\$ В 54b b女b

HENDY'S Handy Atlas of the World

Containing New Maps of Each State and Territory in the United States and Each Country in the World

> Also Practical Pointers and Condensed Data for the Machinist, Mechanic, Millman and Miner.

ALPHABETICAL LIST OF STATES AND COUNTRIES

Indicating the Maps in the Atlas on which they are shown

Abyssinia.	Page . .77
Afghanistan.	. 80
Africa....	77
Alabama	35
Alaska	66
Alberta	14
Algeria.	77
Anam.	80
Andorra	. 78
Angola	77
Antarctic Regions	83
Arabia	80
Arctic Regionc.	84
Argentina	76
Arizona.	61
Arkansas.	47
Asia	80
Australia.	81
Austria-Hungery	78
Azores Islands .	77
Bahama Islands .	71
Baluchistan.	80
Barbados.	71
Belgium	78
Belize.	73
Bhutan	80
Bokhara	s0
Bolivia.	76
Borneo	82
Bosnia	78
Brazil	76
British Columbia	15
British Honduras.	73
British Isles	79
Bulgaria	78
Burma.	. 80
California	
Cambodia	80
Canada	
Canal Zone, U. S	70
Canary Islands	77
Cape Breton I	10
Cape of Good Ho	77
Caroline Islands.	82
Central Africa, Br	1.. 77
Central America..	73
Cevton.	80
Chile	76
China	80
Colombia	76
Colorado	59
Connecticut	24
Costa Rica	73
Crete	78
Cuba	70
Curacao	. 71
Dahomey	77
Delaware	28
Denmark	78
Fast Africa, Britis	
Fast Africa, Germa	. 77
East Atrica, Portu	se. 77
East Indies.	82
Ecuador	76

PROJECTION

EXPLANATORY NOTE
 of a globe, if removed and later, For example, Greenland, whlch, on Mercator's Projection, seems to be larger than South America, here is shown in its relative proportion of size to that continent, having less than one-eighth of the latter's area. In fact, this is the oniy projection in which are shown the equivalent areas, or correct sizes, of all parts of the giobe, in their proper relative position.
 FEATURES
Submarine Cahles, shown in fine black lines.
Colonial possessions of European powers in Africa, Asia and Oceania, shown in colors corresponding with those used for mother countries.

ATLAS OF THE WORLD

(ays)

ATLAS OF THE WORLD

MEXICO

AUSTRALIA

NIGARAGUA

PORTUGAL

IRELAND

HONDURAS

BRAZIL

SALVADOR

CHILE

SPAIN ENSIGN

FLAGS OF ALL NATIONS

Land to bo excerased rulued enue: \square

PRINCIPAL CITIES OF THE WORLD

The following list contains the principal towns of the world in all countries except the United States. In it will be found approximately all places of more than thirty thousand inhabitants and most of those of from twenty to thirty thousand. The date of the latest census enumerations and official estimates of the following countries is given as indicating the respective value of the figures used in the compilation: Algeria, 1901; Australia, 1901; Austria Hungary, 1900; British South African States, 1904; England and Wales, 1901, with government estimates of all towns of over 50,000 for 1905; Germany, 1901, with government estimates of Berlin, Hamburg and Essen for 1905; Japan, 1903; Philippine Islands, 1903; Sweden, 1905.

hen, Germany	135,245
Aalborg. Denm	31,457
Aarbus, Denma	51,81
A bbeokuta, Yor	150,000
Aberdare. Wales	43,357
Aderdeen, Scot	167,537
Abo, Russia	38,235
Accrington, En	48,890
Acireale, Italy	35,418
Acton, England	37,744
Adama. Turkey in	15,000
Adelalde, Australia.	170,729
Aden, Arabla	42,758
Adis Abeba, Abyssinia	35,000
Adrianople, Turkey in Europe	81,000
Agra, India.	180,022
Abmadabad, Ind	185,888
Addin, Turkey in	38,000
Aix, France	24,861
Ajmer, India	73,839
Akerman, Ru	32,470
Akita. Japan	34,350
Alcano. Italy	51,809
Alcoy, Spain.	32,053
Aldershot, Engla	30,974
Aleppo, Turkey in	127,150
Alessandria, Italy	71,298
Alexandria, Egypt	319,766
Alexandropol, Russia	32,018
Alexandrovsk, Rus	40,807
Algiers, Algeria	96,542
Alicante, Spain	50,142
Allgarh, India	70,434
Allahabad, Indi	172,032
Allenstein. Germ	24,287
Almeria, Spsin.	47,320
Alost, Belgium.	31,655
Altenburg, Germany	37,110
Altendorf, Germany	63,238
Altona, Germany.	161,501
Alwar, India.	56,771
Ambala, Indi	78,638
Amlens, Fran	90,758
Amoy, China	114,000
Amritsar, India	162,429
Amsterdam, Net	551,415
Ascona, Italy.	56,835
Anderlecht. Bel	51.921
Andijan, Russia in Asis	16,882
Indria, Italy.	49,509
Angers. France	82,308
Angoulema Franca	87,650

Barquisimeto, Venezuela.	31,470
Barranquilla, Colombia.	65,000
Barrow-In-Furness, England. .	60,300
Basel, Swltzerland.	124,392
Basra. Turkey in Asia.	50,000
Batangas, P.	33,131
Batavia, Ja	115,887
Bath, Engiand.	49,817
Batley, England	30,321
Batum, Russia.	28,512
Bauan, P. I.	39,048
Bautzen, Germany	28,125
Bayonne, France	25,075
Bedford, England	35,144
Beirut, Turkey in Asi	118,800
Bekes. Hungary.	37,547
Belfast. Ireland	349,180
Belfort. Fran	32,567
Belgrade. Servia	60,790
Bellary, India.	58,247
Benares. India	209,331
Bender, Russi	35,741
Bendigo. Australia	42,600
Benevento, Italy.	24,447
Berbera, Br, Somalilan	30,000
Berdiansk, Russla.	29,168
Berditchef, Russis	63,728
Bergamo, Italy.	47,772
Bergen, Norway	72,251
Berlat, Roumani	24,000
Beriln. Germany	2,033,000
Bera, Switzerlan	70,339
Bernburg, Germany	34,175
Besancon, France	55,406
Beuthen, Germany	61,369
Beziers, France	52,510
Bhagaipur, India	75,560
Bhaunagar. Indla	56,442
Bhopal, India.	77,023
Bialystok, Russia	63,040
Biel, Swltzerland.	29,304
Blelefeld, Germany	63,040
Bikanor, Indla.	63,078
Bilbao, Spain.	83,30e
Birkenhead, England	118,035
Birmingham, Engiand	542,959
Bltis, Turkey In Asia.	38,800
Blackburn, England.	133,067
Blackpool, England.	47,346
Blagoveschensk, Russia in Asis	37,368
Bloemfontein, Orange R. Col.	33,890
Blols, France.	20.64

PRINCIPAL CITIES OF THE WORLD-Continued

	40,000
Bobrinsk, Russia.	35,177
Bochum, Germany	$6 \mathrm{Ej}, 5 \mathrm{5} 1$
Bogota, Colombia	130,000
Bologna, Italy .	152,009
Bolton, Englan	178,111
Bombay, India	776,006
Bona, Al	36,993
Bonn, Cerman	50,736
Bootle, Engla	62,758
Bordeaux, Franc	257,638
Borgerhout, Belgit	11,075
Botuchany, Rouma	32,000
Boulogne-sur-Mer,	
Boulogne-sur-Selne	
Bourges, France.	66,551
Bournemouth, En	66,168
Bradford, England	286,799
Braga. Portugal	24,202
Bralia. Roumanta	58,392
Brandenburg, Germ	49,250
Breda, Netherlands.	
Bremen. German	163,297
Brescia, Italy.	70,614
Breslau, Germ	422,709
Brest. France.	84,284
Brest-Litovsk, Rus	42,812
Bridgetown, Barb	35,000
Brleg. Germany.	24,224
Brighton, Engla	127,183
Brishane, Australl	122,815
Bristol, England	358,515
Broken Hill. Australl	27,500
Bromberg, Gcrmany	52,204
Bruges, Belgium	53,728
Brunn. Austrla	109,346
Brunswlek, Gcrma	128,226
Brusa, Turkey in A	
Brussels. Belgium.	508,509
Budapest, Hungar	732,322
Budwels, Austria.	39,328
Buenos Aires, Argen	979,235
Bukharest. Rou	282,071
Burgos. Spaln.	30,167
Burnley, Englan	101,682
Burslem, Engla	
Burton-upon-Trent,	52,424
Eury, England.	58,954
Cadiz, Spa	69,382
Caen, Fran	44,794
Cagliarl, Italy	53.747
Cairo. Egypt	570,062
Calals, Franc	59,743
Calcutta, Ind	028,987
Callcut. India	76,881
Callao, Per	31,000
Caltagirone, Ita	44,879
Caltanisetta, Italy	43,303
Camaguey, Cuba	25.102
Cambrldge, Engl	38,393
Canea, Cre	
Cannes, Fran	30,420
Cannstadt, German	28,575
Canterbury, Englan	24,809
Canton, China	800,000
Cape Coast Castle, Gol Africa. \qquad	28,943
Cape Halticn, IIaltl.	29,000
Cape Town, Cape of	
Hope.	87,483
Caracas, Venezuela	72,429
Carcassonne, Fran	30,720
Cardenas, Cuba	26,448
Cardiff. Wales	180,054
Carear, P. I.	31,805
risisle. E	45,478
ra, Italy	4,007

Spa	99,871
Caserts, Italy.	32,709
Cassel, Germany	106,034
Castellon, Spaln.	29,904
Castres, Franc	24,135
Catanla, Italy	
Catanzaro, Ita	31,824
Cawnpur, India	197,170
Ceara, Brazil	40,902
Cebls, P. I.	31,079
Celaya, Mexico	25,565
Cette, France.	33,246
Chalon-sur-SaO	26,462
Changsha, China	
Charleroj, Belgi	26,528
Charlottenburg, Ge	189,305
Chatham, England	40,753
Chaux de Fonds, Switzerland	38,784
Chefu. Chlna..	75,000
Cheltenham, Englan	19,439
Chemnitz, Germany	214,030
Cherbourg. Franc	
Chernigot, Russia	27,006
Chester, England	38,309
Chteta, Italy.	26,368
Chihuahua, M	30,405
Chllan, Chile	36,681
Chinandega, Nica	20,000
Chingtu, China.	,000,000
ChInklang.	167,000
Cholan, China	129,721
Christehurch, New Zea	57,041
Christlania, Norway	227,628
Chungking, China	600,000
Cienfuegos, Cuba.	59,428
Clermont. France	52,833
Clichy, France	
Coatbridge, Scot	
Coban, Guatemala.	30,770
Coblenz, Germany	47,520
Cochabamba, Bollv	21,886
Colmbatore, India.	53,080
Colchesicr. Englan	38,351
Colmar, Germany	
Cologne, Germany	372,529
Colombo, Ceylon	158,228
Combaconum, In	59,673
Como, Italy	38,895
Concepcion, Chile	55,458
Constantlne, Algeri	48,243
Constantinople. Turkey	,125,000
Copenhagen, Dermark	500,479
Cordoba, Argenína.	
Cordova, Spaln	58,275
Cork, Ireland	76,123
Coruna, Spaln	43,971
Courbevole, Fra	23.796
Coutral, Belgium.	34,564
Coventry, Englan	75,134
Crajova, Rouma	45,438
Crefeld, Germany	107,968
Cremona, Italy	37,693
Crewe, Engla	42,075
Cronstadt, Russ	59,539
Croydon, England	147,704
Cuddalore, India	52,216
Cuenca, Ecua	30,000
Cuneo, Italy	27,065
Cuttack, India	51,364
Czegled, Hungar	30,106
Czenstochowa. Ru	53,650
Czernowitz, Austria	67,623
Dacca, Indla.	
Daman, India.	41,671
Damanhur, Egypt	27,263
Damascus, Turkey in As	225,000
DanzIg, Germany.	147,301

,	66,2*
Darlington, England.	44,400
Darmstadt, Germany	72,381
Darwen, England	38,211
Debreczin. Hunga	75,008
Delift. Netherland	32,050
Delhi, India	208,575
Derby, England	122,207
Dessau. Germany	50,849
Deventer, Netherl	27,411
Devonport, England	78,864
Diarbekr, Turkey	34,000
Dljon. France.	71,320
Dordrecht. Ne	43,482
Dorpat, Russ	42,421
Dortmund, Ger	142,733
Doual. France.	33,649
Dover, Engla	41,782
Drammen, Norw	23,003
Dresden, German	480,658
Dublin, Ireland.	373,178
Dudley. England	48,808
Dulsburg. Germany	94,185
Dumbarton, Scotlan	115,176
Dunaburg, Russla.	65,900
Dundee. Scotland	164,260
Dunedin, New Zea	62,300
Dunkirk, France	38,825
Durango, Mexico	31,092
Durban, Natal.	79,000
Düren, German	27,185
Düsseldorf. Germ	213,711
Dvinsk, Russia.	
Ealling, England.	85,040
Eastbourne, England	43,337
East Ham, England	05,089
East London, C. of Go	25,220
Eccles, England.	34,300
Eclja, Spaln	24,395
Edinburgh, Scotland.	338,577
Edmonton, Engla	46,899
Eger, Austrla.	23,675
Eisenach. Germany.	31,457
Ekaterinburg, Russi	55,448
Ekaterinodar, Russla	65,007
Ekaterinoslat, Russi	135,552
Elberfeld, Germany	156,288
Elbing, Germany.	52,518
Elche, Spain.	27,380
Elizavetgrad, Russi	68,188
Elizavetpol, Russi	33,090
Enfleld, England.	42,738
Enschede, Nether	29,510
Erfurt, Germany	85,202
Erivan, Russla.	29,033
Erzerum, Turkey	38,000
Essen, Germany..	229,270
Esslingen, Germa	27,260
Exeter, England	47,185
Faizabad, Indla.	75,085
Falkirk, Scotland	20,271
Farakhabad. India	67,338
Felegyhaza. Hungar	83,400
Ferrara. Italy.	87,648
Ferrol, Spain	25,281
Fez, Morocco	140,000
Flume, Hungary	38,955
Flensburg, German	48,922
Florence, Italy.	205,589
Foggla, Italy	63,151
Folkstone, Eng	30,024
Forli. Italy.	43,708
Forst. Germany	32,150
Fort de France, Marti	22,104
Frankfort-on-Main, Ger	288,089
Frankfortoon-Oder. Germ	61,852

PRINCIPAL CITIES OF THE WORLD-Continued

	$34,$
relberg, Germany	31,
Freiburg, Germany	61,504
Fremantle, Austral	23,006
Fuchau, China	624,000
Fukui, Japan	50,155
Fukuoka, Japa	71,047
Funchal, Madeira	
Fünfkirchen, H	
Fifth, Germany.	
Gäfe, Sweden	30,776
Galatz, Rouman	62,678
Gailipoil, Turkey.	30,000
Gateshead, Engla	120,620
Gaya. India	
Gelsenkirchen,	
Geneva, Swit	112,736
Genoa, Italy	234,710
Georgetown, B	53,176
Gera, Germany	45,034
Ghent, Belgiu	162,925
Gibraltar. Spa	27,460
Giessen, Germ	
Gifu, Japan.	10,188
Gijon, Spain	47,544
Gllilingham, Enc	42,530
Girgenti. Italy	25,025
Gladbach, Germany	58,023
Glasgow, Scotland	809,986
Glauchau, Germany	25,776
Gleiwitz, Germany	
Gloucester, Engla	47,955
Gomel, Russia	45,081
Gorakhpur, India	64,148
Gorlitz, Germany	80,931
Gotha, Germany	34,185
Gottenborg, Swed	138,030
Gottingen, Germany	39,359
Govan, Scotland	76,351
Granada. Nicarag	25,000
Granada. Spain	75,900
Gratz. Austria	138,080
Graudenz, Germany	32,788
Great Grimsby. Engl	68,153
Greenock, Scotland	70,253
Grenoble, France	68,615
Grodno. Russia	41,756
Groningen. Netheriands	71,490
Grosswardeln, Hungar	50,177
Guadalajara, Mexico	101,208
Guanajuato, Mexlco	41,480
Guayaquil, Ecuador	51,000
Guben, Germany	33,135
Gwalior, Indis.	119,433
Haarlem. Netherlan	68,518
Hagen, Germany	50,812
Hague, Netherlands	234,459
Haidarabad, India.	448,448
Fakodate, Japan.	83,313
Halberstadt, Germa	42,810
Halifax, England.	108,419
Halitax. Nova Sco	10,832
IIaile, Germsng	156,609
Hälsingborg, Sweden	27,253
Hama, Turkey in As	44,000
Hamadan, Persia.	40,000
Hamburg, Germany	872,028
IIamilton, Ontarlo. C	52,634
Hamilton, Scotland	32,775
Hamm. Germany	31,390
Handsworth. Engla	52,921
Hangchau, China	300,000
Hankau, China	870,000
Hanley, England	64,607
Hanol. Anam.	103,238
Hanover, Germany	235,049

Harar, Abyssinla	40,000
Harbin, China	60,000
Harburg, Germany	49,153
Hastings, England	66,820
Hav ana. Cuba	262,395
Havre, France	130,196
Heidelberg, Germany	40,121
Heilbronn, Germany	37,891
Helder, Netheriands	20,681
Helsingtors, Finland	93,570
Herat, Afghanistan.	45,000
Hildesheim, Germany	42,973
Himeji, Japan.	36,443
Hirosakl. Japan	36,509
Hiroshima, Japan	121,198
Howart, Australia	34,809
Hodmezo-Vasarbely, Hungary	60,883
Hof, Germany .	32,805
Hongkong, China	136,900
Honolulu, Hawail	39,300
Hornsey, England	72,058
Hove, Engiand	36.542
Howrah, India	157,594
Hubli, India.	60,214
Huddersfield, Eng	96,008
Hue, Anam	50,000
Huil, England	258,127
Hyde, England	32,708
Ibadan, Yoruba	200,000
Ichang, China.	45,000
Igtau. Austria	24,423
Ilford England	41,240
Imoschi, Austria	36,789
Indore, India.	97,804
Innsbruck, Austria	27,058
Inowraclaw, Germany	20,152
Insterburg, Germany	27,288
Ipswich, Engiand.	20,802
Iquique, Chile.	43,005
Irkutsk, Russla in Asia	49,108
Iserlobn. Germany.	27,275
Ismall, Russia	33,607
Ispahan, Persia..	80,000
I vanovo-Voznesensk. P	56,628
Ivry-sur-Seine, France	25,575
Ixelies, Beigium	62,879
Jabalpur. India.	00,318
Jalpur, India.	160,167
Jalandhar, Indla	67,735
Janina, T-ikey	25,000
Jaroslaw, Austr	22,641
Jarrow, England	34,204
Jassy, Roumania	78,069
Jerez, Spaln.	63,473
Jerusalem, Turkey in	18,000
Jhansl, India..	55,724
Jodhpur, India	60,437
Johannesburg, Transvaal	158,580
Jokjokarta, Java	58,229
Jönköping. Swed	23,240
Jumet, Beigium	25,950
Kabul. Atghanistan.	70,000
Kagoshima, Japan.	59,001
Kaiserleh, Turkey in As	72,000
Kalserslautern, Germany	48,310
Kaluga, Russia.........	49,728
Kamenetz, Russi	39,113
Kanazawa, Japan	99,657
Kandahar, Afghanistan	60,000
Karachi, India.	110,663
Kariskrona. Sweden	20,074
Karlsruhe, Germany	97,185
Kaschau, Hungary.	40,102
Kashan, Persia	40,000
Kashgar. Turkestan.	75,000

40,367 Kattowitz, Germany.......... 31,74Kazvin, Persia40,000
34,454
82,000La Paz. Bollvia

PRINCIPAL CITIES OF THE WORLD-Continued

Le Mans, France	63,272
Lemberg, Aust	159,877
Lens, France	24,353
Lenz, Austria.	58,791
Leon, Mexico	63,263
Leon, Nicarag	45,000
Leyton, Englan	88,899
Libau. Russia.	64,505
Lichtenberg, Ge	43,371
Lleben, Austria	21,375
Lege, Belgium	168,532
Legnltz, Germ	54,882
Lima. Peru.	130,000
Limerlck,	45,809
Limoges, Franc	84,121
Linares, Chlle.	33,000
Linares, Spain	38,245
Lincoln, Engla	48,784
Linden, Germa	50,628
Lipa, P. I	37,924
Llsbon, Portug	356,009
Lisle, France	210,696
Liverpool, Engla	730,143
Lodz, Russla	351,570
London, England	,580,016
Zondon, Ont., Cana	37,083
Londonderry. Irelan	39,892
Longton. England.	35,825
Lorca, Spain.	69,836
Lorlent. Fran	44,640
Louvain. Belgium	42,194
Lübeck, Germa	82,098
Lublin, Russla.	50,152
Lucca, Italy.	74,971
Lucerne, Swltzer	32,801
Lucknow, India.	264,049
Ludwlgshaten, Germ	61,814
Lüneburg, Germany	24,715
Luton, England.	36,404
Luxemburg, Lu	20,928
Lyon, France.	159,099
Maastricht. Netherlands.	36,140
Macao, China.	63,991
Macclesfleld, England.	34,635
Madras, Ind ${ }^{\text {a }}$.	509,346
Madrid, Spaln	533,835
Madura, Indla	105,984
Magdeburg, Germany	229,667
Maldstone, England	33,510
Malkop. Russla In	34,191
Mainz. Germany	84,251
Mako, Hungary	33,722
Malaga, Spaln	130,109
Malines, Belgiu	58,101
Malmo. Sweden	70,797
Managua, Nicaragua	30,000
Manchester, England	631,185
Mandalay, India	183,816
Manlla, P. I	219,928
Manipur, Indla	67,093
Manlssa. Turkey in	50,000
Mannheim, Germany	141,131
Mantua, Italy...	29,142
Maracaibo. Venezue	34,284
Maranhao, Brazll.	29,308
Marla Thereslopol, Hung	82,122
Mariapol. Russia.	52,770
Marsala, Italy	57,567
Marsellie. France	491,161
Maskat, Arabia	60,000
Massa, Italy.	26,413
Matanzas, Cuba.	45,282
Matsuyama, Japan	37,841
Matsuye, Japan.	35.081
Maulman. Ind	58,446
Mayebeshi, Japan	41,724
Mecca, Turkey in A	00,000

Mechlin, Belglum...	
Medellin, Colombla	10,000
Medina, Turkey in	48,000
Medinet-el-Fayoum,	40,350
Meerut. India.	118,129
Mehallet-el Kebir,	31,535
Mckinez, Morocco	
Melbourne, Aus	508,450
Mendoza, Arge	
Merlda, Mexico	43.
Merthyr Tydil	69,227
Meshed, Persia.	60,000
Messina. Italy	149,778
Metz, Germany	58,462
Mexico, Mexi	368,777
Middlesborough	
Mllan, Italy .	491,
Minsk, Russl	91,494
Mirzapur, India	79,862
Miskolcz, Hung	43,036
Mitau, Russia.	35,011
Mito, Japa	36,928
Modena, Italy	
Modica. Italy	
Mobllet, Russ	
Molenbeek, Belg	61,122
Molfetta, Italy.	40,135
Mombasa, Br. E.	27,000
Monastir, Turkey	45,000
Mons, Belglum.	27,072
Monterey, Mexlco	
Montevideo, Urug	276,000
Montlucon, France	35,062
Montpeller, France	75,950
Montreal. Canada	267,730
Montreull, Fran	31,773
Monza, Itaiy..	
Morade bad, In	
Morella. Mex	
Morocco, Moroce	
Morshansk, Russ	25,913
Moscow, Russia.	092,360
Mosul, Turkey	61,000
Motherwell, Scotla	30,423
Mountaln Ash, Wa	31,093
Mukden, China..	180,000
Mülhausen, Germany	
M ulheim-on-Rhlne, Germany.	
Mülhelm-on-Ruhr, Germany. .	80,609
Multan. Indla.	87,394
Munlch, Germany	199,959
Münster, Germany	63,776
Murcla, Spaln.	111,538
Mustapha, Alge	
Muttra, Indla	
Mysore. India.	68,111
Nata, Japan	43,133
Nagano. Japan	37,202
NagasakI, Japan	153,293
Nagoya, Japan.	288,639
Nagpur, Indla	127,734
Nagy-Koros, Hungar	
Nakichevan. Rus	40,384
Namangan, Russia	61,900
Namur, Belgium	31,940
Nanchang, China	300,000
Nancy, Franee.	102,559
Nankln. Chlna	270,000
Nantes, Fran	132,990
Naples, Italy	563,540
Nara. Japan.	33,735
Narbonne, France	24,670
Nawangar. India.	53,844
Negapatam, India	57,190
Nelsset, Germany	24,307
Nelson, Englan	32,810
Neully, France	37,03

Neumünster, Germany	
Neustadt. Austria.	28,700
Nevers, France.	27,673
Newcastle, Australl	58,620
Newcastle, England	284,511
New Guatemala. Gu	98,560
Newport, Engla	72,880
Nice, France.	105,100
Nilgata, Japan	59,570
Nijmegen, Nethe	19,342
Nikolatet. Russia	92,060
Nimes. France	80,605
Ningpo, China	260,000
Nissa, Servi	24:000
Nluchwang, China	
Nizhn! Novgorod, Ru	
Nordhausen. Germany	
Norköping, Sweden.	44,378
Northampton. Engl	92,441
Norwich. England	110,741
Nottingham, Engla	251,671
Novara, Italy.	45,248
Novgorod, Russ	20,972
Novo Cherkask	
Nuka, Russla	24,811
Nuremberg, Germany	281,081
Nyrreghybaza, Hungar	33,088
Oaxaca Mexico	
Oberhausen, German	12,148
Odenburg. Hungary	33,478
Odense, Denmark	40,138
Odessa, Russia.	449,673
Offenbach, German	50,468
Okayama, Japan.	81,025
Oldenburg. German	26,850
Oldham, England	140,225
Olmütz, Austria	
Omdurman. Egypt	60,000
Omsk, Russia in As	53,050
Oporto, Portugal	172,421
Oppeln, Germany	30,175
Oran, Algerla	88,235
Orebro. Swed	
Orel. Russla	70,075
Orizaba, Mex	
Orleans, Franc	67,311
Osaka, Japan	095,045
Osh, Russia	37,307
Osnabrück. Germa	51,573
Ostend, Belgium	41,181
Otaru, Japan	
Otsu, Japan	
Ottawa. Ca	59,828
Oulgaret. India	54,965
Ouro Preto, Bra	59,249
Oviedo. Spain	48,103
Oxiord, Englan	40,336
achuca, Mex	37,487
adua. Italy	82,281
Paisley, Scotla	85,804
Pakhol, China.	30,000
Palembang. Sum	53,789
Palermo. Italy	300,004
Paima. Spain	63,937
Palmas, Canary Istand	44,517
Panama, Panam	30,000
Para, Brazill	100,000
Paramaribo, Du	32,585
Parana. Argentina	25,000
Paris. France	2,714,088
Parma, Italy	40,340
Partick, Scotla	64,274
Patlala, India	53,545
Patna. India	134,785
Patras, Greec	50,158 44,208

PRINCIPAL CITIES OF THE WORLD-CONTINUED

PRINCIPAL CITIES OF THE WORLD-Continued

Bwindon, England	45,900
Bydney, Australia	508,501
Syracuse, Italy..	32,887
Byzran, Russia.	33,046
Szegedin, Hungary	102,901
Szekestejervar, Hu	32,107
Szentes, Hungary.	31,308
Tabriz, Persi	200,000
Taganrog, Russ	58,298
Talwan, Formos	18,097
Takamatsu. Japa	37,430
Takasaki, Japan	35,228
Taica, Chile	43,331
Tambof, Russla	49,203
Tammerfors	36,344
Tsmsui. Formosa.	100,000
Tananarivo, Madag	55,579
Tangier, Morocco.	30,056
Tanjore, India.	57,870
'ranta. Egypt	57,289
Taranto, Italy	60,733
Tarbes, France	20,845
Tarnopol, Austria	30,415
Tarragona. Spain	26,285
Tashkend, Turkestan	156,414
Tegucigalpa, Hondu	34,682
Teheran, Persia	280,000
Temesvar. Hung	53,033
Teplitz, Austria	24,560
Terama, Italy.	24,563
Theodosia, Russ	27,236
Thorn, Germany	29,470
Tlentsin, China	750,000
Tifis, Russia.	160,645
Tuburg, Netherla	45,625
Tilsit. Germany	34,539
Tipton, England	30,543
Tiraspol, Russi	29,323
Tiumen, Russia in	35,000
Tlemcen, Algeria.	35,468
Tobolsk. Russia in	21,401
Tojama, Japan.	56,275
Tokat, Turkey in A	60,000
Tokyo, Japan	,818,655
Tokushima, Jap	63,710
Toledo, Spain.	23,303
Toluca. Mexico	29,004
Comsk, Russia in Asl	65,530
Toronto. Canada	208,040
Torquay, England.	33,025
Tortosa. Spain.	25,368
Totonicapam, Guatem	28,310
Tottenham, England.	102,519
Toulon, France.	101,602
Toulouse. Franc	149,841
Tour, France	64,095
Tourcolng, France	79,243
Ournay, Belgium	30,940

volgoda, Russia. 27,88
Volsk, Russia 27,572
Voronezh, Russla. 84,148
Wakayama, Japan 68,527
Wakefleld, England 41,554
Wallasey, England 53,58
Walsall, England. 92,908
Walthamstow, England 95,125
Warrington, England 68,301
Warsaw, Russia 756,42t
Waterford. Ireland 27,941
Weimar, Germany 28,498
Weissenfels. Germany 28,206
Wellington, New Zealand. 52,500
Wenchau, China 80,009
West Bromwich, England 67,823
West Ham, England 294.097
West Hartlepool, England. 62,61
Wlesbaden, Germany 86,111
Wigan, England. 88,581
Willesden, England.
41,604
Wimbledon, England
90,204
90,204
Winnipeg, Manitoba.
Winnipeg, Manitoba.
25,088
25,088
Withington, England 38,201
Witten, Germany 33,535
Wolverhampton, England 99,456
Wood Green, England 34,183
Worcester, England40,705
Wuchang Ching 800,000
Wuchau, China 53,000
Wuhu, China 122,000
Würzburg, Germany 75,409
Yamagata, Japan 40,240
Yarkand, China. 100,000
Yarmouth, England 52,353
Yarosial. Russka 70,610
Yelsk, Russia in Asia 35,448
Yekaterinburg, Russia 55,488
Yekaterinosial. Russia 135,552
Yelets, Russia
66,182
66,182
Yelizavethgrad, Russia
Yelizavethgrad, Russia 45,000
Yochau, China 20,000
Yokohama, Japan 326,035
York, Engiand
42,812
Yurief, Russla
23,517
zaandam, Netherlands.
35,715
35,715
Zanzibar, Zanziba 50,000
Zhitomer, Russia 80,787
Zlttau, Germany 30, 875
Zurich. Switzeriand
62,507
Zwickau. Germany 83,280

PRINCIPAL CITIES OF THE UNITED STATES
 Latest Official Estimates of Population

This alphabetical list of cities of the United States having 10,000 inhabitants or more gives population of cities in States of Florida, Iowa, Kansas, Massachusetts, Minnesota, New Jersey, New York, North Dakota, Rhode Island, South Dakota and Wisconsin in accordance with the State enumerations of 1905, cities of Michigan in accordance with the State enumeration of 1904 and the other cities are estimated as of 1909, under the method adopted by the United States Census Bureau and known as the "arithmetical method." This method rests on the assumption that the annual increase of each year since the last census would be one-tenth of the decennial increase between the last two censuses. The country as a whole and most of the states and cities are growing with a stcadily decreasing per cent. of increase. As this condition has obtained in the United States for the last twenty years it is likely to hold good in the immediate future. Under such conditions the "arithmetical method" has been proved moreaccurate than any alternative method available. Population of places marked thus * are estimated from reliable local sources.

PRINCIPAL CITIES OF THE UNITED STATES

City and State.	Pop.	City and State.	Pop.				
annibal	13,000	Malden,	38,037				
arrisbur	59,870	Manches					
Harrison,	12.				10,203		
Hartford, Con	103.	Manistee			22,572	Sherman	12,5
Haverhill. M	37,83	Manitow		O		Shrevepo	30
azelton	16.352	Mankato,			20,	Sioux	40,9
Helena, Mo	$15,000$	Mansfield,	$21,380$	$0 \mathrm{O}$		Sioux Fa	12,
	$11,565$	Marietta, Ohio	$17,916$			Somervil	69
	$65,468$	Marinette, Wis	15,354				
lyoke,	49,934	Marion	25,045		12,034	4 S. Bethlehe	
mest		Marion, Ohi			37,837	Southbridge, N	
rnell	13,259	Marlboro,			111,529	South Oma	38
uston,	$80,000$				49,669	Spartanbur	16,0
udson, N. Y	10,290				13,098	Spokane,	15,0
Huntington, W	15,220	Massillon,	13,611			Springfie	46
utchinson, K	11,214	Meadville,	10,830		15,9	Springfield,	
yde Park	14,510		19,686		69,6	Springfi	
dependence,					25,8		
dianapolis,							
onton, Oh	12,800	Menomin			567,8	Steelton,	
nw		Meriden, C	20,636		13,352	Steuben	15
hpet		Meridian, M		Pin		Stillwater,	12,435
Ithaca, N. Y	14,615	MichiganCit	18,517				$25,00$
	25,300	Middletown	14.516				
kson, T	18.536		12,105		500,0	Superi	
ksonvil	35.		11.884		25,0		
cksonvil		Milwaukee,	312,948				00
mesto	26,	Minneapolis			18,468	Tamp	22,8
		Mis	20,000		10,184	Taunto	30,9
,		Mobile, Al		Plymou	11,1	Terre Ilaute,	
	232,699	Moline	21,971	Plymou	17,5	Tiff	
	9,845)	16,370			Toled	
nst	48,65		37,963		20.0		
et,	50,00		12,146	Portl	62,493	Topeka	37,817
		MIt.	16,623	Portl	175,000	Travers	11,237
右		Mt.	25,006	Portsm	11,204	r	84,180
ankakee, III				Portsmo			76
ansas City, I	67.613	Muscati	15,087				17.005
ansas City,	250,000		20,897		14,100		
	13,601	Nanti	13,981	Pottsv	17,150	Vicksburg,	
	16,	Nashau,	28,028	Po	25,379	V incennes,	11,509
		Nashvi	95,000	Pr	$214,703$	Waco,	26,303
			14,108	P		W	10,268
			$13,565$	Ou	$\begin{aligned} & 01,534 \\ & 40,534 \end{aligned}$	Walla W	15,450
Knoxville	52,000	New Albany, In	$2 \mathrm{I}, 000$	Ouinc		W	26,282
Kokomo,	12,8:2	New Bedford, Mas	74,362	Racine	32,290	Warwick	73
La Crosse,	2,078	New Britain, Con	34,529	Raleigh	14,315	Washington	
Lafayette,	19,802	New Brunswick,	23,133		97,231	Waterbury,	62,351
Lancaster,		New Haven, Co	131,083	Re	10,715		18,071
Lansing,		New London,		Re	12,650	Water tow	11,258
	15,328	New Orl		Richmon	$\begin{aligned} & 12,682 \\ & 19,682 \end{aligned}$	Waterto	25,447
La Salle, It	10,859	New Roc	20,480	Richmo	$88,345$	$\underset{W}{W}$	14,600
Lawrence,	11,597		283,289		25,226	Wausau,	58
Lawrence,	70,050	Newark,	21,745		181, 266	Webster,	
Leadville, Col.	14,345	Newburg,	26,498		36,2'3		
Leavenwort	20,924	Newburyport,	14,675		24,766	W.	13,611
		Newcastle, Pa.	43,404		15,562	W. Hoboken	29,082
Leor		Vew		Rutland,	$12,038$		11,585
Lewiston,	25,615	Newp		Sacramento,	50,000	Wheeling,	42,798
Lexington, K	30,591	Newport, R. I	25,039	Saginaw, M	$\begin{aligned} & 46,610 \\ & 46,610 \end{aligned}$	White Plai	31,078
Lima, Ohio	26,981	Newton, Ma	36,827	St. Jose	148,569	Wichita,	11,579
Lincol	53,656	New York,	13,781	Louis	712,425	Wichita Falls	8.000
Little Fall	11,122	Niagara Falls	26,560	,	197,023	Wilkes-Barre,	64,324
Little Roc	49,497	Norfolk, Va.	56,902	Salem	36,627	Wilkinsburg	16,588
	17,55.3	Norristown, $\overline{\text { I }}$	24,582	Salt Lake, Utah	90,000	Williamsport, P	30.220
Logansport, I	18,765	North Adams, Mas	22,150	San Antonio, T	93,000	Wilmington, D	90,077
Long Branch,	12,183	Northampton, Ma	19,957	San Diego, Calif	45,000	Wilmington. N.	22,000
Lorain, Ohio.	26,076	N. Tonawan	10,157	Sandusky	20,738	Winona, Minn.	20,334
Los Angeles,	225,000	North Yakima, Was	12,000	San Francis	25,000	Winston-Salem	18,000
Louisville, Ky	24.3,973	Norwich	18,014	San José, Ca	30,000	Woburn, Mass.	14,402
Lowell, Mass	94.889	Oakland, C	190,000	Saratoga Spgs., N.	12,909	Woonsocket, R.	34,841
Lynchbur	18,891 77,042	Ogdensbu	13,179	Sault Ste. Marie, Mich	11,442	Worcester, Mass.	48,710
Lenn, Mass. ${ }_{\text {Le }}$						Yonkers, N. Y.	61,716
Macon, Ga	50,000	Oklahoma, Ok	30.000		126,156	York, Pa.	45,332
Madison, W	24,301		,		250,000	Youngstown, Ohi	55,385
noy City, Pa						Younstil,	25,302

CONCENTRATES

Produced, prepared and treated in our engineering department.

Our experience of over half a century of successful operation is a guarantee of high class, in every detail.

We marlufacture mining and ore reduction machinery of every description for every character of work.
**
We are specialists in hydraulics.

Our shops are new and our equipment the most modern in the West.

If you do not find the information, or value you want in this sample sack of concentrates, write uswe can supply it by the carload.
*

Address all communications to

JOSHUA HENDY IRON WORKS

75 Fremont St., San Francisco, Cal.

Copyright, 1910, by Joshua Hendy 1ron Works, San Francisco, Catifornia

Useful Information

Useful Numbers in Calculating Weights, Measures, Etc.

Feet multiplied by .00019 equals miles.
Yards multiplied by . 0006 equals miles.
Links multiplied by .22 equals yards.
Links multiplied by . 66 equals fect.
Feet multiplied by 1.515 equals links.
Square inches multiplied by .00695 equals square fcet.
Circular inches multiplied by .00546 equals square fect.
Square feet multiplied by . 111 equals square yards.
Acres multiplied by . 4840 equals square yards.
Square yards multiplied by .0002066 equals acres.
Width in chains multiplied by .8 equals acres per mile.
Cubic feet multiplied by . 03704 equals cubic yards.
Cubic inches multiplied by .00058 equals cubic feet.
U. S. bushels multiplied by .0461 equals cubic yards.
U. S. bushels multiplied by 1.2444 equals cubic feet.
U. S. bushels multiplied by 2150.42 equals cubic inches.
Cubic feet multiplied by .8036 equals U. S. bushels.
Cubic inches multiplied by .000465 equals U. S. bushels.
U. S. gallons multiplied by . 13367 equals cubic fect.
U. S. gallons multiplied by . 231 equals cubic inches.
Cubic feet multiplied by 7.48 equals U. S. gallons.
Cylindrical feet multiplied by .0034 equals U. S. gallons.

Pounds multiplied by 009 cquals cwt.
Pounds multiplied by . 00045 equals long tons.
Cubic foot of water multiplied by 62.5 equals libs. avoird.
Cubic inch of water multiplied by .03608 equals llos. a voird.
Cylindracal inch of water multiplied by .02842 equals lhs. avoird.
Cylindrical foot of water multiplied by 49.1 equals lbs. avoird.
Cubic inches multiplied by .004329 equals U. S. gallons.

Cylindrical feet multiplied by 5.874 equals U. S. gallons.
U. S. gallons of water multiplied by 13.44 equals one cwt.
U. S. gallons of water multiplied by 268.8 equals one ton.

Cubic feet of water multiplied by 1.8 equals one cwt.
Cubic feet of water multiplied by 35.88 equals one ton.
Cylindrical foot of water multiplied by 5.875 equals U. S. gallons.

Diameter of a circle multiplied by 3.14159265 equals circumference.
Diameter of a circle multiplied by .8862 equals side of an equal square.
Diameter of a circie multiplied by .7071 equals side of an inscribed square.
Square of a cliameter multiplied by .7854 cquals area of circle.
Circumference of a circle multiplied by .31831 equals diameter.
Side of a square multiplied by 1.128 equals diameter of equal circle.
Square foot of an area multiplied by 1.12837 equals diameter of equal circle.
Square of the diameter of a sphere multiplied by 3.1416 equals convex surface.
Cube of the diameter of a sphere multiplied by . 5236 equals solidity.
Diameter of a sphere multiplied by .806 equals dimensions of equal cube.
Diameter of a sphere multiplied by .6667 equals length of equal cylinder.
Cylindrical inches multiplied by . 0004546 equals cubic feet.
Cylindrical feet multiplied by .02909 equals cubic yards.
Cubic inches multiplied by .003607 equals imperial gallons.
Cubic feet multiplied by . 6232 equals imperial gallons.
Cylindrical inches multiplied by .002832 equals imperial gallons.
Cylindrical feet multiplied by 4.595 equals imperial gallons.
Lineal feet multiplied by . 00019 equals statute miles.
Lineal yards multiplied by .000568 equals statute miles.
Column of water 12 inches high, 1 inch in diameter, equals 341 lbs .
183.346 circular inches equals 1 square foot.

2200 cylindrical inches equals 1 cubic foot.
French metres multiplied by 3.28 equals feet.
Kilogrammes multiplied by 2.205 equals avoird. lbs.
Grammes multiplied by . 002205 equals a voird. lbs.
Square of diameter of cylinder in feet multiplied by depth in feet and by 14 equals barrels of 42 gallons.

Table of Weights and Measures

TIM1 MEASURE.

CUBIC measure.
172S cubic inches. 1 cubic foot
27 cubic feet . 1 cubic yard
16 cubic feet. 1 cord foot
8 cord feet. .
128 cubic feet. . . (1 cord
LAND MEASURE.
7.92 inches . 1 link

25 links. 1 rod
4 rods . 1 chain
80 chains. 1 nile
GIRCULAR MEASURE.
60 seconds.. 1 minute
60 minutes... 1 degree
30 degrees. 1 sign

- 60 degrees . 1 sextant
-90 degrees . 1 quadrant
360 degrees. 1 circle
TABLE OF QUANTITIES.

2 units		dozen
12 dozen.		1 gross
20 units		1 score
24 sheets.		1 quire
20 quires.		1 ream
	GENERAL MEASURE.	
A mile		5280 feet
A knot		6080.26 feet
A cubit		2 feet
A pace.		3 feet
A palin.		3 inches
A hand.		4 inches
Aspan. .		. 9 inches

Metric System

MEASURES OF WEIGITT.
(Unit Gramme.)

	Grains.	$\underset{\text { Troy }}{\mathrm{Oz}}$	Lobs. Avoir.	Cwt.
Centigramme .	0.15432			
Decigramm	1.54323	0.003		
Gramme..	15.43235	0.032	0.002	
Decagramme	154.32349	0.321	0.022	
Hectogramme	1543.23488	3.215	0.220	0.001
Kilogramme. .	15432.34880	32.150	2.204	0.019

MEASURES OF LENGTH.
 (Unit Metre.)

	Inches.	Feet	Yards	Miles
Millimetre....	0.03937	0.003	0.001	\ldots
Centimetre...	0.39371	0.032	0.010	\ldots
Decimetre....	3.93708	0.328	0.109	\ldots
Metre.......	39.37079	3.280	1.093	\ldots
Decametre....	393.70790	32.808	10.936	0.006
Ifectometre...	3937.07900	328.089	109.363	0.062
Kilometre. . 39370.79000	3280.899	1093.633	0.621	

Weights of Flat Iron

Per lineal foot in pounds.
íhickness in inches.

Width in Inch.	1/4	$\frac{5}{16}$	3/8	1/2	5/8	$3 / 4$	7/8	1	11/4	11/2
1/2	. 422	. 52	. 634							
$3 / 4$. 6333	.79 1.05	.950 1.25	1.26 1.67	1.58 2.08	2.50	2.92	3.33	4.17	5.00
11/8	. 930	1.18	1.40	1.87	2.34	2.81	3.38	3.75	4.75	5.70
$11 / 4$	1.04	1.32	1.56	2.08	2.60	3.12	3.64	4.17	5.21	6.25
$13 / 8$	1.14	1.45	1.71	2.29	2.86	3.40	4.01	4.58	5.77	6.97
1112	1.25	1.58	1.88	2.50	3.13	3.75	4.38	5.00	6.25	7.50
$13 / 1$	1.46	1.84	2.19	2.92	3.65	4.37	5.10	5.83	7.29	8.75
2.	1.67	2.11	2.50	3.33	4.17	5.00	5.83	6.67	8.33	10.00
$21 / 4$	1.88	2.37	2.81	3.75	4.69	5.63	6.56	7.50	9.37	11.25
$21 / 2$	2.08	2.63	3.12	4.17	5.21	6.25	7.29	8.33	10.42	12.50
$23 / 4$	2.29	2.89	3.44	4.59	5.73	6.87	8.02	9.17 10.00	11.46	13.75
3	2.50	3.16	3.75	5.00	6.25	7.50 8.12	8.75 9.47	10.00 10.83	12.50	15.00
314	$\stackrel{2.70}{2 .}$	3.42 3.68	4.06 4.38	5.41 5.83	6.77 7.29	8.12 8.75	9.47 10.21	10.83 11.67	13.65 14.58	16.47 17.50
31/2.	2.92 3.11	3.68 3.95	4.38 4.58	5.83 6.25	7.29 7.80	8.75 9.37	10.21 10.93	11.67	15.58	17.50
$4{ }^{3 / 4}$	3.33	4.21	5.00	6.67	8.33	10.00	11.67	13.33	16.67	20.00
$41 / 2$	3.75	4.74	5.63	7.50	9.38	11.25	13.13	15.00	18.75	22.50
5	4.17	5.26	6.25	8.34	10.42	12.50	14.59	16.67	20.84	25.00
6	5.00	6.32	7.50	10.00	12.50	15.00	17.50	20.00	25.01	30.00
7	5.83	7.29	8.75	11.67	14.58	17.50	20.42	23.33	29.18	35.00
8	6.67	8.33	10.00	13.33	16.67	20.00	23.33	26.67	33.35	40.00
10	8.33	10.41	12.50	16.67	20.83	25.00	29.17	33.33 40.00	41.68	50.00
12	10.00	12.50	15.00	20.00	25.00	30.00	35.00	40.00	50.01	60.00

Weights of Iron and Steel

U. S. STANDARD GUAGE

Adopted by the U. S. Government July 1, 1893.

No. of Gauge.	Thickness in Inches.		Weight Square Foot.	No. of Gauge.	Thickness in Inches.		
	Fraction.	Decimals.			Fraction.	Decimals.	
0000000	1/2	. 5	20.00	12	${ }^{7} 8$. 109	4.375
000000	$\frac{15}{15}$. 468	18.75	13	${ }^{3}$. 093	3.75
00000	${ }^{7}$. 437	17.50	14	$\frac{5}{68}$. 078	3.125
0000		. 406	16.25	15	${ }^{198}$. 070	2. 8125
000	3/8	. 375	15.	16	16	. 062	2.5
00	$\frac{11}{3}$. 343	13.75	17	$1{ }^{\circ} \mathrm{O}$.056	2.25
0	$\frac{5}{16}$. 312	12.50	18	2\%	. 05	
1	${ }^{18}$. 281	11.25	19	$1{ }^{7}$. 043	1.75
2	${ }^{17}$. 265	10.625	20	\%	. 037	1.50
3	$1 / 1$. 23	10.	21	- ${ }^{\frac{1}{3} 16}$. 034	1.375
4	${ }_{7}^{15}$. 234	9.375	22	${ }^{12}$. 031	1.25
5	37	. $2 \cdot 8$	8.75	23	${ }^{19} 8$. 028	1.125
6	$\frac{13}{13}$. 20.3	8.125	24	10	. 025	1.
7	${ }^{3}$. 187	7.5	25	320	. 021	. 875
8	11	. 171	6.875	26	I ${ }^{\text {b/ }}$. 018	. 75
9	${ }^{6}$. 156	6.25	27	- ${ }^{1 / 1}$. 017	. 6875
10	${ }^{8}$. 140	5625	28	${ }^{1 / 4}$. 015	. 625
11	1/8	. 125	5.	30	AO	.012	. 5

The U.S. Standard Gauge is the one commonly used in the United States.

BIRMINGHAM GUAGE			
No. of Gauge.	Thickness in Inches	Weight Square Foot	
		Iron.	Steel.
0000	. 454	18.22	18.46
000	. 425	17.05	17.28
00	. 38	15.25	15.45
0	. 34	13.64	13.82
1	. 3	12.04	12.20
2	. 284	11.40	11.55
3	259	10.39	10.53
4	238	9.55	9.68
5	. 22	8.83	8.95
6	. 203	8.15	8.25
7	. 18	7.22	7.32
8	. 165	6.62	6.71
9	. 118	5.94	6.02
10	. 134	5.38	5.45
11	. 12	4.82	4.88
12	. 109	4.37	4.43
13	. 095	3.81	3.86
14	. 083	3.33	3.37
15	. 072	2.89	2.93
16	. 065	2.61	2.64
17	. 0.58	2.33	2.36
18	. 049	1.97	1.99
19	. 012	1.69	1.71
20	. 035	1.40	1.42
21	. 032	1.28	1.30
22	.029	1.12	1.14
23	. 02.5	1.00	1.02
24	022	. 883	. 895
2.5	. 02	. 803	. 813
26	. 018	. 722	. 732
27	. 016	. 642	. 651
28	. 014	. 562	. 569
29	.013		
30	. 012		
31	. 01	. . .	

Weights of Round and Square Steel per Lineal Foot

（Based on 489.6 lbs．per cubic foot）．

SIZE． Inches．	VIt．of Round $1 \mathrm{ft} . \mathrm{lg}$ ．	Wt．of Square $1 \mathrm{ft} . \mathrm{lg}$ ．	SIZE． Inches．	Wt．of Round $1 \mathrm{ft} . \mathrm{lg}$ ．	Wt．of Square $1 \mathrm{ft} . \mathrm{lg}$ ．	SIZE． Inches．	Wt．of Round $1 \mathrm{ft} . \mathrm{lg}$ ．	Wt．of Square $1 \mathrm{ft} . \mathrm{lg}$ ．	SIZE． Inches．	Wt．of Round $1 \mathrm{ft} . \mathrm{lg}$	Wt．of Square $1 \mathrm{ft} . \mathrm{lg}$.
O $\frac{1}{812}$	． 0026	． 0033	2	10.68	13.60	4	42.73	54.40	6	96.14	122.4
＂ $1 / 16$	． 0104	． 0133	＂1／16	11.36	14.46	＂ $1 / 16$	44.07	56.11	＂ 116	98.14	125.0
＂1／8	． 0417	． 0531	＂1／8	12.06	15.35	＂ $1 / 8$	45.44	57.85	＂1／8	100.2	127.6
＂3／16	． 0938	． 1195	＂3／16	12.78	16.27	＂3／16	4683	59.62	＂3／16	102.2	130.2
＂1／4	． 1669	． 2123	＂ $1 / 4$	13.52	17.22	＂ $1 / 4$	48.24	61.41	＂ $1 / 4$	104.3	132.8
＂ 516	． 2608	． 3333	＂ 516	14.28	18.19	＂ 5 偱	49.66	63.23	＂沰	106.4	135.5
＂ $3 / 8$	． 3756	． 4782	＂ $3 / 8$	15.07	19.18	＂ $3 / 8$	51.11	65.08	＂ $3 / 8$	108.5	138.2
＂ 7 ， 6	． 5111	． 6508	＂7／16	15.86	20.20	＂7／5	52.58	66.95	＂7／16	110.7	140.9
＂1／2	． 6676	． 8500	＂ $1 / 2$	16.69	21.25	＂1／2	54.97	68.85	＂ $1 / 2$	112.8	143.6
＂ $9 / 6$	． 8449	1.076	＂ 916	17.53	22.33	＂ 916	55.59	70.78	＂ 96	114.9	146.5
، 6118	1.043	1.328	＂ 68	18.40	23.43	＂＇518	57.12	72.73	＂${ }^{\text {c／8 }}$	117.2	149.2
＂ 1116	1.262	1.608	＂ 116	19.29	24.56	＂ 116	58.67	74.70	＂ $11 / 16$	119.4	152.1
＂3／4	1.502	1.913	＂ $3 / 4$	20.20	25.00	＂3／4	60.25	76.71	＂3／4	121.7	154.9
＂4，${ }^{1 / 16}$	1.763	2.245	＂ 1316	21.12	26.90	＂4 13.16	61.84	78.74	＂13816	123.9	157.8
＂7／8	2.044	2.603	＂7／8	22.07	28.10	＂ $7 / 8$	63.46	80.81	＂7／8	126.2	160.8
＂${ }^{15}$	2.317	2.989	＂ 15	23.04	29.34	＂． 516	65.10	82.89	＂ 1516	128.5	163.6
1	2.670	3.400	3	24.03	30.60	5	66.76	85.00	7	130.9	166.6
＂1／6	3.014	3.838	＂1／16	25.04	31.89	＂1／16	68.44	87.14	＂1／8	135.6	172.6
＂ $1 / 8$	3.379	4.303	＂1／8	26.08	33.20	＂1／8	70.14	89.30	＂${ }^{1 / 4}$	140.4	178.7
＂3／16	3.766	4.795	＂ 316	27.13	34.55	＂3／16	71.86	91.49	＇ $3 / 8$	145.3	184.9
＂1／4	4.173	5.312	＂1／4	28.20	35.92	＂1／4	73.60	93.72	＂ $1 / 2$	150.2	191.3
＂ 416	4.600	5.857	＂ 516	29.30	37.31	＂ 516	75.37	95.96	＂ $5 / 8$	155.2	197.7
＂ $3 / 8$	5.019	6.428	＂ $3 / 8$	30.42	38.73	＂ $3 / 8$	77.15	98.23	＂ $3 / 4$	160.3	204.2
＂7／16	5.518	7.026	＂7／16	31.56	40.18	＂7／6	78.95	100.5	＂7／8	165.6	210：8
	6.008	7.650	＂1／2	32.71	41.65	＂1／2	80.77	102.8	8	171.0	217.6
＂ 9 价	6.520	8.301	＂916	33.90	43.14	＂916	82.62	10．5．2	＂1／8	176.3	224.5
＂5／8	7.051	8.978	＂ $5 / 8$	35.09	44.68	＂5／8	84.49	107.6	＂ $1 / 4$	181.8	231.4
＂11／6	7.604	9.682	＂1116	36.31	46.24	＂11／16	86.38	110.0	＂38	187.3	238.5
	8.178	10.41	＂3／4	37.56	47.82	＇ $3 / 4$	88.29	112.4	＂ $1 / 2$	193.0	245.6
＂ $11 / 16$	8.773	11.17	＂ 19	38.81	49.42	＂ 1316	90.22	114.0	＂ $5 / 8$	198.7	252.9
＂7／8	9.388	11.95	＂7／8	40.10	51.05	＂ $7 / 8$	92.17	117.4	＂ $3 / 4$	204.4	260.3
＂ $19 / 16$	10.02	12.76	＂ 1515	41.40	52.71	＂ 1516	94.14	119.9	＂ $7 / 8$	210.3	267.9

These figures represent the theoretical weights of steel．Iron will run about 2 per cent lighter．

GENERAL RULE．

For round iron，the weight per foot may be found by taking the diameter in quarter inches， squaring it，and dividing by 6 ．

Example．

What is the weight of $2^{\prime \prime}$ round iron？

$$
2^{\prime \prime}=8 \text { quarter inches. } \quad 8^{2}=64
$$

$\frac{64}{6}=10 \frac{3}{3}$ lbs．per foot of $2^{\prime \prime}$ round．

Example．

What is the weight of $3 / 4^{\prime \prime}$ round iron？
$34^{\prime \prime}=3$ quarter inches．$\quad 3^{2}=9$ ．
$\frac{9}{6}=11 / 2 \mathrm{lbs}$ ．per foot of $3 / 4^{\prime \prime}$ round．
The above rule is highly convenient，and cnables mental calculations of weight to be made quickly and accurately．

Circumferences and Areas of Circles.

Diam.	Circumference.	Area.	Diam.	Circumference.	Area.	Diam.	Circumference.	Area.
$\frac{1}{82}$. 098	.0007	9	28.27	63.61	47	147.65	1734.94
${ }^{1}$. 196	. 0030	1/4	29.05	67.20	48	150.80	1809.56
1/8	. 392	. 0122	1/2	29.84	70.88	49	153.94	1885.74
$\frac{8}{16}$. 589	. 0276	$3 / 4$	30.63	74.66	50	157.08	1963.50
$1 / 4$. 785	. 0490	10	31.41	78.53	51	160.22	2042.82
${ }^{6}$. 981	. 0766	$1 / 4$	32.20	82.51	52	163.36	2123.72
3/8	1.178	. 1104	$1 / 2$	32.98	86.59	53	166.50	2206.18
${ }^{7} 16$	1.374	. 1503	3,	33.77	90.76	54	169.65	2290.22
$1 / 2$	1.570	. 1963	11	31.55	95.03	55	172.79	2375.83
$\frac{9}{16}$	1.767	. 2485	$1 / 4$	35.34	99.40	56	175.93	2463.01
$5 / 8$	1.963	. 3067	1/2	36.12	103.86	57	179.07	25.51 .76
$1 \frac{18}{8}$	2.159	. 3712	$3 / 4$	36.91	108.43	58	182.21	2642.08
$3 / 4$	2.356	. 4417	12	37.69	113.09	59	185.35	2733.97
118	2.552	. 5184	$1 /$	38.48	117.85	60	188.50	2827.43
7/8	2.748	. 6013	1/2	39.27	12271	61	191.64	2922.47
$\frac{1}{15}$	2.945	. 6902	$3 / 4$	40.05	127.67	62	194.78	3019.07
1	3.141	. 7854	13	40.84	132.73	63	197.92	3117.25
1/8	3534	. 9940	1/4	41.62	137.88	61	201.06	3216.99
$1 / 4$	3.927	1.227	$1 / 2$	42.41	143.13	65	204.20	3318.31
3/8	4.319	1.484	$3 / 4$	43.19	148.48	66	207.34	3421.19
$1 / 2$	4.712	1. 767	14	43.98	153.93	67	210.49	3525.65
5%	5.105	2.073	1/4	44.76	159.48	68	213.63	3631.68
$3 / 4$	5.497	2.405	1/2	45.55	165.13	69	216.73	3739.28
7/8	5.890	2. 761	$3 / 4$	46.33	170.87	70	219.91	3548.25
2	6.283	3.141	15	47.12	176.78	71	223.05	3959.19
1/8	6.675	3.546	16	50.26	201.06	72	226.19	4071.50
1	7.068	3.976	17	53.40	226.98	73	229.34	4185.39
3/8	7.461	4.130	18	56.54	25.5.47	74	232.48	4300.84
$1 / 2$	7.854	4.908	19	59.69	283.53	75	235.62	4417.86
5/3,	8.246	5.411	20	62.83	314.16	76	238.76	4536.46
3	8.639	5.939	21	65.97	346.36	77	241.90	4656.63
7/8	9.032	6.491	22	69.11	380.13	78	245.04	4778.36
3	9.424	7.068	23	72.25	415.48	79	248.19	4901.67
1/4	10.21	8.295	24	75.39	452.39	80	251.33	5026.55
1/2	10.99	9.621	25	78.54	490.87	81	254.07	5153.00
$3 / 4$	11.78	11.044	26	81.68	530.93	82	257.61	5281.02
4	12.56	12.566	27	84.82	572.56	83	260.75	5410.61
$1 / 4$	13.35	14.186	28	87.96	615.75	84	263.89	5541.77
$1 / 2$	14.13	15. 904	29	91.10	660.52	85	267.04	5674.50
$3 / 4$	14.92	17.720	30	94.24	706.86	86	270.18	5808.80
5	15.70	19.635	31	97.38	7.54 .77	87	273.32	5944.68
$1 / 1$	16.49	21. 647	32	100.53	804.25	88	276.46	6082.12
1/2	17.27	23.758	33	10367	8.55 .30	89	279.60	6221.14
$3 / 4$	18.06	25.967	31	106.81	907.92	90	282.74	6361.73
6^{6}	18.94	28.274	35	109.96	962.11	91	285.88	6503.88
1/1	19.63	30.679	36	113.10	1017.88	92	289.03	6647.61
1/2	20.42	33.183	37	116.24	1075.21	93	292.17	6792.91
$3 / 4$	21.20	35.781	38	119.38	1134. 11	9.4	295.31	6939.78
7	21.99	38.484	39	122.52	1194.59	95	298.45	7088.22
14	22.77	41.282	40	125.66	1256.64	96	301.59	7238.23
$1 / 2$	23.56	44.178	41	128.81	1320.25	97	304.73	7389.81
3	24.31	47.173	42	131.95	1355.44	98	307.88	7542.96
8	25.13	50.265	43	135.09	1452.20	99	311.02	7697.69
$1 / 4$	25.91	53.456	44	138.23	1520.53	100	314.16	7853.98
12	26.70	56.745	45	141.37	1590.43	101	317.30	8011.95
$3 / 4$	27.48	60.132	46	144.51	1661.90	102	320.44	8171.28

Workshop Recipes

BRAZING.-The edges filed or scraped clean and bright, covered with spelter and powdered borax, and exposed in a clear fire to a heat sufficient to melt the solder.

CASE HARDENING WITII PRUSSIATE OF POTASH.-Heat the articles, after polishing, to a bright red, rub the surface over with prussiate of potash, allow it to cool to a dull red, and immerse it in water.
CASE HARDENING MIXTURES.-Three parts of prussiate of potash to one part of sal ammoniac, mixed; or two parts of sal ammoniac, two parts of bone dust, and one part of prussiate of potash.

MIXTURE FOR WELDING STEEL.-One part of sal ammoniac and ten parts of horax pounded together and fused until clear, when it is poured out, and when cool redised to powder.

TEMPERING STEEL.-Stecl in its hardest state being too brittle for most purposes, the requisite strength and elasticity are o! tained by tempering-or letting down the temper, as it is termed-which is performed by heating the hardened steel to a certain degree and cooling it quickly. The requisite heat is usually ascertained by the color which the surface of the steel assumes from the film of oxide thus formed. The degrees of heat to which these several colors correspond are as follows:

At 430, a very faint yellow. At 450, a pale straw color.
Suitable for hard instruments; as hammer faces, drills, etc.
At 470, a full ycllow. At 490, a brown color.
For instruments requiring hard edges without elasticity; as shears, scissors, turning tools, etc.

At 510 , brown, with purple spots. At 538 , purple.
For tools, for cutting wood and soft metals; such as plane-irons, knives, etc.
At 550, dark blue. At 560, full blue.
For tools requiring strong edges without extreme hardness; as cold chisels, axes, cutlery, etc.

At 600 , grayish blue, verging on black.
For spring temper, which will bend before breaking; as saws, sword blades, etc.
If the steel is heated higher than this, the effect of the hardening process is destroyed.
ANNEALING STEEL.-For small pieces of steel, take a piece of gas-pipe two or three inches in diameter, and put the pieces in it, first heating one end of the pipe, and drawing it together, leaving the other end open to look into. When the pieces are of a cherry red, cover the fire with sawdust, use a charcoal fire, and leave the steel in over night.

TO RENEW WORN FILES.-Thoroughly cleanse them from grease or oil with alkali, then dip them in a solution made with one part nitric arid, three parts sulphuric acid, seven parts water by weight; time, five seconds to five minutes, according to fineness of cut. Wash in hot water, dip in lime water, dry and oil them.

- Specially Useful to Engineers in the Mining Districts.

CEMENT FOR CAST IRON.-Two ounces sal ammoniac, one ounce sulphur and sixteen ounces of borings or filings of cast iron, to be mixed well in a mortar and kept diy. When required for use, take one part of this powder to twenty parts of clear iron borings or filings, mix

Workshop Recipes

(Continued)
theroughly in a mortar; make the mixture into a stiff paste with a little water, and then it is ready for use. A little fine grindstone sand improves the cement.
RED LEAD GEMENT FOR FACE JOINTS.-Equal parts of white and red lead mixed with linseed oil to the consistency.
CEMENT-STEAM BOILER.-Litharge in fine powder two parts, very fine sand and quicklime (that has been allowed to slack spontaneously in a damp place), of each one part; mix, and keep it from the air.

Used to mend cracks in boilers and to secure steam joints.
It is made into a paste with boiled oil before application.
CEMENT-STEAM PIPE.-Good linseed-oil varnish is ground with equal weights of white lead, oxide of manganese and pipe clay.

CEMENT-HYDRAULIG.-Made by slaking lime with water containing about two per cent. of gypsum and adding a little sand to the product.

The presence of the gypsum tends to delay the slaking of the lime, and also to harden the substance formed after the slaking.

CEMENT-CUTLERS'.-Black resin four parts, beeswax one part, finely powdered brickdust one part; mix well. Used to fix tools into their handles.

CEMENT-LEATHER.-Cutta-percha one pound, caoutchouc four ounces, pitch two ounces, shellac one ounce, linseed oil two ounces, melted together; must be melted before being applied.

Used for uniting leather or rubber.
SOLDERS.-For Lead, one of tin and one and one-half of lead.
For Tin, one of tin, and two of lead.
For Pewter, two of tin and one of lead.
For Brazing (hardest), three of copper and one of zinc.
For Brazing (hard), one of copper and one of zinc.
For Brazing (soft), one of tin, four of copper and three of zinc; or two of tin and one of antimony.
FLUXES FOR SOLDERING OR WELDING.-For Iron or Steel, borax or sal ammoniac.
For Tinned Iron, resin or chloride of zinc.
For Copper and Brass, sal ammoniac or chloride of zinc.
For Zinc, chloride of zinc.
For Lead, tallow or resin.
For Lead and Tin Pipes, resin and sweet oil.
TO HARDEN CAST IRON.-Many times it is very convenient to make an article of cast iron that needs to be finished, and which should be very hard. Cast iron can be hardened as easily as steel, and to such a degree of hardness that a file will not touch it. Take one-half pint of vitriol, one peck of common salt, one-half pound of saltpeter, two pounds of alum, one-quarter pound prussic potash, one-quarter pound cyanide of potash, all to be dissolved in ten gallons of soft water. Be sure that all the articles are dissolved. Heat the iron to a cherry red and dip it in the solution. If the article needs to be very hard, heat and dip the scond time, and even the third time.

Workshop Recipes

(Continued)
TO INSCRIBE METAL.-Cover the part with melted beeswax; when cold, write what you desire plainly in the wax clean to the metal with scriber, then apply a mixture of $1 / 20$. nitric acid, 1 oz . muriatic acid, with a feather, carefully fill each letter; let it remain from one to ten minuses, according to appearance desired, then throw on water to stop the process of cutting, heat wax to remove it, and you have your inscription.

TO KEEP MACHINERY FROM RUSTING.-Take one ounce of camphor and dissolve it in one pound of melted lard; take off the scum, amd mix in as much fine black as will give it iron color. Clean the machinery and smear it with the mixture. After twenty-four hours rub clean with a soft linen cloth. It will keep clean for months under ordinary circumstances.

TO REMOVE RUST FROM STEEL.-Steel which has been rusted can be cleaned by brushing with a paste compound of $1 / 2$ oz. cyanide potassium, $1 / 2 \mathrm{oz}$. castile soap, 1 oz . whiting, and water sufficient to form a paste. The steel should be washed with a solution of $1 / 2 \mathrm{oz}$. cyanirle potassium in 2 oz. water.

RUST JOINT, QUICK SETTING.-Take flour of sulphur, two pounds, powdered sal ammoniac one pound, iron filings eighty pounds; mix to a paste with water.

RUST JOINT, SLOW SETTING.-Take flour of sulphur one pound, powdered sal ammoniac two pounds, iron filings or borings, two hundred pounds. This is much the better joint, if time can be given to set.

HOW TO MIX PAINTS FOR TINTS.

Mixing Red and Black makes Brown
Mixing Lake and White makes. Rose
Mixing White and Brown makes Chestnut
Mixing White, Blue and Lake makes Purple
Mixing Blue and Lead Color makes Pearl
Mixing White and Carmine makes Pink
Mixing lndigo and Lamp-Black makes Silver Gray
Mixing White and Lamp-Black makes Lead Color
Mixing Black and Venctian Red makes. Chocolate
Mixing White and Green makes Bright Green
Mixing Purple and White makes. French White
Mixing Light Green and Black makes Dark Green
Mixing White and Greer makes Pea Green
Mixing White and Emerald Green makes Brilliant Green
Mixing Red and Yellow makes. Orange
Mixing White and Yellow makes Straw Color
Mixing White, Blue and Black makes. Pearl Gray
Mixing White, Lake and Vermilion makes Flesh Color
Mixing Umber, White and Venetian Red makes Drab
Mixing White, Yellow and Venetian Red makes Cream
Mixing Red, Blue, Black and Red makes. Olive
Mixing Yellow, White and a little Venetian Red makes Buff

Approximate Cost of Erecting Mill Buildings Exclusive of Power House

Free milling	5 STAMPS WITH CONCENT		
Lumber, 32 M. ft. at $\$ 25.00$.	\$800.00	Lumber, 38 M. ft. at \$25.00	\$950.00
Labor, at $\$ 25.00$ per M. ft	800.00	Labor, at \$25.00 per M. ft.	950.00
Labor, setting machinery.	156.00	Labor, setting machinery.	187.00
Shingle roof*	105.00	Shingle roor*	204.00
Hardware	45.00	Hardware.	60.00
Windows, 12	53.00	Windows, 18	80.00
	1,959.00		2,431.00

10 STAMPS

Lumber, $52 \mathrm{M} . \mathrm{ft}$. at \$25.00	\$1,300.00	Lumber, $60 \mathrm{M} . \mathrm{ft}$. at \$ 25.00	\$1,500.00
Lahor, ar \$25.00 per M. ft.	1,300.00	Labor, at \$25.00 per M. ft.	1,500.00
Labor, setting machinery.	315.00	Labor, setting machinery	375.00
Shingle roof*.	145.00	Shingle roof*.	250.00
Hardware.	62.00	Hardware.	95.00
Windows, 16.	71.00	Windows, 20.	88.00
	\$3,193.00		\$3,808.00

20 STAMPS

Lumber, $63 \mathrm{M} . \mathrm{ft}$. at $\$ 25.00$	\$1,575.00	Lumber, $85 \mathrm{M} . \mathrm{ft}$ at $\$ 25.00$	\$2,125.00
Labor, at \$25.00 per M. ft. .	1,575.00	Labor, at \$25.00 per M. ft.	2,125.00
Labor, setting machinery.	470.00	Labor, setting machinery..	562.00
Shingle roof*.	250.00	Shingle roof*.	440.00
Harduare .	77.00	Hardware. .	25.5 .00
Windows, 20.	88.00	Windows, 26.	115.00
	\$4,035.00		\$5,622.00

30 STAMPS

Lumber, 90 M . ft . at $\$ 25.00$	\$2,250.00	Lumber, $106 \mathrm{M} . \mathrm{ft}$. at \$25.00.	\$2,650.00
I abor, at \$25.00 per M. ft. .	2,250.00	Labor, at $\$ 25.00$ per M. ft.	2,650.00
Labor, setting machinery.	550.00	Labor, setting machinery.	750.00
Shingle roof*.	330.00	Shingle roof**	605.00
Hardware	220.00	Hardware.	320.00
Windows, 24.	106.00	Windows, 30.	132.00
	\$5̃,706.00		\$7,107.00

40 STAMPS

Lumber, 108 M. ft. at \$ 25.00 .	\$2,700.00	Lumber, 130 M . ft. at $\$ 25.00$.	\$3,250.00
Labor, at $\$ 25.00$ per M. ft. .	2,700.00	Labor, at $\$ 25.00$ per M. it.. .	\$3,250.00
labor, setting machinery.	715.00	Labor, setting machinery	875.00
Shingle roof*.	430.00	Sningle roof*.	770.00
Hardware.	319.00	Hardware.	390.00
Windows, 28.	125.00	Windows, 34.	150.00
	\$6,989.00		\$8,685.00

[^0]
Amount of Material Required for Buildings

SHINGL.ES. -250 to 1 bundle. 4 bundles $=1,000$ shingles, will cover 100 sq . ft. of surface, laid $4^{\prime \prime}$ to the weather.

1 bundle of $16^{\prime \prime}$ shingles will cover 30 sq. ft ., while the same number of $18^{\prime \prime}$ shingles will cover 33 sq. ft. when laid $51 / 2^{\prime \prime}$ to the weather.

LATH. $-1,000$ laths will cover $70 \mathrm{sq} . \mathrm{yd}$. of surface.
SHAKES. $-1,000$ shakes, $6^{\prime \prime} \times 36^{\prime \prime}$, laid $16^{\prime \prime}$ to the weather, will cover 650 sq . ft. of surface; add for doubling top and bottom courses one extra shake for each ft . in the length of roof.

CORRUGATED GALVANIZED ROOFING.-Size of sheets, 26 inches by from 6 to 10 ft . flat steel, made corrugated with corrugations about $1^{\prime \prime}$ in depth and $5^{\prime \prime}$ between centers of corrugations, laying $24^{\prime \prime}$ wide, with from $3^{\prime \prime}$ to $6^{\prime \prime}$ lap, according to pitch of roof, weigh about one-third more than flat shects of same area.

For roofing, No. 24 is more generally used, while No. 26 is used for siding. Tack with wire nails on ends only and lap one corrugation on sides and from one to two inches on ends. The nail heads are sometimes soldered to assure absolute impermeability. The usual method, however, is to place lead washers under the heads.

LUMBER.-When computing the amount of material required to cover a specified area, arld to the area:

NAILS.-For 1,000 shingles allow 4 lbs of 4 d nails or $31 / 2 \mathrm{lbs}$. of 3 d nails.
For 1,000 lath allow 6 lbs. 3 d fine nails.
", $1,000 \mathrm{ft}$. of clapboarding allow 18 lbs . of 6 d box nails.
" $1,000 \mathrm{ft}$. of board siding allow 20 lbs .8 d or 25 lbs .10 d common nails.
" 10 ft . of partition studding allow 1 lb . of 10 d common nails.
" $1,000 \mathrm{ft}$. of $1^{\prime \prime} \mathrm{x} 3^{\prime \prime}$ flooring allow 45 lbs .10 d common nails.
" $1,000 \mathrm{ft}$. of $1^{\prime \prime} \times 2^{\prime \prime}$ flooring allow 65 lbs .10 d common nails.
", $1,000 \mathrm{ft}$. of pine finish allow 30 lbs . of 8 d wire nails.
BRICK.-A

$13^{\prime \prime}$	"	"	20	"	"	"	"
$18^{\prime \prime}$	"	"	261/2	"	"	"	
$21^{\prime \prime}$	"	"	33 ""	"	"	"	
$27^{\prime \prime}$	"	"		"	"	"	

The weight of brickwork is 112 pounds per $\mathrm{cu} . \mathrm{ft}$.
Laid brick will crush at 500 lbs . per sq. in. or at $72,000 \mathrm{lbs}$. per sq. ft .
Fire brick weighs 150 lbs. per cu. ft.
Cement concrete weighs 140 lbs . per cu. ft.
A bricklayer should average 1,500 bricks in 8 hours, and 2,000 to 2,400 when starting wall before staging or ladder is used. Staging is used above 4 ft .

Brick at $\$ 10.00$ and labor at $\$ 7.50$ per 1,000 should be considered good work.
CONCRETE.

Formula No. 1.

For retaining walls and machinery foundations.
$60 \mathrm{cu} . \mathrm{ft}$. of rock that will pass a 3 -inch mesh screen.
$20 \mathrm{cu} . \mathrm{ft}$. of clean, sharp, coarse sand.
$10 \mathrm{cu} . \mathrm{ft}$. of Portland cement.
Formula No. 2.
For concrete mortar blocks for stamp batteries.
$52 \mathrm{cu} . \mathrm{ft}$. of rock.
$32 \mathrm{cu} . \mathrm{ft}$. of sand.
$16 \mathrm{cu} . \mathrm{ft}$. of cement.
If broken rock is not available, clean creck gravel of the same size may be substituted, but in no case use clay, loam or very fine sand.

Mix all together dry. When required for use, mix small quantities with sufficient water to make a thick mortar, use immediately and tamp with a tamping bar.

Concrete will set sufficiently in 24 hours to sustain a load, and in from three to four days in medium dry weather machinery may be run on the foundations.

Water and Pumping

A United States gallon of fresh water weighs 8.33 pounds and contains 231 cubic inches.
A cubic foot of water weighs 62.4 pounds and contains 1728 cubic inches, or 7.5 gallons.
A British Imperial gallon contains 277.27 cubic inches, which is equivalent to 1.20 United States gallons, or 10 pounds in weight.

The normal pressure of the atmosphere is 14.7 pounds per square inch; it is equal to a column of water 34 feet high, though 20 feet is the greatest suction lift it is advisable to use.

To find the pressure in pounds per square inch of a column of water, multiply the height of the column in feet by .434. To find the head in feet, multiply the pressure in pounds by 2.31 .

The term "head" in connection with pumps is understood to be the sum of the actual elevation and the friction head. The elevation, or lift, is the vertical distance from the surface of the suction water to the center of the discharge outlet.

Friction is that due to the passage of water through the suction and discharge pipes.
In practice, the size of the suction and discharge pipes is usually larger than the openings in the pump. This is especially desirable when the pipe is of any length. The friction head may be greater than the actual elevation, and the cost of the increased pipe size will be saved in a short time by the difference in horse-power. The friction increases with the velocity, and users are reminded that rather than to run the pump considerably above its capacity, it is better to install a larger pump and pipe line.

Doubling the diameter of a pipe increases its capacity four times. Friction of liquids in pipes increases as the square of the velocity.

To find the diameter of a pump cylinder to move a given quantity of water per minute (100 feet of piston being the standard of speed), divide the number of gallons by 4 , then extract the square root, and the product will be the diameter in inches of the pump cylinder.

To find quantity of water elevated in one minute, running at 100 feet of piston speed per minute. Square the diameter of the water cylinder in inches and multiply by 4.

Example-Capacity of a 5 inch cylinder is desired. The square of the diameter (5 inches) is 25 , which, multiplied by 4 , gives 100 , the number of gallons per minute (approximately).

To find the horsepower necessary to elevate water to a given height, multiply the weight of the water elevated per minute in pounds by the height in feet, and divide the product by 33,000 , (an allowance should be added for water friction, and a further allowance for loss in steam cylinder, say from 20 to 30 per cent).

The area of the steam piston, multiplied by the steam pressure, gives the total amount of pressure that can be exerted. The area of the water piston, multiplied by the pressure of water per square inch, gives the resistance. A margin must be made between the power and the resistance to move the pistons at the required speed, say from 20 to 40 per cent., according to specd and other conditions.

Quantity of water in gallons per minute and velocity of flow in feet per second being given to find area of pipe in square inches, multiply quantity by 231 and divide by velocity multiplied by 720. Area of pipe and velocity being given, to find quantity delivered, multiply area of pipe by velocity and by 720 , and divide product by 231 .

A "miners inch" of water in California is regulated by law and is equal to a flow of one and one-half cubic feet of water per minute through any opening and under any pressure.

Standard Dimensions of Wrought-Iron Pipe for Water, Gas or Steam

$\begin{aligned} & \text { Nominal } \\ & \text { Size. } \end{aligned}$	$\begin{gathered} \text { Actual } \\ \text { Inside } \\ \text { Diameter. } \end{gathered}$	$\begin{gathered} \text { Actual } \\ \text { Outside } \\ \text { Diameter. } \end{gathered}$	Diameter at Bottom of Thread at End of Pipe	Diameter at Top of Thread at End of Pipe	Number of Threads per Inch.	$\begin{aligned} & \text { Length } \\ & \text { of Perfect } \\ & \text { Screw. } \end{aligned}$	Weight ner Foot of Length.	Contents in U.S. Gallons per Foot.
Inch.	Inch.	Inch.	Inch.	Inch.		Inch.	Lus.	
1/8	. 270	. 405	. 334	. 393	27	. 19	. 241	. 0006
1/4	. 364	. 540	. 433	. 522	18	. 29	. 420	. 0026
$3 / 8$. 494	. 675	. 567	. 656	18	. 30	. 559	. 0057
1/2	. 623	. 840	. 701	815	14	. 39	. 837	. 0102
34	. 824	1.050	. 911	1.025	14	. 40	1.115	. 0230
1	1.0.18	1.315	1.144	1.283	111/2	. 51	1.668	. 0408
1114	1.380	1.660	1.488	1.627	$111 / 2$. 54	2.244	. 0638
11/2	1.610	1.900	1.727	1.866	$111 / 2$. 55	2.678	. 0918
2	2.067	2.375	2.200	2.339	$111 / 2$. 58	3.609	. 1632
21/2	2.468	2.875	2.620	2.820	8	. 89	5.739	. 2550
3	3.067	3.500	3.241	3.441	8	. 95	7.536	. 3673
$31 / 2$	3.548	4.000	3.738	3.938	8	1.00	9.001	. 4998
4	4.026	4.500	4.235	4.435	8	1.05	10.665	. 6528
41/2	4.508	5.000	4.732	4.932	8	1.10	12.490	. 8263
5	5.045	5.563	5.291	5.491	8	1.16	14.502	1.020
6	6.065	6.625	6.346	6.546	8	1.26	18.762	1.469
7	7.023	7.625	7.340	7.540	8	1.36	23.271	1.999
8	7.982	8.625	8.334	8.534	8	1.46	28.177	2.611
9	9.000	9.625	9.327	9.527	8	1.57	33.701	3.300
10	10.019	10.750	10.445	10.645	8	1.68	40.065	4.081
12	12.000	12.750	12.431	12.631	8	1.87	48.985	5.875

$11 / 4$ inch and below are butt-welded and tested to 300 lbs . per sq. in. $11 / 2$ inch and above are lap-welded and tested to 500 lbs . per sq.in.

Light Wrought-Iron Artesian, Salt, Oil and Gas Well Casing

Nominal Inside Diameter Inches.	Actual Outside Diameter. Inches.	$\begin{aligned} & \text { Nominal } \\ & \text { Weight per } \\ & \text { Foot. } \\ & \text { Pounds. } \end{aligned}$	No. Threads per Inch of Screw.	$\begin{aligned} & \text { Nominal } \\ & \text { Inside } \\ & \text { Diameter. } \\ & \text { Inches. } \end{aligned}$	$\begin{aligned} & \text { Actual } \\ & \text { Outside } \\ & \text { Diameter. } \\ & \text { Inches. } \end{aligned}$	$\begin{gathered} \text { Nominal } \\ \text { Welght per } \\ \text { Foot. } \\ \text { Pounds. } \end{gathered}$	No. Threads per Inch of Screw.
2	21/4	2.22	14	55/8	6	10.46	14
$21 / 4$	$21 / 2$	2.82	14	55/8	6	12.04	111/2
$21 / 2$	$23 / 4$	3.13	14	55/8	6	14.20	111/2
$23 / 4$	3	3.45	14	$55 / 3$	6	16.70	111/2
3	31/1	4.10	14	$61 / 4$	65/8	11.58	14
31/4	$31 / 2$	4.45	14	$61 / 4$	65/8	13.32	14 and 111/2
$31 / 2$	$33 / 4$	4.78	14	$61 / 4$	$65 / 8$	17.02	111/2
$33 / 4$	4	5.56	14	$65 / 8$	7	12.34	14
4	41/4	6.00	14	65/8	7	17.51	$111 / 2$ and 10
$41 / 4$	$41 / 2$	6.36	14	$71 / 4$	75/8	13.55	14
411/4	$41 / 2$	9.38	14	$75 / 8$	8	15.41	111/2
$41 / 2$	$43 / 4$	6.73	14	$75 / 8$	8	20.17	111/2
$41 / 2$	$43 / 4$	9.39	14	$81 / 4$	85/3	16.07	111/2
$43 / 4$	5	7.80	14	$81 / 4$	85/8	20.10	111\%
5	51/4	8.20	14	$81 / 4$	$85 / 8$	24.38	$111 / 2$ and 8
5	$51 / 4$	9.86	14	$85 / 3$	9	17.60	$111 / 2$
5	$51 / 4$	12.80	$111 / 2$	95/8	10	21.90	111/2
5	$51 / 4$	15.88	111/2	105\%	11	26.72	111\%
$53 / 6$	$51 / 2$	8.62	14	115/8	12	30.35	111/3
53/6	$51 / 2$	12.49	$111 / 2$	121/2	13	33.78	111/2

Horse Power or Capacity of Boilers

Steam Boilers are nearly always rated and sold on the basis of a certain number of square feet of heating surface. The basis of the rating heating surface varies, however, so much by different builders, that it is a very unsatisfactory method of rating. For instance Boilers are rated:

Return Tabular at from 12 to 15 square feet for each horse power.
Portable Locomotive and Vertical Boilers on from 9 to 11 square feet.
Water Tube and Scotch Marine Boilers on from $7 \frac{1}{2}$ to 10 square feet.
The Centennial Rating of boiler capacity is the most practical and satisfactory. It provides for the evaporation or turning into steam of 30 pounds of water for each horse power per hour. This is a moderate rating, and any boiler that is not capable of evaporating that amount of water for each horse-power of its rated capacity and without forcing the firing or draft, must be in bad condition or over-rated. The safest method for all purchasers, will be to first ascertain the number of horse-power of work required from the engines for which the boiler is to be provided and then calculate the amount of steam the engine or engines will consume in developing that amount of power. By dividing by 30 they will arrive at the horse-power of boiler required to supply the engines.

Amount of Steam Required by Various Engines

The following allowance of pounds of water or steam for each indicated horse-power for engines of different kinds, will be found a safe calculation:
Triple Expansion (Condensing) Engines. 15 pounds
Triple Expansion (Non-Condensing) Engines. 20
Compound Condensing Corliss Engines . 18
Compounđ̃ Non-Condensing Corliss Engines . 22
Simple or Single Corliss Engine (Condensing) . 23
Simple or Single Corliss Engine (Non-Condensing) . 25
Automatic Compound Condensing Engines. 23
Automatic Compound Engine (Non-Condensing) . 30
High-Speed Automatic Engines. 33
Side Valve Engines with Adjustable Cut-off. 35
Plain Slide Valve Engines . 40
Steam Pumps (Compound Condensing) . 40
Steam Pumps (Compound Non-Condensirg)... 0
Steam Pumps, Single or Duplex. 75

Water Consumption of Boilers

From the foregoing, it is evident that to arrive at the amount of water required by a boiler, it is only a matter of multiplying its horse-power by 30 pounds of water per hour. In some cases, an allowance of as much as 60 pounds or $71 / 2$ gallons of water per horse-power of boilers is allowed, but this is excessive, and a boiler should not be expected to evaporate more than 30 to 40 pounds of water per horse-power per hour, except under stress.

Fuel Consumption of Boilers

Provided that feed water is delivered to a boiler as hot as it can be made with exhaust steam, that is at $200^{\circ} \mathrm{F}$., a good boiler with ample draft and grate surface and carefully fired should be capable of evaporating from 8 to 10 pounds of water for each pound of good coal.

In practice, however, the question of water evaporated for each pound of coal varies between 6 and 8 pounds of water and in many larger plants where mine slack is used, the evaporation of water, is between 6 and 7 pounds.

The average consumption of coal for steam boilers is 12 lls . per hour for each square foot of grate surface.

To evaporate one cubic foot of water requires the consumption of $71 / 2 \mathrm{lbs}$. of ordinary coal, or about 1 lb . of coal to 1 gallon of water.

One pound of crude petroleum will evaporate 12 to 16 lbs . of water.
One pound of natural gas (25 cubic feet) will evaporate about 20 lbs of water. One ton of coal is equal to about 22,450 cubic feet natural gas. (Atmospheric pressure).

One ton of coal is' equal to $31 / 2$ to 4 barrels of petroleum.
One ton of coal is equal to one cord of hickory.
One ton of coal is equal to $1 \frac{1}{4}$ cords of white oak.
One ton of coal is equal to $11 / 3$ cords of. black oak.
One ton of coal is equal to 2 cords of pine.
One cubic foot of anthracite coal weighs about 53 pounds.
One cubic foot of bituminous coal weighs from 47 to 50 pounds.

Safety Valve Rules

To find the distance, ball should be placed on lever when the weight is known, or to find weight when distance is known:

Multiply the pressure required by area of valve, then multiply this answer by the fulcrum, subtract the weight of the lever, valve and stem, and divide by the weight of the ball for distance; or divide by distance for the weight of the ball with the same example.

To find the pressure when the area of the valve; the weight of lever valve and stem, the fulcrum and the weight of ball is known:

Divide fulcrum into length of lever, multiply the answer by weight of ball, add weight of lever, valve and stem, and divide by area of valve; the answer will be the steam pressure.

The mean effective weight of valve lever and stem is found by connecting the lever at fulcrum, tie the valve stem to leve:, attach a spring scale to lever immediately over the valve, and raise until the value is clear of its seat.

By the fulcrum is meant the distance the valve stem is, from where the lever is connected.
Safety valves should be allowed to blow straight out into the room and not hitched on to a leading pipe which may allow water to stand on the valve, increasing its weight, or to freeze up if the boiler is laid up. When the valve blows into the room it will be known when steam is escaping, whether from leakage or over pressure.

Don't depend too much upon the glass gauge, but try the cocks often enough to keep your hand in, in telling the height of water by them. If a gauge cock has a tendency to leak, fix it thoroughly; if you do not, you will neglect to use it for fear of the work which you may have, to stop the leak after using.

To determine the heating surface in the Tubes of any Boiler multiply the number of feet of Tubes by . 523 for 2 inch; by . 654 for $2 \frac{1}{2}$ inch; by .785 for 3 inch; $b^{\cdot י} .916$ for $31 / 2$ inch, and by 1.047 for 4 inch.

Horse Power

A Standard Engine Horse Power is 33,000 foot-pounds per minute-that is 33,000 pounds raised one foot in one minute, or 3,300 pounds raised ten feet, or 330 pounds raised one hundred feet, and so on.

To calculate the horse power of an engine, multiply together the area of the steam piston in square inches, the piston speed in feet per minute and the mean effective pressure of the steam in pounds per square inch and divide the result by 33,000 . This will give the horse power in the cylinder, or Indicated Horse Power. From this must be taken the horse power consumed by the engine in friction, etc., to obtain the Net or Actıal Horse Power.

Table of Mean Effective Pressure

The M. E. P. in the table are for non-coudensing Engines. One pound is allowed for back pressure of Exhaust. Ten pounds added to any of the M. E. P. given will give the M. E. P. for Condensing Engines.

Jnitial Pressure in	Points of Cut-Off.													
Square Inch.	1/4	$\frac{2}{7}$		1/3	3/8	$\frac{2}{6}$	${ }_{7}^{3}$	${ }_{9}^{4}$	1/2	${ }_{9}^{5}$	${ }_{5}^{8}$	5/8	2/3	$3 / 4$
30	10.75	12.7	13.75	15.50	1.	18.50	19.50	0.00	22.00	23.50	24.75	25.25	26.00	27.25
35	13.75	16.00	17.00	19.00	21.00	22.25	23.50	24.25	26.25	28.00	29.25	29.50	30.75	32.35
40	16.75	19.25	20.25	22.50	24.75	26.00	27.00	28.25	30.50	32.50	33.75	34.50	35.50	37.00
45	19.75	22.50	23.75	26.00	28.50	30.00	31.50	32.25	34.75	36.75	38.25	39.25	40.25	41.75
50	22.75	25.75	27.00	29.50	32.25	33.75	35.50	36.25	39.00	40.50	42.75	43.75	45.00	46.50
55	25.75	29.00	39.25	3300	36.00	37.50	39.25	40.25	43.25	45.75	47.25	48.25	49.50	51.50
60	$2 \times .75$	32.25	33.75	36.50	39.75	41.50	43.25	44.25	47.50	50.00	51.75	52.75	54.25	56.25
65	31.75	35.50	37.00	40.00	43.50	45.25	47.25	48.25	51.75	54.50	56.50	57.50	59.90	61.25
70	34.75	38.50	40.00	43.50	47.00	49.00	. 51.25	52.25	56.00	58.75	61.00	62.00	63.50	66.00
75	37.75	11.75	43.00	47.00	50.75	53.00	55.25	56.25	60.25	63.25	65.50	66.50	68.50	71.00
80	40.75	45.00	46.75	50.50	54.50	56.75	59.25	60.25	64.50	67.75	70.00	71.25	73.00	75.75
85	43.75	48.25	50.25	54.00	58.25	60.50	63.00	64.50	68.75	72.00	74.50	75.75	77.75	80.50
90	46.75	51.50	53.25	57.00	62.00	64.25	67.00	68.50	73.00	76.50	79.25	80.50	82.25	85.25
95	49.75	54.75	57.00	61.50	65.75	68.25	71.00	'72.50	77.25	81.00	83.50	85.00	87.00	90.25
100	52.50	58.00	60.25	64.50	69.50	72.00	75.00	76.50	81.25	85.25	88.25	89.50	91.75	95.00
105	55.50	61.25	63.50	68.00	73.00	75.75	78.75	80.50	85.50	89.75	92.75	94.25	96.50	99.75
110	58.50	64.50	66.75	71.50	76.75	79.75	82.75	84.50	89.75	94.25	97.25	98.75	101.00	104.75
115	61.50	67.50	70.00	75.00	S0.50	83.50	86.25	88.50	94.00	98.50	101.75	103.50	105.75	109.50
120	64.50	70.75	73.25	78.50	84.25	87.50	90.25	92.50	98.25	102.75	106.25	108.00	110.00	114.25
125	67.50	73.75	76.50	81.00	88.00	91.25	91.25	.96.50	02.25	107.00	110.75	112.50	114.50	119.25

How to Center an Engine

The "dead center" is the point in the stroke where the crank and piston rod are in the same right line. To find dead center, turn engine in the direction it runs until cross-head is within a short distance of its limit of motion. Mark guide at end of cross-head shoe. Mark some revolving circular part of engine, as disk crank or fly wheel, and place one point of a fixed tram in this mark and the other on some fixed object in line. Now turn engine past the center in the direction she runs until end of cross-head shoe passes mark on guide. Turn back till shoe reaches mark. Holding tram still on the fixed object, place other point on selected revolving part and mark as before. Bisect distance between marks on revolving part and turn engine till point of tram rests on central mark, and the engine is on "dead center."

Horizontal engines, when practicable, should be run over rather than under, as the thrust will then come downward upon the foundation rather than upon the caps of the boxes and the upper guides.

Power Required for Different Parts of Gold and Silver Mills

Each Stamp, Dropping 100 Times per Minute, Requires:

Weight per stamp in $\mathrm{lbs} \ldots . . .$.	750	800	850	900	950	1000	1050	1100	1200	1300	1350
Horse Power each Stamp	1.5	1.6	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.6	2.7

Each Dodge Crusher, Requires:
Each Blake Type Crusher, Requires:

Size of crusher	6×6	7×8	8×12	11×15	Size of crusher	$6 \times 71 / 2$	7×9	8×12	10×16
Horse power.	4	6	8	12	Horse power......	4	5	8	12
Revolutions per minute.	350	300	250	225	Rev. per minute....	275	275	250	225

Each Standard Crushing Rolls, Requires:

Size of rolls. .	20×8	20×12	27×14	30×14	36×16
Horse power.	$3-6$	$4-8$	$5-10$	$8-15$	$10-20$
Revolutions per minute.	$100-150$	$100-150$	$75-125$	$65-85$	$50-75$

Each 6-foot Belt Concentrator, requires about $1 / 2$ horse-power.
Each 18 -inch Amalgam Barrel, requires from 1 to 2 horse-power.
Each 24 -inch Amalgam Barrel, requires from 2 to 3 horse-power.
Each 36 -inch Clean-up Pan, requires from 1 to $1 \frac{1}{2}$ horse-power.
Each 48 -inch Clean-up Pan requires from $11 / 2$ to 2 horse-power.
Each 4-foot Combination Pan, 65 revolutions per-minute, requires from 3 to 6 horse-power.
Each 5 -foot Combination Pan, 65 revolutions per minute, requires from 5 to 10 horse-power.
Each 8 -foot Settler, 14 revolutions per minute, requires 2.5 horse-power.
Each 8 -foot Agitator, 16 revolutions per minute, requires 3 horse-power.
Each Quicksilver Elevator requires from .25 to 2 horse-power.
Each Revolving Dryer requires 5 horse-power.
Each Howell-White Roasting Furnace requires from 4 to 6 horse-power.
Each Bruckner Furnace, 8×18 feet, requires from 5 to 8 horse-power.
Above estimates include the friction of the parts named, but not that of the power transmitting machinery, for which an additional allowance should be made.

Water Required for Various Parts of Gold and Silver Mills

Boiler feed for each horse-power, per hour, 5 gallons.
For each stamp, per hour, from 60 to 80 gallons.
For each 5-foot Pan, per hour, 100 gallons.
For each 8 -foot Settler, per hour, 80 gallons.
For each Corcentrator, per hour, from 200 to 300 gallons.
For each Graupner or Huntington 5 -foot mill, per hour, 1000 to 1200 gallons.
When water is settled and returned to the mill for re-use, a reduction of 50 per cent. may be safely estimated for all except the boiler, which must have clear water.

Horse-Power Shafting Will Transmit

$\begin{gathered} \text { Diameter } \\ \text { of } \\ \text { Shaft. } \end{gathered}$	Weight per Foot.	Revolutions per Minute.									
		100	125	150	175	200	225	2.50	300	350	400
	2.05	1.2	1.4	1.7	2.1	2.4	2.6	3.1	3.6	4.3	5.0
1_{18}^{18}	3.77	2.4	3.1	3.7	4.3	4.9	5.5	6.1	7.3	8.5	9.7
17.	5.52	4.3	5.3	6.4	7.4	S. 5	9.5	10.5	12.7	14.8	16.9
11.	7.61	6.7	8.1	10.1	11.7	13.4	15.1	16.7	20.1	23.4	26.8
$1 \frac{1}{1} \frac{1}{6}$	10.03	10.0	12.5	15.0	17.5	20.0	22.5	25.0	30.0	35.0	40.0
$2{ }_{16}^{3}$	12.80	14.3	17.8	21.4	24.9	28.5	32.1	35.6	42.7	49.8	57.0
$2_{17}{ }^{16}$	15.89	19.5	24.4	29.3	34.1	39.0	44.1	48.7	58.5	68.2	78.0
$2 \frac{11}{16}$	19.31	${ }^{26.0}$	32.5	39.0	43.5	52.0	58.5	65.0	78.0	87.0	104.0
215	23.06	33.8	42.2	50.6	59.1	67.5	75.9	84.4	101.3	118.2	135.0
$3{ }^{186}$	27.16	43.0	53.6	64.4	75.1	85.8	96.6	107.3	128.7	150.3	171.6
	31.58	53.6	67.0	79.4	93.8	107.2	120.1	134.0	155.8	187.6	214.4
311	36.40	65.9	82.4	97.9	115.4	121.8	148.3	164.8	195.7	230.7	243.6
$31{ }_{16}{ }^{5}$	41.40	80.0	100.0	120.0	140.0	160.0	180.0	2000	240.0	280.0	320.0
$4{ }^{7}$	52.58	113.9	142.4	170.8	199.3	227.8	256.2	${ }_{2} 284.7$	341.7	399.6	455.6
$4 \frac{15}{15}$	65.10	156.3	195.3	234.4	273.4	312.5	351.5	390.6	468.7	516.8	605.0

To Obtain the Size and Speed of Pulleys, Gears, or Sprocket Wheels

Diameter of Dtiver-Diameter of driven multiplied by revolutions of driven, and the product obtained divided by the revolutions of driver.

Diameter of Driven-Diameter of driver multiplied by revolutions of driver, and the product obtained divided by revolutions of driven.

Revolutions of Driven.-Diameter of driver multiplied by revolutions of driver, and the product obtained divided by the revolutions of driven.

Revolutions of Driver.-Diameter of driven multiplied by the revolutions of driven, and the pooduct obtained divided by the diameter of the driver.

The driving pulley is called the driver, and the driven pulley the driven.
It the number of teeth in gears or sprocket wheels are insed instead of diameter in thesecalculations, number of teeth must be substituted whenever diameter occurs.

Horse-Power of Gearing

The following table is for cast-iron gears, and is based unon a factor of safety of eight, with an ultimate tensile strength of 30,000 pounds.

Speed of gear, 100 feet per minute at pitcón line.

Spur Gears, Horse Power.	Pitch.	loace.	Bevel Cears, Horse Power.
$1.41)$	1	21/2	1.01
2.52	11/4	$31 / 4$	1.78
3.84	11\%	4	2.61
5. 48	13	5	3.73
6.83	2	6	4.68
8.99	214	$6{ }^{1 / 2}$	6.39
10.70	21/2	7	7.52
15.39	3	9	10.54

The horse-power of gears increases and recreases directly with the speed.

Belting

SINGLE LEATHER

Speed in Feet per Minute.	Wimth of Belt in Inches.									
	2	3	4	5	6	8	10	12	14	16
	H.-P.	H.-P.	H.-P.	H.-P.	H.- -	H.-P.	$\mathrm{H}_{\boldsymbol{\sigma}}-\mathrm{P}$.	11.-1.	H.-P.	18.-P.
400		11/2	2	21/2	3	4	5	6	7	8
600	11/2	$21 / 4$	3	$33 / 4$	41.2	6	$71 / 2$	9	101/2	12
800	2	3	4	5	6	8	10	12	14	16
1000	21/2	$33 / 4$	5	61/4	71/2	10	121/2	15	171/2	20
1200	3	$41 / 2$	6	$71 / 2$	9	12	15	15	21	24
1500	$33 / 4$	$53 / 4$	71/2	9112	111/2	15	$183 / 4$	221/2	261/2	30
1800	41/2	$63 / 4$	9	111/4	131/2	18	221\%	27	311/2	36
2000	5 .	$71 / 2$	10	121/2	15	20	25	30	35	40
2400	6	9	12	15	18	24	30	36	42	48
2800	7	101/2	14	171/2	21	28	35	42	49	56
3000	$71 / 2$	111/4	15	183/4	221/2	30	$371 / 2$	45	521/2	60
3500	834	13	171/2	22	26	35	44	$521 / 2$	61	70
4000	10	15	20	25	30	40	50	60	70	80
4500	111/4	17	$22^{1 / 2}$	28	34	45	57	69	78	90
5000	121/2	19	2.5	31	$371 / 2$	50	621\%	75	87\%	100

DOUBLE LEATHER

Speed in Feet per Minute.	Width of Belt in Inches.								
	4	6	8	10	12	14	16	18	20
	$11-\mathrm{P}$.	H.-P.	11.-1.	H.-P.	H.-P.	H.-P.	11.-P.	H.-P.	II. P P
400	23, 4	414	$53 / 4$	71/4	$81 / 2$	10	11112		$14 \frac{1}{2}$
600	$41 / 4$	$61 / 2$	$83 / 4$	11	13	15	171/2	191/2	22
800	$53 / 4$	81/2	111/2	141/2	171/2	201/2	23	26	29
1000	$71 / 4$	11	141/2	181/4	211/2	$251 / 2$	29	321/2	36
1200	81/3	13	171/2	22	26	301/2	$341 / 2$	39	44
1500	103/4	161/4	$213 / 4$	$271 /$	321/2	38	$431 / 2$	49	$541 / 2$
1800	13	191/2	26	323	39	$451 / 2$	52	59	$651 / 2$
2000	141/2	213/4	29	$361 / 2$	431/2	$501 /$	58	$651 / 2$	72%
2400	171/4	26	3434	44	521/2	$601 / 2$	$691 / 2$	781/2	88
2800	201/4	$301 /$	401/2	51	61	71	81	911/2	102
3000	$211 / 2$	$321 / 2$	431/2	541/2	651/2	76	871/2	98	108
3500	$251 / 2$	38	$503 / 4$	$631 / 2$	76	89	101	114	127
4000	29	$431 / 2$	581/4	723	87	101	116	131	145
4500	$321 / 2$	49	65	82	98	114	131	147	163
5000	$361 / 2$	$511 / 2$	723/4	91	109	127	145	163	182

The above tables are based on the following equivalents:
Single Belting, one inch wide, 800 feet per minute $=$ one horse-power, equal to four ply rubber $=$ working tension of 42 pounds.

Double Belting, one inch wide, 550 feet per minute $=$ one horse-power, equal to six ply rubber $=$ Working tension of 60 pounds.

Board Measure

Length in Feet.

SIZE.	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
1x8	8	$91 / 3$	102/3	12	131/3	142/3	16	171/3	182/3	20	211/3	222/3	24	251/3	
1×10	10	$112 / 3$	131/3	15	162/3	181/3	20	212/3	$231 / 3$	25	262/3	281/3	30	312/3	331
1x12	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
1x14	14	161/3	182/3	21	231/3	252/3	28	$301 / 3$	322/3	35	371/3	392/3	42	441/3	462
1×16	16	182/3	$211 / 3$	21	$262 / 3$	291/3	32	342/3	371/3	40	422/3	45%	48	502/3	$531 / 3$
2x3	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2 x 4	8	$91 / 3$	102/3	12	131/3	142/3	16	171/3	182/3	20	211/3	222/3	24	251/3	$26 \% / 3$
2×6	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
2×8	16	182/3	211/3	24	$262 / 3$	291/3	32	$342 / 3$	371/3	40	422/3	451/3	48	502/3	$531 / 3$
2×10	20	231/3	26\% 3	30	$331 / 3$	362/3	40	$431 / 3$	462/3	50	$531 / 3$	$562 / 3$	60	631\%	$662 / 3$
2x12	24	28	32	36	40	41	48	52	56	60	64	68	72	76	80
2×14	28	32\%	371/3	42	$462 / 3$	5113	56	602/3	651/3	70	742/3	791/3	84	S82	$931 / 3$
2×16	32	371\%	422/3	48	531/3	. $582 / 3$	64	691/3	742\%	80	851/3	902/3	96	1011/3	$1062 / 3$
3x4	12	14	16	15	20	22	21	26	28	30	32	31	30	38	40
3×6	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60
3×8	24	28	32	36	40	44	48	52	56	60	64	68	72	76	$\bigcirc 0$
3×10	30	35	40	45	50	55	60	6.5	70	75	80	85	90	95	100
3×12	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
3×14	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140
3×16	48	56	64	72	80	SS	96	104	112	120	128	136	144	52	160
4 x 4	16	182/3	211/3	24	$262 / 3$	291/3	32	342/3	371\%	40	42\%/3	451/3	48	502/3	$531 / 3$
4×6	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80
4x8	32	$371 / 3$	122/3	48	$531 / 3$	582/3	64	691/3	742	80	851/3	902/3	96	101	1062
4×10	40	462/3	$531 / 3$	60	66%	$731 / 3$	80	86\% ${ }^{\frac{3}{3}}$	$931 / 3$	100	1062/3	1131/3	120	126	1331/3
4×12	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160
4×14	56	651/3	742 /3	84	931	1022	112	1211/3	1302/3	140	1491/	1582/3	168	1771	1862/3
4×16	64	$742 / 3$	851/3	96	1062/3	1171/3.	128	1382/3	1491/3	160	1702/3	$1811 / 3$	192	2022/3	$2131 / 3$
6x6	36	42	48	54	60	66	72	7S	S4	90	96	102	108	114	120
6×8	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160
6×10	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
6×12	72	84	96	109	120	132	144	156	168	180	192	20.4	216	228	240
6×14	S4	98	112	126	140	154	168	182	196	210	224	238	252	256	280
x16	96	112	128	144	160	176	192	208	224	240	256	272	288	304	320
8 x 8	64	742/3	85, $1 / 3$	96	1062/3	1171/3	128	1382/3	1491\%	160	1702	1811\%	192	202	2131
8×10	S0	931/3	1062/3	120	1331/3	$1462 / 3$	160	$1731 / 3$	1862	200	2131	$2263 / 3$	240	2531	260
8×12	96	112	128	144	160	176	192	208	224	240	256	$\stackrel{272}{ }$	298	304	320
8×14	112	1302/3	14913	168	1862/3	2051/3	22.4	$2422 / 3$	$2611 / 3$	280	2982	31713	336	3542	3731
$8 \mathrm{8x} 16$	128	$1491 /$	170\%	192	2131/3	2342/3	256	'2771/3	2982/3	320	3411	3622\%	384	-1051/3	1262/3
10×10	100	1162/3	1331/3	1.50	1662/3	1831/3	200	2162/3	2331/3	250	2662	2831/3	300	$3162 / 3$	$3331 / 3$
10×12	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400
10×14	140	1631/3	1862/3	210	$2331 / 2$	2562/3	280	30311	$3262 / 3$	350	3731	$3962 / 3$	410	4431/3	4662
10×16	160	1862/3	2131/3	240	2662/3	2931\%	320	3462	3731	400	4262/3	$4531 / 3$	480	5062	5331
12×12	144	168	192	216	240	264	285	312	336	369	384	408	432	456	480
12×14	168	196	224	252	280	308	336	364	392	420	448	476	504	532	560
12×16	192	224	256	288	320	352	384	416	448	480	512	544	576	608	640
14×14	196	22S2/3	$2611 / 3$	294	$3262 / 3$	3591\%	392	4242/3	4571/3	490	5222/3	$55.51 / 3$	588	6202	6531
14×16	224	$2611 / 3$	298\%	336	$3731 / 3$	4102\%	448	4851/3	$5221 \frac{1}{3}$	560	5971	6312/3	672	7091/3	7462/3
16×16	256	2982/3	$3411 / 3$	384	4262/3	4691/3	512	5542/3	5971/3	640	6822/3	$7251 / 3$	768	8102/3	8531/3

Note-By simply multiplying or dividing the above amounts, the number of feet contained in other dimensions can be obtained.

Board and Timber Measure

BOARD MEASURE

In board measure boards are assumed to be one inch in thickness.
To compute the measure or surface in square feet-
When all dimensions are in feet:
Rule-Multiply the length by the breadth, and the product will give the surface required.
When either of the dimensions are in inches:
Rule-Multiply as above and divide the product by 12 .
When all dimensions are in inches:
Rule-Multiply as before and clivide product by 144.

TIMBER MEASURE

To compute the volume of round timber-
When all dimensions are in feet:
Rule-Multiply the length by the square of one-quarter of the main girt, and the product will give the measurement in cubic feet.

When length is given in feet and girt in inches:
Rule-Multiply as before and divide by 144 .
When a!l the dimensions are in inches:
Rule-Multiply as before and divide by $1,72 \mathrm{~s}$.
Sawed or hewed timber is measured by the cubic foot.

To compute the volume of square timber-
When all dimensions are in feet:
Rule-Multiply the product of the brearth by the depth by the length, and the product will give the volume in cubic feet.

When either of the dimensions are in inches:
Rule-Multiply as above and divide the product by 12 .
When any two of the dimensions are in inches:
Rule-Multiply as before and divide the product by 144 .

Simple Problems in Air Compression

Extracts from an address delivered before the Mining Association of the University of California, By Edward A. Rix.

Allow 20 hp . for every 100 cu . ft. of cylinder-displacement, to compress air to 90 or 95 lb . recciver gauge-pressure at sea-level.

It would be well in small plants, up to 400 cu . ft . capacity to make no distinction between single and two-stage machines.

In using compressed air at 90 lb . pressure cold, it will take $24 \mathrm{cu} . \mathrm{ft}$. free air per minute to give one horse-power in plain slide-valve engines and $15 \mathrm{cu} . \mathrm{ft}$. with good expansion-valve gearing; between these two limits will lie all the various types of engines. If the air be re-heated to about $300^{\circ} \mathrm{F}$, it will reduce the above quantities about one-third.

For operating ordinary station and sinking pumps of the direct-acting type, which is the ordinary stock pump used in mining operations, it will be safe to calculate that one cubic foot of free air compressed to 90 lb . gange-pressure will do 135 foot-gallons of pumping.

Ordinary mining hoists have a mechanical efficiency of about 75 per cent.
For the determination of sizes of pipes, losses of pressure, and terminal pressures for com-pressed-air transmission, we the formula:

$$
\mathrm{P}_{1} 2^{2}-\mathrm{P}_{2} 2=\frac{0.0006 \mathrm{~V}^{2} \mathrm{~L}}{\mathrm{~A}^{5}} \quad \begin{aligned}
& \mathrm{P}_{1}=\text { absolute initial air-pressure. } \\
& \mathrm{P}_{2}=\text { absolute terminal air-pressure. } \\
& \mathrm{V}=\text { free ais equivalent passing through the pipe. } \\
& \mathrm{L}=\text { length of pipe in feet. } \\
& \mathrm{A}=\text { diameter in inches. }
\end{aligned}
$$

Problem.-Given a water-power distant 5000 ft . from a mine, it is desired to generate compressed air and transmit it to the collar of the shaft to perform work as follows:

One hundred tons of ore and waste to be hoisted in 20 hours.
Thirty gallons of water per minute to be pumped.
Five $21 / 4$-in standard piston rock-drills to be operated.
Three air-hammer drills to be operated.

General Conditions:

Depth of shaft, 600 f .
Weight of skip and rope, $1,000 \mathrm{lb}$.
Weight of ore hoisted, 1 ton.
Initial air-pressure, 95 lb .
Final air-pressure, 90 lb .
Altitude, sea-level.
Geared hoist and unbalanced hoisting.

Required:

Size of compressor.
Diameter of air-pipe.
Brake horse-power.
Altitude factors.
Re-heating coefficients.
Note: Reduce all requirements to cubic feet of free air, because free air is the basis for all power calculations.

To determine the free air required for hoisting:

100 tons of ore and waste lioisted in 20 hours $=5$ tons per hour, each load contains one ton $=a$ load hoisted every 12 minutes. 2000 lb . material and 1000 lb . rope and skip $=$ a total of 3000 lb . 3000 lb . lifted $600 \mathrm{ft} .=1,800,000$ foot-pounds, or 54 hp . theoretical, at 75% efficiency, the 51 hp . becomes 72 brake-power actually required. Using cold air, it requires, 24 cu . ft. free air per horse power. Then the hoist will consume to make a lift, $24 \times 72=1728 \mathrm{cu} . \mathrm{ft}$. of free air. This gives us direct results without taking into consideration the element of time or the dimensions of the hoist.

Simple Problems in Air Compression

(Continued)

If $1728 \mathrm{cu} . \mathrm{ft}$. are required to make a hoist every 12 minutes the compressor must furnish $144 \mathrm{cu} . \mathrm{ft}$. free air per minute continuously, and we assume that we hoist at the rate of 300 ft . per min.; it will take 2 minutes to make the lift, and the hoist will be lowering and idle cluring the next 10 minutes, the compressor delivering $10 \times 144=1440 \mathrm{cu}$. ft. free air which must be stored. Sufficient storage capacity is the vital point of hoisting economica!ly with compressed air.

While we have allowed 4 hours in 24 , or 1 hr .20 min . on each shift, for hoisting and lowering men, timbers, supplies, etc., it is probable that at least once every hour someone will be going up and down the shaft, and it would be practical therefore to say that the hoist would handle 6 loads per hour, instead of 5 , and we must therefore add 20% to the $144 \mathrm{cu} . \mathrm{ft}$. making the hoisting requirement say, $175 \mathrm{cu} . \mathrm{ft}$. per min .

To determine the amount of compressed air required for pumping:

For pumping 30 gallons per min. 600 ft ., requires 30 x 600 , or $18,00 \mathrm{o}$ foot gallons of work. If one cu. ft . of free air at 90 lb . gauge-pressure will give 135 ft -gal., we shall require $133 \mathrm{cu} . \mathrm{ft}$. free air for the pumping. This requirement is constant.

To determine the amount of compressed air required for drilling:

Five $21 / 4$-in. rock-drills will require 50 ft . frec air each, or $250 \mathrm{cu} . \mathrm{ft}$.
Three air-hammer drills will require $25 \mathrm{cu} . \mathrm{ft}$. each, or $75 \mathrm{cu} . \mathrm{ft}$.
To get these amounts, take about 80% of the requirements as stated in rock-drill catalogues, which always give quantities in compressor-cylinder displacement, which do not deliver on an average within 20% of their displacement, except in large machines.

Total requirements will therefore be:

Work.		Cubic Feet.
Hoisting.		175
Pumping.		133
Drilling.		325

Allow for a 5% pipe-leakage on the entire system. This would bring requirement up to 665 .
Allow for a volumetric efficiency of at least $\$ 0 \%$, this will require a total cylinder displacement of 830 ctu . ft. per minute, and with the power factor of 20 hp . per $100 \mathrm{cu} . \mathrm{ft} ., 166 \mathrm{hp}$. delivered on the water-wheel shaft is required to drive compressor.

To determine the size of the pipe: Allow 5 lb . drop in pressure for friction loss.

$$
\text { Formula: } \quad \mathrm{P}_{1}{ }^{2}-\mathrm{P}_{2} 2=\frac{0.0006 \mathrm{~V}_{2} \mathrm{~L}}{\mathrm{~A}^{5}}
$$

P_{1}, initial pressure absolute $=95+14.7$, or 109.7 , and its square is 12034 .
P_{2}, the terminal pressure, 5 lb . less than the initial, or 901 ll ., or 104.7 absolute, and, its square is 10962 .

The difference between these two or $\mathrm{P}_{1} 2-\mathrm{P}_{2}{ }^{2}=1072$.

Simple Problems in Air Compression

(Continued)

Substituting this in our equation, and also the values for \mathbf{L}. and V , we have
reducing, we have

$$
1072=\frac{6 \times 5000 \times 633 \times 633}{10,000 \times \mathrm{A}^{5} .}
$$

$$
\begin{aligned}
1072 \mathrm{xA}^{5} & =3 \times 633^{2}, \text { or } \mathrm{A}^{5}=1121 \\
\mathrm{~A} & =4-\mathrm{in} . \text { pipe } .
\end{aligned}
$$

In General:

Refer to trade catalogues and tables and look up a satisfactory compressor, having a displacement of $830 \mathrm{cu} . \mathrm{ft}$. For this capacity it is advisable to select a two-stage compressor, because it has a higher volumetric efficiency, requires less power to operate, is easier to lubricate on account of lower temperatures and has less strain on mechanism.

The first thing to consider is the speed at which the compressor will operate. If a limited sum is to be expended, as high a working speed as possible will be selected, because, the higher the speed, the smaller the compressor. If the future is to be taken into consideration, more air will be wanted as shaft goes deeper and more water encountered. It would then be wise to select a machine which at say two-thirds of its rated speed would produce the present requirements and give a 50 per cent. margin for the future.

Altitude:

As the altitude increases, the initial absolute pressure diminishes and as the final pressure remains the same, the pressure ratio grows larger as the altitude increases. For example, at $10,000 \mathrm{ft}$. elevation the atmospheric pressure is 10 lbs . instead of 14.7 lbs at sea level. In the problem, the ratio of compression at sea level is 7.5 while at 10,000 feet elevation it would be 10.5 . The sea-level compressor must be increased, therefore, $10.5 \div 7.5$, or 1.4 times, to give the same weight of compressed air at $10,000 \mathrm{ft}$. altitude. In other words the altitude compressor must be about 40 per cent. larger to do the same work.

TABLE OF EFFICIENCIES AND CAPACITIES AT VARIOUS ALTITUDES.

Altitude above Sea-level Fect.	Absolute Pressure per sq. in. Lbs.	Barometric Pressure Inches.	Cubic Feet of Free Air Remaining Constant.		Cubic Feet of Compressed Air Remaining Constant.	
			Volumetric Efficiency	Power Required.	Increased Capacity of Compressor	Increased Horse Power Required.
0	14.79	30.0	100\%	100\%	0\%	0\%
1000	14.15	28.8	97%	98.2\%	3.3%	2.2\%
2000	13.61	27.8	93\%	96.5%	7.6\%	3.9%
3000	13.10	26.7	90\%	94.8%	10.3%	5.6%
4000 5000	12.61	25.7 24.8	87% 84%	93.1% 91.5%	14% 18%	7.3% 8.9%
6000	11.68	23.8	81\%	89.9%	22%	10.6\%
7000	11.24	22.9	78\%	88.4\%	26\%	12.3\%
8000	10.82	22.1	76%	86.9%	31%	14.2\%
9000	10.42	21.3	73%	85.4%	36%	16.2\%
10000	10.03	20.5	70%	83.9%	40%	18.2\%
11000	9.66	19.7	68\%	82.4%	45\%	20.3\%
12000	9.30	19.0	65\%	80.9\%	50\%	22.4\%

Simple Problems in Air Compression

(Continued)

To determine the amount of compressed air required by re-heating:
It is practical to re-heat air to from 300 to $400^{\circ} \mathrm{F}$ in various ways, and great economy is realized especially for pumping and hoisting, and if it is possible you may reduce the quantities of cold air figured for this character of work by the ratio of the atmospheric to the compressed-air temperatures absolute. Thus, if the atmosphere is at $60^{\circ} \mathrm{F}$ or 520° absolute, and the compressed air is used at $300^{\circ} \mathrm{F}$ or 760° absolute, then the volume of cold air for your work may be taken at the ratio of $520 \div 760$, or about 70%, thus making a saving of 30 per cent.

TABLE 1.--CUBIC FEET OF FREE AIR REQUIRED TO RUN ONE DRILL OF THE SIZE AND AT THE PRESSURE STATED BELOW.

Guage Pressure	Cylinder Diameter of Drill.												
	$2^{\prime \prime}$	21/4"	$21 / 2^{\prime \prime}$	23/4"	$3^{\prime \prime}$	$31 / 8^{\prime \prime}$	$3_{\frac{3}{3}{ }^{\frac{18}{\prime \prime}}}$	$31 /{ }^{\prime \prime}$	$31 /{ }^{\prime \prime}$	$35 / 8^{\prime \prime}$	43/4' ${ }^{\prime \prime}$	$5^{\prime \prime}$	$51 / 2^{\prime \prime}$
60	50	60	68	82	90	95	97	100	108	113	130	150	164
70	56	68	77	93	102	108	110	113	124	129	147	170	181
80	63	76	86	104	114	120	123	127	131	143	164	190	207
90	70	84	95	115	126	133	136	141	152	159	182	210	230
100	77	92	104	126	138	146	149	154	166	174	199	240	252

TABLE II.-MULTIPLIERS TO DETERMINE COMPRESSOR CAPACITY REQUIRED TO OPERATE FROM 1 TO 70 ROCK DRILLS AT ALTITUDES COMPARED WITH SEA LEVEL.

	NUMBER OF DRILLS																		
	1	2	3	4	5	6	7	8	9	10	12	15	20	25	30	40	50	60	70
	MULTIPLIERS																		
0		1.8	2.7		4.1	4.8	5.4	6.0	6.5	7.1	8.1	9.5	11.7	13.7	15.8	21.4	25.5	29.4	33.2
1000	1.03	1.85	2.78		4.22	4.94	5.56	6.18	6.69	7.3	8.34	9.78	12.05	14.1	16.3	22.0	26.26	30.3	34.2
2000	1.07	1.92	2.89	3.61	4.39	5.14	5.78	6.42	6.95	7.60	8.67	10.17	12.52	14.66	16.9	22.9	27.28	31.46	35.52
3000	1.10	1.93	2.97	3.74	4.51	5.28	5.94	6.6	7.15	7.81	8.91	10.45	12.87	15.07	17.38	23.54	28.05	32,34	36.52
4000	1.14	2.05	3.08	3.88	4.67	5.47	6.15	6.84	7.41	8.09	9.23	10.83	13.34	15.62	18.01	24.4	29.07	33.52	37.8
5000	1.17	2.10	3.16	3.98	4.8	5.62	6.32	7.02	7.61	8.31	9.48	11.12	13.69	16.03	18.49	25.04	29.84	34.4	38.84
6000	1.20	2.16	3.24	4.08	4.9	5.76	6.48	7.2	7.8	8.52	9.72	11.7	14.04	16.44	18.96	25.68	30.6	35.4	39.84
7000	1.23	2.21	3.32	4.18	5.04	5.9	6.64	7.38	7.99	8.73	9.96	11.68	14.39	16.85	19.43	26.32	31.36	36.16	40.84
8000	1.26	2.27	3.40	4.28	5.17	6.05	6.8	7.56	8.19	8.95	10.21	11.97	14.74	17.26	19.9	26.96	32.13	37.04	41.83
9000	1.29	2.32	3.48	4.39	5.29	6.19	6.96	7.74	8.38	9.16	10.45	12.26	15.09	17.67	20.38	27.6	32.9	37.92	42.83
10000	1.32	2.38	3.56	4.49	5.41	6.34	7.13	7.92	8.58	9.37	10.69	12.54	15,44	18.08	20.86	28.25	33.66	38.8	43.92
12000	1.37	2.47	3.7	4.66	5.62	6.57	7.4	8.22	8.9	9.73	11.1	13.02	16.03	18.77	21.64	29.32	34.94	10.28	45.48

Example.-Required the amount of free air necessary to operate thirty 5 inch drills at 9,000 feet altitude, using to operate these drills air at a guage pressure of 80 pounds per square inch.

From Table I we find, when operating the drills at $\$ 0$ pounds guage pressure at sea level, that one 5 -inch drill requires 190 cubic feet of free air per minute.

From Table II we also find that the factor for 30 drills at 9,000 feet altitude is 20.38 ; multiplying 190 cubic feet by 20.38 gives 3,872 cubic feet free air per minute, which is the displacement of a compressor for the above outfit under average conditions, to which must be added pipe line losses, such as friction and leakage.

Table for Computing Effective Strains and Loads on Inclines

1. Degree.	$\begin{aligned} & \text { II. } \\ & \text { Sine. } \end{aligned}$	III. Cosecant.	I. Degree.	$\begin{gathered} \text { II. } \\ \text { Sine. } \end{gathered}$	III. Cosecant.
90	1.000	1.000	45	707	1.414
89	1.000	1.000	44	605	1.440
88	. 999	1.001	43	. 682	1.466
87	. 999	1.001	42	. 669	1.494
86	. 99.8	1.002	41	. 656	1.524
85	. 990	1.004	40	. 643	1.556
81	. 995	1.009	39	. 629	1.589
83	. 993	1.008	38	. 616	1.624
82	. 990	1.010	37	. 602	1.662
S1	. 988	1.012	36	. 588	1.701
80	.985	1.015	35	. 574	1.743
79	. 982	1.019	34	. 559	1.788
78	. 978	1.022	33	. 545	1. 536
77	. 974	1.026	32	. 530	1.887
76	. 970	1.031	31	. 515	1.942
7.5	. 966	1.035	30	. 500	2.000
74	. 961	1.040	29	. 485	2.063
73	956	1.046	28	. 469	2.130
72	951	1.051	27	454	2.203
71	. 946	1.058	26	. 438	2.281
70	. 940	1.064	25	. 423	2.366
69	. 934	1.071	24	. 407	2.459
68	.927	1.079	23	. 391	2.559
67	. 921	1.086	22	. 375	2.669
66	. 914	1.095	21	. 358	2.790
65	. 906	1.103	20	. 342	2.924
64	. 899	1.113	19	. 326	3.071
63	. 891	1.122	18	. 309	3.236
62	. 883	1.133	17	. 292	3.420
61	. 875	1.143	16	. 276	3.628
60	. 866	1.155	15	. 259	3.864
59	. 857	1.167	14	. 242	4.134
58	. 848	1.179	13	.225	4.445
57	. 839	1.192	12	208	4.810
56	. 829	1.206	11	. 191	5.241
55	. 819	1.221	10	. 174	5.759
54	. 809	1.236	9	. 156	6.392
53	. 799	1.252	8	. 139	7.185
52	. 788	1.269	7	. 122	8.206
51	. 777	1.287	6	. 105	9.567
50	766	1305	5	. 087	11.474
49	755	1.325	4	. 070	14.336
48	743	1.346	3	. 052	19.107
47	. 7331	1.367	2	. 035	28.654
46	. 719	1.390	1	. 017	57.299

The table will be found useful where hoisting is done in inclined shafts. It may also be applied to "gravity tramways" or "inclined planes."

The following examples will show its uses: Suppose the weight of ore is $10,000 \mathrm{lbs}$; skip, $6,000 \mathrm{lbs}$. ; rope, $7,500 \mathrm{lbs}$.; and that the shaft has an inclination of 55 degrees from the horizontal. What is the strain of the rope? Total load, $10,000+6,000+7,500=23,500$.

Rule:-For each pound weight, the effective load on rope for the angle of incline from the horizontal given in column I will be found opposite in column II.

Therefore, find 55 degrees in column I and opposite in column 1 is .819 , which multiplied by $23,500=19,246.5 \mathrm{lbs}$., the total effective strain on rope.

Suppose an engine can raise $5,000 \mathrm{lbs}$. in a vertical shaft, what can it pull up an incline 30 degrees from the horizontal?

Rule:-For each pound which an engine can lift vertically, it can raise the amount given in column III up an incline of the angle given in column I. Therefore, find 30 degrees in column 1, and opposite in column 1 II is 2 , which multiplied by $5,000=10,000 \mathrm{lbs}$, the amount engine can pull up a 30 degree incline.

If the proper working strain of the rope were $5,000 \mathrm{lbs}$., on a vertical lift, it would be 10,000 lbs. on a 30 degree incline; the process is the same.

Note:-In using the table, it must not be overlooked that the friction of drawing the car, skip or cage on the rails or guides is to be added to the effertive weight in order to obtain the total amount of strain borne by the . rope. This friction is termed "traction" or "tractile effort" and varies between thirty and one hundred pounds per ton, according to circumstances and is of more importance on inclines of small angle.

Standard Hoisting Ropes

Composed of 6 Strands of 19 wires each, with Hemp Center.

Practical Hints Regarding Saw Mills and the Care of Saws

A Right Hand Mill has the saw at the sawyer's right and runs toward him.
A Left Hand Mill has the saw at the sawyer's left and runs toward him.
SIZE OF SAWS.-With the Variable Feed Mill, any size saw can be used according to the
 used on the mandrel to reduce the specd to correspond with the size of the saw and the power. The diameter of the saw should be about one and a half times the diameter of the \log to be cut-a 36 -inch \log requires a 54 -inch saw-a 40 -inch \log requires a 60 -inch saw, and so on.

SPEED OF SAWS.-Speeding saws too high is a very common mistake-usually a serious and a foolish error of judgment. Manufacturers, in their catalogues, give the maximum speeds at which their saws may be operated with safety on the basis of the highest power the saws are calculated to withstand. These speeds cannot properly be used for portable mills for the reason that often the power used is not sufficient-they are put there for selling purposes of the sawmakers and to show what the saw will stand, not what it is supposed to do in practical work. While speed is power-it's easy to consume all the power in speed without doing any work. A 48 -inch saw run by a 10 H . P. engine should have a speed of 300 revolutions a minute-slower if the saw has the usual number of teeth. About twenty-four tecth are necessary to give the best results at 300 revolutions-the usual number is 30 -and usually works satisfactorily.

PORTABLE MILLS running with 20 H . P. and undet should run the rim of the saw at a speed not exceeding 360 ft . per minute to each horse power. For example, multiply 360 by 10 H. P., and divide this by 12 ft . (circumference of the 48 -inch saw), and you get 300 revolutions per minute. For smaller power the speed should be some higher in proportion, but the saw should have fewer teeth to make up for the higher speed. 20 H . P. and above should have more speed in proportion to the larger number of teeth. With this power the teeth should be 5 inches apart, which will give 30 teeth to the 48 -inch saw. For a larger power, the teeth should be closer together until they reach the limit of 3 inches apart, and then as the power is increased the speed of the saw is increased to correspond. A saw must be speeded right to give the best results.

To aid in the selection of a saw and to determine its proper speed; we give the following table, based on a saw 48 inches in diameter:

Power	Distance from Point to Point of Teeth	Number of Teeth	Speed of Saw
$6 \mathrm{t} . \mathrm{P}$.	7 inches	22	300
8 "	7 "	22	300
10 "	6 "	2.1	300
12 "	6 "	24	350
15 "	5 "	30	400
20 "	5 "	30	450

To find the proper speed of larger or smaller saws, multiply the speed given of a 48 -inch saw by 48 and divide the product by the size of the saw selected. A larger saw should have a greater number of teeth, and a smaller saw a lesser number, the distance apart remaining approximately the same.

Saws for cutting hardwood or frozen timber are usually run at higher speed and have a greater number of teeth.

Practical Hints Regarding Saw Mills and the Care of Saws

(Continued)

In ordering a saw mill or saw, the amount of power used, size and speed of driving pulley should always be given so that a pulley of the proper size may be sent with the mill and a suitable saw sclected.

PROPER GAUGE OF SAWS.-For portable mills as a general rule we recommend $8^{\prime \prime} \mathrm{x} 9^{\prime \prime}$ gauge saws. For larger power where saws are run at high speed, or for cutting valuable hard woods we recommend $9^{\prime \prime} \times 10^{\prime \prime}$ gauge.

HOW TO HANG AND LINE SAWS.-It does not follow that because one saw will work well that another will do so on the same mandrel, or that two saws will hang alike on the same mandrel.

In hanging a new saw, after screwing it up between the collars examine carefully on the front or \log side, and see if the front of the saw is flat. If it is found to be rounding on the log side, cut a ring of paper about half an inch wide, the size of the collar on the outside, oil it and stick iton the face of the fast collar around the outer edge. Then tut another ring of paper the same width, making the hole the same size as the hole in the loose collar; put this small ring between the loose collar and the saw, and screw up the collar. If the two rings are not enough, put in more unti ${ }^{1}$ the saw comes flat and true. If the saw hangs dishing on the log side, reverse the rings of paper; that is, put the small rings between the saw and the fast collar, and the large ring against the loose collar. To do proper work, the saw must be perfectly flat and straight on the side next to the log.

DIRECTIONS FOR RUNNING CHISEL TOOTII SAWS.-First the saw should be placed on the mandrel where it is to be run, observing directions for hanging circular saws.

Should the saw run a little out of true on the rim, it may be made to run true by packing with writing paper between the saw and fast collar. It is necessary that the saw mandrel should be perfectly level so that the saw will hang exactly plumb.

Never attempt to run a saw that is dishing on the log side as it will be sure to draw towards the log. The carriage track must be straight and level, so that the carriage can run true.

HOW TO FILE AND KEEP IN ORDER GIRCULAR SAWS.-It is not well to file all of the teeth of circular saws from the same side of the saw, especially if each alternate tooth is bent for the set, but file one-half of the teeth from each side of the saw, and of the treth that are bent from you, so as to leave them on a slight bevel-leave the outer corners a little the longest.

Never filc any saw to sharp or acute angles at the throats or roots of the teeth, but on circular lines, as all saws are liable to crack from sharp corners.

Keep your saw round, so that each tooth will do its proportional part of the work.
Saw tceth wear narrow at the extreme points; consequently they must be kept spread so that they will be widest at the very points of the teeth; otherwise saws will not work successfully.

Teeth should be kept as near a uniform shape and distance apart as possible, in order to keep a circular saw in balance and condition for business.

Frosted steel is always brittle. No intelligent woodsman will use a good chopping axe on hard frozen timber until after he has taken the frost out of it, and no intelligent sawyer will attempt to set teeth of any saw without taking out the frost.

Practical Hints Regarding Saw Mills and the Care of Saws

(Continued)

The greatest wear on the saw is on the under edges of the teeth. File nearly to an edge (but not quite), leaving a short bevel of $\frac{1}{32}$ of an inch wide on the under side of the point. But in no instance file to a fine point and thin wire edge.

Be sure that the saw hangs properly on the mandrel.
The saw must be in proper line with the carriage and the carriage run true.
The mandrel must be level and run freely in the boxes.
Do nearly all the filing on the under sides of the teeth, and see that they are well spread at the points; file square and have them project alike on both sides of the saw.

If the saw heats in the center when the mandrel runs cool in the boxes, cool it off and line it into the log a little.

If the saw heats on the rim and not in the center, cool it off and line it out of the log a littleand vice versa if it heats in the centre. Every sawyer should have a side file to keep the teeth the same width.

Before commencing to insert the teeth, provide a cup of oil, which, together with the tecth, place conveniently near where you will stand, at the back of the saw. Take the wrench, place the pins in the holes in the shank, and turn it so that the hook projects sufficiently to receive the bit, pick up a tooth with the other hand and dip its grooved segment into the oil; then place in position and hold it firmly and even with the sides of the blade, while at the same time press the wrench downward until the shank fits into its place.

The chisel teeth are exact in width, and the spread uniformly good, and make smoother lumber than is made by the solid saw, even when not in the hands of first-class sawyers; but if extra nice work is desired, try a gauge on the side of each tooth, and if any are found to project a trifle too far, reduce them with a side file, being careful to preserve the same relief of the corncr. No flat surface should be allowed on the sides of the teeth; they must be relieved from the very edge; then the saw will run straight, and with the least possible expenditure of power, and make smooth lumber. Practical use of the chisel bits has proven conclusively that in order to get the most and best use of them, when a set has been inserted and properly adjusted, they should remain until they are wern out, and as often as may be required edge them up by applying a file to their face or under side; after being sharpened several times they should be relieved on the side, so as to keep their corners sharp. Should a shank become straight or compressed, by reason of the saw having been run on iron, so that it will not hold the bit firmly, lay it on an anvil and strike it with a hammer on the inner edge until expended sufficiently to hold the bit.

Do not try the experiment of bending ear!s alternate tooth for the set when using Inseried Tooth Saws.

Vse a light lammer in swedging, about 3 to 1 pound weight, holding the swedge so that the teeth will be spread at the points.

IN FILING SOLID-TOOTH CIRCULAR SAWS keep the throats or roots of the tecth round, or as the saws are when new. Angles or square corners filed at the roots of the teeth will almost invariably cause a saw to crack. The filing of such angles or square corners will cancel the warranty on any saw. The back or top of the tooth leads or guides the saw and should be filed square across. The under sides of the teeth may be filed a little beveled when they are bent alternately for the set, so as to leave the outer corner of the cutting edge longest.

LIST of BULLETINS

Issued to date by the

Joshua Hendy Iron Works

Iron Founders, Engineers and Machinery Merchants

75 Fremont St., San Francisco, Cal.

No.	Subject	Date	Condition
100	Pinder Concentrator	Nov. 1906,	Issued
101	Hendy Two and Three-stamp Mills,	Nov. 1906,	Exhausted (See No.113)
102	Davis Horse Whim	Oct. 1906,	Issued
103	Ore and Water Buckets	Jan. 1907,	Issued
104	Hendy Standard Ore Cars	Mar. 1907,	Issued
105	Hydraulic Water Gates, etc.	Feb. 1907,	Issued
106	Hendy Hydraulic Giants	A pril 1907,	Issued
107	Ore Crushers	May 1907,	Exhausted (See No.117)
108	Winches, Derricks, etc.	Nov. 1907,	Issued
110	Hendy Fire Monitors	Nov. 1907,	Issued
111	Hendy Gravel Elevators	Aug. 1908,	Issued
113	Hendy Two and Three-stamp Mills,	June 1908,	Issued
114	Tangential Water Wheels, etc.	Dec. 1908,	Issued
115	Matteson Ore Cars	Dec. 1908,	Issued
116	Graupner Centrifugal Roller Mill	Dec. 1908,	Issued
117	Crushers and Crushing Rolls	Dec. 1908,	Exhausted (See No. 121)
118	Challenge Ore Feeders	Dec. 1908,	Issued
119	Stamp Mills, Standard	Jan. 1910,	In Press
120	Stamp Mill Accessories	Jan. 1910,	Issued
121	Crushers and Crushing Rolls	Jan. 1910,	Issued

January 15th, 1910

INDEX

Air, Compression of $120-123$
Areas of Circles 104
Belting 117
Board Measure 118-119
Boilers $112-113$
Buildings, Mill, Approx. Cost of . . . 108
Buildings, Mill, Material for 109
Casing, Oil Gas and Well 111
Circles, Areas and Circumferences . . . 104
Concrete, Mixture of 109
Drills, Air required for 123
Engines, Horsepower of 114
Factors, Mathematical 100
Gauges, Standard Iron and Steel Plate . . 102
Gears, Horsepower of 116
Hoisting on Inclines 124-125
Inclines, Hoisting on 124-125
Iron, Weights of 102-103
Measure, Board 118-119
Measure Tables 101
Metric Tables 101
Mills, Saw 126
Mills, Stamp 108-109
Miners Inch of Water 110
Multipliers, Useful 100
Pipe, Gas, Water and Steam 111
Power Required for Mill Parts . . . 115
Pulleys 116
Pumping 110
Recipes, Workshop 105-107
Ropes, Wire 125
Saws 126-128
Shafting 116
Steel, Weights of 102-103
Water 110
Water Required for Mill Parts . . . 115
Weight Tables 101

UNIVERSITY OF CALIFORNIA LIBRARY

This book is DUE on the vast date stampedherownewnen
Fige schedilet 25 cents on. first d hoverdue

One dollar on seventh day overdue.

[^0]: * Add 20 per cent. to roof item for No. 26 corrugated iron roofing.

