87	. 408949	46
15	. 593948	53.40	. 999665	. 08	. 594283	53.48	. 405717	45
16	. 597152	53.40	. 9999660	. 08	. 597492	53.48	. 402508	44
17	. 600332	52.62	. 9999655	. 08	. 600677	53.70	. 399323	43
18	. 603489	52.23	. 9999650	. 08	. 603839	52.32	. 396161	42
19	. 606623	51.85	. 9999645	. 08	. 606978	51.93	. 393022	41
20	. 609734	51.48	. 9999640	. 08	. 610094	51.58	. 389906	40
21	8.612823		9.999635		8.613189	51.22	11.386811	39
22	. 615891	50.77	. 9996829	. 08	. 616262	50.85	. 383738	38
23	. 618937	50.42	. 9999624	. 08	. 619313	50.50	. 380687	37
24	. 621962	50.05	. 9999619	. 08	. 622343	50.15	. 377657	36
25	. 624965	49.72	. 9999614	. 10	. 6253532	49.80	. 374648	35
26	. 627948	49.38	. 9999608	. 08	. 6283340	49.47	. 371660	34
$\stackrel{27}{ }$. 630911	49.05	.999603 .999597	. 10	. 631308	49.13	. 368692	33
28	. 633854	48.70	. 9999592	. 08	.634256	48.80	. 3657444	32
29	. 633776	48.40	. 999586	. 10	.637184	48.48	. 362816	31
30	. 63	48.05		. 8		48.15	. 359907	30
31	8.642563		8.999581		8.642982	47.85	$11.35 \% 018$	29
32	. 645428	47.43	. 9999575	. 08	. 645853	47.85	. 354147	24
33	. 648274	47.43	. 9999570	. 10	. 648704	47.22	. 351296	27
34	. 651102	46.82	. 9999564	.10	. 651537	46.92	. 348463	26
35	. 653911	46.52	. 9999558	. 08	. 654352	46.62	. 345648	25
36	. 656002	46.22	. 9999553	. 10	. 657149	46.32	. 342851	24
37	. 65947	45.92	. 9999547	. 10	. 65929888	46.02	. 340072	23
38	. 6624230	45.63	. 9999535	. 10	. 665433	45.73	. 334567	21
40	. 667689	45.35	.999529	. 10	. 668160	45.45	. 331840	20
41	8.670393		9.999524		8.670870		11.329130	19
42	. 673080	44.78	. 999518	. 10	. 673563	44.88	. 326437	18
43	. 675751	44.52	. 999512	10	. 676239	44.60	. 323761	17
44	. 678405		. 999506	. 10	. 678900	44.07	. 321100	16
45	. 681043	43.70	. 999500	. 12	. 681544	44.08	. 318456	15
46	. 683665	43.45	.999193	. 10	. 684172	43.53	. 315828	14
47	.686272	43.18	. 999487	. 10	. 686784	43.28	.313216	13
48	. 688863	42.92	. 999481	. 10	. 689381	43.03	. 310819	12
49	. 691438	42.67	. 9999475	. 10	. 691963		. 308037	11
50	. 693998	42.42	. 999469	. 10	. 694529	42.53	. 305471	10
51	8.696543		9.999463	. 12	8.697081		11.302919	9
52	. 699073	41.93	. 999456	. 10	. 699617	42.03	. 300383	8
53	. 701589	41.68	. 999450	. 12	. 702139	41.78	. 297861	7
54	. 704090	41.45	. 999443	. 10	. 704646	41.57	.295354	6
55	. 706577	41.20	. 9999437	. 10	. 707140	41.30	. 292860	5
56	. 709049	40.97	. 999431	. 12	. 709618	41.08	. 290388	4
57	. 711507	40.75	. 999424	. 10	. 712083	40.85	. 287917	S
58	. 7139952		. 9994118	. 12	. 714534	40.63	. 285466	1
59	. 716383	40.28	. 999411	. 12	. 716972	40.40	. 283028	1
60	8.718800		9.999404		8.719396		11.280604	0
,	Cosine.	D $1^{\prime \prime}$.	Sine.	$1^{\prime \prime}$	tang.	1".	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	8.718800		9.999404		8.719396		11.280604	60
1	. 721204	40.07 39.85	$.999398$. 10	. 721806	40.17 39.97	11.278194	59
2	. 723595	39.85 39.62	. 9999391	.12	.724204	${ }_{39.73}$	${ }^{.275796}$	58
3	. 7225972	39.42	. 99993884	.10	. 7268588	39.52	. 273412	57
$\stackrel{4}{5}$. 72838388	39.18	. 9999371	. 12	. 7738959	39.30	. 261041	56
6	. 733027	38.98 38	. 999364	. 12	. 733663	39.10 38	. 266337	54
7	. 735354	38.78 38	. 999357	12	. 735996	38.88 38.68	. 264004	53
8	. 737667	38	. 999350	. 12	.738317		. 261683	52
9	. 739969	38.37 38.17	. 9993343	. 12	. 740626	38.48 38.27	. 259374	51
10	. 742259	38.17 37.95	. 999336	12	. 742928	38.08 38.08	.257078	50
11	8.744536		9.9993239	. 12	8.745207		11.254793	49
12	. 746802	37.57 37.55	. 9999322	. 12	. 7747479	${ }^{37} 7.68$. 252521	48
13	. 7498055	37.57 37	. 9999315	. 12	. 7497440	37.48 37	. 250260	47
14	. 7751297	37.18	. 9999308	.12	. 751989	37.30	. 248011	46
15	.753528	36.98	. 9999301	. 12	. 77542275	37.10	. 245773	45
16	. 755747	36.80	. 9999294	.12	.756453 .758668	36.92	. 24313537	44
17	. 7760151	36.60	. 9999279	. 13	. 7760872	36.73	. 2413382	43
19	. 762337	36.43	. 999272	. 12	. 763065	36.55	. 236935	41
20	. 764511	36.23	. 999265	. 12	. 765246		. 234754	40
21	8.766675		9.999257		8.767417		11.232583	39
22	. 768828	35.70	. 9999250	. 13	. 769578	35.82	. 230422	38
23	. 770970	35.52	. 999242	. 12	. 771727	${ }_{35.65}$. 228273	37
24	. 773101	35.37	. 9999235	. 13	. 773866	35.65 35.48	. 226134	36
25	. 775223	35.17	. 999227	. 12	. 775995	35.48 35.32	. 224005	35
$\stackrel{26}{ }$. 777333	35.02	. 9992220	. 18	. 778114	${ }_{35} 13$. 221886	34
27	. 7789434	34.83	.999212	.12	. 78022220	34.97	. 219778	33
28	. 781524	34.68	. 9992205	.13	. 7823220	34.80	.217680	32
29	. 783605	34.50	. 9999197	. 13	. 7884408	34.63	. 215592	31
30	.785675	34.35	. 999189	. 13	. 786486	34.47	. 213514	30
31	8.787736	34.18	9.999181		8.788554	34.32	11.211446	29
32	. 789787	34.18 34.02	. 9999174	. 12	. 790613	34.32 34.15	. 209387	28
33	. 791828	${ }^{34.05}$. 999166	. 13	. 792662	34.15 33	. 207338	27
34	793859	${ }_{33.70}$. 9999158	. 13	. 794701	${ }_{33.83}^{33.98}$. 205299	26
35	.795881	33.55	. 999150	. 13	. 796731	${ }_{33} 3.68$. 203269	25
36	. 797894	33.38	. 999142	. 13	. 798752	${ }_{3}^{3} .52$. 201248	24
37	. 799897	33.25	. 999134	. 13	. 800763	33.37	. 1992387	23
38	. 801892	33.07	. 9999126	. 13	. 8802765	33.22	. 1972385	21
39	. 803876	32.93	. 9999118	. 13	. 804758	33.07	. 195242	21
40	. 805852	32.78	. 999110	.13	. 806742	32.92	. 193258	20
41	8.807819		9.999102		8.808717		11.191283	19
42	. 809777	32.48	. 9999094	. 13	. 810683	32.63	. 189317	18
43	. 811726	32.35	. 9999086	.15	. 812641	32.47	. 187359	17
44	. 813667	32.20	. 9999077	. 13	. 8145889	${ }_{32} 32$. 185411	16
45	. 8151599	32.05	. 9999069	.13	. 81818461	32.20	. 183471	15
46	. 817194326	31.90	. 9999061	. 13	. 8184631	32.05	. 181539	14
47	. 819436	31.78	. 999053	.15	. 8203884	31.90	. 179616	13
48	. 821343	31.62	. 9999044	.13	. 8222298	31.78	. 177702	12
49	. 823240	31.50	. 9999036	. 15	. 824205	31.63	. 1775795	11
50	. 825130	31.35	.9990:27	.13	. 826103	31.48	. 173897	10
51	8.827011		9.999019	. 15	8.827992	31.37	11.172008	9
52	. 8288884	31.08	. 9999010	. 13	.829874	31.23	. 1770126	8
53	.830749	30.97	. 9998002	. 15	. 831748	31.08	. 168252	7
54	. 832607	30.82	. 9988993	. 15	. 8333613	30.97	. 166387	6
55	. 834456	30.68	. 9988984	.13	. 835471	30.83	. 164529	5
56	. 836297	30.55	. 9998976	. 15	. 837321	30.70	.162679	4
57	. 838130	30.43	. 99989678	. 15	. 839163	30.58	. 160837	3
58	. 8399956	30.30	. 999895950	. 13	.840998 .842825	30.45	. 159002	1
6	.841774 8.843585	30.18	9.998951	15	8.844844	30.32	11.155356	0
,	Cosine.	D $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	8.843585		9.998941		8.844644		11.155356	60
1	. 845387		. 998932	15	. 846455	30.18	. 153545	59
2	. 847183	29.93 29.80	. 998923	15	. 848260		. 151740	58
3	. 848971	29.80 29.67	. 9989814	. 15	. 850057	29.95	. 149943	57
4	. 850751	29.57	. 9989805	15	. 851846	29.70	. 148154	56
5	. 852525	29.43	. 9988896	. 15	. 8536828	29.58	. 146372	55
6	. 854291	29.30	. 9988887	.15	. 855403	29.47	. 1445987	54
8	. 856049	29.20	. 9988878	.15	${ }^{.857171}$	29.35	. 1428299	53
9	. 859546	$\stackrel{29.08}{ }$. 998860	. 15	. 8606886	29.23	. 13149314	51
10	. 861283	28.95 28.85	. 998851	. 15	. 862433	29.12	. $13 \% 567$	50
11	8.863014		9.998841		8.864173		11.135827	49
12	. 864738		. 9988832	15	. 865906	28.88	. 134094	48
13	. 866455	+28.62	. 998823	. 15	. 8676382	28.77	132368	47
14	. 868165	28.50 28.38	. 998813	.17	. 869351	28.65	. 130649	46
15	. 869868	28.38 28	. 998804	.15	. 871064	28.55	. 128936	45
16	. 871565	28.28	. 998795	. 17	.872770	28.43	. 127230	44
17	. 873255	28.17	. 998785	. 15	. 874469	28.32	. 125531	43
18	. 874938	${ }_{27}^{28.95}$. 998776	. 17	. 876162	28.12	. 123838	42
19	. 876615	27.95 27.83	. 9988766	. 15	. 877849	28.00	. 122151	41
20	. 878285	27.73	. 998757	. 17	.879529	27.88	. 120471	40
21	8.879949		9.998747		8.881202		11.118798	39
22	. 881607	${ }_{27}^{27.52}$. 998738	. 17	. 882869	27.68	. 117131	38
23	. 883258	27.02 27.42	. 998% \%	. 17	. 884530	27.58	. 115470	37
24	. 884903	27.42 27.32	. $9987^{\prime \prime} 18$. 17	. 886185	27.47	.113815	36
25	. 886542	27.20	.998708	15	. 8878333	27.38	. 112167	35
26	. 8888174	27.12	. 9988699	17	. 8899476	27.27	. 110524	34
27	. 889801	27.00	. 9988689	17	.891112	27.17	. 1088888	33
28	.891421	26.90	.9988669	. 17	. 8943866	27.07	. 105634	32
30	. 894643	26.80	. 998659	17	. 895989	26.97	. 104016	30
31	8.896246		9.998649		8.897596		11.102404	29
32	. 897842	26.60	. 998639	. 17	8.8999203	26.78	. 100797	28
33	. 899432	26.50 26.42	. 998629	.17	. 900803	26.58	. 099197	27
34	. 901017	26.42 26.32	. 998619	. 17	. 902398	26.48	.097602	26
35	. 902596	26.32 26.22	. 998609	. 17	. 903987	26.38	. 096013	25
36	. 904169	${ }_{26.12}^{26.22}$. 998599	. 17	. 9055570	26.28	. 094430	24
37	. 905736	${ }_{26.02}$. 998589	. 18	. 907147	26.20	. 092853	23
38	. 907297	25.93	. 998578	. 17	. 908719	26.10	. 091281	22
39	. 908853	25.85	. 9998568	. 17	. 910285	26.02	. 0898715	${ }_{20} 1$
40	. 910404	25.75	. 998558	. 17	. 911846	25.92	. 088154	20
41	8.911949		9.998548		8.913401	25.83	11.086599	19
42	. 913488	25.57	.998537	. 18	. 914951	$\underset{25.73}{ }$. 085049	18
43	. 915022	25.47	. 998527	. 18	. 916495	25.63	. 083505	17
44	. 916550	25.48	. 998516	. 17	. 918034	25.57	. 081966	16
45	. 918073	25.30	. 998506	.18	.919568	25.47	. 080432	15
46	. 919591	25.20	. 998495	. 17	. 921096	25.38	. 078904	14
47	. 921103	${ }_{25.12}$. 9988485	. 18	. 9222619	25.28	. 077381	13
48	. 922610	25.03	. 998474	. 17	. 924136	25.22	. 075864	12
49	. 924112	24.95	. 9988464	. 18	. 9225649	25.12	. 074351	11
50	. 925609	24.85	. 998453	. 18	. 927156	25.03	. 072844	10
51	8.927100		9.998442		8.928658		11.071342	9
52	. 928587	24.78 24	. 998431	. 17	. 930155	24.87	. 0698845	8
53	. 930068	24.68 24.60	. 998421	. 18	. 931647	24.78	. 068353	7
54	. 931544	24.52	. 9988410	18	. 933134	24.70	. 066866	6
55	. 933015	$\stackrel{24.43}{ }$. 9983899	18	. 934616	24.62	. 0653884	5
56	. 934481	24.35	. 9998388	18	. 936093	24.53	. 0633907	4
57	. 935942	$\stackrel{24.27}{ }$. 99983778	. 18	. 937505	24.45	. 062435	3
58 59	. 9373898	24.20	. 99983635	18	. 93490392	24.37	. 0609968	2
59 60	.938850 8.940296	24.10	.998355 9.998344	18	8.940494	24.30	11.058048	1
,	Cosine.	D. $1^{\prime \prime}$	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1 ".	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	8.940296	24.03	9.998344	. 18	8.941952	24.20	11.058048	60
1	. 941738	23.93	. 9988333	. 18	. 943404	24.13	. 056596	59
$\stackrel{2}{3}$. 943174	23.87	. 9998322	.18	. 9444852	24.05	. 055148	58
3	. 944606	23.80	. 99983811	.18	. 9446295	23.98	. 053705	57
5	. 9447456	23.70	. 99988889	. 18	. 9479768	23.90	. 0522666	56
6	. 948874	23.63	. 998277	. 20	. 950597	23.82	. 049403	54
7	. 950287	23.55 23.48	. 998266	. 18	. 952021	23.73	. 047979	53
8	. 951696		. 998255	. 20	. 953441	${ }_{23}^{23.58}$. 046559	52
9	. 953100	23.40	. 998243	. 18	. 954856	23.52	. 045144	51
10	. 954499	23.85	. 998232	.20	. 956267	23.45	. 043733	50
11	8.955894	23.17	9.998220	. 18	8.957674	23.35	11.042326	49
12	. 957284	23.10	. 9988209	. 20	. 959075	${ }_{23}^{23.30}$. 040925	48
13	. 958670	23.03	. 998197	. 18	. 960 f73	23.22	.039527	47
14	. 960052	22.95	. 9998186	. 20	. 961866	23.15	. 038134	46
15	. 961429	22.87	. 9988174	. 18	. 9633255	23.07	. 036745	45
16	. 9662801	22.82	. 9988163	. 20	. 96464639	23.00	. 0353561	44
17	. 964170	22.73	. 9998151	. 20	. 9666019	22.92	. 033981	43
18	. 965534	22.65	. 998139	.18	. 967394	22.87	. 032606	42
19	. 9666893	22.60	. 998128	. 20	. 968766	22.78	. 031234	41
20	. 968249	22.52	. 998116	. 20	. 970133	22.72	. 029867	40
21	8.969600	22.45	9.998104	. 20	8.971496	22.65	11.028504	39
22	. 970947	22.37	. 9988092	. 20	. 9728855	22.57	. 027145	38
23	. 9722889	22.32	. 9988080	. 20	. 974209	22.52	. 025741	37
24	. 9773628	22.23	. 9988068	.20	. 9775560	22.43	. 024440	36
25	. 974962	22.18	. 9998056	. 20	.976906 .978248	22.37	. 023094	35
${ }_{27}$. 976293	22.10	. 998044	.20	. 978248	22.30	. 021752	34
27	. 9776919	22.03	. 9988032	. 20	. 97980981	22.25	.020414	33
28	. 978941	21.97	. 999802008	.20	. 9880921	22.17	. 019079	32
29	. 980259	21.90	. 9998008	. 20	. 9882251	22.10	. 017749	31
30	. $9815 \% 3$	21.83	997996	20	. 983577	22.03	. 016423	30
31	8.982883	21.77	9.997984		8.984899		11.015101	29
32	. 984189	21.72	. 99797972	. 22	. 9886217	21.92	. 013783	28
33	. 985491	21.63	. 99797959	.20	. 987532	21.83	. 012468	27°
34	. 9886789	21.57	. 997947	. 20	. 9888842	21.78	. 011158	26
35	. 9888083	21.52	. 997935	. 22	. 9990149	21.70	. 0098851	25
36	. 989374	21.43	. 9979792	. 20	. 991451	21.65	. 008549	24
37	. 990660	21.38	. 997910	. 22	. 9992750	21.58	. $00 \% 250$	23
38	. 991943	21.32	. 997897	. 20	. 9994045	21.53	. 005935	22
39	. 9933222	21.25	. 997885	. 22	. 995337	21.45	. 004663	21
40	. 994497	21.18	. 997872	. 20	. 996624	21.40	.0033 6	20
41	8.995768		9.997860	. 22	8.997908	21.33	11.002092	19
42	. 997036	21.13	. 997847	. 20	8.999188	21.28	11.000812	18
43	. 9988299	21.02	. 997835	. 22	9.000465	21.22	10.999535	17
44	8.999560	20.93	. 9978282	. 22	. 001738	21.15	.998262	16
45	9.000816	20.88	. 99787809	. 20	.003007 $.0042 \uparrow 2$	21.08	. 9969993	15
46	. 002069	20.82		. 22		21.03	. 9995728	14
47	. 003318	20.75	. 9977784	. 22	. 005534	20.97	. 994466	13
48	. 004563	20.70	. 9997771	. 22	. 006792	20.92	.993208	12
49	. 005805	20.65	. 9997758	. 22	. 0008047	20.85	. 991953	11
50	. 007044	20.57	. 997745	. 22	. 009298	20.80	. 990702	10
51	9.008278		9.997732		9.010546		10.989454	9
52	. 009510	20.45	. 9977719	. 22	. 011790	20.68	. 988210	8
53	. 010737	20.42	. 9977706	. 22	. 013031	20.62	. 9889669	7
54	. 011962	20.33	. 9997693	. 22	. 014268	20.57	. 9857438	
55 56	. 013182	20.30	. 9997680	. 22	. 015502	20.50	. 984498	5
56 57	. 014400	20.22	. 9997654	. 22	. 016732	20.45	. 9832688	4
58	. 01516824	20.18	. 99976541	. 22	. 019183	20.40	. 9880817	3
59	. 018031	20.12	. 997688	22	. 020403	20.33	. 979597	1
60	9.019235	20.07	9.997614	23	9.021620	20.28	10.978380	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. 1^{\prime}.	Cosine.	D. 1^{1}.	Tang.	D. 1^{\prime}.	Cotang.	,
0	9.019235		9.997614		9.021620		0.978380	
1	. 0201335	20.00 19.95	.997601	.22	. 022834	${ }_{20.17}^{20.23}$.977165	59
+	. 02163828	19.88	. 9997588	. 23	. 0224044	20.12	.975956 .97474	58 57
4	. 0224016	19.85 19.78	. 9997561	.23	. 0202655	${ }_{20}^{20.00}$.973545	${ }_{56}^{57}$
5	. 0252503	19.78	. 997547	.22	. 027655	${ }^{20.05}$. 9723145	55
${ }_{7}^{6}$. 0223836	19.68	. 997534	. 23	. 0238850	19.90	. 971148	54
8	. 027567	19.62	. ${ }_{99757520}$.22	${ }^{.030046}$	19.85	.969954	53
8	. 0288744	19.57	. 9997493	${ }^{23}$. 0332423	19.80	${ }_{967575}^{968763}$	52
10	. 031089		. 997480	.23	. 033609	${ }_{19}^{19.73}$. 966391	51 50
11	9.032257		9.997466		9.034		10.965209	
12	. 033421	19.40	.997452	${ }_{22}$	035	${ }_{19}^{19.63}$. 96	48
13	. 0335852	19.32	. ${ }^{.997439}$. 23	${ }^{037144}$	19.53	. 96628585	47
15	. 0336896	19.25	. 9997414	${ }^{23}$. 0339485	19.48	. 966051684	46
16	. 0338048	19.20 19.15	. 997397	${ }_{23}{ }^{23}$. 040651	${ }_{19}^{19.43}$. 959349	44
17	. 039197	19.08	. 997383	.23	. 041813	19.36	. 958188	43
18	. 0403142	19.05	.997369	. 23	.042973	19.28	. 957027	42
19	. 0414885	19.00		23	. 0454584	19.23	${ }_{9} 954716$	41
20	. 042	18.95	. 997341	. 23		19.17		40
21	9.0437	18.8	9.9973	. 23	9.046	19.13	10.95	39
${ }_{23}$.0460	18.85	.9972	${ }^{23}$. 04878	19.08	. 951273	${ }_{37}^{38}$
4	. 047154	18.80 18.75	. 99728	${ }_{23}{ }^{23}$. 049869	19.03	. 950131	${ }_{36}$
	. 04827	18.68	.997271	. 23	. 051008	18.93	. 948992	35
26	. 0494900		. 9972725	.25	.052144		${ }^{.9476556}$	${ }_{33}^{34}$
27	. 050519	18.60	. ${ }^{99727228}$. 23	.053277	1883	. 9446753	${ }_{32}^{33}$
29	. 052749	18.57	.997214	. 23	. 0555	${ }^{18.80}$. 944465	${ }_{31}^{32}$
30	. 053859		.997199	.$_{23}$. 056659	18.73	. 913341	30
31	9.0549		9.9971		9.05%		10.942219	
32	. 056071	18.35	997100	.23	. 05890	18.65	. 941100	28
${ }_{3}^{33}$. 057172	18.32	. 997156	. 25	. 0600113	18.57	.939984	27
34 35 85	${ }^{.058271}$	18.27	. 9971127	. 23	. 06611340	18.50	.938760	${ }_{2}^{26}$
36	. 060460	18.42	.997112	${ }^{25}$.063348	18.47	. 936652	${ }_{24}$
37	. 061551	18.18 18.13	. 997098	25	. 06645	18.48	. 9335547	23
	. 0626	18.13 18.08	. 99708	. 25	. 06555	18.38	. 934444	22
39	. 063724	18.03	. 997068		. 0666655	18.28	. 9333345	21
40	. 064806	17.98	. 997053	. 23	.06Ti52	18.25	. 932248	20
	9.06588	17.95	9.997039		9.0688	18.20	10.931154	19
4	. 06688936	17.90	. 9970	. 25	.069938	18.15	${ }_{928973}$	18
44	. 06690107	17	. 996999	. 25	.072113	18.10	. 92289888	17
	. 080178	${ }_{17.77}^{17.82}$. 996979	. 25	.073197	18.07	. 9268803	15
46	.071242	17.73	. 99969	. 25	.07	17.97	${ }^{.925722}$	14
48	. .0733366	${ }^{17.67}$. 99969693	. 25	.076432	17.93	. 92236454	${ }_{12}^{13}$
50	.074424		. 996919	${ }^{25}$. 077505	${ }_{17}^{17.88}$. 922495	11
50	. 075180	17.55	. 996904	. 20	.078576		. 921424	10
51	9.076533		9.99688		9.07964		10.920356	
5	. 017838	${ }_{17}^{17.50}$. 996874		.080710	${ }_{17}^{17.77}$. 919290	
5	.0088631	17.42	. 99968	. 25	.0817\%3	17.67	. 918227	7
54	.0796766	17.38		. 27		17.63	. 91716167	6
55	.080719	17.33	. 996	. 27	. 0838	17.60	. 916109	5
5	. 08	17.30	. 99968797	. 25	.084947	17.55	. 9150503	4
58	. 0838	17.25	.996782	. 25	.087050	17.50	. 912950	2
	. 0848		966				911902	1
60	9.085894		9.996751		9.089144		10.910856	0
	Cosine.	D. 1°.	Sine.	D. 1	Cotang.	D. ${ }^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.085894	17.13	9.996751	. 27	9.089144	17.38	10.910856	60
1	. 0868222	17.08	. 9966735	. 25	. 09018187	17.35	. 909813	59
2	. 087947	17.05	. 996720	. 27	. 091228	17.30	. 908 \% ${ }^{\text {che }}$	58
3	. 088970	17.00	. 9966704	. 27	. 0982266	17.27	. 907734	57
4	. 0891008	16.97	. 99966888	. 25	.093302	17.23	. 9066698	56
6	. 092024	16.93	. 996655	.27	.095367	17.18	. 904633	54
7	. 093037	16.88	. 996641	. 27	. 096395	17.13	. 903605	53
8	. 094047	16.83 16.82	. 9996625	. 27	. 097422	17.12	. 9025 \% 8	52
9	. 095056	16.87	. 996610	. 27	. 099446	17.07	. 901554	51
10	. 096062	16.72	. 996594	. 27	. 099468	16.98	. 900532	50
11	9.097065		9.996578		9.100487		10.899513	49
12	. 098066	16.68	. 9965652	. 27	. 101504	16.95	. 898496	48
13	. 099065	16.62	. 996546	. 27	. 102519	16.88	. 897481	47
14	. 100062	16.57	. 9996530	. 27	. 103532	16.83	. 896468	46
15	. 101056	16.53	. 9996514	.27	. 104542	16.80	. 895458	45
16	. 102048	16.48	. 9996498	. 27	. 105555	16.77	. 8984450	44
17	. 10303025	16.47	. 99964842	. 28	. 1065559	16.72	. 8983444	43
18	. 104010	16.42	. 99964649	. 27	. 108560	16.68	. 8914440	41
20	. 105992	16.37 16.35	. 996433	. 27	. 109559	16.65	. 890441	40
21	9.106973	16.30	9.996417	28	9.110556		10.889444	39
22	. 107951	16.27	. 996400	. 27	. 111551	16.53	. 888449	38
23	. 108927	16.23	. 996384	. 27	. 112543		. 887457	37
24	. 109901	16.20	. 996368	. 28	. 113533	16.47	. 886467	36
25	. 110873	16.15	. 9963351	. 27	. 114521	16.43	. 885479	35
26	. 111842	16.12	. 9966335	. 28	. 115507	16.40	. 884493	34
27	. 112809	16.08	. 9996318	. 27	.116491	16.35	. 883509	33
$\stackrel{28}{28}$. 113744	16.05	. 996302	. 28	.117472	16.33	. 8825258	32
${ }^{29}$. 1147378	16.02	. 996285	. 27	. 118452	16:28	. 881548	31
30	. 115698	15.97	. 996269	. 28	. 119429	16.25	. 880571	30
31	9.116656	15.95	9.996252		9.120404		10.879596	29
32	. 117613	15.90	. 996235	. 28	. 121377	16.18	. 878623	28
33	. 118567	15.87	. 996219	. 28	. 1223348	16.15	. 877652	27
34	. 119519	15.83	. 996202	. 28	. 123317	16.12	. 876683	26
35	. 120469	15.80	. 9961818	. 28	. 124284	16.08	. 875716	25
36	. 12141%	15.75	. 9966168	. 28	. 125249	16.03	. 874751	24
37	. 122362	15.73	. 996151	. 28	. 126211	16.02	. 873789	23
38	. 123306	15.70	. 996134	. 28	. 127172	15.97	. 872828	22
39	. 124248	15.65	. 996117	. 28	. 128130	15.95	. 871870	21
40	. 125187	15.63	. 996100	. 28	12908 ${ }^{\text {\% }}$	15.90	. 870913	20
41	9.126125		9.996083		9.130041		10.869959	19
42	. 127060	15.55	. 996066	. 28	. 130994	15.83	. 8699006	18
43	. 127993	15.53	. 996049	. 28	. 131944	15.82	. 868056	17
44	. 128925	15.48	. 996032	. 28	. 132893	15.77	. 867107	16
45	. 1298854	15.45	. 9996015	. 28	. 133839	15.75	. 8661616	15
46	. 130781	15.42	. 9995989	.30	. 134784	15.70	. 8665216	14
47	. 13132630	15.40	. 9995963	. 28	. 136667	15.68	. 86633333	13
49	. 133551	15.35	. 995946	. 28	. 137605	15.63	. 862395	11
50	. 134470		. 995928	. 30	. 138542	15.62	. 861458	10
51	9.135387		9.995911		9.139476		10.860524	
52	. 136303	15.22	. 995894	. 30	. 140409	15.50	. 859591	8
53	. 137216	15.20	. 995876	. 28	. 141340	15.48	. 858660	7
54	. 138128	15.15	. 9958559	. 30	.142269	15.45	. 857731	6
55	. 139037	15.12	. 9958841	. 30	. 143196	15.42	. 856804	5
56	. 139944	15.10	. 9995823	. 28	. 144121	15.38	. 8558879	4
57	. 140850	15.07	. 9958806	. 30	. 145044	15.37	. 85495034	3
58 59	. 141754	15.02	.995788	. 28	. 1468985	15.32	. 8553115	1
60	9.143555	15.00	9.995753	30	9.147803	15.30	10.852197	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	.	Cotan	D. 1	ng	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. 1'.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.194332	13.28	9.994620	33	9.199713	13.60	10.800287	60
1	.195129	13.27	. 994600	3	. 200529	13.60	.799471	59
2	. 195925	13.23	. 994580	33	. 201345	13.60	798655	58
3	.196719	13.20	. 994560	33	. 202159	13.53	797841	57
4	.197511	13.18	.994540	. 35	. 202971	13.53	. 797029	56
5	. 198302	13.15	. 994519	. 33	. 203782	13.50	. 796218	55
6	. 199091	13.13	. 994499	. 33	. 204592	13.47	. 795408	54
7	. 199879	13.12	. 994479	. 33	. 205100	13.45	.794600	53
8	. 200666	13.08	. 994459	. 35	. 206207	13.45 13.43	.793793	52
9	. 201451	13.05	. 994438	. 33	. 207013	13.43 13.40	.792987	51
10	. 202734	13.05	. 994418	. 33	. 207817	13.37	. 792183	50
11	9.203017	13.00	9.994398	35	9.208619	13.35	10.791381	49
12	.203797	13.00	. 994377	. 35	. 209420	13.35 13.33	. 790580	48
13	. 204577	12.95	.994357	. 35	. 210220	13.30	.789780	47
14	. 205354	12.95	.994336	. 33	. 211018	13.30	.788982	46
15	. 206131	12.92	.994316	. 35	. 211815	13.28	.788185	45
16	. 206906	12.88	.994295	. 35	. 212611	13.23	.787389	44
17	. 207679	12.88	.9942r 4	. 33	. 213405	13.22	.786595	43
18	. 208452	12.83	. 994254	. 35	. 214198	13.22	. 785802	42
19	. 209222	12.83	.994233	. 35	. 214989	13.18	.785011	41
20	. 209992	12.80	. 994212	. 35	. 215780	13.18	. 784220	40
21	9.210760	12.77	9.994191	33	9.216568	13.13	10.783432	39
22	. 211526	12.75	.994171	. 35	. 217356	13.13	. 782644	38
23	. 212291	12.75	. 994150	.35	. 218142	13.10	. 781858	37
24	. 213055	12.72	. 994129	. 35	. 218926	13.07	. 781074	36
25	. 213818	12.68	. 994108	. 35	.219710	13.03	. 780290	35
26	. 214579	12.65	. 994087	. 35	. 220492	13.03 13.00	. 779508	34
27	. 215338	12.65	.994066	. 35	.221272	13.00	. 778728	33
28	. 216097	12.62	. 994045	.35	. 222052	13.07	. 777948	32
29	. 216854	12.58	.994024	. 35	. 222880	12.95	. 77717170	31
30	. 217609	12.58	. 994003	-35	. 223607	$\begin{aligned} & 12.90 \\ & 12.92 \end{aligned}$.776393	30
31	9.218363	12.55	9.993982		9.224382	12.90	10.775618	29
32	. 219116	12.55	. 993960	. 35	. 225156	12.88	. 774844	28
33	. 219868	12.50	. 993939	. 35	. 225029	12.85	. 774071	27
34	. 220618	12.48	.993918	. 35	. 226700	12.85	. 773300	26
35	. 221367	12.48	.993897	. 37	. 227471	12.80	.772529	25
36	. 222115	12.43	. 993875	. 35	. 228239	12.80	. 771761	24
37	. 222861	12.42	.993854	. 37	. $22900{ }^{7}$	12.87	. 770993	23
38	. 223606	12.48	. 993832	. 35	. 229773	12.77	. 770227	92
39	. 224349	12.38	. 993811	. 37	. 230539	12.78	. 76946	6 \%
40	. 225092	12.38	.993\%89	. 37	.231302	12.72	. 768698	20
41	9.225833		9.993768	37	9.232065	12.68	10.767935	19
42	. 226573	12.30	. 993746	. 35	. 232826	12.68	. 767174	18
43	. 227311	12.28	. 993725	. 37	. 233586	12.65	. 766414	17
44	. 228048	12.28	. 9937%	. 37	. 234345	12.63	.765655	16
45	. 2288784	12.23	.993681	. 35	. 235103	12.60	. 764897	15
46	. 229518	12.23	. 993660	. 37	. 235859	12.60	.764141	14
47	. 230252	12.20	.993638	. 37	. 236614	12.58	. 7635386	13
48	. 230984	12.18	. 993616	. 37	. $23 \% 368$	12.53	. 762632	12
49	. 231715	12.15	. 993594	. 37	. 238120	12.53	. 761880	11
50	. 232444	12.13	. 99357%	. 37	. 238872	12.50	. 761128	10
51	9.233172		9.993550		9.239622		10.760378	9
52	. 233899	12.12	. 993528	. 37	. 240371	12.48	. 759629	8
53	. 234625	12.107	.993506	. 37	. 241118	12.45	. 758882	7
54	. 235349	12.07	.993484	. 37	. 241865	12.42	. 758135	6
55	. 236073	12.03	.993462	. 37	. 242610	12.40	. 757390	5
56	. 236795	12.00	.993440	. 37	. 243354	12.38	. 756646	4
57	. 237515	12.00	.993418	.37	. 244097	12.37	. 755903	3
58	. 238835	11.97	.993396	. 37	244839	12.33	. 755161	2
59	. 238953	11.95	. 993374	. 38	. 245579	12.33	. 754421	1
60	9.239670	11.95	9.993351	, 38	9.246319	12.33	10.753681	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.239670		9.993351		9.246319		10.753681	60
1	. 240386		. 9933329	37	. $24 \% 057$. 752943	59
2	. 241101	11.88	. 9933307	. 38	247794		. 752206	58
3	. 241814	11.87	.993284	. 37	. 248530	12.23	. 751470	57
4	. 212525	11.85	.993262	. 37	. 249264	12.23	. 750736	56
5	. 243237	11.83	. 9933240	. 38	. 249998	12.20	. 750002	55
6	. 2439478	11.82	. 9933217	. 37	. 2507146	12.18	. 749270	
8	. 2446566	11.78	.993195	. 38	. 25142191	12.17	.748539 .747809	53
9	. 246069	11.77	. 993149	. 38	. 252920	12.15	. 747080	51
10	. 246775		. 993127	. 38	. 253648	12.13	. 746352	50
11	9.247478		9.99310		9.2543		10.745626	49
12	.248181		. 993081	. 38	. 255100		. 744900	48
13	. 248883	11.67	. 993059	. 38	. 255824	12.07	. 744176	47
14	. 249583	11.65	. 993036	. 38	. 256547	12.05	. 743453	46
15	. 250282	11.63	. 993013	. 38	. 257269	12.03	. $742 \% 31$	5
16	. 250980		. 992990	. 38	. 257990		. 742010	4
17	. 251677		. 992967	. 38	. 258710		. 741290	43
18	. 252373	11.57	. 992944	. 38	. 259429	11.95	. 740571	42
19	. 253067		.992921	. 38	. 260146		. 739854	41
20	. 253761	11.53	. 992898	. 38	. 260863	11.95	. 739137	40
21	9.254453	11	9.992875		9.261578		10.738422	39
22	. 255144	11.50	. 992852	38	. 262292		737708	38
23	. 255834	11.48	.992889	. 38	. 263005	11.87	. 736995	37
24	. 256523	11.47	. 992806	. 38	. 263717	11.85	. 736283	36
25	. 257211		.992783	40	. 264428		. 735572	35
26	. 257898		. 992759	38	. 265138		. 734862	34
27	. 258583	11.42	. 992736	38	. 2655847	11.80	. 734153	33
8	. 259268	11.38	. 992713	. 38	. 266555	11.77	. 733445	32
29	. 259951	11.37	. 992690	. 40	. 267261		. 732739	3
30	. 260633	11.35	. 992666	. 38	. 267967	11.73	. 732033	30
31	9.261314		9.992643		9.2686 ${ }^{2} 1$		10.731329	29
32	. 261994	11.33	. 992619	. 38	. 269375	11.78	. 730625	28
33	. 262673	11.30	. 992596	. 40	. 200077	11.70	. 729923	27
34	. 263351	11.27	. 992572	. 38	.270779	11.67	. 729221	26
35	. 264027	11.27	. 992549	. 40	. $2714 \% 9$	11.65	. 728521	25
36	. 264703	11.23	. 992525	. 40	. 272178	11.63	.727822	24
37	. 2653777	11.23	. 9322501	. 38	.272876	11.62	. 777124	2
38	. 266051	11.20	. 992478	. 40	.273573	11.60	. 726427	2
39	. 266783	11.20	. 992454	. 40	. 274269	11.58	. 725731	21
40	. 267395	11.17	. 992430	. 40	. 274964	11.57	. 725036	20
41	9.268065		9.992406	40	9.275658		10.724342	19
42	. 268734	11.13	. 992388	. 38	. 276351	11.53	. 723649	18
43	. 269402	11.12	. 932359	. 40	. 277043	11.52	.722957	10
44	. 270069	11.10	. 992335	. 40	. 277734	11.50	. 722266	16
45	. 270735	11.08	. 992311	. 40	. 278424	11.48	. 721576	15
46	. 271400	11.07	. 9922287	40	. 279113	11.47	. 220887	14
47	. 278064	11.03	. 99222683	40	. 279801	11.45	. 7720199	
48	. 2727276	11.03	. 9922339	. 42	. 280488	11.43	. 719512	12
49	. 2733888	11.02	. 992214	. 40	. 281174	11.40	. 71818142	11
50	. 274049	10.98	. 992190	.40	. 281858	11.40	. 718142	10
51	9.274708	10.98	9.992166		9.282542		10.717458	
52	. 27.5367	10.97	. 9921412	. 40	. 283225	11.37	. 716775	
53	.276025 .276681	10.93	. 992118	. 42	. 2839907	11.35	. 716093	
54	. 276681	10.93	.992093	.40	. 2815888	11.33	. 715412	
55	. 277337	10.90	. 9922069	. 42	. 285268	11.32	. 714732	
56	. 277991	10.90	. 992044	. 40	. 285947	11.28	- 144053	
57	.278645	10.87	. 992020	. 40	. 286624	11.28	. 713876	
58	279297	10.85	. 991996	. 42	. 287301	11.27	. 7126999	
,	Cosine		Sine.		Cotan	D. 1	Tan	,

COSINES, TANGENTS, AND COTANGENTS.
11°

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.280599	10.82	9.991947	. 42	9.288652	11.23	10.711348	60
1	. 281248	10.82	.991922	. 42	.289326	11.22	$.710674$	59
${ }^{2}$. 281897	10.78	. 9991897	. 40	.289999	11.20	. 710001	58
3	. 282544	10.77	. 99187848	. 42	. 290671	11.18	. 7093329	57
4	. 283190	10.77	. 99181848	. 42	. 291342	11.18	. 708658	56
5	. 28388386	10.73	. 9991823	. 40	. 29292682	11.15	. 70797318	55
6 7	. 288518184	10.73	. .991774	. 42	. 29293350	11.13	. 70706650	54
8	. 285766	10.70	. 991749	. 42	. 294017	11.12	. 705983	52
9	. 286408	10.70	. 991724	. 42	. 294684	11.12 11.08	. 705316	51
10	. $28 \% 048$	10.67	. 991693	. 42	. 295349	11.08	704651	50
11	9.287688	10.63	9.991674	. 48	9.296013	11.07	10.703987	49
12	. 288326	10.63	. 991649	. 42	. 296677	11.03	. 703323	48
13	. 288964	10.60	. 991624	. 42	. 297339	11.03	. 702661	47
14	. 289600	10.60	. 991599	. 42	. 2988001	11.02	. 701999	46
15	. 290236	10.57	. 991574	. 42	. 2988662	11.00	. 701338	45
16	. 290870	10.57	. 991549	. 42	. 299392	10.97	. 700678	44
17	. 291504	10.55	. 9915154	.43	. 2999880	19.97	. 700020	43
18	. 292137	10.52	. 991498	. 42	. 300638	10.95	. 6999362	42
19 20	. 2993399	10.52	. .991448	. 42	. 301951	10.93	. 69988049	41
20	.293399	10.50	. 91448	. 43	. 301951	10.93	. 698049	40
21	9.294029	10.48	9.991422	. 42	9.302607 .303261	10.90	10.697393	39
23	. 29465886	10.47	. 991372	. 42	. 303914	10.88	. 6996086	38
24	. 295913	10.45	. 991346	. 43	. 304567	10.88	. 695433	36
25	. 296539	10.43	. 991321	. 43	. 305218	10.85	. 694782	35
26	. 297164	10.48	. 991295	. 42	. 305869	10.85	. 694131	34
27	. 297788	10.40	.991270	. 43	. 306519	10.83	. 693481	33
28	. 298412	10.37	. 991244	. 43	. 307168	10.80	. 692832	32
29	. 299034	10.35	. 991218	. 42	. 307816	10.78	. 692184	31
30	. 299655	10.35	. 991193	. 43	. 308463	10.77	. 691537	30
31	9.300276		9.991167		9.309109		10.690891	29
32	. 300895	10.32	. 991141	. 43	. 309754	10.75	. 690246	28
33	. 301514	10.30	. 991115	. 42	. 310399	10.72	. 689601	27
34	. 302132	10.27	. 991090	. 43	. 311042	10.72	. 688958	26
35	. 302748	10.27	. 991064	. 43	. 311685	10.70	. 688315	25
36	. 3033364	10.25	. 991038	. 43	. 312327	10.68	. 687673	24
37 38	. 303979	10.23	. 9991012	.43	. 312968	10.67	. 6870382	23
38	. 304593	10.23	. 9990986	. 43	. 313608	10.65	. 686393	22
39 40	. 3052078	10.20	. 9990960	. 43	. 314248	10.63	. 6855753	21
40	. 305819	10.18	. 990934	. 43	. 314885	10.63	. 685115	20
41	9.306430	10.18	9.990908		9.315523	10.60	10.684477	19
42	. 307041	10.15	. 9908882	.45	.316159	10.60	. 6838841	18
43	. 307650	10.15	. 990855	. 43	.316795	10.58	. 683205	17
44	. 308259	10.13	. 99080829	. 43	. 317430	10.57	. 682581036	16
45	. 3088867	10.12	. 99080803	. 43	. 318064	10.55	. 681936	15
46	. 309474	10.10	. 9907770	. 45	.318697 319330	10.55	. 681303	14
47	. 3100885	10.08	. 9990724	. 43	. 3193981	10.52	. 680670	13
48	. 311289	10.07	. 990697	. 45	. 320592	10.52	. 6790408	12
50	. 311893	10.07	. 990671	. 43	. 32122	10.50	. 678778	10
51	9.312495		9.990645		9.321851		10.678149	9
52	. 313097	10.03	. 990618	. 45	. 3224479	10.47	. 677521	8
53	. 313698	9.98	. 990591	. 43	. 323106	10.45	. 676894	7
54	. 314297	10.00	. 990565	. 45	. 323733	10.42	. 676267	6
55	. 314897	10.00 9.97	. 990538	. 45	. 324358	10.42	. 675642	5
56	.315495	9.95	. 990511	. 43	. 324983	10.40	. 675017	
57	. 316092	9.95	. 990485	. 45	. 325607	10.40	. 674393	3
58 59	. 316689	9.92	. 9990458	. 45	. 326231	10.37	. 673769	2
59	. 317284	9.92	.990431 9.990404	45	.326853 9.327475	10.37	. 673147	1
60	9.317879		9.990404		9.324475		10.672525	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	

TABLE XIT. LOGARITHMIC SINES,

,	Sine.	D. 1".	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.317879	9.90	9.990404	. 43	9.327475	10.33	10.672525	60
1	. 318473	9.88	. 9990378	. 45	. 328095	10.33	. 671905	59
$\stackrel{2}{3}$. 319066	9.87	. 990351	. 45	. 328715	10.32	. 671285	58
3	. 319658	9.85	. 9903824	. 45	.32:1334	10.32	. 670666	57
${ }_{5}^{1}$. 320249	9.85	. 99029270	. 45	.329953 .330570	10.28	.670047	56
6	. 321430	9.83	. 990243	. 45	. 331187	10.88	. 668813	54
7	. 322019	9.82 9.80	. 990215	.47 45	. 331803	10.27	. 668197	53
8	. 322607	9.98	. 930188	45	. 332418	10.25	. 667582	52
9	. 323194	9.78 9.77	. 9990161	. 45	. 333033	10.25 10.22	. 666967	51
10	. 323780	9.77	. 990134	. 45	. 333646	10.22	. 666354	50
11	9.324366		9.990107		9.334259		10.665741	49
12	. 324950	${ }_{9.73}^{9.73}$. 990079	. 45	. 334871	10.20	. 665129	48
13	. 3255534	9.73	. 9900052	. 45	. 335482	10.18	. 664518	47
14	. 326117	9.72	. 9980025	. 47	. 336093	10.15	. 663907	46
15	. 326700	9.68	. 9889997	. 45	. 336702	10.15	. 663298	45
16	. 327281	9.68	. 9889970	. 47	.337311 .337919	10.13	. 662689	44
17	. 3278862	9.67	. 9899942	. 45	.337919 .338527	10.13	. $662081{ }^{\text {a }}$	43
18	. 3289841	9.65	. 98998887	. 47	. 3339133	10.10	. 6660867	42
20	. 329599	9.63	. 989860	. 45	. 339739	10.10	. 660261	40
21	9.330176		9.989832	47	9.340344		10.659656	89
22	. 330753	9.62	. 989804	48	. 340948		. 659052	33
23	. 331329	9.57	. 989777	47	. 341552	10.05	. 658448	:7
24	. 331903	9.58	. 989749	. 47	. 342155	10.03	. 657845	36
25	. 332478	9.55	. 989721	.47	. 342757	10.02	. 657243	35
26	. 333051	9.55	. 989693	. 47	. 343358	10.00	. 656642	34
27	. 333624	9.52	. 9896665	. 47	. 343958	10.00	. 656042	33
28	. 334195	9.53	. 989637	. 45	. 344558	10.00 9.98	. 655442	32
29	. 334767	9.50	. 989610	. 47	. 345157	9.97	. 654843	31
30	. 335337	9.48	. 989582	. 48	. 345755	9.97	. 654245	5
31	9.335906		9.989553		9.346353	9.93	10.653647	29
32	. 336475	9.47	. 989595	. 47	. 346949	9.93	. 653051	28
33	. 337043	9.45	. 989497	. 47	. 347545	9.93	. 652455	27
34	. 337610	9.43	. 989469	. 47	. 348141	9.90	. 651859	26
35 36	. 338176	9.43	. 9898441	. 47	. 348735	9.90	. 651265	25
36	. 338742	9.42	. 9889413	. 47	. 3493929	9.88	. 650671	24
37	. 339307	9.40	. 98989355	. 48	. 319982	9.87	. 650078	23
38	. 339871	9.38	. 9893556	. 47	. 350514	9.87	. 649486	22
39	. 340434	9.37	. 98893828	. 47	. 351109	9.85	. 648894	21
40	. 340996	9.37	. 989300	. 48	. 351697	9.83	. 648303	20
41	9.341558	9.35	9.989271		9.352287	9.82	10.647713	19
42	. 342119	9.33	. 989243	. 48	. 3528876	9.82	. 647124	18
43	. 3426779	9.33	. 9898214	. 47	. 353465	9.80	. 646535	17
44	. 343239	9.30 9.30	. 9898186	. 48	. 354053	9.78	. 645947	16
45	. 343797	9.30	. 9898157	. 48	. 354640	9.78	. 645360	15
46	. 314355	9.28	. 989128	. 47	. 355227	9.78	. 644773	14
47	. 344912	9.28	. 989100	. 48	. 355813	9.75	. 644187	13
48	. 345469	9.25	. 989071	. 48	. 356398	9.73	. 643602	12
49	. 346024	9.25	. 989042	. 47	. 356982	9.73	. 643018	11
50	. 346579	9.25	. 989014	. 48	. 357566	9.72	. 642434	10
51	9.347134		9.988985	48	9.358149	9.70	10.641851	9
52	. 347687	9.22	. 9888956	. 48	. 358731	9.70	. 641269	8
53	. 348240	9.20	. 9888927	. 48	. 359313	9.67	. 640687	7
54	. 348792	9.20	. 9888898	. 48	. 359893	9.68	. 640107	6
55	. 349343	9.17	. 9888869	. 48	. 360474	9.65	. 639526	5
56	. 349893	9.17	. 9888840	. 48	. 361053	9.65	. 638947	4
57	. 350443	9.15	. 9888811	. 48	. 361632	9.63	. 638368	3
58 59	. 350992	9.13	. 98888782	. 48	.362210 .362787	9.62	. 6377790	$\stackrel{2}{1}$
60	9.352088	9.13	9.988724	48	9.363364	9.62	10.636636	0
,	Cosine.	D. 1 .	Sine,	D. $1^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.352088		9.988724		9.363364		10.636636	60
1	. 352635	9.12 9.10	. 9888895	. 48	. 363940	9.60 9.58	. 636060	59
2	. 353181	9.10 9.08	. 9888666	. 50	. 364515	9.58 9.58	. 635485	58
3	. 3537726	9.08 9.08	. 98886366	. 48	. 3650900	9.57	. 63491936	57 56
4 5	. 354271	9.07	.988607 .988578	. 48	.365664 .366237	9.55	.634336 .633763	56 55
6	. 355358	9.05	. 9888548	. 50	. 366810	9.55	. 633190	54
7	. 355901	9.05 9.03	. 988519	. 50	. 367382	9.53	. 632618	53
8	. 356443	9.03 9.02	. 988489	. 48	. 367953	9.52 9.52	. 632047	52
9	. 356984	9.00	. 988460	. 50	. 368524	9.50	. 631476	51
10	. 357524	9.00	. 988430	. 48	. 369094	9.48	. 630906	50
11	9.358064	8.98	9.988401	. 50	9.369663	9.48	10.630337	49
12	. 358603	8.97	. 988371	. 48	. 370232	9.45	. 629768	48
13	.359141	8.95	. 98883412	. 50	. 370799	9.47	. 629201	47
14	. 359678	8.95	. 9888812	. 50	. 371367	9.43	. 6288633	46
15 16	$\begin{aligned} & .360215 \\ & .360752 \end{aligned}$	8.95	. 9888282	. 50	. 3719338	9.43	. 628067	45
16 17	. 361287	8.92	. 9888223	. 48	. 373064	9.42	. 626936	44
18	. 361822	8.92	. 988193	. 50	. 373629	9.42	. 626371	42
19	. 362356	8.90 8.88	. 988163	. 50	. 374193	9.40 9.38	. 625807	41
20	. 362889	8.88 8.88	. 988133	. 50	. 374756		.625®44	40
21	9.363422		9.988103		9.375319	9.37	10.624681	39
22	. 363954	8.87 8.85	. 988073	. 50	. 375881	9.38	. 624119	38
23	. 364485	8.885	. 9888043	. 50	. 376442	9.35	. 623558	37
24	. 365016	8.88	. 988013	. 50	. 377003	9.33	. 622997	36
25	. 365546	8.82	. 987983	. 50	.377563	9.32	. 622437	35
$\stackrel{26}{27}$. 366075	8.82	. 987953	. 52	. 378122	9.82	. 621878	34
27	. 366604	8.78	.98\%922	. 50	. 378681	9.30	. 621319	33
28	. 367131	8.80	. 988892	. 50	. 379239	9.30	. 620202	32
39	. 3688185	8.77	. $98 \% 832$. 50	. 380354	9.28	. 619646	31 50
31	9.368711		9.987801		9.380910		10.619090	29
32	. 369236	8.75	. 987771	. 50	. 381466	9.27	. 618534	28
33	. 369761	8.75	. $987 \% 40$. 52	. 382020	9.93	. 617980	27
34	. 370285	8 8.72	. 987710	. 50	. 382575	9.25	. 617425	26
35	. 370808	8.70	. 987679	. 50	. 383129	9.22	. 616871	25
36	. 371330	8.78	. 987649	. 52	. 383682	9.20	. 616318	24
${ }_{38} 7$. 371852	8.68	. 987618	. 50	. 384234	9.20	. 615766	23
38	. 372373	8.68	. 987588	. 52	. 384786	9.18	. 615214	22
39 40	. 3728984	8.67	.98,5557	. 52	. 3858337	9.18	. 614663	21
40	. 373414	8.65	. 987526	. 50	. 385888	9.17	. 614112	? 0
41	9.373933	8.65	9.987496	. 52	9.386438	9.15	10.613562	19
42	. 374452	8.63	${ }^{.987465}$. 52	. 386987	9.15	. 613013	18
43	. 374970	8.62	. 987434	. 52	${ }^{.387536}$	9.13	. 6124194	17
44	. 375487	8.60	. 987403	. 52	.388084 .388631	9.12	. 61191369	16
46	.316003 .376519	8.60	. .987341	. 52	. $3891 \% 8$	9.12	. 6110822	15
47	. 377035	8.60 8.57	. 987310	. 52	. 389724	9.10 9.10	. 610276	13
48	. 377549	8.57	. 987279	. 52	. 390270	9.10 9.08	. 609730	12
49	. 378063	8.57	. 987248	. 52	. 390815	9.08	. 609185	11
50	. 378577	8.53	. 987217	. 52	. 391360	9.05	. 608640	10
51	9•379089		9.987186		9.391903		10.608097	9
52	. 379601	8.53	. 987155	. 52	. 392447	9.03	. 607553	8
53	. 380113	8.52	. 987124	. 53	. 392989	9.03	. 607011	7
54	. 38061134	8.50	. 987097061	. 52	. 3935031	9.03	. 606469	6
56	. 381643	8.48	. 987030	. 52	. 39494614	9.02	. 605386	4
57	. 382152	8.48	. 956998	. 53	. 395154	9.00	. 604846	3
58	. 382661	8.48	. 986967	. 52	. 395694	9.00	. 604306	2
59	. 383168	88.45	. 986936		. 396233	88.97	. 603767	1
60	9.383675	8.40	9.986904	53	9.396771	8.97	10.603229	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.383675		9.986904		9.396771		10.603229	60
1	. .384182	8.45	. 9888873	. 53	. 397309	8.97 8.95	. 602691	59
2	. 384687	8.42	. 986841	. 53	. 397846	8.95	. 602154	58
3	. 3885192	8.42	. 9886809	. 53	. 3988383	8.95	. 601617	57
4	. 385697	8.42 8.40	. 986778	. 53	. 3989819	8	.601081 .600545	56 55
5	. 386201	8.38	. 9886746	. 53	. 3999455	8.92 8.92	. 600545	55
7	. 387207	8.38	. 9886688	. 52	. 400594	8.90	. 5009176	54
8	. 387709	8.37	. 986651	. 53	. 401058	8.90	. 598942	52
9	. 388210		. 986619	. 53	. 401591	8.88 8.88	. 598409	51
10	. 388711	8.	. 986587	. 3	. 402124	8.88 8.87	. 597876	50
11	9.389211		9.986555		9.402656		10.597344	49
12	. 389711	8.33 8.32	. 986523	. 53	. 403187	8.85 8.85	. 596813	48
13	. 390210	8.32 8.30	. 986491	. 53	. 403718	8.85 8.85	. 596282	47
14	. 390708	8.30 8.30	. 986459	. 53	. 404249	8.82	-.595751	46
15	. 391206	8.28	. 986427	. 53	. 404778	8.83	. 595222	45
16	.391703	8.27	. 986395	. 53	. 405308	8.80	. 594692	44
17	. 392199	8.27	. 9868363	. 53	. 405836	8.80	. 594164	43
18	. 392695	8.27	. 9886331	. 53	. 406364	8.80	. 5933636	42
19	.393191 .393685	8.23	. 9886299	. 55	. 406892	8.78	. 593108	41
20	. 393685	8.23		. 53	. 407419	8.77	. 592581	40
21	9.394179	8.23	9.986234	. 53	9.407945		10.592055	39
22	. 394673	8.22	. 9886202	. 55	. 408471	8.75	. 591529	38
23	. 395166	8.20	. 986169	. 53	. 408996	8.75	. 591004	37
24	. 395658	8.20	. 986137	. 55	. 409521	8.73	. 590479	36
25	. 396150	8.18	. 986104	. 53	.410045	8.73	. 5899955	35
$\stackrel{26}{27}$. 396641	8.18	.986072	. 55	. 410569	8.72	. 5889431	34
27 28	. 397132	8.15	. 9886039	. 53	. 4111092	8.72	. 5888908	33
28	. 39768111	8.17	. 9885074	. 55	. 4121815	8.70	. 5888385	32
30	. 398600	8.15	. 985912	. 53	. 412658	8.68	. 587342	31
31	9.399088		9.985909	55	9.413179		10.586821	29
32	. 399575	12	. 985876	. 55	. 413699		. 586301	28
33	. 400062	8.12	. 985843	. 53	. 414219	8.65	. 585781	27
34	. 400549	8.12 8.10	. 985811	. 55	. 414738	8.65 8.65	. 585262	26
35	. 401035	8.08	. 985778	. 55	. 415257	8	. 584743	25
36	. 401520	8.08 8.08	. 985745	. 55	. 415775	8.63	. 584225	24
37	. 402005	8	. 985712	. 55	. 416293	8.68	. 583707	23
38	. 402489	8.05	. 985679	. 55	. 416810	8.60	. 583190	22
39	. 402972	8	. 985546	. 55	. 417326	8.60 8.60	. 582674	21
40	. 403455	8.05	. 985613	. 55	. 417842	8.60	. 582158	20
41	9.403938		9.985580		9.418358		10.581642	19
42	. 404420	8.02	. 985547	. 55	. 418878	8.57	. 581127	18
43	. 404901	8.02	. 985514	. 57	. 419387	8.57	. 580613	17
44	. 405382	8.00	. 985480	. 55	. 419901	8.57	. 580099	16
45	. 4058682	8.00 7.98	. 985447	. 55	. 420415	8.55	. 579585	15
46	. 406341	7.98	. 985414	. 55	. 4220927	8.55	. 579073	14
47	. 406820	7.98		. 57	. 421440	8.53	. 578500	13
48	. 407299	7.97	. 985347	. 55	. 421952	8.52	. 578048	12
49	. 407777	7.95	. 985314	. 57	. 422463	8.52	. 577537	11
50	. 408254	7.95 7.95	. 985280	. 55	. 422974	8.52	. 577026	10
51	9.408731		9.985247		9.423484		10.576516	
52	. 409207	7.93 7.93	. 985213	. 55	. 423993	8.50	. 576007	8
53	. 409682	7.92	. 985180	. 57	. 424503	8.47	. 575497	7
54	. 410157	7.92	. 985146	. 55	. 425011	8.47	. 574989	6
55	. 410632	7.92	. 985113	. 57	. 425519	8.47	. 574481	5
56	.411106	7.88	. 985079	. 57	.426027	8.45	. 573973	4
57	. 411579	7.88	. 985045	. 57	. 426534	8.45	. 573466	3
58	. 412052	7.87	. 985011	. 55	. 427041	8.43	. 572959	2
59	. 412524	7.87	. 984978	. 57	. 427547	8.42	. 572453	1
60	9.412996		9.984944		9.428052		10.571948	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. 1".	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.412996		9.984944		9.428052		10.571948	60
1	. 413467	7.85	. 984910	. 57	. 428558	8.43 8.40	. 571442	59
2	. 413938	7.85 7.83	. 984876	. 57	. 429062	8.40 8.40	. 570938	58
3	. 414408	7.83 7.83	. 984842	. 57	. 429566	8.40 8.40	570434	57
4	. 414878	7.83 7.82	. 984808	.57 .57	. 430070	8.40 8.38	.569930	56
5	. 415347	7.82	. 984774	. 57	. 430573	8.38 8.37	. 569427	55
6	. 415815	7.80 7.80	. 984740	. 57	.431075	8.37	. 568925	54
7	. 416283	7.80 7.80	. 984706	57	. 431577	8.37	. 568423	53
8	. 416751	7.80 7 77	. 984672	. 57	. 432079	8.37 8.35	. 567921	52
9	. 417217	7.77	. 984638	. 58	. 432580	8.35 8.33	.567420	51
10	. 417684	7.78 7.77	. 984603	. 57	.433080	$\begin{aligned} & 8.33 \\ & 833 \end{aligned}$. 566920	50
11	9.418150		9.984569	57	9.433580	8.33	10.566420	49
12	. 418615	7.75	. 984535	. 58	. 434080	8.32	. 565920	48
13	. $4190 \% 9$	7.73	. 984500	. 57	. 434579	8.32	. 565421	47
14	. 419544	7.75 7.72	. 984466	. 57	. 435078	8.3 8.30	. 564922	46
15	.420007	\% 72	. 984432	58	. 435576	8.38	. 564424	45
16	. 420470	7.72	.984397	. 57	.436073	8.28	. 563927	44
17	. 420933	7.70	. 984363	. 58	. 436570	8.28	. 563430	43
18	. 421395	7.70	. 981328	. 57	. 437067	8.27	. 562933	42
19	. 421857	7.68	.984294	. 58	. 437563	8.27	.562437	41
20	. 422318	$\begin{aligned} & 7.68 \\ & 7 \end{aligned}$. 984259	. 88	. 438059	8.25	. 561941	40
21	9.422778		9.984224	7	9.438554	8.23	10.561446	39
22	.423238		. 984190	58	. 439048	8.23 8.25	. 560952	38
23	. 423697	7.65	. 984155	. 58	.439543	8.25	. 560457	37
24	. 424156	7.65	. 984120	. 58	. 440036	8.22	. 559964	36
25	. 424615	7.65	. 984085	. 58	. 440529	8.22	. 559471	35
26	. 425073	7.63	. 984050	58	. 441022	8.22 8.20	. 558978	34
27	. 425530	7.62	. 984015	. 57	. 441514	8.20	. 558486	33
28	425987	7.62	. 983981	58	. 442006	8.20	. 557994	32
29	. 426443	7.60	. 983946	58	. 442497	8.18	. 557503	31
30	. 426899	7.60 7.58	. 983911	0	. 442988	8.18	. 557012	30
31	9.427354		9.983875		9.443479		10.556521	29
32	. 427809	7.58	. 983840	. 58	. 443968	8.15 8.17	. 556032	28
33	. 428263	7.57	. 983805	. 58	. 444458	8.15	. 555542	27
34	. 428717	7.57	. $9837 \% 0$. 58	. 444947	8.15	. 555053	26
35	. 429170	7.55 7.55	. 983735	. 58	. 445435	8.13	. 554565	25
36	. 429623	7.55 7.53	. 983700	. 60	. 445923	8.13	. $5540 \% 7$	24
37	. 430075	7.53 7.53	. 983664	. 58	. 446411	8.13	. 553589	23
38	. 430527	7.53	. 983629	. 58	. 446898	8.12 8.10	. 553102	22
39	.430978	7.52	. 983594	. 60	. 447384	8.10	. 552616	21
40	. 431429	7.50	. 983558	. 60	. 447870	8	. 552130	20
41	9.431879		9.983523		9.448356		10.551644	19
42	. 432329	7.48	.983487	. 58	. 448841	8.08	. 551159	18
43	. 432778	7.48	. 983452	. 60	. 449326	8.08	. 550674	17
44	. 433226		. 983416	. 58	.449810	8.07	.550190	16
45	. $4336{ }^{\circ} 5$	7.48	. 983381	. 68	. 450294	8.07	. 549706	15
46	. 434122	7.45	. 983345	. 60	. 450777	8.05 8.05	. 549223	14
47	. 434569	7.45	. 983309	. 60	.451260	8.05 8.05	. 548740	13
48	. 435016	7.45	. 983273	. 58	.451743	8.05 8.03	.548257	12
49	. 435462	7.43	. 983238	. 68	. 452225	8.03 8.02	. 547775	11
50	. 435908	7.43	. 983202	. 60	.453706	8.02 8.02	. $547 \% 94$	10
51	9.436353		9.983166		9.453187		10.546813	9
52	. 436798	7.42	. 983130	. 60	. 453668	8.02 8.00	. 546332	8
53	. 437242	7.40 7.40	. 983094	. 60	. 454148	8.00 8.00	. 545852	7
54	. 437686	7.40	. 983058	. 60	. 454628	8.00 7.98	. 545372	6
55	. 438129	7.38 7.38	. 983022	. 60	. 455107	7.98	.544893	5
56	. 438572	7.38 7.37	. 989986	. 60	. 455586	7.98	. 544414	4
57	. 439014	7.37	. 982950	. 60	. 456064	7.97	. 543936	3
58	. 439456	7.37 7.35	. 982914	. 60	. 456542	7.97	.543458	2
59	. 439897	7.35 7.35	. 982878	. 60	. 457019	7.95	. 542981	1
60	9.440338	7.35	9.982842	. 60	9.457496	7.95	10.542504	0
,	Cosine.	D. 1".	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.440338		9.982842		9.457496		10.542504	60
1	. 44412788	${ }_{7} 7.33$. 9882805	. 60	. 455979	7.95 7.93	. 542027	59
$\stackrel{1}{3}$. 4414658	7.33	. 9882×6739	. 60	.458449 .458925	7.93 7 7	. 541551	58 57
4	. 4420996	7.30 7.32	.9882996	. 62	. 45889295	7.92	. 5410600	57 56
5	. 442535		. 9882660	${ }^{60}$. 459885	${ }_{7}^{7.92}$. 540125	${ }_{55}$
6	. 442973	7.88	. 9882684	. 62	. 460349	7.90 7.90	. 539651	54
\%	. 4434130		. 9882587	. 60	. 460823	7.90	.539177	${ }^{53}$
8	. 4438484	7.28	. 9882551	. 62	. 46121297	7.88	.538703	52
10	.444720	7.27	. 9888477	. 62	. 46172942	7.87	. 53372385	51
11	9.445155		9.982441		9.462715	7.88	10.537285	
12	. 445590	7.25	. 982404	. 62	${ }_{.} .463186$	7.85	10.536814	48
13	. 446025	7.23	. 988367	. 60	463658	${ }_{783} 7.87$. 536342	47
14	. 446459	7.23	. 9882331	.62	464128	7.85	. 533872	46
15	. 446893	7.22	. 98822929	62	. 464599	7.83	. 535401	45
16	${ }^{.4447326}$	7.22	.982237	. 62	${ }^{4} 4650699$	7.83	. 5334931	
18	. 418191	7.20	. 9882183	. 62	. 4666008	7.82	. 5333992	43
19	. 448623	${ }_{7}^{7.20}$. 982146	.62	. 466477	7.82	. 533523	41
20	. 449054	7.18	. 982109	.62	. 466945	7.80 780	. 533055	40
21	9.449485	7.17	9.982072	62	9.467413	7. 78	10.532587	39
22	. 449915	7.17	. 988035		. 467888	7.78	. 532120	38
23	. 450345	7.17	. 98819988	. 62	${ }^{.} 46883887$	7.88	. 531653	${ }^{37}$
24	.450775 .451204	7.15	. 9881961	. 62	${ }^{.} 4688814$	7.77	. 531186	${ }^{36}$
25	. 45151632	7.13	. 98181986	. 63	. 4698280	7.77	. 530720	35
27	. 452060	7.13	.981849	. 62	${ }^{4} 46974611$	7.75	. 530254	${ }_{33}$
28	. 452488	7.13	. 98181812	. 62	. 4706718	7.75	.529324	${ }_{32}$
29	. 452915	7.12	. 981774	.63	. 471141	7.75	. 528859	${ }_{31}$
30	. 453342	7.10	. 981737	. 62	. 471605	${ }_{7}^{7.73}$. 528395	30
31	9.453768	7.10	9.981700		9.472069		10.527931	29
33 33 3	. 454194	7.08	. 98816628	. 62	. 4772539295	7.72	. 52747688	${ }_{27}^{28}$
34	. 4555044	7.08	. 98815887	. 63	. 4773457	7.70	. 5226543	26
35	. 455469	${ }_{7} 7.07$. 981549	.63	. 473919	${ }_{7.70}^{7.70}$. 526081	25
36	. 455893	7.05	. 981512		. 474381	7.68	. 525619	24
37	. 456316	7.05	. 981474	. 63	. 474842	7.68	. 525158	23
38	. 456739	7.05	. 9814336	. 62	. 475303	7.67	. 524697	22
39	. 45762		. 9813993		. 415763		. 524237	21
40	. 457584	7.03	361	. 63	.476223	7.67	. 523777	20
41	9.458006	7.02	9.981323		9.476683	7.65	10.523317	19
42	. 45458827	7.02			${ }^{4} 477142$. 222858	18
43	. 4588848	7.00	. ${ }^{.981247}$. 63	. 478	7.63	. 5223939	17
44	. 459598688	7.00	. 9818171	. 63	${ }^{4} 478059$	7.63	.521941	16
45	. 44600108	7.00	. .9811133	. 63	${ }^{4} 478975$	7.63	.5214023	15
47	. 460527	${ }_{6}^{6.98}$. 981095	${ }^{.63}$	${ }^{479432}$	7.62	. 520568	13
碞	. 460946	6.98 6.97	. 981057	.$_{63}$. 4798	7.60	. 520111	12
49	. 461364	6.97	. 981019		. 4803345	7.60	. 519655	11
50	. 461782	6.95	. 980981	. 65	. 480801	7.60	. 519199	10
51	9.462199		9.980942		9.481257		10.518743	
52 53 5	.462616 .463032	6.93	. 9880904	.63	${ }^{.481712}$	7.58	. 51782838	8
53 54	. 46333448	6.93	. 988080827	65	. 482621	7.57	. 517379	6
,	. 463864	6.93	. 980789	. 63	. $4830 \% 5$	${ }_{7}^{7.57}$. 516925	5
56	. 4642 r9	${ }_{6.92}^{6.92}$. 980750	${ }^{65}$		7.57		4
57	. 464694	6.90	. 980712	. 65	. 483982	${ }_{7}$. 516018	3
58 59 50	. 465108	6.90	${ }_{0}^{9806}$. 63	${ }^{484435}$	7.53	. 515565	2
60	${ }_{9} .4665935$	6.88	9.9880635	. 65	9.4858379	7.53	${ }_{10} .514661$	$\stackrel{1}{0}$
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. ${ }^{\prime \prime}$.	Cotang.	D. 1 "	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.465935		9.980596		9.485339		10.514661	60
1	. 466318	6.88 6.88	. 980558	. 65	. 485791	7.53	. 514209	59
8	. 466761	6.88 6.87	. 980519	. 65	. 486242	7.52	513758	58
3	. 467173	6.87 6.87	. 980480	. 63	. 486693	7.50	513307	57
4	. 467585	6.85	. 980442	. 65	.487143	7.50	.512857	56
5	. 467996	6.85	. 98004036	. 65	. 4875893	7.50	.512407	55
6	. 468407817	6.83	. 980364	. 65	. 4888043	7.48	. 5111505	54
8	. 4688817	6.83	. 9803286	. 65	. 4888941	7.48	. 5111059	53
9	. 469637	6.83	. 980247	. 65	. 489390	7.48 7.47	. 510610	51
10	. 470016	6.82 6.82	. 980208	. 65	. 489838	7.47 7.47	. 510162	50
11	9.470455	6.80	9.980169	. 65	9.490286	7.45	10.509714	49
12	. 470863	6.80 6.80	.980130	. 65	.430733	7.45	. 509267	48
13	. 471271	6.80 6.80	. 980091	. 65	. 4911180	7.45	. 508820	47
14	. 471679	6.78	. 980050	. 67	. 491627	7.43	. 508373	46
15	. 4772086	6.77	. 980012	. 65	. 492073	7.43	. 507927	45
16	. 4772192	6.77	. 979973	. 65	. 4925019	7.43	.50\%481	44
17	. 472898	6.77	.979934	. 65	. 4929610	7.42	. 507035	43
18	. 473301	6.77	.979895	. 67	. 49393854	7.40	. 5065146	42
19	. 4773710	6.75	.979855 .979816	. 65	. 494299	7.42	. 506146	41
20	. 474115	6.73	.979816	. 67	. 494299	7.40	. 505701	40
21	9.474519	6.73	9.979776	. 65	9.494743	7.38	10.505257	39
22	. 474923	${ }_{6}^{6.73}$. 979737	. 67	. 495186	7.40	. 504814	38
23	. 475337	6.73 6.72	. 973697	. 65	. 495630	7.38	. 504370	37
24	. 4775730	6.72	. 9796558	. 67	. 496073	7.37	. 5033927	36
25	.476133	6.72	. 9797958	. 65	. 496595	7.37	. 503485	35
26	. 476536	6.70	.979579	. 67	. 4969399	7.37	. 5030401	34
27	.476938 477340	6.70	.979539	. 67	.497399 .4941	7.37	. 5026159	33
28	. 4773780	6.68	. 979459	. 67	. 498282	7.35	. $501 \sim 18$	31
30	. 478142	6.68	. 979420	. 65	.498\%22	7.33	. 501278	31 30
31	9.478542		9.979380		9.499163		10.500837	29
32	. 478942	6.67	. 979340	. 67	. 499603	7.32	. 500397	28
33	. 479342	6.65	. 979300	. 67	. 500042	7.32	. 499958	27
34	. 479741	6.65	. 979200	. 67	. 500481	7.32	. 499519	26
35	. 480140	${ }_{6}^{6.65}$. 979220	. 67	. 500920	7.32	. 499080	25
36	. 480539	${ }_{0} 6.63$. 97918140	. 67	. 501359	7.30	. 498641	24
37	. 480937	6.62	. 979140	. 67	. 501797	7.30	. 498203	23
38	. 48131331	6.62	. 9791000	. 68	. 502235	7.28	. 4979765	21
40	. 482128	6.62	19	. 67	. 503109	7.28	496891	20
41	9.482525		9.978979		9.503546 .503982		10.496454	19
42	. $48 \% 921$	6.58	. 978788893	. 68	-. 5039888	7.27	. 496018	18
43	. 483316	6.60	. 9788893	. 67	. 504418	7.27	. 495582	17
41	. 483712	6.58	. 9788858	. 68	. 504854	7.25	. 495146	16
45	. 484107	6.57	. 9788817	. 67	. 505289	7.25	. 49.711	15
46	. 484501	6.57	. 978787	. 67	. 505724	7.25	. 49493841	14
47	. 484895	6.57	.978737 .978696	. 68	. 506593	7.23	. $49384{ }^{\text {r }}$	13
48	. 4858289	6.55	. 978685	. 68	. 507027	7.23	. 493973	11
50	. 486075	6.55	. 978615	. 67	. 507460	7.23	. 492510	10
51	9.486467		9.978574		9.507893		10.492107	9
52	. 486860	6.55 6.52	. 978533	. 67	. 508326	7.22	. 491674	8
53	. 487251	6.53	. 978193	. 68	. 508759	7.20	. 491241	7
54	. 487643	6.53	. 9788152	. 68	. 509191	7.18	.490809	6
55	. 488034	6.50	. 978411	. 68	. 509622	7.20	. 490378	5
56	. 4888814	6.50	${ }_{978392}$. 68	. 510054	7.18	. 489946	4
57	. 488814	6.50	978329 978288	. 68	. 510485	7.18	. 48950084	3
58 59	. 489204	6.48	. 9782888	. 68	. 510916	7.17	. 48988654	1
59 60	9.4899982	6.48	.978247 9.978206	88	$\begin{array}{r} .511346 \\ 9.511776 \end{array}$	7.17	10.4888224	${ }_{0}^{1}$
,	Cosine.	D 1'.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.489982	6.48	9.978206	68	9.511776	7.17	10.488224	60
1	. 490371	6.47	. 978165	. 68	. 512206	7.15	. 487794	59
2	. 4907147	6.47	. 978124	. 68	. 512635	7.15	. 487365	58
3	. 491147	6.47	.978083	. 68	.513064	7.15	. 4869936	57
4	. 491535	6.45	.978042 .978001	. 68	.513493	7.13	.486507	56
5 6	. 49192308	6.43	.978001 .977959	. 70	. 513949	7.13	. 486079	55
7	. 492695	6.45	. 977918	. 68	. 514777	7.13	. 485223	54
8	. 493081	6.43	. 977877	. 68	. 515204	7.12	. 484796	52
9	. 493466	6.42	. 977835	. 68	. 515631	7.12 7.10	. 484369	51
10	. 493851	6.42	. 977794	. 68	. 516057	7.10 7.12	. 483943	50
11	9.494236	6.42	9.977752	. 68	9.516484	7.10	10.483516	49
12	. 494621	6.40	. 9777711	. 70	. 516910	7.08	. 483090	48
13	. 495005	6.48	. 9777669	. 68	. 517335	7.10	. 4826665	47
14	. 495388	6.40 6.4	.977628 .977586	. 70	. 5177761	7.08	.4822392	46
15	. 495772	6.37	. 977586	.70	. 51318610	7.07	.481814	45
16	. 4961564	6.38	. 977544	. 68	. 518610	7.07	. 4813996	44
17	. 496919	6.37	. 977461	. 0	. 519458	7.07	. 480966	43
18	. 49797301	6.37	. 977419	. 70	. 519882	7.07	. 480542	42
20	. 497682	6.35	. 977377	. 70	. 520305	7.05	479695	41
21	9.498064		9.977335		9.520728		10.479272	39
22	. 498444	6.33	. $97 \% 293$. 70	. 521151	7.05	. 478849	38
23	. 493825	6.32	. 977251	. 70	. 521573	7.03	. 478427	37
24	. 499204	6.33	. 977209	70	. 521995	7.03	. 478005	36
25	. 499584	6.32	. 977167	\% 0	. 5222417	7.02	. 477583	35
26	. 499963	6.32	. 977125	.70	. 5228388	7.02	. 477162	34
$\stackrel{27}{27}$. 500342	6.32	. 977083	.70	. 523259	7.02	. 476741	33
28	. 500721	6.30	. 977041	. 70	. 5236880	7.00	. 476320	32
29	. 501099	6.28	. 9769999	. 70	. 524100	7.00	. 475900	31
30	. 501476	6.30	. 976957	.72	. 524520	7.00	. 475480	30
31	9.501854		9.976914	.0	9.524940	6.08	10.475060	29
32	. 5022331	6.27	.976872 97683	. $\% 0$. 525359	6.98	. 474641	$2{ }^{2}$
33	. 5026077	6.28	.976830 .976787	. 72	. 525778	6.98	.474222 473803	27
34	. 5029384	6.27	.976787 .976745	. 70	. 52619675	6.97	.473803 473385	26
${ }_{36} 3$. 503360	6.25	.976745 .976702	. 72	. 526615	6.97	. 4733885	25
${ }_{37}^{36}$. 504110	6.25	. 976660	. 70	. $52 \% 451$	6.97	.472967	${ }^{24}$
38	. 504485	6.25	. 976617	. 72	. $52 \% 868$	6.95	. 472132	23
39	. 504860	6.25	. 976574	.72	. 528285	6.95	. 471715	21
40	. 505234	6.23 6.23	. 976532	. 72	. $528 \% 02$	6.95 6.95	. 471298	20
41	9.505608		9.976489		9.529119		10.470881	19
42	. 505981	6.22	. 976446	\%	. 529535	6.93	. 470465	18
43	. 506354	6.22	. 976404	. 2	. 5299951	6.92	. 470049	17
44	. 506727	6.20	. 976361	72	. 530366	6.92	. 469634	16
45	. 507099	6.20	. 976318	.72	. 530781	6.92	. 469219	15
46	. 507471	6.20	. 976275	. 72	. 531196	6.92	. 4688889	14
47	. 507843	6.18	.976232	.72	. 531611	6.90	. 4683897	13
48	. 508214	6.18	.976189 .976146	. 72	. 53324325	6.90	. 467975	12
49	. 508585	6.18	.976146 .976103	. 72	.532439 .532853	6.90	. 467561	11
50	. 508956	6.17	6103	. 72	. 532853	6.88	. 467147	10
51	9.509326		9.976060		9.533266		10.466734	9
52	. 509696	6.15	. 976017	. 72	. 533679	6.88	. 466321	8
53	. 510065	6.15	. 9775974	.73	. 534092	6.87	. 465908	7
54	. 510434	6.15	. 975938	.72	. 534504	6.87	. 465496	5
55	. 510803	6.15	. 9758887	72	. 534916	6.87	${ }_{4} 4654672$	5
56	. 5111540	6.13	. 9758800	. 73	. 535739	6.85	${ }^{.} 46464261$	4
58 58	. 511907	6.12	. 975857	. 72	. 536150	6.85	. 463850	3
59	. 512275	6.13	. 975714	.72	. 536561	6.85	. 483439	1
60	9.512642	6.12	9.975670	13	$9.5369 \% \%$	6.85	10.463028	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.512642		9.975670		9.5369\%2	6.83	10.463028	60
1	. 513009	6.12	. 975687	. 73	. 537382	6.83	. 462618	59
2	. 513375	6.10	. 975583	. 13	537792	${ }_{6}^{6.83}$. 462208	58
8	.513741	6.10	${ }^{.975539}$. 72	. 5388202	6.82	. 461798	57
4	. 514147%	6.08	. 975496	. 73	- $\begin{array}{r}.538611 \\ 539020\end{array}$	6.82	. 46136989	56
6	. 5148837	6.08	. 975458	. 73	. 5339429	6.82	${ }^{460980}$	55 54
7	. 515202	6.08	. 975365	.72	. 539837	6.80	. 460163	53
8	. 515566	${ }_{6}^{6.07}$. 975321	${ }_{73} 7$. 540245	6.80 6.80	459755	52
9	. 515930	6.07 6.07	. 975277	. 73	. 540653	6.80 6.80	. 459347	51
10	. 516294	6.07 6.05	. 975233	. 73	. 541061	6.80 6.78	. 458939	50
11	9.516657	6.05	9.975189	73	9.541468	6.78	10.458532	49
12	. 517020	6.05 6.03	. 975145	. 73	. 541875	6.78 6.77	. 458125	48
13	:517382	6.05	. 975101	. 73	. 542281	6.78	. 457719	47
14	. 517745	6.03	. 97505013	. 73	. 542688	6.78	. 457312	46
15	.518107	6.02	. 975013	. 73	. 5433094	6.75	. 456906	45
16	. 51848829	6.02	.974969 .974925	.73	. 5434999	6.77	. 456501	44
18	. 519190	6.02	. 974880	. 75	. 544310	6.75	. 455690	42
19	. 519551	6.02 6.00	. 974836	. 73	. 544715	6.75	. 455285	41
20	. 519911	6.00 6.00	. 974792	. 73	. 545119	6.73	. 454881	40
21	9.520271	6.00	9.974748		9.545524		10.454476	39
22	. 520631	6.00	. 974703	. 73	. 545928	6. 72	. 454072	38
23	. 520990	5.98 5.98	. 974659	. 73	. 546331	6.73	. 453669	37
24	. 521349	5.98	. 974614	. 73	. 546735	6.73 6.72	. 453265	36
25	.521707	5.98	. 974570	. 75	. 547138	6.70	. 452862	35
26	. 522066	5.97	. 974585	. 73	. 547540	${ }_{6.72}$. $45 \% 460$	34
27	. 522424	5.95	. 974481	. 75	547943	6.70	. 452057	33
29	.522781	5.95	. 974436	. 75	. 5487847	6.70	㖪 51655	32
30	. 5234385	5.95	. 9743917	. 73	. 549149	6.70	. 450851	31 30
31	9.523852		9.974302		9.549550		10.450450	29
32	. 524208		. 974257	75	. 549951	6.68	. 450049	28
33	. 524564	5.93 5.93	. 974212	45	.550352	6.68	. 449648	27
34	. 524920	5.93	. 974167	75	.550752	${ }_{6}^{6.68}$. 449248	26
35	. 525275	5.92	. 974122	75	. 551153	6.68 6.65	. 448847	25
36	. 525630	5.90	. 974077	. 75	. 551552	6.65 6.67	. 448448	24
37	. 525984	5.92	. 974032	. 75	. 551952	6.65	. 448048	23
38	. 526339	5.90	. 973987	. 75	. 552351	6.65 6.65	. 447649	22
39	. 526693	5.88	. 973942		. 552750	6.65	. 447250	21
40	. 527046	5.80	. 973897	.75	. 553149	6.65 6.65	. 446851	20
41	9.527400		9.973852		9.553548		10.446452	19
42	. 587753	5.88 5.87	. 9738807		. 5539946	6.63 6.63	. 4446054	18
43	. 528105	5.87 5.88	. 973761	.75	. 554344	6.63 6.62	. 445656	17
44	. 528458	5.88	. 973716	. 75	. 554741	6.63	. 445259	16
45	. 528810	5.85	. 973671	. 77	. 555139	6.63 6.62	. 444861	15
46	. 529161	5.87	. 973625	. 75	. 5551536	6.62	. 444464	14
47	. 529513	5.85	. 9735880	.75	. 5559333		. 444067	13
48	. 5298864	5.85	. 9735355	77	. 5563329	6.60	. 4436671	12
49	. 530215	5.8 5.83	.973489 .973444	.75	. 5567725	6.60 6.60	$\begin{array}{r}443275 \\ \hline 42879\end{array}$	11
50	. 530565	5.83	. 973444	. 77	. 557121	6.60	. 442879	10
51	9.530915		9.973398		9.557517		10.442483	9
52	. 531265	5.82	${ }^{.973352}$. 75	. 5579313	6.58	. 4442087	8
53	. 531614	5.82	. 973307	. 77	. 5588308	6.58	. 441692	7
54	. 531963	5.82	. 973261	. 77	. 5587038	6.57	. 441297	6
55	. 532312	5.82	${ }^{.973215}$	77	. 559097	6.57	. 44090909	5
56	. 532661	5.80	.973169 .973124	75	. 55594988	6.57	. 440509	4
58	. 53333509	5.80	. .973124	. 77	. 5650279	6.57	. 4349721	3
59	. 533704	5.78	. 973032	. 77	. 560673	6.57	. 439327	1
60	9.534052	5.80	9.972986	77	9.561066	6.55	10.438934	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Taing.	7

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
-	9.534052		9.972986		9.561066		10.438934	60
1	. 534399	5.78	. 972940	. 77	. 561459	6.55 6.53	. 438541	59
2	. 534745	5.78	. 972894	. 77	. 561851	6.55	.438149	58
3	. 535092	5.77	. 972848	. 77	. 562244	6.53	. 437756	57
4	. 535438	5.75	. 972802	. 78	. 5626336	6.53 6.53	. 437364	56
5	. 535783	5.77	. 972755	. .77	. 563028	6.52	.43697\%	55
6	. 536129	5.75	. 972709	. 77	. 563419	6.53	. 436581	54
7	. 536474	5.73	. 972663	.77	. 5638811	6.52	. 436189	53
9	. 5368168	5.75	.972617 972570 8	. 78	. 5642028	6.52	. 435798	52
10	. 537507	5.73	. 972524	. 77	. 564983	6.50	. 435407	51
11	9.537851		9.972478		9.565373		10.434627	9
12	. 538194		. 972431	. 77	. 565 \%63	6.5	. 434237	48
13	. 5385388	5.70	. 972385	. 78	. 566153	6. 6.48	. 433847	47
14	. 538880	5.72	. 972338	. 78	. 566542	6.50	. 433458	46
15	. 539223	5.70	. 972291	. 77	. 566932	6.47	. 433068	45
16	. 539565	5.70	. 972245	.78	. 567320	6.48	. 432680	44
17	. 539907	5.68	. 972198	.78	. 567709	6.48	. 432291	43
18	. 540249	5.68	. 972151	. 77	. 568098	6.47	. 431902	42
19	. 540590	5.68	.972105 .972058	. 78	.568486 .568873	6.45	. 431514	41
20	. 540931	5.68	. 972058	. 78	. 568873	6.47	. 431127	40
21	9.5412\%2		9.972011	.78	9.569261		10.430739	39
22	. 541613	5.68	. 971964	. 78	. 569648	6.45	. 430352	38
23	. 541953	5.67	. 971917	. 78	. 500035	6.45	. 429965	37
24	. 542293	5.65	. $9718{ }^{\text {a }} 0$. 78	. 570422	6.45	. 429578	36
25	. 542632	5.65	. 971823	. 78	. 570809	6.43	. 429191	35
26	. 542971	5.65	. 971776	. 78	.571195	6.43	. 428805	34
27	. 543310	5.65	. 971789	.78	. 571581	6.43	. 428419	33
28	. 543649	5.63	. 971682	. 78	. 571967	6.42	. 4288033	32
29	.543987	5.63	.971635 .971588	. 78	. 572352	6.43	. $42 \sim 648$	31
30	. 544325	5.63	. 971588	. 80	.572738	6.42	. 427262	30
31	9.544663		9.971540		9.573123		10.426877	29
32	. 545000	5.63	. 971493	. 78	. 573507	6.42	. 426493	28
33	. 545338	5.60	. 971446	. 80	. 573892	6.40	. 426108	27
34	. $5456 \pi 4$	5.62	. 971398	. 78	. 574276	6.40	. 425724	26
35	. 546011	5.60	. 971351	. 80	. 574660	6.40	. 445340	25
36	. 546347	5.60	.971303 971256	. 78	. 575044	6.38	. 424956	24
37	. 546683	5.60	.971256 .971208	. 80	. 575427810	6.38	424573 424190	23
38	. 547019	5.58	. 9712081161	.78	. 515810	6.38	. 42419380	21
39	. 547354	5.58	. 971113	. 80	. 576576	6.38	. 4233824	21
40	. 547689	5.58	. 971113	. 78	. 5160 6	6.38	.423424	20
41	9.548024		9.971066		9.576959		10.423041	19
42	. 548359	5.58	. 971018	. 80	. 577341	6.37	. 422659	18
43	. 548693	5.57	. 970970	. 80	. 577723	6.35	. 4222277	17
44	. 549027	5.55	.970922	. 80	. 578104	6.37	. 421896	16
45	. 549360	5.55	.970874	. 78	. 578486	6.35	. 421514	15
46 47	.549693 .550026	5.55	. 970827	. 80	. 5788867	6.35	. 421133	14
47	. 550026	5.55	.970749	. 80	. 579248	6.35	.420752	13
48	. 550359	5.55	. 970731	. 80	. 5796829	6.33	. 420371	12
49	. 550692	5.53	. 970683	80	. 580009	6.33	.419991	11
50	. 551024	5.53	. 970635	. 82	. 580389	6.33	. 419611	10
51	9.551356		9.970586	80	9.580769	6.33	10.419231	9
52 53	. 5551687	5.52	. 970538	. 80	. 581149	6.33 6.32	. 418851	8
53	. 552018	5.52	. 970490	. 80	. 5815158	6.32	. 418472	7
54	. 552349	5.52	. 970442	. 80	.581907	6.32	.418093	6
55	. 552680	5.50	. 9703934	. 82	. 582286	6.32	. 417714	
56	. 553010	5.52	. 970345	. 80	. 582665	6.32	. 417335	4
57	. 553341	5.48	. 970297	. 80	. 583044	. 30	. 416956	$\stackrel{3}{3}$
58	. 553670	5.50	. 970249	. 82	. 58383820	6.30	. 416578	2
59	. 554000	5.48	. 970200		. 583800	6.28	. 416200	1
60	9.554329	5.48	9.970152	80	9.584177	6.28	10.415823	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	. $1^{\prime \prime}$.	Cotang.	. 1^{\prime}.	Tang.	,

COSINES, TANGENTS, AND COTANGENTS.

	Sine.	D. 1°.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1°.	Cotang.	
0	9.554329		9.970152		9.584177		10.415823	
1	. 55546588	5.48 5.48	$\begin{array}{r} 97010 \\ .970055 \end{array}$. 80	$\begin{array}{r} 584555 \\ .584932 \end{array}$	6.38 6.28	.415445	59 58
$\stackrel{2}{3}$. 555583815	5.47 5.47	.9700006	.82	. 5885309	6.28 6.28	. 414691	${ }_{57}^{58}$
	. 5555643	${ }_{5}^{5.47}$. 9699957	88	. 5858686		. 414314	56
5	. 5555971	5.5	. 9669909	. 82	. 58860682	6.27 6.28	. 413938	55
${ }_{7}^{6}$. 5556299	5.45 5.45	. 96998680	. 82	. 58864389	6.27	${ }_{4} .41356185$	${ }_{53}^{54}$
7	. 5.5569653	5.45	. 96968711	82	. 5887190	6.25	. 41312810	53 52 5
9	. 557280	5.45 5.43	.969714	. 80	. 5875656	6.27 6.25	. 412434	51
10	. 5556006	5.43 5.43	. 969665	.82	. 587941	6.25 6.25	. 412059	50
11	9.557932	5.43	9.969616	. 82	9.5888316	6.25	10.4111884	49
12	. 55882	5.42		82	. 5888991	6.25	. 411309	
13	. 558585838	5.43	. 9669518	82	. 5889440	6.23	${ }^{.} 4109334$	${ }_{46}^{47}$
14	. 559234	5.42	.9694420	83	. 5898814	${ }_{6}^{6.23}$. 410186	45
16	. 559558	5.40 5.42	.969370	${ }_{82}^{83}$. 590188	6.23	. 409812	44
17	. 559883		. 969321	.82	. 5905682	6.23	. 409438	43
18	. 560207	5.40	.9692722	.82	. 5909335	6.22	. 409065	${ }_{41}^{42}$
19	. 5660531	5.40	${ }^{.9692923}$. 83	. 591308	6.22.	.408692 .40819	${ }_{40}^{41}$
20	. 560855	5.38	. 969173	82	. 591681	6.22	. 408319	
21	9.561178	5.38	9.969124		9.5992054	6.20	10.407946	
22	5615	5.38	. 9699075	. 83	. 59927496	6.22	. 407574	${ }_{37}^{38}$
24	. 5621814	5.37	. 9689976	. 82	.59317\%	6.20	. 406889	${ }_{36}$
25	. 562468	5.37	. 968926	. 83	. 593542	6.18	. 406458	35
26	. 562790	${ }_{5}^{5.37}$. 968887	.82	. 593914	${ }_{6} 6.18$. 406086	34
27	. 563112	5.35	. 968827	.83	. 594285	6.18	. 405715	33
28	. 563433		. 9688777	.82	. 5946565		. 4053544	${ }_{31}^{32}$
	. 563755	${ }_{5.33}^{5.35}$.968728	.83	.595027 .59398	6.18	.404973 .404602	${ }_{30}^{31}$
30	. 564075	5.35	8	. 83	. 595398	6.17	. 404602	
31	9.564396	5.33	9.968688	. 83	9.595\%68	6.17	10.404232	
${ }_{33}^{32}$. 564	5.33	. 9688578	. 83	. 5996138	6.17	${ }_{403492}$	${ }_{28}^{28}$
34	. 5653	${ }^{5.33}$.9688479	82	. 5969888	6.17	. 4031234	${ }_{28}^{27}$
35	. 5656676	${ }_{5}^{5.33}$. 968429	.83	. 597247	6.15	.402753	25
36	. 565995	5.32	. 968379	.83	. 597616	6.15	. 402384	${ }^{24}$
37	. 566314	5.30	. 9688329	. 85	. 5979885	6.15	. 402015	${ }_{2}^{23}$
38	. 5666383	5.32	${ }^{.96882788}$. 83	. 5988357	6.13	. 401646	${ }_{21}^{22}$
40	. 5672669	5.30	. 9688178	. 83	. 599991	${ }_{6}^{6.15}$. 400909	20
41	9.567587		9.968128		9.599459		10.400541	19
42	. 567904	5.30	. 968078		. 599827	${ }_{6}^{6.12}$. 400173	18
43	. 5688222	5.28	. 9688027	.83	. 600194	6.13	. 3999806	17
44	. 5683393	5.28	.967977	. 83	.600562	6.12	. 3999438	18
45	. 56888596	5.27	.967927	. 85	.600329	6.12	. 3999871	15
47	. 569488	5.27	. 966828	. 83	. 601663	${ }^{6.12}$. 398337	13
48	. 569804	5.27	. 967775	.$_{83}$. 602029	${ }_{6}^{6.10}$. 397971	12
49	. 570120	5.25	. 967725		. 602395	6.10	. 397605	11
50	. 570435	5.27	. 967674	.83	. 602761	6.10	:397239	10
51	9.570751		9.967624		צ.603127		10.3968	9
52	. 571066	5.23	. 967573	. 85	${ }^{603493}$	6.10 6.08	. 396507	
53 54 5	. 57713895	5.25	.967522	. 85	${ }_{6}^{603858}$	6.08	${ }_{395777}^{39614}$	7
55	. 572009	${ }_{5}^{5.23}$. 9667421	83	. 6045888	6.08	${ }_{395412}$	5
56	. 572323	5.23	.967370	85	604953	${ }_{6}^{6.08}$	395047	4
57	. 572636	5.23	. 967319	.85	. 605317	6.08	394683	3
58	.572950	5.22	..$_{9672688}$	85	. 6056888	6.07	${ }_{393954}^{39438}$,
60	${ }_{9} .57326375$	5.20	${ }_{9.967166}$	85	${ }^{\text {9 }}$ 9.6066410	6.07	10.393590	0
	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1^{1}	Cotan		Tan	

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1°.	Cotang.	,
0	9.5\%35\%5		9.967166		9.606410		10.393590	60
1	. 573888	5.22	. 967115	. 85	. 606773	6.05	. 393227	59
2	. 574200	5.20	. 967064	. 85	. 607137	6.07	. 392863	58
3	. 574512	5.20 5.20	. 967013	. 87	. 607500	6.05	. 392500	57
4	. 574824	5.20	. 966961	. 85	. 607863	6.03	. 392137	56
5	. 575136	5.18	. 966910	. 85	. 608225	6.05	. 391775	55
6	. 575447	5.18	. 9668859	. 85	. 608588	6.03	. 391412	54
8	. 575758	5.18	. 96668756	. 87	. 608950	6.03	. 391050	53
9	. 576379	5.17	. 966605	. 85	. $60986{ }^{\text {a }}$	6.03	. 390688	52
10	. 576689	5.17	. 966653	. 87	. 610036	6.03	. 389964	50
11	9.576999		9.966602		9.610397		10.389603	49
12	. 577309	5.17	. 966550	87	. $610 \% 59$. 3	. 389241	48
13	. 577618	5.15	. 966499	87	. 611120	6.02	. 288880	47
14	. 577927	5.15	. 966447	. 87	. 611480	6.02	. 388520	46
15	. 5788236	5.15	. 966395	. 85	. 611841	8	. 388159	45
16	. 578545	5.13	. 966344	. 87	. 612201	6.00	. 387799	44
17	. 578853	5.15	. 966292	. 87	. 612561	6.00	. 387439	43
18	. 579162	5.13	. 966240	. 87	. 612921	6.10	. 387079	42
19	. 579470	5.12	. 966188	. 87	. 613281	6.00	. 386719	41
20	. 579777	5.13	. 966136	. 85	. 613641	5.98	. 386359	40
21	9.580085	5.12	9.966085		9.614000		10.386000	39
22	.580392	5.12	. 966033	. 87	. 614359	5.98	. 385641	38
23	. 580699	5.10	. 965981	. 87	. 614718	5.98	. 385282	37
24	.581005	5.12	. 965929	. 88	. 615077	5.97	. 384923	36
25	. 581312	5.10	. 965876	. 87	. 615435	5.97	. 384565	35
26	. 581618	5.10	. 9655872	. 87	. 61516151	5.97	. 38428849	34
27	. 581924	5.08	. 965720	. 87	. 616509	5.97	. 3838491	33
29	. 5825335	5.10	. 965668	. 87	. 616867	5.97	. 383133	31
30	. 582840	5.08	. 965615	88	. 617224	5.95	. 38276	30
31	9.583145		9.965563		9.617582		-0.382418	20
32	. 583449	5.08	. 965511	. 88	. 611939	$\stackrel{5}{5} .93$. 382061	28
33	. 583754	5.07	. 965458	. 87	. 618295		. 381705	27
34	. 584058	5.05	. 965406	. 88	. 918652	5.95 5.93	. 381348	26
35	. 584361	5.07	. 965353	$8{ }^{7}$. 619008	5.93	. 380992	25
36	. 584665	5.05	. 965301	88	. 619364	5.93	. 380636	24
37	. 584968	5.07	. 965248	88	. 619720	5.93	. 380280	23
38	. 585272	5.03	. 965195	.87	. 620076	5.93	. 379924	22
39 40	. 5855574	5.05	. 965143	88	. 620432	5.92	. 379568	21
40	. 585877	5.03	965090	. 88	.620787	5.92	. 379213	20
41	9.586179	5.05	9.965037		9.621142	5.92	10.378858	19
42	. 586482	5.02	. 964984	. 88	. 621497	5.92	. 378503	18
43	. 586783	5.03	. 964931	. 87	. 621852	5.92	. 378148	17
44	. 587085	5.02	. 964879	. 88	.622207	5.90	. 377793	16
45	. 587386	5.03	. 964826	88	. 622561	5.90	. 377439	15
46	. 5876888	5.02	. $964 \% 73$. 88	. 622915	5.90	. 37085	14
47	. 5879898	5.00	. $964 \% 20$. 90	. 623269	5.90	.3\%6\%31	13
48	. 5888289	5.02	. 96464613	88	. 623623	5.88	${ }^{3763 \% 7}$	12
49	. 58888890	5.00	. 96464560	. 88	.623966	5.90	. 316024	11
50	. 588890	5.00	. 964560	. 88	. 624330	5.88	. 375670	10
51	9.589190	4.98		. 88		5.88	10.375317	9
52	. 5889489	5.00	. 9664454	. 90	. 625036	5.87	. 374964	8
53 54	. 589789	4.98	.964400 .964347	. 88	. 625388	5.88	.374612 .374259	7
55	. 590387	4.98	. 964294	. 88	. 626093	5.87	. 373907	5
56	. 590686	4.98	. 964240	90	. 626445	5.87	. 373555	4
57	. 590984	4.97	. 964187		. 626797	5.87	. 373203	8
58	. 591282	4.97	. 964133	. 88	. 627149	5.87	. 372851	2
59	. 591580	4.97	. 964080	. 90	. 627501	5.85	. 372499	1
60	$9.5918 \% 8$		9.964026		9.627852		10.372148	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.591878		9.964026		9.627852		10.372148	
1	. 592176	4.97	. 963972	. 88	. 628203	5.85	. 371797	9
2	. 592473	4.95	. 963919	. 90	. 628855	5.85	. 371416	8
3	. 5927770	4.95	. 963885	. 90	. 628905	5.83	. 371095	5
4	. 593067	4.93	. 963811	. 90	629255	5.85	. 370745	56
5	. 5933663	4.93	. 9633757	. 88	.629606	5.83	. 370394	5
6	. 59338959	4.93	. 96383650	. 90	. 6299956	5.83	. 370044	53
8	. 594251	4.93	. 9635596	. 90	. 6306506	5.83	. 3696934	5
9	. 594547	4.93	. 963542	. 90	. 631005	5.82	. 368995	51
10	. 594842	4.92	. 963488	.90	. 631355		. 368645	50
11	9.595137		9.963434	92	9.631704		10.368296	49
12	. 595433	92	. 963379	. 90	. 632053	5.82	. 367947	48
13	.59572\%	4.90	. 963325	. 90	. 632402	5.80	. 367598	47
14	. 596021	4.90	. 963271	. 90	. 632750	5.82	.367250	46
15	. 596315	4.90 4.90	. 963217	. 90	. 6333099	5.80	. 366901	45
16	. 596609	4.90	. 963163	. 92	. 633447	5.80	. 366553	44
17	. 596903	4.88	. 963108	. 90	. 6337145	5.80	. 366205	
18	. 597196	4.90	. 963054	. 92	. 634143	5.78	.365857	41
19	. 597490	4.88	. 9629299	. 90	. 6344930	5.80	.365510	41
20	. 597783	4.87	. 962945	. 92	. 634838	5.78	. 365162	40
21	9.598075		9.962890		9.635185		10.364815	39
22	. 59883688	4.88	. 9682836	. 92	.635532 .635879	5.78	. 364468	38 38
23	. 5988660	4.87	.962781 .96927	.90	.635879 .636226	5.78	. 364121	37 36
24	.598952	4.87	. 963727	.92	. 636226	5.77	. 3636374	35
22	. 593536	4.87	. 962617	. 92	. 636919	5.78	. 363081	3
27	.59982?	4.85	. 962502	. 92	. 637265	5.77	. 362735	34 33
28	. 600118	4.80	. 962503	9	. 637611	$5 . \%$. 362389	32
29	. 600403	4.85	. 962453	.92	. 637956	5.77	. 362044	31
30	. 600703	4.83	. 962398	. 92	. 638302	5.75	. 361698	30
31	9.600930	4.83	9.962343		9.638647	5.75	10.361353	29
32	. 601280	4.83	. 96.2288	. 92	. 6389932	5.75	. 361008	28
33	. 601570	4.83	. 9622333	.92	. 6393337	5.75	. 360663	27
84	. 601860	4.83	. 9662178	. 92	. 639682	5.75	. 360318	26
35	. 602150	4.82	. 9662123	. 93	. 6400271	5.73	. 359973	25
36 37	.6024	4.82	. 962012	. 92	. 640716	5.75	. 359284	24
33	. 603017	4.82	. 961957	. 92	. 641060	5.73	. 358940	2
39	. 603305	4.80	. 961902	. 92	. 641404	5.73	. 358596	21
40	. 603594		. 961846	. 93	. 641747		. 358253	2
41	9.603883		9.961791		9.642091		10.357909	19
42	. 604170	4.78	. 961735	.93	. 642431	5.72	. 357566	13
43	. 604157	4.80	. 931630	. 93	. 642777	5. ${ }^{\text {5 }}$. 357223	17
44	. 601745	4.78	. 961624	. 92	. 643120	5.72	. 356880	
45	. 605032	4.78	. 961569	. 93	. 643463	5.72	. 356537	15
43	. 605319	4.78	. 9661458	.92	. 64381148	5.\%	. 356194	14
47	. 605606	4.77	. 961408	. 93	. 644148	5.70	-355852	13
48	. 605179	4.78	. 961346	. 93	. 644838	5.70	. 355168	11
50	. 606465	4.77	. 961290	93	. 645174	5.70	. 3541826	11
51	9.606751	4.77	9.961235	. 92	9.645516	5.70	0.354484	
52	. 607036	4.75	. 961119	93	. 61.65857	5.68	10.354143	
53	. 607322	4.77	. 961123	93	. 616199	5.70	. 353801	
54	. 607607	4.	. 961067	93	. 646540	5.68	. 353460	
55	. 607892	4.75	. 961011	93	. 646881	5.68	. 353119	
56	. 608177		. 960955	. 93	. 647232	5.67	.3527\%8	
57	. 608461	4.73	. 960899	.93	. 647562	5.68	. 352438	
58	. 608745	4.73	. 960843	.93	. 647903	5.67	.352097	
59	. 609029	4.73	960786	93	. 648243	$\stackrel{5}{5.67}$. 351757	
60	9.609313	4.73	9.960730	. 93	9.648583	5.68	10.351417	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.609313		9.960730		9.648583		10.351417	60
1	. 6095987	4.73 4.72	. 9606674	. 93	. 648983	5.67	. 351077	59
$\stackrel{2}{3}$. 6098880	4.73	. 960618	. 95	. 649263	5.65	. 350737	58
3 4	. 610164	4.72 4.72	.960561 .960505	.93	. 649602	5.67	. 350398	57
5	. 610729	4.70	. 960448	. 95	. 650281	5.65	. 3549719	56 55
6	. 611012	4.72 4.70	. 960392	. 93	. 650620	5.65	. 349380	54
7	. 611294	4.70	. 960335	. 95	. 650959	5.65 5.63	. 349041	53
8	. 611576	4.78	. 960279	. 95	. 651297	5.63	. 348703	52
9	. 611858	4.70	. 960222	. 95	. 651636	5.65 5.63	. 348364	51
10	. 612140	4.68	. 960165	. 93	. 651974	5.63	. 348026	50
11	9.612421	4.68	9.960109	. 95	9.652312		10.347688	49
12	. 612702	4.68	. 960052	. 95	. 652650	5.63	. 347350	48
13	. 612983	4.68	. 9599995	. 95	. 6529888	5.63	. 347012	47
14	. 613264	4.68	. 9599388	. 93	. 6533326	5.62	. 346674	46
15	. 613545	4.67	. 9598982	. 95	. 6536633	5.62	. 346337	45
17	. 61314105	4.67	. 95959768	. 95	. 65434337	5.62	. 3456000	44
18	. 614385	4.67	. 959711	. 95	. 654684	5.62	. 345326	42
19	. 614665	4.67 4.65	. 959654	. 97	. 655011	5.62	. 344989	41
20	. 614944	4.65	. 959596	. 95	. 655348	5.60	. 344652	40
21	9.615223	4.65	9.959539	. 95	9.655684	5.60	10.344316	39
22	. 615502	4.65	. 959482	. 95	. 656020	5.60	. 343980	38
23	. 615781	4.65	. 959425	. 95	. 6556356	5.60	. 343644	37
24	. 616060	4.63	. 959368	. 97	. 656692	5.60	. 343308	36
25	.616338	4.63	. 959310	. 95	. 657028	5.60	. 342972	3.5
26	. 616616	4.63	. 95959195	. 97	. 657699	5.58	. 342301	31
27	. 616894	4.63	. 95959138	. 95	. 658034	5.58	${ }^{3} 311966$	3.3)
28	. 6171750	4.63	. 959080	97	. 658369	5.58	. 341631	31
30	. 6177727	4.62	. 959023	95	. 658704	5.58	. 341296	30
31	9.618004		9.958965		9.659039		10.340961	29
32	. 618881	4.62	. 958908	. 97	. 659373	5.57	. 340627	28
33	. 618558	4.62 4.60	. 958850	.97	. 659708	5.58	. 340292	27
34	. 618834	4.60 4.60	. 958792	.97	. 660042	5.57	. 339958	26
35	. 619110	4.60 4.60	. 958734	.95	. 660376	5.57	. 339624	25
36	. 619386	4.60 4.60	. 958677	. 97	. 660710	5.55	. 339290	24
37	. 619662	4.60 4.60	.958619	. 97	. 661043	5.57	. 338957	23
38	. 619938	4.58	. 958561	. .97	. 661317	5.55	. 3388823	$2{ }_{21}$
39	. 620213	4.58	. 958503	. 97	. 661710	5.55	. 338290	21
40	. 620488	4.58	. 958145	. 97	. 662043	5.55	. 337957	20
41	9.620763	4.58	9.958387	. 97	9.6623376		10.337624	19
42	. 621038	4.58	. 9588329	. 97	. 662709	5.55	. 337291	18
43	. 621313	4.57	. 958271	. 97	. 6633042	5	. 3336958	17
44	. 621587	4.57	. 95881513	. 98	.663375 .663707	5.53	. 336685	16
45	. 621861	4.57	. 9558154	. 97	. 6664039	5.53	. 3336293	15
46	. 622135	4.57	. 9588096	. 97		5.53	. 3355961	113
47	. 62242409	4.55		. 98	. 6664371	5.53	. 335629	12
48	. 6222682	4.57	. 957979	. 97	. 6665035	5.53	. 3334297	11
49	. 62239229	4.55	. 95797863	. 97	. 6665366	5.52	. 3344634	10
51	9.623502	4.55	9.957804	. 98	9.665698	5.53	10.334302	9
52	9.623774	4.53	9.957846	. 97	. 666029	5.52	10.333971	8
53	. 624047	4.55	. $95 \% 687$.98	. 666360	5.52	. 3333640	7
54	. 624319	4.53	. 957628	. 97	. 666691	5.50	. 333309	6
55	. 624591	4.53	. 9575%	. 98	.667021	5.52	. 332979	5
56	. 624863	4.53	. 957511	. 98	. 6677352	5.50	. 332648	4
57	. 625135	4.52	. 957458	. 98	. 6668013	5.52	. 33231987	$\stackrel{1}{2}$
59	. 6225677	4.52	. 957335	97	. 668343	5.50	. 331657	1
60	9.625948	4.52	9.957276	. 98	9.668673	5.50	10.331327	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

COSINES, TANGENTS, AND COTANGENTS.

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{\prime}.	Cotang.	
0	9.625948		9.95\%276		9.668673		10.331327	60
${ }_{2}^{1}$. 6226219	${ }_{4}^{4.52}$. 9557217	. 98	. 6669002	5.48	. 3383998	59 58 5
2	. 68264760	4.50	. 9557158	. 98	. 666933681	5.48	. 333063838	58 57
4	. 627030	4.50 4.50	.957040	.98	.669991	${ }_{5}^{5.50} 5$. 330009	56
5	. 6273300	4	. 9559981	1.08 1.08	. 6703230	${ }^{5.48}$.329960	55 54 54
${ }_{7}^{6}$. 6278580	4.50	${ }^{.9569862}$. 98	${ }_{6}^{670649}$	5.47	${ }_{3} 32935023$	54 53
8	. 62888109	4.48	. 95568803	. 98	. 6771306	5.48	${ }_{328694}$	53 58 58
9	. 628378	4.48	. 9566744	+.98	. 671635	${ }_{5}^{5.48}$. 32383694	51
10	. 628647	4.48 4.48	. 956684	1.00	. 671963	5.47 5.47	. 328037	50
11	9.628916	4.48	9.956625	98	9.672291	5.4	10.327\%09	49
12	.629185	4.47	${ }_{9} 95655$	1.00	${ }_{6}^{672619}$	5.47	327381	
13	${ }^{.629153}$	4.47	. 955656447	. 98	.673274	5.45	${ }_{326726}$	48
15	. 629988	4.47	. 9563887	1.00	. 673602	5.47	. 3263398	45
16	.630257	4.48	.956327	1.00	. 673929	5.45	. 326071	44
17	. 630524	4.47	. 9562688	1.00	. 674257	5.45	5743	43
18	. 63310792	4.45	. 956208	1.00	. 67749811	5.45	. 325416	$4{ }_{41}^{42}$
19	. 6331326	4.45	. 9.956088	98	. 6752378	5.43	. 3234763	40
21	9.631593	4.45	9.956029	1.00	9.675564	5.45	10.324436	39
2	. 631859	4.43	9.956029	1.00	$\begin{array}{r}9.665890 \\ \hline\end{array}$	5.43 5.45	- .324110	
23	.6321225	4.45	.955909	1.00	${ }^{676217}$	5.45 5.43	. 3233783	${ }_{36}^{37}$
24	. 6332392	4.43	. 955849	1.00	.676543	5.43	.323457	36
25	${ }_{6} 63262653$	4.42	955899	1.00	. 6771989	5.42	. 3233131	
26	. 6339293	4.43	. 9555669	1.00	.677520	5.43	. 32328806	${ }_{33}^{34}$
27	. 63331859	4.42	.9556699	1.00	.677524	5.43	. 3222485	${ }_{32}$
28	. 633354	4.42	.955609	. 98	.67846	5.42	. 322154	${ }_{31}^{32}$
	${ }^{6} 633719$	4.42	. 9555488	1.00	${ }^{.6888496}$	5.42		31 30
30	633984	4.42	. 955488	1.00	. 688496	5.42	. 321504	
31	9.634249	4.42	9.955428	1.00	9.678821	5.42	10.321179	$\stackrel{29}{29}$
${ }_{33}$. 634778	4.40	. 9555307	1.02	.679771	5.42	${ }_{32529}$	
${ }_{34}$. 635042	4.40	. 955247	1.00	.679795	5.40	${ }_{320205}$	26
	. 63530	4.40	. 9555186	1.02 1.00	. 680120	5.42 5.40	. 319880	25
$\stackrel{36}{36}$.6355770	4.40	${ }^{.955126}$	1.02	. 6880444	5.40	. 3195956	$\stackrel{24}{23}$
38	. 6336097	4.38	.9550005	1.00	. 681092	5.40	. 318908	22
39	. 636360	4.38 4.38	. 954944	1.02	. 681416	5.40	. 318584	21
40	.636623	4.38	. 954883	1.00	. 681740	${ }^{5} 5.88$. 318260	20
41	9.636886	4.37	9.954823	1.02	9.6882063	5.40	10.317937	19
	637148	4.38	9547	1.02		5.38	. 317	18
43	. 637411		.954701	1.02	. 688710	5.38	. 317290	17
44	637673	4.37	. 954640	1.02	.683033	5.38	. 316967	16
	${ }^{637935}$	4.37	. 954579	1.02	.683335	5.38	. 316644	15
46	638197	4.35	. 954515	1.02	. 683679	5.37	. 3153831	14
47	. 638458	4.37	.954457	1.02	. 684001	5.38	. 3159999	13
4	. 6389881	4.35	. 9543355	1.02	. 68464346	5.37	. 315354	11
50	. 639242	${ }_{4}^{4.35}$. 954274	1.02	. 684968	${ }_{5}^{5.37}$. 315032	10
51	9.639503		9.954213		9.685290		10.314710	
52	. 639764	${ }_{4.33}^{4.35}$. 954152	1.03	. 6856512	5.37	. 3143888	8
	. 6400024	4.33	. 954090	1.02	.685934	5.35	. 314066	
54	. 640284	4.33	. 95402929	1.02	.686255	5.37	. 31313454	5
55	. 640544	4.33	. 95339698	1.03	.686577	5.35	. 31313423	5
${ }_{5}^{56}$. 6411064	4.33	. 95338906	1.02	.686898	5.35	. 312781	${ }_{3}^{4}$
58	. 641324	${ }_{43}^{4.33}$. 953783	1.03	. 687540	5.35	. 312460	2
59	641583	4.32	53722	1.03	. 6888881	5.35	. 312139	1
60	9.641842		9.953660		9.688182		10.31	
,	Cosine.	D. 1°.	Sine.	D. 1^{*}.	Cotang	D. ${ }^{\prime \prime}$.	Tang.	

TABLE XII. LOGARITHMIC SINES,

	Sine.	D. 1°.	Cosine.	D. 1^{\prime}.	Tang.	D. 1^{\prime}.	Cotang.	
	9.6418	4.32	9.953660	1.02	9.688182		10.311818	60
$\stackrel{1}{2}$	${ }_{.642360}$	4.32	. .9535399	1.03	. 6888002	5.32	.311498 .31117	59
3	. 612618	4.30 4.32	. 9353475	1.03	. 68898143	${ }_{5}^{5.33}$. 3111777	${ }_{57}^{58}$
4	. 642887	${ }_{4}^{4.30}$. 9533413	1.03	. 689463	5.33 5.33 5	. 310537	5
5	${ }^{.643135}$	4.30	${ }_{9}^{.9533529}$	1.03	. 689783	${ }_{5} .33$. 310217	5.5
$\stackrel{6}{7}$	${ }_{.}^{643650}$	4.28	. 99532288	1.03	.690103	5.33	. 309897	54
	. 68390	4.30 4.28	.953166	${ }_{1}^{1.03}$.690r42	5.32	-309958	53
	. 644165		. 953104	${ }_{1}^{1.03}$.691062	5.33	. 308938	5
10	. 644423	4.28	. 953042	1.03	. 691381	$\stackrel{5}{5.32}$. 308619	50
11	9.644680		9.952980		9.691700		10.308300	49
,	${ }^{.644936}$	4.23	${ }^{952918}$	1.05	. 6992019	5.32	. 307981	48
13	. 64519150	4.28	-952855	1.03	${ }^{.6923388}$	5.30	. 307668	47
14	. 64454500	4.27	. 95922731	1.03	.6926975	5.32	. 30734	46
15	. 645962	4.27		1.03	. 6993293	5.30	. 307025	45
16	. 6461918	4.27	. ${ }^{9552606}$	1.05	-693612	5.32	. 3060607	44
18	. 6464174	4.	. 9525244	1.03	.6939330	5.30	. 3063888	43
19	. 646729		. 952481	1.05	. 694248	5.30	. 30575	${ }_{41}^{42}$
20	. 646984	4.27	. 952419	1.05	. 694566	${ }_{5}^{5.30}$. 305434	40
21	9.647240		9.952336		9.694883		10.305117	39
	. 647494	4.25	.9522	1.05	. 695	5.28	. 304799	33
	. 647749	4.25	.952231	1.05	. 6995518	5.30	. 304488	37
24	648004	4.23	. 9522168	1.03	. 6950815	5.28	. 304164	36
5	. 648858	4.23	. 952106	1.05	. 696153			35
26	. 648512	4.23	. 952043	1.05	.696470	5.28	. 303530	34
27	. 648766	4.23	. 951980	1.05	. 696787	5.27	. 303213	33
28	. 649020	4.23	. 951917	1.05	. 697103	28	. 302897	32
$\stackrel{3}{29}$. 649274	4.22	.9518891	1.05	.697420	5. 27	. 302580	31
30	. 6495	4.23	. 951791	1.05	. 69	5.28	. 302264	30
31	9.64978	4.22	9.9517	1.05	9.6988053		10.30	29
		4.	. 9551660	1.05	6936			23
33	. 6502887	4.20	.951539	1.05	. 6936085	5.27	. 301315	27
34	. 6505359	4.22	. 9551539	1.05	. 699001		. 300999	26
	. 650792	4.20	. 9514146	1.07	.6993316	5.27	. 300	25
${ }_{37} 36$. 651044	4.22	. 951412	1.05	. 6930	5.25	. 300368	24
37 38	. 6551297	4.20	. 95131389	1.05	-699947	5.27	.300053	23
38 39	. 65518890	4.18	. 951222	1.07	. 700578	5.25	.299422	$\stackrel{2}{21}$
40	. 652052	4.20 4.20	. 951159	${ }_{1.05}^{1.05}$. 200893	5.25	299107	20
41	9.652304		9.951096		9.701208		10.298892	
	. 652555		951032		. 7015		. 298177	18
	. 652806	4.18	9509	1.05	. 21837	5.25	. 298163	17
44	.633057	4.18	. 950	1.07	. 702152	5.23	. 297848	16
45		4.17	. 9505811	1.05	. 02		. 297534	15
46	. 653358	4.17	.950778	1.07	. 702781	5.23	. 297219	14
47	. 653808		. 950714	1.07	. 03095		. 296905	13
	. 654059	4.17	. 95065050	1.07	. 03	5.22	. 2966591	12
49	. 654309	4.15	. 9505058	1.07	. 704	5.23	.296278	11
50	. 654558	4.17	. 95052	1.07	. 604036	5.23	. 295964	10
51	9.654808	4.17	9.95045	1.07	9.7043		10.	
	. 65505058	4.15	. 995033939	1.07	. 7049763	5.22	295024	8
	653556	4.15	. 9502026	1.07	. 705290	5.23	.294710	7
55	. 655805	4.15	. 9550202	${ }_{1} 1.07$. 705603	22	.294397	5
	. 6565054	4.13	.950138	1.07	. 705916	5.20	. 294084	4
57	656302		${ }_{950010}^{95004}$. 70		. 2933759	3
5	656551	4.13		1.08		5.22	. 2933459	1
60	9.657047	4.13	9.949881	1.07	9.707166	5.20	10.292834	1
	Cosi	1.	Sine.	1^{*}	Cotang.	D. 1^{\prime}.	Tang.	

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.657047		9949881		9707166		10.292834	60
1	.657295 .657542	4.13 4.12	. 949816	1.07	\%07478	5.20 520	$.292522$	59
$\stackrel{2}{3}$. 6575790	4.13	. 94949688	1.07	76790 708102	520	. 2921898	58 57
4	. 658037	412	. 949623	1.08	. 708414	5.20	. 291588	56
5	. 658284	4.12	. 949558	1.08	708726	5.20	. 291274	55
6	. 658531	4.12	. 949494	1.08	709037	518 520	. 290963	54
7	. 658778	4.19	. 9494929	1.08	. 709349	5.18 5.18	. 200651	53
8	.659025	4.10	. 949364	1.07	. 709660	5.18	. 290340	52
9	.6592\%11	4.10	. 949300	1.08	.709971	5.18	. 290029	51
10	. 659517	4.10	. 949235	1.08	. 710282	5.18	. 289718	50
11	9.659763	4.10	9.949170	1.08	9.710593	5.18	10.289407	49
12	. 660009	4.10	. 949105	1.08	. 710904	5.18	. 2890996	48
13	. 660255	410	. 949040	1.08	. 711215	5.17	. $288 \% 85$	47
14	. 660501	408	. 94898975	1.08	. 711525	5.18	. 288476	46
15	. 660746	4.08	. 948910	1.08	. 711836	5.17	. 288164	45
16	. 660991	4.08	. 948845	1.08	.712146	5.17	. 287854	44
17	. 661236	4.08	. 9487878	1.08	.712456	5.17	. 2875744	43
18	. 661481	4.08	. 9487850	1.08	. 712766	517	. 2878934	42
19 20	. 661726	4.07	. 9488581	1.10	. 713076	5.17	. 2886614	41
20	. 661970	407	. 918581	108	. 113386	5.17	. 286614	40
21	9.662214	4.08	9.948519	1.08	9.713696	515	10.286304	39
22	. 6672459	4.07	. 948485488	1.10	. 71414314	5.15	. 2855995	${ }_{37}^{38}$
23	. 662703	4.05	. 9483838	1.08	. 71414624	5.17	. 2855376	38
$\stackrel{24}{25}$. 6683190	4.07	. 948257	1.10	. 714933	515	. 285067	35
26	. 6663433	4.05	. 948192	1.08	. 715242	5.15	. 284758	31
27	. 663677	4.07	. 948126	110	.715551	5.15	. 284449	33
28	. 663920	4.05	. 948060	1.10	. 715860	5.15	. 284140	32
29	. 664163	4.05 405	. 947995	1.08	. 716168	5.15	. 283832	31
30	. 664406	4.03	. 947929	1.10	. 716477	5.15 5.13	. 283523	30
31	9.664648	405	9.947863	1.10	9.716785	5.13	10.283215	29
32	. 664891	4.03 4.03	. 947797	1.10	. 717093	5.13	. 282907	28
33	. 665133	4.03	. 947731	1.10	. 717401	5.13	.282599	27
34	.665375	4.03 4.03	. 947665	1.08	. 717709	5.13	. 282291	26
35	. 665617	4.03 4.03	. 947600	1.12	. 718017	5.13	. 281983	25
36	. 665859	4.03	. 9475033	1.10	. 718325	5.13	. 281675	24
37	. 666100	4.03	. 947467	1.10	. 718633	5.12	. 281367	23
38	. 6666342	4.02	. 947401	1.10	. 718940	5.13	. 281060	21
39	. 6665883	4.02	. 947335	1.10	. 719248	5.12	. 280752	21
40	. 666824	4.02	. 947269	1.10	. 719555	5.12	. 280445	20
41	9.667065		9.947203		9.719862		10.280138	19
42	. 667305	4	. 917136	1.10	. 770169	5.12	. 279831	18
43	. 667546	4.00	. 947070	1.10	. 720176	5.12	. 279524	17
44	. 667786	4.00 4.02	. 9474004	1.12	. 7720783	5.10	. 279217	16
45	.668027	4.00	. 9446937	1.10	. 721089	5.12	. 278811	15
46	. 668267	3.98	. 9446871	1.12	. 721396	5.10	. 2788604	14
47	. 668506	4.00	. 9446804	1.10	.721702	5.12	. 278298	13
48	668746 .668986	4.00	. 94676671	1.12	-722315	5.10	. 277991	12
49	.669225	3.98	. 9446604	1.12	. 722621	5.10	.277685	11
50	.66923	3.98	. 946604	1.10	1	5.10	. 21738	10
51	9.669464		9.946538		9.722927		10.277073	
52	. 669703	3.98	${ }^{.946471}$	1.12	. 77232328	5.10	. 276768	8
53	669942	3.98	. 9446404	1.12	. 7235388	5.10	. 276462	7
54	670181	3.97	. 919468370	1.12	. 77238149	5.08	. 276156	6
55	.670419 .670658	3.98	. 9446263	1.12	. 7724454	5.08	-275846	5
57	. 670896	3.97	. 916136	1.12	. 724760	5.10	. 275240	4
58	. 671134	3.97	. 946069	1.12	. 725065	5.08	. 274935	${ }_{2}$
59	. $6713 \% 2$	3.97 3.95	946002	1.12	. 725370	5.08	. 274630	1
60	9.671609	3.95	9.945935	1.12	9.725674	5.07	10.274326	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

28°
TABLE XII. LOGARITHMIC SINES, 151°

,	Sine.	D. 1^{\prime}.	Cosine.	D. 1°.	Tang.	D. 1^{\prime}.	Cotang.	
,	9.671609		9.945935		9.725674		10.274326	60
1	. 6771847	3.97 3.95	. 9445868	${ }_{1.13}^{1.12}$.725979	5	. 274021	59
+	. 67272321	3.95	. 94458730	1.12	.726284	5.07	. 27373412	${ }^{58}$
4	. 672558	3.95 3.95	. 915666	${ }_{1}^{1.12}$. 726892	5.07 505	.273108	${ }^{56}$
5	${ }_{\text {. }}^{6777795}$	3.95 3.95	. 9455598	${ }_{1.12}$. 727197	${ }^{5.05}$	272803	55
6	${ }^{.673032}$	${ }_{3.93}$. 9455351	1.12	.727501	5.07	${ }^{272499}$	54
8	. 6737505	3.95	. 94545396	1.13	. 7281098	5.07	${ }_{2}^{271891}$	${ }_{52}^{53}$
9	. 673741	${ }_{3}^{3.93}$. 915328	1.13	. 728412	5.05	.271588	51
10	. 673977	3.93 3.93 .93	. 945261	${ }_{1.13}^{1.12}$. 7288716	${ }_{5}^{5.07}$.271284	50
11	9.674213		9.945193		9.729020		10.270980	49
12	. 674448	${ }_{3.93}$.9451	1.12	729323	5.05		48
13	. 674684919	3.92	. 9444990	1.13	-	5.05	.270374	47
15	. 675155	3.93	. 944922	1.13	. 730233	5.07	. 269967	4
16	. 67539	${ }^{3.92}$. 94485	1.13	. 730535	5.03	. 269465	44
17	. 675624	3.90 3.92	.944786	1.13	. 730838	5.05	. 269162	43
18	.675859		. 944718	1.13	. 731141	${ }_{5}^{5.05}$. 268859	42
19	.676094	${ }_{3.90}$. 944650	1.13	. 313144	5.03	. 268855	41
20	.676328	3.90	4582	1.13		5.03	. 268254	40
21	9.67656	3.	9.944514	1.13	9.732048	5.05	10. 267959	39
22	.67679	3.	. 9444446	1.15	. 7332351	5.03	26	
24	${ }_{6}^{677030}$	3.90	. 944309	1.13	.732955	5.03	${ }_{267045}$	37
25	. 677498	3.90	. 944241	1.13	.733257	5.03	. 266743	35
26	.677731	3.88 3.88	. 944172	1.15	.733558	5.03	. 266442	34
27	.677964	3.88 3.88	.94104	1.13	\% 733860	5.03	. 266140	33
	. 678197	3.88	${ }^{944036}$	1.15	- 734162	5.02	265838	${ }_{31}^{32}$
30	. 6788130	3.88	.943899	1.13	. 7347464	5.02	.265236	30
		3.87	9.943830	1.15		5.03	0.264934	
32	.67912	3.88	. 933761	1.15	$\bigcirc .735$.267633	28
33	. 679360	3.87 3.87	. 943693	1.13	.735668	${ }^{5.02}$:264332	27
34	.679592	3.87 3.87	. 943624	1.15	7359	5.00	. 264031	26
35	.679824	3.87 3.87	. 9433555	1.15	. 736269	5.02	. 263331	25
${ }^{36}$. 688055		. 9434886	1.15	.7365\%0	5.00	. 2633430	${ }_{23}^{24}$
37	.680288	${ }_{3.85}$. 94333178	1.15	.736870	5.02	. 2633130	23
38	. 680519	3.85	.943348	1.15	. 737471	5.00	.262829	${ }_{21}^{22}$
39	. 6880950	3.87	.943210	1.15	.737771	5.00	${ }_{262299}$	20
	. 680	3.85		1.15	. 37.17	5.00		
41	9.681213	3.83	9.943141	1.15	9.738071	5.00	10.261929 .261629	
43	. 681674	3.85 3.85	.943003	1.15	. 738671	5.00 5.00	. 261329	17
44	. 681905	3.85 3.83	. 942934	1.15	. 738971	5.00	. 261029	16
45	. 6882135	${ }_{3.83}$. 9428864	1.15	. 739271	4.98	. 260749	15
46	. 682365	${ }_{3.83}^{3.83}$.947795	1.15	-739570	5.00	. 260430	14
47	. 68	${ }_{3.83}$.9422	1.17	${ }^{\text {r }}$. 260130	13
48	. 6828	${ }_{3.83}$.9426	1.15	. 7401698	4.98	. 298831	11
49	. 683055		. 942587	1.17	. 440468		-259332	110
50	. 683284	${ }_{3.83}$. 942517	1.15	. $440 ; 67$	4.98	. 259233	10
51	9.6835	3.8	9.942448	1.17	9.741066	4.98	10.2588934	9
52	. 68374	3.82	. 94242378	1.17		4.98	.$_{258336}$	8
53	. 68389	3.82	. 944232389	1.15	. 74141964	4.97	. 25883838	6
55	.684430	3.82 38 3	. 942169	1.17	. 742261	${ }_{4}^{4.98}$.25\%739	5
56	. 68	3.80 3.82	.942099	1.17	. 742559	4.98	25741	4
58	. 68888	3.80	. 94420299	1.17	. 74281558	4.97	.256844	3
$\begin{array}{r}58 \\ 59 \\ \hline\end{array}$. 6885313	3.80	.941959	1.17	. 743454	4.97	.256546	1
60	${ }^{9.685571}$	3.80	9.941819	1.17	9.743752	4.97	10.256248	0
,	Cosine.	D. 1^{\prime}.	Sine.	D. ${ }^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.685571		9.941819		9.743752		10.256248	60
1	. 6857799	3.80 3.80	. 9411749	1.17	. 744050	4.97	$.255950$	5
2	. 688027	3.80 3.78	. 941679	1.17	. 7444348	4.95	. 255652	58
	. 6888254	3.88 3.80	. 941609	1.17	.744645 .744943	4.97	. 255355	57
4	. 686482	3.78	. 9441539	1.17	. 774594943	4.95	. 2555057	56
5	. 68868936	3.78	. 94141399	1.18	. 74524538	4.97	. 2547460	55
7	. 687163	3.78	. 941328	1.17	. 745835	4.95	. 254165	54
8	. 687389	3.77 3	. 941258	1.17	. 74.5132	4.95	. 2533868	5
9	. 687616	3.78 3	. 941187	1.18	. 746429	4.95	. 253571	51
10	. 687843	3.78 3.77	. 941117	1.18	. 746726	4.95	.253274	50
11	9.688069	3.77	9.941046	1.18	9.747023	4.93	10.252977	49
12	. 688295	3.77	. 940975	1.17	.747319	4.95	. 252681	48
13	. 6888521	3.77	. 940905	1.18	. 7477616	4.95	. 252381	47
14	. 6888974	3.75	. 94080834	1.18	. 7448913	4.93	. 252087	46
15	. 68889798	3.77	. 94040693	1.17	. 7488505	4.93	. 251791	45
17	. 689423	3.75	. 940622	1.18	.748801	4.93	. 251199	43
18	. 689648	3.75	. 940551	1.18	. 749097	4.93	. 250903	42
19	. 689873	3.75 3.75	. 940480	1.18 1.18	.749393	4.93	. 250607	41
20	. 690098		. 940409	1.18	. 749689		. 250311	40
21	9.690323	3.75	9.940338	1.18	9.749985	4.93	10.250015	39
22	. 690548	3.73	. 940267	1.18	. 750281	4.93 4.92	. 249719	38
23	. 690772	${ }_{3.73}$. 940196	1.18	. 750576	4.93	. 249424	37
24	. 690996	${ }_{3.73}$. 940125	1.18	. 750872	4.93 4.92	. 249128	36
25	. 691220	3.73	. 940054	1.20	. 751167	4.92	. 248833	35
$\stackrel{26}{ }$. 691444	3.73	. 9399898	1.18	. 751462	4.92	. 248538	34
27	. 691668	3.73	. 9399911	1.18	. 751757	4.92	. 248243	33
28	. 691898	3.72	. 9398840	1.20	. 752052	4.92	. 247948	32
29	. 692115	3.73	. 93939697	1.18	- 752342	4.92	. 247653	31
30	69	3.72	. 939697	1.20	. 752642	4.92	. 247358	30
31	9.692562		9.939625		9.752937		10.247063	29
32	. 692785	${ }_{3.72}$. 9399554	1.20	. 753231	4.92	. 246769	28
33	. 693008	${ }_{3.72}$. 9394882	1.20	. 753526	4.90	. 246474	27
34	. 693231	3.70	. 939410	1.18	. 753820	4.92	. 246180	26
35	. 693353	3.72	. 9393339	1.20	. 754115	4.90	. 2458885	25
36	. 69336768	3.70	. 9392267	1.20	. 754409	4.90	. 2455991	24
37	. 6933898	3.70	. 9339195	1.20	. 754703	4.90	. 245297	3
38	. 694342	3.70	. 9399052	1.18	. 755291	4.90	- 245003	1
40	. 694564	70	. 9389880	1.20	. 755585	4.90	09	21
41	9.694786		9.938908		9.755878		10.244122	13
42	. 695007		. 938836	1.20	. 756172	4.9	. 2438828	18
43	. 695229	3.68 3.68	. 938763	1.22	. 756465	4.8	. 243535	17
44	. 695450	3.68	. 938891	1.20	. 756759	4.90 4.88	. 243241	16
45	. 6955671	3.68	. 9388619	1.20	. 757052	4.88	. 242948	5
46	. 695892	3.68	. 9388547	1.20	. 757345	4.88	. 242655	4
47	. 696113	3.68	. 938475	1.22	. 757638	4.88	. 242362	3
48 49	. 69663554	3.67	.938402	1.20	. 757931	4.88	. 242069	12
49 50	. 6966554	3.68	. 9338330	1.20	. 758224	4.88	.241776	1
50	5	3.67		1.22	. 75851	4.88	. 241483	
51	9.696995		9.938185		9.758810		10.241190	9
52	. 6977215	3.67	. 9388113	1.20	. 759102	4.88	. 240898	8
53	. 697435	3.65	. 9388040	1.22	. 759395	4.88 4.87	. 240605	7
54	. 697654	3.67	. 9377967	1.20	. 7596887	4.87	. 240313	${ }^{6}$
55	. 6987874	3.67	. 93787895	1.22	. 759979	4.88	. 240021	5
56 57	. 698	3.65	.937822	1.22	. 7760272	4.87	. 239728	4
58	. 6998538	3.65	. 9377676	1.22	. 76050564	4.87	. 23993144	$\stackrel{3}{3}$
59	.698751	3.65	. 9377604	1.20	. 761148	4.87	. 238858	1
60	9.698970	3.65	9.937531	1.22	. 761439	4.85	10.238561	0
,	Cosine.	D. 1°.	Sine.	D. $1^{\prime \prime}$	otang	1°	Tang.	

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.698970	3.65	9.937531	1.22	9.761439		10.238561	
1	. 699189	3.63	. 937458	1.22	761731		. 2882609	59
2	. 6999407	3.65	. 9373885	1.22	. 762023	4.85	. 237977	58
3	. 6996276	${ }_{3} .63$. 937312	1.23	.762314	4.87	. 237686	57
4	. 699844	3.63	. 937238	1.22	.762606	4.85	. 237394	56
5	- 70008	3.63	. 937165	1.22	.762897	4.85	. 237103	55
7	. 700280	3.63	. 937092	1.22	. 763188	4.85	. 236812	5
8	. 700716	3.63	. 936946	1.22	. 763770	4.85	.236230	53
9	. 700933	3.62	. 936872	1.23	. 764061	4.85	. 235939	51
10	. 701151		. 936799	1.22	. 764352	4.85	. 235648	
11	9.701368	3.62	9.93672	1.22	9.7646		10.235357	49
12	. 701585	3.62	. 936652	1.23	. 764933	4.83	. 235067	48
13	. 701802	3.62	. 936578	1.22	. 765294	4.85 4.83	. 234776	47
14	. 702019	3.62	. 936505	1.23	. 765514	4.83	. 234486	
15	. 702236	3.60	. 936431	1.23	. 765805	4.85	. 234195	45
16	. 702452	3.62	. 936357	1.22	. 766095	4.83	. 233905	4
17	. 7026669	3.60	. 936284	1.23	. 766285	4.83	. 233615	43
18	. 702885	3.60	.936210	1.23	. 766665	4.83	. 2333325	42
19	. 703101	3.60	. 936136	1.23	. 766965	4.83	. 233035	41
20	. 703317	3.60	. 936062	1.23	. 767255	4.83 4.83	. 232745	
21	9.703533	3.	9.935	1.23	9.7675		10.232455	39
22	. 703749	3.58	. 935914	1.23	. 767834		. 232166	38
23	. 703964	3.58 3.58	. 935840	1.23	. 768124	4.83 4.83	. 231876	37
24	. 704179	3.60	. 935766	1.23	. 768414	4.83 4.82	. 231586	36
25	. 704395	3.58	. 935692	1.23	. 768703	4.82 4.82	. 231297	35
26	. 704610	3.58	. 935618	1.25	. 76899	4.82	. 231008	31
27	. 704825	3.58	. 935543	1.23	. 7692	4.83	. 230719	33
28	. 705040	3.57	. 935469	1.23	. 7698571	4.82	. 230429	32
29	. 705254	3.58	. 935395	1.25	. 7698860	4.80	. 230140	31
30	. 705469	3.57	0	1.23	. 770148	4.80 4.82	. 229852	30
31	9.70568	3.5	9.9352		9.770437		0.229563	
3	. 705898	3.57	. 935171		.r70726	4.82	. 229274	28
33	. 706112	3.57	. 935097	1.25	. 771015	4.80	. 228985	27
34	. 706326	3.55	. 935022	1.23	. 771303	4.82	. 228697	26
35	. 706539	3.57	. 934918	1.25	. 771592	4.80	. 228408	5
36	. 706753	3.57	. 934873	1.25	. 771880	4.80	. 228120	4
37	. 706967	3.55	. 934798	1.25	. 772168	4.82	. 227832	3
39	. 707180	3.55	. $9347 \% 3$	1.23	. 772457	4.80	. 227543	21
39	. 707393	3.55	. 934649	1.25	. 772745	4.80	. 227255	21
40	. 707606	3.55	. 934574	1.25	773033	4.80	.226967	20
41	9.707819	3.55	9.934499	1.25	9.773321		10.226679	19
42	. 708032	3.55	. 934424	1.25	. 773608	4.80	226392	18
43	. 708245	3.55	. 934349	1.25	. 773896	4.80	. 226104	17
44	. 708458	3.53	. 934274	1.25	. 774184	4.78	225816	6
45	. 708670	3.53	. 934199	1.27	. 7744771	4.80	225529	5
46	. 708882	3.53	. 934123	1.25	. 7747759	4.78	. 225241	4
47	. 709094	3.53	. 934048	1.25	. 775046	4.78	. 224954	1
48	. 7093306	3.53	. 9333973	1.25	. 7753331	4.80	-224667	1
50	. 709518	3.53	. 9338898	1.27	- 7775008	4.78	224379	1
5	. 709730	3.52	.933822	1.25	. 773908	4.78	224092	0
51	9.709941		9.933747		9.776195		10.223805	
52	. 710153	3.52	. 933671	1.25	. 776482	4.77	. 2233518	
53	. 710364	3.52	. 933596	1.27	. 776768	4.78	223232	
54	. 710575	3.52	. 9333520	1.25	.777055	4.78	. 222945	
55	. 710786	3.52	. 933445	1.27	. 77773428	4.77	. 222658	
56	. 710997	3.52	933369	1.27	.7776915	4.78	. 2223372	
57	. 711208	3.52	933293	1.27	. 7777915	4.77	. 2222085	3
	. 711419	3.50	. 9333217	1.27	. 7788201	4.78	.221799	2
59	${ }_{9} .711629$	3.50	9.933066	1.25	9.7784774	4.77	10.2212122	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1*.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.711839	3.52	9.933066	1.27	9.778774	4.77	10.221226	
1	. 712050	3.50	. 9329990	1.27	. 779060	4.77	220940	59
3	. 712260	3.48	. 9329814	1.27	. 779346	4.77	. 220654	8
3	. 712469	3.50	. 9338838	1.27	. 779638	4.77	. 220368	57
4	. 712889	3.50	.932762	1.28	.7799203	4.75	. 2219088	55
5	. 7138098	3.48	. 9326809	1.27	. 7802489	4.77	.219797	55
7	. 713308	3.50	. 932533	1.27	. $780 \% 75$	477	. 219225	53
8	. 713517	3.48	. 932457	1.27	. 781060	4.75	. 218940	52
9	. 713726		. 932380	1.28	. 781346	4.77	. 218654	51
10	. 713935	48	. 932304	1.27	. 781631	4.75 4.75	. 218369	50
11	9.714144	47	9.932228	1.28	9.781916	4.75	10.218084	49
12	. 714352	3.48	. 932151	1.27	.782201	4.75 4.75	. 217799	48
13	. 714561	3.48 3.47	. 932075	1.28	. 782486	4.75	. 217514	47
14	. 71414978	3.48	. 931998	1.28	.782771	4.75 4.75	. 217229	46
15	. 714978	3.48 3.47	. 931921	1.27	. 783050	4.75	. 216944	45
16	. 715186	3.47	. 931845	1.28	.783341	4.75	. 216659	44
17	. 715394	3.47	. 931768	1.28	. 7838310	4.73	. 216374	43
18	. 715802	3.45	. 931691	1.28	. 784195	4.75	. 216000	42
19	. 716017	3.47	.931644	1.28	. 884195	4.73	- 215851	41
20	716017	3.45		1.28		4.75	. 215021	40
21	9.716224	3.47	9.931460	1.28	9.784764		10.215236	39
22	. 716432	3.45	. 931383	1.28	. 785048	4.73	. 214952	38
23	. 716639	3.45	. 931306	1.28	. 7853382	4.73	. 214668	37
24	. 716846	3.45	. 931229	1.28	.785616	4.73	. 214388	36
25	. 717053	3.43	. 931152	1.28	. 7885900	4.73	. 214100	35
26	. 717259	3.45	. 9310975	1.28	. 7861816	4.73	. 213816	34
27	. 717466	3.45	. 9309921	1.28	. 7866758	4.73	-213532	33
28	. 71768	3.43	. 9309843	1.30	. 7878685	4.73	- 212984	31
39	. 717879	3.43	. 930766	1.28	. 787319	4.72	. 212681	31
30		3.43	. 930160	1.30		4.73		30
31	9.718291	3.43	9.930688	1.28	9.787603	4.72	10.212397	29
32	. 718497	3.43	. 930611	1.30	. 7878886	4.73	. 212114	88
33	. 718703	3.43 3.43	. 9305333	1.28	. 7888170	4.72	. 211830	27
34	. 71818909	3.42	. 930456	1.30	. 788453	4.72	.211547	26
35	. 719114	3.43	.930378 .930300	1.30	.788736 .789019	4.72	. 211264	25
36 37	-7719320	3.42	.930300	1.28	.789019 .789302	4.72	. 210981	24
38	. 719730	3.42	. 930145	1.30	. 789585	4.72	. 210415	22
39	. 719935	3.42 3.42	. 930067	1.30	. 789868	4.72	. 210132	21
40	. 720140	3.42 3.42	. 929989	1.30	0151	4.72	. 209849	20
41	9.720345		9.929911		9.790434		10.209566	19
42	. 720549	3.42	. 929833	1.30	. 790716	4.72	. 209284	18
43	. 720754	3.40	. 929755	1:30	. 7909999	4.70	. 209001	17
44	. 720958	3.40	. 9229677	1.30	. 791281	4.70	. 208719	15
45	. 721162	3.40	. 9295959	1.30	. 791563	4.72	. 208437	15
46 47	.721366	3.40	. 9299521	1.32	. 79181846	4.70	. 208154	14
48	.721570	3.40	. 92293944	1.30	. 792128	4.70	-207890	13
48	. 721978	3.40	.9293286	1.30	. 792692	4.70	. 207308	12
50	. 722181	3.38	. 929207	1.32	. 792974	4.70	. 207026	10
51	9.722385		9.929129		9.793256		10.206744	
52	. 722588	8.38	. 9298050	1.30	. 793538	4.70 4.68	. 206462	
53	. 722791	8.38 3.38	. 9288972	1.32	. 793819	4.68 4.70	. 206181	
54	. 7229994	3.38	. 9288893	1.30	. 794101	4.70	. 205889	6
5	. 723197	3.38 3.38	. 9288815	1.32	. 7943883	4.68	.205617	
56	. 723400	3.38	. 9288736	1.32	. 7949464	4.70	. 2053336	
57	. 723603	3.37	. 9288657	1.32	. 79499976	4.68	-205773	3
59	. .724007	3.37	. 9228499	1.32	. 795508	4.68	. 204492	1
60	9.724210	3.38	9.928420	1.32	9.795789	4.68	10.204211	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.724210	3.37	9.928420	1.30	9.795\%89	4.68	10.204211	60
1	. 724412	3.37	. 9288342	1.32	. 796070	4.68 4.68	. 203930	59
2	. 724614	3.37	. 9282683	1.33	. 796351	4.68	. 203649	58
3	. 7724816	3.35	. 928183	1.32	. 796632	4.68	. 203368	57
4	. 7725017	3.37	. 928104	1.32	. 796913	4.68	. 203087	56
5	. 725219	3.35	. 9228025	1.32	. 797194	4.67	. 202806	55
6	. 7725420	3.37	. 9227946	1.32	. 797474	4.68	. 202526	54
8	. 725823	3.35	. 927787	1.33	. 798036	4.68	. 201964	5
9	. 726024	3.35 3.35	. 927708	1.32	. 798316	4.67	. 201684	51
10	.7262\%	3.35 3.35	. 927623	1.32 1.33	.798596	4.67	. 201404	50
11	9.726426	3.33	9.927549	1.32	9.798877	4.67	10.201123	49
12	. 726626	3.35	. 927470	1.33	. 799157	4.67	. 200843	48
13	. 7208827	${ }_{3}^{3.33}$. 927390	1.33	. 7999337	4.67	. 200563	47
14	. $72 \sim 027$	3.35	. 927310	1.32	. 799717	4.67	. 200283	46
15	. 727228	3.33	. 927231	1.33	. 7999997	4.67	. 200003	45
16	. 7777428	3.33	.927151	1.33	.800277	4.67	. 199723	44
17	. 727628	3.33	. 927071	1.33	. 800557	4.65	. 199443	43
18	. 7727828	3.32	. 9269991	1.33	. 800836	4.67	. 199164	42
19	.728027	3.33	. 926911	1.33	. 801116	4.67	. 1988884	41
20	. 728227	3.33	. 926831	1.33	. 801396	4.65	. 198604	40
21	9.728427	3.32	9.926751	1.33	9.801675	4.67	10.198325	39
22	. 7788626	3.32	. 9266671	1.33	. 801955	4.65	. 198045	38
23	. 728825	3.32	. 92659511	1.33	. 8022334	4.65	. 197766	37
24	. 7729024	3.32	. 926511	1.33	. 802513	4.65	. 197487	36
25	.729223	3.32	. 92	1.33	. 80	4.67	. 197208	35
26	. 729422	3.32	. 926351	1.35	. 803072	4.65	. 196928	34
27	. 729621	3.32	. 9226270	1.33	. 803351	4.65	. 196649	33
28	. 729820	3.30	. 926190	1.33	. 803630	4.65	. 196370	32
29	. 730018	3.32	.926029	1.35	. 8039009	4.63	. 196091	31
30	. 730217	3.30	926029	1.33	. 804187	4.65	. 195813	30
31	9.730415		9.925949		9.804466		10.195534	29
32	. 730613	3.30	. 9225868	1.33	. 804745	4.63	. 195255	28
33	. 730811	3.30	. 9257788	1.35	. 805023	465	. 194977	27
34	. 731009	3.28	.925~07	1.35	. 805302	4.63	. 194698	26
35	. 731206	3.30	. 925226	1.35	. 8055880	4.65	. 194420	25
36	. 731404	3.30	. 9255545	1.33	. 8058589	463	. 194141	24
37	. 781602	3.28	. 9254684	1.35	. 806413	4.63	. 1938883	23
38	.731799 .731996	3.28	. 9255303	1.35	. 8066693	4.63	. 1933585	21
39	. 732193	3.28	. 925222	1.35	. 80606971	4.63	. 19333029	21
40	. 732193	3.28	. 925222	1.35	71	4.63	193029	20
41	9.732390		9.925141		9.807249		10.192751	19
42	. 732587	3.28	. 925060	1.35	. 807527	4.63 4.63	. 192473	18
43	. 732784	3.27	. 924979	1:3\%	. 807805	4.63	. 192195	17
44	. 7329880	3.28	. 924897	1.35	. 808083	4.63	. 191917	16
45	. 733177	3.27	. 924816	1.35	. 808361	4.63 4.62	. 191639	15
46	. 733373	3.27	. 924735	1.35	. 808638	4.63	. 191362	14
47	. 7333569	3.27	. 924654	1.37	. 808916	4.62	. 191084	13
48	. 733765	3.27	. 924542	1.35	. 809193	4.63	. 190807	12
49	. 733961	3.27	. 924491	1.37	. 8094771	4.62	. 190529	11
50	. 734157	3.27	. 924409	1.35	.809748	4.62	. 190252	10
51	9.734353		9.924328		9.810025		10.189975	9
52	. 734549	3.25	. 924246	1.37	. 810302	4.63	. 189698	8
53	.734744 .734939	3.25	. 924164	1.35	. 8105880	4.62	. 18918143	7
54	.734939 .735135	3.27 3.27	. 924083	1.37	. 810857	4.62	. 1898866	6
55 56	.735135 .735330	3.25	.924001 .923919	1.37	. 811134	4.60	. 1888866	5
57	. 735525	3.25	. 9238387	1.37	. 8111687	4.62	. 188313	4
58	735719	3.23	.923755	1.37	. 811964	4.62	. 188036	2
59	735914	3.25 3.25	. 923673	1.37	. 812241	4.62	. 187759	1
60	9.736109	3.25	9.923591	1.37	9.812517	4.60	10.187483	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1^{\prime}.	Cotang	D. $1^{\prime \prime}$.	Tang.	

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$ 。	Tang.	D. 1".	Cotang.	,
0	9.736109		9.923591		9.812517		10.187483	60
1	. 736303	3.23	. 923509	1.37	. 812794	4.62 4.60	187206	59
2	. 736498	3.25 3.23	. 923427	1.37	. 813070	4.60 4.62	. 186930	5
3	. 736692	3.23	. 923345	1.37	. 813347	4.62	186653	57
4	. 736886	3.23 3.23	. 923263	1.37	. 813623	4.60 4.60	. 186377	56
5	. 737080	3.23	. 923181	1.37	. 813899	4.60	. 186101	55
6	. 737274	3.23 3.22	. 923098	1.38	. 814176	4.62 4.60	. 185824	54
7	. 737467	3.22	. 923016	1.38	. 814452	4.60	. 185548	53
8	.737661	3.23 3.23	. 922933	1.38 1.37	. 814728	4.60 4.60	.185272	52
9	. 737855	3.23 3.22	.922851	1.38 1.38	. 815004	4.60 4.60	.184996	1
10	. 738048	3.22 3.22	.922768	1.38 1.37	. 815280	4.60 4.58	. 184720	50
11	9.738241	3.22	9.922686	1.38	9.815555		10.184445	49
12	. 738434	3.22	.922603	1.38	. 815831	4.60 4.60	.184169	48
13	. 738627	3.22	.922520	1.37	.816107	4.00 4.58	. 183893	47
14	.738820	3.22	. 922438	1.38	. 816382	4.58 4.60	. 183618	46
15	. 739013	3.22	.92,355	1.38	.816658	4.60 4.58	. 183342	45
16	. 739206	3.20	.9222\%	1.38	. 816933	4.88 4.60	183067	44
17	. 739398	3.20	. 922189	1.38	.817209	4.68	.182791	43
18	. 739590	3.20 3.22	. 922106	1.38	. 817484	4.58 4.58	182516	42
19	.739783	3.20	. 922023	1.38	.817759	4.88 4.60	.182241	41
20	.739975	3.20	. 921940	1.38	.818035	4.68	. 181965	40
21	9.740167		9.921857	1.38	9.818310	4.58	10.181690	39
22	. 740359	3.20	.921764	1.38	. 818585	4.58	. 181415	38
23	.740550	3.18 3.20	. 921691	1.38 1.40	. 818860	4.58 4.58	181140	37
24	.740742	3.20 3.20	. 921607	1.38 1.38	. 819135	4.58 4.58	. 180865	36
25	.740934	3.20 3.18	. 921524	1.38	. 819410	4.58 4.57	.180590	35
26	.741125	3.18	. 921441	1.38 1.40	. 819684	4.58 4.58	. 180316	3
27	. 741316	3.20	.921357	1.38	. 819959	4.08 4.58	.180041	33
28	. 741508	3.18	. 921274	1.38 1.40	. 820234	4.58 4.57	. 179766	32
29	.741699	3.18 3.17	.921190	1.38	. 820508	4.58 4.58	. 179492	1
30	. 741889	3.17 3.18	. 921107	1.38 1.40	. 820783	4.58 4.57	. 179217	30
31	9.742080		9.921023		9.821057		10.178943	29
32	. $7422 \% 1$	3.18 3.18	. 920939	1.40 1.38	. 821332	4.58 4.57	. 178668	8
33	. 742462	3.18 3.17	. 920856	1.38 1.40	. 821606	4.57 4.57	. 178394	7
34	. 742652	3.17	.920772	1.40 1.40	. 821880	4.57 4.57	. 178120	6
35	. 742842	3.18	. 920688	1.40 1.40	. 822154	4.57 4.58	. 177846	5
36	.743033	3.18	. 920604	1.40 1.40	. 822429	4.58 4.57	. 177571	4
37	. 743223	3.17	. 920520	1.40 1.40	.822\%03	4.57	. 177297	3
38	.743413	3.17	. 920436	1.40 1.40	.8229\%7	4.57 4.57	. 177023	2
39	. 743602	3.15	.920352	1.40	.823251	4.55	.176749	1
40	. 743792	3.17	. 920268	40	.823524	$\begin{aligned} & 4.55 \\ & 4.57 \end{aligned}$.176476	0
41	9.743982		9.920184	1.42	9.823798		10.176202	9
42	. 744171	3.15 3.17	. 920099	1.42	.8240\%2		. 175928	8
43	.744361	3.17 3.15	. 920015	1.40 1.40	. 824345	4.55 4.57	. 175655	7
44	. 744550	3.15 3.15	.919931	1.40	. 824619	4.57 4.57	. 175381	6
45	. 744739	3.15 3.15	. 919846	1.42	. 824893	4.57 4.55	. 175107	5
46	.744928	3.15 3.15	.919762	1.40	. 825166	4.55 4.55	. 174834	4
47	. 745117	3.15 3.15	. 919677	1.42 1.40	. 825439	4.55 4.57	. 174561	3
48	.745306	3.15 3.13	. 919593	1.40 1.42	. 825713	4.57 4.55	. 174287	2
49	.745494	3.13 3.15	. 919508	1.42	. 825986	4.55 4.55	. 174014	1
50	.745683	3.15 3.13	. 919424	1.42	. 826259	4.55 4.55	.173741	0
51	9.7458\%1	3.15	9.919339		9.826532		10.173468	9
52	. 746060	3.15 3.13	. 919254	1.42	. 826805	4.55	. 173195	8
53	. 746248	3.13 3.13	. 919169	1.42	.82\%078	4.55	. 172922	7
54	. 746436	3.13 3.13	. 919085	1.42	. 827351	4.55 4.55	. 172649	6
55	. 746624	3.13 3.13	.919000	1.42	. 827624	4.55 4.55	. 172376	5
56	. 746812	3.13 3.12	. 918915	1.42	. 827897	4.55 4.55	. 172103	4
57	. 746999	3.12	. 918830	1.42	. 828170	4.55 4.53	. 171830	3
58	. 747187	3.12	.918745	1.43	. 828442	4.53 4.55	.171558	2
59	. 747374	3.12 3.13	. 918659	1.43	.828715	4.55 4.53	. 171285	1
60	9.747562	3.13	9.918574	1.42	9.828987	4.53	10.171013	0
,	Cosine	D. 1".	Sine.	1	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. 1' ${ }^{\prime \prime}$	Tang.	D. 1'.	Cotang.	-
0	9.747562		9.918574		9.828987		10.171013	60
1	. 7477449	3.12 3.12	. 9181889	1.42 1.42	. 8292960	4.55 4.53	. 170740	59
2	. 7479336	3.12	. 918404	1.43	. 8299532	4.55	. 170468	58
3	. ${ }^{7} 48123$	3.12	. 918318	1.42	. 829805	4.53	. 170195	57
4	. 7488310	3.12	. 91818147	1.43	. 830077	4.53	. 169923	56
5	. 7484888	3.10	. 918147	1.42	. 8330349	4.53	. 1699351	55 54
6 7	. 7488880	3.12	. 918076	1.43	. 83308921	4.53	. 1693107	54 53
8	. 749056	3.10	. 917891	1.42	. 831165	4.53	. 168835	52
9	. 749243	3.12	. 917805	1.43	. 831437	4.53 4.53	. 168563	51
10	. 749429	3.10 3.10	. 917719	1.43	. 831709	4.53 4.53	. 168291	50
11	9.749615	3.10	9.917634	1.43	9.831981	4.53	10.168019	49
12	. 7449801	3.10	. 917548	1.43	.832253	4.53	. 167747	48
13	. 7499987	3.08	. 917462		. 8322525	4.52	. 167475	47
14	. 750172	3.10	. 917376	1.43	. 8332796	4.53	.167204	46
15	. 750358	3.08	. 917290	1.43	. 8333338	4.52	. 166832	45
16	. 750543	3.10	. 917118	1.43	. 83333311	4.53	. 166389	44
18	. 750729	3.08	. 917032	1.43	. 8333811	4.52	- 166118	43
19	- 7	3.08	. 916946	1.43	. 8334154	4.53	. 165846	41
20	. 751284	3.08	. 916859	1.45	.834445	4.52	165575	41
	. 51284	3.08	. 916859	1.43		4.52	1055\%	40
21	9.751469	3.08	9.916773	1.43	9.834696	4.52	10.165304	39
22	. 751654	3.08	. 916687	1.45	. 83349678	4.52	. 165037	38
23	. 751839	3.07	. 916600	1.43	. 835238	4.52	. 164762	37
24	. 752023	3.08	. 9165147	1.45	. 835509	4.52	. 164491	36
25	. 752208	3.07	. 916341	1.43	. 835051	4.52	. 164220	35
26	. 75239	3.07	. 91.16354	1.45	. 836051	4.52	. 163949	34
27	- 5206	3.07	. 916167	1.45	. 8365639	4.52	. 163407	33
29	- 752944	3.07	. 916081	1.43	.836864	4.52	. 163136	31
30	. 753128	3.07	. 915994	1.45	.837134	4.50	. 162866	30
31	9.753312		9.915907		9.837405		10.162595	29
32	. 753495		. 915820	1.45	. 837675	4.5	. 162325	28
33	. 753679	3.07	. 915733	1.45 1.45	. 837946	4.52	. 162054	27
34	. 753862	3.07	. 915646	1.45	. 838216	4.50	. 161784	26
35	. 754046	3.05	. 915559	1.45	. 838487	4.50	. 161513	25
36	. 754229	3.05	. 915472	1.45	. 838757		. 161243	24
37	. 754412	3.05	. 915385	1.47	. 839027	4.50 4.50	. 160973	23
38	. 754595	3.05	. 915297	1.45	. 839297	4.5	. 160703	22
39	. 754778	3.03	. 91515123	1.45	. 8399568	4.50	. 160432	21
40	. 7	3.05	3	1.47	38	4.50	62	20
41	9.755143		9.915035		9.840108		10.159892	19
42	. 7555326	3.03	. 914948	1.47	. 840378	4.50	. 159622	18
43	. 7555508	3.03	. 914860	1.45	. 840648	4.48	. 1593352	17
44	. 755690	3.03	. 9147773	1.47	. 640917	4.50	. 159083	16
45	. 7555872	3.03	. 9146855	1.45	. 84411857	4.50	. 158813	15
46	. 7756236	3.03	. 9145910	1.47	.841457	4.50	. 1588273	14 13
48	. 756418	3.03	. 914422	1.47	. 841996	4.48	. 158004	12
49	. 756600	3.03 3.03	. 914334	1.47	. 842266		. 157734	11
50	. 756782	3.03 3.02	. 914246	1.47	. 842535	4.48 4.50	. 157465	10
51	9.756963		9.914158		9.842805		10.157195	9
52	. 757144	3.03	. 914070	1.47	. 843074	4.48 4.48	156926	8
53	. 75737827	3.02	. 9139882	1.47	. 8433343	4.48	. 156657	7
54	. 7757507	3.02	. 91313894	1.47	. 8433812	4.50	. 156118	5
55 56	. .757869	3.02	. 913806	1.47	. 8444151	4.48	. 155849	4
57	. 758050	3.02	. 913630	1.47	. 8444420	4.48	. 155580	3
58	. 758230	3.00	913541	1.48	. 844689	4.48 4.48	. 155311	2
59	.758411	3.02 3.00	. 913453	1.47	. 844958	4.48 4.48	. 155042	1
60	9.758591	3.00	9.913365	1.47	9.845227	4.48	10.154773	0
,	Cosine.	D. 1^{\prime}.	Sine.	D. 1°.	Cctang.	D. $1^{\prime \prime}$.	Tang.	,

	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	- Cotang.	,
0	9.758591	3.02	9.913365		9.845227		10.154773	60
1	. 758772	3.00	. 913276	1.48	. 845496	4.48 4.47	. 154504	59
${ }_{3}^{2}$. 778952	3.00	. 913187	1.47	. 845764	4.48 4.48	. 154236	58
3	. 759132	3.00 3.00	. 913099	1.48	. 846033	4.48 4.48	. 153967	57
4	. 759312	3.00	. 913010	1.47	. 846302	4.48 4.47	. 153698	56
5	. 759492	3.00	. 9129222	1.48	. 846550	4.48	. 153430	55
6	. 759672	3.00	. 912833	1.48	. 8168398	4.48	. 153161	54
8	. 760031	2.98	. 91212654	1.48	. 8477108	4.47	.152892	53
8	. 760211	3.00	. 912566	1.48	. 847644	4.47	. 152356	51
10	. 760390	2.98 2.98	. 912477	1.48 1.48	. 847913	4.48 4.47	. 152087	50
11	9.760569		9.912388		9.848181		10.151819	49
12	. 760748	2.98 2.98	. 912299	1.48	. 848449	4.47	. 151551	48
13	. 760927	2.98	. 912210	1.48	. 848717	4.47 4.48	. 151283	47
14	. 761106	2.98	. 912121	1.50	. 848986	4.48 4.47	. 151014	46
15	. 761285	2.98	. 912031	1.48	. 849254	4.47	. 150746	45
16	. 761464	2.97	. 911942	1.48	. 849522	4.47	. 150478	44
17	. 761642	2.98	. 911853	1.50	.849790	4.45	. 150210	43
18	. 7618181	2.97	. 911763	1.48	. 850057	4.47	. 149943	42
19	. 761999	2.97	. 911674	1.50	.850325	4.47	. 149675	41
20	. 762177	2.98	. 911584	1.48	. 850593	4.47	. 149407	40
21	9.762356	2.97	9.911495	1.50	9.850861	4.47	10.149139	39
22	. 762534	2.97	. 911405	1.50	. 851129	4.45	. 148871	38
23	. 762712	2.95	. 911315	1.48	. 851396	4.47	. 148604	37
24	. 7688889	2.97	. 911226	1.50	. 851664	4.45	. 148336	36
25	.763067	2.97	. 911136	1.50	. 851931	4.47	. 148069	35
26	. 763245	2.95	. 911046	1.50	. 8552199	4.45	. 147801	34
$\stackrel{27}{28}$. 7634632	2.97	. 910956	1.50	. 8524646	4.45	. 1477534	33
28	.763600	2.95	. 910866	1.50	.852\%33	4.47	. 1472697	32
29	. 763777	2.95	. 910686	1.50	. 853268	4.45	-146939	31
30	. 763954	2.95	686	1.50	853268	4.45	. 146732	30
31	9.764131	2.95	9.910596		9.853535		10.146465	29
32	. 764308	2.95	. 910506	1.52	.853802	4.45	. 146198	28
33	. 764485	2.95	. 910415	1.50	. 854069	4.45	. 1459381	27
34	. 7646462	2.93	. 910325	1.50	. 8543336	4.45	. 145664	$\stackrel{26}{ }$
35 36	. 764838	2.95	. 9102355	1.52	. 85448480	4.45	. 1453138	25
37	. 765191	2.93	. 910054	1.50	. 855137	4.45	. 144863	24
38	. 765367	2.93 2.95	. 909963	1.52	. 855404	4.45	. 144596	22
39	. 765544	2.95	. 909873	1.52	. 855661	4.45 4.45	. 144329	21
40	.765720	2.93	.909782	1.52	. 855938		. 144062	20
41	9.765896		9.909691	1.50	9.856204		10.143796	19
42	. 766072	$\stackrel{2}{2.93}$.909601	1.52	. 8564771	4.45	. 143529	18
43	. 766817	2.93	. 909510	1.52	. 856737	4.45	. 143263	17
44	. 766423	2.92	. 909419	1.52	. 857004	4.43	. 142996	16
45	. 766598	2.93	. 90909328	1.52	.85\%270	4.45	. 142730	15
46	.766774	2.92	. 9092374	1.52	.857537	4.43	. 142463	14
47	. 7667124	2.92	. 909146	1.52	. 85×8069	4.43	. 142197	13
49	. 767300	2.93	. 908964	1.52	. 8588336	4.45	. 141664	12
50	. 7674%	2.92	. 908873	1.52	. 8588602	4.43	. 14141398	110
51	9.767649		9.908781		9.858868		10.141132	9
52	. 767824	2.92 2.92	. 908690	1.52	. 859134	4.43 4.43	. 140866	8
53	. 7679999	$\stackrel{2.92}{2.90}$. 908599	1.53	. 859400	4.43 4.43	. 140600	7
54	. 768173	2.92	. 908507	1.52	. 859666	4.43 4.43	. 140334	6
55	. 768838	2.90	. 908416	1.53	. 8599932	4.43	. 140068	5
56	. 7685822	2.92	. 9083324	1.52	. 860198	4.43	. 139802	4
57	. 7686897	2.90	. 908833	1.53	. 860464	4.43	. 139536	3
58 59	.768871 .769045	2.90	. 908141	1.53	. 860730	4.42	. 139250	2
59	9.769045	2.90	.908049 9.907958	1.52	. 8609995	4.43	. 139005	1
60	9.769219		9.907958		9.861261		10.138739	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

	Sine.	D. 1^{\prime}.	Cosine.	D. 1^{\prime}.	Tang.	D. 1^{\prime}.	Cotang.	
0	9.769219	2.90	9.907958	1.53	9.861261	4.43	10.138739	60
$\stackrel{1}{2}$.769393	2.88	.907866	1.53	.861527	4.42	. 133473	59
3	. 769740	$\stackrel{2}{2.80}$.907682	${ }_{1}^{1.53}$.862058	4.43	. 1387924	-58
4	. 769913	2.88	. 907590	1.53	. 862323	${ }_{4}^{4.42}$. 137677	56
5	. 7770087	${ }_{2}$. 907498	1.53	862589	${ }_{4.42}^{4.43}$. 137411	55
${ }_{6}^{6}$. 770260	$\stackrel{2}{2.88}$. 907406	1.53	. 868285	${ }_{4.42}$. 137146	54
7	.770433	$\stackrel{2.88}{2.88}$. 907314	1.53	. 863119	${ }_{4.43}^{4.42}$. 136881	53
8	. 770606	2.88	. 907222	1.55	. 863385	4.42	. 136615	52
	.770779	${ }_{2}^{2.88}$		1.53	.863650	${ }_{4.42}$. 1363500	${ }_{5}^{51}$
10	Trio	2.88	. 907037	1.53	. 863915	4.42	. 136085	50
11	9.771125	2.88	9.906945		9.864180		10.135820	49
12 13	.771298	2.87	. 906852 . $906{ }^{6} 60$	1.53	. 86644745	4.42	. 1355555	48
13	. 7171643	2.88	. 90066667	1.55	.8647975	4.42	. 1352929	47
15	. 7718	2.87	. 9065	1.53	.865240	4.42	.134760	45
16	.771987	${ }_{2}^{2.87}$. 906482	1.55	. 885505	4.42	. 134495	4
17	.772159	${ }_{2.87}$. 9063	1.55	.865\%\%	4.42	. 134230	43
18	.772331	${ }_{2}^{2.87}$. 9062	1.53	. 866035	${ }_{4}^{4.42}$. 133965	42
19	. 7772503		. 9066204		. 8666300	4.40	. 1333700	41
20	. 772675	2.87	. 906111	1.55	. 866564	4.42	. 133436	40
21	9.772847		9.906018		9.866899		10.133171	39
${ }_{2}^{22}$	773018	${ }_{2}^{2.87}$. 905925	1.55	. 8667094	4.40	. 1329306	${ }^{38}$
23	. 7731930	2.85	. 9050538	1.55	. 8676635	4.42	${ }^{1323977}$	${ }^{37}$
25	.773533	2.87	. 905645	1.57		4.40	. 132113	35
26	.773704	${ }_{2}^{2.85}$. 905552	1.55	. 868152	4.42	. 131848	34
27	. 7738	${ }_{2}^{2.85}$. 905459	1.55	. 868416	4.40	. 131584	33
28	.774046	2.85	. 905366	1.57	. 868880	4.42	. 131320	32
	.7742	2.85	.905272	1.55	.868945	4.40	. 131055	31
30	. 774	${ }_{2}^{2.83}$		1.57	. 869209	4.40	130791	30
31	9.774558		9.905085		9.869473		10.130527	29
32	. 774729	${ }_{2}^{2.83}$. 904992	1.57		4.40	. 1302693	${ }_{27}^{28}$
33 34	.7748999	2.85	. 9048988	1.57	. 8800005	4.40	.129939	${ }_{26}^{27}$
35	.775240	2.83	. 904711	1.55	.870529	4.40	.129471	${ }_{2}$
36	.775410	${ }_{2}^{2.83}$. 904617	${ }_{1}^{1.57}$. 800793	4.40	. 129207	24
37	.775580		. 904523	1.57	. 8710	4.40	. 128943	
38	.775750	${ }_{2}$. 904429	1.57	. 871321	4.40	. 128679	22
39	.775920		. 904335	1.57	. 871585		. 128415	21
40	. 77	2.83	. 904241	1.57	. 871819	4.38	. 128151	20
41	9.776259		9.904147		9.872112		10.127888	19
43	.776429		. 904053	1.57	${ }^{872376}$. 127624	18
43	.776598	${ }_{2}^{2.83}$. 9039395	1.58	. 8726460	4.40 4.38	. 127360	17
44	.776768	${ }_{2.82}$. 903864	1.57	.872903	4.40	.120097	15
45	.776937	2.82	.903740	1.57	${ }_{87343} 8$	4.38	. 126833	15
47	. 771106	2.82	. 9035881	${ }^{1.58}$.873694	4.40	. 126306	${ }_{13}^{14}$
48	.777444	2.82	. 903487	${ }_{1}^{1.58}$. 873957	4.38	. 126043	12
9	. 7776181		. 9033392	1.57	. 8742200		. 1257850	11
0	.777781	${ }_{2}$. 903298	1.58	.874484	4.38	. 125516	10
51	9.777950		9.903203		9.874747		10.125253	
	.778119	2.80	${ }^{.903108}$	1.57	.875010	4.38	. 124999	8
5	.778287	2.80	. 90302014	1.58	.875273	4.40	. 124463	6
5	.778455	2.82	.902824	1.58	.875830	4.38	.124200	5
56	.778792	2.8	. 902729	1.58	.876063	4.38	.123937	4
57	.778960		. 902634	1.58	. 876326	${ }_{4}^{4.38}$. 123674	3
58	.77912	2.80 2.78	902	1.58	.8765	4.38	123411	2
59		2.80	${ }^{-9024}$	1.58		4.37	. 1231488	1
60			9.902349		9.877114		10.122886	
,	Cosine.	D. 1°.	Sine.	D. 1°.	Cotang.	D. 1^{\prime}	Tang.	,

COSINES, TANGENTS, AND COTANGENTS.

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.779463		9.902349		9.877114		10.122886	60
	. 779631	2.80	. 902253	1.60	. 877377	4.38 4.38	. 122623	59
2	. 779798		. 902158	1.58	. 877640	4.38 4.38	. 122360	58
3	. 779966	2.80 2.78	. 902063	1.58	. 877903	4.38 4.37	. 122097	57
	. 780133	2.78	. 901967	1.58	. 878165	4.38	. 121835	56
5	. 780300	2.78	. 901872	1.60	. 878128	4.38	.121572	55
6	. 780480634	2.78	. 9017681	1.58	. 8788691	4.37	. 121309	54
7	. 78060801	2.78	. 901681	1.60	. 87889216	4.38	-121047	53 52
9	. 780968	2.78	. 901490	1.58	. 879478	4.37	. 120522	51
10	. 781134	2.77	. 901394	1.60	. 8 \% ${ }^{3}$ \% 41	4.3	. 120259	50
11	9.781301		9.901298		9.880003		10.119997	49
12	. 781468	2.78	. 901202	1.60	. 880265	$4.38{ }^{\text {4. }}$. 119735	48
13	. 781634	2.77	. 901106	1.60	. 880528	4.38	. 119472	47
14	. 781800	2.77	. 901010	1.60	. 880799	4.3 ?	. 119210	46
15	. 781966	2.77	. 900914	1.60	. 881052	4.37	. 118948	45
16	. 782132	2.77	. 900818	1.60	. 8881314	4.38	. 118686	44
17	.782298	2.77	. 900722	1.60	. 88151577	4.37	. 118423	43
18	. 782464	2.77	. 900626	1.62	. 8818339	4.37	. 118181	42
19	.782630	2.77	. 900529	1.60	. 8882101	4.37	. 117899	41
20	. 782796	2.75	. 900433	1.60	. 882363	4.37	. 117637	40
21	9.782961	2.77	9.900337	1.62	9.882685	4.37	10.117375	39
22	. 783127	2.75	. 900240	1.60	. 882887	4.35	. 117113	38
23	. 783292	2.77	. 900144	1.62	. 883148	4.37	. 116852	37
24	. 783458	2.75	. 900047	1.60	. 883410	4.37	. 116590	36
25	. 783623	2.75	. 8999951	1.62	. 8838672	4.37	. 116328	35
$\stackrel{26}{ }$. 7833788	2.75	. 8998854	1.62	. 8839394	4.37	. 116066	34
$\stackrel{27}{28}$. 7883953	2.75	.899757	1.62	. 884196	4.35	. 115804	33
${ }_{28} 8$. 7878118	2.73	. 8999564	1.60	. 8847419	4.37	. 115281	31
30	. 784447	2.75	. 8999467	1.62	. 8884980	4.35	. 115020	30
31	9.784612		9.899370		9.8852		10.114758	29
32	. .784776	2.73	. 8999273	1.62	. 885504	4.37	. 114496	28
33	.784941	$\stackrel{2.75}{2.73}$. 899176	1.62	. 885765	4.35	. 114235	27
34	.785105	${ }_{2}^{2.73}$. 899078	1.63 1.62	. 886026	4.35 4.37	. 113974	26
35	. 785269	$\stackrel{2.73}{2.73}$. 898981	1.62	. 886288	4.35	. 113712	25
36	. 785433	2.73	. 8988884	1.62	. 886549	4	. 113451	24
37	. 7855597	2.73	. 8988787	1.63	. 888811	4.35	. 113189	23
38	. 785761	$\stackrel{2.73}{2.73}$. 8988689	1.62	. 8887072	4.35	. 112928	22
39	. 7859825	$\stackrel{2.73}{2.73}$. 898592	1.63	. 887333	4.35	. 112667	21
40	. 786	2.78	. 898494	1.62	. 887594	4.35	. 112406	20
41	9.786252		9.898397		9.887855		10.112145	19
42	. 786416	2.78	. 8988299	1.62	. 888116	4.37	. 111884	18
43	. 7885579	2.72	. 898202	1.63	. 8888378	4.35	. 111622	17
44	. 786742	2.73	. 898104	1.63	. 888639	4.35	. 111361	16
45	.786906	2.72	. 8888006	1.63	. 8889900	4.35	. 111100	15
46 47	. 78787069	2.72	. 8897908	1.63	. 889161	4.33	. 110839	14
48	. 787832	2.72	. 8987810	1.63	. 888942121	4.35	. 110579	13
49	. 787557	2.70	.897614	1.63	. 889943	4.35	. 110057	11
50	. 787720	${ }_{2}^{2.72}$. 897516	1.63	. 890204	4.35	. 109796	10
51	9.787883		9.897418		9.890465		10.109535	9
52	. 788045	${ }_{2}^{2.70}$. 897320	1.63	. 890725	4.33 4.35	. $1092 \% 5$	
53	. 788208	${ }_{2.70}^{2.72}$. 897222	1.63	. 890986	4.35 4.35	. 109014	
54	.788370	2.70 2.70	. 897123	1.63	. 891247	4.33	. 108753	6
55	. 788533	2.70	. 897025	1.65	. 891507	4.35	. 108493	
56	. 7888694	2.70	. 8969826	1.63	. 891768	4.33	. 108232	
57	. 7888856	2.70	. 8968828	1.65	. 892028	4.35	.107972	
58	. 7889018	2.70	. 8967729	1.63	. 8922289	4.33	. 107711	1
60	$\begin{array}{r}\text { 9.789180 } \\ \hline\end{array}$	2.70	.896631 9.896532	1.65	.892549 9.892810	4.35	10.1074190	0

-	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.789342		9.896532		9.892810		10.107190	60
1	. 789504	2.70 2.68	. 896433	1.65 1.63	. 8933070	4.33 4.35	. 106930	59
2	. 7898665	2.68 2.70	. 8963335	1.63	. 8933331	4.35 4.33	. 106669	58
3	.789827	2.68	.896236	1.65	893591	4.33	. 106409	57 56
4	. 789988	2.68	.896137	1.65	893851	4.33	. 106149	56
6	. 790310	2.68	. 895939	165	.8943\%2	4.35	. 105628	54
7	. 730471	2.68	. 895840	1.65	. 894632	4.33	. 105368	3
8	790632	68	. 895741	1.65	. 894892	4.33 4.33	. 105108	52
9	.790793	2.68	. 895641	1.65	. 895152	4.33 4.33	. 104848	51
10	. 790954	2.68	. 895542	1.65	. 895412	4.33	. 104588	50
11	9.791115		9.895443		9.895672		10.104328	49
12	. 791275	2.68	. 8953543	1.65	. 8959332	4.33	. 104068	48
13	. 791436	2.67	. 8959244	1.65	. 896192	4.33	. 103808	47
14	. 991596	2.68	. 895145	1.67	. 8986452	4.33	. 103548	46
15	. 79179197	2.67	. 898904945	1.67	. $8966^{* 12}$	4.32	. 103288	45
16	. 791917	2.67	. 89494845	1.65	.896971	4.33	. 103029	44
18	. .7920837	2.67	. 8994846	1.67	. 8897231	4.33	. 102 2769	43
19	. 792397	$\stackrel{2.67}{2.67}$. 894646	1.67	-89\%751	4.33	. 102219	41
20	. 792557	2.67 2.65	. 894546	1.67	. 898010	4.32	. 101990	40
21	9.792716	2.67	9.894446	1.67	9.898270		10.101730	39
22	. 792876	2.65	. 894346	1.67	. 8988530	4.33	. 101470	38
23	. 793035	2.67	. 8942416	1.67	. 898789	4.33	. 101211	37
24	. 793195	2.65	. 894146	1.67	. 8999049	4.32	. 100951	36 35
25	.793354	2.67	. 89893946	1.67	. 8999308	4.33	. 100692	${ }_{34}^{35}$
${ }_{27}^{26}$.793514	2.65	.893916	1.67	. 8999568	4.32	. 100432	34
28	. 79393838	2.65	.893846	1.68	. .9000887	4.33	. 0909913	33 32
29	. 793991	2.65	. 893645	1.67	. 900346	4.32	. 099654	31
30	.794150	$\stackrel{2.65}{2.63}$. 893544	1.68	. 900605	4.32	. 099395	30
31	9.794308		9.893444		9.900864		10.099136	29
32	. 794167	2.65 2.65	. 893343	1.68	. 901124	4.33 4.32	. 0988876	29
33	. 794626	2.65 2.63	. 893243	1.68	. 901383	4.32 4.32	. 098617	27
34	. 794784	$\stackrel{2.63}{ }$. 893142	1.68	. 901642	4.32	. 098358	26
35	. 794942	2.63	. 893041	1.68	. 901901	4.32	. 098099	25
36	. 795101	2.63	. 892940	1.68	. 902160	4.33	. 097840	24
37	. 795259	2.63	. 8928339	1.67	. 902420	4.33 4.32	. 097580	23
38	. 7959517	2.63	. 88273739	1.68	. 902679	4.22	.097321	22
39 40	.795575	2.63	. 8892638	1.70	. 9029338	4.32	. 097062	$\stackrel{21}{20}$
40	.795733	2.63	.892036	1.68	. 903197	4.32	. 096803	20
41	9.795891	2.63	9.892435	1.68	9.903456	4.30	10.096544	19
42	. 796049	2.62	.892334	1.68	. $903 \% 14$	4.32	. 0906286	18
43	. 7966206	2.63	.892233	1.68	. 903973	4.32	. 0996027	17
44	.796364 .796521	2.62	.8922030	1.70	. 9042341	4.32	. 095958	16
45	. 796679	2.63	. 891929	1.68	. 904750	4.32	. 0995250	14
47	. 796836	2.62 2.62	. 891827	1.60 1.68	. 905008	4.30 4.32	. 094992	13
48	. 796993	2.62	. 891726	1.68	. 905267	4.32	. 094733	12
49	. 797150	2.62	. 891624	1.68 1.68	. 905528	4.32	. $0944 \% 4$	11
50	. $79730{ }^{7}$	2.62	. 891523	1.68 1.70	. $905 \% 85$	4.30	. 094215	10
51	9.797464		9.891421		9.906043		10.093957	9
52	. 797621	2.62 2.60	. 891319	1.70	. 9063302	4.30	. 0933698	8
53	. 7977777	2.62	. 891217	1.70	. 906560	4.32	. 0933440	7
54	. 7979334	2.62	. 891115	1.70	. 906819	4.30	. 093181	5
55	.798091	2.60	.891013	1.70	. 907077	4.32	. 092923	5
56	.798247 .798403	2.60	. 8890911	1.70	. 907336	4.30	. 0922664	4
58	. 798560	2.62	.890707	1. 70	. .907853	4.32	. 092147	$\stackrel{3}{2}$
59	. 798716	$\stackrel{2.60}{ }$. 890605	1.70	. 908111	4.30	. 091889	2
60	9.798872	2.60	9.890503	1.70	9.908369	4.30	10.091631	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.798872	2.60	9.890503	1.72	9.908369	4.32	10.091631	60
1	. 799028	2.60 2.60	. 890400	1.18	. 908628	4.32 4.30	.091372	59
2	. 799184	2.60	.890298	1.72	.908886	4.30 4.30	. 091114	58
3	. 799839	2.68 2.60	.890195	1.70	. 909144	4.30 4.30	. 090856	57
4	. 799495	2.60	.890093	1.72	.909402	4.30	. 090598	56
5	.799651	2.58	.889990	1.70	. 909660	4.30 4.30	. 090340	55
6	.799806	2.08 2.60	.889888	1.72	.909918	4.30 4.32	. 090082	54
7	. 799962	2.60 2.58	.889785	1.72	.910177	4.32 4.30	. 089823	53
8	. $80011{ }^{7}$	2.58 2.58	.889682	1.72	.910435	4.30 4.30	. 089565	52
9	.800272	2.58 2.58	.889579	1.70	.910693	4.30 4.30	. 089307	51
10	. 800427	2.58	.8894\%'7	1.72	. 910951	4.30	. 089049	50
11	9.800582	2.58	9.889374	1.72	9.911209	4.30	$10.088 \% 91$	49
12	. 800737	2.58 2.58	.8892\%1	1.72	.911467	4.30 4.30	. 088533	48
13	. 800892	2.58	.889168	1.73	.911725	4.28	. 088275	47
14	. 801047	2.57	.889064	1.72	. 911982	4.28 4.30	. 088018	46
15	. 801201	2.58	. 8889691	1.72	.912240	4.30 4.30	. 087760	45
16	.801356	2.58	. 8888588	1.72	. 912498	4.30 4.30	. 087502	44
17	.801511	2.58	. 8888755	1.73	. 912756	4.30 4.30	. 087244	43
18	.801665	2.57	.888651	1.78	.913014	4.30 4.28	. 086986	42
19	.801819	2.57	. 888548	1.73	.913271	4.30	.086\%29	41
20	. 801973	2.58	. 888444	1.72	. 913529	4.30 4.30	.086471	40
21	9.802128	2.57	9.888341	1.73	9.913787	4.28	10.086213	39
22	. 802482	2.57	.888237	1.73	. 914044	4.28 4.30	. 085956	38
23	. 802436	2.55	.888134	1.72	.914302	4.30 4.30	. 085698	37
24	. 802589	2.57	.888030	1.73	.914560	4.30 4.28	. 085440	36
25	. $802 \% 43$	2.58	. 8879896	1.73 1.73	.914817	4.28	. 085183	35
26	. 802897	2.55	. $88 \% 822$	1.73	. $9150 \% 5$	4.28	.084925	34
27	. 803050	2.57	. 887718	1.13 1.73	. 915332	4.30	. 084668	33
28	. 803204	2.55	. 887614	1.73	. 915590	4.28	. 084410	32
29	.803357	2.87	. 887510	1.13	.915847	4.28 4.28	. 084153	31
30	. 803511	2.55	. 887406	1.73	. 916104	4.28 4.30	. 083896	30
31	9.803664	2.55	$9.88 \% 302$		9.916362		10.083638	29
32	. 803817	2.55	. 887198	1.73	.916619	4.28 4.30	. 083381	28
33	. $8039{ }^{*} 0$	2.55	.887093	1.75	. 916877	4.30 4.28	. 083123	27
34	. 804123	2.55	. 886989	1.13	. 917134	4.28 4.28	. 082866	26
35	. 804276	2.55	.886885	1.75	. 917391	4.28 4.28	. 082609	25
36	. 804428	2.55	. 886380	1.75 1.73	.917648	4.28 4.30	.082352	24
37	. 804581	2.55	. 886676	1.75	. 917906	4.38	. 082094	23
38	. 804734	2.53	. 886571	1.75	.918163	4.28 4.28	. 081837	22
39	. 804886	2.55	. 886466	1.73	. 918420	4.28 4.28	. 081580	21
40	. 805039	2.53	. 886362	1.75	.918677	4.28	. 081323	20
41	9.805191		9.886257	1.75	9.918934	4.28	10.081066	19
42	. 805343		. 886152	1.75	.919191	4.28 4.28	. 080809	18
43	. 805495	2.53 2.53	.886047	1.15	. 919448	4.28 4.28	. 080552	17
44	. 805647	2.53	. 885942	1.75	$.919 \% 05$	4.28 4.28	. 080295	16
45	. 805799	2.53	. 8858387	1.75	.919962	4.28 4.28	. 080038	15
46	.805951	2.53	. 885732	1.75	.920219	4.28 4.28	. 079781	14
47	.806103	2.52	. 885627	1.75	.920476	4.28 4.28	.079524	13
48	. 806254	2.53	. 885522	1.77	.920733	4.28 4.28	. 079267	12
49	. 806406	2.52	.885416	1.75	.920990	4.28 4.28	. 079010	11
50	. $80655{ }^{\prime \prime}$	2.53	. 885311	1.77	.921247	4.28 4.27	. 078753	10
51	9.806\%09	2.52	9.885205	1.75	9.921503		10.078497	9
52	. 806860	2.52	.885100	1.75	. 921760	4.28 4.28	. 078240	8
53	. 807011	2.53	. 884994	1.75	.922017	4.28 4.28	. 077983	7
54	.807163	2.52	.884889	1.77	. 922274	4.28 4.27	.077726	6
55	.807314	2.52	.884783	1.77	. 922530	4.28	.077470	5
56	. 807465	2.50	.884677	1.75	.922787	4.28 4.28	. 0777213	4
57	. $80{ }^{\prime \prime} 615$	2.52	:884572	1.77	. 923044	4.28	. 076956	3
58 59	. 807766	2.52	. 884466	1.77	. 923300	4.28	. 076700	2
59	. 807917	$\stackrel{2.50}{2.50}$. 884360	1.77	. 923557	4.28	. 076443	1
60	$9.80806{ }^{\prime \prime}$	2.50	9.884254	1.7	9.923814	4.28	10.076186	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1^{\prime}.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1'.	Cotang.	,
0	9.808067	2.52	9.884254		9.923814		10.076186	60
1	. 808218	2.50	. 884148	1.77	. 924070	4.27 4.28	. 075930	59
2	. 808368	2.52	. 884042	1.77	. 924327	4.28 4.27	. 0756 ¢ 3	58
3	. 808519	2.50	. 88839386	1.78	. 924583	4.28	. 075417	57
4	. 8086869	2.50	. 8883829	1.77	. 924840	4.27	. 075160	56
5	. 808819	2.50	.883723	1.77	. 9225096	4.27	. 074904	55
7	. 809119	2.50	. 883510	1.78	.925609	4.28	. 0744398	54
8	. 809269	2.50 2.50	. 883404	1.77	. 925865	4.27	. 074135	5
9	. 809419	2.50	. 8838297	1.78 1.77	. 926122	4.28	. 073878	51
10	. 809569	2.50	. 883191	1.77 1.78	. 926378	4.27	. 073622	50
11	9.809718	2.50	9.883084		9.926634	4.27	10.073366	49
12	. 809868	2.48	. 882977	1.78	. 9268890	4.28	. 073110	48
13	. 810017	2.48	.882871	1.78	. 927147	4.28 4.27	. 072853	47
14	. 810167	2.48	.882764	1.78	. 927403	4.27	. 072597	46
15	. 810316	2.48	. 8826557	1.78	. 927659	4.27	. 072341	45
16	. 810465	2.48	. 882550	1.78	. 927915	4.27	. 072085	44
17	. 810614	2.48	. 8882443	1.78	. 9288171	4.27	. 071829	43
18	. 810763	2.48	. 88823336	1.78	. 9288427	4.28	. 071573	42
19	. 810912	2.48	. 88822229	1.80	. 9288684	4.27	. 071316	41
20	. 811061	2.48	. 882121	1.78	. 928940	4.27	. 071060	40
21	9.811210	2.47	9.882014		9.929196		10.070804	39
22	. 811358	2.48	. 881907	1.78 1.80	. 929452	4.27	. 050548	38
23	. 811507	2.47	. 881799	1.78	. 929708	4.27	. 070292	37
24	. 811655	2.48	. 881692	1.80	. 9299964	4.27	. 0700336	36
25	. 811804	2.47	. 8815884	1.78	. 930220	4.25	. 069780	35
${ }_{2}^{27}$. 811952	2.47	. 881477	1.80	. 930475	4.27	. 069525	34
27	. 812100	2.47	. 881368	1.80	. 930731	4.27	. 069269	33
28	. 812248	2.47	. 881261	1.80	. 930988	4.27	. 069013	32
29	. 812396	2.47	. 88811046	1.78	. 9312439	4.27	. 0688501	31
30	. 812544	2.47	. 881046	1.80	. 931499	4.27	. 068501	30
31	9.812692	2.47	9.880938	1.80	9.931755		10.068245	29
32	. 812840	2.47	. 8808380	1.80	. 932010	4.27	. 067990	28
33	. 8129888	2.45	. 880722	1.88	. 932266	4.27	. 067734	27
34	. 813135	2.47	. 880613	1.80	. 9332522	4.27	.067478	26
35	. 81313833	2.45	. 880505	1.80	. 932778	4.25	. 067222	25
36	. 813430	2.47	. 880397	1.80	. 9333033	4.27	. 066967	$\stackrel{24}{23}$
37	. 813578	2.45	. 8802889	1.82	. 9333289	4.27	. 0666711	23
38	.813725	2.45	. 880180	1.80	. 9333800	4.25	. 0666450	21
39 40	.813872	2.45	. 8889963	1.82	. 9334056	4.27	. 0665944	21
40	. 814019	2.45	. 869963	1.80	. 93	4.25	. 065944	20
41	9.814166	2.45	9.879855		9.934311		10.065689	19
42	. 814313	2.45	. 8787746	1.82	. 934567	4.25	. 065433	18
43	814460	2.45	. 879637	1.80	. 934822	4.27	. 065178	17
44	. 814607	2.43	. 879529	1.80	. 935078	4.25	. 064922	16
45	. 814753	2.45	. 879420	1.82 1.82	. 935333	4.27	. 064667	15
46	. 814900	2.43	. 879311	1.82	. 9355589	4.25	. 064411	14
47	. 815046	2.45	. 879202	1.82	. 935844	4.27	. 064156	13
48	. 815193	2.43	. 8790093	1.82	. 936100	4.25	. 063900	12
49	. 815339	2.43	. 8788984	1.82	. 936355	4.27	. 063645	11
50	. 815485	2.45	.878875	1.82	. 936611	4.27 4.25	. 063389	10
51	9.815632		9.878766		9.936866		10.063134	9
52	. 815778	2.43	. 878656	1.83 1.82	. 937121	4.25 4.27	. 062879	8
53	. 815924	2.43	. 878547	1.82 1.82	. 937377	4.27 4.25	. 062623	7
54	. 816069	2.43	. 878438	1.83	. 937632	4.25 4.25	. 062368	6
55	. 816215	2.43	. 8783828	1.88	. 937887	4.25	. 062113	5
56	. 816361	2.43	. 878219	1.83	. 938142	4.27	. 061858	4
57	. 816507	2.42	878109	1.83	. 9383898	4.25	. 061602	3
58	. 816658	2.43	. 8777999	1.82	. 9388653	4.25	. 0613477	2
59	.816798 9.816943	2.42	.877890 9.877780	1.83	.938908 9.939163	4.25	10.060837	0
,	Cosine	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

,	Sine.	D. 1".	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.816943		$9.877 \% 80$	1.83	9.939163		10.060837	
1	. 81717088	2.42	. 877670	1.83	. 9394948	4.25 4.25	. 0660582	59
$\stackrel{2}{2}$. 8172333	2.43	.877560 877450	1.83	. 9396973	4.25	. $06038{ }^{\prime \prime}$	58
3	. 817379	2.42	. 877450	1.83	${ }^{.9399288}$	4.25	. 0600872	56
5	. 817668	2.40	. 877230	1.83	. 940439	4.27	. 059561	55
6	. 817813	2.42	. 877120	1.83	. 940694	4.25	. 059306	54
7	. 817958	${ }_{2}^{2.42}$. 877010	1.85	. 940949	4.25	. 059051	53
8	. 818103	2.40	. 876899	1.85 1.83	. 941204	4.25	. 058796	
9	. 818247	2.42	. 876789	1.85	. 941459	4.23	. 058541	51
10	. 818392	2.40	.8766\%8	1.83	. 941713	4.25	.05828\%'	50
11	9.818536	2.42	9.876568	1.85	9.941968	4.25	10.058032	49
12	. 818681	2.40	. 876457	1.83	. 942223	4.25	. 057777	48
13	. 818825	2.40	.876347	1.85	. 942478	4.25	. 057522	47
14	. 8189113	2.40	. 87676125	1.85	. 942733	4.25	.057267	46
15 16	. 81911925	2.40	. 8876125	1.85	. 9442988	4.25	. 056757	45
17	. 819401	2.40	. 875901	1.83	. 943498	4.25	. 056502	43
18	. 819545	2.40	. 875793	1.85	. 943752	4.23	. 056248	42
19	. 819689	$\stackrel{2.40}{2.38}$. 875682	1.85	. 944007	4.25	. 055993	41
20	. 819832		. 875571	1.87	. 944262		.055\%38	40
21	9.819976		9.875459	1.85	9.944517		10.055483	39
22	. 820120	2.48	. 875348	1.85	. 944771	4.25	.055229	38
23	. 820263	2.33	. 875237	1.85	. 945026	4.25	.054974	37
24	. 820406	2.40	. 875123	1.87	. 945281	4.23	. 054719	36
25	. 8205550	2.38	. 875014	1.85	. 945535	4.25	. 054465	35
${ }_{2}^{26}$. 820693	2.38	. 874903	1.87	. 945790	4.25	. 054210	34
$\stackrel{27}{ }$.820836	2.38	. 874791	1.85	. 946045	4.23	. 0533955	33
28 29	.820979	2.38	. 8744568	1.87	. 94646599	4.25	. 0533446	32
30	.821265	2.38	. 874456	1.87	. 946808	4.23	. 053192	31 30
31	9.821407		9.874344		9.947063		10.05293\%	29
32	. 821550	$\stackrel{2.38}{ }$. 874232	1.87	. 947318	4.25	. 052682	28
33	. 821693	2.38 2.37	. 874121	1.85 1.87	. $9475{ }^{\text {a }} 2$	4.23	. 052428	27
34	. 821833	2.37	. 874009	1.88	. 947827	4.23	. 052173	26
35	.821977	2.38	. 873896	1.87	. 948081	4.23	. 051919	25
36	. 82.2120	2.37	. 8737884	1.87	. 948335	4.25	. 051665	24
37	.823262	2.37	. 873672	1.87	. 948590	4.23	. 051410	23
38	82.2404	2.37	. 8733560	1.87	. 9488844	4.25	. 051156	22
39	. 8220546	2.37	. 873448	1.88	. 9490099	4.23	. 050901	21
40	. 822688	2.37	.873335	1.87	.949353	4.25	. 050647	20
41	9.822830		9.873223	1.88	9.949608		10.050392	19
42	. 8222978	2.37	. 873110	1.87	. 9498682	4.23	. 050138	18
43	. 823114	2.35	. 8782998	1.88	. 950116	4.25	. 049884	17
44	.823255	2.37	. 8782885	1.88	. 950371	4.23	. 0496829	16
45	.823397	2.37	. 872772	1.88	. 950625	4.23	. 049375	15
4	.823539	2.35	. 8782547	1.87	. 9508713	4.23	. 049121	14
47	. 82338381	2.35	. 8782434	1.88	. 951133	4.25	. 0488667	13
49	. 823963	${ }_{2}^{2.37}$. 872321	1.88	. 951642	4.23	. 0488358	12
50	. 824104	${ }_{2}^{2.35}$. 872208	1.88	. 951896	4.23	. 048104	10
51	9.824245		9.872095		9.952150		10.047850	9
52	. 824386	2.35	. 871981	1.98	. 952405	4.23	. 047595	8
53	.824527	2.35	. 871868	1.88 1.88	. 952659	4.23	. 047341	7
54	. 824668	2.33	. 871755	1.90	. 952913	4.23	. 047087	6
55	. 824808	2.35	. 871641	1.88	. 953167	4.23	. 046833	5
56	. 824949	2.35	. 87151528	1.90	. 9533421	4.23	. 046579	4
57	. 825090	2.33	. 871414	1.88	. 953675	4.23	. 046325	3
8	. 82525371	2.35	. 8711187	1.90	${ }_{954183}$	4.23	. 04645817	1
60	9.825511	2.33	9.871073	1.90	9.954437	4.23	10.045563	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cctang.	D. 1^{\prime}.	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.825511		9.871073		9.954437		10.045563	60
9	. 8255651	2.33 2.33	. 8780960	1.88	. 954691	4.23 4.25	. 045309	59
2	. 8257931	2.33	. 8780846	1.90	. 954946	4.23	. 045054	58
3	. 88259371	2.33	. 87870732	1.90	${ }^{9555454}$	4.23	. 044800	57
5	. 826211	2.33	. 870504	1.90	. 955708	4.23	. 044292	55
6	. 826351	2.33 2.33	. 870390	1.90	. 955961	4.22	. 044039	54
7	. 826491	2.33 2.33	. 870276	1.90	. 956215	4	. 043785	53
8	. 826631	2.33	. 870161	1.92	. 956469	4.23 4.23	. 043531	52
9	.8267\%0	2.33	. 870047	1.90	.956\%23	4.23	. 043277	51
10	. 826910	2.32	. 869933	1.92	. 956977	4.23	. 043023	50
11	9.827049	2.33	9.869818	1.90	9.957231		10.042769	49
12	. 827189	2.33 2.32	. 869704	1.92	. 957485	4.23	. 042515	48
13	. 827328	2.32	. 8699589	1.92	. $95 \% 739$	4.23	. 042261	47
14	. 8274676	2.32	. 8699374	1.90	. 95.95993	4.23	. 042007	46
15 16	. 82787606	2.32	. 886939245	1.92	. 9582487	4.22	. 041753	45
17	. 827884	2.32	. 869130	1.92	. 958754	4.23	. 041246	44
18	. 828023	${ }_{2}^{2.32}$. 869015	1.92	. 959008	4.23	. 040992	42
19	. 828162	2.32 2.32	. 868900	1.92 1.92	. 959262	4.23	. 040738	41
20	. 828301	2.32 2.30	. 868785	1.92	. 959516	4.23	. 040484	40
21	9.828439	2.32	9.868670	1.92	9.959769	4.23	10.040231	39
22	. 828578	2.30	. 8685555	1.92	. 960023	4.23	. 039977	38
23	. $828 \% 16$	2.32	. 868440	1.93	. 960277	4.22	. 039723	37
24	. 828855	2.30	. 868324	1.92	. 960530	4.23	. 039470	36
25	. 828993	2.30	. 868209	1.93	. 960784	4.23	. 039216	35
26	. 829131	2.30 2.30	. 868093	1.92	. 961038	4.23	.038962	34
27	. 8292969	2.30	.867978	1.93	. 961292	4.22	. 03878	33
${ }_{29}^{28}$. 8299407	2.30	. 8678682	1.92	. 961545	4.23	. 038455	32
30	.829545	2.30	7	1.93	. 9662052	4.22	. 038201	31
		2.30	80،631	1.93	.96205	4.23	.037948	30
31	829821	2.30	9.867515	1.93	9.963306	4.23	10.037694	29
32 33	.829959	2.30	. 86737398	1.93	. 96250813	4.22	.037440	28
34	. 8330234	2.28	. 8867167	1.93	. 963067	4.23	. 036933	26
35	. 830372	2.30	. 867051	1.93	. 963320	4.22	. 036680	25
36	. 830509	2.28 2.28	. 8666935	1.93	. 963574	4.23	. 036426	24
37	. 830646	2.28 2.30	. 866819	1.93	. 963828	4.23	.0361\%2	23
38	. 830784	28	. 866703	1.93	. 964081	4.22	. 035919	22
39	. 830921		. 866586	1.95	. 964335	4.23	. 035665	21
40	. 831058	2.28	. 866470	1.93	. 964588	4.23	. 035412	20
41	9.831195		9.866353		9.964842		10.035158	19
42	. 881332	2.28	. 8668337	1.95	. 965095	4.23	. 034905	18
43	. 831469	2.28	. 8666120	1.93	. 965349	4.22	. 034651	17
44	. 831606	2.27	.866004	1.95	. 965602	4.22	. 034398	16
45	. 831742	2.28	. 865887	1.95	. 9658109	4.23	. 034145	15
4	.831879 .832015	2.27	.865\%70	1.95	. 966109	4.22	. 0338891	14
47	. 8332152	2.28	. 86556533	1.95	. 96663616	4.23	. 03333384	13
43	. 832288	2.27	. 865419	1.95	. 966869	4.22	. 033131	11
50	. 832425	2.28 2.27	. 865302	1.95	. 967123	4.23	. 032877	10
51	9.832561		9.865185		9.967376		10.032624	
52	. 832697	2.27	. 865068	1.97	. 967629	4.22	.032371	8
53	. 832833		. 864950	1.95	. 967883	4.23	. 032117	7
54	. 832969	2.27	. 864833	1.95	. 968136	4.22 4.22	. 031864	6
55	. 833105	2.27	. 864716	1.97	. 968389	4.23	. 031611	5
56	. 833241	2.27	. 864598	1.95	. 968643	4.23	. 031357	4
57	. 833377	2.25	. 864481	1.97	. 968896	4.22	. 031104	3
58	. 8333512	2.27	363	1.97	.969149	4.23	. 030851	2
69	.833648 9.833783	2.25	9.864245	1.97	.969403 9.969656	4.22	${ }_{10}^{.030597}$	1
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1^{*}.		D. 1^{*}	Tang.	,

,	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	,
0	9.833783	2.27	9.864127		9.969656	4.22	10.030344	60
1	. 833919	2.25	. 864010	1.97	. 969909	4.22	. 030091	59
2	. 834054	2.25	. 8633892	1.97	. 970162	4.23	. 029838	58
3	. 834189	2.27	. 8633774	1.97	. 970416	4.22	. 0295884	57
4	. 8343425	2.25	.863656	1.97	. 970669	4.22	. 0292931	56
5	. 8344595	2.25	. 86335319	1.98	. 970922	4.22	. 0229078	55
7	. 834730	2.25	. 863301	1.97	. 971429	4.23	028571	53
8	. 834865	2.25	. 863183	1.97	. 971682	4.22	. 028318	52
9	. 834999	2.23	. 863064	1.98 1.97	. 971935	4.22 4.22	. 028065	51
10	. 835134	2.25 2.25	. 862946	1.98	. 972188	4.22	. 027812	50
11	9.835269	23	9.862827	1.97	9.972441		10.027559	49
12	. 835403	2.25	. 862709	1.98	. 972695	4.23 4.22	. 027305	48
13	. 835538	2.23	. 862590	1.98	. 972948	4.22	. 027052	47
14	. 835672	2.25	. 862471	1.97	. 973201	4.22	. 026799	46
15	. 835807	2.23	. 862353	1.98	. 973454	4.22 4.22	. 026546	45
16	. 8335941	2.23	. 862234	1.98	. 973707	4.22	. 026293	44
17	. 836075	2.23	. 862115	1.98	. 973960	4.22	. 026040	43
18	. 836209	2.23	. 86191977	1.98	. 974213	4.22	. 0257878	42
19	. 836343	2.23	. 86181758	1.98	. 974460	4.23	. 0252850	41
20	. 836477	2.23	861758	2.00	4720	4.22	. 025280	40
21	9.836611	2.23	9.861638	1.98	9.974973		10.025027	39
22	. 836745	2.22	. 861519	1.98	. 975226	4.22	. 024774	38
23	. 836878	2.23	. 861400	2.00	. 975479	4.22	. 024521	37
24	. 837012	2.23	. 861280	1.98	. 975732	4.22	. 024268	36
25	. 837146	2.22	. 861161	2.00	. 975985	4.22	. 024015	35
26	. 837279	2.22	. 861041	1.98	. 976238	4.22	. 023762	34
27	. 837412	2.23	. 860922	2.00	. 976491	4.22	.023509	33
28	. 837546	2.22	. 860802	2.00	. 976744	4.22	.023256	32
29	. 837679	2.22	. 860682	2.00	.9769970	4.22	022750	31 30
30	. 837812	2.22	. 860562	2.00	977250	4.22	022750	30
31	9.837945		9.860442		9.977503		10.022497	29
32	. 838078	2.22	. 860322	2.00	. 977756	4.22	. 022244	28
33	. 838211	2.22	. 860202	2.00	. 978009	4.22	. 021991	27
34	. 838344	2.22	. 860082	2.00	. 978262	4.22	. 021738	26
35	. 838477	2.22	. 8599962	2.00	. 978515	4.22	. 021485	25
36	. 838610	2.20	. 859842	2.02	. 978768	4.22	. 021232	24
37	. 838742	2.22	. 859721	2.00	. 979021	4.22	. 020979	23
38	. 838875	2.20	. 8599601	2.02	.979274	4.22	020726	22
39	. 839007	2.22	859480	2.00	. 979527	4.22	. 020220	21
40	. 839140	2.20	. 859360	2.02	. 979780	4.22	20	20
41	9.839272		9.859239		9.980033		10.019967	19
42	. 839404	2.20	. 859119	2.00	. 980286	4.22	. 019714	18
43	. 839536	2.20	. 858998	2.02	. 980538	4.20	. 019462	17
44	. 839668	2.20	. 858877	2.02	. 980791	4.22 4.22	. 019209	16
45	. 839800	2.20	. 8588756		. 981044	4.22	. 018956	15
46	. 839932	2.20	. 8588635	2.02	.981297	4.22	. 018703	14
47	. 840064	2.20	. 858514	2.02	. 981550	4.22	. 018450	13
48	. 840196	2.20	. 858393	2.02	.981803	4.22	. 018197	12
49	. 840328	2.18	. 858272	2.02	. 982056	4.22	. 017944	11
50	. 840459	2.20		2.03	9	4.22	91	10
51	9.840591		9.858029		9.982562		10.017438	9
52	. 840722	2.20	. 857908	2.03	. 982814	4.22	.017186	
53	. 840854	2.18	. 857786	2.02	. 983067	4.22	. 016933	7
54	. 840985	2.18	. 857665	2.03	. 983320	4.22	. 016680	6
55	. 841116	2.18	. 857513	2.02	.983573	4.22	.016427	5
56	. 841247	2.18	. 857422	2.03	. 9838826	4.22	. 016174	4
57	. 841378	2.18	. 857300	2.03	. 984079	4.22	. 015921	3
53	. 841509	2.18	857178	2.03	934332	4.20	. 015668	2
59	. 841640	2.18	.857056 9.856934	2.03	. 9884584	4.22	. 0.015416	0
60	9.841771		9.856934		9.984837		10.015163	0
,	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang. ${ }^{\text {] }}$,

	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.841771		9.856934		9.984837		10.015163	60
	. 8419002	2.18	. 8556812	${ }_{2.03}^{2.03}$.985090	${ }_{4.22}^{4.22}$	014910	59 59
3	. 88421633	2.17	. 88565698	2.03	${ }^{9} 9853438$	4.22	014657	58 57
4	. 88422944	${ }_{2}^{2.18}$. 8566446	${ }_{2}^{2.03}$.985848	4.20	.014152	56 56
5	. 842424	2.17	. 856323	${ }_{2}^{2.05}$	${ }_{986101}$	4.22	. 013899	55
6	. 842555	2.17	. 8556201	2.05	. 986353	4.22	. 013646	54
7	. 842685	2.17		2.03		4.22	. 013393	53
	. 84281			2.05		4.20	. 013140	52
9	. 8442946	17	833	2.03	. 987112	4.22	.012888	51 50
10		2.17	. 855711	2.05		22		
11	9.8432	2.17	9.	2.05	9.9876	4.22	. 012382	49
12	. 84334	2.17	85	2.05	${ }^{9} 98888123$	4.20	. 012187	48
	. 84334595	2.15	. 8855219	2.05	.988123	4.22	. 0111877	
15	. 843725	2.17	. 8555096	${ }^{2} .05$. 9888829	4.22	. 0111371	45
16	. 843855	17	. 854973	${ }_{2}^{2.05}$. 988882	4.22	. 011118	44
	. 8439	2.17	. 854850	2.05	. 989134	4.22	. 010866	43
18	. 844114	2.15	. 8554727	2.07	${ }_{989640}^{9887}$	4.22	. 010613	42
		2.15	. 85544808	2.05	. 989896940	4.22	. 01010360	41 40
20	. 844372	2.17	. 854480	2.07			. 010107	
21	9.844502	15	9.85435	2.05	9.990145	4.22	10.009855	39
	. 84463	15	854333	2.07	. 99006	4.22	00	38
23	. 84447680	15	. 8853988	2.05	. 9909003	4.20	. 009097	37 36
25	. 8445018	2.15	. 85838662	${ }_{2}^{2.07}$. 991156	4.22	. 008844	35
	. 845127	2.15	. 8537	2.07	. 991409	4.22	. 008591	34
27	. 88545276	2.15	. 8533614	2.07	9916	4.20	. 0088338	33
		2.13	. 88334366	2.07	. 9992167	4.22	. 0007833	32
30	. 845		. 8		. 992		. 0783	30.
		2.13		2.07		4.20		
	9.845	2.15	9.853	2.07	- 9922	4.22	10.0073	
33	. 84591	2.13	. 858282969	2.08	${ }^{.992925}$	4.22	.006822	28
34	. 88461	2.13	. 852744	${ }_{2}^{2.07}$. 993431	4.22	.006569	26
	. 84630	${ }_{2.13}$. 852620	${ }_{2} .07$. 9936	4.22	. 006317	25
3	. 846463	2.13	. 85524936	2.08	. 99939389	4.22	006064	${ }_{23}^{24}$
	. 8446	${ }_{2}^{2.13}$. 8522247	${ }_{2} 2.07$.994441	4.20	. 0055559	${ }_{22}^{23}$
39	. 846816	${ }_{2}^{2.13}$. 852122	${ }_{2}{ }^{2} .08$. 994694	${ }_{4}^{4.22}$. 005306	21
40	. 846944	2.13	. 851997	2.0	. 994947	4.22 4.20	. 005053	20
	9.847071		9.851872	2.08	9.995199		10.004801	
42	. 847199		851747	${ }_{2} .08$	995452	${ }_{4}^{4.22}$. 004548	
	. 847327	2.12	8516	${ }_{2} .08$	995		. 004295	17
	. 847454	2.13	. 851497	2.08	. 995957	4.22	004	16
	. 847582	2.	. 851372	2.10	.9962	22	. 003790	15
		2.12	. 8551246	2.08	.996	4.20	003	14
	8478		. 855121	2.08	. 9967		.003285	13
48	. 84796		850996		99	2	003032	
	. 84809	${ }_{2} .12$	85	2.08	${ }_{9} 9974721$	4.20	.002779	11
50	84821	${ }_{2.12}$	85	2.10	997473	4.22	. 002527	10
51	9.8483		9.8506				10.002274	9
	. 848	2.12	50	2.08	${ }^{997979} 9$	4.20	. 00202021	8
	.84887	2.12	. 85	2.10	.9989484	4.22	. 00017516	6
5	. 884888526	${ }_{2}^{2.10}$. 850116	${ }_{2}{ }^{2} 10$. 9989737	4.22	. 001263	5
	. 848979	${ }_{2}^{2.12}$	849990	${ }_{2}{ }^{2} 10$	998989	${ }_{4}^{4.22}$. 001011	4
	. 84910		849864	2.10	. 999242	4.2	. 000758	3
	. 84923	2.12	.849738	2.12	${ }_{99}^{99}$	4.20	5	2
69	9.84948	2.10	9.8494485	2.10	10.000000	4.22	10.000000	0
	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1 .	Cotang.	D. $1^{\prime \prime}$.	Tang.	,

Art. 42. Azimuth by Altitude of Sun.

The azimuth of a given line may be determined by taking the altitude of the sun with an engineer's transit having a good vertical circle, and reading the horizontal angle between the sun and the line. The latitude of the place must be known and a nautical almanac must be at hand for finding the declination of the sun at the moment of observation.
In Fig 59 let A represent the center of the celestial sphere, Z the zenith, P the pole, N the north point of the horizon, S the position of the sun at the moment of observation. Then, in the spherical triangle $P Z S$, the angle Z is the azimuth of the sun, and this is the same as the horizontal angle NAC. If $A B$ be the line whose azimuth is to be found, $N A B$ is its azimuth. Now if the horizontal angle $B A C$ be measured, and Z be computed, the azimuth of $A B$ is known.
To find the azimuth of the sun Z, let z be the complement of the observed altitude $C S$, corrected for refraction and parallax; let ϕ be the latitude of the place, or the arc $N P$; let δ be the declination of the sun, or the arc $Q S$. Then in the spherical triangle $P Z S$ three sides are known, and hence

$$
\tan \frac{1}{2} Z=\sqrt{\frac{\cos \frac{1}{2}(z+\phi+\delta) \sin \frac{1}{2}(z+\phi-\delta)}{\cos \frac{1}{2}(z-\phi-\delta) \sin \frac{1}{2}(z-\phi+\delta)}},
$$

from which the azimuth Z can be computed.
In the figure S denotes the place of the sun in the summer half-year when δ is positive, and S^{\prime} its place in the winter half-year when δ is negative. If the observation be made in the forenoon, the value of Z is less than 180 degrees; if it be made in the afternoon, its value is greater than 180 degrees.
The transit having been put into thorough adjustment, it is set up at A, the end of the line $A B$, whose azimuth is to be found. The vernier of the

Fig. 59. horizontal limb having been set at $0^{\circ} 00^{\prime}$, the telescope is pointed at B and the alidade unclamped. The telescope is
then pointed upon the sun, the objective and eyepiece being so focused that the shadow of the cross-wires and the image of the sun may be plainly seen on a white piece of paper held behind the eyepiece. The cross-wires should be made tangent to the bright circle on its lower and right-hand sides, and the horizontal and vertical angles be read. Next, the cross-wires should be made tangent on the upper and left-hand sides of the bright circle, and the angles be read again. If the transit has a full vertical circle, which is necessary for the best work, observations should be taken both in ine direct and reverse position of the telescope.

The following record of an observation will illustrate the method of making the measurements and obtaining the data for computation. The declination δ for $8: 43$ A.m., eastern standard time, of the day of observation, is here taken from a nautical almanac, but for general purposes it may be taken

$\begin{aligned} & \text { Time } \\ & \text { May } 19, \\ & 1897 . \end{aligned}$	Tel.	Vertical Angle. CAS	Horizontal Angle. $B A C$	Data and Results.
A.M.		Wires tang and right	ent to lower sides.	$\begin{aligned} & \phi=40^{\circ} 36^{\prime} \\ & \delta \text { at } 7 \text { A.M. }=19^{\prime \prime} \\ & 53^{\prime \prime} 10^{\prime \prime} \\ & 55 \end{aligned}$
$8^{\text {b }} 40^{\text {m }}$	D	$43^{\circ} 09^{\prime} 00^{\prime \prime}$	$64^{\circ} 48^{\prime} 00^{\prime \prime}$	$\delta=19^{\circ} 54^{\prime} 05^{\prime \prime}$
42	R	$43 \quad 35 \quad 30$	$65 \quad 10 \quad 30$	Appar. Alt. $=43^{\circ} 58^{\prime} 22^{\prime \prime}$ Parallax... +06 Refraction.. -60
		Wires tang and left	ent to upper sides.	Altitude $=$ 43° 90 57^{\prime} 90 00 0 $08^{\prime \prime}$
$8 \quad 44$	R	$44^{\circ} 21^{\prime} 00^{\prime \prime}$	$64^{\circ} 52^{\prime} 30^{\prime \prime}$	$z=46^{\circ} 02^{\prime} 32^{\prime \prime}$
46	D	$44 \quad 48 \quad 00$	$65 \quad 1500$	$Z=101^{\circ} 45^{\prime} 36^{\prime \prime}$
Means $=$		$43^{\circ} 58^{\prime} 22^{\prime \prime}$	$65^{\circ} 01^{\prime} 30^{\prime \prime}$	$N A B=36^{\circ} 44^{\prime} 06^{\prime \prime}$

from the solar table mentioned on page 126. The mean apparent altitude is $43^{\circ} 58^{\prime} 22^{\prime \prime}$, and this being corrected for parallax and refraction, the zenith distance z is found. By computation from the formula, the mean azimuth of the sun is $101^{\circ} 45^{\prime} 36^{\prime \prime}$, and subtracting from this the mean horizontal angle $B A C$ the final azimuth of the line $A B$ is $36^{\circ} 44^{\prime} 06^{\prime \prime}$.

The uncertainty of an azimuth found by this method is two
or three minutes. The best time for observation is when the bearing of the sun is nearly east or nearly west, and for any precise work a mean result should be determined by several morning and afternoon observations.

The correction for parallax of the sun is less than $8^{\prime \prime} .6$, and is always added to the apparent altitude; for an altitude of 20° the parallax correction is $8^{\prime \prime}$, for 40° it is $7^{\prime \prime}$, and for 60° it is $6^{\prime \prime}$. In precise computations the value of the parallax correction may be found by multiplying $8^{\prime \prime} .6$ by the cosine of the apparent altitude of the sun.

The correction for refraction is always subtracted from the apparent altitude, and its value is to be taken from the following table, interpolating when necessary.

Table XIII. Mean Refractions.

0°	$34^{\prime} 54^{\prime \prime}$	20°	$2^{\prime} 37^{\prime \prime}$	40°	$69^{\prime \prime}$	60°	$33^{\prime \prime}$
1	$24 \quad 25$	21	229		66	61	33
2	1809	22	222	42	64	62	31
3	1415	23	215	43	62	63	29
4	1139	24	209	44	60	64	28
5	946	25	2 CB	45	58	65	27
6	823	26	158	46	56	66	26
7	720	27	153	47	54	67	24
3	630	28	148	48	52	68	23
9	549	29	144	49	50	69	22
10	516	30	140	50	48	70	21
11	449	31	136	51	47	72	19
12	425	32	132	59	45	74	17
13	405	33	$1 \begin{array}{ll}1 & 29\end{array}$	53	43	76	15
14	347	34	125	54	42	78	12
15	332	35	122	55	40	80	10
16	319	36	$\begin{array}{ll}1 & 19\end{array}$	56	39	82	8
17	307 0	37	116	57	38	84	6
18	256	38	114	58	36	86	4
19	246	39	111	59	35	88	2
20	237	40	109	60	33	90	0

Areas and Volumes.
In Fig. $60, n+1$ offsets, $O_{1}, O_{2}, \ldots O_{n+1}$, distant d apart, are measured from a line $f g$ to the curved boundary of a field as $a b$. . $b q$. Then the area of abpqgf is given very nearly by the following formulas:

Fig. 60.

$$
\begin{array}{llr}
\text { If } n=2, & A=\frac{1}{3} d\left(O_{1}+4 O_{2}+O_{3}\right) \quad \text { (Simpson's Rule). } \\
\text { If } n=3, & A=\frac{3}{8} d\left(O_{1}+3 O_{2}+3 O_{3}+O_{4}\right) \quad \text { (Cotes' Rule). } \\
\text { If } n=4, & A=\frac{2}{45} d\left[7\left(O_{1}+O_{5}\right)+32\left(O_{2}+O_{4}\right)+12 O_{3}\right] . \\
\text { If } n=6, & A=\frac{3}{10} d\left[O_{1}+O_{3}+O_{5}+O_{7}+5\left(O_{2}+O_{4}+O_{6}\right)+O_{4}\right]
\end{array}
$$

If n be even,
(Weddles' Rule).

$$
A=\frac{1}{3} d\left[O_{1}+O_{n+1}+4\left(O_{2}+\ldots+O_{n}\right)+2\left(O_{3}+\ldots+O_{n-1}\right)\right] .
$$ All the above formulas are exact if the curve be a parabola or a straight line.

The area of a segment of a circle is, very nearly:

$$
A=\frac{4}{3} h \sqrt{2 r h-(0.6+0.01 h / r) h^{2}} .
$$

This formula gives areas exact to five places for values of h less than $0.6 r$ and a maximum error, when $h=r$, of $0.00117 r^{2}$. For more exact results when $h=0.6 r, 0.7 r, 0.8 r, 0.9 r$, and r, use, respectively, $0.6062,0.6076,0.6089$,

Fig. 61. 0.6106 , and 0.6121 for $(0.6+0.01 \mathrm{~h} / r)$ in the formula.

The surface of a segment of a sphere is $A=2 \pi r h$ (Fig. 61).
The volume of a spherical segment is (Fig. 61):

$$
V=\frac{1}{6} \pi h\left(3 c^{2}+h^{2}\right) .
$$

If a solid has parallel plane ends and is otherwise bounded by surfaces that can be generated by a straight line always touching the peripheries of the end planes, it is a prismoid and the volume is

$$
V=\frac{1}{6} l\left(A_{1}+4 M+A_{2}\right),
$$

in which M is the area midway between the end areas A_{1} and A_{2} and l is the distance between the ends. This prismoidal formula applies also to spheres and ellipsoids. It is widely used for the computation of earthwork volumes.
(
AFA
Al

A
(A)

	-	T	11		-	7	7	11				-	
							3						
					-								

A

					-												
	-																
	-																
,																	
1	1																
1	-																
1	\square																
I																	
7																	
1																	

AN INITIAL FINE OF 25 CENTS

 WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY overdue.

YĀ 03088

845967

THE UNIVERSITY OF CALIFORNIA LIBRARY

