

vCsb library

$$
x-63001
$$

> PARTI.

INSTRUCTION PAPER

AMERICAN SCHOOL OF CORRESPONIENCE [ohahtirfid bx the commonwealtio or mashachesetts]

BOSTON, MASSACHUSETTS
U. S. A.

IREPARED BY

(1)

mptrigrtrons :

- FoO!

HEATING AND VENTILATION.

SYSTEMS OF WARMING.

Any system of warming must include, first, the combustion of fuel which may take place in a fireplace, stove, steam or hotwater boiler ; second, a system of tramsmission, by means of which the heat may be carried, with as little loss as possible, to the place where it is to be used for warming, and third, a system of diffusion, which will convey the heat to the air in a room and to its walls, floors, etc., in the most economical way.

Stoves. The simplest and cheapest form of heating is the stove. The heat is diffused ly radiation and convection directly to the objects and air in the room, and no special system of transmission is required. The stove is used largely in the country and is especially adapted to the warming of small dwelling houses and isolated rooms.

Furnaces. Next in cost of installation and simplicity of operation is the hot-air furnace. In this method, the air is drawn over heated surfaces and then transmitted through pipes, while at a high tempe:ature, to the rooms where heat is required. Furmaces are used largely for warming dwelling houses, also churches, hatls and sehoolhouses of small size. They are more costly than stoves, but have some advantages over that form of heating. They require less ciure, as several rooms may be warmed from a single furnace ; and, being phaced in the basement all dust from coal and ashes is kept from the rooms above.

In construction a furnace is a large stove with a combustion chamber of ample size over the fire; the whole being enclosed in a casing of sheet iron or brick. The bottom of the casing is provided with a cold-air inlet, and at the top are pipes which comect with registers placed in the varions rooms to be heated. Cold fresh air is brought from out of doors through a pipe or duct called the "cold-air box;" this air enters the space between the casing and the furnace near the bottom and in passing over the

 aloper.

1. the warm air is taken from the top of the furmare, cold
 for lanaine the romme dues mot enter the eombnstion chamber.

Fig. 1 shows the general arrangement of a furnace with its connecting pipes. The cold-air inlet is seen at the bottom and the hot-air pipes at the top; these are all provided with dampers for shutting off or regulating the amount of air flowing through them. The feed or fire door is shown at the fromt and the ash door beneath it; a water pan is placed inside the casing and furnishes moisture to the warm air before passing into the rooms; water is either ponred into the pan through an opening in the front, provided for this purpose, or is supplied automatically through a pipe.

The fire is regnlated by means of a draft slide in the ash door and a cold-air or regulating damper placed in the smokepipe. Clean-out doors are phaced at different points in the casing for the removal of ashes and soot. Furnaces are male either of cast iron, or of wronght iron plates riveted together and provided with brick-lined fire pots.

One great arlvantage in this method of warming comes from the constant supply of fresh air which is reguired to loring the heat into the rooms. While this is greatly to be desired from a sanitary standpoint it repuires a

Fig. 2. larger amount of fuel than would otherwise be necessary, for heat is required to warm the fresh air from ont of doors up to the temperature of the rooms, in addition to that lost by leakage through walls and windows.

A more even temperature may be maintained in this way than by the use of stoves, owing to the greater depth and size of the fire, which causes it to be more easily controlled. When a building is placed in an exposed location, difficulty may be experienced at times in waming certain rooms, depending upon the direction of the wind; this may be overeome to a large extent by a proper location of the furnace and the exereise of suitable care
in rumbine the rommerting pipes. This will be takern lather in the dexient of hertiner sostems.

Direct Steam Heating. Dirnd stean heather is used in all

 or other bildings where ventilation is desimel, it mast be supplemented by some other means for proviling warm fresh air. A

Fir. : cystem of direct steam heating comsists of a furnace and builer for the (omblustion of hel and the weneration of steam : a system of pipus for conreying the stean to the madiatorsamd for returning the wator of condensation to the boiler: amd radiators or roile placed in the roomes for dithosing the heat.

Varions types

 ammmonly med for dwellines lomses, while the tublater waterthle briley is mone nimally amploged in latere bindings. Where the boiler is mad for luating parposes only, a low stam presshm: of from \because to 10 pommlis is ramied and the combensation
 fowost salkator. Whom, for ms reacon, a higher pressme is
 a fenhoring value aml the comblomation is retamerl to the mather her meats of a plmp or rethon trap. The methorls of
making the pipe comnections between the boiler and radiators vary for different conditions and in different systems of heating. These will be taken up later under the head of design.

Direet radiating surface is made up in different ways: Fig 2 shows a common form of cast iron sectional radiator; these can he made up in any size depending upion the height and number of sections used. Fig. 3 is made up of vertieal wrought iron lipes serewed into a cast iron base and is a very efficient form. Fig. 4 shows a type of cast iron wall radiator which is often used where it is desired to keep the floor free from obstruction. Fig. $\tilde{5}$ is a special form of dining-room radiator provided with a warming eloset. Wall and ceiling coils of wronght iron pipe are often used

Fig. 4.
in school rooms, halls and shops or where the appearance is not objectionable.

Indirect Steam. This system of heating eombines the advantages of both the furnace and direct steam hut is more expensive to install. The amomit of fuel reguired is about the same as in the ease of furnace heating. Lasteal of placing the radiators in the rooms, a speeial form of heater is placed beneath the floor and encased in gatranized iron or brickwork. A cold-air box is connected with the space bencath the heater and wam-air pipes at the top at comnected with registers in the floors or walls as

 wall register. The rold-aim low is seen at thelottomof the casing, and the air in pasing through the sataces between ther sertions of the heater, becomes warmed and rises to the roomes above.
bifferent forms of imlisect heaters are shown in Figs.
 .. Stalk." sumbtimes the stacks are emoased in brickwork built

 isell iman an :lown in the ant- This medhom
 ail lut bmilating. and

Fig. 6.

 number of starlis incomand th suit the existing comtitions, thus
making it necessary to rmon but a single fire. Another advantage is the large ratio between the heating and grate surface as compared with a furnace, and as a result a large 'fuantity of air is warmed to a moderate temperature in place of a smaller quantity heated to a much higher temperature. This gives a more agreeable quality to the air and renders it less dry. Direct and indirect systems are often combined, thins providing the living rooms with ventilation while the hallways, corridors, ete., have only direct radiators for warming.

Direct=Indirect Radiators.

A direct-indirect radiator is similar in form to a direct radiator and is placed in a room in the same manner. Fig. 10 shows the general form of this type of radiator and Fig. 11 shows a section

Fig. 7. through the same. The shape of the sections is such, that when in place, small flues are formed between them. Air is armitted through an opening in the outside wall and in passing upward

Fig. 8.
through these flues becomes heated before entering the room. A switch damper is placed in the duce ant the hase of the radiator so that the air may be taken from the room itself instead of from o it of doors if so desired.

Direct Hot Water. 'lhis system is similar in comstrution to ome for dired ste:ath, wrept that lot water flaws though the
 "atming of dorllimg lomses to which it is esperially alapted

Fis. 3.
whiner th the rase with which the temproature of the water can be revaliand.

Where stean is med the matiators are always at pratically the

Fi゙․ 11.
callerl .- frorerd rimellations." amd wher lmillins of wintary sime and the lather for large
buildings, and especially where there are long horizontal runs of pipe.

For gravity circulation some form of sectional cast iron boiler is commonly used although wrought iron tubular boilers may be employed if desired. In the case of forced circulation a heater designed to warm the water by means of live or exhanst steam is. often used. A centrifugal or rotary pump of the type shown in

Fig. 12 is best adapted to this purpose; this pump may be driven by an electric motor, or a steam engine, as most convenient. Fig. 13 shows the general form of a hot-water radiator, which is similar to those used for steam, exeept the sections are connected at the top as well as at the bottom; this is shown by the cap over the opening at the top of the end section, which does not appear on the stean radiator shown in Fig. 2. A system for hot-water heating costs more to install than one for steam as the radiators

1:....e : :r.al...

Indirect llot Water. This is used malor the same conti-
 atrouly 小-aritnel. Special attemtion is siven to the form of the

Fis. $1: 3$. sertions iol order that there may la an exem distribulient of watar. through all parts ol them. Fig.s. 14 and 15 show typieal hotWatur raliators for indireer work. As tha starks are placed in the basement of a building, and only a short distance alove the builer, cxtra large pijes mast be used to serome a proper arculation. For the "ho:al" procharimg flow is small. The starekuisings, coldand wam-air pipes and registers are the same as in steann heating.
Exhaust Steam. Vixhathet stam is used for luating in con-

either the boiler pressure or the cut-off of the engines must lre increased to keep, the \cdot mean effective pressure" the same and not reduce the horse-power delivered. In general it is more ceonomical to utilize the exhaust steam for heating. There are instances, howerer, where the relation between the quantities of steam required for heating and for power are such, especially if the engines are run condensing, that it is better to throw the exhaust a way and heat with live steam. Where the vacum method is used these difficulties are aroided, and for this reason it is coming into more common

Fig. 12. use. If the condensation from the exhanst steam is returned to the boilers the oil must first be removed: this is msually arcomplished by passing the steam through some fom of grease extractor as it leaves the engine. The water of condensation is

Fig. 14.
then passed through a separating tank before it is delivered to the return prmps. It is better to remove a portion of the oil before the steam enters the pipes and radiators, else a coating
will he formed ent thoir immernianes whish will water their

Forced blast. This method of hating, in different forms,
 hatls on ans later butaling where geot rentilation is desired. The air for wamine is drawn or fored though a heater of special
 ravinorn phated in the rombs to be wamed. The heater is usmally
 fom anty sortion imbermdently of the others, and the temperatmor of the air regulated in this mamor. Sometimes a by-pass

Fig. 15.

1anmary is attarbled, sut that part of the air will pass through the
 [all athl heated air may he su alljusted as to give the desired
 latimn are comman whore at lawer is used for wamming a single man ats in the rave of al chuch or hall ; but where several rooms ate warmed. ats it a momolhomse, it is enstomary to bse the main (1) prinary heater at the blowe for watmine the air to a given "manratme. (shm what helow that which is actarlly required) and in - "hplement this ber paring secombary roils or heaters at ther buttoms of the thas leatings to the diflement rooms. By

 Whet sixton is ermmemmenthyed. In this case two ducts are
carried to each register, one supplying hot air and the other cold or tempered air, and a damper for mixing these in the right propor-

Fig 16.
tions is placed in the flue below the register. Fig. 16 shows a common form of the heater used in connection with a fan ; this is en-

Fin. 17. Eikethif motoms and steam emsines are both used for this porpose and may be either belted $\operatorname{mog}^{\text {direct commeeted. }}$

Fig. $1!$ shows a fan and heater arranged for a domble. drect system. A portion of the air passes throngh the heater. the top of which can lee seen where the casing is broken away: the remander of the air passes partly Haroms buater, depending upon the position of the by-pass damfri above. The temperature

 or wambitir phes.

It has the special advantage of being instantly available, and the amomet of heat may be regulated at will.

The heaters are perfectly clean, lo not vitiate the air and are portable. They are usually arranged in sections so that the amount of heat can be regulated as desired. They are made up

Fig. 18.
of resistance coils emberlited in asbestos or some other form of non-condueting material.

Figs. 21,22 and 23 show different forms of electric radiators; Fig. 22 is desigure especially for car heating.

PRINCIPLES OF VENTILATION.

Closely commected with the subject of heating is the problem of mantaning air of a rertain standard of purity in the varions buildings ocerpied.

The introduction of prre air can only be done properly in connection with some system of heating, and no system of heating is complete withont a supply of pure air, depenting in amomet mpen the kind of homiking and the pmpere for which it is used.

Composition of the Atmosphere. It has alreally heen stated
in the matrantion japer on (hamistry that atmuspherid air is not

 in the fromminn of : th jorts in 111,000 in the open rountry.

 imely small quamtities, ammmais, sulphumetted hydrogen, sulphurie,
 mather aml laral impuritus. dir also contans azone which is a fenoliall antiso form of wxgen, and lately a now constitnent callent atern has ban disoovered.

fig. 19.
Oxygen in mbe of the most impontant elements of the air,

 a whemhat similat fumes whirh takes plame in the respination "if humat laine. Takno into the lungs it ants num the excess

vitrogen. The fulmeipal bulk of the atmosphere is nitrogen, whill "xint matmonly diffarl with oxvgen amr catbonic acid
gas. This element is practically inert in all processes of combustion or respiration. It is not affected in composition, either by passing through a furnace during combustion or through the lungs in the process of respiration. Its action is to renter the oxygen less active and to absorb some part of the heat produced by the process of oxidation.

Fig. 20.
Carbonic Acid Gas is of itself only a nentral constituent of the atmosphere, like nitrogen, and contrary to the general impression its presence in moderately large quantities (if uncombined with other substances) is neither disagreeable nor especially harmful. Its presence in the air, however, provided for respiration, decreases the readiness with which the carbon of the blood mites with the oxygen of the air, and therefore, when ${ }^{\text {resent }}$ in sufficient quantity may cause indirectly, not ouly serious, but fatal results.

 will frant in ath atmophom vitiated hy respitation. Therefore,

Fig. : 1 .
in whirl it maty he alloworl, also limits the amoments of other impuritios which an fomme in combination with it.

Whas cortmonir adid is present in excess of 10 parts in 10,000

Fig. 2:3.

心.r that pownt in mulnor air which may be considered to

Analysis of Air. Tlı* :mmont of ratomic acirl present in
the air may be readily determined, with sufficient accuraty for practical purposes, in the following manner:

Six clean, dry and tightly corked bottles, containing respectively $100,200,250,300,350$ and 400 cubic centimeters, a glass tube containing exactly 15 cubie centimeters to a given mark, and a bottle of perfectly clear, fresh lime-water make up the apparatus required. The bottles should be filled with the air to be examined by means of a hand-ball syringe. Ald to the smallest bottle 15 cubic centimeters of the lime-water, put in the cork and shatse well. If the lime-water has a milky apperance the amount of carbonic acid will be at least 16 parts in 10,000 . If the contents of the bottle remains clear, treat the bottle of 200 culic centimeters in the same manner; a milky appearance or turbidity in this would indicate 12 parts in 10,000 . In a similar manner, turbidity in the 250 cubic centimeter bottle indicates 10 parts in 10,000 ; in the 300,8 parts ; in the 350,7 parts ancl in the 400 ,

Fig. 23. less than 6 parts. The ability to conduct more accurate analyses can only be attained by special study and a knowledge of chemical properties and methods of investigation.

Air Required for Ventilation. The amount of air required to maintain the standard of purity can be very easily determined provided we know the amomnt of carbonic acid given off in the process of respiration. It has been found hy experiment that the average production of carbonic acid by an adult at rest is about .6 cubic feet per hour. If we assume the proportion of this gas as 4 parts in 10,000 in the external air, and are to allow 4 parts in 10,000 in an occupied room, the gain will be 2 parts in 10,000 , or in other words there will be $\frac{2}{10,000}=.000 \cdot 2$ cubic feet of carbonic acid mixed with cach cubic foot of fresh air entering the room.

Therefore, if one person gives off 6 cubic feet of carbonic acid per hour it will require $.6 \div .0002=3000$ cubic feet of air per person to keep the air in the room at the standard of purity assumed, that is, 6 parts of carbonic acid in 10,000 of air.

TABI．I I．

－リにはいいい い1い1N
11．15（1）11に1N

\therefore	$1: 3:$	$\therefore .1010$
$1{ }^{1}$	17	．1，10（1）
7	11	ごいいつ
－	：$: 7$	－3， 1100
$!1$	$\because 7$	1．1300
111	\because	$1, \because: ?:$
11	$1: 1$	1，151
$1 \because$	17	1．0000

 ：11I．

TABLEE II．

Force for Moving Air．Sif is moved for vontilating phor－

by mechanical means. The effect of heat on the air is to increase its volume and therefore lessen its density or weight, so that it tends to rise and is replaced by the colder air below. The available force for moving air obtained in this way is rery small and is quite likely to be overcome by wind or external causes. It will be found in general that the heat used for producing velocity in this manner, when transformed into work in the steam engine, is greatly in excess of that required to produce the same effect hy the use of a fan. Ventilation by mechanical means is performed either by pressure or suction. The former is used for delisering fresh air into a building and the latter for removing the foul air from it. By both processes the air is moved withont change in temperature, and the force for moving must be sufficient to overcome the effects of wind or changes in outside temperature. Some form of fan is used for this purpose.

Measurements of Velocity.

Fig. 24.

The velocity of air in ventilating ducts and flues is measured directly hy an instrument called an anemometer. A common form of this instrmment is shown in Fig. 24. It consists of a series of flat vames attached to an axis, and a series of dials. The revolution of the axis causes motion of the hands in proportion to the velocity of the air, and the result can be read directly from the dials for any given period.

AIR DISTRIBUTION.

The location of the air inlet to a room depends upon the size of the room and the purpose for which it is used. In the case of living rooms in dwelling houses, the registers are placed either in the floor or in the wall near the floor: $:$ this brings the wam are in at the coldest part of the room and gives an opportunity for warming or drying the fect if desired. In the case of school rooms where large volumes of warm air at moderate temperatures are required, it is best to discharge it through openings in the wall at

 -

Tha bent mathet shmuld always if pessible be placed in an
 will lownme slamish. In theaters or halls which are closply

HEAT LOSS FROH BUILDINGS.

the calculations involved in the solving of problems in heating and ventilation, and one should familiarize himself with the exact meaning of the term.

Causes of Heat Loss. The heat loss from a building is due to the following causes; first, watiation and conduction of heat through walls and windows ; soront, leakage of warm air around doors and windows and through the walls themselves; and third, heat required to warm the air for ventilation.

Loss Through Walls and Windows. The loss of heat through the walls of a building depends upon the material used, the thickness, the number of layers and the difference between the inside and ontside temperatures. The exact amount of heat lost in this way is very difficult to determine theoretically, hence we depend principally on the results of experiments.

Loss by Air Leakage. The leakage of air from a room varies from one to two or more changes of the entire contents per hour, depending upon the construction, opening of doors, etc. It is common practice to allow for one change per hour in well-constructed buildings where two walls of the room have an outside exposure. As the amount of leakage depends upon the extent of exposed wall and window surface it seems best to allow for this loss by increasing that due to conduction and radiation. The following table gives the heat losses through different thickness of walls, doors, windows, etc., in B. 'T. U., per square foot of surface per hour for varying differences in inside and outside temperatures.

Anthorities differ considerably in the factors given for heat losses, and there are various methods for computing the same. The following figures and methorls have been used extensively in actual practice and have been found to give good results when used with judgment.

TABLI：III．

Wifference betwerninside andouthidetemperatures．

	111			11^{\prime}	$\therefore 0^{\circ}$	1；11	io＇	s0	$10{ }^{3}$	100°
－Lいい 11.11	－	$!$	13	1心	$\because: 2$	$\because 7$	：31	$31 ;$	10	4）
12161．11．11	1	7	10	13	16	20	$\because 3$	21	：30	：3：3
1．0 linh W．．1］	\therefore	i	S	10	$1: 3$	16	$1!$	23	24	27
$\because(1) 10$ ll 11	\because	1．5	7	（1）	11	14	16	18	20	$2: 3$
$\because 1$ link 11.11	\because	1	$1 i$	δ	11	12	14	$11 i$	18	20
$\because \quad 1 i 10 \mathrm{M}, 11: 11$	\because	8.8	4．5	－	$!1$	11	1：3	14	10	18
A－liniol W：all	$1 . \therefore$	；	\therefore	$1 ;$	\therefore	10	11	13	15）	16
	12	$2 \cdot 1$	： 1	$4!1$	60	78	8i）	93	10：3	
	\cdots	16	2.1	\＃2	411	4	ib	（\％）	70	
－m！，¢－，lialu	11	21	：31	1：	52	（i）	78	84	9.4	
	7	1.1	$\because 0$	2心	3.7	$4: 3$	$4{ }^{4}$	56	（i）	
	1	\checkmark	12	10	20	34	28	32	36	40
$\because W^{\prime \prime}$	：	5	s	11	14	17	20	$\because: 3$	25）	28
	2	4	（i．i）	9	11	13	15	18	20	22
W＊：．ul｜／um wh lifick Areh	1．	：3	4．i）	6	7	$!$	10	12	13	15
	1	2	：3	1	i	（i）	7	8	9	11
	3	5	8	10	1；	$11 i$	191	$2 \cdot$	24	27

Fon sulinl some walls malijuly the digures for lorick of the same thinkmo．ho 1．7．Where rooms have a cold attic above or cellar howanlo．multiply the herat loses thromgh walls and windows by 1．1．

TABLE IV．
ミがいいいに，
Fartore．

feet and a glass surface of 50 square feet, when the outside temperature is zero. The wall is of brick, 16 inches in thickness and has a southern exposure; the windows are single.

We find from table III. that the factor for a $16^{\prime \prime}$ brick wall with a difference in temperature of 70° is 19 , and that for glass (single window) under the same condition is 85 ; therefore

Loss through walls $=200 \times 19=3800$
Loss through windows $=50 \times 85=4250$
Total loss per hour $=80$ jo B. T. U.
In computing the heat loss through walls, only those exposed to the outside air are considered.

A room 15 ft . square and 10 ft . higit has two exposed walls; one toward the north and the other toward the east. There are 4 windows, each $3^{\prime} \times 6^{\prime}$ in size The two in the north wall are double while the other two are single. The walls are of brick, 20 inches in thickness; with an inside temperature of 70° what will be the heat loss per hour when it is 10° below zero.

Total surface $=15 \times 10 \times 2=300$
Glass surface $=3 \times 15 \times 4=72$
Net wall surface $=\quad 228$
Difference between inside and outside temperature 80°.
Factor for $20^{\prime \prime}$ brick wall is 18.
Factor for single window is 93 .
Factor for double window is 62.
The heat losses are as follows:
Wall, $\quad 228 \times 18=4104$
Single windows, $\quad 36 \times 93=3348$
Donble windows, $36 \times 62=2232$
9684 B. 'T. U.
As one side is toward the north and the other toward the west the actual exposure is N. W. Looking in talble IV. we find the correction factor for this exposure to be 1.26 ; therefore the total heat loss is

$$
9684 \times 1.26=12,201.84 \mathrm{~B} . \mathrm{T} . \mathrm{U} .
$$

Λ dwelling house of wooden construction measures 160 ft .

$\therefore \cdot 1$ w：11）$=2048$

$$
1 . \therefore \because+1.1 \because+1.0+1.20 \div 1=1.16
$$

$$
\therefore \therefore 11 \because 1.1+\times 1 . \therefore 0=7!12.2 \text { I: 'T. U. }
$$

Approximate Method．Fon dwollime lomses of usual eon－

 1 ：14：19！

 \therefore 1 •．．．1いいいっ：

$$
\begin{aligned}
& \text { Wall } \frac{5}{6} \times 19=15.8 \\
& \text { Glass } \frac{1}{6} \times 8.5=\frac{14.1}{29.9}
\end{aligned}
$$

Increasing this by 16% for total exposure and 10% for loss through ceilings we have $29.9 \times 1.16 \times 1.10=38.1$. The loss through floors is considered as being offset by inchuding the kitchen walls of a dwelling house, which are warmed by the range and would not otherwise be included if computing the size of a furnace or boiler for heating.

If the heat loss is required for outside temperatures other than zero, corrections must be marle as follows: Multiply by 5u for 20° below zero, by 44 for 10° below, by 33 for 10° above.

This method is convenient for approximations in the case of dwelling houses but the more exact method should be used for other types of buildings, and in all eases for computing the heating surface for separate rooms. When calculating the heat loss from isolated rooms, the cold inside walls as well as the outside must be considered.

The loss through a wall next to a cold attic or other mowarmed space may in general be taken as about two-thirts that of an outside wall.

Heat Loss by Ventilation. ()ne 13. T'. I. will raive the temperature of 1 cubic foot of air 55 degrees at arerage temperatures and pressures or will rase 55 enbic feet 1 degree, so that the heat required for the ventilation of any room may he fomme by the following formula:
cu. ft. of air per hour \times number of degrees rise $=$ B. T. T. rerfuired.
To compute the heat loss for any given rom which is to be ventilated, first find the loss through walls amb wimlows, amb correct for exposure, then compute the amonnt repuired for ventilation as above and take the sum of the two. An inside temperatme of 70° is always assmmed mulosis otherwise stated.

Example - What quantity of heat will be required to warm 100,000 cuhic feet of air to 70° for ventilating purposes when the ontside temperature is 10 below zero:

$$
100,000 \times 80 \div 5=145,45+\text { I. T. U. Ans. }
$$

EXAMPLES FOR PRACTICE.

 (1) :
 there ate wam rombs atove athl below: the exposme is s. E,
 rom aml how many for ventilation, in zero weather?

2.1 stome chameh seating for people has walls $20^{\prime \prime}$ in thirkn... It hats a wall expesure of i, 000 square feet, a glass

 - fuatre fort. The buidding is expered on all sides. What will lo. the hat requiberl per home for hoth warming and ventilation

 fate the heat lasi hy the apmoximate methol when the temper-

Ans. $\quad=70.000$ l:. T'. V. per heme.

FURNACE HEATING.

Types of Furnaces. Fommares may he divided into two
 a \quad..nmmon form of direct draft fumane with a hriok setting: the

gases passing directly into the smoke pipe and carying itway much heat that should be utilized.

The furnace shown in Fig. 28 is made of cast iron and has a large radiator at the top ; the smoke comection is shownit the rear.

Fig. 29 represents another form of direct draft furnace. In this case the radiator is made of sheet steel plates riveted together,

Fig. 29.
and the outer easing is of heavy galvanized iron instead of brick.
In the ordinary indirect draft type of fumace (see Fig. 30) the gases pass downward through flnes to a radiator located near the base, thence upward, through another flue to the smoke pipe. In addition to the damper in the smoke pipe, a direct draft damper is required to give direct connection with the fumbel when coal is first put on, to facilitate the escape of gis to the chimmey. When

dirates. Xopart of a faname is of more importance than the
 (imm the nan most commonly used. These grates were manally

Fig. z9.

ing furnaces. It consists of a series of thimgular hars having teeth. The bars are comected by gears and are turned by means of a detachable lever. If properly used this grate will cut a slice of ashes and clinkers from muler the entire fire with little, if any loss of unconsumed coal.

The Fire Pot. Fire pots are generally made of cast iron or of steel plate lined with fire brick. The depth ranges from ahout

Fig. 30.

12 to 18 inches. In cast iron furnaces of the better class the fire pot is made very heavy to insure durability and to render it less likely to become red hot. The fire pot is sometimes made in two pieces to reduce the liability of eracking. 'The heating' surface is sometimes increased by corrugations, pins or ribs.

A fire lnick lining is necessary in a wrought iron or steel furnace to proteet the thin shell from the intense heat of the fire.

 therin eftionary on the heather surfare in the dome and adiator,

 d.ampers out still wiving of heat from the fime pot, while in the ease uf hath limins sory little heat is given off in this way aml the :monn atr likely whome somewhat cooled before the fresh eoal

Combustion Chamber. The borly of the furnace above the tim" prit. "ommonly alled the dome or feed seetion, provides 1 wenhmstion chambur. This chamber shond be of sulli ient 3, wing up though the tire or entering through openings provided
 -

Radiator. 'The ratiator, so ealled, with which all furnaces oi the lofter dass are providel, acts as a sort of reservoir in Whint ther anse ane kept in contant with the air passing over the
 Bhar hath. Rarliaturs are lmilt of east iron, of steel plate or of a monbination of the two. The former is more darable and can lar male with fewer joints, hat owing to the diffienlty of eating matian - of large size, steel plate is emmonly usel for the sides.

Hherffertiverss of athliator depends on its form, its leatine - 11 fine aml the difference between the temperature of the 2rac aml the sumomuling air. Owing to the atommation of

If the rathator is plated near the bottom of the farmare the

 than insard ate likely to romote ther iath.

Heating Surface. 'Thr dilforent hertitis surfates may be
described as follows: Fire pot surface; surfaces acted upon by direct rays of heat from the fire, such as the dome or combustion chamber; gas or smoke heated surfaces, such as flues or radiator: and extended smfaces, such as pins or ribs. Surfaces unlike in character and location, vary greatly in heating power, so that in making comprarisons of different furnaces we must know the kind, form and location of the heating surfices as well as the area.

In some funaces having an mosually large amount of surface, it will be fomnd on in ipection that a large part would soon become practically useless from the accumalation of soot. In sthers a large portion of the surface is lined with fire brick, or is so situated that the air currents are not likely to strike it.

The ratio of grate to heating surface varies somewhat according to the size of fumace. It moy be talken as varying from 1 to 2.5 in the smaller sizes and 1 to 1.5 in the larger.

Efficiency. One of the first items to be determined in estimating the heating capacity of a fumace is its efficiency, that is, the proportion of the heat in the coal that may be utilized for warming. The efficiency depents ehiefly on the area of the heating surface as eompared with the grate, on its character and arrangement, and on the rate of combustion. The usual proportions between grate and heating surface have been stated. The rate of combustion required to maintain a temperature of 70° in the house depends of course on the outside temperature. In very cold weather a rate of 4 to $\overline{5}$ pounds of coal per square foot of grate per hour must be maintained.

One pound of good anthracite coal will give off about 13000 B. T. U. and a good furmace should utilize 70 per cent. of this heat. The efficiency of an ordinary funace is often much less, sometimes as low as 50 per cent.

In estimating the required size of a first-class furnace with good chimmey draft we may safely count upon a maximum combustion of 5 poumbs of eoal per square foot of grate per hom', and may assume that 8000 B . T. U. will be utilizal for warming purposes from each pouml burned. This quantity corresponds to an efficiency of 60 per cent.

Heating Capacity. Having determined the heat loss from a building by the mothods given, it is a simple matter to compute

 thomert wall amd wimbows．Jir is mbilally dolivered at the

 duction，ratiatton，coto．，so that tho lasat wiven tor the entering air
 w：1lls，rt•．

Example．－The lose throngh the waths and wintows of a maklimg is fomm to be somon B．IT．I＇．per home in zero weather， What will he the size of furmate required to mantain an inside temperathre of 70 deseres？

From the above we have the total heat reguired，equal to

 pengimet．A lime pot 28 inches in dianoter has an area of 4.27 －phater feet amb is the size we should use．

Tha follnwins table will be fomml useful in determining the

TABLE V．
 （1）Nの11ド

10
$\because 11$
$\because \because$
$\because 1$
$\because 4$
\because
$\because \because 11$
$\because \because$

DRLIA IN SQUSRE FEEFT．
1.77
$\because .15$
2.1 if
$\because .11$
$\therefore .1 ;!$
＋．$\because 7$
1.91
5.58

If the outside temperature is below zero the method of computation becomes slightly different. We have seen that in zero weather a certain quantity of heat is required to raise the temperature of the entering air from zero to 70°, the temperature of the room, and that a second quantity must then be added to raise the temperature of the air to 140°, which is the usual temperature of delivery at the registers. This last quantity is to offset that lost by radiation and conduction, and must equal the heat loss from the buikling as computed by the fustors given in tables III. and IV. The air has been raised through 140 degrees and $\frac{70}{140}$ of the heat supplied has been used to raise it to the temperature of the room and has been lost by leakage; while the remaining $\frac{70}{1+0}$, an equal amount, has been given up by radiation and condaction. In this case we have only to compute the heat loss for radiation and conduction by the rules given and multiply this result by 2 to obtain the total amount of heat to be supplied by the furnace.

Now take a case where it is 10 degrees below zero. If the air is delivered to the rooms at 140 degrees as before, it must be warmed through 1.50 degrees. Of the heat supplied $\frac{80}{150}$ hats heen used to raise the temperature of the outside air to that of the room, and only $\frac{70}{150}$ for loss by radiation and conduction. As in the preceding example, this latter quantity must equal the eomputed heat loss throngh walls and windows ; and as it is only $\frac{70}{150}$ or .466 of the total amoment of heat required we most multiply it by $1 \div .466=2.14$ instead of by 2 as in the first case where the outside temperature is zero.

In the same manner multiphy l, 2.28 for 20 degrees below zero and by 2.42 for 30 degrees.

EXAMPLES FOR PRACTICE.

1. A brick apartment house is 20 feet wide, and has 4 stories, each being 10 feet in height. The house is one of a block and is exposed only at the front and rear. The walls are 16 inches thick and the block is so sheltered that no correction neel le made for exposime. Single windows make up $\frac{1}{8}$ the total exposed surface. Figure for cold attic but warm basement. What area of grate surface will be required for a furnace to keep

 -

 fort will lar ramimel for the extra limatere?

Ans. 18 inches.
Iocation of Furnace. 1 lumace shombla be so plated that

 -homid be plamed sumemhat to the north or west of the center of
 valiluer wimk hlow.

Smoke Pipes. Finmatre smuke pipes rature in size from

 mel diminish the draft. Whare atmoke pipe proses throngh a partition it shombla proterted by a satpstome or double perfor-

Chimney Flues. (himmey llow il built of brick shomla have

smoke thue should be at least 8×12 to allow for contractions or offsets. A clean-out door should be placed at the bottom of the flue for removing ashes and soot. A square tlue cannot be reckoned at its full area as the comers are of little value. To avoid down drafts the top of the chimney must be caried ahove the highest point of the roof unless provided with a suitable hood or top.

Cold=Air Box. The cold-air box should be large enough to supply a volume of air sufficient to fill all the hot-air pipes at the same time. If the supply is too small, the distribution is sure to be unequal aud the cellar will become overheated from lack of air to carry away the heat generated.

If a box is made too small or is throttlerl down so that the volume of air entering the furnace is not large enough to fill all the pipes it will be found that those leading to the less exposed side of the house or to the upper rooms will take the entire supply, and that additional air to supply the deficiency will be drawn down through registers in rooms less favorably situated. It is common practice to make the area of the cold-air box three-fourths the combined area of the hot-air pipes. The inlet should be placed where the prevailing cold winds will blow into it ; this is commonly on the north or west side of the house. If it is placed on the side away from the wind, warm air from the furnace is likely to be drawn out through the cold-air box.

Whatever may be the location of the entrance to the cold-air box, changes in the direction of the wind may take place which will bring the inlet on the wrong site of the house. To prevent the possibility of sweh changes affecting the action of the furnate the cold-air hox is sometimes extended through the house and left open at both ends, with eheck-dampers arranged to prevent baek drafts. These checks should be placed some distance from the entrance to prevent their becoming elogged with show or sleet. The cold-air hox is generally made of matched boards, but galvanized iron is much better; it costs more than wood but is well worth the extra expense on account of tightness which keeps the dust and ashes from being drawn into the fumace easing to be discharged through the registers into the rooms above.

The cold-air inlet should be covered with galvanized wire
 frame su whinh it is attanded shomld ant be smather than the inside limernions of the eold-air hox. I dower tordmit air from the adlar th the cold-air bos is eromerally provided. As a rule air
 proarily mancompiod or daring high wimls.

Return Dact. Da some rases it is dexiathle to return air to
 furpace are rammon in places where the winter temperatme is

Fis. : 31. frepuently below zero. Retmm ducts when used, should be in addition to the regrilar cold-air hox. Fig. :3l shows a rommon method of making the romnection hetween the two. By proper adjustment of the swinging damper the air can le taken wither from out of deors or through the rexister from the room above. The retarn resister is often phaced in the hallway of a honse so that it will take the eold air which
 in atomul it white rhsed. (herek values or haps of light gossa-
 athl the meristers to juenent bate drafte dming winds.

 misht when air in atmitted to the sleephing rooms therngh open winlow

Warm-Air Pipes. 'Thr regnimed size of the wam-air pipe to

 B. T. 1. Wh have almaly sum that in \%ero weather with the air
entering the registers at $1+0$ degrees, only one-half of the heat contained in the air is available for offsetting the losses by radiation and conduction, so that only 1.1 B . 'T. U. in each cubic foot of entering air, can be utilized for warming purposes. Therefore if we divide the compoted leat loss in B. T. U. from a room, by 1.1 it will give the nmber of cubic feet of air at $1 \not 40$ degrees necessary to warm the room in zero weather.

As the outside temperature becomes colder the quantity of heat bronght in per cubic foot of air increases, but the proportion available for warming purposes beeomes less at nearly the same rate, so that for all practical purposes we may use the figure 1.1 for all usual conditions. In calculating the size of pipe required, we may assume maximum velocities of 280 and 400 feet per minute for rooms on the first and second floors respectively. Knowing the number of cubic feet of air per minute to be rlelivered, we can divide it by the velocity, which will give us the required area of the pipe in square feet.

Round pipes of tin or galvanized iron are used for this purpose. The following table will be fonnd uscful in determining the required diameters of pipe in inches.

TABLE VI.

DIA. OF PIPEIN INCHES.	AREA IN SQ. INCHES.	AREA IN SQUARE FEET.
6	28	.196
7	38	.267
8	50	.349
9	64	.442
10	79	.545
11	95	.660
12	113	.785
13	133	.922
14	154	1.07
15	177	1.23
16	201	1.40

Example. - The heat loss from a room on the secoud floor is $22,000 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. , per hour'. What diameter of warm air pipe will be required?

ENAPIPLES FOR PRACTICE．

1．I first thou room hats at computed loss of ：3：3000 IB．Tr．U． Po ham when it is 10° below \％ero．The air for warming is to
 duress．What will he the required diameter of the pipes？

Ans．1：inches．
\therefore ．If in the above example the roan hand been on the sound flow and the air was to lee delivered through a single 14＂地：what diameter wonk be required？

Ans． 15 inches．

Fins，：；

Fig．：3：

Sine long horizontal runs of pipe increase the resistance and l．．．．if heat．they shamble not in geneal be wee is feet in length．
 ＂${ }^{\prime \prime}$ than on the a hl site of the house．Pipes of excessive

 in the haromint．＇Thar time serves the best results and should be

 ins the H10：of air the the different romes or for shooting them off

While round pipe risers give the best results, it is mot always possible to provide a sufficient space for them, and flat or oval pipes are substituted. When vertical pipes must be placed in single partitions, much better results will be obtained if the studding can be made 5 or 6 inches deep instead of 4 as is usually done. Flues should never in any case be made less than $?, 1$ inches in depth. Each room should be heated by a separate pipe. In some cases however, it is allowable to run a single riser to heat two unimportant rooms on an upper floor. A clear space of at least ${ }_{2}^{1}$ inch should be left between the risers and studs and the latter should be carefully timed, and the space between them on both sides covered with tin, asbestos or wire lath.

The following table gives the capacity of oval pipes. A 6inch pipe ovaled to 5 means that a 6 -inch pipe has been flattened out to a thickness of 5 inches and column $\boldsymbol{\sim}$ gives the resulting area.

TABLE VII.

dimension of pipe.			AREA IN	square	INCHES.
	aled	d to 5		27	
7	"	" 4		31	
7	،	(6) 3.1		22	
7	-	"6 ${ }^{2}$		38	
8	-	\cdots		43	
9	،.	، 4		45	
10	"	" 3.1		40	
	"	${ }^{6} 60^{-1}$		57	
9	"	" 5		51	
11	-	6 4		58	
12	"	" 3.1		55	
10	،	6 6^{-1}		67	
11	،	" 5		67	
14	"	" 4		76	
1.5		" 3.1		73	
12		" $6{ }^{-}$		85	
12	"	"		75	
19	-	" 4		96	
20	"	" 312		100	

ILaving determined the size of round pipe required, an equiva-
 arsiballe．

 theif Ehather than the ate：of the pipn rembered with it．It is com－
 and the lome dimension alont one－hati greater than the diameter of the pipe This would wive the following stantand sizes for diftement diathome of jipr．

TAlBI．E VIll．

$1 i$
i
\vdots
\vdots
10
11
12
13
14
15
16

NI\％E いト にEAISTER．

Combination Systems．A combination system for heating b，lmt air amb hos water comsists of an ortinary furnace with anme form of surace for heatherg water，pacerl rither in contact ＂ith the fire or suspemded above it．Fig．：$\%$ t shows a common armandment where part of the hating smface forms a portion of th ${ }_{1}$ ．limine to the fire pot and the remaimer is above the fire．
（：ar．mat be taken to poperly proportion the work to lo lon．ly the air and the water，dse one will oprate at the expense of the othere．One spatare fort of heating surface in contact with

Care and Management．The following general rules aply to the manatroment of all harel cond lmmates．

The fire should be thoroughly shaken once or twice daily in cold weather. It is well to keep the fire pot heaping full at all times. In this way a more even temperature may be maintained, less attention required and no more coal burned than when the

Fig. 34.
pot is omly partly filled. In mild weather the mistake is flee'quently made of carrying a thin lire, which requires frequent attention and is likely to die out. Instead, to diminish the temperature in the honse, keep the fire pot full and allow ashes to accumulate on the grate (not under it) by shaking less frequently
 "a-b mattor w matntan and eontmol the fire. When feeding coal
 all the fors emal beromes Emited. Tha air shply to the fire is

 means of the ash pit. thromerh the ash pit dowe or slicte.
'The smoke pipe damper should be ofened only enongh to ramb wif the gits or smoke and to give the necessary draft. The
 huph flasel during eold weather, ex eqt just after firing, when with a ermad dratit the may be party opened to inerase the air - "hpl! amd promute the froper combustion of the gases.

Kerp the ash pit clear to avoid warping or meting the grate. Tlle colltair hos should be kept wide open rexept during winds ur when the fire is low. At surh times it may be partiy, but nerar manklety chasel. Ton mach stress cammot be laid on the imputam, of a sultiofent air suply to the fumace. It costs littlo if ans mone (0 matntain a comfortable temperature in the hom- hight amd day than to allow the rooms to become so eold dmane the night that the fire most be foreed in the morning to Warm (hom 川! to a combiortable temperature.

In base the warm air fails at times to rearh certain rooms it may te forced inth them by trmpomily fosing the regristers in nelner fomms. The emment ance established will generally eontimue altor the other registors have been opened.

It is hest $f 0$ burn as hard eoal as the deaft will warant.

 mum a gror. This shomd be done just after the fire las been

STEAM BOILERS.

Finn x. 'Ther bilers mind for heating are the same as have

cast-iron sectional boiler, which is almost exclusively used for dwelling honses.

Sectional Boilers. Fig. 35 shows a common form of castiron boiler. It is made up of slabs or sections, each one of which is connected by nipples with headers at the sides and top. The top healer acts as a steam drum and the lower ones act as mud drums ; they also receive the water of condensation from the ratiators. The gases from the fire pass backwarl and forward

Fig. 35.
through flues and are finally taken off at the rear of the boiler. The ratio of heating to grate surfate in this type of boiler ranges from 1.5 to 2.5 in the best makes. They are provided with the usual attachments, such as pressure gage, water glass, gage cocks ant safety valve; a low-pressure damper regulator is furnished for operating the draft doors, thas keeping the steam pressure paretically constant. A pressure of from 1 to \tilde{j} pounds is usually
 The manal setting is simply a cowering of some kind of noncomblucting material like phatia magonsia or ashestos, athough
 "f thi kind with part of the setting remosed. In romputing the required size we maty proced in the same mammer as in the case

Fig. 3\%.
of a fromane. For the leest tyles we maty assume a combustion
 anmare ceflefoncy of bit per echt, which comesponds to 8,000 B. 'T. [. per permed of coal, avalable for usofal work.

In the case of direct stean heating we have only to supply barat woffset that lost by ratiation and conduction, so the grate areat may lee fommed by dividing the computed heat loses per hour by 8,000 which erives the momber of pomeds of coal, and this in tum diviled by will give the area of grate reeruired. The most offietont rate of eombustion will depend somewhat upon the ratio leetwem the: gratr and heating surface. It has been found by
experiment that about $\frac{1}{4}$ of a pound of coal per hour for each square foot of heating surface gives the best results, so that by knowing the ratio of heating surface to grate area for any make of heater we may easily compute the most efficient rate of combustion and from it determine the necessary grate area.

For example - The heat loss from a building is 480,000 B. T. U. per hour' we wish to use a heater in which the ratio of heating surface to grate area is 24 , what will be the most efficient rate of combustion and the required grate area? $480,000 \div 8,000$ $=60$ pounds of coal per hour, and $24 \div 4=6$, which is the best rate of combustion to employ, therefore $60 \div 6=10$, the grate area required.

EXAMPLES FOR PRACTICE.

1. The heat loss from a building is 240,000 B. T. U. per hour and the ratio of heating to grate area in the heater to be used is 20 , what will be the required grate area? Ans. 6 sq. ft .
2. The heat loss from a building is 168,000 B. T. U. per hour and the chimney draft is such that not over 3 pounds of coal per hour can be burued per square foot of grate. What ratio of heating to grate area will be necessary and what will be the required grate area? Ans. Ratio 12. Grate area 7 sq . ft.

Cast iron seetional boilers are used for dwelling houses, small schoolhouses, churches, etc., where low pressures are carried. They are increased in size by adding more slabs or sections. After a certain length is reached the rear sections become less and less cfficient, thus limiting the size and power.

Tubular Boilers. Tnbular boilers are largely used for heating purposes, and are adapted to all classes of buildings except dwelling houses and the special cases mentioned for which sectional boilers are preferable. The calmaty of this type of boiler is usually stated as so muy horse-power, and the method of determining the size is different from that just described. A boiler horse-power has been defined as the evaporation of 34_{2}^{1} pounds of water from and at a temperature of 212 degrees, and in doing this 33,317 B. T. U. are absorbed, which are again given out when the steam is condensed in the ratiators. Hence to find the boiler H. P'. required for warming any given buikling we have only to

 side of safety. The ratio of hating to grate surface in this type of

 The larere the hater, the more impertant the phant nsually, and
 "onnt on a higher rate of eombustion and a greater aflicioney as the size of the builer increases. Tha following table will be foumd narfal in determining the size of boiler required moder different

 in pravien for heating builers.

Thr areats of mptakr and smoke pipe are figured on a basis of
 in rommalmandrs. In the smaller sizes the relative size of smoke
 the smatler sizes to $1\left[\frac{2}{2}\right.$ in the larger. Builers of the proportions Livell in the tahbe corverpond well with those need in athal paterier and may be relied upon to give good results muder all omlanary eomlitions.
 mone "sperially in commertion with power phats. The method of compmong the required II. P. is the same as for tubular lnilars.

Horse Power for Ventilation. We alrealy know that one 1:. I. I'. will mive the temprature of 1 cubic fort of ar inj degrees,

 gnimel thrane any gisen whmm of air throngh any number of

Volmme of air ia collir ft. K De groees raised

TABLE IX.

Diameter of shell in Inches.	Number of Tubes.	Diameter of Tubes in Inches.	Length of Tubes in Feet.	Horse Power.	Size of Grate in Inches.	Size of Uptake in Inches.	$\left\lvert\, \begin{gathered} \text { Size of } \\ \text { smokepipe } \\ \text { in sq. in. } \\ \hline \end{gathered}\right.$
30	28	$21 / 2$	6	8.5	24×36	10×14	140
			7	9.9	24×36	10×14	140
			8	11.2	24×36	10×14	140
			9	12.6	24×42	10×14	140
			10	14.0	24×42	10×14	140
36	34	21/2	8	13.6	30×36	10×16	160
			9	15.3	30×42	10×18	180
			10	16.9	30×42	10×18	180
			11	18.6	30×48	10×20	200
			12	20.9	30×48	10×20	200
42	34	3	9	18.5	36×42	10×20	200
			10	20.5	36×42	10×20	200
			11	22.5	36×48	10×25	250
			12	24.5	36 x 4 C	10×25	250
			13	26.5	36×4	$10 \times 2 \bigcirc$	280
			14	28.5	36×54	10×28	280
48	44	3	10	30.4	42×48	10×28	2 SO
			11	33.2	42×48	10×24	250
			12	85.7	42×54	10×82	320
			13	38.3	42×54	10×32	320
			14	40.8	42×60	10×36	360
			15	43.4	42×60	10×36	360
			16	45.9	42×60	10×36	360
54	54	3	11	34.6	48×54	10×38	380
			12	37.7	43×54	10×38	380
			13	40.8	48×54	10×38	380
			14	43.5	48×54	10×38	380
			15	47.0	48×60	10×40	400
			16	50.1	$4 \checkmark \times 60$	10×40	400
	46	$31 / 2$	17	53.0	$4 \checkmark \times 60$	10×40	400
60	72	3	12	48.4	54×60	12×40	460
			13	52.4	54×60	12×40	460
			14	56.4	54×60	12×40	460
			15	60.4	54×66	12×42	500
			16	64.4	54×66	12×42	500
	64	$31 / 2$	17	71.4	54×72	12×48	550
			18	75.6	54×72	12×48	550
66	90	3	14	70.1	60×66	12×48	500
			15	75.0	60×72	12×52	620
			16	80.0	60×72	12×52	620
	78	$31 / 2$	17	86.0	60×78	12×56	670
			18	91.1	60×78	12×56	670
			19	96.2	60×78	12×56	670
	62	4	20	93.1	60×78	12×56	670
72	114	3	14	87.4	66×72	12×56	670
			15	93.6	66×72	12×56	670
			16	99.7	66×7	12×62	740
	98	$31 / 2$	17	106.4	66×78	12×62	740
			18	112.6	66×84	12×66	790
			19	118.8	66×84	12×66	790
	72	4	20	107.2	66×84	12×66	790

$$
\begin{aligned}
& 100,0000 \times 70 \\
& \therefore \quad \text { 1ごっこのシート }
\end{aligned}
$$

 mamber of dergees thromsh which it is to be raised，and divide the

 take the air strpule in rabige feet per home．

EXAMPLES FOR PRACTICE．

1．The heat hosi from a hathling is $1,0.50,000$ B．T．W．per hanr．There is to be an air supply of 1 ，ion 0,000 entric feet per lonnt．mised thamgh 70 degrees．

What is the total biter II．I＇．required？
Ans． 108.
 purils．Sir is tu bodelivered tor the romes at a temperature of TO degroes．What will be the total II．V＇．required to heat and vantilate the bilding when it is 10 degrems below zero if the heat low throngh walls and windows is $1,320,000$ R．＇T．V．per hour？

Ans． $106+$

DIRECT STEAM HEATING．

Types of Radiating Surface．The maliation used in direct tham hating is malle uf of cast iron radiators of varions forms， fif！rarliaturs：and rirculation eoils．

Cast Iron Radiators．＇The general form of cast iron sec－ tinnal ranhatoms has beern shown in Fig．$\because=$ ．They are mate up of

 of thin type．It is simply a loop with inlet and outlet at the butom．The emb sections are the same except ther have legs as

 lnitum of the raliator．and being lighter that the air rises through the home ant forms the air lownwarl ame towarl the fartherend， whow it is dischorered thongh an ar－value phacer about midway
of the last section. There are many different designs varying in height and width, to suit all conditions. The wall pattern shown in Fig. 4 is very convenient when it is desired to place the radiator above the floor, as in hath rooms, etc.; it is also a convenient form to place under the windows of halls and churchers to comnteract the effect of cold down drafts. It is adapted to nearly every place where the orlinary direct radiator can be used and may be connected up in different ways to meet the various requirements.

Pipe Radiators. This type of radiator (see Fig. 3) is made up of wrought iron pipes screwed into a cast iron base. The pipes are either connected in pairs at the top by return bends or each separate tube has a thin metal diaphragm passing up the center nearly to the top. It

Fig. 37.

Fig. 38. is necessary that a loop be formed else a "dead end" would occur. 'This would become filled with wif and prevent stean from entering, thus cansing portions of the radiator to remain cold. For a given surface the average ? 3 in a iudiator is more efficient than the east iron sectional radiator.

Fig. 39.
Circulation Coils. These are usually made up of 1 or $1 \frac{1}{4}$ inch wrought iron pipe, and may be hung on the walls of a room by means of hook plates or suspended overhead on hangers and rolls.

Fig. 39 shows a common form for sehoohouse and similat

 $\$ 11$ shmes a ${ }^{*}$ tommbon roil," whelh is commonly used when the

 coil." aml is und moder the same conditions as a trombone coil if

Fig. 40.
there is rom for the vertical protion. This form is not as pleasinge in apheammer as either of the other two and is only found in fantures or shms where looks are of minor importance.
()ertheal eribls are usmally of the "miter" form laid on the side amd suspemded about a foot from the eeiling; they are less rfticiont thath when phated nearer the floor, as the warm air stays at the cuiling and the lower part of the room is likely to remain fohl. 'They are only used when wall coils or radiators would be in the way of tixtures or when they wonld come below the water

Fig. 41.
lime of the Pribur if flated near the foor. A coil should never lı. mate $\quad H_{j}$ as shown in Fig. 42 , as mequal expansion of the giluo womld canse statins which would soon result in leaky joints. Whan storm in first thrord on a coil it nsmally passes through a fortion of the pijes first amel heats them while the others remain roll and full of air. Therofore the coil must always be made up in smoh at way that earlh pipe shall have a certain amount of spring and may expmal julepembently withont binging mulnestrams upon
the others. Circulation coils should incline about 1 inch in 20 feet toward the return end in order to seeure proper drainage and quietness of operation.

Efficiency of Radiators. The efficiency of a radiator, that is, the B. T. U. which it gives off per square font of surface per homr, depends upon the difference in temperature between the steam in the radiator and the surrounding air, the velocity of the air over the radiator, and the quality of the surface, whether smooth or rongh. In ordinary low-pressure heating the first condition is practically constant, but the second varies somewhat with the pattern of the radiator. An open design which allows the air to circulate freely over the radiating surfaces is more efficient than a close pattern and for this reason a pipe coil is more efficient than a radiator.

In a large number of tests of cast iron radiators, working

Fig. 42.
under usual conditions, the heat given off per square foot of surface per hour, for each degree difference in temperature between the steam and suroumling air, was found to vary from about 1.3 to $1.7 \mathrm{~B} . \mathrm{T}$. U. 'The temperature of steam at 3 pounds pressure is 220 degrees, and $220-70=150$, which may be taken as the average difference between the temperature of the steam and the air of the room, in orlinary low-pressure work. If we take the mean of the alove results, that is, 1.5 we shall have $150 \times 1.5=$ 225 B . T. U. as the efficiency of an average cast iron radiator. A eireulation coil mude up of pipes from 1 to 2 inches in diameter will easily give off 300 B . T. U. moter the same conditions, and a shallow pije radiator of standard height may be safely connted upon to give 260. These efficiencies are lower than are given by some engineers, but if the sizes are taken from trade catalogues it is not safe to go much above these figures. If the radiator is to be ns: a for warming rooms which are to be kept at a temperature

fon evample if a romm is to be kept at atemperature of

 atmer Intwern lac stean and the air of the romm．It is not eas－ tomary tormshar this mbess the steam pressure shombl be rased
 $\because{ }^{\prime}$ ，hergeres from the mormal．

Frem the abose it is easy to compute the size of radiator for ：my yiven romm．Finst compmet the hat loss per home hy ratia－ sion and romhtuetion，in the coldest weather，then divide the result

 that ther will wimm the rooms 1070 degrees in the eoldest wather．This varies a good deal in different loealities，even in the same state，and the lowest temperature for which we wish to pmovile mast be settod npon before any calenations are made． In New Lineram amd throunh the Minhle and Westem States it is nsual to figure on warming a hinding to 70 degrees when the motsile tomperatare is form zoro to 10 degrees below．

The makers wi radiators pmhlish in their catalogues，tables Eivime the square feet of heating surface for different styles and horifhts，amd these rath be used in determining the momber of smotions rapured for all special cases．

If pipe：coits are to be used，it becomes necessary to reduce
小म⿴囗十

Ther size of radiator is only made sulficient to keep the room wamm atter it is oure heaterl，amb no allowance is mate for ＂．wammer ap．＂that is，the heat given off by the madiator is just
 wfore in two way－first，when the rome is eold，the difference
in temperature between the steam and air of the room is greater and the radiator is more efficient, and second the radiator is proportioned for the coldest weather so that for a greater part of the time it is larger than necessary. This last condition is one of the disadvantages of direct steam heating; if steam is on the radiator

Fig. 43.
at all it will give off the same amomnt of heat regardless of the outside temperature.

EXAMPLES FOR PRACTICE.

1. The heat loss from a room is $22,500 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. per hour in the coldest weather : what size of direet radiator will be required?

Ans. 100 square feet.
2. A schoolroom is to be warmed with cireulation eoils of 1_{4}^{1-} inch pipe. The heat loss is $30,000 \mathrm{~B}$. T. U. per hour ; what length of pipe will be required?

Ans. 230 linear feet.
Location. Radiators should be placed in the coldest part of the room if possible, as under windows or near ontsirle doors. In living rooms it is often desirable to keep the windows free, in which case the radiators may be placed at one side. Circulation coils are run along the outside walls of a room under the
windows. Sombrimes the pasition of the radiatoss is deoded by the newessaty hor tion of the pipe risers, so that a certain amomat of julyment must be nsed in carla sperial rase as to the best arrangoment in suit all requirements.

Systems of Piping. There are three distinct systems of piping known as the "two-pipe system," tha "ont-pipe relief "ystem," and the "ome-pipe eirenit system," with various modiftcations of adll.

Foig. fi shows the atamgement of piping and radiatoms in the twopipesstem. The steam main leads from the top of the boiler and the bathehes are ramied along moar the basement ceiling ; risers are taken off from the supuly bramehes and carried up to the

Fig. 44. ratiators on the different floors, and return pipes are brought down to the return mains, which should be phaced near the basement floor below the water line of the boiler. Where the hmihling is mome that two stories high, ratiators in similar positions on thifirent floms are connected with the same riser, which may run to the highest floor, and a corresponding return drop combecting with each suliator is carred down beside the riser to the basement. Asystem in which the main horizontal returns are brew the water lime of the beiler is sabl to lave a "wet" or "nealed" return. If the returns are overheal and above the water lime, it in called a "dry "retmo. Where the steam is exprsed to extended sufaces of water, as in werhead returns, where the combensation partially fills the pipes, there is likely to be "aching or ${ }^{-}$water hammer" due th the sudden condensation of the steanm at it comes in contact with the cooler water. This is eperially motiecable when steam is first tumed into cold pipes and baliators, and the eondensation is excessive. When dry retmon are used the: pipes should be large, and have a good piteh towarl the Wriler.

In the ratse of araltal returns the only contant between the stoan amd stamdine water is in the vertical returns where the
exposed surfaces are very small (being equal to the sectional area of the pipss) and trouble from water hammer is pratically done away with. Dry returns should be given an incline of at least 1 inch in 10 feet, the drip may be directly

Fig. 45.
 connected as shown in Fig. 44 , but if it is dry, the comnection should bs provided with a siphon loop as indicated in Fig. 45. The loop becomes filled with water and prevents steam from

Fig. 46.
flowing directly into the return. As the condensation eollects in the loop it overflows into the return pipe and is carried away. The return pipes in this case are of course filled with steam above the water, but it is stem which has passed through the ratiators and their return connections, and is therefore at a slightly lower pressure, so that if stean were admitted directly from the

 Imiber is at at lown lewel that the lasement in whirh the returns

It is realily sem that the mothon water in order to math the

 is to brak the sal as the water thows wer the loop, and prevent

Fig. 47.

One-Pipe Relief System. In this system of piping the radiatom lathe latt a simgle eommertion, the stean flowing in and the - ...mbanation draming ont throngh the same pipe. Fig. 47 shows
 main. ats hofore leats from the top of the boiler and is carried (10 in high a print as the hasemment ceiling will allow: it then - Hop- downward with at erame of alout 1 inch in 10 feet and mak… a cirent of the Builliner or a pertion of it.
 alour. as in the 1 wropipessstam, hat in this vase, the comensation
flows back through the same pipe and drains into the retum main near the floor through drip connections which are made at frequent intervals. In a two-story building the bottom of each riser to the second floor is dripped, and in larger buiddings it is customary to drip each riser that has more than one radiator conneeted with it. If the radiators are large and at a considerable distance from the next riser, it is better to make a drip comection for each radiator. When the return main is overhead, the risers should be dripped through siphon loops, but the ends of the branches should make direct eomnection with the returns. This is the reverse of the two-pipe system. In this ease the lowest

Fig. 48.
pressure is at the ends of the mains so that steam introduced into the returns at these points will cause no trouble in the pipes connecting between these and the boiler.

If no stean is allowed to enter the returns, a vacuum will he formed, and there will he no pressure to force the water back to the boiler. A eheck valve should always be placed in the main return near the boiler to prevent the water from flowing ont in case of a vacum being formed suddenly in the pipes.

One-Pipe Circuit System. (See Fig. 48.) In this ease the steam main rises to the highest point of the hasement as before,
amd then with a emsidhathle piteh makes an entire rirenit of the buiding and agian comerets with the boiler helow the water line. Sherle tivers am taken from the top and the eombensation danins hatck daroght the same pipes and is caried along with the flow of stam th the atrame eme of the man, where it is returned to

Fig. 4!.

Fig. 50.
the hoiler. The main is made large and of the same size throughwht its entire lengtl : it must be given a good pitch to insure Gatisfatory results.

One objection to a single-pipe system is that the steam and

Fig. 51. return water are flowing in opposite directions, and the risers most be made of extra large size to prevent any interference. This is wereome in large mildings by carrying a single riser to the attic, large emongh to snpply the entire building ; then branching and rumaing " drops" to the basement. In this system the flow of stem is downward as well ats that of water. This method of piping may be used with [rumb results in two-pipe systems as well. Care must always be baken that mu purkets or low points oceur in any of the lines of pipa. but if for any rason they ramot be avoided they shond be "avefnlly hambed.

Pipe Connections. Figs. $4!$, 50 and 51 show the common methonls of making the commections betwern the supply pipes and
the radiators. Fig. 49 shows a two-pipe connection with a riser; the return is carried down to the main below. Fig. 50 shows a single pipe connection with a basement main and Fig. 51 a single comection with a riser.

Care must always be taken to make the horizontal part of the piping between the radiator and riser as short as possible and to give it a good pitch toward the riser. There are various ways of making these connections especially suited to different conditions,

Fig. 52.
but the examples given serve to show the general principle to be followed.

Figs. 39, 40 and 41 show the common methods of making stem and return comections with circulation coils. The position of the air valve is shown in each case.

Expansion of Pipes. Cold steam pipes expand approximately 1 inch in each 100 feet in length when low pressire steam is turned into them, so that in laying out a system of piping we must arrange it in such a manner that there will be sufficient "spring" or "give" to the pipes to prevent injurious strains. This is done by means of offsets and bends. In the case of larger pipes this simple method will not be suffi ient, and swivel or slip joints must be used, to take up the expansion. The method of making up a swivel joint is shown in Fig. 52.

Any lengthening of the pipe A will be taken up by slight tmang or swivel movements at the points ly and C. A slip joint

 Hoved at the thanges. I aml 1 .

Whan pipes fass thromely thoms or partitums, the work work

Fig. 53.
anjustable flow shere which mily he lengthened or shortened to anform to the thickness of thor or partition. If plan sleeves are Hed. a plate shomld br phaced aromad the pipe where it passes thamest the fore or partition. These are made in two farts so

Fig. 54. that they maty he fut in place after the pipe is homg. A plate of this kime is shown in Fig. 5\%.

Valves. The different styles commonly used for modiator connections are shown in Figs. 5nf, 57 and 5s, and are known as "angle," "offset" and - comer" valves respectively. The first is used when the radiator is at the top of a riser or when the commections are like thene shown in Figs. 49. 50 and 51 : the second is 11-al when the commection between the riser and rarliator is above the Howt, and the thim when the radiator has to be set close in the enrner of a roonn and there is not space for the usmal con-
 supply of dy mema: the rasen for this is planly shown in

Fig. 59. In order for water to flow through the valve it must rise to a height shown by the dotted line, which would half fill the pipes, and cause serions tromble from water hammer. The gate valve shown in Fig. 60 does not have this undesirable feature, as the opening is on a level with the bottom of the pipe.

Air Valves. Valves of various kinds are used for freeing the radiators from air when steam is turned on. Fig. 61 shows simplest form, which is operated by hand.

Fig. 55. Fig. 62 is a type of automatie valve ; it eonsists of a shell, whieh is attached to the radiator. B is a small opening which may be closed by the spindle C which is provided with a eonieal end. D is a strip composed of a layer of iron or steel

Fig. 56.

Fig. 57.

Fig. 58.
and one of hass soldered or brazed together. The action of the valve is as follows; when the radiator is cold and filled with air the valve stands as shown in the ent. When steam is turned on, the air is driven ont through the opening B. As soon as this is expelled and steam strikes the strip D, the two prongrs spring

Fig 59.
apart owing to the unequal expansion of the two metals due to the heat of the steam. This raises the spindle C and closes the opening so that no steam can escape. If air should collect in the valve and the metal strij, become eool it would contract and the spindle would drop and allow the air to escape through B as be-
 -phalles amd is smpposed in catse of a sudden rush of water with the ate th rise amb rbse the opening : this action is somewhat monertain. experetally if the pressure of water fonthanes for some time.
 wh the sime primeiphe. 'The valve shown in
 of vuluanite insteat of a metal strip, and has wo witer thoat.

The value shown in Fig. ift atets on a - omentart different principle. The float $(;$ is made of thin brass, closed at top and hotthm. and is partially filled with wood alcohol. IVhen sterm strikes the float the aboobl is rapnrized. and creates a pressure sufficient to bulge out the ends slightly which raises the epimille and closes the opening B. Fig. (i.) shows a form of so-called : vatumm value." It acts in amilar mamer to those

Fig. 60. alrealy doseribed. but has in addition a ball chook which prevents the air from hoing drawn into the radiator, shond the stean go fown and a bandum be formed. If a partial vacmum exists in the

Fi!.! 11.

Fig. 63.
brilne and rallatoms, the boiling point, and romserpently the
 by the ratiatoms. This methon of operating a hating plant is -ometimes alvonated for spring and fall when less heat is re-

Pipe Sizes. Tho promertioning of the steam pipes in a heatine flant is of the erreatest importamer, and should be varefally whtial ont by mothonls which experience has proved to be correct.

There are several ways of doing this, but for ordinary conditions the following tables have given excellent results in actual praetice. They have been computed from what is known as

Fig. 62.

Fig. 65.

D'Arey's formula, with suitalle corrections made for actual work ing conditions. As the computations are somewhat complicated, only the results will he given here, with full directions for their proper use. The following table gives the flow of ste:m in pounds per minute for pipes of different diameters, and with varying drops in pressure between the supply and discharge ends of the pipe. These quantities are for pipes 100 feet in length; for other lengthis the results must be corrected by the factors given in table XII. As the length of the pipe increases, the friction lecomes greater, and the quantity of steam

Fig. 64. discharged in a given time is diminished.

Table X is computed on the assmption that the drop in pressure between the two ends of the pije equals the initial pressure. If the drop in pressure is less than the initial pressure the
 in the table. but has differeme will be small for pressmes up to \therefore pumbls, and (an be berereded as it is on the side of safety. For hither initial pressures, table NI hats heen prepared. This is to

TABLE X.

$\begin{aligned} & \text { } 1: 4 \\ & \quad \because m_{1} \end{aligned}$	Hrop in l'ressure (Pounds.)								
	$+$	'2	3	1	1\%	2	:	4	5
1	44	(6i)	-	.11	1.1:	1.31	1.66	1.97	2.26
$1^{1}+$.s1	1.16	1.43	1.610	2.0%	2.89	3.02 \|	3.59	4.12
1':	1.06	1.n!	2.84	2.71	2.331	3.92	4.94	5.88	6.75
2	203	4.17	S.11i	S.3!	7.43	8.65	10.9	13.0	14.9
$\because!$	- 29	7.82	1, 3	10.s	13.4	15.6	19.7	2:3.4	26.9
\therefore	s.til	1:3	15.2	17.4	$\because 1.8$	25.4	:32	31.8	43.7
$\therefore{ }^{\prime}$ '	12.9	18.3	$2 \cdot 6$	21.3	(32)	37.9	47.8	56.9	65.3
1	18.1	$2 \% .7$	31.8	36.9	45.8	53.3	(67.2	80.1	91.9
\therefore	32.2	45.7	5xi.i	18.9 .7	81.3	94.7	120	142	163
i	51.7	73.3	90.9	1015	1:31	152	1!2	229	262
7	- 8.7	109	13.5	1.7	$1!4$	226	$2 \mathrm{S5}$	3389	390
s	10	15.4	190	29	274	319	402	478	549
$!$	147	$20!$	2\%	291	831	$43: 2$	5.45	6.49	745
111	1!2	$\because 73$:3:3!	3:3)	457	567	715	85	977
12	30.5	4.4	53:3	62:3	771	S69	11:30	1350	15\%0
1.5	235	761	!1:	1090	1:30	1580	1990	2:370	2720

In ased in eonnection with table X as follows. First find from bhhe A the quantity of steam which will be diseharged through the given diameter of pipe with the assumed drop in pressure ;

TABLE XI.

lrigl in 	Initial Pressure.					
	11	20	30	40	60	80
1	$1 . \therefore 7$	1.49	1.68	1.84	2.13	2.38
i	1.29	1.48	1.66	1.8:3	$\bigcirc .11$	2.36
1	1.24	1.46	1.64	1.80	$\because .08$	2.32
\because	1.21	1.41	1.5:	1.75	$\because .0 \cdot$	2.26
:	1.17	1.37	1.5.)	1.70	1.97	2.20
	1.14	1.34	1.51	1.69	1.92	2.14
\therefore	1.12	1.31	1.47	1.62	1.87	2.09

When look in table XI for the factor corresponding with the asimmed drop and the higher initial pressure to be msed. The Juantity given in table X multiplied by this factor will give the achat capracity of the pipe under the given conditions.

Example-What weight of steam will be discharged through a $3^{\prime \prime}$ pipe, 100 feet long, with an initial pressure of 60 pounds and a drop of 2 pounds?

Looking in table X we find that a $3^{\prime \prime}$ pipe will discharge 25.4 pounds of steam per minute with a 2 -pound drop. Then looking in table XI we find the factor corresponding to 60 pounds initial pressure and a drop of 2 pounds to be 2.02. Then according to the rule given, $25.4 \times 2.02=51.3$ pounds which is the capacity of a $3^{\prime \prime}$ pipe under the assumed conditions.

Sometimes the problem will be presented in the following way : What size of pipe will be required to deliver 80 pounds of steam a distance of 100 feet with an initial pressure of 40 pounds and a drop of 3 pounds?

TABLE XII.'

| Feet. | Factor. | Feet. | Factor. | Feet. | Factor. | Feet | Factor. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 3.16 | 120 | .91 | 275 | .60 | 600 | .40 |
| 20 | 2.24 | 130 | .87 | 300 | .57 | 650 | .39 |
| 30 | 1.82 | 140 | .84 | 325 | .55 | 700 | .37 |
| 40 | 1.58 | 150 | .81 | 350 | .53 | 750 | .36 |
| 50 | 1.41 | 160 | .79 | 375 | .51 | 800 | .35 |
| 60 | 1.29 | 170 | .76 | 400 | .50 | 850 | .34 |
| 70 | 1.20 | 180 | .74 | 425 | .48 | 900 | .39 |
| 80 | 1.12 | 190 | .72 | 450 | .47 | 950 | .32 |
| 90 | 1.05 | 200 | .70 | 475 | .46 | 1,000 | .31 |
| 100 | 1.00 | 225 | .66 | 500 | .45 | | |
| 110 | .95 | 250 | .63 | 550 | .42 | | |

We have seen that the higher the initial pressure with a given drop, the greater will be the quantity of steam discharged; therefore a smaller pipe will be required to deliver 80 pounds of steam at 40 pounds than at 3 pounds initial pressure. From table XI we find that a given pipe will discharge 1.7 times as much steam per minute with a pressure of 40 pounds, and a drop of 3 pounds, as it would with a pressure of 3 pounds, dropping to zero. From this it is evident that if we divide 80 by 1.7 and look in table X under " 3 pounds drop" for the result thus obtained, the size of pipe comesponding will be that required.

$$
80 \div 1.7=47
$$

Pher anmlitums will soldhan lor met with in low-pressure

Fxample W'hat weight of ste:m will be diseharged per

Tahle X, which may lar used for all pressures below 10
 pummlis for the almo combitions. Looking in talle XII, we find theremection factor for 1.0 feet to he .47 . 'Then $18.3 \times .47=$ - 1 pammls. the qumaty of steam which will he diselarged if 1lw jiju is tion feet long.

Examples insolving the nse of tables X, XI amd XII in "ombination are quite common in pratice. The following shows thermanex of calculation:

What size of pipe will he required to meliver 90 pounds of steman ler minnte a distance of son feet. with an initial pressure

 is the ingivalont quantity. We mant look for in table X. We fimt that at" pipr will dischatge ! 11.9 pounds. and a 5 " pipe 163 !mom小. A !!!" piju is mot commonly carried in stock and we shmald poobally mee at 5 " in this case, maless it was decided to use a $l^{\prime \prime}$ and allow a slightly greater dro, in pressure. In ordinary hotatige work with prossmes varying from \because to 5 pounds, a drop wif fromd in lon feed hats heen found to erive satisfactory results.

In emmputine the pipe sizes for a heating system by the
 "ath lamalt sumataly so the following table has been prepared fon fally मa, in low-pressure work.
A. mox direct luating systems. and especially those in s.hmilhmors. an matre "1] of looth ratiators and eirculation coils,
an efficieney of $300 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. has been taken for direct radiation of whatever variety, no distinction being make between the different kinds. This gives a slightly larger pipe than is necessary for cast iron radiators, but it is probably offset hy bends in the pipes, and in any ease gives a slight factor of safety. We find from a steam table that the "latent heat" of steam at 20 pounds above a vacuum, (which eorresponds to 5 pounds gage-pressure) i, $954+\mathrm{B} . \mathrm{T} . \mathrm{U}$. , which means that for every pound of steam condensed in a radiator $95 \pm \mathrm{B}$. T. U. are given off for warming the air of the room. If a radiator has an efficiency of 300 B . T. U., then each square foot of surface will condense $300 \div 95 t=314$ pounds of steam per hour, so that we may asiume in round numbers a condensation of $\frac{1}{3}$ of a pound of steam per hour for each square foot of direct radiation, when computing the sizes of steam pipes in low-pressure heating. 'Table XIII has been calenlated on this assumption, and gives the square feet, of heating surface

TABLE XIII.
Length of pipe 100 feet.

which different sizes of pipe will supply, with drops in pressure of $\frac{1}{4}$ and ${\underset{2}{2}}_{1}^{2}$ founds, in each 100 feet of pipe. The former should be used for pressures from 1 to 5 pounds, and the latter may be used for pressures over 5 pounds, under ordinary conditions. The

 tation on the velacity of the steam in the pipes rather thatn on the

 pur sumbl. 'The size given in talile XV' have been fomm suthWhat in most cases, hat the latger sizes, hased on a llow of 10 feet for seond. wixe greater safety amb shomble be more generally Hnal. 'Thes s\% of the limgest riser shombl minally be limited to

 makn the pige exomsively later.

TABLE XIV.
10) Ifaet l'ar secumd Velocity.

TABLE XV.

15 Five fer seromal Verocily.

Site of liper sif. Feet of Rathation.

1	$\because 11$	1	., 10
11	(i)	11	(1)
$1!$	Q 11	1.1	1:3
\because	$1: 311$	$:^{-}$	$\stackrel{10}{ } 10$
\because	[!:1)	$\because!$	- 3111
\because	- ¢! 11	$\because{ }^{-}$	$\because 10$
$\therefore!$	$\because!111$	$\because 1$:111

EXAMPLES FOR PRACTICE.

1. How many foumls of stemm will he lelivered fer minate,

Ans. $7 . \because \because$ gemmds.

of steam per minute with an initial pressure of 3 pounds and a drep of $\frac{1}{4}$ pound; the length of the pipe leing 50 feet. Ans. $4^{\prime \prime}$.
3. Compute the size of pipe required to supply 10,000 square feet of direct radiation, (assume $\frac{1}{3}$ of a pound of steam per square foot per hour) where the distance to the boiler house is 300 feet and the pressure carried is 10 pounds ; allowing a drop in pressure of 4 pouinds.

Ans. $5^{\prime \prime}$. (This is slightly larger than is required, while a $4^{\prime \prime}$ is much too smadl.)

TABLE XVI.

Dia. of Steam Pipe.	Dia. of Dry Return.	Dia. of Sealed Return.
1	1	$\frac{3}{4}$
$1 \frac{1}{4}$	1	1
12	$1 \frac{1}{4}$	1
9^{2}	$1{ }_{2}^{1}$	$1 \frac{1}{4}$
21	2^{-1}	$1 \frac{1}{2}$
3^{2}	2.1	2
$3!$	\bigcirc	\bigcirc
4^{-}	3	21
5	3	21
6	8.1	3
7	$3{ }_{2}^{1}$	3
8	4^{2}	31
9	5	$3 \underline{1}$
10	5	4
12	6	5

Returns. The size of return pipes is usually a matter of eustom and judgment rather than computation. It is a common role among steam fitters to make the returns one size smaller than the corresponding steam pipes. This is a good rule for the smaller sizes, but gives a larger return than is necessary for the larger sizes of pipe. Table XVI gives different sizes of stean pipes

Fig. 66. with the eorresponding diameters for dry and sealed returns.
＇The Kenth of ran aml momber of turns in a return pipe fomhl he moted amd any monsal comlitions posided for．Where the rombermation is diseharged thomeh a tap into a lower pres－

 amb these simes may be used for the combertions with the mains or rinems．

Rymare Fert of Ranliation．
Strilll．

1110 ： 01	？＂
3010 小r	＂
や゙1い！！	$11^{\prime \prime}$
！ 1 \％to 1．80	1！＂

SNGBE PIRE CONNEOTON．

10 t1 $\because 1$	1
It 110	$1{ }^{1 /}$
	1！＂
8116130	$\because "$

Boiler Connections．The steam main should be commected to the rear mozale，if a tobular boiler is merl，as the boiling of the water is less vindell at this point and dryer stean will be
 that perkets for the accumulation of eomdensation will be avoided． Fite did stows a good pusition for the valve．

The return combertion is made thomgh the hlow－off pipe and bombl be atranerd so that the boiler can be blown off withont

 in plan a gool amamement for these commetions．

Blow－Off Tank．Where the blow－of pipe commeets with a －WW some moans mast be proviled for coling the water or the
 thaneh the drain pipes will start the joints and canse leaks．For this ratom it is anstomaty to pass the water through a blow－off tank．I form of wronght ion tank is shawn in Fig．68．It
consists of a receiver supported on east-iron cradles. The tank ordinarily stands nearly full of cold water.

The pipe from the boiler enters above the water line, and the sewer connection leads from near the bottom as shown. A vapor pipe is carried from the top of the tank above the roof of the building. When water from the boiler is blown into the tank

Fig. 67.
cold water from the bottom flows into the sewer and the steam is carried off through the vapor pipe. The equalizing pipe is to prevent any siphon action which might draw the water ont of the tank after a flow was once started. As only a part of the water is blown out of a boiler at one time the blow-off tank can be of a comparatively small size. A tank $24^{\prime \prime} \times 48^{\prime \prime}$ should be large

Fig. 68.
enough for boilers up to 48 inches in diameter and one $36^{\prime \prime}$ $\times 72^{\prime \prime}$ shonld care for a boiler 72 inches in diameter. If smaller quantities of water are blown off at a time smaller tanks can be used. The sizes given above are sullicient for batteries of 2 or more boilers, as one boiler can be blown off and the water allowed to eool before a second one is blown off. Cast iron tanks are often used in place of wronght iron and these may be sunken in the ground if desired.

EXAMINATION PAPER.

HEATING AND VENTILATION
PART I.

HEATING AND VENTILATION.

Instructions to the Student. Vlane your namm amd full admerss at tho

 paper lihe the sample previomsly sem youmay be ased. Siler completing the work ahl :lal sign the following stalement.

I herely corlify lhat lle dhowe work is entirely my own.
(signed)

1. What advantare does imblect steam heating have over direct heating? What adrantages over furnace heating?

2 . What are the cances of heat lose from a buiding?
? Why is hot water especially adapted to the waming of小wellings"
t. What proportion of carbonic acid gas is foumd in outfour air mader ordinary comditions?
\therefore. 1 room in the N . F. comer of a milding is 18^{\prime} spmate ant 11^{\prime} high: there are \bar{i} single windows, each $3^{\prime} \times 10^{\prime}$ in size. The walls aro of brick $12^{\prime \prime}$ in thickness. With an inside temperature of 70 degress what will be the heat loss per hour in zero Weatler? \quad Ans. 21,447 P, T. U.
(i. State four important points to be noted in the care of a fırmatre?

- A grammar schom midding has i rooms, one in each
 The walls are of woolen eonstrmetion and the wimbows make up ${ }_{3}^{1}$ of the total exposed smface. The hasement and attic are wam. How mamy pemads of coal will be required per hour for Buth hatines and ventilation in zero weather if 8000 B . T . U. are

s. What two distinct types of furnares are used! What

(1) What is mant hy the effiriency of a fmomace? What

11. What are the principal pats of a furnace? State briotly dhe nse of earh.
12. I hrick honse $20^{\prime} \times 40^{\prime}$ has 3 stories, each 10^{\prime} hight.

The walls are $12^{\prime \prime}$ in thichness and $\frac{1}{t}$ the total exposed wall is taken up by windows, which are double. The basement is warm, but the attic is cold. The house is to be warmed to 70 degrees when it is ten degrees below zero outside. How many square feet of grate surface will he required, assuming usual efficiencies of coal and furnace?

Ans. 8.5 square feet.
12. A high school is to be provided with tubular boilers. What H. P. will be required for waming and ventilation in zero weather if there are 600 occupants, and the heat loss through walls and windows is $1,500,000$ В. T. U. per hour?

Ans. 114.8
13. What are the three rssential parts of any heating system?
14. Is direct steam heating adapted to the warming of schoolhouses and hospitals? Give the reasons for your answer.
15. The heat loss from at dwelling house is $280,000 \mathrm{~B} . \mathrm{T} . \mathrm{U}$. per hour. It is to be heated with direct steam by a type of boiler in which the ratio of heating surface to grate surface is 28. What will be the most efficient rate of combustion, and how many square feet of grate surface will be required?

Aus. 7 pounds. is sq. feet.
16. 'What is the use of a blow-off tank? Show liy a sketch how the connections are made.
17. Low are the sizes of single pipe risers computed?
18. What weight of stam will be discharged per hour through a $6^{\prime \prime}$ pipe 300^{\prime} long with an initial presure of 10 pounds and a drop of $\underset{4}{3}$ pound in its entire length ! \quad ans. 6.5 .6 pounds.
19. What is an air valve? Upon what principles does it work?
20. What size of steam pipe will be required to discharge 2400 pounds of stem per hour a distance of 900^{\prime}, with an initial pressure of sixty pounds and a drop in pressure of 5 pomats? Ans. :3, diat.
21. What oljection is there to a single pipe riser system? How is this sometimes overcome in large buiklings?
2.2. What patterns of valves shoulil he used for radiators? What conditions of construction mast be observed in making the comections between the radiator and riser?

 low presimmestam: Ins. I! ! P Cect.
$\because t . W$ hat ate meant hy "wet" amb "dry" returns? Which is the better, aml why:
$\therefore \therefore$ UnW mang linear for of 1 " lipe are ropnired to give wif the samue ammant of heat as a rast irom ratiator having 125 -ghatre feet of suface:

Ans. 215 feet.
\because. What threr stistems of piping are commonly used in

\because - What is a " bamph rail?" What is a "trombone coil?" In what cases wonld fou use a trombone eoil instead of a brameh roil:
\therefore What is meant hy the eflicioney ol a ratiator" (ive
 (ail.
 wather. What size ol ast iron radiator would be required to wam the rown when it is twenty degrees helow zemo?

Ans. 128 square feet.
31). Where wonld yon plate the dimet ratiation in a sehoolroom?

HEATING AND VENTILATION

PARTII

INSTRUCTION PAPER

AMERICAN SCHOOL OF CORRESPONDENCE [ohartered ny the commonwealth of masbachechetth]

BOSTON, MASSACHUSETTS
U. S.A.

Priepared by
Charif： L ．Mumbard，M．E．， いだ

HEATING AND VENTILATION.

INDIRECT STEACI HEATING.

Types of Heaters. Various forms of indireet radiators have been shown in Figs. 8, 9, 14 and 15 of Part I. A hot-water radiator may be used for steam but a steam radiator camot always be used for loot water as it must be expecially designed to produce a continuous flow of water through it from top to bottom. Figs. 1 and

Fig. 1.
2 show the outside and the intrior construction of a eommon pattern of indirect radiator designed especially for steam. The arrows in Fig. 2 indicate the path of the stean through the

Fig. 2.
radiator which is supplied at the right while the return connection is at the left. The air valve in this case should be comnected in the end of the last section near the return.
Λ very efficient form of radiator ant one that is especially adapted to the watming of large volumes of air as in sehoolhouse

Fis. :
 - farial nipplas.

A why dibeden form of imfined leater may be made up of
 1untu. 1 luater lika that - homer in fier. is is khown :

 - -ticternal." that is. if the bijn in almonate rows are

stacks and Casings. It lam whe...1l? furoll shaterl that a

Fig. 4. amplan of than with hatir rasings are shmon in Figs. 6 and 7 of

 1.akno ajort in (and it is mansialy to make mpairs. Large stacks

supported on light wrought iron tee hars. Where a single stack supplies several flues or registers the comnections between these and the wam-air chamber are mate in the same manner as abreaty described for furnace heating. When galvanizerl iron casings are used the heater is supported hy hangers from the floor above. Fig. 6 shows the method of hanging a heater from a wooden

Fig. 5.
floor. If the floor is of fireproof construction the hangers may pass up through the bnickwork and the emts he provided with nuts and large washers or plates ; or they can be clamped to the iron beams which cary the floor. Where lorick casings are used, the heaters are supported upon pieces of pipe or light I-beams huilt into the walls.

Dampers. The general arrangement of a galvanized iron casing

Fig. ${ }^{\circ}$. and mixing damper is shown in Fig. 7. The rold-air duct is hromght along the basement ceiling from the inlet window ant commects with the coll-air chamber bencath the heater. The entering air passes up between the sections and rises through the register above, as shown by the arows. Whan the mixing dampere is in its lowest position all air rewhing the rexister must pass through the heater, lant if the damper is rased to the position shown, part of the air will pass by withont onger through the heater and the mixture entering through the register will be at a lower temperature thatu bofore. By changing the pesition of the damper the proportions of warm and cold air delivered to the

 'The whertion the this form of damper is that there is a tempency

Fig. 7.
for the air to antwe the ram hofore it is flowonghy mixed, that is. at stam of watm anm will rise thromgh mum half of the register whike colld air enters thromsh the other. This is especially tme if

Fig. 8.
 shows a similar heator and mixine dampror, with brick casing. (.ohl air is admitten to the large chamber below the heater and
rises through the sections to the register as before. The action ot the mixing damper is the same as ahready described. Several flnes or registers may be comnected with a stack of this form, each connection having its own mixing damper.

The arrangement shown in Fig .9 is somewhat different and overcomes the objection noted in comnection with Fig. 7 by sub-

Fig. 9.
stituting another. The mixing damper in this case is placed at the other end of the heater. When it is in its highest position all of the air must pass through the heater before reaching the register, but when partially lowered a part of the air passes over the heater and the result is a mixture of cold and warm air, in proportions depending upon the position of the damper. As the layer of warm air in this case is below the cold air, it tends to rise through it, and a more thorough mixture is obtained than is pos. sible with the damper shown in Fig. 8. One quite serious objection however to this form of damper is illustrated in Fig. 10. When the damper is nearly closed so that the greater part of the air.

Fig. 10. enters above the heater, it has a teudency to fall between the sections, as shown by the arows, and becoming heated rises again, so that it is impossible to deliver air to a rom below a certain temperature. This peculiar action increases as the quantity of air admitted below the heater is diminished. When the inlet register is placed in the wall at some distance above the floor, as in sehoolhonse work, a thorongh mixture of air can be obtained by placing the heater so that the current of warm air will pass up the front of the flue and be discharged into the room through the

 amb the wht air ly vaight amons. 'The two coments pass up
 revister the wam air temle lo bise ame the coll atir to fall, with Whe realt of a more of las ramplay mixture as shown.

It is wfond de-imalde whan drom at times when rentilation

Fig. 11.

 amt sem, hat hy raving the damper, the suply will be taken
from outside. Special care should be taken to make all mixing dampers tight against air leakage, else their advantages will be lost. They should work easily and close tightly against flanges covered with felt. They may be operated from the rooms above by means of chains passing over guide pulleys; special attachments should be provided for holding in any desired position.

Size of Heaters. The efficiency of an indirect heater depends upon its form, the difference in temperature between the steam and the smrounding air, and the velocity with which the air passes over the heater. Under ordinary conditions in dwellinghouse work, a good form of indirect radiator will give off about 2 B. T. U. per square foot per hour for each degree difference in temperature. Assuming a steam pressure of 2 pounds and an outside temperature of zero we should have a difference in tem-

Fig. 1:.
perature of about 220 degrees, which under the conditions stated would give an efficiency of $220 \times 2=440 \mathrm{l}$. T. U. per hour for each square foot of radiation. By making a similar computation for 10 degrees below zero we find the efficiency to be 460 . In the same maimer we may calculate the efficiency for varying conditions of steam pressure and outside temperature. In the case of sehoollomses amd similar hidings where large volumes of air are warmed to a moderate temperature a somewhat higher efficiency is ohtanced due to the increased velocity of the air over the heaters. Where efficiencies of 440 and then are used for dwellings, we may substitute 600 and 620 for schoolhouses. This corresponds approximately to 2.7 B . 'T. U. per square foot per hour for a differene of 1 degree between the air and steam.

The principles involved in indirect steam heating are similar

 las hy ramlurtion thomsh walls imd wimdows. The method of
 of air th the suphlied to the romb. In the case of a sehootroom or hall. Where the atr quathtity is larg as compared with the ex["mal wall aml window sulfor wr shomlal poced as follows:
 thonerl walls aml wimhoss. and to this alll the B. T. U. required
 uf the mations. An rxample will makn this clear.

Haw many square feet of miment matiation will be required to Warm and ventilate as shoolromm in zero weather, where the hat los he amblation throngh walls and windows is 36000 13. 'T'. I' amb the air supply is 100,000 cubhe feat per hour? By the methods given mader "Heat for Ventilation" we have

$$
\frac{100.000 \times 70}{55}=127,272=
$$

13. 'T. I'. required for ventilation.
$\therefore 2.000+127,272=168,272 \mathrm{~B} . \mathrm{T} . \mathrm{U} .=$ the total heat requivel. :mot this in turn divided ly buliators momer these comlitions) gives 272 square feet of surface 1.4 plired.

In the ans. of a hwolling-louse the eonditions are somewhat Whatrol. for a fomm having a comparatively large expostre will

 of hat to the fanm. it womld have to be raised to an excessively

 (angt ereater than that regnimel for dimet heating. So for this
 atul maltiply the mall ly 1.5 .

 dwelling homs.

To obtain the rarliating surface for buildings of this class, we compute the total heat required for warming and ventilation as in the ease of schoolhouses, and divide this sum ly the efficiencies given for dwellings, that is 440 for zero weather and 460 for 10 degrees below.

Example. A hospital ward requires 50,000 enbic feet of air per hour for ventilation, and the heat loss by conduction through walls, ete. is $100,000 \mathrm{~B}$. T. U. per hour. How many square feet of indirect radiation will be required to warm the ward in zero weather.

$$
\begin{gathered}
(50,000 \times 70) \div 55=63,636 \mathrm{~B} . \mathrm{T} . \text { U. for ventilation; then, } \\
\frac{63,636+100,000}{440}=372+\text { square feet. }
\end{gathered}
$$

EXAMPLES FOR PRACTICE.

1. A school room having 40 pupils is to be warmed and ventilated when it is 10 degrees helow zero. If the heat loss by conduction is 30,000 B. T. U. per hour and the air supply is to be 40 culbic feet per minute per pupil, how many square feet of indireet radiation will be required?

Ans. 273.
2. A contagious ward in a hospital has 10 beds, requiring 6,000 eubic feet of air each, per hour. The heat loss by concluction in zero weather is $80,000 \mathrm{~B}$. 'T. U. How many square feet of indirect radiation will be required? Ans. 355.
3. 'The heat loss from a sitting room is $11,250 \mathrm{~B}$. T. U. per hour in zero weather. How many square feet of indirect radiation will be required to warm it?

Ans. 75.
Warm=Air Flues. 'The required size of the warm-air flue between the heater and the register, depends first upon the difference in temperature between the air in the flue and that of the room, and second, rpon the height of the flue. In dwellings, hospitals, etc., where the conditions are practically constant, it is enstomary to allow 2 square inches area for each square foot of radiation when the room is on the first floor, and $1 \frac{1}{2}$ square inehes when it is on the seeond floor.

In sehoothonse work it is more usual to calculate the size of flue from an assmmed veloeity of air flow through it. This will vary greatly according to the outside temperature and the prevailing

 Luilimer.

$$
\begin{aligned}
& \text { iml .. |on }
\end{aligned}
$$

 san with her mened when the atmenthere is datmp.

Haviner almmed thers velocitios and knowing the nmmber of
 "all th lisidn this ynamtity he the assmmed relocity, to obtain the

 retairal flate atral"
 shond he phaced in the floses for throtting the air supply when

Cold-Air Ducts. The coll-ain dnets suphlying heaters shonld he flumal in a simiks mamer th that deserihed for fmonace heatime. The air inlet shomla be on the morth or west side of the
 of haine a lame fomak line or duet with julets on two or more
 at: fomb whla bate inlot windows and dacts comecting with the
 ind.t wiml... in this rak shmbl he povided with eherk valves
 is stuma in lere l:
 the flon on the aniline. The front is sheped as shown and is (1)

 and a - wh win in thromsh the "per hem which is fastened
to the netting by means of small eopper wi sut iron wire．The checks allow the air to flow inwand hat clow wheris there is any tendency for the current to reverve．

The area of the cold－air duet for any heater－londid butunt three－fourths the total area of the wam ain ducts lea ling from it．

A common rule for dwelliner lobses and similar work is to allow $1 \frac{1}{2}$ equare inches of area for earch sunare foot of radiating surface．The inlet window，hould be protided with some form of damper or slide． outside of which should be placed a wire grating．backed by a netting of about $\frac{3}{3}$ inch mesh．

Vent Flues．In dwelling houses rent flues are often omitted and the frequent open－ ing of doors and leak－ age are depended upon to carry away the impure air．A well designed strstem of warming should

Fig． 18. provide some means for discharge ventilation．expecially for hath anct thitet woms．and also for living rooms where liofio ate humell int the eveninge． The sizes of flues may be made the reverot of ithe warm－air flues． that is． 1_{2} s square inches area ler square font of indirect maka－ tion for rooms on the fros flom and－－－unare juches for those on the second．This is hecallee the relnoity uif if will de－ bend upon the height of flue and will thentene ine areater from the firet floser．The flues shouh ine juine l tretior in the attic and then carried through the rond where a rentiontile home－hmmet be proviled．especially llesignol to berp wht timain ank－town．A goon forn is shown in Fir． 14.
 open into an unfinished attic and depending upun leakate throusi
the rond to＂atr alwat the fonl atit．＇The fow of air throwg the

For sehoothense work wn may assume aterage veloeities through the vent llues as follows：

End ．．	2心0	\cdots	．
3rd ．	こロ1	\cdots	．

Where the sizes are bisied on these velocitios it is well to

Fig． 1.4. granal atrainst down dialts by plac－ ings an aspiating eroil in the flace． A single row of pipes acoss the flae as shown in Fig． 16 is msually sufli－ cient for this purpose．The slant height of the heater should be about twice the depth of the the so that the areabetween the pipes shatl equal the free altea of the floe．
large rent flars of this kind shomb always be provided with dam－ pers for closing at night and for regalation during strong winds． sommetimes it is desired to mose a given quantity of air through a the which is alrearly in pare．

Table I shown what veloritios may be obtamed through Hutes of different heights for varing difforences in temperature between the outside air and that in tho Inte．

Example．－It is desired to diselatge 1800 enthe fert of air
 heright of 30 fert．If the eftionerne of an aspatang coil is 400 B．I＇．L＇．how many square fort of smfa will le reduired to move this amomat of air when the temperatme of the room is 70° and the chtside temperature is 80 ？
$1300 \div t=305$ fort per mimute $=$ velocity throngh the flue．Looking in table 1 and following along the line oppo－
site a 30 -foot flue we find that to obtain this velocity there must be a difference of 30 degrees between the air in the flue and the external air. If the outside temperature is 60 degrees then the air in the flue must be raised to $60+30=90$ degrees. The air

TABLE I.

Height of Feet.	Excess of Temperature of Air in Flue above that of External Air.					
	5°	10°	15°	20°	30°	50°
5	55	76	94	109	134	167
10	77	108	133	153	188	242
15	94	133	162	188	230	297
20	108	153	188	217	$\because 65$	342
25	121	171	210	$24:$	297	383
30	133	188	230	265	325	419
35	143	203	248	$\underline{286}$	351	453
40	153	217	265	306	375	484
45	162	230	282	3.5	398	514
50	171	242	$\because 97$	342	419	541
60	188	$\stackrel{24}{ }$	325	373	461	594

of the room being at 70 degrees, a rise of 20 degrees is necessary, so the problem resolves itself into the following - What amount of heating surface, having an enciency of 400 B . T. U. is neces-

Fig. 15.
sary to raise 1300 cubic feet of air per minute through 20 degrees? 1300 cubic feet per minute $=1800 \times 60=78,000$ per hour,
 haかい
amt this dividol hy hom＝illate feet of heating surface mylited．

Fin． 16.

EXAMPLES FOR PRACTICE．

1．A school romn on the 别 floor hats 50 phpils which are to $h_{\text {P }}$ fumished with 30 enhie fret of air juer mimute each．What will lox the forpired areas in spuate feet of the smply and vent flues： Ans．Suply 3.7 十．Vent 6.8 十
\therefore What size of heator will he reguired in a vent flue 40 foet high aml with all area of $\overline{5}$ splate feet，to enable it to dis－ Whare 15,50 mbis fert prom minte，when the ontside temperature

Ans． 11.7 square feet．
Registers．Remisters are malle of dat iron and bonze，in a great variety of sizen amf putterns．The miversal finish for cast

 turam\} in aratian or larizontal pusition, thas opening or closing therergister＂：B^{\prime}＂is the iron bonder，＂（＂the register box of tin

are usually set in cast iron borders, one of which is shown in Fig. 18 , while wall registers may be screwed directly to wooten borders or frames to correspond with the finish of the room. Wall registers should be provided with pull cords for opening and closing from the floor; these are shown in Fig. 19. The plain lattice pattern shown in Fig. 20 is the best for schoolhouse work as it has a comparatively free opening for air flow and is pleasing and simple in design. More elaborate patterns are used for

Fig. 17. fine dwelling-house work. Registers with shut-off valves are used for air inlets while the plain register faces without the valves are placed in the vent openings. The vent flues are usually

Fig. 18.
gathered together in the attic and a single damper may be used to shut off the whole: nomber at once. Flat or round wire gratings of open pattem are often used in place of register fates. The grill or solid part of a recgister face usmally takes up about $\frac{1}{3}$ of the area, hence in computing the size wemmst allow for this by multiplying the rerpired "net area" loy 1.5 to obtain the "total" or. "over all" area.

For example. suppere we have a flue 10 inches in witth and

Wish to has at regristep having a from area of 200 stpare inehes, What will he the mpuised height of the register? $200 \times 1.5=300$ square inches wheh is the total ateateduited, then $300 \div 10=30$, Which is the regnimed hoight aml we shonlal use a $10^{\prime \prime} \times 30^{\prime \prime}$ regrister. When at register is spokent of as a $10^{\prime \prime} \times 30^{\prime \prime}$ or $\left.10^{\prime \prime} \backslash \quad \ddot{0}\right)^{\prime \prime}$. cte. the elimensions of the lattiod opering is meant, and bot the outside dimensinns of the whole wegister. The free opening shombl have the simme area as the flue with which it

(anntreti. In kosigning new work one should provide himself
 patterns and sizes are costly. Fig. ©1 shows the method of Whaing grosamue chook values back of the vent register faces (t) prevent down drafts. the same as described for fresh-air inlets.

Pipe Connections. The tworpije system with dry or sealed retums is 1 ionl in imbirect heating. 'The conditions to be met are pratically the same as in limet heating, the only difference being that the matiators are at the basemment exiling instead of on the thoors above. The exact methor of making the pipe connections will depend somewhat "pon existing comditions, but the
general method shown in Fig. 22 may le used as a guide with modifications to suit any speeial case. The ends of all supply mains should be dripped, and the horizontal returns should be sealed if possible.

Pipe Sizes. The tables alrealy given for the proportioning of pipe sizes can be used for indirect systems. The following table has been computed for an efficiency of 640 B . 'T. U. per square foot of surface per hour, which corresponds to a condensa-

Fig. 21.
tion of $\frac{2}{3}$ of a pound of steam. This is twice that allowed for: direct radiation in table XIII. of Part I., so that we can consider 1 square foot of indirect surface as equal to 2 of direct in computing pipe sizes.

As the indirect heaters are placed in the basement, care must be taken that the bottom of the radiator does not come too near the water line of the boiler, or the condensation will not flow back properly; this distance should not be less than 2 feet under ordinary conditions. If mucli less than this, the pipes should be made extra large so there may be little or no drop in pressure

Direct-Indirect teating. 'The gemeral form of a directindirect radiator his beon shown in loigs. 10 amel 11 of l'art I. Anothere form where dhe air is atmitter to the ratiator through the

Fis. ※2.

 register in the aif duct, the maliator "an be converted into the
 from the remm isnatan of from the omt-ille. It is chatomary to
 that callowl for in alo: (an- of direct luathog.

TABLE II.

Size ofPipe.	Square Feet of Indirect Radiation which will be Supplied with		
	${ }^{1}$ Pound Drop in 200 Feet.	1 Pound Drop in 100 Feet.	Pound Drop in 100 Feet.
1	28	40	57
11	51	72	105
$1{ }^{1}$	67	95	170
2	185	262	375
21	335	475	675
3	540	775	1105
31	812	1160	1645
4	1140	1625	2310
5	2030	2900	4110
6	3260	4660	6600
7	4830	6900	9810
8	6800	9720	13860

CARE AND MIANAGEMENT OF STEAM HEATING BOILERS.
Special directions are usually supplied by the maker for each kind of boiler, or for those which are to be managed in any peculiar way. The following general direetions apply to all makes, and may be used regardless of the type of boiler employed.

Before starting the fire see that the boiler contains sufficient water. The water line shouk he at about the center of the gage glass.

The smoke pipe and chimney flue should be clean and the draft good.

Build the fire in the usual way, using a quality of coal which is best alapted to the heater. In operating the fire keep the fire-pot full of coal and shake down ant remove all ashes and cinders as often as the state of the fire requires it.

Hot ashes or einders must not be allowed to remain in the ash pit under the grate hars but must be removed at regular intervals to prevent luming out the grate.

To control the fire see that the damper regnlator is properly attached to the draft doors, and the damper; then regulate the draft by weighting the antomatic lever as may be required to
whath the mesessaty stemb pessume for waming. Should the
 from anty wher "amse, the fire should he damperl, and the boiler allowed to cond before aditus wold water.

An empty hailer should merer lo filled when loot. If the watre gets low at amy time but still shows in the grage glass,

Fig. 2:3. mome water should be added hy the means provided for this purpose.
'The safety valve should be lifted orcasionally to see that it is in working order.

If the boiler is used in commertion with a gravity system it should be cleaned each year by filling with pure water and emptying through the blow-off. If it should become foul or dirty it can lhe thoroughly cleansed ly adding a few pounds of censtic soda and allowing it to stand for a day amd then emptying and thoroughly rinsing.

J)uring the smmer montlis it is recommended that the Water he drawn off from the system, and that air valves and anfoty values he premed to permit the heater to dry out and to rematinso.
(roml wishlts are howern oldanded by filling the heater full of watwe, drivins off the air hy boiling slowly, and allowing it to fematn in l!is (") (olition matil meded in the fall. The water should then ho: drawn off and fresh water added.
'Tho heatiner surfaes of the boiler shomld be kept clean and fum from athes and som by means of a brosh made especially for this pmpers.

Chonlal any of the pooms fail to heat, examine the steam values at the ratiators. If a twopipu system both valves at
each radiator must be opened or closed at the same time as required. See that the air valves are in working condition.

If the building is to be moccupied in cold weather draw all the water out of the system by opening the blow-off pipe at the boiler and all steam and air valves at the radiators.

HOT WATER HEATERS.

Types. Hot water heaters tiffer from steam boilers principally in the omission of the reservoir or space for steam above the heating surface. The steam boiler might answer as a heater for hot water, but the large capacity left for the steam would tend to make its operation slow and rather unsatisfactory, although the

Fig. 24.
same type of boiler is sometimes used for both steam and hot water. The passages in a hot water heater need not extend so directly from bottom to top as in a steam boiler, since the problem of providing for the free liberation of the steam bubbles does not have to be considered. In general, the heat from the furmace should strike the surfuces in such a manner as to increase the natural circulation ; this may be accomplished to a certain extent by arranging the heating surface so that a large proportion of the direct heat will be absorbed near the top of the heater. Practically the boilers for low-pressure steam and for hot water differ from each other very little as to the character of the heating-surface, so that the methods alrearly given for computing the size of grate surface, horsepower, etc., under the head of steam boilers can be used with satisfactory results in the case of hot water heaters. It is sometimes staterl that owing to the greater difference in temperature between the furmaer gases and the water in a hot water heater, as compared with steam, that the heating surface will be more efficient and that a smaller heater ean be used;

While this is fome to a cortan extent difternt anthorities anree
 it, amb the gencmal proprotions of the hater shomblat be calculated
 Water heater made ne of stals or sedions simila to the sectional ste:an larilar shown in l'art I : the siza (:an le inereased in the same way ly adding more stabs. A difforent fom is shown in Fig. : L . This is mate of cast iron but is not a sectional boiler.

Fig. 25.
It hats mo horizontal Hues for the asher amd soot to collect in and a greater part of the hrating surfare is direetly expused to the hoteret patt of the fire. Fiog. 27 shans amothor fown of heater similar in frimeighe to the one just deseriberl. The space between the ontar and inner shells shmombing the furnare is filled with Water ablat alse the aross pipes direatly wer the firm and the drum
 of the: heater and the retam remmants at the lowest print.

The wrdany homizomal and vertieal talmar boilers with varions modifirations are masel to phite an extent fom hot water
heating and are well arlapted to this class of work, especially in the case of large buiklings.

Antomatic regulators are often userl for the purpose of main-

Fig. 26.
taming a constant temperatmer of the water. They are constrncted in different ways-some depemp mon the expansion of a metal pipe or rod at different temperatures, and others upon the vapor-

 comanomi hy mans of datas with the daft doors of the fumace, athl suranato the draft as rognived to maintain an even temperattur of the water in the heatom. Fig. 2 es shows one of the first Wind. . A" is a matal mollaterd in the low pipe from the heater, and is so conmected with the valve " b " that when the water

Fig. 27.
 sallo aml anlmits wator fomm the stret pressure throngh the pipes
 of a mhdore diaphatran whill is formol down by the water pressure and rarins with it fla low whirh operates the dampers as
 drops. the rod contrats and value "Ij" closes, shatting off the
pressure from the chamber "E." A spring is provided to throw the lever back to its original position and the water above the diaphragm is forced out through the pet cock "(i" whieh is kept slightly open all of the time.

DIRECT HOT WATER HEATING.

A hot water system is similar in construction and operation to one designed for steam, except the hot rater flows throngh the pipes, giving up its heat hy conduction to the coils and rarliators, which in turn transfer it to the air of the room by conduction and radiation.

The flow through the system is produced solely by the difference in weight of the water in the supply and return pipes, due to the difference in temperature. When water is heated it expands, and thus a given volume becomes lighter and tends to rise, and the eooler water flows in to take its place ; if the application of heat is kept up the circulation thus produced is continnous. The velocity of flow depends upon the difference in temperature between the supply and retme, and the height of radiator above the boiler. The

Fig. 28. horizontal distance of the radiator from the boiler is also an important factor.

Types of Radiating Surface. (ast iron matiators and circulation coils are used for hot water as well as for steam. Inot water radiators differ from steam madiators pincipally in having a horizontal passage at the top as well as at the botom. This construction is necessary in order to draw off the air which

Fig. 2! lation of steann, amd in some raspuras arr supcrior to the welinstry pattorn.
" ${ }^{\prime \prime}$ her lom shown in Fig. $2: 9$ is mate with in opening at the top for the entranee of Watfor allal at the bottom for its diselatrger, thus insuring a smply of hot water at the top atml of rolder water at lhe bottom.
some loot watcr radiators arremade with a coross-partition warangel that all water enterimg basses at once to the top, from which it maly take any pascagy twand the outhet. Fig. 30 is the mone conmmon form of ranliator, anml is matle with continuous

Fig. 30

 pombed unm for making the hot aml lighter water pass to the
top, and the colder water sink to the hottom and flow off through the return. Hot water radiators are usually tapped and plagged so that the pipe connections can be mate either at the top or at the bottom. This is shown in Fig. 31.

Efficiency of Radiators. The efficiency of a hot water radiator depends entirely upon the temperature at which the water is circulated. The best practical results are obtained with the water leaving the boiler at a maximum temperature of about 180 degrees in zero weather and retmrning at about 160 degrees; this gives an average temperature of 170 in the radiators. Variations may be made however to suit the existing conditions of outside temperature. We have seen that an average cast iron radiator gives off about 1.i) B. 'T. U. per hour per square foot of surface per degree difference in temperature between the shrounding air and the radiator, when working under ordinary conditions, and this holds true whether filled with steam or water.

If we assume an average temperature of 170
degrees for the radiators then the difference will be $170-70=$ 100 degrees. and this multiplied hy $1.5=150$ which may be taken as the efficiency of a hot water matiator under the above conditions, which represent good average practice.

This calls for a water radiator about 1.5 times as large as a steam radiator to heat a given room under the same comblitions. This is common paratice although some engineers multiply by the factor 1.6 which allows for a lower temperature of the water. Water laving the boiler at 170 degrees should return at about 150 ; the drop in temperature should not ordinarily exced 20 degrees.

System of Piping. A system of hot water heating should prodnce a perfect cirenlation of water from the heater to the radiating surface, and thence lack to the hater through the returns. The system of piping usmally employed for hot water heating is
 have an inclination moward from the heater; the returns are
 the hather, amb commer with it at the lowest proint. The flow ghen or risers are takno from the tops of the maths and may
 drup ate commenol with the return matus in a smilar mamer. In this sistem serat care mast be taken to prothe a maty equal
 resedre its full suply of water. It will always be fommd that the pincipal armont of heated watm will take the path of least resistamee aml that a small obstrumtion or imegnlatity in the jiping is

Fig. B2.
sumbernt to intorfere meatly with the amome of heat received in

Expansion Tark. Virery sistrm for hot water heating

 manns be: shat off from the beiled. When water is heated, it

fixpmoman tanks afte namally made of heary gatvanized iron
of one of the forms shown in Figs. 3:3 and 34, the latter being used where the head room is limited. The comection from the heating system enters the bottom of the tank and an open vent pipe is taken from the top. An overflow connected with a sink or drain pipe should he provided. Connections should be made with the water supply both at the boiler and at the expansion tank, the former to be used when first filling the system, as by this means all air is driven from the bottom upward and is discharged through the vent at the expansion tank.

Fig. 33. Water that is added afterward may be supplied directly to the expansion tank where the water line can be noted in the gage glass. A ball cock is often arranged to keep the water line in the tank at a constant level.

Fig. 34.
The size of the expansion tank depends upon the volume of water contained in the system, and the temperature to which it is heated. The following rule for computing the capacity of the tank may be used with satisfactory results.

The square feet of radiation divided by 40 equals the required capacity of the tank in gallons.

Overhead Distribution. This system of piping is shoman in

 Which the radiators ane rommertorl. In important allantage in commertion with this sestem is that ther air rises at once to the
 are mot byariret wh the radiators.

Pipe Connections. There are varions methods of romecting the ratiatoms with the milns aml risers. Fig. 3 , shows a

 Wator tellde to then to the highest print, the radiatoms on the lower

 top of the ratiator.

The connections shown in Figs. 39 and 40 are used with the overhead system shown in Fig. 35.

Where the comection is of the form shown at the left in Fig. 35, the cooler water from the radiators is discharged into the supply pipe again so that the water fumished to the radiator:: on

Fig. 36.

Fig. 37.
the lower floors is at a lower temperature, and the amount of heating surface most be eorrespondingly increased to make up for this loss.

For example.-If in the case of Fig. 35 we assume the water to leave the heater at 180 degrees and return at 160 we

Fig. 38.

Fig. 39.
shall have a drop in temperature of 10 degrees on each floor, that is, the water will enter the rudiator on the second floor at 180 degrees and leave it at 170 and will enter the radiator on the first floor at 170 and leave it at 160 . The average temperatures will be 175 and 165 respectively. The effieieney in the furst
(ance will he $17.5 — 0=10.0$ and $10.5 \times 1.5=157$. In the second
 the tire thon will have to be latere than that on the second floor in the ratio of 15 T to $1 \mathrm{l}^{\circ}$, in order to do the same work.

Where the rallators diseharer into a separate return as in the case of Fig. $\because:=$ or thase at the right in Fig. : 3 , we may assume the temprature of the water

Fig. 10. to be the same on all floors and give (he matiators ath equal efliciency.

In a dwelling house of two staries no differtace would be made in the sizes of radiators on the two thooss, hat in the ease of a tall office building eorrections would neeessamily lae made as drseribed.

Where direulation coils are used they slomld lo of a form which will temt to proluce a flow of water thromer them. Figs. 41, ta and f: show different ways of making up ant (onnereting these conls. In Figss. 41 and 43 the suply pipes may be either drops or risers, and in the latter

Fig. 41.
 suply drop as alywa by the dotted lines.

Combination Systems. Sommtims the boiter and piping are amparem for eithorestan or hot water, sine the dumand for a

The whone of this arranomment is to serome the advantages
of a hot water system for moderate temperatures, and of steam heating for extremely cold weather.

As less radiating surface is required for steam heating, there is an advantage due to the reduction in first cost. 'This is of con-

Fig. 42.
siderable importance, as a heating system must be designed of such dimensions as to be capable of waming a building in the

Fig. 43.
coldest weather, and this involves the expenditure of a considerable amount for radiating surfaces, which are needed only at rare intervals. A combination system of hot water and steam heating requires, first, a heater or boiler which will answer for either pur-

 are alaphed on buth kimbe of heating. These requisements will be met hy using a stoam boilor powided with all the littings required for steam heathas, hat so arramged that the damper regulator may

Fi!s. 44.

Fig. 45.
be closed hy moans of valves when the system is to be used for hot water heating. The ablition of an expansion tamk is requimed, which mant he en arranged that it ean he shat off when the system is used for steam heating. The system of piping

Fig. 4%. shown in Fig. 82 is best adapted for a combination system, although an overhead distribution as shown in Fig. :3: may le used, by shotting off the rent and overflow pipes, and placing air valves on the radiators.

While this system has many advantages in the way of cost over thre complete hot water system, yet the labor of changing from stran to hot wathe will in somb eases be tromblesome, and shomld the commections to the expansion tank not be opened, serions results wonld follow.

Valves and Fittings. (iate valurs shomld always be used in comnertion with lint water piping, although angle valves may
be used at the radiators. There are several patterns of radiator valves made especially for hot water work ; their chief advantage lies in a device for quick closing, usually a quarter or half turn being sufficient to open or close the valve. Two different designs are shown in Figs. 44 and 45 .

It is customary to place a valve in only one comnection as that is sufficient to stop the flow of water through the radiator; a fitting known as a "union ellow" is often employed in place of the second valve. (See Fig. 46.)

Air Valves. The ordinary pet-cock air valve is the most reliable for hot-water radiators, although there are several forms of automatic valves which are clamed to give satisfaction. One of these is shown in Fig. 47. This is similar in construction to a steam trap. As air collects in the chamber, and the water line is lowered, the float drops, and in so doing opens a small valve at the top of the chamber which allows the air to escape. As the water flows in to take its place the float is forcerl upward and the valve is closed.

All radiators which are supplied by risers from below should be pro-

Fig. 47. vided with air valves placed in the top of the last section at the return end. If they are supplied by drops from an overhead system the air will be discharged at the expansion tank and air valves will not be necessary at the radiators.

Fittings. All fittings, such as elloows, tees, ete., should be of the "long turn" patterm. If the common form is used, they should be a size larger than the pipe, bushed down to the proper size. The long turn fittings, however, are proferable.

Pipe Sizes. The size of pipe reguired to supply any given radiator depends upon four comblitions ; first the size of the radiator, secomed its elevation above the boiler, third the length of pipe required to connect it with the boiler, and fourth the difference in
denprature hetwern the silply amd retmon. 'Ther following

If we shomlal take a glati lahe of the form shown in Fig. 48, till it with watro amd hold it in armital position. We womld notice that the water remained pertery yniot : mw if the tame of a lamp
 penmed into the tuhe. wo wonld find that the water was in motion, amd the corent would be in the direction shown ly the arows. While the water in both tuhes was at the same temperature, the two colams were of the same weight and remaimed in whilinginm. If, however, the water in cohmm A is heater, it apands amb becomes

Fig. 48.

Fig. 49.
 falling towarl the lottom of the fathe. The heated water flows arosen the top and into ls where it takes the pare of the cooler Water whieh is settling (1) the buttom. As long at there is a difference in the temprather of the two rollmons this action will

shall have the same illustration in practical form as utilized in hot water heating. (See Fig. 49).

The heat given off by the radiator always insmres a difference in temperature between the columms of water in the supply and return pipes, so that as long as heat is supplied by the furnace the flow of water will continue. The greater the difference in temperature of the water in the two pipes, the greater the difference in weight, and consequently the faster the flow. The greater the height of the radiator above the heater the more rapid the flow, for the difference in weight between two columns 1 foot high and two columns 10 feet high is ten times as great and if there were no friction in the pipes the flow would be directly proportional to the elevation of the raliator above the heater. The quantity of water discharged by a given pipe under constant pressure varies inversely as the length of pipe ; that is. if a pipe 100 feet long will discharge 10 gallons per minute under a given' pressure, it will discharge only half as many gallons if the length is increased to 200 feet, the pressure remaining the same.

As it would be a long process to work out the required size of each pipe for a heating system, the following tables have been prepared, eovering the usual conditions to be met with in praetice.

Table III gives the number of square feet of direct radiation which different sizes of mains will supply for varying lengths of run.

TABLE III.

Size of Pipe.	Square Feet of Radiating Surface.								
	100 ft . Run.	$\begin{array}{\|c} 200 \mathrm{ft} \\ \mathrm{Run} \end{array}$	300 ft . Run	400 ft . Run.	500 ft . Run.	600 ft . Run.	700 ft . Kun.	$\begin{aligned} & 890 \mathrm{ft} . \\ & \text { Run. } \end{aligned}$	$\left\lvert\, \begin{gathered} 1000 \mathrm{ft} . \\ R \mathrm{Run} . \end{gathered}\right.$
1	30								
$11 / 4$	60	50							
11/2	100	75	50						
2	200	150	125	100	75				
$21 / 2$	350	250	200	175	150	125			
3	550	400	300	275	250	225	200	175	150
31/2	850	600	450	400	350	325	300	250	225
4	1200	850	700	600	52.5	475	450	400	350
5		1400	1150	1000	700	850	77.5	725	650
6				1600	1400	1300	1200	1150	1000
7							1706	1600	1500

These quatutities hase heen calronlated an at hasis of 10 feet diteremer in elexation betwom the rentar of tha hater and the
 the sulply atul roturn.

This tabla may be msed for all homizomat matus. For the vertical risers or drops, table $1 \mathrm{~V}^{\prime}$ may be ustal. This has heen computed for the same difternme in temperature amb gives the spuare feet of surfae which diffent sizes of pipe will suphy on the different lloors of a buihline assmming the height of the stories to be 10 bene Whare a single riser is arried to the top of a hulding to supply thembatom on the foms bolow, hy drop piges, we mast tirst are what is called the - anserage elosation of the system" before taking its size from the table. This may be illustrated hy the following diagram, (ser Fig. ino)

In A we hate a riser carried to the thind stony and from therea drop bronght down to supply a batiator on the bist Hoor. The elevation avalable for protucing a the in the riser is only 10 feet, the same ar thome it extomted only to the maliator. The water in the two pipes atore the mathar is prationlly at the same tempreather and therefore in rquilibrimm, amd has no effect on the How of the water in the riser. (Actathly there would be some radiation from the pipes, and the retmita, above the ratiator, would be shightly comber, hom for porquses of ilhstantion this may be
 of the striten would be ol fret (see lis), and on the thind floor 30 feet. ame so wh. The distathe whith the pipe is caried aloove the

 seen that the thew in the math riser depents mpon the elevation of the badians, it is eaty wer that the way in whirh it is distrihated on the different thens mast he considered. For example,
 with the ratiaters as shown than there womld be if they were reverad and the latere one wore placed ypon the first thor.
 the square fore of matiation on wath flom by the elevation above the heater. than adding these protures together and dividing the same
by the total radiation in the whole system. In the case shown in B the average elevation of the system would be

$$
\frac{(100 \times 30)+(50 \times 20)+(10 \times 25)}{100+50+10}=26+\text { feet }
$$

and we must proportion the main riser the same as though the

Fig. 50.
whole radiation were on the second floor. Looking in table IV we find for the second story that a $1 \frac{1}{2}$ inch pipe will supply 140 square feet and a 2 inch pipe 275 . Probably a $1 \frac{1}{2}$ inch pipe would be sufficient.

Although the height of the stories varies in different buildings,

10 fon will the fomm sullicionly aromate for ondinary matice.

TABLE: IV.

INDIRECT HOT WATER HEATING.

Types of Heaters. The heaters for indirect hot water heatius are of the same gemeral form as those used for steam. The haturn shown in Figs. I, 14 and 15 of Part I, are common patterns. 'The "drum pin," Fig. 14, is an excellent form, as the

Fis. 51. method of making the eomections insures a uniform distribution of water through the stack.

Fig. 51 shows a section of good form for water circulation, and alho of goorl depth, whith is a necersaly point in the design of hot water lowitas. 'They shouk not le less than $\mathbf{1 0}$ or $\mathbf{1 2}$ inches for orom resilts. liox eoils of the form given for steam maty alon he nand, providerl the comections for supply and return are matle of goonl size.

Size of Heaters. As indirect hot water heaters are used principally in the warminer of dwelling houses, and in combination with direct ratiation. the masiostmethod is to compute the surfaces requireal for dire m matiation and multiply these results by 1.5 for pine radiators of geon depth. For other forms the factor should
vary from 1.5 to 2 , depending upon the depth and proportion of free area for air flow between the sections.

If it is desired to calculate the reguired surface directly by the thermal unit method, we may allow an efficiency of from 360 to 380 for good types in zero weather.

Flues and Casings. For cleanliness, as well as for obtaining the best results, indirect stacks should he liung at one side of the register or the receiving the warm air, and the cold-air duct should enter beneath the heater at the other side. A space of $\mathbf{1 0}$ inches, and preferably 12 , should be allowed for the warm air above the stack. The top of the casing should pitch upward toward the warm-air outlet at least an inch in its length. A space of from 6 to 8 inches should be allowed for cold air below the stack.

As the amount of air warmed per square foot of heating surface is less than in the case of steam, we may make the flues somewhat smaller as compared with the size of heater. The following proportions may be used under usual conditions: $1 \frac{1}{2}$ square inches per square foot of radiation for the first floor, and $1 \frac{1}{4}$ square inches for the second floor, and $1 \frac{1}{4}$ square inches for the cold-air duct.

Pipe Connections. In hot water indirect work it is not desirable to supply more than 80 to 100 square feet of radiation from a single comection. When the requirements call for larger stacks they should be divided into two or more groups according to the size.

The branches supplying the staeks should pitch upward from the boiler to a point directly over the stack, then drop and make connection with the heater at such a point as the special form in use requires. An air valve slould be placed in the highest point of the pipe just before it drops to the heater. The return should be taken from the bottom of the stack and carried at a lower level hack to the boiler or heater.

Conditions may make it necessary to bring back several separate returns to the heater, but it is better practice to use one large flow main and a single return of the same size, branching to the different stacks as necessiry.

Pipe Sizes. As the difference in elevation between the
stacks and the heater is neressamily small, the pipes shombl be of
 folloning sizes for rons up to loo fort will be fomm ample for ordinary comblions. Some engineres make a pratice of using somewhat smaller piges lat the lamer sizes will in gemeral be foumd more satisfactory.

TABLE V.

Hize of lipe. Suare feet of Indirect Radiation.	
1	15
1	30
11	50
2	100
2	200
$2!$	300
3	400
3.1	600
4	1000

CARE AND MANAGEMENT OF HOT WATER HEATERS.

The dimections given for the care of stem heating boilers apply in andmeal way to hot water heaters as to the methods of caring for the fires and for cleaning and filling the lieater. Only the special point of differener need be considered. Before buikling the fire all the pines aml ralliators most be full of water and the expansion tank shomld be partially fillerl as inticated by the gage glass. Shmold the water in any of the radiators fail to direnlate. sen that the values ate wide open and that the radiator is free from alif. Wiatormat alwas he alded at the expansion tank whan for any raton it is drawn from the system.

The peppired temperather of the water will depend upon the
 the remms confontahly warm. Thermomoters shomble betaced in the ther and return pipes near the heater ats a ernile. Special forms are mand for this prome in which the hall is immersed in

EXHAUST STEAM HEATING.

 of its heat, and if mot combensed or mied for othor purnoses it can
usually be employed for heating without affecting to any great extent the power of the engine.

The systems of steam heating which have been described are those in which the water of condensation flows back into the boiler by gravity; where exhaust steam is used the pressure is much below that of the boiler ant it must be returned either hy a pump or return trap. The exhaust steam is often insufficient to supply the entire heating system and must be supplemented by live steam taken directly from the boiler. This must first pass through a reducing valve in order to reduce the pressme to correspond with that carried in the heating system.

The exhanst steam discharged from non-condensing engines contains from 20 to 30 per cent of water, and considerable oil or greasy matter which hats been employed for lubrication. When the engine is exhausting into the air, the pressure in the exhaust pipe is but slightly above that due to the atmosphere. The effect of passing exhaust steam through the pipes and radiators of a heat-
 ing system is likely to increase the back pressure on the engine and reduce its effective work; this must he offset by raising the boiler pressure or increasing the cut-off of the engine.

An engine does not deliver steam contimonsly but at regulan intervals at the end of each stroke and the amount is likely to vary with the work done since the governor is aljusted to artmit steam in such a quantity as is required to maintain a miform speed. If the work is light, very little steam will he admitted to the engine and for this reason the supuly available for heating may
 livered ly the ehorime In mills the amomat of exhanst steam
 lightias the variation is ereater, esperially if power is also

 steam hating imelad a system of piping of sheh propertions that muly a slight imerease in hatel pressume will be thrown "pon

 wil from the exhamst stemm: a midi whek pressure valve

Fi . m .
arrangel to prevent any sublen increase in bark pressure on the

To prement sudnen ehanges in the bark pressme due to irrecrular supply of stean. the exhanst pipe from the engine is

 with hafle plates or other armatements and seme ats at sepator for remmering the oil from the stam ats it passes thromerh.
 taken that as little resistamer ar prosible is introdured at bends
 [smally the lest pesnlts atre whtained from the system in which
 the rlistributing pipes pun from that perm. and the raliating surfaces suphled ly a duwn-flowine chment of sterm.

Before taking up the matter of piping in detail a few of the more important pieces of apparatus will be describet in a brief way.

Reducing Valves. The action of pressure reducing valves has been taken up quite fully in "Boiler Accessories," and need not be repeated here. When the reduction in pressure is large, as in the case of a combined power and heating plant, the valve may be one or two sizes smaller than the low pressure main into which it discharges. For example -a 5 -inch valve will supply an 8 -inch main, a t-inch a 6-inch main, a 3-inch a 5 -inch main, a $2 \frac{1}{2}$-incha t-inch main, etc.

For the smaller sizes the difference should not be more than one size. All reducing valves should he provided with a valved by-pass for cutting out the valve in case of repairs. The comection is usually made as shown in plan by Fig. 53.

Grease Extractor. As already stated, when exhaust steam is used for heating pur-

DISCHARGE
Fig. 54. poses, it must first he passed through some form of separator for removing the oil. This is usually effected by introducing a series of baffling plates in the path of the steam; the particles of oil striking these are stopperl and thus separated from the steam. The oil drops into a receiver provided for this purpose and is discharged through a trap to the sewer.

In the separator, or extractor, shown in Fig. 5t, the separa-
tion is atomplished he a sember of pates pated in a vertical position in the holy of the separator themgh which the steam must pass. These platers comsist of upright hollow rohmms, with openings at resular interals for the atmission of water and oil,
 a rigraig comser and all of it comes in comtact with the intercepting phates. Which insumes a thomogh separation of the oil and other solit matter from the steam. Jnother form, shown in Fig. \therefore, wives exedlent results and has the advantage of providing an eynalizing chamber for oweroming to some extent, the mequal pressure due to the varying load on the engine. It consists of a

Fig. 5 m .
tank on receiser about + fect in diameter, with heavy boiler iron hrabls slightly ammed to give stiflums. 'Throngh the eenter is a layer of exal-ion (worlen shavings of boug fibne) about 12 inches in thickuesc, supported on an iron grating, with a similar grating bain ostr the thp to hold it in place. The steam enters the space
 The , il is ranght by the exordnion which ant he renewed from time (1) thas ats it beeomes satmaterl. 'Tlue wil amd water which
 Live stram maty la atmittol thromish a medncing valve for supplementing the exhanst when neressant.

Back Pressure Valve. 'This is a fom of relirf valve which in phacel in the onthame exhanat pipe to prevent the pressure in the hrating from from rising above a given pant. Its office is the reverse of the rerluring vah. which supplies more steam when
the pressure becomes too low. The form shown in Fig. 56 is designed for a vertical pipe. The valve proper consists of two dises of unequal area, the eombined area of which equals that of the pipe. The force tending to open the valve is that due to the steam pressure aeting on an area equal to the difference in area between the two dises; it is clear from the cut that the pressure acting on the larger dise tends to open the valve while the pressure on the smaller acts in the opposite direction. The valve stem is connected by a link and erank arm with a spindle upon which is a

Fig. 56. lever and weight outside. As the valve opens the weight is raised so that by placing it in different positions on the lever

Fig. 57. arm the valve will open at any desired pressure.

Fig. 57 shows a different type in which a spring is used instead of a weight. This valve has a single dise moving in a vertical direction. The valve stem is in the form of a piston or dash-pot which prevents a too sudden movement and makes it more quiet in its action. The disc is held on its seat against the steam pressure by a lever attached to the spring as shown. When the pressure of the steam on the underside becomes greater than the tension of the spring, the valve lifts and allows the steam to escape. The tension of the spring can be varied by means of the adjusting screw at its upper end.

A back pressure valve is simply a low pressure safety valve designed with a specially large opening for the passage of steam throngh it. They are also made for horizontal pipes as well as vertical.

Evhaust Head. 'This is a form of separator pateed at the tup of ath cmthome whanst pipe to prevent the water earried up

 Pher shath on coltoring at the hottom is given a whirling or rotary mantion be the spiral detherons amb the water is thrown outward
 it Hhws inn the shathow trough at the base amd is carried away
 a drain pipe inside the building. The

Fi.. こ心. patsinge of the steam onthoard is shown lyy the arows. Other forms are used in which the water is separated from the ste:m lyy dedlectors which change the direction of the emrents.

Automatic Return Pumps. In - Whanst hating phants the condensation is retmonet to the boilers by means of amm. fonm of return pump. A combined
 in Fige sit is gememally used. This oonsists of a rast or wrought iron tank monntarl an a base in comberion with :A brilar feed pimp. laside of the 1.0\% - at hath lhat anmanal hy means of levers with a valve an : whan fill whint is comncoted with the pump. When

 T."

with the top of the tank for equalizing the pressure, otherwise the steam above the waier would condense and the vacuum thus formed would draw all the water into the tank leaving the returns praetieally empty and thus destroying the condition sought. Sometimes an imlependent regulator or pump governor is used in place of a receiver. One type is shown in Fig. 60. The return

Fig. 59.
main is connected at the upper opening and the pump suction with the lower. A float inside the chamber operates the steam valve shown at the top and the pump works antomatically as in the case just described.

If it is desired to raise the water line the regulator may be elevated to the desired height and connections made as shown in Fig. 61.

Return Traps. The principle of the return trap has been described in "Boiler Aceessories" but its practical form and application will be taken up here. The type shown in Fig. 62 has all

Fig. (in. nodture with the inside of the bowl. Tha pige k wombets through (with an interion pipe oprolitg ne:ar
 () eomberets with aterever into whish all wf the returns are homothe I is a chore valve allowing water to pass through in the diredion shown by the arow. E is a pipe combecting with the boiter below the water line. In is a chock upening toward the mider and k a pipe commeted with the stam main or drom.

The action of the trap, is an follows. As the bowl tills with Water from the reoedver it owormaners the weighted lever and

Fig. © 1.
drops the the britum of the ring. This opens the valve C and
 a higher level the water flww by gravity inte the boiler, through
the pipe E. Water and steam are kept from passing out through D by the elneck A.

When the trap has emptied itself the weight of the ball raises it to the original position, whieh movement closes the valve C and opens the small vent F. The pressure in the bowl heing relieved, water flows in from the receiver through I) until the trap is filled, when the process is repeated. In order to work satisfactorily the trap should be placed at least 3 feet above the water level in the boiler and the pressure in the returns must always be sufficient to raise the water from the receiver to the trap against atmospherie pressure which is theoretically about 1 pound for every -2

Fig. 62. feet in height. In practice there will be more or less friction to overcome, and suitable adjustments must he made for each partieular case. Fig. 64 shows another form acting upon the same

Fig. 63.
principle except in this case the steam valve is operated by a bucket or float inside of the trap. The pipe conneetions are practically the same as with the trap just deseribed.

Return traps are more commonly nised in smaller plants

Damper Regulators. Every heating and erory power plant Shothl la powided with atmomatio means for rlosing the dampers When the stam pressum rathes a rertain puint, abl for opening them aram when the presime drops. Thereare varions regulators

Fig. 64.
donghen for this purpose a simple form of whirh is shown in Fig. (i).

Stran at brilur prossure is admitted beneath a diaphragm whirh is hatamed hy a weighted bever. When the pressure rises (1) a coptain perint it mases the laror slightly and opens a valve whirh admits water momer presstre abowe a diaphragm locater mar the smbupipe. This ation fores down a lever eomnected lö chatur with the damper and clowes. When the stean pressure frops. the water value is drwed, and the different parts of the
apparatus take their original positions. Another form similar in principle is shown in Fig. 66. In this case a piston is opurated by the water pressure instead of a diaphatg. In both types the pressures at which the damper shall open and close are regrgated by suitable adjustments of the weights upon the levers.

Pipe Connections. The method of making the pipe commotions in any particular case will depent mpon the gelterl aramse-

Fig. 65.
ment of the apparatus and the various conditions. Fig. 67 illustrates the general principles to be followed, and by suitable changes may be used as a guide in the design of new systems.

Steam first passes from the boilers into a large drum or header; from this a main, provided with a shntoff valre, is taken as shown; one branch is carried to the engines while another is connected with the heating system through a reducing valve laving a by-pass and cut-ont valves. The exhanst from the engines connects with the large main over the boilers at a point just alonve

the steam drum. The branch at the right is carried outboard through a back pressure valve which may le set to carry any desired pressure on the system. The other branch at the left passes through an oil separator into the heating system. The connections between the mains and radiators are made in the usual way and the main return is carried back to the return pump near the floor. A false water line or seal is obtained by elevating

Fig. 66.
the pump regulator as already described. An equalizing or balance pipe comects the top of the regulator with the low pressure heating main and high pressure is supplied to the pump as shown.

A sight feed lubricator should he phaced in this pipe above the antomatic valve, and a valved by-pass should be phaced aromed the regulator for rumning the pump in case of accident or repairs. The oil separator should be drained through a special oil trap to a

 flo momatmon, shond alwas be duplieated in a plant

 |:ala of the whamst stwam ean be utilized for heating
 - mas ln diadnacil into the roturn pipe and be promped in

 - - "mmme of lu:n which would wtherwise be wasted may be - Ta hif wif. The ammertions will depend somewhat upon

 [1].. commanation from the heater should be trapped to th...........

EXAMINATION PAPER.

HEATING AND VENTILATION PART II.

HEATING AND VENTILATION.

Instructions to the Student. Place your name and full address at hhe head of the paper. Work out in full the examples and problems, showing each step in the work. Mark your answers plainly "Ans." Avoid erowding your work as it leads to erors and shows bad taste. Any eheap, light paper like the sample previously sent you may be used. Aftercompleting the work add and sign the following statement.

I hereby certify that the alove work is entirely my own.
(Signed)

1. How would you obtain the sizes of the cold and warmair pipes connecting with indirest heaters in divelling house work?
2. What is an aspirating coil and what is its use ?
3. What efficiencies may be allowed for indirect heaters in school house work? How wouk you compute the size of an indirect heater for a room in a dwelling house?
4. How is the size of a direct-mirect radiator computed?
5. A school room on the fourth floor is to be supplied with 2400 cubic feet of air per mimute. What shoukd be the area of the warm-air supply flue?

Ans. 6 square feet.
6. What is the ehief ohjection to a mixing damper, and how may this he overcome?
7. How many square feet of indirect radiation will be required to warm and rentilate a school room when it is 10 degrees below zero, if the heat loss throngh walls and windows is 42,000 B. T. U., and the air smphly 120,000 enhic feet per hour?

Ans. 349 square feet.
8. What is the differemee in eonstruction between a steam radiator and one designed for hot water? Can the steam radiator be used for hot water? State reasons for answer.
?. Hon maty the piping in a hot water sistem be armaned su that no ait vahes will her repuied on the radiators?
 water radiator? Itow, is this tomputed:
11. How should the pipes ber arated in making the comections with imdiret hot water heatms. Whare shond the air valve be fhated?

1』. Describe briefly one form of grabe extatetor.
18 . What is the othere of a pressure reduciag valve in an exhanst steam heating system?
14. ["pm what prim"iphe does a prap! governor operate?
15. What type of pipe fittings should always he used in hot Water work?
16. How is the water of combensation retmod to the boilers in exhatust steam heating?
17. How matry enhic feet of air per honr will be discharged
 thae has a temperature of so dergrees and the outside air 60 degrees?

Ans. 1:) 4,280 eubic feet.
18. In a loot watter hating system what canses the water to fow thanlog the pipes ame radiatoms? How does the height of the radiator above the beiler effect the fow?

1!1. What peramtion shonk alwasis be taken before starting at fire umler a steam beiler?
20. What is the free opening in sphare feet through a

$\because 1$. Why are leturn pmons or retmon thats neressitry in whathst stean hoatiner fants:
2. What afleinmey may he ohtamed from indirect hot
 mothod of emmputing infire thot water surfare for dwelling house work:'

2:. State hiefly how a return trap operates.
-4. What is the wise of an expansion tank, and what shombld be ito "apmety?

25 . Describe the ation of one form of danper regulator.
26. What is the principal difference between a hot water heater and a steam boiler? What type of heater is le'st arlapterl to the warming of dwelling houses?
27. Upon what four conditions does the size of a pilu to supply any given radiator depend?
28. What is the use of an exhanst heard?
29. A hospital ward recuires 00,000 cubic feet of air per hour for ventilation, and the heat loss through walls and windows is $140,000 \mathrm{~B} . \mathrm{T}$. U. per hour. How many square feet of inrlirect radiation will be required in zero weather?

$$
\text { Ans. } 491 \mathrm{sq} . \mathrm{ft} .
$$

30. For what purpose is a back-pressure valve used?
31. A hospital ward is warmed by direct heat and it is desired to add ventilation by using indirect radiators for warming the air supply. The ward has 20 oceupants. How many square feet of indirect surface will be required when it is 10 degrees below zero, allowing an efficiency of 660?

Ans. 220 sq. ft.
32. A first floor class-room in a ligh schonl had 40 pupits. how many square feet area should the vent flue have?

Ans. $5.8 \mathrm{sq} . \mathrm{ft}$.
33. A private grammar school room having 15 prupils is heated by direct hot water. It is decided to increase the size of boiler and introduce ventilation by means of indirect hot water radiation. How many more square feet of grate surface will be required in the new boiler for zero weather?

Ans. $1.4 \mathrm{sq} . \mathrm{ft}$.

05

HEATING AND VENTILATION.

VACUUM SYSTEMS.

Low Pressure or Vacuum Systems. In the systems of steam heating which have been described up to this point the pressure carried has always been above that of the atmosphere, amd the action of gravity has been depended upon to carry the water of condensation back to the boiler or receiver: the air in the rarliators has been forced out through air valves by the pressure of steam back of it. Methods will now be taken up in whieh the pressure in the heating system is less than the atmosphere and where the circulation through the radiators is produced by suction rather than by pressure. Systems of this kind have sevcral advantages over the ordinary methods of circnlation under pressure. Fisst - no back pressure is prorlaced at the engines when used in connection with exhaust steam, but rather there will be a reduction of pressure due to the partial vacoum existing in the radiators ; second - a complete re-

Fig. 1. moval of air from the coils and radiators so that all portions are steam filled and available for heating purposes; third-complete drainage through the returns, especially those having long horizontal runs, and the absence of water hammer; and fourth the smaller size of retmon pipes necessary. The two systems of this kind in most common use are known as the Webster and Paul systems.

Webster System. This consists primarily of an antomatic outlet valve on each coil and radiator eomnected with some form of suction appanatus such as a promp or ejector. The valve used is shown in sertion in Fig. 1 and replaces the usual hand valve at

the retmon end of the raliatore lt is smilar in constraction to some of the air valves already described, consisting of a rubler or valcanite stem closing against a valve oprening when made to expand hy the presence of steam. When water or air fills the valve the stem contracts and ailows them to be sucked ont as shown hy the arrows. A perforated metal strainer surrounds the stem or expansion piece to prevent dirt and sediment from clogging the valve.

Fig. 2.

Fig. :3.

Fig. : 2 shows the valve, or thermostat as it is called, attached to an ordinary angle valve with the top removed, and Fig. :3 indieates the method of draining the bottoms of risers or the ends of mains.

One special adrantage claimed for this system is that the amount of steam admitted to the radiators may be regulated to suit the requirements of ontside temperature, and this may be done without water logging or hamering, a result impossible to olstain with any other combination of stean heating apparatus. This may be done at will by tosing down on the inlet supply to the desired degree. The result is the admission of a smaller amount of steam to the radiator than it is caleulated to condense nommally. The condensation is removed as fast as formed by the opening of the thermostatic valve.

 1 lise stam atomortion is made thromgh a reducing valve as in
 raik and ratiatus in thr msalal maner but the return valves are

 dimbtares into a "roturne tank" where the air is separated from the watro aml pasces ath throush the vaper pipe at the top. The comblasation then flows intu the feed water heater from which it is antomatically pmonfed hatek into the hoilers. The cold-watere fend -mply is comberted with the retmons tank and a small coldwarre jut is comberod into the suction at the vacumm prmp for increasing the valumm in the heating sestem by the condensation of starn at lhis puill.

Paul System. In this system the surtion is comected with the air vilue instral of the rotmes amb the ranomm is produced
 "whel hark tw a reeriving tank and promed back to the boiler in

Fite. \therefore shms the general method of making the inje commothoms with matiators in this system and Fig. 6 the details of (andmedion at the exhathater.

 the pronne in the ststem amb E Lime cheek valves. The advan-
 aif fomm the varions ratlittors aml pifes which constitutes the

Where exhaust steam is used for heating, the ratiators should be somewhat increased in size owing to the lower temperature of

Fig. 5.
the steam. It is common practice to add from 20 to 30 per cent. to the sizes required for low pressure live steam.

FORCI:D BI.AST.

 ditions of omsind tomperature amd wime atetom. 'This gives it a
 attomed to :

anl makes it esperially ahtuterl whe ventilation athl warming of
 thertro. Wh.. wher latere anl drinite air quantities are required.

Exhaust Method. This consists in drawing the air ont of a buiding and providing for the heat thus earried away by placing steam coils under windows or in other positions where the invand leakage is supposed to be the greatest. When this method is used a partial vacum is created within the building or room and

Fig. 7.
all currents and leaks are inward: there is nothing to govern definitely the quality and place of introduction of the air, and it is difficult to provide suitable means for warming it.

Plenum Method. In this case the air is foreed into the building, and its quality, temperature and point of admission are completely mader control. All spaces are filled with air moder a slight pressme and the leakage is ontwarl, thus preventing the drawing of fonl air into the room from any outside somree. But above all, ample opportunity is given for properly warming the

Form of Heating Surface. I rommon form of heater for

foreal blant heating is shown in Fig. 16. Part I. This consists of soriomal cationh base with lomp of wrought-iron pipe connected

headers and passes up one side of the loops, then adross the top and down on the other side where the condensation is taken off through the return drip, which is separated from the inlet by a partition. These heaters are made up in sections of $2-2$ and 4 rows of pipes each. The height varies from 3.2 to 9 fect and the width from 3 feet to 7 feet in the standard sizes. They are usmally made up of 1 -inch pipe although $1 \frac{1}{4}$ inch is commonly used in the larger sizes. In Fig. 7 is shown a similar heater. 'This is arranged for supplying exhaust to a portion of the sections and live steam to the remainder. 'The division between the two sections is shown where the metal is broken away. Fig. 8 shows still

FRONT VIEW

side view

Fig. 9.
another form ; in this case all of the loops are mate of pratioally the same length by the special form of constraction shown. This is claimed to prevent the short circniting of stean through the shorter loops which causes the onter pipes to remain cold.

This form of heater is usually encased in a sheret steel housing as shown, but may be suphorted on a foundation between brick walls if desired.

Fig. ! shows a special form of heater partienlarly adapted to ventilating work where the air does not have to be raised above

 hrial fommations. Heaturs of this form arr mallatly mate to

Efficiency of Heaters. Tho oliorinney of the heaters used in
 frmproature of the raterimer air, its velority betwere the pipes,

111 draigning a heator of this kind. ware monst be takeat that

 vorathatiose work.

ence in temperature between the air and steam is less. Increasing the steam pressure in the heater (and consequently its temperature) increases both the final temperature of the air and the efticiency of the heater. Table I has been prepared from tifferent tests and may be used as a guide in computing probable results under ordinary working conditions. In this table it is assumed that the air enters the heater at a temperature of 10 degrees below zero and passes between the pipes with a velocity of 800 feet per minate. Column 1 gives the number of rows of pipe in the heater and columns 2, 3 and 4 the fimal temperature of the air for different steam pressures. Cohmms 5, 6 and 7 give the corresponding efficiency of the heater.

For example. Air passing through a heater 10 pipes deep and carrying 20 pounds pressure will be raised to a temperature of 90 degrees and the heater will have an effieiency of 1650 B.'T.U. per square foot of surface per hour. When the air is taken in at zero we may add 10 to the final temperatures given in the table, althongh theoretically it wond be slightly less: in this case we must take the efficiency corresponding to the final temperature after the 10 degress have been added.

TABLE I.

Temp. of entering air 10° below zero.
Velocity of air between the pipes 800 feet per minute.

Rows of pipe deep.	Temp. to which the air will he Efficiency of the heating surface in B.T.U., raised from 10° below 0 . per square foot per hour.					
	Steam Pressure in Heater			Steam Pressure in Heater.		
	5 lbs.	20 lbs .	60 lbs .	5 lbs.	20 lbs .	60 lbs .
t	8, 0	85	45	1600	1800	2000
6	50	万.)	6.)	1600	1 S\%0	2000
8	(i.)	70	85	1.500	16.j)	18.50
10	80	(1)	10.)	1500	16.50	18.50
12	95	10.)	125	1500	16.50	1850
$1 \pm$	10.5	120	140	1400	1500	1700
16	100	1:30	1.50	1400	1500	1700
18	$1: 0$	140	160	18,00	1400	$11 ; 00$
20	140	1\%0	170	$1: 300$	1 ± 00	1600

Bample. llow man! splatre lent of maliation will be re-

 the lotal area of the beatme front and how many rows of pipes mons: it hase:
ladoring burk to omr formala for heat reguited for ventilaLimb, We halse

Raferinge to tahbe I we fime that for the ahove eonditions a heather 10 pipes deep is reguirel, and that ant efticienry of 1500
 surfare rempired. $\frac{600,000}{60}=10.000$ cultic of air per minute, and
 heatere. If we asomme of of the total heater front to be free for

 of allather the followime tahbe is giver. 'The stambard heaters marle he difform manfatomers vary mewhat, but the dimen-
 Ah- - blater liot of hathing shrian in a single mo of pipes of the
 atrathotworl the jijnes.

TABLE 11.

Width of Section.	Height of Pipes.	Square Feet of ${ }_{\text {Surface. }} \begin{aligned} & \text { S }\end{aligned}$	Free Area through Heater in sq. F't.
3 feet	3 ft .6 inches	20	4.2
3 feet	$\pm \mathrm{ft} .0$ inches	22	4.8
3 feet	4 ft .6 inches	25	5.4
3 feet	5 ft .0 inches	28	6.0
\pm feet	$\pm \mathrm{ft} .6$ inches	34	7.2
4 feet	5 ft .0 inches	38	8.0
4 feet	i) ft .6 inches	42	8.8
\pm feet	6 ft .0 inches	45	9.6
5 feet	5 ft .6 inches	52	11.0
5 feet	6 ft .0 inches	57	12:0
5 feet	6 ft .6 inches	62	13.0
5 feet	$7 \mathrm{ft}$.0 inches	67	14.0
6 feet	6 ft .6 inches	75	15.6
6 feet	$7 \mathrm{ft}$.0 inches	81	16.8
6 feet	7 ft .6 inches	87	18.0
6 feet	8 ft .0 inches	92	19.2
7 feet	7 ft .6 inches	98	21.0
7 feet	8 ft .0 inches	108	22.4
7 feet	8 ft .6 inches	109	23.8
7 feet	9 ft .0 inches	116	25.2

In calculating the total height of the heater add 1 foot for the base.

These sections are made up of 1 -inch pipe except the last, or 7 -foot sections, which are made of 1_{4}^{1}-inch pipe.

Using this table in commection with the example just given we should look in the last column for a section having a free area of 12.5 square feet; here we find that a 5 feet $\times 6$ feet - 6 inches section has a free opening of 13 square feet and a radiating surface of 62 square feet. The conditions call for 10 rows of pipes and 10 人 $62=620$ square feet of radiating surface which is slightly less than called for, but which would be near enough for all patctical purposes.

ENAMPIE FOR PRACTICE

The endrabl mothom of emmputing the size of heater for any griven bulhing is thr same as in the case ol indirect heating: Firat whan the B.'T. C . maired for ventilation and to that add the heat loss thromsh walls. ete., and divide the resnlt by the

Fxample- In ambience hall is to be povided with 400,000 whin fext wi air fer lomar. The heat lows thongh watls, etc., is
 of loitro. and law many rows of pipe deep must it be, with 20

becomes, to what temperature must this air be ratised to carry in 250,000 B.'T.U. additional for waming?

We have leamed that 1 B.'T.U. will raise 55 cubie feet of air 1 degree. Then 250,000 B.'T.U. would raise $250,900 \times 5$. cubic feet of air 1 degree.

$$
\frac{250.000 \times 5.5}{400,000}=3 t+
$$

The air in this case must be raised to $70+34=104$ degrees to provide for both ventilation and warming. Referring to table I we find that a heater 12 pipes deep will be required and that the corresponding efficiency of the heater will be 1650 B.'T.U.

Then $\frac{759090}{1650}=460$ square feet of surface required.
Pipe Connections. In the heater shown in Fig. 16, Part I, all of the sections take their supply from a common header ; the supply pipe comecting with the top, and the return being taken from the lower division at the end, as shown.

In Fig. 7 the base is divided into two parts, one for live steam and the other for exhaust. The supply pipes comnect with the upper compartments and the drips are taken off as shown. Separate traps should be provided for the two pressures.

The comnections in Fig. 8 are similar to those just described except the supply and return headers, or bases, are drained through separate pipes and traps; there being a slight difference in pressure between the two which is likely to interfere with the proper dranage if bronght into the same one. This heater is arranged to take exhaust steam but has a connection for feeding in live stean through a reducing valve if desired; the whole heater being under one pressme.

It is often desimable to have a heater comected up in sections so that one or more can be slat off in mild weather when the whole capacity of the heater is not required. In this case each section has separate comections with valves in supply and return. Fig. 10 shows an extellent method of making the comections for a heater msing both live and exhamst stean as in this way any momber of sections may be used for exhanst from one to the entire heater by a proper adjustment of the valves.

Fis. 10.

 homb:

Pipe Sizes. The pron sizes mandien in this system of hat-

are usually tapped at the factory for high or low pressure as desired and these sizes may le followed in making the pipe connections.

The sizes marked on Fig. 9 may be used for all ordinary work where the pressure rims from 5 to 20 pounds; for pressures above that the supply connections may be reduced one size.

Fans and Blowers. The term fall is commonly applied to any form of apparatus for moving air in which revolving blades or

Fig. 11.
propellers are used, while the word blower is used only in those cases where the wheel or propeller is enclosed in a casing.

Referring to Part I, Fig. 17 shows the ustal form of fall or wheel used in the common type of hower and Fig. 11 represents the usial form of a regular steel phate hower with full honsing. Where a hower is comnected witio a heater having a steel phate casing it has an inlet only on one side,

 ドin. 12.

 leatri.

Where the height of the fan room is limiterl, a form called the threequarter housing may he used in which the lower part of the casing is replaced by a brick pit below the floor level. Such a construction is shown in Fig. If with a direct-comnected engine. Amother type of fan known as a dise wheel may be used where the air passages are large and the resistance to air flow is small, but for ordinay ventilating work the encased blower is to be preferred. The cone fan shown in Fig. 20, Part 1 , is a very efficient

Fig. 14.
form and may be nsed in a wall opening as there shown or made double and enclosed in a steel plate housing.

Fan Capacity. The volume of air which a given fan will deliver depends upon the speed at which it is rum and the friction or resistance through the beater and air ways. The pressure referred to in connection with a fan is that in the discharge outlet and represents the force which drives the air throngh the ducts and flues. The greater the pressure with a given resistance in the pipes the greater will be the volume of air delivered. and the greater the resistance, the greater the pressure required to deliver a given quantity.

Fan wheels of the same mamufacture are manally made with a constant ratio between the diameter and width, although sperial
 data on the ation of fans is based on the resulte of tests, and
 imathly worat:
(1) The whme of air delimend varies dirortl! as the sperd If the fom. that is. domblans the momber of revolations dombles Whe rolumb of at welivered.
(\because) The pressum varies as the stume of the sperd, for Nomphe if the speed is dombled the pressume is increased $\because \because \because=1$ times. cte.

Thn whue of a kmowledge of these relations may he ilhnstated hy the following example.
-uppore for aty reason it was desired to domble the volume of air Neliwored he a certain fan. At lirst thonght we might小ubl. What the same fan and rmit twice as fast: lat when we
 womlal have tw la inmoased os times, and it wonld probably be

 diamerer of the propeller whorl is meant, but if wo sily an 80 or 1101-inh fan we meath the height of casing in inchers.

It han heen fomm in pratioe that fans of the lhower type

 "hatin" manirel. If an metrie motor is used multiply the horse-

emergency or unlooked-for conditions which may arise. In the case of a steam engine the steam pressure may be raised to meet any special requirements but a motor can only give out the original power for which it was designed.

TABLE III.

Nominal Size of Fan. Height of Inches.	Diameter of Fan Wheel in nches.	Width of Housing in luches.	$\begin{aligned} & \text { Ordinary } \\ & \text { Speed Giving } \\ & \text { Sounce Pres } \\ & \text { sure. } \end{aligned}$	$\begin{aligned} & \text { Cubic Feet of Air } \\ & \text { Delivered per } \\ & \text { Minute. } \end{aligned}$	Horse Power of Engine to Drive th Fan.
30	18	9	870	1000	1
40	24	12	580	1600	1
50	30	15	46.5	2600	1
60	36	18	390	4500	2
70	42	21	33:3	6000	21
80	48	24	293	8000	$\because 1$
90	54	28	269	11000	4
100	60	32	23:	12500	4
120	72	43	195	21500	7
140	84	48	167	$28: 00$	9
160	96	48	147	31800	10
	108	$5 t$	130	40400	13:
	120	60	117	51000	16

Fan Engines. A simple, quiet rumning engine is desirable for use in comection with a fan or blower. They may be either horizontal or vertical and for schoolhouse and similar work should be provided with large cylinters so that the required power may be developed without carrying a boiler pressure much above 30 pounds. In some cases cylinders of such size are used that a boiler pressure of 12 or 15 pounds is sufficient. The quantity of stoam whieh an engine consumes is of minor importance as the exhanst can be turned into the coils and used for heating purposes. If space allows, the engine should always be belted to the fan. Where it is direct-comnected, as in Fig. 14 , there is likely to be trouble from noise, as any slight loosencss on pomming in the engine will be commmaicated to the air ducts and the somm will be earried to the rooms above. Figs. 15 and 16 show common forms of fan engines. The lattor is repecially ardaptorl th this fur-

Motors. Flecotric motors are esperially mapted for use in

Fig. 15.
eonnection with fans. They are easily controlled by a switch and starting hox or rerglator. The motor maty be directly connected
to the fan shaft or it may be belted. Fig. 18 shows a fan with direct-comected motor.

Area of Ducts and Flues. With the blower type of fan the size of the main ducts may be based on a velociy of 1200 to 1500 feet per minute, the branches on a velocity of 1000 to 1200 feet per minute, and as low as 600 to 800 feet when the pipes are small. Flue

Fig. 16.
velocities of 500 to $\bar{\sigma} 00$ feet per minute maty be used although the lower velocity is preferable. The size of the inlet register should be sueh that the velocity of the entring air will not exceed about 300 feet per minute. 'The velority hetween the intet windows and the lian or heater should mot eveced about soo feet.

 is used for the larem sims:
lawntating dampers shomhi he plared in the hamehes leading S

Fins. 17.

Factory Heating. The appliation of fomed hast for the

 1-inth swand pine in the heator. (On this lasis, in fartory parafire with all of the aif taken form ont of doors, there are gemmally

 maximmar. for foet of fipe. The heaters in table Il may be
changed to linear feet of 1 inch pipe hy moltiplying the mambers in celumn three (square feet of surfaces) hy thres.

EXAMPLES FOR PRACTICE.

1. A machine shop 100 feet lomg hy ion fect wide ame ? stories, each 10 feet high, is to be warmed by forced blast using

Fig. 18.
exhanst steam in the hater. The air is to be retmoned to the hater from the building and the whole amonnt contained in the buikling is to pass through the heater avery 1is minntes, what size of hlower will be reguired and what will be the ll.l'. of the engine required to ron it? Ilow many linear fret of 1 inclop pipe should the heater contain?

$$
\lambda_{n s}\left\{\begin{array}{l}
90 \text { inch hlower. } \\
\text { t II.1. engine. } \\
1071 \text { feet of pipe. }
\end{array}\right.
$$

2. Find the size of blower, engine amel hater for a factory

$$
\text { Ans. }\left\{\begin{array}{l}
140 \text { inch hower. } \\
311.1 . \text { engine. } \\
: \geq 00 \text { feet of pipe. }
\end{array}\right.
$$

In maing this method of computation jurtiment most be nsed which eath ouly romb from exprience. The ligures given are for areane combitions of comstration and expestare.

Double Duct System. 'The varying expesures of the rooms of asobul or other halding similaty oreupied require that more ha:at wall le suphied to some than to others. Romms that are on the south sile of the building and exposed to the sma may perhaps be kept perfectly comfortable with a suply of heat that will maintain a tomperature of my 50 or 60 degrees in rooms on the oplusite side of the building which are exposed to high winds and shat
 off from the warmth of the sun.

With a constant and equal air suppiy to each room it is evident that the temperature must be directly proportional to the cooling surfaces and exposure, and that no building of this character ean be properly heated and ventilated if the temperature camot be varied without affeeting the airsupply.

There are two methods of overcoming this ditliculty:
Thr aller artanemment consists in heating the air by means of a pimary enil at or mall the fan to about 90 degrees, or to the minimmon trmperature refuised within the buiding. From the coil it prace to the bases of the varions flues and is there still further heated as required. les secondary or supplementary heaters phated at the have of ach flut.

With the semond and more recent method a single heater is -mplexel and all of the air is leated to the maximum required to
 while the temperature of the other rooms is regnlated by mixing
with the hot air a sufficient volume of cold air at the bases of the different flues. This result is best accomplished by designing a hot blast apparatus so that the air shall be forced, rather than

Fig. 20.
drawn throush the heater, and by poviding a hepats throngh which it may be discharged withont passing acooss the heated pipes. The passage for the eold ath is mathly made atove and

Fin. 21.

pipes. Mixing dampers are phated at the bases of the flates as already described.

EXHAUST VENTILATION.

When air is to be moved agamst a very slight resistance, as in the case of exhatst ventilation, the dise or propellar type of wheel may be used. This is shown in different forms in Figs. 24 , 25 and 26. This type of fan is light in construction, requires but little power at low speeds, and is easily erected. It may be conveniently placed in the attic or upper story of a building, where it may be driven either by a direct or belt-connected electric motor. Fig. 24 shows a fan equipped with a direct-comected motor, and Fig. 27 the general arrangement when a belted motor is uscd. These fans are largely used for the ventilation of toilet and smoking rooms, restaurants, etc.andare usmally momented in a wall opening, as shown in Fig. 27. A dampershould ahways be provided for shutting off the opening when

Fig. 22. the fan is not in use. The fans shown in Figs. 25 and 24 are povided with pulleys for belt commection.

Frans of this kind are often commeterl with the man vent flum of latge buildings, such as sehools, halls, chmehes, theatres, etc., and are especially mhapter for use in connection with

gravity heating systems. They are nsmally 1 m lelectric motors, and as a rule are placed in positions where an engine could

Fig. 24.
not be connected, and also in buildings where steam pressure is not available.

Table IV gives the air delivery per minute against slight resistance, and the proper size of motor for fans of the dise type.

TABLE IV.

Diameter of fan in inches	Revolutions per minute.	Cubic feet of air delivered per minute.	H. P. of Motor.
12	1.000	600	1
18	800	1,500	2
24	500	$\because, 300$	
80	410	3,500	11
: 0^{6}	380	S,700	1.2
42	830	7,500	2
48	2×0	9,900	:
. 24	250	12,500	\because
130	230	16.000	,

IEIECTRIC HEATINCI.

lonkss whombity probluced at a very low cost, it is not conmmerially pate table for heating residenees or lage haidings. The electric heater, howerer, hats guite a wide tield of application in heather small oftices, hathomons, cheotric cans, ete. It is a ambiniblt mothod of waming rooms on eold mornings in late sprimes and eaty fall, when fumate or stem heat is not at hand. It hats the experial alvantage of being instantly available, and

Figer. 25.

Electric Heat and Energy. The eommereial mit for electhaty is on watt for one home, and is rymal to ?. 41 R. T. I'.

as we have learned, is the problact obtained by multiplying a current of 1 ampere by an electro-motive force of 1 volt.

From the above we see that the B. T. U. required per hour for warming, dividedlly 3,410 , will give the Kilowatt-hours necessary for supplying the reguired amomet of heat.

Construction of Electric

 Heaters. Heat is obtained from the electric current by placing a greater or less resistance in its path. Various forms of heaters have been employed. Some of the simplest comsist merely of eoils or loops of iron wire, aranged in parallel rows, so that the current can le passed through as many coils as are needed to provitle the required amount of heat. In other

Fig. 26. forms the heating material is surromber with fire-clay, enamel or asbestos, and in some eases the material itself las heen

Fig. 27.
such as to give considerable resistance to the emrent. A form of electric car heater is shown in Fig. 28. Forms of radiators are shown in Figs. 21, 22 and 23, in Part I.

Comections for Electric Heaters. 'Ther methom wh wiring for wher hemers is asmbially the same as for lights which

 the coment in pasing thomerh the heater from the main to the poturn. dopls in whtare or presure. 'This drop provides the andery which is tramsommed into hatat.

The promete of electra heating is morh the same as that imulver in the nom-gravity retmonstem of stean leating. In that sertem the pressure on the man steam pipes is that of the builer. while that ow the return is mueh less, the reduction in presure ownming in the passige of the stem through the

Fig. 28.
randiatms: Hhe watur of comlensation is recedved into a tank and 1ettmond th the beiler hey a pmo.

In il rystom of rectric heating the main wires mast be suffi-
 brownal the gemamtor and the heater, so that the pressure in them shall $l_{\text {a }}$ sumatantially that in the gremeator. The pressure

 the Eromprato can le eomsidemal the same as the briter in the first ratere. All wif the cirnent which pascos from the man th the retum munt fow throngh the hater and in so doing its pressure or weltatre falls from that of the man to that of the return.

Fronl the tramator shown in Fig. -2! main and return wires
are run the same as in a two-pipe system of stem heating, and these are proportioned to carry the required cmrent withont sensible alrop or loss of pressure. Between these wires are phaced the various heaters, which are arranged so that when electric connection is made they draw the current from the main and discharge it into the return wire. Comnections are made and broken by switches which take the place of valves on steam radiators.

Cost of Electric Heating. The expense of electric heating must in every case be great, muless the electricity ean be supplied

Fig. 29.
at an exreedingly low enst. Estimated on the hasis of present practice, the average transformation into electricity does not account for more than t per cent of the energy in the fuel which is bmoned in the fumare; although moder best combitions 15 per cent has been realized, it wonld not be safe to assmme that in ordinary pactice more than J^{-}per enent conld he transformed into electrical energy. In heating with steam, hot water or hot air, the average amome utilizel will polably be about do pre cent,
so that the expense of elactrical hating in appoximately from 1:2 10 In times ervater than hy these methods.

TEMPERATURE REGULATORS.
The mincipal systems of antomatic temperature control

Fi゙\& : 30.

Fig. :31.
now ill hae comsist of there ersential featmers: First, an air
 stats. Whirh are plaseal in the rooms to bee regrolated; and thime sumerial diaphamen on phmmatic values at the rallators.

small plants and by steam in harger omes: electricity is used in some cases. Fig. 30 shows a form of water compressor. It is similar in principle to a direct-acting stean pmop, in which water umder pressure takes the place of steam. A piston in the npper cylinder compresses the air, which is stored in a reservoir provided for the purpose. When the pressure in the reservoir drops below a certain point, the compressor is started antomatitally, and rontimues to operate until the pressure is brought up to its working standarl.

A thermostat is simply a mechanism for opening ant closing one or more small valves, and is actuated by changes in the temperature of the air in which it is placed. Fig. 31 shows a themostat in which the ralves are operated by the expansion and contraction of the metal strip E. The degree of temperatime at which it acts may be adjusted by throwing the pointer at the bottom one way or the other. Fig. 32 shows the same thermostat with its omamental casing in place. The themostat shown in Fig. 33) operates on a somewhat different principle. It consists of a vessel separated into two chambers ly a metal diaphragm. One of these chambers is partially filled with a licpuid, which will boil at a

Fig. 32. temperature below that desired in the room. The vaper of the licquid prothes comsiderable pressure at the normal temproature
 wore amd "protas the small values in a mammer smatar to that of the metal stap int the ease just deserthed.

 Stom shiles mpat down instead of heme theaded and rmming

 -pate almse the diaphatgim.

In comberting y the systom, small concealed pipes are carried

Fig. 33.
from the air reservoir to the thermostat, which is placed upon an inside wall of the room, and from there to the diaphragm valve at the radiator. When the temperature of the room reaches the maximm peint for which the themostat is sot, its action opens a small valur and allmits air pressure to the diaphragm, thas rlosing "fle the ste:an from the radiator. Whern the temperatme falls, the thermostat arts in the "pposite mamer, and shats off the air pres-
 -mall "xhanst wheh allows the air above the diaphagn to escape.
 steram to the malintor. Thermostats and diaphagms are also

HEATING AND VENTILATION.

Various Classes of Buildings.

The different methods used in heating amd ventilation, together with the manner of computing the varions proportions of the apparatus, having been taken up, the application of these systems to the different clanses of bildings will now lee considered briefly.

School Buildings. For sehool lotildings of small size, the fumace system is simple, convenient and generally effective. Its use is confined as a general rmle to buildings having mot more

Fig. 34.
than eight rooms. For large ones this methon mast generally give way to some form of indirect steam system with one or more boilers, which oecmpy less spare, amb are more easily cared for than a mumber of furnaces scattered abont in different pats of the basement. Like all systems that depent om natmal dimentation, the smplly and removal of air is emsiderably affected by changes in the outside demperature and by winds.

The furnares used are genemally buite of east inom: this material being dmable, and easily mate to pressent large and

 air th pase th the remos．The frex area of the air pastage should

The size of furnace is hased on the amomot of heat lost by maliation amd romblution thomgh walls ant windows phas that
 phantities maty be computed by the usual methots for＂loss of heat ly comblution throngh walls，＂and＂heat required for ventilation．＂With more regular amb skillfalattemance，it is safe （1）as－ume a higher rate of combinstion in sehoollouse heaters than in these nsed for waming residenees．Allowing a maximmm combustion of ti prmats wi roal per home per stare foot of grate， and asoming that 8.000 B ．T．I．per pound are taken up by the air pasime over the fimate，we have $6 \times 8,000=48,000 \mathrm{~B}$ ．T．U．
 divile the total B．＇T．I＇，required for both warming and ventilation hy fr． 0 om，it will give us the neeressary grate smface in square feet． it hat hern fomm in paratere that a furnace with a fire－pot 82 inches in diameter，and having ample heating surface，is capable of heat－
 thos may lo detemmed hy mos already given under furnace and imblimet stram heating．

Thn indiere gravity sexten of stem heating eomes next in oost of installation．（）ne important arlvantage of this system Wror faname latime comes from the ability th plate the heating rats at the hase of the lhese，thus doing away with horizontal rams of ais pipe Wheh are repuimel to some extent in fumace luatines．The wammar curments in the llues are less affected by Vantions in the direetion and fore of the wind where this con－

 manter provimaly despribul．Mixing lampers for regulating the
 （eftativanes of thase dampers will depend largely upon their

leakage by covering the surfaces or flanges against which they close with some form of asbestos felting. Both inlet and outlet gratings should be provided with adjustable dampers. One of the disadvantages of this system is the delivery of all the heat to the room from a single point, and this not always in a position to give the best results. The onter walls are thas left muarmed, except as the heat is diffused throughout the room by air corrents. When there is considerable glass surface, as in most of our modern schoolrooms, draughts and currents of cold air are frequently found along the outside walls.

A very satisfactory arrangement is the use of indirect heaters for warming the air needed for ventilation, and the placing of direct radiation in the rooms for heating purposes. The general construction of the indirect stacks and flues may be the same, but the heating surface can be reduced, as the air in this case must be raised only to 70 or 75 degrees in zero weather; the heat to offset that lost by conduction, etc., through walls and windows being provided by the direct surface. The mixing dampers are also omitted, and the temperature of the room is regulated by opening or closing the steam valves on the direct coils, which may be done either by hand or antomatically. The direct-heating surface, which is best made up of lines of 1_{4}^{1}-inch pipe, should be placed along the outer walls beneath the windows. This supplies heat where most needer, and does away with the tendency to draughts. In mild weather, during the spring and fall, the indirect heaters may prove sufficient for both ventilation and warming.

Where direct radiation is placed in the rooms, the quantity of heat supplied is not affected by varying wind conditions, as is the case in indirect heating. Although the air supply may be reduced at times, the heat quantity is not changed. Direct radiation has the disadrantage of a more or less mosighty appearance, and arehitects and owners often objeet to the ruming of mains or risers through the rooms of the building. Air valves should always be provided with drip connections carried to a sink or dry well in the basement.

When eirculation coils are used, a good method of drainage is to cary separate returns from cach coil to the basemont, and place

the air valves in the drops just below the basement ceiling. A rheck valve should be phaced below the water line in each return.

The fan or blower system for ratilation with direct radiation in the rooms for warming, is considered to be one of the best possible arrangements.

In designing a plant of this kind the main heating voil shonld be of sufficient size to warm the total air supply to 70 or 75 degrees in the coldest weather, and the direct surface should be proportioned for heating the buidding independently of the indirect system. Automatic temperature regulation shond be used in connection with systems of this kind ly phacing pnemmatic valves on the direct radiation. It is astomary to cary from ?, to 8 pounds pressure on the direct system and from 8 to 15 on the main coil depending upon the outside temperature. The foot-wamers, vestibne and office heaters should be placed on a separate line of piping. with separate returns and trap, so that they (an be used independently of the rest of the halding if desired. Where there is a large assembly hall it shonk be armaged so that it may be both warmed and ventilated when the rest of the building is shat off. 'This may be done hy a proper arangement of valves and dampers. When different parts of the system are run on different pressures the roturns from each should discharge through separate traps into a receiver having comection with the atmosphere by means of a vent pipe. Fig. 35 shows a common arangement for the return connections in a combination system of this kind. The different traps diselarge into the vented receiver as shown, and the water is pumped back to the boiler automatically when it rises above a given level in the receiver, a pump governor being used to start and stop the pumps as required.

A water level or seal of suitable height is mantained in the main returns by placing the trap, at the reguired elevation and bringing the returns into it near the bottom; a balance pipe is connected with the top for equalizing the prossure the same as in the case of a promp governor. Sometimes a fan is used with the heating coils placed at the base of the flues, instead of in the rooms. Where this is done the ratiating surface may be reduced abont one-half. This system is less expensive to install, hat has the disadvantage
of remoring the heating surfine from the rohl walls where it is nows mexded.

 mome commonly misel. This appatathe is the simplest of all amble
 and when the fires aro monger meded they may he allowed to (9) ont whthom dimpor of damate to ally pat of the system from frewting.

It is mot wathemersary that the hating aphatas be large emongh whan the emtire hilding at ome time to 70 degress with

 ne:a therese of the servere in the anditorimm, when a portion of the warm air may be thmed into it. When the sorvice ends, the swind tamper is opermed wile and all of the air is diseharged into the smmblathorl romm. 'Ther position of the wam-air registers will depernd sumewhat upen the constrotion of the building, bat it is well to kep them near the omter walls and the colder parts of the form. Latere inlet registers shomld be plated in the flowe near the ehtamer dooms, tostop enhl drafts from blowing up the aisles when the derors are opemed, and alson to be used as fontWalmer.
 latere than is meresimy do momone the froducts of combustion
 [mbert air will wiailne throligh them. The main vent flues should

 winhow sille - h hat a hare of wam air may be delivered in front

the exposed glass. These flues may usmally be mate ? or 4 inches in depth, and shonld extend the entire width of the window. Small rooms, such as vestibules, library, pastor's room, etc., are usually heated with direct radiators. Rooms which are used during the week are often connerted with an independent heater so that they may lee warmed without rumning the large boilers, as would otherwise be neressary.

When a fan is msed it is clesirable, if possible, to deliver the air to the auditorimen throngh a large number of small openings. This is often done by eonstructing a shallow box under each pew, running its entire length, and connecting it with the distributing ducts by means of a pipe from below. The air is delivered at a low velocity throngh a long slot. as shown in Fig. 36.

The warm-air flues in the window sills should be retained but may be made shallower and the air forced in at a high velocity.

Halls. The treatment of a

Fig. 36. large audience hall is similar to that of a chmoh, and is usmally wamed in one of the three wars already described. Where a fan is used the air is commonly dehivered through wall registers phaced in part near the floor and partly at a height of \bar{i} or 8 feet above it. They shouk he mathe of ample size, so that there will be freerlom from draughts. I part of the vents should be placed in the ceiling and the remainder near the floor. All ceiling vents both in haths and churehes should be provided with dampers, having means for holding them in any desired position. If indirect gravity heaters are used, it will genemally be necessary to plate heating eoils in the vont flues for use in milal weather ; but if the fresh air is supplied by means of a fan there will usually be pressure enough in the room to force the air ont withont the aid of other means. When the vent air ways

 "eather, "hen natmal semtation is shagish. The temperature

 inl lhe rahlacist wather.

Theaters. In dexigning heating amd vemtilating systems for
 -reme the hest results. A theater comsists of there parts: the lumly of the honse, of anditorimm: the stage amd dressing-romes
 are manally lomated in eities, and sumommed with other buildings
 Windows with the extemal air: for this reason artiferial moans are
 tion ly means of a fan is the only satisfatomy means of aroompliahing this. It is manally alvisable w ereate a slight exorsiof presime in the ambitorima, in weder that all openings shall allow for the diseharge rather than the inwarl hakage of ail.

Tha arenoral and most aphroved mothorl of air distribution is th forme it intoremed spares bemath the ambitarimm and bateony thoss and allow it to diseharge mpwath thongh small openings ammor the seats. Onr ol the best metherls is throwh chair-legs
 in the flom: in this way the air in deliverod th the romm in small -tmans all a law selority without dafts on emponts. The disWhare ventilation shomd br hargely thromgh reiling vents, and hhis may le assisted if moessary ly the nse of rentilating fans.

 of amimal heat. Which manally increases the thaperatme from if to

filled and thoroughly warmed it becomes more of a question of cooling than one of warming to produce comfort.

Office Buildings. This class of buildings may be satisfactorily warmed by direct steam, hot water, or where ventilation is desired by the fan system. Probably direct steam is used more frequently than any other system for this purpose. Vacuum systems are well adapted to the conditions usually found in this type of building, as most modern office buildings have their own light and power plants, and the exhaust steam ean be thus utilized for heating purposes. The piping may be either single or double. If the former is used it is better to carry a single main riser to the upper story and rum drops to the basement, as by this means the flow of stem and water are in the same direction and moch smaller pipes can be used than would be the case if risers were carried from the basement upward. Special provision must be made for the expansion of the risers or drops in tall buildings. They are usually anchored at the center and, allowed to expand in both directions. The connections with the radiators must not be so rigid as to tause undue strains or lift the radiators from the floor.

It is customary in most cases to make the connections with the end farthest from the riser; this gives a length of horizontal pipe which has a certain amount of spring, and will eare for any vertical movement of the riser which is likely to occur. Forced hot-water circulation is often used in connection with exhanst steam. The water is warmed by the steam in large heaters, similar to feed-water heaters, and circulated throngh the system by means of centrifugal pumps. This has the usual advantage of hot water over steam, inasmuch as the temperature of the radiators may be regulated to suit the conditions of outside temperature.

Apartment Houses. These are warmed by furnaces, direct steam and hot water. Furnaces are more often used in the smaller. houses, as they are eheaper to install, and require a less skilful attendant to operate them. Steam is probably used more than any other system in blocks of larger size. A well-designed single pipe connection with automatie air valves dripped to the basement is probably the most satisfactory in this class of work.

Fis. ?7.

(ireenhouses and ionnorvanios ame luated in some eanes by
steam and in others by hot water, some florists prefering one and some the other. Either system when properly designed and constructed should give satisfaction, although hot water has its usual advantage of a variable temperature. The methods of piping are in a general way like those alreally described, and the pipes may be located to run underneath the beds of growing plants or above as bottom or top heat is desired. The main is generally rum near the upper part of the greenhouse and to the furtherest extremity in one or more branches, with a pitch upward from the heater for hot water and with a pitch downward for steam. The principal

Fig. 38.
radiating surface is made of parallel lines of $1 \frac{1}{2}$ inch, or larger. pipe, phaed moler the benches and supplied by the return cmront. Figs. 37, 38 ant 39 show a eommon method of rmming the piping in greenhouse work. Fig. 37 shows a plan and elevation of the building with its lines of pipe, and Figs. 38 and 39 give dotails of the pipe connections of the outer and inmer groups of pipes respectively.

Any system of piping which gives free dirculation and which is adapted to the local conditions should give satisfactory results.

 it W0 divide the total expmed suffer hy f we shatl wet patically

for the hatime mils: on that we may say in semoral that the

 1"ハ.al| homations.

CARE AND MANAGEMENT.

 heand dimanoed in commotion with the dexign of these different

Begiming in the lofiter room, he should exereise special eare
in the management of his fires, and the instrontion given in "Boiler Aecessories" shonld be carefully followed; all thees and smoke passages should be kept clear and free from accumulations of soot and ashes by means of a brush or steam jet. Pumps and engine shonld be kept clean and in perfect adjustment, and extra care should be taken when they are in rooms through which the air supply is drawn, or the odor of oil will be carried to the rooms. All steam traps should be examined at regular intervals to see that they are in working order, and upon any sign of trouble they should be taken apart and carefully cleaned.

The air valves on all direct and indirect cadiators shonld be inspeted often, and upon the failure of any room to heat properly the air valve should first be looked to as a probable cause of the difficulty. Adjusting dampers should be plated in the base of each flue, so that the flow to each room may be regrulaterl independently. In starting up a new plant the system should be put in proper balance by a suitahle adjustment of these dampers, and when once adjusted they shomld be marked and left in these positions. 'The temperature of the rooms should never le regulated by elosing the inlet registers. These should never be tonched matess the room is to be monsed for a day or more.

In designing a fan system provision should be mate for \cdot air rotation" ; that is, the armagement should be such that the same air may he taken from the building ant passed through the fan and heater contimously. 'This is usually accomplished by elosing the main vent flues and the cold-air inlet to the building, then opening the dass-room dooss into the eorridor ways, and drawing the air down the stainwells to the basement and into the space back of the man heater through dooms providerl for this purpese. In warming up a building in the moming this should always be practiced matil about fifteen mimutes before school opens. The vent flues should then be opened. dooms into corridors closed, and cold-air inlats opened wide, and the full volmme of fresh air taken from ont of doors.

At night time the dampers in the main vents shonld be closed, to prevent the warm air contamed in the buikling from escaping. 'The fresh air shonld be delivered to the rooms at a temperature of from 70 to 75 degrees, and this temperature must

 いいいい．

Fis．$f(0$.

Ther whant steam from the rogine ame pumps should be tumblint the man heater：this will sully a greater momber of antions in milh wather than in wold，owing to the less rapid

STEAM FITTING．

In water 10 design a statem intelligently the engineer should

Fin． 41 ．

 s．ress－ $16 \cdot+1$ intw platr．

The tools belonging to this trade consist of tongs or' wrenches for screwing the pipe together, cutters for cutting, taps and dies for threading the pipe, and vises for holding it in position while cutting or threading. A great variety of tongs and wrenches are

Fig. 42.
to be found on the market. For rapid work no tool is superior to the plain tongs (shown in Fig. 40), especially for the smaller sizes of pipe. The alligator wrench (shown in Fig. 41) is used in a similar manner on light work and where the pipes turn easily.

Fig. 43.

For large pipe, chain tongs of some pattern are the best, and may be used with little danger of erushing the pipe. (See Fig. 4..) A form of wrench, known as the Stilson, one form of which is shown in Fig. 43, is widely used. The wrenches or tougs which are used

Fig. 44.
for turning the pipe, in most eases, exert more or less lateral pressure, and if too great strength is applied at the handles there is a tendency to split the pipe. The cutter ordinarily employed for small pipe consists of one or more sharp-edged steel wheels.

 athe hatar hame of ionssiberable -i/1 will the lonmed oll the ortsille amt insith of the pige. I - mally the matithe lomr must la. Fommad he filing lefore the
 bam forme a wrat whaturtion

Fig. 45.

J"ier At.

place. One of these is shown in Fig. 47. A common form of vise used for holding the pipe while cutting and threading is shown in Fig. 48. The combination vise is shown in Fig. 4!.

The dies for threading the pipes are usually of a solid form, each die fitting into a stock or holder with hamdles. (See Fig. 50.) The cutting edges of the dies should be kept very sharp and clean, otherwise perfect threads camot he cut. In cutting threads on wronght iron pipe, oil should always be used, which will tend to prevent heating and crumbing, and make the work easier. In erecting pipe great care shonld le taken to preserve the proper pitch and aligmment, and to appear well

Fig. 48. the pipes should be screwed together until

Fig. 49.
no threads are in sight. Every joint should he screwed from 6 to 8 complete turns for sizes 2 inches and under and from 8 to 1^{2} turns for the larger sizes, otherwise there will be danger of leakage.

In sorewing pipes together, red or white lead is often msed.
 ail will be equall! vahable. If possible, the work should be 117:meded so that it can the malle up with right and left couplings wh wher titions.

Fig. so.
Packed joints, resecially mons, are objectionable and likely to latk after ase. Flange-maions with copper gaskets should be natal on heaty work. (food workmanship in pipe-fitting is shown be the pertertion with which small details are execoted, and poor wormam-hip in any of the particulars mentioned maty defeat the perfect uperation of the best designed plant.

EXAIIINATION PAPER.

HEATING AND VENTILATION PART III.

HEATING AND VENTILATION.

Abstract

Read carefully the following instructions: Place your name and full address at the head of the paper. Any cheap light paper like the sample previously sent you may le used. Do not crowd your work, hat arrange it neatly and legibly. Work out in full the examples, showing each step, in the work, and mark all answers plainly, "Ans." Do not copy answers from the instruction paper; use your own words. After completing the work add and sign the following statement:

I hereby certify that the above work is eatirely my own. (Nigned)

1. A main heater contains 1,040 square feet of heating surface made up of wought iron pipe, and is used in connection with a fan which delivers 528,000 cubic feet of air per hour. The heater is 20 pipes deep and has a free area between the pipes of 11 square feet. If air is taken at zero, to what temperature will. it be raised with steam at 5 pounds pressure?

Ans. 140°.
2 . A nine-foot fan rmning at 130 revolutions delivers 40,000 cubic feet of air per mimnte. If the fan is speeded up, to 169 revolutions, and an electric motor substituted for the engine, what will he the rating of the required motor?
3. What precaution must be taken in comecting the radiators in tall buildings.
4. Give the size of heater from Table II, which will be required to raise $\left(7,2,000\right.$ cnbic feet of air per hour, from 10° below zero to 90°, with a steam pressure of 20 pounds. If the air quantity is raised to $8 t 0,000$ eubic feet per hour through the s:me heater, what will he the resulting temperature with all other conditions the same?

Ans. 85:.5.
5. A fan romning at 150 revolutions produces a pressure of $\frac{1}{2}$ ounce. If the speed is increased to 210 revolutions, what will he the resulting pressure?
6. A certain fan is delivering 12,000 enbic feet of air per minute, at a speed of 200 revolutions. It is desired to increase the amomit to 18,000 cubic feet. What will be the required

 11．1＇．＂i＂hova：
－What andantanes has the phomm mothor of rentiation

Ins． $1+$ rows．

 ！＂川いいい。＂

11．What volaritios of ais－llow in the main dact amel

1．The air in a setamant kitulan is to be changed avery
 （is．．．i／．aml ymed of fian aml II．I＇．uf motor．
16. What forms of heating are best adapted to the warming of apartment houses?
17. Give an approximate method for finding the heating surface required for greenhouses, both for steam and hot water.
18. How does the cost of electric heating compare with that by steam and hot water?
19. Describe briefly the construction of an electric heater, and the principle upon which it works.
20. A school building of 4 rooms is to be supplied with 600,000 cubic feet of air per hour. The heat loss from the building is 300.000 B . T. U. per home in zero weather. Give the square feet of grate surface required in the furnaces.
21. What is a double duct system as applied to forced blast heating: What are its alvantages?
22. What is a thermostat? Give the principles upon which two different kinds operate.
23. I escribe briefly the comnections to be made in a system of electric heating. In what way do they correspond to the piping in a system of steam heating?

- 4 . State certain points to be observed in the introduction of air for the ventilation of ehurches and theatres.

25. A shop 100 feet long, 50 feet wite and δ stories, each 10 feet high, is to be warmed by forced hast using steam at 80 pounds pressure. The full amoment of air passed through the heater is to be taken from ont of doors, ant the entire air of the building changed ? times an hour. Give linenr feet of 1 inch pipe required for heater, and size of fan and engine.

$$
\text { Ans. }\left\{\begin{array}{l}
1,666 \text { feet of pipe. } \\
5 \text {-foot fan. } \\
4 \text { H. P. engine. }
\end{array}\right.
$$

26. In what cases would you use a dise fan in preference to a blower?
27. The heat loss from a room is $12,000 \mathrm{~B}$. T. C. per hour. How many Kilowatt-hours will be required to furnish the necessary heat?
28. What is one of the best systems for the heating and ventilation of school buildings of large size?
 For a fornr-rum shlowl:

 uppre ham the air is whe retment to the heater from the room, amb fire entire comtentio is thas through the heater every 15 minmes. Khamst stam is to be nsed in both heaters. Give size wif fans, beaturs and motor.

Sus. $\left\{\begin{array}{l}\text { lonwer flow } 3: \frac{1}{2} \text { fioot fan. }\end{array}\right.$ Ans. $\left\{\begin{array}{l}\text { I pler floor } 4 \text {-foot fan. }\end{array}\right.$

PR! PSRIH By
 Charlas I. HIMbari, M.F.,

ismorys

PLUMBING.

PLUMBING FIXTURES.

Bath Tubs. There are many varieties of bath tubs in use at the present time, ranging from the wooden box lined with zinc or copper which was in common use a number of years ago and is still to be found in the old houses, to the finest crockery and enameled tuls which are now used in the best modern plumbing. In selecting a tub we should choose one with as little woodwork about it as possible. Those lined with zine or copper are hard to keep clean and are liable to leak and are, therefore, undesirable from a sanitary standpoint. The plain cast iron tub, painterl, is the next in cost. This makes a serviceable and satisfactory tub if

Fig. 1.
kept painted; it is used quite extensively in asyhmms, hospitals, etc. One of this type is shown in Fig. 1. These are sometimes galvanized instead of being painted.

The "steel-clad" tub shown in Fig. 2 is a goor form for a low-priced article. This tub is formed of sheet steel and has a lining of copper. This form is light and easy to handle ; it is an open fixture the same as the cast iron tub and requires no casing. It is provided with cast iron legs and a wooden cap. Probahly the most common form to be fomm in the average house at the present time is the porcelain lined iron tub as shown in Fig. 3.

Plı"MlilNo.

Fig. 2.
 manise suat ram in handling. This material is very cold to the wom matil it has heome thomoghly wamed hy the hot water.

Water Closets. There is a great variety of water closets
 lont varing slighty in form and limish. The hest are made of
porcelain, the bowl and trap being in one piece without commen or crevices so that they are easily kept elean. The tol of the howl is provided with a wooden rim and cover. The genemal arrangement of seat and flushing tank is shown in Fig. 7. A section through the bowl is shown in Fig. S. This tym is kuown as a

Fig. 4.
syphom closet, and those made on this principle are prohathy the most satisfactory of athy in present use. They are made in different forms loy various manufacturers but each involves the principle which gives it its name. Water stands in the bottom as shown, thas forming a seal agranst gates from the sewer.

When the riant in llanhed, water rashes down the pige alled tills the smath famber at the mar which diselateses in af at the

 the meantime a part of the water from the tank fills the hellow rime of the land amd is disehatered in a thin stream aromme the

Fig. 5.

Fig. 's.

Fig. 7.
 (enl h timm it is fhashod. F"ig. ! shows a form ratled the "wash(121" "Hown In this "aste the whole of the water is dischatred 1hrometh lh: flachine rim lat with greater fore at the rear which
 A wilnly n-al. I similar form, lat without the mper bowl is
shown in Fig. 10. This is known as the "wash down" closet and operates in the manner already described. The water enters the bowl through the flushing rim and discharges its contents by

Fig. 8.

Fig. !
overflowing into the soil pipe. This is a simple form of closet and easily kept clean.

One of the simplest closets is the " hopper "shown in Fig. 11. This eonsists of a plain bowl of porcelain or cast iron tapering to

Fig. 10.

Fig. 11.
an outlet about $4^{\prime \prime}$ in diameter at the bottom. It is commected directly with the soil pipe as shown. The trap may be placed either above the floor or helow as desired. They we provided with a flushing rim at the top similar to that already described. This type of closet is the eheapest but at the samo time the least satisfactory of any of the different kinds shown.

It is sometimes desimble to place a eloset in a location where there would be danger of freeming if the nsual form of flushing tank was nsed. Figis. $1:$ shows an armugement which may be nsod in at ease of this kibd. 'The value and water comeretions are blaced below the frost line and a pipe not slown in the cut is carred up to the rim of the howl. Whenthe rim is shat down the

Fig. 12.
valve is opened by means of the ehain attached to it and water Hows thromgh the low while in use. When released, the weight on the lever arses the valve and mases the wooden rim to its original prostion. Any water which remams in the flush pipe is drained to the soil pilpe throngh at small drip pige which is seen in the: cilt.

Urinals. I common fomm of minal is shown in Fig. 1:\%. The fartitans and shat at the back are either of slate or marble and the bowl of permbain. They may be thashed like a closet. Fige 14 shows a retion thomegh the bowl ant indicates the
manner of flushing, partly through the rim and partly at the back. The trap or seal is shown at the bottom. Another form is shown in Fig. 15. In this case the bowl remams partly filled with water which forms a seal as shown. It is flushed both through the rim and the passage at the back. In anotion it is the same as the syphon closet shown in Fig. 8 aml the howl is dramed each

Fig. 13.

Fig. 14.
time it is flashod, but immediately fills with water to the level indicated.

An antomatio flushing device is illustrated in Fig. 16. When the water lime in the tank reaches a given level, the float lever modeses a watch amd dhashes the mimal. The intervals of thashing can le regulated hy adjusting the cock shown in the inlet pipe. near the bottom of the tank.

A simple form of minal commonly used in shools and publite lnathlings is shown in Fig. 17. This is flushed by means of

ドッ．15．

F゙ig． 17.
small streams of water which are dis－ charged through the perforated pipe near the top of the slab at the back ：and rim down in a thin sheet to the gratter at the bettom．

Lavatories．Bowls and lavat twries ean be had in ahmest any form． Fig．1s shows a simple cormer lava－ wry，madre of peree lain and provided

Fig． 16.
with liot and cold water fan－ cets．It has an overflow，shown by the small openings at the lack and a rub－ ber phag for clos－ ing the drain at the bottom．

The lavatory shown in Fig． 19 is provided with marble slals and is more expensive．Fig． 20 shows a sec－ tion through the bowl．The waste pipe is at the back，which
brings the plug and chain well out of the way. A pattern still more elaborate is shown in Fig. 21, and a section through the bowl in Fig. 22. The waste pipe plug in this case is in the form of a hollow tube and acts as an overflow when closed and as a strainer when open. It is held open by means of a slot and.

Fig. 18.

Fig. 19.
pin near the top. Fig. 23 shows a bowl so arranged that either hot, cold or tejid water may be drawn through the same opening which is placed well down in the bowl where it is out of the way.

Fig. 20.

Sinks. Sinks are made of plain woonl, and of wood lined with shcet metal, such as copper, zinc or galvanized iron. They are also made of sheet steel, cast iron, either plain, salvanizerl or enameled, and of soapstone and percelain. Eatch has its advantages and disadvantages. The wonelen sink is liable to leak,
ablil is dithicull tu her．1 thmon！h！ －leatr．Thar himed smb is munt－atle－
 biat hole－．an＇paite ＂asily patmbed Hammh the limine allat it then howomm liey Wherotontalle from ，－allitaly stand－ promt a－thompory Witw atmel bege－ taldrmalter whed wask－throngh the

 laphily aml［口⿻上丨．
 a

Fig． 21. （mis mahalthfal lat tomds to destroy the lining of the sink from tha ：mmor－ille su that its destruction is mpid after a leak is once started．The cast

Ijㅍ．．\because. iron sink is satisfac－ tory．The appearance is impored by galvan－ izing．but this soon weats off on the in－ side．Enameled sinks are easily kept ＂lean lint likely to berome reatered or loroken from hated usadge of from ex－ tremes of hot ar cold ； the jormerlain sink has the same defects；
they are both however well adapted to places where they will receive careful usage.

Taking all perints into consideration the somptome sink may perhaps he considered the most satisfactory for all-atomm use.

Fig. 23.

It will not absorb, moisture ; is mot affecterl by the action of acids: oil or grease will not enter the pores and it is not injured by hot water nor liable to crack.

Fig. 24 shows the ordinary cast iron sink, manle to be set in a wooden easing; this is not to be recommended however, and it is

Fig. 24.
much hetter to support them upon iron brackets or legs. Fig. 25 shows an enameled sink momed in this way. I poreelain sink with dish racks is shown in Fig. 24. This sis a good form for a pantry sink which is used only for washing cutlery, glassware,

Fior. 25.
 satil in berend on kitchon sinks applies eqnally well in this catse.

Traps. \backslash thp, in a low of water seal flaced in a piper to pre-

building outside of all the comnections to prevent gasen from the main sewer or cesspon from entering the building. A remorable cover is placed on top of the trap to give access for cleaning.

The floor trap shown in section in Fig. 30 is made both of brass and of lead. It is commonly used for kitchen sinks and is placed on the floor just beneath the fixture. It is provided with a removable trap serew or clean-ont for use when it is desired

Fis. 26.
to remove grease or sediment from the interior. Fig. 31 shows a common form for lavatories, which consists simply of a loop in the waste pipe. These are usually made of brass and nickle plated when used with open fixtures. A trap for similar purposes is shown in Figs. :32 and $: 3: 3$.

Figs. 34 and 3:) show a form known as the centrifugal tiap on aceom of the rotary or whirling motion given to the water by the peculiar armagement of the inlet and outlet. This motion carries all solid praticles to the outside and discharges them with the watrr, thus keeping the trap clear of sediment. Where there is likely to be a large amoment of grease in the water as in the case of waste from a hotel or restamant it becomes necessary to use a special form of separating trap to pre rent the waste pipes from becom-
ing chagred. I grean trap desigued for this purpese is shown in Fige 湤. Its antion is readily seen as the fatty matter will he separated. bret he dreppinge into a large body of cold water and then heing driven aramin the enter partion before an outlet em the sained. The srease tholl rises to the surface where it cools

Sometines a cellar on basement is dained into a sewer which

Fig. 27.

 how oming flombel. Surh : taty is shown in Fig. :37. When water fows in from below, the foat rises, and the rubler sim phosing aramst the valve soat prevents any passige through the taik: the "at hums the value elowelly the action of high water.

Tanks or (i-torns for flushing elosets or other fixtures are H-1all! matho of word amplined with rine of copmer. These are

in Fig. 38. The arangement of valves for supplying water to the tank and for flushing the fixtures is shown in Fig. 39. The large float or ball cock regulates the flow of water into the tank from the street main or honse tank. When the water in the tank

Fig. 2s.
falls below a certain level the float drops and opens a valve. thus admitting more water, and closes again when the tank is filled. The closet is flushed by pulling a chain attached to the lever at the right which opens the valve in the bottom of the tank and admits water to the flushing pipe. In this form the valve remains open only while the lever is held down by the chain, the weight on the other end of the lever closing the valve as soon as the chan is released. Another form which is lartially antomatic is shown in Fig. 40. When the chain is pulled it rases the central valve from its seat and

Fig. 29. allows the water to flow down the flush pipe mutil the tank is nearly empty. When empty, the strong suction seals the valve which remains dosed motil the ehain is again pulled. In this type of valve a simgle pull of the chain is sutticient to flush the closet withont further attention.

A purely automatic floshing device is shown in Fig. 41.

The whan 101 has rase in attached the the rime of the seat so that "herl it is prosed down, the value in the eompartment at the

Fig. :30.

F゙iュ.: : $\because 2$

Fig. 31.

Fig. 33.
rommmanication is nperad betwern the two compartments. When the fmll on the wath is releasef the valve connerting the fhash phar is (M, merl and the opening betweren the compartments closed

Fig. 34.

set flate the wither in the lower portiour of the tank flows thenerh lhe thas gipe into the eloset antomatically, and when
 (lown ithel llo valse in the parlition ofwered.

Fig. : 3 f.

Fi!. : 7.

Faucets. There are many different foms of fancets in nise. The must common is the rompression cuck shown in fig. to. This hats a removable leather or ashestos sat which replites remwing from time to thar as it beromes wom. Fige 43 shows a similar fom, in which the valye seat is free to adjust itself, being loeld in place ley a spring. Another

Fis. : in.

Fig. 39.
 f.nno. These arm fithol with sprines in such a way that they
 Smon in Förs. If and fo.
 watere tor howh and bath thbe bofore it is disehamom. 'This is
accomphished by having both fancets comect with a commonnozate. Such a device for a lavatory is shown in Fig. 46.

Fig. 40.

Fig. 41.

Fig. 42.

Fig. 43.

SOIL AND WASTE PIPES.

Cast=Iron Pipe. 'There are many different forms of soil pipes and fittings, and one can best acquaint himself with these by looking over the catalognes of different mannfactmrers. Figs. 47 and to show two lengths of soil pipe; the first is the regular patterm, having only one huh, and the second is a length of doublehuh pipe: this a an be msed to grood adrantage where mathy short piects are required.

Figs $4!$ to 57 show some of the prineipal soil pipe fittings. Figs. 49, 50, s1, is and $5: 3$ show quarter, sixth, eighth, sixteenth
amd return bends respectively, and by the base of these almost any desired angle ("an be obtained. Different lines of pipe may be connected by means of the Y and T - 1 bamehes shown in Figs.

Fig. 44.

Fig. 45.
 the l hame Fig. int, in cases where it is desired to connect two pipes which run perpendicular to each other.

Fig. $4 f$.

The double T.Y. Fig. it, is compelbent for use in double looses where a single soil pipe answers for two lines of closets.

Pipe Joints. Great care should be given to making up the joints in a proper mambos, ats serious results may follow any defective workmanship which allows sewer gas to "scape into the buildings In mating all a joint, first place the ames of the pile in pronation all fasten them rigidly, then park the joint with the best picker maknm. In packing the oakum around
 at will drin in who carr and still mot pass through to the inside of the pique whom the emfs join.

In a t-inch pipe the packing should be about 1 inch in thickness and calked perfectly tight so that it will hold water of itself without the lead. Just hefore the packing is driven tightly into

Fig. 47 .

Fig. 48.

Fig. 49.

Fig. 50.

Fig. 51.

Fig. 52.

Fig. 53.

Fig. 54.
the hob, the joint should be examined to see that the space around the hub is the same, so that the lead will flow evenly and be of the same thickness at all points, as the expansion and contraction

 ats the pipe, if of stambard wrathe is easily eataked and will stand hat limter slomk from the calkinge chisel amd hammer.

Fitis. is shows a sertion thromgh the malked joint of a east

Wrought Iron Pipe. This is used but little in comnertion with the wate pipes exerpt for the purpose of hack renting where it may lax emploged with sorewed joints the same as in steam work. It is shmotimes msed where omly small drain pipes are

Fig. 5s.
neemaidy, but is mot dosibable as it is likely to become choked With rmot of the antra throngh ly moisture form the ontside.

Brass Pipe. limis pipe. niekke plated. is largely hised for
 swil fife. It is mommon the he his for the axposed pertions of
 in fartitions. 'Ther varions fithones are also matre of bass amd [aniobind in : similar mamer.

Lead Pipe. For sinks, bath tubs, laundry tuls, ete., mothing is better for carrying off the waste water than lead pipe, for the reason that it has a smooth interior surface which offers a small resistance to the flow of water, and does not easily collect dirt or sediment. It can also be bent in easy curves which is ant advantage over fittings which make abrupt turns; this is especially important in pipes of small size.

Pipe Joints. There are two common methods of making joints in lead pipe, known as the "cup joint" and the "wipe joint." The first is suitable only on small pipes or very light pressures. This is made by flanging the end of one of the pipes and inserting the other, then filling in the flange with solder ly means of a soldering iron, see Fig. 5!!. In making this joint great

care should be taken that the ends of the pipes are round and fit closely so there will be no chance for the solder to run through inside the pipe and form obstructions for the collection of sediment.

The different stages of a wipe joint are shown in Fig. 60. The ends of the pipes are first cleaned and then fitted together as slown in the second stage. The solder is melted in a small cast iron crucible and is earefully poured on the joint or thrown on with a small stick called a "spatting stick." As the solder rools it becomes pasty and the joint can be worked into shape by means of the stick or a soft cloth, or hoth, depending upon the kind of joint and stage of operation. The final shape and smooth finish is given with the cloth. The ability to make a joint of this kind can be attained only hy practiee, amd printed directions are
of imber value as compared with ohservation and atemal practice. Thas is tha stronges amd most satisfantory joint that can be made herworn illo lead pipes an a lead and hass or ropper pipe. In
 far as the joint is watend bex means of a soldering irors.

Whare homl waste fijes are to be eommected with east iron wil pipt : a han formate shomblde nsed. Different forms of these
 finished end of the fermbe white the other end is walked into the buh of the ram imn pipe in the manmer already deseriber. The tembe should be made hease su as not to be injured in the proc-

Fig. 81.

Fig. 62.
uss of ralkines. ('ul' joints shonld never be used for this

Tile Pipes. Nothing but metal piping shonld he used inside of a lonidines. lont in solid earth, starting from a point about 10 foet ahay from lac reflar wall, we may use salt-glazed, vitrified, or teraan cottar pije for making the eomection with the matn sewer. This pife is made in romvanemt longths and shapes and is easily hamblod. V'arims fittings are made smilar in form to those
 shmal bre (atrofally wamined to ser that it is smowth, romml, amd

 be Werl. :ant ermat "ame should he taken that this is pressed well
into the space between the two pipes. All cement that works through into the interior shonld be carefully remover by means of a swab or brush mate expecially for this purpose. The earth should be filled in aronnd a pipe of this kind before the cement is set or else the joints are likely to crack. Fine soil should be filled in around the pipe to a depth of 3 or 4 inches, and rammed down solid, and the ditch may then be filled in withont regard to the pipe. No tile pipe should be used inside of a house or nearer than about 10 feet for the reason it might not stand the pressure in case a stoppage shonld oceur in the sewer. This kind of pipe is not intended to carry a pressure and when used in this way is seldom entirely filled with water. Joints between iron and tile piping are made with erment in the mamer deseribed for two sections of tile.

Cesspools. It is often desired to install a system of plumbing in a building in the country or in a village where there is no system of sewerage with which to comnect. In this case it becomes necessary to construct a cesspool. This is always undesirable, but if properly constructed and placed at a suitable distance from the house and in such a position that it camot drain into a well or other sonree of water supply it may be used with comparative safety. Especial care should be taken in the construction, and when in use it shonld be regularly cleaned. One form of cesspool is shown in Fig. 6?. This consists of two brick chambers located at some distance from the building and in a position where the ground slopes away from it if possible. The larger chamber has a clean-ont opening in the top, which should be provided with an air-tight cover. An ordinary cast iron cover may be made sufficiently tight ly covering it over with 3 or 4 inches of earth packed solidly in place. A vent pipe shonld be carried from the top to such a height that all gases will be discharged at an elevation sufficient to prevent any harm.
'The smaller chamber is comected with the first by means of a soil pipe as shown. This chamber is arranged for absorbing the hguids and for this purpose. is provided with lengths of porous tile radiating from the bottom as shown in the plan. The house drain connects with the langer chamber, which fills to the level of the overtlow, then the liquid portion of the sewage drains over

 form time to time. I suitable taty shonld of eomse be plated in the homse datin in the same mathore as themgh conmeded with

 -ill.

TRAPS AND VENTS.

Traps. The lust methom of eomberting lays, and their "thal balme umber all comations. are matters mon which there is

Fis. 63.
manh difformon of apminn. (ities also vary in their require-
 -bow in at
 ther prowelt time.

 trap is placed in the main soil pije mut-inf of all the commections ;
this is sometimes plated in a manhole just outside the buikding, lat more commonly in the cellar before passing throngh the wall ; the former method is much to be preferred, as the trap may be cleaned without admitting gases or odors to the house. The mmning trap has been shown in Fig. 29 , and is providod with a removable cap for cleaning.

The agencies which temil to destroy the water real of traps

Fig. (it. .
are siphonage, evaporation, back pressure, capillary action, leakage and aceumulation of sediment.

Siphonage. This can hest be ilhustrated by a few simple diagrams showing the principles involved. In Fig. 65 is shown a U tube with legs of equal length and filled with water. If we

invert the tube, as shown in Fig. bit, the water will mot run ont, becanse the legs are of egnal length, and contain equal weights of water, which pull downard from the top with the same force. tending to form a vacoum at the point A. If one of the legs is lengthened, as in Fig. 67, so that the cohmm of water is heavier on one side than on the other, it will runont, while atmospheric pressure will force the water in the shorter tube up over the bend, as there
 Water hrabl at this peont. This action is also assisted by the adhesion of the partiches of wither to eath other. 'The colamm of water in the mbe mat lo likened to a pioce of thexible rope
 will remain stationary, lut if drawn wer ons

Fig. os. 2. side slighlyso that one emel is heavier than the where the whole rope will be drawn wer the pmilley lowand the longer and heavier end. The first catase, due to atmospheric pressure is the pincipal reason for the action of siphoms. hat the latter assists it to somme extent. If the shorter leg of the siphon bee dipped in a vessel of watere ats shown in Fig. 6s. the atmospherie pressure, which before arted on the bentom of the water in the thbe is transfermed to the surface of the water in the vessel, and the flow thomegh the thae will contime matil the water level in the versel falls olightly below the whl of the tule alld admits air presome, which beraks the siphon
 applied to the tapp of a simk or bowl. If the bowl is well filled with water, - : thint when the phag in removed from the brottom, the waste piper for some distance below the tay, is tilled with atalil colmman of water, at siphon ation
 strinal. and the trap will he drainel.
 Fans down fom the fixture amed sibles of the finfe athat the trap to partially rectome the seat. llais dimet aretion of

Fig. (is. the water of a fixthre in hreaking its whatrap seal hey shoming

A mure the stme winte pip.. is shown in Fig. To. In this catse the soal of the lown aloset is lomenn by the discharge of the upper. The
falling column of water leaves behind it a partial vacumm in the soil pipe, and the outer air tends to rush into the pipe through the way of least resistance, which is often through the trap seals of the fixtures below. The friction of the rough sides of a tall soil pipe, even though it be open at the roof, will sometimes cause more resistance to air flow than the trap seals of the fixtures, with the result that they are broken, and gases from the drain are free to enter the building.

Three methods have been employed to prevent the destruction of the seal by siphonage. The first method devised was what is known as "back venting," and this is largely in use at the present time, although earefnl experiments have shown that in many cases it is not as effective as it was at first supposed to be, and is considered by some authorities to be a useless eomplication. It is, however, called for in the plumbing regulations of many cities, and will be taken up briefly in connection with other methods.

Back Venting. This consists in connecting a vent pipe at or near the highest part of the trap, as shown in Fig. 71. The action of this arrangement is evident; in place of the waste pipe receiving the air necessary to fill it, through the basin, after the solid column of water has passed down,

Fig. 70. it is drawn in through the vent pipe, as shown by the arrows, and the seal remains, or should remain, unbroken. It also prevents "self-siphonage" by hreaking the column of water and admitting atmospheric pressure at the highest point or erown of the trap. The vent not only prevents the seal from being broken, as described, but allows any gases which may form in the waste pipe to escape above the roof of the house. In order to be effective, the back vent shonld be large, but even when of the same size as the waste pipe, the flushing of a closet will oftentimes break the seal, especially if the
 chownd, cither with the acrommbation of serliment mear the taty or by fron or smon at the top: in this case its cflect is of atorse
 ing of wapumaton fom the trap ant the msealing of fixtures which ate but wforn uncel.

The secomal method of gatardilise agatimes the loss of seal hy

Fig. 71.

Fig. 72.
siphomage is to make the body of the trap so lage that a suffieient quantity of water will always adhere to its sides after siphonitig (0) fe-the a sual. 'The pot on ceropool tap, shown in Fig. 72 is bataed on this primeple.

The thire methed romsists in the hae of at trap of such form that it will mot sifhon, and will at the same time be self-eleaning. Ammar other types the centrifugal tap, shown in Figs. st and 35, in $\begin{aligned} \text { atimed to fultil these conditions. The pot tayp, while less }\end{aligned}$ afloutal ly the siphoming ation, is more or less objectiomable on
 -ewaty whinh falls into it.

Local Vents. A lowal vent is a pipe eomberted directly with a closet or mrimal for arrying ofl any odor when in use. It has no connertion with the soil pipe, muless the trap sal becomes broken, anl is not povided for the pmonse of carying off gases from the sewer. A mrinal provider with a loeal vent is shown in Fig. 7 :

Sometmes an matl register face batek of the fixture, and con-
necting with a flue in the wall, is used in place of the regular local vent. In order for a vent flue of either form to be of any value, it must be warmed to insure a proper eirculation of air through it. This is done in some cases by placing a gas-jet at the bottom of the flue, in others a steam or hot water pipe is run through a portion of the flue, and in still others the vent is carried up beside a chimney flue, from which it may receive sufficient warmth to assist the circulation to some extent.

Main or Soil Pipe Vent. It is customary to vent the main soil pipe by carrying it through the roof of the building, and leaving the end open. This is shown in Fig. 74. On gravel roofs which drain toward the center, the soil pipe is sometimes stopped on a level with the roof, and serves as a rain leader. In other cases the roof water may be led to the soil pipe in the cellar. If the latter method is used, the water shomld pass through it deep trap before connecting with the drain. These arrangements tend both to flush out the soil pipe and trap and prevent the aceumulation of sedi-

Fig. 73. ment.

Fresh Air Inlets. The fresh air inlet shown just above the running trap Fig. 74 is to cause a eireulation of air through the soil pipe, as shown by the arrows. 'The comection should be made just inside of the trap, so that the entire length of the drain will be swept by the current of fresh air. It is sometimes adrised to cxtend the fresh air pipe up to the roof, because foul air may at times he driven ont by heavy flushing of the drain pipe, but where this is done there is much less elance for eirenlation, as the inlet and outlet are nearly on a level, and the columns of air in them are more likely to be balanced. By carrying the inlet six or eight feet above the ground both objections are overcome to some extent,
unles this hrings it near a wimbow, which, of eourse, would not be safe. 'The main trap' does not requite a bark vent, for should it he siphoned moder omlinary comlitions, it will always be filled

Fig. 7.
agrain within a few minntes: and if the main suil pipe is open at the top and all fixtmes are poperly taped, no ham would come from the slight leakage of gas into the drain under these condi-
tions, and some engineers recommend the omission of the rmning trap.

Where a house drains into a cessponl instead of a sewer, it is far more necessary that the system shond be trapped against it as it gives off a constant stream of the fonlest gases. The usmal form of ruming trap serves to protect the house, lont the cesspool should have an independent vent pipe leading to some mobjectionable point and carried well up above the surface of the ground.

Disposal of Sewage. In eities and towns having a system of sewers, or where there is a large stream of ruming water near by, the matter is a simple one. In the first ease, the house drain is merely extended to the sewer, into which it should discharge at as high a point as possible, and at an acnte angle witl the direction of flow. When the drain commects with a stream it should be carried out some distance from the shore and discharge umder water, an opening for ventilation being provided at the bank. Where there are neither sewers nor streams, the cesspool must be used. When the soil is sufficiently porous the method shown in Fig. 63 may be employed. Sometimes the sewage is collected in a closed cistern and discharged periodically through a flush tank into a series of small tiles laid to a gentle grade, from 8 to $\mathbf{1 2}$ inches below the surface. By extending these tiles over a sufficient area and allowing from 40 to 70 feet of tile for each person, a complete absorption of the sewage takes place by the action of the atmosphere and the roots.

PIPE CONNECTIONS.

The Bath Room. There are different methods of connecting up the fixtures in a bath room, depending upon the general arrangement, type, the kind of trap used, etc. Fig. 75 shows a set of fixtures comected up with vented traps. Both the soil and vent pipes are carried above the roof with open ends. No trap or fixture should be vented into a chinmey, as is quite commonly done; this may work satisfactorily when the flues are warm, but in summer time, when the fires are ont, there are quite likely to be down drafts, which cause the gases to be carried into the rooms through stoves or fireplaces. The vent pipe, although usually carried through the roof independently, is sometimes
commented with the ail pie alone the highest mistime: the soil

 exporting method of making the commotions and is especially
 "pol the proper working of the taps.

 in : lan time whew it will rewire the sim. It should be arranged

for ventilating the lathroom without opening the door into the other rooms, and the greatest care should be taken to keep not only the fixtures, but the room itself, in the most perfect order.

Urinal Connections. The common form of winal comection

Fig. 76.
is shown in Fig. 14. The overflow from the trap, ends in a tee, the lower outlet of which comnects with the soil pipe and the upper with the vent pipe. Where several urinals are erected side by side it is usmal to omit the individual traps, using the direct ontlet comection shown in Fig. 77. These comect with a common waste pipe and drain through a single trap to the soil pipe.

Kitchen Sink Connections. Fig. 78 shows the nsual method of making the connections for a kitehen sink. The waste and vent are of leard, comeeted with the main cast-iron soil and vent pipes ly mems of

Fig. 77. brass fermles and wiped joints.

Soil and Waste Pipes. The varions fixtures have been taken up, together with the different kinds of traps which are used in comection with them, and also the general methook of making the varions comections for waste and vent. We will next take

 commations an is amsintom with the proper working of the - - - 1 - In.

 (1) aromil the rambing - \boldsymbol{l}°

 is but sutinimht blaw.
 - mantion. Batwerth the
 lath lablaw for havizantal rman imm.la loneth.
 - watliment fom bulding 1.1 whllarl : : \% : and in (...1 rimatros is me...

Fig. 78.arily raminal duwn insile the halding to prevent frearing.

seen, so that leaks may be easily diseovered : it is commonly run along the basement wall and smported by suitable brackets or langers. If carried beneath the cellar floor, it should rum in a brick trench with removahle covers. In ruming all lines of pipe, whether vertical or horizontal, they should be securely supported and, in the ease of the latter, properly granted. Some of the varions kinds of hangers and supports used are shown in Figs. 79 and 80 . The grade of the pipes should he as sharp and as uniform as possible. The velocity in the pipes should he at least two feet per second to thoronghly clean them and prevent clogging. Generally speaking, the pitch of the pipes shouk not be in any case less than 1 foot in 30. In rumning lines of soil pipe, it is hest to

Fig. 79.

Fin. 80.
set the joints ready for calking in the exact positions they are to occupy and resting upon the supports which are intended to hold them permanently. In this way there is less liability of sagging or loosening of the joints after calking. In the running of vertical pipes, care should be taken to have them as straight as possible from the lowest fixture to the roof.

It is very necessary that the pipes be given such an alignment that the water entering them will meet with no serious olostructions. Where vertical pipes join those which are horizontal, they should be given a bend which will turn the stream gradually into the latter, thus preventing any resistance and the resulting accumulation of deposits. Itorizontal pipes may be joined with rertical pipen without a bend, as the discharge will be sufficiontly free withont it. However, it is customary to use a Y or T branch, giving a downward direetion to the flow when connecting a closet or other fixture where there is likely to be much solid matter in the sewage. Offsets should alway be avoided as far as possible, as they obstrmet the flow of both water ant air.

Pipe sizes. The mast impurtant raphimments in the case uf dimblater pipes ate that they eary away the waste matter as
 that thy lne woll romilatmed. In order to atoomplish this they

 momerntum on foror lor elearing the pipe will be murh grater than "homit forms only a shallow strean in whe of a larger size. so that in proputioning the sizes of sul pipes amb datas rate must he taknot that they are wom mate laser than merosiary, for if the

Fiars.

 in a homere of ombinary size eron when increased he the roof water

 it is froml by expriwnee that it is likely to beeome clogged at timm h - nhtanme whith throngh carelessness lind their way into
 Fin dity bullimer in anmall, it is reommented that the main

 buldirer

 In lasiane wh the lime of pipime provision shomlat be mate for

may be done. Clean-out plugs are left at the points indicated by the arrows, so that flexible sticks or strips of steel may be inserted to dislodge any obstruction which may occur.

The fresh-air inlet to the main drain pipe has already been referred to. This should be located away from windows, where foul air would be objectionable; in cities they may be placed at the curb line and covered with a grating. Sometimes they are arranged as shown in Fig. 82. The opening is made in the usual way, and a hood placed over the inlet, and a pipe leading from this is carried through the roof. When the circulation of air is npward through the main soil pipe the opening acts in the usual way, that is, as a fresh-air inlet, but should there be a reversal of the current from any reason, which would discharge foul air from the sewer, it would be

Fig. 82. caught by the overhanging hood and carried upward through the comecting vent pipe to a point above the roof. A general layout for house drainage is shown in Fig. 83.

PLUMBING FOR VARIOUS BUILDINGS.

Dwelling Houses. The bathroom fixtures, laundry tubs and kitchen sink, with the possible addition of a slop sink, mike up the usual fixtures to be provided for in the ordinary dwelling house. In houses of larger size these may be duplicated to some extent, but the general methorls of connection are the same as have already been described and need not be taken up again in detail.

Apartment Houses. These are usually made up of duplicate flats, one above the other, so that the plumbing fixtures may be the same for each. It is customary to place the bathrooms in the same position on each floor, so that a single soil pipe will care for all.

Hotels. Here an in the case just deseribed, the bathrooms ate plated ome abose athether, so that a simgle soil pipe may care for eath servess and the problem then becomes that of duplicatins the latyout for : on apartment house. In addition to the privar bathes there is a publis lavatory or toilet-room, usually on the tirst fowe or in the hasement. This is fitted up with clasets,

Fig. -

Hrimble and bowls. The eloset seats and minals are placed side hs siln. with diviling partitions, and comect with a common soil
 Shald hate its "won trap. The flashing of the fixtures is often mand antomatio. - that persing down the worlen rim of a closet
seat will throw a lever which on being released will flush the closet. Urinals are commonly made to flush at regular intervals by some of the devices already shown. The lavatories are made up in long rows, as shown in Fig. 84.

Railroad Stations. The plumbing of a railroad station is similar to that of a hotel, although even greater care should be taken to make the fixtures self-cleansing, as the patrons are likely to include many of the lowest and most ignomant class of people. Special attention should be given to both the local ventilation of the fixtures and the general ventilation of the room.

Schoolhouses. The same general rules hold in the case of school buildings as in hotels and railroad stations. As the pupils are under the direct supervision of teachers and janitors it is not necessary to have the fixtures automatic to as greatan extent as in the cases just deserileel, and it is customary to llush the closets by means of tanks, and pull
 chains or rods, the same as in private dweflings. The urinals may be antomatic or a small strean of water may be allowed to flow through them continuonsly during sehool homs. A good form for this class of work is shown in Fig. 85.

Shops and Factories. Sombe simple type of fixtme which c:an hersily ramed for is hest in haldings of this kimd.

TESTIVI ANU INSPECTION.

soil, waste and vent pipes, and is made before the fixtures are comected. The best method of making this test is to plug the main drain pipe just outside the ruming trap, and also all openings for the connections of fixtures, etc., and then till the entire system with water. This may be done in small systems through the main vent pipe on the roof, and in larger ones by making a temporary comection with the water main. If any leaks are present they are easily detected in this way. In cold weather, when there would be danger of freezing, compressed air moder a pressure of at least ten pounds per square inch may be used in place of water. Leaks in this case must be located by the somed of the issuing air. The water test is to be preferred in all cases. as it is easier to make, and small leaks are more easily detected.

The final test is made after the fixtures are in and all work is completed. There are two ways of making this test, one known as the "peppermint test," and the other as the "smoke test." In making either of these, the system should first be flushed with water, so that all traps may be sealerl. If peppermint is used, 4 to 6 ounces of oil of pepperminf, depending upon the size of the system, are poured down the main vent pipe, and then a quart or two of hot water to vaporize the oil. The vent pipe is then closed, and the inspector must carefully follow along the lines of piping and locate any leaks present by the odor of the escaping gas. Another and better way is to close the vent pipe and vaporize the oil in the receiver of a small air pump, and then force the gas into the system monder a slight pressure. The receiver is provided with a delicate gage, so that after reaching a certain pressure (which must not be great enomgh to break the trap seals) the pump may be stopped and the pressure noted. If, after a short time, the pressure remains the same, it is known that the system is tight; if, however, the pressme drops, then leaks are present and must be located, as ahrearly deseribed. Ether is sometimes used in plate of peppermint for this purpose.

In making the smoke test the system is sealed, and the vent pipes closed in the same mamer as for the test just described: smoke from oily waste or some similar substance is then forced into the pipes by means of a bellows. When the system is filled

 -

SEWERA(iE AND SEWAGE PURIFICATION.

 foretion of it di-pmsal after lamg nsed. 'This is plathly the re-
 work an ammain. dimininhins in size, with its mmeroms luanches,
 ar whe aftor abnther they mitu ill at common ontlet.

 d 1 abe :

closets. Without sewers and with a public water-supply cesspools must be used, and with these begins a continuous pollution of the soil much more serious than that which commonly results from closets and the surface disposal of slops.

Among the data which should first be obtained in laying out a sewerage system are:

First.-The area to be served, with its topography and the general character of the soil.-A contour map of the whole town or city, showing the location of the various streets, streams, ponds or lakes, and contour lines for each 5 feet or so of change in elevation, is necessary for the best results. The general chanacter of the soil can usually be obtained by observation and inquiry among residents or builders who have dug wells or cellars, or have olserved work of this kind which was being done. The kind of soil is important as affecting the cost of trenching and its wetness or drymess, and this, together with a determination of the gromedwater level, will be useful in showing the extent of underlraining necessary.

Second.-Whether the separate or combined system of sewerage, or a compromise between the two is to be adopted.-- These points will depend ahmost wholly upon local conditions. The size and cost of combined sewers is much greater than the separate system, since the surface drainage in times of heavy rainfall is many times as great as the flow of sanitary sewage. In older towns and cities it sometimes happens that drains for removing the surface water are already provided, and in this case it is only necessary to put in the sanitary sewers; or again, the latter may he provided, leaving the matter of surface drainage for future consideration.

If the sewage must be purified, the combined system is out of the question, for the expense of treating the full flow in times of maximum rainfall would be enormons. Sometimes more or less limited areas of a town may require the combined sustem, while the separate system is best adapted to the remainder; and again it may be necessary to take only the roof water into the sewers. As already stated, local conditions and relative costs are the principal factors in deciding between the separate and combined systems.

Third. Whather subsoil dramares shatl be provided.- In

 - Hatan dorine a late patt of the par. In addition to rembering

 tion for this pmproe alome. Tlis is the ease where the trenches
 dimioult. 'low aim in all gooll swor work is to rethee the infltation of errmal watur into the pipes to the smallest amount; imb in wey Wet soil, tight joints can be matle only with diffentty, athl berer with ahsolute cortanty. Cases have been known where fully mathalf the wat volmme of sewage dinchatiged consisted of grambl water which had worked in thromel the joints.
framp - The besi means for the linal disposal of the -wame- Intil mombly it was tumed into the nearest river or
 [rimipal ?nint th he uberved in the disposal of swatge is that W. phbibe water-smply shall he embansered. It the present time
 time that lisentarems from the haman system will live in water.
 - lmalil dizharer intu a stream within 20 miles of any pent where

 K: whore the atmont of watm athl the proballe quatity and

in order to prevent the sewage becoming stagnant in bays, or the washing ashore of the lighter portions. Such studies are commonly made with floats, which indicate the direction of the existing currents.

Fifth.- Population, water consumption and volume of sewage for which provision should be made, together with the rainfall data, if surface drainage is to be installed. - The basis for population studies is best taken from the census reports, extending back many years. By means of these the probable growth may be estimated for a period of from 30 to 50 years. In small and rapidly growing towns it must be remembered that the rate of inerease is generally less as the population becomes greater.

It is desirable to design a sewerage system large enough to serve for a number of years, 20 or 30 perhaps, although some parts of the work, such as pumping or purification works, may be made smaller and increased in size as needed.

The pipe system should be large enough at the start to serve each street and district for a long period, as the advantages to be derived from the use of city sewers are so great that all houses are almost certain to be connected with them sooner or later. It is often necessary to divide a city into districts in making estimates of the probable growth in population. Thus the residential sections oecupied by the wealthiest elasses will he comprised of a comparatively small population per acre, due to the large size of the lots. The population will grow more dense in the sections occupied by the less wealthy, the well-to-do and finally the tenement sections. In manufacturing districts the amount of sewage will vary somewhat, depending upon the lines of industry carried on.

The total water consumption depends mainly upon the population, but $n o$ fixed rule can be laid down for determining it beforehand. It is never safe to allow less than 60 gallons per day per capita as the average water consmmption of a town if most of the people patronize the publie water-supply. In general it is safer to allow 100 gallons. The total daily flow of sewage is not evenly distributed through the $2 t$ homs. The actual amonnt varies widely during different hours of the day. In most towns there should be little if any sewage, if the pipes are tight enough

 m ditherent emmmmation. This is mot of impertame in designing

lamintall dita is manally hard to ohtain except in the eities

 that a stumle mian extemding ower a day or two. A maximmm sate of l-inch fay lame will msually ewer all orlinary conditions. The pronntion which will rath the sewers daring a given time will deproml wran lowal combitions, sum as the slope of land, whether it sufface is cowered with homses and poved streets, rultivated limlas wherests,

Sirtho lixtont and rost of the proposed systom.-This is a

 for the labletit- la be alatived.

DESIGN AND CONSTRUCTION.

 making the latery pif" and the ("mplative ease of laying brick

cast iron pipe with lead joints is used. either to prevent inward leakage or settling of the pipe.

The pipes should be laid to grade with great care and a good aligmment should be secored. Holes shond be dug for the bells of the pipe, so that they will have solid bearings their entire length. If rock is encomitered in trenching, it will he necessary to provide a bed for the pije which will not be washed into fissures by the stream of subsoil water which is likely to follow the sewer when the gromm is saturated.

Underdrains. Where sewers are in wet sand or gravel, underdrains may le laid beneath or alongside the sewer. These are usually the ordinary agricultural tiles, from 3 inches in diameter upward. They have no joints. being simply hollow eylinders. and are laid with their ends a fraction of an inch apart, wapped with a cheap muslin cloth to keep out the dirt matil the matter in the trench becomes thoroughly packed about them. These drans may empty into the nearest stream, provided it is not used for a puldic water-supply.

Manholes. These should be placed at all changes of grade and at all junctions between streets. They are built of brick and afford access to the sewer for inspection; in addition to this they are sometimes used for flushing. They are provided with irom covers which are often pierced with holes for ventilation.

Sewer Grades. The grades of sewers should be sufficient where jossible, to gise them a self-clearing relocity. Practical experiments show that sewers of the usual sections will reman clear with the following minimm grades: Separate honse connections. - per cent; (- -feet fall in each 100 feet of length) small strect rewers, 1 per cent ; main sewers, 0.7 per cent. These grades may be reduced slightly for sewers arrying only rain or quite pure water.

The following formula may be used for computing the minimom grade for a sewer of clear diameter equal to "d" inehes and "ither "inentar or oval in section.

$$
\text { Minimum grade, in per cent }=\frac{100}{5!+50} \text {. }
$$

Flushing Devices. Where very low grades are mavoidable

 halte. irom soble fand on - wram. or from the phblie water-works - Stem. Comerally. lomerors, the water is allowed to acemmate
 lan whtil the water patially tills it, then smdenty releasing it and allowime dhe water to rash thromph the pipe lastead of
 al shme prints on ther systen to simply hatk mp the sewage hy

 means oi the wotoht of a tank whieh fills amd empties itself at rexnlar intervals.

House Connections. lrovision for house commedions shond

 te the Whaterer of the street. When the spwer man is deep A

 lantere anmations are mate with the main, we whe two sewers

Depth of Sewers Below the Surface. No genemal rule can lof Fhinwoil in this mattre exerpt to place them low enongh to
 mante wilh thom. They mast he kop below a point where theoe
 shffinfont on phabrat thin in mont atses.

Ventilation of Sewers. Thare is mom on less difference in

operated, and where the houses on a given street are of a uniform height, so that the tops of all the soil pipes will be above the highest windows. Where the houses are uneven in height, or where the sewerage system or connections are not well designed or constructed, it is recommended that main traps should be phaced on all soil pipes, and that air inlets and air outlets be placed on the sewers at intervals of from 300 to 400 feet.

The Combined System. The principal differences between this and the separate system are in the greater size of conduits and the use of catch-basins or inlets for the admission of surface water. They are generally of brick, stone or concrete, or a combination of these materials, instead of vitrified pipe.

Another difference is the provision for storm overflows, by means of which the main sewers when overcharged in times of heavy rainfall may empty a part of their contents into a nearby stream. At such times the sewage is diluted by the ram-water, while the stream which receives the overflow is also of musually large size.

Size, Shape and Material. The actual size of the sewer, and also to a large extent its shape and the material of which it is constructed, depends upon local conditions. Where the depth of flow varies greatly it is desimble to give the sewer a cross-section designed to suit all flows as fully as possible.

The best form to meet these requirements is that of an egg with its smaller end placed downwark. With this form the greatest depth and velocity of flow is secured for the smallest amount of sewage, thus reducing the tendency to deposits and stop ${ }^{-}$ pages. Where sewers have a flow more nearly constant and equal to their full capacity the form may be changed more nearly to that of an ellipse. For the larger sewers brick is the most common material, both because of its low cost and the ease with which any form of conduit is constructed. Stone is sometimes used on steep, grades, especially where there is much samd in suspension, which would tend to wear away the brick walls. ('oncrete is used where lakage may be expected or where the material is liable to movement, but is more commonly nsed as a fountation for brick construction.

A catch-basin is generally phaced at each street corner and provided with a grated opening for giving the surface water access
to a dhamber or hasin hemeath the sielewalk. from which a pipe

 with silt pambers of emsidemate depth, with overlow pipes lombine th the sewer. Tha heave matter which falls to the
 awas at peyner inturvals.

Storm Overfows. The main penint to be comsidered in the (onl)
 main sewer. This may be anmed ont in diflerent wase depenting

Pumping Stations. Tlar wrater part of the seworage

 low, or that high-priced mathimery is mot rephired. In gemeral the sewige shomh he sereened before it reathes the pumps.
 are ermetimes med to equalize the work requited of the pmans, thar makine it pussible thent down the plant at night. Such

Tidal Chambers. Wheresmase is disclansed into tide

SIEWAGE PURIFICATION.

When fresh, it appears at the month of an ontlet sewer as a milky-looking liquid with some large particles of matter in suspension, such as orange peels, rags, paper and various other articles not easily broken up. It often has a faint, musty odor and in general appearance is similar to the suds-water from a family lamdry. Nearly all of the sewage is simply water, the total amount of solid matter not heing more than $\underset{\sim}{2}$ parts in 1,000 , of which half may be organic matter. It is this 1 part in 1,000 which should be removed, or so changed in character as to render it harmless.

The two systems of profifation in most common use are "chemical precipitation" and the "land treatment." Mechanical straining, sedimentation and chemical precipitation are largely removal processes, while land treatment by the slow process of infiltration, or irrigation, changes the decaying organic marter into stable mineral compounds.

Sedimentation. This is effected by allowing the suspended matter to settle in tanks. The partially clarified liquid is then drawn off leaving the solid matter, ealled "sludeg," at the bottom for later disposal. This system requires a good deal of time and large settling tanks ; therefore it is suitable only for small quantities of sewage.

Mechanical Straining. This is accomplished in different ways with varying degrees of suceess. Wire screens or filters of various materials may be employed. Straining of itself is of little value except as a step to further pmification. Beds of coke from 6 to 8 inches in depth are often used with good results.

Chemical Precipitation. Sedimentation alone removes only such suspended matter as will sink hy its own weight during the comparatively short time which ean be allowed for the process.

By adding certain substances chemical action is set up, which greatly increases the rapidity with which precipitation takes place.

Some of the organic substances are brought together by the formation of new compounds, and as they fall in flaky masses they cary with them other suspended matter.

A great number and variety of chemicals have heen employed for this purpose, but those which experience has shown to be most useful are lime, sulphate of ahmina and some of the salts of iron.

The lwist drminal th nise in ：my given aise depends mon the chamano of the sewage amd the relative west in that lowality． lime is cherp．but the lager quantity matured greatly in－

 いッ川．

Ther whmicals should lwe added to the sewage ame thoromghly
 the ner of projertions or batiling phatrs phaced in the conduis， handing th the tank．The best results are obtained by means of lomeg．narow tanks．and they shonld he operated on the contimums rather than the intermittent phan．The width of the tank should
 arwag is comsamuly flowing into whe part of the tank and dis－ whane from anmber．In the intermittent system a tank is filler amd that the thow is tumed into amoner，allowing the sewage in the tirat timk thenere torest．In the continums plan the sewage grencally flow though a sot of tamks without intervotion matil
 drawn off from the tol，the shatge is then remosed，and the tank themendy dianterad bufore being pom in mase again．The satis－ fantury diepmal of the shatge is a sommewhat diffientt matter．The must（inmmen mothon is to press it into rakis，which greatly

 and the whon inas ramemen in tulk．la other instances it is rim
 and draine．In wet wather litile deviug take phere and during

and repairs. In general, the tank eapacity should not be much less than $\frac{1}{8}$ the total daily flow.

In the combined system it is impossible to provide tanks for the total amount, and the excess due to stom water must discharge into natural water courses or pass by the works without treatment.

Broad Irrigation or Sewage Farming. Where sewage is applied to the surface of the ground upon which crops are raised the process is called "sewage farming." This varies but little from ordinary irrigation where clean water is used instead of sewage. The land employed for this purpose should have a rather light and porous soil, and the crops should he such as require a large amount of moisture. The application of from 5,000 to 10,000 gallons of sewage per day per acre is considered a liberal allowance. On the basis of 100 gallons of sewage per head of population this would mean that one aere would care for a population of from 50 to 100 people.

Sub=Surface Irrigation. This system is employed only upon a small scale and chiefly for private dwellings, public institutions and for small communities where for any reason surface disposal would be objectionable. The sewage is distributed through agricultural drain tiles laid with open joints and placed only a few inches below the surface. Provision should be made for changing the disposal area as often as the soil may require by turning the sewage into sub-divisions of the distributing pipes.

Intermittent Filtration. 'This method and the broad irrigation already described are the only purification processes in use on a large scale which can remove pratically all the organic matter from sewage without being supplemented by some other method. The proeess is a simple one and consists in running the sewage out through distribnting pipes onto beds of sand 4 or 5 feet in thickness with a system of pipes or drains below for collecting the purified liquid. In operation the sewage is first turned on one bed and then another, thus allowing an opportumity for the liquird portion to filter through. Is the surface becomes clogged it is raked over or the sludge may be scraped off together with a thin layer of sand. The best filtering material consists of a tean, sharp sand with grains of miform size such that the free space

 furn fomml tosive the hest results ratuge from 1 to . 5 of an inch in diamentr. The work done ly a filur is largoty determined by the finer fartive of satud and that used should be of fairly mitom ynality. :mel the coaser and tiner partieles should be well mixal. Tha ara and whme of samd or gravel reguired are so lamer that the tamsurtation of material any great distance eamot

 be brought into the berk so as to disturh their surface as little as

The maller drams shombl not be baced more than 50 feet afart. nsually wneh lass, and should be provided with manholes at the junctions of the pipes. Bafore admitting the sewage to the herls it is usually hest tosereon it sufficiently to take out paper, bags amb wher thating mattor. The size of earh ford should be

Whate the filtration area is small, it must be divided so as to fermit of intemituent opration: that is, if a hed is to be in use athl at inst for equal perionds. then two or more heds would be
 ant rest. Sumb alditiomal area should also be povided for emer-
 areat in litil wht, wh that the sioe of the beds is limited omly by

and without their enclosures. The employees about such works are as healthy as similar classes of men in other oreupations. The crops raised on sewage farms are as healthful as those of the same kind mised elsewhere, and meat and milk from sewage farms are usually as goot as when prodnced muder other conditions. Good design and construction, followed by proper methods of operation, are all that are needed to make sewage purification a success. No one system can be said to be the best for all localities. The special problems of each case must be met and solved by a selection from among the several systems and the combinations. of systems, and parts chosen that are best adapted to the conditions at hand.

EXAIIINATION PAPER.

PLUMBING PART I.

PLUMBING.

Read carefully: Place your name and full address at the head of the paper. Any cheap, light paper like the sample previously sent yon may be used. Do not crowd your work, but arrange it neatly and legibly. Dos not ropy the answers from the Instruction Paper: nse your own words, so that we may be sure that you understand the subject. After completing the work add and sign the following statement:

I hereby certify that the above work is entirely my own.
(Signed)

1. What causes a trap to "siphon," and in what three ways may it be prevented?
2. What size of soil pipe should be nsed for an ordinarysized dwelling, and what pitch should be given to the horizontal portion?
3. What quantity of water per capitat should be allowed in designing a sewerage system?
4. What form of cross-section of conduit gives a maximum velocity of flow to small quantities of sewage?
5. Describe the maner of making house connections with the main sewer.
6. Show by sketeh the general method of rumning the waste and vent pipes in a dwelling honse, and indicate the proper location of traps.
7. What are the two principal methods of sewage purification?
8. Describe the method of making up the joints in cast iron soil pipe.
9. In what way may the seal of a trap be broken besides siphonage?
10. What two tests are usually given to a system of phumb. ing? State the use of each.
 カットいいいい

 phmbine of hatals．

11．What in mwage limming？Deserihe the poeess briefly．
 ＂wif＂．joint：＂．statr the comblitions under which your would nse には川．
lif．What is the usw of a fesk－aim inlet in commetion with

17．Dtaribue the esmoker Tres．＂
1s．shomld a map or tixtme be vented into a chimmey？

$1!1$ ．What matarial is commomly med for semer pipes of difterent sizw＂

シl．Whan are materdmans required and how are they eon－ － $1111 \mathrm{~T} \cdot \mathrm{Cl}$ ）

21．What precantions should be taken in hack venting 1゙ッダ！

 Whanghtimn pipe？

2% IVhat is the minripal print tu hr ahserved in the dis－

$\because-$ ．If：ar preantions shmald be taken in lowating a cess－

PREPAKED BY
Charle: L. Mtbbikd, M.E..
(1)

- Homak Womprater Compasv.

Copythl: 1902.57
Amarience Sehon! of Corveronaun力.
Browo Mus

PLUMBING.

PART II.

DOMESTIC WATER SUPPLY.

Hydraulics of Plumbing. Although the prineiples of H_{y} araulics and Hydrostaties are disenssed in "Meehanics," it will be well to review them brietly, showing their application to the varions problems under the head of "Water Supply."

If several open vessels containing water are connected by pipes, the water will eventually stand at the same level in all of them, regardless of the length or the size of the comerting pipes.

The pressure exerted by a liquid at any given point is the same in all directions, and is proportional to the depth.

A column of water at 60° temperature having a sectional area of one square inch and a height of one foot, weighs . 43 pound, and the pressure exerted by a liquid is usually stated in pounds per square inch, the same as in the case of steam. If a closed vessel is connected, by means of a pipe, with an open vessel at a higher level, so that it is 10 feet, for example, from the bottom of the first vessel to the surface of the water in the second, the pressure on each square inch of the entire bottom of the lower vessel will be $10 \times .43=4.3$ pounds, and the pressure per square inch at any given point in the vessel or ennnecting pipe will be equal to its distance in feet from the surface of the water in the upper vessel multiplied by .43. If a pipe is carried from a reservoir situated on the top of a hill to a point at the foot of the hill a hundred feet below the surface of the water, a pressure of $100 \times .43=43$ pounds per square inch will be exerted at the lower end of the pipe, provided it is closed. When the pipe is opened and the water begins to flow, the conditions are changed and the pressure in the different parts of the pipe varies with the distance from the open end.

In order for a liquid to flow through a pipe there must be a certain pressure or "head" at the inlet end. The total head causing the flow is divided into three parts, as follows: 1st, the

 : fratimalal ratanme thew within the pipe. In the case of long
 small that it may he mosterterl.
 inn fors chations valing in height fom 1 to $1: 5$ feret.

Fable Il gives the drop in pressure date to friction in pipes of
 are fon fifer 100 feret in heiglat. The frictional resistance in -momith !ifer having a constant the of water through them is po[mminnal the latith of pipe. That is, if the friction canses a

 4.11\% $\div \because \because=\because .11:$; jumuls in a pipe $\delta 0$ feet long, acting under the sambermitions. 'The fartors given in the tahle are for pipes of smonth intring. like lead. batse or wromght irom.

Lxample.- 11 -inch pipe 100 feet long commected with at
 abrive the ent of the pipe most the surface of the water in the (ixtom he tu prolure this tlow?

In Table II we fond the friction los for a $12-i n d$ pipe dis-
 fiml a prombe of $5 . \because$ pmomls rorrespomts to a head of 12 feet, which is appoximately the elevation reanimed.

How many gallons will he diseharged through a 2 -inch pije

A lumer pergitimg a maximmof of 10 gallons of water per
 dixtant. and at an mation of in feret above the point of dis-

TABLE 1.

$\begin{gathered} \text { Head } \\ \text { in } \\ \text { feet. } \end{gathered}$	Pressure pounds per square inch square inch	$\begin{gathered} \text { Head } \\ \text { in } \\ \text { feet. } \end{gathered}$	Pressure pounds per square inch.	$\begin{gathered} \text { Head } \\ \text { in } \\ \text { feet. } \end{gathered}$	Pressure pounds per square inch
1	. 43	46	19.92	91	39.42
2	. 86	47	20.35	92	39.85
3	1.30	48	20.79	93	40.28
4	1.73	49	21.22	94	40.72
5	2.16	50	21.65	95	41.15
6	2.59	51	22.09	96	41.58
7	3.03	52	22.52	97	42.01
8	3.46	53	22.95	98	42.45
9	3.89	54	23.39	99	42.88
10	4.33	55	23.82	100	43.31
11	4.76	56	24.26	101	43.75
12	5.20	57	24.69	102	44.18
13	5.63	58	25.12	103	44.61
14	6.06	59	25.55	104	45.05
15	6.49	60	25.99	105	45.48
16	6.92	61	26.42	106	45.91
17	7.36	62	26.85	107	46.34
18	7.79	63	27.29	108	46.78
19	8.22	64	27.72	109	47.21
20	8.66	65	28.15	110	47.64 48.08
21	9.09	66	28.58	111	48.08
22	9.53	67	29.02	112	48.51 +8.94
23	9.96	68	29.45	113	48.94 49.38
24	10.39	69	29.88	114	49.38 49.81
25	10.82	70	30.32	115	49.81 50.24
26	11.26	71	30.75	116	50.68
27	11.69	72	31.18	117	50.68
28	12.12	73	31.62	118	51.11 51.54
29	12.55	74	32.05	119	51.54
30	12.99	75	32.48	120	51.98 52.41
31	13.42	76	32.92	121	52.81
32	13.86	77	33.35	122	53.88
33	14.29	78	33.78	123	53.28 53.71
34	14.72	79	34.21 34.65	124	53.715
35	15.16	80	34.65 35.08	125	54.15 54.58
36	15.59	81	35.08	126	55.01
37	16.02	82	$35.5 \pm$ 35.95	127 128	55.44
38	16.45	83	35.95 36.39	128 129	55.88
39	16.89	84	36.39 36.82	129 130	
40	17.32	85	36.82	130 131	56.31
41	17.75	86	37.20	131	56.14
42	18.19	87	37.68	132	57.18
43	18.62	88	38.12	133	57.61
44	19.05	89	38.55	134	58.04
45	19.49	90	38.9 r	135	$5 \times .48$

Chater What size of pite will be rephimed! Fown Table I wr

 able tow weome the fixtion in the pipe ambernld follow along the line contepmaling to 10 gallons in Table. Il matil we mane to the

TABLE II.

 tain the wablable buad to werentue frictions, and lowk for this
 that a l-inch fiper will dischatge 10 gralloms per minnte with a

EXAMPLES FOR PRACTICE.

1. What size pijer will le repuired to dischatrge to gallons
人וی. 1 inch.
2. What head will be required to discharge 100 gallons per minute through a $2 \underline{2}$-inch pipe 700 feet long?

Ans. 52 feet.

PIPING.

Wrought iron, lead and brass are the principal materials used for water pipes. Wrought-iron pipe is the cheapest and easiest to lay, but is ol,jectionable on account of rust and the consequent discoloration of water passing through it. When it

TABLE III.

$\cdot x \partial \not \partial \omega \mathrm{C}!\mathrm{p} \text { әр!su! Iru!̣uon }$				Internal circumference.	苞								
in.	in.	in.	in.	in.	in.	feet	feet	in.	in.	feet	pounds		
$\frac{1}{5}$. 40	. 068	. 27	. 85	1.27	14.1	9.44	. 05	. 13	2500.	21	27 18	. 00066
	. 54	. 088	. 36	1.14	1.69	10.5	7.05	. 10	.23	1385.	42	18	. 0057
$\frac{3}{4}$. 67	. 091	. 49	1.55	2.12	7.67	5.65	. 19	. 36	${ }^{7} 51.5$. 56	14	. 0102
$\frac{3}{3}$. 84	. 119	. 62	1.95	2.65	6.13	4.50	. 30	. 55	472.4	. 84	14	. 0230
${ }^{3}$	1.05	.113	. 82	2.59	3.29	4.63	3.63	. 53	. 86	270.0	1.12	$11{ }^{1}$. 0408
1	${ }_{1}^{1.31}$. 134	1.05 1.38	3.29 4 4	${ }_{5}^{4.13}$	${ }_{2}^{3.68}$	2.90	.86	1.35	166.9	1.67	$11^{\frac{1}{2}}$. 0638
$1{ }_{1}^{1 \frac{1}{4}}$	1.66 1.90	. 140	1.68	4.33 5.06	5.21 5.96	2.77 2.37	2.30 2.01	1.49 204	2.16 2.83	${ }_{70.6}^{96.2}$	2.26 .269	$111 \frac{1}{2}$. 0918
2	2.37	. 154	2.06	6.49	7.46	1.85	1.61	${ }_{3} 35$	4	42.6 4	${ }^{2.69}$	${ }_{8}^{11}$. 26550
$2 \frac{1}{2}$	287	. 204	247	7.75	9.03	1.54	1.33	4.78	6.49	301	5.7	8	. 3673
3	3.50	. 217	3.06	9.63	10.1	1.24	1.09	\%.39	9.62	19.5	7.54	8	4998
$3 \frac{1}{2}$	4.00	. 226	3.55	11.1	12.5	1.07	. 95	988	12.5	14.5	9.05	8	. 6528
4	4.50	.237	${ }_{4}{ }^{0} 02$	12.6	14.1	. 95	. 85	12.7	15.9	11.3	10.7	8	. 8263
6	${ }_{6}^{5.56}$	${ }^{280}$	5.04	15.8	17.1	. 75	. 63	20.0	24.3	7.2	14.5	8	1.469
6	6.62	. 280	6.06	19.0	20.8	. 63	. 57	28.9	34.4	4.9	18.7	8	1.999

is employed for this purpose it is customary to use galvanized pipe, that is, pipe which has been covered with a thin coating of zinc or zinc and tin. This prevents rust from forming where the zinc is mbroken, but at the joints where threads are cut, and at other places where the zinc becomes loosened, as by bending, the pipe is likely to be eaten away more or less rapidly, depending upon the quality of the water. Zine, when taken into the system, is poisonous, and for this reason gratranized pipes should not ordinarily be used for drinking water.

Thble lll gives the varions dimensions of woushtiton pipe. In using pipe of this kind, it is well to allow something in size for pesilhe chakins ber rast or serliment. Wrhile galvanized fife does mus rast, for at time at least, there is likely to be a romanmes which camses an ancommation of more or less sadiment.

Table IV.
Lead Pipe.

Imon fipe havine a linine of tin ${ }_{1}{ }^{1}$; inch or more in thickness
 wearime qualitios have not yet been thoronghly tested.

Lead Pipe is the best and most widnly used for domestic water shmly. Althours prismons under certain monditions. as
when new and bright and when used with very pure water, it usually becomes coated with a scale which makes it practically harmless. It is more costly than iron pipe, and requires more skill in laying and making up the joints. It is less likely to burst from the action of frost, as it is a soft metal and stretches with the expansion of the ice in the pipe. When it does break under pressure it generally occurs in small holes not over an inch long, which are easily repaired without removing any part of the pipe, while in the case of iron pipe the cracks generally extend the entire length of the section in which the

TABLE V.
Tin-lined Lead Pipe.

			-	\%				洔	
	lb. oz.	1b. oz.	lb. oz.	lb. oz.	lb. oz.				
				10		$\begin{array}{ll}0 & 10 \\ 0 & 10\end{array}$		0 0 8	
$\frac{8}{2}$	$\begin{array}{ll}3 & 0 \\ 3 & 8\end{array}$	2 2 2 12 	$\begin{array}{lr}1 & 12 \\ 2 & 8\end{array}$	$\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}$	$\begin{array}{rr}1 & 0 \\ 1 & 12\end{array}$	0 0 1 18		110	${ }_{0} 12$
$\frac{8}{4}$	3 4 4 8	2 3 3	${ }_{3} 0$	${ }_{2}{ }^{1} 4$	20	112	18	$1{ }^{4}$	
$1{ }^{4}$	$6 \quad 0$	4 4	40	$3{ }^{2} 4$	28	20		18	
$1 \frac{1}{4}$	612	512	412	312	30	2 3 3		${ }_{3}^{2} 0$	
112	90	80	$6{ }_{7}^{4}$	50	$4{ }_{5}^{4}$	$\begin{array}{ll}3 & 8 \\ 4 & 0\end{array}$			
2	$10 \quad 12$	90	70						

water is frozen, and new pipe will be required. Lead pipe is commonly made in six different thicknesses or weights, designated as AAA, AA, A, B, C and D, in which AAA is the heaviest and D the lightest. Table IV gives the principal properties of the heaviest and lightest weight for lead pipe of different diameters.

Tin-lined lead pipe is used to some extent for conveying water for domestic purposes. The principal objection to this pipe lies in the difficulty experienced in making the joints. Tin melts at a considerably lower temperature than lead, so that in making wipe joints it is likely to melt hefore the lead and block up the passage throngh the pipe. Another objection is due to the fact
that the tha limmer and the onter leal conoring are simply pressed turather amd it often happens that in bombing the pipe the lining fuls away fom the leal. thas buth ohstmeting and weakening the fiph. Whan nowl for hat water, the meven expansion of the two metald maty separat the two laters, athe so allse the same Whtionltios alreaty mentioned.

Fig. 1 .

Fig. 2.

The -trongth of tin-lineal pije is abont the same as that of lead pife. the gratur stmosth of the tin heing offer hy the lighter Werieflet of the pip mante in this way.

Brass Pipe. lirass is one of the best materials for hot-

 botwater tomk and mane and when nickel phater is extemsively
 thinknfars ate afpeximatry the same as womghtimon pipe.

PUMPS.

The principle upon which the pump operates has already been taken up, in the Instruction Paper, "Mechanics." The more common forms are known as the "lift pump," the "suction pump" and a combination of the two called the - deep well pump."

Fig. 1 shows a pump of the first kind. In this pump A is the cylinder, B the phonger, C the bottom valve and I the plunger valve. When the plunger is drawn up, a vacum is formed in the cylinder, and water flows in through (${ }^{\prime}$ to fill it. When the plunger is forced down, valve D opens and allows the water to flow through the plunger while (' remains closed. As this operation is repeated, the water is raised by the phunger at each stroke until the entire length of the pump, barrel is filled, and it will then flow from the spont in an intermittent stream.

In the suction pump shown in Fig. 2, the cylinder and valves are the same, but they are placed at the top of the well and are comnected with the water below by means of a pipe, as shown. When the pump is operated, a vacum is formed in the cylinder and pipe below the plunger, and the pressure of the atmosphere upon the surface of the water forces it up the pipe and fills the chamber, after which the action becomes the same as in the case of a lift pump. The pressure of the atmosphere is approximately 15 pounds per square inch, which corresponds to the weight of a column of water 34 feet high, which is the height that the water may be raised theoretically by suction.

When the surface of the water is a greater distance than this below the point of discharge, a pump similar to that shown in Fig. 3 must be used. A is a cylinder with plunger and valves similar to those of a suction pump. The cytinder is supported in the well at some point less than 84 feet above the surface of the water; E is an air chamber connecting with the upper part of the pump cylinder, and F a discharge pipe leading from the hotom of the air chamber E. The action is as follows: water is pumped into the bottom of the air chamber, and as it rises and seals the end of the discharge pipe, the air in the upper part of the chamber is compressed, and as som as sufficient pressure is obtained the water is forced out through the discharge pipe F. The pressure
reyment in the air whmber depends upon the heright to which the water is rained.

The Hydraulic Ram. This is a device for automatically maining water from a lower a a higher level, the only requirements

Fies. within cortain limits being that theram shall heplaced at a given distanre from the springorsomee of supply and at a lower level, depending upon the height to Which the water is to be raised and the length of the pipe throngh Which it is to be forced. The distance from the source or spring to the ram should be at least imon en to 20 feet, in order to secure the reguired velocity for proper operation. A differance in lovel of -2 feet, or even less, is sufticient to operate the ram: hat the ermater the difference. the mone powerfal is its
 fonses. where the water is to be ramserad from sol to biorods,

 Hamoen at an rlevation ten timus arereat as the fall from ther sprine to the ram.

In Fing. 4. A remresents

 the sab: K hrop he it own wright and allows the water

passage flows into the chamber D , where its sudden influx compresses the air in the top of the chamber, and this in turn forces the water upward through the discharge pipe F. As soon as the water in the pipe B becomes quiet, the valve E again opens and the operation is repeated. Bends in either the drive or discharge pipe should le avoided if possible. If elbows are necessary, the extra long turn pattern should be used in order to give as little resistance as possible. These machines are made of iron and

Fig. 5.

Fig. 4.
brass. The valve and stem are of bronze, on account of its wearing qualities.

Cisterns and Tanks. Water cisterns and tanks are made of various materials and in different shapes and sizes, according to the special uses for which they are required. A durable and satisfactory tank may be made of heavy woodwork or plank bolted together with iron rods and nuts and then lined with some sheet metal, such as copper, lead or zinc. Copper or lead makes the best lining, as the zinc has a greater tendency to corrode and become leaky. If copper is used, it should be timned on the outside. Fig. 5 shows a wooden tank in plan, with the method of locking the joints in the copper tining. All nails should be so placed as to be covered by the copper, and the joints soldered with the best quality of solder, which should be allowed to soak into the seams. If the tank is lined with lead, a good weight
shonh be had (abont six permals per statre foot) amd the joints "atrolly wiped be an experiomed workman. If nsed for the stmans of drimking wather, this form of lining is open to the same objottons at lead piper, but if kept filled at all times, and espechally if the water contains minemal matter to amy extent, there is vor lithe dature as a coather is soon fomed over the surface of the lead. protecting it from the action of the water.

Fig. 6.
('ast-irm sectiomal tanks can be hat in atmost any size or shape. A tank of this form is shown in Fig. 6 . It is made up of phates whiels are phaned and holted twether, the joints being made tight with rement. Thre sertions arr mate in convenient sizes, so that they may le hamdled atsily and comvered withont diffienty through small opeming to any pat of the homse. These tanks ate assily sot up, and are practically indestmotihle. Wroughtirm tambs are often used, hut are not as easily handled as either uf thre kimels just desemberl. Tabhe VI will be fomed useful in computiner the size of relindrical tambs.

COLD-W ATER SUPPLY.

Systems. There are two general methods of supplying a builling with water, one known as the "direct supply" system, and thar othre as the "indirect" or "tank" system.

In the direct system each fixture is connected with the suphy pipe and is muler the same pressme as the street main,
unless a reducing valve is introduced. This system is not always desirable, as the street pressure in many places is likely to vary, especially where the water is pumped into the mains. A variable pressure is injurious to the fixtures, causing them to leak much sooner than if subjected to a steady pressure. Where the pressure in the street main exceeds 40 pounds per square inch, a reducing valve should be used if the direct system is to be employed.

TABLE VI.

Capacity of Cisterns, in Gallons, for each 10 inches in Depth.

Diam- eter in feet.	Gallons.	Diam- eter in leet.	Gallons.	Diam- eter in feet.	Gallons.
2.0	19.5	6.0	176.3	10	489.6
2.5	30.5	6.5	206.8	11	592.4
3.0	44.6	7.0	239.9	12	705.0
3.5	60.0	7.5	275.4	13	897.4
4.0	78.3	8.0	313.3	14	959.6
4.5	99.1	8.5	353.7	15	1101.6
5.0	12.2 .4	9.0	396.5	20	1958.4
5.5	148.1	9.5	461.4	25	3059.4

The following factors for changing a given quantity of water from one denomination to another will often be found useful :

$$
\begin{aligned}
& \text { Cubic feet } \times 62 \frac{1}{2}=\text { Pounds } \\
& \text { Pounds } \div 62 \frac{1}{2}=\text { Cubic feet } \\
& \text { Gallons } \times 8.3=\text { Pounds } \\
& \text { Pounds } \div 8.3=\text { Gallons } \\
& \text { Cubic feet } \times 7.2=\text { Gallons } \\
& \text { Gallons } \quad \div 7.2=\text { Cubic feet }
\end{aligned}
$$

For domestic purposes the indirect system is much better. In this case the commection with the street main is carried directly to a tank placed in the attic or at some point above the highest fixture, and all the water used in the house discharged into it. The supply of water is regrulated by a ball-cock in the tank which shuts it off when a certain level is reached. All the plumbing fixtures are supplied from the tank, and are therefore
umber a cometant presume This pressume depends ben the distame of the fintme holn the tamk. The pipes and fixtures in a lumes suppliad with the tank system will last much longer and

Fig. 7.

Erive much bettur monlts that if comered directly with the street main. The tank is also fomml nsefnl fol storage purposes in case of repairs to the strext mams, whirh is often a matter of much inconsenimere.

Figr $\overline{7}$ shows the genemal arangement of the cold-water pipes of an indireret $n p p l y$ syonem. (1 the right is shown the service
pipe, which is carried directly from the street to the attic, and then comnected with a ball-cock located inside the house tank. A supply pipe is taken from the bottom of the tank and carried downward through the building for suppling the various fixtures. A stopcock should be placed in the suply pipe for closing off the tank connections in case of repairs to the house-piping or fixtures.

Tank Overflow Pipe. In order to prevent any possibility of overflow, every house tank should he supplied with an overflow pipe of sufficient size to carry off easily the greatest quantity of water that may be discharged into it. The orerflow from a house tank should never be connected directly witl a sewer or soil pipe, even if provided with traps, for the water may seldom flow

Fig. 8.
through this pipe, thus allowing the trap to become unsealed through evaporation. It is much better to let the end of the overflow pipe be open to the atmosphere or drop over some fixture which is in constant use.

Service Pipe Connections. Fig. 8 shows the usual method of connecting the service pipe with the strect main. The service cock is connected directly with the main, and should be carefully blocked, so that any pressmre of earth from above will not break the connection or strain the cock. To do this properly, the earth under the pipe should be rammed down solid after the connections are made, and the pipe at this point should be supported on sound
"rombn honks. If arahamad iron is nsed for the servier pipe, it shomblat all catses be connmed to the mann somice cock with a shont piede of lam pipe two wr three feet long. for the reason that lad will give or sity with the pressure of the arth without breaking. The remainder of the pipe shombl be varefally embedded in the eath, to prevent uneren strains at any particulat point. Commertinns hetwern the lead and iron pipes should be made by means of hass fermbes and wiped joints. A stopeock should he phaced in the semior pipe just inside the cellar wall, and in a gexition where it will be ancessible in case of aceident. A drip shonld le commeted with the stopoock for daming the pipes when water is shat off.

In protecting pipes against freezing it is well to pack them in hair, felt, gramulated cork or dry shavings where they pass throngh the floor. This is shown in Fig. 8. When the service pipe comes in below the cellar floor, it may bearmaged as shown in Fig. 9. The rook should be placed about 18 inches below the cellar bottom in a wooden box with hinged rover. so that it may be easily reached.
In many citios aml in cortain elevated sithations the pressme in the mains is not suflicient to carry the water to the honse tanks in the atties of the higher buildings, and it becomes néresary to nse stme form of allomatic pump) for this purpose. T'h" somot pmmp, hown in Fig. 10 is especially adapted to uses of this kiml when "puppe.l with an eleotric motor and antomatic -taptime abl stoppime leviers. A float in the tamk operates an eleotric switth by moans of a chain and weights, ats shown. A cratrifugal or rotaly fump is aldo satisfactory for this work.

Aunther dovio. wheh may be attached to a steam pmop is shown in Fig. 11. When the water lime in the tank reaches a given hesight. the float riberes a butterfly valve in the discharge pipe, thas increasing the pressure within it; this
in pressure acts on the bottom of a piston by means of a connecting pipe, and in raising the piston, shuts off the steam supply to the pump. When the water line in the tank is lowered, the float falls

HOT=WATER SUPPLY.

All modern systems of plumbing inelude a hot-water supply to the various sinks, bowls. bathtubs and laundrytubs throughont the house.
Fig. 13 shows the usual arragrement of a kitchen boiler and water-back with the necessary pipe commections. The boiler is

Fir. 11.
commonly made of copper and supported upon a cast-iron base. It may be located in the kitchen near the range, or may le concealed in a nearby eloset. The "water-back," so called, is a special casting placed so as to form one side of the fire box in

Fig. 12.
the range. The cold-water supply pipe to the boiler ustually enters at the top and is carried down to a point near the bottom, as shown ly the dotted lines. Comnection is made between the bottom of the boiler and the lower chamber of the water-back. The upper chamber is connected at a point about one-third of the way up in the side of the boiler, as shown. The circulation of water
thongh the hoiker amb supply pipes is the same as already de-- mibed for hot-wher-heating systems. 'Ther ratige fire in comtact with the wathr-bath heats the water within it, whirh eallses it to rise thrometh the piper comberter with the upper chamber and

Fig. 13.

Huw into the loilom ow tank: in the meantime cooler water flows in at the Jower emmertion to take its place, amb the rireulation thas ert up, is ernstant as lomg as there is a tire in the range.

Ther ". hoiler." so malled, is wot a heater, but only at storage tank. As the water beromm heated it rises to the top of the tank and iv camied to the different fixtures in the building through a pipe of pipes conneeted at this juint. The coll-water supply pipe

is that due to the height of the tank above it. When any of the hot-water faucets are open, the pressure of the cold water in the supply pipe forces out the hot water at the top of the boilers and rushes in to take its place. There is no comnection between the circulation through the water-back and the pressure in the cold-water supply pipe. The circulation is due only to the difference in temperature between the water in the pipe leading from the top of the water-back and the water in the lower part of the boiler, and difference in eleration of the commections with the boiler. The nearer the top of the boiler the discharge from the water-back is connected, the more rapid will be the circulation and the greater the quantity of water which

Fig. 14. will be heated in a given time. The cold-water supply simply furnishes a pressure to force the hot water throngh the pipes to the different fixtures, and replaces any water that is drawn from the boiler.

Care should always be taken to have the pipes between the water back and the boiler free from sediment or any other obstruction. If the water-back from any cause should become shut off from the boiler, an explosion would be likely to occur if there was a hot fire in the range. Freezing of the pipes is sometimes a canse of accident. The sediment which accumulates more or less rapidly shouk be regularly blown off through the blow-off cock provided for this purpose at the bottom of the boiler. The best time for doing this is in the morning, before the fire is started. The device shown in Fig. 14 is intended to prevent the serliment from collecting in the pipes or from being drawn into the waterback, making the water roily when a large amomet is drawn off at one time. It consists of a small cylinder or chamber comnected to the bottom of the boiler in such a way that the sediment will fall into it and not be disturbed by the direnlation of the water through the pipes.

Double Water-bach Connections. It is often desimable to conmer a hoiler with two water-hakk. whe in the kitehen range and another in a lamaly stove in the adtar for summer use.
 In this abo dither mathe used sparately ar both tugether withwit an! : mantment of values. The how-alt cock at the bottom

Fier. 1\%.

 buttom of the luiber.

Double Boiler Connections. It quite frequently happens that

of the limited space in the kitchen. In such cases a second boiler may be comnected with the laundry stove if one is provided, and the water pipes from both boilers be connected together at some point so that they may both discharge hot water into the same general supply.

Stopcocks should be placed in the pipe connections as shown, so that either boiler may be shut off for repairs without interfering with the operation of the other. Waste cocks should always be used for this purpose, so that when closed there will be a connection between the boiler and the atmosphere. This will prevent damage to the boiler in case those in charge should forget to open the cocks when starting upa fire in the stove with which the

Fig. 16. boiler is connected.

Circulation Pipes. It is often desirable to produce a continuous circulation in the distributing pipes so that hot water may be drawn from the faucets at once, without waiting for the cooler water in the pipe between the boiler and the fancet to run out.

This is aromplished hy commecting a suatl pipe with the hotWater pipe near the lamet, and comeeting it with the bottom of the buiber as shown in lig. 17. This makes a rivenit, and a constant viroulation is prodnced he the difference in temperature of the water in the supply and cirembation pipes.

Fig. 1 .

Pipe Connections. liats on chper pipe with sorewed fittinges shomld alwation hom for making the commertions between the: briber aml watw horli. Whore mions are used they shonld have gronnd juints withont parking. Jeanl fipe is too soft to
stand the high temperature to which these pipes are sometimes subjected.

Laundry Boilers. In lamndries, hotels, etc., where a large amount of hot water is used, it is necessary to have a larger storage tank and a heater with more heating surface than can be

Fig. 18.
obtained in the ordinary range water-back. Fig. 18 shows an arrangement for this purpose.

The boiler may be of wrought iron or steel of any size desired, and is usually suspended from the ceiling by means of heavy strap iron. The heaters used are similar to those employed for hot water warming. The method of making the connections is indicated in the illustration.

Ihe capacty of the latater and tank depends entirely upon the dmennt of water med. In somer ebses at lage storate tank amb a companately small heater are preferable, add in others the reverse is mare tesiable.

The repuited grate surfite of the hater may be computed as follow- : fire dotermine or asimme the mamber of gillons to be heated

Fis. 19
to poumts by multiplyine lys a. and moltiply the result by the ase in temperature to whtain the mmber of themal units. Assuming a combustion of five pounds of conl per syume foot of erater amd an efficirncy of s.000 thermal units ler pound

$$
\begin{aligned}
& \therefore \times 5
\end{aligned}
$$

Example- How many square fect of grate surfare: will be requipel th laine the twhumathme of 200 gallons of water per

$\because(11) \times 8.3 \times(1-11-f(1)=5 \times$ sppare feet
$5 \times 8110)$

sider that the tub may be used three or four times per hour as a maximum during the morning. This will vary a good deal, depending upon the character of the building. The above figures are based on apartment hotel practice.

Boilers with Steam Coils. In large buildings where steam is available, the water for domestic purposes is usually warmed by placing a steam coil of brass or copper pipe in the storage tank. This may be a trombone coil made up with brass fittings, or a spiral consisting of a single pipe. Heaters of these types are shown in Figs. 19 and 20 . The former must be used in tanks which are placed horizontally, and the latter in vertical tanks. If the steam is used at boiler pressure, the condensation may return directly to the boiler by gravity ; but if steam at a reduced pressure is used, it must be trapped to the receiver of a return pump or to the sewer.

The cold water is supplied near the bottom of the tank, and the service pipes are taken off

Fig. 20. at the top. A drip pipe should be connected with the bottom, for draining the tank to the sewer. Gate valves should be provided in all pipe connections for shutting off in case of repairs. Sometimes a storage tank is connected with a steam-heating system for winter use, and cross connected with a coal-burning heater for summer use where steam is not available. Such an arrangement is shown in Fig. 21.

The efficiency of a steam coil surrounded by water is much greater than when placed in the air. A brass or copper pipe will give off about 200 thermal units per square foot of surface per hour for each degree difference in temperature between the steam and the surrounding water. This is assuming that the water is
virculating through the heater so that it moves over the coil at a mokerate velonity. In assuming the temperature of the water we mant ake the areare betwern that at the inted and outlet.

ほxample.- llow many squate fort of heating surface will be reguired in a hass coil to heat 100 gatlons of water per hour fomm in degrees to 190 degrees, with steam at $\bar{\sigma}$ pounds pressure?

Fig. 21.

Water to be heated $=100 \times 8.3=8.30$ pounds.
Pise in temperature $=1!00-38=152$ degrees.
Average temperature of water in contact with the coils

$$
=\frac{190-38}{2}=11+\text { degrees }
$$

Temperature of steam at 5 pounds pressure $=228$ degrees.
The required B. 'T. U. per hour $=830 \times 152=126,160$.
Difference between the average temperature of the water and the temperature of the steam $=228-114=114$ degrees.
B. 'T. U. given up to the water per square foot of surface per hour $=114 \times 200=22,800$, and

$$
\frac{126,160}{22,800}=5.5 \text { square feet. Ans. }
$$

EXACIPLES FOR PRACTICE.

1. How many linear feet of 1 -inch brass pipe will be required to heat 150 gallons of water per hour from 40 to 200 degrees, with steam at 20 pounds pressure?

Ans. 21.3 feet.
2. How many square feet of grate surface will be required in a heater to heat 300 gallons of water per hour from 50 to 170 degrees?

Ans. 7.4.square feet.
3. A loot-water storage tank has a steam coil consisting of 30 linear feet of 1 -inch brass pipe. It is desired to connect a coal-luurning heater for summer use which shall have the same capacity. Steam at 5 pounds pressure is used, and the water is raised from 40 to 180 degrees. How many square feet of grate surface are re-

Fig. 22. quired? Ans. 5.9 sq . ft.
4. A hotel has 30 bathtubs, which are used three times apiece between the hours of seven and nine in the morning. The
 Erathons fee hath, and statime with the tank fall of hot water, how many splute foed of grate surfare will be regured to heat the ahlitimal ynamtit! whate within the stated time, if the temper-
 presomm in mad insteal of a heater, hem mathys spatre feet of

Temperature Regulators. Hot-wator stomate tanks having spectal heaters of steam coils shonld he porided with some means
 simple form attached to a coalbuming heater. It consists of a

Fig. 23.
casting atont nine inches long taphed at the ends to receive a -imeh pipe, and comtaning within it a socond shell called the
 with the rimentation pipe as shown in Fig. oz. The generator is fibled with knoneme. or a mixture of kerosene and water, depend-
 latere eferate. The imere chamber connexts with the space below a thexiber mber diaphagrm. The boiling peint of the mixture in the ermetator is lawer than that of water alone and depends upon the promention of keronene nard. so that when the temperature of tha watrer in the ontry ramber reakhes this point, the mixture buits. and its vapur wrates a prosure which forces down the diaphagm and closes the draft dom of the heater with which it is commected.

A form of regulator for use with a steam coil is shown in Fig. 24. This consists of a rod made up of two metals having different coefficients of expansion, and so arranged that this difference in expansion will produce sufficient movement, when the water reaches a given temperature, to open a small valve. This

Fig. 24.
allows water pressure from the street main with which it is connected, to flow into a chamber above a rubber diaphragm, thus closing the steam supply to the coil. When the water cools, the rod contracts, and the pressure is released above the diaphragm, allowing the valve to open amb thus again admit steam to the coil.

GAS FITTING.

Next to heating amd voutiation and phmbing there is mo patt of interion honse donstration reguiriner so murh attention as the gats piping ant sats titting.
(ias piping in haldings shonla he installed aceording to abrinlly drawn sueditations. and only experiented workmen
 - ketely phan sowing the location of all gats serviee and distribating pipes in the building and the locations of the meter ame shant-off rack. The phan should also indicate the exact location and size "I the risers amb the position of the lights in the different rooms.

Service Pipe and Meter. The service pipe ly which the gas is combeyed to a building is always pout in by the gas company. The size of this pipe is governed bey the momber of burners to be - mplied, hat it shonld never in any case, even for the smallest homse. We less than 1 inch in diameter. This maty be slightly latger than is mecessary, but the cost is only a little more and the liability of stoppages is much less ; this also allows for the future ablition of more burners, which is often a matter of much eonronience. sovice and distributing piess for water, or naphtha rats. shomld be from 1.5 to 20 per rent larger than for coal gas. The matorial fon the man serviee pipe, from the street to the homet. should he either lead or wronght iron. Is a rule, wroughtiron ${ }^{\text {njpe with somed joints is preferable to lead, hecause it is }}$ los likely to sag in the trench, thas cansing dips for the accumulation of watar of condensation. Care must be olserver in the い上: of wronghtirn pipe th protect it he coating with asphalt, or (ond tar. th perent corrosion. The pipe shonld also be well supmerel in the tremb. Sevier pipes shond preferably rise from
 -ation to rim batk into the mains. This, however. camot alwass lo. Anow. owing to the relative berels of the strect man and the nuter in the homse. The latter should be placed in a cool, welllighted position. at or helow the level of the lowest burner, which i- W-nally in the rellatr. If the meter is below the gas man, the service pion must grade toward the homse am shond be provided with a hrip pip". ar "siphon," before commetime with the meter.

When water accumulates in the siphon, the cap is removed and the pipe drained. The gas company usually supplies and sets the meter, which should be of ample size for the number of lights burned.

A stopeock, or valve, is placed by the company in the service pipe. so that the gas may be shut oft from each building selarately. This is usually placed outside near the curb in the case of buildings requiring a pipe 1_{2}^{1} inches in diameter, or larger. In the case of theaters or assembly halls it is often required by law as a safeguard in case of fire. The meter is connected with both the service pipe and the main house pipe by means of short connections of extra heavy lead pipe. A cock is placed near the meter, and in large buildings this is arranged so that a lock may be attached to it when the gas is shut off by the company. Gate valves are preferable for gas mains, as they give a free opening equal to the full size of the pipe.

PIPES.

Distributing Pipes. The distributing pipes inside of a house are usually of wrought iron, except where exposed in rooms, or

Fig. 25.

Fig. 26.

Fig. 27.

Fig. 28.
carried along walls lined with enameled brick, or tile, in which case they may be of polished hass, or copper. The chief requirements for wrought-iron distributing pipes are that they he carefully welded and perfectly circular in section. The first is important in order to avoid splitting when cutting or threading them on the pipe hench.

All gas pipes are put together with serewed joints, a threal being cut upon the outside. When the pipe is irregnlar in section the threading will be more or less imperfect, and as a result the joints will be defective. A good gas fitter must examine all pipe as it is delivered at the luilding, and observe the section
dither hy means of the ere or by the me of calipers. Plain wroughtiren pipe is likely to rust upon the inside, esperially where the sass supplided is imperfertly puritiot, and for this reason it is often alvisable to we mathess, or gatranized pipe, for the sumaller sizes.

Fig. 29 .
Fittings and Joints. The fittings used in gas piping are similar to those empleged in steam work, such as couplings, -1hnws, tees, crnses, cte. (see Figs. 25, 20, 27 and 28). Other fittimes bot so extemsively used are the mion, the flange union,

Fig. 30. the rumning sooket and right amd left couplings. Fig. 29 shows a serewed union and Fig. 30 a flange. These fitthegs are of cast iron, or of matleable iron, the latter being preferred for the smallersizes. Fittings maty he either galvanizerl, or mstless, as in the rase of pinge, and it is riperially neessary that they be free from samblus. In making lipe joints the gas fitter should make use of red leml, or red and white lean mixerl, to make up for any possible imperfertions in the threals: this, lowever, should he used sparimely so that the pipe maty mot be choked or reduced in size. The use of gits fiturs' "emment shomble be phabiterl. It is important that earh lemgth shombl be tightly sorewed into the fitting before the mext length is pht on. It is always a wise precaution
to examine each length of pipe before it is put in place, to make sure it is free from imperfections of any kind.

Running Pipes and Risers. All large riser's should be exposed, and it is desirable to keep all piping accessible as far as possible so that it may be easily reached for repairs. All horizontal pipes should be run with an even thongh shight grade toward the riser, and all sags in the pipes must be avoided to prevent the collection of water, and for this reason they should be well supported. Floor boards over all horizontal pipes should be fastened down with screws so that they may be removed for inspection of the pipes. When it becomes necessary to trap a pipe, a drip with a drain cock must be put in, but this should always be avoided underfloors or in other inaccessible places. When pipes under floors run across the timbers, the latter should be cut into near the ends, or where supported upon partitions, in order to avoid weakening the timbers. All branch outlet pipes should be taken from the side or top of the ruming lines, and bracket pipes should be run up from below instead of dropping from above. Never drop a center pipe from the bottom of a running line; always take such an outlet from the side of the pipe. Where possible it is better to carry up a main riser near the center of the building, as the distributing pipes will be smaller than if carried up at one end. Where this is done the timbers will not require so much cutting, and the flow of gas will be more uniform throughout the system.

When a building has different heights of post it is always better to have an independent riser for each height rather than to drop a system of piping from a higher to a lower post and grading to a lower point and establishing drip pipes. Drips in a building should he avoided if possible and the whole system of piping be so arranged that any condensed gas will flow back through the system and into the service pipe. All outlet pipes should be securely fastened in position, so that there will be no possibility of their moving when the fixtures are attached. Center pipes should rest on a solid support fastened to the flow timbers near the top. The pipe should be secorely fastened to the support to prevent movement sidewise. The drop most le perfectly phumb and pass through a guide fastened near the botom of the timbers in order to hold it rigidly in position. (See arrangement. Fig. 31.)

I'nkess otherwise directed, outhets for brackets should be phaced i! feet from the flowe exeret in the cases of hallways and bathromms, where it is customary to place them i feet from the thoor. l pright pipes shomlil he plamh, so that nipples which project through the walls will be level: the nipples shonld not

Fig. 31.
projort mose than ${ }_{4}^{3}$ incl, from the face of the plastering. Lathes and planter together ar* winally about ${ }_{4}^{3}$ inch thick, so the nipples -homil poject about 1 ? inches from the face of the studding. (ras pipes shonld never be phaced on the bottoms of floor timbers that are to be lathed and plastered, because they are inacowsille in case of leakage or alterations.

Pipe Sizes. All risers and distributing pipes, and all
branches to bracket and center lights should be of sufficient size to supply the total number of burners indicated on the plans. Mains and branches should be proportioned according to the number of lights they are to supply, and not the number of outlets.

No pipe should be less than $\frac{3}{3}$ inch in diameter, and this size should not be used for more than two-bracket lights. No pipe for a chandelier should be less than $\frac{1}{2}$ inch up to four burners, and it shonld be at least $\frac{3}{4}$ inch for more than four burners. The following table gives sizes of supply pipes for different numbers of burners and lengths of run.

TABLE VII.

Size of Pipe. Inches.	Greatest Length of Run. Feet.	Greatest Number of Burners to be Supplied
$\stackrel{3}{8}$	20	2
$\frac{1}{2}$	30	4
妥	50	15
1	70	25
$1 \frac{1}{4}$	100	40
$1 \frac{1}{2}$	150	70
2	200	140
21	300	225
3	400	300
4	500	500

Testing Gas Pipes. As soon as the piping is completed, it should be tested by means of an air pump ; a manometer or mercury gage is used to indicate the pressure. In the case of large buildings, it is better to divide the piping into sections, and test each separately. All leaks revealed must be repaired at once, and the test repeated until the whole system is air tight at a pressure of from 15 to 20 inches of mercury, or $7 \frac{1}{2}$ to 10 pounds per square inch.

The final test is of great importance. This test is to provide against future troubles and dangers from leaks resulting from sand holes in the fittings, split pipe, imperfect threads, loose joints or outlets left without capping. If the building is new, a careful inspection should first be made to see that all outlets are closed, then the valve in the service pipe closed and the air pump attached to any convenient side-light. To the sime outlet or an

 he taken that there are mo lakk in the gage or its eomeretions; a dirlat-1.
 immorliatel! aftor the pump stops, thas furenting amy leakage thanary the pmap valus or here joints. When all is ready, fump thes stom full of air mat the momery rises to a height of
 hetwent the pump ant the piping. shomble the mereury column
 are -ntionomty tight for any pessume to which they will afterward be minjewtorl.

If the meremer rises and falls with the strokes of the pump, it imbiattes a large lati or men outlet near the pump. But Ammal there be a split pipue ar an agregation of smatl leaks, the morury will rm hatk statlily betwern the strokes of the pump, thmal more shwly than it rose. Should it rise well in the glass anm sink at the lathe of 1 inch in five serombs, small leaks in fitthers or joints maty le experted.

I leak that cammot be detected be the somm of issuing air maly manally be fomd by applying stemer solp-water with a hrush

 ant in partitinns or moler flows. The ether is put into a heme of the entmorting lose, or in a cup attached to the pump, and forced in with the air. By following the lines of the pipe, the apmoximat" fusition of a leak may be detemined by the odor of eseapince ether.

If the homer is an okl onte or has been finished, the meter slonld bor takion ont and the buttom of the mann riser capped. Nixt remmer all tixtures and ral the ombles. Then use ether to lowate the lak lefore teamg up flows or lngaking partions.

GAS FIXTURES.

Burners. Illuminating gas is a eomplex mixture of gases, of which varions whemical fompmomes of carbon and lydrogen
form the principal light-giving properties. Gas always eontains more or less impurities, such as carbonic oxide, carbonic atid, ammonia, sulphureted hydrogen and bisulphides of carbon. These are partly removed by purifying processes before the gas leaves the works.

When the gas-jet is lighted, the hydrogen is consumed in the lower part of the flame, producing sufficient heat to render the minute particles of carbon incandescent. The hydrogen, in the process of combustion, combines with the oxygen from the air, forming an invisible vapor of water, while the carbon unites with the oxygen, forming carbonic acid.

Virious causes tend to render combustion incomplete: there may be excessive pressure of gas, lack of air or defective burners. An excess of pressure at the burners causes a reduction of the amount of illmmination; on the other hand, if the pressure is insufficient, the heat of the flame will not raise the carbon to a white heat, and the result will be a smoky flame. It therefore follows that for every horner there is a certain pressure ant eoresponding flow of gas which will cause the brightest illumination.

There is a great variety of bumers upon the market, among which the following are the principal types:

The single-jet humer, the bat's-wing bumer, the fish-tail burner, the drgand homer, the regenemative bumer and the incandessent burner.

The Simgle-jet burner (Fig. 32) is the simplest kind, having
muly whe small luhe from which the gas issues. It is suitable conly whe atery small thame is repuited.

The lates-umu ut slit humer (Fig. B3) has a hemispherical rip with a hatrow voriabl slit from which the gas spreats ont in a
 -hap" the wing of a hatt, from which it is mamed. The vommon kiml of slit hamers are mot sumble for use with slobes, as the thatme in likely to aralk the ertass.
 uf a that tip slighty a depessed or concate in the center, with two small holes drilled, as shown in lrig. 35 . Two jets of cymal size fsime form these lonkes, and by impinging unim eath other prodnce a flat flame longer and Fis. n nammer in shate than the bat's-wing, and not unlike the tail of a fish. Neither of these burners require a chmone bint the flames are minally encased with glass globes.

Th, 1 , \%, mml hume (Fig. 3i) consists of a hollow ring of metal commextel with the gas tubre amb perforated on its upper whface with a serius of the holes, from which the gas issues, fomming a fomm flame. This bmmer requires a glass chimney. A- an intense heat of combustion tembs to increase the brilliancy of the flame it is desirable that the harmer tips shall he of a material that will coml the flame as little as posible. On this account

Fis. ; ;

Fig. 37.

Fig. 38.
metal tips are inforios to those made of some nonconducting matwial. surf at lava, alamant, mamel, rete. Detal tips are also mhentionable berause thry corrode rapilly, and thus obstruct the pasace of the gras. Figs. 37 and 36 show lava tips for bat'swing and fish-tail burners. Bumer tips should be cleaned occa-
sionally, but care should be taken not to enlarge the slits or holes.

In all regenerative burners the high temperature due to the combustion in a gas flame is used to raise the temperature of the gas before ignition, and of the air before combustion. These powerful burners are used for lighting streets, stores, halls, ete.

Fig. 39.

Fig. 40.

In the incandescent burner the heat of the flame is applied in raising to incandescence some foreign material, such as a basket of magnesium or platinum wires, or a funnel-shaped asbestos wick or mantel chemically treated with sulphate of zirconium and other chemical elements. A burner of this kind is shown in Fig. 39, where the mantel may be seen supported over the gas flame by a wire at the side. Fig. 40 shows another form of this burner in which a chimney and shade are used in place of a globe. Burners of this kind give a very brilliant white light when used with water gas ummixed with naphtha gases. The mantel, however, is very fragile, and is likely to lose its incandescence when exposed to an atmosphere containing much dust.

The Bunsen burner shown in Fig. 41 is a form much used for laboratory work. It burns.

Fig. 41. with a bluish flame, and gives an intense heat without smoke or soot. The gas before ignition is mixed with a certain quantity of air, the proportions of gas and air being regulated by the thmbserew at the bottom, and by screwing the
onter sutm up or down, thas almitting a greater or less prantity of air at the 口penings indicated hy the arrows. This same principle is milized in a burner for hazing the genemal form of which is shown in liig. $4 \because$. A llame of this kind will easily melt brass in the "pren air.

Fig. 42.

Cocks. It is of greatest importance that the stopocks at the fixtures should be perfectly tight. It is rare to find a house pireal for gas where the pressure test comld be successfully apfind withont first removing the fixtures, as the joints of folding

Fin. 4.3.

Fiig. 44.
 loak bus, thath the pijuing. The wh-fashomed, "all-aromed" cock shomid beror low allowed moder any conditions whatever; only thore parided with stop pins shonld be used. Varions forms of crocks with stop pins are shmon in Figs. 4\%, it and 45. All
joints should be examined and tightened up occasionally to prevent their becoming loose and leaky.

Brackets and Chandeliers. Poor illumination is frefuently caused by ill-designed or poorly constructed brackets or chandeliers. Gas fixtures, almost without exception, are designed solely from an artistic standpoint, without regard to the proper conditions for obtaining the best illumination. Fixtures having too many scrolls or spirals may, in the case of imperfectly purified gas, accu-

Fig. 45.

Fig. 48.
mulate a large amount of a tarry deposit which in time hardens and obstructs the passages. Another fault is the use of very small tubing for the fixtures, while a thire defect consists in the many leaky stopocks of the fixtures, cansed either by defec-
tive wormanship, of by the keys heroming worn and loose. ('ommon foms of hatekets are shown in Figs. fti and 47, the latter home an extemsive hathet. There is an emdless variety of chamdelins used, depemting upen the kind of buiding, the finish of the rown and the mamber of lights required. Figs. 48,49 and 5ll show common forms for dwelling houses, ľig. 50 being used for hallh and corriders.

Fir. 4!

Globes and Shades. Next to the burners, the shape of the ghlous or shades surrombling the flame affects the illuminating [ww. of the light. In order to obtain the lest results, the flow of air th the flam. mast be stealy and uniform. Where the supply is insuflicient the flame is likely to smoke ; on the other hand, too strous a courent of air canses the light to flitker and lecome dim throurth couling.
(ilobes with too small rpenings at the bottom should not be used. Four inches should be the smallest size of opening for an ordinary bumer. All glass globes absorbmore or less light, the
loss varying from 10 per cent for clear glass to 60 per cent or more for colored or painted globes. Clear glass is therefore much more economical, although where softness of light is especially desired the use of opal globes is made necessary.

COOKING AND HEATING BY GAS.

Cooking by gas as well as heating is now very common and there is a great variety of appliances for its use in this way. Cooking by gas is less expensive and less troublesome than by coal, oil or wood and is more healthful on account of the absence of waste heat, smoke and dust. I gas range is always realy for use and is instantly

Fig. 51. lighted by applying a match to the burner. The fire, when kindled, is at once capable of doing its full work; it is easily regulated and can be shut off the moment it has been

Fig. 52. used, so that if properly managed there is no waste of fuel as in the case of coal or wood. The kitchen in the summertime may be kept comparatively cool and comfortable. Gas stoves are made in all sizes, from the simple form shown in Fig. 51 to the most elaborate range for hotel use. A range for family use, with orens and water heater, is shown in Fig. io. Figs. 53 and 54 show the forms of burners used for cooking, the former being a griddle burner and the latter an oven burner.

A broiler is shown in Fig. 55^{5}; the sides are lined with asbestos, and the gas is intronluced through a large number of small
 ar at datmat tire upan hoth sithes.

Heating by Gas. (ias is a foel has mot been heed to any ervan extent for the waming of whale haldings, its application

Fig. it.
heiner hatally confmed to ther heating of single rooms. Unkike
 when lift haming comstantly. In other ways it is cffective and whserniment It is experially alapted to the wamming of small "parmanthe: and single reoms where latat is only wanted oceasion-

Fir. 3.

Hlly ame for hriaf perions of time. In the che of hedrooms. hath-
 is preferable to other modes of Warmiter aml folly as eoonomical. It may he bsed on cond winter days a a suphlementary somere of heat in loroses herateal by stoves or by

Fig. 5\%.
 the recrular luating apparathsin a homs. in the spring or fall, when the fire in the formace or builer has not yet been started. It is wfon empleved as the only means for heating smaller bedrooms, Entest ronms, hathmoms, and for temporary heating in smmmer butelo where fires are reduited moly on oceasional cold days.

The most common form of heater is that shown in Fig. 56. Ihis is masily rariod from room to foom and may be connected
with a gas-jet, after first removing the tip, by means of rubber tubing. The heater is simply a large horner surrounded by a sheet-iron jacket or funnel. Another and more powerfnl form is the gas radiator, shown in Fig. 57. This is arranged with a flue for conducting the products of combustion to the chimney, as shown in the section Fig. 58. Each section of the radiator consists of an outer and an inner tule with the gas flame between the

Fig. 58.

Fig. 37.
two. This space is connected with the flue, while the air to be heated is drawn up throngh the inner tube, as shown by the arrows.

Fig. 59 shows an asbestos incandescent grate, and Fig. 60 a grate provided with gas logs made of metal or terra-cotta and asbestos. The gas issues through small openings among the logs, and gives the appearance of an open wood fire.

Hot-water IIeaters. The use of gas cooking ranges makes it necessary to provide separate means for hating water. 'This is accomplished in several ways. The range shown in Fig. 52 has a boiler attached which is provided with a separate hurner.

Fig. 61 shows a gas heater attached to the ordinary kitchen

-

While I sertion thongh the heater is shewn in Fig. fö. This consists of a chamber surommed by an onter jacket with an air space betwern. Cirentation pipes, thongrla which the water passes, are hang in the buner whmber just alove a powerful gas-humer phated at the hottom of the heatere

A heater of difterem form for labang larger quantities of

Fig. 5s.

Fig. 5!

Fig. 60.
water is shom in Figs. 6.3 and tit. This consists, as in the case just deariberl, of a dirnlation coil suspended above a series of bumprs. The supply of ans admitted to the bumers is regulated hy an antomatic valle, which is opental more or less as the flow of Watrer through the heater is inereased or diminished. When no
water is being used, the gas is shut off from the burners, and only a small "pilot light," which takes its supply from above the automatic valve, is left burning. As soon as a fancet in any part of the building is opened and a flow of water started through the heater, the automatic valve opens, admitting gas to the main burn-

Fig. 62.
ers, which is ignited by the pilot light, and in a few moments hot water will flow from the fatucet. The heater shown has a capacity of 9 gallons per minute from a temperature of 5.5 to 130°.

Another type is that known as the instantaneous water heater, one form of which is shown in Fig. 65. This is marle especially for bathrooms, and will produce a continuous stream of hot water whenever desired. The heater is shown in section in Fig. 66, in
 fif the harners. 1 a conical heatime sing, of atise to retand and - beani the rimer hata, K a perfomated copper soreen, amd L a

 the hatted sutan of the rime The upwad armons show the path of the heat, and har downmand arows the passage of the water.

Fis. 63.

Fig. 64.

gAS METERS.

The meter shmola h_{n}. platerel in sheh a position that it is easily anesihle amb may lar real withme the use of an artificial light. It is commertel intu the sistem leotwern the service pipe aml main riser to the huikling, the comnections leing mate as shown in Fire. 1\%

Differnit moters vary but little in the armarement of the dials. In hare meters there are often as many as five dials, but those mad for dwolling hanses matally have but three. Fig. 68
 ham?. I). (h) the upper dial is mot makn into consideration when
reading the meter, but is used merely for testing. The three dials, which record the consumption of gas, are marked A, B and C, and each complete revolution of the index hand denotes $1,000,10,000$ and 100,000 cubic feet respectively. It should be noted that the index hands on the three dials do not move in the same direction;

Fig. 65.

A and C'move with the hands of a watch, amd I in the opposite direction. The index shown in Fig. GS should be read 48, 700 . Suppose after being used for a time, the hambs should have the position shown in Fig. 69. This would read dit.!ood, and the amount of gas used during this time wond rymal the difference in the readings: $64,900-48,700=16,200$ cubic feet.

（iAS MACHINES．

 up hrieply the＂preation of ont of the forms of gas machines

Fis．ift．

Fig． $1 ;$

Which are used for sumpline privatr residences memufacturing phant．

The general arangement of the apparatus is shown in Fig．

Fig. 70
 with the sapme of gasolime. It harns with a rich hright hame
 the sallue mathat.
 whar of the honse and commeded to it and rmaning madergrommd are the air and git pers commerthe it with the gemerator, which man he a hmotred feet om more anay if desimed. When the mat

Fis. 71 forees a courent of air throngh the grmarator, where it hecomes artmeted, blus forming im illuminating gas that is retmonad through the gas pipe to the homse. Where it is distributed to the fixtures in the manal way. The oproation is antomatic, gas heing genteated only as fast and in such quantities as required for inmediate (omsumption. The proress is contimmos while the burmens are in use, but stops as semen as the lights are extingrished. Power for ruming the air compressor is obtained by the wright shown at the right, whish must be wound up at intervals, depending upon the allommt of wis comsmand. An air compresent to be run by water powne is shown in lig. 71. The antion of has mathine is entimely antomatic. the supply of
 Which, being attamed lis a lever to the value b, regulates the amomat of water sumplied to the whes in fatur proportion to the bomber of bomets lirghed. If all the bomers are shat off, the pros-nte arommanting in the holder . I mises it and shats the water uff. If a hamer is lighted, the hoder falls shightly, allow-
ing just enough water to fall upon the wheel to furnish the amount of gas required. A pump or compressor of this kind requires about two gallons of water per hour for each burner. The advan-

tages of a water compressor over one operated liy a weight are that it requires no attention, never runs down and is ready for immediate use at all times.

The generator is mate up of a momber of evaporating pans or chambers placed in a cylinder one above another. 'These chambers
are doved hy supporthy frames into winding passume, which
 semerator when sit with a brick pitand mamhole at one sinle. It is sulpthed with mica grasis for showing the ammont of gasoline in
 ent pans as rompired. In small plants the gemerator is msmally hanied withont the pit being providal, but for larger plants the setting shown in

Figr 73. - Fig. $\mathfrak{2}$ is recommented. ('irbureted air gas of standard yuality contains 15 per cent of vapor to 85 per cent of air. I regulator or mixer for supplying gas having these proportions is shown insection in Fig. 73. It collsists of a cat-iron case in which is suspended a sheetmetal can, B , filler witly air
and whely sealeq. The balance heam li, to which this is lamg, is - mfontal he the fin II. on agate harings. sine the weight of the call lise inatly batameal hy the ball on the beam E , movement of B
 Gat inside the dhanter A and smrommeng the ean B . If the gas bempmes tor flense. lifines amb opens the ralve (', thus admitting more air; and if it beemmes ton light. (' closes and partially or wholly slants ,ffi the air, as may be required.

EXAIIINATION PAPER.

PLUMBING PARTII.

PLUMBING.

Read carefully: Place your name and full address at the head of the paper. Any cheap light paper like the sample previously sent you may be used. Do not crowd your work, but arrange it neatly and legribly. Do not copy the answers from the Instruction Paper: use your own words, so that we may be sure that you understand the subject. After completing the work add and sign the following statement:

I hereby certify that the above work is entirely my own.
(Signed)

1. A hotel requires a water supply of 200 gallons of water per minute during a certain part of the day. It receives its supply from a reservoir 1,000 feet distant, and located 116 feet above the house tank, in the attic of the building. What size of wrought-iron pipe will be required to bring the water from the reservoir?

Ans. 3 inch.
2. What is the best kind of pipe for domestic water supply under ordinary conditions? When may it be objectionable?
3. A 1-inch pipe is to discharge 40 gallons of water per minute from a cistern placed directly above it. What must be the elevation if we assume the friction in the pipe and bends to be equivalent to 100 feet?

Ans. 111 feet.
4. A house tank is situated 15 feet above a fancet upon the fifth floor of the building. If the stories are 8 feet high, what will be the difference in pressure in pounds per square inch between this faucet and one in the basement?

Ans. 17.8 pounds.
5. Describe the action of an hydraulic ram.
6. A pump has a steam cylinder 6 inches in diameter and a water cylinder 5 inches in diameter. What steam pressure will be required to raise water to an elevation of 100 feet, negleeting friction in the pipe?

Ans. 40.3 pounds.

Sma. $\left\{\begin{array}{l}3.4 .4 \text { pomids. } \\ 79 \text { freet head. }\end{array}\right.$
(1. What is the difference betwern a ${ }^{\text {a }}$ lift pmonp" and a - - wiont pump"? Desorihe the artion of a "deep well" pump.
111. What is the erreatest depthat which a suction pump will

11. What two - Natems of water supply are commonly "mintred:
12. I stumger tank is 10 fere in diameter and 8 feet high. How mant gallons will it hohl:

Ans. $4, \dot{2} 1.6$ gallons.
1 \therefore. Imonern cistem is i fere wide t fert deep and 10 feet lomer. It is desired wrephate it with a tank which shall be 8 f+et in diameter. What would be the required height of the tank: What will be the weight of the water contained in the tank"

$$
\text { Ans. }\left\{\begin{array}{l}
5.9+\text { feet. } \\
1,8759 \text { pounds. }
\end{array}\right.
$$

1t. A 2 -inch pipe is used for conductings water to a house from : sming folle fert amy. If the cistem in the house is 50 thet below the lenel of the phing how many gallons of water will Ans thonath the pige per home:

Ans. $\overline{\text { I }}$ g gallons.
$1 \therefore$ What are the principal eanses of areidents in connection with a kitulan fuiler. and what precautions should be taken to 13*-5ックt them:
14. A swimmine tank is smphied with hot water through a hrot-water heatar similar to a homse heater. Ilow mathy square
 water per hour Srom a twmperature of in to io degrees?

Ans. 4.15 spuare feet.
17. What are circulation pipes when used in connection with a hot-water supply oritm, and how are they connected?
18. How many square feet of heating smbite will he required in a brass coil to heat 160 galloms of water leer hour from 50 degrees to 200 degrees, with steam at ij pounds pessure?

Ans. (i.j) square feet.
19. Describe the principle and artion of a gas machine. How does a regnlator or mixer operate?
20. On July 1 the pointers on a gas-meter stood as shown in Fig. 1, and on Oct. 1 they had moved to the positions shown in Fig. 2. What would be the cost of gas consumed at $\$ 1.25$ per 1,000 cubic feet?

Fig. 1.

Fig. 2.
21. Describe the construction and action of one form of hotwater temperature regulator.
22. A hot-water storage boiler contains a heating coil marle up of 42 linear feet of 1 -inch brass pipe, and is supplied with steam at 5 pounds pressure, and the water is heated from 40 to 140 degrees. It is desired to remove the coil and substitute a coal-burning heater. How many square fect of grate surface will be required to give an equal capacity?

Ans. 9.66 square feet.
23. If a certain heating coil will heat 100 gallons of water per hour from 50 to 180 degrees with steam at $\overline{5}$ pounds pressure, how many gallons will the same coil heat with steam at 30 pounds pressure?

Ans. 140 gallous.
$\because 2$. The following diaspam represents the gas piping in a homse. With the momber of lights supplied by the different outlets. Make the sketwh, amd intiobte the pipe sizes for riser, mains and banchos.

$\therefore . \quad$ Westribe the methon of testing a mew system of piping, amd state how fom womld distinginish between different kinds of leaks.

26 . I lonse moing mall gas is supplied throngh a 2 -inch - ervier pine. Another honse is to be built hating the same numhor of lights, hat is to be suppled with maphtha gas. What will be the required size of serviee pipe?
$\because-$. Ilow shombl the pipes be grated in a system of gas piping: How shonld handhes and drops be commected with the nain!

2- I How dows the eost of cooking aml heating with. gas (ampare with that of coal?

29 . Name and deseribe the different types of bumers. What is the best material for burner tips?
80. What is the best material for hot-water pipes? What are the common defects in pipes lined with another metal?

$$
x-63001
$$

