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PREFACE.

In the preparation of the following treatise

three points have been constantly in view, to

avoid as far as possible all purely theoretical

discussion, to discover the most economical

forms of profiles consistent with perfect

strength, and to consider none that have not,

after repeated practical application demon
strated their excellence, even under the severest

tests. To treat the subject, however, in a logical

way, it has been found best to begin with a

theoretical determination of the strongest and

at the same time least expensive form of profile,

and afterwards to modify this to meet the re

quirements that arise in actual construction.

The theoretical type is, as I have attempted
to show, that composed of a vertical face on

the inner, and a concave surface on the outer

side. Of this, there are, of course, an almost

unlimited number of possible modifications.

But when we impose the condition of economy,
the number of really useful ones dwindle down
to less than half a dozen. Those treated of in

the present work number four. The first (il

lustrated in Fig. 9), is, beyond all doubt, the



very best. It has indeed, been often urged

against this type of profile, that it is difficult

to determine with accuracy the equations of

the logarithmic curves forming the bounding

faces, as also to cut the facing stones to such

a curve. As to the first objection, no equations

can surely be simpler than those we have

given, while the second is a difficulty most

easily removed, not by argument, but by de

termination.

The three other types are also profiles of

equal resistance, and are treated of so fully in

the work as to call for no remark here. It will

also be observed that I have touched very

lightly on the sliding of dams on their founda

tion, or of any portion of them along a hori

zontal joint. This has been done, because,

though I have examined as fully as possible the

causes that have led to the destruction of dams

of all style of profile and of all heights, both

abroad and in this country, I have been able

to find extremely few that may justly be said

to have yielded by sliding. It has almost in

variably been by revolving about an axis near

the outer face, caused by taking too great a

limit of vertical pressure, and thus throwing
the line of resistance, when full, too far out

ward from the centre of thickness.

JOHN B. McMASTER.

YORK, February, 1876.



HIGH MASONEY DAMS,

THE subject proposed for consideration

in the following work is that of the pro
file of masonry dams of such height,

breadth and general dimensions as would
be required for reservoir purposes, or for

impounding the waters of rivers and

large streams for mill or irrigation use.

We would observe, however, at the out

set, that as this matter has already been

treated with such fullness by several

writers, and especially by MM. Delocre

and Sazilly to whose excellent &quot;me

moirs &quot; we are greatly indebted we can

hope to add little that is really new, but

shall endeavor, by drawing from many
sources, to supply our own deficiency, to

diminish the errors of others, and thus

obtain results very much more accurate
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than could be derived if we relied solely

on ourselves.

Before, however, we take up the con

sideration of the matter of the form of

profile that shall combine the greatest

strength with the least amount of mate

rial, there are a number of important

points to be considered somewhat in de

tail. Thus, it is necessary, in the first

place, that we should know the forces to

which dams are subjected, their kind?

whether constant or variable, the meth

ods of determining their direction and

calculating their intensity, and the ef

fects they are likely to produce, and

these matters being known, we may pass

to the consideration of the conditions of

stability, first when the dam has only its

own weight to support, and, secondly,

when it has to withstand both its own

weight and the pressure of the water.

We may then deduce a theoretical profile

of equal resistance, and, finally, adopt

one so modified by the requirements of

practice and suggestion of experience,

that it shall serve as a profile type, ful-



filling to the utmost the requirements of

great strength and stability, beauty of

outline and economy of material.

Now, it becomes evident, after a mo
ment s consideration, that there are but

two forces that may at any time be re

garded as acting with vigor on a dam,
and these are, the weight of the mason

ry, cement and other material composing
the structure, and the pressure or thrust

of the water whose flow it checks. The

first becomes, to all intents and purposes,

a constant quantity as soon as the dam
is finished, and continues so for ever

after, acting vertically downwards

through the centre of gravity of the

mass. But, on the other hand, the latter

force is one of great variability. For,

as its intensity at any moment depends
on the depth or head of water behind

the dam, increasing as the water deepens
and 1

decreasing as the water falls, and

the head of water, especially in reservoirs

used for mill or irrigation purposes, be

ing subject to frequent rise and fall, it

follows that this thrust must be consid-
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ered as a variable quantity and treated

accordingly. It is, moreover, to be ob

served, that this thrust acts horizontally,

and unlike the weight, is not distributed

uniformly over the entire face of the dam,

being almost, if not quite, zero at the

point where the water cuts the masonry,
and growing greater and greater as we
descend towards the foot of the dam.

The weight, it is true, also increases as

we go from the top to the bottom, yet,

if we suppose the dam to be at any point .

ten feet thick, the pressure on any hori

zontal section taken at that point will be

everywhere the same, and this is by no

means the case if we take an area ten

feet square on the water face of the

dam, and against which the fluid presses.

In order that the dam may not yield

under the first force, and be thrown

down by the greatness of its own weight,
it is necessary, should the structure be

of such height, or the material of such

heaviness, that the pressure per unit of

surface at any horizontal section is in

excess of the &quot;limit of pressure&quot; for



masonry, that the surface of the section

be increased so that the pressure being
distributed over a more extended area

the load at each unit of surface shall be

less. The second force, or thrust of the

water, is resisted at any point by the

weight of the masonry above that point,

and by the friction of the stones, which

is of course dependent on the weight.

Some resistance is indeed afforded by the

bonding power of the hydraulic mortar

used in setting the stones, but this is so

^small that precautions of safety require

that it shall in all calculations be disre

garded entirely.

But these two forces, the weight act

ing vertically downwards and the thrust

of the water acting horizontally, counter

act each other to a certain extent, and

give rise to a third power or resultant,

the position of which, as regards the base,

will determine the stability of the dam.

To illustrate, let A B C D (Fig. 1) repre

sent the profile of a dam composed of

horizontal courses of masonry bedded

on each other, and K the centre of gravi-
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FIG, I.

ty of the mass, lying above the line E F.

Represent by K G the direction and in

tensity of the weight of AF, and by
KP the direction and intensity of the

thrust of the water from D to F. Then,

constructing in the usual way the paral

lelogram P K Gr R, we shall have for the

resultant of KP and KG, the line KR.
Now, supposing the dam to be perfectly
secure as to its weight, the force P of the

water can demolish the wall only, when,

exceeding the weight and friction K G,

it shoves the mass AF along the joint

E F, or causes it to rotate about an axis

through E. Which of these motions,
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the slipping or rotating, shall take place

depends entirely on the magnitude and

direction of the resultant K R. If the

pressure of the water is so large com

pared with the weight that the angle

RK G, which the resultant makes with

the vertical, is larger than the angle of

friction (32 for masonry on masonry),

the mass A F will then slide along the

line EF; while if the position of the re

sultant is such that it passes without the

base B C, then rotation will take place

about the axis of E. Of these two mo

tions, the latter is in practice the most

likely to occur, inasmuch as in nine cases

out of ten when rotation does take place
it does so about some point as E

,
nearer

the resultant than E, because the press
ure concentrated at E, breaks off the

stone, and thus throws the axis of rota

tion nearer the resultant.

The condition of stability then, in dams
that do not transmit laterally to the

sides of the valley, the pressure they sus

tain (and this is the ease in all large

dams) is, that they must resist this press-
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ure at every point by their own weight.
If the material employed were of con

siderable resisting power, as well as the

soil of the foundation, and if there were

between them an unlimited degree of

adhesion, the only condition of stability
to be fulfilled would be, as we have just

seen, to give the wall such a profile that

the resultant of the thrust of the water

and the weight of the dam shall pass
within the polygon of the base. But
this condition is not found sufficient in

practice ;
the material and the soil of

the foundation will, in fact, support only
a limited pressure (depending on their

nature), and they have not between
them an unlimited degree of adhesion.

Hence, the two following indispensable
conditions :

1 The several courses of masonry in

the wall must be incapable of slipping
the one over the other, and the wall in

capable of sliding on its base.

2 In no point of the structure may
the material employed, or the soil of the

foundation be required to bear too great
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a pressure. To begin with the first con

dition.

STABILITY AS TO SLIPPING.

We shall take up first the condition

of stability as to the slipping of the va

rious courses of masonry, and then pass

to that of the entire dam. The first

thing to be now determined, is the hori

zontal thrust of the water. Suppose
A B C D (Fig. 2) to represent the face of

a dam pressed by water, and let h=A J

denote the height; a=J C the projection

of the slope of the dam on the horizon

tal plane; and, finally, let 1=A B denote

the length of the dam, and b=A G is

breadth across the top. Then will the

vertical pressure of the water on the face

A B C D be expressed by

al- y\ alliy ... 1

and the horizontal thrust by the* expres
sion
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in each of which y denotes the density
of the water. These equations are ob

tained as follows :

Let E P, in Fig. 2, represent the nor

mal pressure of the water on the surface

A C, which we will call F, and resolve it
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into two components, one vertical E P ,

and one horizontal E
P&quot;,

and call them

respectively P and P&quot;. Then expressing
the angle P E P&quot; made by the horizontal

component P&quot; and the normal E P, by a

we shall have from the triangle E P P&quot;

pp//
-^5 = sin P E P&quot; or sin a.

L Jr

But PP&quot;=EP =P
,
hence

P
&quot;)

p-=sin a or P =P sin a.

In the same way we find

p//= cos a or P&quot;=:P cos a.

Now, let a projection A B C D, of the

surface A B D, be made on a plane at

right angles to
P&quot;,

and call the area of

the projected surface F . Then will F
= F cos AC A

,
or since the angle of

inclination A C A of the surface to its

projection is equal to the angle P E P&quot;

= a, between the normal to A C, and
the perpendicular to A 7

C, we shall

F
have F =F cos a or cos a=^r But cos

JD TD//

a is by equation 3 equal to
^-, and

therefore,
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&quot;p// TJ^ TT

From the principles of mechanics, we
know that the pressure P of water on

any given area is the product of the

area,^the height h of the water, and its

density y, so that in the present instance

F being the area of the surface A B C D,
we shall have for the value of P the ex

pression P=F h y, and this substituted

in equation 4 gives

P&quot;=FAy or F hy . . . 5.

Therefore is the pressure with which

water presses against a surface in a given
direction equal to the weight of a column

of water, which has for its base the pro

jection of the surface pressed, and for

height the depth of the centre of gravi

ty of the surface below the top of the

water. We see, moreover, from the

above, that since the projection at right

angles to the vertical is the horizontal,

and the projection at right angles to the

horizontal is the vertical projection, the
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vertical component of the pressure of

water against a surface may be found if

the horizontal projection, or its trace, be

considered as the surface pressed, and,

on the other hand, the horizontal com

ponent may be found if the vertical pro

jection of the surface, or its trace, be

considered as the surface pressed.

Applying these two principles to the

case of Fig. 2, and replacing F in equa
tion 5, by its value 111, we shall have for

the horizontal thrust of the water on the

face A B C D of the dam the equation
P&quot; ^h*ly, and in the same way the

vertical component will be found to be

equal to P -J a h I y. Now, b being the

breadth of the dam, and a r

the projec
tion of the slope G K, and y the density
of the masonry composing the dam, it is

evident that the area of K C E G will

/ T a+ a f

\
be tcH--- I fi

;
the cubic contents

lily . The whole vertical pressure on

the base will therefore be equal to this
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weight plus the vertical pressure of the

water, or

We have seen, however, that the force

which tends to counteract the push of

the water, and on which the stability as

to slipping must therefore depend, is

equal to this weight of the dam increas

ed by the friction of the stones. De
noting this co-efficient of friction by/,
we shall then have for the force to push
the dam forward the expression

and in the case where the horizontal

thrust of the water is to effect the dis

placement

or dividing each member through by
^ h ly^ we shall have
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In order therefore that the dam may not

be pushed away by the water, we must

have one of the two following conditions

fulfilled
;
either

For safety, we may further assume

that the base of the dam is quite per

meable, in which case there is (on the

principle that a pressure in one direction

produces an equal pressure in the oppo
site direction) a pressure from below up
wards equal to (2 b + a+ a f

) Ihy, equal
the weight of the dam, and as this is, of

course, to be subtracted from the above,

we have finally,

(2 b + a+ a
)

- - l-a 9.

These equations are applicable not

only to the sliding of the entire dam on
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its foundation, but also to any particular

layer of stone at any point in the dam.

The value of the co-efficient of friction

f will of course be very different in cases

where we consider the stability of differ

ent parts of the wall, from that in cases

where we consider the dam to slide on

an earthty foundation. In the former

case, it is that of masonry on masonry,
in the latter, that of masonry on earth,

and in general clay. In fact, it may be

restricted almost solely to clay, because

in a sandy, porous or yielding soil, it

is better, on principles of economy, not to

build a dam, but a dyke. For masonry
on masonry, or, indeed, bricks on bricks,

we may with safety take the co-efficient of

friction as equal to .67 ;
for masonry on

dry clay .51; but for masonry on wetted

clay the co-efficient falls to .33.

A few examples may, perhaps, serve

to illustrate the above remarks. We
shall confine ourselves first to the case

of rotation about one of the joints, as

that is really the most likely one to arise

in practice :
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Let Fig. la represent the profile of a

FlG.U. A D

dam, constructed say of brickwork

weighing 112 pounds per cubic foot.

Let the thickness on top be 10 feet, and

that at the base 20 feet, required to find

the perpendicular height, the dam must

have in order that, when the water stands

at the brim, the wall shall be just on the

point of turning about the point B under

the pressure of the water. Denote by h
the height of the dam, or the quantity
we are in search of,

= C D. Now, by



22

equation 2, the thrust of the water on

one lineal foot of surface is X62.5 Ibs.,

A2

and the moment of this thrust is X62.5
h A3

Ibs. X - or X 62.5 Ibs. The pressureo 6

of one foot of the dam, or what is the

AD +BC zsame thing, its weight is-- h X
104-20

112 Ibs., or h X 112 lbs.= 1680 h

Ibs., and the moment of this pressure
with reference to the point B is 1680 h

XBE. Before we can obtain this mo
ment, then, we must find the value of

B E, and this is found as follows :

It is evident from a moment s inspec
tion of Fig. la, that the area of

ABCDxG&amp;lt;7 = area ABC FxBH +
area of ABFxIB, or

denoting A D by a\ B C by ~b\ D C by c;

and G g by d, we have since B H =
2ba 2 (ba)--,andIB=. -L.

2 b a c(ba)~~
dividing by c
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. 11 a (baY-

Substituting for the above quantities

their values, we have :

c?=^-W = 1
J
iI

,

The moment of the dam therefore is

1680 h X -%*.

|pX
62.5 Ibs. = 1680 A X JR

62.5 A3

_184800A
6 9

^2

A/197.12

A = 44.3982.

Again, preserving the same dimensions,

let it be required to find the &quot; modulus

of
stability&quot;

of a masonry dam of the

profile, shown in Fig. 1, the stone weigh

ing 200 pounds per cubic foot. Draw
from the middle of the top A D to the

middle of the base B C the line R Y, and

take its length as 45 feet, and the depth
of the water behind the dam, 44 feet.



24

Now, by geometrical principles, which it

is not worth while to repeat here, we
have :

10 + 10 _ 245

15
=

T5~

g being the centre of gravity of the

wall. Again, in the two similar triangles
EY S and g V T, we have :

RV: VS;:V&amp;lt;7: VT.

The value of N g we have just found.

VS is evidently equal toYC SO, or

10 5= 5. In the triangle RYS, we
also have R S =R V -VS 2

,
or RS3=

(45)
2

-(5)
2

;
hence RS=44.38. Substi

tuting these values in the above propor

tion, we shall have :

45 : 5;:- : VT
15

The weight or pressure of the wall

acting through the centre of gravity g
of the dam is, as we have already seen,

20+10-X 1 X 44.38 X 200=133140
Ibs.,
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and that of the water 44X1X^X62.5
= 60500 Ibs. If now we denote by P
the &quot; centre of pressure

&quot; of the water,

that is to say, that point where a single

pressure will counterbalance the thrust

of the water against the entire face D C
of the dam, then P=C P=^=14.6 feet.

The quantity we are in search of, the

modulus of stability of the wall is the

ratio of T B to T O. The value of T B
we have already, and may obtain that of

T O from the proportion that the press

ure of the dam is to the height of the

centre of pressure (P) of the water

above the base of the dam as the press

ure of the water is to the entire pressure
of the water acting on its centre of press

ure P. Thus :

133140 : 14.6! .60500 : x

aj=6.6=TV.

Dividing this last found quantity by T B,
we have :

rp
&quot;TT f /i

i^-^= --^= .53*1 = modulus of stability.
1 J3 llf

In a well built structure, this quantity
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should never be less than .5, hence, as in

the present case, the modulus is somewhat

above this value, we are justified in re

garding the dam as a perfectly stable

structure, when the water is not over 44

feet in depth.
In these considerations, we have taken

no account of the resistance offered by
the adhesion of the mortar. Should

this be taken into account and it is al

ways best that it should not then equa
tion 9 will require to be modified some

what as follows : Let H equal the dis

tance of the centre of gravity of a layer

of stones below the top of the dam.

The shove of the water tending to throw

down this portion of the dam is, as we
. _ . ,

have just seen,
-

,
in which expression

2i

6 is merely a short notation for ly. The

forces resisting this shove are the friction

of the two layers sliding on each other,

and the adhesion of the masonry. The

first is proportional to the weight of the

masonry above the stratum in question,

and the second or adhesion of the mason-
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ry is proportional to the thickness of

the dam at this point. Representing as

before the co-efficient of friction by/*, by
c the cohesion of the mortar per unit of

surface, by s the area of the upper sur

face of the course next below, and by 5

the thickness of the dam at this section,

we shall have for the resistance R to

sliding :

and therefore, in order to insure stabili

ty, we must have :

2

or clearing of fractions, and then divid

ing by

H2 10

Neglecting the adhesive power of the

mortar, the above becomes :

ad

The second case of slipping, or that of

the dam on its foundation will rarely, if



28

ever arise, when the dam is founded on

a rock, for in that case the value of the

co-efficient of friction will be the same

for the horizontal section of the founda

tion as for any section of the masonry-
It is, however, very likely to arise when
ever circumstances will not enable us to

lay the foundation on bed rock. In such

cases the soil will almost always be of

an argillaceous nature, for, should it

prove to be of a gravelly, sandy or very

permeable character, the employment of

some common form of dyke will be much

preferable to the construction of a dam.

We may, therefore, reasonably assume

that in all cases where the foundation

course does not rest on a rock surface, it

will be laid on argillaceous soil, and as

this will readily give, under the action of

water, a slippery slimy surface, we must

assume a co-efficient of friction very
much less than that used for masonry on

masonry. With this point kept clearly

in view, the conditions of stability will

be given by the above equations. Yet

there are one or two other considerations
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that must not be overlooked. Thus, as

the stability will depend in large meas

ure on the lateral resistance of the soil,

it is not sufficient to be sure that this

resistance is large enough to prevent the

sliding of the wall, but is also necessary

to be assured that at any point of the

front of the foundation wall, the normal

pressure does not exceed the limit R/ of

which the soil or the wall is susceptible.

Again, in order to prevent any slipping

likely to arise from the lateral compres
sion of the earth, it is not necessary to

interpose any packing between the face

of the wall and that of the ditch, and,

finally, that in all cases it never comes

amiss to &quot;

step
&quot; the rock or the earth on

which the foundation course rests, a mat
ter to be considered more in detail here

after.

SECOND CONDITION OF STABILITY.

To return now to the second condition

of stability, namely, that in no point of

the structure may the material employ
ed, or the soil of the foundation, be re-
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quired to bear too great a pressure. For

this purpose let A B C D (Fig. 3) repre-

D C

Rc.3.

sent the profile of a dam. Then from

the principles we have already establish

ed, it follows that any section of this,

equal in length to a lineal unit, may be

considered as subject to the action of

two forces, which are, respectively, the

vertical component P of the resultant of

the weight of the structure above that

unit, and the horizontal pressure or
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thrust of the water, and the horizontal

component F of the thrust of the water.

In the section A B C D, these two forces

act through the centre of gravity G, and

produce a resultant of their own which

cuts the A B at E. This latter resultant

R may therefore be regarded as applied

directly to the point E, and resolved into

two components, one vertical and equal
to the force P, and one horizontal and

equal to the force F. The horizontal

force tends to slide the wall along the

base AB. This we have considered.

The vertical spread^ itself over the base

from the extremity B, which is nearest

the point of application of the resultant,

according to the well known decreasing
law. Now, in all works on mechanics,
we have given a formula which applies
to a homogenous rectangle, pressed by a

force acting upon one of the symmetri
cal axis, and this is :

(
x

)

and , 1



32

Where N is the entire load or pressure,

and D, the entire area of the surface

pressed. In the case we are considering,

the quantity 1ST in equations cc and /?, is,

of course, represented by P the vertical

component. iQ, by I, if by this letter we

designate the breadth of the base A B,

and if we denote the distance E B by u,

then will the quantity n in equations oc

and ft be represented by
-

.

Substituting these quantities, we shall

have :

*

, 3l6u\ P

--
and

: 12.
3 u

Equation cc is applicable in all cases

where ^&amp;lt;J,
and therefore equation 11 is
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I_ 2 u
applicable when -

&amp;lt;;
that is when

i

Equation /3 is applicable to all cases

when
^&amp;gt;J,

and consequently equation
I_ 2 u

12 to all cases when -
&amp;gt; J, or, what

l

is the same thing when ^^&amp;lt;J L We have

seen that the condition of stability re

quires that some limit, R
,
should be

placed on the pressure each superficial

unit is expected to bear. The pressure

at the point B, must therefore be less or

never greater than R ,
and we shall have

according as u is greater or less than J 1
9

and
2P
-_-or&amp;lt;R ..... 14.
3 u

And this condition is to be fulfilled for

each section made in the profile, neglect

ing the force of cohesion of the mortar

which is unfavorable to resistance.

These expressions are susceptible of

yet further modification, if we introduce
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into the calculation the maximum height

A that may be given to a wall with ver

tical faces, so that the pressure upon^the
base shall not exceed the limit B/ of

safety. Indeed, if we represent the den

sity of the masonry, or the weight per

cubic yard by d, we shall have R = tf A,

and the above equation become :

r-7=or&amp;lt;A
. . 15.

o I

and

-= or&amp;lt;d

/

A=-5r=or&amp;lt;\ . . 16.
3 u ud

The conditions expressed in these

equations would be quite sufficient if the

water was always up to the top of the

dam, but as this is by no means always
the case, the wall must be capable, even

when the dam is quite empty, of sup

porting its own weight without being

subject at any point to a pressure per

unit of surface exceeding the limit d A.

In this case the resultant of all the
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forces acting on the wall is reduced to

the weight P
,
and denoting by K A,

the distance from the resultant passing

through the centre of gravity of Fig.

(3) to the nearest extremity A of the

base, by u, the pressure at A,will be given

according to circumstances by equations

11 or 12, and the stability of the wall

will require that one of the relations ex

pressed in equations 15 or 16 be satisfied

when P is substituted for P.

The next step, therefore, is to determ

ine the proper

PEOFILE FOE A DAM HAVING ONLY ITS

OWN WEIGHT TO CAEEY.

In order to study under all conditions,
the question we are now about to con

sider, it is perhaps well to inquire, in the

first place, what form it is most conven

ient to give a dam having only its own

weight to carry, in order that each point
of the masonry shall not be subjected to

a pressure larger than the limit of safety,
and then to determine the alterations

which economy require to be made in
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this assumed profile. It is evident, to

begin with, that when the height of the

dam is such that it does not go over the

limit A
(i. e. the greatest height we can

give to a vertical wall, without the press

ure on the base becoming larger than

H
,
we shall be quite justified in giving

the dam vertical facings, and that, in

such case, the load for each unit of sur

face at the lower part will be somewhat

less than d A, or at least, never greater.

Again, we know that whenever the press

ure on a horizontal surface of masonry
is larger than the limit of safety, we may
correct this, by enlarging the area of the

surface pressed, and so lessen the load

on each superficial unit. And these are

the two fundamental principles of dam

construction, and may be summed up in

brief as follows : If we are construct

ing a dam of a height equal to or less

than A, and having only its own weight to

support, it is a safe practice to give it

vertical facings from top to bottom. If,

however, we are constructing a dam of

a height greater than A, yet having only



its own weight to support, we must make
the faces vertical for a distance from the

top equal to A, and from this point to

the base slope them outward.

A dam constructed on this latter prin

ciple would give a profile similar to that

in Fig. 4. From the summit A B to the

section C D, the pressure per superficial

B

F.c/K F.c.6.

TH

unit is nowhere greater than tf A, and
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therefore from A to C the face is verti

cal, but below C D, the load exceeds the

limit and increasing at each section to the

base, and hence from C to Y the face is

sloping. And just here we are met by the

great question in dam construction that

of profile. Should the bulging portion

C Y Y D, be bounded by right lines as

in Fig. 4, should it be stepped, should it

be curved, and if so, should the bound

ing curves be logarithmic curves, simple

or compound ? these are questions we

propose to consider.

It is an easy matter to determine the

force to be given to the facing, so that

the condition that the load per unit of

horizontal surface shall never go over

the limit tf A, shall be satisfied. To do

this, we may choose arbitrarily one face

and then determine the other, but if we
desire to use the minimum of material

consistent with perfect safety, then the

wall must be symmetrical as to its axis.

In such a case as that illustrated in Fig.

4 that of a high masonry dam, whose

height is greater than A the slopes
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D N Y and C M Y, ought to satisfy the

requirement that, if in any section, as

M 1ST, the load per surface unit is equal

to any given quantity, the pressure will

be the same for any other section as

m ri
, infinitely near to it. This will be

fulfilled, if the increase given to the base

is proportional to the increase of press

ure, or as the profile is to be made sym
metrical to the axis O S, if the increase

of the half surface L 1ST or L M is pro

portional to the increase of load on that

half surface. If we denote by P the

pressure on L 1ST, arising from the weight
of the structure above, and a the surface

of this section, then, it is evident, the

above condition will be expressed by

K.da. . . . 17.

In which K is a constant quantity,
and denotes the limit of pressure on the

unit of surface or d A. Again, by #, de

note the dimensions of the dam in the

direction perpendicular to the section we
are concerned with, and by x the length
of the half section LN, or, to express
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it mathematically, the abscissa of the

curve or line sought (i.e. DN Y ), and

finally, by y, the distance of MN from

a horizontal line taken as the axis of x.

Then the surface a will equal to bx, and

consequently an increase of surface as

da in equation 17, will be expressed by

da dbx
and moreover

&amp;lt;JP=d bxdy
These values substituted in equation

17 give for the differential equation of

the curve,

d bx.dy=K.b.dx. . 18.

whence
7 K dx
dy = w^

But K equals the limit of pressure per
unit or # A, and this value replaced for

K, we shall have

7 # A dx , dx
dy=-r-ir OTdy=*-z

Integrating this between the proper lim

its, we shall have

-2/ = A log ... 19
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Now, from this equation we see that,

the curve being referred to rectangular

axes, one of the co-ordinates is equal to

the logarithm of the other, and, hence,

the curve must be a logarithmic curve.

Here then we have one property of the

curve D N Y. To find in the next place
the origin of its co-ordinates, we may
make in the foregoing equations # = A,

in which case we shall have :

and y =0 2(X

From this last relation it is quite ap

parent that the origin of co-ordinates is

to be taken at a point where the value

of x is equal to that of A, and in this

point the tangent to the curve makes an

angle of 45 with the axis of x. Re

turning now to equation 19, let us replace

y and x by their respective values,

given in equation 20, when we shall have :

y=\ log.
x

A i

or passing from the system of Napier to

the common system of logarithms,
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#=2.302658509 A, log. -T- . . 21.6 A

This curve, when constructed, will give
the form of the facing of a wall of in

definite height for which the pressure

per unit of surface equals the limit of

pressure K. It is not to be forgotten in

in making use of equation 21, that the

direction in which ?/ s are usually esti

mated has been reversed
;

in other

words, y when positive is to be estimat

ed downwards, and when negative up
wards, or in the direction of L O. Fig.
5 represents this curve constructed, by
assuming the pressure limit or K as

132,000 Ibs., and the density of the

masonry as double that of water.

In such a profile, as Fig. 4 has, the

sloping faces below CD being bounded

by right lines, we may obtain the neces

sary breadth of the base Y Y
,
as soon

as we have determined the height and

* We may also pass from the Naperian to the common
system, by multiplying the Naperian logarithm by the

modulus of the common system, which is 0.434294. Its

logarithm is 9.63TT84.
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Fic.5.

the breadth at top. Denote by 1) the

breadth at top A B
; by h the distance

AC=A, and by h the distance from C
to the base Y Y

; by $ the density of

the masonry, and by x the quantity we
are seeking for, or the base YY . Then

we shall have :

The quantity h in this equation, which

is merely another expression for the

quantity A,, has been determined by a
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number of investigators, but the most

reliable results are those obtained by the

French engineers,* who, in the construc

tion of their great masonry dams, such

as Furens, have taken the limit of press

ure K at 60,000 kilogrammes, or about

132,000 Ibs. per square metre, and K
being equal to tf A, and tf being equal
to 2,000 kilogrommes, A becomes equal
to 30 metres. As we shall hereafter see,

however, the limit of pressure varies for

the outer and inner face of the dam.

If, again, the profile adopted be such

as is illustrated in Fig. 3, that is to say,

if the faces of the dam slope continu

ously from the top to the bottom, then

the thickness or breadth of the base will

evidently be obtained by dividing the

product of the height of the wall and

its thickness on top by the difference be

tween 2 A and the height. For d r A or

the limit of pressure is equal to the area

of the profile, multiplied by the density

of the masonry divided by the thickness

of the base. In the figure, the area is

* MM. Delocre, Sazilly and De Graeff.
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plainly equal to half the sum of the two

parallel sides by the altitude, and denot

ing this latter by H, we shall, therefore,,

have :

The conditions which govern the con

struction of such a dam, and the height
to which it is safe to build it, become

from this equation quite apparent, should

we make H= 2 A, then x would equal ,.

and the base of the wall would spread
out to infinity. Should we, upon the

other hand, make H greater than 2 A,

then A would become negative, and

hence it follows that the greatest height
we can give to a masonry dam with

straight sides equally inclined from the

summit and not go over the limit of re

sistance for masonry, is equal to twice

that of a wall with vertical sides. Yet,

within this limit, such a profile for a

masonry dam of any height, occasions a

gross waste of material. This becomes

strikingly apparent, if we compare the
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breadth of base of a dam constructed
with inclined faces from top to bottom,
with that of a dam of the same height,
but having a profile such as that of Fig.
4. Suppose each dam to be 30 metres

high and 5 metres thick on top; required
the thickness at the base. For the first

ease, using equation 23, we have :

30X5

For the second form of profile, we use
equation 22, and have, since the quantity
h equals A, the same value, or x = 5

metres.

If we raise the dam by 10 metres, then

equation 23

B=*&amp;gt;^
= 10 metres.

60 40

and by equation 23

30X5 + 10

or since

O i^/&-j-/&i
:

*, ,\ 7 77^==? metres.
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If, once more, we add ten metres to

the height, then equation 23

x=25 metres,

and eq. 22 cc=10 metres.

The saving thus affected when the

dams are of great height becomes simply
enormous. The difference, however, be

tween the profile when the dam below

C D (Fig. 4) is bounded by right lines,

and when bounded by logarithmic curves,

such as shown in Fig. 6, is not so marked
as in the cases just considered, yet is

considerable. To take but one case in

illustration, a dam of a profile such as

Fig. 6 illustrates, with the faces below

CD bounded by curves, would require

(equation 21) a breadth of base equal to

9.739 metres, the height and thickness

at top being as before, 50 and 5 metres

respectively, while, as we have just seen,

if the faces below C D were right lines,

the base would be 10 metres.

Such, in brief
,
is the relative merit of

these three forms of profile, for a dam

having nearly its own weight to support.
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In practice, however, such a dam can, of

course, never exist, and it thus becomes

necessary to take into consideration the

second condition, or that of a dam sup

porting a charge of water.

PROFILE FOR A DAM RESISTING THE

PRESSURE OF WATER.

And here, again, we are to throw aside,

at first, all practical considerations, and

determine a theoretical profile of equal

resistance, one in every part of which

the pressure shall not be greater than the

limit R . For this purpose we return to

the two equations, deduced some time

back, which express the conditions of

stability for a dam resisting the thrust

of water, and neglecting the signs &amp;gt;

and
&amp;lt;

and the values corresponding to

them, take only those corresponding to

the sign of =. We then have the two

following equations :

and *=*
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If we now replace the quantities w, I

and P, by their respective values, ex

pressed in functions of the height of the

dam, we may readily deduce two equa
tions which, on examination, will show

two things.

1. That the profile offering the least

thickness, consistent with the conditions

of stability, is one in which the side

turned towards the water, has a vertical

face, and the side turned from the water,

or the outer face of the wall, a concave

face.

2. That as the height increases, the

thickness increases less rapidly, so that

in a wall constructed with a vertical face

on the water side and a curved face on

the other side, and so planned that it

shall satisfy the conditions of stability

as to its base will present an excess of

strength for the surplus of height.

Fig. 7 is the profile of a dam of this

description. It will be observed, more

over, that in this form of profile the

thickness of the wall at the top is zero

This, of course, in practice is never ad-
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missible, inasmuch as it presupposes the

water to be at all times in a perfectly

quiescent state, and thus makes no al

lowance for the very considerable force

of the waves raised by the wind. It is,

therefore, necessary,whatever the profile,

to give the dam quite a thickness at the

summit, in general, about fifteen feet, is
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a good width, as it thus enables us to

construct a footpath and roadway on the

top of the dam, which is quite a conven

ience.

Before we consider any other modifi

cations, it may be well to determine as

nearly as possible the co-ordinates of the

concave curve forming the outer face.

For this purpose we will take the verti

cal face A B as the axis of #, and for the

axis of y, a perpendicular to this pass

ing through the point A, and call it AD.

Anywhere on the curve we will take a

point C, and denote its co-ordinates B C

=y and C e=x
;
then the relation exist

ing between x and y will give the equa
tion of the curve. Now, as we have

already seen, the wall is subject to the

action of two forces, the weight of the
- dam P, which acts vertically downwards

through the centre of gravity and the

horizontal thrust T of the water. These

two forces produce a resultant R, which

cuts the base of the dam in this case at

the point H. This resultant, therefore,

may be regarded as applied directly to
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the point H and resolved into two com

ponents, HP and H 0, respectively, par
allel to O P and O T. We have also seen

by equation 5 that the horizontal thrust

of the water is equal to

F Ay=JA
f

ty ... 26.

Or replacing h by its value, and ly by its

value #, then T, or the horizontal thrust

of the water, equals

T- dx*

07
~2~

And in the same way

Returning now to equations 24 and 25,

we find that the quantity I is equal to y,

and that we have therefore to determine

the value of u in functions of x and of

y. Now u equals H C and H C = K C
-K H. The triangles O P R and O K H,
moreover, being equiangular triangles
are similar, and have their like sides

proportional, and
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KH : PR;; OK : OP
or

KH OK
PR~~OP

or to express the equality in terms of T,
x and P,

KH-* 29~T~~3P

Replacing in the 29th equation the

values of T and P, as obtained in the

27th and 28th equations, we have :

KH_ x -KH- ^_**,/* ,

&quot;
~

3&amp;lt;r

Ok

Or, for brevity, representing
-

, by D,

TTTT Da;3KH=
-jar ... so.

6 / 11 d x
&amp;lt;/
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This gives us the value of K H in the

expression

u=KC-KH. ... 31.

But KG is evidently equal to y B K,
in which B K is the distance from the

centre of gravity of the surface ABC
to the vertical axis of x or A B. This

distance is equal to the sum of the mo
ments of the areas such as a b c d, or

or again,

/y if dx
BK=

y

Hence KC=y-BK=y-

y
2 / y dx
*/ o

y

y*dx

/yy dx
0*

2 yj ydwJ y*dx
32.

f ydx
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Substituting in equations 31, the values

of K H and K C obtained in equations

30 and 32, we have :

rv f* a
D^3

2V ydx-J y dx --
u = ~~

6 / y dx

/y
*/

/,

T/cZcc

Or, reducing to a common denominator,

and subtracting,

/y py
ydx3J y*dxDx*

u _ _
t 33,

Thus, then, we have the value of u in

functions of x and y, and substituting

this value for u in equation 24, and re

membering that 1=
7/, we have :

4yP 6 ^P
1

~^?~~

dx36 y $
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-18 tf/V dx-Q Da? Sfy
/y

J y $x

24 $ yf
y

if dx3Q y d f\fdx
o

iA

+ 6 Dec3
c^

Dividing both members of the last equa

tion through by 6 &yf y dx, wes hall

have, after bringing all terms containing
y into the first member,

- 2
)/y j; tfa + 3f

y

y dx+ Dec
3

A/=
o o

34.

By making the proper substitutions in

equation 25,
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it is quite impossible to perform the in

tegration by any exact method. We
may, however, obtain an approximately
correct solution by finding the value of

y in a series of functions x. Treating

equation 34 by this method we obtain,

says M. Delocre, for y the value

r i t t V v
y=ax+ bx+ cx+ dx+ ex+fx+&amp;lt;&c.

36.

While equation 35 gives :

37.

y a x + b x* + c x3 + d x* + e x&quot; +f x% + &c.

These equations, as it is quite apparent,

are of no earthly value for practical pur

poses, and we shall, therefore, drop all

further consideration of them. Indeed,

if it were possible to obtain the equations

of the curve AmC, by a short and sim

ple process of integration, a moment s

reflection will show that such a profile

as that illustrated in Fig. 7 would not be

suitable for practical use. For this pro

file has been calculated on the hypothesis

that the dam is always to support a head

of water equal to its height, and in this
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case the pressure on any horizontal sec

tion as m n will, it is quite true, not ex

ceed the limit R. But as it happens
that the dam is very likely to be at times

empty, the profile must be such that, full

or empty, the pressure on any section

as m n shall not be greater than R. We
know that this limit will not be exceeded

for the face of the wall bounded by
Am C, and it thus remains to consider

only the vertical face A B. On reference

to the calculations we have made rela

tive to the profile of walls having only
their own weight to support, it becomes

noticeable that the limit will soon be

passed if the wall is slightly raised.

Supposing this limit to be reached at the

point n^ we are forced for the sake of

stability to depart from the vertical be

low this point, to give the water face a

swelling or bulging surface, and -thus

adopt a profile similar to that illustrated

in Fig. 8. This profile is supposed to

fulfill the conditions that, at any section

as de, taken below mn^ the pressure at

the point e, the dam being full, will be
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less than or equal to the limit R, and the

dam being empty, the pressure at d re-

FIG, 8.

DC B

suiting from the weight of the structure,

will also be less than or equal to the

same limit of pressure, R.

This last modification, moreover, is one

of no small importance, as it enables us

to correct some of the chief errors in

which the theoretical consideration has

unavoidably led us, and thus to approach
nearer to the end in view

;
the determi

nation of a profile of equal resistance suit-
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able to practical requirements. If the two

curves mel&amp;gt; and ndT) could be readily

obtained by the above formula^he profile

of Fig. 8 would answer almost all necess

ary conditionsas testabilityand economy;
but they cannot. It therefore remains to

do the next best thing, and to replace the

curved surfaces, by polygonal surfaces

of as small sides as possible in order

that they may approach reasonably near

to the curves and then determine the

equations of these sides of the polygons;
or to adopt a similar method to find the

equations of the two curves in question.

This we shall now endeavor to do. It

is, how
r

ever, to be remarked that there

are two notable instances of the use of

the form of profile, shown in Fig. 8
;

that of the dam at Furens, and that con

structed on the Ban, a tributary of the

Gier, by M. Mongolfier. Each of these

we shall consider later.

As this form of profile, therefore, has

been illustrated, and its economy, dura

bility and strength fully tested in the

case of the dam at Furens, and in
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that over the Ban, we shall now under

take its investigation, and determine

a series of formulae for the calculation

of the logarithmic curves forming the

inner and outer face of the dam, and,

finally, the establishment of a profile

type suitable for dams of various heights.

Our investigation, moreover, is to be

based on the practical experience of

MM. Graeff and Mongolfier, in the con

struction of the dams of Furens and

over the Ban, and the brief but thorough

report of Professor Rankine on this form

of profile, to many parts of which we
are greatly indebted.

In the first place, as to the limit of

pressure, two questions naturally present
themselves: first, what shall be the great
est limit of pressure we may with safety
assume ? and secondly, is the same limit

to be adopted for the inner as for the

outer face of the structure ? As regards
the first question, it becomes evident at

a glance that the limit R
,
to which any

point in the dam may be subjected with

out thereby endangering stability,will de-
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pend, to no small extent, on the nature

of the stone, cement, or mortar used.

Yet here, as in other cases where mason

ry is used, it is possible to assign a gen
eral limit, based upon practical experi

ence, which should not in any case be

overstepped, and if possible rarely equal
ed. In the two dams to which we have

above alluded, the limit of the pressure
was taken at 6 kilogrammes per square

centimetre, or 60,000 kilogrammes to the

square metre, or taking the kilogramme
as equal to 2.20485 pounds, 132.291 Ibs.

per square metre, which in turn is equal
to 1.1954 square yards. In Spain, how

ever, and indeed, we believe in some in

stances in France, the limit of pressure
has been taken so high as 14 kilogrammes

per centimetre,and thedam found to stand

well, but in the majority of cases at from
6 k. to 8.50k., generally at 6 k., per square
centimetre. We may express this press
ure in another form much more familiar

to English engineers, and take as the

limit of pressure for each square foot or

square yard, a column of masonry hav-
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ing that area for a base and a height of

160 feet. This is also based on experi

ence, as it is well known that good rubble

masonry will, when laid in strong hy
draulic cement, bear with safety the

pressure arising from the weight of a

column 160 feet in height. Taking,,

again, the density of masonry as double

that of water, this pressure would be

equaled by a water column 320 feet

high, or a pressure per square foot of

20,000 pounds.
The next question as to whether the

limit of pressure should be the same,
both for the inner and outer face of the

dam, seems to be viewed very differently

by different engineers, and to admit in

practice of a variety of solutions. In

the dams constructed by M. Graeff and

M. Mongolfier, and in the theoretical

profiles offered by M. de Sazilly and M.

Delocre, the same limit of pressure was

adopted for each face, and the discussion

of the formulae thus much simplified.

Yet there seems to be much ground for

departing from this observance and for
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adopting two limits, one for the outer

and one for the inner face, provided that

the dam has such a logarithmic curve of

profile as that we are considering. It is

evident that the vertical pressure along
these two faces is, at different times, un

equal ;
that when the water is of great

depth behind the dam the outer face is

more severely strained than the inner,

and that when the water is very low, and

the dam has little more than its own

weight to resist, directly the opposite re

sult takes place and the severest strain

is found along the inner face. It is like

wise evident that the pressure at any
point along these faces must, in all cases,

be of necessity in the direction of the

tangent to the surface at that place. If

the face is vertical, the quantity we de

rive by the usual equations is the true

vertical pressure, or rather the entire

pressure. But when the surface slopes
off from the vertical, as it does in this

case, the pressure is in the direction of

the tangent, is inclined to the vertical,

and the quantity which the formula gives
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us is not the entire pressure, but only its

vertical component. The whole or real

pressure of course, exceeds this vertical

component, by a ratio which grows

greater and greater as we pass down the

face of the dam to parts where the bat

ter, or slope of the face, departs more
and more largely from the vertical. But
the outer face has a very much greater
batter than the inner, and the water be

ing high, is subjected to a much greater

strain, so that, to equalize matters, and

not allow the outer face, when the dam
is full, to suffer a- greater strain than

the inner face when the dam is empty, it

becc mes most expedient to take a lower

limit for the vertical pressure at the out

er than we do for the intensity of the

vertical pressure at the inner face.

Adopting this view, it remains to fix

these two limits of vertical pressure. On
the inner face, it is clear, where the slope

deviates so very little from the vertical

that, for all intents and purposes, it may
be safely neglected, we may take that we

have already fixed upon, namely, the
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weight of a column of masonry 160 feet

high. For the outer face, we may take

a pressure whose vertical component is

represented by the weight of a masonry
column 120 feet high, a pressure which

has been deduced from the practical ex

amples of M. Graeff.

The next matter to be taken into

account is that of tension, which must,

so far as possible, be avoided in every

portion of the dam. And this brings us

to the consideration of the &quot;

lines of re

sistance,&quot; of which in structures subject

ed to such varying pressure, there are of

necessity two
;

one for the condition

that the dam or reservoir is full of water,

and one for the condition that it is empty.
As in the case of earth retaining walls

and buttresses, these are lines passing

through the centre of gravity of each

course of masonry, and may, when the

faces of the dam are rectilinear, be found

by any of the formulas used for such

purposes. They bear, therefore, intimate

relations to the stability of the dam, the

latter decreasing as they depart from the



centre of thickness and near the faces.

They also bear relation to the tension,

and in order that the latter may not be

come appreciable in any part of the

structure, they must not deviate at any
point from the line passing through the

centres of thickness, either outward

when the dam is full, or inward when

empty, by a distance greater than one-

sixth of the thickness at that point.

With these conditions in view, we now

pass to the consideration of the profile.

PROFILE TYPE FOR DAMS HAVING CURVES

FOR BOUNDING FACES.

Let Fig. 9 represent the profile of a

dam bound by logarithmic curves, the

various equations relative to which we
wish to find. Let the vertical line A S

represent the asymptote of the curves,

and taking the origin of co-ordinates

at the top of the dam, represent by x

all horizontal, and by y all vertical

measurements, by b the breadth or

thickness of the dam across the top,
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and by b the breadth at any other place
lower down. Also let s represent the

sub-tangent common to the two curves,

and represented in the figure by that

part of the asymptote contained between

F and G. As to the lines of resistance

let their deviation from the middle of the

thickness when the dam is full and empty
be expressed by the letters r and r re

spectively, and by R and R/ denote the

limits of pressure ;
the first for the out

er, the second for the inner face.

Now, adopting Professor Rankine s

method of procedure, it becomes evident

that if the thickness across the top be

expressed by #, then the thickness at any
other portion of the dam lower down,
and at a distance y below the top, will

be expressed by the equation

b
r= b.e- 38.

s

in which e is the modulus of the common

system of logarithms, or 0.434294. To

apply this equation therefore to practice,

it is necessary to know the value of the



sub-tangent, the thickness across the top
and the vertical distances of different

points on the face of the dam below the

axis of X. These latter points are, of

course, assumed at random, and have in

the present case been taken five feet

apart. As to the thickness at the top it

has been taken at eighteen feet. In the

dams already alluded to (those of MM.
Sazilly and Mongolfier) with the height
of 50 and 42 metres respectively, and a

limit of pressure of 60,000 kilogrammes

per square metre, the thickness across

the top is, in the former, five, and in

latter, five and seven-tenths metres,

which, expressed in feet, gives for the one

16.4 and for the other 18.6 feet. But in

this instance we have slightly enlarged
on the thicknesses used by thflse engi

neers, in order to produce a profile suit

ed for a dam required to resist not only
the thrust of water, but also that of ice

when carried down by spring freshets.

The determination of the sub-tangent s

is not so obvious, but may be found by
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nj

giving to the exponent - of e an approxi-
s

mate value of , which substituted in

the formula of Prof. Rankine, gives a

corrected value of V, and a sub-tangent

equal to 80 feet.

If, then, adopting this breadth of 18

feet on top, we desire to find that at a

point thirty feet below, we may write

equation :

O A

# = log. + 0.434294X . 39.
80

= 1.255273 + 0.162858= 26.19 feet,

which is to be measured off in such wise

that thirteen-fourteenths of it shall lie

on the down stream or outer side of the

asymptote, and the remaining one-four

teenth on the up stream or inner side.

Taking other values for y and proceed

ing in precisely the same way, we thus

obtain any desired number of points

through which must pass the logarithmic
curves that form the faces of the dam.

This done and the curve drawn, the next

step is to determine the lines of resist-
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ance when the dam is full and when it is

empty. To begin with the latter case,

the dam being empty, the deviation of

the line of resistance from the middle of

the thickness will evidently be inward
or towards the up stream side of the

dam. This deviation we have expressed

by the letter r
,
and if we wish to find

its value for a horizontal section of the

dam taken 50 feet below the top, we pro
ceed as follows. Let z denote the dis

tance hg or the deviation of the centre

line of the thickness outward from the

axis A S, and by z
f

the deviation of the

same line from the same axis at the top
of the dam. Referring to Fig. 9, the

distance we wish to find is evidently

equal to g h minus the deviation of the

centre of thickness of the top of the

dam from A S, divided by 2, or

r=^ 40_ . ^rV

Because the dam having only its own

weight to carry, the line of resistance

must cut the line ghiu a point vertically
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below the centre of gravity of that part
of the structure above g A.

The thickness of the dam where y is

fifty feet is found from equation 39 to

be 33.63 feet
;
the centre of thickness

16.81, and the value of z or the devia

tion of this centre from the axis A S is

14.41 feet. That of z
r

or the deviation

at the summit of the dam is 7.72 feet,

from which it follows that (eq. 40) r =
3.35 feet. It is in this way that the

values of r
, given below in Table A,

have been calculated.

It is next necessary to determine an

equation from which to find the values

of r, or the amount by which the line of

resistance deviates outward from the

centre of thickness when the dam is full.

It is evident this deviation will depend

upon three things, the moment of the

horizontal thrust of the water, above the

section at which we wish to find r, the

weight of the dam above this same sec

tion, and the amount by which the line

of resistance is moved inward when the

dam has only its own weight to carry, so



75

that if we divide the moment of the

thrust by the weight, and subtract the

quantity r
,
we shall at once have the

value of r. The thrust of the water

above any horizontal section of the dam

is, as we have already seen by equation

V
2

2, X 62.5 Ibs., and the moment is,
2t

therefore, ^-X 62.5 X-= 62.5 Ibs., or,
2 36

what is the same thing, if we express by
w the ratio in which the masonry is

heavier than the water, and take, as is

usual, this ratio as 2, we shall have for

the moment (expressed by m) of the

horizontal thrust of the water,

V
3

V
s

m-^- - 41Qw 12

The weight of any lineal unit of the

dam above the section may be found
most simply by the calculus. Thus giv

ing to y and b the same signification as

before, and taking the weight of a cubic

unit of masonry as the unit of weight,
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the weight of each unit of length of the
wall above the section is expressed by

nr s*y

J v dy ... 42.

Integrating this between the limits y

and o, and remembering that V=be
$̂

we have :

= * (* -&) . . . 43.

For r, therefore, we have :

w
y*

This equation gives for the value of r
at the distance fifty feet below the top,
the quantity 5.18 feet, which, as it falls

below one-sixth of the thickness at this

point, we are justified in considering the



77

deviation as not too great to be perfect

ly consistent with stability.

But, to make assurance doubly sure,

we may apply a final test as to stability,

by calculating the amount of vertical

pressure at various points along both the

inner and outer faces, and comparing
the results with the limit of pressure,

which, it will be remembered, has been

fixed for the inner face at weight of a

column of masonry 160 feet in height,

and for the outer face at that of a col

umn 120 feet high. This matter we have

already considered at length, and have

deduced two equations, 13 and 14, which

as they are perfectly suited to the present

case, we shall not delay to deduce others,

but alter them to suit the notation of Fig.
9. Thus altered they are, calling p and

p the pressures at the outer and inner

face respectively, and P and P the lim

it at these same faces

and ^ 45.
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While for p
r we have two others precise

ly similar, with the exception that P in

equation 45 is changed to P . It may,

perhaps, be well to again remark that

the first or second value of p in equtaion
45 is to be used according as the value

of it is greater or less than one-third of

the thickness, and that in all such pro
files as that of Fig. 9, the quantity u de

notes the distance from the outer face
to the line of resistance when the dam

supports a charge of water, and from the

inner face to the line of resistance when

the dam or reservoir is empty. To illus

trate by one example, let it be required

to find the vertical pressure at the point

C, on the outer face of the dam (Fig. 9),

situated fifty feet below the top. By re

ferring to Table A, we see that b is equal

to 33.63 feet, that the outward deviation

of the line of resistance is 4.98 feet, and

that u must therefore be 11.83 feet. The

quantity W=s ( )
is 1250.4. Since

u is here greater than = 11.21, we use
o

the first of equation 45, and, making
the substitution of values, we have :
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=2 (2\ 33.637 33.63

Thus showing that the pressure is but a

little more than half the limiting press

ure. Precisely the same operation re

peated, with u equal to 13.46 feet, will

give the amount of vertical pressure at

the inner face at a point fifty feet below

the top, the dam supporting only its own

weight. This pressure is thus found to

be equal to a column of masonry 59.4

feet in height.

The area of the entire profile or of

any portion of it, included between two

horizontal sections, may be found by tak

ing the difference between the thickness

of the dam at these two sections, and

multiplying the difference by the sub-

tangent. For it is evident from the

figure that, if b equals the thickness of

a point y feet from the top, then this

thickness multiplied by the differential

of the height and integrated between

the limits y and zero, is the area, and

this expression / b
f

dy when integrat-
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ed, remembering that b is equal to be-
y v ^

gives s be - s b, or replacing be - by Z&amp;gt;

,
s s

the expression for the area becomes
s (b

f

b). In the notation we have used

b means the thickness of the dam across

the top, but in calculating the area of

any portion of the profile not bounded

by the top thickness, the quantity b is to

be understood to mean the smaller of

the two thicknesses which bound the

area. That is to say, if we wish to find

the area of that portion of the profile

included between horizontal sections

taken at thirty and eighty feet below

the top, b represents the thickness at

the former section, and we have 80 (48.93

26.19) = 1819.2 square feet. Having
the area, the solid contents and weight
for any length of the dam are of course

readily found. The areas for sixteen dif

ferent sections of the profile, each hav

ing the top of the dam for one side, have

been calculated in this way, and will be

found entered in the last column of

Table A. The first column of this table
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gives the distances in feet of the sec

tions estimated from the top downwards,
the second the thickness of the dam at

these sections, the third the deviation of

the line of resistance outward when the

reservoir is full, the fourth the deviation

inward when empty, and the last the

areas.

TABLE A.
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It is perhaps unnecessary to call at

tention to the fact, that this form of

profile has been calculated with a view
to its serving as a profile type for dams
of any height, great or small, whose
faces are logarithmic curves. For a

dam, then, of which the height is thirty

feet, that portion of Fig 9, above the

line marked 30, is the proper* profile :

for one eighty feet in height, that por
tion above the line marked 80, and so

for each succeeding section. It presents

again many strong points not found in

dams of the usual rectilinear profile,

which are especially deserving of con

sideration when damming a river or

valley of great breath and depth. Of
these not the least is its economy of

material, which, as we shall hereafter

see, is very great as compared with that

of stepped or sloping profiles ;
while the

curves of the two faces are so gradual
that no great mechanical difficulty can

arise in cutting the facings. Another

matter, which, in the dams of Furens and

the Ban was not taken into account,
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that of tension, has here been considered

and the profile so determined that when
the reservoir is full the tension on the

outer face shall not at any point be

greater than it is on the inner face when

empty.
The profile of the Furens dam is given

in Fig. 10, and that constructed on the

/1G./0,

Ban, a tributary of the Gier, in Fig. 11.

The former has a height of fifty metres

with a breadth on top of 5.70 metres,



84

A

FIG. 11.

and a limit of pressure of six kilogrammes

per square centimetre. The latter has a

height of forty-two metres, a thickness

on top of five metres, with the same

limit of pressure as the Furens dam. By
a comparison however, of the profile of

the former with that part of the profile

of the Furens which lies above the limit

A B we see that the thickness has been

very considerably reduced, while if we
extend the profile to fifty metres and
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then compare it with the Furens, we
find that the pressure nowhere exceeds

8 kilogrammes to the square centimetre.

To return now to the modifications of

which this type of profile is susceptible.

MODIFICATIONS OF THE LOGARITHMIC

PROFILE.

On a moments inspection of Fig. 8, it

is readily seen that, as the inner curve

does not anywhere depart very far from

the asymptot AS, the first and simplest

modification of this curve is to replace it

by a right line and thus make the inner

face vertical from top to bottom. But

the outer curve if treated in like manner,
and replaced by a right line, would give
us a form of profile which, though it

possessed no more thickness at the bot

tom than was absolutely necessary to

withstand the vertical pressure, would

at every other point, possess a thickness

greatly in excess of the requisite amount,
and thus occasion a prodigious waste

of masonry. We must therefore, break

this continuous slope and substitute for
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one long line two or more shorter ones

each of which makes a different angle
with the vertical. Limiting our atten

tion for the present to the first case, and

replacing the two logarithmic curves in

Fig. 9 by lines, the inner curve by one

vertical, and the outer by two inclined

we have produced for us a profile of the

form illustrated in Figs. 12 and 13. The

question that first presents itself in the

discussion of such a profile, is evidently

how far down the outer face the point C
is to be taken. It comprises indeed, the

entire discussion. Of course, it is a great

advantage, so far as the saving of ma
terial is concerned, to throw this point

as low as possible, but this is limited by
the condition, so necessary to secure

stability, that when the reservoir is full

the vertical pressure at C shall not be

greater than the limiting quantity R.

Having determined the thickness across

the top, which preserving our previous

notation, we will call b, the quantities to

be determined are first, the vertical dis

tance of the point C below the top, and
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second the thickness of the dam at this

point, or what is perhaps more easily
obtained the excess of the thickness at C
over the thickness at the top, A B. The
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distance, AD (Fig. 12) we will call y ;

78.

FIG. 13.

the total thickness D C we will represent

by 5
,
and express the excess of thickness

by v. By W, denote the weight of the

part A B C D (Fig. 14), and by F, the

horizontal thrust of the water above D.

These two forces act through the centre

of gravity O, the former vertically

downward and represented in Fig. 14 by



the line O P
;

the latter horizontally
and represented in direction and inten

sity by O F. These two produce a re

sultant which cuts the base at V,
and this point may therefore be

regarded as the point of applica
tion. From this relation, as we have

seen, result two equations 2 /2 \

P 2 P-
or&amp;lt;R ,

and or&amp;lt;R ,
which are

I O U 77
to be used according as u is

&amp;gt;

- or
&amp;lt;-.

3 3*

In these equations P = W, is, accord

ing to the notation of Fig. 1 4, expressed
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by ( - - 1 y #
,
in which d is the

density of the masonry ;
l=V= ~b + v and

K C may be found by the equation ex

pressing the relation that the moment of

the weight of A B C D, with respect to

C, is equal to the sum of the moments

of the two parts ABVD and BVC
into which the area of A B C D may be

divided. The moment of the weight of

A B C D, with respect to C, is evidently

(9
_j_ -y

V
1 y d f

multiplied by

KC ; that of ABVD byi^^
itfd

and that of BY C by
J -

. Hence, the
3

relation when expressed, becomes :

3

rn-(fr+2)y* .
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~~6~b + 3v

To find KY, we have from the two

similar triangles O K Y and O PR the

proportion

KY : KO;;PR : PC
whence w KOxPRK V _ or . . 48.

since P R is equal to the horizontal

thrust, which, as we see in the early part

if d
of our investigations, is equal to -

;

m

and since P is equal to the vertical

/2 Z?-}-v\
pressure and this is equal to I 1 yd

we have finally for the value of K Y :

49.

- or

which latter equation is found by substi-
Ot

tuting for
-^7

the letter 9. These values

given in equations 49 and 47 when re

placed in the expression
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_

With this value of w we return to equa
tions 24 and 25, and, substituting it, we
obtain :

f 6

2&amp;lt;{

2-

X
b A

/2

V

and

These, when reduced and made equal

to zero, give us two equations containing

two unknown qualities :

l&amp;gt;y
hF= Q . 51.

*
Q b /L v

. . 52.
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The first of which is to be used when

u
&amp;gt; --, and the second when u

&amp;lt;
-. Each

3 3

of these equations express the relation

that when the reservoir is full the verti

cal pressure at the point C (Fig. 14)

shall be equal to the limit K. But we
must also take into consideration the

inner face, and find an equation express

ing the relation that the reservoir being

empty, the pressure at Dr shall not ex

ceed the limit R. In this case, the face

being vertical, the pressure of the water

does not exist, and the force P, or the

weight of this portion of the dam, acts

downwards through the centre of gravi

ty, and

w=DK=DC-OK
2 v (v + 3

t&amp;gt;)
+ 3 5

2

_v(v + 3 b) + 3bz

3

With this value of u, we again return
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to equations 24 and 25, substitute in

each, and reducing, have :

54.

&amp;gt;/ y tf A -f 3 b yv2 I A v + tfy A 2=

55.

By combining 51 and 54, or 52 and 55,

we may readily obtain the value of y
and v, which are the two quantities we
wish to find. It is moreover to be re

marked that A in the above equations is

found by dividing the limit of vertical

pressure at and D by the ratio in

which the masonry is heavier than

water. Thus in calculating the profile

of Fig. 12, we have first reduced the

limit of vertical pressure per unit of

surface from pounds to kilogrammes,
and taking the density of water, as given
in the French tables, as 1000 kilo

grammes and the density of masonry as

double that of water or 2000 kilo-

R 60,000k
grammes, we have A = =-^^
or A = 30. We thus obtain for A, a
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very simple number, whereas had we re

tained the pressure as expressed in

pounds, we would have had a much

larger one to handle. In Fig. 13 how

ever, in order to produce a profile of

what may be considered as a type of the

greatest boldness consistent with safety,

we have taken the limit of vertical

pressure at 14 kilogrammes per square

centimetre, which as we have already
stated has been used in several instances

in France and Spain. This increases the

value of A to 70. The thickness across

the top is in each case the same as in

that of the profile illustrated in Fig. 9
;

namely, eighteen feet, but the height of

that in Fig. 12 has been reduced to

ninety feet. The height AD of the

upper part A B C D and the value of v

corresponding to it have been found by
combining equations 51 and 54. The
lower part, by the same equation, by
substituting for y the difference between

the height A D of the upper part and the

entire height of the dam.

The deviation of the line of resistance
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when the reservoir is full may also be

found as follows. Let A B C D in Fig.

15, represent either the upper or lower

FIG. 15.

part of the dam whose profile is given
in Fig. 13, and let it be desired to find

the amount of deviation at any section

as E F. By O represent the centre of.

gravity of A B F E, then will O B, repre

sent the resultant of the two forces act

ing on this portion of the dam, and the

distance we wish to find will be E S.

We will suppose also, in order to cover
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all cases that the water stands at X.

Also let A B = 5
;
A X = Z. AE = y ;

E S = a;
;
EW = A

;
and the inclination

of the sloping side B C, to the vertical

be denoted by cc
; by # the density of

the masonry and by 6 that of the water.

Then by the similar triangles O P R and

OW S, we have :

_
OW-QP

Now W S = E S - EW = a - A and

OW = TE=JXE because the centre

of pressure (T) of a rectangular plane
surface sustaining the pressure of water,

is at a point two-thirds the depth of its

immersion. Hence T E = J (y I). PR
or the horizontal thrust of the water

on XE is, as we know, expressed by

iZ--L . an(j the pressure O P by
Zi

(Z&amp;gt;

+ b )y & (2 b+y tan. oc
) y &

x h _^b
r

(y Q
2_56.

tan. oc &
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r/

Then replacing by 6
o

7 _
/I

an.c

+ ty* tan - &amp;lt;

2 by + y* tan. oc

which, added to equation 56, gives :

58.

This value of & is, of course, to be

measured off from the vertical side.

When the water stands at the top of the

dam, the value of
/,

is zero, but when
the reservoir is empty, then

I,
is equal to

the entire height of the dam. The

simplest way, however, to find the devia

tion, is by means of Equation 50, ob

serving that the value of
^, when found

is to be laid off from the outer or slop

ing face of the dam
;
and corresponds to

the distance FS in Fig. 15.

The second modification, then, of the

theoretical profile of equal resistance,



consists in replacing the outer curved

face by a broken one composed of two

planes inclined at different angles to the

horizon. The principles, however, which

justify us in the use of such a modifica

tion, may be carried still further, and

the inner and vertical face replaced by
one almost a fac simile of the outer

broken one. Indeed the only essential dif

ference between them lies in the degree of

slope which we give to their two plane

surfaces. On the one side both are

sloping ;
on the other that portion of

the face from the summit of the dam to

a point below, (where the pressure on

each unit of surface equals the assumed

limit of pressure,) the wall is vertical,

and from here to the base slope out

ward. This latter point moreover, must

be directly opposite that point on the

outer face at which the two sloping lines

of the profile intersect. Of a profile thus

constructed, some idea may be had from

the sixteenth figure. It does not present

any merit either as to beauty, strength,

stability or economy of material not
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possessed by that illustrated in Figs. 12

and 13. As to economy indeed, the

amount of material consumed is if any

thing greater in former than in the two

latter forms of dams, and it may be

justly doubted whether the additional

stability thus obtained, is a fair recom

pense for the additional outlay for

material and for cutting facing stones

for a third sloping face.

As to the mathematical calculations of

such a profile they are rather lengthy than

difficult. For the upper portion A B C D,

Fig. 16, we have already discussed the

principles at length, and obtained in

equations 51 to 55 the necessary formulae.

The value of A B or b is of course

known, as also that of AD or a which

is assumed, and is not to be greater

than A or the greatest height we can

with safety give to a wall with vertical

faces. That of the lower portion C D E F,

may also be conducted on the principles

previously laid down, and as it necessi

tates several eliminations of somewhat

startling length we shall consider it
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A B

merely in outline. Knowing the total

height of the dam, and the distance A D,
we of course know D G, or the height of

that portion of the dam C D E F, whose

breadth of base E F, we wish to find.

We also know from equations 51 and 54,

the breadth D C
, and projecting this on

the base we at once obtain that portion
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of it between GandH. What there re

mains to be found is G E, and H F. The
former of these unknown quantities we
will denote by y, and the latter by z

;

the breadth E F, of the base by b, the

part G H, which is also equal to C D, by
#

; the height D G, of the lower section

of the dam by a, and that of the upper

section, or A D, by a
f

. Returning now
to the equations 15 and 16, which are

the general equations of stability for a

dam supporting the pressure of a head

of water, we find that the three unknown

quantities for which we wish to find

values in term of the known quantities we

possess are it, I,
and p. The value of

,

or the thickness E F, of the base is,

when expressed in terms of the above

notation.

l=y+b+z

While P is of course the area of the ir

regular polygon A B C F E D multiplied

by the weight per unit of volume, plus

the vertical component of the weight of

the water resting on the sloping face
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DE. The area of ABCD is
(

3 a . That of CD E F is
y-?- +

Z^
4- V & a. The vertical thrust of the

(2

a -

2&quot;

o

The value of P, therefore, is V d
f a +

y #, which reduces to the form

P= 59.

(2

2

Again, to find the value of u^ the first

step is to construct the diagram of

forces, as illustrated in the figure, O P
representing in direction and intensity
the vertical component P, or the weight
of the dam and the water, and O F the

horizontal component or the outward

thrust of the water behind the dam.

Then will F T represent u which is clearly

equal to

u=z+ TLI IT . . 60.
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But by the two similar triangles we
O &quot;F

1

have, as before, IT=OI X ~-p or since

O 1= - - and O F (equation 2) equals3

\ 2

( )
&amp;lt;

yd]

HI is to be obtained in precisely the

same manner as K C was obtained from

Fig. 14, by expressing the relation that

the moment of weight P (which includes,

it is to be remembered, that of the dam and

that of the water pressing on the inclin

ed face D E), with respect to the point
F is equal to the sum of the moments of

the components of this force. Obtaining
these moments in the same manner as

we obtained those for the equations de

duced from Fig. 14, and putting them

equal to the expression P X IF, or P x

(IH-f^), we have after reduction, the

equation
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H=
12 cc

(1 2 cc + Vd) + 6 a z 4- 6ay+ 12 a ?/0 + Qayd

In which oc is a short expression for the

area of A BCD, and the distance

from C to the point where the perpen
dicular of the centre of gravity of

A B C D cuts C D, and this replaced in

equation 60, gives for the value of u

12z(oc + b

+ 12oc/?+ 6
2 a + 2a;?/(2/ + 36 ) + 3 (2 a

+ a) (y+ Zb^ye-Zatf-ie (a

12(oc +b f

Eq. 61.

The quantities P, u and I, being thus

obtained in terms of &
, y, z, a and a

,
a

substitution in equations 15 and 16, will

furnish us with two equations of great

length, from which, by the process of

elimination, the values of x and y are

readily found.

To take but one example of this form
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of profile, let it be required to calculate

the dimensions of such a profile for a

masonry dam one hundred and seventy
feet in height and eighteen feet broad on

top, the limit of pressure being taken at

132,000 pounds. For this purpose we
have to determine beforehand the height
a! of the part A B C D. This, in the

present case, is taken at 80 feet, and may
in all cases be assumed arbitrarily. Now,
since the dam has one vertical face, we
have to determine but one quantity v, or

the difference between the thickness of

the dam at AB and that at CD, and

this value of v is readily obtained from

equation 51, which, modified to suit the

present notation, becomes

Solving this with reference to v, we
have

b*a + da&quot; 72v +2 o v=--- 1}

A

And replacing the quantities by their
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values,remembering that A equals 98.4 ft.,

and 9 (or the ratio in which the mason

ry is heavier than water) equals ,
the

result finally obtained is,

v= 53. 52 18 or

53.52 feet.

With this value of b we return to the

equations expressing the values of x and

y as deduced from equations 15 and 16,

after the substitution of the value of u

given in equation 61, and find that the

value of b
ff=x+ b + y is 178.42 feet.

Once more, we may carry this princi

ple one step further and produce a pro

file which is little more than a modifica

tion of that given in Fig. 16. If, for

instance, while preserving the same

height of structure, we divide each of

the three sloping faces into two parts,

and give to each part thus produced a

face inclined to the horizon, we shall

then have a profile of such shape as that

illustrated in the seventeenth figure.

A glance at this is sufficient to show that

it is in reality but a compound of the
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A B

II I

two preceding profiles, and that there

fore the principles to be observed in the

calculation of its parts are those already
discussed. The entire profile may thus

be considered as divided into three

pieces ;
that from A to D, in which the

inner face is vertical throughout, and the

outer made up of two inclined faces,

constituting a profile exactly similar in

design to that of Fig. 12 : that from D
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to F, and that from F to H, in each of

which both the outer and inner faces are

sloping. The first part is, therefore, to

be calculated in the same manner as we
would calculate the thickness of a dam

having the profile of Fig. 1 2, and each

of the two remaining portions by the

equations deduced from Fig. 16. To
illustrate this by a case in point, let it be

required to find the thickness at various

points of a masonry dam, having such a

profile as that we are discussing, its

thickness across the top being 18 feet,

and the total height 170 feet. The
first thing that claims attention is the

determination of the vertical distances

between the points B and C
;
C and E

;

E and G
;
and finally G and I. These

may, of course, be chosen at pleasure,

just as we may select the number of

parts that each face is to be composed
of, and as in the present case the dam is

170 feet high, and the outer face divided

into four parts, we will for convenience

divide the dam first into two equal parts,
then divide the lower of these again into
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two equal parts, and the upper also into

two, but two unequal parts. The verti

cal distances between the sections will

then be, beginning at the bottom and

going up G I = 42,5 feet; E G = 42.5

feet
;
C E = 45

;
and B C = 40 feet. Had

the dam, however, been one hundred and

fifty, or one hundred and eighty feel

high, or indeed any other number, then

the best arrangement would again have

been, to make the second vertical dis

tance that from C to D longer than

the remaining three, so that, if the dam
was one hundred and fifty feet high, the

best arrangement would be BC 30
;

CE = 60; and E G and GI each thirty

feet ;
if the height had been one hund

red and eighty feet, then B C = 40; CE
= 50

;
and the others each forty-five

feet. Although this arrangement may
seem to be somewhat arbitrary, it is in

reality based upon fixed principles,which

clearly show that where such a number

of divisions and such a profile as that

used in the present instance are employ

ed, the second part should be decidedly
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longer than either of the other three.

Those portions, moreover, which are

bounded on both sides by sloping faces

are in almost all cases made of equal

depth, nor does there seem to be any
reason whatever for not adhering to this

method.

With these distances thus determined,
we return to equations 51 and 54, and

from the first of these find the value of

v, as was done for equation 63, and sub

stituting for a r

the value 40, and for b

the quantity 18 feet, we have

98.4

And, consequently, # = + ^= 21.37 feet.

To find the value of b
, however, it is

necessary to use equations 51 and 54,

from which by the common method of

elimination we may find an expression

6y* v*hy 3 byv= Q

from which by the substitution of the

proper values we obtained for a finalvalue

of //, or the thickness of the base of this
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section, &quot;=54.64 feet, or ^= 33.27 feet.

The next step is to find the values of x

and ?/for the third section. As this, and
also the last section have both faces slop

ing, by substituting the value of u given
in equation 61, in equations 15 and 16, and

reducing and then eliminating, we obtain

two expressions for x and y, from which

we derive the thickness GF = 100.36,

and by a similar process find that for

I H to be 152.22 feet.

It is thus apparent, that as there is al

most no limit to the number of sections

into which a dam may, on this principle, be

divided, there are a great number of

different forms of profile, each of which,

satisfy the conditions of stability, but

vary somewhat as to economy. Theo

retically the dam whose outer face con

sists of the greatest number of these

sloping faces is the most economical,

because in that case its face approaches
nearest to the logarithmic curve which

bounds the theoretical profile of equal

resistance, and it therefore contains very
little more masonry than is absolutely
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necessary to insure safety. In practice,

however, such a dam would, in all proba

bility prove much more costly than one

consisting of a less number of section,

though containing more masonry, be

cause the angle of inclination of the

different sections of the outer face

changing so frequently would greatly

increase the cost of cutting the facing

stone. To avoid the mechanical difficul

ties also likely to arise in such cases, it is

sometimes well to depart altogether from

this style of profile, and instead of slop

ing the outer and inner faces, cut them

into notches or steps.

THE STEPPED PEOFILE.

The stepped profile has been reserved

to the last for consideration, because,

while it is a natural outgrowth of the

preceding modifications, it possesses

many merits whose importance cannot

be fully appreciated till a comparison is

instituted between it and the forms

just treated of. In point of simplicity

of construction for instance, it would be
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difficult to find any design of profile

that can surpass it. Wherever the faces

of the dam are curved as in Fig. 9, or

made up of a series of sloping surfaces

of various inclination as in Figs. 12, 16

and 17, the dimensions of every facing
stone that is set have to be most care

fully determined beforehand by the

rules of stereography, and this, when the

dam is an high one and the number of

stones consequently large, is of itself a

work of no small difficulty. In the

stepped dam however, all this is done

away with, as every facing stone, (unless

the dam is curved) possesses only a ver

tical or, if it happens to form the edge
of the step, a vertical and horizontal

face, and thus requires no pattern for the

stone cutter. A further advantage to

be derived from it, is, that it enables us

to approach much nearer the curved

form of profile than we can in any other

profile type. Indeed, when well designed
it is in reality nothing but the logarith

mic curved profile cut into steps or

notches, so that should we draw a con-
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tinuous line through the upper edges of

all the steps, or through the lower edges
of their vertical faces, this line would

form a logarithmic curve.

Here, as in the calculation of the

previous profiles, it is quite allowable to

assume arbitrarily either the breadth or

height of the step and from this one de

termine the other. Yet it is by far the

best plan to assume the vertical height
of the step and calculate the breadth.

For, it must be apparent, that by this

method of procedure, the quantity we
calculate is really the abscissa of the

curve, which we lay off at regular inter

vals perpendicularly to the vertical

axis of the dam, and in this way we are

enabled to preserve very closely the

logarithmic profile. The general appear
ance of the dam is, moreover, much more

pleasing when this arrangement is ob

served than when we assume a constant

breadth and calculate the depth, because

the breadth of the steps near the summit

of the dam is then very narrow and in

creases gradually as they approach the
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bottom, and the departure from the curve

is thus scarcely perceptible ;
but when the

breadth is everywhere the same and the

depth varies, the whole face of the dam
has an extremely broken appearance,
which is anything but agreeable.

In this profile, as in all the others, the

inner face is made vertical for as great a

distance as the limit of pressure will al

low, and from that point down it is

stepped. The outer face is likewise

made vertical for a distance which de

pends in all cases on the thickness across

the top, being as a general thing very

nearly twice that dimension. In the de

termination of the following formulae,
the depth of the step has been assumed
as the same throughout the entire dam,
and the breadth has been taken as the

unknown quantity. Fig. 18 then rep
resents a portion of the profile of a dam
bound by a curved or sloping face,which
we wish to change into a stepped profile.

ABDC represents this section, and if

H F be taken as the vertical height of

the step, then will C H F represent the



element with which we are especially

concerned, and its base CH the quantity

we are in search of, the breadth of the

step. The height B D of the section we
will denote by h\ and the density of the

masonry by d
r

;
and the greatest thick

ness FT or HD of the known element

ABTDHF by t\ from which three

quantities we may obtain an expression

for the weight P, of this element, which

must of course be accurately known, in-
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as much as the object of making the step

at this point being to lessen the amount

of vertical pressure on each superficial

unit, the breadth of the step will depend

very largely on the weight of that por
tion of the dam which is above it. The

weight which is plainly equal to

expressed by P, while that of the ele

ment C II F is equal to-
,

in which

a is the height of the step F H, and b

the breadth C H. The point of applica
tion of the thrust of the water is T
situated at two-thirds the depth of im
mersion. T and T2

are the horizontal and

vertical components respectively. Then

will P represent the direction of the re

sultants of P and T2

;
V V the resultant

of P, T
2 and the weight

- of the ele

ment C H F, while the general resultant

of all the forces is R. Now, in this case,

as in the previous ones, the whole solu

tion of the problem depends on finding
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the value of C R, or the distance from

the outer edge C to the point where the

resultant cuts the base, and this we will

express as heretofore by the letter u.

Then from the figure

*4=CH +HY RV ... 64.

in which we know the value of C H=&,
and require that of H Y and R Y. But

R Y
^r^f

is equal to the tangent of the angle

which the general resultant R makes

with the vertical, or calling this angle
cc then

RY T
tan. cc =

YY
in which e is to be understood to express

the value of YY=^-FfT The distance

H Y may be found from the theorem of
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moments, by expressing the relation that

d tfa

M-

6

d Va

&amp;gt; +
*

M denoting the moment of P with re

spect of H. As to C H, its value is &,

the quantity we are in search of. Re

placing these quantities in the equation

expressive of the value of u, we have

M - d W a

which, reduced to a common denomina

tor, becomes
65.

u =
6P + 3 6 ba

Having thus obtained an equation for

the value of u, the next step is to find by
means of it an expression for b the
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breadth of the step. For this purpose

draw from R, the point at which the

general resultant of all the acting forces

outs the base, a perpendicular R N&quot; to the

resultant, and from N a perpendicular to

the base C D, thus forming a triangle

R N O. Then, since the two triangles

RY Y and R 1ST O have their bases on

the same right line C D, and the side YR
of the one perpendicular to the side NR
of the other, and the sides YY and NO
parallel, the angles at Y and N are equal

and the triangles are similar. But by
the relation existing between the sides of

such similar triangles, we have the pro

portion

N O : R Y ; : R O : Y Y.

which gives for N O the equation

RVXRO T /
~V~V^

~
d ab 66.

~T
in which /is the distance R O. But we
have another pair of similar triangles

which gives yet another value for N O,

which must be deduced and made equal
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to that just found. These triangles are

CO 1ST and C H F, and the proportion
derived from the relation of their sides

is,

NO:CO;:FH:HC or

_H C b

Equating equations 66 and 67,

COx=/X ^,b p 6 ab~~

T~

And again, since if four quantities be

proportional they will be in proportion

by composition and division

&amp;gt;p+ -
2
-

b

and reducing,
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68.

But the condition of stability is (equa

tion 16) expressed by the relation

/ =
3 d A

And equating these values given in equa
tions 68 and 69,

ua

Substituting for u its equivalent value as

given in equation 65, and dividing both

members of the resulting equation by
the common factor 2 P + d b a, there re

sults

&amp;lt;TA (6 b P f + 3 tfd a + 6 M - 6 T e - d Vd)

Solving this with respect to x b*, and ex

tracting the root,
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3 A-
9

T&quot;

4-

(2 T r

6 a

2 a A - a2-
2 T

But this is capable of being yet further

reduced by dividing through by

9 T
3h-^p--2ao a

2T
2 A-

c&amp;gt;

to the form

5=

P

70.

which is the expression for the breadth
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of the step. As to the meaning of the

letters it may once more be stated, that

P is the weight in pounds of A B D H F,

and d the density of the masonry.
The vertical height (F H), which we de

termine to give the step, is expressed

by a, that of the entire dam from the

top to the base of the step by A, and the

moment of the weight P, with respect to

the vertical F H forming the rise of the

step by M ;
while by A, we mean, as in

all previous formulae, the greatest height

to which we can raise a vertical wall

without the pressure per unit of surface

on the base, becoming larger than the

limit R of pressure ;
and by $, the ex

pression or the ratio in which the

density of the masonry exceeds that of

water. This value of 0, is safely taken

at . As to the height to be given to

the step, this is of course to be assumed

at pleasure, but the most pleasing effect

is produced when it is taken at six or

seven feet, for then, even in dams of one

hundred and sixty feet in height, con-
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structed of the heaviest stone, the breadth
of the step will rarely at any point be

materially greater than the rise. The
point on the outer face at which the
first step should begin, or in other words
the distance A B, in Fig. 19, is deter-

A
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mined, as in the other instances, by the

relation which the breadth on top bears

to the height. If the thickness t,
across

the summit be assumed then

4 Z
4

2

8 ^6**.* 6 A

but if the height a be assumed the proper

thickness is to be had from the equation,

= a 4/ 6 A ^
-3 A - 4

When that point on the inner face is

reached, at which it becomes necessary

to begin stepping, the breadths l&amp;gt; and &
,

of the outer and inner steps respectively,

may be had by substituting the value of

u, in equations 15 and 16, and from the

two resulting equations, finding by
elimination two expressions for b and V .

This calculation may, however, be avoid

ed, and considerable expense for cutting

facing stone saved, by making the inner

face vertical from top to bottom. Indeed

the matter of expense for dressing stone

is, perhaps, the most serious objection to
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the stepped profile, as it is necessary to

dress both faces of the step.

As regards the use of the formulae for

this form of profile, it is to be borne in

mind, that P includes the weight of the

water as well as the weight of the

masonry, so that in determining the

breadth of the fourth step, the weight
of the three columns of water resting,
one on the first, one on the second and
one on the third step, is to be added to

the pressure of the masonry. The press
ure of the water is readily obtained from

equation 1.

The principles that have now been es

tablished in connection writh the four

types of profiles treated of, are all that

are required to calculate the parts of any
profile that is ever likely to arise in

practice. They have, moreover, been

determined without regard to the length
of the dam, so that the structure will be

one of equal resistance, and withstand

the thrust of the water solely by its

own weight. There is, therefore, no

valid reason why a dam constructed with
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a profile of equal resistance should be

curved into the form of an arch, and

this holds good, whether it be high or

low, whether it obstructs a broad valley

or a narrow one. The only thing that

can be accomplished by curving a dam,
is to relieve it from severe strains, by

transmitting as large a part of the thrust

to the sides of the valley, but where the

profile is such that the dam is every
where equally strong, and equally capa
ble of resisting by its own weight the

severest strain it is ever subjected to,

there is surely nothing to be gained by
increasing its length in order to transmit

this thrust laterally to the sides of the

valley. It is true that in deep and nar

row valleys, some saving of material may
be affected by curving the dam, which

being thus relieved from a goodly por
tion of the thrust, may be diminished in

thickness. But in long dams, it is an

open question whether the saving thus

affected is not more than balanced by
the increased length.

One other matter which deserves the
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most careful attention, and which in

deed unless it is carefully attended to

will render the very best profile of no

account, it is the binding of the stones,

and the character of the inner filling.

As to the bond, it is undoubtedly the

wisest plan if the dam is to resist a great

pressure, to avoid laying the stones in

horizontal courses wherever such a thing
is practicable, and to place binders in

every possible direction. For assuredly,

if it is necessary for the stability of all

walls bearing a vertical load, that there

should be no continuous joints in the

direction of the pressure, it is just as

important that a dam should have no

continuous horizontal joints, because in

the case of such structures almost every
ounce of thrust they have to resist is

horizontal, and thus exactly coincides

with the joints. If the dam is curved,

then this matter of broken horizontal

joints is not of such vital importance,
because no layer can then slide until

some one of the stones has been crushed,

yet even here it cannot be too rigidly
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adhered to. By a strange inconsistency

on the part of engineers, we often see

this matter both regarded and disre

garded in the same dam. Many struc

tures of this class could be named, in

which the rock foundation is stepped

with the utmost care to preclude any

possibility of sliding where sliding is of

all places the least likely to occur, while

the courses from the foundation to the

top are laid with the most perfect kind

of horizontal joints.

The filling again must not be of too

different a character from the facing.

Where masonry consists of dressed stone

and rubble work, the amount of settling

is so different in each case that nothing
like a bond can be preserved. The

affect of such settling, we constantly see

illustrated in the most striking way in

canal locks. As is well known these are

generally cut stone facings with rubble

backing, but the latter settling more

than the former become detached from

the facings, when the water penetrating
between the two kinds of masonry, the
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cut stone facings fall with the first frost.

A good filling is that made of large

rough blocks of stone, set at regular in

tervals apart, (the distance increasing as

the top is approached) and the spaces
between and over them filled in with
beton of the first quality, a method, we
believe, lately adopted in the construction
of one of the Croton dams in this state.

But perhaps a yet better one is to replace
the beton by the French mixture known
as beton coigmt. Both of these fillings,

however, are good, as when well rammed,
they form a close connection with the

facing stones, and do away entirely with

joints of any kind.
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NUGENT. Treatise on Optics; or, Light and Sight,

theoretically and practically treated ; with the appli

cation to Fine Art and Industrial Pursuits. By E.

Nugent. With one hundred and three illustrations.

i2mo, cloth 2 oo

FREE HAND DRAWING- A Gnide to Ornament*
al Figure and Landscape Drawing. By an Art Stu

dent. i8mo, boards, 5
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HOWARD. Earthwork Mensuration on the Basis of

the Prismoidal Formulae. Containing simple and la

bor-saving method of obtaining Prismoidal contents

directly from End Areas. Illustrated by Examples,
and accompanied by Plain Rules for Practical Uses.

By Conway R. Howard, C. E., Richmond, Va. Il

lustrated, 8vo, cloth i 50

GRUNER. The Manufacture of Steel. By M. L.

Gruner. Translated from the French, by Lenox
Smith, with an appendix on the Bessamer process in

the United States, by the translator. Illustrated by
Lithographed drawings and wood cuts. 8vo, cloth.. 3 50

AUCHINCLOSS. Link and Valve Motions Simplified.
Illustrated with 37 wood-cuts, and 21 lithographic
plates, together with a Travel Scale, and numerous
useful Tables. By W. S. Auchincloss. 8vo, cloth. . 3 oo

VAN BUREN. Investigations of Formulas, for the

strength of the Iron parts of Steam Machinery. By
J. D. Van Buren, Jr., C. E. Illustrated, 8vo, cloth. 2 oo

JOYNSON. Designing and Construction of Machine
Gearing. Illustrated, 8vo, cloth 2 oo

GILLMOKE. Coignet Beton and other Artificial Stone.

By Q. A. Gillmore, Major U. S. Corps Engineers.
9 plates, views, &c. 8vo, cloth 250

SAELTZER. Treatise on Acoustics in connection with
Ventilation. By Alexander Saeltzer, Architect.

ramO} cloth 2 oo

BUT 1 , tiR
(
W. F. ) Ventilation of Buildings. By W. F.

Butler. With illustrations. i8mo, boards 50
DICTIONARY of Manufactures, Mining, Machinery,

and the Industrial Arts. By George Dodd. i2ino,
cloth 2 oc

BOW. A Treatisa on Bracing, with its application to
Bridges and other Structures of Wood or Iron. By
Robert Henry Bow, C. E. 156 illustrations, 8vo,
doth j 50

BARBA (J.) The Use of Steel for Constructive Pur
poses; Method of Working, Applying, and Testing
Plates and Brass. With a Preface by A. L. Holley,
C. E. i-zmo, cloth i 50
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DIEDRICH. The Theory of Strains, a Compendium
for the calculation and construction of Bridges, Roofs,
and Cranes, with the application of Trigonometrical
Notes, containing the most comprehensive informa
tion in regard to the Resulting strains for a perman
ent Load, as also for a combined (Permanent and
Rolling) Load. In two sections, adadted to the re
quirements of the present time. By John Diedrich,
C. E. Illustrated by numerous plates and diagrams.
Svo, cloth t 5 QQ

WILLIAMSON (R. S.) On the use of the Barometer on
Surveys and Reconnoissances. Part I. Meteorology
in its Connection with Hypsometry. Part II. Baro
metric Hypsometry. By R. S. Wiliamson, Bvt
Lieut. -Col. U. S. A., Major Corps of Engineers.
With Illustrative Tables and Engravings. Paper
No. 15, Professional Papers, Corps of Engineers.
i vol. 4to, cloth... &amp;gt; 15 oo

POOK (S. M.) Method of Comparing the Lines and
Draughting Vessels Propelled by Sail or Steam.
Including a chapter on Laying off on the Mould-
Loft Floor. By Samuel M. Pook, Naval Construc
tor, i vol. Svo, with illustrations, cloth 5 oo

ALEXANDER (J. H.) Universal Dictionary of

Weights and Measures, Ancient and Modern, re
duced to the standards of the United States ofAme
rica. By J. H. Alexander. New edition, enlarged,
i vol. Svo, cloth 3 50

WANKLYN. A Practical Treatise on the Examination
of Milk, and its Derivatives, Cream, Butter and
Cheese. By J. Alfred Wanklyn, M. R. C. 8., izmo.
cloth i oo

RICHARDS INDICATOR. A Treatise on the Rich
?rds Steam Engine Indicator, with an Appendix by

&amp;lt;?. W. Bacon, M. E. i8mo, flexible, cloth x oo

PORTER (C. T.) A Treatise on the Richards Steam

Engine Indicator, and the Development and Applica
tion of Force in the Steam Engine. By Charles T.

Porter. Third edition, revised and enlarged. Svo,

illustrated, cloth 3 5
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POPE. Modern Practice of the Electric Telegraph. A
Hand Book for Electricians and operators. By Frank
L. Pope. Ninth edition, revised and enlarged, and
fully illustrated. 8vo, cloth $2 oo

&quot; There is no other work of this kind in tha English language that con
tains in so small a compass so much practical information in the appli
cation of galvanic electricity to telegraphy. It should be in the hands of
everyone interested in telegraphy, or the use of Batteries for other pur
poses.

EASSIE (P. B.) Wood and its Uses. A Hand -Book
for the use of Contractors, Builders, Architects, En
gineers, and Timber Merchants. By P. B. Eassie.

Upwards of 250 illustrations. 8vo, cloth i 50

SABINE. History and Progress of the Electric Tele
graph, with descriptions of some of the apparatus.
By Robert Sabme, C. E, Second edition, with ad
ditions, i2mo, cloth i 35

BLAKE. Ceramic Art. A Report on Pottery, Porce
lain, Tiles, Terra Cotta and Brick. By W. P. Blake,
U. S. Commissioner, Vienna Exhibition, 1873. 8vo,
cloth 2 oo

BE NET. Electro-Ballistic Machines, and the Schultz

Chronoscope. By Lieut. -Col. S. V. Benet, Captain
of Ordnance, U. S. Army- Illustrated, second edi

tion, 4to, cloth o 3 oo

MICHAELIS. The Le Boulenge Chronograph, with
three Lithograph folding plates of illustrations. By-
Brevet Captain O. E. Michaelis, First Lieutenant
Ordnance Corps, U. S. Army, 410, cloth . . . . 3 oo

ENGINEERING FACTS AND FIGURES An
Annual Register of Progress in Mechanical Engineer
ing and Construction, for the years 1863, 64, 65, 66

67, 68. Fully illustrated, 6 vols. i8mo, cloth, $2.50
per vol., each volume sold separately

HAMILTON. Useful Information for Railway Men.
Compiled by W. G. Hamilton, Engineer. Sixth edi

tion, revised and enlarged, 562 pages Pocket form.

Morocco, gilt 2 oo

STUART (B.) How to Become a Successful Engineer.
Being Hints to Youths intending to adopt the Pro
fession. Sixth edition. i2mo, boards 50
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ELIOT AND STORER. A compendious Manual of

Qualitative Chemical Analysis. By Charles W.
tiiot and Frank H. Storer. Revised with the Co
operation of the authors. By William R. Nichols,
Professor of Chemistry in the Massachusetts insti

tute of Technology Illustrated, i2mo, cloth $i 50

RAMMELSBERG. Guide to a course of Quantitative
Chemical Analysis, especially of Minerals and Fur
nace Products. Illustrated by Examples By C. F.

Ramn?elsberg. Translated by J. Tovvler, M. D.
8vo, cloth 2 23

DOUGLASS and PRESCOTT. Qualitative Chemical

Analysis. A Guide in the Practical Study of Chem
istry, and in the Work of Analysis. By S. H. Doug
lass and A. B. J rescott, of the University of Michi

gan. New edition. 8vo. In pre&8.

JACOB. On the Designing and Construction of Storage
Reservoirs, with Tables and Wood Cuts representing
Sections, &c., iSmo, boards 50

WATT S Dictionary of Chemistry. New and Revised
edition complete in 6 vols 8vo cloth, $62.00 Sup
plementary volume sold separately. Price, cloth. . . 9 oo

RANDALL. Quartz Operators Hand-Book. By P. M.
Randall. New edition, revised and enlarged, fully

illustrated. i2mo, cloth 200

SILVERSMITH. A Practical Hand-Book for Miners,

Metallurgists, and Assayers, comprising the most re

cent improvements in the disintegration amalgama
tion, smelting, and parting of the &amp;gt; recious ores, with

a comprehensive Digest of the Mining Laws Greatly

augmented, revised and corrected. By Juiius Sliver-

smith Fourth edition. Profusely illustrated. i2mo,
cloth 3 oo

THE USEFUL METALS AND THEIR ALLOYS,
including Mining Ventilation, Mining Jurisprudence,
and Metallurgic Chemistry employed in the conver
sion of Iron, Copper, Tin, Zinc, Antimony and Lead

ores, with their applications to the Industrial Arts.

By Scoffren, Truan, Clay, Oxland, Fairbairn, and
others. Fifth edition, half calf , . 3 7.*
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JOYNSON. The Metals used in construction, lion,
Steel, Bessemer Metal, etc., etc. By F. H. Joynson.
Illustrated, 1 2mo, cloth $o 75

VON COTTA. Treatise on Ore Deposits. By Bern-
hard Von Cotta, Professor of Geology in the Royal
School of Mines, Freidberg, Saxony. Translated
from the second German edition, by Frederick

Prime, Jr., Mining Engineer, and revised by the au
thor, with numerous illustrations. 8vo, cloth 4 oc

GREENE. Graphical Method for the Analysis of Bridge
Trusses, extended to continuous Girders and Dra 1

Spans. By C. F. Greene, A. M., Prof, of Civil Eng:

.

Trusses, extended to continuous Girders and Draw
pans. By C. F. Greene, A. M., Prof, of Civil Engi

neering, University of Michigan. Illustrated by 3
folding plates, 8vo, cloth

BELL. Chemical Phenomena of Iron Smelting. An
experimental and practical examination ot the cir

cumstances which determine the capacity of the Blast

Furnace, The Temperature of the air, aiid the

proper condition of the Materials to be operated
upon. By 1. Lowthian Bell. 8vo, cloth ........... 600

ROGERS. The Geology of Pennsylvania. A Govern
ment survey, with a general view of the Geology of

the United States, Essays on the Coal Formation and
its Fossils, ai;d a description of the Coal Fields of

North America and Great Britain. By Henr\ Dar
win Rogers, late State Geologist of Pennsylvania,

Splendidly illustrated with Plates and Engravings in

the text. 3 vols , 410, cloth with 1 ortfolio of Maps. 30 oo

BUKGH. Modern Marine Engineering, applied to

Paddl2 and Screw Propulsion Consisting of 36
colored plates, 259 Practical V\ cod tut Illustrations,
and 403 pa^es oi descriptive matter, the whole being
an exposition of the present practice of James
Watt & Co.. J & G Rennie, R. Napier & Sons,
and other celebrated firms, by N. P. Burgh, Engi
neer, thick 4to, vol., cloth, $25.00; halfmor....... 30 oo

CHURCH. Notes ofa Metallurgical Journey in Europe.
By J. A. Church, Engineer of Mines, 8vo

;
cloth..... 2 oo
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BOURNE. Treatise on the Steam Engine in its various
applications to Mines, Mills, Steam Navigation,
Railways, and Agriculture, with the theoretical in

vestigations respecting the Motive Power of Heat,
and the proper proportions of steam engines. Elabo
rate tables of the right dimensions of every part, and
Practical Instructions for the manufacture and man
agement of every species of Engine in actual use.

By John Bourne, being the ninth edition of &quot; A
Treatise on the Steam Engine,&quot; by the &quot;

Artizan
Clubo&quot; Illustrated by 38 plates and 546 wood cuts.

4to, cloth ,,..$15 oc

STUART. The Naval Dry Docks of the United
Spates. By Charles B. Stuart late Engineer-in-Chief
of the U. S. Navy. Illustrated with 24 engravings
on steel. Fourth edition, cloth 6 oo

ATKINSON. Practical Treatises on the Gases met
with in Coal Mines. i8mo, boards 50

FOSTER. Submarine Blasting in Boston Harbor,
Massachusetts. Removal of Tower and Corwin
Rocks. By J. G. Foster, Lieut -Col. of Engineers,
U. S. Army. Illustrated with seven plates, 4to,
cloth 3 50

BARNES Submarine Warfare, offensive and defensive,

including a discussion of the offensive Torpedo Sys
tem, its effects upon Iron Clad Ship Systems and in

fluence upon future naval wars. By Lieut. -Com
mander J. S. Barnes, U. S. N., with twenty litho

graphic plates and many wood cuts. 8vo, cloth.. . . 5 oc

HOLLEY. A Treatise on Ordnance and Armor, em
bracing descriptions, discussions, and professional

opinions concerning the materials, fabrication, re

quirements, capabilities, and endurance of European
and American Guns, for Kaval, Sea Coast, and Iron

Clad Warfare, and their Rifling, Projectiles, and
Breech-Loading ; also, results of experiments against

armor, from official records, with an appendix refer

ring to Gun Cotton, Hooped Guns, etc., etc. By
Alexander L. Holley, B. P., 948 pages, 493 engrav

ings, and 147 Tables of Results, etc., 8vo, half roan. 10 oo
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