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PREFACE

This text is prepared to meet the needs of the student who will

continue his mathematics as far as the calculus, and is written in

the spirit of applied mathematics. This does not imply that algebra

for the engineer is a different subject from algebra for the college

man or for the secondary student who is prepared to take such a

course. In fact, the topics Avhich the engineer must emphasize, such

as numerical com})utations, checks, graphical methods, use of tables,

and the solution of specific problems, are among the most vital fea-

tures of the subject for any student. But important as these topics

are, they do not comprise the substance of algebra, which enables

it to serve as part of the foundation for future work. Rather they
furnish an atmosphere in which that foundation may be well and

intelligently laid.

The concise review contained in the first chapter covers the topics

which have direct bearing on the work which follows. 'No attempt
is made to repeat all of the definitions of elementary algebra. It is

assumed that the student retains a certain residue from his earlier

study of the subject.

The quadratic equation is treated with unusual care and thorough-

ness. This is done not only for the purpose of review, but because

a mastery of the theory of this equation is absolutely necessary for

effective work in analytical geometry and calculus. Furthermore,

a student who is well grounded in this particular is in a position

to appreciate the methods and results of the theory of the general

equation with a minimum of eii'ort.

The theory of equations forms the keystone of most courses in

higher algebra. The chapter on this subject is developed gradually,

and yet with pointed directness, in the hope that the processes

which students often perform in a perfunctory manner will take on

additional life and interest.

Throughout the text the attempt is made to anticipate the diffi-

culties of the student, and by the use of illustrative material to make

the book readable, incidentally reducing the labor of exposition ou

iii
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the part of the instructor. In this connection §§ 18, 19, 69, and 89

may be consulted as furnishing instances of the method of procedure.

The exercises are for the most part new, and serve not only to

illustrate the text but to test and develop the power of the student

at every turn.

The author is under obligation to Professors G. B. Pegram and

C. H. Burnside for exercises from their special fields of science.

Especial acknowledgment should be made to my colleague, Dr. H. W.

Reddick, who has prepared a large part of the collection of exercises,

and whose criticisms, both destructive and constructive, have been

invaluable throughout the preparation of the book.

Columbia University HERBERT E. HAWKES
New York City
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CHAPTER I

INTRODUCTORY REVIEW

1. Factoring. The process of factoring consists in iinding two or

more expressions whose product is ecpial to a given expression.

In the type forms which are considered in this section it is

assumed that all of the coefficients are integers. Unless the con-

trary is stated, only factors having integral coefficients are required.

A prime expression has no factors with integral coefficients, except
itself and 1.

Later in this text it will be necessary to find factors whose coefficients are

not integral, but irrational, or even complex numbers. In every case of this

Kind the nature of the jiroblem in hand will indicate the type of factors

desired.

The following suggestions will prove helpful in factoring :

I. Firat look for a monomial factor common to every tmii of the

(jiven expression. If one exists, separate the expression into its yreatest

monomial factor and the corresponding iJolynomial factor.

II. Tlien determine., from the form of the polynomial factor, tcith

which of the folloiviny types it should he classed, and use the method

offactoring applicable to that type.

III. Proceed again as in II ivith each polynomial factor obtained,

until the original expression has been separated into its prime factors.

TYPE FORMS

1. ax -\- ay -\- bx -\- by =: {a -\- b){x -{. y).

2. d^-\-ZabJrb^ = {a+ b){a -\- b).

3. x'Jrbx+c = {x + p){x+q),

where y> and q are two numbers whose sum is b and whose product is c.
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4 . axF' -\-bx^c.

To factor expressions of this type, find two numbers whose alge-

braic sum is b and whose product is a-c. Replace hx by two terms

in X whose respective coefficients are the numbers just found, and

factor by grouping terms.

Thus 6x2-13ic- 5 = 6x2-15x4- 2x- 5

= 3x(2x- 5) + (2x-5) = (3x + l)(2x-5).

5. d'-h'={a+h){a- h).

6. a^-\-ka''b'-\.b''.

This type can sometimes be reduced to type 5 by adding and

subtracting a multiple of a%^.

'

la" - &" = (a- feXa"-! + a"-2&+ a"-3&2 _^ . . . + &"-i),

when n is odd. If n is even, a" — Z»" is the difference of two squares

(type 5). In all other cases, if w is a multiple of 3, apply one of the

special types a^^h^ = {a+ b) (a^
_ aft + b%

a^-b^ = {a- b) (a^ + ab-\- b^).

8. a2 + &2 _,_ ^ _,_ 2 o& + 2 ac + 2 6c = (a + & + c)2.

EXERCISES
Factor :

1. x''-l-x + 2lx-2 kl. 9. a^ - h\

2. ^2 _ 2
_^ 2 y — 1 Solution : a" - IP - (a^)^

- {b^
= (a3

-
JP) (a6 + a%^ + If)

3. r^ — lOr — 24. = (a_?,)(a2 + cr6 + 62)(a6 + a363 + 66)

4. 338 2:2-52a-,- + 2«2_ ^j^ <>^- -\- 1^-\

5. («
-

1) (2 cc - 3)
- 6. 11. .ri« - yi^

6. X - a;^ 12. rrb^ - icV' + "Y - ^'«'-

7. 32-2 z\ 13. //^ - .T^ + 4 « (a
-

Z-).

8. «" + //. 14. x'-ia-+ 9f-b'-6xij-4:aL

15. 2
(a'^
-

1) + 7 (a^
-

1).

16. abx' + «%' - (f^' + b'^)x>/.

17. «- + 9 Z-^ + 25 c^ - G ob - 10 fre + 30 be.
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18.
(,s.2

_
4)'^

_
(.s- + 2)1 22. 51a-- + 113xy-14//.

19. x^-lx^ + Ux-i^. 23. 8 x-y - 6o xhf:: + 8 ifz".

20. a-« - 7 u'V + if. 24. 2 ./•'-
- 128.

21. a;8 - 4 .//^ + 8. 25. (x
-

l)(x
-

2){x
-

3)(x
-

4)
- 24.

2. Simplification of fractions. To simplify an expression contain-

ing fractions, it must be reduced to a simple fraction in which the

numerator and the denominator have no common factor. In reducing

fi-actions to their simplest forms, one merely performs the indicated

operations as directly as possible.

As a general rule, fractions with related denominators should be

combined and the result reduced to its lowest terms before the

whole expression is written as a single fraction. It is very desirable

to be on the alert for opportunities to cancel factors from numerator

and denominator of a given fraction. For this purpose the processes

of factoring should be at ready command.

Simplify :

EXERCISES

i.l^i±l. 5.1 +—L_
1 + i + I'S

J ^
1

J. jV^iilVs.. 1 +1^
3

3(3.4-1.0) . (1..3y^
-

(1.2)'' g ^
1

^'
.027

•

.1

1+
o

1
1

4.1-33^-
1 + 1

'
a^ _ ^2

^
2 (a + b)

^
b -a '

a — b ((- 4- Ir a .2b
8. TT-. -TT - 7-0 -„ 7 +

2{a + b) V-a? a-h a-\-h

9. 3 ? 10.
4 x' - 1

5 H : a--
—

(5 1

7 + -
.'• +

X X -\-\
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X — 1 X X x"

2 ,11 11 a- -4
12. ^^;—77^ r^ +

5 o;-^
- 10 a; + 5 25 a; - 25 25 cc' + 100

2 ra
(??i.
—

n) aVj — r//>^

7??.
— n — ^ a — b ;

-—-

13.
" + ''

. 14.
^" + '^>

171^ -\- iv' a -\- h €? -\- IP'

mn -{-TV' a — b a} — IP

3. Roots and radicals. In applied mathematics the square roots

or the cube roots of numbers are usually found from tables of square
roots or cube roots, like those on page 215, or by use of the slide

rule. In problems where great accuracy is desired, more extensive

tables may be used, the roots may be found by the use of logaritlims,

or, as a last resort, the root may actually be extracted by the rule

found in the more elementary books on algel^ra. This rule finds its

chief usefulness, however, in the extraction of roots of algebraic

expressions.

The relation between the radical and the exponential notation is

exjDressed by the formula

where a and b are assumed to be integers, and h is not zero.

The only exception to this assumption found in the present text appears in

the chapter on logarithms, where irrational exponents are used.

In a fractional exponent the numerator indicates the power to

which the number is to be raised, while the denominator gives the

index of the root which is to be extracted.

4. Fundamental laws of exponents. The laAvs of exponents may
be stated as follows :

I. Law of Multiplication,

II. Law of Division, x° ^ x^^= x^-^.

III. Law of Involution, or raising to a power,

{x^y = (^x^y
= x"^.

In these three laws the lettei's a and h may have any real value. But the

only occasion which we shall have in this book to consider any exponents more

complicated than rational fractions will arise in the chapter on logarithms.
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An important special case arises under Law IT when a = h.

We then liave
1 = 0;"-=- s-" = a'"-" = x^

which defines the iiicaiiiiii,^ of a zero exponent. Expressed in words,

this means that any iiuinhcr raised to the zero power equals unity.

When a = 0, Law II detines the meaning of a negative exponent ;

namely, -^
= a-"

* and gives rise to the following rule for getting rid

of negative exponents in any algebraic expression.

Ani/ factor of tlie numerator of a fraction may he taken frovi the

numerator and written as a factor of the denominator, and vice versa,

if the sign of the exponent of the factor be changed.

„ , 1 1 2x-2 2x-2 2-10* 2-8 IG
Thus 2-8 = — =-; — = = = = --5-

23 8' </l6-8 jg-f X2 X2 x^

It is necessary to observe carefully whether the expression affected

by a negative exponent is a factor of the numerator or denominator

before transferring it.

^, a-'^+b a I + ah
, ., a-'^b b

Thus — = =—
,
while =—

c c ac c ae

In this text the symbolV« will be used with the single meaning

+ V«, not — V^. If both values of the square root of a number are

intended, both the jjIus and the minus sign will be written.

5. Rationalization. If tlic ])vo(lu('t of two irrational expressions

is rational, each is called a rationalizing factor of the other.

Thus \^2niultiplio(l by V2i,nvc.stlie ration;il pn)(hict2._IIence they are ration-

alizinj;- factors of each other. The numbers — \ 2 and V8 are also rationalizing

factors of V2. Similarly, a + Vb is a rationalizing factor of a — V6.

The })ro('ess of rationalizing the denominator of a fraction con-

sists in multiplying both terms of the fraction by a rationalizing

factor of the denominator, so that in the simplified result the new

denominator will be rational.

For purposes of computation it is convenient to rationalize the

denominator of a fraction, since we are then able to compute the

approximate value of the fraction much more rapidly.

The numerators of fractions are also often rationalized. In this

process we multiply both tei-ms of the fraction by a rationalizing

factor of the numerator.
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EXERCISES

1. Is V2+V3=V5? IsV2V3=V6?

2. Is Va- + 1? = a + ^» ? Is Vic + ?/
= Vx -|- Vy?

3. Is V^2 + « = « Vl + (t ? Is V*"^ + «a;- = X Vl + a ?

4. Is ^-'^ + 7/-^
= ^^,? Isa-2.^-^ = -^?

a;^ + 3/^^ ic'^y

Simplify the following :

5. V50-V32+V98. ^ -2+ vT2
,

3-Vl62
8.

;^
1

^
6. 4/l6+V8-V^.

"^

/;

Q
« — -i" + V («

—
cc)'' + 4 ax

7. 4V-y--V5+V20. 2

> c > a > ac N ac

11. V3-v'2+^^-VT.-V6.

2 a 2 a

13. Show that ^ (5 ± Vl09) satisfies the equation 3 x-"^— 5 a- — 7= 0,

if it be substituted for x.

14. Compute the value of a?^ — Sa-^ + .r + 1, if a; = 1 — V2.

V2
15. Show that a; = — 1 ± -— satisfies the equation

2x^-lx-2 = 0.

16. Show that each of the four numbers ±"^3 ±V2, when sub-

stituted for X, will satisfy the equation

a;*-10a:2 + l = 0.

17. Compute the value of

9a;(3a;-2)4-2,

18. Show that x^ + 13 x- - 112 a; -f- 98 = 0,

if a; = -7(l+V3).
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Simplify tlu; lollowing and express the result with positive

exj)oneiits :

-\4
19. (a;-2\/a;«V4)

20. {^r^2^^)-\
-i

21. {x'-'yJx^^') .

22. («/>-V)-(a«^;V2)*.

23.

24.

a--U^ a-%~'

(a a-\^ .

Change into an equivalent fraction with rational denominator:

25.

26

2 a

— h — -vU^ — 4:ac
27.

28.

- ^n' - 1

'a + Va"^ - 1

a; + Va;-^ — if ,

'

'y/x + Vy + Va; + y

Change into an equivalent fraction with rational numerator :

V.r + ?/ + Va* — y
29.

_/,_(_ VZ»"^ - 4 «c
30.

2a Va; -\- y — Va; — y

31.
a, 4- 2 - V.r'-^ - 4

a; + 2 + Vaj-^ — 4

Find to three decimal places the value of :

32.

33.

34.

35.

36.

37.

Vl- V5
V7 + Vs

15 + 7 V3
9 + 5V3

3 3

3 _ 2 V3 3 + 2 V3

38.

|iV3-
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6. The Binomial Theorem. The formula for the expansion of any

positive integral power of the binomial expression a + ^ is as follows ;

(« + hy = o" + ^ a»-Vy +
'^

^^\

~
"''^ a" -2^/2

J- X • Ji

From this expansion the following rule for writing down the suc-

cessive terms of a particular expansion may be deduced.

The first term is a" and the last is b".

The second term is na"~^b.

The exponents of a decrease h[/ 1 in each term after the first.

The exponents of b Increase by 1 in each term after the second.

The product of the coefftclent of any term and the exponent of a

in that term., divided by the exponent of b increased by 1, glees the

coefficient of the next term.

The sign of each term of the exjjansion is -\- if a and b are positive ;

the signs of the even-numbered terms are — if b only is negative.

Tlie number of tervis in the expansloyi is n -\~ 1.

This formula can be established in elementary algebra only when n

is a positive integer. But the same form of expansion, except for the

last term, is valid when the exponent is fractional or negative, pro-

vided b is numerically less than a. This condition is necessar^^ in

order that the resulting series, which has an infinite number of terms,

may have a meaning. With the restriction noted, we shall assume

the validity of expansion (1) for any rational value of n without

attempting to give a proof. A rigorous demonstration demands a

knowledge of the calculus.

EXERCISES

Expand Exercises 1-3 completely ;
4-8 to five terms :

1. {2x + y)\ 4. (H-.r)-2, |j.|<l.
6.

Note. By |x| is meant the nu- a;
^

-|- 3

(l X "v^)^' inerical value of x regarding the

sign as positive. Thus| — 2|= + 2. y (!li^)
Ix I

is called the absolute value of x. \x I

(m; 2

„-S+-). 8.(1--
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9. Obtain the expansion (1
—

§)-
=

-^\
—

5'^
—

-jiji^g
— •• •.

10. Show also that (1
- if = i|.5 Vl5.

11. Show from each of the above results that an approximate

value of (1
-

i)^ is .1^79.

7. Ratio and proportion. Tlie ratio of one number to a second

numl)er is the fraction found by dividing the first number by the

secHud.

The ratio of d to h is denoted l)y a : b or by -.
b

The dividend in this im])lio<l division is called the antecedent ; the

divisor is called the consequent.

Four numbers, n, h, c, d, arc; in proportion when the ratio of the

first pair equals the ratio of the second pair.

Cl c
This is denoted by a : 6 = c : d or by — = - .

6 d

The letters a and d are called the extremes, h and c the means, of the

proportion.

If (I, h, c, d are in proportion, that is, if

a:h = c: d, (I)

then ad = he, (II)

h:a = d: r, (III)

a:c = h:d,
'

(IV)

a-\-h:h = r + </ : d, (V)

a-/>:/, = r-d: d, (VI)

a +I>: a - b = r + d : c - d. (VII)

Equation (HI) is said to be derived irijm [}) \)\ inversion.

Equation (IV) is said to be derived from (I) by alternation.

Equation (V) is said to be derived from (I) by addition.

Equation (VI) is said to be derived from (I) by subtraction.

Equation (VII) is said to be derived from (I) by addition and

subtraction.

8. Variation. The numl)er ./• is said to vary directly as the num-

ber
//
when the ratio of x to y is constant. This we symbolize by

xaiy, or -=/t,

where /.• is a constant.
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The number x is said to vary inversely as the number y when x

varies directly as the reciprocal of y. Thus x varies inversely as y
when 1 X

X cc-i or - = xy = k,
y 1

y
where k as a constant.

The intensity of a light varies inversely as the square of the

distance of the light from the point of observation. If I represents

the intensity of the light and d its distance from the point of obser-

vation, we have -. ,

Icc—z, or — = W^ = k,
cr 1

where A; is a constant.

The number x is said to vary jointly as y and z when it varies

directly as the product of y and z. Thus x, varies jointly as y and z

when X
X Qc yz. or — = k,

'

yz
'

where A; is a constant.

EXERCISES

1. Prove that ii a : b — c : d = e :f, then

ka + Ic — 7716 a

kh + Id — mf 1)

'

2. Prove that if « : ^ = c :
r/,

then

(l±jr^^c^^r_d^
ah cd

3. The surfaces of similar solids have the same ratio as the squares
of their corresponding dimensions, and their volumes have the same

ratio as the cubes of their corresponding dimensions. What is the

ratio of the surfaces of two cubes if the volume of one is twice that

of the other ? What is the ratio of the volumes of two spheres if the

surface of one is twice that of the other ?

4. \i X ccy, and a; = 6 when y = 10, find
// Avhen x — 15.

5. If a; cc -> and cc = 4 when y = 100, find x when y = 10.

6. If a; oc yz, and x = S when y = i and z = 5, find x when y = 20

and z = 2.
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7. A iiuin () IVct tall is walking diri-ctly away from a lamp-post

10 feet high. Find the ratio of the k^ngth of his shadow on the

ground, to the distance of the further end of his sliadow from the

lamp-post. How long is the man's shadow when he is 20 feet from

the lamp-post '!

8. The safe load of a horizontal beam supported at both ends va^

ries jointly as the breadth and the square of the depth, and inversely

as the length between supports. If a 3 by 9 ineli beam 15 feet long,

standing on edge, safely supports a weight of 1800 ])Ounds, find the

safe load of a 2^ by 6 inch beam of the same material 8 feet long.

9. The weight of a liody above the surface of the earth varies

inversely as the S(]^uare of its distance from the center of the earth,

and its weight below the surface varies directly as its distance from

the center. A body weighs 100 pounds at the surface of the earth.

What would it weigh 1000 miles above the surface ? 1000 miles

below the surface ? (Radius of the earth = 4000 miles.)

10. A disk 1 foot in diameter held 1.2 feet from the eye just

obscures a ball whose center is 13 feet from the eye. If the ball is

moved away so that the distance of its center from the eye is 25 feet,

how far from the eye must the disk be held so that the ball is

just obscui-ed ?

11. If a-"^ : 2 = 1 :
.z'^,

what is the value of x ?

12. A and J> are G and 16 years old respectively. In how many

years will the ratio of their ages be 2:3?

13. The time required by a pendulum to make one vibration varies

as the square root of its length. If a pendulmu 100 centimeters

long vibrates once in 1 second, find the time of one vibration of a

pendulum 81 centimeters long. What is the length of a pendulum
which vibrates once in 2 seconds ?

14. The volume of a cylinder varies jointly as its altitude and

the square of its diameter. The diameter of two cylinders are in the

ratio 3 : 2, and the volume of the second is two fifths that of the

first. Find the ratio of their altitudes.

15. Kepler's third law of planetary motion states that the square,

of a planet's time of revolution varies as the cube of its mean distance

from the sun. The mean distances of the earth and ISIercury from

fhe sun are 93 and 36 millions of miles respectively. Find the time,

of Mercury's revolution.
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16. The electric resistance of a wire varies directly as its length

and inversely as the square of its diameter. Its weight varies jointly

as its length and the square of its diameter. What must be the length

and diameter of a wire which is to have double the resistance but

only two fifths the weight of a wire of the same material 100 feet

long and .02 inch in diameter ?

9. Arithmetical progression. An arithmetical progression is a

succession of terms in which each term after the first, minus the

preceding one, gives the same number.

This number is called the common difference and may be positive

or negative.

The formulas for the nth. term, t„, and for the sum of n terms, S„,

respectively, are as follows :

t„=a + in-l)d,

where a is the first term, n the number of terms, and d the common
difference.

10. Geometrical progression. A geometrical progression is a succes-

sion of terms in which each term after the first, divided by the pre-

ceding one, always gives the same number. This constant quotient

is called the ratio.

The formulas for the nth. term, #„, and for the sum of the first n

terms, S„, respectively, are as follows :

t„
= ar''-\

a— ar"
'nS„= ,

1-r

where a is the first term, n the number of terms, and r the ratio.

When r is numerically less than 1, the successive terms of a geo-

metrical series become numerically less and less, and the sum of n

terms approaches a fixed number as a limit as n increases indefinitely.

This limit is called the sum of the infinite geometrical series, and is

given by the formula q
S» = •

1-r

This formula must never be used when r is greater than unity, for

in that case the corresponding series does not approach a limit.
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EXERCISES

1. Find the 10th term and the sum of the first 10 terms of the

progression 1, ^, 2, §,•••.

2. Find the (n
—

2)d term and the sum of the first n — 1 terms

of the progression a, a -{- d, a + 2d, •.

3. Find the 8th term and the sum of the first 8 terms of the

progression 2, 3, |,
• • •

.

4. Find the sum of the infinite series 3 — 1 -}- J
— • • •.

5. (a) Find the sum of the infinite series

(b) Find the sum of the series 1 + i + | + | + • • •
.

6. A body starting from rest falls 16 feet the first second, 48 the

next, 80 the next, and so on. How far does it fall during the 10th

second ? How far has it fallen at the end of the 10th second ?

7. Using the information given in the preceding exercise, deduce

a general formula for the distance that a body will fall in t seconds.

8. A man standing on a cliff wishes to determine his height above

its foot. He droi)s a stone and notices that it strikes the ground in

4 seconds. How high is the cliff ?

9. The first term of a geometrical progression is 225 and the

fourth term is 14§. Find the series and sum it to infinity.

10. Twelve potatoes are placed in line at distances 6, 12, 18,
•••

feet from a basket. A boy, starting from the basket, picks up the

potatoes and carries them back one at a time to the basket. How
far must he run to complete the potato race ?

11. How far must a boy run in a potato race if there are n potatoes

at a distance d feet apart, the first being at a distance a feet from

the basket ?

12 . A chain letter is written, each person receiving the letter rewrit-

ing it and sending it to two others. If the first person sends out

two letters, how many letters will have been written after all the

tenth letters of the chain have been sent ?

13. A chain letter is written, each person in the chain sending out

a letters. How many letters will have been written after all the

nth letters of the chain have been sent ?
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11. Linear equations in one variable. The following definitions

may be found useful for reference.

An equation is a statement of equality between two equal numbers

or number symbols.

Equations are of two kinds— identities and equations of condition.

An arithmetical or an algebraic identity is an equation in which,

if the indicated operations are performed, the two members become

precisely alike, term for term.

For example,

(a
_

6)2
= a2 - 2 a6 + &2, a • - - 6 = 0, and 2'^ - 3 • 2^ - 4 • 2 + 12 = 0,

are identities.

A literal identity is true for any value of the letters involved.

An equation which is true only for certain values of the letter or

letters involved is an equation of condition, or simply an equation.

For example, x — 2 = 0, (x
—

1) (x + 3)
= 0, and x"—l=y- are equations oi

condition.

A number or number symbol which being substituted for the

unknown letter in an equation changes the equation to an identity

is said to satisfy the equation.

After the substitution is made it is usually necessary to simplify the result

before the identity becomes apparent.

A root of an equation is any number or number symbol which

satisfies the equation.

We assume the following

Axiom. If equals he added to, siihtracted from, multiplied hy,

or divided hy equals, the i^esidts are equal.

As always, we exclude division by zero. In dividing each member of an

equation by an algebraic expression one must note for what values of the

letters the divisor vanishes and exclude these values from the discussion.

An equation is solved when its roots have been found. The

process of solution is the application of the foregoing axiom to the

equation in such a manner as to obtain the unknown alone in one

member of the equation.

Suppose the equation 4a:; — 7 = 17 is given, and the numerical

value of X is wanted. The validity of the equation is not affected

if 7 is added to each member
;

that is, if we write 4 cc = 24, x

remains the same number as in the original equation. The same
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may be said if we divide each side of the new equation by 4 and

obtain x — G. It is of tlie greatest importance to understand that

when we perform the operations mentioned in the axiom, we are

not getting anything new, but are expressing in a more available

form some symbol whose precise value did not appear clearly from

the original ('(nuitinii. In the illustration just used x is no more

truly equal to (5 after our process of solution than it was before; it

must be ecjual to 6 if this particular statement is an equation. We
have merely rewritten the equation 4x — 7 = 17 so that x appears

alone in one member. From this point of view the fact that the

number which one obtains as a result of solving an equation satisfies

the equation should not be surprising. If the work has been cor-

rectly done, it is impossible that it should be otherwise, for the

unknown is the same number at the end of the solution that it was

at the beginning.

We may say, then, that the root of an equation is obtained by

modifying the form of tlie original equation so as to display the

value of the letter, which for the time being is unknown, in terms

of what is numerically known. It cannot be too strongly insisted

that the solution of an equation consists in finding its roots, and

that the only property of a root of an equation which distinguishes

it from other numbers is that it satisfies its equation. If in the

hypothesis of a theorem a number is given as the root of a cer-

tain equation, we know that if the number be substituted for the

unknown, the resulting equation is an identity.

When we change an equation from one form to anotlicr in the

process of solving, it is assumed that x can have no value which

would reduce to zero the denominator of any fraction appearing in

the process.

EXAMPLES

1. Solve the equation

Solution. Here we assume that x cannot ocjual 0, fur tliis would cause the

denominators of two fractions to become 0.

Multiplying, we have
2x IOj 3j- 12j
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Since x is not 0, we can divide it out of both the numerator and denominator oi

the second fraction and the fourth fraction. This gives

2x 10 3x- +-+- + 3=0.

8x +
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EXERCISES

Solve the following equations and in each ease verify the fact

that the result satisfies the equation :

1.
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3 4^_5 5 Ta--3
20.

4 3 .r — 7 7 5 a'

21. 6(0.-6) = -^—^(2 .•-11).

22. al> — (x
—

c)d = c (d + a")-

23. 7)1 {a -\-h
—

x)
= n{a -\- h —

x).

24. {a-\-c
-

x) {a -\- h) -\- {a
- c + x) {a

-
h)
= 2 «l

25. (ft
-

^») (a
—

c) {a -\- x) + {a + ?y) {a + c) (a
-

x)
= 0.

ax
,

^^
I

2 ah __ (^/ 4- /;)-./•

Zb. ~7 I i

;

7
^

o a a -\- o ub

a — X b — X c — X ^
27. h^ 1

= 3.
•

a b c

28. UKiaa^ + 2)+2)4-2) + 2]=l.

29- ^[ia(K4^-i)-i)-i)-i]=i-
2 ;c - a 2 2 t .r + 2

30.
- -

31.

32.

33.

f-^
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12. Linear equations in two variables. In the hist section it

was seen that any linear equation in one unknown may be solved
;

that is, its root may be found. The equation <ix + /> = 0, which is

the most general form for the linear equation in one variable, has

one and only one root, namely r = ? for this is the only number

which, when substituted for the unknown in such an ecj^uution, will

satisfy it.

If we consider a linear equation in two unknowns, as, for example,
2cc — 3y=(), it appears that tor any particular value of y the

equation becomes a linear equation in the single unknown x, and

therefore has one root. Hence this equation has not only a single

pair of values which satisfies it, but countless pairs.

For instance, if we let y = 1, the equation becomes 2 x — 3 = 0, which has

the root %. \i y = \, x has tlie value 9.

If we have two linear equations, each in two unknowns, each is

satisfied by countless pairs of nmnbers. The process of solving the

system of two eqiiations determines whether there is any pair of

values of the unknowns which satisfies both equations simultane-

ously. For this reason the two equations may be called a simultane-

ous system of equations. Usually such a system has one and only

one pair of common roots. Sometimes rio such values exist. In the

latter case the equations are called incompatible. If two equations

become identical when each member of one of them is multiplied

by some constant, they are called dependent equations. As a general

thing pairs of equations are independent and compatible.

EXAMPLES

1. Solve ^^"^^
= ^' ^^)r3a; +

\2x- 5y = 9. (2)

Solution. Multiplying (1) by 5 and adding (2),

15x + 5j/ = 25

2 X - 5 .V
= 9

17x =34

x= 2.

Substituting in (1), + //
=

5,

y=-l.

Check. Substitute in (1) and (2), 6-1 = 5, 4 + 5
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2. Solve
'ax -\- hij

=
(«"
—

V^') c,

J)X — ay = 2 ahc.

Solution. Multiplying (1) by a, (2) by 6, and adding,

a^x + aby = (a^
—

h^) ac

fe^x — aby = 2 ah'^c

(1)

(2)

(a2 + 62) a; = {a2 + ^2) wo

X = ac.

Substituting in (2), ajbc — ay = 2 af)^

— ay = abc,

y =—bc.

Check. Substituting the values found for x and y in (1) and (2), we obtain

a^c - b'^c = (a2
-

62) c,

abc + abc — 2 abc.

EXERCISES

Solve the following systems of equations and check the results

2.

3.

4.x-\-2y = 0,

3x — y = 15.

Sx-3y + 16 = 0,

5 y + 6 X = 17.

11.3;r +.125?/ = 1255,

10.3 x-y = 30.

7ic-10y=.l,
lla;-16y = .l.

23 a; + 15 y = 4i,

48 a; + 45^ = 18.

11.
(^^ + 1)

12. {x
-

2)

13. {x
-

5)

7
*

2i.^ = 3^y + 4,

2iz/ = 3i 0^-47.

-Ky + i)
=

i,

8.

10.

K-^ + i) + f(y-i)=9-

3.5a; + 2^y= 13 + 4i £c -3.5?/,

21 a; + .8
2/
= 22^ + .7 a- - 3^ ?/.

ic : ?/
= 3 : 4,

(a.-l):(y+2) = l:2.

(a, + 4):0/ + l)=2:l,

14.

15.

(.r + 2):(y-l) = 3:l.

(y + l):(a. + 7/)=3:4:5.

(.7. + l):(.T+y-3)=3:4:5.

(y + 9):(x + 2/ + 4)
= l:2:3.

(,r + 7/-4):(2a; + y + l)=l:2,

(2.,.+y_9):(a; + 2y + 7)=3:4.

;r + 1 _ ?/+ 2 _ 2 (.r
—

//)

~3 4~" 5
''

3(x-3)-4(y-3) = 12(2y-a.).
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3.7- + 2// 5x--h3//

16
^^"^^3— = ^ + ^'

'

2a- + 3// ,
4./-4-3// .

15 4 . ._ .3 „=
4, 17 X =

S,
•^ V .^ '/

^^-
3 8

^^'
4- + - = 3. inx--=^-.

X y y
Hint. Retain fractions. l.G 2.7

H + 1=0,

18.
X 10 ^„ a;

2/

6"^ V
^ + - =

2|.

^ , ax + hy = c.

21.
-^

Tinx = ny.

ax + by = (ir -b-)e,
^"^ •

(a i-b)x+ (a -h)y = (a' + b^ c.

(a^
_

J^ (X + y)
= cr + ^-'^

''•'•

(^2
_

V') (2 a; + 3 y)
= 2 «- + .'A + U".

(x-+ r):(y+ /.)
=

(.,+/.):(o + r).

a-:y = (a«-i«):(a»-+^.»).
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32. Show that the following equations are dependent and lind

two pairs of values of x and y that satisfy them ;

2.125 x + 81 =.25?/,

a; + y + 4 = 1^2^ 2/.

33. Show that the following equations are incompatible :

13ic = 8 -39?/,

6y/ = 19-2x.

How many pairs of values of x and y satisfy both equations ?

34. Show that the following equations are incompatible :

2.2x + ^y=2,
5(3:c + 4y-3) = 4./- +3y.



CHAPTER II

FUNCTIONS AND THEIR GRAPHS

13. Uniform motion. Suppose a man who is taking a long walk

finds that at the end of one hour lir has covered three miles, and

that at the end of each successive hour he has advanced three

additional miles on his way. We might represent the relation be-

tween the distance which he goes and the time it takes him to do it,

by means of a graph as follows : Mark oif on a horizontal line equal

segments, each one of which represents an hour.'

On a line at right angles to this first line mark

off equal segments, each one of which represents

a mile, the point which represents zero hours and

zero miles being at the intersection of tlie two

lines. These lines we call the time axis and the

distance axis respectively. To represent the fact

that the man has walked three miles during the

first hour, we make a dot just over the one-hour

point, and three distance units above it. If he

had gone only two miles in this first hour, we

would have made the dot only two units above

the time axis. Similarly, at the two-hour point

we make a dot six distance units above the time

axis, and so on for the succeeding hours. If the rate of walking was

the same during the entire time, at the end of the first half hour he

would have covered one and one-half miles, which coidd be repre-

sented by a dot over the mid-point of the first hour segment, one

and one-half distance units from the time axis. We could insert in

a similar manner as many other i)oints as we might desire. It is

evident that all of these dots lie on a straight line.

Now the relation between the distances of any point on this line

from tlie two axes represents the iclalion between the distance which

the man walks and the time it re<[uires. If we wish to determine

how far lie luid gone at the end, say, of one and a half hours, we

23
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have only to observe how many units of distance above the time axis

the line is at the point midway between the one- and the two-hour

points. In fact, the figure represents graphically the law which tells us

how far the man will have walked at the end of any number of hours.

The graph is not the only means we have of representing this law.

We may use an equation for the same purpose. If we represent by s

the number of miles he walks in t hours, the relation which we

expressed by a graph above we may represent by the equation s = St.

By means of this equation we can find out how far the man has

walked in any number of hours, say, two and a half, by replacing the

letter t in the equation by this number, and computing the value of s.

At first sight it might appear that the graphical method of repre-

senting the foregoing problem is less satisfactory than the other

method, on account of the unavoidable inaccuracy in drawing the

lines of the figure. For instance, it would be impossible to tell from

the figure the distance covered in a certain time, correct to a foot, or

even to a rod. It is to be observed, however, that it is equally im-

possible to measure the rate of walking with perfect accuracy, and

although we say that the rate is three miles an hour, this is only

approximate. It is a principle of great importance in applied mathe-

matics that one cannot obtain by the use of formulas results which

are more accurate than the data from which the formulas are derived.

Consequently, in dealing with problems like the one just considered,

if the drawing is carefully done, results as accurate as the original

measurement of the man's rate of walking can be obtained from the

graph.

It is often convenient to use a different scale of measurement

on the two axes, but this affects at most the shape of the graph

obtained, and not the nature of the numerical relation which is

represented.

14. The notion of function. The word quantity denotes anything
which may be measured. Distance, weight, time, volume, surface,

pressure, force, are all quantities, since each is measurable in terms

of a suitable unit. When two quantities are so related to each other

that when the first is given the second is determined, the second is

said to be a function of the first.

It is unnecessary that there should be any causal relation between the

(}uantities ;
the mere correspondence of values is sufficient to establish the

functional relation. For example, the temperature on a given day depends
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physically on the atmospheric conditions, the angle at which the rays of the

sun strike the eaitli, and various other conditions. It does not depend causally
on the time of day. Hut ncvertheles-s, since to each time of day there cor-

responds a certain temperature, we may properly say that the temperature is

a function of the time. In § 13 the distance which the man walks is a function

of the time it takes him to do it. In applied mathematics, wherever there is

motion or change or growth a functional relation exists.

It is a matter of importance to devise simple means of representing
these functions, so that tliey may be studied and further relations

discovered. The function mentioned in the last section was repre-

sented by two means—by a graph and by an equation. Each method

was effective in displaying the fact and nature of the relation be-

tween the distance and the time, but they did it in quite different

ways. The present text will concern itself with the study of these

two methods of representing functions.

In what follows, the equation or the graph will often be studied entirely

apart from any physical meaniui,^ which the letters or the lines may have. But
it slKJuld never be forgotten that x and y in any eijuation may be the measures
of physical quantities which it is desirable to determine.

An algebraic expression involving the letter a^ is a function of x

because, corresponding to the various values of x, one or more values

of the expression can be determined.

/ 2x + 3 x^
Thus 2x2-1-1, Vx — 2x*, and — are each functions of x.

X -f- 1

Expressions involving two or more letters are called functions

of those letters. By means of equations involving such algebraic

expressions, numerical relations between the letters are defined.

Thus the equation x = 2 if tells us that x and y are so related

that x always equals twice the square of y.

EXAMPLES

1. Two towns, .1 and B, are 12 miles apart. A man walks from

^ to i? at the rate of 2 miles an hour. Express the distance s which

he travels, as a function of the time t, and represent the function

graphically. Determine from the graph what time will be required
for him to reach B. If he travels at the rate of 4 miles an hour,
what time will be required for him to reach 7?? What is the rela-

tion between the angles which the lines representing the functions

in the two cases make with the time axis ?



26 HIGHER ALGEBRA

Solution. Draw a pair of axes, the time axis and the distance axis, at right

angles, and let 0, their point of intersection, represent the first point where

^ = and s = 0. Since the man's first rate is 2 miles an hour, we make a dot,

P, at a distance of 2 units above the point on the time axis where t equals one

unit. Through P and O draw a straight line. This line is the graph of the

function s = 2 i.

Now we wish to find what value t has

when s = 12, that is, how long will be re-

quired for the man to walk 12 miles.

Through the point J5, 12 units up on the

distance axis, we draw a parallel to the

time axis. This line contains all points for

which s = 12. Let D be the point where

this line intersects the graph of the function

s = 2 i. Dropping a perpendicular from J)

to the time axis, we see that for the point

D, ^ = 6, that is, when s = 12, ^ = 6
;

that

is, 6 hours are required to walk a distance

of 12 miles.

Similarly, if the man's rate is 4 miles an

hour, we make a dot, Q, 4 units above the

point on the time axis where ^ = 1, and draw

a line through Q and 0. Let this line inter-

sect B and D at C Corresponding to the

point C, f = 3
;
that is, 3 hours are required

to go 12 miles at the second rate. The func-

tion in this case is s = 4 £.

We notice that if the rate of the man is increased, the graph of the function

becomes steeper. Doubling the rate did not double the angle FOR, since Z QOR
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same. This is denoted by a line UC panilk-l to the t axis and 1 .V
units long.

The man now continues at his former rate. This is denoted by a line CF having

the same slope as the line OB.

The second man starts 4 hours

later
;
that is, when i = 4, but since

he starts from the same place as the

first man, s = 0. This is denoted by
the point D. Throui;li T) draw a line

whose slope is 1(5. This line is the

graph of the function which repre-

sents the motion of the second man.

The two graphs intersect at a point E
for which s — 40. Hence the second

man overtakes the first after riding

40 miles.

It sl'.ould be noticed that the lines

OBCE and UE are not the paths of

the two men but the graphs which

represent the relation between the

distance traveled and the time for

the first and second men respectively. The point E is not the intersection of the

paths of the men, but the point on the two graphs where s has the same value.

Algebraic solution. Let x be the distance in miles which the second man must

ride in order to overtake the first. In 2^ hours, at 8 miles an liour, the first

man rides 20 miles. Then x — 20 = the distance the first man rides after the

X — 20
delay, and the time required to ride this distance was—-— hours. The total

X- 20
time of the first man is 2| + 1] + hours. The time of the second man is
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3. A man starts out to walk at a uniform rate and finds that at

the end of 2 hours he has walked 7 miles. If he continues at the

same rate for 3 hours longer, how far will he have walked ?

4. A stone is dropped into a pond and sends out a series of

ripples. If the radius of the outer ripple increases at the rate of

5 feet a second, what is the length of the circumference of the outer

ripple at the end of 3 seconds ?

5. Two towns, A and B, are 44 miles apart. A man leaves A for

£ at 8 A.M., riding a bicycle at a uniform rate. At 9.30 an accident

detains him for 30 minutes at a point 12 miles from A, after which

he doubles his rate. At what time will he reach B ?

6. A trip of 90 miles was made in an automobile in 5 hours. The

first part of the trij) was made at a uniform rate of 15 miles an hour

and the last part at 20 miles an hour. How much of the distance

was run at the latter rate ?

7. A man walks 5 miles in 2^ hours, then 12 miles further in

3 hours. What uniform rate would he have taken to cover the same

distance in the same time ?

8. A man starts out to walk at the rate of 3 miles an hour, and

after walking for 1^ hours he rests half an hour and then con-

tinues walking at the same rate. Another man leaving the same

place 4 hours later on a bicycle, rides at the rate of 12 miles an

hour. How far must he ride to overtake the first man ?

9. Two piers, A and B, are on opj^osite sides of a lake 12 miles

wide. A boat leaves A, crossing the lake at the rate of 12 miles an

hour. Thirty minutes later another boat starts from B to A, making
18 miles an hour. How far from pier A will the boats pass each other ?

10. Two automobiles are running in the same direction around a

circular track. They make the circuit in 1 minute 30 seconds and

2 minutes 15 seconds respectively. If they start together, after how

many minutes will they be together again ?

11. A tank has two outlet pipes. By one it can be emptied in 12

minutes and by the other it can be emptied in 4 minutes. If both pipes

are opened, find the number of minutes required to empty the tank.

12. Two automobiles leave a certain place at the same time

running in opposite directions, the first at 16 miles per hour and
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the second at 28 miles per hour. After going a certain distance the

second turns around, continues at the same rate, and overtakes the

first an hour and a half after the start. How far does the second

car go before turning around ?

15. Dependent and independent variables. Consider the equation

which ex])resses the relation between the area of a circle and its

radius, A = tt/-^. Of the two variables A and
/•, one, the radius, can

usually be measured and the corresponding value of A determined.

In this process, the variable r is antecedent to A. Its value is found

before that of A is known, and from it the area is computed. In this

case r is called the independent variable and .1 is called the dependent

variable.

The formula for the distance .s- which a body falls from rest in a

time ^ is s = 16 1^. If the time it takes a ball to fall from rest to the

bottom of a cliff is known, the distance which it falls can be found.

Here t is the independent variable and s is the dependent variable.

If, however, we wish to find the radius of a circle whose area is

known, then it is the variable ^1 which is independent, and from it

the corresponding dependent r is found. Similarly, by the use of the

formula s = 16 t", the time which it takes a body to fall any given

distance may be computed, since t = -—- In this case s is the

independent variable and t is dependent.

In general, when an expression is given involving two variables,

say, X and y, one of these is more naturally looked upon as the one

to which values are first assigned, and from which the values of the

other are determined. That one is the independent variable.

In the equations x = 2y^ — Gy + S and x = 9\^ + 4y,y is the independent
variable. In y = 2x* — 6x- + 2, x is independent.

It often occurs, however, that when the equation is not solved for

either variable in terms of the other, there is no reason for consider-

ing one as dependent rather than the other. In that case we decide

arbitrarily which one we will consider as independent. When we

have decided which we shall so consider, it is often desirable to

solve the equation for the dependent variable.

In the expression x- + y- = 4 we may equally well consider either x or y as

independent. If x is selected as the independent variable, we solve for y,

obtaining y = ± V4 — x-. This enables us to find the values of y from those of

X more readily than we could from the first form.
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EXERCISES

1. Express the volume of a sphere as a function of its radius. In

this functional relation, which variable is regarded as independent ?

2. Express the radius of a sphere as a function of its volume. In

this functional relation, which variable is regarded as independent ?

3. Using the relations of exercises 1 and 2, find (a) the volume

of a sphere whose radius is 3 feet, (b) the radius of a sphere whose

volume is 288 tt cubic feet.

4. A rectangle has one side 2 feet longer than the other. Express
the functional relation between the area of the rectangle and the

length of its shorter side. What is the area of the rectangle if its

shorter side is 7 feet ? In this relation which variable is regarded

as independent ?

5. Express the length of the shorter side of the rectangle in

exercise 4 in terms of the area. Which variable is regarded as

independent? Find the shorter side if the area of the rectangle

is 4 square feet.

In finding pairs of values of ./• and ij
which satisfy the following

equations, which variable in each case is naturally regarded as

independent ? Eind three pairs of values of x and y satisfying

each equation.

/•6. « - 6 7/ + 4 y2 + ^3 = 0. 10. V.r// + 1

7. x' - 8ic3 + 2 y = 0. 3-2 _ ^ji

8. ./ + 2 y - ..^ + 1 = 0.
''• —^ -

"^ - '-'^'^
= ^

9. xy + xy- + a-/ = 12. 12. .r^" + 4 = / - 4 x\

16. Accelerated motion. The distance s of a body from the ground
t seconds after it has been thrown vertically upward with a velocity v^

is a function oit: s = vt — \^t'^*

To fix our ideas, suppose the velocity with which the body is

thrown to be 64 feet per second. Then the equation becomes

i' = 64 i^
- 16 1''. (1)

If we wish to find how far above the ground the object is 3 sec-

onds after the projection, we substitute 3 for f and compute the

* In tliis equation the resistance of the air is neglected. The number 16 is the

approximate value of a constant depending on the force of gravity.
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corresponding value of .s-. Tlie relation between .s and / may Vje

shown by means of a graph, if the time axis and the distance

axis are taken as in § I'A. If we assign the values 0, 1, 2, 8, 4, 5 to

t, and compute the value of s correspond-

ing to each, we obtain tlie following table :

t
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axis to represent in the first a unit of length and in the second a

square unit of area. What is indicated by the point of intersection

of these graphs ?

What do the graphs indicate as to the relative increase in the

nmnber of units of length and the number of units of area as the

radius of the circle increases ?

3. Answer the questions in exercise 2, using the surface and the

volume of a sphere instead of the perimeter and the area of a circle.

4. The velocity of a body dropped from rest is given by the

formula v" = 64 s, where s is the distance fallen. Represent this

law graphically. A ball is dropped from a height of 256 feet. How
far must it fall to attain a velocity of 32 feet per second ? With
what velocity will it strike the ground ?

5. If a body is projected downward with a velocity v^,
the dis-

tance s fallen at the end of any time t is given by the formula

s = v^ + 16 t'^. Express this law graphically when the velocity v^
is

16 feet per second. How far will the body have fallen at the end

of 2 seconds ? How many seconds will it take to fall 60 feet ? In

how many seconds will the body reach the ground if projected from

a height of 117 feet ?

6. W'ork the preceding problem under the assumption that
v^
= 0,

that is, that the body falls from rest.

17. Graphs of equations. The graph of an equation is the graph-
ical representation of the functional relation which is expressed by
the equation. For the purpose of graphing equations we agree :

I. To have at right angles to each other two lines : A''OA, called

the Xaxis; and Y^0\\ called the Faxis.

II. To call the point of intersection of the axes the origin.

III. To have a line of definite length for a unit of distance.

Then the number 2 will correspond to a distance of twice the unit, the num-
ber 4^ to a distance 4^ times the unit, etc.

IV. That the distance (measured parallel to the X axis) from the

Y axis to any point in the surface of the paper be called the x dis-

tance, or abscissa, of the point, and that the distance (measured

parallel to the Y axis) from the X axis to the point bg called the

y distance, or ordinate, of the point.

The vahies of the x distance and the y distance of a point are often called

the coordinates of the point.
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V. That the x distance of a point to the right of tlie Y axis be

represented by a positive number, and the x distance of a point to

the left by a negative number
;
also that the y distance of a point

above the A' axis be represented by a positive number, and the y dis-

tance of a point below the X axis by a negative number. Briefly,

distances measured from the axes to the right or upward are positive,

to the left or downward, negative.

VI. That every point in the surface of the paper correspond to

a pair of numbers, one or both of which may be positive, negative,

integral, or fractional.

VII. That of a given pair of numbers locating a point the first be

the measure of the x distance and the second be the measure of the

y distance.

Thus the point (2, 3) is the point whose x distance is 2 and whose y dis-

tance is 3.

Plotting or graphing an equation in x and y consists in finding

the line or curve the coordinates of whose points satisfy the equation.

The procedure is expressed in the following

Rule. When y is alone on one side of the equation, set x equal

to convenient integers atid compute the corresponding values of y.

Arrange the results in tabidar form.

Take corresponding values of x and y as coordinates and plot the

various points.

Join the points in the order corresponding to increasing values of

X, making the entire plot a smooth curve.

When X is alone on one side of the equation, integral values of y may be

assumed and the corresponding values of x coniputod.
When the equation is not already solved for either x or y, either may be arbi-

trarily selected as the independent variable and the equation solved for the other.

The resulting equation is plotted as already explained (see example 3 below).
It should be noted that we obtain the same graph whichever variable we select

as independent. The choice should be made so tiiat the labor of solving for

the dependent variable is as light as possible. For example, in case of the equa-
tion x^ — 3y^ — 4y + 3 = 0, we should take y for the independent variable.

In 4 x2 _ 7 a; _ 2 ?/ = we should select x.

Care should be taken to join the points in the proper order so that the resulting

curve pictures the variation of y when x increases through the values assumed for it.

Any convenient scale of units along the axes may be adopted. The scales

should be so chosen that the portion of the curve which shows considerable

curvature may be displayed in its relation to the axes and the origin.
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When there is any question regarding the position of the curve between two

integral values of x, an intermediate fractional value of x may be substituted,

the corresponding value of y found, and thus an additional point obtained to fix

the position of the curve in the vicinity in question.

We shall assume witiiout proof that the graph of a linear equation

in two variables is a straight line. Hence in constructing the graph
of such an equation we only need to locate two points whose coordi-

nates satisfy the equation and then to draw a straight line through
them. It is usually convenient to locate the two points where the line

cuts the axes. If, however, these two points are close together, the

direction of the line will not be accurately determined. Error can be

avoided by selecting two points at a considerable distance apart.

The graphical solution of a system of two equations in two varia-

bles consists in plotting the equations to the same scale and on the

same axes, and obtaining from the graph the values of x and
ij

at

each point of intersection.

Two straight lines can intersect in but one point. Hence but one

pair of values of x and y satisfies a system of two independent linear

equations in two variables. When the two linear equations are

incompatible their graphs are parallel lines.

1. Plot 3 a- -h 4 7/
= 12.
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3. riot L'x- + 3/ = 9.

Solution. 3 2/2 = 0-2 x-.

2/2 = 3- §x2.

y = ± \V21 -dx-.

Assiiminpj various integral valiu's for x, we obtain the following table and

jilnt ;
the values nf // arc Ltivcii to the nearest tenth.

J-

.'/
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EXERCISES

Plot the following equations :

1.2x-37/ = 6. S.7j=(x-2y. 15. 2.r2 + 2?/2 = l3.

2. Sx + 7 7/ +14. = 0. 9.ij = 5x — x^ 16. .ry
= 4.

3- ^ 2^
-

i a; = 2. 10. 1/
= 5x + X-. 17. xt/ = - 4.

4. 5.5 a; + 6 y = 66. 11. y = _ 5 x - a;^. 18. x^ + / = 8.

5. 4 a; - 3 y = 0. 12. ?/
= - 5x -\- x^ 19. x^- i/

= 8.

6. 3a: + 2y = 0. 13. 9 .x^ + 4 / = 36. 20. i/^
- x' = S.

7. y = a;--3a--4. 14. 9 a-^ - 4
^/^
= 36. 21. xY = A.

Plot the following systems and solve them graphically :

C3x-j/ = i, r3.x + y = 0, ra-2 + y^ = 25,

l2a; + 4?/ = 19. 127/ -a- =7. l3y-4a: = 0.

25
rr-4.x = 17, ra,/ = 3,



CHAPTER III

QUADRATIC EQUATIONS

18. Solution by factoring. In order to solve most efficiently all

kinds of quadratic equations, it is necessary to have two methods

at command. The lirst method, that of factoring, is simpler to

apply, and may be employed for tlie solution of many equations of

higher degree. One should always observe whether an equation

may be solved in this way before attempting the method of the

next section.

The solution by fat'toring depends on the following

Principle. The product of ttvo or more factors is zero ivhen

and only ivhen one or more of the factors are zero.

This principle is merely the formulation of the familiar rules for

multiplication by zero. We know that if we multiply any number

whatever by zero, the product is zero. If one factor of a product is

zero, it makes no difference what nunrbers the other factors are
;
the

product is zero. On the other hand, unless at least one of the factors

of a product is zero, the product does not vanish.

It must be remembered that infinity i.s not a number and is never properly

considered as such.

To illustrate the method of solution by factoring, consider the

equation ^ (^
_

3) (^
_

4) (x
-

1)
= 0. (1)

"We ask what must be the value of x in order that this equation

may be satisfied
;
that is, what are the roots of this equation ? Is 5

a root of the equation ? It is not unless it satisfies the equation, and

the equation is not satisfied unless at least one of its factors equals

zero. But if we replace x by 5, the first factor becomes 5
;
the second,

2
;
the third, 1

;
and the fourth, 4

;
none of which is zero. Hence 5 is

not a root of
(1).

87
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In seeking the roots of this equation we need only to consider the

numbers which make one of the factors equal to zero. Hence x must

be a number which will satisfy one of the four equations :

X = 0, cc — 4 = 0,

cc — 3 = 0, X — 1 = 0.

These are all linear equations whose roots are 0, 3, 4, 1 respectively.

In accordance with the principle given above, these are the only roots

of equation (1).

It is observed that by this method we have reduced the solution

of equation (1), which is of the foui-th degree, to the solution of a

number of linear equations. To reduce the solution of a given

equation to that of equations of lower degree is the essence of the

method of solution by factoring. We may state the rule for solving

an equation by factoring as follows :

Rule. Transpose all the terms to the left meynher of the equation.

Factor that memher into linear factors.

Set each factor which involves the unknown equal to zero and

solve the resulting equations.

19. Solution by formula. In order to obtain the formula which

we shall use, it is necessary to solve the general quadratic equation

ax^ + hx + c = 0, (Q)

where a, h, and c are real numbers, and where a =^ 0. This we do

as follows :

Transposing c, ax^ + bx — — c. (1)he
Dividing by a, x^ -\

— x = — —•
^ -^ ' a a

Adding \-^) to both members to make the left member a perfect

square.
, h h^ c V - 4 «c 4- ^'

X^ + - X + —-; = h ——,
=

ft

""
'

4 d^ a 4:a^ 4 a^

/
,

bV b''-A ac
Jiixpressmg as a square, yx -\- ^r— )

= —
^—^
—

(J)

Extracting the square root.
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_ ft ± V&2 _ 4 ac .

^

Transposing, Jf = — (F)

The roots arc

^ /, _l_ V/r - 4 ru- _ - /, — V//- — 4 ufi

In equation ((^)
tlic nnniber x appears in a form \vhi(-h gives us

no idea of its value in terms of a, h, and c. It is indeed unknown.

But each step of the solution brings us nearer to an equation in

which a; stands alone in one member, wliich is the object of the proc-

ess. The critical point in the pidcrdure is passing from (2) to (3).

Since the square root of any number or expression (not zero) has

not one but two values, the necessity of extracting the square root

in order to find the value of x carries with it the existence of two

roots of the quadratic equation. As in the ease of the linear equa-

tion, the process of solution does not change the value of a:
;

it dis-

covers it. The value of x in (Q) is knotted up in the equation,

and we merely untangle the knots to display it in terms of known

constants.

The solution of quadratic equations ^\lli(•ll involve fractions or

radicals often necessitates the operation of multiplication by an ex-

pression involving x, or that of raising both sides of the equation to

a power. Either operation may introduce into the equation roots

which it did not originally possess, and lead to values of x which do

not satisfy the original equation. Such results are called extraneous

and should never be retained as roots. A certain method of detect-

ing extraneous roots is to substitute in the original equation all the

values of x which have been obtained, and retain only those which

satisfy it.

To solve a quadratic equation in x by formula we proceed as

follows :

Rule. Write the equation in standard form (ff).

Suhstitute the coefficient of i\ the coefficient of x, and the constant

term for a, b, and c, respectiveh/, in (-^)-

If, in getting the equation into standard form, each member has

been multiplied by an expression involving the unknown, or has been

raised to a power, substitute in the original equation all the values

which have been obtained, and reject the extraneous roots.
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Even if neither of these operations has been employed, the substi-

tution in the original equation of the values found should be per-

formed in order to afford a check on the accuracy of the solution.

A check which is more convenient for many cases will be derived

in § 24.

In the following exercises the quadratic equations should always
be solved by factoring when possible.

EXAMPLES

Solve and check :

1. 5x^ + 4:x = 12.

Solution. Transposing, 5x2 + 4x — 12 = 0.

Factoring, (5x - 6) (x + 2) = 0.

Hence x must satisfy one of the equations

5x-6 = 0, x+2 = 0.

X = |, or X =— 2.

Check. 5(1)2 -H 4(1) = 12, 5(- 2)- + 4(- 2) = 12,

¥- + -¥- =12, 20 - 8 = 12.

-%^-
= 12.

2. a-' + 2 ab (a^ + h^)
= (« + hf x.

Solution. Transposing, x^ — (a2 + 2 a* + 5-)x + 2 ab{a^ + W-)
- 0.

Factoring, [x
-

(a^ + b-)]{x
— 2 ab) = 0.

X = a^ + 62^ or x = 2 ab.

Check. (a2 + 62)2 ^2ab (a'^ + b^)
= {a + b)- (a2 + 62).

Dividing by a"^ + 62, a^ + 2 a6 + 62 = (a + 6)2.

Also (2 a6)2 + 2 a6 {a^ + 62)
= {a + 6)2

. 2 ab.

Dividing by 2 ab, a^ + 2ab + 62 = (a + 6)2.

3. Vl3+3;+Vl3-a; = 6.

Solution. Transposing, Vl3 + x = 6 — Vl3 — x.

Squaring, 13 + x = 36 - 12 Vl3 - x + 13

Transposing and dividing by 2, x — 18 = — 6 Vl3 — z.
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Squaring, x^-S6x+ 324 = 30 (13
-

x) = 408 - 30 x.

x2 = 144.

x = ±12.

Vl3 + 12 + Vl3- 12 = 0, V13-12 + V13 + 12 = 6,

5+1 = 6, 1 + 5 = 6.

Therefore 12 and — 12 are roots.

Va -\-Vx _ 2 Vx (x + af
*

V« - Vo; Va-\-Va: o(x — a)

Solution. Rationalizing the denominators,

a + 2 Vox + X _ 2 Vaj — 2 x (x + a)2

a — X a — X a(x — a)

Now a — X cannot equal 0, for this would give zeros in the denominators.

Hence we can divide a — x out of each denominator
; then, multiplying through

by a, we have
a^ + 2 a Vox +ax = 2a Vox — 2 ax + x^ + 2 ax + a^,

X' — ax — 0,

X (x
—

a) = 0,

from which x = 0, or x = a.

But x = a has been excluded. Hence x = is the only root.

Check. Substituting x = 0, we have 1 = 0+ 1.

5. 3x''-5x = l.

Solution. Writing in standard form,

3x2 _ 5x-l = 0.

Here 3 corresponds to a,
— 5 to

ft,
and — 1 to c in the general quadratic

ax- + 6x + c = 0. Substituting these values in (F),

_ (_ 5) ± V25 _ 4 . 3 (- 1)
gives X =—^ ^

^
2.3

Check.

_ 5 + \/25 + 12 _ 6 + V37~ ~
6

25 ± IOV37 + 37 , 5 ± V37 ,
5 = 1,

36

31 ± 5 V37- 25 T 5 V37 = 0,

31 - 25 = 0.
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6. 2h~x- = ]cx + 2.

Solution. Writing iu standard form,

2k^x^ - kx - 2 = Q.

Then a = 2 A;2, h=- k, and c = - 2.

Substituting these vahies in the formula (F),

^ ^
- (- A:) ± V(- ky - 4 2 A:^ (- 2)

2 . 2 A:2

k±\^+16k'^ k±kVr: 1 ± a/i7

4A:2 4A;2 4A;

18±2Vr7 l±Vl7 +

2.M^4^T=^^4^+2,

8 4

9 ± \^ = 9 ± Vl7.

7. V^: + l + V3.'+l-2 =
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EXERCISES

Solve the following equations :

1. a;2_4a;-21 = 0. 9. 12a-2 - 71 r - 6 = 0.

2. y2-10y + 24 = 0. 10. H j^ + 5a; = 56.

3. !!' + 10^^-24 = 0. 11. *)/ = 6y + 26.

4. if
- 10 y - 24 = 0. 12. ./•- - .03 ./• + .018 = 0.

5. «2_j_io~4-24 = 0. 13. ;iw-+ 7 = 8a-.

6. a;^ - 2 x + 2 = 0. 14. .03 ./
- - 2.23 x + 1.1075 = 0.

7. 6 a-- - 7 a- + 2 = 0. 15. hcj-' - hex + adx = hd.

8. s"" - 10 .s + 18 = 0. 16. 4 ,i + <u'- = 2 x- + 2 a'x.

17. y^ -2ax + a- + lr = 0.

18. 14 a-- + 45.5 a- = - 36.26.

19. {x
- a -{.h){x-a + c)

= (a- If - x\

20. a\h-xf = b\a-xf.
21.

(a; -6)- -(2 a: -5)2 = 6.

22. (2 a; - 17) (.r
-

5)
-

(3 a; + 1) {x
- 7)= 84.

23. vi^x- — //I (a
—

b)x
— ab = 0.

24. a; + a =
(./-^
- a- + 1) (a- + ^0-

25. (2a;-(/)- = ^-(2a;-o)+2i-.

26. (3a;
- 2 a + bf + 2b{3x-2 a + b)= a- - b-.

). k\lz^
_

1)
= ^A ,t2 + .^

-^27. X + ~ = a -\ 30.
a- a

. 31.4 mnx + (nr
-

ir) (1
-

a--)
= 0.

28. a + x = - + --
32^ (^

_
ly^ = „ (^2

_
^^

29. c(/(l + a-)
=

(<•- + (/•-)
a-. 33. (7

- 4 V3)ar + (2
-

V3)a- = 2

b 2x-b

1 1 ''a-
35. = + = =— •

2 + Vl -
.,• 2 - V4-a- y

Suggestion. Rationalize tlie denominators.
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1 + Vl - ic 1 - Vl - X 2

37. Vll - X + Va--2 = 3.

38. x-\/x - 2 + 2 Va; + 2 = Vcc« -f 8.

39. Va(a;
—

i) + V^'(a;
—

u)
= x.

40. V(x -l){x- 2) + V(a"
-

3) (ic
-

4)
= V2.

A— 1 ic — 4 X — I X — 6

42.
2 3 4 5

4— a; 5 — X 6 — x 1 — x

wa — X \a — XJO V (;
— X \ a — X I—

43. = Va;.
X a

44. 2 Va-- - 9 a- + 18 - Va;'^ -4a;-12 = a--6.

Suggestion. Factor the expressions under the radicals.

45. J-Z,' + "Lz} = 4v^:^

Suggestion. "Write the numerators 2 — 3 — 4 and x — 4 — 1.

. 46. .fi!±i+.EEi = 2x(^.\h -^X^ \h -X \h

20. Quadratic form. An equation is in quadratic form if it may-

be considered as a trinomial consisting of a constant term and two

terms involving the unknown (or an expression which may be con-

sidered as the unknown), the exponent of the unknown in one term

being twice that in the other.

Thus j;-8V^+13 = 0, x~t + x~t-3 = 0, a^x-S" - (a + 6)x-« + 62 = 0,

x2 — 2x — 3 — Vx2 — 2 X — 3 + 17 = are all in quadratic form. In the last the

expression Vx- — 2 x — 3 is taken as the unknown.

It is often convenient to replace by a single letter the lower power
of the variable or expression with respect to which the equation is

in quadratic form, and proceed as in the case of the ordinary quadratic

equation.
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EXAMPLES

1. Solve cr-8V^ + ir) = 0.

Solution. This is a quadratic in Vx and may be written

(Viy-SV^+ 15 = 0.

Factoring, (Vx — 5) (Vx — 3) = 0.

Vx = 5, Vx = 3.

The roots are x = 25, x = 9.

Check. 25 - 8 • 5 + 15 =
; 9-8-3+15 = 0.

2. Solve (x''-xf + x''-x-Q = 0. (1)

Solution. This is a (juadratic in x^ — x.

Factoring, [{x'
-

x)
-

2] [{x"-
-

x) + 3] = 0,

or x2 - X - 2 = 0, (2)

x2 - X + 3 = 0. (3)

Factoring (2), (x + 1) (x
-

2)
= 0.

Hence x=— 1, x = 2.

Applying the formula to (3),

1 ± Vl - 4 . 3 1 ± V-11
X = = •

2 2

The roots of (1) are x =— 1, 2,

Check. Substituting
— 1 in (1),

(1 + 1)2 + (1 + 1)
- 6 = 4 + 2 - 6 = 0.

Substituting 2 in (1),

(4
_

2)2 + (4
-

2)
- 6 = 4 + 2 - 6 = 0.

Substituting in (1),

[C-^p-^H-^y-±V-il 6=9-3-6 = 0.*

* The product V^ V^= Va (- 1)
• Va (-1) = a(V^)^= -

a, where a is any

positive number. The operations on complex munbers will be explained fully in

Chapter V.
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EXERCISES

Solve the following equations :

1. 2 .r + 7 V^ - 4 = 0. 14. 13 ;7'^ = .rl + 36.

2. xi + 2xi = l. 15. cc^ + 3.r-l-V2x'+ 6x+l=:0.

16. x^ + 5x-10 = Va^~+5xT~2.

18. x'^ + -^ + x + - = i.
x^ x

3.
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radical. Since this is the same equation whieli we had at first,

except for its form, and since in this etjuation x can have only

two values, the same is true for
(Ci),

and the general quadratic has

only two roots.

22. The factor theorem for the quadratic. Altliough this theorem

will be proved later for equations of higher degree, a demonstration

for the special case of the quadratic is included here.

Theorem. Jf x^
is a root of the equation

aa:' + /'.r + ^ = 0, ((?)

then x —
x^

is a factor of its left member.

The hyiiothesis in tliis tiieoreni is that x^
is a root of

((^);
that

is, the equation must be satisfied when x is replaced by x^.
Hence

the hypothesis is equivalent to the statement that ax^ -\- bx^ -(- c =

(see § 11).

Consequently,

ax^ -\-hx -\- e = ax" + hx -\- c — («rf + hx^^ + c),

since ax^ + f'j-^
+ e = 0.

But ax^ + bx -\- e — (ax^ + bx^ + c)
= a

(y:-
—

.'-i") + b (x
—

x^).

Taking out the common factor, we obtain

(x
—

x^) la(x + cCj) + b'].

Hence cc —
a-j

is a factor of the left member of (Q).

By means of this theorem we are able to write down a quadratic

equation if its roots are known.

EXAMPLE

Form the equation whose roots are 4 and — 2.

Solution. By the precedinnj theorem the factors of the left member of the

equation must be x — 4 and x + 2.

Hence the equation i.s {x
—

i) {x + 2) = 0, ov x- — 2 x — 8 — 0.

EXERCISES

Form tlio equation whose roots are the following :

1. - 3, 2. 5. _ 1,
_ 4. 9. 1 + V^, 1 - V^.

2. VS, - Vs. 6. 0, 2. 10. V^, - V^.
3. 2V2, -V8. 7.1,1. 11.^/4,-^8.

4.1,2. 8. 2 + V3, 2-V3. 12.
"^ ±^--^1.
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23. Reduced form of quadratic. If we multiply each member of

an equation by a factor which involves the unknown, we obtain a

new equation which has more roots than the original. The roots

gained by this process are the values which reduce to zero the

expression by which we multiply.

Multiplying x^ — 3 x + 2 = by x — 4, we have (x
—

4) (x^
— 3 x + 2) = 0,

which is satisfied not only by the roots of the original equation but by the

number 4 in addition.

Similarly, if we divide each member of an equation by a factor

which involves the unknown, we obtain an equation with a less

number of roots than the original. Here the roots which are lost are

the values which reduce to zero the expression by which we divide.

For example, if x^ — Sx^ + 6x = be divided by x, the equation loses the

root x = 0.

We may, however, multipl}^ or divide an equation by a constant,

not zero, without affecting the number of its roots or the value of

the unknown.

If we multiply both members of the equation x^ — 3 x + 2 = by 4, we have

4(x2
— 3x 4- 2) = 0. This equation cannot be satisfied unless one of the factors

of its left member becomes zero. The same values of x will make the expression

inside the parenthesis vanish, regardless of any other factor which may be present,

while the constant factor 4 is never zero. Hence the roots of the equation after

multiplication by 4, or by any other constant, are the same as they were before.

We may accordingly divide the equation (Q) by the constant a

without affecting the values of the roots of the equation.

h c
The equation cc^H— x -\

— =
a a

may be written in the form x^ -\- jJ^ -\- q = 0, (IV)

where » = -
> and n = -'

a a
We shall call {R) the reduced form of (Q).

24. Relation between the roots and the coefficients. The equa-

tions (Q) and (R) have the same roots,

-Jjj^ ^y" - 4 ac , -b- -Vlr - 4 ac
X = and X = •

^ 2 a ^
J, a

Adding these roots, we obtain

- ^ '4- V^,2 _ 4 ac -b- ^li' - 4:ac _ -2h _ h _
^i + ^'^~ 2a ^ 2a

~
2a

~~
a~~^'
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Multiplying the roots we get

/, ^ V//--4^^A/- h - V//^ - 4 nA IP- -l?^-\ ac

^i''*'2"\ 2« /\ 2a / 4«^

These results we may state in the form of a

Theokp:m. The sum of the roots of a reduced quadratic equation

equals the coefficient of the term in x, with its sign changed.

The product of the roots of a reduced quadratic equation equals

the constant term.

When roots of a quadratic equation are given in somewhat com-

plicated form, it is simpler to form the equation by use of this

theorem than by means of the theorem of § 22.

The above theorem also serves as a convenient check for the

solution of a quadratic, especially when the roots are complicated.

EXAMPLES

1. Porm the equation whose roots are 3 -\- V5 and 3 — v5.

Solution. Let Xj
= 3 + VB, Xj = 3 — VB.

— p = Xj + x.j
= G, or j3

= — 6.

7 = Xj
• x, = 4.

The equation is x^ — 6 x + 4 = 0.

2. In the equation x- — 2x + Ic = 0,

what must be the value of k in order

(a) that one root shall be double the other ?

(b) that the difference of the roots shall be half their sum ?

Solution, (a) Let r and 2 r represent the roots.

Then r + 2r = 3r = -p = 2, (1)

and r-2r = 2r^ = q = k. (2)

From (1), '"'=%'

Substituting in (2), * = g-

Check. Putting fc = ^ in the original equation, we have

9x2- 18x + 8 = 0,

(3x-4)(3x-2) = 0,

—
3» or X —

ij,

and one root is double the other.
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(b) Applying the formula, we have

2

The roots are Xj
= 1 + Vl — A;, Xg = 1 — Vl — k.

Since the difference of the roots is half their sum, and the sum of the roots

is 2, we have
^ a:^ + J-q _ 2

or 1 4- Vl-k -
(l
- Vl-fc) = 1.

2Vl-A: =
l,

1-A;=l, A:=|.

Check. Putting & = ^ in the original equation, we have

4x2- 8x + 3 = 0,

(2x-3)(2x-l) = 0,

X =
^^

or 1, and }
-

J = J (^ + i).

EXERCISES

1. Form the quadratic equation wliose roots are — 2+V6 and
- 2 - Ve.

2. Form the quadratic equation whose roots are 5 + 2 V— 1 and

5-2 V^.
1 + Vt

3. Form the quadratic equation whose roots are

4. Form the quadratic equation whose roots are

o

3 ± Vl3l
10

5. Find the value of the literal coefficients in the following

equations :

(a) a;^ -f ^a: — 9 = 0. One root is 3.

Hint. Since 3 is a root, it must satisfy the equation.

(b) a-^ + 4 a- + c = 0. One root is 2.

(c) ax^ + 3 a- — 4 = 0. One root is 2.

(d) x^ — bx — 6 = 0. One root is — 3.

(e) 2a'^ — 6a; — c = 0. One root is — 4.

(f )
x^ — 6 a; + = 0. One root is double the other.

(g) a-^ + e = 0. The difference between the roots is 8.

(h) x^ — 5 x -{- c = 0. One root exceeds the other by 3.

(i) a;^ — 7 a; + = 0. The difference between the roots is 6.

(j) x^ — 6 X + c — 0. The difference between the roots is 4.
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6. In the equation r/.r- — 3.r -f Jc = 0, what must be the value of

k in order Miat the product of the roots sliall be twice their sum ?

7. Form the equation wliose roots are the reciprocals of the roots

of the equation 2x^ — 5x -\-S = 0.

8. If
./'j

and x^ are the roots of the equation ax'- + /u- -f- c = 0,

show that 11 J,

a-,
x~ c

9. Find the condition that one of the roots of the equation
x^ + ]px + y = is double the other.

10. I'ur what values of k is one of the roots of the equation

(A-
-

4) x^ -
(^1

k - 1) .r = 7 - 5 /• double the other ?

11. Find the condition that one of the roots of the equation
ax- + hx + r = is the reciprocal of the other.

Hint. Let a;, be one root and — be the other.
a-i

12. For what values of k and / will one of the roots of the equation
kx'- -f- Ix + /.• = be the reciprocal of the other ?

13. For what values of k will the difference of the roots of the

equation 5 a*" + 4 a- + k = equal the sum of the squares of the roots ?

14. Find the equation whose roots are the reciprocals of the roots

of the equation ax^ -\- bx -{- r = 0.

15. Find the equation whose roots are double the roots of the

equation x- + j)x + y = 0.

16. Find the equation whose roots are n times the roots of the

equation x- +px -f y = 0.

17. Find the equation Avhose roots are the negatives of the roots

of the equation x- + ^^a* + y = 0.

18. Given the equation x" — 3.v + 5 = 0. What is the equation

whose roots are (a) the negatives of the roots of the given equation ?

(b) three times the roots of the given equation '.' (c) the reciprocals

of the roots of the given equation ?

19. Show that the condition that one root of ax" -\- hx + r =
shall be n times the other root is

, (n + If
Ir = ar.

n
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20. From the result of the preceding exercise find the condition

(a) that the two roots of the equation ax'' + bx + c= Q shall be

equal ; (b) that one shall be 'twice the other
; (c) that one shall be

three times the other. Write an equation illustrating each case.

21. Find the equation whose roots are each less by 2 than the

roots of the equation a;^ — 5 a; + 4 = 0. Set the left member of each

equation equal to y and plot.

22. Find the equation whose roots are each less by k than the

roots of the equation cc" + j9a; + 2'
= 0.

Hint. Let the roots of the given equation be
Xj^

and x^. Then the roots of

the required equation will be x^
— fc and x^

— k.

23. Find the equation whose roots are each greater by 1 than the

roots of the equation cc^ — 2 .t — 3 = 0. Set the left member of each

equation equal to y and plot.

24. Find the equation one of whose roots is less by k than the

smaller root of the equation sr- + 2^^- + (7
=

^5 ^iid the other of whose

roots is greater by k than the larger root of the given equation.

25. Find the equation which has for one root a number 2 less

than the smaller root of the equation x'^ — x — 2 = 0, and for the

other root a number 2 greater than the larger root of the same equa-

tion. Set the left member of each equation equal to y and plot.

25. Classification of numbers. All the numbers of algebra are

in one or the other of two classes, real numbers and complex numbers.

The real number will be left undefined, since an accurate definition

involves questions too delicate to be considered here. Any number

which can express the measure of a distance is real, as, for instance,

2, I, V5, V3 - 7 V2, and tt.

Real numbers are of two kinds, rational and irrational.

A rational number is a positive or a negative integer, or a number

which may be expressed as the quotient of two such integers.

Any real number which is not rational is an irrational number.

A complex number is the indicated sum of a real number and a

pure imaginary, where by a pure imaginary number we mean the

indicated square root of a negative number.

26. Character of the roots of the quadratic. The determination

of the character of the roots of a quadratic equation consists in find-

ing to which of the foregoing classes of numbers the roots belong.
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Consider the equation (Q) and its roots,

2~a (^)

The expression Ir — 4 ac which appears under the radical sign is

called the discriminant of the equation. An inspection of its value is

sufficient to determine the character of the roots of the quadratic. No
formal proof is necessary to see that the following statements are true.

I. Wlien Ir — 4 ac is riegative, the roots are comj^lex numbers.

II. WJien Ir — 4 aa = 0, the roots are real and equal. In this

b
case X, = .r,

=—— .

' - 2a
III. W7ien b" — 4: ac is positive, the roots are real and distinct.

IV. WJien b^ — 4:ac is positive and a perfect square, the roofs

are real, distinct, and rational.

The converses of these four cases are also true. For instance, (1)

can only be complex when the expression under the radical sign is

negative ;
that is, when the discriminant is negative.

27. Parameters. We often meet quadratic equations whose coeffi-

cients are not numerical, but involve one or more letters. For

instance, the equation x- + 2x + k = is of this type. Several of

the equations on pages 50-51 are of the same kind. The letter k

might conceivably have any value we choose to give it, but after

we have once assigned a value, it is a fixed constant. Before we

have decided what value to assign, it is indefinite. For each value

of k there is a perfectly definite quadratic equation. If, for ex-

ample, we give k the value — 3, we have the corresponding equa-

tion a" + 2 .r — 3 = 0, whose roots we can find. But the equation

x^ + 2x -\- k = really represents an infinite number of numerical

equations corresponding to the infinite number of values which k

may take on. Some of these may have complex roots and others

may have real roots, and it is often necessary to select from this

infinite set of equations the one, or the few, whose roots have a

certain character. Symbols like this letter k are called parameters,

to distinguish them I'lom the letter x, which, we have called the

unknown or the variable. The whole set of equations which we

obtain by letting the parameter take on a set of values, we call a

family of equations.
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EXAMPLE

For what values of k are the roots of »-^ + A;(a?
—

1) + 3 =

equal ? real ? complex ?

Solution. Writing the equation in tlie form (Q), we have

a;2 + A:x + 3 - fc = 0,

where a = 1, b = k, and c =: S — k.

The discriminant b" - i ac = k"^ - 4(3 - k) = k^ + 4:k -12 = (k + 6){k
-

2).

The roots will be equal when (k + C^) {k
—

2) = ;
that is, when A: =— 6 or 2.

The roots will be real when {k + 6) (^
—

2) > 0. In this case the factors k + 6

and k — 2 must be both positive or both negative ;
that is, A; > 2 or k< — 6.

The roots will be complex when {k + 6) (fc
—

2) < 0. Hence one of the factors

k + 6, k— 2, must be positive and the other negative. It appears that the

factors are both laositive when fc > 2, and both negative when k< — 6. But for

values of k between these numbers the first factor is positive, while the second

is negative. Hence the roots of the original equation are complex for values

of k such that — 6 < fc < 2.

The situation may be illustrated by representing the values of k on a line as

follows :

"3 "3
S 3

Real and (liatinct H Complex M Real and distinct

-(j 2

EXERCISES

1. Find, by use of the discriminant, the character of the roots of

the following equations :

(a) 2x' - 7.r + 3 = 0. (d) 2.^2 - 4a; + 3 = 0.

(b) 9 ic- - 4 ,r + -4 = 0. (e) 18 .r^ + 63 x + 40 = 0.

(c) x2 + 6 ./• -8 = 0. (f )
3 ^- + 15 f + 19 = 0.

2. For what values of k are the roots of 9.r^+ (l + A-)a; + 4 =
equal ? real ? complex ?

3. For what values of n are the roots of Sn^x(x -{- 3)
= n — 5

equal ? real ? complex ?

4. For what values of k are the roots of x^ -\- k (x -\- V) -{- 3 =

equal ? real ? complex ?

5. What can be said of the character of the roots of the equation

ax^ -\- hx -\- c = if a and c have opposite signs ? Would changing
the sign of h affect the character of the roots ?
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28. The special quadratics. In tlic; general quadratic (Q) the

letters h and c were supposed to have any real values. Since zero is

included among these values, all our Avork has tacitly included the

cases where one or more of the coefficients vanish, provided zero does

not appear in the denominator of a fraction. If a — 0, the quadratic

equation degenerates into a linear equation. This ciisc will he con-

sidered in the next section.

Cask I. We first consider the case where c = 0, and the equation

reduces to the form 2
_|_ /;,._ n

Factoring, we obtain x (ax -\- h)
= 0.

Hence the roots are x = 0, and .r =
a

That is, one of the roots is zero.

Conversely, if cc = is a root, x — is a factor of the quadratic

(see § 22), and the equation can have no constant term.

This result we may express by

Theorem I. A quadratic equation has a root equal to zero when

and only ivhen its constant term is lacking.

Case II. In case i = we have the special equation

ax^ -f r- = 0.

Writing the equation in the form

a

we obtain the roots x^= \l > .r,
= —

xj
, which are equal

numerically but have opposite signs.

Conversely, when the roots of a quadratic equation are equal

numerically but have opposite signs, the equation has no linear term

in the unknown. For if we represent the roots by x^ and —
a-,,

the

corresponding factors are x — x^ and .7- + x^.
The resulting eqxia-

tion is x^ — x^ = 0, which does not contain a linear term in x.

This affords

Theorem II. The roots of the general quadratic equation are

equal hut with opposite signs u'hen and only when h = 0.

Case III. If c = h = 0, we have the special case ax^ = 0, where

the roots are equal by Case II, and hence each is zero by Case I.
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EXERCISES

1. Prove Theorem I by considering the expressions for the roots

in terms of the coefiicients given in § 24.

2. (a) If the equation formed by setting a function of x equal to

zero has a zero root, what is the characteristic i^roperty of the graph
of the function ?

(b) If the equation formed by setting a quadratic function of x

equal to zero has roots equal but opj^osite in sign, what is the char-

acteristic property of the graph of the function ?

3. Determine k so that each of the following equations shall have

one root equal to zero :

(a) 3a;2-2x + 2A-2-2 = 0.

(b) a;2 - .r + 2 A-2 + 3 A- - 2 = 0.

(c) 5*2 - 3a- - A-2 - 12 A- - 5 = 0.

(d) {X
-

Tif + 3
(.r
- 2

A;)
= 0.

(e) (3a- + A- - 1)-
-

2(3a; + A: - 1) + 1 = 0.

4. Determine k and m so that each of the following equations shall

have both roots equal to zero :

(a) 2x^ + ^kx + l mx — x -\- k -\- m. + 1 = 0.

(b) x^ + Skx + 4: mx = m — 5k + 253 x.

(c) 3 a-- + A; {x
-

2) + mx + 1 + A-^ = 0.

(d) m {x^
— x + l) + kx = x — vr + 2.

(e) m^x{l + x)
-

(1 + 3 wr) x
- m (2-3 x) + k = 0.

5. Determine k so that each of the following equations shall have

roots numerically equal but opposite in sign :

(a) X' — 2 k'-x = kx + 1.

(b) (9 a- + 5 k^ (x + A-)
= 2 x.

(c) 2 k\x^ -\- X -\- 1)
- 5 (kx + 3) + 2 .r = 0.

(d) x^ + k\k - l).r
-

6(kx + 1)= 0.

(e) (a- + 1) (A-a;
-

1)
=

(1
-

a-) (1 + A-a-).

29. Degeneration of the quadratic equation. If in the equation

(Q) we set a = 0, while b and c are not zero, we no longer have a

quadratic, but a linear equation, which has but one root. If instead

of substituting for a we let a take on smaller and smaller values,

we shall obtain a number of equations of the same family whose
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left members differ from the left members of the linear equation

1,x -f ^' = by just as little as we please. In this way we can find

out what becomes of one of the roots of the quadratic when a

vanishes. The roots of (Q) are

], _f. V//- - 4 ac —h- ^/r - 4 ac

1 2 II 2 II

Since division by is ruled out of algebra, we cannot replace a

by in these formulas. We can only let a approach 0. liut even

then
a-j approaches the form §, which is also meaningless. To avoid

this difficulty we rationalize the numerators of both
cc^

and x^ by

multiplying both numerator and denominator by a rationalizing

factor of the numerator. We obtain

^1
= (_ A + V//-^ _ 4 ac) {-h- V6- - 4 ac)

2 a i-b- -s/b^ - 4 ac)

IP- ^h--\-\ac 2 c

2a{-b--\/b'-lac) -b- -y/b- - 4 ac

^ ^ {-b- V/>- - 4 ar) (- b + ^b- - 4 ac)
-

2 a {-b + -s/b- — 4 ac)

fp _ i;i _|_ 4 ac 2 c

2a{-b-i- Vi- - 4 ac) -b + V^»- - 4 ac

As a approaches 0, b''^
— 4 ac approaches b'-^,

and x^ approaches

— or — 7" But since the denominator of
x,^

becomes very

small as a approaches zero, x^ increases without limit, that is, becomes

infinite. Thus in the equation ax- + bx -f r = 0, when a is allowed

to approach 0, one of the roots of the quadratic approaches the root

of the linear equation bx -\- c = 0, while the other becomes infinite.

The graph must then approach a straight line as a limit as a

approaches 0. This is made clear from the following figure, which

represents the equations of the family

«cc^-?-2 = .v, (1)
2

•"

correspondiuLT to the values a = 1, I, ^\^, 3\j, 0,
—

jV-
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In the figure the curves represent the following equations

y-

5

^-2
2

X

2
2

I/-

X X ^

10-2-2
=

^-

50

X

X

2

X

y-

-t — y.

32 2
2/-

(I)

(H)

(III)

(IV)

(V)

(VI)

In a similar manner we can show that when in the equation

bx + c = 0, h approaches as a limit, the root of the linear equation

becomes infinite (see

II, § 28).

30. Families of

curves. Equation (1)

of the preceding

section represents a

family of equations,

and the graph shows

six of the corre-

sponding family of

curves. If we may
judge by the four

curves (I)- (IV), which appear in the figure, all the curves of the

family are tangent to the same line. We might wish to know whether

any equations of the family have equal roots. This algebraic question

corresponds to the geometric question whether any of the curves

of the family are tangent to the A' axis. Apparently none of the

curves tangent to the line (V) on its upper side has this property, but

if we use the method of § 26, we find that if a = — ^l> equation (1)
o

X" X
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EXERCISES
y

1. Sliow tliat all the curves of the family ij
= ax^ — - —

2, coii-

sidered in the preceding section, are tangent to the straiglit line

?/
= -

^
- 2 at the pohit (0,

-
2).

2. Plot several curves of the family ij
= <ix} -\- x -{- \. Discuss

the behavior of these curves as a approaches zero. Will any of the

curves go through the origin ? For what value of a will the equation
ax''^ -(- .r + 1 = have equal roots ? What is the common tangent line

of the family ? What are the coordinates of the point of tangency ?

3. Draw several curves of the family y = ax" — 4 and discuss the

behavior of these curves as a varies.

4. Draw several curves of the family y = ax'- — 2./- + 2 and dis-

cuss the l)ehavior of these curves as a varies.

5. What value must A- approach so that one root of each of the

following equations may become infinite ?

(a) 2L-x--(ix--\-7x-k = 0. (c) (k + 2)(x^+ l)
= 2x(x-l).

(b) (.,•+ !) (/..'• + .'-1) = 1. (d) Px^= 3(2k~S)(x--x-l).

31. Graphical solution of the quadratic equation. Let

1/
= (fx- + kr + c, (1)

where, as usual, (t, h, and c represent real numbers and a is positive.

If we let X. take on various values, y will have corresponding values

and we may plot the equation as in § 17. A root of the quadratic

equation aj- + hx + r = (2)

is a number which substituted for x satisfies the equation and there-

fore gives the value
//
= in (1). Thus the points on the graph of

(1) Avhieh represent the real roots of equation (2) are the points

for which y = ;
that is, where the curve crosses the X axis. The

numerical values of these roots are the measures of the distances

along the A' axis from the origin to the points where the curve cuts

the axis. The existence of complex roots of (1) is determined by
the following

Theorem. If the graph of (1) has no point in common icith

the X axis, equation (2) has complex roots, and conversed
i/.

Every equation of form (2) has two roots either real or complex

(§ 21). If the graph of (1) has no point in common with the A' axis,
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there is no real value of x for which y = 0, and consequently no real

root of (2). The roots must then be complex.

Converse/1/,
if (2) has complex roots, there is no real value of x

which satisfies it, and which makes ?/
= in (1). Thus the curve

has no point in common with the X axis.

32. Maxima and minima. Consider the equation

y = 2x' + 7x + 2. (1)

By substituting for x a very large positive or negative number,

say, X = ± 100, y is large positively. Thus for values of x far to the

right or left the curve lies far above the X axis, but for one value

of X we get only one value of y ;
that is, there is only one point on

the curve above (or below) any specified point on the A' axis.

If, however, we assign to y a certain value, we can find the corre-

sponding values of x by the solution of a quadratic equation ;
that

is, the curve has two points, whose abscissas are either real, coin-

cident, or complex, on the same horizontal line with any point on

the Y axis. In equation (1) let y — 2.

Then 2 = 2 x^ + 7 .r -f- 2,

or 2 x^ + 7x = 0.

The roots are x^
= —

3^, .r^
= 0.

Hence the points (— 3^, 2) and (0, 2) are on the curve (§ 17); that

is, if we go up two units on the Y axis, the curve is to be found

3^ units to the left and also again on the Faxis. If in (1) we let

?/= — 4, the corresponding values of x, namely,— 1|- and —2, are very

nearly equal to each other, which means that the curve meets a line

parallel to the A' axis and four units below it at points near together

We may now ask. Where is the lowest, or minimum, point of the

curve ? This lowest point certainly has as its value of y that number

to which correspond equal values of x. Hence we must determine _-:r

what vahie of y the equation (1), which we now write in the form

2x'' + 7x-\-{2-y)=0,
has equal roots. Comparing this equation with ax^ -{- bx -\- c = 0, we

liave 2 = a, 7 = h, 2 - y = c.

Thus the condition li^ — ^ ac = becomes

49 -4-2(2- 2/)= 0,

49-16 33
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Substituting tliis value of
ij

in
(1), we get

—
| as the correspond-

ing value of X. We may express the foregoing results in tabular

form, and draw the curve.

V-
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EXERCISES

Plot the following equations and determine the points where the

graphs cut the A' axis. Find in each case the lowest or highest point

according as the curve is concave upward or downward.

1. l/
= x''-6x-\-5. 6. x^ + 4 a- - 2 y = 0.

2. y;
= .T^ -f- 4 .T + 4. 7.

9j
= 2x — x\

3. y = a-2 - 6 .7- + 10. 8.
i/ + x^ + 2x + 2 = 0.

^. y = 2x'-x-?,. 9. ic'=-4a; + 4 + 47/=0.

5. 7/
= 1 — X — 2 x-l IQ. X- — ^x — y =0.

11. Divide 10 into two parts such that their product shall be

a maximum.

12. Divide 10 into two parts such that the sum of their squares
shall be a minimum.

13. Divide 12 into two parts such that the product of half one

part by a third of the other part shall be a maximum.

14. Find the number of acres in the largest rectangular field that

can be inclosed by a mile of fence.

15. A window is to be made in the shape of a rectangle surmounted

by an equilateral triangle one of whose sides is the upper base of the

rectangle. The perimeter of the window is to be 22 feet. Find its width

and height in order that it may admit the maximum amount of light.

Solution. Let the base of the rectangle be 2 a; and its altitude be y. Then
the perimeter of the entire window is

2i/+ 6x = 22,

from which y = \\ — Zx.

The area of the window is 2 jy + VSx^,

or, substituting the value of y found above,

22x- 6x2 + V3x2.

The question is, For what value of x will this function take on its maximum
value ?

The coefiBcient of x^ in this quadratic function is v'3 — 6 and the coeflBcient

of X is 22. Substituting these values for a and h respectively in formula (3),

we have , /- / /- \

__ b _ 22 _ 11 V3 + 6 _ ll(V3 + 6)

2 « 2 (V3 - 6) V3 - 6 V3 + 6

~
- 33

_

= ^(V3 + 0)= ^(1.7321 + 6)
= 2.5774.

2x = 5.15 feet, the width of the window.
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The height of the window is

y + VSx = 11 - 3x + VSx

= 11 _ (;^
_ V3) z = 11 - (1.2679) (2.5774)

= 11 - 3.27 = 7.73 feet.

16. Solve the same problem for a window in the shape of a rec-

tangle and an isosceles right triangle wliosc hyjxjtiMuise is the upper
base of the rectangle, the lu'i'inicter of the window being 28 feet.

17. Solve the same i)roblem for a window in the shape of a rec-

tangle surmounted Ijy a trapezoid each of whose legs and upper base

are equal to half the upper base of the rectangle, the perimeter of

the window being 37.3 feet.

18. Solve the same problem for a window in the shape of a rec-

tangle surmounted by a semicircle, the perimeter of the window being
32 feet.

19. Find the dimensions of the rectangle of largest area that can

be inscribed in an isosceles triangle whose altitude is 20 and whose

base is 14, one side of the rectangle lying on the base of the triangle.

20. Find the dimensions of the rectangle of largest area that can

be inscribed in a right triangle whose legs are a and b, one angle of

the rectangle coinciding with the right angle of the triangle.



CHAPTER IV

INEQUALITIES

33. General theorem. We say that a is greater than h, ov a> h,

when a — ^ is positive. If a — h is negative, then a is less than h,

or a < h. As we distinguished between identities and equations of

condition in § 11, so in this discussion we observe that some state-

ments of inequality are true for any real value of the letters, while

others hold for particular values only. The former class may be

called unconditional, the latter conditional, inequalities.

Thus a^ > — 1 is true for any real value of a and is unconditional, while

X — 1 > 2 only when x is greater than 3 and is consequently conditional.

The two inequalities a > h, c > d, are said to have the same sense.

Similarly, a < b, c < d, have the same sense. The inequalities a > b,

c < d, have different senses.

Theorem. An^ real number may he added to or subtracted

from each member of an inequality without affecting its sense. Both

members of an inequality yyiay be multiplied or divided by any posi-

tive number without affecting the sense of the inequality.

Let a > b, that is, let a — b = k, where A; is a positive number.

If m is any real number, evidently

a ± rn — (b ± ?»)
= k,

or, a ± in > b ± vi.

Similarly, ma — vib = ink,

or, if m is positive, 7na > mb.

When m is less than 1 this amounts to dividing both members by a positive

constant.

If each member of an inequality is multiplied by a negative number, that

is, if m is negative, the sense of the inequality is changed.

Corollary I. Terms may be transposed from one member of

an inequality to the other, as in the case of equations.
64
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Corollary 11. If both members of an ineqvalifi/ are positive,

each member may be rained to any power tvithout chanyiny the sense

of the inequality ; if both members are neyative and each is raised

to the same even potver, the sense of the inequality is chatiyed ; if

both members are neyative and each is raised to the same oddpoiver,

the sense of the inequality is not chanyed.

Thus, when both a and b are positive, if a < b, then a" < 6", but since — a > — 6,

(_ rt)3 > (_ i,)»
and {- «)- < (- 6J2.

Siniilariy, Va < Vb, but — Va > — Vb. That is, if the negative signs are

taken in extracting the square root, the sense of the inequality is changed.

EXAMPLES

1. Show that — • > X + ij,
unless x = y, where x and y

represent positive real numbers.

Solution. Multiply both sides of the iiietiuality by 2y. This will not change
the sense of the inequality since 2y is positive.

x2 + 32/2 >2xy + 22/2.

Subtracting 2xy + 2y^ from both sides,

x2-2x2/ + 2/2>0,

or {x
-

?/)- > 0.

This last inequality is true unless x = y, since the square of any real number

except is positive.

If now the steps are performed in the reverse order, the original inequality

is established, and therefore holds for all positive real values of x and y

unless X = y*

2. Show that a^ + h^ > trJi + ah-j unless a = h, where a and h rep-

resent positive n-al numbers.

First solution. Divide each side of the inequality by a + 6. Since a + 6 is

positive, the sense of the inequality is not changed.

a"- - ab + 62 > ab.

Subtracting ab from each side, (a
—

b)' > 0,

which is true unless a = b. llonce, reversing the order of the operations, it

appears that the lirst inequality holds.

*In this ni«'th(i<l of proof we first assuino that the inequality in question is true

and then pass from it, by lejiitiinatc optTutions, to a sclf-eviiU-nt ini'ijuality. But this

proi-ess does not establish the validity of tlic oriiiinal cxpri-ssion. Tlic proof is not

complete, until, starting with tlie evident inequality, we perform the operations which
will lead back to the original. It is usually sulheient to observe that it is possible to

go through this retrograde process without actually doing it.
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Second solution. Subtract a% + a62 from each side.

a3 _ a^b - aff~ + b^>0.

Factoring, a^ {a
—

b)
— Ifi {a

— h)> 0,

(a2
-

^2) (a
-

6) > 0.

If a > b, both factors are positive. If a < 6, both factors are negative. In

either case their product is positive. Hence the inequality holds unless a = b.

3. Show that Vs + Vlo <
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16. Show that the sum of any positive number and its recii)rocal

is never less than 2.

17. Show that a; + 1< 2 a-'' if r > 1, and that x + l>^2 ./-'' if :r < 1.

34. Conditional linear inequalities. W'c li;ive solved the equa-

tion ax -\- b = 0, and found that x = But if we consider the left
a

member as a function of x, we see that for various values of x the

expression ax + takes on different values, some of which may be

greater and otliers less than 0. We now seek to determine the class

of numbers which make (,x + /y < 0. (1)

That is, we wish to solve this inequality.

First, let a be positive.

By Theorem, § 33, we have ax < — b,

hence x<
a

Now let a be negative and crpial to — .1, where A is positive.

Then (1) may be written

— Ax + h<0, or A X — /> > 0.

Solving as before, we olitain

f> _ h _ h

A —a a

We may solve in a similar manner the inequality

ax + /> > 0. (2)

35. Graphical interpretation of the linear inequality. If we set

ax -\- b = y, we see that if y is the corresponding value of x must

be the root of the equation ax + b = 0. But all the values of x

which give y a negative value satisfy the inequality (1) ;
that is,

the values of x for which the line ax -\- b = y is below the A' axis

satisfy (1), while the values of x for which the line is above the

X axis satisfy the inequality ax -\- b>0. Hence to solve an in-

equality of type (1) or (2) graphically we may plot the function

represented by the left member, and determine for what values of

X the graph is respectively below or above the A' axis.

36. Conditional quadratic inequalities. Consider the expression

y- + 4 .«•
— 5 =

//.

Construct the gra])h of tliis ('(piation. From the figure it appears

tliat 1/ is nt>gative for values of ,/ lu'twci'n the roots of ./•- -|- 4 .r — 5 = 0,
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and. positive for other values of x except the roots themselves.

Since the roots are — 5 and + 1, we can say that the inequality

a;^+4a;—5<0is satisfied when— 5< a?<1.

This example shows that if the equation

av? + ia; + c = has real roots, so that the

corresponding graph cuts the X axis, and

if a is positive, so that the curve is con-

cave upwards, the inequality

ax^ \-hx + c<^ (1)

is satisfied for values of x which lie be-

tween the values of the roots.

When the roots of ax?" -|- ^.r -|- c = are

complex, so that the graph lies entirely

above the X axis, there is no real value

of X which satisfies (1).

When the roots are real and the sign of

a is negative, so that the graph is concave downwards, the curve

will be above the X axis for values of x between the roots, and hence

(1) will be satisfied only by values of x exceeding the greater or less

than the smaller root.

EXERCISES

Solve the following inequalities. Illustrate graphically :



CHAPTER V

COMPLEX NUMBERS

37. The imaginary unit. When we approached the solution of

quadratic equations we saw tliat many equations, as, for example,
the ecjuation x'- = 2, are not solvable if we are at liberty to use only

rational numbers. It is necessary to introduce irrational numbers in

order to solve them. The excuse for introducing such numbers is not

that we need them as a means for more accurate measurement,— the

rational numbers are entirely adequate for all mechanical purposes,— but that they are a mathematical necessity if we propose to solve

equations of this type.

A similar situation demands the introduction of still other num-

bers. In attempting to solve the equation

a--' = - 1 (1)

we may write the result in the form

X =± V — 1.

But we realize that there is no real number whose square is — 1.

We may write the si/mhol V— 1, but its meaning must be somewhat

remote from that of V2, for in the latter case we have a process by
which we can extract the square root and get a number whose square
is as nearly equal to 2 as we desire. This process is not applicable

in the case of V— 1. In fact, this symbol differs from 1 or any real

number not merely in degree but in kind. One cannot say that V — 1

is greater or less than a real number, any more than one can com-

pare the magnitudes of a quart and an inch.

V— 1 is symbolized by i and is called the imaginary unit. The

term "
imaginary

"
is jierhaps too firmly established in mathematical

literature to warrant its discontinuance. It should be kept in mind,

however, that it is really no more and no less imaginary than the

negative or the irrational numbers. So far as we have yet proceeded
it is merely something which satisfies equation (1). lint when we

have defined the various operations on it and ascribed to it the

m
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characteristic properties of numbers, we shall be justified in calling

it a number.

Just as we built up from the unit 1 a system of real numbers, so

we shall construct from V— 1 = i a system of imaginary numbers.

The fact that we cannot measure V— 1 on a rule will cause no more

confusion than our inability to measure v 2 exactly. As we are able

to deal with irrational numbers as readily as with integers when we
define what we mean by the four rational operations on them, so

will the imaginaries become indeed numbers with which we can

work when we have defined for them the corresponding operations.

38. Addition and subtraction of imaginary numbers. We write

=
i,

1 = 1
i,

i -\- I ^ 2
i,

i -\- I -\- l = 3
/,

i -\- l -\- -\- i = ni. (I)
V-

-^
/

n terms

Also we write aV — 1 = «
i, where a represents any real number.

Consistently with § 3 we write

± V^7- = ± Vr/- . (- 1)
= ± V^ • V^ = ± aV^T= ± al. (II)

We speak of a positive or a negative imaginary according as the

radical sign is preceded by a positive or a negative sign.

We define addition and subtraction of imaginaries as follows .

ai ±bl = (a ± h) i, (HI)

where a and b are any real numbers.

AssUMPTlOX. The commutative and associative laws of multi-

plication and addition of real numbers we assume to hold for

imagiyiary numbers.

39. Multiplication and division of imaginaries. We have already

virtually defined the multiplication of imaginaries by real numbers

by formula (I). Consistently with § 3 we define

V^ . V^ = 1.1= i- = - 1.

Thus V^i V^ = V^ . V^ i . i = Vab .(-!) = - V^.
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The law of signs in niultii)lication may be expressed verbally as

follows :

The product of two imaginnries with like signs before the radical

is a negative real number. The product of two iniaginaries with

unlike signs is a 2Jositive real number.

For instance,
—V^ • V- 9 = - 2 • 3 • i^ = 6.

We also note that i^ =_ i, r'' = — i, i* = 1, j^ = j^
.

And, in general, ^n + k =
[k^ ^ = o, 1, 2, 3,

• • •

We define division of imaginaries as follows :

V« i

In operating with imaginary numbers, a number of the form

V— a should always be written in the iorni Vcf i before i)erforming

the operation. This avoids temptation to the following error :

V— a- -yZ—b = V(— a) (— b)
= Vab.

EXAMPLES

Simi)lify the following :

1. V^"V-2.
Solution. A^^ • a/^ = VS • I • Vi • i =V2^ • i- = 4 • (- 1)

= - 4.

1
2-

.ft

lit
Solution. — = - = =— I.

i^ i - 1

EXERCISES

Simplify the following:

1. V^9.
2. V^)d.

3. V3 V-48.

4. V^~3 V-27.

5. V-12fl"-'^»V.

6. V2 ax - (a- + .r-).

7.
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12. i'^-i^K

13. ^,-

u.(?-i

15.

17. -7^ +
t^

'

^27

18. (-V-Sv^y.

19. i^^ + 9V3r0.3V32.

(-0-^+(-0^
1-i

16. ; + 2r+3i-^+4il
20.

3V^

2 V^V-18 V^V^V-12.

40. Complex numbers. The solution of the quadratic equation
with negative discriminant, § 19, affords us an expression which

consists of a real number connected with an imaginary number by
a + or a — sign. Such an expression is called a complex number.

It consists of two parts which are of different kinds, the real part

and the imaginary part. Thus 6 + 4 1 means 6 I's + 4 i's. To any

pair of real numbers {x, y) corresponds a complex number x + iy,

and conversely.

41. Graphical representation of complex numbers. We can rep-

resent all real numbers on a single straight line. When we wished

to represent two variables simultaneously (§ 17), we made use of

the plane, and assumed a one-to-one

correspondence between the points

on the plane and the pairs of num-

bers (x, y). The general complex
number x + iy depends on the values

of the independent real numbers x

and y, and may then proj^erly be

represented by a point on a plane.

We represent real numbers on the

horizontal axis, imaginary numbers

on the vertical axis, and the complex number x + iy by the point

(x, y) on the plane. Thus the complex numbers 6 -}- i 3,
— 4 -f i 4,

7 — 1 5,
— 2 — i 4 are represented by points on the plane as indicated

in the figure.

42. Equality of complex numbers. We define the two complex
numbers a + ih and c -\- id to be equal when and only when
a = c and b = d.
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Symbolically, a -\- lb = c -\- ul

when and <»nly when a = c, and h = d.

The definition seems reasonable, sinee 1 and i are different in

kind, and we should not expect any real multiple of one to cancel

any real multiple of the other.

Similarly, if we took for units not abstract expressions as 1 and i, but con-

crete objects as trees and streets, we should say that

a trees + 6 streets = c trees + d streets

when and only when a = c and b = d.

The foregoing definition may be stated in the form of the

Principle. When two immerical ezpressio/is involving imagi-

naries are equal to each other, we may equate real parts and

imaginary parts separately.

The graphical interpretation of the definition of equality of complex num-

bers is that equal complex numbers are represented by the same point on

the plane.

From the definition given we see that a -\- lb = -when and only

when a = b = 0.

Assumption. We assume that complex numbers obey the com-

mutative, the associative, and the distributive latvs.

This assumption includes the usual rules for the removal of parentheses.

We are now able to define the fundamental operations on complex

numbers.

43. Addition and subtraction. By applying the assumption just

made we obtain the following symbolic expression for the operations

of addition and subtraction of any two complex numbers a + lb and

c + id: a + lb ± (c + Itl)
= a ±r + I (b ± d). (1)

Rule. To add (subtract} complex numbers, add (subtract} the

real and imaginary parts separately.

44. Graphical representation of addition. We now proceed to

give the graphieul interpretation of aiUlitiun and subtraction.

Theorem. The sum of two runnbers A = a + ib and H = r + id

is represented hy the fourth vertex of the parallelogram formed on

OA and OB as sides.
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Let OX represent the axis of reals and OY that of imaginaries.

Let A and B represent a + Ih and c + id respectively, and let OA SB
be the completed parallelogram of which OA and OB are two of

the sides. We have to prove that the coordi-

nates of 5^ are a -\- c and h -\- d (see (1)).

Draw ES A. OX, AH _L ES, DB _L OX,
FA ± OX. A AHS = A ODB since their

sides are respectively parallel and OB = A S.

Then DB = HS = d,

and ES = EH -j- HS = h -\- d.

Also on ^ AH = FE = c,

and OE = OF ^ FE = (f -{- c.

Hence the point .S' has the coordinates a -\- c and h + d, and there-

fore represents the sum of .1 and B.

E X

EXERCISES

1. The difference A — B of two niunbers .4=1^/ + Ih and B = c-\- id

is represented by the extremity D of the line OD drawn from the

origin in the direction BA, and equal to BA.

2. Represent graphically the following expressions:

(a) 3 - /.

(b) 21 + 7.

(c) _4-2i'.

(d) i - 1.

(e)
i + 5i.

(f)

(g)

3i

(h) (2 + /) + (3
- 2

/).

(i) (l-l)-il+l).

(j) 2(3-40-4(1-20-
(k) (4t-5) + (4-50.

(1) (-1 +20-(|-40.
(m) (- 3 - § + (1

-
I 0-

(n) 3/ +^-
In the following exercises apply the principle of § 42. Find the

real values of x and y satisfying the equations :

3. (3 + ^ + (1
- 2

// + 7 ; = 0.

-

,.'..
^

4.3?+ hnj
—

?/
= 5 + 36 i.

5. 2x-?,y + i{x''- y-)
= 4.

6. (3; + i)(x-y) = (l-l)x-{-2i(l~y) + 3:
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45. Multiplication of complex numbers. The assumption of i? 42

enables us to niulti[)ly coinijlfx iiunihers as follows:

<i -\- II,

c -\- hi

ac -\- id) -\- lad 4- i'l>'l = iic — fjfi + i(r/, -f- aJ).

46. Conjugate complex numbers. Complex numbers differing

only ill lilt' »iL;ii <>1 tlirir iiiuiginiiry parts an; called conjugate complex

numbers.

TuEoiiEM. The sum and the product of conjugate complex num-

bers are real numbers.

Thus a + Ih 4- a - lb = 2 a,

(a + Ih) (>i
—

Ih)
= n^ + //-.

47. Division of complex numbers. The quotient of two complex
numbers may always be expressed as a single complex number.

Rule. To express the quotient
— in the form x+ iy, rationalize

the denominator, using as a rationalizing factor the conjugate of the

denominator.
a -\- ih a -\- ih c — id

Thus
C + id ( + id (' — id

ac + bd — i{(id
—

/>f)^
c- + d'

ac -\- hd . ad — he

f^ + d-'

'

c' + d' (1)

We have now defined the loui' iuudamental operations on com-

plex numbers and shall make frequent use of them. If the question

remains, "After all, what arc these so-called numbers?" we may
reply :

"
They are expressions for which we have defined the funda-

mental algebraic operations. And, since they have the properties of

muubers, they must be recognized as such, just as a flower Avhich has

all the chara(^teristic 2)roi)erties of a known species is thereby deter-

mined to belong to that species." Furthermore, our oi)erations have

been so defined that if the imaginary parts of the complex numbers

vanish and the numbers become real, the equation expressing any oper-

ation on complex numbers reduces to one expressing the same opera-

tion on the real parts of the numbers. Thus in (1) above, if h = d— Oy

the ciiuaiioii reduces to a _ a

c c
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EXAMPLES

Perform the indicated operations and simplify ;

1.
'

(2 + V^r2)(4 + V^^).

Solution. 2 + V^^ = 2 + V2(- 1) = 2 + iV2

4 + V-Ts = 4 + V5 (- 1)
= 4 + i V5

8 - VlO + i 4 V2 + i 2 VS

= 8 - VlO + (4 V2 + 2 VI) i.

2. 5--(V2- ;V3).

Solution.

5
_ ^ 5(V2 + iV3)

_ ^ 5(V2 + zV3) ^^;^
^
.^/g

V2-iV3 (V2-zV3)(V2 + iV3) 2 + 3

EXERCISES

Perform the indicated operations and simplify :

1. 'tzll. 12. (-!+.• V3f+ (-!-.- V3f
1 + *

4 13. fl
+ ^'^^

1+-v^
3 14.

2

4

V2"

1+i

V2 + t

4. (V3 + .-V2)(V2 + .-V3).
15. ^+^^ .

V3 — i V2
5. (aV^»+ icV^)(a.V^-<vV^).

1 + 2 ; + 3 r
6. {yfT+'i + Vr^)l

•^'''

1 _ 2i + 3 i''

1. {x + iy)\ /2-iY /2 + A-
17 ' ' ' '

8. (3 + iy + (3
-

iy.

'

V2 + 1/ \2 - I

1 1 l+,- + 2r + 3/«
^-

(r31)-2-(i+i)2-
•

^ + 2i^ + 3i« + 4i*

87 ^^ V^ -V^
11. j=- 20. . p=-

4 + 7V~5 V^ +V^
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Prove the following relations :

77

21. (2+0' =

22. (l-2i7 =

7±}

11 -2t
2i-l

24. (Vii+V2/)'
25

l_V-24

25 (l-0' = j

-4
+ i

1 .. ^ .vo 36 i — 77
26.

(1 + if ^ V5 - i

VS + i (1
-

if

Perform the indicated operations and simplify :

a + ib a — ih
27.

a— ih a-\- lb

29.
a + ^Vl-«'
-iVl-«2

28. ^^+;'^^ + :i^^-
e+ tc/ r — id

12 -5i
31. Reduce

30. Vl+a-4-tVl— .r Vl— .r + /Vl+.r

VT+aJ— * Vl — a; Vl — x — iVl+x

and
5

to simplest form and represent2-3i l + 2t

their sum and their difference graphically.

5 -Hi J -(T + 9/) , . , , ^
32. Reduce 7—; r- and -777; zr- to simplest form and repre-

2(1
—

i) 2(1 + i)

sent their sum and their difference graphically.

48. Polar representation. The graphical representation of com-

plex numbers given in § 41 suggests the graphical interpretation

of the operations of addition and subtraction

given in § 44. Rut the graphical meaning of the

operations of multiplication and division may be

shown more clearly in another manner. "We have

seen that Ave may represent x + ly by the point

P (x, y) on the plane. Let us represent the angle

between OP and the axis of reals by 6 (read theta). This is called

the angle of the complex number ./• + ///.
^^'e will denote the length

of the line OP by p (read rho). This is called the modulus of a- + ///.

Then from the figure
X = p cos 6, (1)

y = 9 sin 0, (2)

and x^ + y- = p". (3)

Y
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Hence the complex number x -f ly may be written in the form

X + 11/
= p (cos 6 -{- i sin 6), (4)

where the relations between x, y and p, are given by (1), (2), and

(3). When the value of p is found by the use of (3), the positive

sign is always taken. A number expressed in this way is in polar

form, and may be designated by (p, Q). We observe that a complex
number lies on a circle whose center is the origin and whose radius

is the modulus of the number. The angle is the one which the line

representing the modulus makes with the axis of real numbers.

When the values of p and Q are given we can find the values of x

and y for the corresponding complex number by means of (1) and (2).

When a number is given in polar form- it should be kept in mind

that the modulus, or the value of p, is the coefiicient of the expression
cos Q -{- i sin Q.

Thus ill the number 2 (cos 30'' + i sin .30^), 2 is the modulus and 30° is the

angle.

EXAMPLE

Find the modulus and the angle of the number 1 + i VS and

write the number in polar form.

Solution. Let 1 + iv3 = x + ?y ;
tlien x = 1, xj

= VS.

By (3), p = ^>x'- + if-
= Vl + 3 = 2.

X 1

By (1), x—p cos (9, or cos ^ = - = - .

p 2

Hence must equal either 60° or 300°. But since the number 1 + i^/3 is

represented in the first quadrant, the only possible value is ^ = 60°, and we have

1 + i V3 = 2 (cos 60° + i sin 60°).

EXERCISES

Find the modulus and the angle of each of the following numbers

and write them in polar form. Plot the numbers.

1. -l + iV3. 5. -Vs+iVs.
2- !-*• 6. 1 -

i VSi.

3. -3-3i. 7. _3l4i.
4. V3 + i. 8. 5 + 12i.
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Change the following complex numbers from the polar form to the

form X + ///.
Plot the iminbers.

9. cos 225° + i sin 225°. 12. 2 V2 (cos 135° + i sin 135°).

10. 2 (cos 300° + i ain 300°). 13. ^ (cos 180° + i sin 1S0°).

11. O(cos 120° + i sin 120°). 14. cos 270° + I sin 270°.

49. Multiplication in polar form. If \\c Ikivc two munbers

p (cos ^ + i sin ^) and p' (cos 6' + i sin ^'), we may multiply them

as follows :

p(cos^4- /sin^)p'(cos(9'+ /sin &)

=
pp'(cos 6 cos 6'+ i cos 6 sin 0'

+ I sin cos d'+ /- sin 6 sin
6')

collecting terms, =
pp' [(cos 6 cos 6'— sin 6 sin

6')

.
^- ,,.,. ^, +t(sinecos^'+c()s^sin^')]

by the addition theorem

in trigonometry,
. =p,T»s(« + «')+ ;sin,» + »')]. (1)

In this product pp' is the new modulus and 6 + 6' the new angle.

We may now state the following

Theoke.m. lyw product of the two numhers p (cos 6 + i sin 6) and

p'(cos d'-\- isin 6'')
has as its modidus pp' and as its angle 6 + 6'.

It is observed that the product of two numbers is represented on

a circle whose radius is the product of the radii of the circles on which

the factors are represented. The angle of the })roduct is the sum of

the angles of thi^ factors.

50. Powers of numbers in polar form. When the two factors of

the preceding section, (p, 6) and {p, 6'), are equal, that is, when p = p'

and 6 = 6', equation (1) assumes the form

Ip (cos + i sin 6)f = p- (cos 2 6-\-i sin 2 6). (1)

This suggests as a form for the nth power of a complex iiuinl>er

[p (cos 6 + i sin 6)y'
= p" (cos n6 + i sin n

6). (2)

The theorem expressed by (2) is known as De Moivre's theorem.

Stated verbally it is as follows: The modulus of the iii\\ power of a

number is the nth power of the modulus of the number. The angle

of the nth power of a number is n times the angle of the number.
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51. Division in polar form. If we have, as before, two complex

numbers in polar form, (p, 6) and (p', 6'),
we may obtain their quotient

as follows :

p (cos + i sin 6)

p'(cos6' + isinO')

p (cos e + i sin 6) (cos 0' - i sin 0')

(rationalizing)
=

^'(cos ^' + isin ^')

"

(cos ^' - i sin ^')

p[cos(g-^')+/sin(g-^')]~
p'(cos2^' + sin'-^^')

^"s"" <-• + ™s= . = 1)

=
,^
[™^ («-«) + ; sin («

-
.)].

We may now state the following

Theorem. The quotient of two complex numbers lias as its mod-

ulus the quotient of the moduli of the numbers, and as its angle the

difference of the angles of the nuinbers.

EXAMPLES

1. Find the moduli and angles of the numbers 2 — 21 and V3 + i

and of their product. Plot the three numbers.

Solution. Let 2 — 2 i = x + t?/.

Then cc = 2, ?/ = — 2,

and p = Vx2 4- y^ = V4 + 4 = 2 V2.

^ X 2 1
cos — - = = —-

P 2V2 V2
Hence - 45° or 315°.

But since 2 — 2 iis represented

in tlie fourtli quadrant,

(9=315°.

Let V3 + i = x' + iy'.

Then x' = Vs, y' = 1,

and
. p'

= Vx'2 + 2/'2

= V3 + 1 =: 2.

cos 0' --

2-21

x;_ V3

p'~ 2

Hence 6I' = 30° or 330°.

But since V3 + i is represented in the first quadrant, 6' = 30°.

By the theorem of § 49 the moduhis of the product is

pp' =: 2^ • 2 = 4 a/2.

The angle of the product is (9 + (9' = 315° + 30° = 345°.

Hence P =
(2
- 2 i) (Vs + i)

= 4 V2 (cos 345° + i sin 345°).
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2. Find the moduli uiid angles of tlu^ numbers 2 — 2 Vi^ i and

1 + / and oi' their (|Uotient. Tlot the three numbers.

Solution. Let 2 — 2Vsi = x + iy.

Then x = 2 y =- 2 Vs,

and p = Va:2 + y^ = V4 + 12 = 4.

. X 2 1
cos^ = - = - = -.

p 4 2

Hence 6 = 00° or 300°.

But since 2 — 2 Vs i is represented in the

fourth quadrant,
- 300°.

Let 1 + i = x' + iy'.

Then x' = 1, y' = 1,

and p' = Vx'- + J/'-
= VTTl = V2.

1

P' V2"
cos 6' = — = —=

(2-i2V3)

Hence ^' = 45° or 315°.

But since 1 + i is represented in the first quadrant, 6' = 4.5°.

By the theorem, § 51, the modulus of tlie (luoticnt is - =— = 2v2.

The angle of tlie quotient is 0-0' = 300° - 45° = 255°,

^"^
=2V2(cos255°+ z sin 255°).Hence P

l + i

EXERCISES

Find the moduli and angles of the following numbers and of the in-

dicated products, quotients, or powers. Plot the numbers in each case.

1. (2 + 2 0(- 1 + Va .

/).
10. (-2 + 2 0^

4. 6i -

2. (- V3 + 0(-l-0•
3. (i + ^V3i)(^-iO-

V2 V2
2
~

2

5. (3-3i)(-' + /VT2).

6. (4 + 3t)(l + V-0-

7. (1 + 0'-

8. (1_^
\2 2

11.

12.

13.

14.

15.

V3
_ V2 - V2 i

2 - 2 V3 i

— i

_3_3V3^
2 + 2i

9. (- 3 - V3
/)•'.

Si

- T + 24 t

3 + 4i

16. (- 1 + 0'°-

17. (3 + 3
/) (- 1- + .V V3 /)(- 2-2 i).
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/ 1 VS V 19. [2(cos60°+ ^'sin60°)]-l

18.
^ "

"_ 20. [1 (cos 15° + i sin 15°)]-.
1 V3 .-
o
-
-^T

*-

21. (cos 45° + i sin 45°)^^

22. [3 (cos 75° + i sin 75°)] [f (cos 15° + i sin 15°)].

^^ Meosl80°+^sinl80°) 24.
P(eos 135°+ / sin 135°)].

.

•

i (cos 100°+,: sin 100°)
[i^(cos315°+isin316'')l'

25. For what values of n will (l + V— 3)" be a real number ?

52. Roots of complex numbers. We have seen that the square

of a complex number has as its modulus the square of the modulus

of the number, and as its angle twice the original angle.

Thus the number (1, 30°), or 1 •

(cos 30°+ i sin 30°), has as its square

the number (1, 60°). Also the number (1, 210°) has as its square

(1, 420°). But (1, 420°)
=

(1, 60°) ;
for if two complex numbers have

the same modulus and their angles differ by a multiple of 360°, they

are represented graphically by the same point, and are thei'efore

identical. For example, (1, 60°)
=

(1, 420°) = (1, 780°), etc. Hence

it appears that any complex number with an angle greater than

360° is equivalent to one with an angle less than 360°.

We have, then, found two numbers (1, 30°) and (1, 210°) each of

whose squares equals the number (1, 60°), that is, we have found the

square roots of this number.

In general, the modulus of the square root of a number is the

positive square root of the modulus of the number. The angle of

the square root of a number is one such that if we double it we

get either the original angle or one which differs from it by 360°.

Expressed in symbols, if the original angle is Q, the angles of the

square roots are a a

^
and

^
+ 180°.

This may be denoted more compactly as follows :

I
+ A- 180°, (7.

=
0,1),

by which we mean that we substitute in the expression indicated,

first, the value k = 0, and then the value k — 1, obtaining the same
9 6

values - and — + 180°, for the angles which were given above.
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III ;i similar manner, if we seek all the numbers with angles less

tlian 360° wlii(;li cubed give a certain number, we must find three

angles which multiplied by 3 give the original angle or one which

differs from it by a multiple of 360°.

For example, the three numliers (1,20°), (1,140°), and (1,260°)

have as their cubes the three numbers (1, 60°), (1, 420°), and (1, 780°)

respectively. But since all of these numbers have the same modulus

and their angles differ by either 360° or 720°, they are really the

same number
;
that is, the numbers first given are the three cube

roots of the number (1, 60°).

In general, the modulus of a cube root of a complex number is

the real cube root of the modulus of the ninnbci'. The angle of a

cube root is an angle such that if we multiply it by 3, we obtain

cither the original angle or one which differs from it by a multiple

of 360°. If the original angle is denoted by 6, the three angles of

the cube roots are fl

r. + k 120°, {k
= 0, 1, 2).

We may treat the problem of finding tlu>, 7;th roots of a number

(p, B) similarly. The modulus of the ?ith root of (p, 6) is the real

l)ositive nth root of p, namely yp. The angles are those angles

which, multiplied by n, give either B or an angle which differs from

B by a multiple of 360°. There are n such angles less than 360°.

In the notation which we have adopted the angles of the nth

roots are q q^./^
^ + /r— , (A=0,l,2,...,n-1).n n

Thus ^/p (cos B+ i sin B)
= y^ cos (

- ,
360\ . . (B ,

360
+ A- + 1 sm - + A-

n I \n 11

where for a given value of n, k takes on the values 0, 1,
• •

•,
n — \,

and where yp indicates the real positive nth. root of p.

For example, the five angles of the fifth roots of a number whose angle is 60° are

60°
^

360
obtained by adding to— = 12°, the angles k . where A; = 0, 1, 2, 3, 4

;
that

5 5

is, the angles are 12°, 12° + 72° = 84°, 12° + 2 • 72° = 156°, 12° + 3 • 72° = 228°,

12° + 4 • 72° = 300°.

"When, in the following exercises, the radical sign, \'' ,
is used over a complex

nnnibor, or over a real number which is thought of as a complex number with zero

imaginary part, all n of the roots are meant. When only the aritlunetioal square

root of a real number is intended, the usage explained on page 5 is followed. The

context will make it clear in each case which meaning of the radical is to be taken.
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EXAMPLES

1. Perform the indicated operation and plot:

V- 2 + 2 V3 i.

Solution. "We first express the number —2 + 2 Vs i in polar form.

p = V(- 2)2 + (2 V3)'^ = V4 + 12 = 4. r

cos^ =— =--, (9 = 120° or 240°.
4 2

But since —2+2 Vs i is in the second

quadrant, = 120°.

Hence - 2 + 2 Vs i = 4 (cos 120° + i sin 120°).

Now V^ = Vi = 2,

which is the modulus of the square roots.

l+iVs"

The angles are

and

e _ 120°

120°
_+ 180° =—
2 2

= 60°,

+ 180° = 240°. -i-;V3

Hence \/- 2 +V3i = 2 (cos 60° + i sin 60°) = 1 + Vs i,

or 2(cos240° + isin240°)= -1- V3i.

It is sometimes more convenient to find the roots of a complex

number in another way. For example,

2. Find V3 + 4 i.

Solution. We see from § 52 that a root of a complex number is always a

complex number.

Hence we may write V3 + ii = x + iy.

Squaring, 3 + 4z = x2 + 2 ixy — y^.

Then, by § 42, x'- - y''
= 3, (1)

2x2/ = 4. (2)

Squaring (1) and (2), x* - 2x^y- + y^ = 9

4 x^y
g = 16

Adding,

Hence

X* + 2 x2;/2 + 2/4
= 25

x2 + 2/2 = ± 5.

But since x and y are real, the sum of their squares must be positive. Then

we must take 3.2 ^. ^^2
-_ 5

Adding (1), x2 — 2/2 = 3

we obtain 2 x2 = 8

x2 = 4,

X =± 2.

Substituting this value of x in the equation 2xy = 4, we find y =±1.
.: VS + 4 i =2 + 1 or — 2 - i.
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3. Solve the equaUuu x^—l = 0, and represent the roots graphically.

Solution, x^ — 1, or x = Vl.

Let 1 = 1 + • I =
/3 (cos 6* + i sill 0) . Tlieii p = 1

,
B-^^.

x = \/l(cosO° + isinO°)

- 6/Tr /0° ,
360°\ ... /O^

+ A:

300

)]

(where k takes on the values 0, 1,2, 3, 4)
'

cos 0° + i sin 0° = 1, when fc = 0,

cos 72° + i sin 72°, when i = 1,

=
\
cos 144° + i sin 144°, when A; = 2,

cos 210° + i sin 210°, when A; = 3,

^
cos 288° + I sin 288°, when fc = 4.

These numbers we observe lie on a circle of unit radius at the vertices of a

regular pentagon.

EXERCISES

In the following exercises perform the indicated operations and

represent graphically the complex number and its roots :

1. Work example 2 above, using polar representation.

2. \/4 + 4V3i.

3. V7.

10. V5 + 12 I

11. V-1 +4V^.
4. V^".

5. Show that

V7 + V^- = ± V2, or ± l V2.

6. \/-l + 2V2i.

7. -v^3 + 3 I

8. \/V3 - I

9. ^4-4 i.

12. -^8(008 15°+ i sin 15°).

13. -v/16 (cos 200° + i sin 200°).

14. ^/S (cos 60° 4- i sin 60°).

15. Ml - ^V^.
16. Vit;-.

17. ^8.

18. S/- 128.

Solve the following equations and illustrate the results graphically:

19. .r'^-32 = 0. 23. r^ + 1 = 0.

20. a-»-l = 0. 24. .'•«- 1 = 0.

21. .r" + 1=0.

22. a.-* -16=0.

25. -1 = 0.

26. .'•' + 1 = 0.



86 HIGHER ALGEBRA

27. Show that either of the complex roots of the equation x^ = 1

is the square of the other, and that the sum of the three roots is zero.

Represent the three roots and their sum graphically.

28. Show graphically that the sum of the roots of the equation

x^ = 1 is zero.

29. Show graphically that the sum of the roots of the equation
x" = 1 is zero if n is & positive even integer.

Note. This is true when n is any positive integer, whether even or odd, as

we shall see in the next chapter, § 62.

30. Show that the product of the three cube roots of 1 is 1.

31. Prove that the product of the n nth roots of 1 is 1, if n is

odd, and — 1 if ?i. is even.



CHAPTER VI

THEORY OF EQUATIONS

53. Introduction. As a preliminary to the development of the

methods and tlicorcnis of this chapter, a few definitions are necessary.

A term is rational if it may be obtained in its simplest form from

unity and the letters concerned by means of the four operations of

addition, subtraction, multiplication, and division, without the extrac-

tion of any root. If each of the terms of an algebraic function is

rational, it is called a rational function.

_, , . a b I 4x 8a -6x2 ax^ + bx -^ c
The functions - + —,» -^ r'

'—
^ ^ "• 7

—
'

X x^ x^ 5 cx" — 1 cx—f
are eacli raliuuiil in x.

A term is integral if the letter which is taken as the variable does

not appear in the denominator. A term may be integral and still

involve a radical sign. If each of the terms of an algebraic expres-

sion is integral, it is called an integral function.

4x r
Tlie functions —

, 8 x''^ — Vx, ax- + 6x + c,

are each integral in x.

An integral function is not necessarily rational, nor is every

rational function integral. Thus — + V.r -f 8 is integral but not

•'-1
rational, while "—

H [- 8 is rational but not integral.
4 ./

An algebraic function is rational and integral if each of its terms

is rational and integral. Such an expression is frequently called a

polynomial. The polynomial /(.r)
=

a^"" + o^.r""* H h "„, where

Og, Wj, rt^j-- > "nj ^I'e all integers, n is a i)ositive integer, and a^ ^ 0,

we shall call the general polynomial of the «th degree, or the poly-

nomial in o-form.

The equation
^^3." _(_ ^,^.,."-i + \-a„ = {A)

we shall call the general equation of the /ith degree, or the equation

in a-form. The subject of our study in this chapter is the rational,

integral equation of degree n in one variable.

87
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It is necessary to keep in mind that the symbols a^, «!,
• • •

, a„, stand for

numbers. Since they are all coefficients in tlie same expression, we denote them
all by the same letter, a

;
but since they are the coefficients of different terms,

they must be distinguished from each other in some way. This is done by giving
each a a subscript equal to one less than the number of the term in which it is

used. In this way we know that a^ is the coefficient in the fourth term, a^ that

in the third term, and so on.

The notation f{x), read "/of x," is simply a symbol denoting that the expres-

sion in question is a function of x. Other letters are sometimes used to denote

functions of x, as, for instance, F{x), ^(x), and Q{x).

If in f(x) the variable x is replaced, for example, by the number 3,

the resulting expression is denoted by /(3). We may similarly

replace x all through f(x) by a letter, as, for instance, c. The result-

ing expression a^c" + a^c"~^ + • • • + '^'«
^^& denote by /(c).

For example, if /(x) = 2x^ — 3x- - 7 x + 5, f{2) = 2(2)3
_

3(2)2
_ 7 . 2 +

5 =- 5, while /(O) = 5 and/(- 1)
= 7.

The equation x" +2^^"'^ -^ 2\^"~^ + • • + P,,
=

^, (P)

where
2^^, 2^-21

' '

'^Vni ^^6 all rational numbers, and 7i is a positive inte-

ger, we shall call the p-iaxm. of the equation of the wth degree. It is

observed that any rational integral equation with rational coeflB-

eients may be brought into the a-form, (.4), by transposition and

multiplication by the least common denominator of the coefficients.

Furthermore, any general equation may be put into the /»-form

by dividing by a^.
Since a^ is assumed to be different from zero,

this can always be done.

For example, the equation §x*
—

| x = § x^ — x* + '

,
after transposition and

multiplication by 24, becomes

40x* - 32x2 -21x- 6 = 0,

which is in the a-form. Dividing by 40, we have the equation

•*'
5"'' 40'*' 50 — ")

which is in the p-form.

EXERCISES

Reduce the following equations to the a-form and to the p-ioxnx :

xi' x}
, X ?>x^

2. -^ -H 1 = rr^ -f 4.
5 15

3. .bx-.15x^ + .2h = x\
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4. 1.4 X* = 2.8 :r' - .7 J- + 2.1 x\

5. If /(a:)
= 2x-«-4x+6, find/(0),/(l),/(-2), /(«), and /(-a:).

6. It /(a;)=a;2 + 3x-3,
find /(3), /(^O, /(^^ + 1), /O'-l)-

7. If f(x)=2x*-x\

find /(V2), /(O), /(0, /(-^)-

8. Keducing tlie equation
— + - — 1 = to the a-form and to
o O

the jy-forni,
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14. Find a polynomial of the second degree whose graph passes

through the point (2, 4), and such that the equation formed by

equating it to zero has roots — 2 and 4.

15. Eind a polynomial of the third degree which vanishes when
a; = 0, 1, or 2, and which equals 2 when x = 3.

16. Eind a polynomial of the fourth degree which equals 1 Avhen

X is 0, equals when a; is 1 or — 1, and equals 21 when ,r is 2 or — 2.

54. Remainder Theorem. The following theorem lies at the basis

of most of the work of the present chapter :

Theorem. //' ./(.r) i^ divided hy x — c, the remainder is f(/)-

Illustration. Let /(x) = 2x3 + Sx^ - 4x - 6, and let c = 2. The theorem

will be verified for this case if the remainder obtained by dividing /(x) by
X - 2 is /(2) = 2 • 23 + 3 • 2- - 4 • 2 - (3 = 14. If the division is actually per-

formed, the remainder is found to be 14. The result of the division may
be expressed thus :

2x3 + 3x2-4x-6 ^ ., „ ,^ 14= 2 x2 + 7 X + 10 +

Proof. If /(.'•) is divided hj x — c, let us call the quotient Q(x).
We must prove that the remainder is /(f), that is, that

li

X — C X — c

Consider the expressions

/(^) = %^" -I- fV'^""^ -\ han~\X + ^„,

and f(c) = a^(f + o^c"-i -\ \- a,^_^<' + «„.

Subtracting, we get

=
a^x-+ a^x^-^ + • • + «„ _i,r + r7„

-
(rrr« + a^--

"^ + • • • + "n-i<' + <'n)

=
a^(a-»

—
c") + ftj(.x»-i

—
c"-^) H h a„_i(x

—
r).

But since x — c is a factor of each term in the right member

(type form 7, p. 2), we may take x — c outside a parenthesis, and

call what remains inside Q(.r). We have then

f(x)-f(c^ = (x-r)Q(x), (1)

or, after transposing /(c) and dividing by x — c,

X — c X — c

which was to be jiroved.
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Factor Thkoiieim. If c U a root off(x) = 0, then x— <: is a

factor off(x).

If c is a root oif(x)= 0, i\m\f(c)= 0, and from (1) we have

f(x) = (x-c)Q(x).

That is, f(x) is expressed in factored form, with a; — c as one of the

factors.

EXERCISES

1. State and ])i'ove the converse of the Factor Theorem.

2. By use of the Remainder Theorem, find the remaindei- when

2 X* -\-x^ — G .'•' + 1 is divided by ic — 1
; by a; + 2.

3. By use of the Kemainder Theorem, find the remainder when

3 a-* + 2 x^ — 1 is divided by ./ — ^ ; by x.

4. l^y use of the Remainder Theorem, find the remainder when

2 x^ — x^ — x'^ -\- Ax — 1 is divided by a- — 3; by a; + 3.

5. By use of the Remainder Tlieorem, find tlio remainder when

a;'' + 1 is divided by a' + 1
; by x — 1.

6. By use of the Remainder Theorem, find the remainder when

^18 _|_ ^,13 ^g divided by a; + o
; by x — a.

7. Sliow tliat 2 is a root of the equation 2 x^ — 3 x" — 4 a- -|- 4 = 0.

8. Show that if /(c) ^ 0, then /(a-) is not divisible by x — c.

9. Find a polynomial /(a) of the second degree such that 1 and

2 are roots of /(a-)
= 0, and /(a;) has the value 8 when x = Q.

10. Find a polynomial /(a-) of the third degree such that 0,
—

1,

and 3 are roots of f{x) = 0, and /(.'•)
has the value 12 when a- = 1.

55. Synthetic division. In plotting the function

/(a;)=a„x" + a,a;"-> + + «„,

where the a's are integei*s, by the method of § IT, it is necessary to

find the values of the function for various values of x
;
that is, we

must obtain the values of /(I), /(2), /(3), etc. The Remainder

Theorem tells us that these are nothing else than the values of the

remainders after dividing f{x) by a; — 1, a; — 2, x — 3, etc., which

we may find rapidly if we make us(> of the following abridgfd

method of division.
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The method may be illustrated by the following example :

Let /(.r)
= 2 *^ - 3 x"" + x- - x - 9, c = 2,

and let us divide f(x) by ic — 2.

By long division we have

2x'

2x*

Sx^+ x^- x- 9 x-2
2x' + .<.:"- + 3 J3 + 5

1 x^ + x^
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The last number in the lowest line is the remainder in the division.

Hence it is the value of the function f(x) when x is replaced by 2,

that is, /(2).

It is also to be observed that, from the nature of the operation, the

numbers preceding the remainder in the last line are the coefficients

of the quotient in the division. In this case the quotient is

2a;» + a--^ + 3.i- + 5.

We have illustrated the following rule. Since the process may be

looked upon as merely a convenient arrangement of the operation of

long division, no formal proof will be given.

Rule for synthetic division. Write the coefficients of the

polynomial in order, supplying ivhen a term is lacking.

Multiply the number to he substituted for x hy the first coefficient,

and add (algebraically^ the product to the second coefficient.

Multiply this sum by the number to be siibstituted for x, add to

the third coefficient, and proceed until all the coefficients are used.

The last sum obtained is the remainder and aho the value of the

polynomial when the number is substituted for the variable.

The method of synthetic division is useful not only in finding the

values of the function for purposes of i)lotting, but also in deter-

mining whether the function has any factors of the form x — r. For

if by the process of synthetic division the remainder /(c) comes out

zero, then the function has a factor x — c. It should be noted that c

may be integral, rational, or, in fact, any kind of a number.

The process of synthetic division in the foregoing example may be looked

upon as a reduction of each term in the polynomial to one of the next lower

degree by replacing one of the x's by 2 and combining until the numerical

value of the function is obtained.

Thus in 2x'' — 8 j^ + J- — j — 0, if j = 2, we have the first term 2x* = 2 • 2 j''

= 4x^. Adding to the second term, we have 43"' — 3a;* = x*. Letting one x = 2,

x^ = 2x2. Adding to the third term, 2x^ + x- = Sx^. Substituting 2 for one x,

3x2 = Ox. Adding to the fourth term, 6x — x = 5x. Substituting 2 for x,

5x = 10. Hence the value of the function for x = 2 is 10 — = 1, which agrees

with the result already obtained.

This process is similar to that of converting a distance expressed in yards,

feet, and inches into one expressed in inches, by reducing the yards to feet,

adding to the number of feet given, reducing this to inches, and adding to the

number of inches given.
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EXERCISES

1 . Find the remainder when 2 a-^— 5 x* + 4 .x^— 54 x^— 32 a; — 30 is

divided by a; — 4. Do this by direct substitution, as in § 54, and also

by the method of synthetic division. Which method is preferable ?

2. Find the remainder when x* — Sx^ -\- 6 is divided by x — 2.

Do this by both methods mentioned in the preceding exercise. Which

method is preferable ?

3. Find the remainder and the quotient when 3 x^ — 2 .t' + .r + 6

is divided by a; + 3
; by x — 3.

4. Find the remainder and the quotient when 4 x^ — 4 x" — 3 x + 2

is divided by x — i
; by a; + ^.

5. Given /(a-)
= 8 x^ - 24 a;^ - 16 a- + 40, find /(I), /(i), /(- 2),

/(8),/(V2).
6. Find the value of the function 3 x" — 11 x^ — 18 x — 24, when

X = I ;
when x = — J.

7. Show that x— 2 and x + 5 are factors of x* — 23 x^ + 18 x + 40.

What are the other factors ? What are the roots of the equation

a;4 _ 23 x^ + 18 X + 40 =^ ?

8. Show that— 3 is a root of the equation x^+ 4 x^— 17 x — 60 = 0.

What are the other roots ?

9. Show that x — 1 is twice a factor, that is, that (x
—

1)- is a factor

of ic^ — a;^ — 2 X + 2, and hence that 1 is a double root of the equation

X* - x~ -2x + 2 = 0. What are the other roots ?

10. Find the value of k if 2 is a root of the equation 2x* — 6x^

+ 4 kx + 13 = 0.

11. Find the values of k and Mf — 1 and 2 are roots of the

equation 3 x* - 3 x^ - 10 x" -j- 2 kx - 2 1 = 0.

12. For what values of k will 1 be a root of the equation 5 x^ — 4 x^

+ 2 k-j-' -\-k = 2?

56. The graphing of functions. AYe are now in a position to find

the graph of a polynomial in the most expeditious manner. We shall

symbolize the function f(x) by ij
and find the values of

ij
corre-

sponding to various values of x.

In plotting, if the table of values consists of numbers which are

large or are so distributed that the plot would not be well propor-

tioned if one space on the paper were taken for each unit, a scale

should be chosen so that the plot will form a graceful curve.
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EXAMPLE

Plot y = ./•' + 4 ./- - 4.

Solution. Wo liiid b}' syiitliclic division tlie values of y corresponding to

various values of x.

Tlie value of ?/ when x = is found by direct sub-

stitution.

1 + 4+ 0-
4(J.

+ 1+ 5+ 5

X
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which includes all the real roots. If for all values of x greater than

a certain number the curve lies wholly above the axis, there are no

real roots greater than that value of x.

By an inspection of the preceding example it appears that if for a

given value of x the signs of the partial remainders are all positive,

thus affording a positive value of y, any greater value of x will afford

only greater positive partial remainders and hence a greater positive

value of y. From this point on, the curve must rise as x increases.

Hence none of the roots can lie to the right of this point.

Thus when all the partial remainders are positive^ no rjreaterpositive

value of x need he suhstittited.

Similarly, when the partial remainders alternate in sign, beginning

with the coefficient of the lilghest p)Ower of x, no value of x, greater

negatively, need he suhstituted.

EXERCISES

Graph the following functions. Set each equal to zero, and deter-

mine between what consecutive integers the real roots of the resulting

equations lie :

6. .T* + 19a;"^ + ll.

7. .r*-3sc"'-9.r-31.

8. a-* - 2 ;r''
- x + 2.

9. .T* _ 2 x-^ 4- 3 a-2 - 20 X - 47.

10. 6 x' - 13 .r^ + 20 x~ - 37 x + 24.

11. A rectangle whose perimeter is 36 inches is rotated about a

line joining the mid-points of two opposite sides, thus generating a

cylinder whose volume is 550 cubic inches. Find the dimensions of

the rectangle.

Note. Take ir =
-y^-.

Use the graph to obtain an approximate result.

12. A rectangle whose perimeter is 33 inches is rotated about a line

joining the mid-points of two opposite sides, thus generating a cylin-

der whose volume is 385 cubic inches. Find the dimensions of the

rectangle.

13. Each dimension of a rectangular tank 6 x 8 x 10 feet is to be

increased by the same amount, so that the tank will have a capacity

of 1000 cubic feet. Estimate from a graph the length each edge is

increased.

1.
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14. Till! radii of four spheres are in arithmetical progression, hav-

ing a coninion dii'tVrence of 1 inch. If the largest sphere is equal in

volume to the sum of the other three, find their radii.

58. Number of roots. It appeared from the solution of the quad-

ratic equation that every equation of the second degree has two and

only two roots. In the preceding exercises it may have been noted

that the graph of a function of degree n never crosses the A' axis

more than n times, that is, none of these equations has more than

n roots. Whether the general equation of degree n has any roots at

all is a problem which remained unsolved until about a hundred years

ago, when it was proved, by methods which we will not reproduce

here, that every rational integral equation of degree n possesses at

least one root. That this root may not be a real number is indicated

by problem 6, p. 96, in which the graph does not cross the X axis.

But in such a case the theorem would demonstrate the existence of

a complex number Avhich satisfies the equation. This Fundamental

Theorem of Algebra we shall assume. We can then prove

Theorem I. Every equation of degree n in general form has n

roots.

Given the equation a^^^" + a^x"~^ + • • -f "„ = 0,

where the a's are integers, ((^
^ 0, and n is a positive integer. Since

the multiplication of an equation by a constant does not affect the roots

of the equation in any way (§ 23), we may multiply each member of

the equation by the constant — ? thus throwing the equation into the

^-form. It should be kept in mind that the coefficients
7?^, j^^j

•

••>Pn^

are really nothi

We have, then,
^.„ ^ ^^^

^,,
- 1

^_ . . . ^ ^, _

_ 0,

an equation which has the same roots as the original equation.

By the Fundamental Theorem of Algebra this equation has at least

one root, which we will call
a-j. By the Factor Theorem x — x^ must

be a factor of the left member. Hence if we write it in factored form,

we have
^^
_

^^^ ^^.„_i _^ ^^^.,._, ^ _^ ^^^ _^^
_

Now reasoning as before, the expression inside the second ])aren-

thesis, set equal to zero, has at least one root, which we will call .r,.

are really nothing else than — >
—

> • • •

,

% % %
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and by the Factor Theorem the expression must have x — x^ as a,

factor. We may then write the expression within the second paren-

thesis in factored form. Hence

(x
-

x;) (x
-

x^) (a'«-2 + .s-jj'"-3 + . . . + .s„_2)
= 0.

We may continue this process until the last factor is of the first

degree, which, set equal to zero, will have a root which we may call

.T„. We have then the second equation with its left member ex-

pressed as the product of ?i. linear factors,

(x
—

x^) (x
—

.T^) (x
—

x„)
= 0.

The roots of this equation are
x^, x^, , x,^, which are evidently n in

number.

Not all of these roots need be distinct. If tAvo of the roots, say x^

and x^,
are equal to each other, /(«) will have (x

—
xj- as a factor.

We say that x^
is then a double root of f(x) = 0. If /• roots are

equal to each other, /(.r) will have r equal linear factors, and f(x) =
will have an r-fold root, or a multiple root of order r. Multiple roots

may be regarded as limiting cases of roots which have been approach-

ing each other and have finally become equal.

It should be particularly noted that certain of these roots
x^, x^,

.

•, x„, may be complex numbers, so that these linear factors are not

necessarily of the simple type considered in § 1. It was stated in

that section tliat it is sometimes desirable to find factors whose co-

efficients are not integers, rational fractions, or even real numbers.

With this understanding we may state as a result of our theorem

that the general polynomial may be expressed as the product of

linear factors.

Assumption. If x— a, x—h, x — c,
• , x ~ !<; are each factors

of a jiolynomial, then their product is a factor of the jyolynomial.

Theorem IT. The general equation of the ntli degree^ a^y^ -\-

a a:"
~ ^ + •••+'/„ = 0, has no more than n roots.

For if
x^, x^, •••,»"„, a-„^i, are each roots of the given equation, then,

l)y the Factor Theorem, x — x^,x
—

x,^, ,x — x„,x — a-„ + 1, are each

factors of the left member. Hence, by the preceding assumption,

their product is contained in the left member, which would there-

fore have to be at least of degree n + 1, which is contrary to the

hypothesis.
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THEOr.E>r III. //" the equation a^x" + n^x"'^ -f . . .

-|- a^
= in

satiisfied by more than n distinct values of x, (til of its coefficients

must vanish.

The distinction between this theorem and the preceding lies in

the hypothesis. There it was assumed that a^ =r= (§ 53), and we

found the nunil)er of vahies of x which could satisfy the equation.

Here our hypothesis states that the equation is satisfied by more

than n values of x, and we ])ro])ose to d(;termino what hajipens to

the coefficients.

Illustration. This theorem find.s no application when we are dealing with

e(luiUi(ins with numerical coefficients, for in tiiat case if any term has a zero

coefficient it siniplj' drops out. I5ut we niiglit liave the quadratic etjuation

(a
-

2)x2 + {cfi
_ 4)x + a- - 3 a + 2 = 0,

wliich we had found in some way was satisfied by tlie three numbers

X = 3, X = 2, and x = 1 .

The theorem tells us thatanuist have such a value tliat all nf the coefficients

vanish
;
that is, a nuist equal 2.

Proof. Suppose that not all of the coefiicients vanish. Then the

degree of the polynomial will be n or perhaps less than n. Therefore,

by the })receding theorem, it cannot have more than n roots. But by
the hypothesis it has more than n roots. Therefore the assumption
that not all of the coefficients vanish is false.

Corollary. If tivo polynomials in x of degree n are equal to

each other for more than n values of x, the coefficients of like powers

of x are equal to each other.

We have given

a,a;» + a^x^-^ + . . . + ^,,
=

h^^x" + \y'
- 1 + . • . + ^,„

for more than n values of x. Transposing, we have

{%
-

^o)
^•" + (":

-
\) •'•"

-' + •••+(««- ^.)
= 0.

By Theorem III, a^
-

A,
= 0, or n^

= \,

"i
- K = ^' "'

"i
=

^'v

I'n
=

^\ <>! "n = f'.
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EXERCISES

1. If the equation a'^(.c'' + x + 1) + 3 a {x" + 2)
- 9

(a-
-

1)
= is

satisfied by a; = 2, a- = 3, and x = 5, find the value of c

2. If the polynomial (3a-{-b
— S c) x^+ (a + h + c) x

-
(2 a + h-c)

vanishes when x has three different values, what must be the values

of a, h, and c ?

3. If the equation ax^ + 1/ {x^ -\- x)+ h(x^ -\- 2x) + x — 1 -\- c^ =
is satisfied for four different values of x, what are the values of a, b,

and c?

4. If 19 a; 4- 1 = ^ (3 a; - 1) + i3 (5 x + 2) for all values of x, find

the values of A and B.

5. If a-' - 2 = Ax (x
-

2) + Bx (x
-

1) + C
(a;
-

1) (a;
-

2) for all

values of x, find the values of .4, B, and C.

59. Complex roots. In the exercises on page 96 it was noted that

the graphs of some of the functions cross the A' axis fewer times

than the degree of the corresponding equation; for instance, the

graph for the second exercise crosses but once. Since crossing the

axis indicates a real root, and since every equation must have ?i roots,

real or complex, we can tell from the graph how many complex roots

an equation has.

Theorem. If a rational integral equation with real coefficients

has the complex manber c + id for one of its roots., it must also have

the ymynher c — id for a root.

Given the equation

/(•^)= V" + "i'^'""' +••• + "» = ^'

where the «'s are real numbers, and given that c + id is a root of

this equation, it is required to prove that c — id is a root.

To say that c + id is a root of the given equation means that if

c -\- id is substituted for x, the equation is satisfied
;
that is,

f(c + id)
=

a^(c + idy + a^(c + uiy-' + • • • + «„ = 0.

Now if we expand each of the powers oi c -j- id by the Binomial Theo-

rem,* we obtain an expression some of whose terms contain no i,

while others contain i to various powers, from i to i". But, by § 39,

any power of i reduces to 1,
—

1, i or —
/,

so that finally each terra

* Let the studeut write out these expansions to several terms.
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in tlie expansion will citlici' contain no I at all or it will contain i to

the lirst
])o\\ci-. Now let. us i;rou]) togotliLT all terms of the expan-

sion which do not contain /. Denote this group of terms by P. Then

group together all terms of the expansion containing I and denote the

expression representing the complete coefficient of i by Q. Then we

'"'^y ^^'^'ite
/(,. + /,/)

= /> + iQ = 0.

Hence, by § 42, we must liav^e 7' = and (i — 0.

Now we have to show that c — id is a root of the given equation ;

that is, we must show that f(c
—

id)
= 0. T^et us form the expression

f(c
—

id). This may be obtained from the expression we have found

for/(c + /'/) by changing i to — /; that is, Ave have

/(c
_

id)
= P - iQ,

where P and Q represent the same expressions as before.

But we proved above that these expressions P and Q must each

equal 0. Hence
j-q.

__
ij^^
^ q

.^

that is, c — id is a root of the given equation.

Illustration. Consider the equation

/(x) = x8 + px + (/
= 0. (1)

Let c + id be a root of (1) ;
we will prove that c — id is also a root. Since

c + id is :i root, we have

f(c + id) = (c + idf + p (c + iO) + 7 = 0.

ExpandiuL: llie first term by the IJinoniial Tiu'orfni.

f(c + id)
= c» + 3 cHd + 3 c {id)- + {idf + pc + pid + q

= c3 - 3 cd2 + pc + 7 + i (3 e-d- d^ + pd)

= P+iQ = 0,

where P = fS - 3 cd- + pc + q; Q = 3c^d-d« + pd.

By § 42, P = 0, Q = 0.

Now /((•
—

id)
=

(c
—

id)^ + p(c — id) + (j

= c3 - 3 cd- + pc + q- i (3 c-d -d^-itpd)
=P- iQ.

But we have shown that P = and Q = 0. Hence /(c
—

id)
= and c — id

is a root of (1).

Corollary. Every equation of odd degree with real coefficients

has at least one real root.

The roots cannot all be complex, else the degree of the equation

would be even by the preceding theorem.
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60. Multiple roots. Wlieu we plot the equations

y = a;3 + 4a;^-4, (1) 7/
= x-^ + 4 ic^ - 1, (2)

y = x^-^4.x% (3) 2/
= x3 + 4x^4-1, (4)

we see that corresponding to the increase of the constant term there

is a corresponding elevation of the curve with respect to the X axis.

In every case the curve is the same, but the corresponding values
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eafh other, and finally coincide in (3), forming the double root. As
it is further raised, this elbow fails to intersect the X axis, and the

pair of roots has ceased to be real. But since a cubic equation always
has three roots, a pair of roots must have become complex. Conse-

quently, a double root is, in a certain sense, a limiting case between

two roots which are real and distinct, and a pair of complex roots.

Thus we have the

Principle. Corresponding to every elbow of the curve that does

not intersect the X axis there is a pair of complex roots of the equation.

The converse is not always true. It is not always possible to find

as many elboAvs of the curve which do not meet the A' axis as there

are pairs of complex roots.

Consider the equations

x^-16x. y x" — .r. (^^) ?/
= y^. (")y = CF° — iba*, (5)

The equation .r^ — 16 a; = has the routs — 4, 0, and + 4. The

graph of (5) consequently cuts the A' axis at the points
—

4, 0, and
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62. Relations between roots and coefficients. Tf the equation in

has for its roots the numbers
.r^, ji\^,

. .

., .r„, we have seen in § 58 that

it may be written in i'uctored f'oi'in as follows :

{X
-

x^) (x
-

x^) ...ix-x^ = 0.

If we multiply out the left member of this equation, collect like

powers of x, and compare the various coefficients obtained with the

coefficients in
(/'),

we sliall hiid certain relations between the roots

and the coefficients.

Illustration. Lot n = A
;
that is, let the e(]uation be

X* + p,a;3 + p.^x^ + V^i + Vi = 0, (P)

or, ill factored form, (x
—

x^) (x
—

x.^ (x
—

x.^) {x
—

x^)
= 0.

Multiplying out, we have

{X
—

X,) (X
—

X2) (X
—

X3) (x
—

x^)
= x'' — (x^ + X2 + x^+ x^)x^

Equating coefficients of like powers of x in this equation and in (P), we have

Xi + X2 + X3 + a;4
= — Pv (1)

X^X„ + XjXg + x^x^ + x,X3 + x.,x^ + x^x^
=

p.,, (2)

*1*^2 3 "*" **'1*^2 4 * '*^i*^3'^4 1 '*^2 3*^4
~~

-2^3' \^/

X1X2X3X4 =
P4. (4)

This result suggests the following general theorem for the equatiou
of degree 71 in ^j-forni :

Theorem, (a) The sum of the roots equals the coefficient of

the second term with its sign changed.

(b) The sum of the products of the roots taken two at a time

equals the coefficient of the third term.

(c) The sum of the products of the roofs taken three at a time

equals the coefficient of the fourth term tvith its sign changed.

(d) The product of the roots equals the constant terin, with its

sign changed if n is odd.

"W'e will now prove parts (a) and (d) for an equation of any de-

gree'. AVe will first show that if (a) and (d) are true for an ecjuation

of any degree k, they will also be true for one of degree A- + 1.
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Assuming, then, that (a) and (d) are valid for any equation of

degree h, we may write the equation in the form

x^ -
(a-, + .7-2

+ + .r^)./''-

- ^ + • • • ± (a-,.r.^
- . •

.r,.)
= 0. (5)

Let us now multiply each member of this equation hy x — a"t + i,

thus obtaining an equation of degree 7v + 1 with the roots
a-^,

a;* _ {x^ + :r_^
+ • • • + 'i>'-

' + • • ± (a-^a^a
" " "

'^'.)
= ^

-,.X; + 1X
(.r^ + ./•, + • • + ;r, )

./-^+ • • ± (.''ir,
• • -

x^) x

Xi.Xk-' k + 1

ic-
- - —

(a-^ + .'•, H h a'i- + x^ + 1)
./'^- H ^ x^c,^ x^-;, + 1

= 0. (6)
^fc + i

It is observed that the coefiicient of the second term and the con-

stant term of (6) are of the form required by (a) and (d). We have

shown, then, that if we can write an equation of degree /.:,
with roots

x^, x^,
•

•, .r^.,
in form (5), that is, if (a) and (d) are true for an equa^

tion of degree k, then (a) and (d) must also be true for an equation

of degree A' + 1.

But we know from (l)-(4) that (a) and (d) are true for an equa-

tion of degree /. = 4. Hence the demonstration shows that (a) and

(d) are true for an equation of degree I- -\-l = 5. But if they are

true for an equation of degree 5, they must also hold for one of

degree 6, and so on, for an equation of any higher degree.*

In applying the above theorem the coefficient of a missing term is taken as 0.

This method of demonstration by which a fact which is known to

be true for a certain value of k is j)roved to be true for the value

/.- + 1, and hence for all succeeding integral values, is called the

Method of Complete Induction.

Corollary I. If x^
is a root of an equation in p-forni with

integral coefficients, it is a factor of its constant term.

This follows immediately from (d).
a

Corollary II. Ifthe rational number - is a root of the equation

in a-form with integral coefficients, f(^x^=a^x"-{- a^x"
" '

H \-a,,
= 0,

then h is a factor of a^,
and a is a factor of «„.

*For a proof of the complete theorem, see Hawkes, Advanced Algebra, p. 177.
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Illustration. Suppose that the numbers \, ^, and
-^
are roots of a cubic equa-

tion. Then the equation must be expressible in factored form as follows :

Each of these factors may bo written witli a common denominator, and the

equation becomes

r-^)(^)(^)=».
or, after multiplying through by 30, in order to make the coefficients integral,

(2x- l)(3x-2)(5x-3) = 0.

Finally, multiplying out,

30x-''-53x2 + 31x-G = 0. (1)

From this form it appears that the coefficient of x^ in (1) is exactly the prod-
uct of the denominators of the fractional roots, and that the constant term
is the product of the numerators of the roots, except for sign. Furthermore, if

eciuation (1) had been given and wo wished to detcriniiie its fractional roots,
we would only need to consider fractions whose denominators are factors of 30

and whose numerators are factors of 6.

Proof. Let the equation be denoted by /(a-) =0. If -r is a rational

root, then x — j must be a factor oif(x). Hence

/(^) =
(•'•

-
t)

^l (-)
=

0, or /(.r)
=
i^^f^^

Q (^)
=

(l^x
-

a)^ •

But since f(x) has integral coefficients,
—— must be a polynomial,

of degree 7i — 1, with integral eoeflB.cients. Call this polynomial Q' (x).

Now since

f(x)=(bx-a)Q'(x)= (bx-a)(q^a-~'-\-.
. . + q^_^)

=
bq^x''+ ~a>j„_„

it appears that i is a factor of
a^,

and a is a factor of a„.
/I 1

Illustration. Let /(x) = bo (1) above, and let - = - . Then dividing the
6 2

K'ft member of (I) by x — J, we find that Q(x) = 30x- — 38x + 12. Hence

(6x— a)Q(x) = becomes in this case (2x
—

l)(15x-
— 19x + G)

= 0. It is

observed that in dividing the polynomial /(x) by x , each coefficient of the
b

quotient Q (x) contains 6 as a factor, which may be divided out when the ex-

pression is set equal to zero.

63. Formation of equations with known roots. If we know all

of the roots of an equation, we may form the equation in cither

of two ways : thi; first method uses the princi})lo of the Factor

Theorem
;
the second employs the relations between the roots and

the coefficients derived in the preceding section.
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First method. If x^, x,^,
•

-, x^, are the roots, multiply together

the factors x —
x^,

x —
x^,

• •

•, x — x^^, and set the product equal to 0.

Second method. From the roots find the coefficients, using the

relatio7is of ^ 62.

If the equation and all but one of its roots are known, that root

can be found most readily by the solution of the linear equation
obtained by setting the sum of the roots equal to the coefficient of

the second term with its sign changed.

If all but two of the roots are known, the unknown roots may be

found by the solution of a pair of simultaneous equations formed

by using the coefficient of the second term and the last term.

In using the second method the equation must always be in

2?-form.

EXAMPLES

3, ±a1. Eind the equation having for roots the numbers 4, ^, _i_ g-

Draw the graph of the function forming the left member of the

equation.

First solution. Applying the Factor Theorem, we may write the equation in

the form (x
-

4) (x + 3) (x
-

|) (x + |)
= 0,

or (X
-

4) (X + 3) (2 X - 3) (2 X + 3)
= 0.

By multiplication we find

4x4-4x3- 57x2 + 9x + 108 = 0. (j)

The graph of the function

1/
= 4x4 -4x3 -57x2 + 9X + 108

crosses the-X axis at the points where x = 4,
3
5''

—
-J,
— 3. These numbers are the roots of

equation (1).

Second solution. We may find the equation in p-iovm. by applying the results

of § 62. We have

Pi (4-3+ J-|)=_l.
p, = 4{- 3) + 4 (J) + 4 (- I) + (- 3) (t) + (- 3) (- I) + (t) (- I)
— — 19— 9 — — 5 7.— 1- 4

— ^ .

p,=- {4(- 3) (I) + 4(- 3) (- 1) + 4(1) (- 2-) + (- 3) (•^) (- %)}

P4 = 4(-3)(i)(--i-) = l|&.

Hence the equation is x* — x^ — -^y x- + | x + J^^s.
= o.

Writing this in the a-form, we have

4x4-4x3-57x2 + 9x + 108 = 0.
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2. Solve the equation

2x*-\-7x'' + Ux^ + llx-10 = 0,

given that one root is — 1 -{-2 i.

Solution. Writing the equation in p-form,

x*+
^,
j^ 4- 7 /•= + yj 1-5 = 0.

By the theorem of § 69 the equation has a root — 1 — 2 i. Since the

equation i.s of the fourth degree, it has four roots. Let tlie unknown roots be

denoted by r and s. The sum of the two known roots,
— 1 + 2 i and — 1 — 2

i,

is — 2 and their product is 5. Then, by § 62, we have

the sum of the roots, r + s — 2=— I,

the product of the roots, 5rs =— 5
;

or r + s =— S (1)

and rs=— 1, (2)

a set of two equations, to be solved for r and s.

From (2),s = Substituting this in (1),
r

_ 1 __ 3
^

r~ V
2r2 + 3r-2 = 0,

(r + 2)(2r— 1)
= 0, r=-2 or \;

and substituting these values of r in (2) we obtain

s= \ or — 2.

The other two roots are, then, — 2 and \.

Therefore the four roots of the original equation are

-2, >, -1±2/.

Check. The equation whose roots are — 1 ± 2 iis x^ + 2 j + 5 = 0.

The equation whose roots are — 2, \ is 2x- + 3x — 2 = 0.

(x2 + 2x + 5)(2x2 + 3x-2) = 2x* + 7x3 + 14x- + 11 x- 10 = 0,

which is the given equation.

EXERCISES

Find the equations having the following roots. One method of § 63

may be used to check the other. Draw roughly, without making a

table of values, the graph of the function forming the left member

of each of the equations in exercises 1-15, noting that each real

root of the equation represents a point where the graph crosses or

touches the A' axis. The graph crosses the X axis if the real root is

a single root or multiple root of odd order, and touches it if the root
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is a multiple root of even order (see § 60). If tlie coefficient of the

highest power of x is positive, the value of // is positive for large

positive values of x.

1. 1,-2. 13. 1 ± V2, - 2.

2- 2, 3,-4. 14. 2 ± V3, - 2 ± Vs.
3. 2, 1, 1, 0. r-' '

15. 0, 0, 0,
- 1 ± Vs.

4. + 3, + C.
' ' '

5. 0, 0, 0, 2.
16. 1, ±W2.

6. -
1,
-

1, 0, 0, 0. 17. -
1, 1 ± i.

7. 0, 0, 0, 0,
- 3. 18. 2 ± /,

- 2 ± i

8. 1, 2, + 1 19. 0, 0, ± i, ±2t.
^' S' B5

— 1-
--

-,

— 1 ± i Vs
10. 2, i,3, 1.

20. 1,
2

11. ±V2, 0, 1. _ 1±/V3 -l±iV3
12. ± V3, ± v:o.

21.
9

22. Form an ecjuation of the second degree one of whose roots is

l4-2V^r5
3

23. Form an_equation of the third degree two of whose roots are

-l-iV23
"'*'

2

24. Form an equation of the fourth degree two of whose roots

are .; l±I^.
2

25. Form an equation of lowest possible degree with real coeffi-

cients having the two numbers ±1+1 for roots.

26. Solve the equation :r^ — x'^ — 22 x + 40 = 0, given that one

root is double another.

27. Solve the equation a.-" — S.r^ + 11 ./- + 32.<' - 60 = 0, given
that the sum of two of the roots is 0.

28. Solve the equation x^ — 12.^- + 23 .r + 36 = 0, given that the

roots are in arithmetical progression.

29. Solve the equation Ax^ + 12x'^ — 67 x + 30 = 0, given that

the sum of two of the roots is 3.

30. Solve the equation .^^ — 14a;^ — 31ic — 16 = 0, given that

two of the roots are equal.
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31. Solve the equation ix" + 9^*^ — 30 a; — 8 = 0, given that one

root is the reciprocal of another.

32. Solve the equation x* — 4 ./-^ + 5u-^ + 8 .r — 14 = 0, given tliat

one root is 2 — i Vs.
2

33. Solve the equation (./
—

4)^ + 2
(cc
—

4) = 1, given that

one root is 2 + VS.

34. Solve the equation x* + 12 r' -\- 78 x^ + 252 x + 272 = 0, given

that — 3 + 5 i is a root.

35. Solve the equation x^ — 2 x* — u-" + 2 ./•- + 10 ./• = 0, given that

2 — t is a root.

36. Solve the equation x^ — 12a;^ + 4(5./- — 85 j- -f 50 = 0, given

that two of the roots are 1, 1 + 2 i

37. Solve the equation 2x'^ + 13x-- — 2Gx' — IG = 0, given that

the roots are in geometrical progression.

38. (a) Solve the equation a'* — 6.'-^ + 7:'-"- -|- G« — 8 = 0, given

that the sum of two of the roots is equal to the sum of two others,

and that one root is the negative of another.

(b) Determine another equation of the fourth degree having, like

the above equation, the sum of its roots equal to + 6, their product

equal to — 8, the sum of two of its roots equal to the sum of two

others, and one root the negative of another. What are the roots of

this equation ?

39. What must be the value of /.• if the sum of three of the roots

of the equation x* — 3x^ = kx — 9 is ?

40. Show that an equation Ax* -\- Bx + C = 0, where the coef-

hcients are real, cannot have four real roots unless B and C are

both zero, in which case all the roots are zero.

64. Detection of rational roots. In the following sections we

shall apply ourselves to the problem of finding the numerical values

of the roots of a rational integral e(i[uation with integral coefficients.

The simplest type of root, and the one which is easiest to find,

is the integer. By Corollary I, § G2, any root of an equation in

j9-form with integral eoettieients is a factor of the constant term.

Hence no integers other than such factors need be tried in any

particular case of this kind.

For example, if the constant term in an equation in j>-hn-in with

integral coefficients is 3, the only possible integral roots of the
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equation are ± 1 and ± 3. If it is found by synthetic division that

none of these is a root of the equation, we must conclude that the

equation has no integral roots.

The existence of any rational root may be determined by the use

of Corollary II, § 62. For example, consider the equation

6 x-^ - x-2 _ 3 X - 20 = 0.

First obtain the table of values for the function in the left member as

if to plot it.

x



TllEOKY OF EQUATIONS 113

EXAMPLE
Solve the equation

2x* - x^ - r> x^ -(- 7 x - 6 = 0.

Solution. First obtain a table of values for the function.

X



6.
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23. A spherical shell an inch thick, whose outer diameter is

12 inches, is equal in volume to the sum of two spheres whose

radii differ by 1 inch. Find the radii of the spheres.

24. It is desired to double the capacity of a tank G x 8 x 10 feet

by making equal elongations of its dimensions. Find the elongations.

25. The volume of a rectangular parallelejnped is 60 cubic feet.

Its total surface is 94 square feet and the total length of its edges

is 48 feet. Form the equation whose roots are the dimensions of the

parallelepiped and find these dimensions.

65. Multiplication of the roots of an equation by a constant.

Suppose we have given the equation

/(a-)
=

a^x" + fl
j.r"

- 1 +...+.,„ = 0. (.1)

Oall its roots
x^, x^,

• •

-, x„. It is required to find an equation whose

roots are equal to these numbers each multiplied by k
;

that is, we

seek the equation whose roots are

/.-o-j, kx^,
• •

•, Aa-„. (1)

Consider the equation

/©=".(t)'-'.(0"'-— «. <^)

where x' is the variable. We shall show that this equation is satis-

fied by the numbers (1). Replacing x' by any one of the numbers (1),

say by kx^, the polynomial in the left member becomes

/(f) =/w.
But f{x^ = 0, since x^

is a root of the equation f(x) = 0. Hence

equation (2) is satisfied by the numbers (1).

If we remove the parentheses in (2), multiply through by k", and

drop the primes, we have

a^x" + ap-"-' + a Jr.,-"
- ^' + . . . -f k"a„ = 0, (3)

which is the equation sought, having roots each /.• times the roots of

equation (A).* We may express the result in the following

Rule. To find an equation tvJiose roots are equal to the roots of

(^) each mnJtipJied by the constant k, midtipli/ the terms of (.1),

hefihinin;! with the second. In k. A"", , k" respective! i/.

* It should 1)0 kept in inin<i that a given equation has the same roots whether the

variable is called x or x\
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Tlie special case of this rule for the value k = — l may be expressed

as follows ;

To find an equation in general form whose roots are the negatives

of the roots of a given equation, change the signs of alternate terms.

Care must be taken in applying the above principles to supply missing terms

by zeros.

66. Descartes's rule of signs. A pair of successive like signs in

a polynomial is called a continuation of sign. A pair of successive

unlike signs is called a change of sign.

In tlie polynomial f{x) = 2 x« - 3 a"" + 2 x2 + 2 x - 3 (1)

are one continuation of sign and three changes of sign. This may be seen more

clearly by writing merely the signs, -i h H •

Let us now determine the effect on the number of changes of sign

in a polynomial if it is multiplied by a factor of the form x — a

where a is positive ;
that is, where the number of positive roots of

the equation f(x) = is increased by one.

Illustration. Let us multiply (1) by x — 2. "We have then

2x-'-3x3 + 2x2 + 2x -3
X -2

2 x5 - 3 x4 + 2 x3 + 2 x2 - 3 X

-4x^ + 6j»-4x2-4x + 6

2x5- 7j;4 ^ 8x3-2x2- 7x + 6

In this expression the succession of signs is H 1 F ,
in which tliere

are four changes of sign; that is, one more change of sign than in (1). If an

increase in the number of positive roots always brings about at least an equal

increase in the number of changes of sign, then an equation in general form

cannot have more positive roots than there are changes of sign in its left

member. This is the fact, as we now prove.

Descartes's rule of signs. An equation in general form,

f(x) = 0, has no 7nore real positive roots than f(pr^ has changes

of sign.

We shall show that if we multiply each member of an equation of

degree n by x — a, where a is positive, thus forming an equation

of degree n -\-l, the number of changes of sign in the new equation

always exceeds the number of changes of sign in the original equa-

tion by at least one
;
that is, the number of changes of sign increases
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at least as rapidly as the increase in tin; number of positive roots

when such a multiplication is made.

Let f(x) = represent any particular equation of the nth degree.

The first sign of /(a-) may always be taken as +• The remaining

signs occur in successive groups of + or — signs which may contain

only one sign each. If any term is lacking, its sign is taken to be

the same as one of the adjacent signs. Thus the way in which the

signs of /(.f) niay occur is rc])resented iu the following table, in

which the dots represent an indefinite number of signs. The multi-

plication of
./'(') hy a; — a is represented schematically, only the

signs being given.

All + signs
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Since /(— .r)
= lias roots opposite in sign to those of f(x) =

(§ 65), we can state

Descartes's rule of signs for negative roots. TJie

general equation fQx) = has no more negative roots than there

are changes in sign in /'(— a').

If by Descartes's rule it appears that there cannot be more than

a positive roots and b negative roots, and it a + h < n, where n is

the degree of the equation, then there must be complex roots, at

least n — (a + h) in number.

In applying Descartes's rule no signs need be supplied for the missing terms.

EXAMPLES

Obtain all the information possible concerning the roots of each

of the following equations by the use of Descartes's rule and by
inspection of the constant term.

1. a'^ + 3a'- + l = 0.

Solution, /(j;) : + + + ,
no change ;

therefore no positive root.

/(— x) : h + ,
one change ;

therefore not more than one negative root.

Since the equation has three roots, it has one negative and two complex
roots.

X" ic + 1 = 0.

Solution. f(x) : H J- ,
two changes ;

therefore not more than two positive

roots.

/(— x): 1- +, one change ;
therefore not more than one negative root.

There are five roots in all and there must be an even number of complex
roots. Hence there are three possibilities which may be represented by the

following table :

+
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EXERCISES

Obtain all tlu; information possible concerning the roots of each

of the following equations by the use of Descartes's rule and by

insi)ection of the constant term :

1. x'-+'3x- + 2 = 0. 8. x^-:f:*-2x^ + 3j- + 2x + l = 0.

10. n.r'5-3a;-l = 0.

NoTi;. Ill the following exercises n is to

4 J-'' 4- Q y- 4-3^0 ^^ regarded as a positive integer.

11. .--" + 1 = 0.

12. .1-2" -1 = 0.

6. a^^ - 1 = 0.
j3_ ,^.2„

+ i + 1^0.

7. a;« + 1 = 0. 14. a--''+i -1 = 0.

5. Sx"- X- + 2 X- - 1 = 0.

15. Find the equation whose roots are twice the roots of the

equation a;''
— 2 a;''

— 3 a: + 1 = 0.

16. Find the equation whose roots are one third the roots of the

equation 2 a;^ — 6 x^ + 3 = 0.

17. Find the equation whose roots are equal to the roots of the

equation x^ -\- 2 x'^ — 8 a- + 8 = 0, each multiplied by — f .

18. Find the equation whose roots are four times the roots of the

equation x^ — 2 x* -\- ^^_^
x — ^^^^

= 0.

19. Form the equations whose roots are the negatives of the roots

of the equations in the four preceding exercises.

20. Transform the equation x* — ^x^-\- i x'- + 2 .r — 1 = by multi-

plying the roots by the smallest number which wall make the coeffi-

cients of the transformed equation integers, and the coefficient of

the first term unity. Solve the transformed equation, and hence

obtain the roots of the original equation.

67. Diminution of the roots of an equation. Before proceeding

with the determination of the irrational roots of an equation it is

necessary to show how to form an equation whose roots differ from

the roots of a given equation by a constant.

Sui)pose the general equation

/(a-)
=

a^x" + a^x"
-' + + a„ = 0, (A)
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with the roots
a-^, a-^,

•

-, a:*„,
is given, and it is required to find an

equation whose roots are less than these numbers by the constant a
;

that is, we seek an equation which is satisfied by the numbers

^'i
-

*' ^2
-

«'
•

•' ^'n
- «• (1)

Let X =x' + a and consider the equation

f(x' + a)
=

a^ (x' 4- «)" + a^ (x' + a)"
-' + ...+ r/,

=
0, (2)

where x' is the variable. We shall show that this equation is satisfied

by the numbers (1). Replacing x' by any of the numbers (1), say,

iCj
—

a, the polynomial in the left member of (2) becomes

But /(^i)
= 0, since x^

is a root of the equation f(x) = 0. Hence

a-j
— a is a root of equation (2). Similarly, all the numbers (1) are

roots of equation (2).

To express equation (2) in general form, it is only necessary to

remove the parentheses and collect powers of x'. The result may be

written as follows :

F(x') = A^x"' + A^x'"-'^-{ h A,, = 0, (3)

where the .4's are the coefficients which we obtain by collecting like

powers of x'. Since the coefficients in this function are different from

those in (A), we denote it by a different symbol, F(x').

niustration. Consider the equation

f(x) = x^-6x'^ + nx-6 = 0, (4)

whose roots are 1, 2, and 3. Let us find the equation whose roots are less by 2

than those of (4). Let x = x' + 2, and form the equation f(x' + 2) = 0. We
obtam

j.^^, + 2)
=

(x' + 2)3-6 (x' + 2)^ + 11 (x' + 2)
- 6 = 0. (5)

Simplifying (5), we get ^i^') = ^'^ — ^' — 0-

We see that the roots of this equation, — 1, 0, and 1, are less by 2 than the

roots of equation (4), namely, 1, 2, and 3.

We will now derive a method of obtaining the coefiicients of (3)

more rapidly than they can be computed by expanding the binomials

in (2). It must be kept in mind that x^ -\- a and x are merely different

symbols for the same thing ;
that is,

X — x' -i- a, or x' = X — a, (6)
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and we may at any time use the notation wliidi is uiost convenient

for us. Since (2) and (3) are identical, we have

F{x')=f{x' + a)=f{x).

We wish to compute the coefficients in tin- expression

F{x') = A^x"' + A^x'"
-• + ... + .-!,,. (7)

If we divide the right member of (7) by x', we obtain A^ as the

remainder. But since p/^i\—.f/^\

and x' = X —
<i,

the result of dividing Fix') by x' is the same as that of dividing

f(x) by a; — a. Since f{x) is given, we can readily divide it by a; — a

by the synthetic method, and in this manner find the numerical value

of .!„.

The quotient of dividing (7) by x' is
A^x'''-'^ + A^x"*-"^ -\ h ^<„_ i-

If we divide this quotient by x', we obtain the coefficient /l„_i as a

remainder. But this division is precisely equivalent to dividing the

quotient of ^ ^
by x — a. Proceeding similarly, we may obtain

in order A,^_.,,
•

, A^. This method for computing the coefficients of

the equation whose roots are less than those of f{x) = by the

constant a we may express by the following

Rule. The constant term of the new equation is the remainder

after dividhuj f(x) hy x — a.

The coefficient of x' in the new equation is the remainder after

dividing the quotient just obtained hy x— a.

The coefficients of the higher powers of x' are the remainders after

dividing the successive quotients obtained by x — a.

Illustration. Let us compute by this method the coefficients of the equation
whose roots are less by 2 than those of (4). We lirst divide by x — 2 syn-

thetically. l_0 + n-0[2
+ 2- 8 + 6

1_4+ 3+0
Hence is the value of the constant term in the new equation. By § 55 the

coefficients of the quotient in this division are the numbers in the last line of

tlio division up to the remainder. Dividini,' tliis (piotient by j — 2 synthetically,

we obtain — 1 as the next to the last coefficient of the new equation.

l-4 + 3[2
+ 2-4
1-2-1
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The coefficients of the new quotient are 1 and —
2, anel, performing the next

division, we get 1 — 212

+ 2
~

1 +

This process may be arranged more compactly as follows, where the full-

faced type shows the coefficients of the transformed equation :

1_6 +11 -6[2
+ 2 - 8+6
1-4 +

3|
+

+ 2 - 4

1-2
+ 2

- 1

1 +

Hence the new equation is x'^ — x' = 0.

We may now drop the primes and write the new equation,

x^-x = 0.

68. Graphical meaning of the transformation. If an equation

has each of its roots decreased by the positive number a, then the

graph of the function in tlie new equation will cross the A' axis a

units farther to the left than the graph of the old one. In fact, the

new graph is just the same as the old one, except that its position

is a units to the left. This is expressed by the relation x' — x — a,

which indicates that the abscissas for points on the new curve are

each a units shorter than those for the corresponding points on

the old one.

By means of this transformation we may bring any crossing of a

graph within one unit of the origin. This corresponds to decreasing

the roots of the original equation by a number such that one of the

roots of the new equation falls between and 1.

Decreasing the roots by a negative number is equivalent to increas-

ing them and to moving the graph to the right.

EXERCISES

1. Transform the equation x^ — 4:X^-\-x-\-6 — into an equa-

tion whose roots are less by 2 than the roots of the given equation.

Plot the function forming the left member of each equation.

2. Transform the equation x* -\- x^ — 5 x'~ + 3.t = into an equa-

tion whose roots are greater by 1 than the roots of the given equation.

Plot the function forming the left member of each equation.
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1.5.

o

Transform each of the lullow iii.i;- •(luat ions into one whose roots are

less by the numhcr opposite than the roots of tlie given equation:

3. X-'*
- 15 x^ +7^-1- 1-5 = 0, 5.

4. a-''-2.<'^4-l = 0, .2.

5. X* + 63" + 10a;'' + .r - 1 = 0,
- 1.

6. 2x^- 5 x' + x + 2 = 0,

7. ]()a''-13./- + 9 = 0,

8. ;/••'- 1.5/- + 2.'- -2.5 = 0,

9. Transform tlic tMiuation 36 a-" — 108./-- + 107 ./ - 35 = into

an equation whose roots are less by 1 than the roots of the given

ecjuation. Solve the transformed equation and thus determine the

roots of the given equation.

10. Transform the equation 16 x* — 72 x^ — 61 a- — 15 = into an

equation whose roots are greater by .5 tlian the roots of the given

equation. Solve the transformed equation and thus determine the

roots of the given equation.

11. How mnch must the roots of the equation x* — 8x^-{-9x^

_^ 38a; _ 40 = be diminished in order that the sum of the roots of

the transformed iMiuation shall be ? Find the transformed equation.

Hint. Tlu' sum of the roots must be dimiuislied by 8.

12. IIow much must the roots of the equation /*+ 4a;^— 3a; +7 =
be diminished in order that the coefficient of x in the transformed equa-

tion shall be ? Find the transformed equation.

Hint. Decrease the roots by h, and determine h so that the coefficient of x'

is zero.

69. Location principle. If in plotting a function i/=f(a-) the

value x = a gives the corresponding value of
// positive and equal to

c, while the value x = h gives the corre-

sponding value of
// negative, say, equal to

—
d, then the i)oint (a, c)

on the curve is

above the X axis, and the point (b, —d) on

the curve is below the A' axis. If the curve

is unbroken, it must then cross the X axis

at least once between the values x = a and

x^=b, and hence the tMpiation _/'(^.r)
= must

have a root between these values of x. The

shorter we can deteiniine this interval between a and b, the more

accm-ately we can find the root of the equation. Horner's Method of

y
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approximation, which we shall explain in the next section, is noth-

ing but an ingenious process for making the interval in which we

know a root must exist as small as we wish. We have throughout

this text assumed the property of unbrokenness or continuity of the

graph of ?/
=

a^x"^ + o.^.x;"

~^
-\-

• • •
-j- a^.

This geometric assumption may be expressed in algebraic language

in the following

Location principle. When for two real unequal values of x,

say, x = a and x = b, the values of y =/(x) have opposite signs, the

equationfQx^
= has a 7'eal root between a and b.

The interval between x — a and x = h we shall call the location

interval.

70. Horner's Method of approximating irrational roots. We are

now in a position to determine the real roots of an equation to any

desired degree of accuracy.

It is assumed that all rational roots have been found by the methods

of § 64, and that all the roots which remain are either irrational or

complex.
Consider the equation

tc^ + 3 ct-
- 20 = 0. (1)

Let us find its real roots to two decimal

places.

First form a table of values for the

function y = x^ + 3 x — 20, and plot the

function.

,/'
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Here we decrease the roots of equation (1) by 2, as follows ;

1 + + 3 - 20
[2

+ 2 + 4+14
1 + 2 + 7
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Since the remainder is positive for x = A, the location principle

shows that (2) has a root between .3 and .4
;
that is, (1) has a root

between 2.3 and 2.4.

To find the root to two decimal places, decrease the roots of (2)

by .3, the lesser of the two numbers between which tlie root of (2) is

now known to lie. The new equation has a root between and .1.

This process is performed as follows :

1 + 6.0 +15.00 -6.00[^
+ 0.3 + 1.89 + 5.07

1 + 0.3 + 16.89

+ 0.3 + 1.98
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Tlic ])rece(liii<,' (•(unpuUitioii may be anungod more comijactly
as follows :

1 + + 3 - 20
[2

+ 2 + 4+14
1 + 2 + 7

+ 2+8
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The sum of the integral, tenths, and hundredths values obtained

in the foregoing process is the approximate value of the root.

To find the negative roots of an equation f(x) ~ 0, determine the

positive roots of /(— x) = and change their signs.

When all the roots of an equation in the ^-form are real, a check

to the accuracy of the comj)utation may be found by adding the

roots together. The result should be the coefficient of the second

term with its sign changed.

Sometimes an equation lias roots so nearly equal that the table of values

formed for integral values of x gives no information as to whether there

are roots between two consecutive integers or not. For instance, the table of

values for the equation x^ + ITx^ — 46x + 29 = does not tell us whether the

equation has three real roots or only one. In such a case we might form a table,

using values of x differing by .1 or .01, and thus locate the root between two

successive tenths or hundredths. But since such equations occur very rarely in

practice, and since the calculus affords a very simple method of determining a

number between the roots if they are real and distinct, the complete discussion

of this case will not be given here.*

EXERCISES

1. Find to two decimal places a positive root of x^-{-3x^ —
2 cc - 1 = 0.

2. Find to two decimal places a positive root of x^—6x^-{-
10.r- 9 = 0.

3. Find to two decimal places all the real roots of 2x* — Ax^ +
3 a-2 - 1 = 0.

4. Find to two decimal places all the real roots of .7'^+4.7--— 7 = 0.

5. Find to tAvo decimal places all the real roots of x* — ix^ +
14:X--4x-U7 = 0.

6. Find to three decimal places a positive root of x^—9x^-\-
25 a; -18 = 0.

7. Find to three decimal places a positive root of x^ — 2 x' -{

2 a; -101 = 0.

8. Find to three decimal places all the real roots of Sx^— 5x^=Sl.

9. Find exactly a real root of 4a-^ + 23 a-- — a* — 377 = 0, and

show that the other roots are imaginary.

* See Hawkes, Advanced Algebra, p. 200.
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10. Sliow that tlie equation ./•' — 7.t + 7 = has two roots l>e-

tween 1 and 2 and one negative root. Find each of the roots to three

decimal places.

11. Solve exercise 11, p. 96, getting the result to two decimal places.

12. Solve exercise 13, p. 9G, getting the result to two decimal places.

13. If a wooden simple beam x inches square and of 12 feet span
carries a load of 300 pounds at the middle when it is also subject to

a longitudinal tension of 2000 pounds, the allowable tensile strength

being 1000 pounds per square inch, the safe value of x is given by
the equation x^ — 2x— 64.8 = 0. Find to two decimal places the

size of the beam.

14. A beam of span I, fixed at one end and resting on a support
at the other end, is subjected to a uniformly distributed load. The

point of maximum deflection for a safe load is given by the equation
8 x^ — 9 /a;' + /^ = 0, where x is the distance from the supported end.

Show that a- = .4215 I.

15. A hollow cylindrical shaft 17 inches in outside, and 11 inches

in inside, diameter is to be coupled by 12 bolts placed with their

centers 20 inches from the axis. The proper
diameter of the bolts is given by the e(]ua-

*

tion d'+ 3200 (/-- 337.6 c/- 13,500 = 0. Find ^ '^
t,

the diameter of the bolts to one decimal place.

16. A wooden column x inches square and 12 feet long, having
fixed ends, is to carry an axial load of 50 net tons with a factor of

safety of 10. The size of the column is given by the equation
a-''
— 125 ur = 10,368. Find the size of the column to one decimal

place.

17. If the column in the preceding exercise has round ends, its

size is given by the equation x* — 125 x^ = 41,472. Find the size of

the column to one decimal place.

18. In exercise 16, if the eccentricity of the load is 2.5 inches, the

size of the column is given by the equation x* — V2ox^ — 1875 a; —
10,368 = 0. Find the size of the column to one decimal place.

19. The Gas E(juatiun of \'an (.lor Waals is (p + —A i^r
—

b)
=

1,

where v is the volume of the gas, j) tlie ])ressure, and a and f> are

^
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constants depending on the gas. For carbonic acid gas a = .00874 and

i = .0023. Find the value of v to two decimal places whenp =1.

Hint. Reduce the equation to one of third degree in v with numerical coeffi-

cients and multiply the roots by 10 before solving.

20. The following equation occurs in the theory of chemical

actions*: \x^ -\- ^x^ -\- %x^ —I.IQQ. Eind the value of x to two

decimal places.

21. The cubical coefficient of thermal expansion of paraffin is

.000584 per degree centigrade. If t be the temperature on the cen-

tigrade scale, the linear coefficient of expansion of the j)araffin is to

be found from
3 ^^^ ^ ^..^ ^ 3 ^^3^2 ^ .000584.

Find to two decimal places the linear coefficient of expansion a

at 30° C.

22. An empirical formula for the volume of one gram of water

at temperature t degrees centigrade is

V = 1 - .00009417 t + .000001449 1' + .0000005985 t\

where v is the volume in cubic centimeters. Find correct to tenths

of a degree the temperature at which the volume of 1 gram of water

will l>e 1.0002 cubic centimeters.

71. Solution of the cubic. In § 19 exact expressions for the roots

of the quadratic equation ax^ -\- hx -\- c = were found in terms of

its coefficients, a, 1>,
and c. The only process of approximation needed

in order to find an irrational root of such an equation is that of

extracting the square root. Hence it is never necessary to use

Horner's Method to find the roots of a quadratic equation.

In this section we shall see that it is possible to find an exact

expression for the roots of the cubic equation in terms of its coeffi-

cients, and that the formulas obtained may be used in certain cases

as a substitute for Horner's Method. A similar but more laborious

solution for the equation of the fourth degree exists, but will not

be given here. It is, however, impossible to obtain any general

solution of equations of higher degree than the fourth by means

of algebraic operations.

The cubic equation in the ^^-form is

x^Jr]\x^+T>.4c+i\ = 0. (1)

* J. L. R. Morgan, Elements of Physical Chemistry, 4th ed., i>.
506.
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If we increase each of the roots of this equation by 7-', iu order

to remove the term in
x'", we obtain the equation

lacking- the term in a;^, and wliich we may write in the form

a.«+^,.r + y = 0, (3)
^ OS

where P=p.2-Y, and q = -^-J-^+p^. (4)

The cubic in I'orm (3) we can solve as follows : Let

x=// + z. (5)

This amounts to replacing the single varial)le x by the two vari-

ables y and z. We deliberately complicate the problem in this way,
because we shall obtain a relation between y and z which will enable

us to find the values of the two more easily than we could determine

the value of x alone.

Substituting (5) in (3),

(>/ + ^f+J>(!/ + -")+'/ = y' + ^' + (3 2/^ -i-p)(y -h!^)+q = 0. (6)

Having introduced an extra variable, we are at liberty to impose
a condition on 7/ and z.

Let 3 7/,-+y- = 0, or yz = ^- (7)

Then
(<"))

will reduce to 7/ + z^ = — q

and from (7) we have ?/-.'^
= — ^•

By reason of the relations between the roots and the coefficients of

a quadratic equation (§ 24), it appea'rs that y^ and ?} must be roots of

the (piailratic equation whose coefficients are 1, y, and — ^; that is,

of the equation >,»

''+'/'-^
= 0.

(8)
Solving (8), Ave find

f =
-2 + ^4+27-^'^'

' =~2-N4+27-''-
Hence y = ^/J

,
w "v^, w- V!T

;
z = -VT:, w ^v^, <d^ -Vb, Avhere w

represents one of the complex cube roots of 1 (exercise 27, p. 8(5).

The roots of (3) would at first siglit seem to be nine in number,

namely, the values which wo olitain l)y adding each of the three

values of y to each of those of z. But reference to (7) reminds us
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that the product yz must be real
;
hence all of these nine values

are ruled out excejit the following, which are the roots of (3) :

These expressions are called Cardan's Formulas for the solution

of the cubic. „ ,

When the value of — +— is positive we can extract its square

root and compute the values of A and B readily. In this case we
find but one real root, the other two being complex. If the value of
2 3

4" + Tir is negative, in which case there are three real roots, it is

necessary, in order to solve the equation by this method, to extract

the cube root of a complex number. This is more laborious than it

is to find the roots by Horner's Method. Consequently, we shall use

these formulas only when -r + 77= > 0. In this case there is only

one real root.

If an equation of the third degree in p-fonn has three real roots and they
have been found by Horner's Method, we have seen that the work may be

checked by adding them together. The result should be the coefficient of the

term in x^ with its sign changed. If tlie equation has only one real root, this

clieck is not available, and the result of Horner's Method may be checked by
the method of this section.

The foregoing method of solving the cubic is due to the Italian, Tartaglia, but

was first published by Cardan in 154.5. At this time the operations with com-

plex numbers were imperfectly understood, and every effort was made by mathe-

maticians to avoid them. It must have been not a little irritating for the early

algebraists to realize that the only case in which Cardan's Formulas solve a cubic

without extracting a root of a comiDlex number is that in which tlie equation has

a pair of complex roots. To find tlie tliree real roots of a cubic when they are irra-

tional, the case in which they were chiefly interested, the cube roots of complex
numbers are necessary.

EXERCISES

Solve the following cubics, using Cardan's Formulas :

1. ic^ -f 3 a;2 -f 3 .i' + 2 = 0. 3.4 x^ + 2 x- -1 = 0.

2. cc'^
- 11 X + 20 = 0. 4. 2 ic' - 9 x-- + 2 a- + 30 = 0.

Find to two decimal places the real root of each of the following

cubics, using the tables (pp. 215-217) to evaluate the radicals :

5. a.3 + 3a; - 20 = 0. 8. x^ -f- ^x' -f 5a; - 17 = 0.

6. ^3 _ ^ _ 33 ^ 0. 9.2 x^ + 12 x^ + 27 a; - 68 = 0.

7. a:^ _ 8a; _ 24 = 0. 10. x^ - 9a;- + 25a; - 18 = 0.
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72. Graphical solution of the quadratic equation. When the real

roots of an equation are desired to wo more than one decimal place, the

equation may be solved graphically. Take, for example, the equation

a;2_3.r + 2 = 0. (1)

We seek the values of x which satisfy this equation.

Consider y = x^, and y = 3.r — 2. (2)

If we solve these equations, we find two values of x such that the

corresponding values of y in equations (2) are equal to each other, since

for these values of x we would have

x^ = 3x - 2, or a-'' - 3a; + 2 = 0.

To solve this problem graphically

we plot equations (2) on the same

axes and note the values of x where

the straight line ?/
= 3 a; — 2 inter-

sects the parabola y = x^. These are

the values of x which afford equal

values for
//

in equations (2), the

coordinates of both curves being

identical at a point of intersection.

In the adjacent graph the abscissas

of the points of intersection are 1 and

2 respectively. Hence these numbers

are the roots of (1).

The advantage of this graphical

method lies in the fact that for all quadratic equations in p-forni

the first equation of (2) is the same, and hence the parabola may
be drawn once for all in ink. This leaves only the necessity of

drawing in pencil one straight line for each solution and noting
the points of intersection.

-\



134 HIGHER ALGEBRA

73. Graphical solution of the cubic equation. It is assumed in

what follows that the term in x^ has been removed, from the cubic

in p-form by increasing each of the roots by ^ ? leaving the equation
in the form ^3 r , n r-wX + px + '/

^ 0. (1)

This transformation should be performed by synthetic division,

as in § 67.

We then plot the cui've y — x^ and the straight line y — — {j^-c + q)

on the same axes, and note the x distances of their points of inter-

section. These will be the real roots of (1). The plot of the curve

?/
= a-^ should be made carefully on a large scale in ink, so that the

line may be drawn in pencil, as in the preceding section. In this way
the same curve may serve for many problems. This method gives

only the real roots of the cubic, and there will be one or three real

roots according as the line y —— {px -\- q) cuts the curve ?/
= a-^ in

one or three points.

EXAMPLE

Solve graphically x^ + 6 x^ -\- 8 x — 1 = 0.

Solution. Here p^ = 6. We must then increase the roots by 2,

1 + G + 8 - 1 1-2
-2-8+0

(1)

1+4+0-1
-2-4

1 + 2-4
_ 2

1+0

The transformed equation is

•r^ — 4 a; — 1 = 0.

Plot the equations

(2)

y = a-'

and ?/
= 4 x + 1

on the same axes.

The abscissas of the points of intersection are

approximately 2.1,
—

.3, and — 1.8. Hence these

are approximately the roots of (2). Since the roots of (1) were

increased by 2 to form (2), we obtain the numbers .1,
—

2.3, and

— 3.8 as the approximate values of the roots of (1).
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EXERCISES

Find graphically the real roots of the following cubics :

1. Equation of exercise 10, \>.
1 ''>-. 5. j-'' + .r — 20 = 0.

2. Equation of exercise 4, p. lUS. 6. ./'' -{- 'A x- — 2 x — 1 = 0.

3. Equation of exercise 5, p. I'A'J. 7. .'•'*
— ('>y- + ;">./• -{-11 =0.

4. Equation of exercise 8, ]>.
I'.VJ. 8. ./•' — \) x'- — 2x -{ 101 = 0.

74. Derived function of the cubic. Let us ronsidcr tlic culnc

function
y'(^.,.^

= ^.^f _|_ ax- + Ox + r.

In this expression replace x by x -{- h, wIutc // is a real number.

We then have

f(x -{-/>)
=

(x + hy + a (x + 70' + A fr + //) + ..

Expanding the terms of this function by tlui lUnomial Theorem

and collecting like powers of h, we have

f(x + /')
= ^'^ + (>.r- + //., + r -f (3 x-' + 2 ^M' + ^';

/' + (3,>- + ") h- + h\

The coefficient of // in this expansion is called the first derivative

of f{x), and is symbolized by /'(.r). If we write f{x) and f'{x) in

separate lines, we can observe the relation which thoy lioar to each

other.
y'(^)

= ^fl j^ ax- + hx + <:

/'(.r)
= 3.x-2 + 2a.r + i.

We see that the first term of
./"'(.')

has as its coefficient 3, which

is the exjwnent of the first term of f{x), while its exponent, 2, is one

less than the exponent of the first term of f(x). We may obtain the

second and third terms of f'{x) from those of f{x) in a similar

manner. The last term, c, oi f(x) may be regarded as cx°
;
then the

corresponding term of f'(x) is • c • a;~ ^ = 0.

This procedure suggests the following rule for finding the deriva-

tive of f{x), the general validity of which we shall establish in the

next section.

Rule. If the kth term off(x) is multiplied by its exponent^ and

its exponent is decreased by ane, the residt is the kth term off(x).

EXAMPLE

Find the first derivative of f(x) = x^ + 3 x'- — 1 x -\- 4.

Solution. By the rule we obtain

/'(J) = 3x2 + Ox- 7.
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EXERCISES

Find the first derivatives of the following functions :

1. Sx'- 2x^ + X - 1. 6. i.r=^
- 1 x"" + h

2. x^ + X- + :/ 4- 1. 7. 4:x(x''
- 2x + 3).

3. 7x'-Gx-5. 8. (.r-1)^

4. _3.r^ + 2.r--8. 9.
(./- + 3) (.r

-
2).

5. a^x^ + a^x- + a^x -\- a^.
10. 2(,/' + l)-^(a3

-
1).

11. If /(x) = x^ + 3x^ + 6.r + 6, show that f'(x) =f(x) - x\

12. If /(a-)
= a-^ + 6 x'' + 12 a- + 8, show that ^f{x) ={x + 2)/'(x).

75. Derivative of a polynomial. Instead of confining ourselves to

the cubic or biquadratic function, let us now consider the polynomial

of order w, f(x) = a^x"" + a^x"-
^

-\ + a„.

Replace a^ by cc + k in this function, expand each term by the

Binomial Theorem, collect the terms free from h, and also those

containing h to the first power. We then obtain

fix + h)

=
a^ (x + h.y + a^(x + hy-' + + a„_,(x + h) + a„

=
a^lx'' + nx^-'h + h 7i{n

-
l)A-"--/r -{ h /'"]

+ a^ [.<•"

-^ + {n
—

1) X"
-
-h

+ ^(n-l)(7i-2)x''-Vi2+ . + /i»-i]

H H ('n_^(x 4- /0+«n
=

a^a?" + fl^.x"

" ^ + ••• + «„_ P-f- + r/„

+ lo.nx--' + 0^(71
-

l).r"-2 H + ^', _ j]
• A

+ F(x)
. h'' + Fj(.r)

. ]i;' H + 7^"

=
./'(^) +/('•) ^^ + ^(^O

• ^^" + ^iC^-)^'' + • + /^"- (1)

In this expansion the coefficient of h is called the first derivative

of f{x). It is symbolized by f'{x).

Writing f{x) = a^.T" + a^x"-^ + •
-\- fin-\^ + '^n

and fix) = ftpwa;"-' + a,(7i
—

l)^-''-^ -\ h fir„_i,

we see that /' {x) may be obtained from f{x) by the rule stated in

the preceding section.

The successive terms of the expansion (1) which contain h to

powers higher than the first are not written out in detail. These

coefficients are here represented by F(x), etc.
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EXERCISE

Denoting by f"{x) the first derivative of f{x), show that Fi:r),

the coefficient of h'^ in the expansion (1), is equal to
'

^
'^ - The

expression /"(.r) is called the second derivative of /(a-).

76. Double roots. The expansion (1) in the preceding section

may be written in the following form by replacing x by x^,
h by

X —
Xj,

and recalling the result of the jjreceding exercise :

An inspection of (2) shows us that if
a-,

is such a number that

f(x )= 0, and at the same time f(.r^)= 0, then the first two terms

of (2) vanish, leaving all the successive terms divisible by (x — xj-.

That is, if
a-,

is a root oif(x) = Oand of/' (a:)
= 0, but not oif"(x) = 0,

it is a double root of f{x) = 0. This is equivalent to the statement

that if X —
a-j

is a common factor of f(x) andf (x) but is not a factor

of f"(x), then x^ is a double root of f{x)= 0. Hence we have the

Rule. The monhcr
x^

is a double root of the equation f(^x')=

iffC^O = 0, / (-r,)
= 0, andfXxO ^ 0.

In the above exercise it was determined that the coefficient F(x)
f"(x)

of h^ in (1) is
'—

^~- • It may also be shown that the coefficient of A*

in CI) is
• ^^^

J
where /'*'(a;) is the kth. derivative of f(x). We may,

then, write (2) in tlie form

/(x) = f(x^) + (x- a-,)/' (a-,) + ^^^^^f"(x,)

++ ^''~r'^V'^'(^i) + • • • + (a-
-

a-,)".

From this expansion we obtain the rule for finding an ;--fold root

of/(a-)=0.

Rule. If a monher is a root off(x)=^ and of its first r—1
derivatives, but is not a root of the rth derivative, each set equal to

zero, it is an rfold root off(x') = 0.

In computing the successive derivatives of y"(a-), it must be kei»t

in mind that the derivative of any constant term is zero.
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EXAMPLES

1. Find a double root of the equation

16a;3-12ic'^ + l = 0.

Find also the other root.

Solution. f{x.) = 16 x3 - 12 x2 + 1,

f'{x) =:48x^- 24x = 24x(2a;- 1),

/"(x) = 96x-24.

"We see that J is a mot of f'{x) — 0. It is also a root of /(x) = 0, since

/(I) = 2 — 3 + 1 = 0. But
\

is not a root of f"{x) = 0. Hence | is a double

root of /(x) = 0.

Since the product of the roots of /(x) = is —
/,-. ,

the other root, r, must be

such that
^

.

^
• r = —

y'j,
. Hence ?• = —

]
.

Therefore the three roots of /(x) = are \, i,
—

|.

2. Show that 1 is a triple root of the equation

x^ _ 5 ,r3 + 9 .T^ - 7 .r + 2 = 0,

and find the other root.

Solution. /(x) = x« - 5 x3 + 9 x2 - 7 X + 2,

f'(x) = 4 x3 - 15x2 + 18 X - 7,

/"(x) = 12 x2 - 30 X + 18 = 6 (X
-

1) (2 X - 3),

/"'(x) = 24x-30.

We see that 1 is a root of f"{x) = 0. Also 1 is a root of /(x) = and /'(x) = 0,

since /(I) = and /'(I) = 0. But 1 is not a root of f"'{x) = 0, since /"'(I) ^ 0.

Hence 1 is a triple root of /(x) = 0.

Since the product of the roots of /(x) = is 2, the other root is 2.

EXERCISES

Find the double roots and other roots of the following equations :

1. x^-a;2-5a'-3 = 0. 4. .x^ + 8.r- + 20.r + 16 = 0.

2. 27x^-90: + 2 = 0. 5. 16^'^ - 60.r- + 125 = 0.

3. 2:r3-15a;2+ 24x+ 16= 0. 6. 63a;^+ 321x2 + 469^' + 147 = 0.

Find the triple roots and other roots of the following equations :

7. x^ - 2 .r^ + 2 X -1 = 0.

8. 2x* + 11 ./-^ + IS ;r- + 4 x - 8 = 0.

9. 16a;*-24x'^ + 16x-3 = 0.

10. 3 x" - 32 .r^ + 96 .r^ - 256 = 0.
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11. Show that 1 is a fourfold n^ot of tlu; tujuatioii 1 j-} — 5a;* +
10 a,-'"'

— 10 X + 3 = 0, and iiiid tli(3 other root.

12. Sliow that — 1 is a iivcfold I'oot of the equation ./•'"' + .3 x-^ —
10x-=*-15x'''- 9x - li = 0, and iiml the other root.

77. Error in computation. Suppose the values oi f{x) are to be

computed by substituting values of x which are the result of measure-

ment and hence not known exactly. By means of the derivative we

can find the approximate error in the function when the error in x is

known, provided that error is small.

Consider, for example, the expression for the volume of a cube in

terms of one of its edges, V= x^. If we could measure the edge with

perfect correctness, we could find accurately the volume of the cube
;

but wlu'u our lule seems to read, say, 2.25 inches, we know that there

may be a slight error in the reading, due to slight inaccuracies in the

rule, our vision, and our method of using the rule.

Let the measured value be x^ and let the small error be denoted

by h. Of course we do not ever know ]ust how great h is. We
may usually assume, however, that it does not exceed some definite

small number. Then letting x = x^ + h, and expanding the function

V=f{x)—x^ by formula (1) of the preceding section, we obtain

T
'=

/(.r^ +h) = (x^^ hf = .r,f + 3 xf;h + 3 xjc' + h\

Now since A is small, /r and Ii'^ will be much smaller, and may be

neglected, as they would not affect the result appreciably. Erom this

expression it appears that the value of the volume differs from the

value of x^ by 'Sxj/t, if we neglect the last two terms. Hence, if

we assume that h = .02, and x^
= 2.25, the approximate error for ]'

is 3 .

(2.25)"-'
. .02*= .3 cubic inches.

In general, let x^ be the measured value, and /i the error of the

measurement. We may write (§ 75)

Here f(x^) is the value of the function if our measurement were

correct, while the ai)proximate error in our result, omitting all terms

containing ])owers of h higher than the first, is h -/'(x^). We may
now state the following

RlTLE. To find the approximate error in the J'ltnrtinn t\.r) due

to a snudl error, h, in the measurement x , midtiply h l>y fi^i'^-
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EXERCISES

1. The edge of a cube is found l^y measurement to be 3.2 inches.

Find the approximate error in the computed volume due to an error

of Jq of an inch in measuring the edge.

2. If the diameter of a sphere is found by measurement to be 10.3

inches, find the approximate error in the computed volume due to an

error of .1 of an inch in measuring the diameter. (Take tt =
'^^-.)

3. The height of a cylindrical column is known to be 10 feet.

What is the approximate error in the volume computed from a

diameter measurement of 50 inches if this measurement is a half

inch in error ?

4. A surveyor measures a square field with a 50-foot chain which

is 1 inch too long and finds the area to be 62i acres. Find the area

of the field in acres correct to 2 decimal places and show that the

amount neglected does not affect the second decimal place.

5. Find the approximate ei'i'or in the function x^ — 2x^ -^ x — 'S.

due to an error of .03 in a value 1.25 taken for x.

6. Find the approximate error in the function 7-x^ — 2 }^x^ if r is

known to be .1 and the value of x, 8.1, is inaccurate by .1.

7. The diameter of a right circular cylinder whose altitude is 5

feet is measured and found to be 8.2 inches, but the measurement is

inaccurate by .1 of an inch. Find the approximate error in computing
the total surface.

8. A right circular cylinder is capped by a hemisphere. The height
of the cylinder is 50 inches. Its diameter is found by measurement

to be 10| inches. Find the approximate error in computing the total

surface of the solid from a diameter measurement which is -^^ of an

inch in error.

9. A Norman window is in the shape of a square surmounted by
a semicircle. Its width is measured to be 40.5 inches and its area is

computed. Find the approximate error in the computed area due to

an error of -i- of an inch in measuring the diameter.



CHAPTER VII

PERMUTATIONS, COMBINATIONS, AND PROBABILITY

78. Introduction. The formulas which will be used in this chapter

depend on the following

Theorem. If an act tvhich may he performed in p waya is

followed by an act which may he performed in q ivays^ the total

number of ways in which the two acts inay be performed in

sticcession is p •

q.

For with each of the p ways of performing the first act one has a

choice of q methods for the second. Hence with the entire p ways of

performing the first there will he 2^
• q ways of performing both acts.

For example, if there are 6 roads from A to B, and 4 from B to C, one has

the choice of 6 • 4 = 24 routes iu going from A io C through B,

EXERCISES

1. A room has 6 doors. In how many ways can a person enter and

leave by a different door ?

2. A man has 4 suits of clothes and 7 neckties. How many wa3-s

can he dress, not wearing tlie same tie twice with the same suit ?

3. Two dice are thrown. In how many ways can they fall ?

4. In presenting 8 men to G women how many introductions are

made?

5. Tliree coins are pitched. In how many ways can they come up ?

6. A tow 11 has () hotels. Three people wish to stay at different

hotels. In how many ways can this be done ?

7. In how many ways can two letters be posted in 4 letter boxes ?

8. There are 25 stations on a branch line of a railroad. If both

one-way and return tickets are sold between all stations, how many
different kinds of tickets must be printed ?

141
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79. Permutations. Each different arrangement of a number of

tilings is called a permutation. The letters A, B, and C may be

arranged in the six different orders, ABC, ACB, BAC, BCA, CAB,

CBA, each one of which is a permutation of the letters, distinct

from the others. In determining how many permutations of these

letters there are, we may employ the idea of successive acts as

explained in the preceding section. Thus let the first act consist in

filling the first place. This may be done with any one of the three

letters, and hence in three different ways. With this place filled,

there are only two letters left with which to fill the second place,

which may be done in two ways. This affords 3-2 = 6 ways of fill-

ing the first two places. But with the first two places filled with two

of the letters there is no choice in the way of filling the third place,

as there is only one letter left. Hence the number of permutations

of the three letters is C.

Theorem. The 7iumher of permutations of n things taken r at a

time is
j>^ = n(n

-
l)(n

-
2)

. . .

{n
- r + 1).

If only r of the 7h things are to be used at a time, there are only

r places to be filled. Since the first place may be filled by any one of

the n things, and the second place by any one of the ?z-
— 1 remaining

things, we see that the first two places may be filled in 7i(n
—

1) ways.

The third place may be filled by any one of the 7i — 2 things which

are left
;
hence the first three places may be filled in ?i(n

—
l)(7i

—
2)

ways. Proceeding in this way, it appears that when r — 1 places

have been filled, we have left n — (r
—

1) letters with which to fill

the last place. Hence the rth place can be filled in w — (;
—

1) ways,

and n — r -\-l is the last factor in the expression „ P^.

Corollary. The number of permutations of n thi)i[/s taken all

at a time is
w(w - 1) (w

-
2)

• • • 2 • 1 = w !.

The symbol nl is read "factorial ?i." It is sometimes represented by|n. In

the foregoing theorem it is assumed that the elements are distinct, and that no

element is used more than once in a given permutation.

EXAMPLE

If one has eight flags of different colors, how many signals can be

displayed by showing them four at a time on a vertical line ?

Solution. Here n = 8, r - i. Hence gP^ = 8 • 7 • 6 • 5 = 1680.



PEK.MITATIOXS 143

EXERCISES

1. llow many arnuigijiuciits ut llic IctLurs in the word "C'uhimljia"

can be made, using in each arrangeinorit (a) 4 letters ? (b) all the

letters ?

2. J^'oiir people enter a room in which there are 7 vacant chairs.

In how many ways can they be seated ?

3. lu liuu' many orders can a liaml (if G cards be played ?

4. With 5 flags of different colors, how many signals can be dis-

played by showing them any number at a time on a vertical line ?

5. How many different numbers less than 1000 can be formed

from the digits 1, 2, 3, 4, 5 ?

6. What is the number of permutations of the letters of the alpha-

bet, taking three at a time ?

7. How many numbers of 7 figures having as middle digit can

be formed from the digits 0, 1, 2, 3, 4, 5, 6?

8. In how many ways can 5 red books and 4 blue ones be arranged

on a shelf so that all the books of each color are together?

80. Permutations with repetitions. Let us determine how many
numbers of three digits can be written making use of the digits 2, 3,

4, and 5, where each digit may be used repeatedly. Here we have

three places to fill. The first may be filled in any one of 4 ways, and,

since repetition is allowed, the second and the third place may each

be filled also in 4 ways. Hence all three places may be filled in

4 • 4 • 4 = 4*^ ways. By similar reasoning we establish the following

Theorem. The numbers of permutations of n tlttn;/.^ ttd-en r nf

a time tvhen repetition is allowed i>< )i'\

This theorem assuuios that onoh thing may be used r times. If restriction

is placed on the amount of repetition of one or more of the objects, the theorem

is modified.

81. Permutations of things not all different. In the foregoing

sections it has been assumed that all of the things to be permuted

are different. If this is not the case, we have a modification of the

formulas derived. In order to find the number of permutations of

the letters in the word "
algebra," taken all at a time, it is necessary

to note that the lett(?r a occurs twice. If for the moment these o's

are considered as distinct, we shall have 7 ! permutations. But if in
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eaeli permutation the a's are treated as not distinct, we can inter-

change them witliout affecting the permutation ;
that is, the number

. 7!
of distinct permutations is — •

Theorem. //", of n things, n^
are alike, ii^

are alike hut of

another kind, n^ are alike hut of still another kind, etc., the num-

her of distinct permutations of the n tilings, taken all at a time, is

n\

n^\ nA nA • • •

For since the n^ ! permutations of the n^ equal things are exactly

alike, there will be only
—

: times as many distinct permutations as

there would be if these n^ things were distinct. For a similar reason

the total number, n\, oi permutations of n things is divided by n^\

because of the equality of the
n.^ things, and so on.

When only a part of the n things are taken at a time, and some of them are

alilce, the situation is mucli more complicated and will not be considered here.

EXERCISES

1. How many different numbers less than 1000 can be formed

from the digits 1, 2, 3, 4, 5, where each digit may be repeated ?

2. Three dice are thrown. How many ways can they fall ?

3. Find the number of distinct permutations of the letters of the

word "
mathematics," using all the letters in each permutation.

4. In how many ways can 4 coins be given to 10 boys, if each boy

may receive any number of the coins ?

5. Find the number of integers having 5 digits.

6. In how many ways can 6 letters be posted in 3 letter boxes ?

7. (a) Find the number of distinct arrangements of the letters

of the word "
sophomore," using all the letters in each arrangement.

(b) In how many of these arrangements do the 3 o's come together ?

(c) In how many of these arrangements do the 3 o's come at the end ?

8. (a) Find the number of distinct arrangements of the letters

of the word "
engineering," using all the letters in each arrange-

ment, (b) In how many of these arrangements will the i's not

occur together ?



CO:\rP,INATIOXS 145

82. Combinations. A group of objects which is independent of

the order of its elements isj called a combination. For example, a

committee consisting of three men, A, 13, and C, is the same com-

mittee whether we think of them as standing in the order ABC
or CBA. It is evident, then, that there are more permutations
of n things taken r at a time than there are combinations. The
combination depends merely on the selection of the objects them-

selves and not at all upon the order in which they are arranged in

the final groups. Since each combination of r things gives rise to

r\ permutations, it appears that there are ?•! times as many permu-
tations of n things taken r at a time as there are combinations. This

leads us to the

Theorem. The number of combinations of n things taken r at

« '^""'^ ^^
n{n- \.){n-2) . {n- r + I)

nCr=
y^

•

(1)

This formula is easily remembered if one notices that there is the same num-
ber of factors in tiu' numerator as in the denominator

;
that is, just r.

From the definition of combinations it is seen that the number of combi-

nations of 71 things taken all at a time is 1.

Theorem. The number of combinations of n things taken r at a

time is the same as the nu)nber of combinatinns rf n things taken

n — r at a time.

Expressed symbolically, „f^ = „Cn n — r'

r ^n(n-l)(n-2)...[n-(n-r) + l^
^^' " "-'•

{n-r)l

n(n-l)(n-2) •••(/' + !)

(n-ry.

multiplying numerator and denominator by r!,

^ n(n-l)(n~2) ••
(r -{- 1) >•(;•- 1) ...2.1

(71
-

r) ! r !

dividing numerator and denominator by (n
—

/•)!,

n(n - l)(n
-

2)
•

(n
- r + 1)

/•!

= ..r..

The utility of this theorem will be appreciated if one compares the amount
of computation involved in finding .,^C^ and its ei]ual .iiCjg.
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For the solution of the exercises which follow, no specific rules

can be laid down. In general, one should first observe whether the

question involves combinations or permutations. If the latter, any

possibility of repetition or equality of elements should be noted.

So far as possible it is advisable to fall back on the principles on

which the various formulas depend rather than to form the habit

of using the formulas blindly.

EXERCISES

The first eight exercises involve only combinations.

1. Find the value of (a) ^C^; (b) ^/.\^.

2. How many committees of 9 can be selected from a group of

12 men ?

3. How many crews of 8 men can be selected from a squad of

13 men ?

4. How many straight lines are determined by (a) 7 points, no

three of which are in the same straight line ? (b) n points, no three

of which are in the same straight line ?

5. How many planes are determined by (a) 10 points, no four

of which are in the same plane ? (b) n points, no four of which are

in the same i)lane ?

6. Find n, if (a) „C,
= 28

; (b) „C^
= 84.

7. Find n, if
(a) „C^

=
/'., ; (b) „C„_3 = 35.

8. How many different sums can be made up from a cent, a nickel,

a dime, and a quarter ?

9. If „P,.
= 110 and „r',.

= 55, find ?t and r.

10. li„C^=h1-,r„^nd7i.

11. U,,P^ = Gj\,find7i.

12. In how many ways can 7 coins be given to two boys so that

one will get 3 and the other 4 ?

13. With 12 cadets, (a) in how many ways can a guard of 6 be

chosen ? (b) in how many ways can a guard of 6 be arranged
in a line ? (c) in how many ways can the 12 be divided into two

equal groups ?
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14. A committee of 7 is to lu- clioscn from S Eiiglislimen and 5

Anierieaiis. In liow many ways can the committee l)e chosen if it is

to contain (a) just 4 Englislimcu ? (b) at least 4 Englishmen?

15. How many signals can be made l)y hoisting 8 flags, all at a

time, on a staff, if 2 are white, 3 black, and the rest red ?

16. How many signals can be made with the flags of exercise 15,

using them all at a time, if a red flag is always at each extreme ?

17. Show that the number of orders in "\Yhich n things can be

arranged in a circle is (n
—

1)!.

18. In how many orders can 7 men sit around a circular table ?

19. In how many orders can 4 men and 4 women sit around a

circular table so that a man is always between two women ?

20. Out of 8 consonants and 3 vowels how many arrangements of

letters, each containing 3 consonants and 2 vowels, can be formed ?

21. How many handshakes may be exchanged among a party of

12 people, no two shaking hands more than once ?

22. How many numbers greater than 100,000 can be formed by

arranging the digits 1, 3, 0, 3, 2, 3 ?

23. The Greek alphabet has 24 letters. How many fraternity

names can be formed, each containing three letters, repetition of

letters being permitted ?

24. In how many ways can a baseball team of 9 men be selected

from 14 men, if only two of them can pitch, and these two can play
in no other position ?

25. How many telegraphic characters could be made by using
3 dots, 2 dashes, and 1 pause?

26. In how many ways may 15 passes and 5 failures be adminis-

tered to a class of 20, taking them all at a time ? »

27. In how many ways can 7 men stand in line so that 2 particular

men will not be together ?

28. How many different sets of 4 hands can be dealt from a pack
of 52 cards ?

29. In how many ways may a football team of 11 men line up if

the center and quarter back keep theii* positions, no line man being
called back and no back being put in fhc line? It is assmued that

in each line-up there are three men on each side of the center.
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30. (a) How many diagonals has a decagon ? (b) How many
diagonals has a polygon of n sides ?

31. Of 12 musicians 10 play the violin, 7 of these 10 also play

the viola, and the remaining 5 play the cello. How many trios of

different kinds of instruments can be made up ?

32. How many triangles can be drawn, taking as vertices 8 points,

just 3 of which lie in a straight line ?

33. For a given value of n, what value of r affords the greatest

value of „CV ?

HiKT. Since there are the same number of factors in the numerator and
71 — 7* -f- 1

denominator of nCri the smallest value of r which makes > 1 will be

the value sought.

83. Probability. If a bag contains 3 white balls and 4 black balls,

and 1 ball is taken out at random, what is the chance that the ball

drawn will be white ?

This question we may answer as follows : There are 7 balls in the

bag and we are as likel}^ to get one as another. Thus a ball may be

drawn in 7 different ways. Of these 7 possible ways 3 will produce
a white ball. Thus the chance that the ball drawn will be white is 3

to 7, or f . The chance that a black ball will be drawn is f .

We may generalize this illustration as follows : If an event may
happen in p ways and fail in q ways, each way being equally prob-

able, the chance or probability that it will happen in one of the p
ways is

jj

p + q

The chance that it will fail is

(1)

^
(2)

P + q

The sum of the chances of the event's happening and failing is 1,

as we see by adding (1) and (2).

The odds in favor of the event are the ratio of the chance of hap-

pening to the chance of failure. In this case the odds in favor are

'-
(3)

q

The odds against the event are - •

p
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EXAMPLES

1. li' the cliiuice of iiii event's haiipciiiiig is
j'^^,

what are the odds

in its favor
"'

V 1
Solution. By (1),

—i-— = — .

Hence lOp = p + q,

or 9p = 9,

P 1
or — = -

» which by (3) are the odds in favor.
q 9

'

2. From a pack of 52 cards 3 are missing, ^^'hat is the chance

that they are all of a particular suit ?

Solution. Tlie number of combinations of 52 cards taken 3 at a time is

jjC'g
= — . This represents p + q. Tlie number of combinations of the

1 • 2- 3
13. 12 • 11

13 cards of any one suit taken 3 at a time is J3C3 = This repre-

sentsp. 13- 12- 11

p 1.2.3 13.12.11 11 11
Thus —^— = — = =

p + q 52 • 51 . 50 52 • 51 50 17-50 850

1-2-3

3. What is the chance of throwing one and only one G in a single

throw of 2 dice ?

Solution. Tliere are 36 possible ways for the two dice to full. This represents

p + q. Since a throw of two 6's is excluded, there are 5 throws in which each

die would be a 6; that is, 10 in all in which a 6 appears. This represents p.

» 10 5
Thus

p + q 36 18

EXERCISES

1. A bag contains 8 white and 12 black balls. What is the chance

that a ball drawn shall be (a) white ? (b) black ?

2. A bag contains 4 red, 8 black, and 12 white balls. What is the

chance that a ball drawn shall be (a) red? (b) white? (c) not black ?

3. In the previous problem, if 3 balls are drawn, what is the

chance that (a) all are black ? (b) 2 red and 1 white ?

4. \\'lKit is the chance of throwing neither a 3 nor a 4 in a single

throw of 1 die ?

5. \\'hat is the chance of throwing 7 in a single throw with 2 dice?
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6. What is the chance of throwing three 5's in a single throw

with 3 dice ?

7. AVhat is the cliance of throwing 2 heads in a single throw

with 2 coins ? in 2 throws with 1 coin ?

8. If 3 coins are throAvn, what is the chance that just one will

be a head ?

9. Four men seated at a table match coins, agreeing that the odd

man shall pay for the dinner. A remarks that it is likely to require

several trials before one coin comes up different frOm all the others.

B replies that the chances are even that this will happen on the first

trial. Which is correct ?

10. Three cards are drawn from a suit of 13. What is the chance

that they will be ace, king, and queen ?

11. Two cards are drawn from a pack of 52. What is the chance

that they are both aces ?

12. Four cards are drawn from a pack of 52. AYhat is the chance

that they are all clubs ?

13. If 12 men stand in line, what is the chance that A and B are

next to each other ?

14. A man selects by lot 3 from a list of 10 friends to make up a

dinner party. The list contains just 2 brothers. What is the chance

that they are both invited ?

15. If 3 dice are thrown, what are the odds in favor of at least

2 turning up alike ?

16. Four men throw rackets for choosing partners in a game of

tennis doubles. The 2 '^ smooths " and 2 "
roughs

"
are to be partners.

What are the odds against the choice being made on the first throw ?



CHAl'TKIt \'III

DETERMINANTS

letters 1\ = Y'' f'

84. Determinants of the second order. As a matter of notation

it is agivt'd l)y niathenuitical writers to give the arrangement of

the meaning a^),,
—

ah^, where these letters may

represent any numbers. The arrangement is called a determinant.

Since there are two rows and two columns, the determinant is said

to be of the second order. The expression a^l\^
—

aj>^
is called the

development of the determinant. The value of the development of

a determinant is often spoken of as the value of the determinant.

The symbols a^, h^, o,^, h,„ are called elements, and
a^, h_^,

are said to

comprise the principal diagonal of the determinant.

Thus
1 3

2 4
1.4_2.3 = 4-6=-2: X 1

y
= x-0— ?/-l=— y.

The historical reason for this apparently artificial notation is the

appearance of numbers in the form of the development a^>_^
—

ajj^
in

the solution of a system of two linear equations in two variables.

Thus if we have given
„^^ ^ /^^^^

^
^^

.

^^^

and
a./^ + h.j/

=
c,^, (2)

we obtain by the usual method of solution,

Cll>2
—

'"o^lX
"A -~

"J'l

and
1/

"l^2
—

^2^1

"A - "A

Using the determinant notation, we may write these results as

follows :

X =
'\
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The analogy between the solution of this simple system and the

more complicated cases which follow will be seen more clearly if we
observe that

I. The determinants in the denominators are identical, and each

consists of the coefficients of x and y as they stand in the original

equations (1) and (2).

II. The determinant in the numerator of the value of x is formed
«.

1from the denominator hy reijlacing the coefficients of x, namely
C 2

hij the constant terms \

III. The determinant in the numerator of the value of y is formed

from the denominator hy replacing the coefficients of y, namely ,',

c 2

Inj the constant terms ^

85. Determinants of the third order. The arrangement of letters

^3
=

(I .

1 ^ ^1

«2 h ^2

% h ^
(1)

has been given the meaning

''A''z + ''M + "J\''2
-

''h'x
-

"I'^z
-

«i¥2' (2)

where the letters may take on any numerical values. The expression

(1) is really an abbreviation or symbol for (2).

Since D^ contains three rows and three columns, it is called a

determinant of the third order, and (2) is called its development.
The letters

a^, h^,
and

c^
constitute the principal diagonal. Similarly,

we may have a determinant with n rows and n columns. This is

called a determinant of the wth order.

Comparing this development with that of the determinant of the

second order, we observe the following principle which will serve as

a part of the rule for the development of determinants of orders

higher than the third.

Each term of the development of a determinant of order 3 consists

of a product of 3 elements, one from each row, and one from each

column of the determinant.
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This is verified in the case of (2) by observing that every one of

the hitters a, h, and c occurs in each term, and that every one of the

subscripts 1, 2, and 3 also occvu-s

in each of the terms of the devel-

opment.
This statement gives us the law

of t'oi inatioii for the development
of a determinant of any order.

The only feature which it does

not cover is the determination of

the signs of the terms. It so hap-

pens that for the determinant of the tliird order there is a simple

rule for the determination of these signs. In the above figui-e the

continuous lines indicate the right diagonals, while the dotted lines

indicate the left diagonals. We may then state the

Rule. To evaluate a determinant of the third order, midtipjy

the numbers in each of the three right diagonals ; mxdtiply the ninn-

hers in each of the three left diagonals changing the sign of each

product; then add the six products.

It should be kept in mind tliat this rule does not apply to determinants of

higher order than the third.

Evaluate

3
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I. The determinants in the denominators are identical^ and each

consists of the coefficients of x, t/,
and z, as they stand in the orifjinal

e(/nations.

II. j!Jach determinant in the numerator is formed from the de-

nominator hy putting the column of constant terms (as they stand

in the oriyinal equations) in place of the column of the coefficients of

the variable ivhose value is sought.

EXAMPLE

Solve the following equations by determinants :

X + y + ". = 2,

x + 3y-4 =
0,

y~2z = (j.

Solution. Rearranging so that terms in the same variable are in the same

colunui, and supplying the zero coefficients, we get

X + 2/ + z = 2,

a; + 32/ + 02 = 4,

Ox+ y-2z = Q.

By (4), p. 154, X =

y =

z =

2
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EXERCISES

Solve the following systems of equations :



DETERMINANTS 157

Rule. The development of a determinant of the nth order con-

sists of the aJ(jebraic sum (f nil the terms ichlch can he formed

possessing the following properties :

I. Each term consists of the product of 71 elements^ one from each

row, and one from each column of the determinant.

II. The sign preceding each term is + or — according as the mim-

her of inversions of the subscripts of that term is even or odd, the

order of the letters being the same as that of the principal diagoyial.

According to this rule, the sign of the term
oji^c,^

in the (leveloj>-

ment of tlie determinant of the third order should be -f, since the

numbers 312 have two inversions. Reference to (2) of § 85 verifies'

this result. The signs of the other terms in (2) may be similarly

obtained, and the use of the diagram on page 153 for the determi-

nation of the signs may be justified in this way.
An application of the first part of the preceding rule to a deter-

minant of higher order than the third shows that the development
of such a determinant contains more terms than would be obtained

by taking the diagonals as explained for the determinant of the

third order.

For example, if n — 4, the rule requires that
a.^h.,c^d^

is a term of the devel-

opment, although this set of elements does not occur in any diagonal of the

determinant.

Since there are as many terms in the determinant of order n as

there are arrangements of the subscripts 1, 2,
• •

•, n, it appears that

the number of terms equals the number of permutations of n things

taken all at a time, which is, by § 79, equal to n\.

For example, there are 5 • 4 • 3 • 2 • 1 = 120 terms in the development of a

determinant of the fifth order.

89. Properties of determinants. The meaning of the following

theorems should be studied in the illustration with a determinant

of the third order before the general proof is read.

I. If each element of any row or coluynn is midtipUed by a con-

stant, the value of the determinant is multiplied by that constant.

Illustration.

ma„ b„ c.

'""3 ''3 C3
= m(a^b.yC^ + a.J>^c., + aJ>gC^

—
n^b.yC^

—
a^b^c.^

—
ajb^c^)

= m D^.
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Proof. Since by the definition of the development of a determinant

of the nth order given in the preceding section, each term must con-

tain one and only one element from each row and each column, the

factor ??i will appear just once in each term. If m is written out-

side a parenthesis, it appears that the parenthesis itself contains the

development of the original D„.

II. The value of a determinant is not affected if the rows and

the columns are interchanged.

=
"1^*2^3 + '^3^1^2 + "2^3^!

~"
'^Z^-l''l

~
^1^3'^2

~
^Jh''-Z (1)

Illustration.



DETERMINANTS 1.-9

that, is, it alfuids one iiion; or one less inversion in the subscripts of

each term, and hence changes tlie sign of each term. An intercljange

of adjacent rows or of adjacent colunnis is called a transposition.

An interchange of two rows separated from each other by vi

intermediate rows requires ?/i transpositions to place the lower of

the two rows next under the upper one, followed by m + 1 trans-

positions to place the u})per row in the place formerly of-cupied by
the other, that is, 2 ?;t -|- 1 transpositions in all. But since each trans-

position causes a change of sign in the determinant, and since the

whole process involves an odd number, 2 m -f 1, of such changes, we

see that the determinant is left with a sign opposite to that of the

original determinant.

IV. If a determinant has two roivs or two colum)n< lilruticaJ^ the

value of the determinant is zero.

Proof. Let /)„ be the value of the determinant, and let the two

identical rows be interchanged. Then, by III, the sign of the deter-

minant is changed. But since the rows which were interchanged were

identical, J\ is really not affected at all
;
that is, D„ = — D„, or 7)„ = 0.

V. If each of the elements of any row or any column of a determi-

nant consists of the sum of two numbers, the determinant may he

expressed as the sum of two determinants.

Illustration. Let the elements Oj, «.,, and
a.^

in
J)^ be replaced by a[ + a[',

a^ + c4', ^"*^ ^s + ^3 respectively. Then

"i + "i

U.^ + «2

«3 + «3

^1

=
{a{ + ay) h.f^ -1- («o 4- a.'.') h^c., + {cu, + a.^) h^c.y

-
(c% + a'.^) (JoCi

-
(<i{ + a[' ) l).jC.-,

—
(«.', + cC) b^c^

i '^1 . "i • "i ^^1 "j "i

"i
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a"'s are considered separately, it appears that we have the develop^

ments of two determinants whose first columns are the a"s and the

a"'s respectively, and whose remaining columns are the same as those

of the original determinant 2)„.

VI. If in a determinant the elements of a row or column are

replaced hy those elements plus the corresponding elements of another

roiv or column, each multijMed hy the same constant, the value of

the determinatit is unchanged.

Illustration.

«3 + '"^3 ^3 '"S

I», + ?M-0 = !»,.

The proof for the general case follows immediately from V, I,

and IV.

90. Development by minors. The determinant which remains

when the row and the column which contain a certain element are

erased is called tlie minor of that element.

', b, c

«1
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The second factor of each term is the minor of the first factor of

that term.

The element in the first factor is ivritten with its sign changed,

or unchanged, according as the sum of the number of the row and

of the column in which it lies is odd or even.

Illustration.

- 1

3

1
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When the element in question is once in the leading position, its

coeificient is its minor, by the reasoning which we went through with

a^ ;
but if the sign of the determinant has been changed in getting

it there, the term of the development which contains this element is

changed in sign. Hence the theorem is established.

It is important to note that a given element has the same minor

after a transformation of this kind that it had originally.

Corollary. If in the development of a determinant hy minors

with respect to any roiv, the elements of this roiv are replaced hy the

elements of another row, the resulting expression vanishes.

This follows from the fact that the expression which we obtain is

virtually a determinant with two rows identical.

For example, if in the development of the determinant

2)3
=

'1

^2 Co

63 C3

vfheve A^^, A„, and yl
3 represent the minors of Oj, a^, and a^ respectively, we

replace the a's by the 6's, we have

b^Aj^-b.,A., + /93.-I3,

which is equal to

h, b^ q
'^2 ''2 ^2

''3 h ^3

Hence by IV, § 89,
^^
j

^

_
j,^.^^ ^ ^^^4^

^ 0.

91. Directions for evaluating determinants. In finding the value

of a determinant with numerical elements it is frequently desirable

to transform it in such a way that as many elements as possible in

some row or column are zero, so that as many terms as possible in

the development by minors will vanish. To this end the determinant

should be scrutinized, with the following points in mind :

First, are there two rows which contain identical elements in like

columns ? If so, replace one of these rows by its own elements minus

the corresponding elements of the other row.

Second, are several elements of any row each m times the corre-

sponding elements of another row ? If so, replace this row by its own

elements minus m times the corresponding elements of the other row.

The mastery of these principles will carry with it the ability to

use others in reducing numerical determinants to manageable form.
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Evaluate the determinant

EXAMPLE

35



164 HIGHER ALGEBRA

5.

7.

9.

10.

1
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Solve the following systems of equations :

a.r + />;/ + c': = a, ./• + //

l/.r + (-1/ -\- az = b, 21. X + -.'19

ex + a// -\- bz = c. y + z = X -{-2 a.

^ + II 4-
~ = ''' + ^' 4- ^,

20. hx -\- cy -(- az = ah + In- -\- ca,

ex + ay + hz = ah -(- /«• + ca.

(i.r -\- hi/
— rz ^ 2 ah,

22. A// + rv — ax = 2 be,

cz -\- ax — by z= 2 ac.

92. Solution of systems of linear equations. Suppose that we

have given n linear equations in n variables. We seek a solution of

the equations in terms of determinants. For simplicity let n = A.

Given
a^x + h^y + c^: + <l^a'=f^, (1)

(2)

(3)

(4)

The coeflficients of the variables in the order in which they are

written may be taken as forming a determinant
1)^,

Avhieh we call

the determinant of the system. We assume that
Z)^ ^ 0. Thus
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The right member of the equation is the determinant D^, except

that the elements of the first column are replaced by f^, f^, f^, f^

respectively. Hence

X =

A
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X =

1
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In any particular case a system of linear equations whose deter-

minant has been found to equal zero may usually be solved by

dividing all of the equations by one of the variables, as w in (1), and

solving the fii'st n — 1 equations for the ratios _,_,_,.... When
tv w w

values of these ratios can be found, they will always satisfy the

remaining equation, and in this way an infinite number of sets of

roots may be obtained.

EXAMPLE

Solve the following system of homogeneous equations :

5a; + 4?/+ z = 0,

6x -\- >/ -\- 5 z = 0.

Solution. Here the determinant of the system

I) =
.5 4 1

5 3 2
1

= 0.

6 15

Dividing each of the equations by z, we have

55 + 4^ = -l,
z z

55 + 3^=-2,
z z

6?+ ^=-5.
z z

Solving the first two of these equations for - and -,
z z

?=-l, ^ = 1.
z z

These values satisfy the third equation. Hence x, ?/, and z may be any
numbers which satisfy the relation

x:?/:2 = l: — 1: — 1,

or x=— y =— z.

Thus the system is satisl5ed by the sets of numbers,

1,
-

1,
- 1

; 2,-2,-2, etc.
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EXERCISES

Solve the following systems of equations :

1.

2.

— ir + r + // -(- ,- = 8,

w — X + ;/ -\- ." = 6,

w + x — i/-\-rc
= i,

w + X + y — :: — 2.

V + 3 ?<;
- 11 = 0,

w + 3 a- - 15 = 0,

a; + 3?/ -19 = 0,

2/ + 3«-8 = 0,

s + 3v-7 = 0.

4.

a; + 32/
— « =1,

7/ + 3 « — «• = 4,

z + 3w— cc = 11,

t^; + 3 X- — //
= 2.

w + a; — « = 2,

'jc + 2y-?,,r = A,

3a--5// + 2«=-l,
2«' + y-;v = 0.

Solve the following systems of homogeneous equations

3 a; + 5 ?/ + 6 s = 0,

5. 2x-\-Ay + 5z = 0,

a, + 2y + 3." = 0,

6. 2a;4-3?/ + 4;s = 0,

3x- + 4y + 5^ = 0.

2x + 3?/ + 2;s = 0,

7. 3a- + Z/ + -i.~ = 0,

4a;-2y-s = 0.

6 a; + y - 7 -v = 0,

8. 5a: — 10// + 5.t' = 0,

4a; + 3y — 7^ = 0.



CHAPTER TX

PARTIAL FRACTIONS

94. Introduction. In the integral calculus it is often necessary to

express a fraction in which the denominator is an integral rational

function of one variable, as the sum of several fractions each of

which has a linear, or at most a quadratic, function in the denomi-

nator. It is always assumed in what follows that the denominator of

the original expression is of higher degree in x than the numerator.

Whenever this is not the case, it is necessary to reduce the frac-

tion by long division to a mixed expression in which the fractional

part is in the desired form. This step, which is preliminary to all of

the cases, we state as follows :

f(x)
If in ~r\i f(x) is of higher degree than

(f) (a;), express hy means

of long division the fraction in the form = Q (a:) + ,

ivhere R (x), the remainder in the divisioji, is of lower degree

than ^ (a-).

95. Denominator with distinct linear factors. The essence of

the following method consists in assuming that the fraction can .be

expressed in the following form, and then seeking to determine the

numerators which in the assumed form are left undetermined.

EXAMPLE

Separate into partial fractions

X + 4

(x
-

1) {x -2)(x- 3)

Solution. Assume
- + 4 ^ +_^+^^. (1)

(x
-

1) (x
-

2) (X
-

3) X - 1 X - 2 X - 3

To determine what numerical values A, B, and C must have, multiply both

sides of the equation by (x
—

1) (x
—

2) (x
—

3).

We have x + 4 = ^(x - 2) (x
-

3) + iJ(x
-

1) (x
-

3) + C'(x
-

l)(x
-

2).

170
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Since this expression is assumed to be an identity, it must be true for all

values of x (§ 11). If, then, we let x take on the value 1, all of the terms in the

right member vanish excepting the one containing A. We can then lind the

value of ^. 1 + 4 = yl (1
-

2) (1
-

3), or ^ =
^.

Similarly, yjo find the values of B and C by letting x take on the values 2 and 3

respectively. Tims />' = —
(5, C — \.

Hence
a; 4. 4 5 g 7

+
(x
-

1) (x
-

2) (x
-

3) 2 (X
-

1) X - 2 2 (X
-

3)

In this text we shall not prove that the assumption analogous to

(1) always leads to the partial fractions which we seek. In any par-

ticular case the fractions obtained should be added as a clieck on the

work, and the validity of the result in this way determined.

EXERCISES

Separate into partial fractions :

1.
.t2-2
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Letting x =— 1, we obtain D — — 1
; letting x = 3, we obtain C = 2.

Substituting these values for C and D, and letting x = 0, we obtain

B = -2.

Substituting the values already found, and letting x = 1, we obtain

A =- 1.

„ 5x2 + 8x + n -x-2 2 1
Hence • =: h

(x2 + 1) (X
-

3) (X + 1) x^ + 1 X - 3 X + 1

EXERCISES

Separate into partial fractions :

1 + .r + a"^ X
4.

x(^x^ + 4) (x-\- 3) (2x^
- a- - 4)

a;2 + 15 ^ 3.r + 4
2. .. . ., . ^ —— • 5.

(x
-

1) (x" + 2 a; + 5) (x^-x) {x' + 1)

3 - a-2 x^-\-5
6.

2 + X + 2 a-'^ + .r'^ ,r^ + a;^ -1- a;"-^ + a-

97. Denominator with repeated factors. If the fraction is in

the form \„ ' replace x by ?/ + « in both numerator and de-

nominator, and simplify the numerator. The partial fractions are

directly obtained, and may be expressed in terms of x by replacing

y hy X ~ a.

EXAMPLE

Separate into partial fractions :

3a;2_4a-4-3

{x-2f
Solution. Letting x = y + 2,

3x2 - 4x + 3 _ 3(?/ + 2)2
_ 4(y + 2) + 3 _ 32/2 + 82/ + 7

(X
-

2)3 {y + 2- 2)3 2/

3 8 7 3 8

3

y y- 2/3 x-2 (x
-

2)2 (x
-

2)3

When a factor of the form (x — a)^' appears together with other

factors in the denominator of a fraction which is to be broken up
into partial fractions, the assumed form is taken as in the following

example, and the coefficients may be found by replacing x by conven-

ient integers. It is frequently imjDOSsible to find integers which will

enable us to determine a coefficient at each substitution, but systems
of equations are obtained from which the coefficients may be found.
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EXAMPLE

Separate into partial fractions :

5 a-'^ — 6 at — 5

(x-iy(x-^2)
Solution. Assume

5x2 -6a; -5 ^ ^ q j,
+ T ^ + ^ T-,+

(x-l)3(x + 2) x-1 (x-1)'^ (J--1)'' x + 2

Multiplying by (x
-

1)3 (x + 2),

5x2_6x-5 = ^(x-l)2(x + 2) + -B(j!-l)(x+ 2) + C(x + 2) + 2)(x- 1)3.

Letting x = — 2, we find D = — 1
; letting x = 1, we find C = — 2.

Substituting these values of C and D, and letting x = 0, we obtain

A- B=-\.

Letting x = 2, we obtain A + B = 3.

Solving, A =
\, B = 2.

Hence
^j.2_c,x^5 12 2 1

(z
-

1)3 (X + 2) x-1 (x
-

1)2 (x
-

1)8 X + 2
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III. Corresponding to the factor (x — a)^",
assume the sum

A B K
+ - —; + •• +X— a (x — a)'^ (^

— ay

IV. Corresjjonding to the factor (cix~ + hx + c)*, assume the sum

Ax + B Cx+ D Mx + X
ax' \-bx + c {(ix^ + hx + c)- (j.ix' + hx + cf

EXERCISES

Separate into partial fractions :

^
x' + x + l

, ,
2 r-^ - 1

2.

3.

4.

5.

a-^ + 1

a-^ + l

a;^ + .T + 1

a;" — 4 a;^ + cc + 6

2 .r^ + 3 .r^ + a-

6
a-^

(a;
-

l)'-^ (a- + 2)

a*

7.

a'^ — a-^ + 2 r/?«,a:

(jim
—

a-) (r/^ -f- x^)

2x^ + o x^ - 6
^'

x* + 2a,'3-a,--^-2a;

1
10.

XX.



CHAPTER X

LOGARITHMS

99. Introduction. Up to the present point in this book only rational

numbers have been used as exponents. The fractional exponent was

assumed in § 2 to obey the laws of operation which govern the

integral exponents, and its meaning was defined. Biit the mean-

ing of a number with an irrational exponent, like 3"^-, has not as

yet been considered. To treat this subject and all of the delicate

questions which are connected with it is at present impracticable,

but the general meaning of an irrational exponent is not diflficult to

understand. Every irrational number is capable of approximate ex-

pression in terms of decimals, and can be computed to as many places

as necessary by the api)lication of some numerical law. For example,
V2 may be found to as many decimal places as we desire by the or-

dinary process of extracting the square root. None of the approxima-
tions 1.4, 1.41, 1.414, 1.4142, is exactly Vl^, but each one is correct

to as many places of decimals as it contains, and consequently each

number differs by less than the preceding one from the exact value

of v2. The value of a number with an irrational exponent may be

approximated in a similar manner. For example, 3"^ msiy be com-

puted with increasing accuracy by allowing V2 to take on a suc-

cession of approximations like that given above. The value of

31.414 _ 3^5^ _ °^3i"4 could be computed directly only with difficulty.

The simplest method which has been explained would be the solution

of the equation a;^°°° = 3"^* by Horner's ]\[ethod.

In what follows we shall assume that exponents may be irrational

numbers, and that the formal laws of oi)eration with these exponents
are the same as already given on page 4 for the case of rational

exponents.

100. Definition of logarithm. I u the preceding section the possi-

bility of finding a in the expression

a = b', (1)

175
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when b and x are given, was discussed. The reverse process of finding

X when a and b are given gives rise to logarithms.

Definition. The logarithm of a given number is the exponent

in the power to which a number, called the base, must be raised in

order to equal the given number.

In (1) X is the logarithm of a for the base b, or, symbolically

expressed, x = log^a. Thus

h^ = a and x = log^a (2)

are equivalent relations. The foregoing definition assumes that when

a and b are given, the real number x always exists, an assumption
which is justified when both a and b are positive and b ^ 1.

Although, theoretically, any positive number excepting unity could

be taken for the base of a system of logarithms, the only ones

which are ever used in computations are 10, and the number

e = 2.7182 • • •

(the Napierian base), which we shall meet later. When
the base is not expressed, as in log 2, the base 10 is understood, since

10 is the usual base for purposes of computation.

EXERCISES

1. If 2* = 16, what is the value of a- ? log^lG = ?

2. Eind the values of log327, logjolOOO, log^i, log^49.

3. If b^ = 343, what is the value of b ? If log, 343 = 3,b = ?

4. Eind the base b in each of the following: logj32 = 5;

logi,100 = 2; log6.008 = 3.

5. If 4^ = a, what is the value of a ? If log4a = 2, a = ?

6. Eind the number a in each of the following : log^a = 2
;

logio* = 4; log.5a = 3.

7. Eind the value of loggl; log23l. Show that log^l = for any

positive base b
;
that is, in any system of logarithms log 1 = 0.

8. What is the value of log^l ? logj2 ? log^a ? Why can 1 not be

used as base for a system of logarithms ?

9. What is the value of log_2 4 ? log_2 8 ? Why can a negative

number not be used as base for a system of logarithms ?

10. What is the value of
log.^ (- 4) ? log_o (- 8) ? log, (- a) ?

Show that negative numbers have no real logarithms for positive

bases.
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11. Wliat is the value of log 100? log 10 ? log 1 ? log .1 ? log .01 ?

Which numbers have positive and which have negative logarithms ?

12. Wliat is the value of
log.^2

? log^o ? log,// '! Show that in any

system the logarithm of the base is 1.

13. IfV;^=V6.^<^findlog,a. ^^ Show that log, a = .-^.
14. If r;- =100-^10, find log a. ^"^'^ '

2
' 17. Show that W''^b'^ = a.

15. If ae-^=(e')3e3j findlog^a.

18. Show that logi« = log,
- = —

log, a.

19. Show that log, a • \o^J)
• log„c = 1.

101. Operations with logarithms. The fact that a logarithm is

an exponent lies at the basis of its usefulness, since it enables us to

employ the laws of exponents with telling effect. "We now prove
four theorems which enable us to apply logarithms in numerical

computations.

Theorem I. Tlie logarithm of the product of two numbers is

the sum of their logarithms.

Symbolically expressed, \ogf,(ar)
= log^a + logj,c.

Let log(,a = a",

logft^
=

y.

Then by (2), p. 176, //" = a,

h" = c.

Multii)lymg, Ij''+» = a •

c,

or by (2) ^og^(ac)
= x -\- ;/

= log,« + log^c

Theorem IL The logarithm of the nth power of a number is n

times the logarithm of the number.

Symbolically expressed, log, a" = n log,«.

Let log, a = X,

or i"" = a.

Raising both sides to the nth power,

(b'^y
= b'"' = a",

or log,«"
= nx = ?!log,rr.
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Theorem III. The logarithm of the quotient of two numhers is the

logarithm of the numerator minus the logarithm of the denominator.

Symbolically expressed, log^- = log^a
—

log^c.

Let logj,« = X,

log6C = y.

Then Z*^ = a,

b" = c.

a
Dividing, y^-y =

c

or logft
- = a- - y = log(, a - log^ c.

Theorem IV. The logarithm of the real ntli root of a number

is the logarithm of the number divided hy n.

Symbolically expressed, log^^a = —^^^^-~ •

Let logj,a
= X,

or
'

If =L a.

If -

Extracting the nth root, {Ify
= ^" = Va,

nr- X logftft
or '

log.Vft = -= •

n n

EXAMPLE

Given log2 = .3010, log 3 = .4771, logo = .6990, log 7 = .845L

Find log (-^-VH).

Solution. log (^78 • Vb) =
g log 7 + ^^ log 5,

3
log? =^(.8451) = .5071,

I
log 5 = I (.6990) = .3495

,

log (-v't^
. VI) = .8566.

Note. In using four places of decimals, when the number in the fifth place

is'less than 5 it is dropped ;
when it is more than 5, 1 is added to the number

in the fourth place. When it is exactly 5, 1 is added to the number in the

fourth place in case that number is odd
;
otherwise it is dropped. Thus | log 7

came out .50706, which, to four places, is ,5071.
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EXERCISES

Using the logarithms on the preceding page, find :

1. log 210. 3Vl5
9. log

—
2. log 32.

^
7

3. log 18. ,. 1
81

4. log 1225. (V7)

5. log2v^. 8^.9^"
6. log9VlO. ^''^""S^^TT^'

7. log(^.^). ^2. log FVI
8. log (^U. ^7). N^05"'

13. If the edge of a cube is a, its surface S, and its volume V, show

that (a) log 5 = 2 log a + .7781
; (b) log F = 3 log a.

14. If the edge of a regular tetrahedron is a, its surface S, and its

volume T', show that

(a) log 5 = 2 log a + .238G
; (b) log T' = 3 log a - .8286.

Deduce the following relations :

15.
log(/; -jj

=
log (b + a) + log (b

-
a)
-

log/>.

/ 2 b b'^V
16. log

(l
- — + -2

j
= 6 [log (a

-
b)
-

log a].

''' '^^ [271^
+
2(TT^1

= -
^'^'^ ^^

-
^) + ^°^' (^ + ^)>

18. log V(2x-3)(a:-l)-6 = ^ [log (2 a; + 1) + log (x
-

3)].

19. log ;^E^±1
=

^^ ^1,.. (., + 2)
_

log (.r !)]•

20. loff ^ 7TT
"

a"
+

.^^

= "
'^^^^^•' + ^ '''^^ ^-^ + ^^^•+

21. Show that if a and i are the legs of a right triangle and c is

the hypotenuse, then

log a = ^ [log (r + /') + log {c
-

/')] ;

log^.= Klog('' + ") + log (^'-'Oi-

ls there a similar formula for logc?



180 HIGHER ALGEBRA

22. In a right triangle given c = 285, h = 215, find a (see

exercise 21).

23. In a right triangle given c = 34.69, a = 26.21, find b.

102. Tables of logarithms. Explanation of the method of looking

up logarithms and antilogarithms in tables will not be given here.

The student who is unfamiliar with the use of tables is referred to

books on elementary algebra or trigonometry for a detailed discussion

of this procedure. A four-place table is found on pages 212-213,

together with a rule for its use.

103. Exponential equations. An equation in which the unknown

occurs in an exponent is called an exponential equation. The use of

logarithms is usually required to solve such equations. In these

solutions it should be remembered that logarithms are nothing but

numbers, and should be treated as such.

EXAMPLES

1. Solve 2"-'* = 5.

Solution. Taking the logarithm of each member of tlie equation,

log (2^- 4)
= log 5.

By Theorem II, p. 177, (x
—

4) log 2 = log .5,

, log 5
, .6990

or a; = 4 + -^ = 4 +
log 2 ..3010

= 4 + 2. .322 = 6.322.

log .5

It should be kept in mind that in the fraction —-— both numerator and
log 2

denominator are numbers, and that it is the quotient of these numbers which

loc 5
is called for. Log| is a very different number from —2— and should not

be confused with it. °

2. Solve 4^'- 2^= 64.

Solution. 4x2-2x — 43

Taking the logarithm of each member of the equation,

(x2-2a;)log4 = 31og4.

Dividing by log 4, x^ — 2x = 3,

or (x
-

3) (x + 1) = 0.

Hence x == 3 or — 1.
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EXERCISES

Solve, obtaining results to three figures :

1. 2^ = 19. I

16. (7.2y=(5.9Y.
2. (3.1)- = 90.7.

\ J \ J

3.10-^ = 20.
17. a)-^ = 2o3-^.

4.3-^ = 21.45.
18. 18«-=(54V2r-.

5. 5^ + 2 = 7-3
19- 4^^-8(4^ + 12 = 0.

6. (2.2)«-i = (3.3)-
+

*.
2°- ^^'"^ - 16(64-)+ 64 = 0.

7. 2-'-3- = lG. 21. Va'^- + ''
. -Va«-+io = a^ . V^.

8. 6--' = 36-
2a. ^'^'^'.

9. (4^')^~^ = 2*
^ \t'/ ^ \«/

10.' 2^^ = 64-.''"
23. (Uy—'=(W='-'-

<, > n !
g + 5 1+17

11. a^--' = b-^-\ 24. 32- -7
=(.25)128^^.

12. a3^-Tx + 2 ^i 25_ ,^/___^5^^^__^
13. Vo^ = V a- Va--3. 26. 8*^ = 6^^

14. -v^=^~Va-. 27. 3- — 5- + 2 = 3a:
+ 4 _5x +

8_

15. '-V243 = -v^. 28. 9.7-- •

(1105.8)- = 57— ^

29. 5- + 5- + 1 + 5- + 2 = 3- + 3- + 1 + 3-+-.

30. Solve the simultaneous equations :

3- = f,

18 y-
-

i/- = 81.

31. What dithculties are met if one attempts to solve such equa-

tions as the following : (a) 2- + 3- = 5-; (b) x^ =2-; (c) ar= = 2.

104. Compound interest. Let P represent the number of dollars on

interest and /• the rate, expressed in hundredths. Thus if the interest

is 6%, r = .06. Then the interest at the end of one year is /• • /* dol-

lars, and the accumulation at the end of the year is

1> + rP =P(1+ r)
dollars.

The interest for the second year is P (! + ?•)• /•,
and the entire

accumulation at the end of two years is

P (1 + ;•) + /'(! + r)
. /• = (1 + /•) (P + ,-P)

= P (1 + /•)-
dollars.

Similarly, at the end of ii years the accumulation is

.1=7'(1+;-)" dollars.
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By means of this formula A
, P, r, and n are related, and if all but

one of these are given, the remaining one can be found.

For example, if A, P, and r are known, n can be expressed in terms

of these by first taking the logarithm of each side of the equation

and solving as follows :

loo"^4 — logP
logyl = logP+ ?ilog(l+ r),

or n=
^^ n i /a

'

If the interest is compounded semiannually, at the end of the first

half year it is ( -]p, and the accumulation at that time is

p(l + ^)
dollars.

Proceeding as in the case where the interest was assumed to be

compounded annually, it is found that the accumulation for n years

when the interest is compounded semiannually is

A=pIi + ]A dollars.

log.4-logPIn this case n = —-— —

21og(l
+

|

EXAMPLE

Find the accumulation at the end of 10 years on $1500 at
4'y^,

com-

pounded semiannually. Find the limit of error of the computation.

Solution. A-P(l +'

2

•In

P = 1500, r = .04, ^1 = 10.

/ 04\20
^=1500(1 + ^) =1500(1.02)20.

log 1500 = 3.1761

20 log 1.02= .1720

log^ = 3..3481

2229 dollars

To determine the limit of error of this computation it is necessary to observe

that the limit of error in the table of logarithms is .00005
;
that is, the true value

of any logarithm may be greater or less than the one given in the table by not
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more than tliis number. Hence in multiplying log 1.02 by 20, the possible error

is 20 X .00005 = .001. In the logarithm 3.1761 there is a further possible error of

.00005. Hence the total limit of error in log A is .00105
;
that is, the true value

of log A is between 3.3470 and 3.34it2. Keference U) the table shows that this

amount of error in the logarithm would correspond to an error of in the fourth

significant figure of the antilogarithm. Hence the limit of error in the result

is dollars. If a result correct to cents is desired, seven- or eight-place tables

would be necessary.

105. Change of base. As we shall see on page 207, the computa-
tion of logarithms is actually carried out, not for the base 10 which

we ordinarily use in our tables, but for the base e = 2.7128 • • •. In

order to pass from logarithms for one base to those for another we

need the following

Theorem. logx = ^i^. (1)
log^e

Suppose that the logarithms of all real iiuniliers have been found

for the base b.

Let a; be a number whose loejnritlim for the new base, c, is desired.

Suppose that logc« = z
;

that is, r — x. (2)

Taking the logarithm of each member of this equation for the

or



184 HIGHEE ALGEBRA

EXERCISES

Eind the accumulation on each of the following :

1. P dollars for n years at the rate r compounded quarterly.

2. ^1200 at the end of 8 years at
SfJ^ compounded annually.

Find the limit of error of the computation.

3. $850 at the end of 12 years at 6% compounded semiannually.

Find the limit of error of the computation.

4. |1500 at the end of 10 years at 4% compounded quarterly.

Eind the limit of error of the computation.

5. $75 at the end of 6 years 8 months at
S'y^ compounded

annually.

6. In what time will a sum double itself at 4^ compounded

annually ? at 5% ?

7. At what rate will a sum double itself in 20 years, interest

compounded annually ?

8. At what rate will a sum treble itself in 15 years, interest

compounded annually ?

9. In what time will a sum double itself at 5^ compounded

semiannually ?

10. A certain society offers a life membership for $50, which ex-

empts the member from further dues. Other members must pay

$5 annually. Counting interest at
5'y^,

show that if a member lives

more than 13 years after joining the societ}-, it pays him to take

out a life membership.

11. What rate of interest payable annually is equivalent to 5%
payable semiannually ?

12. A house worth $5000 is let for $400 a year, payable at the

end of each quarter. If the tenant wishes to pay at the end of the

year, how much must the rent be raised in order that the landlord

may obtain the same rate of interest as before ?

13. Eind (a) log^S; (b) log^S; (c) log,.3(11.98).

14. Eind the value of the product

logs 4 •

log4 5 .

log5 6 .

logs 7 •

log, 8 •

log, 9.

15. Seventeen is what power of 3 ?

16. To what power must 2 Vs be raised to obtain V7 ?



CHAPTER XI

INFINITE SERIES

106. Variables. A letter which, during a given discussion, may
take oil several distinct values is called a variable. A variable need

not take on all or even many numerical values. It is not uncommon to

speak of x in the equation ax^ + fta; + c = as a variable, although it

can take on only two values and at the same time satisfy the equation.

It should be noted, however, that in considering the function ax^ + 6x + c,

as we do, for example, when we plot it, x is a variable which takes on all real

values.

In equations like 2 .r + 3 y = 4, both x and y take on countless

values and both are called variables. Usually the values which a

variable may take on are limited by some law which is frequently

expressed by means of an eciuation.

In the e(|Ui\tion 2x + 3?/ = 4 tlie variation of x and y is limited to those

values which satisfy the equation. For example, if x equals 8, the corresponding

value of y is determined by the equation to be — 4.

107. Infinity. If a variable takes on the succession of integral

values 1, 2, 3,
• •

•, we can think of no greatest value of the variable;

for when we imagine a certain integer as the last one, we can immedi-

ately think of a greater. We express this condition by saying that as

the variable takes on the positive integral numbers in order, it be-

comes infinite. To say that a variable becomes infinite is a short way
of saying that a value of the variable exists which is greater than an

arbitrarily chosen number M, however great .1/ may be. Infinity is

not a number, and must not be used in operations as if it were. It

is merely a name to indicate that a variable has become greater than

any number. It is often symbolized by oo .

108. Limits. Consider the set of numbers

1 3 7 1 .1
. . . CW

From the numbers which are written one can determine as many
more as desired following the same law. As one reads toward the

185
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right, the numbers increase, each one being the arithmetical mean
2" — 1

of its predecessor and unity. The nth. term is ——— However

far we continue the set of numbers we never find one which ex-

ceeds or even equals 1. But however small a number we may think

of, say .01, we can find a number in the set which differs from 1

by less than this number. The number ||| is the first in the set

which differs from 1 by less than .01. If we had thought of .001,

.0001, or any other small number instead of .01, we could have found

a number in the set further to the right which differed from 1 by
less than it. The numbers of this set may be considered as different

values which a variable x assumes. We have the following

Definition. If a variable x takes on values in order, such that

the difference between x and some fixed number A becomes and re-

mains numerically less than d, hoivever small d may be taken, then

X is said to approach A as a limit.

In the case mentioned, the value we first took for d was .01, and

we saw that i|| differed from the fixed number 1 by less than .01.

And not only this, but all numbers in the set further to the right

differ from 1 by even less. As a matter of fact, this set of numbers

actually approaches 1 as a limit. This can be proved by showing
2" — 1

that for a sufficiently large value of n the value of —-^-— differs

from 1 b}^ as little as we please.

The reason for including the words " and remains " in the definition may be

appreciated if the set of numbers (1) be replaced by a set in which the same

numbers are found, except that every alternate number is replaced by the

number 2, tfuis: 1, 2, |, 2, § .^, 2,
• • •. Then the set would not have 1 as a limit,

for although a number of the set could be found which differs from 1 by less

than any assigned value, yet the very next number of the set differs from 1 by

unity. These 2's may occur in the early part of the set and not affect the ap-

proach to a limit, but they cannot appear throughout the whole extent of the set.

The approach of a variable to a limit may be illustrated geometri-

cally by considering the numbers of the set (1) as measuring distances

on a line.

14 % '/s ^Yi6 1
—H 1 I 1 I III

We have already stated that if, after taking on a certain finite

number of values, the variable always remains less than the distance
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d from A, however small d may be taken, it approaches A as a limit.

This condition is illustrated geometrically by a bunching of the

points near the point representing the limit.

If, instead of considering the variable x, we deal directly witli the

set of numbers, the foregoing detinition may be given in another

form, which lends itself more conveniently to symbolic expression as

follows :

If, in the set of numbers^ Mj, Wa, Wj,
• •

•, m„_i, m„,
• • • a subscript

m can he found such that the difference hetiveen any m„ and A (jvhen

n is greater than rn) is numerically less than d (ivhere d is an arbi-

trarily small positive riumber^ then the set of lis has A for a limit.

Expressed in symbols.

If
|//,,

— .1 |<rZ, for n^m, then limw„= ^.
n=oo

Many variables cannot take on their limiting values. Most, if not all, of the

variables which one meets in elementary geometry are of this character. Such

limits are sometimes called inaccessible. Other variables do take on their limit-

ing values. For example, the distance from a falling particle to the ground is

a variable which approaches and takes on the value zero. Such limits are often

called accessible. But whether the limit is accessible or not, is of no consequence

in the definitions given above.

We are nmv in a position to see that the fraction - approaches zero as a

limit if a is a constant and n is a variable which becomes infinite. Consider,
2

for example, the fraction - • The process of determining whether this fraction

approaches zero may be explained clearly by means of the following dialogue, in

2
which Henry claims that - does not approach zero, and John contends that it

does. „

Hairy. "I see no reason why this fraction - approaches zero as a limit."

John. "You must admit that it does approach zero if, -when you name any
number as small as you like, I can find a value of n .so large that for my n and

2
all larger values the fraction - is less than your small number."

Henry.
"'

Yes, I admit that, for it is in accordance with the definition of the

limit of a variable."

John. ""

AVcll, then, name a small number."

Henry.
"

I challenge you to find an n which will make the fraction less

than .0001." ^
John. "

If Ji has the value 100,000, you will find that - is less than your .0001.

Henry.
"

I see that
;
but suppose I name .000001 ?

"

John, '"rhcn I would k-t n have the value 10,000,000."
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Henry. "There is no use in continuing this further, for I see that whatever
10 2

small number, as A:, I may name, if you take n equal to — , then the fraction -

k
k n

becomes -, which is certainly less than the k which I named."
5

In a manner similar to that outlined in the foregoing dialogue it may be seen

that - becomes and remains less than any small number k for all values of n

equal to or greater than Hence the fraction - approaches zero as a limit.
k n

109. Infinite series. We are familiar with sums, like a-{-b-\-c,

which have a detinite number of terms. We have also used sums,

like x" -\- r/j.T""^ + • • • + «„, which have an indefinite number, n, of

terms
;
but we have always assumed that n has a finite value, so that

the operations which are indicated in any such function can actually

be performed in a finite length of time. An Infinite series is the indi-

cated sum of a never-ending or infinite set of terms. Since we can

never write down all of the terms of an infinite series, it is essential

that from the few which we do write the law may be apparent by
which we can find as many more as we desire.

The infinite series whose terms are
u^, u,^, n^,

• •

•, ?/„,
• • • is often

denoted by "V^^, read "summation ?/„," or by ^"nj ^^^^ "summa-
n = 1

tion «„ from ?i = 1 to ?i = oo ." Thus we write

Z^ "« = "i + ^'2 + "3 "^ ^ "« ^ •

7i = l

The nth. term of this series is «„; that is, the subscript is the same as

the number of the term. The sum of the first n terms is denoted by 5„.

Thus S„ = u^ -H «2 + "3 + h w„,

and S^
=

«j, S.^
=

v^ + u^, S^
=

u^ + »,, -f u^,
etc.

Sometimes an infinite series is written in the form

CO

2 "„ =
^'0 + "1 + "2 -I + "« - 1 + ^'« +

In this series the nth. term is it„_i, the subscript being one less

than the number of the term, and ?/„ being the (n + l)st term of

this series. The sum of the first n terms is then

Sn = "0 + ^'1 + ^h -^ 1- "n-i-

Throughout this chapter ?i will represent any positive integer

or zero.
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EXAMPLES
oo f)

-|

1. Write down the first live terms of the series X "~. ^ AVhat

is the 10th term ? the nth term ?
"=^

Solution. > =r.J I I I

^. 2" 2 22 2" 2* 25n= 1

^. ,^ . . 2-10-1 r.) ^, , . 2 71-1
The lOth term is = The nth term is -•

210 210 2'»

gp O I -1

2. Write down the hrst five terms of the series 2^- ;-r,-

What is the 8th term ? the nth term ? the (n + l)st term ?

2n+1,3579-' +
2^
+

3^

•

2-7 + 1 15

Solution. > Z— =1J 1 1 1

^o(n + 1)2 ^2"' 32
^

42
^

52

The 8th term is
82 82

rr, „ ,
- 2(ji-l) + l 2)1-1

The Tjth term is
—

The {n + l)st term is

[(n
-

1) + 1]"^ n2

2n + l

(H+l)2'

EXERCISES

Write down the first five terms of the following series*o

1.
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15. How many terms of the series of exercise 2 must be taken in

order to make
.S',^

differ from 2 by less tlian .001 ?

16. How many terms of the series of exercise 5 must be taken in

order to make <S„ greater than 1000 ?

Find the nth. term in each of the following series and express the

series in the 2 notation :

17. 1 + 2 + 3 + 4 + ....

i« i-i-l - ^-18.
2'2
+

32
+

42
+

5'2
+ ••••

19. 12 + 32 + 52 + 72 ^ ,

20. 1 • 2 - 2 • 3 + .3 . 4 - 4 . 5 + . . ..11 1
^^- ^ +

172
+
17273

+
1. 2. 3. 4

+ -*"

22. X + x^ + x^ -\- X' -\ .1111
23- - +

-T4
+ -9 + ^+---

tAj «A. »^ «A/

3 3'^ 3^ 3*
04. _ -I . -J

I 1- . . .

52
^

10'^ 15- 20^

^.2 ^A ^,G ^,8

25. —= + -^ +^ +—^ + . . ..

V2 Vl V(5 Vs
x'^ X* x^

^^'
27
+

4] ~6T"^12 3 4
27. 1 1 1 h • . ••

2.3 3.4 4-55.G

2J 3] _ £!*°' -^

92
|- 02 42

"" '

29. In the series of exercise 23, compute .S'^
if cc = 2.

30. In the series of exercise 26, compute S^ it x = ^.

110. Convergence and divergence. An inspection of the two

following series indicates that they are of quite distinct types:

2;2"
= l + 2 + 4 + 8+.... (2)

n=
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111 (1) each term adds only oiu; half the difference between the

sum of tlie preceding terras and 2. Consequently, however many
terms we may add together, we can never obtain a sum which exceeds

or even equals 2.

Since there is an infinite number of terms in an infinite series, it

would be impossible to compute their sum in less than an eternity

of time. But since this is not at our disposal, it is, in strictness,

without meaning to speak of the sum of the terms of an infinite

series, for such an operation could never be performed. In the case

of series (1), 2 is not the sum of any number of terras which we

could write down
;

it is greater than any such sum. But it is

approached as a limit by the sums of increasing numbers of terms.

In spite of the fact that ^ is not really the sum of the infinite num-

ber of terms of (1), but the limit of S„ as n becomes infinite, never-

theless it is called the sum of the series.

Definition. WJien the sum S„ of the first n terms of an infi-

nite series approaches a limit, as n becomes infinite^ the series is said

to he convergent. This limit is called the sum of the series.

In most cases it is a simpler matter to find that this limit exists, and hence

that the series in question is convergent, tlian it is to determine the exact value

of the limit.

In series (2) each term is greater than the preceding one, and by

adding a sufficient number of them a sum can be obtained greater

than any number which we may name.

Definition. When the sum
**?„ of the first n terms of an infi-

nite series does not approach a finite limit as n becomes infinite, the

series is said to be divergent.

Consider the series 1 -f 2 -f- .'? -f-
• • • + « -f-

• • •
.

In this case a value of n can be found so great that the value of

S„ is greater than any value which can be assigned. Hence S„ does

not approach a finite limit. In the case of all the divergent series

considered in this text, the value of 5„ becomes greater than any

assigned number, provided we take 7i large enough.

There is another kind of divergent series of ^vhich

1-1 + 1-1+--- (1)

is the type. Tliis is called an oscillating series, because the values of S„ oscillate

between certain values, but never settle down to a limiting value. In series (1)

iS„ is either zero or 1, according as n is even or odd.



192 HIGHER ALGEBRA

Theorem. If each term of an infinite series ivith positive

terms is greater than a fixed ^lumber, however small, the series

is divergent.

Eor a sufficient number of terms, each greater than this fixed small

number, would add up to a sum greater than M, however great M
might be.

This theorem assures us that none of the following tests for convergence are

necessary unless the terms of the series approach zero as n becomes infinite.

111. Comparison test for convergence. The problem of finding

whether a given series converges or not, and that of finding the exact

value to which it converges, are quite distinct. We shall give some

of the most important methods for attacking the former problem,

but shall content ourselves with computations for obtaining the

approximate value of the sum of the series.

In what follows we shall make use of the following

Assumption. // S^ is a variable which ahvays increases when n

increases, but which Jiever exceeds some finite number D, then S^

approaches a limit A, ivhich cannot be greater than D.

The only type of series for which we have hitherto derived any
test for convergence is the geometrical series

S= a-\- ar + ar^ + or^ + • • • + r//-" + . . . = —^— , (1)
1 — r ^ ^

where r is numerically less than 1 and a is any real number (see § 10).

Consider the two series

- 1 1

^
1

^
1

^
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But S' is a geometrical series with the limit 2. Hence we would

expect S to converge to a limit not greater than 2. That this is the

case follows from the following general

Theorem. Let u + "., + "g + • • • ''<-' <itt htjinlte series ofpositive

terms ivhich is to be tested. If a series of positive terms v + /•
-j-

V -\-
• • can lie found, which is known to converge, and is such

that each term of the u-seHes is equal to or h'.s.s than the corresjjond-

ing term in the v-series, then the u-series must converge, and its sum

is equal to or less than the sum of the v-series.

Let the sum of the v-series be A.

Let >'„
=

Wj + )i., + "3 + • • • + "„

and ,S"„
=

v^ + r,, -I-
,-3
+ • . • 4- r,„

where n is any positive integer. Then since the second series con-

verges to A, we have -i- e' _
1

n = 00

Since all of the terms of the r-series are positive, we have

s:<A.

But, by hypothesis, 5„ ^ S',^.

Hence 5„ < ^-1
;

that is, the sum of any number of terms of the ?<-series is less than

a fixed number. Hence by the assumi)tiou on page 192 the limit of

.s'„
exists and is not greater than .1

;
that is, the ?<-series converges.

It is often necessary to disregard some of the first terms of a series in order

to apply tills theorem. But since the sum of any finite number of terms must

be finite, it is sufficient to sliow that the series after a certain number of terms

converges.

To test a series of positive terms for convergence, we write down

the nth term of the given series, or the nt\\ term of the series which

remains after omitting some of the first terms from the given series.

Call this term -?/„.
Kow compare this with v„, the «th term of a series

known to be convergent. If «„ ^ r„ for every value of n greater than

any particular integer, the ?/-series is convergent. This is called the

comparison test for convergence. The i?-series is called the comparison

series. If //„ does not turn out to be equal to or less than r„, this does
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not prove that the ?<-series is not convergent ;
it merely shows that

the y-series used is not effective as a comparison series. Any series

derived from (1), p. 192, by substituting any real number for a and

any positive number less than 1 for r is known to be convergent and

can be used as a comparison series. After any series has been proved

convergent it can be used as a comparison series for proving other

series convergent.

EXAMPLE
Test the series

^=-+l + 2-+l + l + l + --

Solution. Disregarding the first two terms, the nth term of the remaining
series is

1
?t„ =

{n + 1)"

Use as a comparison series the geometric series (1), p. 192, where a = 1, r = i,

and tlie first term is dropped. 1111
2+2^

+
2^-

Then ^" = z + _ + _^ + ^ + . .

This series is known to be convergent and its nW\ term is r,, =— We must now
2"

show that M,j ^ r„ for all values of n greater than some integer ;
that is, that

1 ^1
{n + 1)»'^2"'

or (n + 1)« ^ 2". (2)

This is tnie for all values of n>0, for if n = 1, (2) becomes 2 = 2; if n>l,
evidently (?i + 1)" > 2". Hence S is convergent.

EXERCISES

Test the followins: series :

]. 1 1
, .1,1.1.1.1

22
+

33
+

44
1. l + ^ + ^ + ,,+--. 4.

^
+ - +^ +^ +^ +

2
"*"

2*
"^

2'
"^

2^*^
"^ '

1 • 2
"^

3 • 4
"*"

4 . 5
"^

.111 ,1113-1 +
23
+

33
+

43'^
• ^- 1 +^ +

3"2

+
42-1

•
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11. State an assumption siniilur to that of the preceding section

regarding the limit of a variable which continually decreases, but

which remains greater than a fixed number.

12. State and prove a theorem similar to that of the preceding

section regarding the convergence of a series, each of whose terms

is negative.

112. The Harmonic Series. One of the most important series for

the pur])()ses of testing divergence is the Harmonic Series,

1 -U .1- -1- .1 J- J_ -I- . . .

The terms of this series become smaller and smaller and approach
zero as a limit. It is difficult to believe at first sight that the sum

of terms of this character can add up to a value greater than any
number which we can assign. lUit we can prove the

Theorem. The Harmonic Series is divergent.

Consider the terms of this series grouped as follows, the successive

parentheses containing 1, 2, 4, 8, 16, • • • terms respectively :

Since in the second parenthesis \ is greater than ], their sinn is

greater than twice |,
or ^. Similarly, in tlie third parenthesis, the

sum is greater than four times ^, or I ;
that is, by arranging the

series in this way we see that it consists of the sum of an infinite

number of groups of terms, each of which is greater than J. Hence

the sum of the series does not exist, and the series is divergent.

113. Comparison test for divergence. We can now compare a

series with the Harmonic Series and obtain a test for divergence

similar to that for convergence in §111. For example, consider the

two series 111 1

2
+

3
+

4
+••+

»
+••

and —p H ^ -\ p + • • • H p + • • •.

V2 V3 V-4 Vn
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Since the denominator of each fraction in the second series is less

than the denominator in the term directly above it, each term of the

second series is greater than the corresponding term of the first.

But the first series diverges ;
hence one would expect the second to

diverge also. That this is the case appears from the following

Theorem. Let
u^ + u^^

+ w^ -^ • • he an infinite series of positive

terms which is to he tested. If a series of positive terms, v + v +
V -\-

•

•, can he found which is Icnown to diverge, and is such that

each ter7n of the u-series is equal to or greater than the corresponding

term of the v-series, then the u-series must also diverge.

Suppose we have
ti^ + u,^ + ^'g + • • • + "„ + • • •

and ^1+^2+ "3 -I ^ '« + • •

•>

and suppose that the w-series diverges ;
that is, that a value of n can

be found such that
l\ + V.^ + ^'3

+ • • • + ^-n > -V,

where M is a number taken arbitrarily large.

By hypothesis % =
v,. for every integral value of k. From these

hypotheses it follows immediately that

^'1 + "2 + "3 + ^ '"» ^ '^^5

that is, that the ^-series diverges.

The preceding theorem shows that in order to prove that a series

is divergent we may show that its nth term, u„, is equal to or greater

than the nth. term, v„, of a known divergent series, for all values of

71 greater than some integer. This is called the comparison test for

divergence.

Besides the Harmonic Series a useful one to employ in testing for

divergence is the geometrical series in the case where the ratio is

greater than unity. This may be written in the form

a + ar + ar + ar^ -\ h 01" + • •

•,
r > 1.

Here a may be given any convenient numerical value and r any value

> 1. The series is then knoAvn to be divergent.

As in the test for convergence it is often necessary to neglect the first few

terms in the application of the theorem of this section. In so doing we merely

recognize that if a series from a certain term on diverges, the entire series

must diverge.



I^'MNITE SEUIES 197

EXAMPLE

Test the series 1 + i + 5 + 4 + ?, H •

Solution. Till- ?itli fcnii <>f tins series is u„ = n
J

Comparing this willi the nth term of the Harnionic Series, »„= -, we will

show that Ti— 1 1 f-,.

n n

when n is greater than some particular integer. This is true when n>l; for

when ri = 2, (1) becomes ^
=

^,
and wlien n>2, evidently n — 1 > 1. Hence the

series is divergent.

EXERCISES

Test the following series :

^•^!-^^— 3.i.^i.^.....

3 r> 7 ft

^- 1 +
5—2

+^ +
3:4

+ 1:5+
•

>• 2j t~>
—

i"

114. Indeterminate forms. In the sections which follow it will

be iR'cessary to consider the limit approached by a fraction when

both numerator and denominator become infinite.

n -\- 2
Consider, for example, the fraction —r • If n takes on the posi-Zn -\- X.

tive integral values in order, we can find a value of n so large that

both numerator and denominator of the fraction are greater than

any definite number, like 1000 or 1,000,000, whicli we can imagine ;

that is, both numeratoi' and denominator of the fraction become

intinite as n becomes infinite. The limit of the fraction, when written

in this form, does not seem to have any definite numerical value.

But let us divide both numerator and denominator of the fraction

by 11 before we begin to let n increase in value. We then obtain

i+?
11 -if- '2 n= If in the fraction in the right member of this
271 + 1 .,^1^ "T"

n

equation we let n take on larger and larger values, it appears that
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12 ... 1

the fractions - and -
approach zero as n becomes infinite, leaving

—

as tlie value which the original fraction approaches. This fact we

write as follows : lim 7: ^ = - •

Sometimes we can accomplish a similar result by other means.

2 ra + 4
Suppose we have given the fraction — — • If n becomes infinite,

both numerator and denominator of the fraction also become infinite.

But if one observes that = ~
? and the factor n + 2 is

?i + 2 7i + 2

canceled from numerator and denominator before n begins to take

on the increasing values, it appears that the value of the fraction is

always 2, and that this value is entirely independent of what value n

may have. Hence lim -r- = 2.^
» = «> /i + 2

The point in each of these methods consists in throwing the

variable into a position so that the limit of the fraction can be

found when the variable finally becomes infinite.

1. Find lim

EXAMPLES

li" -1 71 + 2

3 n' 4- 1

Solution. Dividing numerator and denominator of the fraction by rfi, wc
obtain

-
7 2

1 + —
n^ — 7 n + 2 _ n rfi

^^' + '

^
3 + i

7 2 1
Letting n become infinite, each of the fractions -

,
--

, and -^ approaches 0,

and the original fraction approaches \.

Hence „ „
,. n2 — 7n + 2 1hm

2. Find lim

3 n^ +1 3

n' + 2/1+1
71^-3

Solution. Dividing by n^, we obtain

- + - ~
n- + 2 ?i + 1 _n n'^'^ V?

v?-Z 3
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Letting n become infinite, the numerator approaches zero, while the denomi-

nator approaches 1. o r> , «

Hence lim = - = 0.
,i = x. n* — 3 1

3. riiiil lull
j-^--

" = * ^''-

(n + l)!
Solution. -^——'— = n + l.

Iim(^i
+ ili =Hence lim ^^ — = oo.

n = to 71 !

EXERCISES

Evaluate the following limits :

2 71

'

^' -^^"^
n = « n = *

(n + 1) V?J, + 1

, »

^ T ^^! _ ,. 5(4/1?4. lim 7
———-• 11. hm—^ ^

n = x(^^ + l)!
^^-

r:4(7i + l)«

5- ii"^?—rTr2* 12. Inn ... ^ ,

—
., ., ; 4x

•

K = 00 {n -f- 1) „ = x7i-(n* + ii'a- + «^)

3 ?r - 6 «(l-3-5---2?i-l)6. hm-^ —•
13. hm

'; ^ ,
-^

n = X

,. (>^ + l)V^rTT 2-4.6---271 + 2

wVre „=x(/i + l)(2-4-6---27i)

115. Ratio test. The test which in many cases is the most power-

ful and at the same time is the simplest to apply is described in the

following

Theorem. Let
n^ + ?/., + u,^

-\ \- ?^„ -\ he an infinite series

of positive tei^ns which is to he tested.

I. Jfi
"'^ _i±l < Ij the series is convergent.

II. If ^^^n -!L±i ^ 1, the series is divergent.n=co
11^

III. If I'^^n _iL±i = \^ the test fails to give us any inj^ormation.
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I. Suppose that _^ _^_+i_ _
^^ where t is a constant the precise

value of which we need not specify further than to say that it is

positive and is less than 1. From the definition of the limit of a

variable (p. 186) we know that for all valiies of n equal to or greater

than some integer vi, the variable ratio -1±1 differs from its limit
n

by as little as we please. Let r be a number greater than t but less

than 1. Then we can find an m so large that for all ?i's equal to or

t r I
1 1 1 1

—
greater than m the variable ratio

""""^
will differ from its limit t

by less than the quantity r — t; that is, each ratio, for values of

the subscript greater than m, will be less than r. Symbolically

expressed,
-iL±i <;

,.^
when n = m. Letting n take on the values

n

m, m + 1, m- + 2,
• •

•, we have, then,

—-—<r, or ^(,n + l<ru^,

'^'m + 1
<r, or y,n + o<ru„, + i<i-'u„,

--^ < r, or w,„ + 3 < ?•»,„+, < I'hi^.
"'m + 2

Adding the inequalities on the right, we have

< w„ (r + r' + '•'+•••)•

The expression inside the p)arenthesis is a geometrical series, and

since r < 1, it converges to some limit, say, L. Then we have

Hence the original series converges (p. 192).

II. If t is greater than 1, we may take r less than f but greater

than 1, and by the definition of the limit of a variable we can find

a value, w, of n so great' that for it and all greater values the ratio
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in question will (lirCcr fioni t by less than tlit; quimtity t — r and
7/

hence be greater thun /•; that is,
"'"'"'

>?•, where r>l.

\ r t

\
1

It follows that
7/,,, ^ 1 > ?//„ ;

that is, each term is greater than the

preceding one. Hence the series must diverge (§ 110).

III. When t = l we are unable^ t(j determine by this method

whether the series converges or diverges.

The present test fails, for example, for the Harmonic Series, though we have

proved that the series diverges. It also fails for the series in exercise 5,

p. 11)4, although the series is convergent.

EXAMPLE

2- 3"^ 4"'^

Test the series 1 + 91 + q^ + TT + ""-

o , . «^ (« + 1)2
Solution. H„ = , Un + i = —

,

n ! (h + 1) !

where u„ + i is obtained from h„ by replacing n by n + 1.

Un + i ^ (n + 1)2 111 ^ n+ 1

u„ (ji + 1) !

'

n- n-

since (n + 1) ! = (?i + 1)
• n

!,

lim "» + ^ ^ lim n + 1 _ ]i,„ /1_^ 1\ q^j_
» = °° w„ " = " n'^ » = »\n JiV

Hence the series is convergent.

EXERCISES

DeterniiuL' whutlier thci'olluwing series are convergent or divergent;111 1 '^ S 4-

^'
^"^27'^3!"^r!

+ "*- ^'
3^3^"^3'«"^3^

+•
123£ 2-^3^£^'
2"^2- 2«"*"2*'^'"'

^'
"'"2!"^3!"'"4!"^'"''

2! 3! 4! 2i« 3'" 4'" 5"^
3- 1+^ + ^ + 7^+. ••. 7. - + -;^ + -:;j

+ -;^ + ---.
^ fj '-t W «^ Arf «rf

1 1 1 «1_l2,3,
*• ^+2V2+3V3+4V4+-- ^•2T3 + 3:i

+
4.5

+ ---
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43
"*"

^3
+

"1^23 16^ ^2*""

10.
1+2-3

+
3,
+ ^,+

.... 12. X 3.6.9...3.^ " n=l

A 1

1-4 1.4-7
"^

10 10 . 20
"^

10 • 20 . 30
"^ " '

,. . 1,1.3 1.3.5
^^- ^ +

2^^
+

2!T2^
+ ^!T2^+-'-

116. Alternating series. Up to the present all of our tests for

convergence hold only for series with positive terms. The simplest

case where some of the terms of a series are negative is that of an

alternating series
;
that is, a series in which the signs of the terms

alternate. For this case we have the

Theorem. If the absolute value of each term of an alternating

series is less than that of the 'preceding term, and if the limit of the

nth term is zero as n becomes infinite, the series converges.

Given the series

^ =
"x
-

"1 + "3
-

"4 + "5 -",+ •••»

where the a's are positive, o^^^ < r/„, and lim r/„
= 0.

Consider the two following methods of adding up the terms of the

series to obtain the sum of the first n and 71 -\- 1 terms respectively.

Assuming first that n is an even integer, we may write

Sn = («x
-

<',) + (%
-

«4) + («5
-
%)++ ("n-1

-
^n), (1)

and

Since the a's decrease in value as n increases, each of the parentheses

in (2) contains a positive number. But since they are all subtracted

from
a^,

the sum of ?i + 1 terms of S cannot exceed
a^,

however

great n may be.

An inspection of (1) shows that S^ is the sum of positive terms,

and since it dilfers from 5'„ + i by «„+i, which can be made arbi-

trarily small, it follows that
.S^„

is less than a positive constant, and

hence approaches a limit by the assumption on page 192.
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Now the difference between S„ and its limit can be made less

than any assigned value for a sufficiently large even value of n.

But since „ ,, .

•^n + 1
—

'^n ~r "„ + 1>

it appears that lim .S„ ^ j
= lim

.S",, -f lim r/„ ^ j.

Hence since limr/^^^ = 0, the series S converges when n becomes

intinite by taking on all integral values in succession.

In coniputiiii;- the approximate value of the sum of an alternating series by

adding together tlic lirst few terms, the foregoing method of proof assures us

that the error in stopping the computation with any term, as ui, does not

exceed the value of the next term, a^ + i. For the part which is disregarded is

an alternating series, and an inspection of (2) shows that the sum of a conver-

gent alternatiui'- series cannot exceed its first term.
t>

117. Series with positive and negative terms. "When the signs in

a series are not alternately plus and minus, we may often settle the

question of convergence by

TuEORE.Ar I. A series, w^ + m^ + ^'., + • •

••,
some of ivJiose terms

are negative, is convergent if the series formed hy the absolute

values of the terms is convergent.

If the series w^ + ttg + Mg + f- »„ + • • • is given, where some of the terms

are positive and others arc negative, the series formed by the absolute values

of these terms may be denoted by
| m^ |

+
|
m.,

|

+
| M3 |

+ • • • +
]
it,,

|
+ • • •

. All of

these terms are positive quantities.

Thus the series formed by the absolute values of the terms of the series

1-l + i-i + l isi + ^ + i + j + i-i-....

Proof. Let the series of absolute values be a^ + rr., + "3 + • • •

,
and

let it be convergent to the number .1. It is certain that if in this

series some of the signs are changed to minus, the resulting series

will converge to some value not greater than A
;
for the sum of

the absolute values of such terms must have a definite value. Even

if we should change the signs of all the a's, the resulting series

would converge to the value — .1. But the ?<-series may be obtained

by changing the signs of properly selected terms of the series of

absolute values
;
hence the ?/-series converges.

We can now extend the proof of the ratio test for convergence so

that it will ap})ly to the case where some of the terms of the series

are negative.
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Theokem II. An infinite series
u^ + w ,+ m^ + • •

•, consisting of

positive and negative terms, converges if

lim
n = CO

Vn+\

ti„

<1.

Since
u.n+l

«.,

w.= p^, it follows that if
n„

v.n + l

n„
< 1, then

\u.n+W

(1)

<1.
W.

This latter inequality is the condition that the series IwJ + h'al + i'^'sl

+ • • • converges ;
and if this series converges, then, by Theorem I,

the original series converges.

Similarly, we may prove that if
un+l

w„
> 1, the series

?/^ + ii_^
+

Mg + • • • diverges.

118. Power series. The infinite series

«Q + a^x -\- a^"^ + rtgCK^ + • • • + fn^"" + • •

•,

where the o's do not contain cc, is called a power series in x. When
the a's are numerically given, such a series may converge for certain

values of x and diverge for others. For example, when the a's are

each equal to 1, we have the geometrical series, which converges

when
ja'l
< 1 and diverges for other values of x. The ratio test may

be used to determine for what values of a:; a given series converges.

EXAMPLE
^ "^ 7

„ . , . X X X
Eor what values of x is the series x — — + —— — +

6 «

vergent ? divergent ?

Solution.

Mn+l

a;2n'-i

2n-l'

a;2n + i 2n-l

w» + i = (-l)"

2n-l

2(n + l)-l'

lim

Mn

M« + l

2 n + l x2«-i

«„

,. 2n-l
; lim ;

« = =0 2 n + 1

2-

2?i + 1

1

= lim
7i= 00

n

2 + -
n

con-

Hence the series will be convergent when x^<\^ that is, when — l<x<l ;

and divergent when x2>l, that is, when x< — 1 or >1.

The ratio test gives no information concerning the convergence of the series

when X = 1 or — 1. A separate investigation is necessary to determine what

happens for these values of x.



TXFINITK SKIMES . 205

When X — I the series becomes

i_I+'_l+. .. + (-,)-, _!_ +

This is ail altenuiting series and

iiin
I u,, I

= liin = 0.

ji =z JO n = 00 Z 71 — 1

Therefore the series eonverges by § 11*>.

When X =— 1 the series becomes

-o-ui -} +)
Tliis series is also convergent, as it is tlie negative of tlie preceding series.

Hence the original series is convergent wlien — l^^Sl ai>il divergent for all

other values of x.

EXERCISES

For what values of x are the following series convergent?

divergent ?

£ •>^_^, 6. 1 -./ + ^-'-.'-'+ •••
A • -L ^ t J ft I

' *
•

2 4 6
7.1 + .' + 2 ! X- -f- 3 ! a-« ! +

'^' •' 2^3 4
^

8. 1-- + -2--3 +

iC^
.

X^ X'
. ^.2 _^,3

^' "-*
~

3!
+

57
"

7!
+ •

^- ^ + •' +
2l
+

3!
+

x'^ a;« X*
a;'' x^ a-*

4. a; j^-\ pr 7^+ ••••10. —x
V2 Va V4 2 3 4

x^ a;^ a;«
, ,, ,

a;^
,

x^
,

a-'
,

^•^-2!+4!-6-! + ---
^^-^+3 +

5
+

7
+

1 -a-^ 1 . 3 a-^ 1 • 3 • 5 a-^

^'^^ ^ +
2 . 3

"^
2 . 4 .

"^
2 . 4 . G . 7

"^ •

13. ^(-l)'""^^^;)". 15. 2t"
Fl=l H=l-'^ + a;"

:-\??V' ,_ -^ ??''.)"

14. X-;^^- 16. 2^
—

p , where /> IS any nnite
"=^ " ri=i •

number.
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119. Important special series. In the calculus a general method

will be derived for expressing any ordinary function in terms of a

series. The rational integral functions are really series with a finite

number of terms, but rational nonintegral functions and the func-

tions of trigonometry give rise to infinite series. The most important
of these series are the following :

loge(l + a-)
= a-

log, (!-») = -

loo'

2
^
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Tliis is illustrated in the computation of natural logarithms, that

is, of logarithms for the base e, by the use of series (4) of the pre-

ceding section
; namely,

+

This series is used for the computation of logarithms instead of (2) or (3) be-

cause it contains only terms with odd exponents, and hence converges much
more rapidly than they do.

In this series we make the substitution

1 + ,r n + 1.

1 — X n

where n is a positive integer.

This gives n + «-*' = n — no- + 1 —
cc,

2nx -\- X = 1,

_ 1

Hence log, (^^-^j
=

1"^",. \^~^)
^

^*^^'<' (^ + 1)
"

'^^Scfi,

and the series becomes

log,(/^ + l)

= ^"^'^" + '

[2^1 +
3(2 u + ly

+
5(2 n-^ 1)^

+ • •

•]•
(^>

By means of this series we may compute the natural logarithm of

a.'iy positive integer, n -\-l, if we know the logarithm of n for the

base e.

In order to find the logarithm of a number for the base 10 from

the logarithm for the base e, we apply the theorem on the change of

base, § lOi)
; namely, log x = -—^^ •

log,. 10

We shall tind in exercise 14, p. 210, that log, 10 = 2.303. Hence

to find the logarithm of any number for the base 10 we divide its

logarithm for the base e by 2.303. Since it is simpler to multiply
than it is to divide, it is customary to multijily the natural log-arithm

by :; 77:
= .4343, which is called the modulus of the system of

•^

log, 10
-^

common logarithms.
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EXAMPLES

1. Find the sum of the series

rw*^ rv*^ /y>*

^"^1.2'^2.3'^3.4'^"""^(n-l)ri"^""'
for the value x = i, correct to four decimal places.

Solution. Replacing x in eacli of tiie first four terms by ^, we obtain

>

=.02,
25-2

1

125 • 6

1

625 • 12

= .001.3.33 . •
•,

= .0001.33 • • •

.221466 . . •

This gives us .2215 as the sum of the first four terms.

We will now determine an upper limit to the sum of the infinite series

475
+
5:6+ '

which the foregoing computation neglects, in order to find out whether the

series neglected would affect the fourth place in the sum .2215. We use the

principle that decreasing the denominator of a fraction increases the fraction.

Hence c „« _,

H h— + •• = x^{ \ 1 1-4.55-6 6-7 \4.5 5-6 6-7

<^{l + x + x'^ + •)
4 • 5

by §10, <^(^) (if |a:|<l)
4 • 5 \1 — a;/

1 5
subs;ituti;i:i i for x, < = .00002.° ^ '

3125.20 4

Hence the series neglected does not affect the fourth decimal place, and the

result .2215 is correct to the required four places.

2. In computing \ogg(n + 1) by means of series (Z) find the limit

of error if only the first r terms of the series in the brackets are used.

Solution. The series in brackets is

1

+,,,J-^^,.,,J_^+...^
'

^..,
2n+l 3(2n + 1)3

'

5(2n+ 1)5 (2r
-

1) (2 n + l)-""-
^

where the last term written is the rth term.
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The remainder of the series after the rth term is

''^
{2r + \){2n + iy^'-+^ (2r + 3) (2ji + l)2'-

+ «
(2 r + r,)(2,t + l)2r

+ 6
"^ " ' "

1 f 1 1
1

*^{2r+ l)(2n + 1)2'-+
i

l
"^

(2 n + 1)^"^ (2ji + 1)*

"^ ' '

'/
"

The geometrloal series in the Ijnicos lias a ratio which is less^
(2 n + 1)2

tlian 1, since n is a positive integer. Hence its sum is (§ 10)

1

S^ =
'

(2n + l)2

Now, since n = 1, we have 2 u + 1 ^ 3,

1 ^ 1

1-
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Substituting n = 1, r = 3, in tlie expression for E, we find

E = = —^ = .00014.
4 • 7 . 37 61236

Thus we see tliat the error in neglecting all terms of the series after the third

is not greater than .0002. Hence this remainder does not affect the third deci-

mal place of the result, and log^ 2 = .693 correct to three decimal places.

EXERCISES

In the following exercises make use of the series in § 119. In

each case show that the terms of tlie series which are neglected in

the computation do not affect the result :

1. Find the value of e correct to three decimal j)laces.

2. Find the value of e*^^ correct to four decimal places.

3. Find the value of logg2 correct to five decimal places.

4. Find the value of log^ 3 correct to four decimal places.

5. Find the value of cos 1° correct to four decimal places.

Hint. 1° =— radian = — = .0175 correct to four places, or radians.

^
180 180

^ '

400
Let X = -— in series (6).

400

6. Find the value of sin 1° correct to four decimal places.

7. Find the value of sin 5° correct to four decimal places.

8. Find the value of cos 5° correct to four decimal places.

9. Using the results of exercises 7 and 8, find by division the

value of tan 5° to three decimal places.

10. Find the value of tt correct to two decimal places by letting

X = ^ in series (7).

11. Compute correct to five decimal places the value of tan~^
(.1).

12. The series of exercise 14, p. 202, gives the value of V2. Check

this to three decimal places.

13. Compute the logarithms for the base e of the positive integers

up to and including ten, correct to three decimal places.

14. Compute the logarithms of the first nine positive integers for

the base 10, correct to three decimal places.



TABLES

Table of Logakithms

Rule for determining the characteristic of the logarithm of a

number.

I. The characteristic of a luonhcr (freater than 1 in one lesa than

the number of digits to the left of the decimal poitit.

II, TJie characteristic of a number less than 1 is negative and

numerically one greater than the number of zeros between the decimal

point and the first significant figure.

Rule for determining the mantissa of the logarithm of a number.

Prefix the proper characteristic to the mantissa of the first three

significant figures of the given number.

Then )nnJtiply the difference bettveen this mantissa and the next

greater mantissa in the table (^called the tabular difference, column

D of the table^ by the remaining figures of the number preceded by

a decimal point.

Add the product to the logarithm of the first three figures, taking

the nearest decimal in the fourth place.

Rule for finding the antilogarithm.

Write the number of three figiires corresponding to (he lesser of

the tivo mantissas betiveen which the given mantissa lies.

Subtract the lesser mantissa from the given mantissa and divide

the remainder by the tabular difference to one decimal place.

Annex this figure to the three already found and 2)1
ace the decimal

point where indicated by the characteristic.

211
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Square Root

To find the square root of a number Avith an even number of digits

to the left of the decimal point, use Table I.

To find the square root of a number with an odd number of digits

to the left of the decimal point, use Table II. If the number con-

tains three significant figures, interpolate in order to make the cor-

rection for the third place as in the use of the logarithmic tables.

If the decimal point of a number is so placed that by shifting it

to the right or to the left over two (or over any multiple of two)

digits it comes in one of the places mentioned above, use the table

which corresponds to that case.

Thus ^^ = 4.899
;

a/2400 = 48.99
;

\/724 = .4899
;

V24..3 = 4.929. Each

of the foregoing is fi'om Table I. The last requires interpolation.

Each of the following is from Table II : V2A - 1.549
;
V240 = 15.49

;

Vy024 = .1549
;
V24300 = 155.9.
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Cube Root

If the cube root of a number with two digits to the left of the

decimal point is wanted, use Table I. If the cube root of a num-

ber with one digit to the left of the decimal point is wanted, use

Table II. If the cube root of a number with three digits to the left

of the decimal point is wanted, use Table III.

If the decimal point of a number is so placed that by shifting it

to the right or to the left over three (or any multiple of three)

digits it comes into one of the places mentioned above, use the table

which corresponds to that case.

Thus V22 = 2.802
;
V22000 = 28.02

;
a .000022 = .02802

;
\ 22.6 = 2.827.

Each of the foregoing i.s from Table I. The hist requires interpolation.

From Table II we obtain -^/2j = 1.301
;
y/2206 = 13.01

;
a .00226 = .1312.

The last requires intei-polation.

rrom Table III we obtain V^ = .604
;
^220 = 6.04

;
-y 226000 = 60.9.
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INDEX

(TIic iiiunhcrs refer to i>:i};e.s.)

Sllll-

Aliscissa, 32
Ace-i'lcnitt'd motion, 30

A('(.'ur;icy of results, 24

^\dilitioii, proportion by, 9; ami

traction, proportion by, '.»

(/-form of pent-ral equation, 87

Alternating series, 202

Alternation, ])roportion by,

Angle (complex numbers), 77; of a

power, 7!); of a product, 7'.t; of a

quotient, 80
;
of a root, 82

Antecedent, 9

Antilogaritlim, 211

Aritliuietical ])rogression, 12

Axes, coordinate, 32

Axis, of imaginaries, 72, 74; of reals,

72, 74

Base, 176; change of, 183
Hinomial conjugate surd, 104

Hinoniiai ijuadralic surd, 104

Binomial Theorem, 6

Cardan's Fornndas for the solution nf

cubics, 132

Change, of base, 183; of sign, 1 Hi

Check, on solution of (juadratics, 41,

40; on solution of cubic, 132

Classification of numbers, 52
Coefficients and roots, relations be-

tween, i|uadratic, 48; general, lOo

Combinations, 145
Connnon difference, 12

Comparison lest, convergent series,

102; divergent series, 105

Complex nund)ers, 52, 72 ; angle <if

77
; conjugate, 75 : etjuality betwet'U.

72; graphical representation of. 72.

73,77; in jxilar forn),78, 70. 80 ;
mod-

ulus of, 77; operations iqton. 73.

75 : ])olar representation of, 77 ; roots

of, 82

Complex roots, general etination, 10(t;

quadratic equation, 53, 50

Compound interest, 181

Condition, equations of, 14

Conditional inequalities, 04
; linear,

07
; (juadratic, 07

Conjugate binomial surds, 104

(.'onjugate complex nundiers, 75

Conse(iuent, 9

Constant, gravitational, 30; multiiili-
cation of roots by a, 115

Contiiuiation oi sign, IKi

Convergence, 100
; comjiarison test for,

102; ratio test for, 100

Convergent scries, 1!)1, 102; sum of,

191
; approximate computation, 200

Coordinate axes, 32

Coordinates, 32

f'orrespoudence of points to numbers,
72

Cube roots, tables of, 217
Cubic equation, graphical .solution,

134
;
solution by Cardan's Formula.s,

130

Cubic function, derivative of, 135

Curves, families of, 58
;
maximum ami

miinnmm ])oints, 00. ^Ste a/so Graph,
Kijuatiou

Decimal places, convention for last

significant figure, 178

Degenerate quadratic, 50
De Moivre's theorem, 79

Dependent eijuations, 10

Dependent variable, 20

Derivative, of the cubic function, 135
;

of the polynomial, 130
Descartes's rule of signs, 110; for

jiegative roots. 118

Determinant, development, 151, 15G;
development, by minors, 100; ele-

ments of, 151
; evaluation, 102 ;

nnnor of, 160; of nth order, 152;
of second order, 151 ; of third order,
152; priniijial diagonal of, 151;

properties of, 157, 158, 159, 1(50;

transposition, 159

Determinants, .solution of .system of
liiu'ar eipiations bv means of, 154,

105, 107

219



220 HIGHER ALGEBRA

Development of a determinant, lol,

156
; by minors, 1(50

Diauonal, principal, 151

Diminution of roots of an equation,
111)

; i;rapliical interpretation of, 1:J2

Discriminant, 53

Divergence, lUO
; comparison test tor,

195; ratio test for, 199

Divergent series, 191

Division, by zero, 14, 16, 57; syn-

thetic, 91
;
rule for synthetic. 93

Double roots of an equation, 102, 137

Elements of a determinant, 151

Equal roots of an eijuation, 53, 55
;
de-

termination t)f maxima and minima

by means <if, 60

Equality between complex numbers,
72

Equation, 14
; exponential, 180

; graph
of, 24. 32; homogeneous, 1(37; in

quadratic form, 44
;

of condition,
14

;
with known roots, formation of,

107. See also Quadratic, General,

Linear; and Cubic Equation, Koot,

Curve, Graph, Identity

Equations, dependent. 19
;
families of,

53
; incompatible, 19

; system of, 19,

34, 154, 165, 167

Error in computation, 139

Exponent, fractional, 4
; irrational,

175; negative, 5; zero, 5

Exponential and radical notation, 4

Exponential ecjuation, 180

Exponents, laws of, 4

Extent of table of values, 95
Extraneous roots, 39

Extremes, 9

Factor, rationalizing, 5

Factor Theorem, general equation, 91
;

quadratic ecjuation, 47

Factoring, 1
;
solution of equations by,

37
; type forms for, 1

Falling body, formula for, from rest,

29; with initial velocity, 30

Families, of curves, 58 ;
of equations, 53

Fractional exponent, 4

Fractions, simplification of, 3

Function, 24
; integral, 87

; rational,
87

; representation of, 25

General equation, 87 ; a-form. 87 ;

Factor Theorem for. 91 ; j>-form. 88 ;

relation between coefficients and

roots, 105. See also Equation, Hoot
Geometrical progression, 12

Geometrical series. 12. 192. 196

Graph, 24; of equation. 32; of func-

tion, 94
;
of incompatible equation.s,

34; of linear equation, 34
;
of quad-

ratic e(iuation, 59; of system of

linear equations, 34

Graphical interpretation, of dinnnu-
tioii of roots, 122

;
of linear con-

ditional inequality, 67

Graphical representation of complex
numbers, 72, 73, 77

(jraphical solution, of cubic equation.
134

;
of ijuadratic equation, 59, 133

;

of system of two equations, 34

Gravitational con.stant, 30

Harmonic series, 195

IbMuogeneous equation, 167

Homogeneous equations, solution of

system of, by determinants, 167

Horner's Method of approximating ir-

rational roots, 124

Identity. 14

Imaginaries, axis of, 72, 74

Imaginary numbers, 52
; necessity for,

09
; operations with, 70, 71

Imaginary unit, 69

Inaccessible limit, 187

Incompatible equations, 19; graph of,

34

Independent variable, 29 ; choice of, 33

Indeterminate forms, 197

Induction, method of complete. 106

Ine(iualities, operations with, 64

Inequality, 64; conditional, 64; linear

conditional, 67
; graphical interpre-

tation of, 67
; quadratic conditional,

67
; unconditional, 64

Infinite root, 57

Infinite series, .see Series

Infinity, 37, 185

Integral function. 87

Integral term, 87

Interest, compound. 181

Inversion, 156; proportion by, 9

Irrational exponent, 175

Irrational number, 52
; necessity for, 69

Irrational roots, Horner's Method of

approximation, 124

Limit, 12, 186, 187 ; inaccessible, 187

Linear conditional inequality, 67

Linear equation, graph of. 34 ;
in one

variable. 14 ;
in two variables, 19

Linear equations, system of, 19 : graph-
ical solution of system of, 34 ;

solu-

tion of sy.stem of, by determinants,

154, 165.'l67
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Location iniiiciplc, 123

J.ofiariLliiii, 175; iiiodiilus of. :^(ii ;
of

a power, 177; of a prodiu-l, 177; of

a (jiiotieiit, 178; of a root, 178

Lofiaiitlims, operations witii, 177;
tables of, 212

Maxima aii<I iiiiniiiia. iM); dftiTiniiia-

tioii of, by ciiual roots, GO

Means, 9

.Minima, (iO

Minor, KiO

Minors, development by. 1(30

Moihiiius (eoiiiplex nuniliers), 77; of a

power, 7l>; of a proihict, 7'.»; of a

(luotieiit. 80; of a root, 82

Modulus (ioixaritliins), 207

.Motion, accelerated. ;50 : unifoiin. 28

Multiple roots, 104, lo7

Multiplication, by the unknown. 4H
;

of roots bj' a constant, 115

Nefrative and positive terms, series

with, 202, 203

Negative exponent, 5

Negative roots, Uescartes's rule of

signs for, 118
Number of roots, 4(5, 07

Numbers, cla.ssiticalion, 52: complex,
52

; correspondence of, to points, 72
;

irrational, 52; pure imaginary, 52;

rational, 52 ; real, 52. Hee also above

headlnyx iiidivkhidUi/

One-to-one corres])ondence of points
to numbers, 72

Operations, upon complex numliers,

73, 75; with inecjualilies, 04; witli

logarithms, 177
( >rdinate, 32
( )rigin, 32

O.scillating series. 101

Parallel lines, 34

Tarameter, 53
Partial remainders, sign of, as indica-

tion of roots. 0(i

rernuitations, 142; of things all <Uf-

ferent, 143; with repetitions, 143

j)-form of general eiiuati()n, 88
Points and numbers, correspondeni'e
between, 72

polar form of ct)inplex nund)er.s. 78
Polar representation, of complex num

bers. 77 ; of division of comi)lex num
bers,80: of mull iiihca I ion of complex
innnbers, 70; oi powers of ci niplex

numbers, 70

Polynomial, 87; general, of jHli de-

gree, 87; derivative of, \:Hi

Pcjsitive and negative terms, series

with, 202, 203
Positive root indicated by radical sign,

5

Power, angle of a. 70; logarithm of a,

177
;
modulus of a. 7'.»

Power si'ries, 204
Prime expression, 1

Principal diagonal, 151

Probaliility. 148

Product, angle of. 70; logarithm of a,

177
;
modulus of a. 70

Progression, arithmetical, 12; geomet-
rical, 12

Proportion, 0; liy addilion, 0; by ad-

dition and subtraction, 0; by al-

ternation, 0; l)y inversion, 0; liy

subtraction.

Pure imaginary nund)er, 52

Quadratic conditional ine(|uality, 07

Qiiatlratic e(|uation, character of roots,

52, 55; check on solution, 41
;
com-

plex roots, 53, 50
; degenerate, 5(5

;

determination of maxima and min-
ima l)y t'i|ual roots. 00 ; discriminant,
53

; ilistinctroots. 53 ; etjual roots. 53,

55. (iO ; extraneous roots, 80 ;
Factor

Tlieorem for, 47; fornuda for solu-

tion, 30; graph, 50; graphical solu-

tion, 50, 133; inlinite root, 57;
number of roots, 4(»; rational roots,

53; real roots. 53; reduced form,

48; relation between roots and co-

efficients, 48; roots. 38, 30, 4(!, 48,

52, 53, 55, 57, 50, GO; solution by
factoring, 37; solution by formula,
38

; special cases, 55
;
zero root, 55

Quadratic form. 44

Quantity, 24

Quotient, angle of . 80 ; logarithm of,

178
;
modulus of, 80

Padical, 4; and exponential notation,
4

Uailical siirn. convi-ntion of, 5

Patio. 0. 12

Paiio test for infinite series. 100

Rational function. 87

national luunlH-r, 52

Palional roots. 53: deieciion of. Ill

Pational term. 87

Pationalization. 5

Patioiiali/.ing farior, 5

Peal nundx-r, 52

Peal roots, 53
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Heals, axis of. 72. 74

Retlucedforiaot I juadi'atic equation, 48

Keinainder, partial, 9(3

Remainder Theorem, 90

Root, angle of, 82 ; cube, tables of, 217 ;

logarithm of a,178 : modulus of a. 82
;

positive, denoted by radical sign, 5
;

square, tables of, 215

Roots, of a complex number, 82
;
of an

e(juation, 14; of a number, 4

Roots of the general equation, bino-

mial quadratic surd, 104
; complex,

100;(liuiinutioiiof, 119, 122; double,

102, i;:!7
;
existence indicated by sign

of partial remainder, 90
; irrational,

Horner's Method of approximation,
124 ; multiple, 102, 104. 137

;
nuilti-

jilication of, by a cou8tant,115 ; num-

ber, 97; rational, detection of. 111
;

relation between coefficients and,

105; threefold, 102

lioots of the quadratic equation, see

Quadratic equation

.Series, 188; alternating, 202; com-

parison test for, 192, 195
;
conver-

gent, 191, 192; convergent, sum of,

191,20(i; divergent. 191; geometrical,

192, 19(); harmonic, 195; oscillat-

ing, 191
; power, 204

;
ratio test for,

199; special, list of, 206; with posi-

tive and .legative terms, 202, 203

Sign, change of, 11(5: continuation of,

116

Sign, of partial remainder as indica-

tion of root, 96; radical, conven-

tion for, 5

Significant figure, convention for last,

178

Signs, Descartes's rule of, 116; for

negative roots, 118

Sinniltaneous system of equations, 19,

34, 154, 165, 167

Solution, of cubic equation by Cardan's

Fonnulas,130 ;
of quadraticequation

by factoring, 37 ;
of quadratic etjua-

tion by formula, 38; of quadratic
equation, check on, 40, 42

;
of system

of equations by determinants, 154,

165, 167. See also Graphical solution

Square roots, tables of, 215

Straight line, 34

Subtraction, pnjportion by, 9

Sum of a series, 191
; approximate

computation, 206

Surd, binomial quadratic, 104; con-

jugate binomial, 104

Synthetic division, 91
;
rule for, 93

System of ec^uations, 19, 34, 154, l(i5,

167

Table of values, extent of, 95

Tables, of cube roots, 217; of loga-
rithms, 212; of square roots, 215

Term, integral, 87; rational, 87

Test for convergence, comparison.
192

; ratio, 199
Test for divergence, comparison, 195;

ratio, 199
Threefold roots, 102

Transposition in determinants, 159

Unconditional inecjuality, 64

Uniform motion, 23

Values, extent of table of. 95

Variable, 29. 53. 185; dependent,
29

; independent, 29
; independent,

choice of, 33

Variation, 9

Zero, division by, 14
; expression equal

to, 37
;
root e(iual to, 55

Zero exjjonent, 5
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