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'* The first thing to be attended to in reading any algebraio treatise is the

gaining a perfect understanding of the different processes there exhibited,

and of their connection with one another. This cannot be attained by a

mere reading of the book, however great the attention whioh may be given.

It is impossible in a mathematical work to fill up every process in the

manner in which it must be filled up in the mind of the student before

he can be said to have completely mastered it. Many results must be given
of which the details are suppressed, such are the additions, multiplications,

extractions of square root, etc., with which the investigations abound.

These must not be taken in trust by the student, but must be worked by
his own pen, whioh must never be out of his hand, while engaged in any

algebraical process." De Morgan, On the Study and Difficulties of Mathe

mattes, 188?.
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PREFACE TO THE FOURTH EDITION.

The fourth edition is materially the same as the third. I

have, however, corrected the misprints which have been

brought to my notice by a number of students of the book,

and made a few verbal alterations and extensions of the text.

I am glad to say that a German edition has been published ;

and to observe that a large number of examples, etc., peculiar

to this work and to my Chemical Statics and Dynamics have

been " absorbed
"

into current literature.

J. W. M.

The Villas, Stoke-on-Tbent,

13th December, 1912.

PREFACE TO THE SECOND EDITION.

I am pleased to find that my attempt to furnish an Intro-,

duction to the Mathematical Treatment of the Hypotheses

and Measurements employed in scientific work has been so

much appreciated by students of Chemistry and Physics.

In this edition, the subject-matter has been rewritten, and

many parts have been extended in order to meet the growing

tendency on the part of physical chemists to describe their

ideas in the unequivocal language of mathematics.

J. W. M.
Uh July, 1905.
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PREFACE TO THE FIRST EDITION.

It is almost impossible to follow the later developments of

physical or general chemistry without a working knowledge

of higher mathematics. I have found that the regular

text-books of mathematics rather perplex than assist the

chemical student who seeks a short road to this knowledge,

for it is not easy to discover the relation which the pure

abstractions of formal mathematics bear to the problems

which every day confront the student of Nature's laws,

and realize the complementary character of mathematical

and physical processes.

During the last five years I have taken note of the

chief difficulties met with in the application of the mathe-

matician's x and y to physical chemistry, and, as these notes

have grown, I have sought to make clear how experimental

results lend themselves to mathematical treatment. I have

found by trial that it is possible to interest chemical students

and to give them a working knowledge of mathematics

by manipulating the results of physical or chemical ob-

servations.

I should have hesitated to proceed beyond this experi-

mental stage if I had not found at The Owens College a

set of students eagerly pursuing work in different branches

of physical chemistry, and most of them looking for help
ix )



x . PREFACE.

in the discussion of their results. When I told my plan

to the Professor of Chemistry he encouraged me to write

this book. It has been my aim to carry out his suggestion,

so I quote his letter as giving the spirit of the book,

which I only wish I could have carried out to the letter.

"The Owens College,
" Manchester.

"My Dear Mellor,
" If you will convert your ideas into words and write a

book explaining the inwardness of mathematical operations as applied

to chemical results, I believe you will confer a benefit on many students

of chemistry. We chemists, as a tribe, fight shy of any symbols
but our own. I know very well you have the power of winning new

results in chemistry and discussing them mathematically. Can you
lead us up the high hill by gentle slopes? Talk to us chemically to

beguile the way ? Dose us, if need be,
' with learning put lightly, like

powder in jam
'

? If you feel you have it in you to lead the way we

will try to follow, and perhaps some of the youngest of us may succeed

Wouldn't this be a triumph worth working for ? Try.
" Yours very truly,

"H. B. Dixon."

May, 1902.
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INTRODUCTION.

" Bient6t le calcul math^matique sera tout aussi utile au chimiste

que la balance." * P. Schutzenberger.

When Isaac Newton communicated the manuscript of his
" Methodus fluxionum

"
to his friends in 1669 he furnished

science with its most powerful and subtle instrument of

research. The states and conditions of matter, as they
occur in Nature, are in a state of perpetual flux, and these

qualities may be effectively studied by the Newtonian method

whenever they can be referred to number or subjected to

measurement (real or imaginary). By the aid of Newton's

calculus the mode of action of natural changes from moment
to moment can be portrayed as faithfully as these words

represent the thoughts at present in my mind. From this,

the law which controls the whole process can be determined

with unmistakable certainty by pure calculation the so-

called Higher Mathematics.

This work starts from the thesis 2 that so far as the

investigator is concerned,

Higher Mathematics is the art of reasoning about the

numerical relations between natural phenomena ;
and the

several sections of Higher Mathematics are different modes
of viewing these relations.

1 Translated : "Ere long mathematics will be as useful to the chemist as the

balance ". (1880.)
2 In the Annalen der NaturphUosophie, 1, 50, 1902, W. Ostwald maintains that

mathematics is only a language in which the results of experiments may be conveni -

ently expressed ;
and from tli is standpoint criticises I. Kant's Metaphysical Founda-

tions of Natural Science.

xvii 6 *



xviii INTRODUCTION.

For instance, I have assumed that the purpose of the

Differential Calculus is to inquire how natural phenomena
change from moment to moment. This change may be

uniform and simple (Chapter I.); or it may be associated

with certain so-called
"
singularities

"
(Chapter III.). The

Integral Calculus (Chapters IV. and VII.) attempts to deduce

the fundamental principle governing the whole course of

any natural process from the law regulating the momentary
states. Coordinate Geometry (Chapter II.) is concerned

with the study of natural processes by means of
"
pictures

"

or geometrical figures. Infinite Series (Chapters V. and

VIII.) furnish approximate ideas about natural processes
when other attempts fail. From this, then, we proceed to

study the various methods tools to be employed in

Higher Mathematics.

This limitation of the scope of Higher Mathematics

enables us to dispense with many of the formal proofs of

rules and principles. Much of Sidgwick's
l trenchant indict-

ment of the educational value of formal logic might be urged

against the subtle formalities which prevail in
"
school

"

mathematics. While none but logical reasoning could be

for a moment tolerated, yet too often "
its most frequent

work is to build a perns asinorum over chasms that shrewd

people can bestride without such a structure ".
2

So far as the tyro is concerned theoretical demonstrations

are by no means so convincing as is sometimes supposed.

It is as necessary to learn to
" think in letters

"
and to

handle numbers and quantities by their symbols as it is to

learn to swim or to ride a bicycle. The inutility of
"
general

proofs "is an everyday experience to the teacher. The be-

ginner only acquires confidence by reasoning about something
which allows him to test whether his results are true or

false
;
he is really convinced only after the principle has

been verified by actual measurement or by arithmetical il-

lustration.
" The best of all proofs," said Oliver Heaviside

> A. Sidgwick, The Use of Words in Reasoning. (A. & C. Black, London.)
2 0. W. Holmes, The Autocrat of the Breakfast Table. (W. Scott, London.)
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in a recent number of the Electrician,
"

is to set out the fact

descriptively so that it can be seen to be a fact ". Re-

membering also that the majority of students are only

interested in mathematics so far as it is brought to bear

directly on problems connected with their own work, I have,

especially in the earlier parts, explained any troublesome prin-

ciple or rule in terms of some well-known natural process. For

example, the meaning of the differential coefficient and of a

limiting ratio is first explained in terms of the velocity of a

chemical reaction
;
the differentiation of exponential functions

leads us to compound interest and hence to the "
Compound

Interest Law "
in Nature

;
the general equations of the

straight line are deduced frorn solubility curves
;

discon-

tinuous functions lead us to discuss Mendeleeff's work on the

existence of hydrates in solutions ; Wilhelmy's law of mass

action prepares us for a detailed study of processes of inte-

gration ;
Harcourt and Esson's work introduces the study of

simultaneous differential equations ;
the equations of motion

serve as a basis for the treatment of differential equations of

the second order
;

Fourier's series is applied to diffusion

phenomena, etc., etc. Unfortunately, this plan has caused

the work to assume more formidable dimensions than if the

precise and rigorous language of the mathematicians had

been retained throughout.
I have sometimes found it convenient to evade a tedious

demonstration by reference to the "
regular text-books". In

such cases, if the student wants to "
dig deeper," one of the

following works, according to subject, will be found sufficient :

B. Williamson's Differential Calculus, also the same author's

Integral Calculus, London, 1899
;
A. E. Forsyth's Differential

Equations, London, 1902
; W. W. Johnson's Differential

Equations, New York, 1899.

Of course, it is not always advisable to evade proofs in

this summary way. The fundamental assumptions the so-

called premises employed in deducing some formulae must
be carefully checked and clearly understood. However
correct the reasoning may have been, any limitations intro-

duced as premises must, of necessity, reappear in the con-



xx INTRODUCTION.

elusions. The resulting formulae can, in consequence, only
be applied to data which satisfy the limiting conditions.

The results deduced in Chapter IX. exemplify, in a forcible

manner, the perils which attend the indiscriminate applica-

tion of mathematical formulae to experimental data. Some
formulae are particularly liable to mislead. The "

probable
error

"
is one of the greatest sinners in this respect.

The teaching of mathematics by means of abstract

problems is a good old practice easily abused. The abuse

has given rise to a widespread conviction that
" mathematics

is the art of problem solving," or, perhaps, the prejudice

dates from certain painful reminiscences associated with

the arithmetic of our school-days.

Under the heading
"
Examples

"
I have collected

laboratory measurements, well-known formulae, practical

problems and exercises to illustrate the text immediately

preceding. A few of the problems are abstract exercises in

pure mathematics, old friends, which have run through
dozens of text-books. The greater number, however, are

based upon measurements, etc., recorded in papers in the

current science journals (Continental, American or British)

and are used in this connection for the first time.

It can serve no useful purpose to disguise the fact that a

certain amount of drilling, nay, even of drudgery, is neces-

sary in some stages, if mathematics is to be of real use as

a working tool, and not employed simply for quoting the

results of others. The proper thing, obviously, is to make
the beginner feel that he is gaining strength and power

during the drilling. In order to guide the student along

the right path, hints and explanations have been appended
to those exercises which have been found to present any

difficulty. The subject-matter contains no difficulty which

has not been mastered by beginners of average ability with-

out the help of a teacher.

The student of this work is supposed to possess a work-

ing knowledge of elementary algebra so far as to be able to

solve a set of simple simultaneous equations, and to know
the meaning of a few trigonometrical formulae. If any
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difficulty should arise on this head, it is very possible that

the appendix will contain what is required on the subject.

I have, indeed, every reason to suppose that beginners in the

study of Higher Mathematics most frequently find their

ideas on the questions discussed in 10, 11, and the appen-

dix, have grown so rusty with neglect as to require refur-

bishing.

I have also assumed that the reader is acquainted with

the elementary principles of chemistry and physics. Should

any illustration involve some phenomenon with which he

is not acquainted, there are two remedies to skip it, or to

look up some text-book. There is no special reason why the

student should waste time with illustrations in which he has

no interest.

It will be found necessary to procure a set of mathe-

matical tables containing the common logarithms of numbers
and numerical values of the natural trigonometrical ratios.

Such sets can be purchased from a penny upwards. The
other numerical tables required for reference in Higher
Mathematics are reproduced in Appendix II.
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CHAPTER I.

THE DIFFERENTIAL CALCULUS.

M The philosopher may be delighted with the extent of his views, the

artificer with the readiness of his hands, but let the one remember

that without mechanical performance, refined speculation is an

empty dream, and the other that without theoretical reasoning,

dexterity is little more than brute instinct." S. Johnson.

1. On the Nature of Mathematical Reasoning.

Herbert Spencer has defined a law of Nature as a proposition

stating that a certain uniformity has been observed in the relations

between certain phenomena. In this sense a law of Nature ex-

presses a mathematical relation between the phenomena under

consideration. Every physical law, therefore, can be represented

in the form of a mathematical equation. One of the chief objects

of scientific investigation is to find out how one thing depends on

another, and to express this relationship in the form of a mathe-

matical equation symbolic or otherwise is the experimenter's

ideal goal.
1

There is in some minds an erroneous notion that the methods

of higher mathematics are prohibitively difficult. Any difficulty

that might arise is rather due to the complicated nature of the

lfThus M. Berthelot, in the preface to his celebrated Essai de MScanique Ghimique

fond&e sur la thermochemie of 1879, described his work as an attempt to base chemistry

wholly on those mechanical principles which prevail in various branches of physical

science. E. Kant, in the preface to his Metaphysischen Anfangsgrilnden der Natur-

wissenscliaft, has said that in every department of physical science there is only so

much science, properly so called, as there is mathematics. As a consequence, he

denied to chemistry the name "science ". But there was no "Journal of Physical

Chemistry" in his time (1786).
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phenomena alone. A. Comte has said in his Philosophie Positive,
** our feeble minds can no longer trace the logical consequences of

the laws of natural phenomena whenever we attempt to simul-

taneously include more than two or three essential factors V In

consequence it is generally found expedient to introduce "
simplifying

assumptions
"

into the mathematical analysis. For example, in

the theory of solutions we pretend that the dissolved substance

behaves as if it were an indifferent gas. The kinetic theory of

gases, thermodynamics, and other branches of applied mathematics

are full of such assumptions.

By no process of sound reasoning can a conclusion drawn from

limited data have more than a limited application. Even when
the comparison between the observed and calculated results is

considered satisfactory, the errors of observation may quite obscure

the imperfections of formulae based on incomplete or simplified

premises. Given a sufficient number of "
if's," there is no end to

the weaving of " cobwebs of learning admirable for the fineness

of thread and work, but of no substance or profit ". 2 The only

safeguard is to compare the deductions of mathematics with ob-

servation and experiment
"
for the very simple reason that they

are only deductions, and the premises from which they are made

may be inaccurate or incomplete. We must remember that we

cannot get more out of the mathematical mill than we put into it>

though we may get it in a form infinitely more useful for our

purpose."
3

The first clause of this last sentence is often quoted in a

parrot-like way as an objection to mathematics. Nothing but

real ignorance as to the nature of mathematical reasoning could

give rise to such a thought. No process of sound reasoning

can establish a result not contained in the premises. It is

admitted on all sides that any demonstration is vicious if it

contains in the conclusion anything more than was assumed

*I believe that this is the key to the interpretation of Comte's strange remarks :

"
Every attempt to employ mathematical methods in the study of chemical questions

must be considered profoundly irrational and contrary to the spirit of chemistry. . . .

If mathematical analysis should ever hold a prominent place in chemistry an aber-

ration which is happily almost impossible it would occasion a rapid and widespread

degeneration of that science." Philosophie Positive, 1830.

2 F. Bacon's The Advancement of Learning, Oxford edit., 32, 1869.

? J. Hopkinson's James Forrest Lecture, 194.
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in the premises.
1 Why then is mathematics singled out and

condemned for possessing the essential attribute of all sound

reasoning ?

Logic and mathematics are both mere tools by which " the

decisions of the mind are worked out with accuracy," but both

must be directed by the mind. I do not know if it is any easier to

see a fallacy in the assertion that " when the sun shines it is

day; the sun always shines, therefore it is always day," than in

the statement that since (-- 3)
2 =

(f
-

2)
2

,
we get, on extracting

roots, f
- 3 = J

- 2
; or 3 = 2. We must possess a clear conception

of any physical process before we can attempt to apply mathe-

matical methods ; mathematics has no symbols for confused ideas.

It has been said that no science is established on a firm basis

unless its generalizations can be expressed in terms of number, and

it is the special province of mathematics to assist the investigator

in finding numerical relations between phenomena. After experi-

ment, then mathematics. While a science is in the experimental
or observational stage, there is little scope for discerning numerical

relations. It is only after the different workers have " collected

data
"

that the mathematician is able to deduce the required

generalization. Thus a Maxwell followed Faraday, and a Newton

completed Kepler.

It must not be supposed, however, that these remarks are

intended to imply that a law of Nature has ever been represented

by a mathematical expression with perfect exactness. In the best

of generalizations, hypothetical conditions invariably replace the

complex state of things which actually obtains in Nature.

Most, if not all, the formulae of physics and chemistry are in

the earlier stages of a process of evolution. For example, some
exact experiments by Forbes, and by Tait, indicate that Fourier's

formula for the conduction of heat gives somewhat discordant

results on account of the inexact simplifying assumption: "the

quantity of heat passing along a given line is proportional to the

rate of change of temperature"; Weber has pointed out that

1 Inductive reasoning is, of course, good guessing, not sound reasoning, but the

finest results in science have been obtained in this way. Calling the guess a "
working

hypothesis," its consequences are tested Dy experiment in every conceivable way. For

example, the brilliant work of Fresnel was the sequel of Young's undulatory theory
of light, and Hertz's finest work was suggested by Maxwell's electro-magnetic theories.
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Fick's equation for the diffusion of salts in solution must be

modified to allow for the decreasing diffusivity of the salt with

increasing concentration
;
and finally, van der Waals, Clausius,

Bankine, Sarrau, etc., have attempted to correct the simple gas

equation: pv = BT, by making certain assumptions as to the

internal structure of the gas.

There is a prevailing impression that once a mathematical

formula has been theoretically deduced, the law, embodied in

the formula, has been sufficiently demonstrated, provided the

differences between the " calculated
"

and the " observed
"

results

fall within the limits of experimental error. The important point,

already emphasized, is quite overlooked, namely, that any discrep-

ancy between theory and fact is masked by errors of observation.

With improved instruments, and better methods of measurement,
more accurate data are from time to time available. The errors of

observation being thus reduced, the approximate nature of the

formulae becomes more and more apparent. Ultimately, the dis-

crepancy between theory and fact becomes too great to be ignored-

It is then necessary to "go over the fundamentals ". New formulae

must be obtained embodying less of hypothesis, more of fact. Thus,

from the first bold guess of an original mind, succeeding genera-

tions progress step by step towards a comprehensive and a complete

formulation of the several laws of Nature.

2. The Differential Coefficient.

Heracleitos has said that "
everything is in motion," and daily

experience teaches us that changes are continually taking place in

the properties of bodies around us. Change of position, change

of motion, of temperature, volume, and chemical composition

are but a few of the myriad changes associated with bodies in

general.

Higher mathematics, in general, deals with magnitudes which

change in a continuous manner. In order to render such a process

susceptible to mathematical treatment, the magnitude is supposed

to change during a series of very short intervals of time. The

shorter the interval the more uniform the process. This conception

is of fundamental importance. To illustrate, let us consider the

chemical reaction denoted by the equation :

Cane sugar > Invert sugar.
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The velocity of the reaction, or the amount 1 of cane sugar trans-

formed in unit time, will be

Velocity of chemical action = Amoun
m
t of s"bs

u
fcance Produced

(1)Time of observation v '

This expression only determines the average velocity, V, of the re-

action during the time of observation. If we let x
x
denote the

amount of substance present at the time, tv when the observation

commences, and x
2
the amount present at the time t

2 ,
the average

velocity of the reaction will be

y = x
i
~ x

%
,-. y= _ . (2)

t2 i\
ot

where Sx and U respectively denote differences x
x
- x

2i
and t

2
- tr

As a matter of fact the reaction progresses more and more slowly
as time goes on. Of course, if sixty grams of invert sugar were

produced at the end of one minute, and the velocity of the reaction

was quite uniform during the time of observation
,
it follows that

one gram of invert sugar would be produced every second./We
^)

understand the mean or average velocity of a reaction in any /

given interval of time, to be the amount of substance which would

be formed in unit time if the velocity remained uniform and con-

stant throughout the interval in question. But the velocity is not

uniform it seldom is in natural changes. In consequence, the

average velocity, sixty grams per minute, does not represent the

rate of formation of invert sugar during any particular second, but

simply the fact observed, namely, the mean rate of formation of

invert sugar during the time of observation/^

Again, if we measured the velocity of {he reaction during one

second, and found that half a gram of invert sugar was formed in

that interval of time, we could only say that invert sugar was pro-

duced at the rate of half a gram per second during the time of ob-

servation. But in that case, the average velocity would more

accurately represent the actual velocity during the time of obser-

vation, because there is less time for the velocity of the reaction to

vary during one than during sixty seconds.

1 By
" amount of substance

" we understand " number of gram-molecules
"
per

litre of solution. "One gram-molecule
"

is the molecular weight of the substance

expressed in grams. E.g., 18 grms. of water is 1 gram-molecule; 27 grms. is 1*5

gram-molecules; 36 grms. is 2 gram-molecules, etc. We use the terms "amount,"
"quantity," "concentration," and "active mass" synonymously.
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/ By shortening the time of observation the average velocity

approaches more and more rfearly to the actual velocity of the re-

action during the whole time of observation. In order to measure

the velocity of the reaction at any instant of time, it would be

necessary to measure the amount of substance formed during an

infinitely short instant of time. But any measurement we can

possibly make must occupy some time, and consequently the

velocity of the particle'has time to alter while the measurement is

in progress. It is thus a physical impossibility to measure the

velocity, at any instant ; but, in spite of this fact, it is frequently

necessary to reason about this ideal condition.

We therefore understand by velocity at any instant, the mean
or average velocity during a very small interval of time, with the

proviso that we can get as near as we please to the actual velocity

at any instant by taking the time of observation sufficiently small.

An instantaneous velocity is represented by the symbol

Jf
= F' ^

where dx is the symbol used by mathematicians to represent an

infinitely small amount of something (in the above illustration, invert

sugar), and dt a correspondingly short interval of time. Hence
it follows that neither of these symbols per se is of any practical

value, but their quotient stands for a perfectly definite conception,

namely, the rate of chemical transformation measured during an

interval of time so small that all possibility of error due to vari-

ation of speed is eliminated.

Numerical Illustration. The rate of conversion of acetochloranilide

into p-chloracetanilide, just exactly four minutes after the reaction had started,

was found to be 4-42 gram-molecules per minute. The " time of observation "

was infinitely small. When the measurement occupied the whole four

minutes, the average velocity was found to be 8*87 gram-molecules per
minute

;
when the measurement occupied two minutes, the average velocity

was 5-90 units per minute ;
and finally, when the time of observation occupied

one minute, the reaction apparently progressed at the rate of 4*70 units per
minute. Obviously then we approximate more closely to the actual velocity,

4-42 gram-molecules per minute, the smaller the time of observation.

The idea of an instantaneous velocity, measured during an

interval of time so small that no perceptible error can affect the

result, is constantly recurring in physical problems, and we shall

soon see that the so-called " methods of differentiation
"

will
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actually enable us to find the velocity or rate of change under these

conditions. The quotient dx[dtjs_kp.o\yn as the differential co-

efficient of x with respect to t. The value of x obviously depends

upon what value is assigned to t, the time of observation ; for this

reason, x is called the dependent variable, t the independent
variable. The differential coefficient is the only true measure of
a velocity at any instant of time. Our "

independent variable
"

is sometimes called the principal variable; our "dependent
variable

"
the subsidiary variable.

Just as the idea of the velocity of a chemical reaction represents
the amount of substance formed in a given time, so the velocity of

any motion can be expressed in terms of the differential coefficient

of a distance with respect to time, be the motion that of a train,

tramcar, bullet, sound-wave, water in a pipe, or of an electric

current.

The term "
velocity

"
not only includes the rate of motion, but

also the direction of the motion. If we agree to represent the

velocity of a train travelling southwards to London, positive, a

train going northwards to Aberdeen would be travelling with a

negative velocity. Again, we may conventionally agree to consider

the rate of formation of invert sugar from cane sugar as a positive

velocity, the rate of decomposition of cane sugar into invert sugar
as a negative velocity.

It is not necessary, for our present purpose, to enter into re-

fined distinctions between rate, speed, and velocity. Velocity is

of course directed speed. I shall use the three terms synonym-

ously.

The concept velocity need not be associated with bodies.

Every one is familiar with such terms as " the velocity of light,"

"the velocity of sound," and " the velocity of an explosion-wave ".

The chemical student will soon adapt the idea to such phrases as,

"the velocity of chemical action,"
" the speed of catalysis," "the

rate of dissociation," "the velocity of diffusion," "the rate of

evaporation," etc. It requires no great mental effort to extend

the notion still further. If a quantity of heat is added to a sub-

stance at a uniform rate, the quantity of heat, Q, added per degree
rise of temperature, 0, corresponds exactly with the idea of a

distance traversed per second of time. Specific heat, therefore,

may be represented by the differential coefficient dQ/dO. Simi-

larly, the increase in volume per degree rise of temperature is
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represented by the differential coefficient dv/dO ;
the decrease in

volume per unit of pressure, p, is represented by the ratio -
dvjdp,

where the negative sign signifies that the volume decreases with

increase of pressure. In these examples, it has been assumed that

unit mass or unit volume of substance is operated upon, and there-

fore the differential coefficients respectively represent specific heat,

coefficient of expansion, and coefficient of compressibility.

From these and similar illustrations which will occur to the

reader, it will be evident that the conception called by mathe-

maticians "the differential coefficient" is not new. Every one

consciously or unconsciously uses it whenever a "
rate,"

"
speed,"

or a "
velocity

"
is in question.

3. Differentials.

It is sometimes convenient to regard dx and dt, or more generally

dx and dy, as very small quantities which determine the course of

any particular process under investigation. These small magni-
tudes are called differentials or infinitesimals. Some one has

defined differentials as small quantities "verging on nothing".
Differentials may be treated like ordinary algebraic magnitudes.

The quantity of invert sugar formed in the time dt is represented

by the differential dx. Hence from (3), if dx/dt = V, we may
write in the language of differentials

dx = V. dt.

I suppose that the beginner has only built up a vague idea of

the magnitude of differentials or infinitesimals. They seem at

once to exist and not to exist. I will now try to make the concept
more clearly defined.

i. Orders of Magnitude.

If a small number n be divided into a million parts, each part,
1

n x 10
~ 6 is so very small that it may for all practical purposes be

neglected in comparison with n. If we agree to call n a magnitude

of the first order, the quantity w x 10" 6 is a magnitude of the

second order. If one of these parts be again subdivided into a

1 Note 104 = unity followed by four cyphers, or 10,000. 10
- 4 is a decimal point

followed by three cyphers and unity, or 10
~ 4 =

10
1

000
= 0*0001. This notation is in

general use.
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million parts, each part, n x 10
~ 12

,
is extremely small when

compared with n, and the quantity n x 10
~ 12 is a magnitude of

the third order. We thus obtain a series of magnitudes of the

first, second, and higher orders,

n, l.OOOOOO' 1000000.000000'

each one of which is negligibly small in comparison with those

which precede it, and very large relative to those which follow.

This idea is of great practical use in the reduction of intricate

expressions to a simpler form more easily manipulated. It is

usual to reject magnitudes of a higher order than those under

investigation when the resulting error is so small that it is out-

side the limits of the "errors of observation" peculiar to that

method of investigation.

Having selected our unit of smallness, we decide what part of

this is going to be regarded as a small quantity of the first order.

Small quantities of the second. order then bear the same ratio to

magnitudes of the first order, as the latter bear to the unit of

measurement. In the "theory of the moon," for example, we
are told that y

1

^ is reckoned small in comparison with unity ; (x
1

^)
2

is a small magnitude of the second order
; (yV)

3 of the third order,

etc. Calculations have been made up to the sixth or seventh

orders of small quantities.

In order to prevent any misconception it might be pointed out

that "great" and "small" in mathematics, like "hot" and

"cold" in physics, are purely relative terms. The astronomer

in calculating interstellar distances comprising millions of miles

takes no notice of a few thousand miles
;
while the physicist dare

not neglect distances of the order of the ten thousandth of an inch

in his measurements of the wave length of light.

A term, therefore, is not to be rejected simply because it seems

small in an absolute sense, but only when it appears small in

comparison with a much larger magnitude, and when an exact

determination of this small quantity has no appreciable effect on

the magnitude of the larger. In making up a litre of normal

oxalic acid solution, the weighing of the 63 grams of acid required
need not be more accurate than to the tenth of a gram. In many
forms of analytical work, however, the thousandth of a gram is of

fundamental importance ;
an error of a tenth of a gram would

stultify the result.
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5. Zero and Infinity.

The words "
infinitely small" were used in the second para-

graph. It is, of course, impossible to conceive of an infinitely small

or of an infinitely great magnitude, for if it were possible to retain

either of these quantities before the mind for a moment, it would
be just as easy to think of a smaller or a greater as the case might
be. In mathematical thought the word "

infinity
"

(written : go)

signifies the properties possessed by a magnitude greater than any
finite magnitude that can be named. For instance, the greater
we make the radius of a circle, the more approximately does the

circumference approach a straight line, until, when the radius is

made infinitely great, the circumference may, without committing

any sensible error, be taken to represent a straight line. The con-

sequences of the above definition of infinity have led to some of

the most important results of higher mathematics. To sum-

marize, infinity represents neither the magnitude nor the value

of any particular quantity. The term "infinity" is simply an

abbreviation for the property of growing large without limit. E.g.,

"tan 90 = oo
"
means that as an angle approaches 90, its tan-

gent grows indefinitely large. Now for the opposite of greatness

smallness.

In mathematics two meanings are given to the word " zero ".

The ordinary meaning of the word implies the total absence of

magnitude ;
we shall call this absolute zero. Nothing remains

when the thing spoken of or thought about is taken away. If four

units be taken from four units absolutely nothing remains. There

is, however, another meaning to be attached to the word different

from the destruction of the thing itself. If a small number be

divided by a billion we get a small fraction. If this fraction be

raised to the billionth power we get a number still more nearly

equal to absolute zero. By continuing this process as long as we

please we continually approach, but never actually reach, the

absolute zero. In this relative sense, zero relative zero is

defined as "an infinitely small
"

or "a vanishingly small number,"
or "a number smaller than any assignable fraction of unity".
For example, we might consider a point as an infinitely small

circle or an infinitely short line. To put these ideas tersely, ab-

solute zero implies that the thing and all the properties are absent

relative zero implies that however small the thing may be its
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'property of growing small without limit is alone retained in the

mind.

Examples. (1) After the reader has verified the following results he will

understand the special meaning to be attached to the zero and infinity of

mathematical reasoning, n denotes any finite number
; and "

?
" an in-

determinate magnitude, that is, one whose exact value cannot be determined.

00+00=00; 00- 00 = ?; wxO = 0; 0x0 = 0; n x 00=00;
0/0 = ?

; n{0 = 00
; 0/n =

; oo/O = 00
; 0/ 00 =

; n\ 00 =
; 00/n = 00.

(2) Let y = 1/(1
-

x) and put x = 1, then y = 00
; if x < 1, y is positive ;

and when x > 1, y is negative.
1 Thus a variable magnitude may change its

sign when it becomes infinite.

If the reader has access to the Transactions of the Cambridge

Philosophical Society (11. 145, 1871), A. de Morgan's paper
" On

Infinity," is worth reading in connection with this subject.

6. Limiting Values.

I. The sum of an infinite number of terms may have a finite

value. Converting J into a decimal fraction we obtain

= 0*11111 . . . continued to infinity,

i = tV + rhv + toV* + ... to infinity,

that is to say, the sum of an infinite number of terms is equal to 1

a finite term ! If we were to attempt to perform this summa-
tion we should find that as long as the number of terms is finite

we could never actually obtain the result . We should be ever

getting nearer but never get actually there.

If we omit all terms after the first, the result is ^ less than i
;

if we omit all terms after the third, the result is
1 too little

;

and if we omit all terms after the sixth, the result is 9 , 000.000
less than i, that is to say, the sum of these terms continually

approaches but is never actually equal to J as long as the number
of terms is finite. ^ is then said to be the limiting value of the

sum of this series of terms.

Again, the perimeter of a polygon inscribed in a circle is less

than the sum of the arcs of the circle, i.e., less than the circum-

1 The signs of inequality are as follows: " ^ "
denotes "is not equal to"

;

">," "
is greater than

"
; "^>,"

"
is not greater than

"
; "<,"

"
is less than

"
;

and "<," "
is not less than ". For " =E

"
read "

is equivalent to
"

or "
is identical

with ". The symbol > has been used in place of the phrase "is greater than or'

equal to," and <, in place of "is equal to or less than".
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ference of the circle. In Fig. 1, let the arcs AaB, BbC...be
bisected at a, b . . . Join A a, aB, Bb, ...

Although the perimeter of the second poly-

gon is greater than the first, it is still less

than the circumference of the circle. In

a similar way, if the arcs of this second

polygon are bisected, we get a third poly-

gon whose perimeter approaches yet nearer

to the circumference of the circle. By
continuing this process, a polygon may be

obtained as nearly equal to the circum-

ference of a circle as we please. The circumference of the circle is

thus the limiting value of the perimeter of an inscribed polygon,
when the number of its sides is increased indefinitely.

In general, when a variable magnitude x continually approaches
nearer and nearer to a constant value n so that x can be made to

differ from n by a quantity less than any assignable magnitude, n

is said to be the limiting value of x.

From page 8, it follows that dx/dt is the limiting value 1 of

Sx/St, when t is made less than any finite quantity, however small.

This is written, for brevity,

dx

dt

Sx

I

in words "dx/dt is the limiting value of Sx/U when t becomes

zero
"

or rather relative zero, i.e., small without limit. This no-

tation is frequently employed.
The sign

" = " when used in connection with differential co-

efficients does not mean "is equal to," but rather "can be made
as nearly equal to as we please ". We could replace the usual
" = "

by some other symbol, say
"
=^," if it were worth while. 2

II. The value of a limiting ratio depends on the relation be-

tween the two variables. Strictly speaking, the limiting value of

1 Although differential quotients are, in this work, written in the form "dx/dt,"

cPxjdt
2

. . .
,
the student in working through the examples and demonstrations, should

.. dx d2x
write -=-., -ttjs.

dt' dP
2 The symbol

" x = "
is sometimes used for the phrase

" as x approaches zero ".

"lim " "lim "

= ' M=0 '
or "" are also used instead of our "Lt^o, meaning "the

limit of . . . as jc approaches zero",

II

The former method is used to economize space.
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the ratio Sx/St has the form g, and as such is indeterminate in-

determinate, because
g- may have any numerical value we please.

It is not difficult to see this, for example, g = 0, because 0x0 = 0;
= 1, because 0x1 = 0; J = 2, because x 2 =

;
= 15,

because x 15 =
;

= 999,999, because x 999,999 = 0, etc.

Example. There is a "hoary-headed" puzzle which goes like this:

Given x = a
;

.\ x2 = xa
;

.*. x2 - a2 = xa - a?
; .. (a;

-
a) (x + a) = a(aj

-
a) ;

.\ x + a = a; .-. 2a = a
;
.'.2 = 1. Where is the fallacy? Ansr. The step

(x
-

a) (x + a) = a(x -
a) means (x + a) x = a x 0, i.e., no times a; + a =

no times a, and it does not necessarily follow that x + a is therefore equal

to a.

For all practical purposes the differential coefficient dx/dt is to be

regarded as a fraction or quotient. The quotient dx/dt may also

be called a "
rate-measurer," because it determines the velocity or

rate with which one quantity varies when an extremely small

variation is given to the other. The actual value of the ratio dx/dt

depends on the relation subsisting between x and t.

Consider the following three illustrations : If the point P move
on the circumference of the circle towards a

fixed point Q (Fig. 2), the arc x will diminish

at the same time as the chord y. By
bringing the point P sufficiently near to Q,

we obtain an arc and its chord each less

than any given line, that is, the arc and

the chord continually approach a ratio of

equality. Or, the limiting value of the ratio

Sx/Sy is unity. Fig. 2.

T
Sx

~dy
~

It is easy to show this numerically. Let us start with an angle
of 60 and compare the length, dx, of the arc with the length,

dy, of the corresponding chord.

Angle at
Centre.
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A chord of 1 does not differ from the corresponding arc in the first

four decimal places ; if the angle is 1', the agreement extends

through the first seven decimal places ;
and if the angle be 1", the

agreement extends through the first fifteen decimals. The arc and

its chord thus approach a ratio of equality.

If ABC (Fig. 3) be any right-angled triangle such that AB =BG ;

by Pythagoras' theorem or Euclid, i., 47, and vi., 4,

AB : AG = x : y = 1 : J2.

If a line DE, moving towards A, remain parallel to BC, this pro-

portion will remain constant even though each side of the triangle

ADE is made less than any assignable magnitude, however small.

That is

T
Sx _ dx _ 1^ = G

By~d^-J2'
Let ABC be a triangle inscribed in a circle (Fig. 4). Draw AD

perpendicular to BC. Then by Euclid, vi., 8

BC : AC = AC : DC = x : y.

If A approaches C until the chord AC becomes indefinitely

small, DC will also become indefinitely small. The above propor-

Fig. 3. Fig. 4.

tion, however, remains. When the ratio BC : AC becomes in-

finitely great, the ratio of AC to DC will also become infinitely

great, or

T ,
Sx dx

It therefore follows at once that although two quantities may
become infinitely small their limiting ratio may have any finite or

infinite value whatever.

Example. Point out the error in the following deduction :

" If AB (Fig. 3)

is a perpendicular erected upon the straight line BC, and C is any point;
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upon BG, then AG is greater than AB, however near C may be to B, and,

therefore, the same is true at the limit, when G coincides with B". Hint.

The proper way to put it is to say that AC becomes more and more nearly

equal to AB, as C approaches B, etc.

Two quantities are generally said to be equal when their

difference is zero. This does not hold when dealing with differ-

entials. The difference between two infinitely small quantities

may be zero and yet the quantities are not equal. Infinitesimals

can only be regarded as equal when their ratio is unity.

7. The Differential Coefficient of a Differential Coefficient.

Velocity itself is generally changing. The velocity of a falling

stone gradually increases during its descent, while, if a stone is

projected upwards, its velocity gradually decreases during its ascent.

Instead of using the awkward term " the velocity of a velocity,"

the word acceleration is employed. If the velocity is increasing

at a uniform rate, the acceleration, F, or rate of change of velocity,

or rate of change of motion, is evidently

Increase of velocity -& V,
2

V
1

SV
Acceleration = - -^^ 1

F -
^ _ ^

-
y, (1)

where V
1
and V

2 respectively denote the velocities at the beginning,
tv and end, t

2 ,
of the interval of time under consideration

;
and SV

denotes the small change of velocity during the interval of time St.

In order to fix these ideas we shall consider a familiar ex-

periment, namely, that of a stone falling from a vertical height.

Observation shows that if the stone falls from a position of rest,

its velocity, at the end of 1, 2, 3, 4, and 5 seconds is

32, 64, 96, 128, 160,

feet per second respectively. In other words, the velocity of the

descending stone is increasing from moment to moment. The
above reasoning still holds good. Let ds denote the distance tra-

versed during the infinitely short interval of time dt. The velocity
of descent, at any instant, is evidently

ds

Tt
= v- m

:

Next consider the rate at which the velocity changes from one

moment to another. This change is obviously the limit of the

ratio SV/St, when St is zero. In other words

-ft
- JR , . . (3)

B
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Substituting for 7, we obtain the second differential coefficient

, f

which is more conveniently written

d2s / ds2\

it>-
F>{* p -w} - m

This expression represents the rate at which the velocity is increas-

ing at any instant of time. In this particular example the acceler-

ation is due to the earth's gravitational force, and g is usually
written instead of F.

The ratio d2
x/dt

2 is called the second differential coefficient

of x with respect to t. Just as the first differential coefficient of x

with respect to t signifies a velocity, so does the second differential

coefficient of x with respect to t denote an acceleration.

The velocity of most chemical reactions gradually diminishes as

time goes on. Thus, the rate of transformation of cane sugar into

invert sugar, after the elapse of 0, 30, 60, 90, and 130 minutes

was found to be represented by the numbers l

15-4, 13-7, 12-4, 114, 9-7,

respectively.

If the velocity of a body increases, the velocity gained per
second is called its acceleration ;

while if its velocity decreases, its

acceleration is really a retardation. Mathematicians often prefix

a negative sign to show that the velocity is diminishing. Thus,
the rate at which the velocity of the chemical reaction changes is,

with the above notation,

d2xF =
~dt2 (5)

In our two illustrations, the stone had an acceleration of 32

units (feet per second) per second
; the chemical reaction had an

acceleration of - 0*00073 units per second, or of - 0*044 units per
minute. See also page 155.

In a similar way it can be shown that the third differential

coefficient represents the rate of change of acceleration from moment
to moment ; and so on for the higher differential coefficients

dn
x/dt

n
,
which are seldom, if ever, used in practical work. A few

words on notation.

Multiplied by 103 .
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8. Notation.

It is perhaps needless to remark that the letters S, A, d, d2
, . . .*

do not represent algebraic magnitudes. They cannot be dis-

sociated from the appended x and t. These letters mean nothing

more than that x and t have been taken small enough to satisfy

the preceding definitions.

Some mathematicians reserve the symbols Sx, St, Ax, A t, . . .

for small finite quantities ; dx, dt . . . have no meaning per se. As

a matter of fact the symbols dx, dt . . . are constantly used in place

of Sx, St, . . ., or Ax, At. ... In the ratio ~r-, -77 is the symbol of

an operation performed on x, as much as the symbols
" + "

or

"/" denote the operation of division. In the present case the

Sx

operation has been to find the limiting value of the ratio
-^

when

St is made smaller and smaller without limit ; but we constantly

find that dx/dt is used when Sx/St is intended. For convenience,

D is sometimes used as a symbol for the operation in place of d/dx.

The notation we are using is due to Leibnitz;
2 Newton, the dis-

coverer of this calculus, superscribed a small dot over the de-

pendent variable for the first differential coefficient, two dots for

the second, thus x, x . . .

dy d
In special cases, besides

~j-
and y, we may have j-(y), dyx ,

d2
y / d \ 2

x
y ,

xv x' . . . for the first differential coefficient ; -j-2 , y, i-rj y,

x
2 ,

x" . . . for the second differential coefficient
;
and so on for the

higher coefficients, or derivatives as they are sometimes called.

The operation of finding the value of the differential coefficients

of any expression is called differentiation. The differential

calculus is that branch of mathematics which deals with these

operations.

9. Functions.

If the pressure to which a gas is subject be altered, it is known
that the volume of the gas changes in a proportional way. The

1 For ". . .
"
read "etc." or "and so on ".

2 The history of the subject is somewhat sensational. See B. Williamson's article in

the Encyclopaedia Britannica, Art. "Infinitesimal Calculus".

B*
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two magnitudes, pressure p and volume v, are interdependent.

Any variation of the one is followed by a corresponding variation

of the other. In mathematical language this idea is included in

the word "function
"

; v is said to be a function of p. The two

related magnitudes are called variables. Any magnitude which

remains invariable during a given operation is called a constant.

In expressing Boyle's law for perfect gases we write this idea

thus:

Dependent variable = / (independent variable),

or v = f(p),

meaning that "v is some function of p". There is, however, no

particular reason why p was chosen as the independent variable.

The choice of the dependent variable depends on the conditions of

the experiment alone. We could here have written

p =
f(v)

just as correctly as v =
f(p). In actions involving time it is

customary, though not essential, to regard the latter as the in-

dependent variable, since time changes in a most uniform and

independent way. Time is the natural independent variable.

In the same way the area of a circle is a function of the radius,

so is the volume of a sphere ;
the pressure of a gas is a function

of the density ;
the volume of a gas is a function of the tempera-

ture
;
the amount of substance formed in a chemical reaction is a

function of the time
;
the velocity of an explosion wave is a func-

tion of the density of the medium ;
the boiling point of a liquid is a

function of the atmospheric pressure ;
the resistance of a wire to the

passage of an electric current is a function of the thickness of the

wire
;
the solubility of a salt is a function of the temperature, etc.

The independent variable may be denoted by x, when writing

in general terms, and the dependent variable by y. The relation

between these variables is variously denoted by the symbols :

y =/(*) ; y = <K#) ; y = F(x) ; y = ${x) ; y = Mx) . . .

Any one of these expressions means nothing more than that "y is

some function ofx". If xv y Y ;
x

2 , y2 ;
x
z , y3 , . . . are corresponding

values of x and y, we may have

y=Ax)\ 2/i=/(*i); yt.f?/Wv'
"Let y=f(%)" means "take any equation which will enable

you to calculate y when the value of x is known ".

The word "function" in mathematical language thus implies

I
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that for every value of x there is a determinate value of y. If v

and p are the corresponding values of the pressure and volume of

a gas in any given state, v and p their respective values in some

other state, Boyle's law states that pv = p v . Hence,

n Povo. nr
_ Povo

p =
; or, v =r V p

The value of p or of v can therefore be determined for any

assigned value of v or p as the case might be.

A similar rule applies for all physical changes in which two

magnitudes simultaneously change their values according to some

fixed law. It is quite immaterial, from our present point of view,

whether or not any mathematical expression for the function f(x)

is known. For instance, although the pressure of the aqueous

vapour in any vessel containing water and steam is a function of

the temperature, the actual form of the expression or function

showing this relation is not known ; but the laws connecting the

volume of a gas with its temperature and pressure are known

functions Boyle's, and Charles' laws. The concept thus

remains even though it is impossible to assign any rule for cal-

culating the value of a function. In such cases the corresponding
value of each variable can only be determined by actual obser-

vation and measurement. In other words, f(x) is a convenient

symbol to denote any mathematical expression containing x.

From pages 8 and 17, since

V - /(),

the differential coefficient dy/dx is another function of x, say f(x),

Similarly the second derivative, d2
y/dx

2
,

is another function of x,

and so on for the higher differential functions.

The above investigation may be extended to functions of three

or more variables. Thus, the volume of a gas is a function of the

pressure and temperature ; the amount of light absorbed by a

solution is a function of the thickness and concentration of the

solution
;
and the growth of a tree depends upon the fertility of the

soil, the rain, solar heat, etc. We have tacitly assumed, in our
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preceding illustration, that the temperature was constant. If the

pressure and temperature vary simultaneously, we write

I must now make sure that the reader has clear ideas upon the

subjects discussed in the two following articles
;
we will then pass

directly to the " calculus
"

itself.

10. Proportionality and the Variation Constant.

When two quantities are so related that any variation (increase

or decrease) in the value of the one produces a proportional varia-

tion (increase or decrease) in the value of the other, the one

quantity is said to be directly proportional to the other, or to vary

as, or to vary directly as, the other. For example, the pressure of

a gas is proportional to its density; the velocity of a chemical

reaction is proportional to the amount of substance taking part in

the reaction
;
and the area of a circle is proportional to the square

of the radius.

On the other hand, when two quantities are so related that any
increase in the value of the one leads to a proportional decrease in

the value of the other, the one quantity is said to be inversely

proportional to, or to vary inversely as the other. Thus, the pres-

sure of a gas is inversely proportional to its volume, or the volume

inversely proportional to the pressure ; and the number of vibra-

tions emitted per second by a sounding string varies inversely as

the length of the string.

The symbol
"

oc
"
denotes variation. For x oc y, read " x varies

as y"; and for scoc y' 1
,
read "x varies inversely as y ". The

variation notation is nothing but abbreviated proportion. Let

xv y1 ;
x

2 , y2 ;
. . . be corresponding values of x and y. Then, if x

varies as y,

x
i

'

V\
~ x

2
'

Vi
~ xs

'

Vz
~

or, what is the same thing,

Ui y% y%
'"' K )

Since the ratio of any
1 value of x to the corresponding value of y

1 It is perhaps needless to remark that what is true of any value is true for all.

If any apple in a barrel is bad, all are bad.
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is always the same, it follows at once that xjy is a constant ;
and

xy is a constant when x varies inversely as y, as p and v in

"
Boyle's law ". In symbols, if

1 k
x oc y, x = ky ;

and if x cc -, x -. . . (2)

This result is of the greatest importance. It is utilized in nearly

every formula representing a physical process, k is called the

constant of proportionality, or constant of variation.

We can generally assign a specific meaning to the constant of

proportion. For example, if we know that the mass, m, of a sub-

stance is proportional to its volume, v,

.'. m = kv.

If we take unit volume, v = 1, k = m, k will then represent the

density, i.e., the mass of unit volume, usually symbolized by p.

Again, the quantity of heat, Q, which is required to warm up
the temperature of a mass, m, of a substance is proportional to

m x 6. Hence,
Q = kmO.

If we take m 1, and = 1, k denotes the amount of heat re-

quired to raise up the temperature of unit mass of substance 1.

This constant, therefore, is nothing but the specific heat of the sub-

stance, usually represented by C or by o- in this work. Finally,

the amount of heat, Q, transmitted by conduction across a plate is

directly proportional to the difference of temperature, 0, on both

sides of the plate, to the area, s, of the plate, and to the time, t
;

Q is also inversely proportional to the thickness, n, of the plate.

Consequently,

By taking a plate of unit area, and unit thickness
; by keeping the

difference of temperature on both sides of the plate at 1
;
and by

considering only the amount of heat which would pass across the

plate in unit time, Q = k
;
k therefore denotes the amount of heat

transmitted in unit time across unit area of a plate, of unit thick-

ness when its opposite faces are kept at a temperature differing

by 1. That is to say, k denotes the coefficient of thermal con-

ductivity.

The constants of variation or proportion thus furnish certain

specific coefficients or numbers whose numerical values usually

depend upon the nature of the substance, and the conditions under
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which the experiment is performed. The well-known constants :

specific gravity, electrical resistance, the gravitation constant, -n,

and the gas constant, B, are constants of proportion.

Let a gas be in a state denoted by pv pv and Tv and suppose
that the gas is transformed into another state denoted by p2 , p2 ,

and T
2

. Let the change take place in two stages :

First, let the pressure change from p x
to p2

while the tempera-
ture remains at Tv Let pv in consequence, become x. Then,

according to Boyle's law,

a ja. ...,_&. ... (3)

Second, let the pressure remain constant at p.2 while the tem-

perature changes from T
Y
to T

2
. Let x, in consequence, become

p2 . Then, by Charles' law,

PJFl
m *Pi W

Substituting the above value of x in this equation, we get

~fT = "%- = constant, say, R. .-.
- = BT.

Pl-Ll P<L
L

<L P

We therefore infer that if x
} y, z, are variable magnitudes such

that xazy, when z is constant, and x oc z, when y is constant, then,

x oc yz, when y and z vary together ; and conversely, it can also

be shown that if x varies as y, when z is constant, and x varies in-

versely as z, when y is constant, then, x cc y/z when y and z both

vary.
Examples. (1) If the volume of a gas varies inversely as the pressure

and directly as the temperature, show that

"^ =^ ;
and that pv = RT. . (5)

(2) If the quantity of heat required to warm a substance varies directly

as the mass, m, and also as the range of temperature, 6, show that Q =a amd.

(3) If the velocity, V, of a chemical reaction is proportional to the amount

of each reacting substance present at the time t, show that

F=feC
1
C2 3 ...Cn ,

where Clt C2 , C3 , . . . , C, respectively denote the amount of each of the n

reacting substances at the time t, k is constant.

11. The Laws of Indices and Logarithms.

We all know that

4x4= 16, is the second power of 4, written 42
;

4x4x4= 64, is the third power of 4, written 43
;

4.x 4x4x4 = 256, is the fourth power of 4, written 44
;
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and in general, the nth power of any number &, is denned as the

continued product
a x a x a x ... n times = an

, . . (1)

where n is called the exponent, or index of the number.

By actual multiplication, therefore, it follows at once that

102 x 103 = 10 x 10 x 10 x 10 x 10 = 102 + 3 = 105 = 100,000 ;

or, in general symbols,

am x an = am + n
; or, ax x a? x a1 x . . . = ax+v+t+ -"

, (2)

a result known as the index law.

All numbers may be represented as different powers of one

fundamental number. E.g.,

1 = 10; 2 = 10- 301
;
3 = 10* 477

; 4 = 10- 602
;
5 - 10- 699

; ...

The power, index or exponent is called a logarithm, the funda-

mental number is called the base of the system of logarithms,

Thus if

an = b,

n is the logarithm of the number b to the base a, and is written

n = loga6.

For convenience in numerical calculations tables are generally used

in which all numbers are represented as different powers of 10.

The logarithm of any number taken from the table thus indicates

what power of 10 the selected number represents. Thus if

103 = 1000; and 10 1 '0413927 = Q ,

then 3 = log101000 ; and 1-0413927 = log10ll.

We need not use 10. Logarithms could be calculated to any
other number employed as base. If we replace 10 by some other

number, say, 2-71828, which we represent by e, then

l = e; 2 = e
* 693

; 3 = e 1 * 099
;
4 = e 1>386

;
5 = e 1 * 609

; ...

Logarithms to the base e = 2*71828 are called natural, hyper-
bolic, or Napierian logarithms. Logarithms to the base 10 are

called Briggsian, or common logarithms.

Again,

3x5 = (10'
4771

)
x (10-

6990
)
= 10 1 ' 1761 = 15,

because, from a table of common logarithms,

log103 = 0-4771; log105 = 0-6990; log1015 = 1-1761.

Thus we have performed arithmetical multiplication by the simple
addition of two logarithms. Generalizing, to multiply two or more
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numbers, add the logarithms of the numbers and find the number

whose logarithm is the sum of the logarithms just obtained.

Example. Evaluate 4 x 80,

log10 4 = 0-6021

log1080 = 1-9031

Sum = 2-5052 = log10320.

This method of calculation holds good whatever numbers we employ in place
of 3 and 5 or 4 and 80. Hence the use of logarithms for facilitating numerical

calculations. We shall shortly show how the operations of division, involu-

tion, and evolution are as easily performed as the above multiplication.

From what has just been said it follows that

103 am

jp
= 103 ~ 2 = 101 = 10

J
or generally,

= CL
m ~ n

. . (3)

Hence the rule : To divide two numbers, subtract the logarithm
of the divisor (denominator of a fraction) from the logarithm of the

dividend (numerator of a fraction) and find the number correspond-

ing to the resulting logarithm.

Examples. (1) Evaluate 60 -f 3.

log1060 = 1-7782

log10 3 = 0-4771

Difference = 1-3011 = log1020.

(2) Show that 2" 2 =
; H)- 2 = TU; 33 x 3~ 3 =1.

i_
i

(3) Show that ax x a1- * = a; p+ px = pl ~
x\ a* + a = a-*1 -*).

The general symbols a, b, ... m, n, ... x, y, ... in any-

general expression may be compared with the blank spaces in a

bank cheque waiting to have particular values assigned to date,

amount
(

s. d.), and sponsor, before the cheque can fulfil the

specific purpose for which it was designed. So must the symbols,

a, b, ... of a general equation be replaced by special numerical

values before the equation can be applied to any specific process

or operation.

It is very easy to miss the meaning of the so-called "
properties

of indices," unless the general symbols of the text-books are

thoroughly tested by translation into numerical examples. The

majority of students require a good bit of practice before a general

expression appeals to them with full force. Here, as elsewhere,

it is not merely necessary for the student to think that he " under-

stands the principle of the thing," he must actually work out

examples for himself. ' In scientiis ediscendis prosunt exempla
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magis quam praecepta
" 1 is as true to-day as it was in Newton's

time. For example, how many realise why mathematicians write

e = 1, until some such illustration as. the following has been

worked out?
22 x 2 = 22 + = 22 = 4 = 22 x 1.

The same result, therefore, is obtained whether we multiply 22
by

2 or by 1, i.e.,
'

22 x 20 = 22 x 1 = 22 = 4.

Hence it is inferred that 2

2 = 1, and generally that a = 1. . . (4)

Example. From the Table on page 628, show that

loge3 = 1-0986 ; loge2 = 0-6932
; log.l =0. . (5)

And, since

e x e x e x ... n times = en ;
. . .

;
e x e x e e3

;
e x e = e2

; e = e l
;

.-. logee
n = n

;
... log^

3 = 3
; loge

2 = 2
; log^

1 = 1 = logee. . (6)

I am purposely using the simplest of illustrations, leaving the

reader to set himself more complicated numbers. No pretence is

made to rigorous demonstration. We assume that what is true in

one case, is true in another. It is only by so collecting our facts

one by one that we are able to build up -a general idea. The be-

ginner should always satisfy himself of the truth of any abstract

principle or general formula by applying it to particular and simple

cases.

To find the relation between the logarithms of a number to dif-

ferent bases. Let n be a number such that aa ^=n; or, a =
logan;

and (5
b = n, or, b = log^n. Hence a

a =
fl

b
.

"
Taking logs

"
to the

base a, we obtain

a = b loga/?,

since logaa is unity. Substitute for a and b, and we get

logan =
log/sw . loga/?. . . . (7)

In words, the logarithm of a number to the base ft may be obtained

from the logarithm of that number to the base a by multiplying it

by l/loga/?. For example, suppose a = 10 and (3
=

e,

"--iss
1 Which may be rendered: "In learning we profit more by example than by

precept ".

2 Some mathematicians define aasl * ax ax a . . . n times
;
a3 = lxa x ax a;

a2 = \xaxa\ a1 = 1 x a
;
and a as 1 x a no times, that is unity itself. If so, then

I suppose that must mean 1 x no times, i.e., 1
; and 1/0 must mes.n ?/(] x no

times), i.e., unity.
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i

where the subscript in logen is omitted. It is a common practice

to omit the subscript of the "
log

" when there is no danger of

ambiguity. Hence, since log102'71828 = 0-4343, and loge10 = 2-3026,

where 2-71828 is the nominal value of e (page 25) :

To pass from natural to common logarithms

Common log = natural log x 0-43431
/q<>

log10a = logea x 0*4343
J

' * '

To pass from common to natural logarithms
Natural log

= common log x 2-30261 ,*^
logea = log10

a x 2-3026
J

{ }

The number 0*4343 is called the modulus of the Briggsian or

common system of logarithms. When required it is written M.

or
fx.

It is sufficient to remember that the natural logarithm of a

number is 2*3026 times greater than the common logarithm.

By actual multiplication show that

(100)
3 =

(10
2
)
3 = 102 x 3 = 106

,

and hence, to raise a number to any power, multiply the loga-

rithm of the number by the index of the power and find the number

corresponding to the resulting logarithm.

(a
m

)

n = amn (11)

Example. Evaluate 52 .

52 = (5)
2 = (lO

"6990
)
2 = 101B98 = 25,

since reference to a table of common logarithms shows that

log105 = 0-6990 ; log1025 = 1-3980.

From the index law, above

10* x 10i = 10* + * = 101 = 10.

That is to say, 10* multiplied by itself gives 10. But this is the

definition of the square root of 10.

.*. ( JlO)
2 = JlO Wl0= 10* x 10* = 10.

A fractional index, therefore, represents a root of the particular

number affected with that exponent. Similarly,

4/8 = 8*, because ^8 x ^8 x J/8 = S h x 8* x 8* = 8.

Generalizing this idea, the nth root of any number a, is

n
J'a = a\ . . . . (12)

To extract the root of any number, divide the logarithm of



12. THE DIFFERENTIAL CALCULUS. 29

the number by the index of the required root and find the number

corresponding to the resulting logarithm.

Examples. (1) Evaluate #8 and V93".

#8 =
(8)* = (10

'9031
)* = 10

'3010 = 2
; Z/93 = (93)f = (10

19685
)*
= 1002812 = 1-91,

since, from a table of common logarithms,

log10
2 = 0-3010 ; log108 = 0-9031

; log10
l-91 = 0-2812

; log1093 = 1-9685.

(2) Perhaps this will amuse the reader some idle moment. Given the

obvious facts log J = log, and 3>2 ; combining the two statements we get

3 log > 2 log J; .-. log(J)
8
>log(J); .-. fe)

3>()2
;

.'. 4>i; .'- 1 is greater

than 2. Where is the fallacy ?

The results of logarithmic calculations are seldom absolutely

correct because we employ approximate values of the logarithms

of the particular numbers concerned. Instead of using logarithms

to four decimal places we could, if stupid enough, use logarithms

accurate to sixty-four decimal places. But the discussion of this

question is reserved for another chapter. If the student has any

difficulty with logarithms, after this, he had better buy F. G.

Taylor's An Introduction to the Practical Use of Logarithms,

London, 1901.

12. Differentiation, and its Uses.

The differential calculus is not directly concerned with the

establishment of any relation between the quantities themselves,

but rather with the momentary state of the phenomenon. This

momentary state is symbolised by the differential coefficient, which

thus conveys to the mind a perfectly clear and definite conception

altogether apart from any numerical or practical application. I

suppose the proper place to recapitulate the uses of the differential

calculus would be somewhere near the end of this book, for only

there can the reader hope to have his faith displaced by the certainty

of demonstrated facts. Nevertheless, I shall here illustrate the

subject by stating three problems which the differential calculus

helps us to solve.

In order to describe the whole history of any phenomenon it is

necessary to find the law which describes the relation between the

various agents taking part in the change as well as the law describ-

ing the momentary states of the phenomenon. There is a close

connection between the two. The one is conditioned by the other.

Starting with the complete law it is possible to calculate th6

momentary states and conversely.
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I. The calculation of the momentary states from the complete
law. Before the instantaneous rate of change, dyjdx, can be deter-

mined it is necessary to know the law, or form of the function

connecting the varying quantities one with another. For instance,

Galileo found by actual measurement that a stone falling vertically

downwards from a position of rest travels a distance of s = \gt
2

feet in t seconds. Differentiation of this, as we shall see very

shortly, furnishes the actual velocity of the stone at any instant

of time, V =
gt. In the same manner, Newton's law of inverse

squares follows from Kepler's third law ; and Ampere's law, from

the observed effect of one part of an electric circuit upon another.

II. The calculation of the complete law from the momentary
states. It is sometimes possible to get an idea of the relations

between the forces at work in any given phenomenon from the

actual measurements themselves, but more frequently, a less direct

path must be followed. The investigator makes the most plausible

guess about the momentary state of the phenomenon at his com-

mand, and dresses it up in mathematical symbols. Subsequent

progress is purely an affair of mathematical computation based

upon the differential calculus. Successful guessing depends upon
the astuteness of the investigator. This mode of attack is finally

justified by a comparison of the experimental data with the hypo-
thesis dressed up in mathematical symbols, and thus

The golden guess
Is morning star to the full round of truth.

Fresnel's law of double refraction, Wilhelmy's law of mass action,

and Newton's law of heat radiation may have been established in this

way. The subtility and beauty of this branch of the calculus will not

appear until the methods of integration have been discussed.

III. The educti/m of a generalization from particular cases.

A natural law, deduced directly from observation or measurement,
can only be applied to particular cases because it is necessarily
affected by the accidental circumstances associated with the con-

ditions under which the measurements were made. Differentiation

will eliminate the accidental features so that the essential circum-

stances, common to all the members of a certain class of phenomena,
alone remain. Let us take one of the simplest of illustrations, a

train travelling with the constant velocity of thirty miles an hour.

Hence, V = 30. From what we have already said, it will be clear
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that the rate of change of velocity, at any moment, is zero. Other-

wise expressed, dV/dt = 0. The former equation, V = 30, is only
"true of the motion of one particular object, whereas dV/dt 0, is

true of the motion of all bodies travelling with a constant velocity.

In this sense one reliable observation

might give rise to a general law.

The mechanical operations of finding

the differential coefficient of one vari-

able with respect to another in any

expression are no more difficult than

ordinary algebraic processes. Before de-

scribing the practical methods of differ-

entiation it will be instructive to study
a geometrical illustration of the process.

Let x (Fig. 5) be the side of a square, and let there be an incre-

ment 1 in the area of the square due to an increase of h in the

variable x.

Fig. 5.

The original area of the square = x2
.

The new area = (x + h)
2

The increment in the area =
(a; + h)

2

x2 + 2xh + h2.

= 2xh + h2
. . (3)

This equation is true, whatever value be given to h. The

Bmaller the increment h the less does the value of h2 become.

If this increment h ultimately become indefinitely small, then h2
,

being of a very small order of magnitude, may be neglected. For

example, if when x =
1,

h = 1, increment in area = 2 + 1 ;

fr = xV> H =0-2 + ^;
mnr> 0-002 +

1.0OQ.000'
etc.

If, therefore, dy denotes the infinitely small increment in the

area, y, of the square corresponding to an infinitely small incre-

ment dx in two adjoining sides, x, then, in the language of

differentials,

Increment y = 2xh, becomes, dy = 2# . dx. . (4)

The same result can be deduced by means of limiting ratios.

For instance, consider the ratio of any increment in the area, y,

to any increment in the length of a side of the square, x.

1 When any quantity is increased, the quantity by which it is increased is called

its increment, abbreviated "incr."
;
a decrement is a negative increment.
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Increment y _ Incr. y hy 2xh + h2

and when the value of h is zero

= Uh = = 2x. . . . (5)

To measure the rate of change of any two variables, we fix upon
one variable as the standard of reference. When x is the standard

of reference for the rate of change of the variable y, we call dy/dx
the Aerate of y. In practical work, the rate of change of time, t,

is the most common standard of reference. If desired we can

interpret (4) or (5) to mean

dy dx

Tt
= 2x

~df

In words, the rate at which y changes is 2x times the rate at which

x changes.

Examples. (1) Show, by similar reasoning to the above, that if the three

By
adjoining sides, x, of a cube receive an increment h, then Lt = o g-

= 3x2
.

(2) Prove that if the radius, r, of a circle be increased by an amount h,

the increment in the area of the circle will be (2rh + h2
)ir. Show that the

limiting ratio, dy/dx, in this case is lirr. Given, area of circle = irr2 .

The former method of differentiation is known as " Leibnitz's

method of differentials," the latter,
" Newton's method of limits ".

It cannot be denied that while Newton's method is rigorous,

exact, and satisfying, Leibnitz's at once raises the question :

13. Is Differentiation a Method of Approximation only ?

The method of differentiation might at first sight be regarded

as a method of approximation, for these small quantities appear
to be rejected only because this may be done without committing

any sensible error. For this reason, in its early days, the calculus

was subject to much opposition on metaphysical grounds. Bishop

Berkeley
x called these limiting ratios

" the ghosts of departed

quantities ". A little consideration, however, will show that these

small quantities must be rejected in order that no error may be

committed in the calculation. The process of elimination is

essential to die operation.

i G. Berkeley, Collected Works, Oxford, 3, 44, 1901.
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There has been a good bit of tinkering, lately, at the founda-

tions of the calculus as well as other branches of mathematics, but

we cannot get much deeper than this : assuming that the quantities

under investigation are continuous, and noting that the smaller the

differentials the closer the approximation to absolute accuracy, our

reason is satisfied to reject the differentials, when they become so

small as to be no longer perceptible to our senses. The psycho-

logical process that gives rise to this train of thought leads to the

inevitable conclusion that this mode of representing the process is

the true one. Moreover, if this be any argument, the validity of

the reasoning is justified by its results.

The following remarks on this question are freely translated

from Carnot's Beflexions sur la Mdtaphysique du Galcul In-

finitesimal.
1 "The essential merit, the sublimity, one may say, of

the infinitesimal method lies in the fact that it is as easily performed
as a simple method of approximation, and as accurate as the results

of an ordinary calculation. This immense advantage would be

lost, or at any rate greatly diminished, if, under the pretence of

obtaining a greater degree of accuracy throughout the whole pro-

cess, we were to substitute for the simple method given by Leibnitz

one less convenient and less in accord with the probable course of

the natural event. If this method is accurate in its results, as no

one doubts at this day ; if we always have recourse to it in difficult

questions, what need is there to supplant it by complicated and

indirect means ? Why content ourselves with founding it on in-

ductions and analogies with the results furnished by other means

when it can be demonstrated directly and generally, more easily,

perhaps, than any of these very methods ? The objections which

have been raised against it are based on the false supposition that

the errors made by neglecting infinitesimally small quantities

during the actual calculation are still to be found in the result of

the calculation, however small they may be. Now this is not the

case. The error is of necessity removed from the result by elimi-

nation. It is indeed a strange thing that every one did not from

the very first realise the true character of infinitesimal quantities,

and see that a conclusive answer to all objections lies in this indis-

pensable process of elimination."

The beginner will have noticed that, unlike algebra and arith-

i
Paris, 215, 1813.
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metic, higher mathematics postulates that number is capable of

gradual growth. The differential calculus is concerned with the

rate at which quantities increase or diminish. There are three

modes of viewing this growth :

i". Leibnitz's ' method of infinitesimals or differentials ". Accord-

ing to this, a quantity is supposed to pass from one degree of mag-
nitude to another by the continual addition of infinitely small parts,

called infinitesimals or differentials. Infinitesimals may have

different orders of magnitude. Thus, the product dx.dy is an in-

finitesimal of the second order, infinitely small in comparison with

the product y.dx, or x.dy.

In a preceding section it was shown that when each of two

sides of a square receives a small increment h, the corresponding

increment in the area is 2xh + h2
. When h is made indefinitely

small and equal to say dx, then (dx)
2 is vanishingly small in com-

parison with x.dx. Hence,

dy = Zx.dx.

In calculations involving quantities which are ultimately made
to approach the limit zero, the higher orders of infinitesimals may
be rejected at any stage of the process. Only the lowest orders of

infinitesimals are, as a rule, retained.

II. Newton's " method of rates orfluxions ". Here, the velocity

or rate with which the quantity is generated is employed. The

measure of this velocity is called a fluxion. A fluxion, written x, y,

. . .
,
is equivalent to our dx/dt, dy/dt }

. . .

These two methods are modifications' of one idea. It is all a

question of notation or definition. While Leibnitz referred the

rate of change of a dependent variable y, to an independent variable

x, Newton referred each variable to
"
uniformly flowing

"
time.

Leibnitz assumed that when x receives an increment dx, y is in-

creased by an amount dy. Newton conceived these changes to

occupy a certain time dt, so that y increases with a velocity $, as x

increases with a velocity x. This relation may be written sym-

bolically,

dy

dx = xdt, dy = ydt ;
.-. ? =|L^.x ax U/X

~di

The method of fluxions is not in general use, perhaps because,



14. THE DIFFERENTIAL CALCULUS. 35

of its more* abstruse character. It is occasionally employed iii

mechanics.

III. Neivton's " method of limits ". This has been set forth in

2. The ultimate limiting ratio is considered as a fixed quantity
to which the ratio of the two variables can be made to approximate
as closely as we please. "The limiting ratio," says Carnot, "is

neither more nor less difficult to define than an infinitely small

quantity. ... To proceed rigorously by the method of limits it is

necessary to lay down the definition of a limiting ratio. But this

is the definition, or rather, this ought to be the definition, of an

infinitely small quantity."
" The difference between the method

of infinitesimals and that of limits (when exclusively adopted) is,

that in the latter it is usual to retain evanescent quantities of higher

orders until the end of the calculation and then neglect them. On
the otber hand, such quantities are neglected from the commence-

ment in the infinitesimal method from the conviction that they
cannot affect the final result, as they must disappear when we

proceed to the limit
"
(Encyc. Brit.). It follows, therefore, that the

psychological process of reducing quantities down to their limiting

ratios is equivalent to the rejection of terms involving the higher
orders of infinitesimals. These operations have been indicated side

by side on pages 31 and 32.

The methods of limits and of infinitesimals are employed in-

discriminately in this work, according as the one or the other

appeared the more instructive or convenient. As a rule, it is easier

to represent a process mathematically by the method of infinit-

esimals. The determination of the limiting ratio frequently

involves more complicated operations than is required by Leibnitz's

method.

1*. The Differentiation of Algebraic Functions.

We may now take up the routine processes of differentiation.

It is convenient to study the different types of functions alge-

braic, logarithmic, exponential, and trigonometrical separately.

An algebraic function of x is an expression containing terms

which involve only the operations of addition, subtraction, multi-

plication, division, evolution (root extraction), and involution. For

instance, x2
y + *Jx + yh

- ax = 1 is an algebraic function. Func-

tions that cannot be so expressed are termed transcendental
n *
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functions. Thus, sin x = y, log x =
y, e

x = y are transcendental

functions.

On pages 31 and 32 a method was described for finding the

differential coefficient of y = x2
, by the following series of opera-

tions : (1) Give an arbitrary increment h to x in the original

function
; (2) Subtract the original function x2 from the new value

of (x + h)
2 found in (1) ; (3) Divide the result of (2) by h the in-

crement of x ; and (4) Find the limiting value of this ratio when

h = 0.

This procedure must be carefully noted
;

it lies at the basis of

all processes of differentiation. In this way it can be shown that

if y = *2
> Tx

= 2x; {i y = x
">Tx

= ^>'li y = ^Tx = *x*> etc -

By actual multiplication we find that

(x + hf =
(x + h) (x + h) = x2 + 2hx + h2

;

(x + hf =
(x + h)

2
(x + h)

= x* + 3hx2 + 3h2x + /t
3

;

Continuing this process as far as we please, we shall find that

(x + h)
n = xn +~xn ~ 1h +

n
(n
~^x

n ~ 2h2 + ... + ^xh
n - l + h. (1)

1 1 . A 1

This result, known as the binomial theorem, enables us to raise any

expression of the type x + h to any power of n (where n is positive

integer, i.e., a positive whole number, not a fraction) without going

through the actual process of successive multiplication. A similar

rule holds for (x
-

h)
n

. Now try if this is so by substituting n = 1,

2, 3, 4, and 5 successively in (1), and comparing with the results

obtained by actual multiplication.

It is convenient to notice that the several sets of binomial co-

efficients obey the law indicated in the following scheme, as n

increases from 0, 1, 2, 3

(a + by = 1
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Let each side of this expression receive a small increment so that

y becomes y + h' when x becomes x + h ;

.*. (y + h')
-

y = incr. y =
(a? + ft)"

- #n
.

From the binomial theorem, (1) above,

incr. y = nxn ~ lh + \n(n
-

l)x
n ~ 2h2 + . . ,

Divide by increment x, namely h.

Incrj, _ Incrj, _^ . , + j
V _

1)x
_
2}l + _

/j Incr. C

Hence when h is made zero

T , Incr. y T . ,A (x + h)
n -Xn

_ ,

LtA=0 JL = Limit* .
V i = nr K

Incr. X 'I

That is to say

ft.^J-.^-i. ... (2)
a# arc

Hence the rule : The differential coefficient of any power of x

is obtained by diminishing the index by unity and multiplying the

power of x so obtained by the original exponent (or index).

Examples. (1) If y = x6
;
show that dyfdx = 6x*. This means that y

changes 6x5 times as fast as x. If x = 1, y increases 6 times as fast as x
;

if

x= -
2, y decreases -6 x 32= - 192 times as fast as x.

(2) If y = x
;
show that dy\dx = 20a?19 .

(3) If y = x5
;
show that dyfdx = 5aA

(4) If y = <c
3

;
show that d?//<i

= 300, when x = 10.

Later on we deduce the binomial theorem by differentiation.

The student may think wTe have worked in a vicious circle. This

need not be. The differential coefficient of xn
may be established

without assuming the binomial theorem. For instance, let

y = xn
,

and suppose that when x becomes x
x
= x + h,y becomes yx ;

then

we have

Ux^y ==
oc

l

n -xn

= x
^

n _ 1 + xx
^

n _ 2 + ^ + x, t

_^
X-i X X-i ~~ x

by division. But LtA=0a;1 = x ;

dn
. \ -/ = xn ~ x + Xn ~ l + ... to W terms = 1lX

n " l
.

ax

II. The differential coefficient of the sum or difference of any
number of functions. Let u, v, w . . . be functions of x

; y their
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sum. Let uv vv wv . . .
, yv be the respective values of these

functions when x is changed to x + h, then

y = u + v + w + . . . \ y Y
= u

Y + v
x + w

Y
+ . . .

.: y1
- y = {uY

-
u) + (vx

-
v) + (w 1

-
w) + . . .

,

by subtraction
; dividing by h,

Incr. y Incr. U Incr. ^ Incr. w
h

~
h h h

T
Incr. y _ dy _ du dv dw ,*

;t=0
Incr. x dx

~
dx dx dx

If some of the symbols have a minus, instead lof a plus, sign a

corresponding result is obtained. For instance, if

y = U-V-W-...,
,, dy _ du dv dw

dx
~

dx dx dx
~ " ' ' * '

Hence the rule : The differential coefficient of the sum or

difference of any number of functions is equal to the sum or differ-

ence of the differential coefficients of the several functions.

III. The differential coefficient of the product of a variable and

a constant quantity. Let

y = axn
;

Incr. y = a(x + h)
n - axn = anxn " lh+

an
\
n ~~

>xn - 2h2 + . . .

Therefore

^^F=2 <s)

Hence the rule : The differential coefficient of the product of

a variable quantity and a constant is equal to the constant multi-

plied by the differential coefficient of the variable.

IV. The differential coefficient of any constant term is zero.

Since a constant term is essentially a quantity that does not vary,

if y be a constant, say, equal to a
;
then da/dt must be absolute

zero. Let

y -
(aj + a) ;

then, following the old track,

incr. y =
(x + h)

n + a -
(x

n + a) ;

n n -M ,

n (
n -

1) -9L9 ,

.\ Incr. y = - xn lh + -^ ^ '- xn 2h2 + . . .

1 A\

Incr. X dx v '

where the constant term has disappeared.
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For the sake of brevity we have written 1! = 1 ; 2! = 1 x 2
;

3! = 1 x 2 x 3
;
n\ = 1 x 2 x 3 x . . . x (n

-
2) x (n

-
1) x n. Strictly

speaking, 0! has no meaning ; mathematicians, however, find it con-

venient to make 0! = 1. This notation is due to Kramp.
" n\

"

is read " factorial n".

V. The differential coefficient of a polynomial
l raised to any

'power. Let

y = (ax + x2
)

n
.

If we regard the expression in brackets as one variable raised to

the power of n
}
we get

dy = n(ax + x2
)

n ~
1
d(ax + x2

).

Differentiating the last term, we get

^ = n{ax + x2
)

n ~ l

(a + 2x). . . (7)

Hence the rule : The differential coefficient of a polynomial
raised to any power is obtained by diminishing the exponent of the

power by unity and multiplying the expression so obtained by the

differential coefficient of the polynomial and the original exponent.

Examples. (1) If y = x - 2x2
,
show that dyjdx = 1 - 4tx.

(2) If y = (1
- a;

2
)
3

,
show that dyjdx = - 6x{l-x

2
)

2
> This means that

y changes at the rate of -
6a-(l

- a;
2
)'

2 for unit change of x
;
in other words,

y changes -
6a*(l

- x2
)

2 times as fast as x.

(3) If the distance, s, traversed by a falling body at the time t, is given by
the expression s = \gt

2
,
show that the body will be falling with a velocity

ds/dt = gt, at the time t.

(4) Young's formula for the relation between the vapour pressure p and

the temperature 6 of isopentane at constant volume is, p = bO -
a, where a

and b are empirical constants. Hence show that the ratio of the change of

pressure with temperature is constant and equal to b.

(5) Mendeleeff's formula for the superficial tension s of a perfect liquid at

any temperature d is, s = a - bd, where a and b are constants. Hence show

that rate of change of s with Q is constant. Ansr. - b.

(6) One of Callendar's formulae for the variation of the electrical resistance

B of a platinum wire with temperature 6 is, B = B (l + a.6 + &0
2
), where a and

and B are constants. Find the increase in the resistance of the wire for a

small rise of temperature. Ansr. dB = B (a + 2/30)d0.

(7) The volume of a gram of water is nearly 1 + a (0
-

4)
2 ccs. where 6

denotes the temperature, and a is a constant very nearly equal to 8*38 x 10 ~|
6
.

Show that the coefficient of cubical expansion of water at any temperature 6 is

equal to 2a(0 -
4). Hence show that the coefficients of cubical expansion of

water at and 10 are respectively
- 67*04 x 10

- 6
,
and + 100'56 x 10 - 6

.

1 A polynomial is an expression containing two or more terms connected by plus or

minus signs. Thus, a + bx
;
ax + by + z, etc. A binomial contains two such terms.
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(8) A piston slides freely in a circular cylinder (diameter 6 in.). At what

rate is the piston moving when steam is admitted into the cylinder at the

rate of 11 cubic feet per second? Given, volume of a cylinder = irr2h. Hint.

Let v denote the volume, x the height of the piston at any moment. Hence,
v = ir($)

2x ;
.*. dv = ir()

2dx. But we require the value of dxfdt. Divide the

last expression through with dt, let ir = ^,
dx dv 7 - ,,

^ =
dl

xl6><
22
= 56ft - perSe0 -

(9) If the quantity of heat, Q, necessary to raise the temperature of a

gram of solid from to 6 is represented by Q = aQ + &02 + c03 (where a, b, c,

are constants), what is the specific heat of the substance at 9. Hint. Com-

pare the meaning of dQ/dd with your definition of specific heat. Ansr.

a + 2be + Scd2.

(10) If the diameter of a spherical soap bubble increases uniformly at the

rate of 0*1 centimetre per second, show that the capacity is increasing at the

rate of 0'2ir centimetre per second when the diameter becomes 2 centimetres.

Given, volume of a sphere, v = \tzU\

.-. dv = frrD
2
dD, .-. dvjdt = x tr x 22 x O'l = 0-2tt.

(11) The water reservoir of a town has the form of an inverted conical

frustum with sides inclined at an angle of 45 and the radius of the smaller

base 100 ft. If when the water is 20 ft. deep the depth- of the water is de-

creasing at the rate of 5 ft. a day, show that the town is being supplied with

water at the rate of 72,000 ir cubic ft. per
diem. Given, frustum, y, of cone = frr x

height x (a
2 + ab + b7), where a, and b are

the radii of the circular ends. Hint. Let a

(Fig. 6) denote the radius of the smaller end,

x the depth of the water. First show that

a + x is the radius of the reservoir at the

surface of the water. Hence, y = \ir{{a + x)
2 + a(a + x) + a2

)x ; .*. dy =

ir(a
2 + lax + x2

)dx, etc.

(12) If a, b, c are constants, show that dy/dx = b, when x =0, given that

y = a + bx + ex2 . Hint. Substitute x = after the differentiation.

(13) The area of a circular plate of metal is expanding by heat. When
the radius passes through the value 2 cm. it is increasing at the rate of 0*01

cm. per second. How fast is the area changing ? Ansr. 0-047r sq. cm. per
second. Hint. Radius = x cm. ; area=?/ sq. cm. ; .*. area of circle = y=wx2

.

Hence, dy\dt = 2irx . dxfdt ; when x = 2, dxjdt = 0-01, etc.

VI. The differential coefficient of the product of any number of

functions. Let

y = uv

where u and v are functions of x. When x becomes x + h, let u, v,

and y become u
l9
vv and yv Then y1

= u
l
v
1 ; y x

-
y = u

1
v
1
-

uv,

add and subtract uv
l
from the second member of this last equation,

and transpose the terms so that

Vi
~

V = u
(
v
i
-

v) + v^ -
u).
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In the language of differentials we may write this relation

dy =
d(uv) = udv + vdu. ... (8)

Or, divide by hx, and find the limit when 8x = 0, thus,

j, by _ dv du
x=0

8x dx dx9

dx dx dx dx v '

Similarly, by taking the product of three functions, say,

y = uvw.

Let vw = z
; then y = uz. From (8) ,

therefore

dy = z.du + u.dz = vw.du + u.d(vw) ;

.-. dy = vw.du + u{w.dv + v.div) ;

.*. dy = vw.du + uw.dv + uv.dw, . . (10)

in differential notation. To pass into differential coefficients, divide

by dx. This reasoning may obviously be extended to the product
of a greater number of functions.

Hence the rule : The differential coefficient of any number of

functions is obtained by multiplying the differential coefficient of

each separate function by the product of all the remaining func-

tions and then adding up the results.

Examples. (1) If the volume, v, of gas enclosed in a vessel at a pressure

p, be compressed or expanded without loss of heat, it is known that the

relation between the pressure and volume is pvy = constant
; y is also a

constant. Hence, prove that for small changes of pressure, dvfdp = -
vjyp.

(2) liy = {x- 1) {x
-

2) (x
-

3), dy/dx = Bx2 - 12x + 11.

(3) liy = x2
(l + ax2

) (1
- ax2

), dy/dx = 2x - 6a2x5
.

(4) Show geometrically that the differential of a small increment in the

capacity of a rectangular solid figure whose unequal sides are x, y, z is

denoted by the expression xydz + yzdx + zxdy. Hence, show that if an ingot
of gold expands uniformly in its linear dimensions at the rate of 0*001 units

per second, Its volume, v, is increasing at the rate of dvfdt = 0-110 units per

second, when the dimensions of the ingot are 4 by 5 by 10 units.

The process may be illustrated by a geometrical figure similar

to that of page 31. In the & dx

rectangle (Fig. 7) let the un-

equal sides be represented by
x and y. Let x and y be in-

creased by their differentials V
dx and dy. Then the incre-

ment of the area will be re- Fig. 7.

presented by the shaded parts, which are in turn represented by
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the areas of the parallelograms xdy + ydx + dxdy, but at the limit

dx.dy vanishes, as previously shown.

VII. The differential coefficient of a fraction, or quotient. Let

u
y = ,

where u and v are functions of x. Hence, u =
vy, and from (9)

du = vdy + ydv; .-. du = vd(-) + -dv
9

on replacing y by its value ujv. Hence, on solving,

jfu\
~

v 1fu\ vdu - udv ,:__d
(v)

-
^ ' %) =

"P <">

in the language of differentials ; or, dividing through with dx we

obtain, in the language of differential coefficients,

du dv

dy
v
fa

~ U
dx'

dx~ v*
... (14)

In words, to find the differential coefficient of a fraction or of a

quotient, subtract the product of the numerator into the differ-

ential coefficient of the denominator, from the product of the

denominator into the differential coefficient of the numerator, and

divide by the square of the denominator.

A special case occurs when the numerator of the fraction a/x

is a constant, a, then

a j x .da - a .dx - a .dx dy a , .

y ~x' dV ? --S----S" -3- <13>

In words, the differential coefficient of a fraction a/x whose

numerator is constant is minus the constant divided by the square
of the denominator.

Examples. (1) If y = x/(l
-

x) ;
show that dyfdx = 1/(1

-
x)

2
.

(2) If x denotes the number of gram molecules of a substance A trans-

formed by a reaction with another substance B, at the time t, experiment

shows that xj(a
-

x) = akt, when k is constant. Hence, show that the

velocity of the reaction. is proportional to the amounts of A and B present at

the time t. Let a denote the number of gram molecules of A, and of B

present at the beginning of the reaction. Hint. Show that the velocity of

the reaction is equal to k(a
-

x)
2

,
and interpret the result.

(3) If y = (1 + s2
)/(l

- x2
), show that dyfdx = 4sc/(l

- x2
)\

(4) If y = a/a;
w

,
show that dyfdx = - nafx

n + 1
.



14. THE DIFFERENTIAL CALCULUS. 43

(5) The refractive index, /*, of a ray of light of wave-length A is, according
to Christoffel's dispersion formula

H = p J2/{*jr+~\J\ + \/l - a /a}>

where ^ and A are constants. Find the change in the refractive index

corresponding to a small change in the wave-length of the light. Ansr.

dfifd\ = - ^
3a 2

/{2a
3
/x V(1 - V/*2

)K It; is not often so difficult a differentia-

tion occurs in practice. The most troublesome part of the work is to reduce

d
jL _ s/frW n/(1 + Ap/X)

- V(t - A /a)}/A*

dK
- "

V(l -"AoW{ V(l + Afl/A) + V(i - a /aH
2

'

to the answer given. Hint. Multiply the numerator and denominator of the

right member with the factor 4
y
u 2

( sll + aJa + s/l - a /a).
and take out the

terms which are equal to /x of the original equation to get /**.
Of course the

student is not using this abbreviated symbol of division. See footnote, page
14. I recommend the beginner to return to this, and try to do it without the

hints. It is a capital exercise for revision.

VIII. The differential coefficient of a function affected with a

fractional or negative exponent. Since the binomial theorem ia

true for any exponent positive or negative, fractional or integral,

formula (2) may be regarded as quite general. The following proof

for fractional and negative exponents is given simply as an exercise.

Let

y = xn
.

First. When n is a positive fraction. Let n = p/q, where p
and q are any integers, then

y = xq
(14)

Raise each term to the 5th power, we obtain the expression y
q = xp

.

By differentiation, using the notation of differentials, we have

qy
9 ~ l

dy = px
p ~ ldx.

Now raise both sides of the original expression, (14), to the

(q
-

l)th power, and we get

P7-P

%f
-

l = x q
.

Substitute this value of y
7 ~ l in the preceding result, and we get

dy p x p ~ 1x p lq dy p f _1
/Jn ,

which has exactly the same form as if n were a positive integer.

Second. When n is a negative integer or a negative fraction.

Let

y = x~ n
;

then y l/x
n

. Differentiating this as if it were a fraction, (13)
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above, we get dyldx = - nxn ~ 1

/x
2n

,
which on reduction to its

simplest terms, assumes the form

dy_ d(x-) _ TO _ n _
1-

dx dx

Thus the method of differentiation first given is quite general.

A special case occurs when y = Jx, in that case y = xh-
;

^ =^ = J_ = i*-*. . . (16)
dx dx 2Jx 2

V ;

In words, the differential coefficient of the square root of a variable

is half the reciprocal of the square root of the variable.

Examples. (1) Matthiessen's formula for the variation of the electrical

resistance R of a platinum wire with temperature 0, between and 100 is

R jR (1
- ad + be2

)

~ K Find the increase in the resistance of the wire for

a small change of temperature. Ansr. dRjde = R2
(a

- 2b6)jRQ . Note a and

b are constants ;
dR = - R (l

- a6 + bff
2
)

~ 2
d(l

- ad + b82
) ; multiply and

divide by R ;
substitute for R from the original equation, etc

(2) Siemens' formula for the relation between the electrical resistance of

a metallic wire and temperature is, R = R {1 + ae + b sfe) Hence, find the

rate of change of resistance with temperature. Ansr. R {a + \be
~

h).

(3) Batschinski (Bull. Soc. Imp. Nat. Moscow, 1902) finds that the pro-

duct 7](e + 273)
3 is constant for many liquids of viscosity 77, at the temperature

e. Hence, show that if A is the constant, drj/de = -
3^/(0 + 273).

(4) Batschinski (I. c.) expresses the relation between the "
viscosity para-

meter," 7], of a liquid and the critical temperature, 6, by the expression

M^e^rjmJ = B, where B, M, and m are constants. Hence show that

d-nfde = -
&n[e.

IX. The differential coefficient of a function of a function.

Let
u =

<f>(y) ;
and y =

f(x).

It is required to find the differential coefficient of u with respect to

x. Let u and y receive small increments so that when u becomes

uv y becomes yx
and x becomes xv Then

% ~ u = u>i-u Vi~ y
x

i
- x V\

- y
'

x
i
- x '

which is true, however small the increment may be. At the limit,

therefore, when the increments are infinitesimal

du _ du dy

dx~~~3y'dx
' ' ' * (17>

I may add that we do not get the first member by cancelling out

the dy's of the second The operations are
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In words, (17) may be expressed : the differential coefficient of a

function with respect to a given variable is equal to the product of

the differential coefficient of the function with respect to a second

function and the differential coefficient of the second function with

respect to the given variable. We can get a physical meaning of

this formula by taking x as time. In that case, the rate of change
of a function of a variable is equal to the product of the rate of

change of that function with respect to the variable, and the rate

of change of the variable.

The extension to three or more variables will be obvious. If

u =
<f}(w), w =

\p{y), y =
f(x), it follows that

du du dw dy= , .
_ (181

dx dw dy dx v ;

With the preceding notation, it is evident that the relation

yi
- y'x1

- x

is true for all finite increments, we assume that it also holds when
the increments are infinitely small

; hence, at the limit,

dx dy <te_ mq\
dy'dx"

L
>

0T
> dy~ dy

' <iy'

dx

We have seen that if y is a function of x then # is a function

of y ;
the latter, however, is frequently said to be an inverse

function of the former, or the former an inverse function of the

latter. This is expressed as follows : If y =
f(x), then x = f~\y),

or, \ix= f(y), then y =f~\x).
Examples. (1) If y = xn/(l + x)

n
,
show that dy/dx = nxn - 7(1 + x)

n + l
.

(2) If y = 1/^/(1
- z2

),
show that dy/dx = x/ ^(1 - jb

2
)

3
.

(3) The use of formula (17) often simplifies the actual process of differentia-

tion
;
for instance, it is required to differentiate the expression u = J(a

2 - x2
).

Assume y = a2 - x2
. Then, u = \/

y,y= a2 -x2
;
&n& dy/dx= -2x; du/dy=^y~i,

from (16) ; hence, from (17), du/dx= -x(a?-x
2
)~%. This is an easy example

which could be done at sight ;
it is given here to illustrate the method.

By the application of these principles any algebraic function

which the student will encounter in physical science,
1 may be

1 K. Weierstrass has shown that there are some continuous functions which have

not yet been differentiated, but, as yet, they have no physical application except

perhaps to vibrations of very great velocity and small amplitude. See J. JJarkness

and F. Morley's Theory of functions^ London, 65, 1893,
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differentiated. Before proceeding to transcendental functions, that

is to say, functions which contain trigonometrical, logarithmic or

other terms not algebraic, we may apply our knowledge to the

well-known equations of Boyle and van der Waals.

15. The Gas Equations of Boyle and van der Waals.

In van der Waals' equation, at a constant temperature,

* [P +
f) (V

-
b)
= constant, . . . .(1)

where b is a constant depending on the volume of the molecule, a

is a constant depending on intermolecular attraction. Differenti-

ating with respect to p and v, we obtain, as on pages 40 and 41,

(v
-

b)d(p
+ 2

)
+

(p
+
fyd(v

-
b)
= 0,

and therefore

dv v - b

dp a 2ab
(2)

The differential coefficient dv/dp measures the compressibility of

the gas. If the gas strictly obeyed Boyle's law, a = b = 0, and

we should have

= - - (S)
dp p'

v '

The negative sign in these equations means that the volume of

the gas decreases with increase of pressure. Any gas, therefore,

will be more or less sensitive to changes of pressure than Boyle's
law indicates, according as the differential coefficient of (2) is

greater or less than that of (3), that is according as

v - b ^v ,_ a 2ab , _ a lab
pv - pb>pv + o-; .'.jpb%

_ a_ 2ab^p'
* r *^" r

v
'

v2 ' r ^v v*
'

V v2 + vz

a 2a
'^ 5 6-V (*)

If Boyle's law were strictly obeyed.

pv = constant, .... (5)

but if the gas be less sensitive to pressure than Boyle's law

indicates, so that, in order to produce a small contraction, the

pressure has to be increased a little more than Boyle's law

demands, pv increases with increase of pressure ;
while if the gas
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be more sensitive to pressure than Boyle's law provides for, pv
decreases with increase of pressure.

Some valuable deductions as to intermolecular action have been

drawn by comparing the behaviour of gases under compression in

the light of equations similar to (4) and (5). But this is not all.

From (5), if c = constant, v = c/p, which gives on differentiation

dv c

dp
= ~

p*
or the ratio of the decrease in volume t . ... of pressure, is

inversely as the square of the pressure. By substituting p = 2, 3,

4, ... in the last equation we obtain

dv _ 1 1
JL_

dp
~

4
'

9
'

16
; ' ' '

where c = unity. In other words, the greater the pressure to

which a gas is subjected the less the corresponding diminution in

volume for any subsequent increase of pressure. The negative

sign means that as the pressure increases the volume decreases.

16. The Differentiation of Trigonometrical Functions.

Any expression containing trigonometrical ratios, sines, cosines,

tangents, secants, cosecants, or cotangents is called a trigono-
metrical function. The elements of trigonometry are discussed

in Appendix I., on page 606 et seq., and the beginner had better

glance through that section. We may then pass at once in medias

res. There is no new principle to be learned.

I. The differential coefficient of sin x is cos x. Let y become yv
when x changes to x + h, consequently,

y = sin x ; and yx
= sin (x + h) ;

.'. yx
- y = sin (x + h)

- sin x.

By (39), page 612,

Vi
~ V = 2 sin

g
cos (x +

^j.

Divide by h and

sin x
But the value of approaches unity, page 611, as x approachesx

h \h
. sin a:

of
x

zero, therefore,

Vi
- V dy dismx)

Ut.-Pt
1 - ooax < !" -V- = C0BX (li
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The rate of change of the sine of an angle with respect to the

angle is equal to the cosine of the angle. When x increases from

to
Jtt,

the rate of increase of sine x is positive because cos x is

then positive, as indicated on page 610
;
and similarly, since cos x

is negative from ^ir to 7r, as the angle increases from ^ir to ir
t
sine x

decreases, and the rate of increase of sin x is negative.

If x is measured in degrees, we must write

d(smx) _ <*(sin iJ5^
C

)
_tt_

ttV _*_
dx dx 180

C0S
180 180

cos x
'

since the radian measure of an angle = angle in degrees x T|o7r,
where it = 3-1416, as indicated on page 606.

Numerical Illustration. You can get a very fair approximation to

the fact stated in (1), by taking h small and finite. Thus, if x = 42 6' ;

and h = V ;
x + h = 42 7' ;

.
Incr. y _ sin (x + h)

- sin x _ Q-Q002158
*

.* Incr. x
~

hih radians
~

0-0002909
= '74183 *

But cos x = 0-74198 ; cos (x + h) = 0-74178 ; so that when h is -^, dyjdx lies

somewhere between cos a; and cos
(a; + h). By taking smaller and smaller

values of h, dy/dx approaches nearer and nearer in value to cos x.

II. The differential coefficient of cos x is - sinx. Let us put

y = cos x
;
and yx

= cos (x + h) ; yl
- y = cos (x + h)

- cos x.

From the formula (41) on page 612, it follows that

'.-.'/ h\ y,
- y sinhh .

/ h\
y1

- y = - 2 sin
^
sin [x +

^J
;

or
h

=
IfiT

sm
\
x +

2)
'

and at the limit when h = 0,

Vi
- V % c?(cosic)

Lt = 5- --am*; a^- -^- - - ana (2)

The meaning of the negative sign can readily be deduced from

the definition of the differential coefficient. The differential co-

efficient of cos x with respect to x represents the rate at which

cosa: increases when x is slightly increased. The negative sign

shows that this rate of increase is negative, in other words, cos x

diminishes as x increases from to ^tt. When x passes from ^tt to

7r cos x increases as x increases, the differential coefficient is then

positive.

III. The differential coefficient of tan x is sec2x. Using the re-

sults already deduced for sin x and cos x, and remembering that

sin #/cos x is, by definition, equal to tan x, let y = tan x, then
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,/sin#\ d(smx) . d(cosx)
i lL x d\ I

cosoj-1-^ - - sin# ^ -
9 . 9

d(ta,nx) _ Vcosic/ cfa <ja; _ cos2
a; + sm2

a;

dx dx cos2# cos2#

But the numerator is equal to unity (19), page 611. Hence

ri(tan)_
1

=sec2g- ... (3)
a# cos2#

In the same way it can be shown that

-i-__ ' = - cosec2#. (3)
arc

The remaining trigonometrical functions may be left for the

reader to work out himself. The results are given on page 193.

Examples. (1) If y = cosn#
; dy\dx - n cosw xx . sin x.

(2) If y = sinnx
; dy/dx = n sinn lx . cos x.

(3) If a particle vibrates according to the equation y = a sin (qt
-

e), what

is the velocity at any instant when a, q and c are constant ? The answer is

aq cos (qt
-

e).

(4) If y = sin2(naj
- a) ; dy/da; = 2n sin (nx -

a) cos {nx -
a).

(5) Differentiate tan 6 = y/a?. Ansr. d$ = (xdy -
ydx) -f (a:

2
4- y

2
).

Hint.

sec2
. de = (1 + tan2

0)tf0 ;
.-.^_tde= xdy -Vdx^

etc<

(6) If the point P moves upon a circle, with a centre and radius 18 cm.,

AB is a diameter
;
MP is a perpendicular upon ^IP, show that the speed of M

on the line AB is 22G cm. per second when the angle BOP = a = 30
;
and

P travels round the perimeter four times a second. Sketch a diagram. Here

OM = y = r cos a = 18 cos a ; .'. dyjdt = -
(18 sin a)dafdt. But dajdt = 4 x 2?r

since 7r = half the circumference ;
sin 30 =

;

.-. dyjdt = - 18 x x 8tt = -9x8x3- 1416 = - 226 cm. per sec. (nearly).

17. The Differentiation of Inverse Trigonometrical
Functions. The Differentiation of Angles.

The equation, sin y = x, means that y is an angle whose sine is

x. It is sometimes convenient to write this another way, viz.,

sin
~ lx =

y,

meaning that sin
~ lx is an angle whose sine is x. Thus if sin 30 =

J,

we say that 30 or sin _1 i is an angle whose sine is \. Trigono-
metrical ratios written in this reverse way are called inverse

trigonometrical functions. The superscript
" - 1

"
has no other

signification when attached to the trigonometrical ratios. Note, if

tan 45 = 1, then tan _1 l = 45
; .*. tan (tan

_1
l)

= tan 45.
Some writers employ the symbols arc sin x

;
arc tan x

;
. . . for our

sin
- lx ; tan

~ lx ; , . .

D
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The differentiation of the inverse trigonometrical functions may
be illustrated by proving that the differential coefficient of sin

~ lx is

1/ J(l
- x2

).
If y = sin

~ l
x, then sin y = x, and

dx dy 1= cos y ;
or -/ =

,

ay ax cos y

But we know from (19), page 611, that

cos2
y 4- sin'2?/ = 1

; or cos y= .

'<

' - sin2
?/)
= J(l - a?

2
),

for by hypothesis sin y = x. Hence

d(sin
~ l

x) _ dy 1 1

dx dx
~

cos y~~ J\ - x2

The fallacy mentioned on page 5 illustrates the errors which

might enter our work unsuspectingly by leaving the algebraic sign

of a root extraction undetermined. Here the ambiguity of sign
means that there are a series of values of y for any assigned value

of x between the limits + 1. Thus, if n is a positive integer, we
know that sin x = sin {nir x) j

the + sign obtains if n is even ;

the negative sign if n is odd. This means that if x satisfies sin
~

}

y,

bo will tv x
;
2tt x

;
. . . If we agree to take sin

" l

y as the angle
between -

\tt and + \ir , then there will be no ambiguity because

cos y is then necessarily positive. The differential coefficient is

then positive, that is to say,

d(sin
~ l

x) _ 1

dx J(l
- x2

)

Similarly,

(1)

rfCoOB-ls) ^ 1 _ / 1 \ 1

dx sin y \ J _ x2j Jl - x2
'

The ambiguity of sign is easily decided by remembering that sin y
is positive when y lies between rr and 0. Again, if y = tan

~ 1x
f

x = tan y, dx/dy = 1/cos
2
?/.

But cos2
?/
=

1/(1 + tan2
?/)
=

1/(1 + x2
)

(page 612). Hence

d(tan
~

l

x) 9 1

The differential coefficient of tan -]# is an important function,

since it appears very frequently in practical formulae. It follows in

a similar manner that

dx 1 + x2
' w
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The remaining inverse trigonometrical functions may be left as an

exercise for the student. Their values will be found on page 193.

Examples. (1) Differentiate y = sin- 1

\xj>J(l + x2
)]. Sin y=xl\/l + x*

hence cos ydy = dxj(l + x2
)i. But cos y = ,J(1

- sin2
?/)
= ^/[l

- x2
/(l + a;

2
)].

Substituting this value of cos y in the former result we get, on reduction,

dy/dx = (1 + x2
)

- l
,
the answer required. Note the steps :

(1 + a2
)

"
\dx - x2

(l + x2
~ Ux =

(1 + x2
)

~
f(1 + cc

2 - x2
)dx, etc. Also

cos y x (1 + z 2
)f = (1 + a2

)

"
i (1 + s2

)S = (1 + a;
2
).

(2) If y = sin -^ ; dy/dte = 2<r(l
- a;

4
)

~ i

(3) If V = tan -
g

^jL=
*

See formula (22), page 612.

18. The Differentiation of Logarithms.

Any expression containing logarithmic terms is called a logar-

ithmic function. E.g., y = logx + xz
. To find the differential

coefficient of log x. Let

y = logx; and yx
=

log(a; + h).

Where y1
denotes the value of y when x is augmented to a; + h.

By substitution,

Vi
~ V _ log(a? + fe)

-
loga? .

but we know, page 26, that log a -
log b = logr, therefore

Incr. y 1. /x + h\ 1 .

"'

/, &\

and t = ^log(l +
g.

. . . (1)

The limiting value of this expression cannot be determined in its

present form by the processes hitherto used, owing to the nature

of the terms 1/h and h/x. The calculation must therefore be made

by an indirect process. Let us substitute

h 1
1 m

1 _ u
x u'

' '

h x

"

\
l0
"(

1 +
i)

=
I

Io
(
1 +

i) ;-.!
to
8(l

+ |
As A decreases % increases, and the limiting value of u when
A becomes vanishingly small, is infinity. The problem now is to

find what is the limiting value of log(l + u ~ l

)

u when u is infinitely

great. In other words, to find the limiting value of the above

expression when u increases without limit.
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-1=^4^ + 3" (*>

According to the binomial theorem, page 36,

1\ M
, u 1 u(u -

1) 1

dividing out the u's in each term, and we get

1 +
i
T .,(-D, (-S(-S ,f

u)
- 2 +

2|
+

3!
+ '--

The limiting value of this expression when u is infinitely great is

evidently equal to the sum of the infinite series of terms

1+
I
+

2!
+

3!
+

i!
+ -" t0 infinifcy- (

3
)

Let the sum of this series of terms be denoted by the symbol e.

By taking a sufficient number of these terms we can approximate
as close as ever we please to the absolute value of e. If we add

together the first seven terms of the series we get 2-71826

1 + | = 2-00000

J,
= 0-50000

h = i'h = 0-16667

I .-- 0-04167l.

f.- J-h = 0-00833

|l
= if,.= 0-00139

^ = A i = 0-00020

Sum of first seven terms = 2*71826

The value of e correct to the ninth decimal place

e = 2-718281828 . . .

This number, like tr = 3'14159265 . . ., plays an important role in

mathematics. Both magnitudes are incommensurable and can only
be evaluated in an approximate way.

Returning now to (2), it is obvious that

dy d(logx) 1

Tx=<te-
=

x
l Z e

v W
This formula is true whatever base we adopt for our system of

logarithms. If we use 10, log10
e = 0*43429 . . .

=
(say) M,

:. dy d(\os wx) M /c .

and -f-
= v

-T
10 l = . . . (5)dx dx x
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Sinco logaa = 1, from (6), page 27, we can put expression (4) in a

much simpler form by using a system of logarithms to the base e,

then

dy = d(log^) = 1 :

dx dx x \ )

Continental writers variously use the symbols L, I, In, lg, for

"log" and "log nep
"

;

" nat log," or "hyp log," for "log/'.
"
Nep

"
is an abbreviation for "

Neperian," a Latinized adjectival

form of Napier's name. J. Napier was the inventor of logarithmic

computation. You will see later on where "
hyp log

"
comes from.

Examples. (1) If y = log ax*, show that dyjdx = 4/rc.

(fi)
If y = xn log x, show that dyjdx = *(1 + n log x).

(3) What is meant by the expression, 2-7182S" * 2'3026 = io ? Ansr. If

n is a common logarithm, then n x 2-3026 is a natural logarithm. Note,

e = 2-71828.

(4) A. Dupre (1869) represented the relation between the vapour pressures,

p, of a substance and the absolute temperature T by the equation

a ..-.-, d(log p) A + BT
log P =

7/t + b lo8 T + e.

a result resembling van't Hoff's well-known equation. Hence show that if

a,b,c,A,B are all constants, dpJdT = p(A + BT)/T*.

In seeking the differential coefficient of a complex function

containing products and powers of polynomials, the work is often

facilitated by taking the logarithm of each member separately be-

fore differentiation. The compound process is called logarithmic
differentiation.

Examples. (1) Differentiate y = xn/(l + x)
n

.

Here log y = n log x - n log (1 + x), or dy\y = ndxlx(l + x). Hence

dy/dx = ynfx(l + x) = nxn ~ 1

l(l + x)
n +K

(2) Differentiate ar*(l + x)
n
j(x

3 -
1).

Ansr. {(n + l)x* + x? -
(n + 4)jb

-
4}z

3
(l + x)

- l
(x*

-
1)

- 2
.

(3) Establish (10), page 41, by log differentiation. In the same way,
show that d(xyz) = yzdx + zxdy + xydz.

(4) If y = x{a
2 + x2

) Ja? - x*; dy/dx = (a
4 + aW - 4z4

)(a
2 - x2

) -J.

(5) If y = log sin x
; dyjdx = d(sin a;)/sin x = cot x.

(6) How much more rapidly does the number x increase than its log-

arithm ? Here d(log x)jdx = 1/x. The number, therefore, increases more

rapidly *or more slowly than its logarithm according as x > or < 1. If

x = 1, the rates are the same. If common logarithms are employed, M will

have to be substituted in place of unity. E.g., d(\&g10x)dx = M/x.

(7) If the relation between the number of molecules a; of substances A and
B transformed in the chemical reaction : A + B = C + D, and the time t be
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represented by the equation

where k is constant, and a and b respectively denote the amounts of A and B
present when t = 0, show that the velocity of the reaction is proportional to

the amounts of A and B actually present at the time t. Hint. Show that the

velocity of the reaction is proportional to (o
-

x)(b
-

x) and interpret.

19. The Differential Coefficient of Exponential Functions.

Functions in which the variable quantity occurs in the index

are called exponential functions. Thus, ax
,
e
x and (a + x)

x are

exponential functions. A few words on the transformation of

logarithmic into exponential functions may be needed. It is re-

quired to transform log y = ax into an exponential function.

Eemembering that log a to the base a is unity, it makes no

difference to any magnitude if we multiply it by such expressions

as logaa, ; log1010 ;
and logee. Thus, since loge(e

az
)
= ax logBe ;

if

lge2/
= ax

>
we can write

\ogey = ax logee = logee*; .*. y = e
ax

,

when the logarithms are removed. In future "
log

"
will generally

be written in place of "
loge ".

"
Exp x

"
is sometimes written for

"ex "
; "Exp(- x)" for "e~ x

".

Examples. (1) If y = e l0 *
;
show y = x.

(2) If log I = - an
;
1= e~ an

.

(3) If 6 = be
- at

; log b -
log 6 = at.

(4) If loges = ad ; log10s = O'4343a0.

(5) Show that if log y -
log y = kct ; y = y e

-
*<*.

The differentiation of exponential functions may be conveniently

studied in three sections :

(i)
Let

y = e
x

.

Take logarithms, andafchen, differentiating, we get

log y = x log e ;
-^ = dx, or -,- = e

x
;a

y dx

in other words, the differential coefficient of e
x

is e
x
itself, or,

=-. . . . . ,

The simplicity of this equation, and of (6) in the preceding

section, explains the reason for the almost exclusive use of natural

logarithms in higher mathematics.
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(ii)
Let

y = a*.

As before, taking logarithms, and differentiating, we get

log y = x log a
;

- = y log a; .-. -^ = a* logea . (2)

In words, the differential coefficient of a constant affected with

a variable exponent is equal to the product of the constant affected

with the same exponent into the logarithm of the constant.

(iii)
Let

y = x%

where x and z are both variable. Taking logarithms, and differ-

entiating
dy _ _ zdx

logy = zlogx ;
= log xdz + ;

.-. dy = xz

log xdz + zxz ~ 1dx . . (3)

If x and z are functions of t, we have

d(x
z

) dy dz dx ...

-dt
=

dt
= xn z xdt + zx'- ,

di
* <*>

Examples. (1) The amount, x, of substance transformed in a chemical

reaction at the time t is given by the expression x = ae - kt
,
where a denotes

the amount of substance present at the beginning of the reaction, hence show-

that the velocity of the chemical reaction is proportional to the amount of

substance undergoing transformation. Hint. Show that dxjdt = - kx, and

interpret.

(2) If y = (a'+x)*, dy/dx = 2(a
x + x) (a

x
log a + 1).

(3) If y = a**, dy/dx = naM log a.

(4) From Magnus' empirical formula for the relation between the pres-

sure of aqueous vapour and temperature
o e

v - aby
+ o. , dp aylogb +9

where a, b, y are constants. This differential coefficient represents the in-

crease of pressure corresponding with a small rise of temperature, say,

roughly from 6 to (6 + 1).

(5) Biot's empirical formula for the relation between the pressure of

aqueous vapour, p, and the temperature, 6, is

logp = a + ba.9 - c&o ; show tt = pbrf log a - pc^ log j8.

(6) Required the velocity of a point which' moves according to the

equation y = ae - M cos 2ir(qt + e). . Since velocity = dy/dt, the answer is

- ae -
a{\ cos 2ar{qt 4. e) + 2irq sin 2ir(qt + e)f

(7) The relation between the amount, x, of substance formed by two con-

secutive unimolecular reactions and the time t or the intensity of the " excited
"

radioactivity of thorium or radium emanations at the time t, is given by the

expression
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ho k, dx k,k f \

where \ and k2 are constants. Show that the last expression represents the

velocity of the change.

(8) The viscosity, 77, of a mixture of non-electrolytes (when the concentra-

tions of the substances with viscosity coefficients A, B, C, ... are x, y, z, . . .

respectively) is 97
= AxBvCz

. . . Show that for a small change in x, y, z . . .

dy\ becomes ri(adx + bdy + cdz), where log A = a, log B = b, log C = c. Hint.

Take logs before differentiation.

20. The "
Compound Interest Law "

in Nature.

I cannot pass by the function e
x without indicating its great

significance in physical processes. From the above equations it

follows that if

y = CtT; then-=be* . . (1)

where a, b and G are constants, b, by the way, being equal to

aC logee. G is the value of y when x = 0. Why ? It will be

proved later on that this operation may be reversed under certain

conditions, and if

||
= be?*

9
then y = Cte . . . (2)

where a, b and C are again constant. All these results indicate

that the rate of increase of the exponential function e
x

is e
x

itself.

If, therefore, in any physical investigation xoe find some function,

say y, varying at a rate proportional to itself (with or without

some constant term) we guess at once that we are dealing ivith an

exponential function. Thus if

~T~ = ay J we may write y = Ceax
,
or Ce

~ ax
, (2a)

according as the function is increasing or decreasing in magnitude.

Money lent at compound interest increases in this way, and

hence the above property has been happily styled by Lord Kelvin

"the compound interest law" (Encyc. Brit., art. "Elasticity,"

1877). A great many natural phenomena possess this property.

The following will repay study :

Illustration 1. Compound interest. If 100 is lent out at

5 / per annum, at the end of the first year 105 remains. If

this be the principal for a second year, the interest during that

time will be charged not only on the original 100, but also on the
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additional 5. To put this in more general terms, let p be lent

at r / per annum, at the end of the first year the interest amounts

to
iTu^o> an^ if ^i De *ne principal for the second year, we have at

the end of the first year

Pi
=

Poi1 + iro) ;

and at the end of the second year,

V2 = Pii1 + m) = p (l + iTo)
2
.

If this be continued year after year, the interest charged on the

increasing capital becomes greater and greater until at the end of

t years, assuming that the interest is added to the capital every

year,

P=Po(l + {J -... (3)

Example. Find the amount (interest + principal) of 500 for 10 years
at 5 /o compound interest. The interest is added to the principal annually.
From (3), log^ - log 500 + 10 log 1-05

;
.'. p = 814 8s. (nearly).

Instead of adding the interest to the capital every twelve

months, we could do this monthly, weekly, daily, hourly, and so

on. If Nature were our banker she would not add the interest

to the principal every year, rather would the interest be added to

the capital continuously from moment to moment. Natura non

facit saltus. Let us imagine that this has been done in order that

we may compare this process with natural phenomena, and approxi-
mate as closely as we can to what actually occurs in Nature. As

a first approximation, suppose the interest to be added to the

principal every month. It can be shown in the same way that the

principal at the end of twelve months, is

P =
J>o(l + i^oo)

12 ... (4)

If we next assume that during the whole year the interest is added

to the principal every moment, say n per year, we may replace 12

by n, in (4), and

*-*{v+ mh)\ w
For convenience in subsequent calculation, let us put

r 1 ur
so that 71 =

100?i u' 100'

From (5) and formula (11), page 28,

P = PoU m
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But (1 + l/u)
u has been shown in (3), page 52, to be equivalent to

e when u is infinitely great ; hence, writing ^ = a,

v = Poea ;

which represents the amount of active principal bearing interest at

the end of one year on the assumption that the interest is added to

the principal from moment to moment. At the end of t years

therefore, from (3),

p = p e
at

; or, p =
_po

0io<. ... (6)

Example. Compare the amount of 500 for 10 years at 5/ compound
interest when the'interest is added annually by the banker, with the amount

which would accrue if the interest were added each instant it became due.

In the first case, use (3), and in the latter (6). For the first casej3= 814 8s.;

for the second p= 824 7s.

Illustration 2. Newton's law of cooling. Let a body have a

uniform temperature V higher than its surroundings, it is required

to find the rate at which the body cools. Let denote the tem-

perature of the medium surrounding the body. In consequence of

the exchange of heat, the temperature of the body gradually falls

from
1
to . Let t denote the time required by the body to fall

from #j to 0. The temperature of the body is then - above

that of its surroundings. The most probable supposition that we

can now make is that the rate at which the body loses heat

(- dQ) is proportional to the difference between its temperature

and that of its surroundings. Hence

where k is' a coefficient depending on the nature of the substance.

From the definition of specific heat, if s denotes the specific

heat of unit mass of substance.

Q = s(0
-

Q), ;
or dQ = sdO.

Substitute this in the former expression. Since k/s
= constant =

a (say) and = C, we obtain

ri-* W
or, in words, the velocity of cooling of a body is proportional to

the difference between its temperature and that of its surroundings.
This is generally styled Newton's law of cooling, but it does not

quite express Newton's idea (Phil. Trans., 22, 827, 1701).

Since the rate of diminution of is proportional to 6 itself, we
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guess at once that we are dealing with the compound interest law,

and from a comparison with (1) and (2a) above, we get
= be- at

, .... (8)

or log b -
log 6 = at. . . . (9)

If d
1 represents the temperature at the time tv and 6

2 the

temperature at the time t
2 ,
we have

log b -
log 1

= atv and log b -
log 2

By subtraction, since a is constant, we get

1

at.

a =
h ~ h %? (10)

The validity of the original
"
simplifying assumption

"
as to the

rate at which heat is lost by the body must be tested by comparing
the result expressed in equation (10) with the results of experiment.
If the logical consequence of the assumption agrees with facts,

there is every reason to suppose that the working hypothesis is

true. For the purpose of comparison we may use A. Winkelmann's

data, published in Wied. Ann., 44, 177, 429, 1891, for the rate of

cooling of a body from a temperature of 19"9 C. to C.

If denote the temperature of the body after the interval of

time t
l
- t

2
and

2
= 19'9, $

x
= 6, remembering that in practical

work Briggsian logarithms are used, we obtain, from (10), the

expression

1
log

#2

10-0
constant, say k.

Winkelmann's data for and t 1

shown in the following table :

t.2 are to be arranged as

6.
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This is a typical example of the way in which the logical de-

ductions of an hypothesis are tested. There are other methods.

For instance, Dulong and Petit (Ann. Ghim. Phys., [2], 7, 225, 337,

1817) have made the series of exact measurements shown in the

first and second columns of the following table :

e, excess of

temp, of

body above
that of
medium.
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far as we can test them, equally well with facts. The reader must,

therefore, guard against implicit faith in this criterion the agree-

ment between observed and calculated results as an infallible

experimentum crucis.

Lord Kelvin once assumed that there was a complete transfor-

mation of thermal into electrical energy in the chemical action of a

galvanic element. Measurements made by Joule and himself with a

Daniell element gave results in harmony with theory. The agree-
ment was afterwards shown to be illusory. Success in explaining
facts is not necessarily proof of the validity of an hypothesis, for,

as Leibnitz puts it,
"

le vrai peut etre tire du faux," in other words,
it is possible to infer the truth from false premises.

A little consideration will show that it is quite legitimate to

deduce the numerical values of the above constants from the

experiments themselves. For example, we might have taken the

mean of the values of k in Winkelmann's table above, and applied
the test by comparing the calculated with the observed values of

either t
2
- tv or of 0.

Examples. (1) To again quote from Winkelmann's paper, if, when the

temperature of the surrounding medium is 99*74, the body cools so that when

0=119-97, 117-97, 115-97, 113-97, 111-97, 109-97;
t = 0, 12-6 26-7 42-9 61-2 83-1.

Do you think that Newton's law is confirmed by these measurements ?

Hint. Instead of assuming that O
= 0, it will be found necessary to retain

O in the above discussion. Do this and show that the above results must be

tested by means of the formula

1 a a

i T ' loSio^ a
= constant.

t2 &l V\ Uq

(2) What will be the temperature of a bowl of coffee in an hour's time if

the temperature ten minutes ago was 80, and is now 70 above the tempera-
ture of the room ? Assume Newton's law of cooling. Ansr. 31-2 above the

surrounding temperature. Hint. From (8), 70 = 80.<? _10a
; .. a = 0-0134;

and again, x = 80 . e
- '0134 x 70

. We cannot apply the amended laws Dulong
and Petit's, and Stefan's until we have taken up more advanced work. See

(14) and (15), page 372.

Illustkation 3. The variation of atmospheric pressure with

altitude above sea-level can be shown to follow the compound
interest law. Let p be the pressure in centimetres of mercury at

the so-called datum line, or sea-level, p the pressure at a height h

above this level. Let p be the density of air at sea-level (Hg = 1).

Now the pressure at the sea-level is produced by the weight of
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the superincumbent air, that is, by the weight of a column of air

of a height h and constant density p . This weight is equal to hpo.

If the downward pressure of the air were constant, the barometric

pressure would be lowered p centimetres for every centimetre rise

above sea-level. But by Boyle's law the decrease in the density
of air is proportional to the pressure, and if p denote the density

of air at a height dh above sea-level, the pressure dp is given by
the expression

dp -
pdh.

If we consider the air arranged in very thin strata, we may regard
the density of the air in each stratum as constant. By Boyle's law

pp = p p ; or, p = p plpQ.

Substituting this value of p in the above formula, we get

dp pop'

Po

The negative sign indicates that the pressure decreases vertically

upwards. This equation is the compound interest law in another

guise. The variation in the pressure, as we ascend or descend, is

proportional to the pressure itself. Since p /po is constant, we

have on applying the compound interest law to (13),

-*
p = constant X 6 p<i

We can readily find the value of the constant by noting that at

sea-level h =
;

e = 1; p = constant x e = p . Substituting

these values in the last equation, we obtain

- -*
. (14)

p = pQ
e po

^

v t

a relation known as Halley's law. Continued p. 260, Ex. (2).

Illustration 4t.-^-The absorption of actinic energy from light

passing through an absorbing medium. The intensity, I, of a beam

of light is changed by an amount dl after it has passed through

a layer of absorbing medium dl thick in such a way that

dl = -
aldl,

where a is a constant depending on the nature of the absorbing

medium and on the wave length of light. The rate of variation

in the intensity of the light is therefore proportional to the in-

tensity of the light itself, in other words, the compound interest

law again appears. Hence

dl

dl
I

;
or I =c constant X e
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If I denote the intensity of the incident light, then when

, I = 0, I = I = constant.

Hence the intensity of the light after it has passed through a

medium of thickness Z, is

/-!, .... (15)

Examples. (1) A 1*006 cm. layer of an aqueous solution of copper

chloride (2*113 gram molecules per litre) absorbed 18*13 / of light in the

region A = 551 to 554 of the spectrum. What / would be absorbed by a

layer of the same solution 7*64 cm. thick? Ansr. 78*13 / . Hint. Find a in

(15) from the first set of observations
;
I = 100, I = 81*87 ; .*. o = 0*1989. See

T. Ewan's paper On the Absorption Spectra of some Copper Salts in Aqueous
Solution" (Phil. Mag., [5], 33, 317, 1892). Use Table IV., page 616.

(2) A pane of glass absorbs 2 / of the light incident upon it. How much

light will get through a dozen panes of the same glass ? Ansr. 78*66 / .

Hint. I = 100
;
I = 98

; a = 0*02. Use Table IV., page 616.

Illustration 5. Wilhelmy's law for the velocity of chemical

reactions. Wilhelmy as early as 1850 published the law of mass

action in a form which will be recognised as still another example
of the ubiquitous law of compound interest. " The amount of

chemical change in a given time is dir%jtly proportional to the

quantity of reacting substance present in "ftae system."
If x denote the quantity of changing substance, and dx the

amount of substance which disappears in the time dt, the law of

mass action assumes the dress

dx

~dt
= "

'

where h is a constant depending on the nature of the reacting

substance. It has been called the coefficient of the velocity of the

reaction, its meaning can be easily obtained by applying the

methods of 10. This equation is probably the simplest we have

yet studied. It follows directly, since the rate of increase of x is

proportional to x, that

x = be
"

*',

where b is a constant whose numerical value can be determined if

we know the value of x when t = 0. The negative sign indicates

that the velocity of the action diminishes as time goes on.

Examples. (1) If a volume v of mercury be heated to any temperature 0,

the change of volume dv corresponding to a small increment of temperature

d8, is found to be proportional to v, hence dv = avde. Prove Bosscha's for-

mula, v= ea& }
for the volume of mercury at any temperature 6. Ansr. v be^ %
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where a, b are constants. If we start with unit volume of mercury at 0, 6 = 1

and we have the required result.

(2) According to Nordenskjold's soluhility law, in the absence of super-

saturation, for a small change in the temperature, dd, there is a change in the

solubility of a salt, ds, proportional to the amount of salt s contained in

the solution at the temperature 0, or ds = asdO where a is a constant. Show
that the equation connecting the amount of salt dissolved by the solution

with the temperature is s = s ea8, where s is the solubility of the salt at 0.

(3) If any dielectric (condenser) be subject to a difference of potential, the

density p of the charge constantly diminishes according to the relation p= be~ at
,

where b is an empirical constant ;
and a is a constant equal to the product Air

into the coefficient of conductivity, c, of the dielectric, and the time, t, divided

by the specific inductive capacity, p, i.e., a = ^irctjfx.. Hence show that the

gradual discharge of a condenser follows the compound interest law. Ansr.

Show dp/dt = -
ap.

(4) One form of Dalton's empirical law for the pressure of saturated

vapour, p, between certain limits of temperature, 0, is, p = ae&. Show that

this is an example of the compound interest law.

(5) The relation between the velocity 7 of a certain chemical reaction

and temperature, 0, is log V = a + bd, where a and b are constants. Show
that we are dealing with the compound interest law. What is the logical

consequence of this law with reference to reactions which (like hydrogen and

oxygen) take place at high temperatures (say 500), but, so far as we can

tell, not at ordinary temperatures ?

(6) The rate of change of a radioactive element is represented by

dNjdt = - rN where N denotes the number of atoms present at the time t,

and r is a constant. Show that the law of radioactive change follows the
" compound interest law ".

21. Successive Differentiation.

The differential coefficient derived from any function of a

variable may be either another function of the variable, or a con-

stant. The new function may be differentiated again in order to

obtain the second differential coeScient. We can obtain the third

and higher derivatives in the same way. Thus, if y = x3
,

The first derivative is, -f- = Sx2
:

ax

The second derivative is, -^
= &x '

The third derivative is, ^-4 = 6;
dxz

dx

It will be observed that each differentiation reduces the index

The fourth derivative is, -=-^
= 0.

dx*
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of the power by unity. If the index n is a positive integer the

number of derivatives is finite.

d2 d*
In the symbols ^(y), T-g(y) ... , the superscripts simply de-

note that the differentiation has been repeated 2, 3 . . . times. In

differential notation we may write these results

d2
y = 6x . dx2

;
d3
y = 6dx3

\
. . .

The symbol dx2
,
dx* . .

., meaning dx
,,dx, dx .dx .dx..., must

not be confused with dx2 = d(x
2
)
= 2x .dx; dx2 =

d(x)
2 = Sx2

. dx . . .

The successive differential coefficients sometimes repeat them-

selves ; for instance, on differentiating

y = sin x

we obtain successively

dy d2
y . dzy dAy

3? = cos x : -y4 = - sin a;
; -^ = - cos x

; -^ = sin x : . . .

a# da;2 da;3 da;4

The fourth derivative is thus a repetition of the original function,

the process of differentiation may thus be continued without end,

every fourth derivative resembling the original function. The

simplest case of such a repetition is

y =
&*>

which furnishes

a ^ * w -.

r
d^

' '

The differential coefficients are all equal to the original function

and to each other.

Examples. (1) If y log x
;
show that d4

yjdx* = -
6/x

4
.

(2) If y = x
; show that dl

y\dx* = n(n -
l){n

-
2)(w

- 3)a- 4
.

(3) If y = x - 2
;
show that d^/dz

3 = - 24a?
- 5

.

(4) If
2/
= log (a: + 1) ;

show that d2
y/dx

2 = -
(x + 1)

- 2
.

(5) Show that every fourth derivative in the successive differentiation of

y = cos x repeats itself.

Just as the first derivative of x with respect to t measures a

velocity, the second differential coefficient of x with respect to t

measures an acceleration (page 17). For instance, if a material *

1 A material point is a fiction much used in applied mathematics for purposes

of calculation, just as the atom is in chemistry. An atom may contain an infinite

number of " material points
"

or particles.

E
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point, P, move in a straight line AB (Pig. 8) so that its distance,

s, from a fixed point is given by the equation s = a sin t, where
a represents the distance OA or OB, show that the acceleration

o

Fig. 8.

due to the force acting on the particle is proportional to its distance

from the fixed point. The velocity, V, is evidently

lit
= a cos t

' w
and the acceleration, F, is

i^ =
dF d2

s = - a sin t = -
s,dt~dt2

~ "
' ' * (2)

the negative sign showing that the force is attractive, tending to

lessen the distance of the moving point from 0. To obtain som6
idea of this motion find a set of corresponding values of F, s and V
from Table XIV., page 609, and (1) and (2) above. The result is

If t =
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earth. Show that the acceleration of a body at different distances from the

earth's centre is inversely as the square of its distance (Newton's law). Hint.

Differentiate the equation as it stands ; divide by dt and cancel out the v on

one side of the equation with ds/dt on the other. Hence, d^s/df*
= -

gr
2
/s

2

remains. Now show that if a body falls freely from an infinite distance the

maximum velocity with which it can reach the earth is less than seven miles

per second, neglecting the resistance of the air. In the original equation, s

is cd, and s = r = 3,962 miles
; g = 32 feet = 0*00609 miles. .-. Ansr/= 6-95

miles.

(4) Show that the motion of a point at a distance s = a cos qt from a

certain fixed point is given by the equation d2s/dt
2 = -

q
2
s.

(5) Show that the first and second derivatives of De la Roche's vapour

pressure formula, p = ab9 l{m + n6
\ where a, b, m, and n are constants, are

dp _ mlogb nh-^k . &p _ mlog b{m log b - 2n{m + nd)} ,^j^.
de

~
(m + nef de*

~
(m + ney

Fortunately, in applying the calculus to practical work, only the

first and second derivatives are often wanted, the third and fourth

but seldom. The calculation of the higher differential coefficients

may be a laborious process. Leibnitz's theorem, named after

its discoverer, helps to shorten the operation. It also furnishes

us with the general or nih. derivative of the function which is useful

in discussions upon the theory of the subject. We shall here

regard it as an exercise upon successive differentiation. The direct

object of Leibnitz's theorem is to find the nth differential coefficient

of the product of two functions of x in terms of the differential co-

efficients of each function.

On page 40, the differential coefficient of the product of two

variables was shown to be

dy _ d{uv) _ du dv

dx dx dx
"

dx*

where u and v are functions of x. By successive differentiation

and analogy with the binomial theorem (1), page 36, it may be

shown that

dn(uv) dnu dv dn~H dnv

The reader must himself prove the formula, as an exercise, by

comparing the values of d2
(uv)/dx

2
; d3

(uv)/dx
3

; . . ., with the de-

velopments of (x + h)
2

; (x + h)
z

; . . ., of page 36.

Examples. (1) If y = x4
. eax

,
find the value of dz

yjdx
z

. Substitute x4

and eax respectively for v and u in (1). Thus,
v = x4

; .-. dvfdx = 4a;3
;
d2
v/dx

2 = 12a;2
; d?v\dx

z = 24a;
;

u = e*
; .-. du/dx = ae**

; dHt/dx
2 = a?eax

;
d5
u/dx

3 = aPe**.

E*
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From (1)

d?y _ d?u dv d?u n(n - 1) d?v du n{n -
1) (n

-
2) d3v

,

dtf~ v
da?

+ n
dx'dx,i+ 2! 'dx*'dx

+ U~
.31 'dx3 '

/ dv d?v d3
v\= e^v + Ba^ + Sas

-
2+Wi);

(2)

= e^ia^x
4 + lZatx3 + d6ax2 + 24a;).

(2) If y = log x, show that d6
y(dx

6 = -
5!/oj

8
.

If we pretend, for the time being, that the symbols of operation

>-, ( j~) i (^
_
)'
m (2) represent the magnitudes of an operation,

in an algebraic sense, we can write

*SP -
-(

+
as)
% - *"< +^ ' (3)

instead of (2), and substituting D for
-j-.

The expression (a + D)
3

is supposed to be developed by the binomial theorem, page 36, and

dv/dx, d2
v/dx

2
,

. . ., substituted in place of Dv, D2
v,. . ., in the re-

sult. Equation (3) would also hold good if the index 3 were re-

placed by any integer, say n. This result is known as the symbolic

form of Leibnitz's theorem.

22. Partial Differentiation,

Up to the present time we have been principally occupied with

functions of one independent variable x, such that

u=f(x);
but functions of two, three or more variables may occur, say

u = f(x, y, z,.. .),

where the variables x, y, z, . . . aie independent of each other. Such

functions are common. As

illustrations, it might be pointed

out that the area of a triangle

depends on its base and altitude
;

the volume of a rectangular box

depends on its three dimensions
;

and the volume of a gas depends
on the temperature and pressure.

Fig. 9.

I. Differentials.

To find the differential of a function of two independent vari-

ables. This can be best done in the following manner, partly
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graphic and partly analytical. In Fig. 9, the area u of the rect-

angle ABGD, with the sides x, y, is given by the function

u =
xy.

Since x and y are independent of each other, the one may be sup-

posed to vary, while the other remains unchanged. The function,

therefore, ought to furnish two differential coefficients, the one re-

sulting from a variation in x, and the other from a variation in y.

First, let the side x vary while y remains unchanged. The

area is then a function of x alone, y remains constant.

.-. (du)y
= ydx, .... (1)

where (du)y represents the area of the rectangle BB'CG". The

subscript denoting that y is constant.

Second, in the same way, suppose the length of the side y

changes, while x remains constant, then

(du) x
= xdy, .... (2)

where (du)x represents the area of the rectangle DD'CC'. Instead

of using the differential form of these variables, we may write the

differential coefficients

/du\ /du\ 7)u 7)u

Kte)r y ' and w." X] or
55

= y and ^ - *

in C. G. J. Jacobi's notation, where
^

is the symbol of differ-

entiation when all the variables, other than x, are constant. Sub-

stituting these values of x and y in (1) and (2), we obtain

W* =
^c

dx
; W* = ^dy'

Lastly, let us allow x and y to vary simultaneously, the total

increment in the area of the rectangle is evidently represented by
the figure D'EB'BGD.

incr. u = BB'CG" + DD'CC' + CC'C'E
= ydx + xdy + dx . dy.

Neglecting infinitely small magnitudes of the second order, we get

du = ydx + xdy ;
. . . . (3)

or du =
^dx +

^dy,
... (4)

which is also written in the form

du =
(M)?

x + ?y - (a)
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In equations (3) and (4), du is called the total differential of the

function
; ^-dx the partial differential of u with respect to x when

y is constant
;
and ^-dy the partial differential of u with respect

to y when x is constant. Hence the rule : The total differential of

two (or more) independent variables is equal to the sum of their

partial differentials.

The physical meaning of this rule is that the total force acting

on a body at any instant is the sum of every separate action.

When several forces act upon a material particle, each force pro-

duces its own motion independently of all the others. The actual

velocity of the particle is called the resultant velocity, and the

several effects produced by the different forces are called the com-

ponent velocities. There is here involved an important principle

the principle of the mutual independence of different reactions ;

or the principle of the coexistence of different reactions which lies

at the base of physical and chemical dynamics. The principle

might be enunciated in the following manner :

When a number of changes are simultaneously taking place in

any system, each one proceeds as if it were independent of the others ;

the total change is the sum of all the independent changes. Other-

wise expressed, the total differential is equal to the sum of the

partial differentials representing each change. The mathematical

process thus corresponds with the actual physical change.

To take a simple illustration, a man can swim at the rate of

two miles an hour, and a river is flowing at the rate of one mile an

hour. If the man swims down-stream, the river will carry him

one mile in one hour, and his swimming will carry him two miles

in the same time. Hence the man's actual rate of progress down-

stream will be three miles an hour. If the man had started to

swim up-stream against the current, his actual rate of progress

would be the difference between the velocity of the stream and his

rate of swimming. In short, the man would travel at the rate of

one mile an hour against the current.

This means that the total change in u, when x and y vary, is

made up of two parts :
(i) the change which would occur in u if

x alone varied, and
(ii)

the change which would occur in u if y
alone varied.

Total variation = variation due to x alone + variation due to y alone.
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If the meaning of the different terms in

, ~du , ~du jdu = Tr-dx + r-w
7)x ty

is carefully noted, it will be found that the equation is really ex-

pressed in differential notation, not differential coefficients. The

partial derivative "bufdx represents the rate of change in the magni-
tude of u when x is increased by an amount ?>x, y being constant ;

similarly 'bufby stands for the rate of change in the magnitude of u

when y is increased by an amount ~dy, x being constant. The rate

of change ~du/~dx multiplied by dx, furnishes the amount of change
in the magnitude of u when x increases by an amount dx, y being

constant
;
and similarly (du/'dy) dy is the magnitude of the change

u when y increases an amount dy, x being maintained constant.

Examples. (1) If u = x* + xhj + if

|^= Sx2 + 2xy ; |^
= x2 + Sy

2
;

.'. du = (3a;
2 + 2xy)dx + (x

2 + Sy
2
)dy.

(2) If u = x log y ;
du = logy. dx+ x.dyjy.

(3) If u = cos x . sin y + sin x . cos y ;

du = (dx + dy)(cos x cos y - sin x sin
?/)
= (dx + d//){cos(aj + y)}.

(4)
If u = a?

;
du = i/a*

- 1d + a* log ardi/.

(5) The differentiation of a function of three independent variables may
be left as an exercise to the reader. Neglecting quantities of a higher order*

if u be the volume of a rectangular parallelopiped
l
having the three dimen-

sions x, y, z, independently variable, then u = xyz, and

^g^+l^l^ .... (6)

or an infinitely small increment in the volume of the solid is the sum of the

infinitely small increments resulting when each variable changes indepen-

dently of the others. Show that

du = yzdx + xzdy + xydz (7)

(6) If the relation between the pressure p, and volume v, and tempera-
ture d of a gas is given by the gas law pv = RT, show that the total change
in pressure for a simultaneous change of volume and temperature is

(!).--"- -* (#).=f=!-
- r>**

This expression is only true when the changes dT and dv are made in-

finitesimal. The observed and calculated values of dp, arranged side by side

1
Mis-spelt

"
parallelopiped

"
by false analogy with "

parallelogram ". I follow

the will of custom quern penes arbitrium est etjus et norma loquendi. Etymologically
the word should be spelt

"
parallelepiped ". It only adds new interest to learn that

the word is derived from "
irapaWrjKeiriireSov used by Plutarch and others

"
; and

makes one lament the decline of classics.
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in the following table (from J. Perry's The Steam Engine, London, 564, 1904),

show that even when dv and dT are relatively large, the observed values agree

pretty well with the calculated results, but the error becomes less and less as

dT and dv are made smaller and smaller :

T
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on the right of the bracket. The subscripts can only be omitted

when there is no possibility of confusing the variables which have

been assumed constant. For example, the expression ~dCvfiT may
have one of three meanings.

(dC,\ (dC,\ (dC\
\dTjv

'

\dTjp
'

\dTJt

Perry suggests
1 the use of the alternative symbols

^> ^> 15r
l.T' \T ]

1>+T

I have just explained the meanings of the partial derivatives of

u with respect to x and y. Let me again emphasize the distinction

between the partial differential coefficient 'du/'dx, and the differential

coefficient du/dx. In 'du/'dx, y is treated as a constant
;
in du/dx,

y is treated as a function of x. The partial derivative denotes the

rate of change of u per unit change in the value of x when the

other variable or variables remain constant
; du/dx represents the

total rate of change of u when all the variables change simultan-

eously.

Example. If y and u are functions of x such that

y = sin x
; u = x sin x, . . . (10)

we can write the last expression in several ways. The rate of change of u
with respect to x (y constant) and to y (x constant) will depend upon the way

y is compounded with x. The total rate of change of u with respect to x will

be the same in all cases. For example, we get, from equations (10),

u = xy; .-. du = y . dx + x . dy ; u = x sin x
;

.-. du = (x cos x + sin x)dx ;

u = sin
~ x

y . sin x
;

.*. du = sin
~ x

y . cos x . dx + sin x . (1
- y

2
)

~ *
dy.

The partial derivatives are all different, but du/dx, in every case, reduces to

sin x + x cos x.

Many illustrations of functions with properties similar to those

required in order to satisfy the conditions of equation (8) may
occur to the reader. The following is typical:' When rhombic

crystals are heated they may have different coefficients of ex-

pansion in different directions. A cubical portion of one of these

crystals at one temperature is not necessarily cubical at another.

Suppose a rectangular parallelopiped is cut from such a crystal,

with faces parallel to the three axes of dilation. The volume of

the crystal is

v = xyz,

1 J. Perry, Nature, 66, 53, 271, 520, 1902
; T. Muir, same references.
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where x, y, z are the lengths of the different sides. Hence
~dv ~dv ~dv- = yz; ^- = xz : r = xy.

Substitute in (6) and divide by dO, where dO represents a slight

rise of temperature, then

dv _ dx dy dz 1 dv _ 1 dx 1 dy 1 dz

dO
~ yZ

Tt>
+ XZ

dO
+ xyd0 ;

or
' v

' W =
x

'

dO
+

y
'

TO
+

~z

' W
where the three terms on the right side respectively denote the

coefficients of linear expansion, A, of the substance along the three

directions, x, y, or z. The term on the left is the coefficient of
cubical expansion, a. For isotropic bodies, a = 3A, since

1 dx _ 1 dy __
1 dz

x"dO~ y'dO~ z'dO'

Examples. (1) Loschmidt and Obermeyer's formula for the coefficient

of diffusion of a gas at T (absolute), assuming k and TQ are constant, is

k _ h (l\
nJL

\TJ 760'

where k is the coefficient of diffusion at C. and p is the pressure of the gas.

Required the variation in the coefficient of diffusion of the gas corresponding
with small changes of temperature and pressure. Put

k 7)k 7)k
a =

7602^ ^j^=apnTn-^dT; ^dp
= aT-dp.

. . dk-^1 +
^dp.

..dk- ^^
(2) Biot and Arago's formula for the index of refraction, /*, of a gas or

vapour at 6 and pressure p is

_ i ^o
~ 1 P

M ~
1 + a6

'

760'

where /t is the index of refraction at 0, o the coefficient of expansion of the

gas with temperature. What is the effect of small variations of temperature
and pressure on the index of refraction? Ansr. To cause it to vary by an

, j fto~ 1
f

dP Pade \amount dh = -^"Af^
"

(1 + <*)*)'

(3) If y = f(x + at), show that dxjdt = a. Hint. Find dy/dx, and dyldt;

divide the one by the other.

(4) If u = xy, where x and y are functions of t, show that (8) reduces to

our old formula (9), page 41,
du dy dx /<<v

(5) If x is a function of t such that x = t, show that on differentiation

with respect to t, u = xy becomes

dJL _ ^H . ^ fy /i o\
dt

~
dx dy'dt* \

1Z>

since dtjdt is self-evidently unity.
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(6) If x and y are functions of t, show that on differentiation of u = xy
with respect to tt

du_
y

dudydu_'dudt
dt~15y' dt' dy~ dt'dy ***

A result obtained in a different way on page 44.

23. Euler's Theorem on Homogeneous Functions.

One object of Euler's theorem is to eliminate certain arbitrary-

conditions from a given relation between the variables and to build

up a new relation free from the restrictions due to the presence of

arbitrary functions. I shall however revert to this subject later

on. Euler's theorem also helps us to shorten the labour involved

in making certain computations. According to Euler's theorem :

In any homogeneous function, the sum of the products of each

variable with the partial differential coefficients of the original

function with respect to that variable is equal to the product of
the original function with its degree. In other words, if u is a

homogeneous function l of the nth degree, Euler's theorem states

that if

u = %aayyt . . .

'

. (1)
when a + /?

= n, then 2

^u ~bu
X
te

+ y
iy

= nu - (2)

The proof is instructive. By differentiation of the homogeneous
function,

u = axa
y& + bx\y$\ + . . . = %axa/

y^ %

when a + /?
= a

T + /?!
=

. . . = n, we obtain

7)u <)w

5^
- %aax-Y ;

and ^ = la/3xyfi-\

Hence, finally, by multiplying the first with x, and the second

with y }
and adding the two results, we obtain

7)U ~du
x
^x

+ y
ty

= ^a(
a + xayfi

= n^axayp nu-

The theorem may be extended to include any number of variables

i An homogeneous function is one in which all the terms containing the variables

have the same degree. Examples : x2 + bxy + z2
;
x* + xyz

2 + xsy + x2z2 are homo-

geneous functions of the second and fourth degrees respectively.
2 The sign "2" is to be read "the sum of all terms of the same type as . . .,"

or here " the sum of all terms containing x, y and constants ". The symbol
" n "

is

sometimes used in the same way for "the product of all terms of the type ".
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so that if

*--*$$ -

:

v)
... (3)

we may write down at once,

&+*%*'?*? w
and we have got rid of the conditions imposed upon u in virtue of

the arbitrary function /(. .
.).

7n?y r*\n *^t7V

Examples. (1) If u = x2
y + xy

2 + Zxyz, then x^- + y^~ + z-~- = 3w.

Prove this result by actual differentiation. It of course follows directly from

Euler's theorem, since the equation is homogeneous and of the third degree.

/ov T *
xP + xhj + y

3
'du du M

(2) If % =
a,a + gy + y8

? ^ +
2/^

= ^ smce tne equation is of the first

degree and homogeneous.

(x\
'du *du-

), show that
x-^r

+ y^~
= 0. Here n in (3) is zero. Prove

the result by actual differentiation.

2$. Successive Partial Differentiation.

We can get the higher partial derivatives by combining the

operations of successive and partial differentiation. Thus when

u = x2 + y
2 + x2

y*,

the first derivatives of u with respect to x, when y is constant, and

to y, when x is constant are respectively

g-ar + a^; -2y + 3*Y; . . (1)

repeating the differentiation,

S^
= 2(l + 2/

8

);^=2(l + 3A), . . (2)

If we had differentiated "bufbx with respect to y, and "hufby with

respect to x, we should have obtained two identical results, viz. :

Wx = 6y2x'*nd ^~y
= 6fx ' * * (3)

The higher partial derivatives are independent of the order of

differentiation. By differentiation of ~du/~dx with respect to y,

assuming x to be constant, we get -r
,
which is written

; on the other hand, by the differentiation of < with re-

7>yl>x'

u" " v""~
"-T- ujr "" umciDUWawuu ^

ty
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spect to x, assuming y to be constant, we obtain ^
< . That is

to say
Vu Wu

(i)

~by!)x

~
~dxby

This was only proved in (3) for a special case. As soon as the

reader has got familiar with the idea of differentiation, he will no

doubt be able to deduce the general proof for himself, although it

is given in the regular text-books. The result stated in (4) is of

great importance.

Example. If y = e** + & + * is to satisfy the equation

6how that a2 = A0* + Bfi, where a, , y, are constants. Hint. First find the

three derivatives and substitute in the second equation ;
reduce.

25. Complete or Exact Differentials.

To find the condition that u may be a function of x and y in

the equation
du = Mdx + Ndy, ... (5)

where M and N are functions of x and y. We have just seen that

if u is a function of x and y

(6)
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26. Integrating Factors.

The equation
Mdx + Ndy = . . . . (8)

can always be made exact by multiplying through with some func-

tion of x and y, called an integrating factor. (M and N are sup-

posed to be functions of x and y.)

Since M and N are functions of x and y, (8) may be written

dy _ M
dxf-T- .TT -

* * ' (9)

or the variation of y with respect to x is as - M is to N
;
that is

to say, x is some function of y, say

f(x, y)
= a,

then from (5), page 69,

~^^~^ + _^_^ = a ' '
(
10

)

By a transformation of (10), and a comparison of the result with (9),

we find that

(ii)
dy _ da; If

d# .
.

. of(x, 2/)

~
27

Hence

where p is either a function of # and y, or else a constant. Multi-

plying the original equation by the integrating factor /x, and

substituting the values of fiM, fxN obtained in (12), we obtain

WMldx + MM>4* - 0,
ox oy

which fulfils the condition of exactness. The function f(x, y) is to

be derived in any particular case from the given relation between

x and y.

Example. Show that the equation ydx - xdy = becomes exact when

multiplied by the integrating factor 1/y
2
.

*dM = _
1\ 3^ = _

1

dy . y
2 '

dx
~

y*

Hence 'dMf'dy = dN/dx, the condition required by (7). In the same way show
that \\xy and ljx

2 are also integrating factors.

Integrating factors are very much used in solving certain forms

of differential equations (q.v.), and in certain important equations

which arise in thermodynamics.
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27. Illustrations from Thermodynamics.

As a first approximation we may assume that the change of

state of every homogeneous liquid, or gaseous substance, is com-

pletely defined by some law connecting the pressure, p, volume, v,

and temperature, T. This law, called the characteristic equation,

or the equation of state of the substance, has the form

f{p.v,T)-0 (1)

Any change, therefore, is completely determined when any two of

these three variables are known. Thus, we may have

p = Mv, T);v- f2(p, T) ; or, T = f3(p, v). . (2)

Confining our attention to the first, we obtain, by partial differen-

tiation,

dp - 8$ * +
(&),

dT>

The first partial derivative on the right represents the coefficient

of elasticity of the gas, the second is nothing but the so-called

coefficient of increase of pressure with temperature at constant

volume. If the change takes place at constant pressure, dp = 0,

and (3) may be written in the forms

/dp\ L{^1\
(dv\ \dT)v . fdp\ v \dTJp

ap\ \dTj9 i/av\

\dvJT v \dp) T

The subscript is added to show which factor has been supposed
constant during the differentiation. Note the change of ~ov[oT to

dv/dT at constant pressure. The first of equations (4) states that

the change in the volume of a gas when heated is equal to the ratio

of the increase of pressure with temperature at constant volume,

and the change in the elasticity of the gas ;
the second tells us

that the ratio of the coefficients of thermal expansion and of com-

pressibility is equal to the change in the pressure of the gas per

unit rise of temperature at constant volume.

Examples. (1) Show that a pressure of 60 atmospheres is required to

keep unit volume of mercury at constant volume when heated 1 0. Co-

l/dv\
efficient of expansion of Hg = 0*00018 = Z\Tm)

'
* compressibility

1 /dv\= 000003 =- (-T-) . M. Planck, Vorlesungen iiber Thermodynamik.

Leipzig, 8, 1897.

(2) J. Thomsen's formula for the amount of heat Q disengaged when one
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molecule of sulphuric acid, H2S04 ,
is mixed with n molecules of water, H20,

is g = 17860 n/(l-798 + n) cals. Put a = 17860 and b = 1-798, for the sake of

brevity. If x of H2S04 be mixed with y of H20, the quantity of heat dis-

engaged by the mixture is x times as great as when one molecule of H2S04

unites with yjx molecules of water. Since y/x = n in Thomsen's formula

Q = x x ay/(bx + y) cals. If dx of acid is now mixed with x of H2S04 and y
of H20, show that the amount of heat liberated is

^dx =whyfx
; or

> j^hzf
x cals -

In the same way the amount of heat liberated when dy of water is added to a

similar mixture is

Let Q, T, p, v, represent any four variable magnitudes what-

ever. By partial differentiation

Equate together the second and last members of (5), and substitute

the value of dp from (3), in the result. Thus,

Put dv = 0, and divide by dT,

(Hi).(H), . . . <v

Again, by partial differentiation

dT - ().* + * <8>

Substitute this value of dT in the last two members of (5),

Put dp = 0, and write the result

_

(iHIHm >
By proceeding in this way, the reader can deduce a great

number of relations between Q, T, p, v, quite apart from any

physical meaning the letters might possess. If Q denotes the

quantity of heat added to a substance during any small changes
of state, and p, v, T, the pressure, volume and absolute tempera-

ture of the substance, the above formulae are then identical with

corresponding formulae in thermodynamics. Here, however, the

relations have been deduced without any reference to the theory

of heat. Under these circumstances, {dQftT)vdT represents the
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quantity of heat required for a small rise of temperature at con-

stant volume: (bQfiT), is nothing but the specific heat of the

substance at constant volume, usually written 0,; similarly,

(dQfiT)p is the specific heat of constant pressure, written Cp ; and

(pQfiv) T and (dQ/~i)p) T refer to the two latent heats.

These results may be applied to any substance for which the

relation pv = BT holds good. In this case,

Examples. (1) A little ingenuity, and the reader should be able to

deduce the so-called Reech's Theorem :

m
-c.-J7W?>

(11)

\dv)T

employed by Clement and Desormes for evaluating y. See any text-book on

physics for experimental details. Hint. Find dp for v and Q ;
and for v and

T as in (3) ;
use (7) and (10).

(2) By the definition of adiabatic and isothermal elasticities (page 113),

E(j)
= -

v(dp/dv)^ ;
and ET = -

v(dp[dv) T, respectively.

The subscripts <p
and Vindicating, in the former case, that there has been

neither gain nor loss of heat, in other words that Q has remained constant,

and in the latter case, that the temperature remained constant during the

process 'dp/dv. Hence show from the first and last members of (5), when Q
is constant,

fdQ\

V^A fdQ\
'

\dpj*

From (7), (10) and (4), we get the important result

E
4> _ \-dv) \dT)p\^v) f\dTj v \'dTjp Cv

VdphYdojT {dTjXdvJr \dTj v

According to the second law of thermodynamics, for reversible

changes "the expression dQ/T is a perfect differential". It is

usually written d<f>, where <f>
is called the entropy of the substance.

From the first two members of (5), therefore,

^*-MMldT+W^- (18

is a perfect differential. From (7), page 77, therefore,

dfl -dQ\ dfl dQ\ fdCv\ fdL\
L

(u)

where C has been written for (dQfiT),, L for (lQfdv)r
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According to the first law of thermodynamics, when a quantity

of heat dQ is added to a substance, part of the heat energy dU is

spent in the doing of internal work among the molecules of the

substance and part is expended in the mechanical work of expansion,

p . dv against atmospheric pressure. To put this symbolically,

dQ = dU + pdv; or dU = dQ - pdv. . . . (15)

Now dU is a perfect differential. This means that however much

energy U, the substance absorbs, all will be given back again when
the substance returns to its original state. In other words, U is a

function of the state of the substance (see page 385). This state

is determined, (2) above, when any two of the three variables

p } v, T, are known.

For the first two members of (5), and the last of equations (15),

therefore,

dU = Cv .dT + L.dv - pdv = Cv .dT + {L -
p)dv, . (16)

is a complete differential. In consequence, as before,

(m-mi-m
From (14) and (17),

\w)v

=
T\Wv)t'

{18)

a " law
"
which has formed the starting point of some of the finest

deductions in physical chemistry.

Examples. (1) Establish Mayer's formula, for a perfect gas.

Cp - CV
= R, (19)

Hints:
(i.) Since pv = RT, @p/3Z% = Rfv ;

.'. (dQ/dv) T = RT/v = p, by (18).

(ii.) Evaluate dv as in (3), and substitute the result in the second and third

members of
(5). (iii.) Equate dp to zero. Find 2>v/dT from the gas equation,

use (18), etc. Thus,

(2) Establish the so-called "Four thermodynamic relations" between

P, v, T, (f>,
when any two are taken as independent variables.

(dr\ _fdp_\ . fd$\ _/dp\ , fdr\ _fdv\ . fd\ ;/i\
Ydvjtt,- \d<t>)v

'

\dvJ T~\dTjv
'

\^pJ4>~\^ct>JP
,

\dpjr~ \dT);

It is possible that in some future edition of this work a great

deal of the matter in the next chapter will be deleted, since

"graphs and their properties
"

appears in the curriculum of most

schools. However, it is at present so convenient for reference that

I have decided to let it remain.



CHAPTER II.

COORDINATE OR ANALYTICAL GEOMETRY.

" Order and regularity are more readily and clearly recognised when
exhibited to the eye in a picture than they are when presented
to the mind in any other manner." Dr. Whewell.

28. Cartesian Coordinates.

The physical properties of a substance may, in general, be con-

cisely represented by a geometrical figure. Such a figure furnishes

an elegant method for studying certain natural changes, because

the whole history of the process is thus brought vividly before the

mind. At the same time the numerical relations between a series

of tabulated numbers can be exhibited in the form of a picture and

their true meaning seen at a glance.

Let xOx' and yOy' (Fig. 10) be two straight lines at right angles
to each other, and intersecting at the point 0, so as to divide the

plane of this paper into four quadrants I, II, III and IV. Let

P
l
be any point in the first quadrant yOx ; draw PiMY parallel to

Oy and P
Y
N parallel to Ox. Then, if the lengths 0Ml

and P^
are known, the position of the point P with respect to these lines

follows directly from the properties of the rectangle NP-^Mft
(Euclid, i., 34). For example, if OM

Y
denotes three units, Pl

M
1

four units, the position of the point P
1

is found by marking off

three units along Ox to the right and four units along Oy vertically

upwards. Then by drawing NP1 parallel to Ox, and P^M\ parallel

to Oy, the position of the given point is at Pv since,

P^ = ON = 4 units
;
NP

1
= 0M

1
= 3 units.

x'Ox, yOy' are called coordinate axes or " frames of reference
"

(Love). If the angle yOx is a right angle the axes are said to be

rectangular. Conditions may arise when it is more convenient

88 f*
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to make yOx an oblique angle, the axes are then said to be oblique.

xOx' is called the abscissa or x-axis, yOy' the ordinate or y-axis.

The point is called the origin ;
OM

1
the abscissa of the point

P, and P
1
M

1
the ordinate of the same point. In referring the posi-

tion of a point to a pair of coordinate axes, the abscissa is always

mentioned first, P{ is spoken of as the point whose coordinates are

3 and 4
;

it is written "the point P:(3, 4)". In memory of its

inventor, Rene Descartes, this system of notation is sometimes

styled the system of Cartesian coordinates.

The usual conventions of trigonometry are made with respect

to the algebraic sign of a point in any of the four quadrants. Any
abscissa measured from the origin to the right is positive, to the
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zontal distance along some standard line of reference the #-axis,

and (2) its vertical distance along some other standard line of refer-

ence the 2/-axis.

When the position of a point is determined by two variable mag-
nitudes (the coordinates), the point is said to be two dimensional.

We are always making use of coordinate geometry in a rough

way. Thus, a book in a library is located by its shelf and number ;

and the position of a town in a map is fixed by its latitude and

longitude. See H. S. H. Shaw's "
Report on the Development of

Graphic Methods in Mechanical Science," B. A. Beports, 373,

1892, for a large number of examples.

29. Graphical Representation.

Consider any straight or curved line OP situate, with refer-

ence to a pair of rectangular co-ordinate axes, as shown in Fig. 11.

Take any abscissae OMv OM^ OM
3,

. . . OM, and through Mv

Fig. 11.

M
2
...M draw the ordinates M

l
Pv M2

P
2

. . . MP parallel to the

2/-axis. The ordinates all have a definite value dependent on the

slope of the line 1 and on the value of the abscissas. If x be any
abscissa and y any ordinate, x and y are connected by some

definite law called the equation of the curve.

It is required to find the equation of the curve OP. In the

triangle OPM
MP = OM tan MOP,

3 Any straight or curved line when referred to its coordinate axes, is called a

curve ".
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or y = x tan a, . . . . (1)

where a denotes the positive angle MOP. But if OM = MP,

MP
tan MOP =

g
= 1 = tan 45.

The equation of the line OP is, therefore,

y = x; . . . . (2)

and the line is inclined at an angle of 45 to the #-axis.

It follows directly that both the abscissa and ordinate of a point

situate at the origin are zero. A point on the #-axis has a zero

ordinate ;
a point on the ?/-axis has a zero abscissa. Any line

parallel to the #-axis has an equation

y = b; . . . . (3)

any line parallel to the ^-axis has an equation

x = a, . . . . (4)

where a and b denote the distances between the two lines and their

respective axes.

It is necessary to warn the reader not to fall into the bad habit

of writing the line OM indifferently OM" and " MO "
so that he

will have nothing to unlearn later on. Lines measured from left

to right, and from below upwards are positive ; negative, if measured

in the reverse directions. Again, angles measured in the opposite

direction to the motion of the hands of a watch, when the watch is

facing the reader, are positive, and negative if measured in the

opposite direction. Many difficulties in connection with optical

problems, for instance, will disappear if the reader pays careful

attention to this. In the diagram, the angle MOP will be positive,

POM negative. The line MP is positive, PM negative. Hence,
since

4- MP - PM
tan MOP = ^i^ = + ;

tan POM = ^ - -.
+ OM + OM

30. Practical Illustrations of Graphical Representation.

Suppose, in an investigation on the relation between the pres-

sure, p, and the weight, w, of a gas dissolved by unit volume of a

solution, we obtained the following successive pairs of observations,

p = i, 2, 4, 8 . . .
= x.

to -i, 1, 2, 4...= y.
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By setting off on millimetre, coordinate or squared paper

(Fig. 12) points P^l, i), P2(2, 1)

. . .
,
and drawing a line to pass

through all these points, we are

said to plot the curYe. This has

been done in Fig. 12. The only

difference between the lines OP
of Figs. 11 and 12 is in their

slope towards the two axes.

From equation (1) we can put
FlG - 12

"^
lu

ll

t^ f GaSGS

w = p tan a, or tan a = \,

that is to say, an angle whose tangent is \. This can be found by
reference to a table of natural tangents. It is 26 33' (approx.).

Putting tan a = m, we may write

w = mp, (5)

where m is a constant depending on the nature of the gas and

liquid used in the experiment. Equation (5) is the mathematical

expression for the solubility of a gas obeying Henry's law, viz. :

" At constant temperature, the weight of a gas dissolved by unit

volume of a liquid is proportional to the pressure ". The curve

OP is a graphical representation of Henry's law.

To take one more illustration. The solubility of potassium

chloride, X, in 100 parts of water at temperatures, 0, between

and 100 is approximately as follows :

= 0, 20, 40, 60, 80, 100 = x,

X = 28-5, 39-7, 49-8, 59-2, 69*5, 79-5 =
y.

By plotting these numbers, as in the preceding example, we obtain

a curve QP (Fig. 13) which, instead of passing through the origin

at O, cuts the ?/-axis at the point Q such that

OQ = 28-5 units = b (say).

If OP' be drawn from the point O parallel to QP, then the equation

for this line is obviously, from (5),

X = m6 ;

but since the line under consideration cuts the ?/-axis at Q,

X = mO + b, . . . . (6)

where b = OQ. In these equations, b, X and are known, the

value of m is therefore obtained by a simple transposition of (6),
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m = = tan 27 43' - 0-5254.

Substituting in (6) the numerical values of m and b{= 28*5),
l we

can find the approximate solubility of potassium chloride at any

temperature {$) between and 100 from the relation

X = O51280 + 28-5.

The curve QP in Fig. 13 is a graphical representation of the

20 iO eo eo 200

Fig. 13. Solubility Curve for KC1 in water.

variation in the solubility of KC1 in water at different tempera-

tures.

Knowing the equation of the curve, or even the form of the

curve alone, the probable solubility of KC1 for any unobserved

temperature can be deduced, for if the solubility had been de-

termined every 10 (say) instead of every 20, the corresponding

ordinates could still be connected in an unbroken line. The same

relation holds however short the temperature interval. From this

point of view the solubility curve may be regarded as the path of

a point moving according to some fixed law. This law is defined

by the equation of the curve, since the coordinates of every point

on the curve satisfy the equation. The path described by such a

point is called the picture, locus or graph of the equation.

Examples. (1) Let the reader procure some "
squared

"
paper and plot :

y = lx - 2
; 2y + Sx = 12.

(2) The following experimental results have been obtained :

When x = 0, 1, 10, 20, 30,...

y = -
3, 1-56, 11-40, 25-80, 40-20, . . .

1 Determined by a method to be described later.
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(a) Plot the curve, (b) Show (i)
that the slope of the curve to the sc-axis

is nearly 1*44 = tan o = tan 55, (ii) that the equation to the curve is

y = l-44aj - 3. (c) Measure off 5 and 15 units along the ic-axis, and show

that the distance of these points from the curve, measured vertically above

the a>axis, represents the corresponding ordinates. (d) Compare the values

of y so obtained with those deduced by substituting x = 5 and x = 15 in the

above equation. Note the laborious and roundabout nature of process (c) when
contrasted with (d). The graphic process, called graphic interpolation (q.v.),

is seldom resorted to when the equation connecting the two variables is

available, but of this anon.

(3) Get some solubility determinations from any chemical text-book and

plot the values of the composition of the solution (C, ordinate) at different

temperatures (0, abscissa), e.g., Loewel's numbers for sodium sulphate are

C = 5-0, 19-4, 550, 46-7, 44-4, 43-1, 42-2;

6 = 0, 20, 34, 50, 70, 90, 103*5.

What does the peculiar bend at 34 mean ?

In this and analogous cases, a question of this nature has to be decided :

What is the best way to represent the composition of a solution? Several

methods are available. The right choice depends entirely on the judgment,
or rather on the finesse, of the investigator. Most chemists (like Loewel

above) follow Gay Lussac, and represent the composition of the solution as

"parts of substance which would dissolve in 100 parts of the solvent".

Etard found it more convenient to express his results as "
parts of substance

dissolved in 100 parts of saturated solution ". The right choice, at this day,

seems to be to express the results in molecular proportions. This allows the

solubility constant to be easily compared with the other physical constants.

In this way, Gay Lussac's method becomes " the ratio of the number of

molecules of dissolved substance to the number, say 100, molecules of

solvent "
;
Etard's " the ratio of the number of molecules of dissolved sub-

stance to any number, say 100, molecules of solution ".

(4) Plot logex = y, and show that logarithms of negative numbers are

impossible. Hint. Put x = 0, e~ 2
, e -1

, 1, e, e2
,
oo

, etc., and find correspond-

ing values of y.

So many good booklets have recently been published upon
"
Graphical Algebra

"
as to render it unnecessary to speak at greater

length upon the subject here.

31. Properties of Straight Lines.

If equations (1) and (6) be expressed in general terms, using

x and y for the variables, m and b for the constants, we can

deduce the following properties for straight lines referred to a pair

of coordinate axes.

I. A straight line passing through the origin of a pair of

rectangular coordinate axes, is represented by the equation

y = mx, . . . . (7)
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where m = tan a = y/x, a constant representing the slope of the

curve. The equation is obtained from (5) above.

II. A straight line which cuts one of the rectangular coordinate

axes at a distance b from the origin, is represented by the equation

y = mx + b . . . (8)

where m and b are any constants whatever. For every value of

m there is an angle such that tan a = ra. The position of the line

is therefore determined by a point and a direction. Equation (8)

follows immediately from (G).

III. A straight line is always represented by an equation of the

first degree,

Ax + By + G =
; . . . (9)

and conversely, any equation of the first degree between two variables

represents a straight line. 1

This conclusion is drawn from the fact that any equation

containing only the first powers of x and y, represents a straight

line. By substituting m = - A/B and b = - G/B in (8), and

reducing the equation to its simplest form, we get the general

equation of the first degree between two variables : Ax + By + = 0.

This represents a straight line inclined to the positive direction of

the ic-axis at an angle whose tangent is - A/B, and cutting the

y-Sbxis at a point
- G/B below the origin.

IV. A straight line which cuts each coordinate axis at the re-

spective distances a and b from the origin, is represented by the

equation

ifl-l do)

Consider the straight line AB (Fig. 14) which intercepts the

x- and 2/-axes at the points A and B respectively. Let OA = a

OB = b. From the equation (9) if

y = 0, x = a
; Aa + G = 0, a = -

C/A.

Similarly if x = 0, y = b; Bb + G = 0, b = -
G/B.

Substituting these values of a and b in (9), i.e., in

A B - x y .,-
-7&

~
-qV

= J-
J and we get

- + y = 1.

1 The reader met with the idea conveyed by a "general equation," on page

26. By assigning suitable values to the constants A, B, O, he will be able to deduce

every possible equation of the first degree between the two variables x and y.
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There are several proofs of this useful equation. Formula (10) ia

called the intercept form of the equa- y
tion of the straight line, equation (8)

the tangent form.

V. The so-called normal or per-

pendicular form of the equation of a

straight line is

p = X COS a + y COS a, . (11)

where p denotes the perpendicular dis-

tance of the line BA (Fig. 14) from the

origin 0, and a represents the angle
which this line makes with the rc-axis.

Draw OQ perpendicular to AB (Fig. 14). Take any point P{x, y) and

drop a perpendicular PR on to the z-axis, draw RD parallel to AB cutting OQ
in D. Drop PC perpendicular on to RD, then PRC = a = QOA. Then,

OQ = OD + PC OD = x cos o ; PC = y sin a. Hence follows (11).

Many equations can be readily transformed into the intercept

form and their geometrical interpretation seen at a glance. For

instance, the equation

X + y = 2 becomes \x + \y = 1,

which represents a straight line cutting each axis at the same

distance from the origin.

One way of stating Charles' law is that " the volume of a

given mass of gas, kept at a constant pressure, varies directly as

the temperature ". If, under these conditions, the temperature be

raised 6, the volume increases the -zfaOrd part of what it was at

the original temperature.
1 Let the original volume, v

,
at C,

1 Many students, and even some of the text-books, appear to have hazy notions on

this question. According to u Guy Lussac's law "
the increase in the volume of a gas

at any temperature for a rise of temperature of 1, is a constant fraction of its initial

volume at C.
;

" J. Dalton's law
"
{Manchester Memoirs, 5, 595, 1802), on the other

hand, supposes the increase in the volume of a gas at any temperature for a rise of 1,
is a constant fraction of its volume at that temperature (the

"
Compound Interest

Law," in fact). The former appears to approximate closer to the truth than the latter.

(See page 285.) J. B. Gay Lussac {Annates de Chimie, 43, 137 ; 1802) says that Charles

had noticed this same property of gases fifteen years earlier and hence it is sometimes

called Charles' law, or the law of Charles and Gay Lussac. After inspecting Charles'

apparatus, Gay Lussac expressed the opinion that it was not delicate enough to es*

tablish the truth of the law in question. But then J. Priestley in his Experiments and

Observations on Different Kinds of Air (2, 448, 1790) says that " from a very coarse

experiment which I made very early I concluded that fixed and common air expanded



92 HIGHER MATHEMATICS. 31.

be unity ;
the final volume v, then at

2T3 (

This equation resembles the intercept form of the equation of a

straight line (10) where a = - 273 and 6 = 1. The intercepts a and

b may be found by putting x and y, or rather their equivalents,

-273C

and v, successively equal to zero. If = 0, v = 1
;

if v = 0,

= -
273, the well-known absolute zero (Fig. 15).

It is impossible to imagine a substance occupying no space.

But this absurdity in the logical consequence of Charles'

law when = - 273. Where is the fallacy ? The answer is that

Charles' law includes a "
simplifying assumption ". The total

volume occupied by the gas really consists of two parts :

(i)
the

volume actually occupied by the molecules of the substance ;
and

(ii) the space in which the molecules are moving. Although we

generally make v represent the total volume, in reality, v only refers

to the space in which the molecules are moving, and in that case

the conclusion that v = 0, when = - 273 involves no absurdity.

No gas has been investigated at temperatures within four degrees

of - 273. However trustworthy the results of an interpolation

Fig. 16.

may be, when we attempt to pass beyond the region of measure-

alike with the same degree of heat ". The cognomen "Priestley's law
" would settle

all confusion between the three designations "Dalton's," "Gay "Lussac's
"

and
"
Charles'

"
of one law.
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ment, the extrapolation, as it is called, becomes more or less

hazardous. Extrapolation can only be trusted when in close prox-

imity to the point last measured. Attempts to find the probable

temperature of the sun by extrapolation have given numbers

varying between the 1,398 of Vicaire and the 9,000,000 of

Waterston ! We cannot always tell whether or not new forces

come into action when we get outside the range of observation.

In the case of Charles' law, we do know that the gases change
their physical state at low temperatures, and the law does not

apply under the new conditions.

VI. To find the angle at the point of intersection of two curves

whose equations are given. Let the equations be

y = mx + b
; y'

= mx' + b'.

Let < be the angle required (see Fig. 16), m = tana, m' tana'.

From Euclid, i., 32, a - a = <, .-. tan (a'
-

a)
= tan

<j>. By formula,

page 612,

tana' - tana m' - m
n ^ =

1 + tan a . tan a
~~

1 + mm' ^ '

Examples. (1) Find the angle at the point of intersection of the two

lines x + y = 1, and y = x + 2. m = 1, m' = - 1
;
tan <p

= - oo = - 90.

(2) Find the angle between the lines 3y - x = 0, and 2x + y = 1. Ansr.

Tan (81 52') = 7.

VII. To find the distance between two points in terms of their

coordinates. In Fig. 17, let P^y^ and Q(x2y2)
be the given points.

Draw QM' parallel to NM. OM=xv MP = yY \ ON= x
2 , NQ = y2 ;

MP = MP - MM = MP ~NQ = yl -y2 \

QM = NM =OM - ON = x
1
- xv

Since QMP is a right-angled triangle

(QPf = (QM')* + {PMf.
.-. QP = J(x,

- x
2f + (Vl

-
y2)\ . . (13)

Examples. (1) Show that the distance between the points (
-

2, 1) and

(
-

6,
-

2) is 5 units.

(2) Show that the distance from (10,
-

18) to the point (3, 6) is the same

as to the point (- 5, 2). Ansr. 25 units in each case.

32. Curves Satisfying Conditions.

The reader should work through the following examples so as

to familiarize himself with the conceptions of coordinate geometry.

Many of the properties here developed for the straight line can

easily be extended to curved lines.
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I. The condition that a curve may pass through a given point.

This evidently requires that the coordinates of the point should satisfy

the equation of the line. Let the equation be in the tangent form

y = mx + b.

If the line is to pass through the point (xv y^) t

y1
= mx

1 + by

and, by subtraction,

(y
-

yi )
= m(x - x

x) . . . (15)

which is an equation of a straight line satisfying the required

conditions.

Examples. (1) The equation of a line passing through a point whose

abscissa is 5 and ordinate 3 is y - mx = 3 - 5m.

(2) Find the equation of a line which will pass through the point (4,
- 4)

and whose tangent is 2. Ansr. y - 2x + 12 = 0.

II. The condition that a curve may pass through two given

points. Continuing the preceding discussion, if the line is to pass

through (x2 , y2),
substitute x

2 , y2 ,
in (14)

(2/2
-

Vi)
= (*2

-
*i) ; .'-

l4r|-;

Substituting this value of m in (14), we get the equation,

y ~
yi = x ~ x

i
t , . . (15)

2/2
~~

Vl X
2
~ X

l

for a straight line passing through two given points (xv yj and

(*s 2/2)-

Examples. (1) Show that the equation of the straight line passing

through the points Pa (2, 3) and P2(4,5) is x - y + 1 = 0. Hint. Substitute

x1
= 2,x2 = 4:

) y1
= 3, y2

= 5, in (15).

(2) Find the equation of the line which passes through the points

Px(4,
-

2), and P2(0,
-

7). Ansr. 5x - y = 28.

III. The coordinates of the point of intersection of two given

lines. Let the given equations be

y = mx + b; and y = m'x + b' .

Now each equation is satisfied by an infinite number of pairs of

values of x and y. These pairs of values are generally different

in the two equations, but there can be one, and only one pair of

values of x and y that satisfy the two equations, that is, the

coordinates of the point of intersection. The coordinates at this

point must satisfy the two equations, and this is true of no other

point. The roots of these two equations, obtained by a simple
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algebraic operation, are the coordinates of the point required. The

point whose coordinates are

V - b b'm - bm f^ axx =
-, ; y = . . (lo)m - m u m - m

satisfies the two equations.

Examples. (1) Find the coordinates of the point of intersection of the

two lines x + y = 1, and y = x + 2.. Ansr. x = -
, y = . Hint, m = -

1,

ml = 1 b = 1, V m 2, etc.

(2) The coordinates of the point of intersection of the curves Sy - x = 1,

and 2x + y = 3 are x = f , y = f .

(3) Show that the two curves y
2 = 4a:, and x1 =

4=2/ meet at the point

x = 4, y = 4.

IV. The condition that three given lines may meet at a point.

The roots of the equations of two of the lines are the coordinates of

their point of intersection, and in order that this point may be on a

third line the roots of the equations of two of the lines must satisfy

the equation of the third.

Examples. (1) If three lines are represented by the equations 5x + 3y=7 t

Sx -
4ty

= 10, and x + 2y = 0, show that they will all intersect at a point
whose coordinates are x = 2 and y = - 1. Solving the last two equations,

we get x = 2 and y = - 1, but these values of x and y satisfy the first equation,

hence these three lines meet at the point (2,
-

1).

(2) Show that the lines 3z + 5y +7=0; x + 2y + 2=0; and ix-By- 10= 0,

do not pass through one point. Hint. From the first and second, y = 1,

x = - 4. These values do not satisfy the last equation.

V. The condition that two straight lines may be parallel to one

another. Since the lines are to be parallel they must make equal

angles with the a;-axis, i.e., angle a = angle a, or tan a = tan a,

.'.m = m\ . . . . (17)

that is to "say, the coefficient of x in the two equations must be

equal.

Examples. (1) Show that the lines y = Sx + 9, and 2y = 6x + 7 are

parallel. Hint. Show that on dividing the last equation by 2, the coefficient

of x in each equation is the same.

(2) Find the equation of the straight line passing through (2,
-

1) parallel

ioSx + y = 2. Ansr. y + 3a;= 5. Hint. Use (17) and (14). y + 1 = - 3 (x
-

2).

VI. The condition that two lines may be perpendicular to one

another. If the angle between the lines is < = 90, see (12),

a! - a = 90,
1

.. tan a = tan (90 + a)
= - cot a = - 7
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.-. m = - -, . . . . (18)m
or, the slope of the one line to the -axis must be equal and

opposite in sign to the reciprocal of the slope of the other.

Examples. (1) Find the equation of the line which passes through the

point (3, 2), and is perpendicular to the line y = 2x + 5. Ansr. x + 2y = 7.

Hint. Use (18) and (14).

(2) Find the equation of the line which passes through the point (2,
-

4)

and is perpendicular to the line Sy + 2x - 1 = 0. Ansr. 2y - 3x + 14 = 0.

33. Changing the Coordinate Axes.

In plotting the graph of any function, the axes of reference

should be so chosen that the resulting curve is represented in the

most convenient position. In many problems it is necessary to

pass from one system of coordinate axes

to another. In order to do this the

equation of the given line referred to

the new axes must be deduced from the

corresponding equation referred to the

old set of axes.

I. To pass from any system of co-

ordinate axes to another set parallel to

Fig. 18. Transformation of the former but having a different origin.
Axes - Let Ox, Oy (Fig. 18) be the original axes,

and EO^, HO-^y, the new axes parallel to Ox and Oy. LetMM
X
P

be the ordinate of any point P parallel to the axes Oy and 0^.
Let h, k be the coordinates of the new origin Ox

referred to the old

axes. Let (x, y) be the coordinates of P referred to the old axes

Ox, Oy, and {xYy^) its coordinates referred to the new axes. Then

OH = h, HO, =
k,

x = OM = OH + HM = OH + 0^1, = h + x
Y ;

y = MP = MM
1 + MX

P = H0
1 + MX

P = k + yv

That is to say, we must substitute

x = h + x
Y ;

and y = k + yv . . (19)

in order to refer a curve to a new set of rectangular axes. The

new coordinates of the point P being

x
Y
= x - h

;
and y1

= y - k. . . (20)

Example. Given the point (2, 3) and the equation 2x + By = 6, find the

coordinates of the former, and the equation of the latter when referred to a

set of new axes parallel to the original axes and passing through the point
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Fig. 19. Transformation of Axes.

3, 2). Ansr. a^ = 3-3 = 2 - 3= -
1; y1= y -2 = 1. The position of the

point on the new axes is
(
-

1, 1). The new equation will be 2(3 + xj +
3(3 + y1)

= 0; .-. 2xx + 3Vl + 12 = 0.

II. To pass from one set of axes to another having the same

origin but different directions.

Let the two straight lines x
Y

and yx O, passing through (Fig.

19), be taken as the new system
of coordinates. Let the coordin-

ates of the point P (x, y) when
referred to the new axes be xv
yv Draw MP perpendicular to

the old #-axes, and M
Y
P perpen-

dicular to the new axes, so that

the angle MPM1
= BOM

l
= a,

OM = x
} OM^ = xv MP =

y, MY
P = yv

Draw BM
X perpendicular and QM1 parallel to the #-axis. Then

x= OM= OB - MR = OB - QMV
.*. x = OM

Y
cos a - M

X
P sin a ;

.-. x = x
1
cos a - yY

sin a. . . . (21)

Similarly y = MP = MQ + QP = BM
Y + QP ;

.\ y = 0M
1
sin a + M X

P cos a,

.*. y = x
1
sin a + 2/j

cos a. . . . (22)

Equations (21) and (22) enable us to refer the coordinates of a

point P. from one set of axes to another. Solving equations (21)

and (22) simultaneously,

x
x

x cos a + y sin a
; yx

= y cos a - a; sin a. . (23)

Example. Find what the equation xf - yx
2 = a2 becomes when the

axes are turned through - 45, the origin remaining the same. Here

sin (- 45) =-\/J; cos (- 45) = \/J". From (23), a^ = *J$x
- \% ;

Vl
= sl%x+ sj\y. Hence, x

x
- yx

= - J2x; x^+ij^J^x ;
.-.

1

2
-2/]

2= -2xy,

.*. from the original equation, 2xy = - a2
; or, xy = constant.

In order to pass from one set of axes to another set having a

different origin and different directions, the two preceding transfor-

mations must be made one after another.

3$. The Circle and its Equation;

There is a set of important curves whose shape can be obtained

by cutting a cone at different angles. Hence the name conic sec-
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tions. They include the parabola, hyperbola and ellipse, of which

the circle is a special case. I

shall describe their chief pro-

perties very briefly.

A circle is a curve such

that all points on the curve

are equi-distant from a given

point. This point is called the

centre, the distance from the

centre to the curve is called

the radius. Let r (Fig. 20) be

the radius of the circle whose

centre is the origin of the rect-

angular coordinate axes xOx'

and yOy' . Take any point

P(x, y) on the circle. Let PM be the ordinate of P. From the

definition of a circle OP is constant and equal to r. Then by

Euclid, i., 47,

Fig. 20. The Circle.

(OMf + (MPf = (OP)
2

,
or x2 + y

2 = r2

(1)

which is said to be the equation of the circle.

In connection with this equation it must be remembered that

the abscissae and ordinates of some points have negative values,

but, since the square of a negative quantity is always positive, the

rule still holds good. Equation (1) therefore expresses the geo-

metrical fact that all points on the circumference are at an equal
distance from the centre.

Examples. (1) Required the locus of a point moving in a path according
to the equations y = a cos t, x = a sin t, where t denotes any given interval of

time. Square each equation and add,

+ xa a2
(cos

2
* + sin2 ).

The expression in brackets is unity (19), page 611, and hence for all values of t

y
2 + x* m a2

,

i.e., the point moves on the perimeter of a circle of radius a.

(2) To find the equation of a circle whose centre, referred to a pair of

rectangular axes, has the coordinates h and k. From (19), previous paragraph,

(x
- hf + (y

-
fe)

2 = r2
, . . . . (2)

where P(sc, y) is any point on the circumference. Note the product xy is

absent. The coefficients of re
2 and y

2 are equal in magnitude and sign.

These conditions are fulfilled by every equation to a circle. Such ia

3a2 + 3#
2 + 7<e - 12 = 0.

(3)
The general equation of a circle is

x2 + y
% + ax + by + c = 0.

(3)
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Plot (3) on squared paper. Try the effect of omitting ax and of by separately
and together. This is a sure way of getting at the meaning of the general

equation.

(4) A point moves on a circle x2 + y* = 25. Compare the rates of change
of x and y when x = 3. If x = 3, obviously y = 4. By differentiation

dy/dt : dxjdt = -
xjy = + f . The function decreases when x and y have the

same sign, i.e., in the first and third quadrants, and increases in the second

and fourth quadrants ; y therefore decreases or increases three-quarters as

fast as x according to the quadrant.

35. The Parabola and its Equation.

A parabola is a curve such that any point on the curve is equi-
distant from a given point and a given straight line. The given

point is called the focus, the straight line

the directrix, the distance of any point on

the curve from the focus is called the focal
radius. O (Fig. 21) is called vertex of the

parabola. AK is the directrix
; OF, FP,

FP
X
... are focal radii ; OF = AO ; FP -

KP ; FPY
= K

X
P

Y
... It can now be proved

that the equation of the parabola is given by
the expression

y
2 m ax, . . (1)

where a is a constant equal to AO in the

above diagram. In words, this equation tells us that the abscissse

of the parabola are proportional to the square of the ordinates.

Examples. (1) By a transformation of coordinates show that the para-
bola represented by equation (1), may be written in the form

x = a + by + cy
2

,

'

(2)

where a, b, c, are constants. Let x become x + h; y = y+ k; a=j where h, k,

and j are constants. Substitute the new values of x and y in (1) ; multiply
out. Collect the constants together and equate to a, b and c as the case

might be.

(2) Investigate the shape of the parabola. By solving the equation of

the parabola, it follows that

V = 2 ^lax.

First. Every positive value of x gives two equal and opposite values of

y, that is to say, there are two points at equal distances perpendicular to the

ar-axis. This being true for all values of x, the part of the curve lying on one

Bide of the #-axis is the mirror image of that on the opposite side l
;
in this

Fig. 21.

1 The student of stereo-chemistry would say the two sides were "
enantiomorphic ".
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case the sc-axis is said to be symmetrical with respect to the parabola. Hence

any line perpendicular to the a>axis cuts the curve at two points equidistant
from the o>axis.

Second. When x 0, the y-axis just touches 1 the curve.

Third. Since a is positive, when x is negative there is no real value of y,

for no real number is known whose square is negative ;
in consequence, the

parabola lies wholly on the right side of the y-&xis.

Fourth. As x increases without limit, y approaches infinity, that is to say,

the parabola recedes indefinitely from the x or symmetrical-axes on both

sides.

36. The Ellipse and its Equation.

An ellipse is a curve such thai the sum of the distances of any

point on the curve from two given points is always the same. Let

P (Fig. 22) be the given point which moves on the curve PP
X

so that its distance from the two fixed points Fv F
2,

called the
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of the point, at any moment, is given by the equations, x = a cos t and

y = b sin t
; required the path described by the moving point. Square and

add
;
since cos2* + sin2* is unity (page 611), x2

ja
2 + y

2
jb

2 = 1. The point

therefore moves on an ellipse.

(2) Investigate the shape of the ellipse. By solving the equation of the

ellipse we get
/ "ZS I ,2

(2)y - b^l
-
^; and ^ =

a^Jl
- t

First. Since y
2 must be positive, x^a

2
"%> 1, that is to say, x cannot be

numerically greater than a. Similarly it can be shown that y cannot be

numerically greater than b.

Second. Every positive value of x gives two equal and opposite values of

y, that is to say, there are two points at equal distances perpendicularly above

and below the a>axis. The ellipse is therefore symmetrical with respect to

the <c-axis. In the same way, it can be shown that the ellipse is symmetrical
with respect to the y-axis.

Third. If the value of x increases from the zero until x = a, then y=0,
and these two values of x furnish two points on the aj-axis. If x now increases

until x > a, there is no real corresponding value of y
2

. Hence the ellipse

lies in a strip bounded by the limits x = + a
; similarly it can be shown that

the ellipse is bounded by the limits y = + b.

Obviously, if a =6, the equation of the ellipse passes into that of a circle.

The circle is thus a special case of the ellipse.

The absence of first powers of x and y in the equation of the ellipse shows

that the origin of the coordinates is at the " centre
"

of the ellipse. A term in

xy shows that the principal axes major and minor are not generally the

x- and z/-axes.

37. The Hyperbola and its Equation.

The hyperbola is a curve stich that the difference of the distance

of any point on the curve

from two fixed points is al-

ways the same. Let the point

P (Fig. 23) move so that the

difference of its distances

from two fixed points F, F'
t

called the foci, is equal to 2a.

is the so-called centre of

the hyperbola ; OM = x ;

MP = y;OA = a;OB = b.
FlGL 23-~The Hyperbola.

Starting from these definitions it can be shown that the equation of

the hyperbola has the form

a2 b* {1)
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The -axis is called the transverse or real axes of the hyperbola ;

the ?/-axis the conjugate or imaginary axes ;. the points A, A' are

the vertices of the hyperbolas, a is the real semi-axis, b the imaginary
semi-axis.

Examples. (1) Show that the equation of the hyperbola whose origin

is at its vertex is ahj
2 = 2ab2x + b2x2

. Substitute x + a for x in the regular

equation. Note that y does not change.

(2) Investigate the shape of the hyperbola. By solving equation (1) for

x t and y, we get

y = -
\/a

2 -
a*, and x = Jy^+W. ... (2)

First. Since y
2 must be positive, x2 < a2

, or x cannot be numerically less

than a. No limit with respect to y can be inferred from equation (8).

Second. For every positive value of x, there are two values of y differing

only in sign. Hence these two points are perpendicular above and below the

x-axis, that is to say, the hyperbola is symmetrical with respect to the x-axis.

There are two equal and opposite values of x for all values of y. The hyper-
bola is thus symmetrical with respect to the y-a,xis.

Third. If the value of x changes from zero until x = a, then y = 0, and

these two values of x furnish two points on the a:-axis. If x -> a, there are

two equal and opposite values of y. Similarly for every value of y there are

two equal and opposite values of x. The curve is thus symmetrical with

respect to both axes, and lies beyond the limits x = a.

Before describing the properties of this interesting curve I

shall discuss some fundamental properties of curves in general.

38. The Tangent to a Curve.

We sometimes define a tangent to a curve as a straight line

which touches the curve at two co-

incident points.
1

If, in Fig. 24, P
and Q are two points on a curve

such that MP = NB = y ; BQ = dy ;

OM =x; MN = PB = dx; the straight

line PQ = ds. Otherwise, the diagram

explains itself. Now let the line APQ
FlGl 24,

revolve about the point P. We have

already shown, on page 15, that the chord PQ becomes more and

more nearly equal to the arc PQ as Q approaches P
;
when Q

1 Note the equivocal use of the word "
tangent" in geometry and in trigonometry.

In geometry, a "
tangent is a line between which and the curve no other straight line

can be drawn," or "a line which just touches but does not cut the curve ". The

slope of a curve at any point can be represented by a tangent to the curve at that

point, and this tangent makes an angle of tan o with the cc-axis.
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coincides with P, the angle MTP = angle BPQ = a
; dx, dy and

ds are the sides of an infinitesimally small triangle with an angle

at P equal to a ; consequently

| - tan a. .... (1)

This is a most important result. The differential coefficient repre-

sents the slope of gradient of the curve. In other words, the tan-

gent of the angle made by the slope of any part of a curve with

the a;-axis is the first differential coefficient of the ordinate of the

curve with respect to the abscissa.

We can also see very readily that in the infinitely small triangle,

dx = ds . cos a
; dy = ds . sin a ; . . (2)

and, since B is a right angle,

(dsf = {dyf + {dxf. ... (3)

If we plot the distances, x, traversed by a particle at different

intervals of time (abscissae) ;
or the amounts of substance, x, trans-

formed in a chemical reaction at different intervals of time, t, we

get a curve whose slope at any point represents the velocity of the

process at the corresponding interval of time. This we call a

velocity curve. If the curve slopes downwards from left to right,

dx/dt will be negative and the velocity of the process will be

diminishing ;
if the curve slopes upwards from left to right, dy/dx

will be positive, and the velocity will be increasing.

If we plot the velocity, V, of any process at different intervals of

time, t, we get a curve whose slope indicates the rate at which the

velocity is changing. This we call an acceleration curYe. The
area bounded by an acceleration curve and the coordinate axes

represents the distance traversed or the amount of substance trans-

formed in a chemical reaction as the case might be.

Examples. (1) At what point in the curve y^ = Axx does the tangent

make an angle of 60 with the sc-axis ? Here dy1/dx1
= 2\yx

= tan 60 m >/s.

Ansr. yx =2/>/|"; ,*=*.

(2) Find the tangent of the angle, a, made by any point P(x, y) on the

parabolic curve. In other words, it is required to find a straight line which

has the same slope as the curve has which passes through the point P(x, y).

Since y
2 = ax

; dyfdx = 2a\y = tan o. If the tangent of the angle were to

have any particular value, this value would have to be substituted in place of

dy/dx. For instance, let the tangent at the point P(x, y) make an angle of

45. Since tan 45 = unity, 2a/y = tan a = 1, .. y = 2a, Substituting in the

original equation y
2 = iax, we get x = a, that is to say, the required tangent
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passes through the extremity of the ordinate perpendicular on the focus.

If the tangent had to be parallel to the x-axis, tan being zero, dyjdx is

equated to zero ; while if the tangent had to be perpendicular to the x-axis,

since tan 90 = oo, dyjdx = oo.

(3) Required the direction of motion at any moment of a point moving

according to the equation, y = a cos 2ir(x + e). The tangent, at any time t,

has the slope,
- %ra sin 2ir(x f e).

(4) E. Mallard and H. le Ghatelier represent the relation between the

molecular specific heat, s, of carbon dioxide and temperature, 0, by the

expression s = 6'3 + 0*005640 - 0*000001,O80
2

. Plot the (9,ds/de)-curve from

= to 6 = 2,000 (abscissae). Possibly a few trials will have to be made
before the " scale

"
of each coordinate will be properly proportioned to give

the most satisfactory graph. The student must learn to do this sort of thing

for himself. What is the difference in meaning between this curve and the

(s,6) -curve?

(5) Show that dxjdy is the cotangent of the angle whose tangent is dyjdx.

Let TP (Fig. 25) be a tangent to the curve at the point

P(xv y^. Let OM = xv MP = yv Let y = mx + b, be the equation
of the tangent line TPT', and yY

=
/(#i) the equation of the curve,

BOP. From (14), page 94, we know that a straight line can only

pass through the point P(xv yj, when

y -y1
= m(x -xY) . . . (4)

where m is the tangent of the angle which the line y = mx makes

with the ic-axis
;
and x and y are the coordinates of any point taken

at random on the tangent line. But we have just seen that this

angle is equal to the first differential coefficient of the* ordinate of

the curve ; hence by substitution

9-*-i[fe-**>' (5)

which is the required equation of the tangent to a curve at a

point whose coordinates are xv yv

Examples. (1) Find the equation of the tangent at the point (4, 2) in

the curve yx
2 = 4^. Here, dy1/dx1

= 1
;
x

l
= 4, yx

= 2. Hence, from (4),

y = x - 2 is the required equation.

(2) Required the equation of the tangent to a parabola. Since

yt
* = axv dy1jdx1

= 2ajyx .

Substituting in (5) and rearranging terms,

(V
~

VdVi - VVi
~

2/i
2
=2a(* ~

i)-

Substituting for y^, we get

yyx
= 2a{x + a^) (6)

as the equation for the tangent line of a parabola. If x = 0, tan a = oo, and

the tangent is perpendicular to the -axis and touches the y-axis. To get the
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point of intersection of the tangent with the sc-axis put y = 0, then x = - xv
The vertex of the parabola therefore bisects the aj-axis between the point of

intersection of the tangent and of the ordinate of the point of tangency.

(3) Find the equation of the tangent to the ellipse,

a?
I"

b2
-* >

dXi
-

a2
yi

>

substituting this value of dy1jdxl
in (5), multiply the result by yx \ divide

through by b2
; rearrange terms and combine the result with the equation of

the ellipse, (1), page 100. The result is the tangent to any point on the ellipse,

a+m..i (7)
a2

+
62

* \n

where x
lt yx

are coordinates of any point on the curve and x, y the coordi-

nates of the tangent.

(4) Find the equation of the tangent at any point P{xv yx )
on the hyper-

bolic ourve. Differentiate the equation of the hyperbola

d> 62
L - '

dx'a* Vl
'
" V Vx~ a? Vl

(X Xl) '

Multiply this equation by yx ;
divide by 62

; rearrange the terms and combine

the result with the second of the above equations. We thus find that the

tangent to any point on the hyperbola has the equation

HF "fe^"
1

(8)

At the point of intersection of the tangent to the hyperbola with the cc-axis,

y = and the corresponding value of x is

xx
x
= a2

; or, x = a2
/^, .... (9)

the same as for the ellipse.

From (9) if x
x

is infinitely great, x = 0, and the tangent then

passes through the origin. The limiting position of the tangent

to the point on the hyperbola at an infinite distance away is

interesting. Such a tangent is called an asymptote. To find

the angle which the asymptote makes with the ic-axis we must

determine the limiting value of

b2 a2 '

when x
x

is made infinitely great. Multiply both sides by ft/x^
2
,

and

g .'*
'''x 2 ~a2 X*

If x
1
be made infinitely great the desired ratio is

Lt Vi
2

- b2
Lt y*- b

1
x, 2 a2

x, a
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Differentiate the equation of the hyperbola, and introduce this

value for xjyv and we get

dy , t
a b* b

-f-
= tan a say = T . -^= -

dx b a2 a (10)

If we now construct the rectangle BSS'B' (Fig. 23, page 101)

with sides parallel to the axes and cut off OA = OA' = a, OB = OB = b,

the diagonal in the first quadrant and the asymptote, having the

same relation to the two axes, are identical. Since the x- and

2/-axes are symmetrical, it follows that these conditions hold for

every quadrant. Hence, B'OS, and BOS' are the asymptotes of

the hyperbola.

39. A Study of Curves.

A normal line is a perpendicular to the tangent at a given

point on the curve, drawn to the

a;-axis. Let NP be normal to the

curve
(Fig. 25) at the point P

i
xv V\l' ^et V mx + ^> ke the

equation of the normal line
; yx

/(o^), the equation of the curve.

The condition that any line may
be perpendicular to the tangent

line TP, is that m' - 1/m, (17),

page 96. From (5)

??r

or, the equation of the normal line is

dx,, .

y -
v\
- -

tut(x
- x

i)
or

>

-

dyx

dx
Y y -

vi

X X-,'
(i)

Examples. (1) Find the equation of the normal at the point (4, 3) in the

curve xfyj* a. Here dx
ljdyl

= - Sx
1/2yv Hence, by substitution in (1),

y = 28 - 5.

(2) Show that y = 2(x
-

6) is the equation of the normal to the curve

tyi + x\
= 0. at the point (4,

-
4).

(3) The tangent to the ellipse cuts the sc-axis at a point where y = ;

from (7), page 105,

.\xx
l =a?; or, x = a2

/^ (2)

In Fig. 26 let PT be a tangent to the ellipse, NP the normal. From (2),

F
X
T = x + c = tf\xx + c

;
FT =x - c = a?\xx

-
c,
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since FxO = OF = c; OT = x; OM = xv

FX
T _ a2 + ex,

'

'

FT
~
a2 - cx

1

' '

Since FP = r, FX
P m

'r,; OF = F
xO = c; OM = xx ; MP = yx ,

H =
2/1

2 + (e
-

*i)
2

; n2 =
2/i

2 + (c + a?!)
2
.

.-. r2 -
rj

2 =
(r + r

2 ) (r
- r^ = - 40^ ;

But by the definition of an ellipse, pages 100 and 101,

r + r
x
= 2a; .*. r - r

x
= - 2cx

x/a; .\ r = a - exja ;
r
x
= a + exja.

(3)

F
X
P

FP
a1 + ex,

(4)

From (3) and (4), therefore,

F
X
T : FT = FXP : FP.

Fig. 26. The Foci of the Ellipse.

By Euclid, vi., A: "If, in any triangle, the segments of the base produced
have to one another the same ratio as the remaining sides of the triangle,

the straight line drawn from the vertex to the point of section bisects the

external angle". Hence in the triangle FPFX ,
the tangent bisects the ex-

ternal angle FPB, and the normal bisects the angle FPFX.

The preceding example shows that the normal at any point on

the ellipse bisects the angle enclosed by the focal radii ; and the

tangent at any point on the ellipse bisects the exterior angle formed

by the focal radii. This property accounts for the fact that if F
Y
P

be a ray of light emitted by some source Fv the tangent at P
represents the reflecting surface at that point, and the normal to the

tangent is therefore normal to the surface of incidence. From a

well-known optical law, "the angles of incidence and reflection

are equal," and since F
X
PN is equal to NPF when PF is the re-

flected ray, all rays emitted from one focus of the ellipse are

reflected and concentrated at the other focus. This phenomenon
occurs with light, heat, sound and electro-magnetic waves.



108 HIGHER MATHEMATICS. 39.

To find the length of the tangent and of the normal. The length

of the tangent can be readily found by substituting the values

MP and TM in the equation for the hypotenuse of a right-angled

triangle TPM (Euclid, i., 47); and in the same way the length
of the normal is obtained from the known values of MN and PM
already deduced.

The subnormal of any curve is that part of the #-axis lying

between the point of intersection of the normal and the ordinate

drawn from the same point on the curve. Let MN be the sub-

normal of the curve shown in Fig. 25, then

MN = x - xv
and the length of MN is, from (1),

l
3a;

1

' , "*' dx
x y1

when the normal is drawn from the point P(xv y^).

The subtangent of any curve rs that part of the #-axis lying

between the points of intersection of the tangent and the ordinate

drawn from the given point. Let TM (Fig. 25) be the subtangent,

then
x

1
- x = TM.

Putting y = in equation (1), the corresponding value for the

length, TM, of the subtangent is

dx-. dx, X-, x ...

*-'**%' *%-* \
(6)

Examples. (1) Find the length of the subtangent and subnormal lines

in the parabola, y-f = 4Laxv Since yidyjdx-y = 2a, the subtangent is 2x
1 ;

the

subnormal, 2a. Hence the vertex of the parabola bisects the subtangent.

(2) Show that the subtangent of the curve pv = constant, is equal to - v.

(3) Let P(x, y) be a point on the parabolic curve (Fig. 27) referred to the

coordinate axes Ox, Oy; PT a tangent at the point P, and let KA be the

directrix. Let F be the focus of the parabola y2
= 4ax. Join PF. Draw KP

parallel to Ox. Join KT. Then KPFT is a rhombus (Euclid, i., 34) ,
for it

has been shown that the vertex of the parabola O bisects the subtangent, Ex.

(1) above. Hence, TO = OM; and, by definition, AO = OF
'

;

.;. TA = FM; and KP = TF\

consequently, the sides KT and PF are parallel, and by definition of the para-

bola, KP = PF
t

.'. the two triangles KPT and PTF are equal in all respects,

and (Euclid, i., 5) the angle KPT = angle TPF, that is to say, the tangent

to the parabola at any given point bisects the angle made by the focal radius

and the perpendicular dropped on to the directrix from the given point.

In Fig. 27, the angle TPF = angle TPK = opposite angle RPT (Euclid,
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i., 15). But, by construction, the angles TPN and NPT' are right angles
take away the equal angles TPF and BPT
and the angle FPN is equal to the angle
NPR.

The normal at any point on the

parabola bisects the angle enclosed by
the focal radius and a line drawn

through the given point, parallel to the

x-axis. This property is of great im-

portance in physics. All light rays

falling parallel to the principal (or x-)

axis on to a parabolic mirror are reflect-

ed at the focus F, and conversely all

light rays proceeding from the focus

are reflected parallel to the #-axis.

Fig. 27. TheFocus of the

Parabola.

Hence the employment of

parabolic mirrors for illumination and other purposes. In some

of Marconi's recent experiments on wireless telegraphy, electrical

radiations were directed by means of parabolic reflectors. Hertz,

in his classical researches on the identity of light and electro-

magnetic waves, employed large parabolic mirrors, in the focus of

which a "generator," or "receiver" of the electrical oscillations

was placed. See D. E. Jones' translation of H. Hertz's Electric

Waves, London, 172, 1893.

$0. The Rectangular or Equilateral Hyperbola.

If we put a = 6 in the standard equation to the hyperbola, the

result is an hyperbola (Fig. 28) for which

x> -
y*
= a2

, . (1)

and since tan a = 1 = tan

45, each asymptote makes

an angle of 45 with the x-

or 2/-axes. In other words,

the asymptotes bisect the

coordinate axes. This special

form of the hyperbola is called

an equilateral or rectangular

hyperbola. It follows directly

that the asymptotes are a't

right angles to each other.

The asymptotes may, therefore, serve as a pair of rectangular

Fig. 28. The Kectangular Hyperbola.
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coordinate axes. This is a valuable property of the rectangular

hyperbola.
The equation of a rectangular hyperbola referred to its asymp-

totes as coordinate axes, is best obtained by passing from one set of

coordinates to another inclined at an angle of - 45 to the old set,

but having the same origin, as indicated on page 96. In this way
it is found that the equation of the rectangular hyperbola is

xy = a
}

. . . . (2)

where a is a constant.

It is easy to see that as y becomes smaller, x increases in magni-
tude. When y = 0, x = oo, the rr-axis touches the hyperbola an

infinite distance away. A similar thing might be said of the y -axis.

$1. Illustrations of Hyperbolic Curves.

I. The graphical representation of the gas equation, pv = BO,

furnishes a rectangular hyperbola when 6 is fixed or constant.

The law as set forth in the above equation shows that the volume

of a gas, v, varies inversely as the pressure, p, and directly as the

temperature, 0. For any assigned value of 0, we can obtain a

series of values of p and v. For the sake of simplicity, let the

constant B - 1. Then if

0=1

**.. M ^ M M M
etc .

The "curves" of constant temperature obtained by plotting

these numbers are called isothermals. Each isothermal (i.e.,

curve at constant temperature) is a rectangular hyperbola obtained

from the equation pv = BO = constant, similar to (2), above.

A series of isothermal curves, obtained by putting successively

equal to V 2, S
. . . and plotting the corresponding values of

p and v, is shown in Fig. 29.

We could have obtained a series of curves from the variables

p and 0, or v and 0, according as we assume v or p to be constant.

If v be constant, the resulting curves are called isometric lines,

or isochores ;
if p be constant the curves are isopiestic lines,

or isobars.

II. Exposure formula for a thermometer stem. When a ther-

mometer stem is not exposed to the same temperature as the

p= 0-1,
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bulb, the mercury in the exposed stem is cooled, and a small

correction must be made for the consequent contraction of the

mercury exposed in the stem. If x denotes the difference between

the temperature registered by the thermometer and the tempera-

p

Fig. 29. Isothermal ^w-curves.

ture of the exposed stem, y the number of thermometer divisions

exposed to the cooler atmosphere, then the correction can be

obtained by the so-called exposure formula of a thermometer,

namely,
= 0-00016^,

which has the same form as equation (2), page 110. By assuming
a series of suitable values for (say 0*1 ... )

and plotting the

results for pairs of values of x and y, curves are obtained for use

in the laboratory. These curves allow the required correction to

be seen at a glance.

III. Dissociation curves. Gaseous molecules under certain

conditions dissociate into similar parts. Nitrogen peroxide, for

instance, dissociates into simpler molecules, thus :

N2 4 -2N02
.

Iodine at a high temperature does the same thing, I
2 becoming 21.

In solution a similar series of phenomena occur, KC1 becoming
K + 01. and so on. Let x denote the number of molecules of an
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acid or salt which dissociate into two parts called ions
; (1

-
x)

the number of molecules of the acid, or salt resisting ionization ;

c the quantity of substance contained in unit volume, that is the
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during the change, we have isothermal elasticity, while if the

change takes place without gain or loss of heat, adiabatic elas-

ticity. If unit volume of

gas, v, changes by an P

amount dv for an increase

of pressure dp, the elastic-

ity, E, is

E = - = - vdp
dv (i)

A similar equation can be

obtained by differentiating

Boyle's law,pv = constant,

for an isothermal change
of state. The result is

that

dp
V dv (2)

M T

Fig. 31. pv-curves.

an equation identical with that deduced for the definition of volume

elasticity. The equation pv = constant is that of a rectangular

hyperbola referred to its asymptotes as axes.

Let P(p, v) (Fig. 31) be a point on the curve pv = constant.

In constructing the diagram the triangles ENP and PMT were

made equal and similar (Euclid, i., 26). See Ex. (2) page 108, and

note that EN is the vertical subtangent equivalent to -. p.

EN = - NP tan a = - v tan EPN = - v-,

that is to say, the isothermal elasticity of a gas in any assigned

condition, is numerically equal to the vertical subtangent of the

curve corresponding to the substance in the given state.

But since in the rectangular hyperbola EN = PM, the iso-

thermal elasticity of a gas is equal to the pressure (2). The

adiabatic elasticity of a gas may be obtained by a similar method

to that used for equation (1).
If the gas be subject to an adia-

batic change of pressure and volume it is known that

pV
y = constant = G. . ... (3)

Taking logarithms, (3) furnishes log #> + y log v = log C. By
differentiation and rearrangement of terms, we get
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in other words the adiabatic elasticity
1 of a gas is y times the

pressure. A similar construction for the adiabatic curve furnishes

EN : PM = KP : PT = y : 1,

that is to say, the tangent to an adiabatic curve is divided at the

point of contact in the ratio y : 1.

Examples. (1) Assuming the Newton-Laplace formula that the square
of the velocity of propagation, V, of a compression wave (e.g., of sound) in a

gas varies directly as the adiabatic elasticity of the gas, E^, and inversely as

the density, p, or T2 oc E^jp ; show that 72 oc yRT. Hints : Since the com-

pression wave travels so rapidly, the changes of pressure and volume may be

supposed to take place without gain or loss of heat. Therefore, instead of

using Boyle's law, pv = constant, we must employ pvi = constant. Hence

deduce yp = v . dp/dv = E$. Note that the volume varies inversely as the

density of the gas. Hence, if

T2 oc E^/p oc E$v oc ypv oc yRT. .... (5)

(2) R. Mayer's equation, page 82 and (5) can be employed to determine

the two specific heats of any gas in which the velocity of sound is known.

Let a be a constant to be evaluated from the known values of R, T, "P,

.-. Cv = i2/(l
-

a), and Cp - aCv (6)

Boynton has employed van der Waals' equation in place of Boyle's. Per-

haps the reader can do this for himself. It will simplify matters to neglect

terms containing magnitudes of a high order (see W. P. Boynton, Physical

Review, 12, 353, 1901).

$2. Polar Coordinates.

Instead of representing the position of a point in a plane in

terms of its horizontal and vertical distances along two standard

lines of reference, it is sometimes more convenient to define the

position of the point by a length and a direction. For example, in

Fig. 32 let the point be fixed, and Ox a straight line through 0.

Then, the position of any other point P will

be completely defined if (1) the length OP
and (2) the angle OP makes with 0x

}
are

known. These are called the polar coordin-

ates of P, the first is called the radius

vector, the latter the vectorial angle. The

Fig. 32. Polar Co- radius vector is generally represented by the
ordinates.

symbol r, the vectorial angle by 0, and P is

called the point P(r, 0), is called the pole and Ox the initial line.

As in trigonometry, the vectorial angle is measured by supposing

i From other considerations, Eq is usually written E$.
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the angle has been swept out by a revolving line moving from

a position coincident with Ox to OP. It is positive if the direction

of revolution is contrawise to the motion of the hands of a clock.

To ohange from polar to rectangular coordinates and vice versd.

In Fig. 33, let (r, 0) be the polar coordinates of the point P(x, y).

Let the angle x'OP - 0.

I. To pass from Cartesian to polar coordinates.

. MP y OM x,sm 6 = ^p
= -

; cos 6 =
-gp

= -
>

.-. y = rsinfl and x = rcos0, .

which expresses x, and y, in terms of r and 0.

(i)

Examples. (1) Transform the equation x2 - y
2 = 3 from rectangular to

polar coordinates, pole at origin. Ansr. r2cos 20 = 3. Hint. Cos2 - sin2 =
cos 29.

K
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tantf =
MP y,
0M~ x'

r2 = (OPf = (OM)
2 + (MPf .

.-. = tan" 1^; r = V

;2 + ^2

a;^ + y
l

(3)

which expresses 0, and r, in terfhs of x and ?/. The sign of r is

ambiguous, but, by taking any particular solution for 6, the pre-

ceding remarks will show which sign is to be taken.

Just as in Cartesian coordinates, the graph of a polar equation

may be obtained by assigning convenient values to (say 0, 30,

45, 60, 90 . .
.)
and calculating the corresponding value of r from

the equation.

Examples. (1) What are the rectangular coordinates of the points (2, 60),

and (2, 45) respectively? Ansr. (1, \/3), and {J2, \/2).

(2) Express the equation r = m cos in rectangular coordinates. Ansr.

x2 + y
2 = mx. Hint. Cos 6 = x\r ;

.*. r2 = mx, eto.

Polar coordinates are particularly useful in astronomical and

geodetical investigations. In meteorological charts the relation

between the direction of the wind, and the height of the barometer,

or the temperature, is often plotted in polar coordinates. The

treatment of problems involving direction in space, displacement,

velocity, acceleration, momentum, rotation, and electric current

are often simplified by the use of vectors. But see O. Henrici

and G. C. Turner's Vectors and Botors, London, 1903, for a simple

exposition of this subject.

43. Spiral Curves.

The equations of the spiral curves are considerably simplified

by the use of polar coordinates. For in-

stance, the curve for the logarithmic spiral

(Fig. 35), though somewhat complex in

Cartesian coordinates, is represented in

polar coordinates by the simple equation

r = cfi, . . (1)

where a has a constant value. Hence

log r = 6 log a,

35) be a series of points on the spiral cor-

FiG. 35. Logarithmic
Spiral.

Let 0, V G2 ,
. . . (Fig

responding with the angles V

rlf r9 ,
. . . Hence,

0, and the radii vectores
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log r
x
=

l log a
; log r

2
=

2 log a . . .

Since log a is constant, say equal to k,

2

that is, the logarithm of the ratio of the distance of any two points

on the curve from the pole is proportional to the angle between

their radii vectores. If r
Y
and r

2
lie on the same straight line, then

0!- 2
= 2tt = 360; and log^ =

2&7T,
r
2

7r being the symbol used, as in trigonometry, to denote 180.

Similarly, it can be shown that if r
3 ,

r
4 ... lie on the same

straight line, the logarithm of the ratio of r
x
to r

3 ,
r
4 . . . is given by

4Zc7r, 6&7r This is true for any straight line passing through

; and therefore the spiral is made up of an infinite number of

turns which extend inwards and outwards without limit.

If the radii vectores OG, OD, OE . . . OGv OD1
... be 'taken to

represent the number of vibrations of a sounding body in a given

time, the angles GOD, DOE . . . measure the logarithms of the

intervals between the tones produced by these vibrations. A point

travelling along the curve will then represent a tone continuously

rising in pitch, and the curve, passing successively through the

same line produced, represents the passage of the tone through
successive octaves The geometrical periodicity of the curve is

a graphical representation of the periodicity perceived by the ear

when a tone continuously rises in pitch.

This diagram may also be used to illustrate the Newlands-

Mendeleeff law of octaves, by arranging the elements along the

curve in the order of their atomic weights. E. Loew (Zeit. phys.

Chem., 23, 1, 1897) represents the atomic weight, W, as a function

of the radius vector, r, and the vectorial angle, : W =
f(r, 0), so

that r = = JW. He thus obtains W = rO. This curve is the

well-known Archimedes' spiral. If r is any radius vector, the

distances of the points Pv P
2 ,
P

3 ,
. . . from are

r
2
= r + 7T

; r
A
= r + Sir ;

r
6
= r + 6w ; . . .

r3 = r + 2tt
;
r
5
= r + 4*r

;
r
7
= r + 6?r ; . . .

Examples. (1) Plot Archimedes' spiral, r = ad
;
and show that the re-

volutions of the spiral are at a distance of 2air from one another.

(2) Plot the hyperbolic spiral, rd = a
;
and show that the ratio of the

distance of any two points from the pole is inversely proportional to the

angles between their radii vectores.



118 HIGHEK MATHEMATICS. 44.

$4. Trilinear Coordinates and Triangular Diagrams.

Another method of representing the position of a point in a

plane is to refer it to its perpendicular distance from the sides of a

triangle called the triangle of reference.

The perpendicular distances of the

point from the sides are called tri-

linear coordinates. In the equi-

lateral triangle ABG (Fig. 36), let the

perpendicular distance of the vertex A
from the base BG be denoted by 100

units, and let p be any point within the

B triangle
whose trilinear coordinates are

Pig. 36. Trilinear Coordinates. Pa> Pb > Pc
>
tnen

pa + pb + pc = 100.

This property
1 has been extensively used in the graphic repre-

sentation of the composition of certain ternary alloys, and mixtures

of salts. Each vertex is supposed to represent one constituent of

the mixture. Any
0CO3 point within the tri-

angle corresponds to

that mixture whose

percentage composi-
tion is represented by
the trilinear coordin-

ates of that point.

Any point on a side of

the triangle represents

a binary mixture.

Fig, 37 shows the

melting points of ter-

nary mixtures of iso-

morphous carbonates

Such a diagram is sometimes

BaC0 3

Fig. 37. Surface of Fusibility,

of barium, strontium and calcium.

SrC0 3

called a surface of fusibility. A mixture melting at 670 may

1 It is not difficult to see this. Through p drawpG parallel to AG cutting AB at

G
; through G draw GK parallel to BG cutting AD at F, and AG at K\ produce the

line ap until it meets GK at E ; draw GH perpendicular to AG. Now show that

AF = HG = pb ;
that pE = pc ;

that 1)F =pc + pa ;
and that DA = pa + pb + pc.
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have the composition represented by any point on the isothermal
curve marked 670, and so on for the other isothermal curves.

In a similar way the composition of quaternary mixtures has
been graphically represented by the perpendicular distance of a

point from the four sides of a square.

Roozeboom, Bancroft and others have used triangular diagrams
with lines ruled parallel to each other as shown in Fig. 38. Sup-

B

A

Fig. 38. Concentration-Temperature diagram.

pose we have a mixture of three salts, A, B, C, such that the three

vertices of the triangle ABC represent phases
x

containing 100 / of

each component. The composition of any binary mixture is given

by a point on the boundary lines of the triangle, while the com-

position of any ternary mixture is represented by some point inside

the triangle.

The position of any point inside the triangle is read directly
from the coordinates parallel to the sides of the triangle. For

instance, the composition of a mixture represented by the point

is obtained by drawing lines from parallel to the three sides of

the triangle OP, OB, OQ. Then start from one corner as origin

and measure along the two sides, AP fixes the amount of C, AQ

1 A phase is a mass of uniform concentration. The number of phases in a system
is the number of masses of different concentration present. For example, at the tem-

perature of melting ice three phases may be present in the H20-system, viz., solid ice,

liquid water and steam
;

if a salt is dissolved in water there is a solution and a vapour

phase, if golid salt separates out, another phase appears in the system.
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>

the amount of B, and, by difference, CB determines the amount A.

For the point chosen, therefore A = 40, B = 40, G = 20.

(i) Suppose the substance A melts at 320, B at 300, and G at 305, and
that the point D represents an eutectic alloy

* of A and C melting at 215
;

E
y of an eutectic alloy of A and B melting at 207 ; F, of an eutectic alloy of

B and C melting at 268.

(ii) Along the line DO, the system A and G has a solid phase ; along EO,
A and B have a solid phase ;

and along FO, B and G have a solid phase.

(iii) At the triple point O, the system A, B and G exists in the three-solid,

solution and vapour-phases at a temperature at 186 (say).

(iv) Any point in the area ADOE represents a system comprising solid,

solution and vapour of A, in the solution, the two components B and C are

dissolved in A. Any point in the area CDOF represents a system comprising

solid, solution and vapour of C, in the solution, A and B are dissolved in C.

Any point in the area BEOF represents a system comprising solid, solution

and vapour of B, in the solution, A and G are dissolved in B.

Each apex of the triangle not only represents 100 / of a substance, but

also the temperature at which the respective substances A, B, or C melt
;

D, E, F also represent temperatures at which the respective eutectic alloys

melt. It follows, therefore, that the temperature at D is lower than at either

A or C. Similarly the temperature at E is lower than at A or Bt
and at F

lower than at either B or G. The melting points, therefore, rise as we pass
from one of the- points D, E, F to an apex on either side.

For details the reader is referred to W. D. Bancroft's The Phase Bute,

Ithaca, 1897.

45. Orders of Curves.

The order of a curve corresponds with the degree of its equa-

tion. The degree of any term may be regarded as the sum of the

exponents of the variables it contains
;
the degree of an equation

is that of the highest term in it. For example, the equation

xy + x + b3
y = 0, is of the second degree if b is constant ; the

equation xz + xy = 0, is of the third degree ;
x2
yz

s + ax = 0, is of

the sixth degree, and so on. A line of the first order is repre-

sented by the general equation of the first degree

ax + by + c = (1)

This equation is that of a straight line only. A line of the second

order is represented by the general equation of the second degree

between two variables, namely,
ax2 + bxy + oy

2 + fx + gy + h = 0. . . (2)

1 An eutectic alloy is a mixture of two substances in such proportions that the

alloy melts at a lower temperature than a mixture of the same two substances in any
other proportions.
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This equation includes, as particular oases, every possible form of

equation in which no term contains x and y as factors more than

twice. The term bxy can be made to disappear by changing the

direction of the rectangular axes, and the terms containing fx and

gy can be made to disappear by changing the origin of the co-

ordinate axes. Every equation of the second degree can be made
to assume one of the forms

ax2 + cy
2 - h, or, y

2 = fx. . . . (3)

The first can be made to represent a circle,
1

ellipse, or hyperbola ;

the second a parabola. Hence every equation of the second degree
between two variables includes four species of curves circle,

ellipse, parabola and hyperbola.

It must be here pointed out that if two equations of the first

degree with all their terms collected on one side be multiplied

together we obtain an equation of the second degree which is

satisfied by any quantity which satisfies either of the two original

equations. An equation of the second degree may thus represent

two straight lines, as well as one of the above species of curves.

The condition that the general equation of the second degree

may represent two straight lines is that

(bg
-

2c/)
2 =

(b
2 -

lac) (g
2 -

ch). . . (4)

The general equation of the second degree will represent a

parabola, ellipse, or hyperbola, according as b2 - 4ac, is zero,

negative, or positive.

Examples. (1) Show that the graph of the equation

2a2 - lOxy + 12y
2 + 5x - 16y - 3 = 0,

represents two straight lines. Hint. a=2
;
6= -10 ; e=12 ; /=5 ; g= - 16 ;

h = - 3
; (bg

-
2c/)

2 - 1600
; (o

2 -
4ac) (g

2 -
ch) = 1600.

(2) Show that the graph of a?
3 - 2xy + y

2 - 8x + 16 = represents a

parabola. Hint. From (2), 62 - 4ac = - 2 x - 2 - 4 x 1 x 1 = 0.

(3) Show, that the graph of x2 - 6xy + y* + 2x + 2y + 2 = represents

a hyperbola. Here 62 - 4ac = - 6 x - 6 - 4 x 1 x 1 = 32.

46. Coordinate Geometry in Three Dimensions. Geometry
in Space.

Methods have been described for representing changes in the

state of a system involving two variable magnitudes by the locus

of a point moving in a plane according to a fixed law defined by

1 The circle may be regarded as an ellipse with major and minor axes equal.
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the equation of the curve. Such was the ^w-diagram described on

page 111. There, a series of isothermal curves were obtained, when
was made constant during a set of corresponding changes of p

and v in the well-known equation pv = BO.

When any three magnitudes, x, y, z, are made to vary together
we can, by assigning arbitrary values to two of the variables, find

corresponding values for the third, and refer the results so obtained

to three fixed and intersecting planes called the coordinate planes.
Of the resulting eight quadrants, four of which are shown in

Fig. 39, only the first is utilized to any great extent in mathe-

matical physics. This mode of graphic representation is called

geometry in space, or geometry in three dimensions. The lines

formed by the intersection of these planes are the coordinate

axes. It is necessary that the student have a clear idea of a few

properties of lines and surfaces in working many physical problems.

If we get a series of sets

of corresponding values of x,

y, z from the equation
x + y = z,

and refer them to coordinate

axes in three dimensions, as

described below, the result is a

plane or surface. If one of

the variables remains constant,

the resulting figure is a line.

A surface may, therefore, be

considered to be the locus of

Fig. 39. Cartesian Coordinates Three a line moving in space.

I. To find the point whose

coordinates OA, OB, OC are given. The position of the point P
with reference to the three coordinate planes xOy, xOz, yOz (Fig.

39) is obtained by dropping perpendiculars PL, PM, PN from

the given point on to the three planes. Complete the parallelo-

piped, as shown in Fig. 39. Let OP be a diagonal. Then LP
= OA, PN = BO, MP = OC. Draw three planes through A, B,

C parallel respectively to the coordinate planes ; the point of

intersection of the three planes, namely P, will be the required

point.

If the coordinates of P, parallel to Ox, Oy, Oz, are respectively

x, y and z, then P is said to be the point x, y, z. A similar con-
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vention with regard to the sign is used as in analytical geometry of

two dimensions. It is conventionally agreed that lines measured

from below upwards shall be positive, and lines measured from

above downwards negative; lines measured from left to right

positive, and from right to left negative ;
lines measured inwards

from the plane of the paper are negative, lines measured towards

the reader are positive.

If a watch be placed in the plane xy with its face pointing up-

wards, towards + z, the hands

of the watch move in a negative

direction
;

if the watch be in the

xz plane with its face pointing

towards the reader, the hands

also move in a negative direction.

II. To find the distance of a

point from the origin in terms of

the rectangular coordinates of
that point. In Fig. 40, let Ox,

Oy, Oz be three rectangular axes,

P(x, y, z) the given point such

that MP = z, AM =
y, OA = x.

OP r, say.

OP2 = OM2 + MP2
; or, r2 = OM2 + z\

but OM2 = AM* + OA 2 = x2 + y
2

.

.-. r2 = x2 + y
2 + z2 . . . (1)

In words, the sum of the squares of the three coordinates of a

point are equal to the square of the distance of that point from the

origin.

Example. Find the distance of the point (2a,
- 3a, 6a) from the origin.

Hint, r = \/4a2 + 9a2 + 36a2 = la.

Let the angle AOP = a
; BOP =

/? ;
POG =

y, then

x = r cos a ; y = r cos (3; z = r cos y. .

B "M

Fig. 40.

It is required to find the distance

(2)

These equations are true wherever the point P may lie, and

therefore the signs of x, y, z are always the same as those of cos a,

cos (3, cos y respectively. Substituting these values in (1), and

dividing through by r2
,
we get the following relation between the

three angles which any straight line makes with the coordinate axes
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COS2a + COS2
^S + COS2

y ml.-. . . (3)

The cosines of the angles a, /?, y which the given line makes

with the axes x, y, z respectively are called the direction

cosines, and are often symbolized by the letters l
t in, n. Thus

(3) becomes

P + m2 + n2 = 1.

If we know r, cos a, cos ft,
and cos y we are able to fix the

position of the point. If a, b, c are proportional to the direction

cosines of some line, we can at once find the direction cosines-

For, from page 23, if

I: a = m : b = n : c
;

. . I = ra\ m= rb
;
n = re.

Substitute in the preceding equation, and we get at once

a b c
I

Ja2 + ftl + &
m m n =

Ja2 + b2 + c2
'

Ja2 + b2 + c2

Example. The direction cosines of a line are proportional to 3,
- 4,

and 2. Find their values. Ansr. 3 n^, - 4 J~fo, 2 *Jfa. Hint, a=3, b= - 4,

c=2.

III. To find the distance between two points in terms of their

rectangular coordinates. Let P
1 (xv

yv ^i),P2(x2 , Vz* z<i)
^e tne given points,

it is required to find the distance P
1
P

2

in terms of the coordinates of the

points Pj and P
2

. Draw planes

through P1
and P

2 parallel to the

coordinate planes so as to form the

parallelepiped ABCDE. Join P2
E.

By the construction (Fig. 41), the

angle P
Y
EP

2
is a right angle.

Fio. 41. Hence

(PX
P

2)
2 = (P.E)

2 + (P2E)
2 = (P.E)

2 + (ED)
2 + (P2D)

2
.

But PY
E is evidently the difference of the distance of the foot of

the perpendiculars from P
x
and P2

on the #-axis, or P
X
E = x

2
- xv

Similarly, ED = y2
- y1 ;

P
2
D m *s

- zv Hence

r2 - (x2
-

x,)
2 + (y2

- y,f+ (z
2 -

z,)
2

. W
Example. Find the distance between the points (3, 4,

-
2) and (4,

-
3, 1).

Here x
}
= 4

; yx
= - 3

;
z
x
= 1

; x., = 3
; y2

= 4
; 2

= - 2. Ansr. r = \/59.
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IV. Polar coordinates. Instead of referring the point to its

Cartesian coordinates in three dimen-

sions, we may use polar coordinates.

Let P (Fig. 42) be the given point

whose rectangular coordinates are x, y,

z
;
and whose polar coordinates are r,

6, <f>, as shown in the figure.

I. To pass from rectangular to

jiolar coordinates. (See page 96.)

x = OA = OMooBcf> - rsin#.cos<M

y = AM = OMsin< = rsin0.sin<l (5)

z = MP = r cos 6. J

II. To pass from polar to rectangu-
Fig.

42^
-Polar Coordinates in

r J r v Three Dimensions.
lar coordinates.

r = J{a? + y* + z2
) ;

$ - tan ^x/C^+j/!) < = tan -'I (6)

Examples. (1) Find the rectangular coordinates of the point (3, 60, 30)
Ansr. (|, n/3,$).

(2) Find the polar coordinates of the point (3, 12, 4). Ansr. The point

(13, tan
" 1

i n/153, tan
-
H).

According to the parallelogram of velocities,
"

if two com-

ponent velocities OA, OB (Fig. 43) are represented in direction and

magnitude by two sides of a parallelogram drawn from a point, 0,

the resultant velocity can be represented in direction and magni-
tude by the diagonal, OP, of the parallelogram drawn from that

point". The parallelopiped of velocities is

an extension of the preceding result into three

dimensions. "
If three component velocities

are represented in direction and magnitude by
the adjacent sides of a parallelopiped, OA, OC,
OB (Fig. 42), drawn from a point, 0, their

resultant velocity can be represented by the

diagonal of a parallelopiped drawn from that point." Conversely, if

the velocity of the moving system is represented in magnitude and

direction by the diagonal OP (Fig. 42) of a parallelopiped, this can

be resolved into three component velocities represented in direction

and magnitude by three sides x, y, z of the parellelopiped drawn

from a point.

We assume that if any contradictory facts really existed we

x-component

Fig. 43. Parallelo-

gram of Velocities.



y
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Hence dyjdt = % x 20 = + 10. Or the ordinate increases or decreases at

the rate of 10 ft. per sec.

(3) Let a particle move with a velocity V in space. From the parallelo-

piped of velocities, I7
"

can be resolved into three component velocities V
lt
V2 ,

V3 ,

along the x-, y- and s-axes respectively. Hence show that

dx _ V dy - V dz - V to\
di- Vl 'di-

v
*'di-

y ' ' ' (y)

which may be written

dx = d{VJ + x
) ; dy = d{V2t + yQ) ;

dz = d{V,t + z
), . (10)

where x , y ,
z are constants. Hence we may write the relation between the

space described by the particles in each dimension and the time as

x = V,t + x
; y = V2t + y ;

z = Vz t + z . . . . (11)

Obviously x
, y ,

* are the coordinates of the initial position of the particle

when t = 0. Hence xa , y0i z are to be regarded as constants.

If the reader cannot follow the steps taken in passing from (9) to (11), he

can take Lagrange's advice to the student of a mathematical text-book :
" Allez

en avant, et la foi vous viendra," in other words,
"
go on but return to strengthen

your powers. Work backwards and forwards ".

Obviously, xQ , yQ ,
z represent the positions of the particle at the beginning

of the observation, when t = 0. Let s denote the length of the path traversed

by the particle at the time t, when the coordinates of the point are x, y and z.

Obviously, by the aid of Fig. 41,

s . J(x - x )* + (y- y ) + (z- z )*; or, s = s/Vf+Vf+V* .t,

from (11). s can therefore be determined from the initial and final positions

of the particle.

57. Lines in Three Dimensions.

I. To find the angle between two straight lines whose direction

cosines are given. Join OP
l (Fig. 41) and OP

2
. Let

if/
be the

angle between these two lines. In the triangle P2OP1
if OP

x
= rv

OP
2
= r

2 ,
P

X
P

2
= T, we get from the properties of triangles given

on page 603,

r2 = r
x

2 + r
2
2 - 2r^2 eos f.

Rearranging terms and substituting for r
Y
and r

2
in (1), we obtain

r
x
2 = x* + yi

* + z* ;
r
2
2 = z

2
2 + y2

* + %*,

x
x
x

2 + yYy2 + z
x
z
2

.'. cos f =
r
l
r
2

We can express this another way by substituting,

x
Y
= r

Y
cos

ttj ;
x
2
= r

2 cos a
2 ; y2

= r
2
cos fi2 . . . ,

as in (2), and we obtain

COS
if/
= COS a

x
. COS a

2 + COS /?x . COS {32 + COS yx
. COS y2 (12)
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or, cos
\J/
= l

Y
l
2 + mim.z + n

xn^ . . (13)

where
\f/ represents the angle between two straight lines whose

direction cosines are known.

(i) When the lines are perpendicular to one another, if/
= 90,

.'. cosi/r
= oos90 = 0, and therefore

COS
<*!

. COS a
2 + COS /3X . COS fi2 + COS y1

. COS y2
= 0, (14)

or, x
x
x
2 + yYy2 + z

x
z
2
= 0.

(ii)
If the two lines are parallel,

i
= a

2 ; A = & ; ti
= y2 (

15
)

Examples. (1) Find the acute angle between the lines whose direction

cosines are \ V3, J, \ V3, and \ \/3, \ y
-
\ s/'S. Hint. ^= l2

= \ \/3 ; m^ =w2
=

;

n1
= bs/W\ nt

= -
%>J3. Use (13). Cos

if,
= -

; .-.
//
= 60.

(2) Let 7
lt 72,

73 be the velocity components (page 125) of a particle

moving with the velocity 7; let o, , 7 be the angles which the path described

by the moving particle makes with the x- % y- and s-axes respectively, then

show
, , dxldt 1 dx ..,_.
ds . 00s a = dz; .-.

tefjrrm = cos a. . . . (16)

Hence,

71
=^-7ooBa;7a

=
^-7oo8iB; 73

=
^=Fcos 7 ; . (17)

and consequently, from (3),

7 = ds/dt = s]V* + 72
2 + 73

2
(18)

The resolved part of 7 along a given line inclined at angles au &iy yx
to the

axes will be

7cos^= 71 cosa1 + FaCosjSi + 730037^ . . (19)

where ty denotes the angle which the path described by the particle makes

with the given line. Hint. Multiply (12) by 7, etc.

(3) To find the direction of motion of the particle moving on the line s

(i.e., r of Fig. 40). Let a, , 7 denote the angles made by the direction of s

with the respective axes x, y, e. With the same notation,

008 a = ^-^-
; cosj8 = ^-^; cos 7 = *-ZJ*

m . . (20)
s s

'
s

x '

Now introduce the values of x - x , y - yQ1 and of z - z from (20), and show

that

cos a : cos /8 : cos 7 = VY : 72 : 73. . . . (21)

II. Projection. If a perpendicular be dropped from a given

point upon a given plane the point where the perpendicular touches

the plane is the projection of the point P upon that plane. For

instance, in Fig. 39, the projection of the point P on the plane

xOy is M, on the plane xOz is N, and on the plane yOz is L.
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Similarly, the projection of the point P upon the lines Ox, Oy, Oz
is at A, B and G respectively.

Fig. 45. Projecting Plane. Fig. 46.

In the same way the projection of a curve on a given plane
is obtained by projecting every point in the curve on to the plane.

The plane, which contains all the perpendiculars drawn from the

different points of the given curve, is called the projecting plane.
In Fig. 45, CD is the projection of AB on the plane EFG; ABCD
is the projecting plane.

12

Fig. 47.

Examples. (1) The projection of any given line on an intersecting line

is equal to the product of the length of the given line into the cosine of the

angle of intersection. In Fig. 46, the projection of AB on CD is AE, but

AE = AB cos 0.

(2) In Fig. 47, show that the projection of OP on OQ is the algebraic sum
of the projections of OA, AM, MP, taken in this order, on OQ. Hence, if

OA = x,OB = AM = y, OC = PM = z and OP = r, from (12)

r cos \p
= x cos a + y cos & + z cos y. (22)

III. The equation of a straight line in rectangular coordinates.

Suppose a straight line in space to be formed by the intersection of

two projecting planes. The coordinates of any point on the line

of intersection of these planes will obviously satisfy the equation of

I
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Fig. 48.

each plane. Let ab, a'b' be the projection of the given line AB on

the xOz (where y =
0) and the yOz

(where # = 0) planes, then (Fig. 48),

x = mz + c
; y = m'z + c' (23)

Of the fonr independent constants,

m represents the tangent of the

angle which the projection of the

given line on the xOz plane makes

with the #-axis ; m' the tangent
of the angle made by the line pro-

jected on the yOz plane with the

2/-axis ; c is the distance intercepted

by the projection of the given line

along the #-axis ;
c' a similar intersection along the ?/-axis. Hence

we infer that two simultaneous equations of the first degree re-

present a straight line.

Example. The equations of the projections of a straight line on the

coordinate planes xz and zy are x = 2z + 3, and y = Sz - 5. Show that the

equation of the projection on the xy plane is 2y = 3x - 19. c' = - 5
;
c = 3 ;

m = 2
;
m' = 3

;
eliminate z

;
etc. Ansr. 2y - 3x + 19 = 0.

If, now, a particular value be assigned to either variable in

either of these equations, the value of the other two can be readily

calculated. These two equations, therefore, represent a straight

line in space.

The difficulties of three-dimensional geometry are greatly les-

sened if we bear in mind the relations previously developed for

simple curves in two dimensions. It will be obvious, for instance,

from page 94, that if the straight line is to pass through a given

point (xv yv iJ, the coordinates of the given point must satisfy the

equations of the curve. Hence, from (23), we must also have

iPj
= mz

l + c ; yx
= m!z

x + c'. . . (24)

Subtracting (24) from (23), we get

x - x
x
= m(z - z

x) ; y - y1
= m'(z

- zj . (25)

which are the equations of a straight line passing through the

point xv yv z
x

.

If the line is to pass through two points xv yv zv and

#2 > y2 >
zv we &et >

by tlie metn d of page 94,

s - x
i = x

2
~ x

i . y ~
Vi = V2 -Vi

t \
/26)
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which are the equations of the straight line passing through the

two given points.

Example. Show that the equations x + 8z = 19
; y = lOz - 24 pass

through the points (3,
-

4, 2) and
(
-

5, 6, 3).

If x, y, z denote the coordinates of any point A on a given

straight line ; and xv yv zv the known coordinates of another point
P on the straight line such that the distance between A and P is r,

then it. can be shown that the equation of the line assumes the

symmetrical form : r =

x-x
1 = y_1 y1 = z_^zi _

*

I m n v

where Z,
m and n are the direction cosines of the line. This equa-

tion gives us the equation of a straight line in terms of its direction

cosines and any known point upon it. (27) is called the sym-
metrical equation of a straight line.

Example. If a line makes angles of 60, 45, and 60 respectively with

the three axes x, y and z, and passes through the point (1,
-

3, 2), show that

the equation of the line is x - 1 = sl\{y + 3) = z - 2. Hint. Cos 60 =
;

cos45 = \/J7

If the two lines

x = m
x
z + c

1 ; y = m{z + c/ ; . . (28)

x = m
2
z + c

2 ; y = m2
'z + c

2', . . (29)

intersect, they must have a point in common, and the coordinates

of this point must satisfy both equations. In other words, x, y
and z will be the same in both equations x of the one line is equal
to x of the other.

.-. (m1
- m

2)z + g
x
- c

2
= 0, . . (30)

(mx

' - m
2 )z + Cj'

- c
2
= 0. . . (31)

But the z of one line is also equal to z of the other, hence, if

the relation

W - G2) K -
2)
= K - c

2) K' -
>2)> (32)

subsists the two lines will intersect.

Example. Show that the two lines x= Sz+ 7, y=5z+8; &ndx=2z+ 3.

y = z + 4 intersect. Hint. (8
-

4) (3
-

2) = (7
-

3) (4
-

3).

The coordinates of the point of intersection are obtained by

substituting (30) or (31) in (28), or (29). Note that if m
1
= m{ or

m
2
= m

2 ,
the values of x, y and z then become infinite, and the

two lines will be in parallel planes ;
if both m

l
= m and m

2
= m2',

they will be parallel.
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58. Surfaces and Planes.

L To find the equation of a plane surface in rectangular co-

ordinates. Let ABC (Fig.

49) be the given plane
whose equation is to be

determined. Let the

given plane cut the co-

ordinate axes at points

A, B, C such that OA = a,

OB = b, OC = c. From

.* any point P(x, y, z) drop
the perpendicular PM on

to the yOx plane. Then

OA' = x
y
MA' = y and

MP = z. It is required to find an equation connecting the co-

ordinates x, y and z respectively with the intercepts a, b, c. From
the similar triangles AOB, AA'B\

OA:BO = A'A : B'A'
; or, a : b = a - x : B'A',

Fig. 49.

B'A' = b - -
;
also B'M = B'A'

a
MA' = b V

bx

a
'

Again, from the similar triangles COB, C'A'B', PMB', page 603,

OC'.BO = MP: B'M;

or, c:b = z \b - y
bx _ _ bcx
-; .:bz = bc-cy-.

Divide through by be
; rearrange terms and we get the intercept

equation of the plane, i.e., the equation of a plane expressed in

terms of its intercepts upon the three axes :

x y z- + | + - = l
a b c

' (33)

an equation similar to that developed on page 90. In other words,

equation (33) represents a plane passing through the points (a, 0, 0),

(0, b, 0), (0, 0, c).

If ABC (Fig. 49) represents the face, or plane of a crystal, the intercepts

a, b, c on the x-, y- and s-axes are called the parameters of that plane. The

parameters in crystallography are usually expressed in terms of certain axial

lengths assumed unity. If OA = a, OB= b, OC = c, any other plane, whose
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intercepts on the x-, y- and s-axes are respectively p, 2 and r, is defined by
the ratios

a b c

p'q-r
These quotients are called the parameters of the new plane. The reciprocals

of the parameters are the indices of a crystal face. The several systems of

crystallographic notation, which determine the position of the faces of a

crystal with reference to the axes of the crystal, are based on the use of

parameters and indices.

We may write equation (33) in the form,

Ax + By + Gz + D = 0, . . (34)

which is the most general equation of the first degree between

three variables. Equation (33) is the general equation of a

plane surface. It is easily converted into (34) by substituting

Aa + D - 0, Bb + D - 0, Cc + D = 0.

Examples. (1) Find the equation of the plane passing through the three

points (3, 2, 4), (0, 4, 1), and (- 2, 1, 0). Ansr. 11a; - Sy - ldz + 25 = 0.

Hint. From (33),

3 2 4 4 1 2 1^ 25
,

25 25

(2) Find the equation of the plane through the three points (1, 0, 0),

(0, 2, 0), (0, 0, 3). Ansr. + \y + \z = 1. Use (33) or (34).

If OQ = r (Fig. 49) be normal, that is, perpendicular to the

plane ABG, the projection of OP on OQ is equal to the sum of the

projections of OA\ PM, MA' on OQ, Ex. (2), page 129. Hence, the

perpendicular distance of the plane from the origin is

x cos a + y cos p + z cos y = r. . . (35)

This is called the normal equation of the plane, that is, the

equation of the plane in terms of the length and direction cosines

of the normal from the origin. From (34), we get

cos2a : cos2
: cos2

y = A2
: B2

: C2
;

and by componendo,
1

(C0S
2a + COS2

/? + COS2
y) ! COS2a = A2 + B2 + C2

I A2
.

But by (3), the term in brackets on the left is unity, consequently

1 If a, b, c and d are proportional, the text-books on algebra tell us that

a: b = c : d\ and it therefore follows by "invertendo" : b : a = d : c; and by

"alternando
"

: a : c = b : d ; and by
"
componendo" : a + b : b = c + d : d; and

by "dividendo" : ab:b= c-d:d; and by
" convertendo

"
: a : a-b= c: c-d

and by
"
componendo et dividendo ": ab:a+b = cd: c + d.
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the direction cosines of the normal to the plane are

A
COS a = , - ;

JA2 + B2 + G2
'

B
cos 3 =

, ;H
JA 2 + B2 + G2

'

C
COS y = ,

1
siA 2 + B2 + C2

The ambiguity of sign is removed by comparing the sign of the

absolute term in (34) and (35). Dividing equation (34) through

with + JA2 + B2 + G2
,
we can write

r =
D

. . . (36)
JA2

{
+B2 + C2

Example. Find the length of the perpendicular from the origin to the

plane whose equation is 2x - Ay + z - 8 = 0. Ansr. 8 */jf. Hint. A = 2,

B = -
4, C = 1, D = 8. Use the right member of the equation (36).

II. Surfaces of revolution. Just as it is sometimes convenient

to suppose a line to have been generated by the motion of a point,

so surfaces may be produced by a straight or curved line moving

according to a fixed law represented by the equation of the curve.

The moving line is called the generator. Surfaces produced by the

motion of straight lines are called ruled surfaces. When the

straight line is continually changing the plane of its motion, twisted

or skew surfaces surfaces gauches are produced. Such is the

helix, the thread of a screw, or a spiral staircase. On the other

hand, if the plane of the motion of a generator remains constant, a

developable surface is produced. Thus, if the line rotates round

a fixed axis, the surface cut out is called a surface of revolution.

A sphere may be formed by the rotation of a circle about a diameter ;

a cylinder may be formed by the rotation of a rectangle about one

of its sides as axis
;
a cone may be generated by the revolution

of a triangle about its axis
;
an ellipsoid of revolution, by the rota-

tion of an ellipse about its major or minor axes
;
a paraboloid, by

the rotation of a parabola about its axis. If a hyperbola rotates

about its transverse axis, two hyperboloids will be formed by the

revolution of both branches of the hyperbola. On the other hand,

only one hyperboloid is formed by rotating the hyperbolas about

their conjugate axes. In the 'former case, the hyperboloid is said

to be of two sheets, in the latter, of one sheet.
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III. To find the equation of the surface of a right cylinder.

Let one side of a rectangle rotate about

Oz as axis. Any point on the outer edge
will describe the circumference of a circle.

If P(x, y, z) (Fig. 50) be any point on

the surface, r the radius of the cylinder,

then the required equation is

.2 _ x2 + y* (37)

The equation of a right cylinder is thus

independent of z. This means that z may
have any value whatever assigned to it.

Examples. (1) Show that the equation of

a right cone is x2 + y
2 - z2t&n2

<p
= 0, where <p

represents half the angle at the apex of the

cone. Hint. Origin of axes is at apex of cone
;

let the z-axis coincide with the axis of the cone.

Find O'P'A' on the base of the cone resembling
OPA (Fig. 50). Hence show O'F = z tan

<p.
But O'P' = Jx* +

(2) The equation of a sphere is x2 + y
2 + z2 = r2 . Prove this. Centre of

sphere at origin of axes. Take a section across z-axis. Find

O'P'A'; OP'=r; {OP')
2
={00')

2
+(0'P')

2
, {0'P')

2=x2+ y
2

; (00')
2 = z2

;
etc.

The subject will be taken up again at different stages of our

work.

49. Periodic or Harmonic Motion.

Let P (Fig. 51) be a point which starts to move from a position

of rest with a uniform

velocity on the perimeter

of a circle. Let xOx', yOy'
be coordinate axes about

the centre 0. LetPV P2 ...

be positions occupied by the

point after the elapse of

intervals of tv t
2

. . . From

Pj drop the perpendicular

M^-l on to the rc-axis.

Remembering that if the

direction of M^, M2
P

2
. . .

be positive, that of M
Z
PV

M^P^ is negative, and the

motion of OP as P revolves Fig. 51. Periodic or Harmonic Motion.



136 HIGHER MATHEMATICS. 49.

about the centre in the opposite direction to the hands of a clock
is conventionally reckoned positive, then

sin a, =
+ OP

l

sin an

+M2P,
+ OP,

sin a, =
M,P,

3-+ OP,
: sm a/1

=
-MAPA

+ 0PA

'

sina4 = -M4P.

Or, if the circle have unit radius r = 1,

sin a
2
= +i^ ;

sin a
2
= + 2lf

2
P

2 ;
sin a

3
= - M

3
P.

If the point continues in motion after the first revolution, this

series of changes, is repeated over and over again. During the
first revolution, if we put tt- = 180, and let 6V 2 ,

. . . represent
certain angles described in the respective quadrants,

= 7r + a. = 2tT -

During the second revolution,

1
= 2ir + a

1 ; 2
= 2tt + (tt

- a
2) J 0,

= 2tt + (tt + a
3), etc.

We may now plot the curve

a)y = sm a

by giving a series of values 0, Jir, ftt . . . to a and finding the cor-

responding values of y. Thus if

# = a = 0,

y = sin 0, sin
fir, sm 7r,

2">

sin 3^-
2^,

2-,

sin 27r, sm -g-ir,

2/
= sin 0, sin 90, sin 180, sin 270, sin 360, sin 90, . . .

;

2/
= 0, 1, 0, -1, 0, 1,...

3rmediate values are sin J?r
= sin 45 = -707, sin f?r = -707 . . .

The curve so obtained has the wavy or undulatory appearance

+y .
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function. Its mathematical expression is

f(t)=f(t + qt) ... (2)

where q may be any positive or negative integer. In the present
case q = 2-rr. The motion of the point P is said to be a simple
harmonic motion. Equation (1) thus represents a simple harmonic

motion.

If we are given a particular value of a periodic function of,

say, t, we can find an unlimited number of different values of t

which satisfy the original function. Thus 2t, 3t, 7.'., all satisfy

equation (2).

Examples. (1) Show that the graph of y = cos o has the same form as

the sine curve and would be identical with it if the y-axis of the sine curve

were shifted a distance of r to the right. [Proof : sin (tt + x)
= cos x, etc.]

The physical meaning of this is that a point moving round the perimeter of

the circle according to the equation y = cos a is just ir, or 90 in advance of

one moving according to y = sin a.

(2) Illustrate graphically the periodicity of the function y = tan a. (Note

the passage through +' oo.) Keep your graph for reference later on.

Instead of taking a circle of unit radius, let r denote the mag-
nitude of the radius, then

y = r sin a (3)

Since sin a can never exceed the limits + 1, the greatest and least

values y can assume are - r and + r
;
r is called the amplitude

of the curve. The velocity of the motion of P determines the rate

at which the angle a is described by OP, the so-called angular

velocity. Let t denote the time, q the angular velocity,

^ = q ; or a = qt, . . . (4)

and the time required for a complete revolution is

t = 27r/g, . . . (5)

which is called the period of oscillation, the periodic value, or

the periodic time ; 2-rr is the wave length. If E (Fig. 51) denotes

some arbitrary fixed point such that the periodic time is counted

from the instant P passes through E, the angle xOE =
e, is called

the epoch or phase constant, and the angle described by OP in

the time t = qt + e = a, or

y = r sin [qt + c).
. . . . (6)

Electrical engineers call c the "lead" or, if negative, the "lag"
of the electric current.
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Examples. (1) Plot (6), note that the angles are to be measured in

radians (page 606), and that one radian is 57'3. Now let r=10, e = 30 = O52
radians. Let q denote 0-5, or ^Ve radians.

.-. y = 10 sin (0-0087* + 0-52).

If t = 10, y = 10 sin 0-61 = 10 sin 35, from a Table of Radians (Table XIII.) .

From a Table of Trigonometrical Sines, 10 sin 35 = 10 x 0*576 = 5-76 we get

the same result more directly by working in degrees. In this case,

y = 10 sin (* + 30).

If =10, we have y=10 sin 35 as before. Then we find if r=10, t= 30 =0-52

radians, and if

t = 0, 120, 300, 480, 720 ;

y = 5, 10, 0,
-

10, - 5.

Intermediate values are obtained in the same way. The curve is shown in

Fig. 53. Now try the effect of altering the value of

e upon the value of y, say, you put e = 0, 45, 60, 90,
and note the effect on Oy (Fig. 52).

(2) It is easy to show that the function

a sin (qt + e) + b cos (qt + e) . (7)

is equal to A sin (qt + e
x) by expanding (7) as indi-

um go
cated in formulae (23) and (24), page 612. Thus we

get

sin qt(a cos e - b sin e) + cos qt(b cos e + a sin
)
= A sin (qt + ej,

provided we collect the constant terms as indicated below.

A cos ex
= a cos e - b sin e

;
A sin e2

= b cos e + a sin e. . (8)

Square equations (8) and add

.-. 42 = <z
2 + bV (9)

Divide equations (8), rearrange terms and show that

fr

['-*>
= to (-) | . . . . (10)cos (e

-
cj) a v '

(3) Draw the graphs of the two curves,

y = a sin (qt + e) ;
and yl

=a
1
sin (qt + cj.

Compare the result with the graph of

y2
= a sin (qt + e) + a^ sin (qt + ej.

(4) Draw the graphs of

yx
= sin x ; y2

= sin Bx
; ys

= sin 5x ; y = sin x + | sin 3x + sin 5x.

(5) There is an interesting relation between sin x and ex . Thus, show

that if

y = a sin qt + b sin qt ; -^
= -

q*y ; ^ = gfy ; . . .

The motion of .M" (Fig. 51), that is to say, the projection of the

moving point on the diameter of the circle xOx' is a good illustra-

tion of the periodic motion discussed in 21. The motion of an
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oscillating pendulum, of a galvanometer needle, of a tuning fork,

the up and down motion of a water wave, the alternating electric

current, sound, light, and electromagnetic waves are all periodic

motions. Many of the properties of the chemical elements are also

periodic functions of their atomic weights (Newlands-Mendeleeff

law).

Some interesting phenomena have recently come to light which

indicate that chemical action may assume a periodic character.

The evolution of hydrogen gas, when hydrochloric . acid acts on

one of the allotropic forms of chromium, has recently been studied

by W. Ostwald (Zeit.

phys. Chem., 35, 33,

204, 1900). He found

that if" the rate of evo-

lution of gas evolved

during the action be

plotted as ordinate

against the time as

abscissa, a curve is

obtained which shows regularly alternating periods of slow and

rapid evolution of hydrogen. The particular form of these " waves
"

varies with the conditions of the experiment. One of Ostwald' s

curves is shown in Fig. 54 (see J. W. Mellor's Chemical Statics

and Dynamics, London, 348, 1904).

Ostwald's Curve of Chemical Action.

50. Generalized Forces and Coordinates.

When a mass of any substance is subject to some physical

change, certain properties mass, chemical composition remain

fixed and invariable, while other properties temperature, pressure,

volume vary. When the value these variables assume in any

given condition of the substance is known, we are said to have a

complete knowledge of the state of the system. These variable

properties are not necessarily independent of one another. We
have just seen, for instance, that if two of the three variables

defining the state of a perfect gas are known, the third variable

can be determined from the equation

pv = RT,

where B is a constant. In such a case as this, the third variable

is said to be a dependent variable, the other two, independent vari-
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ables. When the state of any material system can be denned in

terms of n independent variables, the system is said to possess n

degrees of freedom, and the n independent variables are called

generalized coordinates. For the system just considered n = 2,

and the system possesses two degrees of freedom.

Again, in order that we may possess a knowledge of some

systems, say gaseous nitrogen peroxide, not only must the vari-

ables given by the gas equation

<f>(p, v,T) =

be known, but also the mass of the N
2 4

and of the N0
2 present.

If these masses be respectively m1
and ra

2 ,
there are five variables

to be considered, namely,

^(p, v, T, mv m2)
= 0,

but these are not all independent. The pressure, for instance, may
be fixed by assigning values to v, T, mv m2 ; p is thus a dependent

variable, v, T, mlf
m

2
are independent variables. Thus

p = f(vt
T

}
mv m2).

We know that the dissociation of N
2 4 into 2N02 depends on the

volume, temperature and amount of N02 present in the system
under consideration. At ordinary temperatures

and the number of independent variables is reduced to three. In

this case the system is said to possess three degrees of freedom.

At temperatures over 135 138 the system contains N02 alone,

and behaves as a perfect gas with two degrees of freedom.

In general, if a system contains m dependent and n independent

variables, say

fl/j,
X

2 t #3> %n + m

variables, the state of the system can be determined by m + n

equations. As in the familiar condition for the solution of simul-

taneous equations in algebra, n independent equations are required

for finding the value of n unknown quantities. But the state of

the system is defined by the m dependent variables ;
the remaining

n independent variables can therefore be determined from n inde-

pendent equations.

Let a given system with n degrees of freedom be subject to

external forces

Xv X2 ,
X

3 ,
. . . Xnt
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so that no energy enters or leaves the system except in the form

of heat or work, and such that the n independent variables are

displaced by amounts

dxv dx
2 ,
dx

z,
. . . dxn.

Since the amount of work done on or by a system is measured by
the product of the force and the displacement, these external forces

X
Y
X

2
... perform a quantity of work dW which depends on the

nature of the transformation. Hence

dW = X
1
dx

1 -f X2
dx

2 + . . . Xndxn

where the coefficients Xv X2 ,
X3 ...are called the generalized

forces acting on the system. P. Duhem, in his work, Traite $U-
mentaire de Micanique Ghimique fondee sur la Thermodynamique,

Paris, 1897-99, makes use of generalized forces and generalized

coordinates.



CHAPTER III.

FUNCTIONS WITH SINGULAR PROPERTIES.
"
Although a physical law may never admit of a perfectly abrupt

change, there is no limit to the approach which it may make
to abruptness." W. Stanley Jevons.

51. Continuous and Discontinuous Functions.

The law of continuity affirms that no change can . take place

abruptly. The conception involved will have been familiar to the

reader from the second section of this work. It was there

shown that the amount of substance, x, transformed in a chemical

reaction in a given time becomes smaller as the interval of time, t,

during which the change occurs, is diminished, until finally, when
the interval of time approaches zero, the amount of substance

transformed also approaches zero. In such a case x is not only a

function of t, but it is a continuous function of t. The course of

such a reaction may be represented by the motion of a point along
the curve

If the two states of a substance subjected to the influence of two

different conditions of temperature be represented, say, by two

neighbouring points on a plane, the principle of continuity affirms

that the state of the substance at any intermediate temperature

will be represented by a point lying between the two points just

mentioned
;
and in order that the moving point may pass from one

point, a, on the curve to another point, b, on the same curve, it

must successively assume all values intermediate between a and b,

and never move off the curve. This is a characteristic property of

continuous functions. Several examples have been considered in

the preceding chapters. Most natural processes, perhaps all, can

be represented by continuous functions. Hence the old empiricism :

Natura non agit per saltum.

The law of continuity, though tacitly implied up to the present,
142
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does not appear to be always true. Even in some of the simplest

phenomena exceptions seem to arise. In a general way, we can

divide discontinuous functions into two classes : first, those in which

the graph of the function suddenly stops to reappear in some other

part of the plane in other words a break occurs ; second, those

in which the graph suddenly changes its direction without exhibit-

ing a break 1 in that case a turning point or point of inflexion

appears.

Other kinds of discontinuity may occur, but do not commonly
arise in physical work. For example, a function is said to be dis-

continuous when the value of the function y = f(x) becomes

infinite for some particular value of x. Such a discontinuity

occurs when x = in the expression y = ljx. The differential

coefficient of this expression,

^ = -1,
dx x2

'

is also discontinuous for x = 0. Other examples, which should be

verified by the reader are, log x, when x =
;
tan x, when x = \tt, ...

The graph for Boyle's equation, pv = constant, is also said to be

discontinuous at an infinite distance along both axes.

52. Discontinuity accompanied by "Breaks".

If a cold solid be exposed to a source of heat, heat appears
to be absorbed, and the

temperature, 0, of the

solid is a function of

the amount of heat, Q,

apparently absorbed by
the solid. As soon

as the solid begins to

melt, it absorbs a great

amount of heat (latent

heat of fusion), unac-

companied by any rise of

temperature. When the

substance has assumed the fluid state of aggregation, the tem-

1 Sometimes the word "break" is used indiscriminately for both kinds of

discontinuity. It is, indeed, questionable if ever the "break" is real in natural

phenomena. I suppose we ought to call turning points "singularities," not

"discontinuities" (see S. Jevon's Principles qf Science, London, 1877).
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perature is a function of the amount of heat absorbed by the

fluid, until, at the boiling point, similar phenomena recur. Heat
is absorbed unaccompanied by any rise of temperature (latent heat

of vaporization) until the liquid is completely vaporized. The

phenomena are illustrated graphically by the curve ABODE (Eig.

55). If the quantity of heat, Q, supplied be regarded as a function

of the temperature, 6, the equation of the curve OABGED (Fig.

55), will be

This function is said to be discontinuous between the points A and

B, and between G and D. Breaks occur in these positions. f(6)

is accordingly said to be a discontinuous function, for, if a

small quantity of heat be added to a substance, whose state is

represented by a point, between A and i?, or G and D, the tem-

perature is not affected in a perceptible manner. The geometrical

signification of the phenomena is as follows : There are two

generally different, tangents to the curve at the points A and B
corresponding to the one abscissa, namely, tan a and tan a. In

other words, see page 102, we have

dQ
jq =f{0) = tan a = tan angle 6BA ;

dQ
~Tq

= f(0) = tan a
' = tan angle 6B'A,\

that is to say, the function f'(0) is discontinuous because the

differential coefficient has two distinct values determined by the

slope of the tangent to each curve at the point where the discon-

tinuity occurs.

The physical meaning of the discontinuity in this example, is

that the substance may have two values for its specific heat the

amount of heat required to raise the temperature of one gram of

the solid one degree at the melting point, the one corresponding

to the solid and the other to the liquid state of aggregation. The

tangent of the angle represented by the ratio dQ/dO obviously

represents the specific heat of the substance. An analogous set of

changes occurs at the boiling point.

It is necessary to point out that the alleged discontinuity in

the curve OABG may be only apparent. The " corners
"
may be

rounded off. It would perhaps be more correct to say that the



53. FUNCTIONS WITH SINGULAR PROPERTIES. 145

curve is really continuous between A and B, but that the change
of temperature with the addition of

heat is discontinuous.

Again, Fig. 56 shows the result of

plotting the variations in the volume

of phosphorus with temperatures in

the neighbourhood of its melting point.

AB represents the expansion curve of

the solid, CD that of the liquid. A
break occurs between B and G. Phos-

phorus at its melting point may thus

have two distinct coefficients of ex-

pansion, the one corresponding to the solid and the other to the

liquid state of aggregation. Similar changes take place during the

passage of a system from one state to another, say of rhombic to

monoclinic sulphur ;
of a mixture of magnesium and sodium sul-

phates to astracanite, etc. The temperature at which this change
occurs is called the " transition point ".

Fig. 56.

53. The Existence of Hydrates in Solution.

Another illustration. If p denotes the percentage composition

of an aqueous solution of ethyl alcohol and s the corresponding

specific gravity in vacuo at 15 (sp. gr. H 2
at 15 =

9991*6), we
have the following table compiled by Mendeleeff :

p
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posed at temperatures higher than that at which their dissociation

commences, and that for any given temperature a definite relation

exists between the amounts of the original compound and of the

products of its dissociation, so may definite but unstable hydrates
exist in solutions at temperatures above their dissociation tempera-

ture. If the dissolved substance really enters into combination

with the solvent to form different compounds according to the

nature of the solution, many of the physical properties of the

solution density, thermal conductivity and such like will natur-

ally depend on the amount and nature of these compounds,
because chemical combination is usually accompanied by volume,

density, thermal and other changes.

fo.ooo
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was discontinuous,

ordinates against gy
abscissa p for dj*

concentrations

corresponding to

17-56, 46-00 and

88-46 per cent,

of ethyl alcohol.

These concen-

trations coincide

Breaks were obtained by plotting dsjdp as

wo

After Mendeleeff.

with chemical compounds having the composition C2
H

5OH . 12H
20,

C
2
H

5
OH . 3H2

and 3C
2
H

6OH . H2
as shown in Fig. 58. The

curves between the breaks are supposed to represent the "zone"

in which the corresponding hydrates are present in the solution.

The mathematical argument is that the differential coefficient

of a continuous curve will differentiate into a straight line or

another continuous curve ;
while if a curve is really discontinuous,

or made up of a number of different curvea, it will yield a series of

straight lines. Each line represents the rate of change of the

particular physical property under investigation with the amount

of hypothetical unstable compound existing in solution at that

concentration. An abrupt change in the direction of the curve

leads to a breaking up of the first differential coefficient of that

curve into two curves which do not meet. This argument has been

extensively used by Pickering in the treatment of an elaborate and

painstaking series of determinations of the physical properties of

solutions. Crompton found that if the electrical conductivity of a

solution is regarded as a function of its percentage composition,

such that

K = a + bp + cp
2 + fp

z
, . . . (3)

the first differential coefficient gives a parabolic curve of the type
of (1) above, while the second differential coefficient, instead of

being a continuous function of p,

dtf
= A+Bp, W

was found to consist of a series of straight lines, the position of the

breaks being identical with those obtained from the first differential

coefficient dsjdp. The values of the constants A and B are readily

obtained if c and p are known. If the slope of the (p, s)-curve
K
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changes abruptly, ds/dp is discontinuous
;

if the slope of the

(ds/dp, p)-Guxve changes abruptly, dh/dp
2

is discontinuous.

But after all we are only working with empirical formulae, and

"no juggling with feeble empirical expressions, and no appeal to

the mysteries of elementary mathematics can legitimately make ex-

perimental results any more really discontinuous than they them-

selves are able to declare themselves to be when properly plotted ". 1

It must be pointed out that the differentiation of experimental
results very often furnishes quantities of the same order of magni-
tude as the experimental errors themselves. 2 This is a very
serious objection. Pickering has tried to eliminate the experi-

mental errors, to some extent, by differentiating the results obtained

by "smoothing" the curve obtained by plotting the experimental
results. On the face of it this "

smoothing
"

of experimental
results is a dangerous operation even in the hands of the most

experienced workers. Indeed, it is supposed that that prince of

experimenters, Regnault, overlooked an important phenomenon in

applying this very smoothing process to his observations on the

vapour pressure of saturated steam. Regnault supposed that the

curve OPQ (Fig. 64) showed no singular point at P (Fig. 64) when

water passed from the liquid to the solid state at 0. It was re-

served for J. Thomson to prove that the ice-steam curve has a

different slope from the water-steam curve.

5$. The Smoothing of Curves.

The results of observations of a series of corresponding changes

in two variables are represented by light

dots on a sheet of squared paper. The

dots in Fig. 59 represent the vapour

pressures of dissociating ammonium
carbonate at different temperatures. A
curve is drawn to pass as nearly as pos-

sible through all these points. The re-

sulting curve is assumed to be a graphic

representation of the general formula

(known or unknown) connecting the two variables. Points devi-
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ating from the curve are assumed to be affected with errors of

observation. As a general rule the curve with the least curvature

is chosen to pass through or within a short distance of the greatest

number of dots, so that an equal number of these dots (representing

experimental observations) lies on each side of the curve. Such
a curve is said to be a smoothed curve (see also page 320).

One of the commonest methods of smoothing a curve is to pin
down a flexible lath to points through which the curve is to be

drawn and draw the pen along the lath. It is found impossible in

practice to use similar laths for all curves. The lath is weakest

where the curvature is greatest. The selection and use of the lath

is a matter of taste and opinion. The use of
" French curves

"
is

still more arbitrary. Pickering used a bent spring or steel lath held

near its ends. Such a lath is shown in statical works to give a

line of constant curvature. The line is called an " elastic curve
"

(see G. M. Minchin's A Treatise on Statics, Oxford, 2, 204, 1886).

55. Discontinuity accompanied by a Sudden Change of

Direction.

The vapour pressure of a solid increases continuously with

rising temperature until, at its melting point, the vapour pressure
11

suddenly
"
begins to increase more rapidly than before. This is

shown graphically in Fig. 60. The substance melts at the point of

intersection of the "
solid

"
and u

liquid
"

curves. The vapour pressure itself is not

discontinuous. It has the same value at

the melting point for both solid and liquid

states of aggregation. It is, however, quite

clear that the tangents of the two curves

differ from each other at the transition

point, because
.-g]R /R'

tan a =f(6) =
^|

is less than tan a' =/(#) =% Fig. 60.

There are two tangents to the _p#-curve at the transition point.

The value of dp/dd for solid benzene, for example, is greater than

for the liquid. The numbers are 2-48 and 1*98 respectively.

If the equations of the two curves were respectively ax + by = 1
;

and bx + ay = 1, the roots of these two equations,
1 1

x = r
; y = r>

a + b v a + b

"<x\ &\
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Fig. 61.

would represent the coordinates of the point of intersection, as

indicated on page 94. To illustrate this kind of discontinuity we
shall examine the following phenomena :

I. Critical temperature. Cailletet and Collardeau have an

ingenious method for finding the critical temperature of a

substance without seeing the liquid.
1 By plotting temperatures

as abscissae against the vapour pressures of different weights of

the same substance heated at constant volume, a series of curves

are obtained which are coincident as long as part of the substance

is liquid, for "the pressure exerted by a saturated vapour depends
on temperature only and is independent of the

quantity of liquid with which it is in contact ".

Above the critical temperature the different masses

of the substance occupying the same volume give

different pressures. From this point upwards the

pressure-temperature curves are no longer super-

posable. A series of curves are thus obtained

which coincide at a certain point P (Fig. 61), the abscissa, OK,
of which denotes the critical temperature. As before, the tangent
of each curve Pa, Pb . . . is different from that of OP at the point P.

II. Cooling curves. If the temperature of cooling of pure liquid

bismuth be plotted against time, the resulting curve, called a cooling

curve (ab, Fig. 62), is continuous, but the moment a part of the

metal solidifies, the curve will take

another direction be, and continue

so until all the metal is solidified,

when the direction of the curve

again changes, and then continues

quite regularly along cd. For bis-

muth the point b is at 268.

If the cooling curve of an alloy

of bismuth, lead and tin (Bi, 21
;

timt Pb, 5*5 ; Sn, 75*5) is similarly

plotted, the first change of direction
Pic. 62._Oooling Carves. h observed at 175, when solid bis-

muth is deposited ;
at 125 the curve again changes its direction,
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with a simultaneous deposition of solid bismuth and tin
; and

finally at 96 another change occurs corresponding to the solidifi-

cation of the eutectic alloy of these three metals.

These cooling curves are of great importance in investigations

on the constitution of metals and alloys. The cooling curve of iron

from a white heat is particularly interesting, and has given rise to

much discussion. The curve shows changes of direction at about

1,130, at about 850 (called Ar
z critical point), at about 770

(called Ar
2

critical point), at

about 500 (called the Ar
Y
critical

point), at about 450 500 C,
and at about 400 C. The mag-
nitude of these changes varies

according to the purity of the

iron. Some are very marked

even with the purest iron. This

sudden evolution of heat (recal-

escence) at different points of the

cooling curve has led many to

believe that iron exists in some

allotropic state in the neighbourhood of these temperatures.
1

Fig.

63 shows part of a cooling curve of iron in the most interesting

region, namely, the Ar
3
and Ar

2
critical points.

n/ne

Fig. 63. Diagrammatic.

56. The Triple Point.

Another example, which is also a good illustration of the beauty
and comprehensive nature of the graphic method

of representing natural processes, may be given

here.

(a) When water, partly liquid, partly vapour,

is enclosed in a vessel, the relation between the

pressure and the temperature can be represented

by the curve PQ (Fig. 64), which gives the

pressure corresponding with any given tempera-
ture when the liquid and vapour are in contact and in equilibrium.

This curve is called the steam line.

(b) In the same way if the enclosure were filled with solid ice,

Fig. 64. Tripk
Point.

1 W. C. Roberts-Austen's papers in the Proc. Soc. Mechanical Engineers, 543,

1891
; 102, 1893

; 238, 1895
; 31, 1897 ; 35, 1899, may be consulted for fuller details.



152 HIGHER MATHEMATICS. 56.

and liquid water, the pressure of the mixture would be completely-
determined by the temperature. The relation between pressure
and temperature is represented by the curve PN, called the ice

line.

(c) Ice may be in stable equilibrium with its vapour, and we
can plot the variation of the vapour pressure of ice with its tem-

perature. The curve OP so obtained represents the variation of

the vapour pressure of ice with temperature. It is called the hoar

frost line.

The plane of the paper is thus divided into three parts bounded

by the three curves OP, PN, PQ. If a point falls within one of

these three parts of the plane, it represents water in one particular

state of aggregation, ice, liquid or steam.1 When a point falls on a

boundary line it corresponds with the coexistence of two states of

aggregation. Finally, at the point P, and only at this point, the

three states of aggregation, ice, water, and steam may coexist to-

gether. This point is called the triple point. For water the

coordinates of the triple point are

p = 4-58 mm., T = 0-0076 C.

1. Influence of pressure on the melting-point of a solid. The

two formulae, dQ =
Td<f> ; Q)Qfdv) T = T(bp[dT) vt were discussed

on pages 81 and 82. Divide the former by dv and substitute the

result in the latter. We thus obtain,

C!),-(8>;
which states that the change of entropy, <, per unit change of

volume, v, at a constant temperature (T absolute), is equal to the

change of pressure per unit change of temperature at constant

volume. If a small amount of heat, dQ, be added to a substance

existing partly in one state,
"
1," and partly in another state, "2,"

a proportional quantity, dm, of the mass changes its state, such

that

dQ = L12dm,

where L12
is a constant representing the latent heat of the change

from state " 1
"

to state " 2 ". From the definition of entropy, 0,

1 Certain unstable conditions (metastable states) are known in which a liquid may-

be found in the solid region. A supercooled liquid, for instance, may continue the QP
curve along to S instead of changing its direction along PM,
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dQ =
Td<f> ;

hence
d<j>

=
-j?dm.

. . (2)

If vv v
2
be the specific volumes of the substance in the first and

second states respectively

dv = v
2
dm - v

x
dm =

(v2
-

v-^dm.

From (2) and (1)

' ' Wr" T(v2
-

v,)
>

\7>f)9 T(v2
- SJ

' V ;

This last equation tells us at once how a change of pressure

will change the temperature at which two states of a substance

can coexist, provided that we know vv v
2 ,
T and L

12 .

Examples. (1) If the specific volume of ice is 1-087, and that of water

unity, find the lowering of the freezing point of water when the pressure

increases one atmosphere (latent heat of ice = 80 cal.). Here v2
- v

x
= 0*087,

T = 273, dp = 76 cm. mercury. The specific gravity of mercury is 13*5, and

the weight of a column of mercury of one square cm. cross section is

76 x 13-5 = 1,033 grams. Hence dp = 1,033 grams, L 12
= 80 cal. = 80 x 47,600

C.G.S. or dynamical units. From (3), dT = 0*0064 C. per atmosphere.

(2) For naphthalene T = 352-2, v%
- v

t
= 0*146

;
L 12

= 35*46 cal. Find

the change of melting point per atmosphere increase of pressure. dT= 0*031.

II. The slopes of the pT-curves at the triple point. Let L12 ,

L23 ,
L

31
be the latent heats of conversion of a substance from states

1 to 2
;
2 to 3 ;

3 to 1 respectively ;
vv v

2 ,
v
z
the respective volumes

of the substance in states 1, 2, 3 respectively ; let T denote the

absolute temperature at the triple point. Then dp/dT is the slope

of the tangent to these curves at the triple point, and

/ty\ _ L12 . /ty\ L2S m /ty\ _ 31 U \

\dTj 12 T{v2
-

Viy \7>T)n -T(vt -vJ' \7>T/n Tfa-vJ
The specific volumes and the latent heats are generally quite

different from the three changes of state, and therefore the slopes

of the three curves at the triple point are also different. The

difference in the slopes of the tangents of the solid-vapour (hoar

frost line), and the liquid-vapour (steam line) curves of water

(Fig. 39) is

\7>TJ 1Z \dTj23 T\v3
-

Vl vt
- vj'

* W
At the triple point

Lu = LU + L23 ;
and (v,

- vj =
{v2

- vj + (vz
- v

2). (6)

Example. As a general rule, the change of volume on melting, (v2
-

v{j,

is very small compared with the change in volume on evaporation, (vs -v^),
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or sublimation, (v3
- vj ; hence v% - v

x may be neglected in comparison with

the other volume changes. Then, from (5) and (6),

ma- (m (7)

Hence calculate the difference in the slope of the hoar frost and steam lines

for water at the triple point. Latent heat of water = 80 ;
L12

= 80 x 42,700;

T = 273, vs
- v2 = 209,400 c.c. Substitute these values on the right-hand side

of the last equation. Ansr. 0*059.

The above deductions have been tested experimentally in the

case of water, sulphur and phosphorus ;
the results are in close

agreement with theory.

Fig. 65.

57. Maximum and Minimum Values of a Function.

By plotting the rates, 7, at which illuminating gas flows through
the gasometer of a building as ordinates, with time, t, as abscissae,

a curve resembling the adjoining diagram (Fig. 65) is obtained.

It will be seen that very little gas

is consumed in the day time, while

at night there is a relatively great

demand. Observation shows that

as t changes from one value to

another, V changes in such a way
that it is sometimes increasing and

sometimes decreasing. In conse-

quence, there must be certain values of the function for which V,

which had previously been increasing, begins to decrease, that is

to say, V is greater for this particular value of t than for any

adjacent value
;
in this case V is said to have a maximum value.

Conversely, there must be certain values oif(t) for which V, having
been decreasing, begins to increase. When the value of V, for

some particular value of t, is less than for any adjacent value of t,

V is said to be a minimum Yalue.

Imagine a variable ordinate of the curve to move perpendicu-

larly along Ot, gradually increasing until it arrives at the position

M
1
PV and afterwards gradually decreasing. The ordinate at M

1
P

1

is said to have a maximum value. The decreasing ordinate, con-

tinuing its motion, arrives at the position NYQlf
and after that

gradually increases. In this case the ordinate at J^Qj is said to

have a minimum value.

The terms "maximum" and "minimum" do not necessarily
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denote the greatest and least possible values which the function

can assume, for the same function may have several maximum and

several minimum values, any particular one of which may be

greater or less than another value of the same function. In

walking across a mountainous district every hill-top would repre-

sent a maximum, every valley a minimum.

The mathematical form of the function employed in the above

illustration is unknown, the curve is an approximate representation

of corresponding values of the two variables determined by actual

measurements.

Example. Plot the curve represented by the equation y = sin x. Give

x a series of values %irt ir, ft, 2ir, and so on. Show that

Maximum values of y occur for x = fir, fr, fx, . . .

Minimum values of y occur for x = -
\ir, fir, >r, . . .

The resulting curve is the harmonic or sine curve shown in Fig. 52, page 136.

One of the most important applications of the differential cal-

culus is the determination of maximum and minimum values of a

function. Many of the following examples can be solved by special

algebraic or geometric devices. The calculus, however, offers a sure

and easy method for the solution of these problems.

58. How to find Maximum and Minimum Yalues of a

Function.

If a cricket ball be thrown up into the air, its velocity, ds/dt,

will go on diminishing until the ball reaches the highest point of

its ascent. Its velocity will then be zero. After this, the velocity

of the ball will increase until it is caught in the hand. In other

words, ds/dt is first positive, then zero, and then negative. This

means that the distance, s, of the ball from the ground will be

greatest when ds/dt is least
;

s will be a maximum when ds/dt is

zero.

We generally reckon distances up as positive, and distances

down as negative. We naturally extend this to velocities by

making velocities directed upwards positive, and velocities directed

downwards negative. Thus the velocity of a falling stone is

negative although it is constantly getting numerically greater (i.e.,

algebraically less). We also extend this convention to directed

acceleration ;
but we frequently call an increasing velocity positive,

and a decreasing velocity negative as indicated on page 18.
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Numerical Illustration. The distance, s, of a body from the ground at

any instant, t, is given by the expression

s = \g& + v t,

where v represents the velocity of the body when it started its upward or

downward journey ; g is a constant equal to - 32 when the body is going

upwards, and to + 32 when the body is coming down.
(
Now let a cricket ball

be sent up from the hand with a velocity of 64 feet per second, it will attain

its highest point when dsjdt is zero, but

= - 32* + v
. v 64 , ds

'=32
=

32'
wlien^ = 0.

Let us now trace the different values which the tangent to the

curve at any point X (Fig. 66) assumes as X travels from A to P
;

from P to B
;
from B to Q ;

and

from Q to G; let a denote the

angle made by the tangent at

any point on the curve with the

sc-axis. Eemember that tan =
;

tan 90 = oo
;
when a is less than

90, tan a is positive ;
and when a

is greater than 90 and less than

180 tan a is negative.

First, as P travels from A to P, x increases, y increases. The

tangent to the curve makes an acute angle, a
lf

with the rc-axis.

In this case, tan a is positive, and also

M N

Fig. 66. Maximum and Minimum

dy _
(1)

At P, the tangent is parallel to the a;-axis
; y is a maximum, that

is to say, tan a is zero, and

dy
dx

=
(2)

Secondly, immediately after passing P, the tangent to the curve

makes an obtuse angle, a
2,
with the ic-axis, that is to say, tan a is

negative, and

dx~ W
The tangent to the curve reaches a minimum value at NQ ;

at Q
the tangent is again parallel to #-axis, y is a minimum and tan a,

as well as

dx
= 0. (4)



;/
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After passing Q y again we have an acute angle, a
3 , and,

l = + (*)

Thus we see that every time dyjdx becomes zero, y is either a

maximum or a minimum. Hence the rule : When the first differ-

ential coefficient changes its sign from a positive to a negative

value the function has a maximum value, and when the first

differential coefficient changes its sign from a negative to a

positive value the function has a minimum value.

There are some curves which have maximum and minimum
values very much resembling P' and Q' (Fig. 67). These curves

are said to have cusps at F and Q.
It will be observed, in Fig. 67, that x

increases and y approaches a maximum
value while the tangent MP' makes an

acute angle with the #-axis, that is to say,

dyjdx is positive. At the tangent be-

comes perpendicular to the a;-axis, and in -q-

consequence the ratio dyjdx becomes in-

finite. The point F is called a cusp. FlG# 67 Maximum and
After passing P', dyjdx is negative. In Minimum Cusps,

the same way it can be shown that as the tangent approaches NQ\
dyjdx is negative, at Q' f dyjdx becomes infinite, and after passing

Q', dyjdx is positive. Now plot y = x%, and you will get a cusp at 0.

A function may thus change its sign by becoming zero or in-

finity, it is therefore necessary for the first differential coefficient of

the function to assume either of these values in order that it may
have a maximum or a minimum value. Consequently, in order to

find all the values of x for which y possesses a maximum or a

minimum value, the first differential coefficient must be equated
to zero or infinity and the values of x which satisfy these condi-

tions determined.

Examples. (1) Consider the equation y = x2 - Sx, .*. dyjdx = 2x - 8.

Equating the first differential coefficient to zero, we have 2x - 8 =
;
or x = 4.

Add + 1 to this root and substitute for x in the original equation,
when z = 3,y= 9 - 24 = - 15

;

x = 4, y = 16 - 32 = - 16
;

x = 5, y = 25 - 40 = - 15.

y is therefore a minimum when x = 4, since a slightly greater or a slightly
less value of x makes y assume a greater value. The addition of + 1 to the

root gives only a first approximation. The minimum value of the function
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might have been between 3 and 4
;
or between 4 and 5. The approximation

may be carried as close as we please by using less and less numerical values

in the above substitution. Suppose we substitute in place of + 1, + h, then

when x = 4 - h, y = h? - 16
;

x =4, y = -16;
x = 4 + h, y = W - 16.

Therefore, however small h may be, the corresponding value of y is greater
than -16. That is to say, a;= 4 makes the function a minimum, Q (Fig. 68).

You can easily see that this is so by plotting the original equation as in Fig. 68.

V J
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values of x correspond to maximum or minimum values of the

function. This is all the more essential in practical work where

the function, not the curve, is to be operated upon.

By reference to Fig. 71 it will be noticed that the tangent

crosses the curve at the points R and S. Such a point is called a

turning point or point of inflexion. You will get a point of

inflexion by plotting y = xz
. The point of inflexion marks the

spot where the curve passes from a convex to a concave, or from a

concave to a convex configuration with regard to one of. the co-

ordinate axes. The terms concave and convex have here their

ordinary meaning.

Fig. 72. Convexity and
Concavity.

60. How to Find whether a Curye is ConcaYe or Convex.

Referring to Fig. 72, along the concave part from A to P,

the numerical value of tana, regularly decreases to zero. At P
the highest point of the curve

tan a =
;
from this point to B

the tangent to the angle continu-

ally decreases. You will see this

better if you take numbers. Let

ai
= 45 ,a2 = 135; .-. tana

x
= +1,

and tan a
2
= - 1. Hence as you

pass along the curve from A to P
to B, the numerical value of the

tangent of the curve ranges from

+ 1, to 0, to - 1.

The differential coefficient, or rate of change of tan a with respect

to x for the concave curve APB continually decreases. Hence

d(ta,iia)/dx is negative, or

d(tana) d2
y

dx
=

~dx2
= negative value = < - (1)

If a function, y = f(x), increases with increasing values of x, dy/dx
is positive ;

while if the function, y =
/(#), decreases with increas-

ing values of x, dy/dx is negative.

Along the convex part of the curve BQG, tan a regularly in-

creases in value. Let us take numbers. Suppose a
2
= 135,

ag
= 45, then tan a

2
= - 1 and tan a

3
= + 1. Hence as you pass

along the curve from B to Q, tan a increases in value from - 1

to 0. At the point Q, tan a = 0, and from Q to C, tan a continually
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increases in value from to + 1. The differential coefficient of

tana with respect to the convex curve BQC is, therefore, positive, or

^f a
) = p- = positive value = > 0. . . (2)dx dx2

Hence a curve is concave or convex upwards, according as the second

differential coefficient is positive or negative.

I have assumed that the curve is on the positive side of the

#-axis; when the curve lies on the negative side, assume the z-axis

to be displaced parallel with itself until the above condition is

attained. A more general rule, which evades the above limita-

tion, is proved in the regular text-books. The proof is of little

importance for our purpose. The rule is to the effect that "a
curve is concave or convex upwards according as the product of

the ordinate of the curve and the second differential coefficient, i.e.,

according as yd
2
y/dx

2
is positive or negative ".

Examples. (1) Show that the curves y = log a; and y = xlogx are re-

spectively concave and convex towards the avaxis. Hint.

dhjfdx
2 -x~ 2 for the former; and + a;

-1 for the latter.

The former is therefore concave, the latter convex, as shown
in Fig. 73. Note : If you plot y = log x on a larger scale

you will see that for every positive value of x there is one

and only one value of y ;
the value of y will be positive or

negative according as x is greater or less than unity. When

^ x= l, y=0 ;
when x=0, y= - oo

;
when x= + oo, y= + oo.

There is no logarithmic function for negative values of x.

(2) Show that the parabola, y
ii= 4aa, is concave upwards below the aj-axis

(where y is negative) and convex upwards above the a;-axis.

61. How to Find Turning Points or Points of Inflexion.

From the above principles it is clearly necessary, in order to

locate a point of inflexion, to find a value of x, for which tan a

assumes a maximum or a minimum value. Bat

dy m ;
d(tana) _ d2

yUna = dx^-~dx-dx-2
= ' ' '

(3>

Hence the rule : In order to find a point of inflexion we must

equate the second differential coefficient of the function to zero ;

find the value of x which satisfies these conditions
;
and test if the

second differential coefficient does really change sign by substitut-

ing in the second differential coefficient a value of x a little greater

and one a little less than the critical value. If there is no change
of sign we are not dealing with a point of inflexion

y
J-
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Examples. (1) Show that the curve y= a + (x
-

6)
3 has a point of inflexion

at the point y = a, x = b. Differentiating twice we get d^y/dx
2 = 6(x

-
b).

Equating this to zero we get x = b
; by substituting x=b in the original equa-

tion, we get y a. When x = b - 1 the second differential coefficient is

negative, when 03=6 + 1 the second differential coefficient is positive. Hence
there is an inflexion at the point (b, a). See Fig. 70, page 158.

(2) For the special case of the harmonic curve, Fig. 52, page 136, y=8in x ;

.'. cPy/dx
2 = - sin x = -

y, that is to say, at the point of inflexion the ordinate

y changes sign. This occurs when the curve crosses the a;-axis, and there are

an infinite number of points of inflexion for which y = 0.

(3) Show that the probability curve, y = fee-*
2*2

, has a point of inflexion

for x = g/l/fc. (Fig. 168, page 513.)

(4) Show that Roche's vapour pressure curve p = a&0 '("*+"#) has a point

of inflexion when 0=m(log 6-2n)/2/i
2

;
and p= a l & & - 2*)M<>g &. gee Ex. (6),

page 67
;
and Fig. 88, page 172.

62. Six Problems in Maxima and Minima.

It is first requisite, in solving problems in maxima and minima,
to express the relation between the variables in the form of an

algebraic equation, and then to proceed
as directed on page 157. In the ma-

jority of cases occurring in practice,

it only requires a little common-sense

reasoning on the nature of the problem,
to determine whether a particular value

of x corresponds with a maximum or

a minimum. The very nature of the

problem generally tells us whether we
are dealing with a maximum or a mini-

mum, so that we may frequently dis-

pense with the labour of investigating
B

the sign of the second derivative.

I. Divide a line into any two parts such that the rectangle

having these two parts as adjoining sides may have the greatest

possible area. If a be the length of the line, x the length of one

part, a - x will be the length of the other part ; and, in conse-

quence, the area of the rectangle will be

y =
(a

-
x)x.

Differentiate, and

dy
dx

= a - 2x.
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that is to say, the line a must be

and the greatest possible rectangle

Equate to zero, and, x = ha

divided into two equal parts,

is a square.

II. Find the greatest possible rectangle that can be inscribed

in a given triangle. In Fig. 74, let b denote the length of the base

of the triangle ABC, h its altitude, x the altitude of the inscribed

rectangle. We must first find the relation between the area of the

rectangle and of the triangle. By similar triangles, page 603,

AH:AK= BC:DE; h:h - x = b: DE,
but the area of the rectangle is obviously y = DE x KH, and

DE = %h -
x), KH V =

j:(hx
x2

).

^ = h
dx

hv
" ~' ' ' ' *

~
h"

It is the rule, when seeking maxima and minima, to simplify

the process by omitting the constant factors, since, whatever makes

the variable hx - x2 a maximum will also make b(hx
- x2

)/h a

maximum. 1 Now differentiate the expression obtained above for

the area of the rectangle neglecting b/h, and equate the result to

zero, in this way we obtain

- 2x = 0; or x = 7i .

A

That is to say, the height of the rectangle must be half the altitude

of the triangle.

III. To out a sector from a circular sheet

of metal so that the remainder can be formed
into a conical-shaped vessel of maximum

capacity. Let ACB (Fig. 75) be a circular

plate of radius, r, it is required to cut out a

portion AOB such that the conical vessel

formed by joining OA and OB together may
hold the greatest possible amount of fluid.

Let x denote the angle remaining after the

sector AOB has been removed. We must first find a relation

between x and the volume, v, of the cone. 2

The length of the arc ACB is j^xttt, (3), page 603, and when

1 This is easily proved, for let y = cf{x), where c has any arbitrary constant value.

For a maximum or minimum value dyfdx = cf'(x)
=

0, and this can only occur where

/'(*) = 0.

2 Mensuration formulae (1), (3), (4), (27), 191, page 603
j
and (1), page 606, will be

required for this problem.
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the plate is folded into a cone, this is also the length of the peri-

meter of the circular base of the cone. Let B denote the radius of

the circular base. The perimeter of the base is therefore equal to

2irR. Hence,

2ttR = -7rr; or, J8-~. . . . (1)

If h is the height of the vertical oone,

r2 = B2 + h2
;ov,h = Jr

2 - B2
. . . (2)

The volume of the cone is therefore

-^-iOy--' _
Rejecting the constants, v will be a maximum when x2

J^-rr
2 - x2

,

or when x4^2 - x2
)
is a maximum. That is, when

^-{x*(7r
2 - x2

)}
=

(16tt
2 - x2

)x*
= 0.

If x = 0, we have a vertical line corresponding with a cone of mini-

mum volume. Hence, if x is not zero, we must have

167T2 - 6a?2 - 0; or, x = 2 J* x 180 = 294.

Hence the angle of the removed sector is about 360 - 294 = 66.

The application to funnels is obvious. Of course the sides of the

chemists' funnel has a special slope for other reasons.

IV. At what height should a light be placed above my writing table

in order that a small portion of the surface of the table, at a given
horizontal distance away from the foot of

the perpendicular dropped from the light

on to the table, may receive the greatest

illumination possible ? Let S (Fig. 76)

be the source of illumination whose dis-

tance, x, from the table is to be deter-

mined in such a way that B may receive

the greatest illumination. Let AB = a,

and a the angle made by the incident

rays SB = r on the surface B.

It is known that the intensity of illumination, y, varies inversely
as the square of the distance of SB, and directly as the sine of the

angle of incidence. Since, by Pythagoras' theorem (Euclid, i., 47),

r2 = a2 + x2
; and sin a = x/r, in order that the illumination may

be a maximum,
_ sina__# _ x x

V ~
~^~~r^"r2 Ja2 + x2= (a

2 + x2
)i
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By differentiation, we get

a2 - 2x2

-=0; ,.*- ajh

must be a maximum.

dx
(a

2 + x2f
The interpretation is obvious. The height of the light must be

0*707 times the horizontal distance of the writing table from the
"

foot
"
A. Negative and imaginary roots have no meaning in this

problem.

V. To arrange a number of voltaic cells to furnish a maximum
current against a known external resistance. Let the electro-

motive force of each cell be E, and its internal resistance r. Let

B be the external resistance, n the total number of cells. Assume

that x cells are arranged in series and n/x in parallel. The electro-

motive force of the battery is xE. Its internal resistance x2
r/n,

The current (7, according to the text-books on electricity, is given

by the relation

'
' ' dx

0-
B +

(B
+ V)'

Equate to zero, and simplify, B = rx2
/n, remains. This means

that the battery must be so arranged that its internal resistance

shall be as nearly as possible equal to the external resistance.

The theory of maxima and minima must not be applied blindly

to physical problems. It is generally necessary to take other

things into consideration. An ar-

rangement that satisfies one set of

conditions may not be suitable for

another. For instance, while the

above arrangement of cells will give
the maximum current, it is by no

means the most economical.

VI. To find the conditions which

must subsist in order that light may
travel from a given point in one

medium to a given point in another

medium in the shortest possible time.

Let SP (Fig. 77) be a ray of light

incident at P on the surface of

separation of the media M and M
;

let PB be the refracted ray in the same plane as the incident

Fm. 77.
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ray. If PN is normal (perpendicular) to the surface of incidence,

then the angle NPS =
*, is the angle of incidence

;
and the angle

N'PB = r, is the angle of refraction. Drop perpendiculars from S
and B on to A and B, so that SA = a, BB = b. Now the light will

travel from S to B, according to Fermat's principle, in the shortest

possible time, with a uniform velocity different in the different media

M and M '. The ray passes through the surface separating the two

media at the point P, let AP = x, BP = p - x. Let the velocity

of propagation of the ray of light in the two media be respectively

V
Y
and V2 units per second. The ray therefore travels from S to P

in PS/Vl seconds, and from P to B in BP/V>2 seconds, and the total

time, t, occupied in transit from S to B is the sum

<-tt
+
tt'

;

(1)

From the triangles SAP and PBB, as indicated in (1), page 603, it

follows that PS = Ja2 + x2
;
and BP - Jb2 + (p

-
xf. Sub-

stituting these values in (1), and differentiating in the usual way,
we get

dt = x _ P- x = o (2)
dx V

x Ja* + a* V2 Jb* + (p - xf
' W

Consequently, by substituting for PS, BP, AP, and BP as above,

we get from the preceding equation (2), solved for VJV2 ,

AP x

sini PS__ Ja2 + x2

V\
sinr *BP p-x V'

BP Jb2 + (p -
x)

2

This result, sometimes called Snell's law of refraction, shows that

the sines of the angles of incidence and refraction must be pro-

portional to the velocity of the light in the two given media in

order that the light may pass from one point to the other in the

shortest possible interval of time. Experiment justifies Format's

guess. The ratio of the sines of the two angles, therefore, is

constant for the same two media. The constant is usually de-

noted by the symbol /m,
and called the index of refraction.

Examples. (1) The velocity of motion of a wave, of length A, in deep
water is V = *J(\[a + a/A), a is a constant. Required the length of the wave

when the velocity is a minimum. (N. Z. Univ. Exam. Papers.) Ansr. \ = a.

(2) The contact difference of potential, E, between two metals is a

function of the temperature, 0, such that E = a + be + cd2 . How high
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Fig. 78.

V

must the temperature of one of the metals be raised in order that the

difference of potential may be a maximum or a minimum, a, o, c are con-

stants. Ansr. 6 = -
b/2c.

(3) Show that the greatest rectangle that can be inscribed in the circle

x2 + y
2 = r2 is a square. Hint. Draw a circle of radius r, Fig. 78. Let the

sides of the rectangle be 2x and 2y respectively ;
.\ area = 4xy, x2 + y

2 = r2.

Solve for y, and substitute in the former equation. Differ-

entiate, etc., and then show that both x and y are equal

to r *J%, etc.

(4) If v be the volume of water at C., v the volume

at C, then, according to Hallstrom's formula, for tem-

peratures between and 30,

v= v {l -0-000057,5770+ O'OOOOO7,56O10
2- O-OOOOOO.O35O90

3
).

Show that the volume is least and the density greatest

when = 3-92. The graph is shown in Fig. 79. In the working of this ex-

ample, it will be found simplest to use a, b, c . . . for the numerical coefficients,

differentiate, etc., for the final result, restore the numerical values

of a, b, c . . .
, and simplify. Probably the reader has already

done this.

(5) Later on I shall want the student to show that the

expression s/(q
2 - n2

)

2 + 4/%2
is a minimum when n2 = q

2 - If
2

.

(6) An electric current flowing round a coil of radius r exerts

Fig. 79. a force F on a small magnet whose axis is at some point on a

line drawn through the centre and perpendicular to the plane of

the coil. If x is the distance of the magnet from the plane of the coil, F =

xj(r
2 + x2

)

5 !2
. Show that the force is a maximum when x = r.

(7) Draw an ellipse whose area for a given perimeter shall be a maximum.
Hint. Although the perimeter of an ellipse can only be represented with

perfect accuracy by an infinite series, yet for all practical purposes the

perimeter may be taken to be tt(x + y) where x and y are the semi-major and

semi-minor axes. The area of the ellipse is z = irxy. Since the perimeter is to

life constant, a = ir(x + y) or y = ajv
- x. Substitute this value of y in the

former expression and z = ax - irx2 . Hence, x = a/2?r when z is a maximum.
Substitute this value of x in y = ajir

-
x, and y = af2ir, that is to say,

x = y = a./27r, or of all ellipses the circle has the greatest area. Boys' leaden

water-pipes designed not to burst at freezing temperatures, are based on this

principle. The cross section of the pipe is elliptical. If the contained water

freezes, the resulting expansion makes the tube tend to become circular in cross

section. The increased capacity allows the ice to have more room without

putting a strain on the pipe.

(8) If A, B be two sources of heat,, find the position of a point O on the

line AB = a, such that it is heated the least possible. Assume that the in-

tensity of the heat rays is proportional to the square of the distance from the

source of heat. Let AO = x, BO = a - x. The intensity of each source of

heat at unit distance away is a and &. The total intensity of the heat which

reaches O is I = ax~ 2 + $(a
- x)~

2
. Find dlfdx. I is a minimum when

x = !Ja.al(i/a+ fj$).
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(9) The weight, W (lbs. per sec), of flue gas passing up a chimney at

different temperatures T, is represented by W= A(T - T
) (1 + a.T)~\ where

A is a constant, T the absolute temperature of the hot gases passing within

the chimney, T the temperature (0) of the outside air, a = ^7 the co-

efficient of expansion of the gas. Hence show that the greatest amount of

gas will pass up the chimney the "best draught" will occur when the

temperature of the " flue gases
"

is nearly 333 C. and the temperature of

the atmosphere is 15 C.

(10) If VC denotes the "input" of a continuous current dynamo; <r the

fixed losses due to iron, friction, excitation, etc.
; tC2

,
the variable losses ; 0,

the current, then the efficiency, E, is given by E = 1 -
(a

- tC2
)/VC. Show

that the efficiency will be a minimum when <r = tC2 . Hint. Find dEjdC, etc.

(11) Show that xx is a maximum when x = e. Hint, dyjdx = x x
(l

-

logjc)/aj
2

; .*. logo; = 1, etc.

(12) A submarine telegraph cable consists of a circular core surrounded by
a concentric circular covering. The speed of signalling through this varies as

1 : a;
2
log x

~ 1
, where x denotes the ratio of the radius of the core to that of the

covering. Show that the fastest signalling can be made when this ratio is

0-606 . . . Hint. 1 : \Z<T= 0-606.

(18) The velocity equations for chemical reactions in which the normal
course is disturbed by autocatalysis are, for reactions of the first order,

dx/dt = kx(a -
x) ; or, dx\dt = k(b + x) (a

-
x). Hence show that the

velocity of the reaction will be greatest when x = \a for the former reaction,

and x = \(a
-

b) for the latter.

(14) A privateer has to pass between two lights, A and B, on opposite
headlands. The intensity of each light is known and also the distance be-

tween them. At what point must the privateer cross the line joining the

lights so as to be illuminated as little as possible. Given the intensity of the

light at any point is equal to its illuminating power divided by the square of

the distance of the point from the source of light. Let px
and p2 respectively

denote the illuminating power of each source of light. Let a denote the

distance from A to B. Let x denote the distance from A to the point on
AB where the intensity of illumination is least

; hence the ship must be

illuminated pjx2 + pj(a -
x)

2
. This function will be a minimum when

(15) Assuming that the cost of driving a steamer through the water varies

as the cube of her speed, show that her most economical speed through the

water against a current running V miles per hour is |F. Let x denote the

speed of the ship in still water, x - V will then denote the speed against the

current. But the distance traversed is equal to the velocity multiplied by
the time. Hence, the time taken to travel s miles will be s/(x

-
V). The

cost in fuel per hour is ax*, where a is the constant of proportion. Hence :

Total cost = asaP/fa
-

V). Hence, aP/fa
- V) is to be a minimum. Differen-

tiate as usual, and we get x = f V. The captain of a river steamer must be

always applying this fact subconsciously.

(16) The stiffness of a rectangular beam of any given material is propor-
tional to its breadth, and to the cube of its depth, find the stiffest beam that
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can be cut from a circular tree 12 in. in diameter. Let x denote the breadth

of the beam, and y its depth ; obviously, 122 x2 + y
2

. Hence, the depth of

the beam is \/l22 - sc
2

;
.*. stiffness is proportional to sc(12

2 - a:
2
)"
5
". This is a

maximum when x = 6. Hence the required depth, y, must be 6 s/s.

(17) Suppose that the total waste, y, due to heat, depreciation, etc., which
occurs in an electric conductor with a resistance R ohms per mile with an

electric current, C, in amperes is C2R + (17)
2
/i2, find the relation between G

and R in order that the waste may be a minimum. Ansr. GR = 17, which is

known as Lord Kelvin's rule. Hint. Find dy/dR t assuming that C is con-

stant. Given the approximation formula, resistance of conductor of cross

sectional area a is i? = 0-04/a ; .-. C= 425a, or, for a minimum cost, the current

must be 425 amperes per square inch of cross sectional area of conductor.

63. Singular Points.

The following table embodies the relations we have so far de-

duced between the shape of the curve y =
f{x) and the first four

differential coefficients. Some relations have been "
brought for-

ward "
from a later chapter. The symbol

"
. .

" means that the

value of the corresponding derivative does not affect the result :

Table I. Singular Values of Functions.

Property of Curve.
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Two or more branches of the same curve will intersect or cross

one another, as shown at 0, Fig. 80, when the first differential

coefficient has two or more real unequal values, and y has at least

two equal values. The number of intersecting branches is denoted

by the number of real roots of the first differential coefficient. The

point of intersection is called a multiple point. If two branches

of the curve cross each other the point is called a node ; Cayley
calls it a crunode.
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Examples. (1) In the cissoid curve, y = b sj(x
2 - a2f ; y is imaginary

for all values of x between a. When x = a, y has one value; for any

point to the right of x = + a, or to the left of x -
a, y has two values ;

dyjdx = Sx(x
2 - a2

)* vanishes when x = a. The two branches of the curve

have therefore a common tangent parallel to the <c-axis and there is a cusp.

The cusp is said to be of the first species, or a ceratoid cusp. We now find

that there are two real and equal values for the second differential coefficient,
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G, when = -
m/n, provided b is greater than unity. This curve

is also asymptotic to a line p = ab x ln

parallel to the 0-axis. The other branch

of the curve, I may notice en passant,

is asymptotic to the same straight line

and also to the straight line 9 = - m/n

parallel to the ^?-axis. I have asked a

class of students to plot the above equa-

tion and all missed the point of inflexion

at E. As a matter of fact you should

try to get as much information as you
can by applying the above principles

before actual plotting is attempted. You
will now see that if you know the formula of a curve, the calculus

gives you a method of finding all the critical points without going
to the trouble of plotting.
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120

80

will get a better insight into the " inwardness
"

of van der Waals'

equation than if pages of 160-

descriptive matter were

appended. Notice that

the a/v
2 term has no ap-

preciable influence on the

value of p when v becomes

very great, and also that

the difference between v

and v - b is negligibly

small, as v becomes very

large. What does this

signify? When the gas

is rarefied, it will follow Boyle's law pv = constant,

be the state of the gas when v = 0*0023 ?

For convenience, solve (1) in terms of p, and treat BT as if it

were one constant,
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23
a/3

3
6, when v = 36

;
and gradually approaches zero, as v becomes

very great. If, therefore, BT is greater than 23
a/3

3
6, the maximum

value of 2a(v
-
bf/v

3
,
then v will increase as p decreases. When BT

is less than 23
a/3

3
6, p will decrease for small and large values of v

f

but it will increase in the neighbourhood of v = 36. Consequently,

p has a maximum or a minimum value for any value of v which

makes 2a(v
-

b)
2
/v* = BT. This curve resembles that for C.

(Fig. 89), for all values of BT between a/2
2b and 2%/2

36
; when

BT = 23
a/3

3
6, we have the point of inflexion K (Fig. 89).

Let us now see what we can learn from the second differential

coefficient

d*p
dv2

2BT 6a
* 54

d2p BT Sa(v
-

bf
(5)

(v
- bf v*

' '

dv* (v
- bfV~ v*

The curve will have a point of inflexion when the fraction

Sa(v
-

b)
2
/v*

= BT. By the methods already described you can

show that Sa(v
-

6)
3
/^

4 will be zero when v = b
;
and that it will

attain the maximum value 34
a/4

46 when v = 46. Every value of

v which makes (5) zero will correspond with a point of inflexion.

BT may be equal to, greater, or less than 34
a/4

46. For all values

of BT between 23
a/3

36 and 3%/4
4
6, there will be two points of in-

flexion, as shown at F and G (Fig. 89). When BT exceeds the

value 3%/4
4
6, we have a branch of the rectangular hyperbola as

shown for 91.

If we take the experimental curves obtained by Andrews for

the relation between the pressure, p, and volume, v, of carbon

dioxide at different temperatures T, T
Q ,
Tv T

2 ,
... we get a set

of curves resembling Fig. 90. At any temperature T above the

critical temperature, the relation be-

tween p and v is given by the curve pT.
The gas will not liquefy. Below the

critical temperature, say Tv the volume

decreases as the pressure increases, as

shown by the curve T
l
K

1 ;
at K

Y
the

gas begins to liquefy and the pressure

remains constant although the volume

of the system diminishes from K
Y

to

Mv At M
1

all the gas will have

liquefied and the curve M^pY
will repre-

sent the relation between the pressure

Similar curves T
2
K

2
M

2
P

2 , TS
K

3
M

ZP3 ,

Pig. 90.

and volume of the liquid.
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... are obtained at the different temperatures below the critical

temperature T .

The lines E A, KqP and KJB divide the plane of the paper
into three regions. Every point to the left of AK p represents a

homogeneous liquid ; every point to the right of BK p represents a

homogeneous gaseous phase ;
while every point in the region AKQB

represents a heterogeneous liquid-gas phase.

By gradually increasing the pressure, at any assigned tempera-
ture below T

,
the gas will begin to liquefy at some point along

the line BK ; this is called the dew curYe ligne de ros6e. If the

pressure on a liquid whose state is represented by a point in the

region OAK^p, be gradually diminished, the substance will begin
to assume the gaseous state at some point along the line K A.

This is called the boiling curve ligne d'Ebullition. At K there

is a tacnodal point or double cusp of the mixed species.

A remarkable phenomenon occurs when a mixture of two gases

is treated in a similar manner. If a mixture of one volume of air

and nine volumes of carbon dioxide be subjected to a gradually

increasing pressure at about 2 C, the gas begins to liquefy at a

pressure of 72 atm. ;
and on increasing the pressure, still keeping

the temperature constant, the liquid again passes into the gaseous
state when the pressure reaches 149 atm.

;
and the liquid does not

reappear again however great the pressure. If the pressure at

which the liquid appears and disappears be plotted with the cor-

responding temperature, we get the dew curve

BKC, shown in Fig. 91. For the same ab-

scissa Tv there are two ordinates, pl
and px

'

t

between which the mixture is in a hetero-

geneous condition. At temperatures above

T
,
no condensation will occur at all

; below

T
x only normal condensation takes place ; at

temperatures between T
Y
and T both normal Fig. 91.

and retrograde condensation will occur. The dotted line AG
represents the boiling curve; above AC the system will be in the

liquid state. K corresponds with the critical temperature of the

mixture. C is called the plait-point.
The phenomenon only occurs with mixtures of a certain com-

position. Above and below these limits the dew curves are quite

normal. This is shown by the curves DC and OC
5
in Fig. 92. C

is the plait-point ; and the line joining the plait-points C2 ,
C

it
Cv . .
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for different mixtures is called the plait-point curve. The dotted

lines in the same diagram represent boiling curves. Note the

gradual narrowing of the border curves and their transit into or-

dinary vapour pressure curves DC and 0G5

at the two extremes. You must notice that

we are really working in three dimensions.

The variables are p, v and T.

The plait-point curve appears to form

a double cusp of the second species at a

plait-point. There is some discussion as to
Fig. 92.

whether, say, AGZ
K

ZB really forms a con-

tinuous curve line, so that at G
z
the Hne CGb

is tangent to AC^KJB ;

or separate lines each forming a spinode or cusp with the line CC
5

at the point C3
. But enough has been said upon the nature of

these curves to carry the student through this branch of mathema-

tics in, say, J. D. van der Waals' Bindre Gemische, Leipzig, 1900.

Example. Show that the product pv for van der Waals' equation fur-

nishes a minimum when

ab _ \( ab \
2 aW

a-RbT *sl{a-RbT
~
a - BbT"

Hint. Multiply the first of equations (3) through with v
;
differentiate to get

d(pv)/dv = 0, etc. The conclusion is in harmony with M. Amagat's experi-

ments (Ann. Ghvm. Phys., [5] 22, 353, 1881) on carbon dioxide, ethylene,

nitrogen and methane. For hydrogen, a, in (3), is negligibly small, hence

show that pv has no minimum.

65. Imaginary Quantities.

We have just seen that no number is known which has a

negative value when multiplied by itself. The square root of a

negative quantity cannot, therefore, be a real number. In spite of

this fact, the square roots of negative quantities frequently occur in

mathematical investigations. Again, logarithms of negative num-

bers, inverse sines of quantities greater than unity, . . ., cannot have

real values. These, too, sometimes crop up in our work and we
must know what to do with them.

Let J - a2 be such a quantity. If - a2 is the product of a2

and -
1, + n/- a2 may be supposed to consist of two parts, viz.,

a and J - 1. Mathematicians have agreed to call a the real

part of J - a2 and si - 1, the imaginary part. Following Gauss,



$ 65. FUNCTIONS WITH SINGULAR PROPERTIES. 177

*J - 1 is written t (or i).
It is assumed that J -

1, or t obeys all

the rules of algebra.
1

Thus,

n/~1x V^T= -1; */-"I-2*/Tl; s/-~ax n/5= J -ab; i
4 = l.

We know what the phrase
" the point x, y

" means If one or

both of # and y are imaginary, the point is said to be imaginary.

An imaginary point has no g'eometrical or physical meaning If

an equation in x and y is affected with one or more imaginary co-

efficients, the non-existent graph is called an imaginary curye ;

while a similar equation in x, y and z will furnish an imaginary
surface.

Examples. (1) Show &* = 1
; i* + * =

; i* + 2 = - 1
;

t
4" + 3 = - t.

(2) Prove that a2 + o2 = (a + 16) (a
-

ib).

(3) The quadratic x2 + bx + c = 0, has imaginary roots only when 62 - 4c

is less than zero (5), page 854. If o and )8 are the roots of this equation, show

that a = - 6 + $ \/62
~

4c
;
and $ = -

\b
-

* \/&2 - 4c, satisfy the equation.

(4) Show (a + 16) (c + id) m (ac
-

bd) + (ad + bc)i.

(5) Show by multiplying numerator and denominator by c + id that

a + ib ac -bd be + ad

c~^ld
~

c2 + d2 +
C2 -}-^

2
*'

To illustrate the periodic nature of the symbol t, let us suppose
that i represents the symbol of an operation which when repeated

twice changes the sign of the subject of the operation, and when

repeated four times restores the subject of the operation to its

original form For instance, if we twice operate on x with t,
we

get
-

x, or

( J -
l)

2x =J-lxJ-lxx = -x; and(\/- Vfa = x,

and so on in cycles of four. If the imaginary quantities tx,
- txt

. . . are plotted on the y-axis axis of imaginaries and the real

quantities x,
-

x, . . . on the rr-axis axis of reals the operation

of i on a; will rotate x through 90, two operations will rotate x

through 180, three operations will rotate x through 270, and four

operations will carry x back to its original position.

1 The so-called fundamental laws of algebra are : /. The law of association : The
number of things in any group is independent of the order. //. The commutative law :

(a) Addition. The number of things in any number of groTips is independent of the

order, (b) Multiplication. The product of two numbers is independent of the

order. III. The distributive law : (a) Multiplication. The multiplier may be distri-

buted over each term of the multiplicand, e.g., m(a + b)
= ma + mb. (b) Division.

(a }- b)jm = aim + b/m. IV. The index law: (a) Multiplication. aman = + .

(ft) Division. am/an =a*~".
M
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We shall see later on that 2t sin x = etx - e
- LX

; hence, if x = tt,

sin7r = 0, and we have

el7r e~ lir = 0; or, e4*" = e~ lir
,

meaning that the function eix has the same value whether x = tt, or

a; = -
7r. From the last equation we get the remarkable connec-

tion between the two great incommensurables it and e discovered

by Euler :

Example. Show x = xxl = xx e2 = e io x + 2t7T
. This means that

the addition of 2nr to the logarithm of any quantity has the effect of multi-

plying it by unity, and will not change its value. Every real quantity there-

fore, has one real logarithm and an infinite number of imaginary logarithms

differing by 2inw, where n is an integer.

Do not confuse irrational with imaginary quantities. Numbers

like \/2, y 5, . . . which cannot be obtained in the form of a whole

number or finite fraction are said to be irrational or surd num-

bers. On the contrary, JI, \/%7, . . . are rational numbers. Al-

though we cannot get the absolutely correct value of an irrational

number, we can get as close an approximation as ever we please ;

but we cannot even say that the imaginary quantity is entitled

to be called a quantity.

66. Curvature.

The curvature at any point of a plane curve is the rate at which

the curve is bending. Of two curves AG, AD, that has the greater

curvature which departs the more rapidly from its tangent AB

A (Fig. 93). In passing from P (Fig. 94) to

"b~ another neighbouring point P1 along any
V
C arc 8s of the plane curve AB, the tangent

F go
at P turns through the angle Ba, where

a is the angle made by the intersection

of the tangent at P with the -axis. The curvature of the curve

at the point P is defined as the limiting value of the ratio 8a/Ss

when P
1
coincides with P. When the points P and P

x
are not

infinitely close together, this ratio may be called the mean or

average curvature of the curve between A and B. We might now

say that

H = -T- = Rate of bending of curve. , . (1)
CLS
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I. The curvature of the circumference of all circles of equal
radius is the same at all points, and varies inversely as the radius.

This is established in the following

way : Let AB (Fig. 94) be a part of a

circle
; Q, the centre ; QP = QP1

=

radius = B. The two angles marked

8a are obviously equal. The angle

PQP1
is measured in circular measure,

page 606, by the ratio of the arc PP
X

to the radius, i.e., the angle PQP-, =1 Fig 94
arc PPJB; or, 8a/Bs

= 1/R. The

curvature of a circle is therefore the reciprocal of the radius, or, in

symbols,

ds B' ..... ^;

Example. An illustration from mechanics. If a particle moves with a

variable velocity on the curve AB (Fig. 94) so that at the time t, the particle

is at P, the particle would, by Newton's first law of motion, continue to move
in the direction of the tangent PS, if it were not acted upon by a central force

at Q which compels the particle to keep moving on the curvilinear path PPXB.

Let P
x be the position of the particle at the end of a short interval of time dt.

The direction of motion of the particle at P
x may similarly be represented by

the tangent P^. Let the length of the two straight lines ap and apx represent,

in direction and magnitude, the respective velocities of the particle at P and

at Pr Join ppx
. The angle papx

is evidently equal to the angle 5a. Since

ap represents in direction and magnitude the velocity of the particle at P,

and apv the velocity of the particle at P
x , ppx

will represent the increment

in the velocity of the particle as it passes from P to P
lt

for the parallelo-

gram of velocities tells us that apx
is the resultant of the two component

velocities ap and ppx , in direction and magnitude. The total acceleration

of the particle in passing from P to Px
is therefore

Total acceleration = ^ocity
gained =m

Time occupied dt

Now drop a perpendicular from the point p to meet apx
at ra. The in-

finitely small change of velocity ppx may be regarded as the resultant of two

changes pm and pxm, or the acceleration ppx \dt is the resultant of two acceler-

ations pm/dt and mpx/dt represented in direction and magnitude by the lines

mp and px
m respectively, pm/dt is called the normal acceleration. pxm/dt, the

tangential acceleration. If dt be made small enough, the direction of mp
coincides with the direction of the normal QP to the tangent of the curve

at the point P; just as BP
X ultimately coincides with SP if da be taken

small enough. But rap= op sin 5a. If 5a is small enough, we may write

sin 5a= 5a (11), page 602. Let V denote the velocity of the particle at the

point P, then rap = Vda. From (2), 5a = Ss/E ;
and 5s/5 = V, hence,

M *
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Normal acceleration = -- =. =--.
dt R dt R

That is to say, when the particle moves on the curve, the acceleration in the

direction of the normal is directly proportional to the square of the velocity,

and inversely as the radius of curvature. Similarly the

dV
Tangential acceleration = -

-.

Cut

If the particle moves in a straight line, R = 5a, and the normal acceleration

is zero.

Just as a straight line touching a curve, may be regarded as

a line drawn through two points of the curve infinitely close to

each other (definition of tangent), so a circle in contact with a

curve may be considered to pass

through three consecutive points

of the curve infinitely near each

other. Such a circle is called an

"osculatory circle" or a "circle

of curvature". The osculatory

circle of a curve has the same
Eig. 95. curvature as the curve itself at

the point of contact. The curvature of different parts of a curve

may be compared by drawing osculatory circles through these

points. If r be the radius of an osculatory circle at P (Fig. 95)

and r
x
that at Pv then

Curvature at P : Curvature at P-,
= -

:
-

. . (3)1
r r

l

v '

In other words, the curvature at any two points on a curve varies

inversely as the radius of the osculatory circles at these points.

The radius of the osculatory circle at different points of a curve is

called the "radius of curvature" at that point. The centre of

the osculatory circle is the "centre of curvature ".

II. To find the radius of curvature of a curve. Let the co-

ordinates of the centre of the circle be a and b, B the radius, then

the equation of the circle is, page 98,

(x
-

a)
2 + (y

-
b)

2 = B2
. . . . (4)

Differentiating this equation twice
; and, dividing by 2, we get

(*-) + (y-*)!
=

; and, 1 + (J,
-
*)g + (|)

2

= 0. (5)

Let u = dy/dx and v = d2
y/dx

2
,
for the sake of ease in manipulation,

(5) then becomes
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1 -' 1 + w2
/Av

and, X-a = U . . (b)
V V

by substituting for y - b in the first of equations (5). Now u, v, x

and y at any point of the curve are the same for both the curve

and the osculating circle at that point, and therefore a, b x and B
can be determined from x, y, u, v. By substituting equation (6)

in (4), we get

ii . (7)r- j(i + u*y y>

The standard equation for the radius of curvature at the point

(x, y) is

1=4 = ^;or
,JUPf (8)B ds c

/<fy\
2U 3^

V

I
1 +W J

^
When the curve is but slightly inclined to the #-axis, dy/dx

is practically zero, and the radius of curvature is given by the

expression

B=^y (9)

dx*
N

a result frequently used in physical calculations involving capil-

larity, superficial tension, theory of lenses, etc.

III. The direction of curvature has been discussed in 60.

It was there shown that a curve is concave or convex upwards at

a point (x, y) according as d2
y/dx

2 > or < 0.

Examples. (1) Find the radius of curvature at any point (x, y) on the

ellipse

xl t.-i . <ty__&x. d?y_ _V_ n _ (aY+ bWfi
aa+ 62

"
dx~ a?y' dx2

~
a*y* a464

At the point x = a, y = 0, R = b2/a. Hint. The steps for dhf\dx* are :

gty
6* 6= y-x.dyjdx_ o2 aV+W 62 a262

da2
~

afy'
6
~

a*
'

y
3

~
a?

'

a?y
3

~
a*' y*

'

(2) The radius of curvature on the curve xy = a, at any point (x, y)> is

(a;
2 + y

2
)%l2a.

1 The determination of a and b is of little use in practical work. They give

equations to the evolute of the curve under consideration. The evolute is the curve

drawn through the centres of the osculatory circles at every part of the curve, the

curve itself is called the involute. Example : the osculatory circle has the equation

(x -
a)

2 + {y
-

bf R. a and b may be determined from equations (4), (7) and (8).

The evolate of the parabola y-
= mx is 27my'

2 =
8(2&

-
7ii)'K
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The equation

67. Envelopes.

m
y = h ax.u a

represents a straight line cutting the ?/-axis at m/a, and making an

angle tan
~ la with the sc-axis. If a varies by slight increments, the

equation represents a series of straight lines so near together that

their increments may be considered to lie upon a continuous curve.

a is said to be the variable parameter of the family, since the

different members of the family are obtained by assigning arbitrary

values for a. Let the equations

m
Vl
=~ + ax

#2
=

2/3
=

m
a + la

m
a + 2la

+ (a + la)x

+ (a + 2Sa)x

a)

(2)

(3)

be three successive members of the family. As a general rule two

distinct curves in the same family
will have a point of intersection. Let

P (Fig. 96) be the point of intersection

of curves (1) and (2) ;
P

1
the point of

intersection of curves (2) and (3),

then, since P
2
and P

2 are both situ-

ated on the curve (2), PPY
is part of

the locus of a curve whose arc PP
X

coincides with an equal part of the

curve (2). It can be proved, in fact,

that the curve PP
l

. . . touches the

whole family of curves represented by the original equation. Such
a curve is said to be an envelope of the family.

To find the equation of the envelope, bring all the terms of the

original equation to one side,

Fig. 96. Envelope.

y
m
a

ax 0.

Then differentiate with respect to the variable parameter, and put

mdaw -xda = 0; .-.-2 x = 0.

Eliminate a between these equations,
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Jm . x - x a/ = 0, or y - 2 Jm .x = Q.

r = Amx.

Examples. (1) Find the envelope of the family of circles

(x
- af

where a is the variable parameter,
to 0, and we get aj-a=0; then

eliminating a, we get y = + r, which

is the required envelope. The en-

velope y=* r represents two straight

lines parallel to the aj-axis, AB, and

at a distance + r and - r from it.

Shown Fig. 97.

(2) Show that the envelope of the

family of curves xja + y/fi
= 1, where

a and are variable parameters sub-

ject to the condition that a)8 = 4m2
,

is the hyperbola xy = to2. Hint.

+ V = r\

Differentiate with respect to a, equate

enveiope

Fig. 97.

envelop? F

-Double Envelope.

Differentiate each of the given equations with respect to the given para-

meters, and we get xda/a* + ydpftP = from the first, and &da + adp = 0,

from the second. Eliminate da and dp. Hence x/a = yj0 = $ ; .'. a = 2x;

/8 m 2y. Substitute in oj8 sa 4m2
, etc.

If a given system of rays be incident upon a bright curve, the

envelope of the reflected rays is called a caustic by reflection.



CHAPTER IV.

THE INTEGBAL CALCULUS.

" Mathematics may be defined as the economy of counting. There is

no problem in the whole of mathematics which cannot be solved

by direct counting. But with the present implements of mathe-

matics many operations of counting can be performed in a few

minutes, which, without mathematics, would take a lifetime."

E. Mach.

68. The Purpose of Integration.

In the first chapter, methods were described for finding the mo-

mentary rate of progress of any uniform or continuous change in

terms of a limiting ratio, the so-called "differential coefficient"

between two variable magnitudes. The fundamental relation

between the variables must be accurately known before one can

form a quantitative conception of the process taking place at any
moment of time. When this relation or law is expressed in the

form of a mathematical equation, the "methods of differentiation"

enable us to determine the character of the continuous physical

change at any instant of time. These methods have been

described.

Another problem is even more frequently presented to the

investigator. Knowing the momentary character of any natural

process, it is asked :

" What is the fundamental relation between

the variables?" "What law governs the whole course of the

physical change?"
In order to fix this idea, let us study an example. The con-

version of cane sugar CJ 12
H

22On into invert sugar C
6
H

12 6

in the presence of dilute acids, takes place in accordance with the

reaction :

^12-^22^11 + -E-2O
= 2C6

H
12 6.

Let x denote the amount of invert sugar formed in the time t;

the amount of sugar remaining in the solution will then be 1 -
x,

184



68. THE INTEGRAL CALCULUS. 185

provided the solution originally contained one gram of cane sugar.

The amount of invert sugar formed in the time dt, will be dx. From
the law of mass action,

" the velocity of the chemical reaction

at any moment is proportional to the amount of cane sugar actually

present in the solution ". That is to say,

|-*a-),
.... a)

where k is the "constant of proportion," page 23. The meaning
of h is obtained by putting a; = 0. Thus, dxjdt = k, or, k denotes

the rate of transformation of unit mass of sugar, or

'-
<
2
)

where V denotes the velocity of the reaction. This relation is

strictly true only when we make the interval of time so short

that the velocity has not had time to vary during the process.

But the velocity is not really constant during any finite interval

of time, because the amount of cane sugar remaining to be acted

upon by the dilute acid is continually decreasing. For the sake

of simplicity, let k =
x\p and assume that the action takes place in

a series of successive stages, so that dx and dt have finite values,

say Sx and St respectively. Then,

y Amount of cane sugar transformed _ Sx

Internal of time St'
' ' ^ '

Let St be one second of time. Let ^ of the cane sugar present

be transformed into invert sugar in each interval of time, at the

same uniform rate that it possessed at the beginning of the interval.

At the commencement of the first interval, when the reaction

has just started, the velocity will be at the rate of 0100 grams of

invert sugar per second. This rate will be maintained until the

commencement of the second interval, when the velocity suddenly
slackens down, because only 0*900 grams of cane sugar are then

present in the solution.

During the second interval, the rate of formation of invert

sugar will be ^ of the 0*900 grams actually present at the be-

ginning. Or, 0*090 grams of invert sugar are formed during the

second interval.

At the beginning of the third interval, the velocity of the re-

action is again suddenly retarded, and this is repeated every second

for say five seconds.
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Now let Sxv $x
2 ,

. . . denote the amounts of invert sugar formed

in the solution during each second, U. Assume, for the sake of

simplicity, that one gram of cane sugar yields one gram of invert

sugar.
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an infinite number of equations to add up, the actual summation

would give a perfectly accurate result. To add up an infinite

number of equations is, of course, an arithmetical impossibility,

but, by the "methods of integration" we can actually perform
this operation.

X = Sum of all the terras V . dt, between ^=0, and t m 5
;

.'. X = V .dt + V .dt + V.dt +. . .to infinity.

This is more conveniently written,

5 f
5

X = 2, (V .dt) ; or, better still, X = I V. dt.
Jo

The signs
" 2

"
and u

[
"

are abbreviations for
" the sum of all

the terms containing . . .

"
;
the subscripts and superscripts denote

the limits between which the time has been reckoned. The second

member of the last equation is called, on Bernoulli's suggestion,

an integral. "jf(x).dx" is read "the integral of f(x).dx".
When the limits between which the integration (evidently another

word for " summation ") is to be performed, are stated, the

integral is said to be definite ;
when the limits are omitted, the

integral is said to be indefinite. The superscript to the symbol
u

J

"
is called the upper or superior limit ;

the subscript, the

lower or inferior limit. For example, JJjp
. dv denotes the sum

of an infinite number of terms p . dv, when v is taken between the

limits v
2
and vv In order that the " limit

"
of integration may not

be confounded with the "limiting value" of a function, some
writers call the former the " end-values of the integral ".

To prevent any misunderstanding, I will now give a graphic
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representation of the above process. Take Ot and Ov as co-

ordinate axes (Figs. 98 and 99). Mark off, along the abscissa axis,

intervals 1, 2, 3, . . .
, corresponding to the intervals of time St.

Let the ordinate axis represent the velocities of the reaction

during these different intervals of time. Let the curve vbdfh . . .

represent the actual velocity of the transformation on the supposi-

tion that the rate of formation of invert sugar is a uniform and

continuous process of retardation. This is the real nature of the

change. But we have pretended that the velocity remains con-

stant during a short but finite interval of time say St = 1 second.

The amount of cane sugar inverted during the first second is,

(y 0-j to i>a 2>o 2-5 so 3\S *~o * $& second*

Fig. 99.

therefore, represented by the area valO (Fig. 98) ; during the

second interval by the area bc21, and so on.

At the end of the first interval the velocity at a is supposed
to suddenly fall to b, whereas, in reality, the decrease should be

represented by the gradual slope of the curve vb.

The error resulting from the inexact nature of this "
simplifying

assumption
"

is graphically represented by the blackened area vab
;

for succeeding intervals the error is similarly represented by bed,

def, ... In Fig. 99, by halving the interval, we have considerably

reduced the magnitude of the error. This is shown by the dimin-

ished area of the blackened portions for the first and succeeding
seconds of time. The smaller we make the interval, the less the

error, until, at the limit, when the interval is made infinitely

small, the result is absolutely correct. The amount of invert sugar
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formed during the first five seconds is then represented by the area

vbdf...0.
The above reasoning will repay careful study ;

once mastered,

the " methods of integration
"

are, in general, mere routine work.

The operation
1 denoted by the symbol

"
J" is called integra-

tion. When this sign is placed before a differential function, say

dx, it means that the function is to be integrated with respect to

dx. Integration is essentially a method for obtaining the sum. of

an infinite number of infinitely small quantities. This does not

mean, as some writers have it,
"

if enough nothings be taken their

sum is something". The integral itself is not exactly what we

usually understand by the term "
sum," but it is rather " the limit

of a sum when the number of terms is infinitely great ".

Not only can the amount of substance formed in a chemical

reaction during any given interval of time be expressed in this

manner, but all sorts of varying magnitudes can be subject to a

similar operation. The distance passed over by a train travelling

with a known velocity, can be represented in terms of a definite

integral. The quantity of heat necessary to raise the temperature,

0, of a given mass, m, of a substance from
>

1
to 2 ,

is given by

the integral f^ma- . dO, where o- denotes the specific heat of the

substance. The work done by a variable force, F, when a body

changes its position from s to s
x
is

j't
lF . ds. This is called a space

integral. The impulse of a variable force F, acting during the

interval of time t
2
- tv is given by the time integral ftF .dt. By

Newton's second law,
" the change of momentum of any mass, m,

is equal to the impulse it receives ". Momentum is defined as the

product of the mass into the velocity. If, when t is tv v = v
1 ;

and, when t is t
2 , v = v

2,
Newton's law may be written

I m.dv = F .dt.

The quantity of heat developed in a conductor during the

passage of an electric current of intensity 0, for a short interval

of time dt is given by the expression kO .dt (Joule's law), where k

is a constant depending on the nature of the circuit. If the current

remains constant during any short interval of time, the amount of

1 The symbol
"
J
"

is supposed to be the first letter of the word "sum ".
"
Omn,"

from omnia, meaning '/all," was once used in place of "J". The first letter of the

differential dx is the initial letter of the word " difference".
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heat generated by the current during the interval of time t
2
- tv

is given by the integral jffiC.dt.
The quantity of gas, q, con-

sumed in a building during any interval of time t
2
- tv may be

represented as a definite integral,

= [\.dt,

where v denotes the velocity of efflux of the gas from the burners.

The value of q can be read off on the dial of the gas meter at any
time. The gas meter performs the integration automatically.
The cyclometer of a bicycle can be made to integrate,

=
j

\dt.

Differentiation and integration are reciprocal operations in the

same sense that multiplication is the inverse of division, addition

of subtraction. Thus,

a x b + b = a; a + b - b = a; Ja2 = a
;

dja .dx = a.dx; \dx = x ;

Bx2dx is the differential of #3
,
so is x3 the integral of 3x2dx. The

differentiation of an integral, or the integration of a differential

always gives the original function. The signs of differentiation

and of integration mutually cancel each other. The integral,

\f(x)dx, is sometimes called an anti-differential. Integration

reverses the operation of differentiation and restores the differ-

entiated function to its original value, but with certain limitations

to be indicated later on.

While the majority of mathematical functions can be differenti-

ated without any particular difficulty, the reverse operation of

integration is not always so easy, in some cases it cannot be done

at all. If, however, the function from which the differential has

been derived, is known, the integration can always be performed.

Knowing that d (log x)
= x ~

l
dx, it follows at once that

jx~ 1 dx = log x. The differential of xn is nxH ~ 1
dx, hence

}nx
n ~ ldx = xn

. In order that the differential of xn may assume

the form of x~\ we must have n - 1 = -
1, or n = 0. In that

case xn becomes x = 1. This has no differential. The algebraic

function xn cannot therefore give rise to a differential of the form

x~ x dx. Nor can any other known function except logic give rise

to-x~ l dx. If logarithms had not been invented we could not have

integrated fx~ l dx. The integration of algebraic functions may
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also give rise* to transcendental functions. Thus, (1
-

x)
~
hdx

becomes sin -1a;; and (1 + x2
)~

1dx becomes tan -1#. Still

further, the integration of many expressions can only be effected

when new functions corresponding with these forms have been

invented. The integrals je
x2
.dx, and j(x

s + l)-$dx, for example,

have not yet been evaluated, because we do not know any function

which will give either of these forms when differentiated.

The nature of mathematical reasoning may now be denned

with greater precision than was possible in 1. There, stress

was laid upon the search for constant relations between observed

facts. But the best results in science have been won by antici-

pating Nature by means of the so-called working hypothesis. The

investigator first endeavours to reproduce his ideas in the form of

a differential equation representing the momentary state of the

phenomenon. Thus Wilhelmy's law (1850) is nothing more than

the mathematician's way of stating an old, previously unverified,

speculation of Berthollet (1779) ;
while Guldberg and Waage's law

(1864-69) is still another way of expressing the same thing.

To test the consequences of Berthollet's hypothesis, it is clearly

necessary to find the amount of chemical action taking place during

intervals of time accessible to experimental measurement. It is

obvious that Wilhelmy's equation in its present form will not do,

but by "methods of integration
"

it is easy to show that if

&x . . 1 . 1

m =
&(1

-
X), then, k = y log

j j,

where x denotes the amount of substance transformed during the

time t. x is measurable,
'

is measurable. We are now in a posi-

tion to compare the fundamental assumption with observed facts.

If Berthollet's guess is a good one, k, above, must have a con-

stant value. But this is work for the laboratory, not the study,

as indicated in connection with Newton's law of cooling, 20.

Integration, therefore, bridges the gap between theory and fact

by reproducing the hypothesis in a form suitable for experimental

verification, and, at the same time, furnishes a direct answer to the

two questions raised at the beginning of this section. The idea was

represented in my Chemical Statics and Dynamics (1904), thus:

Hypothesis > Differential Equation > Integration > Observation.

We shall return to the above physical process after we have gone

through a drilling in the methods to be employed for the integration

of expressions in which the variables are so related that all the x's

and dx's can be collected to one side of the equation, all the y's and
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dy's to the other. In a later-chapter we shall have to study the in-

tegration of equations representing more complex natural processes.

If the mathematical expression of our ideas leads to equations
which cannot be integrated, the working hypothesis will either

have to be verified some other way,
1 or else relegated to the great

repository of unverified speculations.

69. Table of Standard Integrals.

Every differentiation in the differential calculus, corresponds

with an integration in the integral calculus. Sets of corresponding
functions are called " Tables of Integrals ". Table II., page 193,

contains the more important ; handy for reference, better still for

memorizing.

70. The Simpler Methods of Integration.

I. Integration of the product of a constant term and a differ-

ential. On page 38, it was pointed out that " the differential of

the product of a variable and a constant, is equal to the constant

multiplied by the differential of the variable ". It follows directly

that the integral of the product of a constant and a differential, is

equal to the constant multiplied by the integral of the differential.

E.g., if a is constant,

fa . dx ajdx = ax
; /log a . dx = log ajdx = x . log a.

On the other hand, the value of an integral is altered if a term

containing one of the variables is placed outside the integral sign.

For instance, the reader will see very shortly that while

jx
2dx = \x

z
; xjxdx = \x

z
.

II. A constant term must be added to every integral. It has

been shown that a constant term always disappears from an

expression during differentiation, thus,

d(x + C) = dx.

This is equivalent to stating that there is an infinite number

of expressions, differing only in the value of the constant term,

which, when differentiated, produce the same differential. In

1
Say, by slipping in another "

simplifying assumption". Clairaut expressed his

ideas of the moon's motion in the form of a set of complicated differential equations,

but left them in this incomplete stage with the invitation, "Now integrate them who
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Table II. Standard Integrals.

Function. Differential Calculus. Integral Calculus.

u = Xn .

u = ax.

u = ex.

u = log^.

u = sin x.

u = cos a;.

u = tan x.

u = cot a;.

u = sec x.

u = cosec x.

u = sin
- 1

jc.

u = cos
~

^x.

u = tan -1 cc.

u = cot -1 .

u = sec -1 a;.

u = cosec
~ l

x.

u = vers
~ 1

c.

u = covers ~ *x.

du
dx
du
dx~

= aXl Z a '

du

du _ 1

dx
~

x'

du
dx
= cosx -

du
dx

= ~ 8inX'

du
dx
du
dx
du _ since

die
~~

cos2jc

du _ cos a;

~dx
~

sin2^'

du 1

= sec2^.

= - cosec2a;.

dx
du
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or, if we put C=G2
- Gv we get \dy + C1

= jdx + C2 ; y+C1
= x + G2 ;

y = x + C.

The geometrical signification of this constant is analogous to

that of " b" in the tangent form of the equation of the straight

line, formula (8), page 94
; thus, the equation

y = mx + b
f

represents an infinite number of straight lines, each one of which

has a slope m to the #-axis and cuts the y-a>xis at some point b.

An infinite number of values may be assigned to b. Similarly,

an infinite number of values may be assigned to G in J . . . dx + G.

Example. Find a curve with the slope, at any point (x, y), of 2x to the

oj-axis. Since dyjdx is a measure of the slope of the curve at the point (a;, y),

dyjdx = 2x
; .*. y = x2 + C. If G = 0, we have the curve y = x 2

;
if C = 1,

another curve, y = x2 + 1
; if G = S, y = x2 + 3 . .. In the given problem we

do not know enough to be able to say what particular value G ought to possess.

According to (5), (6), (7), (8),
Table II.

,
which are based upon

(1), (2), (3), (4), page 48,

= sin
~ lx = - cos

~ lx ; I
,

= tan
~ lx = - cot

~~ 1
x,

y;.J-J Jl-x2
'

J Jl + ,

etc. This means that sin
- x

x, cos
~ l

x; or tan
~ x

x, cot
~ l

x, . . . only

differ by a constant term. This agrees with the trigonometrical

properties of these functions illustrated on page 48. The following

remarks are worth thinking over :

" Fourier's theorem is a most valuable tool of science, practical and theo-

retical, but it necessitates adaptation to any particular case by the provision of

exact data, the use, that is, of definite figures which mathematicians humorously
call

'

constants,' because they vary with every change of condition. A simple

formula is n + n = 2n, so also n x n = n2
. In the concrete, these come to the

familiar statement that 2 and 2 equals 4. So in the abstract, 40 + 40 = 80.

but in the concrete two 40 ft. ladders will in no way correspond to one 80 ft,

ladder. They would require something else to join them end to end and to

strengthen them. That something would correspond to a ' constant
'

in the

formula. But even then we could not climb 80 ft. into the air unless there

was something to secure the joined ladder. We could not descend 80 ft. into

the earth unless there was an opening, nor could we cross an 80 ft. gap. For

each of these uses we need something which is a constant
'

for the special

case. It is in this way that all mathematical demonstrations and assertions

need to be examined. They mislead people by their very definiteness and

apparent exactness. . . ." J. T. Spragde.

III. Integration of a sum and of a difference. Since

d(x + y + z +...) = dx + dy + dz + ...
,
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it follows that

j(dx + dy + dz +...) =* jdx + jdy + jdz + . . . ,

= x + y + z + . . .
,

plus the arbitrary constant of integration. It is customary to

append the integration constant to the final result, not to the inter-

mediate stages of the integration. Similarly,

j(dx
- dy - dz -

. . .
)
= jdx -

jdy
- jdz -

. . . ,

= x-y-z-...+ C.

In words, the integral of the sum or difference of any number of

differentials is equal to the sum of their respective integrals.

Examples. (1) Remembering that log xy = log x + log y, show that

/{log (a + bx) (1 + 2x)}dx = j log (a + bx)dx + j log (1 + 2x)dx + C.

(2) Show
J log^-^dx

= Aog(a + bx)dx
-

(log (1 + 2x)dx + G.

IV. Integration of x
ndx. Since the differential calculus, page 37,

teaches us that

d(x
n + x

)
=

(n + l)x
ndx ; xn . dx = d(-

=-)
;

we infer that

-J
?n+l

x"dx =
n~Tl

+ ' * * ' (1)

Hence, to integrate any expression of the form axn . dx, it is

necessary to increase the index of the variable by unity, multiply

by any constant term that may be present, and divide the product

by the new index. An apparent exception occurs when n = -
1,

for then

f

x~ 1+1 1

But we can get at the integration by remembering that

dQog x)
= = x ~ 1

. dx
;

.-. = log x + G. . (2)

If, therefore, the numerator of a fraction can be obtained by the

differentiation of its denominator, the integral is the natural log-

arithm of the denominator.

I want the beginner to notice that instead of writing log x + (7,

we may put log x + log a = log ax, for log a is an arbitrary con-

stant as well as C. Hence log a = G.

Examples. (1) One of the commonest equations in physical chemistry is,

dx = k(a
-

x)dt. Rearranging terms, we obtain



196 HIGHER MATHEMATICS. 70.

J J a - x J a - x

Hence kt = -
log (a

-
x) ; but log 1 = 0, ,\ kt = log 1 -

log(a
-

x) ; or,

(2) Wilhelmy's equation, dy/dt = -
ay, already discussed in connection

with the " compound interest law," page 63, may be written

^=-adt;.: (
dJi = -at.

y J y

Remembering that log e = 1
; log y = log b - at log e m log e

-
<** + log b,

where log b is the integration constant, hence, log be
-

<= log y ; and, y= be~ "i.

A meaning for the constants will be deduced in the next section.

(3) Show jx
- 5 dx =

4fa?
- 5

. dx = - x - 4 + G. Here n of (1)
= -

5,

and n+l = -5+l=-4.
(4) Show fax* . dx = \a& + C.

(5) Show flax
-

. dx = 5axr + C.

(6) Show j2bx . dxj{a
- bx2

)
= -

log{a
- 6a;

2
) + C

(7) By a similar method to that employed for evaluating jx
ndx

; \x
- ldx

;

6how that

faxdx =^-^ + C ;

[e*dx
= e* + C', (e- *dx = - -e - "* + G. (3)

(8) Prove that - /^=_i- .
_i_ + O, . . . . (4)11

J xn n - 1 xn ~ x *
\'

by differentiating the right-hand side. Keep your result for use later on.

(9) Evaluate Jsin
4
a; . cos x . dx. Note that cos x . dx = d(sin x), and that

sin4a? is the mathematician's way l of writing (sin a;)
4

. Ansr. sin5ic + C.

.*. Jsin
4
aj . cos x . dx =

j
sin4a; . d(sin x) = \ sinB

aj . + G.

(10) What is wrong with this problem : Evaluate the integral \x'
A "

?

Hint. The symbol
"
J
" has no meaning apart from the accompanying

" dx".

For brevity, we call "
J
M the symbol of integration, but the integral must be

written or understood to mean
j

. . . dx.

(11) If y = a+ M+ cP ; show that jydt
= at+ %bt

2+ $ct*+C. (Heilborn,
Zeit. phys. Chem., 7, 367, 1891).

V. Integration of the product of a polynomial and its differential.

Since, page 39,

d(ax
m + b)

n = n(ax
m + b)

n ~ lamxm ~ x
dx,

where amxm ~ Ydx has been obtained by differentiating the ex-

pression within the brackets,

.-. n\{ax
m + b)

n - 1amxm ~ 1dx = (ax
m + b)

n + C. . (5)

In words, integrate the product of a polynomial with its differ-

1 But we must not write sin
- *x for (sin x)

- l
,
nor (sin x)- 1 for sin - lx. Sin - *

f

cos - K tan - 1
, . . . have the special meaning pointed out in 17.
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ential, increase the index of the polynomial by unity and divide the

result by the new exponent.

Examples. (1) Show J(3aa^ + l)
29aa2

. dx = ${Sax? + l)
3 + G.

(2) Show j(x + 1) ~Ux = 3{x + l)i + C.

VI, Integration of expressions of the type :

(a + bx + ex2 + . . .
)

m
xdx, ... (6)

where m is a positive integer. Multiply out and integrate each

term separately.

Examples. (1) J(l + xfxHx = j(x
3 + 2x4 + x5

)dx = (\ + \x + ^x* + C.

(2) Show that ](a + x\)
}

x\dx = (fa
2 + ax\ + %x)x% + G

Here are a few simple though useful "
tips

"
for special notice :

(i) Any constant term or a number may be added to the nume-

rator of a fraction provided the differential sign is placed before

it. The object of this is usually to show that the numerator of

the given integral has been obtained by the differentiation of the

denominator. If successful the integral reduces to the logarithm
of the denominator. E.g.,

f xdx (72(1
- x2

) . n ''. 1

H. Danneel (Zet'J. phys. Chem., 33, 415, 1900) used an integral like

this in studying the " free energy of chemical reactions ".

(ii)
Note the addition of log 1 makes no difference to the value of

an expression, because log 1 =
; similarly, multiplication by logee

makes no difference to the value of any term, because logee = 1.

(iii) Jsin nx . dx may be made to depend on the known integral

Jsin nx . d(nx) by multiplying and dividing by n. E.g.,

I cos nx . dx = -
1 cos nx . d(nx) = -sin nx + C.

J n)
v ' n

(iv)
It makes no difference to the value of any term if the same

quantity be added and then subtracted from it
; or if the term be

multiplied with and then divided by the same quantity. E.g.,

x.dx _f(* + )-! ,,_ f/1 1 1 \,_ x lfdq + ae)

2x
'

(x^ fa + x)
- j _ f/i _ l l \

d
x _ l Ki +

Jl + 2* J 1 + 2x
ax

)\2 2 1 + 2*7^-2 lJ~TT
Examples. (1) Show by (16), page 44, and (2) above,

f dx _f d(logx) _ fdjlogx -1) __
t%1

J (x*logx - x*)i-J (logs - l)i~J(loga;-l)i-
2(logaJ

" 1
)i+0 '

(2) The following equation occurs in the theory of electrons (Encyc. Brit.,
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26, 61, 1902) : dxjdt = (ua/D) sinpt ;
hence show x = -

(ualpD) cos pt + C
where u, a, p and JD are constants. Use (iv) above.

(3) Show that jx(l + 2x)
- ldx = \x - \ log (1 + 2x) + C. Use (iv) and

(i).

The favourite methods for integration are by processes known
as " the substitution of a new variable,"

"
integration by parts

"
and

by
" resolution into partial fractions ". The student is advised to

pay particular attention to these operations. Before proceeding
to the description of these methods, I will return once more to the

integration constant.

71. How to find a Value for the Integration Constant.

It is perhaps unnecessary to remind the reader that integration

constants must not be confused with the constants belonging to the

original equation. For instance, in the law of descent of a falling

body

^= g ; jW= g^dt
; or, V = gt + C. . . (1)

Here g is a constant representing the increase of velocity due to

the earth's attraction, C is the constant of integration. There are

two methods in general use for finding the value of the integration

constant.

Fikst Method. Eeturning to the falling body, and to its

equation of motion,

V =
gt + G.

On attempting to apply this equation to an actual experiment, we
should find that, at the moment we began to calculate the velocity,

the body might be moving upwards or downwards, or starting

from a position of rest. All these possibilities are included in the

integration constant G. Let VQ denote the initial velocity of the

body. The computation begins when t = 0, hence

V = gx + G; or, C= 7 .

If the body starts to fall from a position of rest, V = C =
0, and

jdv = gt ; or, V =
gt.

This suggests a method for evaluating the constant whenever

the nature of the problem permits us to deduce the value of the

function for particular values of the variable. If possible, there-

fore, substitute particular values of the variables in the equation

containing the integration constant and solve the resulting ex-

pression for G.
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Examples. (1) Find the value of C in the equation

' =
S

l0^+ C> .... (2)

which is the integral of a standard "
velocity equation

"
of physical chemistry.

t represents the time required for the formation of an amount of substance x.

When the reaction is just beginning, x = and t = 0. Substitute these

values of x and t in (2).

^Iogi+C = 0;or, = -
^ log -.

Substitute this value of C in the given equation and we get

1/

k^^-x-^aj^k^T^x'
10232 - 0-1685T - O'OOIOIT2

,
.

fl ftje
.

(
2

)
if

-^-fir
=

2T2 '
and * = 6 '

25, when

T = 3100, show that the integration constant is - 2-0603. Hint, log k =

5116/T + 0-08425 log T + 0-000505T + C. Use natural logs. Substitute the

above values of k and T in this equation. We get 1*8326 = 1-65 + 0-6774 +
1-5655 + C ; etc.

(3) If the temperature of a substance be raised dT( abs.) it is commonly
said that it has gained the entropy d<p

= dT/T. Show that the entropy, <j>,

of one gram of water at T is log T -
log 273 if the entropy at G. be taken

as zero. Hint. When <f>
= 0, T = 273, etc.

(4) In Soret's experiments
" On the Density of Ozone "

{Ann. Chim.

Phys. [4], 7, 113, 1866
; 13, 257, 1868) a vessel A containing v volumes of

ozone mixed with oxygen was placed in communication with another vessel

B containing oxygen, but no ozone. The volume, dv, of ozone which diffused

from A to B during the given interval of time, dt, is proportional to the

difference in the quantity of ozone present in the two vessels, and to the

duration of the interval dt. If v volumes of ozone have passed from A to B
at the time t, the vessel A, at the time t, will have v - v volumes of ozone

in it, and the vessel B will have v volumes. The difference in the amount of

ozone in the two vessels is therefore v - 2v. By Graham's law, the rate of

diffusion of ozone from A to B is inversely proportional to the square root of

the density, p, of the ozone. Hence, by the rules of variation, page 22,

dv =
-^={v

-
2v)dt ; or,

- =
-^{v

-
2v),

where a is a constant whose numerical value depends upon the nature of the

vessels used in the experiment, etc. Now, remembering that v is a constant,

[
dv

'

1 f d(2v) m
1
fd(v

-
2v) _ _ log K -

2v)

Jv - 2v 2} v - 2v 2) v - 2v 2

But when t = 0, v = 0, .-. C = log v
Q . Consequently,

v 2a, v 1/ _^\
10

^i^-^
=
7/

;o^ =
2(i-e *)

For the same gas, the same apparatus, and the same interval of time, p, t, and
o will all be constant, and therefore,

= Constant.
vn
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With different gases, under the same conditions, any difference in the value

of vnjv must be due to the different densities of the gases. The mean of a

series of experiments with chlorine (density, 35-5), carbon dioxide (density,

22), and ozone (density, a;), gave the following for the value of this ratio :

C02 , 0-29; Ozone, 0-271 ;
Cl2, 0-227.

Compare chlorine with ozone. Let x denote the density of ozone. Then, by
Graham's law,

7?(s) : ?(01a) = ^/S^E : six', .-. (0-271)
2

: (0-227)
2 = 35-5 : ; .-. x = 24-9,

which agrees with the triatomic molecule, 3.

Second Method. Another way is to find the values of x

corresponding to two different values of t. Substitute the two

sets of results in the given equation. The constant can then be

made to disappear by subtraction. The result of this method is to

eliminate, not evaluate the constant.

Examples. (1) In the above equation, (2), assume that when t = tv
x = xv and when t = t2 ,

x = x2 ;
where x

lt
x

2l ^ and t2 are numerical measure-

ments. Substitute these results in (2).

1. 1 n . 1 . 1

By subtraction and rearrangement of terms

7 1
,

a - x,
Jc
- _.

log z*.
t2
- tx a - x2

(2) If the specific heat, a; of a substance at is given by the expression

<r = a + bd, and the quantity of heat, dQ, required to raise the temperature
of unit mass of the substance is dQ = add, show that the amount of heat

required to heat the substance from to 2 is

Q =]* {a + be)de = a(02
-

ej + bb{e2
* -

e*).

Numerous examples of both methods will occur in the course

of this work. Some have already been given in the discussion on

the "
Compound Interest Law in Nature," page 56.

72. Integration by the Substitution of a New Variable.

When a function can neither be integrated by reference to

Table II., nor by the methods of 71, a suitable change of variable

may cause the function to assume a less refractory form. The new
variable is, of course, a known function of the old. This method

of integration is, perhaps, best explained by the study of a few

typical examples.

I. Evaluate j(a + x)
n
dx. Put a + x = y; therefore, dx = dy.
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Substitute y and dy in place of their equivalent values a x and

dx in the given integral. We thus obtain an integral with a new
variable y, in place of x, namely, \{a + x)

ndx = jy
n
dy. From (1),

page 195, jy
n
dy = y

n + 1

/(n + 1) + G. Restore the original values

of y and dy, and we get

\(*
+ x")dx = tfp + C. . . (1)

When the student has become familiar with integration he will

find no particular difficulty in doing these examples mentally.

Examples. (1) Integrate j(a
-

bx)
ndx. Ansr. -

(a
-

bx)
n + 1

/b(n + 1) + C.

(2) Integrate J(a
2 + s2

)

~ lPxdx. Ansr. V(
2 + 2

) + G.

(3) Show

f
dx 1 1

f
dx 1 1

J (a +x)~ n-1' (a + x)
n - 1 + C;

J {a-x)~n-l
'

(a-aj)"-
1+C *

(4) Show that/^^ = = log(logs) + 0.

II. Integrate (1
-

ax)
mxndx, where m or n is a positive integer,

and the x within the brackets has unit index. Put y = 1 - ax,

therefore, x =
(1

-
y)/a ; and dx = -

dy/a. Substitute these

values of x and dx in the original equation, and we get

J(l
-

ax)
mxndx - ^

j(l
-

y)
n
{- y

m
)dy,

which has the same form as (6), page 197. The rest of the work

is obvious expand (1
-

y)
n
by the binomial theorem, page 36;

multiply through with - y
m
dy ; and integrate as indicated in

III., page 194.

Example. Show jx(a+ x)$dx = ^{ix -
3a) (a + %)$ + G. Hint. Put

a + x = y, etc.

III. Trigonometrical functions can often be integrated by these

methods. For example, required the value of Jtan xdx.

f fsin x
I tan xdx = I dx. ... (2)
J J cos X

Let cos x = u,
- sin xdx = du. Since -

jdu/u -
log u, and

log 1 = 0, therefore,

Jtan
xdx = log 1 = log sec x + G.

cos x

Or, remembering that -
d(cos x)

= sin x . dx, we can go straight
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on without any substitution at all,

fsin x fd(cos x)
ax = - -r - = - log cos x, etc.

J cos x J cos x &

Examples. (1) Show that Jsin x . cos x . dx= sin2<c + C. Put sin x=u.

(2) Show Jcot xdx = log sin x + C. Hint, cot a; = cos as/sin x, etc.

(3) Show Jsin x . dx/cos
2x = sec a? + C. Hint. Put cos x = w, or go the

hort cut as in (2) above.

(4) Show that Jcos x . dxjsin
2x = - cosec x + C.

(5) Show that
je

- *2xdx= -\\e~*
2

. 2xdx= + \\e
- *2

d{x
2
)
= -

\e
~ *2 + C.

Some expressions require a little
"
humouring ". Facility in

this art can only be acquired by practice. A glance over the

collection of formulae on pages 611 to 612 will often give a clue.

In this way, we find that sin x = 2 sin \x . cos \x. Hence integrate

dx fsec \x . dx
1 2 sin \x . cos \x

or

J 2 sin \x

Divide the numerator and denominator by cos-|#, then, since

l/cos
2
-|#

= sec2
^# ; and d(tan x)

= sec2# . dx, page 49, (3),

Jdx
fsec

2
J a; . d(\x) Cd(ta,nx) ; x- = f dr~ -1-1 r = logtano + C.smx J tanjic J tannic

& 2

The substitutions may be dim cult to one not familiar with trig-

onometry.

Examples. (1) Remembering that cos x = sin (Jtt + x), (9), page 611,

show that fdxjcos x = log tan {^v + %x) + C. Hint. Proceed as in the illus-

tration just worked out in the text.

(2) Integrate/" Hint, see (19),page611; cosxdx = d{sinx); etc.w
J sin x . cos x

fcos
2x + sin2cc , /"cos x , /"sin x , _

.*. / : aa>= / -! aa;+ / dx = log tan a; + C.'

'J sin x cos x J sin as
^
J cos a;

8 T

(3) Integrate J(a
2 - cc

2
)

"
%dx. Put y = je/a; .:x = ay, .. dx = ady;

f ^
;

r

Jsina
' **

JS

V(a
2 -K2)=flvT

/;

da;
= f

dy = sm~ l
y = sin- 1-+ C.

a:
2 J Jl - y

2
~

a

//a?
- x2 (a2 - x2)? 1

& dx= ~
~12&- + c ' Hint Put x =

y-

IV. Expressions involving the square root of a quadratic binomial

can very often be readily solved by the aid of a lucky trigono-

metrical substitution. The form of the inverse trigonometrical

functions (Table II.) will sometimes serve as a guide in the right

choice. If the binomial has the forms :
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Jx2
-f- 1 ; or, six1 + a2

; try x = tan
; or, a tan

; or, cot 6. (3)

v/l - x2
; or, a/a'

2 - x2
; try a; = sin ; or, a sin

; or, cos 6. (4)

Va;2 - 1
; or, Jx2 - a'

2

; try a? = sec ; or, a sec ; or, cosec 0, (5)

/a
a -

(a + 6)'
2

; try re + b = a sin 0. . . (6)

Examples. (1) Find the value of
j *J{a?

- x2
)dx. In accordance with the

above rule (4), put x = a sin 0, .*. dx = a cos . d0. Consequently, by substi-

tution,

JV(a
2 - x2

)dcc
= a2

Jcos
20d0 - |a

2
J(l + cos 29)dd = a2

(0 + sin 2^) I

since 2cos2 = 1 + cos 20, (31), page 612. But x = a sin 0,
= sin

-
'a/a, and

.-. sin 20 = sin . cos = sin J (1
- sin20) = sia2 - x2

. a;/**
2

.

.-. JV(a
2 - a;

2
)dic

= a2sin ~^x\a + \x sld2 - x2 + C.

(2) The integration of
fee

2 sia2 - x2
. dx arises in the study of molecular dyn-

amics (Helmholtz'sForteswwgrew Uber theoretische Physik, 2, 176, 1902). Rule (4).

Put x = a sin 0; .-. x2 = a%in2
;
dx = a cos . dd

; ^/(a
2 - a?

2
)
= a^l - sin20).

Remembering that cos = ^(1 - sin2
0), and sin 2x = 2 sin a? . cos as, (19) and

(29), pages 611 and 612, we get the expression
'

jx
2 sla^^x2

. dx = a4
Jsin

2
. cos2

. dd = |a
4

Jsin
220 . d(20) ;

which will be integrated very shortly.

(3) Show f _J* 2
=
y\^rj + G ' Put=cos0. Rule (4). If

the beginner has forgotten his "
trig." he had better verify these steps from

the collection of trigonometrical formulae in Appendix I., page 611. The

substitutions are here very ingenious, but difficult to work out de novo.

f sin Ode f dd 1
f

dO _[ 20J6\.=
'J (1

- cmQJjZT^fi
~
"Jl - cos0

"
2jsin

2
^ J

cosec
2A^ '

2
sin \ 2 sin2 \ 1 - cos \ 1 - x

,, 2
1)
= log (a; + six2 + 1) + C. Put ic=tan 0. Rule (3).

? + sec0; .. = x + *y(2:
2 + 1) ; see Ex. (1), pre-

log (x + s/x2 - 1) + C. Put a? - sec 0. Rule (5).

Given tan(|?r + $0)
= tan + sec0; ,\ - x + x/(a;

2 + 1) ; see Ex. (1), pre-

ceding set.

dx
(5) Show/"-

x/(*
2 -

1)

It may be here remarked that whenever there is a function of

the second degree included under a root sign, such, for instance, as

six
2 + px + q, the substitution of

z = x + six
2 + px + q, ... (7)

will enable the integration to be performed. For the sake of ease,

let us take the integral discussed in Ex. (4), above, for illustrative

purposes. Obviously, on reference to (7), p = 0, q = 1. Hence,
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put Z = X + sjx
2 + 1

;

.'. z2 - 2zx + x2 = x2 + 1
;
x =

J(^
2 -

1)^
- 1

;

Va;
2 + 1 = * -W- i(^ + 1)^-1; <fo = i(s

2 + l>-2^.
f d# Cdz _

,
.

'""

J ^a;
2 + 1

=
J7

= loS* = lo%(x + &'+ x
) + C -

F. 2%e integration of expressions containing fractional powers
of x and of x

m
(a + bxn

)
p.dx. Here m, n, or p may be fractional.

In this case the expression can be made rational by substituting
x = zr

,
or a + bx = zr

,
where r is the least common multiple

L.C.M. of the denominators of the several fractions.

Examples. (1) Evaluate fxP(l + x2
)idx. Here the L.C.M. of the

denominators of the fractional parts is 2. Put 1 + x2 = z2
; then, x2 = z2 - 1

;

.. z= vl + x2
; x.dx z.dz. Substitute these values as required in the

original expression, and

Ja^l + xrfdx = j{z
2 -

l)
2z2dz =

\{z*
- 2z4 + z2)dz = f#'

- f^ + \z* ;

.-. Jz
5
(l + xrfdx = ^(1 + z2

)*{15(l + a;
2
)
2 + 42(1 + x2

) + 35} + G.

(2) Evaluate J
- 4

(1 + x2
)

-
*da;. Here again r = 2. Put 1 + x2 = z2x2

;

.-.o;- 2 = *2 -l; .-. aj- 4=
(0

2
-l)

2
; .-. x = (*

2
-l)ri ; &c= -

(s
2
-l) "te;

(1 + a?
2
)

~ * =
1/sa;

= N/(2
2 -

l)jz. Consequently, we get the expression

Jaj~
4
(l + x2

)
~$dx = -

j{z
2 -

l)dz = -
$z* + z

; and hence,

dx = (2s
2 -!)(!+ x2

)$

x*(l + x2
)$

Sx* +

(3) Evaluate
J(l + x%)

- lx%dx. Here, the L.C.M. is 6. Hence, put

x = z6 . The final result is fa;*
- x% + $x% -

fx% + 6 tan
- ]

a; + C. Hint.

To integrate (i + z2
)

1z8dz; first divide z8 by 1 + z2
,
and multiply through

With dz.

(4) Show ft**-* dx= J|a;T^
- l?ajH+ O. The least common multiple

is 12. Hence, put a; = z12, etc.

I have no doubt that the reader is now in a position to under-

stand why the study of differentiation must precede integration.
" Common integration," said A. de Morgan,

"
is only the memory of

differentiation, the different artifices by which integration is effected

are changes, not from the known to the unknown, but from forms

in which memory will not serve us to those in which it will"

{Trans. Cambridge Phil. Soc, 8, 188, 1844). The purpose of the

substitution of a new variable is to transform the given integral

into another integral which has been obtained by the differentia-

/;
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tion of a known function. The integration of any function

therefore ultimately resolves itself into the direct or indirect

comparison of the given integral with a tabulated list of the results

of the differentiation of known function! The reader will find it

an advantage to keep such a list of known integrals at hand.

A set of standard types is given in Table II.
, page 193, but this

list should be extended by the student himself ;
or A Short Table

of Integrals by B. 0. Pierce, Boston, 1898, can be purchased.

When an expression cannot be rationalised or transformed into

a known integral by the foregoing methods, we proceed to the

so-called " methods of reduction" which will be discussed in the

three succeeding sections. These may also furnish alternative

methods for transforming some of the integrals which have just

been discussed.

73. Integration by Parts.

The differentiation of the product uv, furnishes

d(uv) = vdu + udv.

By integrating both sides of this expression we obtain

uv = jvdu + judv.

Hence, by a transposition of terms, we have

judv = uv - jvdu + G. . . (A)

that is to say, the integral of udv can be obtained provided vdu can

be integrated. This procedure is called integration by parts.
The geometrical interpretation will be apparent after A has been

deduced from Fig. 7, page 41. Since equation A is used for re-

ducing involved integrals to simpler forms, it may be called a

reduction formulae. More complex reduction formulae will

come later.

Examples. (1) Evaluate jx log xdx. Put

u log x, I dv = x . dx ;

du = dx/x, I
v = $x

2
.

Substitute in A, and we obtain

ju.dv =
jx log x . dx = uv -

jv . du,
= %x

2
log x -

j\x.dx = \x> log x -
|aj

2
,

= ^2

(logaj-i) + a
(2) Show that jx cos x . dx = x sin x + cos x + C. Put .

u = x, I dv = cos x.dx;
du dx, I

v = sin x.

From A, jx cos x . dx = x sin x -
Jsin x.dx; etc.
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(3) Evaluate J J(a
2 - x2

)dx, by
"
integration by parts ". Put

u =
,J{a

2 - x 2
), \dv = dx;

du= - x.dxfjia
2 - x2

), \
v = x.

r
,

r x2dx
.-.

J
V(

2 - a;
2)^ = x sia? - x2 +

J ^(a2
_ ^

/-a s- r(
2 -

(a
2 - a;

2
)Wa;

/a
2dx C

J {
a2 -x2

) -\>J(
a2 -^dx '

Transpose the last term to the left-hand side :

2j\Ja
2 - x2 dx = xs/a2 - x2 + a2sin- 1

x/a (page 193),

.-. |V(a
2 - x2

)dx = $0? sin -*xla + lxsj{a
2 - x2

) + C.

(4) Show that jxe
xdx = (x

-
l)e

x + C. Take u = x ;
<2v = e*doj.

(5) Show JzVcte = (x
2 - 2x + 2)e

x + C. Take dv = exda: and use the

result of the preceding example for vdu.

(6) Show, integrating by parts, that
J log x . dx = a?(log x -

1) + 0.

(7) Show that the result of integrating jx
~ ldx by parts is \x

~ xdx itself.

The selection of the proper values of u and v is to be determined

by trial. A little practice will enable one to make the right selec-

tion instinctively. The rule is that the integral jv.du must be

more easily integrated than the given expression. In dealing with

Ex. (4), for instance, if we had taken u = <f, dv = xdx , jv .du

would have assumed the form ^jx
2e

x
dx, which is a more complex

integral than the one to be reduced.

75. Successive Integration by Parts.

A complex integral can often be reduced to one of the standard

forms by the " method of integration by parts ". By a repeated

application of this method, complicated expressions may often be

integrated, or else, if the expression cannot be integrated, the

non-integrable part may be reduced to its simplest form. This

procedure is sometimes called integration by successive reduc-

tion. See Ex. (5), above.

Examples. (1) Evaluate Jx
2cos nxdx. Put

u = a?
2

,
I dv = {cos nx . d(nx)}fn ;

du = 2x .'dx, |
v = (sin nx)Jn.

Hence, on integration by parts,

jx
2
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Hence,

f . 7 ajcosna; f- cos nx.dx xooanx sinnaj
/
x sm nx . dx =

/
= H 5 -. (2)

J n J n n nz v '

Now substitute (2) in (1) and we get,

h
a>
2sin nx 2x cos nx 2 sin nx _

x2cosnx.dx= 1 s ; h C.
VI. VI* Vt.o

(2) In t'he last example, we made the integral Jsc
2cos nx . dx depend on

that of x sin nx . dx, and this, in turn, on that of - cos nx . d{nx), thus

reducing the given integral to a known standard form. The integral

(a;
4cosa; dx is a little more complex. Put

u = a;
4

, I dv = cos xdx
;

du = 4x3
dx, I

v = sin x.

.'.
Jaj

4cos x . dx = a;
4sin x -

^a^sin x . dx.

In a similar way,

4ja;
3sin x.dx = 4<c3cos x - 3 .

4f<c
2cos x . dx.

Similarly,

3 .
4j<c

2cos x . dx = 3 . 4 . ar^sin x + 2 3 .
4ja;

sin x . dx%

and finally,

2.3. 4 fa; sin xdx = 2 . 3 . 4a; cos x + 1 . 2 . 3 . 4 sin x.

All these values must be collected together, as in the first example. In

this way, the integral is reduced, by successive steps, to one of simpler form.

The integral Ja;
4cos x . dx was made to depend on that of ar'sin x . dx, this, in

turn, on that of a;
2cos x . dx, and so on until we finally got Jcos x . dx, a well-

known standard form.

(3) It is an advantage to have two separate sheets of paper in working

through these examples ; on one work as in the preceding examples and on

the other enter the results as in the next example. Show that

\x*e?dx
= x^e* -

Sjx^dx ;

= xV - 3(a;V -
2jxe

x
dx) ;

= x*ex - Sx2ex + 2 . 3(a^ -
je

xdx
;

=
(a;

3 - 3a;2 + 6x -
6)e

x + G.

It is also interesting to notice that we sometimes obtain different

results with different substitutions. For instance, we get either

according as we take u = x *, etc., or, u = e
x

. In the last series,

(4), the numerator and denominator of each term has been multi-

plied by x*. Differences of this kind can generally be traced to

differences in the range of the variable, or to differences in the

value of the integration constants. Another example occurs during
the integration of (1

-
x)

~ 2dx. In one case,
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J(l
- x)-Ux = -

J(l
-

aj)-
2
d(l

-
a?)

=
(1

- x)~
l + Ot ; (5)

but if we substitute x = s
~ J before integration, then

J(l-^)-
2^=- J(^-l)-2^ = (^_l)-i = o;(l-a;)-

1 + 2 . (6)

The two solutions only differ by the constant " 1 ". By adding
- 1 to (5), (6) is obtained. G

x
is not therefore equal to C2 ,

75. Reduction Formulae (/or reference).

We found it convenient, on page 205, to refer certain integrals

to a ''standard formula" A; and on page 206 reduced complex

integrals to known integrals by a repeated application of the same

formula, namely, Ex. (1), page 206, etc. Such a formula is called a

reduction formula. The following are standard reduction formulas

convenient for the integration of binomial integrals of the type :

\xm(a + bxn
)
pdx (1)

These expressions can always be integrated if (m + l)/n be a

positive integer. Four cases present themselves according as m,
or p are positive or negative.

I. m is positive.

The integral fx
m
(a + bxn

)
p

. dx, may be made to depend on that

of jx
m ~ n

(a + bxn
)
p + 1

.dx, through the following reduction formula.

The integral (1) is equal to

xm
- n + 1

(a + bxn
)
p + 1

_ a{m
b(m + np + 1) b(m

when m is a positive integer. This formula may be applied suc-

cessively until the factor outside the brackets, under the integral

sign, is less than n. Then proceed as on page 204. B can always be

integrated if {m - n + V)jn is a positive integer. See Ex. (7), below.

II. m is negative.

In B, m must be the positive, otherwise the index will increase,

instead of diminish, by a repeated application of the formula.

When m is negative, it can be shown that the integral (1) is equal

to

xm + l(a + bxn
)
p + l

b(np + m + n + 1) f ..
, n ^nl ,,_

S rv ( r^T\
"
la

+
(a + bxnYdx, (C)aim + 1) aim +1) )
K i > \y\

+ np\
1]

i) \
xm~^a+bxnydx' <B)
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where m is negative. This formula diminishes m by the number

of units in w. If np + m + n + 1 = 0, the part to be integrated

will disappear, and the integration will be complete. C can always

be integrated if (m + n + l)/n is a positive integer. See Ex. (7),

below.

III. p is positive.

Another useful formula diminishes the exponent of the bracketed

term, so that the integral (1) is equal to

*~+>+l*r + p Ua + bx~y
-

>
dx> . (D)m + np + 1 m + np + 1 J

v ' ' v '

where p is positive. By a repeated application of this formula the

exponent of the binomial, if positive, may be reduced to a positive

or negative fraction less than unity.

IV. p is negative.

If p is negative, the integral (1) is equal to

xm + Ha + bxn
)
p + 1

(np + m + n + 1) f , 7 A ,
-

'

"
an(p + 1)

+
an(P + l) j*> + **** <*>

Formulae B, C, D, E have been deduced from (1), page 208, by
the method of integration by parts. Perhaps the student can do

this for himself. The reader will notice that formula B decreases

(algebraically) the exponent of the monomial factor from m to

m - n + 1, while C increases the exponent of the same factor from

m to m + 1. Formula D decreases the exponent of the binomial

factor from p top
-

1, while E increases the exponent of the binomial

factor from p to p + 1. B and D fail when np + m + 1 =
; C

fails when m + 1 =
;
E fails when^p + 1 = 0. When B, C, and D

fail use 7, page 204 ; if E fails p = - 1 and the preceding methods

apply.

Examples. Evaluate the following integrals :

(1) J" sj{a+ x
2
)dx. Hints. Use D. Put m = 0, b =z 1, n = 2, p = . Ansr.

$[xj(a + x2
) + a log {x + J {a + x2

)}] + C. See bottom of page 206.

(2) \x
i
dxl sl(d

i - x2
).

Hints. Put m = 4, b = -
1, n = 2, p = -

. Use

B twice. Ansr. \{ ta'sin
- y

x\a - x(2x
2 + 3a2

) J (a
2 - x2

)} + C.

(3) jjil
-

x')x*dx. Hint. Use B. Ansr. -
\{x

2 + 2) ^/(l
- x2

) + C.

(4) ) sj{a + bx2
)

~ 3dx. Ansr. x{a + bx2
)

-
*P/a + G Use E.

dx C
,
i.e. x- s(-a

2+ x2
)~ldx. Hint. Use C. m = -3, 6=1,(5)

J X :i

sJ&

Jx2 a2 1

n=2, p= -b. Ansr. ^^ +^sec
O
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(6) Renyard (Ann. Chim. Phys., [4], 19, 272, 1870), in working out a

theory of electro-dynamic action, integrated j(a? + x2
)~ Idx. Hence ra=0,

n = 2, b = 1, a = a2
, p = -

|. Use E. Ansr. x(a
2 + x2

) -ija
2 + C.

(7) To show that it is possible to integrate the expression

\{a
n ~ l - xn-^-lxfa-Vdx (2)

when n = . . .
,

-
1, f, ,

. . . ; and when n = . . . f , % , , 0, 2, f,
. . ., substi-

tute z = a + bx in (1). We get
m + 1 m + 1

t

n -16 M
J"(s

-
a)

n s"<kr (3)

If (w + l)jn be a positive integer, the expression in brackets can be expanded

by the binomial theorem, and integrated in the usual manner. By compar-

ing (2) with (3), it is easy to see that (2) can be integrated when

m + 1 _ j(n
-

1) + 1 1 1

n n - 1 n - 1
"*"

2'
* * ' w

is a positive integer. From B and C, the integral (2) depends upon the

integral

jx
m ~ n

(a + bxn)Pdx; or, jx
m + n

(a + bxn)rdx. . . (5)

By the substitution of m - n, and m + n respectively for m in (m + l)/n, and

comparison with (2), we find that (2) can be integrated when

m-n+1 _ ^{n -
1)

-
(n

-
1) + 1 _ 1 _ 1

n n - 1
~
n - 1 2'

* * ^
is a positive integer ;

or else when

m + n + 1 -

fo
-

1) + (n
-

1) + 1
,

1 3

n n - 1 n - 1
+

2'
* * [ '

is a positive integer. But (7) can be reduced to either (4) or (6) by subtracting

unity, and since integration by parts can be performed a finite number of

times, we have the condition that

5^T-5- ;
.... (8)

be a positive or negative integer, or zero, in order that (2) may be integrated ;

in other words, we must have

^^--^ = 0,1,2,3,...; =- 1,-2,-3,... . . (9)

Similarly, by substituting x= z~ 1
,
in (1), we obtain -z~ nP-~m~ 2

(az
n+ b)Pdz.

As with (3) and (4), this can be integrated when

m + 1 -np-m-2 + 1 m+1
-Hr-

=
n

=~-n-P ' ' (
10

>

is a positive integer. From D and E, and with the method used in deducing

(8), we can extend this to cases where

or, where -
(n l)

-1 is a positive or negative integer. Equating this to

1, 2, 3, ... ;
and to -

1,
-

2,
-

3, ... we get, with (9), the desired values of n.

Notice that we have not proved that these are the only values of n which will

allow (2) to be integrated.
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The remainder of this section may be omitted until required.

If n be a positive integer, we can integrate Jsin
M# . dx by putting,

u = sin
n ~ 1x v = - cos x.

du =
(n

-
1) sinn

~ 2x cos x.dx
\
dv = sin x . dx.

.. Jsin
n# .dx = - sin*

_
*x . cos x + (w

-
1) Jsin

n _ 2# . cos2# . dx ;

= - sin
M ~ Yx . cos x + (n

-
1) Jsin

n ~ 2
x(l

- sin2#)d# ;

= - sin
n _ lx . cos x + (n

-
1) Jsin

n _ 2# . dx -
(n

-
1) Jsin

n# . dx.

Transpose the last term to the first member ; combine, and divide

by n. The result is

J

sin"
- lx . cos x n - 1 f . , .

sin
n#.cto = - + sm" - 2x . dx. (12)

Integrating Jcos
n
a: . dx by parts, by putting u = cosn

~ lx\ dv = cos

<c . d#, we get

J

sin x . cos
n ~ lx n - 1 f ,

cosn# . d# = + cos"
- 2x . dx. (13)

Eemembering that cos|7r
= cos 90 =

; and that sin = 0, we
can proceed further

(V n - 1 ft*
sinn# . dx = sin

M - 2x . dx.
Jo n Jo

Now treat n - 2 the same as if it were a single integer n.

fi* n - 3^
,\ I sinn

- 2x . dx = o 8inn -*x .dx.
Jo n -

2J

Combine the last two equations, and repeat the reduction. Thus,

we get finally

P*^*^ (-l)(-8)-8.1 (l* (n-l)(n-8)...8.1 ,

J
n to -

(-2)...*.a J,
da:=

n(n-a)...4.a -a- <F>

when n is even

P
ff

sin^- ^- 1)(^ 3) --' 2
f^ 8infa- (n

"
1)(n

"
8) "' 2

iA
j^
sm^-

w
(
w _2)...3 J

slna^-
w(-2)...3

' (U)

when w is odd. If we take the cosine integral (3) above, and work

in the same way, we get

V (w-l)(w-3) . ..3.1 tt

iB

eos^fa-
^_2).,.4,2 -g; (H)

if n is even, and

J
cos ^-

W
(
W _

2)... 5. 3 ' * ' W
if n is odd. Test this by actual integration and by substituting
n = 1, 2, 3, . . . Note the resemblance between H with F, and I

j:
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with G. The last four reduction formulae are rather important in

physical work. They can be employed to reduce joo3
nxdx or

\sin
nxdx to an index unity, or

|-7r.

If n is greater than unity, we can show that

(V n - lfi*
smmx . cosnxdx =

;
I sinm# . cosn

_ 2xdx
; . (J)

Jo m + n}
v '

by integration by parts, using u = sin771-1^, dv = cosw#. ^(cossc).

If m is greater than unity, it also follows that

(V m - lf^
I sinma; . cosnxdx =

;
I sin

m _ 2x . cosnxdx. . (K)
Jo m + n)

v '

fin 1 fhn 1
Examples. (1) Show / sin x . cos xdx = x

; / 8in2a; . cos xdx = ~.

[iir 5 fin 2

(2) I sin6a;da; = qott; / sin30. de= 5.

Air 1 ru w
(3) / sin x . cos2aKfoc = s ; I sin2a; . cos2cc<&c = =-~.

76. Integration by Resolution into Partial Fractions.

Fractions containing higher powers of x in the numerator than

in the denominator may be reduced to a whole number and a

fractional part. Thus, by division,

Cx5
. dx (7 x \ ,

)x^n:=){
x - x+x^i)dx-

The integral part may be differentiated by the usual methods,
but the fractional part must often be resolved into the sum of a

number of fractions with simpler denominators, before integration

can be performed.
We know that

f- may be represented as the sum of two other

fractions, namely ^ and ^, such that -|
= i + f- Each of these

parts is called a partial fraction. If the numerator is a com-

pound quantity and the denominator simple, the partial fractions

may be deduced, at once, by assigning to each numerator its own
denominator and reducing the result to its lowest terms. E.g.,

x2 + x + 1 x2
,z r""i

1_
1

x3
~
x3 xz x3 ~x x2 xz"

When the denominator is a compound quantity, say x2 -
x, it

is obvious, from the way in which the addition of fractions is per-

formed, that the denominator is some multiple of the denominator

of the partial fractions and contains no other factors. We there-
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fore expect the denominators of the partial fractions to be factors

of the given denominator. Of course, this latter may have been

reduced after the addition of the partial fractions, but, in practice,

we proceed as if it had not been so treated.

To reduce a fraction to its partial fractions, the denominator

must first be split into its factors, thus : x2 - x is the product of

the two factors : x, and x - 1. Then assume each factor to be

the denominator of a partial fraction, and assign a certain indeter-

minate quantity to each numerator. These quantities may, or

may not, be independent of x. The procedure will be evident

from the following examples. There are four cases to be con-

sidered.

Case i. The denominator can be resolved into real unequal

factors of the type :

(a
-

x) (b
- xy

. . (1)

By resolution into partial fractions, (1) becomes

1 A_ B A(b -
x) + B{a -

x)

(a
-

x) (b
-

x)
~
a - x + b - x

~
(a

-
x) (b

-
x)

*

1 Ab + Ba - Ax - Bx
^="

(a
-

x) (b
-

x) (a
-

x) (b
-

x)

We now assume and it can be proved if necessary that the

numerators on the two sides of this last equation are identical,
1

1 An identical equation is one in which the two sides of the equation are either

identical, or can be made identical by reducing them to their simplest terms. E.g.,

ax2 + bx + c = ax2 + bx + c
; (a

-
x)/(a

-
x)

2 = lj(a
-

x),

or, in general terms,

a + bx + ex2 +. . . = a' + b'x + c'x2 +...
An identical equation is satisfied by each or any value that may be assigned to the

variable it contains. The coefficients of like powers of x, in the two numbers, are also

equal to each other. Hence, if x = 0, a = a'. We can remove, therefore, a and a'

from the general equation. After the removal of a and a', divide by x and put x = 0,

hence b = b' ; similarly, c=&, etc. For fuller details, see any elementary text-book

on algebra. The symbol
" = "

is frequently used in place of *'=" when it is desired

to emphasize the tact that we are dealing with identities, not equations of condition.

While an identical equation is satisfied by any value we may choose to assign to the

variable it contains, an equation of condition is only satisfied byparticular values of the

variable. As long as this distinction is borne in mind, we may follow customary usage

and write " = " when " = "
is intended. For M = "we may read,

" may be trans-

formed into., .whatever value the variable x may assume" ;
while for

"
=," we

must read,
"

is equal to . . . when the variable x satisfies some special condition or

assumes some particular value ".
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Ab + Ba - Ax - Bx = 1.

Pick out the coefficients of like powers of x, so as to build up
a series of equations from which A and B can be determined. For

example,

Ab + Ba = 1 ; x(A + B) =
; .-. A + B =

; .'. A = - B ;

r ' A =
b^a?

= -
b^~a

Substitute these values of A and B in
(1).-

I = _2_.^ L_._i_. (2)
(a

-
x) (b

-
x) b - a a - x b - a b - x

An alteknative method, much quicker than the above, is

indicated in the following example : Find the partial fractions of

the function in example (3) below.

1 A B G

(a
-

x) (b
-

x) (c
-

x)

~
a - x b - x c - x

' "

Consequently,

(b
-

x) (c
- x)A + (a

-
x) (c

- x)B + (a
-

x) (b-x)C = 1.

This identical equation is true for all values of x, it is, therefore, true

1

(b
-

a) (c
-

a)'

1

(c
-

b) {a
-

b)
'

1

(a
-

c) (
b -

cj
Examples. (1) In studying bimolecular reactions we meet with

J(a-x)(b-x)
~
J(b-a)(a-x) J(b-a){b-x)

~
F^l' g

a~^x + C '

(2) J. J. Thomson's formula for the rate of production of ions by the

Rontgen rays is dx/dt=q-ax2
. Remembering that a - x2=

( sia - x) ( sia+ x) ;

show that if we put q\a = &2
,
for the sake of brevity, then

1 b + x

(a -x) (b - x) (c
- x)

' Keep y Ur answer for U8e later on '

f dx 1
,

a + bx
(4) Show that

Jjc^ =
^ab

lo% a~^bx + G'

(5) If the velocity of the reaction between bromic and hydrobromic acids

is represented by the equation : dx/dt = k(na + x) (a
-

x), then show that

,na + x

when x = a, .
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,, T , dx , , .. , . , , , 2-3026
,

a + x
(6) H

to
m k(a + x) (na -

x) ;
show that k =

(n + l)at
. log1(&T--

(7) S. Arrhenius, in studying the hydrolysis of ethyl acetate, employed the

integral.

f 1 + mx - nx2
, /T" 1 + nab + \m - n(a + b))x~~\ ,

J {a-x)(b-x)
d* "

j L
" " +

(<.-)(-.) >
Substitute jp

= 1 + nab
; q = m - n(a + b), then, by the method of partial

fractions, show that

P + 9.X , P + aq. . p+bq
(a-x)(b-x)

dx = TTT l0^a "
) -^6 loo(6 "

> + C *

/

/da;
1 x

ia _ x\
= ~ lo8 a _ x + G are very common in chemi-

cal dynamics autocatalysis.

(9) H. Danneel (Zeit. phys. Chem., 33, 415, 1900) has the integral

kt
f xdx 1 . a2 - x? ^

if x =
lf
when f = ^ ;

and x = a52 >
when t = J*

(10) R. B. Warder's equation for the velocity of the reaction between

chloroacetic acid and ethyl alcohol is

= ak{l -
(1 + b)y} {1

-
(1

-
b)y}. .-. log

*

~_
|*

"

^ = 2o6W.

Case ii. T/ie denominator can be resolved into real factors

some of which are equal. Type :

1

(a
-

xf{b
-

x)

The preceding method cannot be used here because, if we put

1 A . S A + B C

(a
-

x)
2
(b

-
x) a - x a - x b - x a - x b - x

A + B must be regarded as a single constant. Reduce as before

and pick out coefficients of like powers of x. We thus get three

independent equations containing two unknowns. The values of

A, B and C cannot, therefore, be determined by this method. To
overcome the difficulty, assume that

1 A B G

(a
-

x)
2
(b

-
x)

~
{a

-
x)

2 a - x b - x

Multiply out and proceed as before, the final result is that

A-A-.t*--'^,*-- X

b - a '

(b-a)

Examples. (1) H. Goldschmidt represents the velocity of the chemical

reaction between hydrochloric acid and ethyl alcohol, by the relation

dxjdt = k{a
-

x) {b
-

x)
2

. Hence,



216 HIGHER MATHEMATICS. 76.

k f _ f
dx 1

f [(a
-

b)dx _ f
dx C dx \

J J(a-x)(b-x)*- (a- 6)
2
\J {b

- xf Jb-x
+
Ja-xf'

Integrate. To find a value for 0, put x =* when t = 0. The final result is

<
2

> Shoyf
Jx*(a + bx)

=
a*

l Za ~ m + C'

rat at, f ^
*, g + 1 ! !

/,
(3>

Show
J (x

-
l)(aj + 1)

=
I
loS x^Tl

~
2

'

5^~1 + ' An exPressl0n

used by W. Meyerhofer, Zeit. phys. Chem., 2, 585, 1838.

... __ f xdx 1 f a(b -
x) x(a -

b)}
<*> sll0W

J (o-*)(6-*) 2
~
5!^Tp{gj^r^ +^j.

for values of x from a; = a? to x = 0. (H. Kiihl, Zeit. phys. Chem., M, 385,

1903.)

(5) P. Henry (Zeit. phys. Chem., 10, 96, 1892) in studying the phenomenon
of autocatalysis employed the expression

dj=h(a- x) (\/4:K(a
-

x) + K2 - K).

To integrate, put 4:K(a -x) + K?=s2
;.-.a-x={z

i - K?)jK ; dx= - z . dzfiK.

z.dz kdt 1 s-iT 11 &$
; 'r^ 1 g rr^-o .

= -
o" + G(s-Z) (^-Z2

)

-
2 ' '-iK x

"*z + K~2 z-K~~2
Now put P = sJIKia

-
s) + Z2

; Q = ^Za + K\ and show that if x m
when = 0,

M
Q-p

_L
i

1ng (p+Jg)(g-g) ,

(p-Z)(Q-z)
+2Z 10g (P-Z) (g+z)-**

For a more complex example see T. S. Price, Journ. Chem. Soc, 79, 314, 1901.

(6) J. W. Walker and W. Judson's equation for the velocity of the chemical

reaction between hydrobromic and bromic acids, is

dx 1 f 1 1 )

The reader is probably aware of the fact that he can always

prove whether his integration is correct or not, by differentiating

his answer. If he gets the original integral the result is correct.

Case iii. The denominator can be resolved into imaginary

factors all unequal. Type :

1

(a
2 + x2

) {b + x)'

Since imaginary roots always occur in pairs (page 353), the

product of each pair of imaginary factors will give a product of the

form, x2 + a2
. Instead of assigning a separate partial fraction to

each imaginary factor, we assume, for each pair of imaginary
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factors, a partial fraction of the form :

Ax + B
a2 + x2 '

Hence we must write

1 Ax + B G
{a

2 + x2
) (b + x) a2 + x2 T 5 + x

%

Now get (13), page 193, fixed upon your mind.

ExAmp^S
.-(1)/ (

^ 1)̂ + 1)

=/(^2 +^+^)^. Here

A =$;B=-l; C=
;
Z>=0. Ansr J log (a;

2+ l) (s-1)
~ 2 -

(as-1) -*+0.

(2) Show
Jr^=^ tan- 1* +^ log ^~+C-

(3) H. Danneel (^ei^. phys. Chem.
y 33, 415, 1900) used a similar expres-

sion in his study of the " Free Energy of Chemical Reactions ". Thus, he has

x2dx , , 1/ x x, \ 1 (x a) (x,+a)
-j

-
x
= Mt. .-. 2/^ -*,) = -( tan

~
1-^- tan" 1-1 +r log F ]

.

a4 -*1 V2 u
a\ a a) 2a B

(x.2+ a) (x1 -a)

in an experiment where x = x
i
when t= t^\ and x=x2 when =

2 .

/da;> _ bx)2 i3(c - a?l
bas to be 8olved wnen the rate

of dissolution of a spheroidal solid is under discussion. Put a - bx = s3
;

a-6c=w3
; .*. x=(a-z3

)lb; dx= -Bz2
dz/b. Substitute these results in the

given integral, and we get

f
dz _ /" dz 1 f dz 1

j"
(z + 2n)dz

JriF^z"
~

J (n
-

z) (n
2+nz + z2

)

=
n2
J n-z

+ n2
] n2+nz+ z2 '

by resolution into partial fractions. Let me make a digression. Obviously,
we may write

f (y + 2b)dy Iff 2y + b 36 \

Ja+ by + y*-2j\a+ by + y*
+ a + by +yyay

'

The numerator of the first fraction on the right is the differential coefficient

of the denominator
;
and hence, its integral is log (a+by + y

2
) ;

the integral

of the second term of the right member is got by the addition and subtraction

of %b
2 in the denominator. Hence,

f
dV f dy 2

fnn-i 2y+ b

J a+by + y
2
-
J(a

- $2
) + (y + $b)

2
~
.J^^b2

s/la'-b
2

Returning to the original problem, we see at once that

f dz if ,J<n?+ nz + z2\ 2z+n
SJW^=n2

{
l Z n-z j

+ ^/3tan
' 1

^:+a

Now restore the original values, z = (a
-

bx)\, and n = (a
-

bc)$.

In most of the examples which I.have selected to illustrate my
text, the denominator of the integral has been split up into factors so
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as not to divert the student's attention from the point at issue. If

the student feels weak on this subject a couple of hours' drilling

with W. T. Knight's booklet on Algebraic Factors, London, 1888,

will probably put things right.

Case iY. The denominator can be resolved into imaginary

factors, some of which are equal to one another. Type:

1

(a
2 + x2

)\b + x)'

Combining the preceding results,

1 Ax + B Cx + D E
(a

2 + x2
)
2
(b + x)~(a

2 + x2
)
2 ^ a2 + x2 ^b + x

In this expression, there are just sufficient equations to determine

the complex system of partial fractions, by equating the coefficients

of like powers of x. The integration of many of the resulting

expressions usually requires the aid of one of the reduction

formula
( 76).

Example. [(a? + x-l)dx fxdx f dx
Frove

J (a
2+ l)

2
=
J xUTJ -J(x* + l)

2 '

Integrate. Ansr. J log {x
2
+1) -

%xj(l + x2
) +tan _1

a; + C. Use formula E,

page 209, for evaluating the last term.

Consequently, if the denominator of any fractional differential

can be resolved into factors, the differential can be integrated by
one or other of these processes. The remainder of this chapter

will be mainly taken up with practical illustrations of integration

processes. A number of geometrical applications will also be given

because the accompanying figures are so useful in helping one to

form a mental picture of the operation in hand.

77. The Yelocity of Chemical Reactions.

The time occupied by a chemical reaction is dependent, among
other things, on the nature and concentration of the reacting sub-

stances, the presence of impurities, and on the temperature. With

some reactions these several factors can be so controlled, that

measurements of the velocity of the reaction agree with theoretical

results. But a great number of chemical reactions have hitherto

defied all attempts to reduce them to order. For instance, the

mutual action of hydriodic acid and bromic acid
;
of hydrogen and

oxygon ;
of carbon and oxygen ;

and the oxidation of phosphorus.
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The magnitude of the disturbing effects of secondary and catalytic

actions obscures the mechanism of such reactions. In these cases

more extended investigations are required to make clear what

actually takes place in the reacting system.

Chemical reactions are classified into uni- or mono-molecular,

bi-molecular, ter- or tri-molecular, and quadri-molecular reactions

according to the number of molecules which are supposed to take

part in the reaction. Uni-, bi-, ter-, . . . molecular reactions are

often called reactions of the first, second, third, . . . order.

I. Beactions of the first order. Let a be the concentration of

the reacting molecules at the beginning of the action when the

time t = 0. The concentration, after the lapse of an interval of

time t, is, therefore, a -
x, where x denotes the amount of sub-

stance transformed during that time. Let dx denote the amount

of substance formed in the time dt. The velocity of the reaction,

at any moment, is proportional to the concentration of the reacting

substance Wilhelmy's law hence we have

gj- k(a
-

); or, k =
j .log^^; W

or, what is the same thing, x =
a(l

- e
~

**),
where A; is a constant

depending on the nature of the reacting system. Reactions which

proceed according to this equation are said to be reactions of the

first order.

II. Beactions of the second order. Let a and b respectively

denote the concentration of two different substances, say, in such

a reacting system as occurs when acetic acid acts on alcohol, or

bromine on fumaric acid, then, according to the law of mass

action, the velocity of the reaction at any moment is proportional

to the product of concentration of the reacting substances. For

every gram molecule of acetic acid transformed, the same amount
of alcohol must also disappear. When the system contains a - x

gram molecules of acetic acid it must also contain b - x gram
molecules of alcohol. Hence

dx
t / ^ ,i x , 1 1

,
(a - x)b

<*r- *(* - *) (*
-

*y> * =T'a^b lo
%(b^iJja--

(
2
)

Reactions which progress according to this equation are called

reactions of the second order. If the two reacting molecules are

the same, then a = b. From (2), therefore, we get log 1 x = x oo.

Such indeterminate fractions will be discussed later on. But if we
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start from the beginning, we get, by the integration of

_*(a
_

a)
, ;i _i._L_ . . (3)

In the hydrolysis of cane sugar,

^12^22^11 + H2
= 2C6

H
12 6,

let a denote the amount of cane sugar, b the amount of water

present at the beginning of the action. The velocity of the re-

action can therefore be represented by the equation (3), when x

denotes the amount of sugar which actusrily undergoes transforma-

tion. If the sugar be dissolved in a large excess of water, the

concentration of the water, b, is practically constant during the

whole process, because b is very large in comparison with x, and

a small change in the value of x will have no appreciable effect

upon the value of b
;
b - x may, therefore, be assumed constant.

.-. k' = k(b
-

x), where k' and k are constant. Hence equation (1)

should represent the course of this reaction. Wilhelmy's measure-

ments of the rate of this reaction shows that the above supposition

corresponds closely with the truth. The hydrolysis of cane sugar

in presence of a large excess of water is, therefore, said to be a

reaction of the first order, although it is really bimolecular.

Example. Proceed as on page 59 with the following pairs of values of

x and t :

*- 15, 30, 45, 60, 75,...

x= 0-046, 0-088, 0-130, 0-168, 0-206,...

Substitute these numbers in (1) ;
show that k' is constant. Make the proper

changes for use with common logs. Put a = 1.

III. Beactions of the third order. In this case three molecules

take part in the reaction. Let a, b, c, denote the concentration of

the reacting molecules of each species at the beginning of the

reaction, then,

dx--= k(a
-

x) (b
-

x) (c
-

x). . . (4)

Integrate this expression and put x = when t = in order to

find the value of G. The final equation can then be written in the

form,

[V a y-y b y-y c \~
b

\

'"\v%
- x) \b - x) \c - x) j

t(a
-

b) (b
-

c) (c
-

a)

where a, b, c, are all different. If we make a = b = c, in equation

loc
7. y\tv -u}/ \u jo/ \u -jo/ )

/c\

t(a
-

b) (b
-

c) (c
-

a)



77. THE INTEGRAL CALCULUS. 221

(4) and integrate the resulting expression

^-k(a xY-h-H-^ 11- *<2fl -*>
-

(6)
dt -tc[a-x) ,

-
2t^a _ xy a

.
2
j

-
2ta^a _ xy.

{)

By rearranging the terms of equation (6)
so that,

-i1 ~

jsktd-
(7)

we see that the reaction can only come to an end (x
=

a) after the

elapse of an infinite time, t = oo. If o = b when a is not equal

to b,

- 1 1
f (a

-
6)s . a(b

-
s) l* * r (a

-
6) (6(6

-
a?)

+ log
b{a

-
x)j

' '
{ }

Among reactions of the third order we have the polymerization
of cyanic acid, the reduction of ferric by stannous chloride, the

oxidation of sulphur dioxide, and the action of benzaldehyde upon
sodium hydroxide. For full particulars J. W Mellor, Chemical

Statics and Dynamics, might be consulted.

IV. Beactions of the fourth order. These are comparatively
rare. The reaction between hydrobromic and bromic acids is,

under certain conditions, of the fourth order. So is the reaction

between chromic and phosphorous acids ;
the action of bromine

upon benzene
;

and the decomposition of potassium chlorate.

The general equation for an w-molecular reaction, or a reaction

of the nth. order is

dx w % 7
1 1 f 1 11

3r-*frrfFi
h =
l-ni\{a-xY-i-^)'- ^

The intermediate steps of the integration are, Ex. (3) and Ex. (4),

page 196. The integration constant is evaluated by remembering
that when x = 0, t = 0. We thus obtain

(n-l)(a-x)
n -i = kt + G > G=+

(n-l)a
n - 1>

V. To find the order of a chemical reaction. Let C
lt
G

2
re-

spectively denote the concentration of the reacting substance in

the solution, at the end of certain times t
x
and t

2
. From (9), if

0= Gv when t = tv etc.,

-a?
" k0" ;

'

^Mnpi-api}-^-^ (io)

where n denotes the number of molecules taking part in the re-
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action. It is required to find a value for n. From (10)

2dC , . . log L - log t9 ,-. 1 N

-^ = kt; or, n=l + -2_J _* 2
. . (11)

<?iG log u2
-
log Uj

Why the negative sign ? The answer is that (10) denotes the rate

of formation of the products of the reaction, (11) the rate at which

the original substance disappears. G a-x, .-. dC= -dx.

Numerical Illustration. W. Judson and J. W. Walker (Journ. Chem.

Soc, 73, 410, 1898) found that while the time required for the decomposition
of a mixture of bromic and hydrobromic acids of concentration 77, was
15 minutes

;
the time required for the transformation of a similar mixture

of substances in a solution of concentration 51-33, was 50 minutes. Substi-

tuting these values in (11),

log 3-333 n" = 1+
l?gT5-

= 3 '97 -

The nearest integer, 4, represents the order of the reaction. Use the Table of

Natural Logarithms, page 627.

The intervals of time required for the transformation of equal
fractional parts m of a substance contained in two solutions of

different concentration C and G2 , may be obtained by graphic

interpolation from the curves whose abscissae are t
x
and t

2
and

whose ordinates are G
Y
and G

2 respectively.

Another convenient formula for the order of a reaction, is

n=^JLZ^lJL. . . . (i2)

log Gx
-

log G2

The reader will probably be able to deduce this formula for himself.

The mathematical treatment of velocity equations here outlined

is in no way difficult, although, perhaps, some practice is still re-

quisite in the manipulation of laboratory results. The following

selection illustrates what may be expected in practical work if

the reaction is not affected by disturbing influences.

Examples. (1) M. Bodenstein (Zeit. phys. Chem., 29, 315, 1899) has the

equation
dx ,

-jj
= k(a -

x) (b
- xp

for the rate of formation of hydrogen sulphide from its elements. To inte-

grate this expression put b-x=z2
, .. dx = - 2zdx, and therefore

/;

dz ht 2
, 8 _

i= -
-pr : or, -j tan

1 -
j + C = - Jet

+A*~~ 2'
U1

' A vai A

where ,42= a-6. For the integration, see (13), page 193. This presupposes
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that a>6 ;
if a<6 the integration is Case i. of page 213. We get a similar

expression for the rate of dissolution of a solid cylinder of metal in an acid.

To evaluate C, note that x=0 when =0.

(2) L. T. Reicher (Zeit. phys. Chem., 16, 203, 1895) in studying the action

of bromine on fumaric acid, found that when 2=0, his solution contained 8*8

of fumaric acid, and when 2=95, 7*87 ;
the concentration of the acid was then

altered by dilution with water, it was then found that when t=0, the concen-

tration was 3-88, and when 2= 132, 3*51. Here dCJdt= (8-88
- 7'87)/95= 0-0106 ;

dCJdt= 0-00227 ;
C1
= (8-88 + 7'87)/2

= 8-375 ; C2
= 3*7, n = 1-87 in (12) above

The reaction is, therefore, of the second order.

(3) In the absence of disturbing side reactions, arrange velocity equations
for the reaction (A. A. Noyes and G. J. Cottle, Zeit. phys. Chem., 27, 578,

1898) : 2CH3 . C02Ag + H . C02Na = CH3 . COOH + CH3 . C02Na+ C02+ 2Ag.

Assuming that the silver, sodium and hydrogen salts are completely dissociated

in solution, the reaction is essentially between the ions :

2Ag+ + H.COO" = 2Ag + C02 + H +

therefore, the reaction is of the third order. Verify this from the following

data. When a (sodium formate) =0-050, b (silver acetate) =0*100; and when

t= 2, 4, 7, 11, 17, ...

(b
-

x) x 103 = 81-03, 71-80, 63*95, 59-20, 56-25, . . .

Show that if the reaction be of the second order, k varies from 1'88 to 2*67,

while if the reaction be of the third order, k varies between 31-2 and 28-0.

(4) For the conversion of acetochloranilide into >-chloracetanilide, J. J.

Blanksma {Bee. Trav. Pays-Bos., 21, 366, 1902
; 22, 290, 1903) has

t= 0, 1, 2, 3, 4, 6, 8,...;

a-x = 49-3, 35-6, 25-75, 18-5, 13-8, 7'3, 4-8,...

Show that the reaction is of the first order.

(5) An homogeneous spheroidal solid is treated with a solvent which dis-

solves layer after layer of the substance of the sphere. To find the rate of

dissolution of the solid. Let r denote the radius of the sphere at the be-

ginning of the experiment, when t=0 ;
and r the radius of the time t ; let <p

denote the volume of one gram molecule of the solid
;
and let x denote the

number of gram molecules of the sphere whioh have been dissolved at the

time t. The rate of dissolution of the sphere will obviously be proportional

to the surface s, and to the amount of acid, a - x, present in the solution at

the time t. But, remembering that the volume of the sphere is fa-r
3

, the

volume of the x gram molecules of the sphere dissolved at the time t will be

and the surface s of the sphere at the time t will be litr*.

an expression resembling that integrated on page 217, Ex. (4).

(6) L. T. Reicher (Liebig's Ann., 228, 257, 1885 ; 232, 103, 1886) measur-

ing the rate of hydrolysis of ethyl acetate by sodium hydroxide, found that



when
t= 0,
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(Zeit. phys. Chem., 12, 155, 1892) has published the following data:

t= 0, 4, 14, 24, 46-3. ...

p^ 758-01, 769-34 795-57, 819-16, 865-22, . . .

Hence show that ft
7

,
not k satisfies the required condition. The decomposi-

tion of phosphine is, therefore, said to be a reaction of the first order. Of

course this does not prove that a reaction is really unimolecular. It only

proves that the velocity of the reaction is proportional to the pressure of the

gas quite another matter. See J. W. Mellor's Chemical Statics and Dynamics.

In experimental work in the laboratory, the investigator pro-

ceeds by the method of trial and failure in the hope that among
many wrong guesses, he will at last hit upon one that will

"
go ".

So in mathematical work, there is no royal road. We proceed by

instinct, not by rule. For instance, we have here made three guesses.

The first appeared the most probable, but on trial proved unmis-

takably wrong. The second, least probable guess, proved to be

the one we were searching for. In his celebrated quest for the

law of descent of freely falling bodies, Galileo first tried if V, the

velocity of descent was a function of s, the distance traversed. He
found the assumption was not in agreement with facts. He then

tried if V was a function of t, the time of descent, and so estab-

lished the familiar law V =
gt. So Kepler is said to have made

nineteen conjectures respecting the form of the planetary orbits,

and to have given them up one by one until he arrived at the

elliptical orbit which satisfied the required conditions.

78. Chemical Equilibria Incomplete or Reversible

Reactions.

Whether equivalent proportions of sodium nitrate and potas-

sium chloride, or of sodium chloride and potassium nitrate, are

mixed together in aqueous solution at constant temperature, each

solution will, after the elapse of a certain time, contain these four

salts distributed in the same proportions. Let m and n be positive

integers, then

(m + n)NaN03 + (m + w)KCl = mNaCl +mKN03 + wNaN03 + nKCl ;

(m + w)NaCl + (m + rc)KN03
- wNaCl + raKN03 + wNaN03 + wKCl.

This is more concisely written,

NaCl + KN03 ^NaN03 + KOI.

The phenomenon is explained by assuming that the products of

the reaction interact to reform the original components simul-

P
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taneously with the direct reaction. That is to say, two inde-

pendent and antagonistic changes take place simultaneously in

the same reacting system. When the speeds of the two opposing
reactions are perfectly balanced, the system appears to be in a

stationary state of equilibrium. This is another illustration of the

principle of the coexistence of different actions. The special case

of the law of mass action dealing with these "incomplete" or

reversible reactions is known as Guldberg and Waage's law.

Consider a system containing two reacting substances A
1
and A

2

such that

A
1 ^s A2

.

Let a
x
and a

2 be the respective concentrations of A
l
and A

2
. Let

x of A
1
be transformed in the time t, then by the law of mass action,

^ = k
Y(aY

-
x).

Further, let x' of A2
be transformed in the time L The rate of

transformation of A
2
to A

x
is then

= k
2(a2

-
x).

But for the mutual transformation of x of A
l

to A
2
and x' of A2

to A
lt
we must have, for equilibrium, x = - x'

; and, dx = - dx'
;

.-. ^= - k2(a2 + x).

The net, or total velocity of the reaction is obviously the algebraic

sum of these "
partial

"
velocities, or

^ -= KMi -
x)

- k
2(a2 + x). . . (1)

It is usual to write K = kjk2. When the system has attained the

stationary state dx/dt
- 0. "Equilibrium," says Ostwald, "is a

state which is not dependent upon time." Consequently

Z=K4 .... (2)

where x is to be determined by chemical analysis, a
Y
is the amount

of substance used at the beginning of the experiment, a
2

is made

zero when t = 0. This determines K. Now integrate (1) by

the method of partial fractions and proceed as indicated in the

subjoined examples.
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Examples. (1) In aqueous solution -y-oxybutyric acid is converted into

y-butyrolactone, and y-butyrolactone is transformed into y-oxybutyric acid

according to the equation,

CRjOH . CHo . 0H2 . COOH =b CH2 . 0H2 . 0H2 . CO + H20.

I 0. 1

Use the preceding notation and show that the velocity of formation of the

lactone is, dxfdt = hy(ax
-

x)
- k2(a2 + x), and K m kjk2

=
(a^ + x)j{ax

-
x)

Now integrate the first equation by the method of partial fractions. Evaluate

the integration constant for x = when t = and show that

7 log r~ r -7T wr- = Constant. ... (3)
t

8
(Zoj

- a^ -
(1 + K)x

P. Henry (Zeit. phys. Ghem., 10, 116, 1892) worked with a
x
= 18-23, a2 = ;

analysis showed that when dx/dt = 0, x = 13-28; a
i
- x = 4-95; a.2 + x = 13-28 ;

7l = 2-68. Substitute these values in (3); reduce the equation to its lowest

terms and verify the constancy of the resulting expression when the following

pairs of experimental values are substituted for x and t,

t= 21, 50, 65, 80, 160 ...;

x = 2-39, 4-98, 6-07, 7-14, 10-28 . . .

(2) A more complicated example than the preceding reaction of the first

order, occurs during the esterification of alcohol by acetic acid :

CH3 . COOH + C2H5 . OH =h CH3 . COOC2H5 + H . OH,

a reaction of the second order. Let Oj, b
x
denote the initial concentrations of

the acetic acid and alcohol respectively, a^ b2 of ethyl acetate and water.

Show that, dx/dt = ft^Oj
-

x) (b x
-

x)
- k^a^ + a) (b2 + x). Here, as else-

where, the calculation is greatly simplified by taking gram molecules such

that a
x
= 1, bx

= 1, 0-2
= 0, b2 = 0. The preceding equation thus reduces to

^ = Ml -
*)"

- ** (4)

For the sake of brevity, write k
x/(k

- &2) = m and let o, be the roots of the

equation <c
2 - 2mx + m = 0. Show that (7) may be written

dx

(E
-

.) (S
-

fl)

= ^ -^
Integrate for x = when t = 0, in the usual way. Show that since

a = m + \/m2 - m and j8
= m - s/m2 - w, page 353,

1 (m - *Jm* - m) (m + slm? - m -
x) rt/7 j ,

7 lo8
; / , / o

" =^ - fc2 Vm2 - m. 5
t (m + vw2 - m) (m - Vro2 - m -

x)

K is evaluated as before. Since m = ^{k^ - k2);m = 1/(1
- kjkx).

M. Ber-

thelot and L. Pean St. Gilles' experiments show that for the above reaction,

fc^ = 4
;
m = *

; slm1 - m = $ ; %(kx
-

k%)
= 0*00575 ; or, using common

logs, %(kx
x 0*4343 - k2)

= 0-0025. The corresponding values of x and t were

t= 64, 103, 137, 167 ...;

x = 0-250, 0-345, 0-421, 0*474 ...;

constant = 0-0023, 0-0022, 0-0020, 0.0021 . . ,

V*
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Verify this last line from (5). For smaller values of t, side reactions are

supposed to disturb the normal reaction, because the value of the constant

deviates somewhat from the regularity just found.

(3) Let one gram molecule of hydrogen iodide in a v litre vessel be heated,

decomposition takes place according to the equation : 2HI =^t Hj+Ig. Hence

show that for equilibrium,

dx 7 /l - 2xV ( x\*

and that (1
-

2x)/v is the concentration of the undissociated acid. Put

kjk2
= K and verify the following deductions,

dx _ 1 , VE^l -
2a?) + x _ h%t

K(l-2x)*-x*- 2 >jK' *>JK(1-2x)-x~ v*

Since, when t = 0, x = 0, G = 0. M. Bodenstein (Zeit. phys. Ghem., 13, 56,

1894
; 22, 1, 1897) found E, at 440 = 0*02, hence JK = 0-141,

1 1 + 5-Ijc
'

7 l08 1 _ Q.ifl.
= constant,

provided the volume remains constant. The corresponding values of x and t are

to be found by experiment. E.g., when t = 15, x = 00378, constant = 0-0171 ;

and when t = 60, x = 0-0950, constant = 0*0173, etc.

(4) The " active mass "
of a solid is independent of its quantity. Hence,

if c is a constant, show that for OaC03 -^ OaO + 0O2 ,
Kc = p, wherep denotes

the pressure of the gas.

(5) Prove that the velocity equation of a complete reaction of the first

order, A2
= A2 ,

has the same general form as that of a reversible reaction,

Aa -^ A2 ,
of the same order when the concentration of the substances is re-

ferred to the point of equilibrium instead of to the original mass. Let |

denote the value of x at the point of equilibrium, then, dxldt=k1(a1 -x)- k^c ;

becomes dx/dt = fc^ -
{)

- &2 . Substitute for fe2 its value /^(Oj
-

{)/, when

dx/dt = 0,

. dx_ k1al(t-x) m
dx

..-gg.-i
, or, -^

= *(*-). . . . (7)

where the meanings of a, k, kx will be obvious.

(6) Show that k is the same whether the experiment is made with the

substance Alf or Ag. It has just been shown that starting with Alt
k = fe^/l ;

starting with A2,
it is evident that there is % - of A2 will exist at the point

of equilibrium. Hence show dx/dt = k^i^fa
-

)
-
x}/(a1

-
1) ;
k=k^ -

),

therefore, as before, k^/fa -
|)
= k^aj^. dx/dt = M^i^ - -

)/{. Inte-

grate between the limits t = and t = t, x = x and x = xx \
then show, from

(7), that

<
1osr log

fli
-

1
- *2 ~T~

= kl + K ' (8)

C. Tubandt has measured the rate of inversion of Z-menthone into d-men-

thone, and vice versd (Dissertation, Halle, 1904). In the first series of experi-

ments x denotes the amount of d-menthone present at the time t
;
and in the
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second series, the amount of Z-menthone present at the time t
; | is the value

, of x when the system is in a state of equilibrium, that is when t is infinite.

First, the conversion of Z-menthone into d-menthone.

t = 0, 15, 30, 45, 60, 75, 90, 105, oo ;

x = 0, 0-73, 1-31, 1-74, 2-06, 230, 2-48, 2-62, 3*09.

Second, the conversion of d-menthone into Z-menthone.

t = 0, 15, 30, 45, 60, 75, 90, 105, oo;

x = 0, 045, 0-76, 1-03, 1-22, 1-37, 1'47, 1'56, 1-84.

Show that the "
velocity constant" is nearly the same in each case, k =0*008

nearly.

79. Fractional Precipitation.

If to a solution of a mixture of two salts, A and B, a third

substance C, is added, in an amount insufficient to precipitate all

A and B in the solution, more of one salt will be precipitated, as

a rule, than the
'

other. By redissolving the mixed precipitate and

again partially precipitating the salts, we can, by many repetitions

f the process, effect fairly good separations of substances otherwise

intractable to any known process of separation.

Since Mosander thus fractioned the gadolinite earths in 1839,

the method has been extensively employed by W. Crookes (Chem.

News, 54, 131, 155, 1886), in some fine work on the yttria and

other earths. The recent separations of polonium, radium and

other curiosities have attracted some attention to the process.

The " mathematics
"
of the reactions follows directly from the law

of mass action. Let only sufficient C be added to partially pre-

cipitate A and B and let the solution originally contain a of the

salt A, b of the salt B. Let x and y denote the amounts of A and

B precipitated at the end of a certain time t, then a - x and b - x

will represent the amounts of A and B respectively remaining in

the solution. The rates of precipitation are, therefore,

- = h
x(a

-
x) (g

-
z) ; ^ - k2(b

-
y) (c

-
z),

where c - z denotes the amount of C remaining in the solution at

the end of a certain time t.

or, multiplying through with dt, we get

k J?- = ic _^_ . . k [
d

(
a - x

) Z k [
d

(
b -

y)
2a - x 1

b - y'
2

) a - x l

) b - y
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On integration, k
2\og(a

-
x)

= k^.og{b
-

y) + log 0, where log C
is the integration constant. To find G notice that when x = 0,

y = 0, and consequently log a** = log Cb
ki

; or,
= a*2/*i.-

*,
(1)

log b y
The ratio {a -

x)/a measures the amount of salt remaining in

the solution, after x of it has been precipitated. The less this ratio,

the greater the amount of salt A in the precipitate. The same

thing may be said of the ratio (b
-

y)/b in connection with the

salt B. The more k
2 exceeds k

lt
the less will A tend to accumulate

in the precipitate and, the more k
x
exceeds k

2 ,
the more will A tend

to accumulate in the precipitate. If the ratio kjk2
is nearly unity,

the process of fractional precipitation will be a very long one,

because the ratio of the quantities of A and B in the precipitate

will be nearly the same. In the limiting case, when k
1
= k

2 ,
or

kjk2
= 1, the ratio of A to B in the mixed precipitate" will be the

same as in the solution. In such a case, the complex nature of

the "earth" could never be detected by fractional precipitation.

The application to gravimetric analysis has not yet been worked

out.

80. Areas enclosed by Curves. To Evaluate Definite

Integrals.

Let AB (Fig. 100) be any curve whose equation is known. It

is required to find the area of the

portion bounded by the curve ;
the

two coordinates PM, QN ; and that

portion of the #-axis, MN, included

between the ordinates at the ex-

tremities of that portion of the curve

under investigation. The area can

be approximately determined by sup-

posing PQMN to be cut up into small

strips called surface elements
"

perpendicular to the #-axis
; finding

the area of each separate strip on

the assumption that the curve bound-

ing one end of the strip is a straight
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line ; and adding the areas of all the trapezoidal-shaped strips

together. Let the surface PrqQNM be cut up into two strips by
means of the line LB. Join PB, BQ.

Area PQMN = Area PBLM + Area BQNL.

But the area so calculated is greater than that of the required

figure. The shaded portion of the diagram represents the magni-
tude of the error. It is obvious that the narrower each strip is

made, the greater will be the number of trapeziums to be included

in the calculation and the smaller will

be the error. If we could add up the

areas of an infinite number of such strips,

the actual error would become vanish-

ingly small. Although we are unable

to form any distinct conception of this

process, we feel assured that such an

operation would give a result absolutely

correct. But enough has been said on

this matter in 68. We want to know
how to add up an infinite number of infinitely small strips.

In order to have some concrete image before the mind, let

us find the area of PQNM in Fig. 101. Take any small strip

PBSM
; let PM =

y, BS = y + 8y ; OM = x
; and OS = x 4- 8x.

Let 8A represent the area of the small strip under consideration.

If the short distance, PB, were straight and not curved, the area,

8A
}
of the trapezium PBSM would be, (U), page 604,

8A = \8x(PM + BS) = 8x(y + $y).

By making 8x smaller and smaller, the ratio, 8A/8x - y + |&/,

approaches, and, at the limit, becomes equal to

***-." E^* S <M-if.A.
:

. (i)

This formula represents the area of an infinitely narrow strip, say,

PM. The total area, A, can be determined by adding up the.

areas of the infinite number of infinitely narrow strips ranged side

by side from MP to NQ. The area of any strip is obviously length

x width, or y x dx. Before we can proceed any further, we must

know the relation between the length, y, of any strip in terms of its

distance, x, from the point 0. In other words, we must have the

equation of the curve PQ. For instance, the area of any indefinite
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portion of the curve, is

A = \y . dx + 0, . . , . (2)

and the area bounded by the portion situated between the ordinates

having the absciss a
2 and a

z (Fig. 100) is

A=[
a

*y.dx+ C. . . . (3)

Equation (2) is an indefinite integral, equation (3) a definite

integral. The value of the definite integral is determined by the

magnitude of the upper and lower limits. In Fig. 100, if av a
2 ,
a
3

represent the magnitudes of three absciss sb, such that a
2 lies

between a
2
and a

z ,

A = I y . dx + G = I y . dx + y . dx + C.
J ] J 1 J <*2

When the limits are known, the value of the integral is found by

subtracting the expression obtained by substituting the lower limit

in place of x, from a similar expression obtained by substituting

the upper limit for x.

In order to fix the idea, let us take a particular case. Suppose

y = 2x, and we want to deal with that portion of the curve between

the ordinates a and b. From (3),

r2a.da?=rz2 + G; . . , (4)

The vertical line in the preceding equation, (4), resembles Sarraus'

symbol of substitution. The same idea is sometimes expressed

by square brackets, thus,

J
2x.dx= He2 + cj

=
(62 + G)

-
(a

2 + G) = (
-

a?).

The process of finding the area of any surface is called, in the

regular text-books, the quadrature of surfaces, from the fact that

the area is measured in terms of a square sq. cm., sq. in., or

whatever unit is employed. In applying these principles to

specific examples, the student should draw his own diagrams.
If the area bounded by a portion of an ellipse or of an hyperbola
is to be determined, first sketch the curve, and carefully note the

limits of the integral.

Examples. (1) To find the area bounded by an ellipse, origin at the

centre. Here

x2
y
2 b

i

a?
+
b*^ 1

'' or, y =~^a2 - x
r
\
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Refer to Fig. 22, page 100. The sum of all the elements perpendicular to the

x-axis, from OPx to 0PV is given by the equation

/> dx,

for, when the curve cuts the aj-axis, x = a, and when it cuts the y-axis, x = 0.

The positive sign in the above equation, represents ordinates above the jc-axis.

The area of the ellipse is, therefore,

fa

dx.=
*f

a

v
Jo

Substitute the above value of y in this expression and we get for the sum of

this infinite number of strips,

6f
A

oaJ o

which may be integrated by parts, thus

b Vx a? x
i = 4- -

2^-^) + 2sin a
Jo

The term within the braokets is yet to be evaluated between the limits x = a

and x =

b T (a a2 a } (0 a2
^ 1

A A
b ^ H^ = 4
a

X
2-
sm ~

1;

remembering that sin 90 = 1, sin" 1! = 90 and 2 sin" 1 1 = 180 = ir. The
area of the ellipse is, therefore, vdb. If the major and minor axes are equal,
a = b, the ellipse becomes a circle whose area is 7ra2. It will be found that

the constant always disappears in this way when evaluating a definite

integral.

(2) Find the area bounded by the rectangular hyperbola, xy = a; or,

y = ajx, between the limits x x
x
and x *= x2 .

f*
2 t^a
y.dx= -dx\

Jx\ Jxi

.'. A =a\ log x + C = a{(log x2 + C)
-

( log ^ + C)\ = a logl*.
I*!

X
l

If x
x
= 1, and sc2

= x ;
A = a log^. This simple relation appears to be the

reason natural logarithms are sometimes called hyperbolic logarithms.

(3) Find the area bounded by the curve y = 12(sc
-

l)/x, when the limits

are 12 cm. and 3 cm. Ansr. 91-36 sq. cm. The integral is
12J(a; -l)x~

1dx
;

or 12[a5
- log a?]-

1/ = 12(9
-

log 4), etc. Use the table of natural logarithms,

page 627.

(4) Show that the area bounded by the logarithmic curve, x = logy, is

y - l. Hint. A =
jdy

= y + C. Evaluate G by noting that when x = 0,

y = -
1, A = 0. If y = 1, A = 0; if y = 2, A = 1

; etc.

If polar coordinates are employed, the differential of the area
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assumes the form
dA m \rU0 (5)

Example. Find the area of the hyperbolic spiral between and + r.

See Ex. (2), page 117. r0 = a; de = - a . drjr
2

; consequently,

. f a , 1\ ar arA
'zj **-4 T=T

After this the integration constant is not to be used at any

stage of the process of integration between limits. It has been

retained in the above discussion to further emphasize the rule :

The integration constant of a definite integral disappears during
the process of integration. The absence of the indefinite integration

constant is the mark of a definite integral.

81. Mean Values of Integrals.

The curve

y = rsin#,

represents the sinusoid curve for the electromotive force, y, of an

alternating current
;
r denotes the maximum current

;
x denotes

the angular displacement made in the time t, such that # = 2tt/T,

where T denotes the time of a complete revolution of the coil in

seconds. The value of y, at any instant of time, is proportional to

the corresponding ordinate of the curve. When x = 90, t = \T, the

coil has made a quarter revolution, and the ordinate is a maximum.
When x = 270, or when t = fT% that

is, in three-quarters of a revolution,

the ordinate is a minimum. The
curve cuts the aj-axis when x = 0,
180, and 360, that is, when t = 0,

\T, and T. For half revolution, 'the

average electromotive force beginning

Fia 102#
when x =

0, is equal to the area

bounded by the curve OPC (Fig. 102),
and the #-axis, cut off at } T, that is, at *-. This area, Av is

evidently

A
1
= I r sin x . dx = - r cos x\ = - r cos ?r + r cos = 2r,

because costt = cos 180 = -
1, and cos = 1.

The area, A
2 , bounded by the sine curve during the second

half revolution of the coil lies below the rc-axis, and it has the same
numerical value as in the first half. This means that the average
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electromotive force during the second half revolu fcion is numerically

equal to that of the first half, but of opposite sign. It is easy to

see this.

2r,A
2
= I r&mx.dx= - \roosx\ = - tcosQtt + rcos-n- =

since cos 360 = cos0 = 1. The total area, A, bounded by the

sine curve and the #-axis during a complete revolution of the coil

is zero, since

A = A
1 + A

2
= 0.

The area bounded by the sine curve and the #-axis for a whole

period 2tt, or for any number of whole periods, is zero.

If now ylt y2 , ys ,
. . ., yn be the values of f(x) when the space

from a to b is divided into n equal parts each hx wide, b- a= n$x,

and if

y = /() ;

Vi -/(<*) ; y2 =/( + Sx) ; y3 =/(a + 28b); . . . ; yn =f(b - n -
Ux).

The arithmetical mean of these n values of y is, by definition,

the nth part of their sum. Hence,

Vi + V2 + Vz + - - + Vn m (Vi + V2 + Vz + > + Vn)^
n b - a '

since nSx = b - a. If x now assumes every possible value lying

in the interval between b and a, n must be infinitely great. Hence
the sum of this infinite number of indefinitely small quantities is

expressed by the symbol

as indicated on page 189. The arithmetical mean of all the values

which f(x) can assume in the interval b - a is, therefore,

f(x)dx 1 f
,

s^t ; or,
-
r f(x)dx.

b - a b - a) a
JK J

This is called the mean or average value oif(x) over the range
b - a. Geometrically, the mean value is the altitude of a rectangle,

on the base b -
a, whose area is equal to that bounded by the curve

y =
f(x), the two ordinates and the #-axis. In Fig. 102, OA is the

mean value of y, that is, of r sin x
}
for all values of x which may

vary continuously from to w. This is easy to see,



236 HIGHEK MATHEMATICS. 81.

I rainx .dx = Area OPC = Area of rectangle OABG\

= OC x OA =
(b

-
a) x OA,

where a denotes the abscissa at the point 0, and b the abscissa at

C. But b - a = 7T, and OA = ylt consequently,

-f"
2r

Mean value of ordinate = | raillX.dx= = 0*6366r.
7T

Instruments for measuring the average strength, yv of an alternat-

ing current during half a complete period, that is to say, during the

time the current flows in one direction, are called electrodynamo-
meters. The electrodynamometer, therefore, measures y1

= OA

(Fig. 102) =
2r/7r

= 0"6366r. But MP = r denotes the maximum

current, because sin a; is greatest when x = 90, and sin 90 = 1.

Hence, y = r sin 90 = r.

Maximum current = T
', Average current = #

6366t*.

There is another variety of mean of no little importance in the

treatment of alternating currents, namely, the square root of the

mean of the squares of the ordinates for the range from x = to

x = 7t. This magnitude is called the mean square Yalue off(x).

With the preceding function, y = r sin x, the

r2

--fMean value of V2 = -
\

T sin2aj . dx =
-g

on integration by parts as in (12), page 205. Again

Mean square value of 2/
2 = J^T

2 = 0*707lr.

Examples. (1) In calculations involving mean values care must be

taken not to take the wrong independent variable. Find the mean velocity of

a particle falling from rest with a constant acceleration, the velocities being

taken at equal distances of time. When a body falls from rest, V = gt,

r/,4Jigt . dU gt_V
o 2 ~2'

that is to say, the mean velocity, Vt, with respect to equal intervals of time

is one half the final velocity. On the other hand, if we seek the mean

velocity which the body had after describing equal intervals of space, s,

and remembering that T2 = 2gs,

that is, two-thirds of the final velocity.

(2) Show that if a particle moves with a constant acceleration, the mean

square of the velocities at equal infinitely small intervals of time, is

M^o
2 + "Po "Pi + ^i

2
)
wnere Vo an<* ^1 respectively denote the initial and final

velocities.
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(3) The relation between the amount, x, of a substance transformed at

the time, t
t
in a unimolecular chemical reaction may be written x=a(l - e~ **)

where a denotes the amount of substance present at the beginning of the

reaction, and Ms a constant. Show that V = ake ~ **
; or, V = k(a

-
x)

according as we refer the velocity to equal intervals of time, t ; or to equal

amounts of substance transformed, x. Also show that the mean velocity

with respect to equal intervals of time in the interval tx
- t ,

is

t\
~

^o J to

ake ~ udt
ale-**! - g~ fa

o)

"o J to h~ <o log V -
log 7i

and the mean velocity, Vx ,
with respect to equal amounts of substance trans-

formed, is

V 1 [\, w _ fe(ah
-

b) (2a
-

flfc
- x

) _ V + V1v* = *r^o) XQ
k{a - x)dx

~
^r^5 2

If t = 0, and
i,

is infinite, the mean velocity, Vt , converges towards zero.

Several interesting relations can be deduced from this equation.

Problems connected with mean densities, centres of mass,
moments of inertia, mean pressures, and centres of pressure are

treated by the aid of the above principles.

82. Areas Bounded by Curves. Work Diagrams.

I. The area enclosed between two different curves. Let PABQ
and PA'B'Q (Fig. 103) be two curves, it is required to find the

area PABQB'A'. Let y l
= fx(x) be the equation of one curve,

Vi
= AM* tne equation of the other. First find the abscissae of

the points of intersection of the two curves. Find separately the

y

103. Fig. 104.

areas PABQMN and PA'B'QMN, by the preceding methods. Let
a and b respectively denote the abscissae OM, and ON (Fig. 103) f

of the points of intersection, P and Q, of the two curves,

required area, A, is, therefore,

Area PABQB'A' = Area PABQMN - Area PA'B'QMN

The

4=1 yx
dx -

J
y2

. dx.
(1)
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To find the area of the portion ABB'A', let x
x
be the abscissa

of AB and x the abscissa of BS, then,

f*2 f
x
2 f*2= Vi-dx

-
\

y2
.dx =

\ (yx
~ y2)dx.

J*i J xi j x
\

(2)

In illustration let us consider the area included between the two

parabolas whose equations are ?/
2 = 4a>

; and x2 =
4y. The curves

obviously meet at the origin, and at the point x = 4, cm., say,

y = 4 cm. (16), page 95. Consequently,

= I -j-dx
-

I 2 \/# . dx = 2 1 ( -o - \/#
Jda; 2f sq. cm. (3)

Why the negative sign ? On plotting it will be seen that we first

integrated along the line OGB (Fig. 104), and then subtracted from

this the result of integrating along the line OAP. We ought to

have gone along OAP first. It is therefore necessary to pay some

attention to this matter.

Let a given volume, x, of a gas be contained in a cylindrical

vessel in which a tightly fitting piston can be made to slide (Fig.

105). Let the sectional area of

the piston be unity. Now let

the volume of .gas change dx

units when a slight pressure X
Fig. 105. is applied to the free end of the

piston. Then, by definition of work, W,

Work = Force x Displacement ; or, dW = X .dx.

If p denotes the pressure of the gas and v the volume, we have,

dW = p .dv.

Now let the gas pass from one condition where x = Xj to an-

other state where x = xT Let the corresponding pressures to

which the gas was subjected be respectively denoted by X1
and X2 .

By plotting the successive values of X
and x, as x passes from x

x
and x

2 ,
we

get the curve ACB, shown in Fig. 106.

The shaded part of the figure represents
the total work done on the system

during the change.
If the gas returns to its original

state through another series of succes-

sive values of X and x we have the

curve AVB (Fig. 107). The total
Fia. 106. Work Diagram.



82. THE INTEGRAL CALCULUS. 239

107. Work Diagram.

work done by the system will then be represented by the area

ABDx
2
xv If we agree to call the work done on the system

positive ; and work done by the system negative, then (Fig. 107),

W
x
- W

2
= Area ACBx^Xx

- Area ADBx^X^ = Area ACBD.
The shaded part in Fig. 107, therefore, represents the work done

on the system during the above cycle

of changes. A series of operations by
which a substance, after leaving a certain

state, finally returns to its original con-

dition, is called a cycle, or a cyclic

process. A cyclic process is represented

graphically by a closed curve. In any

cyclic change, the work done on the

system is equal to the "area of the

cycle ".

Work is done on the system while x is increasing and by the

system when x is decreasing. Therefore, if the curve is described

by a point moving round the area ACBD in the direction of the

hands of a clock, the total work done

on the system is positive ;
if done in

the opposite direction, negative. We
can now understand the negative

sign in the comparatively simple ex-

ample, Fig. 104, above. We should

have obtained a positive value if we
had started from the origin and taken

the curves in the direction of the

hands of a clock.

If the diagram has several loops

as shown in Fig. 108, the total work

is the sum of the areas of the several

loops developed by the point travelling in the same direction as the

hands of a clock, minus the sum of the areas developed when the

point travels in a contrary direction. This graphic mode of re-

presenting work was first used by Clapeyron. The diagrams are

called Clapeyron's Work Diagrams.

In Watt's indioator diagrams, the area enclosed by the curve represents

the excess of the work done by the steam an the piston during a forward

stroke, over the work done by the piston when ejecting the steam in the re-

turn stroke. The total energy communicated to the piston is thus represented

Work Diagram.
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by the area enclosed by the curve. This area may be determined by one of

the methods described in the next chapter, page 335, 110.

II. The area bounded by two branches of the same curve is but

a simple application of Equation (1). Thus the area, A, enclosed

between the two limbs of the curve y
2 = (x

2 + 6)
2 and the ordinates

x = 1, x 2 is

A = \ (x
2 + 6)dx = 8J units,

as you will see by the method adopted in the preceding example.

Example. Show that the area between the parabola y = x2 - 5x + 6,

the ic-axis, and the ordinates x = 1, x = 5, is 5 units. Hint. Plot the curve

and the last result follows from the diagram. Of course you can get the same

result by integrating ydx between the limits x = 5, and x = 1.

83. Definite Integrals and their Properties.

There are some interesting properties of definite integrals worth

noting, and it is perhaps necessary to further amplify the remarks

on page 232.

I. A definite integral is a function of its limits. If /'(a?)
denotes

the first differential coefficient oif(x),

J7()
. da> =

[/(a) ]\
,

|V(*)

=
/(&)

-
f{a).

This means that a definite integral is a function of its limits, not of

the variable of integration, or

[f(x)
. dx =

[f(y)
. dy - f/W .&.-!; . (1)

J" Ja Ja

In other words, functions of the same form, when integrated
between the same limits have the same value.

Examples. (1) Show / e~ xdx = / e-*dz=e~ a -e-*.

(2) Prove
j*_

x*.dx = i{(3)
-

(
-

1)*}
= 9.

By way of practice verify the following results :

(3) J
sin x . dx = - I cos x = - I cos

^
- cos

J
= 1.

/*
ir [%* 1/ir \ /> t

sin2* . dx =
|

; / sin2* . dx=^( -^

- 1 )
;

/ sin2* . dx =
g.
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Hint for the indefinite integral. Integrate by parts.

dv = sin x . dx. From (1), 74,

Put u = sin x,

Jsin
2^ . dx = sin x . cos x + Jcos

2^ . dx = sin a? . cos x + j(l
- sin2x)dx.

Transpose the last term to the left-hand side, and divide by 2.

,\ Jsin
2^ . dx = (sin x . cos x + x) + C.

II. The interchange of the limits of a definite integral causes

the integral to change its sign. It is evident that

^"/(x)dx
-/(<*)

-
f(b) =

-^f{x)dx,
(2)

or, when the upper and lower limits of an integral are inter-

changed, only the sign of the definite integral changes. This

means that if the change of the variable from b to a is reckoned

positive, the change from a to b is negative. That is to say, if

motion in one direction is reckoned positive, motion in the

opposite direction is to be reckoned negative.

III. The decomposition of the integration limits. If m is any
interval between the limits a and b, it follows directly from what

has been said upon page 232, that

\

U

f\x)dx =
\

a

/{x)dx
+
fy'(x)dx

-/(a) -f(m) +f(m) -f(b). (3)

Or we can write

\'f(x)dx
=
^f(x)dx- ^f'(x)dx=f(m).-f(b)

-f(m)+f(a). (i)

In words, a definite integral extending over any given interval

is equal to the sum of the definite integrals

extending over the partial intervals. Con-

sequently, if f\x) is a finite and single-

valued function between x = a, and x = b,

but has a finite discontinuity at some point
m (Fig. 109), we can evaluate the in-

tegral by taking the sum of the partial

integrals extending from a to m, and from

m to b.

y
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function. Suoh are logarithmic, irrational algebraic, and inverse trigonomet-

rical functions. For example, y = tan
~ lx is a multiple-

valued function, because the ordinates corresponding to

the same value of x differ by multiples of -n. Verify this

by plotting. Obviously, if x = a and x = b are the

limits of integration of a multiple-valued function, we

must make sure that the ordinates x = a and x = 6

belong to the same branch of the curve y = f(x). In

Fig. 110, if x=OM, y is multi-valued, for y may be MP,
MQ, or MR. The imaginary values in no way interfere

with the ordinary arithmetical ones. A single-valued

function assumes one single value for any assigned (real or imaginary) value

of the independent variable. For example, rational algebraic, exponential
and trigonometrical functions are single-valued functions.

IV. Iff(x)dx be one function of y, and f'(a
- x)dx be another

function of y,

f'(x)dx=\ f'(a
-

x)dx.
Jo Jo

(5)

For, if we put a - y = x
;

.*. dx = -
dy, and substitute x = a, we

see at once that y =
;
and similarly, if x = 0, y = a.

.-.
\

a

f(x)dx= -
[f(a

-
y)dy =

[f'(a
-

x)dx,
Jo Jo Jo

from (2) and (1) abov<* or we can see this directly, since

I f(x)dx = I /' {a
-
x)dx - -

[

a

f\a -
x)d(a

-
x) =f(a) -/(O).

Jo Jo Jo

This result simply means that the area of OPFO' (Fig. Ill)

can be determined either by taking the origin

at and calling 00' the positive direction of

the #-axis
;
or by transferring the origin to

the point 0', a distance a from the old origin

0, and calling O'O the positive direction of

the #-axis. The following result is an im-

portant application of this,

0f< " MO'

Fig. 111.

sin
n
a;

Jo
dx x )dx = 1 cosw C . dx.

-J**8m-(|-*)fe-"i
Examples. (1) Verify the following results :

cos x . dx= I sin x . dx 1
; /

cos%c . dx
o Jo Jo

(2) Show that /" f{x'
i

)dx=2iy(x
2
)dx.

(6)

J
sin2

c . da; =2'
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(3) Evaluate /
sin mx . sin nxdx. By (28), page 611,

J o

2 sin mx . sin nx = cos(m -
n)x

- cos(m + ri)x.

Jsin mx . sin nxdx = Jcos(m
- n)xdx -

jcos(m + n)xdx ;

r
. . sin(m - n)x sin(m + n)x

sin mx . sin nxdx -tt, f- - -777 ;
r-.

2(m -
n) 2(m + n)

Therefore, if m and n are integral,

/

/;
sin ma; . cos naafcc =0.

1

Remembering that sin -k = sin 180 = 0, and sin = 0, if m = n, show that

Jl*ir^dxJ2f"(l-cos2nx)dx
=
[|-

8i^J o

-.

(4) Show that the integral of 00s mx . cos no: . dx, between the limits *

and 0, is zero when m and n are whole numbers and that the integral is *,

when m = n. Hints. From (27), page 612,

2 00s mx . cos nx=coB(m - n)x + cos(w + n)x.

i

/n
X X

a sin -x . cos . dx. Ansr.

2aj o

Mn
5 .^Bin sJ--2-| o sm^=fl.

(6) Show that / cos mx . cos nx . cte = ;
/ sin ma; . sin nx .dx=Q

+ n
cos mx . sin rac . dx =0. Hint. Use the results of Ex. (3) and (4).

Integrate/ -1=/ x~ 2da;= -- ,
and is the answer - 2 ?

V. The function may become infinite at or between the limits of

integration. We have assumed that the integrals are continuous

between the limits of integration. I dare say that the beginner
has given an affirmative answer to the question at the end of the

last example. The integral jx
~ 2

dx, between the

limits 1 and - 1 ought to be given by the area

bounded by the curve y = x - 2
,
the re-axis and

the ordinates corresponding with x = 1, and

x = - 1. Plot the curve and you will find that

this result is erroneous. The curve sweeps

through infinity, whatever that may mean, as x
FlGf 112^

passes from + 1 to - 1 (Fig. 112). The method

of integration is, therefore, unreliable when the function to be

integrated becomes infinite or otherwise discontinuous at or between

the limits of integration. Consequently, it is necessary to examine

Q*
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certain functions in order to make sure that they are finite and

continuous between the given limits, or that the functions either

continually increase or decrease, or alternately increase and de-

crease a finite number of times.

This subject is discussed in the opening chapters of B. Eiemann
and H. Weber's Die Partiellen Differential-Gleichungen der mathe-

matischen Physik, Braunschweig, 1900-1901, to which the student

must refer if he intends to go exhaustively into this subject. I can,

however, give a few hints on the treatment of these integrals. It

is easy to see that

I e~ xdx =
i
- e

1 = 1 -

and if n is made infinitely great, the integral tends towards the

limit unity. Hence we say that

I e-*dx = 1.

If the function is continuous for all values of x between a and

b, except when x = b, at the upper limit, it is obvious that

^J'{x)dx=U
h=

â

h

f(x)dx . . (7)

if h is diminished indefinitely, h, of course, is a positive number.

And in a similar manner, if f(x) is continuous for all values of x

except when x = a, at the lower limit,

[

b

f(x)dx = Lth,J f'(x)dx. . . (8)
J a J a+h'

/
1 dx fl~

h dx [~ ~|1 -h
,-

= Lt*=0 * = Lt/*=o _ 2J1 - x\
o a/1

- x J o a/1
~ x L -J

= Lta = {
- 2n/1 - 1 + h -

(
-

2)}
= 2 - 2slh.

As h is made indefinitely small, the integral tends towards the limit 2.

f
1 dx

'

'J a a/1
- X

fxdx l
ldx /l \

(2) Show that / p = Lt*=0
/ ^ = Lt*=o( ^ -11.

As h is made very small, the expression on the right becomes infinite. A

definite numerical value for the integral does not exist.

f
a dx _ /"-* dx -. '. -if, h\

(3) Show that j-^ = Lt1=
,j o

- = LWsrn [l
-
a).
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Since when h is made very small the limit l

approaches sin
- l l

t
or rr.

f
ldx ndx 1

(4) Show that / = Lt/i=0 / = log 1 -
log h = log ^

= oo.

When the function f(x) becomes infinite between the limits, we

write

f\x)dx = LtA=0 f\x)dx + Ltw =0 f'(x)dx.
J a J a J m-\-h>

(9)

if f'(x) only becomes infinite at the one point. If there are n dis-

continuities, we must obviously take the sum of n integrals.

C1 dx f
ldx f~h'dx

Examples. (1)
J _ -g

= Lt
=o/ Jfc

^+ LtA/=0
y _ j p-,

= LtA=0[-^+ Ltv=o[-j]_"
= Lt,

(l
-

)+
LtA/=0(^

-
l),

The integral thus approaches infinity as h and h' are made very small.

/

2 dx f
2 dx r1-* dx

= u^4-^l^ +Uh,4-^iV = Uh=li
- x

)
+ "*-(?

- 4
as 7i and 7*' become indefinitely small, the limit becomes indefinitely great,

and the integral is indeterminate.

f1 dx 6
(3) Show that

J_ i 3^
=

2-

It would now do the beginner good to revise the study of limits by the aid

of say J. J. Hardy's pamphlet, Infinitesimals and Limits, Easton, 1900, or the

discussions in the regular text-books.

84. To find the Length of any Curve.

To find the length, I, of the curve AB (Fig. 113) when the

equation of the curve is known. This is equivalent to finding the

length of a straight line of the same length as the curve if the curve

were flattened out or rectified, hence the process is called the recti-

fication of curves. Let the coordinates of A be (x , y ), and of

B, (xn) yn). Take any two points, P, Q, on the curve. Make the

construction shown in the figure. Then, by Euclid, i., 47, if P and

Q are sufficiently close, we have, very nearly

(PQf = (Zxf + (SyY ; or, dl = J(dxf + {dyf

1 Note the equivocal use of the word limit. There is a difference between the

limit
"

of the differential calculus and the " limit" of the integral calculus.
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at the limit when the length of the chord PQ is equal to the length
of the arc PQ, (1), page 15. Hence, the sum, I, of all the small

elements dl ranging side by side from x
Y
to x

2 will be

-EV1+'* (i)

In order to apply this result it is only necessary to differentiate

the equation of the curve and substitute

the values of dx and dy, so obtained,- in

equation (1). By integrating this equa-

tion, we obtain a general expression be-

tween the assigned limits, we get the

length of the given portion of the curve.

If the equation is expressed in polar

coordinates, the length of a small element,

dl, is deduced in a similar manner. Thus,

dl = J{drf + r\d$f. ... (2)

The mechanical rectification of curves in practical work is fre-

quently done by running a wheel along the curve and observing

how much it travels. In the opisometer this is done by starting

the wheel from a stop, running it along the path to be measured
;

and then applying it to the scale of the diagram, running it back-

wards until the stop is felt.

Examples. (1) If the curve is a common parabola y
2 =iax, .'. ydy=2adx;

or, {dx)
2 =

2/
2
(%)

2
/4a

2
; .-. dl = J{y

2 + 4a2
)cfy/2a, from (1) ;

now integrate, as

in Ex. (1), page 203, and we get I= %y Jy^+la
2 + 2a2 log{(y + sly

2 + a2
)j2a} + C.

To find G, put y = 0, when 1 = 0; .*. C = - 2a2
log 2a.

(2) Show that the perimeter of the circle, x2 + y
2

the length of the arc in the first quadrant, then dyjdx

.\l

r2
,
is 2ttt. Let I be

-xjy.

.\ Whole perimeter = 4 x %ttt
= 2irr.

(3) Find the length of the equiangular spiral, page 116, whose equation is

r = eO
; or, = log r/log e. Ansr. 1= si2. r. Hint. Differentiate ; .-. de=drjr,

.-. dl = sl2. dr. .\ I = \l2.r + G
;
when r = 0,1 = 0, G = 0.

(4) The length of the first whorl of Archimedes' spiral 2ttt = a6 is 3*3885a.

Verify this. Hint. First show that the length of the spiral from the origin

to any value of is ^a/ir x {6 Jl + 2 + loge(0 + sll + 2
)}.

For the first

whorl, = 2ir = 6-2832
; sll + 2 = 6 -363

; + \/l + 2 = 12-6462 ;

loge(0 + sll~+lP) = log,12-6462 = 2-5373. Ansr. = a(3-1865 + 0*202).
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(5) Find the value of the ratio

_ I _ Length of hyperbolic arc from x a to x = x
~~

r
~~

Distance of a point P(x, y) from the origin

The equation of the rectangular hyperbola is x1 - y
2 = a2

, .-. y = sJx2 - a2
;

.*. dyjdx =x/ s/x2 - a2. By substitution in (1), remembering that r= six2 + y2
;

y
2 = x2 - a2

; .-. r = *J<lx
2 - a2.

L rJ*Ek*.%
,.i= r 1^==iog _L^HZ.

J a \aj2 -a2 r J Va;2 - a2 a

We shall want to refer back to this result when we discuss hyperbolic func-

tions, and also to show that

u x + s/x2 - a2 / a;\ 2 x2
,

2xe _ a; cM + *-*

The reader may have noticed the remarkable analogy between

the chemist's "atom," the physicist's "particle," and "molecule,"

and the mathematician's "differential ". When the chemist wishes

to understand the various transformations of matter, he resolves

matter into minute elements which he calls atoms ; so here, we
have sought the form of a curve by resolving it into small

elements. Both processes are temporary and arbitrary auxiliaries

designed to help the mind to understand in parts what it cannot

comprehend as a whole. But once the whole concept is builded

up, the scaffolding may be rejected.

85. To find the Area of a Surface of Revolution.

A surface of revolution is a surface generated by the rotation

of a line about a fixed axis, called the axis of revolution. The

quadrature of surfaces of revolution is

sometimes styled the complanation of

surfaces. Let the curve APQ (Fig. 114)

generate a surface of revolution as it

rotates about the fixed axis Ox. It is

required to find the area of this surface.

If dx and dy be made sufficiently small, q L* m m"

we may assume that the portion (PQ)
2

,
or F 114

(diy = {dxf + (%)2, . (i)

as indicated above. The student is supposed to know that the

area of the side of a circular cylinder is 2-n-rh, where r denotes the

radius of the base of the cylinder, and h the height of the cylinder.

The surface, ds, of the cylinder generated by the revolution of the
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line dl, will approach the limit

ds = 2irydl .... (2)

as the length, di, at P is made infinitesimally small. Hence, from

(1), and (2),

ds = 2tt# J(dxf x (dyf. ... (3)

All the elements, dl, revolving around the #-axis, will together cut

out a surface having an area

-M>V'+v. W
where x

Y
and x

2 respectively denote the abscissae of the portion of

the curve under investigation.

Examples. (1) Find the surface generated by the revolution of the slant

side of a triangle. Hints. Equation of the line OC (Fig. 115) is y=mx\
.'. dy= mdx, ds = 2vy tjl+m? . dx, s=j2irm N/l +m2

. xdx = trmx2
J1 + m2+ G.

y Reckon the area from the apex, where x= 0,

therefore C=0. If x= h= height of cone=
OB and the radius of the base = r = BC,

then, m = rfh and

= ii7* sJW + r2 = 2wr x slant height.

This is a well-known rule in mensuration.

(2) Show that the surface generated by
the revolution of a circle is 47rr2 . Hint.

Fig. 115.
x2 + y

2 = r2. dyjdx = _ ^ .

y = ^ _^ .

.-. 2vjy V(l + ^ly
2
)dx becomes 2irr\dx by substituting r2 = x2 + if. The limits

of the integral for half the surface are x2
= r, and x

1
= 0.

86. To find the Volume of a Solid of Revolution.

This is equivalent to finding the volume of a cube of the same

capacity as the given solid. Hence the process is named the

oubature of solids. The notion of differentials will allow us to

deduce a method for finding the volume of the solid figure swept
out by a curve rotating about an axis of revolution. At the same

time, we can obtain a deeper insight into

the meaning of the process of integra-

tion.

We can, in imagination, resolve the

solid into a great number of elementary

parallel planes, so that each plane is part
of a small cylinder. Fig. 116 will, per-

haps, help us to form a mental picture of

the process. It is evident that the totalFig. 116. After Cox.
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volume of the solid is the sum of a number of such elementary

cylinders about the same axis. If Sx be the height of one cylinder,

y the radius of its base, the area of the base is iry
2

. But the area

of the base multiplied by the height of the cylinder is the volume

of each elementary cylinder, that is to say, iry
28x. The less the

height of each cylinder, the more nearly will a succession of them

form a figure with a continuous surface. At the limit, when
Sx = 0, the volume, v, of the solid is

rjV.da?,
(1)

where x and y are the coordinates of the generating curve
;
x

1
and

xn the abscissae of the two ends of the revolving curve ;
and the

aj-axis is the axis of revolution.

The methods of limits can be used in place of the method of

infinitesimals to deduce this expression, as well as (4) of the pre-

ceding section. The student can, if he wishes, look this up in

some other text-book.

Examples. (1) Find the volume of the cone generated by the revolution

of the slant side of the triangle in Ex. 1 of the preceding section. Here

y= mx\ dv= 7ry'
2dx=irm2

x'
idx. ,\ v = frjrm'

2x* + C. If the volume be reckoned

from the apex of the cone, x = 0, and therefore C= 0. Let x= h and ra=r/7fc,

as before, and the

Volume of the entire cone = ^nr
2h.

(2) Show that the volume generated by the revolving parabola, t/
3 = 4aa;,

is frry*x t
where x= height and y= radius of the base.

(3) Required the volume of the sphere generated by the revolution of a

circle, with the equation : x2 + y
2 = r2 . Volume of sphere = |^r

3
. Hint.

v=*TJ(r
2 -

x"*)dx ;
use limits for half the surface x.> =r, x

x
=0.

87. Successive Integration. Multiple Integrals.

Just as it is sometimes necessary, or convenient, to employ
the second, third or the higher differential coefficients d2

yldx
2

,

d3
y/dx* . . .

,
so it is often just as necessary to apply successive in-

tegration to reverse these processes of differentiation. Suppose
that it is required to reduce, <Py/dx

2 = 2, to its original primitive

form. We can write for the first integration

,\ dy = (2x + CJdx ; or, y =
|(2# + CJdx ; .*. y = x2 + C

x
x + C

2
.
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In order to show that d2
yldx

2 is to be integrated twice, we affix

two symbols of integration.

y = IS2dx.dx, .-. y = x2 + O^x + G
2 .

Notice that there are as many integration constants, Cv C
2,

as

there are symbols of integration.

Examples. (1) Find the value of y = jjjsc
3

. dx . dx.dx. Ansr.

(2) Integrate cPsfdfi g, where g is a constant due to the earth's gravita-

tion, t the time and s the space traversed by a falling body.

-j]^+<***
To evaluate the constants Cx and C2 , when the body starts from a position

of rest, s = 0, t = 0, Cj = 0, C2
= 0.

In finding the area of a curve y =
f(x), the same result will be

obtained whether we divide the area Oab into

a number of strips parallel to the y-axis, as in

Fig. 117, or strips parallel to the #-axis, Fig.

118. In the second case, the reader will no

doubt be able to satisfy himself that the area

Fio. 117. Surface
Elements.

=
I a? . dy ;

and, in the second case, that

Jo
dx.

(i)

(2)

There is another way of looking at the matter. Suppose the

surface is divided up into an infinite number of infinitely small rect-

angles as illustrated in Fig. 119. The area of each rectangle will

Fig. 118. Surface Elements.

0LTT
Fig. 119. Surface Elements.

be dx. dy. The area of the narrow strip Obcd is the sum of the

areas of the infinite number of rectangles ranged side by side along
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this strip from to b. The length of this strip, y =
b, and the

width, dx, is constant
; consequently,

Area of strip Obcd = dx I dy.
Jo

The total area of the surface Obcd is obviously the sum of the

areas of the infinite number of similar strips ranged along Oa.

The height of the second strip, say, dcef obviously depends upon
the nature of the curve ba. If the equation of this line be repre-

sented by the equation,

H-j )

the height y of any strip at a distance x from is obtained by

solving (3) for y. Consequently,

y - -(a -
x) (4)

The area of any strip lying between and a is therefore

Area of any strip = dx\ dy = dx\ aV \
=
-(a~x)dx (5)

and it follows naturally that the area of all the strips, when each

strip has an area b(a
-

x)dx/a, will be

(ab(
a ~ xh Yabx-\bx2

~\

a a?b \tfb ab
Area of all the strips

= 1 -* J-dx = 1 = - I = ,q\
Jo a L a Jq a a 2 v>

Combining (5) and (6), into one expression, we get

Ma^x) rn ^(a - x)

4 = I dx I
(7)

= I dx \ dy = I I dx.dy,
J o J o J qJ o

which is called a double integral. This integral means that if we
divide the surface into an infinite number of small rectangles
surface elements and take their sum, we shall obtain the re-

quired area of the surface.

To evaluate the double integral, first integrate with respect to

one variable, no matter which, and afterwards integrate with

respect to the other. If we begin by keeping x constant and

integrating with respect to y, as y passes from to b, we get the

area of the vertical strip Obcd (Fig. 119) ;
we then take the sum of

the rectangles in each vertical strip as x passes from to a in
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such a way as to include the whole surface ObaO. When there

can be any doubt as to which differential the limits belong, the

integration is performed in the following order : the right-hand
element is taken with the first integration sign on the right, and

so on with the next element. It just happens that there is no

special advantage in resorting to double integration in the above

example because the single integration involved in (1) or (2) would

have been sufficient. In some cases double integration is alone

practicable. The application of the integral calculus to this simple

problem in mensuration may seem as incongruous as the employ-
ment of a hundred-ton steam hammer to crack nuts. But I have

done this in order that the attention might be alone fixed upon
the mechanism of the hammer.

Examples. (1) Show that if the curve ab (Fig. 119) be represented by

equation (3), then the area of the surface bounded by ab, and the two co-

ordinate axes, may be variously represented by the integrals

hJ Q
(b

- y)dy;
-] Ja

- x)dx; JJ^ dy.dx;
JJ dx.dy.

(2) Show / \ x. dx.dy = x.dx [VT= 3
/
x dx = 3 \\

= 7$-

fa fb a263

(3) Show / / xy*.dx.dy=.

(4) Show that the area bounded by the two parabolas 3y
2 = 25#

*,
and

5x2 = 9y is 5 units.

The areas of curves in polar coordinates may be obtained in a

similar manner. Divide the given surfaces up into slices by drawing

radii vectores at an angle dd apart, and subdivide these slices by

drawing arcs of circles with origin as centre. Consider any little

surface element, say, PQBS (Fig.

120). OPQ may be regarded as a

triangle in which PQ = OQ sin (dO).

But the limiting value of the sine

of a very small angle is the angl

itself, and since OQ =
r, we have

FlG ' 120 '

QP = rdO. Now PS is, by con-

struction, equal to dr. The area of each little segment is, at the

limit, equal to PQ x PS, or

dA=r.dr.dO. ... (8)

The total area will be found by first adding up all the surface
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elements in the sector OBC, and then adding up all the sectors like

COB which it contains, or,

A =[*[%. dr. dO. .

}r)e1

Example. Find the area of the circle whose equation is r = 2a cos 0,

where r denotes the radius of the circle. Ansr.

f2a cos[la cose ri.tr , _

=
/

I* n r .dr .dd = ira\

We can also imagine a solid to be split up into an infinite

number of little parallelopipeds along the three dimensions x, y, z.

These infinitesimal figures may be called volume elements. The

capacity of each little element dx x dy x dz. The total volume,

v, of the solid is represented by the triple integral

\\\dx.dy
(10)

The first integration along the #-axis gives the length of an

infinitely narrow strip ;
the integration along the y-axis gives the

area of the surface of an infinitely thin slice, and a third integra-

tion along the 2-axis gives the total volume of all these little slices,

in other words, the volume of the body.
In the same way, quadruple and higher integrals may occur.

These, however, are not very common. Multiple integration rarely

extends beyond triple integrals.

Examples. (1) Evaluate the following triple integrals :

I / \ yz
2

. dx . dy . dz ;

j
/

j
yz

2
.dy ,dz .dx;

J
/ / yz

2
. dz . dx . dy.

Ansrs. 2580, 1550, 1470 respectively.

(2) Show

/ f/x2
y
2\ J J b [(x2 &2 \ ah(a

2 62\

fr f V(r2-*2) r ^(r2~ x2- v2) A

(3) Evaluate 8 dx.dy.dz. Ansr. -

J o J o Jo

Note sin %w = 1. Show that this integral represents the volume of a sphere
whose equation is x2 + y

2 + z2 = r2 . Hint. The "
dy

"
integration is the

most troublesome. For it, put r2 - x 2 = c, say, and use Ex. (1), p. 203. As a

result, %y sir2 - x2 - y
2 + (r

2 - x2
)

sin -^{y/sJr
2 - x2

}
has to be evaluated

between the limits y = sj(r
2 - x2

) and y = 0. The result is l(r
2 -x2

)ir.
The

rest is simple enough.
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88. The Isothermal Expansion of Gases.

To find the work done during the isothermal expansion of a gas,

that is, the work done when the gas changes its volume, by ex-

pansion or compression, at a constant temperature. A contraction

may be regarded as a negative expansion. There are three in-

teresting applications.

I. The gas obeys Boyle's law, pv = constant, say, o. We have

seen that the work done when a gas expands against any external

pressure is represented by the product of the pressure into the

change of volume. The work performed during any small change
of volume, is

dW = p.dv. . . . . (1)

But by Boyle's law,

P>/()-|
'

(2)

Substitute this value of p in (1); and we get dW = g . dv/v. If the

gas expands from a volume v
x
to a new volume v

2 ,
it follows

= c \ogv + G. .: W = p^log -*
. (3)

From (2), vx
= c/pv and also v2

= c/p2 , consequently

W^p^log^. . . . . (4)

Equations (3) and (4) play a most important part in the theory

of gases, in thermodynamics and in the theory of solutions. The

value of 6 is equal to the product of the initial volume, vv and

pressure, plf
of the gas. Hence we may also put

W = 2-3026^1 log1(
= 2-3026ftVog1(,;pV2 Pi

for the work done in compressing the gas.

Example. In an air compressor the air is drawn in at a pressure of

14*7 lb. per square inch, and compressed to 77 lb. per square inch. The

volume drawn in per stroke is 1*52 cubic feet, and 133 strokes are made per

minute. What is the work of isothermal compression ? Hint. The work

done is the compression of 1*52 cubic feet x 133 = 202*16 cubic feet of air at

14-7 lb. to 77 lb. per square inch, or 14*7 x 144 = 2116-8 lb. to 77 x 144 =
110881b. per square foot. From Boyle's law, p^ = p2v2 ;

,-.v2 x 77 =
14*7 x 202-16 ; or, v2

= 38-598. From the above equation, therefore, the

work = 2-3026 x 2116-8 x 202-16 (log 202-16 -
log 38-598) = 708757*28 foot

pounds per minute ; or, since a " horse power
" can work 33,000 foot pounds

per minute, the work of isothermal compression is 21*48 H.P.
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II. The gas obeys van der Waals' law, that is to say,

\P +
~2)(

v ~
^)
~ constant

> say, C.

As an exercise on what precedes, prove that

W=clog
V
-^4-a(-); . . (S)6 v
Y
- b \Vj v2J

' v '

This equation has occupied a prominent place in the development
of van der Waals' theories of the constitution of gases and liquids.

Example. Find the work done when two litres of carbon dioxide are

compressed isothermally to one litre
; given van der Waals' a = 0"00874: ;

b = 0-0023
; c = 0*00369. Substitute in (5), using a negative sign for con-

traction.

III. The gas dissociates during expansion. By Guldberg and

Waage's law, in the reaction :

N2 4 -2N02 ,

for equilibrium, if x denotes that fraction of- unit mass of N2 4

which exists as N02 ,
we must have

^1 - x xx
V V V

where (1
-

x)/v represents the concentration of the undissociated

nitrogen peroxide. The relation between the volume and degree

of dissociation is, therefore,

*-r?s (6)

If n represents the original number of molecules ; (1
-

x)n will

represent the number of undissociated molecules; and 2xn the

number of dissociated molecules. If the relation pv = g does not

vary during the expansion, the pressure will be proportional to the

number of molecules actually present, that is to say, if p denotes

the pressure when there was no dissociation, and p' the actual

pressure of the gas,

p_
n 1

p'

~
(1

-
x)n + 2xn

~"
1 + x

The actual pressure of the gas is, therefore, p =
(1 + x)p ;

and

the work done is,

dW =
p' . dv =

(1 + x)p .dv = p.dv + xp.dv, . (7)

From Boyle's law, and (6), we see that

c cK(l -
x)

F V X*
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Substitute this value of p in (7). Differentiate (6) and we obtain

dv _ 2(1
-

x)x + x2

_ x(2
-

x) ,

dx
"

K(l - xf
;

;"'

av ~
JT(1

- xT
x
;

Now substitute this value of dv in (7) ; simplify, and we get

where x
1
and x

2
denote the values of x corresponding with i^ and

v
2 . On integration, therefore,

W - c
(log^

+ ^ -
,
-
log^J)

. . (8)

It follows directly from (6), that

v
i
~

T7-/1 \
and

>
V2
=

Substitute these values of v in (8), and the work of expansion

(9)

Examples. (1) Find the work done during the isothermal expansion of

dissociating ammonium carbamate (gas) : NH2COONH4^ 2NH3 + C02 .

(2) In calculating the work done during the isothermal expansion of

dissociating hydrogen iodide, 2HI ^ H2 + 1^, does it make any difference

whether the hydrogen iodide dissociates or not ?

(3) A particle of mass m moves towards a centre of force F which varies

inversely as the square of the distance. Determine the work done by the

force as it moves from one place r2 to another place rv Work = force x

displacement

-=/::-*=/;?*hh>
If r is infinite, W = ra/r. If the body moves towards the centre of attraction

work is done by the force
;

if away from the centre of attraction, work is

done against the central force.

(4) If the force of attraction, F, between two molecules of a gas, varies

inversely as the fourth power of the distance, r, between them, show that the

work, W, done against molecular attractive forces when a gas expands into

a vacuum, is proportional to the difference between the initial and final

pressures of the gas. That is, W = A(px
-

_p2), where A is the variation con-

stant. By hypothesis, F=ajri
;
and dW=F. dr, where a is another variation

constant. Hence,

rrJV*-.r
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But r is linear, therefore, the volume of the gas will vary as r3 . Hence,
v = br5

, where b is again constant.

* W ~
3\r\ f\)

'

8U J*
But by Boyle's law, pv = constant, say, c. Hence if A = <2&/3c = constant,

(5) J/' the work done against molecular attractive forces when a gas

expands into a vacuum, is

where a is constant
;
vv v2 ,

refer to the initial and final volumes of the gas,

show that "
any two molecules of a gas will attract one another with a force

inversely proportional to the fourth power of the distance between them ".

For the meaning of a/v
2

,
see van der Waals' equation.

89. The Adiabatic Expansion of Gases.

When the gas is in such a condition that no heat can enter or

leave the system during the change of volume expansion or con-

traction the temperature will generally change during the operation.

This alters the magnitude of the work of expansion. Let us first

find the relation between p and v when no heat enters or leaves

the gas while the gas changes its volume. Boyle's relation is

obscured if the gas be not kept at a constant temperature.

J. The relation between the pressure and the volume of a gas

when the volume of the gas changes adiabatically. In example

(5) appended to 27, we obtained the expression,

-($*($*
As pointed out on page 44, we may, without altering the value of

the expression, multiply and divide each term within the brackets

bydT. Thus,

But (bQfiT)p is the amount of heat added to the substance at a

constant pressure for a small change of temperature ; this is none

other than the specific heat at constant pressure, usually written

Cp . Similarly (dQfdT), is the specific heat at constant volume,

written 0. Consequently,

dQ-^dv + GQdp. . . (3)
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This equation tells that when a certain quantity of heat is added

to a substance, one part is spent in raising the temperature while

the volume changes under constant pressure, and the other part is

spent in raising the temperature while the pressure changes under

constant volume. Eor an ideal gas obeying Boyle's law,

"- J -CD.'*-;
Substitute these values in (3), and we get

after dividing through with 6 = pv/B. By definition, an adiabatic

change takes place when the system neither gains nor loses heat.

Under these conditions, dQ =
;
and remembering that the ratio

of the two specific heats Cp/Gv is a constant, usually written y ;

Cv dv dp Cdv [dp
. .'. 7^ + - =

; or, y + = Constant.

G, V p
' '

'J V )p
or, y log V + logp = const.

; or, log vy + log p = const.
;

. '. log (pvy)
= const.

\ pvy = c (5)

A most important relation sometimes called Poisson's equation.

By integrating between the limits pv p2 ;
and vv v

2
in the above

equation, we could have eliminated the constant and obtained (5)

in another form, namely,

Pg = (h\
y

Pi W " (6)

The last two equations tell us that the adiabatic pressure of a gas

varies inversely as the yth power of the volume. Now substitute

v
l
= T

lBlp l ;
and v

2
= T2B/p2 ,

in (6), the result is that

fc^-fr- "-(S)(?J"-'-~ ">

and the relation between the volume and temperature of a gas under

adiabatic conditions assumes the form,

r. A>,\r-

Z 7

, \vt

Y
i ... (8)
V

This equation affirms that for adiabatic changes, the absolute tem-

perature of a gas varies inversely as the (y
-

l)th power of the

volume. A well-known thermodynamic law.

Again, since "weight varies directly as the volume," if w
l
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denotes the weight of v volumes of the gas at a pressure p l
and w

2

the weight of the same volume, at a pressure p2 ,
we see at once,

from (6), that

II. The work performed when a gas is compressed under adia-

batic conditions. From (5), p = c/v
y

;
and we know that the work

done when v volumes of a gas are compressed from v
l
to v

2 ,
is

f'2 p2 dv r v-<y-i>"|"2

^'F-ife^-^) (10)

From (5), c = p^ = p2
v
2
y

. We may, therefore, represent this

relation in another form, viz. :

(
1 1 \ 1 /ffiV ffiV\ 1 (V<Pl ffiV\

If a gas expands adiabatically from a pressure px
to a pressure

p2 ,
we get, from (5) and (11),

w =
rjiPi

1 '* -
ft

1

**)** r^^Tj-ft^iw
1

" (
12)

provided we work with unit volume, v
1
= 1, of gas, so that _p :

= c.

If _p 1
v

1
= BT

X ; and_p2
-y
2
= i2T

2 ,
are the isothermal equations

for Tj and T
2 ,

we may write,

^--ItW-ZY), (13)

which states in words, that the work required to compress a mass

of gas adiabatically while the temperature changes from T-f to T2 ,

will be independent of the initial pressure and volume of the gas.

In other words, the work done by a perfect gas in passing along
an adiabatic curve, from one isothermal to another, page 111, is

constant and independent of the path.

Examples. (1) Two litres of a gas are compressed adiabatically to one

litre. What is the work done? Given y = 1-4
; atmospheric pressure^? =

1-03 kilograms per sq. cm. Ansr. 16-48 kilogram metres. Hint. v9 = %ox ;

from (6), p2
=

>i2
Y

; v
x
= 2000 c.c. From a table of common logs,

log 2? = log 21 '4 = 0-30103 x 1-4 = 0-4214
j
or 21 "4 = 2-64. From (11),
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W: -(1-32
-

1), etc.
V2P1 21 '4 ~

*>iPi = PjPift x 21 '4 -
1) _ 1-03 x 2000,

7-1 1-4-1
~

0-4

(2) To continue illustration 3, 20, page 62. We have assumed Boyle's
law p2p1

= p^p2 . This is only true under isothermal conditions. For a more
correct result, use (5) above. For a constant mass, m, of gas, m =

pv, hence

show that for adiabatic conditions,

L
y e yf-&**

l

''.-*
:7 ?

y (U)

is the more correct form of Halley's law for the pressure, p2, of the atmos-

phere at a height h above sea-level. Atmospheric pressure at sea-level = pv
(3) From the preceding example proceed to show that the rate of diminu-

tion of temperature, T, is constant per unit distance, h, ascent. In other

words, prove and interpret

T'- T= W 1~h (!5>

(4) A litre of gas at 0. is allowed to expand adiabatically to two litres.

Find the fall of temperature given y = 1-4. Ansr. 66 C. (nearly). Hints.

v
l
= 2v2 ; from (8), T2 x 2

'4 = 273
;
2 -1 = 1-32, 207 ;

there is there-

fore a fall of 273 - 207 absolute, = 66 C.

(5) To continue the discussion 15 and 64, suppose the gas obeys van der

Waais' law :

(*
+

)
(V b)=RT. (16)

where R, a, 6, are known constants. The first law of thermodynamics may
be written

dQ= C,.dT+(p + a/v
2
)dv, . . . (17)

where the specific heat at constant volume has been assumed constant. To

find a value for Cp ,
the specific heat at constant pressure. Expand (16).

Differentiate the result. Cancel the term 2ab . dv/v
3 as a very small order of

magnitude ( 4). Solve the result for dv. Multiply through with p + a/v
2

.

Since ajv
2

is very small, show that the fraction (p + a/v
2
)/(p

-
afv

2
) is very

nearly 1 + 2a/pv
2
. Substitute the last result in (17), and

dQ = {c
+ B(l + ^)}dT

-
(l
+j) (V

- b)dp.

By hypothesis Cv is constant,

Cp Rf 2a \

cf.
= 1 +

c.(
1+^) <18>

For ideal gases a = 0, and we get Mayer's equation, 27. From Boynton,

p. 114;

For.
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(6) Show van der Waals' equation for adiabatic conditions is

(p
+

)(v
-

b)y = BTt .... (19)

and the work of adiabatic expansion is

^=B(T1
-r2){^1 -a(i-i)}.. . . (20)

(7) Calculate the work done by a gas which is compressed adiabatically
from a state represented by the point A (Fig. 121) along the path AB until a

state B is reached. It is then allowed to expand

isothermally along the path BG until a state C is

reached. This is followed by an adiabatic expan-
sion along CD ; and by an isothermal contraction

along DA until the original state A is reached.

The total work done is obviously represented by
the sum of

- AabB + BCcb + CDdc - DdaA.

By evaluating the work in each operation as indi-

cated in thelasttwosections,on the assumption that

the equation of AB is pvy=cx ; of BC> pv=c^\ CD

P T =
63

gas, is

DA,pv = c
4

:Cj ; oi &u,pv= c2 ;

Hence show that the external work, Wt done by the

W
flog

(8) Compare the work of isothermal and adiabatic compression in the

example on page 254. Take y for air = 1-408. Hint. From (6), 14-7 x

206-16 1
'408 = 77 x vj-

m
; .-. v2

= 62-36 cubic feet; and from (10), (62-36 x

11,088 - 202-16 x 2116-8)/0-408 = 645-871 foot lbs. per minute = 19-75 H.P.
The required ratio is therefore as 1 : 0-91.

(9) If a gas flows adiabatically from one place where the pressure is px
to

another place where the pressure is p2 ,
the work of expansion is spent in

communicating kinetic energy to the gas. Let V be the velocity of flow.

The kinetic energy gained by the gas is equal to the work done. But kinetic

energy is, by definition, \mV\ where m is the mass of the substance set in

motion; but we know that mass = weight -f g, hence, if wx denotes the

weight of gas flowing per second from a pressure px
to a pressure p2t

mV* _wxV2

*'

2
~

2g

If a denotes the cross sectional area of the flowing gas, obviously, w1
= aVw2 ,

where w2 denotes the weight of unit volume of the gas at a pressure p2. Let

vJPi = 2> From (9), w2
= w^n. Hence the weight of gas

= W;
Vw*,

w, = aVw*-W^P^W-
Now multiply through with plW

;
then with the denominator of pxjpx ',

then

with w2/wx , or, what is the same thing, with q}W ;
substitute w2

= w1g
1/y

,
and

multiply through with the last result. The weight of gas which passes per
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second from a pressure px
to a pressure p2 is then

w

Wj will be a maximum when

i
= aVW^.;

+

;).

V

2 = i(y + i)
1 " y.

For dry steam, y = 1*18, and hence,

log<# = - 8-7 x logel-065 = 1-762 ; .-. q = 0-58
; or, p2

= 0-58^ ;

or there will be a maximum flow when the external pressure is a little less

than half the supply pressure. This conclusion was verified by the experi-
ments of Navier.

90. The Influence of Temperature on Chemical and

Physical Changes.

On page 82, (18), we deduced the formula,

m,-m
by a simple process of mathematical reasoning. The physical

signification of this formula is that the change in the quantity
of heat communicated to any substance per unit change of volume
at constant temperature, is equal to the product of the absolute

temperature into the change of pressure per unit change of temper-
ature at constant volume.

Suppose that 1 - x grams of one system A is in equilibrium
with x grams of another system B. Let v denote the total volume,
and T the temperature of the two systems. Equation (1) shows

that (dQ/~dv)T is, the heat absorbed when the very large volume of

system A is increased by unity at constant temperature T, less the

work done during expansion. Suppose that during this change of

volume, a certain quantity (bxfiv) T of system B is formed, then, if

q be the amount of heat absorbed when unit quantity of the first

system is converted into the second, the quantity of heat absorbed

during this transformation is q(dx/'dv)r. q is really the molecular

heat of the reaction.

The work done during this change of volume is p . dv ; but dv

is unity, hence the external work of expansion is p. Under these

circumstances,
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from (1). Now multiply and divide the numerator by the inte-

grating factor, T2
;

-)M$); *
If, now, w

x
molecules of the system A ; and n

2
molecules of the

system B, take part in the reaction, we must write, instead of

pv = BT,

pv = BT{nx(l -x) + rye] J or, f = Li ^
The reason for this is well worth puzzling out. Differentiate with

respect to (pjT) and x
;
divide by ~bT

; and

Substitute this result in equation (3), and we obtain

By Guldberg and Waage's statement of the mass law, when n
x

molecules of the one system react with n
2 molecules of the other,

M1
^)'

Hence, taking logarithms,

log K + (n2
-

n^) log v = n
2 log x

- n
x log (1

-
x).

Differentiate this last expression with respect to T, at constant

volume ; and with respect to v, at constant temperature,

aiogZ

Gx\
n

2
- n

x f^x\

v
\x

+
1 -x)

58 +

Introduce these values in (4) and reduce the result to its simplest

terms, thus,

DT
"
BT* V

.

W
This fundamental relation expresses the change of the equilibrium

constant K with temperature at constant volume in terms of the

molecular heat of the reaction.
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Equation (5), first deduced by van't Hoff, has led to some of

the most important results of physical chemistry. Since B and

T are positive, K and q must always have the same sign. Hence

van't Hoffs principle of mobile equilibrium follows directly, viz.,

If the reaction absorbs heat, it advances with rise of temperature ;

if the reaction evolves heat it retrogrades with rise of temperature ;

and if the reaction neither absorbs nor evolves heat, the state of

equilibrium is stationary with rise of temperature.

According to the particular nature of the systems considered q

may represent the so-called heat of sublimation, heat of vaporiza-

tion, heat of solution, heat of dissociation, or the thermal value of

strictly chemical reactions when certain simple modifications are

made in the interpretation of the " concentration
"

K. If, at tem-

perature Tj and T2)
K becomes Kx

and E
2 ,
we get, by the integration

of (5),

log
*i

(1 _ L\
(6)

The thermal values of the different molecular changes, calculated

by means of this equation, are in close agreement with experiment.

For instance :

Heat of
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8
C! 2V2

7

! TJ'
' 8

6-57 2\283 323/
.*. q = log 1-8 x 45,704*5 = 2,700 (nearly) ; q (observed) = 3,000 (nearly).

Use the Table of Natural Logarithms, Appendix II., for the calculation.

Le Chatelier has extended van't Hoff's law and enunciated the

important generalization :
"
any change in the factors of equilibrium

from outside, is followed by a reversed change within the system ".

This rule, known as " Le Chatelier 's theorem," enables the chemist

to foresee the influence of pressure and other agents on physical
and chemical equilibria.



CHAPTER V.

INFINITE SERIES AND THEIR USES.

"In abstract mathematical theorems, the approximation to truth is

perfect. ... In physical science, on the contrary, we treat of

the least quantities which are perceptible." W. Stanley Jevons.

91. What is an Infinite Series ?

Mark off a distance AB (Fig. 122) of unit length. Bisect AB at

Oj ; bisect
Y
B at

2 ; 0%B at 3 ;
etc.

L_ ! I ill
A 0, 2 3 4 B

Fig. 122.

By continuing this operation, we can approach as near to B as we

please. In other words, if we take a sufficient number of terms

of the series,

A0
1 + X 2 + 20z + . . .,

we shall obtain a result differing from AB by as small a quantity
as ever we please. This is the geometrical meaning of the infinite

series of terms,

1-1+ (i)
2 + (if + (i)

4 + ..- to infinity. . (1)

Such an expression, in which the successive terms are related

according to a known law, is called a series.

Example. I may now be pardoned if I recite the old fable of Achilles

and the tortoise. Achilles goes ten times as fast as the tortoise and the latter

has ten feet start. When Achilles has gone ten feet the tortoise is one foot

in front of him ;
when Achilles has gone one foot farther the tortoise is ^ ft.

in front
;
when Achilles has gone j-^ ft. farther the tortoise is^ ft. in front

;

and so on without end
;
therefore Achilles will never catch the tortoise. There

is a fallacy somewhere of course, but where ?

When the sum of an infinite series approaches closer and closer

to some definite finite value, as the number of terms is increased
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without limit, the series is said to be a convergent series. The
sum of a convergent series is the "

limiting value
"

of 6. On
the contrary, if the sum of an infinite series obtained by taking a

sufficient number of terms can be made greater than any finite

quantity, however large, the series is said to be a divergent series.

For example,
1 + 2 + 3+4+.. .to infinity. . . (2)

Divergent series are not much used in physical work, while con-

verging series are very frequently employed.
1

The student should be able to discriminate between convergent
and divergent series. I shall give tests very shortly. To simplify

matters, it may be assumed that the series discussed in this work

satisfy the tests of convergency. It is necessary to bear this in

mind, otherwise we may be led to absurd conclusions. E. W. Hob-

son's On the Infinite and Infinitesimal in Mathematical Analysis,

London, 1902, is an interesting pamphlet to read at this stage of

our work.

Let S denote the limiting value or sum of the converging

series,

S = a + ar + ar2 + . . . + arn + arn+1 + ... ad inf. (3)

When r is less than unity, cut off the series at some assigned term,

say the nth, i.e., all terms after arn
~ l are suppressed. Let sn de-

note the sum of the n terms retained, o-n the sum of the suppressed
terms. Then,

sn = a + ar + ar2 + . . . + arn_1 . . . (4)

Multiply through by r,

rsn = ar + ar2 + ar3 + . . . + ar11
.

Subtract the last expression from (4),

$J1 -
r) - a(l

-
t~) ; or, sn = aj^- . (5)

Obviously we can write series (3), in the form,

S = s + o- (6)

The error which results when the first n terms are taken to repre-

sent the series, is given by the expression

o-n = S - sn.

This error can be made to vanish by taking an infinitely great

1 A prize was offered in France some time back for the best essay on the use of

diverging series in physical mathematics.
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numbei of terms, or, LtM=00orn = 0. But,

1 - rn a arn
?w = a.

1-r 1-r 1-r
When n is made infinitely great, the last term vanishes,

T , arn
.-. Lt

M=oc5
= 0.

The sum of the infinite series of terms (3), is, therefore, given by
the expression

s = ^b (7)

Series (3) is generally called a geometrical series. If r is

either equal to or greater than unity, S is infinitely great when

n =
od, the series is then divergent.

To determine the magnitude of the error introduced when only

a finite number of terms of an infinite series is taken. Take the

infinite number of terms,

S =
YZTi

= 1 + r + r2 + . . . + r"" 1 + j~y (
8
)

The error introduced into the sum S, by the omission of all terms

after the wth, is, therefore,

*-&
When r is positive, <rn is positive, and the result is a little too

small ;
but if r is negative

<v-r^7
'

(10)

which means that if all terms after the wth are omitted, the sum

obtained will be too great or too small, according as n is odd or

even.

Examples. (1) Suppose that the electrical conductivity of an organic

acid at different concentrations has to be measured and that the first

measurement is made on 50 c.c. of solution of concentration c. 25 c.c. of

this solution are then removed and 25 c.c. of distilled water added instead.

This is repeated five more times. What is the then concentration of the acid

in the electrolytic cell ? Obviously we are required to find the 7th term in the

series c{l + + (J)
2 + (J)

3
+...}, where the nth term is c^)**

-1
. Ansr. ()

6
c.

(2) If the receiver of an air pump and connections have a volume a, and

the cylinder with the piston at the top has a volume b, the first stroke of

the pump will remove b of the air. Hence show that the density of the air

in the receiver after the third stroke will be 0*75 of its original density if

a = 1000 c.c, and 6 = 100 c.c. Hint. After the first stroke the density of the
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air, pv will be px(a + b)
= pQa, when p denotes the original density of the air;

after the second stroke the density will be
p.2 ,

and
p.2(a+b)=pla; .*. p2(a+b)

2=p a.'~

After the nth stroke, pn(a+ b)
n=p an

;
or pn(1000+ 100)

3=10003
; .-. />=0-73.

92. Washing Precipitates.

Applications of the series to the washing of organic substances

with ether
; to the washing of precipitates ; to Mallet's process for

separating oxygen from air by shaking air with water, etc., are

obvious. We can imagine a precipitate placed upon a filter paper,

and suppose that C represents the concentration of the mother

liquid which is to be washed from the precipitate ; let v denote the

volume of the liquid which remains behind after the precipitate has

drained ; v
x
the volume of liquid poured on to the precipitate in the

filter paper.

Examples. (1) A precipitate at the bottom of a beaker which holds v c.c.

of mother liquid is to be washed by decantation, i.e., by repeatedly filling the

beaker up to say the v
x c.c. mark with distilled water and emptying. Sup-

pose that the precipitate and vessel retain v c.c. of the liquid in the beaker at

each decantation, what will be the percentage volume of mother liquor about

the precipitate after the nth emptying, assuming that the volume of the

precipitate is negligibly small ? Ansr. lOOivjv^
11 - 1

. Hint. The solution in

the beaker, after the first filling, has vjv1 c.c. of mother liquid. On emptying,
v of this vjvx

c.c. is retained by the precipitate. On refilling, the solution in

the beaker has (v
2
/vi)/'

y
i

f motaer liquor, and so we build up the series,

(2) Show that the residual liquid which remains with the precipitate

after the first, second and nth washings is respectively

vC, = ? vC ; vG2
= f-JL-VvOo ; vCn = (-^\vCQ .

It is thus easy to see that the residue of mother liquid vGn which

contaminates the precipitate, as impurity, is smaller the less the

value of v/(v + v
x) ; this fraction, in turn, is smaller the less the

value of v, and the greater the value of vv Hence it is inferred

that (i)
the more perfectly the precipitate is allowed to drain

lessening v; and (ii)
the greater the volume of washing liquid

employed increasing v
x

the more perfectly effective will be the

washing of the precipitate.

Example. Show that if the amount of liquid poured on to the precipi-

tate at each washing is nine times the amount of residual liquid retained by
the precipitate on the filter paper, then, if the amount of impurity con-

taminating the original precipitate be one gram, show that 0*0001 gram of

impurity will remain after the fourth washing.
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What simplifying assumptions have been made in this discussion?

We have assumed that the impurity on the filter paper is reduced

a i^th part when v
x volumes of the washing liquid is poured on to

the precipitate, and the latter is allowed to drain. We have ne-

glected the amount of impurity which adheres very tenaciously, by
surface condensation or absorption. The washing is, in conse-

quence, less thorough than the simplified theory would lead us to

suppose. Here is a field for investigation. Can we make the

plausible assumption that the amount of impurity absorbed is pro-

portional to the concentration of the solution? Let us find how
this would affect the amount of impurity contaminating the pre-

cipitate after the nth washing.
Let a denote the amount of solution retained as impurity by

surface condensation, let b denote the concentration of the solution.

If we make the above-mentioned assumption, then

b = ka,

where k is the constant of proportion. Let v c.c. of washing liquid

be added to the precipitate which has absorbed a c.c. of mother

liquid. Then a - a
x

c.c. of impurity passes into solution, and with

the v c.c. of solvent gives a solution of concentration (a
-

a-^/v ;

the amount of impurity remaining with the precipitate will be

*=p-*i . . . (id

When this solution has drained off, and v more c.c. of washing

liquid is added, the amount of impurity remaining with the pre-

cipitate will be

^-^
2 = K- (12)

Eliminate a
Y
from this by the aid of (11), and we get

2 kv + 1

for the second washing ; and for the nth. washing,

1
an = 7 Ta0*kv + 1

But all this is based upon the unverified assumption as to the con-

stancy of k, a question which can only be decided by an appeal to

experiment. See E. Bunsen, Liebig's Ann., 138, 269, 1868.
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93. Tests for Convergent Series.

Mathematicians have discovered some very interesting facts in

their investigations upon the properties of infinite series. Many of

these results can be employed as tests for the convergency of any

given series. I shall not give more than three tests to be used in

this connection.

I. If the series of terms are alternately positive and negative,

and the numerical value of the successive terms decreases, the series

is convergent. For example, the series

1 1*1 t + t ,M

may be expressed in either of the following forms :

a-i)+(W)+(W)+..-; i-(W)-(w)-(-f)---
Every quantity within the brackets is of necessity positive. The

sum of the former series is greater than 1 -
J, and the sum of the

latter is less than 1 ; consequently, the sum of the series must have

some value between 1 and J. In other words, the series is con-

vergent. If a series in which all the terms are positive is conver-

gent, the series will also be convergent when some or all of the

terms have a negative value. Otherwise expressed, a series with

varying signs is convergent if the series derived from it by making
all the signs positive is convergent.

II. If there be two infinite series.

u + u
i + U

2 + . . . Un + . . . ; and V + V + V
2 + . . . Vn + . . .

the first of which is known to be convergent, and if each term of

the other series is not greater than the corresponding term of the

first series, the second series is also convergent. If the first series is

divergent, and each term of the second series is greater than the

corresponding term of the first series, the second series is divergent.

This is called the comparison test. The series most used for

reference are the geometrical series

a + ar + ar2 + . . . + arn + . . .

which is known to be convergent when r is less than unity, and

divergent when r is greater than or equal to unity ; and

. I 11
2m

+
Sm

+
4

+ * "

which is known to be convergent when m is greater than unity ;

and divergent, if m is equal to or greater than unity.
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Example. Show that the series l + ^- + ^ + ^+...is convergent by

comparison with the geometrical series 1 + ^ + tV + ^ + . . .

III. An infinite series is convergent if from and after some

fixed term the ratio of each term to the preceding term is numerically

less than some quantity which is itself less than unity. For in-

stance, let the series, beginning from the fixed term, be

a
1 + a

2 + a
z + ...

Let sn denote the sum of the first n terms. We can therefore

write

sn = a
1 + a

2 + a
3 + a

4 + . . .

By rearranging the terms of the series, we get

(-

a9 a, a a, a~ \

a
1

a
2
a

l
a
3 a

1 J

The fraction -~* is called the ratio test. Suppose the ratio test

a
2

a
3

a.
be less than r

',
be less than r \ be less than r \ ...a

Y
a
2

a
3

that is, from (3) and (5), page 267,

1 - rn

Sn be less than a,-,1 1 r

Hence, from (7), if r is less than unity,

a
i

Sn be less than ^
-

1 - r

Thus the sum of as many terms as we please, beginning with a,

is less than a certain finite quantity r, and therefore the series

beginning with a
x
is convergent.

Examples. (1) The series 1 + \x + -^x
2 + f,sc

3 + . . ., is convergent be-

cause the test-ratio = x/n becomes zero when n = ao.

(2) The series 1 + $x + \ -fa
2 + \ -\ -fa

3 + . . . is convergent when x is

less than unity.

It is possible to have -a series in which the terms increase up
to a certain point, and then begin to decrease. In the series

1 + 2x + 3x2 + 4ic3 + . . . + nxn+1 + . . .,

for example, we have

an nx /., 1 \=
T
= 1 + Ax.

an _ 1
n - 1 V n-lj

If n be large enough, the series can be made as nearly equal to x

as we please. Hence, if re is less than unity, the series is con-

vergent. The ratio will not be less than unity until
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- 1
,

1
be less than 1 '. i.e., until 71 > 3

nx ' ' 1 - x
9 1

If x =
jtx,

for example, j-t
= 10, and the terms only begin to

decrease after the 10th term.

These tests will probably be found sufficient for all the series

the student is likely to meet in the ordinary course of things. If

the test-ratio is greater than unity, the series is divergent ;
and if

this ratio is equal to unity, the test fails.

9$. Approximate Calculations in Scientific Work.

A good deal of the tedious labour involved in the reduction of

experimental results to their final form, may be avoided by at-

tention to the degree of accuracy of the measurements under

consideration. It is one of the commonest of mistakes to extend

the arithmetical work beyond the degree of precision attained in

the practical work. Thus, Dulong calculated his indices of refrac-

tion to eight digits when they agreed only to three. When asked
" Why?" Dulong returned the ironical answer: " I see no reason

for suppressing the last decimals, for, if the first are wrong, the last

may be all right" 1

In a memoir " On the Atomic Weight of Aluminium," at

present before me, I read,
" 0*646 grm. of aluminium chloride

gave 2-0549731 grms. of silver chloride
"

It is not clear how the

author obtained his seven decimals seeing that, in an earlier part

of the paper, he expressly states that bis balance was not sensitive

to more than 0*0001 grm. A popular book on '-The Analysis of

Gases," tells us that 1 c.c. of carbon dioxide weighs 0*00196633

grm. The number is calculated upon the assumption that carbon

dioxide is an ideal gas, whereas this gas is a notorious exception.

Latitude also might cause variations over a range of + 0*000003

grm. The last three figures of the given constant are useless.

"
Superfluitas," said R. Bacon,

"
impedit multum . . . reddit opus

abominabile."

Although the measurements of a Stas, or of a Whitworth, may
require six or eight decimal figures, few observations are correct

to more than four or five. But even this degree of accuracy is

only obtained by picked men working under special conditions.

Observations which agree to the second or third decimal place are

comparatively rare in chemistry.
S
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Again, the best of calculations is a more or less crude approxi-
mation on account of the "simplifying assumptions" introduced

when deducing the formula to which the experimental results are

referred. It is, therefore, no good extending the "calculated

results
"

beyond the reach of experimental verification. "It is

unprofitable to demand a greater degree of precision from the

calculated than from the observed results but one ought not to

demand a less
"
(H. Poincare's Mdcanique C&leste, Paris, 1892).

The general rule in scientific calculations is to use one more

decimal figure than the degree of accuracy of the data. In other

words, reject as superfluous all decimal figures beyond the first

doubtful digit. The remaining digits are said to be significant

figures.

Examples. In 1/540, there are four significant figures, the cypher indi-

cates that the magnitude has been measured to the thousandth part ;
in

0-00154, there are three significant figures, the cyphers are added to fix the

decimal point ;
in 15,400, there is nothing to show whether the last two

cyphers are significant or not, there may be three, four, or five significant

figures.

In "casting off" useless decimal figures, the last digit retained

must be increased by unity when the following digit is greater

than four. We must, therefore, distinguish between 9*2 when it

means exactly 9*2, and when it means anything between 9 14 and

9"25. In the so-called "exact sciences," the latter is the usual

interpretation. Quantities are assumed to be equal when the

differences fall within the limits of experimental error.

Logarithms. There are very few calculations in practical

work outside the range of four or five figure logarithms. The

use of more elaborate tables may, therefore, be dispensed with.

There are so very many booklets and cards containing,
" Tables of

Logarithms
"
upon the market that one cannot be recommended

in preference to another.

Addition and Subtraction. In adding such numbers as 9-2

and 0*4913, cast off the 3 and the 1, then write the answer, 9*69,

not 9-6913. Show that 5*60 + 20*7 + 103-193 = 129*5, with an

error of about 0*01, that is about 0*08 per cent.

Multiplication and Division. The product 2*25tt represents

the length of the perimeter of a circle whose diameter is 2*25

units ;
7r is a numerical coefficient whose value has been calculated

by Shanks {Proc. Roy. Soc, 22, 45, 1873), to over seven hundred
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decimal places, so that tt - 3-141592,653589,793. ... Of these two

numbers, therefore, 2*25 is the less reliable. Instead of the

ludicrous 7-0685808625 . .
.,

we simply write the answer, 7*07.

Again, although W. K. Oolvill has run out J2 to 110 decimal

places we are not likely to want more than half a dozen significant

figures.

It is no doubt unnecessary to remind the reader that in scientific

computations the standard arithmetical methods of multiplication

and division are abbreviated so as to avoid writing down a greater

number of digits than is necessary to obtain the desired degree of

accuracy. The following scheme for " shortened multiplication

and division," requires little or no explanation :

Shortened Multiplication. Shortened Division.

9-774 365-4)3571-3(9-774

3288-6365-4
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The percentage error of the product of two approximate numbers

is very nearly the algebraic sum of the percentage error of each.

If the positive error in the one be numerically equal to the negative

error in the other, the product will be nearly correct, the errors

neutralize each other.

Example. 19*8 x 3-18. The first factor may be written 20 with a +
error of 1 %, and, therefore, 20 x 3-18 = 63-6, with a + error of 1 %. This

excess must be deducted from 63*6. We thus obtain 62*95. The true result

is 62-964.

The percentage error of the quotient of two approximate numbers

is obtained by subtracting the percentage error of the numerator

from that of the denominator. If the positive error of the numer-

ator is numerically equal to the positive error of the denominator,

the error in the quotient is practically neutralized.

There is a well-defined distinction between the approximate
values of a physical constant, which are seldom known to more

than three or four significant figures, an^the approximate value of

the incommensurables 7r, e, J2, . . . which can be calculated to any
desired degree of accuracy. If we use -^ in place of 3 -1416 for ir,

the absolute error is greater than or equal to 3-14-26 - 3*1416, and

equal to or less than 3*1428 - 3*1416 ;
that is, between -0012 and

0014. In scientific work we are rarely concerned with absolute

errors.

95. Approximate Calculations by Means of Infinite Series.

The reader will, perhaps, have been impressed with the fre-

quency with which experimental results are referred to a series

formula of the type :

y = A + Bx + Cx2 + Dx* + . . ., . . (1)

in physical or chemical text-books. For instance, I have counted

over thirty examples in the first volume of Mendeleeff's The

Principles of Chemistry, and in J. W. Mellor's Chemical Statics

and Dynamics it is shown that all the formulae which have been

proposed to represent the relation between the temperature and

the velocity of chemical reactions have been derived from a similar

formula by the suppression of certain terms. The formula has no

theoretical significance whatever. It does not pretend to accurately

represent the whole course of any natural phenomena. All it

postulates is that the phenomena in question proceed continuously.

In the absence of any knowledge as to the proper setting of the
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"law" connecting two variables, this formula may be used to

express the relation between the two phenomena to any required

degree of approximation. It is only to be looked upon as an

arbitrary device which is used for calculating corresponding values

of the two variables where direct measurements have not been

obtained. A, B, C, . . . are constants to be determined from the ex-

perimental data by methods to be described later on. There are

several interesting features about this expression.-

I. When the progress of any physical change is represented by
the above formula, the approximation is closer to reality the greater

the number of terms included in the calculation. This is best shown

by an example. The specific gravity s of an aqueous solution of

hydrogen chloride is an unknown function of the amount of gas p
per cent, dissolved in the water. (Unit : water at 4 = 10,000.)

The first two columns of the following table represent cor-

responding values of p and s, determined by Mendeleeff. It is

desired to find a mathematical formula to represent these results

with a fair degree of approximation, in order that we may be able

to calculate p if we know s, or, to determine s if we know p. Let

us suppress all but the first two terms of the above series,

s = A + Bp,

where A and B are constants, found, by methods to be described

later, to be A = 9991-6, B = 50*5. Now calculate s from the

given values of p by means of the formula,

s = 9991-6 + 50-5^, .... (2)

and compare the results with those determined by experiment.

See the second and third columns of the following table :

Percentage
Composition
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a manufacturing establishment, but, in order to represent the con-

nection between specific gravity and percentage composition with

a greater degree of accuracy, another term must be included in

the calculation, thus we write

s = A+ Bp + Cp
2

,

where B is found to be equivalent to 49-43, and G to 0-0571. The

agreement between the results calculated according to the formula :

s - 9991-6 + 49-43^ + 0-0571^, . . (3)

and those actually found by experiment is now very close. This

will be evident on comparing the second with the fourth columns

of the above table. The term 0*0571p
2 is to be looked upon as a

correction term. It is very small in comparison with the preced-

ing terms.

If a still greater precision is required, another correction term

must be included in the calculation, we thus obtain

y = A + Bx + Gx2 + Dx*.

Such an expression was employed by T. E. Thorpe and A. W.
Eiicker (Phil. Trans., 166, ii., 1, 1877) for the relation between the

volume and temperature of sea-water
; by T. E. Thorpe and A. E.

Tutton (Journ. Chem. Soc, 57, 545, 1890) for the relation between

the temperature and volume of phosphorous oxide
; and by Eapp

for the specific heat of water, <r, between and 100. Thus Eapp

gives

<r - 1-039935 - 0-0070680 + O-OOO2125502 - 0-00000154^,

and Hirn (Ann. Ghim. Phys. [4], 10, 32, 1867) used yet a fourth

term, namely, f

v = A + BB + G62 + D0Z + EOS
in his formula for the volume of water, between 100 and 200.

The logical consequence of this reasoning, is that by including

every possible term in the approximation formula, we should get

absolutely correct results by means of the infinite converging
series :

y = A + Bx + Cx2 + Dxz + Ex* + Fx* + . . . + ad infin. (4)

It is the purpose of Maclaurin's theorem to determine values of

A, B, G, . . . which will make this series true.

II. The rapidity of the convergence of any series determines

how many terms are to be included in the calculation in order to

obtain any desired degree of approximation. It is obvious that
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the smaller the numerical value of the "correction terms" in the

preceding series, the less their influence on the calculated result.

If each correction term is very small in comparison with the

preceding one, very good approximations can be obtained by the

use of comparatively simple formula involving two, or, at most,

three terms, e.g., p. 87. On the other hand, if the number of

correction terms is very great, the series becomes so unmanageable
as to be p ;actically useless.

Equation (1) may be written in the form,

y = A(l + bx + ex2 + . . .),

where A, b, c, . . . are constants ;
A is the value of y when x = 0.

As a general rule, when a substance is heated, it increases in

volume, v
;

its mass, m, remains constant, the density, p, therefore,

must necessarily decrease. But,

Mass = Density X Volume
; or, m =

pV.

The volume of a substance at is given by the expression

v - v {l + a$),

where v
Q represents the volume of the substance when is 0.

a is the coefficient of cubical expansion: Evidently,

p V V
Q(1 + ad) '*., .

. Po

p V V
y r 1 + aO

True for solids, liquids, and gases. For simplicity, put p m 1. By
division, we obtain

p = 1 - a$ + (aO)*
-

(a0)
3 + . . .

For solids and some liquids a is very small in comparison* with

unity. For example, with mercury a = 0*00018. Let 6 be small

enough

p = 1 - 0-00018(9 + (O-OOO180)
2 -

. . .

.-. p = 1 -0-000180 + 0000000,032402

If the result is to be accurate to the second decimal place (1 per 100),

terms smaller than 0-01 should be neglected ;
if to the third decimal

place (1 per 1000
j, omit all terms smaller than 001, and so on.

It is, of course, necessary to extend the calculation a few decimal

places beyond the required degree of approximation. How many,

naturally depends on the rapidity of convergence of the series.

If, therefore, we require the density of mercury correct to the

sixth decimal place, the omission of the third term can make no

perceptible difference to the result.
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Examples. (1) If h denotes the height of the barometer at 0. and
h its height at 6, what terms must be included in the approximation

formula, h = h (l + 0*000160), in order to reduce a reading at 20 to the

standard temperature, correct to 1 in 100,000 ?

(2) In accurate weighings a correction must be made for the buoyancy of

the air by reducing the " observed weight in air
"

to "
weight in vacuo n

.* Let

W denote the true weight of the body (in vacuo), w the observed weight in

air, p the density of the body, px
the density of the weights, p2 the density of

the air at the time of weighing. Hence show that if

V PJ V ft/
1 _2 V ft pJ \P ft/

p

which is tbe standard formula for reducing weighings in air to weighings in

vacuo. The numerical factor represents the density of moderately moist air

at the temperature of a room under normal conditions.

(3) If a denotes the coefficient of cubical expansion of a solid, the volume

of a solid at any temperature 6 is, v = v (l + ad), where v represents the

volume of the substance at 0. Hence show that the relation between the

volumes, vx
and v2 ,

of the solid at the respective temperatures of Q and B2 is

i?!
= v2(l + adx

- ad2). Why does this formula fail for gases ?

ia\ ci-
I 1 a a2

(4) Since =_ + + + .w x-axx2 x3 '

the reciprocals of many numbers can be very easily obtained correct to many
decimal places. Thus

Jt
=1^=

I^ + Io|oO
+
1,000,000

+ =0-01 + 0-0003 + 0-000009+ ...

(5) We require an accuracy of 1 per 1,000. What is the greatest value of

x which will permit the use of the approximation formula (1 + x)
z = 1 + Sx ?

There is a collection of approximation formulae on page 601.

(6) From the formula, (1 + x)
n = 1 nx, where n may be positive or

negative, integral or fractional, calculate the approximate values of \/999,

1/ v/l^, (1-001)
3

, dvoS, mentally. Hints. In the first case n = J ;
in the

second, n = - J ;
in the third, n = 3. In the first, x

[.
- 1 J

in the second,

x = 002 ; in the third, x = 0-001, etc.

96. Maclaurin's Theorem.

Maclaurirts theorem determines the law for the expansion of a

function of a single variable in a series of ascending powers of

that variable. Let the variable be denoted by x, then,

u =
f{x).

1 A difference of 45 mm. in the height of a barometer during an organic combus-

tion analysis, may cause an error of 0*6 / in the determination of the C02 ,
and an

error of 0*4% in tne determination of the H20. See W. Crookes, "The Determination

of the Atomic Weight of Thallium," Phil. Trans., 163, 277, 1874.
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Assume that f(x) can be developed in ascending powers of x, like

the series used in the preceding section, namely,

u = f(x) = A + Bx + Cx2 + Dx3 + . . ., . (1)

where A, B, G, D . . .
,
are constants independent of x

}
but de-

pendent on the constants contained in the original function. It is

required to determine the value of these constants, in order that

the above assumption may be true for all values of x.

There are several methods for the development of functions in

series, depending on algebraic, trigonometrical, or other processes.
The one of greatest utility is known as Taylor's theorem. Mac-
laurin's l theorem is but a special case of Taylor's. We shall work
from the special to the general.

By successive differentiation of (1),

du df(x) _ "

<Pu df'(x)

3F
=T= 20 + 2 - 3Da; + -" ; (

3
)

&u df"(x) i-^=^i = 2 - 3 - I) + W
By hypothesis, (1) is true whatever be the value of x, and,

therefore, the constants A, B, C, D, . . . are the same whatever

value be assigned to x. Now substitute x = in equations (2),

(3), (4). Let v denote the value assumed by u when x = 0.

Hence, from
(1),

i-/(0)-4
from

(
2
)' =/'(0) = i.s,

,. &v lft I . (5)
from (3), ^=/"(0)

= 1.2C,

Substitute the above values of A, B, C, . .
., in (1) and we get

dv x d2v x2 d3v x3

1 The name is here a historical misnomer. Taylor published his series in 1715.

In 1717, Stirling showed that the series under consideration was a special case of

Taylor's. Twenty-five years after this Maclaurin independently published Stirling's

series. But then "both Maclaurin and Stirling," adds De Morgan, "would have

been astonished to know that a particular case of Taylor's theorem would be called

by either of their names ".

A
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The series on the right-hand side is known as Maclaurin's Series.

The first term is what the series becomes when x =
;
the second

term is what the first derivative of the function becomes when
x = 0, multiplied by x

; the third term is the product of the second

derivative of the function when x =
0, into x1 divided by factorial

2...

"/
M
(0)

" means that f(x) is to be differentiated n times, and x

equated to zero in the resulting expression. Using this notation

the series assumes the form

u = /(o) +
/'(0)|

+
/*(0)j^ +tmf^s + (7)

97. Useful Deductions from Maclaurin's Theorem.

The following may be considered as a series of examples of the

use of the formula obtained in the preceding section. Many of the

results now to be established will be employed in our subsequent
work.

I. Binomial Series.

In order to expand any function by Maclaurin's theorem, the

successive differential coefficients of u are to be computed and x

then equated to zero. This fixes the values of the different con-

stants.

Let u = {a + x)
n

,

du/dx =n(a + x)
n ~ 1

j .'.f(0)
= nan - 1

;

d2
u/dx

2 = n(n
-

1) (a + x)
n ~ 2

,
.-. /"(0)

= n{n - l)a
n - 2

;

d*u/dx* = n(n
-
1) (n

-
2) (a + x)

n - 3
,

.-. /"'(0)
= n(n

-
1)(

-
2)a

n ~ 3
,

and so on. Now substitute these values in Maclaurin's series (6),

n , n(n -
1)

(a + x)
n = an +

-^a

n - lx +
i 2

an
~
x +> C

1 )

a result known as the binomial series, true for positive, negative,

or fractional values of n.

Examples. (1) Prove that

(a
-

x)
n = an -

ja
n ~ lx +

1 \ V ~ 2a2 - (2)

When n is a positive integer, and n = rr the infinite series is cut off at a

point where n - m = 0. A finite number of terms remains.

(2) Establish (1 + a;-)
1

/
2 = 1 + <c

2
/2

- a?
4

/8 + C
6
/16

(3) Show (1
- x2

)
-i/2 = l + jc

2
/2 + 3x^8 + 5a;6/16 + . . .

(4) Show (1 + x1

)

~ 2 = 1 - x2 + x4 -
. . . Verify this result by actual

division.
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II. Trigonometrical Series.

Suppose u =f(x) = sin x. Note that fatjdx = d(sm x)/dx = cos x ;

d2
u/dx

2 = d2
(sinx)/dx

2 = d(GO$x)/dx = - sin a;, etc.; and that sin = 0,

- sin = 0, cos =
1,

- cos = - 1.

Hence, we get the sine series,

x xz x5 x7

Binaj-j- 3T+5T-7T+ (3)

In the same manner we find the cosine series

o>*2 /j4 />6

oosa;==1 -2T + IT~6T + <*>

These series are employed for calculating the numerical values

of angles between and \tt. All the other angles found in ' '

trigo-

nometrical tables of sines and cosines," can be then determined by
means of the formulae, page 611,

sin(j7r
-

x)
= cos x

; cos(^-n-
-

x) sin x.

Now let

u =
f(x)

= tan re. .-. u cos x = sin a;.

From page 67, by successive differentiation of this expression,

remembering that u
x
= dujdx, u

2
= d2

u/dx
2

,
. . ., as in 8,

.*. i^cosx
- ^sin# = cos a; ;

.'. u2cosx - 2^8^^ - ugosx = - sin x ;

.*. W3COS x
- 3%

2
sin x - 3^003 x + u sin x = - cos x.

By analogy with the coefficients of the binominal development (1),

or Leibnitz' theorem, 21,

n . n(n -
1)UnGOSX -

^Un _ 1
SlD.X *3 o ^n -2C0S X + '

= n^ deriv* Sln X '

Now find the values of u, uv u
2 ,
u
3 ... by equating x = in

the above equations, thus,

/(0) = /"(0) - .... j /'(0)
= 1, /"'(0)

= 2, .

;
.

Substitute these values in Maclaurin's series (7), preceding section.

The result is, the tangent series :

x 2a?3 16a;5 x a;
3 2a;5

tan x =
j
+

q-j-
+

-g-r-
+ . . .

; or, tan x = T + IT + 15+-" (5)

IZT. Inverse Trigonometrical Series.

Let = tan- Ja\ By (3), 17 and Ex. (4) above,

.-. dO/dx = (1 + x2
)
-1 = 1 - x2 + x* - xQ + . . .

By successive differentiation and substitution in the usual way, we
find that



284 HIGHER MATHEMATICS. 97.

tan- 1^ = x -
j + j

-
..., . . (6)

or, from the original equation,

= tan 6 - |tan
3
<9 + itan5 -...,. . (7)

which is known as Gregory's series. This series is known to

be converging when lies between -
\tt and \w ; and it has

been employed for calculating the numerical value of ir. Let

= 45 =
Jw, .'. x - 1. Substitute in (6),

7T_1 XI 1
_1_

1
4" 3

+
5 7

+
9 11

+
13

"

The so-called Leibnitz series. We can obtain the inverse sine

series

,
lx3 Sx5 5 x7

sm x = x+ 2J + 85 + \ET + ^
in a similar manner. Now write x =^

J, sin _1
aj =

}tt. Substitute

these values in (8). The resulting series was used by Newton for

the computation of *.

IV. The Niimerical value of ir.

This is a convenient opportunity to emphasize the remarks on

the unpracticable nature of a slowly converging series. It would

be an extremely laborious operation to calculate -n- accurately by
means of this series. A little artifice will simplify the method,

thus,

V 3y
+
V5 7;

+
V9 liy

+ '- ,; 4~1.3 + 5.7'
f
9.11

1 ++ '

8 1.3*5.7 9 .U *

.

which does not involve quite so much labour. It will be observed

that the angle x is not to be referred to the degree-minute-second

system of units, but to the unit of the circular system (page 606),

namely, the radian. Suppose x = J^, then tan
~ lx = 30 =

g-7r.

Substitute this value of x in (6), collect the positive and negative

terms in separate brackets, thus

To further illustrate, we shall compute the numerical value of

ir to five correct decimal places. At the outset, it will be obvious
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that (1) we must include two or three more decimals in each term

than is required in the final result, and (2) we must evaluate term

after term until the subsequent terms can no longer influence the

numerical value of the desired result. Hence :

Terms enclosed in the first brackets. Terms enclosed in the second brackets.

0-57735 03 0-06415 01

0-01283 00 0-00305 48

0-00079 20 0-00021 60

0-00006 09 0-00001 76

0-00000 52 0-00000 15

0-00000 05 0-00000 02

0-59103 89 - 0-06744 02

.-. 7T - 6(0-59103 89 - 0-06744 02) = 3-14159 22.

The number of unreliable figures at the end obviously depends
on the rapidity of the convergence of the series. Here the last two

figures are untrustworthy. But notice how the positive errors are,

in part, balanced by the negative errors. The correct value of tt to

seven decimal places is 3*1415926. There are several shorter ways
of evaluating tt. See Encyc. Brit., Art. "

Squaring the Circle ".

V. Exponential Series.

Show that

x x2 x3 11^ = 1 +
l
+

^!
+

r!
+ "" e = 1 + 1 +

2l
+

3!
+ ---

(
9
)

by Maclaurin's series. An exponential series expresses the de-

velopment of e
x

,
ax

, or some other exponential function in a series

of ascending powers of x and coefficients independent of x.

Examples. (1) Show that if k = log a,

k-x2 k3x*
a* = l + kx + -2Y

+ TT + <10)

(2) Represent Dalton's and Gay Lussac's laws, from the footnote, page
91, in symbols. Show by mathematical reasoning that if second and higher

powers of afl are outside the range of measurement, as they are supposed to be

in ordinary gas calculations, Dalton's law, v = v e*o, is equivalent to Gay Lus-

sac's, v = vQ(l + a6).
/* g*2 /*5 /wi

(3) Show e -x =1 __. + ___ + __ (11)

VI. Euler's Sine and Cosine Series.

If we substitute J - 1.x, or, what is the same thing, ix in

place of x
}
we obtain,
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'

.,
iX X2 lX3 #4 IX5

eLX = 1 a 1 aT
1 2! 3! 4!

+
5!

""

/^ X2 X* \ (X x3 xb
\ /10X

^=(1
-2! +

i'! ----)
+ {l-3!

+
5T----> (12)

By reference to page 283, we shall find that the first expression in

brackets, is the cosine series, the second the sine series. Hence,

eiX = cos a; + isin#. ". . . (13)

In the same way, it can be shown that

- IX x2 ix3 x* lX5
e~ lX = 1 1 1

1 2!
+

3! 4! 5!
'

. t /i x2 x^ \ (x x3 x 5
\ ,.,

Or,
e
~ IX = cos x - i sin x. . . . (15)

Combining equations (13) and (15), we get

J(g
_ q- ix

)
= i sin x

; \{&-
x + e

~ IX
)
= cos x. . (16)

The development by Maclaurin's series cannot be used if the

function or any of its derivatives becomes infinite or discontinuous

when x is equated to zero. For example, the first differential

coefficient oif{x) = jJx, is \x
""

*, which is infinite for x = 0, in other

words, the series is no longer convergent. The same thing will be

found with the functions log x, cot x, 1/x, a1 ,x and sec
" 1x. Some

of these functions may, however, be developed as a fractional or

some other simple function of x, or we may use Taylor's theorem.

98. Taylor's Theorem.

Taylor s theorem determines the law for the expansion of a

function of the sum, or difference of two variables into a series

of ascending powers of one of the variables. Now let

Assume that

u
Y
= f{x + y)

= A + By + Cy
2 + Dy* + (1)

where A, B, C, D, . . . are constants, independent of y, but de-

pendent upon x and also upon the constants entering into the

original equation. It is required to find values for A, B } C, . . .

which will make the series true. Since the proposed development
is true for all values of x and y, it will also be true for any given

value of x, say a. Now let A', B', O, . . . be the respective values
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of A, B, 0, ... in (1) when x = a. Hence, we start with the as-

sumption that

v! -/(a + y) - A' + B'y + G'y
2 + D'y* + ... . (2)

Put z = a + y, hence, y = z -
a, and Maclaurin's theorem gives

us
u' =f(z) = A' + B\z -

a) + G\z - af + D\z - af + . . .

Now write down the successive derivatives with respect to z.

?g.
=

f'{z)
= B' + 2C(s -

a) + 3D'(*
- af + . . .

2gi
=

/"(*)
= 20' + 2 . 3Z>'(*

-
a) + 3 . 4S(*-- a-)

2 + . . .

^ ./"'(*) = 2. 3D' + S* 8.4*0! -
) +

While Maclaurin's theorem evaluates the series upon the assump-
tion that the variable becomes zero, Taylor's theorem deduces a

value for the series when x = a. Let z = a, then y = 0, and we

get

f(a)
= A' ; f(a) - B'

; /"(a) = 20' ; .-. 0' = if(a) ; /'"(a)
= 2 . 3D';

Substitute these values of A', B'
t G\ . . . in equation (2), and we

get

u' = f(a + ./)
=

/(a) + /'(a)f
+/g +

/'"(a)f

3

,
+ . . . (3)

for the proposed development when x assumes a given particular

value. But a is any value of x
; hence, if

-/(?) (4)

Substitute these values of A, B, G, D in the original equation
and we obtain

du y <Pu y
2 dfiu y3

-/(*+*>- + 2&\ +mm *& rkra + <s>

The series on the right-hand side is known as Taylor's series.

The first term is what the given function becomes when y = ;

the second term is the product of the first derivative of the function

when y = 0, into y ;
the third term is the product of the second

derivative of the function when y = 0, into y
2 divided by factorial

2 . . . In (5), u =
f(x) is obtained by putting y = 0. Thus, in the

development of (x + yf by Taylor's theorem,

u =
f(x)

= xb
; du/dx =

f'(x)
= 5x*

;
d2
u/dx

2 =
/"(a?)

= 4 . 5x* ; ...

/. (x + y)
b = x5 + 5x*y + 10xs

y
2 + 10x2

y* + 5xy* + y
5

.
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Instead of (5), we may write Taylor's series in the form,

fi -a* + y) =/(*) +/'o4 + /"(^o +r&uks + (6)

Or, interchanging the variables,

i
-A* + y)= Ay) + f(y)i +W)% + /"Wfno + (7>

I leave the reader to prove that

f(x - y) - /(*)
-

/'(*)f
+ /"(as)jg

-
/'"(^ + . . . (8)

Maclaurin's and Taylor's series are slightly different expressions

for the same thing. The one form can be converted into the other

by substituting f(x + y) for f{x) in Maclaurin's theorem, or by

putting y = in Taylor's.

Examples. (1) Expand v^ = (x + y)
n
by Taylor's theorem. Put y =

and u = X", as indicated above,

du . d2u
.-.

j-x
= nx*- 1

; ^ =*(tt -
l)a

n-2
,
etc.

Substitute the values of these derivatives in (7).

.-. Mj = (jc + y)
n = sb*

1 + nx" ~ l
y + %n(n -

l)x
n - 2

y
2 + . . .

(2) If k = log a ; ^ = a* + * = a*(l + ky + \k
2
y
2 + |fcy + ...).

(3) Show (a + y + )t
=

(a? + a)* + ?/(x + a)
-

i -
. . . If x = - a, the

development fails.

/ w2 v4 \ f y3
\

(4) Show sin (a; + y)
= sin zf 1 - ^ +

^y
-

. . . ) + cos xi y -
g-j

+ ...)

(5) The numerical tables of the trigonometrical functions are calculated by
means of Taylor's or by Maclaurin's theorems. For example, by Maclaurin's

theorem,
x3 xP X2 x^

sina =
a;-g-j

+
g-j--...; cosicrrl-^-f

+ ^j-...
But 35 = -610865 radians, and .-. sin 35 = sin -610865. Consequently,

sin 35 = -610865 -
(-610865)

3 + ^(^lOSeS)
5 -

. . . = -57357 . . .

In the same way, show that cos 35 = '81915 . . . Again by Taylor's theorem,
sin 36 = sin (35 + 1) ;

cos 35 sin 35
.-. sin 36 = sin 35 + -jy (-017453)

-
2j-(-017453)

2 -
. . . = -58778 . . .

(6) Taylor's theorem is used in tabulating the values of a function for dif-

ferent values of the variable. Suppose we want the value of y = a;(24
- x2

) for

values of x ranging from 2-7 to 3*3. First draw up a set of values of the

successive differential coefficients of y.

f(x)
=

/(3)
=

<b(24
- x2

)
= 45

; f{x) = f(B) = 24 - 3x2 = - 3
;

f'{x) = /"(3) = - 6* = - 18 ; f"(x) = /'"(3)
= - 6.

By Taylor's theorem,

/(3 h) =/(3) f(B)h + tf"(3)h
2

tf'"{3)h? = 45 + 3h - 9h\+ h\
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2-7 = 3-
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This series may be employed for evaluating log 2, but as the series happens
to be divergent for numbers greater than 2, and very slowly convergent for

numbers less than 2, it is not suited for general computations.

(11) Show log (1
-

y) = -
(y + \y> + |y* + \y* + . .

.).

If y = 4, the development gives a divergent series and the theorem is then

said to fail. The last four examples are logarithmic series.

A series suitable for finding the numerical values of logarithms may here

be indicated as a subject of general interest, but of no particular utility since

we oan purchase "ready-made tables from a penny upwards". But the

principle involved has useful applications.

Subtract the series in Ex. (11) from that in Ex. (10) and we get

a series slowly convergent when y is less than unity. Let n have a value

greater than unity. Put

n + 1 1 + y , 1-- =
FTP sothaty = 5 y.

Henoe, when n is greater than unity, y is less than unity. By substitution,

therefore,

log ( + 1)
. log n + afc^ +

3(2 + I)"
+

}
This series is rapidly convergent. It enables us to compute the numerical

value of log (n + 1) when the value of log n is known. Thus starting with

n = 1, log n = 0, the series then gives the value of log 2, hence, we get the

value of log 3, then of log 4, etc.

(12) Put y = - x in Taylor's expansion, and show that

f(x)=f(0)+f(x).x-y"(x).x* + ...,

known as Bernoulli's series (of historical interest, published 1694).

Mathematical text-books, at this stage, proceed to discuss the

conditions under which the sum of the individual terms of Taylor's

series is really equal to f(x + y). When the given function f(x + y)

is finite, the sum of the corresponding series must also be finite, in

other words, the series must either be finite or convergent. The

development is said to fail when the series is divergent.

It is not here intended to show how mathematicians have suc-

ceeded in placing Taylor's series on a satisfactory basis. That

subject belongs to the realms of pure mathematics. 1 The reader

may exercise "belief based on suitable evidence outside personal

experience," otherwise known as faith. This will require no great

mental effort on the part of the student of the physical sciences.

He has to apply the very highest orders of faith to the fundamental

1 If the student is at all curious, Todhunter, or Williamson on "
Lagrange's

Theorem on the Limits of Taylor's Series," is always available,
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principles the inscrutables of these sciences, namely, to the

theory of atoms, stereochemistry, affinity, the existence and pro-

perties of interstellar ether, the origin of energy, etc., etc. What
is more,

" reliance on the dicta and data of investigators whose

very names may be unknown, lies at the very foundation of physical

science, and without this faith in authority the structure would fall

to the ground ; not the blind faith in authority of the unreasoning
kind that prevailed in the Middle Ages, but a rational belief in the

concurrent testimony of individuals who have recorded the results

of their experiments and observations, and whose statements can

be verified . . .". 1

The rest of this chapter will be mainly concerned with direct

or indirect applications of infinite converging series.

99. The Contact of Curves.

The following is a geometrical illustration of one meaning of

the different terms in Taylor's development. If four curves Pa,

Pb, Pc, Pd, . . . (Fig. 123) have a common
p

point P, any curve, say Pc, which passes

between two others, Pb, Pd, is said to have fn /i,

a closer contact with Pb than Pd. Now fig . 123. Oontaot of

let two curves P P and PQPY (Fig. 124) re- Curves -

ferred to the same rectangular axes, have equations,

y = f(x) ; and, yx
= f^xj. . . (1)

Let the abscissa of each curve at any given point, be increased by
a small amount h, then, by Taylor's theorem,

f(x + h
)
= y + a

h + a42l + --'i

A(%
;

+ *)-*+^'+^ }?+: (
2

)

If the curves have a common point P
,
x = xv and y = y1

at

the point of contact. Since the first differential coefficient repre-
sents the angle made by a tangent with the a?-axis, if, at the point

1
Excerpt from the Presidential Address of Dr. Carrington Bolton to the Washing-

ton Chemical Society, English Mechanic, 5th April, 1901.
m
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the curves will have a common tangent at P .

contact of the first order. If, however,

This is called a

dy dy 1

*v y =
Vi ; 3j

=^ ; and
<Py dfy
da;2 da^

2

the curves are said to have a contact of the second order, and

so on for the higher orders of contact.

If all the terms in the two equations are equal the two curves

will be identical
;

the greater the number of

equal terms in the two series, the closer will

be the order of contact of the two curves. If

the order of contact is even, the curves will

intersect at their common point ;
if the order

of contact is odd, the curves will not cross each

other at the point of contact.

<tf
x

M,I

Fig. 124. Contact of

Curves.
Examples. (1) Show that the curves y= - x2,

and

y = 3x - x2 intersect at the point x = 0, y = 0. Hint.

The first differential coefficients are not equal to one another when we put
x = 1. Thus, in the first case, dyjdx = -2a; = -2 = 0; and in the second,

dyjdx = 3 - 2x = 1.

(2) Show that the tangent crosses a curve at a point of inflexion. Let

the equation of the curve be y = f(x) ;
of the tangent, Ax + By + G = 0.

The necessary condition for a point of inflexion in the ourve y = f(x) is that

d'Hjfdx
2 = 0. But for the equation of the tangent, cPy/dx

2
is also zero.

Hence, there is a contact of the second order at the point of inflexion, and
the tangent crosses the curve.

100. Extension of Taylor's Theorem.

Taylor's theorem may be extended so as to include the expan-
sion of functions of two or more independent variables. Let

a-/(^y)i (1)

where x and y are independent of each other. Suppose each

variable changes independently so that x becomes x + h, and y
becomes y + k. First, let f(x, y) change to f(x + h, y). By
Taylor's theorem

"du, 'dhi h2

/(^ + ^1/) = ^ +^ + ^29TT +~bx2 2\ (2)

If y now becomes y + k, each term of equation (2) will change so

that
7)11- d2^ k*

U becomes U +
^k

+ ^ eft
+ 5
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t)w 'du Wu 7>
2u <)% <)%

*x
becomes

Si
+

toty*
+ '"

; ^ becomesW + W^k + "

by Taylor's theorem. Now substitute these values in (2) and we

obtain, if u' denotes the value of u when x becomes x + h, and y
becomes y + k,

u' =f(x + h,y + k)\

~du
i

~b
2U k ~d

2U _ _ <)W
7

c)% h

8u = u'-u=f(x + h, y + k)-f{x,y);

, 3, Du, 1/ft,, .,, ft,,\ /ox

The final result is exactly the same whether we expand first

with respect to y or in the reverse order.

By equating the coefficients of hk in the identical results ob-

tained by first expanding with regard to h, (2) above, and by first

expanding with regard to k, we get

TixDy ~dy~dx'

which was obtained another way in page 77. The investigation

may be extended to functions of any number of variables.

101. The Determination of Maximum and Minimum Values

of a Function by means of Taylor's Series.

I. Functions of one variable.

Taylor's theorem is sometimes useful in seeking the maximum
and the minimum values of a function, say,

u =
f(x).

It is required to find particular values of x in order that y may
be a maximum or a minimum. If x changes by a small amount

h, Taylor's theorem tells us that

du n 1 d2
u_, _ 1 d%,

a* h)
-m -

as* + 1 gMh + (^

according as h is added to or subtracted from x.

First, it must be proved that h can be made so small that the

dy
term -r-h will be greater than the sum of all succeeding terms of

either series. Assume that Taylor's series may be written,

f(x + h) = u + Ah + Bh2 + Ghs + . . . ,

where A, B, C, . . . are coefficients independent of h but dependent
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upon x, then, if Bh = Bh + Gh2 + . . .
- (B + Gh + . . .)h, and

fix + h)
= u + h(A + Bh). . . (2)

Consequently, for sufficiently small values of h, it will be obvious

that Bh must be less than A.

Let us put
8u=f(xh) -f{x).

If u is really a maximum, ever so small a change increase or

decrease in the value of x will diminish the value of u ; and fix)

must be greater than fix h). Hence, for a maximum,
Su = fix h) fix) must be negative.

Again, if u is really a minimum, then u will be augmented when x
is increased or diminished by h. In other words, if u is a minimum,

Su = fix h)
-

fix) must be positive.

Illustration. The function u = 4<c3 - 3sca - 18sc will be a maximum
when x = - 1. In that case, f(x) = 11

;
if we put some small quantity,

say , in place of h, then f{x + h) = + ^, and f(x -
h) = + ^-. Hence,

f(x h)
-
f{x) will be either - ^& or -

^-. You can also show in the same
manner that u will be a minimum when x = $ .

Now if h is made small enough, we have just proved that the

higher derivatives in equations (1) will become vanishingly small ;

and so long as the first derivative, du/dx, remains finite, the al-

gebraic sign of Su will be the same as

* du
7

ax

At a turning point maximum or minimum we must have, as

explained in an earlier chapter,

%-*dx

Substituting this in the above series,

1 d% 79 1 d%
7

remains. Now h may be taken so small that the derivatives

higher than the second become vanishingly small, and so long as

dhijdx
2 remains finite, the sign 8u will be the same as that of

* d2u h2

But h2
, being the square of a number, must be positive. The sign

of the second differential coefficient will, in consequence, be the

same as that of 8u. But u = fix) is a maximum or a minimum

according as Su is negative or positive. This means that y will be
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a maximum when dy/dx = and d2
y/dx

2
is negative, and a mini-

mum, if d2
y/dx

2
is positive.

If, however, the second differential coefficient vanishes, the

reasoning used in connection with the first differential must be

applied to the third differential coefficient. If the tjiird derivative

vanishes, a similar relation holds between the second and fourth

differential coefficients. See Table I .
, page 168. Hence the rules :

1. y is either a maximum or a minimum for a given value of x

only when the first non-vanishing derivative, for this value of x, is

even.

2. y is a maximum or a minimum according as the sign of the

non-vanishing derivative of an even order, is negative or 'positive.

In practice, if the first derivative vanishes, it is often con-

venient to test by substitution whether y changes from a positive

to a negative value. If there is no change of sign, there is neither

1 maximum nor a minimum. For example, in

y = Xs - Sx2 + 3x + 7 ; .'.
^|

= 3a;2 - 6x + 3.

For a maximum or a minimum, we must have

x2 - 2x + 1 = ; .-. x = 1.

If x = 0, y = 7 ;
if x = 1, y = 8 ; if x = 2, y = 9. There is no

change of sign and x = 1 will not make the function a maximum
or a minimum.

Examples. (1) Test y = x3 - 12a;2 - 60a; for maximum or minimum
values. dy/dx m 8a;

2 - 24a; - 60 ; .% x2 - 8x - 20 = 0,

or x = -
2, or + 10. dPy/dx

2 = 6a; - 24
; or, x = + 4.

Since d^/dx
2

is positive when x = 10 is substituted,

x = 10 will make y a minimum. When - 2 is substi-

tuted, 6?y\dx
2 becomes negative, hence x = - 2 will make

y a maximum. This can easily be verified by plotting

(Fig. 125), for, if

x = -
3,

-
2,

- 1, . . . + 9, +10,

y = + 45, +64 (max.), +48,

(2) What value of x will make y t

expression, y = Xs - 6x2 + 11a; +6?
dy/dx = 3x2 - 12a? + 11 = 0; .\

x = 2 + n/J ; dttyjdx
2 = 6a; - 12. If

x = 2 + n/J; dh/jdx* m 6\/J = + 2\/3;

and if x = 2 - \/, dhf/dx
2 =- 2\/3.

Hence 2 + \/^ makes y a minimum, and

2 - s/% makes y a maximum (see Pig. 126).

(8) Show that a;
3 - 9a;

2 + 15a; - 3 is a



296 HIGHER MATHEMATICS. 101.

maximum when x = 1, and a minimum when x = 5. The graph is shown in

Fig. 127.

II. Functions of tivo variables.

To find particular values of x and y which will make the

function,

-/(?> y)

a maximum or a minimum. As before, when x changes by a

small amount h, and y by a small amount k, if f(x, y) is greater

than f(x h, y k), for all values of h or k, then f(x, y) is a

maximum. Hence, if

Su = f(x h, y k)
-

f(x, y) is negative,

u will be a maximum ; whereas when fix, y) is less
'

than

f{x h,y k),

Su = f(x h, y k)
-

f(x, y) is positive,

and u will be a minimum.

Illustration. The function u = xhj + xy
2 - Sxy will be a minimum

when x = 1 and y = 1. In that case f(x, y)
= - 1

;
and if we put h = %, and

k = J any other small quantity will do just as well then f(x + h
t y + k)=0;

and f{x
- h,y -

k) = -\. Hence, fix h,y k)
-

fix, y) = + 1, or + .

Also, let

Su = f(x +h,y + k)
-

f(x, y).

Let us now expand this function as indicated in the preceding

section, and we get

hu =
li

h +
Ty

k + 2^2 + 2
*xty

hk +
Jf?)

+ '
(
3

)

By making the values of h and k small enough, the higher orders

of differentials become vanishingly small. But as long as T^uftx

and "bufiy remain finite, the algebraic sign of ~du will be that of

.

*
.*

At a turning point maximum or a minimum we must have

t)w 7)u& + p* w
and, since h and k are independent of each other, and the sign of

Su, in (4), depends on the signs of h and k, u can have a maximum
or a minimum value only when

f

- 0; "d
^).- a (5)
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We can perhaps get a clearer mental picture of what we are

talking about if we imagine an undulating surface lying above the

icy-plane. At the top of an isolated hill, P (Fig. 128), u will be a

maximum ; at the bottom of a valley or lake, Q, u will be a mini-

mum. The surface can only be

horizontal at the point where

"bufix and ~dufdy are both zero.

At this point, u will be either a

maximum or a minimum. It

is easy to see that if APBG
is a surface represented by
u =

f(x, y), ~du/~dx is the slope
of the surface along AP, and

'du/'dy, the slope along BP.
The line Pb represents the slope Tiufbx at P, and Pa the slope

'bu/'by at P.

If u is really a maximum, it follows from our previous work,

page 159, that ib
2
u/'dx

2 and Wufiy
2 must be negative, just as surely

as if P is really the top of a hill, movement in the directions Pb,
or Pa must be down hill. And similarly, if we are really at the

bottom of a valley, ^2
u/~dx

2 and Wufoy
2 must be both positive.

Let us now examine the sign of 8u in (3) when 'du/'dx and ^ufoy
are made zero

; h and k can be made so small that

Fig. 128.

Su = JAh2 + 2 ^hk + k2

~dxty ty
2

,
(6)2\dx2

'

remains. For the sake of brevity, write the homogeneous quad-
ratic (6) in the form

ah2 + 2bhk + ck2
. ... (7)

Add and subtract b2k2
/a ; rearrange terms, and we get the equiva-

lent form

H{ah + bk)
2 + (ac

- b2)k
2
\, (8)

which enables us to see at a glance that for small values of h and
k the sign of (7), or (6), is independent of h and k only when
ac - b2 is positive or zero, for if ao - b2 is negative, the expression
will be positive when k =

0, and negative when ah + bk is zero.

Consequently, in order that we may have a real maximum or

minimum, ac must be greater than b2 ; or what is the same thing,

~b
2u ~b

2u
*bx

2
~dy

2 must be greater than
/ ~b

2U \ 2

\Zx~dy)
' (9)
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This is called Lagrange's criterion for maximum and minimum
Yalues of a function of two variables. When this criterion is

satisfied f(x, y) will either be a maximum or a minimum. To

summarize, in order that u =
f(x, y) may be a maximum or a

minimum, we must have

(2) ^-g- negative,
if u is a maximum

; positive, if u is a minimum.

(3) 5P"
x
^2

"^J m * n t be negative.

If ^" X v i8lessthan W/' ' ' (10)

or *d
2
ufbx

2 and ~d
2
u/?)y

2 have different signs, the function is neither

a maximum nor a minimum. If a man were travelling across a

mountain pass he might reach a maximum height in the direction

in which he was travelling, yet if he were to diverge on either side

of the path he would ascend to higher ground. This is not there-

fore a true maximum. A similar thing might be said of a " bar"

across a valley for a minimum. If

iM WU _ / l 2U \2

there will probably be neither a maximum nor a minimum, but

the higher derivatives must be examined before we can definitely

decide this question.

Examples. (1) Show that the velocity of a bimoleoular chemical re-

action V= k(a - x) (b
-

x) is greatest when a = b. Here 'dVj'da = -
k(b -

x);

'dV/'db = - k(a
-

x). Hence if k(b
-

x) = ;
and k(a

-
x) 0, a = b

} etc

(2) Test the function u x3 + y
z - 3axy for maxima or minima, Here

d^ildx=Sx
i -day=0,r.y=xi

la;dujdy=Sy
i -3a^=0 1 r.y

i -a^=xi

la'
i -ax=0;

,\ a?=0, a?
3 - a3=0, or x=a. The other roots, being imaginary, are neglected ;

. . y = a;
2
/a = a, or y = ;

W* = ex;
dxdy

= ' Sa; #2

Call these derivatives (a), (6), and (c) respectively, then if x = 0, (a)
= 0,

(6)
= - 3a, (c)

=
;

if x = a, (a) = 6a, (6)
= - 3a, (c)

= 6a ;

.._,_ =36o2; (__) =9a2 .

This means that x = y = a will make the function a minimum because

'dhtl'dx
2 is positive ; x = will give neither a maximum nor a minimum.

(3) Find the condition that the rectangular parallelopiped whose edges

are x, y, and z shall have a minimum surface u when its volume is vs
. Since
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v3 = xyz, u = xy + yz + zx = xy + v3
jx + vP/y. When du/dx = 0, x*y = v8 ;

when du/dy=0, xy
2=v3

. The only real roots of these equations are x=y=v,
therefore * = v. The sides of the box are, therefore, equal to each other.

(4) Show that u = x3
y
2
(l

- x -
y) is a maximum when x

, y = .

(5) Find the maximum value of u in u= x-'> - Sax2 - lay
2

, 'dufdx= 3x(x
-

2a);

du/dy= -
8ay; d^/dx2

=6{x - a) ; Vhifdx'dy^Q ; d'
i

uldy*= - 8a. Condition (5)

is satisfied by x = 0, y = and by x=2a, y = 0.

The former alone satisfies Lagrange's condi-

tion (9), the latter comes under (10).

(6) In Fig. 129, let P1
be a luminous

point ; OMx , OM2 are mirrors at right angles
to each other. The image of P

1
is reflected

at Nt and N2 in such a way that (i) the angles
of incidence and reflection are equal, (ii) the

length of the path P^N^ is the shortest

possible. (Fermat'8 principle :
" a ray of light

passes from one point to another by the path
which makes the time of transit a mini-

mum ".) Let i1 = r
ly

i2
= r2 be the angles of

FlG ' 129 *

incidence and reflection as shown in the figure. To find the position of Nj
and N2 :

Let ON2
= x;ON1

= y; OM2
= ^ ; JkfjP, = a^ ; M^ = 62 ; OMx

= bv Let

5 = P^ + NX
N2 + NtP2

= s/a\ + (&j
-

y)
2 + six2 + y

2 + Jfa - xf + b2
2

.

Fiivd 'ds/'dx and 'ds/'dy. Equate to zero, etc. The final result is

x = (aA - aAM&i + h) ; y = (o^ - a^bJlfa + a?).

Note that x\y = (Oj + ^/(Oj + bj. Work out the same problem when the

angle M2OM1
= a.

(7) Required the volume of the greatest rectangular box that oan be sent

by "Parcel Post" in accord with the regulation: "length plus girth must
not exceed six feet ". Ansr. 1 ft. x 1 ft. x 2 ft. = 2 eft. Hint. F= xyz is to

x + 2(y + z) = 6. But obviously y = b, .. V = xy
2be a maximum when V -

is to be a maximum, etc.

(8) Required the greatest cylindrical case that can be sent under the same

regulation. Ansr. Length 2 ft., diameter 4/ir ft., capacity 2*55 eft. Hint.

Volume of cylinder = area of base x height, or, &rW2 is to be a maximum
when the length + the perimeter of the cylinder = 6, i.e., I + wD = 6. Ob-

viously I and D denote the respective length and diameter of the cylinder.

(9) Prove that the sum of three positive quantities, x, y, z, whose product
is constant, is greatest when those quantities are equal. Hint. Let xyz = a;
x + y + z = u. Hence u m ajyz + y + g ; .-. T^u/dy = -

ajy
2z + 1=0;

dufdz = -
ajyz

2 + 1 = 0; .-. y = x, u=*x\ .viayxf. sia. To show that
u is a minimum, note 'dhil'dx

2 = + Sa/x*.

III. Functions of three variables.

Without going into details I shall simply state that if we are

dealing with three variables x
y y, and z, such that
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u=f{x,y,z), .... (12)

there will be a maximum or a minimum if the first partial deriva-

tives are each equal to zero; and Lagrange's criterion, uxxuyy>(uX3,)

2
,

is satisfied
;
and if

%*K*V** + 2u
vt
uxguxy

- unu\ - u^u
2^ - uji

2
xy)>0. (13)

For a maximum u^ will be negative, and positive for a minimum.

The meaning of the notation used will be understood from page
19. u^ =

~dht/~dx
2

; Uxy
= ~d

2
u/bx'oy.

Examples. (1) If u = x2 + y
2 + z2 + x - 2z -

xy, ux = 2x - y + 1 = ;

uv = 2y - x\Va = 2* - 2 =
;

.-. aj = -|;y = -;* = l;tt = -$. uxx = 2;

uyy
= 2

;
uu = 2

;
uxy

- 1
;
uxz = ;

uyz
= 0. Hence, Lagrange's criterion

furnishes + 3
;
and criterion (13) furnishes 2(8 + - - -

2)
= 12. Hence,

since u^ is positive,
- | is a minimum value of u.

(2) If we have an implicit function of three variables, and seek the maxi-

mum value of say z in u = 2x2 + by
2 + z2 - xy - 2x - fy - = 0, we proceed

as follows : ux = 4oj - 4y - 2 =
;
wy
= 10y - 4cc - 4 =

; .*. a: = f ; 2/
= 1

;

e = + 2. tfe = 2z = + 4
; n** = 4

;
w
yi,
= 10

; uxy
= - 4. Lagrange's criterion

furnishes the value 40 - 16 = 24. z is therefore a maximum when x = -%
and y = 1.

IF. Conditional Maxima and Minima.

If the variables

u-f(x,y,e) = 0, . . . (H)
are also connected by the condition

v =
<(z, y, z)

= 0, . . . (15)

we must also have, for a maximum or a minimum,
'bu. bu ~ou
-dx +

^dy
+

Tz
dz = 0. . . (16)

From (15), we have by partial differentiation

7)v bv 7)v

Tx
dx + rydy + s* - - <17>

Multiply (17) by an arbitrary constant A, called an undetermined

multiplier, and add the result to (16).

fin x <toA_ fbu Jbv\ n ftu .M, n

(s
+ A
s>fa +

fe
+ v^ + (5

+ ^r -
- <l8>

But X is arbitrary, and it can be so chosen that

bu _ ^v
~dx

Substitute the result in (18), and we obtain

ox

fill x "bv\ ,
/dw . c)t?\ , .
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But if y and z are independent, we also have

Hence, we have the three equations

ox ox oy oy oz oz

together with
</>(#, y, z)

= 0, for evaluating x, y, z, and X. This is

called Lagrange's method of undetermined multipliers. To

illustrate the application of these facts in the determination of

maxima and minima, let us turn to the following examples :

Examples. (1) Find the greatest value of 7 = 8xyz, subject to the con-

dition that x2 + y
2 + z2 =* 1. By differentiation,

xdx + ydy + zdz =
; and yzdx + xzdy + xydx = 0.

For a maximum, we must have

ye + \x =
; xz + \y = ; xy + \z = 0.

Multiply these equations respectively by x, y, and z, so that

xyz + \x2 -
; xyz + \y

2 =
; xyz + \z* = 0. . . (19)

By addition

Sxyz + \{x* + y
2 + s2

)
= 0. .-. |F + \ = 0; or, \ = - f 7.

Substitute this value of \ in equation (19), and we get

x = n/|; y = n/|; z = s/f; .-. 7= | Jj.

(2) Find the rectangular parallelopiped of maximum surface which can

be inscribed in a sphere whose equation is x2 + y
1 + z2 = r2 . The surface of

the parallelopiped is s = 8(xy + xs + yz), where 2x, 2y, and 2z are the lengths

of its three coterminous edges. By differentiation, xdx + ydy + zdz = ;

(y + z)dx + (x + z)dy + (y + x)dz= 0. For a maximum, therefore, y + z + xa?= ;

x+z+\y= 0', x + y + \e=0. Proceed as before, and we get finally x= y= z.

Ansr. Cube with edges 2x = 1r \/J.

(3) Find the dimensions of a cistern of maximum capacity that can be

formed out of 300 sq. ft. of sheet iron, when there is no lid. Let x, y, z,

respectively = length, breadth and depth. Then, xy + 2xz + 2yz = 300 ; and,

u = xyz, is to be a maximum. Proceed as before, and we get x = y 2z.

Substitute in the first equation, and we get x = y 10, * = 5. Hence the

cistern must be 10 ft. long, 10 ft. broad, and 5 ft. deep.

102. Lagrange's Theorem.

Just as Maclaurin's theorem is a special case -oi Taylor's, so

the latter is a special form of the more general Lagrange's theorem,
and the latter, in turn, a special form of Laplace's theorem. There
is no need for me to enter into extended details, but I shall have

something to say about Lagrange's theorem.

If we have an implicit function of three variables,

z = y + x<f>(z), .... (1)



302 HIGHER MATHEMATICS. 102.

such that x and y have no other relation than is given by the

equation (1), each may vary independently of the other. It is

required to develop another function of z, say f(z), in ascending

powers of x. Let

then, by Maclaurin's theorem,

u = un + (du\
x

(<Pu\x*_ (dhAa^
\dx) l

+
\dafl) 2 !

+
\dafi) S !

+ * * *

Without going into details, it is found that after evaluating the

respective differential coefficients indicated in this series from (1),

we get as a final result

/(^)=/(,) + ^(,)^|[f-V)}
2

K-. m
which is known as Lagrange's theorem. The application of this

series to specific problems is illustrated by the following set of

examples :

Examples. (1) Given a - by + cy* = 0, find y.

Rearranging the given equation, we get

a c
v = i

+
iy*-> (3)

and on comparing this with the typical equations (1) and (2), we have

/(*) = v* f(y) = *
; *(*) = y

2
, <t>(y)

= *2
;
* = /& ;

=
/&.

From (2), df(y)/dy = 1
; de/dg = 1, etc., * of (1) is y of

(3), therefore,

y + *1 +
dz 2t

+
dz* 3!

+ '

... 2/
= s + *^ + 4^_ + 6.

5*gf
+ ... ;

_ a 4.i
8

.
c xi i8 ^ 6.5 a4 c3

'* y ~b +
&2 '6

+
2!' b*'b*

+
3! 'o4 '&8 + ,,,;

_a( ac 4 a2c2 6 . 5 ^c3 \
'

y -
b\

l + P +
21* "W +

"ST"W + ' '

')'

a series which is identical with that which arises when the least of the two
roots of equation (3) is expanded by Taylor's theorem.

(2) Given y
z - ay + b = 0, find y". On comparing the given equation

y=a + a^
with the typical forms, we see that

f{*) = y", .-./(y) = M
; *(*)

= 0*. *<*>&) = *s
;
* = &/a ;

= i/a.

, ^(tt^-
1*6) a;

2

...J.-I- + W-VJ +
^i

^ '

21
+ ;

hl 1 ^(n + 5) 6^
1

1 +V '

a
+

21
'

a*' a*
+
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(3) In solving the velocity equations

dx dt

jt = k.ia
-

x) (a
- x -

f) ; ^ = k2(a
-

x) {a
- x -

|),

for the reaction between propyl iodide and sodium ethylate, W. Hecht, M.

Conrad, and 0. Bruckner (Zeit. phys. Ghem., 1, 273, 1889) found that by
division of the two equations, and integration,

H1
-!)'

where a denotes the amount of substance at the beginning of the reaction ;

x and | are the amounts decomposed at the time t ;
K = J^fk^ ; when t = 0,

x = 0, and = 0. If K is small, Maclaurin's theorem furnishes the expres-

sion

If we put x + = y, we can get a straightforward relation between y and t ;

for obviously,

Zfc + t-VJ (l + *)t-V; .'. (1 + K)dl = dy;

dt dy
* '*

dt
= k^a ~

^
a " x ~

'
becomes

di
= k\{aK + a -

?/) (a
-

y),

which can be integrated in the ordinary way. But K was usually too.large

to allow of the approximation (4). We have therefore to solve the problem :

Given

l-?=l-' + i = ('l-lV,flndi.a a a \ a) a

For the sake of brevity write this :

1-3 + 3= (1- e)*, .% 1 - x + M -1 * Km + %K(K -
l)z*

-
. . . ;

,:x=(K+ l)z
- E{K- l)*

2
+...=/i(*). . . (5)

.-.** = */!(*); .:M =
Xj^j

=
x<p{z). ... (6)

On referring to the fundamental types (1) and (2), we see that

f{z)
= zj(y) = y; ${z) - <f>{z), <p{y)

=
<p(y) ; y = 0,a? = 2/;

We must now evaluate the separate terms.

| =1 = 1 <>

From (5) and (6),

since y = 0; again, from (5), (6), (7), and (8),

|C1^W]= WW =|{ (
z + i)-^-i)y + ...}

2

_ 2K(K-1) K(K-1)
-{(K+l)-$K(K-l)y + ...}* (K+l)*>

' ' <10>

sinoe y is zero. Hence, the required development, from (7), is
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- 1 x ,1 K
(
K ~

*) (*\*Z ~ K+l' 1
+

2' (K+l) s
'\2\)

+ (
U)

We have put z for |/a, and x for y/a. On restoring the proper values of z and
x into the given velocity equations, we can get, by integration, a relation

between
if, t, and constants.

103. Functions requiring special Treatment before

Substituting Numbers.

In discussing the velocity of reactions of the second order, we
found that if the concentration of the two species of reacting

molecules is the same, the expression

,'
1

,
a - x a

assumes the indeterminate form

kt = oo x 0,

by substituting a = b. We are constantly meeting with the same

sort of thing when dealing with other functions, which may re-

duce to one or other of the forms : , -gj,
oo -

go, l
00

, oo, . . .

We can say nothing at all about the value of any one of these

expressions, and, consequently, we must be prepared to deal with

them another way so that they may represent something instead

of nothing. They have been termed illusory, indeterminate and

singular forms. In one sense, the word ''indeterminate" is a

misnomer, because it is the object of this section to show how
values of such functions may be determined.

Sometimes a simple substitution will make the value apparent
at a glance. For instance, the fraction (x -f a)/(x + b) is inde-

terminate when x is infinite. Now substitute x = y
~ 1 and it is

easy to see that when x is infinite, y is zero and consequently,

x + a 1 + ay _U
*=>x~Tb

=
-^oiTty

" l '

Fractious which assume the form $ are called vanishing frac-

tions, thus, (x
2 - &x + S)/(x

2 -
1) reduces to g, when x = 1. The

trouble is due to the fact that the numerator and denominator

contain the common factor (x
-

1). If this be eliminated before

the substitution, the true value of the fraction for x = 1 can be

obtained. Thus,

x\
- x + 3 _ (x

-
1) (x

-
3) = x - 3 _

2 _'

x2 - 1
~

(x
-

1) (x + 1)

~
x + 1

~
2
"
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These indeterminate functions may often be evalued by alge-

braic or trigonometrical methods, but not always. Taylor's theorem

furnishes a convenient means of dealing with many of these func-

tions. The most important case for discussion is
"
$," since this

form most frequently occurs and most of the other forms can be

referred to it by some special artifice.

I. The function assumes the form J.

This form is the so-called vanishing fraction. As already

pointed out, the numerator and denominator here contain some

common factor which vanishes for some particular value of x, say.

These factors must be got rid of. One of the best ways of doing

this, short of factorizing at sight, is to substitute a + h for x in the

numerator and denominator of the fraction and then reduce the

fraction to its simplest form. In this way, some power of h will

appear as a common factor of each. After reducing the fraction

to its simplest form, put h = so that a = x. The true value of

the fraction for this particular value of the variable x will then be

apparent.

For oases in which x is to be made equal to zero, the numerator

and denominator may be expanded at once by Maclaurin's theorem

without any preliminary substitution for x. For instance, the trig-

onometrical function (sin x)/x approaches unity when x converges
towards zero. This is seen directly. Develop sin x in ascending

powers of x by Taylor's or Maclaurin's theorems. We thus obtain

x x% x5 x

sins VI 3!
+

5! 71
+

'") a? !*_*?_
x x

- 1 ~
3!

+
5! 7!

+ '*'

The terms to the right of unity all vanish when x = 0, therefore,

smx
lA = o

~ - !

Examples. (1) Show Ltxa, (o?
- b^jx = log a/b.

(2) Show Lt* = (1
- cos x)/x

2 =
$.

(3) The fraction (x
n - an)/(x - a) becomes # when x = a. Put x = a + h

and expand by Taylor's theorem in the usual way. Thus,
x - an (a + h)

n - an
Lt*-1TI = Lt* = % *-*.

It is rarely necessary to expand more than two or three of the lowest powers
of h. The intermediate steps are

_ {a
n + naP-^h + %n(n -

l)a
n - 2h* + ...)- a1*

Lt* - o a+h-a *

U
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Cancel out an in the numerator, and a in the denominator
;
divide out the fe'e

and put h = 0.

(4) The velocity, V, of a body falling in a resisting medium after an
interval of time t, is

K
~/B fgftt + i*

" v ~ gt>

when the coefficient of resistance, fi, is made zero. Hint. Expand the numer-
ator only before substituting = 0.

(5) Show that LtA = ^log
( 1 + -

J
= -, as on page 51.

(6) If H denotes the height which a body must fall in order to acquire a

velocity, V, then

where k is the coefficient of resistance. If k=0, show that H = %V2
lg.

We can generalize the preceding discussion. Let

Obviously,

/i()=/2() = 0. ... (2)

Expand the two given functions by Taylor's theorem,

/i(* + h) f1(*)+f1'(x)h + jfl"(x)W + ... >

f2(x + h) f2(x) + f2'(x)h + W(x)h* + . . .'
W

Now substitute x = a, and fx(a)
= f2(a) = as in (2) ;

divide by

h; and

/i( + *) _ A'(a) + i"m + ... ...

Ma + h)-fi(a) + if2"(a)h+... '.

' W
remains.

^(q + h) _ f1

,

(a) + if1"(a)h + ... ^

^4R-m andLt,.^=Lt, = /^). (6)

In words, if the fraction fi(x)/f2(x) becomes ,
when a; = a, the

fraction can be evaluated by dividing the first derivative of the

numerator by the first derivative of the denominator, and sub-

stituting x = a in the result. This leaves us with three methods

for dealing with indeterminate fractions.

1. Division Method. i.e., by dividing out the common factors.

2. Expansion Method. i.e., by substituting x + h for x, etc.

3. Differentiation Method. i.e., by the method just indicated.

fdx
Examples. (1) Prove that /

- = log x, by means of the general formula
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i-
xndx = ^j. Hint. Show that

xn + 1
sen + 1

log x . dn
Ltn=-% + i

= Lt =-i dTi
= Lt=-i*n + 1

log* = log*.

by differentiating the numerator and denominator separately with regard to

n and substituting n = - 1 in the result.

(2) Show Lty 1^r(^rT
-
^zi)

=
clog^.

See (10), p. 259, (3),

p. 264.

II. The function assumes the form ~.

Functions of this typeoan be converted into the preceding
"
J"

case by interchanging the numerator and denominator, but it is

not difficult to show that (6) applies to both and to ^ ;
and

generally, if the ratio of the first derivatives vanishes, use the

second
;

if the second vanishes, use the third, etc. Or, symbolically,

r , fM Tt *M n f̂ - rt '*?& _ m

This is the so-called rule of l'Hopital.

log X x~ l

Examples. (1) Show that Lt* m -^rj
= Lt^ = _ x _ 2

= Ltx _ - x = 0.

(2) The nth derivative of x" is n ! and the nth derivative of ex is ex by
Leibnitz' theorem, when n is positive. Hence show that

e* e*
Lt*=

oo^,
= Lt* -

oo! # 2 ... n
= CD '

III. The function assumes the form oo x 0.

Obviously ^
such a fraction can be converted into the "

J
"
form

by putting the infinite expression as the denominator of the fraction ;

or into the ~ form by putting the zero factor as the denominator

of the fraction as shown in the subjoined examples.

Examples. (1) The reader has already encountered the problem: what
does x log x become when x = ? We are evidently dealing with the x oo

case. Obviously, as in a preceding example,

Ltx = a;loga; = Lt^^o-y
= 0.

x

(2) Show Lta = b
~

log |j^-||
=
^T^y as indicated on page 220.

(8) Show Lt* = O30
-
*log x = x oo = 0.

IV. The function assumes the form oo -
oo, or - 0.

First reduce the expression to a single fraction and treat as

above.
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Examples. (1) Show by differentiating twice, etc., that

t f
x 1

T .
a> log a - <e + 1 x 1

**-* - i iogaJ
= ljt* = i (-i)iog

= ^ST*""* etc*

(2) Show that Lt*- ir
-^ r- = 1.v ' x ~ l
\ogx logo;

(3) W. Hecht, M. Conrad and 6. Bruckner {Zeit. phys. Chem., 4, 273, 1889)
wanted the limiting value of the following expression in their work on
chemical kinetics:

Ltw
1 / na - x \

l^li 1

S'^7-^wJ. Ansr.

V. The function assumes one of the forms l
00

, oo, 0.

Take logarithms and the expression reduces to one of the

preceding types.

Examples. (1) Lt^ _ Q
xx = 0* Take logs and noting that y = &*,

lg V = & lg 3- But we have just found that x log x = when x = ;

.. log y = when x =
;

.-. y = 1. Hence, ~Ltx = xx = 1.

(2) Show Ltx = (l + mx)
l
lx = 1" = em. Here log y = a;- 1

log (1 + wkb).

. But when x = 0, log 2/
= # ; by the differential method, we find that

log(l + mx)x
~ x becomes m when x = ; hence log y = m ;

or y = em, when
a = 0.

104. The Calculus of Finite Differences.

The calculus of finite differences deals with the changes which
take place in the value of a function when the independent variable

suffers a finite change. Thus if x is increased a finite quantity h,

the function x2 increases to (x + h)
2
,
and there is an increment of

(x + h)
2 - x2 = 2xh + h2 in the given function. The independent

variable of the differential calculus is only supposed to suffer in-

finitesimally small changes. I shall show in the next two sections

some useful results which have been obtained in this subject ;

meanwhile let us look at the notation we shall employ.
In the series

1, 23, 3, 43, 53

subtract the first term from the second, the second from the third,

the third from the fourth, and so on. The result is a new series,

7, 19, 37, 61, 91, . . .

called the first order of differences. By treating this new series

in a similar way, we get a third series,

12, 18, 24, 30, ... ,

called the second order of differences. This may be repeated
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as long as we please, unless the series terminates or the differ-

ences become very irregular.

The different orders of differences are usually arranged in the

form of a " table of differences". To construct such a table, we
can begin with the first member of series of corresponding values

of the two variables. Let the different values of one variable,

say, x
,
xv x2 ,

. . . correspond with y , yv y2 ,
. . . The differences

between the dependent variables are denoted by the symbol
"
A," with a superscript to denote the order of difference, and a

subscript to show the relation between it and the independent
variable. Thus, in general symbols :

Argument.
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103. Interpolation.

In one method of fixing the order of a chemical reaction it is

necessary to find the time which is required for the transformation

of equal fractional parts of a given substance in two separate

systems. Let x denote the concentration of the reacting sub-

Itance at the time t
; a, the initial concentration of the reacting sub-

stance ; and suppose that the following numbers were obtained :

System I., a = 0-1.
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with fair exactness, we can, by the principle of continuity, antici-

pate the results of any future measurements.

When the form of the function connecting the two variables is

known, the determination of the value of one variable correspond-

ing with any assigned value of the other is simple arithmetic.

When the form of the function is quite unknown, and the definite

values set out in the table alone are known, the problem loses its

determinate character, and we must then resort to the methods now
to be described.

I. Interpolation by proportional parts.

If the differences between the succeeding pairs oi values are

small and regular, any intermediate value can be calculated by

simple proportion on the assumption that the change in the value

of the function is proportional to that of the variable. This is

obviously nothing more than the rule of proportional parts illus-

trated on page 289, by the interpolation of log (n + h) when log n

and log (n + 1) are known. The rule is in very common use. For

example, weighing by the method of vibrations is an example of

interpolation. Let x denote the zero point of the balance, let wQ

be the true weight of the body in question. This is to be measured

by finding the weight required to bring the index of the balance to

zero point. Let x
1
be the position of rest when a weight w

x
is

added and x
2
the position of rest when a weight w2

is added. As-

suming that for small deflections of the beam the difference in the

two positions of rest will be proportional to the difference of the

weights, the weight, tv
Q , necessary to bring the pointer to zero will

be given by the simple proportion :

K - v>
x)

: (x
- x

Y )
= (w2

- wj : (x2
- x

x).

When the intervals between the two terms are large, or the

differences between the various members of the series decrease

rapidly, simple proportion cannot be used with confidence. To take

away any arbitrary choice in the determination of the intermediate

values, it is commonly assumed that the function can be expressed

by a limited series of powers of one of the variables. Thus we have

the interpolation formulae of Newton, Bessel, Stirling, Lagrange,

and Gauss.

II. Newton's interpolation formula.

Let us now return to fundamentals. If yx denotes a function of

x, say
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y* = /0)>

then, if x be increased by h,

yx + h =f(x + h),

and consequently,

Increment yx = yx + h
- yx

= f(x + h)
-

f{x)
= A1

,. (1)

Similarly, the increment

^yx ^A\ + h
- A*. - Ai(Ay - A . . (2)

where A1
* is the first difference in the value of yx ,

when x is in-

creased to x + h
;
A2

X is the first difference of the first difference

of yx ,
that is, the second difference of yx when x is increased to

x + In. It will now be obvious that A1
is the symbol of an opera-

tion the taking of the increment in the value of f{x) when the

variable is increased to x + h. For the sake of brevity, we gener-

ally write Ax for Ayx . From (1) and (2), it follows that

yx + k
= yx + ^1

yx ; ... (3)

y*+ - y+ + A1y*+* - y + Aty, + a 1

^, + a1
^) ;

.-. &+* ->* + SA1^ + A*y . . (4)

Similarly,

?. + =
S/* + 3Aiy, + 3A*y, + Ay . . (5)

We see that the numerical coefficients of the successive orders of

differences follow the binomial law of page 36. This must also be

true of yx + * if n is a positive integer, consequently,

? + .
= yx + nAyx + %n{n

-
1)A

2^ + . . .

This is Newton's interpolation formula (Newton's Principia, 3,

lem. 5, 1687) employed in finding or interpolating one or more

terms when n particular values of the function are known. Let us

write y in place of yx for the first term, then

n(n -
1) . n(n - 1) (n - 2) _

** - y, + *A, +
-^-Jf

A2
o + ^

if
1*\ + (6)

continued until the differences become negligibly small or irregular.

If we write nh = x, n x/h, and (6) assumes the form

x* ^. ^-^ A a?(a?-A)(g-afc) A3
^=^o +^x + F"~' 2T

+ P "3l
+ --- ")

where h denotes the increment in the successive values of the inde-

pendent variable
;
and x is the total increment of the interpolated

term. The application is best illustrated by example.
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Examples. (1) If y = 2,844 ; yl
= 2,705 ; y2 = 2,501 ; ys

= 2,236, find y x

(Inst, of Actuaries Exam., 1889). First set up the difference table, paying

particular attention to the algebraic signs of the differences.

X.
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III. Lagrange's interpolation formula.

We have assumed that the n given values are all equidistant.

This need not be. A new problem is now presented : Given n

consecutive values of a function, which are not equidistant from

one another, to find any other intermediate value.

Let y become ya, yb , yc1 . . . yn when x becomes a, b, c, . . . n.

Lagrange has shown that the value of y corresponding with any

given value of x, can be determined from the formula

_ (x
-

b) (x
-

c) . . . (x
-

n) (x-a)(x-c). . .(x-ri)
Vx ~

(a-b) (a -o) . . .(a-nf
a +

(b-a){b-c) . . .(b-nf
b + ' ' " <

8
'

where each term is of the nth. degree in x. This is generally known
as Lagrange's interpolation formula, although it is said to be

really due to Euler.

Examples. (1) Find the probability that a person aged 53 will live a

year having given the probability that a person aged 50 will live a year
= 0-98428 ;

for a person aged 51 = 0-98335
; 54, 0-98008 ; 55, 0;97877 (Inst.

Actuaries Exam., 1890). Here, ya = 0*98428, a =
; yb = 0-98335, 6 = 1;

yc = 0-98008, c = 4
; ya = 0-97877, d = 5 ; .*. x = 3.

(a
- b){x -

c) {x
-

d) = (3
-

1) (3
-

4) (3
-

5) = + 4 ;

(x
-

a) {x
-

b) (x
-

d) = (3
-

0) (3
-

4) (3
-

5)
= + 6 ;

(x
-

a) (x
-

b) {x
-

d) = (3
-

0) (3
-

1) (3
-

5) = - 12 ;

(x
-

a) (x
-

b) {x
-

c)
=

(3
-

0) (3
-

1) (3
-

4) = - 6 ;

(
a _

b) {a
-

c) (a
-

d) = (0
-

1) (0
-

4) (0
-

5) = - 20 ;

(5
_

a) (b
-

c) (b
-

d) = (1
-

0) (1
-

4) (1
-

5)
= + 12 ;

(c
-

a) (c
-

b) (c
-

d)
=

(4
-

0) (4
-

1) (4
-

5)
= - .12 ;

{d
-

a) {d
-

b) (d
-

c)
=

(5
-

0) (5
-

1) (5
-

4) = + 20.

4 6 12 6 0-98428 098335 0-98008 3x0-97877
V*= -20ya + 12yb

+ T2lJe
~
20^=

~
5~~~

+ 2~ + "~1 10^
;

yx= - 0-196856 + 0-491675 + 0-98008 - 0-29361 =0-98127.

(2) Given log 280= 2-4472 ; log 281 = 2-4487 ; log 283 = 2-4518 ; log 286 = 2-4564,

find log 282 by Lagrange's formula (Inst. Actuaries Exam., 1890). x = 2,

a = 0, b 1, c = 3, d = 6. Hence show that

yx = - &/ + iyb + iye
- ?\ya = 2-4502.

(3) Find by Lagrange's formula log x = 2, given log 200 = 2*30103
;

log 210 = 2-32222 ; log 220 = 2-34242
; log 230 = 2-36173 (Inst. Actuaries

Exam., 1891). Here a = 0, b = 1, c = 2, d = 3. Substitute in the interpo-

lation formula and we get

(a;
-

1) (a;
-

2) (a
-

3) (a;
-

0) (a?
-

2) (g
-

3)
V* ~

(o
_

1) (0
-

2) (0
-

3)
Va +

(1
-

0) (1
-

2) (1
-

3)V
b + * * * ;

x3 - 6x2 + 11a* - 6 a*
3 - 5a*

2 + 6a*
.-. yx = g ya + g Vb + ' ' ' ;
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the student must fill in the other terms himself. Collect together the different

terms in x, x2
,
x3

t etc., and

2-33333 = 2-30103 + 0*02171a; - 0*00055a2 + O'OOOOlaj3 .

When this equation is solved by the approximation methods described in a

later chapter, we get x = 215*462 (nearly).

(4) Ammonium sulphate has the electrical conductivities : 552, 1010, 1779

units at the respective concentrations : 0*778, 1*601, 3*377 grm. molecules per
litre. Calculate the conductivity of a solution containing one grm. molecule

of the salt per litre. Ansr. 684*5 units nearly. Hint. By Lagrange's

formula, (8),

_ (1-1 -601) (1
"
3-377) (1-0*778) (1-8-377)

(0*778
-
1*601) (0*778

-
3*377)

T
(1*601

-
0*778) (1*601

-
3*377)

1UiU + * * '

0*601.2*377 0*222.2*377 0*222.0*601

0*823. 2*599
552 +

0*823. 1*776
101 "

2599.lW7 *

Simple proportion gives 680 units. But we have only selected three observa-

tions ; if we used all the known data in working out the conductivity there

would be a wider difference between the results furnished by proportion and

by Lagrange's formula. The above has been selected to illustrate the use of

the formula.

(5) From certain measurements it is found that if x = 618, y = 3*927 ;

x = 588, y = 3*1416 ;
x = 452, y = 1*5708. Apply Lagrange's formula, in order

to find the best value to represent y when x m 617. Ansr. 3*898.

If the function is periodic, Gauss' interpolation formula may
be used. This has a close formal analogy with Lagrange's.

1

sin \(x
-

b) . sin \{x
-

o) . . . sin \{x
-

n)
y*

sinj(a
-

6).sinJ(a
-

c) . . . sin \{a
- nf

a + "' { }

IV. Interpolation by central differences.

A comparison of the difference table, page 309, with Newton's

formula will show that the interpolated term yx is built up by

taking the algebraic sum of certain proportions of each of the

terms employed. The greatest proportions are taken from those

terms nearest the interpolated term. Consequently we should

expect more accurate results when the interpolated term occupies a

central position among the terms employed rather than if it were

nearer the beginning or end of the given series of terms.

Let us take the series yQ , yv y2 , y3 , y so that the term, yxi to be

interpolated lies nearest to the central term y2
. Hence, with our

former notation, Newton's expression assumes the form

1 For the theoretical bases of these reference interpolation formulae th,e reader

must consult Boole's work, A Treatise on the Calculus of Finite Differences^ London,
38, 1880.
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Vt+ . - Vo + (2 + x)^y + (2 +
%f

+ "W + (10)

It will be found convenient to replace the suffixes of y , ylf y2 , y%, y^

respectively by y _ 2 , y _ v yQ, yv y2
. The table of differences then

assumes the form

x_ x y.,
- A2 _ 2 ^

*o JKo A1 A2
_! A3 A4

_ 2

*%
y
y%

l
,

Equation (10) must now be written

% = y_ i + {
2 + x)*_ i +

V +
%f

+%*^ + ... (11)

Let us now try to convert this formula into one in which

only the central differences, blackened in the above table, appear.

It will be good practice in the manipulation of difference columns.

First assume that

Ai = J(Ai_ 1
+ Ai ); A3 = J(A

8 _ 2 + A3_ 1). . (12)

.*. A3_ 3
= 2A3 - A3 _ r . . . (13)

Again from the table of differences

A> -A*-!- A*_ 2 ; .-. A_ 2
= A3_

x
- A*_ 2 . (14)

By adding together (13) and (14),

A_ 2
= A-iA*_ 2 . . . . (15)

In a similar manner, from the table, and (15), we have

A_ 4 -A*_ 1 -A_ J --A_ l -A* + JA*_> . (16)

And also from the first of equations (12), and the fact that

A2
_j = A1

,,

- A1 .^ A 1

.! = A 1 - JA
2 _

1}
it follows that

A 1
-, = A*.! - A2 _ 2

=
(A*

- JA
2 ^) -

(A
2^ - A* + 1A*_ 2);

.-. Ai_ 2
= Ai-|A2_ 1 + A3-JA4_ 2

. . (17)

Still further, from the table of differences, (16), and the fact that

A1
.! =

2/
~

V-i> we Set

V-2 = y-i - A 1 _ 2
=

(t/
- A 1 .^ - Ai.gj

=
(2/o

- ^-i) " (^ - IA1 -! + A3 - JA*J 2).

But A 1 _
j

is equal to A1 -
-JA

2 _
lf

as just shown, therefore,

y- 2
= y

- 2A1 + 2A2 .!- a + *A*_ 2 . . (18)

Now substitute these values of y_ 2 ,
A 1 ^, A2 _ 2 ,

A3 _ 2 ,
from (15),

(16), (17), and (18), in (11) ; rearrange terms and we get a new
formula (19).



105. INFINITE SERIES AND THEIR USES. 317

x A 1* + A 1
, x2 x(x2 - 1) A3

, + A3

v-y.+r- a
+

2i
A2 - 1 + 3i- a

+ --- <
19>

which is called Stirling's interpolation formula (J. Stirling,

Methodus Differentialis, London, 1730), when we are given a set

of corresponding values of x and y, we can calculate the value y

corresponding to any assigned value x, lying between x and xv

Stirling's interpolation formula supposes that the intervals x
x
- x

,

%o
~ x - 1>

are unity. If, however, h denotes the equal incre-

ments in the values x
x
- x

,
x - x _ x

. . . , Stirling's formula becomes

Al
o + Al -i x2

2 (x + h)x(x-h) A3 _ 1 + A
3

.

y - y +
h' 2

+ 2TPA - 1+ 3I/i8
'

2

\m(x + h)x
2
(x-h)+ U A " 2

(x + 2h) (x + h)x(x -h)(x- 2h) A5 _ 2 + A5 _ 8+_
5\h*

'

2
+""

where y is written in place of yx .

Example. The 3 /
annuities on lives aged 21, 25, 29, 33, and 37 are

respectively 21-857, 21-025, 20-132, 19-145, and 18-057. Find the annuity for

age 30. Set up the table of differences, h = 4.

x. y. Al. A*. A. A*.

21 (21-857) _ 2
(
_

0-832) _ 2
26 (21-025).,

V

(
_ o-agslx ("O^1)-.

/-<M>33)_ 2
29 (20-132)o _ .987

! (-0-094). x _
'

(+0'026)_ 2

33 (19-145), .i-oss! (-0-101)o

37 (18-057)2

o^non 0"940 0-094 15x0-02 15x0026
...yaoi8a--T-- ?nri5 + 3!x43

-
4!x44

-

m 20-132 - 0-235 - 0-003 + 0-0008 - 0-0001 = 19895.

By Newton's formula, we get 19-895.

The central difference formula of Stirling thus furnishes the

same result as the ordinary difference formula of Newton. We
get different results when the higher orders of differences are neg-

lected. For instance, if we neglect differences of the second order

in formulae (7) and (20), Stirling's formula would furnish more

accurate results, because, in virtue of the substitutionA1 = A1 - JA2_ v
we have really retained a portion of the second order of differences.

If, therefore, we take the difference formula as far as the first,

third, or some odd order of differences, we get the same results

with the central and the ordinary difference formulae. One more

term is required to get an odd order of differences when central

differences are employed. Thus, five terms are required to get
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third order differences in the one case, and four terms in the other.

For practical purposes I do not see that any advantage is to be

gained by the use of central differences.

V. Graphic interpolation.

Intermediate values may be obtained from the graphic curve

by measuring the ordinate corresponding to a given abscissa or

vice versd.

In measuring high temperatures by means of the Le Chatelier-

Austin pyrometer, the deflec-

tion of the galvanometer index

on a millimetre scale is caused

by the electromotive force gen-

erated by the heating of a

thermo-couple (Pt
- Pt with

10 / Ed) in circuit with the

galvanometer. The displace-

ment of the index is nearly

proportional to the tempera-

ture. The scale is calibrated

by heating the junction to

well-defined temperatures and

plotting the temperatures as

ordinates, the scale readings

as abscissae. The resulting

graph or " calibration curve
"

is shown in Fig. 130. The

ordinate to the curve corre-

sponding to any scale reading, gives the desired temperature. For

example, the scale reading
ture 1300.
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In illustration, A. Horstmann (Liebig's Ann. Ergbd., 8, 112, 1872),

wished to compare the experimental values of the heats of vaporiz-

ation, Q, of ammonium chloride with those calculated from the

expression : Q = T(dp/dT)dv, which had been deduced from the

principles of thermodynamics. He found that the observed vapour

pressure, p, at different temperatures, 0, could be represented well

enough by Biot's formula : log10^?
= a + bae ~ 258

'

6
. Hence, the

value of dp/dO, or dp/dT, for the vapour pressure at any particular

temperature could be obtained by differentiating this formula and

substituting the observed values of p and t in the result. It is

assumed, of course, that the numerical values of a, b and a are

known. Following Horstmann a = 5*15790, b = - 3 -34598, and

log10a m 0*9979266 - 1. Suppose it be required to find the value

of dp/dO at 300. When = 300, 6 - 2585 = 41-5 and a415 = 0-819,

because log10a
416 = 41-5 log10a =41-5 x -0-0020734 = - 0-086046 ;

consequently, 0086046 = -
41'51og10a = log10a-

41
'

5 = log10l'221.

Hence, a
- 415 = 1-221

;
.-. a415 = 0-819; and 6a416= - 3-34598 x 0-8192

= - 2-74036. Hence, log10p = 51579 - 2-7403 ; or, log10^ = 2-4175

=
log10261*5 ; or, p = 261.5. By differentiation of log1Qp = a

+- 6a
- 2585

|
- ^a41

'

6
log10a - 261-5 x - 2-74035 x - 0-0020734 - 1-5.

Examples. (1) Assuming that the pressure, p, of steam at C. in lbs.

per square foot is given by the law = 29'71pT -
37*6, show that when

p = 290, dpjdd = 15-<>7. Hint, de/dp = -
l(29'77)p

' 4 /5
; .\ dp/de = 0'168p

4
/ ;

.-. dpjdd = 0-168 x 2904 /
5 lbs. per square foot per C.

(2) The volume, v of a cubic foot of saturated steam at T abs. is given

by the formula L = T(vt + v)dp/dT, where vv the volume of one pound of

water which may be taken as negligibly small in comparison with v, ; L is

the latent heat of one pound of steam in mechanical units, i.e., 740,710 ft.

lbs. Given also the formula of the preceding example, show that when
6 - 127 C.,2> = {(127 + 37-6)/29-77}

6
; .-. logp = 3-71365 ; .-. dp/de, or, what

is the same thing, dpjdT = 0*168 x 935 = 157 lbs. per square foot per degree
absolute. Hence, 740710 = 157 x,x400; .-. v, = 11-8.

II. Graphic interpolation.

In the above-quoted investigation, Horstmann sought the

value of dp/dT for the dissociation pressure of aqueous vapour
from crystalline disodium hydrogen phosphate at different tempera-
tures. Here the form of p = f(T) was not known, and it became

necessary to deal directly with the numerical observations, or with
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the curve expressing these measurements. In the latter case,

the tangent to the "smoothed" or " faired" curve obtained by-

plotting corresponding values of p and T on squared paper will

sometimes allow the required differential coefficient to be obtained.

Suppose, for example, we seek the numerical value of dp/dO at

150 when it is known that when

p = 8-698, 9-966, 11-380 lbs. per sq. ft.
;

0=145, 150, 155 G.

These numbers are plotted on squared paper as in Fig. 131. To

find dp/dO at the point P corresponding

with 150, and 9*966 lbs. per square foot,

first draw the tangent PA ;
from P draw

PB parallel with the 0-axis. If now the

pressure were to increase throughout 5

from 150 to 155 at the same rate as it is

increasing at P, the increase in pressure

for 5 rise of temperature would be equal

to the length BA, or to 1300 lbs. per

square foot. Consequently, the increase

of pressure per degree rise of temperature

is equal to 1300 -r5 = 260 lbs. per sq. ft.

Hence dp/dT = 260.

The graphic differentiation of an experimental curve is avoided

if very accurate results are wanted, because the errors of the ex-

perimental curve are greatly exaggerated when drawing tangents.

If the measurements are good better results can be obtained,

because the curve does not then want smoothing. Graphic

interpolation was accurate enough for Horstmann's work. See

also O. W. Bichardson, J. Nicol, and T. Parnell, Phil. Mag. [6],

8, 1, 1904, for another illustration.

We now seek a more exact method for finding the differential

coefficient of one variable, say y, with respect to another, say x,

from a set of corresponding values of x and y obtained by actual

measurement.

III. From the difference formulae.

Let us now return to Stirling's interpolation formula. Differ-

entiate (19), page 317, with respect to x, and if we take the

difference between y and yx to be infinitely small, we must put
x = in the result. In this way, we find that
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# = ^/Ai + Ai_ 1 _l A3_
1 + A3 1 AS_ 2 + A5_ 3

\

dx h\% 6* 2 ^30' 2 -J-V1 ;

This series may be written in the form

^_1/Ai + AL 1
1 2 A3_ 1 + A3 12.2* A*_ 2 + A

5 _ 8
\

daj H 2 3!' 2
+

5!
'

2 ~7-'T ^
To illustrate the use of formula (2), let the first two columns

of the following table represent a set of measurements obtained

in the laboratory. It is required to find the value of dy/dx cor-

responding to x = 5*2. First set up the table of central differences.

X. y. Al. A2. A'. A*. A5.

4-9 (134-290) _ 3

50 (148-413) _ 2

51 (164-022) _ x

5-2 (181'272)o

53 (200337)!
5 4 (221-406)2

5-5 (244-692)3

Make the proper substitutions in (2). In the case of 5*2 only the

block figures in the above table are required. Thus,

(14123) _ 3

(15-609) _ 2
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0=8, 12, 16, f
. . C.

p = 43-2, 52-0, 65-3, ...cm. Hg.
show that at 12, dp/de = 2-76.

(2) Show that dsjde = -,4-7 x 10 - 6
,
at C, from the following data :

=
1, 0-5, 0,

-
0-5,

- 1-0, . . . ;

106 x s = 1288-3, 1290-7, 1293*1, 1295-4, 1297*8, . . .

(3) Find the value of d^y/dx
2 for y=5'2 from the above table. Ansr. 181-4.

(4) The variation in the pressure of saturated steam, p, with temperature
has been found to be as follows :

a = 90, 95, 100, 105, 110, 115, 120,...;

p = 1463, 1765, 2116, 2524, 2994, 3534, 4152, . . .

Hence show that at 105 dp/d0 = 87-58, d*pld0
2 = 2-48. Hint, dyjdx

= ift(408 + 470)
- tM5 + 8)}

= i (437-917) = 87-583.

107. How to Represent a Set of Observations by Means of

a Formula.

After a set of measurements of two independent variables has

been made in the laboratory, it is necessary to find if there is any

simple relation between them, in other words, to find if a general

expression of the one variable can be obtained in terms of the

other so as to abbreviate in one simple formula the whole set of

observations, as well as intermediate values not actually measured.

The most satisfactory method of finding a formula to express

the relation between the two variables in any set of measurements,

is to deduce a mathematical expression in terms of variables and

constants, from known principles or laws, and then determine the

value of the constants from the experimental results themselves.

Such expressions are said to be theoretical formulae as distinct

from empirical formulas, which have no well-defined relation

with known principles or laws.

The terms "formula" and "function" are by no means

synonymous. The function is the relation or law involved in the

process. The relation may be represented in a formula by symbols
which stand for numbers. The formula is not the function, it is

only its dress. The fit may or may not be a good one. This

must be borne in mind when the formal relations of the symbols
are made to represent some physical process or concrete thing.

It is, of course, impossible to determine the correct form of a

function from the experimental data alone. An infinite number

of formulas might satisfy the numerical data, in the same sense

that an infinite number of curves might be drawn through a series
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of points. For instance, over thirty empirical formulae have been

proposed to express the unknown relation between the pressure

and temperature of saturated steam.

As a matter of fact, empirical formulae frequently originate

from a lucky guess. Good guessing is a fine art. A hint as to

the most plausible form of the function is sometimes obtained by

plotting the experimental results. It is useful to remember that

if the curve increases or decreases regularly, the equation is prob-

ably algebraic ;
if it alternately increases and decreases, the curve

is probably expressed by some trigonometrical function.

If the curve is a straight line, the equation will be of the form,

y = mx + b. If not, try y = axn
,
or y = ax/(l + bx). If the rate

of increase (or decrease) of the function is proportional to itself we
have the compound interest law. In other words, if dy/dx varies

proportionally with y, y = be~ ax or be**. If dy/dx varies pro-

portionally with x/y, try y = bxa
. If dy/dx varies as x, try

y = a + bx2
. Other general formulae may be tried when the

above prove unsatisfactory, thus,

y =
^r^; V = 10a + bx

; y = a + blogx; y = a + btf,

Otherwise we may fall back upon Maclaurin's expansion in ascend-

ing powers of x, the constants being positive, negative or zero.

This series is particularly useful when the terms converge rapidly.*

When the results exhibit a periodicity, as in the ebb and flow

of tides
; annual variations of temperature and pressure of the at-

mosphere ; cyclic variations in magnetic declination, etc., we
refer the results to a trigonometrical series as indicated in the

chapter on Fourier's SBries.

Empirical formulae, however closely they agree with facts, do

not pretend to represent the true relation between the variables

under consideration. They do little more than follow, more or

less closely, the course of the graphic curve representing the re-

lation between the variables within a more or less restricted range.

Thus, Eegnault employed three interpolation formulae for the vapour

pressure of water between - 32 F. and 230 F. 1 For example,
from - 32 F. to 0F., he used p = a + b*\ from to 100 F.,

1 Rankine was afterwards lucky enough to find that logp = a -
fid

~
? - yd

~ 2
,

represented Regnault's results for the vapour pressure of water throughout the whole

range - 32 F. to 230 F.

etc.
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logp = a + bae + c/3* ;
from 100 to 230 F., logp = a + bae - c/3

e
.

Kopp required four formulae to represent his measurements of the

thermal expansion of water between and 100 C. Each of Kopp's
formulas was only applicable within the limited range of 25 C.

If all attempts to deduce or guess a satisfactory formula are

unsuccessful, the results are simply tabulated, or preferably plotted

on squared paper, because then "
it is the thing itself that is before

the mind instead of a numerical symbol of the thing ".

108. To Evaluate the Constants in Empirical or

Theoretical Formulae.

Before a* formula containing constants can be adapted to any

particular process, the numerical values of the constants must be

accurately known. For instance, the volume, v, to which unit

volume of any gas expands when heated to 6, may be represented

by
V = 1 + aO,

where a is a constant. The law embodied in this equation can

only be applied to a particular gas when a assumes the numerical

value characteristic of that gas. Ii we are dealing with hydrogen,
a = 0-00366 ;

if carbon dioxide, a = 0-00371 ;
and if sulphur

dioxide a = 0-00385.

Again, if we want to apply the law of definite proportions, we
must know exactly what the definite proportions are before it can

be decided whether any particular combination is comprised under

the law. In other words, we must not only know the general law,

but also particular numbers appropriate to particular elements.

In mathematical language this means that before a function can be

used practically, we must know :

(i)
The form of the function.;

(ii)
The numerical values of the constants.

The determination of the form of the function has been discussed

in the preceding section, the evaluation of the constants remains

to be considered.

Is it legitimate to deduce the numerical values of the constants

from the experiments themselves? The answer is that the nu-

merical data are determined from experiments purposely made by
different methods under different conditions. When all indepen-

dently furnish the same result it is fair to assume that the
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experimental numbers includes the values of the constants under

discussion. 1

In some determinations of the volume, v, of carbon dioxide

dissolved in one volume of water at different temperatures, 0, the

following pairs of values were obtained :

(9= 0, 5, 10, 15;

v = 1-80, 145, 1-18, 1-00.

As Herschel has remarked, in all cases of "direct unimpeded

action," we may expect the two quantities to vary in a simple

proportion, so as to obey the linear equation,

y = a + bx; wt have, v = a + b6, . . (1)

which, be it observed, is obtained from Maclaurin's series by the

rejection of all but the first two terms.

It is required to find from these observations the values of the

constants, a and b, which will represent the experimental data in

the best possible manner. The above results can be written,

(i)
1-80 = a,

(ii) 1-45 = a + 5b,

(iii)
1-18 = a + 106,

(iv) 1-00 = a + 15b,

which is called a set of observation equations. We infer, from

(i)
and (ii)

a = 1-80, b = - 0-07,

(ii)
and

(iii)
a = 1'62, b = - 0-054,

(iii)
and (iv) a = 1-54, b = - 0*036, etc.

The want of agreement between the values of the constants

obtained from different sets of equations is due to errors of

observation, and, of course, to the fact that the particular form of

the function chosen does not fit the experimental results. It

nearly always occurs when the attempt is made to calculate the

constants in this manner.

The numerical values of the constants deduced from any arbi-

trary set of observation equations can only be absolutely correct

when the measurements are perfectly accurate. The problem here

presented is to pick the best representative values of the constants

from the experimental numbers. Several methods are available.

1 J. F. W. Herschel' a A Preliminary Discourse on the Study of Natural Phil-

osophy, London, 1831, is worth reading in this connexion.

(2)
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I. Solving the equations by algebraic methods.

Pick out as many observation equations as there are unknowns

and solve for a, b, c by ordinary algebraic methods. The different

values of the unknown corresponding with the different sets of

observation arbitrarily selected are thus ignored.

Example. Corresponding values of the variables x and y are known, say,

xv Vi 5
x2> V% J

xv Vs'* ' Calculate the constants a, b, c, in the interpolation

formula
bx

y = a.lOl + cx
.

When x
x
= 0,yx

= a. Thus b and c remain to be determined. Take logarithms
of the two equations in a?2 , y2 and x3 , y3 and show that,

This method may be used with any of the above formulae when
an exact determination of the constants is of no particular interest,

or when the errors of observation are relatively small. V. H. Reg-
nault used it in his celebrated " Memoire sur les forces elastiques

de la vapeur d'eau
"

(Ann. Chim. Phys., [3], 11, 273, 1844) to

evaluate the constants mentioned in the formula, page 323
;
so did

G. C. Schmidt (Zeit. phys. Chem., 7, 433, 1891); and A. Horst-

mann (Liebig's Ann. Ergbd., 8, 112, 1872).

II. Method of Least Squares.

The constants must satisfy the following criterion : The differ-

ences between the observed and the calculated results must be the

smallest possible with small positive and negative differences.

One of the best ways of fixing the numerical values of the con-

stants in any formula is to use what is known as the method of

least squares. This rule proceeds from the assumption that the

most probable values of the constants are those for which the

sum of the squares of the differences between the observed and the

calculated results are the smallest possible. We employ the rule

for computing the maximum or minimum values of a function.

In this work we usually pass from the special to the general.

Here we can reverse this procedure and take the general case first.

Let the observed magnitude y depend on x in such a way that

y = a + bx (3)

It is required to determine the most probable values of a and b. For
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perfect accuracy,we should have the following observation equations :

a + bx
1
- y1

=
;
a + bx

2
- y2

=
; . . . a + bxn - yn = 0.

In practice this is unattainable. Let vv v
2 ,

. . . vn denote the actual

deviations so that

a + bx
1 -y1

= v
1 ;

a + bx
2
- y2

= v
2 ; . . . a + bxn - yn = vn.

It is required to determine the constants so that,

2,(y
2
)
=

V-f + V
2
2 + ... + V 2

is a minimum.

With observations affected with errors the smallest value of v2

will generally differ from zero ; and the sum of the squares will

therefore always be a positive number. We must therefore choose

such values of a and b as will make

s;:> + &* - yf
'

the smallest possible. This condition is fulfilled, page 156, by

equating the partial derivatives of %(v
2
)
with respect to a and b

to zero. In this way, we obtain,

Ya^{
a + bx -

y)
2 = 0; hence, 2,(a + bx -

y) = ;

ft

>-,2(a + bx.- y)
2 =

; hence, %x(a + bx -
y)

= 0.

If there are n observation equations, there are n a's and 2(a)
= na,

therefore,

na + bl{x)
-

S(y) = 0; a%(x) + bl(x
2
)
-

%(xy) = 0.

Now solve these two simultaneous equations for a and 6,

_ %(x) . 3(sy)
- 3(*) . 3(y) . _ 3(s)3(y)

-
nSQcy)

[2(a;)]
2 -

rc2(z
2
)

'
"

[2(z)]
2 - n2(z

2
)

W
which determines the values of the constants.

Returning to the special case at the commencement of this

section, to find the best representative value of the constants a and

b in formula (1). Previous to substitution in (4), it is best to

arrange the data according to the following scheme :

e.
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Substitute these values in equation (4), n, the number of

observations, =
4, hence we get

a = 1-758; b = - 0-0534.

The amount of gas dissolved at is therefore obtained from the

interpolation formula,

v = 1-758 - 0-0534(9.

To show that this is the best possible formula to employ, in

spite of 1*758 volumes obtained at 0, proceed in the following

manner :

Temp. = e.
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where a, b and c are constants to be determined. The resulting

formulae for b and c (omitting a), analogous to (4), are,

. S(s*) . %{xy)
- S(s) . S(qfy) . r __ SQk

2
) S(a%)

-
S(s

3
) S(sy) (6

x

b =
S(a?).:(a*)-[2(a?)J

a '
~

2(0?) . S(fl?*)
-

[S(aj)]
a

' V

These two formulaB have been deduced by a similar method to

that employed in the preceding case, a is a constant to be

determined separately by arranging the experiment so that when

x = 0, a = y .

Examples. (1) The following series of measurements of the tempera-

ture, 6, at different depths, x, in an artesian well, were made at Grenelle

(France) :

x = 28, 66, 173, 248, 298, 400, 505, 548;

= 11-71, 12-90, 16-40, 20-00, 22-20, 23-75, 26-45, 27*70.

The mean temperature at the surface, where x = 0, was 10*6. Hence show

that at a depth of x metres, = 10-6 + 0-042096a - 0-000020558a;2 .

(2) If, when x = 0, y = 1 and when

mm 8-97, 2056, 36-10, 49-96, 62-38, 83-73;

y = 1-0078, 1-0184, 1-0317, 1-0443, 1-0563, 10759.

Hence show that y - 1 + 0-00084<e + 0'0000009a;2 .

Thomson (Wied. Ann., 44, 553, 1891) employed the general

formulae for a, b, c, when still another correction .term is included,

namely,

y = ax + bx2 + ex3
. ... (7)

Illustrations will be found in the original paper.

If three variables are to be investigated, we may use the

general formula

z = ax + by. . . . (8)

The reader may be able to prove, on the above lines, that

S(s
2
)

. S(o) - %xy) . S (yg) ,
, _ S(a?) . S(y*)

-
S(sy) . 3(a) ,

q
*

a ~
S(a

2
)

. W) -
[Z(xy)Y

'

%(x*) . :%*) -
[l(xy)f

'
^ >

M. Centnerszwer (Zeit. phys. Chem., 26, 1, 1896) referred his ob-

servations on the partial pressure of oxygen during the oxidation

of phosphorus in the presence of different gases and vapours to the

empirical formula

px
= p - a log (1 + bx) ;

or to p - px
= a log (1 + bx),

where p denotes the pressure of pure oxygen, px the partial pres-

sure of oxygen mixed with x / of foreign gas or vapour. Show
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with Centnerszwer, that if y = p - px

%) . 3(s*)
-
3(afy) . S(g) .

, _ 3(sy) S(s
3
)
- 2(3%) . %{x*) (ma ~

S(s*) . S(s*)
-

P(oj8)]
'

. 2(z
2
)

. S(s*)
-

[2(*
3
)]

2 ' l j

Example. Show, with Centnerszwer, that a 184, & = 113 for chlor-

benzene when it is known that when

i>x = 561, 549, 536, 523, 509, 485;
= 0, 0-054, 0-108, 0-215, 0-430, 0-858.

The method of least squares assumes that the observations are

all equally reliable. The reader will notice that we have assumed

that one variable is quite free from error, and very often we can

do so with safety, especially when the one variable, can be

measured with a much greater degree of accuracy than the other.

We shall see later on what to do when this is not the case.

III. Graphic methods.

Eeturning to the solubility determinations at the beginning of

this section, prick points corresponding to pairs of values of v and

6 on squared paper. The points lie approximately on a straight

line. Stretch a black thread so as to get the straight line which

lies most evenly among the points. Two points lying on the

black thread are v l'O, 6 = 14-5, and v = 1*7, 6 = 1*5.

.-. a + 14-56 = 1
;
a + 1-56 = 17.

By subtraction, b = -
0-54, .-. a = 1*78. It is here assumed that

the curve which goes most evenly among the points represents the

correct law, see page 148. But the number of observations is,

perhaps, too small to show the method to advantage. Try
these :

p = 2, 4, 6, 8, 10, 20, 25, 30, 35, 40,

s = 1-02, 103, 1-06, 1-07, 1-09, 1-18, 1-23, 1-29, 1*34, 1-40,

where s denotes the density of aqueous solutions containing p /

of calcium chloride at 15 0. The selection of the best " black

thread
"

line is, in general, more uncertain the greater the mag-
nitude of the errors of observation affecting the measurements.

The values deduced for the constants will differ slightly with

different workers or even with the same worker at different times.

With care, and accurately ruled paper, the results are sufficiently

exact for most practical requirements.
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When the " best
"

curve has to be drawn freehand, the

results are still more uncertain. For example, the amount of

"active" oxygen, y, contained in a solution of hydrogen dioxide

in dilute sulphuric acid was found, after the lapse of t days,

to be:

* = .6, 9, 10, 14, 18, 27, 34, 38, 41, 54, 87,

y = 3-4, 3-1, 3-1, 2-6, 2-2, 1-3, 0-9, 0-7, 0-6, 0-4, 0-2,

where 2/
= 3*9 when t = 0. We leave these measurements with

the reader as an exercise.

In J. Perry's Practical Mathematics, London, 1899, a trial

plotting on "logarithmic paper
"

is recommended in certain cases.

On squared paper, the distances between the horizontal and vertical

lines are in fractions of a metre or of a foot. On logarithmic

paper (Fig. 132), the distances between the lines, like the divisions

on the slide rale, are proportional to the

logarithms of the numbers. If, therefore, 50

the experimental numbers follow a law M

like log10
o* + alog1(# = constant, the func-

tion can be plotted as easily as on squared 20

paper. If the resulting graph is a

straight line, we may be sure that we

are dealing with some such law as

xy
a = constant ; or, (x + a) (y + b)

a =

constant.

30 40

Log. Paper.

Example. The pressure, p t
of saturated steam in pounds per square

inch when the volume is v cubic feet per pound is

p = 10, 20, 30, 40, 50, 60,

v = 37-80, 19-72, 13-48, 10-29, 8-34, 6'62.

Hence, by plotting corresponding values of p and v

on logarithmic paper, we get the straight line :

logioP + 7log10
v = log106 ; hence, pv

1 ' = 382,

since log10o = 2-5811, .-. b = 382 and y = 1-065. The

graph is shown on log paper in Fig. 132, and on

ordinary squared paper in Pig. 134.

50

40

30

\
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straight line. One advantage of logarithmic paper is that the

skill required for drawing an accurate free-

hand curve is not required. The stretched

black thread will be found sufficient. With

semi-logarithmic paper, either x + log10?/
=

constant ; or, y + log10
# = constant will give

a straight line.

According to C. Eunge and Paschen's law,

if the logarithms of the atomic weights are
20 30 40 5a

plotted as ordinates with the distances be-

Fig. 134. tween the brightest spectral lines in the

magnetic field as abscissae, chemically allied elements lie on the

same straight line. This, for example, is the case with magnesium,

calcium, strontium, and barium. Eadium, too, lies on the same

line, hence C. Runge and J. Precht (Ber. deut. phys. Ges., 313,

1903) infer the atomic weight of radium to be 257*8. Obviously
we can plot atomic weights and the other data directly on the

logarithmic paper. Another example will be found in W. N.

Hartley and E. P. Hedley's study (Journ. Chem. Soc, 91, 1010,

1907), of the absorption spectra solutions of certain organic com-

pounds where the oscillation frequencies were plotted against the

logarithms of the thicknesses of the solutions.

Examples. (1) Plot on semi-logarithmic paper Harcourt and Esson's

numbers (I.e.) :

t= 2, 5, 8, 11, 14, 17, 27, 31, 35, 44,

y = 94-8, 87-9, 81-3, 74-9, 68*7, 64-0, 49-3, 44-0, 39-1, 316,

for the amount of substance y remaining in a reacting system after the elapse

of an interval of time t. Hence determine values for the constants a and b in

y = ae
-

; i.e.,in \og10y + bt = log10a,

a straight line on "
semi-log

"
paper. The graph is shown in Fig. 133 on

"
semi-log

"
paper and in Fig. 134 on ordinary paper.

(2) What " law " can you find in J. Perry's numbers (Proc. Roy. Soc, 23,

472, 1875),
6 = 58, 86, 148, 166, 188, 202, 210,

G = 0, -004, -018, -029, -051, -073, -090,

for the electrical conductivity C of glass at a temperature of 6 F. ?

(3) Evaluate the constant a in S. Arrhenius' formula, 77
= ax

,
for the vis-

cosity 7} of an aqueous solution of sodium benzoate of concentration x, given

77
= 1-6498, 1-2780, 1-1303, 1-0623,

x= 1, h h h

Several other methods have been proposed. Gauss' method,

for example, will be taken up later on. See also Hopkinson,
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Messenger of Mathematics, 2, 65, 1872 ;
or S. Lupton's Notes on

Observations, London, 104, 1898.

109. Substitutes for Integration.

It may not always be convenient, or even possible, to integrate

the differential equation ;
in that case a less exact method of

verifying the theory embodied in the equation must be adopted.

For the sake of illustration, take the equation

= k{a-x); . . . . (1)

used to represent the velocity of a chemical reaction, x denotes the

amount of substance transformed at the time t
; and a denotes the

initial concentration. Let dt denote unit interval of time, and let

Ax denote the difference between the initial and final quantity of

substance transformed in unit interval of time, then \Ax denotes

the average amount of substance transformed during the same

interval of time. Hence, for the first interval, we write

Ax = k^a -
$Ax),

which, by algebraic transformation, becomes

*?-t?U' (2)

For the next interval,

Ax = k
x(a

- x -
\Ax), etc.

These expressions may be used in place of the integral of (1),

namely

-?**?> ;... (3)

for the verification of (1).

With equations of the second order

dx

df
= h(a - XY> ... (4)

we get, in the same way,
k
2
a* h(a - xf

Aa? =
Tv^a ;

Ax =
r+ tga^xy

etc" (
5

)

by putting, as before, Ax in place of dx, dt = 1, x =
\Ax, and

remembering that the second power of Ax is negligibly small.

The regular integral of (4) is

h*h'tt ... (6)
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Numerical Illustration. Let us suppose that h
x
and k2 are both equal

to 01, and that a = 100. From (2)

0-1 x 100 - en
9-52; .-. a - xAx =

Ax

1-05

0*1 x 90-48

100 - 9-52 = 90-48 ;

8-62
; .-.a- x = 90-48 - 8-62 = 81-87.

1-05

Again from (5), for reactions of the second order

0-1 x 10,000
x = 100 - 90-09 =Ax =

AX =

= 90-99
;

.-. a

4-33; .-.a 9-09 - 4-33 = 4-76.

1 + 0-1 x 100

(9-09)
2 x 0-1

1 + 0-1 x 909

The following table shows that the results obtained by this method of

approximation compare very favourably with those obtained from the regular

integrals (3) and (6). There is, of course, a slight error, but that is usually

within the limits of experimental error.

First Order.
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of a solution, y was a known function, hence, dy could be readily-

calculated. Integrate by parts, and we get

u = xy - jx . dy,

which can be evaluated by the planimeter, or any other means.

Again, to calculate the vapour pressure, p2 ,
in the expression

where p x
and p2

denote the vapour pressure of two components of

a mixture ;
x is the fractional composition of the mixture. Sup-

pose that p l
and x are known, it is required to calculate p2

. Here

also, on integration by parts,

The second setting is much better adapted for numerical com-

putation.

110. Approximate Integration.

We have seen that the area enclosed by a curve can be

estimated by finding the value of a definite integral. This may
be reversed. The numerical value of a definite integral can be

determined from measurements of the area enclosed by the curve.

For instance, if the integral jf(x) . dx is unknown, the value of

I f(x) . dx can be found by plotting the curve y =
f(x) ; erecting

ordinates to the curve on the points x = a and x = b
; and then

measuring the surface bounded by the #-axis, the two ordinates

just drawn and the curve itself.

This area may be measured by means of the planimeter, an

instrument which automatically registers the area of any plane

figure when a tracer is passed round the boundary lines. A good

description of these instruments by O. Henrici will be found in the

British Association's Beports, 496, 1894.

Another way is to cut the figure out of a sheet of paper, or

other uniform material. Let Wj be the weight of a known area a^

and w the weight of the piece cut out. The desired area x can

then be obtained by simple proportion,

w
1

: a = w : x.

Other methods may be used for the finding the approximate

value of an integral between certain limits. First plot the curve.
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Divide the curve into n portions bounded by n + 1 equidistant

ordinates y , yv y2,
. . ., yn ,

whose magnitude and common distance

apart is known, it is required to find an approximate expression for

the area so divided, that is to say, to evaluate the integral

f(x).dx.
Jo

Assuming Newton's interpolation formula

f(x)
= y + xA\ + 2i x(x

-
1)A* + . . ., *. (1)

we may write,

.*. f(x) . dx = y \ dx + aO x.dx +
~%\

x
(
x r 1)^ + . .., (2)

which is known as the Newton-Cotes integration formula. We
may now apply this to special cases, such as calculating the value

of a definite integral from a set of experimental measurements, etc.

I. Parabolic Formula.

Take three ordinates. There are two intervals. Eeject all

terms after A2
. Eemember that A x = yx

-
y and A2 = y2

- 2y1 + y .

Let the common difference be unity,

?M . dx - % + 2A\, + ia = fy, + iVl + y2). (3)
Jo

If h represents the common distance of the ordinates apart, we

bay,e the familiar result known as Simpson's one-third rule, thus,

l

A' 6

Vz ,V \

f(x) . dx =
lh{y, + 4^ + y2). . . (4)

A graphic representation will perhaps make the assumptions in-

volved in this formula more apparent. Make
b c^p the construction shown in Fig. 135. We

seek the area of the portion ANNA' cor-

responding to the integral f{x) . dx between

the limits x = x and x = xn, where f(x)

represents the equation of the curve ABGDN.
Assume that each strip is bounded on one

Fig. 135.
g^e ^j a parabolic curve. The area of the

portion

ABCC'A' = Area trapezium ACG'A' + Area parabolic segment ABCA,
From well-known mensuration formulae (16), page 601, the area

of the portion

ABCC'A' = A'C[i(A'A + C'C) + %{B'B - $(A'A + C'C)}];
= ZhQA'A + $BB + ICC) - \h(A'A + B'B + Q'C). (5)
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Extend this discussion to include the whole figure,

Area ANITA' =
Jfc(l + 4 + 2 + 4 + ... +2 + 4 + 1), (6)

where the successive coefficients of the perpendiculars AA'
', BB', . . .

alone are stated
;
h represents the distance of the strips apart. The

greater the number of equal parts into which the area is divided,

the more closely will the calculated correspond with true area.

Put OA' = x ; ON xn ;
A'N = xn - x and divide the area

into n parts ; h =
(xn

- x )/n. Let y , yv yv . . . yn denote the

successive ordinates erected upon Ox, then equation (6) may be

written in the form,

J*/
(rC) * dx = *h tty + *J + 4(^ + 2/3 + - + 2/ - 1) I

(7 )

+ %2 + 2/4 + --- + 2/n- 2). . J

In practical work a great deal of trouble is avoided by making
the measurements at equal intervals x

1
- x

,
x

2
- xv . . ., xn - xn _ v

E. Wegscheider (Zeit. phys. Chem., 41, 52, 1902) employed Simp-
son's rule for integrating the velocity equations for the speed of

hydrolysis of sulphonic esters; and G. Bredig and ~F. Epstein

(Zeit. anorg. Chem., 42, 341, 1904) in their study of the velocity of

adiabatic reactions.

Examples. (1) Evaluate the integral ja? . dx between the limits 1 and 11

by the aid of formula (6), given h = 1 and y , yv y2 , y3 ,
. . . y8 , y9 , yw are re-

spectively 1, 8, 27, 64, . . . 1000, 1331. Compare the result with the absolutely

correct value. From
(6),'

J
xs

. dx = i(10980) = -3G60 ;
andf x . dx = (11)

4 -
i(l)

4 = 3660,

is the perfect result obtained by actual integration.

(2) In measuring the magnitude of an electric current by means of the

hydrogen voltameter, let C
, Clt C2 , . . . denote the currents passing through

the galvanometer at the times t
Qt t^, t2 ,

. . . minutes. The volume of hydrogen
liberated, v, will be equal to the product of the M

intensity
"

of the current, C
amperes, the time, t, and the electrochemical equivalent of the hydrogen, x

;

.*. v = xCt. Arrange the observations so that the galvanometer is read after

the elapse of equal intervals of time. Hence ^-^ = ^-^= ^-^2=. *.&.
Prom (7),

/!t C.dt=ih{(C
+ C) + 4(C1 + C9 +... +C_ 1) + 2(C2+ C4+...+C_ 2)}.

In an experiment, v = 0-22 when t = 3, and
t = 1-0, 1-5, 20, 2-5, 3-0, . . . ;

C = 1*53, 1-03, 0-90, 0-84, 0-57, . . .

f
4 0-5

''jG.dt
=

-y{(l*53 + 0-57) + 4(1-03 + 0'84) + 2 x 0-90} = 1-897.

a5 = r8
= -1159-

Y
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This example also illustrates how the value of an integral can be obtained

from a table of numerical measurements. The result 01159, is better than if

we had simply proceeded by what appears, at first sight, the more correct

method, namely,

y . dt =
{
t
x
- g^o^i + {

t2
_ t$* + . . . = i-9i,

0*22
for then x = = 0-1152. The correct value is 0-116 nearly.

(3) If jdz
=

je
a lx

(b
- x)~

1
dx, where b is the end value of x, then, in the

/:

J exi eUxi + 2> e*2 \

\b^x7 + H _ a/- + )

+ V=lJ'

rJo

2 A 6 Kb-x^^b- l{xx + x.
2)

between the limits x
x
and x2 . Hint. Use (4) ;

h = ^(xx + x2).

If we take four ordinates and three integrals, (4) assumes the form
i

f{x) . dx = h(y + S(yi + y2) + y3) ;
. . (8)

)

where h denotes the distance of the ordinates apart, y , y^ . . . the

ordinates of the successive perpendiculars, in the preceding diagram.
This formula is known as Simpson's three-eighths rule. If we
take seven ordinates and neglect certain small differences, we get

f(x) . dx = T
3
<5-% + 6yY + y2 + 6y2 + y + 5y5 + y6) (9)

Jo

which is known as Weddle's rule (Math. Joum., 11, 79, 1854).

J. E. H. Gordon {Proc. Roy. Soc, 25, 144, 1876 ;
or Phil. Trans.,

167, i., 1, 1877) employed Weddle's rule to find the intensity of

the magnetic field in the axis of a helix of wire through which an

electric current was flowing. The intensity of the field was

measured at seven equidistant points along the axis by means of

a dynamometer, and the total force was computed from (9).

Examples. (1) Compare Simpson's one-third rule and the three-eighths

rule when h = 1, with the result of the integration of

f
x*dx. Ansr. i{(+ 3)

5 - (- 3)
5
}
= 97-2,

by actual integration ; for Simpson's one-third rule,

\U+ 3)
4 + (- 3)

4 + 4{(+ 2)
4 + 4 + (- 2)

4
} +2(1+1)3- 98.

The three-eighths rule gives

J_J(x)dx
= f% + 3yx + 3y2 + 2yz + By, + Sy5 + y6),

f[(+ 3)
4 + (- 3)

4 + 3{(+ 2)
4 + l4 + (- l)

4 + (- 2)
4

} + 2 x 0] = 99.

The errors are thus as 8 : 18, or as 4 : 9. A great number of cases has been

tried and it is generally agreed that the parabolic rule with an odd number of

ordinates always gives a better arithmetical result than if one more ordinate is

employed. Thus, Simpson's rule with five ordinates gives a better result than

if six ordinates are used.
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(2) On plotting /(x) in jf(x)dx, it is found that the lengths of the ordinates

3 cm. apart were: 14-2, 14-9, 15-3, 16*1, 145, 14-1, 13-7 cm. Find the

numerical value of the integral. Ansr. 263'9 sq. cm. by Simpson's one-third

rule. Hint. From (7),

/;
f(x)dx = (14-2 + 13-7) + 4(14-9 + 15-1 + 14-1) + 2(15-3 + 14-5).

An objection to these rules is that more weight is attached to

some of the measurements than to others. E.g., more weight is

attached to y}i yv and yb
than to y,2 and yi

in applying Weddle's rule.

II. Trapezoidal Formula.

Instead of assuming each strip to be the sum of a trapezium
and a parabolic segment, we may suppose
that each strip is a complete trapezium. In

Fig. 136, let AN be a curve whose equation
19 V =

f(x ) ;
AA'

t BB\ . . . perpendiculars
drawn from the ic-axis. The area of the

portion ANN'A' is to be determined. Let

OB' - OA' = OC - OB' = ... = h. It fol-

lows from known mensuration formulae, (11),

page 604,

*rea ANN9

A'- = tfi{AA' + BB') + ih(B'B + C'G) + . . . ;

= ih(AA' + 2BB' + 2CC + ... + 2MM' + NN) ;

=
h(i + 1 + 1 + . . . + 1 + 1 + J), . . (10)

where the coefficients of the successive ordinates alone are written.

The result is known as the trapezoidal rule.

Let x
,
x

lf
x

2 , ...
,
xn ,

be the values of the abscissae correspond-

ing with the ordinates y , yv y2 ,
. . .

, yn> then,

A 1

f{x).dx = \{Xl -xQ){y,

If ^ Xn Xn X-i =

yl) + ..- + Wn-xn _ l){yn _ 1 + yn). (11)

= h, we get, by multiplying out,

f(x) . dx =
h{i(y + yn) + y2 + y, + . . . + y^. (12)

The trapezoidal rule, though more easily manipulated, is not

quite so accurate as those rules based on the parabolic formula of

Newton and Cotes.

The expression,

A.rea ANNA' = h(& + if + 1 + 1 + . . . + 1 + 1 + If + T*_), (13 )

or,
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is said to combine the accuracy of the parabolic rule with the

simplicity of the trapezoidal. It is called Durand's rule.

/
wdx

-, by the approximation form-
2 x

ulas (7), (10) and (13), assuming h = 1, n = 8. Find the absolute value of the

result and show that these approximation formulae give more accurate

results when the interval h is made smaller. Ansr. (7) gives 1*611, (10)

gives 1*629, (13) gives 1*616. The correct result is 1*610.

(2) Now try what the trapezoidal formula would give for the integration
of Ex. (2), page 339. Ansr. 263*55. Hint. From (12)

3{(14*2 + 13*7) + 14*9 + 15*3 + 15*1 + 14*5 + 14*1}.

G. Lemoine (Ann. Chim. Phys., [4], 27, 289, 1872) encountered

some non-integrable equations during his study of the action of

heat on red phosphorus. In consequence, he adopted these

methods of approximation. The resulting tables "calculated"

and " observed" were very satisfactory.

Double integrals for the calculation of volumes can be evaluated

by a double application of the formula. For illustrations, see C. W.
Merrifield's report

" On the present state of our knowledge of the

application of quadratures and interpolation to actual calculation,"

B. A. Reports, 321, 1880.

III. Mid-section Formula.

A shorter method is sometimes used. Suppose the indicator

diagram (Fig. 137) to be under investigation. Drop perpendiculars

PM and QN on to the "Atmospheric line" MN; divide MN into

n equal parts. In the diagram n = 6. Then measure the average
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length ab, cd, ef,... of each strip ; add, and divide by n. Alge-

braically, if the length of ab = y1 ;
cd = y& ; ef = y5 ; ...

Total area = -fa + yz + yb + . .
.). . (15)

111. Integration by Infinite Series.

Some integrations tax, and even baffle, the resources of the

most expert. It is, indeed, a common thing to find expressions

which cannot be integrated by the methods at our disposal. We
may then resort to the methods of the two preceding sections, or,

if the integral can be expanded in the form of a converging series

of ascending or descending powers of x, we can integrate each

term of the expanded series separately and thus obtain any desired

degree of accuracy by summing up a finite number of these terms.

If f{x) can be developed in a converging series of ascending

powers of x, that is to say, if

f(x)
= a + a

x
x + a^c

2 + a
3
x* + (1)

By integration, it follows that

if(x)dx
=

j(a + a
Y
x + a

2
x2 + . . .)dx ;

= ja dx + fa^dx + ja<fl
2dx +

= a x + \aY
x2 + \a$? + . . . ;

= x(a + \ax
x + \a<p

2 + ...) + 0. . (2)

Again, if f(x) is a converging series, jf(x)
. dx is also convergent.

Thus, if

f(x)
= 1 + x + x2 + x2 + . . . + x"- 1 + xn + . . .

, (3)11 11
f(x) . dx = x +

yX
2 +

3#
3 + . . . + -an + ^jna;n+1 + (

4
)

Series (3) is convergent when x is less than unity, for all values of

n. Series (4) is convergent when ^TiX, and therefore when x is

less than unity. The convergency of the two series thus depends
on the same condition, a?>l. If the one is convergent, the other

must be the same.

If the reader is able to develop a function in terms of Taylor's

series, this method of integration will require but few words of

explanation. One illustration will suffice. By division, or by

Taylor's theorem,

(1 + a2
)"

1 = 1 - x2 + x* - x* + ...

Consequently.

f
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1
1 2

=
\dx

- \x2 .dx + p4
. dx -

I x6
. dx + . . -. ;

.-. 1(1 + x2)-Hx - x -
lx* + \x

b -
. . . = tan

~ lx + C,

from (6), page 284.

/dx
a;

3 1.3 a;'

-t = x +
g g

+
2

'

4
+ . . . = sin

-
*x + C

ix , f f7a; o /- f^ ! sin2aj 1-3 siu4
aj \

<2) show
i T^Tx

= WsmaV +
a*

+ O- -T- + -) + c-

/o
a;

3
a;

5
a;7

*-*<*> = ^ - He +
17275

-
1727^7 + -.. + &

The two following integrals will be required later on. k2 is less than unity.

(6) How would you propose to integrate [ (1
-

a;)-
1

log x . dx in series?
o

Hint. Develop (1
-

a?)-
1 in series. Multiply through with log x.dx. Then

integrate term by term. The quickest plan for the latter operation will be

to first integrate Ja^log x . dx by parts, and show that

f xn + 1
( 1 \

ja-logz.^^^loga;- X J.

f
1
loga; _ /l 1 1 1 \

ins n, Jl \
1 2 1 x UfxY

(7) Showthat
sI^ = - +

3 1

.

2
+ ^-2 j +...

Then, remembering that 2 sin2 a: = 1 - cos x
t (35) page 612, show that

f x.dx 1 / a;
3 lx> \ _

JVl-cosa;

=
72V

2g +
3~6

+
lM00

+
---J

+ C -

(8) Show
j un-g-dB-Lv 3

"
6(a) 7

+
120(2) IT

" "
J

'

= 0-5236 - 0-0875 + 0-0069 - 0-0003 + . . . = 0-446.

We often integrate a function in series when it is a compara-

tively simple matter to express the integral in a finite form. The

finite integral may be unfitted for numerical computations. Thus,

instead of

dG mm, ^ 7/ T dG ^i + *~T ,C x

S. Arrhenius (Zeit. phys. Chem., 1, 110, 1887) used

, 1 1 xf a 1 \
kt " a

"
ci

~ Aw ~c?) (6)

because a; being small in comparison with C, (5) would not give



111. INFINITE SEKIES AND THEIR USES. 343

accurate results in numerical work, on account of the factor x~ l
,

and in (6) the higher terms are negligibly small. Again, the

ordinary integral of

dx .
,

. vo 7 1 ((a - b)x . a(b -
x)}

-*(- x) (b
-
xf; ht =

jj-jpl^-l
+ log jj^J,

from (9), page 221, does not give accurate results when a is nearly

equal to b, for the factor (a
-

b)~
2 then becomes very great. We

can get rid of the difficulty by integration in series. Add and sub-

tract (b
-

x)-
3 dx to the denominator of

dx V 1 1
l_]dx ,

(a-x)(b-xf [_{b-xf^{a-x)(b-xf (b-xfA
'

_rj *-6f 1
}ldx .

~|_(&-z)
3 b-x[(a-x)(b-xfjj

'

_rj ^/_j <z l
)idx .

l(b-xf b-x\(b-xf b-x'(a-x)(b-xffj
u"L,

f
1 *-& (a-bf (a-J>Y l

dx
l(b-xf (b-xf^^-xf (b-xf J

This is a geometrical series with a quotient (a
-

b)/(b
-

x) and

convergent when (a
-

b) < (b
-

x) ;
that is when a < b, or when

a is only a little greater than b. Now integrate term by term ;

evaluate the constant when x = and t =
;
wo get

* =
~t [_2{{b

- xf
~
PJ 3~{(b - xf

~
&)

+ "
']'

The first term is independent of a -
b, and it will be sufficiently

exact for practical work.

Integrals of the form

e~ x2
dx; or, e~ x2dx ... (7)

Jo Jo

are extensively employed in the solution of physical problems.

E.g., in the investigation of the path of a ray of light through
the atmosphere (Kramp) ;

the conduction of heat (Fourier) ;
the

secular cooling of the earth (Kelvin), etc. One solution of the

important differential equation

IV d2F

is represented by this integral. Errors of observation may also be

represented by similar integrals. Glaisher calls the first of equa-
tions (7) the error function complement, and writes it,

" erfc a?
"

;
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and the second, he calls the error function, and writes it,
"
erf x ".

J. W. L. Glaisher (Phil. Mag. [4], 42, 294, 421, 1871) and E.

Pendlebury (ib., p. 437) have given a list of integrals expressible

in terms of the error function. The numerical value of any in-

tegral which can be reduced to the error function, may then be

read off directly from known tables. See also J. Burgess, Trans.

Boy. Soc. Edin., 39, 257, 1898.

We have deduced the fact, on page 240, that functions of the

same form, when integrated between the same limits, have the same

value. Hence, we may write

e~ x2

dx=\ e- v2
dy;

Jo Jo

.-. [
e~x2dx\ e-*2

dy=[ f
e-^ +

^dxdy=\[ e~'dx\. (8)
Jo Jo JoJo Do J

Now put
y = vx ; i.e., dy = xdv.

Our integral becomes

nJo Jc
xe-*n + *>dxdv. ... (9)

o

It is a common device when integrating exponential functions to

first differentiate a similar one. Thus, to integrate jxe -"^dx, first

differentiate e~ ax2
,
and we have d(e~

ax2
)
= - 2axe~ ax2dx. From

this we infer that

[d{e
~ **2

)
- - 2a \xe

- ax2dx ; or, \xe
- ax2dx = - ~e ~ ax2 + G.

Applying this result to the " dx
"
integration of (9), we get

J
Xe dX

L 2(1 + ) Jo W + 9
since the function vanishes when x is oo. Again, from (13)

page 193, the " dv "
integration becomes

f,"s(IT^-|j
tan

"
1,

']

"-

Consequently, by combining the two last results with
(8) and (9),

it follows that

[-"**]*- |i
. -**" '- T- (10)

This fact seems to have been discovered by Euler about 1730.

There is another ingenious method of integration, due to Gauss,
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in which the penultimate integral of equations (8) is transformed

into polar coordinates and the limits are made so as to just cover

one quadrant.
IT

.*.

|[ e-^+^dxdy = Pf e~ r2r.d0.dr = gfV^r. dr = J
etc.

This important result enables us to solve integrals of the

form je
~
*^x

n
dx, for by successive reduction

JV-v . dx = (W
-

1)

2,^ 1;,
3) - 2

JV^- *. <">

when n is odd ; and, when n is even

JV-V . <te = (W
-

1)(^ 8)- 1

J^a-
<to. . (12)

All these integrals are of considerable importance in the kinetic

theory of gases, and in the theory of probability. In the former

we shall meet integrals like

t=- e~*2x*.dx; and, -t- e~ x2x*.dx. . (13)
S/TT Jo V7rj0

From (12), the first one may be written %Nma2
;
the latter 2Na/ \Ar.

If the limits are finite, as, for instance, in the probability in-

tegral,

P =A(Vo^te) ; .-. P =
-^Je-'^dt,

by putting hx = t. Develop e
" *2 into a series by Maclaurin's

theorem, as just done in Ex. (3) above. The result is that

may be used for small values of t For large values, integrate by

parts,

'

~\
e
"2dt " e

"2

(i
" A +i " ^?+ ")

By the decomposition of the limits, (4), page 241, we get

[ e~*dt -['*~*dt -[**-*&
Jo Jo J*

The first integral on the right-hand side = \ J-rr. Integrating the
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second between the limits oo and t

e~ t2

(
1 1.3 1.3.5 \

t sfX x*
+

(2^)2 (2t*y
+ ' ' / (

15
)

This series converges rapidly for large values of t. From this ex-

pression the value of P can be found with any desired degree of

accuracy. These results are required later on.

112. The Hyperbolic Functions.

I shall now explain the origin of a new class of functions, and

show how they are to be used as tools in mathematical reasoning.

We all know that every point on the perimeter of a circle is equi-

distant from the centre; and that the radius of any given circle

has a constant magnitude, whatever portion of the arc be taken.

In plane trigonometry, an angle is conveniently measured as a

function of the arc of a circle. Thus, if V denotes the length of

an arc of a circle subtending an angle at the centre, / the radius

of the circle, then
- Length of arc V

Length of radius r'

This is called the circular measure of an angle and, for this reason,

trigonometrical functions are sometimes called circular functions.

This property is possessed by no plane curve other than the circle.

For instance, the hyperbola, though symmetrically placed with

respect to its centre, is not at all points equidistant from it. The

same thing is true of the ellipse. The parabola has no centre.

If I denotes the length of the arc of any hyperbola which cuts

the #-axis at a distance r from the centre, the ratio

I

u = -,
r

is called an hyperbolic function of u, just as the ratio V\r' is a

circular function of 0. If the reader will refer to Ex. (5), page 247,

it will be found that if I denotes the length of the arc of the rect-

angular hyperbola
x2 -

2/
2 = a*, . . . . (1)

between the ordinates having abscissas a and x,

But this relation is practically that developed for cos x, on

page 286, ix, of course, being written for u. The ratio xja is
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defined as the hyperbolic cosine of u. It is usually written

cosh u, or hycos u, and pronounced "coshw," or " h-cosine u'\

Hence,
u~ u*

coshw =
\{e

u + e~ u
)
= 1 + ^ + jj +2!

'

4!
(2)

In the same way, proceeding from (1), it can be shown that

2 + e~ 2u

-v
elu -246"

which reduces to

-K^-a-X
a relation previously developed for i sin a?. The ratio y/a is called

the hyperbolic sine of u, written sinh u, or hysin u. As before

sinh u =
\(e

u - e~ u
)
= w +

3]
+

5]
+ (3)

The remaining four hyperbolic functions, analogous to the

remaining four trigonometrical functions, are tanh u, cosech u,

sech u and coth u. Values for each of these functions may be

deduced from their relations with sinh u and cosh u. Thus,

sinh u -

tanh u = - r ;
seen u =

coth u

cosh^

1
*

tanh u ; cosech u

cosh u '

1

sinh Uj

(4)

Unlike the circular functions, the ratios x/a, y/a, when referred

to the hyperbola, do not represent

angles. An hyperbolic function ex-

presses a certain relation between the

coordinates of a given portion on the

arc of a rectangular hyperbola.

Let (Fig. 138) be the centre of

the hyperbola APB, described about

the coordinate axes Ox, Oy. From M
/A M

any point P(x, y) drop a perpen-
FlG - 138 -

dicular PM on to the x-axis. Let OM = x, MP =
y, OA = a.

.'. coshu = x/a; sinhw =
y/a.

For the rectangular hyperbola, x2 = /7.2

a^cosh^u - a2sinh2w =

y*
= a". Consequently,

or cosh% - sinh% = 1.
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The last formula thus resembles the well-known trigonometrical

relation : cos2# + sin2# = 1. Draw FM a tangent to the circle

AF at P.' Drop a perpendicular FM on to the sc-axis. Let the

angle MOF = 6.

.'. x/a = sec = cosh u ; y/a = tan 6 = sinh u. . (6)

I. Conversion Formula. Corresponding with the trigonometri-

cal formulae there are a great number of relations among the

hyperbolic functions, such as (5) above, also

cosh 2x = 1 + 2 sinh2# = 2 cosh2# + 1. . (7)

sinh x - sinh y = 2 cosh \{x + y) . sinh \{x
-

y), . (8)

and so on. These have been summarized in the Appendix,
" Col-

lection of Reference Formulae ".

II. Graphic representation of hyperbolic functions. We have

seen that the trigonometrical sine,

cosine, etc., are periodic functions.

The hyperbolic functions are ex-

ponential, not periodic. This will

be evident if the student plots

the six hyperbolic functions on

squared paper, using the nu-

merical values of x and y given
in Tables IV. and V. I have

done this for y = cosh x, and

y = sechz in Fig. 139. The
graph of y = cosh x, is known in statics as the "

catenary ".

III. Differentiation of the hyperbolic functions. It is easy to

see that

#inh) d{\{f-e-')}
~dx~'

=
Tx =*(* + e ~) = cosh x -

We could get the same result by treating sinh u exactly as we
treated sin x on page 48, using the reference formulae of page 611.

For the inverse hyperbolic functions, let

y = sinh _1
#; .*. dx/dy =

coshy.

From (5) above, it follows that

cosh?/ = \/smh2
y + 1

; .-. cosh
3/
= Jx2 + 1 ;

and, from the original function, it follows that

dy _ 1

*c six
2 + T

Fig. 139.- -Graphs of cosh x and
seen x.
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IV. Integration of the hyperbolic functions. A standard col-

lection of results of the differentiation and integration of hyperbolic

functions, is set forth in the following table :

Table III. Standard Integrals.

Function.

y = sinh x.

y = cosh x.

y = tanh x.

y = coth x.

y = sech x.

y = cosech x.

y = sinh - lx.

y = cosh - lx.

y = tanh - xx.

y coth - lx.

y = sech - lx.

y = cosech - xx.

Differential Calculus.

dx
= cosh x.

dx
= smhx -

= sech2a\

-=- = cosech2x.

dy _ sinh x

dx cos h2 x
dv cosh x

dx
~ ~

sinh2 x

dy 1

dx six2 + 1
'

dy 1

dx s/x^^~l

dx
, JB<1.1-x2

dy _ 1
3,^-,

dy_ = _ 1

* Xn/x2
4-1'

Integral Calculus.

/ cosh x dx = sinh x.

/ sinh x dx = cosh #.

sech2
ic dx = tanh x. ,

cosech2 E dx= - coth a; .

da; = - sech x. .

cosh- x

/-
dx = - cosech x.

sinh2 x

I
dx

sj.

= cosh - lx. .

f
dx

Jl-x2

f
dx

J x* - 1

/dx
f dx

tanh - lx. .

coth - lx. .

= - sech x. .

= - cosech x.

(9)

(10)

(11)

(12)

(13)

(14)

(15

(16)

(17)

(18)

(19)

(20)

Examples. When integrating algebraic expressions involving the square

root of a quadratic, hyperbolio functions may frequently be substituted in

place of the independent variable. Such equations are very common in

electrotechnics. It is convenient to remember that x a tanh u, or a;=tanhw

may be put in place of a2 - a2
,
or 1 - x2

; similarly, x = a cosh u may be tried

in place of six2 - a2
;
x = a sinh u, for six2 + a2

.

(1) Evaluate j six2 + a2
. dx. Substitute x = a sinh u for six2 + a2

,
dx=

a cosh u . du. From (5), above ;
and (22) and (24), page 613,

.'. \
six2 + a2 ,dx = j sja2

{l + sinh'%) . a cosh u . du = a2
jcosh

2u . du
= a2

J(cosh2tt +l).du;
= Ja

2sinh2w + \a
2u = a sinh u . a cosh u + \a

2u.

<m lXsJ{x'
2 + a2

) + ^a
2 sinh- l

xja.

And since we are given sinh- J

2/
= \og(y + sly'

2 + 1) on page 613, (31),

'

, 5 , xja2 + x2
.

a:\x
six'2 + a2

. dx= o
i-

+ -log:
+ n/x* + a*

+ C
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(2) Now try and show that
J"
six'

1 - a2
. dx furnishes the result

%x.sJx
2 - a2 - a2

Jog (x + six1 -
a?)Ja + C, when treated in a similar manner

by substituting x = a cosh u.

(3) Find the area of the segment OPA (Fig. 138) of the rectangular

hyperbola x2 -
if = 1. Put x = cosh u; y = sinh u. From (6),

.-. Area APM = I y . dx = / sinh 2w .du = W (cosh 2u -
1) . du.

Area 4P.M"= J sinh 2u - ^. . \ Area OPA = AreaPM .OM- Area ^PM = \u.
Note the area of the circular sector OP'A (same figure) = %e, where is the

angle AOP'.

(4) Rectify the catenary curve y= c cosh x\c measured from its lowest point
Ansr. Z=csinh (xjc). Note 1= when x= 0, .*. C= 0. Hint. (26), page 613.

(5) Rectify the curve y
2 = Aax (see Ex. (1), page 246). The expression

sl(l-{-alx)dx has to be integrated. Hint. Substitute x= a sinh2^. 2ajcosh
2u.du

remains. Ansr. =
aj(l + cosh2u)dii, or a(u + sinh2w). At vertex, where

x = 0, sinh^ = 0, O = 0. Show that the portion bouDded by an ordinate

passing through the focus has I = 2-296<z. Hint. Diagrams are a great help

in fixing limits. Note x = a, .'. sinhw = 1, cosh u = si2, from (5). From

(31), page 613, sinh - ll = u = log(l + \/2). From (20), page 613, sinh 2u =
2 sinh u . cosh u.

I = a Yu + sinh 2wT =a(u + sinh u . cosh u) = a ("log(l + \/2) + J2~\.

Use Table of Natural Logarithms, Appendix II. Ansr. 2-296a.

(6) Show that y = A cosh mx + B sinh mx, satisfies the equation of

d2
yjdx

2 = m 2
y, where m, .4 and P are undetermined constants. Hint. Dif-

ferentiate twice, etc. Note the resemblance of this result with y = A cosnx +
B sin nx, which furnishes d2

y/dx
2 = - n2

y when treated in the same way.

(7) In studying the rate of formation of carbon monoxide in gas producers,

J. K. Clement and C. N. Haskins (1909), obtained the eauation

with the initial condition that x = when t = 0. Integrating, and

log5=2*.

Solving for x, we get

Qat Qai

V. Numerical Values of hyperbolic furoctions. Table IV.

(pages 616, 617, and 618) contains numerical values of the hyper-

bolic sines and cosines for values of x from to 5, at intervals of

OOl. They have been checked by comparison with Des Ingenieurs

Taschenbuch, edited by the Hiitte Academy, Berlin, 1877. The

tables are used exactly like ordinary logarithm tables. Numerical

values of the other functions can be easily deduced from those of

sinh x and cosh a; by the aid of equations (4).
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Example. The equation I = x{e>i
2x - e-*/ 2

*), represents the relation be-

tween the length I of the string hanging from two points at a distance s apart

when the horizontal tension of the string is equal to a length x of the string.

Show that the equation may be written in the form 11^ - 10 sinhw = by

writing u = 10jx and solved by the aid of Table IV., page 616. Given I = 22,

s = 20. .*. x = 13-16. Hint. Substitute s = 20, I = 22, u = 10/aj, and we get

22u -
10(e

- e- M
)
= 0; .\ Hw - 10 x ${e

u - e-) = 0; etc. u is found by

the method described in a later chapter ;
the result is u = 0-76. But

x = 10/w, etc.

VI. Dcmoivre's theorem. We have seen that

cosz =
J(e<* + e" ix

); isina =
i(e

lX - e~ iX
),

e^
x = cos x + i sin x ; . and e~ lX = cos x -

t sin x.

If we substitute nx for x, where n is any real quantity, positive or

negative, integral or fractional,

cosnx =
\{e

inx + e~'nx);ism?ix=: ^{e
Lnx - e~ Lnx

).

By addition and subtraction and a comparison with the preceding

expressions ;
we get

cos nx + t sin nx = eLnx = (cos x + t sin x)
n

\ ^n
cos nx -

i sin nx = e~ in* = (cos x
-

t sin x)
n
j

which is known as DemoiYre's theorem. The theorem is useful

when we want to express an imaginary exponential in the form of

a trigonometrical series, in certain integrations, and in solving

certain equations.

Examples. (1) Verify the following result and compare it with Demoivre's

theorem : (cos x + i sin x)
2 = (cos

2x - sin2
x) + 2t sin x . cos x = cos 2x + i sin 2x.

(2) Show e* + '0 = e*e# = e"(cos fi + isin
j8).

(3) Show Je*(cos fix + t sin fix)ax = eo*(cos fix + i sin fix)I(a + ifi) ',

_ ,.(cosfrc + i sin foe) (q
-

ifi) ,~ CaX
a' + fi

2

(a cos fix + fi sin fix) + i(
-

fi cos fix + a sin fix)~ CaX
a2 + 0*

+ G'

by separating the real and imaginary parts.

For a fuller discussion on the properties and uses of hyperbolic

functions, consult G. Chrystal's Algebra, Part ii., London, 1890 ;

and A. G. Greenhill's A Chapter in the Integral Calculus, London,
1888.



CHAPTEE VI.

HOW TO SOLVE NUMEEICAL EQUATIONS.

"The object of all arithmetical operations is to save direct enumeration.

Having done a sum once, we seek to preserve the answer foi

future use
; so too the purpose of algebra, which, by substituting

relations for values, symbolizes and definitely fixes all numerical

operations which follow the same rule." E. Mach.

113. Some General Properties of the Roots of Equations.

The mathematical processes culminating in the integral calculus

furnish us with a relation between the quantities under investiga-

tion. For example, in 20, we found a relation between the

temperature of a body and the time the body has been cooling.

This relation was represented symbolically : 6 = be'"*, where a and

b are constants. I have also shown how to find values for the

constants which invariably affect formulae representing natural

phenomena. It now remains to compute one variable when the

numerical values of the other variable and of the constants are

known. Given b, a, and to find t, or given b, a, and t to find 0.

The operation of finding the numerical value of the unknown

quantity is called solving the equation. The object of solving

an equation is to find what value or values of the unknown will

satisfy the equation, or will make one side of the equation equal

to the other. Such values of the unknown are called roots, or

solutions of the equation.

The reader must distinguish between identical equations like

(x + l)
2 = x2 + 2x + 1,

which are true for all values of x, and conditional equations like

# + 1 = 8; a;
2 + 2x + 1 = 0,

which are only true when x has some particular value or values,

in the former case, when x = 7, and in the latter when x = - 1.

352
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An equation like

a;
2 + 2a> + 2 ~ 0,

has no real roots because no real values of x will satisfy the equa-

tion. By solving as if the equation had real roots, the imaginary

again forces itself on our attention. The imaginary roots of this

equation are - 1 + J -
1, or - 1 + t. Imaginary roots in an

equation with real coefficients occur in pairs. E.g., if a + p J - 1

is one root of the equation, a -
f3 J - 1 is another.

The general equation of the nth degree is

xn + axn
~ 1 + bxn

~ 2 + . . . + qx + B = 0. . (1)

The term B is called the absolute term. If n 2, the equation is

a quadratic, x2 + ax + B ; ifn3, the equation is said to be

a cubic ; if n = 4
,
a biquadratic, etc. If xn has any coefficient, we

can divide through by this quantity, and so reduce the equation to

the above form. When the coefficients a, b, . . ., instead of being

literal, are real numbers, the given relation is said to be a numer-
ical equation. Every equation of the nth degree has n equal or

unequal roots and no more Gauss' law. E.g., xb + #4 + x + 1 = 0,

has five roots and no more.

General methods for the solution of algebraic equations of the

first, second and third degree are treated in regular algebraic text-

books; it is, therefore, unnecessary to give more than a brief

resume of their most salient features. We nearly always resort to

the approximation methods for finding the roots of the numerical

equations found in practical calculations.

After suitable reduction, every quadratic may be written in the

form :

ax* + bx + c =
; or, x2 + -x + - = 0. . (2)a a v '

If a and & represent the roots of this equation, x must be equal to

a or /?, where

- b + s/b
2 - lac -6 - n/6* - 4ac /OXa

j- ; and,0^ ^ (3)

The sum and produot of the roots in (3) are therefore so related

that a + j3
-

b/a ; a/3 c/a. Hence x2 -
(a + /3)x + a/3

=
;

or, xs - (sum of roots) x + product of roots ; (4) if one of the

roots is known, the other can be deduced directly. From the

second of equations (2), and (4) we see that the sum of the roots

is equal to the coefficient of the second term with its sign changed,
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the product of the roots is equal to the absolute term. If a is a

root of the given equation, the equation can be divided by x - a

without remainder. If ft, y, . . . are roots of the equation, the

equation can be divided by (x
-

ft) (x
-

y) . . . without remainder.

From Gauss' law, therefore, (2) may be written

(x
-

a)(x
-

ft)
= 0. ... (5)

From (3), and (4), we can deduce many important particulars re-

peoting the nature of the roots l of the quadratic. These are :

Relations between the Coefficients of Equations and their Roots.

Relation between the Coefficients. The Nature of the Roots.

/positive,

zero,
62 - 4oc is J negative,

perfect square,
I not a perfect square,

a, b, c, have the same sign,

a, o, differ in sign from c,

a, c, differ in sign from b,

a = 0,

6*0
c =
c = 0, b -

real and unequal.
real and equal.

imaginary and unequal.
rational and unequal. .

irrational and unequal.
negative.

opposite sign. . .

positive.
one root infinite. .

equal and opposite in sign.
one root zero.

both roots zero.

(6)

(7)

(8)

(9)

(10

(11)

(12)

(13)

(14)

(15)

(16)

(17)

On account of the important rdle played by the expression
b2 - 4ac, in fixing the character of the roots, "b2 - 4oc," is

called the discriminant of the equation.

Examples. (1) In the familiar equation of Guldberg and Waage
K(a -

x) {b
-

x)
=

(c + x) (d + x)

found in most text-books of theoretical chemistry, show that

K(a + b) + d + c

V{
K(a + b) + d + c\

2 cd + Kab

}'2(K -
1)

~ \ ^ 2(K -
1) J

' K-\
Hint. Expand the given equation ; rearrange terms in descending powers of

aj; and substitute in the above equations (2) and (3).

(2) If v2 - 516*17t> + 1852-6 = 0, find v. This equation arises in Ex. (4),

page 362. On reference to equations (2) and (3), a = 1 ; 6= - 516*17 ;
c = 1852*6.

Hence show that v = (516*17 508 *94)
2
.

(3) The thermal value, q, of the reaction between hydrogen and carbon

dioxide is represented by q = - 10232 + 0-168527 + 0-00101T2
, where T denotes

the absolute temperature. Show T= 3100 when q =0. Hint. You will have to

reject the negative root. To assist the calculation, note (0*1685)
2=0*02839;

4 x 10232 x 0*00101 m 41*33728 ; n/41*36567 = 6*432.

1 In the table, the words

values of the roots.

"equal" and "unequal" refer to the numerical
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114. Graphic Methods for the Approximate Solution of

Numerical Equations.

In practical work, it is generally most convenient to get ap-

proximate values for the real roots of equations of higher degree

than the second. Cardan's general method found in the regular

text-books for equations of the third degree, is generally so un-

wieldy as to be almost useless. Trigonometrical methods are

better. For the numerical equations pertaining to practical work,

one of the most instructive methods for locating the real roots, is

to trace the graph of the given function. Every point of inter-

section of the curve with the x-axis, represents a root of the

equation. The location of the roots of the equation thus reduces

itself to the determination of the points of intersection of the graph
of the equation with the rc-axis. The accuracy of the graphic method

depends on the scale of the diagram and the skill of the draughts-

man. The larger the " scale
"
the more accurate the results.

Examples. (1) Find the root of the equation x + 2 = 0. At sight, of

course, we know that the root is - 2. But plot the curve y x + 2, for

values of y when -8,-2,-1, 0, 1, 2, 3, are suc-

cessively assigned to x. The curve (Fig. 140) cuts

the x-axis when x = - 2. Hence, x = -
2, is a root

of the equation.

(2) Locate the roots of x2 - 8* + 9 - 0. Pro-

ceed as before by assigning successive values to x.

Roots occur between 6 and 7 and 1 and 2.

(8) Show that x3 - 6a;
2 + 11a - 6 - has roots

in the neighbourhood of- 1, 2, and 8.

(4) Show, by plotting, that an equation of an odd degree with real co-

efficients, has either one or an odd number of real roots. For large values of

x, the graph must lie on the positive side of the x-axis, and on the opposite

side for large negative values of x. Therefore the graph must cut the x-axis

at least once
;

if twice, then it must cut the axis

a third time, etc.

(6) Prove by plotting if the results obtained

by substituting two numbers are of opposite signs,

at least one root lies between the numbers sub-

stituted.

(6) Solve x3 + m - 2 0. Here x8 - X + 2.

Put y x3 and y - x + 2. Plot the graph of each

of these equations, using a Table of Cubes,

The abscissa of the point of intersection of

these two curves is one root of the given equa-

tion. xOM (Fig. 141) is the root required.
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(7) Show, by plotting, that an equation of an even degree with real

coefficients, has either 2, 4, ... or an even number of roots, or else no roots

at aU.

(8) Plots2 + 1

Fig. 142.

(11) If * + * =
for e*.

The curve touches but does not cut the oj-axis.

This means that the point of contact of

the curve with the aj-axis, corresponds to

two points infinitely close together. That

is to say, that there are at least two equal

roots.

(9) Solve ac
2+y2=l

;
x2 - ix = y*

-
Sy.

Plot the two curves as shown in Fig.

142 hence x = OM are the roots re-

quired.

The graphic method can also be em-

ployed for transcendental equations.

(10) If 05 + cos x = 0, we may locate

the roots by finding the point of inter-

section of the two curves y = - x and

y = cos x.

0, plot y = e* and y = - x. Table IV., page 616,

In his Die Thermodynamik in der Ghemie (Leipzig, 61, 1893),

J. J. van Laar tabulates the values of b calculated from the expres-

sion

log
- 2

1-82

v, - V

for corresponding values of v
Y
and v

2

table :

Here is part of the

Vi.
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Now set up the following table containing values of b computed
on the right and on the left sides of equation (1) :

b.
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115. Newton's Method for the Approximate Solution of

Numerical Equations.

Aooording to the above method, the equation

/(s)-y-0-7* + 7, . . . (1)

has a root lying somewhere between - 3 and - 4. We can keep
on assigning intermediate values to x until we get as near to the

exact value of the root as our patience will allow. Thus, if x = -
3,

y = + 1, ifa? = -
3*2, y = - 3*3. The desired root thus lies some-

where between - 3 and - 3*2. Assume that the actual value of

the root is - 3* 1. To get a close approximation to the root by

plotting is a somewhat laborious operation. Newton's method

based on Taylor's theorem, allows the process to be shortened.

Let a be the desired root, then

/(a)
- a* - la + 7. . . . (2)

As a first approximation, assume that a == - 3*1 + h, is the required

root. From (1), by differentiation,

dy M 7 .
ffy d*y

All suooeeding derivatives are zero. By Taylor's theorem

dy h2
d*y h* d*y

Put v - 31 and a v + h.

dv h* dh) h* d*v

Neglecting the higher powers of h, in the first approximation,

a) + 4'- 6>V>--^ * (4)

where f'(v)
= dv/dx. The value of f(v) is found by substituting

-
3*1, in (2), and the value of f\v) by substituting

-
3*1, in the

first of equations (3), thus, from (4),

/() _ 1-091 _ Q4999

Hence the first approximation to the root is - 3*05.

As a seoond approximation, assume that

a - - 3*05 + \ m v
x + hv

As before,

/K) 0-022625 +n .nmoft1_ ~
7K) 209081

~ + 01082-
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The second approximation, therefore, is - 3*048918. We can, in

this way, obtain third and higher degrees of approximation. The

first approximation usually gives all that is required for practical

work.

Examples. (1) In the same way show that the first approximation to

one of the roots of a-
8 - 4cc2 - 2x + 4 = 0, is a = 4-2491 . . . and the second

- 4-2491405. . . .

(2) If x* + 2x* + 3x - 60 - 0; x =* 2-9022834. . . .

(8) The method can sometimes be advantageously varied as follows.

Solve

(??S)'- <6>

Put x - 1, and the left side becomes 0-3975 a number very nearly 0-398. If,

therefore, we put 1 + a for x, a will be a very small magnitude.

/0-795\i + -

.
,

HSTV - /(a) (6)

By Maclaurin's theorem,

/(o) = /(0) + o/'(0) + remaining terms. . . (7)

As a first approximation, omit the remaining terms since they include higher

powers of a small quantity a. If /(0) = 0*8975, by differentiation of the left

side of (6), /(0) - - 0*5655. Hence,

/(a) - 0*3975 - 0*5655a.

But by hypothesis, /(a) * 0-398,

.-. 0-398 = 0-3975 - 0'6655a ; or, a = - 0-0008842.

Since, * 1 + a, it follows that * = 0-991158. By substituting this value of

SB in the left side of (5), the expression reduces to 0-39801 whioh is sufficiently

close to 0-398 for all practical requirements. But, if not, a more exact result

will be furnished by treating 0-9991158 + p * x exaotly as we have done

1 + o = x,

116. How to Separate Equal Roots from an Equation.

This is a preliminary operation to the determination of the

roots by a process, perhaps simpler than the above. From (5),

page 354, we see that if a, /?, y, . . . are the roots of an equation
of the wth degree,

xn + aaf- 1 + . . . + sx + B - 0,

becomes

(X
-

a) (X
-

/?) . . . (X
-

rj)
- 0.

If two of the roots are equal, two factors, say x - a and x -
f3 f

will be identical and the equation will be divisible by (x
-

a)
2

; if

there are three equal roots, the equation will be divisible by (x
-

a)
s

,

etc. If there are n equal roots, the equation will contain a factor
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(x
-

a)
n

, and the first derivative will contain a factor n(x
-

a)
n ~ l

,

or x - a will occur n - 1 times. The highest common faotor of

the original equation and its first derivative must, therefore, contain

x -
a, repeated once less than in the original equation. If there

is no common factor, there are no equal roots.

Examples. (1) x3 - 5a:
2 - Qx + 48 = has a first derivative 3a;a - 10aj-8.

!The common factor is x - 4. This shows that the equation' has two roots

equal to x + 4.

(2) x* + Ix* - 3*2 - 56a? + 60 has two roots each equal to x - 5.

117. Sturm's Method of Locating the Real and Unequal
Roots of a Numerical Equation.

Newton's method of approximation does not give satisfactory

results when the two roots have nearly equal values. For instance,

the curve

y = x3 - lx + 7

has two nearly equal roots between 1 and 2, which do not appear
if we draw the graph for the corresponding values of x and y, viz.:

x = 0, 1, 2, 3,...;

y-7, 1, 1, 13,...

The problem of separating the real roots of a numerical equa-

tion is, however, completely solved by what is known as Sturm's

theorem. It is clear that if x assumes every possible value in

succession from + oo to -
oo, every change of sign will indicate

the proximity of a real root. The total number of roots is known
from the degree of the equation, therefore the number of imaginary
roots can be determined by difference.

Number of real roots + Number of imaginary roots m Total number of roots.

Sturm's theorem enables these changes of sign to be readily

detected. The process is as follows :

First remove the real equal roots, as indicated in the preceding

section, let

y = x3 - lx + 7, . . . (1)

remain. Find the first differential coefficient,

y = Bx* - 7 (2)

Divide the primitive (1) by the first derivative (2), thus,

xs - lx + 7

3a;2 - 7
'

and we get %x with the remainder -
i(14#

-
21). Change the
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sign of the remainder and multiply by , the result

B = 2x -
3, . . . . (3)

is now to be divided into (2). Change the sign of the remainder

and we obtain,
-B-1 (4)

The right-hand sides of equations (1), (2), (3), (4),

& - 7a; + 7; 3a;2 - 7; 2a;- 3; 1,

are known as Sturm's functions.

Substitute - oo for x in (1), the sign is negative ;

(2), positive ;

(3), negative ;

(4), positive.

Note that the last result is independent of x. The changes of

sign may, therefore, be written

- + - +.
In the same way,

It
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As above, noting that if x = + 1*1, u = + 0*1, etc.,

117.

Value of x.
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In this last example we have rejected two roots because they
were inconsistent with the physical conditions of the problem under

consideration. This is a very common thing to do. Not all the

solutions to which an equation may lead are solutions of the prob-

lem. Of course, every solution has some meaning, but this may
be quite outside the requirements of the problem. A mathematical

equation often expresses more than Nature allows. In the physical

world only changes of a certain kind take place. If the velocity

of a falling body is represented by the expression v* 64s, then,

if we want to calculate the velocity when s is 4, we get v2 = 256,

or, v 16. In other words, the velocity is either positive or

negative. We must therefore limit the generality of the mathe-

matical statement by rejecting those changes which are physically

inadmissible. Thus we may have to reject imaginary roots when

the problem requires real numbers ; and negative or fractional

roots, when the problem requires positive or whole numbers.

Sometimes, indeed, none of the solutions will satisfy the condi-

tions imposed by the problem, in this case the problem is inde-

terminate. The restrictions which may be imposed by the

application of mathematical equations to specific problems, intro-

duces us to the idea of limiting conditions, which is of great

importance in higher mathematics. The ultimate test of every
solution is that it shall satisfy the equation when substituted in

place of the variable. If not it is no solution.

Examples. (1) A is 40 years, B 20 years old. In how many years will

A be three times as old as B ? Let x denote the required number of years.

.-. 40 + x 3(20 + x) ; or x = - 10.

But the problem requires a positive number. The answer, therefore, is that

A will never be three times as old as B. (The negative sign means that A
was three times as old as B, 10 years ago.)

(2) A number x is squared; subtract 7; extract the square root of the

result; add twice the number, 6 remains. What was the number x?
.-. 2x + J{x

2 -
7) = 5.

Solve in the usual way, namely, square 5 - 2x m s/x2 - 7 ; rearrange terms

and use (2), 113. Hence x = 4 or f . On trial both solutions, x 4 and
x = 2|, fail to satisfy the test. These extraneous solutions have been intro-

duced during rationalization (by squaring).

118. Horner's Method for Approximating to the Real

Roots of Numerical Equations.

When the first significant digit or digits of a root have been

obtained, by, say, Sturm's theorem, so that one root may be
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distinguished from all the other roots nearly equal to it, Horner's

method is one of the simplest and best ways of carrying the

approximation as far as may be necessary. So far as practical

requirements are concerned, Horner's process is perfection. The

arithmetical methods for the extraction of square and cube roots

are special cases of Horner's method, because to extract i/9, or

v^9, is equivalent to finding the roots of the equation x2 - 9 = 0,

or a8 - 9 = 0.

Considering the remarkable elegance, generality, and simplicity of the

method, it is not a little surprising that it has not taken a more prominent place

in current mathematical text-books. Although it has been well expounded

by several English writers, ... it has scarcely as yet found a place in English
curricula. Out of five standard Continental text-books where one would have

expected to find it we found it mentioned in only one, and there it was ex-

pounded in a way which showed little insight into its true character. This

probably arises from the mistaken notion that there is in the method some

algebraic profundity. As a matter of fact, its spirit is purely arithmetical ;

and its beauty, whioh can only be appreciated after one has used it in

particular cases, is of that indescribably simple kind which distinguishes

the use of position in the decimal notation and the arrangement of the simple

rules of arithmetic. It is, in short, one of those things whose invention was

the creation of a commonplace." Q. Chrystal, Text-book of Algebra (London,

i., 346, 1898).

In outline, the method is as follows : Find by means of Sturm's

theorem, or otherwise, the integral part of a root, and transform

the equation into another whose roots are less than those of the

original equation by the number so found. Suppose we start

with the equation
x* - 7x + 7 = 0, . . . . (1)

which has one real root whose first significant figures we have

found to be 1*3. Transform the equation into another whose

roots are less by 1*3 than the roots of (1). This is done by

substituting u + IB for x. In this way we obtain,

u + 3-90w2 - l'93w3 + -097 = 0. . . (2)

The first significant figure of the root of this equation is 0*05. Lower

the roots of (2) by the substitution of v + 0*05 for u in (2). Thus,

V2 + 4.05^2 _ i-5325t> + -010375 = 0. . . (3)

The next significant figure of the root, deduced from (3), is "006.

We could have continued in this way until the root had been

obtained of any desired degree of accuracy.

Practically, the work is not so tedious as just outlined. Let a, b, c,
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be the coefficients of the given equation, B the absolute term,

ax3 + bx 2 + ex + B = 0.

1. Multiply a by the first significant digits of the root and add

the product to b. Write the result under b.

2. Multiply this sum by the first figure of the root, add the

product to c. Write the result under c.

3. Multiply this sum by the first figure of the root, add the

product to B, and call the result the first dividend.

4. Again multiply a by the root, add the product to the last

number under b.

5. Multiply this sum by the root and add the product to the

last number under c, call the result the first trial divisor.

6. Multiply a by the root once more, and add the product to the

last number under b.

7. Divide the first dividend by the first trial divisor, and the

first significant figure in the quotient will be the second significant

of the root. Thus starting from the old equation (1), whose root

we know to be about 1.

a b c R (Boot

1 +0 -7 +7 (1-3
1 1 -6

1-6 1 First dividend.
1 2

2 - i First trial divisor.

1

~T
8. Proceed exactly as before for the second trial divisor, using

the second digit of the root, vie., 3.

9. Proceed as before for the second dividend. We finally ob-

tain the result shown in the next scheme. Note that the black

figures in the preceding scheme are the coefficients of the second of

the equations reduced on the supposition that x * 1*3 is a root of

the equation.
a' V & R [Boot18 - 4 1 (1-35

08 0-99 - 0-908

3-8 - 801 0*097 Second dividend.

0-8 1-08

8-6 - 193 Second trial divisor.

0-8

3*9
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Once more repeating the whole operation, we get,

b"
3-9

005

3-95

005

4-00

0-05

4*05

c"
- 1-93

0-1975

- 1-7325

0-2000

R"
0*097
0-086625

(Root
(1-356

0*010375 Third dividend.

1*8325 Third trial divisor.

Having found about five or seven decimal places of the root in

this way, several more may be added by dividing, say the fifth

trial dividend by the fifth trial divisor. Thus, we pass from

1-356895, to 1*356895867 ... a degree of accuracy more than

sufficient for any practical purpose.

Knowing one root, we can divide out the factor x - 1*3569 from

equation (1), and solve the remainder like an ordinary quadratic.

If any root is finite, the dividend becomes zero, as in one of

the following examples. If the trial divisor gives a result too large

to be subtracted from the preceding dividend, try a smaller digit.

To get the other root whose significant digits are 1*6, proceed
as above, using 6 instead of 3 as the quotient from the first dividend

and trial divisor. Thus we get 1*692 . . . Several ingenious short

cuts have been devised for lessening the labour in the application

of Horner's method, but nothing much is gained, when the method

has only to be used occasionally, beyond increasing the probability

of error. It is usual to write down the successive steps as indicated

in the following example.

Examples. (1) Find the root between 6 and 7 in

4*3 _ 13a;2 _ 31a. _ 275.

4 - 18 - 31 - 275 (6*26
24

- 31

66 210

11
24
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The steps mark the end of eaoh transformation. The digits in black

letters are the coefficients of the successive equations.

(2) There is a positive root between 4 and 5ina? + a? + z- 100. Ansr.

4-2644 . . .

(8) Find the positive and negative roots in a* + 8<ca + 16a; = 440. Ansr.

+ 3-976 . . .,
- 4-3504. To find the negative roots, proceed as before, but first

transform the equation into one with an opposite sign by changing the sign

of the absolute term.

(4) Show that the root between - 3 and -
4, in equation (1), is

-3*0489173396 . . . Work from a = 1, b m -0, c = -7, B = -7.

119. Yan der Waals' Equation.

The relations between the roots of equations, discussed in this

chapter, are interesting in many ways ;
for the sake of illustration,

let us take the van der Waals' relation between the pressure, p,

volume, v, and temperature, T, of a gas.

(p
+

)
(

-
b)
= BT; or, #-(* + YJv^+^v- |=0. (1)

This equation of the third degree in v, must have three roots,

a ft y, equal or unequal, real or imaginary. In any case,

(v
-

a) (v
-

0) (v
-

y)
= 0. . . (2)

Imaginary roots have no physical meaning ;
we may therefore

confine our attention to the real roots. Of these, we have seen

that there must be one, and there may be three. This means that

there may be one or three (different) volumes, corresponding with

every value of the pressure, p, and temperature, T. There are

three interesting cases :

I. There is only one real root present. This implies that there

is one definite volume, t>, corres-

ponding to every assigned value of

pressure, p t and temperature, T.

This is realized in the _pt>-curve, of

all gases under certain physical

conditions ; for instance, the graph
of carbon dioxide at 91 has only
one value of p corresponding with

each value of v. See curve GH,
Fig. 143.

II. There are three real imequal
roots present. The ^-ourve of

carbon dioxide at temperatures be-
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low 32, has a wavy curve BC (Fig. 143). This means that at this

temperature and a pressure of Op, carbon dioxide ought to have

three different volumes corresponding respectively with the abscissae

Oc, Ob, Oa. Only two of these three volumes have yet been

observed, namely for gaseous C02 at a and for liquid C02 at y,

the third, corresponding to the point /?, is unknown. The curve

AyftaD, has been realized experimentally. The abscissa of the

point a represents the volume of a given mass of gaseous carbon

dioxide, the abscissa of the point y represents the volume occupied

by the same mass of liquid carbon dioxide at the same pressure.

Under special conditions, parts of the sinuous curve yBfiCa
have been realized experimentally. Ay has been carried a little

below the line ya, and Da has been extended a little above the line

ya. This means that a liquid may exist at a pressure less than

that of its own vapour, and a vapour may exist at a pressure higher
than the "

vapour pressure
"

of its own liquid.

III. There are three real equal roots present. At and above

the point where a = /?
=

y, there can only be one value of v for any

assigned value of p. This point K (Fig. 143) is no other than the

well-known critical point of a gas. Write pe ,
ve, Tci for the critical

pressure, volume, and temperature of a gas. From (2),

(v
- af = 0; or, v -a; . . . (3)

let ve denote the value of v at the critical point when a = v vc .

Therefore, if pe denotes the pressure corresponding wiih v = ve,

from (1), and the expansion of (3),

^ -
\
b + ~7rr +

Ht
v ~

^r * ^ - 3^2 + Bv2ov - ** (4)
\ Pe / Pc P

This equation is an identity, therefore, from page 213,

dvepe
- bpe + BTe ; 3v*ep =- a

;
v*epc

= ab, . (5)

are obtained by equating the coefficients of like powers of the

unknown v. From the last two of equations (5),

ve
= Bb. . . . . (6)

From (6) and the second of equations (5),

Pc = 27
'

P* * * * W
From (6), (7), and the first of equations (5),

e
27 bB'

' * ' W
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From these results, (6), (7), (8), van der Waals has calculated the

values of the constants a and b for different gases. Let p p/p
c
,

v - v/v T - T/Tc . From (1), (6), (7) and (8), we obtain

(p+|)(3v-1)-8T, ... (9)

which appears to be van der Waals' equation freed from arbitrary

constants. This result has led van der Waals to the belief that

all substances can exist in states or conditions where the corre-

sponding pressures, volumes and temperatures are equivalent.

These he calls corresponding states uebereinstimmende Zustande.

The deduction has only been verified in the case of ether, sulphur
dioxide and some of the benzene halides.



CHAPTEE VII.

HOW TO SOLVE DIFFERENTIAL EQUATIONS.
*

Theory always tends to become more abstract as it emerges success-

fully from the chaos of facts by processes of differentiation and

elimination, whereby the essentials and their connections be-

come recognized, while minor effects are seen to be secondary
or unessential, and are ignored temporarily, to be explained by
additional means." O. Heavisidb.

120. The Solution of a Differential Equation by the

Separation of the Variables.

This chapter may be looked upon as a sequel to that on the

integral calculus, but of a more advanced character. The
" methods of integration

"
already described will be found ample

for most physico-chemical processes, but more powerful methods

are now frequently required.

I have previously pointed out that in the effort to find the

relations between phenomena, the attempt is made to prove that

if a limited number of hypotheses are prevised, the observed facts

are a necessary consequenoe of these assumptions. The modus

operandi is as follows:

1. To "anticipate Nature" by means of a "
working hypoth-

esis," which is possibly nothing more than a "convenient fiction ".

"From the practical point of view," said A. W. Biicker (Presidential

Address to the B. A. meeting at Glasgow, September, 1901), "it is a matter of

secondary importance whether our theories and assumptions are correct, if

only they guide us to results in accord with facts. ... By their aid we can

foresee the results of combinations of causes which would otherwise elude us."

2. Thence to deduoe an equation representing the momentary
rate of change of the two variables under investigation.

3. Then to integrate the equation so obtained in order to

reproduce the "
working hypothesis

"
in a mathematical form

suitable for experimental verification.

370
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So far as we are concerned this is the ultimate object of our

integration. By the process of integration we are said to solve

the equation. For the sake of convenience, any equation contain-

ing differentials or differential coefficients will, after this, be called

a differential equation.

I. The variables can be separated directly.

The different equations hitherto considered have required but

little preliminary arrangement before integration. For example,
the equations representing the velocity of chemical reactions have

the general type :

-*/(). . . . . a)

We have invariably collected all the x's on one side, the V s, on

the other, before proceeding to the integration. This separation of

the variables is nearly always attempted before resorting to other

artifices for the solution of the differential equation, because the

integration is then comparatively simple.

Examples. (1) Integrate the equation, y . dx + x . dy m 0. Rearrange
the terms so that

by multiplying through with 1/xy. Ansr. log x + log y C. Two or more

apparently different answers may mean the same thing. Thus, the solution

of the preceding equation may also be written, log By loge ; i.e., xy = ea \

or log xy = log C ; i.e., xy = C. C and logC are, of course, the arbitrary

constants of integration.

(2) F. A. H. Schreinemaker (Zeit. phys. Chem., 36, 413, 1901) in his

study of the distillation of ternary mixtures, employed the equation dy/dx =
ay/x. Hence show that y = Cx*. He calls the graph of this equation the
"
distillation curve ".

(8) The equation for the rectilinear motion of a partiole under the in-

fluence of an attractive force from a fixed point if v . dv/dx + ax~ 3 =
; .\

Jv
2 - a\x + C.

(4) In consequence of imperfeot insulation, the charge on an electrified

body is dissipated at a rate proportional to the magnitude E of the charge.

Hence show that if a is a constant depending on the nature of the body, and

E represents the magnitude of the charge when t (time) = 0, E = 2E e-*.

Hint. Compound interest law. Integrate by the separation of the variables.

Interpret your result in words.

(5) Solve (1 + x*)dy = >Jy . dx. Ansr. 2 Jy - tan - lx = C.

(6) Solve y - x . dy/dx = a(y + dy/dx). Ansr. y = C(a + x) (1- a).

(7) Abegg's formula for the relation between the dielectric oonstant, JD, of

AA*
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_ Q

a fluid and temperature 9, is - dD/dO = y^D. Hence show that D = Ce ttrf,

where is a constant whose value is to be determined from the conditions of

the experiment. Put the answer into words.

(8) What curves have a slope
-

y\x to the #-axis ? Ansr. The rectangular

hyperbolas xy = C. Hint. Set up the proper differential equation and solve.

(9) The relation between small changes of pressure and volume of a gas

under adiabatic conditions, is ypdv + vdpO. Hence show that pv~l= constant.

(10) A lecturer discussing the physical properties of substances at very low

temperatures, remarked "
it appears that the specific heat, o-, of a substance

decreases with decreasing temperatures, 6, at a rate proportional to the

speoific heat of the substance itself". Set up the differential equation to

represent this "law" and put your result in a form suitable for experimental

verification. Ansr. (logr -
logo-)/0

= const.

(11) Helmholtz's equation for the strength of an electric current, C, at the

time t%
is C = E/B -

(L/B)dC/dt, where E represents the electromotive force

in a circuit of resistance B and self-induction L. If E, B, L, are constants,

show that BC - E(l - -/*) provided = 0, when t = 0.

(12) The distance x from the axis of a thick cylindrical tube of metal is re-

lated to the internal pressure _p as indicated in the equation (2p
- a)dx + xdp=0,

where a is a constant. Hence show th&tp = $a + Cx- 2
.

(18) A substitution will often enable an equation to be treated by this

simple method of solution. Solve (x
- y

2
)dx + 2xydy = 0. Ansr. xe v<il

x = O.

Hint. Put 2/
2 = v, divide by a;

2
,

.-. dxjx + d(y/x) = 0, etc.

(14) Solve Dulong and Petit's equation: dd/dt = b(c9
-

1), page 60. Put

cP - 1 = x and differentiate for dd and dx. Hence dx = c# log c . d0,

dd = dx\c$ log c
;
and page 213, Case 1.

f dd f dx .., ,
x

_,

]*rzn-
=

] x(x + l)\ogc
>

.'. Wlogc-logj^ri + C; etc.

(15) Solve Stefan's equation : dd/dt = a{(273 + a)
4 - 2734

}, page 60. Put

x = 273 + 9 and c = 273. Hence the given equation can be written dxjdt

= a(x
4 - c4 ) = a(x + c) (x

-
c) (<c

2 + c2) which can be solved by Case 3, page

216. Thus, at = -L (log lii - 2 tan-* - ) + c.

4c3 I 6 x + c cJ

(16) Solve du/dr -
%i\r G

A \r
2 -

\ar
2

. Substitute v = ujr\ .*. rdv/dr =

dujdr -
uff. .-. dvjdr = G^r* -

Jor; .-. ujr = C2
-

^Cj/r
2 - ir2

.

(17) According to the Glasgow Herald the speed of H.M.S. Sapphire was

V when the engines indicated the horse-power P. When

P = 5012, 7281, 10200, 12650
;

V = 18-47, 20-60, 22-43, 23-63.

Do these numbers agree with the law dPjdVaP, where a is constant?

Ansr. Yes. Hint. On integration, remembering that "V = when P = 0, we

get log10P -
log10O = 7, where G is constant. Evaluate the constants as

indicated on page 324, we get C = 181, a = 0-07795, etc.

II. The equation is homogeneous in x and y.

If the equation be homogeneous in x and y, that is to say, if

the sum of the exponents of the variables in each term is of the
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same degree, a preliminary substitution of x =
ty, or y =

tx, ac-

cording to convenience, will always enable variables to be separated.

The rule for the substitution is to treat the differential which in-

volves the smallest number of terms.

Examples. (1) Solve x + y . dyjdx - 2y m 0. Substitute y = ex ; or

dy = xdz + zdx
t
and rearrange terms. We get (1

- 2z + z%)dx + xzdz =
; or

(1
- zfdx + xzdz = ; and

\-0zy
+ \%

= G; '

f^i + log(1
~

z) + logx = '
' {X

" &*!? = C'

(2) F. A. H. Schreinemaker (Zeit. phys. Ghem., 36, 413, 1901) in studying

the vapour pressure of ternary mixtures used the equation dyjdx = myfx + n

This becomes homogeneous when x = ty is substituted. Hence show that

Cxm - nx/(m -
1)
= y, where G is the integration constant.

(3) Show that if (y
- x)dy + ydx = ; y = Ce -*t .

(4) Show that if x*dy - y
ldx - xydx = 0; x = e - * + G.

(5) Show that if {x* + y
2
)dx = 2xydy ;

z2 -
jf = Cx.

III. The equation is non-homogeneous in x and y.

Non-homogeneous equations in x and y can be converted into

the homogeneous form by a suitable substitution. The most

general type of a non-homogeneous equation of the first degree is,

(ax + by + c)dx + (a'x + b'y + c')dy
= 0, . (2)

where x and y are of the first degree. To convert this into an

homogeneous equation, assume that x = v + h
; and y w + k,

and substitute in the^iven equation (2). Thus, we obtain

{av + bw + (ah + bk + c)}dv + {a'v + b'w + (a'h + b'k + c') }dw = 0. (3)

Find h and k so that ah + bk + c = ;
a'h + b'k + c' = 0.

'\*-" Hb^~ab' '
a'b - ab" ' *

(**

Substitute these values of fe and & in (3). The resulting equation

(av + 6w)aH; + (a'v + b'w)dw = 0, . (5)

is homogeneous and, therefore, may be solved as just indicated.

Examples. (1) Solve (Sy
- Ix - l)dx + (7y

- 3x -
S)dy 0- Ansr.

(y
- x - 1)% + x + l)

5 = C. Hints. From (2), a=-7, 6*3, c = - 7 :

a' = -
3, 6' = 7, c' = - 3. From (4), fc = -

1, & = 0. Hence, from (3), we

get Stock) - Ivdv + Iwdw - Svdiv = 0. To solve this homogeneous equation,
substitute w = vt, as above, and separate the variables.

dv 3 - It ,. _ fdv f 2dt f 5dt _
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.-. 7 log v + 21og(*
-

1) + 51og(* + 1)
= C ; or, v'(t

-
1)

2
(* + l)

5 = C.

But x *= v + h, .'. v = x + 1
; y = w + k, .\ y = w ; .'. t = w\v = yj(x + 1), etc.

(2) If {2y - x -
l)dy + (2x

- y + l)dx = 0; x2 - xy + y* + x - y = C.

IV. Non-homogeneous equations in which the constants have the

special relation ab' = a'b.

If a : b = a' : b' = 1 : m (say), then h and k are indeterminate,

since (2) then becomes

(ax + by + c)dx + {m(ax + by) + c'}dy
= 0.

The denominators in equations (4) also vanish. In this case put
z = ax + by, and eliminate y } thus, we obtain,

, z + c dz
/ft

v

a _ J . _ -_ -
o, . . . (b)mz +c ax

an equation which allows the variables to be separated.

Examples. (1) Solve (2x + Sy - b)dy + (2x + 3y -
l)dx = 0.

Ansr. x + y - 4 log(2 + Sy + 7)
= C.

(2) Solve (Sy + 2x + )dx
-

(4 + 6y + h)dy = 0.

Ansr. 9 log{(21y + 14a; + 22)}21(2j/
-

a?)
.- O.

When the variables cannot be separated in a satisfactory manner,

special artifices must be adopted. We shall find it the simplest

plan to adopt the routine method of referring each artifice to the

particular class of equation which it is best calculated to solve.

These special devices are sometimes far neater and quicker pro-

cesses of solution than the method just described. We shall follow

the conventional x and y rather more closely than in the earlier

par* of this work. The reader will know, by this time, that his

x and 2/'s, his p and y's and his s and t's are not to be kept in

"water-tight compartments ". It is perhaps necessary to make a

few general remarks on the nomenclature.

121. What is a Differential Equation?

We have seen that the straight line,

y = mx + 6, . . . (1)

fulfils two special conditions :
(i)

It cuts one of the coordinate axes

at a distance b from the origin ; (ii)
It makes an angle tan a = m,

with the a;-axis. By differentiation,

dy fO\

This equation has nothing at all to say about the constant b.
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That oondition has been eliminated. Equation (2), therefore,

represents a straight line fulfilling one condition, namely, that

it makes an angle tan
_ lm with the rc-axis. Now substitute (2)

in (1), the resulting equation,

y = %x + h <8)

in virtue of the constant b, satisfies only one definite condition,

(3), therefore, is the equation of any straight line passing through

b. Nothing is said about the magnitude of the angle tan
~ 1m.

Differentiate (2). The resulting equation,

g-0, . . . . (4)

represents any straight line whatever. The special conditions

imposed by the constants m and b in (1), have been entirely

eliminated. Equation (4) is the most general equation of a

straight line possible, for it may be applied to any straight line

that can be drawn in a plane.

Let us now find a physical meaning for the differential equation.

In 7, we have seen that the third differential coefficient, dh/dt*

represents "the rate of change of acceleration from moment to

moment". Suppose that the acceleration d2
s/dt

2
, of a moving

body does not change or vary in any way. It is apparent that the

rate of change of a constant or uniform acceleration must be zero.

In mathematical language, this is written,

dh/dt* - (5)

By integration we obtain,

d2
s/dt

2 = Constant = g. . . (6)

Equation (6) tells us not only that the acceleration is constant, but

it fixes that value to the definite magnitude g ft. per second.

Remembering that acceleration measures the rate of change of

velocity, and integrating (6), we get,

ds/dt - gt + Gv . . . . (7)

From 71, we have learnt how to find the meaning of Gv Put

t = 0, then ds/dt = Gv This means that when we begin to reckon

the velocity, the body may have been moving with a definite velocity

Cv Let G
1
= v ft. per second. Of course if the body started from

a position of rest, G1
= 0. Now integrate (7) and find the value of

C
2 in the result,

s = $g t* +-V + Cv . . . (8)
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by putting t m 0. It is thus apparent that G2 represents the space
which the body had traversed when we began to study its motion.

Let C2
*= s ft. The resulting equation

* = $gt
2 + v t + o, . . . (9)

tells us three different things about the moving body at the instant

we began to take its motion into consideration.

1. It had traversed a distance of s ft. To use a sporting phrase,
if the body is starting from "

scratch," s = 0.

2. The body was moving with a velocity of v
Q ft. per second.

3. The velocity was increasing at the uniform rate of g ft. per

second.

Equation (7) tells us the two latter facts about the moving body ;

equation (6) only tells us the third fact
; equation (5) tells us no-

thing more than that the acceleration is constant. (5), therefore, is

true of the motion of any body moving with a uniform acceleration.

Examples. (1) A body falls from rest. Show that it travels 400 ft. in

5 sec. Hint. Use g = 32.

(2) A body starting with a velocity of 20 ft. per sec. falls in accord with

equation (7) ;
what is its velocity after 6 seconds ? Ansr. 212 ft.

(3) A body dropped from a balloon hits the ground with a velocity of

384 ft. per sec. How long was it falling ? Ansr. 12 seconds.

(4) A particle is projected vertically upwards with a velocity of 100 ft.

per sec. Find the height to which it ascends and the time of its ascent.

Here d?sjdt
a - g ; multiply by 2ds/dt, and integrate

ds &*
A
dt

'

dt*

when the particle has reached its maximum height dsjdt = ; and, therefore,

* - Wl9 = 1 irL
!

f m (7). since C, = 100 v
, t = vjg - >#

(5) If a body falls in the air, experiment shows that the retarding effect

of the resisting air is proportional to the square of the velocity of the moving

body. Instead of g, therefore, we must write g
- bv2

,
where b is the variation

constant of page 22. For the sake of simplicity, put b = g\o? and show that

e9t la _ e -gt\a a* ggtfa + e ~gtla tf gj,
v = V/ + g -*' ;

5 =" 7 l0
2

"
^iogoosh-,

since v = 0, when t 0, and 5=0 when =0. Hint. The equation of motion

i3 dvjdt = g - bv*.

Similar reasoning holds good from whatever sources we may
draw our illustrations. We are, therefore, able to say that a

differential equation, freed from constants, is the most

general way of expressing a natural law.

Any equation can be freed from its constants by combining it

d
\dt) ft

da /ds\*
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with the various equations obtained by differentiation of the* given

equation as many times as there are constants. The operation is

called elimination. Elimination enables us to discard the ac-

cidental features associated with any natural phenomenon and to

retain the essential or general characteristics. It is, therefore,

possible to study a theory by itself without the attention being

distracted by experimental minutiae. In a great theoretical work

like "Maxwell" or "Heaviside," the differential equation is

ubiquitous, experiment a rarity. And this not because experi-

ments are unimportant, but because, as Heaviside puts it, they

are fundamental, the foundations being always hidden from view

in well-constructed buildings.

Examples. (1) Eliminate the arbitrary constants a and 6, from the

relation y = ax + bx2 . Differentiate twice
;
evaluate a and b ; and substitute

the results in the original equation. The result,

is quite free from the arbitrary restrictions imposed in virtue of the presence
of the constants a and b in the original equation.

(2) Eliminate m from y* = 4maj. Ansr. y m 2x . dyfdx.

(3) Eliminate a and b from y a cob* + 6 sin x. Ansr. d^yjdx
2 + y * 0.

We always assume that every differential equation has been

obtained by the elimination of constants from a given equation

called the primitive. In practical work we are not so much
concerned with the building up of a differential equation by the

elimination of constants from the primitive, as with the reverse

operation of finding the primitive from which the differential

equation has been derived. In other words, we have to find

some relation between the variables which will satisfy the differ-

ential equation. Given an expression involving x, y, dx/dy,

d'2x/dy
2

, . . ., to find an equation containing only x, y and con-

stants which can be reconverted into the original equation by the

elimination of the constants.

This relation between the variables and constants which satisfies

the given differential equation is called a general solution, or a

complete solution, or a complete integral of the differential

equation. A solution obtained by giving particular values to the

arbitrary constants of the complete solution is a particular solu-

tion. Thus y = mx is a complete solution of y = x . dy/dx ;

y x tan 45, is a particular solution.
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A differential equation is ordinary or partial, according as

there is one or more than one independent variables present.

Ordinary differential equations will be treated first. Equations
like (2) and (3) above are said to be of the first order, because

the highest derivative present is of the first order. For a similar

reason (4) and (6) are of the second order, (5) of the third order.

The order of a differential equation, therefore, is fixed by that

of the highest differential coefficient it contains. The degree of a

differential equation is the highest power of the highest order of

of differential coefficient it contains. This equation is of the second

order and first degree :

It is not difficult to show that the complete integral of a differ-

ential equation of the nth order, contains n, and no more than n,

arbitrary constants. As the reader acquires experience in the

representation of natural processes by means of differential equa-

tions, he will find that the integration must provide a sufficient

number of undetermined constants to define the initial conditions

of the natural process symbolized by the differential equation. The

complete solution must provide so many particular solutions (con-

taining no undetermined constants) as there are definite conditions

involved in the problem. For instance, equation (5), page 375, is

of the third order, and the complete solution, equation (9), requires

three initial conditions, g, s
,
v to be determined. Similarly, the

solution of equation (4), page 375, requires two initial conditions,

m and b, in order to fix the line.

122. Exact Differential Equations of the First Order.

The reason many differential equations are so difficult to solve

is due to the fact that they have been formed by the elimination

of constants as well as by the elision of some common factor from

the primitive. Such an equation, therefore, does not actually re-

present the complete or total differential of the original equation

or primitive. The equation is then said to be inexact. On the

other hand, an exact differential equation is one that has been

obtained by the differentiation of a function of x and y and per-

forming no other operation involving x and y.

Easy tests have been described, on page 77, to determine
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whether any given differential equation is exact or inexact. It

was pointed out that the differential equation,

M.dx + N.dy~Qt . . . (1)

is the direct result of the differentiation of any function u, provided,

This last result was called " the criterion of integrability," because,

if an equation satisfies the test, the integration can be readily per-

formed by a direct process. This is not meant to imply that only
such equations can be integrated as satisfy the test, for many equa-
tions which do not satisfy the test can be solved in other ways.

Examples. (1) Apply the test to the equations, ydx + xdy = 0, and

ydx - xdy = 0. In the former, M ~ y, N -, x\ .-. dM/dy = 1, dtydx - U
.*. ?)Mfdy =* dN/dx. The test is, therefore, satisfied and the equation is exact.

In the other equation, M = y, N = -
x, .: ?>Mfdy = 1, "dNfdx = - 1. This

does not satisfy the test. In oonsequence, the equation cannot be solved by
the method for exact differential equations.

(2) Show that {a?y + x*)dx + (b
3 + a?x)dy = 0, is exact.

(8) Is the equation, (x + 2y)xdx + (x*
-

y*)dy = 0, exaot ? M x(x + 2y),

N=x* -y2
; .-. dMfdy * 2x, dNfdx = 2x. . The condition is satisfied, the

equation is exact.

(4) Show that (siny + y coBx)dx + (since + x cos y)dy = 0, is exaot.

I. Equations which satisfy the criterion of integrability.

We must remember that M is the differential coefficient of u

with respect to x, y being constant, and N is the differential co-

efficient of u with respect to y, x being constant. Hence we may
integrate Mdx on the supposition that y is constant and then treat

Ndy as if x were a constant. The complete solution of the whole

equation is obtained by equating the sum of these two integrals to

an undetermined constant. The complete integral is

u = O (3)

Example. Integrate x(x + 2y)dx + (x
2 - y

2
)dy = 0, from the preceding

set of examples. Since the equation is exact, M = x(x + 2y) ; JVo x2 - y
2

;

.'. jMdx = jx(x + 2y)dx = %x
3 + x^y = Y, where Fis the integration constant

which may, or may not, contain y, because y has here been regarded as a con-

stant. Now the result of differentiating %x
z + x*y = F, should be the original

equation. On trial, x2dx + 2xydx + x2
dy dY. On comparison with the

original equation, it is apparent that dY = y
2
dy ; .*. F = ^y

3 + C. Sub-

stitute this in the preceding result. The complete solution is, therefore,

2? + x^y
- ly

3 = C. The method detailed in this example can be put into a

more practical shape.
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To integrate an exact differential equation of the type

M . dx + N . dy = 0,

first find jM . dx on the assumption that y is constant and substi-

tute the result in

E.g., in x(x + 2y)dx + (x
2 - y

2
)dy = 0, it is obvious that jMdx is

Ja?
8 + x2

y, and we may write down at once

^3 + X2
y +

jj^
_ y

, _ ^3 + x^dy = G.

.\ $x* + a% + j(x
2 -

y
2 - x2

)dy = C; or, \x
z + x2

y -
\y* - C.

If we had wished we could have used

^Ndy +^(m -^Ndy^dx
= C,

in place of (4), and integrated jN . dy on the assumption that x is

constant.

In practice it is often convenient to modify this procedure. If

the equation satisfies the criterion of integrability, we can easily

pick out terms which make Mdx + Ndy *= 0, and get

Mdx + Y; and Ndy + X,

where T cannot contain x and X cannot contain y. Hence if we
can find Mdy and Ndx, the functions X and T will be determined.

In the above equation, the only terms containing x and y are

%xydx + x2
dy, which obviously have been derived from x2

y. Hence

integration of these and the omitted terms gives the above result.

Examples. (1) Solve (x
2 - xy - 2y

2
)dx + (y

2 -
4<cy

- 2x2)dy = 0. Pick

out terms in x and y, we get - (xy + 2y
2
)dx - (xy + 2x*)dy =0. Integrate.

.. - 2x2
y - 2xy

2 = constant. Pick out the omitted terms and integrate for

the complete solution. We get,

jx
2dx + jy

2
dy - 2aty - 2xy

2 = O ; .'.x'A - 5x*y - 6xy
2 + y

3 = constant.

(2) Show that the solution of (a?y + x2
)dx + (6

3 + a2
x)dy = 0, furnishes

the relation a?xy + b3y + $x
s = C. Use (4).

(3) Solve {x
2 - y

2
)dx

- 2xydy = 0. Ansr. %x
2 - y* = Cfx. Use (4).

II. Equations which do not satisfy the criterion of integrability.

As just pointed out, the reason any differential equation does

not satisfy the criterion of exactness, is because the "
integrating

factor
" has been cancelled out during the genesis of the equation

from its primitive. If, therefore, the equation

Mdx + Ndy =

0,
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does not satisfy the criterion of integrability, it will do so when
the factor, previously divided out, is restored. Thus, the pre-

ceding equation is made exact by multiplying through with the

integrating factor /x. Hence,

^(Mdx + Ndy) = 0,

satisfies the criterion of exactness, and the solution can be obtained

as described above.

123. How to find Integrating Factors.

Sometimes integrating factors are so simple that they can be

detected by simple inspection.

Examples. (1) ydx - xdy is inexact. It becomes exact by multipli-

cation with either x - 2
,
x- 1 ,y~\ or y- 2

.

(2) In (y
-

x)dy + ydx 0, the term containing ydx - xdy is not exact,

but becomes so when multiplied as in the preceding example.

dy xdy - ydx . . x ~
.'. J

- -~
f-

0; or, logy - - - 0.

We have already established, in $6, that an integrating factor

always exists which will make the equation

Mdx + Ndy m 0,

an exact differential. Moreover, there is also an infinite number
of such factors, for if the equation is made exact when multiplied

by /a, it will remain exact when multiplied by any function of
//,.

The different integrating factors correspond to the various forms

in which the solution of the equation may present itself. For

instance, the integrating factor a;" 1
^"

1
,
of ydx + xdy = 0, corre-

sponds with the solution log a? + logy = G. The factor y~ 2 corre-

sponds with the solution xy G. Unfortunately, it is of no

assistance to know that every differential equation has an infinite

number of integrating factors. No general practical method is

known for finding them ;
and the reader must consult some special

treatise for the general theorems concerning the properties of in-

tegrating factors. Here are four elementary rules applioable to

special cases.

Role I. Since

d(x
m
y
n
)
= xm~ l

y
n
-\mydx + nxdy),

an expression of the type mydx + nxdy = 0, has an integrating

factor xm
~ 1
y
n~ 1

; or, the expression

xyP(mydx + nxdy) = 0, . . (1)
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has an integrating factor

or more generally still,

ajji-y*-!-^ . . . (2)

where k may have any value whatever.

Example. Find an integrating factor of ydx - xdy = 0. Here, a = 0,

fi = 0, m = 1, n = - 1 /. y
-2 is an integrating factor of the given equation.

If the expression can be written

x^imydx + nxdy) + xa
'yP'(m'ydx + n'xdy) = 0, . (3)

the integrating factor can be readily obtained, for

x*n
- 1 -

aykn
- 1 - fi

.
ftnd tf'm'

- 1 - ay^ - 1 - ^
are integrating factors of the first and second members respectively.

In order that these factors may be identical,

km - 1 - a = k'm' - 1 - a'
;
kn - 1 -

/J
= k'n' - 1 - p.

Values of k and k' can be obtained to satisfy these two conditions

by solving these two equations. Thus,

h n'(a
-

a')
-

rn'tf
-

/?') . v _ n(a -
a')

-
m(/3

-
ff)

wn' - m'n
*

mn' - m'n
'

^ '

Examples. (J) Solve y*{ydx
-

2xdy) + x*(2ydx + xdy) = 0. Hints. Show
that a = 0, = 3, m = 1, n = - 2

;
o' = 4, 0' = 0, m' = 2, n' = 1 ; .-.

xk-iy-vt-4 ^ an integrating factor of the first, xw ~ 5
y*'

"" 1 of the second

member. Hence, from (4), k m - 2, k' = 1, .*. x~ 5
is an integrating factor of

the whole expression. Multiply through and integrate for 2x*y
- y

4 = Ccc2 .

(2) Solve (y
3 -

2ya;
2
)da; + (2a*/

2 - ic
3)^ = 0. Ansr. afyV - a;

2
)
= 0. In-

tegrating factor deduced after rearranging the equation is xy.

Rule II. If the equation is homogeneous and of the form :

Mdx + Ndy = 0, then (Mx + Ny)
~ 1 is an integrating factor.

Let the expression

Mdx + Ndy =

be of the mth degree and
/x,
an integrating factor of the nth degree,

.-. fiMdx + fjiNdy = du, . . . (5)

is of the (m + n)th degree, and the integral u is of the (m + n + l)th

degree. By Euler's theorem, 23,

.-. fiMx + fiNy = (m + n + l)u. . . (6)

Divide (5) by (6),

Mdx + Ndy _ 1 du

Mx + Ny
~
m + n + 1' ~u~'

The right side of this equation is a complete differential, conse-
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quently, the left side is also a complete differential. Therefore,

the factor (Mx + Ny)
" 1 has made Mdx + Ndy = an exact

differential equation.

Examples. (1) Show that (x*y
- xy

3
)-

1
ia an integrating factor of

i??y + y3
)dx - 2xy

2
dy = 0.

(2) Show that l/(a;
2 - nyx+ya

)
is an integrating factor of ydy + (x- ny)dx =0.

The method, of oourse, cannot be used if Mx + Ny is equal to zero. In

this case, we may write y ** Cx, a solution.

Rule III. If the equation is homogeneous and of the form :

A(x > y)vdx + /(*! v)xdv = o>

then (Mx - Ny)
" * is an integrating factor.

Example. Solve (1 + xy)ydx + (1
- xy)xdy = 0. Hint. Show that the

integrating factor is l/2a;V- Divide out . .'. \Mdx = -
ljxy + log x. Ansr.

x = Cye .

y

If Mx - Ny = 0, the method fails and xy m G is then a solu-

tion of the equation. E.g., (1 + xy)ydx + (1 + xy)xdy =. 0.

Rule IY. If jd-^ y-jwa function of x only, ej
Ax)dx is an

integrating factor. Or, if -g^
-
-^J

-
f(y), then e^)dv is an

integrating factor. These are important results.

Examples. (1) Solve (as
2 + y

%
)dx

- 2xydy = 0. Ansr. x2 - y
2 = Gx.

Hint. Show f(x)= -Ste-l. The integrating factor is *-'**-i*= a=e
-i<**

= a;-2. Prove that this is an integrating factor, and solve as in the preced-

ing section.

(2) Solve {y
4 + 2y)dx + (xy

3 + 2y*
-

ix)dy = 0. Ansr. xy
2 + y

4+ 2x=Cy2
.

We may now illustrate this rule for a special case, as we shall

want the result later on. The steps will serve to recall some of the

principles established in some earlier chapters. Let

| + Pj,
= 0, . . . . (7)

where P and Q are either constants or functions of x. Let fi be an

integrating factor which makes

ay + (Py - Q)dx 0, . . . (8)

an exact differential.

.-. fidy + ix(Py
-

Q)dx= Ndy + Mdx.

is
- % -w -% + p"- s- <** -

>sf
+ *v

dx - (Py -
<?)|^r

+ P^fe = -
|fidy

+ P^te.
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* dx +
ty

dy = */*
- p

f
jdx -

* p - - -

>

*

$pdx = log/* ;

and since log^e
= 1, (jPdx) log e = log ju, ; consequently

.ygL-fP* (9)

is the integrating factor of the given equation (7).

124. Physical Meaning of Exact Differentials.

Let AP (Fig. 144) be the path of a particle under the influence

of a force F making an angle with the tangent
PT of the curve at the point P(x, y). Let W
denote the work done by the particle in passing
from the fixed point A(a, b) to its present position

P(x, y). Let the length AP be s. The work,

dW, done by the particle in travelling a distance

ds will now be

dW = F. gob e.ds. (1)

Let PT and PF respectively make angles a and /? with the #-axis.

Hence, as on page 126, dx/ds = cos a
; dy/ds = sin a

;
.*. = a - ft

.-. .Foos = .Fcos (a
-

j3)
= J7

cos a . cos/3 + Fqw. a . sin ft

by a well-known trigonometrical transformation (24) page 612.

,.F.-F~.&+F*L&_ JI + y%. (2)

where X is put for F cos ft and Y for F sin ft; Xand Fare ob-

viously the two components of the force parallel with the coordinate

axes. From (1),

<*-(*+*D*. w
I. Let Xdx + Ydy be a complete differential.

Let us assume that Xdx + Ydy is a complete differential of the

function u =
f(x, y). Hence

1Trr fin dx ~bu dy\ ,

by partial differentiation. In order to fix our ideas, let

u = tan
" l

(yl%) Fig. 144. Hence, Ex. (5), page 49,

** - ^% - ^,
where r2 is put in place of x2 + y

2
. From (4),

^TF
_ fx dy y dx\ _ du

"aT
~

\^' ds
~
r^ds)

=
ds'
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The rate dW/ds at which the work is performed by the particle

changes as it moves along the curve and is equal to the rate, du/ds,
at which the function f(x, y) changes. Any change in W is accom-

panied by a corresponding change in the value of u. Hence, as

the particle passes from A to P, the work performed will be

rl x '

and by integration, W = U + constant.

This means that the work done by the particle in passing from a

fixed point A to another point P(x, y) depends only upon the value

of u, and u is a function of the coordinates, x and y, of the point P.

It will be obvious that if the particle moves along a closed

curve the work done will be zero. If the origin lies within the

closed curve, u will increase by 2-n- when P has travelled round the

curve. In that case the work done is not zero. The function u is

then a multi-valued function.

Example. If X =
y, and Y = x, dW = (xdx + ydy) = d(xy) ; or, by in-

tegration W = xy + C. We do not need to know the equation of the path.

The work done is simply a function of the coordinates of the end state. The

constant C serves to define the initial position of the point A (a, b).

The first law of thermodynamics states that when a quantity of

heat, dQ, is added to a substance, one part of the heat is spent in

changing the internal energy, dU, of the substance and another

part, dW, is spent in doing work against external forces. In

symbols,

dQ = dU + dW.

In the special case, when that work is expansion against atmospheric

pressure, dW = p.dv. Now let the substance pass from any state

A to another state B (Fig. 145). The internal energy of the sub-

stance in the state B is completely deter-

mined by the coordinates of that point,

because U is quite independent of the

nature of the transformation from the

state A to the state B. It makes no

difference to the magnitude of U whether

that path has been vid ABB or AQB.
jp

B'

In this case U is completely defined bv ,,-
,. , ! -.

FlG - 145 -

the coordinates of the point corresponding
to any given state. In other words dU is a complete differential.

BB
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On the other hand, the external work done during the trans-

formation from the one state to another, depends not only on the

initial and final states of the substance, but also on the nature of

the path described in passing from the state A to the state B.

For example, the substance may perform the work represented by
the area AQBB'A' or by the area APBB'A', in its passage from the

state A to the state B. In fact the total work done in the passage
from A to B and back again, is represented by the area APBQ.
In order to know the work done during the passage from the state

A to the state B, it is not only necessary to know the initial and

final states of the substance as defined by the coordinates of the

points A and B, but we must know the nature of the path from

the one state to the other.

Similarly, the quantity of heat supplied to the body in passing
from one state to the other, not only depends on the initial and final

states of the substance, but also on the nature of the transforma-

tion. All this is implied when it is said that " dW and dQ are not

perfect differentials ". dW and dQ can be made into complete differ-

entials by multiplying through with the integrating factor
/x. The

integrating factor is proved in thermodynamics to be equivalent to

the so-called Carnot's function. To indicate that dW and dQ are

not perfect differentials, some writers superscribe a comma to the

top right-hand corner of the differential sign. The above equation
would then be written,

d'Q = dU + d'W.

II. Let Xdx + Ydy be an incomplete differential.

Now suppose that Xdx + Ydy is not a complete differential.

In that case, we cannot write X = ~bu[bx and Y = 'dufby as in (3)

and (4). But from equation (3), by a rearrangement of the terms,

we get

dW=(x+Y^)dx. ... (5)

And now, to find the work done by the particle in passing from A

to P, we must be able to express y in terms of x by using the

equation of the path. Let X = -
y, and Y = x

;
let the equation

of the path be y = ax2
, .'. dy/dx = 2ax. From (5)

dW =
(
- y + 2ax2

)dx = (
- ax2 + 2ax2

)dx = %ax* + G.

It is now quite clear that the value of X+ Ydy/dx will be different
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for different paths. For example, if y = ax3
,

dW = (ax
3 + Sax3

)dx = ax\

So that the work done depends upon the coordinates of the point

P as well as upon the equation of the path.

Example. If dU=dQ -
pdv, and dU is a oomplete differential, show

that dQ is not a complete differential. Hint. We know, page 80, that

*-(&)**+ (IS,*'
<w=(lW (g -*),* <6>

If U is a complete differential,

From' (6), if dQ is a complete differential,

32Q _ d2Q
dvdT dTdv'

Hence (6) and (7) cannot both be true.

The question is discussed from another point of view in Technics,

1, 615, 1904,

125. Linear Differential Equations of the First Order.

A linear differential equation of the first order involves only
the first power of the dependent variable y and of its first differ-

ential coefficients. The general type, sometimes called Leibnitz'

equation, is

% + Py-Q, (i)

where P and Q may be functions of x and explicitly independent
of y, or constants. We have just proved that e/pdx is an integrat-

ing factor of (1), therefore

efpdx(dy + Pydx) - e/pdxQdx,

is an exact differential equation. Consequently, the general solu-

tion is,

ye'*** = \efpdxQdx + C; or, y - e-/pdx \e/pdxQdx + Ce- /Pd
*. (2)

The linear equation is one of the most important in applied mathe-

matics. In particular cases the integrating factor may assume a

very simple form.

Examples. (1) Solve (1 + x2
)dy = (m + xy)dx. Eeduce to the form (1)

and we obtain

dy x _ m
dx

~
T+~x^y

~
T+1F

BB *
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//* xdx

Remembering logl =0, loge = 1, the integrating factor is evidently,

log e"*** = log 1 - log /s/ITaJ
5

;
or ef*< = Jh + g&

Multiply the original equation with this integrating factor, and solve the

resulting exact equation as 122, (4), or, better still, by (2) above. The
solution : y = mx + G ^/(l + x2

) follows at once.

(2) Ohm's law for a variable current flowing in a circuit with a coefficient

of self-induction L (henries), a resistance B (ohms), and a current of G

(amperes) and an electromotive force E (volts), is given by the equation,

E = BG + LdCjdt. This equation has the standard linear form (1). If E
is constant, show that the solution is, C = EjB + Be~ Rt,L

,
where B is the

arbitrary constant of integration (page 193). Show that G approximates to

E\B after the current has been flowing some time, t. Hint for solution.

Integrating factor is em,L .

(3) The equation of motion of a particle subject to a resistance varying

directly as the velocity and as some force which is a given function of the

time, is dv/dt + kv = f(t). Show that v = C-** + -f/($)<. If the force

is gravitational, say g, v = Ge~ u + gjk.

(4) Solve xdy+ydx=xsdx. Integrating factor= x. Ansr. y^a^+ G/x.

(5) We shall want the integral of dyjdt + k2y = k2a(l
- e-*i f

) very shortly.

The solution follows thus :

y = Ce-'W - e-'**uf*r*gp{
- k2a(l

-
-*i)}<&;

= Ce - *tf + e
-
**{k2aje**

-
je^-h^dt ;

= Ce-** +a-JW e
_
htt

(6) We shall also want to solve

dy Ky Kx .

Here
dx a x a x

( Kdx

e
a ~ x = e-*log(-x) = e -log[a-x)

K =
(a

-
x)
R

. V _ r , K [
^dx x _ v [ dx

' '

{a
-

x)*
~ " "*"

^J (a
-

x)^
+ 1

~ u +
(a

-
x)* J (a

-
x)*

on integrating by parts. Finally, if x *= 0, when y = 0,

K(a -
x) 1

y = C(a-x)x + a--r-
I >-, C =

{K _
1)aK

_ 1
.

Many equations may be transformed into the linear type of

equation, by a change in the variable. Thus, in the so-called

Bernoulli's equation,

% + Py = Qy
n

. ... (3)

Divide by y
n

, multiply by (1
-

n) and substitute y
l ~ n =

v, in the

result. Thus,
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...^
+ (1

- n)Pv = 0(1 -
n),

which is linear in v. Hence, the solution follows at sight,

veii -nvpdx = (1
_

ri)jQe
{1
- n)/pd*dx + C.

.-. yi-ell
- nVPdx = (1

-
ri)\Qe

(l
- n)fpdxdx + G.

Examples. (1) Solve dyjdx + yjx = y
2

. Substitute v = Ijy. Integration

factor is e -/<**/* = g-iog* = x~ x
. Ansr. Cxy - xylogx = 1.

(2) Solve dyjdx + x sin 2y = a^cos2?/. Divide by cos2!/. Put tan y = v.

The integration factor is e^***, i.e., e3?. Ansr. e*
2

(tany - %x
2 + %)

= G.

Hint. The steps are sec2?/ dyjdx + 2a; tan y = a;
3

; dvjdx + 2xu = a;
3

; to solve

ve*
2 = jx^dx + C. Put x2 = z, .'. 2xdx m dz, and this integral becomes

\\ze
z
dz\ or, \&{z

-
1), (4) page 206, etc.

(3) Here is an instructive differential equation, which Harcourt and Esson

encountered during their work on chemical dynamics in 1866.

y
2 dx y x

I shall give a method of solution in full, so as to revise some preceding work.

The equation has the same form as Bernoulli's. Therefore, substitute

1 . dv 1 dy dv K
v = -

: i.e., -5- = z <r* .* -j
Kv + = 0,

y
' ' dx y

2 dx dx x

an equation linear in v. The integrating factor is efpdx
\ or, e~ Kx

\ Q, in

(2),
= - E/x ; therefore, from (2),

ve -Kx = _ le-xxdx + C.
J v

From the method of 111, page 341,

But v = Ijy. Multiply through with ye
Kx

,
and integrate.

l =^{ Cl -logx + ^-^f + J^-...}y.

We shall require this result on page 437. Other substitutions may convert

an equation into the linear form, for instance :

(4) I came across the equation dxjdt= k(a
-

x) (x
-

y), where y =a(l - e~mt
),

in studying some chemical reactions. Put z = l/k(a
-

x); .. dx = -
dz/kz

2
,

.. dzjdt -kze-"* = 1.

This equation is linear. For the integrating factor note that kedt = - kejm
= u

t say. Consequently,

1 [ferdu \ e~uL 1 u2 1 v? \
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z = when t =
;

.*. u = k/m when = 0. Let S denote the sum of the

series when k/m is substituted in place of u, and s the sum as it stands above.

When z = 0, t = 0, C = - S.

_ e~ u
{8

-
s) 8 - s _ m&*

' * ~ m ~ ~^~ ; '' U " a ~
k(8 -

s)'

if u is less than unity the series is convergent.

(5) J. W. Mellor and L. Bradshaw {Zeit. phys. Ohem., $8, 353, 1904) have

for the hydrolysis of cane sugar

dufdt + bu = Ab(l - e- fe
) ; .-. U&* = Ae* - belb -*)ftb

-
k) + C.

(6) The law of cooling of the sun has been represented by the equation

dT/dt = aT3 - bT. To solve, divide by Tz
; put T - 2 = z, and hence

T ~ zdT = - \dz ; hence dzjdt
- 2bz = - 2a. This is an ordinary linear

equation with the solution z = ajb + Ce2it
. Restore the value of z. The

constant can be evaluated in the usual manner.

126. Differential Equations of the First Order and of the

First or Higher Degree. Solution by Differentiation.

Case i. The equation can be split up into factors. If the

differential equation can be resolved into n factors of the first

degree, equate each factor to zero and solve each of the n equa-

tions separately. The n solutions may be left either distinct, or

combined into one.

Examples. (1) Solve x{dy\dxf=y. Resolve into factors of the first degree,

dxjdy= sjyjx. Separate the variables and integrate, jx~idxjy~idy= ,JG,

where JO is the integration constant. Hence *Jx >Jy = >JC, which, on

rationalization, becomes (x
-

y)
2 - 2C{x + y) + C2 = 0. Geometrically this

equation represents a system of parabolic curves each of which touches the

axis at a distance C from the origin. The separate equations of the above

solution merely represent different branches of the same parabola.

(2) Solve xy(dyldx)
2
-(x

2 -y2
)dyldx-xy=0. Ansr. xy=C, or x2 ~y2=C.

Hint. Factors (xp + y) (yp
-

z), where p = dyjdx. Either xp + y = 0, or

vp - x = 0, etc.

(3) Solve (dyjdx)
2 - ldy\dx + 12 = 0. Ansr. y = ix + C, or Sx + O.

Case ii. The equation cannot be resolved into factors, but it can

be solved for x, y, dyjdx, or y/x. An equation which cannot be

resolved into factors, can often be expressed in terms of x, y, dyjdx,
or y/x, according to circumstances. The differential coefficient of

the one variable with respect to the other may be then obtained

by solving for dyjdx and using the result to eliminate dyjdx from

the given equation.

Examples. (1) Solve dyjdx + 2xy = x2+ y2
. Since (x

-
y)

2=x2 - 2xy + y*
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y = x + Jdy/dx. Put p in place of dy/dx. Differentiate, and we get

dy _ 1 dp
dx~ +

2
ijp~

'

dx'

Separate the variables x and p, solve for dy/dx, and integrate by the method of

partial fractions.

. "am
dP 1, slv-l fdlj C + e2xdx -

I^T^-i)
-

a '<*^+ log C ; VJ = 7TT*
On eliminating 2? by means of the relation y = cc + \/p, we get the answer

y = x + (C + e**)j(G
- e2*).

(2) Solve x(dyfdx)
2 - 2y(dy/dx) + ax = 0. Ansr. y = $(Cx

2 + aje). Hint.
Substitute for p. Solve for y and differentiate. Substitute pdx for dy, and
clear of fractions. The variables p and a; can be separated. Integrate

p = xC. Substitute in the given equation for the answer.

(3) Solve y(dy/dx)
2 + 2x(dy/dx)

- y = 0. Ansr. y
2 = C(2x + C). Hint.

Solve for x. Differentiate and substitute dy\p for dx, and proceed as in

example (2). yp = C, etc.

Case iii. The equation cannot be resolved into factors, x or y is

absent. If x is absent solve for dy/dx or y according to conveni-

ence
; if y is absent, solve for dx/dy or x. Differentiate the result

with respect to the absent letter if necessary and solve in the

regular way.

Examples. (1) Solve (dy/dx)
2+ x(dy/dx) + 1=0. For the sake of greater

ease, substitute p for dy/dx. The given 'equation thus reduces to

- x = p + 1/p (1)

Differentiate with regard to the absent letter y, thus,

Combining (1) and (2), we get the required solution.

(2) Solve dy/dx = y + 1/y. Ansr. y2 = Ce2* - 1.

(3) Solve dy/dx = x + 1/x. Ansr. y = %x
2 + log x + G.

127. Clairaut's Equation.

The general type of this equation is

* =
*!+/(!);

or, writing dy/dx = p, for the sake of convenience,

y = px + f(p). ... (2)

Many equations of the first degree in x and y can be reduced

to this form by a more or less obvious transformation of the vari-

ables, and solved in the following way: Differentiate (2) with

respect to x, and equate the result to zero

i>-j.V^ + /'(P)| ; , {a+ /Mi-o.
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Hence, either dp/dx =
; or, a? +f'(p) = 0. If the former,

where C is an arbitrary constant. Hence, dy = Cdx, and the

solution of the given equation is

y=Cx+f(G).
Again, p in x +f'(p) may be a solution of the given equation.

To find p, eliminate p between

y =px + f(p), and x + f'(p) = 0.

The resulting equation between x and y also satisfies the given
equation. There are thus two classes of solutions to Clairaut's

equation.

Examples. (1) Find both solutions in y = px + p2
. Ansr. Cx + C2 = y ;

and x2 + Ay = 0.

(2) If (y
-
px) (p -l)=p; show (y

- Cx) (C -
1)
= C ; Jy + Jx = 1.

(3) In the velocity equation, Ex. (6), page 388, if K= 2, put dyjdx = p,
solve for y, and differentiate the resulting equation,

_ a - x dy p a - x dp dx dpV- x -
2 P> dx~ p = 1 +

2 2~'dlc ; 'a~^x~
=
~p~^Z

Integrate, and -
log(a

-
x) = -

log(p
-

2) ;
.-. a - x = p -

2, and we obtain

y = 2x - a -
(a

-
x)

2
,
which is the equation of a parabola yl

= x^> if we
substitute x = a + 1 + x1 ; y = a + 1 - y^

After working out the above examples, read over 67, page 182.

128. Singular Solutions.

Clairaut's equation introduces a new idea. Hitherto we have

assumed that whenever a function of x and y satisfies an equation,

that function, plus an arbitrary constant, represents the complete
or general solution. We now find that a function of x and y can

sometimes be found to satisfy the given equation, which, unlike

the particular solution, is not included in the general solution.

This function must be considered a solution, because it satisfies

the given equation. But the existence of such a solution is quite

an accidental property confined to special equations, hence their

cognomen, singular solutions. Take the equation

dy a a
y = d^ + ^ ;oi>y = px +

p-

dx

Eemembering that^) has been written in place of dy/dx, differentiate

with respect to x, we get, on rearranging terms,
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(-?)
dp
dx

where either x -
a/p

2 =
; or, dp/dx = 0. If the latter,

p= G; or, y = Gx + a/C; . . (2)

and if the former, p = Jajx, which, when substituted in (1), gives

the solution,

y
2 = ax (3)

This is not included in the general solution, but yet it satisfies

the given equation. Hence, (3) is the singular solution of (1).

Equation (2), the complete solution of (1), has been shown to

represent a system of straight lines which differ only in the value

of the arbitrary constant G ; equation (3), containing no arbitrary

constant, is an equation to the common parabola. A point moving
on this parabola has, at any instant, the same value of dy/dx as if

it were moving on the tangent of the parabola, or on one of the

straight lines of equation (2). The singular solution ofa differential

equation is geometrically equivalent to the envelope of the family of

curves represented by the general solution. The singular solution

is distinguished from the particular solution, in that the latter is

contained in the general solution, the former is not.
'

Again referring to Fig. 96, it will be noticed that for any point

on the envelope, there are two equal values of p or dy/dx, one for

the parabola, one for the straight line.

In order that the quadratic

ax2 + bx + c = 0,

may have equal roots, it is necessary (page 354) that

b2 = ac
; or, b2 - 4ac = 0. . . . (4)

This relation is called the discriminant. From (1), since

a
y = px + -; .\ xp

2 - yp + a = 0. . . (5)
Ji

In order that equation (5) may have equal roots,

y
2 = iax,

as in (4). This relation is the locus of all points for which two

values of p become equal, hence it is called the p-discriminant
of (1).

In the same way if G be regarded as variable in the general

solution (2),

y = Gx +
-p ; or, xC2 - yC + a = 0.
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The condition for equal roots, is that

y
1 = 4:ax,

which is the locus of all points for which the value of C is the

same. It is called the C-discriminant.

Before applying these ideas to special cases, we may note that

the envelope locus may be a single curve (Fig. 96) or several

(Fig. 97). For an exhaustive discussion of the properties of these

discriminant relations, I must refer the reader to the text-books

on the subject, or to M. J. M. Hill,
" On the Locus of Singular

Points and Lines," Phil. Trans., 1892. To summarize:

1. The envelope locus satisfies the original equation but is

not included in the general solution (see xx\ Fig. 146).

S /hodalfocusj

Fig. 146. Nodal and Tac Loci.

2. The tac locus is the locus passing through the several

points where two non-consecutive members of a family of curves

touch. Such a locus is represented by the lines AB (Fig. 97), PQ
(Fig. 146). The tac locus does not satisfy the original equation,
it appears in the ^-discriminant, but not in the O-discriminant.

3. The node locus is the locus passing through the different

points where each curve of a given family crosses itself (the point

of intersection node may be double, triple, etc.). The node

locus does not satisfy the original equation, it appears in the

C-discriminant but not in

the ^-discriminant. BS
(Fig. 147) is a nodal locus

passing through the nodes

A,...,B,..., C,...,4f..
4. The cusp locus

passes through all the

cusps (page 169) formed

y
Fig. 147. Cusp Locus.
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by the members of a family of curves. The cusp locus does not

satisfy the original equation, it appears in the p- and in the G-

discriminants. It is the line Ox in Fig. 147. Sometimes the

nodal or cusp loci coincide with the envelope locus.

Examples. (1) Find the singular solutions and the nature of the other

loci in the following equations : (1) xp
2 - 2yp + ax = 0. For equal roots

y*
_. ax%

m TtuS satisfies the original equation and is not included in the general

solution : x2 - 2Cy + C2 = 0. y
2 = ax2 is thus the singular solution.

(2) ixp
2 = (3

-
a)

2
. General solution : (y + Of = x(x

-
a)

2
. For equal

roots in p, 4#(3x -
a)

2 = 0, or 8(38 -
a)

2 = (p-discriminant). For equal

roots in C, differentiate the general solution with respect to 0. Therefore

(8 + C)dxjdG = 0, or C = - x. .-. x(x -
a)

2 = (C-discriminant) is the con-

dition to be fulfilled when the O-discriminant has e qual roots, x = is

common to the two discriminants and satisfies the original equation (singular

solution) ;
x = a satisfies the G-discriminant but not the ^-discriminant and,

since it is not a solution of the original equation, x = a represents the node

locus
;
8 = \a satisfies the p- but not the C-discriminant nor the original

equation (tac locus).

(3) p2 + 2xp - y = 0. General solution : (28
3 + 3xy + C)

2 = 4(8
2 + yf ;

p-discriminant : 82 + y 0; C-discriminant : (x
l

4- y)
3 = 0. The original

equation is not satisfied by either of these equations and, therefore, there is

no singular solution. Since (8
2 + y) appears in both discriminants, it repre-

sents a cusp locus.

(4) Show that the complete solution of the equation y
2
(p

2 + 1)
= a2

,
is

y
2 + (x

-
C)

2 = a1
;
that there are two singular solutions, y = + a

;
that

there is a tao locus on the 8-axis for y = (Fig. 97, page 183).

A trajectory is a curve which cuts another system of curves

at a constant angle. If this angle is 90 the curve is an orthog-

onal trajectory.

Examples. (1) Let xy = C be a system of rectangular hyperbolas, to

find the orthogonal trajectory, first eliminate C by differentiation with respect

to x, thus we obtain, xdy/dx + y = 0. If two curves are at right angles

(tt = 90), then from (17), 32, %n =
(o'

-
o), where a, a' are the angles

made by tangents to the curves at the point of intersection with the 8-axis.

But by the same formula, tan(+ Jir)
= (tana'

-
tana)/(l + tana, tan a').

Now tan + Jir
= oo and l/oo =0, .*. tan a = - cot a; or, dyjdx = -

dx/dy.

The differential equation of the one family is obtained from that of the other

by substituting dy/dx for -
dx/dy. Hence the equation to the orthogonal

trajectory of the system of rectangular hyperbolas is, xdx + ydy = 0, or

x2 - y
2 = G, a system of rectangular hyperbolas whose axes coincide with

the asymptotes of the given system. For polar coordinates it would have

been necessary to substitute -
(drjr)dd for rdejdr.

(2) Show that the orthogonal trajectories of the equipotential curves

1/r - 1// = O, are the magnetic curves cos d + cos 0' = C.
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129. Symbols of Operation.

It has been found convenient, page 68, to represent the

symbol of the operation
u
d/dx

"
by the letter "D ". If we assume

that the infinitesimal increments of the independent variable dx

have the same magnitude, whatever be the value of x, we can

suppose D to have a constant value. Thus,

respectively. The operations denoted by the symbols D, D2
,

. . .,

satisfy the elementary rules of algebra except that they are not

commutative 2 with regard to the variables. For example, we
cannot write D{xy) = D(yx). But the index law

DmDnu = Dm + nu

is true when m and n are positive integers. It also follows that if

Du= v\ u= D~h)', or, u= j=jv;
.*. v =D .D~ l

v\ or, D .D~ 1 = l
;

that is to say, by operating with D upon D * lv we annul the effect

of the D ~ 1
operator. In this notation, the equation

g_ (a + /})g + a/32/
= o,

can be written,

{>
2 -

(a + fS)D + a/3}y
= 0; or, (D -

a) (D - /% = 0.

Now replace D with the original symbol, and operate on one

factor with y}
and we get

(ii
~ a)(i- v)y -i& - a

) (I
-

f*v)
= -

By operating on the second factor with the first, we get the original

equation back again.

130. Equations of Oscillatory Motion.

By Newton's second law, if a certain mass, m, of matter is

subject to the action of an "
elastic force," FQ,

for a certain time,

we have, in rational units,

Fq = Mass X Acceleration of the particle.

If the motion of the particle is subject to friction, we may regard

the friction as a force tending to oppose the motion generated by

1 See footnote, page 177.
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the elastic force. Assume that this force is proportional to the

velocity, V, of the motion of the particle, and equal to the product
of the velocity and a constant called the coefficient of friction,

written, say, p. Let F
x
denote the total force acting on the par-

ticle in the direction of its motion,

F
x
= F - fiV - md2

s/dt
2

. ... (1)

If there is no friction, we have, for unit mass,

F
Q
= d2

s/dt
2

(2)

The motion of a pendulum in a medium which offers no resist-

ance to its motion, is that of a material particle under the influence

of a central force, F, attracting with an intensity which is pro-

portional to the distance of the particle away from the centre of

attraction. We shall call F the effective force since this is the

force which is effective in producing motion. Consequently,

F = -q2
s, . . . (3)

where q
2 is to be regarded as a positive constant which tends to

restore the particle to a position of equilibrium the so-called co-

efficient of restitution. It is written in the form of a power to

avoid a root sign later on. The negative sign shows that the

attracting force, F}
tends to diminish the distance, s, of the particle

away from the centre of attraction. If s = 1, q
2
represents the

magnitude of the attracting force unit distance away. Prom (2),

therefore,
d2s

w = -^s w
The integration of this equation will teach us how the particle

moves under the influence of the force F. We cannot solve the

equation in a direct manner, but if we multiply by 2ds/dt we can

integrate term by term with: regard to s
; thus,

ds d2s ~ - ds ~ fds\ 2 _ _

Let us replace the constant G by the constant q
2r2

; separate the

variables, and integrate again ; we get from Table II., page 193,

Jds
f s

i
2 _ g2

=
q\

d t
J or, sin

- !- = + qt + c; or, s = + r sin (qt + c),

where is a new integration constant. Here we have s as an

explicit function of t. We have discussed this equation in an

earlier chapter, pages 66 and 138. It is, in fact, the typical equa-

tion of an oscillatory motion. The particle moves to and fro on a
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straight line. The value of the sine function changes with time

between the limits + 1 and -
1, and consequently x changes

between the limits + r and - r. Hence, r is the amplitude of the

swing ;
c is the phase constant or epoch of page 138. The sine of

an angle always repeats itself when the angle is increased by 2ir,

or some multiple of 2?r. Let the time t be so chosen that after the

elapse of an interval of time T the particle is passing through the

same position with the same velocity in the same direction,

hence,

qT = 27r; or, T =
j.

. . . (5)

The two undetermined constants r and e serve to adapt the relation

s = rsin(qt + c)

to the initial conditions. This is easily seen if we expand the

latter as indicated in (23) and (24), page 612 :

s = r sin . cos qt r cos . sin qt.

Let G
1
and C2

denote the undetermined constants r sin e, and

r cos c respectively, such that

as indicated on page 138. Now differentiate

ds
s = G^osqt + C

2sinqt; .-. -tt = - qC^inqt + qC2cosqt.

Let s denote the position of the particle at the time t = when

moving with a velocity V . The sine function vanishes, and the

cosine function becomes unity. Hence, G
x
= s ; G

2
= V /q, and

the constants r and e may be represented in terms of the initial

conditions :

In the sine galvanometer, the restitutional force tending to

restore the needle to a position of equilibrium, is proportional to

the sine of the angle of deflection of the needle. If / denotes the

moment of inertia of the magnetic needle and G the directive

force exerted by the current on the magnet, the equation of motion

of the magnet, when there is no other retarding force, is

^--ffBin*. ... (6)

For small angles of displacement, <j>
and sin

<f>
are approximately
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equal. Hence,

^--^ m
dp

~
J* Vi

From (4), q = s/G/T, and, therefore, from (5),

T = %rJ7Ja, .... (8)

a well-known relation showing that the period of oscillation of a

magnet in the magnetic field, when there is no damping action

exerted on the magnet, is proportional to the square root of the

moment of inertia of the magnetic needle, and inversely proportional
to the square root of the directive force exerted by the current on the

magnet,

131. The Linear Equation of the Second Order.

As a general rule it is more difficult to solve differential equa-

tions of higher orders than the first. Of these, the linear equation
is the most important. A linear equation of the nth order is

one in which the dependent variable and its n derivatives are all

of the first degree and are not multiplied together. If a higher

power appears the equation is not linear, and its solution is, in

general, more difficult to find. The typical form is

dny -r>d
n - l

y ~ _

Or, in our new symbolic notation,

Dy + X1D-iy + ... + X^y - X,

where P, Q,. . ., B are either constant magnitudes, or functions of

the independent variable x. If the coefficient of the highest

derivative be other than unity, the other terms of the equation
can be divided by this coefficient. The equation will thus assume

the typical form (1).

I. Linear equations with constant coefficients.

Let us first study the typical linear equation of the second

order with constant coefficients P and Q,

g+pg+fl*-0. . . . (1)

The linear equation has some special properties which consider-

ably shorten the search for the general solution. For example,
let us substitute e for y in (1). By differentiation of e*, we
obtain dx/dt mx

;
and d2

x/dt
2 = m2

x, therefore,
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d2pmx d,p
mx

~aW + P
~dx~

+ QemX = ^ + Pm + emx "

provided

m2 + Pm + Q = 0. . . . (2)

This is called the auxiliary equation. If m
1
be one value of m

which satisfies (2), then y e
m

i
x

is one integral of (1), and

y = e
m
2
x

is another. But we must go further.

If we know two or more solutions of a linear equation, each

can be multiplied by a constant, and their sum is an integral of

the given equation. For example, if u and v are solutions of the

equation
d2x

jp=-q*x,. . . . (3)

each is called a particular integral, and we can substitute either

u or v in place of x and so obtain

d2u d2v

W2 =-q*u;oT,-^=-q*v. . . (4)

Multiply each equation by arbitrary constants, say, C1
and C

2 ; add

the two results together, and C^u, + G
2
v satisfies equation (1),

.^y^-^q,^^). . (5)

This is a very valuable property of the linear equation. It means

that if u and v are two solutions of (3), then the sum G
x
u + C

2
v

is also a solution of the given equation. Since the given equation

is of the second order, and the solution contains two arbitrary con-

stants, the equation is completely solved. The principle of the

superposition of particular integrals here outlined is a mathe-

matical expression of the well-known physical phenomena discussed

on page 70, namely, the principle of the coexistence of different

reactions ;
the composition of velocities and forces ; the super-

position of small impulses, etc. We shall employ this principle

later on, meanwhile let us return to the auxiliary equation.

1. When the auxiliary equation has two unequal roots, say m1

and m2 ,
the general solution of (1) may be written down without

any further trouble.

y = C^i* + G
2
e
m2x. . . . (6)

This result enables us to write down the solution of a linear equa-

tion at sight when the auxiliary has unequal roots.
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Examples. (1) Solve (D
2 + UD -

S2)y = 0. Assume y = Cemx is a

solution. The auxiliary becomes, m2 + 14m - 32 = 0. The roots are m = 2

or - 16. The required solution is, therefore, y = C
x
e2* + C2e~

Wx
.

(2) Solve d2
yjdx

2 + Adyjdx + 3y = 0. Ansr. y = Op-3" + Ctf.~
x

.

(3) Fourier's equation for the propagation of heat in a cylindrical bar, is

d'-Vldx* - 0>V = 0. Hence show that V = C^x + Ce~ ?x
.

2. When the two roots of the auxiliary are equal. If m
x
= ra

2 ,

in (6), it is no good putting (G1 + G2)e
mi* as the solution, because

C
x + G2

is really one constant. The solution would then contain

one arbitrary constant less than is required for the general solu-

tion. We can find the other particular integral by substituting

m
2
= m

1 + h, in (6), where h is some finite quantity which is to be

ultimately made equal to zero. Substitute m2
= m

1
+ h in (6) ;

expand by Maclaurin's theorem, and, at the limit, when h = 0,

we have

y = e
m
i*(A + Bx). ... (7)

This enables us to write down the required solution at a glance.

For equations of a higher order than the second, the preceding

result must be written,

y = e-i^d + G
2
x + Cp* + . . . + Cr _& ~ l

),
. (8)

where r denotes the number of equal roots.

Examples. (1) Solve d^y/dx
3 - dPyjdx

2 - dy/dx + y = 0. Assume

y = Ge*. The auxiliary equation is m3 - m2 - m + 1 = 0. The roots are

1, 1,
- 1. Hence the general solution can be written down at sight :

y = C
x
e-* + (C2 + C3x)e*.

(2) Solve (D
3 + 3D2 - 4)y = 0. Ansr. e~ 2

*(C 1 + C.2x) + C#*. Hint.

The roots are obtained from (x
-

2) (x
-

2) (x
-

1) = x3 + Sx2 - 4.

3. When the auxiliary equation has imaginary roots, all un-

equal. Eemembering that imaginary roots are always found in

pairs in equations with real coefficients, let the two imaginary
roots be

m
l
= a + i/? J

and m2
= a -

i/?.

Instead of substituting y = e* in (6), we substitute these values

of m in (6) and get

y = <7ie
(a + t0)a; + Q^a-iftx

_
qox^Q^x + C

2
e~^x

)',

where G
x
and G2 are the integration constants. From (13) and

(15), p. 286,

y = e^O^cos fix + i sin fix) + eaa;C2(cos fix
-

t sin (Sx). (9)

Separate the real and imaginary parts, as in Ex. (3), p. 351,

.-. y =eax
{(G1 + C2)cos/to + i(0l

- C2)sin/ta},
CO
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If we put G
l + C2

= A, and l(C1
- G

2)
= B, we can write down

the real form of the solution of a linear equation at sight when its

auxiliary has unequal imaginary roots.

y = e*(A cos fix + B sin fix). . . (10)

In order that the constants A and B in (10) may be real, the

constants C
1
and G2

must include the imaginary parts.

The undetermined constants A and B combined with the par-

ticular integrals u and v may be imaginary. Thus, u and v may
be united with Oj and iC

lf
and Au + iBv is then an integral of the

same equation. It is often easier to find a complex solution of

this character than a real expression. If we can find an integral

u + iv, of the given equation, u and v can each be separately

regarded as particular integrals of the given equation.

Examples. (1) Show, from (9), and (2) and (3) of page 347, that we can

write y = (cosh ax + sinh ax) (A-^ cos fix + Bx sin fix).

(2) Integrate (Py/dx
2+ dyfdx + y=0. The roots are a= - J and fi

=% V3 ;

.. y = e- x
P(Acos$\f3. x + B sin */& . x).

(3) The equation of a point vibrating under the influence of a periodic

force, is, d2
xjdt

2 + q
2x = 0, the roots are given by (D + ta) (D -

to)
= 0. From

(10), y = A cos ax + B sin ax.

(4) In the theory of electrodynamics (Encyc. Brit., 28, 61, 1902) and in

the theory of sound, as well as other branches of physics, we have to solve

the equation

dr2 r dr r

Multiply by r and notice that

d(r<(>) _ dr d<p _ d<p d2
((pr) _ d<p dr d<p d2

<j>~W ~
<pd?

+ r
dr'- <t}

+ r
dr'

; ~W ~
dr~

+
dr" dr~

+ r
dr2

'

. JE . o
d

<t> _ <*
2
(4>r)

* *

dr2 + *dr ~W*~'
Hence we may write

^^ = k2
(r<f>)

= (D
2 + k2

)<pr =(D + ik) (D -
tk)<pr

= 0.

.*. <pr
= Ae ikr + Be~ iJer

; .'. <p= -(A cosfrr+ Esin fcr),asin(9) and (10) above.

4. When some of the imaginary roots of the auxiliary equation

are equal. If a pair of the imaginary roots are repeated, we may

proceed as in Case 2, since, when m
x
= m

2 ,
G

Y
emlx + C

2
em2x

,
is

replaced by (A + Bx)e
mlx

; similarly, when ra
3
= ra4 ,

G3
emZx + G^

may be replaced by (G + Dx^**. If, therefore,

m
x
= m

2
= a + l/3 ;

and m
3
= m

4
= a -

i/?,

the solution

y = (ox + c2xy+w* + (o8 + Ctxyw,
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becomes

y = e*{(A + Bx) cos fix + (0 + Dx) sin fix}. . (11)

Examples. (1) Solve (D
i - 12D3 + 62D2 - 156D + 16% = 0. Given the

roots of the auxiliary : 3 + 2i, 3 + 2i, 3 -
2t, 3 - 2i. Hence, the solution is

y = eix{{Cx + G&) sin 2x + (03 + C^x) cos 2x}.

(2) If (D2+ if(D -i)2y=o,y=(A + Bx) sin x+{C+Dx) cos x + (
E+ Fx)e*.

II. Linear equations with variable coefficients.

Linear equations with variable coefficients can be converted

into linear equations with constant coefficients by means of the

substitution

x = e'
; or, z = log x, .

-

. . (12)

as illustrated in the following example :

Example. Solve the equation

by means of the substitution (12). By differentiation of (12), we obtain

= e*
- - e& = ^ ^ = - ^

dz ' " dx dz'
' '

dx x' dz

Again,
d?y = ld?y _dx dy _ d?y _ l_(d?y _ dy\
dx x dz x*' dz'

'"'

dx%
~
x\dz* dz)'

since, from (12), dx = xdz. Introducing these values of dyjdx and d'hjfdx
2 in

the given equation, we get the ordinary linear form

S +4 + *-*
with constant coefficients. Hence, y = Gx

&* + Ctf* = C
x
x2 + C^c.

If the equation has the form of the so-called Legendre's

equation, say,

(a + a;)2S'- 5(<l + a!)l + 62'
= 0; ' <13>

the substitution z = a + x will convert it into form (12), and the

substitution e* for a + x will convert it into the linear equation
with constant coefficients. Hence, dx = (a + x)dt ; dx2 = (a + x)

2dt2
,

and

% - 5% + 6y - ;

*

y = c
i
e* + ^ -

i(a + *)
2 +^ + *o

3
.

Example. In the theory of potential we meet with the equation

dW
,

2 dV _
2
d27 <Z7 A

The roots of the auxiliary are m = 0, and w = - 1. Hence, 7= Ox + C/
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132. Damped Oscillations.

d2s
The equation -r^ = -

q
2s takes no account of the resistance to

which a particle is subjected as it moves through such resisting

media as air, water, etc. We know from experience that the

magnitude of the oscillations of all periodic motions gradually
diminishes asymptotically to a position of rest. This change is

called the damping of the oscillations.

When an electric current passes through a galvanometer, the needle is

deflected and begins to oscillate about a new position of equilibrium. In

order to make the needle come to rest quickly, so that the observations may
be made quickly, some resistance is opposed to the free oscillations of the

needle either by attaching mica or aluminium vanes to the needle so as to

increase the resistance of the air, or by bringing a mass of copper close to

the oscillating needle. The currents induced in the copper by the motion of

the magnetic needle, react on the moving needle, according to Lenz' law, so

as to retard its motion. Such a galvanometer is said to be damped. When
the damping is sufficiently great to prevent the needle oscillating at all, the

galvanometer is said to be "dead beat" and the motion of the needle is

aperiodic. In ballistic galvanometers, there is very much damping.

It is a matter of observation that the force which exerts the

damping action is directed against that of the motion
;
and it also

increases as the velocity of the motion increases. The most

plausible assumption we can make is that the damping force, at

any instant, is directly proportional to the prevailing velocity, and

has a negative value. To allow for this, equation (4) must have

an additional negative term. We thus get the typical equation of

the second order,

d2s fo
2

<ft*
" ~

l*dt~~ q s
'

where /a is the coefficient of friction. For greater convenience, we

may write this 2/, and we get

d2s ds

aF +
a/aj + ^-o. . . . (i)

Before proceeding further, it will perhaps make things plainer

to put the meaning of this differential equation into words. The

manipulation of the equations so far introduced, involves little more

than an application of common algebraic principles. Dexterity in

solving comes by practice. Of even greater importance than quick

manipulation is the ability to form a clear concept of the physical

process symbolized by the differential equation. Some of the most
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important laws of Nature appear in the guise of an "
unassuming

differential equation ". The reader should spare no pains to acquire

familiarity with the art of interpretation ;
otherwise a mere system

of differential equations maybe mistaken for "laws of Nature".

The late Professor Tait has said that " a mathematical formula,

.however brief and elegant, is merely a step towards knowledge, and

an all but useless one until we can thoroughly read its meaning ".

Buler once confessed that he often could not get rid of the

uncomfortable feeling that his science in the person of his pencil

surpassed him in intelligence. I dare say the beginner will have

some such feeling as he works out the meaning of the above

innocent-looking expression. The term d2
s/dt

2
, page 17, denotes the

relative change of the velocity of the motion of the particle in unit

time
;
while 2/ . ds/dt shows that this motion is opposed by a force

which tends to restore the body to a position of rest, the greater

the velocity of the motion, the greater the retardation
;
and q

2s re-

presents another force tending to bring the moving body to rest,

this force also increases directly as the distance of the body from the

position of rest. The whole equation represents the mutual action

of these different effects. To investigate this motion further, we
must find a relation between s and t. In other words, we must

solve the equations.

We can write equation (1) in the symbolic form

(Z>
2 + 2/D + q*)s - 0,

the roots of the auxiliary are, pages 353 and 354,

*--f+JF^; P--f~'Jfr^' (
2
)

The solution of (1) thus depends on the relative magnitudes of

/ and q. There are two important cases : the roots, a and ft, may
be real or imaginary. Both have a physical meaning and represent

two essentially different types of motion. Suppose that we know

enough about the moving system to be able to determine the in-

tegration constant. When t 0, let V = V and s = 0.

I. The roots of the auxiliary equation are imaginary, equal
and of opposite sign. For equal roots of opposite sign, say + q,

we must have / = 0, as indicated upon page 401. In this case, as

in the typical equation for Case 3 of the preceding section,

s = G
Y
sin qt + G2 cos qt. . . . (3)

To find what this means, let us suppose that t = 0, s = 0, V =
1,

q = 2, / = 0. Differentiate (3),

ds/dt m qCx
cos qt

- qC2 sin qt.
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2 x C
2
x 0, or G

1
= J ; .-. G

2
= 0. HenceHence 1 = 2G

l
x 1

the equation,
s = J sin 2*

(4)

Curve 1 (Pig. 148) was obtained, by plotting, from equation (4) by assign-

ing arbitrary values to t in radians
; converting the radians into degrees ;

and

finding the sine of the corresponding angle from a Table of Natural Sines.

Suppose we put % = 45, then sine 45 m 0*79 ;
t = 22-5 = 0*39 radians from

Table XIII. ;
if 2t = 630, sin 630 = sin 45 in the fourth quadrant, it is there-

fore negative ;
t = 320

; .-. t = (3-1416 + of 3-1416 + 0-39) radians. The

numbers set out in the first three columns of the following table were calcu-

lated from equation (4) for the first complete vibration :

s = sin 2t.
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damped oscillations of a particle. The effects of damping are

brought out, by the diagram, curve 2, in an interesting manner.

The net result is a damped Yibration, which dies away at a rate

depending on the resistance of the medium (2fv) and on the

magnitude of the oscillations (q
2
s). Such is the motion of a

/X ^X*^ ^V



408 HIGHER MATHEMATICS. 132.

which expresses the relation between the periods of oscillation

of a damped and of an undamped oscillation. Consequently,
OT - OT = 1-019 (Fig. 148).

2 The ratio of the amplitude of any vibration to the next, is

constant. The amplitudes of the undamped vibrations M-J?^ M2
P

2 ,

... become, on damping NxQlt
N

2Q2 ,
... It is easy to show, by

plotting, that tan
<f>,

of (9), is a periodic function such that

tan < = tan (< + ?r)
= tan

(< + %tt)
= . . .

Hence
<f> ; <f> + -n-

; <f> + 2tt
;

... satisfy the above equation. It

also follows that bt
x ;

bt
2 + Tr; bt2+ 27r; . . . also satisfy the equation,

where tv t
2 ,

t
3 ,

... are the successive values of the time. Hence

bt^b^ + Tr; tag
= 6^ + 271-; ...; .\ t^^ + ^T; t^^ + T; ...

Substitute these values in (7) and put sv s
2 ,

s
3 , ... for the cor-

responding displacements,

.'.s
1
= Ae'^sinb^; - s

2
= Ae~ "^siabt^; ...

where the negative sign indicates that the displacement is on the

negative side. Hence the amplitude of the oscillations diminishes

according to the compound interest law,

h = e i-<3) = ehr.
2 = H =

^ > m = e
x

% % (12^s
2

s
3

s4

This ratio must always be a proper fraction. If a is small, the

ratio of two consecutive amplitudes is nearly unity. The oscilla-

tions diminish as the terms of a geometrical series with a common
ratio e

aT '2
. By tak-

ing logarithms of the

terms of a geometrical
series the resulting

arithmetical series has

every succeeding term

smaller than the term

which precedes it by
a constant difference.

149. Strongly Damped Oscillations. This difference can be

found by taking logarithms of equations (12).

Plotting these successive values of s and t, in (12), we get the

curve shown in Fig. 149. The ratio of the amplitude of one swing
to the next is called the damping ratio, by Kohlrausch ("Damp-

fungsverhaltnis "). It is written k. The natural logarithm of the

damping ratio, is Gauss' logarithmic decrement, written X (the
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ordinary logarithm of k
y
is written L). Hence

A = log k = JaTlog e = \aT = air/h,

and from (11),

T^ X_
2

r.^(i^.S^...).

(13)

(14)

Hence, if the damping is small, the period of oscillation is aug-

mented by a small quantity of the second order. The logarithmic

decrement allows the "
damping constant

"
or " frictional co-

efficient
"

(/a of pages 397 and 404) to be determined when the

constant a and the period of oscillation are known. It is there-

fore not necessary to wait until the needle has settled down to

rest before making an observation. The following table contains

six observations of the amplitudes of a sequence of damped oscilla-

tions :

Observed
Deflection.
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or ds/dt. Thus

s = C,e- + C2e-; ds/dt = - 5'MCtf- - 0'76C2e-.
.-.

- 5-240! - -76C2
= 1.

From (15), when t = 0,s = 0; and d+C^O; or - C
x
= + C

2
= 0'225,

.-. s = 0-225(e-'
r* - e" 5

"

24(

).
. . (16)

Assign particular values to t, and plot the corresponding values

of s by means of Table IV., page 616. Curve 3 (Fig. 150) was

^
Fig. 150.

obtained by plotting corresponding values of s and t obtained in

this way. The curves have lost the sinuous character, Fig. 148.

IV. The roots of the auxiliary equation are real and equal.

The condition for real and equal roots is that / =
q.

.v*-(G1 + ^)^; . . . (17)

As before, let / = 2, q = 2, t = 0, s = 0, V = 1. The roots of the

auxiliary are - 2 and - 2. Hence, to evaluate the constants,

s = (G1 + C2t)e
- *

js ds/dt = G2
e ~* -

2(<71 + G2 t)e
' 2<

; C
2
- 2G

1
= 1

;

Gx and C2
= 1

;

.-. s = e- 2'

(18)

Plot (18) in the usual manner. Curve 4 (Fig. 150) was so ob-

tained.

Compare curves 3 and 4 (Fig. 148) with curves 1 and 2

(Fig. 150). Curves 3 and 4 (Fig. 150) represent the motion when
the retarding forces are so great that the vibration cannot take

place. The needle, when removed from its position of equilibrium,

returns to its position of rest asymptotically, i.e., after the lapse of

an infinite time. What does this statement mean ? E. du Bois

Raymond calls a movement of this character an aperiodic motion.

133. Some Degenerates.

There are some equations derived from the general equation

by the omission of one or more terms. The dependent or the

independent variable may be absent. I have already shown,

pages 249 and 401, how to solve equations of this form :
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d2y <Py dhi

&-9: & + &-*'.-&- ft-*. . (i)

where g and q are constants.

Example. The general equation for the deflection of a horizontal beam

uniformly loaded and subjected to the pressure of its supports is

dhj d4y

where a and w are constants. If the beam has a length Z and is supported at

both ends, the integration constants are evaluated on the supposition that

y = 0, and dhjjdx
2 = both when x = and x = I. Hence show that the

integration constants, taken in the same order as they appear in the inte-

gration, are Cx
= -

%bl ; C2
=

; C9
=

-fabl
3

; C4
= 0. Hence the solution

V = <ribx(x
3 - 2lx + Z

3
).

If the beam is clamped at both ends, y = 0, and

dy/dx = for x = and x = I. Show that the constants now become

G
x
= -

Ibl ; C =
,ij&Z

2
; C3

=
; C4

= 0. .-. y = ^bx^x2 - 2lx + Z
2
).

If the

beam is clamped at one end and free at the other, y = 0, dy\dx = for

x =
;
and dhjjdx

2 = and d^y/dx
3 = when <c = Z. Show that C^ = - bl ;

C = %bl ; 3
=

; C4
= 0. .-. y = to2

(x
2 - 4Zz + 6Z2).

If hx denotes the "pull
"

of a spring balance when stretched a

distance x, at the time t, the equation of motion is

d2x kW + m*-9> .... (2)

where m denotes the stretching weight ; g is the familiar gravita-

tion constant. For the sake of simplicity put k/m = a2
,
and we

can convert (2) into one of the above forms by substituting

9 d2u 9X = U + i2 '"''W +ahl = '

Solving this latter, as on page 401, we get

u =
Oj cos at + C

2
sin at

;
.-. x = G

2
cos at + C

2
sin at + g/a

2
.

Or, you can solve (2) by substituting

= % . . ^V _ dp _ dy <fy __ dp
v dx'

"
dx2 dx~ dx' dy

~ p
dy'

' W
so as to convert the given equation into a linear equation of the

first order. For the sake of ease, take the equation
dW 1 dV_ P
dr2

+
r' dr

~
l^

' ' * ^
which represents the motion of a fluid in a cylindrical tube of

radius r and length I. The motion is supposed to be parallel to

the axis of the tube and the length of the tube very great in

comparison with its radius r. P denotes the difference of the

pressure at the two ends of the tube. If the liquid wets the

walls of the tube, the velocity is a maximum at the axis of the
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tube and gradually diminishes to zero at the walls. This means
that the velocity is a function of the distance, rv of the fluid from

the axis of the tube, fx is a constant depending on the nature of

the fluid. First substitute p = dV/dr, as in (3)

dp P P , , P , P
''d7

+ 7=- Vp>

'

"*P+i*fr- "
Jfdr;

r.pr= -
j^+ Cfc

<ZF P ft"
-" P 9 ~ .

sf
- -W +

*
;
F= " ^r + llogr + 2

'

To evaluate C^ in (5), note that at the axis of the tube r = 0. This

means that if G
x

is a finite or an infinite magnitude the velocity

will be infinite. This is physically impossible, therefore, G
Y
must

be zero. To evaluate (72 ,
note that when r = r

lf
V vanishes and,

therefore, we get the final solution of the given equation in the

form,

P(ri
2_

r2)

ilfJL

which represents the velocity of the fluid at a distance r
x
from the

axis.

Examples. (1) Show that if dPy/dx
2 = 32, and a particle falls from rest,

the velocity at the end of six seconds is 6 x 32 ft. per second
;
and the

distance traversed is x 32 x 36 ft.

(2) The equation of motion of a particle in a medium which resists di-

rectly as the square of the velocity is d2
s/dt

2 = -
a(ds/dt)

2
. Solve. Hint.

Substitute as in (3); .-.dplp
2+ adt 0; ,'.p~

l= at + Gl ; .*. as= \og(at + Cj) + G2 ;

etc.

(3) Solve y . d^yjdx
2 + {dyjdxf = 1. Ansr. if = x* + G^x + G2 . Hint.

Use (3), pdp\dy + p2
\y
= \\y ;

.'. py = x + G
x , etc.

.

Exact equations may be solved by successive reduction. The

equation of motion of a particle under the influence of a repulsive

force which varies inversely as the distance is

d2s a ds t ,,*..
dt*

=
!> '''dt

= al0
^G'

1

; ..2/ = ^Gog--l)+C2 ,

on integration by parts. The equation of motion of a particle

under the influence of an attractive force which varies inversely

as the nth. power of the distance is

<Ps_ a fdsy 2a
f

1 1 \

dt2
~~

?; -'' \dt) ~w-lVsn_1 aw -V*
* ^

Again integrating, we get

In - 1 f
'

si{n -"ds

Ja i _
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According to the tests of integrability, this may be integrated when
= h f, i "

1, f, S, . ;
or when n = . . . f , f , \, 0, 2, |, . . . (7)

as indicated on page 210.

Examples. (1) If n =
,
we get (ds/dt)

2 = 4a(a* -
s*) ; consequently,

2sJa .dt = -
(a^

-
s^)~^ds. The negative sign is taken because s and t are

inverse functions of one another. Add and subtract 2\/a/(3\/Wa^ - sty-

We get on rearranging terms,

,_ / - 3\/s + 2sfa 2\/o" \

'*' t =
3jl{

s*(a* " s^* + 2x/*(a* - si)*i
=
rr-(s* + 2ai

) (
a* - s*)*-

(2) If rf^/d*
2 -

z.dz\dt = 0; show that C
x + z = {Cx

-
*)*>&'+ <h\

Hint. We get on substituting p =
ds/cft ; dHjdt

2 = dp/d< = dzjdt x dp/da

(3) The equation of motion of a thin revolving disc is

<Pu du u u C, ar*

Hint. Add and subtract rdu/dr.

( d2u du\ ( du \ d / dzA d
, ,

d /ar4\

On integration we get an ordinary equation of the first order which can be

solved (Ex. (16), p. 372) by substituting vr = u.

134. Forced Oscillations.

We have just investigated the motion of a particle subject to

an effective force, d2
s/dt

2
,
and to the impressed forces of restitu-

tion, q
2
s, and resistance, 2/V. The particle may also be subjected

to the action of a periodic force which prevents the oscillations

dying away. This is called an external force. It is usually

represented by the addition of a term f(t) to the right-hand side

of the regular equation of motion, so that

d2s n .ds

^+2/^ + ^=/. . . . (1)

The effective force and the three kinds of impressed force all

produce their own effects, and each force is represented in the

equation of motion by its own special term. The term comple-

mentary function, proposed by Liouville (1832), is applied to the

complete solution of the left member of (1), namely,
d2s ds

p.+*3i + a*-J* (2)

The complementary function gives the oscillations of the system
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when not influenced by disturbing forces. This integral, there-

fore, is said to represent the free or natural oscillations of

the system. The particular integral represents the effects of the

external impressed force which produce the forced oscillations.

The word " free
"

is only used in contrast with " forced ". A free

oscillation may mean either the principal oscillation or any motion

represented by any number of terms from the complementary
function.

Let equation (1) represent the motion of a pendulum when
acted upon by a force which is a simple harmonic function of the

time, such that

d2s ds

dt2
+ ^dt + qh = koosnt . . (3)

We have already studied the complementary function of this

equation in connection with damped oscillations. Any particular

integral represents the forced vibration, but there is one particu-

lar integral which is more convenient than any other. Let

s = A cos nt + B sin nt, . . (4)

be this particular integral. The complementary function contains

the two arbitrary constants which are necessary to define the

initial conditions ; consequently, the particular integral needs no

integration constant. We must now determine the forced oscil-

lation due to the given external force, and evaluate the constants

A and B in (4).

First substitute (4) in (3), and two identical equations result.

Pick out the terms in cos nt, and in sin nt. In this manner we
find that

- An2 + 2Bfn + q
2A = &

; and, - Bn2 - 2Afn + a2B = 0.

Solve these two equations for A and J5, and we get

_ k(q
2 - n2

) . _ 2fe/n.

'

(q
2 - n2

)
2 +Af 2n2 '

(q
2 - n2

)
2 + 4/V ^

It is here convenient to collect these terms under the symbols

B, cos c, and sin e, so that

q
2 - n2 = cos e

; 2fn = sin e ; e = tan* 1 -

q*
- nl

B =
(6)

^2 _ W2)2 + 4y2w
2

.-. A = Bcose; B = i?sine. . . (7)

From (4) we may now write the particular integral

s = B(co3 e . cos nt + sin . sin nt) }
. . (8)
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or, making a well-known trigonometrical substitution,

s = B cos (nt
-

c). . . . (9)

This expression represents the forced oscillations of the system
which are due to the external periodic force. The forced oscil-

lation is not in the same phase as the principal oscillation induced

by the effective force, but lags behind a definite amount e.

R in (6) always has the same sign whatever be the signs of n and q ; 2/ is

positive, hence sin is positive and the angle lying in the first two quadrants

ranges from to ir. On the other hand, the sign of cos e does depend upon
the relative magnitudes of n and q. If q be greater than n, e is in the first

quadrant ;
if q is less than n, e is in the second quadrant (see Table XV., page

610) ;
if q = n, e = ir. The amplitude, jB, of the forced vibration is propor-

tional to the intensity, k, of the external force. If / be small enough, we can

neglect the term containing / under the root sign, and then

R= *

2
2 - n2

'

In that case the more nearly the numerical value of q approaches n, the

greater will be the amplitude, R, of the forced vibration. Finally, when

q = n, we should have an infinitely great amplitude. Consequently, when

q = n, we cannot neglect the magnitude of /2 and we must have

Umax - 2nf
so that the magnitude of R is conditioned by the damping constant. If /=0
as is generally assumed in the equation of motion of an unresisted pendulum,

d2s

^p + g
2s = ft cos ni, (10)

the particular integral of which

is indeterminate when n = q. The physical meaning of this is that when a

particle is acted upon by a periodic force "in step" with the oscillations of

the particle, the amplitude of the forced vibrations increase indefinitely, and

equation (10) no longer represents the motion of the pendulum. See page
404. As a matter of fact, equation (10) is only a first approximation obtained

by neglecting the second powers of small quantities (see E. J. Routh's Ad-

vanced Rigid Dynamics, London, 222, 1892). I assume that the reader knows
the meaning of q and n, if not, see pages 137 and 397.

If the motion of the particle is strongly damped, the maximum excita-

tion does not occur when n = q, but when the expression under the root sign

is a minimum. If n be variable, the expression under the root sign is a

minimum when n2 = q
2 -

2/2, as indicated in Ex. (5), page 166 ;
and R is there-

fore a maximum under the same conditions. If n be gradually changed so

that it gradually approaches q, and at the same time /be very small, R will

remain small until the root sign approaches its vanishing point, and the

forced oscillations attain a maximum value rather suddenly. For example,
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if a tuning fork be sounded about a metre away from another, the minute

movements of air impinging upon the second fork will set it in motion.

If / be large, the expression under the root sign does not vanish and

there is no sudden maximum. The amplitudes of the free vibration changes

gradually with variations of n. The tympanum of the ear, and the receiver

of a telephone or microphone are illustrations of this. Every ship has its

own natural vibration together with the forced one due to the oscillation of

the waves. If the two vibrations are synchronous, the rolling of the ship

may be very great, even though the water appears relatively still.
" The ship

Achilles" says White in his Manual of Naval Architecture, "was remarkable

for great steadiness in heavy weather, and yet it rolled very heavily off Port-

land in an almost dead calm." The natural period of the ship was no doubt

in agreement with the period of the long swells. Iron bridges, too, have

broken down when a number of soldiers have been marching over in step

with the natural period of vibration of the bridge itself. And this when the

bridge could have sustained a much greater load.

The complete solution of the linear equation is the sum of the

particular integral and the complementary function. If the latter

be given by II, page 406, the solution of (3) must be written

s = Bcos(nt -
e) + e~ at

(Cl co$qt + C2 sing).

We can easily evaluate the two integration constants G
x
and C

2 ,

when we know the initial conditions, as illustrated in the preced-

ing section. If the particle be at rest when the external force

begins to act,

fn . If \
C

1
= -Bco3; 2

= - Bl -sine + cosel.

At the beginning, therefore, the amplitude of the free vibrations is

-y a b

Fig. 151.

of the same order of magnitude as the forced oscillation. If the

damping, 2/, is small, and n is nearly equal to q, the damping

factor, e'"*, will be very great nearly unity; 2f/q is nearly zero;

n/q is nearly unity ;
and e is nearly ^tt.

In that case, G
x
= 0, and

G2
= - B. The motion is then approximately

s = B(sin nt - sin qt).

The two oscillations sin nt and - sin qt are superposed upon one
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another. If these two harmonic motions functions are plotted

separately and conjointly, as in Fig. 151, we see at once that they
almost annul one another at the beginning because the one is

opposed by the other. This is shown at A. In a little while, the

difference between q and n becomes more marked and the ampli-

tude gradually increases up to a maximum, as shown at B. These

phenomena recur at definite intervals, giving rise to the well-

known phenomena of interference of light and sound waves, beats,

etc.

Examples. (1) Ohm's law for a constant current is E = BC ;
for a

variable current of G amperes flowing in a circuit with a coefficient of self-

induction of L henries, with a resistance of B ohms and an electromotive

force of E volts, Ohm's law is represented by the equation,

E =^BC + L . djCdt, .... (11)

where dC/dt evidently denotes the rate of increase of current per second, L is

the equivalent of an eleotromotive force tending to retard the current.

(i) When E is constant, the solution of (11) has been obtained in a preced-

ing set of examples, G=E/B + Be- mlL
t where B is the constant of integration.

To find Bt note that when t = 0, = 0. Hence, G = E{1 - -
ni^/B. The

second term is the so-called " extra current at make," an evanescent factor

due to the starting conditions. The current, therefore, tends to assume the

steady condition : G = E/B, when t is very great.

(ii) When C is an harmonic function of the time, say, O = C sin qt ;

.. dGjdt = C qcosqt. Substitute these values in the original equation (11),

and E = BC sin qt + LCQq cos qt, or, E = G *JB? + L2
q* . sin (qt + e), on

compounding these harmonic motions, page 138, where e = t&n- l

(LqlB), the

so-called lag
l of the current behind the electromotive force, the expression

s/(B
2 + Z/2g

2
)
is the so-called vmpedance.

(iii) When E is a function of the time, say, f(t),

C = B6~%+%L\e
L
f(t)dt,

K^ffi
where B is the constant of integration to be evaluated as described above.

(iv) When E is a simple harmonic function of the time, say, E=EQsm qt,

then,

EjBBwqt-LqcoBqt)U = Be l+ 2 + Ly
The evanescent term e-MlL may be omitted when the current has settled

down into the steady state. (Why ?)

1 An alternating (periodic) current is not always in phase (or, "in step") with

the impressed (electromotive) force driving the current along the circuit. If there

is self-induction in the circuit, the current lags behind the electromotive force
; if

there is a condenser in the circuit, the current in the condenser is greatest when the

electromotive force is changing most rapidly from a positive to a negative value, that

is to say, the maximum current is in advance of the electromotive force, there is then

said to be a lead in the phase of the current.

DD
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(v) When E is zero, = Be- miL
. Evaluate the integration constant

B by putting C = C , when t = 0.

(2) The relation between the charge, q, and the electromotive force, E, of

two plates of a condenser of capacity C connected by a wire of resistance B, is

E = B . dqjdt + q/C, provided the self-induction is zero. Solve for q. Show
that when if E be

; q = Q^e-'!; (Q is the charge when t = 0). If E be

constant
; q = CE + Be-"* . If E =

f{t) ;

1 f t_ __
q = j=e

no I excf(t)dt + Be rc.

(3) Show if JJMn*; 4 = ife-F.+^'^^r8^
.

135. How to find Particular Integrals.

The particular integral of the linear equation,

(D* + PD + Q)y = f(x),' . . . (1)

it will be remembered, is any solution of this equation the simpler
the better. The particular integral contains no integration con-

stant. The complete solution of the linear equation is the

sum of the complementary function and the particular integral.

Complete solution = complementary function + particular integral.

We must now review the processes for finding particular in-

tegrals. Let B be written in place of f(x), so that (1) may be

written f(D)y = B. Consequently, we may write,

2/=/(D)-^; <>T,y
= ~. . . (2)

The right-hand side of either of equations (2), will furnish a

particular integral of (1). The operation indicated in (2) depends
on the form of f(D). Let us study some particular cases.

J. When the operator f(D)
~ l can be resolved into factors.

Suppose that the linear equation

3 -+*-*
can be factorized. The complementary function can be written

down at sight by the method given on page 401,

(Z>
2 - 5D + 6)2/

=
; or, (D -

3) (D -
2)y = 0.

According to (2), the particular integral, yv is

Vl
=
(D -

3) (D - 2)^
=
\D~^3

~
W^1J

B
;

On page 396 we have defined f(D)
~ lB to be that function of x

which gives B when operated upon by f(D). Consequently,
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D ~ lx2 m jx
2dx. Hence, D - 3 acting upon (D -

3)
~ XB must, by

definition, give B. But (D -
3)

" XB is the% particular integral of

the equation

so that from (2), page 387, y - e-'-vje'-vjRdx = e^je-^Bdx.

.\y1
= e**\e

~
**Bdx -

e**fe
"
**Bdx.

from (2). The general solution is

... y = G
Y
e** + Ce2* + eZx\e

~ ^Bdx -
e^je

' 2xBdx.

Examples. (1) In the preceding illustration, put B = e4x and show that

the general solution is, Gx&x + C2e
2a: + %e

ix
.

(2) If (D
2 - 4D + S)y = 2e*x \ y = G

x
ex + G^x + are

3
*.

(3) Solve cPyjdx
2 - 3dy/dx + 2y = a3*. In symbolic notation this will

appear in the form, (D -
1) (D -

2)y = e3x . The complementary function is

y = Gx
ex + G^P*. The particular integral is obtained by putting

Vl =
(D -

2) (D -
l)
6** " (dTT~ F^i)^'

according to the method of resolution into partial fractions. Operate with

the first symbolic factor, as above, yx
=

e^je
~ 2xe?xdx -

^je
~ xeSxdx = %e

3x
.

The complete solution is, therefore, y = Gxe
x + C^2* + $

3*

II. When Bis a rational function of x, say x*.

This case is comparatively rare. The procedure is to expand

f(D)
~ 1 in ascending powers of D as far as the highest power of x

in B. The expansion may be done by division or other convenient

process.

Examples. (1) Solve dPyfdx
2 - Idyjdx + 4y x*. The complementary

function is y = e^A + Bx) ;
the particular integral is :

(2TDJi*
= K1 + D + iP'Y ~lP* + *X + 8)*

You will, of course, remember that the operation Dx2 is 2x ; and JD2a?2 is 2.

(2) If d^y/dx
2 -y = 2 + 5x; y = G

x
ex + G# - - 5x - 2.

(3) The particular integral of (D
3 + 3D2 + 2D)y t

= x2 is ^a;(2a;
2 -9a; + 21) ;

the complementary function is Ox + G&- 2* + Gg~ x
. The steps are

2D + 3D* + D* x9ls
2D\l + \D + \Dy

x*=
W\}

"
2
D + l

D
*)&-

Now proceed as in Ex. (1) for the operation Dx2 and D2x2. Then note that

-=x =
jxdx; -^a;

2 =
jx

2dx'
t etc

111. When B contains an exponential factor, so that B = e^X.

Two cases arise according as X is or is not a function of x
t
a is

constant,

DD*
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(i) When X is a function of x. Since IPe"* = aneax, where n is

any positive integer, we have

D{eTX) = e
axDX + ae^X = e

ax
(D + a)X,

and generally, as in Leibnitz' theorem, page 67,

Dn
e
axX = e

ax
(D + a)

nX;
J)ne

ax 2 I
'

Ur+lifZ
= fX

;
ad (p^Xe-

= e-'WnX. (3)

Consequently, the operation /(D) - V*X is performed by trans-

planting e
ax from the right- to the left-hand side of the operator

/(D)
" x and replacing D by D + a. This will, perhaps, be better

understood from Exs. (1) and (2) below.

(ii) When X is constant, operation (3) reduces to

The operation /(D)
" V* is simply performed by replacing D by a.

Examples. -(1) Solve d^yjdx^
- 2dy/dx+y=a?VK The complete solution,

by page 418, is (02 + xG^e? + (D + 2D + 1)
- 1o Ja:

. The particular integral is

jy - lb + i
x2e3x =

(fr -iMB-i)
8*"-

By rule : tPx may be transferred from the right to the left side of the operator

provided we replace D by D + 3.

We get from J above, edx(x*-%x + %), as the value of the particular integral.

(2) Evaluate (D -
1)

_
Vlog x. Ansr. e*(x log a; -

a;) ; or aa*log (xje).

Integrate jlogxdx by parts.

(3) Find the particular integral in (D
2 - 3D + 2)y = e*x

,

F4D + 2*
3" =

32 - 3 . 3 + 2***
= &**

(4) Show that \e
x

,
is a particular integral in d^y/dx

2 + 2dy[dx + y = eXt

(5) Repeat Ex. 1, I", above, by this method.

An anomalous case arises when a is a root of /(D) = 0. By this

method, we should g^t for the particular integral of dy/dx -y = e
x

.

1 * e
*

The difficulty is evaded by using the methodi(3) instead of (4). Thus,
l i

e
x = e%r. 1 = xe*.D - 1 D

The complete solution is, therefore, y = Gex + xe*.

Another mode of treatment is the following : If a is a root of

/(D) = 0, then as on page 354, D - a must be a factor of /(D).
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Consequently,
/!>)- (D-ay(D);

and the particular integral is

'

]{Wf'
-W^-fWf" =W1^ TW6

** = e<

"7w\
dx - (5)

If the factor D - a occurs twice, then following the same rule

pf"
= ur^ymr =e^)-mr = e<aml\dxdx- ; (6)

and so on for any number of factors.

Examples. (1) Find the particular integrals in, (D + l)
3
y = e~ x

. Ansr.

\<x?e~
x

. Hint. Use (6) extended; or, since the root a is -
1, we have to

evaluate e
~ *

. D ~ 3
; that is, e

~ x
jjjdxdxdx.

(2) (D
3 -

l)y = xex . Ansr. e*fox
2 -

{x). Hint. By the method of (3),

and Ex. (8), II., above,

i i i i/i i \ v.^

IV. When B contains sine or cosinefactors.

By the successive differentiation of sin nx
} page 67, we find that

_ . d(smnx) ^ . d2(8mnx)Dsmnx = -^-j = noosnx
;
D2smnx = ,

2
- = - w2sin nx ; . . .

.*. (D
2
)
n
ain(nx + a) (- n2

)
n
sin(nx + a),

where w and a are constants. And evidently

/(D
2
)8in(wo; + a) = /(

- w2
)sin(rac + a).

By definition of the symbol of operation, f{D
2
)

~ 1
, page 396, this

gives us

*

y^2)
8in(^ + <0 - j^-^Bm(nx

+ a). . (7)

It can be shown in the same way that,

y^fOB(nx
+ a) - ^ _ rff

oafttx + a). .
*

(8)

Examples. (1) cPyjdx* + cPyjdx* + dy/da + y = sin 2a. Find the par-

ticular integral.

R *
1 1

/(5)
= D3 + Z>2 + D + 1

8in 2x m
(i* + l) + D(D+l)

8m 2a? '

Substitute - 22 for D2 as in (7). We thus get
-

( + 1)
~ asin 2x. Multiply

and divide by D - 1 and again substitute D2 =
(
- 22

)
in the result. Thus we

get jV(D -
1) sin 2x

;
or ^(2 cos 2x - sin 2x).

(2) Solve d?yldaP-k*y=s cos ma?. Ansr. C^tf
** + C^

~ ** -
(cosmo?)/(m

2+ A;
a
).

(3) If a and are the roots of the auxiliary equation derived from Helm-
holtz's equation, di

yjdf- + mdyjdt + n2y= a sin nt, for the vibrations of a tuning-

fork, show that y=C x
e^ +C^ -

(a cos nt)lmn is the complete solution.
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An anomalous case arises when D2 in D2 + n2
is equal to - n2

.

For instance, the particular integral of d2
y/dx

2 + n*y = Srac, is

(D2 + n2
)

~ l
JS nx. If the attempt is made to evaluate this, by

substituting D2 - n2
,
we get $* nx{

- n2 + n2
)

~ 1 = oo
*
rac.

We were confronted with a similar difficulty on page 420. The

treatment is practically the same. We take the limit of

(D
2 + n2

)

- l
SS nx, when n of 2 nx and - D2 become n + h and /i

converges towards zero. In this manner we find that the par-

ticular integral assumes the form .

x sin nx x cos nx
+ o if B = cos nx

;
and t if B = sin nx. (9)

Examples. (1) Evaluate (D
2 + 4)

_ ^os 2sc. Ansr. %x sin 2x.

(2) Show that - %x cos x, is the particular integral of (Z)
2 + l)y = sin x.

(8) Evaluate (D
2 + 4)

- Jsin 2a;. Ansr. -
\x cos 2a;.

V. When B contains any function of x, say X, such that B = xX.

The successive differentiation of a product of two variables,

xX, gives, pages 40 and 67,

DnxX = xDnX + nTT-^X.

.-. f(D)xX = xf(D)X + /XD)X . . (10)

Substitute F = f(D)X, where T" is any function of x. Operate
with /(D)

"
K We get the particular integral

1 f 1 ffljy m ,

/(Df
A ~

V7(D) /(D)
2
J

A * ' (11)

where /'(D)//(D) is the differential coefficient of /(D)
- *

Examples. (1) Find the particular integral in cPyjdx
3 - y = xe2*. Ke-

member that f'(D) is the differential coefficient of D3 - 1. From (11) the

particular integral is

{.
-
1
A-

v 3D*
}B rif.

=
{*

-
i.8,4}ie-

=
(=

-
g)*

(2) Show in this way, that the particular integral of (D -
l)y = x sin x

is

1 1 D + l . (D + l)
2

.

a;5Tl sina! -
(D -

1)2
sin a; = ^^\ amx ~

(j)2
_

1)a
Bing;

=s
a;(.D + 1) cos x - %(D

2 + 2D + 1) cos a; = a:(cos x + sin x)
- cos a?.

(3) If d*y/dx
2 - y = 2

cosa;; y = G
y
ex + C<#-

x+ xsiiix + % cosa?(l
- a;

8
).

Hint. By substituting xX in place of X in (10), the particular integral may
be transformed into

fm*x
= {*fk*^fw +f7m)x' (12)

where /'(Z>)//(2))
2

,
and f"(D)jf{D

3
) respectively denote the first and second

differential coefficient of f(D)
~
K Successive reduction of x^X furnishes a

similar formula. The numerical coefficients follow the binomial law. Re-
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turning to the original problem, the first and second differential coefficients

of (D
2 -

1)
-

are - 2D(D2 -
1)

- 2
,
and (2D

2 -
2) (D

2 -
1)

- 3
. Hence,

jjpf*x
* -

{ ^"STTTT + 2a;
(
jy _

1)2
+

(2)3
_

i) jcos
;

.. y1
= -

^oj^os sc -
$ sin sc + cos x.

(4) Solve (Pyjda?
- y = x sin z. The particular integral consists of two

parts, %{(x
-

3) cos x
- x sin x). Tho complementary function is

(Vs + e" 4
*{a,sin(\/3a;) + C3cos( -s/3aj)}.

136. The Gamma Function.

The equation of motion of a particle of unit mass moving
under the influence of an attractive force whose intensity varies

inversely as the distance of the particle away from the seat of

attraction is obviously
dh _ a

dt*
~

s'

where a is a constant, and the minus sign denotes that the

influence of the force upon the particle diminishes as time goes

on. To find the time occupied by a particle in passing from a

distance s = 5 to s = s , we must integrate this equation. Here,

on multiplying through by 2ds/dt, we get

(ds d2s a (1 ds 1/dsV ,

) when s = sQ ,

J.V log ^

(1)

For the sake of convenience, let us write y in place of logs /s.

From the well-known properties of logarithms discussed on

page 24, it follows that if s = s
, y ; and if s = 0, y = oo.

Hence, passing into exponentials,

s s

log- = y ; j
= ev ; s = sae -; ds = - sQe~

v
dy ;

_

Mt?- *!>-"-*
It is sometimes found convenient, as here, to express the solu-

tion of a physical problem in terms of a definite integral whose
numerical value is known, more or less accurately, for certain

valines of the variable. For example, there is Soldner's table of
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jJ(loga;)
~ ldx

; Gilbert's tables of Fresnel's integral JJcos \irv . dv, or

JJsin i-n-v . dv ; Legendre's tables of the elliptic integrals ; Kramp's
table of the integral je

* *2
. dt

; and Legendre's table of the in-

tegral Qe~
xxn ~ l

. dx, or the so-called "gamma function". We
shall speak about the last three definite integrals in this work.

Following Legendre, the gamma function, or the " second

Eulerian integral," is usually symbolised by T(n). By definition,

therefore,

r(n) =
J

e- xxn ~ l .dx. (3>

Integrate by parts, and we get

e
~ xxn

. dx = n
\

e
~
*xn

" 1
. dx - e

- xxn . . (4)
o Jo

The last term vanishes between the limits x = and x = oo.

Hence

e~*xn .dx = n\ e" xxn ^ 1 .dx. . . (5)
o Jo

In the above notation, this means that

T(n + 1) = r(n). ... (6)

If n is a whole number, it follows from (6), that

V(n + 1) = 1 . 2 . 3 . . . n = n ! . . . (7)

This important relation is true for any function of n, though n !

has a real meaning only when n is integral.

The numerical value of the gamma function has been tabu-

lated for all values of n between 1 and 2 to twelve decimal places.

By the aid of such a table, the approximate value of all definite

integrals reducible to gamma functions can be calculated as easily

as ordinary trigonometrical functions, or logarithms. There are

four cases :

1. n lies between and 1. Use (16).

2. n lies between 1 and 2. Use Table V., below.

3. n is greater than 2. Use (6) so as to make the value of the

given expression depend on one in which n lies between 1 and 2.

4. r(l) = 1; T(2) = 1; T(0) - oo; r(j) - JZ. . , (8)

I. The conversion of definite integrals into the gamma function.

The following are a few illustrations of the conversion of de-

finite integrals into gamma functions. For a more extended

discussion special text-books must be consulted. If a is inde-
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pendent of x
f

1
e
-a*xm^ i dx = v(m) ; (9)

o <*

Jo
K J

Jo(l+^r +M
r(m + w)

V ;

The first member of (10) is sometimes called the first Eulerian

integral, or beta function. It is written B(m, n). The beta func-

tion is here expressed in terms of the gamma function. Substitute

x = aylb in the second member of (10), and we get

J"

y
m~ l

dy T(m)T(ri)

(ay + b)
m+n ~

ambnT(m + n)'
(11

Other relations are :

Jo Jo r^n + 1)

f sin** . oob* . ^ = T[ittJ)] ' T[t
iq
n 1)l ^

Jo 2rB0> + ff) + i]

f
1

, AVj r(n+i) f
1

ml n , (-i)
w
r(w + i) .,

)* logy
ib -^n^ ] o

-rlogon& =
(
J+ lr+1

. (H)

[\
ne-*dx = a-(" +1>r(w + 1) ; fV 2*2dz = ffiil = i^. (15)

Jo Jo a a

You can now evaluate (2). We get

Compare the result with that obtained by the process of integra-

tion described on pages 342 and 344.

Examples. (1) Evaluate P" sin^a? . dx. Hint. From (12), r(6)^
'

n llilllidL-^ _ ^ JL ! 5 3 X
''

2
'

5.4.3.2.1 ~2'l0'8'6*4'2

,OV -T, , /" -K J TT ,V r(6) 5.4.3.2.1
(2) Evaluate / g-^.dz. Use (9). Ansr. -~V =

/*
a^-^a: 7r tt

-,
, _ =

,
, show that r(ra) . r(l

- m) = . ^ ; and
1 + x sin mw \ / \ / gm W7r

r(l + m) . r(l
- m) = .

, by putting m + n = 1 in the beta function, etc.
OXXI ifLTV

These two results can be employed for evaluating the gamma function when
n lies between and 1. By division

.

, r(l + m) n
r() = m (

16
)

If m = i, r(i) - 3-6254; log r() = 0-5594; if w -
J, r() = 1-7725;
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log10 r(J) - 0-2486; and' if m =
|, r(|) = 1'2253; log10 r(f) = 0-0883; where

the bar shows that the figure has been strengthened.

II. Numerical computations.

Table V. gives the value of log10r(w) to four decimal places for

all values of n between 1 and 2. It has been adapted from Le-

gendre's tables to twelve decimal places in his Exercises de Galcul

Integral, Paris, 2, 18, 1817. For all values of n between 1 and 2,

log Y(n) will be negative. Hence, as in the ordinary logarithmic
tables of the trigonometrical functions, the tabular logarithm is

often increased by the addition of 10 to the logarithm of T(n).

This must be allowed for when arranging the final result.

Table V.-
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gravitation j
I the length of the string AO. Hence, show that

\

_| COS =C; ... G=-fcOSa

'''di
= Vt(cos ^ " C0Sa) = * 2VKsin2i

" sin2
2)'

(2)

since cos a = 1 - 2 sin2Ja ; cos = 1 - 2 sin2J0, and a is the value

of when d#/d = 0, that is, a is the angle, less than 180, through
which the pendulum oscillates on each side of the vertical. Since

is always less than a, we retain the negative sign.

The period of an oscillation, or double swing, T, can, therefore

be obtained from (2). We have J

ivm:
"y

. (3)
Vl - sin2 a . sin >2

<

'

since to pass from to \T, increases from to a, and <f>
from

to
\ir. Hence, we may write

d<f>

rvr-Jo Jl - FsinV
' ' (4)

The expression on the right is called an elliptic integral of the

first elass, and usually written F(k, <f>).
The constant sin Ja is

called the modulus, and it is usually represented by the symbol k.

The modulus is always a proper fraction, i.e., less than unity. <

is called the amplitude of T JgJT, and it is written < = am s]g\l T.

We can always transform (2) by substituting sin |0 = x sin Ja,

where x is a proper fraction. By differentiation,

h cos J0 . d$ = sin |a . dx ; . \ dO = 2(1
- 8in24a . x2

)
~ 1 /2sin Ja . dx.

This leads to the normal form of the elliptic integrals of the first

class, namely,
dx

(5)u-i-oVa -a2
)(i -wy

commonly written F(k, x). We can evaluate these integrals in

1 The expression on the right of (2) can be put in a simpler form by writing

sin %0 = sin a .sin <p ;
.-. $ cos %6 . dd = sin Ja . cos <p . d<p.

2 sin a . cos <p . d<f> __ 2 sin fra . cos <pd(f> _ 2 sin $a cos <pd<p

cos0 \/l - sin2 Jl - sin^a . cos2
</>

'

2 sin $a cos <pd<p 2 cos
<ft^</>

de *Jl~- sin2
$asin<fr Jl - sin2 a . sin2

<f>

>/sin*aT- sin2 = sin a\/l - sin 2
^>

= "

cos

Hence (3) above. These results, follow directly from the statements on pages 611 and

612,
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series as shown on Ex. (4), page 342. In this way we get, from

(4), for the period of oscillation,

When the swing of the pendulum is small, the period of oscillation'

T= 2/r sfljg seconds. If the angle of vibration is increased, in

the first approximation, we see that the period must be increased

by the fraction J(sin Ja)
2 of itself.

The integral (3) is obviously a function of its upper limit
<f>,

and it therefore expresses T Jg/l as a function of
<f>.

We can

reverse this and represent <j>
as a function of T Jg/l. This gives us

the so-called elliptic functions.

<f>
= am (T Jgjl) ;

mod k = sin \a.

The elliptic functions are thus related to the elliptic integrals the

same as the trigonometrical functions are related to the inverse

trigonometrical functions, for, as we have seen, if

f* dx
y =

/- 2
;

.* y - sin-^; and a; = siny.

We get, from (3) and (5),

< = am T sjgjl ;
x = sin

<f> ; .\ x = sin am T Jg/l,

according to Jacobi's notation, but which is now written, after

Gudermann, x = sn T Jg/l. Similarly the centrifugal force, F, of

a pendulum bob of mass m oscillating like the above-described

pendulum, is written F &mg sin ^a.cnT s/g/l, where en T sjgjl

is the cosine of the amplitude of T Jg/l.

The elliptic functions bear important analogies with the ordin-

ary trigonometrical functions. The latter may be regarded as

special forms of the elliptic functions with a zero modulus, and

there is a system of formulas connecting the elliptic functions to

each other. Many of these bear a formal resemblance to the

ordinary trigonometrical relations. Thus,

sdHl + cn% = 1
;
x = sn u ; en u = Jl - x2

;
etc.

The elliptic functions are periodic. The value of the period

depends on the modulus k. We have seen that the period of

oscillation of the pendulum is a function of the modulus. The

substitution equation, sin \0 = sin Ja . sin
<f>,

shows how sin J0

changes as < increases uniformly from to 2tt.



3 137. HOW TO SOLVE DIFFERENTIAL EQUATIONS. 429

As < increases from to Jtt, \B increases to + \a.

As
<f> increases from Jtt to tt, %6 decreases to 0.

As
<f> increases from ir to 'Jtt, %6 decreases to -o

As
<f> increases from ir to 27r, J0 increases to 0.

During the continuous increase of <, therefore, \B moves to and

fro between the limits \a.

The rectification of a great number of curves furnishes expres-
sions which can only be integrated by approximation methods

say, in series. The lemniscate and the hyperbola furnish elliptic

integrals of the first class which can only be evaluated in series.

In the ellipse, the ratio oFJoP* (Fig. 22, page 100) is called the ec-

centricity of the ellipse, the "
e
"
of Ex. (3), page 115. Therefore,

c = ae
; but, c2 = a 2 - b2 , .-. b2/a

2 = 1 - e2 .

Substitute this in the equation of the ellipse (1), page 100. Hence,

/dy\ 2
(1 - e2)x

2

Therefore, the length, I, of the arc of the quadrant of the ellipse is

This expression cannot be reduced by the usual methods of inte-

gration. Its value can only be determined by the usual methods

of approximation. Equation (7) oan be put in a simpler form by

writing x = a sin <, where <f>
is the complement of the "eccentric"

angle 6 (Fig. 152). Hence,

fin-

l = a\ sjl - e2 am2
<j>.d<f>.

Jo

The right member is an elliptic integral of the second class,

which is usually written, for brevity's sake, E(k, </>),
since k is

usually put in place of our e. The integral may also be written

*-w^y
.

(8

by a suitable substitution. We are also acquainted with elliptic

integrals of the third class,

n <n>
k > +> -

fcl + Min^l - fctoV
^ "^ & ' * *" (9)

where n is any real number, called Legendre's parameter. If the

limits of the first and second classes of integrals are 1 and 0,

instead of x and in the first case and tt and in the second
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case, the integrals are said to be complete. Complete elliptic in-

tegrals of the first and second classes are denoted by the letters F
and E respectively.

The integral of an irrational polynomial of the second degree,

of the type,

f / i o ^ -, f X<fa
I sia + bx + ex2 . X . dx ; or, I

,
_ ==

J J sia + bx + ex2

(where X is a rational function of x), can be made to depend on

algebraic, logarithmic, or on trigonometrical functions, which can

be evaluated in the usual way. But if the irrational polynomial
is of the third, or fourth degree, as, for example,

I Ja + bx + ex2 + dxz + ex*Xdx
;

the integration cannot be performed in so simple a manner. Such

integrals are also called elliptic integrals. If higher powers than

x* appear under the radical sign, the resulting integrals are said to

be ultra-elliptic or hyper-elliptic integrals. That part of an

elliptic integral which cannot be expressed in terms of algebraic,

logarithmic, or trigonometrical functions is always one of the three

classes just mentioned.

Legendre has calculated short tables of the first and second

class of elliptic integrals ;
the third class can be connected with

these by known formulae. Given k and x, F(k, <f>)
or E(k } <f>)

can

be read off directly from the tables. The following excerpt will

give an idea of how the tables run :

Numerical Values of F(k, <f>) ; sin a = k.

</>.
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We cannot spare space to go farther into this matter. Mascart

and Joubert have tables of the coefficient of mutual induction of

electric currents, in their Electricity and Magnetism (2, 126, 1888),

calculated from E and F above. A. G. Greenhill's The Applica-

tions of Elliptic Functions (London, 1892), is the text-book on

this subject.

138. The Exaot Linear Differential Equation.

A very simple relation exists between the coefficients of an

exact differential equation which may be used to test whether the

equation is exact or not. Take the equation,

x%+xm + x>% + x<y-x>
where X

, X^, . . . ,
B are functions of x. Let their successive

differential coefficients be indicated by dashes, thus X, X", . . .

Since X . d3
y/dx

z has been obtained by the differentiation of

X . d2
y/dx

2
}
this latter is necessarily the first term of the integral

of (1). But,

dx\*dxy
~ Aw + A W

Subtract the right-hand side of this equation from (1).

(* - *.) +
*ffi + ** - * (2)

Again, the first term of this expression is a derivative of

(Xx
- X )dy/dx. This, therefore, is the second term of the in-

tegral of (1). Hence, by differentiation and subtraction, as before,

(Xt
- X\ + X" )g + X# - B. . . (3)

This equation may be deduoed by the differentiation of

(X2
- X\ + X" )y, provided the first differential coefficient of

(X2
- X\ +X"

{) with respeot to x, is equal to X8 , that is to say,

X2
- X'\ + X" - X8 ; or, X, - X2 + Xf

\
- X" - 0. (4)

But if this is really the origin of (3), the original equation (1) has

been reduced to a lower order, namely,

Xo + (*i
-
^o)|- + (*, - *\ + *\yy =

\Bdx
+ Or (5)

This equation is called the first integral of (1), because the order
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of the original equation has been lowered unity, by a process of

integration. Condition (4) is a test of the exactness of a differential

equation.

If the first integral is an exact equation, we can reduce it, in

the same way, to another first integral of (1). The process of

reduction may be repeated until an inexact equation appears, or

until y itself is obtained. Hence, an exact equation of the nth

order has n independent first integrals.

Examples. (1) Is a5
. d3

y[dx? + 15a4
. dPy/dx* + 60a3

. dyjdx + 60x*y = e*

an exact equation? From (4), X3
= 60a;2

;
X'2 = 180a2 ; X'\ = 180a2

;

X"\ = 60a2 . Therefore, X%
- X'2 + X'\ - X"\ = and the equation is

exact. Solve the given equation. Ansr. x5
y = ex + Ox

x2 + G%x + C3 .

Hints. From (5), the first integral is (a
5!)2 + 10a4D + 2003)3/

= ex + Cv
This is exact, because the new values of X for the first integral just obtained

X2
- X\ + X" = 0, since, 20a3 - 40a3 + 20a3 - 0. For the next first in-

tegral, we have

X<^ + (
xi- x'o)y

=
fe

xdx + fc^ + C,. . . (6)

Hence (x?>D + 5x4
)y = ex + Gxx + C2 . This is exact, because the new values

of X, namely, Xx
- X = 0. Hence, the third and last first integral is

aPy = je
xdx + jCjXdx + jC2dx + C3 ,

etc.

(2) Solve xd^yjdx
3 + (a

2 -
S)d

2
y/dx

2 + 4a . dyjdx + 2y = 0, as far as pos-

sible, by successive reduction. The process can be employed twice, the

residue is a linear equation of the first order, not exact. Complete solution :

x -66hhj= Gx\x~H^dx + C2jx-*eh
x2dx + 3.

There is another quick practical test for exact differential equa-

tions (Forsyth) which is not so general as the preceding. When
the terms in X are either in the form of axm

,
or of the sum of

expressions of this type, xmdny/dx
n

is a perfect differential co-

efficient, if m <n. This coefficient can then be integrated what-

ever be the value of y. If m = n or m > n, the integration cannot

be performed by the method for exact equations. To apply the

test, remove all the terms in which m is less than n, if the re-

mainder is a perfect differential coefficient, the equation is exact

and the integration may be performed.

Examples. (1) Test a3
. d^jdx

4 + a2 . dPyjdx* + a . dyjdx + y = 0.

a . dyjdx + y remains. This has evidently been formed by the operation

D(xy), hence the equation is a perfect differential.

(2) Apply the test to (a
3D4 + a2Z>3 +a2D + 2x)y = sin a. a2

, dyjdx + 2xy
remains. This is a perfect differential, formed from Dfa^y). The equation
is exact.
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139. The Velocity of Consecutive Chemical Reactions.

While investigating the rate of decomposition of phosphine,

page 224, we had occasion to point out that the aotion may take

place in two stages :

Stage I. PH
3
= P + 3H. Stage II. 4P = P4 j

2H = H
2

.

The former change alone determines the velocity of the whole

reaction. The physical meaning of this is that the speed of the

reaction which occurs during the second stage, is immeasurably
faster than the speed of the first. Experiment quite fails to reveal

the complex nature of the complete reaction. J. Walker illustrates

this by the following analogy (Proc. Boyal Soc. Edin., 22, 22,

1898) :

" The time occupied in the transmission of a telegraphic

message depends both on the rate of transmission along the conduct-

ing wire and on the rate of the messenger who delivers the telegram ;

but it is obviously this last, slower rate that is of really practical

importance in determining the total time of transmission".

Suppose, for example, a substance A forms an intermediate

compound M, and this, in turn, forms a final product B. If the

speed of the reaction A = M, is one gram per tW&w second, when

the speed of the reaction M = B, is one gram per hour, the ob-

served "order
"

of the complete reaction

A = B,

will be fixed by that of the slower reaction, M = B, because the

methods used for measuring the rates of chemical reactions are not

sensitive to changes so rapid as the assumed rate of transformation

of A into M. Whatever the " order
"

of this latter reaction, M =B
is alone accessible to measurement. If, therefore, A = B is of the

first, second, or nth order, we must understand that one of the

subsidiary reactions : A = M, or M = B, is
(i)

an immeasurably
fast reaction, accompanied by (ii)

a slower measurable change of

the first, second or nth order, according to the particular system
under investigation.

If, however, the velocities of the two reactions are of the same

order of magnitude, the " order
"

of the complete reaction will not

fall under any of the simple types discussed on page 218, and

therefore some changes will have to be made in the differential

equations representing the course of the reaction. Let us study
some examples.

BE



434 H1GHEK MATHEMATICS. 139.

I. Two consecutive unimolecular reactions.

Let one gram molecule of the substance A be taken. At the

end of a certain time t
f the system contains x of A, y of M, z of B.

The reactions are

A = M; M = B.

The rate of diminution of x is evidently
dx-
Tt

= k
Yx, (1)

where k
x denotes the velocity constant of the transformation of

A to M. The rate of formation of B is

dz

di
= k# (

2
)

where k
2 is the velocity constant of the transformation of M to B-

Again, the rate at which M accumulates in the system is evidently
the difference in the rate of diminution of x and the rate of increase

of z, or

= k
i
x -

KV- ... (3)

The speed of the chemical reactions,

A = M = B,

is fully determined by this set of differential equations. When the

relations between a set of variables involves a set of equations of

this nature, the result is said to be a system of simultaneous

differential equations.
In a great number of physical problems, the interrelations of

the variables are represented in the form of a system of such

equations. The simplest class occurs when each of the dependent
variables is a function of the independent variable.

The simultaneous equations are said to be solved when each

variable is expressed in terms of the independent variable, or else

when a number of equations between the different variables can be

obtained free from differential coefficients. To solve the present

set of differential equations, first differentiate (2),

dt* **dt
~

\

Add and subtract kjc2y t substitute for dy/dt from (3) and for k$
from (2), we thus obtain

gl + (&! + k
2)^

-
lcjc^x + y) = 0.
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But from the conditions of the experiment,

x + y + z = 1, .'. z - 1 <= - (x + y).

Hence, the last equation may be written,

d\z
dt2
- + & + *>^3T^ + *A<* -

1) 0. (4)

This linear equation of the second order with constant coefficients

is to be solved for z - 1 in the usual manner ( 131). At sight

therefore,
z - 1 = C

x

~
*i* + C2e-*2*.

But z = 0, when t = 0,

.-. Gl + G2
- - 1.

Differentiate (5). From (2) dz/dt = 0, when t = 0.

making the necessary substitutions,
- Gfa - G

2
h
2
= 0.

From (6) and (7),

Ci -*./(*i -*); %
= " V(*i -

h)>

The final result may therefore be written,

#1 - - k^i &

. (5)

(6)

Therefore

. (7)

1 = _ "*2* -
to\

"""

2 1
~"

2

e
"

*i'. (8)

. Harcourt and Esson have studied the rate of reduction of

potassium permanganate by oxalic acid.

2KMn04 + 3MnS04 + 2H
2

= K
2S04 + 2H

2S04 + 5Mn02 ;

Mn02 + H2S04 + H2C2 4
= MnS04 + 2H

2 + 2C02
.

By a suitable arrangement of the experimental conditions this

reaction may be used to test equations (5) or (8).

Let x
y y, z

} respectively denote the amounts of Mn2 7, Mn02

and MnO (in combination) in the system. The above workers

found that G
1
= 28-5; C

2
= 27; <?*i = -82

;
e~ k

z = -98. The

following table places the above suppositions beyond doubt.

t

Minutes.
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the amount of M transformed into B at the time t, then, if a denotes the

amount of A present at the beginning of the experiment,

dy dz

dt=ki(a-y); % = *&-*)- t P)

Prom the first equation, y *= a(l
-

e-h*). Substitute this result in the second

equation, and we get

dz

-fa
+ ktf

-
k,a(l

- e-V) - 0.

Prom Ex. (5), page 388, if 2 = 0, when t = 0, we get

z , c,-v+a.^.V;0=^__ o; . (10)

and we get, finally, an expression resembling (8) above. Equation (8) has
also been employed to represent the decay of the radioactivity excited in

bodies exposed to radium and to thorium emanation.

II. Two bimolecular consecutive reactions.

During the saponification of ethyl succinate in the presence
of sodium hydroxide.

C2
H4(COOC2

H
5) 2 + NaOH = C2

H
5
OH+ 2

H
4

. COONa . COOC
2
H5 ;

C
2
H4 .COONa.COOH + NaOH = C2

H
6OH + C

2
H

4(COONa)2 .

Or,

A + B = C + M ;
M + B = C + D.

Let x denote the amount of ethyl succinate, A, which has been

transformed at the time t; a - x will then denote the amount

remaining in the solution at the same time. Similarly, if the

system contains b of sodium hydroxide, B, at the beginning of

the reaction, at the time t, x of this will have been consumed in

the formation of sodium ethyl succinate, M, and y in the formation

of sodium succinate, D, hence b - x - y of sodium hydroxide, B,

and x - y of sodium ethyl succinate, M, will be present in the

system at the time t. The rate of formation of sodium ethyl suc-

cinate, M, is therefore

(ii)

(12)
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This equation has been integrated in Ex. (6), p. 388. Hence

y - tt$r=f
- * +>}' (

13
)

dx , . , f , (a-x)
K a Ex \

A
.

*~ k^a ~ X
\

b ~ X ~
{K- l)a'-i

+ K^x
-
KZl)- <

14 >

This can only be integrated when we know the numerical value of

E. As a rule, in dealing with laboratory measurements, it will be

found most convenient to use the methods for approximate in-

tegration since the integration of (14) is usually impracticable, even

when we know the value of E.

III. A unimolecular reaction followed by a bimolecular reaction.

Let x denote the amount of A which remains untransformed

after the elapse of an interval of time t, y the amount of M, and z

the amount of B present in the system after the elapse of the same

interval of time t. The reaction is

A = M
;
M + B = C.

Hence show that the rate of diminution of A, and the rate of

diminution of M (or of B) are respectively

dx dz- m~ k
ix;

-
dt

= k*y*> - - (
15>

the rate of formation of M2 is the difference between the rate of

formation of M by the reaction, and the velocity of transformation

of M into C, by the second reaction and

dy
.'.jt

= k
x
x-k

2yz. . . . (16)

If x, y, z, could be measured independently, it would be sufficient

to solve these equations as in I, but if x and y are determined

together, we must proceed a little differently. If there are a

equivalents of A, and of B originally present, then, at the time t

we shall have a-x=a-z + y, or y = z - x. Divide (16) by
the first of equations (15) ; substitute dy = dz - dx An the result

;

put y = z - x ; divide by z2
,
and we get

1 dz E E
^Tx + l~x=> ' * <17>

where iThas been written in place of kjkv The solution of this equa-

tion has been previously determined, Ex. (3), page 389, in the form

Ee-*4c
x
-

log x + Ex - ^(Exf +
...}*

= 1. (18)

In some of Harcourt and Esson's experiments, C
x
= 4-68

; &j
= -69 >
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k
2
= -006364. From the first of equation (9), it is easy to show

that x = ae
~
V. Where does a come from ? What does it mean ?

Obviously, the value of x when t = 0. Hence verify the third

column in the following table :

t

Minutes.
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of k
x
and k

2
. The observed velooity in the steady state depends

on the difference between the steady diminution -
dx/dt and the

steady rise dz/dt. If k
2 is infinitely great in comparison with k

lf

(8) reduces to

* = a(l
- e -*!'),

which will be immediately recognised as another way of writing
the familiar equation

h, = -
log .

1
t

5 a - z

So far as practical work is concerned, it is necessary thafc the

solutions of the differential equations shall not be so complex as to

preclude the possibility of experimental verification.

IV. Three consecutive bimolecular reactions.

In the hydrolysis of triacetin,

C
3
H

5
. A3 + H . OH = 3A . H + 3

H
5(OH) 3 ,

where A has been written for CH
3 . COO, there is every reason

to believe that the reaction takes place in three stages .

C
8
H

5
. A3 + H . OH = A . H + C

3
H

5
. A

2
. OH (Diacetin) ;

C3
H

5
. J

2 . OH + H . OH = A . H + C3
H

6
. A(OH) 2 (Monoacetin) ;

C8H 5
A . (OH) 2 + H . OH = A . H + C

3
H

5(OH) 3 (Glycerol).

These reactions are interdependent. The rate of formation of

glycerol is conditioned by the rate of formation of monoacetin
;
the

rate of monoacetin depends, in turn, upon the rate of formation of

diacetin. There are, thei efore, three simultaneous reactions of the

second order taking place in the system.
Let a denote the initial concentration (gram molecules per

unit volume) of triacetin, b the concentration of the water
;
let x,

y, z, denote the number of molecules of mono,- di- and triacetin

hydrolyzed at the end of t minutes. The system then contains

a - z molecules of triacetin, z -y, of diacetin, y -x,oi monacetin,

and b -
(x + y + z) molecules of water. The rate of hydrolysis

is therefore completely determined by the equations :

dx/dt = h
x (y

-
x) (b

- x - y -
z) ; . . (19)

dy/dt = k
2(z -y) (b-x-y -

z); . . (20)

dz/dt = k
3(a

-
z) (b

- x -
y
-

z) . . (21)

where kv k
2 ,

k
z , represent the velocity coefficients (page 63) of the

respective reactions.
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Geitel tested the assumption: k
x
= k

2
= k

s . Hence dividing

(21) by (19) and by (20), he obtained

dz/dy = (a
-

z)/(z
-

y) ; dz/dx = (a
-

z)/(y
-

x). (22)

From the first of these equations,

dy 1 z

dz ya - z~ a - z*

which can be integrated as a linear equation of the first order.

The constant is equated by noting that if a = 1, z = 0, y = 0.

The reader might do this as an exercise on 125. The answer is

y = z + (a
-

z)\og(a
-

*). . . (23)

Now substitute (23) in the second of equations (22), rearrange
terms and integrate as a further exercise on linear equations of the

first order. The final result is,

x =- z + (a
-

z) log (a
-

z)
- ^-^{log (a

-
z)}*. (24)z

Geitel then assigned arbitrary numerical values to z (say from

0*1 to 1*0), calculated the corresponding amounts of x and y from

(23) and (24) and compared the results with his experimental
numbers. For experimental and other details the original memoir

must be consulted.

A study of the differential equations representing the mutual

conversion of red into yellow, and yellow into red phosphorus,
will be found in a paper by G. Lemoine in the Ann. Ghim. Phys.

[4], 27, 289, 1872. There is a series of papers by R. Wegscheider

bearing on this subject in Monats. Ghemie, 22, 749, 1901
;
Zeit.

phys. Chem., 30, 593, 1899; 34, 290, 1900; 35, 513, 1900; J.

Wogrinz, ib.
t 44, 569, 1903 ; H. Kuhl, ib., 44, 385, 1903. See

also papers by A. V. Harcourt and W. Esson, Phil. Trans., 156,

193, 1866; A. 0. Geitel, Journ. prakt. Chem. [2], 55, 429, 1897;

57, 113, 1898
;
J. Walker, Proc. Boy. Soc. Edin., 22, 22, 1898.

It is somewhat surprising that Harcourt and Esson's investiga-

tions had not received more attention from the point of view of

simultaneous and dependent reactions. The indispensable differ-

ential equations, simple as they are, might perhaps account for

this. But chemists, in reality, have more to do with this type of

reaction than any other. The day is surely past when the study
of a particular reaction is abandoned simply because it

" won't go
"

according to the stereotyped velocity equations of 77.
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1*0. Simultaneous Equations with Constant Coefficients.

By way of practice it will be convenient to study a few more

examples of simultaneous equations, since they are so common in

many branches of physics. The motion of a particle in space is

determined by a set of three differential equations which determine

the position of the moving particle at any instant of time. Thus,

if X, Y, Z f represent the three components of a force, F, acting on

a particle of mass ra, Newton's law, page 396, tells us that

d2x ., d2
y _ d*z

and it is necessary to integrate these equations in order to represent

x, y, z as functions of the time t. The solution of this set of

equations contains six arbitrary constants which define the position

and velocity of the moving body with respect to the x-
} y-, and the

s-axis when we began to take its motion into consideration.

In order to solve a set of simultaneous equations, there must

be the same number of equations as there are independent variables.

Quite an analogous thing occurs with the simultaneous equations

in ordinary algebra. The methods used for the solution of these

equations are analogous to those employed for similar equations in

algebra. The operations here involved are chiefly processes of

elimination and substitution, supplemented by differentiation or

integration at various stages of the computation. The use of the

symbol of operation D often shortens the work.

Examples. (1) Solve dxjdt + ay = 0, dy/dt + bx m 0. Differentiate the

first, multiply the second by a. Subtract and y disappears. Hence writing

ab = w2
,
x = C^e"* + C^-*; or, y = C2 n/o/o" .

~ "* - O^bja.e^. We
might have obtained an equation in y, and substituted it in the second.

Thus four constants appear in the result. But one pair of these constants

can be expressed in terms of the other two. Thus: two of the constants,

therefore, are not arbitrary and independent, while the integration constant

is arbitrary and independent. It is always best to avoid an unnecessary

multiplication of constants by deducing the other variables from the first

without integration. The number of arbitrary constants is always equal

to the sum of the highest orders of the set of differential equations under

consideration.

(2) Solve dx/dt + y = 3x
; dy/dt

- y = x. Differentiate the first. Sub-

tract each of the given equations from the result. (D
2 - 4D + 4)a;=0 remains.

Solve as usual, x = {Gx + CzfyeP. Substitute this value of x in the first of

the given equations and y = {C x
-

2 + C2 )e
2
'.

(3) The rotation of a particle in a rigid plane, is represented by the equa-
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tions dxjdt = fxy ; dy/dt = /xx. To solve these, differentiate the first, multiply
the second by /*, etc. Finally x = G1 cos fit + C2 sin /d;y = G\cos fit + G'2 sin /nt.

To find the relation between these constants, substitute these values in the

first equation and -
/xGx

sin fd + fiG2 cos fit
= fiG\ cos fit + fiC'2 sin fit, or

C2
= - G'2 and C2

= C\.

(4) Solve d?x/dt
2= -n*x d2

y]dt
2= -r&y. Each equation is treated separ-

ately as on page 400, thus x = Gl
cos nt + C2 sin nt; y = G\ cos nt + C2 sin ni.

Eliminate t so that

(0V* - Gxy)
2 + (O'rfB

- O^)2 = (C^ - C^'J2
, etc.

The result represents the motion of a particle in an elliptic path, subject to a

central gravitational force.

(5) Solve dy/dx + Sy - 4s = 5e5* ; dz\dx + y - 2x = - 3e5*. Differentiate

the first and solve for dzjdx ;
substitute this value of dzjdx in the second

equation. We thus get a linear equation of the second order :

dhi dv

d^ + Tx- 2y = 3tfi**
'

y = G*x + 2*~ 2* + &*''*>

when solved by the usual method. Now differentiate the last equation, and

substitute the value of dy/dx so found in the first of the given equations.

Also substitute the value of y just determined in the same equation. We
thus get z m Gx

e* + i<V _2a5 -
ffe

8
*.

(6) R Wegscheider (Zeit. phys. Ghem., 41, 52, 1902) has proposed the

equations dx/dt = kjp - x -
y) \ dyjdt = k2(a

- x -
y) (b

-
y), to represent

the speed of hydrolysis of sulphonic esters by water. Hence show that

a -
(1 + bk)x + $bKW

= M + <?

Hint. Divide the one equation by the other
; expand e

~ Kx
; reject all but

the first three terms of the series.

(7) J. W. Mellor and L. Bradshaw {Zeit. phys. Ghem., 48, 353, 1904)

solved the set of equations
dX 7 ,

~ du , . . dv . .

-

3r
= k^a - X); ^ = fc2(a;

-
) ; ^ = fc3(*/

-
v)

with the assumption that X = x + y + u + v; v = kAu ;
w = v = a; = j/

=
when t = 0. Show that

u
2(k4 + 1) V & -

*,
+ r^r /'

if 6 is put in place of 2k2k5(k4 + l)/(&2 + k3k4). See Ex. (5), page 390.

(8) J. J. Thomson (Conduction of Electricity through Gases, Cambridge,

86, 1903) has shown that the motion of a charged particle of mass m, and

charge e, between two parallel plates with a potential gradient E between

them when a magnetic field of induction H is applied normal to the plates,

is given by the equations

-*-*!; 3-*& W
provided that there is no resisting medium (say air) between the plates. To

solve these equations with the initial conditions that x, y, x, y, are all zero,

put
dx dp dy dhj ,

d2p
p =

dt> '''dt=
a - b

dt
; w= bP> -'-w

= - b^

h
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Hence, from page 405, and remembering that * = 0, when t = 0,

dx C, v

p = C^sm bt + 2cos bt
; 2

=
; -^ = Cjsin 6i

; ,\ as
-y (1

- cos M), (2)

since, when t = 0, x = 0, and the integration constant is equal to GJb. From
the third of equations (2), and the second of equations (1),

dhj dv

fip
= fcCjsin bt; .: ^ = -

Ojcos bt + Gv

the integration constant is equal to Cx
when dyjdt = 0, and t = ; again

integrating, and we get y = C
x (bt

- sin bt)/b, since y = 0, when t = 0. To
evaluate the constant Cj, substitute for dj and$, from (2) and the above, in the

first of equations (1). We find G
x
= a/b, and consequently, if a = EmjH'

2
e,

and 6 = Helm.
x = a(l

- cos bt) ; y = a(bt
- sin 6), ... (3)

Let us follow the motion of a particle moving on the path represented by

equations (3). Of course we can eliminate bt and get one equation connect-

ing x and y t
but it is better to retain bt as the calculation is then more

simple. When
M = 0,
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But the total mass of gas remains constantly equal to ac, say

.-. V& + v^2
= c

;
.-. c = p1vl + #2v2, (7)

by Boyle's law. Multiply the first of equations (6) with x^oxv^ and the

second by x^^ ;
subtract the latter from the former ;

divide by x ;
sub-

stitute x = x1(x2 and

dx ac. -i

remains. Solve this equation in the usual way, and we get

2 g
a; - 1 6

+ ' '

*
8
(^ -

a^) (^ + p2) bvx
v2

From this equation and the first of equations (7), it is possible to caloulate

x
x
and x2 at any time t.

(10) If two adjacent circuits have currents Gx and 0& then, according to

the theory of electromagnetic induction,

^ + L*w + B*G*
= *

;
M~d + L^ + B& - *"

where i21} E2,
denote the resistances of the two circuits, Lx ,

L2 ,
the co-

efficients of self-induotion, Ex ,
E2 ,

the electromotive forces of the respective

circuits and M the coefficient of mutual induction. All the coefficients are

supposed constant.

First, solve these equations on the assumption that E
X
=E2=Q. Assume

that Gx =aemt ;
and G2=bemt , satisfy the given equations. Differentiate each

of these variables with respect to t, and substitute in the original equation
aMm + b(L2m + B2)

=
; bMm + a(Lx

m + Bx)
= 0.

Multiply these equations so that

{LX
L2 + M2)m

2 + {LXB2 + B^m + BX
B2

= 0.

For physical reasons, the induction L
X
L2 must always be greater than M.

The roots of this quadratic must, therefore, be negative and real (page 354),

and

Ci = a
i
e
~

or, atf
- "*

; C2
= b

x
e
~
*#, or, V ~ m*.

Hence, from the preceding equation,

a^Mrn^ + b
x
L2mx + b

x
B2

=
; or Oj/ftj

= - (L2mx + R2)lMm\ '>

similarly, a^j^ = - Mm2l(Lx
m2 + Bx ). Combining the particular solutions

for Gx and 2 ,
we get the required solutions'.

O
x
= Oje

~ mi* + a#
- #

; G2
= bx

e
- m\* + b^e

~
*.

Second, if E
x
and E2 have some constant value,

G
x
= E

1/B1 + a
xe
- *** + a#

- ***
; G2

= E2\B2 + b
x
e
~ "* + b#

~ m
*,

are the required solutions.

141. Simultaneous Equations with Yariable Coefficients.

The general type of simultaneous equations of the first order,

is

P
x
dx + Qxdy + BY

dz =
; \

P
2
dx + Q^dy + B2

dz = 0, . . . J
* ' ' (*'
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where the coefficients are functions of x, y, z. These equations
can often be expressed in the form l

dx dy _ dz

T--Q-"R> (J)

which is to be looked upon as a typical set of simultaneous equa-

tions of the first order. If one pair of these equations involves

only two differentials, the equations can be solved in the usual

way, and the result used to deduce values for the other variables,

as in the second of the subjoined examples.
When the members of a set of equations are symmetrical, the

solution can often be simplified by taking advantage of a well-

known theorem 2 in algebra ratio. According to this,

dx , dy _ dz Idx + mdy + ndz _ Vdx + m'dy + n'dz

P
==

Q
~
B

"
IP + mQ + nB

"

I'P + m'Q + n'B
=

>>
8
)

where I, m, n, V
, m', n',. . . m&y be constants or- functions of

x, y, z. Since I, m, n,... are arbitrary, it is possible to choose

I, m, n, . . . so that

IP + mQ + nB =
;
I'P + m'Q + n'B =

;
. . . (4)

Idx + mdy + ndz = 0, etc. . . (5)

The same relations between x, y, z, that satisfy (5), satisfy (2) ;

and if (4) be an exact differential equation, equal to say du, direct

integration gives the integral of the given system, viz.,

u = G
1

. \ . . . (6)

where C^denotes the constant of integration.

In the same way, if

Vdx + m'dy + n'dz = 0,

is an exact differential equation, equal to say dv, then, since dv is

also equal to zero,

v-C* (7)

is a second solution. These two solutions must be independent.

Examples. (1) B^ way of illustration let us solve the equations
dx dy dz

y - z
~

z - x
~
x- y

1 The proof will come later, page 584.

2 The proof is interesting. Let dx'P = dy/Q = dz/E = k, say ; then, dx = Pk
dy = Qk; dz = Bk; or, Idx = IPk

; mdy = mQk ; ndz = nBk. Add these

suits, Idx + mdy + ndz = k(lP + mQ + nB)

re-

Idx + mdy + ndz _ h _dx_Ay__dz
IP + mQ + nB

~ ~
~P~

~
Q
~
B'
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Here P = y - z; Q = z-x', R=x-y. Since, as in (4),

y-z+z-x+x-y=0\ l = m = n = l;
and as in (6),

x(y
-

z) + y(z
-

x) + z{x
-

y) = ;
I' = x

; m' = y; n' = z.

For the first combination, therefore

dx + dy + dz =
; or, x + y + z = Cx ; . . . (8)

and for the second combination

xdx + ydy + zdz =
; .\ x2 + y

2 + z2 = C2 . . . (9)

The last of equations (8) and (9) define x and y as functions of z, and also

contain two arbitrary constants, the conditions necessary and sufficient in

order that these equations may be a complete solution of the given set of

equations. Equations (8) and (9) represent a family of circles.

(2) Solve dx/y = dyjx = dzjz. The relation between dx and dy contains

k and y only, the integral, y
2 - x2 = Cv follows at once. Use this result to

eliminate x from the relation between dy and dz. The resultf is, p. 349,

dzjz = dylJ{y
2 - C

x) ; or, y + J(y
2 - Gx)

= G2z.

These two equations, involving two constants of integration, constitute a

complete solution.

(3) Solve dx/(mz
-

ny) = dy(nx -
le)

= dz/(ly
-

mx). HereP= mz - ny\

Q = nx -
lz; B = ly

- mx. I, m, n and x, y, z form a set of multipliers

satisfying the above condition. Hence, each of the given equal fractions is

equal to

Idx + mdy + ndz

and to

Accordingly,

l(mz
-

ny) + m(nx -
lz) + n(ly

- mx)
'

xdx + ydy + zdz

x(mz -
ny) + y(nx -

lz) + z(ly
- mx)'

Idx + mdy + ndz =
; xdx + ydy + zdz = 0.

The integrals of these equations are

u = Ix + my + nz = C
x ;

v = x2 + y
2 + z2 = C2 ,

which constitute a complete solution.

dx _ dy _ dz
t _ xdx + ydy + zdz

(4) Solve
x* _ y

i _ # ~2xy-2x~z
'

" ~
<r(z

2 - y
2 - z2

) + 2xy
2 + 2xzv

dz 2xdx + 2ydy + 2zdz
'

j -
32 + y2 + ;g

2 ; log(*
2 + V

2 + *2
)
= log * + log c2 ;

consequently, x2 + y
2 + z2 = C^z is the second solution required.

It is thus evident that equation (5) must be integrable before

the given set of simultaneous equations can be solved. The

criterion of integrability, or the test of the exactness of an

equation containing three or more variables is easily deduced.

For instance, let

Pdx + Qdy + Bdz =
; .-. du =

^-dx + ^-dy + ^~dz. (10)

The second of equations (10) is obviously exact, and equivalent to

the first of equations (10), since both are derived from u = Cv
Hence certain conditions must hold in order that the first of



oP 7)u ~dQ
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(3) Integrate xydx - zxdx - yHz 0. Ansr. x\y
-

log a = C. Hint.

Divide by 1/xy
2 and the equation becomes exact.

(4) If (ydx + xdy) (a
-

z) + xydz = 0, show that xy = G(z -
a). Hint.

Proceed as in Ex. (1), making z = constant, and afterwards showing that

vy = f{z), and then that f(z)
= 0(z -

a).

142. Partial Differential Equations.

Equations obtained by the differentiation of functions of three

or more variables are of two kinds :

1. Those in which there is only one independent variable)

such as

Pdx + Qdy + Edz = Sdt,

which involves four variables three dependent and one inde-

pendent. These are called total differential equations.
2. Those in which there is only one dependent and two or

more independent variables, such as,

tJ)z ^z ~bz -
PS + % + B

Tt
"

'

where z is the dependent variable, x, y, t the independent variables.

These equations are classed under the name partial differential

equations. The former class of equations are rare, the latter very
common. Physically, the differential equation represents the rela-

tion between the dependent and the independent variables when
an infinitely small change is made in each of the independent
variables. 1

In the study of ordinary differential equations, we have always
assumed that the given equation has been obtained by the elimina-

tion of constants from the original equation. In solving, we have

sought to find this primitive equation. Partial differential equa-

tions, however, may be obtained by the elimination of arbitrary

1 The reader will, perhaps, have noticed that the term " independent variable "
is

an equivocal phrase. (1) If u =J\z), u is a quantity whose magnitude changes when

the value of z changes. The two magnitudes u and z are mutually dependent. For

convenience, we fix our attention on the effect which a variation in the value ofz has

upon the magnitude of u. If need be we can reverse this and write z =f(u), so that

u now becomes the "
independent variable". (2) If v =f(x, y), x and y are

"
inde-

pendent variables
"

in that x and y are mutually independent of each other. Any
variation in the magnitude of the one has no effect on the magnitude of the other, x

and y are also
"
independent variables

"
with respect to v in the same nse that * has

just been supposed the ' '

independent variable
"
with respect to u.
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functions of the variables as well as of constants. For example, if

it = f{ax + by),

be an arbitral y funct'on of x and y, we get, as in Euler's theorem

page 75,

= Saf(ax> i by*) '; g = 8ft/(* + by*) ; ,. *g
-
ag

= 0,

where the arbitrary function has disappeared.

Examples. (1) li u =
flat + a), show that

dt
~ a

dx dt2
~ a

dx*

Here dufdt = af'(at + x) ; 'dufdx = /'(a* + x), etc. Establish the result by
giving flat + x) some specific form, say, flat + x)

= at + x
; and sin (at + x)

(2) Eliminate the arbitrary function from the thermodynamic equation

OP
r
Op dp

(3) Remembering that the object of solving any given differential is to

find the primitive from which the differential equation has been derived by
the elimination of constants or arbitrary functions. - Show that z=f1 (x) +f2{y)

is a solution of 'dPzfdx'dy 0. Hint. Eliminate the arbitrary function.

(4) Show that z = fx (x + at) + f2(x - at) is a solution of d2
zldt

2=a,2d2
z/dx\

An arbitrary function of the variables must now be added to

the integral of a partial differential equation instead of the constant

hitherto, employed for ordinary differential equations. If the

number of arbitrary constants to be eliminated is equal to the

number of independent variables, the resulting differential equa-
tion is of the first order. The higher orders occur when the

number of constants to be eliminated, exceeds that of the inde-

pendent variables.

. If u a*
f(x, y), there will be two differential coefficients of the

first order ; three of the second ; . . . Thus,

"du ~du ~d
2u ~d

2u ~b
2u

~dx' ~dy
* ^x2 '

7)y
2 '

7)x7iy
'

133. What is the Solution of a Partial Differential

Equation ?

Ordinary differential equations have two classes of solutions

the complete integral and the singular solution. Particular

solutions are only varieties of the complete integral. Three_
FF
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classes of solutions can be obtained from some partial differential

equations, still regarding the particular solution as a special case

of the complete integral. These are indicated in the following

example.

The equation of a sphere in three dimensions is,

X2 + y
2 + Z2 = r2j , # # (1)

where the centre of the sphere coincides with the origin of the

coordinate planes and r denotes the radius of the sphere. If the

centre of the sphere lies somewhere on the cc^-plane at a point

(a, b), the above equation becomes

(x
- af + (y

- bf + z2 = r2 . . . (2)

When a and b are arbitrary constants, each or both of which may
have any assigned magnitude, equation (2) may represent two

infinite systems of spheres of radius r. The centre of any mem-
ber of either of these two infinite systems called a double infinite

system must lie somewhere on the rc?/-plane.

Differentiate (2) with respect to x and y.

x " a + z
^c

= 0; y ~ b + % =0 - (3 )

Substitute for x - a and y - b in (2). We obtain

1' *"'}-"
Equation (2), therefore, is the complete integral of (4). By
assigning any particular numerical value to a or 6, a particular
solution of (4) will be obtained, such is

(x
-

l)
2 + (y

-
79)

2 + z> = r2 . . . (5)

If (2) be differentiated with respect to a and b,

<> 7)

^{(x
- af + (y + bf + z* = r2

} ; ^{{x
- af + (y

- bf + s2 = r2
},

or, x - a = 0, and y - b = 0.

Eliminate a and b from (2),

z = r (6)

This result satisfies equation (4), but, unlike the particular solution,

is not included in the complete integral (2). Such a solution of the

differential equation is said to be a singular solution.

Geometrically, the singular solution represents two plane sur-

faces touched by all the spheres represented by equation (2). The

singular solution is thus the envelope of all the spheres represented
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by the complete integral. If AB (Fig. 97) represents a cross sec-

tion of the #2/-plane containing spheres of radius r, CD and EF
are cross sections of the plane surfaces represented by the singular

solution.

If the one constant is some function of the other, say,

a = b,

(2) may be written

(x
- af + (y + of + z2 = r2. . . (7)

Differentiate with respect to a. We find

a = i(x + y).

Eliminate a from (7). The resulting equation

x2 + y
2 + 2z2 - 2xy = 2ra

,

is called a general integral of the equation.

Geometrically, the general integral is the equation to the

tubular envelope of a family of spheres of radius r and whose

centres are along the line x = y. This line corresponds with the

axis of the tube envelope. The general integral satisfies (4) and

is^also contained in the complete integral.

Instead of taking a = b as the particular form of the function

connecting a and b, we could have taken any other relation, say

a =
^b. The envelope of the general integral would then be like

a tube surrounding all the spheres of radius r whose centres were

along the line x = \y. Had we put a2 - b2 = 1, the envelope would

have been a tube whose axis was an hyperbola x2
y
2 = 1.

A particular solution is one particular surface selected from the

double infinite series represented by the.complete solution. A general

integral is the envelope of one particular family of surfaces selected

from those comprised in the complets integral. A singular solution

s an envelope of every surface included in the complete integral.
1

Theoretically an equation is not supposed to be solved com-

pletely until the complete integral, the general integral and the

singular solution have been indicated. In the ideal case, the

complete integral is first determined
; the singular solution ob-

tained by the ehmination of arbitrary constants as indicated above
;

the general integral then determined by eliminating a and f(a).

Practically, the complete integral is not always the direct ob-

1 G. B. Airy's little book, An Elementary Treatise on Partial Differential

Equations, London, 1873, will repay careful study in connection with the geometrical

interpretation of the solutions of partial differential equations.
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ject of attack. It is usually sufficient to deduce a number of

particular solutions to satisfy the conditions of the problem and

afterwards to so combine these solutions that the result will not

only satisfy the given conditions but also the differential equation.

Of course, the complete integral of a differential equation

applies to any physical process represented by the differential

equation. This solution, however, may be so general as to be of

little practical use. To represent any particular process, certain

limitations called limiting conditions have to be introduced.

These exclude certain forms of the general solution as impossible.
1

We met this idea in connection with the solution of algebraic

equations, page 363.

1M. The Linear Partial Equation of the First Order.

Let u = Gv . . . . (1)

be a solution of the linear partial equation of the first order and

degree, namely of

->bz ~bz _PU + %-^ (2)

where P, Q, and B are functions of x, y, and z ; and G
1

is a con-

stant. Now differentiate (1) with respect to x, and y respectively,

as on page 44, or Ex. (5), page 74.

bu bu bz _ n e
bu bu bz

~dx bz
'

bx
,

'

by ~dz' by
~

' ' ^ '

Now solve the one equation for bzfbx, and the other for bz/by, and

substitute the results in (2). We thus obtain

-fiu r$u ^bup^ + % + B^ = - (*)

Again, let (1) be an integral of the equation
bx _ "by _ bz

p~~~Q"~ir
* ' (5)

The total differential of u with respect to x, y, and z, is

bu _ bu _ bu ,

^ax+ Ty
ay + Tz

az~o- . . (6)

and since, by equations, dx = kP
; dy = kQ; dz = kB, page 445

(footnote), we have

bu.^ bu~ bu^ n
'

%

Tx
P +

Ty
Q +

Tz
R - (i

' ... (7)

1 For examples, see the end of Chapter VIII.
;
also page 460, and elsewhere.
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Dx Dz
'
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which is identical with (4). This means that every integral of (2)

satisfies (5), and conversely. The general integral of (2) will

therefore be the general integral of (5).

What has just been proved in connection with u = G
1

also

applies to the integral v = C
2

of (7), page 445. If therefore we
can establish a relation between u and v such that

u =
f(v) ; or, <t>(u, v) = 0, . . (8)

this arbitrary function will be a solution of the given equation.

This is known as Lagrange's solution of the linear differential

equation j equations (5) are called Lagrange's auxiliary equa-
tions.

We may now show that any equations of form (8) will furnish

a definite partial equation of the linear form (2). Differentiate

Equations (8), say the first, with respect to each of the inde-

pendent variables x and y. We get

/Dv Dv Dz\,Du Du Dz /Dv Dv Dz\
~J {

)\Dx Dz
'

Dx/' Dy Dz
'

Dy
~J ^

\Dy Dz'DyJ'

By division and rearrangement of terms, f(v) and the terms con-

taining the product of Dz/Dx with Dz/Dy disappear,
1 and we get

dx dy dz

Du Dv Du Dv Du Dv Du Dv
~
Du Dv Du Dv' ^ '

~dy

'

Dz Dz' Dy Dz
'

Dx Dx' ~dz dx
'

Dy Dy' Dx

This equation has the same form as Lagrange's equation

dx dy dz Dz Dz

-P=-Q
=
B>

and% + % = B
>

hence, if u =
f(v) is a solution of (2), it is also a solution of (5).

Examples. (1) Solve E. Clapeyron's equation (Journ. de VEcole Roy.

PolyL, 14, 153, 1834),

*^ + %- ~% <10>

well known in thermodynamics. Here, P = p, Q =
p, B = -

p/ap, and La-

grange's auxiliary equations assume the form,

= ^1 -JL (
n

)

P p ap

From the first pair of these equations we get logp -
logp = log Cl ;

conse-

quently pip = Gv From the first and last of equations (11), we have

1 When the reader has read Chapter XI. he will write the denominator in the

form of a " Jacobian".
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is the second solution of (10). The complete solution is therefore

Q^-JLlogp+ff-PaP \p,

(2) Solve y . dz/dx - x . dz/dy = ; here, P = y, Q = -
x, R = 0,

dx dy dz , _ ,

.*. =
~rT'> .'. dz = 0, and xdx + ydy = 0.

y x u

.-. x2 + y
2 = C2 ;

and = C2 ; or, z = f(x
2 + y

2
).

(3) Solve xz . dzjdx + yz . dz/dy = xy. Here, P =
1/y, Q =

1/s, =
l/#.

The auxiliary equations are therefore ydx = xdy = zdz. From the first two

terms we get y\x = Cx ;
and from the multipliers I = y ;

m = x
;
n = -

2z,

as on page 445 (4), we get

Idx + mdy + ndz =
;

.*. ydx + xdy = 2zdz
; or, z2 - xy = C2 ,

from (5), page 445. This is the second solution required. Hence, the com-

plete solution is z2 = xy + f(x/y) ; or, <p(z
2 -

xy, x/y)
= 0.

(4) Moseley (Phil. Mag. [4], 37, 370, 1869) represents the motion of im-

perfect fluids under certain conditions by the equation

"dz 'dz

Vx'
+ Vy-*

' * = emyKx ~
*)'

155. Some Special Forms.

For the ingenious general methods of Charpit and G. Monge,
the reader will have to consult the special text-books, say, A. E.

Forsyth's A Treatise on Differential Equations, London, 1903.

There are some special variations from the general equation which

can be solved by
" short cuts ".

I. The variables do not appear directly. The general form is

/~dz ~dz\

;w V = ' ' L

The solution is

z = ax + by + G,

provided a and b satisfy the relation

f(a, 6)
= 0; or b=f(a).

The complete integral is, therefore,

z = ax + yf{a) + G. . . . (1)

(*dz\

2 fdz\ 2

dx)
+

\dy)
= m2

'
Sh W z==ax + bV + d provided

a2 + b2 = m2
. The solution is, therefore, z =* ax + y sj(m

2 - a2
) + C. For

the general integral, put C =
f(a). Eliminate a between the two equations,

z = ax + sl{m
2 - a2

)y + f(a) ;
and x - a{m

2 - a2
)~iy +f'{a) = 0, in the usual

way. The latter expression has been obtained from the former by differ-

entiation with respect to a.



145. HOW TO SOLVE DIFFERENTIAL EQUATIONS. 455

(2) Solve zxzy = 1. Ansr. z = ax + yja + C. Hint, ab = 1, etc. Note.

We shall sometimes write for the sake of brevity, p= 'dzl'dxzx ; q='dzj'dy=zy .

(3) Solve a(zx + zv) = z. Sometimes, as here, when the variables do ap-

pear in the equation, the function of x, which occurs in the equation, may
be associated with dz/dx, or a function of y with dzjdy, by a change in the

variables. We may write the given equation ap\z-\-aq\z~\. Put dz[z= dZ;
(Iy/a

= dY, dx\adX, hence, d)Z'/dY +dZ[dX=l, the form required. Ansr.

Z = aX + Z(l -
a) + C ; where, Z = log z

;
Y = y\a\ X = x\a, etc.

(4) Solve xhi 2 + y
2u 2 = z2 . Put X - log x, Y = log y, Z = log z. Pro-

ceed as before. Ansr. z = Cxay sJ(1
~ a2

).

If it is not possible to remove the dependent variable z in this

way, the equation will possibly belong to the following class :

II, The independent variables x and y are absent. The general
form is,

/ "dz tz\

TS?W"
Assume as a trial solution, that

0. ... II.

~bz _ ~dz

~dy ~dx

Let ~dzfbx be some function of z obtained from II., say ux
=

cj>(z).

Substitute these values in

dz = zxdx + zydy.

We thus get an ordinary differential equation which can be readily

integrated.

f dz
dz = <f>(z)dx + a${z)dy. .\ x + ay = rr + C. (2)

Examples. (1) Solve z 2z + zy
2 = 4. Here put dz/dy = adz/dx,

.-. {a
2 + z) {dz/dx)

2 = 4. sJa^T~z . dz/dx = 2,

.-. x + ay + C=fe{a
2+ z)tdz=l(a?+ z). Ansr. 2(a

2+ z)
3= 3(x + ay + C)

2
.

4
(2) Solve p(l + q

2
)
= q(z

-
a). Ansr.

^ (z
-

a) = (bx + y + C)
2 + 4. Hint.

Put q = bp, etc. The integration and other constants are collected under C.

(3) Moseley (Phil. Mag., [4], 37, 370, 1869) has the equation of the motion

of an imperfect fluid

fiz "dz

Let |*
=

a|2; .-. f-
2
+ ag* =W ; ... f! = J~- ; ... % = 2" by sub-

dy dx' ox ox dx 1 + a dy 1 + a' J

stitution in the original equation. From (3),

mz , amz , dz -*,, , m
d* =rr^x + rr^ ^ ; T=fT^ + a^} ;

'

log * =m {x + a^ + -
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If z does not appear directly in the equation, we may be able

to refer the equation to the next type.

III. z does not appear directly in the equation, but x and 'bzfbx

can be separated from y and ~bzfiy. The leading type is

#D=4-D- m
Assume as a trial solution, that each member is equal to an arbi-

trary constant a, so that zx ,
and z

y
can be obtained in the form,

zx = f^x, a); z
y
= f2(y, a) j

dz = zxdx + z
ydy,

then assumes the form

z = lfx {x, a)dx + Sf2(y, a)dy + G. . . (3)

Examples. (1) Solve zy
- zx+ x - y = 0. Put dz/dx -x = 'dzj'dy -y = a.

Write zx = x + a; zy = y + a;

.-. dz = (x + a)dx + {y + a)dy, z = %(x + a)
2 + %(y + a)

2 + C.

(2) Assume with S. D. Poisson (Ann. de Chim., 23, 337, 1823) that the

quantity of heat, Q, contained in a mass of gas depends upon the pressure,

p, and its density p,
so that Q =f{p, p). According to the well-known gas

equation, p = Rp(l + a9) ; if _p is constant,

dp _ fy a dp _ Rp
de~~ IT^ ; a

'

de
~
TTVe'

if p is constant. Prom (10) and
(7), page 80, the specific heats at constant

pressure, and constant volume (i.e., p = constant) may be written

Cp ~
\dp)P{ve)p

- ~
{TpJpT+Ve'

and - WJXdejr WJ.VTVe
Assuming, with Laplace and Poisson, that y = CpjGv is constant, we get,

by division.

This differential equation comes under (3). Put

dQ _ j^. dQ _ _ <z

'dp yp
'

dp p
'

.-.dQ =
a(-.-

-
-y, or, Q =

^ logp - a log p -t G.

If
tp

is an independent function,

-(f>-? *(Q)

where \p is the inverse function of
<p.

If it be assumed that the quantity of

heat contained in any gas during any change is constant, ^(Q) will remain
constant. Otherwise expressed,

py = constant
; or, pv"Y = constant.

since volume, v, varies inversely as the density, p. This relation was deduced

another way on page 258.
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(4) E. Clapeyron's equation, previously discussed on page 453, may be

solved by the method of the separation of the variables.

dQ dQ P dQ 1 dQ
p dp

+ pdp-~ pa>

'

dp
+

c
'

dp
~
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as in Hooke's well-known law ut tensio sic vis we get

Again, the layer dx will be moved forwards or backwards by the

differences of pressure on the two sides of this layer. Let this

difference be dp. Hence, by differentiation of p and du, we get

*P-&& .... (2)

Let p denote the density of the gas in the layer dx, then, the mass m,

m = pdx.

Now the pressure which moves a body is measured, in dynamics,
as the product of the mass into the acceleration, or

, ,
d2u d2u.

dp/m=w =
p^dx.

The equation of motion of the lamina is

*'

dt2
~

P dx2
' * # ' (3)

This linear homogeneous partial differential equation represents

the motion of stretched strings, the small oscillations of air in

narrow (organ) pipes, and the motion of waves on the sea if the

water is neither too deep nor too shallow. Let us now proceed to

the integration of this equation.

There are many points of analogy between the partial and the

ordinary linear differential equations. Indeed, it may almost be

said that every ordinary differential equation between two variables

is analogous to a partial differential of the same form. The solu-

tion is in each case similar, but there are these differences :

First, the arbitrary constant of integration in the solution of

an ordinary differential equation is replaced by a function of a

variable or variables.

Second, the exponential form, Cemx
,

of the solution of the

ordinary linear differential equation assumes the form e by
<f>(y).

The expression, e s
v<p(y), is known as the symbolic form of Taylor's

theorem. Having had considerable practice in the use of the symbol of

<-\
-p.

operation D for ^-,
we may now use D' to represent the operation ^-. By
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Taylor's theorem.

<p(y + mx) =
<p(y) + mx

-^-
+ -^y . ~^2 +

d<p(y) .
mW d2

<p(y)
jrtu;

where x is regarded as constant.

t
/ d mW d*

.-. <{>(y + mx) =
^1

+
mx^y

+
-jj- ^ +

The term in brackets is clearly an exponential series (page 285), equivalent to

e 6
y, or, writing D for -,

<p(y +mx) = e D
'<t>(y). .... (4)

Now convert equation (3) into

W "^ (5)

by writing <z
2 =

i^/o. This expression is sometimes called d'Alem-

bert's equation. Instead of assuming, as a trial solution, that

y = e*, as was the case with the ordinary equation, suppose that

u = f(x + mt), . . (6)

is a trial solution. Differentiate (6), with respect to t and x> we
thus obtain,

7)u ~bu ~b
2u

Tt
= mf(x + mt); ^ = f(x + mt); ^ = mf\x + mt) ;

-572
= mT(z + mi) ; ^2

- /'(* + m0-

Substitute these values in equation (5) equated to zero, and divide

out the factor f"(x + mt). The auxiliary equation,

m2 - a2 =
. . . . (7)

remains. If m is a root of this equation, f"(x + mt) = 0, is a

part of the complementary function. Since + a are the roots of

(7), then
u = e

- tD
'f1 (x) + e

atD
'f2(x). . . (8)

From (4) and (6), therefore,

u = fx(x
-

at) + f2(x + at) . . . (9)

Since + a and - a are the roots. of the auxiliary equation (7), we can

write (5) in the form,

(D + aD') {D - aD')u = 0. . . . (10)

d2z d*z
Examples. (1) If^ - ^ = 0, show e m fx {y + x) + f.2(y

-
x).

d2z ?Pz ^z
(2) If W>

"
*dxdy

+ 4
3^2

=
' show z = f^V + 2x

) +My + 2x
)'

(3) If 2 ^ - 3^ -
2^-2

= 0, show = M2y -
x) + f2(y + 2x).

In the absence of data pertaining to some specific problem,
we cannot say much about the undetermined functions fx(x + at)
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and f2(x - at) of (9). Consider a vibrating harp string, where no

force is applied after the string has once been put in motion. Let

x = I
-AB (Fig. 154) denote the length of

the string under a tension T
; and m the

mass of unit length of the vibrating

string. In the equation of motion (5),

in order to avoid a root sign later on,

FlQ 154#
a2

appears in place of T/m. Further, let

u PM represent the displacement of any

part of the string we p^ase, and let the ordinate of one end of the

string be zero. Then, whatever value we assign to the time t, the

ends of the string are fixed and have the limiting condition u = 0,

when x = ;
and u =

0, when x = L

/iO0 + M ~at) = 0; + at) + fjl
-

at) = 0, (11)

are solutions of d'Alembert's equation (5). From the former, it

follows that

fl(at) must always be equal to /2( at) . (12)

But at may have any value we please. In order to fix our ideas,

suppose that we put I + at for at in the second of equations (11)
*

then, from (12),

Mat + 21) -Mat). . . . (13)

The physical meaning of this solution is that when/1 (.
. .) is increased

or diminished by 21, the value of the function remains unaltered.

Hence, when at is increased by 21, or, what is the same thing, when
t is increased by 2lja, the corresponding portions of the string will

have the same displacement. In other words, the string performs at

least one complete vibration in the time 2l/a. We can show the same

thing applies for 4Z, 61. . . . Hence, we conclude that d'Alembert's

equation represents a finite periodic motion, with a period of oscil-

lation.

at 21; or, t- |; or, t =
2lyJ~-

(14)

Numerical Example. The middle C of a pianoforte vibrates .264 times

per second, that is, once every -^ second. If the length of the wire is 2

feet, and one foot of the wire weighs 0-002 lbs., find the tension T in lbs. Now
mass equals the weight divided by g, that is by 32. Hence,

* -
Vsl?

; 2i - 5Va^= T = 108 lbs-

Equation (5), or (9), represents a wave or pulse of air passing

through a tube both from and towards the origin. If we consider
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a pulse passing from the origin only,

u = f{x + at)

is the solution of the differential equation. By differentiation with

regard to x, and with regard to t, we have already shown, Ex. (1),

page 449, that

du du

s =
j fix + at), -gj- af(x + at).

The first of these equations represents the rate of expansion or

contraction ; the second, the velocity of a particle. The velocity of

the wave is, by division,

dx IS
m

which is Newton's formula for the velocity of sound (Newton's

Principia, ii., Prob. 43-50). Newton made E represent the iso-

thermal elasticity, p ; Laplace, the adiabatic elasticity yp of

page 114.

When two of the roots in equation (7) are equal to, say, a.

We know, page 401, that the solution of

(D - afz - 0, is z = eT'^x + G
2),

by analogy, the solution of

(D - aD'yz - 0, is z - (T^ixf^y) + f2(y)h

or, z = xfx (y + ax) + f2 (y + ax). . . (15)

Examples. (1) Solve : (D
3 - D'D' - DD'* + D' 3

)z = 0.

Ansr. z = xfx (y
-

x) + /3 (y -
a) + f3(y + x).

'cpz n &Z &Z
(
2

) ^2 + 2
?tfdy

+
dy*

= - Ansr- * = */i(y + x
) +Mv + x)'

If the equation *be non-homogeneous, say,

l 2z Wz ~b
2z ^z 'dz

Ao^ +
^igjty

+ A
*tyi

+^ +^ +V = 0, (16)

and it can be separated into factors, the integral is the sum of the

integrals corresponding to each symbolic factor, so that each factor

of the form D - mD', appears in the solution as a function of

y + mx, and every factor of the form D - mD' -
a, appears in

the solution in the form z = e
ax
f(y + mx).

Examples.-(1) Solve ^-^+^- +
^-=0.

Factors, (D + D') (D - D' + l)z = 0. Ansr. z = fx (y
-

x) + e
-
%(y + x).

(2) Solve _^ + ^-^- = o.

Factors, (D + 1) (D - D> = 0. Ansr. z = e-*fx {y) + f2(x + y).

It is, however, not often possible to represent the solutions of
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these equations in this manner, and in that case it is customary to

take the trial solution,
z = e*+0y. . . . . (17)

Of course, if a is a function of j3 we can substitute a = f(fi) and so

get rid of /?. Now differentiate (17) so as to get

~bz ~dz ~d
2Z 2Z 1)

2Z

5S
- az;

Ty
= ^' 5^ " a^ ; W ~ az

'

5p
" ?"

Substitute these results in (16). We thus obtain the auxiliary

equation

(V2 + Ai*P + A2@
2 + A

<s
a + Afi + A b)z

= 0- (18)

This may be looked upon as a bracketed quadratic in a and (3.

Given any value of (3, we can find the corresponding value of a
;
or

the value of /3 from any assigned value of a. There is thus an

infinite number of particular solutions. Hence these important
rules :

I. If uv u
2,
u

3 ,
. . .

,
are particular solutions of any partial dif-

ferential equation, each solution can be multiplied by an arbitrary

constant and each of the resulting products is also a solution of the

equation.

II. The sum or difference of any number of particular solutions

is a solution of the given equation.

It is usually not very difficult to find particular solutions, even

when the general solution cannot be obtained. The chief difficulty

lies in the combining of the particular solutions in such a way,
that the conditions of the problem under investigation are satisfied.

In order to fix these ideas let us study a couple of examples which

will prepare the way for the next chapter.

Examples. (1) Solve (D
2
-D')z=0. Here a2 -=0; .-. = a2. Hence

(17) becomes z = Ce<*z + a2y. Put a =
,
a = 1, a = 2, . . . and we get the par-

ticular solutions eW* +
V\ ex + y, e2x + 4^

. . .

.-. z = CjKto + y"> + a#x + y + ojp* + *y + . . .

Now the difference between any two terms of the form e"* + M, is included in

the above solution, it follows, therefore, that the first differential coefficient

of e"* + Py, is also an integral, and, in the same way, the second, third and

higher derivatives must be integrals. Since,

DeaX + a*y =
(x + 2ay)e

(lX + a*y
; DH * + a*y =

{{x + 2ay) + 2y}e
aX + a2^

j

Dseax + a*, = ^x + 2ay) + y(x + 2ay))e
aX + a2y

; etc.,

we have the following solution :

* = d(a; + 2ay)e
ax + ^ + C2{{x + 2ay) + 2y]e*

x + *y + . . .

If a = 0, we get the special case,

z = Cx
x + C2(x

2 + 2y) + C3(x
3 + 6xy) + ...
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(2) Solve |^
-
||3

-
3^ +

3||
= 0. Put * = OS* + &

;
and we get

(a
-

j8) (a + -
8) = 0. .'. = a, and = 3 - a.

.-. = C^* + ^> + &G4& ~ *>
=/i(2/ + a;) + e^f2 (x

-
y).

The processes for finding the particular integrals are analogous

to those employed for the particular integrals of ordinary differ-

ential equation, I shall not go further into the matter just now, but

will return to the subject in the next chapter. Partial differential

equations of a higher order than the second sometimes occur in

investigations upon the action of magnetism on polarized light ;

vibrations of thick plates, or curved bars ;
the motion of a cylinder

in a fluid
;

the damping of air waves by viscosity, etc.

147. The Approximate Integration of Differential Equations.

There are two interesting and useful methods for obtaining the

approximate solution of differential equations :

I: Integration in series. When a function can be developed in

a series of converging terms, arranged in powers of the independent

variable, an approximate value for the dependent variable can easily

be obtained. The degree of approximation attained obviously

depends on the number of terms of the series included in the

calculation. The older mathematicians considered this an under-

hand way of getting at the solution, but, for practical work, it is

invaluable. As a matter of fact, solutions of the more advanced

problems in physical mathematics are nearly always represented

in the form of an abbreviated infinite series. Finite solutions are

the exception rather than the rule.

Examples. (1) It is required to find the solution dyjdx = y, in series.

Assume that y has the form

y = a + a^x + a^x
2 + a^ + ...

Differentiate, and substitute for y and y in the given equation,

(a,
- a

) + {2a2
- a^x + (3a3

- a2)x
2 + . . . = 0.

If x is not zero, this equation is satisfied when the coefficients of x become
zero. This requires that

1 1 XI
ai ao J <^ 2

a
i
~

2
ao az qa2

=
3 j

a
o

Hence, by substitution in (1), we obtain

y = a (l + x +
2-jX

2 +
^}f + . . .

J
=

a<p*.

Put a for the arbitrary constant so that the final result is y aex . That this

is a complete solution, is proved by substitution in the original equation. We
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must proceed a little differently with equations of a higher order. Take as a

second example

(2) Solve dy\dx + ay + bx2 = in series. By successive differentiation of

this expression, and making y = y when x = in the results, we obtain

|) o=-^;(g)o=^;(S) o
=-^-^;...

By Maclaurin's theorem,

=Vo - aVox + \<&yv& - U^3
yo + 2bW + ;

c= y (l -ax+ \a?x
2
-...)- 26a - 3

{\a?x*
-^aV + ...);

=y e~ ax + 2ba- 3
(e~

ax -1 + ax- a2
<c
2
),

by making suitable transformations in the contents of the last pair of brackets.

Hence finally y=C1e~ ax - 2ba
~ 3

(1
- ax + |a) . Verify this by the method

of 125, page 387.

(3) Solve d2
yjdx

2 -a2y=0 in series. By successive differentiation, and

integration

da?'
a
dx ' dx*~

a
dx**

'"
V^Wo Vo '

' ' "'

when the integrations are performed between the limits x = x, and x = 0, so

that y becomes yQ when x = 0. From Maclaurin's theorem, (1) above, we get

by substitution

(dy\ x x2
(dy\ x*

y=yo+
\Tx)ol.

+ ay Tl+a
*

\Tx) '3\
+ '-->

f a2x2 aV 1 1 fdy\ (ax asx* }

By rearranging the terms in brackets and putting the constants yQ
= A, and

y /a = B, we get,

y=A{($ + %ax+ %a
2x2 +. . .) + {i~%ax+ ia

2x2 -
. . .)+ B( . . . ))

=IA (e
ax+ e

~ ax
) + B(e - e

~ ax
)
= C^e + C2e~ ax

.

Sometimes it is advisable to assume a series with undetermined indices

and to evaluate this by means of the differential equation, as indicated in the

next example.

(4) Solve

-*!-cr/
= ** (2)

(i)
The complementary function. As a trial solution, put y = aQ

xm . The

auxiliary equation is

m(m -
ljaosc

~ 2 - (m + c)aQx
m = 0. . . (3)

This shows that the difference between the successive exponents of x in the

assumed series, is 2. The required series is, therefore,

y = a a^ + a1x
m + 2 + ... + a n + 1

xm + 2n ~ 2+ anxm+2n = 0, . (4)

which is more conveniently written

y=^anx + **=0 (5)

In order to completely determine this series, we must know three things

about it. Namely, the first term
; the coefficients of x ;

and the different
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powers of x that make up the series. By differentiation of (4), we get

# = 2 {m + 2n)anx
m + 2n> l

; y = 2 (m + 2ri) (m + 2n -
l)anx

m + * - 2
.

By substitution of this result and (4) in equation (2), we have

2 {(w + 2n) (m + 2n - l)anxm + ** ~ 2 - (w + 2w + c)ana;
m +^ = 0, (6)

where n has all values from zero to infinity. If (5) is a solution of (2), equa-

tion (6) is identically zero, and the coefficient of each power of x must vanish.

Hence, by equating the co-efficients of xm+*n
,
and of xm+2n - 2 to zero, we have

(m + 2n) (m + 2n -
VjCLnX

+ 2n - 2 _
(
w + 2n + c)anx

m + 2n =
;

and replacing n by n - 1 in the second term, we get

(m + 2n) (m + 2n -
l)an

- (m + 2n - 2 + c)an _ 1
=

; . (7)

since (m + 2n) (m + 2n -
1)
= 0, when n = 0, m(m -

1)
= 0; consequently,

m = 0, or m = 1
;
for succeeding terms n is greater than zero, and the relation

between any two consecutive terms is

m + 2n - 2 + c

"*-
{m + 2n) {m + 2n -

l)
a -i- ... (8)

This formula allows us to calculate the relation between the successive co-

fficients of x by giving n all integral values 1, 2, 3, : . . Let a be the first term.

First, suppose m = 0, then we can easily calculate from (8),

_ c _ c + 2a c{c + 2)
a
i
"

l . 2
a

' ^ "~
3 . 4

' =
4 !

ao 5

.-. r2
= a

{l
+ 4f + 0(0 + 2)1-, +.-.]

. . (9)

Next, put m = 1, and, to prevent confusion, write 6, in (8), in place of a.

c + 2t& - 1

w-
2n(ln + l)-i'

proceed exactly as before to find successively bv 62 ,
63 ,

. . .

.-. F9
= 6

{*
+ (c + l)^j

+ (c + 1) (c + 3)|~,
+ . . .

}.
. (10)

The complete solution of the equation is the sum of these two series, (9)

and (10) ; or, if we put C
xyx

= F
lf C.2y2

= Fa ,

V = C
xyx + Cqy2 ,

which contains the two arbitrary constants Cx
and 2 .

(ii.)
The particular integral. By the above procedure we obtain the com-

plementary function. For the particular integral, we must follow a somewhat
similar method. E.g., equate (7) to x2 instead of to zero. The coefficient of

xm-zt
in (3) becomes

m{m -
l)a x - a = x9

,

A comparison of the exponents shows that

m - 2 = 2
;
and m(m -

l)a = 1
; .\ m = 4

; o =
x\.

From (8), when m = 4,

2 + 2n + c
an ~

2> + 2) (2n + S)
*" 1 '

Substitute successive values of n = 1, 2, 3, ... in the assumed expansion, and

we obtain

Particular integral = a xm + a
xx
m + 2 + aacc

+ 4 + . . . ,

where a , Oj, a^ . . . and m have been determined.
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(5) The following velocity equations have been proposed for the catalytic

action of an enzyme upon salicine (J. W. Mellor's CJiemical Statics and Dyn-

amics, London, 380, 1904) :

dy dx

-j-t
= k

x(a
- x- y)(c

-
y) ; -^

= k2y. . . . (11)

From Maclaurin's theorem,

fdx\ /d*x\ f2

x = x +
{di)

t+
\dr*) 2-i

+ (
12

>

Hence, when x = 0, and y = 0, equations (11) furnish

() = (k*y) =
;

'

(l)o
= k^ J (^2

)o
= klKaC = A

' "^ (13)

By differentiation of the first of equations (11), we get

(g)r -^--,- w|-,l(c -(| +
f).,

. ,,

and from the second of equations (11), (13), and (14),

-ftp J
= ~

^i
2Mc(a + c)

= B, say. . . . (15)

Again, differentiating (14),

d*y f/dx dy\dy d*y dyfdx dy\ (d?x d*y\\ .W =
H\di +

dt)di
~(a ~ x -v)w +

dt[dt
+
Tt)

+ <
c ~
V\W +

d&)f
'

\S)
= 2fciRa2c2 + k

i
3a2c{a + c)

- k^k^ac -
k*ac{a + c)};

= ZkfaW + k?a?c{a + c)
- k^Kac* + k^ac*(a + c)

= k?ac{a + c)
2 + 2fc

1
3a2c2 - k 2k2ac\

(d

Ax\

-^j )
= k*k2ac{a + c) + ZkfktfLW - k^k^ac* + C, say. . (16)

Consequently, from (12), (13), (15), and (16), and collecting the constants to-

gether, under the symbols A, B, C, . . . we get

J2
-r,t

3 # A t B t
2 G ts

x = A
2i + B3-i

+ c
ri

+ '-> -'y = k2 'i
+ h

i
'2i

+
k2 'sT

+ "'
<17>

We have expressed x and y in terms of t and constants.

A great number of the velocity equations of consecutive chemical

reactions are turned out by the integral calculus in the form of an

infinite series. If the series be convergent all may appear to be

well. But another point must here be emphasized. The constants

in the series are evaluated from the numerical data and the agree-

ment between the calculated and the observed results is quoted in

support of a theory. As a matter of fact the series formula is quite

empirical. Scores of hypotheses might be suggested which would

all furnish a similar relation between the variables, and " best

values
"

for the constants can be determined in the same way.
Of course if it were possible to evaluate the constants by independ-
ent processes, and the resulting expression gave results in harmony
with the experimental material, we might have a little more faith
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in the theory. These remarks in no way conflict with the dis-

cussion on page 324. There the constants were in questions, here

we speak of the underlying theory.

But we are getting beyond the scope of this work. I hope

enough has been said to familiarize the student with the notation

and ideas employed in the treatment of differential equations so

that when he consults more advanced books their pages will no

longer appear as "
unintelligible hieroglyphs ". For more extensive

practical details, the reader will have to take up some special work

such as A. E. Forsyth's Differential Equations, London, 1903;

W. E. Byerly's Fourier's Series and Spherical Har?nonics, Boston,

1895. H. F. Weber and B. Eiemann's Die Partiellen Diffeiential-

Gleichungen der Mathematischen Physik, Braunschweig, 1900-1901,

is the text-book for more advanced work. A. Gray and G. B.

Mathews have A Treatise on Bessel's Functions and their Applica-

tion to Physics, London, 1895.

II. Method of successive approximations. This method re-

sembles, in principle, that used for the approximate solution of

numerical equations, page 358. When some of the terms of the

given equation are small, solve the equation as if these terms did

not exist. Thus the equation of motion for the small oscillations

of a pendulum in air,

d2
fdd\

2 d26

dp+<F0= a
\dt)

'
becomes

dfi
+ ^ =

' (
18

)

provided the right member a(dO/dt)
2 is small. Solving the second

of these equations by the method of page 401, we get = - r cos qt.

If so then a(dO/dt)
2 must be ar2

q
2sm2

qt. Substituting this in the

first of equations (18), and remembering that 1 - cos 2x m 2 sin2
#,

page 612, we get

d26 . ar2
q
2 / - \ d2 / ar2

\ aq
2r2 n

-^ + q*Q = -- (1
- cos

2qtJ
j or, ^ + 2y ~^)

= "
2

C0S 2^'

This gives $ = \ar
2 + (r

-
far

2
)
cos qt + \ar

2 cos 2qt, when solved,

as on page 421, with the conditions that when t = 0, =
r, and

dO/dt = 0.

Example. A set of equations resembling those of Ex. (5), of the preced-

ing set of examples is solved in Technics, 1, 514, 1904, by the method of suc-

cessive approximation, and under the assumption that k
x
and a are small in

comparison with ft2 and c. Hint. Differentiate the second of equations (11) ;

multiply out the first
;
and on making the proper substitution

1 d?x kJdx\* kJ \dx , ,

5 d?
=

k2{Tt)
+
kX

x - c - a
)dt

+ k^a ~
x)" ' (19)

GG *
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Neglect terms in kjk^, and d2
(x

-
a)/dt

2 + q
2
(x

-
a) = remains, if <f be put in

place of k^k^ Hence, x - a = - a cos qt, since x and y are both zero when
t = 0. Differentiate and substitute the results in (19). We get

d2x fc,

-372 + <Z
2
(&

-
o) = - ^(a cos qt

-
c)aq sin gtf + T~a2

2
2 sin2g ;

d2
a; a2

qk, a2
q
2k,

"* ^ + 2
2^ - a)

= 23sin 2*
- ~^sin 22* + "2ft""

1 * cos22*)>

which can be solved by the method of page 421. The complete (approximate)
solution particular integral and complimentary function is

q
2
t cos qt cPk-L sin 2 qt a2k

x
cos 2qt a2kxx-a = +acoS qt- g

+ ^ +
^-

+ ^-.
This solution is not well fitted for practical work. It is too cumbrous.



CHAPTEE VIII.

FOURIER'S THEOREM.

" Fourier's theorem is not only one of the most beautiful results of

modern analysis, but may be said to furnish an indispensable

instrument in the treatment of nearly every recondite question
in modern physics. To mention only sonorous vibrations, the

propagation of electric signals along a telegraph wire, and the

conduction of heat by the earth's crust, as subjects in their

generality intractable without it, is to give but a feeble idea of

its importance." Thomson and Tait.

148. Fourier's Series.

Sound, as we all know, is produced whenever the particles of air

are set into a certain state of vibratory motion. The to and fro

motion of a pendulum may be regarded as the simplest form of

vibration, and this is analogous to the vibration which produces a

simple sound such as the fundamental note of an organ pipe.

The periodic curve, Fig. 52, page 136, represented by the equations

y = sin x
;
or y = cos x, is a graphic representation of the motion

which produces a simple sound.

A musical note, however, is more complex, it consists of a

simple sound called the fundamental note compounded with a

series of auxiliary vibrations called overtones. The periodic curve

of such a note departs greatly from the simplicity of that represent-

ing a simple sound. Fourier has shown that any periodic curve

can be reproduced by compounding a series of harmonic curves

along the same axis and having recurring periods 1, \ y , \, . . . th

of the given curve. The only limitations are
(i)

the ordinates must

be finite (page 243) ; (ii) the curve must always progress in the same

direction. Fourier further showed that only one special combina-

tion of the elementary curves can be compounded to produce the

given curve. This corresponds with the fact observed by Helm-
469
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holtz that the same composite sound is always resolved into the

same elementary sounds. A composite sound can therefore be re-

presented, in mathematical symbols, as a series of terms arranged,
not in a series of ascending powers of the independent variable, as

in Maclaurin's theorem, but in a series of sines and cosines of

multiples of this variable.

Fourier's theorem determines the law for the expansion of any

arbitrary function in terms of sines or cosines of multiples of the

independent variable, x. If f(x) is a periodic function with respect

to time, space, temperature, or potential, Fourier's theorem states

that

f(x)
= A + a

x
sin x + a

2
sin 2x+ ... + ^cos x + 6

2
cos 2x + . . . (1)

This is known as Fourier's series. It is easy to show, by

plotting, as we shall do later on, that a trigonometrical series like

that of Fourier passes through all its changes and returns to the

same value when x is increased by 2w. This mode of dealing with

motion is said to be more advantageous than any other form of

mathematical reasoning, and it has been applied with great success

to physical problems involving potential, conduction of heat, light,

sound, electricity and other forms of propagation. Any physical

property density, pressure, velocity which varies periodically

with time and whose magnitude or intensity can be measured,

may be represented by Fourier's series.

In view of the fact that the terms of Fourier's series are all

periodic we may say that Fourier's series is an artificial way of

representing the propagation or progression of any physical quality

by a series of waves or vibrations. "It is only a mathematical

fiction," says Helmholtz,
" admirable because it renders calcula-

tion easy, but not necessarily corresponding with anything in

reality."

159. Evaluation of the Constants in Fourier's Series.

Assuming Fourier's series to be valid between the limits x = + 7r

and x = -
7r, we shall now proceed to find values for the co-

efficients A0i
av a

2 , . . .
,
bv b

2, . . .
,
which will make the series

true.

I. To find a value for the constant A . Multiply equation (1)

by dx and then integrate each term between the limits x *= + it and

x = - 7T. Every term involving sine or cosine term vanishes, and
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2irA
Q
=

J _
f(x) . ^

; or, A =
^J _ /(a?) . te, . (2)

remains. Therefore, when /(a?) is known, this integral can be

integrated.
1

I strongly recommend the student to master 74, 75, 83 before

taking up this chapter.

II. To find a value for the coefficients of the cosine terms, say
bn ,

where n may b9 any number from 1 to n. Equation (1) must

not only be multiplied by dx, but also by gome factor such that all

the other terms will vanish when the series is integrated between

the limits + 7r, 6ncos nx remains. Such a factor is cosnx.dx.

In this case,
r+7r

I cos2rac . dx bnTrt

(page 211), all the other terms involving sines or cosines, when

integrated between the limits 7r, will be found to vanish. Hence
the desired value of bn is

If+TT
cosnx.dx. . . (3)

This formula enables any coefficient, bv b
2 ,

. . .
,
bn to be obtained.

If we put n = 0, the coefficient of the first term A assumes the

form,

4>-i&o &
If this value is substituted in (1), we can dispense with (2), and

write

f{x) m b
Q + a^sin x + ^cos x + a

2
s

:n 2x + b
2
cos 2x + . . . (5)

III. To find a value for the coefficients of the sine terms, say an .

As before, multiply through with amnxdx and integrate between

the limits + v. We thus obtain

an = -
f(x) sin nx .dx. . . . (6)

T?J n

Examples. (1) Problems like these are sometimes set for practice. Put

-jp
= x, in (1), and develop the curve Fig. 155. \W

Note T is a special value of t. The series to be _j__
developed is it t- j

f(t)
= A + oj sin ~r + . . . + b

x
cos~ + . . . Fig. 155.

1 1 have omitted details because the reader should find no difficulty in working
out the results for himself. It is no more than an exercise on preceding work page
211.

time
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To evaluate A
, multiply by the periodic time, i.e., by T, as in

(^

between the limits and T. From page 211.

and integrate

1 FT v
4o

-
t\ f dt = AveraSe neight of f{t)

= ^ .

y +
3
sm

6wt 1
. IOtt* \

~T +s Bm T~ +
'")'

For the constants of the cosine and sine terms, multiply respectively by
cos (2-7rtlT)dt, and by sin (2irtjT)dt and integrate between the limits and

T. The answer is

,, y 27/ . 2tt* 1

Remember sin 2nir is zero if n is odd or even
;
cos 2mr is + 1 if n is even, and

- 1 if ?t is odd or even. The integration in this section can all be done by

the methods of 73 and 75. Note, however, jx sin nxdx = n~ 2
(sin nx - nx

,cos nx), on integration by parts.

(2) In Fig. 156, the straight lines sloping downwards from right to left

fit)

have the equation f(t)
= At, where m is a constant. When t = T, f(t)

= 7, so

that 7= raT, or m = VjT; .-. f(t)
= Yt\T. Hence show that

yrr y 2 f'Vt . 2w* 7
Ao=

-rji] t-dt=2> ai
= T 2rSm ~T t = ~*

and also

'l,'
7/tt . 2irt 1 . 4tt 1 6ir* \

/W=^2- sm
'2
r "2 8in

~2r ~3 Bm
~T

~
"'J'

(3) In Fig. 157, you can see that AQ is zero because

1 fT 2 CT 2irt

Aq=
TJ

/(0^ = Average height of f(t)
= 0; a

1
=
^J f(t) sin

-^dt.

Now notice that f(t)
= mt between the limits - JTand + T; and that when

t = T,f(t) = a so that a = \mT; and m = 4a/!F; while between the limits

t = IT, and * = f T, /(*)
= 2a(l

- 2t
; T) ; hence,

2 r+WAat .
2* 2 ftr /

^=Tj. iT 'T
Sm

T-
dt+

Tj iT
2a

{-I
. 27ri SJ 8a
sm -Tn-rf^ = -3.

In a similar manner you can show that air" the even a's vanish, and all the

b's also vanish. Hence

8a/
. 2tt

/(*)=TV 8in
"2r

1
. 6tt

k sm
mt 1 . 10*4 \

There are several graphic methods for evaluating the coefficients of a

Fourier's series. See J. Perry, Electrician, 28, 362, 1892
; W. B. Woodhouse,

the same journal, 46, 987, 1901
; or, best of all, O. Henrici, Phil. Mag. [5], 38,

110, 1894, when the series is used to express the electromotive force of an

alternating current as a periodic function of the time.
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150. The Development of a Function in a Trigonometrical
Series.

I. The development ofa trigonometrical series of sines. Suppose
it is required to find the value of

f(x)
= x,

in terms of Fourier's theorem. From (2), (3) and (6),

^n = ~~
I

& cos nx . dx =
;
an = - x . si

WJ - n TJ - ir

according as n is odd or even ;

sin nx .dx = + -,%

Ao~ 2
x . dx = -7 (tt

2

4.7T
V ir*)0.

(7)

Hence Fourier's series assumes the form

x = 2(sin x -
\ sin 2x + J sin Sx -

. .
.),

which is known as a sine series ; the cosine terms have dis-

appeared during the integration.

By plotting the bracketed terms in. (7) we obtain the series

of curves shown in Fig. 158. Curve 1 has been obtained by-

plotting y = sin x; curve 2, by plotting y = % sin 2x
\ curve 3, from

4/ y

Fig. 158. Harmonics of the Sine Curve.

y = J sin Sx. These curves, dotted in the diagram, represent the

overtones or harmonics. Curve 4 has been obtained by drawing

ordinates equal to the algebraic sum of the ordinates of the pre-
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ceding curves. The general form of the sine series is

f(x) = d^sina; + a
2
sin 2x + a

3
sm 3x + . . ., . (8)

where a has the value given in equation (6).

II. The development of a trigonometrical series of cosines. In

illustration, let

f{x) = x2
,

be expanded by Fourier's theorem. Here

1 r+ n
_ 4

bn = I x2
. cos nx . dx = + s,n

ttJ-tt n2 '

according as n is odd or even. Also,

an = -\ #2sin nx

Hence,

x2 = K7T2 - 4fcos# -
O2cos2ic +-O2cos3ic

-
. .A . (9)

By plotting the first three terms enclosed in brackets on the right
side of (9), we obtain the series of curves shown in Fig. 159. The

general development of a cosine series is

f(x) = lb b^osx + 6
2
cos2# + ...,. . (10)

where b has the values assigned in (3). As a general rule, any odd

.dx = 0; ^ =cH V^ =
^J7r

3
-(-7r)

3

|= 7T
2

.

Fig. 159. Harmonics of the Cosine Curve.

function of x will develop into a series of sines only, an even function

of x will consist of a series of cosines. An even function of x is

one which retains its value unchanged when the sign of the vari-

able, x, is changed. E.g., the sign of x2 is the same whether x be

positive or negative; cos a? is equal to cos(- x), page 611, and

therefore x2 and cos a; are even functions of x. If f(x) is
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an even function of x, f(x)
= /(-#). An odd function of x

changes its magnitude when the sign of the variable x is changed-

Thus, x, x3
,

. . . and generally any odd power of an odd function,

since sin x = - sin
(
-

x), sin a; is an odd function of x
; generally

if f(x) is an odd function of x, f{x)
= -

/(
-

x). In (8) f(x) is an

odd function of x, and in (10), f(x) is an even function of x between

the limits - tt and + tt.

Examples. (1) Develop unity in a series of sines between the limits

x = tt and x = 0. Here f(x) = 1. Now perform the integrations with

n = 1, 2, 3, . . . and you will see that

2 /V 2 2 4
On = /

sin nxdx = (1
-

costtir) = (1 - (- l)
n
)
=

, or, 0,
irj o nir K ' mrx v ' s

tt?r'
' '

according as n is odd or even. Hence, from (8),

1 = -(since + qsin 3x
+-g

sin 5x + .. A . . (11)

The first three terms of this series are plotted in Fig. 160 in the usual way.

(2) Show that for x = tt

2sinh7r|7l 1 1 \ /l 2
. W" Me*= i (

2-o"
cosa; +

5
cos2a; + )

+
( o smx_ gSin2a; + ...

J
>. (12)

Fig. 160. Harmonics of the Sine Development of Unity.

(3) x sin x = 1 - \ cos x -
\ cos 1x + \ cos Sx -

ft cos x + ...

Establish this relation between the limits tt and 0. If x = -^r, then

(4) Show x = 5- ( cos x + q-cos 3a? + Hkcos 5x + . .

bn =-\ x cos nx . dx = -5- (cos mr -
1)
=

{(
-

1)
-

1}.

(13)

(H)
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(5) Show that if c is constant,

4c/ 1 1 \
c = ( sina? + ^smSa; + gsm5aj + . . . ). . . (15)

III. Comparison of the sine and the cosine series. The sine and

cosine series are both periodic functions of x, with a period of 2tt.

The above expansions hold good only between the limits x = + ir,

that is to say, when x is greater than -
tt, and less than + 71- .

When x = 0, the series is necessarily zero, whatever be the value

of the function. As a matter of fact any function can be re-

presented both as a sine and as a cosine series. Although
the functions and the two series will be equal for all values

7r and x = 0, there isof x between x =
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151. Extension of Fourier's Series.

Up to the present, the values of the variable in Fourier's series

only extend over the range + v. The integration may however

be extended so as to include all values of x between any limits

whatever.

I. The limits are x = + c, x = - c. Let f(x) be any function

in which x is taken between the limits - c and + c. Change the

variable from x to cz/7r, so that z =
-n-x/c. Hence,

/(*) =/*) (ifi)

When x changes from - c to + c, z changes from - -k to + ir, and,

therefore, for all values of x between - c and + c, the function

([cz/tt) may be developed as in Fourier's series (5), or

f(~z)
= %b + ^cos z + opsins +

2
cos 2z -f <x

2
sin 2z + . . . (17)

where,

bn = I f(~z )
cos nz . dz ; an = -\ f( -z) sin nz .dz. (18)

This development (17) is true from + ?r to -
tt. From (16), there-

fore,

x ^i r irX
.

ttX . 2irX

& Kx)
=

2
bo + b

i
coa V + a

i
am

~c~
+ b

2C08
~ + (19)

The coefficients a and b are the same as in (17), and consequently

(19) holds good throughout the range c. From (18), we have

1 f
+ C

,, x nirX , 1 f
+

N . nirX .

n =
c J _/^cos

~c~
dx a" =

c J _ /^)
sm~dx ' (20)

Hence the rule: Any arbitrary function, whose period ranges from
- c to + c, so that T = 2c, can be represented as a series of trigono-

metrical functions with periods T, ^T, JT'. . .

Examples. (1) From (19), show that the sine series, from x=0 to x=c,
is

.. . . irX . 2irX . SirX .-.
f(x)

= OjSin h^sin + 038111 + (21)

2 f., > . nirx ,an =- f(x)sm dx (22)CJ c

And for the cosine series, from x = to x = c, we have

,. . 1, , 7rCC , 2irX ._;
f(x )

=
2

+ 6lC0ST + 2C0S
~~c~

+ '' ' *
23

)

&n =
|j'/(x)cos^.

. . . . (24)
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(2) Prove the following series for values of x from x = to x = c :

4c/ . irX 1 . SttX 1 . birX \ .-,
c = sin + o sm +x sm + ...) . . (25)

v\ c 3 c 5 c /
* '

2m.c/ . ttx 1 . 2-Tra; 1 . Swx \mx = _/ sm__._ sin_ + _ sm -...
).

. . (26)

W;r 4ttl/ irOJ 1 SirX4tmf xx 1 3ttx 1 . 5kx \ re%

__^
003 _ + _ 00s _. +^_. +

...j.
(27)

Hint. (26) is f(x) = mx developed in a series of sines
; (27) the same function

developed in a series of cosines.

2c/ itX 1 2irX \

(3) If f(x) = x between + c; x = (sin ^
sin +

). (28)

II. The limits are + oo and - oo. Since the above formulae

are true, whatever be the value of c, the limiting value obtained

when c becomes infinitely great should be true for all values of x.

Let us look closer into this, and in order to prevent mistakes in

working, and to show that equations (20) have been integrated, we

may write, as indicated on page 232,

bn =
c[j^

)c0S^?H_ c

; an =
c[f^

sin
^^]_ c

;

but it is more convenient to put A. in place of x to denote that the

expression has been integrated. Accordingly, we get

2. M+\^\ W"^ lf
+%/^ W77-X

n =
cJ _/

( }
0S

~c~
dk

; an =
c)_/(A) SmTdk-

<29)

Substitute these values of av a
2 ,

.. ., b
,
bv . . ., in (19), and we

get, by the series of trigonometrical transformations, (24), (13), (6),

page 609 et seq.,

m -
J[i/(

A
)
dA + j^/W^cosfdA +

)

+
]{/W

sin sin ^dK +...}];
lf

+c
,/ V7 fl / irk ttX . ttA. . 7nZ\ 1=

cJ./W^l2
+

V
cos T cos T + sm T sin

TJ
+

7
;

=
^/W^{| + C0S^A - x) + cos

"f(
X'" *) +

"

}
'

= ^ /(A)dAJl
+ 2cos^(X

-
aj) + 2cosy(\

-
a?) +. . .1;

=
^/W^l1 + C S

c(X
"

X) + C0S
(

"
~c)

{X
~

X) + ' ' '

\
;

1 f
+C

,/ x -, f 7** 07T. . 7T IF,. .

7T

+ cos
c
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As g is increased indefinitely, the limiting value of the term in

brackets is
|

cos (A.
-

x)d . Let a = , n being any integer,
J- 00 G G

.
c

f(x) assumes the form

1 f+ oo f+ 00

f(x)
=
yA fWdA COSa(\

-
X)da,. (30)

for all values of x. The double integral in (30) is known as

Fourier's integral.

It is sometimes convenient to refer to the following alternative

way of writing Fourier's series :

f(x)=-\j(\).d\+-2^n = i

s03s-v-f(\).d\, (31)

true for..any.value of x between and c.

Example. Find an expression equal to v when x lies between and a,

and equal to zero, when x lies between a and b. Here f(\) = v, from A. = to

A = a, and f(\) = 0, from \ = a to \ = b; c = b; cos ~r-f(\) . d\, becomes

f
a nir\ , vb , mra __

"
-

. , .

v I cos r-d\, or, sin j. Hence the required expression is,

va 2vf ira -kx 1
. 2ira 2irx \

/(*) = T +
~7\*

in T' 005T +
2
ain IT- cos

~b~ +
'/

when x = a, this expression reduces to v.

JIT. Different forms of Fourier's integral. Fourier's integral

may be written in different equivalent forms. From page 241,

J+

* ro r

cos xdx = I cos xdx + I cos xdx
;

- oo J - oo J0
ro ro ro

cos#6&e = I cos(- x)d(- x) = -
1 eosa^a?;

J 00 J oo J oo

/+ oo p
I cos xdx = 2 I oosxdx.

Hence, we may write in place of (30),

\AX)
= ~

I fWd\ [ cos a(A.
-

x)da, . . (32)

U
*" " * ^~~ -

where the integration limits in (32) are independent of a and A, and

therefore the integration can be performed in any order. Again,

if f{x) is an even or an odd function, (32) can be simplified,

(i) Let f{x) be an odd function of x, page 475, so that

f(x)
= - f(- X), or, -/(*)-/(-*).
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then, by means of the trigonometrical transformations of page 611,

and the results on page 241,

!(+< r+co .

lf+
00

f+
fix)

= -\ fiX)dX\ cos a(X - x)da = -
1 da I fiX) cos a(A

-
x)dX ;

ifJ - Jo ^J o J -

1 f+ ro r
= -l da I /(A)cosa(A

-
#)dA. + I /(A)cosa(A.

-
#)d\ ;

1 f+ fo f
00

f(x)
=
-\ da\ fi-\)oosa(-\-x)d(-\)+\ /(A)cosa(X

-
x)dX\^J J oo Jo

-I /00 / 00 -V -00

= -
daj

-
/(X)cosa(A + a)dAV + /(X)cosa(X

-
a?)dA;

= -l da I /(A.KC0Sa(A
-

X)
-

C0Sa(X + x) \dX\

2 f f= - 1 da I
/(A.) sinaX . sin ax ,dX;

2 poo

-oo

, fix)
= -

1 f(X)dX I sin aX . sin ax .da, . . (33)
''"Jo Jo

which is true for all odd functions of fix) and for all positive values

of x in any function.

(ii) Let fix) be an even function of x, page 474, so that

We can then reduce (32) in the same way to the Fourier's integral

2
-oo -00

fix)
= -

1 fiX)dX I COS aX . cos ax . da, . . (34)

which is true for all values of x when fix) is an even function of x

and for all positive values of x in any function.

Although the integrals of Fourier's series are obtained by inte-

grating the series term by term, it does not follow that the series

can be obtained by differentiating the integrated series term by

term, for while differentiation makes a series less convergent,

integration makes it more convergent. In other words, a con-

verging series may become divergent on differentiation. This

raises another question the convergency of Fourier's series. In

the preceding developments it has been assumed :

(i)
That the trigonometrical series is uniformly convergent.

(ii) That the series is really equal to fix).

Elaborate investigations have been made to find if these as-

sumptions can be justified. The result has been to prove that the

above developments are valid in every case when the function is

single-valued and finite between the limits + -n-; and has only
a finite number of maximum or minimum values between the
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limits x = + 7t. The curve y = f{x) need not follow the same law

throughout its whole length, but may ba made up of several

entirely different curves. A complete representation of a periodic

function for all values of x would provide for developing each term as

a periodic series, each of which would itself be a periodic function,

and so on.

An adequate discussion of the conditions of convergency of Fourier's series

must be omitted. W. E. Byerly's-in- Elementary Treatise on Fourier's Series,

etc., is one of the best practical works on the use of Fourier's integrals in

mathematical physics. J. Fourier's pioneer work TlUorie analytiqufr de la

Chaleur, Paris, 1822, is perhaps as modern as any other work on this subject ;

see also W. Williams, Phil. Mag. [5], 42, 125, 1896
; Lord Kelvin's Collected

Papers ; and Riemann-Weber's work (Z.c), etc.

152. Fourier's Linear Diffusion Law.

Let AB be any plane section in a metal rod of unit sectional

area (Fig. 163). Let this section at any instant of time have a

uniform temperature equi-thermal surface and let the tempera-
ture on the left side of the plane AB be higher than that on the

right. In consequence, heat will flow from the hot to the cold

side, in the direction of the arrow, across the surface AB. Fourier

assumes, (i)
The direction of the flow is perpendicular to the section

AB ; (ii) The rate of flow of heat across any given section, is pro-

portional to the difference of temperature on the two sides of the

plate.

Let the rate of flow be uniform, and let 6 denote the tempera-

ture of the plane AB. The rate of rise of temperature at any point

in the plane AB, is dO/ds

the so-called "temperature

gradient. The amount of

heat which flows, per

second, from the hot to the

cooler end of the rod, is

- a . dO/ds, where a is a

constant denoting the heat

that flows, per second, Fig. 163.

through unit area, when the tempertaure gradient is unity. Con-

sider now the value of - a . d$/ds at another point in the plane

CD, distant Ss from AB ; this distance is to be taken so small,

that the temperature gradient may be taken as constant. The
HH
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temperature at the point s + $s, will be f
- -t-Ss

j,
since -

-j- is

the rate of rise of temperature along the bar, and this, multiplied

by 8s, denotes the rise of temperature as heat passes from the

point s to s + hs. Hence the amount of heat flowing through the

small section ABCD will be

d/ d0
<s
\ d2

<9

" a
ds\-Ts

hs
)'

aM + adi^ * ' (34)

will denote the difference between the amount of heat which flows

in at one face and out at the other. This expression, therefore,

denotes the amount of heat which is added to the space ABCD
every second. If a denotes the thermal capacity of unit volums,
the thermal capacity of the portion ABCD is (1 x Ss)a-. Hence
the rate of rise of temperature per unit area is a(d6/dt)os. There-

fore,

aaT^
"^ ' ' (

35>

Put a/a-
= k ; this equation may then be written,

1 dO _ d2

k' dt~ M' ' * ' (36)

where k is the diffusivity of the substance. Equation (36) re-

presents Fourier's law of linear diffusion. It covers all possible

cases of diffusion where the substances concerned are in the same
condition at all points in any plane parallel to a given plane. It

is written more generally

1 dV_dW
K 'dt~dx2 (37)

If we had studied the propagation of the "disturbance" in

three dimensions, instead of the simple case of linear propaga-
tion in one direction equation (37) would have assumed the

form,

1 dV
__
dW d?V <PV

k
'

dt~ dx>
+

dy
2 + dz2 ' ' ' (38)

Lord Kelvin calls V the quality of the substance at the time t, at a

distance x from a fixed plane of reference. The differential equa-
tion (37), therefore, shows that the rate of increase of quality per
unit time, is equal to the product of the diffusivity and the rate

of increase of dV/ds, i.e. quality per unit of space. The quality

depends on the subject of the diffusion. For example, it may
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denote one of the three components of the velocity of the motion

of a viscous fluid, the density or strength of an electric current per

unit area perpendicular to the direction of flow, temperature, the

potential at any point in an isolated conductor, or the concentration

of a given solution. Ohm's law is but a special case of Fourier's

linear diffusion law. Fick's law of diffusion is another. The trans-

mission of telephonic messages through a cable, and indeed any

phenomenon of linear propagation, is included in this law of

Fourier.

153. Application to the Diffusion of Salts in Solution.

Fill a small cylindrical tube of unit sectional area with a solution

of some salt (Fig. 164). Let the tube and contents be submerged
in a vessel containing a great quantity of water, so that the open
end of the cylindrical vessel, containing the salt solution, dips just

beneath the surface of the water. Salt solution passes out of the

diffusion vessel and sinks towards the bottom of the larger vessel.

The upper brim of the diffusion vessel, therefore, is assumed to be

always in contact with pure water. Let h denote the height of the

liquid in the diffusion tube, reckoned from the bottom to the top.

The salt diffuses according to Fourier's law,

dV d?V

Tt
= K

Wx*~ .... (1)

which is known as Fick's law of diffusion of substances in

solution.

/. To find the concentration, V, of the dissolved substance at

different levels, x, of the diffusion vessel after the elapse of any
stated interval of time, t. This is equivalent to finding a solution

of Fick's equation, which will satisfy the conditions under which

the experiment is conducted. These so-called limiting condi-

tions ara :
(i)

when
**~""-* dV

* = >^ =
; (

2
)

dV/dx = means that no salt goes out from, and no salt enters the

solution at this point, (ii)
when

x = h, 7=0; . . . (3)
and (iii) when

* = 0, 7 = 7 . . . . (4)

The reader must be quite clear about this before going any further.
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What do V, x and t mean ? V evidently represents the concen-

, tration of the salt solution at the beginning
of the experiment ;

V is the concentration

of the solution expressed in, say, gram

x=o m0^ecu^es f sa^ Per ntre f solution, at a

distance x from the bottom of the inner

vessel (Fig. 164) at the time t
; at the top

of the diffusion vessel, obviously x = h,

and V is zero, because there the water is

Fig. 164. pure ;
the first condition means that at the

bottom of the diffusion vessel, the concentration may be assumed

to be constant during the experiment.

First deduce particular solutions. Following the method of

page 462, assume tentatively that

y = eax + at # . # # (5)

is a solution of (1), when a and ft are constants. Substitute this in

(1), and we get

ft
= KO?. .... (6)

Hence, if (6) is true, (5) is a solution of (1) whatever be the value

of a. Hence it is true when a =
t/x.

'.' Y _
QiyJC

+ fit QipX + Kcfit _
QifjiX

-
KfjPt^

Consequently
V = e

-
f-2te^x

; and V = e
- K^le

~
i**

are both solutions of (1). Hence the sum and difference

V = ie- ^(e 1** e- l x
)

are also solutions of (1) ; and from Euler's sine and cosine series,

page 285,

V = ae - K^1 cos \xx ;
&ndV=be- ** sin px, . (7)

where a and b are constants, as well as

V = (a cos fix + b sin fxx)e
- **.

\
. . (8)

are solutions of the given equation. It remains to fit the constants

a and b in with the three given conditions.

Condition i, when x =
0, dV/dx = 0. Differentiate (8) with

respect to x, and we get

dV
-r- = (

-
fxa sin jxx + pb cos fix)e

- ^K

Now when x = 0, sinfix vanishes, and when x = 0, cos/xo;
= 1.

Consequently b must be zero, if dV/dx is to be zero when x 0.

Hence (5), i.e. (8), satisfies the first condition.
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Condition ii, when x = h, V = 0. In order that (8) may satisfy
the second condition, we must have cos \xh = 0, when x = h. But

cos \tt
= cos |?r

=
. . .

= cos\{%fl
-

l)?r
= 0,

where tt = 180 and n is any integer from 1 to oo. Hence, we
must have fJi

=
\tt ; yfo

=
j*r ; . . .

,
or

JT^ % _ 37T _ 57r (2ft 1)7T
/X
=

2^ ; ~M ;
~

2/T
; " =

2A ;

in order that cos fxh may vanish. Substitute these values of fx

successively in (8) and add the results together ;
we thus obtain

f -y
-

'"'cos5 + ty
"

"'Wjf + ... to inf., (9)

which satisfies two of the required conditions, namely (1) and (2).

Condition iii, when t = 0, V = 7 , we must evaluate the coeffi-

cients a
x ,
a

2 ,
. . . in (9), in such a way that the third condition may

be satisfied by the particular solution (8), or rather (9). This is

done by allowing for the initial conditions, when t = 0, in the

usual way. When t = 0, V = V
Q

. Therefore, from (9),

_ 7TX S7TX
V = ajcos^ + a

2cos-o/T
+ (10)

is true for all values of x between and h. Hence, Q.n~--~7 1 ooo

2F
f*

irx. 2V C
h Bttx. 4F

'

,

ai
=
-r}

cos
Zh

dx
>
a
>
=
-Fj

cos^^-"^ =
(2^:T>r-

(n^^
These results have been obtained by equating each term of (9) to

~rr

zero, and integrating between the limits and h. Substituting

these values of a
,
av . . . in (9), we get a solution satisfying the

limiting conditions of the experiment. If desired, we can write

the resulting series in the compact form,

2n-T cos^-ttx, (12)

where the summation sign between the limits n = oo and n =
means that n is to be given every positive integral value 0, 1, 2, 3

... to infinity, and all the results added together.

If we reckon h from the top of the diffusion vessel x = at the

top, and, -at the bottom, x = h, hence it follows, by the same

method, that

We could have introduced a fourth condition dV/dx = 0, when
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x h, but it would lead to the same result, as we shall see in one

of the subjoined examples, viz., Ex. (1).

mgd& Examples. (1) T. Graham's diffusion experiments (Phil. Trans., 151, 188,

/ '-', 1861). A cylindrical vessel 152 mm. high, and 87 mm. in diameter, contained

0*7 litre of water. Below this was placed 0*1 litre of a salt solution. The

fluid column was then 127 mm. high. After the elapse of a certain time,

successive portions of 100 c.c, or of the total volume of the fluid, were

removed and the quantity of salt determined in each layer. Here x =
at the bottom of the vessel, and x = H at the top ;

x = h at the surface

separating the solution from the liquid when t = 0. The vessel has unit

irea. The limiting conditions are : At the end of a certain time t, (i)
when

v = 0, dV/dx = ;
and (ii) when x = H, dV/dx = ; (iii) when t = 0, V= V

between x = and x = h
; (iv) when t = 0, V = between x = h and x = H.

To adapt these results to Fourier's solution of Fick's equation, first show that

(6) is a particular integral of Fick's equation. Differentiate (8) with respect

to x and show that for the first condition we must have b zero, and condition

(i)
is satisfied. For condition (ii), sin /xH must be zero

;
but sin ?iir is zero

;

hence we can put

fiH =nir; or, fx
=

-gr,

where n has any value 0, 1, 2, 3, . . . Adding up all the particular integrals, we

have

-KX -(1)** 2irX -fiWV = a + ajcos -H-e
^u ' + a2cos -jnre

v>/i/ + . . .,

where the constants a
, a^, a2,

. . . have to be adapted to conditions
'

(iii) and

(iv). For condition (iii), when t = 0, V = V
, consequently,

irX 2irX

Vo = a + a^os -g + OjjCos -g + . . .,

from x = 0, to x = h. For condition (iv), substitute V = 0, from x = h to

x = H. Hence, from (4), page 241,

In the same way it can be shown that

2 CB n*x n 2VQ f
h mrxJnirx\ 2V . rnrh

"=Hj V coa -Wdx =
1^) O

cos -Wd
\-W)

=
15?

sm ~H'

Hence, taking all these conditions into account, the general solution appears

in the form,

which is a standard equation for this kind of work. In Graham's experi-

ments, h = IH. Hence the concentration V in any plane, distant x units

from the bottom of the diffusion vessel, is obtained from the infinite series :

- V 2V * = 1 . nn mrx - C^Y<t /1Kt

V=-^- + ^2 -sin .cos -^-e \H) . . (15)

An infinite series is practically useful only when the series converges

rapidly, and the higher terms have so small an influence on the result that
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all but the first terms rftay be neglected. This is often effected by measuring
the concentration at different levels x, so related to If that costyiirx/H) reduces

to unity ;
also by making t very great, the second and higher terms become

vanishingly small.

(2) H. F. Weber's diffusion experiments (Wied. Ann., 7, 469, 536, 1879;

or Phil. Mag., [5], 8,487, 523, 1879). A concentrated solution of zinc sulphate

(0*25 to 0*35 grm. per" c.c. of solution) was placed in a cylindrical vessel on

the bottom of which was fixed a round smooth amalgamated zinc disc (about

71 cm. diam.). A more dilute solution (0*15 to O20 grm. per c.c.) was poured
over the concentrated solution, and another amalgamated zinc plate was

placed just beneath the surface of the upper layer of liquid. It is known that

if V
ly
V2 denote the respective concentrations of the lower and upper layers

of liquid, the difference of potential E, due to these differences of concentra-

tions, is given by the expression

E = A(V2
-

VJ{1 + B(V2 + V,)}, . . . (16)

where A and B are known constants, B being very small in comparison with A.

This difference of potential or electromotive force, can be employed to deter-

mine the difference in the concentrations of the two solutions about the zinc

electrodes. To adapt these conditions to Fick's equation, let h
x
be the height

of the lower, h2 of the upper solution, therefore \ + h2 = H. The limiting

conditions to be satisfied for all values of t, are dV/dx = 0, when x = 0, and

dV\dx = 0, when x = H. The initial conditions when t = 0, are V = V2t for

all values of x between x = h and x = H. From this proceed exactly as ir

Ex. (3), and show that

a = ^ ,
an= - .- sin -^ ,

and the general solution

F= FA+ry, _ 2JS-5J x .

n^ ^ - iff
-a ir n = i n i a v '

This equation only applies to the variable concentrations of the boundary

layers x = and x = H. It is necessary to adapt it to equation (16). Let

the layers x = and x = H, have the variable concentrations V and V"

respectively.

FA + V2\ 2(V2 - V,) ( ._ *V -IB* .

1
_:

2^V "
S3*'

V = XT
~ -V,)(. rh,

-m*t
,

1 . 2irfc,
-
TR't }

r,+ r = 2IA^.MI^)^ sin^e
-W' + l et0 .

...}.

In actual work, H was made very small. After the lapse of one day (t
=

1),

the terms. sin iirhj/H, etc., and isin birhJH, etc., were less than -&$.

Hence all terms beyond these are outside the range of experiment, and may,

therefore, be neglected. Now h was made as nearly as possible equal to %H,
in order that the term $sin SirhJH, etc., might vanish. Hence,
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^ r -^^ - ffiziJ sin .,
- 4#

Now substitute these values of V"-V and V'+V in (16), observing that

t> T* T7!, feu ^2 > sin i^^ sin 1^ and H, are all constants, and that V% and F2

become respectively V and F' when t = 0. The difference of potential E,
between the two electrodes, due to the difference of concentration between

the two boundary layers V and V" is

E=A{V'-V'){l + B(V"+F')}=A l
e #2 + B

x
e m

, . (18)

where A
1
and B

x
are constant. Since I? is very small in comparison with A,

the expression reduces to

E = A
L
e m

, (19)

in a very short time. This equation was used by Weber for testing the

accuracy of Fick's law. The values of the constant 7r'
2
/c/IT

2
,
after the elapse

of 4, 5, 6, 7, 8, 9, 10 days were respectively 0-2032, 0-2066, 0-2045, 0'2027

0-2027, 0-2049, 0-2049. A very satisfactory result. See also W. Seitz, In-

augural-Dissertation, Leipzig, 1897.

II. To find the quantity of salt, Q, which diffuses through any
horizontal section in a given time, t. Differentiate (7) with respect

to x, multiply the result through with xdt, so as to obtain -
K~=-dt.
ax

If x represents the height of any given horizontal section, then

-
xq-j-dt

will represent the quantity of salt which passes through

this horizontal plane in the time dt ; q represents the area of that

section. Let the vessel have unit sectional area, then q = 1.

Integrate between the limits and t. The result represents the

quantity of salt which passes through any horizontal plane, x, of

the diffusion vessel in the time t, or,

III. To find the quantity of salt, Qv which passes out of the

diffusion vessel in any given time, t. Substitute h = x in (20).

The sine of each of the angles \ir, |tt, . . ., \{2n + 1) is equal to

unity. Therefore,
'
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IV. To find the value of k, the coefficient of diffusion. Since

the members of series (21) converge very rapidly, we may neglect
the higher terms of the series. Arrange the experiment so that

measurements are made when x = h, ^h, \h, . . ., in this way
sin 7rx/2h, ... in (20) become equal to unity. We thus get a series

resembling (21). Substitute for the coefficient and we obtain, by
a suitable transposition of terms,

Q* U -aft w
, (Q* A

27 2h(
h

ttx n/irx\ 4Fn

l^fe" 1
} (22)

There are several other ways of evaluating k besides this. See

page 198, for instance.

V. To find the quantity of salt, Q2 ,
which remains in the

diffusion vessel after the elapse of a given time, t. The quantity

of salt in the solution at the beginning of the experiment may be

represented by the symbol Q . Q may be determined by putting

t = in (20) and eliminating aimrx^h, ... as indicated in IV.

2hf 1 \

Qq = ~^\
a

i
~

3
a

a +
-)

and Q2 = Qo
-

Ql
'

,Q^%e-^-\a.yO^ +
..). (23)

Example. A solution of salt, having a concentration V ,
is poured into

a tube up to two-thirds of its height, the rest of the tube is filled with pure
solvent. Find Q2 . From (9),

-27 /12Vn [lh nirx 4yo nv
cos -^dx = sin T,

where n = 1, 3, 5, . . . and h denotes the height of the tube. Hence

a, = sin 60 =
; a2

^
;
a3
= - - = K*2

From (23), we have

g2 ,
t^(-()'.

-
y(%Y"

- ."<#* i/C^V +
).

VI. If the diffusion vessel is divided into m layers, to find the

quantity of salt, Qr ,
between the (r

-
l)th, and the rth layer. The

quantity of salt in the rth layer dx thick is obviously dQr ;
and since

V is the concentration of the sal' in the plane x units distant from
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the bottom of the diffusion vessel,

dQr
= Vdx Vdx.

(r \)H
(24)

The value of V given in (10) or (11) is substituted in (24) and the

integration performed in the usual way.

(1) Returning to Graham's experiments, Ex. (1), page 486,Examples
show that

'=f ft
j (r-m\

o

. ritr flirX
-\ sin -s- cos -^fti

()*-)
dx

using both (24) and (15), and neglecting the summation symbol pro tern.

integration, therefore

n*(r-l)\ -ftrt'l

On

&- m + is? sm t l
sm

~m~
- sm

.-.,- 8

from (39), page 612.

-

Vw 2
*-
2

rtir . 7i7r nir(2r-l)
sin-^- sm ~ cos

(S)

8
Ui" 2m "^ 2m

Restoring the neglected summation symbol, and re-

membering that in Graham's experiments m =
8, we have

r

X 82 = i
.

nir
.

nw (2r-l)mr
-
Cwj***

y

Q+^n = 1

~
2 . sin ^. sin B . cos

lgGr= ) (25)i.i w2 * Di
". 8

where %VH multiplied by the cross section of the vessel (here supposed

unity) denotes the total quantity of salt present in the diffusion vessel. Put

QQ
bs \VqH. Unfortunately, a large number of Graham's experiments are not

adapted for numerical discussion, because the shape of his diffusion vessels,

even if known, would give very awkward equations. A simple modification

in experimental details will often save an enormous amount of labour in the

mathematical work. The value of Qr depends upon the value of cos ^nir(2r - 1).

If the diffusion vessel is divided into 8 equal parts layers r has the values

1, 2, 3, . . . 8. Now set up a table of values of cos ^ nir(2r
-

1) for values of

r from 1 to 8 ;
and for values of n = 1, 2, 3, 4, . . . We get

rth layer
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series cancel out, and that the succeeding terms are negligibly small. Ac-

cordingly, we get

Qi+Qa+Q*+Q8=IQo> ' - (26)

a result in agreement with J. Stefan's experiments (Wien Akad. Ber., 79, ii.

161, 1879), on the diffusion of sodium chloride, and other salts in aqueous
solution. When t = 14 days, series (23) is so rapidly convergent that all but

the first two terms may be neglected. Consequently,

/l 64 .
IT

.
IT 7T 37T

- (^Y
Kt
\

Qi+ Q2
=
Qo\J

+^ sin
g
sm ^ cos

^
cos

j^e
^a/

J
(27)

remains. Qv Q2 , Q , H, t, can all be measured, e and -n are known constants,

hence k can be readily computed.

(2) A gas, A, obeying Dalton's law of partial pressures, diffuses into an-

other gas, B, show that the partial pressure p of the gas A, at a distance xt in

the time

^-M /Oft

[n Loschmidt's diffusion experiments (Wien Akad. Ber., 61, 367, 1870; 62,

468, 1870) two cylindrical tubes were arranged vertically, so that communica-
tion could be established between them by sliding a metal plate. Each tube

was 48-75 cm. high and 2-6 cm. in diameter and closed at one end. The two

tubes were then filled with different gases and placed in communication for a

certain time t. The mixture in each tube was then analyzed. Let the total

length L of the tubes joined end to end be 97*5 cm. It is required to solve

equation (28) so that when t = 0, p = p ,
from x = to x = $L = I; p = 0,

from x = $L to x = L
; dpjdx = 0, when x = 0, and x = L, for all values

of U Note pQ denotes the original pressure of the gas. Hence show that

Pox 2ftvfl = Bl * nirX ~
(t)

*

(9Q\= 77+^-^2,
- sin -o- cos -=- e x w \

z^)r 2 it n = i n 2 L

The quantity of gas Qx and Q2 contained in the upper and lower tubes, after

the elapse of the time t, is, respectively,

Q1 =q.]pdx\Q2
=Cij i

pdx, .... (30)

where I = L, and q is the sectional area of the tube. Hence show that

from which the constant k can be determined. If the time is sufficiently long,

Jr-V'
-

<
81>

where D and 8 respectively denote the sum and difference of the quantities

of gas contained in the two vessels. Loschmidt measured D, S, t, and a and

found that the agreement between observed and calculated results was very

close. O. A. von Obermayer's experiments (Wien Akad. Ber., 83, 147, 749.

1882 ; 87, 1, 1883) are also in harmony with these results.
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VII. To find the concentration of the dissolved substance in

different parts of the diffusion vessel when the stationary state is

reached. After the elapse of a sufficient length of time, a state

of equilibrium is reached when the concentration of the substance

in two parts of the vessel is maintained constant. This occurs if

the outer vessel (Fig. 164) is very large, and the liquid at the

bottom of the inner vessel is kept saturated by immediate contact \\

with solid salt. In this case, I Of -,.

*

Integrate the latter, and we get

V = ax + b, . . . . (32)

where a and b are constants to be determined from the experi-

mental data, as described in 108. (32) means that the concen-

tration diminishes from
'

below upwards as the ordinates of a

straight line, in agreement with Fick's experiments.

Exampes. (1) Adapt (38), page 482, to the diffusion of a salt in a funnel-

shaped vessel. For a conical vessel, q = -imfix1
,
where the apex of the cone

is at the origin of the coordinate axes, m is the tangent of half the angle

included between the two slant sides of the vessel. Fick has made a series

of crude experiments on the steady state in a conical vessel with a circular

base (funnel-shaped), and the results were approximately in harmony with

the equations

The apex of the cone was in contact with the reservoir of salt, hence when

x = 0, V = V ,
and when x = h, the height of the cone, V = 0. This enables

C1
and C2

to be evaluated. A. Fick, Fogg. Ann., 94, 59, 1855 ;
or Phil. Mag.,

[4], 10, 30, 1855.

(2) An infinitely large piece of pitchblende has two plane faces so arranged
that the cc-axis is perpendicular to the faces. Owing to the generation of heat

by the internal changes there is a Continuous outflow of heat through the

faces of the plate. In the steady state, the outflow of heat, -
k(d

2
6jds^)Ss per

sq. cm., is equal to the rate of generation of heat per sq. cm., say to q8s.

Hence show d?6jds*=
-
qjk. If the slab be 100 cm. thick and the faces be kept

at 0C. : and if q be 120 o 000th units, and k= 0-005 (R. J. Strutt, Nature, 68, 6
y

1903) show that the temperature in the middle of the slab will be C. hotter

than the faces. Hint. First integrate the above equation. The limiting con-

ditions are- 6 = 0, when 5 = 0, and when s = 100.

as 1
.. o= - wr(s

-
100) ;

and 6 =
g,, approximately,

at the middle of the slab where s = 50.
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15$. Application to Problems on the Conduction of Heat.

The reader knows that ordinary and partial differential equa-

tions differ in this respect: W.hil p. ordinary- differential . equations

have only a finite number of independent particular integrals, partial

differential equations have an infinite number of such integrals.

And in practical work we have to pick out one particular integral,

to satisfy the conditions under which any given experiment is per-

formed. Suppose that a value of V is required in the equation

'

7)3?
+
^p"

=
'

' ' * *
t
1
)

such that when y = oo, V =
;
and when y = 0, V = f(x). As

on page 484, first assume that

V = aw*?*,

is a solution, when a and /? are constant. Substitute in (1) and

divide by eay + Px
,
and

a2 + (P =

remains. If this condition holds, the assumed value of V is a

solution of (1). Hence V = eav- tax
,
are also solutions of (1),

therefore also eayeiax and e^e
~ iax are solutions. Add and divide

by2i, or subtract and divide by 2; from (13) and (15), page 286,

it follows that

V = eay cos ax
; and V = ey sin cur, . . (2)

must also be solutions of (1). Multiply the first of equations (2)

by cos a\, and the second by sin aA. The results still satisfy (1).

Add, and from (24), page 612,

e~-y cos a(A.
-

x)

must also satisfy (1). Multiply by f(\)d\, and the result is still a

solution of (1)

e~ a
yf(k) . cos a(A

-
x)dk.

Multiply by \\ir and find the limits when a has different values

between and oo . Hence, from (30) and (32), page 479 ,
we have

the particular solution satisfying the required conditions

- da e* aVWcosa(A -
x)d\.

J J - 00
(3)

Examples. (1) A large iron plate tr cm. thick and at a uniform tempera-
ture of 100 is suddenly placed in a bath at zero temperature for 10 seconds.

Required the temperature of the middle of the plate at the end of 10 seconds,

(supposing that the difiusivity k of the plate is 0-2 C.O.S. units, and that the
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surfaces of the plate are kept at zero temperature the whole time. If heat

flows perpendicularly to the two faces of the plate, any plane parallel to these

faces will have the same temperature. Thus the temperature depends on

dt
~ K

dx w
as in (1) page 483. The conditions to be satisfied by the solution are that

6 = 100, when t =
;

= 0, when x =
;

= 0, when x = 7r. First, to get

particular solutions. Assume 6 = e<vc+pt is a solution, as on page 484. Hence

show that

e = e~ & cos /*, (5)

d = e
- *m2* sin fix, (6)

are solutions of (4). By assigning particular values to
jx, we shall get par-

ticular solutions of (4). Second, to combine these particular solutions so as to

get a solution of (4) to satisfy the three conditions, we must observe that (6)

is zero when x = 0, for all values of /*, and that (6) is also zero when x = ir if

i is an integral number. If, therefore, we put 6 equal to a sum of terms of

the form Ae - *i&t sin nx, say,

6 = a^~ Kt sinaj + a%e
~ 4l<t sin 2x + a3e

" 9lct sin 3a; 4- (7)

to n terms, this solution will satisfy the second and third of the above con-

ditions, because sin ir = = sin 0. When t = 0, (7) reduces to

d = ax
sin x + a2 sin 2x + a3 sin Sx + . . . . . (8)

But for all values of x between and ?r, we see from Ex. (1), page 475 that if

6 = 100, then, from 43, an = if n is even, and 400/w.7r, if n is odd.

400/ . 1- 1
.

\
6 = sin x + -q sm Sx + -= sin 5x + . . . ). . . (9)

We must substitute the coefficients of this series for av a2 , a3 ,
. . . in (7), to get

a solution satisfying all the required conditions. Note a2 ,
a4 ,

. . . in (9) are

zero. We thus obtain the required solution

400/ 1 \= ( e
~ Kt sin x +

~^e

~ 9>ct sin 3s + . . .

J.
. . (10)

To introduce the numerical data. When x = tt, t = 10, k = 0-2. Hence

use a table of logarithms. The result is accurate to the tenth of a degree if

all terms of the series other than the first be suppressed. Hence use

400 7T 400
6= <?-2 sin-r= e~ 2

IT A IT

for the numerical calculation. Note sin %tt
= 1. Ansr. 17 "2 0. In the

preceding experiment, if the plate is c centimetres instead of v centimetres

thick, use the development

400/ . irx i . 3tto; \
*=

(
slnT +

3
sm

-B-
+
--->

from x = to x = c, in place of (9).

(2) An infinitely large solid with one plane face has a uniform tempera-

ture f(x). If the plane face is kept at zero temperature, what is the tempera-
ture of a point in the solid x feet from the plane face at the end of t years ?

Let the origin of the coordinate axis be in the plane face. We have to
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solve equation (4) subject to the conditions = 0, when x = 0; 6 = f(x), when
t = 0. Proceed according to the above methods for (5), (6), and (3). We
thus obtain

e = -
[ da[

+<
*e- Ka2t

f{\) cos o(\ -x).d\; . . (11)
""Jo J -

since positive values of x are wanted we can write, from (33), page 480,

6 = -
I da I e- Ka2t

f{K) sin ax . sin a\ .d\. . . (12)

Hence from (28), page 612, the required solution is

= - / /(A)dA / e
- Ka2

'{cos a(\
-

X)
- COS a(A + x))da.

=^tUm \
e
~ M -*~ 4"

}* (13)

This last integration needs amplification. To illustrate the method, let

/OO

m = /
- a2*2

cos bx . efo.

Jo

Laplace (1810) first evaluated the integral on the right by the following

*. ingenious device which has been termed integration by differentiation. Dif-

ferentiate the given equation and

gr~\ xe~ a2*2 sin &e dx,

provided 6 is independent of x. Now integrate the right member by parts in

the usual way, page 205,
du 6 du b ,,

db 2a2 u 2a?

Integrate, and

To evaluate G, put 6 = 0, whence

6s _ OL
log u = - j-2 + G ; or u = Ce 4a2.

as in (10), page 344. Therefore

e
~ a2x2 cos bx.dx = ^e *<#

Returning, after this digression, to the original problem. Let us change
the variables by substituting in (13),

=
2-7- ; .". \=x+ 2pKs/F; .-. d\=2s/Kt.d0. . . (14)

What will be the effect of substituting these values of A, and d\ upon the

limits of integration ? Hitherto this has not been taken into consideration

because we have dealt either with indefinite integrals, page 201, or with

definite integrals with constant limits, page 240. Here we see at once that if

x
A=0, 0= -

j=;
and if A= oo, $= + oo. (15)

Consequently, expression (12) assumes the form

e =
-/={ /I

* A ~
0V(2jS sJ7t + x)dfi

- r x e - 2
/(20 s!7t - x)de\ . (16)
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If the initial temperature be constant, say f(x) 6Q , then, from (4), page 241,

the required solution assumes the form
x

6 = h,{ r x e
-
Pdfl - P x e

~WJ =3 fV7e - Pdfi. (17)

For numerical computation it is necessary to expand the last integral in series

as described on page 341. Therefore

20o ( x x*

}.
. . . (18)n/;IW7 3.(2^)3

If 100 million years ago the earth was a molten mass at 7,000 F., and, ever

since, the surface had been kept at a constant temperature F., what would

be the temperature one mile below the surface at the present time, taking

Lord Kelvin's value K = 400 ? Ansr. 104 F. (nearly). Hints. O
= 7,000;

x = 5,280 ft.
;

t = 100,000,000 years.

, _ 2 x 7,000 / 5280 \ =
s/^UlSK* x 20 x 10,000;

U '

Lord Kelvin,
" On the Secular Cooling of the Earth," (W. Thomson and P. G.

Tait's Treatise on Natural Philosophy, 1, 711, 1867), has compared the observed

values of the underground temperature increments, ddjdx, with those deduced

by assigning the most probable values to the terms in the above expressions.

The close agreement Calculated : 1 increment perA ft. descent. Observed :

1 increment per -^ ft. descent led him to the belief^ that the data are nearly

correct. He extended the calculation in an obvious way and concluded :
" I

think we may with much probability say that the consolidation cannot have

taken place less than 20,000,000 years ago, or we should have more under-

ground heat than we really have, nor more than 400,000,000 years ago, or we
should not have so much as the least observed underground increment of

temperature". Vide O. Heaviside's Electromagnetic TJieory, 2, 12, London,
1899. The phenomena associated with "

radio-activity
" have led us to modify

the Original assumption as to the nature of the cooling process. See Ex. (2),

page 492.

(3) Solve (4) for two very long bars placed end to end in perfect contact,

one bar at 1C. and the other at 0C. under the (imaginary) condition that the

two bars neither give nor receive heat from the surrounding air. Let the

origin of the axes be at the junction of the two bars, and let the bars lie along
the #-axis. The limiting conditions are : When t = 0, = 0, when x is less

than zero, and =
f(x) = 1, when x is greater than zero. It is required to

find the relation between 0, x, and t. Start from Fourier's integral (32), page

479, and proceed to find the condition that u may be f(x) when t = by the

method employed for (3) above. Change the order of integration, and we
obtain

=
^[_f(\.)d\f

6
- Kait cos o(\

-
x)da. . . (19)

Integrate by Laplace's method of differentation, and

1 [+ ( sj* fr> *P\ 1 /+ fr
-

*y*

=
*J-J^Hz37t

e
~

iKt

J
=
*^tJ-~me

~ ^ dA - (20>
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But if = 0, when t = 0, from x = - oo to a; =
;

=
1, when t = 0, from

x = 0, to x = + co
; then, since /(a;)

= 1,

1 r _ (A -
*)2 ,6= WSJo e ^"^ * <

21
>

Make the substitutions (14) and (15) above, and

X

o =
3;/tlu

- *# = ^(/P
" "* +

/,"'

- "VA (22)

by (3), page 241. Then, on integration, pages 341 and 463, the required solu-

tion is

=
2
+ 7^2^ "

Q\273)
+
672l(2^)

5-} '
(
23

)

The process of diffusion of heat here exemplified is quite analogous to the

diffusion of a salt from a solution placed in contact with the pure solvent.

If k be determined, it is possible by means of (23), to compute the weight of

salt (0) in unit volume of solution at any time (t), and at any distance (x) from

the junction of the two fluids. When a set of values of 0, x
t
and t are known,

k can be computed from (23). See J. G. Graham, Zeit. phys. Chem., 50, 257

1904, for an example.

n



CHAPTEE IX.

PROBABILITY AND THE THEORY OF ERRORS.

"Perfect knowledge alone can give certainty, and in Nature perfect

knowledge would be infinite knowledge, which is clearly beyond
our capacities. We have, therefore, to content ourselves with

partial knowledge knowledge mingled with ignorance, producing
doubt." W. Stanley Jevons.

"
Lorsqu'il n'est pas en notre pouvoir de discerner les plus vraies

opinions, nous devons suivre les plus probables."
1 Rene

Descartes.

155. Probability.

Neaely every inference we make with respect to any future event

is more or less doubtful. If the circumstances are favourable, a

forecast may be made with a greater degree of confidence than

if the conditions are not so disposed. A prediction made in ignor-

ance of the determining conditions is obviously less trustworthy
than one based upon a more extensive knowledge. If a sports-

man missed his bird more frequently than he hit. we could safely

infer that in any future shot he would be more likely to miss than

to hit. In the absence of any conventional standard of compari-

son, we could convey no idea of the degree of the correctness of

our judgment. The theory of probability seeks to determine the

amount of reason which we may have to expect any event when
we have not sufficient data to determine with certainty whether it

will occur or not and when the data will admit of the application

of mathematical methods.

A great many practical people imagine that the "doctrine of

probability
"

is too conjectural and indeterminate to be worthy of

serious study. Liagre
2
very rightly believes that this is due to

1 Translated :

" When it is not in our power to determine what is true, we ought
to act according to what is most probable ".

2 J. B. J. Liagre's Calcul des Probabilites, Bruxelles, 1879.

49S
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the connotation of the word probability. The term is so vague
that it has undermined, so to speak, that confidence which we

usually repose in the deductions of mathematics. So great, indeed,

has been the dominion of this word over the mind that all applica-

tions of this branch of mathematics are thought to be affected with

the unpardonable sin want of reality. Change the title and the

"theory" would not take long to cast off its conjectural character,

and to take rank among the most interesting and useful applica-

tions of mathematics.

Laplace remarks at the close of his Essai philosophique sur les

Probabilitts, Paris, 1812, "the theory of probabilities is nothing
more than common-sense reduced to calculation. It determines

with exactness what a well-balanced mind perceives by a kind of

instinct, without being aware of the process. By its means nothing
is left to chance either in the forming of an opinion, or in the re-

cognizing of the most advantageous view to select when the occasion

should arise. It is, therefore, a most valuable supplement to the

ignorance and frailty of the human mind. ..."

I. If one of two possible events occurs in such a way that one of

the events must occur in a ways, the other in b ways, the probability

that the first will happen is a/(a + b), and the probability that the

second ivill happen is b/(a + b). If a rifleman hits the centre of

a target about once every twelve shots under fixed conditions of

light, wind, quality of powder, etc., we could say that the value

of his chance of scoring a "
bullseye

"
in any future shot is 1 in 12,

or T
T
2, and of missing, 11 in 12, or \\. If a more skilful shooter

hits the centre about five times every twelve shots, his chance of

success in any future shot would be 5 in 12, or -^, and of missing

T
7

.j. Expressing this idea in more general language, if an event

can happen in a ways and fail in b ways, the probability of the

event

Happening = ^^ J Failing =
j-j-j,

. . (l)

provided that each of these ways is just as likely to happen as to

fail. By definition,

Number of ways the event occurs
,a l y "~

Number of possible ways the event may happen'
'

'

Example. If four white, and six black balls are put in a bag, show that

the probabiltty that a white ball will be drawn is ^, and that a black ball

will be drawn . In betting parlance, the odds are 6 to 4 against white.



500 HIGHER MATHEMATICS. 155.

IL Ifp denotes the probability that an event will happen, 1-p
denotes the probability that the event will fail. The shooter at the

target is certain either to hit or to miss. In mathematics, unity is

supposed to represent certainty, therefore,

Probability of hitting + Probability of missing = Certainty = 1. (3)

If the event is certain not to happen the probability of its oc-

currence is zero. Certainty is the unit of probability. Degrees
of probability are fractions of certainty.

Of course the above terms imply no quality of the event in

itself, but simply the attitude of the computer's own mind with

respect to the occurrence of a doubtful event. We call an event

impossible when we cannot think of a single cause in favour of its

occurrence, and certain when we cannot think of a single cause

antagonistic to its occurrence. All the different
" shades

"
of

probability improbable, doubtful, probable lie between these

extreme limits.

Strictly speaking, there is no such thing as chance in Nature.

The irregular path described by a mote "
dancing in a beam of

sunlight
"

is determined as certainly as the orbit of a planet in the

heavens.
All nature is but art, unknown to thee

;

All chance, direction thou can'st not see
;

All discord, harmony not understood.

The terms " chance" and "probability" are nothing but

conventional modes of expressing our ignorance of the causes of

events as indicated by our inability to predict the results. " Pour

une intelligence
"

(omniscient), says Liagre,
" tout 6venement a

venir serait certain ou impossible.'"

III. The probability that both of two independent events will

happen together is the product of their separate probabilities. Let

p denote the probability that one event will happen, q the probability

that another event will happen, the probability, P, that both events

will happen together is

P-M W
This may be illustrated in the following manner : A vessel A

contains a
Y
white balls, b

1
black balls, and a vessel B contains a

2

white balls and b
2
black balls, the probability of drawing a white

ball from A is p1
= a

1/(a1
+ bj, and from B, p2

= a
2/(a2 + b

2).
The

total number of pairs of balls that can be formed from the total

number of balls is (ax + bj) (a2 + b
2).
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Example. In any simultaneous drawing from each vessel, the probability

that

Two white balls will occur is : a
l
a2j{a1 + b

x ) (a, + 62 ):; . . (5)

Two black balls will occur is : 6
1
6a/(a1 + b

x ) (a2 + 62 ) ; . . (6)

White ball drawn from the first, black ball from the next, is :

fliVK + &
i) K + h) ; (?)

Black ball drawn from the first, white ball from the next, is :

o2&i/K + &i) K + h) ; . . . . (
R

)

Black and white ball occur together, is : (ax
b2+ b

xa^l{al + b
x) (a2+ &2) (9)

The sum of (5), (6), (9) is unity. This condition is required by the above

definition.

An event of this kind, produced by the composition of several

events, is said to be a compound event. To throw three aces with

three dice at one trial is a compound event dependent on the con-

currence of three simple events. Errors of observation are com-

pound events produced by the concurrence of several independent
errors.

Examples. (1) If the respective probabilities of the occurrence of each

of n independent errors is p, q, r . . . , the probability P of the occurrence of

all together is P=pxqxrx...
(2) If, out of every 100 births, 49 are male and 51 female, what is the

probability that the next two births shall be both boys ;
both girls ;

and a

boy first, and a girl next ? Ansr. 0-2401
; 0-2601 ; 0-2499. Hint, ^fr * t

4A J

roV x AV > tW x ^h'

IV. The probability of the occurrence of several events which

cannot occur together is the sum of the probabilities of their

separate occurrences. If p, q, . . . denote the separate probabilities

of different events, the probability, P, that one of the events will

happen is,

P = p + q+ (10)

Examples. (1) A bag contains 12 balls two of which are white, four

black, six red, what is the probability that the first ball drawn will be a

white, black, or a red one ? The probability that the ball will be a white is

I, a black ,
etc. The probability that the first ball drawn shall be a black or

a white ball is .

(2) In continuation of Ex. (2), preceding set, show that the probability

that one shall be a boy and the other a girl is 0-4998 ; and that both shall be

of the same sex, 0-5002. Hint. 0-2499 + 0-2499 ; 0-2401 + 0-2601.

V. If p denotes the probability that an event will happen on a

single trial, the probability, P, that it will happen r times in n

trials is

P. *-9--;(*-'
+V -ri". (ID-

The probability that the event will fail on any single trial is 1 - p ;

the probability that it will fail every time is (1
-

p)
n

. The proba-
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bility that it will happen on the first trial and fail on the succeeding

n 1 trials is p(l -p)
n ~ l

,
from (4). But the event is just as likely

to happen on the 2nd, 3rd . . . trials as on the first. Hence the

probability that the event will happen just once in the n trials is,

from (4), and (10),
1

(p + p + . . . + n times) x (1
-

p)
n ~ l

; or, np(l
-

p)
n~ l

. (12)

The probability that the event will occur on the first two trials

and fail on the succeeding n-2 trials is p
2
(l-p)

n ~ 2
. But the

event is as likely to occur during the 1st and 3rd, 2nd and 4th, . . .

trials. Hence the probability that it will occur just twice during
the n trials is

i(- 1)^(1 -;p)-2. . . . (13)

The probability that it will occur r times in n trials is, therefore,

represented by formula (11).

Examples. (1) What is the probability of throwing an ace exactly three

times in four trials with a single die ? Ansr. ^fT . Hint, n = 4
;
r = 3

;

there is one chance in six of throwing an ace on a single trial, hence p = % ;

n - r = 1
; jr = (|)

:!

;
1 - p = *. Hence, *i2J x ^

(2) What is the probability of throwing a deuce exactly three times in

three trials ? Ansr. ^. n = 3 ;
r = 3 ; (1 -p)

n ~ r = 5 = 1; p = ,
etc.

VI. If p denotes the very small probability that an event will

happen on a single trial, the probability , P, that it will happen r

times in a very great number, n, trials is

(np)'

r! (14)

From formula (11), however small p may be, by increasing tne

number of trials, we can make the probability that the event will

happen at least once in n trials as great as we please. The proba-

bility that the event will fail every time in n trials is (1
-
p)

n
, and if

p be made small enough and n great enough, we can make (1
-
p)

n

as small as we pease.
2 If n is infinitely great and p infinitely

small, we can write n = n-l = n-2 = ...

w -. n(n-l) _ (np)
2

.'. (1 ~p)
n = l-np+

v

2 , y ~. . . =1 -np + ^jf-
-... (approx.) ;

(l-p)
n = e-* (appro*.). (15)

1 The student may here find it necessary to read over 190, page 602.

2 The reader should test this by substituting small numbers in place of p, and

large ones for n. Use the binomial formula of 97, page 282. See the remarks on

page 24, 11.
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(14) follows immediately from (11) and (15). This result is very

important.

Example. If n grains of wheat are scattered haphazard over a sur-

face s units of area, show that the probability that a units of -area will

contain r grains of wheat is

(anV

r!

Thus, n . ds/s represents the infinitely small probability that the small space
ds contains a grain of wheat. If the selected space be a units of area, we

may suppose each ds to be a trial, the number of trials will, therefore, be

aids. Hence we must substitute anjs for np in (14) for the desired result.

VII. The probability, P, that an event will occur at least r

times in n trials is

P=2i
n+ nV

n
-\l-v)+

n
(
n
2

~ 1
V" 2

(* ~Vf + to (*
- r

)
terms (16)

For if it cccur every time, or fail only once, twice, . . .
,
ovn - r

times, it occurs r times. The whole probability ol its occurring at

least r times is therefore the sum of its occurring every time, of

failing only once, twice, . . :
,
n - r times, etc.

Example. What is the probability of throwing a deuce three times at

least in four trials? Ansr. x|,. Here^ = ()
4

;
and the next term of (16) is

4 x 5 x
(*)*.

Sometimes a natural process proves far too complicated to admit

of any simplification by means of "
working hypotheses ". The

question naturally arises, can the observed sequence of events be

reasonably attributed to the operation of a law of Nature or to chance?

For example, it is observed that the average of a large number of

readings of the barometer is greater at nine in the morning than

at four in the afternoon; Laplace {Theorie analytique da Proba-

bility, Paris, 49, 1820) asked whether this was to be ascribed to the

operation of an unknown law of Nature or to chance ? Again, G.

Kirchhoff (Monatsberichte der Berliner Ahademie, Oct., 1859) inquired
if the coincidence between 70 spectral lines in iron vapour and in

sunlight could reasonably be attributed to chance. He found that

the probability of a fortuitous coincidence was approximately as

1 : 1,000000,000000. Hence, he argued that there can be no

reasonable doubt of the existence of iron in the sun. Mitchell

{Phil. Trans., 57, 243, 1767; see also Kleiber, Phil. Mag., [5], 2*,

439, 1887) has endeavoured to calculate if the number of star

clusters is greater than what would be expected if the stars had been

distributed haphazard over the heavens. A. Schuster (Proc. Boy.
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Soc, 31, 337, 1881) has tried to answer the question, Is the number
of harmonic relations in the spectral lines of iron greater than what
a chance distribution would give ? Mallet (Phil Trans., 171, 1003,

1880) and R. J. Strutt (Phil. Mag., [6], 1, 311, 1901) have asked, Do
the atomic weights of the elements approximate as closely to whole

numbers as can reasonably be accounted for by an accidental co-

incidence ? In other words : Are there common-sense grounds for

believing the truth of Prout's law, that " the atomic weights of the

other elements are exact multiples of that of hydrogen
"

?

The theory of probability does not pretend to furnish an in-

fallible criterion for the discrimination of an accidental coincidence

from the result of a determining cause. Certain conditions must

be satisfied before any reliance can be placed upon its dictum.

For example, a sufficiently large number of cases must be avail-

able. Moreover, the theory is applied irrespective of any know-

ledge to be derived from other sources which may or may not

furnish corroborative evidence. Thus KirchhofFs conclusion as to

the probable existence of iron in the sun was considerably

strengthened by the apparent relation between the brightness of

the coincident lines in the two spectra.

For details of the calculations, the reader must consult the

original memoirs. Most of the calculations are based upon the

analysis in Laplace's old but standard Theorie
(I.e.).

An excellent

resume of this latter work will be found in the Encyclopedia Metro-

politan. The more fruitful applications of the theory of prob-

ability to natural processes have been in connection with the kinetic

theory of gases and the "law "
relating to errors of observation.

156. Application to the Kinetic Theory of Gases.

The purpose of the kinetic theory of gases is to explain the

physical properties of gases from the hypothesis that a gas consists

of a great number of molecules in rapid motion. The following
illustrations are based, in the first instance, on a memoir by
R. Clausius (Phil. Mag., [4], 17, 81, 1859). For further develop-

ments, O. E. Meyer's The Kinetic Theory of Gases, London, 1899,

may be consulted.

I. To shoio that the probability that a single molecule, moving
in a swarm of molecules at rest, xuill traverse a distance x without

collision is
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P-V"1
, . . . . (17)

where I denotes the probable value of the free path the molecule

can travel without collision, and x/l denotes the ratio of the path

actually traversed to the mean length of the free path.
" Free

path" is denned as the distance traversed by a molecule between

two successive collisions. The '* mean free path
"

is the average
of a great number of free paths of a molecule. Consider any
molecule moving under these conditions in a given direction. Let

a denote the probability that the molecule will travel a path one

unit long without collision, the probability that the molecule will

travel a path two units long is a . a, or a2
,
and the probability that

the molecule will travel a path x units long without collision is,

from (4),

P = a', . . . . (18)

where a is a proper fraction. Its logarithm is therefore negative.

(Why ?) If the molecules of the gas are stationary, the value of

a is the same whatever the direction of motion of the single mole-

cule. From (15), therefore,
X

p = 0~I

where I =~l/log a. We can get a clear idea of the meaning of this

formula by comparing it with (15). Supposing the traversing of

unit path is reckoned a "
trial," x in (17) then corresponds with n

in (15). l/l in (17) replaces p in (15). l/l, therefore, represents

the probability that an event (collision) will happen during one

trial. If I trials are made, a collision is certain to occur. This is

virtually the definition of mean free path.

II. To show that the length of the path which a molecule, moving
amid a swarm of molecules at rest can traverse without collision is

probably
Xs

Z = 4- (19)

where X denotes the mean distance between any two neighbouring

molecules, p the radius of the sphere of action corresponding to the

distance apart of the molecules during a collision, -n- is a constant

with its usual signification. Let unit volume of the gas contain N
molecules. Let this volume be divided into N small cubes, each of

which, on the average, contains only one molecule. Let X denote

the length of the edge of one of these little cubes. Only one mole-

cule is contained in a cube of capacity A.
3

. The area of a cross
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section through the centre of a sphere of radius p, is trp
2
, (13),

page 604. If the moving molecule travels a distance A, the hemi-

spherical anterior surface of the molecule passes through a

cylindrical space of volume 7rp
2A (26), page 605. Therefore, the

probability that there is a molecule in the cylinder 7rp
2A is to 1 as

Trp
2k is to A3

, that is to say, the probability that the molecule under

consideration will collide with another as it passes over a path of

length A, is 7rp
2A : A3

. The probability that there will be no collision

is 1 - \C- From (17),

- K P2 7T

P = e i - 1 -
^-.

. . . (20)

According to the kinetic theory, one fundamental property of

gases is that the intermolecular spaces are very great in compari-
son with the dimensions of the molecules, and, therefore, /r7r/A

2 is

very small in comparison with unity. Hence also Xjl is a small

magnitude in comparison with unity. Expand e~ kl1 according to

the exponential theorem (page 285), neglect terms involving the

higher powers of A, and
- K A

e < = 1 -
i (21)

From (20) and (21),
A 3 ffllTX.

l = ~;or,P=e--W. . . . (22)
p- 7T

Example. The behaviour of gases under pressure indicates that p is very

much smaller than A. Hence show that " a molecule passes by many other

molecules like itself before it collides with another". Hint. From the first

of equations (22), I : A = A 2
: p

2
ir. Interpret the symbols.

III. To show that the mean value of the free path of n molecules

moving under the same conditions as the solitary molecule just con-

sidered, is

*-. . . . . (23)

Out of n molecules which travel with the same velocity in the

same direction as the given molecule, ne~ xl1 will travel the distance

x without collision, and ne- (x + dx)l1 will travel the distance x + dx

without collision. Of the molecules which traverse the path x,

n(e l -e~ \ = ne l (l-e l
)
=

^e

'

l

dx,

of them will undergo collision in passing over the distance dx.

The last transformation follows directly from (21). The sum of
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all the paths traversed by the molecules passing x and x + dx is

x -

jne
l dx.

Since each molecule must collide somewhere in passing between

the limits x = and x = go, the sum of all the possible paths
traversed by the n molecules before collision is

r x
l

dx,

and the mean value of these n free paths is

Integrate the indefinite integral as indicated on page 205. From

(4) we get (23). This represents the mean free path of these

molecules moving with a uniform velocity.

Examples. (1) A molecule moving with a velocity V enters a space
filled with n stationary molecules of a gas per unit volume, what is the prob-

ability that this molecule will collide with one of those at rest in unit time ?

Use the above notation. The molecule travels the space Fin unit time. In

doing this, it meets with imp
2V molecules at rest. The probable number of

collisions in unit time is, therefore, irnpW, which represents the probability

of a collision in unit time.

(2) Show that the probable number of collisions made in unit time by a

molecule travelling with a uniform velocity F, in a swarm of N molecules at

rest, is

f-^ <->

What is the relation between this and the preceding result? Note the

number of collisions = V/l ;
and N\" = 1.

IV. -The number of collisions made in unit time by a molecule

moving with uniform velocity in a direction which makes an angle

with the direction of motion of a swarm of molecules also moving
with the same uniform velocity is 'probably

9

-^2v
sin 10. ... (25)

Let v be the resultant velocity of one molecule, and xv yly
z
l

the three component velocities, then, from the parallelopiped of

velocities, page 125,

v* = x* + y* + V
|

x
Y
= v cos #! ; y1

= v sin
1

. cos fa ;
z
Y
= v sin

1
. sin fa)'

^ '

If one set of molecules moves with a uniform velocity, v, whose

components are x, y, z, relative to the given molecule moving with
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the same uniform velocity, v, whose components are xv yv zv then,

v* = X2 + y
2 + Z2 .

< t , (27 )

# = v cos ; ?/
= v sin # . cos

;
z = sin . cos <, . (28)

and the relative resultant velocity, v, of one molecule with respect
to the other considered at rest, is

V= J (xx
-

x)
2 + (Vl

- yf + (z,
-

z)\ . (29)

If we choose the three coordinate axes so that the ic-axis coincides

with the direction of motion of the given molecule, we may sub-

ititute these values in (26), remembering that cos = 1, sin = 0,

yi
= 0; z^O; r.x^v. . . (30)

Substitute (30) and (26) in (29), we get

V= J (v
- v cos 0)

2 + v2sin2 . cos2
< + *;

2sin2
<9 . sin2

</> ;

.-. V= V v2 - 2v 2cos 6 + v2cos2 + ?;
2sin20,

since sin2
< + cos2

< = 1. Similarly, cos2 + sin2 =
1, and con-

sequently

V = v J 2 - 2 cos = v J 2(1
-

cos0).

But we know, page 612, that 1 - cos x = 2(sin \x)
2

, hence,

V=2v sin ^0. . . . (31)

Having found the relative velocity of the molecules, it follows

directly from (24) and (31), that

Number of collisions = . 3
- = ~rj AV Sin \v.

V. The number of collisions encountered in unit time by a mole-

cule moving in a swarm of molecules in all directions, is

i:S?E f32i

Let V denote the velocity of the molecules, then the different

motions can be resolved into three groups of motions according to

the parallelopiped of velocities. Proceed as in the last illustration.

The number of molecules, n, moving in a direction between and

+ dO is to the total number of molecules, N, in unit volume as

n : N = 2tt sin OdO : 4tt
; or, n = $N sin OdO. . (33)

Since the angle can increase from to 180, the total number of

collisions is

Vp
2
7r n Vp

2* . 6 1 . ...

~~XF'N
=
T3-sm 2

'

2
Smm -

To get the total number of collisions, it only remains to integrate

for all directions of motion between and 180. Thus if A denotes

the number of collisions.



156. PROBABILITY AND THE THEORY OF ERRORS. 509

A = *- 1

sing,
sin Odd = ,

3
I sin 2

n . cos -zdO = k . U- ,

Dy the method of integration on page 212.

Example. Find the length of the free path of a molecule moving in a

swarm of molecules moving in all directions, with a velocity V. Ansr.

Length of free path = VJA = fxVp
8
*. . . . (34)

For the hypothesis of uniform velocity see 164, page 534.

VI. Assuming that two unlike molecules combine during a colli-

sion, the velocity of chemical reaction between two gases is

dt

S = OT, (35)

where N and N' are the number of molecules of each of the two

gases respectively contained in unit volume of the mixed gases,

dx denotes ihe number of molecules of one gas in unit volume

which combines with the other in the time dt
;
k is a constant.

Let the two gases be A and B. Let A. and A' respectively denote

the distances between two neighbouring molecules of the same

kind, then, as above,

JVX8 = NX!3 = 1. ... (36)

Let p be the radius of the sphere of action, and suppose the mole-

cules combine when the sphere of action of the two kinds of

molecules approaches within 2p, it is required to find the rate of

combination of the two gases. The probability that a B molecule

will come within the sphere of action of an A molecule in unit time

is Virpt/X?, by (24). Among the N molecules of B,
2

N^-Vdt; or, NN'irpWdt, . . (37)

by (36), combine in the time dt. But the number of molecules

which combine in the time dt is - dN = - dN', or, from (37),

dN = dN = -NNirpWdt.
If dx represents the number of molecules in unit volume which

combines in the time dt,

die
dx = dN = dJSr = Trp*VNNdt. .-.

-^
= kNW,

by collecting together all the constants under the symbol k. This

will be at once recognized as the law of mass action applied to

bimolecular reactions. J. J. Thomson's memoir,
" The Chemical

Combination of Gases," Phil. Mag., [5], 18, 233, 1884, might now
be read by the chemical student with profit.



510 HIGHER MATHEMATICS. 157.

157. Errors of Observation.

If a number of experienced observers agreed to test, indepen-

dently, the accuracy of the mark etched round the neck of a litre

flask with the greatest precision possible, the inevitable result

would be that every measurement would be different. Thus, we

might expect

1-0003; 0-9991; 1-0007; 1-0002; 1-0001; 0-9998;...

Exactly the same thing would occur if one observer, taking every
known precaution to eliminate error, repeats a measurement a

great number of times. The discrepancies doubtless arise from

various unknown and therefore uncontrolled sources of error.

We are told that sodium chloride crystallizes in the form of

cubes, and that the angle between two adjoining faces of a crystal

is, in consequence, 90. As a matter of fact the angle, as measured,
varies within 0'5 either way. No one has yet exactly verified

the Gay Lussac-Humboldt law of the combination of gases ;
nor

has any one yet separated hydrogen and oxygen from water, by

electrolysis, in the proportions required by the ratio, 2H2
:

2
.

The irregular deviations of the measurements from, say, the

arithmetical mean of all are called accidental errors. In the

following discussion we shall call them " errors of observa-

tion
"

unless otherwise stated. These deviations become more

pronounced the nearer the approach to the limits of accurate

measurement. Or, as Lamb l
puts it,

" the more refined the

methods employed the more vague and elusive does the supposed

magnitude become
;

the judgment flickers and wavers, until at

last in a sort of despair some result is put down, not in the belief

that it is exact, but with the feeling that it is the best we can

make of the matter". It is the object of the remainder of this

chapter to find what is the best we can make of a set of discordant

measurements.

The simplest as well as the most complex measurements are

invariably accompanied by these fortuitous errors. Absolute

agreement is itself an accidental coincidence. Stanley Jevons

says, "it is one of the most embarrassing things we can meet

when experimental results agree too closely". Such agreement
should at onGe excite a feeling of distrust.

!H. Lamb, Presidential Address, B.A. meeting, 1904
; Nature, 70, 372, 1904.
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Fig. 165.

The observed relations between two variables, therefore, should

not be represented by a point in space, rather by a circle around

whose centre the different observations will be grouped (Fig. 165).

Any particular observation will find a place

somewhere within the circumference of the

circle. The diagram (Fig. 165) suggests our old

illustration, a rifleman aiming at the centre of a

target. The rifleman may be likened to an ob-

server ; the place where the bullet hits, to an

observation
;

the distance between the centre

and the place where the bullet hits the target

resembles an error of observation. A shot at the centre of the

target is thus an attempt to hit the centre, a scientific measure-

ment is an attempt to hit the true value of the magnitude
measured (Maxwell).

The greater the radius of the circle (Fig. 165), the cruder and

less accurate the measurements ; and, vice versd, the less the

measurements are affected by errors of observation, the smaller

will be the radius of the circle. In other words, the less the skill

of the shooter, the larger will be the target required to record his

attempts to hit the centre.

158. The "Law" of Errors.

These errors may be represented pictorially another way.
Draw a vertical line through the centre of the target (Fig. 165)
and let the hits to the right of this line represent positive errors

and those to the left negative errors. Suppose that 500 shots are

fired in a competition j
of these, ten on the right side were be-

tween 0*4 and 0*5 feet from the centre of the target ; twenty shots

between 0*3 and 0'4 feet away ;
and so on, as indicated in the

following table.

Positive
Deviations from
Mean between
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a manner that the shadows in the successive positions gave
the whole series of curves." If we agree to define an error as

the deviation of each measurement from the arithmetical mean, k

corresponds with those measurements which coincide with the

mean itself, or are affected by no error at all. The height at

which the curve outs the y-&xis represents the frequency of oc-

currence of the arithmetical mean k has nothing to do with the

actual shape of the curve beyond increasing the length of the

maximum ordinate as the accuracy of the observations increases.

II. To find a meaning for the constant h. Put k = 1, and plot

corresponding values of x and y for x = 0*3, 0*4, + 0*5, + 0-6,

. . . when h =
, \, 1, 2, 3, . . ., as shown in Fig. 168. In this way,

it will be observed that although all the curves cut the y-axis at

Fig. 168. Probability Curves (k constant, h variable).

the same point, the greater the value of h, the steeper will be the

curve in the neighbourhood of the central ordinate Oy. The

physical signification of this is that the greater the magnitude of

h, the more accurate the re-

sults and the less will be the

magnitude of the deviation

of individual measurements

from the arithmetical mean

of the whole set. Hence

Gauss calls h the absolute

measure or modulus of

precision.

III. When h and k both ^x

vary, we get the set of

curves shown on Fig. 169.

V
_

+ JC

Fig. 169. Probability Curves (h and k
both variable).

KK
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A good shot will get a curve enclosing a very much smaller area

than one whose shooting is wild.

We must now submit our empirical "law" to the test of

experiment. Bessel has compared the errors of observation in

470 astronomical measurements made by Bradley with those

which should occur according to the law of errors. The results

of this comparison are shown in the following table :
x
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servations of the transit of Mercury. According to the "law" of

errors, there should be 5 errors numerically greater than 27".

In reality 49 surpassed these limits. You can also notice how the

"big" errors accumulate at the ends of the frequency curve in

Fig. 170.

The theory assumes that the observations are all liable to the

same errors, but differ in the accidental circumstances which give

rise to the errors. 1
Equation (1) is by no means a perfect repre-

sentation of the law of errors. The truth is more complex. The

magnitude of the errors seems to depend, in some curious way,

upon the number of observations. In an extended series of

observations the errors may be arranged in groups. Each group
has a different modulus of precision. This means that the mod-

ulus of precision is not constant throughout an extended series of

observations. See Encyc. Brit., F. Y. Edgeworth's art.
" Law of

Error," 28, 280, 1902. But the probability curve represented by
the formula

y = ke-#*\

may be considered a very fair graphic representation of the law

connecting the probability of the occurrence of an error with its

magnitude. All our subsequent work is based upon this empirical

law ! J. Venn in his Logio of Chance, 1896, calls the "
exponential

law of errors," a law, because it expresses a physical fact relating to

the frequency with which errors are found to present themselves in

practice; while the "method of least squares is a rule showing
how the best representative value may be extracted from a set of

experimental results. H. Poincare, in the preface to his Thermo-

dynamique, Paris, 1892, quotes the laconic remark, "everybody

firmly believes in it (the law of errors), because mathematicians

imagine that it is a fact of observation, and observers that it is a

theorem of mathematics ".

Adrian (1808) appears to have been the first to try to deduce

the above formula on theoretical grounds. Several attempts have

since been made, notably by Gauss, Hagen, Herschel, Laplace,

etc., but I believe without success.

1 Some observers' results seem more liable to these large errors than others, due,

perhaps, to carelessness, or lapses of attention. Thomson and Tait, I presume, would

call the abnormally large errors "avoidable mistakes ".

KK*
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159. The Probability Integral.

Let rc ,
xv x

2 ,
. . .x be a series of errors in ascending order of

magnitude from xQ to x. Let the differences between the succes-

sive values of x be equal. If x is an error, the probability of

committing an error between x and x is the sum of the separate

probabilities ke~ h2z
*, ke~^\

2
. . ., ,(10), page 501, or

P = k(e-W + e-
27 4y.i-h %<?-**. (1)

If the summation sign is replaced by that of integration, we must

let dx denote the successive intervals between any two limits x

and x, thus

Now it is certain that all the errors are included between the limits

+ oo, and, since certainty is represented by unity, we have

?jB]jJ-^-*-JT'
' * (2)

from page 345. Or,

k =
-j*.dx (3)

Substituting this value of k in the probability equation (1), pre-

ceding section, we get the same relation expressed in another

form, namely,

re- ,Mdat .... (4)
V7T

a result which represents the probability of errors of observation

between the magnitudes x and x + dx. By this is meant the ratio :

Number of errors between x and x + dx
Total number of errors

The symbols y and P are convenient abbreviations for this cumbrous

phrase. For a large number of observations affected with accidental

errors, the probability of an error of observation having a magnitude

a;, is,

V = Ke-**dx, (5)

which is known as Gauss' law of errors. This result has the

same meaning as y ke-tf*2 of the preceding section. In (4) dx re-

presents the interval, for any special case, between the successive

values of x. For example, if a substance is weighed to the

thousandth of a gram, dx = 0*001 ;
if in hundredths, dx = 0*01,



159. PROBABILITY AND THE THEORY OF ERRORS. 51?

etc. The probability that there will be no error is

-~T > . . . . (b)

the probability that there will be no errors of the magnitude of a

milligram is

ooouT- v (7)

The probability that an error will lie between any two limits x

and x is

P = A[V^2^. ... (8)

The probability that an error will lie between the limits and x is

p =-r\ e-iWdx, ... (9)
V7T JO

which expresses the probability that an error will be numerically

less than x. We may also put

p --T-r~ ****<*(**). * (10)
VttJo

which is another way of writing the probability integral (8). In

(8), the limits x and x
; and in (9) and (10), + x. By differentia-

tion and the usual method for obtaining a minimum value of any

function, we find, from (1), that y, in y m Jse
- *2*2

, is a minimum
when

But we have seen that the more accurate the observations the

greater the value of h. The greater the value of h, the smaller

the value of S(a:
2
) ; 3(#

2
) is a minimum when h is a maximum.

This is nothing but Legendre's principle of least squares :

The most probable value for the observed quantities is that for which

the sum of the squares of the individual errors is a minimum.

That is to say, when

XQ* + X
l + X2

2 + + Xn2 = A MINIMUM, . (11)

where xv x
2 ,

. .
.,
xn1 represents the errors respectively affeoting the

first, second, and the nth observations.

To illustrate the reasonableness of the principle of least squares

we may revert to an old regulation of the Belgian army in which

the individual scores of the riflemen were formed by adding up the

distances of each man's shots from the centre of the target. The
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smallest sum won "le grand prix" of the regiment. It is not

difficult to see that this rule is faulty. Suppose that one shooter

scored a 1 and a 3
;
another shooter two 2's. It is obvious that

the latter score shows better shooting than the former. The shots

may deviate in any direction without affeoting the score. Conse-

quently, the magnitude of each deviation is proportional, not to

the magnitude of the straight line drawn from the place where

the bullet hits to the centre of the target, but to the area of the

oircle described about the centre of the target with that line as

radius. This means that it would be better to give the grand

prize to the score which had a minimum sum of the squares of

the distances of the shots from the centre of the target.
1 This

is nothing but a graphic representation of the principle of least

squares, formula (11). In this way, the two shooters quoted above

would respectively score a 10 and an 8.

160. The Best Representative Value for a Set of

Observations.

It is practically useless to define an error as the deviation of

any measurement from the true result, because that definition

would imply a knowledge which is the object of investigation.

What then is an error ? Before we can answer this question, we
must determine the most probable value of the quantity measured.

The only available data, as we have just seen, are always as-

sociated with the inevitable errors of observation. The measure-

ments, in consequence, all disagree among themselves within

certain limits. In spite of this fact, the investigator is called

upon to state definitely what he considers to be the most probable
value of the magnitude under investigation. Indeed, every chemical

or physical constant in our text-boohs is the best representative value

ofa more or less extended series of discordant observations. For in-

stance, giant attempts have been made to find the exact length of

a column of pure mercury of one square millimetre cross-sectional

area which has a resistance of one ohm at C. The following

numbers have been obtained :

106-33 ;
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centimetres (J. D. Everett's Illustrations of the C.G.S. System of

Units, London, 176, 1891). There is no doubt that the true value

of the required constant lies somewhere between 106-19 and

106*33 ; but no reason is apparent why one particular value should

be chosen in preference to another. The physicist, however, must

select one number from the infinite number of possible values be-

tween the limits 106-19 and 106*33 cm.

I. What is the best representative value of a set of discordant

results ? The arithmetical mean naturally suggests itself, and

some mathematicians start from the axiom :

" the arithmetical

mean is the best representative value of a series of discrepant

observations ". Various attempts, based upon the law of errors,

have been made to show that the arithmetical mean is the best

representative value of a number of observations made under the

same conditions and all equally trustworthy. The f)roof rests

upon the fact that the positive and negative deviations, being

equally probable, will ultimately balance each other as shown in

Ex. (1), below.1

Examples. (1) If a
x , a^, . ,.aH are a series of observations, a their

arithmetical mean, show that the algebraic sum of the residual errors is

(! -
a) + (Oj

-
a) + . . . + (a

-
a) - 0. . . (1)

Hint. By definition of arithmetical mean,

a^ + a? + . . .+ On
a =

; or, na = a, + a,+ . . . + an .n
Distribute the n a's on the right-hand side so as to get (1), etc.

(2) Prove that the arithmetical mean makes the sum of the squares of

the errors a minimum. Hint. See page 550.

En passant, notice that in calculating the mean of a number
of observations which agree to a certain number of digits, it is not

necessary to perform the whole of the addition. For example, the

mean of the above nine measurements is written

106 + (*33 + -32 + -32 + -31 + *29 + *27 + *24 + -21 + 49) - 106*276.

II. The best representative value of a constant interval. When

1 G. Hinrichs, in his The Absolute Atomic Weights of the Chemical Elements,
criticizes the selection (and the selectors) of the arithmetical mean as the best re-

presentative value of a set of discordant observations. He asks :

" If we cannot use

the arithmetical mean of a large number of simple weighings of actual shillings as the

true value of a (new) shilling, how dare we assume that the mean value of a few

determinations of the atomic weight of a chemical element will give us its true value ?
"

But there seems to be a misunderstanding somewhere. F. Y. Edgeworth has "The
Choice of Means," Phil. Mag., [5], 24, 268, 1887, and several articles on related

subjects in the same journal between 1883 and 1889.
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the best representative value of a constant interval x in the ex-

pression xn = x + nx (where n is a positive integer 1, 2 . .
.),

is to

be determined from a series of measurements x
,
xv x

2 ,
. . ., such

that

x
x
m x + x; x

2
- x + 2x

;
. . . xn - xQ + nx,

where xQ denotes the first observation, x
x
the second reading when

n 1
; x

2 ,
the third reading when n = 2

; . . . The best value for

the constant interval x has to be computed. Obviously,
x - x

x
- x

;
x = x2

- x
x ; . . . x = xn - xn v

The arithmetical mean cannot be employed because it reduces to

n

the same as if the first and last term had alone been measured.

In such cases it is usual to refer the results to the expression

x = (*
~ ^fo " xi) + (n ~ 3)(g -i

~ x*) + '

/en

^(7l2
-

1)
^

which has been obtained from the last of equations (4), page 327,

by putting

2(#) = :%) = l + 2+ ... +w= ^w(w + l);

2(#
2
)
=

2(rc
2
)
= l2 + 22 + ... +n2 = ^n(n+ l) (2n + l);

%) =
5(a?n)=a;1 +ic2 + .,.*; 5(^)-S(wa?B)a?1 + 2aj

2 +... +najn .

If w is odd, the middle measurement does not come in at all.

It is therefore advisable to make an even number of observations.

Such measurements might occur in finding the length of a rod at

different temperatures ;
the oscillations of a galvanometer needle ;

the interval between the dust figures in Kundt's method for the

velocity of sound in gases ; the influence of 0H
2
on the physical and

chemical properties of homologous series of organic chemistry, etc.

Examples. .(1) In a Kundt's experiment for the ratio of the specific

heats of a gas, the dust figures were recorded in the laboratory notebook at

30-7, 43-1, 55-6, 67*9, 80-1, 92-3, 104*6, 116*9, 129-2, 141*7, 154*0, 166-1 centi-

metres. What is the best representative value for the distance between the

nodes ? Ansr. 12*3 cm.

(2) The following numbers were obtained for the time of vibration, in

seconds, of the "
magnet bar " in Gauss and Weber's magnetometer in some

experiments on terrestrial magnetism : 3*25
;
9*90 ; 16*65 ;

23*35
;
30*00

; 36*65 ;

43*30
;
50-00 ; 56*70 ; 63*30 ; 69-80 ; 76-55 ;

83-30 ; 89*90 ; 96*65 ; 103-15 ; 109-80 ;

116-65
;
123-25

; 129*95 ; 136-70 ; 143-35. Show that the period of vibration is

6-707 seconds.

(3) An alternative method not dependent upon
" least squares

"
is shown

in the following example : a swinging galvanometer needle " reversed
"
at (a)
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10 min. 9-90 seo. ; (6) 10 min. 23-20 sec. ; (c) 10 min. 36-45 sec. ; (d) 10 min.

49-80 sec. ; (e) 11 min. 3*25 sec. ; (/) 11 min. 16*60 sec, required the period of

oscillation. Subtract (a) from (d) and divide the result by 3. We get 13*300 ;

subtract (b) from (e). We get 13*350 ; similarly, from (c) and (/) we get 13*383.

Mean = 18*344 = period of oscillation.

161. The Probable Error.

Some observations deviate so little from the mean that we may
consider that value to be a very close approximation to the truth, in

other cases the arithmetical mean is worth very little. The question,

therefore, to be settled is, What degree of confidence may we have in

selecting this mean as the best representative value of a series of ob-

servations ? In other words, How good or how bad are the results ?

We could employ Gauss' absolute measure of precision to answer

this question. It is easy to show that the measure of precision of

two series of observations is inversely as their accuracy. If the

probabilities of an error xv lying between and lv and of an error

x
2t between and lt ,

are respectively

Pl * ^\
he

~ h^d^^) i
p

*
-
jfcl

-*tVi(V^.

it is evident that when the observations are worth an equal degree
of confidence, Px l\.

.*. l^h\
**

^2^2 or h
'

*^2
** n

i''
n

\i

or the measure of precision of two series of observations is in-

versely as their accuracy. An error l
x
will have the same degree

of probability as an error l
2
when the measure of precision of the

two series of observations is the same. For instance if h
x
= 4ch

2 ,

P
x
m P

2
when l

2
= 4^, or four times the error will be committed in

the second series with the same degree of probability as the single

error in the first set. In other words, the first series of obser-

vations will be four times as accurate as the second. On account

of certain difficulties -in the application of this criterion, its use is

mainly confined to theoretical discussions.

One way of showing how nearly the arithmetical mean repre-

sents all the observations, is to suppose all the errors arranged
in their order of magnitude, irrespective of sign, and to select a

quantity whioh will occupy a place midway between the extreme

limits, so that the number of errors less than the assumed error is

the same as those which exceed it. This is called the probable
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error, not "the most probable error," nor "the most probable

yalue of the actual error ".

The probable error determines the degree of confidence we may
have in using the mean as the best representative value of a series

of observations. For instance, the atomic weight of oxygen (H = l)

is said to be 15*879 with a probable error + 0"0003. This means

that the arithmetical mean of a series of observations is 15*879,

and the probability is | that is, the odds are even, or you may bet

1 against 1 that the true atomic weight of oxygen lies between

15*8793 and 15-8787.

Eeferring to Fig. 171, let MP and M'P' be drawn at equal dis-

tances from Oy in such a way that the area bounded by these

lines, the curve, and the #-axis (shaded part in the figure), is equal
to half the whole area, bounded by the whole curve and the #-axis,

then it will be obvious that half the total observations will have

errors numerically less than OM\ and half, numerically greater

than OM, that is, OM re-

presents the magnitude of

the probable error, MP its

probability.

The way some investi-

gators refer to the smallness

of the probable error affect-

ing their results conveys the

impression that this canon

has been employed to em-

phasize the accuracy of the work. As a matter of fact, the probable

error does not refer to the accuracy of the work nor to the mag-
nitude of the errors, but only to the proportion in which the errors

of different magnitudes occur. A series of measurements affected

with a large probable error may be more accurate than another

series with a small probable error, because the second set may be

affected with a large constant error (q.v.).

The number of errors greater than the probable error is equal

to the number of errors less than it. Any error selected at ran-

dom is just as likely to be greater as less than the probable error.

Hence, the probable error is the value of x in the integral

r.^:*** a)

page 517. From Table X., page 621, when P =
J, hx = 04769 ;



y = -j=e-
2**

(3)

161. PROBABILITY AND THE THEORY OF ERRORS. 523

or, if r is the probable error,

hr = 0-4769 (2)

Now it has already been shown that

hdx

From page 500, therefore, the probability of the occurrence of the

independent errors, xv x2 ,
. .

.,
xn is the product of their separate

probabilities, or

*_*-*, ... (4)

For any set of observations in which the measurements have been

as accurate as possible, h has a maximum' value. Differentiating

the last equation in the usual way, and equating dP/dh to zero,

W^r w
Substitute this in (2)

r 0-6745 ^p-\ , . (6)

But 2(rc
2
)
is the sum of the squares of the true errors. The true

errors are unknown. By the principle of least squares, when
measurements have an equal degree of confidence, the most prob-

able value of the observed quantities are those which render the

sum of the squares of the deviations of each observation from the

mean, a minimum. Let 2(v
a
) denote the sum of the squares of

the deviations of each observation from the mean. If n is large,

we may put 2(a?
2
)
=

2(t>
2
) ;

but if n is a limited number,

%{v
2
) < 2(*

2
) ; /. %{x

2
)
= 2(^

2
) + uK . (7)

All we know about u2 is that its value decreases as n increases,

and increases when %{x
2
)
increases. It is generally supposed that

the best approximation is obtained by writing

n ' ' ' n n - Y

Hence, the probable error, r, of a single'observation is

\ n - Vr 0-6745 a/ _ v
,

. single observation (8)

which is virtually Bessel's formula, for the probable error of a

single observation. $(v
2

)
denotes the sum of the squares of the

numbers formed by subtracting each measurement from the
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arithmetical mean of the whole series, n denotes the number of

measurements actually taken. The probable error, R, of the arith-

metical mean of the whole series of observations is

, 1N . . . ALL OBSERVATIONS (9)
n\n

-
1)

v '

The derivation of this formula is given as Ex. (2), page 531.

The last two results show that the probable error is diminished

by increasing the number of observations. (8) and (9) are only

approximations. They have no signification when the number of

observations is small. Hence we may write instead of 0*674:5.

For numerical applications, see next section.

The great labour involved in the squaring of the residual errors

of a large number of observations may be avoided by the use of

Peter's approximation formula. According to this, the prob-

able error, r, of a single observation is

r = + 0-8453 , , .:, . single observation (10)
Jn{n -

1)
v '

where 25( + v) denotes the sum of the deviations of every observa-.

tion from the mean, their sign being disregarded. The probable

error, R, of the arithmetical mean of the whole series of observa-

tions is

S(+ v)R = + 0-8453^ } ==-. . ALL OBSERVATIONS (11)njn - 1
v '

Tables VI. to IX., pages 619 to 623, will reduce the labour in

numerical calculations with Bessel's and with Peter's formulas.

162. Mean and Average Errors.

The arbitrary choice of the probable error for comparing the

errors which are committed with equal facility in different sets of

observations, appears most natural because the probable error

occupies the middle place in a series arranged according to order

of magnitude so that the number of errors less than the fictitious

probable error, is the same as those which exceed it. There are

other standards of comparison. In Germany, the favourite method

is to employ the mean error, which is defined as the error whose

square is the mean of the squares of all the errors, or the u error

which, if it alone were assumed in all the observations indifferently,

would give the same sum of the squares of the errors as that which
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actually exists ". We have seen, on page 516, (5), that the ratio,

Number of errors between x and x + dx _ h , ^2 ,

Total number of errors
~
'J^

e ' * dx '

Multiply both sides by #2and we obtain

Sum of squares of errors between x and x + dx _ h
2

Total number of errors
~
J~x e?l

* ",x*

By integrating between the limits + oo and - oo we get

Sum of squares of all the errors 5(#
2
) _

h f+GC
2 _ s2l2 .

Total number of errors
=
~^~

~
lJZ)-?

&

Let m denote the mean error, then, by integration as on page 343,

and from (2) of the preceding section, we get

r = 06745m. ... (2)

From (8) and (9), preceding section, the mean error, m, which

affects each single observation is given by the expression .

m =
A/ w _ i ; SINGLE OBSERVATION (3)

and the mean error, M, which affects the whole series of results,

/ _ jy
. . ALL OBSERVATIONS (4)

The mean error must not be confused with the " mean of the

errors," or, as it is sometimes called, the average error,
1 another

standard of comparison denned as the mean of all the errors re-

gardless of sign. If a denotes the average error, we get from

page 235,

a - %+$ ^f"w-* (to.si7=
. r , -8454a. (5)

The average error measures the average deviation of each

observation from the mean of the whole series. It is a more
useful standard of comparison than the probable error when the

attention is directed to the relative accuracy of the individual

observations in different series of observations. The average error

depends not only upon the 'proportion in which the errors of differ-

1 Some writers call our "
average error

"
the " mean error," and our " mean error

"

the " error of mean square ".
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ent magnitudes occur, but also on the magnitude of the individual

errors. The average error furnishes useful information even when
the presence of (unknown) constant errors renders a further appli-

cation of the "theory of errors
"

of questionable utility, because it

will allow us to compare the magnitude of the constant errors

affecting different series of observations, and so lead to their dis-

covery and elimination.

The reader will be able to show presently that the average error,

A, affecting the mean of n observations is given by the expression

a + / .

rts/n
(6)

This determines the effect of the average error of the individual

observations upon the mean, and serves as a standard for comparing
the relative accuracy of the means of different series of experiments
made under similar conditions.

Examples. (1) The following galvanometer deflections were obtained in

some observations on the resistance of a circuit : 37*0, 36-8, 36*8, 36*9, 37*1.

Find the probable and mean errors. This small number of observations is

employed simply to illustrate the method of using the above formulae. In

practical work, mean or probable errors deduced from so small a number of

observations are of little value. Arrange the following table :

Number of
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The mean error of the arithmetical mean of the whole set of observations is

written, 36-92 + 0*058 ;
the probable error, 36*92 0*039. It is unnecessary

to include more than two significant figures. You will find the Tables on

pages 619 and 620 convenient for the numerical work.

(2) F. Rudberg (Pogg. Ann., 41, 271, 1837), found the coefficient of expansion
a of dry air by different methods to be a x 100 = 0*3643, 0*3654, 0*3644, 0*3650,

0*3653, 0*3636, 0*3651, 0*3643, 0*3643, 0*3645, 0*3646, 0*3662, 0*3840, 0*3902,

0*3652. Required the probable and mean errors on the assumption that the

results are worth an equal degree of confidence.

(3) From Ex. (3), page 161, show that the mean error is the abscissa of

the point of inflexion of the probability curve. For simplicity, put h =e 1.

(4) Cavendish has published the result of 29 determinations of the mean

density of the earth (Phil. Trans., 88, 469, 1798) in which the first significant

figure of all but one is 5 : 4*88
;
5-50 ; 5*61

; 5*07 ; 5*26
; 5*55 ; 5*36 ;

5*29
;

5*58
;
5*65 ; 5*57 ; 5*53

; 5*62 ; 5*29 ; 5-44 ; 5*34 ; 5*79 ; 510 ; 5-17 ;
5-39

; 5-42 ;

5*47 ; 5*63 ;
5*34

;
5*46

;
5*30

; 5*75 ; 5*68
; 5*85. Verify the following

results: Mean=5*45; 2( + v) = 5*04; S(*>
2
) -1-367 ;

M= 0041; m= 0*221;

= 0*0277; r = 0*149; a= 0*18
;
4= 0*038.

The relation between the probable error, the mean error, the

average error, and the absolute measure of an error can be ob-

tained from (2), page 523 ; (2), page 516; and (5), page 516. We
have, in fact, if modulus, h = 1*0000; mean error, m = 0*7071 ;

average error, a 0*5642 ; probable error, r = 0*4769.

The following results are convenient in combining measurements

affected with different mean or probable errors :

I. The mean error of the sum or difference of a number of
observations is equal to the square root of the sum of the squares of
the mean errors of each of the observations. Let xv x

2 , represent

two independent measurements whose sum or difference combines

to make a final result X, so that

X = x
1 + xv

Let the mean errors of x
x
and x

2 ,
be m

x
and m

2 respectively. If

M denotes the mean error in X,

X M =
(x1 m

x) + (x2 m
2).

.*. M = m
Y

m
2 .

However we arrange the signs of M, mv m2>
in the last equation,

we can only obtain, by squaring, one or other of the following ex-

pressions :

M? = m
x
2 + 2m

l
m

2 + m2
2

; or, .M2 = m^ - 2m
1
ra

2 + m2
2
,

it makes no difference which. Hence the mean error is to be found
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by taking the mean of both these results. That is to say,

M2 = ?V + m2
2

; or,
M = + Jm^ + ra

2
2

,

because the terms containing + m^m2
and - m^m^ cancel each other.

This means that the products of any pair of residual errors (m1
m

2f

m^mz, . . .) in an extended series of observations will have positive

as often as negative signs. Consequently, the influence of these

terms on the mean value will be negligibly small in comparison with

the terms m^, w2
2

, m3
2

, . . ., which are always positive. Hence, for

any number of observations,

W = m* + m* + . . .
; or,M = + ,/W + m2

2 + . .
.). (7)

From equation (2), page 525, the mean error is proportional to the

probable error B, m1
to rv . . ., hence,

-B2 = V + r
2
2 + . . . ; or,B = J fa* + r* + . .

.). (8)

In other words, the 'probable error of the sum or difference of two

quantities A and B respectively affected with probable errors a

and b is

B = Ja* + b\ . . . (9)

Examples. (1) The moleoular weight of titanium chloride (TiClJ is known
to be 188*545 with a probable error + 0*0092, and the atomic weight of chlorine

35-179 + 0-0048, what is the atomic weight of titanium? Ansr. 47*829

0*0213. Hints.

188-545 - 4 x 35-179 = 47*829 ;
B = ^(0*0092)

2 + (4 x 0*0048)
2 = -0213.

It will be obvious that we shall ignore the advice given in 94, pages 273

to 276, if we are not very careful in the interpretation of the probable error in

these illustrative examples.

(2) The mean errors affecting 6
X
and 2 in the formula B =

fe(02
- 6

})
are

respectively + 0*0003 and + 0*0004, what is the mean error affecting 2
-

0,

and 3(02
- 0J ? Ansr. + 0*0005 and 00015.

II. The probable error of the product of two quantities A and

B respectively affected with the probable errors a and b is

B = J{Aby + (Baf. . . (10)

If a third mean, G, with a probable error, + c, is included,

B = + J(BCay+ (ACb)* + {ABcf. . . (11)

Examples. (1) Thorpe found that the molecular ratio

4Ag : TiCl< m 100 : 44-017 00031.

Henoe determine the molecular weight of titanium tetrachloride, given the

atomic weight of silver 107*108 0*0031. Ansr. 188*583 0*0144. Hint.

& - n/{(4 x 107-108 x 0-0031)
8 + (44-017 x 4 x 0*0031)*}.

(2) The specific heat of tin is 0*0537 with a mean error of + 0*0014, and

the atomic weight of the same metal is 118'150 + 0*0089, show that the mean
error of the product of these two quantities (Dulong and Petit's law) is 6*34 +
0-1654.
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III. Theprobable error of the quotient (B -t- A) of two quantities

A and B respectively affected with the probable errors a and bis

l^S , .

~

m
Examples. (1) It is known that the atomic ratio

Cu : 2Ag = 100 : 339-411 0-0089,

what is the atomic weight of copper given Ag = 107*108 + 0-0031 ? Ansr.

63-114 + 0-0020. Hint.

R =x J/214-216x0-0039y+ (q.qq^

~
339.4!! m -0020.

Ou : 2 x 107-108 -= 100 : 339-411 ; .-. Cu = 63*114.

(2) Suppose that the maximum pressure of the aqueous vapour, f.v in the

atmosphere at 16 is found to be 8-2000, with a mean error + 0*0024, and the

maximum pressure of aqueous vapour, /3 ,
at the dewpoint, at 16, is 13-5000,

with a mean error of + 0-0012. The relative humidity, h, of the air is given

by the expression h =x /j//2 . Show that the relative humidity at 16 is

0-6074 + 0-0O02.

IV. The probable error of the pboportion

A : B = C : x,

where A, B, C, are quantities respectively affected with the probable
errors a, b, c, is

ff- VV A J
. . (13)

Example. Stas found that AgCIO, furnished 25-080 0-0019 % of

oxygen and 74*920 0-0003 / of AgCl. If the atomic weight of oxygen is

15-879 0-0003, what is the molecular weight of AgCl ? Ansr. 142-303 0-0066.

Hints. 25-080 : 74-920 = 3 x 15879 : x
; .-. x = 142-303.

/f/74-92x 47-637 x 0-001 \
, ^|*

y j y 25 .Q8 J
+ (47-637 x 0-001)

a + (74-92 x 3 x 0-0009)
a

[
Bs=

V^'08
'

If the proportion be

A\B = G + x:D + x,

the probable error is given by

r.'iOSS-i^ (14)

Example. Stas found that 31-488 + 0-0006 grams of NH4G1 were equiva-

lent to 100 grams of AgNOs . Hence determine the atomic weight of nitrogen,

given Ag=107-108 0-0031 ; 01= 35-179 0-0048; H-l; 3
= 47-687 0-0009.

Ansr. 13*911 0-0048.

LL
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V. The probable error of the arithmetical mean of a series of

observations is inversely as the square root of their number. Let

rv r
2 ,

. . ., rn be the probable errors of a series of independent
observations av a^ . . ., an , which have to be combined so as to

make up a final result u. Let the probable errors be respectively

proportional to the actual errors dav da2, . . . da. The final result

u is a function such that

u f(av av >
an)-

The influence of each separate variable on the final result may be

determined by partial differentiation so that

, ~du _ ~du _ "^** =
ss^ + ^da*+ (15>

where dav da
2 ,

. . . represent the actual errors committed in

measuring av a
2 ,

. . . ; the partial differential coefficients determine

the effect of these variables upon the final result u\ and du re-

presents the actual error in u due to the joint occurrence of the

errors dav da
2, , . . Put B in place of du; r

l
in place of dav etc. ;

square (15) and

^-^+ v+ -- <>
since cross products are negligibly small. The arithmetical mean
of n observations is

therefore,

<)&! 'ba
2

' " n '
' '

n2

But the observations have an equal degree of precision, and there-

fore, r,
2 = r2

2 = . . . = rn
2 = r2 .

->*-Wt^ (17)

This result shows how easy it is to overrate the effect of multi-

plying observations. If B denotes the probable error of the mean
of 8 observations, four times as many, or 32 observations must be

made to give a probable error of ^B ; nine times as many, or 72

observations must be made to reduce B to \B, etc.

Examples. (1) Two series of determinations of the atomicweight of oxygen

by a certain process gave respectively 15-8726 0-00058 and 15-8769 0-00058.

Hence show that the atomic weight is accordingly written 15-87475 0-00041.
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(2) In the preceding section, 161, given formula (8) deduce (9). Hint.

Use (17), present section.

(3) Deduce Peter's approximation formulae (10) and (11), 161. Hint.

Since 5(a")/n = 2{v
2
)/(n

-
1), page 524, we may suppose that on the average

5(<c): sjn = 2(v) : sin -
1, etc. 2xjn is the mean of the errors, and if 2,x/n=

probability integral, page 522, = 1/& \f*, it follows from (2), page 523, r =
0-8453 Sx/n, etc. See also (2) page 516.

(4) Show that when n is large, the result of dividing the mean of the

squares of the errors by the square of the mean of the errors is constant.

Hint. Show that

*?(*>)-*-< w>
This has been proposed as a test of the fidelity of the observations, and of the

accuracy of the arithmetical work. For instance, the numbers quoted in the

example on page 554 give 2(u)= 55-53; 2(i>
2
)= 354*35; n=14; constant =1-60.

The canon does not usually work very well with a small number of observa-

tions.

(5) Show that the probable (or mean) error is inversely proportional to

the absolute measure of precision. Hint. From (1) and (2)

r = r- x constant; .-. roc ^ , (19)

163. Numerical Values of the Probability Integrals.

We have discussed the two questions :

1. What is the best representative value of a series of measure-

ments affected with errors of observations ?

2. How nearly does the arithmetical mean represent all of a

given set of measurements affected with errors of observation ?

It now remains to inquire

3. How closely does the arithmetical mean approximate to the

absolute truth ? To illustrate, we may use the results of Crookes'

model research on the atomic weight of thallium (Phil. Trans., 163,

277, 1874). Crooke's determination of this constant gave

203-628; 203-632; 203-636; 203-638; 203-639 1 ,*Mean: 203-642.
\203-642; 203-644; 203-649; 203-650; 203-666

The arithmetical mean is only one of an infinite number of possible

values of the atomic weight of thallium between the extreme limits

203-628 and 203-666. It is very probable that 203-642 is not the

true value, but it is also very probable that 203-642 is very near

to the true value sought. The question
" How near?" cannot be

answered. Alter the question to " What is the probability that

the truth is comprised between the limits 203*642 + x? ". and the

answer may be readily obtained however small we choose to make
the number x.

LL *
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First, suppose that the absolute measure of precision, h, of the

arithmetical mean is known. Table X. gives the numerical values

of the probability integral

9 f**

P= -7=] e~Md(hx),
S/TT JO

where P denotes the probability that an error of observation will

have a positive or negative value equal to or less than x, h is the

measure of the degree of precision of the results.

When h is unity, the value of P is read off from the table

directly. To illustrate, we read that when x + 0*1 P = '112
;

when x = + 0*2 P = -223 ; . . ., meaning that if 1,000 errors are

committed in a set of observations with a modulus of precision

h = 1, 112 of the errors will lie between + O'l and -
O'l, 223

between + 0'2 and - 0*2, etc. Or, 888 of the errors will exceed

the limits 0*1
; 777 errors will exceed the limits + 0*2 ; . . . When

01 0-2
h is not unity, we must use -r-

~j~,
. .

.,
in place of O'l, 0'2.

Examples. (1) If hx = 0-64, P, from the table, is 0-6346. Hence 0*6346

denotes the probability that the error x will be less than 0'64/ft, that is to

say, 63-46% f *ne errors will lie between the limits. + 0-64/fc. The remaining
36"54 / will lie outside these limits.

(2) Required a probability that an error will be comprised between the

limits 0-3 (h = 1). Ansr. 0-329.

(3) Required the probability that an error will lie between - 0-01 and

+ 0-1 of say a milligram. This is the sum of the probabilities of the limits

from to - 0-01 and from to + 0*1 (h
-

1). Ansr. (0*113 + 0*1125) =0*0619.

(4) Required the probability that an error will lie between + 1*0 and +
0*01. This is the difference of the probabilities of errors between 1*0 and zero

and between 0'01 and zero (h = 1). Ansr. (0*8427
-

0*0113) = 0*4157.

This table, therefore, enables us to find the relation between the

magnitude of an error and the frequency with which that error will

be committed in making a large number of careful measurements.

It is usually more convenient to work from the probable error B
than from the modulus h. More practical illustrations have, in

consequence, been included in the next set of examples.

Second, suppose that the probable error of the arithmetical mean

is known. Table XI. gives the numerical values of the probability

integral

*v&: ra,
<?>
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where P denotes the probability that an error of observation of a

positive or negative value, equal to or less than x, will be com-

mitted in the arithmetical mean of a series of measurements with

probable error r (or B). This table makes no reference to h. To

illustrate its use, of 1,000 errors, 54 will be less than ^$B ; 500

less than B
;
823 less than 2B ; 957 less than 3B

;
993 less than

4jB
; and one will be greater than 5B.

Examples. (1) A series of results are represented by 6-9 with a probable
error 0*25. The probability that the probable error is less than 0-25 is $.

What is the probability that the actual error will be less than 0-75.

Here x/B = 0-75/0-25 = 3. From the table, p = 0-9570 when x/B = 3.

This means that 95-7 / of the errors will be less than 0-75 and 4*3 /

greater.

(2) D. Gill finds the solar parallax to be 8-802" 0*005. What is the

probability that the solar parallax may lie between 8-802" + 0-025. Here

x/B = 0-025 -f 0-005 = 5. When B = 5, Table XI., P = 0-9993. This

means that 9993 might be bet in favour of the event, and 7, against the

event.

(3) Dumas has recorded the following 19 determinations of the chemical

equivalent of hydrogen (O = 100) using sulphuric acid (H2S04) with some,
and phosphorus pentoxide (P2 6 ) as the drying agent in other cases :

i. HaS04 : 12-472, 12-480, 12-548, 12-489, 12-496, 12-522, 12-533, 12-546,

12-550, 12-562 ;

ii. P2 6 : 12-480, 12-491, 12-490, 12-490, 12-508, 12-547, 12-490, 12-551,

12-551. J. B. A. Dumas' " Recherches sur la Composition de l'Eau," Ann.

Chim. Phys., [3], 8, 200, 1843. What is the probability that there will be an

error between the limits + 0015 in the mean (12-515), assuming that the

results are free from constant errors ? The chemical student will perhaps see

the relation of his answer to Prout's law. Hints. x/B = t
;
B = 0*005685

;

x = 0-015
; .'. t = 2-63. From Table XI., when t = 2-63, P = 0'969. Hence

the odds are 969 to 31 that the mean 12*515 is affected by no greater error

than is comprised within the limits + 0*015. To exemplify Table X.,

h = 0-4769/22 = 102, .-. hx = 102 x 0*015 = 1*53. From the Table, P = 0*924

when hx = 1*53, etc. That is to say, 96*9 / of the errors will be less and

3*1 /o greater than the assigned limits.

(4) From W. Crookes' ten determinations of the atomic weight of thallium

(above) calculate the probability that the atomic weight of thallium lies be-

tween 203-632 and 203-652. Here x = 0'01 ;
B = 0*0023

;
.*. 2=a*/i*=4*4.

From Table XI., P= 0*997. (Note how near this number is to unity indicating

certainty.) The chances are 332 to 1 that the true value of the atomic weight
of thallium lies between 203*632 and 203*652. We get the same result by
means of Table X. Thus 7t=0-4769 -r 0-0023 =207 ;

.-. ^=207x0*01 = 2*07.

When &b=2*07, P= 0*997. If 1,000 observations were made under the same
conditions as Crookes', we could reasonably expect 997 of them to be affeoted

by errors numerically less than 0*01, and only 8 observations would be affected

by errors exceeding these limits.
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The rules and formulae deduced up to the present are by no

means inviolable. The reader must constantly bear in mind the

fundamental assumptions upon which we are working. If these

conditions are not fulfilled, the conclusions may not only be super-

fluous, but even erroneous. The necessary conditions are :

1. Every observation is as likely to be in error as every other

one.

2. There is no perturbing influence to cause the results to have

a bias or tendency to deviate more in some directions than in

others.

3. A large number of observations has been made. In practice,

the number of observations may be considerably reduced if the

second condition is fulfilled. In the ordinary course of things from

10 to 25 is usually considered a sufficient number.

164. Maxwell's Law of Distribution of Molecular Velocities.

In a preceding discussion, the velocities of the molecules of a

gas were assumed to be the same. Can this simplifying assump-
tion be justified ?

According to the kinetic theory, a gas is supposed to consist of

a number of perfectly elastic spheres moving about in space with a

certain velocity. In case of impact on the walls of the bounding

vessel, the molecules are supposed to rebound according to known

dynamical laws. This accounts for the pressure of a gas. The

velocities of all the molecules of a gas in a state of equilibrium are

not the same. Some move with a greater velocity than others.

At one time a molecule may be moving with a great velocity, at

another time, with a relatively slow speed. The attempt has been

made to find a law governing the distribution of the velocities of

the motions of the different molecules, and with some success.

Maxwell's law is based upon the assumption that the same relations

hold for the velocities of the molecules as for errors of observation.

This assumption has played a most important part in the develop-

ment of the kinetic theory of gases. The probability y that a mole-

cule will have a velocity equal to v is given by an expression of the

type :

y=TA) e

;-'';;:
(1)

Very few molecules will have velocities outside a certain re-
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stricted range. It is possible for a molecule to have any velocity

whatever, but the probability of the

existence of velocities outside certain

limits is vanishingly small. The
reader will get a better idea of the

distribution of the velocities of the

molecules by plotting the graph of

the above equation for himself. Re-
* v

member that the ordinates are pro-
Fla - 1^2

portional to the number of molecules, abscissae to their speed.

Areas bounded by the rr-axis, the curve and certain ordinates will

give an idea of the number of molecules possessing velocities

between the abscissae corresponding to the boundary ordinates. In

Fig. 172 the shaded portion represents the number of molecules

with velocities lying between V and 1'5F .

Example. By the ordinary methods for finding a maximum, show from

(1), that y is a maximum when v = a.

Returning to the study of the kinetic theory of gases, p. 504,

the number of molecules with velocities between v and v -+ dv is

assumed to be represented by an equation analogous to the ex-

pression employed to represent the errors of mean square of page

525, namely,

-t)v(i)'<#
where N represents the total number of molecules, a is a constant

to be evaluated.

I. To find a value for the constant a in terms of the average

velocity VQ of the molecules. Since there are dN molecules with a

velocity v, the sum of the velocities of all these dN molecules is

vdN, and the sum of the velocities of all the molecules must be

j:::
-"' -M:'--H$'M-t.

from (2). Where has N gone ? The average velocity V is one

Nth of the sum of the velocities of the N given molecules. Hence,

a = *W* (3)

II. To find the average velocity of the molecules of a gas. By a

well-known theorem in elementary mechanics, the kinetic energy of

a mass m moving with a velocity v is %mv
2

. Hence, the sum of the
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kinetic energies of the dN molecules will be %(mdN)v
2

t
because

there are dN molecules moving with a velocity v. From (2), there-

fore, the total kinetic energy (T) of all the molecules is

T = imv* . dN=4^ v* . e &o = -
ANm** = -

A MaK

a = 2Vi w
where M = J7m = total mass of N molecules each of mass m. The

total kinetic energy of N molecules of the same kind is

T = \mv\ + \mv>\ + . . . + \mvl = %m{v-? + v2
2 + . . . + v%). (5)

The velocity of mean square, U, is defined as the velocity whose

square is the average of the squares of the velocities of all the N
molecules, or,

-?j
2 4. 7)

2 J. a 1 1

from (5). Again, from (4) and (6), we have

a =
vr;F =7^

= '9213a- (7)

Most works on chemical theory give a simple method of proving
that if p denotes the pressure and p the density of a gas,

p-ipU*. .

'

. . . (8)

This in conjunction with (6) allows the average- velocity of the

molecules of a gas to be calculated from the known values of the

pressure and density of the gas, as shown in any Textbook on

Physical Chemistry.

The reader is no doubt familiar with the principle underlying
Maxwell's law, and, indeed, the whole kinetic theory of gases. I

may mention two examples. The number of passengers on say

the 3-10 p.m. suburban daily train is fairly constant in spite of the

fact that that train does not carry the same passenger two days

running. Insurance companies can average the number of deaths

per 1,000 of population with great exactness. Of course I say

nothing of disturbing factors. A bank holiday may require pro-

vision for a supra-normal traffic, and an epidemic will run up the

death rate of a community. The commercial success of these

institutions is, however, sufficient testimony of the truth of the

method of averages, otherwise called the statistical method
of investigation. The same type of mathematical expression is

required in each case.
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It will thus be seen that calculations, based on the supposition

that all the molecules possess equal velocities, are quite admissible

in a first approximation. The net result of the " dance of the mole-

cules
"

is a distribution of the different velocities among all the

molecules, which is maintained with great exactness.

G. H. Darwin has deduced values for the mean free path, eto., from the

hypothesis that the molecules of the same gas are not all the same size. He
has examined the oonsequences of the assumption that the sizes of the mole-

cules are ranged aocording to a law like that governing the frequency of errors

of observation. For this, see his memoir " On the mechanical conditions of a

swarm of meteorites
"

(Phil. Trans., 180, 1, 1889).

165. Constant or Systematic Errors.

The irregular accidental errors hitherto discussed have this

distinctive feature, they are just as likely to have a positive as a

negative value. But there are errors whioh have not this character.

If the barometer vacuum is imperfect, every reading will be too

small; if the glass bulb of a thermometer has contracted after

graduation, the zero point rises in such a way as to falsify all

subsequent readings ;
if the points of suspension of the balance

pans are at unequal distances from the centre of oscillation of the

beam, the weighings will be inaccurate. A change of tempera-
ture of 5 or 6 may easily cause an error of 0*2 to 1*0

/o
in an

analysis, owing to the change in the volume of the standard

solution. Such defective measurements are said to be affected

by oonstant errors.1 By definition, constant errors are produced

by well-defined causes which make the errors of observation pre-

ponderate more in one direction than in another. Thus, some of

Dumas' determinations of the atomic weight of silver are affected by
a constant error due to the occlusion of oxygen by metallic silver in

the course of his work.

One of the greatest trials of an investigator is to detect and if

1 Pergonal error. This is another type of constant error which depends on the

personal qualities of the observer. Thus the differences in the judgments of the

astronomers at the Greenwich Observatory as to the observed time of transit of a star

and the assumed instant of its actual occurrence, are said to vary from y^j- to
-J-

of a

second, and to remain fairly constant for the same observer. Some persistently read

the burette a little high, others a little low. Vernier readings, analyses based on

colorimetric tests (such as Nessler's ammonia process), etc., may be affected by
personal errors.
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possible eliminate constant errors. " The history of science teaches

air too plainly the lesson that no single method is absolutely to be

relied upon, and that sources of error lurk where they are least

expected, and that they may escape the notice of the most ex-

perienced and conscientious worker." \ Two questions of the

gravest moment are now presented. How are constant errors to

be detected ? How may the effect of constant errors be eliminated

from a set of measurements ? This is usually done by modifying
the conditions under which the experiments are performed.

"
It is

only by the concurrence of evidence of various kinds and from various

sources," continues Lord Eayleigh,
" that practical certainty may

at least be attained, and complete confidence restored." Thus the

magnitude is measured under different conditions, with different

instruments, etc. It is assumed that even though each method or

apparatus has its own specific constant error, all these constant

errors taken collectively will have the character of accidental errors.

To take a concrete illustration, faulty
"
sights

"
on a rifle may cause

a constant deviation of the bullets in one direction
;
the "

sights
"

on another rifle may cause a constant " error
"

in another direc-

tion, and so, as the number of rifles increases, the constant errors

assume the character of accidental errors and thus, in the long

run, tend to compensate each other. This is why Stas generally

employed several different methods to determine his atomic weights.

To quote one practioal case, Stas made two sets of determinations

of the numerical value of the ratio Ag : KOI. In one set, four series

of determinations were made with KG prepared from four different

sources in conjunction with one specimen of silver, and in the other

set different series of experiments were made with silver prepared

from different sources in conjunction with one sample of KC1. Un-

fortunately the latter set was never completed.

The calculation of an arithmetical mean is analogous to the

process of guessing the centre of a target from the distribution of

the "hits" (Fig. 165). If all the shots are affected by the same

constant error, the centre, so estimated, will deviate from the true

centre by an amount depending on the magnitude of the (presumably

unknown) constant error. If this magnitude can be subsequently

determined, a simple arithmetical operation (addition or subtraction)

will give the correct value. Thus Stas found that the amount of

1 Lord Rayleigh's Presidential Address, B.A. Reports, 1884.
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potassium chloride equivalent to 100 parts of silver in one case

was as

Ag:K01 = 100:69-1209.

The KOI was subsequently found to contain 000259 per cent, of

silica. The chemical student will see that 0*00179 has conse-

quently to be subtracted from 69-1209. Hence,

Ag : KC1 = 100 : 69-11903.

After Lord Rayleigh (Proc. Boy. Soc., 43, 356, 1888) had proved
that the capacity of an exhausted glass globe is less than when the

globe is full of gas, all measurements of the densities of gases

involving the use of exhausted globes had to be corrected for

shrinkage. Thus Regnault's ratio, 1 : 15-9611, for the relative

densities of hydrogen and oxygen was "corrected for shrinkage"
to 1 : 159105. The proper numerical corrections for the constant

errors of a thermometer are indicated on the well-known " Kew
certificate," etc.

If the mean error of each set of results differs, by an amount

to be expected, from the mean errors of the different sets measured

with the same instrument under the same conditions, no constant

error is likely to be present. The different series of atomic weight
determinations of the same chemical element, published by the

same, or by different observers, do not stand this test satisfactorily.

Hence, Ostwald concludes that constant errors must have been

present even though they have escaped the experimenter's ken.

Example. Discuss the following: "Merely increasing the number of

experiments, without varying the conditions or method of observation,

diminishes the influence of accidental errors. It is, however, useless to

multiply the number of observations beyond a certain limit. On the other

hand, the greater the number and variety of the observations, the more

complete will be the elimination of the effects of both constant and accidental

errors."

166. Proportional Errors.

One of the greatest sources of error in scientific measurements
occurs when the quantity cannot be measured directly. In such

oases, two or more separate observations may have to be made on

different magnitudes. Each observation contributes some little

inaccuracy to the final result. Thus Faraday has determined the

thickness of gold leaf from the weight of a certain number of

sheets. Foucault measures time, Le Chatelier measures tempera-
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ture in terms of an angular deviation. The determination of the

rate of a chemical reaction often depends on a number of more or

less troublesome analyses.
1

For this reason, among others, many chemists prefer the standard = 16

as the basis of their system of atomic weights. The atomic weights of most

of the elements have been determined directly or indirectly with reference to

oxygen. If H = 1 be the basis, the atomic weights of most of the elements

depend on the nature of the relation between oxygen and hydrogen a

relation which has not yet been fixed in a satisfactory manner. The best de-

terminations made since 1887 vary between H : = 1 : 15*96 andH : = 1 : 15*87.

If the former ratio be adopted, the atomic weights of antimony and uranium
would be respectively 119*6 and 239*0

;
while if the latter ratio be employed,

these units become respectively 118*9 and 237*7, a difference of one and two

units I It is, therefore, better to contrive that the atomic weights of the

elements do not depend on the uncertainty of the ratio H : O, by adopting
the basis : O = 16.

If the quantity to be determined is deduced by calculation from

a measurement, Taylor's theorem furnishes a convenient means of

criticizing the conditions under which any proposed experiment is

to be performed, and at the same time furnishes a valuable insight

into the effect of an error in the measurement on the whole result.

It is of the greatest importance that every investigator should

have a clear idea of the different sources of error to which his

results are liable in order to be able to discriminate between im-

portant and unimportant sources of error, and to find just where

the greatest attention must be paid in order to obtain the best

results. The necessary accuracy is to be obtained with the least

expenditure of labour.

I. Proportional errors of simple measurements. Let y be the

desired quantity to be calculated from a magnitude x which can be

measured directly and is connected with y by the relation

V =
/<

f(x) is always affected with some error dx which causes y to deviate

from the truth by an amount dy. The error will then be

dy= (y + dy)
- y = f(x + dx)

-
f(x).

1 Indirect results are liable to another source of error. The formula employed

may be so inexact that accurate measurements give but grossly approximate results.

For instance, a first approximation formula may have been employed when the

accuracy of the observations required one more precise ;
ir = -^ may have been put

in place of ir = 8*14159 ;
or the coefficient of expansion of a perfect gas has been

applied to an imperfect gas. Such errors are called errors of method.
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dx is necessarily a small magnitude, therefore, by Taylor's theorem,

fx + dx) = f(x) + f{x) . dx + . . .,

or, neglecting the higher orders of magnitude,

dy ~ f'(x) . dp.

The relation between the error and the total magnitude of y is

% f(x) . dx

y
"

Ax)
' ' ' W

All this means is that the differential of a function represents the

change in the value of the function when the variable suffers an

infinitesimal change. The student learned this the first day he

attacked the calculus. The ratio dy : y is called the proportional,

relative, or fractional error, that is to say, the ratio of the error

involved in the whole process to the total quantity sought ;
while

lOOdy : y is called the percentage error. The degree of accuracy
of a measurement is determined by the magnitude of the propor-

tional error.

_ ,
_ Magnitude of error

Proportional Error = =-
;

r^-
Total magnitude of quantity measured

Students often fail to understand why their results seem all

wrong when the experiments have been carefully performed and

the calculations correctly done. For instance, the molecular

weight of a substance is known to be either 160, or some multiple

of 160. To determine whioh, 0*380 (or w) grm. of the substance

was added to 14-01 (or w^) grms. of acetone boiling at B{ (or 3*50)
on Beckmann's arbitrary scale, the temperature, in consequence,
fell to $2 . (or 3-36) ;

the molecular weight of the substance, M, is

then represented by the known formula

M= 1670
^f^7) ; or' M " imu^u " 323'

or approximately 2 x 160. Now assume that the temperature

readings may be 0*05 in error owing to convection currents,

radiation and conduction of heat, etc. Let 0^ = 3 -55 and
2
= 3'31,

.-. M = 1670. /
38

-188.
14*01 x 0*24

This means that an error of ^ in the reading of the thermometer

would give a result positively misleading. This example is by no

means exaggerated. The simultaneous determination of the heat

of fusion and of the specific heat of a solid by the solution of two

simultaneous equations, and the determination of the latent heat
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of steam are specially liable to similar mistakes. A study of the

reduction formula will show in every case that relatively small

errors in the reading of the temperature are magnified into serious

dimensions by the method used in the calculation of the final

result.

Examples. (1) Almost any text-book on optics will tell you that the

radius of curvature, r, of a lens, is given by the formula

f~a
Let the true values of / and a be respectively 20 and 15. Let / and a be liable

to error to the extent of + 0-5, say, / is read 20*5, and a 14*5. Then the true

value of r is 60, the observed value 51'2. Fractional error = ^-. This means

that an error of about 0*5 in 20, i.e., 2*5 /
in the determination of /and a

may cause r to deviate 15 / from the truth.

(2) In applying the formula

for the influence of temperature on the velocity, V, of a chemical reaction

show that an error of 1 in the determination of 2\, at about 300 abs., will

give a fractional error of 2*4 in the determination of V. Hint. Substitute

Tj = 300, T = 273. Use Table IV. I make V = 41*52. Now put Tx
= 301.

I get V = 43*79, etc. Hence an error of 1 will make V vary about 6 / from

its true value.

If we knew that an astronomer had made an absolute error of

100,000 miles in estimating the distance between the earth and

the sun, and also that a physicist had made an absolute error of

*ne i oooo^oooooo^ f a mile m measuring the wave length of a

spectral line, we could form no idea of the relative accuracy of the

two measurements in spite of the fact that the one error is the

ioo o,o oo 0^0,0 oo oo otn Part f tne other. In the first measurement

the error is about TToVo f tne whole quantity measured, in the

second case the error is about the same order of magnitude as the

quantity measured. In the former case, therefore,.the error is neg-

ligibly small ;
in the latter, the error renders the result nugatory.

It is therefore important to be able to recognise the weak and

strong points of a given method of investigation; to grade the

degree* of accuracy of the different stages of the work so as to

produce the required result
;
so as to have enough at all points,

but no superfluity. I have already spoken of the need for

"
scientific perspective

"
in dealing with numerical computations.

Examples. (1) It is required to determine the capacity of a sphere from
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the measurement of its diameter. Let y denote the volume, x the diameter,

then, by a well-known mensuration formula, y = lirx*. It is required to find

the effect of a small error in the measurement of the diameter on the cal-

culated volume. Suppose an error dx is committed in the measurement, then

y + dy = ir(aj + dx)
3 =

\ir{x* + SxWx + 3x(dx)* + (dx)
9
}.

By hypothesis, dx is a very small fraction, therefore, by neglecting the higher

powers of dx and dividing the result by the original expression

y + dy 1
(
x* + 8x2dx\ dy _ dx

y T\ \r )'' y ~x'
Or, the error in the calculated result is three times that made in the

measurement. Henoe the necessity for extreme precautions in measuring
the diameter. Sometimes, we shall find, it is not always necessary to be so

careful* The same result could have been more easily obtained by the use of

Taylor's theorem as described above. Differentiate the original expression

and divide the result by the original expression. We thus get the relative

error without trouble.

(2) Criticize the method for the determination of the atomic weight of

lead from the ratio Pb : in lead monoxide. Let y denote the atomic

weight of lead, a the atomic weight of oxygen (known). It is found ex-

perimentally that x parts of lead combine with one part of oxygen, the

required atomio weight of lead is determined from the simple proportion

j/:a=x:l; or, y=ax; or, dy~adx; ,\dy\ydx\x. . (2)

Thus an error of 1 / in the determination of x introduces an equal error in

the calculated value of y. Other things being equal, this method of finding

the atomic weight of lead is, therefore, very likely to give good results.

(3) Show that the result of determining the atomic weight of barium by

precipitation of the chloride with silver nitrate is less influenced by experi-

mental errors than the determination of the atomic weight of sodium in the

same way. Assume that one part of silver as nitrate requires x parts of sodium

(or barium) chloride for precipitation as silver chloride. Let a and b be the

known atomic weights of silver and chlorine. Then, if y denotes the atomic

weight of sodium, y+b: a=x:l; oi
t y= ax-b; . \ a=(y + b)/x. Differentiate,

and substitute y=23, 6= 35*5.

dy a y + b dx dx= tCLX = *
. = Jo*o4 >

y ax - b y x x'

or an error of 1 / in the determination of chlorine in sodium will introduce

an error of 2-5 / in the atomic weight of sodium. Hence it is a disadvantage
to have b greater than y. For barium, the error introduced is 1*5 % instead

of 2-5 / .

(4) If the atomic weight of barium y is determined by the precipitation of

barium sulphate from barium chloride solutions, and a denotes the known
atomio weight of chlorine, b the known combining weight of S04 ,

then when
x parts of barium chloride are converted into one part of barium sulphate,

, a ,
, i dy (b

- 2a)dxv + 2a : v + b = x :1 =y y '

y (1
-

x) (bx
-

2a)'
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(5) An approximation formula used in the determination of the viscosity
of liquids is

irptr
4

where v denotes the volume of liquid flowing from a capillary tube of radius r

And length I in the time t ; p is the actual pressure exerted by the column of

liquid. Show that the proportional error in the calculation of the viscosity t\

is four times the error made in measuring the radius of the tube.

(6) In a tangent galvanometer, the tangent of the angle of deflection of

the needle is proportional to the current. Prove that the proportional error

in the calculated value of the current due to a given error in the reading is

least when the deflection is 45. The strength of the current is proportional
to the tangent of the displaced angle x, or

. _ . , G. dx dy dx
y = fix) = C tan x : .\ dv k : or, =

-s9 JK ' ' *# 00S2X i w*.
y sin a;, cos a?

To determine the minimum, put

(dy\ ss
sin2# - cos2a;

sTn2
a? . oos2a:

=
'

' sin x m cosx
>
or' sin x m cos x'

This is true only in the neighbourhood of 45 (Table XIV.), and, therefore, in

this region an error of observation will have the least influence on the final

result. In other words, the best results are obtained with a tangent galvo-

nometer when the needle is deflected about 45.

What will be the effect of an error of 0*25 in reading a deflection of 42,
on the calculated current ? Note that x in the above formula is expressed in

circular or radian measure (page 606). Hence,
_ x 0*25

0*25(degrees) m 18Q
= 0*00436(radians).

, dy dx 2dx Q-Q0872 _ n nQ .

Q 0/''

y
*

sin x . cos x
~

sin 2x
=

sin 84
" '

09; l -e '' 9 /o '

since, from a Table of Natural Sines, sin 84 = 0*9946.

(7) Show that the proportional error involved in the measurement of an

electrical resistance on a Wheatstone's bridge is least near the middle of the

bridge. Let B denote the resistance, I the length of the bridge, x the distance

of the telephone from one end. .*. y = Rxftl + x). Proceed as above and

show that when x = 1 (the middle of the bridge), the proportional error is a

minimum.

(8) By Newton's law of attraction, the force of gravitation, g, between

two bodies varies directly as their respective masses Wj, m2 and inversely as

the square of their distance apart, r. The mass of each body is supposed to

be collected at its centroid (centre of gravity). The weight of one gram at

Paris is equivalent to 880-868 dynes. The dyne is the unit of force. Hence

Newton's law, g = /im1w2/r
2

(dynes), may be written w = ajr
2
(grams), where

a is a constant equivalent to /* x mx
x m^ x 980*868. Hence show that for

small changes in altitude dwjw = -
2dr(r. Marek was able to detect a differ-

ence of 1 in 500,000,000 when comparing the kilogram standards of the

Bureau International des Poids et Mesures. Hence show that it is possible

to detect a difference in the weight of a substance when one scale pan of the
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balance is raised one centimetre higher than the other. Hint. Radius of earth

= r = 637,130,000 cm. ;
w = 1 kilogrm. ;

dr = 1 cm. ;

dw _ 2 1 1
'"

~~w
~

637,130,000
=
318,565,000'

This 1S S188-*61 tnan
500,000"^00'

As a further exercise, show that a kilogram will lose 0-00003 grm., if it be

weighed 10 cm. above its original position. Hint. Find -dw ;
r has its

former value
; w = 1000 grm. ;

dr = 10 cm.

II. Proportional error of composite measurements. Whenever a

result has to be determined indirectly by combining several different

species of measurements weight, temperature, volume, electro-

motive force, etc. the effect of a percentage error of, say, 1 per

cent, in the reading of the thermometer will be quite different from

the effect of an error of 1 per cent, in the reading of a voltmeter.

It is obvious that some observations must be made with

greater care than others in order that the influence of each kind

of measurement on the final result may be the same. If a large

error is compounded with a small error, the total error is not ap-

preciably affected by the smaller. Hence Ostwald recommends

that " a variable error be neglected if it is less than one-tenth of

the larger, often, indeed, if it is but one-fifth ".

Examples. (1) Joule's relation between the strength of a current G

(amperes) and the quantity of heat Q (calories) generated in an electric con-

ductor of resistance B (ohms) in the time t (seconds), is, Q = 0'24:C2Bt. Show
that B and t must be measured with half the precision of C in order to have

the same influence on Q.

(2) What will be the fractional error in Q corresponding to a fractional

error of 0*1 % in B ? Ansr. 0-001, or 0-1 / .

(3) What will be the percentage error in C corresponding to 0-02 / m Q ?

Ansr. 0-01 %.
(4) If the density s of a substance be determined from its weights (w, Wj)

in air and water, and remembering that s = w
ll{w-w-^), show that

ds _ w /dwj dw\
s
~
w-w\w1 w )*

(5) The specific heat of a substance determined by the method of mixtures

is given by the formula

7^0(02 -gj)

m(e-62)

'

where m is the weight of the substance before the experiment ;
wx the weight

of the water in the calorimeter
; c the mean specific heat of water between

62 and 0j ; 6 is the temperature of the body before immersion
; dx the maximum

temperature reached by the water in the calorimeter
; 2 the temperature of

the system after equalization of the temperature has taken place. Supposing
the water equivalent of the apparatus is included in mv what will be the

effect of a small error in the determination of the different temperatures on

the result?

MM
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First, error in 0^ Show that ds/s = -
d0,/(02

-
0i)- If an error of say 0*1

is made in a reading and 2
- dx = 10, the error in the resulting specific heat

is about 1 / . If a maximum error of O'Ol % is to be permitted, the tempera-

ture must be read to the 0-0001.

Second, error in 0. Show that dsfs = -
^0/(0

-
2).

If a maximum error in

the determination of s is to be 0*1 / ,
when -

2
= 50, must be read to the

0*05. If an error of 0*1 is made in reading the temperature and -
2
= 50,

show that the resulting error in the specific heat will be 0'2 / .

Third, error in 2 . Show that ds/s = de.2l(62 -01 ) + d02/(0-02). If the

maximum error allowed is 0-1 / and 2 -01
= lO, 0-02 = 50, show that

2

must be read to the yfg- ; while if an error of 0-1 is made in the reading of

2 ,
show that the resulting error in the specific heat is l"2/ .

(6) In the preceding experiment, if m
x
= 100 grams, show that the

weighing need not be taken to more than the 0*1 gram for the error in s to be

within 0*1 % ;
and for m, need not be closer than 0*5 gram when m is about

50 grams.

Since the actual errors are proportional to the probable errors,

the most probable or mean value of the total error du, is obtained

from the expression

(*.)-
(5s;

Ah)+(^) + (3)

from (16), 162, page 530. Note the squared terms are all positive.

Since the errors are fortuitous, there will be as many positive as

negative paired terms. These will, in the long run, approximately
neutralize each other. Hence (3).

Examples. (1) Divide equation (3) by u?
t it is then easy to show that

(dQ\* JdC\* fdBy /dty
\-q) -n-o) +

{-e)
+ (v>

from the preceding set of examples. Hence show that the fractional error in

Q, corresponding to the fractional errors of 0-03 in G, 0'02 in B and 0-03 in t,

is 0-07.

(2) The regular formula for the determination of molecular weight of a

substance by the freezing point method, is M = KwjQ, where K is a constant,

M the required molecular weight, w the weight of the substance dissolved in

100 grams of the solvent, the lowering of the freezing point. In an actual

determination, w = 0-5139, = 0-295, K = 19 (Perkin and Kipping's Organic

Chemistry), what would be the effect on If of an error of 0"01 in the deter-

mination of w, and of an error of 0-01 in the determination of 0? Also show
that an error of 0-01 in the determination of affects M to an extent of

- 3-39, while an error of -01 in the determination of w only affects M to the

extent of 0"91. Hence show that it is not necessary to weigh to more than

8-01 of a gram.

From (16), 162, page 530, when the effect of each observation

on the final result is the same, the partial differential coefficients
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are all equal. If u denotes the sum of n observations, av a
2t

. . ., an .

But, in order that the actual errors affecting each observation may
be the" same, we must have, from (17), page 530,

da
x
= da

2
= . . . = dan = -^ ; . . (4)

with the fractional errors :

da
Y .

da
2

dan __du 1
* * u

' '

u
^ =

Ijf
"

u
'

Jn
' *

Examples. (1) Suppose the greatest allowable fractional - error in Q
(preceding examples) is 0-5 / , what is the greatest percentage error in each

of the variables G, B, t, allowable under equal effects ? Here,

dC _ dB _ dt _ 005

G~ B
*

t

~
v'3

'

Ansr. 0-22 for B and t ;
and 0-11 /

for G.

(2) If a volume v of a given liquid flows from a long capillary tube of

radius r and length I'm t seconds, the viscosity of the liquid is t\
=

ttpr^tl'&vl,

where p denotes the excess of the pressure at the outlet of the tube over

atmospheric pressure. What would be the errors dr
t dv, dl, dt, dp, necessary

under equal effects to give r\ with a precision of 0*1 / ? Here,

dp dt Adr dv dl 0-001 _ >/MWVir-=-r = 4: = = - = = 0-0004:5.
p t r v I s/b

It is now necessary to know the numerical values of p, t, v, r, I, before

dp, dt,.. . can be determined. Thus, if r is about 2 mm., the radius must

be measured to the 0*00022 mm. for an error of 0*1% in t\. It has been shown

how the best working conditions may be determined by a study of the formula,

to which the experimental results are to be referred. The following is a more

complex example.

(3) The resistance X of a cell is to be measured. Let Gx , G2 respectively

denote the currents produced by the cell when working through two known

external resistances rx and r2 ,
and let B

x ,
B2 be the total resistances of the

circuit, E the electromotive force of the cell is constant. Your text-book on

practical physics will tell you that

y _ C2r2
- Cxrx

(6)Ox
- C2

What ratio Cx : C2 will furnish the best result ? As usual, by partial differ-

entiation, (4) above,
g

<^ 2=(!^H!dc
<)-

p>

Find values for ?)Xj'dCx and dXjdC2 from (6) ;
and put Bx

for rx ;
B2 for r2 .

From Ohm's law, E = CB, E being constant, Gx : G2
= B2 : Bv Thus

?>X C2 (r2
- rx) _ _BSB , dX Gx (r2

- r
x ) _ B

X
B*

Wx

= "
(Cx

- C2Y
"

E(B2 -B X)> VC2

~
(Cx -C2)* E(B2 -Bx)'

Kf

Substitute this result in (7).
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(i) If a mirror galvanometer is used, dCx dC2
= dC (say) = constant.

. WRf + RfRj) (dcy _ iy(^ + ^) {dcf /Q
.

by substituting x = R2 : Rv For a minimum error, we have, by the usual

method,
d ( x4 -x* \

d^\x^r^TJJ
=

;

' x* ~ 2x" ~ 1 =
;

* * = 2 '2 approx -

Or, R2
= 2-2R

x ; or, Gx
- 2*2C2 ,

from Ohm's law. Substitute this value of x

in (9), and we get

j7QR*.dO\dX== E .... (10)

which shows that the external resistance, Rlt
should be as small as is consistent

with the polarization of the battery.

(ii) If a tangent galvanometer is used, dG\G is constant. The above

method will not work. Hence substitute Cx
= ERX

and C2
= ER2 in the first

of equations (8), we get

R
1

R2

From this it can be shown there ic no best ratio R2 : Rv From the last ex-

pression we can see that the error dX decreases as R
x diminishes, and as R2

increases. Hence R2 should be made as large and RY
as small as is consistent

with the range of the galvanometer and the polarization of the battery.

You can easily get the fractional errors in each case. From (10) and

(11) respectively
dG1=JL_ X dX, <W_1 X_ dX
G1

~
>j26'R l

'

X' G "2'iV X'

assuming in the latter case that Gx : C2
= 3 : 1

; so that the intermediate

step from (11) is dX = si2 . 3i?1
2
/(3E1

- E
x)

x dC/G.

167. Observations of Different Degrees of Accuracy.

Hitherto it has been assumed that the individual observations

of any particular series, are equally reliable, or that there is no

reason why one observation should be preferred more than an-

other. As a general rule, measurements made by different

methods, by different observers, or even by the same observer at

different times,
1 are not liable to the same errors. Some results

1 1 am reminded that Dumas, discussing the errors in his great work on the gravi-

metric composition of water, alluded to a few pages back, adds the remarks : "The

length of time required for these operations compelled me to prolong the work far into

the night, generally finishing with the weighings about 2 or 3 o'clock in the morning.
This may be the cause of a substantial error, for I dare not venture to assert that such

weighings deserve as much confidence as if they had been performed under more

favourable conditions and by an observer not so worn out with fatigue, the inevitable

result of fifteen to twenty hours continued attention."
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are more trustworthy than others. In order to fix this idea,

suppose that twelve determinations of the capacity of a flask by
the same method, gave the following results : six measurements

each 1-6 litres
; four, 1*4 litres ;

and two, 1-2 litres. The numbers

6, 4, 2, represent the relative values of the three results 1-6, 1*4.

1-2, because the measurement 1*6 has cost three times as much

labour as 1*2. The former result, therefore, is worth three times

as much confidence as the latter. In such cases, it is customary
to say that the relative practical value, or the weight of these three

sets of observations, is as 6 : 4 : 2, or, what is the same thing, as

3:2:1^. In this sense, the weight of an observation, or set of

observations, represents the relative degree' of precision of that

observation in comparison with other observations of the same

quantity. It tells us nothing about the absolute precision, h> of

the observations.

It is shown below that the weight of an observation is, in

theory, inversely as its probable error ;
in practice, it is usual to

assign arbitrary weights to the observations. For instance, if one

observation is made under favourable conditions, another under

adverse conditions, it would be absurd to place the two on the

same footing. Accordingly, the observer pretends that the best

observations have been made more frequently. That is to say,

if the observations av a
2 ,

. . ., an ,
have weights pv p2 ,

. . ., pn ,

respectively, the observer has assumed that the measurement a
Y

has been repeated px
times with the result av and that an has been

repeated pn times with the result an .

To take a concrete illustration, Morley
: has made three accurate

series of determinations of the density of oxygen gas with the

following results :

I. 1-42879 0000034 ; II. 1-42887 0-000048 ;

III. 1-42917 0-000048.

The probable errors of these three means would indicate that

the first series were worth more than the second. For experimental

reasons, Morley preferred the last series, and gave it double weight.

In other words, Morley pretended that he had made four series of

experiments, two of which gave 1*42917, one gave 1-42879, and one

l E. Morley, "On the densities of oxygen and hydrogen and on the ratio of their

atomic weights," Smithsonian Contributions to Knowledge, No. 980, 55, 1895.
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gave 1-42887. The result is that 1*42900, not 1-42894, is given as

the best representative value of the density of oxygen gas.

The product of an observation or of an error with the weight of

the observation, is called a weighted observation in the former

case, and a weighted error in the other.

The practice of weighting observations is evidently open to

some abuse. It is so very easy to be influenced rather by the differ-

ences of the results from one another, than by the intrinsic quality

of the observation. This is a fatal mistake.

I. The best value to represent a number of observations of equal

weight, is their arithmetical mean. If P denotes the most probable
value of the observed magnitudes av a

2 ,
. . . an ,

then P - av P- a
2 ,

. . ., P - an , represent the several errors in the n observations.

From the principle of least squares these errors will be a minimum
when

(P
- a

2 )
2 + (P

- a
2)

2 + . . . + (P
- an)

n = a minimum.

Hence, from the regular method for finding minimum values,

p = a
1 + a

2 + ... + an
n * ^ '

or the best representative value of a given series of measurements of

an unknown quantity, is an arithmetical mean of the n observations,

provided that the measurements have the same degree of confidence.

II. The best value to represent a number of observations of

different weight, is obtained by multiplying each observation by its

weight and dividing the sum of these products by the sum of their

different weights. With the same notation as before, let pv p2i
. .

.,

pn,
be the respective weights of the observations av a

2 ,
. . ., an.

From the definition of weight, the quantity a
x may be considered

as the mean of px
observations of unit weight ;

a
2 the mean of p2

observations of unit weight, etc. The observed quantities may,

therefore, be resolved into a series of fictitious observations all of

equal weight. Applying the preceding rule to each of the resolved

observations, the total number of standard observations of unit

weight will be px + p2 + . . . + pn ; the sum of the p1
standard

observations of unit weight will be px
a
x ;

the sum of p2 standard

observations, p2
a
2 ,

etc. Hence, from (1), the most probable value

of a series of observations of different weights is

p, m Pi^i + p2
a
2 + . . . + pnan

Pl + p2 + . . . + pn W



167. PROBABILITY AND THE THEORY OF ERRORS. 551

Note the formal resemblance between this formula and that for

finding the centre of gravity of a system of particles of different

weights arranged in a straight line.

Weighted observations are, therefore, fictitious results treated

as if they were real measurements of equal weight. With this

convention, the value of P' in (2) is an arithmetical mean some-

times called the general or probable mean.
III. The weight of an observation is inversely as the square of

its probable error. Let a be a set of observations whose probable
error is R and whose weight is unity. Let pl9 p2 ,

. . ., pn and rv
r
2 ,

. . ., rn ,
be the respective weights and probable errors of a series

of observations av a
2 ,

. . ., an ,
of the same quantity. By definition

of weight, a
x

is equivalent to px
observations of equal weight. From

(17), page 530,

R R* R2 111 "

Examples. (1) If n observations have weights^, jp2 , . . .,pn ,
show that

B=
ik) w

Differentiate (2) successively with respect to Oj, <%, . . . and substitute the

results in (16), page 530.

(2) Show that the mean error of a series of observations of weights, pv p2,

..,JP, is

M= + / 2(jxc
2
)

!(n-l)2(p)'

Hint. Proceed as in 161 but use px2 and pv
2 in place of x2 and v2 respectively.

If the sum of the weights of a series of observations is 2(p)=40, and the sum
of the products of the weights of each observation with the square of its

deviation from the mean of nine observations is 2[px
2
) =0*3998, show that

M = 0-035.

(3) The probable errors of four series of observations are respectively 1*2,

0'8, 0*9, 1*1, what are the relative weights of the corresponding observations ?

Ansr. 7:16:11:8. Use (3).

(4) Determinations of the percentage amount of copper in a sample of

malachite were made by a number of chemical students, with the following

results : (1) 39*1
; (2) 38-8, 38-7, 38'6

; (3) 39-9, 391, 39-3
; (4) 37*7, 37-9. If

these analyses had an equal degree of confidence, the mean, 38*8, would best

represent the percentage amount of copper in the ore formula (1). But the

analyses are not of equal value. The first was made by the teacher. To this

we may assign an arbitrary weight 10. Sets (2) and (3) were made by two

different students using the electrolytic process. Student (2) was more ex-

perienced than student (3), in consequence, we are led to assign to the former

an arbitrary weight 6, to the latter, 4. Set (4) was made by a student pre-

cipitating the copper as CuS, roasting and weighing as CuO. The danger
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of loss of CuS by oxidation to CuS04 during washing, leads us to assign to

this set of results an arbitrary weight 2. From these assumptions, show that

38*91 best represents the percentage amount of copper in the ore. For the

sake of brevity use values above 37 in the calculation. From formula (2),

- = 1*91. Add 37 for the general mean. It is unfortunate when so fantastic

a method has to be used for calculating the most probable value of a " constant

of Nature," because a redetermination is then urgently required.

(5) H. A. Rowland (Proc. Amer. Acad., 15, 75, 1879) has made an exhaus-

tive study of Joule's determinations of the mechanical equivalent of heat, and
he believes that Joule's several values have the weights here appended in

brackets : 442-8 (0) ; 427*5 (2) ; 426*8 (10) : 428*7 (2) ; 429*1 (1) ;
428-0 (1) ;

425-8 (2) ;
428-0 (3) ; 427*1 (3) ; 426*0 (5) ; 422-7 (1) ; 426*3 (1). Hence Kowland

concludes that 426-9 best represents the result of Joule's work. Verify

this. Notice that Rowland rejects the number 442-8 by giving it zero

weight.

(6) Encke gives the 8-60816" + 0*037 as the value of the solar parallax ;

D. Gill gives 8*802" + 0*005. Hence the merit of Encke's work is to the

merit of Gill's work, as (0-005)
2

: (0*037)
2=25 : 1369= 1 : 54-76. Or 54*76 may

be bet in favour of Gill's number against 1 in favour of Encke.

IV. To combine several arithmetical means each of which is

affected with a known probable (or mean) error, into one general

mean. One hundred parts of silver are equivalent to

49*5365 0*013 of NH
4C1, according to Pelouze ;

49*523 +00055 Marignac ;

49-5973 + 0-0005 Stas (1867) ;

49-5992 + 0*00039 Stas (1882),

where the first number represents the arithmetical mean of a series

of experiments, the second number the corresponding probable

error. How are we to find the best representative value of this

series of observations ? The first thing is to decide what weight
shall be assigned to each result. Individual judgment on the
" internal evidence

"
of the published details of the experiments

is not always to be trusted. Nor is it fair to assign the greatest

weight to the last two values simply because they are by Stas.

L. Meyer and K. Seubert, in a paper Die Atomgewichte der

Elemente, aus der Originalzahlen neu berechnet, Leipzig, 1883,

weighted each result according to the mass of material employed
in the determination. They assumed that the magnitude of the

errors of observation were inversely as the quantity of material

treated. That is to say, an experiment made on 20 grams of

material is supposed to be worth twice as much as one made on

10 grams. This seems to be a somewhat gratuitous assumption.
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One way of treating this delicate question is to assign to each

arithmetical mean a weight inversely as the square of its mean

error. F. W. Clarke in his " Recalculation of the Atomic Weights,"

Smithsonian Miscellaneous Collections, 1075, 1897, employed the

probable error. Although this method of weighting did not suit

Morley in the special case mentioned on page 549, Clarke con-

siders it a safe, though not infallible guide. Let A, B, C, . . ., be

the arithmetical mean of each series of experiments ; a, b, c,. . .,

the respective probable (or mean) errors, then, from (2),

A -H .

General Mean =
; . . (5)

1

a*
+
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conducted a certain process, and not how suitable that process is for
the required purpose. In combining different sets of determina-

tions it is still more unsatisfactory to calculate the probable error

of the general mean by weighting the individual errors according
to Clarke's criterion when the probable errors differ very consider-

ably among themselves. For example, Clarke (Z.c, page 126)

deduces the general mean 136-315 0*0085 for the atomic weight
of barium from the following results :

136-271 0-0106
;
136-390 0-0141 ; 135-600 0-2711 ;

136-563 0-0946.

The individual series here deviate from the general mean more

than the magnitude of its probable error would lead us to suppose.

The constant errors, in consequence, must be greater than the

probable errors. In such a case as this, the computed probable
error 0-0085 has no real meaning, and we can only conclude

that the atomic weight of barium is, at its best, not known more

accurately than to five units in the second decimal place.
1

V. Mean and probable errors of observations of different degrees

of accuracy. In a series of observations of unequal weight the

mean and probable errors of a single observation of unit weight
are respectively

The mean of a series of observations of unequal weight has the

respective mean and probable errors

m = *V ( -vkp) ->

iB - 6745Vf
2(?n>

2
)

l)3(j>)-

Example. A.n angle was measured under different conditions fourteen

times. The observations all agreed in giving 4 15', but for seconds of arc

the following values were obtained (the weight of each observation is given in

brackets) : 45"-00 (5) ;
31"-25 (4) : 42"-50 (5) ;

45"-00 (3) ; 37"-50 (3) ; 38"-33 (3) ;

27"-50 (3) : 43"-33 (3) : 40"-63 (4) ;
36"-25 (2) ;

42"-50 (3) ; 39"-17 (3) ;
45"-00 (2) ;

40"-83 (3). Show that the mean error of a single observation of unit weight
s + 9"-475, the mean error of the mean 39"-78 is l"-397. Hint. 2(p)

= 46

2(pv)
a = 1167-03 ;

n = 14
; 2(pa) = 1830-00.

The mean and probable errors of a single observation of weight

p are respectively

-V^-"-Wi^- (9)

1 W. Ostwald'smYigweon Clarke's work (I.e.) in the Zeit. phys. Cheni., 23, 187,1897.
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Example. In the preceding examples show that the mean error of an

observation of weight (2) is 6"-70; of weight (3) is.+ 5"-47; of weight (4)

4"-74 ; and of weight (5) 4"-24.

VI. The principle of least squares for observations of different

degrees of precision states that "the most probable values of the

observed quantities are those for which the sum of the weighted

squares of the errors is a minimum," that is,

PiW + JPaV + + VnV, minimum.

An error v is the deviation of an observation from the arithmetical

mean of n observations ; a "weighted square" is the product of

the weight, p, and the square of an error, v.

168. Observations Limited by Conditions.

On adding up the results of an analysis, the total weight of the

constituents ought to be equal to the weight of the substance itself
;

the three angles of a plane triangle must add up to exactly 180 ;

the sum of the three triangles of a spherical triangle always equal

180 + the spherical excess
;
the sum of the angles of the nor-

mals on the faces of a crystal in the same plane must equal 360.

Measurements subject to restrictions of this nature, are said to

be conditioned observations. The number of conditions to be

satisfied is evidently less than the number of unknown quantities,

i.e., observations, otherwise the value of the unknown could be

deduced from the conditions, without having recourse to measure-

ment.

In practice, measurements do not come up to the required

standard, the percentage constituents of a substance do not add

up to 100 ; the angles of a triangle are either greater or less than

180. Only in the ideal case of perfect accuracy are the conditions

fulfilled. It is sometimes desirable to find the best representative

values of a number of imperfect conditioned observations. The
method to be employed is illustrated in the following examples.

Examples. (1) The analysis of a Compound gave the following results :

37*2 /o of carbon, 44-1 % of hydrogen, 19*4 /
of nitrogen. Assuming each

determination is equally reliable, what is the best representative value of the

percentage amount of each constituent ? Let C, H, N, respectively denote

the percentage amounts of carbon, hydrogen, and nitrogen required, then

C + H = 100- Nee 100-0- 19-4 = 80-6. .-. 2C + H = 117-8; C + 2H = 124-7.

Solve the last two simultaneous equations in the usual way. Ansr. C = 36*97 / ;

H=43-86 / ;
N= 19-17 %. Note that this result is quite independent of
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any hypothesis as to the structure of matter. The chemical student will

know a better way of correcting the analysis. This example will remind us

how the atomic hypothesis introduces order into apparent chaos. Some

analytical chemists before publishing their results, multiply or divide their

percentage results to get them to add up to 100. In some cases, one consti-

tuent is left undetermined and then calculated by difference. Both practices
are objectionable in exact work.

(2) The three angles of a triangle A, B, G, were measured with the result

that ^ = 51; 5=94 20'; 0=34 56'. Show that the most probable values

of the unknown angles are 4 = 51 56'
; 5=94 15'

;
= 34 49.

(3) The angles between the normals on the faces of a cubic crystal were

found to be respectively a = 91 13'
;

= 89 47' ; y = 91 15'
;
8 = 89 42'.

What numbers best represent the values of the four angles ? Ansr. a = 90

43' 45"
;

= 89 17' 45"
; y = 90 0' 45"

;
8 = 89 57' 45".

(4) The three angles of a triangle furnish the respective observation

equations : A = 36 25' 47" ;
B = 90 36' 28"

; C = 52 57' 57" ;
the equation

of condition requires that A + B + O - 180 = 0. Let xv x
2t
x3 , respectively

denote the errors affecting A ,B, G, then we must have

x1 + x2+xs
= - 12 (1)

I. If the observations are equally trustworthy, x
1
= x2

= x3
= k, say. Sub-

stitute this value of x
lf
x2 x3 ,

in (1), and we get 3k + 12 = 0; or, k = - 4
;

.-. A = 36 25' 43"
;
B = 90 36' 24"

;
G = 53 57' 53".

The formula for the mean error of each observation is

Vu
*W
w + q

where w denotes the number of unknown quantities involved in the n ob

servation equations ; q denotes the number of equations of condition to be

satisfied. Consequently the w unknown quantities reduce to w -
q inde-

pendent quantities. 2(v
2
)
denotes the sum of the squares of the differences

between the observed and calculated values of A, B, G. Hence, the mean

error = n/T8 = 6"-93.

II. If the observations have different weights. Let the respective weights

of A, B, C, be px
= 4

; p2
= 2

; ps
= 3. It is customary to assume that the

magnitude of the error affecting each observation will be inversely as its

weight. (Perhaps the reader can demonstrate this principle for himself.)

Instead of x
x
= x2

= x3
= k, therefore, we write x x

=
J/c ;

x2
= \k ;

x3
= %k.

From (1), therefore, 13k + 144 =
;
ft= - 11*07 ;

xx
= - 2" '11 ;

x2
= - 5"'54 ;

x& = - 3" -69.

/ 2{pv
2
)m = Mean error = + V w + q

orm=+ 11*52. The mean errors mv m2 ,
w3 , respectively affecting a, 6, c, are

m m m
mi= _. m2= _.

TO3= __.

Hence

A = 36 25' 44
//-235"-76 ;

=90 36' 22"-468"-15
;
C=52 57' 53"-316"-65.

It is, of course, only permissible to reduce experimental data in
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this manner when the measurements have to be used as the basis

for subsequent calculations. In. every case the actual measure-

ments must be stated along with the " cooked
"

results.

169. Gauss' Method of Solving a Set of Linear Observation

Equations.

In continuation of 108, page 328, let x, y, z, represent the

unknowns to be evaluated, and let a
lt

a2 , . . ., bv b
2 ,

. . ., c
lt

c
2 ,

Bv B2
, . . ., represent actual numbers whose values have been

determined by the series of observations set forth in the following

observation equations :

OjX + b
xy + c

x
z = B

1 ;\

(1)

a2x + b
2y + c

2
z = B

2 ;

a^x + b
3y + c

z
z = B

z ;

a4x + by + c4
= B.

\

If only three equations had been given, we could easily calculate

the corresponding values of x, y} z, by the methods of algebra, but

these values would not necessarily satisfy the fourth equation.
The problem here presented is to find the best possible values of

x, y, z, which will satisfy the four given observation equations.
We have selected four equations and three unknowns for the sake

of simplicity and convenience. Any number may be included in

the calculation. But sets involving more than three unknowns are

comparatively rare. We also assume that the observation equa-
tions have the same degree of accuracy. If not, multiply each

equation by the square root of its weight, as in example (3) below.

This converts the equations into a set having the same degree of

accuracy.

I. To convert the observation equations into a set of normal

equations solvable by ordinary algebraic 'processes. Multiply the first

equation by av the second by a
2 , the third by a

3 , and the fourth by
a4. Add the four results. Treat the four equations in the same

way with bv b
2 ,

b
3 ,

64,
and with cv c

2 ,
c
3 ,

c4 . Now write, for the

sake of brevity,

[aa\ = a* + a* + a* + a 2
; [bb\ = b 2 + b 2 +V +V \

[ab\ = a
l
b
l + a

2b2 + asb3 + a^ ; [ac\ = a
Y
c
Y + a

2
c
2 + a

s
c
3 + a4c4 j

[aB\ = a
x
B

x + a
2
B

2 + a
z
B

3 + a
4
i?4 ; [bB\ = b

Y
B

x + b
2
B

2 + b
2
B

2 + 6
4i24 ;

and likewise for [cc]v [bc]v [cB]v The resulting equations are
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[aa\x + [ab\y + [ac\z = [aB\ ;'

[ab\x + [bb\y + [bc\z
=

[bB], ;
- . . (2)

[ac^x + [bc\y + [cc^z
=

[cB]v ,

These three equations are called normal equations (first set) in

x, y, z.

II. To solve the normal equations. We can determine the

values of x, y } z, from this set of simultaneous equations (2) by

any method we please, determinants
( 179), cross-multiplication,

indeterminate multipliers, or by the method of substitution. 1 The

last method is adopted here. Solve the first normal equation for

x, thus

x = A^ky -\fkz + \^k. . . (3)
[aa]i [aa] x [aa\ x

v '

Substitute this value of x in the other two equations for a second

set of normal equations in which the term containing x has dis-

appeared.

(m- ^*i>f+ (eh
-$&ty -H -^4>

For the sake of simplicity, write

The second set of normal equations may now be written :

[bb\y t [&>],*
= [q, ;\ ...

[6o]22/ + [cc\z = [ci?]2 . J
' > -W

Solve the first of these equations for y,

y~ t].
I+

l
bbV (5)

Substitute this in the second of equations (4), and we get a third

set of normal equations,

(m -
fUt*].)*

-
([bl

-
gj^i).

1 The equations cannot be solved if any two are identical, or can be made identical

by multiplying through with a constant.
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(6)

which may be abbreviated into [cc]^z{
=

[cB]z
. Hence,

k*
;

'

[bb]2, [bc]2 , . . ., [cc]3 , ... are called auxiliaries. Equations (3)

(5), (7), collectively constitute a set of elimination equations :

_ [ab]lt [ac]u
t
[aBl , \x =

[aa]i
y

y=-

W
Mi
[bb]2

z +

z +

z

(7)

The last equation gives the value of z directly; the second gives

the value of y when z is known, and the first equation gives the

value of x when the values of y and z are known.

Note the symmetry of the coefficients in the three sets of normal

equations. Hence it is only necessary to compute the coefficients

of the first equation in full. The coefficients of the first horizontal

row and vertical column are identical. So also the second row and

second column, etc. The formation and solution of the auxiliary

equations is more tedious than difficult. Several schemes have

been devised to lessen the labour of calculation as well as for test-

ing the accuracy of the work. These we pass by.

IV. The weights of the values of x, y, z. Without entering
into any theoretical discussion, the respective weights of z

f y, and x

are given by the expressions :

r ^ i
hh\ [ca]Jbb] r

'[ccj. \cc\lbb\
-

[bcy[bc]{
(8)

III The mean errors affecting the values of x, y, z.

a
x
x + b^tj + c^z

- B
1
= v

l ;

a
2
x + b

2y + c
2
z - B

2
= v

2 ;

Let

Let M denote the mean error of any observed quantity of unit

weight,

M

M

- \ n - io

n - w

for equal weights ;

for unequal weights

(9)

where n denotes the number of observation equations, w the number
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of quantities x, y, z, . . . Here w = 3, n = 4. Let M M
yi
M re-

spectively denote the mean errors respectively affecting x, y, z.

M MMMx = -^; My =', Mt
=~

JT . . (10)
Jp JPy slPz

Examples. (1) Find the values of the constants a and b in the formula

y = a + bx, (11)

from the following determinations of corresponding values of x and y :

y = 3-5, 5-7 8-2 10-3, . . . ;

x = 0, 88 182, 274,. . .

We want to find the best numerical values of a and b in equation (11). Write

x for a, and y for b, so as to keep the calculation in line with the preceding
discussion. The first set of normal equations is obviously

\aa\x + [ab\y = [aB\ ;
and [ab\x + \bb\y = [bR\.

" x ~
[aal

y +
[aa\

' * * y ~
[ bb]2

'

Again, [aa\ = 4
; [bb\ = 115,944 ; [ab\ = 544

; \aB\ = 27-7 ; [bR\ = 4,816-2 ;

\bb\ = 4,853-67 ; [6E]2 = 115,951-4. x = 3-52475 ; y = 0-02500
; or, reconvert-

ing x into a, and y into b, (11) is to be written,

y = 3-525 + 0-025z.

a.
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with weight 1 ; 4sc + y + z = 21, with weight 1
;
- 2a? + 6y + 6z = 28, with

weight . By the rule, multiply the last equation by \/j = and we get
set (12). Show that x = + 2*47 with a weight 24*6

; y = + 3*55 with a weight
13*6 ;

and z = + 1*9 with a weight 53*9. It only remains to substitute these

values of x, y, z, in (14) to find the residuals v. Hence show that M = 295.

Proceed as before for Mx ,
My ,
Mz .

(4) The length, Z, of a seconds pendulum at any latitude L, may be re-

presented by A. 0. Clairaut's equation : I, = L + A sin2.L, where L and A are

constants to be evaluated from the following observations :

L = 00' t 18 27', 48 24', 58 15', 67 4'
;

I m 0-990564, 0-991150, 0-993867, 0-994589, 0-995325.

Hence show that I = 0-990555 + 0*005679 sin2 . Hint. The normal equa-
tions are,

x + 0-44765 y = 0-993099 ; x + 070306 y = 0-994548.

(5) Hinds and Callum (Journ. Amer. Chem. Soc, 24, 848, 1902) represent
their readings of the percentage strength, y, of a solution of iron with the

photometric readings, x, of the intensity of transmitted light by the formula

y(x + b)
= a. The readings were

x =3-8, 4-3, 4-7, 5-3, 6-0, 6-7, 7*4, 8-1, 8-7, 9-7;

y x 102 = 8-64, 7-57, 6-92, 6-06, 5-28, 4-70, 4-22, 3-79, 3-52, 3-13.

The authors state that a = 0-2955
;
b = 0*375. The probable error of one

determination of y is given as 0-000034, or as 3 parts in 10,000,000. Use (9).

The above is based on the principle of least squares. A quicker

method, not so exact, but accurate enough for most practical pur-

poses, is due to Mayer. We can illustrate Mayer's method by-

equations (12).

First make all the coefficients of x positive, and add the results

to form a new equation in x. Similarly for equations in y and z.

We thus obtain,

9# - y - 2z = 15
;
5x + ly = 37 ;

x + y + 14s = 33.

Solve this set of simultaneous equations by algebraic methods

and we get x = 2-485; y = 3-511; z = 1'929. Compare these

values of x, y, z, with the best representative values for these

magnitudes obtained in Ex. (2), above.

V. Errors affecting two or more dependent observations. There

is a tendency in computing atomic weights and other constants for

all the errors to accumulate upon the constant last determined. The

atomic weight of fluorine is obtained from the ratio : CaF2
: CaS04 .

The calculation not only includes the experimental errors in the

measurement of this ratio, but also the errors in the atomic weight
determinations of calcium and sulphur. It has been pointed out

by J. D. van der Plaats (Gompt. Bend., 116, 1362, 1893) that with

sufficient experimental data the given ratio can be made to furnish

NN
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three atomic weights over which the errors of observation are

equally distributed, and not accumulated upon a single factor.

F. W. Clarke (Amer. Chem. Journ., 27, 32, 1902) illustrates the

method by calculating the seven atomic weights : silver, chlorine,

bromine, iodine, nitrogren, sodium and potassium given O = 16 ;

H = 1-0079 from thirty ratios arranged in the form of thirty

linear equations, thus,

Ag : Br = 100 : 74-080 ; .-. 100 Br = 74-080 Ag ;

KC103
:

3
= 100 : 39-154 .-. 39-154 K + 39-154 CI = 2920-608 ;

These thirty linear equations are reduced to seven normal equa-

tions as indicated above. By solving these, the atomic weights of

the seven elements are obtained with the errors of observation

evenly distributed among them according to the method of least

squares.

When two observed quantities are afflicted with errors of ob-

servation and it is required to find the most probable relation

between the quantities concerned, we can proceed as indicated in

the following method. The observed quantities are, say,

y = 0-5, 0-8, 1-0, 1-2;

x = 0-4, 0-6, 0-8, 0-9,

and we want to find the best representative values for a and b in

the equation

y = ax + b.

You can get approximate values for a and b by the graphic method

of page 355
; or, take any two of the four observation equations

and solve for a and b. Thus, taking the first and third,

0-5 = 0-4a + b ; 1-0 m 0'8a + b
;

.-. a = 1-25
;
b = 0.

Let a and ft be the corrections required to make these values

satisfy the conditions of the problem in hand. The required

equation is, therefore,

y = (1-25 + a)x +p.

Insert the observed values of x and y, so as to form the four

observation equations :

0-5 = (1-25 + a)0-4 + p; 1-0 = (1-25 + a)0-8 + /?;

0-8 = (1-25 + a)0-6 + p ;
1-2 = (1-25 + o)0-9 + fi;

From these we get the two normal equations
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0-1250 - 2-70a + 4-0/?; 0-0975 m l-97a + 2-7/?.

.-. a = + 0-089; p = - 0-029.

And finally

a = 1-25 + 0-089 = + 1-339 ;
b = 0-000 - 0-029 = - 0-029.

The best representative equation for the above observations is

therefore,

y = l-339z - 0-029.

See A. F. Ravenshear, Nature, 63, 489, 1901. The above method is given

by M. Merriman in A Textbook on the Method of Least Squares, New York,

127, 1891
; W. H. Keesom has given a more general method in the Com-

munication's from the Physical Laboratory at the University of Leiden, Suppl.

No. 4, 1902.

170. When to Reject Suspected Observations.

' There can be no question about the rejection of observations

which include some mistake, such as a wrong reading of the

eudiometer or burette, a mistake in adding up the weights, or a

blunder in the arithmetical work, provided the mistake can be

detected by check observations or calculations. Sometimes a

most exhaustive search will fail to reveal any reason why some

results diverge in an unusual and unexpected manner from the

others. It has long been a vexed question how to deal with

abnormal errors in a set of observations, for these can only be

conscientiously rejected when the mistake is perfectly obvious.

It would be a dangerous thing to permit an inexperienced or

biassed worker to exclude some of his observations simply because

they do not fit in with the majority.
" Above all things," said

S. W. Holman in his Discussion on the Precision of Measure-

ments, New York, 1901,
" the integrity of the observer must be

beyond question if he would have his results carry any weight
and it is in the matter of the rejection of doubtful or discordant

observations that his integrity in scientific or technical work

meets its first test. It is of hardly less importance that he should

be as far as possible free from bias due either to preconceived

opinions or to unconscious efforts to obtain concordant results."

Several criteria have been suggested to guide the investigator

in deciding whether doubtful observations shall be included in the

mean. Such criteria have been deduced by W. Chauvenet, Hagen,
Stone, Pierce, etc. None of these tests however is altogether

satisfactory. Chauvenet's criterion is perhaps the simplest to

NN*
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understand and most convenient to use. It is an attempt to

show, from the theory of probability, that reliable observations

will not deviate from the arithmetical mean beyond certain limits.

We have learned from (2) and (6), page 523,

04769
r= = 0-6745

If x =
rt, where rt represents the number of errors less than x

which may be expected to occur in an extended series of observa-

tions when the total number of observations is taken as unity, r

represents the probable error of a single observation. Any mea-

surement containing an error greater than x is to be rejected. If

n denotes the number of observations and also the number of

errors, then nP indicates the number of errors less than rt, and

w(l
- P) the number of errors greater than the limit rt. If this

number is less than J, any error rt will have a greater probability

against than for it, and, therefore, may be rejected.

The criterion for the rejection of a doubtful observation is,

therefore,

1 n
* P); .-vP- 2n

l-Me^dt. (l)
s/ttjo

By a successive application of these formulae, two or more doubt-

ful results may be tested. The value of t, or, what is the same

thing, of P, and hence also of n, can be read off from the table of

integrals, page 622 (Table XL). Table XII. contains the nu-

merical value of xjr corresponding to different values of n.

Examples. (1) The result of 13 determinations of the atomic weight of

oxygen made by the same observer is shown in the first column of the sub-

joined table. Should 19-81 be rejected? Calculate the other two columns of

the table in the usual way.

Observation.
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The deviation of the suspected observation from the mean, is 3 "59. By
Chauvenet's criterion, probable error = r = 0*7281, n = 13. From Table XII.,

x/r = 3-07, .*. x = 3-07 x 0-7281 = 22-7. Since the observation 19-81 deviates

from the mean more than the limit 22-7 allowed by Chauvenet's criterion,

that observation must be rejected.

(2) Should 16*01 be rejected from the preceding set of observations ?

Treat the twelve remaining after the rejection of 19*81 exactly as above.

(3) Should* the observations 0*3902 and 0*3840 in F. Rudberg's results,

page 527, be retained ?

(4) Do you think 203*666 in W. Crookes' data, page 531, is affected by
some " mistake "

?

(5) Would H. A. Rowland have rejected the " 442*8
"

result in Joule's

work, page 552, if he had been solely guided by W. Chauvenet's criterion ?

(6) Some think that " 4*88
"

in Cavendish's data, page 527, is a mistake.

Would you reject this number if guided by the above criterion ?

These examples are given to illustrate the method of applying
the criterion. Nothing more. Any attempt to establish an arbi-

trary criterion applicable to all cases, by eliminating the knowledge
of the investigator, must prove unsatisfactory. It is very question-

able if there can be a better guide than the unbiassed judgment
and common sense of the investigator himself. The theory you
will remember is only

" common sense reduced to arithmetic ".

Any observation set aside by reason of its failure to comply
with any test should always be recorded. As a matter of fact, the

rare occurrence of abnormal results serves only to strengthen the

theory of errors developed from the empirical formula, y = ke~
*2*2

.

There can be no doubt that as many positive as negative chance

deviations would appear if a sufficient number of measurements

were available. 1 "
Every observation," says G. L. Gerling in his

Die Ausgleichungs-Bechnungen der praktischen Geometrie, Ham-

burg, 68, 1843,
"
suspected by the observer is to me a witness of

its truth. He has no more right to suppress its evidence under the

pretence that it vitiates the other observations than he has to shape
it into conformity with the majority." The whole theory of errors

is founded on the supposition that a sufficiently large number of

observations has been made to locate the errors to which the

measurements are susceptible. When this condition is not ful-

filled, the abnormal measurement, if allowed to remain, would

exercise a disproportionate influence on the mean. The result

i F. Y. Edgeworth has an interesting paper
" On Discordant Observations

"
in the

Phil. Mag. [5], 23, 364, 1887.
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would then be less accurate than if the abnormal deviation had

been rejected. The employment of the above criterion is, therefore,

permitted solely because of the narrow limit to the number of ob-

servations. It is true that some good observations may be so lost,

but that is the price paid to get rid of serious mistakes.

It is perhaps needless to point out that a suspected observation

may ultimately prove to be a real exception requiring further

research. To ignore such a result is to reject the clue to a new
truth. The trouble Lord Eayleigh recently had with the density of

nitrogen prepared from ammonia is now history. The " ammonia"

nitrogen was found to be f^th part lighter than that obtained

from atmospheric air. Instead of putting this minute " error
"
on

one side as a "
suspect," Lord Eayleigh persistently emphasized

the discrepancy, and thus opened the way for the brilliant work of

W. Ramsay and M. W. Travers on "
Argon and Its Companions ".



CHAPTEE X.

THE CALCULUS OF VARIATIONS.

" Natura operatur per modos faciliores et expeditiones." P. de
Fermat. 1

171. Differentials and Variations.

Nearly two hundred years ago Maupertius tried to show that

the principle of least action was one which best exhibited the

wisdom of the Creator, and ever since that time the fact that

a great many natural processes exhibit maximum or minimum

qualities has attracted the attention of natural philosophers. In

dealing with the available energy of chemical and physical phen-

omena, for example, the chemist seeks to find those conditions

which make the entropy a maximum, or the free energy a mini-

mum, while if the problems are treated by the methods of ener-

getics, Hamilton's principle :

" If a system of bodies is at A at the time tv and at B at the time

t2 ,
it will pass from A to B by such a path that the mean value of the

difference between the kinetic and potential energy of the system in

the interval t2
- tx is a minimum "

is used. Problems of this nature often require a more powerful
mathematical tool than the differential calculus. The so-called

calculus of variations is used.

If it be required to draw a curve of a certain fixed length from

to A (Fig. 173) so that the area bounded by OB, BA, and the

curve may be a maximum. The inquiry is directed to the nature

of the curve itself. In other words, we want the equation of the

curve. This is a very different kind of problem from those

1 " Nature works by the easiest and readiest means." P. de Fermat in a letter to

M. de la Chambre, 1662.

567
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hitherto considered where we have sought what special values

must be assigned to certain variables in a given expression in

order that this function may attain a maximum or minimum
value.

Whatever be the equation of the curve, we know that the area

must be furnished by the integral jydx ;
or jf(x)dx. The problem

now before us is to find what must be the form of f(x) in order

that this integral may be a maximum. It is easy to see that if

the form of the function y = f(x) is variable, the value of y can

change infinitesimally in two ways, either

(i) By an increment in the value of the independent variable

x; or

(ii) By a change in the form of the function as it passes from

the shape f(x) to, say, the shape 0(#) ; or, to be more explicit, say
from y = sin x to, say, y = tan x.

The first change is represented by the ordinary differential dy j

the second change is called a variation, and is symbolized, in

Lagrange's notation, by 8y. Consequently, the differential

dy = f(x + dx) -f(x);
while the variation

Sy = <p(x)
-

f(x). . . . (1)

Care must be taken that the symbol
" 8

"
is only applied to those

measurements which are produced by a

change in the form of the function. The

change, dy, is represented in Fig. 173

by dy = NQ - MP
; the change &y by

Sy = MF -MP; dx = MN; Sx = MM'.

It is not difficult to show from the above

diagram that the symbols of differentia-

tion and variation are interchangeable, so that

dSy = My (2)

Fig. 173.

172. The Variation of a Function.

To find the variation not the differential of a function. Let

y be the given function. Write y + 8y in place of y, and subtract

the new function from the old, and there you have it. We at once

recognize the formal analogy of the operation with the process of

differentiation. Thus, if

u = y
n

,
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the variation of u is

du
8u = (y+8yy-y =

^fy,
., . (3)

by Taylor's theorem, neglecting the higher order of infinitesimals.

Let us adopt Newton's notation, and write y for dy/dx ; y for

d2
y/dx

2
; . . ., then, if

when y changes to y + 8y, y becomes y + S#. Accordingly

hu =
du n du n , . du n du n /dy\

r/y
+
tf 3 *> 8u - Ty*y + t^\)> w

fay

by the extension of Taylor's theorem, neglecting the higher powers
of small magnitudes. You will remember that "<$,'' on page 19,

was used to represent a small finite change in the value of the in-

dependent variable, while here "8" denotes an infinitesimal

change in the form of the function.

To evaluate 8y, 8y, hy you follow exactly the same methods.

.*:? $(
d
y\

d(y + w dy- d*y. ,^_^%. _
ty ~ \dx) dx dx~ dx > d

dx2 dx2 "" W
So far as I know the verb " to variate

"
or u to vary," meaning to

find the variation of a function in the same way that M to differ-

entiate
" means to find the differential of a function, is not used.

173. The Yariation of an Integral with Fixed Limits.

Let it be required to find the variation of the integral

U =
\

l

V.dx .... (6)

=
f{

x>y>%%-)*> or
'
7= fa y>y>y>-- ) (7)

The value of U may be altered either by

(i) A change in the limits x
x
and x ; or,

(ii)
A change in the form of the function.

We have already seen that if the end values of the integral are

fixed, any change in the independent variable x does not affect the

value of U. Let us assume that the limits are fixed or constant.

The only way that the value of U can now change is to change
the form of V =

/(. .
.).

But the variation of V is SV, and, by the

above-mentioned rule,

where
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*^ + %**%** ^
For the sake of brevity, let us put

P =
fy'>

Q =
d$>

B=
df'>

(9)

and we get

Let us now integrate term by term. We know of old (A), page

205, that

,AV i \
du ^

so that if we put Q = u; dQ = du; dSy = dv
;
v =$y, then

similarly, by a double application of the method of integration by

parts, we find that

and consequently, after substituting the last two results in (10),

we get

*H:(*-S+SW(-IM*th <>
The last two terms do not involve any integrations, and depend

upon the form of the function only. Let I represent the aggregate

of terms formed when x is put for x
;
and I

x
the aggregate of

terms when x
1
is put for x

;
then (11) assumes the form

8U =I
X
- I +

\ KByte, . . . (12)

where K has been put in place of the series

s-'-S-g.
The variation when the function V includes higher derivatives than

y, is found in a similar manner.

175. Maximum or Minimum Values of a Definite Integral.

Perhaps the most important application of the calculus of varia-

tions is the determination of the form of the function involved in a

definite integral in such a manner that the integral, say,
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V.dx, . . . (14)

shall have a maximum or a minimum value. In order to find a

maximum or a minimum value of a function, we must find such a

value of x that a small change in the value of x will produce a change
in the value of the function which is indefinitely small in com-

parison with the value of x itself. We must have

hU =
;
and

I,
- 1 + P KSydx = 0. . (15)

This requires that

I _ IQ = ;
and

| KBydx = 0, . . (16)
Jxo

for if each member did not vanish, each would be determined by
the value of the other. Since Sy is arbitrary, the second condition

can only be satisfied by making
dQ d2B

Most of your troubles in connection with this branch of the calculus

of variations will arise from this equation. It is often very re-

fractory ;
sometimes it proves too much for us. The equation then

remains unsolved. The nature of the problem will often show

directly, without any further trouble, whether it be a maximum or

a minimum value of the function we are dealing with
;

if not, the

sign of the second differential coefficients must be examined. The

second derivative is positive, if the function is a minimum ; and

negative, if the function is a maximum. But you will have to look

up some text-book for particulars, say B. Williamson's Integral

Calculus, London, 463, 1896.

Examples. (1) What is the shortest line between two points ? A straight

line of course. But let us see what the calculus of variations has to say about

this. The length of a curve between two points whose absciss are xx and x
,

is, page 246,

fcf^W* <
18>

This must be a minimum. Here 7" is a function of y. Hence all the terms

except dQldx vanish from (17), and we get

g = 0;or,Q = C, . , . . . (19)

where C is constant. But, by definition (9),

9 _f,_*_ =
, ... , (20)
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since V - \/l + #
2

; .. dV = (1 + yap* # . d#. Accordingly,

2/
= (l+^)Cf

2
; .-.^(l-O-l; .-. = a, . . (21)

where a must be constant, since G is constant. Hence, by integrating y = a,

we get

y = ax + b, (22)
where b is the constant of integration. The required curve is therefore a

straight line (8), page 90. Again, from (16) and (20),

^-^iTir^-TO^ <28 >

If the two given points are fixed, 5^ = 0, and Sy = 0, hence I
x
- 1 vanishes.

Let x
, y ,

and x
lt ylt be the two fixed points. Then,

y = ax + b; y1
= ax1 + b (24)

If only x
,
and a^ are given, so that y and y1

are undetermined, we have, by
the differentiation of (24), yx

= a. Hence, by substitution in (23),

dy a= a
'>

'

-JFfr
Wi - *v) = = <25 )

Since 8y and Zy are arbitrary, (25) can only be satisfied when a = 0. The

straight line is then y = b. This expresses the obvious fact that when two

straight lines are parallel, the shortest distance between them is obtained by

drawing a straight line perpendicular to both.

(2) To find the " curve of quickest descent
" from one given point to

another. Or, as Todhunter puts it,
"
suppose an indefinitely thin smooth tube

connects the two points, and a heavy particle to slide down this tube ; we

require to know the form of the tube in order that the time of descent may be

a minimum ". This problem, called the brachistochrone (brachistos = shortest
;

chronos= time), was first proposed by John Bernoulli in June, 1696, and the

discussion which it invoked has given rise to the calculus of variations. Any
book on mechanics will tell you that the velocity of a body which starts from

rest is, page 376, Ex. (4),

=
^2gy, 5 . c (26)

where the axis y is measured vertically downwards, and the <c-axis starts from

the upper given part. The time of descent is therefore

Hm-^^-kfr^ <27>

as you will see by glancing at page 569, (6). Accordingly, we take

T-$p? . .
-

. . m
so that V only involves y and y. Hence, for a minimum, we have

_ dQ . dV d fdV\ _

When "Pdoes not contain x explicitly, the complete differential of the function

F-/(y,$,f,...), (30)
is evidently

dV_dVdy ,dVdy _p%, dl + Bdl^ ,
ft1

*

lx~~ dy'dx* c#*<^ dx
+ Vdx

+
dx + "-> (

61
>
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as indicated on page 72. Multiply (17) through with dyjdx, and subtract

the result from (81). The P terms vanish, and

1M^!^)-(H-!)-^----
remains. This may be written more concisely,

dV = d / dy\ _JL/dR dy _
\

dx dlc\^dx) dx\dx'dx *)

which becomes, on integration,

v _ Qdy_dR t d^dPy (32)v ~ Vdx dx dx
n
dx*

+ ' * * + u v '

where C is the constant of integration. Particular cases occur when P, Q, or

R vanish. The most useful case occurs, as here, when V involves only y and

y. In that case, (29) reduces to

V-& + 0. . . . . 03)

tfrom (28) we get

a /TTF
^j/o+W

1"*"
"Vy(i + jf

8
)

F - J1+ F- 1

V* + <?

1
C; . (34)

Consequently,

2/(1 + y
2
)
= constant, say = 2a. . . (35)

. f^Y _ 2a ~ y ?x _ / y \t= y
* (36)' '

\<W
~

y
' "dy-\2a-yj J2ay -

y*'

On integration, using (17), page 193,

x = o vers
-
|- si 2y -

y* + 6, (37)

where 6 is an integration constant. This is the

well-known equation called the cycloid (Fig. 174).

The base of the cycloid is the as-axis, and the

curve meets the base at a distance 6, or, Ox,

Fig. 174, from the origin. When 6 = 0, the origin is at the upper point so

that x = 0, when 6 = 0. Now

But the extreme points are fixed so that 5y and 5^ vanish, hence, Ix
- I also

vanishes. If only the abscissa of the lower point is given, not the ordinates,

J vanishes, as before, and therefore,

*- .... (39)

But 8yx
is arbitrary,- hence, if I

x
is to vanish, yx must be zero. This means

that the tangent to the cycloid at the lower limiting point must be horizontal

with the cc-axis.

175. The Variation cf an Integral with Variable Limits.

The preceding problem becomes a little more complex if we as-

sume that we have two given curves, and it is required to find " the
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curve of quickest descent" from the one given curve to the other.

Here we have not only to find the path of descent, but also the

point at which the particle is to leave one curve and arrive at the

other. The former part of the question is evidently work for the

calculus of variations, and the latter is readily solved by the differ-

ential calculus : given the curve, to find its position to make t a

minimum. The value of the integral

U =
\

Xl

Vdx, . . . . (40)

not only changes when y is changed to y + Sy, but also when the

limits
tfj

and x become x
1 + dxv and x + dx respectively. The

change of the limits augments U by the amount

1*1

+ ^l f*o + dxo

V.dx - V .dx; . (41)
~ *i r J *o

or, neglecting the higher powers of dx
x
and dx

,
U receives the

increment

dU = V
1
dx

1
~ V dx . . . . (42)

The total increment of U is therefore

Total incr. U = dU + SU = V
l
dx

1
- V dxQ +8 V. dx. (43)

In words, the total increment which a quantity receives from the

operation of several effects is the sum of the increments which each

effect would produce if it acted separately. This is nothing but the

principle of the superposition of small motions, pages 70 and 400,

under another guise.

The maximum-minimum condition is that the total increment

be zero. This can only obtain when V
1
= 0, and V = 0. We

thus have two new conditions to take into consideration besides

those indicated in the preceding section.

Example. Find the " curve of quickest descent " from one given curve to

another. Ex. (2), page 572, has taught us that the " curve of quickest descent"

is a cycloid. The problem now before us is to find the relation between the

cycloid and the two given curves. We see from (15) and (43) that the maxi-

mum-minimum condition is

Vl
dx1

- Tq^o + I1
- IQ + jKSydx = 0. . . . (44)

J X
Q

re can use the results of Ex. (2), page 573, equations (33) and (38), there-

tie maximum-minimum condition becomes

i~~i
\tyi(l + 2/i

2
) VZ/o^ + ^/o

2
)

J x \ axJ
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As before, (29) holds good, consequently,

n/2/i(1 + 2/
2
)
= >/2a. .... (46)

... Vx
dx

x
- VQdx + ^gj* - |> )

= 0. . . (47)

Eemembering that the end values of the curve are x , y ,
and a^, 2/l5

let y
suffer a variation Sy so that

r = y+5y, (48)

with fixed limits, and, at the same time, x
, y , and xx , yx , respectively become

x
,
F

,
and x

x ,
Y

x
. Let us find how 5yQ and 8yx

are affected when the values

of x change respectively to x + dxQ ,
and xx + dx

x . By Taylor's theorem,
instead of yx becoming Yx , we have Y

x changed to

dY, 1 dT,Y^ dx
x

dx^W^dx^ + <
49

>

or, from (4) an
d

(48),

to + 8yJ + (i^ + WiSpl ' <fal
)
+ '

'"

' (50)

Neglecting the higher powers of dx
x
and the product Syv dxx ,

Y
x becomes yx + 8yx + yx

dx
x , . . . (51)

as a result of the variation and of the change of xx into xx + dx
x

.

Let the equation of one of the curves be

2/=/(*i) (52)

then the abscissa of the end value of Y
x
is changed into f(xx + dx

x )
after the

variation. Consequently, after variation,

Vi + tyi +'yidxx =f(xx + dxj =f{xx) +f'{xx)dxxt

by Taylor's theorem. From (50) we can cancel out the y'a and

ty = {/(i) -
yi)dx > (

53)

remains. A similar relation holds good between Sy and dx .

Let us return after this digression to (47), and, in order to fix our ideas,

let the two given curves be

yx
= ma^ + a

; y = mx + b; .-. yx
= m

; y = n. . (54)

From (53) we have

Syx
= {m - ^x)dxx ; Sy = (n

- y )dx . . . . (55)

Substitute these values in (47), and

{ 7l+ Js(m " *l)
}
dXl ~{ Vo + Wa{n

~
**}**

= ' ' (56)

Since dxj and dx are arbitrary, the coefficients of dxx and dxQ must be

separately zero in order that (56) may vanish.

.M+.fcm-0;l + fe.-0;.g i;g~. . (57)

Now compare this result with (18), page 96, and you will see that the two

given curves are at right angles with the " curve of quickest descent".

176. Relative Maxima and Minima.

After the problem of the brachistochrone had been solved,

James Bernoulli, brother of John, proposed another variety of

problem the so-called isoperimetrical problem of which the fol-
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lowing is a type : Find the maximum or minimum values of a certain

integral, Uv when another integral, U2 , involving the same vari-

ables has a constant value. The problem proposed at the beginning
of this chapter is a more concrete illustration. Here, 8^ must

not only vanish, but it must vanish for those values of the vari-

ables which make U
2 constant. It will be obvious that if

U-^ be

a maximum or a minimum, so will U
1 + aU2 also be a maximum

or a minimum
;
a is an arbitrary constant. The problem therefore

reduces to the determination of the maximum or minimum values

of U
x + aU2 . If

U
1 =\*

1

V
1dx; U2

=
\

X1

V
2dx; . '. (58)

J *o J *o

U
x + aU2 will be a maximum or a minimum when

J (Vi + V2a)dx = 0, . . . (59)
*o

is a maximum or a minimum. When U2 is known, a can be

evaluated.

Example. Find the curve of given length joining two fixed points so

that the area bounded by the curve, the aj-axis, and the ordinates at the fixed

points may be a maximum. Here we have

TJX
=
j\dx ; U, =/^V

1 + (i)^' ' '
(
6

)

as indicated on page 246. Here then

Vx + aV2
= y + ajl + f- (61)

We require the maximum value of the integral

^/?f-W^Wi_+IIH- <62>

7 is a function of y and y, hence from (19) we must have

V=P$ + C; (63)

i ay2 a
... y + ajrTJ^jTr~+Cli .:y+ :jrTj^cl,. (64)

By a transposition of terms,

1 +
\dx)

~
(y

- CJ*' -\dx)
~
a*-(y- C,)

2 ' ' t65)

which becomes, on integration,

x-C2
= J a2 - {y- CJ2

; or, {x
- C2)

2 + {y
- Ctf = a\ . (66)

This is obviously the equation of a circular line. The limits are fixed, and

therefore Ix
- I = 0. The constants a, Clt and C2 can be evaluated when

the fixed points and the length of the curve are known.
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177. The Differentiation of Definite Integrals.

I must now make a digression. I want to show how to find the

differential coefficient, du/da, of the definite integral u = \f(x, a)dx
between the limits yx

and y ,
when yx

and y are functions of a.

Letf(x, a)dx become f(x, a) after integration, we have therefore

u =
I f{x, a)dx = f(yv a)

- f(y , a). . (67)

Hence, on partial differentiation with respect to yv when yQ is

constant
;
and then with respect to yQ,

when y1
is constant, we get

7)u d ~du d

ay,

=
jjfte

a>*/<* a)'~wr o
/(y ' a)=fiy'" ay (68)

Now suppose that a suffers a small increment so that when a be-

comes a + h, u becomes u + k, then, keeping the limits constant,

iucT.v = j{f'(x,a + h)-f(x,a)}dx. . . (69)

Dividing by 8a, and passing to the limit, we have

mcr. u = [y.
Ax,a+h)-f{xt a)

. dM[y, df'(x,a)

Incr. a )y h ' ' '

da )y da
a ^ iK)}

If both yx
and y are functions of a, then du/da must be the

sum of three separate terms, (i) the change due to a
; (ii) the change

due to y1 ;
and (iii) the change due to y . These separate effects

have been evaluated in equations (68) and (70), consequently,

4J>^-*** -&& ft

The higher derivatives can be obtained by an application of the

same methods.

178. Double and Triple Integrals.

We now pass to double integrals, say,

U=jjVdxdy, .... (73)

where V is a function of x, y, z, p, and q, and

dz dz /.,.

*-/*""*
' <74>

We apply the same general methods as those employed for single

integrals, but there are some difficulties in connection with the

limits of integration of multiple integrals. Let 8z denote the varia-

tion of z which occurs when the form of the function connecting z

with x, and y is known, x and y remaining constant during the

00
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variation. Further, let SV denote the variation of V, and 8U the

variation of U, when z becomes 8z
;
then by the preceding methods,

w=^ +%^ +Tqh=Pte+QSp+%h, (75)

where we have put for the sake of convenience,

*-&-?"-? <-
We therefore write, from (75),

8 17=
fyvdxdy

=
jj(p& +Q^+ B^)dxdy.

. (77)

Still keeping on the old track,

-oi(*-s*f)**

The differential coefficients with respect to x and y are complete.
We get, on integration with respect to y,

[*'["'
^(R&z)dxay=\'

1

\Rte~\'

X

dx, . . (79)
JxoJyou"L J*oL J 0O

where RBz
, as on page 232, represents the value of RBz wheu

y1
and y are each substituted in place of y, and the latter then

subtracted from the former. Again, from (70) followed by a trans-

position of terms, we get

r-r*- if.** -[<*>!]: m
where (QSzJy denotes the value of (QSzJy when yl

and y are

each substituted in place of y, in Qdx, and the latter subtracted from

tha former. Hence, we may write

JT/^-M:-J>>i]::- <

By substituting (79) and (81) in place of (78), we get

If the limits yx
and y are constant, y x

and y vanish, and we can

therefore neglect the last term. If the limits also change, we must
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add on a new term in accordance with the principles laid down in

175.

For the maximum-minimum condition, BU of (82) can only
vanish when the coefficient of Sz, namely,

*-2-S-*
The solution of this partial differential equation furnishes z in terms

of x, y, and arbitrary functions
;
the latter must be so determined

that the remaining terms of (82) vanish.

For the triple integral

U m fSJVdxdydz, . . . (84)

where V is a given function of u, x, y, z, p,q,r; and u is a function

such that

du du du ,_%

(86)

(87)

(88)

We have also



CHAPTER XI.

DETERMINANTS.

"
Operations involving intense mental effort may frequently be re-

placed by tbe aid of other operations of a routine character,

with a great saving of both time and energy. By means of the

theory of determinants, for example, certain algebraic opera-

tions can be solved by writing down the coefficients according to

a prescribed scheme and operating with them mechanically."

E. Mach.

179. Simultaneous Equations.

This chapter is for the purpose of explaining and illustrating a

system of notation which is in common use in the different branches

of pure and applied mathematics.

I. Homogeneous simultaneous equations in two unknowns.

The homogeneous equations,

a
Y
x + b

xy =
;
a
2
x + b

2y m 0, . . (1)

represent two straight lines passing through the origin. In this

case ( 29), x = and y = 0, a deduction verified by solving for

x and y. Multiply the first of equations (1) by b
2 ,
and the second

by bv Subtract. Or, multiply the second of equations (1) by av
and the first by a

2 . Subtract. In each case, we obtain,

x(a1
b
2
- a

2b{)
=

; y{a2
b
x
- a

x
b
2)
= 0. . . (2)

Hence, x =
;
and y = ; or,

a-J)2
- a

2\ =
; and a

2
b
Y
-
ajb2

= 0. . (3)

The relations in equations (3) may be written,

av b
x

I
=

; and \a
2 ,

b2 1 = 0, . . (4)

a
2 ,

b2 \ \av &J
where the left-hand side of each expression is called a determinant.

This is nothing more than another way of writing down the differ-

ence of th% diagonal products. The letters should always be taken

580
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in cyclic order so that b follows a, c follows b, a follows c. In the

same way 2 follows 1, 3 follows 2, and 1 follows 3.

The products axb^ a^, are called the elements of the determinant ;

Oj, fej, a^ o2,
are the constituents of the determinants. Commas may or may

not be inserted between the constituents of the horizontal rows. When only

two elements are involved, the determinant is said to be of the second order.

From the above equations, it follows that only when the de-

terminant of the coefficients of two homogeneous equations in x and

y is equal to zero can x and y possess values differing from zero.

II. Linear and homogeneous equations in three unknowns.

Solving the linear equations
a

x
x + b

xy + c
x
=

; a^x + b
2y + c

2
= 0, . . (5)

for x and y, we get

= b
x
c
2
- b

2
c
x ( = 0la9

- c
2
a
x

a
Y
b
2
- b

x
a
2

' y a
x
b
2
- b

x
a
2

' ^ '

If a
x
b
2
- b

x
a
2
=

0, x and y become infinite. In this case, the two

lines represented by equations (5) are either parallel or coincident.

When

x = _ = qo .

y m _ = Q^

the lines intersect at an infinite distance away. Reduce equations

(5) to the tangent form, page 90,

but since a-fi2
- b

x
a
2
= 0, a

1/b1
= a

2/b2
= the tangent of the angle

of inclination of the lines ;
in other words, two lines having the

same slope towards the #-axis are parallel to each other. 1

When the two lines cross each other, the values of x and y in

(6) satisfy equations (5). Make the substitution required.

a
x{
b
x
c2
- b

2
c
Y) + b^c^ - c

2
a

x) + c^a^ - a
2
b
x)
= 0,

a
2(V2

~ Vi) + k*(c i
a
2
~
<*i) + c

2 A - a2&i) - 0,

or, writing
X Y

x =-g ;
and y =

^,
. . . . (8)

we get a pair of homogeneous equations in X, Y, Z, namely,

a
Y
X + b

x
Y + c

x
Z =

;
a
2
X + b

2
Y + c

2
Z = 0. (9)

1 Thus the definition,
"

parallel lines meet at infinity," means that as the point

of intersection of two lines goes further and further away, the lines become more and

more nearly parallel.
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Equate coefficients of like powers of the variables in these identical

equations.
.*. a

x
: b

x
: o

x
= a

2
: b

2
: c2 ,

or, from (8) and (6),

X :Y: Z = b
x
o
2

b
2o1 : c

x
a
2 c

2
a

Y
: a

1
b
2
- a

2
b
lt

=
\
b
i

cihl c
i <h| :K M- (10)

(11)

\b2
c
2 \ \c2 a2 \ \a2

b
(jL

The three determinants on the right, are symbolized by

I
a

i
b

i
c
i II

a2
b
2

c
2 1

where the number of columns is greater than the number of rows.1

The determinant (11), is called a matrix. It is evaluated, by

taking the difference of the diagonal products of any two columns.

The results obtained in (10) are employed in solving linear

equations.

Examples. (1) Solve 4<e + 5y = 7 ;
Bx - lOy = 19.

X:Y:Z = i 5,
- 71:1- 7, 4 l : I 4, 51;

|-10, -19 I 1-19, 3| | 3,-10 1

= -165:55: -55; or x= + 3 and y= -1.

(2) Solve 20x - 19y = 23
;

19a; - 20y = 16. Ansr. x = 4, y = 3.

(3) Sqtye the observation equations :

-5x-'2y = -4
;

-14a; + 'By = 1-18. Ansr. x m 2, y = 3.

(4) Solve \x- \y = 6 ; $x - %y = - 1. Ansr. x = 24, y = 18.

The condition that three straight lines represented by the

equations
a

Y
x + b y -r ^ = ;

b
2
x + b

2y + c
2
=

; a^x + b
3y + c

3
= 0, (12)

may meet in a point, is that the roots of any two of the three

lines may satisfy the third
( 32). In this case we get a set of

simultaneous equations in X, Y, Z.

a
1X-^b1Y+c1

Z= a
2X+b2Y+c2

Z = asX+bsY+c3
Z = 0, (13;

by writing x = XIZ and y = Y\Z in equations (12). From the

last pair,
Y:Z =

\b2 ,
c
2 \:\g2 ,

a
2 \:\a2,

b
2 \.

. (14}

^8> C3 1 I
C
3>

a3 I I
a& S

But these values of x and y, also satisfy the first of equations (3),

hence, by substitution,

h\K c
2

|

+Mc2 ,
aJ + cJag, 62 |

= 0, . (15)

K cal c3 as\ l a8> hi

1 It is customary to call the vertical columns, simply
" columns "

;
the horizontal

rows, "rows".
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which is more conveniently written

a
x
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181. The Solution of Simultaneous Equations.

Continuing the discussion in 179, let the equations

a
i
x + \V + <>iZ

=
di ;

a
2
x + b2y + c

2
z = d

2 ;
a
3x + b$ + c

zz
= d

z , (18)

be multiplied by suitable quantities, so that y and z may be elimi-

nated. Thus multiply the first equation by Av the second by A 2 ,

the third by Az, where Av A
2 ,
A

z ,
are so chosen that

Mi + M2 + Mi =
[ Mi + <V*2 +Ms = 0. (19)

Hence, by substitution,

x{aY
A

x + a
2
^

2 + a
3A 3)

= d^ + d
2
A

2 + d
3
4

3
. (20)

Equations (19) being homogeneous in Av A 2 ,
Az ,

we get, from (10),

A
1 :A2 :A s

= \b
2

b
9
l:'\b3 M : I 6

X
b
2

\c2
c
3 1 I

C3 Cj I I Cj c
2

Substituting these values of Av A
2,
A

3 ,
in equations (20), we get,

as in equations (14), (15), (16),

(21)

a2 b
s

c
l
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(5) To illustrate the solution of simultaneous equations
"
by the writing

down of the coefficients according to a fixed scheme and operating upon them

according to a prescribed scheme," take the proof of (2), from (1), page 444,

as an exercise. In equation (1) take z as an independent variable and solve

the two simultaneous equations for dx/dz and dyfdz. Hence,

\QX
B

x
B

1 Px

4? - 1 #2 -^2 <ty -^2 P2 dx dy dz

fe
~

P, Q1

'' dz
= Px Ql

;

'

I Qx
R

x
|

=
prPTr I P~Qx\

|P2 Q2 P2 Q2 \Q2 B2 \ \B2 P2 | |P2 Q2 \

which has the same form as (2), page 445.

182. Test for Consistent Equations.

It is easy to find values of x and y in the two equations

a
x
x + b

Yy + c
x
=

;
a

2
x + b

2y + c
2
= 0,

as shown in 179, (6) ; similarly, values for x, y f
and z in the

equations

a
x
x + b

xy + c
Y
z + d

x
=

; a^x + b
2y + c

2
z + d2

==
;

a& + b
zy + c

s
z + dz

= 0,

can be readily obtained, and generally, in order to find the value

of 1, 2, 3, . . . unknowns, it is necessary and sufficient to have

1, 2, 3, . . , independent relations (equations) respectively between

the unknowns.

If there are, say, three equations and only two unknowns, it is

possible that the values of the unknowns found from any two of

these equations will not satisfy the third. For example, take the set

3a? - 2y = 4
;
2x + y = 24

;
x + y = 2.

On solving the first two equations, we get x = 4, y = 4. But these

values of x and y do not satisfy the third equation. On solving the

last two, x = -
8, y = 10, and these values of x and y do not satisfy

the remaining equation. In other words, the three equations are

inconsistent. Consequently, it is a useful thing to be able to find

if a number of equations are consistent with each other
; in other

words, to find if values of x and y can be determined to satisfy all

of a given set of equations. For instance, is the set

a
x
x + b

xy + c
x
=

; a
2
x + b

2y + c
2
=

; a^c + b3y + c
3
=

0, (23)

consistent? From the first two equations, page 581, we get

ajbi
- b

Y
a2

> y a
Y
b2

- \a2

' ' v"*>

Substitute these values of x and y in the last of equations (23), the
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two unknowns disappear, and, if the equations are consistent,

as{bx
c2

- b2cx) + bz(cxa2
- c2ax) + 0,(0^ - a2bx)

=
0,

remains. But this result is obviously the expansion of the de-

terminant

= 0, . . . (25)a
l
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188. Fundamental Properties of Determinants.

The student will get an idea of the peculiarities of determinants

by reading over the following :

I. The value of a determinant is not altered by changing the

columns into rows, or the rows into columns.

It follows direotly, by simple expansion, that

and <h
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This is illustrated by the expansion of the following :

a2

h cs \

ma-L
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from X. and III.,
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The proof follows directly on expanding the right side of the

equation. We thus obtain,

a
Y
dv \e2

d\e2 I
a

a
2 fc

(dx
e
2
- d

2
e
x)

I a
1 \

+ I b
x
ev a

L
d
2

b
2
ev a

2
d

Cj

2
u
2

= a, *x

Since the value of a determinant is not altered by writing the

columns in rows and the rows in columns, the product of two

determinants may be written in several equivalent forms which all

give the same result on expansion. Thus,, instead of the right

side of (38), we may have

etc.a
x
d

x + \d2y
a

x
e
x + b

x
e
2

Mi + hdv <Vi + he
2
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then, d(D) = x
xdy2 + y2

dx
x
- x

2dyl
- yY

dx
2 ;

=
(y2dxx

- yx
dx

2) + {xxdy2
- x

2dyx) ;

=
|^i 2/il +K d

Vi\
(39)

\dx2 y2 \ \x2 dy2 \

If the constituents of the determinant are functions of an in-

dependent variable, say t, then, writing x
x
for dx/dt } y2

for dyjdt
and so on, it can be proved, in the same way,

>K fill d(D)/dt=\x
x
2 V*

Examples. (1) Show that if D =

d(D) = I dx1 Vl z
x

I +

+ K Vi
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Dx2

~b
2u

bxbz

~d
2U

~dy~dz

~d
2U

(43)

~dxdy

l*u

7)y~dx 7>y
2

~d
2u ~d

2u
'dz'bx 'bybz

is called a Hessian of u and written H(u), or simply H. The

Hessian, be it observed, is a symmetrical determinant whose

constituents are the second differential coefficients of u with

respect to x, y, z. In other words, the Hessian of the primitive

function u, is the Jacobian of the first differential coefficients of u,

or in the notation of (42) ,

(~bu ~du ^u\

ydx' ~by ^z)
H(u) =v '

*(x, y, z)

II. Jacobia?is and Hessians of interdependent functions.

(44)

If

~bu ~dv

?>X
= *

(
v
'lx

~dll . 3fl

Eliminate the function /() as described on page 449.

~du bv ~du *dv

~bx
'

~oy ~dy'~dx~
'

or 0. (45)~du ~du

~dx ~oy

7)v *bv

~dx "by

That is to say, ifu is afunction of v, the Jacobian of the functions

of u and v with respect to x and y will be zero.

The converse of this proposition is also true. If the relation (45)

holds good, u will be a function of v.

In the same way, it can be shown that only when the Hessian

ofuis not equal to zero are the first derivatives of u with respect to

x and y independent of each other.

Examples. (1) If the denominators of (9), et seq., page 453, that is, if P, Q,

and B vanish, show that u can be expressed as a function of -y, or, u and v are

not independent. Ansr. The expression is a Jacobian. If u is a function of

v, the Jacobian vanishes. B vanishes if either u or v is a function of z only ;

P, Q, and B all vanish if u is a function of v
;
and f(u, v)

= can be re-

presented by v = c which contains no arbitrary function.
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(2) Show that ~,
' '

. = is a condition that * = shall be an in-
o\Jy, y, )

tegral of Pdz/dx + Qdz/dy = B. Hint.
<p is a function of x, y, z, and can be

expressed as a function of u and v.

(8) If P, Q, and B are given, the Jacobian of u and v must be pro-

portional to P, Q and B. This follows from the equations on page 453.

III. The Jacobian of a function of a function. If uv u2)
are

functions of x
1
and x

2t
and x

Y
and x

2
are functions of y1

and y2 ,

bu
x

bu
x

bx
1 bu^

bx
2 .

bu _ d'^ bx b^ ()iC2

da^ ^2/j bx
2 by1 by2 bx

x by bx*
1

By the rule for the multiplication of determinants,

bu- bu-L
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0r Xp> g)Hu, v) _ _ ^(p, q)

1)(u, v)"d(x, y) 5(5; y)'

A result which may be extended to include any number of inde-

pendent relations.

187. Illustrations from Thermodynamics.

Determinants, Jacobians and Hessians are continually appear-

ing in different branches of applied mathematics. The following

results will serve as a simple exercise on the mathematical methods

of some of the earlier sections of this work. The reader should

find no difficulty in assigning a meaning to most of the coefficients

considered. See J. E. Trevor, Jown. Phys. Chem.r3 9 523, 573,

1899 ; 10, 99, 1906 ; also E. B. Baynes' Thermodynamics, Oxford,

95, 1878.

If U denotes the internal energy, < the entropy,^ the pressure,

v the volume, T the absolute temperature, Q the quantity of heat in

a system of constant mass and composition, the two laws of thermo-

dynamics state that

dQ = dU + p.dv; dQ =
Td<j>,... (1)

pages 80 and 81. To find a value for each of the partial derivatives

(14>\ /ty\ /7>4>\ (o<f>\ (ocf>\ /ty\

IspJ: vw M; w): w; w;
/0V\ fdv\ /0V\ fbv\ fdv\ fdv\
v^y; \*ph \w; wv WA/Wa'

in terms of the derivatives of U.

I. When v or
<f>

is constant. From (1),

-pm lUftv; and T =
~dU/o<f>. . . (2)

First, differentiate each of the expressions (2), with respect to
<f> at

constant volume.

/op\ 7)*U /oT\ 7>*U
/Q

.

"
[foj.

"
SSK*

;
and

\b+)9

=W ' ' (3)

o 2U

By division,
-
(^J

- ^j (4)

Next, differentiate each of equations (2) with respect to v at constant

entropy.
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By division, -
Qj)+

=
J.

. . . (6)

~dcf>dv

II. When either p or T is constant. We know that

dp - sfc +
^~dp;

ana dT -
jjfo

+ ^>. . (7)

First, when p is constant, eliminate dv or d< between equations

(7). Hence show that

dv _d<f> _d6
^p Tp , J 1

<)< 7)v

where J denotes the Jacobian ~d(p, Tjl'd^v, <f>).
If H denotes the

Hessian of U, show that

AchA _ o 2U
^2Tj

^r/

dfl2

Finally, if T is constant, show that

d 2 *7 W vu

188. Study of Surfaces.

Just as an equation of the first degree between two variables

represents a straight line of the first order, so does an equation of

the first degree between three variables represent a surface of the

first order. Such an equation in its most general form is

Ax + By + Gz + D = 0,

the equation to a plane.

An equation of the second degree between three variables re-

presents a surface of the second order. The most general

equation of the second degree between three variables is

Ax2 + By2 + Gz2 + Dxy + Eyz + Fzx + . . . + N = 0.

All plane sections of surfaces of the second order are either circular,

parabolic, hyperbolic, or elliptical, and are comprised under the

generic word conicoids, of which spheroids, paraboloids, hyperboloids

and ellipsoids are special cases.

J. Thomson (Phil. Mag., 43, 227, 1871) developed a surface of

PP*
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the second degree by plotting from the gas equation

f(p,v, T) = 0; or pv = BT,

by causing p, v and T to vary simultaneously. The surface pabv

(Fig. 175) was developed in this way.
Since any section cut perpendicular to the T- or 0-axis is a

rectangular hyperbola, the surface is a hyperboloid. The iso-

thermals T, T2 ,
T

3 ,
. . . (Fig. 29, page 111) may be looked upon as

plane sections cut perpendicular to the 0-axis at points correspond-

ing to Tv T2 ,
. . ., and then projected upon the _py-plane. In

Fig. 176, the curves corresponding to pv and ab have been so

projected.

As a general rule, the surface generated by three variables is

not so simple as the one represented by a gas obeying the simple

laws of Boyle and Charles.

Yan der Waals' "\J/" surfaces are developed by using the

variables
\j/ } x, v, where

\J/
denotes the thermodynamic potential at

Fig. 175. /^-surface. Fig. 176. Two Isothermals.

constant volume (U - Tq) ; x the composition of the substance;

v the volume of the system under investigation. The "i/^" surface

is analogous to, but not identical with, pabv in the above figure.

The so-called thermodynamic surfaces of Gibbs are obtained

in the same way from the variables v, U, tf> (where v denotes the

volume, U the internal energy, and the entropy) of the given

system.

The solubility of a double salt may be studied with respect to

three variables temperature, 0, and the concentrations s
1
and s2 of

each component in the presence of its own solid. Thus a mixed
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solution of magnesium sulphate, MgS04 ,
and potassium sulphate,

K
2
S04 ,

will deposit the double salt, MgS04.K2S04.6H20, under

certain conditions. The surface so obtained is called a surface

of solubility. The solution can also deposit other solids under

certain conditions. For example, we may also have crystals of

MgS04.7H2 deposited in such a manner as to form another

surface of solubility. This is not all. The above system may
deposit crystals of the hydrate MgS04

.6H
20, the double salt

MgS04.K2S04.4H20, or the separate components. The final

result is the set of surfaces shown in Fig. 177.

The surface which is represented by the equation,

J\x, y,z) = 0; ot,z = <$>{x, y),

will exhibit the characteristic properties of any substance with

respect to the three variables x, y, and z. The surface, in fact,

Pig. 177.

will possess certain geometrical peculiarities which depend upon
the nature of the substance. It is therefore necessary to be able

to study the nature of the surface at any point when we know the

equation of the surface.

I. The tangent line, and tangent 'plane. Let the point P(xv y l9
z
Y)

be upon the surface

u = f(x,y,z) (1)

The equations of a line through the point P are, page 131,

x-x
x __ y-y1 _ z-z

x

I

' =
r,m n

and where the line meets the surface

u =
f(xi + ^r Vi + mr z

\ + nr)
= o.

By Taylor's theorem,

/ du- du du \ r2/ d d d \ 2

\ dxx dy x
dz

x ) 2 \ dxx dyx dzj
U + = 0.

(2)

(3)

(4)



598 HIGHER MATHEMATICS. 188.

One value of r must be zero since P is on the surface ;
and if we

choose the line so that

7 du du du

^ +w^ + ra

1̂

->
; <5>

another value of r will vanish
; so that for this direction another

point, Q, will coincide with P and the line will be a tangent line.

Equation (6) gives the relation between the direction cosines of a

tangent line to the surface at the point P(xv yv Zj). Eliminating

I, m, and n, between (2) and (5), we get

, .~du . ,~bu . .^U
(*-*^^-^ + (*-^ = - <6>

This equation being of the first degree in x, y, and z represents a

plane surface. All the tangent lines lie in one plane. Equation

(6) is the equation of a tangent plane at the point (xv yv zj.
If the surface had the form

z=f(x>y) .... (7)

equation (6) would have been

at the point {xv yv zj.

Examples. (1) Show that the tangent plane of the sphere xx
*+ yx

2+ z
x

2 = r2

at the point (x, y, z) is xx
1 +yy1 + zz

1
=r*. Hint. duldxl

= 2x1 ;

>

bujdyi= 2y1 ;

dujdzi= 2zv Substitute in (6) and it follows that xx
l + yyx + zz

x
= x2 +y2 + z2=r2

.

(2) The equation of the tangent plane at the point (xv yv zx) on the para-
boloid

+ % m 4px ; is ^ + ^ = 2p(z + z
x).

(3) Show that the tangent plane to the surface (1) or (6) above is hori-

zontal, that is, parallel to the ?/-plane. z-zx 0. Hint. When a line is

parallel to the sc-axis, the angle it makes with the axis is zero, and tan 0= 0,

hence we must have 'dul'dx and 'duj'dy both zero
;
and 'duj'dz not zero.

II. The normal. By analogy with (1), page 106, or by more

workmanlike proofs which the student can discover for himself, we
can write the condition that a plane normal to, or perpendicular to,

the tangent of the surface f(x, y, z) at the point (xv yv z^) is

ZZ*l = Uz3b = lZll 0- ov^^ = y-^z-z (9)
~du ~bu 7)u

* '

7)u ~du
'

i* * '

~dx ~by ^z ~bx ~by

Examples. (1) Show that the normal to the sphere x2 + y
2 + Z* = r2

,
is

xjxx y\yx
= z\zx . Use the results of Ex. (1) above, and substitute in (10).
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(2) The normal to the surface xyz = a? at the point (xv ylt zj is

xx
x
- x

x
2 = xy1

- y^ = zz
x
-

z?.

(3) Show that the equations of the normal and of the tangent to the

curve y
2 = 2x - x2

;
z2 = 42 - 2x, at the point (2, 3,

-
1) are respectively

* - 2 = i(V
-

3) = z + 1
;
and z - 2 = - 3{y

-
3) = z + 1.

(4) We do not know the characteristic equation connecting p, v, and T.

If the substance is an ideal gas, we h&vepv = BT. From equations (13) and

(15), pages 81 and 82, we get the fundamental equation

dU=Td<f>-pdv (10)

connecting v, U, and
(p.

"This expression is the differential equation of some

surface of the form

Where -
1, and the two partial derivatives are proportional to the direction

cosines of the normal to the surface at any point. Again, it follows from (10)

and (11) that

().-*- feV-* <
12>

In other words the direction cosines of the normal at any point on the surface

are proportional to T, -p, and -1 respectively. Hence, v, U, and
<p

are the

coordinates of the point on the surface, and the remaining pair of variables p
and T are given by the direction cosines of the normal at the same point.

The whole five quantities p, v, T, U, and <p
can thus be represented in a very

simple manner.

III. Inflexional tangents. We can discuss the equations of a

surface by the aid of the extension of Taylor's theorem, on page

292, and the methods described in 101. There are an infinite

number of lines

IT ~nT
~

n ' ' ' ' (idJ

which satisfy the relations

P + m* + 2 = 1
;
l~
x
+

5jf-
= 0. (14)

These lines cut the surface at two coincident points ;
two of these

lines also satisfy the relation

lW + 2lm
*xSy

+ mW = Q - (15)

These two lines cut the surface at three coincident points. These

lines are called inflexional tangents. They are real and distinct,

coincident, or imaginary, according as the quadratic in I, and m,

zj* + 2zjm + zmm? . . . (16)

has real and different, double, or imaginary roots. This depends

upon whether
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V* Vm /V,\* f +=cu8p;

(17)

Each Inflexional tangent to the surface will cut the curve in three

coincident points at the point of contact. The inflexional tangents
have a closer contact with the surface than any of the other

tangent lines. At the point of contact of the curve with the tan-

gent plane there will be a cusp, conjugate point, or a node, ac-

cording as the above expression is positive, zero, or negative.

The equations of the inflexional tangents at the point (xv yv zj
are obtained by the elimination of I, m, and n between (13) ;

the

second of equations (14) ;
and (15). If we treat the equation of

the surface

u=f(x,y } z)
= 0, . . . (18)

in a similar manner, we find that we must know the value of

dsc ty ^z

as well as of

n
Tz)

u =
>

(19)

(20)
~dx ty

in order to determine the inflexional tangents. These tangents will

be real and different, coincident, or imaginary according as the

determinant

(21)*



APPENDIX I.

COLLECTION OF FORMULA AND TABLES FOR REFERENCE.

" When for the first time I have occasion to add five objects to seven

others, I count the whole lot through ;
but when I afterwards

discover that by starting to count from five I can save myself

part of the trouble, and still later, by remembering that five and

seven always add up to twelve, I can dispense with the counting

altogether." E. Maoh.

189. Calculations with Small Quantities.

The discussion on approximate calculations in Chapter V. renders any
further remarks on the deduction of the following formula superfluous.

For the sign of equality read "
is approximately equal to," or "

is very

nearly equal to ". Let a, 0, 7, . . . be small fractions in comparison with unity
or a;:

(1 ) (1 0) - 1 a (1)

(1 + a) (1 0) (1 7) . . . = 1 a 7 (2)

(1 a)'
2 = 1 2a; (1 a)

= 1 na (3)

,J(l + a)
= l+la. N/S8-i(a + /B) (4)

FTa)
* X + a

;

{T+^T
==1 + na >

V(l + )

= 1 ~
*"' ' (6)

(1 ) (1 0) - . . _ _ , tRX

(1 7) (1 8)

= 1 " * + 7 + 8 (6)

The third member of some of the following results is to be regarded as a

second approximation, to be employed only when an exceptional degree of

accuracy is required.

0o. = 1 + a ; w =* 1 + a log a (7)

log (1 + a)
= a = a -

$a? (8)

log (a; + a)
= logo; + o/a?

- io
a
/a>

2
(9)

.

a; + a 2a 2
l0g^=* + ri* <10>

By Taylor's theorem, 98,

sin
(a; + 0)

= sin x + cos x - %0
2 sin x - 3cos x + . . .

If the angle 3 is not greater than 2, < -044 :
2 < -001

; %0
3 < -00001.

But sin x does not exceed unity, therefore, we may look upon
sin

(a; + 0)
= sin x + cos x,

601
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correct up to three decimal places. The addition of another term " -
/3
2 "

will make the result correct to the fifth decimal place.

sin a = a = o(l
- W) ',

coso = 1 = 1 - a2 (11)

sin (x j8)
= sin x p cos x

;
cos (x 0) = cos x j8 sin x. . (12)

tan o = a = a(l + $a
2
) ;

tan (x + 0)
= tan x sec2a;. . . (13)

Example. Show that the square root of the product of two small

fractions is very nearly equal to half their sum. See (4). Hence, at sight,

s/ 24-00092 x 24-00098 = 24-00095.

190. Permutations and Combinations.

Each arrangement that can be made by varying the order of some or all

of a number of things is called a permutation. For instance, there are two

permutations of two things a and 6, namely ab and ba
;
a third thing can be

added to each of these two permutations in three ways so that abc, acb, cab,

bac, bca, cba results. The permutations of three things taken all together is,

therefore, 1x2x3; a fourth thing can occupy four different places in each

of these six permutations, or, there are 1x2x3x4 permutations when four

different things are taken all together. More generally, the permutations of

n things taken all together is

n(n -
1) (n -

2) . . . 3.2.1 =n\
n ! is called " factoral n".1 It is generally written

j

n.

Using the customary notation Pn to denote the number of permutations
of n things taken nata time,

number of things * number of things taken nn = n '

If some of these n things are alike, say p of one kind, q of another, r of

another,
n\

nPn== p\ql r\ (2)

If only r of the n things are taken in each set,

nPr = n(n-l)(n- 2) . . . (n
- r + 1) = ^^j- . . (3)

Each set of arrangements which can be made by taking some or all of a

number of things, without reference to the internal arrangement of the things

in each group, is called a combination. In permutations, the variations, or

the order of the arrangement of the different things, is considered; in com-

binations, attention is only paid to the presence or absence of a certain thing.

The number of combinations of two things taken two at a time is one,' because

the set ab contains the same thing as ba. The number of combinations of

three things taken two at a time is three, namely, ab, ca, be
;
of four things,

ab, ae, ad, be, bd, cd. But when each set consists of r things, each set can be

arranged in r I different ways.

1 It is worth remembering that n ! =r(n + 1), the gamma function of 136. When
n is very great

n ! = nne - ij 2irn,

known as Stirling's formula. This allows n ! to be evaluated by a table of logarithms.

The error is of the order -fa71 f ^ne vahie of n !
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Let nGr denote the number of combinations of n things taken r at a time.

We observe that the nCr combinations will produce nCr x ** 1 permutations.
This is the same thing as the number of permutations of n things in sets of r

things. Hence, by (3),

nPr_ n(n- l)(n-2)...(n-r + l)"' =
7l T\

' ' ' W

nCr = r I (n
-

r) !

l&}

Nearly all questions on arrangement and variety can be referred to the

standard formulae (3) and (5). Special cases are treated in any text-book on

algebra. In spite of the great number of organic compounds continually

pouring into the journals, chemists have, in reality, made no impression on

the great number which might exist. To illustrate, Hatchett's (Phil. Trans.,

93, 193, 1803) has suggested that a systematic examination of all possible

alloys of all the metals be made, proceeding from the binary to the more

complicated ternary and quaternary. Did he realize the magnitude of the

undertaking ?

Examples. (1) Show that if one proportion of each of thirty metals be

taken, 435 binary, 4,060 ternary and 27,405 quaternary alloys would have to

be considered.

(2) If four proportions of each of thirty metals be employed, show that

6,655 binary, 247,660 ternary and 1,013,985 quaternary alloys would have to be

investigated.

The number of possible isomers in the hydrocarbon series involving side

chains, etc., are discussed in the following memoirs : Cayley (Phil. Mag. [4],

13, 172, 1857 ; 47, 444, 1874 ; or, B. A. Reports, 257, 1875) first opened up this

question of side chains. See also O. J. Lodge (Phil. Mag., [4], 50, 367, 1875),

Losanitsch (Ber., 30, 1,917, 1897), Hermann (ib 3,428), H. Key (i&.,33, 1,910,

1900), H. Kauffmann (ib., 2,231).

191. Mensuration Formulae.

Reference has frequently been made to Euclid, i., 47 Pythagoras' theorem.

In any right-angled triangle, say, Fig. 184,

Square on hypotenuse = Sum of squares on the other two sides. (1)

Also to Euclid, vi., 4. If two triangles ABC and DEF are equiangular so

that the angles at A, B, and C of the one are respectively equal to the angles

D, E, and F of the other, the sides about the equal angles are proportional

Rule of similar triangles so that

AB:BC = DE:EF; BC :OA = EF : FD; AB : AC = BE : DF.

w = 3-1416, or, ^, or, 180 ;
= degrees of arc ;

r denotes the radius of a circle.

L Lengths (arcs and perimeters).

Chord of Circle (angle subtended at centre 0)
= 1r sin 0. , (2)

Arc of Circle (angle subtended 6)
=

-j-^tt.
. . . (3)

Perimeter of Circle = 2wr = * x diameter. .... (4)

Perimeter of Ellipse (semiaxes, a, b) = 2ir V^(a2 + fe
2
). . . (5)

Triangle, a2 = 6s + c2 - 2&c cos A. . . . . .
-

(5a)
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II. Areas.

Rectangle (sides a, b)
= a:b

Parallelogram (sides a, b
;
included angle 6) = ab sin 0.

Rhombus = product of the two diagonals

Triangle (altitude h
; base b) "]

= %h. b %ab sin G = J s(s -a) (s
-

b) (s
-

c), J

where a, b, c, are the sides opposite the respective angles A t B, O, of Fig.

178, and * = %{a + b + c).

Spherical Triangle = (A + B + G -
v)r\ . ... (10

B\ / \ !e

D

Fig. 178. Fig. 179. Spherical Triangle.
where r is the radius of the sphere, A, B, C, are the angles of the triangle

(Fig. 179).

Trapezium (altitude h; parallel sides a, b)
= $h(a + b). . . (11)

Polygon op n Equal Sides (length of side a) = na2 cot ^~. . (12)

Circle = wr2 = %n x diameter (13)

Circular Sector (included angle 0)
= arc x radius = -^Trdr

%
. (14)

Circular Segment= area of sector - area of triangle^wr2 -
|r

2 sin d (15)

The triangle is made by joining the two ends of the arc to each other and

to the centre of the circle. 6 is angle at centre of circle.

Parabola cut off by Double Ordinate (2y)
= %xy;

= $ Area of parallelogram of same base and height. J
*

'

Ellipse = ira.b (17)

Curvilinear and Irregular Figures. See Simpson's rule.

Similar Figures. The areas of similar figures are as the squares of the

corresponding sides. The area of any plane figure is proportional to the square

of any linear dimension. E.g., the area of a circle is proportional to the square

of its radius.

m. Surfaces (omit top and base).

Sphere = 4wr2. (18)

Cylinder (height h) = Imrh (19)

Prism (perimeter of the base p) ph (20)

Cone or Pyramid = \p x slant height. (21)

Spherical Segment (height h) 2vrh. (22)
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IV. Volumes.

Rectangular Parallelopiped (sides a, b, c) =* a.b.c.

Sphere = | circumscribing cylinder ;

= fur
3 = 4-189r3 = ** diameter3.

Spherical Segment (height h) = ^7r(3r
-

h) W. . ,

Cylinder or Prism = area of base x height = Trr'%.

Cone or Pyramid = $ circumsoribing cylinder or prism ;

= area of base x height = %irr
2h = r047r'27t.

Frustum op Right Circular Cone =
\irh(a? + ab + b2). \

a and 6 are radii of circular ends.
J

0*)

Similar Figures. The volumes of similar solids are as the cubes of

corresponding sides. The volume of any solid figure is proportional to the

cube of any linear dimension. E.g., the volume of a sphere is proportional
to the cube of its radius.

(23)

(24)

(25)

(26)

(27)

V. Centres of Gravity.

Plane Triangular Lamina. Two-thirds the distance from the apex of

the triangle to a point bisecting the base.

Cone or Pyramid. Three-fourths the distance from the apex to the

centre of gravity of base.

Bayer's
" strain theory

"
of carbon ring compounds has attracted some

attention amongst organic chemists. It is based upon the assumption that

the four valencies of a carbon atom act only in the directions of the lines

joining the centre of gravity of the atom with the apices of a regular tetra-

hedron. In other words, the chemical attraction between any two such atoms

is exerted only along these four directions. When several carbon atoms unite

to form ring compounds, the " direc-

tion of the attraction
"

is deflected.

This is attended by a proportional

strain. The greater the strain, the

less stable the compound. Apart
from all questions as to the validity

of the assumptions, we may find the

angle of deflection of the "direc-

tions of attraction
"
for two to six

ring compounds as an exercise in

mensuration.

I. To find the angle between

these "directions of attraction" at

the centre of a carbon atom assumed

to have the form of a regular tetra-

hedron. Let s be the slant height, Fig. 180.

AB, or BC, of a regular tetrahedron (Fig. 180) ; h = EC, the vertical height;

/, the length of any edge, DC or AC; <p,
the angle DOC, or AOC, made

by the lines joining any two apices with the centre of the tetrahedron.

... 8i + (J)2
= J2. S2 = sp# But h divides s in the ratio 2 : 1, hence

( 191),
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h?=P- (fs)
2 =

-|Z
2

. But CD = 2BD = I; BC = AB = s
; CE = h. Hence,

h = J Z
2

. From a result in V, above, the middle of the tetrahedron cuts CE
at O in the ratio 3 : 1.

.-. sin %<p
= %AC -j- OC = JI/3* ; or, <f>

= 109 28'. . . (29)

II. To find the angle of deflection of the " direction of attraction
" when 2

to 6 carbon atoms form a closed ring. From (29), for acetelyne H2C |
CH

2>

the angle is deflected from 109 28' to (109 28'), or 55 44'. For tri-

methylene, assuming the ring is an equilateral triangle, the angle is deflected

(109 28' -60) = 24 44'. For tetramethylene, assuming the ring is a square,
the angle of deflection is (109 28' - 90) = 9 34'. For pentamethylene, assum-

ing the ring to be a regular pentagon, the angle of deflection is (109 28' - 108),
or 44'. For hexamethylene, assuming the ring is a regular hexagon, the

angle of deflection is (109 28' -120), or -5 76'.

The value of the angle 6, in Fig. 180, is 70 32'. See H. Sachse " On the

Configuration of the Polymethylene Ring," Zeit. phys. Chem.
t 10, 203, 1892.

192. Plane Trigonometry.

Beginners in the calculus often trip over the trigonometrical work. The

following outline will perhaps be of some assistance. Trigonometry deals

with the relations between the sides and angles of triangles. If the triangle

is drawn on a plane surface, we have plane trigonometry ;
if the triangle is

drawn on the surface of a sphere, spherical trigonometry. The trigonometry

employed in physics and chemistry is a mode of reasoning about lines and

angles, or rather, about quantities represented by lines and angles (whether

parts of a triangle or not), which is carried on by means of certain ratios or

functions of an angle.

1. The measurement of angles. An angle is formed by the intersection of

two lines. The magnitude of an angle depends only on the relative directions,

or slopes of the lines, and is independent of their lengths. In practical work,

angles are usually measured in degrees, minutes and seconds. These units

are the subdivisions of a right-angle defined as

1 right angle = 90 degrees, written 90
;

1 degree = 60 minutes, written 60' ;

1 minute = 60 seconds, written 60".

In theoretical calculations, however, this system is replaced by another.

In Fig. 181, the length of the circular arcs P'A', PA, drawn from the centre O,

are proportional to the lengths of the radii OA' and OA, or

arc P'A' arc PA
radius OA'

~
radius OA'

If the angle at the centre O is constant, the ratio, arc/radius, is also constant.

This ratio, therefore, furnishes a method for measuring the magnitude of an

angle. The ratio

= 1, is called a radian.
radius

Two right angles = 180 = tt radians, where n = 180 = 3-14159. (1)
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The ratio, arc/radius, is called the circular or radian measure of an angle.

(Radian = unit angle.)

2. Relation between degrees and radians. The circumference of a circle

of radius r, is 2*r, or, if the radius is unity, 2ir. The angles 360, 180, 90, . . .

correspond to the arcs whose lengths are respectively, 2ir, v, ^7r, . . . If the

angle AOP (Fig. 181) measures D degrees, or a radians,

a D
D : 360 = a:2ir. .-. D =

^360 ; or, a =
^2ir.

. . (2)

Examples. (1) How many degrees are contained in an arc of unit

length ? Here o = 1,

... -
J2?
m 57-295 m 57 17' 44-8". ... (3)

(2) How many radians are there in 1 ? Ansr. w/180 ; or, 0-0175.

(3) How many radians in 2 ? Ansr. 0-044.

A table of the numerical relations between angles expressed in degrees

and radians is given on pages 624 and 625.

3. Trigonometrical ratios of an angle as functions of the sides of a triangle.

There are certain functions of the angles, or rather of the arc PA (Fig. 181)

P

Fig. 182.

called trigonometrical ratios. From P drop the perpendicular PM on to OM
(Fig. 182). In the triangle OPM,

, * ^ . MP perpendicular .

(i.) The ratio q^, or, ^^ ,
is called the tangent of the angle

POM, and written, tan POM.

It is necessary to show that the magnitude of this ratio depends only on

the magnitude of the angle POM, and is quite independent of the size of the

triangle. Drop perpendiculars PM and P'M' from P and P' on to OA
(Fig. 181). The two triangles POM and P'OM', are equiangular and similar,

therefore, as on page 603, M'P'/OM' = MPjOM.

(ii.)
The ratio ^p, or,

perpeDdicular
.
is called the cotangent of the angle

POM, and written, cot POM. Note that the cotangent of an angle is the

reciprocal of its tangent.

MP perpendicular
(iii.) The ratio 7^ = nc 1 ,

is called the sine of the angle POM,v ' UP hypotenuse
and written, sin POM.

OP hypotenuse
(iv.) The ratio ^p -

perpendiculai
.>

is called the cosecant of the angle

POM, and written, cosec POM. The cosecant of an angle is the reciprocal of

its sine.
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. is called the cosine of the angle POM.enuse
, i .

' OM
(v.) The ratio k^ = rv ' OP hypoti

and written, cos POM.

(vi.) The ratio q^ = -~r
,
is called the secant of the angle POM,

and written, sec POM. The secant of an angle is the reciprocal of its cosine.

Example. If a be used in place of POM, show that111
sin x = ;cota;=ta^ ;cosa;:cosec x tan x sec x

The squares of any of these ratio?, (sin x)
2

, (cot x)
2

,
. . ., are generally

written sin'-to, cot2# . . .
; (sin x) r \ . (cot x)

-1
, . . ., meaning -a

-
^~~x ,

cannot be written in the forms sin
- l

x, cot
~

'a;, . . . because this latter symbol
has a different meaning.

4. To find a numerical value for the trigonometrical ratios.

6
D

Fig. 183. Fig. 184.

(i.) 45 or Jir. Draw a square ABCD (Fig. 183). Join AC. The angle

BAG=h.sAi a right angle= 45. In the right-angled triangle BAG (Euolid, i.,

47),
AC2=AB2 + BC\

Since AB and BC are the sides of a square, .\ AB= BC, hence,

AC2=2AB2=2B02
; or, AC= sj2~.AB= s/2. BO.

<*-g-&""-*Hr-"S-i- (4)

Fig. 185. Fig. 186.

(ii.) 90 or tt. In Fig. 184, if POM is a right-angled triangle, a& if

approaches O, the angle .MOP approaches 90. When MP coincides with

OB, OP=MP, and OM =zero.
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MP OM MP
.-. sm9O=0p=l; cos 90 =^ = 0; tan 90 =^=oo. (5)

(iii.) 0. In Fig. 185 as the angle MOP becomes smaller, OP approaches
OM, and at the limit coincides with it. Hence, PM=0 ; OM=OP.

.-. sin0=^p=0 cosO
CM MP
ap = l;tan0 =

r=0. (6)

(iv.) 60 or *-. In the equilateral triangle (Fig. 186), each of the three

angles is equal to 60. Drop the perpendicular OM on to PQ. Then

2PM=PQ=PO.
By Euclid, i., 47,

PO2=MP2+MO2
. . : 4PM2=MO* +PM2

; or MO2=3PM2
.

.-. MO=s/d.PM; angle MPO= 60.

MO slW

Using the preceding results,

MP 1

.-. sin 60

(v.) 30or^7r.

.-. sin 30'

The following table summarizes these results :

PM 1 MO ,

cos 60=-or =
o ; tan 60= ^v,= s/3.PM (7)

MO Jz MP 1

OPS' C0S 30 =OP=^ ; tan30 =
Olf=^3- (

8
)

Table XIV. Numerical Values of the Trigonometrical Katios.
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of cos 35 to four decimal places are respectively 0*5736 and 0*8192. The

value of sin (x+ 6) is, therefore, *5737.

5. Conventions as to the sign of the trigonometrical ratios. This subject

has been treated on page 123. In the following table, these results are

summarized. The change in the value of the ratio as it passes through the

four quadrants is also given.

Table XV. Signs of the Trigonometrical Ratios.

If the Angle is in

Quadrant.
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8. To prove that sin <c/cos sc=tan x.

sin x MP l OM MP OP
cos x OP OP OP OM~/in X r\-MT~ /->Ti/f tan "

MP
OM

9. To prove that sin2sc + cos2* = 1. In Fig. 189, by Euclid, i., 47,

OP2=MP* +OM2
. Divide through by OP2

,
and

*0F? Ml? OM2_/MP\ 2

(0M\
OP*~ 0P2 + OP*~\OP )

+
\op)

sin2* 4- cos
2*= 1.

10. To show that sin (x + y)
= sin x . cos y + cos x . sin ?/. In Fig. 189,

PQ is perpendicular to OQ, the angle EPQ= angle 2V0Q (Euclid, i., 15 and 32)

MPPH QNPH PQ NQ OQ
.-.sin

(
x + y)- p- OP +

p-pQ-op+ Q- p>
= sin x . cos y+ cos x . sin y.

11. Summary of trigonometrical formula (for reference). The above defi-

nitions lead to the following relations, which form routine exercises in

elementary trigonometry. Most of them may be established geometrically
as in the preceding illustrations :

Note: ?r=180o
; or, 3-14159 radians

; one radian= 57-2958.

sin (^7r+ cc)=cos x
;
cos (%ir-x) = B'm *; ^

cosec (*-*) = sec x
;
sec (7r-*)=cosec x

tan ($*
-

x)
= cot x

;
cot ($7r

-
x)
= tan x.

sin (71--*)= sin *; cos (ir-x)= -cos x
;

tan
(?r
-
x)

- tan x
; cot (ir

-
x) = - cot x.

sin ($ir + *)
= cos a; ; cos (* + x)

= - sin x
;

I

tan (?r+ jb)
= - cot

a?, cot (n-+ x)= - tan *. /
sin (* + *)

= -sin *; cos
(tt + *)

= -cos x; \

tan (7r + *) = tan x; cot
(7r+ *)

= cot x. J

sin
(
-
*)
= - sin a; ; cos

(
-
#)
= cos x

;
tan

(
-
x) = - tan x.

sin & tan x sin
- ]* tan -

** ,

cos*=l; - = =1.

}

**** X -""-' x X

When n is any negative or positive integer or zero.

sin *=sin {rnr+(-l)
n
x}. . .

cos *= cos (2nir + x). .

tan * = tan (nir + x). . ...
tan *= sin */cos x ;

cot a; cos */sin x.

sin2*+ cos2* =1.

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

QQ
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sin x= \fl

cosec x

cos'a;

tan x

cos x= \/l-sin2
a;.

sec x= \/l + tan2a;.

1
sin a;=

V 1 + tan2
a; y1+ tan'-jc

sin (x y) =sin x . cos 2/ cos x . sin y.

cos (a;
+

2/)
=cos x . cos 2/ + sin x . sin y.

sin (a;+ 2/) + sin (a;-2/)=2 sin x. cos y.

sin (a?+ 2/)
-sin (x-y)=2 cos a?, sin y.

cos (+ y) + cos (x
-
y) =2 cos x . cos y.

cos (sc+2/)-cos (<c-2/)= -2 sin x. sin y
If 05=j/, from

(
23) and (24),

sin 2a;=2 sin a; . cos x.

cos 2a;= cos2a; - sin2a;. .

=2cos2a;-l. .

=l-2sin2
a;.

sin a;=2 sin %x . cos \x.

cos a;=2 cos2 a;-l; or, 1 + cos a;=2 cos2 a;

=1-2 sin2 a;
; or, 1 - cos x = 2 sin2 a;,

sin 3a;= 3 sin x - 4 sin3a;.

cos 3a;=4 cos3a;-3 cos x.

If in (25) to (28), we suppose x+ y= a; x-y=P; x-

Now put x for o, and y for /3, for the sake of uniformity,

sin x + sin y=2 sin $(a;+ 2/)
. cos \{x-y).

sin a; -sin j/=2 cos l{x + y) . sin ^(aj 2/).

cos a;+ cos y= 2 cos $(a; + 2/)
cos i^ -

^)*

cos a; -cos 2/= -2 sin l{x+ y) .&in%(x-y)
'

By division of the proper formulae above,

tan x+ tan y
tan (x+y) =

tan
(a; -y) =

tan 2a;=

1 - tan x . tan 2/*

tan a; -tan y
1 + tan a;. tan y'

2 tan x

1-tanV
sin (a;

+ y)
tan x tan 2/== c ^ nM

'

,.a cos x . cos 2/

sin (x y)

.sin 2/*

cot x cot j/
=-

Thus,

cos $a; 1 V^ sin $a;=̂ 2
tan %x=Vi^

193.

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

193. Relations among the Hyperbolic Functions.

cosa;=cosh ia;=J('*4-6- lX
) . . (1)

sin x= sinh tx-$(6<-
x -e-ix

) . (2)

cos a;+ isin a;=cosh taj+sinh vx=e<-*. ..'... (3)

cos a;-isin a?=cosh ia;=-sinh ix=e-* (4)

cosh a;= cos ix; isinh a?=sin ix . . (5)
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tanh 8= sinh 8/cosh x
;
coth a;= cosh 8/sinh x

, \

cosech x= 1/sinh x
;
sech 8=l/cosh x. J

'

cosh 0=1; sinh 0=0; tanh 0=0
cosh

( oo)
= + oo

;
sinh

(
+ oo)

= + oo
;
tanh

(
+

oo)
= + 1

sinh x tanh x cosh x
Ltx = -

- =1; Ltx=Q =1; LtX r=o %
=1

sinh
( -8) = - sinh x

;
cosh

(
-
x)
= cosh x

;
tanh

(
-
x)

- tanh x

}

x

X)

sinh (x y) = sinh x . cosh y + cosh x . sinh y.

cosh {x y)
= cosh x . cosh y + sinh x . sinh y.

_ .
j

tanh a; + tanh t/
tanh

( y)-rtanha .

Btftnhy
.

cosh (x + ty)
= cosh x . cosh iy+ sinh a; . sinh iy ;

= cosh a; . cos y+ 1 sinh x . sin t/.

sinh (x + iy)
= sinh x . cosh ty + cosh x . sinh ^ ;

=sinh x . cos y+ tcosh x. sin y.

sinh x+ sinh y= 2 sinh (8+ y) cosh %{x-y). .

sinh a; - sinh y= 2 cosh $(8+ y) . sinh (8
-

y). .

cosh 8 + cosh y 1 cosh J(a;+y) . cosh ${x-y). .

cosh a; - cosh y= 2 sinh (a; + y) . sinh %(x-y). .

sinh 2a;=2 sinh x . cosh a;=2 tanh 8/(1
- tanh2

8). .

cosh 28= cosh28+ sinh2
8;

= l + 2sinh28=2 cosh28-l; .

=
(l + tanh2

8)/(l-tanh
2
8). ....

cosh 8+ 1 = 2 cosh2
^8; cosh a; -1= 2 sinh2 8.

tanh \x= sinh 8/(1 + cosh x) ;
^

= (cosh x - l)/sinh x. )
' *

sinh28-cosh28=l
l-tanh28=sech28; coth28 - 1 = cosech28.

cosh 8=1/ */(l
- tanh2

8) ;
sinh 8= tanh x\ ^/(l

- tanh2
8).

sinh 38= 3 sinh 8+ 4 sinhs8

cosh 38=4 cosh38-3 cosh 8

Inverse hyperbolic functions. If sinh - l

y = x, then y = sinh x.

y = sinh =(*--*); .*. e'
ix
-2yex -l=0; .: ex=y <s/y

a + l.

For real values of 8 the negative sign is excluded from sinh
- xx.

.*. sinh
~ lx= log {y + s/y

2+ l}; cosh - 1
^=log{2/ sfy'

2
-l}.

tanh-ty-J log {(l+y)/(l-y)} ; eoth-Hr-l log {(y + l)/(y-l)}.

sech- 1
2/= log {(1 + sll-y^jy) ;

cosech -ty=log {(1
- Vl + 2)M

Gudermannians. In Fig. 138, page 347,

= cos- 1 sech 8; cos0=sech8; sec 0= cosh 8.

$0= cos 0+sinh 8=sec + tan 0.

0=log (sec tan 0)
= log tan (i?r + 0)

tanh $8= tan \d

when is connected with x by any of these relations is said to

gudermannian of x and is written gd x.

Analogous to Demoivre's theorem

(cosh 8 + sinh 8)
n= cosh nx + sinh nx. .

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

Since

(31)

(32)

(33)

(34)

(35)

(36)

(37)

be the

(38)
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It is instructive to compare the above formulae with the corresponding

trigonometrical functions in 192. The analogy is also brought out by

tabulating corresponding indefinite integrals in Tables I. and III., side by
side. A few additional integrals are here given to be verified and then added

to the table of indefinite integrals which the student has been advised to

compile for his own use.

Table XVI. Hyperbolic and Trigonometrical Functions.

Hyperbolic. Trigonometrical.

dx X
ss sinh

~ 1-
+ a*

dx
,

x
i ,.

= cosh
~

*-.
six- -a2 <*>

dx 1 x
>

= tanh l
-,

a* - x1 a a
when x < a. When x > a,^ = icoth-

a aL

I

h
Jsech x . dx gd x.

- dx 1
,

x
.

- = sech
- 1-

xsla2 - x2 a a

dx 1 .
n
05

r
'

;
=

~z cosech
~
*-.

x Va2 + x2 a a

dx

sja2
= sin'

dx

a

== = cos l-.
sia2 - x2 a

dx 1 x
r,
= - tan

_ l ~.
a2 + x* a a

f
-dx _ 1

J a2 + x2
~

a
cot

dx 1 ,x
.

- = sec
~~ 1-.

x six2 - a2 a a

- dx 1 x
, n

= - cosec
_ l-.

xs/x2 - a2 a

/;

Jsec x.dx = gd
_ xx.

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Numerical values of the hyperbolic functions may be computed by means

of the series formulte.
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REFERENCE TABLES.

"The human mind is seldom satisfied, and is certainly never exercising

its highest functions, when it is doing the work of a calculating

machine." J. C. Maxwell.

The results of old arithmetical operations most frequently required are

registered in the form of mathematical tables. The use of such tables not

only prevents the wasting of time and energy on a repetition of old operations

but also conduces to more accurate work, since there is less liability to error

once accurate tables have been compiled. Most of the following tables have

been referred to in different parts of this work, and are reproduced here be-

cause they are not usually found in the smaller current sets of " Mathemat-

ical Tables". Besides those here you ought to have " Tables of Reciprocals,

Squares, Cubes and Roots,"
" Tables of Logarithms of Numbers to base 10,"

" Tables of Trigonometrical Sines, Cosines and Tangents
"

for natural angles

and logarithms of the same. See page xix. of the Introduction.

Table I. Singular Values of Functions.

(Page 168.)

Table II. Standard Integrals.

(Page 193.)

Table III. Standard Integrals (Hyperbolic functions.)

(Pages 349 and 614.)

615
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Table IY. Continued.

X.
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Table IV. Continued. .

ST.
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Table Y. Common Logarithms of the Gamma Function.

(Page 426.)

Table YL Numerical Yalues of the Factor

0-6745y--- (Page 523.)
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Table YIIL Numerical Values of the Factor

*8453V^i)- (
p^e624

-)

n.
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Table X. Numerical Values of the Probability Integral

2 [hxP = -7= e~ **d(hx) , (Page 532) ,

V7TJ

where P represents the probability that an error of observation will have a

positive or negative value equal to or less than x, h is the measure of precision.

hx.
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Table XI. Numerical Yalues of the Probability Integral

=^lpH>'<page532) '

where P represents the probability that an error of observation -will have a

positive or negative value equal to or less than x, r denotes the probable error.

r



APPENDIX II. 623

Table XII. Numerical Yalues of - Corresponding to Different

Values of w, in the Application of ChauYenet's Criterion.

(Page 564.)

n.
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Table XIII. Circular or Radian Measure of Angles.

(Page 606.)

10
11

12

13

14

15

16

17

18

19

20
21

22

23

24

25
26

27
28

29

30
31

32
33

34

35
36
37
38

40
41

42
43
44

0'. 12', 18'. 30'. 36'. 42'. 48'.

00000
01745
03491
05236
06981

08727
10472
12217
13963
15708

17453
19199
20944
22689
24435

26180
27925
29671
31416
33161

34907
36652
38397
40143
41888

43633
45379
47124
48869
50615

52360
54105
55851
57596
59341

61087
62832
64577
66323
68068

69813
71558
73304
75049
76794

00175
01920
03665
05411
07156

08901
10647
12392
14137
15882

17628
19373
21118
22864
24609

26354
28100
29845
31590
33336

35081
36826
38572
40317
42062

43808
45553
47298
49044
50789

52534
54280
56025
57770
59516

61261
63006
64752
66497
68242

69988
71733
73478
75224
76969

00349
02094
03840
05585
07330

09076
10821
12566
14312
16057

17802
19548
21293
23038
24784

26529
28274
30020
31765
33510

35256
37001
38746
40492
42237

43982
45728
47473
49218
50964

52709
54454
56200
57945
59690

61436
63181
64926
66672
68417

70162
71908
73653
75398
77144

00524
02269
04014
05760
07505

09250
10996
12741
14486
16232

17977
19722
21468
23213
24958

26704
28449
30194
31940
33685

35430
37176
38921
40666
42412

44157
45902
47647
49393
51138

52883
54629
56374
58119
59865

61610
63355
65101
66846
68591

70387
72082
7382
75573
77318

00698
02443
04189
05934
07679

09425
11170
12915
14661
16406

18151
19897
21642
23387
25133

26878
28623
30369
32114
33859

35605
37350
39095
40841
42586

44331
46077
47822
49567
51313

53058
54803
56549
58294
60039

61785
63530
65275
67021
68766

70511
72257
74002
75747
77493

00873
02618
04363
06109
07854

09599
11345
13090
14835
16581

18326
20071
21817
23562
25307

27053
28798
30543
32289
34034

35779
37525
39270
41015
42761

44506
46251
47997
49742
51487

53233
54978
56723
58469
60214

61959
63705
65450
67195
68941

70686
72431
74176
75922
77667

01047
02793
04538
06283
08029

09774
11519
13265
15010
16755

18500
20246
21991
23736
25482

27227
28972
30718
32463
34208

35954
37699
39444
41190
42935

44680
46426
48171
49916
51662

53407
55152
56898
58643

62134
63879
65624
67370
69115

70860
72606
74351
76096
77842

01222
02967
04712
06458
08203

09948
11694
13439
15184
16930

18675
20420
22166
23911
25656

27402
29147
30892
32638
34383

36128
37874
39619
41364
43110

44855
46600
48346
50091
51836

53582
55327
57072
58818
60563

62308
64054
65799
67544
69290

71035
72780
74526
76271
78016

01396
03142
0488
06632
08378

10123
11868
13614
15359
17104

18850
20595
22340
24086
25831

27576
29322
31067
32812
34558

36303
38048
39794
41539
43284

45029
46775
48520
50265
52011

53756
55501
57247
58992
60737

62483
64228
65973
67719
69464

71209
72955
74700
76445
78191
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Table XIY. Numerical Values of some Trigonometrical

Ratios.

(Page 609.)

Table XY. Signs of the Trigonometrical Ratios.

(Page 610.)

Table XYL Comparison of Hyperbolic and Trigonometrical

Functions.

(Page 614.)

Table XYII Numerical Yalues of e*2 and e~*2 from

x = 0-1 to x = 50.

X.
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Table XYII1. Natural Logarithms of Numbers.

Many formulae require natural logarithms, and it is convenient to have at

hand a table of these logarithms to avoid the necessity of having recourse to

the conversion formulae, page 28. Table XVIII. is used as follows :

J. For numbers greater than 10
t,
follow the method of Ex. (2) and (3) below.

II. For numbers between 1 and 10 not in the table, use interpolation

formulae, say proportional parts.

III. For numbers less than 1, use the method of Ex. (5) below.

If there is going to be much trouble finding the natural log it may be

better to use standard tables of logarithms to base 10 and multiply by 2-3026

in the ordinary way.

logelO = 2-3026.

Examples. (1) Show that log,* = loge(3-1416)
= 1-1447.

(2) Required the logarithm of 5,540 to the base e. Here

log,5,540 = log.(5-640 x 1,000) = loge(5-54 x 103) ;

hence, logtf5,540 = log.5'54 + 3 loge10 = 8-6198.

(3) Show thai loge100 = 4-6052
; log,l,000 = 6-9078 ; log810,000 - 9-2103

logJOO.OOO
= 11-5129. Hint, log 1,000 = log 103 = 3 log 10.

(4) If 100 c.c. of a gas at a pressure of 5,000 grams per square centimetre

expands until the gas occupies a volume of 557 c.c, what work is done during
the process ? From page 254,

W = pw loge^ = 5,000 x 100 x loge5-57 = 850,700 grm. cm.

If a table of ordinary logarithms had been employed we should have written

2-3026 x logi 5-57 in place of loge5'57.

(5) Find loge0-00051 ; log 0-0031
;
and log 0-51. Here we have

log 0-00051 - log 5-1 -
log 10,000 = log 5-1 -

log 104 = log 5-1 - 4 log 10 =
1-6292 - 4 x 2-3026 = 1*6292 - 9-2104 = 9-4188, or - 8-5812

; loge0-0031 =
1-1314 - 6-9077 = 6-2237, or - 5-7763 ; log 0-51 = 0-6292 - 2-3026 = 2-3166

or - 1-6734.

The bar over the first figure has a similar meaning to the "
bar." of ordi

nary logs.
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Abegg, 371.

Abscissa, 84.

axis, 83.

Absolute error, 276.

zero, 12.

Acceleration, 17, 65.

curve, 102.

Normal, 179.

Tangential, 179.

Total, 179.

Accidental errors, 510.

Acetochloranilide, 8.

Acnode, 171.

Addition, 273.

Adrian, 515.

Airy, G. B., 451.

d'Alembert's equation, 459.

Algebra. Laws of, 177.

Algebraic functions, 35.

Alternando, 133.

Amagat, 176.

Amago, 74.

Amount of substance, 6.

Ampere, 29.

Amplitude, 137, 427.

Angles. Measurement of, 606.

Circular, 606, 624.

Radian, 606, 624.

Vectorial, 114.

Angular velocity, 137.

Anti-differential, 190.

Aperiodic motion, 410.

Approximate calculations, 276.

integration, 335, 463.

Approximations. Solving differential equa-
tions by successive, 463.

Arc of circle (length), 603.

Archimedes' spiral, 117, 246.

Areas bounded by curves, 230, 234, 237.

Arithmetical mean, 235.

Arrhenius, S., 146, 215, 332, 342.

Association. Law of, 177.

Asymptote, 104.

August, 171.

Atomic weghts, 540.

Austen, VV. C. Roberts, 151.

Auxiliaries, 559.

Auxiliary equation, 400.

Lagrange's, 453.

Average, 235.

error, 525.

Average velocity, 7.

Averages. Method of, 536.

Axes. Transformation of, 96.

Axis. Abscissa, 83.

Conjugate, 102.

Co-ordinate, 83, 121.

Imaginary, 102.

Major, 100.

Minor, 100.

Oblique, 83.

of iinaginaries, 177.

of reals, 177.

of revolution, 248.

Real, 102.

Rectangular, 83.

Transverse, 102.

Bacon, F., 4, 273.

Bancroft, W. D., 120.

Bayer, 605.

Baynes, R. E., 594.

Berkeley, G., 32.

Bernoulli, 572,575.
Bernoulli's equation, 388, 389.

series, 290.

Berthelot, M., 3, 227.

Berthollet, 191.

Bessel, 311, 514.

Bessel's formula, 523.

Binomial series, 36, 282.

Biot, 55, 74, 319.

Blanksma, J. J., 223.

Bodenstein, M., 222, 228.

Boiling curve, 174.

Bolton, C., 290.

Bolza, O., 579.

Bosscha, 63.

Boyle, 19, 20, 21, 23, 45, 46, 62, 114, 254,

444, 457, 596.

Boynton, W. P., 114, 260.

Brachistochrone, 572.

Bradley, 514.

Bradshaw, L., 390, 442.

Break, 143.

Bredig, G., 337.

Bremer, G. J. W., 328.

Briggsian logarithms, 25.

Bruckner, C, 303, 308, 356.

Bunsen, R, 270.

Burgess, J., 344.

Byerly, W. E., 467, 481.
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Cailletet, L.P.,150.
Calculations. Approximate, 276.

with small quantities, 601.

Calculus. Differential, 19.

finite differences, 308.

Integral, 184.

variations, 567.

Callendar, 39.

Callum, 561.

Cane sugar, 6.

Cardan, 353.

Carnot, 32, 34.

Carnot's function, 386.

Cartesian co-ordinates, 84.

Catenary, 348.

Cavendish, 527, 565.

Cayley, 169, 170, 603.

C-discriminant, 394.

Centnerszwer, M., 329.

Central differences. Interpolation by,
315.

Centre, 98, 100, 101.

,
of curvature, 180.

of gravity, 60s.

Ceratoid cusp, 170.

Characteristic equation, 79.

Charles' law, 21, 24, 91, 596.

Charpit, 454.

Chatelier, H. le, 318, 539.

Chatelier's theorem, 265.

Chauvenet's criterion, 563, 623.

Chloracetanilide, 8.

Chord of circle (length), 603.

Christoffel, 42.

Chrvstal. G.,351, 364.

Circle, 97, 121.

(area of), 604.

Arc of (length), 604.

Chord of (length), 604.

Perimeter of (length), 604.
of curvature, 180.

Osculatory, 180.

Circular functions, 346.

measure of angles, 606.

sector (area), 605.

segment (area), 605.

Clairaut, A. C, 192, 391, 393, 457, 561.

Clapeyron, E., 453, 457.

Clapeyron's work diagram, 239.

Clarke, F. W., 55i, 554, 562.

Clausius, R., 6, 504.

Clement, 81.

J. K.,350.
Coexistence of different reactions. Prin-

ciple of, 70.

Cofactor (determinant), 589.

Collardeau, E., 150.

Colvill, W. HM 275.

Combinations, 602.

Common logarithms, 25, 27.

Commutation. Law of, 177.

Comparison test (convergent series), 271.

Complanation of surfaces, 247.

Complement (determinant), 589.

Error function, 344.

of angles, 610.

Complementary function, 413.

Complete differentials, 77.

elliptic integrals, 426.

integral, 377, 450.
solution of differential equation, 377-

Componendo, 133.

et dividendo, 133.

Composition of a solution, 88.

Compound interest law, 56.

Comte, A., 3.

Concavity of curves, 159.

Condensation. Retrograde, 175.
Conditional equation, 218, 353.

Conditioned maxima and minima, 301.

observations, 555.

Conditions. Limiting, 363, 452.

Conduction of heat, 493.

Cone, 135.

(centre of gravity), 605.

(surface area), 604.

(volume), 605.

Conic sections, 97.

Conicoids, 595.

Conjugate axis, 102.

determinant, 590.

point, 171.

Conrad, M., 303, 308, 356.

Consistent equations. Test for, 585.

Constant, 19, 324.

errors, 537.

Integration, 193, 198, 234.
of Fourier' 8 series, 471.

Phase, 137.

Constituent (determinant), 581.

Contact of curves, 291.
Orders of, 291.

Continuous function, 142.

Convergent series, 267.
Test for, 271.

Convertendo, 133.

Convexity of curves, 159.

Cooling curves, 150. .

Co-ordinate axis, 83, 122.

plane, 122.

Co-ordinates. Cartesian, 84.

Generalized, 140.

Polar, 114.

Transformation of, 115.

Trilinear, 118.

Correction term, 278.

Cosecant, 607.

Cosine, 608.

Direction, 124.

Hyperbolic, 347, 613.

series, 283, 474.

Euler's, 285.

Cotangent, 607.

Cotes and Newton's interpolation formula,
337.

Cottle, G. J., 223.

Criterion. Chauvenet's, 663.

of integrability, -446

Critical temperature, 150.

Crompton, H., 146.

Crookes, W., 229, 280, 531, 533, 565.

Crunode, 169.
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Cubature of solids, 248.

Curvature, 178.
Centre of, 180.

Circle of, 180.

Direction of, 181.
Radius of, 180.

Curve, 85.

Equation of, 85.

Error, 512.

Frequency, 512.

Imaginary, 177.
Orders of, 120.

Plotting, 86.

Probability, 512.

Sine, 136.

Smoothed, 149.

Cusp, 169.

Ceratoid, 170.

Double, 170.

First species, 170.

locus, 394.

Rhamphoid, 170.

Second species, 170.

Single, 170.

Cycle, 239.

Cyclic process, 239.

Cycloid, 443, 573.

Cylinder, 135.

(surface area), 604.

(volume), 605.

Dalton, 491.

Dalton's law, 64, 285.

Damped oscillations, 404, 409.

Damping ratio, 409.

Danneel, H., 197, 215, 217.

Darwin, G. H., 537.
Decrement. Logarithmic, 409.
Definite integral, 187, 230, 234, 240.

Differentiation of, 577*

Degree, 607.

of differential equatiou, 378.
of freedom, 140.

Demoivre's theorem, 351, 613.

Dependent variable, 8.

Descartes, R., 84, 498.

Determinant, 580.

Conjugate, 590.

Differentiation of, 590.

Multiplication of, 589.
Order of, 581.

Properties of, 587.

Skew, 590.

Symmetrical, 590.

Developable surface, 134.

Dew curve, 175.

Diagrams. Work, 239.

Clapeyron's, 239.

Difference formulae. Differentiation of,J
Differences. Calculus of finite, 308.

Central. Interpolation by, 315.
Orders of, 308.
Table of, 309.

Differential, 10, 83, 568.

calculusj 19.

Differential, coefficient, 8.

Second, 18.

Complete, 77.

equation, 66, 371, 374, 378.

Degree of, 378.

Order of, 378.

Solving, 371.

Exact, 77, 384.

Partial, 69, 448.

Total, 69.

Differentiation, 19.

by graphic interpolation, 319.

Integration by, 495.
Methods of, 8.

of definite integrals, 577.
of determinants, 590.

of difference formulae, 320.

of hyperbolic functions, 349.
of numerical relations, 318.

Partial, 68.

Solution of differential equations by
391.

Successive, 64.

partial, 76.

Diffusion law. Fick's, 483.

Fourier's, 482.

of gases, 199, 491.

of heat, 493.

of salts, 483.

Direction cosines, 124. .

of curvature, 181.

Directrix, 98.

Discontinuous functions, 142, 143, 149.

Discriminant, 352.

-, 393.

0-, 394.

Dissociation, 111, 255.

isotherm, 112.

Distribution. Law of, 177.

Divergent series, 267.

Dividendo, 133.

et componendo, 133.

Division, 274.

shortened, 275.

Dostor's theorem, 588.

Double cusps, 170.

integrals, 251.

Variation of, 577.

Duhem, P., 141.

DiUong, 60, 273.

Dumas, J. B. A., 533, 548.

Dupre, A., 53.

Edgeworth, F. Y., 515, 519, 565.

Elasticity. Adiabatic, 113.

Isothermal, 113.

Elements (determinant), 581.

Leading, 583.

Surface, 251.

Volume, 253.

Eliminant, 583, 586.

Elimination, 377.

equations, 559.

Ellipse, 99, 121.

(area of), 604.
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Ellipse, (length of perimeter), 603.

Ellipsoid, 134, 595.

Elliptic functions, 428, 429.

integrals, 426, 427, 429.

Empirical formulae, 322.

Encke, 514, 552.

Entectic, 120.

Envelope, 182.

locus, 394.

Epoch, 137.

Epstein, F., 337.

Equilateral hyperbola, 109.

Equilibrium. Van't Hoff's principle, 264.

Equation. Conditional, 352.

Differential, 64.

General, 89.

Identical, 35a
of curve, 85.

of line, 89.

of motion, 66.

of plane, 133.

of state, 78.

Solving, 352.

Horner, 363.

Newton, 358.

Sturm, 360.

Error. Absolute, 276

Accidental, 510.

Average, 525.

Constant, 537.
Curve of, 512.

Fractional, 541.

function, 344.

Complement, 344.

Law of, 511, 515.

Mean, 524, 527, 528, 530.

of method, 540.

Percentage, 276, 541.

Personal, 537.

Probable, 521, 524, 526, 528.

Proportional, 539, 540, 545.

Relative, 541.

Systematic, 537.

Weighted, 550.

Esson, W., 332, 389, 435, 437, 438, 440.

Etard, 88.

Eulerian integral, 424, 425.

Euler's cosine series, 283.

criterion of integrability, 77.

sine series, 283.

theorem, 74, 449.

Even function of x, 476.

Everett, J. D., 519.

Ewan, T., 63.

Exact differential, 77, 384.

equation, 378, 431.

Test for, 432.

Forsyth's, 432.

Expansion. Adiabatic, 257.

Isothermal, 254.

Explicit functions, 593.

Exponential functions, 54.

series, 285.

External force, 413.

Extrapolation, 92, 310.

Factorial, 38.

Factors. Integrating, 77, 381, 383.

Faraday, M., 5, 539.

Federlin, W., 332.

Fermat, P. de, 56.7.

Fermat's principle, 165, 299.

Fick, 6, 492.

Fick's law of diffusion, 483, 492.

Field, 584.

Figures. Significant, 274.

Finite differences, 308.

First integral, 431.

law of thermodynamics, 81.

species of cusp, 170.

Fluxions, 34.

Focal radius, 98, 100.

Focus, 98, 100.

Forbes, 6.

Force. External, 413.

Forced oscillations, 413.

Forces. Generalized, 138, 141.

Formulae. Finding, 322.

Reduction, 205, 208, 211.

Forsyth, 454, 467.

Forsyth's test for exact equations, 432.

Fourier, J., 343, 467, 481.

Fourier's diffusion law, 481, 482.

equation, 401.

integrals, 479.

series, 469, 470, 477.

Constants of, 470.

theorem, 470.

Fraction. Partial, 212.

Vanishing, 304, 305.

Fractional errors, 541.

index, 28.

precipitation, 229.

Free oscillations, 414.

Freedom. Degrees of, 140.

Fresnel, 5, 30.

Fresnel's integral, 424.

Frequency. Curve of, 512.

Friction, 397.

Frost, P.
,
168.

Frustum of cone (volume), 605.

Function, 19, 322.

Complementary, 413.

Continuous, 142.

Discontinuous, 142, 144.

Elliptic, 428.

Error, 344.

Complement, 343.

Even, 474.

Explicit, 593.

Gamma, 423, 424.

Illusory, 304.

Implicit, 593.

Indeterminate, 304.

Multiple -valued, 241.

Odd, 475.

Periodic, 136.

Single-valued, 242.

Singular, 304.

Fundamental laws of algebra, 177.

Fusibility. Surface of, 118.
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Q-alileo, 29, 225.

Gallitzine, 60.

Gamma function, 423, 424.

Gas equation, 78, 110, 139, 596.

Gauss, C. F., 176, 311, 332, 409, 513, 515,

520, 560.

Gauss's law, 353.

of errors, 516.

interpolation formula, 315.

method of solving equations, 557.

Gay Lussac, 88, 91, 285, 510.

Geitel, A. C, 440.

General equation, 89.

integral, 451.

mean, 561.

solution of differential equation, 377.
Generalized co-ordinates, 139.

forces, 139, 141.

Generator, 134.

Geometrical series, 268.

Gerling, C. L., 565.

Gibb's thermodynamic surface, 598.

Gilbert, 424.

Gill, D., 533.

Gilles, L. P. St., 227.

Glaisher, J. W. L., 344.

Goldschmidt, H., 215.

Graham, T., 199, 486, 490.
J. C., 497.

Graph, 88.

Graphic interpolation, 318.

Differentiation by, 319.

solution of equations, 355.

Gray, A., 467.

Greenhill, A. G., 351, 431.

Gregory's series, 284.

Gudermann, 428.

Gudermannians, 613.

Guldberg, 191,226, 354.

Hagen, 507, 563.

Halley's law, 62, 260.

Hamilton, 567.

Harcourt, A. V., 332, 389, 435, 437, 438, 440.

Hardy, J. J., 245.

Harkness, J., 45.

Harmonic curve, 136.

motion, 135, 234.

Hartley, W. N., 332.

Haskins, G. N., 350.

Hatchett, 603.

Hayes, E. H., 146.

Heat. Conduction of, 493.

Heaviside, O., 370, 377, 496.

Hecht, W., 303, 308, 356.

Hedley, E. P., 332.

Heilborn, 196.

Helmholtz, 203, 372, 471, 472.

Henrici, O., 116, 335, 472.

Henry, P., 216, 227.

Henry's law, 87.

Hermann, 603.

Herschel, J. P. W., 325, 515.

Hertz, H., 5, 109.

Hessian, 592, 594.

Hill, M. J. M., 394.

Hinds, 561.

Hinrichs, G., 519.
Hoar frost line, 152.

Hobson, E. W., 267.

Hoff, Van't. Principle, 264.

Holman, S. W., 563.

Holtzmann, C, 457.

Homogeneous differential equations, 372.

function, 75.

simultaneous equations, 581, 584.
Hooke's law, 458.

Hopital. Rule of 1', 307.

Hopkinson, J., 4, 332.

Horstmann, A., 318, 319, 321, 326.

Humboldt, 510.

Hyperbola, 100, 121.

equilateral, 109.

rectangular, 109.

Hyperbolic cosine, 347.

functions, 347, 612.

Differentiation of, 348.

Integration of, 349.

logarithms, 25, 233.

sine, 247.

spiral, 117.

Hyperboloid, 133, 595.

Hyper-elliptic integrals, 430.

Ice line, 152.

Identical equation, 213, 352.

Illusory functions, 304.

Imaginaries. Axis of, 177.

Imaginary axis, 102.

curve, 177.

point, 177.

quantities, jjl76.

roots, 353.

semi-axis, 102.

surface, 177.

Implicit functions,- 593.

Indefinite integral, 187.

Independence of different reactions. Prin-

ciple of, 70.

Independent variable, 8, 448.

Indeterminate functions, 304.
Index. Fractional, 28.

law, 24, 177.

of refraction, 165.

Inequality. Symbols of, 13.

Inferior limit, 187.

Inflexion. Points of, 143, 160.

Inflexional tangents, 599.

Infinite series. Integration of, 341, 463.

Infinitesimals, 18, 33.

Infinity, 11.

Instantaneous velocity, 9.

Integrability. Criterion of, 446.

Eider's, 77.

Integral, 187.

Complete, 377, 450.

Definite, 189, 231, 240.

Differentiation of, 577.

Double, 251.

Elliptic, 427, 428, 429, 430.
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Integral, Elliptic, Complete, 430.

Eulerian, 424, 425.

First, 431.

Fourier's, 479.

Fresnel's, 424.

General, 451.

Hyper-elliptic, 430.

Indefinite, 187.

Limits, 187.

Mean values of, 234.

Multiple, 249.

Particular, 400, 418.

Probability, 516, 531, 532, 621, 622.

Space, 189.

Standard, 192, 193, 349,

Time, 189.

Ultra-elliptic, 430.

Variation of, 568, 569, 573.

double, 577.

triple, 577.

Integrating factors, 77, 380, 381.

Integration, 184, 189.

Approximate, 341, 469.

by differentiation, 495.

by infinite series, 341.

by parts, 204.

by successive integration, 206.

constant, 193, 194, 234.

formula of Newton and Cotes, 336.

hyperbolic functions, 349.

Substitutes for, 333.

Successive, 249.

Symbol of, 189.

Intercept equation of line, 90.

of plane, 132.

Interpolation, 310.

formula, Gauss', 315.

Lagrange's, 311. 312.

Newton's, 311, 312.

Stirling's, 318, 320.

Graphic, 317.

Differentiation by, 319.

Inverse sine series, 384.

trigonometrical functions, 49.

series, 283.

Invert sugar, 6, 184.

Invertendo, 133.

Ions, 112.

Irrational numbers, 178.

Isobars, 110.

Isometrics, 110.

Isoperimetrical problem, 575.

Isopiestics, 110.

Isothermal expansion, 254.

Isotherms, 110, 112, 113.

Jacobi, C. G. I., 69,428.

Jacobian, 453, 591, 594.

Jellet, J. H., 579.

Jevons, W. S., 142, 143, 498, 510.

Johnson, S., 3.

Jones, D., 109.

Joubert, 431.

Joule, 61, 189.

Judson, W., 216, 222.

Keesom, W. H., 563.

Kelvin, Lord, 56, 60, 168, 343, 481, 496,

515.

Kepler, 5, 29, 225.

Kinetic theory, 504, 534.

Kipping, S., 546.

Kirchhoff, 503, 504.

Kleiber, 503.

Knight, W. T., 217.

Kohlrausch, F., 327, 408.

Kooij, D. M., 224.

Kopp, 324.

Kramp, 38, 343, 424.

Kiihl, H., 216, 440.

Kundt, 520.

Liaar, J. J. van, 356.

Lag, 417.

Lagrange, 287, 311, 568.

Lagrange's auxiliary equations, 453.

criterion maxima and minima, 298.

interpolation formula, 311, 312.

method of undetermined multipliers,

301.

solution of differential equations, 453.

theorem,.301.

Lamb, H., 510.

Langley, E. M., 272.

Laplace, 114, 456, 461, 495, 499, 503, 504,

515.

Laplace's theorem, 300.

Laws of algebra, 177.

Lead, 417.

Leading element (determinantj, 583.

Least squares, 517.

Method of, 326.

Legendre, 424, 426, 430, 517. .

equation, 403.

parameter, 429.

Lehfeldt, R. A., 334.

Leibnitz, 19, 32, 33, 35, 61.

series, 284.

theorem, 67.

Symbolic form of, 68.

Lemoine, G., 340.

Lenz's law, 404.

Liagre, J. B. J., 498.

Limiting conditions, 363, 452.

Limits of integrals, 187.

inferior, 187-

lower, 187.

superior, 187.

upper, 187.

Linear differential equation, 38/, 399.

Exact, 431.

Liouville, 413.

Locus, 88.

Cusp, 394.

Envelope, 394.

Nodal, 394.

Tac, 394.

Lodge, O. J., 146, 603.

Logarithm, 24, 274.

Briggsian, 25.
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Logarithm, Common, 25.

Hyperbolic, 25, 233.

Naperian, 25.

Natural, 25, 627.

Logarithmic decrement, 408.

differentiation, 53.

functions, 51.

paper, 331.

series, 290.

spiral, 117.

Lorentz, H., 443.

Losanitsch, 603.

Loschmidt, 74, 491.

Love, 83.

Lowel, 88.

Lower limit, 187.

Lowry, T. M., 146.

Lupton, S., 333.

Mach, E., 126, 184, 580, 601.

Maclaurin's series, 280, 282, 286, 288, 301
305 322

theorem, 278, 280, 281, 301.

Magnitude. Orders of, 10.

Magnus, 55, 171.

Major axis, 100.

Mallet, 504.

Marek, 544.

Marignac, 552.

Mascart, 431.

Material point, 65.

Mathews, G. B., 467.

Matrix, 582.

Matthiessen, 44.

Maupertius, 567.

Maxima, 154, 155, 157, 161, 293, 296, 299,
570, 575.

Conditional, 300.

Lagrange's criterion, 298.

Maxwell, J. C, 5, 511, 534.

Mayer, R., 82, 114, 260, 561.

Mean, 234.

Arithmetical, 235.

Error, 524, 525, 526, 527.

General, 551.

Probable, 551.

Square, 236.

Values of integrals, 234.

Velocity, 7.

Measure of precision, 513.

Measurement of angles, 606.

Circular, 606, 624.

Radian, 606, 624.

Mellor, J. W., 139, 221, 390, 442, 466.

Mendeleeff, D., 39, 117, 139, 145, 146, 276.

Mensuration, 594.

Merrineld, C. W., 340.

Merriman, M., 563.

Metastable states, 152.
Method. Errors of, 537.

Meyer. L., 552.
O. E., 504.

Meyerhofer, W., 216.

Midsection formula, 340.

Mill, J. S., 126.

Minchin, 149.

Minima, 154, 155, 157, 161, 293, 296, 299,
570, 575.

Conditioned, 300.

Lagrange's criterion, 298.
Minor (determinant), 583.

axis, 100.

Mitchell, 503.

Modulus, 427.
of logarithms, 27.

of precision, 513.

Molecules. Velocities of, 534.

Momentum, 189.

Morgan, A. de, 13, 204, 281.

Morley, E., 549, 553.

F., 45.

Mosander, 229.

Moseley, 454, 455.
Motion. Aperiodic, 410.

Equation of, 66.

Harmonic, 136, 234.

Oscillatory, 396.

Periodic, 136.

Multiple integrals, 249.

Determinants, 589.

point, 169.

Valued function, 241.

Multiplication, 274.

Shortened, 275.

Multipliers. Undetermined, 301.

Mutual independence of different re-

actions, 70.

Naperian logarithms, 25.

Napier, J., 53.

Natural logarithms, 25, 27, 627.

oscillations, 414.

Nernst, W., Ill, 112.

Newcomb, S., 514.

Newlands, 117, 139.

Newton, I., 5, 19, 29, 30, 32, 34, 58, 60, 61,

114, 189, 192, 311, 396, 461, 544, 569.

Newton-Cotes interpolation formula, 337
Newton's interpolation formula, 312.

law, 441.

method of solving equations, 358.

Nicol, J., 320.

Node, 169.

Non-homogeneous equations, 373.

Nordenskjold's law, 64.

Normal, 105, 598.

acceleration, 179.

equation, 558.

of line, 91.

plane, 133.

Length of, 108.

Noyes, A. A., 223.

Numerical equation, 352.

values of trigonometrical ratios, 609.

Obermayer, O. A. von, 74, 491.

Oblique axes, 83.

Observation equations, 325, 582, 584.

Solving, 325.

Gauss, 557.
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Observations, Conditioned, 555, 558.

Rejecting, 563.

Test for fidelity of, 531.
Odd function of x, 475.

Ohm, 483.

Ohm's law, 3, 388, 483.

Operation. Symbols of, 19, 396.
Orders of contact, 291.

of curves, 120.

of differences, 308.
of differential equations, 378.
of determinants, 58.

of magnitude, 18.

of surfaces, 595.

Ordinary differential equations, 378.

Ordinate, 84.

axis, 83.

Origin, 84.

Orthogonal trajectory, 395.

Oscillations. Damped, 404.

Forced, 413, 414.

Free, 414.

Natural, 414.

Period of, 137.

Oscillatory motion. Equations of, 396.

Osculation. Points of, 170.

Osculatory circle, 180.

Ostwald, W., 139, 224, 226, 275, 545, 554.

Parallelepiped, 71.

Parallelogram (area), 604.
of velocities, 125.

Parallelopiped, 71.

of velocities, 125.

(volume), 605.

Paraboloid, 134, 595.

Parabola, 99.

(area of), 604.

Parabolic formulae, 336.

Parameters (crystals), 132.

Legendre's, 429.

variable, 182.

Parnell, T., 320.

Partial differential, 70.

equations, 378, 448, 449.

differentiation, 68.

fractions, 212.

Particular integrals, 400, 418.

solutions, 377, 450.

Parts. Integration by, 205.

Interpolation by proportional, 311.

Rule of proportional, 289.

Paschen, 332.

P-discriminant, 393.

Pelouse, 552.

Pendlebury, R.
, 344.

Percentage error, 276, 541.

Perimeter of circle (length), 603.

of ellipse (length), 603.

Period of oscillation, 137.

Periodic functions, 136.

motion, 135.

Perkin, W. H., 546.

Permutations, 602.

Perpendicular equation of line, 90.

Perry, J., 72, 331, 332, 472.
Personal error, 537.
Peter's formula, 524.
Petit and Dulong, 60.

Phase, 119.

constant, 137.

Pickering, S. V., 146, 148.

Pierce, B. O., 205, 563.

Plaats, J. D. van der, 561.

Plait point, 176.

curve, 176.

Planck, M., 79, 357.

Plane, 122, 132.

Co-ordinate, 122.

Equation of. Intercept, 132.

General, 133.

Normal, 133.

Projection, 129.

Normal, 133.

Plotting curves, 87.

Poincare, H., 274, 515.

Point, imaginary, 177.

Poisson, S. D., 449, 456.
Polar co-ordinates, 114.

Polygon (area), 604.

Polynomial, 38.

Precht, J., 332.

Precipitates. Washing, 269.

Precipitation . Fractional ,
229.

Precision. Measure or modulus of, 513.

Pressure curves. Vapour, 147, 151.

Priestley, J., 91.

Primitive, 377.
Prism (surface area), 604.

(volume), 605.

Probability, 498.

curve, 512.

integral, 516, 531, 532, 621, 622.

Probable error, 521, 526, 528, 529.

mean, 551.

Projection, 128.

of curve, 129.

of point, 128.

plane, 129.

Properties of determinants, 587.

Proportional errors, 539, 541.

parts. Rule of, 289.

Interpolation by, 311.

Proportionality constant, 21.

Prout's law, 504.

Pyramid (centre of gravity), 605.

(surface area), 604.

(volume), 605.

Pythagoras' theorem, 603.

Quadrature of surfaces, 232.

Quantities. Small. Calculations with,
601.

Radian, 606.

measure of angles, 607.

Radius, 98.

focal, 99, 100.

of curvature, 180.

vector, 100, 114.
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Ramsay, W., 566.

Rankine, 6, 323.

Rapp, 278.

Rate, 9.

Ratio. Damping, 408.

Test, 272.

Ravenshear, A. F., 563.

Rayleigh, Lord, 538, 539, 566.

Raymond, E. du Bois 410.

Real axis, 102.

semi-axis, 102.

Reals. Axis of, 177.

Rectangle (area), 604.

Rectangular axis, 83.

hyperbola, 109.

Rectification of curves, 245.

Reduction formulae, 205, 208, 211.

Integration by successive, 206.

Reech's- theorem, 81.

Reference triangle, 117.

Refraction of light, 165.

Regnault, 147, 171, 323, 326, 539, 553.

Reicher, L. T., 223.

Rejection of observations, 563.

Relative errors, 541.

zero, 12.

Renyard, 210.

Restitution, 397.

Retardation, 18.

Retrograde condensation, 175.
Revolution. Axis of, 247.

solid of, 248.

surface of, 134, 247.

Rey, H., 603.

Rhamphoid cusp, 170.

Rhombus (area), 604.

Richardson, O. W., 320.

Riemann, B., 244, 467, 481.

Roche, 171.

Rontgen rays, 214.

Roots, 352.

Imaginary, 353.

of equations. Separation, 359.

Roscoe, H. E., 584.

Routh, E. J., 415.

Rowland, H. A., 552, 565.

Rows (determinants), 582.

Rucker, A. W., 146, 278.

Rudberg, F., 527, 565.

Ruled surfaces, 134.

Runge, C, 332.

Sachse, H., 606.

Sargant, E. B., 512.

Sarrau, 6.

Sarrus, 232.

Schmidt, G. C, 326.

Schorlemer, C., 584.

Schreinemaker, F. A. H., 372, 373.

Schuster, A., 503.

Secant, 603.

Second differential coefficient, 18, 65.

law of thermodynamics, 81.

species of cusp, 170.

Sector. Area of circular, 604,

Segment. Area of circular, 604.

Surface area of spherical, 604.

Volume of spherical, 605.

Seitz, W., 488.

Semi-axis, 102.

Imaginary, 102.

Real, 102.

Semi-logarithmic paper, 331.

Separation of roots of equations, 359.

Series, 266.

Bernoulli's, 290.

Binomial, 282.

Convergent, 267.

Tests for, 271.

Cosine, 283, 473.

Euler's, 285.

Divergent, 267.

Exponential, 285.

Fourier's, 469, 470.

Geometrical, 268.

Gregory's, 284.

Integration in, 341, 463, 464.

Leibnitz's, 284.

Logarithmic, 290.

Maclaurin's. See " Maclatfrin ".

Sine, 283, 473.

Euler's, 285.

Invers-, 284, 285.

Taugent, 283.

Taylor's. See "
Taylor ".

Trigonometrical, 283, 473.

Inverse, 283.

Seubert, K., 552.

Shanks, 274.

Shaw, H. S. H., 85.

Shortened division, 275.

multiplication, 275.

Significant figures, 274.

Signs of trigonometrical ratios, 610.

Similar figures (lengths), 603.

(areas), 604.

(volumes), 605.

Simpson's one-third rule, 336, 338.

three-eight's rule, 338.

Simultaneous differential equations, 434,

441, 444.

equations, 580, 584.

Sine, 607.

hyperbolic, 347, 613.

series, 283, 473.

Euler's, 285.

Inverse, 283, 284.

Sines. Curve of, 136.

Single cusps, 170.

Single-valued functions, 242.

Singular functions, 304.

points, 167.

solution, 392, 450.

Skew determinant, 590.

surface, 134.

Small quantities. Calculations with, 601.

Smoothing of curves, 148. .

Snell's law, 165.

Soldner's integral, 423.

Solubility curves, 87, 88.
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Solubility, surface, 597.

Solution, 352.

Complete, 377.

Extraneous, 363.

General, 377.

of differential equations, 370, 377, 449.

-by differentiation, 390.

of equations, 352.

Graphic, 355.

Horner's equations, 363.

Newton's, 358.

Sturm's, 360.

Particular, 377, 450.

Singular, 392, 450.

Test for, 363.

Solutions, 145.

Solving equations, 352.

Differential, by successive approxi-

mations, 467.

Observational, 324, 326, 330.

Gauss, 557.

Mayer, 561.

Soret, 199.

Space integral, 189.

Speed, 9.

Spencer, H., 3.

Sphere, 134.

(surface area), 604.

(volume), 605.

Spherical segment (surface area), 604.

(volume), 605.

triangle (area), 604.
'

Spheroids, 595.

Spinode, 169.

Spiral Archimedes, 117.

curves, 116.

Hyperbolic, 117.

Logarithmic, 117.

Sprague, J. T., 194.

Square. Mean, 234.

Squares. Method of Least, 326, 517.

Standard integrals, 192, 193, 349.

Stas, 273, 530, 552.

State. Equation of, 78.

Statistical method, 536. -

Steam line, 151.

Stefan, 60.

Stirling, 281, 311.

Stirling's formula, 317, 320, 602.

Stone, 563.

Straight lines, 89.

Strain theory carbon atoms, 605.

Strutt, K. J., 504, 496.

Sturm's functions, 360.

method solving equations, 360.

Sub-determinant, 583.

Sub-normal, 108.

Substitutes for integration, 333.

Substitution, symbol of, 232.

Sub-tangent, 108.

Subtraction, 274.

Successive approximation. Solving differ-

ential equations by, 467.

differentiation, 64.

reduction. Integration by, 206.

Successive integration, 249.

Sugar. Cane, 6, 184.

Invert, 6, 184.

Superior limit, 187.

Superposition of particular integrals, 400.

Supplement of angles, 610.

Surd numbers, 178.

Surface, 122, 132.

Oomplanation, 247.

Developable, 134.

elements, 230, 251.

Imaginary, 177.

integral, 249.

of fusibility, 118.

of revolution, 134, 247.
of solubility, 597.
Orders of, 595.

Quadrature, 232.

Ruled, 134.

Skew. 134.

Thermodynamic (J. W. Gibbs), 596.

Vander Waals', 596.

Symbol, 195.

of inequality, 13.

integration, 189.

operation, 19, 396.

substitution, 232.

Symbolic form of Leibnitz' theorem, 68.

of Taylor's theorem, 428.

Symmetrical equation of line, 131.

determinant, 590.

Systematic errors, 537.

Table of differences, 309.

Tabulating numbers, 309.

Tac locus, 394.

Tacnodes, 170.

Tait, P. G., 6, 405, 469, 496, 515.

Tangent, 102, 104, 144, 607.

form of equation, 91.

inflexional, 599.

Length of, 108.

Line of, 597.

plane, 597, 598.

series, 283.

Tangential acceleration, 179.

Taylor, F. G., 28.

Taylor's theorem, 281, 286, 290, 301, 354,

458,569 592.

symbolic form of, 458.

series, 286, 287, 288, 291, 292, 293, 305,
322.

Temperature. Critical, 150.

Terminal point, 171.

Test for exact differential equations, 77,

379, 431.

Forsyth's, 432.

consistent equations, 585.

convergent series, 271.

solutions, 363.

Test-ratio test (convergent series), 272.

Theoretical formulae, 322.

Thermodynamics, 79, 80, 81, 82.

First law, 81.
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Thermodynamics, Second law, 81.

Surfaces (J. W. Gibbs), 596.

Thermometer, 111.

Thomsen, J., 79.

Thomson, J., 148, 586.

J. J., 214, 442, 509.

W. See Kelvin.

Thorpe, T. E., 278.

Time integral, 189.

Todhunter, I., 290, 572.

Total acceleration, 179.

differential, 70.

equations, 448.

Trajectory, 395.

Orthogonal, 395.

Transformation of axis, 96.

Co-ordinates, 118.

Transition point, 145.

Transverse axis, 102.

Trapezium (area), 604.

Trapezoidal formulae, 339.

Travers, M. W., 566.

Trevor, J. E., 594.

Triangle (area), 604.

of reference, 118.

Spherical (area), 604.

Triangular lamina (centre of gravity), 605.

Trigonometrical functions, 47.

Inverse, 47.

ratios, 608.

Numerical values of, 609.

Signs of, 610.

series, 283, 473.

Inverse, 283, 284.

Trigonometry, 606.

Trilinear co-ordinates, 118.

Triple integrals. Variation of, 577.

point, 151, 152.

Tubandt, C, 228.

Turner, G. C, 116.

Turning point, 143, 160.

Tutton, A. E., 278.

Ultra-elliptic integrals, 430.

Undetermined multipliers (Lagrange), 301.

Upper limit, 187.

Values of integrals. Mean, 234.

Vanishing fractions, 304, 305.

Vapour pressure curves, 147, 151.

Variable, 19.

Dependent, 8.

Independent, 8, 448.

parameter, 182.

Variation, 568, 569, 572.

constant, 21.

_ of integral, 568, 569, 573.

Variations. Calculus of, 567.
Vector. Kadius, 100, 114.

Vectorial angle, 114.

Velocities. Parallelogram of, 125.

Parallelopiped of, 125.

Velocity, 9.

Angular, 137.

Average, 7.

curve, 103.

Instantaneous, 8,

Mean, 7.

of chemical reactions, 6, 218.

Consecutive, 433.

Venn J., 515.

Vertex, 99, 100, 102.

Vibration. See Oscillation.

Volume, 605.

elasticity of gases, 113.

elements, 253.

Waage, 190, 226, 354.

Waals, J. H. van der, 6, 46, 114, 172, 176,

255, 260, 367, 579, 596.

surfaces, 596.

Walker, J., 433, 440.

J. W., 216, 222.

Warder, R. B., 215.

Washing precipitates, 269.

Wave length, 137.

Weber, H. F., 244, 467, 481, 479, 520.

Weddle's rule, 338.

Wegscheider, R., 334, 337, 442, 440.

Weierstrass, K., 45.

Weight of Observations, 549.

Weighted observations, 550.

error, 550.

Whewell, 83.

White, 416.

Whitworth, 273.

Wilhelmy, L., 30, 63, 196, 219, 224.

Williams, W., 481.

Williamson, B., 19, 290, 571.

Winkelmann, A., 59, 61.

Wogrinz, J., 440.

Woodhouse, W. B., 472.

Work diagrams, 237.

Clapeyron's, 239.

X-axis, 83.

Y-axis, 83.

Young, 5.

S., 39.

Zero, 11.

Absolute, 12.

I Relative, 12.
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