
405
B98H
1906
EtfGIttEEI
AlATftEMAI

LIBRA]























MATHEMATICAL MONOGRAPHS
EDITED BY

Mansfield Merriman and Robert S. Woodward

Octavo, Cloth

No. 1. History of Modern Mathematics.
By DAVID EUGENE SMITH. $1.25 net.

No. 2. Synthetic Projective Geometry.
By GEORGE BBUCE HALSTED. $1.25 net.

No. 3. Determinants.
By LAENAS GIFFORD WELD. $1.25 net.

No. 4. Hyperbolic Functions.
By JAMES MCMAHON. $1.25 net.

No. 5. Harmonic Functions.
By WILLIAM E. BYERLY. $1.25 net.

No. 6. Grassmann's Space Analysis.
By EDWARD W. HYDE. $1.25 net.

No. 7. Probability and Theory of Errors.
By ROBERT S. WOODWARD. $1.25 net.

No. 8. Vector Analysis and Quaternions.
By ALEXANDER MACFARLANE. $1.25 net.

No. 9. Differential Equations.
By WILLIAM WOOLSEY JOHNSON. $1.50.

net.

No. 1O. The Solution of Equations.
By MANSFIELD MERRIMAN. $1.25 net.

No. 11. Functions of a Complex Variable.
By THOMAS S. FISKE. $1.25 net.

No. 12. The Theory of Relativity.
By ROBERT D. CARMICHAEL. $1.25 net.

No. 13. The Theory of Numbers.
By ROBERT D. CARMICHAEL. $1.25 net.

No. 14. Alffebraic Invariants.
By LEONARD E. DICKSON. $1.50 net.

No. 15. Mortality Laws and Statistics.
By ROBERT HENDERSON. $1.50 net.

No. 16. Diophantine Analysis.
By ROBERT D. CARMICHAEL. $1.50 net.

No. 17. Ten British Mathematicians.
By ALEXANDER MACFARLANE. $1.50 net.

No. 18. Elliptic Integrals.
By HARRIS HANCOCK. $1.50 net.

No. 19. Empirical Formulas.
By THEODORE R. RUNNING. $1.50 net.

No. 2O. Ten British Physicists.
By ALEXANDER MACFARLANE. $1.50 net.

No. 21. The Dynamics of the Airplane.
By KENNETH P. WILLIAMS. $2.50 net.

PUBLISHED BY

JOHN WILEY & SONS, Inc., NEW YORK
CHAPMAN & HALL, Limited, LONDON



MATHEMATICAL MONOGRAPHS.
EDITED BY

MANSFIELD MERRIMAN AND ROBERT S. WOODWARD.

No. 5.

HARMONIC FUNCTIONS.

WILLIAM E. BYERLY,
PROFESSOR OF MATHEMATICS IN HARVARD UNIVERSITY.

FOURTH EDITION, ENLARGED.

FIRST THOUSAND.

NEW YORK:

JOHN WILEY & SONS.

LONDON: CHAPMAN & HALL, LIMITED.

1906.



COPYRIGHT, 1896,

BY

MANSFIELD MERRIMAN AND ROBERT S. WOODWARD
UNDER THE TITLE

HIGHER MATHEMATICS.

First Edition, September, 1896.

Second Edition, January, 1898.

Third Edition, August, 1900.

Fourth Edition, January, 1906.



Engineering &

Mathematical
i

*~

Bf;

Sciences

Library

EDITORS' PREFACE.

THE volume called Higher Mathematics, the first edition

of which was published in 1896, contained eleven chapters by

eleven authors, each chapter being independent of the others,

but all supposing the reader to have at least a mathematical

training equivalent to that given in classical and engineering

colleges. The publication of that volume is now discontinued

and the chapters are issued in separate form. In these reissues

it will generally be found that the monographs are enlarged

by additional articles or appendices which either amplify the

former presentation or record recent advances. This plan of

publication has been arranged in order to meet the demand of

teachers and the convenience of classes, but it is also thought

that it may prove advantageous to readers in special lines of

mathematical literature.

It is the intention of the publishers and editors to add other

monographs to the series from time to time, if the call for the

same seems to warrant it. Among the topics which are under

consideration are those of elliptic functions, the theory of num-

bers, the group theory, the calculus of variations, and non-

Euclidean geometry; possibly also monographs on branches of

astronomy, mechanics, and mathematical physics may be included.

It is the hope of the editors that this form of publication may
tend to promote mathematical study and research over a wider

field than that which the former volume has occupied.

December, 1905.

444680



AUTHOR'S PREFACE.

THIS brief sketch of .the Harmonic Functions and their use

in Mathematical Physics was written as a chapter of Merriman

and Woodward's Higher Mathematics. It was intended to give

enough in the way of introduction and illustration to serve as

a useful part of the equipment of the general mathematical

student, and at the same time to point out to one specially inter-

ested in the subject the way to carry on his study and reading

toward a broad and detailed knowledge of its more difficult

portions.

Fourier's Series, Zonal Harmonics, and Bessel's Functions of

the order zero are treated at considerable length, with the inten-

tion of enabling the reader to use them in actual work in physical

problems, and to this end several valuable numerical tables

are included in the text.

CAMBRIDGE, MASS., December, 1905
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HARMONIC FUNCTIONS.

ART. 1. HISTORY AND DESCRIPTION.

What is known as the Harmonic Analysis owed its origin

and development to the study of concrete problems in various

branches of Mathematical Physics, which however all involved

the treatment of partial differential equations of the same

general form.

The use of Trigonometric Series was first suggested by
Daniel Bernouilli in 1753 in his researches on the musical

vibrations of stretched elastic strings, although Bessel's Func-

tions had been already (1732) employed by him and by Euler

in dealing with the vibrations of a heavy string suspended from

one end; and Zonal and Spherical Harmonics were introduced

by Legendre and Laplace in 1782 in dealing with the attrac-

tion of solids of revolution.

The analysis was greatly advanced by Fourier in 1812-1824

in his remarkable work on the Conduction of Heat, and im-

portant additions have been made by Lame" (1839) ar"d by a

host of modern investigators.

The differential equations treated in the problems which

have just been enumerated are
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for the transverse vibrations of a musical string :o *

for small transverse vibrations of a uniform heavy string sus-

pended from one end
;

which is Laplace's equation ;
and

for the conduction of heat in a homogeneous solid.

Of these Laplace's equation (3), and (4) of which (3) is a

special case, are by far the most important, and we shall con-

cern ourselves mainly with them in this chapter. As to their

interest to engineers and physicists we quote from an article

in The Electrician of Jan. 26, 1894, by Professor John Perry:

" There is a well-known partial differential equation, which is

the same in problems on heat-conduction, motion of fluids, the

establishment of electrostatic or electromagnetic potential, certain

motions of viscous fluid, certain kinds of strain and stress, currents

in a conductor, vibrations of elastic solids, vibrations of flexible

strings or elastic membranes, and innumerable other phenomena.
The equation has always to be solved subject to certain boundary
or limiting conditions, sometimes as to space and time, sometimes

as to space alone, and we know that if we obtain any solution of a

particular problem, then that is the true and only solution. Further-

more, if a solution, say, of a heat-conduction problem is obtained

by any person, that answer is at once applicable to analogous prob-

lems in all the other departments of physics. Thus, if Lord Kel-

vin draws for us the lines of flow in a simple vortex, he has drawn

for us the lines of magnetic force about a circular current; if

Lord Rayleigh calculates for us the resistance of the mouth of an

organ-pipe, he has also determined the end effect of a bar of iron

which is magnetized; when Mr. Oliver Heaviside shows his match-
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less skill and familiarity with Bessel's functions in solving electro-

magnetic problems, he is solving problems in heat-conductivity or

the strains in prismatic shafts. How difficult it is to express exactly

the distribution of strain in a twisted square shaft, for example, and

yet how easy it is to understand thoroughly when one knows the

perfect-fluid analogy! How easy, again, it is to imagine the electric

current density everywhere in a conductor when transmitting alter-

nating currents when we know Mr. Heaviside's viscous-fluid analogy,

or even the heat-conduction analogy!
" Much has been written about the correlation of the physical

sciences; but when we observe how a young man who has worked

almost altogether at heat problems suddenly shows himself ac-

quainted with the most difficult investigations in other departments

-of physiS, we may say that the true correlation of the physical

sciences lies in the equation of continuity

dt
=a

\a*
8 + ay a*'/

In the Theory of the Potential Function in the Attraction

of Gravitation, and in Electrostatics and Electrodynamics,*

V \r\ Laplace's equation (3) is the value of the Potential Func-

tion, at any external point (x, y, 2), due to any distribution of

matter or of electricity; in the theory of the Conduction of

Heat in a homogeneous solid f V is the temperature at any

point in the solid after the stationary temperatures have been

established, and in the theory of the irrotational flow of an

incompressible fluid \ V is the Velocity Potential Function

and (3) is known as the equation of continuity.

If we use spherical coordinates, (3) takes the form

=0-

* See Peirce's Newtonian Potential Function. Boston.

f See Fourier's Analytic Theory of Heat. London and New York, 1878

or Riemann's Partielle Differentialgleichungen. Brunswick.

\ See Lamb's Hydrodynamics. London and New York, 1895.
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and if we use cylindrical coordinates, the form

~~

In the theory of the Conduction of Heat in a homogene^
ous solid,* u in equation (4) is the temperature of any point

(x, y, z) of the solid at any time /, and c? is a constant deter-

mined by experiment and depending on the conductivity and

the thermal capacity of the solid.

ART. 2. HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS.

The general solution of a differential equation is the equa-

tion expressing the most general relation between the primi-

tive variables which is consistent with the given differential

equation and which does not involve differentials or derivatives-

A general solution will always contain arbitrary (i.e., undeter-

mined) constants or arbitrary functions.

A particular solution of a differential equation is a relation

between the primitive variables which is consistent with the

given differential equation, but which is less general than the

general solution, although included in it.

Theoretically, every particular solution can be obtained:

from the general solution by substituting in the general solu-

tion particular values for the arbitrary constants or particular

functions for the arbitrary functions
; but in practice it is often

easy to obtain particular solutions directly from the differential

equation when it would be difficult or impossible to obtain the

general solution.

(a) If a problem requiring for its solution the solving of a

differential equation is determinate, there must always be given
in addition to the differential equation enough outside condi-

tions for the determination of all the arbitrary constants or

arbitrary functions that enter into the general solution of the

equation ;
and in dealing with such a problem, if the differen-

tial equation can be readily solved the natural method of pro-
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cedure is to obtain its general solution, and then to determine

the constants or functions by the aid of the given conditions.

It often happens, however, that the general solution of the

differential equation in question cannot be obtained, and then,

since the problem, if determinate, will be solved, if by any

means a solution of the equation can be found which will also

satisfy the given outside conditions, it is worth while to try to

get particular solutions and so to combine them as to form a

result which shall satisfy the given conditions without ceasing

to satisfy the differential equation.

(b) A differential equation is linear when it would be of the

first degree if the dependent variable and all its derivatives

were regarded as algebraic unknown quantities. If it is linear

and contains no term which does not involve the dependent

variable or one of its derivatives, it is said to be linear and

homogeneous.

All the differential equations given in Art. I are linear and

homogeneous.

(c) If a value of the dependent variable has been found

which satisfies a given homogeneous, linear, differential equa-

tion, the product formed by multiplying this value by any
constant will also be a value of the dependent variable which

will satisfy the equation.

For if all the terms of the given equation are transposed

to the first member, the substitution of the first-named value

must reduce that member to zero ; substituting the second

value is equivalent to multiplying each term of the result of

the first substitution by the same constant factor, which there-

fore may be taken out as a factor of the whole first member.

The remaining factor being zero, the product is zero and the

equation is satisfied.

(d) If several values of the dependent variable have been

found each of which satisfies the given differential equation,

their sum will satisfy the equation ; for if the sum of the values

in question is substituted in the equation, each term of the sum
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will give rise to a set of terms which must be equal to zero, and

therefore the sum of these sets must be zero.

(e) It is generally possible to get by some simple device

particular solutions of such differential equations as those we
have collected in Art. i. The object of this chapter is to find

methods of so combining these particular solutions as to satisfy

any given conditions which are consistent with the nature of

Jthe problem in question.

This often requires us to be able to develop any given func-

tion of the variables which enter into the expression of these

conditions in terms of normal forms suited to the problem with

which we happen to be dealing, and suggested by the form of

particular solution that we are able to obtain for the differential

equation.

These normal forms are frequently sines and cosines, but

they are often much more complicated functions known as

Legendre's Coefficients, or Zonal Harmonics; Laplace's Coef-

ficients, or Spherical Harmonics; Bessel's Functions, or Cylin-

drical Harmonics; Lame's Functions, or Ellipsoidal Har-

monics; etc.

ART. 3. PROBLEM IN TRIGONOMETRIC SERIES.

As an illustration let us consider the following problem :

A large iron plate n centimeters thick is heated throughout
to a uniform temperature of 100 degrees centigrade; its faces

are then suddenly cooled to the temperature zero and are kept

at that temperature for 5 seconds. What will be the tempera-

ture of a point in the middle of the plate at the end of that

time? Given a3

=0.185 in C.G.S. units.

Take the origin of coordinates in one face of the plate

and the axis of X perpendicular to that face, and let ti be the

temperature of any point in the plate t seconds after the cool-

ing begins.

We shall suppose the flow of heat to be directly across the

plate so that at any given time all points in any plane parallel
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to the faces of the plate will have the same temperature.

Then u depends upon a single space-coordinate x
; ^

- = o and

- = o, and (4), Art. I, reduces to
dz

* = <& (i)
3/ - a*

1

Obviously, u = 100 when t = o, (2)

u = o when x = o, (3)
i

and u = o when x = rr
; (4)

and we need to find a solution of (i) which satisfies the con-

ditions (2), (3), and (4).

We shall begin by getting a particular solution of (i), and

we shall use a device which always succeeds when the equa-

tion is linear and homogeneous and has constant coefficients.

Assume* u = e&x+yt
,
where ft and y are constants; substi-

tute in (i) and divide through by <?*+?' and we get y = c? ft* ;

and if this condition is satisfied, u = e^
x+y(

is a solution of (i).

u = gP*+**P* is then a solution of (i) no matter what the

value of ft.

We can modify the form of this solution with advantage.

Let ft /i/,f then u = ^-"VV4**
is a solution of (i), as is also

u e-We' 1^.

By (d), Art. 2,

(V* 4- e
~

i***}

u _ ,-*< Xf 1 = e-'W cos IAX (5)2

is a solution, as is also

(e\*-
xi e~v-xt\= *- Vifl _1 / = # ^"sin/wr; (6)22 .

and /* is entirely arbitrary.

* This assumption must be regarded as purely tentative. It must be tested

by substituting in the equation, and is justified if it leads to a solution,

f The letter i will be used to represent 4/ i.
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By giving different values to
jj.
we get different particular

solutions of (i) ;
let us try to so combine them as to satisfy our

conditions while continuing to satisfy equation (i).

u = ^>-
aV sin }juc is zero when x = O for all values of // ;

it

is zero when x = n if yu is a whole number. If, then, we write

u equal to a sum of terms of the form Ae'"3"1 ** sin mx, where

m is an integer, we shall have a solution of (i) (see (d), Art. 2)

which satisfies (3) and (4).

Let this solution be

u = A^-**' sin x-\-A,e-*
ayt sin 2x -f A^-^1 sin 3*+ ..., (7)

.A lt A t ,
A t ,

. . . being undetermined constants.

When / = o, (7) reduces to

u A
t
sin x -j- A t

sin 2.x -j- A 3
sin ^x -f- . (8)

If now it is possible to develop unity into a series of the

form (8) we have only to substitute the coefficients" of that

series each multiplied by 100 for A
l ,
A

t , A 3 . . . in (7) to have

a solution satisfying (i) and all the equations of condition (2),

'(3), and. (4>

We shall prove later (see Art. 6) that

I ~ sin x + - sin \x -4- sin tx 4- . . .

TtL 3 5 J

for all values of x between o and n. Hence our solution is

u = - -L--"" sin x + -<T9a" sin 3* + Le-&0t sin 5x _j_ _ _ ^
To get the answer of the numerical problem we have only

to compute the value of u when x = and / = 5 seconds. As

there is no object in going beyond tenths of a degree, four-

place tables will more than suffice, and no term of (g) beyond

the first will affect the result. Since sin - = i, we have to
fi

compute the numerical value of



PROBLEM IN ZONAL HARMONICS. 15

AOO
- e-"* where a1 = 0.185 and t = 5.

71

log a? = 9.2672 10 log 400 = 2.6021

log / = 0.6990 colog n = 9.5059 10

log a*t 9.9662 10 colog tf** = 9.5982 10

log log e = 9.6378 10
log u = 1.7062

log log ^ = 9.6040 10

log e
an = 0.4018^ u 5Q-8.

If the breadth of the plate had been c centimeters instead

of it centimeters it is easy to see that we should have needed

the development of unity in a series of the form

TIX 2.71X . iTtX
A. sin -4- A. sm 4- A, sin + . . . .

c c c

Prob. i. An iron slab 50 centimeters thick is heated to the tem-

perature 100 degrees Centigrade throughout. The faces are then sud-

denly cooled to zero degrees, and are kept at that temperature for

10 minutes. Find the temperature of a point in the middle of the

slab, and of a point 10 centimeters from a face at the end of that

time. Assume that

4 f nx
,

i ?nx .1.5 Tfx
, \ ,

i sin sin f-
- sin *

\- . . . from x = o to x = c.

x\ c '3 '5 f I

Ans. 84.o; 49,4. ->

ART. 4. PROBLEM IN ZONAL HARMONICS.

As a second example let us consider the following problem :

Two equal thin hemispherical shells of radius unity placed

together to form a spherical surface are separated by a thin

layer of air. A charge of statical electricity is placed upon
one hemisphere and the other hemisphere is connected with

the ground, the first hemisphere is then found to be at poten-

tial i, the other hemisphere being of course at potential zero.

At what potential is any point in the "
field of force" due to

the charge?

We shall use spherical coordinates and shall let Fbe the

potential required. Then F" must satisfy equation (5), Art. i.
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But since from the symmetry of the problem V is obviously

independent of 0, if we take the diameter perpendicular to the

tfV .

plane separating the two conductors as our polar axis, -^
is

zero, and our equation reduces to

9r sin 30

V\s given on the surface of our sphere, hence

V= f(ff) when r=i, (2)

where f(tf)
= I if o < B < -, and /(0) = o if

- < < n.
2

Equation (2) and the implied conditions that V is zero at

an infinite distance and is nowhere infinite are our conditions.

To find particular solutions of (i) we shall use a method

which is generally effective. Assume* that V= RQ where/?

is a function of r but not of 0, and & is a function of but

not of r. Substitute in (i) and reduce, and we get

, Dx jn , .

i ra*(rK) _ i dOJ. (3)

R dr*
~
@ sin dO

Since the first member of (3) does not contain and the

second does not contain r and the two members are identically

equal, each must be equal to a constant. Let us call this

constant, which is wholly undetermined, m(m-\- i) ;
then

d&

whence r
^

m(m -f \}R = o, (4)

and --
-j^ }- m(m -\- i)& = o. (5)

* See the first foot-note on page 175.X
*?
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Equation (4) can be expanded into

d*R dR
r'-^-j

+ 2r- r̂
- m(m + i)R = o,

and can be solved by elementary methods. Its complete

solution is

R-Arm + Br-m~\ (6)

Equation (5) can be simplified by changing the independ-

ent variable to x where x = cos 0. It becomes

an equation which has been much studied and which is known

as Legendre's Equation.

We shall restrict m, which is wholly undetermined, to posi-

tive whole values, and we can then get particular solutions of

(7) by the following device :

Assume* that can be expressed as a sum or a series of

terms involving whole powers of x multiplied by constant

coefficients.

Let & = 2anxH and substitute in (7). We get

2[n(n i)anx"-* n(n -f- i)anx
n

-\- m(m+ i)anx
n

~]

= o, (8)

where the symbol 2 indicates that we are to form all the

terms we can by taking successive whole numbers for n.

Since (8) must be true no matter what the value of x, the

coefficient of any given power of x, as for instance x*, must
vanish. Hence

(k + 2)(k + iX+2 k(k + i)ak + m(m + i}ak
= o,

m(m-\- i) k(k -f- i)a =

If now any set of coefficients satisfying the relation (9) be

taken, = ^a^ will be a solution of (7).

If k = m, then at+ ,
= o, ak+t = o, etc.

* See the first foot-note on page-*75^ \
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Since it will answer our purpose if we pick out the simplest
set of coefficients that will obey the condition (9), we can take

a set including am .

Let us rewrite (9) in the form

(m -.k)(m+k- I)'

We get from (10), beginning with k = m 2,

m(m i)
"~- = -"

_ m(m \}(m 2)(m 3)

2. 4. (2m- i)(2;//-3)

m(m i}(m 2)(m 3)(; 4)(m 5)
"- ~

2.4.6. (2m - i)(2/
-

3)( 2/ -
5)

a"" G

If m is even we see that the set will end with a
;

if m
is odd, with

,.

2,(2ml)

m(m- i)(m-2)(m-m(m- i)(m-2)(m-3)^m_
2.4.(2; i)(2; 3)

where m is entirely arbitrary, is, then, a solution of (7). It is

found convenient to take am equal to

(2m \)(2m 3) ... I

~^TT '

and it will be shown later that with this value of am , @ i

when x = I.

Q is a function of x and contains no higher powers of x

than xm . It is usual to write it as Pm(x\
We proceed to write out a few values of Pm(x) from the

formula

= (M, - Qfr* - 3) - - - 1 r . _ >(>>> - ) -.

w! L 2. (2m i)

w( -
i)(w

- 2)0;/ - 3) n
.* ...

2 .4.(2; i)(2m 3) J
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We have:

x) - i or /'.(cos 0) = I,

x) = x or /^(cos 0) = cos 0,

*) = (3-^ i) or /^(cos 0)
= (3 cos2

i),

-v\ if r *- 3 ? f\ f\r P (m<z H\ i( C r* r>c
3H 2 rr>c fi\x

) 2\ 5-* 3-*^ or ^sv1-015 p
j 1^5 C0b c 3 cos f7

;) < ,

3Ox* -f- 3) or

/'.(cos 0) = i(35 cos
4 - 30 cos'0 + 3),

JQX* + l Sx)
or

/'.(cos 0) 1(63 cos
5

70 cos
3 + 15 cos 0). J

We have obtained & = Pm(x) as a particular solution of (7),

and 6) = Pm(cos 0) as a particular solution of (5). /^U'j or

Pm(cos 0) is a new function, known as a Legendre's Coefficient,

or as a Surface Zonal Harmonic, and occurs as a normal form

in many important problems.

j7__ rmpm (Cos 0) is a particular solution of (i), and rmPm(cos 0)

is sometimes called a Solid Zonal Harmonic.

V = A,P,(cos 0) + AsPfros 6} + A,r
2

P,(cos 0)

+ ^,r
>

/>,(cos60+... (13)

satisfies (i), is not infinite at any point within the sphere, and

reduces to

V= AJ>.(cos 0) + ^(cos 0) + A
t
P

t(cos 0)

+ .4
3
/>

3(cos0)+... (14)
when r = i.

r/ _yJ /> (cos0) , A^cosff) ,
A,Pt(cos0)

-7- -75- -p-

satisfies (i), is not infinite at any point without the sphere, is

equal to zero when r = oo
,
and reduces to (14) when r = i.

If then we can develop f(ff) [see eq. (2)] into a series of the

form (14), we have only to put the coefficients of this series in

place of the A
,
A lt A t ,

... in (13) to get the value of Ffor a

point within the sphere, and in (15) to get the value of Fat a

point without the sphere.



20 HARMONIC FUNCTIONS.

We shall see later (Art. 16, Prob. 22} that if /(#) = I for

o < < and/(0) = o for -'- < < n,

- ' jD-(cos

Hence our required solution is

V= l

+ 3rP
> (c S *>

~ ' ' r3/3
'(G

-f
'

3
r

5
/>

6(cOS0)-., (17)12 2-4
at an internal point ; and

_|_ii..Lll />(COS ^)
_

. . .
1 12 2.47-

v

?t an external point.

If r = - and 6 = 0, (17) reduces to

T r
I

,
3 I 7 I I . II 1.3 I

L^ u 1. .-- :_ . _ . ---- . ^ . - since P (I) i
/> I ^ ,, O o ^3 I TO O > ^B * ' S 111 *-^ -1

fKV
1 /

- "

2 44 024 12 2. 4 4

To two decimal places F= 0.68, and the point r = -, = o

is at potential 0.68.

If r = 5 and =
, (18) and Table I, at the end of this

4

chapter, give

and the point r = 5, # = - is at potential 0.12.
4

If the radius of the conductor is a instead of unity, we
f

have only to replace r by in (17) and (18).
a



PROBLEM IN BESSEL'S FUNCTIONS. ;: 1

Prob. 2. One half the surface of a solid sphere 12 inches in di-

ameter is kept at the temperature zero and the other half at 100 de-

grees centigrade until there is no longer any change of temperature

at any point within the sphere. Required the temperature of the

center; of any point in the diametral plane separating the hot and

cold hemispheres ;
of points 2 inches from the center and in the

axis of symmetry ;
and of points 3 inches from the center in a di-

ameter inclined at an angle of 45 tp
the axis of synimetry.

Ans. 50; 50; 73-9 ;
26.!

; 77.! ;
22 -9.

** '*
^ MO *

T- v~-

ART. 5. PROBLEM IN BESSEL'S FUNCTIONS.

As a last example we shall take the following problem :

The base and convex surface of a cylinder 2 feet in diameter

and 2 feet high are kept at the temperature zero, and the upper
base at 100 degrees centigrade. Find the temperature of a

point in the axis one foot from the base, and of a point 6 inches

from the axis and one foot from the base, after the permanent
state of temperatures has been set up.

If we use cylindrical coordinates and take the origin in the

base we shall have to solve equation (6), Art. I
; or, represent-

ing the temperature by u and observing that from the sym-

metry of the problem u is independent of 0,

tfu I du tfu

s7'
+ r^ + ^'

=0' (I)

subject to the conditions

u = o when z = o, (2)

u = o " r = I, (3)

U = IOO " 2 = 2. (4)

Assume u = RZ where R is a function of r only and Z of

z only; substitute in (i) and reduce.

i d*R . i dR i d*ZWe get _f =
(5)R dr rR dr Z dz

The first member of (5) does not contain z\ therefore the

second member cannot. The second member of (5) does not
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contain r
;
therefore the first member cannot. Hence each

member of (5) is a constant, and we can write (5)

l^?_i-_L^- L^-
R~dS~^^R~dr~ ~Z~d?~-

***

when yu
a
is entirely undetermined.

Hence ^-^Z=o, (7)

cTR . idR .

and ^+7* + "* = a (8)

Equation (7) is easily solved, and its general solution is

Z = Ae** -\-Be~ **', or the equivalent form

Z = C cosh (us) -f- D sinh (//). (9)

We can reduce (8) slightly by letting /-<r
= x, and it becomes

d*R
,

i dR .-4-^ = 0. (10)dx 1 ' x dx n

Assume, as in Art. 4, that 7? can be expressed in terms of

whole powers of x. Let R = ~2anxn and substitute in (10).

We get

2[n(n \]anx
n ~ ' + nanxn - 3 + ajc*\ = o,

an equation which must be true, no matter what the value of x.

The coefficient of any given power of x, as xk
~*, must, then,

vanish, and

k(k i)ak + kak -f- ak _ ,
= o,

or ^X + A- 2
= 0,

whence we obtain at-* = ^at (n)

as the only relation that need be satisfied by the coefficients in

order that R = ^a/^ shall be a solution of (10).

If = o, ak _ t
= o, ak _ t

= o, etc.

We can, then, begin with k = o as the lowest subscript.
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From (I i) at =

Then .
= -

*. =
;.,

.
= -5, etc.

=
.[,-

i + - -
-,-f^ + ...],

Hence

where at may be taken at pleasure, is a solution of (10), pro-

vided the series is convergent.

Take a = I, and then ^ =Jo(x) where

T ' \ I I / \
J v\

XJ T I -a O s .a zrz I -2 ,,2
/; o * ' * \

12
/

2 2.4 2.4O 2.4*0.0

is a solution of (10).

Ja(x) is easily shown to be convergent for all values real or

imaginary of x, it is a new and important form, and is called a

Bessel's Function of the zero order, or a Cylindrical Har-

monic.

Equation (10) was obtained from (8) by the substitution of

x = JJLT ; therefore

is a solution of (8), no matter what the value of jn ;
and

u =J (^r) sinh
(fjiz) and u =Jn(fA.r) cosh (//#) are solutions of

(i). =yo(jur) sinh (jjz) satisfies condition (2) whatever the

value of /*. In order that it should satisfy condition (3) JA

must be so taken that

/.(/<)
= o; T,0*p (13)

that is, // must be a root of the transcendental equation (13).

It was shown by Fourier that ./(//)
= o has an infinite num-

ber of real positive roots, any one of which can be obtained to

any required degree of approximation without serious diffi-

culty. Let //,, /*, //,,... be these roots
;
then

u = A,J9(ns) sinh (pjs) + AJ.(^r) sinh (/i^)

+ AJ (^r) sinh (^2) + . . . (14)

is a solution of (i) which satisfies (2) and (3).
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If now we can develop unity into a series of the form

+ BJJwr) + ^./.(/V) + .
,

. sinh ( u.s) T . . J5, sinh ( u. ~l

>+- J
satisfies (i) and the conditions (2), (3), and (4).

We shall see later (Art. 21) that if//*) = -
dx

I 9\
-/ o''r~'' / I -'QV"' / _ I

^ ov^-s- / / .r-v

I, /-/M\~M 7^y\^,, //'\T^ <> *
V 10^

for values of r < i.

Hence

200l
J ^ 1

'
'
S'"h ^'^

-I-
/.(^r)

sinh (^fg) . / 7x

^sJU| //..\_:.-i-/'^...\~t .. 7" / .. \ _:_u /~ .. \ I

' * *
I \ 7)

lifi(^i) sinh (2/1,) A*/i(^t) sinh(;

is our required solution.

At the point r = o, = I (17) reduces to

sinh /*, . sinh yu2sn u. sn u. -\u 200 -I I-

L/'./aOO sinh (2/^J ^,/1(//t) sinh (2yw2)

^ '

J
i 1= IOO

./X/O cosh ^ ^7,00 cosh

since / (o) = i and sinh (2*) = 2 sinh ^r cosh ;r.

If we use a table of Hyperbolic functions* and Tables II

and III, at the end of this chapter, the computation of the

value of u is easy. We have

/i,
= 2.405 yua

= 5.520

/,(/*.)
= o-5 i?p /,W = -

0.3402

colog //,
= 9.6189 10 colog //,

= 9.2581 10
" JM = 0.2848

" 7,W= o.4683
"
cosh^,= 9.2530 10 "

cosh^4
=: 7.9037 10

9.1567 10 7.63oi 10

* See Chapter IV, pp. 162, 163, for a four-place table on hyperbolic func-

tions.
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/i(/0 cosh /O~' = 0.1434
~' = - 0-0058

0.1376; = i3

At the point r =
,
z I, (17), reduces to

.

/',/,W cosh /i, /*,/,(/0 cosh;*,

j = 0.6698

- 10

,(/!,) cosh //,
=

9. 1 567
- 10

8.9826 10;

/.(*/,) = - 0-1678

log / (tM = 9.2248W
- 10

colog /*j/,(/0 cosh/7, = 7.6301;* 10

6.8549 10;

= 0.0961
,) cosh //,

0.0007 m

cosh ^ -968
' = 9-7

If the radius of the cylinder is a and the altitude b, we have

only to replace // by j*a in (13) ; 2/1, , 2//,, ... in the denomi-

nators of (15) and (17) by pj, pj), . . . ;
and //,, //.,, ^us , . . . in

the denominators of (16) and (17) by /*,#, //.,#, //s , ....

Prob. 3. One base and the convex surface of a cylinder 20 cen-

timeters in diameter and 30 centimeters high are kept at zero tem-

perature and the other base at 100 degrees Centigrade. Find the

temperature of a point in the axis and 20 centimeters from the cold

base, and of a point 5 centimeters from the axis and 20 centimeters

from the cold base after the temperatures have ceased to change.
Ans. 1 3. 9; 9.6.
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ART. 6. THE SINE SERIES.

As we have seen in Art. 3, it is sometimes important to be

able to express a given function of a variable, x, in terms of sines

of multiples of x. The problem in its general form was first

solved by Fourier in his " Theorie Analytique de la Chaleur"

(1822), and its solution plays an important part in most branches

of Mathematical Physics.

Let us endeavor to so develop a given function of x,f(x\
in terms of sin x, sin 2.x, sin $x, etc., that the function and the

series shall be equal for all values of x between o and n.

We can of course determine the coefficients a
t ,
a

t ,
a

3 ,
. . . an

so that the equation

f(x) = tf,
sin x -f- tf2 sin 2x -f- a3

sin $x -}-... -f- an sin nx (i)

shall hold good for any n arbitrarily chosen values of x between

O and n\ for we have only to substitute those values in turn

in (i) to get n equations of the first degree, in which the n co-

efficients are the only unknown quantities.

For instance, we can take the n equidistant values Ax,

71

^Ax, . . . nAx, where Ax =- ,
and substitute them for x in

n -\- i

(i). We get

f[Ax) = a
t
sin Ax -f- a^ sin 2Ax -\- a

a
sin 3Ax -f- . .

-f- an sin nAx,

j\2.Ax) = #, sin 2Ax -f- #
a
sin ^Ax -(- a

3
sin 6Ax -{- . .

-f- an sin 2,nAx,

\ (2)
f[$Ax) a

t
sin 3Ax -j- a

sin 6Ax -f- 3
sin <^Ax 4- . .

+ an sin 3;?Ax,

J\nAx} = #, sin nAx -f- a, sin 2nAx -j- #3
sin

-f- an sin n*Ax,

n equations of the first degree, to determine the n coefficients

<*,- a*> af &*

Not only can equations (2) be solved in theory, but they

can be actually solved in any given case by a very simple and.
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ingenious method due to Lagrange,* and any coefficient am can

be expressed in the form

-^ AfA*) sin (K*nA*\ (3)
K = l

If now n is indefinitely increased the values of x for which

(i) holds good will come nearer and nearer to forming a con-

tinuous set
; and the limiting value approached by am will

probably be the corresponding coefficient in the series required
to represent /(.z) for all values of x between zero and n.

Remembering that ( + \)Ax = n, the limiting value in

question is easily seen to be

IT

am = - Cf(x) sin mxdx. (4)
7Tt/

This value can be obtained from equations (2) by the fol-

lowing device without first solving the equations :

Let us multiply each equation in (2) by the product of Ax

and the coefficient of am in the equation in question, add the

equations, and find the limiting form of the resulting equation

as n increases indefinitely.

The coefficient of any a, aK in the resulting equation is

sin KAx sin mAx . Ax -\- sin 2,KAx sin 2,mAx . Ax -}- , . .

-f- sin nKAx sin nmAx . Ax.

Its limiting value, since (n-\- \)Ax = TC, is

ir

/ sin KX sin mx.dx\

but
w w

I sin KX sin mx . dx = \ I [cos (m K)X cos(m -}- K)x~\dxQ

if m and K are not equal.

* See Riemann's Partielle Differcntialgleichungen, or Byerly's Fourier's

Series and Spherical Harmonic?.
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The coefficient of am is

//;tr(sin

2 mAx -\-s\rf 2mAx -j- sin
2

ynAx -f- . . . -f- sin
2

nmAx\

Its limiting value is

IT

71

y
.

ssm w;r .x = .

2
o

The first member is

/(J^r) sin 7z/;r . J^r -\-f(2.Ax) sin 2mAx . Ax -f- . . .

-j-/(^-^) sin mnAx . Ax,

and its limiting value is

/ f(x) sin mx , dx.

Hence the limiting form approached by the final equation

as n is increased is

r

/ J\x] sin mx . dx = am .

Whence
2 /'= -J f(*} sin <& (5)
7T

as before.

This method is practically the same as multiplying the

equation

f(x) = #, sin x -j- a3 sin 2^r -f- s
sin $x -}- . . . (6)

by sin mx . dx and integrating both members from zero to ft.

It is important to realize that the considerations given in

this article are in no sense a demonstration, but merely estab-

lish a probability.

An elaborate investigation
* into the validity of the develop-

ment, for which we have not space, entirely confirms the results

formulated above, provided that between x = o and x = n the

* See Art. to for a discussion of this question.
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function is finite and single-valued, and has not an infinite num-

ber of discontinuities or of maxima or minima.

It is to be noted that the curve represented by y = f(x)

need not follow the same mathematical law throughout its

length, but may be made up of portions of entirely different

curves. For example, a broken line or a locus consisting of

finite parts of several different and disconnected straight lines

can be represented perfectly well by y = a. sine series.

As an example of the application of formula (5) let us take

the development of unity.

Here f(x) = I.

am = / sin mx . dx
;

7t i/

/si
cos mx

sin mx . dx =--.m
V/I I

sin mx.dx = (i cos mrr] = [i ( iY*lm m

= o if m is even

= if m is odd.m

4 /sin x . sin \x . sin ^x . sin Jx . \Hence , =
i( + _J- + _J- +-J-. +

...).
(7)

It is to be noticed that (7) gives at once a sine development
for any constant c. It is,

c = 4c(s\nx sin 3* sin 5* \

n \ i 3 5 "/'

Prob. 4. Show that for values of x between zero and it

x sn zx . sn 30: sn

fL\ // \ _ 4 T8 ^ 11 x s ^n 3^ s 'n S 1^ s 'n 7-^ j^= "" "~ ~~ ~~
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if /(x) = x for o < x <
,
and f(x) = n x for < x < n.

to /(*) =

2 Fsin x . 2 sin 2x
,
sin T.X . sin zx

,

2 sin 6x . sin nx
,--

if /(.#) i for o < x < ,
and /(x) = o for < a: < TT.

(d} sinh jc =

2 sinh 7t Pi . 2 .nh 7t Pi . 2 .
i 3 4

sin x -- sin 2X -\- sin T.X -- sin AX -+- . . . .n [_2 5
r

io 17 J

(e) x" =

2f/zr
2

4 \ . T? .
In* 4 \ . n* .----, sin x -- sin 2x -\-\
---

a sin -ix--sin 4x4- . .

7rL\i i / 2 \3 3 / 4 J

ART. 7. THE COSINE SERIES.

Let us now try to develop a given function of x in a series

of cosines, using the method suggested by the last article.

Assume

f(x) = b
t -J- b

l
cos x -\-b^ cos 2.x -j- /^

s
cos 3^ -f- . . . ( i

)

To determine any coefficient ^m multiply (i) by cos mx .dx

and integrate each term from o to TT.

cos mx .x = o.j

IT

/ bk cos kx cos w^r . dx=.Q, if z and y^ are not equal.
o

7T/7Tbm cos" w^r ^ = bm ,
if w is not zero.

2 .

o

7T

2 /'
Hence w = / f(x) cos mx .dx, (2)

jf / is not zero.
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To get b multiply (i) by dx and integrate from zero to n.

a

Jb.dx
= bjt,

IT

/ bk cos kx . dx = o.

w

Hence b =
J*f(x}dx, (3)

which is just half the value that would be given by formula (2)

if zero were substituted for m.

To save a separate formula (i) is usually written

f(x) = + b, cos x + , cos 2x + s
cos 3* + . . ., (4)

and then the formula (2) will give b
n as well as the other coef-

ficients.

Prob. 5. Show that for values of x between o and n

_TT 4 /cos* cos 3* cos 5* \

-2~n\~^~ ~7~ ~7~ "J 5

7t 8 /COS 2* COS 6.X
,
COS 10 \

- -

-j,

if /(^c)
= * for o < x < , and f(x) = TT x for < A, x TT;

W

if /(*) = i for o < x < ,
and f(x) = o for < x < TT

V
2 2

21 I I

(</) sinh x = - -(cosh 7f i)
--

(cosh n -j- i) cos *
7T|_ 2 2

-| (cosh it i) cos 2^: --(cosh n -j- i) cos 30: + . . .
;

COS 2X COS t* COS
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ART. 8. FOURIER'S SERIES.

Since a sine series is an odd function of x the development
of an odd function of x in such a series must hold good from

x = it to x = TT, except perhaps for the value x = o, where

it is easily seen that the series is necessarily zero, no matter

what the value of the function. In like manner we see that

if f(x) is an even function of x its development in a cosine

series must be valid from x = n to x = n.

Any function of x can be developed into a Trigonometric

series to which it is equal for all values of x between n and n.

Let/(;r) be the given function of x. It can be expressed

as the sum of an even function of x and an odd function of x

by the following device :

*) A*) -A-*)

identically ; but ' ~'-/ ^--1 is not changed by reversing

the sign of x and is therefore an even function of x\ and when

f(x\
f( x\

we reverse the sign of x,
-- - is affected only to the

2

extent of having its sign reversed, and is consequently an odd

function of x.

Therefore for all values of x between it and n

f(x\ -4- /[ x) i , , ,yv ; ' ' = -
-(- 1>, cos x -f- ,

cos 2x -|- 3
cos 3* -f- . . .

2 2

2 rA*) +A *) ;where bm I
yv ' * cos w^r . dx

;

7T t/ 2

ffx\ _ ft_ x\

and -l-^L ^-'- = a
l
sin ^ + ^, sin 2x -f- ^3

sin ^x -f- . . .

2 /y[;r) /( ^r) .

where = -
/

:iA - -- sin mx . dx.
7t / 2
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bm and am can be simplified a little.

2 //(*) + /(-*)= --/
yv '^ ^ -cos mx. d^

71 U 2
o

It IT

=
jf(*)

cos mx . dx+Jf(x) cos mx .

dx\;
o o -1

but if we replace x by x, we get

it

J /( #) cos nix . dx=J f(x) cos mx.dx=J f(x)cos mx.dx,
-IT

r

and we have ^w = I /(*) cos w^r . dx.

a

In the same way we can reduce the value of am to

ir

/ f(x^ sin mx . dx.
71 t/

it

Hence

f(x) = - 6 -\- l>
l
cos x -}- b

t
cos 2.x -f- <^

s
cos 3* -(-...

M

-|- #, sin JT -}" ,
sin 2^r -|- 3

sin 3^r -}-..., (2)

JT

where #, = / f(x) cos wjr . ^, (3)

n

n

and am = I f(x }
sm mx . dx, (4)

7T t/
it

and this development holds for all values of x between n

and TI.

The second member of (2) is known as a Fourier's Series.

The developments of Arts. 6 and 7 are special cases of

development in Fourier's Series.

Prob. 6. Show that for all values of x from n to n

2 sinh TrFi i i i i ~|
f* = COS* H COS2X COS $X-\ COS4.X-H...

7T [_2 2 '5 10 17
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2 sinh 7t
|~i . 2 . 3 . 4 .

H sin x sin 2X -4- sin 3^ sin AX + . . . .

7i L_2 5 10 17 J

Prob. 7. Show that formula (2), Art. 8, can be written

f(x) = -f COS/? -j- ,
COS (x /?j) + ^a COS (2^ fi^)

+ ^3 COS (3* /?,) -j- . . . ,

where cm (a^ + ,") and fim = tan" 1

-r^-

Prob. 8. Show that formula (2), Art. 8, can be written

T

f(x) =-c, sin ft. + f
l
sin (^ + A) + ^ sin ( 2;c + A)

2

+ ^
3
sin (3* + /?,) + . . .

,

b
where cm (am

* + bm )* and pw = tan" 1
.

ART. 9. EXTENSION OF FOURIER'S SERIES.

In developing a function of x into a Trigonometric Series it

is often inconvenient to be held within the narrow boundaries

x = rt and x = n. Let us see if we cannot widen them.

Let it be required to develop a function of x into a

Trigonometric Series which shall be equal to f(x] for all values

of x between x = c and x = c.

Introduce a new variable

which is equal to n when x = c, and to n when x = c.

f(x) = /( z\ can be developed in terms of z by Art. 8,

(2), (3), and (4). We have

/(.*"*)
=

2
* ^ ^ C S * ~^ ^ C S 2Z + cos 3* + . . .

-f- tf
t
sin ^ -(- a, sin 2 -J- ^3

sin 3.2 -j- . . . , (i)

where bm = //( *} cos *# . afe, (2)
71 U \ 71 I



EXTENSION OF FOURIER'S SERIES,

and am = Jf\z\ sin mz . dz
y (3)

IT

and (i) holds good from z = n to z = n.

Replace z by its value in terms of x and (i) becomes

i nx
/(*) = -. + ,cos

a sin

C> c-

nx 2,nx ^nx+ tf
3
sin -+...; (4)

6-

and (2) and (3) can be transformed into

c

, I /* ./v \ WIT-*"
7

bm = J f(x) cos
^-dx, (5)

i r ft \
- mnx jam = J f(x) sin ^dxt (6)

c

and (4) holds good from x = c to x = c.

In the formulas just obtained c may have as great a value

as we please so that we can obtain a Trigonometric Series for

f(x] that will be equal to the given function through as great

an interval as we may choose to take.

It can be shown that if this interval c is increased indefi-

nitely the series will approach as its limiting form the double
00 00

integral
-- / f(\)d\ I cos a(h x}da, which is known as a

oo

Fourier's Integral. So that

+ 00 ao

f(x) = -W" /(A>Af cos a(\
- x}da (7)

-09

for all values of x.

For the treatment of Fourier's Integral and for examples
of its use in Mathematical Physics the student is referred to

Riemann's Partielle Differentialgleichungen, to Schlomilch's

Hohere Analysis, and to Byerly's Fourier's Series and

Spherical Harmonics.
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Prob. 9. Show that formula (4), Art. 9, can be written

xt \
l (7tX o \ ,

l27tX \
f(x) = -c

Q
cos /? + c, cos(- Pi)

+ f* cos
(

--
fl*j

- A +...,

where c....
=

(<",,.," \- bm^ and ftm = tan" 1 ~,
bm

Prob. 10. Show that formula (4), Art. 9, can be written

/(*) = ^ sin ^o + ^i sin (-^ + A,J
+ c, sin f^ ^ +

where ^, = aw
a + ** and

ART. 10. DIRICHLET'S CONDITIONS.

In determining the coefficients of the Fourier's Series rep-

resenting f(x) we have virtually assumed, first, that a series of

the required form and equal to f(x] exists; and second, that

it is uniformly convergent ; and consequently we must regard

the results obtained as only provisionally established.

It is, however, possible to prove rigorously that if f(x) is

finite and single-valued from x = n \.Q x =. n and has not

an infinite number of (finite) discontinuities, or of maxima or

minima between x = n and x rr
y
the Fourier's Series of

(2), Art. 8, and that Fourier's Series only, is equal to f(x}
for all values of x between n and TT, excepting the values of

x corresponding to the discontinuities of f(x\ and the values

it and TT; and that if c is a value of x corresponding to a

.discontinuity of f(x), the value of the series when x = c is

)]; and that when * = n or

x = Tt the value of the series is ^[/(TT) -}-/( TT)].

This proof was first given by Dirichlet in 1829, and may be

found in readable form in Riemann's Partielle Differential-

gleichungen and in Picard's Traite d'Analyse, Vol. I.
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A good deal of light is thrown on the peculiarities of trigo-

nometric series by the attempt to construct approximately the

curves corresponding to them.

If we construct y a
l
sin x and y a

t
sin 2x and add the

ordinates of the points having the same abscissas, we shall ob-

tain points on the curve

y = a
l
sin x + a

y
sin 2x.

If now we construct y a
s
sin 3* and add the ordinates to

those of y a
t
sin x + a

t
sin 2.x we shall get the curve

y a, sin x + a
t
sin 2x + a

3
sin 3^.

By continuing this process we get successive approximations to

y a, sin x + *, sin 2x + a, sin 3* + a, sin 4* + ...

O/S

II

X
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tion to this curve. In each figure the curve y = the series,

and the approximations in question are drawn in continuous

lines, and the preceding approximation and the curve corre-

sponding to the term to be added are drawn in dotted lines.

Prob. 11. Construct successive approximations to the series

given in the examples at the end of Art. 6.

Prob. 1 2. Construct successive approximations to the Maclaurin's

x3
x*

Series for sinh x, namely x -\ -\
j-
+

O * D *

ART. 11. APPLICATIONS OF TRIGONOMETRIC SERIES.,

(a) Three edges of a rectangular plate of tinfoil are kept

at potential zero, and the fourth at potential I. At what po-

tential is any point in the plate ?

Here we have to solve Laplace's Equation (3), Art. I,

which, since the problem is two-dimensional, reduces to

subject to the conditions V = o when x = o, (2)

V = o " x = a, (3)

V = o "
y = o, (4)

V = i
"

j'
= 3. (5)

Working as in Art.
3,

we readily get sinh fiy sin /ir,

sinh /?/ cos fix, cosh /ty sin fix, and cosh /?j cos fix as particu-

lar values of V satisfying (i).

. , mny . tmtx . r , \ , \ , \ i / \V = sinh - sin - - satisfies (i), (2), (3), and (4).

i_ ny 1 ^ysinh - sinh-i-^

V =
\ ^sin^+l- _ *,=i+... (6)

is the required solution, for it reduces to i when y = b. See

(7), Art. 6.
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(b] A harp-string is initially distorted into a given plane

curve and then released ; find its motion.

The differential equation for the small transverse vibrations

of a stretched elastic string is

9>-
fl
.9^

2
' * * '

as stated in Art. i. Our conditions if we take one end of

the string as origin are

y = o when x = o, (2)

y = o " x =
/, ( 3 )

3J
-a/
= * =

> (4)

y = fx t - o. (5)

Using the method of Art. 3, we easily get as particular solutions

of (I)

y = sin fix sin afit, y = sin fix cos afit,

y cos fix sin /?/, and y = cos /?.* cos afit.

. mnx mnat ,

y = sm
j

cos -. satisfies (i), (2), (3), and (4).

. mnx mrcat /A\am sm j cos ; , V>

, / WTT^r , /_\
where am = j f(x) sin

j
. *

is our required solution ;
for it reduces to/(^) when/ = o. See

Art. 9.

Prob. 13. Three edges of a square sheet of tinfoil are kept at

potential zero, and the fourth at potential unity ;
at what potential

is the centre of the sheet ? Ans. 0.25.

Prob. 14. Two opposite edges of a square sheet of tinfoil are

kept at potential zero, and the other two at potential unity ; at

what potential is the centre of the sheet ? Ans. 0.5.

Prob. 15. Two adjacent edges of a square sheet of tinfoil are
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kept at potential zero, and the other two at potential unity. At
what potential is the centre of the sheet ? Ans. 0.5.

Prob. 16. Show that if a point whose distance from the end of a

harp-string is -th the length of the string is drawn aside by the
n

player's finger to a distance b from its position of equilibrium and

then released, the form of the vibrating string at any instant is given

by the equation

mnat
y 7 r~i> ~~t sin sin T cosJ ^-7 r~i t T ~r '

(n \\n ^- \m n I I^ ' m=l '

Show from this that all the harmonics of the fundamental note of

the string which correspond to forms of vibration having nodes at

the point drawn aside by the finger will be wanting in the complex
note actually sounded.

Prob. 17.* An iron slab 10 centimeters thick is placed between and
in contact with two other iron slabs each 10 centimeters thick. The

temperature of the middle slab is at first 100 degrees Centigrade

throughout, and of the outside slabs zero throughout. The outer

faces of the outside slabs are kept at the temperature zero. Re-

quired the temperature of a point in the middle of the middle slab

fifteen minutes after the slabs have been placed in contact.

Given a 3 = 0.185 in C.G.S. units. Ans. io-3.

Prob. 18.* Two iron slabs each 20 centimeters thick, one of which
is at the temperature zero and the other at 100 degrees Centigrade

throughout, are placed together face to face, and their outer faces

are kept at the temperature zero. Find the temperature of a point
in their common face and of points 10 centimeters from the com-
mon face fifteen minutes after the slabs have been put together.

Ans. 22.8
; 15. i ; i7.2.

ART. 12.f PROPERTIES OF ZONAL HARMONICS.

In Art. 4, z = Pm (x) was obtained as a particular solution of

Legendre's Equation [(7), Art. 4] by the device of assuming
that z could be expressed as a sum or a series of terms of

Ihe form anx* and then determining the coefficients. We
* See Art. 3.

f The student should review Art. 4 before beginning this article.
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can, however, obtain a particular solution of Legendre's equa-
tion by an entirely different method.

The potential function for any point (x, y, z) due to a unit

of mass concentrated at a given point (x^y^ ,)
is

=
'

and this must be a particular solution of Laplace's Equation

(3), Art. i], as is easily verified by direct substitution.

If we transform (i) to spherical coordinates we get

V= - l _ = (2)
yr

1
2rr

1 [cos cos 0, -j- sin sin O
l
cos (00,)] -f- r,

2

as a solution of Laplace's Equation in Spherical Coordinates

[(5), Art. i].

If the given point (x^y^ #,) is taken on the axis of X, as it

must be in order that (2) may be independent of 0, 0,
= o, and

J7 __^__*

^3)
Vr* 2rr, cos -{- r,

8

is a solution of equation (i), Art. 4.

Equation (3) can be written

(4)

/ r r
a
\-*

and if r is less than r
l
(12 cos -f- J

can be developed
'"i '"i

^ra
into a convergent power series. Let 5"/>OT be this series,

r m

pm being of course a function of 0. Then F= ^pm ^ is a
i i

solution of (i), Art. 4.

Substituting this value of V in the equation, and remem-

bering that the result must be identically true, we get after a

slight reduction
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but, as we have seen, the substitution of x = cos reduces this-

to Legendre's equation [(7), Art. 4]. Hence we infer that the

coefficient of the mth power of z in the development of

(i 2xz-\-z*)~* i^ a function of x that will satisfy Legendre's

equation.

(!
_ 2**+ *")-*

=
[I -Z(2X -*)]-*,

and can be developed by the Binomial Theorem
; the coefficient

of zm is easily picked out, and proves to be precisely the func-

tion of x which in Art. 4 we have represented by Pm(x\ and

have called a Surface Zonal Harmonic.

We have, then,

if the absolute value of z is less than I.

If x = i, (5) reduces to

but (i 2,3r+ *')'* = (i *)"' = i+<s+ ^ + <s
3 + -

;

hence ^(0 = i- (6)

Any Surface Zonal Harmonic may be obtained from the

two of next lower orders by the aid of the formula

(n+ !)/>, + ,(*)
-

(2 + i)^^) + w/7
,,. ,(^)

= o, (7>

which is easily obtained, and is convenient when the numerical

value of x is given.

Differentiate (5) with respect to z, and we get

(I
-

whence

or by (5)

(i
- 2Mt + **)(/>,(*) + 2

f̂() .*+ S/'.W *' '

->

+ P1 (X}.z + P^.^+ .-0=0. (8)
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Now (8) is identically true, hence the coefficient of each

power of z must vanish. Picking out the coefficient of z11 and

writing it equal to zero, we have formula (7) above.

By the aid of (7) a table of Zonal Harmonics is easily com-

puted since we have P (x) = i, and P^x) = x. Such a table

for x = cos is given at the end of this chapter.

ART. 13. PROBLEMS IN ZONAL HARMONICS.

In any problem on Potential if Fis independent of so

that we can use the form of Laplace's Equation employed in

Art. 4, and if the value of Fon the axis of X is known, and

can be expressed as 2amrm or as ^> -^qij,
we can write out

our required solution as

F=2amr
mPm (cos0) or V =^ ^">/?" >^S ^

;

r

jfor since Pm(i) = I each of these forms reduces to the proper
value on the axis

;
and as we have seen in Art. 4 each of them

.satisfies the reduced form of Laplace's Equation.

As an example, let us suppose a statical charge of M units

<of electricity placed on a conductor in the form of a thin circu-

lar disk, and let it be required to find the value of the Poten-

tial Function at any point in the "
field of force

"
due to the

charge.

The surface density at a point of the plate at a distance r

from its centre is

M
(T =

Vd' - S

and all points of the conductor are at potential . See Pierce's

Newtonian Potential Function ( 61).

The value of the potential function at a point in the axis

ot the plate at the distance x from the plate can be obtained

without difficulty by a simple integration, and proves to be

M x* - a"V cos- 1 -
. (i)2a x -- a
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The second member of (i) is easily developed into a power
series.

M , x* - a*
cos - 1

2a x* -j-
'

MVn x x3
x* x'

"I

J
.

lfjr >*
Hence

y = Mr* _ ^/> (cos 0) + -
# l_2 3

...

is our required solution if r < # and # < -, as is

,7 M\~a i a* n ,
N i a1

,F = -[-
- _. -P9 (cos 60 + - -- P

4 (cos 0)

(5)

The series in (4) and (5) are convergent, since they may be

obtained from the convergent series (2) and (3) by multiplying

the terms by a set of quantities no one of which exceeds one

in absolute value. For it will be shown in the next article that

Pm (cos 6) always lies between i and i.

Prob. 19. Find the value of the Potential Function due to the

attraction of a material circular ring of small cross-section.

The value on the axis of the ring can be obtained by a simpleM
integration, and is . , if M is the mass and c the radius of the

v -|- r

ring. At any point in space, if r < c

V = y [/>
(cos 0)

- I

and if r > c
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= *L\-po (COS 0)
- - -(COS 0) + Il C

* Lf 2 r 2 . 4 r

ART. 14. ADDITIONAL FORMS.

(a) We have seen in Art. 12 that Pm(x) is the coefficient of

in the development of (i 2xz-\- z*}~^ in a power series.

l - 2X2 2*
- 1 = I - ***'' *

-
' ^-i

If we develop (l #**')-* and (i #*-*)-* by the Bi-

nomial Theorem their product will give a development for

( i 2xz -j- z*}
-

*. The coefficient of zm is easily picked out

and reduced, and we get

/>(cos 0) =
1.3.5... (2m

2. 4. 6. ..a

i

3.^-1)I . 2 .(2W l)(2W 3)

If m is odd the parenthesis in(i) ends with the term con-

taining cos ;
if m is even, with the term containing cos o, but

in the latter case the term in question will not be multiplied by
the factor 2, which is common to all the other terms.

Since all the coefficients in the second member of (i) are

positive, Pm(cos 0) has its maximum value when 6 = o, and its

value then has already been shown in Art. 12 to be unity.

Obviously, then, its minimum value cannot be less than i.

(b) If we integrate the value of Pm(x) given in (11), Art. 4,

m times in succession with respect to x, the result will be

1.3.5.. '(2m i), , .

lound to differ from -^, Ti
-

(x l ) by terms m-
(2iri) \

volving lower powers of x than the mih.

Hence /> = JL f - ,). (2)
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(c) Other forms for Pm(x), which we give without demon-

stration, are

- (- 0" Q" *
.

/xP .A -
m

I . COS
nj '

o

L J

(4) and (5) can be verified without difficulty by expanding

and integrating.

ART. 15. DEVELOPMENT IN TERMS OF ZONAL HARMONICS.

Whenever, as in Art. 4, we have the value of the Potential

Function given on the surface of a sphere, and this value de-

pends only on the distance from the extremity of a diameter,

it becomes necessary to develop a function of 6 into a series

of the form

A nPa(cos ff) + A/3
,(cos 0) + A,PJcos (f) + .u \ / I * 1> / I *\ / I

or, what amounts to the same thing, to develop a function of

x into a series of the form

The problem is entirely analogous to that of development
in sine-series treated at length in Art. 6, and may be solved by
the same method.

Assume f(x) = A.PJx) + Afl*) + A
tPfc)+ . . . (i)

for i < x < i. Multiply (i) by Pn(x)dx and integrate from

I to i. We get

M C
V
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We shall show in the next article that

i

I Pm(x)Pn(x}dx o, unless m = n,

and that

-1

?}}1 I I />

Hence Am = ^~Jf(x}Pm(x}dx. (3)

i

It is important to notice here; as in Art. 6, that the method

we have used in obtaining A m amounts essentially to deter-

mining Am ,
so that the equation

A*) = A.P.(x) + ASM + ASM + +ASM
shall hold good for n -f- I equidistant values of x between i

and i, and taking its limiting value as n is indefinitely in-

creased.

ART. 16. FORMULAS FOR DEVELOPMENT.

We have seen in Art. 4 that z = Pm(x] is a solution of

Legendre's Equation -j-\ (i ^2

)
~

-f- m(m -f- 1)3 = o. (i)
ctx L- dx _J

dPm(x\~\~*9) ~ir J + w (
w+ o^w = o, (2)

and -

(l -^-
Multiply (2) by Pn(x) and (3) by Pm(x), subtract, transpose.

and integrate. We have

[(+ i)
- n(n +
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by integration by parts,

= o.

Hence fpm(x)P(x)dx = O, (6)
-i

unless m = .

If in (4) we integrate from x to i instead of from i to I,

we get an important formula.

y*

n y n y
P (x]P (r}dx= L -*

(7)
m(m-\- i)

i n(n-\- i)

' v/ '

X

and as a special case, since P (x) i.

(8)
-

-,

-
:

-
,

m(m -f- i)

unless m = o.

i

To get flPJ^xftdx
is not particularly difficult. By (2),

-i

Art. 14,

By successive integrations by parts, noting that

Jm - K

-T- ^(x
1

i)
m contains (x? i)

K as a factor if K < m, and
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^"'"(jtT
1 _ \\

m
that i

-5
-' = (2m}\ we get

-
\}
mdx = j\x

- \y(x

m + i

'

Hence f\PJ(xNdx = -
t

. (u)/ l_ ' \ / J ^^2 __[_ T

-1

1

Prob. 20. Show that / Pm(x}dx = o if m is even and is not zero

ml
j

- - _ ^=
( J )

z
-~r~ \ ;. -T if m is odd.
m(m+ i) 2.4.6 ... (mi)

y
i

iPJMr^f = --L~~- Note that2m -i- i

jc" is an even function of x.

Prob. 22. Show that if f(x) = o from x = i to x = o, and

)
= i from .r = o to x = i,

Prob. 23. Show that /7(0) = 2 S^^cos 0) where
>=o

B] Sm0d0.
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Prob. 24. Show that

0=
-^fi + sfi)'/', (cos 60 + 9(^)X(ccs H) + . . .1.
2

I

\2 / \2 . 4' I

i, Art. 14.

esc

See (i), Art. 14.

Prob. 25. Show that

+ (..
- ,)("

+ -)("-)
/>._(,) + .

2.4 J
1 1

TSTote that / x
nPm(x)dx = - I xn ]

dx, and use the
/ 2

mm \ v dxm
-i -i

method of integration by parts freely.

Prob. 26. Show that if Fis the value of the Potential Function

at any point in a field of force, not imbedded in attracting or repel-

ling matter; and if F = /(0) when r = a,

V=2Am~Pm(cos6}ifr<a
Ur

am+1
and V = 2^m -

l
Pm(cos 0)i(r> a,

where ^4 = I f(6)Pm(cos 0) sin 0^.
2 t/

Prob. 27. Show that if

ca .,y = c when r = a
;

K = rur<a, and r = if r > .

r

ART. 17. FORMULAS IN- ZONAL HARMONICS.

The following formulas which we give without demonstra-

tion may be found useful for reference :

__,
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ART. 18. SPHERICAL HARMONICS.

In problems in Potential where the value of V is given on the

surface of a sphere, but is not independent of the angle 0. we

have to solve Laplace's Equation in the form (5), Art. I, and

by a treatment analogous to that given in Art. 4 it can be

proved that

d*Pm(u) d'TJi-nV = r'" cos nd) sin" (i and V = r'" sin n<h sin" 6
dvn <//<"

where //
= cos 0, are particular solutions of (5), Art. i.

The factors multiplied by r"
1

in these values are known as

Tesseral Harmonics. They are functions of and 0, and they

play nearly the same part in unsymmetrical problems that the

Zonal Harmonics play in those independent of 0.

FM,O, 0) = A
t
Pm(p) +

n

2
l

(A n cos n<fy + Bn sin 0)sin" d*-?4
m=i /<"

is known as a Surface Spherical Harmonic of the wth degree,

and F=r'"Fm (,u, 0) and V = -^ Ym (,.<, 0)

satisfy Laplace's Equation, (5), Art. I.

The Tesseral and the Zonal Harmonics are special cases of

the Spherical Harmonic, as is also a form Pm(cos y] known as

a Laplace's Coefficient or a Laplacian ; y standing for the angle
between r and the radius vector r

l
of some fixed point.

For the properties and uses of Spherical Harmonics we
refer the student to more extended treatises, namely, to

Ferrer's Spherical Harmonics, to Heine's Kugelfunctionen, or

to Byerly's Fourier's Series and Spherical Harmonics.

ART. 19.* BESSEL'S FUNCTIONS. PROPERTIES.

We have seen in Art. 5 that z =^J^(x] where

* The student should review Art. 5 before reading this article.
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is a solution of the equation

cfz . I dz .

^> + --r + 2 =
'' (2)ax x dx

and we have called Ja(x] a Bessel's Function or Cylindrical

Harmonic of the zero order.

_ dj,(x] _ xV x* x x6
-1

~^7~ ~2l_ 2T4
+

2. 4
2
.6 2. 4

2

.6<.8~
i

J<
2

is called a Bessel's Function of the first order, and

*'=/,(*)

is a solution of the equation

which is the result of differentiating (2) with respect to x.

A table giving values of J*(x) and /,(-*') W1'U De found at

the end of this chapter.

If we write J9(x) for x in equation (2), then multiply

through by xdx and integrate from zero to x, simplifying the

resulting equation by integration by parts, we get

dx

or, since /,(*) = -^ ,

J'xJ (x}dx = xj,(x\ (5)

If we write Jt(x) for z in equation (2), then multiply through

'by x*
j--,

and integrate from zero to x, simplifying by inte-

gration by parts, we get



APPLICATIONS OF BESSEL'S FUNCTIONS.

If we replace x by jjix in (2) it becomes

(Fz . i dz .

^ +^ + /J2 =

(See (8), Art. 5).
Hence z /9(f*x) is a solution of (7).

If we" substitute in turn in (7)J<>(vKx) and / (/vr) for -, mul-

tiply the first equation by xj^x), the second by xJ^Kx\
subtract the second from the first, simplify by integration by

parts, and reduce, we get

(8)

Hence if //K and //t are different roots of ./(//#)
= O, or of

or of wAd"*) A/ (y") = o,

= o. (9)

We give without demonstration the following formulas,

which are sometimes useful :

I n

^(x) = - I C0s(^r COS 0)^0. (lO)
7ft/

r

Jf /*

t(x\
= - I sin" cos (x cos 0)^/0. (i i)

TTe/

They can be confirmed by developing cos (x cos 0), inte-

grating, and comparing with (i) and (3).

ART. 20. APPLICATIONS OF BESSEL'S FUNCTIONS.

(a) The problem of Art. 5 is a special case of the following :

The convex surface and one base of a cylinder of radius a

and length b are kept at the constant temperature zero, the

temperature at each point of the other base is a given function

of the distance of the point from the center of the base
;

re-
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quired the temperature of any point of the cylinder after the

permanent temperatures.have been established.

Here we have to solve Laplace's Equation in the form

(see Art. 5), subject to the conditions

u = o when z = o,

u = o " r = a,

u = /(r)
" z = b.

Starting with the particular solution of (i),

u = sinh(/^r)/ OO, (2)

and proceeding as in Art. 5, we get, if //,,//,, /*, . . . are roots

of Jt(t*a) = o, (3)

and f(r) = AJ^r] + AJ^r} +AMM + - -
> (4)

(b) If instead of keeping the convex surface of the cylinder

at temperature zero we surround it by a jacket impervious to

heat the equation of condition, u = o when r = a, will be re-

placed by = o when r = a, or if u = sinh (jjufyjfyir) by

= o when r = a,
dr

that is, by

or /,(/*) = o. (6)

If now in (4) and (5) ;/,, ;*,, jw,, . . . are roots of (6), (5) will

be the solution of our new problem.

(c] If instead of keeping the convex surface of the cylinder

at the temperature zero we allow it to cool in air which is at

the temperature zero, the condition u = o when r = a will be

replaced by ~
'

-\- hu = o when r = a, h being the coefficient
or

of surface conductivity.
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If u = sinh (jjiz]J^(JJLT'] this condition becomes

Pj&r) + hJt(nr) = o when r a,

or /"*/,(/"*) ahj^d] o. (7)

If now in (4) and (5) //,,//,, // 3 ,
. . . are roots of (7), (5) will

be the solution of our present problem.

It can be shown that

SM = o, (8)

/.(*) = o, (9)

and */,(*)
- A/U') = (10)

have each an infinite number of real positive roots.* The

earlier roots of these equations can be obtained without serious

difficulty from the table iorj^x) and J^x) at the end of this

chapter.

ART. 21. DEVELOPMENT IN TERMS OF BESSEL'S FUNCTIONS.

We shall now obtain the developments called for in the last

article.

Let Ar) = AJJM-+A tfJM + AJ.(jis) + ... (0

/I,,;*,, //, , etc., being roots of /(//) = O, or of /,(yw) = o, or

of

To determine any coefficient A k multiply (i) by rJQ (f.i kr}dr

and interate from zero to a. The first member will become

Every term of the second member will vanish by (9), Art.

19, except the term

o

o o

by (6), Art. 19.

* See Riemann's Partielle Differentialgleichungen, 97.
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Hence A k = - / rf(f)J<$J*ip)dr. (2)

The development (i) holds good from r = o to r = # (see

Arts. 6 and 15).

If
yu, , yua , yu s , etc., are roots oij^a) = o, (2) reduces to

> /< i Ms >
etc -> are roots of /,(/*#) = o, (2) reduces to

If //lt ^s , /i,, etc., are roots of jjaj^a) A/ (/^) = o,

(2) reduces to

For the important case where f(r) = i

a a
/J.f.a

frf(ryt>(nkr}(tr= frj,(fif)etr=^
r o

by (5), Art. 19; and (3) reduces to

(4) reduces to

^* = o, (8)

except for k = i, when /^ = o, and we have

A, = i ; (9)

(5) reduces to ^ =
7 ,

-r. (io'\

Prob. 28. A cylinder of radius one meter and altitude one meter

has its upper surface kept at the temperature 100, and its base and

convex surface at the temperature 15, until the stationary temper-
atures are established. Find the temperature at points on the axis

25, 50, and 75 centimeters from the base, and also at a point 25
.centimeters from the base and 50 centimeters from the axis.

*
\ O y O/* O Or>
Ans. 29 .6; 47 .6; 71 .2; 25 .8
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Prob. 29. An iron cylinder one meter long and 20 centimeters

in diameter has its convex surface covered with a so-called non-con-

ducting cement one centimeter thick. One end and the convex

surface of the cylinder thus coated are kept at the temperature zero,

the other end at the temperature of 100 degrees. Given that the con-

ductivity of iron is 0.185 an<^ f cement 0.000162 in C. G. S. units.

Find to the nearest tenth of a degree the temperature of the mid-

dle point of the axis, and of the points of the axis 20 centimeters

from each end after the temperatures have ceased to change.
Find also the temperature of a point on the surface midway be-

tween the ends, and of points of the surface 20 centimeters from

each end. Find the temperatures of the three points of the axis,

supposing the coating a perfect non-conductor, and again, suppos-

ing the coating absent. Neglect the curvature of the coating. Ans.

iS.4; 4.85 ; 72.8; 15.3; 40.? ', 7 2 -5 5
-

5
-

; i-3-

Prob. 30. If the temperature at any point in an infinitely long

cylinder of radius c is initially a function of the distance of the

point from the axis, the temperature at any time must satisfy the

3 , /3* .
i 3\ , x

...
equation = a

\^r\ H-- ~ 1 (see Art. i), since it is clearly in-

dependent of z and 0.

Show that

where, if the surface of the cylinder is kept at the temperature

.zero, /*, , jua , //s ,
. . . are roots of Ja (nc) = o and Ak is the value

:given in (3) with c written in place of a
;

if the surface of. the cylin-

der is adiabatic ju,, //,, yw3 ,
. . . are roots of J^c] = o and A k is ob-

tained from (4); and if heat escapes at the surface into air at the tem-

perature zero yw,, /*, A/,, ...are roots of HcJ^yc} Ayo (/v) = o,

.and Ak is obtained from (5).

Prob. 31. If the cylinder described in problem 29 is very long
and is initially at the temperature 100 throughout, and the con-

vex surface is kept at the temperature o, find the temperature of a

point 5 centimeters from the axis 15 minutes after cooling has begun ;

.first when the cylinder is coated, and second, when the coating is

-absent. Ans. 97. 2
;
o.oi.

Prob. 32. A circular drumhead of radius a is initially slightly

-distorted into a given form which is a surface of revolution about

.the axis of the drum, and is then allowed to vibrate, and z is the

ordinate of any point of the membrane at any time. Assuming that
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z must satisfy the equation =
f{~~. + - r

\> subject to the con-

ditions z = o when r = a,
= o when / = o. and - = f(r] when

ot

( = o, show that z =- A
i _/ (A< 1 ^) cos ^^ct -f- AJJ^Hj'} cos /./// -(- . . .

where /<,, yw,, yU 8 ,
, . . are roots of Ja (na) o and Ak has the value

given in (3).

Prob. 33. Show that if a drumhead be initially distorted as in

problem 32 it will not in general give a musical note
; that it may be

initially distorted so as to give a musical note
; that in this case the

vibration will be a steady vibration
;
that the periods of the various

musical notes that can be given are proportional to the roots of

Jn (x) o, and that the possible nodal lines for such vibrations

are concentric circles whose radii are proportional to the roots of

/.(*) = o.

ART. 22. PROBLEMS IN BESSEL'S FUNCTIONS.

If in a problem on the stationary temperatures of a cylinder

u = o when s = o, 21 = O when z = b, and u = f(z) when r = a,

the problem is easily solved. If in (2), Art. 20, and in the cor-

responding solution 2 = cosh (^J^r] we replace // by //z, we

can readily obtain z sin (yu^)/ (//r/')
and 3 = cos (l*z)J<,(}*? i)

as particular solutions of (i), Art. 20
;
and

x"
1 x* x*

Jn(xi) = i + + ^-r, + y , & 4- ... (i)

and is real.

!^ . k*iz

f(z\ ^ A K sin rJ v '
frr *

^ /> J? -ft
<?

where
' Ak

-j-
I f(z) sin ,- dz i2\

o

by Art. 9.

Hence u = A h sinl * u
T{

*

b )

is the required solution.

*.i
- , /^M

\

J\-
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A table giving the values of Jo(xi) will be found at the end

of this chapter.

Prob. 34. A cylinder two feet long and two feet in diameter has

its bases kept at the temperature zero and its convex surface at

100 degrees Centigrade until the internal temperatures have ceased

to change. Find the temperature of a point on the axis halt way
between the bases, and of a point six inches from the axis, half way
between the bases. Ans. 72. i; 8o.i.

ART. 23. BESSEL'S FUNCTIONS OF HIGHER ORDER.

If we are dealing with Laplace's Equation in Cylindrical

Coordinates and the problem is not symmetrical about an

axis, functions of the form

rn i-
2

T(x\ I - - A
2"7 X + I

)
L 2\H + I

)

~
2

4
. 2

!( + I )(W -f- 2
)

play very much the same part as that played by J (.r) in the

preceding articles. They are known as Bessel's Functions of

the th order. In problems concerning hollow cylinders much

more complicated functions enter, known as Bessel's Functions

of the second kind.

For a very brief discussion of these functions the reader is

referred to Byerly's Fourier's Series and Spherical Harmonics ;

for a much more complete treatment to Gray and Matthews'

admirable treatise on Bessel's Functions.

ART. 24. LAME'S FUNCTIONS.

Complicated problems in Potential and in allied subjects are

usually handled by the aid of various forms of curvilinear co-

ordinates, and each form has its appropriate Harmonic Func-

tions, which are usually extremely complicated. For instance,

Lame's Functions or Ellipsoidal Harmonics are used when

solutions of Laplace's Equation in Ellipsoidal coordinates are

required ; Toroidal Harmonics when solutions of Laplace's

Equation in Toroidal coordinates are needed.

For a brief introduction to the theory of these functions

see Byerly's Fourier's Series and Spherical Harmonics.
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TABLE I. SURFACE ZONAL HARMONICS.

e
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TABLE II. BESSEL'S FUNCTIONS.

X



TABLES.

TABLE III. ROOTS OF BESSEL'S FUNCTIONS.
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