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^ V/hen Mr. Jones hears no response to his request "Call out 'absent'

if your follower is absent", he knows precisely that the property

expressed by (1) is hereditary. From this he knows that if any student

is present then so is every student whose name follows this one's name

alphabetically. (It may still be the case that Mr. Jones is alone in

the assembly hall'.) Hence, in order to know that (2) is true it is

sufficient that he check on Bill Aaron.

If someone calls out 'absent' then Mr. Jones knows that the

property expressed by (1) is not hereditary. He knows then that some-

one is present whose follower is absent. If there is only one call,

he knows that the absentees form a group of one or more "consecu-

tive" students. In fact if there are calls of 'absent' then the number

of calls is the number of such groups of absentees.

Exercises

1. -2. See discussion above.

3. Bill Aaron is the only absentee.

4. (a) The absentees form a block of consecutive students

(starting with Bill Aaron, of course). [In an extreme case

there may be no students present.
]

(b) Yes. In this case the first ten students would necessarily

be among the absentees.

(c) Yes. In this case every student would be absent.

T. C. IB Unit One, Third Course
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Before reading further in the Com:.Tient ^.ry you should read rapidly

through Sections 1. 01, 1. 02, and 1. 03. The illustration on page 1-1

embodies many of the ideac v/hich sre introduced later in the unit.

You should become fb.rail-'.ar with the new terms in those sections

as you read the follov/ing discussion.

vi^ ^1..

'i"> '1^

Mr. Jon3s v/islies to hnow whether every student at Zabranchburg

High School has the property expressed by:

(1) ... is present today

or, in other words, v/hether the generalization:

(2) Every student is present today.

is true.

He does this by introducing the notion of follower which permits

him to ask the pertinent question:

Is the property expressed by (1) hereditary?

That is, is it the ci£.-e, for each student S who has a follower, that

if S is present tod?.y then so is his follower? He knows that if the

answer to this question is 'yes', and Bill Aaron is present, then

(2) is true.

One v/ay he might explain his certainty is by saying that if anyone

were absent, there would be an alphabetically first absentee; that if

Bill Aaron were present then this first absentee would have to be

someone's follower: ?.nd that in this case this "someone" would then

be present but his follower E.bsent--so the property of being present

would not be hereditary. Hence, if Bill Aaron has the property

expressed by (1), and this property is hereditary, then every student

has the property in question.

[As you have juct seen, v/hat is essential for this argximent is

that every non-empty subset of the set of students have a member who

is not the follower of any member of this subset. As long as

'follower' is defined in such a way that this is the case, every

property which is hereditary with respect to this notion of follower,

and which holds for every student who is no one's follower, holds

for every student.]
, ^. , ^ _ ,_,' •• (continued on T. C. IB)

T. C. lA TTnit One. TV-irH r.ovrse
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1.01 If for one then for the next.- -Mr. Jones, principal of Zabranchburg

High School, likes to keep track of how many assemblies have perfect

attendance. He has an interesting way of finding out whether everyone is

present at an assembly. At the beginning of the school year all of the

students in school line up in "alphabetical order". Each student in the

school (except Dick Zilch who is last in line) memorizes the name of

his FOLLOWER (the student directly behind him) and is responsible for

reporting the absence of his FOLLOWER throughout the year.

Each time the students are seated in the auditorium, Mr. Jones

first checks to see that Bill Aaron (who was first in the original "line-up')*

is present. Then Mr. Jones instructs the audience:

"Call out 'absent' if your FOLLOWER is absent. "

No one calls out 'absent'. What can Mr. Jones conclude?

EXERCISES

A. Answer the following questions about Mr. Jones' way of checking for

perfect attendance.

1. Why does Mr. Jones check to see if Bill Aaron is present? Could

Bill Aaron be absent and no one call out 'absent'?

2. If after Mr. Jones makes his request, he hears exactly one call,

would he be correct in cbnclu^ding that exactly one student is absent?

3. On one assembly day Bill Aaron is absent but his FOLLOWER is

present. Mr. Jones notes this fact and then asks each student to

call out if his FOLLOV/ER is absent. No one calls out. What can

he conclude ?

4. On anoth'er assembly day Bill Aaron is again absent. Mr. Jones

notes this fact and then asks each student to call out if his FOLLOWER
is absent.

(a) No one calls out. What can Mr. Jones conclude?

(b) Could ten people be absent and no one call out?

(c) Could Dick Zilch be absent and no one call out?

UICSM-2-56, Third Course
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^xercises

1. Mr. Jones' conclusion is colnreci

2. In this case Mr. Jones is vrong. There are 299 counter-

examples: student 1 is the only absentee; students 1 and 2 are the

only absentees; . . . ; students 1 through 299 are the only absentees.

The strongest conclusion that Mr. Jones can draw is that either one

of these 299 possibilities is the case or that all students are present.

He might, for example, say that if any students are absent then those

who are present are precisely those whose numbers follow that of the

"last" absentee, and that student 300 is among these. Or he might

draw the weaker conclusion that all students with numbers > 300 are

present.

3. Correct. In this case, for every student S / 1, S's follower

may be defined to be student S - 1, and, if so, the conditions mentioned

in the bracket on T. C. lA are satisfied.

4. Mr. Jones is again in error. The situation now is essentially

the same as that in Exercise 2. There are now precisely 627 counter-

examples.

5. Similar to Exercise 2.

6. Mr. Jones' instructions are not quite complete, but he obviously

means they should apply to all students except student 1 and student 628.

With this understanding, students 250 and 251 are not "followers" of any

students and, to justify his conclusion, it would be necessary to deter-

mine that these two are present. In the actual situation there are

250 X 378 counter-examples, and the most that Mr. Jones can conclude

is that the absentees, if any , form a block of consecutive students to

which one or both of students 250 and 251 belong.

T. C. 2A Unit One, Third Course
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B. There are other ways in which Mr. Jones could check for perfect

attendance. He could line the students up in any way (without

bothering to get therri into alphabetical order) and then assign

numbers in succession to the students. The first student in line

is student 1, the second student is student 2, and so on with, say,

student 628 being the last student in line. Each student remennbers

his number

.

Below are described various methods Mr, Jones could use when

the students have been numbered as described above. Some of the

methods work and some do not. For the methods which do not work,

find a counter-example, an example showing that students could be

absent when Mr. Jones concludes that they are all present. In

such cases, if there is a conclusion which Mr. Jones could make,

tell it.

1. Mr. Jones cl.^cks that student 1 is present. Then he gives

the instructions: "Ever/ student S except 628 check if

student S + 1 is present. If he isn't, call out 'absent'. "

Mr. Jones hears no calls so he concludes that every student

is present.

2. Mr. Jones chrcks that student 300 is present and gives the

same instructions a.T above. There are no calls; he concludes

that every student is present.

3. Mr. Jones checks that student 628 is present and then gives

the instructions; ''Every student S except 1 check if student

S - 1 is present. " There are no calls and he concludes that

everyone is present.

4. Mr. Jones gives the came instructions as in Exercise 3 and

checks that scudent 1 is present. No calls. He concludes that

everyone is present,

5. Mr. Jones gives the sanie instructions as in Exercise 3 and

checks that student 475 is present. No calls. He concludes

that everyone is present.

6. Mr. Jones gives the instructions: "Every student S, for

S > 250, check if student S + 1 is present; every student S, for

S < 250, check if student S - 1 is present. " No calls. He

concludes that every student is present,

(continued on next page)

UICSM-2-56, Third Course
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7. Mr. Jones' conclusion follows from the evidence.

vl, vl, -'^
'i- 'f 'I-

Part C

1. Student 628 has no follower; student 1 is no one's follower.

2. Student 1 has no follower; student 628 is no one's follower.

3. Student 252 is the follower of student 251; student 249 is

the follower of student 250; student 1 has no follower; student 1 is

the follower of student 2; student 628 is the follower of student 627;

student 628 has no follower; students 250 and 251 are not followers.

4. Student 3 is the follower of student 1; student 4 is the follower

of student 2; student 627 has no follower; the follower of student 626

is student 628,

5. No one.

xl, nI^ -j^
'r 'r 'I-

Part D

The three preceding parts have explored the method of estab-

lishing universal generalizations which was discussed on T. C. lA

and IB. As indicated on T. C. lA, such generalizations assert that

some property holds for every member of a certain set , i. e. , that

every member of this set has the property in question. An instance

of a generalization of this type is a sentence which asserts that some

named member of the set has the property. For example, 'Bill Aaron

is present today' is an instance of 'Every student is present today'.

The property in question is that of being present today. We shall also

say that the property in question is that which is expressed by the

expression "... is present today'. [The circumlocutions 'that of being . . .

'

and 'expressed by '. . .
' 'are necessitated by the fact that most of the

properties which can be referred to in English (or in any other "natural"

language) have no English names. Perhaps the closest one can come

to an English name for the property in our example is 'present-today-ness'

,

If this is accepted then one can say that the property in question is_

present-today-ness. ]

T.C. 3A Unit One, Third Course
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7. Mr. Jones chides that students 1 and 2 are present. Then

he gives the instructions: "Every student S except 627 and 628

check if student S + Z is present, " No calls. Mr. Jones con-

cludes that every student is present.

C. In Exercise 1 of Part B each scudent is told to check on his FOLLOWER
by looking for the student who has been assigned the next higher

number. Student I's FOLLOWER is student 2, student 2's FOLLOWER
is student 3, etc.

In Exercise 3 the student makes a different interpretation of

•FOLLOWER'. In that case student 628's FOLLOWER is student

627, student 627*3 FOLLOWER is student 626, etc.

Notice that no student has more than one FOLLOWER.
1. Which student does not have a FOLLOWER in Exercise 1?

",'..--.
.1 student is not a FOLLOWER in Exercise 1?

2. Which student does not have a FOLLOV/ER in Exercise 3?

Which stndern: is not a FOLLOWER in Exercise 3?

3. Who is the FOLLOWER of student 251 in Exercise 6? Who is

the FOLLOWER of student 250? Does student 1 have a FOLLOWER?
Does student 2 have a FOLLOWER? Does student 627 have a

FOLLOWER? Does studsnt 628 have a FOLLOWER? Which

student is not a FOLLOWER?
4. In Exercise 7 who is the FOLLOWER of student 1? Of student 2?

Qf student 627? Of student 626 ?

5. For wtioni is it the case in Exercise 6 that he FOLLOWS his

FOLLOV/ER?

D. Many things can be said ol each of the students at Zabranchburg

High School- Take Bob Floogle, for example:

Bob is 6 feet tall, has blue eyes, is present

v/hen Mr. Jones checks for perfect attendance,

does well in mathematics, is co-captain of the

football team, lias a hi-fi set, etc.

UICSM-2-50, Thiid Course
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(e) This sentence can be analyzed in several ways. If taken as

asserting a property of a thing, the more usual interpretation would

be that it asserts that John has the property of loving Joan. An equally

correct interpretation would be that it asserts that Joan has the prop-

erty of being loved by John. A reason for preferring the first to the

second is that if, as has been done here, an English sentence is

analyzed as being of subject-predicate form then it is customary to

take as subject the name which first occurs in the sentence. With

this point of view, the first analysis would be more natural for (e)

while the second would be more natural for (f).

[A third way of analyzing the sentence in question is that it asserts

that John and Joan (in this order) have the relation expressed by

"... loves '. You should not go out of your way to head off this

analysis but, since we are interested in properties rather than in

relations, it should not be stressed.
]

(f) See discussion for (e).

(g) [This is a quotation from a poenm by Edward Lear, See

LAUGHABLE LYRICS (1888). ] The thing is the Pobble who has no

toes; the property is that expressed by '. . . swam across the Bristol

Channel'

.

(h) (The operation of) addition of integers; comnnutativity,

(i) Truth; that of being beautiful, or beauty. [An alternative

rendering of the same sentiment is: Truth has beauty.
]

(j) The last dodo; that expressed by "... died before 1628'.

(k) (3, 4, 5); that of being a Pythagorean triple or, in jest,

Pythagorean triplicity. [You nnay need to review the concept of

Pythagorean triples.
]

T. C. 4B Unit One, Third Course



:fji /. J f; ',');).

K

to-

•a I fVi

n..,'

><j.

;.rfi

'flic:' ::.
.

: vn :

ocf Jd.v-i

'HI .j-^.

jquivj af; :

a.i c ,'

•'il;J v...aji^ '-.iSiioI. yii?!'/, •.;

.

i<ii i/ji.'"..'.

•d i; tj ';..•• ;|y.fi ri y- '£'' ci '->''
••! '^^

'

. ;.i;f.>:jri . ., ...



Exercises 1 and 2 are intended to familiarize the student with

the notion of a property. In Exercise 3 we return to the concept of

"follower' and the question as to whether a given property is heredi-

tary [See page 1-8] with respect to a given definition of 'follower'.

1. One such statement is 'Bob Floogle goes steady with Mary

Jones'. The property in question is that of going steady with Mary

Jones and is expressed by '. . . goes steady with Mary Jones'. It has

no systematically formed name but it might be worthwhile bringing

out the point that it, like anything else, might be assigned a name if

it were expedient to do so. For example, we might decide to call it

'Bill'. This would of course require a definition, for example: 'Bill'

is a name for the property of going steady with Mary Jones, or:

'Bill' is a nanae for the property expressed by '. . . goes steady with

Mary Jones'. [But 'Bill' is not an abbreviation for '. . . goes steady

with Mary Jones' since the latter is not a name for the property in

question. ] So, a student who gives this example might indicate the

property in question by saying the following:

(a) The property is that of going steady with Mary Jones.

(b) The property is expressed by:

. . . goes steady with Mary Jones.

(c) The property is Bill.

[If he gives (c), and this is highly unlikely, then he would have to

supply a definition of 'Bill' such as we have given above.
]

2.

(a) The thing is George Washington; the property is that of

being a president of the United States.
t

(b) 2; evenness.

(c) Donald Duck; that of quacking, or that expressed by '. . . quacks'

(d) 2; primeness, or that of being prime, or that expressed by

'. . . is prime'. [You may need to review here the concept of prime

number. We use this concept later in the unit. A prime number is

a counting number other than 1 whose only divisors are itself and 1. ]

(continued on T. C. 4B)

T. C. 4A Unit One, Third Course
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Each of these facts can be stated in a single sentence. For

example :

(1) Bob Floogle has blue eyes.

(2) Bob Floogle is present when Mr. Jones checks for

perfect attendance.

(3) Bob Floogle is co-captain of the football team.

Each of these sentences states that Bob Floogle has a certain

property. Sentence (1) states that he has the property BLUE-

EYEDNESS. Sentence (Z) states that he has the property expressed

by:

... is present when Mr. Jones checks for perfect

attendance.

Sentence (3) states that he has the property of being co-captain

of the football teann.

1. Make up five other statements which might be true for Bob

Floogle and indicate in two or three ways what property of

Bob Floogle is referred to in each of your statements.

2. Each of the following sentences states that a certain thing has a

certain property. What is the thing? What is the property?

(a) George Washington was one of the presidents of the U.S.

(b) 2 is even.

(c) Donald Duck quacks.

(d) 2 is prime

.

(e) John loves Joan.

(f) Joan is loved by John.

(g) "The Pobble who has no toes swam across the Bristol Channel. "

(h) Addition of integers is commutative.

(i) Truth is beautiful.

(j) The last dodo died before 1628.

(k) (3, 4, 5) is a Pythagorean triple.

(continued on next page)
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In Exercise 3 we bring together in a formal way the notions of

set, follower, and property, and , without using the word, the notion

of hereditariness. The principal purpose of these exercises is to get

the student to state the question which he is told "to ask and to answer".

[Another purpose of these exercises is to give the student opportunities

to review mathematical ideas from earlier courses.] The student's

justification for his answer may be informal. In the case of Sample 1

we have given an informal justification. A more formal justification

is that, for every counting niimber n and for every counting number k,

if n = 2k + 1 then n + 2 = 2(k + 1) + 1. Hence, if n is odd then so is n + 2.

T. C. 5A Unit One, Third Course



[1.01] [1-5]

3. In checking for perfect attendance Mr. Jones found that it

was helpful to line the students up and if, say, Norman is

directly behind James, then to declare that Norman is James"

FOLLOWER. You will learn in this unit that such a procedure

of "lining things up" and introducing the notion of "FOLLOWER"
is often helpful in proving that each of the things in question

has a certain property. (In Mr. Jones' case this was the

property of being present at that assembly.)

In each of the following exercises you are given a set,

a definition of 'follower', and some properties. For each

of the properties you are to ask and to answer a question

of the form :

Is it the case that whenever a nnember of

the set has this property, then so does its

follower ?

Sample 1. Set: All of the counting numbers : 3, 2, 3, ...

Follower : For every counting number n,

n's follower is n + 2.

Property: ODDNESS
Solution . First, state the question in terms of the given

information

:

Is it the case that whenever a
counting number is odd, then the
result of adding 2 to it is also
odd?

You can answer this question from your knowledge of

counting numbers. The answer is 'yes'. In other words,

if any member of the set has this property, then so does

its follower

.

UICSM-2-56, Third Course



'Vrjtov/



\



1 + r
Suppose —=— were rational. Then

2 X —^— would be rational, and then

(2 X

2

1 + r
)-l would be rational also.

But, this is r. So, r would be rational.

But, v/e said that r was irrational, and

we know that an irrational real number

can't be a rational real number.

T.C. 6E Third Course, Unit 1
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No. Each number r such that -l<r< Oisa counter-

example. [After finding a fe>w counter-examples the stu-

dents should be able to describe the set of all counter-

examples . ]

(7) "Is it the case that, for every real number r, if r is

irrational (i.e., if r is an irrational real number) then
1 + r—=— is irrational?"

This is a good example of a situation where it is simpler

to replace a statement by its contrapositive . The statement

in question is :

1 + r
(i) if r is irrational then —=— is irrational

and this is equivalent to its contrapositive:
i + r

(ii) if —=— is rational then r is rational

(since 'not irrational' means rational).

Hence, we can reformulate the question as

case that, for every real number r, if —=

—

then r is rational?"

"Is it the

is rational

Now, the answer is obviously *yes ' since, for every real

number r, if —=— is rational then so is 2(—=— )-l which

is r. (cf, (4).)

[It may be desirable to stress the difference between (ii),

the contrapositive of (i), and:
1 + r

(iii) if —=— is irrational then r is irrational

which is the> converse of (i).]

Before dealing formally with the concept of contrapositive,

you nnight encourage the following informal justification:

T.C. 6D

(continued on T.C. 6E)

Third Course, Unit 1
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(3) **Is it the case that, for every real number r, if r = 1

then

Yes,

1 +
= 1?

1 +(1) _= 1,

(4) "Is it the case that for every real number r, if r is a

rational real number, then
1 +

is a rational real num-

ber ?
"

[Here you should review briefly the fact that a subset of

the real numbers is isomorphic to the set of rational num-

bers. This subset of the real numbers is called the set

of rational real numbers. For example, the real number
1 3
•=- corresponds to the rational nunaber •= and is a rational

real number. The sum or product of two rational real

numbers is a rational real number.]

Yes. For every rational real niomber r, 1 + r is a ration-
1 + r

al real number, and —=— is a rational real number.

(5) "Is it the case that, for every real number r, if r < 1

1 + r
then i-1^ < 1?"

Yes. Informal justification:

The midpoint of the interval r, 1 belongs

to the interval r, 1.

Formal justification:

For every real number r,

if r < 1 then r + 1 < 2,

and—=— < 1

.

(6) "Is it the case that, for every real number r, if r < «

1 + r
then -4-i < ?

'

'

T.C. 6C

(continued on T . C. 6D)
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vl^ ^1^ vl^
'1^ 'f w

(b) Students should discover that for every real number r, the

graph (on the number line) of
1 + r

(i.e., the graph of

r's follower) is the midpoint of the segment l,r.

(1) "Is it the case that, for every real number r, if 1 < r < 3

then 1 < ^
^

^
< 3?"

Yes. An informal justification: If r belongs to the seg-

ment 1, 3 then the segment 1, r is a subset of the segment

1, 3, and the midpoint of l,r belongs to 1, 3.

More formally:

For every real number r, if

1 r 3
1 < r < 3 then •=<•=•<•= and

l=i4i<i + £< U2 = 2< 3.

(2) "Is it the case that, for every real number r, if

|r - 1
I
< 3 - 1 = 2, then \^-^ " l| = i^-f^ I

< 2?"

Yes. An infornnal justification: If the segment l,r is

a subset of the interval -2, 3, then the midpoint of 1, r

belongs to -2, 3.

A more formal justification

For every real number r, if

-2 < r - 1 < 2 then
2 2 2

or -1 <
1
< 1. Since -2 < -1

T.C. 6B

and 1 < 2, it follows that

r - 1
-2 < ^ < 2.

(continued on T. C. 6C)
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Note that in Sample 2 the counter-example is a number, the num-

ber Z. The demonstration that it is a counter-example amounts

to proving that 2's follower (the next larger prime) is not even.

[Since 2 is the only even prime, there are no other counter-

examples.]

»l^ 0> vl^
"i* "1^ '«*

(a)

(1) "Is it the case that whenever a counting number is even,

the result of adding 12 to it is even?"

Yes. See discussion for Scimple 1; 2k + 12 = 2(k + 6).

(2) Similar to (1).

(3) "Is it the case that whenever a counting number is prime,

the result of adding 12 to it is prinne ?
"

No. Counter-examples: 2, 3, 13, and others.

(4) Similar to (1).

(5) "Is it the case that whenever a counting number is greater

than 5, the result of adding 12 to it is greater than 5?"

Yes. For every n, n + 12 > n; and > is a transitive re-

lation.

(6) "Is it the case that whenever a counting nxomber is a mul-

tiple of 5, the result of adding 12 to it is a multiple of 5?"

An alternative fornnulation of the question is: "Is it the

case that for every counting number n, if there exists a

counting niimber k such that n = 5k, then there exists a

counting number k ' such that || + 1 2 = 5k ' ?
"

No. Counter —example : 5.

(continued on T.C. 6B)
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Sample 2. Set: All of the prime numbers.

Follower : For every prime number n,

n's follower is the next larger

prime number.

Property: EVENNESS
Solution . Again, you state the question in terms

of the given information:

Is it the case that whenever a prime
number is even, then the next larger
prime is also even?

You can answer 'no' to this question if you can

find a counter-example. That is, you can answer

'no' if you can find an even prime number such

that the next larger prime number is not even.

The prime number 2 is one such. ( I s it the only

one?)

(a) Set

:

All of the counting numbers.

Follower : For every n, n's follower is n + 12.

Property: (1) EVENNESS

(2) of being divisible by 3

(3) PRIMENESS

(4) ODDNESS

(5) of being greater than 5

(6) of being a multiple of 5

(b) Set

:

All of the real numbers.
1 + rFollower: For every r, r's follower is-

2 •

Property: (1) of being between 1 and 3

(2) of being closer to 1 than 3 is

(3) of being 1

(4) of being a rational real number (i.e.,

,r. f, .

1 ^, T
RATIONALITY)

(5) of being less than 1
'

(6) of being a negative number

(7) IRRATIONALITY

UICSM-2-56, Third bourse
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(10) (8) andAnother exercise of the same type as Exercis

(9). In this case another explanation of the answer *yes'

can be given along the lines of that given for Exercise (6).

(11) This exercise is essentially different from the preceding

three exercises. Instead of referring to two parallel

lines it refers to the same line twice. The question may
be stated, "Is it the case that, for all real numbers x

and y, if 4x - 2y + 1 then 4(x - 2) + 5(y - 3) = 7 ? " The

answer is *no' and an explanation is that any point on the

locus of '4x - 2y = 1
' (and there are such points) is a

counter - example

.

(12) No. There is only one point (x, y) in the intersection of the

loci of '2y - 3x = 4' and '3x - 5y = 1' and, for all x and y,

(x - 2, y - Z) ^ (x, y). In other words, the intersection of

22 5
the loci is the set consisting of the single point ( —5- , --r);

22 5
V i

it is clear that the point (- -5- - 2, - -5- - 3) does not belong

to the intersection.

T.C. 7G Third Course, Unit 1
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true in this sense it will be convenient to use instead

(9)

the phrase 'materially true'. In mathematics, when one

says that a sentence is true one means something quite

different. What one me^ns is that the sentence in ques-

tion is a theorem , i.e. , that it is a logical consequence

of the postulates and definitions on which mathematics is

based. Instead of using the word 'true' in this sense it

will be convenient to use instead the phrase 'mathemati-

cally true'. For example, the question with which Exer-

cise (8) is concerned: Is it the case that, for ... =9?

can be restated: Is 'For ... =9' a theorem? or: Is

'For ... =9' mathematically true? As indicated above,

the answer to this question is 'yes'. A nnore satisfac-

tory explanation for this answer than that given above is

:

Since we are able to prove 'There do not exist real nunti-

bers x and y such that 4x + 5y = 7 and 4x + 5y = 9', it is

mathematically true that 'For ... =9' has no counter-

examples. Hence, the latter sentence is a theorem.

In general, any sentence of the form:

For every x and y, if . , . x. . . y. . . , then .

is a theorem if:

There do not exist real numbers

X and y such that . . . x. . . y. . .

can be proved.

This exercise is essentially the same as Exercise (8).

The two lines referred to are parallel, so their intersec-

tion is the empty set.

T.C. 7F
(continued on T. C. 7G)
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not assert that there are any counter-examples. This

should suggest to them that they return to Exercise (7)

and complete the explanation given there (if they have not

already done so) by inserting '
, and there are points which

belong to the union of the two lines ' before the period.

Since there are no points which belong to the intersection

of the loci of '4x + 5y = 7' and '4x + 5y = 9' students may

strongly suspect that there are no counter -exannples . This

is, of course, the case since a counter-example to:

For all real numbers x and y, if 4x + 5y = 7

and 4x + 5y = 9 then 4(x - 2) + 5(y -3) = 7 and

4(x - 2) + 5(y - 3) = 9.

would be a pair (x, y) of real numbers such that

1) 4x + 5y = 7 and 4x + 5y = 9, and

2) either 4(x - 2) + 5(y - 3) / 7 or

4(x - 2) + 5(y - 3) /9.

Since there is no pair of real numbers which satisfy con-

dition 1), there is no pair of real numbers which satisfy

conditions 1) and 2), i.e. , there is no counter-example.

A generalization which has no counter examples is true.

Hence, the correct answer and explanation for Exercise (8)

is: Yes. There are no counter-examples because there

do not exist real numbers x and y such that 4x + 5y = 7

and 4x + 5y = 9.

A further point which should be understood has to do with

the use of the word 'true'. In most situations of every

day life, when one says that a sentence is true, one nneans

that what it asserts is a fact. Instead of using the word

T.C. 7E
(continued on T . C. 7F)
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Since we obtain the same conclusion:

2{y -vS) - 3(x - 2) =7

or 3(x' - 2) - 2(y' - 3) = 9

under either hypothesis

2y -'3x = 7' )
i.r:ai.

' or

:

a:-^ ' 3x - 2y = 9 -iion ct mv; ixvj:; iir.f--

.

"• '-' this- CdrtGlusiOn is a consequence' of the alteirnation

(disjunction) df the hypotheses. [Note that since ^we

t^'' are considering the uhion of the Ibci, 'we are concern-

i •. .. jg<j with the alteration (
'

'or ") of the hypotheses , rather

than with the conjunction ( '.'and"), pf the hypotheses.]

t7) ."Is it the case that, for aliireal numbers x and y, if

4x + 5y = 7 or 4x + 5y = 9 then 4(x - 2) + 5(y - 3) = 7 or

4(x - 2) + 5(y - 3) = 9?"

No. Any point which belongs to the union of the given lines

is a counter-example.

(8) "Is it the case that, for all real numbers x and y, if

4x + 5y = 7 and 4x + 5y = 9 then 4(x -2) + 5(y - 3) = 7

and 4(x - 2) + 5(y - 3) = 9 ?
"

A student's natural inclination, after answering Exercise

(7) may be to give the same answer (and a similar expla-

nation) for the present exercise (of course, replacing

'union' by 'intersection'). V/e hope that some students

will at first answer in this way, and then realize that there

are no points in the intersection of the given lines. Some

will, of course, become aware of this immediately on

reading the problem. At any rate, they should all see

that the true sentence 'Any point which belongs to the in-

tersection of the given lines is a counter-example' does

(continued on T . C. 7E)
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No. The set of all counter-examples is the set of all

points (x, y) in the first quadrant with x < 2 or y < 3.

(2) No. The set of all counter-examples is the set of all points

(x, y) in the second quadrant with y < 3.

(3) Yes.

(4) No. The set of all counter-examples is the set of all

points (x, y) in the fourth quadrant with x < 2.

(5) Yes. For all real numbers x and y, if 2y - 3x = 7 then

2(y - 3) - 3(x - 2) = 7. [Here is a place to stress again

the fact that a point is in the locus of an equation if and

only if its coordinates satisfy the equation.
]

(6) ''Is it the case that, for all real numbers x and y, if

2y - 3x = 7 or 3x - 2y = 9, then 2(y - 3) - 3(x - 2) = 7

or 3{x - 2) - 2(y - 3) = 9?"

Yes. Infornnal justification

:

The union of the loci in question is a pair of parallel
3

lines each with slope •=- . If the point (x, y) belongs

to one of these lines, then the point (x - 2, y - 3)

also belongs to that line since the slope of the seg-
. . 3

ment (x, y) (x - 2, y - 3) is =• .

More formal justification:

For every x and y, if 2y - 3x = 7 then

2(y - 3) - 3(x - 2) = 7; so, certainly,

2(y - 3) - 3(x - 2) = 7

or 3(x - 2) - 2(y - 3) = 9;

if 3x - 2y = 9 then 3(x - 2) - 2(y - 3) = 9; so certainly,

2(y - 3) - 3(x - 2) = 7

or 3(x - 2) - 2(y - 3) = 9

T.C. 7C
(continued to T.C. 7D)
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It would be instructive if at sometime during the discussion

of Exercise 3 (c) the students discovered the point of view that

(c) deals with a transformation, (x, y) -* (x, y +2) , of the coor-

dinate plane onto itself, and that each part of (c) is concerned

with the question of whether a certain subset of the coordiante

plane is mapped ("nnoved") onto itself (or onto a part of it-

self) by this transformation. For example, the transforma-

tion in question clearly nmaps :

the first quadrant onto part of itself;

the second quadrant onto part of itself;

the third quadrant onto the union of three sets :

the third quadrant itself, the "negative half"

of the first coordinate axis, and part of the

second quadrant;

the locus of 'x = 7' onto (the whole of) itself;

2
the curve whose equation is 'y = x ' onto a se-

cond curve which does not intersect the first;

the set of all points with real integral coordi-

nates onto itself.

A similar point of view can be adopted in the case of Exer-

cise 3(d).

(d)

(1) "Is it the case that, for all real numbers x and y, if x > ,

and y > 0. then x - 2 > and y - 3 > 0? "

T.C. 7B
(continued on T.C. 7C)
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(c) [Coordinate plane paper should be used for (c) and (d).]

(1) "Is it the case that, for all real numbers x and y, if x >

and y > then x > and y + 2 > ? "

Yes. For every real number y, if y > then y + 2 > 0.

[See (a) (5).] [Compare these problems with the coordinate

planes "games" in FIRST COURSE.]

(2) Yes. Similar to (1).

(3) No. Counter-example; (-3,-1). [Students should be able

to describe the set of all counter-examples for this Exer-

cise and for (4). ]

(4) No. Counter-example: (5,-1).

(5) "Is it the case that, for all real numbers x and y, if

{x, y) belongs to the locus of 'x = 7' then (x, y + 2) belongs

to the locus of 'x = 7'?"

Yes. For every real number x, if x = 7 then x = 7.

2
(6) No. Counter-example: (3,9). (3,9) satisfies 'y = x '

but (3, 11) does not. In fact, for all real numbers x and
2

y, if y = X then (x, y) is a counter-example.

(7) Yes. For every real nunaber y, if y is a real integer

then y + 2 is a real integer.

[As in the case of (b) (4), you should review the fact that

that subset of the real numbers which is isomorphic to

the set of integers is called the set of real integers.]

(continued on T. C. 7B)
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(c) Set : All the points in the coordinate plane.

Follower : For every x and y, the follower of the point

(x, y) is the point (x, y + 2).

Property :

(1) of being in the first quadrant

(2) of being in the second quadrant

(3) of being in the third quadrant

(4) of being in the fourth quadrant

(5) of being in the locus of 'x = 7'

2
(6) of being in the locus of 'y = x '

(7) of being a point with real integral coordinates

(d) Set

:

All of the points in the coordinate plane.

Follower : For every x and y, (x, y) 's follower is

(x - 2, y - 3).

Property :

( 1) of being in the first quadrant

(2) of being in the second quadrant

(3) of being in the third quadrant

(4) of being in the fourth quadrant

(5) of being in the locus of '2y - 3x = 7'

(6) of being in the union of the locus of '2y - 3x = 7'

and the locus of '3x - 2y = 9

'

(7) of being in the union of the loci of '4x + 5y = 7'

and of '4x + 5y = 9

'

(8) of being in the intersection of the loci of *4x + 5y = 7'

and of '4x + 5y = 9'

(9) of being in the intersection of the loci of

'5(x - 4) + 7(3 - y) = 8x' and of '6x + 14y = 13'

(10) of being in the intersection of the loci of '3x - 2y = 9'

and of '2y - 3x = 7

'

( 1 1) of being in the intersection of the loci of 'Bx - 4y = 2'

and '2y - 4x + 1 =0"

(12) of being in the intersection of the loci of '2y - 3x = 4'

and of '3x - 5y = 1'

UICSM-2-56, Third Course
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Line 21:

The phrase 'a property which is meaningful for the members of

the set' should be interpreted as follows: If 'P' is a name of a

property, then P is meaningful for the members of the set if the

result of replacing '
. . , ' in:

. . . has P

by a name for a member of the set is a sentence which "makes sense"

i. e. , is well-formed. For example, the property beauty is not

meaningful for the counting numbers but is meaningful for physical

objects. On the other hand, primeness is meaningful for the

counting nvimbers but is not meaningful for people.

^1^ O^ -K
'1^ '1^ 'p

Exercises

Although the exercises here are similar to those on page 1-1,

the student now has a framework of ideas on which to base his answers,

1. No, but the absentees, if any, must be consecutive and include

Bill Aaron.

T.C. 8A Third Course, Unit 1
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PROPERTIES WHICH ARE INHERITED

Let us return to Mr. Jones and the Zabranchburg High assembly as

described in Exercise 3 on page 1-5.

The set Mr. Jones deals with is the set of all

students enrolled at the school.

' follower ' is defined by lining up the students

and declaring that the follower

of each student (except the last in

line) is the student directly behind him.

The property he is interested in is that of being present.

When no student calls 'absent', Mr. Jones knows that, in the case of each

student, if that student is present then so is his follower. For short,

we say in this case that the property of being present is hereditary .

[You can guess the meaning of the word 'hereditary' if you know

the nneaning of the word 'inherit'. If a property is hereditary, and if

Ezra is Milton's follower and Milton has the property in question, then

Ezra "inherits" the property from Milton. If you answered the questions

in Exercise 3 correctly, then each yes-answer indicated an hereditary

property.
]

In general, given a set and a definition of 'follower', then a

property which is meaningful for the members of the set is hereditary

over the set if it is the case that whenever a member has the property

in question, then so does its follower (if it has a follower).

EXERCISES

Recall the situation referred to in the first paragraph of Exercise 3

on page 1-5. Two bits of additional information are that Bill Aaron is

first in line and Dick Zilch is last in line. Now answer the following

questions assuming that Mr. Jones has just given his familiar instructions:

"Call out 'absent' if your follower is absent. "

1. If Mr. Jones hears no response, can he conclude that every

student is present?

(continued on next page)

UICSM-2-56, Third Course



X-



[1-9]

.•.niiCi;i. -li- :.! ._-!

Dor.'?. jur''

•:.>r,3' .'l-e-'ii' bsx-.. .
• jIm ;

;i ,s.nxd* ""no -.tc il

fU' .D.J



Sometimes a convention is made that the "domain of the index"

is the desired set and, in this case it is not necessary to refer

[< 1to the set in the quantifie:

on page 1-10. With respect to Exercise 3 it is to be understood

that the domain of 'n' is the set of all counting numbers.
]

vl^ -J^ vU
^,N '1- '|»

A generalization such as the boxed one has many other instances

besides those we have called 'first', 'second', etc. For example,

'the (5 + 2)nd odd number is 2 • (5 + 2) - 1' is an instance of the

boxed statement and is a different sentence from any of those listed.

[For one thing, it contains a ' + ' while this symbol does not occur in any

of the enxxmerated instances. ] However, the instance in question is

equivalent to what we would call the seventh instance of the boxed

statement.

T. C. 9B Third Course, Unit 1
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2. Yes.

3. All are present.

4. The absentees, if any, form a consecutive group of students,

beginning with Bill Aaron, and ending before James Monk.

5. See solution for Exercise 4.

6. Sonne student is present whose follower is absent; the property

of being present is not hereditary.

xl^ xl, ^1^

We are using the word 'generalization' as short for 'universal

generalization'. Logicians call statements like:

There is a counting number n such that the nth odd

nvimber is 2n - 1.

'existential generalizations'. Note the "tie" between 'existential' and

'There is'.

This is the first formal use of the word 'generalization' which the

student has encountered in the UICSM program. We intend to use the

word in a technical sense. A generalization is a statement. A universal

generalization such as we are concerned with here asserts that every

member of some set has a given property. A generalization consists of

a quantifier [for example, 'for every counting number',] a phrase

which expresses the property in question [for exanmple, 'the . . . . th

odd number is 2-. . . -1'], and an "index", [for exainple, 'n'] which

"links" the quantifier with the blanks in the phrase. The quantifier

usually contains reference to a set. [The assertion made by the generaliza-
tion is that the property in question is "generalized over the set".]

T.C. 9A

( continued on T. C. 9B)
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2. If Mr. Jones hears no response, can he conclude that the property

of being present is hereditary?

3. If Mr. Jones hears no response and knows that Bill Aaron has

the property, what can he conclude?

4. If Mr. Jones hears no response and knows that James Monk has

the property, what can he conclude?

5. If Mr. Jones hears no response and knows that Dick Zilch has

the property, what can he conclude?

6. If Mr. Jones hears a response, what can he conclude? Can he

conclude that the property is hereditary?

1.02 Generalizations about counting numbers. --Given a property

which is meaningful for each counting number, a problem which often

arises is that of proving that each counting number has this property. A
statement which asserts that every counting nunnber has a certain property

is a generalization about counting numbers. For example:

For every counting number n,

the nth odd number is 2n - 1 .

To begin with, let us make sure we know what this generalization states.

What it states is most easily understood by considering some of its

instances . An instance of it is obtained by filling the two blanks in:

the . . . th odd number is 2- ... - 1

with a name for a counting number. For convenience, we shall say that

its first instance is :

the 1st odd nvimber is 2- 1 - 1

that its second instance is:

the 2nd odd nvimber is 2 • 2 - 1

that its third instance is:

the 3rd odd number is 2*3-1
etc.

UICSM-2-56, Third Course
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4. True

5. False

6. False

7. True

8. True. This generalization is itself the first instance of the

generalization:

For every m (and) for every n,

(n + m) = n + 2nm + m .

9. True. This generalization is itself the 112th instance

of the generalization which states that addition of counting

numbers is commutative:

For every m (and) for every n,

m I- n = n + m.

10. True,

11. True. [The first instance is 'the (1 + 4)th even number is

2 • 1 + 8' which is a true sentence.
]

12. True.

T.C. lOB Third Course, Unit 1
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Students should become convinced that whether a sentence is a

consequence of another (i, e. , can be inferred from it) is independent

of the truth or falsity of the latter. Of course, if a sentence is true

then so is each of its consequences, and a sentence from which a false

sentence can be inferred is itself false. But whether a sentence is a

consequence of another is a question of grammar alone (or, as a logician

would be nnore likely to say, of syntax

)

. The answer to it depends

only on the forms of the two sentences.

Point out to students that when they were dealing with the

True-False exercises in the geometry unit, they established the

falsity of some generalizations by discovering counter-examples. A
counter-example to a generalization shows that some instance of the

generalization is false. Since any instance is a consequence of the

generalization, the falsity of any instance shows that the generalization is

false. On the other hand, we hope that they recognize that they can

not establish any generalization by establishing any niimber of its

instances.

K»^ ^'y, v'^
'!"• 'f^ 'l''

Exercises,

3.

T.C. lOA

Examples of instances: 1 is even, 2 is even, 3 is even, etc.

These are alternately false and true. Since the generalization

has at least one (in fact, infinitely many) false instances, it,

itself, is false.

2 • 1 is even, 2 • 2 is even, 2 • 3 is even, 2 • 5285 is even,

etc. Each of these instances is true and in fact from the

definition of 'even number' we know that every instance of the

generalization is true. So the generalization is true, by

definition of 'even number'.

The generalization is true.

Third Course, Unit 1
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Each instance of the generalization can be inferred from the

generalization. In particular, if we accept the generalization, we

must, logically, accept each of its instances; moreover, if the

generalization is true, then each of its instances is true. Of course,

there are generalizations some or all of whose instances are false. <'

[Examples: (1) Every horse is white. (That is, for every horse h,

h is white.
) (2) Every dog has seven legs. (That is, for every dog

d, d has seven legs. )] Such generalizations are false. Even so, each

instance of a false generalization can be inferred from it.

EXERCISES

A. Give three instances of the following generalizations. State

for each instance whether the instance is true or false. Make a

guess about the truth of each generalization.

1. For every counting number n, n is even.

2. For every counting n\imber n, 2n is even.

Note: Since it is understood that we are talking about no other

numbers than counting numbers in these exercises, we

shall abbreviate 'For every counting niamber n' to

'For every n'.

3. For every n, 2n + 1 is odd.

4. For every n, the nth even niimber is 2n.

5. For every n, n > 2.

6. For every n, n > 7.

7. For every n, n ^ 1.

2 2
8. For every n, (n + 1) = n + 2n + 1 .

9. For every n, 112 + n = n + 112.

2 2
10. For every n, (n + 1) - n = 2n + 1.

11. For every n, the (n + 4)theven number is 2n + 8.

12. For every n, the (n + l)th odd number is 2n + 1

.

(continued on next page)
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13. True.

14. True.

15. This is a classic problem frequently used to illustrate the fact that

even a large niimber of true instances of a generalization do not

constitute evidence that the geueralization is a theorem. Each of

the first 40 instances of this generalization is true but the 41st

is false. [As a matter of fact there is no algebraic expression whose

value for each counting nximber is a prime number. (But don't bother

trying to prove thisl )]

B.

'i" 'f '(^

1. For every n, 2n + 3 is an odd number.

2. For every n, 3(n + 2) is the nth multiple of 3.

There are other possible answers:

For every n, 3(n + 4) is the (n + 2) th multiple of 3.

For every n, 3(n + 5) is the (n + 3)th multiple of 3.

[Notice that although (a) and (c) are instances of:

For every n, 3(n + 8) is the (n + 6)th multiple of 3.

(b) is not. Note also that the three correct answers are not equivalent

generalizations since they do not have the same instances.]

3. For every n, the (n + l)th^ square number is n + 2n + 1.

4. For every n, n is even.

T.C. IIA Third Course, Unit 1
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B.

13. For every n, the nth multiple of 5 is 5n.

14. For every n, the nth multiple of 6 is 6n.

15. For every n, n - n + 41 is a prime number.

For each of the sets of statements given below state a generalization

of which each statement in the set is an instance.

1, 2 9 + 3 is an odd number

2 • 1 + 3 is an odd number

2 • S + 3 is a.n odd number

3 • 9 is the 7th multiple of 3

3 • 7 is the 5th multiple of 3

3 • 100 is the 98th multiple of 3

the 3rd square number is 4 + 4 + 1

the 7th square number is 36 + 12 + 1

the 2nd square nujnber is 1 + 2+1
the 100th square number is 9801 + 198 + 1

28 is ever.

1 3 is even

97 is even

104 is even

THE PROBLEM OF PROVING A GENERALIZATION

In order to prove £. generalization about counting numbers such as

the boxed statement of page 1- 9

For every counting number n,

the nth odd number is 2n - 1.

it is siofficient to show for each n how one can prove its nth instance.

Since, for example, the 4th instance of this generalization:

the 4th odd number is 2 • 4 - 1

asserts that 4 has the property expressed by:

the ... th odd number is 2 1

we need to show for oach a how to prove that n has this property.

For any particular counting number, say 4, we could give such

a proof as follov/s :

UICSM-2-56, Third Coui-se
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Line 6:

". . . . we have no way. . .
•' This is not quite exact. As in some

of the preceding exercises, a generalization may be a rather immediate

consequence of a definition. [For example. Exercise 2 on page 1-10.

Each instance is a consequence of the definition of 'even number' and is,

therefore, a theorem.
]

v»^ O- v'^
''4-

'I"* "i-

Lines 18 and 19 :

Every counting number has an immediate successor. 1 is the only

co\inting number which is not the immediate successor of any counting

number.

T.C. 12A Third Course, Unit 1
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The first 4 odd numbers are 1, 3, 5, 7,

So, 7 is the 4th odd number. Since

7 = 2 • 4 - 1 ; it is the case that the 4th

odd nunaber is 2 • 4 - 1,

Of course, the same procedure could be used to test any instance of

the generalization, but up to now we have no way of being certain that

each such test would result in showing that the instance under test was

true.

Our earlier work suggests that it might be of use to see whether

the property in question is hereditary. Before investigating this we

must, of course, decide upon a definition of 'follower'. The most cona-

monly useful definition when the set in question is the set of all count-

ing numbers is, as we shall see:

I For every counting nunaber n,

n's follower is n + 1.

[The follower, according to this definition, of any counting num-

ber is often called its immediate successor. Thus 7 is the immediate

successor of 6. Is there any counting number which does not have an

immediate succeorci ? ]

With this definition of 'fonower ' we are led to the definition:

A property is hereditary over the set of all count-

ing numbers if it is meaningful for each counting

number and if, for every counting number k, if k

has the property in question then so does k + 1.

[Instead of saying that a property is hereditary over the set of

all counting numbers ws shall usually say that it is an hereditary pro-

perty of counting numbors. ]

Now it is easy to prove that the property expressed by:

the . . . th odd number is 2 • ... -1

is an hereditary property of counting numbers. To do so we must show

that for every counting nuixiber k,

if the kth odd number is 2k - 1 then the

(k + l;'^i cdd number is 2{k +1) - 1
.
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1 j. I.

Notice that in order to prove that a property is hereditary

we have to prove a generalization, in this case: For every k, if the kth

odd nvunber is 2k - 1 then the (k + l)th. odd number is (Zk + 1) - 1. We
do so by deriving the needed generalization frona other generalizations.

Ideally, these other generalizations should be previously proved

theorems (or postulates) but in practice we are likely to use as

premises generalizations which we may not actually have proved

in this course but are sure that we could prove. In the derivation

on page 1-13 we have referred (in lines 1 and Z) to the generalization:

For every n and k, if n is the kth

odd number then n + Z is the (k + 1) th_ odd

number.

We have not previously proved this theorem but it is a consequence

of theorems proved or assumed in earlier courses. You can take

the theorem as an assuinption at this point but you should make this

fact explicit to your students. [Incidentally, the theorem is a simple

consequence of the definitions of 'odd number' and 'even number', and

elementary properties of the relation < .
]

fj^ -j^ -'^Vp ^^~. ^,^

Exercises,

A.
Sample 1.

Here the generalization which asserts that the property in

question is hereditary is derived from the sentence '> is

transitive'. [This sentence is actually an abbreviation of

the generalization: For every m, n, and p, if m > n and

n > p then m > p. ]

T.C. 13A Third Course, Unit 1
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We know, however, that by adding 2 to the kth odd number we shall

obtain the (k + l)th odd number. For every counting number k, if the

kth odd number is 2k - 1 then for this k, the (k + i)th odd number is

(2k - 1) + 2. But,

(2k - 1) + 2 = (2k + 2) - 1

= 2(k + 1) - 1.

Hence, it is the case that for every counting number k, if the kth odd

nunnber is 2k - 1, then the (k + l)th odd number is 2(k + 1) - 1.

We have shown that the property in question is an hereditary

property of counting numbers. After the following exercises we shall

show how this fact is used in proving the generalization which states

that every counting number has this property.

EXERCISES

A. Consider each of the properties expressed below. If it is an

hereditary property of counting numbers, prove that it is; if

it is not, give a counter-example.

Sample 1 . . . . > 5

Solution. If we are to prove that this property is an hereditary

property of counting numbers, we must prove:

For every counting number k,

if k > 5 then k + 1 > 5.

Now, for every counting number k, if k > 5 then,

since k + 1 > k and since > is transitive, it follows

that k + 1 > 5.

[Note: It is clear that not all counting numbers have

this property. Nonetheless, as we have proved, the

property is hereditary. Compare this situation with

that described in Exercise 2 on page 1-2.
]

Sample 2. . . . < 5

Solution . In order to decide whether this is an hereditary pro-

perty of counting numbers, we must consider the

statement

:

UICSM-2-56, Third Course
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Note that the property in question, though hereditary, does not

hold for any counting number. [Compare this situation with

one in which Mr. Jones hears no calls of 'absent' and correctly

concludes that the property (expressed by '. . . is present today')

is hereditary even though no student is present . ]

Contrast the theorem just established in Exercise 9:

The property expressed by:

the . . . _th odd number is 2 • . .

is hereditary over the set of all

counting numbers.

with the generalization:

For every k, the kth odd number

is 2k + 5.

which is not a theorem.

10. Hereditary. Proof like that for Exercise 4.

+ 5

T.C. 14B Third Course, Unit 1
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[In doing the exercises of Part A students should state the generalization

they are trying to prove. Their work in formulating questions for

exercises on pages 1-5 through 1-7 should have prepared them for

stating the appropriate generalizations.]

1. Not hereditary. 1 is a counter-example, and so is every odd

counting number.

2. Hereditary. For every counting number k, if the kth even

number is 2k then the (k + l)th even number is 2k + 2, i. e.

2(k +1). [ See discussion on T. C. 1 3A.
]

3. Not hereditary. Any prime number other than 2 is a counter-

example.

4. Hereditary, proof like that on pages 1-12 and 1-13.

5. Hereditary. For every k, if k is a counting number, then

k + 1 is a counting number. [Justification: The operation

of addition of counting numbers is closed. See Units 1 and 2 of

SECOND COURSE, 1955-56.]

6. Not hereditary. 7 is the sole counter-example.

7. Hereditary. Conapare with Sample 1.

8. Not hereditary. Compare with Sample 2.

9. Hereditary. Generalization to be proved:

For every k, if kth odd number is 2k + 5

then the (k + l)th odd nunaber is 2{k + 1) + 5.

Proof:

For every k, if the kth_ odd number is 2k + 5 then,

for this k, the (k + l)tji odd number is {2k + 5) + 2,

i. o. , 2{k + 1) + 5.

(continued on T. C. 14B)
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f
For every k,

if k < 5 then k + 1 < 5.

This statement is certainly false since its 4th instance:

if 4 < 5 then 4 + 1 < 5

if false. Therefore, in view of the counter-example

4, we know that the property in question is not an

hereditary property of counting numbers.

1

.

... is odd

2. the . . . th even number is 2 • ...

3. ... is a prime number

4. the {. . . + l)th odd number is 2 • ... +1

5. ... is a counting number

6. ... =7

7. ... > 1000

8. ... < 1000000

9. the . . . th odd number is 2 • . . . + 5

10. the (. . . + 10)th even number is 2 • ... +20

B. Figurate numbers

One of the mathematical pastimes of the ancient Greeks was the

discovery of interesting generalizations concerning counting num-

bers. For example, consider the following diagram:

• 1 •
I

• • •

If we count the dots in each of these "triangles" and in those we

would get by continuing the obvious construction, we obtain a

sequence of numbers which begins:

1. 3, 6, 10. 15, 21, 28, ...

UICSM-2-56, Third Course
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other examples of recursive definitions are: |i

For evei•y re

1
a

al niimber

a

a

and. for every counting number k

k
a

+ 1
=

k
a • a.

and:

1
t = 1

and. for every counting nvimber k.

{k + 1)1 = k! • (k + 1).

Recursive definition is a way of avoiding the use of '
. . . ' and

'etc. '. For example, compare the above recursive definition's with

the iJtatcmonts:

a • a

and:

k factors

kl = 1 • 2 •
. . .-k,

both of which leave a good deal to the imagination.
Recursive definitions form a natural basis for proof that properties

are hereditary (See below ).

T.C. 15A Third Course, Unit 1
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The Greeks called the numbers in tlfis sequence triangular numbers,

Having obtained these numbers in sequence it is clear what we

shall mean by 'the first triangular number', 'the second triangular

number', etc. As you can see from the picture the second triangu-

lar number is 2 more than the first, the third triangular number

is 3 more than the second, the fourth is 4 more than the third, etc.

In general, we see that

For every counting number k,

the (k + l)th triangular number =

the kth triangular number + (k + 1).

[If, for every n, T is the nth_ triangular

nvimber, then the above can be written more simply as:

For every counting number k,

Tk+l=Tk + (k+l). ]

Notice that the boxed statement:

^1 = 1

and. for every k.

T
k+1 = Tk + (k + 1).

provides us with a way of computing successive triangular num-

bers. For example,

T^ = l,

T^ = Tj + (2) = 1 + (2) = 3,

T3 = T^ + (3) = 3 + (3) = 6.

T^ = T3 + (4) = 6 + (4) = 10,

etc.

[Such a statennent as the boxed one which specifies the first term

of a sequence and tells you how, for every k, to compute the

(k + l)th term once you know the kth ternn is called a recursive

definition . V/e shall make considerable use of recursive defi-

nitions in this and the following unit.]

UICSM-2-56, Third Course
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Lines 5 and 6 :

Note how the generalization is used to provide an expression

for the property in question. Then note the fact that although we

can prove that this property is an hereditary property of counting

numbers, we still do not have the machinery necessary to prove the

generalization itself.

^1^ vl^ v^^
'1^ '1^ '1"^

Note how the recursive definition is used in proving that the property

is an hereditary property of counting numbers.

•.N »•,«. *•,-

A recursive definition defines a sequence, i. e. a function

whose domain is the counting numbers. An explicit definition of

the sequence of triangular numbers is:

'T' is a name for the set whose members are the

ordered pairs (n, • ), for every counting number

n.

Rather than spend space in this unit on the function concept, we limit

ourselves to giving explicit definitions for the separate terms of the

sequence of triangular numbers.

T.C. 16A Third Course, Unit 1
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The Greeks discovered the following generalization concerning

triangular nvimbers:

I For every counting number k,

„ k(k + 1)

^k I
•

That is, every counting number has the property expressed by;

_ ...(... + 1)

"We shall prove this generalization later. In doing so we shall

want to make use of the fact that the property is an hereditary

property of counting numbers. This latter fact we can prove

now

:

k(k + 1)For every k, if T, =
-^

then by the second equation in the

recursive definition.

= (k + 1) (^+ 1)

= (k + 1) (^-^)

_ (k + 1) ([k + 1] + 1)

Hence, for every k, if k has the property in question then so does

k + 1. We have proved that the property is an hereditary proper-

ty of counting nximbers.

It is innportant to note that the boxed generalization stated (but

not proved) above suggests the following sequence of explicit

definitions :

.T, - • ,: 1(1 + 1)T , is a name for —i—= -

.T, . • , 2(2 + 1)T^ IS a name for —i—^ -

'T ' is a name for

etc.

3(3 + 1)
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1. O, = 1 and, for every n, O , = O + 2
1 n + 1 n

E, = 2 and, for every n, E , = E + 2
n + 1 n

For every n, O = 2n- 1; for every n, E = Zn
n n

T.C. 17A Third Course, Unit 1
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Explicit definitions are often easier to use (but harder to**dis-

cover") than recursive definitions. For example, to compute

1000
is an easy job using the explicit definition:

_ 1000(1001) _ cnnr;nn
^1000 2 500500

but it would require pages of computations using the recursive

definition

:

T = T + 1000
1000 999

1. Use *0
1

= (Tggg + 999) + 1000

= etc.

'O^', etc. to name the successive odd numbers, and

'E ', 'E-', etc, to name the successive even numbers. Using

this notation give a recursive definition of the sequence of odd

numbers, and a recursive definition of the sequence of even

numbers.

What are the generalizations which, like the boxed one atop

page 1-16, suggest explicit definitions of 'O, ', 'O^', etc.,

and 'Ej', 'E ', etc. ?

Another kind of figurate number is the square number. The

sequence of square numbers can be guessed from the follow-

ing diagram.

Ti.

• • •

• • •

o • •

• • •

• • •

It begins :

1, 4, 9, 16, 25,

UICSM-2-56, Third Course
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3. For every k, if Sq, = k then, by the recursive

2 2
definition, Sq , = k + (2k + 1) = (k + 1) .

K, T 1

4. (b) For every k, if P, = ——r ' then,

k(3k - 1)
bv the recursive definition, P, , = —^

—

:: + (3k + 1)' k + 1 2

(k + i)(3rk+ n - 1)

2

T. C. 18A Third Course, Unit 1
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You can see that the following is a recursive definition of

the sequence

:

Sqi = 1

and, for every k.

S^k+l =Sqk + (Zk + 1).

4.

Prove that the property expressed by:

is an hereditary property of counting numbers.

Still another kind of figurate number is the pentagonal number,

The fourth pentagonal number is the number of dots in the

following figure:

• " X\'
• ^ • \ . \

.

•
\

The recursive definition of the sequence of pentagonal numbers

is :

Pi
= 1

and, for every k.

Pk+l=Pk + (3k + 1).

(a) Make diagrams like the above corresponding to p., p^,

P3' P5' ^"^^ P6-

(b) Prove that the property expressed by:

, ... (3 • ... - 1)

... Z

is an hereditary property of counting numbers.
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The logical status of the principle of mathematical induction

depends on how the counting numbers were arrived at. In a pos-

tulational treatment the principle might be taken as a postulate.

This was done by Peano [See Stabler 's INTRODUCTION TO
MATHEMATICAL THOUGHT (Cambridge, Mass.: Addison-

W esley Publishing Company, 1953).] On the other hand, if one

defines cardinal numbers as equivalence classes of equinumerous

sets as did Frege and Russell [See SECOND COURSE, 1955-

1956.], the principle of mathematical induction for counting

numbers follows from the definition:

'counting number' is an abbreviation

for 'cardinal number which has all

the hereditary properties of 1'.

Thus, in Peano's system there are two postulates according

to which 1 is a counting number and the follower of each count-

ing number is a counting number, and the role of the principle

of mathematical induction (a third postulate) is to assert that

there are no counting numbers other than those whose existence

is ensured by the first two postulates. On the other hand, in the

Frege -Russell development the principle of mathematical induc-

tion serves to single out the counting numbers from the set of

all cardinals

.

In the Commentary for page 1-22, we describe a postula-

tional basis for the counting numbers, different from Peano's,

with respect to which the principle of mathematical induction

is a theorem.
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'For every n, the nth odd nvimber is 2n - 1', and the set of all its

instances, for example, the set whose members are 'the 1st odd number

is 2 • 1-1', 'the 2nd odd number is 2 • 2-1', etc. The nature of

this gap can perhaps be seen more clearly in a simpler situation in which

the generalization covers only a finite number of instances. Suppose,

whether you know it or not, that there are only three boys, say John,

Charles, and Henry, in a room. If you notice that John has red hair,

Charles has red hair, and Henry has red hair and if you also observe

that there are no other boys in the room , then you are entitled to as-

sert that every boy in the room has red hair. If you don't make the

last observation, then all that you are justified in inferring is that John,

Charles, and Henry have red hair. Similarly, if you could somehow

prove separately each instance of 'For every n, the nth odd number is

2n - 1', you would still only be justified in claiming to have proved

'the nth odd number is 2n - 1 when n = 1, 2, 3, . , .
'. Clearly, it is

impossible to write the infinitely long "sentence" suggested by the

dots. But even if it could be written, it would still be the case that

before you could assert 'For every n, the nt^i odd number is 2n - 1',

you would also have to prove 'Every counting number is either 1 or 2

or 3 or . . . '. The principle of mathematical induction for counting nxim-

bers, by implying that every counting number > 1 can be obtained from

1 by successive additions of 1, has the effect of ensuring that every

counting number is either 1 or 1 + 1 or 1 + 1 + 1 or... . As in the

case of the red-headed boys in the room, aside from establishing each

instance of the generalization, you must also establish that these are
all the instances.

vl^ O, vl^
'1^ 'p '1^

(continued on T . C. 19C)
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stress the last paragraph on page 1-19. A proof by mathematical

induction is not an infinite sequence of syllogisms:

1 has the property.

If 1 has the property then 2 has the property .

.'. 2 has the property.

If Z has the property then 3 has the property .

."
• 3 has the property.

etc.

A proof must be of finite length. However, even if we allowed "proofs"

of infinite length and so admitted as a proof such an infinite sequence

of syllogisms, we would still need a principle to the effect that each

instance of the generalization:

For every x, x has the property

is equivalent to the conclusion of one of these syllogiams. The princi-

ple of mathenaatical induction for counting numbers is, essentially,

such a principle. In fact, the principle of mathematical induction for

counting numbers allows us to infer the generalization fronn the pre-

mises

(i) the property is hereditary, and

(ii) 1 has the property

and, hence, obviates the necessity for infinite proofs.

The principle of mathematical induction is not merely a handy

gadget which allows one to by-pass the impossible task of stating a

proof for each of infinitely many cases, or to abbreviate the practi-

cally impossible task of, say, proving step-by-step that the lOOOtJi

odd number is 2 • 1000 - 1. Rather, its importance is in bridging

the gap between a generalization about counting numbers, for example,

(continued on T. C. 19B)
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1.03 Ivlathernatical Induction . -- Mr, Jones (see Exercises on page 1-1)

knew that if the property of being present was hereditary (with respect to

the notion of 'follower' he had defined) and if Bill Aaron was present, then

every student had the property of being present. Perhaps -^e, having

proved:

(i) the property expressed by:

'(-/ the . . . th odd number is 2 • ... - 1

is an hereditary property of counting numbers

can, if we also prove:

(ii) 1 has the property expressed by {^)

conclude tl -.it every coua;. -~ raur..- sr has /.lic property. That is, perhaps

we can, by using these facts, establish the boxed statement on page 1-9:

For every counting number n,

the nth odd number is 2n - i

.

[Before continuing you should check that 1 does have the property ex-

pressed by (^).
]

Now, it is easy to see that, becav.se of (i) and (ii) alone, 2, 3,4,

etc. must have the property expressed by (t^). For, by (i), if 1 has this

property, then so does its follower 1 + 1, But by (ii), 1 does have this

property, so 1 + 1 also has it. Since 1 + 1 = 2, 2 has the property.

Again by (i), if 2 has the property then so dees 2+1. But we have just

shown that 2 has the property, so ?. -r 1 also has it. Since 2+1 = 3,

3 has the property. Again by (i), if 3 has the property then so does

3+1. But we have just shown that 3 has the property, so 3 + 1 also

has it. Since 3 + 1=4, 4 has the property. Etc.

Evidently (i) and (ii) nnaks it possible for us to show that every nxun-

ber which we can obtain from 1 by a finite number of steps, each of which

consists in adding 1 to the number obtained in the preceding step, has

the property in question. Now, it is a fundamental property of the set

of all counting numbers that each of its members can be obtained by

such a step -by-step process. Consequently the following principle is

a theorem

:

UICSM-2-56, Third Course
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The property in question is that expressed by:

the (. • . + 10)th even number is 2 • ... +20.

(i) The property is hereditary .

For every k, if the (k + 10)th even

number is 2k + 20 then the

[(k + 1) + 10]th, or the (k + ll)th

even number is (2k + 20) + 2, or

2(k + 1) + 20.

(ii) 1 has the property .

The (1 + I0)th, or the Uth even

number is 2 • 1 + 20, or 22.

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.
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(i) The property is hereditary .

For every k, if the (k + l)th odd number

is 2k + 1 then the [(k + 1) + l]th or

(k + 2)th odd number is (2k + 1) + 2, or

2(k + 1) + 1.

(ii) 1 has the property .

The (1 + l)th, or the 2nd odd number

is 2 • 1+1, or 3.

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.

3. The property in question is that expressed by:

... is a counting nximber.

(i) The property is hereditary .

For every k, if k is a counting number

then, since addition over the counting

numbers is closed, k + 1 is a count-

ing number

.

(ii) 1 has the property .

1 is a counting number.

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number, that is, every counting number

is a counting nunnber! [This generalization is, of course,

trivial and could be proved without the principle of mathe-

matical induction. It is included for comic relief.]

(continued on T. C. 20 C)
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Note, in the resume, that >we conclude the proof by citing the

principle of mathematical induction. Although it is not customary

in proofs to cite the justification of each step, we believe that this

should be done for any step whose justification is the principle of

mathenaatical induction. Our reason for this insistence is the wide-

spread misconception of inductive proofs as consisting of infinitely

many syllogisms [See T. C. 19A ff. ]. We hope that by doing this

consistently students will be reminded of the distinction.

O^ vl, ~.l^

'C- 'f 't*

(i)

The property in question in each of these exercises was shown

to be hereditary in an exercise on page 1-14. We repeat the

proofs here in order to exhibit the style of proofs by mathema-

tical induction.

1. The property in question is that expressed by:

the . . .t^i even number is 2 • . . .

The property is hereditary .

For every k, if the kth even number

is 2k then the (k + l)th even number

is 2k + 2 = 2(k + 1).

1 has the property .

The first even number is 2 • 1, or 2.

Therefore, in view of (i) and (ii), by [the definition of 'even

number', and the distributive principle, and] the principle

of mathematical induction for counting numbers, the proper-

ty holds for every counting number.
The property in question is that expressed by:

the (. . . + l)th odd number is 2 • ... +1.

(ii)

2.

(continued on T. C. 20B)
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Every hereditary property of counting

numbers which holds for 1 holds for

every counting number.

This principle is called the principle of mathematical induction for

counting numbers . It is important!

By virtue of this principle we can conclude from (i) and (ii) that

every counting niomber has the property expressed by(ij^J , that is, that

For every counting nximber n,

the nth odd nvimber is 2n - 1

.

We give nov/ a resume of the proof of this generalization:

(i) The property expressed by:

{H) the . . . th odd number is 2 • ... - 1

is hereditary. For, for every k, if the ktji odd number is

2k - 1 then the (k + l)th odd number is (2k - 1) + 2 =

2{k + 1) - 1.

(ii) The number 1 has the property expressed by (1). For, the first

odd number is 1 and 2 • 1-1 = 1.

Hence, by the principle of mathematical induction for counting numbers,

every counting number has the property expressed by {it), that is the

generalization

:

For every counting number n,

the nth odd number is 2n - 1.

is a theorem.

EXERCISES

A. Use the principle of mathematical induction for counting numbers

to prove each of the following generalizations. Whenever possible,

make use of what you have already done in answer to the exercises

on page 1 -14.

1. For every n, the nth even number is 2n.

2. For every n, the (n + Ijt^i odd number is 2n + 1.

3. For every n, n is a counting number.

4. For every n, the (n + 10)th even number is 2n + 20.
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10. Property is that expressed by:

(i) The property is hereditary .

Suppose that, for a given k,

k + 1

Then, for this k,

S<lk + 1 + T^

^k + 1) + 1 = ^k + 1
+ f3(^ + 1) + 1]

^% +
+ T, + [3(k + 1) + 1]

= f!Sq^^^+ [2(k + l) +1]L+ )Tj^+(k +

= Sq,

1)

i(k + 1) + 1
"*

-""k + 1

Hence, for every k, if P,
,

, = Sq, , + T,' k + 1 ^k + 1 k

^^^^ P(k + 1) + 1

(ii) 1 has the property.

^^(k + 1) + 1
* '^k + 1

^1 + 1 = ?! + (3 • 1 + 1) = 1 + 4

Sq^
^ J

= Sq^ + (2 . 1 + 1) 1 + 3

5.

4.

5 = 4 + 1 .

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.
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The property is that expressed by:

Sq
. + 1

= T
+ 1

+ T

(i) The property is hereditary .

Suppose that, for a given k,

S^k + l = ^k + l + T^

Then, for this k, by the recursive definitions on

page 1 -18 and on page 1-15,

Sq^k + 1) +1 = 2^k + 1 + t2(k + 1) + 1]

Tk + 1 + Tj, + [Z(k + 1)+1] [hypothesis]

{^k + 1 + t^^ + ^) + ^i| *"
{"^k + ^^ + ^)|

= T + T
^(k + 1) + 1 k + 1 •

Hence, for every k, if Sq, , , = T, , , + T,
' k + 1 k + 1 k

then Sq^^
+ 1) + 1

= ^(k + 1) + 1
+ "^k + 1 *

(ii) 1 has the property .

Sqj
^ J

= Sq^ + (2 . 1 + 1) = 1+3 = 4

T
1 + 1

Tj + (1 + 1) = 1 + 2 = 3

Tl = 1

4 = 3+1

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.

(continued on T. C. 211)
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(i) The property is hereditary .

Suppose that, for a given k, the kth pentagonal num-

k(3k - 1)
ber is '-

. Then, for this k, by the recursive

definition on page 1-18, the (k + l)th pentagonal num-

ber is

3k' k + 6k + 2

(k + l)(3k + 2)

2

= (k+ l)[3(k + 1) - 1]

2

Hence, for every k, if the kth pentagonal number is

k( 3k - 1

)

—i—

P

'- then the (k + l)th pentagonal number is

(k + l)[3(k + 1) - 1]

(ii) 1 has the property .

By the recursive definition, the first pentagonal

number is 1, and

1(3 . 1 il = 1,

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.

Before attempting to prove this generalization (and the one in

Exercise 10) students should verify a few of its instances by

making dot -diagrams in order to achieve an intuitive feeling

for what is to be proved.

(continued on T . C. 21H)
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Remind students that the generalization in Exercise 6 is the

one mentioned on page 1-16.

vl^ ^1^ -.1^

'1^ 'f '(-

Note that the properties in Exercises 7 and 8 were shown to

be hereditary in Exercises 3 and 4 on pages 1-17, 18.

-1-* "ir- 'c- 'I-

7. Property is that expressed by:

2
the . . .th square number is ( . . .

)

(i) The property is hereditary .

Suppose that, for a given k, the kth square number
2

is k . Then, for this k, by the recursive definition

on page 1-18, the (k + l)th square number is

k^ + (2k + 1)

= (k+ 1)^ .

2
Hence, for every k, if the kth square number is k~

2
then the (k + l)th square number is (k + 1) .

(ii) 1 has the property .

By the recursive definition, the first square number

is 1, and

1^ = 1.

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.

8. Property is that expressed by:

(3 • - 1)
the . . .th pentagonal number is ^ .

(continued on T . C. 21G)
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Property is that expressed by:

the . . .th triangular number is ( + 1)

(i) The property is hereditary .

Suppose that, for a given k, the kth triangular

number is ——^ ~. Then, for this k, by the re-

cursive definition, the (k + l)th triangular number

IS

MlLiti) + (k + 1)

k(k ^ 1) + 2(k + 1)

2

(k + l){k + 2)

2

{k + l)[(k + 1) + n

Hence, for every k, if the kth triangular number is

k(k + 1)
' then the (k + l)th triangular number is

(k+ l)[(k+ 1) + 1]

2

(ii) 1 has the property .

By the recursive definition, the first triangular num-

ber is 1, and

1(1 + 1) _ ,

2

Therefore, in vie-w of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.

(continued on T . C. 2 IF)
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So, we have proved that, for every k,

if k > 1 then k + 1 > 1

.

(ii) 1 has the property .

1 > 1 because 1=1.

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds

for every counting number.

Property is that expressed by:

(...) + ... is even.

(i) The property is hereditary .

2
Suppose that, for a given k, k + k is even.

Then, for this k,

(k + 1)^+ (k + 1) = k^ + 2k + 1 + k + 1

= (k^ + k) + 2{k + 1).

2
Since, by hypothesis, k + k is even, and since, by

definition, 2(k + 1) is even, and since the sum of two
2

even numbers is even, we know that (k + k) + 2{k + 1),

2
or (k + 1) + (k + 1) is even.

2
Hence, for every k, if k + k is even then

2
(k + 1) + (k + 1) is even.

(ii) 1 has the property .

1^+1 = 2

Therefore, in view of (i) and (ii) , by the principle of mathe-
matical induction for counting numbers, the property holds

for every counting number.

(continued on T . C. 21E)
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For example, in order to prove:

if 1 + 2 = 2+1 then 1 + (2 + 1) = (2 + 1) + 1

one might proceed as follows:

From the associative principle

1 + (2 + 1) = (1 + 2) + 1.

If 1 + 2 = 2+1 then ( 1 + 2) + 1 = (2 + 1) + 1.

Hence, if 1+2 = 2 + 1 then

1 + (2+ 1) = (2 + 1) + 1.

The foregoing proof would be equally valid if, throughout it, the

numeral '2' were replaced by any other numeral, for example,

'7' or '27'. The variation essentially consists in exhibiting the

form of all proofs so obtained. In the proof the symbol 'k' serves

as a parameter; if one replaces 'k' by the appropriate numeral

[and omits such explanatory phrases as 'for this k'] one obtains

a' proof of any instance of the generalization.

vl^ vl^ vU
'1^ 'i- 'I"

3. The proof is similar to that given for Exercise 1.

4. Property is that expressed by:

... > 1.

(i) The property is hereditary .

Suppose that., for a given k, k > 1.

Then, for this k,

k + 1 > k

Hence, since > is transitive:

if k > 1 then k + 1 >_ 1,

(continued on T . C. 2 ID)
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Hence, for every k,

if 1 + k = k + 1

then 1 + (k + 1) = (k + 1) + 1.

(ii) 1 has the property .

1 + 1 = 1 + 1 (=is reflexive)

Therefore, in view of (i) and (ii), by the principle of mathe-

matical induction for counting numbers, the property holds for

every counting number.

vl^ -.1^ vU
'1^ '1^ 'r

The foregoing proof of (i) is a variation of the kind of proof we

have illustrated in connection with Exercise 1. Let students com-

pare this variation with the following:

For every k,

if 1 + k = k + 1

then since, by the associative principle,

1 + (k + 1) = (1 + k) + 1,

1 + (k + 1) = (k + 1) + 1.

In connection with the variation it is important to note that the in-

ductive hypothesis does not assert that, for every k, l+k = k+l.

This is what we are trying to prove! The phrase 'Suppose that, for

a given k', gives notice that we shall not justify a step in the proof

by inferring from the inductive hypothesis one of its substitution

instances [e.g., we shall not infer ' 1 + (k + 1) = (k + 1) + 1
' from

the inductive hypothesis by substituting 'k + 1 ' for 'k']. To get

students to understand this variation, let thenn consider the problem
of proving an instance of the generalization:

For every k,

if 1 + k = k + 1 then 1 + (k + 1) = (k + 1) + 1

.

(continued on T . C. 21C)
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1. Property is that expressed by:

the . . .th multiple of 5 is 5 • . . .

(i) The property is hereditary .

For every k, if the kth multiple of

5 is 5k then the (k + l)th multiple

of 5 is, by the recursive definition,

(the kth multiple of 5) + 5, or

5k + 5, or 5(k + 1).

(ii) 1 has the property .

By the recursive definition, the

first multiple of 5 is 5. Hence,

the first multiple of 5 is 5 • 1.

Therefore, in view of (i) and (ii), by the principle of nnathe-

matical induction for counting numbers, the property holds

for every counting number.

2, Property is that expressed by:

1 + . . . = . . . + 1.

(i) The property is hereditary .

Suppose that, for a given k,

1 + k = k + 1.

[The foregoing supposition '1 + k = k + 1'

is often called the inductive hypothesis .

Students should be taught this term.]

Then, for this k,

1 + (k + 1) = ( 1 + k) + 1 [associative principle]

= (k + 1) + 1 [inductive hypothesis]

(continued on T. C. 21B)
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B. Use the principle of mathematical induction for counting numbers

to prove the following generalizations.

1. For every n, the nth multiple of 5 is 5n.

[Hint: Use the recursive definition:

The 1st multiple of 5 is 5 and,

for every k, the (k + l)th multiple

of 5 is (the kth multiple of 5) + 5.]

2. For every n, l+n = n+l.

[Of course, you are expected not to use the commutative prin-

ciple for addition of counting numbers in your proof.]

3. For every n, the nth multiple of 6 is 6n.

4. For every n, n > 1.

5. For every n, n + n is even.

6. For every n, the nt^i triangular number is .

[See the recursive definition on page 1-15.]
2

7. For every n, the nth square number is n .

8. For every n, the nth pentagonal n\imber is -^—=
.

1S9. For every n, Sq^^^ = T^^^ + T^.

^10. For every n, P , , = Sq_ , , + T .
•* n+i Ti+i n

THE PRINCIPLE OF MATHEiMATICAL INDUCTION FOR OTHER SETS

OF NUMBERS

You have seen that the reason that the principle of mathematical

induction for counting numbers holds is that each counting number can

be reached by starting at the first counting number (1) and proceeding

through a finite number of steps each of which consists in passing from

the number reached by the preceding step to its follower (its immediate

successor). There are many other sets of numbers for which one can

define 'first niember' and 'follower' in such a way that each member

can be reached from the first member in the set through such a step-

by-step process. In fact, one can do this for each set which can be

"ordered (by some relation) in the same way" in which the set of count-

ing numbers is ordered by the relation < .

UlCSM-2-56, Third Course
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If A C K, and

(a)
'k

6 A, and

(b) for every x €K, if X / % and

X € A then
+

X e A,

th en A = K

This principle of finite induction holds for every simply or-

dered finite set. It can be proved, using (I ), (II ), (III ), the

denial of (IV ), and (V ) in just the same way as the principle of

mathematical induction is proved from (I )-(V ). It is sufficient

to remark, at the appropriate point of the proof, that {i r) / gr^
j\ is,

and so, as required in the proof, has an immediate successor.
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Pictorially, with 'R' corresponding to 'is to the left of:

1, 3, 5, . . . ; 2, 4, 6

4.
It is clear that the relation in question satisfies postulates (I )-

{IV ) but does not satisfy postulate (V ), since 2 has no immedi-

ate predecessor. Also, the usual form, of the principle of mathe-

matical induction is not valid here, but that

if A C K and

(a) 1 e A and 2 e A, and

(b) for every x e C, if x e A then x e A,

then A = C.

[Here, of course, for every xeC, x =x+2.]

In the preceding, we have merely touched on the theory of

simply ordered sets. A convenient source for further material

is Huntington's THE CONTINUUM (Cambridge, Mass. : Harvard

University Press, 1942).

The examples used at the beginning of this unit to introduce

the notion of mathematical induction dealt with finite ordered sets,

and a few words concerning these are in order. If postulate (IV )

is not satisfied [but (I )-{IIl ) and (V ) are] then there is an x e K
such that, for every y e K, y R x or y = x. [The proof of this, in

particular the proof that if it is not the case that x R y then either

y R X or y = X, depends on the connectedness of R which we have

said follows from (i^) and (VV ] Thus K has a "greatest number"

and, using (I ) it is easily shown that there can be only one such.

If we denote the greatest member of K by 'gj^' then it is easy to

prove, under the specified assunnptions concerning K and R, that

(continued on T. C. 22P)
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is necessarily asymmetric. Such a relation is called an irreflexive

order relation . [A good example of an irreflexive order relation

is that expressed by '.
. . is supported by ... ' and defined over the

parts (trunk, boughs, branches, twigs) of a tree.] A relation R
defined over K is said to be connected if, for every x and y in K,

if x / y then either x R y or y R x. [The example just referred to

is not connected (except in the case of an extremely one-sided tree).]

A connected irreflexive order relation is called a simple (or some-

times a linear) order relation.

It is not difficult to show that a relation R which satisfies pos-

tulates (I ) and (II ) is necessarily a simple order relation. Con-

sequently, every progression is a simply ordered set. Postulate

{II ), however, says much more. It is equivalent, for a simply

ordered set, to the statement that no subset of K is orde ed by R
in the same way that the set of negative integers is ordered by < .

[Other ways of saying this are (1) that no subset of K is ordered

by R as a regression , or (Z) no subset of K is ordered by the con -

verse of R as a progression.] Thus, for example, the set of inte-

gers (negative, zero, and positive) is simply ordered by <, but is

not so ordered as a progression. Another example of a simply

ordered set which is not a progression is given by the peculiar

ordering of the counting numbers suggested in Part B on page

1-25.

A relation which satisfies postulates (I ) and (II ) is called

a well-ordering relation. An example of a well -ordering of C
which is not a progression is given by the relation R such that:

X R y if (1) X and y are both odd or both even, and

X < y, or

(Z) X is odd and y is even.

(continued on T . C. 2ZO)
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These serve as a recursive definition of the relation < . [The

word 'must' above should be qualified, but a discussion of how

and why would take us too far into logical theory.
]

Neither of the above systems of postulates is adequate for

arithmetic. [This also should be qualified but, as in the case of

'must', we cannot do it here.] Either of them becomes so if we

adjoin postulates which define recursively the operations of addi-

tion and multiplication. In the case of the Peano postulates these

would be:

(VII ) For every x, if x e K then x + 1 = x ''.

(VII , ) For every x and y, if x € K and y € K then x;+ 7^= (x + y/.

(VIII ) For every x, if x e K then x • 1 = x.

(VIII , ) For every x and y, if x e K and y € K then

x • y' = X • y + X.

These recursive definitions form bases for inductive proofs of the

usual theorems of arithraetic.

j^ o^ o*
'C 'l- 'I-

A better understanding of the nature of a progression can be

obtained from a more detailed investigation of possible kinds of

relations. A relation R defined over a set K is said to be transi -

tive if, for every x, y and z in K, if x R y and y R z then x R z.

A relation which satisfies postulate (I ) is said to be asymnmetric.

A relation which is asymmetric has the further property of being

irreflexive : for every x in K, it is not the case that x R x. It is

readily seen that a relation which is both irreflexive and transitive

(continued on T. C. 22N)
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for every counting number n, the set of all counting numbers

<n: {l}, {l, 2}, {l, 2, 3}, ... . This set is, when ordered

by C . a progression.

For comparison we append a version of the Peano postulates.

These refer to a set K, an object 1 and an operation '
.

(I^) 1 eK.

(;II ) For every x, if x e K then x^e K.

(III ) For every x, if x e K then x' / 1.

2
(IV ) For every x and y, if x e K, y e K, and x^= y^ then x. = y.

2
(V ) For every A C K, if

(a) leA, and

(b) for every x € K, if x e A then x''e A,

then A = K.

['( )
''" is to be read as 'the immediate successor of ',

and, for ease of comparison, we have replaced the usual

form of the principle of mathematical induction by its set-

theoretic variant, (V ).]

If, on the basis of (I )-(V ), we define *1' to be an abbreviation

for 'i-.' and '( )''' to be an abbreviation for '( )"^', (I^)-(V^) become
is.

theorems. If we wish to go the other way, and derive theorems11 2 2
corresponding to (I )-(V ) from (I )-(V ), one must adjoin to the

latter two additional postulates :

For e^

X < 1,

and:

2
(VI ) For every x,if x e K then it is not the case that

2
, (VI . ) For every x and y, if x e K and y € K then x < y/

if and only if x < y or x = y.

(continued on T. C. 22M)
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Then [if 'i' and '( )"*"' are defined as in

the preceding discussion]:

For every A C K, if

(a) ij^ e A, and

(b) for every x e K, if x e A then

x"^ e A,

then A = K.

The boxed statement is an expansion of the last sentence

on page 1-21. The situation described in the first sentence of

the boxed statement can be more briefly characterized by say-

ing that K, as ordered by the relation R, is a progression . The

boxed statement asserts that for each progression there is a cor-

responding principle of mathematical induction.

In (I )-(V ) we have an example of a system of postulates

which has many different interpretations. Nine such interpreta-

tions are suggested on page 1-22. It happens that in each of these

the value of 'K' is a set of numbers and the value of *R' is the

appropriate one of the meanings of either '< ' or *>'. [*< ' and

'> ' are, of course, ambiguous since they are used in various

contexts to refer to a relation defined for counting numbers,

another defined for real numbers, etc., and these are, strictly,

different relations.] Non-numerical interpretations are a little

difficult to find since, for exannple, it is doubtful that there are

infinitely many physical objects. Availing oneself of some degree

of poetic license, one can, however, imagine an infinite row of

people for which the relation expressed by *. . . is to the right

of ..." satisfies the above postulates. Another interesting mathe-

matical interpretation consists of the set whose members are,

(continued on T . C. 22Li)

T. C. 22K Third Course, Unit 1



-.'jij-i ,,):.

r ! r

i2]



them is that the former does so by speaking of properties of

counting numbers, while the latter refers to sets of counting

numbers.

The preceding developnnent shows that the validity of the

principle of mathematical induction for counting numbers is a

consequence solely of the manner in which the relation < orders

these numbers. Since we have used only those properties of

the counting numbers which are expressed by (I), (II), (III),

(IV), and (V) it is evident that the following is true:

Let K be any set for which there is a relation

R such that

(I ) For every x and y, if x € K and y e K
then it is not the case that both x R y

and y R X,

("ll^ If A C K and A /^ (i.e. A is non-

empty) then there is an x such that

X e A and, for every z, if z £ A then

either x R z or x = z,

(IIlS K ^ 0.

(IV ) For every x, if xe K then there is a

y such that y e K and x R y,

(V ) For every x, if x e K and there exists

a z e K such that z R x (i. e. x j^ i„),

then there exists a y e K such that

y R X and, for every z 6 K, if z R x

then either z R y or z = y.

(continued on T . C. 22K)
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(1) ^\ e A,- and that

(2) for every zeC, if ze A then i ~ < z.
A ~

From (1) and (a) it follows that i~ /^ i„. Hence, by (V). i~A ^ A
has an immediate predecessor, (i~ ")

. We know that
A

(3) (i~ )~ < i~ , and that
A A

(4) for every z, if z < i~ then z < (i~ )A J\.

Evidently (i~ ) eA for, if not, it would follow from (2) that

i^r < (l~)~ and this, by (1), contradicts (3). Hence, by (b),
^ ~ A

((i~) ) eA. But, by the previous theorem, ({Jl-r) ) = £ ~ .

Consequently, i~ eA, in contradiction to (1).

Since our assumption that A is non-empty has led to a con-

tradiction, A = C.

In order to relate the theorem we have just proved to the

principle of mathematical induction, we notice that to say that a

property holds for every counting number is to say that the set

A of those numbers for which the property holds is C. And to

say that the property holds for 1 is to say that leA (or, alter-

natively, that i„ eA); while to say that the property is hereditary

is to say that, for every xeC, if xeA then so does its follower

(or, equivalently, then x eA). Consequently, the principle of

mathematical induction and the theorem which we have just

proved express the same characteristic of the set of all count-

ing numbers, as it is ordered by < . The only difference between

(continued on T . C. 22J)
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(1) k' < k, and

(2) for every zeC if z < k then z < k .

From, the similar theorem concerning immediate successors,

whose statement precedes that of postulate (V), we know that

(3) k" < (k")"*", and

(4) for every zeC, if k < z then (k ) £ z.

Now from (1) and (4) it follows that (k ) < k; that is, that either

(k")"^ = k or (k")"^ < k. But, if (k")"*" < k then, by (2), (k")"*" < k".

However, by (3), k < (k ) . But, by (I), it is impossible

that (k ) < k and k < (k ) . Hence it is inapossible that

(k ) < k, and we are left with the alternative that (k ) = k.

We shall now prove a theorem which is merely a restate-

ment of the principle of mathematical induction for counting

numbers :

If A C C and

(a) i_eA, and

(b) for every xeC, if xeA then

X eA,

then A = C.

Proof.

Suppose that there is a counting number which does not

belong to A. Then A, the complement of A, is non-

empty and, by (II), has a least member, Jl~ . We know

that

(continued on T. C. 221)
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Our last postulate is :

(V) Every counting number except i„ has an immediate

predecessor.

[In other words: For every xeC, if x ^ i then there is a

yeC such that y < x and, for every z eC, if z < x then z < y. ]

From (I ) it follows that each number has at most one imme-

diate predecessor. For suppose that some number x had two

innmediate predecessors, say y, and y^. Then, for every

z < x, z < y, and z < y . Since y^ < x, it follows that y-, < y,;

since y, < x, that y, < y^ . Hence, by (I), y, = y^. Every

number, then, has at most one immediate predecessor. Hence,

from (V) it follows that every number other than i„ has a unique

immediate predecessor. Thus we are justified in speaking of

the immediate predecessor of any number other than i„. Using

a self explanatory abbreviation for 'immediate predecessor

of ' we have the theorem;

For every xeC, if x / i„ then x < x and,

for every zeC, if z < x then z < x .

In deriving the principle of mathematical induction from our

five postulate's we shall make use of the following theorem:

For every xeC if x / i„ then (x ) = x .

In order to prove this let us suppose that keC such that k ^ £ .

Then, from the theorem noted at the end of the preceding para-

graph, it follows that

(continued on T. C. 22 H)
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for the number 1. However, before we can introduce the sym-

bol 'i ' we need an additional postulate:

(III) The set C of all counting numbers is non-empty (i.e.

there are counting numbers).

As a consequence of the definition of '^^
' we know that I eC

and, for every zeC, ^„ < z.

(IV) There is no greatest counting number.

[This means that, for every xeC, there exists a yeC such that

x< y.]

From (IV) it follows that, for every xeC, the set G(x) of all

numbers y such that y > x is non-empty. Hence i„, .eG(x), and,

for every z, if zeG(x) then i„, . < z. In other words: for every' G(x) — —
xeC, X < i_, , and, for every zeC, if x < z then i„, . < z. It

yUjX) -^mx) -^y^

is convenient to abbreviate 'i^, .
' to '( ) ', to omit the parentheses

G( )

when doing so will not lead to confusion, and to read the resulting

symbol as 'the immediate successor of '. For example, 'i_ '

denotes the immediate successor of the least member of C, which

is, of course, the number two. We can now restate the theorem

underlined above

:

For every xeC, x < x and, for every

zeC, if X < z then x < z.

[As a matter of fact, for every xeC, x = x + 1, and we shall

want to recall this later. But, at present, since we wish to use

only properties of the relation <, it is better not to think of the

operation of addition.]

(continued on T . C. 22G)
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immediately that for every x and y, if x < y and

y < X then x = y; and that for no x and y do we have

both X < y and y < x.
]

(II) Every non-empty set of counting numbers has a least

member .

[This means that if A is any non-empty set of counting

numbers then there is a number x such that xeA (i.e.

X is a member of A) and such that, for every number

z, if zeA then x < z. If, for example, A is the set of

even numbers, then 2eA and, for every even number

z, 2 < z. 2 is the least even number.]

Fronn (I) it follows that there is at most one least member

of any given set A. For suppose that there were two least

members, x, andx^. Then, for every zeA, x, < z and x^ < z.

Since x^eA, it follows that x. < x . Since x,eA it follows that

X- < X- . Hence, by (I), x, = x^. So, every set of counting

numbers has at most one least member. But, by (II), every

non - empty set of counting numbers has at least one least num-

ber. Therefore, by (I) and (II), every non-empty set of count-

ing numbers has a unique least mennber. This last assertion

justifies our use of the definite article in speaking of the least

number of a given non-empty set of counting numbers.

It will be convenient to name the least member of a non-

empty set by a symbol obtained by attaching a name for the

set as a subscript to the letter 'i'. Thus, if we use 'C as

a nanme for the set of all counting nunnbers, then 'St' is a name

(continued on T . C. 22F)
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With this definition the principle of mathematical induction is

again a theorem. ]

[B.] We shall now take up a postulational basis for the

arithmetic of the counting numbers v/hich is quite different from

Peano's. The latter emphasizes the operation of obtaining the

innmediate successor of a counting number; the one which we

are about to take up emphasizes, instead, the order relation

< . What we shall do is to show how, from five postulates con-

cerning <, one can establish the existence and uniqueness of

an immediate successor of each counting nuniber, and derive

the principle of mathematical induction. The procedure to be

followed is implicit in the last two paragraphs of T . C. lA

(q. V. ). Our postulates will be chosen in such a way as to jus-

tify the following argument:

If there exists a counting number which does not

have a given property P then there is a least such

number. If 1 has P then this least number which

does not have P is not 1, and so has an immedi-

ate predecessor. This latter number nnust then

have P and so, if P is hereditary, its immedi-

ate successor has P. But its immediate suc-

cessor is the least number which does not have

P. Consequently, if P is an hereditary property

of 1 then there is no counting number which does

not have P; i.e., every counting number has P.

Our first two postulates are:

(I) For no counting numbers x and y do we ever have

both X < y and y < x.

[From (I) and the obvious definition of '< ' it follows

(continued on T. C. 22E)
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We shall now consider two alternative postulational treat-

ments of the principle of mathematical induction.

[a. ] In explaining the principle of mathematical induction

for counting numbers we have said that it is valid because each

counting number other than 1 can be reached by starting at 1

and nnaking _a finite sequence of steps each of which consists

in passing to the follower (or, as we shall now say: the imme-

diate successor) of the number reached in the preceding step

(or, in the first step, to the immediate successor of 1). It

might seem natural to take this as a postulate, in place of the

principle of mathematical induction, and it is perfectly feasible

to do this provided that one has first defined the notion of finite

sequence. One cannot use the most natural definition according

to which a finite sequence is a function whose domain is the set

of all counting numbers < some counting number, for then the

underlined statement above would assert no more than that, for

every counting number n, there is a 1-1 correspondence between

the counting numbers < n and the counting numbers < n. But

it is possible to define 'finite sequence' without referring to

counting nuinbers, and on this basis to carry out the program

suggested above. However, this procedure is somewhat com-

plicated and while the underlined statement may in itself seem

more intuitively simple than does the principle of mathematical

induction, it beconnes much less so when backed up by an appro-

priate definition of 'finite sequence'.

[a sinnilar modification can be made in the Frege - Russell

procedure: first define 'finite set' without reference to count-

ing nunnbers and then define 'counting number' as an abbrevia-

tion for 'cardinal nunnber whose members are finite sets'.

(continued on T . C. 22D)
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and

are true

and

'1 + 2 = 3'

' for all counting numbers a, b and c,

a(b + c) = ab + ac*,

if 'counting number' means even

counting number,

if '1' stands for the number two,

if, for every even counting number a,

a's follower is the next even counting

number,

i^ for all even counting numbers a and b,

a + b is the ordinary sum of a and b,

and a • b is half the ordinary product

of a and b.

With this interpretation of the symbolism, '1 + 2' denotes the svun

of two and four, or six, whose name, in the present interpreta-

tion, is '3', and '3 • 5' denotes half the product of six and ten, or

thirty, whose name is now '15'. Hence '1 + 2 = 3' now states that

the sum of two and four is six, while '3 • 5 = 15' states that half

the product of six and ten is thirty.

On the other hand, the Frege -Russell definition, also referred

to on T . C. 19C, not only gives a basis from which to develop the

arithmetic of the counting numbers, but also tells us, in terms of

the notion of set, what the counting numbers are.]

(continued on T . C. 22C)
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(3) The first member is 2 and, for every counting number n,

n's follower is n + 2.

(4) 2; for every prime number n, n's follower is the least prime

number > n.

(9) 1; for every unit fraction n, n's follower is t—;— .X ; » 7
1 + n

The following comments have relevance for the text material

on pages 1-21 through 1-23 as well as for Part B of the Exercises

on page 1-25.

As was pointed out on T . C. 19C, the principle of mathemati-

cal induction may be taken as one of a set of postulates chosen to

characterize the arithmetic of the counting numbers.

[We say 'the arithmetic of the counting numbers' because a

postulational treatment such as Peano's cannot characterize the

counting numibers themselves (i.e., cannot tell what they are),

but only their behavior, with respect to operations such as addi-

tion and multiplication. For example, all the theorems of arith-

metic, such as

T. C. 22A

(continued on T. C. 22B)
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Here are some examples :

(1) 1. 2. 3, 4, 5, 6, 7, 8,

(2) 4, 5. 6,

(3) 2, 4. 6,

7, 8. 9, 10. 11,

8, 10, 12, 14, 16,

(4) 2, 3, 5, 7, 11, 13, 17, 19,

(5) 0, 1, 2, 3, 4, 5, 6, 7,

(6) +1, +2, +3, +4, +5, +6, +7, +8,

(7) -5, -4, -3. -2, -1, 0, +1. +2,

(8) -1, -2, -3, -4, -5, -6, -7, -8,

(9) 1,
1

2'

1

3'
1

4'
1

5'
1 1

7'
1

8'

Set (2) is the set of all counting numbers > 4. The first member in that

set is 4, and for every x, x's follower is x + 1 . Set (8) is the set of

all negative real integers. The first member in that set is -1, and

for every x, x's follower is x - 1. The student should define in a simi-

lar way 'first member' and 'follower' for (3), the set of even counting

nximbers; (4), the set of prime counting numbers; (5), the set of finite

cardinal numbers; (6), the set of positive real integers; (7), the set

of real integers > -5; (9), the set of unit fractional nxunbers. [Note:

Actually 'first member' and 'follower' could be defined for each of the

above sets in many different ways. We have indicated the definitions

which we shall find most useful in practice.
]

Once 'follower' has been defined with respect to the members of

a set, one can introduce a notion of "hereditariness ". For example,

in case (3) above we would make the following definition:

UICSM-2-56, Third Course
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[1.03] [1-23]

A property is hereditary over the set of

all even counting numbers if it is meaningful

for each even counting n\amber and if,

for every even counting number k, if k has

the property in question then so has k + 2.

The student should make corresponding definitions for each of the sets

(2). (4), (5), (6), (7), (8), and (9).

Since for each of the given sets each of its members can be reached

from its first member through a finite number of "steps", we have

in each case a "principle of mathennatical induction". For example, in

case (8), the principle of mathematical induction for negative real

integers is:

Every hereditary property of negative real integers

which holds for -1 holds for every negative real

integer.

The student should state principles of mathematical induction for

the other sets.

We give now an example of the use of one such principle.

Let us attempt to prove the following generalization:

For every real integer x < 0, 1 - 2x > 0.

Note that this is a generalization about the negative real integers, set (8).

As remarked before, the first member in that set is -1 and for every

X, x's follower is x - 1. A property is hereditary over the set of all

negative real integers if it is meaningful for each negative real integer, and

if, for every negative integer y, if y has the property in question then

so does y - 1. The principle of mathematical induction for negative

real integers has been stated above. The property in which we are

interested is that expressed by:

1 - 2 . . . >

The proof of the generalization runs as follows:
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(i) The property is hereditary .

Suppose that, for a given real integer y < 3,

the (3 - y)th even integer is 6 - 2y.

Then, for this integer y, the [3 - (y - l)]th, or

[3 - y + l]th even integer is 6 - 2y + 2, or

6 - 2(y - 1).

(ii) 2 has the property .

The (3 - 2)th or first even integer is 6 - 2 • 2, or 2.

Therefore^ in view of (i) and (ii), by (d), the property

holds for every real integer < 3.

(a) All counting numbers which are multiples of 5:

(5, 10, 15. ...}.

(b) 5; k's follower is k + 5.

(c) A property is hereditary over the set of all counting num-

bers which are multiples of 5 if it is meaningful for each

multiple of 5 and if, for every k which is a multiple of

5, if k has the property in question then so has k + 5.

(d) Every hereditary property of counting numbers which

are multiples of 5 which holds for 5 holds for every

counting number which is a multiple of 5.

(e) The property in question is that expressed by;

... + 1 is even.

The generalization is false; 10 is a counter-example.

T. C. 24C Third Course, Unit 1
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(ii) 6 has the property.

_ (6 - 4)(6 - 5)
= l; T^.3 = T^ = 1.6-5 2

Therefore, ;n view of (i) and (ii), by (d), the property holds for
every counting number > 6.

2. (a) The set of all counting numbers > 3.

(b) First number is 3; k's follower is k + 1.

(c) A property is hereditary over the set of all counting

numbers ^ 3 if it is meaningful for each counting num-

ber > 3 d.nd if, for every counting number k > 3, if k

has the property in question then so has k + 1.

(d) Every h&Teditary property of counting numbers > 3

which hoMs for 3 holds for every counting number > 3.

(e) The property in question is that expressed by:

(...) - 1 is a multiple of 8.

The generalization is false; 4 is a counter-example.

3. (a) All real integers < 3.

(b) 2; y's follower is y - 1.

(c) A property is hereditary over the set of all real integers

< 3 if it is meaningful for each real integer < 3 and if,

for every real integer y < 3, if y has the property in

question then so has y - 1.

(d) Every hereditary property of real integers < 3 which

holds for Z holds for every real integer < 3.

(e) The property in question is that expressed by:

the (3 - . . . )th even integer is 6 - 2 • . . •

(continued on T. C. 24C)
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1. (a) The set' of alTcountirig^numbers >'6V

(b) First number is 6; k's follower is k + 1

,

(c) A property is hereditary over the set of all counting

numbers > 6 if it is meaningful for each counting num-

ber > 6 and if, for every counting number k > 6, if k

has the property in question, then so has k + 1.

(d) Every hereditary property of counting numbers > 6

which holds for 6 holds for every counting number > 6.

(e) The property in question is that expressed by:

_ (... - 4)( 5)

(i) The property is hereditary .

Suppose that, for a given k > 6,

^k - 5 " 2

Then, for this k

,

= <^ -

^f
- ^) + [(k - 5) + 1]

^ (k - 4)[(k - 5) + 2]

2

_ (k - 3)(k - 4)

2

^ [(k + 1) - 4][(k + 1) - 5]

2

(continued on T. C. 24B)
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( i) The property in question i_s hereditary:

For every y, if 1 - Zy ^ then

1 - 2(y - 1) = (1 - 2y) + 2 > + 2 ^ 0.

(ii) -1 has the property in question :

1 - 2(-l) - 3 > 0.

Having established (i) and (ii) the principle of mathematical

induction for negative real integers now tells us that every

negative real integer has the property in question. That is, for

every real integer x < 0, 1 - 2x > 0.

EXERCISES

A. For each of the follov/ing generalizations

(a) identify the set with which the generalization is concerned,

(b) decide on appropriate definitions of 'first member' and

'follower',

(c) define 'hereditary property' appropriately,

(d) state the appropriate principle of mathematical

induction, and

(e) either use the answer to (d) to prove the generalization,

or give a counter-example.

1. For every counting number n •> 6, T , = s^ •— n - 5 2

2
2. For every odd counting number n j^ 3, n - 1 is a multiple of 8.

3. For every real integer x < 3, the (3 - x)th_ even integer is

6 - 2x.

4. For every counting number m which is a multiple of 5,

m + 1 is even.
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1. 3, 11, 10, 98.

2. Yes, 2.

3. Yes, 1.

4. 1, 3, 5, ...,..., 6, 4, 2.

5. [See Commentary to page 1-22.] With this definition of

'follower' for the counting numbers it is not the case that each

counting number which is a follower can be reached by a finite

number of steps each of which consists in passing from the num-

ber reached in the preceding step to its follower. In fact, no

even counting number can be so reached. Hence, (although

there is just one counting number which is not the follower

of any other) there is no principle of mathematical induction

corresponding to this notion of follower.

The given notion of follower does correspond to an order-

ing relation (see answer to Exercise 4, above) but, with this

ordering there are non-empty sets of counting numbers which

have no least members. In fact, the set of all even counting

numbers is of this kind.
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B. Suppose you make the following definition of 'follower' for counting

numbers

:

For every odd counting number n,

n's follower is n + 2;

for every even counting number n ^ 2,

n's follower is n - 2.

1. What is the follower of 1? Of 9 ? Of 12? Of 100?

2. Is there a counting number which does not have a follower?

3. Is there a 'first member"?

4. Indicate how to list all of the counting numbers in a

horizontal line such that the first member is "first in line"

and the follower of each number except 2 is listed

immediately to the right of it.

5. We are going to 'prove ' now that every counting nximber is

odd.

(i) The property is hereditary :

For every counting number k, if k is odd,

then it has a follower, k + 2, and its

follower is odd.

(ii) 1 has the property:

1 is odd.

Therefore, every counting number is odd. Criticize

the above "proof".

C. V/e are going to "prove" that for every counting number n, every

n boys have the same weight.

(i) The property is hereditary :

Suppose that every k boys have the same weight.

(continued on next page)
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The fallacy is in the proof of ( i), and illustrates the dangers

of using '
. . . ' (as in line 2). The error can be discovered by

attempting to specialize the given proof of (i) to a proof that if

all the boys in every set of 1 boys have the same weight then so

do all the boys in every set of 1 + 1 boys.
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Consider a group of k + 1 boys, say,

B^, B^. By .... Bj^, Bj^
^ y

The boys

Bj. B^, B3, ..., B^

form a set of k boys. Therefore, they have the

same weight. Also, the group

B^, B3, .... B^, B^^
J

form a set of k boys; so they too have the same

weight. But, since B^ belongs to both sets, each

boy weighs the same as B . Hence, for every

counting number k, if all the boys in every set of

k boys have the same weight then so do all the boys

in every set of k + 1 boys.

(ii) 1 has the property :

Clearly, all the boys in every set which

consists of just 1 boy have the same weight.

Therefore, by the principle of mathematical induction

for counting numbers, for every counting number n, all the

boys in every set of n boys have the same weight. Note that

the second instance of this generalization states that any 2

boys have the same weightl

Criticize the above proof",

1. 04 Sums of progressions .
-- Sequences of numbers such as those given

on page 1-22 are often called progressions . We are sometimes

interested in computing the sum of the members of a set of successive

terms in a progression. For example, you have learned earlier in the

unit that, for every counting number n, the nth triangular number is

the sum of the first n terms of the progression which begins:

1, 2, 3, 4, 5. ...
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in a 1-1 way on the set (O, 1, 2, 3, 4}, and /_,
(k + k) =

2[(j + 1)^ + j]. Also, £ (k^ + k) =
Yj

[(-^)^ + (-"^)]; i^e^e

j=0 k=l m = -5

the transformation is expressed by 'm - -k'. In general, allow-

able transformations of 2j"expressions will be of the form

'j = ak + b' with 'a' replaced by ' 1
' and 'b' by a counting numeral,

if the interval of summation is a set of counting numbers; or

'a' replaced by '1' or by '-1' and 'b' by and integer numeral, if

the interval of summation is a set of integers. The restriction

on replacennents for 'a' is necessitated by the requirement that

the transformation be 1-1. Other examples of such transforma-

tions will be found on T.C. 29A.
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in the range of the variables. For example, if 'u' is a variable

whose range is the set of real numbers then \j\i{l - u) has a

value for each value of 'u' between and 1, inclusive. Sinnilarly,

if the range of 'p' is the set of integers, ^r has a value for
r=p

each value of 'p' < 5, i. e. for . . . , -3, -2, . . . , 4, 5, and these

values are the same as the "corresponding" values of the expres-

. 5 . . 5 .

sion 2j ^ • 2j"^^P-'^^^^^°'^^ like ^j ^ in which no variables
x=p k=l

occur are themselves numerals. [If one replaces 'c', in the ex-

ample above in which it occurs, by a name for a real nunnber then

the resulting expression names a set of real numbers. The ori-

ginal expression, then, has sets as values.]

Returning to the analogy between 2j" expressions and
J
-expres-

sions, you will recall that in the case of the latter one can "trans-

form variables" as illustrated by: ( N/t dt = I y • 2y • dy.
•^1 ^1

Here the transformation is that expressed by 'y = 'vt ', and for

every real number x > 0, transforms the segment l,x (or x, 1)
• —» •

in a 1-1 manner on the segment 1, nTx (or \rx, 1). In a similar

5

-expression, say 2j (^ + ^) can be transformed by
k=l

using any transformation which maps the "interval of summation"

in a 1-1 way on a similar set of numbers. For example, the

transformation expressed by ' j = k - 1
' maps the set (1. 2, 3, 4, 5}

(continued on T . C. 27C)
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There is an analogy between the notations ^j ^W ^^'^

k=p

' rb '

J f(x)dx . [The concepts expressed by the notations are, of

course, quite different.] The symbols 'k' and 'x' are apparent

variables (or "dummy" variables) and can be replaced by any ap-

propriate symbols without changing the meaning of the expressions

q q

for every p, q and f, ^^ f (k.) = ^i(''f); for every a, b and f,

k=p *=p

J f(x)dx = J f (z)dz. Other examples of apparent variables are

the symbols 't' and 'y' in 'for every counting number t, t + 1 =

1 + t' and 'the set of all real numbers y such that y + 2 < 3c'.

The symbols 'p', 'q', 'a', 'b', and 'c' in these examples are

variables (i.e. pronumerals)(and 'f is also a variable, a "pro-

functional"), 'p' and 'q' are called 'limits of summation' and

'a' and 'b' are called 'limits of integration'. [The same termino-

logy is also applied to any expressions which occupy the same

positions with respect to a /^ as do 'p' and 'q', or with respect
. x+5 ,

to an J as do 'a' and 'b'. For example, in ^j j
'1' ^^nd

n=l

'x + 5' are the limits of summation.
]

5

In interpreting a 2j~expi"ession such as ^r the variables
r=p

which occur in the limits of summation (in this case, the variable

'p') must have specified ranges, for example, the set of counting

numbers, or the set of non-negative integers, or the set of in-

tegers, etc. The expression, then, like any other algebraic

expression has a value corresponding to each of a set of values

(continued on T . C. 27B)
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It is convenient to have a simple notation to use when referring

to such Slims. Such is the so-called "2-notation". As an example

of the use of this notation consider the 5th triangular number, T_,

which, you remember, is 1 + 2+3 + 4+5. Using the 2 -notation

we would write: ,

I''
k=l

as a name for the 5t_h_ triangular number. Similarly, we could use as

a name for the 4th square number:
4

^(2k - 1)

k=l

[This symbol is read "sigma from k = 1 to 4 of 2k - 1". 'S' is

the Greek letter corresponding to our 'S' and is meant to remind you

of 'sum' . ]

The expression:
4

Y^(zk
-

1)

k=l

stands for the siim of the four values of ' 2k - 1' which corresponds

to the values 1, 2, 3, and 4 of 'k'. In other words:
4

Y^
(2k - 1) = [2(1) - 1] + [2(2) - 1] + [2(3) - 1] + [2(4) - 1]

= [1] + [3] + [5] + [7]

= 16

EXERCISES

A. Study each of the first six statements xintil you understand them,

and then complete the last seven in the same manner.
3

1. Yj^Z
- 3x) = [2 - 3(1)] + [2 - 3(2)] + [2 - 3(3)] = [-1] + [-4] + [-7]

x=l

3

2^ ^(2 - 3y) = [2 - 3(1)] + [2 - 3(2)] + [2 - 3(3)] = [-1] + [-4] + [-7]

y=l

(continued on next page)
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8.

9.

10.

11.

12.

j^5_132j.29^ 6522222 2

9 + 4+1+0 + 1 + 4+9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 = 399

26 + 33 + 40 + 47 = 146

-10-5 + + 5+10 + 15 + 20 = 35

22

2 6 12 20 ^ 30 42 56 8

Remind students of the following procedure for finding the low-

est common multiple for the denominator numbers:

13.

L.C.M. = 2"

2860
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3 y 4x = 40 + 44 + 48 + 52

x=10

3

4, J(3k + 7) = 1 + 4 + 7 + 10 + 13 + 16

k= -2

3

5^ ^(a + nd) = [a] + [a + d] + [a + 2d] + [a + 3d]

n=0

5

6. ^ Mikl-i) = 1 + 5+12+22+35
k=l ^

[1-28]

7. I

4
8t - 3

t=0 2

10

8. I - =

s= -3

6

i=3

7

10. Z'^"' ^>
~-

x=l

3

11. J (5P+ 7) =

p=3

7

12. Z n{n + i)

n=l

5

13. 2j 11^^+711-8

n=2
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2j ^ [Correction: insert ' + ' between the first two terms

m Exercise 6 .
J

By the recursive definition on page 1-18,

P3 =P^ + (3 • 4+ 1)

= P^ + (3 • 3 + 1) + (3 • 4+1)

= P^ + (3 • 2 + 1) + (3 • 3 + 1) + (3 • 4 + 1)

= P^ + (3 • 1 + 1) + (3 • 2 + 1) + (3 • 3 + 1) + (3 • 4+1)

= [3- 0+1] + (3- l + l)+(3- 2 + l) + (3- 3 + 1) +

(3 • 4 + 1),

Therefore,

Pr = Tj (3k + 1). or £ (3k - 2),

(a) T = £ (k + 1), or £ k .

k=0 k=i

n-1 n
(b) Sq^ = 2 (2k + 1), or

fj
(2k - 1) .

k=0 k=l

(c) P^ = L (3k + 1). or I (3k - 2) .

k=0 k=l

vl, vt. ^1,
'r '1^ '1^

The exercises in Part C are extremely easy. Note that they

lead to the recursive definition given on page 1-30.
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B.
Here is an illustration of a procedure for obtaining an unlimited

number of answers to problem posed in the Sample [See T. C.

27A ff.]:

3 k-l=3 4

X (3k + 4) = I [3(k - 1) + 4] =
2^ (3k + 1);

k=0 k-l=0 k=l

3 k-2=3 5

2 (3k + 4) = I [3(k - 2) + 4] = 2 (3k - 2);

k=0 k-2=0 k=2

3 ^i^ = ^ -J-

2 (3k + 4) = I [3(k + 5) + 4] = I {

k=0 k+5=0 k=-5

A second procedure

:

k=3 -k=3 k=0

2 (3k + 4) = 2 [3(-k)+4] -
Yj (4 - 3k);

k=0 -k=0 k=-3

k= 8 -k=8 k=-5

2 (3k - 11) = 2 [3(-k) - 11] = 2j (-3k - 11).

k=5 -k::-5 k=-8

6 ° 2
1. £ (5k + 3) 2. X (k - 1)

k=2 k=-3

11 2, 7

3. y. 10k 4. 2^1^' E(io + 5^)

k=5 k=3 k=l

k=2 k=2

(continued on T . C. 29B)
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B. Express each of the following in Z)-notation.

Sample. [3(0) + 4] + [3(1) + 4] + [3(2) + 4] + [3(3) + 4]

3
Solution .

Here is_an answer: 2j ^^^ "*" ^^'

k=0

Other possible answers are:

8

^(3k-ll) and: li^ - ^^)
.

k=5 k= -3

1. [5(2) + 3] + [5(3) + 3] + [5(4) + 3] + [5(5) + 3] + [5(6) + 3]

2. [(-3)^ - 1] + [(-Z)^ - 1] + [(-1)^ - 1] + [(0)^ - 1]

3. 10(5) + 10(6) + 10(7)+ 10(8) + 10(9) + 10(10) + 10(11)

4. 15 + 20 + 25 + 30 + 35 + 40 + 45

5. [0(2) + 5] + [0(3) + 5] + [0(4) + 5] + [0(5) + 5]

6. [ 4 ] [ 4 ] + [ 4 ] + [ 4 ]

7. the 5th pentagonal nvimber

ijS. (a) the nth triangular number

(b) the nth square number

(c) the nth pentagonal number

C. Verify each of the following.

5

I ^ (9 + 3k) =9 2. j; (3 - 2k) = -7

k=0 k=5

3 2

3. X 4x = 24x+ [4(3)]

x=l x=l

(continued on next page)
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le recursive definition in the box on page 1-30 is annbigubus

to the extent that we have not specified the range of the variables

'p' and 'q'. Their range may be specified as any progression but

in practice will be either the counting numbers, or the real inte-

gers.

T. C. 30
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-1

y=-2

1000

y=-2

999

5. Yj(^^
+ 2x - 3) = J (Sx"^ + 2x - 3) + [5(1000)'^ + 2(1000)

x=6 x=6

9 8

6. Z ^k = Z^k + ^^9^

3]

k=3 k=3

[ Note: Think of 'a, ' as an abbreviation of an expression which

is meaningful when 'k' is replaced by '3', '4', '5', '6', '7', '8',

or '9'. For excunple, the expression '12 + 7k', in which case,

'ag' is an abbreviation for '12 + 7(9)'. ]

MORE ABOUT S-NOTATION

The exercises in Part C suggest the following recursive definition;

1\- %

and for every q ^ Pi

q+ 1 q

y a, = y a, + [a , ]Zjk /ijk 'q+1-'
k=p k=p

As in the case of any recursive definition [See page 1-16. ] this provides

us with a way of computing sums of successive values of 'a, '
.

For example, if we replace 'a, ' by '5 - 2k' and 'p' by '3', we get

the following recursive definition:
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J (5 - ^k) = 5 - 2(3)

k=3

and for every q ^ 3,

q+1 q

2 (5 - 2k) = y (5 - 2k) + [5 - 2(q+ 1)]

k=3 k=3

Hence, 3

2 (5 - 2k) . -1

k=3

j;{5 - 2k) = y (5 - 2k) + [5 - 2(4)]

k=3 k=3

= -1 + [-3] = -4

5 4

2;
(5 - 2k) = j(5 -2k) +[5- 2(5)]

k=3 k=3

4 + [-5] = -9

etc.

Another important use of recursive definitions is to prove

generalizations like the following:

For every counting number n, the siiin of the first n even

numbers is n(n + 1).

Introducing 2 -notation this can be written:

For every counting number n,

n

y 2k = n(n + 1).

k=l
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Therefore, in view of (a) and (b), by the principle of mathema-

tical induction for counting numbers, the property in question

holds for every counting number.

Be sure to call attention to the similarity between this proof

and the proof for Exercise 6 on page 1-21.
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The proof that yn(n + 1) is the sum of the first n counting num-

bers makes use of the principle of mathematical induction for

counting numbers.

xl, -I, o^
'1^ ',V ^,N

Property is that expressed by:

k=l

(... + 1)

(a) 1 has the property .

By the recursive definition on page 1-30,

1

E k = 1;

k=l

and

1(1 + 1) _ ,

2

(b) The property is hereditary .

For every q,

q

if ^k _ q(q + 1)

k=l

q+1

then ^k =
Yj

]<. + (q+1)
k=l k=l

[recursive definition]

q(q + 1)
+ {q+ 1) [inductive hypothesis]

T. C. 32B

^ (q-f l)(q + Z)

2

- (q+ l)[(q+ 1) + 11

2

(continued on T . C. 32 C)
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Be sure that students understand the inductive proof given

on page 1-32. The answer to the first '[Why?]' is:

the recursive definition

and the answer to the second '[Why?]' is :

the inductive hypothesis.

.1.- ^i^ xi,
'<" 'I- '1-

1. Point out to students that in many college algebra texts (in

which 2j"n.otation is not discussed) exercises of this type

are often stated:

Prove

:

1 +2 + 3+ ... +n = J}ilL^.

The use of 2j~i^otation avoid the vagueness of the three dots.

Students should be able to state what the generalization

. in this exercise asserts, viz . that the sunn of the first n

counting numbers is =
. It is natural for students to

wonder about the source of the form ——^ ~. They nnay

guess at the derivation of this form if you lead them through

the following

:

Sum = l + 2 + 3+...+n
Sum = n + (n -1) + (n - 2) + . . + 1

2 X Sum = (n + 1) + (n + 1) + (n + 1) + , . . + (n + 1)

= n(n + 1)

Sunn = y-n (n + 1)

.

(continued on T. C 32B)
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According to the principle of mathematical induction for counting numbers ,

it is sufficient to show that

1

(a) I
2k = 1(1 + 1)

k=l

and that

(b) for every counting number q,

q q + 1

if J 2k = q(q + 1) then ^^ 2k = (q + l)[(q + 1) + 1].

k=l k=l

Proof of £a)

:

1

y 2k = 2(1) = 1(2) = 1(1 + 1).

k=l

Proof of (b):

For every q,

q

k=l
q(q+ 1)

q+l q

then 2 2k= 2; 2k + [2(q+ 1)] [Why?]
k=l k:.l

= q(q+ 1) + [2(q+ 1)] [Why?]

= (q+ l)(q+ 2)

= (q+ l)[(q+ 1) + 1].

Hence, the boxed statement follows by the principle of mathematical

induction for counting numbers,

EXERCISES

Prove each of the following. Be sure to state the principle of

mathematical induction you use for each proof.

n

1. For every counting nxomber n, )^ ^ ~
2

k=l

(continued on next pag^
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Hence, for every real number y different from and -1,

3 - - +
^ (y+1)'

So, for every real integer y ^ 1,

if X , 2 < 3 - -
k=l^ y

< 3
y + r

y+1
1

1then y -7- < 3

Therefore, in view of (a) and (b), by the principle of

miathematical induction for positive real integers, the

property in question holds for every positive real integer.
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(b) The property is hereditary .

Suppose that, for a given y > 0,

Tj 71 < 3 - - .

k = 1
^ y

Then, for this y.

Now,

y+1 y 1

k2 %4^, k^ ^ (y + 1)Z dz = Z. w2 + '- .
-2

k= 1
" k=

1

Since, by the inductive hypothesis.

lbk=r
<^-\-

Z k^
k = l

^
< 3 - i +

y

1 1 (y+ i)^-v

y^(y+ 1)^
'-

^ ^ y(y + 1)^

{y+ 1)^

= 3 . y .+ y + ^

y(y + 1)

2
1

< 3 - ^ i-^ ["add 3 "]

y(y+i) y(y+i)

= 3- '

y+l

(continued on T. C. 33N)
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Then, for this z,

z + 1 z

z <= = z <= + ^

k= y k = y

= c(z-y+l) + c

= c[(z+ 1) - y + 1].

Hence, for every real integer z > y,

z

if 2y c = c{z - y + 1)

k = y

z+1
*^-"

Z c = c[(z+l)-y+l].
k = y

Therefore, for every real integer y, by the principle of

mathematical induction for real integers > y, it follows in view

of (i) and (ii), that the property in question holds for every real

integer _> y.

11. Property is that expressed by:

z ,,2

k= 1

(a) J has the property

1

z ^
k= 1

= ~J - 1; and
1^

1 < 3 -

Y
= 2 .

(continued on T. C. 33M)
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Therefore, in view of (i) and (ii), by the principle of

mathematical induction for positive real integers, the

property in question holds for every positive real integer.

Note that the generalization in this exercise asserts that,

for every real number c and for every real integer x > 0,

X

2j c = ^c -f c + c + . . . + c .

k= 1 r^^^-X terms

Connpare with Exercises 5 and 6 on page 1-29.

10, (b) Property in question is that expressed by:

for every real nvimber c and for every real

inte ger y,

Yj c = c(... -y + 1).

k =y

(i) For every real integer j/-, jr has the property.

y

2 c = c;

k = y

and c(y - y + 1) = c.

(ii) For every real intege r y^, the property is hereditary

over the set of real integers > y.

Suppose that, for a given z > y,

T. C. 33K

Yj
c = c(z - y + 1).

k = y

(continued on T. C. 33L)

Third Course, Unit 1



ri-33]



10. (a) Property is that expressed by:

for every real number c V c = c

k= 1

(i) 1^ has the property .

For every real number c,

1

J c = c;

k= 1

and c • 1 = c,

[c = c + • k]

(ii) The property is hereditary .

Suppose that, for a given y,

T. C. 33J

2y c = cy (for every real number
k= 1

Then, for this y,

y+1 y

E c = Z c + c

k=

1

k= 1

= cy + c

= c(y + 1).

Hence, for every y,

if, for every real number c, Z, ^ ~ ^V
k= 1

then, for every real number c,

y + 1

Yj c = c(y + 1) .

k= 1

(continued on T. C. 33K)

Third Course, Unit 1
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Then, for this q,

^+^ i_ "^ L_ 1

2 k(k+l)
Yj

k(k+l) + {q+ l)(q+ 2)

k= 1 k- 1

q+ 1 ' (q+ l)(q+ 2)

1

1q +

1

1q +

q +
q + 2

q + ^q + 1

q -1- 2

q+^
(q+ 1) + 1 *

Hence, for every q,

?. 1 q
if 2j k{k + 1) ~ q+ 1

k= 1

then 2j ^(k+ 1) (q + 1) + 1

k= 1

Therefore, in view of (a) and (b), by the principle of mathematical

induction for positive real integers, the property in question holds

for every positive real integer.

«i^ «i^ «•-
"I" 'I* 'I"*

Correction: Insert 'every' between 'for' and 'real' in the sixth

line from the bottom.
^i, >u »i^

"i^ 'r '1^

T. C. 331 Third Course, Unit 1
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= (q+ l)(q+
2){f

+ 1)

_ (q+ l)[(q+ 1)+ l][(q+ 1) + 2]

3

Hence, for every q,

q

if 2k(k+ 1) = q<q + ^Hq + ^)

k= 1

q + l

m gk(k+l) =
(q+l) [(q+ 1) + l][(q+ 1) + 2]thei

Therefore, in view of (a) and (b), by the principle of mathematical

induction for counting numbers, the property in question holds for

every counting number.

9. Property is that expressed by:

2j k(k + 1) . . . + 1 •

k= 1

(a) j^ has the property .

2, k(k + 1) 1(1 +1) 2
'

k= 1

^^^ rri = 2-

(b) The property is hereditary .

Suppose that, for a given real integer q > 0,

^ 1__ _3_
2; k(k+ 1) -q+l •

k= 1

(continued on T. C. 331)
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then 2 (5. + 10) . f5(x -H)1f(x + 1) + 5]
^

z = -4
"^

Therefore, in view of (a) and (b), by the principle of mathe-

matical induction for the set of real integers >-4, the property

in question holds for every real integer > -4.

"7. Similar to foregoing proof except that here we use the principle

of mathematical induction for real integers > -2.

8. Property is that expressed by:

Z Mk + 1)

k = 1

(a) 1 has the property .

1

(••• + 1)(.

2 k(k + 1) = 1(1 + 1) = 2;

k = 1

1(1 + 1)(1 + 2) _ ,

(b) The property is hereditary .

Suppose that, for a given q,

q

J_2)

y;k(k+ 1) = q<q+ i)(q + 2)

k'^ 1 3

Then, for this q,

q+1

yk(k + 1)

k-^^l
2k(k+ 1) + [(q+ l)(q+ 2)]
k = 1

= <a(a.t^ia.±ll Mq+l)(q+2)

T. C. 33G

(continued oi:! T. C. 3 3H)

Third Course, Unit 1
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(a) -4 has the property .

By the recursive definition,

-4

2 (5z + 10) - 5{-4) + 10
z= -4

10:

and ^(-^n^^+^) -_ -10.

(b) The property is hereditary.

Suppose that, for a given x > -4,

X

1 (5Z+10) =
5x(x+_5)_

z= -4 '^

Then, for this x,

x+ 1 X

2 (5z + 10) = J(5z + 10) + [5(x + 1) + 10]
z = - 4 z = -4

= ^"^^"^^^ ^^
+ [5(x+ 1) + 10]

5x + 25x + lOx + 30

5x + 35x + 30
2

5(x + l)(x H- 6)

2

[5(x+ l)][(x+ 1) + 5]

Hence, for every x > -4,

if I (5z + 10) = ^-^^i^
z= -4

T. C. 33F

(continued on T. C. 33G)
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Hence, equation (2) becomes:

(3) (x+ 1)^ - 1 = 3 2k^+ 3

k=l
X

Solving for '

2j '^ ' ^^ obtain:

x(x + 1)

2
+ X

k= 1

X

k= 1

(x+ 1)" - 1 -
3x(x + 1)

{x+ 1) {(x+ l)^ -^ - 1}

i [(x + l)(2x^ + 4x + 2 - 3x - 2)]

^[(x+ l)(2x^ + x)]

x(x + l)(2x + 1)

6

In a similar manner you can derive a form for 2j ^ ^Y

considering the generalization:

for every k,

{k + 1)"^ - k^ = 4k^ + 6k^ + 4k + 1.

K^ O^ %,•,.

"i^ 'CT

6. Property is that expressed by:

E (5z + 10) =

z= -4

(... +5)

(continued on T. C. 33F)

T. C. 33E Third Course, Unit 1



ri-33]



Therefore, in view of (a) and (b), by the principle of

mathematical induction for positive real integers, the

property in question holds for every positive real integer.

V^ *'^ o.*
?,- *,» r^p

students may inquire about the derivation of the form ' —^ 'y ' '

in Exercise 5. This form can be derived with the help of the

theorenns stated in the box on page 1-34 and of the theorem in

Exercise 10(a) on page 1-33,

Since, for every k,

(k + 1)^ = k^ + 3k^ + 3k + 1

then

(k + 1)^ - k^ = 3k^ + 3k + 1.

Now,
X X

^^)
Z [(k + 1)^ - k^] = 2 (3k^ + 3k + 1)

k=

1

k=

1

XX XX
3 V , 3 ,V> , 2

or X

(2) Yj
(k+ 1)^ - E k^ = 3^ k^ + 3y; k +2 1

k= 1 k= 1 k:s 1 k= 1 k= 1

Since

2 (k+ 1)"* = 2^ + 3^ + 4-^ + . . . + X + (X + 1)-

k=l

V ,

3

,3 ^3 _3 ,3
and 2^k = 1 +2 +3 +...+X,

k= 1

the left member of (2) simplifies to:

(x+ 1)^ - 1^.

T. C. 33D

{continued on T. C. 33E)
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,„d ^<^^^M^'^-^^) = 1.

(b) The property is hereditary .

Suppose that, for a given real integer y > 1,

y

r= 1

2 y(y 4- l)(2y + 1)

6

Then, for this y,

y+1 y

2 r = 2 r + (y + 1)^

r= 1 r= 1

- y(y + Y^ '
^) +(y+i)'

_ y(y + l)(2y + 1) + 6(y + 1)^

6

_ (y + l)ry(3y + i) + 6(y + 1)1

6

(y + l)(2y + y + 6y + 6)

6

_ (V+ l)(2y^ + 7y + 6)

6

^ (y + 1) (y + 2) (2y + 3)

6

_ (y + l)[{y + 1) + l][2(y + 1) + 1]

Hence, for every y,

if V r^ - y(y + i)(2y + i)

r.i ^

y+l

then y r^ = (y + l)[(y + 1) + l][2(y + 1) + 1]

r= 1 6

T.C. 33C Third Course, Unit I
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Then, for this q,

q+1 q

2 (5 + 4k) = 2(5 + 4k) + [5 + 4(q + 1)]

k= 1 k= 1

= q{2q+ 7) + [4q + 9]

= 2q + llq + 9

= (q+ l)(2q+ 9)

= (q+1) [2(q+ 1) + 7].

Therefore, in view of (a) and (b), by the principle of mathe-

matical induction for counting numbers, the property in question

holds for every number.

3. Similar to foregoing proof.

4. Proof is similar to that for Exercise 1 except that here we

use the principle of mathematical induction for non-negative

real integers.

The generalization to be proved asserts that the sum of the

squares of the first x real positive integers is

x(x + l)(2x + 1)

6

Property is that expressed by:

I''
r= 1

(... + 1)(2 • ... + 1)

6

(a) 1 has the property .

T. C. 33B

By the recursive definition,

1

2 r = 1 , or 1;

r= 1

(continued on T. C. 33C)
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i. Here the student is to find the sum of the first n terms

of the progression

9, 13, 17, ... ,

The kth term of this progression is 5 + 4k. In

traditional terminology, the student is asked to prove:

9 + 13 + 17 + . . . + (5 + 4n) = n(2n + 7).

As in Exercise 1, the form 'n(2n + 7)' is suggested by:

Sum = 9+13+17+.. . +{5 + 4n)

Sum = (5 + 4n) + (1 +4n) + (-3 + 4n) + . . . +9
2x Sum = (14 + 4n) + (14 + 4n) + (14 + 4n) + . . . + (14 + 4n)

= n (14 + 4n)

Sum = -111(14 + 4n) = n(7 + 2n).

Property is that expressed by:

2 (5 + 4k) = ... (2 • ... + 7).

k=l

(a) 1^ has the property .

By the recursive definition,

Yj (5 + 4k) = 5 + 4(1) - 9;

k= 1

and 1(7 + 2-1) = 9.

(b) The property is hereditary .

Suppose that, for a given q,

q

^ (5 + 4k) = q(2q+ 7).

k=l
(continued on T. C. 33B)

T. C. 33A ' Third Course, Unit 1
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n

2. For every counting number n, 2j ^^ ^ ^^^ ~ n(2n + 7).

k=l

n

Z,
,, p \ _ n( 3n - 1)

(:iK. - d) -
2

k=l

Z,
x(x + 1

)

2 '

k=l

y Z _ x(x + l)(2x + 1)

5. For every real integer x > 0, 2j
''^ ~ 6

r=l

y

6. For every real integer y > -4, 2j
'^^ ^ ^'^^ ~ 2

z=-4

w
V ^>. + 7^ - (w+ 3)(w+ 12)

^

7. For every real integer w _> -2,
2j 2

b= -2

n

8. For every counting number n, £^ * "• */
^

k=l

1 _ X
9. For every real integer x > 0, 2_, k{k +1) x + 1

'

k=l

10. (a) For every real number c and for real integer x > 0,

x

J c = ex.

k=l

(b) For every real number c and for all real integers x and y

such that X _> y,

X

Yj
c = c(x - y +1).

k=y

x
V 1 1

6^ 1 1 . For every real integer x>0,
Li TTZ '^ -^ ~ ~'

k=l
^

UICSM-2-56, Third Course
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STILL MORE ABOUT 2-NOTATION

The recursive defintion of a S-©xpression mcikes it possible to use

mathematical induction to prove theorems about sums of any number

of ternns of progression. We shall state, illustrate, and prove two

such theorems:

(I)

k=p k=p k=p

q q

(11) For every real number c, 2j ^^^u^ •

k=.p k=p

Illustrations:

5 5

^jj.
2(3k+ 1) + v(k - 2)

k=2 k=2

= [7+10+13+16+19] + [0+1 + 2+3+4]

= (7 + 0) + (10 + 1) + (13 + 2) + (16 + 3) + (19 + 4)

5

= 2([3k+ 1] + [k -2])
k=2

(11): 2 2m . 2(-3 )'^ + 2(-l)'^ + 2(0)^^ + 2(1)"^ + 2(2)"^

m= -3

= 2[(-3)^ + (-2)^ + (-1)^ + (0)^ + (1)^ + (2)^]

m=-3

Proofs:

Theorem (I)

P P

(a) Z"k + l\
k=p k=p

a + b
P P

= Z <^k ^ \)

.

k=p

UlCSM-2-56. Third Course
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(b) For every q ^ p,

itl%* IK- Z'^^V
k=p k=p k=p

then E ^k +^Z ^k = t ^ -k + ^ + l] + [ E^k + \,l ]

k=p k=p k=p k=p

k=p k=p

q

k=p

q+1

= E^^^V-
k=p

Hence, theorem (!) follows either by the principle of mathematical

induction for the set of counting numbers > p (or by the principle

of mathematical induction for the set of real integers > p, according

to how the theorem is interpreted).

Theorem II

(a) For every resil number c, /^ ^(^i,) - '^(^r.)

k=p ^

P

k=p

(b) For every real number c and for every q > p,

q q

if E^(V= ^ E^
k=p k=p

q+1 q

then E^^V = E ^(V + ^(^q+ l)
k=p k=p

(continued on next page)
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q, q

N 2k = S (k + k)

k = p k = p

3.

q q

k = p k = p

•

q

k = p

.3)^ = y(k^.
kfp

6k + c
)

q

k = p

q

^6k
k = p

q

k = p

q

k = p

q

k = p

q

k = p

_q

N(k +

k= 1

3)^ . Vk^ +

k'Tl

q

6 N k

kt^i

q

k= 1

q(q+ 1){2

6

iq+ 1)
+ 6

q(q + 1)

2
+ 9q.

T. C. 36A Third Course, Unit 1
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q

= cla^ + c(a j)

k=p ^

q

= cf ), a, + a , ]•
,
^ k q + 1 -

k=p ^

q+1

k=p

Hence, theorem (II) follows either by the principle of mathematical

induction for the set of counting numbers > p (or by the principle of mathe-

matical induction for the set of real integers > p).

EXERCISES

rove each of the following.

Sample. /^ (1 + 3k + k ) = £ 1 +

q

. l^'
k=p k=p k=p k=p

Solution. £ (1 + 3k + k )

k=p
q q

Zl 4. V/^k 4- k^\
[Associative principle for

^^p k^p addition and Theorem (I)]

q q q

E 1 + 2 3^ + Tj^^ [Theorem (I)]

k=p k=p k=p
q q q

Jl + 3jk+2k^ [Theorem (II)]

k=p k-p k=p

q q q
V^ V V

1

.

l^ Zk = l^k + l^y:
k=p k=p k=p

2. £ (k+ 3)^ = 2^k + 6 ^k + 2^ 9
k=p k=p k=p k=p

3. Use the result in Exercise 2 together with the results in

Exercises 4, 5, and 10(a) on page 1-33 to show that

I (k + 3)^ = qi£Ji^l2i+_li , 6[^^a_Lj)]
-f 9q .

k=l

(continued on next page)
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s_

2

£
2

6s + 9s + 3 + 24s + 24 + 32

6s + 33s + 59

12 12

y (k - 12){k - 2) = y (k^ - 14k + 24)

k=2 k=2

12 12 12

2y .^ - 14 y . .

^
k = 2 k = 2 k = 2

12 12

= N k^ - 14 y k - (0 + 1)

k=2 k=0

+ 24(12 -2 + 1)

12 12

k^ - 14 \ k + 14 + 264

k = 2 k =

12 12

- N k^ - 14 S k + 278 .

k=2 k=0

T.C. 37C Third Course, Unit 1
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6(k^ + 3k^ + 3k + 1) + 33(k^ + 2k + 1) + 59(k + 1)

2

k + 1
6{k + 1) + 33(k + 1) + 59

Hence, for every k,

k

ifif N (3t + 4)^ = 7 {6k^ + 33k + 59)

the

k+ 1

n S (3t + 4)'
k + 1

6(k + 1) + 33(k + 1) + 59

Therefore, in view of (i) and (ii), by the principle of

mathematical induction for counting numbers (or for real

integers > 1), the property holds for every counting number

(or for every real integer > 1).

(b) r ,-,. .,2 >r ,„.2
N (3t + 4) = S (91" + 24t + 16)

t= 1 t= 1

s

i.

S S

t= 1 t=:

Q 's(s + l)(2s + 1)

"

7
6

16

+ 24
s(s + 1)

2
+ 16s

3s(s + l)(2s + 1) + 24s(s + 1) + 32s
2

T. C. 37B

3(s + l)(2s + 1) + 24(s + 1) + 32

(continued on T. C. 37C)
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4. (a) Property is that expressed by:

I
(3t + 4)^ = ^ [6(...)^ + 33- ... +59].

(i) 1 has the property.

(3t + 4)^ = (3 + 4)^ = 49; and

t= 1

^ (6 + 33 + 59) = 49.

(ii) The property i_s hereditary .

Suppose that, for a given k,

1
(3t + 4)^ = |(6k^ + 33k + 59).

Then, for this k,

k+ 1 k

t =

{3t + 4)^ = S (3t + 4)^ + [3{k + 1) + 4]'

t= 1

I (6k^ + 33k + 59) + (9k^ + 42k + 49)

6k "^ + 51k^ + 143k + 98

'T. C. 37A

(continued on T. C. 37B)
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4. Prove that, for every s _> 1,

E(3t + 4)'

t=l

|(6s^ + 33s + 59)

(a) by mathematical induction, and (b) by the method

suggested by Exercise 3 on page 1-36.

12 IZ 12

5. 2 (k - 12) (k - 2) = 2 k^ - 14 J k + 278

k=2 k=2 k=0

ARITHMETIC PROGRESSIONS

Progressions such as

(1) 5, 7, 9, 11, 13, 15. 17, 19, ...

(2) -3, 1, 5, 9, 13, 17, 21, 25, ...

17 13 19
(3) 7 ' ^» 7 ' -*' "T > ^' "2 '

^^'

(4) 8, 1, -6, -13, -20, -27, -34, -41, ...

(5) TT, 2tt, 3it, 4tt, Sit, 6tt, Ttt, 8it, 9tt,

are called arithmetic progressions . Notice that a characteristic

property of arithmetic progressions is this:

The difference of any te rm of an

arithmetic progression from its

follower is the same as the difference

of any othe r term from its follower.

We frequently abbreviate the boxed statement by saying:

The difference between successive

terms of an A. P. is constant . This

difference is the common difference

of the A. P. .

UICSM-2-56, Third Course
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A. Let students discover their own methods for the exercises

in this part. Formal methods are developed in subsequent

parts

.

vl^ -^l- vl-

'I'" 'r '1^

Exercise 11 does not have a unique solution.

T. C. 38A Third Course, Unit 1
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For example, for the A. P. (1) the common difference is Z, and

for the A. P. (4) the common difference is -7.

For all real numbers a and d, the successive terms of the

A. P. whose first term is a and whose common difference is d are

the values of:

a + {x - 1) d

for the values 1, 2, 3, etc. of 'x'.

For example, in A. P. (1) above, the first term is 5 and the

common difference is 2. Identify the first term and the common

difference in (2), (3), (4), and (5).

EXERCISES

A. Fill in the blanks in each of the following so that the result

gives an arithmetic progression,

^» -5, , , DO, , , • •

3 9 10 11

5 16 24

6.
, , , , , -30, -35,

8 i i
• O ' / » » 9 t t • • •

10. -3, , -3+i^l^,

11 7

B. In filling the blanks between '3' and '66' in Exercise 2 of Part A
you "inserted two arithmetic means between 3 and 66". In

Exercise 4 you inserted five arithmetic means between -8 and 17.

UlCSM-2-56, Third Course
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4. X, X + d, and x + Zd are consecutive terms in an A. P . ,

and X + d is the arithmetic mean of x and x + 2d. Since

y-x
x + 2d = y, we have d and

X + d = X +
y-x _ X + y

T. C. 39A Third Course, Unit 1
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In each of the following exercises insert arithmetic means as

indicated.

1. two arithmetic means between 4 and 10

2. three between 1 and 7

3. five between 8 and 3

4. ten between -6 and -14

5. two between 1 and -3

If three numbers are consecutive terms of an A. P. , then

the second is called the arithmetic mean of the first and third .

1. Find the arithmetic mean of 6 and 10.

2. Find the arithmetic mean of 10 and 6.

3. Find the arithmetic mean of -3 and 3

4. Prove the following generalization:

For every x and y, the

arithmetic mean of x and y

is

X + y
2 '

p. We can develop a procedure for inserting any number of

arithmetic means between any two real niimbers.

Sample . Develop a procedure for inserting three

arithmetic means between any two real

numbers.

Solution . For all real numbers x and y, there

exists three arithmetic means between

X and y if and only if there exists a

real number d

such that

X, X + d, x + 2d, X + 3d, y

UICSM-2-56, Third Course
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3. Suppose you want to insert p arithmetic means between

X and y. This would give us p + 2 consecutive terms

of an A. F. in which x is the first term and y is the

(p + 2)th term. Hence,

y = X + (p + 1) d,

so

P+ 1

Then the p + 2 terms of the A. P. are:

V PX + y (p - 1) X + 2y (p - 2) X + 3y x -f py'p+1' p+1 ' p+1 '•••'p+1'

T. C. 40B Third Course, Unit 1
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D.

1. If X and y are two numbers such that x is the first

term of an A. F. and y is the seventh term then

y = X + 6d

so

For every x and y, the five arithmetic means between

X and y are the values of:

for the values 1, 2, 3, 4, and 5 of 'k'.

Hence, the following are successive terms of an A. P.:

5x -I- y 2x + y x + y x + 2y x + 5y
X,

^ , 3 ' 2 ' 3 ' 6 ' ^"

If X is the first term of an A. p. and y is the 102nd

term then

y = X + lOld,

so

^ - 101 •

The 102 terms of the A. P. are:

lOlx + y 99x + 2y 98x + 3y 2x + 99y x + lOOy
^' 101 ' 101 ' 101 ' • • •' 101 • 101

T. C. 40A Third Course, Unit 1
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are successive terms in an A. P. This is the case

if and only if the difference between successive

terms is constant. Since each of the first three

differences is d, all four differences will be the

same if and only if

y - (x + 3d) = d,

that is,

d =-i^^
4

Hence, for all x and y, there exist three arithmetic

means between x and y and, in fact, these are the

values of the expression:

1
/V - X

.

x + k{--2f-)

for the values 1, 2, and 3 of 'k'.

[You could have applied this procedure in

Exercise 2 of Part B. In that case the required

arithmetic means are the values of:

1 + k(^-^)

for the values 1, Z, and 3 of 'k':

7 - 1
^ _ 5
' " 2

'1 + 1( -' = -
4

7 - 1,

4

7 -
1

,

1 + 2( -~-^] = 4
,

1 + 3(^^)=^ .]

Develop a procedure for inserting five arithmetic means

between any two numbers.

Tell how to insert one hundred arithmetic means between

any two numbers.

Tell how to insert any number of arithmetic means between

any two numbers.

UICSM-2-56, Third Course



;- r •- 1.0



[1.04] [1-41]

SUMS OF ARITHMETIC PROGRESSIONS

Consider each of the sums

(I) 1 + 2+3 + 4 + 5

(11) 7+10+13+16+19
(in) (+4) + (-1) + (-6) + (-11) + (-16)

Notice that each sum can be computed by adding the first 5 terms

of an arithmetic progression. In (I) the terms of the progression

are the values of '1 + (x - 1)(1)' for the values +1, +2, +3, ,..

of 'x'. The first five terms are obtained by using the first five

values: +1, +2, +3, +4, +5. Therefore, (I) can be abbreviated as:

+ 5

Yj [+1 + (x - 1)(1)]

x=+l

Similarly,

(II)

+ 5

^ [7 + (X - 1)(3)]

x=+l
and + 5

(III) J[4
+ {x- l)(-5)]

x=+l

In general,

For every counting number n, the sum of

the first n terms of the arithm etic progression

whose first term is a and whose common difference

is d is
n

x=l

+ (x - l)d]

Let us use the boxed theorems on page 1-34 and compute

(III).
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5
5

J [4+ (X - l)(-5)] - Z t*^ ^^J

x=

1

x=

1

5 5

x= 1 x=

1

5 5

=
Z 9 - 5 z -

x=l x=l

By Exercises 4 and 10a on page 1-33,

j;9 -5 ^ X = 9(5) -5^ (5)( 5-f l) j,.3o

x=

1

x=

1

In this particular example the result, -30, could have been

obtained without using 2-notation. However, in cases involving

a large number of tei'ins or when proving generalizations, the use

of 2-notation results in a great saving of labor. Using S-notation

we can prove a generalization covering all cases. Suppose we wish

to find the sum of the first n terms of the A. P. whose first term

is a and whose common difference is d. V/e have seen that this

sum is
n

Z [a + (X - 1) d]
.

x=l

Proceeding as in the example above

n n

Y^
[a+ (x - l)d] = Zna - d) + dx]

x= 1 x=

1

n n

= Z (a - d) + d Z X
x= 1 x=

1

= (a-d)(n) + d[atnJ_lJ-]

. (n) [(a - d) + -^lS_Ll)
J

= Y [ 2a - 2d + d(n + 1)]

=:

I [ 2a + (n- l)d].
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Students should be able to supply the proof of the theorem

stated in the box on page 1-43. They can give the proof we

give on page 1-42 or they can use mathematical induction directly.

It is instructive to go through an inductive proof of this theorena.

».!^ vl- 0>
'»"» '!"• •'4''

A.
20

[2(-2) + 19-7] = 10 (-4 + 133) = 1290

12
[2(-100) + 11 • 100] = 6{-200 + 1100) ^ 5400

3. |[2{1) + 6(-0.5)] = |(2 - 3) = -3.5

T. C. 43A Third Course, Unit 3
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We have just proved the following theorem:

For every countin g number n , and

for all real numbers a and d, the sum

of the first n terms of the A.

P

. whose

first te rm is a and whose common

difference is d is

ft^a + (n - l)d ].

The use of this theorem is illustrated by the following

Example . Find the sum of the first 53 terms

of the A. P. which begins:

8, 17, 26, ...

Solution . The first term is 8 and the common

difference is 9. Therefore, the sum

of the first 53 terms is

^ [ 2(8) + {53 - 1)(9) ]

- ^ [ 16 + 468 ]

= 12826

The labor-saving value of the theorem is obvious.

EXERCISES

A. Find the sum as indicated.

1. First 20 terms of -2, 5, 12, . . .

2. First 12 terms of -100, 0, lOO, ...

3. First 7 terms of 1, 0.5, 0, ...

{continued on next page)
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Upon simplification, (1) and (2) becom(

(lO 3a + Zld = 20

(2^) 2a + 19d = 13

or:

(2''0

6a + 42d

6a + 57d

= 40

= 39

a :

-15d

d

= 1

1

15 '

107
15

6. 630 = |[12 + (n - 1)3]

1260 = 12n + 3n{n - 1}

1260 = 12n + 3n^ - 3n

3n^ + 9n - 1260 =

n^ + 3n - 420=

-3 ± -v/ns?
n = —

2

Since the given equation does not have a positive integral

root, there is no A. P. v/hich meets the stated conditions.

Modify the problem so that students are asked to find the

number of terms of an A. P. (first term 6, difference 3)

for which the sum is 627.

T. C.44C Third Course, Unit 1
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2. d = n
2 S - 2na

n(n - 1)

[n(n - 1) ,t 0]

3. Since S,„ = 98, a = 10, n = 10, and
10

2 S„ - 2nan

n(n - 1)

then

d =
2(98) - 2(10)(10)

10(10 - 1)

196 - 200
90

2

45

4. a = 2Sn - n(n - i)d

2n

^'i'
- 30(29)(|)

2(30)

1 - 435
60

217
30

5. (1) 100 = ^[2a + (15 - l)d]

20
(2) 130 = ^[2a + (20 - l)d]

(continued on T. C. 44C)
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A. (continued)

4.

5.

50

2

12

2

ii
2

1000

^[2{-3) + 49(0. 5)] = 25(-6 + 24. 5) = 462. 5

[2(9) + ll(-l)] = 6(18 - 11) = 42

[2(2) + 18(2)] = 19(2 + 18) = 380

[2(1) + 999(2)] = 1000(1000) = 1,000,000

8. Correction: Replace '6, 's/2 ' by '6+'v/2',

—-[2 ^/2 + 27(3)] = 1134+28n/2

1001
[2(1) + 1000(-5)] = 1001(1 - 2500) = -2,501,499

10.

11.

ifiw.,.iooo,-,-^,]= loom -

i§5^ 1 = 1

In this case we let the first term of the A. P. be

7 + 4(4).

^[2(7 + 16) + 19(4)] = 10(46 + 76) = 1220

12. 4?-
4_8

2
2[64 + 47(-6)] + 47(-6

)
= 24[128 + 47(-18)] = -17,232

B.

I. 2S

a = n

2na + n(n - l)d

2S - n(n - l)d

2n
, [n # 0]

T. C. 44A Third Course, Unit 1
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4. First 50 terms of -3, -Z. 5, -2, . . .

5. First 12 terms of 9, 8, 7, ...

6. First 19 terms of 2, 4, 6, . . .

7. First 1000 terms of 1, 3, 5, ...

8. First 28 terms of \fl, 3 + 'v/I , 6, \fz , ...

9. First 1001 terms of 1, -4,-9, ...

999 997
10. First 1001 terms of 1, iqq, . iqqi • •••

11. Twenty successive terms starting with the fifth term of

7, 11, 15, ...

12. Forty-eight successive terms starting with the forty-eighth

term of 64, 58, 52, ...

B. The boxed theorem on page 1-43 is often abbreviated to:

S = f [ 2a + (n - l)d ]
n 2 "• "

1. Solve this equation for 'a'.

2. Solve the equation for 'd'.

3. Find the common difference of an arithmetic progression

whose first term is 10 and the sum of whose first 10 ternns is 98.

4. Find the first term of an arithmetic progression whose common

difference is — and the sum of whose first 30 terms is —.

5. Find the first term and the common difference of an

arithmetic progression the s\im of whose first 15 terms

is 100 and the sum of whose first 20 terms is 130.

6. Given the arithmetic progression with first term 6 and

comnnon difference 3. How many terms of this arithmetic

progression must be added starting with the first to get

the sum 630?
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Note that each of the sample problems can be "translated'

into one involving arithmetic progressions. It is instructive

to do this once or twice in order to increase the student's

familiarity with S "notation and with arithmetic progressions.

For example, in Sample 1. the problem can be viewed as

finding the sum of the first 14 terms of the A. P. whose first

term is 7 and whose common difference is 4.

S,4 =T[14+13- 4]

- 7(66)

= 462

However, it is probably more innportant that a student develop

dexterity with 2-notation by solving the exercises on 1-46

using the S -notation theorems.

vl, ^u «.',
'1^ '!>. 'r

The bracketed note at the bottom of page 1-45 exemplifies

the "change of apparent variable" procedure illustrated on T. C. 29A.

Each occurrence of 'x' is replaced by 'x + 8' in the expression

on the left of ' = '. Of course, the limits of summation are changed

automatically.

x= 20 X +8 = 20 12

Jx = J (x + 8) = 2(^< + 8)

x=9 x+8=9 -^=1

T. C. 45A Third Course, Unit 1
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C. Compute each of the given sums.

Sample 1.
^^

2 (4x + 3)

x=l

14 14 14

2;{4x+3) = 4 y X + 2 3

x=

1

x=

1

x=

1

__ ,^ 14il£j_D ] , 3(14)

28(15) + 42

462

20
Sample Z. Vx

x=9

Solution . Note that in this case you are asked to

compute a sxim of 12 successive terms

starting with the ninth term. We can

compute the sum of these 12 terms by-

subtracting the sum of the first 8 terms

from the sum of the first 20 terms:

20 20 8

Z " = Z " Z"
x=9 x=l x=l

20(20 + 1) 8(8 + 1)

2
"

2

= 210 - 36 = 174

20 12

[Note: Do you see that Z ^ "" Z ^'^ *" ^^ ^^

x=9 x=l

UlCSM-2-56, Third Course
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(b) The property is hereditary .

Suppose that, for a given k > 1,

Then, for this k,

^"^k + 1 = ^\ + ^^^ + ^)

> Tj^ + (2k + 1)

= [T^ + (k + 1)] + k

= T, , + k
k + 1

k + 1.

Hence, for every k > 1,

[hypothesis]

[k>0]

if Sq, > T,
^k k

thenSqj^^^ > T^^^.

Therefore, in view of (a) and (b), by the principle of

mathematical induction for counting numbers > 1, the

property in question holds for every counting number > 1,

[Ask students why the set in question is not the set

of all counting numbers.
]

Property is that expressed by:

Sq . . . - T . . . > ...

2 is a counter-example .

Sq^ - T^ = 4 - 3 = 1 < 2.

[Note: The property in Exercise 2 is hereditary. Ask students

to prove this and then to modify the Exercise so that it becomes a

theorem. (Modification: replace '1' by '2'.) The proof of

hereditariness is apparent if one analyzes the proof of (b) in

Exercise 1 .
]

T. C. 46F Third Course, Unit 1
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10. Since for every positive integer x,

Zuk + i) = zf^^i^n+x.
k=i L -^ J

the equation in question is equivalent to:

x(x + 1) + x = 15 and

X + 2x - 15 =

(x+5)(x -3) =

15 and x is a positive integer.

3; 3 is the root.

*^'^ s.1^ v'^
»,•» ^,-. ^y\

Review Exercises

A.

1. Property is that expressed by:

Sq . . . > T . . .

(a) Z has the property .

Sq2 = Sqj + (2 • 1 + 1) = 1 + 3 = 4

T^ = Tj + {1 + 1) = 1 + 2 = 3; and

4 > 3.

(continued on T. C. 46F)

T. C. 46E Third Course, Unit 1



[1-46]



Alternative method for Exercise 7:

18 22 22

2 (x+ 5) = J(x - 4+ 5) = 2{x+ 1)

x=-3 x=l x=l

22(23)
+ 22

= 253 + 22

= 275

12

Yj (11 - 2x) = (11 - 2x)(12 + 5+1) [Ex. 10(b), page 1-33]
k= -5

= 18(11 - 2x)

The assertion to be proved states that the sum of the first

100 odd numbers and the first 100 even numbers is the sum

of the first 200 counting numbers. Students who recognize

this need do no more!

Mechanical procedure:

100 100 100

2 (2w - 1) + 2]2w = 2(4w - 1)

W=:l W=l W=l

200

I
w= 1

^iMioi) .100

100(202 - 1)

20100;

200(201)
2

T. C.46D
= 20100.

Third Course, Unit 1
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Alternative method for Exercise 4:

20 17

2(i X- 5) = X [^(x+ 3)

17

x = 4
,^2

X = i

5]
V 1 7

,

Z (2 ^-2)
x= 1

1 l7U8)
2 2

17
-]

2
9 - 7

-

- 7(17)

= 17

50 50 50

5. 2 (4 - 3z) + J (3z -4) = Z = 0(50)

z=l z=l z=l
=

6. Change the apparent variable 't' to 'u' in the second term

and proceed as in Exercise 5,

18 18 18

7. 2 (x+ 5) = 2 x+ 25-
x=-3 x=-3 x=-3

18

I

Jx + 2^ + 5(18 + 3+1)
Lx= - 3 X=: 1 -

_3,, -2) + ,-1), 1-2(12)
+ no

= 165 + 110

= 275

'J" "t" 'l"

T. C. 46C Third Course, Unit 1
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Alternative method for Exercise 3:

19 X+7:=19

Z i^ + '^^) = 2;[2 + 4(x+7)]

x = 8 x+ 7 = 8

12
= z (30 + 4x)

x= 1

=

12 12

230 + 4^^
x= 1 x= 1

= 30(12) + 2(12)(13)

= 360 + 312

= • 672

Note first that

15 ,
20 20

E(i-5)
x = 4

+

x = l6 x=4

Then,

20 1

x = 4

, 20 20

x=4 x=4

20 3

1

" 2 -v- 1 x= 1 -

- 5(20 -4+1)

1

~ 2

r 20(21) 3(4]

2 2
1 -86

= 102 - 85

= rr

,

T. C. 46B ^{i^liili Third Course, Unit \
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17 17 17

2(3-2x) -13 -21
x=l x= 1 x= 1

3(17) - 2
17(17 + 1)

51 - 306

•255

100 100 100

2. 2(2y+7) = 2 ^y + E^
y=i y=l y=l

= 2 ^-^Opi
, ,(100)

= 10100 + 700

= 10800

19

2(2 + 4x)

x= 8

=

19 7

2(2 + 4x) - 2 (2 + 4x)

x= 1 x=

1

19 19 7 7

22 + 4 2^-^2 -4 I ^
x=l x=l x=l x= 1

2(19) + 2(19)(20) - 2(7) 2(7)(8)

2(19){21) - 2(7)(9)

2(399 - 63)

672

vl- vO ^ly

"f "i- '1-

T. C. 46a Third Course, Unit 1



[1.04] [1-46]

17 100

1. X (3 - 2x) 2. l(^y+^)
x=l y=l

19 15 20

x=8 x=4 x=l6

50 50

z=l z=l

98 98

u= 1 t"^l

18 12

7.: Y^
{^+ ^) 8. E ^^^ ^''^

x=-3 k=-5

v'»- x>^ >.'.

100 100 200

9. Prove: J (2w - 1) + ^ 2w = ^ ^
w=l w=l w=l

X

10. Solve the equation: ^ (^^ + 1) ^ 1^

REVIEW EXERCISES

A. Use mathematical induction to prove each of the following

generalizations if it is true; give a counter-example if it

is false.

1. For every counting number n > 1, the nth square

number (Sq^) is greater than the nt_h triangular number

(T^).

2. For every counting number n > 1, Sq - T > n.' " ^n n -

(continued on next page)
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s + t

s + t

2

s + t

2

s_+ t

2a + (s + t - l)d

(1 - t - s)d + (s + t

2 t«J

l)d

[Students may be puzzled over this theorem in that it is difficult

to imagine arithmetic progressions which behave according to

the conditions of the theorem. However, the equation
1

d' prprovides an unlimited number of illustrations.]'

T. C. 47G Third Course, Unit 1
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S^Q = 5{2a + 9d)

S^ = 3(2a + 5d)

Since Sio = h'

10a + 45d = 6a + 15d

4a = -30d

a =
15d

"
2 •

Sl6 = 8(2a + 15d)

— 8 \zi-''/) + 15d
L -

= 8[-15d + 15d]

_

7. Exercise 6 is a special case of the theorem in Exercise 7.

S^ = |[2a + (s - l)d]

S^ =
I

[2a + (t - l)d]

Since S = S^ ,

s t

sa +
s(s - 1)

d = ta +
t(t - 1)

2 2
t -t-S +Sj

_ (t - s)(t + s) - (t - s) ,

2

( t
- s)(t + s - 1) ,

(1 - t - s)d

2

T. C.47F

[s - t -i 0]
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Therefore, in view of (a) and (b), by the principle of mathennatical

induction for real integers > "3, the property in question holds for

every real integer > -3.

vt^ sl^ sl^
'r '•-T

1. ^[l4+15(-8)] 8[14 - 120] = -848

2. 8[8'v/2 + 15{-n/2)] = -56^i2

3. a + 4d = 9

a + 7d - 10

3d = 1

1 23
d = 3, a = 3

• ^16 =
' ''t^lH\)

]

488
~ 3

^- '! 2a + 9d = 5
Cj

;

12
2

2a + Ud = 13

-z.-..-f

7 17d= j^, a = - g

S16 = «

'17 35 "

[-4 + 4
J

= 36

5. 50[2a + 99(5)] = 100

2a + 495 =2
2a = -493

^16 = «
-493 + 15(5) = 8(-^

T. C. 47E Third
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(a) 2^ has the property .

-3

Yj 2k = 2(-3) = -6; and (-3 + 4)(-3-3)
k= -3

(b) The property is hereditary .

Suppose that, for a given y^ - 3,

y

Yj
2k = (y + 4)(y - 3).

k= -3

Then, for this y,

y+1 y

2 2k = 2 2y + [2{y + 1)]

k = - 3 k = -3

-6.

= (y + 4)(y - 3) + 2(y + 1)

= y +y-12+2y+2

= y + 3y - 10

= (y + 5)(y - 2)

= [{y + 1) + 4][(y+ 1) - 3].

Hence, for every y > -3,

y
^^

J 2k = (y + 4)(y - 3)

k= - 3

then
y+1

2 2k = [(y + 1) + 4][(y + 1) - 3].

k= - 3

(continued on T, C. 47E)
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•n[2(n T l)(2n + 1) - 6(n + 1) + 3]

:Tn[4n + 6n + 2 6n - 6 + 3]

^n(4n^ - 1).

'!-• 'l-~ '.^

4. Property is that expressed by:

k= 1
^

1 is a counter-example because

k= 1

= 1" 1 and |(1)^ (1 + 2)^ 9

4

vl, nU *I^
'J- 'PT

The generalization that for every real integer x > 0,

L k = -x (X + 1)

k = 1

can be proved by mathematical induction.

»«^ »u «i^

5. Property is that expressed by:

T. C. 47C

Yj
2k = (... + 4)(... -3).

k= - 3

(continued on T. C. 47D)
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- (2q+ l)(^q+ 3)(q+ 1)

(q+ 1) [ {2(q+ 1) - 1} {2(q+ 1) + 1}]

hq+ 1)[4 {q+ 1)^ - 1] .

then

Hence, for every q,

q

if
Yj

(2k - 1)^ =\q{4q- " 1)

k- 1

q+1

2 (2k - 1)^ = i(q+ l)[4(q+ 1)^ - 1].

k= 1

Therefore, in view of (a) and (b), by the principle of mathematical

induction for counting numbers, the property in question holds for

every counting number.
vl^ vl^ -.•^
""4^ 'I" 'I"-

The generalization in Exercise 3 can be proved, without using

mathematical induction directly, by using the results of earlier

exercises and theorems. It is instructive to have students go

through an alternative proof such as the following:

n n

2 (2k - 1)^ . Yj
(4^^ - 4k + 1)

k=

1

k=

1

n n n

4^ k^ - 4^ k+ 2 1

k= 1 k= 1 k= 1

T. C. 47B

= jn(n + l)(2n + 1) - 2n(n + 1) + n

(continued on T. C. 47C)
Third Course, Unit 1
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3. Property is that expressed by:

2 (2k - 1)2 = U...) [4{...)2 - 1].

k= 1
^

(a) J has the property.

1

J(2k - 1)2 = (Z 1 - 1)2 = 1; and
k= 1

|(1)(4- l2- 1) = 1.

(b) The property is hereditary .

Suppose that, for a given q.

2 (2k - 1)2 . iq(4q2 - 1)

k= 1
^

Then, for this q,

q+

1

q

Yj (2k - 1)2 = 2 (2k - 1)2 + [2(q+ 1) - 1]2

k=

1

k=

1

iq(4q2 -1) + (2q + 1)2

iq(2q+ l)(2q- 1) + (2q + 1)2

= (2q+ 1) [§(2q- 1) + (2q + 1)]

2q + 1 ,^ 2
= -3 (2q -q+6q+3)

2q + 1 ,, 2
= —^^'-3 (2q + 5q + 3)

(continued on T. C. 47B)

T. C. 47A Third Course, Unit 1
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3. For every counting number n,

n

y (2k - 1)^ = \n (4n^ - 1).

k=l

4. For every real integer x > 0,

V^i,3 12, ,,2

k=l

5. For every real integer x > -3,

X

2^
2k = (x + 4)(x - 3) .

k= -3

B. Find the sum of the first 16 terms of the arithmetic progression

1. whose first term is 7 and whose common difference is -8.

2. whose first term is 4^/2 and whose common differ?;nce

is -n/T .

3. whose fifth term is 9 and whose eighth term is 10.

4. the sum of whose first 10 terms is 5 and the suin of whose

first 12 terms is 13.

5. whose common difference is 5 and the sum of whose first

100 terms is 100.

6. the sum of whose first 10 terms is equal to the sum

of whose first 6 terms.

O^ vU o,
'!•• '»* 'I'*

7. Prove : For all counting niimbers s and t, if

s 7^ t and if the sum of the first s terms

of an arithmetic progression is equal to the

sum of the first t terms of that progresLjion

then the sum of the first s + t terms is 0.
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In this section of the review, our aim is to get students

to fornnulate for themselves the multiplication and addition

rules for counting nximber exponents. These rules do not

need to be stated; students will encounter no difficulty in

discovering them.
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REVIEW OF V/ORK YvITH COUNTING NUMBER EXPONENTS

In earlier courses you learned such facts as:

3
(1) ' 4 ' is an abbreviation for "4X4X4'

5 2 7
(2) 3X3=3

5^ 2
(3) ^ = 5^

,A\ ^ 2 4 6
(4) For every x, x x = x .

/t\ TT A I
'^ 3,4 8 12

(5) For every x and y, {x y ) = x y

2 5

(6) For every x and y, if y / then —y-
y

2 3
= X y .

3
Statement (1) indicates that you consider the '3' in ' 4 ' as a name

for a counting number because it tells the number of factors in ' 4X4X4'
3

However, the '4' in ' 4 ' may be a name for a real number, or a name

for a rational number, etc. In the exercises which follow we shall con-

tinue to regard exponent symbols as names for counting numbers and

regard the symbols to which they are attached as names for real num-

bers or, as the case may be, as pronumerals whose domain is the set

of all real numbers. In the next unit we shall deal with real number

exponents

.

Consider the expression:

4^

3 3We know that ' 4 ' is a name for 64 because ' 4 ' is an abbreviation
3

for '4X4X4' . They symbol ' 4 ' is called an exponential ; the num-
3 3

ber 4 is called the third power of 4 . When 64 is named by ' 4 ' , we

say that

with respect to the base 4,

the exponent of 64 is 3.

[V^'ith respect to the base 2, the exponent of 64 is 6.]

Note that exponentials are symbols and that powers, bases, and ex-

ponents are numbers.
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Study each of the following statements until you are sure you under-

stand them.

(a) 8 is the third power of 2

2
(b) ' 2' is the exponent symbol in the exponential ' 3 '

(c) 4 is the second power of 4

(d) 16 is the fourth power of 2

2
(e) 4 is the fourth power of 2

(f) 81 is the second power of 9

(g) 81 is the fourth power of 3

(h) 2 X 50 is the second power of 10

2 5 5
(i) (3 ) is the second power of 3

A. Write the simplest name which is not an exponential for the power

given in each of the following exercises.

3
Sample. (3.5)

Solution. (3. 5)-^ = 3. 5 X 3.5 X 3.5

= 42.875

1. 2^ 2. 3^ 3. (2.5)^

4. 2^ 5. 3^ 6. 10^

7. 15^ 8. 2.3^ 9. 1.1^

10. (-2)^ 11. (-2)^ 12. (-1)^

13. (-1)^ 14. (-1)^^ 15. (-2)^

16. 3^ 17. 3^ 18. 5^

19. 3^ 20. 7^ 21. 0^^

22.
qIOOO

23. 1.414^ 24. (/T)2

UICSM-2-56, Third Course



I'



[1.04] [1-50]

B. Simplify these exponentials. Leave answers in exponential form.

3 5
Sample 1 . 4X4

Solution. 4^ X 4^ = (4 X 4 X 4) X (4 X 4 X 4 X 4 X 4)

= 4

Q 1 , 2 3 3 5Sample 2 . x y x y

Solution . For every x and y,

2335 2335xyxy =xxyy

4x4x4x4x4x4x4x4
8

= XX X XXX X yyy X yyyyy

= xxxxx X yyyyyyyy

5 8
= X y .

Sample 3 . 5. 7(5. 7r)(5. 7r)^r^

Solution. For every r,

5.7(5.7r)(5.7r)^r^

= 5.7(5.7r){5.7r)(5, 7r)rrr

= (5.7 X 5.7 X 5.7 X 5.7) (rrrrrr)

= 5. 7 r .

3 3 2 3 2
1. 2-'2 2. 2-^2"^ 3. XX

4. 4^ • 5 • 4^ 5. x^yx^ 6. 6^6^

4 9 4 9 5 10
7. 3 3"^ 8. d d^ 9. 19 19

in 5 9 ,, ,7_3,2^6 ,_ 7 3 2 5
10. yy 11.3232 12.xzxz

13.
3^'^3^'^

14.
3^'^3^'^3^''

15. 5^9^5'^9

w 2„3 9q ,7 ,106,207 ,„ 674 65 186
16. r 9 r 9 17, 3 3 18, x y x

19, 5^100^6^100^ 20, a^lOoS^lOO^ 21. O^O^^O^O^O^"^^

22. (5a)^(5ab)^ab)^ 23, 8^63*^0^ ^S^'^

(continued on next page)
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24. (3. 14) (2.28) (3. 14) 25. xS^x-y zx

26. ab^c^r-^'b^c 27. (2, 9)t(2. 9t)"

28. (4.6p) (4.6p) (^.6p)^ 29. {6.7mn) (6 , 7mn)^(6. 7mn) (6.7mn)^

30. (2ai(4c)(3a)^(Zc:(4a)^(2c'^)^

C. Partition the set of expressions which foj.low by using the relation

STANDS FOP. THE SAME NUMBER AS

5 fourth power cf 5 (4 ) 4X4 4

3-*- 3 ^3 ?3 25X5 4' 5 X 5 50" v ..J (2 } 4X4 X 4

5 cubed (3^')^ fifth power of 3 4x4x4x4x4

5^ ~ 5^ 5"^' X S'^ 5X5^ the cube of 5 8^

22 2? ?3 3 '^'- 5
4 X4 (5) (5 X 5 )

-=- 5 4 5' 4^4

5 -r 5 third power of 5 5" 3 (3 )

4 2
(5 X 5) X 5 fifth power of 4 >. 2 ) 4 to the fourth power

8 5 4 8 3 34" 4- 4^ 125 2 X 2 X 2 2^ 8" v 4

fourth power of 4 3 "[{3 X 3) X 3]

D. Partition the set of expressions v/hich follow by using the relation

IS EQUIVALENT TO. [P.ecall that two ex-pressions which contain

pronumerals are equivalent if they give a pair of expressions for

the same nuinber upcn each reiilaceixient of the pronumerals by

numerals . 1
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E. We introduce the student to a recursive definition of

exponentials. This type of definition will be met

repeatedly in the next unit. Note that we do not define

an exponential with exponent symbol ' 1 ' at this point.

The student is asked to do so in Exercise 7 on page 1-53.
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(xxx)"

(x )

, 2.3
(x )

, 2.3
(x )

xxxyyy(y)'

3 8
X X

5, 2,4X (x )

. 3,4 8
(x

) y

2 3 4xxx

. 2,4
(x )

2 5
x y

, 5,2
(x )

, 4 ,2
(y x) X

3 6
X y X X • x"

3 5
X y y

3, 2,4X (y )

3 3 3XXX

X X X

X • X

third power of x

/ 2,3
x(x ) X

4 2
X X

third power of xy

3 3 2
X y y

ninth power of x

, 2 2,2
(x X )

2.4

. 3 2,4
(x y )

x{x ) sixth power of x

, 2,3 3 2
(y ) X y

X X X

I
2,3(xy

)

2 3 2
x(xy) (y )

/ 6 4,2
(x y )

, ,3 3
(xy) y

3 3
X X

X to the ninth power

2 7
X X (xy) y

2 4 4
X y xy

n,
E. We could define ' a ' as an abbreviation for • the product of n

factors a' . Instead of this we shall state the following recursive

definition.

F or every i

2
a -3.

eal number

• a

a.

and, for every counting number n > 2,

n +1
a =

n
a • a

Sample. Prove: 3 = 3 • 3 • 3 • 3 • 3

5 4
Solution. 3=3 "3

= (3-^ . 3) • 3

= [(3^ • 3) • 3] • 3

= [(3 • 3) • 3] • 3 • 3

= 3 • 3 • 3 • 3 • 3.

[Why?]
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Hence, for every k,

if{-l)^^ = 1

^, , ,,2(k+l) ,

then{-l) ^ =1.

Therefore, in view of (a) and (b), by the principle of mathematical

induction for counting numbers, the property in question holds for

every counting number.

6. For every n> 1, by the recursive definition,

(-1)2" = (-l)2n-l(.ij

But, by the theorem in Exercise 5, for every n,

{-!)'" = 1.

Hence, for every n > 1,

or

or

1 = (.l)2n- \-•1

1

-1
= (-.l)2n-

1

-1 - (-.l)2n-
- 1

•

[The theorem in Exercise 6 can also be proven using mathematical

induction.
]

7. (a) A reasonable definition:

'(-1) ' means -1.

(b) For every real number a,

1
a = a

and, for every counting niimber n,

n+ 1 n
a = a • a.
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Urge students to use the recursive definition in proving

the statements 1-4 rather than use their conjectured addition

rule. «»'-^ ^'^ «'.

5. Property is that expressed by:

(-1)^ •••= 1

(a) _1_ has the property .

By the recursive definition,

(-1)^ = {-1){-1) --

(b) The property is hereditary.

Suppose that, for a given k.

(-1)^^ = 1.

Then, for this k,

^_jj2{k+l)
^

^_^j(2k+l) + 1

= (-1)^^+^ • (-1)

= [(-1)^^{-1)][-1]

= (-1)^^[(-1)(-1)]

[recursive definition]

= 1. [inductive hypothesis]
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As exercises in the use of this recursive definition prove each of

the following:

5 2 3 5
1. (-2) = -32 2. 3^ • 3 = 3^^

3. (-1)^ = 1 4. (VT)^ = 4;/y

5. Prove that for every counting number n, (-1) =1.

[Hint : Use mathematical induction.]

6. Prove that for every counting nunnber n>l, (-1) =-1.

7. (a) Suggest a definition for ' ("1) ' so that the theorem in

Exercise 6 can be extended to every counting number.

(b) In light of your ans\wer to (a) franne a reasonable recursive

definition of exponentiation which allows every counting

number to be an exponent (and every real number to be a

base).
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