UNIVERSITY OF IOWA STUDIES

STUDIES IN NATURAL HISTORY

VOLUME IX NUMBER f

THE HESPERIOIDEA OF AMERICA NORTH OF MEXICO

by
ARTHUR WARD LINDSEY

I'ATVE I

$\therefore \quad$ I
Xemophatme brate (r.

7. ILeverial philetan Fidu..
\therefore Fimatic thrald Ilbol.. +

1. Welanther bromméa 11 ※.

UNIVERSITY OF IOWA STUDIES IN NATURAL HISTORY

Professor Charles Cleveland Nutting, M.A., Editor

continuation of bulletin from the laboratories of natural mistory
of the state university of Iow
YOLUME IX NUMBERLR/

THE HESPERIOIDEA OF AMERICA NORTH OF MEXICO

A Generic Revision and Synopsis of the Species
by
arthur Ward Lindsey, Ph.D.

THE HESPERIOIDEA OF AMERICA NORTH OF MEXICO

Since the time of the early writers who were satisfied to place their skippers in the two genera, Pamphala and Hesperia, the classification of these insects has been in a more or less chaotic state. The two old genera can readily be subdivided, but the structures of the skippers which are useful in their classification are of a peculiarly unstable character and have therefore proven a stumbling block to those who have attempted such subdivision. This is due to the fact that very few of our species are structurally identical, as a result of which one division has led to another until we have reached the deplorable state where, to be consistent, we must either lump extensively or split still more finely, with most lepidopterists in favor of the former. In the following pages I have attempted to rearrange our species and reorganize our genera to eliminate the confusion which has attended the group in North America, while bearing in mind both the convenience of the elassification and the opinions of the learned authors of many genera for which I have been umable to see any necessity. Undoubtedly I have erred in some points, especially in the case of the numerous species found in the southwest which belong to genera more typical of the Central American fauna, but I believe that the examination of a more complete collection of exotic species will clear up many obscure points for which I have been able to offer only a tentative solution.

In the course of my work I have had occasion to ask information of Prof. H. F. Wickham, Dr. J. MeDunnough. and Dr. Henry Skinner. Dr. Skinner has also supplied me with a number of specimens which I could not otherwise obtain, and Prof. Wickham has lent a number of books from his private library. Dr. Barnes of Decatur, Ill., has very generonsly allowed me the freedom of his fine collection and library, and also supplied me with many specimens for study. Mr. R. A. Leussler of Omaha
has given me specimens of several species which I had been unable to secure, and Mr. Nathan Banks has kindly examined the collection at Cambridge for certain material and furnished trauscripts of several necessary descriptions not in my possession. Mr. Gerhard of the Field Museum made it possible for me to spend several profitable hours in the examination of the Strecker collection in that institution. To all of these men I wish to express my gratitude for their valuable assistance.

The first step toward a rational classification of the skippers was made by Seudder in 1874^{1} when he proposed the division of the family, as he regarded it, into two tribes, the Hesperides and Astyci. These represented approximately the genera Thymele and Pamphila of Fabricius' classification in Illiger's Magazine in 1807. Scudder based his tribes on the secondary sexual characters of the males and characters found in the early stages.

This paper was followed in 1878 by Mabille's work on the Hesperiidae in the Brussels museum. ${ }^{2}$ Mabille adopted the tribes proposed by Scudder but subdivided them into several minor groups each. Scudder later expressed his approval of these divisions for the Hesperidi but reserved his judgment of the Astyci. ${ }^{3}$ Many of Mabille's groups are not represented in our fauna; the others have been the subject of very little dispute.

In the same year there appeared a paper by Burmeister ${ }^{4}$ in which the family is divided into four tribes. I am familiar with this paper only through the remarks of Seudder in the Butterfles of New England, but these are quite sufficient to show that none but historic interest attaches to the rather remarkable arrangement proposed.

A year after this Speyer produced a brief work ${ }^{5}$ in Germany wherein we find the first suggestion of the systematic importance of the position of vein five of the primaries. This suggestion furnished the necessary complement to Scudder's foundation for the major subdivisions of the skippers, which are still in use.

Nothing further of importance was done in the systematic

[^0]study of these insects mutil 1893, when Watson published ${ }^{6}$ his "Proposed Classification of the Mesperiidae," which is practically the classification now in use. Watson divided the family into three subfamilies, the Pyrthopgginar, Hesperiinar and Pamphitinae, equivalent to the Pyrrhopygiui of Mabille and the two tribes of Scudder. He further subdivided the Hesperinae into two groups and the Pamphilinae into three. Group C of the Pamphilinae is wholly oriental and African. The others correspond to the similar divisions of Scudder in part. As Watson was working on the collection in the British Musemm where Megathymus was placed in the Heterocera, he merely mentioned the genus to indicate that if placed in the Hesperiidac it would form an additional subfamile:

At this time Godman and Salvin had been publishing for six years parts of the three volumes on Rhopalocera of the Biologia Centrali-Americana. The first signature on the skippers appeared a few months before Watson's revision, but the work was not completed until 1901. The subfamilies are those of Watcon and the Hesperiinae are divided as in his classification, but the Pamphilinae, worked up by Godman after Salvin's death, are divided into eight groups. These are not wholly acceptable, but they suggest an improvement over the two groups of other writers. The chief systematic interest of the Biologia lies in the number of genera described, the excellent plates, and the great value of the work for specific identifications.

But one other paper, Mabille's monumental 'Famille Hesperidae," ${ }^{\text {F }}$ has been written on the Hesperioid fama of the world since the earliest times. In this work Mabille uses the same arrangement as that of Watson, excepting the establishment of the subfamily Ismeninae to take the place of Watson's Group C of the Pamphilinae, and the definite placing of Megathymus in the subfamily Megathyminae.

There remains to be mentioned Dyar's "Review of the Hesperiidae of the United States." ${ }^{8}$ This brief paper is the only one ever published on the skippers of this country, and in spite of omissions and commissions of an unusual nature it has filled a

[^1]great need of systematic lepidopterists. It was intended, as the name implies, merely as a synopsis of the genera and species and follows the "Famille Hesperidae" with comparatively few changes.

These works are the foundation of our present system of classification. Many others with a wider range have contributed to our knowledge of the skippers but in none of these is any work of importance on the gross classification attempted.

It will be noted in the preceding sketch of the history of the skippers that they have been treated as the family Hesperiidae, equivalent to the several families of butterfles with which they have been associated. This position is the only one to which they have been widely assigned, though a number of writers have given them superfamily rank. E. Reuter carries this a step further and proposes a distinct suborder under the name Grypocera, ${ }^{9}$ equivalent to the Rhopalocera and Heterocera, while Spuler does likewise, but applies the name Netrocera. ${ }^{10}$ This reopens the question of suborders, for if we accept Comstock's Frenatae and Jugatae the two older groups can no longer occupy this rank and must be either reduced or discarded. I regard them as natural groups though I am inclined to agree with Comstock's subdivision. The Rhopalocera and Heterocera may conveniently be designated as series. In this arrangement I cannot accept Reuter's Grypocera as indicative of the true relations of the skippers, but the name is still given some use in Europe. There are many points, however, in which the skippers show more primitive development or peculiar uniform specialization which distinguish them from the true butterflies, and the most natural arrangement appears to be that of Comstock ${ }^{11}$ in which they are made a superfamily equivalent to the butterflies proper, According to our present nomenclature this superfamily should be known as the Hesperioidea. The following synopsis indicates the foundation of this classification for the suborder Frenatae.

Frenatae

Series Heterocera. Antennae rarely clavate. When clavate usually more or less pectinate or ciliate. Hind tibiae usual-

[^2]ly with two pairs of spurs; front legs normal. Frenulum present in many families. Venation of primaries generalized or characteristically speeialized. Pupa loose in cocoon, earthen eell or plant tissues. Superfamilies Sphingoidea, Saturnioidea, Bombyeoidea and Tineoidea.
Series Rhopalocera. Antemac usually strongly clavate; never pectinate or ciliate.
Superfamily Hesperioidea: Pupa suspended in a slight cocoon. Hind tibiae rarely with less than two pairs of spurs; front legs normal. Frenulum absent. Primaries with twelve veins, all free. (All five branehes of radius present and from eell aceording to Comstoek's system.)
Superfamily Papilionoidea: Pupa naked, usually suspended from silken attachments and speeialized for eoncealment. Hind tibiae with only the terminal pair of spurs; front legs in higher families greatly reduced. Frenulum absent. Primaries with less than twelve reins or with some stalked.
In the Hesperioidea we have two families, the Hesperiidae and Megathymidae. The second includes only the genera Megathymus and Aegiale, and is equivalent to the subfamily of other writers. The first includes all other skippers. The Megathymidae are very elosely related to the Pamphilinae, and some students regard them as a highly specialized branch from the same parent stock. The fact that the boring habit of the larvale is apparently acquired lends color to this opinion, but I cannot regard the small head as a neeessary aceompaniment of the boring habit. Rather than assume an elaborate process of evolution for the reduction of such a specialization as the large head, I regard the Megathymidae as a line separated from the parent stock of the Pamphilinae before the increase in size of the head, and proceeding by parallel development to a point of higher specialization of similar struetures.

The three subfamilies of Hesperiidae are easily distinguished, apparently natural groups. The only question regarding them is that of relative position, and the present arrangement of the Hesperiinae between the Pamphilinae and Papilionoidea is favored by most of the evidence, though in the strueture of the imago
they are more primitive than the Pamphilinae. The close relationship of the Pyrrhopyginae with the Hesperiinae and of the Megathymidae with the Pamphilinae leads to their being placed at the beginning and end of the superfamily respectively. The result is a linear series which is not entirely satisfactory, but since no linear series can represent true phylogenetic relations this must be accepted as the best possible, and it does, at least, correctly indicate the general relations of the several major divisions.

The separation of genera has been the most troublesome phase of the study of skippers since Hübner's classification was first amplified. I have come to the conclusion that the intermediate position of the group, together with the apparently transitional state of many of the structures, is accompanied by a greater blending of forms than has been recognized in the past, and that the normal genus may present a wide variation of structure, provided that a transition between the extromes be present in the ineluded species. This is nicely illustrated by Thanaos, Hesperia and Poanes (sensu B. \& McD., Check List). In Thanaos we have a group of insects of very similar habitus which no one has ever divided, but within the genus are to be found differences in structure which have been made to separate three genera in other cases. The neuration, shape of the wings, palpi and secondary sexual characters very nearly run the gamut of variation found in Group B of the Hesperiinae. Hesperia is similar but shows an even greater range of variation in the antennal club, shape of the wings, and in the palpi. In fact this variation is so great as to occasion some doubt of its unity, but it is impossible to divide the genus without separating some species whose relationship is apparent.

The matter of secondary sexual characters as a basis for the separation of genera is the greatest bugbear of systematists in this family. Godman and Salvin and Mabille have contributed abundantly to the confusion of genera so based, and in many cases these genera cannot be separated by other means. As far as I am aware the only definite stand taken upon the question is that expressed by Watson in his revision.* He says: "With

[^3]regard to the vexed question of the generic importance of male secondary sexual characters, the conclusion which has been forced upon me is that, in any particular genus in which male secondary sexual characters are found, the particular male character (be it costal fold, discal stigma, or tuft of hairs) may be either present or absent in different species of that same genus, but is never replaced by a character of different structure."

This seems by far the most satisfactory attitude to adopt, though it is necessary to understand that in cases such as Thanaos and Hesperia two or three snch characters may be present or absent in various combinations in the several species. In my work, rather than earry the splitting of genera further, I have unhesitatingly followed Watson's conclusion. This has resulted in the dropping of a number of familiar genera, but I think that once we are accustomed to the change it will render our classification more convenient and more useful, as well as more natural. Some change is demanded for the sake of consistency, and since our genera have already been carried beyond the point of usefuIness, "lomping" is the only desirable change.

The structures of systematic value in the Hesperioidea are found in all parts of the body. The size of the head serves to distinguish the two families, and its appendages, the palpi and antemnae, offer a means of separating many genera. The palpi vary in length and position and the relative size of the second and third joints is useful, but it is necessary to look at all of these things in a general way. For example, in Pholisore as here treated we find great variation in the vestiture of the palpi and in the relative length of the third joint, but throughout the genus long palpi with smooth deep sealy vestiture, an oblique second joint and a porrect third joint with long seales are present. Thanaos has palpi of a similar form but with shaggy vestiture. The third joint in some genera is long, slender and vertical.

The antemnae have a characteristie slender tip which has been aptly termed the apiculus. This varies from the tiny point found in Pamphila to the long one of Goniurus, and has been entirely lost in some genera. This modification has apparently taken place by two distinct lines of cvolution, first the loss of the apiculus by gradual reduetion and second by the thickening and
fusion of the structure with the club. The first has apparently taken place in the Pamphilinae and the second in the Hesperiinae. The relation of the length of the apiculus to the thickness of the club has been used extensively to separate certain genera of the Pamphilinae but I find that its value is limited. It is variable in most species, and only where extremely short or extremely long is this variation negligible. In such species as verna the apiculus is sometimes longer and sometimes shorter than the thickness of the club and is always difficult to measure with satisfactory accuracy. The length of the entire antennae measured in proportion to some other part of the insect is useful to distinguish a few genera of our fauna.

The legs offer three important characters. viz., the presence or absence of the epiphysis on the front tibiae, the presence or absence of spines on the mid tibiae and to a certain extent their form, and the number of pairs of spurs on the lind tibiae. The epiphysis does not concern us in a study of the North American fama and the spurs on the hind tibiae characterize only one genus, but the spinulation of the mid tibiae is useful in several cases and in spite of some evidence to the contrary, I believe that it is a good character, at least to the extent used in this paper.

The wings vary greatly in shape, sometimes in a striking way, as in Eantis, Systasea and Gomiurus. In certain others, as Atrytonopsis, they have a distinctive form which is less useful because less pronounced in the female and difficult to characterize. The neuration is of comparatively little use beyond a few conspicuous features, for it is impossible to pick a reasonably long series of related species without finding some transition in all of the salient features. In spite of this I have made use of the position of vein 11 of the primaries to separate Chiomara from Thanaos, but in this case there seem to be other grounds, and the one vein furnishes a convenient and apparently reliable corollary. The distance between the bases of veins 6 and 7 of the primaries of Pholisora is greater than in most other genera. The relation of vein 5 to 4 and 6 in the primaries distinguishes the Megathymidae and most Pamphilinae from the other skippers, and helps to separate some genera. The position of veins 2 and 3 of the primaries is another character which must be used with caution, for these veins vary in closely related species and can be depend-
ed upon only in extreme cases. The neuration of the secondaries is searcely worthy of notice, though some exotic genera are characterized by the presence of vein 5 , which is usually absent or very weak.

The abdomen is of little service, though it aids in distinguishing the genera of group A of the Pamphilinae from certan Hesperiinae in that it projects beyond the secondaries in the former and scarcely reaches their anal angle in the latter.

The male secondary sexual characters in the Hesperiinae consist of the costal fold on the primaries, tuft (always proximal in our species) on the hind tibiae, tuft on the upper surface of the secondaries and the two lobes found at the base of the abdomen on its ventral surface in Hesperia. In the Pamphilinae the only form found in the North American fauna is the brand or stigma on the disk of the primaries. While I agree with Watson's treatment of these characters I believe that the great difference in form between some of the stigmata indicates sufficiently different development of the species possessing them to warrant their generic separation. Fortunately in our fauna this character can be supplemented by others. It is necessary to guard agains splitting on this basis, for many stigmata which are superficially different may easily be seen to follow in their fundamental structure a single type.

The genitalia, especially of the males, are of great value in making speeific determinations, and similarity of genitalia often affords an index of generic relationship. I have found several apparent contradictions to the latter statement, and am therefore inclined to use it very cautionsly until more is known about the skippers, but still I hesitate to include in the same gemus species whose genitalia are of widely different forms.

In attempting to work out the phylogeny of our existing speces I have come to the conclusion that the subfamily Ismeninae, made up entirely of old world species, represents the most primitive existing form. The entire subfamily is characterized by the upturned, appressed second joint of the palpi, very similar to that of the Hesperiinae of group A, and the long, porrect third joint which is unique. The antennae have a short shaft and a long, moderately thick elub with a loug apiculus which
is never sharply recurved. The hind tibiae of the males are provided with a tuft attached at the proximal end and lying along the upper edge of the joint in a groove formed of string scales. Vein five of the primaries is intermediate between veins four and six. From these structures we may assume that the immediate aneestors of the skippers had antemnae enlarged at some distance proximad of the distal end, leaving the terminal portion siender, and that vein five of the primaries in these insects had not yet formed a definite connection with either of the adjacent veins. From such forms evolution has proceeded with the permanent reflection of the apiculus by either a curve or a sharp bend. (I can construe the reflexed elub of the Pyrrhopyginae only as a further development of the Hesperiid antenna, though this does not seem a satisfactory explanation). In addition the apiculus has been reduced as already mentioned and various slight specializations have taken place. The wings of the Hesperiinae have changed only in the variably complete loss of vein five of the secondaries and the lengthening of the cell in group A, while in the Pamphilinae vein five of the primaries, has formed a definite connection with the median stem (English s.vstem; cubitus of Comstock and Needham), as also is the case with the Megathymidae. Following these lines I have drawn up the following diagram which I believe will indicate better than a written diseussion the relations and phylogeny of the genera used in this work. The arrangement undoubtedly has its faults, but I believe that it corrects a number of features of former arrangements which were more or less unnatural. In the main it adheres to the order of genera which has been in common use.

Superfamily HESPERIOIDEA

Antennae clavate, in a few genera with the elub very slender. Club usually with a slender tip called the apiculus. Palpi variable, usually relatively large and thick, upturned to porrect. Head wide, eyes large and far apart, lashed. Insertion of antennae near eyes. Body stout, slender in a few genera. Wings relatively smaller than in the Papilionoidea and with very strong venation in most genera. Primaries with twelve veins, all free; cell open or weakly elosed. One anal. Secondaries with eight

or nine veins, five usually absent; cell open. Two anals. Front legs normal, tibiae usually with the epiphysis present (in all North American genera). Middle legs with one pair of spurs on the tibiae and with or without spines. Hind legs with two pairs of spurs, or with only the distal pair in some genera.

The two families are bascd on the following characters:
Family HESPERIIDAE: Head nearly as wide to wider than thorax. Hind tibiae usually with two pairs of spurs. Palpi moderate to large. Larvae external plant feeders.
Family MEGATHYMIDAE: Head narrower than thorax. Hind tibiae with one pair of spurs. Palpi rather small. Larvae borers in plant stems. Imagines larger than most Hesperiidae, heavy bodied and strong of flight.

Family HESPERIIDAE

Characters of the superfamily, distinguished from the Megathymidae as shown in the preceding synopsis. The North American species fall into three subfamilies which may be separated by the following key, which also deals with the groups into which the subfamilies are divided.

hey to subfamilies and groups

1. Club of antennae large, entirely reflexed....pyrrhopyginae Club variable, never entircly reflexed. 2
2. Vein 5 of primaries not curved at base, usually about intermediate between 4 and 6 . Mid tibiae without spines
hesperinal 3 Vein 5 curved at base, arising nearer to 4 , or with the mid tibiae spined
.pamphilinae 4
3. Cell of primaries more than two-thirds as long as wing or antennae with a slender reflexed or recurved apiclus
.Group A
Cell two-thirds or less. Club curved, blunt or fusiform, but never with a slender apiculus.........................Group B
4. Vein 5 intermediate, straight. Club blunt. Palpi porrect . Group A Vein 5 curved at base, nearer to 4 . Palpi not porrect. Group B of authors
5. Third joint of palpi long slender and vertical. Antennae short with the club blunt. Group B
Third joint small or antennae with a slender apiculus
.. Group C
Cell of primaries two-thirds as long as wing, usually with a recurrent vein or a vestige of it..................... Group D

Subfamily PYRRHOPYGINAE

This subfamily includes a large number of South and Central American species of which only one, araxts, oceurs within our territory. The large antennal club, bent back along the shaft or recurved, is typical of all the species. In other respects their structure agrees to a great extent with that found in group A of the Hesperinae. The cell of the primaries is apically produced with the discocellulars outwardly concave, and is about two-thirds as long as the wing. The discocellulars are weak, but clearly traceable. Vein 5 is approximately intermediate in the primaries, and absent in the secondaries, though found in a few exotic genera.

Araxcs has been included in the gemus Pyrrhopyge by all writers with whose works I am familiar, but the difference in habitus and the form of the secondaries have led me to remove it. Watson's diagnosis of his genus Nicroceris (P. Z. S. 1893, 15) differs in only a few points from the structures of araxcs, but the type, variicolor, judging by the original deseription and figure, is not at all closely related. I am therefore basing a nex genus on the points of difference between araxcs and Watson's deseription of Microceris.

Genus APYRROTHRIX gen. nov.

Similar to Pyrrhopyge. Differs from that genus in the more gently curved costa and more prominent apex of the primaries and the form of the secondaries. In Pyrrhopyge these appear to be longer through the cell than along the imer margin, and the outer margin is even or slightly eoneave between veins 2 and 7. The abdomen usually equals or surpasses the anal angle of the secondaries. In arares the secondaries are broad and full, and surpass the abdomen. The outer margin is deeply crenulate, produced between veins 2 and 4 in the male and conspien-
ously so in the female. According to Watson veins 7 and 8 of the primaries of variicolor are short stalked, while in araxes they are free. Watson's figure of the neuration of his genus differs in a few points in the secondaries also, and on the whole the relationship seems to be rather with the typical species of Pyrrhopyge than with araxes. Fig.1.

Type: Erycides araxes Неw.

1. APYRROTHRIX ARAXES

Erycides araxes Hewitson, Desc. Hesp. 2, 1867. Pyrrhopyga cyrillus Plötz, Stett. ent. Zeit, xL, 529, 1879.
Biologia Cent.-Am., Rhop. II, 252, pl. 73, ff 14, 15, 16, 1893.
Holland, Butterfly Book 319, pl. xLv, f. 9, 1898.

Mexico. I have two bred specimens

Fig. 1. Apyrrothrix araxes Hew. a. Clud of antenna. b. Neuration from southern Arizona which are very close to araxes but the typical form is not known to occur north of the boundary.

1a. race ARIZONAE

Pyrrhopyge araxes, form arizonae G. \& S., Biol. Cent.-Am., Rhop. nt, 253, 1893.

Skinner, Trans. Am. Ent. Soc. xxxvir, 201, pl. x, 1911.
Dark marks on under surface of secondaries not well defined, suffused with ochreous. Outer margin of ochreous area diffuse.

Arizonae occurs in Arizona in August and September.

Subfamily HESPERIINAE

Structure very diverse but always showing the characters mentioned in the key. Antemae varying in length, club flattened oval to extremely long and slender, with the distal half or less reflexed or recurved. Palpi with the second joint closely appressed and the third minute to long, large and porrect. Neuration fairly constant. Branches of radius variable in position. Vein 5 straight and about intermediate between 4 and 6,2 variable. Secondaries with position of 7 variable and vein 5 absent to weakly tubular at its outer end (Thanaos, some specimens),
usually marked by a fold. Mid tibiae without spines. Two pairs of spurs present on the hind tibiae in our genera. Secondary sexual characters of the males: costat fold, tibial tuft, tuft on secondaries, and basal lobes on under surface of abdomen.

GROUP A

Group A is more widely represented in South and Central America, and a number of our species are merely strays from more southern localities. The genera have been very inconsistently treated in the past, and I am lumping a few of them which show a complete lack of constant structural differences with the exception of the costal fold. Several such as Cecropterus and Thorybes are very closely related but because of the very distinct form of the male genitalia I am retaining them, based on such characters as will serve for their separation. The group is distinguished by the length of the cell and the form of the antennal club.

Key to the genera

1. L. D. C. of primaries very long and curved......... Phocides
L. D. C. normal 2
2. Apiculus of antennae longer than rest of club, straight and sharply bent at base. Vascus
Apiculus otherwise 3
3. Primaries with a tubular, or at least well marked, recurrentvein in cell4
Recurrent vein scarcely traceable or absent 9
4. Antennae with a distinct, slender. reflexed apiculus 5
Antennal club fusiform, more or less elongate; arcuate orwith a well rounded bend at middle.7
5. Secondaries tailed Goniurus
Secondaries not tailed 6
6. Apiculus sharply bent; primaries apically produced IrotcidesApiculus recurved; apex of primaries moderate..Epargyreus
7. Recurrent vein nearer vein 4 than vein 3 8
Recurrent vein nearer 3 Chioides
8. Outer margin of secondaries slightly crenulate..Codatractus Outer margin even Telegonas
9. Club of antennae large, fusiform Plestia
Club more slender, with a distinct apiculus 10
10. Apiculus much shorter than rest of club, bent at about a right angle 11
Apiculus about as long as rest of club, usually sharply re- flexed or recurved 13
11. Secondaries lobed. Polygonus
Secondaries broadly rounded or merely produced at anal angle 12
12. क人 with a tuft of scales on upper surface of hind wings;palpi moderateCogia
No tuft. Palpi exceeding front by about length of head
Phoedinus
13. Vein 1a of secondaries about two-thirds as long as 1b. Pri-maries with a broad yellow band................CecropterusVein 1a longer. Primaries with spots or a broken yellowband .. 14
14. Outer margin of secondaries broadly rounded; of primariesslightly and almost evenly convex.................ThorybesOuter margin of secondaries more or less produced andangled at 1 b ; of primaries slightly sinuate.......AchalarusOuter margin of secondaries with a slight truncate lobebetween veins 3 and 4 .
Cabares
Genus PHOCIDES Hübner

Phocides Hbn., Verz. bek. Schmett. 103, 1820. Type Papilio palemon Cr .
Erycides Hbn., Verz. bek. Schmett. 110, 1820. Type Papilio pygmalion Cr .
Dysenius Scudder, Syst. Rev. 46 (67), 1872. Type Erycides albicilla $\mathrm{H} . \mathrm{S}$.
Palpi oblique, vestiture smooth, deep and scaly; third joint small. Antennae with club rather long, moderately thick; apiculus not more than one-half as long as rest of club, very slender and abruptly bent. Primaries shaped as in Goniurus, with a
costal fold in the male. Cell over two-thirds as long as wing. Vein 5 nearer to 6 than to 4 ; L. D. C. long and strongly curved. Vein 3 near end of cell and 2 well toward base of wing. Recurrent vein faint, at base of vein 4 . Seeondaries produced toward anal angle with outer margin sharply bent at 1b but not lobed. Outer margin only slightly irregular. Phocides is easily reeognized by the general habitus of the species when once seen. Fig. 2.

The action of former writers in combining these three genera was undoubtedly correct, though some slight differences of structure exist between the species occurring in our country.

Fig. 2. Phocides balabano Lucas. Neuration

> Key to the specics
.batabano
Primaries immaculate, black.
Primaries with a red spot above. lilea
Primaries with hyaline white spots. . urania

1. PIIOCIDES BATABANO

Eudamus batabano Lucas, Sagra, Hist. Cuba, vir, 624, 1857.
Erycides mancinus H.-S., Corr.-Blatt Regensb. xv1, 143, 1862.
Erycides okeechobee Worthington, Papilio I, 133, 1881.
Skinner, Trans. Am. Ent. Soc. xxxvir, 199, pl. x, 1911.
Florida, March and April.

2. PHOCIDES LILEA

Erycides lilea Reakirt, Proc. Acad. Nat. Sci. Phil. 1866, 339.
Erycides albicilla H. S., Corr-Blatt Regensb. xxill, 169, 1869.
Erycides socius Butl. \& Druce, Cist. Ent. 1, 112, 1872.
Dysenius cruentus Seud., Syst. Rev. 46(67), 1872.
Erycides sanguinca Scud., Syst. Rer. 47 (68), 1879.
Erycides decolor Mab., Bull. Soe. Ent. France 1880, xlyi.
Biol. Cent.-Am., Rhop. 11, 296, pl. 76, ff. $23,24,1593$.
Skinner, Trans. Am. Eut. Soc. xxxvis, 199, 1911.
The only specimen whieh I have seen bears the label "Colima, Mex." Skinner lists a Texas record by Capt. Pope in the Mexican Boundary Survey.

3. PHOCIDES URAVIA

Erycides urania Westw. \& Hew., Gen. Diurn. Lep. 510, pl. 79, f. 1, 1852.
Erycides texana Scud., Syst. Rev. 47 (68), 1872.

Skinner, Ent. News I, 23, 1890, and if, 101, pl. 1, 1891.
Skinner, Trans. Am. Ent. Soc. xxxvir, 198, 1911.
Texas, Arizona and southward.

Genus NASCUS Watson

Nascus Watson, Proc. Zool. Soc. London, 1893, 28, Type Papilio phocus Cr .
Watson characterized this genus as follows: "Antennae: club rather robust, bent into a hook, terminal portion very
 slender and rather longer than rest of club. Palpi upturned, third joint almost concealed. Fore wing: outer margin very much longer than inner margin, the apex being very conspicuously produced; cell more than twothirds the length of costa; male with Fig. 3. Nascus hesus Westw. a. a costal fold ; discocellulars very primary oblique, the lower one slightly the longer ; vein 3 shortly before end of cell; vein 2 close to base of wing. Hind wing anally produced, and with an inconspicuous tooth at vein 1 b ; vein 7 close to end of cell; discocellulars and vein 5 barely traceable; vein 3 immediately before the end of the cell; vein 2 considerably nearer to end of cell than to base of wing. Hind tibiae with a long fringe of coarse hairs and with two pairs of spurs." In our fauna the very long apiculns separates this genus from all others. Fig. 3.

1. NASCUS HESUS

Telegonus hesus Westw. \& Hew., Gen. Diurn. Lep. if, pl. 78, f. 5, 185.
? Papilio nicias Fab., Mant. Ins. if, 86, 1787.
? Eudamus etias Hew., Desc. Hesp. 13, 1867.
Aaron, Ent. News i, 25, 1890 and ir, 101, pl. 1, 1891.
Eudamus curibates Skinner (not Cramer) Trans. Am. Ent. Soc. xxxvir, 191, pl. x, 1911.
Mexico to Brazil; Skimer includes Texas, following Aaron, presumably.
I have compared Cramer's, Westwood and Hewitson's and Skinner's figures, and find that the two latter agree very well, but that, even allowing for the poor quality of Cramer's figure, they can hardly be euribates Cramer. I have no data on the occurrence of the species in this country.

Genus POLIGONUS IIïbner

Polygomus Hbn., Samml. exot. Schmett. ir, t. 144, 1829-6. Type Polygonus lividus IIbn.
Acolastus Send., Syst. Rev. 50, 1872. Type IIesperia sarigmy Latr.
Nemius Kirby, Wytsman’s Hiibner 105, 1902. New name for Polygonus and Acolastus.
Second joint of palpi appressed, densely scaled; third porrect, small. Reflexed apienlus abruptly constricted, about one-half as long as rest of club. Head slightly wider than thorax. Primaries narrow, costa evenly curved, inner margin nearly straight and outer sharply emrved opposite cell; no fold in male. Cell threequarters as long as wing; vein 5 about equidistant between 4 and 6 ; spur vein

Fir. 4. Pobygonus armyntas Fab. a. Club of antemata. b. Neuration of primary searcely traceable, nearer to 3 . Secondaries broadly rounded, lobed at anal angle. Fig. 4.

According to Scudder (Hist. Sk. 253) Polygomus was preoceupied by Polygoma in the Mollusca. Acolastus was preoceupied in the Coleoptera, a fact which was orerlooked for many years, and Kirby offered Nemuius to replace it. According to the current international rules of zoological nomenelature a difference of one letter is sufficient to validate a generic name, so Polygonus cannot be regarded as preoccupied, and therefore must be retained for amyntas.

1. POLYGONUS AMYNTAS

Papilio amyntas Fab., Syst. Ent. 533, 1775.
Polygonus lividus Hbn., Samml. exot. Schmett. if, t. 144, 1822-26.
Hesperia savigny, Latr., Enc. Meth. $1 x, 741,1823$.
Skimer, Trans. Am. Ent. Soc. xxxvif, 200, jl. x, 1911.
The trpical form is very dark. It occurs in Florida in Aug. and Sept.
1a. race ARIZONENSIS
Erycides amyntas arizonensis skimer, Trans. Am. Fint. Soc. xxxuri, 209, pl. x, 1911.
The western race of amyntas is paler than the typieal form, both above and below, and the pale transverse bands of the secondaries are faintly visible on the upper surface. Texas and Arizona, September.

Genus PROTEIDES Hübner

Proteides Hbn., Verz. bek. Schmett. 104, 1820. Type Papilio idas Cr .
Dicranaspes Mab., Ann. Soc. Ent. Belg. xxı, 24, 1878. Type Papilio idas Cramer.
Proteides is very close to Epargyreus, and I think that with a large series of the tropical species the two genera will be found to be scarcely worthy of separation. In our fauna, however, the sharply constricted and reflexed apiculus and the narrow, apically produced primaries of Proteides are very distinctive. The male has no costal fold. Fig. 5.

1. PROTEIDES IDAS

Papilio idas Cramer, Pap. Exot. iif, 118, p. ccux, A, B, 1779-80.
Papilio mercurius Fab., Mant. Ins. II, 86, 1787.
Biol. Cent.-Am., Rhop. II, 301, pl. 77, f. 5, gen., 1893.
Skinner, Trans. Am. Ent. Soc. xxxvir, 194, 1911.
Occurs in Texas, New Mexico and Arizona. I have no further data.

Genus EPARGYREUS Hübner

Epargyreus Hübner, Verz. bek. Schmett. 105, 1820. Type Papilio tityrus Fab.
Second joint of palpi closely appressed, densely clothed with scales in which the small third joint is almost concealed. Antennae about one-half as long as the

Fig. 5. a. Club of antenna of E. zestos Geyer. b. Club of antenna of P. idas Cramer. c. Neuration of E. tityrus Fab. primaries, club more or less sharply curved at the middle. Head not quite as wide as thorax. Primaries elongate, rather narrow; outer and inner margins abont equal in length, outer slightly more oblique but otherwise similar to Goniurus. Costal fold present. Cell three-quarters as long as wing; vein 5 slightly nearer to 4 than to 6 . Recurrent vein nearer to vein 3. Vein 1 strongly sinuate. Secondaries rounded, lobed at anal angle. Fig. 5.

The primaries are longer and narrower in exadeus than in zestos and tityrus, and the apiculus of
the antennae shows a tendency to be more slender and more sharply bent. This has led me to the conclusion stated under Proteides that the two genera are possibly not distinet.

Key to the species

1. Under surface of sceondaries with a silky white patch................... 2

No silky white on secondaires... . . zestos
2. Spots of primaries deep yellow and usually broadly contiguous.tityrus Spots small and widely separated, or if larger, very pale yellow.exadeus

1. EPARGYREUS ZESTOS

Proteides zestos Geyer, Zutr. exot. Schmett. Iv, 9, t. 106, ff. 615, 616, 1832. Eudamus oberon Worthington, Papilio i, 132, 1881.
Skinner, Trans. Am. Ent. Soc. XxxviI, 193, 1911.
Florida, August and September.

2. EPARGYREUS TITYRUS

Papilio tityrus Fab., Syst. Ent. 532, 1775.
Papilio clarus Cramer, Pap. Exot. i, 66, pl. xli, E, F, 1775.
Holland, Butterfly Book 323, pl. xliir, f. 5, 1893.
Smyth, Ent. News xix, 191, pl. x, 1908.
Skinner, Trans. Am. Ent. Soc. xxxvir, 192, 1911.
Ranges throughout the United States and into southern Canada and South America. June to August.

ab. OBLITERATUS

Epargyreus tityrus obliteratus Scudder, Butt. New Eng. if, 1402, 1889.
Only three small, rounded spots in place of the discal band, and only one small preapical spot. Silver on under surface of secondaries more extensive than usual.

3. EPARGYREUS EXADEUS

Papilio exadeus Cramer, Pap. Exot. in, 11s, pl. cclx, C, 1779-80.
Biol. Cent.-Am., Rhop. if, 299, pl. 77, f. 1, gen., 1893.
Skinner, Trans. Am. Ent. Soc. xxxvif, 194, ll. x, 1911.
Southern Califormia, Arizona, New Mexico, Mareh.

Genus GONIURUS Hübner

Goniurus Hübner, Verz. bek. Schmett. 104, 1820. Type Papilio simplicius Stoll.
Eudamus Swainson, Zool. Ill. (2), н, 48, 1831-2. Type Papilio proteus Linn.
? Polythrix Watson, Proc. Zool. Soc. London, 1893, 19. Type Eudamus metallescons Mabille.

Second joint of palpi closely appressed, third porrect, small. Antennae a little over one-half as long as primaries, club slender, apiculus shorter and distinctly more slender than remainder. Primaries broad and short; outer margin evenly rounded to

Fig. 6. Goniurus. a. Palpus of sim-
plicius Stoll. b. Club of antennae of simplicius Stoll. e. Neuration of proteus Linn slightly sinuate, about as long as imner; costa evenly rounded, relatively short, without fold in one species. Cell two-thirds as long as wing; vein 5 slightly nearer to 4 than to 6 . Secondaries with anal angle produced into a long tail; outer margin slightly excavated opposite cell and before tail, sometimes slightly crenulate. Fig. 6.

The above description is taken from simplicius and eurycles. Proteus has a longer cell as shown in the figure and both proteus and dorantes have relatively shorter antennae. It may prove desirable to use Eudamus for these two species, but without knowing more of the related Central American famna I camot make a satisfactory decision on this point. Of the other three North American species which I here remove from Goniurus I feel that albofasciatus and zilpa warrant the establishment of a new genus, and that the relationship of alceus to melon, in spite of its tailed secondaries, is too close to be disregarded.

Key to the species

1. Upper surface with shining green hairs............................eteus Without green hairs.. 2
2. Fringes checkered; spots not united to form a straight band..dorantes Fringes not checkered; band usually present.......................... 3
3. Band always present; no costal fold in male; outer margin of primaries slightly sinuate...eurycles Band sometimes broken or even absent; male with fold; outer margin slightly convex..simplicius

1. GoNIURUS PROTEUS

Papilio proteus Linn., Syst. Nat. I, 484, 1758.
Scudder, Butt . New Eng., if, 1386, 1889.
Biol. Cent.-Am., Rhop. II, 277, pl. 75, f. 5, gen., 1893.

Holland, Butterily Book 321, pl. xlv, f. 6, 1898.
Skimer, Trans. Am. Ent. Soe. xxxyil, 194, 1911.
Florida and Georgia, August to October. Arizona and Texas, June and July. Dr. Skinner gives the range as New York to the Gulf and sonthward through Mexieo and Central America.

2. GONIURUS DORANTES

Papilio dorantes Stoll, Pap. Exot., Sulp., 172, pl. xxxix, f. 9, 1790.
Eudamus amisus Hew., Dese. Hesp. 5, 1867.
Eudamus protillus H.-S., Corr.-Blatt Regensb. xxiri, 171, 1869.
Biol. Cent.-Am., Rhop. if, 278, pl. 75, f. 7, ô gen., 1893.
Skinner, Trans. Am. Ent. Soc. xxxvir, 197, 1911.
Southern California, Mexico.
2a. race RACTERBERGI
Eudamus protillus var. rauterbergi Skinner, Ent. News vi, 113, 1895.
Skinner, Trans. Am. Ent. Soc. xxxvir, 197, 1911.
Skinner says that this form is "smaller and very mueh darker than protillus; the fringes are far less marked, and the tails lack the adminture of light hairs."

Texas, Arizona and southward; July and September.

3. GONIURUS SIMILICIUS

Papilio simplicius Stoll, Pap. Exot., Supp., 171, pl. xxxix, f. 6, 1790. Biol. Cent.-Am. Rhop. if, 270 , pl. 75, f. 1, ô gen., 1893. Skinner, Trans. Am. Ent. Soc. xxxvii, 196, 1911.

Some females can scarcely be told from curyctrs. but usually the obsolescence of the hyaline marks of the primaries and the slightly different shape of the wings enable one to recognize the species. The males are readily identified by the costal fold.

Texas, March and October.

4. GONIURUS EURYCLES

Hesperia euryeles Latr., Enc. Meth. ix, 730, 1823.
Skinner, Ent. News xif, 171, 1901.
Skinner, Trans. Am. Ent. Soc. xxxvif, 197, pl. x, 1911.
I have eurycles from Guatemala, taken in April, and from Colombia taken in November, hut aside from Dr. Skimmer's note in the Entomological News I have seen no reeords of its oceurrence north of Mexico.

Genus CHIOIDES gen. nov.
Palpi large, porrect ; seeond joint deeply scaled, third strong,
conspicuous. Antennae less than one-half as long as primaries, club relatively smaller and thicker than in Goniurus, and more broadly curved, with the apiculus less distinct. Primaries with the apex subtruncate, outer margin concave below apex. Cell about three-fourths as long as wing; recurrent vein nearer to vein 3 than to vein 4 ; bases of 3 and 4 much farther apart than M. D. C. and L. D. C. combined. Costal fold present in our species. Fig. 7.

Type: Eudamus albofasciatus Hewitson.
Catillus, a Central American species, and albofasciatus are very closely related, and agree in the form of the male genitalia. Zilpa differs somewhat in the form of the wings and the male genitalia, but on the whole it is apparently related to the other species, and with them distinct from Goniurus. The difference is scarcely greater than between proteus and simplicius.

1. CHIOIDES ALBOFASCIATUS

Eudamus albofasciatus Hew., Desc. Hesp. 3, 1867.
Biol. Cent.-Am., Rhop. if, 280, p1. 75, f. 11, ô gen., 1893.
Skinner, Trans. Am. Ent. Soc. xxxvif, 197, 1911.
Texas, March. Arizona, July and September. Distinguished from zilpa by the long narrow white band on the under surface of the secondaries.
2. CHIOIDES ZILPA (Plate I, Fig. 5)

Goniurus zilpa Butler, Lep. Exot. 109, t. xl, f. 2, 1872.
Biol. Cent.-Am., Rhop. ir, 279, pl. 75, f 8, ô gen., 1893.
Patagonia Mts., Arizona, May. Kerrville, Tex., September.
Genus CODATRACTUS nom. nov.
Heteropia Mabille, Le Nat. 1889, 68. Type Heteropia imitatrix Mab. Preoccupied in sponges by

Fig. 7. Chioides zilpa Butler. a. Detail of neuration end of cell of primaries. c. Club of antenna. e. Palpus. Codatractus alecus Hew. b. Detail of neuration, end of cell of primary. d. Club of antenna. Meteropia Carter, Ann. \&Mag. Nat. Hist. (5), xviif, 47, 1886.
Structure in general similar to Chioides but with veins 3 and 4 of the primaries not so far apart at their bases as the combincd length of the two discocellulars and the recurrent vein nearer to 4 than to 3 . The antennal club is fusiform, more or less sharply bent near the middle but with the distal portion not differentiated.

Outer margin of primaries slightly sinuate; no costal fold in male of melon; I have not seen a male of alcaeus. Fig. 7.

To place such a strongly tailed species as alcaeus with a species in which the secondaries are merely angled is radical, but a study of related Central American species has led me to believe that in this case, at least, it is justified. Alcaeus agrees with melon very closely in structure, and the male genitalia of the two species are very similar.

1. CODATRACTUS ALCAEUS

Eudamus alcaeus Hew., Desc. Hesp. 3, 1867.
Skinner, Ent. News xil, 171, 1901.
My only specimen is a female from Mexico, and I have seen no others. The reference to the Entomological News is the only record of its oecurrence in the United States with which I am familiar.

2. CODATRACTUS MELON

Heteropia melon Godman \& Salvin, Biol. Cent.-Am., Rhop. ir, 297, pl. Lxxvi, g. $26,27,1893$.

The typical form of melon is not known to occur north of Mexico.
2a. raee ARIZONENSIS
Heteropia melon var. arizonensis Skinner, Ent. News Xvi, 232, 1905.
Skimer, Trans. Am. Ent. Soc. xxxvil, 186, pl. x, 1911.
Baboquivari Mts., Ariz., July.
Differs from true melon in the whiter marginal area of the secondaries below.

Genus TELEGONUS Hübner

Tclegonus Hübner, Verz. bek. Schmett. 104, 1820, Type Papilio anaphus Cramer.
Palpi oblique, third joint distinct. Antemnae with a long slender tapering club, not sharply bent but curved at the middle. Primaries broad, outer margin equal tọ inner; costa slightly curved, without a fold in the male; onter margin very slightly sinuate. Secondaries protuced and angled at 1 b ; outer margin straight from vein 7 to the anal angle. Cell of primaries about two-thirds as long as wing, discocellulars very oblique; vein 5 slightly nearer to vein 4 than to vein 6 ; recurrent vein near 4 ; vein 2 over one-half as far from base of wing as from 3.

1. TELEGONUS HAHNELI

Aethilla hahneli Staud., Exot. Tagf. i, 291, 11, pl. 98, 1888. Biol. Cent.-Am., Rhop. il, 306, pl. 77, ff. 13, 14, 1893.
Skinner, Ent. News xir, 171, 1901.
Standinger's figure does not agree at all with that of Godman and Salvin, which represents the species recorded from North America. Since the latter authors state, however, that they had specimens from Dr. Staudinger himself, the best thing that we can do is retain the name in its present usage until the types can be examined.

Arizona (Skinner).
I have a specimen from Dr. Skinner labelled "Jamaica." Beyond his record in the Entomological News I have no knowledge of the occurrence of the species within our country.

Genus PLEstIA Mabille
Plestia Mab., Le Nat. (2), in, 146, 1888. Type Plestia staudingeri Mab.

Fig. 8. Plestin dorus Edw. a. Club of antenna. c. Neuration

Palpi porrect, exceeding front by length of head; seeond joint with shaggy vestiture of scales and hair, third conical, moderately large. Antennae with the club fusiform and pointed, almost as long as the shaft. Primaries trigonate, onter margin bent opposite cell; costal fold present in male. Cell over two-thirds as long as wing, recurrent vein absent. Vein 5 nearer 6 than 4. Secondaries trigonate, prominently lobed at anal angle. Legs and under surface of thorax very hairy. Fig. 8.

1. PLESTIA DORUS

Eudemus dorus Edwards, Papilio n, 140, 1882.
Biol. Cent.-Am., Rhop. if, 290, pl. 76, ff. 8, 9, 1893.
Holland, Butterfly Book, 392, pl. xlv, f. 11, 1898.
Skinner, Trans. Am. Ent. Soc. xxxvif, 187, 1911.
Arizona, May, June and July. New Mexico, May.

Gemus ACHALARUS Scudder

Achalarus Scudder, Syst. Rev. 50 (71), 1872. Type Papilio lycidas, Abbot and Smith.

Murgaria Watson, Proc. Zool. Soc. London, 1893, 37. TYype Tolegonus albociliatus Mabille.
Palpi porrect; second joint closely and roughly scaled; third small, almost concealed in vestiture of second. Antennae about one-half as long as primaries; club slender, tapering gradually into the reflexed tip, which is not quite as long as the rest of the club. Primaries moderately broad; costa slightly rounded, with or without the fold in the male; outer margin slightly sinuate in the male, more evenly rounded in the female; cell slightly over two-thirds as long as wing; spur vein very faintly indieated, near vein $4 ; 5$ slightly nearer to 4 . Secondaries angled at 1 b in the male, more rounded in the femate. In cpigona this character is very variable, some specimens having the angle aeute and others obtuse. Vein 5 is not present, as stated by Watson (P. Z. S. 1893, 34) but is indicated by a slight fold.

Although it seems very radical to combine these genera, a careful consideration of their structures has failed to disclose any basis for their separation. Epigona, formerly placed in Phoedinus, is obviously congeneric with albociliatus, and hence under the old arrangement would fall into Murgaria, while both dffer from lycidas only in the absence of the costal fold in the males. Some specimens of the white fringed species have the anal angles of the secondaries much more acute than in lycidas, and therefore look much different, but as I have stated, this character is very variable. The male genitalia are similar and of a peculiar form.

Key to the species

2. Primaries with well defined whitish hyaline spots..............epigona Primaries with an obseure dark band, rarely with a few white spots albociliatus

1. ACHALARUS LYCIDAS

Papilio lycidas Abbot and Smith, Lep. Ins. Ga. i, 39, pl. 20, 1797.
Proteides lyciades Geyer, Zutr. ex. Sehmett. iv, 10, ff. 621, 622, 1832.
Skinner, Trans. Am. Ent. Soc. xxxvir, 188, 1911.
New York and Penusylvania, August, and south to the gulf, where it is taken in May and June.

2. ACHALARUS EPIGONA

Myscelus epigona H.-S., Corr.-Blatt Regensb. XxiII, 167, 1869.
Eudamus epigena Butler, Trans. Ent. Soc. Lond., 1870, 493.
Eudamus orestes Edw., (Lintner Ms.), Cat. Diurn. Lep. N. A. 58, 1877.
Biol. Cent. Am., Rhop. if, 332, pl. 80, ff. 9-11, 1893.
Arizona, June and August.

3. ACHALARUS ALBOCILIATUS

Telegonus albociliatus Mab., Pet. Nouv. Ent. ir, 162, 1877.
Eudamus coyote Skinner, Can. Ent. xxiv, 164, 1892.
Texas and Arizona. We have been confusing two species under this name, but at present I am unable to correct the error with certainty.

Genus CECROPTERUS Herrich-Schäffer
Cecrops Hbn., Zutr. Exot. Schmett. t. 32, ff. 183, 184, 1818. Type Cecrops zarex Hbn. Preoccupied in Crustacea.
Cecropterus H.-S., Corr.-Blatt Regensb. xxiin, 131, 1869. For Cecrops Hbn.
Rhabdoidcs Scud., Butt. New Eng. iil, p. 1854, 1889. Type Eudamus collus Boisd. \& Lec.

Fig. 9. Cecropterus cellus Bd. and Lec. a. Club of antenna. b. Detail of neura. tion; anal area of secondary

Palpi larger than in Achalarus; second joint oblique, roughly sealed; third porrect, moderate, not concealed by vestiture of second. Antemae about one-half as long as primaries; club slender, tapering, bent near middle, with the apiculus scarcely more slender than the basal portion. Primaries similar to Achalarus \circ and Thorybes; cell slightly over two-thirds as long as wing; recurrent vein faint but indicated at base of vein 4 ; 5 slightly nearer to 4 than to 6 ; discocellulars less oblique than in Achalarus, more as inThorybes; costal fold not present in male. Onter margin of secondaries rom ded, apex broadly rounded; Vein 1a about twothirds as long as 1b. Fig. 9.
Cellus resembles Thorybes very closely in most of its structures, but I hardly think that the species belongs there. I do not see anything to separate it from the genus Cecropteris, however, and so am placing it for the present with the other species whose banded primaries give them a close superficial resemblance. Pseudocellus appears to be closer to Achalarus but I have not had material for dissection and so prefer to leave it with cellus.

1. CECRopterus cellus

Eudamus cellus Bd. \& Lec., Lep. Am. Sept. t. 73, 1833.
Cecrops festus Geyer, Zutr. exot. Schmett. v, 21, ff. 907, 908, 1837
Biol. Cent.-Am., Rhop. ir, 331, pl. 80, f. 8, ô gen., 1894.
Holland, Butterfly Book 326, pl. xlv, f. 12, 1898.
Skinner, Trans. Am. Ent. Soc. xxxvil, 189, 1911.
Pennsylvania, July. Virginia and West Virginia, May and June. Texas and Arizona, April and August.

2. CECROPTERUS PSEUDOCELLUS

Achalarus pseudocellus Coolidge and Clemence, Ent. News xxil, 3, 1911. Skinner, Trans. Am. Ent. Soc. xxxvir, 190, 1911.

Arizona, June to September inclusive. This species is smaller and darker than cellus, lacks the terminal pale area on the under surface of the secondaries and has a pale ring at the base of the antennal club. I have examined a long series in the Barnes collection without finding any specimen in which the pale ring could not be seen.

Genus THORYBES Scudder

Thorybes Scud., Syst. Rev. 50 (71), 1872. Type Papilio bathyllus A. \& S.
Lintneria Butler, Trans. Ent. Soc. London, 1877, 57. Type Papilio daunus Cramer.
Cocceius G. \& S., Biol. Cent.-Am., Rhop. II, 336, 1900. Type Eudamus pylades Scud.
Palpi with the second joint appressed, densely scaled; third small, porrect, partly concealed by scales of second. Club of antennae moderate, tapering into a slender apiculus which is slightly shorter than the rest of the club. In specimens the apiculus varies from sharply reflexed to slightly recurved. Primaries rather short and broad with the costa and outer margin convex; cell slightly over two-thirds as long as wing ; recurrent vein barely indicated near vein $4 ; 5$ equidistant between 4 and $6 ; 2$ nearer base of wing than to 3 . Secondaries broadly rounded, length along vein 6 about equal to or greater than along 1 b ;

Fig. 10. a. Club of antenns of Cogia hippalus Edw. b. Neuration of Thorybes pylades Scud. c. Truncate lobe on outer margin of secondary of Cabares potrillo Lucas
anal angle sometimes very slightly prominent. Costal fold present in pylades and drusius but not in the other species. Fig. 10.

In establishing Cocceius Godman and Salvin state that it differs from Thorybes in the presence of the costal fold and that this indicates that its relationship is rather with Achalarus. It is related in many more points, however, to Thorybes, and the costal fold does not seem adequate to separate the two groups as genera. The male gentalia of the species are similar.

Key to the species

1. Fringes of secondaries white, at least in middle of outer margin.drusius Fringes not white. .2
2. Under surface of secondaries transversely strigate..................... 3

Under surface not strigate. 4
3. Hyaline spots moderate to small, without dark outlines; ground color
 Hyaline spots large with dark outlines; ground color pale. .mexicanus, race nevada
4. Spots usually large, extending from vein to vein; palpi usually pale below bathyllus Spots usually small; palpi usually concolorous with body below. . pylades Spots absent. pylades, ab. immaoulata

1. THORYBES DRUSIUS

Eudamus drusius Edw., Can. Ent. xv, 211, 1883.
Biol. Cent.-Am., Rhop. If, 336, 1894.
Skinner, Trans. Am. Ent. Soe. xxxvil, 185, pl. x, 1911.
Arizona, June, July and August. Western Nebraska, Leussler.

2. THORYBES PYLADES

Eudamus bathyllus Harris (not A. \& S.), Ins. Inj. Veg. 3rd ed., 312, 1862. Eudamus pylades Send., Proc. Bost. Soe. Nat. Hist. Xin, 207, 1870.
Biol. Cent.-Am., Rhop. if, 336, pl. 80, f. $23,1894$.
Holland, Butterfly Book 324, pl. xlviif, f. 6, 189 s.
Skinner, Trans. Am. Ent. Soe. xxxvil, 176, 1911.
Occurs throughout the United States and most of Canada. In Florida and Texas it has been taken as early as April and as late as October; farther north it flies from May to August.

ab. IMMACULATA

Eudamus pylades immaculata Skinner, Trans. Am. Ent. Soc. xxxvir, 177, 1911.

This is a rather uneommon form in which the hyaline spots of the primaries are entirely absent.

3. THORYBES DAUNUS

Papilio daunus Cramer, Pap. Exot. If, 44, pl. axxvi, F, 1777.
Papilio bathyllus Abbot \& Smith, Lep. Ins. Ga. I, 43, pl. xxıı, 1797.
Holland, Butterfly Book 395, pl. Xlviri, f. 5, 1898.
Skinner, Trans. Am. Ent. Soc. xxxvir, 178, 1911.
Some females of pylades and bathyllus are difficult to separate but as a rule the size of the spots and color of the palpi in this species are characteristic. The males of this and the following species are easily separated from the others by the absence of the costal fold.

Florida north and west to Pennsylvania, Iowa, Nebraska and Texas. I have seen southern specimens dated May and August, while farther north the species occurs from June to September.

4. THORYBES MEXICANA

Eudamus mexicana H.-S., Corr.-Blatt Regensb. xxiri, 198, 1869.
Eudamus ananius Plötz, Stett. ent. Zeit. XLIII, 99, 1882.
Biologia Cent.-Am., Rhop. II, 334, pl. 80, ff. 15, 16, 17, 1894.
Skinner, Trans. Am. Ent. Soc. xxxvif, 180, 1911.
Specimens in the Barnes collection which agree with those in the British museum are similar to pylades above but faintly strigate below, and rather darker than normal specimens of pylades.

Arizona, June and July. Colorado, July.

$$
\text { 4a. race } N E V A D A
$$

Thorybes nevada Scud., Syst. Rev. 50 (71), 1872.
Eudamus aemilea Skinner, Ent. News Iv, 64, 1893.
Holland, Butterfly Book 325, pl. xlvi, f. 39, 1898 (type).
Wright, Butt. W. Coast 254, pl. xxxif, f. $478,1905$.
Skinner, Trans. Am. Ent. Soc. xxxviI, 182, 1911.
Ground color rather pale, with a fine terminal line and margins of spots darker. Spots large. Strigation of under surface usually heavy.

California and Oregon, June and July. 8000 ft .

Genus CABARES Godman \& Salvin

Cabares G. \& S., Biol. Cent.-Am., Rhop. iI, 337, 1894. Type Thanaos potrillo Lucas.
"Antennae with a gradually tapering club, curved in the middle into a crook. Palpi porrect, the third joint rather prominent. Primaries with the cell more than two-thirds the length of the costa, the second, third, and fourth subcostal segments subequal; lower discocellular rather shorter than the middle, the two forming an oblique line at a large acute angle to
the axis of the wing; third median segment less than half the second, and rather shorter than the first; a curved recurrent nervule starts from the end of the cell. Secondaries with the discocellulars very slender; third median segment very short; second subcostal segment also short. Primaries short, slightly truncate at the tip; no costal fold in the male; secondaries with a projection in the middle of the outer margin from the end of the median nervure. Hind tibiae with two pairs of spurs."
"Type Thanaos potrillo Lucas." (Original description).
This appears to be a good genus, and the one species which occurs in our fauna can easily be placed by the peculiar lobe on the outer margin of the secondaries. Fig. 10.

1. Cabares potrillo

Thanaos potrillo Lucas, Sagra's Hist. Cuba vir, 641, 1857.
Biol. Cent.-Am., Rhop. II, 337, pl. 80, ff. 24, 25, 26, 1894.
The species is occasionally taken in Texas.

Genus COGIA Butler

Cogia Butler, Trans. Ent. Soc. London 1870, 508. Type Cogia hassan Butler.
Palpi porrect; second joint heavily clothed with seales; third small but not concealed. Antennae about one-half as long as primaries; club moderately thick, tapering into the short, reflexed apiculus. This is about half as long as the rest of the club and is usually bent at about a right angle. Shape of wings similar to Thorybes but costa of primaries less strongly curved and secondaries a little more produced anally. Cell of primaries about two-thirds as long as wing; vein 5 intermediate between 4 and 6 ; recurrent vein faintly indicated, nearer to 4 than to 3 . Primaries of male without costal fold but secondaries with a short tuft of scales lying in the fold along vein 1 b near the base of the wing. Fig. 10.

Key to the species

1. COGIA CALCHAS

Eudamus calchas H.-S., Corr.-Blatt Regensb xxin, 188, 1869.
Spathilepia terranca Butler, Lep. Exot. 111, t. xı, f. 8, 1872.
Biol. Cent.Am., Rhopl. 11, 340, pl. 81, f. 6, ô gen., 1894.
Texas, October. Most specimens ean be distinguished from outis by the dark color and limited macnlation.

2. COGIA OUTIS

Eudamus outis Skinner, Ent. News v, 332, 1894.
Skinuer, Trans. Am. Ent. Soe. xxxvil, 184, pl. x, 1911.
Texas, August. Ground color pale fuseous, as in hippalus. The primaries usually have the two hyaline spots between veins 2 and 4 but I have seen specimens in which these were laeking or greatly reduced.

> 3. COGIA HIPPALUS

Eudamus hippalus Edw., Papilio i1, 27, 1882.
Hesperia gila Plötz, Stett. ent. Zeit. xlvi, 91, 1886.
Biol. Cent.-Am., Rhop. 11, 340, pl. 80, ff. 29-31, 1894.
Skinner, Trans. Am. Ent. Soc. Xxxvif, 184, 1911.
Southern Arizona and New Mexico, June, July and August.

Genus PHOEDINUS Godman \& Salvin

Phoedinus G. \& S., Biol. Cent.-Am., Rhop. in, 335, 1894. Type Eudamus caicus H.-S.
I was inclined for a time to unite this genus with Cogia, disregarding the tufted secondaries, but the large palpi with their conspicuous third joint serve to distinguish it so easily that it seems better to retain it. The spur vein is very faintly indicated near vein 4. There are no secondary sexual structures in the male.

1. PHOEDINUS MYSIE

Thorybes mysie Dyar, Jn. N. Y. Ent. Soc. xı1, 40, 1904. Skinner, Trans. Am. Ent. Soc. xxxviI, 181, 1911.

This species is not represented in the Barnes or Strecker colleetions, and I have seen nothing which answers the deseription. Apparently it is a Phoedinus with fuseous fringes and more spots on the primaries than caicus. It was described from the Patagonia Mts., Arizona.

2. PIIOEDINUS CAICUS

Eudamus caicus H.-S., Corr.-Blatt Regensb. xxiri, 188, 1869.
Eudamus schaefferi Plötz, Stett. ent. Zeit. xlili, 99, 188.
Eudamus moschus Edw., Papilio ir, 141, 1882.
Biol. Cent.-Am., Rhop. if, 335, pl. 80, ff. 18-20, 1894.
Skinner, Trans. Am. Ent. Soc. xxxvil, 18:3, 1911.

The fringes of the secondaries of this species are pure white, save at the apex and anal angle.

Arizona, July and August.

GROUP B

The second group of the subfamily Hesperiinae is distinguished from group A by the short cell of the primaries, the form of the antemal club, and the palpi. The cell is never over two-thirds as long as the wing, and is usually a little less; the antennal club is ovate or fusiform, usually somewhat flattened and more or less curved, but never bent as in most of the genera of group A and never with a distinct apiculus; the palpi are porrect or oblique, either large or with hairy vestiture or both. The only similar palpi in group A are found in the genus Plestia.

The genera of this group appear to be very poorly defined, owing to the structural variation of the species. If we split to the extent reached by some lepidopterists we can make a genus for practically every species, so the opposite course seems advisable, and I have therefore lumped a number of familiar genera to group species which appear to be related. This has resulted, especially in Pholisora, in the association of species which can easily be separated by structural differences, but in all cases these characters show a transition through the several species which causes me to regard them as unreliable for the separation of genera.

Key to the genera

1. Secondaries irregular, excavated opposite end of cell and before anal angle; not trigonate. Vein 2 of primaries nearer base of cell than to vein $3 . \ldots .$. Systasea
Not such insects. 2
2. Club of antennae long, slender, not distinctly flattened, and scarcely exceeding twice the diameter of the shaft. 3 Chb thicker in at least one direction....................... . . 4
3. Primaries slightly excavated below apex; humeral angle prominent, rommded. Eantis Apex rectangular; humeral angle normal. Tenophanes
4. Palpi large; third joint conspicuous; vestiture not roughly hairy Pholisora
Palpi moderate to large; third joint not couspicuous or ves- titure hairy 5
5. Club of antennae elongate-ovate, flattened, blunt; species largely white or checkered.........................Itespcria
Club more or less fusiform and pointed. .6
6. Outer margin of primaries evenly rounded or nearly so...7
Apex of primaries subtruncate or rectangular. .8
7. Vcin 11 of primaries arising just beyond middle of cell and reaching costa before end of cell..................Chiomara Vein 11 arising at or beyond outer third of cell and ending in costa beyond end of cell.........................Thanaos
8. Anal angle of primaries broadly rounded; outer and inner margins about equal..............................Melanthes Anal angle sharply rounded; outer margin distinctly shorter than inner. 9
9. Cell narrow, about equal to distance between cell and costa Grais Cell normal, much wider than this distance.....Timochares

Genus HESPERIA Fabricius

Hesperia Fab., Ent. Syst. in, (I), 258, 1793. Type Papilio malvae Linn.
Pyrgus Hbn., Verz. bek. Schmett. 109, 1820. Type Papilio syrichtus Fab.
Heliopetes Billberg, Enum. Ins. 81, 1820. Type Papilio arsalte Linn.
Syrichtus Boisd., Icones 230, 1833. Type Papilio proto Esp.
Scelothrix Ramb. Cat. Lep. Andal. I, 63, 1858. Type Papilio carthami Hbn.
Leucoscirtes Scud., Syst. Rev. 52 (73), 1872. Type Syrichtus erictorum Boisd.
Muschampia Tutt, Brit. Butterflies, I, 218, 1906. Type Papilio proto Esp.
Sloperia Tutt, Brit. Butterflies I, 218, 1906. Type Hespcria poggei Led.
Powellia Tutt, Brit. Butterflies 1, 218, 1906. Type Papilio sao Berg.
Favria Tutt, Brit. Butterflies I, 218, 1906. Type, Hesperia cribrellum Eversman.
Bremeria Tutt, Brit. Butterflies r, 296, 1906. Type Syrichtus bieti Obth.

Palpi porrect; second joint with shaggy vestiture in some species, smooth in others, and of mixed seales and hair. Antennae slightly less than one-half as long as primaries; club elongate oval, flattened, blunt. Costa of primaries more or less flattened; outer margin rounded, sometimes evenly and sometimes more strongly toward the apex. Cell less than two-thirds as long as wing; vein 5 slightly nearer to 6 than to 4 ; position of 2 and 3 very variable. Secondaries broadly rounded with a slight indication of an anal lobe, to sub-trigonate with the outer margin

Fig. 11. Hesperia. Antennal clubs: a. nivella, b. ericetorum, c. and d. tessellata, two views, e. syrichtus, f. macaira, g. Neuration of tessellata, h. Outer margin of secondary of syrichtus, i. Outer margin of secondary of nivella, \mathbf{j}. Costal margin and apex of primary of nivella, k . same of syrichtus, 1 . Detail of neuration, posterior margin of cell of centaureae, m . Same of nivella
slightly wavy. Secondary sexual characters of males the costal fold, tibial tuft, and abdominal lobes; one or more of these characters may be absent. Fig. 11.

The North American species have hitherto been placed in three genera, based chiefly on secondary sexual characters. Barnes and McDunnough made a step in advance by avoiding these characters in their Contributions m, pp. 121-2, where they remark: "A better means of separation of Pyrgus [including syrichtus, montivaga and philetas] from Hesperia (Scelothrix) than that given by Dyar, and one that would include both sexes appears to be found in the palpi; in Pyrgus they are only slightly upturned and the clothing under a strong lens is seen to be rather even and composed largely of scales with a few hairs
of equal length intermingled ; in Hesperia the palpi are strongly upturned and very heavily and roughly clothed underneath with long hairs, the seales being confined to the lateral basal portion."

It is quite true that this furnishes a good basis for the separation of our species, and the general habitus of each group is also distinctive, but I have unidentified species of the genus from South Ameriea which have the habitus of IIesperia (sensu B. \& McD.) and the palpi of Pyrgus. It seems that the only conclusion which will give a well founded classification is to adopt the genus Hcsperia of many European writers.

I cannot expect unanimous approval of the sinking of ICliopetes, but after examining all of the speeies carefully and comparing them with those of Hesperia I am unable to point out any structure which does not find either its counterpart or a similar tendency in the latter genus. The pattern of Hesperia is easily traceable in ericetorum and domicella, both above and below; in mivella, laviana and macaira the under surface is puzzling, but the brown pattern may easily be a modification of a superficial vestiture such as that found in syrichtus, while the blaek marks are so seanty as to afford no comparison.

Key to the species

1. Upper surface of primaries with a broad white discal band or mostly

Band narrow and macular or not evident................................ 2
2. Spots of primaries subquadrate, well separated........................ 3 Spots crowded, slender; with an additioual row of spots beyond cell.. 6
3. Primaries with a triangular white spot in the angle of vein 2 and the cell This spot absent..entaureae
4. Male with fold; subterminal spots on under surface of secondaries deeply crescentic in most specimens, even when reduced in size..ruralis Male without fold; subterminal spots never deeply crescentic, usually poorly defined.
5. Under surface of secondaries without distinct contrasts, whitish; markings of upper surface usually reduced; a pale, glossy species. .seriptura Under surface with contrasting markings; upper surface with maculation rarely reduced; darker species............xanthus, macdunnoughi
6. Under surface of secondaries with two small submarginal lunules between veins 4 and 6
These vague, fused with a marginal white patch or with each other tessellata
7. Under surface of secondaries very pale, without sharp contrasts.philetas Maculation of under surface contrasting; under surface often powdered with brown scales. .syrichtus
8. Basal third of wings dark 9
This area not more than slightly dark shaded. 10
9. Secondaries with a subterminal esries of large white crescents
These crescents much reduced. domicella
10. Cell of secondaries below clear white. nivella
Cell more or less brown
Cell more or less brown 11 11
11. Secondaries with broad smooth brown shades below 12With a definite yellowish brown pattern, no broad shades. .ericetorum ô
12. Inside of outer shade oblique, almost straight laviana
Inside of outer shade curved with outer margin of wing. macaira
13. HESPERIA CENTAUREAE (Plate I, Figure 2)

Hesperia centaureae Rambur, Faun. Ent. Andal. ir, 315, pl. 8, f. 10, 1840.
Hesperia wyandot Edw., Proc. Ent. Soc. Phil. II, 21, pl. 5, f. 4, 1863.
Scudder, Butt. New Eng. ir, 1542, 1889.
Holland, Butterfly Book 327, pl. xlviI, f. 13, 1898.
N. Europe; Labrador, June and July. Ontario, Canada, May, July. New Jersey and Virginia, April and May. North Carolina, April. Colorado, August, 13000 ft . Male with costal fold and tibial tuft.

2. HESPERIA RURALIS

Syrichtus ruralis Boisd., Ann. Soc. Ent. France (2), x, 311, 1852.
Syrichtus caespitalis Boisd., op. cit., p. 312.
Hesperia ricara Edw., Proc. Ent. Soc. Phil. iv, 203, pl. i, f. 2, 1865.
Syrichtus petreius Edw., Trans. Am. Ent. Soc. iil, 215, 1871.
Holland, Butterfly Book 328, pl. xlviI, f. 14, 1898.
Wright, Butterflies of the West Coast No. 458, pl. xxxi, 1905.
Oberthür, Etudesde Lep. Comp. vi, 339, pl. cxxxvii, ff. 1204, 1205, 1212, 1912 (types of caespitalis and ruralis).
Western North America from Texas to Alberta, April to July. A smaller, darker species than the preceding. Male with fold and tuft.

3. HESPERIA XANTHUS

Pyrgus xanthus Edw., Field and Forest iII, 142, 1878. Holland, Butterfly Book 328, pl. xlvir, 15, 1898.

Colorado, July. Xanthus very closely resembles ruralis but most specimens have the subterminal maculation of the secondaries poorly defined and reduced as noted in the key, and the males lack the costal fold.

4. HESPERIA MACDUNNOUGHI

Syrichtus macdunnoughi Oberthür, Etudes ix, (2), 86, pl. cCLxiv, f. 2205, 1913.
B. \& McD., Contributions III, (2), 122, pl. x, f. 14, 1916.

There are five speeimens from Arizona in the Barnes collection under this name. Four I am unable to distinguish from xanthus; the remaining one has the secondaries pale below, as in scriptura.

5. HESPERIA SCRIPTURA

Syrichtus scriptura Boisd. Ann. Soc. Ent. France, (2), x, 312, 1852.
Holland, Butterfly Book 328, ןl. xlvil, f. 12, 1898. Wright, Butt. W. Coast 251, pl. xxxi, 459, 1905.
Oberthür, Etudes de Lep. Comp. vi, 339, pl. cxxxvil, p. 1206, 1207, 1912 (type f. 1206).
New Mexico, California, Colorado, April to June. This species is readily distinguished by the color of the under surface, its glossy appearance, and as a rule by the reduction of the maculation of the sccondaries. As in the two preceding, the male has the tibial tuft but no costal fold.

6. HESPERIA SYRICIITUS

Papilio syrichtus Fab., Syst. Ent. 534, 1775.
Pyrgus montiragus Reakirt, Proc. Acad. Nat. Sci. Phil. 1866, 334.
Skinner, Ent. News xvii, 277, pl. Xif, 1906.
Texas and Florida, June and July.
I have seen the type of montivagus in the Strecker collection and it is syrichtus, not tessellata as treated by many writers. I have a long series from Florida in which the under surface of the secondaries has a heavy superficial vestiture of brown scales in both sexes. Male with botll costal fold and tibial tuft.

7. Hesperia Philetas (Plate I, Fig. 7)

Pyrgus philetas Edw., Papilio I, 46, 1881. Arizona and Texas, June to October.

8. HESPERIA TESSELLATA

Hesperia tessellata Seud., Syst. Rev. 52, (73), 1872.
Syricthus communis Grote, Can. Ent. 1v, 69, 1872.
H. montivaga Scud., (not Reakirt) Butt. New Eng. il, 1536, 1889.

Holland, Butterfly Book 327, pl. xlviI, f. 18, 1898.
Wright, Butt. W. Coast 250, pl. xxxi, 457, 1905.
Occurs from coast to coast and from the Gulf to northern Canada, April to October.

8a. Race OCCIDENTALIS

Pyrgus occidentalis Skinner, Ent. News xvir, 96, 1906. Skinner, Ent. News Xvir, 277, pl. xif, 1906.

California, Arizona and Texas. This form is searcely worthy of a name. but may be regarded as a pale southwestern geographical race. I have not looked for differences in the genitalia.

9. HESPERIA DOMICELLA

Syrichtus domicella Erichson, Schomb., Reise. n. Guiana iII, 604, 1848.
Pyrgus nearchus Edw., Papilio il, 26, 1882.
Holland, Butterfly Book 327, pl. xlvir, f. 19, 1898.
Arizona, August and September.
This and the four following species, formerly placed in Heliopetes, have both the costal fold and tibial tuft in the males.
10. HESPERIA ERICETORUM (Plate I, Fig. 4 t , 6 o)

Syrichtus ericetorum Boisd., Ann. Soc. Ent. France (2) x, 313, 1852.
Syrichtus alba Edw., Proc. Eut. Soc. Phil. vi, 206, 1866.
Wright, Butt. W. Coast 250 pl. xxxi, f. 456, 1905.
Oberthür, Etudes de Lep. Comp. vi, 339, pl. ctxxxviI, f. 1210, 1912 (type). California, April to August. Arizona, July.

11. mesperia macaira

Pyrgus macaira Reakirt, Proc. Acad. Nat. Sci. Phil. 1866, 334. Syrichtus oceanus Edw., Trans. Am. Ent. Soc. iil, 213, 1871.
Leucochitonea locutia Hew., Exot. Butt., Leuch. t. 2, ff. 19, 20, 1875.
Brownsville, Texas; June.

12. HESPERIA LAVIANA

Leucochitonea laviana Hew., Desc. Hesp. 48, 1868.
Leucochitonea pastor Felder, Verh. z.-b. Ges. Wien xix, 476, 1869.
Pyrgus leca Butler, Trans. Ent. Soc. London 1870, 510.
Texas, June and July.

13. HESPERIA NIVELLA

Leucoscirtes nivea Scud. (not niveus Cr.), Syst. Rev. 52 (73), 1872.
Leucoscirtes nivella Mab., Bull. Soc. Ent. Belg. xxvii, lv, 1883.
Leucochitonea orbigera Mab., Le Nat. x, 242, 1888.
Biol. Cent.-Am., Rhop. 11, 446, pl. 90, ff. 22-24, 1897.
Brownsville, Texas; June.

Genus SYSTASEA Butler

Systasea Butler, Edw., Can. Ent. ix, 120, 1877. Type, Leucochitonea pulverulenta Folder.
Celotes G. \& S., Biol. Cent.-Am., Rhop. II, 452, 1899. Type Pholisora nessus Edw.
Palpi porrect, moderate; second joint slightly hairy; third slightly drooping in dried specimens. Antennae about one-half as long as primaries; club moderate, curved, fusiform, rather blunt. Primaries with a costal fold in the male; costa slightly curved; outer margin curved, with a shallow excavation before
anal angle; inner margin slightly eoneave, scarcely longer than outer; U. D. C. short, M. D. C. and L. D. C. about equal. Vein

Fig. 12. Neuration of Systasea pulverulenta Feld 2 twice as far from 3 as from base of cell. Secondaries very irregular with emarginations opposite cell and before anal angle. As a rule the antennal elub of nessus is slightly larger in proportion to the shaft than that of pulverulenta but it varies in each species. In spite of the difference in appearance of the two speeies I ean find nothing to warrant plaeing them in different genera. It may be that tropical species exist which will fill in the gap between them. Fig. 12.

Key to the species

Terminal portion of wings with brown dashes.....
This area without dashes.............pulverulenta

1. SYSTASEA NESSUS

Pholisora nessus Edw., Can. Ent. Ix, 192, 1877.
Spilothyrus notabilis Strecker, Lep. Rhop. 131, 1878.
Biol. Cent.-Am., Rhop. if, 452, pl. 91, ff. 27, 28, 29, 1899.
Holland, Butterfly Book 329, pl. xiviI, f. 17, 1898.
Texas and Arizona, April to August.

2. SYSTASEA PULVERULENTA

Leucochitonea pulverulenta Feld., Verh. z.-b. Ges. Wien xix, 478, 1869.
Hesperia zampa Edw., Trans. Am. Ent. Soc. v, 207, 1876.
Biol. Cent.-Am., Rhop. ir, 413, pl. 87, ff. 24, 25, 1895.
Holland, Butterfly Book 329, pl. xlvi, f. 1, 1898.
Arizona, July and August. Texas, April and October.

Genus PHOLISORA Scudder

Pholisora Scud., Syst. Rev. 51, (72), 1872. Type Papilio catullus Fab.
Staphylus G. \& S., Biol. Cent.-Am., Rhop, if, 429, 1896. Type Helias ascalaphus Stand.
Bolla Mabille, Gen. Ins. xvi, 72, 1903. Type - pullata Mab.
Hesperopsis Dyar, Jn. N. Y. Ent. Soe. xiil, 118, 1905. Type Thanaos alpheus Edw.
The species grouped in this genus offer a troublesome problem
in generic distinctions. Bolla was separated from Pholisora by Mabille on the basis of the more pointed club of the antennae. Dyar associates Hesperopsis in his description with Hesperia instead of Pholisora and calls attention to the long palpi, especially the long third joint, and the absence of the costal fold. I have bleached and mounted structures of alpheus, libya, catullus, ceos and hayhurstii and have found the following things to be true: In alpheus the third joint of the palpi is about threefifths as long as the second and both are slender; the vestiture of the third joint makes it appear about twice as long as it really

Fig. 13. Pholisora. Palpi: a. alpheus, b. libya, c. catullus, d. ceos, e. hayhurstii. Antennal clubs: f. libya, g. catullus, h. cens, i. hayhurstii, j. Neuration of hayhurstii, k. and l. Outer margins of wings of ceos and eatullus
is. Libya, associated with alpheus, has the third joint relatively shorter, both second and third thicker, the vestiture of the third similar and that of the second deeper. The entire appendage looks more like the palpus of catullus than alpheus. The eleventh vein of the primaries of alpheus arises well before the middle of the cell, while in all of the other species it arises near the middle, usually slightly beyond. Ceos differs from catullus in the relatively longer third palpal point and thicker sccond, and in the short vestiture of the third. In the shape of the wings it is intermediate between catullus and hayhurstii and farthest removed from alpheus. The antennal club is thickest in alpheus and most slender in ceos, but if the same aspect be compared the species are seen to differ but slightly. From this it
appears that there is no closer bond between alpheus and libya than between libya and catullus, while coos varies in the opposite direction from catullus but in the structure of the palpi shows some affinity with the first two species. For these reasons I prefer to regard the group as one genus with a wide range of structural variation. In this sense Pholisora may be characterized as follows:

Palpi exceeding the front by the length of the head or more; second joint oblique, rather long, with moderate scaly vestiture; third porrect, slender, long. Antennae about one-half as long as primaries; club more or less tapered and blunt. Wings rounded; secondaries with or without a slight indention in the outer margin at the end of the cell and sometimes with a slight lobe at the anal angle. Neuration variable; vein 11 of primaries never much beyond middle of cell and vein 2 about the same distance from base of cell and vein 3; U. D. C. long, over half the length of M. D. C. Male with or without costal fold, never with tibial tuft. Fig. 13.

Kcy to the species

2. Secondaries with white spots below. .. 3

Secondaries immaculate... . 4
3. Under surface pale, yellowish; upper surface of primaries with transverse row of spots complete... Under surface usually less pale and with numerous white spots when upper surface is heavily spotted; possibly not distinct from the pre-
ceding...$~$
4. Head and palpi ochreous. .ceos

Head and palpi dark, concolorous with boty............................ 5
5. Upper surface of an even shade... 6

With faint, dark, transverse bands.. . . 7

7. Primaries with hyaline subapieal spots.................................... No sueh spots...

1. PIIOLISORA ALPIECS

Thanaos alpheus Edw., Trans. Am. Ent. Soc. v, 206, 1876.
Pholisora oricus Edw., Can. Ent. xi, 51, 1579.
Biol. Cent.-Am., Rhop. if, 44巳, pl. 90, f. 15, 1897.
Holland, Butterfly Book 331, pl. xLv, f. 2, 1898.

Wright, Butt. W. Coast 235, pl. xxx, f. 407, 1905.
Arizona, New Mexico, and Colorado, March to July.

2. PHOLISORA LIBYA

Heteropterus libya Scud., Bull. Geol. Surv. Terr., Iv, 258, 1878.
Holland, Butterfly Book 331, pl. xlviif, f. 14, 1898.
Wright, Butt. W. Coast 234, pl. xxx, f. 406, 1905.
California, June and October. Utah, July. Arizona, April.

3. PIIOLISORA LENA

Ancyloxypha lena Edw., Can. Ent. xiv, 5, 1882.
There is one specimen in the Barnes collection which appears to be lena and is possibly a good species. It is rather pale in color, but this may be due to fading. On the upper surface it resembles a heavily maculate specimen of libya while below it has only a few spots. Libya, when heavily spotted above, is also well marked below. The one specimen is from Miles City, Montana, the type locality.

4. PHOLISORA CATULLUS

Hesperia catullus Fab., Ent. Syst. III, (I), 348, 1793.
Scud., Butt. New Eng. II, 1519, 1889.
Holland, Butterfly Book, 330, pl. xlv, f. 4, 1898.
Wright, Butt. W. Coast 234, pl. xxx, f. 403, 1905.
United States and Southern Canada, April to October.

5. PHOLISORA MEJICANUS

Nisoniades mejicanus Reakirt, Proc. Acad. Nat. Sci. Phil. 334, 1866.
Biol. Cent.-Am., Rhop. iI, 441, pl. 90, ff. 11, 12, 1897.
Las Vegas, N. M.
The upper surface is practically the same as catullus but the glaucous gray appearance of the lower surface is ummistakable.

6. PHOLISORA CEOS

Pholisora ceos Edwards, Papilio if, 140, 1882.
Biol. Cent.-Am., Rhol. ir, 439, pl. 89, ff. 7, 8, 1896.
Arizona, July.

7. PHOLISORA HAYHURSTII

Hesperia hayhurstii Edw., Trans. Am. Ent. Soc. in, 22, 1870.
Scudder, Butt. New Eng. iif, p. 1857, 1889.
Biol. Cent.-Am., Rhop. if, 433, pl. 89, f. 16, gen., 1896.
Holland, Butterfly Book, 331, pl. Xlviil, f. 16, 1898.
Florida, north and west to Minnesota and Texas, March to October. Some specimens have merely a trace of the subapical spots.

8. PHOLISORA BRENNUS

Nisoniades brennus G. \& S., Biol. Cent.-Am., Rhop. 11, 434, pl. 89, f. 23, gen., 1896. (Mabille in litt.).
Skimer, Ent. News xir, 171, 1901.
I do not know this species. It is said to occur in our country along the Mexican border.

Genus EANTIS Boisduval
Eantis Boisd., Spec. Gen. pl. 13, f. 6, 1836. Type Urbanus vetus thraso Hübner.
Palpi porrect; second joint rather large, densely and smoothly sealed; third small, distinct. Antennae about one-half as long as primaries; club extremely slender and long, the tip curved. Costa of primaries rounded in basal half and almost straight to apex ; outer margin excavated below apex, thence well rounded to anal angle; cell about three-fifths as long as wing; vein 5
 intermediate between 4 and 6 . Sec- Fig. 14. Eantis thraso Hbn. a. ondaries roughly quadrate; costa and inner margin curved, outer bent to an obtuse angle between 3 and 4 and produced between 6 and 7. Fig. 14.

Fig. 15. Xenophanes tryxus Cramer. a. Club of antenna. b. Outline of wings

1. EANTIS THRASO (Plate I, Fig. 8)

Urbanus vetus thraso Hbn., Samml. exot. Schmett, I, t. 151 ff. 1-4, 1807-16.
Hesperia tamenund Edw., Trans. Am. Ent. Soc. III, 215, 1871.
Biologia Cent.-Am., Rhop. 11, 405, pl. 87, f. 7, of gen., 1895.
Texas, May and July.

Genus XENOPIANES Godman \& Salvin

Xenophanes G. \& S., Biol. Cent.-Am., Rhop. 1I, 387, 1895. Type Papilio tryxus Cramer.
Palpi oblique; third joint moderate,
conical, not concealed. Club of antennae very slender, curved. Costa of primaries slightly curved; apex rectangular; inner margin nearly straight, outer slightly convex between apex and vein 2 , thence nearly straight to anal angle. Costal fold absent. Cell less than two-thirds as long as wing; vein 5 intermediate; 2 slightly nearer to base of wing than to 3 . Secondaries broadly rounded; inner margin nearly straight, anal angle sub-rectangular; outer margin slightly concave between veins 4 and 6 and very slightly between 1 b and 2 . Vein 5 present, very weak; 2 about as near to base of wing as to 3 . Fig. 15

1. Ienophanes tryxus (Plate I, Fig. 3)

Papilio tryxus Cramer, Pap. Exot. Iv, 87, pl. cccxxxiv, G, H, 1781. Biol. Cent.-Am., Rhop. if, 387, pl. 85, f. 18, ô gen., 1895.

Brownsville, Texas, July.
The species is easy to recognize in our fauna by the many hyaline spots in the discal area of both wings.

Fig. 16. Melanthes bmunnea H.S. a. Club of antenna. b. Outline of wings

Geneus MELANTHES Mabille

Melanthes Mab., Gen. Ins. xvir, 80, 1904. Type Nisoniades brunnea H.-S.
In general structure this genus is close to Thanaos but the secondaries are relatively a little larger the outer margin of the primaries longer and more oblique, the apex more produced and rectangular and the anal angle more broadly rounded. The antemnae are moderate and the club fusiform, sharply pointed and evenly curved. Fig. 16.

1. melanthes brunnea (Plate I, Fig. 10) Nisomiades brunnea H.-s., Corr.-Blatt. Regensb. xviil, 172, 186.4.

Skinner, Ent. News xiv, 110, 1903.
I have this species from Cuba but Dr. Skinner's record, Sugar Loaf Key, Fla., is the only one which has reached me concerning its occurrence in the United States. The even brown shade of the wings, with a few hyaline points on the primaries, is characteristic.

Genus CHIOMARA Godman \& Salvin

Chiomara G. \& S., Biol. Cent.-Am., Rhop. II, 453, 1899. Type. Achlyodes mithrax Möschler.
Similar to Thanaos; outer margin of primaries only two-thirds
as long as inner, strongly curved; vein 11 arising just beyond middle of cell and reaching costa before end of cell. Mate with tibial tuft but no costal fold. Fig. 17.

Gesta appears to belong in Thanaos; the figure of the genitalia in the Biologia is distinetly of the Thanaos type.

1. CHIOMARA ASYCHIS

Papilio asychis Cramer, Pap. Exot. Iv, 87, pl. ocoxxxiv, E, F, 1781.

Fig. 17. Chiomara asychis Cramer. Neuration of primary

Pyrgus georgina Reakirt, Proc. Acad. Nat. Sci.
Phil. 1868, 88 (fide G. \& S.).
Biol. Cent.-Am., Rhop. ir, 453, pl. 91, ff. 1, 2, 3, 1899 ; p. 741, 1901.
Texas, Arizona, October. I have one specimen from Corumba, Brazil, taken in March.

Genus THANAOS Boisduval

Thanaos Boisd., Icones 240, 1832-3. Type Hesperia juvenalis Fab.
Scudder and Burgess, Proc. Bost. Soc. Nat. Hist. xir, 282-306, pl. 1870.
Skinner, Trans. Am. Ent. Soc. xl, 195-221, 1914.

Fig. 18. Thamaos. a. Neuration of juven alis, b. Outer margins of wings of funeralis

Palpi large, exceeding front by about length of head; vestiture shaggy; third joint stout and roughly sealed. Antennae moderate; club fusiform, eurved. Costa of primaries slightly convex, flattened along fold; outer margin in most species evenly rounded, in some more strongly curved opposite cell; relative width of primaries variable. Cell searcely two-thirds as long as wing ; vein 5 intermediate, 7 to 11 in the distal third of the cell, 11 ending beyond end of cell U. D. C. less than half as long as M. D. C. Secondaries variable in size and sliape, broad out-
er margin rounded to wavy; costal fold present except in gesta. Hind tibiae of male with tufts in a few species. Fig. 18.

A key to the species of Thanaos based on superficial characters is of comparatively little use, for the species are closely related and there are few which do not intergrade with others. The following key is based on fairly typical specimens, but in a long series I have found many which could not be definitely placed by it, so I have thought it wise to speak a word of caution regarding its use. The genitalia of the males offer the ultimate means of determination, and since they can usually be examined fairly well by brushing away the scales from the tip of the abdomen and using a hand lens or binocular, their use in classification of the species should be practiced.

Key to the species

1. Fringes of hind wings white.. 13

Fringes never white... 2
2. Primaries without distinct hyaline spots, sometimes with one or two clouded spots next to costa. 3 Primaries with at least a subapical row of hyaline spots (or with very dark wings, terentius of)5
3. Expanse under thirty mm ; ô with tibial tuft; apex of primaries rather sharply angled.. Expanse usually over thirty mm ; no tuft in male; apex of primaries more obtuse and outer margin more rounded............................ 4
4. Gray powdering heavier toward apex of primaries; distribution general brizo Primaries usually evenly powdered with gray scales; inner part of median band usually obsolete or broken; Southwestern and Californian species. burgessi, lacustra Powdering scant or absent; dark marks of primaries united to form broad bands; under surface without distinct spots; o with tuft but no fold; southwestern species.
gesta
5. Under surface of secondaries with two pale subapical spots, or at least a trace of them.. 6

 Gray vestiture scaly...
7. Hyaline spots large, at least a trace of one in end of cell; dark markings of primaries contrasting ($\%$), or spots lacking; primaries with Iittle or no gray vestiture (() .. Spots small, color very dark, or gray powdering conspicuous. 8
8. Very dark, sometimes with a brownish patch at end of cell; maculation obscure; is with tibial tuft................................... terentius Tuft absent; marks more or less contrasting........................... 9
(2)

1'l.ATF, 11

1. THANAOS ICELUS

Nisoniadcs icelus Scudder \& Burgess, Proe. Bost. Soe. Nat. Hist. xin, 288, 1870.

Lintner, 23 rd Ann. Rep. N. Y. St. Cab. Hist. 162, pl. 7, ff. 5, 6, 1872.
Scudder, Butt. New Eng. ir, 1507, 1889.
Holland, Butterfly Book 333, pl. xlviir, 17, 1898.
Arizona, Colorado, Massachusetts, Pennsylvania and southern Canada; May to July. Athabaska and Mackenzie, June (Cary). North Carolina, April (Brimley \& Sherman).

2. THANAOS BRIZO

Thanaos brizo, Boisd. \& Lec., Lep. Am. Sept. pl. 66, 1833.
Scudder, Butt. New Eng., if, 1500, 1889.
Holland, Butterfly Book 332, pl. xlv, f. 7, 1898.
Atlantic coast to Rocky Mountains, Gulf to Southern Canada; April to July. Eastern speeimens of this species are easy to identify, but it is difficult to separate burgessi, lacustra and brizo when all are from the same locality.

> 2a. race SOMNUS

Nisoniades somnus Lintner, Papilio I, 73, 1881.
Florida, February and April. This is merely a very dark form of brizo.

3. THANAOS BURGESSI

Thanaos burgessi Skinner, Trans. Am. Ent. Soc. xL, 203, 1914.
Arizona and New Mexico; Marel, April and August.

4. THANAOS LACUSTRA

Nisoniades lacustra Wright, Butt. W. Coast 253, pl. xxxir, 480, 1905.
California, June. This is not a form of brizo, as has been stated, but is
more nearly related to burgessi, though the genitalia differ enough to warrant regarding it as a distinct species.

5. THANAOS GESTA

Thanaos gesta H.-S., Corr.-Blatt Regensb. xvir, 142, 1863.
Thanaos invisus Butler \& Druce, Cist. Ent. I, 114, 1872.
Biol. Cent.-Am., Rhop. ir, 455, pl. xcr, ff. 7, 8, 9, 1899.
Nisoniades llano Dodge, Can. Ent. xxxv, 78, 1903.
Texas and Arizona; July.

6. THANAOS PERSIUS

Nisoniades persius Scudder, Proc. Ess. Inst. ini, 170, 1863.
Scudder, Butt. New Eng. ir, 1468, 1889.
Holland, Butterfly Book 334, pl. xlviir, f. 1, 1898.
The typical form has an expanse of about thirty-five millimeters and is dark and obscurely marked, especially on the basal half of the wings. It occurs throughout the United States and north into Alaska; May to August.

6a. race PERNIGRA

Thanaos pernigra Grinnell, Ent. News xvi, 34, 1905.
California, July. A very dark Pacific Coast race.

6b. race AFRANIUS

Nisoniades afranius Lintner, 30th Rep. N. Y. Mus. Nat. Hist. 175, 1877.
California, Utah, Colorado, Arizona; May, July and August. Afranius does not exceed thirty millimeters and is rather distinctly marked and gray powdered; the fringes are pale, sometimes almost white, at their tips.

6c. race LUCILIUS
Nisoniades lucilius Scudder \& Burgess, Proc. Bost. Soc. Nat. Hist. Xin, 287, 1870.
Lint., 23 rd Rep. N. Y. St. Cab. Nat. Hist. 164, pl. 7, ff. 1, 2, 1879.
Scudder, Butt. New Eng. if, 1458, 1889.
Holland, Butterfly Book 333, pl. xlviir, f. 10, 1898.
Northeastern United States and southeastern Canada, April and May. Dr. W. T. M. Forbes has kindly identified slides of genitalia in my possession as lucilius, which he regards as a species. I am unable to agree with this and follow Skinner in placing it as a race of persius, though a careful study of the early stages may show it to be distinct. It is usually smaller than persius and more distinctly marked.

7. THANAOS CALLIDUS

Thanaos callidus Grinnell, Ent. News xv, 114, 1904.
McDunnough, Ent. News xxviil, 232, 1917.
After an eventful and troublesome career callidus has at last been run down by Dr. McDumnough. It proves to be a good species, treated as lilius Dyar by Skinner in his "Studies in the Genus Thanaos." The two
names may apply to the same thing, but in that case callidus has priority. The genitalia resemble those of pacurius. California, June and July.

8. thavaos martialis

Nisoniades martialis Scudder, Trans. Chi. Acad. Sci. I, 335, 1869.
Scudder, Butt. New Eng. ir, 1493, 1889.
Holland, Butterfly Book 335, pl. xlviif, f. 4, 1898.
New York, west to Colorado and north into Canada; May, July, August.
Dr. Forbes tells me that eastern specimens of this species have a brassy lustre, but all whieh I have seen from the middle west were deeidedly purplish. The unusually bright, contrasting pattern is the most reliable eharaeteristic.

ab. AUSONIUS

Nisoniades ausonius Lint., 23rd Rep. N. Y. St. Cab. Nat. Hist. 166, pl. 7, ff, 11, 12, 1872.
Seudder, Butt. New Eng. iI, 1498, 1889.
Ausonius laeks the subapieal hyaline spots and has the transverse series of dark dashes uuusually prominent. It was deseribed from a single speeimen taken at Center, N. Y., on May 12, 1871, and has never been taken since.

9. THANAOS JUVENALIS

Hesperia juvenalis Fab., Ent. Syst. III, (1), 339, 1793.
Nisoniades jucenis Hbn., Verz. bek. Schmett. 108, 1820.
Nisoniades costalis Westw. \& Hew., Gen. Diurn. Lep. if, 519, pl. 79, f. 3, 1852.

Nisoniades ennius Scud. \& Burg., Proe. Bost. Soe. Nat. Hist. xiII, 296, f. 9, 1870.
Seudder, Butt. New Eng. if, 1476, 1889.
Holland, Butterfly Book 335, pl. xlviir, f. 11, 1898.
Wright, Butt. W. Coast 252, pl. xxxil, 462 ㅇ, 469 大 (not of tristis), 1905. Atlantic eoast to Roekies, Gulf to Northern Canada; May to August.

10. THANAOS PROPERTIUS

Nisoniades propertius Seud. \& Burg., Proe. Bost. Soe. Nat. Hist. xiri, 298, f. 11,1870 .

Nisoniades tibullus Scud. \& Burg., op. cit., p. 299, f. 12.
Wright, Butt. W. Coast 252, pl. xxxii, f. 463, 1905.
Texas, Arizona, California and north into Canada; June, July and August. The abundance of hairy gray vestiture in speeimens which have not been badly rubbed is very eharaeteristic.

10a. raee BOREALIS

Thanaos propertius, var. borealis Cary, Proc. U. S. N. M. xxxi, 455, 1906.
Type one male from North Nahanni River, Mackenzie, June 4, 1904. Apparently this is a dark race with the pale maculation greatly reduced.

11. THANAOS HORATIUS

Nisoniades horatius Scud. \& Burg., Proc. Bost. Soc. Nat. Hist. xir, 301 f. 13, 1870.
Nisoniades virgilius Scud. \& Burg., op. cit. p. 302, f. 14.
Nisoniades petronius Lint., Papilio I, 70, 1881.
Scudder, Butt. New Eng. if, 1486, 1889.
Holland, Butterfly Book 336, pl. xlviif, f. 15, 1898.
Florida and Texas, north to Colorado and Minnesota; May, July, August, October. The females are conspicuously marked but the males resemble juvenalis closely.

12. THANAOS TERENTIUS

Nisoniades terentius Scud. \& Burg., Proc. Bost. Soc. Nat. Hist. xir, 292, f. 6,1870 .

Nisoniades ovidius Scud. \& Burg., op. cit. 295, f. 8.
Nisoniades naevius Lintner, Papilio I, 69, 1881.
Scudder, Butt. New Eng. iI, 1490, 1889.
Holland, Butterfly Book 336, pl. xlviiI, f. 3, 1898.
Florida, April, May and July. South Carolina, May. Mississippi, August. The very dark, even color of this species is easy to recognize, and as a rule the brown patch on the primaries is conspicuous.

13. THANAOS PACUVIUS

Nisoniades pacurius Lint., 30th Rep. N. Y. Mus. Nat. Hist. 172, 1878.
Holland, Butterfly Book 336, pl. xlviir, f. 9, 1898.
California, Arizona, New Mexico and Colorado; March, May, June and August.

14. THANAOS SCUDDERI

Thanaos scudderi Skinner, Trans. Am. Ent. Soc. xl, 215, 1914.
Thanaos pacuvius G. \& S. (not Lintner), Biol. Cent.-Am., Rhop. iI, 458, pl. 91, ff. 16, 17, 1899.
Texas and Arizona, July and August. I am unable to separate this species from pacurius except by the structure of the male genitalia. Skinner points out a slight difference in the hyaline spots.

15. THANAOS CLITUS

Thanaos clitus Edw., Papilio ir, 180, 1882.
Thanaos maestus G. \& S., Biol. Cent.-Am., Rhop. ir, 457, t. 91, f. 18, ô gen., 1899.

Holland, Butterfly Book 336, pl. xlv, f. 8, 1898.
Arizona, May to August; California and Colorado.

16. THANAOS TRISTIS

Thanaos tristis Boisd., Ann. Soc. Ent. France (2), x, 311, 1852.
Oberthür, Etudes ix, (1), pl. coxl, f. 2081, 1913, figure of type.
California, June and August. Arizona.

form TATIUS

Thanaos tatius Edw., Papilio II, 179, 1882.
Arizona, April, June, July, September.

17. THANAOS FUNERALIS

Nisoniades funeralis Seud. \& Burg., Proc. Bost. Soc. Nat. Hist. xiir, 293, f. 7,1870 .

Holland, Butterfly Book 336, pl. xdvir, f. 12, 1898.
Wright, Butt. W. Coast 253, pl. xxxir, f. 468 and 464 (not clitus), 1905.
California, June. Arizona, Texas and Colorado, June and July. March in the far south. The rather narrow primaries, of a dull, brownish color, and the broad secondaries are unlike the other species of the genus.

The two following species caunot be fixed at present to any known form:

18. THANAOS PLAUTUS

Nisoniades plautus Scud. \& Burg., Proc. Bost. Soc. Nat. Hist. xirl, 304, f. 16, 1870.

Described from Florida. The figure of the genitalia has some points of similarity with the genitalia of juvenalis.

19. THANAOS LILIUS

Thanaos lilius Dyar, Proc. U. S. N. M. xxvir, 788, 1904.
Dyar states (Jn. N. Y. Ent. Soc. xni, 12Q) that the genitalia of litius are similar to those of tibullus (=propertius), while Skimner's description of them in his "Studics" suggests those of callidus, which was not correctly fixed at the time when his paper was written. Apparently lilius will fall before one of these two species, but an examination of the genitalia of the type will be necessary to settle the matter. I am greatly indebted to Dr. McDunnough for his notes on these species, for all data which I am able to give here are based on his researches.

Genus TIMOCHARES Godman \& Salvin
Timochares G. \& S., Biol. Cent.-Am., Rhop. it, 417, 1896. Type
Leucochitonca trifasciata Hew.
Palpi moderately large, much as in Thanaos, with a hairy second joint and a stont, conical third joint. Antemae less than one-half as long as primaries; club moderate, fusiform, eurved. Costa of primaries convex, with a long fold in the male; apex reetangular, subtruncate; outer margin ronnded from vein 6 to anal angle. Secondaries trigonate; inner margin about as long as wing measured through cell; outer margith
wavy. Neuration practically as in T. juvenalis. T. funeralis is structurally very close to this genus, but the apex of the primaries is never distinctly subtruncate and the anal angle is much more broadly rounded.

1. TIMOCHARES RUPTIFASCIATUS

Antigonus ruptifasciatus Plötz, Jahrb. Nass. Ver. xxxvi, 27, 1884. Biol. Cent.-Am., Rhop. il, 418, pl. 88, pp. 1, 2, 1896.
I have seen one male from Brownsville, Texas, in the Barnes collection.

Genus GRAIS Godman \& Salvin

Grais G. \& S., Biol. Cent.-Am., Rhop. ir, 381, 1894. Type Anastrus stigmaticus Mab.
The structure of this genus is very similar to that of the preceding, but the cell of the primaries is of almost equal width throughout, and is approximately equal to the distance between cell and costa. The male has neither costal fold nor tibial tuft.

1. GRAIS STIGMATICUS

Anastrus stigmaticus Mab., Bull. Soc. Ent. Belg. Xxvi, LIv, 1883.
Antigonus fumosus Plötz, Jahrb. Nass. Ver. Xxxvir, 26, 1884.
Biol. Cent.-Am., Rhop. II, 381, pl. 84, ff. 24, 25, 26, 1894.
Kerrville, Texas; September.

Subfamily PAMPHILINAE

Palpi usually upturned; in a few genera porrect. Antennae very variable in length; club usually short and stout with a very slender apiculus but sometimes longer; apiculus sometimes thick or absent. Primaries more or less trigonate; secondaries trigonate to rounded and lobed. Neuration as in the Hesperiinae but with the L. D. C. usually tubular and vein 5 curved toward the base in the primaries, arising nearer to 4 than to 6 . Front tibiae usually with the epiphysis; middle tibiae usually with conspicuous spines; hind tibiae usually with two pairs of spurs and never with a tuft. In the species of group A the spinulation of the mid tibiae fumishes a convenient means for separating the insects from the Hesperiinae. Males often with stigma on primaries.

The loss of the apiculus in the Pamphilinae seems to have been brought about by its gradual reduction, a process of evolution which is nicely illustrated by the transition from Oligoria to

Chaerephon in Group B. I regard this as furnishing the phylogenetic basis for the separation of Group A from the Hesperiinae, which makes it necessary to explain their resemblance by parallel or convergent evolution.

In place of the two groups into which the Pamphilinae have commonly been divided I believe that a modification of the system used in the Biologia will be of greater convenience. I have therefore divided our fauna into four groups which are characterized as follows:

Group A. Palpi porrect. Vein 5 of primaries straight, intermediate between 4 and 6 ; cell less than two-thirds as long as wing. Club of antennae blunt. Carterocephalus and Butleria.

Group B. Palpi upturned; third joint long and slender. Antennae short; club blunt. Vein 5 of primaries curved slightly toward 4 at base. Cell less than two-thirds as long as wing. Ancyloxypha, Oarisma, Adopaea and Copaeodes.

Group C. Palpi appressed or oblique; third joint moderate or small, long in Amblyscirtes. Antennae with a slender apiculus in most genera. Vein 5 of primaries curved at base, usually arising much nearer to 4 than to 6 . Cell less than twothirds as long as wing. All North American genera not included in A, B and D.

Group D. Palpi closely appressed, smoothly and deeply scaled; third joint small. Club of antennae stout, with a fine, abruptly constricted apiculus. Vein 5 arising much nearer to 4; cell about two-thirds as long as wing and with at least a rudiment of a recurrent vein. Thespieus, Calpodes and Prenes.

GROUP A

Key to the genera

Hind tibiae with one pair of spurs...........Carteroccphalus Hind tibiae with two pairs of spurs..................... Butleria

Genus CARTEROCEPHALUS Lederer

Carterocephalus Led., Verh. z.-b. Ges. Wien n, 26, 49, 1852.
Type: Papilio palaemon Pallas.
Second joint of palpi oblique, loosely clothed with long hairs; third slender, moderately long, enveloped by hairs of second. Antennae less than one-half as long as primaries; club large,
elongate ovate, flattened on its posterior surface, blunt. Primaries trigonate with the outer margin rounded, rather narrow. Vein 5 intermediate between 4

Fig. 19. Butleria pirus Edw. a. Club of antenna, b. Hind tibia, c. Neueration, d. Hind tibia of Carterocephalus palaemon Pallas and 6 ; L. D. C. not tubular, faint. Seeondaries rounded; apex prominent and anal angle slightly produced. Hind tibiae with one pair of spurs; middle tibiae spined. Males without secondary sexual structures. Fig. 19.

1. CARTEROCEPHALUS PALAEMON

Papilio palaemon Pallas, Reise I , 471, 1771.
Papilio paniscus Fab., Syst. Ent. 531, 1775.
Papilio brontes Denn. \& Schiff. Wien Verz. 160, 1776.
Hesperia mandan Edw., Proc. Ent. Soc. Phil. if, 20, pl. v, f. 1, 1863.
Hesperia mesapano Scud., Proc. Bost. Soc. Nat. Hist. xI, 383, 1868.
Cyclopides skada Edw., Trans. Am. Ent. Soc. iII, 196, 1870.
Stereoptes skada Edw., Trans. Am. Ent. Soc. iII, 214, 1871.
Scudler, Butt. New Eng. ir, 1569, 1889.
Elwes \& Edwards, Rev. Or. Hesp. 167, 1897.
Holland, Butterfly Book 342, xlvir, f. 1, 1898.
Canada, Mountains of New England and Rocky Mountains; June. California, Montana. Europe and Asia. Fort Providence, Mackenzie, July (Cary). Yukon Territory (Winn).

Genus BUTLERIA Kirby

Butleria Kirby, Syn. Cat. 624, 1871. Type Carterocephalus cxornatus Felder.
Dalla Mab., Gen. Ins. xvir, 107, 190t. Type Cyclopides eryonas Hew.
Very similar in structure to Carterocephalus but with two pairs of spurs on the hind tibiae. Fig. 19.

Butleria was first characterized by Watson (P. Z. S. 1893, 79) but aceording to Mabille his description does not fit the genotype. Mabille in turn eharacterized the genus to eorrespond with the typieal speeies in rol. xvil of the Genera Insectorum,
page 106, at the same time dividing it and naming one part Dalla. Such differences as he mentions between the two seem to be slight and transitional through the series of species included, and I therefore sink Dalla. The description of Dalla does not apply to our species as well as Mabille's diagnosis of Butleria, so if the genera be separated again there is a possibility that Butleria, and not Dalla will still be applicable in our region.

Key to the species

1. BUTLERIA PIRUS

Pholisora pirus Edw., Field and Forest iif, 119, 1878.
Colorado, Utah, Arizona; June, July.

2. BUTLERIA MCROSTICTA

Butleria microsticta G. \& S., Biol. Cent.-Am., Rhop. in, 464, pl. 92, ff, 1, 2, 3, 1900.
I have seen no specimens; the species is said to occur near the Mexican border.

3. butleria polingi

Pyrgus polingi Barnes, Can. Ent. xxxif, 44, 1900.
Arizona, June and July.

GROUP B

Key to the genera

1. Wings broadly rounded........................Ancyloxypha Wings more or less trigonate.2
2. All wings trigonate; male without stigma ; club of antennae about as long as shaft. Oarisma. Males with stigma; secondaries, at least, rounded; club not as long as shaft.3
3. Secondaries rounded, primaries trigonate; elub small Copaeories Outer margin of primaries more oblique and rounded; elub large, relatively long.

Genus ANCYLOXYPHA Felder

Ancyloxypha Feld., Verh. z.-b. Ges. Wien xir, 477, 1862. Type Hesperia numitor Fab.
Palpi upturned; second joint normal, deeply scaled; third slender, pointed, almost as long as second. Antennae much less

Fig. 20. Ancyloxypha numitor Fab. a Club of antenna, b. Section of palpus; outer line shows limit of vestiture, c. Palpus, d. Neuration than one-half as long as primaries ; club blunt, moderately large. Costa of primaries rounded at base, less so in outer half ; outer margin broadly rounded, cell slightly less than three-fifths as long as wing; vein 5 nearer to 4 than to $6 ; 2$ and 3 near end of cell. Secondaries rather long through cell, rounded; outer margin slightly emarginate between veins 4 and 6 . Male without stigma. Fig. 20.

1. ANCYLOXYPHA NUMITOR

Hesperia numitor Fab., Ent. Syst. HI, (1), 324, 1793.
Thymelicus puer Hbn., Verz. bek. Schmett. 113, 1820.
Heteropterus marginatus Harris, Ins. Inj. Veg., 3rd ed., 308, 1862.
Scudder, Butt. New Eng. 1i, 1558, 1889.
Holland, Butterfly Book 345, pl. xlvir, f. 2, 1898.
Atlantic coast west to Texas, north into Canada; May to August.
The disk of the primaries is black below, while that of the following species is ruddy fulvous.

ab. LONGLEFI

Ancyloxypha longleyi French, Can. Ent. xxix, 80, 1897.
Described from Illinois. A form in which the primaries are glossy black above.

2. ANCYLOXYPHA ARENE

Heteropterus arene Edw., Trans. An. Ent. Soc. III, 214, 1871.
Copaeodes myrtis Edw., Papilio n, 26, 1882.
Apaustus leporina Plötz, Stett. Ent. Zeit. xlv, 166, 1884, (fide G. \& S.).
Holland, Butterfly Book 346, pl. xlvil, f. 11, 1898.
Biol. Cent.Am., Rhop. if, 472, pl. 92, ff. 35-38, 1900.
Arizona, August. Differs from numitor in the absence of black from the under surface of the primaries.

Genus OARISILA Scudder

Oarisma Scudder, Syst. Rev. 54, (75), 1872. Type Hesperia powesheik Parker. Paradopaea G. \& S., Biol. Cent.-Am., Rhop. ir, 469, footnote, 1900. Palpi as in Ancyloxypha. Antennae much less than one-half as long as primaries; club enlongate obovoid, blunt, as long or nearly as long as shaft. Costa of primaries straight except at base and apex ; outer margin curved only opposite cell ; entire wing trigonate; cell about three-fifths as long as wing; vein 5 near 4 at base; 3 near end of cell; 2 about as far from 3 as from base of wing, variable. Sccondaries trigonate, all margins slightly rounded and anal angle very slightly lobed. Male without stigma. Fig. 21.

Key to the species

1. Under surface of secondaries with white
 Veins not much paler than ground color................................. 2
2. Upper surface bright yellow-fulvous................................wardsi Upper surface fuscous, variably powdered with yellow-fulvous. .garita

1. OARISMA GARITA

Hesperia garita Reakirt, Proc. Ent. Soc. Phil. vi, 150, 1866.
Thymelicus hylax Edw., Trans. Am. Ent. Soc. III, 274, 1871.
Paradopaea calega G. \& S., Biol. Cent.-Am., Rhop. II, pl. 92, ff. 26-29, 1900.
Puradopaea garita G. \& S., Biol. Cent.-Am., Rhop. II, pl. 92, ff. 23-24, 1900.
Oarisma powesheik G. \& S., (not Parker) Biol. Cent.-Am., Rhop. II, 469, 1900.

Holland, Butterfly Book 343, pl. xlvir, f. 3, 1898.
Wright, Butt. W. Coast pl. Xxx, f. 40S, 1905 (not lena Edw.)
Manitoba, Montana, Colorado, Idaho, Arizona; July.
Calega G. \& S. looks in the figure as if it might be a good species but in the text the authors refer it to garita. They also erroneously refer their figures of garita to powesheik.

> 2. OARISMA EDWARDSI

Thymelicus edwardsi Barnes, Can. Ent. xxix, 42, 1897.

Paradopaea garita G. \& S. (not Reakirt) Biol. Cent.-Am. Rhop. III, pl. 92, f. 25 ô genitalia, 1900 .

Colorado, Arizona and New Mexico; June and July.
I have seen the type of this species and the pale upper surface is very different from garita.

3. OARISMA POWESHEIK

Hesperia poweshein Parker, Am. Ent. \& Bot. II, 271, 1870.
Thymelicus garita Plötz (not Reakirt), Stett. Ent. Zeit. Xlv, 287, 1884.
Scudder, Butt. New Eng. III, 1859, 1889.
Holland, Butterfly Book 343, pl. xlviI, f. 4, 1898.
Described from thirty-one males and two females taken June 21, 1870, at Grinnell, Iowa. It has also been taken in Colorado and South Dakota, and I have observed it personally so near to the Minnesota line in Iowa that it probably enters that state. Michigan (Wolcott).

Genus ADOPAEA Billberg
Adopaea Billb., Enum. Ins. 81, 1820. Type Papilio thaumas Hufn.
Similar to Copacodes but with the antemal club larger and relatively longer, and with a rudiment of the apiculus. The outer margin of the primaries is more oblique, relatively shorter, and more deeply sinuate. The stigma of the male is similar.

This genus has been incorreetly used in the past in our fauna for eunus and wrighti; it is represented only by an introduced species.

1. ADOPAEA LINEOLA

Papilio lineola Ochs., Schmett. Eur. 1, (2), 230, 1808.
Morris, British Butterflies, 153, pl. 70, 1890.
Spuler, Schmett. Eur. t. 18, ff. 6a, 6b, 1910.
47th Rep. Ent. Soc. Ont. 142, 1917.
Introduced from Europe. The reference in the report of the Entomological Society of Ontario records its capture at London, Ontario, on July 1, 1910, and every year from then until the date of the publication.

Genus COPAEODES Speyer

Copaeodes Speyer, Edw. Cat. Lep. 49, 64, 1877. Type Heteropterus proeris Edw.
Palpi upturned; second joint densely sealed; third fine, pointed, not quite as long as in Ancyloxypha. Antennae scareely two-fifths as long as primaries; elub rather small, stout, blunt. Primaries trigonate; costa straight except at base and apex; outer margin slightly sinuate; anal angle almost rectangular.

Secondaries rounded, slightly lobed at anal angle. Wings more elongate in female. Primaries of male with a slender, longitudinal stigma. Cell of primaries about threc-fifths as long as wing ; vein 5 arising much nearer to 4 than to 6 . Fig. 21.

1. COPAEODES AURANTIACA

Ancyloxypha aurantiaca Hew., Desc. Hesp. 45, 1868.
Hesperia waco Edw., Trans. Am. Ent. Soc. ir, 122, 1868.
Heteropterus minima Edw., Trans. Am. Ent. Soc. iir, 196, 1870.
Hesperia procris Edw., op. cit. 215.
Thymelicus macra Plötz, Strett. Ent. Zeit. xlv, 284, 1884.
Copaeodes candida Wright, Proc. Cal. Acad. Sci. (2), iil, 34, 1890.
Copacodes namus Watson, (not H.-S.), Proc. Zool. Soc. London, 1893, 98 (fide G. \& S.).
Holland, Butterfly Book 345, pl. xlvir, f. 9, 1898.
Biol. Cent.-Am., Rhop. 11, 473, pl. 92, ff. 39-42, 1900.
Wright, Butt. W. Coast 236, pl. xxxi, ff. 409, 411, 1905.
Skinner, Ent. News xxix, 150, 1918.
Arizona, May, July, August and September. Texas, California, March, May, August.

I cannot agree with Dr. Skinner that this and the following are but one species, but as he suggests, rayata may fall before the female of procris, in which case the latter name might be restricted to the female type and retained as a species.

2. COPAEODES RAYATA

Copaeodes rayata B. \& McD., Contributions II, (3), 100, pl. III, ff. 1, 2, 1913.
San Benito, Texas; June and July.
I have seen the types of this species and it is abundantly distinct from aurantiaca. The pale ray is variably distinct, but the veins are darker than the ground color and of a somewhat rusty shade on the lower surface of the secondaries. The size is smaller than aurantiaca.

GROUP C

Key to the genera

1. Club of antennae blunt or with a rudiment of the apiculus .Chaerephon Club of antennae with a sharp apiculus, sometimes very
short ... 2
2. Vein 5 of primaries well curved toward base, arising conspicuously nearer to 4 than to 6 3
Vein 5 but slightly curved, only a little nearer to vein 4 at base ; L. D. C. weak. 11
3. Antennae scarcely longer than width of thorax. Hylephila Antennae distinctly longer.4
4. Mid tibiae with spines. 5
Mid tibiae without spines. Atrytone
5. Apiculus of antennae shorter than thickness of club or not abruptly constricted. 6
Apiculus at least equal to thickness of club, slender; eitherabruptly constricted or distinctly longer than thickness ofclub9
6. Primaries apically produced and secondaries lobed; apiculus very short 7
Primaries and secondaries moderate; apiculus usually mod- erately long. 8
7. Male stigma slender; wings of female moderate....Pamphila Male stigma a large blotch; wings of female similar to those of male. .Atalopedes
8. Vein 2 of primaries slightly nearer to base of wing than to vein 3. Secondaries well marked with yellow fulvous; see description Augiades
Vein 2 variably nearer to 3 ; when doubtful, secondaries withlittle fulvous, at the most a transverse band; see descrip-tionPolites
Vein 2 immaterial. Club of antennae very stout, with afine apiculus, or moderate with a thick apiculus..... Poanes
9. Apiculus slender, about twice thickness of club.... Oligoria Apiculus shorter or thick. 10
10. Apiculus slender; male stigma large, with large gray scales; under surface fuscous Catia
Apiculus tapered, not abruptly constricted; male withoutstigma; under surface not fuscous. PoanesApiculus slender, variable, male stigma variable. Undersurface gray powdered to dark brown.........Atrytonopsis
11. Male stigma large; maculation yellow. Epiphyes
Stigma not large ; maculation not pale yellow 12
12. Apiculus fine; shorter than thickness of club Lerodea
Apiculus longer, or wings immaculate 13 13
13. Third joint of palpi long (ex. nanno) ; fringes checkered
Third joint short; fringes not checkered 14
14. Vein 5 almost intermediate between 4 and 6 ; under surface with purplish lustre....................................... Lerema Vein 5 considerably nearer to 4 ; under surface otherwise
\qquad

Genus CHAEREPHON Godman \& Salvin

Chaerephon G. \& S., Biol. Cent.-Am., Rhop. ir, 474, 1900. Type Pamphila citrus Mab.
Second joint of palpi upturned, deeply scaled; third small, oblique, smooth. Antennae less than one-half as long as primaries; club large, obovoid, subacute but without a reflexed apiculus. Costa of primaries straight except at base ; apex produced, rounded acute in males, less sharp in females; outer margin rounded in center and straighter nearer apex and anal angle,though almost evenly rounded in some females. Secondaries rounded, lobed at anal angle in male, slightly so in female. Both wings appear shorter and broader in the male than in the female. Pri-

Fig. 22. Chaerephon. a. Club of antenna of rhesus, b. Palpus of cumus, c. Club of antenna of eunus, d. Neuration of eunus maries of male with a faint stigma composed of an oblique bar above vein 2 followed by two small round patches in line below the vein. Fig. 22.

Key to the species

1. Wings yellow-fulvous eunus, urighti
Wings mostly fuscous
2. Under surface gray powdery.. simius

Under surface more or less yellowish. 3
3. Yellow of under surface of secondaries interspersed with dark latehes; maculation distinct rhesus
Yellow pale, dull, even; maculation obscure carus

1. Chatrephon edveds

Copaeodes eunus Edw., Papilio I, 47, 1881.
Holland, Butterfly Book, pl. xLvir, f. 10, 1898 (as urighti).
Wright, Butt. W. Coast 237, pl. xxxi, ff. 412, 414, 1905.
California, June.

2. CHAEREPHON WRIGHTI

Copaeodes wrighti Edw., Can. Ent. xiv, 152, 1882.
Wrighti is probably a synonym of eunus; the original description fits eunus, the type localities are in the same part of California, and we do not know of two species of these general characteristics. Both of these have been erroneously placed in Adopaea in the past, whereas Adopaea is closely related to Copaeodes and eunus is not at all similar in structure.

3. CHAEREPIION RHESUS

Pamphila rhesus Edw., Field and Forest in, 116, 1878.
Biol. Cent.-Am., Rhop. 1I, 475, pl. 93, ff. 5-7, 1900.
Skinner, Ent. News xi, pl. if, ff. 19, 20, 1900.
Kellogg, Am. Ins. pl. ix, ff. 19, 20, 1904.
Colorado, Arizona.

4. CHAEREPHON CARUS

Pamphila carus Edw., Can. Ent. xv, 34, 1883.
Texas and Arizona, May, July and September.

5. CIIAEREPHON SLMIUS

Amblyscirtes simius Edw., Trans. Am. Ent. Soc. ix, 6, 1881.
Holland, Butterfly Book 341, pl. xlvir, f. 8, 1898.
Colorado; Sioux County, Nebraska, July.
This is one of our rarer species. I am indebted to Mr. Leussler for a specimen taken in Sioux County, Nebraska, the only one in my possession.

Genus PAMPHILA Fabricius

Pamphila Fab., Ill. Mag. vi, 287, 1807. Type Papilio comma Linn.
Ocytes Scud., Syst. Rev. 55, (76), 1872. Type Erymnis metea Scud.
Anthomaster Scud., Syst. Rev. 57, (78), 1872. Type Hesperia leonardus Harris.

Fig. 23. Pamphila and Augiades, e. Pelpus of A. snowi, l. Clul of antenna of P. viridis A, c. Same, female, d. Palpus of P. viridis, e. Same, denunded, f. Section of palpus of A. sylfanus; outer line shows limit of vestiture, s. Palpus of A. napa

Palpi upturned; second joint with a smooth vestiture of scales and some hairs; third about one-half as long as sccond but partly concealed. Antennae less than one-half as long as primaries; club large with a very small apiculus which is a little longer in the female. Costa slightly
emarginate to slightly eonvex ; outer margin slightly simuate to evenly rounded, usually more rounded in the female. Secondaries rounded, slightly lobed at anal angle. In all of the species the wings of the females are longer and more rounded than those of the males. Vein 5 of primaries arising very near to $4 ; 3$ near end of cell; 2 about intermediate between 3 and base of wing; cell slightly over three-fifths as long as wing. Vein 7 of secondaries slightly nearer to end of cell than to 8. Mid tibiae spiny. Male stigma slender, strong, extending from base of vein 3 to basal third of vein 1 and made up of a long piece in front of vein 2 and a shorter piece behind 2 which is set just outside of the first but is continuous with it. Fig. 23.

Key to the species

This key is not to be regarded as a means of ultimate identification; in Pamphila no key can be sufficient in itself, for many of our species and forms intergrade to such an extent that only a practiced eye ean even sort them properly. The key to the forms of comma included here is based on specimens in the Barnes collection which have been compared with the types, and so may be relied on for typieal speeimens. It will not, however, suffice for the placing of the multitude of intermediate forms which occur in large series.

1. Under stirface of seeondaries with alternating greenish and fuseous areas; veins white on disk... Under surface erenly colored; veins not white.
2. Upper surface fuscous with redueed, poorly defined, pale spots; under surface of secondaries with a pale band. metea Upper surface more or less fulvous or with well defined spots, or lower surface with separate spots. 3
3. Under surface of secondaries with a pale ray in the eell. morrisoni With or without a pale spot in eell. 4
4. Under surface of secondaries yellow to brown with an oblique band of uniform, confluent white spots posterior to vein 6 ; sometimes with a single spot before this band. columbia Spots making up band, when present, not confluent, unequal, irregularly placed or with more than one spot before vein 6 . Under surface usually greenish in forms whieh are likely to confuse. \qquad
5. Under surface of secondaries with sharply defined white spots or yellowish to greenish with the bent macular band traceable............ 6 Under surface without sharlly defined white spots; immaculate or with traces of separate spots, usually poorly defined or not white...... 13
6. Under surface of primaries fuseous; spots on seeondaries small and rounded . seminole Under surface of primaries with some fulvous or spots on seeondaries otherwise
7. Spot on under surface of secondaries just behind vein 2 nearer base of wing than rest of band or absent. Band sometimes too much modified to show this difference. .8 This spot on a line with rest of band or outside of it; band well marked,

8. Spots not confluent, their size variable; under surface usually dark with sparse over-scaling... Spots usually confluent or over-sealing dense............................. . 9
9. Upper surface bright with sharp contrasts; costal area of primaries fulvous; white spots of lower surface very large and bright......juba Upper surface with a variable diffusion of fuscous; when maculation is sharp, the other characters differ. Spots below moderate to greatly reduced, white or yellowish... 10
10. Maculation below yellow but not reduced.......................sassacus 12

Maculation white or greatly reduced..................................... 11
11. Macular band with one spot before vein 7 , one behind vein 2 followed by a trace of a second; band irregular; superficial vestiture graygreen ... Band equally contrasting but more regular and abbreviated, usually with no spot before 7 and only one reduced spot behind 2 ; superficial vestiture green.. . Spots dull white; superficial vestiture golden brown..........manitoba Under surface of secondaries very smooth in appearance, yellow; spots white .. idaho
 Spots greatly reduced, yellowish..................................... oregonia
12. Under surface of secondaries pale; maculation faint
. sassacus Under surface dark; maculation contrasting.sassacus, race manitoboides
13. Under surface of secondaries dark red-brown with pale, cream-white
 Under surface otherwise... 14
14. Pale maculation above very diffuse; pale area in end of cell of primaries showing two pale nuelei, always vague..sassacus, race dacotae Cell of primaries with two sharply defined spots in end, or with these indistinguishably fused. 15
15. Disk of secondaries above with fulvous spots (δ) ; under surface very dark (q)..ttalus, race seminote Disk more or less broadly fulvous (ô) ; under surface pale ($~$) 16
16. Under surface of secomdaries yellow-fulvous, with or without vague traces of large spots...eskei Under surface of a lighter shade, more or less yellow; spots small or absent.17
17. Southern species, Florida, Texas, Ohio?.................................talus
Prairie species, Iowa, Nebraska, Dakota, Montana, and California

1. PAMPMLA UNCAS

Hesperia uncas Edw., Proc. Ent. Soc. Phil. if, 19, pl. v, f. 3, 1863.
Hesperia ridingsi Reakirt, Proc. Ent. Soc. Phil. vı, 151, 1866.
Hesperia axius Plötz, Stett. ent. Zeit. xliv, 213, 1883.
Scudder, Butt. New Eng. iil, 1862, 1889.
Holland, Butterfly Book 349, pl. xlvif, ff. 27, 28, 1898.
Colorado and Arizona, June and July.

2. PaMphila Lasus

Pamphila lasus Edw., Papilio iv, 54, 1884.
Described from Arizona. I do not know the species.

3. PAMPHILA LICINUS

Pamphila licinus Edw., Trans. Am. Ent. Soc. HiI, 275, 1871.
I do not know this species.

4. PAMPHILA METEA

Hesperia metea Scud., Proc. Ess. Inst. in, 177, 1869.
Scudder, Butt. New Eng. ri, 1650, 1889.
Holland, Butterfly Book 348, pl. Xlvir, ff. 33, 34, 1898.
New Jersey, New York, Massachusetts, New Hampshire and Rhode Island; May and June. This species is readily distinguished by its dark color, vague, whitish maculation and the tendency of the macular band on the under surface of the secondaries to be produced along the veins. The spots making up this band are neither separate nor very bright as in the other dark colored species.

5. PAMPHILA MORRISONI

Pamphila morrisoni Edw., Field and Forest iII, 116, 1878.
Hesperia morissoni Plötz, Stett. ent. Zeit. xliv, 215, 1883.
Biol. Cent.-Am., Rhop. if, 478, pl. 93, ff. 9, 10, 1900.
Colorado, May.
This is a small, bright species which is readily recognized by the elongation of the white mark in the cell of the secondaries below.

6. PAMPHILA COLUMBIA

Pamphila columbia Scud., Syst. Rev. 56, (77), 1872.
Pamphida sylvanoides Scud., (not Boisd.) Mem. Bost. Soc. Nat. Hist. ir, (3), 351, pl. x, f. 22 (type), pl. xı, pp. 15, 17, 1874.

Pamphila california Wright, Butt. W. Coast 241, pl. xxxi, 423, 1905.
Thymelicus erymioides Dyar, Jn. N. Y. Ent. Soc. xv, 50, 1907.
California, April and October.
All of the specimens in the Barnes collection have the band very even, as mentioned in the key; in Wright's figure it appears to be somewhat reduced toward the anal angle, but the color of the under surface of the secondary is characteristic.

7. PAMPIILLA NEVADA (Plate I, Fig. 9)

Pamphila nevada Scud., Mem. Bost. Soc. Nat. Hist. II, 347, pl. x, ff. 1-4, pl. Xi, ff. 3, 4, 1874.
Wright, Butt. W. Coast 240, pl. xxx, pp. 418, c, 419, b, c, 421, b, c, 1905.
I follow Dr. MeDunnough in making this species distinct from comma. There is some difference in the male genitalia and if we restrict nevada to the typical form the under surface differs as noted in the key. Arizona to Northern Canada.

8. PAMPHILA COMMA

Pamphila comma Linn., Syst. Nat. 484, 1758.
Comma is a European species and does not occur in its typical form in this country.

$$
\text { 8a. race COLORADO Pl. I, fig. } 11
$$

Pamphila colorado Scud., Mem. Bost. Soc. Nat. Hist. II, 349, pl. x, ff. 16, 17, 18, pl. xi, ff. 1, 2, 1874.
Arizona north to Washington, California.
In the typical form the under surface of the secondaries is bright green with the band pure white, short, rather even, and the basal marks united to form a U .

8b. race $M A N I T O B A$
Pamphila manitoba Scud., Mem. Bost. Soc. Nat. Hist. 11, 351, pl. x, ff. 8 11, pl. xi, ff. 7, 8, 1874.
Seud., Butt. New Eng. ir, 1646, 1889.
Pamphila manitoba, var. laurentina Lyman, Can. Ent. xxiv, 57, 1892.
Northwestern United States and Western Canada.
The typical form is golden brown beneath with whitish maculation.

8c. race $I D A H O$

Pamphila colorado, var. idaho Edw., Cau. Ent. xv, 148, 1883.
Wright, Butt. W. Coast 241, pl. xxxi, f. 422, 1905.
California, Oregon, north into Canada.
The smooth, yellow appearance of the under surface of the secondaries is characteristic.

8d. race ASSINIBOIA
Pamphila manitoba, var. assiniboia Lyman, Can. Ent. xxiv, 57, 1892.
Regina, Canada.
8e. race OREGONIA Plate I, fig. 13
Pamphila oregonia Edw., Can. Ent. xv, 150, 1883.
Nevala, west to the coast and north into Canada.
The maculation of the under surface is similar to that of assiniboia but yellowish instead of white.

9. PAMPMILA RURICOLA

Hesperia ruricola Boisd., Ann. Soc. Ent. France (2), x, 315, 1852.
Described from California.
Many things have been referred to this species, which may be one of the forms of comma. I know nothing of the type nor of authentic specimens.

10. PAMPHILA JUBA

Hesperia comma Boisd. (not Limn.), Ann. Soc. Ent. France (2), x, 313, 1852.

Pamphila juba Scud., Syst. Rev. 56, (77), 1872.
Scudder, Mem. Bost. Soc. Nat. Hist. if, 349, pl. x, ff. 19, 20, pl. xi, ff. 5, 6, 1874.
Wright, Butt. W. Coast 239, pl. xxx, ff. 417, 418b ô (not viridis oq), 1905.
Oberthür, Etudes Ix, (1), p. 43, pl. caxl, f. 2082 (comma Bdv.).
Utah, Colorado, Nevada, California; May and June.

11. PAMPIILA WOODGATEI

Painphila woodgatei Williams, Ent. News xxv, 266, 1914.
Arizona, Texas and New Mexico; September and October.
This has been placed as a variety of juba but I believe that it is distinct. I have had no males for dissection.

12. PAMPHILA VIRIDIS (Plate I, Fig. 12)

Pamphila juba var. viridis Edw., Can. Ent. xv, 147, 1883.
Colorado, Arizona, New Mexico and Texas; June and September.
The form of the macular band in this species is unique and apparently constant.

13. PAMPHILA LEONARDUS

Hesperia leonardus Harris, Ins. Inj. Veg., 3rd ed., 314, f. 138, 1862. Scudder, Butt. New Eng. iI, 1673, 1889.
Holland, Butterfly Book 349, pl. xlviI, ff. 35, 36, 1898.
New York, Rhode Island, Massachusetts, west to the Mississippi; occasional in eastern Iowa; August and September. Scudder records it from Ontario and Florida, the latter in March and April (Butt. New Eng. ir, 1676-7).

14. PAMPHILA CABELUS

Pamphila cabelus Edw., Trans. Am. Ent. Soc. Ix, 4, 1881.
Described from Nevada.
This is another of our lost species of Pamphila. Apparently it belongs in the ottoe group.

> 15. PAMPHILA HARPALUS

Pamphila harpalus Edw., Trans. Am. Ent. Soc. ix, 3, 1881.
Described from Nevada.
The same may be said of this as of the preceding.

16. PAMPIILA ATTALUS

Pamphila attalus Edw., Traus. Am. Ent. Soc. iII, 276, 1871.
Scudder, Butt. New Eng. ir, 1653, 1889.
Holland, Butterfly Book 349, pl. xlvir, f. 23, 1898.
Florida, Texas. In the Barnes collection several specimens are labelled Ohio, and Scudder (Butt. New Eng. ir, 1655) mentions records from Wisconsin, Iowa and New Jersey. I think that the middle western records are more likely to be pawnee or ottoe. Southern specimens of attalus are darker than these two species, and have the spots of the upper surface darker and more reddish.

16a. race SEMINOLE
Ocytes seminole Scud., Syst. Rev. 55, (76), 1872.
Erynnis attalus quaiapen Scud., Butt. New Eng. 1655, 1889.
Pamphila slossonae Skinuer, Ent. Amer. vi, 13S, 1890.
Florida, April to June, October.
Seminole is very dark both above and below. The maculation is restricted in the male, and the under surface of the primaries very slightly marked with fulvous, while in the female all spots are whitish and the under surface is not marked with fulvous. Scudder describes quaiapen as a female form of attalus.

17. PAMPHILA MESKEI

Pamphila meskei Edw., Can. Ent. ix, 58, 1877.
Pamphila straton Edw., Papilio, 1, 78, 1881.
Florida and Texas.
I have seen only three males in the Barnes collection. These resemble attalus above; beneath the secondaries are yellow-fulvous, immaculate in one of the three specimens and with traces of large, diffuse, pale spots in the other two.

18. PAMPIILLA OTTOE

Hesperia ottoe Edw., Proc. Ent. Soc. Phil. vi, 207, 1866.
Scudder, Mem. Bost. Soc. Nat. Hist. ir, 348, pl. x, f. 6, pl. xi, f. 13, 1874.
In the typical form the males are tawny above with a very narrow terminal border of fuscous, and compared specimens in the Barnes collection have the under surface bright yellow. I have taken a species at Sioux City, Iowa, in late July and early August which I have placed as ottoe and which is distinguished by the ochraceous under surface and the extension of the pale area of the upper surface along the veins into the moderately broad fuscous terminal border. True pawnee occurs in this locality at a different season. Specimens in the Barnes collection are from Montana.

19. PAMPHILA PAWNEE

Hesperia pawnee Dodge, Can. Ent. v1, 44, 1874.
Montana, July. Colorado, September. Omaha, Neb., June. South Da-
kota, Sioux City, Iowa, late June and early July, late August and early September. Described from Dodge County, Neb.

The under surface is usually immaculate yellow, in the female sometimes grayish and usually with small pale spots. The spots on the upper surface of the primaries in the female are very pale, and this sex closely resembles attalus. The males of this species may be distinguished by the more extensive pale areas of the upper surface and their lighter shade.

19a. race MONTANA

Pamphila pawnee subsp. montana Skimer, Ent. News xxir, 413, 1911. California, Colorado, Montana.
A specimen in the Barnes collection which has been compared with the type is much darker than normal pawnee, both above and below.

20. PAMPHILA SASSACUS

Hesperia sassacus Harris, Ins. Inj. Veg., 3rd ed., 315, 186.
Scudder, Butt. New Eng. iI, 1641, 1889.
Holland, Butterfly Book 348 , 1 l. xlvi, f. 13, 1898.
Holland, Butterfly Book pl. Xlvir, f. 44, 1898, (not sylvanoides).
Kellogg, Am. Ins. pl. x, f. 5, 1904.
New Jersey, New York and Connecticut, westward into Iowa; June, July, August.

20a. race MANITOBOIDES
Pamphila manitoboides Fleteher, Rep. Ent. Soc. Ont. for 1888, p. 85, 1889. Ontario, Canada.
Dr. W. T. M. Forbes has called my attention to this relationship of manitoboides, which seems so close that I am adopting his arrangement. Formerly it has been called a distinct species or a form of comma, but it is identical with sassacus except in the darker color and greater contrast of the markings of the lower surface.

20b. race DACOTAE

Pamphila sassacus, subsp. daeotae Skinner, Ent. News xxir, 412, 1911.
South Dakota, June. Sioux City, Iowa.
I have seen paratypes of both sexes in the Barnes collection, and in the males the only difference which I can formulate between this form and sassaeus is a general darkness of color and obscureness of the under surface. The females have the markings of the upper surface greatly reduced and diffuse, and the lower surface grayish with small, indefinite spots.

21. PAMPHILA HORUS

Hesperia horus Edw., Trans. Am. Ent. Soe. in, 277, 1871.
Barnes \& McDunnough, Contributions Iv, (2), 80, 1918.
Type locality Dallas, Texas. Apparently this species belongs in Pamphila, but I know nothing of it except from the description and Barnes and McDunnough's note.

Genus HYLEPHILA Billherg

Hylephila Billb., Enum. Ins. 81, 1820. Type Papilio phylaeus Drury.
Euthymus Scud., Syst. Rev. 56, (77), 1872. Type P. phylaeus Drury.
This genus closely resembles Pamphila in structure but differs in the very short antennae and the straighter stigma. The female, as in Atalopedes, does not differ much in general structure from the male; some are almost indistinguishable from campestris, but they never have hyaline spots on the primaries. We have but one species of Hylephila.

1. HYLEPHILA PHYLAEUS

Papilio phylaeus Drury, Ill. Ex. Ent. I, 25, pl. xirr, ff. 4, 5, 1770 and nr, app., 1773.
Phemiades augias Hübner, (not Linn.), Zutr. exot. Schmett. ir, 10, pl. 531, ff. 227, 228, 1821-23.
Pamphila bucephalus Steph., Ill. Brit. Ent. Haust. I, 102, pl. 10, ff. 1, 』, 1828.
\& Pamphila hala Butler, Trans. Ent. Soc. Loudon, 1870, 504, (fide G. \& S.).

Scudder, Butt. New Eng. if, 1631, 1889.
Holland, Butterfly Book, 354, pl. xlvir, f. 40, (not brettus of), pl. xlifi, ff. 18, 19, 1898.
Wright, Butt. W. Coast pl. xxxi, f. 437 (not brettus of), 438 of,b and c (not brettoides), 1905.

Fig. 24. Atalopedes campestris Boisd, a. Club of antenna, b. Palpus, c. Neuration

Pennsylvania, August: Illinois, April and October. Southern United States from Florida to Arizona, April to October. California, June aur July.

Gemus ATALOPEDES Scudder

Atalopedes Scudder, Syst. Rev. 57, (78), 1872. Type Hesperia huron Edw.
Pansydia Scud., Syst. Rev. 60, (81), 1872. Type Hesperia mesogramma Poey.
Apiculns of antemnae longer than in Pamphila, over one-half thickness of club in female. Stigma a large, black blotch, so greatly developed as to
cause distortion of the posterior margin of the cell so that opposite the stigma the width of the eell is less than its distance from the margin. Base of vein 3 strongly curved; apieal angle of cell more produced than in Pamphila; vein 7 of secondaries nearer to 8 than to end of eell in male. There is mueh less difference in structure between the sexes in this genus than in Pamphila. Fig. 24.

1. ATALOPEDES CAMPESTRIS

Hesperia campestris Boisd., Ann. Soc. Ent. France (2), x, 316, 1852.
ㅇ Hesperia sylvanoides Boisd., Ann. Soc. Ent. France (3), x, 313, 1852. Hesperia huron Edw., Proc. Ent. Soc. Phil. II, 16, pl. I, ff, 1, 2, 1863. Scudder, Butt. New Eng. 11, 1691, 1884.
Holland, Butterfly Book 352, pl. xlvi, ff, 4, 5, 1898.
Wright, Butt. W. Coast 245, pl. xxxi, f. 435, 1905.
Oberthür, Etudes Ix, (1), pl. ccxl, ff. 2082, o type; 2085, of type of sylvanoides, 1905.
Atlantic to Pacific, Gulf to northern Iowa aud Illinois; March to October.

The large stigma of the male and the hyaline spots on the primaries of the female furnish a convenient means for the identification of this species.

Genus AUGIADES Hübner

Augiades Hbn., Verz. bek. Schmett. 112, 1820. Type Papilio sylvanus Esper.
Ochlodes Scud., Syst. Rev. 57, (78), 1872. Type Hesperia nemorum Boisd.
Palpi upturned; third joint oblique, very small, without its vestiture about one-quarter as long as the second. Apiculus of antennae variable but never longer than diameter of club. Costa of primaries flattened; outer margin more strongly curved toward apex ; cell about three-fifths as long as wing; vein 5 curving slightly toward 4 ; diseocellulars very oblique. Secondaries rounded, slightly lobed at anal angle. Stigma straight, moderately heavy, extending from base of vein 3 to basal two-fifths of 1, broken on 2. Mid tibiae weakly spined. Fig. 23.

I group this rather varied lot of species becanse of the extremely short third joint of their palpi. This is not readily seen except when bleached or denuded, but I have carefully examined sylvanus, sylvanoides, agricola, and snowi and find that they agree, while the others can readily be associated on superficial resemblance. Other struetures are rather variable.

Key to the species

1. Spots of primaries shaply defined, often hyaline or subhyaline....... 2

Spots more or less ill defined, never hyaline............................. 3
2. Expanse over one inch; fulvous spots restricted.....................snowi

Less than one inch; fulvous of secondaries a diffused diseal patch
milo, agricola
3. Large; wings pale, tawny, with a little fuscous along the outer mar-

Smaller; wings not broadly tawny.. . 4
4. Under surface of secondaries with a variably distinct pale transverse band; ground color not pure pale yellowish............ sylvanoides, napa Under surface without a pale band, yellow.........nemorum, pratincola

1. AUGIADES SYLVANOIDES

Hesperia sylvanoides Boisd., Ann. Soc. Ent. France (2), x, 313, 1852.
ㅇ Hespcria pratincola Boisd., Ann. Soc. Ent. France (2), x, 315, 1852.
Hesperia agricola Plötz, (not Boisd.), Stett, ent. Zeit. xliv, 219, 1883.
Hesperia francisca Plötz, Stett. ent. Zeit. xliv, 220, 1883.
Wright, Butt. W. Coast 243 , pl. xxxi, ff. 430, c, 432, 433, b, e, 1905.
Oberthïr, Etudes ix, (1), pl. ccxl, ff. 2083, 2084, 2089, 1913.
California, Oregon, Washington, British Columbia; June to August.

1. race $N A P A$

Hesperia napa Edwards, Proc. Ent. Soc. Phil. iv, 202, pl. i, ff. 3, 4, 1864. Colorado, August.
This is practically the same in appearance as sylvanoides but is larger and the under surface of the secondaries is less variable.

2. AUGIADES NEMORUM

Hesperia nemorum Boisl., Ann. Soc. Ent. France (2), x, 314, 1859.
Pamphila verus Edw., Trans. Am. Ent. Soc. lx, 4, 1881.
Wright, Butt. W. Coast, pl. xxxi, ff. 430b, 431, 431e?, 1905.
Oberthür, Etudes ix, (1), pl. ccxl, f. 2086, 1913 (type).
California, June.

2a. race PRATINCOLA

Hesperia pratincola Boisł., Ann. Soc. Ent. France (2), x, 315, 1852.
Oberthïr, Etudes ix, (1), pl. ccxl, f. 2088, 1913 (type).
I follow Barnes and McDunnough's Check List in placing this form. The insect is not represented in the Barnes collection, but Oberthiir's excellent figure looks like a specimen of nemorum with the fuscous marginal areas of the upper surface greatly reduced.

3. AUGIADES AGRICOLA

Hesperia agricola Boisd., Ann. Soc. Ent. France (2), x, 314, 1852.
Hesperia yreka Edw., Proc. Ent. Soc. Phil. vi, 207, 1866.
Pamphila milo Edw., Can. Ent. xv, 34, 1883.

Pamphila nemorum Skimer (not Boisd.), Ent. News xi, pl. ir, f. 21, 1900. Kellogg, Am. Ins. pl. Ix, f. 21, 1904.
Oberthïr, Etudes Ix, (1), pl. Coxl, f. 2087, 1913 (type).
California, May to July.
Edward's description states that milo has hyaline spots in the primaries and agricola none; Oberthiir's figure proves that they are present in the type of agricola, hence milo is probably merely a synonym.

4. AUGIADES SNOWI

Pamphila snowi Edw., Can. Ent. Ix, 29, 1877.
Holland, Butterfly Book 350, pl. xlvir, ff. 29, 30, 1898.
Biol. Cent.-Am., Rhop. if, 483, pl, 93, ff. 19-23, 1900.
Arizona and Colorado, June and July.

5. AUGIADES YUMA

Hesperia yuma Edw., Trans. Am. Ent. Soe. Iv, 346, 1873.
Pamphila scudderi Skinner, Ent. News x, 111, 1899.
Skimner, Ent. News Xi, pl. II, ff. 9, 10, 1900.
California, June. Utah and Arizona, July.

Genus POLITES Scudder

Polites Scud., Syst. Rev. 57, (78), 1872. Type Hesperia peckius Kirby.
Hedone Scud., op. cit. 58, (79), Type Hesperia brettus Bd. \& Lec.
Limochores Scud., op. cit. 59, (80). Type IIesperia manataaqua Scud.
Pyrrhosidia Scud., Mem. Bost. Soc. Nat. Hist. in, 346, 1874. Type Hesperia mystic Edw.
Palpi upturned; third joint about one-half as long as second, slender, distinct. Antennae shorter than in Augiades, varying from two-fifths as long as the primaries in some females to onehalf in some males; club rather large, usually longer in the female and occasionally almost as long as the shaft; apiculus abruptly constricted and reflexed, shorter than thickness of club though variable in length. Wings variable; costa of primaries usually straight except at base and apex but sometimes slightly emarginate or convex; outcr margin very slightly sinuate to evenly rounded, more rounded in the female. Primaries often apically produced in the male, less so in the female. Secondaries broadly rounded, very slightly lobed at the anal angle. Cell of primaries about three-fifths as long as wing; vein 5 much
nearer to 4 than to 6 at base; 2 always arising nearer to 3 than to base of wing but variable; discocellulars moderately oblique.
 Mid tibiae with prominent spines. Stigma of male in its most complex form made up of an outer oblique black line, a black dash from end of cell to vein 2 and a black spot above the basal third of vein 1 , the enclosed space filled with gray seales, and the entire stigma followed by a patch of raised gray scales. In many of the species the stigma is muclu simpler. Fig. 25.
I believe that the action of Barnes and McDumough with reference to this group of species (Contributions iII, 130) is the best possible treatment. It may be possible to split off Limochores but I find such a complete transition in the structures that I hesitate to do so. I place verna here because its relation to manataaqua seems to me much closer than with the species of Atrytonopsis, where Barnes and McDunnough place it. The gentitalia of the male are closer to deva, but those of the two genera are of a very similar type. The apiculus of the antennae is usually longer than in Polites, but I have found it variable, and in some specimens fairly short.

Key to the species

1. Under surface of secondaries immaculate or with a transverse band of pale spots, never sharply bent opposite cell nor with spot at this point much the largest. 2 Secontaries otherwise below. 7
2. Upper surface of secondaries immaculate or with a few very rague spots
Uljer surface always with the transverse row of spots, more or less suffused; usually with a spot in cell
3. Small Florida speeies. Stigma of male very small, female usually with a few powdery whitish spots on the under surface of the seeondaries
baracoa Usually moderate to large. Stigma large. Spots, when present, not superfieial and powdery, and usually showing slightly on upper surface
4. Smaller; male stigma with several velvety black areas; female with maculation of primaries tinged with fulvous, costa and cell often partly fulvous
Larger; stigma of male continuous or broken only on vein 2 ; macula tiou of female pale, whitish, rarely with a little pale fulvous in cell
5. Under surface of secondaries powdered with yellowish to green scales; macular band slender... sonora Color straw yellow to brown; band broader .6
6. Male stigma slemler, broken on vein 2 ; female usually with mueh yel-low-fulvous above; in western speeimens pale below and well marked above ... Male stigma with three black areas; female with hazy transverse roms of spots on all wings and some fulvous in cell, not extensively marked; dark below, powdered with yellow. Western species...........mardon
7. Pale areas on under surface extending in pale lines along the veins .sabuleti Pale areas at most angulate on veins.................................. 8
8. All spots of macular band large, but not equal, that between 4 and 6
 Spots small except the one between 4 and 6 ; color white or whitish

Pale area covering entire wing except a few dark patehes, not divided into separate spots and rarely defined as a band; secondaries sometimes entirely yellow below. Female with yellow areas heavily powdered with dark seales; secondaries immaculate above
 Male stigma moderate brettus, chuskia (?)

1. POLITES VERNA

Pamphila verna Edw., Proe. Acal. Nat. Sci. Phil. 1862, 57.
Pamphila pottallattomie Worth., Can. Ent. XII, 50, 1850.
Scudder, Butt. New Eng. if, 1742, 1889.
Holland, Butterfly Book 360, pl. xlvi, f. 32, 1598.
Eastern United States, west to Colorado, July.

2. POLITES MANATAAQUA

Hesperia cemes Harris, (not Boisd.), Ins. Inj. Veg., 3rd ed., 316, 1862. Hesperia manataaqua Scudder, Proc. Ess. Inst. in, 175, 1863.
Scudder, Butt. New Eng. if, 1720, 1889.
Holland, Butterfly Book 357, pl. xlvi, f. 30, 1898.
Northeastern United States west into Nebraska and South Dakota; June and July.

Holland's figure looks like a dark female of taumas. Manataaqua is readily distinguished from taumas in the female sex by its darker color, paler maculation and larger size, though the difference is difficult to explain in a key.

2a. race $R H E N A$
Pamphila rhena Edw., Field and Forest in, 115, 1878.
Pamphila alcina Skinner, Ent. News iv, 212, 1893.
Skinner, Ent. News xi, 414, pl. 11, f. 25, 1900 (type of alcina).
Kellogg, Am. Ins. pl. ix, f. 25, 1904 (type of alcina).
Although retained for many years as a species this is apparently only the western race of manataaqua. It is distinguished from the typical form by its paler color, more extensive markings and the larger amount of pale tawny or yellow fulvous which marks the upper surface. Colorado.

3. POLITES TAUMAS

Papilio taumas Fab., Mant. Ins. II, 84, 1787.
Hesperia thaumas Fab. (not Hufn.), Ent. Syst. 1i1, (1), 327, 1793.
Hesperia phocion Fab., Ent. Syst., Supp. 431, 1798.
Hesperia cernes Bd. \& Lee., Lep. Am. Sept. pl. 76, ff. 1, 2, 1833.
Hesperia ahaton Harris, Ins. Inj. Veg. 3rd ed., 317, f. 140, 1862.
Butler, Cat. Fab. Diurn. Lep. B. M., 277, pl. 2, f. 14; pl. 3, f. 9, 1869.
Scudder, Butt. New Eng. iI, 1725, 1889.
Holland, Butterfly Book 357, pl. xlvii, f. 20, 1898.
United States and Canada, April to August.
I see no reason to doubt that Fabricius' name applies to this species.

4. POLITES BARACOA

Hesperia baracoa Lueas, Sagra's Hist. Cuba vii, 650, 1857.
Pamphila amadis H.-S., Corr.-Blatt Regensb. xvir, 142, 1863.
Pamphila myus Freuch, Can. Ent. xvir, 33, 1885.
Florida, February to April, July, September. I have seen one record of its occurrence at Toronto, Canada (A List of Butterflies taken at Toronto, Gibson, Ont. Nat. Sci. Bull. No. 6, 1910, 35-44. Baracoa det. Skinner) but the only specimens which I have seen came from Florida.

The species is smaller and darker than taumas and the males are easily distinguished by the small stigma. Some females of taumas run very close, but in most specimens of baracoa the powdery spots mentioned in the key are present.

5. POLITES MARDON

Pamphila mardon Edw., Papilio 1, 47, 1881.
Holland, Butterfly Book 354, pl. xlviI, f. 26, 1898.
Washington, Oregon.

6. POLITES PECKIUS

Hesperia peckius Kirby, Faun. Bor. Am. iv, 300, pl. 4, ff. 2, 3, 1837.
Hesperia wamsutta Harris, Ins. lnj. Veg. 3rd ed., 318, f. 141, 1862.
Scudder, Butt. New Eng. ir, 1683, 1889.
Holland, Butterfly Book, 353, pl. xlvit, ff. 24, 25, 1898.
Atlantic coast to Texas and Arizona, southern Canada; May to July.
It requires more imagination than I possess to see peckius in Cramer's fignre of coras.

7. POLITES SABULETI

Hesperia sabuleti Boisd., Ann. Soc. France (2), x, 316, 1852.
Hesperia genoa Plötz, Stett. ent. Zeit. xliv, 207, 1883.
Wright, Butt. W. Coast 246, pl. xxxi, 440, 1905.
Oberthiir, Etudes Ix, (1), pl. coxx., ff. 2091, 2092, 1913.
California, April, July to September.
The pale marks of the lower surface are yellowish on a background of darker yellowish color.

7a. race TECUMSEH

Pamphila sabuleti, var. tecumseh Grinnell, Ent. News xiv, 11, 1903.
Pamphila chispa Wright, Butt. W. Coast 247, pl. xxxi, f. 441, 1905.
California, June to August.
Tecumseh is smaller than typical sabuleti and has the fulvous areas of the upper surface more restricted. The under surface has a greenish-gray tone and the pale spots are smaller.

8. POLITES DRACO

Pamphila draco Edw., Trans. Am. Ent. Soc. int 274, 1871.
Skinner, Ent. News xi, pl. if, f. 23, 1900.
Kellogg, Am. Ins. pl. ix, f. 23, 1904.
California, Utah and Colorado, June to August.

9. POLITES SONORA

Ochlodes sonora Scud., Syst. Rev. 57, (78), 1872.
Pamphila siris Edw., Papilio 1, 47, 1881.
Pamphila sylcanoides Skimer, Syn. Cat. N. Am. Rhop. \$4, 1898.
Wright, Butt. W. Coast 242 , pl. xxxi, f. 425, 426 (not columbia), 1905.
Washington, Oregon, California; May, June, July and August.
The only difference which I can see between this and Skinner's variety in the series in the Barnes collection is the more yellow color of the under surface of its secondaries.

9a. race UTAHENSIS

Pamphila sylvanoides, subsp. utahensis Skimer, Ent. News xxil, 413, 1911. Idaho, Wyoming, Colorado and Utah; July and August.
I would apply this name to the specimens of sylvanoides which are green below.

10. POLITES MYSTIC

Hesperia mystio Scud., Proc. Ess. Inst. HI, 172, 1863.
Holland, Butterfly Book 351, pl. xlvi, ff. 22, 23, 1898.
New Jersey, north into Canada and west beyond the Missouri River; May to July.

Most specimens from the western limits of the range are of the race dacotah, but I have typical mystic from Sioux City, Iowa. In this form the under surface of the secondarics is fairly dark with a contrasting pale band.

10a. race DACOTAH

Hesperia dacotah Edw., Trans. Am. Ent. Soc. iif, 277, 1871.
Pamphila mystic, subsp. pallida Skinner, Ent. News xxir, 412, 1911.
Colorado, June; eastward into Iowa. South Dakota.
The under surface of the secondaries is yellow, scarcely darker than the pale transverse band in extreme specimens.

ab. WEETAMOO

Thymelicus mystic weetamoo Scudder, Butt. New Eng. iI, 1707, 1889.
A dark brown melanic aberration occurring in the female sex. Ordinary maculation much reduced, of separate spots.

$$
a b . \quad N U B S
$$

Thymelicus mystic nubs Scudder, Bntt. New Eng. if, 1707, 1889.
Also a female aberration; dark arcas suffused with tawny scales.

11. POLITES BRETTUS

Hesperia brettus Boisd. \& Lec., Lep. Am. Sept. pl. 75, ff. 3-5, 1833.
Hesperia wingina Scud., Proc. Ess. Inst. iII, 173, 1863.
Hesperia unna Plötz, Stett. ent. Zeit. xliv, 204, 1883.
Scudder, Butt. New Eng. II, 1701, 1889.
Holland, Butterfly Book 351, pl. xlvir, f. 41, 1898.
Gibson, Ont. Nat. Sci. Bull. No. 6, 42, 1910.
Florida, north to Virginia, west to Texas; April, July, August and October. Gibson lists one specimen from Toronto, Canada, determined by Dr. Skinner.

11a. race BRETTOIDES

Pamphila brettoides Edw., Papilio in, 71, 1883.
Western Texas and Arizona.
Brettoides has very narrow dark outer margins on the upper surface in the male, with no more than a trace of the patch at the end of the stigma; the under surface is likewise broadly tawny yellow. I do not know the female.

12. POLITES STIGMA

Pamphila stigma Skinner, Can. Ent. xxvin, 188, 1896.
Skinner, Ent. News xi, pl. il, f. 15, 16, 1900 (15 Cotype).
Kellogg, Am. Ins. pl. ix, ff. 15, 16, 1904 (15 Cotype).
Texas, New Mexico.
I have seen the type of stigma in the Strecker collection, and it is similar to brettus but dark, heavily marked above, and has a very large stigma. Vibex is intermediate between it and brettus but at present I am not prepared to agree with Dyar's suggestion that they are all the same species (Jn. N. Y. Ent. Soe. xin, 128, 1905). Godman and Salvin make stigma synonymous with ribex (Biol. Cent.-Am., Rhop. if, 480, 1900).

13. POLITES CHUSKA

Hesperia chuska Edw., Trans. Am. Ent. Soc. 1v, 346, 1873.
I know nothing of this species. It is placed between sabuleti and draco in Barnes and MeDunnough's Cheek List, but this was done merely with a knowledge of the deseription. The type locality is Arizona.

Genus CATLA Godman \& Salvin

Catia G. \& S., Biol. Cent.-Am., Rhop. ir, 481, 1900. Type Hesperia druryi Latreille.
Catia is structurally similar to Polites but differs in the long slender apiculus of the antennae, which always exceeds the diameter of the club, and in the form of the male stigma. The stigma is composed of a velvety black patch below the end of the cell and a similar patch above the inner third of the anal vein, with large, silky, gray scales between. In the

Fig. 26. Catia otho A. \& S. a. Club of antennae, b. Neuration bleaehed wing it appears as two similar oval spots, one on each side of vein 1. Fig. 26.

In describing Catia Godman and Salvin say of the peculiar structure of the stigma that it "is so remarkable that we think it of sufficient importance to put the species possessing this character into a separate genus." Otho is closety related to the species now included in Politcs and was formerly associated with some of them in Thymelicus, but the form of the apiculus separates them, and no fundamental or superficial similarity can be traced in the stigmata.

1. CATIA OTHO

Papilio otho A. \& S., Lep. Ins. Ga. i, 31, pl. 16, 1797.
Hesperia drury Latr., Enc. Meth. IX, 767, 1823.
Thymelicus pustula Geyer, Zutr. exot. Schmett. Iv, ff. 625, 626, 183.
Hedone aetna Scud. (not Boisd.), Syst. Rev. 58, (79), 1872.
Scudder, Butt. New Eng. il, 1696, 1859.
Biol. Cent.-Am., Rhop. II, 482, pl. 93, f. 18, ô gen., 1900.
Florida and Texas, May and Jume.
The southern specimens which I refer to otho tend to a reddish shade on the under surface; on the upper surface of the secondaries there are some discal spots, while the primaries have fulvous on the basal half of the costa, a complete series of subapical spots, and sometimes other fulvous marks in addition to those found in egeremet.

1a. race EGEREMET

Hesperia egeremet Scud., Proc. Ess. Inst. III, 174, 1863.
Pamphila ursa Worth., Can. Ent. XII, 49, 1880.
Hesperia cimna Plötz, Stett. ent. Zeit. Xliv, 58, 1883.
Scudder, Butt. New Eng. II, 1696, 1889.
Holland, Butterfly Book 351, pl. xlvi, ff. ©8, $99,1898$.
United States and sonthern Canada, west to the Rocky Mountains; July. Texas in October.

Under surface pale fuscous, sometimes tinged with brown; secondaries rarely with a trace of discal marks above, and pale spots of primaries limited to three or less beyond the stigma and one or two subapical points.

The females of otho and egeremet have the same pale marks as the males.

Gemus POANES Scudder

Poanes Scudder, Syst. Rev., 55, (76), 1872. Type Mcsperia massasoit Scud.
Phycanassa Scud., op. cit. 56, (77). Type Hesperia riator Edw.

Paratrytone Dyar, Jn. N. Y. Ent. Soc. xiri, 136, 1905. Type Pamphila howardi Skinner.

Palpi oblique; second joint shaggy, third
 small, not long thongh sometimes rendered prominent by its vestiture. Antemnae about one-half as long as primaries; club large, api-

Fig. 27. Antennal clubs of Poanes. a. viator, b. massasoit, c. hobomok, d. taxiles, e. melane culus varying from rather slender and slightly shorter than thickness of club to long, thick, tapering and not well reflexed. Primaries trigonate; costa slightly convex; outer margin slightly to prominently rounded; apex rather
prominent. Secondaries broadly rounded, slightly lobed at anal angle. Cell of primaries well over one-half as long as wing ; vein 5 moderately curved in basal half, arising nearer to 4 than to 6 ; 2 nearer to 3 than to base of wing. Cell of secondaries less than one-half as long as wing. Mid tibiae with a few long spines. Fig 27.

Hobomok, zabulon, taxiles, and melane were first placed in Poancs by Barnes and McDumnongh (Contributions iII, 132, 1916). Although melane is rather anomalous, it apparently belongs with the other species, whose relation to massasoit through hobomok is obvious. Owing to the great range of variation thus introduced into the genus in the structure of the antennae, palpi, and wings, I have added also viator, whieh differs somewhat in wing form, and the species placed by recent writers in Paratrytone. These last possess the stigma in the male but it is so variable that I regard it as in the process of development. In hourardi, aaroni, and streckeri it is very slender, sometimes scarcely visible but often well marked, and in ychl it is heavier but very variable. In one of the types it is slender, while in the other it is as heavy as in some specimens of conspicua. Including all of these species Poancs becomes such a complex genns that I have drawn up the following diagram to show the apparent relations of the several groups:

Key to the species

1. Under surface of secondaries with bright yellow marks................ 2

No clear yellow on under surface... . . 4
2. Yellow a broad transverse band crossed by a broad ray through cell.. 3 Yellow much more extensive..
3. Wings broadly yellow-fulvous with narrow fuscous margins; yellow of under surface rather dull... . taxiles Wings less broadly fulvous and more or less fuscous within outer margin; yellow of under surface of secondaries very bright...... hobomok Wings dark, with or without small pale spots.................massasoit
4. Upper surface of secondaries with pale markings indefinite, or faint; sometimes immaculate.
This surface with a bright yellow-fulvous patch......................... 8
5. Pale spot in cell of primaries at least faintly indicated. . . . pocahontas
No trace of this spot... 6
 Wings with pale spots... . . 7
7. Under surface with some bluish irroration.........................zabulon 운

8. Primaries with definite spots or a dark stigma......................... 9 Spots diffuse, extended, or discal area broadly yellow-fulvous; male stigma pale, slender. 10
9. $\begin{gathered}\text { of } \\ \text { with stigma; } q \text { with three small, round, pale spots on under surface }\end{gathered}$ of secondaries... . . . yehl
$\hat{\delta}$ without stigma; i without such spots.......................... viator
10. Under surface of secondaries with a vague, pale dash through cell . .howardi, aaroni Under surface partly greenish-fuscous with contrasting pale veins
.streckeri

1. POANES VIATOR

Hesperia viator Edw., Proc. Ent. Soc. Phil. iv, 202, pl. I, f. 5, 1865.
Scudiler, Butt. New Eng. ir, 1604, 1889.
Holland, Butterfly Book 362, pl. xlvi, f. 15, 1898.
New York, New Jersey, Michigan, Southeastern Canada, Omaha, Neb., (Leussler) ; June to August.

2. POANES MASSASOIT

Hesperia massasoit Scud., Proc. Ess. Inst. in, 171, 1863.
Scudder, Butt. New Eng. ir, 1597, 1889.
Holland, Butterfly Book 361, pl. xlvi, ff. 21, 22, 1898.
New Jersey, New York, Rhode Island, Iowa, July. Skinner (Cat. p. 80) records it westward and southward to Texas and Colorado.

The male is either immaculate blackish brown above or with a few small yellow-fulvous spots, while the female frequently has the spots of large size an . a very pale shade.

Form SUFFUSA

Pamphila massasoit, var. suffusa Laurent, Ent. News iII, 15, 1892.
Skinner, Ent. News xi, pl. if, f. 22, 1900.
Kellogg, Am. Ins. pl. ix, f. 22, 1904.
New Jersey, New York; June and July.
The pale area of the under surface of the secondaries of this form is heavily powdered with rusty brown seales.

3. POANES HOBOMOK

Hesperia hobomol Harris, Ins. Inj. Veg. 3rd ed., 313, f. 137, 1862.
Atrytone zabulon Scud., (not Bd. \& Lec.), Butt. New Eng. ir, 1617, 1889.
Atrytone zabulon Holland (not Bd. \& Lee.), Butterfly Book 364, pl. xlvir, ff. 37, $38,1898$.
West Virginia north into Canada and west into Nebraska; May and June.

if form POCAHONTAS

Hesperia pocahontas Scud., Proc. Ess. Inst. III, 171, 1863.
Hesperia quadaquina Seud., Proe. Bost. Soe. Nat. Hist. xi, 381, 1868.
Scudder, Butt. New Eng., if, 1617, 1889.
Skinner, Ent. News xi, pl. if, ff. 3, 4, 1900 (not normal hobomok \&).
Northeastern United States, Quebec; June.
Pocahontas differs from the normal female in the pale shade and greater restriction of the spots on the upper surface, and the brown powdering of the secondaries below.

4. POANES ZABULON

Hesperia zabulon Boisd. \& Lee., Lep. Am. Sept. pl. 76, ff. 6, 7, 1833.
Hesperia zabulon, form pocahontas Holland (not Scudder), Butterfiy Book 364, pl. xlvir, f. 39, 1898.
Illinois, Pennsylvania, Kentucky, North Carolina; May and August.
Holland's figure looks much more like the true female of zabulon than like pocahontas, though it is impossible to identify a figure of the upper surface accurately. The under surface of the secondaries of the male of zabulon is bright yellow with a few marks of brown. In the female the brown areas are more extensive and the entire wing is so heavily powdered with rusty seales that it is difficult to trace the pale areas at all.

5. POANES TAYILES

Pamphila taxiles Edwards, Trans. Am. Ent. Soe. ix, 5, 1881.
Holland, Butterfly Book 365, pl. xlvil, ff. 31, 32, 1898.
Colorado and Arizona, June and July. Nevada, N. M.

6. POANES MELANE

Hesperia melane Edw., Trans. Am. Ent. Soc. iI, 312, 1869.
Biol. Cent.-Am., Rhop. ir, 494, pl. 94, ff. 30-34, 1900.
Holland, Butterfly Book 365, pl. xlvi, ff. 7, 8, 1898.
Wright, Butt. W. Coast 249, pl. xxxi, f. 453, 1905.

California, south into Mexico; May.
Melane and the female of taxiles are similar but they are not difficult to separate; usually the locality from which the specimens come is sufficient.

7. POANES HOWARDI

Pamphila howardi Skinner, Can. Ent. xxviil, 187, 1896.
Phycaaassa viator Holland, (not Edwards), Butterfly Book pl. xlvi, f. 14, 1898. Op. cit. 1l. xlvi, f. 38.

Florida.
The expanse of specimens which I lave seen runs between thirty-two and thirty-six millimeters. Aside from this and its darker color the species does not differ superficially from auroni.

8. POANES AARONI

Pamphila aaroni Skinuer, Ent. News I, 6, 1890.
Holland, Butterfly Book 363, ph. xlvi, f. 37, 1898.
New Jersey, June and August. I have scen specimens only from Anglesea and Atlantic City.

Aaroni expands twenty-seven to thirty-three millimeters and is paler, more yellowish, than howardi. Howardi may yet prove to be a southern race of aaroni.

9. POANES YEHL

Pamphila yehl Skinner, Ent. News iv, 212, 1893. Holland, Butterfly Book 359, pl. xlvi, f. 40, 1898.

Tennessee, Georgia, Mississippi ; August and September.
Superficially this species looks more like a relative of A. conspicua but the mid tibiae are spined. The white spots on the under surface of the secondaries in the fomale are unique.

10. POANES RADIANS

Hesperia radians Lucas, Sagra's Hist. Cuba vir, 650, 1857.
Pamphila streckeri Skinner, Ent. News iv, 211, 1893.
Skinuer, Eut. News xxviir, 82, 1917.
Florida.
The only specimen which I have seen is the type of streckeri and since it lacks the middle legs it is impossible to place the species definitely. Barnes and McDunnough place it in the genus Enphyes in the check list, but without specimens at hand. Its superficial resemblance is rather with aaroni.

Genus ATRYTONE Scudder
Atrytone Scud., Syst. Rev. 56, (77), 1872. Type Hesperia ioua Scud.
Euphyes Scud., Syst. Rev. 59, (80), 1872. Type Hesperia metacomet Harris.

Anatrytone Dyar, Jn. N. Y. Ent. Soc. xili, 140, 1905. Type Hesperia delaude Edwards.
Palpi upturned; second joint elosely appressed, smoothly and deeply sealed; third moderate, oblique. Antemnae about onehalf as long as primaries: club long, moderately thiek: apiculus about as long as thickness of club, sometimes a little shorter. Costa of primaries flattened or very slightly convex; outer margin moderately and almost evenly rounded; apex usually prominent. Secondaries rather small, rounded, slightly lobed at anal angle; a little more apically elongate in the females. Cell of primaries normal; discocellulars oblique, weak; vein 5 curved, nearer to 4 than to $6 ; 2$ about intermediate between 3 and base of wing. Stigma present or absent, composed of two similar, slender, elliptie pieces placed end to end on opposite sides of vein 1. Mid tibiae withont spines.

The long antennal club and spineless mid tibiae make this a very distinct genus as used here, but no characters are available for the separation of Atrytone and $E u p h y c s$ of other writers except the male stigma, which is present only in the species formerly placed in Euphyes. The types of the two do not resemhle each other, but in the species congeneric with them we find an excellent comecting series, in which arpa and byssus differ very slightly except in the stigma.

Key to the species

1. Under surface of secondaries immaculate or with a faint, pale, trans-
verse band on disk.. . . 2
Under surface of secondaries with two pale rays..................dion
Under surface with a few diffuse spots forming a curved transverse row
conspicua
2. Fringe of inner margin of secondaries white.................... bimacula

Fringe of this margin not white.. . 3
3. Wings immaculate fuscous above and below or with a few small pale spots on primaries ($\&$)...estris Wings with more pale markings.. 4
4. Wings mostly dark brownish-gray below... Wings tinged with yellow or red below 5
5. Stigma present arpeô
Stigma absent 6
6. Upper surface of secondaries fuscous 7
Secondaries with fulvous diseal marks 8
7. Primaries with a transverse row of fulvous spots...................arpa ㅇ

With diffuse pale fulvous areas..
8. Veins black.. . . 9

Veins not black
Veins not black...
9. Wings usually broadly yellow-fulvous with a terminal fuscous band above; immaculate yellow or brownish yellow below.............. \log an
Wings with the fulvous definitely limited; under surface of secondaries in most specimens with a faint pale transverse band, never clear yellow
byssus

1. ATRYTONE AROGOS

Papilio vitellius A. \& S., (not Fab.), Lep. Ins. Ga. I, 33, pl. xvil, 1797. Hesperia arogos Boisd. \& Lec., Lep. Am. Sept. pl. 76, ff. 3, 4, 5, 1833.
Hesperia iowa Scud., Proc. Bost. Soc. Nat. Hist. xi, 401, 1868.
Hesperia mutius Plötz, Stett. ent. Zeit. xliv, 199, 1883.
Atrytone vitellius Holland (not Fab.), Butterfly Book 364, pl. xufi, f. 6, 1898.
F'lorida, August and September. Nebraska and Iowa, June and July. Ocean County, N. J., July (Davis).

The pale tawny wings with their broad, even, fuscous borders distinguish the male; the female is readily associated with the male, but the fuscous is more extensive, encroaching upon the discal area and often almost obliterating the tawny color.

2. ATRYTONE LOGAN. .

Hesperia logan Edw., Proc. Ent. Soc. Phil. if, 18, pl. i, f. 5, 1863.
Hesperia delaware Edw., op. cit. p. 19, pl. 5, f. 2.
Scudder, Butt. New Eng. if, 1614, 1889.
Biol. Cent.-Am., Rhop. if, 490, pl. 94, ff. 4-6, 1900.
Holland, Butterfly Book 365, pl. xlvi, f. ${ }^{24}$, 25, 1898.
Florida to Texas, north to Montana and Illinois; July and August.

2a. race $L A G U S$

Pamphila lagus Edw., Trans. Am. Ent. Soc. ix, 5, 1881.
I regard this as scarcely worth separating from logan. It is the western race, and in extreme forms has the fuscous terminal borders reduced to very slender lines and the under surface very pale.

3. ATRYTONE BYSSUS

? Hesperia bulenta Bd. \& Lec., Lep. Am. Sept. pl. 67, ff. 1-5, 1833.
Pamphila byssus Edw., Can. Ent. xir, 224, 1880.
Holland, Butterfly Book 358, pl. xlvi, f. $20,1898$.
Florida, August. Skinner includes Texas (Cat. p. 89).
Dr. McDunnough places bulcnta tentatively as a synonym of byssus. The figure is a striking thing, unlike any known species of North America, but it does bear a remote resemblance to this species.

4. ATRYTONE ARPA

Hesperia arpa Boisd. \& Lee., Lep. Am. Sept. pl. 68, 1833.
Florida, June, September and October.
The stigma is present in the males of this and all of the following species, which make up the former genus Euphyes.

5. ATRYTONE PALATKA

Hesperia palatha Edw., Trans. Am. Ent. Soc. I, 287, 1867.
Hesperia foridensis Plötz, Stett. ent. Zeit. xliv, 196, 1883.
Scudder, Butt. New Eng. iif, 1863, 1889.
Holland, Butterfly Book 358, pl. xlvi, f. 21, 1898.
Florida, May, August to October. Skinner gives its range as "Gulf States, Neb." (Cat. p. 89).

In the original description the name of this species was spelled pilatka but this was amended by Edwards himself in his later writings. It is the largest species of the genus.

6. ATRYTONE DION

Pamphila dion Edw., Can. Ent. XI, 238, 1879.
New York, Ohio, Wiseonsin, Michigan, Illinois and Onaha, Neb. (Leussler) ; June and July. St. Louis, Mo. (Knetzger).

The pale dashes on the under surface of the secondaries are unique in this genus.

7. ATRYTONE CONSPICUA

Hesperia conspicua Edw., Proc. Ent. Soc. Phil. iI, 17, pl. 5, f. 5, 1863.
ô Hesperia pontiac Edw., op. cit. 17, pl. xı, f. 5.
Hedone orono Scud., Syst. Rev. 58, (79) 1872.
Seudder, Butt. New Eng. if, 1732, 1889.
Holland, Butterfly Book 358, pl. Xlvi, ff. 16, 17, 1898.
New Jersey north to Massachusetts and west into Nebraska; July.

8. ATRYTONE BIMACULA

Hesperia bimacula G. \& R., Ann. Lye. Nat. Hist. N. Y. viil, 433, 1867.
Hesperia acanootus Scud., Proc. Bost. Soc. Nat. Hist. XI, 381, 1868.
Hesperia illinois Dodge, Can. Ent. iv, 217, 1872.
Scudder, Butt. New Eng. if, 1718, 1889.
Ontario, New Jersey, New York, Iowa; July. Skimner lists Nebraska (Cat. p. 88). I have taken one specimen at Sioux City, Iowa.
The under surface of the secondaries is usually pale with the reins marked in white. The upper surface has a little yellow-fulvous on each side of the stigma in the male, and only two or three small extradiseal spots in the female which are of a very pale color.

9. ATRYTONE VESTRIS

Hesperia vestris Boisd., Ann. Soc. Ent. France (2), x, 317, 1852.
Hesperia metacomet Harris, Ins. Inj. Veg. 3rd ed., 317, 186.

Pamphila rurea Edw., Proc. Acad. Nat. Sci. Phil. 1862, 58. Hesperia kiowah Reakirt, Proc. Ent. Soc. Phil. vi, 150, 1866. Hesperia osylia Edw., Trans. Am. Ent. Soc. I, 288, 1867. Pamphila osceola Lint., 30th Rȩ. N. Y. Mus. Nat. Hist. 170, 1878. Scudder, Butt. New Eng. 1f, 1739 and 111, 1865, 1889. Holland, Butterfly Book 360, pl. xivi, f. 31, 1898. Wright, Butt. W. Coast 247, pl. xxxı, f. 442, 1905. Oberthïr, Etudes Lx, (1), pl. CCxle, f. 2093, 1913 (type).

United States and Southern Canada; May to July.

ㅇ form IMMACDLATUS

Pamphila vestris, var. immaculatus Williams, Ent. News xxv, 267, 1914.
Described from the Jemez Mts., New Mexico. I have seen it from the White Mts., Arizona, but not from more northerm localities. As the name implies, it lacks the whitish spots usually found on the primaries of the female.

Genus ATRYTONOPSIS Godman \& Salvin

Atrytonopsis G. \& S., Biol. Cent.-Am., Rhop. ir, 497, 1900. Type Hesperia dera Edw.

Palpi upturned; third joint moderate, oblique, not concealed in vestiture of second.

Mis. 28. Antennal clubs: a. Atrytomopsis deva Edw., !. A pittacus Edw.. e. A. ede:ardsi 13. \& MeD...... Otigoria maculata Edw. h. Lerodea eufala. Edw., Palpi. d. A. deva Edw., g. Mastor bellus Edw.. i. Lerodet eufalu Edw., e. Detail of neuration: end of cell of primaries, Lerema aecius S. \& A. Antemnae slightly less than one-half as long as primaries; club moderate, longer in female than male; apieulus shorter than thickness of elub in male, equal to it or longer in female. Primaries of male apically produced; costa nearly straight; outer margin slightly rounded; apex roundedacute. Secondaries rounded; outer margin flattened at end of cell; anal angle slightly lobed; leugth from humeral angle to anal angle greater than throngh cell in male and less in female. Cell of primaries three-fifths as long as wing; vein 5 curved at base, nearer to vein 4 than to $6 ; \mathrm{L}$. D. C. almost transverse; M. D. C. searcely visible, very oblique; vein 2 almost inter-
mediate between 3 and base of cell. Stigma rudimentary, consisting of a few modified scales faintly indicating the position of the structure; well developed in a few speeies, where it is similar to that of Atrytone but more slender. Mid tibiae spiny. Fig. 28.

The absence of yellow-fulvous, frequent oeeurrence of gray seales on the under surface of the wings, and the acute apices of the primaries in the males of most of the speeies give this genus a very distinctive habitus.

> Key to the species

1. Fringes not checkered.. 2

2. Under surface of secondaries with a transverse row and three subasal
white spots; not heavily gray-powdered.......................... . . loammi
Spots partly obsolete or hyaline.. 3
3. Secondaries with hyaline spots..tacus

Secondaries without hyaline spots... 4
4. Fringes of secondaries white or whitish.................................. 5

Fringes concolorous with wings or slightly paler....................... 6
5. Fringes dirty white, usually dark at anal angle.................. .umus Fringes pure white, rarely intermixed with dark seales, usually not very dark at anal angle.. . . dcr.
6. Wings very dark..

Wings pale...erechi
7. Under surface marbled with purplish; spots semi-hyaline.......cestus

Under surface heavily gray powdered..................................... 8
8. Spots yellowish, opaque or nearly so..................................... .

Spots white, subhyaline...edwardsi

1. ATRYTONOPSIS LOAMMI

Lerema loammi Whitney, Can. Ent. vin, 76, 1876.
Pamphila regulus Edw., Trans. Am. Ent. Soc. ix, 5, 1881.
Skinner, Ent. News xi, pl. If, f. 24, 1900.
Kellogg, Am. Ins. pl. ix, f. 24, 1904.
Florida, Mareh and Oetober. North Carolina, July.
The dark brown ground color and the pure white, opaque spots on the under surface of the secondaries separate loommi readily from the rest of the genus.

2. ATRYTONOPSIS IHANNA

Hesperia hiunna Scudder, Proc. Bost. Soc. Nat. Hist. xI, 382, 1868.
Hesperia grotei Plötz, Stett, ent. Zeit. xliv, 54, 1883.
Scudder, Butt. New Eng. if, 1771, 1859.
Holland, Butterfly Book, 366, pl. xivi, ff. 9, 10, 1895.
Northeastern United States westward into Nebraska, Manitoba; June.

3. ATRYTONOPSIS LUNUS

Pamphila lunus Edwards, Papilio Iv, 56, 1884.
Arizona, June to August.
Similar to deva but larger and darker, and with the white areas not so pure as in dera.

> 4. ATRYTONOPSIS DEVA

Hesperia dera Edw., Trans. Am. Ent. Soc. v, 292, 1876.
Biol. Cent.-Am., Rhop. ir, 498, pl. 95, ff. 6-10, 1900.
Arizona and Utah. Skinner lists southern Colorado (Cat. p. 87).

5. ATRYTONOPSIS VIERECKI

Pamphila vierecki Skinner, Ent. News XiII, 213, 1902.
Ft. Wingate, New Mexico, June; two males, one compared with the type, in the Barnes collection are all that I have seen.

Vierecki is similar to deva but smaller, paler and more grayish, with two spots in the end of the cell of the primaries, sometimes connected, and a well marked stigma in the male.

6. ATRYTONOPSIS PITTACUS

Pamphila pittacus Edw., Papilio in, 138, 1882.
Biol. Cent.-Am., Rhop. 11, 498, pl. 95, ff. 11-13, and 14, 15 (not python Edw.), 1900.
Skinner, Ent. News xi, pl. il, fi. 17, 18, 1900.
Kellogg, Am. Ins. pl. ix, ff. 17, 18, 1904.
Arizona, July.
The straight row of hyaline spots on the secondaries characterizes pittacus among our species.

7. ATRYTONOPSIS PYTHON (Plate I, Fig. 1)

Pamphila python Edw., Papilio ıI, 139, 1882.
Arizona, May and June.
Python is the only one of our species in which the spots are distinctly yellowish.

7a. race MARGARITA
Pamphila margarita Skinner, Can. Ent. xlv, 426, 1913.
Described from Jemez Springs, New Mexico.
I am not familiar with this form.

8. ATRYTONOPSIS CESTUS

Pamphila cestus Edw., Papilio iv, 57, 1884.
Southern Arizona. I am not familiar with this species.

9. ATRYTONOPSIS EDWARDSI

Atrytonopsis cduardsi B. \& McD., Contributions HI, (2), 135, pl. vin, ff. 9, 10, 1916.

Pamphila cestus Wright, (not Edw.), Butt. W. Coast 249, pl. xxxir, f. 482, 1905.
Arizona.
This species was described to correct a common misconception of cestus and the types are undoubtedly distinct from the species on which the description of cestus was based. I believe that the name will fall before Hesperia ovinia Hew., illustrated in the Biologia (Pl. 97, ff. 1, 2, 1900) under the name Thespieus ovinia. The type of orinia in the British Museum will have to be examined to settle the matter definitely, but even from the figures it is easy to see that the species can hardly belong in Thespieus.

Genus OLIGORIA Scudder

Oligoria Scud., Syst. Rev. 61, (82), 1872. Type Hcsperia maculata Edw.
Structure not much different from Atrytonopsis. Male primaries less apically prolonged and without stigma. Vein 5 nearer to 4 than in the preceding genus. Middle tibiae with a few long spines. Apiculus of antemnac abruptly constricted, sharply reflexed, very slender and usually about twice as long as thickness of club.

Dyar remarks (Jn. N. Y. Ent. Soc. xin, 137, 1905) that he is unable to separate this gemus from Lerodea and therefore places maculata in the latter. He is followed in this by Barnes and McDunnough in the Check List, but the differences between maculata and cufala are so striking that they must be separated. Since maculata agrees with no other genus known to me, I retain Oligoria for the one species. Fig. 28.

1. OLIGORIA MACULATA

Hesperia maculata Edw., Proc. Ent. Soc. Plil. iv, 202, pl. i, f. 6, 1865.
Hesperia norus Plötz, Stett. ent. Zeit. xliv, 36, 1883.
Scudder, Butt. New Eng. if, 1761, 1883.
Holland, Butterfly Book 361, pl. xlvi, f. 35, 1598.
Florida, May to July. Skinner gives its range as the Gulf States and occasionally New York. (Cat. p. S7).

Gemus LEREMA Scudder

Lerema Scud., Syst. Rev. 61, (82), 1872. Type Papilio accius A. \& S.

Palpi oblique; third joint moderate, partly concealed by vestiture of second. Antemnae about one-half as long as primaries; club moderate; apiculus slender, longer than thickness of club.

Primaries rather long; eosta flattened in middle; outer margin curved, flattened before anal angle; apex rounded-rectangular. Secondaries lobed slightly at anal angle, otherwise rounded. Cell of primaries over three-fifths as long as wing; discocellulars weak, slightly oblique; vein 5 arising a little nearer to 4 than to 6 , almost straight. Male with a slender, well developed stigma running from the base of vein 3 to just within the middle of vein 1 . Middle tibiae with a few long spines. Fig. 28.

1. LEREMA ACCIUS

Papilio accius A. \& S., Lep. Ins. Ga. I, 45, pl. 23, 1797.
Hesperia monoco Seud., Proc. Ess. Inst. IIJ, 178, 1863.
Hesperia punctella G. \& R., Trans. Am. Ent. Soc. I, 1, 1867.
Hesperia nortonii Edw., Trans. Am. Ent. Soc. I, 287, 1867.
Seudder, Butt. New Eng. H1, 1768, 1889.
Holland, Butterfly Book 366, pl. xlvini, f. 8, 1898.
Biol. Cent.-Am., Rhop. if, 554, pl. 99, f. 44, 1900.
Southern half of United States east of Rockies; May, July, August, October, November. Skinner (Cat. p. 87) mentions a record by Aaron from Eastern Pennsylvania.

Genus EPIPHYES Dyar

Epiphyes Dyar, Jn. N. Y. Ent. Soe. xin, 132, 1905. Type Pamphila carolina Skinner.
I have seen but one poor specimen of the female of carolina. From it nothing can be told except that vein 5 is but slightly curved and not much nearer to 4 than to 6 . It therefore belongs with Lerema and allied genera, and aeeording to Dyar's description of the male stigma it should constitute a good genus. The original description of Epiphyes is as follows: "Antennal club cylindrical, the point rather obtuse and about equal to the diameter of the club. Palpi with the third joint moderate, rather slender; wings normal, vein 2 arising at the middle of the cell, 3 before the end. Mid tibiae spiny. Male stigma a large, ill defined blotch. Type Pamphila carolina Skinner."

1. EPIPIIYES CAROLINA

Pamphila carolina Skinner, Ent. News III, 222, 1892.
Holland, Butterfly Book 367, pl. xlvi, f. 36, 1898 (type).
North Carolina.
The speeies is easily reeognized by the well defined, pale yellow maeulation and the form of vein 5 of the primaries.

Genus MASTOR Godman \& Salvin

Mastor G. \& S., Biol. Cent.-Am., Rhop. ir, 567, 1900. Type Mastor anubis G. \& S.
? Megistias G. \& S., op. cit. 571. Type IIesperia tripunctata Latr.
Palpi upturned; third joint small. Antemae slightly more than one-half as long as primaries in male, less in female; apiculus shorter than thickness of club and variously reflexed; club short, rather stout. Costa of primaries flattened; outer margin slightly rounded; apex somewhat produced. Secondaries broadly rounded, relatively small; in the female the primaries are less produced and the apex of the secondaries more prominent than in the male, much as in Atrytonc. The male possesses a small stigma made up of a dot of scales below vein 2 and a longet patch above, variably developed in different specimens. It is much larger in bellus than in phylace, very small in oslari and absent in fusea. Cell of primaries normal; vein 5 slightly curved, arising a little nearer to 4 than to 6 . Nid tibiae with a few spines. Fig. 28.

I believe that oslari is more closely related to A. nanno than to bellus, and am placing fusea in this genus rather doubtfully. Unfortunately I have not had sufficient material for dissection in this group and have therefore been unable to make a careful study of the anatomy of the doubtful species. I am unable to find a good basis of separation for fusea, which Godman and Salvin say belongs in Megistias, but I am not familiar with tripunctata so Megistias may not fall before Mastor.

Kcy to the specics

2. Under surface powdery gray.. .

More or less yellowish below, never powdery gray................fusca

1. MASTOR FUSCA

Hesperia fusca G. \& R., Trans. Am. Ent. Soc. I, 2, 1867.
Southern United States, New Jersey, Pennsylvania; April to July. St. Louis, Mo., (Knetzger).

Fusca is usually immaculate grayish fuscous above and slightly tinged with yellowish below, especially on the reins of the secondaries. Oecasion-
al specimens show a faint trace of spots on the upper surface of the primaries, and frequently the ground color is darker.

2. MASTOR BELLUS

Pamphila bellus Edw., Papilio iv, 57, 1884.
Biol. Cent.-Am., Rhop. ir, 568, pl. 100, f. 36, ô gen., 1900.
Skimer, Ent. News xi, pl. if, ff. 11, 12, 1900.
Kellogg, Am. Ins. pl. ix, ff. 11, 12, 1904.
Wright, Butt. W. Coast 247, pl. xxxi, f. 443, 1905.
Arizona, May to July.

3. MASTOR PHYLACE

Pamphila phylace Edw., Field and Forest ini, 117, 1878.
Arizona, Colorado, New Mexico; June.

4. MASTOR OSLARI

Pamphita oslari Skinner, Ent. News x, 112, 1899.
New Mexico, Arizona, Colorado; April, June to August.
Ostari is usually pale fuscous above, but occasionally a series will show some yellow fulvous scales on the disk of the primaries and a faint trace of indefinite spots such as are always present in A, nanno. Such specimens may be separated from namo by the gray under surface of the secondaries with vague pale spots instead of small sharp ones.

Genus ANIBLYSCIRTES Seudder

Amblyscirtes Scud., Syst. Rev. 54, (75), 1872. Type Hesperia vialis. Edw.
Stomyles Scud., op. cit. 55 (76). Type Pyrgus textor Hbn.

Fig. 29. Amblyscirtes vialis Edw. a.. Club of antenna, b. Palpus, c. Neuration

Palpi large, upturned; second joint with shaggy vestiture; third slender, smooth, vertical ; almost as long as second except in namno. Antemnae moderate; club large ; apiculus longer than thickness of club. Primaries in most species similar in the two sexes, less apically produced than in the related genera; costa flattened; apex rounded-rectangular; outer margin strongly rounded except toward anal angle; cell about three-fifths as long as wing; discocellulars very weak and only slightly oblique; vein 5 weakly curved
toward base, a little nearer to 4 than to 6 ; secondaries rounded, in most of the species longer through the cell than in the related genera. Male stigma small, sometimes scareely visible, composed of a short, oblique dash above the base of vein 2 and a smaller longitudinal dash below it. Middle tibiae spiny. Fig. 29.

The checkered fringes of this genus are a convenient superficial character, and indeed the only one by which nanno can readily be placed. The other species are readily referred to the genus by the long third joint of the palpi, taken with the apiculus of the antennae. Whether namo should be left in Amblyscirtes is a question which I have been unable to settle; its similar habitus would cause me to hesitate to remove it.

Key to the species

1. Vestiture of under surface of secondaries with no suggestion of green. 2 Under surface of secondaries more or less greenish..................... 9
2. Spots on under surface of secondaries comected by pale lines on veins ...textor No such lines.. 3
3. Under surface of secondaries with diffused pale spots or immaculate.. 4
 With a brown pateh in the middle... $n y s a$
4. All maculation above yellow-fulvous...

Subapieal spots of primaries, at least, whitish.......................... 5
5. Secondaries without pale spots below... With a transverse row of powdery pale spots............................. 6
6. Maculation of upper surface tinged with yellow-fulvous...........aenus

No trace of yellow-fulvous.. 7
 Irroration with a rough appearance......................................celia
8. Under surface dark, irroration sparse; spots small and powdery but sharply contrasting.. elissa Under surface finely and smoothly grayish-irrorate; spots very sharply defined, moderate...
9. Under surface pale greenish-gray; primaries with spots between veins 4 and 6 above; southwestern species......................................ereus Darker greenish-gray; very bright in fresh speeimens; spots at end of cell of primaries usually lacking; eastern speeies. .hegon

1. AMBLISCIRTES NANNO

Amblyscirtes nanno Edw., Papilio if, 142, 1882.
Biol. Cent.-Am., Rhop. iI, 504, pl. 95, ff. 31-34, 1900.
Wright, Butt. W. Coast 250, pl. xxxi, f. 455, 1905.
Arizona, July.

The primaries of nanno are more apically produced and the secoudaries relatively smaller and more rounded than in the normal species of Amblyscirtes.

2. AMBLYSCIRTES ELISSA

Amblyscirtcs elissa G. \& S., Biol. Cent.-Am., Rhop. iI, 505, pl. 95, ff. 40, 41, 1900.
Skimer, Ent. News xv, 344, 1904.
I have not seen this species. Apparently it is very similar to nanno. Skinner reports it from Cochise County, Arizona.

3. AMBLYSCIRTES AENUS

Amblyscirtes aenus Edw., Field and Forest iit, 118, 1878.
Holland, Butterfly Book 341, pl. xlvir, f. 7, 1899.
Colorado, Texas, Arizona, New Mexico; May to July.

4. AMBLYSCIRTES CASSUS

Amblyscirtes cassus Edw., Papilio iII, 72, 1883.
Amblyscirtes simius Wright, (not Edw.), Butt. W. Coast pl. xxxi, f. 454, 1905.

Arizona; June, July and September.
The under surface of the secondaries of cassus is heavily irrorate with pale gray scales which give these wings a roughened appearance. The spots are large and distinct but vaguely defined.

5. AMBLYSCIRTES CELIA

Amblyscirtes celia Skinner, Ent. News vi, 113, 1895.
Texas, March, April and July.
There is a specimen in the Barnes collection which has been compared with the type, and from which I have noted that the under surface of the secondaries is finely but rather sparsely and roughly powdered with gray; spots small but not clear-cut.

6. AMBLYSCIRTES VIALIS

Hesperia vialis Edw., Proc. Acad. Nat. Sci. Phil. 1862, 58, 1862.
Scudder, Butt. New Eng. iI, 1582, 1889.
Holland, Butterfly Book 340, pl. xlvir, f. 5, 1898.
United States and Southern Canada; May, June, July, August.

7. AMBLYSCIRTES HEGON

Hesperia hegon Scud., Proc. Ess. Inst. in, 176, 1863.
Hesperia samoset Scud., op. cit. 176.
Hesperia nemoris Edw., Proc. Ent. Soc. Phil. II, 507, 1864.
Scurder, Butt. New Eng. 11, 1589, 1889.
Holland, Butterfly Book 340, pl. XlviI, f. 6, 1898.
Georgia north into Canada and west to central Iowa; May and June; August in the north.

Hegon is more eommonly known as samoset. It is similar to norous but the transverse row of spots on the primaries is usually less complete and fresh specimens are much more greenish below. The distribution is sufficient to separate slecimens which bear locality labels.

8. Amblyscirtes nereus

Hesperia nereus Edw., Trans. Am. Ent. Soc. v, 207, 1876.
Biol. Cent.-Am., Rhop. ir, 502, pl. 95, ff. 27-30, 1900.
Arizona, June to August.

9. AMBLYSCIRTES ALTERNATA

Hesperia alternata G. \& R., Trans. Am. Ent. Soc. I, 3, 1867.
Hesperia eos Edwards, Trans. Am. Ent. Soc. iif, 276, 1871.
Amblyscirtes meridionalis Dyar, Jn. N. Y. Ent. Soe. XiII, 135, 1905.
Georgia; Skinner lists cos from Texas, Georgia and Florida.
A specimen which Dr. McDumnough placed as alternata in the Barnes collection proved to be the same as Dyar's types of meridionalis in the Streeker collection, and the descriptions of all of the species lead me to believe that they are synonyms. The primaries are apieally produced, so that the outer margin is longer than in rialis, and the fringes are an unusually pure white, as in nysu. The under surface has a transverse row of faint, powdery spots on the secondaries and is otherwise similar to vialis.

10. AUBLYSCIRTES NYSA

Amblyscirtes nysa Edw., Can. Ent. ix, 191, 1877.
Pamphila similis Streeker, Lep. Rhop. \& Het. 131, 1878.
Texas and Arizona, Marel to June.
The under surface of the secondaries is distinctive and the fringes are a clearer white than in any other species than alternata. The upper surface of nysa is very similar to that of alternata in all particulars.

11. AMBLYSCIRTES COMUS

Hesperia comus Edw., Trans. Am. Ent. Soc. v, 206, 1876.
Amblyscirtes nilus Edw., Field and Forest in, 118, 1878.
Pamphila quinquemacula Skinner, Ent. News xxir, 413, 1911.
Biol. Cent.-Am., Rhop. 11,502, pl. 95 , ff. 25, 26, 1900.
Texas and Arizona, August.
From a specimen in the Barnes collection compared with Edward's material I have noted that the under surface is finely and smoothly grayish irrorate and the spots small, white, sharply defined and not crowded together.

12. AMBLYSCIRTES TESTOR

Pyrgus textor, Hübner, Zutr. exot. Schmett. pl. 89, ff. 515, 516, 1895.
Hesperia oneko Scul., Proc. Ess. Inst. int, 176, 1863.
Hesperia wakulla Edw., Trans. Am. Ent. Soc. 1r, 311, 1869.
Holland, Butterfly Book 341, pl. xuvir, f. 16, 1898.

North Carolina and Kentucky to Texas; August.
The under side of the secondaries is very strikingly different from any other species, but I see no structural basis for Stomyles, of which textor is the type.

Genus LERODEA Scudder

Lerodea Scud., Syst. Rev. 59, 1872. Type Hesperia eufala Edw.
Palpi upturned, very smoothly scaled; third joint about half as long as second but buried in vestiture of second almost to its tip. Antennae much less than one half as long as primaries; apiculus slender, shorter than thickness of club. Primaries apically produced; costa slightly emarginate or straight except at apex and humeral angle; outer margin slightly sinuate, convex from apex to vein 2. Secondaries rounded, lobed at anal angle. Both primaries and secondaries longer and more rounded in the female than in the male. Cell of primaries about three-fifths as long as wing; discocellulars weak, scarcely oblique; vein 5 almost straight, about two-thirds as far from 4 as from $6 ; 2$ much nearer to 3 than to base of wing in both sexes. Male without stigma. Mid tibiae spined. Fig. 28.

1. LERODEA ARABUS

Pamphila arabus Edw., Papilio II, 26, 1882.
Arizona, April.
Differs from eufala in the presence of a dark brown discal shade on the under surface of the secondaries.

2. LERODEA EUFALA

Hesperia eufala Edw., Trans. An. Ent. Soc. ir, 311, 1869.
Pamphila floridae Mab., Bull. Soc. Ent. France (5), vi, p. Ix, 1876.
Holland, Butterfly Book 356, pl. xlvi, f. 33, 1898.
Biol. Cent.-Am., Rhop. if, 500, pl. 95, ff. 16-18, 1900.
Wright, Butt. W. Coast pl. xxxi, f. 445a, b, 1905 (as nereus).
Florida, Texas, Arizona; April to July, October and November.

GROUP D

Key to the genera

1. Middle tibiae withont spines. Prenes

Middle tibiae spined. 2
2. Male with stigma; under surface of secondaries mottled with several shades. Thespieus Male without stigma; under surface of secondaries uniformly colored. Calpodes

Genus TIIESPIEUS Godman \& Salvin

Thespieus G. \& S., Biol. Cent.-Am., Rhop. ir, 519, 1900. 'Type Hesperia dalmami Latr.
This gemus is very elose to Calpodes and the male genitalia of the two illustrated by Godman and Salvin are similar, but I have very little material of Thespieus and have not seen the typical speeies, so I hesitate to sink it.

1. Thespieus macareus

Goniloba macareus H.-S., Corr. Blatt Regensb. xxin, 192, 1869. Biol. Cent.-Am., Rhop. if, 520, pl. 96, ff. 41-43, 1900.
Skimmer, Ent. News xili, 183, 1902.
Macareus has been recorded from the southwestern part of our country and Marco Id., Fla.; I have not seen the species.

Genus CALPODES Hüh ner

Calpodes Hbm., Verz. bek. Schmett. 107, 1820. Type Papilio ethlius Cr .
Palpi upturned, elosely appressed: third joint small, almost entirely eoncealed. The palpi resemble those of most species of Group A of the Hesperiinae. Antemmae less than one-half as long as primaries ; club stout, apiculus exceeding thickness of club, sharply reflexed. Primaries with the apex produced and subtruneate, longer in the female than in the male; secondaries strongly lobed at the

Fitr. 30. Prenes and Calpodes. a. Clab of antenna of P. ocola Edw., b. Neuration of ocola, c. Club of antenna of C'. ethlius Cramev. anal angle, broader and more romnded in the female than in the male. Neuration as in Prenes. Mid tibiae with short prostrate spines on the immer surface. Fig. 30.

1. CALPODES ETHLIUS

Papilio ethlius Cramer, Pap. Exot. iv, 212, pl. cccxcir, ff. A, B, 1782. Hesperia chemnis Fab., Ent. Syst. in, (1), 331, 1793.
Eudamus olynthus Bd. \& Lec., Lel. Am. Sept. pl. 75, ff. 1, ㅇ, 1833.
Scudder, Butt. New Eng. ir, 1750, 1889.
Holland, Butterfly Book 355, pl. xlv, f. 3, 1898.

Biol. Cent.-Am., Rhop. if, 507, pl. 95, ff. 45, 46, 1900.
Florida to Texas, June. Skimer lists it as occasional in New York, (Cat. p. 88). St. Louis, Mo., (Knetzger).
Ethlius is readily distinguished by its large size, the long cell of the primaries, the form of the palpi and the presence of hyaline spots on the secondaries.

2. CALPODES COSCINIA

Goniloba coscinia H.-S., Corr.-Blatt Regensb. xix, 54, 1865.
1 Hespcria ares Feld., Verh. z.-b. Ges. Wien xir, 477, 1862.
Brownsville and San Antonio, Texas, May.
Barnes and McDumough list arcs as a doultful synonym of coscinia while Godman and Salvin in the Biologia make it a synonym without qualification. If the two names refer to the same sjecies, ares should be used; I know of nothing which will settle the matter at present. Coscinia differs from ethlius and T. macareus in the absence of hyaline spots from the secondaries.

Genus PRENES Scudder

Prenes Seud., Syst. Rev. 60, (81), 1872. Type Hesperia panoquin Scud.
Similar to Calpodes but with the wings more angular and the mid tibiae without spines. Fig. 30.

Prenes is very elose to the Old World genus Parnara and may fall before it. Dr. W. T. M. Forbes tells me that he is unable to separate the two, and from a superficial study of the genotypes I have found nothing which will differentiate them. I prefer to retain Prenes, however, until I can make dissections of the type of Parnara for more aceurate study.

Key to the species

1. Secondaries with a few pale spots below................................ 2 Secondaries immaculate below or with pale dashes or very faint traces of spots.. . . . 4
2. Upper surface powdered with yellowish scales............panoquinoides Upper surface without yellowish scales.................................... 3
3. A pale spot in end of cell of primaries; spots on under surface bluish nero No spot in cell; spots below not bluish............................. . errans

1. PRENES NERO

Hespcria nero Fab., Ent. Syst., Supp. 433, 1798.
Hesperia nyctelius Latr., Enc. Meth. Ix, 746, 1823.

Goniloba corrupta H.-S., Corr.-Blatt Regensb. xix, 54, 1865.
Goniloba sylvicola II.-S., op. cit., 1. 55.
Hesperia fusina Hew., Dese. Hesp. 30, 1868.
Hesperia fufidia Hew., Ann. \& Mag. Nat. Hist. (4), xix, 81, 1877.
Biol. Cent.Am., Rhop. if, 509, pl. 96, ff. 4•7, 1900.
Florida.
Differs from ocola in the presence of a pale spot in the end of the cell of the primaries and a transverse row of faint, bluish spots on the under surface of the secondaries. The synonymy is that of Godman and Salvin.

2. Prenes Panoquin

Hesperia panoquin Scud., Proc. Ess. Inst. in, 178, 1863.
Hesperia ophis Edw., Trans. Am. Ent. Soc. 1iI, 216, 1871.
Scudder, Butt. New Eng. ini, 1867, 1889.
Skinner, Ent. News Xi, pl. II, ff. 13, 14, 1900.
Kellogg, Am. Ins. pl. IX, ff. 13, 14, 1904.
Florida, New Jersey; April, May, August.

3. PRENES PANOQUINOIDES

Pamphila panoquinoides Skinner, Ent. News II, 175, 1891.
Skinner, Ent. News xi, pl. if, f. 26, 1900 (type).
Kellogg, Am. Ins. pl. ix, f. 26, 1904 (type).
Florida. This species is slightly powdered with yellowish scales above but less heavily than panoquin, from which it differs also in the absence of the large dashes of the under surface.

4. PRENES ERRANS

Pamphila errans Skinner, Ent. News iif, 174, 1892.
Wright, Butt. W. Coast pl. xxxi, f. 445, 1905 (as nereus).
California, July and August.
Differs from ocola, which it closely resembles, in the presence of a transverse row of pale spots on the under side of the secondaries, which are not bluish as in nero.

5. PRENES OCOLA

Hesperia ocola Edw., Proc. Ent. Soc. Phil. iI, 20, pl. xi, f. 4, 1863.
Prenes hecebolus Scud., Syst. Rev. 60, (81), 1872.
Pamphila ortygia Möschl., Verh. z.-b. Ges. Wien xxxir, 328, 188.
Scudder, Butt. New Eng. in, 1866, 1889.
Pamphila parilis Mab., Comp. Rend. Soe. Ent. Belg. xxxv, Clxxi, 1891.
Holland, Butterfly Book 355, pl. xlvi, f. 34, 1898.
Biol. Cent.-Am., Rhop. II, 511, pl. 96, ff. 13-15, 1900.
Kentucky, Florida, Mississippi and Texas; May, July to October. Skinner (Cat. p. 88) adds Indiana and Eastern Pennsylvania.

Ocola is usually immaculate below but some specimens show a trace of the spots which mark errans, though they are not, as a rule, sufficiently well marked as to cause difficulty in separating the species. They never
have the marked blue shade found in nero. In the synonymy of ocola I follow Godman and Salvin (Biol. 511), who say that they have seen the types of all three synonyms and find them to "show no tangible difference."

DOUBTFUL SPECIES AND GENERA

Genus POTANTHUS Scudder

Potanthus Scud., Syst. Rev. 54, (75), 1872. Type Hesperia omaha Edw.

1. POTANTHUS OMAHA..

Hesperia omaha Edw., Proc. Ent. Soc. Phil. II, 21, 1863.
Hesperia mingo Edw., Proc. Ent. Soe. Phil. vi, 207, 1866.
Potanthus californica Scud., Syst. Rev. 54, (75), 1872.
Scudder, Butt. New Eng. inf, 1861, 1889.
Potanthus dara Dyar (Kollar?), Bull. 5a, U. S. N. M., p. 48, 1902.
The early literature gives the range of this species as West Virginia, Colorado and California. Edwards places the species next to palaemon in his eatalogue (Cat. Diurn. Lep. 48, 1877), and Dyar regards it as the Oriental species, Padraona dara Kollar. It is very difficult to say what it may be from the scanty evidence available.

2. ATRYTONE KUMSKAKA

Hesperia conspicua Scud. (not Edw.), Trans. Chi. Acad. Sci. i, 336, 1869. Atrytone kumskakia Scud., Can. Ent. xix, 45, 1887.

According to the description this is a true Atrytone which Scudder has mistaken for the female of conspicua. Dr. McDunnough tells me that Scudder's figure of the male genitalia resembles those of byssus, but it seems to me that the description itself suggests a dark female of hobomok. The type locality is Denuison, Iowa, but I have never taken anything in western Iowa which might be the species.

3. THANAOS RUTILIUS (nomen nudum)

Nisoniades rutilius Mead, U. S. Geog. Surv. W. 100th Merid. v, 787, 1875.
The reference reads as follows: 'One individual, now in Mr. Scudder's hands for description, was taken June 23, at Turkey Creek Junction.', The specimen was probably placed by Sendder with another species.

Family MEGATHYMIDAE

Barnes and McDunnough, Contributions I, number III, 1912, Revision of the Megathymidae.
Head small, much narrower than the thorax. Palpi rather small, oblique. Antennae moderate; club large, stout and pyriform to more cylindrical with a rudimentary apiculus. Venation much as in the Pamphilinae; vein 3 of the primaries varying in
position between the sexes of several speeies. Larvae borers in stems of plants. Fig. 31.

Barnes and McDumnough's revision of this family is so satisfaetory that I am going into very little detail in treating it. I have worked out the following key to the North Ameriean speeies of Megathymus from the material in the Barnes eolleetion, and

Fig. 31. Megathy. mus streckeri Skin ner. Club of antenna believe that it will suffiee for the determination of most of the material likely to fall into the hands of eolleetors; those who are deeply interested in the family will doubtless obtain the few artieles which are useful to students who make these inseets a hobby. Only one genus is represented in our famna.

Genus MIEGATHYMUS Seudder

Megathymus Seud., Syst. Rev. 62, (83), 1872. Type Eudamus yuccae Boisd. \& Lee.
Charaeters of the family.

Kcy to the specics

1. Under surface with a large white patch contignous to vein 8 of the secondaries, or this spot the largest on the wing; no more than a trace of extra-median pale spots on secondaries......................yuccae 2 Under surface of secondaries with a more or less complete transverse row of pale spots and with larger spot on vein 8 outward............ 3
2. Size large, 55 to 75 mm . Spots of upper surface bright yellow. Under surface of secondaries gray at margins........................... yuccae Size smaller, seldom over 55 mm . Spots pale ycllow. Outer margin of secondaries narrowly or not at all pale..............race coloradensis Size similar to coloradensis. Spots yellowish to white. Secondaries with a broad pale outer border.....................................e narajo
3. Size very large, 65 to 90 mm . Spots of primaries bright yellow. Secondaries without discal spots above and with at most a slender, linear pale margin. Size smaller, not over 70 mm . Secondaries with discal spots, a crenulate marginal band or with pale areas not bright yellow.
4. Under surface of secondaries smooth, powdered with blue-gray scales at outer margin... Under surface of shaggy appearance, washed with gray scales and hairs over entire surface, sometimes most evidently between transverse row of spots and outer margin. 5
5. Upper surface of primaries with a pale basal area contiguous to vein 1 ; spots yellow to yellowish-fulvous, or with a transverse sul-basal row of spots on the under surface of the secondaries.................. 6 This area seldom present, if so powdery and not contiguous to vein 1
and with maculation not bright yellow. No transverse row of spots near base of secondaries below.
6. Expanse 40 to 50 mm . Larger specimeus females with pale spots of primaries broadly confluent and veins concolorons.................polingi Expanse 50 to 70 mm ., smaller specimens males with spots separated by dark veins or by broader dark areas...........aryxna, neumoegeni Expanse 50 mm . or slightly over. Spots small, rounded and whitish. Southern California .race stephensi
7. Spots yellowish white to pale yellow; at least one extra-discal spot on under surface of secondaries and rarely some above..........streckeri Spots deeper yellow; extra-discal spots obsolete, not more than one or two fine points present, or with discal spots above.........race texana Spots greatly reduced, yellowish; extra-discal band on under surface of secondaries evenly curved but irregular. Spot in end of cell of primaries linear, bent, in apical angle
smithii

1. MEGATHYMUS YUCCAE

Eudamus yuccae Boisd. \& Lee., Lep. Am. Sept. pl. 70, 1833.
Riley, 8th Rep. St. Ent. Mo., 169-182, 1876 (Biol.).
Florida, Georgia, South Carolina; April and May.
1a. race COLORADENSIS
M. yuccae, var. coloradensis Riley, Trans. Acad. Sci. St. Louis iII, 567, 1877. Colorado, April.

1b. race NAVAJO
M. yuccae, var. navajo Skinner, Ent. News xxir, 300, 1911.

Skinner, Trans. Am. Ent. Soc. xxxvil, 209, pl. x, 1911.
Texas, New Mexico, Arizona, S. California; April to June.

2. MEGATHYMUS URSUS

Megathymus ursus Poling, Ent. News xinf 97, pl. 4, 1902.
Skinner, Trans. Am. Ent. Soc. xxxvir, 205, 1911.
Pima County, Arizona; August.

3. MEGATHYMUS COFAQUI

Aegiale cofaqui Strecker, Proc. Acad. Nat. Sci. Phil. 148, 1876.
Skinner, Trans. Am. Ent. Soc. xxxvir, 203, 1911.
Georgia, Florida; March.
The male type is a form of streckeri to which Barnes and McDunnough have given the name texana. The female type represents cofaqui. This sex may be distinguished by the slightly emarginate outer margin of the primaries and the resultant sharpness of the apex.

4. MEGATHYMUS STRECKERI

Aegiale streckeri Skinner, Can. Ent. xxvif, 179, 1895.
Skimer, Trans. Am. Ent. Soc. xxxvir, 204, 1911.

Southwestern Colorado, New Mexico, Cherry County, Nebraska (Leussler) ; May and June.
race $T E X A N A$
Mf. streckeri, subsp. texana B. \& McD., Contr. i, no. in, 39, pl. if, f. 9, 1912.
Southern Texas.

5. MEGATHYMUS SMITHI

Megathymus smithi Druce, Biol. Cent.-Am., Het. ir, 320, pl. 69, f. 5, 1896. Skinner, Trans. Am. Ent. Soc. xxxvir, 205, 1911.

I have seen one specimen from Corpus Christi, Texas, in the Barnes Collection.

6. MEGATHYMUS NEUMOEGENI

Megathymus neumoegeni Edw., Papilio if, 27, 1882.
Megathymus aryxna Dyar, Jn. N. Y. Ent. Soc. xiir, 141, 1905 (partim); (fide B. \& McD.).
Skinner, Trans. Am. Ent. Soc. xxxvi, 206, 1911.
Skinner, Trans. Am. Ent. Soc. xxxvir, 207, 1911 (fide B. \& McD.).
Arizona, September.
According to Barmes and McDumnough's revision the females can readily be separated from aryona. They say: "in every instance the of could be separated at once on wing pattern, the yellow band on primaries being much broader and either touching or broadly coalescing with the costal spot at end of cell.'' Of the male they say that neumoegeni is usually a smaller and slighter species, and give the following points of difference:
"(1) in neumoegeni the spots are often small, well separated, irregularly rounded; when forming a more or less coalescent band spot 2 from anal angle is usually almost square and its inner margin is not prominently wedge-shaped as in aryxna.
"(2) The fulvous hairing at base of both wings is much more extended in neumoegeni, covering on the secondaries most of the area between the subterminal spots and the base of wing. The presence or size of yellow spots in the basal area beneath the fulvous hairs we have found of no specific value.
"(3) The underside of secondaries of neumoegeni is usually distinctly paler in color, due to a greater sprinkling of white seales (compare Figs. 2 and 7). The whitish subterminal band is very variable in both species, in both distinctness and extent, and of no value for purposes of separation."

In spite of this great similarity of the two species, the form of the male genitalia verifies their distinctness.

6a. race STEPHENSI
Megathymus neumoegeni Wright (not Edw.), Butt. W. Coast 255, pl. xxxir, f. 483,1905 .

Megathymus neumoegeni subsp. stephensi Skinner, Ent. News xxin, 126, 1912.

Barnes \& McDunnough, Contributions I, (5), 44, 1912.
Southern California, Texas.
7. MEGATHYMUS ARYXNA

Megathymus aryxna Dyar, Jn. N. Y. Ent. Soc. XiII, 141, 1905.
Arizona; July, September and October.
8. MEGATMYMUS POLINGI

Megathymus polingi Skinner, Ent. News xvi, 232, 1905 (9 only, fide B. \& MeD.).
Skimer, Trans. Am. Ent. Soc. xxxvif, 207, 1911.
Arizona, September.

BIBLIOGRAPHY

Part one includes all separate works and articles bearing particularly on the Hesperioidea. Part two contains a list of the periodicals consulted. References occurring in all of the works listed have been verified; others are copied from the best available authorities.

PART I
Abbotr \& Smith, The Natural History of the Rarer Lepidopterous Insects of Georgia, two volumes, London, 1797.
Banks, N. and Caudell, A. N., The Entomological Code, Washington, D.C., 1912.

Barnes, Wm. and McDunnough, J., Rerision of the Megathymidae, Decatur, Ill., 1912.
——Check List of the Lepidoptera of Boreal America, Decatur, Ill., 1917. Contributions to the Natural History of the Lepidoptera of North America, I, 1911-12.
Boisduval, J. A., Icones Historique des Lepidopteres d'Europe, Paris, 1832-43.
——and LeConte, J. L., Histoire Generale et Iconographie des Lepidopteres et des Chenilles de L'Amerique Septentrionale, Paris, 1829-33.
Butler, A. G., Lepidoptera Exotica, London, 1869-74.
——Catalogue of Diurnal Lepidoptera Described by Fabricius in the Collection of the British Museum, London, 1869.
Comstock, J. H. and A. B., Manual for the Study of Iusects, Ithaca, N. Y., 1895.

Cramer, P., Papillons Exotiques des trois parties du Monde, l'Asie, l'Afrique at l'Amerique, Amsterdam, I, 1775 to IV, 1782, and supplement by Stoll, 1787-1796.
Doubleday, E., Westwood, J. O. and Hewitson, W. C., The Genera of Diurnal Lepidoptera, London, I, 1846; II, 1850.
Drury, D., Illustrations of Exotic Entomology, London, three vol., 1770 1775.

Dyar, H. G., A List of the North Ameriean Lepidoptera and Key to the Literature of this order of Insects, Bulletin 52, U. S. N. M., Washington, D.C., 1902.
——A Review of the Hesperiidae of the United States, Jn. N. Y. Ent. Soc. XIII, 111-142, 1905.
Edwards, W. H., Catalogue of the Lepidoptera of America North of Mexico, Trans. Am. Ent. Soc. vi, 1-68, 1877.
Elwes, H. J., and Edwards, James, A Revision of the Oriental Hesperiidae, Trans. Zool. Soc. London xiv, pt. iv, number 1, 1897.

Fabricius, J. C., Systema Entomologiae, Flensburg and Leipzig, 1775.
—— Mantissa Insectorum, Copenhagen, 1787.
—— Entomologia Systematica, Vol. iII, Copenhagen, 1793.
-- Supplementum Entomologiae Systematicae, Copenhagen, 1798.
Felder, C., and Rogenhofer, R., Reise der osterreichischen Fregatte Novara um die Erde, Zoologischer Theil, II, Abth. 2, Vienna, 1864-67.
French, G. H., Butterflies of the Eastern United States, Philadelphia, 1886.
Godman, F. D. and Salvin, O., Biologia Centrali-Americana, Lepidoptera Rhopalocera, Vol. II, 1893-1901, and plates, Vol. III, London.
Harris, T. W., A Treatise on Some Insects Injurious to Vegetation, third edition, Boston, 1862.
Herrich-Schaffer, G. A., Prodromus Systema Lepidopterorum, in Corr.Blatt Regensb.
Hewitson, W. C., Descriptions of New Species of Hesperiidae, London, Part 1, pp. 1-25, 1867 ; part 2, p1. 25-26, 1868.
Holland, W. J., The Butterfly Book, New York, 1898.
Hubner, J., Verzeichmiss bekannter Schmetterlinge, Augsburg, 1816-1820.
—— Sammlung exotischer Schmetterlinge, and Zutrage zur Sammlung, partly by Geyer, Augsburg, 1818-1832.
Kirby, W. F., A Synonymic Catalogue of Diurnal Lepidoptera, London, 1871; Supplement, 1877.
Kirby, Wa., Fama Boreali-Americana, iv, The Insects, London, 1837.
Latreille, P. A., Encyclopedie Methodique, ix, Article on Butterflies, Paris, 1819.

Linnaeus, C., Systema Naturae, tenth edition, Stockholm, 1758.
Lintner, J. A., Entomological Contributions, I, 1872 to IV, 1878, (Annual Report of the New York State Museum of Natural History, Albany).
Lucas, H., in Sagra's Historia física, política y naturel de la isla de Cuba, Vol. vir, Paris, 1856.
Mabille, P., Famille Hesperidae, Genera Insectorum, Vol. xvil, Brussels, 1903-4.
Ménétries, E., Enumeratio corporum animalium musei imperialis Academiae scientiarum Petropolitaniae, St. Petersburg, 1855-1863.
Mead, T. L., Report on the Collection of Diurnal Lepidoptera, etc., U. S. Geographical Surveys West of the 100th Meridian, v, ch. 8, 1875.
Oberthur, C., Etudes d'entomologie and Etudes de Lepidopterologie Comparee, Rennes, I, 1876.
Scudder, S. H., A Systematic Review of American Butterflies, etc., Report of the Peabody Academy of Science for 1872, Ip. $28-83$.

- Historical Sketch of the Generic Names Proposed for Butterflies, Boston, Proceedings of the American Academy of Arts and Sciences, Vol. x, pp. 91-293, 1875.
- The Species of the Lepidopterous Genus Pamphila, Boston, Memoirs of the Boston Society of Natural History, Vol. iI, part III, number iv, 1874.
——The Butterflies of the Eastern United States and Canada, with a special reference to New England, Cambridge, three Vol., 1858-1889.
——and Burgess, E., On Asymmetry in the Appendages of . . . Nisoniades, Proc. Bost. Soc. Nat. Hist. xiri, 282, 306, 1870.
Seirz, A., The Macrolepidoptera of the World, Vol. I, The Palaearctic Butterflies, Stuttgart, 1909. Hesperiidae by P. Mabille.
Skinner, H., A Synonymic Catalogue of the North American Rhopalocera, Philadelphia, 1898, and surplement to end of 1904.
—_The Larger Boreal Ameriean Hesperiidae, Trans. Am. Ent. Soe. xxxvif, 169-809, pl. x, Philadelphia, 1911.
_——. Studies in the Genus Thanaos, Trans. Am. Ent. Soe. XL, 195-221, Philadelphia, 1914.
Spuler, Die Schmetterlinge Europas, four vol., Stuttgart, 1908-10.
Staudinger, O., Exotisehe Tagfalter, etc., Furth, 1888.
Strecker, H., Lepidoptera, Rhopalocera and Heterocera, Indigenous and Exotie, Reading, Pa., 1872-78.
Tutt, J. W., British Butterflies, i, 1905-6.
Watson, E. Y., A Proposed Classification of the Hesperiidae, with a Revision of the Genera, Proceedings of the Zoologieal Society of London, 1893, pp. 3-132, pl. I-III.
Wright, W. G., Butterflies of the West Coast, San Franciseo, 1905.

PART II

American Entomologist and Botanist, New York, 1880.
Annales de la Societe entomologique belge, Brussels, I, 1857.
Annales de la Societe entomologique de France, first series, I, 1832 (now rumning without series number).
Annals and Magazine of Natural History, London, first series, I, 1838.
Bulletin of the Brooklyn Entomologieal Society, I, 1878-VII, 1885.
Bulletin of the Buffalo Society of Natural Seience, 1873.
Canadian Entomologist, I, 1869.
Cistula Entomologiea, London, I, 1869-III, 1885.
Correspondenz-Blatt des zoologisch-mineralogisehen Vereins in Regensburg, Ratisbon, I, 1847.
Eutomologica Americana, Brooklyn, I, 1885-VI, 1890.
Entomological News, Philadelphia, I, 1890.
Entomologisehe Zeitung, herausgegeben von dem entomologisehe Verein zu Stettin, Stettin, I, 1840 .
The Entomologist, London, I, 1839.
Entomologists' Monthly Magazine, London, 186t.
Field and Forest, Washington, D.C., I, 1875-III, 1877-78.
Illiger, Magazin für Insectenkunde, Brunswiek, I, 1801-VI, 1807.
Jahrbücher des Nassauisehen Vereins für Naturkunde, Wiesbaden, 1844.
Journal of the Academy of Natural Seienees of Philadel hhia, I, 1917.
Journal of the New York Entomologieal Society, New York, I, 1893.
Memoirs of the Boston Society of Natural History, Boston, 1866.
Papilio, New York, I, 1881-IV, 1884.

Procecdings of the Academy of Natural Sciences of Philadelphia, 1841.
Proceedings of the California Academy of Sciences, San Francisco, I, 1864.
Proceedings of the Entomological Society of Philadelphia, I, 1861-VI, 1867.
Proceedings of the Essex Institute, Salem, 1848-1870.
Proceedings of the United States National Museum, Washington, D.C., I, 1878.

Proceedings of the Zoological Society of London, London, 1832. Psyche, Cambridge, I, 1874.
Report of the Entomological Society of Ontario, Toronto, 1871.
Report of the Peabody Academy of Sciences, Salem, I, 1868-VI, 1873.
Transactions of the American Entomological Society, Philadelphia, 1867.
Transactions of the Chicago Academy of Sciences, Chicago, I, 1867.

[^0]: ${ }^{1}$ Bull. Buff. Soc. Nat. Hist. I, 195, 1874.
 ${ }^{2}$ Ann. Soc. Ent. Belg. xxi, 12, 1878.
 ${ }^{3}$ Butt. New Eng. Ir, 1372, 18.
 ${ }^{4}$ Desc. Phys. Rep. Arg., Lep. 245, 1878.
 ${ }^{5}$ Stett. ent. Zeit. Xl, 477, 1879.

[^1]: ${ }^{6}$ Proc. Zool. Soc. London, 1893, 3.132, pl. I-III.
 ${ }^{7}$ Genera Insectorum xvii, 1903-4.
 ${ }^{*}$ Journ. N. Y. Ent. Soc. XIII, 111-141, 1905.

[^2]: ${ }^{0}$ Act. Soc. Faun. Flor. Fenn. Xxif.
 ${ }^{10}$ Spuler, Die Schmetterlinge Europas I, 70, 1908.
 ${ }^{11}$ Manual 364, 1895.

[^3]: * Since writing this I have found a quotation from Dr. P. L. Sclater by Col. C. Swinhoe in defense of genera based on secondary sexual characters (Ann. \& Mag. Nat. Hist. (viI), III, 108, 1899).

