

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

http://www.archive.org/details/highschoolmathem03univ

30

Mathematics

PART 43

Comparative Studies of Principles for Programing Mathematics in Automated Instruction

Supported by grants from U. S. Office of Education (Title VII)

National Science Foundation

Copyright, 1962

Board of Trustees, University of Illinois

Fill in the heading on your work sheet.

Some of the exercises in this book will ask you to draw a line segment between two dots. You will be able to do a neater job on these exercises if you have a ruler or some other kind of "straight-edge". If you don't have a wooden or plastic straight-edge with you, you can make a perfectly good straight-edge by folding a sheet of paper several times.

Turn to PAGE 2.

(a) An a set of the set of t

[Part 43]

[Page 2]

Imagine that you own a very smart grasshopper. This grasshopper is so smart that he has learned to play a game called a 'number plane lattice game'. In playing this game, your grasshopper needs this equipment:

- (a) a large picture of part of the number plane lattice,
- (b) a pair of dice, one red and one green, and
- (c) a pack of small cards, each card containing a rule and "jumping" instructions.

Here is how your grasshopper plays the game. First, he rolls the dice. [This is a big grasshopper, or he has very small dice!] Suppose that 2 comes up on the red die and 1 on the green die. This means that he is to start the game sitting on the dot corresponding to the point (2, 1) on the number plane lattice. Next, he turns a card face up and reads the rule and instructions. Suppose that the card says:

Rule: A jump takes you from (x, y) to (x + 1, y + 1). Instructions: Make one jump.

The grasshopper will finish this game on the dot corresponding to (3, 2). He starts at (2, 1) and makes one jump according to the given rule. This takes him to (2 + 1, 1 + 1) or (3, 2). Since the instructions were to make just one jump, he finishes at (3, 2).

Here is a diagram showing his jump.

۰	4	٠	0	0	٠	
e	r F	9	6	¢	٩	
8	2	9	•	© _≮	6	
٥	6 0		Ó	a	9	
-			2		4	-
0	5 6 7		•	٠	а. В	

Turn to PAGE 3.

[from page 1]

[Page 2]

[Page 3]

Here is how your grasshopper might play another game.

Start: (-4, -1)Rule: A jump takes you from (x, y) to (x + 2, y + 1). Instructions: Make 3 jumps.

Where does he finish?

Solution.

First jump: From (-4, -1) to (-4 + 2, -1 + 1) or (-2, 0)Second jump: From (-2, 0) to (-2 + 2, 0 + 1) or (0, 1)Third jump: From (0, 1) to (2, 2)

So, after 3 jumps, he finishes on (2, 2).

Here is a diagram showing his jumps.

The exercises below are about a game your grasshopper played. Answer them on your work sheet.

Start: (4, 1)
Rule: A jump takes you from (x, y) to (x - 1, y + 1).
Instructions: Make 2 jumps.

- (1) First jump: From (4, 1) to (3, 2)
 Second jump: From (3, 2) to (?, ?)
- (2) Where did he finish?
- (3) Draw a diagram showing his jumps.

Turn to PAGE 4.

[from page 2]

[Page 3]

.* ¹13 () + - -

ана) торона (слана) 1990 — Салана (слана) 1990 — Салана (слана) 1990 — Салана (слана)

A second second second

a second a second se

en els services en els services e Biología de la constante els services els services els services els services els services els services els servi

to the second second

1. - T

Check your answers.

Start: (4, 1)
Rule: A jump takes you from (x, y) to (x - 1, y + 1).
Instructions: Make 2 jumps.

Record your results on your work sheet.

* * *

Do these exercises about another game the grasshopper played. Write your answers on your work sheet.

Start: (0, 1)
Rule: A jump takes you from (x, y) to (x + 3, y).
Instructions: Make 3 jumps.

- (1) First jump: From (0, 1) to (3, 1) Second jump: From (3, 1) to (<u>?</u>, <u>?</u>)
- (2) Third jump: From (<u>?</u>, <u>?</u>) to (<u>?</u>, <u>?</u>)
- (3) Where did he finish?
- (4) Draw a diagram showing his jumps.

Turn to PAGE 5.

[from page 3]

[Page 4]

· · · · · · ·

[Page 5]

Record your results on your work sheet.

Turn to PAGE 6.

> A significant of the second secon second sec

1 (C) (C)

[Part 43]

[Page 6]

Now, let's take over from the grasshopper and play some number plane lattice games.

We shall make "moves" instead of "jumps", and we shall use an abbreviated form for the rule. For example, the rule:

A move takes you from (x, y) to (x + 2, y - 3) will be written:

$$(x, y) \rightarrow (x + 2, y - 3)$$

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (x + 2, y - 3)$

Start at (3, 3) and make 3 moves.

- First move takes you to (3 + 2, 3 3) or (5, 0).
 Second move takes you to (?, ?).
- (2) Third move takes you to (?, ?).
- (3) Where do you finish?
- (4) Draw a diagram showing your moves.

Turn to PAGE 7.

and the Constant of the consta

1 001 N 25

[Part 43]

[Page 7]

Check your answers.

Rule: $(x, y) \rightarrow (x + 2, y - 3)$ Start at (3, 3) and make 3 moves.

(1) First move takes you to (5, 0). Second move takes you to (7, -3).

(2) Third move takes you to (9, -6). (3) Finish: (9, -6)

Record your results on your work sheet.

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (2x, 2y)$ Start at (1, 2) and make 2 moves.

(1) Where do you finish? [First move takes you to (2, 4).]

(2) Draw a diagram of your moves.

Turn to PAGE 8.

[from page 6]

[Page 7]

1 N N

ال جو کا

1997 - Contra 19

×.

Check your answers.

Rule: $(x, y) \rightarrow (2x, 2y)$

Start at (1, 2) and make 2 moves.

Record your results on your work sheet.

Answer this question on your work sheet.

Rule: $(x, y) \rightarrow (3x, 2y)$

Start at (0, 0) and make 10 moves.

What is the final point?

Turn to PAGE 9.

[from page 7]

[Page 8]

1 - 60

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 <t

· · · ·

۲_۵-۲۱ [Part 43]

[Page 9]

Check your answer.

Rule: $(x, y) \rightarrow (3x, 2y)$ Start at (0, 0) and make 10 moves.

Finish: (0,0)

Record your results on your work sheet.

* * *

Here is a sample number plane lattice game where the rule is a bit more complicated.

Rule: $(x, y) \rightarrow (2x - 3, 3y + 1)$ Start at (2, 0) and make 2 moves. What is the final point?

Solution.

First move: From (2, 0) to (2 · 2 - 3, 3 · 0 + 1), or (1, 1) Second move: From (1, 1) to (2 · 1 - 3, 3 · 1 + 1), or (-1, 4) So, the final point is (-1, 4).

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (3x - 5, y + 2)$ Start at (2, -2) and make 3 moves.

- First move takes you to (1, 0).
 Second move takes you to (<u>?</u>, <u>?</u>).
- (2) Third move takes you to (?, ?).
- (3) What is the final point?
- (4) Make a diagram showing your moves.

Check your answers.

Rule: $(x, y) \rightarrow (3x - 5, y + 2)$

Start at (2, -2) and make 3 moves.

- First move takes you to (1, 0).
 Second move takes you to (-2, 2).
- (2) Third move takes you to (-//, 4).
- (3) Final point: (-11, 4)

Record your results on your work sheet.

Answer this question on your work sheet.

Rule: $(j, k) \rightarrow (2j - 5, 2k + 3)$ Start at (5, -3) and make 7 moves.

What is the final point?

Turn to PAGE <u>11</u>.

[from page 9]

[Page 10]

, '

. .) 00 (

[Part 43]

[Page 11]

Check your answer.

Rule: $(j, k) \rightarrow (2j - 5, 2k + 3)$ Start at (5, -3) and make 7 moves.

Final point: (5, -3)[The final point would be (5, -3) if you made 101 moves!]

Record your results on your work sheet.

```
* * *
```

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (x^2, 3y - 1)$ Start at (2, 2) and make 3 moves.

- First move takes you to (4, 5).
 Second move takes you to (16, <u>?</u>).
- (2) Third move takes you to (?, ?).
- (3) So, the final point is (?, ?).

Turn to PAGE 12.

[from page 10]

[Page 11]

 $(A_{1}, \dots, A_{n}^{k}) = (A_{n}, \dots, A_{n}^{k})$

Bru an ann an Arran a

A state of the sta

la en la serie de serie de la serie de l

En la companya de la

Check your answers.

Rule: $(x, y) \rightarrow (x^2, 3y - 1)$

Start at (2, 2) and make 3 moves.

- First move takes you to (4, 5).
 Second move takes you to (16, <u>14</u>).
- (2) Third move takes you to (256, 41).
- (3) So, the final point is (256, 41).

Record your results on your work sheet.

* * *

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (x^2, 3 - y)$. Start at (-1, -1) and make 3 moves.

- (1) First move takes you to (1, 4). Do you agree? [Yes or No?]
- (2) Second move takes you to ____?
- (3) Third move takes you to ____?
- (4) What would be the final point if you made 4 moves?
- (5) What would be the final point if you made 20 moves?
- (6) Draw a diagram showing your first 3 moves.

Turn to PAGE 13.

[from page 11]

Check your answers.

Rule: $(x, y) \rightarrow (x^2, 3 - y)$ Start at (-1, -1) and make 3 moves.

Record your results on your work sheet.

>k >k >k

The exercise below introduces a type of number plane lattice game which might be a bit more challenging than the kind you have tried up to now. Be on the lookout for a system to use in solving this new type. Do this exercise on your work sheet.

Rule: $(x, y) \rightarrow (x + 1, y + 2)$ After making 1 move, the <u>final point</u> is (5, 8). What was the <u>starting point</u>?

Turn to PAGE 14.

[from page 12]

[Page 13]

Check your answer.

Rule: $(x, y) \rightarrow (x + 1, y + 2)$

After making 1 move, the final point is (5, 8).

The starting point was (4, 6).

If you had trouble with this exercise, here is a solution.

The first component of the final point is 5, and according to the rule, 1 was added to <u>some</u> number to obtain 5. That number must be 4 since 4 + 1 = 5. So, the first component of the point immediately before the final point must be 4. Since only 1 move was made, the first component of the starting point must be 4.

The second component of the starting point must be 6, since according to the rule, 2 was added to <u>some</u> number to obtain 8, and 6 + 2 = 8. So the starting point was (4, 6).

Record your result on your work sheet.

Do this exercise on your work sheet.

Rule: $(x, y) \rightarrow (x + 3, y - 2)$

After making 2 moves the final point is (-1, 4).

Give the starting point.

Turn to PAGE 15.

[from page 13]

[Page 14]

.

.

· .

[Part 43]

Check your answer.

Rule: $(x, y) \rightarrow (x + 3, y - 2)$

After making 2 moves the final point is (-1, 4).

Starting point: (-7, 8)

Solution.

After 2 moves, the first component of the final point is -1. The rule tells us that 3 was added to <u>some</u> number to obtain -1. That number, of course, was -4. So, the first component of the point reached after 1 move was -4. Again, the rule tells us that 3 was added to some number to obtain -4. In this case, the number was -7. So, the first component of the starting point was -7. By the same kind of reasoning, the <u>second</u> component of the starting point was 8.

Thus, the starting point was (-7, 8).

In brief outline,

After	2	moves:	(-1, 4)
After	1	move:	(-4, 6)
Start:			(-7,8)

[We can check our solution by reading the brief outline from the bottom up to see if each move agrees with the rule.]

Record your result on your work sheet.

* * *

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (x - 2, y + 3)$

After 2 moves, the final point is (1, 8).

- After 2 moves: (1, 8)
 After 1 move: (3, ?)
- (2) Start: (<u>?</u>, <u>?</u>)

Turn to PAGE 16.

[from page 14]

1 1.11

:**

and the second second

t de la companya de la

 $\mathcal{A} = \{1, \dots, n\}$

Rule: $(x, y) \rightarrow (x - 2, y + 3)$

After 2 moves, the final point is (1, 8).

After 2 moves: (1, 8)
 After 1 move: (3,5)

(2) Start: (5,2)

Record your results on your work sheet.

* * *

Do these exercises on your work sheet. [Remember to be on the lookout for a systematic way to solve this kind of problem.]

Rule: $(x, y) \rightarrow (x - 3, y + 1)$ After 4 moves, the final point is (-6, 3).

- (1) After 4 moves: (-6, 3) After 3 moves: (-3, ?)
- (2) After 2 moves: (<u>?</u>, <u>?</u>)
- (3) After 1 move: (<u>?</u>, <u>?</u>)
- (4) Start: (<u>?</u>, <u>?</u>)
- (5) Make a diagram showing the moves which must have been made to reach the final point.

Turn to PAGE 17.

[from page 15]

[Page 16]

in the second

 $(1, 1, \dots, n) \rightarrow (1, 1, \dots, n)$

10 10 10 10

Rule: $(x, y) \rightarrow (x - 3, y + 1)$

After 4 moves, the final point is (-6, 3).

(1)	After 4 moves:	(-6, 3)	(5)														
	After 3 moves:	(-3,2)		\odot_{\leqslant}		•	٠	•	٠	1	•	•	•	٩	•	•	
(2)	After 2 moves:	(0,1)		•	•	•	` 0 _«	•	•	2	•	•	•	•	•	•	
(3)	After 1 move:	(3,0)															
(4)				-6		-4		-2		1		2	04	4-		6	
(+)	Start:	(6,-1)								2							

Record your results on your work sheet.

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (2x + 1, y - 1)$

After 3 moves the final point is (15, -3).

- (1) After 3 moves: (15, -3) After 2 moves: (7, ?)
- (2) After 1 move: (<u>?</u>, <u>?</u>)
- (3) Start: (<u>?</u>, <u>?</u>)

Turn to PAGE 18.

[from page 16]

* * • • •

Rule: $(x, y) \rightarrow (2x + 1, y - 1)$

After 3 moves the final point is (15, -3).

- After 3 moves: (15, -3)
 After 2 moves: (7, -2)
- (2) After 1 move: (3,-1)
- (3) Start: (1,0)

Here is how part of the solution might be done.

The first component of the final point is 15. The rule tells us that <u>some</u> number was multiplied by 2 and then 1 was added to obtain 15. That number must have been 7 since $2 \cdot 7 + 1 = 15$. So, after 2 moves, the first component of the point reached was 7.

[You can check the completed solution by reading the answers from the starting point to the final point to see if each move followed the rule.]

Record your results on your work sheet.

* * *

Do these exercises on your work sheet.

Rule:
$$(x, y) \rightarrow (2x + 1, y - 1)$$

After 2 moves, the final point is (11, 3).

- (1) After 2 moves: (11, 3) After 1 move: (5, ?)
- (2) Start: (<u>?</u>, <u>?</u>)

[from page 17]

and the second second

All successions
 All for a local state of the second state of

EStational and the strategies of the second strategies (200%) stational second s second se Second s Second seco

and the second sec

and the second second

 $\mathcal{M}^{(1)}$, $\mathcal{M}^{(2)}$, \mathcal{M}

.

1214 - 14a

 $\Gamma^{*} = r^{-2}$

[Part 43]

Check your answers.

Rule: $(x, y) \rightarrow (2x + 1, y - 1)$

After 2 moves, the final point is (11, 3).

Record your results on your work sheet.

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (2x - 1, 2y + 1)$

After 3 moves, the final point is (9, 7).

- (1) After 3 moves: (9, 7)
 After 2 moves: (5, ?) [2 · ? + 1 = 7]
- (2) After 1 move: (<u>?</u>, <u>?</u>)

(3) Start: <u>?</u>

Turn to PAGE 20.

[from page 18]

[Page 19]

[Part 43]

[Page 20]

Check your answers.

Rule: $(x, y) \rightarrow (2x - 1, 2y + 1)$

After 3 moves, the final point is (9, 7).

(1) After 3 moves: (9, 7)

After 2 moves: (5,3) $[2 \cdot 3 + 1 = 7]$

- (2) After 1 move: (3, 1)[$2 \cdot \underline{3} - 1 = 5, 2 \cdot \underline{1} + 1 = 3$]
- (3) Start : (2, 0)[$2 \cdot 2 - 1 = 3, 2 \cdot 0 + 1 = 1$]

Record your results on your work sheet.

* * *

On your work sheet, draw a diagram showing the moves which must have been made to reach the final point in the game whose solution is given near the top of this page.

Turn to PAGE 21.

[from page 19]

[Page 20]

·

Record your results on your work sheet.

岩 米 米

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (3x + 2, 3 - 2y)$

After 3 moves, the final point is (53, -7).

(1) After 3 moves: (53, -7)

After 2 moves: (17, 5) $[3 \cdot \underline{17} + 2 = 53, 3 - 2 \cdot \underline{5} = -7.]$

After 1 move : ____ $[3 \cdot ? + 2 = 17. \quad 3 - 2 \cdot ? = 5.]$

(2) Start : _ ?

Turn to PAGE 22.

· · · · · • • • • . and a second • • • • • • • • • • • • • • • •

• * • • •

Rule: $(x, y) \rightarrow (3x + 2, 3 - 2y)$

After 3 moves, the final point is (53, -7).

(1) After 3 moves:
$$(53, -7)$$

After 2 moves: $(17, 5)$
 $[3 \cdot \underline{17} + 2 = 53, 3 - 2 \cdot \underline{5} = -7.]$
After 1 move : $(5, -1)$
 $[3 \cdot \underline{5} + 2 = 17, 3 - 2 \cdot \underline{-1} = 5.]$
(2) Start: $(1, 2)$
 $[3 \cdot \underline{1} + 2 = 5, 3 - 2 \cdot \underline{2} = -1.]$

Record your results on your work sheet.

☆ ☆ ☆

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (3x - 2, 4 - 2y)$

After 3 moves, the final point is (28, 12).

(1) After 3 moves: (28, 12)
After 2 moves: ? [Remember, you are "backing up".]

(2) After 1 move : ?

(3) Start : _?

Turn to PAGE 23.

[from page 21]

Rule: $(x, y) \rightarrow (3x - 2, 4 - 2y)$ After 3 moves, the final point is (28, 12).

- (1) After 3 moves: (28, 12) After 2 moves: (10, -4)
- (2) After 1 move : (4, 4)
- (3) Start : (2,0)

Record your results on your work sheet.

Turn to PAGE 24.

a tali wang ang j

· Mits · Mitsky in the set set and set

[Page 24]

You have played several number plane lattice games where you were given the final point and asked to find the starting point. Perhaps you have discovered that you can use <u>equations</u> to help you "back up" in a lattice game.

Here is a sample showing how equations can help. [Perhaps you discovered a different method.]

Sample.

Rule:
$$(x, y) \rightarrow (3x + 4, 2 - 3y)$$

After 2 moves, the final point is (79, 68).
Give the starting point.

Solution.

After 2 moves: (79, 68)					
First Component	Second Component				
3x + 4 = 79	2 - 3y = 68				
3x = 75	-3y = 66				
x = 25	y = -22				

So, the point just before (79, 68) was (25, -22).

After 1 move: (25, -22) 3x + 4 = 25 x = 7y = 8

So, the starting point was (7, 8).

Do this exercise on your work sheet.

Rule: $(x, y) \rightarrow (2x + 5, 3 - 2y)$

After 3 moves, the final point is (19, -15).

Give the starting point.

Turn to PAGE 25.

[from page 23]

[Page 24]

¢_____ t___ − Hi − −

i.

Rule:
$$(x, y) \rightarrow (2x + 5, 3 - 2y)$$

After 3 moves, the final point is (19, -15).

First ComponentSecond Component2x + 5 = 193 - 2y = -15x = 7y = 9After 2 moves: (7, 9)2x + 5 = 73 - 2y = 9x = 1y = -3After 1 move: (1, -3)2x + 5 = 13 - 2y = -3x = -2y = 3Starting point: (-2, 3)

Record your results on your work sheet.

Do this exercise on your work sheet.

Rule: $(x, y) \rightarrow (2x - 5, 3 + 4y)$ After 4 moves, the final point is (-27, -1).

Give the starting point.

```
Turn to PAGE 26.
```

[from page 24]

1 •

-

: .; .

e de la companya de l La companya de la comp

Rule: $(x, y) \rightarrow (2x - 5, 3 + 4y)$ After 4 moves, the final point is (-27, -1).

After 4 moves:
$$(-27, -1)$$

After 3 moves: $(-11, -1)$
After 2 moves: $(-3, -1)$
After 1 move : $(1, -1)$
Start : $(3, -1)$

Record your result on your work sheet.

* * *

The exercises below introduce still another type of number plane lattice game. Do these exercises on your work sheet.

A = {(0, 0), (1, 1), (2, 2)} Rule: $(x, y) \rightarrow (x + y, x - y)$

Make one move from each point in set A. Call the new set 'X'.

(1) From (0, 0), you move to (0 + 0, 0 - 0), or (0, 0).
From (1, 1), you move to (1 + 1, 1 - 1), or (2, 0).
From (2, 2), you move to (<u>?</u> + <u>?</u>, <u>?</u> - <u>?</u>), or (<u>?</u>, <u>?</u>).

(2) If the new set is called 'X' then $X = \{ \underline{?}, \underline{?}, \underline{?}, \underline{?} \}$.

Turn to PAGE 27.

[from page 25]

2.1 · · · · · ·

[Page 27]

Check your answers.

 $A = \{(0, 0), (1, 1), (2, 2)\}$ Rule: $(x, y) \rightarrow (x + y, x - y)$

Make one move from each point in set A. Call the new set 'X'.

(1) From (0, 0), you move to (0, 0).
From (1, 1), you move to (2, 0).
From (2, 2), you move to (2 + 2, 2 - 2), or (4, 0).

(2)
$$X = \{(o, o), (2, o), (4, o)\}$$

Record your results on your work sheet.

Now, let's plot the points in each of the sets A and X listed above, and show the moves from each point in A to the corresponding point in X.

Do these exercises on your work sheet.

A = {(0, 0), (1, -1), (2, -2), (3, -3)}
Rule:
$$(x, y) \rightarrow (x, |y|)$$

Make one move from each point in set A. Call the new set 'X'.

- (1) $X = \{ \underline{?}, \underline{?}, \underline{?}, \underline{?}, \underline{?} \}$
- (2) Plot the points in each set on the same diagram and indicate each move by drawing a dashed line and an arrow. [See the diagram above.]

Turn to PAGE 28.

[from page 26]

[Page 27]

· · ·

· · ·

A = {(0, 0), (1, -1), (2, -2), (3, -3)}
Rule:
$$(x, y) \rightarrow (x, |y|)$$

(1)
$$X = \{ (0,0), (1,1), (2,2), (3,3) \}$$
 (2) $\cdot \cdot 4$ $\cdot \cdot \cdot$
 $\cdot \cdot 2$ $\cdot \times$ $\cdot \cdot$
 $\cdot \cdot 2$ $\cdot \cdot \times$ $\cdot \cdot \cdot$
 $\cdot \cdot -2$ $\cdot \cdot \circ \cdot \cdot$
 $\cdot \cdot -4$ $\cdot \cdot \cdot \cdot \cdot$

Record your results on your work sheet.

Do these exercises on your work sheet.

$$A = \{(2, 1), (3, 2), (4, 3), (5, 3)\}$$

Rule: (x, y) \rightarrow (y, x)

Make one move from each point in set A. Call the new set'X',

- (1) $X = \{(1, 2), (2, ?), ?, ?\}$.
- (2) Plot the points in each set on the same diagram and indicate each move. [Remember, loops for A, cross-marks for X.]

[from page 27]

-2 2 4 6

Record your results on your work sheet.

 $\boldsymbol{z}_{i}^{t} = \boldsymbol{z}_{i}^{t} = \boldsymbol{z}_{i}^{t}$

When <u>one</u> move is made from each point in a set according to the rule '(x, y) \rightarrow (y, x)' and the points involved are plotted, we get an interesting picture. Study such pictures carefully and look for a "pattern".

Do these exercises on your work sheet.

A = {(x, y), x and y integers: 0 < x < 6 and y = 1} Rule: (x, y) \rightarrow (y, x)

Make one move from each point in set A. Call the new set 'X'.

(1) A = { ? } [List the members of set A.]

(2) X = { _____ } [List the members of set X.]

(3) Plot the points in each set on the same diagram and indicate the moves.

(4) $X = \{(x, y), x \text{ and } y \text{ integers: } ?, and x = 1\}$

Turn to PAGE 30.

[from page 28]

[Page 29]

F

(4) X = {(x, y), x and y integers: O < Y < 6 and x = 1}
[Compare this description of set X with the description of set A at the top of this page.]

Record your results on your work sheet.

* * *

Do these exercises on your work sheet.

A = {(x, y), x and y integers: -2 < x < 2 and -4 < y < -2}

Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Call the new set 'X'.

- (1) A = { _____ } [List the members of set A.]
- (2) X = { ? } [List the members of set X.]
- (3) Plot the points in each set on the same diagram and indicate the moves. [Remember, loops for A, cross-marks for X.]
- (4) $X = \{(x, y), x \text{ and } y \text{ integers: } -2 < y < 2 \text{ and } ? \}$

Turn to PAGE 31.

[from page 29]

[Page 30]

.

ала ала ала Алариана Алариана Алариана алариана Алариана алариана Алариана алариана

•

A = {(x, y), x and y integers:
$$-2 < x < 2$$
 and $-4 < y < -2$ }
Rule: (x, y) \rightarrow (y, x)

Make one move from each point in set A. Call the new set 'X'.

(1)
$$A = \{ (-1, -3), (0, -3), (1, -3) \}$$

(2) $X = \{ (-3, -1), (-3, 0), (-3, 1) \}$
(3) $\cdot \cdot \cdot 2$ $\cdot \cdot$
 $\cdot \times \cdot \cdot \cdot$
 -4×-2 $\cdot \times$
 $\cdot \cdot \cdot 2$ $\cdot \cdot$
 $\cdot \cdot \cdot 2$ $\cdot \cdot \cdot$
 $\cdot \cdot \cdot -4$ $\cdot \cdot \cdot$

(4) X = {(x, y), x and y integers: -2 < y < 2 and -4 < X < -2 }
[Compare this description of set X with the description of Set A at the top of this page.]

Record your results on your work sheet.

Do these exercises on your work sheet.

Rule: $(x, y) \rightarrow (y, x)$

After making one move from each point in set A, the result in set X where

$$X = \{(2, 7), (3, 7), (4, 7)\}.$$

(1) A = { ?, ?, ? }
(2) X = { (x, y), x and y integers: 1 < x < 5 and ? }
(3) A = { (x, y), x and y integers: ? and x = 7 }

Turn to PAGE 32.

[from page 30]

[Page 31]

. . . ÷ · , **.** . . e e e

.

Rule: $(x, y) \rightarrow (y, x)$

After making one move from each point in set A, the result is set X where

 $X = \{(2, 7), (3, 7), (4, 7)\}.$

(1) $A = \{ (7,2), (7,3), (7,4) \}$

- (2) $X = \{(x, y), x \text{ and } y \text{ integers: } 1 \le x \le 5 \text{ and } y = 7 \}$
- (3) A = {(x, y), x and y integers: | < y < 5 and x = 7}

Record your results on your work sheet.

* * *

Do this exercise on your work sheet.

A = {(x, y), x and y integers: 2 < x < 5 and -3 < y < 0} Rule: (x, y) \rightarrow (y, x)

If you make one move from each point in set A, and call the new set 'X', then $X = \{(x, y), x \text{ and } y \text{ integers: } ? and ? }$.

[Try to complete the description of set X without listing the members of either set A or set X.]

Turn to PAGE 33.

[from page 31]

[Page 32]

Check your answors.

A = {(x, y), x and y integers: $2 \le x \le 5$ and $-3 \le y \le 0$ } Rule: $(x, y) \rightarrow (y, x)$

If you make one move from each point in set A, and call the new set 'X', then

 $X = \{(x, y), x \text{ and } y \text{ integers: } 2 < y < 5 \text{ and } -3 < X < 0 \},$

[Of course, 'X = {x, y}, x and y integers: -3 < X < O and 2 < Y < 5 }' is also correct.]

Record your results on your work sheet,

朱 朱 朱

If you were able to complete the description of set X above without listing the inclubers of set A or set X, you have probably made an interesting discovery. We hope you have discovered that when you are given a brace-notation description of a set of points and you make one move from each point in the set according to the rule $(x, y) \rightarrow (y, x)^{2}$, yo can easily get a brace-notation description of the new set. You simply copy the description of the given set except that after the ':' you substitute the pronumeral which indicates second components for the pronumeral which indicates first components, and you substitute the first component pronumeral for the second component pronumeral. The exercise answered at the top of this page is a good example.

Turn to PAGE 34.

[from page 32]

[Page 33]

20 – 21 – 21

[Page 34]

Now, let's see if you can apply the discovery mentioned on the previous page.

Do these exercises on your work sheet.

A = {(x, y), x and y integers: y = 2 and -3 < x < 3} Rule: (x, y) \rightarrow (y, x)

Make one move from each point in set A. Call the new set 'X'.

- (1) Give a brace description of set X. That is, complete this:
 X = {(x, y), x and y integers: _____ and ____ ? ___}
- (2) Plot the points in each set on the same diagram and indicate the moves.

Turn to PAGE 35.

[from page 33]

[Page 34]

and the second secon

r tar

[Page 35]

Check your answers.

A = {(x, y), x and y integers: y = 2 and -3 < x < 3}

Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Call the new set 'X'.

(1) $X = \{(x, y), x \text{ and } y \text{ integers: } X = \mathcal{L} \text{ and } -3 < y < 3 \}$

Remember to look for a "pattern" on the picture.

Record your results on your work sheet.

Do these exercises on your work sheet.

A = {(x, y), x and y integers:
$$y = x - 3$$
}
Rule: (x, y) \rightarrow (y, x)

Make one move from each point in set A. Call the new set 'X'.

- (1) Give a brace description of set X.
- (2) Plot the points in each set on the same diagram and indicate the moves.

Turn to PAGE 36.

[from page 34]

[Page 35]

[Page 36]

Check your answers.

diagram with set A and indicate the moves. [Try to do this exercise first, but if you have trouble, do Exercises
 (2) and (3) first.]

(2) A = { _____ } [List the members of set A.]

(3) X = { _____ } [List the members of set X.]

Turn to PAGE 37.

Set A

• •

[Page 37]

Check your answers.

Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in Set A. Call the new set 'X'.

Do these exercises on your work sheet.

A: the set pictured at right Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Call the new set 'X'.

- Plot the points in set X on the same diagram with set A and indicate the moves.
- (2) A = { ? } [List set A.]
- (3) X = { ? } [List set X.]
- (4) Draw a dashed line through the dots corresponding to the points in set D, where

 $D = \{(x, y), x \text{ and } y \text{ integers: } y = x\}.$

Turn to PAGE 38.

[from page 36]

[Page 37]

Set A

Check your answers.

Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Call the new set 'X'.

Record your results on your work sheet.

The exercises above should help you see the pattern involved in making a move according to the rule:

$$(x, y) \rightarrow (y, x)$$

Turn to PAGE 39.

[from page 37]

[Page 38]

- _ _ 4

Notice the dot with the loop around it in the picture below. If you make one move from this point according to the rule:

$$(x, y) \rightarrow (y, x)$$

where do you think you would end up?

Circle the answer on your work sheet.

[from page 38]

[Page 39]

States and the second s

the addition of the second states of the second sta

`v;

-Start

(3)

(2)

Ж

 \odot

Check your answer.

Rule: $(x, y) \rightarrow (y, x)$

* * *

(1)

Ж

Notice the dot with the loop around it in the picture below. If you make one move from this point according to the rule:

$$(x, y) \rightarrow (y, x)$$

where do you think you would end up?

Point (1)? Point (2)? Point (3)?

Circle the answer on your work sheet.

Turn to PAGE 41.

[from page 39]

[Page 40]

All i de la companya de la

 $a_{1,1}^{(1)} = a_{1,2}^{(1)} a_{2,3}^{(1)} = a_{1,2}^{(1)} = a_{1$

a las so interes

(VE - , Mar -)

Check your answer.

Rule: $(x, y) \rightarrow (y, x)$

Record your result on your work sheet.

Which of the marked points (1), (2), or (3) would be the starting point if you made one move according to the rule:

and ended at the dot with the cross-mark through it?

Circle the answer on your work sheet.

Turn to PAGE 42.

[from page 40]

: - 1, [

in a stratistic fi

e en ante en ante en ante de la composition en en ante En la composition de l

The second second to be a second to be a second

and the second second

[Page 42]

* * *

If you make one move from the point labled as the <u>start</u> point according to the rule:

 $(x, y) \rightarrow (y, x)$

where do you finish?

Point (1)? Point (2)? Point (3)?

Circle the answer on your work sheet.

Turn to PAGE 43.

[from page 41]

[Page 42]

Record your result on your work sheet.

Use your eye and mark a dot on the picture on your work sheet to show where you finish if you make one move from the point labeled Start according to the rule:

$$(x, y) \rightarrow (y, x)$$

Turn to PAGE 44.

[from page 42]

[Page 43]

[Page 44]

Check your answer.

Rule: $(x, y) \rightarrow (y, x)$

You are right if your mark would be within the boundry indicated.

Record your result on your work sheet.

Use your eye and mark a dot on the picture on your work sheet to show where you finish if you make one move from the <u>start</u> point according to the rule:

 $(x, y) \rightarrow (y, x)$

[Hint. A "move" might not move you at all.]

Turn to PAGE 45.

[from page 43]

[Page 44]

Record your result on your work sheet.

* * *

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule:

$$(x, y) \rightarrow (y, x)$$

[Page 45]

n de la companya de Nome de la companya de

a set the theory of the

2.

Marigues in the two ways of the structure of gravity and the structure was an subject of the state of the subject of the structure of the subject of the state of the subject state.

e se se

A Mit A sea C

Record your result on your work sheet.

* * *

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule:

 $(x, y) \rightarrow (y, x)$

[from page 45]

[Page 46]

e de la companya de l N

al the last of a second of the last of a second of the last of the

. a

Record your result on your work sheet.

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule:

• • • • •

(*,) * (*) (*)

а — _а

Check your answer.

Rule: $(x, y) \rightarrow (y, x)$

Record your result on your work sheet.

* * *

 \odot

Х

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule:

 $(x, y) \rightarrow (y, x)$

[from page 47]

[Page 48]

and the second second

net en la declara de la companya de La declara de la companya de la comp

, ··· }

Record your result on your work sheet.

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule:

tet geboording op op de service de la se Antonio de la service de la service de la service geboorde de la service de la service de la service de la servi Estada service de la service de

•

Record your result on your work sheet.

Do this exercise on your work sheet.

Set A is the set pictured. Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Use cross-marks to indicate the new set.

Turn to PAGE 51.

e Menero de afri e se

• (•)

Check your answer.

Rule: $(x, y) \rightarrow (y, x)$

Record your result on your work sheet.

Do this exercise on your work sheet.

Set A is the set pictured. Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Use cross-marks to indicate the new set.

Turn to PAGE 52.

[from page 50]

And the second sec

Check your answer.

Set A is the set pictured.

Record your result on your work sheet.

Do this exercise on your work sheet.

Set A: see picture Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Use cross-marks to indicate the new set.

Turn to PAGE 53.

[from page 51]

· <u>· · · · · · ·</u>

- · · · · ·
- $a_{ij} = e_{ij} + e$
- - . .

- ---

- • •
- . .
- 2 F.
- 2°
 - •

. .

• • • • • • •

2

[Page 53]

Check your answer.

Record your result on your work sheet.

$$* * *$$

Do this exercise on your work sheet.

Set A: see picture Rule: $(x, y) \rightarrow (y, x)$

Make one move from each point in set A. Use cross-marks to indicate the new set.

Turn to PAGE 54.

0. **t**

11 I.

1

Cont

di.

Record your results on your work sheet.

 Suppose that for each set pictured below, one move was made from each point in the set according to the rule:

$$(x, y) - (y, x)$$

For which of these sets would a move from any point in the set take you to another

point in the set?

Rule: (x, y) - (y, x)

0

Ò.

0

Turn to PAGE 56.

As you have probably seen from the preceding exercises, when you make one move from a point according to the rule:

$$(x, y) \rightarrow (y, x)$$

you go straight toward the graph of the line through set D, where

$$D = \{(x, y), x \text{ and } y \text{ integers: } x = y\}$$

and beyond it. The new point is the same distance from the line as the starting point is.

[from page 55]

[Page 56]

en de la companya de la comp La companya de la comp

 $\left(1 \right)^{2} = \left(1 + 1 \right)^{2}$

ale in

Do these exercises on your work sheet.

$$A = \{(2, 3), (3, 4)\}$$
$$B = \{(2, 4), (3, 4), (4, 4)\}$$
Rule: (x, y) \rightarrow (y, x)

- (1) $A \cup B = \{ _ ? _ \}$
- (2) Make one move from each point in set A. Call the new set 'X'. Then X = { ______}.
- (3) Make one move from each point in set B. Call the new set 'Y'. Then Y = { _____}}.
- (4) If one move is made from each point in set A ∪ B then the new set is { _____} }.

(5) $X \cup Y = \{ _ ? _ \}$

Turn to PAGE 58.

and and a second s

TV 1997 - Marine Constanting Const

.

Check your answers.

$$A = \{(2, 3), (3, 4)\}$$
$$B = \{(2, 4), (3, 4), (4, 4)\}$$
Rule: (x, y) - (y, x)

- (1) $A \cup B = \{ (2,3), (3,4), (2,4), (4,4) \}.$
- (2) Make one move from each point in set A. Call the new set 'X'. Then $X = \{(3,2), (4,3)\}.$
- (3) Make one move from each point in set B. Call the new set 'Y'. Then Y = { (4, 2), (4, 3), (4, 4) }.
- (4) If one move is made from each point in set $A \cup B$ then the new set is $\{(3,2), (4,3), (4,2), (4,4)\}$.
- (5) $X \cup Y = \{ (3,2), (4,3), (4,2), (4,4) \}$ [Compare the answers to Exercises (4) and (5).]

Do these exercises on your work sheet,

 $A = \{(1, 1), (2, 2), (-3, -1)\}$ $B = \{(-1, -2), (2, 2), (-3, -1)\}$ Rule: $(x, y) \rightarrow (2x + 1, 3y)$

- (1) $A \cup B = \{ _ ? _ \}$
- (2) Make <u>2 moves</u> from each point in set A. Call the new set 'X'. Then X = { _____}.
- (3) Make <u>2 moves</u> from each point in set B. Call the new set 'Y'. Then Y = { _____}.
- (4) If <u>2 moves</u> are made from each point in set $A \cup B$ then the new set is { _____}}. [See Exercise (1) for $A \cup B$.]
- (5) $X \cup Y = \{ _ ? _ \}$

Turn to PAGE 59.

[from page 57]

[Page 58]

the second second second

1 March 19

Check your answers.

$$A = \{(1, 1), (2, 2), (-3, -1)\}$$

B = $\{(-1, -2), (2, 2), (-3, -1)\}$
Rule: $(x, y) \rightarrow (2x + 1, 3y)$

(1)
$$A \cup B = \{ (1,1), (2,2), (-3,-1), (-1,-2) \}$$

- (2) Make 2 moves from each point in set A. Call the new set 'X'. Then X = { (7, 9), (11, 18), (-9, -9) }.
- (3) Make 2 moves from each point in set B. Call the new set 'Y'. Then $Y = \{ (-1, -18), (11, 18), (-9, -9) \}.$
- (4) If 2 moves are made from each point in set $A \cup B$ then the new set is $\{(7,9), (/1, 18), (-9, -9), (-1, -18)\}$.
- (5) $X \cup Y = \{ (7,9), (11,18), (-9,-9), (-1,-18) \}.$

Record your results on your work sheet.

Do this exercise on your work sheet.

Suppose that A and B are sets of points in the number plane lattice such that

$$A \cup B = \{(1, 3), (2, 4), (-7, -3), (-5, -4)\}.$$

Rule: $(x, y) \rightarrow (x + 3, 2y - 1)$

Make $3 \mod 5$ from each point in set A. Call the new set 'X'. Make $3 \mod 5$ from each point in set B. Call the new set 'Y'.

Then, $X \cup Y = 2$.

Turn to PAGE 60.

[from page 58]

[Page 59]

[Page 60]

Check your answer.

Suppose that A and B are sets of points in the number plane lattice such that

$$A \cup B = \{(1, 3), (2, 4), (-7, -3), (-5, -4)\}.$$

Rule: $(x, y) \rightarrow (x + 3, 2y - 1)$

Make 3 moves from each point in set A. Call the new set 'X'. Make 3 moves from each point in set B. Call the new set 'Y'. Then, $X \cup Y = \{(10,17), (11,25), (2,-31), (4,-39)\}$.

Record your result on your work sheet.

* * *

Suppose that A and B are sets of points in the number plane lattice and that one of the points in $A \cup B$ is (5, 11).

Rule: $(x, y) \rightarrow (2x + 1, y - 3)$

Make 2 moves from each point in set A. Call the new set 'X'. Make 2 moves from each point in set B. Call the new set 'Y'.

Answer this question your work sheet.

What is one of the points in $X \cup Y$?

Turn to PAGE 61.

[from page 59]

[Page 60]

se se de n Anno anti-Anno anti-

.

N 00

[Page 61]

Check your answer.

One of the points in $A \cup B$ is (5, 11).

Rule: $(x, y) \rightarrow (2x + 1, y - 3)$

Make 2 moves from each point in set A. Call the new set 'X'. Make 2 moves from each point in set B. Call the new set 'Y'. Then one of the points in $X \cup Y$ is (23, 5).

Record your result on your work sheet.

 $z_i^t = z_i^t = z_i^t x$

Suppose that A and B are sets of points in the number plane lattice and R is a moving rule.

From each point in set A, make n moves according to rule R. Let X be the new set.

From each point in set B, make n moves according to rule R. Let Y be the new set.

It follows that n moves according to rule R from any point in $A \cup B$ takes you to a point in _____?

Complete this last sentence on your work sheet.

Turn to PAGE 62.

[from page 60]

[Page 61]

· · ·

1 - 1 - 1 - 1

[Page 62]

Check your answer.

Suppose that A and B are sets of points in the number plane lattice and R is a moving rule.

From each point in set A, make n moves according to rule R. Let X be the new set.

From each point in set B, make n moves according to rule R. Let Y be the new set.

It follows that n moves according to rule R from any point in $A \cup B$ takes you to a point in $\underline{X \cup Y}$.

Record your result on your work sheet.

Suppose that A and B are sets of points in the number plane lattice and that (-1, 2) and (3, -2) belong to A \cup B.

Rule:
$$(x, y) \rightarrow (x + 3, 2y - 1)$$

Make $2 \mod 5$ from each point in set A. Call the new set 'X'. Make $2 \mod 5$ from each point in set B. Call the new set 'Y'. It follows that two points in X \cup Y are $2 \mod 7$. (1) (2)

Complete this last sentence on your work sheet.

Turn to PAGE 63.

[from page 61]

[Page 62]

[Page 63]

Check your answers.

(-1, 2) and (3, -2) belong to A \cup B.

Rule: $(x, y) \rightarrow (x + 3, 2y - 1)$

Make 2 moves from each point in set A. Call the new set 'X'. Make 2 moves from each point in set B. Call the new set 'Y'. It follows that two points in $X \cup Y$ are $\frac{(5,5)}{(1)}$ and $\frac{(9,-11)}{(2)}$.

Record your results on your work sheet.

Do this exercise on your work sheet.

Suppose that A and B are sets of points in the number plane lattice such that

 $A \cup B = \{(4, 3), (4, 4)\}.$ Rule: $(x, y) \rightarrow (x + 5, 2y - 1)$

Make 2 moves from each point in set A. Call the new set 'X'. Make 2 moves from each point in set B. Call the new set 'Y'. It follows that $X \cup Y = \underline{?}$.

Turn to PAGE 64.

[from page 62]

[Page 64]

Check your answer.

$$A \cup B = \{(4, 3), (4, 4)\}$$

Rule: (x, y) \rightarrow (x + 5, 2y - 1)

Make 2 moves from each point in set A. Call the new set 'X'. Make 2 moves from each point in set B. Call the new set 'Y'. It follows that $X \cup Y = \frac{\left\{ \left(14,9 \right), \left(14,13 \right) \right\}}{\left\{ \left(14,9 \right), \left(14,13 \right) \right\}}$.

Record your result on your work sheet.

Do this exercise on your work sheet.

Suppose that A and B are sets of points in the number plane lattice such that

 $A \cup B = \{(a, b), (e, f)\},\$

[Of course, a, b, e, and f are integers.]

Rule: $(x, y) \rightarrow (x + 3, 2y + 1)$

Make 2 moves from each point in set A. Call the new set 'X'. Make 2 moves from each point in set B. Call the new set 'Y'.

Then, $X \cup Y =$ ___?

Turn to PAGE 65.

[from page 63]

[Page 64]

and a start of the s A start of the start of

set a set of the set o

Check your answer.

Suppose that A and B are sets of points in the number plane lattice such that

$$A \cup B = \{(a, b), (e, f)\},\$$

where a, b, e, and f are integers.

Rule:
$$(x, y) \rightarrow (x + 3, 2y + 1)$$

Make 2 moves from each point in set A. Call the new set 'X'. Make 2 moves from each point in set B. Call the new set 'Y'. Then, $X \cup Y = \{(\alpha + 6, 4b + 3), (e+6, 4f + 3)\}.$

Record your result on your work sheet.

Turn to PAGE 66.

[from page 64]

,

and the state of t

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} + \frac{\partial}$$

$$e = 1 + 1 + 1$$

يوني (10 من من 10 من المربي (10 من 10 المربي (10 من 10 من 10

[Page 66]

Do these exercises on your work sheet.

Rule:
$$(m, n) \rightarrow (m, n + 1)$$

A = {(x, y), x and y integers: x = 3}

Make one move from each point in set A. Call the new set 'X'.

(1)	Is set A finite?	Yes or no?
(2)	Is set X finite?	Yes or no?
(3)	Is (3, 7) in set A?	Yes or no?
(4)	Is (3, 8) in set X?	Yes or no?
(5)	Is (3, 92) in set X?	Yes or no?
(6)	Is (3, -4) in set X?	Yes or no?
(7)	Find a point in set A which is	not in set X.
(8)	Find a point in set X which is	not in set A.
(9)	Give a brace-notation descrip	tion of set X.

Turn to PAGE 67.

- A.S.

 $(x_{1}^{2}, x_{2}^{2}) = -\epsilon_{1} \epsilon_{2} \epsilon_$

a de la de la composition de l

[Page 67]

Check your answers.

Rule: $(m, n) \rightarrow (m, n + 1)$ $A = \{(x, y), x \text{ and } y \text{ integers: } x = 3\}$ Make one move from each point in set A. Call the new set 'X'. (1) Is set A finite? <u>no</u> (2) Is set X finite? <u>no</u> (3) Is (3, 7) in set A? <u>yes</u> (4) Is (3, 8) in set X? <u>yes</u> (5) Is (3, 92) in set X? <u>yes</u> (6) Is (3, -4) in set X? <u>yes</u> (7) [There is <u>no</u> point in set A which is not in set X.] (8) [There is <u>no</u> point in set X which is not in set A.] (9) $X = \{(x, y), x \text{ and } y \text{ integers: } \chi = 3 \}$

Record your results on your work sheet.

* * *

Do these exercises on your work sheet.

Rule: $(m, n) \rightarrow (m + 3, n)$ A = {(x, y), x and y integers: y = 5}

Make one move from each point in set A. Call the new set 'X'.

(1) Is set A finite? Yes or no?

(2) Is set X finite? Yes or no?

(3) Give a brace-notation description of set X.

Turn to PAGE <u>68</u>.

[from page 66]

[Page 67]

2

·

 $\frac{1}{2}$

[Page 68]

Check your answers.

Rule: $(m, n) \rightarrow (m + 3, n)$ A = {(x, y), x and y integers: y = 5}

Make one move from each point in set A. Call the new set 'X'.

- (1) Is set A finite? no
- (2) Is set X finite? <u>no</u>
- (3) $X = \{(x, y), x \text{ and } y \text{ integers: } y = 5 \}$

Record your results on your work sheet.

素 素 茶

Do these exercises on your work sheet.

Rule: $(m, n) \rightarrow (m + 2, n + 1)$ A = {(x, y), x and y integers: x = 3}

Make one move from each point in set A. Call the new set 'X'.

- (1) Is set A finite?
- (2) Is set X finite?
- (3) Plot the points in each set on the same diagram and indicate the moves. [Remember, loops for A, cross-marks for X, small arrows.]
- (4) Give a brace-notation description of set X.

Turn to PAGE 69.

[from page 67]

[Page 68]

[Part 43]

[Page 69]

Check your answers.

Rule:
$$(m, n) \rightarrow (m + 2, n + 1)$$

A = {(x, y), x and y integers: x = 3}

Make one move from each point in set A. Call the new set 'X'.

(1) Is set A finite? <u>Mo</u>		•	•	
(2) Is set X finite? MO	• 4	•	•	0 · × ·
	• <u>8</u>	٠	•	0 · ,X ·
(3)	- 2	•	•	⊙ : ,X ·
(4) $X = \{(x, y), x \text{ and } y \text{ integers: } \chi = 5 \}$	•	ø	•	0 · x ·
				······································
	4	0	2	$0^{4}, X^{0}$
		•	٠	⊙ · ,X ·
		0	٠	• X _r · O
	-4	9	0	• X • ·
Record your results on your work sheet.		c	۰	0 · X ·
record your results on your work sheet.				

 $S_i^i \subset S_i^i \subset S_i^i \subset$

Do this exercise on your work sheet.

Rule:
$$(m, n) \rightarrow (m + 2, n + 1)$$

A = {(x, y), x and y integers: x = 6}

Make three moves from each point in set A. Call the new set 'X'.

Describe set X, using brace-notation.

Turn to PAGE 70.

[from page 68]

[Page 69]

[Page 70]

Check your answer.

Rule: $(m, n) \rightarrow (m + 2, n + 1)$ A = {(x, y), x and y integers: x = 6}

Make 3 moves from each point in set A. Call the new set 'X'.

X = {(x, y), x and y integers: $\chi = /2$ } [After one move from each point in set A, the set selector of the description of the new set would be 'x = 8'. After 2 moves it would be 'x = 10'. So, after 3 moves it would be 'x = 12'.]

Record your result on your work sheet.

Do these exercises on your work sheet.

Rule:
$$(m, n) \rightarrow (m + 1, n + 1)$$

A = {(x, y), x and y integers: $x + y = y + x$ }

Make one move from each point in set A. Call the new set 'X'. Write 'true' in the blank if the statement is true. Write 'false' in the blank if the statement is false.

- (1) Set A is the number plane lattice itself.
- (2) Set A is infinite.
- (3) Set X is the number plane lattice itself.
- (4) Set X is infinite.
- (5) Give a brace-notation description of set X.

Turn to PAGE 71.

[from page 69]

[Page 70]

· · · · · ·

Check your answers.

Rule: $(m, n) \rightarrow (m + 1, n + 1)$ A = {(x, y), x and y integers: x + y = y + x}

Make one move from each point in set A. Call the new set 'X'.

(1) Set A is the number plane lattice itself. true

- (2) Set A is infinite. true
- (3) Set X is the number plane lattice itself. true
- (4) Set X is infinite. true
- (5) [Any description which names the set of all ordered pairs of integers is correct.]

Record your results on your work sheet.

李 朱 朱

For each point listed below in Exercises (1) - (6), write 'yes' if the point belongs to set A, and write 'no' if the point does not belong to set A, where

A = {(x, y), x and y integers:
$$x^{2} + y^{2} = 9$$
 }.

Do these exercises on your work sheet.

- (1) (3, 0) (2) (0, -3) (3) (2, 7)
- (4) (-3, 0) (5) (5, 4) (6) (0, 3)

Turn to PAGE 72.

[from page 70]

[Page 71]

4-

e de seconda de second La constancia de seconda de second

in the second second

Being and the space of the spac

r. yr

Check your answers.

A = {(x, y), x and y integers: $x^2 + y^2 = 9$ }

(1) (3, 0) yes (2) (0, -3) yes (3) (2, 7) no (4) (-3, 0) yes (5) (5, 4) no (6) (0, 3) yes (7) n(A) = 44

Record your results on your work sheet.

For each point listed below in Exercises (1) - (6), write 'yes' if the point belongs to set A, and write 'no' if the point does not belong to set A, where

A = {(x, y), x and y integers:
$$x^2 + y^2 = 25$$
 }.

Do these exercises on your work sheet.

- (1) (-5, 0) (2) (3, -4) (3) (25, 0)
- (4) (-4, -3) (5) (0, 5) (6) (16, 9)
- (7) Plot <u>all</u> of the points in set A. There are a total of 12 points in set A.

Turn to PAGE 73.

[from page 71]

Check your answers.

A = {(x, y), x and y integers: $x^{2} + y^{2} = 25$ }

(1)	(-5,	, 0)	ye.			(2	;)	(3,	-4)	1	fes	(3) (25, 0) <u>no</u>
(4)	(-4,	, –	3)	,ye	s		(5	5)	(0,	5)_	14		(6) (16, 9) <u>no</u>
(7)	•	٠	•	٠	•	- 6	÷	٠	¢	٠	3	J	
	۵ د	ı	•	e	•	• ()	¢	r	c	ç.	۰	•	
	•	v	•	\odot		- 4		•	\odot		÷	0	
	•	•	\odot	•	•	8 1 5 1 1	ъ	0	5	\odot	3	2	
	•	•	ه	•	•	• 2	۰		,	0	ø	c	
	9	•	\$	•	,	1 1 1 1	-3	¢	2	•	•	•	
	+	-@-											
		-				1 1 2 4							
	•	•	•	•	o	- 2	٥	¢	•	¢	Ŷ	•	
	•	•	\odot	c	,	2		n	^	Ø	e	6	
	•	۰	e	\odot	•	- 4	٩	2	\odot	د	v	2	Record your results on
	L	ړ	•	c	•	· Ó	٥	8	•	•	٠	•	your work sheet.
	•	¢	э	۰	۰	-6	•	e	u	٥		0	
						1			*	>¦<	>¦<		

Look at Answer (7) above. Notice that the points in set A are arranged on the circle with center at (0, 0) and radius 5.

Do these exercises on your work sheet.

A = {(x, y), x and y integers: $x^2 + y^2 = 25$ }

Rule: $(m, n) \rightarrow (m + 2, n)$

Make one move from each point in set A. Call the new set 'X'.

- Plot the points in each set on the same diagram and indicate the moves. [Loops for A, cross-marks for X.]
- (2) Which of the sets described below is set X?

{(x, y), x and y integers: $(x-2)^2 + y^2 = 25$ }

- {(x, y), x and y integers: $(x + 2)^2 + y^2 = 25$ }
- (3) The points in set X are arranged on the circle with center at _____ and radius _____

Turn to PAGE <u>74</u>.

[from page 72]

[Page 73]

2 n wana y •• 0° * • * ۱. e

[Page 74]

Check your answers.

A = {(x, y), x and y integers:
$$x^2 + y^2 = 25$$
}
Rule: (m, n) \rightarrow (m + 2, n)

Make one move from each point in set A. Call the new set 'X'.

(1)
$$(--+)\times (-+) \times (-+$$

(2)
$$X = \{(x, y), x \text{ and } y \text{ integers:} (x-2)^2 + y^2 = 25\}$$

(3) The points in set X are arranged on the circle with center at $\frac{(2,0)}{(a)}$ and radius $\frac{5}{(b)}$.

Record your results on your work sheet.

Do these exercises on your work sheet.

A = {(x, y), x and y integers:
$$x^{2} + y^{2} = 25$$
}

Rule: (m, n) - (m + 2, n - 3)

Make two moves from each point in set A. Call the new set 'X'.

- (1) Plot the points in each set on the same diagram.
- (2) The points in set X are arranged on the circle with center at ______ and radius _____.

$$(3) X = \{(x, y), x \text{ and } y \text{ integers: } ? \}$$

Turn to PAGE 75.

[from page 73]

[Page 74]

[Page 75]

Check your answers.

A = {(x, y), x and y integers: $x^{2} + y^{2} = 25$ }

Rule: $(m, n) \rightarrow (m + 2, n - 3)$

Make two moves from each point in set A. Call the new set 'X'.

(1)	•	•	•	•	•	• 6	•	•	•	•	•	•	٠	•	٠	•
	•	٠	•	•	•	Ð	•	•	•	•	•	•	•	•	•	9
	•	•	•	\odot	•	-	٠	•	0	•	•	•	•	•	•	•
	•	•	\odot	•	•		•	•	•	\odot	•	•	•	•	•	•
	•	•	•	•	•	• 2	•	•	•	•	•	•	•	٠	•	•
	•	•	•		•	•	•	•	٠	•		•	•	•	•	•
		-@-			*						-@-				*	* ** * * =
	6	•	•	•	-,2	* * *	*	2	٠	×		6	•	•	•	10
	•	•	•	•	•	2	\times	•	•	•	•	•	\times	•	•	•
	•	•	0	•	•	·×	•	•	•	\odot	•	•	•	\times	•	•
		•	•			•								•		
		•	•	•	•	• •	•	•	•	•	•	•	•	•		
	•	•	•	•	•	\times 6	•	•	•	•	•	•	•	•	\times	•
	•	•	•	•		•	•	•	•	•	٠	•	•	•	•	•
	•	•	•	•		•		•	•	•		•	•	•	•	
	•	•	•	•	•	· ×	•	•	•	•	•	•	•	\times	•	•
	•		•	•	•	-10	Х	•	•		•	•	\times	•	•	
	•	•	•	•	•					Х						•
(2)	m 1.					- + V -		_				4.7				

- (2) The points in set X are arranged on the circle with center at $\frac{(4,-6)}{(a)}$ and radius $\frac{5}{(b)}$.
- *(3) X = {(x, y), x and y integers: $(\chi 4)^{2} + (\gamma + 6)^{2} = 25$ }

If you tried Exercise (3) and got it right, turn to PAGE 76.

Otherwise, this is the end of Part 43. Put your work sheet under the front cover of this booklet, and return it to your teacher.

[from page 74]

[Page 76]

Do this exercise on your work sheet.

A = {(x, y), x and y integers: $2x^2 + 7xy + 6y^2 = 0$ } Rule: (x, y) \rightarrow (x + a, y - b), a and b are integers

Make n moves from each point in set A. Call the new set 'X'.

Write a brace-notation description of set X.

Turn to PAGE 77.

· · · · ·

 $\langle p \rangle = e^{-2} + e^{-2} + e^{-2}$

.

Check your answer.

A = {(x, y), x and y integers: $2x^2 + 7xy + 6y^2 = 0$ }

Rule:
$$(x, y) \rightarrow (x + a, y - b)$$
, a and b integers

Make n moves from each point in set A. Call the new set 'X'.

$$X = \{(x, y), x \text{ and } y \text{ integers: } 2(x-na)^2 + 7(x-na)(y+nb) + 6(y+nb)^2 = 0\}$$

Put your work sheet under the front cover of this booklet, and return it to your teacher.

-

PA	R	T	4	3
----	---	---	---	---

а. К

> Name _____ School _____ Date _____

	Answers	Result Check
Pag	ge 3	Page 3
(1)	First jump: From (4, 1) to (3, 2)	1
	Second jump: From (3, 2) to (,)	
(2)	Finish: (3) \cdot	2 3 OK
Pag	ge 4	Page 4
(1)	First jump: From (0, 1) to (3, 1)	1
	Second jump: From (3, 1) to (,)	
(2)	Third jump: From (,) to (,)	2
(3)	Finish:	3
(4)	· · · 2	4 OK
	-2 2 4 6 8 10 -2 -2 · · · · · · · · · · · · · · · · ·	

Name _____

Part 43

					Aı	nsw	ers	5							 		Result	Che	eck
Pag	<u>ge 6</u>																Page 6	2	
(1)	First	mov	re t	ake	es y	ou	to	(5,	0)	•								1	
	Second	1 m	ove	tal	kes	yo	u to	o (_		., -).							
(2)	Third	mo	ve t	ake	es 1	<i>y</i> ou	to	(,).							2	
					,			`	'										
(3)	Finish	.: -																3	
(4)	• 4	•	•	•	•	•	•	٠	•	•	•							4	OK
	• 2	•	•	•	•	•	•	•	•	•	•								
	. 2	•	•	•	•	•	•	•	•	•	•								
			2		 A			•-	8	•	10								
	•	•	•	•	•	•	•	•	•	•	•								
	2	•	•	•	•	•	•	•	•	•	•								
		•	•	•		•		•	•										
	•	•	•	•	•		•	•	•	•	•								
	•-6	•	•	•	•	•	•	•	•	•	•								
	• •	•	•	•	•	•	•	•	•	•	•								
Pag	ge 7																Page 7	7	
	Finish	:				(2))		8					•				- 1 2	
(-7		-				(-)	, 	•		•	•	•	•	•					OK
								•	6	•	•	•	•	•		ł			
								•		•	•	•	•	•					
								•	4	•	•	•	•	•					
									2	•	•	•		•					
								•		•	•	•	•	•					
								~ n . 4		*-	2	•-	4						
								•	1	•	•	•	•	•					

a 19 9 and the second second

a second a second s a second seco · · · · · · · · · · · · and the second and the second second second second and a second and the second the second s and the second second

 $(\mathbf{r}_{i}, \mathbf{r}_{i}) \in \mathcal{M}_{i}$ · · · · · · · · · · · · · · • • • • • · · · · · · · · · · · · ·

1. A. . . .

a de la companya de l

Name _____

-3-

Part 43

Answers	Result Check
Page 8	Page 8
The final point, or the finish is	√ ок
Page 9	Page 9
(1) First move takes you to (1, 0)	1
Second move takes you to (,).	
(2) Third move takes you to (,).	2
(3) Final point:	3
(4) • • • • • • • • • • • • • • •	4
	OK
-10 -8 -6 -4 -2 2	
Page 10	Page 10
The final point is	. \ ОК
Page 11	Page 11
(1) First move takes you to (4, 5).	1
Second move takes you to (16,).	
(2) Third move takes you to (,).	2
(3) So, the final point is (,).	3 ОК

In the second se

and the second second

santing of the (2)

		•	,		•		•		•	•	•			•	1.5
	e -		14						•			•	•		
								•	•	•		•		•	
			• 1,	•		•			t.						
		e -	•										•		
• •	e e	•	•		ŚŚ				4 4	*	5		-	•	
		,		÷			•	•		•			•	•	
		•	•		•			•	•		•	•		(\mathbf{r}_{i})	
								,							

Name _____

Part 43

Answers	Result Check
Page 12	Page 12
(1) First move takes you to (1, 4).	1
(2) Second move takes you to	2
(3) Third move takes you to	3
(4) The final point after 4 moves would be	4
(5) The final point after 20 moves would be	5
(6) · · [Show first 3 moves only.]	6 OK
2	
• • • •	
-2 2	
• 2	
Page 13	Page 13
The starting point was	. 🗸 ОК
Page 14	Page 14
The starting point was	√ ОК
Page 15	Page 15
(1) After 2 moves: (1, 8)	1
After 1 move: (3,)	
(2) Start: (,)	2 OK

-					
	1	×	ť		
			•		
			2	· **	
	<u>, C</u>				
	- '	•	٢.		

to the source of the source

Ar) (_____r rincik)

Name _____

Part 43

Page 16 Page 16 (1) After 4 moves: $(-6, 3)$ After 3 moves: $(-3,)$ 1 (2) After 2 moves: $(_,)$ 2 (3) After 1 move: $(_,)$ 3 (4) Start: $(_,)$ 4 (5)	Answers	Result Check							
After 3 moves: $(-3, _)$ 2 (2) After 2 moves: $(_, _)$ 3 (4) Start: $(_, _)$ 4 (5) 4:	Page 16	Page 16							
(2) After 2 moves: $(_ , _)$ 2 (3) After 1 move: $(_ , _)$ 3 (4) Start: $(_ , _)$ 4 (5) 4:	(1) After 4 moves: (-6, 3)	1							
(a) After 1 move: $(_,_)$ 3 (4) Start: $(_,_)$ 4 (5)	After 3 moves: (-3,)								
(4) Start: $(_,_]$ (5)	(2) After 2 moves: (,)	2							
(a) Start: (,) (b) Start: (,) (c) Start: (,) (b) Start: (,) (c) Start: (,) (c) Start: (,) (c) After 1 move: (,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) After 1 move: (5,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) After 1 move: (5,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) Start: (,) (c) After 1 move: (5,) (c) Start: (,) (c) Start: (,) (c) After 1 move: (5,) (c) Start: (,) (c) Start: (,) (c) After 1 move: (,) (c) Start: (,) (c) Start: (,) (c) After 1 move: (,) (c) Start: (,) (c) Start: (,)	(3) After 1 move: (,)	3							
Image: 17 Image: 17 Image: 17 (1) After 3 moves: (15, -3) Image: 17 After 2 moves: (7,) 2 (2) After 1 move: (,) 2 (3) Start: (,) 3 OK Page 18 1 (1) After 2 moves: (11, 3) 3 After 1 move: (5,) 2 (2) Start: (,) 3 OK Page 18 (1) After 3 moves: (11, 3) 1 After 1 move: (5,) 2 (2) Start: (,) 2 (2) After 1 move: (5,) 2 (2) Start: (,) 2 (2) After 1 move: (5,) 2 (2) After 1 move: (5,) 2 (2) After 1 move: (_,) 2	(4) Start: (,)	4							
	(5) • • • • • 4 • • • • • •	5 ОК							
Page 17 Page 17 (1) After 3 moves: (15, -3) After 2 moves: (7,) 1 (2) After 1 move: (,) 2 (3) Start: (,) 2 (4) After 2 moves: (11, 3) After 1 move: (5,) 9 (2) Start: (,) 2 (3) Start: (,) 2 (4) After 2 moves: (11, 3) After 1 move: (5,) 1 (2) Start: (,) 2 (3) Start: (,) 2 (2) Start: (,) 2 (3) After 1 move: (5,) 2 (2) Start: (,) 2 (2) Start: (,) 2 (2) Start: (,) 2 (2) After 3 moves: (9, 7) 	2								
Page 17 Page 17 (1) After 3 moves: (15, -3) After 2 moves: (7,) 1 (2) After 1 move: (,) 2 (3) Start: (,) 2 (4) After 2 moves: (11, 3) After 1 move: (5,) 9 (2) Start: (,) 2 (3) Start: (,) 2 (4) After 2 moves: (11, 3) After 1 move: (5,) 1 (2) Start: (,) 2 (3) Start: (,) 2 (2) Start: (,) 2 (3) After 1 move: (5,) 2 (2) Start: (,) 2 (2) Start: (,) 2 (2) Start: (,) 2 (2) After 3 moves: (9, 7) After 2 moves: (5,) [2 · + 1 = 7] 1 (2) After 1 move: (,) 2									
Page 17 Page 17 (1) After 3 moves: $(15, -3)$ After 2 moves: $(7,)$ 1 (2) After 1 move: $(_, _)$ 2 (3) Start: $(_, _)$ 3 OK Page 18 (1) After 2 moves: $(11, 3)$ After 1 move: $(5, _)$ 9 (2) Start: $(_, _)$ 2 OK Page 18 (1) After 3 moves: $(5, _)$ 2 (2) Start: $(_, _)$ 2 (3) After 1 move: $(5, _)$ 2 (4) Start: $(_, _)$ 2 (5) Start: $(_, _)$ 2 (2) Start: $(_, _)$ 2 (3) After 3 moves: $(9, 7)$ After 2 moves: $(5, _)$ 1 (2) After 1 move: $(_, _)$ 2	-6 -4 -2 2 4 6								
(1) After 3 moves: $(15, -3)$ 1 After 2 moves: $(7,)$ 2 (2) After 1 move: $(_, _)$ 2 (3) Start: $(_, _)$ 3 OK Page 18 Page 18 (1) After 2 moves: $(11, 3)$ 1 After 1 move: $(5, _)$ 2 OK Page 19 2 OK Page 19 1 1 (1) After 3 moves: $(9, 7)$ 2 OK Page 19 1 2 (2) After 1 move: $(-, -)$ 2 OK	•••••-2								
After 2 moves: $(7, _)$ 2 (2) After 1 move: $(_, _)$ 2 (3) Start: $(_, _)$ 3 OK Page 18 9 (1) After 2 moves: (11, 3) 1 After 1 move: (5, _) 2 OK (2) Start: $(_, _)$ 2 OK Page 19 1 2 OK (2) Start: $(_, _)$ 2 OK Page 19 1 2 OK (2) After 3 moves: $(9, 7)$ 1 1 After 2 moves: $(5, _)$ $[2 \cdot _ + 1 = 7]$ 2 (2) After 1 move: $(_, _)$ 2 0	Page 17 Page 17								
(2) After 1 move: $(_,_)$ 2 (3) Start: $(_,_)$ 3 Page 18 Page 18 (1) After 2 moves: (11, 3) 1 After 1 move: $(5, _)$ 2 (2) Start: $(_, _)$ 2 (2) Start: $(_, _)$ 2 OK Page 19 (1) After 3 moves: $(9, 7)$ 1 After 2 moves: $(5, _)$ $[2 \cdot _ + 1 = 7]$ (2) After 1 move: $(_, _)$ 2	(1) After 3 moves: (15, -3)	1							
(2) After 1 move: $(_, _)$ 3 OK (3) Start: $(_, _)$ 3 OK Page 18 1 1 (1) After 2 moves: (11, 3) 1 After 1 move: (5, _) 2 OK (2) Start: (_, _) 2 OK Page 19 (1) After 3 moves: (9, 7) 1 After 2 moves: (5, _) [2· _ + 1 = 7] 2 (2) After 1 move: (_, _) 2 0	After 2 moves: (7,)								
Page 18 Page 18 (1) After 2 moves: (11, 3) 1 After 1 move: (5,) 2 (2) Start: (,) 2 Page 19 1 (1) After 3 moves: (9, 7) 1 After 2 moves: (5,) $[2 \cdot _ + 1 = 7]$ (2) After 1 move: (,) 2	(2) After 1 move: (,)	2							
(1) After 2 moves: (11, 3) After 1 move: (5,) 1 (2) Start: (,) 2 $Page 19$ 2 (1) After 3 moves: (9, 7) After 2 moves: (5,) [2 · + 1 = 7] 1 (2) After 1 move: (,) 2	(3) Start: (,)	3 OK							
(1) After 2 moves: (11, 3) After 1 move: (5,) 1 (2) Start: (,) 2 $Page 19$ 2 (1) After 3 moves: (9, 7) After 2 moves: (5,) [2 · + 1 = 7] 1 (2) After 1 move: (,) 2	Page 18	Page 18							
(1) After 1 move: $(5, _)$ 2 OK (2) Start: $(_, _)$ 2 OK Page 19 Page 19 (1) After 3 moves: $(9, 7)$ 1 After 2 moves: $(5, _)$ $[2 \cdot _ + 1 = 7]$ (2) After 1 move: $(_, _)$ 2									
(2) Start: (,) 2 OK $Page 19$ $Page 19$ (1) After 3 moves: (9, 7) 1 After 2 moves: (5,) [2·+1=7] 2 (2) After 1 move: (,) 2									
(1) After 3 moves: (9, 7) 1 After 2 moves: (5,) [2 · + 1 = 7] 1 (2) After 1 move: (,) 2		2 ок							
After 2 moves: $(5, _)$ $[2 \cdot _ + 1 = 7]$ (2) After 1 move: $(_, _)$ 2	Page 19	Page 19							
(2) After 1 move: (,) 2	(1) After 3 moves: (9, 7)	1							
	After 2 moves: $(5, _)$ [2 · + 1 = 7]								
(3) Start: 3 OK	(2) After 1 move: (,)	2							
	(3) Start:	3 ОК							

ť.

9 - 1 M.P. 9

	۰,	٠		ς.
	÷	•	••	

4	ef the set	
		$+ \mathbf{c} = \pm \mathbf{c} \mathbf{c} + \mathbf{c}^{2} + \mathbf{c}^{2}$
		and the second
		and the second
		n an
11.0		• • • • • • • • • •
		· · · · · · · · · · · · · ·
		and a second s Second second
		المراجع المراجع المسترج المراجع
	· · · · · · · · ·	
		$\Delta \sigma = - \sqrt{2} \left[f(p) + 1 + \sqrt{2} \sigma r + \sqrt{2}$
		an Anna the store Sector a fille. The store of Sector a fille store of the store
2Ĩ(ю.	
		$(\hat{\mathcal{F}}_{i}, \hat{\mathcal{A}}_{i}) = \hat{\mathcal{A}}_{i} \hat{\mathcal{F}}_{i}$ (3.17)
		(1, 1) $(2, 1)$ $(2, 2)$ $(2, 2)$
10		A second s
	4 y	
		C^{2} , C^{2
		the second s
	Ĩ.	$\chi_{\pm} = -\chi_{\pm}$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

 $(1,1) \in \{1,1\}$

Name _____

Part 43

		Answers			Result Check
Page 20					Page 20
	• • 8	• • •			√ ок
		•••	• • • •		
	• • 6	• • •	• • • •	• • •	
	• •	• • •	• • • •	• • •	
	• 4				
	• • 2				
	• •	• • •			
	-2	2	4 6	8 10	
Page 21					Page 21
(1) After	1				
After	2 moves:	(17, 5)			
After	l move:				
[3	• + 2 =	= 17. 3	- 2 • = 5	.]	
(2) Start:		-			2 OK
Page 22					Page 22
(1) After	3 moves:	(28, 12)			1
After	2 moves:		_		
(2) After	l move:		-		2
(3) Start:		_			3 OK

- 1 A			: .

2 - E - 12 S

Constant (1)

Name

Name _____

Answers	Result Check
Page 25	Page 25
After 4 moves:	√ ОК
After 3 moves:	
After 2 moves:	
After 1 move:	
Start:	
Page 26	Page 26
(1) From (2, 2), you move to (+,),	1
or (,).	
(2) X = {,,}	2 ОК
Page 27	Page 27
(1) X = {,,,,}	1
(2) • • 4 • • • •	2 OK
• • 2	
-2	
• •-4	

	-	7.2	17	Ψ.	111	171
$\Delta r = r_{\rm e}$	1	14.0	e Ciel	4	23	\mathcal{O}

· · · · · · · ·

Pa. 43

AbadO fue	о <mark>Я</mark> . 2 мр		000 .01 4 	
² <u>E</u>				$\frac{1}{2}\sum_{i=1}^{n} \left(\left(x_{i}^{i} \right) \right)^{i} + \left(\left(x_{i}^{i} \right)^{i} + \left(x_{i}$
Mark Star				After Street
				is is a fire at
				$(1, -\gamma_{1}, \epsilon) = \xi_{1}^{\dagger} (\epsilon_{1}, \theta_{1}^{\dagger})$
				werd words
				Starit:
	<u></u>			<u>da na k</u> ita
j				(1) - Letters (2, 2).
240		{ 	,	$= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_$
1. 192				<u>82 02000</u>
1	í <u></u>		. <u>.</u>	$= \{1, \dots, N_{n-1}\}$
20 S				(2)
				a a a a
				 A state of the sta

3-

and the former of the former o

Name _____

Answers	Result Check
Page 28	Page 28
(1) $X = \{(1, 2), (2, _), _, _\}$	· 1
$(2) \cdot \cdot 6 \cdot $	2 OK
· · 2 · · · · · · · · · · · · · · · · ·	
-2 2 4 6	
Page 29	Page 29
(1) A = {}	7 1
(2) X = {}	2
(3) • • 6 • • • • • •	3
• • 4	
· · 2	
-2 2 4 6	
(4) X = {(x, y), x and y integers: and x = 1}	4 ОК

-	STAL &	t.	Ţ
			1

														•	
			•	:			¢ 1					•	5		
‡.≓	<u>5</u>							•				,		с.,	
													•		
													•		
						35							,		

	s							
		1	-			· · · · · · · · ·		(1)
		÷					2.Ú+	No. 19
					. ,	e e e e e		(γ_{i})
						• • ·		
						· · ·		
			na sa na sa Na sa	• • •	e S	·		
			•				•	
4								

-10-

Name _____

Answers	Result Check	-
Page 30	Page 30	
(1) A = {}	1	
(2) X = {}	2	
$(3) \cdot \cdot \cdot 2 \cdot \cdot \\ \cdot \cdot \cdot \cdot \cdot \\ -4 -2 2 \cdot \\ \cdot \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot$	3	
(4) $X = \{(x, y), x \text{ and } y \text{ integers:} \\ -2 < y < 2 \text{ and} \\ -2 $	4 0	ЭK
Page 31	Page 31	
(1) A = {,,}	· 1	
(2) $X = \{(x, y), x \text{ and } y \text{ integers: } 1 < x < 5 \text{ and } \ \}$	2	
(3) $A = \{(x, y), x \text{ and } y \text{ integers}: and x = 7\}$	3 C	ЭK
Page 32	Page 32	
X = {(x, y), x and y integers: and}		ЭK
Page 34 (1) X = {(x, y), x and y integers: and}	<u>Page 34</u> 1	
(2) $\cdot \cdot \cdot 3$; $\cdot \cdot \cdot$	2 (ЭK
$ \begin{array}{c} -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -3 \\ -2 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$		

 							j.	8 I.	
fundi Secolo			2.50	(i š'				 т. <u>О</u> лог,	1
1	2 				-				
	in New Yorks, in profiles one Pre-	, , , # Marine (M. 19		a	.		-		
è				• •	• 1	•			4
				· · ·					
				* t			r F		
					• 1				

(x)

1997 : 19

	$\frac{2}{2} \frac{\mathcal{E}}{\mathcal{E}} = \frac{1}{2} \frac{1}$						
			8	s <u></u> s	. 1 0.1 pt 0.1 740		
	S.	···· ·	1 :	o bri y bas z	$\{(\gamma, \alpha)\}$	19 64	(8)
х • •		f - Ce	:21	guard in Se	$\{(\forall z_{i})\}$	-	ŧ\$

 $\frac{1}{1 + \frac{1}{2} + \frac{1}{2}} = \frac{1}{2} \left((x, y), y - \frac{1}{2} + \frac{1}{2} \right)$

· ALL' 18 and 1 $(t) \quad X = \{(x, y), f \in U | y \text{ articles } t = 0 \}$ $\bullet \quad \bullet \quad (1)$ • . ه مدرجه هر ز • 1 - A - A -. ÷ . e e e e e e e e e e · · · · · · ·

-11-

Name _____

Part 43

•

Answers	Result Check
Page 35	Page 35
(1) X =	1
(2) • • • • 4	2 OK
• • • • 2 • • • •	
• • • • • •	
<u>-4</u> -2 2 <u>4</u>	
i i i i i i i i i i i i i i i i i i i	
• • • • - 4 • • • •	
Page 36	Page 36
$(1) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	1
2	
\cdot \cdot \cdot \odot \odot \cdot	
-4 -2 2 4	
• • • • •	
(2) A = {}	2
(3) X = {}	3 OK
Page 37	Page 37
1	1
(1) • • 4 • • • • • (4) [Use diagram in • • • • • • • • Exercise (1).]	
••2•••••	
\cdot \cdot \cdot \odot \odot \odot	
-2 2 4	
$(2) \land - \{$	2
(2) $A = \{ _ \]$ (3) $X = \{ _ \]$	3 OK

			į -										
									-	17		- 4.A	
												e 40 S Jalé	
1-1-	р											 	
												n Dage 55	
		-									• =		
з	£ -4												
				,		•						•	
												4	
										1.1	•		
				•									
												•	
				•			•			•	•	•	
	st [™] −e											à.c	
					j					•		•	
					-	,		-					
				*		1		•					
					•								
								-					
1.	è											,	

1. A. A. • + 1°. ÷ (*) ÷

1.1

 $\sum_{i=1}^{N-1}$

• • • • •

-12-

Name ______

Part 43

.

	Answers		Result Chec	k
Page 39			Page 39	
Point (1)	Point (2)	Point (3)	- 🗸	OK
Page 40			Page 40	
Point (1)	Point (2)	Point (3)	✓	OK
Page 41			Page 41	
Point (1)	Point (2)	Point (3)		ок
Page 42			Page 42	
Point (1)	Point (2)	Point (3)	✓	OK
Page 43			Page 43	
			\checkmark	OK
		\odot		
Page 44			Page 44	••••••
			\checkmark	OF
	and a second second			

(c +O state))
(c +O state

1997 - Handrid Handrid Handrid - Handrid

10 (11) (12) (13) (13) (13) (13)

- 11 - E

-13-

Name _____

NORSE

ar 40 - 2 - 4

Re de

14 115 G

51

94. () e.G

. .

• . -

•

· • ÷.

• • • •

Page .

21 5365

al- sues.

AMOND A.

The Article Section

-14-

Name _____

116 A

The second second and

5 2

e e e e ettere e tin the terms in a lease ţ · @ 4 1 1 1 ŝ . 4 1 a to a finance to

08 38

1. 5.12

ī	5	-	

Name _____

<u>e a</u> e

З. — Х,

<u>. č. 196</u>0

*	•	-	÷	• 11	
e	•	÷	÷	•	8
* - s	ð	· /	14 14	t (÷
the case of	•	1.00	1.00	•	
Þ		N			
L		94			
•	•	•	b.	4	•

16 311					C 03014
2		i.		• • • • • • • • • • • • • • • • • • •	$\wedge^{-}(t)$
S				Carrier and a second second	
r.			f "	4 <u></u> 4	(77
<u>}.</u>				and the strategies where the	
	÷		· ·	in let by wardd e	
					,

Name _____

Part 43

.

.

Answers	Result Che	ck
Page 58	Page 58	
(1) $A \cup B = \{$ }	1	
(2) $X = \{$ }	2	
(3) $Y = \{$ }	3	
 (4) If 2 moves are made from each point in set A ∪ B then the new set is {} 	4	
(5) $X \cup Y = \{$ }	5	OK
Page 59	Page 59	
X \cup Y =		OK
Page 60	Page 60	
One of the points in $X \cup Y$ is	· 🗸	OK
Page 61	Page 61	
It follows that n moves according to rule R from any point in $A \cup B$ take you to a point in	. 🗸	OK
Page 62	Page 62	
It follows that two points in $X \cup Y$ are and	1 2	OK
Page 63	Page 63	
It follows that $X \cup Y = $	\checkmark	OK
Page 64	Page 64	
$X \cup Y = $	\checkmark	OK

-16-

and and a second sec Second s Second second

01-

-17-

Name_____

Part 43

,

•

	Answers	Result C	lhe	ck
Pag	<u>ge 66</u>	Page 66		
(1)	(2)	1	2	
(3)	(4)	3	4	
(5)	(6)	5	6	
(7)	is a point in set A which is not in set X; [or] There is <u>no</u> point in set A which is not in set X.	7		
(8)	is a point in set X which is not in set A; [or] There is no point in set X which is not in set A.	8		
(9)	$X = \{(x, y), x \text{ and } y \text{ integers: } \}$	9		ОК
Pag	<u>ze 67</u>	Page 67		
(1)	(2)	1	2	
(3)	$X = \{(x, y), x \text{ and } y \text{ integers: } \}$	3		OK
Pag	ge 68	Page 68		
(1)	(2)	1	2	
(3)	• • • • • •	3		
	• 4 • • • • •			
	• • • • • •			
	2			
	2 4 6			
	• <u>-</u> 4 • • • • •			
	• • • • • • •			
(4)	X = {(x, y), x and y integers:}	4		OK

n and a second sec

Ethio Cour

۵<mark>۵۹۹۵</mark>۳۰۰ (۲) (۱) (۵)

and the second second

fred (f. althouse a standard og f. althouse) a standard og f. Andre og som en standard og f.

 $\mathcal{L} = \{x_1, \dots, x_n\} \in \mathbb{R}$

	1				N.C.	200	9**4 174
5	i		•			- (i.
		1 <u> </u>	$1, 2, \dots, d$	1 - Star - 2 - 4 (2	1997 - A	99 (ê ş

Real Production

	j								(E)
					,				(s.)
				•	•		• .	*	
		•	1	•	٠			*	
		-	•			L.	4 ^{3 1} 512	•	
		•	•	•		·	•	*	
		•							
					•				
	•		1	Ŧ	•	,	•	•	
	•	•	•			£			

(the pairs y has a construction of the

Ť

Name _____

Answers	Result Check
Page 69	Page 69
$X = \{(x, y), x and y integers: \}$	√ ок
[After one move, the set selector of the description	
of the new set would be 'x = 8'.]	
Page 70	Page 70
(1) (2)	12
(3) (4)	3 4 OK
(5) $X = \{(x, y), x \text{ and } y \text{ integers: } \}$	5
Page 71	Page 71
(1) (3, 0) (2) (0, -3) (3) (2, 7)	123
(4) (-3, 0) (5) (5, 4) (6) (0, 3)	4 5 6
(7) $n(A) = $	7 OK
Page 72	Page 72
(1) $(-5, 0)$ (2) $(3, -4)$ (3) $(25, 0)$ (3)	123
(4) (-4, -3) (5) (0, 5) (6) (16, 9)	456
(7) • • • • • 6 • • • • • •	7 OK
• • • • • • • • • •	
• • • • • 4	
• • • • • 2 • • • • • •	
-6 -4 -2 2 4 6	
• • • • • -2	
• • • • • • • • • • • • •	
• • • • • • • • • • • • • •	

 $\frac{\partial T}{\partial t} = \frac{\partial T}{\partial t} \frac{$ 1......

and a star of the second se

and the second second

на страни — ПС $e^{-i\omega t}$ (, () (£ +)

(2)e de la companya de l e e e e e e e and the second and a second and a second $\Delta_{\rm eff} = 0$. The set of the a second characteristic second second a second a second s and a second second

and a second second second second and the second second

Name _____

	Answers											Result	Ch	eck						
Pag	Page 73											Page 7	3							
(1)																				
(1)						• 6						•	•	•				1		
						• <u>4</u>						•		•						
			÷			• •		·	÷	Ż	÷		÷							
	•					• 2		•		•	•	•	•							
	•						•	•			•	•		•						
	· · · · · · · · · · · · · · · · · · ·							•												
	-6	•	-4	•	-2	•	•	2	•	4	•	6	•	8						
	•	•	•	•	•	•-2	•	•	•	•	•	•	•	•						
	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
	•	•	•	•	•	•-4	•	•	•	•	•	•	•	•						
	•	٠	•	•	•	•		•	•	•	•	•	•	•						
	•	•	•	•	•	•-6	•	•	•	•	٠	•	•	•						
						1														
(2)	X = {	(x,	y),	x	and	l y ir	tege	ers	: _							_}		2		
(3)	The p	oii	nts i	in :	set	X ar	e ar	ran	igeo	d or	n th	ne c	irc	le	wit	h		3	a :	3 b
	center at and radius (a) (b)														OK					

	113	

•		•					• =				-			1.0.1
	•	•	•	•	•	•	•					•		
•			•	•	•						•	•		
								•						
								•	. •••		• •			
							•				•			
									-	•	•		•	

and the second second

A GLAN (A PART

Name	

Part 43

					4	Answ	vers										Resu	ilt C	hec	k
Page	74																Page	74		
(1)				•	٠	• 6		•	•	•	•	٠	•		•			1		
	•	•	•	•	٠	•	1 1 1 1 1	•	•	•	•	•	٠	٠	•	٠				
	•	•	•	•	٠	• 4	•	•	•	•	٠	•	٠	•	•	•				
	•	٠	٠	•	٠	•	1 • • 1 1	•	•	•	•	•	•	•	٠	•				
	•	•	•	•	•	• 2	•	•	•	•	•	•	•	•	•	•				
		•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•				
	-6	•	-4		-2	•		2	•	4	•	6	•	8	•	10				
	•	•	•	•	•	• - 2	•	•	•	•	•	•	•	•	•	•				
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•				
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
	•	•	•	٠	•	6		•	•	•	•	•	•	•	•	•				
	•	•				• •8	• • 1 1 • •				•	•	•	•	•	•				
	•	•	•		•	*	•	•	•	•	•	•	•	•	•	•				
	•	•	•	•	•		•	•				•	•	•	•	•				
	•	•	•	•	•	•	₽ ₽ ₽ ₽	•	•	•	•	•	•	•	•	•				
							3													
(2)]	The p	oir	its	in	set	X ar	'e ar	rar	ngeo	d or	h th	le c	irc	le	wit	:h		Za	2Ъ	
c	cente:	r a	t	(a)	_	and 1	radiu		(b)	-										
(3) 2	< = {	(x,	y),	, x	and	ly iı	ntege	ers	:								 }		3	OK
Page	76						•••••										Page	<u>76</u>	-1011010	
X = {	(x, y	r),	хa	nd	y i	ntege	ers:											\checkmark		OK
												}								
_	····											J								

.

-20-

13.5

138	1.4 1.4	

					• ³
	, i	· · · ·		* •	
			• • •		
	• • •	e			
	4	e e e e	• •		
		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
	•		1		
	i i i Fri		ме до С	а ал с с З _{алта} с	
	•		• • •	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
			a a construction de la construction		
	• · · ·		· · · · · ·	1 - 1	
	a series en		$(\cdot, \cdot) = (\cdot, \cdot) = (\cdot, \cdot)$	1	
			a a construction de la construcción		
	• • •		a an	•	
	•	· · · ·			
		•	$e_{1} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \left[\frac{1}{2} + \frac$	• • • •	
			a a a a a		
			a a construction de la construction		
16	: I ¹¹	$(1,1) \in \mathcal{F} = \{0,1\}$	1997 N 199 X	iter e stand	2) T'or
				(m)	۵
х с У <u>—</u>	- ($\psi = (-2it_i + \frac{1}{2})^2$	and a straight	Х. ₁₆ Г
Pag 76					$\phi_{i} = \frac{1}{2} \left(\frac{1}{2} \right)^2$
X.			s	and the stand	
	S				
		a series and a series			an the set of the

