

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

$\frac{E}{X}$
 PROGRAMED
 ED N T A L

PART 43

Comparative Studies of Principles for
 Programing Mathematics in
 Automated Instruction

Supported by grants
from
U. S. Office of Education (Title VII)

National Science Foundation

Copyright, 1962
Board of Trustees, University of Ilinois

Fill in the heading on your work sheet.

Some of the exercises in this book will ask you to draw a line segment between two dots. You will be able to do a neater job on these exercises if you have a ruler or some other kind of "straight-edge". If you don't have a wooden or plastic straight-edge with you, you can make a perfectly good straight-edge by folding a sheet of paper several times.

Turn to PAGE $\underline{2}$.

Imagine that you own a very smare grasshopper. This grasshopper is so smart that he has learned to play a game called a number piane lattice game'。 In playing this game, your grasshopper needs this equipment:
(a) a large piciure of part of the number plane iatifice,
(b) a pair of dice, one red and one green, and
(c) a pack of small cards, each card containing a rule and "jumping" instructions.

Here is how your grasshopper plays the game. Eirst, he rolls the dice. [This is a big grasshopper, or he has very small dice!] Suppose that 2 comes up on the red die and 1 on the green die. This means that he is to start the game sitting on the dot corresponding to the point (2, 1) on the number plane lattice. Next, he turns a card face up and reads the rule and instructions. Suppose thet the card says:

$$
\begin{aligned}
& \text { Rule: A jump takes you from } \\
& (x, y) \text { to }(x+1, y+1) \\
& \text { Instructions: Make one jump. }
\end{aligned}
$$

The grasshopper will finish this game on the dot corresponding to (3,2). He starts at (2, 1) and makes one jump according to the given rule. This takes him to $(2+1,1+1)$ or $(3,2)$. Since the instructions were to make just one jump, he finishes at (3, 21 .

Here is a diagram showing his jump.

Turn to PAGE 3.

Here is how your grasshopper might play another game.

Start: (-4, -1)
Rule: A jump takes you from (x, y) to $(x+2, y+1)$.
Instructions: Make 3 jumps.

Where does he finish?

Solution.

First jump: From $(-4,-1)$ to $(-4+2,-1+1)$ or $(-2,0)$
Second jump: From $(-2,0)$ to $(-2+2,0+1)$ or $(0,1)$
Third jump: From $(0,1)$ to $(2,2)$

So, after 3 jumps, he finishes on (2, 2).

Here is a diagram showing his jumps.

The exercises below are about a game your grasshopper played. Answer them on your work sheet.

Start: $(4,1)$
Rule: A jump takes you from (x, y) to $(x-1, y+1)$.
Instructions: Make 2 jumps.
(1) First jump: $\operatorname{From}(4,1)$ to $(3,2)$

Second jump: From $(3,2)$ to (? ? ? $)$
(2) Where did he finish?
(3) Draw a diagram showing his jumps.

Turn to PAGE 4.

ध :

Check your answers．

Start：$(4,1)$
Rule：A jump takes you from (x, y) to $(x-1, y+1)$ ．
Instructions：Make 2 jumps．
（1）First jump：From $(4,1)$ to $(3,2)$
Second jump：From $(3,2)$ to $(2,3)$
（2）Finish：$(2,3)$

Record your results on your work sheet．
米 米 头

Do the se exercises about another game the grasshopper played．Write your answers on your work sheet．

Start：$(0,1)$
Rule：A jump takes you from（ x, y ）to（ $x+3, y$ ）．
Instructions：Make 3 jumps．
（1）First jump：From（0，1）to（3，1）
Second jump：From $(3,1)$ to $(?, ?$ ？$)$
（2）Third jump：From（？？？）to（？？？）
（3）Where did he finish？
（4）Draw a diagram showing his jumps．

$$
\text { Turn to PAGE } 5 .
$$

Check your answers.

Start: $(0,1)$
Rule: A jump takes you from (x, y) to $(x+3, y)$.
Instructions: Make 3 jumps.
(1) First jump: From $(0,1)$ to $(3,1)$

Second jump: From $(3,1)$ to $(6,1)$
(2) Third jump: From (6,) to (9, 1)
(3) Finish: $(9,1)$

Record your results on your work sheet.

Turn to PAGE 6.

Now, let's take over from the grasshopper and play some number plane lattice games.

We shall make "moves" instead of "jumps'", and we shall use an abbreviated form for the rule. For example, the rule:

A move takes you from (x, y) to $(x+2, y-3)$
will be written:

$$
(x, y) \rightarrow(x+2, y-3)
$$

Do these exercises on your work sheet.
Rule: $(x, y) \rightarrow(x+2, y-3)$
Start at $(3,3)$ and make 3 moves.
(1) First move takes you to $(3+2,3-3)$ or $(5,0)$.

Second move takes you to (? ? ?).
(2) Third move takes you to (? ? ?).
(3) Where do you finish?
(4) Draw a diagram showing your moves.

Check your answers.

Rule: $(x, y) \rightarrow(x+2, y-3)$
Start at $(3,3)$ and make 3 moves.
(1) First move takes you to (5, 0). Second move takes you to (7, 7).
(2) Third move takes you to ($9,-6$). (3) Finish: $(9,-6)$

Record your results on your work sheet.
米 水

Do the se exercises on your work sheet.
Rule: $(x, y) \rightarrow(2 x, 2 y)$
Start at (1,2) and make 2 moves.
(1) Where do you finish? [First move takes you to (2, 4).]
(2) Draw a diagram of your moves.

Check your answers．

Rule：$(x, y) \rightarrow(2 x, 2 y)$
Start at（ 1,2 ）and make 2 moves．
（1）Finish：$(4,8)$

Record your results on your work sheet．
米光次

Answer this question on your work sheet．

$$
\text { Rule: }(x, y) \rightarrow(3 x, 2 y)
$$

Start at（0，0）and make 10 moves．

What is the final point？

Check your answer．
Rule：$(x, y) \rightarrow(3 x, 2 y)$
Start at（ 0,0 ）and make 10 moves．
Finish：$(0,0)$

Record your results on your work sheet．
米 光 光

Here is a sample number plane lattice game where the rule is a bit more complicated．

> Rule: $(x, y) \rightarrow(2 x-3,3 y+1)$
> Start at $(2,0)$ and make 2 moves. What is the final point?

Solution．

First move： $\operatorname{From}(2,0)$ to $(2 \cdot 2-3,3 \cdot 0+1)$ ，or $(1,1)$
Second move：From $(1,1)$ to $(2 \cdot 1-3,3 \cdot 1+1)$ ，or $(-1,4)$
So，the final point is $(-1,4)$ ．

Do these exercises on your work sheet．

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow(3 x-5, y+2) \\
& \text { Start at }(2,-2) \text { and make } 3 \text { moves. }
\end{aligned}
$$

（1）First move takes you to（1，0）．
Second move takes you to（？？？）．
（2）Third move takes you to（？？？）．
（3）What is the final point？
（4）Make a diagram showing your moves．

Check your answers．

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow(3 x-5, y+2) \\
& \text { Start at }(2,-2) \text { and make } 3 \text { moves. }
\end{aligned}
$$

（1）First move takes you to $(1,0)$ ．
Second move takes you to $(-2,2)$ ．
（2）Third move takes you to（ $-1 /, 4$ ）．
（3）Final point：$(-11,4)$

Record your results on your work sheet．
米 米 水

Answer this question on your work sheet．

$$
\text { Rule: }(j, k) \rightarrow(2 j-5,2 k+3)
$$

Start at（5，－ 3 ）and make 7 moves．

What is the final point？
. .

Check your answer．

Rule：$(\mathrm{j}, \mathrm{k}) \rightarrow(2 \mathrm{j}-5,2 \mathrm{k}+3)$
Start at $(5,-3)$ and make 7 moves．
Final point：$(5,-3)$
［The final point would be（ $5,-3$ ）if you made 101 moves！］

Record your results on your work sheet．
米米米

Do the se exercises on your work sheet．

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow\left(x^{2}, 3 y-1\right) \\
& \text { Start at }(2,2) \text { and make } 3 \text { moves. }
\end{aligned}
$$

（1）First move takes you to $(4,5)$ ．
Second move takes you to（16， \qquad ？）．
（2）Third move takes you to（ \qquad ？ ？ ）．
（3）So，the final point is（？？$)$ ．

Turn to PAGE 12.

Check your answers．

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow\left(x^{2}, 3 y-1\right) \\
& \text { Start at }\{2,2) \text { and make } 3 \text { moves. }
\end{aligned}
$$

（1）First move takes you to（4，5）．
Second move takes you to（16．14）．
（2）Third move takes you to（256，41 ）．
（3）So，the final point is $(256,41)$ ．

Record your results on your work sheet．
米 录 米

Do these exercises on your work sheet．

Rule：$(x, y) \rightarrow\left(x^{2}, 3-y\right)$ ．
Start at $(-1,-1)$ and make 3 moves．
（1）First move takes you to（ 1,4 ）．Do you agree？［Yes or No？］
（2）Second move takes you to \qquad ．
（3）Third move takes you to \qquad ．
（4）What would be the final point if you made 4 moves？
（5）What would be the final point if you made 20 moves？
（6）Draw a diagram showing your first 3 moves．

Check your answers．

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow\left(x^{2}, 3-y\right) \\
& \text { Start at }(-1,-1) \text { and make } 3 \text { moves. }
\end{aligned}
$$

（1）First move takes you to（1，4）．Yee
（6）
（2）Second move takes you to $(1,-1)$ ．
（3）Third move takes you to（1，4）．
（4）The final point after 4 moves would be $(1,-1)$ ．
（5）The final point after 20 moves would be $(1,-1)$ ．

Record your resules on your work sheet．
头米氷

The exercise below introduces a type of number plane lattice game which might be a bit more challenging than the kind you have tried up to now．Be on the lookout for a system to use in solving this new type．Do this exercise on your work sheet．

Rule：$\{x, y\} \rightarrow\{x+1, y+2\}$
After making 1 move，the final point is $(5,8)$ ．
What was the starting point？
Turn to PAGE 14.

Check your answer．

Rule：$(x, y) \rightarrow(x+1, y+2)$
After making 1 move，the final point is $(5,8)$ ．
The starting point was $(4,6)$ ．

If you had trouble with this exercise，here is a solution．
The first component of the final point is 5 ，and according to the rule， 1 was added to some number to obtain 5 ．That number must be 4 since $4+1=5$ ．So，the first component of the point immediately before the final point must be 4 ．Since only 1 move was made，the first component of the starting point must be 4 ．

The second component of the starting point must be 6 ，since according to the rule， 2 was added to some number to obtain 8 ， and $6+2=8$ ．So the starting point was $(4,6)$ ．

Record your result on your work sheet．
米 光 米

Do this exercise on your work sheet．

Rule：$(x, y) \rightarrow(x+3, y-2)$
After making 2 moves the final point is $(-1,4)$ ．
Give the starting point．

Check your answer．

$$
\text { Rule: }(x, y) \rightarrow(x+3, y-2)
$$

After making 2 moves the final point is $(-1,4)$ ．
Starting point：$(-7,8)$ \square
Solution．
After 2 moves，the first component of the final point is -1 ．The rule tells us that 3 was added to some number to obtain－1．That number，of course，was -4 ．So，the first component of the point reached after 1 move was -4 ．Again，the rule tells us that 3 was added to some number to obtain－4．In this case，the number was -7 ．So，the first component of the starting point was -7 ．By the same kind of reasoning，the second component of the starting point was 8.

Thus，the starting point was $(-7,8)$ ．

In brief outline，

After 2 moves：	$(-1,4)$
After 1 move：	$(-4,6)$
Start：	$(-7,8)$

［We can check our solution by reading the brief outline from the bottom up to see if each move agrees with the rule．］

Record your result on your work sheet．
米 次 次

Do these exercises on your work sheet．
Rule：$(x, y) \rightarrow(x-2, y+3)$
After 2 moves，the final point is $(1,8)$ ．
（1）After 2 moves：$(1,8)$
After 1 move：（ $3, \underline{?}$ ）
（2）Start：（？？）

Turn to PAGE 16.

Check your answers．

Rule：$(x, y) \rightarrow(x-2, y+3)$
After 2 moves，the final point is（ 1,8 ）．
（1）After 2 moves：$(1,8)$
After 1 move：$(3,5)$
（2）Start：$(5,2)$

Record your results on your work sheet．
米 头 水

Do these exercises on your work sheet．［Remember to be on the lookout for a systematic way to solve this kind of problem．］

$$
\text { Rule: }(x, y) \rightarrow(x-3, y+1)
$$

After 4 moves，the final point is $(-6,3)$ ．
（1）After 4 moves：$(-6,3)$
After 3 moves：（ $-3, \ldots$ ）
（2）After 2 moves：（？？）
（3）After 1 move：（？？）
（4）Start： \qquad $?$ ？
（5）Make a diagram showing the moves which must have been made to reach the final point．

Check your answers．
Rule：$(x, y) \rightarrow(x-3, y+1)$
After 4 moves，the final point is $(-6,3)$ ．
（1）After 4 moves：$(-6,3)$
After 3 moves：（ $-3,2$ ）
（2）After 2 moves：$(0,1)$
（3）After 1 move：$(3,0)$
（4）

$$
\text { Start: }(6,-1)
$$

（5）

Record your results on your work sheet．
次 当 共

Do the se exercises on your work sheet．
Rule：$(x, y) \rightarrow(2 x+1, y-1)$
After 3 moves the final point is（15，－3）．
（1）After 3 moves：（15，－3）
After 2 moves：（7，？）
（2）After 1 move：（？？$)$
（3）Start：（？？$)$

Check your answers．

Rule：$(x, y) \rightarrow(2 x+1, y-1)$
After 3 moves the final point is $(15,-3)$ ．
（1）After 3 moves：$(15,-3)$
After 2 moves：（ $7,-2$ ）
（2）After 1 move：$(3,-1)$
（3） Start：（ 1,0 ）

Here is how part of the solution might be done．
The first component of the final point is 15 ．The rule tells us that some number was multiplied by 2 and then 1 was added to obtain 15．That number must have been 7 since $2 \cdot 7+1=15$ ． So，after 2 moves，the first component of the point reached was 7 ．
［You can check the completed solution by reading the answers from the starting point to the final point to see if each move followed the rule．］

Record your results on your work sheet．
米 米 冰

Do these exercises on your work sheet．

Rule：$(x, y) \rightarrow(2 x+1, y-1)$
After 2 moves，the final point is（11，3）．
（1）After 2 moves：（11，3）
After 1 move：（5，？）
（2）
Start：（？？

Check your answers．

$$
\begin{aligned}
& \text { Rule }:(x, y) \rightarrow(2 x+1, y-1) \\
& \text { After } 2 \text { moves, the final point is }(11,3) \text {. }
\end{aligned}
$$

（1）After 2 moves：（11，3）
After 1 move：$(5,4)$
（2）Start：$(2,5) \quad[2 \cdot 2+1=5]$
Record yaur results on your work sheet．
洝 关 关

Do these exercises on your work sheet．

$$
\begin{aligned}
& \text { Rule: } \quad(x, y) \rightarrow(2 x-1,2 y+1) \\
& \text { After } 3 \text { moves, the final point is }(9,7) .
\end{aligned}
$$

（1）After 3 moves：$(9,7)$
After 2 moves：$(5, \ldots) \quad[2 \cdot \underline{?}+1=7]$
（2）After 1 move：（ ？？？）
（3）
Start: __?

Check your answers．

$$
\text { Rule: }(x, y) \rightarrow(2 x-1,2 y+1)
$$

After 3 moves，the final point is $(9,7)$ ．
（1）After 3 moves：$(9,7)$
After 2 moves：$(5,3) \quad[2 \cdot \underline{3}+1=7]$
（2）After 1 move：$(3,1)$
$[2 \cdot \underline{3}-1=5, \quad 2 \cdot \underline{1}+1=3]$
（3）Start

$$
\begin{gathered}
:(2,0) \\
{\left[2 \cdot \underline{2}^{2}-1=3,2 \cdot \underline{0}+1=1\right]}
\end{gathered}
$$

Record your results on your work sheet．
灾 水水

On your work sheet，draw a diagram showing the moves which must have been made to reach the final point in the game whose solution is given near the top of this page．

Check your answer．

Rule：$(x, y) \rightarrow(2 x-1,2 y+1)$
After 3 moves，the final point is $(9,7)$ ．

Record your results on your work sheet．
况决录

Do these exercises on your work sheet．

$$
\begin{aligned}
& \text { Rule }:(x, y) \rightarrow(3 x+2,3-2 y) \\
& \text { After } 3 \text { moves, the final point is }(53,-7)
\end{aligned}
$$

（1）After 3 moves：$(53,-7)$
After 2 moves：$(17,5)$

$$
\begin{array}{ll}
{[3 \cdot \underline{17}+2=53 .} & 3-2 \cdot \underline{5}=-7 .] \\
{[3 \cdot \underline{?}+2=17 .} & 3-2 \cdot \underline{?}=5 .]
\end{array}
$$

After 1 move \qquad
（2）Start \qquad

Check your answers.

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow(3 x+2,3-2 y) \\
& \text { After } 3 \text { moves, the final point is }(53,-7) \text {. }
\end{aligned}
$$

(1) After 3 moves: (53, -7)

After 2 moves: $(17,5)$

$$
[3 \cdot 17+2=53 . \quad 3-2 \cdot 5=-7 .]
$$

After 1 move : $(5,-1) \leftrightarrow<$

$$
[3 \cdot \underline{5}+2=17 . \quad 3-2 \cdot-1=5 .]
$$

Start: $(1,2)$
4

$$
\begin{equation*}
[3 \cdot 1+2=5 . \quad 3-2 \cdot \underline{2}=-1 .] \tag{2}
\end{equation*}
$$

Record your results on your work sheet.

$$
\therefore \therefore \therefore * *
$$

Do these exercises on your work sheet.

$$
\text { Rule: }(x, y) \rightarrow(3 x-2,4-2 y)
$$

After 3 moves, the final point is $(28,12)$.
(1) After 3 moves: $(28,12)$

After 2 moves: ? [Remember, you are "backing up".]
(2) After 1 move: \qquad
(3) Start

Check your answers.

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow(3 x-2,4-2 y) \\
& \text { After } 3 \text { moves, the final point is }(28,12) .
\end{aligned}
$$

(1) After 3 moves: $(28,12)$

After 2 moves: $(10,-4)$
(2) After 1 move : $(4,4)$
(3) Start $:(2,0)$

Record your results on your work sheet.

Turn to PAGE $2 \underline{4}$.

You have played several number plane lattice games where you were given the final point and asked to find the starting point. Perhaps you have discovered that you can use equations to help you "back up" in a lattice game.

Here is a sample showing how equations can help. [Perhaps you discovered a different method.]

Sample.
Rule: $(x, y) \rightarrow(3 x+4,2-3 y)$
After 2 moves, the final point is $(79,68)$.
Give the starting point.

Solution.

After 2 moves: $(79,68)$
First Component

$$
\begin{aligned}
3 x+4 & =79 \\
3 x & =75 \\
x & =25
\end{aligned}
$$

Second Component

$$
\begin{aligned}
2-3 y & =68 \\
-3 y & =66 \\
y & =-22
\end{aligned}
$$

So, the point just before $(79,68)$ was $(25,-22)$.

	After l move: $\quad(25,-22)$				
$3 x+4=$	25				
$x=7$		$	$	$2-3 y$	$=-22$
---:	:---				
y	$=8$				

So, the starting point was $(7,8)$.

Do this exercise on your work sheet.
Rule: $(x, y) \rightarrow(2 x+5,3-2 y)$
After 3 moves, the final point is (19, -15).

Give the starting point.

$$
\text { Turn to PAGE } 25 .
$$

+1.0.

Check your answer．

$$
\begin{aligned}
& \text { Rule: }(x, y) \rightarrow(2 x+5,3-2 y) \\
& \text { After } 3 \text { moves, the final point is (19, }-15 \text {). } \\
& \text { First Component Second Component } \\
& 2 x+5=19 \\
& x=7 \\
& 3-2 y=-15 \\
& y=9 \\
& \text { After } 2 \text { moves: (7, 9) } \\
& 2 x+5=7 \\
& x=1 \\
& 3-2 y=9 \\
& y=-3 \\
& \text { After } 1 \text { move: (1, -3) } \\
& \begin{aligned}
2 x+5 & =1 \\
x & =-2
\end{aligned} \\
& 3-2 y=-3 \\
& y=3 \\
& \text { Starting point: }(-2,3)
\end{aligned}
$$

Record your results on your work sheet．
米 洪 头

Do this exercise on your work sheet．

Rule：$(x, y) \rightarrow(2 x-5,3+4 y)$
After 4 moves，the final point is $(-27,-1)$ ．

Give the starting point．

Turn to PAGE 26.

Check your answer．

Rule：$(x, y) \rightarrow(2 x-5,3+4 y)$
After 4 moves，the final point is $(-27,-1)$ ．

After 4 moves：$(-27,-1)$
After 3 moves：（－11，－1）
After 2 moves：$(-3,-1)$
After 1 move ：（1，－1）
Start $:(3,-1)$

Record your result on your work sheet．
米 米 米

The exercises below introduce still another type of number plane lattice game．Do these exercises on your work sheet．

$$
\begin{aligned}
& A=\{\{0,0),(1,1),(2,2)\} \\
\text { Rule: } & (x, y) \rightarrow(x+y, x-y)
\end{aligned}
$$

Make one move from each point in set A ．Call the new set＇X＇．
（1）From $(0,0)$ ，you move to $(0+0,0-0)$ ，or $(0,0)$ ．
From（1，1），you move to $(1+1,1-1)$ ，or $(2,0)$ ．

（2）If the new set is called＇X＇then $X=\{$ \qquad ？ ， \qquad ？ ， \qquad \}.

Check your answers.

$$
\begin{aligned}
A & =\{(0,0),(1,1),(2,2)\} \\
\text { Rule } & :(x, y) \rightarrow(x+y, x-y)
\end{aligned}
$$

Make one move from each point in set A. Call the new set ' X '.
(1) From (0, 0), you move to $(0,0)$.

From (1,1), you move to $(2,0)$.
From (2, 2), you move to $(2+2,2-2)$, or $(4,0)$.
(2) $\mathrm{X}=\{(0,0),(2,0),(4,0)\}$

Record your results on your work sheet.
头 头

Now, let's plot the points in each of the sets A and X listed above, and show the moves from each point in A to the corresponding point in X.

Do these exercises on your work sheet.

$$
\begin{aligned}
A & =\{(0,0),(1,-1),(2,-2),(3,-3)\} \\
\text { Rule } & :(x, y) \rightarrow(x,|y|)
\end{aligned}
$$

Make one move from each point in set A. Call the new set ' X '.
(1) $X=\{$ \qquad $?$, \qquad $?$, \qquad $?$, \qquad \}
(2) Plot the points in each set on the same diagram and indicate each move by drawing a dashed line and an arrow. [See the diagram above.]

Check your answers．

$$
\begin{aligned}
& \qquad A=\{(0,0),(1,-1),(2,-2),(3,-3)\} \\
& \text { Rule: }(x, y) \rightarrow(x,|y|)
\end{aligned}
$$

（1）$X=\{(0,0),(1,1),(2,2),(3,3)\}$

Record your results on your work sheet．

米 米 相

Do these exercises on your work sheet．

$$
A=\{(2,1),(3,2),(4,3),(5,3)\}
$$

Rule：$(x, y) \rightarrow(y, x)$

Make one move from each point in set A ．Call the new set＇X＇．
（1）$X=\{(1,2),(2, \underline{?}\}, ?\}$ ？
（2）Plot the points in each set on the same diagram and indicate each move．［Remember，loops for A，cross－marks for X. ］

Turn to PAGE 29.

Check your answers．
$A=\{\{2,1),(3,2),(4,3),(5,3)\}$
Rule：$(x, y) \rightarrow(y, x)$
（1）$X=\{(1,2),(2,3),(3,4),(3,5)\}$
（2）

Record your results on your work sheet．
承 戠 京

When one move is made from each point in a set according to the rule $'(x, y) \rightarrow(y, x)$＇and the points involved are plotted，we get an interesting picture．Study such pictures carefully and look for a＂pattern＂．

Do these exercises on your work sheet．
$A=\{(x, y), x$ and y integers： $0<x<6$ and $y=1\}$
Rule：$(x, y) \rightarrow(y, x)$

Make one move from each point in set A．Call the new set＇X＇．
（I）$A=\{$ \qquad \} [List the members of set A.]
（2）$X=\{$ \qquad \} [List the members of set X.$]$
（3）Plot the points in each set on the same diagram and indicate the moves．
（4）$X=\{(x, y), x$ and y integers： \qquad ，and $x=1\}$

Check your answers.
$A=\{(x, y), x$ and y integers: $0<x<6$ and $y=1\}$
Rule: $(x, y) \rightarrow(y, x)$
(1) $\quad A=\{(1,1),(2,1),(3,1),(4,1),(5,1)\}$
(2) $\mathrm{X}=\{(1,1),(1,2),(1,3),(1,4),(1,5)\}$
(3)

(4) $X=\{(x, y), x$ and y integers: $0<y<6$ and $x=1\}$ [Compare this description of set X with the description of set A at the top of this page.]

Record your results on your work sheet.

$$
\because \because シ \text { 米 } \because
$$

Do these exercises on your work sheet.

$$
\begin{aligned}
& A=\{(x, y), x \text { and } y \text { integers: }-2<x<2 \text { and }-4<y<-2\} \\
& \text { Rule: }(x, y) \rightarrow(y, x)
\end{aligned}
$$

Make one move from each point in set A. Call the new set ' X '.
(1) $A=\{$ \qquad \} [Iist the members of set A.]
(2) $X=\{$ \qquad \} [I.ist the members of set X.]
(3) Plot the points in each set on the same diagram and indicate the moves. [Remember, loops for A, cross-marks for X.]
(4) $X=\{(x, y), x$ and y integers: $-2<y<2$ and \qquad \}

Turn to PAGE 31.

Check your answers．

$$
\begin{aligned}
& A=\{(x, y), x \text { and } y \text { integers: }-2<x<2 \text { and }-4<y<-2\} \\
& \text { Rule: }(x, y) \rightarrow(y, x)
\end{aligned}
$$

Nake one move from each point in set A ．Call the new set＇X＇．
（1）$A=\{(-1,-3),(0,-3),(1,-3)\}$
（2）$X=\{(-3,-1),(-3,0),(-3,1)\}$
（3）

（4） $\mathrm{X}=\{(\mathrm{x}, \mathrm{y}), \mathrm{x}$ and y integers：$-2<\mathrm{y}<2$ and $-4<x<-2\}$
［Compare this description of set X with the description of Set A at the top of this page．］

Record your results on your work sheet．
头 米 米

Do these exercises on your work sheet．

$$
\text { Rule: }(x, y) \rightarrow(y, x)
$$

After making one move from each point in set A ，the result in set X where

$$
X=\{(2,7),(3,7),(4,7)\}
$$

（1）$A=\{$ \qquad $?$ ， \qquad ？ ， \qquad ？ \}
（2） $\mathrm{X}=\{(\mathrm{x}, \mathrm{y}), \mathrm{x}$ and y integers： $1<\mathrm{x}<5$ and \qquad \}
（3）$A=\{(x, y), x$ and y integers： \qquad and $\mathrm{x}=7\}$

Check your answers．

$$
\text { Rule }:(x, y) \rightarrow(y, x)
$$

After making one move from each point in set A ，the result is set X where

$$
X=\{(2,7),(3,7),(4,7)\}
$$

（1）$A=\{(7,2),(7,3),(7,4)\}$
（2）$X=\{(x, y), x$ and y integers： $1<x<5$ and $y=7\}$
（3）$A=\{(x, y), x$ and y integers： $1<y<5$ and $x=7\}$

Record your results on your work sheet．
米 米 米

Do this exercise on your work sheet．

$$
\begin{aligned}
& A=\{(x, y), x \text { and } y \text { integers: } 2<x<5 \text { and }-3<y<0\} \\
& \text { Rule: }(x, y) \rightarrow(y, x)
\end{aligned}
$$

If you make one move from each point in set A ，and call the new set＇X＇， then $X=\{(x, y), x$ and y integers： \qquad ？ and \qquad \}.
［Try to complete the description of set X without listing the members of either set A or set X ．］

Turn to PAGE 33.

Check your ansmars．

$$
\begin{aligned}
& A:=\{(x, y), x \text { and } y \text { intogers: } 2<x<5 \text { and }-?<y<0\} \\
& \text { Evic: }(x, y) \rightarrow\{y, x)
\end{aligned}
$$

If you make one move from cach point in set A ，and call the new set＇X＇， thein

$$
X=\{i n, y, x \text { and } y \text { integers: } 2<y<5 \text { and }-3<x<0\} \text {, }
$$

［ Ó course，＇$X=\{x, y j, x$ and y irtegers：$-3<x<0$ and $2<y<5\}$＇ is also correct．

Reco－ed your rosults on your work sheet，
关 光 宗

If you were alle complet the description of set x above without listing the inumbers of set A or set X ，you have probably made an Enteroniza dinccoory，W゙o hope you have discovered that when you are given a brace－notation description of a set of points and you

 the new se：Vot aimply copy the description of the given set except the aftew the＇：you survitute th pronumeral which indicates second compononta for the p：onurie ral wich indicates first components，and you sucstinut the filst componont pronumeral for the second component pronumerat．The crueciso answered at the top of this page is a good evarnplc．

Now, let's see if you can apply the discovery mentioned on the previous page.

Do these exercises on your work sheet.
$A=\{(x, y), x$ and y integers: $y=2$ and $-3<x<3\}$
Rule: $(x, y) \rightarrow(y, x)$

Make one move from each point in set A. Call the new set ' X '.
(1) Give a brace description of set X. That is, complete this:

$$
X=\{(x, y), x \text { and } y \text { integers: } \quad ? \quad \text { and } \quad ?
$$

(2) Plot the points in each set on the same diagram and indicate the moves.

Turn to PAGE 35.

Check your answers．

$$
\begin{aligned}
& A=\{(x, y), x \text { and } y \text { integers: } y=2 \text { and }-3<x<3\} \\
& \text { Rule: }(x, y) \rightarrow(y, x)
\end{aligned}
$$

Make one move from each point in set A ．Call the new set＇X＇．
（1）$X=\{(x, y), x$ and y integers：$x=2$ and $-3<y<3\}$

Remember to look for a＂pattern＂on the picture．

Record your results on your work sheet．
米 米 米

Do these exercises on your work sheet．

$$
\begin{aligned}
& A=\{(x, y), x \text { and } y \text { integers: } y=x-3\} \\
& \text { Rule: }(x, y) \rightarrow(y, x)
\end{aligned}
$$

Make one move from each point in set A ．Call the new set＇X＇．
（1）Give a brace description of set X ．
（2）Plot the points in each set on the same diagram and indicate the moves．

Check your answers．

$$
A=\{(x, y), x \text { and } y \text { integers: } y=x-3\}
$$

Rule：$(x, y) \rightarrow(y, x)$
（1）$X=\{(x, y), x$ and y integers：$x=y-3\}$
（2）

［The＂pattern＂is particularly clear in this picture．］

Record your results on your work sheet．

事事家
Do these exercises on your work sheet．
Set A：See the picture
Rule：$(x, y) \rightarrow(y, x)$
Make one move from each point in set A ．
Call the new set＇ X ＇．
（1）Plot the points in set X on the same diagram with set A and indicate the moves．［Try to do this exercise first， but if you have trouble，do Exercises （2）and（3）first．］

Set A
（2） $\mathrm{A}=\{\ldots$ ？$\}$［List the members of set A.$]$
（3）$X=\{\ldots \quad$ ？$\}$［List the members of set X ．］
$\therefore \quad 3$

Check your answers．

$$
\text { Rule: }(x, y) \rightarrow(y, x)
$$

Make one move from each pont in Ser A ．Call the new set＇X＇．
（1）
（2）$A=\{(0,-2),(0,-1),(1,0),(2,1),(3,1)\}$
（3）$x=\{(-2,0),(-1,0),(0,1),(1,2),(1,3)\}$

米 米 兄
Record your results on your work sheet．

Do these exercises on your work sheet．

$$
\begin{aligned}
& \text { A: the set pictured at right } \\
& \text { Rule: }(x, y) \rightarrow(y, x)
\end{aligned}
$$

Make one move from each point in set A ．
Call the new set＇ X ＇．
（1）Plot the points in set X on the same diagram with set A and indicate
the moves．
（2）$A=$ \｛ \qquad \} [List set A.]

（3）$X=\{\ldots$ ？$\}$［List set X ．］
（4）Draw a dashed line through the dots corresponding to the points in set D ，where

$$
D=\{(x, y), x \text { and } y \text { integers: } y=x\}
$$

Check your answers.

$$
\text { Rule: }(x, y) \rightarrow(y, x)
$$

Make one move from each point in set A. Call the new set ' X '.

Record your results on your work sheet.
当 家

The exercises above should help you see the pattern involved in making a move according to the rule:

$$
(x, y) \rightarrow(y, x)
$$

Notice the dot with the loop around it in the picture below. If you make one move from this point according to the rule:

$$
(x, y) \rightarrow(y, x)
$$

where do you think you would end up?

$$
\text { Point }(1) ? \quad \text { Point (2) ? Point (3)? }
$$

Circle the answer on your work sheet.

Check your answer．
（2）
Rule：$(x, y) \rightarrow(y, x)$

Record your result on your work sheet．
头 次 头

Notice the dot with the loop around it in the picture below．If you make one move from this point according to the rule：

$$
(x, y) \rightarrow(y, x)
$$

where do you think you would end up？

Point（1）？Point（2）？Point（3）？

Circle the answer on your work sheet．

Turn to PAGE 41.

Check your answer.

Rule: (x, y) $\rightarrow(y, x)$

Record your result on your work sheet.

$$
\text { 头 } \because 甘
$$

Which of the marked points (1), (2), or (3) would be the starting point if you made one move according to the rule:

$$
(x, y) \rightarrow(y, x)
$$

and ended at the dot with the cross-mark through it?

Circle the answer on your work sheet.
(3)

Turn to PAGE 42.

Check your answer.

(1)

Rule: $(x, y) \rightarrow(y, x)$

Record your result on your work sheet.

米 * 头

If you make one move from the point labled as the start point according to the rule:

$$
(x, y) \rightarrow(y, x)
$$

where do you finish?
Point (1)? Point (2)? Point (3)?

Circle the answer on your work sheê.

Turn to PAGE 43.

Check your answer.

Rule: (x, y) $\rightarrow(y, x)$

Record your result on your work sheet.

$$
\% \text { 米 }
$$

Use your eye and mark a dot on the picture on your work sheet ro show where you finish if you make one move from the point labeled Start according to the rile:

$$
\{x, y\} \rightarrow\{y, x\}
$$

[^0]Check your answer．

Rule：$(x, y) \rightarrow(y, x)$

You are right if your mark would be within the boundry indicated．

Record your result on your work sheet．
米水米

Use your eye and mark a dot on the picture on your work sheet to show where you finish if you make one move from the start point according to the rule：

$$
(x, y) \rightarrow(y, x)
$$

［Hint．A＂move＂might not move you at all．］

Check your answer．

Rule：$(x, y) \rightarrow(y, x)$

Record your result on your work sheet．
头次次

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule：

$$
(x, y) \rightarrow(y, x)
$$

Turn to PAGE 46.

Check your answer．

Rule：（ x, y ）$\rightarrow(y, x)$

Record your result on your work sheet．
米 米 米

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule：

$$
(x, y) \rightarrow(y, x)
$$

Turn to PAGE 47.

Check your answer．

Rule：（ x, y ）$\rightarrow(\mathrm{y}, \mathrm{x})$

Record your result on your work sheet．
头 头 亲

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule：

$$
(x, y) \rightarrow(y, x)
$$

Check your answer．

Rule：$(x, y) \rightarrow(y, x)$

Record your result on your work sheet．
头 决 关

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule：

$$
(x, y) \rightarrow(y, x)
$$

Check your answer.

Rule: (x, y) $\rightarrow(y, x)$

Record your result on your work sheet.
光 * 录

Use your eye and mark dots on the picture on your work sheet to show where you finish if you make one move from each point indicated by a loop according to the rule:

$$
(x, y) \rightarrow(y, x)
$$

Turn to PAGE 50.

Check your answer．

Rule：$(x, y) \rightarrow(y, x)$

Record your result on your work sheet．
头 头 米

Do this exercise on your work sheet．

Set A is the set pictured．
Rule：$(x, y) \rightarrow(y, x)$

Make one move from each point in set A．Use cross－marks to indicate the new set．

Set A

Check your answer．

$$
\text { Rule: }(x, y) \rightarrow(y, x)
$$

Record your result on your work sheet．
光 米 米

Do this exercise on your work sheet．

Set A is the set pictured．
Rule：$(x, y) \rightarrow(y, x)$

Make one move from each point in set A ．Use cross－marks to indicate the new set．

Set A

Turn to PAGE 52.

Check your answer．

Set A is the set pictured．

Rule：$(x, y) \rightarrow(y, x)$

Solution．

Record your result on your work sheet．

> 承 水 林

Do this exercise on your work sheet．

Set A：see picture
Rule：$(x, y) \rightarrow(y, x)$

Make one move from each point in set A．Use cross－marks to indicate the new set．

Set A

Check your answer．

Rule：$(x, y) \rightarrow(y, x)$

Set A

Solution

Record your result on your work sheet．
头 光 米

Do this exercise on your work sheet．

Set A：see picture

Rule：$(x, y) \rightarrow(y, x)$

Make one move from each point in set A ．Use cross－marks to indicate the new set．

Set A
$1 \quad!$

Check your answex.
Rule: $(x, y) \rightarrow(y, x)$
Record your results on your work sheet.

$$
\because \% \text { 茹 }
$$

Suppose that for each set pictured below, one move was made from each point in
the set according to the rule:

[^1]Turn to PAGE 55.

Turn to PAGE 56.

As you have probably seen from the preceding exercises, when you make one move from a point according to the rule:

$$
(x, y) \rightarrow(y, x)
$$

you go straight toward the graph of the line through set D, where

$$
D=\{(x, y), x \text { and } y \text { integers: } x=y\}
$$

and beyond it. The new point is the same distance from the line as the starting point is.

Turn to PAGE 57.

Do these exercises on your work sheet.

$$
\begin{aligned}
& A=\{(2,3),(3,4)\} \\
& B=\{(2,4),(3,4),(4,4)\} \\
& \text { Rule: }(x, y) \rightarrow(y, x)
\end{aligned}
$$

(1) $A \cup B=\{$ \qquad \}
(2) Make one move from each point in set A. Call the new set ' X '. Then $\mathrm{X}=\{$? \}.
(3) Make one move from each point in set B. Call the new set ' Y '. Then $Y=\{$? \}.
(4) If one move is made from each point in set $A \cup B$ then the new set is \{ \qquad \}.
(5) $X \cup Y=\{$ \qquad \}

Turn to PAGE 58.

```
! - & !
```

$\because \because \quad \because$

Check your answers．

$$
\begin{aligned}
& \begin{aligned}
& A=\{(2,3),(3,4)\} \\
& B=\{(2,4),(3,4),(4,4)\} \\
& \text { Rule: }(x, y)-(y, x)
\end{aligned}
\end{aligned}
$$

（1） $\mathrm{A} \cup \mathrm{B}=\{(2,3),(3,4),(2,4),(4,4)\}$ ．
（2）Make one move from each point in set A ．Call the new set＇X＇． Then $X=\{(3,2),(4,3)\}$ ．
（3）Make one move from each point in set B ．Call the new set＇Y＇． Then $Y=\{(4,2),(4,3),(4,4)\}$ ．
（4）If one move is made from each point in set $A \cup B$ then the new set is $\{(3,2),(4,3),(4,2),(4,4)\}$ ．
（5）$X \cup Y=\{(3,2),(4,3),(4,2),(4,4)\}$ ［Compare the answers to Exercises（4）and（5）．］
米 米 次

Do these exercises on your work sheet．

$$
\begin{aligned}
& A=\{(1,1),(2,2),(-3,-1)\} \\
& B=\{(-1,-2),(2,2),(-3,-1)\} \\
& \text { Rule: }(x, y) \rightarrow(2 x+1,3 y)
\end{aligned}
$$

（1）$A \cup B=\{$ \qquad \}
（2）Make $2 \underline{\text { moves }}$ from each point in set A ．Call the new set＇X＇． Then $X=\{$ \qquad $\}$.
（3）Make 2 moves from each point in set B ．Call the new set＇Y＇． Then $Y=\{$ \qquad \}.
（4）If 2 moves are made from each point in set $A \cup B$ then the new set is \｛ \qquad \}. [See Exercise (1) for $A \cup B_{\text {。 }}$ ］
（5）$X \cup Y=\{$ \qquad \}

Check your answers．

$$
\begin{aligned}
& A=\{(1,1),(2,2),(-3,-1)\} \\
& B=\{(-1,-2),(2,2),(-3,-1)\} \\
& \text { Rule }:(x, y) \rightarrow(2 x+1,3 y)
\end{aligned}
$$

（1）$A \cup B=\{(1,1),(2,2),(-3,-1),(-1,-2)\}$
（2）Make 2 moves from each point in set A ．Call the new set＇X＇． Then $X=\{(7,9),(11,18),(-9,-9)\}$ ．
（3）Make 2 moves from each point in set B ．Call the new set＇Y＇． Then $Y=\{(-1,-18),(11,18),(-9,-9)\}$ ．
（4）If 2 moves are made from each point in set $A \cup B$ then the new set is $\{(7,9),(11,18),(-9,-9),(-1,-18)\}$ ．
（5）$X \cup Y=\{(7,9),(11,18),(-9,-9),(-1,-18)\}$ ．

Record your results on your work sheet．

> 米 头 米

Do this exercise on your work sheet．

Suppose that A and B are sets of points in the number plane lattice such that

$$
\begin{aligned}
& A \cup B=\{(1,3),(2,4),(-7,-3),(-5,-4)\} . \\
& \text { Rule }:\{x, y) \rightarrow(x+3,2 y-1)
\end{aligned}
$$

Make 3 moves from each point in set A ．Call the new set＇X＇． Make 3 moves from each point in set B ．Call the new set＇Y＇．

Then，$X \cup Y=$ \qquad ．

Turn to PAGE 60.

Check your answer．

Suppose that A and B are sets of points in the number plane lattice such that

$$
\begin{aligned}
& A \cup B=\{(1,3),(2,4),(-7,-3),(-5,-4)\} . \\
& \text { Rule: }(x, y) \rightarrow(x+3,2 y-1)
\end{aligned}
$$

Make 3 moves from each point in set A ．Call the new set＇X＇． Make 3 moves from each point in set B ．Call the new set＇Y＇． Then，$X \cup Y=\{(10,17),(11,25),(2,-31),(4,-39)\}$ ．

Record your result on your work sheet．
米 米 水

Suppose that A and B are sets of points in the number plane lattice and that one of the points in $A \cup B$ is $(5,11)$ ．

$$
\text { Rule: }(x, y) \rightarrow(2 x+1, y-3)
$$

Make 2 moves from each point in set A ．Call the new set＇X＇．
Make 2 moves from each point in set B ．Call the new set＇Y＇．

Answer this question your work sheet．
What is one of the points in $X \cup Y$ ？

Check your answer．

One of the points in $A \cup B$ is $(5,11)$ ．

$$
\text { Rule: }(x, y) \rightarrow(2 x+1, y-3)
$$

Make 2 moves from each point in set A ．Call the new set＇X＇． Make 2 moves from each point in set B ．Call the new set＇Y＇． Then one of the points in $X \cup Y$ is $(23,5)$ ． \square

Record your result on your work sheet．
光 头 氺

Suppose that A and B are sets of points in the number plane lattice and R is a moving rule．

From each point in set A ，make n moves according to rule R ．Let X be the new set．

From each point in set B ，make n moves according to rule R．Let Y be the new set．

It follows that n moves according to rule R from any point in $A \cup B$ takes you to a point in \qquad ．

Complete this last sentence on your work sheet．

Turn to PAGE 62.

Check your answer.

Suppose that A and B are sets of points in the nurnber plane lattice and R is a moving rule.

From each point in set A, make n moves according to rule R. Let X be the new set.

From each point in set B, make n moves according to rule R. Let Y be the new set.

It follows that n moves according to rule R from any point in $A \cup B$ takes you to a point in \qquad $X \cup Y$。

Record your result on your work sheet.

$$
\because \% \text { 米 }
$$

Suppose that A and B are sets of points in the number plane lattice and that $(-1,2)$ and $(3,-2)$ belong to $A \cup B$.

$$
\text { Rule: }(x, y) \rightarrow(x+3,2 y-1)
$$

Make 2 moves from each point in set A. Call the new set ' X '.
Make 2 moves from each point in set B. Call the new set ' Y '.
It follows that two points in $X \cup Y$ are \qquad and \qquad .

Complete this last sentence on your work sheet.

Turn to PAGE 63.

Check your answers．
$(-1,2)$ and $(3,-2)$ belong to $A \cup B$ ．

$$
\text { Rule: }(x, y)-(x+3,2 y-1)
$$

Make 2 moves from each point in set A ．Call the new set＇X＇．
Make 2 moves from each point in set B ．Call the new set＇Y＇．
It follows that two points in $X \cup Y$ are $\frac{(5,5)}{(1)}$ and $\frac{(9,-11)}{(2)}$ ．

Record your results on your work sheet．
米 宛 乐

Do this exercise on your work sheet．

Suppose that A and B are sets of points in the number plane lattice such that

$$
\begin{gathered}
A \cup B=\{(4,3),(4,4)\} \\
\text { Rule: }(x, y) \rightarrow(x+5,2 y-1)
\end{gathered}
$$

Make 2 moves from each point in set A ．Call the new set＇X＇． Make 2 moves from each point in set B ．Call the new set＇Y＇． It follows that $X \cup Y=$ \qquad ．

Turn to PAGE 64.

Check your answer.

$$
\begin{gathered}
A \cup B=\{(4,3),(4,4)\} \\
\text { Rule }:(x, y)-(x+5,2 y-1)
\end{gathered}
$$

Make 2 moves from each point in set A. Call the new set ' X '.
Miake 2 moves from each point in set B. Call the new set ' Y '.
It follows that $X \cup Y=\{(14,9),(14,13)\}$.

Record your result on your work sheet.
米

Do this exercise on your work sheet.
Suppose that A and B are sets of points ir the number plane lattice such that

$$
A \cup B=\{(a, b),(e, f)\},
$$

[Of course, a, b, e, and fare integers.]

$$
\text { Rule: }(x, y) \rightarrow(x+3,2 y+1)
$$

Make 2 moves from each point in set A. Call the new set ' X '.
Make 2 moves from each point in set B. Call the new set ' Y '.
Then, $X \cup Y=$ \qquad .

Turn to PAGE 65.

Check your answer.

Suppose that A and B are sets of points in the number plane lattice such that

$$
A \cup B=\{(a, b),(e, f)\}
$$

where a, b, e, and f are integers.

$$
\text { Rule: }(x, y) \rightarrow(x+3,2 y+1)
$$

Make 2 moves from each point in set A. Call the new set ' X '. Make 2 moves from each point in set B. Call the new set ' Y '.
Then, $X \cup Y=\{(a+6,4 b+3),(e+6,4 f+3)\}$.

Record your result on your work sheet.

Do these exercises on your work sheet.

$$
\begin{aligned}
& \text { Rule }:(m, n) \rightarrow(m, n+1) \\
& A=\{(x, y), x \text { and } y \text { integers: } x=3\}
\end{aligned}
$$

Make one move from each point in set A. Call the new set ' X '.
(1) Is set A finite? Yes or no?
(2) Is set X finite?

Yes or no?
(3) Is $(3,7)$ in set A ?
Yes or no?
(4) Is $(3,8)$ in set X ?

Yes or no?
(5) Is $(3,92)$ in set X ?

Yes or no?
(6) Is $(3,-4)$ in set X ? Yes or no?
(7) Find a point in set A which is not in set X.
(8) Find a point in set X which is not in set A.
(9) Give a brace-notation description of set X.

Check your answers．

$$
\begin{aligned}
& \text { Rule: }(m, n) \rightarrow(m, n+1) \\
& A=\{(x, y), x \text { and } y \text { integers: } x=3\}
\end{aligned}
$$

Make one move from each point in set A ．Call the new set＇X＇．
（1）Is set A finite？mo
（2）Is set X finite？No
（3）Is $(3,7)$ in set A ？yes
（4）Is $(3,8)$ in set X ？yes
（5）Is $(3,92)$ in set X ？yes
（6）Is $(3,-4)$ in set X ？yes
（7）［There is no point in set A which is not in set X ．］
（8）［There is no point in set X which is not in set A．］
（9）$X=\{(x, y), x$ and y integers：$x=3\}$

Record your results on your work sheet．
头光米

Do these exercises on your work sheet．

$$
\begin{aligned}
& \text { Rule: }(m, n) \rightarrow(m+3, n) \\
& A=\{(x, y), x \text { and } y \text { integers: } y=5\}
\end{aligned}
$$

Make one move from each point in set A ．Call the new set＇X＇．
（1）Is set A finite？Yes or no？
（2）Is set X finite？Yes or no？
（3）Give a brace－notation description of set X ．

Check your answers．

$$
\begin{aligned}
& \text { Rule: }(m, n) \rightarrow(m+3, n) \\
& A=\{(x, y), x \text { and } y \text { integers: } y=5\}
\end{aligned}
$$

Make one move from each point in set A ．Call the new set＇X＇．
（1）Is set A finite？no
（2）Is set X finite？no
（3）$x=\{(x, y), x$ and y integers：$y=5\}$

Record your results on your work sheet．
我宫电

Do these exercises on your work sheet．
Rule：$(\mathrm{m}, \mathrm{n}) \rightarrow(\mathrm{m}+2, \mathrm{n}+1)$
$A=\{(x, y), x$ and y integers：$x=3\}$
Make one move from each point in set A ．Call the new set＇X＇．
（1）Is set A finite？
（2）Is set X finite？
（3）Plot the points in each set on the same diagram and indicate the moves．［Remember，loops for A，cross－marks for X ，small arrows．］
（4）Give a brace－notation description of set X ．

Turn to PAGE 69．

$$
\because
$$

Check your answers．

$$
\begin{aligned}
& \text { Rule: }(m, n)-(m+2, n+1) \\
& A=\{(x, y), x \text { and } y \text { integers: } x=3\}
\end{aligned}
$$

Make one move from each point in set A ．Call the new set＇X＇．
（1）Is set A finite？No
（2）Is set X finite？$m \sigma$
（3）
（4）$X=\{(x, y), x$ and y integers：$\chi=5\}$

Record your results on your work sheet．

米 米 兄

Do this exercise on your work sheet．

$$
\begin{aligned}
& \text { Rule: }(m, n\rangle \rightarrow(m+2, n+1) \\
& A=\{(x, y), x \text { and } y \text { integers: } x=6\}
\end{aligned}
$$

Make three moves from each point in set A ．Call the new set＇X＇．

Describe set X ，using brace－notation．

Check your answer.

$$
\begin{aligned}
& \text { Rule: }(m, n) \rightarrow(m+2, n+1) \\
& A=\{(x, y), x \text { and } y \text { integers: } x=6\}
\end{aligned}
$$

Miake 3 moves from each point in set A. Call the new set ' X '.
$X=\{(x, y), x$ and y integers: $X=/ 2\}$

[After one move from each point in set A, the set selector of the description of the new set would be ' $x=8$ '. After 2 moves it would be ' $x=10$ '. So, after 3 moves it would be ' $x=12$ '.]

Record your result on your work sheet.
头

Do these exercises on your work sheet.

$$
\begin{aligned}
& \text { Rule: }(m, n) \rightarrow(m+1, n+1) \\
& A=\{(x, y), x \text { and } y \text { integers: } x+y=y+x\}
\end{aligned}
$$

Make one move from each point in set A. Call the new set ' X '. Write 'true' in the blank if the statement is true. Write 'false' in the blank if the statement is false.
(1) Set A is the number plane lattice itself.
(2) Set A is infinite.
(3) Set X is the number plane lattice itself.
(4) Set X is infinite.
(5) Give a brace-notation description of set X .

Check your answers.

$$
\begin{aligned}
& \text { Rule }:(m, n) \rightarrow(m+1, n+1) \\
& A=\{(x, y), x \text { and } y \text { integers }: x+y=y+x\}
\end{aligned}
$$

Make one move from each point in set A. Call the new set ' X '.
(1) Set A is the number plane lattice itself. \qquad true
(2) Set A is infinite. true
(3) Set X is the number plane lattice itself. \qquad true
(4) Set X is infinite. tue
(5) [Any description which names the set of all ordered pairs of integers is correct.]

Record your results on your work sheet.
光 米

For each point listed below in Exercises (1) - (6), write 'yes' if the point belongs to set A, and write 'no' if the point does not belong to set A, where

$$
A=\left\{(x, y), x \text { and } y \text { integers: } x^{2}+y^{2}=9\right\}
$$

Do these exercises on your work sheet.
(1) $(3,0)$
(2) $(0,-3)$
(3) $(2,7)$
(4) $(-3,0)$
(5) $(5,4)$
$(6)(0,3)$
(7) $n(A)=$? \quad Remember, ' $n(A)$ ' means the number of elements in A.]

Check your answers.

$$
A=\left\{(x, y), x \text { and } y \text { integers: } x^{2}+y^{2}=9\right\}
$$

(1) $(3,0)$ yes
(2) $(0,-3)$ yea
(3) $(2,7)$ mo
(4) $(-3,0)$ yes
$(5)(5,4)$ \qquad
(6) $(0,3)$ yes
(7) $n(A)=4$

Record your results on your work sheet.

For each point listed below in Exercises (1) - (6), write 'yes' if the point belongs to set A, and write 'no' if the point does not belong to set A. where

$$
A=\left\{(x, y), x \text { and } y \text { integers: } x^{2} \div y^{2}=25\right\} .
$$

Do these exercises on your work sheet.
(1) $(-5,0)$
(2) $(3,-4)$
(3) $(25,0)$
(4) $(-4,-3)$
$(5)(0,5)$
(6) $(16,9)$
(7) Plot all of the points in set A. There are a total of 12 points in set A.

Turn to PAGE 73.

Check your answers.

$$
A=\left\{(x, y), x \text { and } y \text { integers: } x^{2}+y^{2}=25\right\}
$$

(1) $(-5,0)$ yes
(2) $(3,-4)$ yed
(3) $(25,0) \cdots$
(4) $(-4,-3)$

(5) $(0,5)$ yes
(6) $(16,9)$ nos
(7)

Look at Answer (7) above. Notice that the points in set A are arranged on the circle with center at $(0,0)$ and radius 5 .

Do these exerciscs on your work sheet.

$$
\begin{aligned}
& A=\left\{(x, y), x \text { and } y \text { integers: } x^{2}+y^{2}=25\right\} \\
& \text { Rule: }(m, n) \rightarrow\{m+2, n ;
\end{aligned}
$$

Make one move from each poin in set A. Call the new set ' X '.
(1) Plot the points in each sei on the same diagram and indicate the moves. [Loops for A, cross-marks for X.]
(2) Which of the sets described below is set X ?

$$
\begin{aligned}
& \left\{(x, y), x \text { and } y \text { integers: }(x-2)^{2}+y^{2}=25\right\} \\
& \left\{(x, y), x \text { and } y \text { integers: }(x+2)^{2}+y^{2}=25\right\}
\end{aligned}
$$

(3) The points in set X are arranged on the circle with center at ? and radius _?
;

Check your answers.

$$
\begin{aligned}
& A=\left\{(x, y), x \text { and y integers: } x^{2}+y^{2}=25\right\} \\
& \text { Rule: }(m, n) \rightarrow(m+2, n)
\end{aligned}
$$

Make one move from each point in set A. Call the new set ' X '.
(1)

$$
0 \rightarrow-x
$$

$\bigcirc \rightarrow-4$
$0 \rightarrow \times$
$0-\cdots$
$\vdots!$
(2) $x=\left\{(x, y), x\right.$ and y integers: $\left.(x-2)^{2}+y^{2}=25\right\}$
(3) The points in set X are arranged on the circle with center at $\frac{(2,0)}{(a)}$
and radius 5 . and adius $\frac{5}{(b)}$.

Record your resuits an your work sheet.

$$
\therefore \because \because \because
$$

Do these exercises on your work sheet.

$$
\begin{aligned}
& A=\left\{(x, y), x \text { and } y \text { integers: } x^{2}+y^{2}=25\right\} \\
& \text { Rule: }(m, n) \rightarrow(m+2, n-3)
\end{aligned}
$$

Make wo moves form each point in set A. Call the new set ' X '.
(1) Plot the points in each set on the same diagram.
(2) The points in set X are arranged on the circle with center at \qquad and radius \qquad ? .
${ }^{f}(3) \quad X=\{(x, y\}, x$ and y integers:
 ;

$$
\text { Turn to PAGE } 25 .
$$

Check your answers.

$$
\begin{aligned}
& A=\left\{(x, y), x \text { and } y \text { integers: } x^{2}+y^{2}=25\right\} \\
& \text { Rule: }(m, n) \rightarrow(m+2, n-3)
\end{aligned}
$$

Make two moves from each point in set A. Call the new set ' X '.
(1)

(2) The points in set X are arranged on the circle with center at $\frac{(4,-6)}{(a)}$ and radius \qquad .
${ }^{4}(3) X=\left\{(x, y), x\right.$ and y integers: $\left.(x-4)^{2}+(y+6)^{2}=25\right\}$
If you tried Exercise (3) and got it right, turn to PAGE 76.

Otherwise, this is the end of Part 43. Put your work sheet under the front cover of this booklet, and return it to your teacher.

Do this exercise on your work sheet.
$A=\left\{(x, y), x\right.$ and y integers: $\left.2 x^{2}+7 x y+6 y^{2}=0\right\}$
Rule: $(x, y) \rightarrow(x+a, y-b), a$ and b are integers

Make n moves from each point in set A. Call the new set ' X '.

Write abrace-notation description of set X.

Turn to PAGE 77.
\therefore

Check your answer.

$$
\begin{aligned}
& A=\left\{(x, y), x \text { and } y \text { integers: } 2 x^{2}+7 x y+6 y^{2}=0\right\} \\
& \text { Rule: }(x, y) \rightarrow(x+a, y-b), \text { a and } b \text { integers }
\end{aligned}
$$

Make n moves from each point in set A. Call the new set ' X '.
$x=\left\{(x, y), x\right.$ and y integers: $\left.2(x-n a)^{2}+7(x-n a)(y+n b)+6(y+n b)^{2}=0\right\}$

Put your work sheet under the front cover of this booklet, and return it to your teacher.
\checkmark

PART 43
WORK SHEET

Name
School
Date \qquad

Page 3

Page 3
1
Second jump: From $(3,2)$ to (___ , __ $)$
\qquad
Second jump: From $(3,2)$ to (___ , __ $)$
\qquad
Second jump: From $(3,2)$ to (___ , ___
(1) First jump: From (4, 1) to (3, 2)
(2) Finish: \qquad

Page 4
(1) First jump: From $(0,1)$ to $(3,1)$

Second jump: From $(3,1)$ to $($ \qquad , \qquad)
(2) Third jump: From \qquad , \qquad) to \qquad , \qquad)

Page 4
1
23
OK
(3) Finish: \qquad
(4)

OK

WORK SHEET
Name \qquad
Part 43
$\frac{\text { Answers }}{\text { Page 8 }}$

Page 9

(1) First move takes you to (1, 0)

Second move takes you to 1 \qquad , \qquad 1.
(2) Third move takes you to (\qquad , \qquad $)$
(3) Final point: \qquad
(4)

Page 10
The final point is \qquad -

Page 11

Page 10
\checkmark
OK

Page 11
1

2

OK
,...: : : :. .

1 ! $\quad i^{2}$
\therefore

\qquad
Part 43

Page 13

Page 13
\checkmark OK

Page 14
$\sqrt{ } \quad \mathrm{OK}$

Page 15

Page 15
(1) After 2 moves: $(1,8)$ After 1 move: $(3, \ldots, \quad)$
(2) Start: \qquad , _
\square - j6as
\qquad
Part 43

Result Check Page 16

After 3 moves: (-3 , \qquad
(2) After 2 moves: \qquad , \qquad _)
(3) After 1 move: \qquad , \qquad)
(4) Start: \qquad , \qquad)

Page 17
Page 17

After 2 moves: (7, ___)
\qquad)
(2) After 1 move: $($ \qquad , \qquad)
(3) Start: \qquad , \qquad)

Page 18
(1) After 2 moves: (11, 3) After 1 move: (5, \qquad
(2) Start: \qquad , \qquad)

Page 19

(1) After 3 moves: (15, -3)
 \square \therefore.
\qquad
\qquad
Part 43

Answers	
Page 20	
	. $\cdot 8$
	- .
	. 6
	- .
	- $\cdot 4$
	- .
	- 2
	-
	-2

Page 21

Part 43

Page 24

$$
\text { Rule }(x, y) \rightarrow(2 x+5,3-2 y)
$$

After 3 moves, the final point is (19, -15).
Starting point: \qquad

WORK SHEET
Part 43
Answers

Result Check

After 3 moves:
After 2 moves:
After 1 move:
Start:

Page 26
(1) From (2, 2), you move to (\qquad $+$ \qquad , \qquad - ___) or \qquad , \qquad).
(2) $\mathrm{X}=\{$ \qquad , \qquad , \qquad \}

Page 27
(1) $X=\{$ \qquad , \qquad , \qquad , \qquad \}
(2)


```
Ausma Meag
II
O MST
```

\qquad
Part 43

Page 29
(1) $\mathrm{A}=\{$ \qquad \}
(2) $X=\{$
 \}
(3)

(4) $X=\{(x, y), x$ and y integer $s:$ \qquad and $x=1\}$

Page 29

1

2

3
\qquad
Part 43

$$
\therefore \quad, \quad i \vdots, 1<c: l)
$$

$\therefore \%$
\therefore

$$
\begin{align*}
& \left.\therefore-1 \quad \because \quad=\left(\begin{array}{ll}
8 & \therefore
\end{array}\right)\right\}
\end{align*}
$$

$\therefore \quad \therefore=$.
$\therefore E=$
\qquad $\because \quad 4$ $\therefore: 1 \because \quad 3!+$
\qquad白

\qquad
Part 43

Result Check
Page 35

1

2
OK

Page 36
1

2
3 OK

Page 37

Page 37
(1)
(4) [Use Jia ram in
Exercise (1).]

(2) $A=\{$
(3) $X=\{$
\qquad
Part 43

Answers			Result Check	
Page 39			Page 39	
Point (1)	Point (2)	Point (3)	- \checkmark	OK
Page 40			Page 40	
Point (1)	Point (2)	Point (3)	\checkmark	OK

Page 41

Point (1)
Point (2)
Point (3)

Page 42
Point (1)
Page 43
\odot

Page 44

```
*:3): \ %;
```

$$
\therefore: r i s
$$

$$
\therefore
$$

$\therefore \therefore$

$$
\text { F! racua } \quad \text { :" }
$$

$$
x
$$

\qquad

Part 43

Page 46

Page 47

Page 48

Page 45
$\sqrt{ } \mathrm{OK}$
Result Check
OK
\therefore : $\because+\sqrt{4}$

cto era

55?
\qquad
Part 43

Answers
Page 49

Page 50

Page 51

Page 50
\checkmark OK
$\checkmark \quad \mathrm{OK}$

Page 51
$\checkmark \quad$ OK

$\because \because$
 ㄷ..

Q

14
4)

-	1	\%	,	11	1	-	1
1	,	ris	,	1	,	,	-
γ	1	\because	1	18	1	1	,
,	-	,	*	¢	\checkmark		1
"	*	-	1		"	\because	-.
?	,	$\begin{aligned} & i \\ & i \end{aligned}$.			S	,
1	,	\div	-			,	1
4	6	-	ช	\checkmark	,	\checkmark	1

\qquad
Part 43

Page 53

Page 54

$$
\text { Set } A \quad \text { Set } B \quad \text { Set } C
$$

Page 57

Page 53
\checkmark OK

Page 54
$\sqrt{ } \quad$ OK

Page 57
(1) $A \cup B=\{$ \qquad , \qquad , \qquad _ \}
(2) $X=\{$ \qquad , \qquad \}
(3) $Y=\{$ \qquad , \qquad , \qquad \}
(4) If one move is made from each point in set $A \cup B$ then the new set is \qquad , \qquad , \qquad。 \qquad
(5) $X \cup Y=\{$ \qquad , \qquad , \qquad , \qquad \}
\qquad
Part 43
Page 58
(1) $A \cup B=\{$
(2) $\quad X=\{$
(3) $\quad Y=\{\ldots\}$
(4) If 2 moves are made from each point in set $A \cup B$
(5) $X \cup Y=\{$

Page 59

$X \cup Y=$ \qquad

Page 60
Onc of the points in $X \cup Y$ is \qquad .

Page 61

It follows that n moves according to rule R from any point in $A \cup B$ take you to a point in \qquad -

Page 62
It follows that two points in $\mathrm{X} \cup \mathrm{Y}$ are \qquad
Result Check

2
3
4

5

Page 59
\checkmark OK

Page 60
\checkmark OK

Page 61
. V OK

Page 62

12 OK

Page 63
\checkmark OK

Page 64
$\sqrt{ }$ OK
\qquad
Part 43

Result Check
Page 66
(1)
(2) \qquad
(4) \qquad
(6) \qquad is a point in set A which is not in set X; [or] There is no point in set A which is not in set X.
(8) \qquad is a point in set X which is not in set A; [or]
There is no point in set X which is not in set A.
(9) $X=\{(x, y), x$ and y integers: \qquad \}

Page 67

(1) \qquad (2) \qquad
(3) $X=\{(x, y), x$ and y integers: \qquad \}

Page 68
(1) \qquad (2) \qquad
(3)

(4) $\mathrm{X}=\{(\mathrm{x}, \mathrm{y}), \mathrm{x}$ and y integers: \qquad \}

12
34
56

7

8

9 CK

Page 67
12
3
OK

Page 68
12

3

\qquad
Part 43
$=$ Answers
$\mathrm{X}=\{(\mathrm{x}, \mathrm{y}), \mathrm{x}$ and y integers: \qquad \}
[After one move, the set selector of the description of the new set would be ' $x=8$ '.]

Result Check Page 69
$\checkmark \quad O K$

Page 70
12
34
OK
5

Page 71
123
456
7
OK

Page 72
123
456

7
OK

- 1. . \square
\qquad
Part 43

\qquad
Part 43

$\dot{H}(3) X=\{(x, y), x$ and y integers: \qquad \}

Page 76

Page 76
\checkmark
OK
\qquad $\because \because \cdots \quad \because \because$!
$3 \quad 3$

[^0]: Turn to PAGE 4d.

[^1]: $$
 (x, y) \rightarrow(y, x)
 $$

