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INTRODUCTION

During most of your mathematics course this year you will study

geometry . The study of geometry is a very ancient one; many of the

facts of geonaetry which almost everyone knows were discovered by

the Egyptians, the Babylonians, and the Greeks. Euclid and other

Greek mathematicians collected the geometric knowledge of their

day and attempted to organize it into what is called a postulational

system . In a postulational system one shows how certain "facts"

can be deduced from a few statements which are called postulates .

Euclid's system of geometry served for hundreds of years as a

model for organizing other bodies of knowledge, non-mathennatical

as well as nnathematical. Within the last two hundred years nnathe

-

maticians have come to understand better just what a postulational

system is. They noticed certain flaws in Euclid's system and con-

structed better postulational systems for geometry and for other

branches of mathematics. Some of these systems are rather compli-

cated and you v/ould need much mathematical training in order to

understand them.

In this course you will study a postulational system based partly

on ideas from Euclid and partly on ideas from mathematicians who

worked during more recent times. You will see how the knowledge of

points and lines which you acquired in your graphing work is organized

into a system. The system will contain postulates based on this knowl-

edge. You will use these postulates in deriving many other statements,

some which you already know and some which will be new to you.

The ability to derive or deduce statements from others is needed in

all branches of mathematics, as well as in all other fields of knowl-

edge. Studying a postulational system of geometry provides a good

opportunity for you to acquire this ability. So, to give you practice in

deduction you will at times be asked to derive statements which you

may already know. At other times you will use this ability in deriving

statements which are new to you. In fact, some of these new state

-

naents may even be discovered by you.





Int. -A Second Course
Unit 1

TEACHERS COMMENTARY
Introduction

In this course we have a development of Euclidean geometry which

is as rigorous as, for example, that due to Hilbert, and yet which is,

we believe, accessible to students who have mastered FIRST COURSE.*

The difficulties in the way of such a development are of two kinds. In

the first place, when constructing rigorous proofs, one must pay atten-

tion to various "details" which, in conventional treatments of geometry

for high school students, either are tr.lccn to be "obvious from the

picture", or are completely overlooked. In the second place, one must

*The desirability (and the difficulty) of formulating such a develop-

ment was pointed out by O. Veblen in his monograph "The Foundations

of Geometry" which appeared in the collection Monographs on Topics

of Modern Mathematics , edited by J. W . A. Young [Dover reprint,

pp. 1-51]:

A book giving a complete and rigorous treatment

of elementary geometry would be a most important in-

fluence in improving the teaching of the most ancient

and perfect of sciences. Such a bock could rarely, if

ever, be used in the classroonn, but if it were in the

hands of the teachers it would serve to keep before

them in something like its actual form the structure

of which they are trying to give their students a first

glimpse, [p. 48, footnote.]

Unlike Veblen, we believe that it is possible to present to high school

students "a . . . rigorous treatment of elementary geometry". While

to this extent disagreeing with one of the most distinguished geometers

of our times, we are glad to acknowledge our great debt to him for his

work in the foundations of geometry, without which the present develop-

ment would have been impossible.
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make clear to the students the nature of geometry as a pure deductive

theory which, in itself, has only logical structure (but no content).

Such a theory is actually nothing more than a class of uninterpreted

(and, hence, strictly meaningless) sentences.* It obtains a content

only when its primitive terms are interpreted according to some

arbitrarily chosen convention. For example, you will find that the

words 'point' and 'line' are taken as primitive terms. These words

occur in the theorems of our geometry [our first postulate, on p. 1-28,

is: Each line is a set of points, and contains at least two points.],

and these theorems become meaningful only when meanings are assigned

to the primitive terms. We might decide that 'point' is to mean person

and that 'line' is to mean committee. With this interpretation, postulate

I becomes a meaningful statement. [The fact that there may be "a

committee of one" shows that postulate I becomes a false statement.]

When the choice of meanings for the primitive terms is such that all

the theorems become true sentences, we say that we have a model

for our deductive theory. A theorem.-by-theorem check is of course

not necessary in order to assure ourselves that we are in possession

of a model. It is sufficient that the suggested interpretation of the

*A deductive theory is a set of sentences which is such that every

sentence which is, logically, a consequence of members of the set

also belongs to the set. The sentences which are members of the set

are called theorems . In exploring the logical structure of a particular

deductive theory, one frequently chooses a subset of its theorems of

such a nature that every theorem can be deduced from the members

of this subset. The latter are then called postulates . A deductive

theory, then, determines, and is determined by, its theorenns; on

the other hand, there is a considerable degree of arbitrariness as

to which of its theorems one chooses to take as postulates to form a

basis for developing a given deductive theory.

Int. -B Second Course, Unit 1
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primitive terms be such that each of some set of postulates for the

deductive theory becomes a true sentence. [For this reason, one

generally tries to choose postulates which are few in number, and

simple. ]

One reason for studying a pure deductive theory is that each such

theory has many models so that, while one is developing the theory,

one is exploring many subjects simultaneously. As an example of

this, consider the deductive theory which can be based on our first

four postulates :

I. Each line is a set of points, and contains at least two points,

[page 1-28.]

II. There are three points which do not belong to the same line,

[r.age 1-28.]

III. For each tv^o points, there is a. line which contains them.

[page 1-36.]

IV. For each tv/o points, there is at most one line which con-

tains them, [page 1-49.]

Most of the words which occur in these four sentences are, for our

present purposes, to be thought of as belonging to logic [for example:

'each', 'is', 'set', 'a.nd', 'contains', and 'at lea.st two']. The two

words 'point' and 'line' are primitive terms. We see that if we choose

to use 'point' to mean a.n ordered pair of real numbers and 'line' to

mean the solution set of a linear equation (in two pronumerals), then

I, II, III, and IV become true statements about linear equations and

their solutions. On the other hand, if one innagines a "physical plane",

one can decide to interpret 'point' as a position on this plane, and 'line'

to mean path (in the plane) of a ray of light. Whether the postulates

beconae true sentences under this interpretation is a matter for the

physicist to decide, on the basis ox experiments with light rays-

That he nnay never be able to decide this with absolute certainty need

not concern us here. The fact remains that such conceptual physical

models are of help in the study of the real world and form the basis

for our application of the theorems of geometry to the solution of

"practical" problems.

Int. -C Second Course, Unit 1
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From postulate II we can, without reference to any model, deduce

Theorem 1. For each line, there is a point not on the line.

Since this sentence is a consequence of the postulates we know that it

will beoonne true if 'point' and 'line' are interpreted, as above, in ternns

of real numbers and equations. Thus we learn that, for each linear

equation there is an ordered pair of real numbers which fails to satisfy

the equation. Granted that this is not in itself particularly surprising^

still it is of interest to realize that it follows from the fact that there

are three ordered pairs of real numbers which are not solutions of any

one linear equation. If we believe strongly that the physical interpreta-

tion suggested above describes a model for our postulate set, we shall

probably feel equally strongly that Theorem 1 assures us that, for each

ray of light, there is a position which is not on its path. Again, we may

be more struck by the logical connection between this fact and the fact

that there are three positions which are not on the path of any single

light ray, than we are in the fact expressed by Theorem 1, itself. ["We

may, of course, find a theorem whose interpretation in the physical

"model" can be shown to be a false sentence. This will show us that we

were in error in believing that the interpretations of the postulates were

true sentences. Such a possibility suggests the process of experimental

check of predictions by which physical theories are tested. Since, in the

case of the mathenaatical model, we can derive the interpretations of our

postulates from the properties of real numbers, the discovery of a

theorem whose interpretation for this nnodel was a false sentence would

mean that the logic which we use to deduce theorems from our postulates

will result in contradictions when applied in deriving properties of real

numbers. This is most unlikely, and if such an event occurred, we

should feel very nearly certain that we had blundered in constructing

the purported proof for the purported theorem.
]

We began by suggesting that the two main obstacles to a rigorous

treatment of elementary geonnetry were, first, that the construction of

rigorous proofs requires paying attention to matters which are easily

either overlooked or "assumed from the figure", and, second, that

appreciation of a rigorous treatment requires some understanding of the

nature of a deductive theory. We shall indicate the kind of care which

Int. -D Second Course, Unit 1
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one must exercise in stating a rigorous proof by presenting a careless

"proof" of the statement:

Every right angle is congruent to an obtuse angle.

T>'L

Let ZABC be any right angle, and construct a rectangle ABCD. Choose

D', outside of I I AB CD so that the segments AD' and AD have the same

length. The perpendicular bisectors of segments DC and D'C intersect

in a point P, as shown in the figure. AAPB, AD'PC, and ADPC are

isosceles triangles, so AAD'P and ABCP are congruent. In particular,

ZPAD' andZPBC are congruent and, since AAPB is isosceles, ZPAB
and ZPBA are congruent. Since differences of congruent angles are

congruent, ZBAD' and ZABC are congruent. But ZBAD' is an obtuse

angle, so ZABC is congruent to an obtuse angle.

[Before reading further you may wish to discover the error in this

reasoning. A carefully drawn figure will help.]

The error in the supposed proof lies in the tacit assumption that the

point B is interior to ZPAD' , just as A is interior to ZPBC. It is on the

basis of this assumption that one argues from the congruence of ZPAD'

and ZPBC, and the congruence of ZPAB and ZPBA, to the conclusion

that ZBAD' and ZABC are congruent. A "carefully drawn figure" will

shov;, for example, that A and B are on the same side of the line through

P and D', rather than on opposite sides of this line, as suggested by

the figure above. But this should not restore your feeling of satisfaction

(if any) with conventional proofs. A proof for a theorem of geometry

should show by logically justifiable steps that, the theorem is a consequence

Int. -E Second Course, Unit 1



'J-'f

n



of the postulates. When one introduces into one's reasoning a conclusion

drawn only from a picture, whether the picture is the one above, or your

"carefully drawn" one , one has departed from this standard of rigor.

Without making recourse to the postulates, you have no more justification

for introducing into a proof your "correct" conclusion as to the relative

position of the points A and B than we had for assuming that 3 is interior

toZBAD'.

Thus, a set of postulates for a rigorous treatment of geometry must

be such that we can deduce from them sentences which assert that,

in appropriate circumstances, two points are (or are not) on the same

side of a given line. More basically, in the preceding argument we

needed to decide whether the intersection of the line through P and D'

with the line through A and B was (or was not) between the points A
and B. We shall, in fact, take the notion of betweenness, like those of

point and line, as primitive (a fourth, and final, such notion will be a

weak notion of congruence), and our postulates will contain phrases of

the form '. . . is between and ' (abbreviated to '[. . . ^ --»- ]').

The first kind of obstacle to developing a treatment of geometry, which

is both rigorous and suitable for study by high school students, is

illustrated by the difficulty, which we believe we have overcome, of

choosing suitable postulates of this sort. The test of whether or not

we have succeeded will be the degree of success you have in teaching

the course to your students.

We turn now to our method of overcoming the second obstacle, the

fact that one must understand the abstract nature of a deductive theory

in order to appreciate a rigorous treatment of geometry. It would be

futile (or, at best, uneconomical in terms of classroom time) to attennpt

to give students such an understanding before t^.ey have any experience

with deductive geometry. Moreover, it is essential that one realizes

that, despite the abstractness of deductive theories, the. value of a

deductive theory derives principally from the importance of its nnodels.

It is for these reasons that we begin with a study of the number plane ,

the set of all ordered pairs of real numbers together with the notion of

distance between ordered pairs defined by the usual formula;

df (xq, y^), (xj,
Y^)J

= V (xj - Xq) + (y^ - y^)'

Int. -F Second Course, Unit 1





On adopting the usual conventions [p. 1-10] as to how one ic- to drav/

pictures of the number plane, one finds that pictures of the solution sets

[or: loci] of linear equations are just those pictures which can be drawn

by running a pencil along the edge of a ruler, and this, together with the

fact that such pencil streaks are customarily called 'straight lines',

naotivates the decision to define _a straight line in the numbe r plane to

be the solution set of a linear equation. [Since penciled dots are often

called 'points', and, in our pictures of the number plane, represent

ordered pairs of real numbers, we decide to define a point in the number

plane to be an ordered pair of real numbers. ] The fa.ct, easily established

by elementary algebra, that the solution set of each linear equation

consists of ordered pairs of real numbers and has at least two mem'oers

can now be stated in terms of 'point and 'line' as postulate I (see above).

Other statements concerning points and lines, as these have been defined

with reference to the number plane, can also be derived alr;ebraically

from properties of real numbers and the definition of distance. Some of

these are accepted as postulates, and other such statements are deduced

from these, without making use of the number plane interpretations.

We also point out [pp. 1-36 through 1-46, and pp. 1-72 through 1-80]

that it is possible to give other interpretations of 'point' and 'linej thus

obtaining other models of our postulate system. We discuss also

[section 1.04] the role of primitive terms and, in illustration of this,

introduce the "words " '[. . . ]' and '.
. . S 'to refer to the

basic notions of betweenness and congruence.

Our general procedure, then, is to derive alge'oraica.Uy some property

of the number plane, state this as a postulate in terms of the ncticns of

point, line, betweenness, and congruence, and then use it, in conjunction

with the postulates we have previously obtained in this wa.y, as a. basis

for proving additional theorems. From time to time we consider alterna.tiv.

interpretations of the undefined terms, thus showing thr.t our ded'.uctivc

theory has nvunerous models, and emphasizing the fact that proofs must

not depend on any properties of a model other than those v;hich have been

formulated in the postvilates.

In this unit we introduce the first seven of our fifteen postulates,

and deduce sonae of their consequences. The theorems w'lich we (and

the students) prove bear little resemblance to those usually naet with in

Int. -G Second Course, Unit 1





elementary geometry courses but do, for the most part, form a necessary

foundation for the proofs of the standard theorems. In succeeding units

additional postulates will be introduced and by the end of Unit 2 most of

the theorems will have a familiar look.

The derivation of the statements about the number plane, from which

the postulates are obtained by abstraction, requires of the students a

considerable knowledge of algebra. We consider it one of the great

advantages of this course that it furnishes an opportunity for teaching

these algebraic techniques in a context which furnishes the student ample

opportunities to use them in a non-trivial fashion.

[At this point you may find it helpful to read the SUMMARY, pp. 1-128

through 1-131.1

Three additional comments may help you to orient yourselves in

this course. [You will understand them better as you proceed with your

study of this and later unit. ]

(1) You m=iy have heard Euclidean geometry described as the

geometry of ruler and coiTipa.ss. This refers to the fact that

Euclid a.ssumed the existence of straight lines and circles.

In the light of our development, Euclidee.n geometry can be

described as r.he geometry of elastic scale and try square.

Our postulate VI says, in escence,- thr.t one can lay off a scale

on a lin3 (but does not prescribe a unit of length; this is where

the elasticity comes in)., and postul^.te XIV a.3serts the existence

of right angles (which can be drav/n vv'ith a try square). [In a

later unit, we jbell deduce from our postula.tes the usual

theorems ccnciirning circles.]

(2) As in Euclid's geometry (and unlike some conventional treat-

ments of eleinentary r;eorQetry} our d active theory makes,

at first: nothfng of tlie notion of distance. We-do make much

use of the distance formula in the number plane while estab-

lishing those properties which suggest to us our postulates.

But these properties themselves involve at most the notion

of equality of dista.nc3s rather than the notion of distance itself;

and, although our primitive notion of congruence corresponds

Int. -H Second Course, Unit 1





to equality of distances in the number plane we have no primitive

notion which corresponds with the concept of distance. However,

using our four primitive terms we can define the notion of the

ratio of two segments, and, in terms of this we shall eventually

define the notion of distance relative to a given unit -segment .

Even then, there will be no absolute notion of distance as exists,

by definition, in the number plane itself, or as is, in some

geometries, taken as a primitive notion.

(3) Our algebraic derivations of the statements from which we

abstract our postulates should not be confused with "analytic

geometry". Algebraic derivations of statements concerning

the number plane are nothing more or less than proofs of theorems

of a deductive theory which may be called 'the algebra of real

numbers'. A set of postulates for this theory might consist of

sentences stating the commutative principle for addition, the

distributive principle (for multiplication over addition), etc.

[Incidentally, in our development of geometry we assume a prior

knowledge of those properties of real numbers which we need

to use, just as we assume a knowledge of the rules of logic,

including set -theory. (This does not mean that we expect our

students to know all this, but merely that we consider this

knowledge as prior to, and not a part of deductive geometry. )]

Our use of algebraic procedures in obtaining our postulates

has as sole purpose the verification of the fact that the number

plane furnishes a model for our deductive theory of geometry.

'Analytic geometry', on the other hand, refers to the fact

that, from an adequate set of postulates for Euclidean geometry,

one can deduce a theorem to the effect that there are (1-1)-

correspondences of a certain kind between the set of all points

and the set of all ordered pairs of real numbers. The kind of

( 1 - l)-correspondences in question can be described as follows:

If the components of the ordered pair which corresponds

with a given point are called the coordinates of the point

with respect to the ( 1 - 1)- correspondence (or : coordinate

systena ) under discussion, then

Int. -I Second Course, Unit 1
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(ly the points of each line are just those points whose coordinates

satisfy some linear equation,

and

(ii) the relative distance between two points, when the segment

whose end-points have the coordinates (0, 0) and (1, 0),

respectively, is taken as unit -segment, can be obtained

by applying the usual distance formula to the coordinates

of the two points.

The existence of such coordinate systems (which, as mentioned

above, can be deduced from the postulates of geometry) makes

possible the application of algebraic methods in proofs of theorems

of geometry. Such proofs are called 'analytic proofs' while those

in which coordinate systems are not mentioned are called 'synthetic

proofs'. [Thus, the terms 'analytic geometry' and 'synthetic

geometry' are misleading. In both cases, the same geometry is

under discussion; the distinction is merely in the methods used in

constructing proofs.
]

In a later unit we shall prove the existence of coordinate systems

and then use analytic methods whenever it is advantageous to do so.

In fact, one of our most important postulates, VI, asserts the

existence of a kind of coordinate system on each line and so allows

us some use of analytic methods in the present unit.

Summarizing, in using the number plane to get a model of

geometry, we interpret 'point' as an ordered pair of real numbers.

The use of analytic methods depends on a theorem of geometry

which assures us that the number plane can be "mapped in a

nice way" on any model of geometry.'''

''In classical Greek geometry the words 'analysis' and 'synthesis'

were used in discussing proofs, but with meanings entirely different from

those given above. [A discussion of these concepts can be found in the

Introduction to Heath's translation of "Euclid's Elements" [Dover

reprint, vol. 1, page 138 ff.].
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[1.01] [1-1]

1.01 The number line and the number plane . - -When we studied directed

numbers [or, real numbers , as they are often called], we found it useful

to imagine a one-to-one correspondence between the real numbers and

the points of a straight line. [That is, we "paired up" all real numbers

with all points of a straight line so that each nuinber and each point

occurred in one and only one pair. ] To aid our imagination we drew

a picture of a part of the line. On this we pictured some points of the

line by dots, and indicated the imagined ( 1 - 1) -correspondence between

points and real numbers by writing a numeral for a number below the

3

2 I 1 ^n IT

dot associated with that number. After choosing the points for and

1, it turned out to be convenient to choose a point for, say, 5 in such a

way that the direction from the point for 1 to the point for 5 was the

same as the direction from the point for to the point for 1. In general,

points were associated with numbers so that the direction from the point

for a number to the point for a larger number was the same as the

direction from the point for to the point for 1. So, our (l-l)-corre-

spondence between real numbers and points on a line conformed to the

following statement.

For each number x and each number y, x < y

if and only if the direction from the point for x

to the point for y is the same as the direction

from the point for to the point for 1.

1 V

x < y

UICSM-4-57, Second Course





[1.01] [1-2]

A. For each of the following pictures fill in the dotted blank with ' < '

or with ' > ' according to the statement given in the box above.

(1) (2)

X

1

y y

y

X

X

X

1

y X

X y 1

(3) (4)

u V V

u 1

1

u

u

V

V 1005 -10

-10 u 1005

(5) (6)

10 -12 X y 1007

z

10

X y

y y

X

z

t s s

1007 t 1

t

s

(continued on next page)
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[1.01] [1-3]

(7) (8)

U/

y

1 .... 5 . . . . 1007

1007 . . . . t 1 . . . . 1007

If X > y then w . . . . z.

If w .... y then z . . . . x.

(9)

X w

K X - y > then y - x .

If |x - y I

> then |y - x| 0.

If X - y > then z - w 0.

If |x - y| > then z - w 0.

(10) Tell how pictures of lines \A/hich conforna to the boxed statement

on page 1-1 enable us to tell at a glance which of two directed

numbers is the larger.

B. When you are working only with whole numbers [or, integers] it

makes sense to talk about the next larger integer. The integer

next larger than 78 is 79; the integer next larger than -6 is -5.

But when you are working with real numbers, it does not make sense

to talk about the next real number larger than, say, 78.

UICSM-4-57, Second Course
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[1.01] [1-4]

1. What integer is "half-way" between the integers 4 and 8?

Between the integers 4 and 9 ? Between the integers -7 and 3?

2. What real number is '*half-way" between 4 and 7? Between
9

4 and |- ? Between 4 and 4. 1 ? Between 3. 71 and 5 . 29 ?

3. For each real nximber a and each real number b, what number

is "half-way" between a and b?

4. Think of all the real numbers less than 2. What is the largest

such nvimber ? What is the smallest such number?

5. Suppose someone claims he knows the largest real nunnber

less than 2. How would you prove to him that there is a real

number larger than his and which is also less than 2 ?

6. Suppose someone claims that he knows the smallest real num-

ber less than 2. How would you prove to him that there is a

real number smaller than his ?

7. Think of the set of numbers consisting of 4-j and all the real num-

bers larger than 4y . What is the smallest number in that set?

8. Describe a set of numbers which has a largest number and a

least number. Describe a set which has a largest and no least.

A set with a least and no largest. A set with neither a largest

nor a least.

DISTANCE AND PAPER -DISTANCE

Here are two pictures which satisfy the boxed statement on page 1-1.

(I)

-1

(11)

6 -5 -4 -3 -2 -1

UICSM-4-57, Second Course
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[1.01] [1-5]

If you take a strip of paper as long as

and lay it along picture (I), the upper corners give you two numberi

Some of these pairs of numbers are

3 and 0, -1 and 2, 4 and 1,

^2 ^"^ 2'
— and
4

3^^4' -1 and \j.

Notice that, for each of these pairs of numbers, if you subtract one

number from the other, you get either 3 or -3. That is, the absolute

value of each of these differences is 3.

If you put the strip on picture (II), you obtain such pairs as

5

-r and 3,
9 2 ,12— and -r

,

6 D
-1 and 2,

-3 and 1, •5 and 0, 1 and -6,

The absolute values of the differences for these pairs are, respectively,

4.

4,

,1
'2'

5,

3,

5.

Notice that, for picture {II), the paper -distance between two dots does

not tell you the absolute value of the difference between the corresponding

niombers. Picture (I) is certainly more convenient than picture (II) for

visualizing the absolute values of difference:, between numbers.

So, we usually choose to picture a ( 1 - I) -correspondence between

real numbers and points of a line [see page 1-1] in conformity with the

following statement.

11103^-4-57, Second Course
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[1.01] [1-6]

For each pair of numbers x and y, and

each pair of numbers u and v, the paper

-

distance between the dots for x and y is equal

to the paper -distance between the dots for u

and V if and only if

|x - y| = |u - v|.

k H

u

|x - y I

= lu - v|

A straight line whose points correspond to the real numbers in a way

which conforms to the statement in the box above [and, therefore, to

the boxed statement on page l-l] is called a uniform scale.

Because certain pictures of lines enable us to visualize properties

of real numbers, we often call the set of real numbers the number line ,

and speak of a real number as a point of the number line.

EXERCISES

Use a uniform scale in answering the following questions.

Sample . For all numbers x, y, and z, if jx - y| = 5 and |x - z| =7,

what is |y - z
I

?

Solution . There are two cases : x < y and y < x.

(continued on next page)
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[1.01] [1-7]

> -^
X X y

X < y y < X

[The arrowhead in each picture gives the direction

from to 1 .
]

Since |x - z) = 7, z must be either 7 greater

than X or 7 less than x, as illustrated below for

each of the two cases.

— 5-

\ X

\

• • >V
/

\
/

\
/

\
/

-«^»-

\
\
\
\

- 7-

5 —

X
-•—•-

V
/

\ /
/

In two of these four cases, |y - z| = Z; in the

other two cases |y - z| = 12.

[Notice that the two pictures above which

illustrate the four cases differ only in the location

of the arrowhead.

X

If X < y, ->-

if y < X, —<-

(continued on next page)
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[1.01] [1-8]

Consequently, we could have solved the exercise

by using just one picture:

5—

1. For all numbers x, y, and z, if (x - y| =8 and (y - z| =9,

what is |x - z
I

?

2. Ix - y| = 5. |x - z| ^ 5, |y - z| = ?

3. |x - y| - 0, |y - z| = 0, |z - x| = ?

4. |y - x| = 5, |y - u| = 3. |u - v| = 4, (|x - v|, |y - v|) - {?, ?)

UICSM-4-57, Second Course
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[1.01] [1-9]

THE NUMBER PLANE

In working with ordered pairs of real numbers we can use a

( 1 - 1) -correspondence between the set of such ordered pairs and

the set of points of a plane. You can picture this correspondence

by drawing a part of a plane and writing a name for an ordered pair

close to the dot which pictures the point associated with that ordered

pair. Here is a picture of the ( 1 -
1

) -correspondence you used in

your earlier work with ordered pairs of numbers.

c

c
o
a
5 CO
o .^
u X
^ "^

c
o
o
0)

CO

— •

(-1, 1)

(0. 3)

<• (0, 2)

((&, -1-y

• (3, 4)

(-3. 0) (0. 0) (1, 0)

4 (0. -1)

(o", -1]"

(4, 0)

(3, -2)

(-2,-3)

I

(0, -4) (4. :-4)

first component
axis

UICSA/i.-4-57, Second Course
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[1.01] [1-10]

There are several important things to notice about the picture of

this correspondence:

(1) All ordered pairs with the same firot component [or, with the

same second component] correspond to the points of a straight

line.

(Z) The same uniform scale is used for both component axes.

(3) The paper-distance between the dots for (0, 1) and (1, 0) is

the same as the paper -distance between the dots for (0, -1)

and (1, 0).

Pictures of the system of ordered pairs of real numbers which conform

to conditions (1), (2), and (3) are called pictures of the number plane .

The set of all ordered pairs of real numbers is often called the number

plane .

EXERCISES

A. Use UICSM Coordinate Plane Paper B as a picture of the number

plane. Locate and label the dots corresponding to

R: (2, 3) and S: (5, 7), P: (11, 9) and Q: (15, 6),

U: (1, 7) and V: (-2, 11), M; (-7, -3) and N: (-3, -6),

D: (-2, 0) and E: (3, 0), and G: (0, 13) and H: (0, 8).

1. Use a ruler to measure the paper -distance between the dots

R and S, P and Q, U and V, ]v4 and N, D and E,

and G and H.

2. Use the "distance formula" you learned in an earlier unit to

compute the distance between the ordered pairs corresponding

to the pairs of dots mentioned in 1.

Sample . The dots R and 3.

Solution. For the dots R and S, the distance between the

corresponding ordered pairs (2, 3) and (5, 7),

is

(continued on next page)
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[1.01] [1-11]

V,(2 - 5)^ + (3 - 7)^

V(-3)^ + (-4)^

/9 + 16

5.

3. Use UICSM Coordinate Plane Paper A as a picture of the number

plane. Pick a pair of dots A and B, measure the paper -distance

between them, and then pick another pair of dots C and D such

that the paper -distance between C and D is the same as the

paper -distance between A and B. Then compute the distance

between the ordered pairs for A and B and the distance between

the ordered pairs for C and D.

4. Use the results of 1, 2, and 3 to complete the following state-

ment.

For any picture of th e number plane, the paper

distance between the dots corresponding to the

ordered pairs (a. b) and (c, d) is equal to the

paper-distance between the dots corresponding

to the ordered pairs (m, n) and (p, q) if and

only if

1

!

^ =
v/

•

5. Simplify the equation in 4 for the case of four dots corresponding

to (a, b), (c, d), (m, n), and (p, q), in which

(a) the four dots belong to the first component axis,

(b) the four dots belong to the second component axis,

(c) b=d=n=q=3,
(d) a = c = m = p = 97. 38.

(continued on next page)
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[1.01] [1-12]

6. Check your simplified equation in part (c) of 5 for a = 7, c = 9,

m = 1, and p = -1. If your equation does not check, refer to

the boxed statement on page 1-6.

7. Complete the following statements with expressions which do

not contain square root signs.

(a) For every x and every y.

/(x - y)^ = /(y - x)^

(b) For every k,

VJ - ^T-k)^ =

(c) For every m and every p.

V m - 2mp + p = V (m - p)

(d) For every n and every q,

/c - Znq + n

(e) For every r and every s, the distance between the ordered

pairs (r, 2) and (s, 2) is
.

(f) For every t and every v, the distance between the ordered

pairs (-3, t) and (-3, -v) is
.

(g) For every a and every b,

Va + 2ab + b = .

(h) For every a and every b,

V (a + 2b)^ + 2(a + 2b)(a - 3b) + (a - 3b)^

8. How many pairs of ordered pairs (a, b) and (c, d) are there if

|a
I

= 3, |b| = 4, |c
I

= 9, and |d| ^ 12? [One such pair of

ordered pairs is { 3, -4) and (-9, -12) . ] List all of these pairs

in an orderly way, and then compute, for each pair, the dis-

tance between its ordered pairs. Do as little work as possible!

UICSM-4-57, Second Course
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[1.01] [1-13]

In Part A you used a formula to compute the distance between

two ordered pairs of numbers. This notion of distance between

ordered pairs of numbers is quite different from the notion of paper-

distance between two dots. In fact, it may even sound strange to

talk about distance between ordered pairs of numbers. So, we

should state precisely what we mean by 'the distance between

ordered pairs of real numbers'. Here is such a statement.

For all ordered pairs (x , y ) and (x , y ), the

distance between (x , y ) and (x , y ) is the

number

d(^(xQ,yQ), (x^,y^)^

where

d(^(xQ,yQ), (x^.y^)^ =y(x^-XQ)^ +
{yi-yo)'

The equation in the box is often called the distance formula . Note

that it tells you that the distance between ordered pairs is a number,

and that it tells you how to compute this number.

B. Use the distance formula given above in answering the following

questions.

1. If (xq, y^) = (7, 3) and (x^,y^) = {-2, 5), what is dHx^, y^), (x^ , y^)

2. If (u^, v^) = (9, -3) and (a, b) = (3, -4), what is d(^(a, b),(u2, v^A ?

3. If A :^ (3, 7) and B = (-2, 5), what is d(A, B)? d(B, A) ? d(A, A) ?

4. Check three instances of the following statement.

For all points A, B, and C, d(A, B) + d(B, C) > d{A, C).

(continued on next page)
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[l.Oll [1-14]

[An instance of this generalization is obtained by selecting

values for 'A', *B', and 'C, and replacing the occurrences

of 'A', 'B', 'C in:

'd(A, B) -1 d(B, C) > d(A, C)'

by names for the values selected. Of course, values of 'A',

'B', and 'C are ordered pairs of real numbers.]

5. (a) Plot the points A, B, and C where A = (2, 4), B = (-1, 2),

and C = (5, 6), and note that they appear to be in a straight

line. Compute d(A, B), d(B, C), and d(A, C)

.

(b) Repeat (a) for the points A, B, and C where A = ( 3, -2),

B = (1, 0), and C = (-3, 4).

(c) What do the results of (a) and (b) suggest to you?

6. Solve the equation:

df(4, 5), {1, I)] = d( (4, 5), (7, x)

*7. K (Xq, y^) = (3, 5), (x^. y^) ^ {6. 9), and d( (x^, y^), (x^, y^) )
= 4,

what is d^ (x^, y^), (x^, y^)

C. Use the distance fornaula to find simple expressions for the distance

between the given ordered pairs.

Sample . (2a + 3, 4a - 5) and (a - 7, a + 6)

Solution . The distance is given by the expression:

V [(2a + 3) - (a - 7)]^ + [(4a - 5) - (a + 6)]^
,

which can be simplified as follows :

- V (2a + 3 - a + 7)^ + (4a - 5 - a - 6)^

= V(a + 10)^ + (3a - 11)^

= Va^ + 20a + 100 + '^ ^9a - 66a + 121

- V^r '
LOa - 46a + 221

UICSM 4-57, Second Course
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[1.01] [1-15]

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

4x + 3, 2x - 1) and (x - 2, x + 5)

a + 4, a - 5) and (a + 7, a - 2)

5y - 3, 2y + 4) and (3y + 5, 4y - 2)

b + a, c + d) and (2b - 3a, 5c - 2d)

yx + 3, -x-x - 2) and ( tj-x - 5, jx + 5)

3 + 7y, 2- 6y) and (3 + 7y, 1 + 4y)

2x - 3y, 3x + 4y) and (x + 5y, 2x - 7y)

X - y, m) and (x + y, -m)

5x - 3, x + 2) and (x - 4, -4x + 1)

4 X. J / 3 5.
-, -) and (-, -)
X 2 XX

" y^-Vu and I ^,

D. Compute the perimeters of and the areas enclosed by the figures

formed by joining A, to A_ , A^ to A_ , A_ to A . , .... A , to A
^ •' ^1 2' 2 3' 3 4 'n-1 n

n
and A

1. A

2. A

3. A

4. A

5. A

6. A

7. A

o A,

(2, 1), A^ = (5, 1), A^ = (5, 5),

(-1,-1), A^ = (4, -1), A^ = (1, 4).

- (-1, -3), A^ - (3, -3), A^ = (3, 2), A^ = (-1, 2).

= (-3, -4), A^ - (5, -4), A3 = (3, 1), A^ - (-1, 1).

= (-2, -5). A^ = (3, -2), A^ = (2, 5),

(4, 6), A^ - (-4, 3), A3 = (-5, -5). A^ = (3, -2).

(0, 0), A^ = (a, 0), A3 = (a + b, c), A^ - (b, c).
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[1.01]
[1-16]

;=E. Here is a picture of a ( 1 - 1) -correspondence between the set of all

ordered pairs of real numbers and the 2et of all points in a plane.

UICSM-4-57, Second Course





[1.01] [1-17]

This picture satisfies conditions (1) and (Z) given on page 1-10.

But it does not satisfy condition (3), a fact which you can tell by

using a ruler, or even by comparing paper -distances by eye.

1. Prove that this picture does not conform to the description

indicated in Exercise 4 on page 1-11. That is, prove that it

is not the case that

for every (a, b) and (c, d), and for every (m, n)

and (p, q), the paper -distance between the dots

corresponding to the ordered pairs (a, b) and

(c, d) is equal to the paper -distance between the

dots corresponding to the ordered pairs (m, n)

and (p, q) if and only if

V (a - c)^ + (b - d)^ = V (m - p)^ + (n - q)^ .

[Hint : You can do this in either of two ways.

(1) Find a pair of dots and measure the paper -distance

between them. Find another pair with the same paper

-

distance between them. Then show that the equation

above is not satisfied by the components of the ordered

pairs corresponding to the dots.

(2) Find two pairs of ordered pairs which satisfy the

equation. Plot the points corresponding to these

ordered pairs. Then measure the paper -distances

for each pair of dots, and show that the paper-distances

are not equal.
]

2. Check several instances of the following statement.

For every (a, b) and (c, d), and for every (m, n)

and (p, q), the paper -distance [on this picture]

between the dots for (a, b) and (c, d) is equal to

the paper -distance between the dots for (m, n)

and (p, q) if and only if

V(a - c)^ + (a - c)(b - d) + (b - d)^ = V(m - p)^+{m - p)(n - q)+(n-q)^.

UICSM-4-57. Second Course
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[1.01] [1-18]

SETS OF POINTS

In your work in geometry in this course you will use the notion of

a set of points. In an earlier unit, you learned about intersections of

sets and unions of sets. Now, you will learn more about sets and learn

to use several new words and symbols.

EXERCISES

Consider the three sets r, b, and g. V/e can tell what points are

elements of these sets by listing their points between curly braces. So,

r = {{-5, 5), (-2, 3), (5, 5), (0, 0), (Z, 3)},

b = {(2, 3), (8, 7), (5, 5), (2, -2), (-1, 1)}, and

g = {(-3, 4), {0, 4), (2, -4), (2, -2), (7, 4), (3, 4)}.

Do you see that the set r consists of exactly five elements? One of

these elements is the point (-2, 3). You can state that (-2, 3) is an

element of r by writing

:

(-2, 3) e r.

You can state that (9, 12) is not an element of g by writing:

(9, 12) / g.

A. Plot, on a picture of the number plane, the points in each of the

sets r, b, and g. [Make your dots so that you can tell the three

sets apart.
]

B. 1. What set is the union of r and b? [Recall that the union of a

set m and a set n is a set which consists of just those elements

which belong to set m or to set n. An abbreviation for 'the

union of set m and set n' is :

m v^ n,

which is read as 'em union en' .

The question asked in the exercise is to be answered by

listing between curly braces the elements in r Ky b.]

(continued on next page)
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[1.01] [1-19]

2. What set is g w b?

3. What is b w g?

For each set m, each set n, and each

point P,

P e m. K^ n

if and only if

Pern or Pen.

^1, o^ ^1,

C. 1. What set is the intersection of r and b? [Recall that the inter-

section of a set m and a set n (symbolized by: m r> n, and

read as 'em intersection en* ) is a set which consists of just

those elements which belong both to m and to n.

The question asked in this exercise is to be answered by

listing between curly braces the elements in r r^ b.]

2. What set is b r^ g?

3. What is g r\ b?

' For each set m, each set n, and each

I point P,

I P e m r^ n

I if and only if

' P e m and Pen.

4. What is r r^ g? [The set which consists of no elements is

called 'the empty set'. Another name for the empty set is

'0'.]

»o o- ..u
'4^ 'I- 'f
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D. 1. What is r r^ r ? What is r w r?

2. What is b ^ b? What is b ^ h?

E. True or false?

1. (5. 5) e r 2. (0, 4) / b 3. (7, 4) e b

4. (2, 3) e r 5. (5, 5) e r r> b 6. (0, 4) / b w g

7. (1, 1) e r 8. (2, -4) e b ^ g 9. (2, 3) e

10. (8, 7) e (r w b) w g 11. (8, 7) € r w (b w g)

12. (8, 7) € (r ^ b) ,^ g 13. (8, 7) € r ^ (b ^ g)

14. (2. -4) e (r ^ b) w g 15. (2, -4) e r <-n (b w g)

16. (5, 5) e r and (7, 4) e g

17. (5, 5) e r or (7. 4) e g

18. (2, -2) e g and (0, 0) € b

19. (2, -2) e g or (0, 0) e b

•.1^ o, o^
'J^ 'l^ '!""

20. (-5, 5) e r and (2, 3) € r

21. (-3, 4) e g and (2, -4) e g and (7, 4) e g

22. (2, 3) € b and (8, 7) € b and (-1, 1) € b

23. (0, 4) e g and (-1, 1) e g and (3, 4) e g

[Another way of stating what is given in Exercise 20 is to write

{(-5, 5), (2, 3)} is a subset of r,

or, more simply:

{(-5, 5), (2, 3)} c r.

Short ways of stating what is given in Exercises 21, 22, and

2 3 are

:

{(-3, 4), (2, -4), (7, 4)} c g,

{(2, 3), (8, 7), (-1, 1)} c b,

and
{(0, 4), (-1, 1), (3, 4)} C g.

(continued on next page)
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24.

26.

28.

31.

33.

35.

respectively. Since what is stated in Exercise 23 is false, the

following statement is true :

{(0, 4), (-1, 1), (3, 4)} ^ g. ]

{(0, 0), (2, 3)} c r 25. {(-3. 4)} c g

{(8, 7), (7, 4)} c b 27. {{-2, 3), (0, 4)} ^ r

0Cr 29.0Cb 3O.0Cg
{(2, 3), (-3, 4)} C b w g 32. {(2, 3), (-3. 4)} C b ^ g

r r^ h C^ T <^ h 34.

r C r 36. b C r

h r^ g C b w g

37. b C X w b

For each set m> and for each n,

men
if and only if every element of m is an

element of n; that is, if and only if, for

every point P, if P em then Pen.

^ix ^1^ -.1,

'i> '1^ -1^

38. For each set m and each set n,

if m c n and n C m, then m = n.

-1^ ^o -J,
'1^ 'I- '1^

F. Use UICSM Coordinate Plane Paper C, and C^ for the following

exercises. Notice that page C. shows two subsets of the number

plane {call them 'C, -up' and 'C , -down'), and that page C, shows

two other subsets of the number plane (call them 'C^-up' and

'C-j-down'). [We shall abbreviate by calling these subsets:

lu 'Id' 2u C2d- 1

(continued on next page)
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[1.02] [1.22]

1. Plot each of the given points and tell which subset it belongs

to. [The A-axis is the first component axis.]

A; (1000003, 1000003) B: (-156616, -2)

C; (5, 135410) D; (999999. -450003)

E: (1000008, 999998) F: (-156620, 0)

G: (0, 135406) H: (-156602, 4)

I : (135411, -2) J : (135408, -5)

2. Make a rough sketch of the number plane which shows the point

(0, 0) and the four subsets.

3. Is there a straight line in the number plane which intersects

each of the sets C, and C-, , in a non-empty set?
lu 2a '^ '

4. Suppose you were in C, and met (0, 0). Indicate [by drawing

an arrow] which v-'ay you would point to show him the way to

go home. [Repeat for the other three regions.]

5. Suppose you were in C. and you wanted to travel along a

straight line to reach the closest point in

the set of all points (x, y) such that y = x.

Indicate the direction in which you would walk by drawing an

arrow. [Repeat for the other three regions.
]

1.02 Straight lines in the number plane. " -You may recall drawing pictures

of straight lines in the number plane by finding ordered pairs of numbers

which satisfy a certain kind of equation. For example, consider the

equation '3x + 2y - 6'. K, on a picture of the number plane, you make

dots corresponding to several ordered pairs (x, y) which satisfy this

equation, it is easy to convince yourself that no matter how many such
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[1.0 2] [1-23]

dots you make, you will be able to draw a straight line which passes

through all of them.

XUO, 3)

\
\

\

V^' f)

\
\
\
V(2, 0)

\
\
\
\

V' -h

\
\
\

(4, -3)

We say that the set of all ordered pairs (x, y) which satisfy [explain this

word] the equation '3x + 2y = 6' is a straight line in the number plane.

This set of ordered pairs is also called the solution set of (x, y) [or

:

the locus in (x, y) ] of
' 3x + 2y = 6'

. [For short, we sometimes omit

'of (x, y) ' or 'in (x, y) ' and refer simply, to the solution set of

'3x + 2y = 6', or to the locus of '3x + 2y = 6'.]
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[1.02] [1-24]

EXERCISES

A. 1. Show that (-10, 18) is an element of the solution set of (x, y)

of '3x + 2y = 6'.

2. Show that (4, 7) does not belong to the locus in (x, y) of

'3y - 2x + 5 = 0'.

3. Does (5, 7) belong to the locus of *x - y = 2'?

4. Does (5, 7) belong to the locus in (y, x) of 'x - y = 2'?

5. Is (3, 12) a member of the solution set of 'b - 2a = 6'?

6. Show that {3j 12) belongs to the colution set of (a, b) of

'b - 2a = 6".

Note : A short expression which means the same as :

the locus in (a, b) of '7a - 3b = 5'

and:

the solution set of (a, b) of '7a - 3b = 5'

is :

{(a, b): 7a - 3b = 5}

which is read as

'the set of all ordered pairs (a, b) such

that 7a - 3b = 5' .

The curly braces in '{(a, b) : 7a - 3b = 5} 'tell you that we

are talking about a set; '(a, b)' tells you that the members

of the set are ordered pairs of real numbers; '7a - 3b = 5'

tells you that the members of the set are just those ordered

pairs (a, b) which satisfy '7a - 3b = 5'.

o^ ^o ^'^
'1^ 'r '1^

7. Give an ordered pair which belongs to {(x, y) : 3x + 2y - 6}

and which is not labeled in the diagram on page 1-23,

8. Show that (3, 2) / {{a, t) : 2t + 3a = 12}.

9. Show that (3, 2) e {(t, a): 2t + 3a = 12}.

10. Show that {(3, -1), (-3, 7)} c {(p, t) : 4p + 3t - 9 = o}.

(continued on next page)
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[1.02] [1-25]

11. Show that {(4, 5), (4, 8), (4, -3)} c {(x, y) : 3x = iz}.

12. Show that {(0, -8), (^, -8), (-306, -8), (tt, -8)} c {(a,b): 5b + 40 = o}.

13. Describe each set.

(a) {(x. y): = o} (b) {(x, y) : 1 = o}

B. Find all values of * x ' which satisfy each of the following.

Sample . (x, 4) € {{a, b) : 3a + 2b - 7 = o}

Solution . For every x,

(x, 4) e {(a, b): 3a + 2b - 7 = o}

if and only if x satisfies the equation:

3(x, ) + 2(4) -7=0,

which is the equation we get from '3a + 2b - 7 = 0'

by replacing 'a' by 'x' and 'b' by '4'.

This equation is equivalent to:

3x + 1 = .

Hence, - -y is the only value which satisfies the

expression

:

(x, 4) e {(a, b): 3a + 2b - 7 = o}.

1. (5, x) e {(a, b): 2a - 3b = 7}

2. (3, |) e {(a, b): a = 3b - l}

3. (2x + 1, 5) e {(a, b): 5a - 4a = 6}

4. (x, 2x) e {{b, a) : 5a + b - 5 = o}

5. (x, x^) € {(a, b): 4(a + 1) - -b}

6. (x, x^) e {(a, b): (a + 1)^ - a^ = a + b + l}

7. (p ^) € {(c, d): 3c^ . d = 0}

8. (x, 3) e {(x, y): 3x - y = 5}

9. {7x - 2, 5x + 7) e {(a, b) : 5a - 2b + c = 8 + a + ^( 1 + 2c)}

10. (-2, x) e {(x. y): x + jyj < x}

11. (x, 3x + 7) e {(a, b): | = a r 3}

12. (x, 2x) 6 {(r, s): | s - r
|
+ 2r > s}
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[1.02] [1-26]

C. Graph each of the sets given below.

1. {(x, y): X = 2y} 2. {{x, y) : 4y - 3x = 12}

3. {{x, y) : y + 2x - 6 = O} 4. {(a, b) : b + 2a - 6 = o}

5. {{r, s): r > s} 6. {(x, y) : y < x}

7. {(x, y): x^ = y^} 8. {(y, x) : 3x + 2y - 9 = o}

9. {(s, t): |s| + |t|=10} 10. {(y, x): y = |x| + 1}

11. {(y, x): y = 3.k^} 12. {(k, m) : k^ + m^ = 2 5}

13. {(u. v): 3u = 12} 14. {(c, d) : 8 = 4d - 3}

15. {{x, y): Ox + Oy = l} 16. {(x, y) : Ox + Oy = o}

D. Separate the equations below into two groups. Put in one group those

equations whose solution sets [sets of points (x, y)] are straight lines

and in the other group those equations whose loci are not straight

lines.

x + 5y = 12 x'vil - 7y = 15 4x + 9y - 8 =

3x + 4 = 9y = X Zx ^ ^fY

2 3 2^x--^y + 7 = 8-2y = 3+x + y=0
2 2 2 2 II

x + y = 17 X + y = |x| + y =

Ox + Oy - 1 = 2x + 9y - 71 = 5x^ + 3y^ = 9

2y - 3x'^ = 7x - 2y + 8 = 4x - 7y + 1 =

You may have guessed from your work in Parts C and D the

kind of equation whose locus is a line ['line', from now on, means

straight line]. We describe below what we mean by 'line in the

number plane'.
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[1.02] [1-27]

A line in the number plane is a set H

for which there exist numbers a, b t

and c a and b not both 0] such that

i = {(x, y): ax + by + CO}.

This description tells you that each time you replace 'a', 'b', and

'c' in the equation 'ax + by + c = 0' by numerals [at least one of the

first two must not name O], you get an equation whose locus in (x, y)

is a line. Each such equation is called a linear equation in x and y.

Can you find a linear equation whose solution set is empty? Can you

find one whose solution set consists of just one point? Can you prove

that the solution set of each linear equation consists of at least two

points ? [In other words, can you prove that there is no linear equation

whose solution set consists of no points or one point?] Try it before

reading the following proof.

Each linear equation in x and y can be obtained from:

ax + by + c =0

by assigning values to 'a', 'b', and 'c' [but you may not assign the value

to both 'a' and 'b'].

(i) Suppose a / 0. Then (— , 0) is one point in the solution set.

[Check by substituting. ] A second point is (

[Why doesn't this argument hold when a = 0?]

-c - b
. 1).

(ii) Suppose a = 0. Then b / [Why?], and two points in the solution

set are (0, -^) and (1, -^).b'"""^^' b

Since either a / or a = 0, we have shown that the solution set of each

linear equation consists of at least two points. [You can see that such

solution sets consist of many points. However, we wished to prove

merely that there were at least two points.]
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In the boxed description on page 1-27 we agreed to use the

word 'line' in referring to the solution set of a linear equation.

Therefore, from, this description and from the proof we just gave,

it follows that

I. Each line is a set of points, and

contains at least two points.

Note that this statement was derived from the technical description

of a line given on page 1-27 and from your knowledge of the pro-

perties of ordered pairs of real numbers.

[Statement I is enclosed in a red box. It is one of the postulates

we referred to in the Introduction. Other postulates will be enclosed

in red boxes and will be assigned Roman numerals for easy reference.]

1.

2.

vi, -'^ ^1.,
"(^ 'I" 'i~

Prove that each line consists of at least 3 points.

How would you go about proving that each line consists of at

least 1492 points ?

Refer to the boxed description of lines on page 1-27, and show

that if we omitted'a and b not both 0' from the description, it

would not be possible to prove statement I. [Hint : Find a

counter-example.
]

Fronn our description of lines we can also prove that

II. There are three points that do not

belong to the sanae line.
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[1.02] [1-29]

In order to prove this, all we have to do is find three points which

do not belong to the same line. Consider the three points

(0, 0), (1, 0), and (0, 1).

If these three points belong to a line then there are numbers a, b,

and c[a/0 or b/O] such that

{(0, 0), (1, 0). {0, 1)} C {(x, y): ax + by + c = o}.

That is,

a-0+b-O+c = 0,

and a-I+b'O+c = 0,

and a-0+b-l+c=0,
or, more simply,

c = 0,

and a + c = 0,

and b + c = 0.

If c :^ and a + c = then a = 0.

If c = and b + c = then b = 0.

So, if we assume that

{(0, 0), (1, 0), (0, 1)} C {(x, y): ax + by + c = o},

it follows that a = and b = 0, or, in other words, that

{(x, y) : ax + by + c = o} is not a line.

o, vi.. ..I,

'»^ --i- 'r

F. 1. Show that the three points (0, 0), (0, -1), and (5, 7) do not

belong to the same line.

2. The postulates (enclosed in the red box) can be used as a basis

for proving statements.
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[1.02] [1-30]

Such statements are called theorems . In

proving theorems you may use statements

enclosed in red boxes, definitions, and

theorems which you have already proved.

But you must not use any other properties

of the number plane

.

Theorem 1_.

For each line, there is a point not

on the line.

Use Postulate II to prove this theorem.

[Hint

:

If you know that there are three points which do not

belong to the same line then, given a line, how many

of these three points can belong to it?]

G. In each of the following exercises you are given a point. Find linear

equations for at least 3 lines which pass through that point.

Sample _1. (2, 5)

Solution . There are many lines which pass through (2, 5).

Every such line is a set {{x, y) : ax + by + c = O}

where a and b are not both 0, and

{=;=) a(2) + b(5) + c - 0.

It is easy to find values of 'a' and 'b' [not both O]

and of 'c' which satisfy (*). One choice of values

is 4, 5, and -33 for 'a', 'b', and *c', respectively.

Hence, the locus of the equation:

(1) 4x + 5y - 33 =

passes through (2, 5).

(continued on next page)
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[1.02] [1-31]

We can find other loci containing (2, 5) by choosing

other values of *a' and 'b' and determining the appro-

priate value of 'c' from (^=). For example, if a = 9

and b = 4 then

9(2) + 4(5) + c = 0,

that is, c = -18 - 20 = -38. So, the locus of:

(2) 9x + 4y - 38 =

contains the point (2, 5).

If a = 7 and b = 12 then by (*), c = -7(2) - 12(5) = -74.

So, a third set which contains (2, 5) is the locus of:

(3) 7x + 12y - 74 = 0.

[Suppose someone claimed that a fourth locus is that of the equation:

14x + 24y - 148 = 0.

Prove to him that the locus of this equation is the same as the locus

of (3). Also, prove that the sets which are the loci of (1), (2), and

(3) are, indeed, three sets . ]

1. (-8, 3) 2. (4, -7) 3. (^, -1)

4. (r, s) 5. (-2, s) 6. (Xq, y^)

H. For each of the following linear equations, give one ordered pair

which satisfies it.

1. 3x + 5y - 8 = 2. IBx - 17y - 19 =

3. 3(x - 1) + 5(y - 1) = 4. 18(x - 2) - 17(y - 1) =

5. 87(x - 5) + 93(y - 6) = 6. 7. 03(x - 2) + 6. 54(y + 9) =

7. 63(x + 4) - 76(y - 7) = 8. 631(x - 17. 5) + 12. 2(y - 60. 3) =

9. 98(x + 4) - 95(y - 7) = 10. 932(x - 17. 5) - 61. 8(y - 60. 3) =

'4^ "l" '1^

11. Write five linear equations each of which is satisfied by (17.5,60.3).

12. Repeat Exercise 11 for the ordered pair (m, -6); for (7,t);

for (x^, yj).
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L In each of the following exercises you are given a point. Find

linear equations for at least 3 lines which contain that point.

Sample . (8, 3)

Solution . For all numbers a, b, and c [a / or b / O],

{(x, y) : ax + by + c = o}

is a line. [And, each line in the number plane is one

of these sets. ] Some of these lines contain the point (8, 3).

Those which do are just those for which

8a + 3b + c = 0,

that is, for which

c = -8a - 3b.

Hence, each of those lines which contains (8, 3) is a set

(1) {(x, y): ax T by + (-8a - 3b) = o}

for which a / or b / 0. Show that the set

(2) {(x, y): a(x - 8) + b(y - 3) = o}

for which a / or b / is the same set as (1).

So, we have an easy way of finding each linear equation

whose locus contains the point (8, 3). Just replace 'a' and

'b' in 'a(x - 8) + b(y - 3) = ' by the appropriate numerals.

Here are three linear equations obtained in this way:

4{x - 8) + 5(y - 3) =

n/2(x - 8) - 57r(y - 3) =

(x - 8) = 0.

[Prove that these equations really have three loci.
]

1. (2, 7) 2. (-7, -3) 3. (6.2, -8.3)

4. (0, 0) 5. (0, 2) 6. (-S, t)

7. (xq, y^)
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Your work in Exercise 7 should help you to fill in the blank spaces

in the following.

I

I

For every point (x„, y„) and for I

I
each a and b, not both 0, the set |

,

{(x, y) : a( ) + b( ) = o}
,

I
is a line which contains the point

I
I

I

(xq,
yo). I

I

1

J_. Suppose you are given two points, say, (2, 3) and (7, 5), and you

want to find a linear equation whose locus contains both of these

points. You know from the box above that, for every a and b

[not both O], the set

{(x, y): a(x - 2) + b(y - 3) = o}

is a line which contains (2, 3). Our problem is to determine

a and b so that the corresponding line also contains (7, 5). That

is, find values of 'a' and 'b' which satisfy the equation:

a(7 - 2) + b(5 - 3) = 0,

that is :

a{5) + b(2) = 0.

There is an easy way to find these values. Just use the numbers

already available. If we assign 'a' the value 2:

2(5) -f b(2) = 0,

then the equation is satisfied by what value of 'b'?

(continued on next page)
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So, for the equation:

a(7 - 2) + b(5 - 3) = 0,

if we assign to 'a ' the value 5 - 3 :

(5 - 3)(7 - 2) + b(5 - 3) =

then the corresponding value of 'b' is -(7 - 2):

(5 - 3)(7 - 2) - (7 - 2)(5 - 3) = 0.

With these values of 'a' and 'b' we obtain from:

{(x. y): a(x - 2) + b{y - 3) = o}

the expression:

{{x. y): (5 - 3)(x - 2) - (7 - 2)(y - 3) = o}.

Hence, one linear equation whose locus contains (2, 3) and

(7, 5) is:

(5 - 3)(x - 2) - (7 - 2){y - 3) = 0.

or, equivalently

:

2(x - 2) - 5(y - 3) =0.

or :

2x - 5y + 11 =0.

In each of the following exercises you are given two points. Find

a linear equation whose locus is a line which contains both of these

points.

1. (7, -4) and (-2, -5) 2. (3, -2) and (-8, -2)

3. (-2, -7) and (2, 7) 4. (0, 5) and (6, 0)

5. (4, 4) and (4. 9) 6. (-2, 9) and (7, -12)

7. (11, 10) and (10, 11) 8. (1, 5) and (1, 5)

9. (0, 0) and (2, 7) 10. (r, s) and (5, 2)

11. (|, -7) and (4, -|) 12. (6, 2) and (8, -7)

(continued on next page)
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13. (m, n) and (p, q) 14. (x., y ) and (x , y,)^0' ^0 1' '1'

N'^ v'^
'4^ 'P '4^

Your work in Exercise 14 should help you to fill in the

blank space in the following.

r
For every two points {x„, y„) and

{(x. y) 0}

is a line which contains (x , y )

and (x^, yp.

J

^1. O^ vl,
'1^ '1^ '1^

Use the boxed formula to obtain a linear equation in x and y whose

locus passes through the given points. Just for practice, simplify

the equation to the form of *ax + by + c = 0'.

15. (3, 2) and (4, 8) 16. (9, 7) and (-6, -5)

17. (12, -10) and (-7, 9) 18. (a, 0) and (0, b)

19. (k, m) and (k, n) 20. (a, b) and (a + 1, b + m)

21. (r, s - t) and (-r, t - s) 22. ( -r—.— , d )
and [ -r- , b

b + c

23. (a^ + b^, 4c) and {2ab, c^ + 4c)

24. (m + 2n, m - 2n) and (m - 2n, m + 2n)

v'.- -'^ -.1.-

•"4^ '4-- '1^

b - c
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You have seen that one can find an equation of a line which passes

through two given points, whatever these may be. In other words,

you have proved that for every two points P and Q, there is a line S.

such that St contains P and O, that is, {P, Q} C_ -2 . We restate

this as postulate

III. For every two points, there is a

line which contains them.

MODELS FOR POSTULATE SYSTEMS

Postulates I, II, and III are true statements about the number plane

if we interpret the word 'line' as meaning the solution set of a linear

equation, and the word 'point' as meaning an ordered pair of real num-

bers. [Theorem 1 is also a true statement about the number plane under

this interpretation of 'line' and 'point'.] The number plane, with these

definitions of 'point' and 'line*, is a model for our systenn of three

postulates

.

Any set of objects some of which one decides to call points and some

of which one decides to call lines can serve as a nnodel for our three-

postulate system provided that the postulates are true statements about

this set of objects.

Stan Straight and Carl Circle each have a set of objects. Stan calls

some of his objects, points , and some of his objects, lines. Carl also

calls some of his objects, lines , and some, points . Stan's points are

ordered pairs of real numbers, and so are Carl's. But Stan's lines

are solution sets of linear equations, whereas Carl's lines are solution

sets of equations of a different kind. When Stan Straight draws
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pictures of his lines, the pictures look like these
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When Carl Circle draws pictures of his lines, the pictures look like these:

Suppose that Straight and Circle want to know if their points and

lines are models for our three -postulate system. This will be the case

for Stan if each of the postulates is a true statement about his points

and lines, and for Carl, if each postulate is a true statement about his
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points and lines. So they check each postulate.

I. Each line is a set of points, and

contains at least two points.

Since Stan's points and lines are what we have been considering as

points and lines, we are sure that postulate I is true for Stan. In fact,

since we derived all three postulates from properties of the number

plane and used the same interpretation of 'point' and 'line' that Stan

does, we know that the three postulates must be true statements about

Stan's points and lines. Carl's lines are solution sets of equations of

a certain type. For instance, one of his lines [pictured in the diagram]

is {(x, y) : x + y = 4}. This line contains many points; for example:

(2, 0), (0, 2), (1, nTS), and i y, -j-
J . Similarly, each of his other

lines is a set of points, and contains at least two points. So, postulate I

is true for Carl.

II. There are three points which do

not belong to the same line.

As we mentioned above, postulate II is true for Stan since we proved

[page 1-29] that the points (0, 0), (0, 1), and (1, 0) do not belong to the

same line. Carl can prove (and does) that the points (0, 0), (1, 0), and

(2; 0) do not belong to any one of his lines.

III. For every two points, there is a

line which contains them.

Carl proves that this is true for his points and lines. [Stan draws

pictures of his line by laying a ruler down on his paper with the edge

of the ruler just touching both of the two dots. Carl draws a

UICSM-4-57, Second Course
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picture of one of his lines by using compasses.

Explain how Carl can start with two dots and use compasses to draw one

of his lines through the dots.
]

So, with the interpretation each boy has for 'point' and 'line', the

three postulates are true for both. Thus, Stan has a model for the

three -postulate system, and Carl has a model for the same three-

postulate system.

Now, suppose that neither boy knows that the other has different

meanings for 'point' and 'line'. If they were telephoning each other

about postulates I, II, and III, they would agree that the three postulates

were true statements. They might even conclude that their models

were the same. Suppose Stan says during this telephone conversation.

"You know, it looks as if

two lines intersect in exactly

one point.

UICSM-4-57, Second Course
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Carl would certainly reply,

"That's wrong. I know

lots of cases in which two

lines intersect in two

points .

'

'

Stan might answer this by saying,

"But I think I'm right,

because it seems to be

the case that for each two

points, there is exactly

one line which contains them. "

Carl replies,

"Well, I guess that's just

where your trouble is.

Anybody can see that there

are lots and lots of lines

which contain two given

points.
"
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Stan Straight made two guesses about his model and both of these

were false statements for Carl Circle. Do you think Stan could prove

either of his guesses from the three postulates alone ?

Since Stan and Carl both agree that the postulates are true, any-

thing that could be proved from the postulates alone would be true for

both Stan and Carl. As an example of this, consider Theorem 1 which

says that for each line, there is a point not on the line. This theorem

was deduced fronn the postulates. If Stan and Carl wanted to, each

could prove this statement in his model, just as we proved postulates I,

II, and III in Stan's model. But it isn't necessary to do this because

Theorem 1 has been deduced from the postulates. So, we know that

Stan could not deduce either of his guesses from the three postulates

alone; if he could, it would be a theorem and would have to be true

in Carl's model. And we know it is false in Carl's model.

If Stan Straight feels sure about his guesses, he should try to

derive at least one of them fronn the properties of his model. He could

then add this proved statement to the set of three postulates, making

it into a set of four postulates. Then, he might be able to deduce his

other guess from the four postulates. If Stan did add one of these

guesses to the postulate set, would Carl's set of objects which he

called 'lines' and 'points' be a model for the four -postulate set?

EXERCISES

A. There are many models for the three -postulate system. Some

of them are sets of just a few objects which when called 'points'

and 'lines' satisfy the three postulates.

Sample . Three businessmen, A, B, and C, belong to just the

three partnerships {A, B }, {b, c}, and {a, c}. If

each businessman is called *a point' and each partner-

ship is called 'a line', are these points and lines a

model for the three postulates ?

(continued on next page)
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Solution . We check each postulate.

I. Each line is a set of points, and contains

at least two points.

Each partnership is a set of two businessmen,

so postulate I is satisfied.

II. There are three points which do not belong

to the same line.

None of the partnerships contains all three

businessmen.

III. For every two points, there is a line

which contains them.

Each two businessmen belong to a partnership.

Thus we see that the three businessmen (points)

and partnerships (lines) are a model for the three

postulates.

In each of the following exercises a set of objects is described.

Some of the objects are called 'points' and some are called 'lines'.

Determine for each exercise whether the objects are a model for

the set of postulates I, II, and III.

1. Four class presidents in a school are appointed to three committees,

Class presidents Committees

A, B, C, D {a, C, d}, {a, B, D}, {b, C, d}

The class presidents are points and the committees are lines.

[Hint : An easy way to work with these objects is to visualize

them in a sketch.

(continued on next page)
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/'" ^"-
/ \

/ \

\ /

The loops help you to remember which presidents belong to

each committee.]

2. Five businessmen form two partnerships.

Businessmen Partnerships

A, B, C, D, E {a, e}, {a, B, C, d}

The businessmen are points and the partnerships are lines.

E

/
/

/
/

/

/

B

3. The baseball players in the American League form eight

teams. The players are points and the teams are lines.

4. The debating squad in Zabranchburg High School has seven

members. The coach forms teams of three students each

to enter competitions.

Squad members Teams

A, B, C, D, E, F, G {a.B.d}, {a, G.e}, {a, C, f},

{b,g,f}, {c.g.d}, {d,e,f},{b,e,c}

(continued on next page)
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The squad members are points and the teams are lines. Use

this sketch to help you check.

A

/
'^

/ L^

ED* '• *F

5. The three members of one of the teams mentioned in Exercise 4

drop off the squad. The coach then forms from the remaining

four members as many teams of two each as he can. Again,

the squad members are points and the teams are lines.

*B. Stan Straight has a precise interpretation of 'line' in his set of

objects [that is, he can tell you exactly which objects he calls

'lines']. This description was enclosed in the box on page 1-27.

Although we did not mention this in our discussion, Carl Circle

also knows exactly which objects to call 'lines'. Here is his

description.

A line is a set i for which there exist real

numbers a, b, and c [c > 0] such that

i = {(x, y): (x - a)^ + (y - b)^ = c^}.

1. Prove that the three points (0, 0), (1, 0), (2, 0) do not belong

to any of Carl's lines.

Z. Find values of 'a', 'b', and 'c' which give an equation whose

solution set contains the points (6, 0) and (0, 6) and is one

of Carl's lines.

3. Repeat Exercise 2 for the points (3, 4) and (4, 3).

(continued on next page)
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4. In Carl's model the line

{(x, y): (x - a) + (y - b) = c }

has the point (a, b) as "center" and c as "radius". Find

equations of two of Carl's lines which intersect in the two

points (0, 4) and (0, -4).

Note : Stan Straight's set of points is the number

plane, and so is Carl Circle's. Their interpreta-

tions of the word 'line' differ, however. So, their

models are different. And, there exist many other

models in which the set of points is the number

plane. It would be natural to call any such model

'a number plane model'. Since we are going to

make much use of Stan Straight's model, it will be

convenient to single it out and refer to it as the

number plane model . In other words, whenever

we speak about the number plane model, we mean

Stan Straight's model.

1.03 Intersections of lines . - -If we look at pictures of lines in the

number plane model, it certainly seems to be the case that for each

two lines, their intersection is either the empty set or a set consisting

of just one point. vV e know that we cannot deduce this from our three

postulates [Why?]. But we might be able to derive it from the properties

of the number plane model. Instead of doing this, however, we shall

derive a different statement from the number plane model, add this

statement to the set of postulates, and then deduce from the set of four

postulates the statement concerning the number of points of intersection

of two lines

.
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TWO POINTS DETERMINE A LINE

Postulate III tells us that there is a line through every two given

points. [Carl Circle would say 'at least one line'.] The postulate

leaves open the question: Is there more than one line which contains

the two points ?

Consider this question for the points (3, 4) and (8, 13). From

the boxed statement on page 1-35, we know that there is one line which

contains these two points. Let this line be S. , where

i = {(x, y): (13 - 4)(x - 3) - (8 - 3)(y - 4) = o}.

[There are countless other equations which can be derived from

'{13 - 4)(x - 3) - (8 - 3)(y - 4) = ' by the equation transformation

principles. For example:

2(13 - 4)(x - 3) - 2(8 - 3)(y - 4) - 0,

^(13 - 4)(x - 3) - |(8 - 3)(y - 4) =0,

(13 - 4)(x - 3) - (8 - 3)(y - 4) + 17 = 17.

Since these equations are equivalent to each other [that is, they are

satisfied by the sanne set of ordered pairs], the expressions :

{(x, y): 2(13 - 4)(x - 3) - 2(8 - 3)(y - 4) = o},

{(x, y): |{13 - 4)(x - 3) - ^(8 - 3)(y - 4) - o},

and {(x, y): (13 - 4)(x - 3) - (8 - 3)(y - 4) + 17 = 17}

are just different names for the same line, I . Equivalent linear

equations are equations of the same line.

The questions facing us, 'Is there more than one line through

(3, 4) and (8, 13)?', will be answered if we prove that each linear

equation which is satisfied by (3, 4) and (8, 13) is an equation equi-

valent to '(13 - 4)(x - 3) - (8 - 3)(y - 4) = 0'.]

Suppose that m is another line which contains (3, 4) and (8, 13).

Since (3, 4) e m, there are numbers a and b [not both 0] such that

(1) m = {(x, y): a(x - 3) + b(y - 4) = o}.
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Since (8, 13) e m, these numbers a and b are such that

(2) a(8 - 3) r b(13 - 4) = 0.

Since 8-3/0, we can transform, by the multiplication transformation

principle, the equation within the braces in (1) into the equivalent equation

{8 - 3)[a{x - 3)] + (8 - 3)[b(y - 4)] = (8 - 3)[0] .

or, simply:

(3) [(8 - 3)a](x - 3) + (8 - 3)b(y - 4) = .

If a(8 - 3) + b{13 - 4) = then a(8 - 3) = -b( 1 3 - 4). So, by equation

(2), equation (3) is equivalent to :

[-b(13 - 4)](x - 3) + (8 - 3)b(y - 4) = ,

that is, to

:

(4) -b[(13 - 4)(x - 3) - (8 - 3)(y - 4)] = 0.

In other words, if m is a line through (3, 4) and (8, 13), there is a

number b such that

(5) m = {(x,y): -b[(13 - 4)(x - 3) - (8 - 3)(y - 4)] = o}.

Since m is a line, b / 0. Kence, by the multiplication transformation

principle, the equation in the braces in (5) is equivalent to:

-b[(13 - 4)(x - 3) - (8 - 3)(y - 4)] _

lb -b '

or, simply:

(13 - 4)(x - 3) - (8 - 3)(y - 4) = 0.

So, if m is a line through (3, 4) and (8, 13), each linear equation of

m can be transforined by the equation transformation principles into

the equivalent equation '(13 - 4)(x - 3) - (8 - 3)(y - 4) = ' which is

the equation given for the line i. Thus, for every m through (3, 4)

and (8, 13) , m = i . We have proved that in the number plane there

can be no more than one line through the two points (3, 4) and

(8, 13).
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EXERCISES

A. Use the procedure demonstrated above to prove that there can be

no more than one line through the two given points.

1. (9, 17) and (Z, -11) 2. (3, -5) and (-8, 2)

3. (4, -7) and (4, 3) 4. (2, 9) and (3, 9)

5. (Xq, Yq) and (x^, y^

^U O, v'-
'1^ 'r '4^

In Exercise 5 above, you proved that given a line S. which

contains the two points (x^^, y^) and (x , y,), there is no

other line m through these points. In other words, you proved

that there is at most one line through these points. This is

a result that cannot be deduced from postulates I, II, and III,

but that is true for the number plane inodel. Hence, we add it

to our postulates.

IV. For each two points, there is at

most one line which contains them.

Postulate III assures you that, for each two points, there is

at least one line through the points. Postulate IV assures that if

there is one line through two points then this is the only one.

With postulate III alone, you can talk about a line through two

points. V\/ ith postulate IV alone, you can be sure that there are

less than two lines [perhaps, no lines] through a pair of points.

Together, III and IV enable you to speak about the line through

two given points. Other ways of referring to the results of III

and IV are :

There is one and only one line through two points.

There is a unique line through two points.

Two points determine a line.
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B. As we indicated earlier, adding IV to our postulate set will

enable us to deduce more statements than we could with the

smaller number of postulates. One such statement deals

with an important property of the intersection of two lines :

The intersection of two lines

consists of at most one point.

Prove this statement. .V e shall refer to it as Theorem Z.

Some of the following statements can be deduced from the pos-

tulates and theorems. Others cannot because they are false

for at least one model for the four postulates.

Prove those statements which are theorems, and show

that the others are not theorems by finding, for each of them,

a model for which it is false.

Sample . For each line, there are at least two points not on

the line.

Solution . We try to deduce this from the postulate set and

are not successful. It is not false in the number

plane model, but perhaps we can find another

model for the four -postulate set for which the

statement is false. The easiest kind of model to work with

in this case is one which contains just a few objects.

The set of objects described in the Sample on page 1-42

in which there were three businessmen (points) and three

partnerships (lines) each containing just two of the business-

men is a model of postulates I, II, and III. It is easy to see

(continued on next page)
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A
A

/ \

/ \

/ \
/ \

/ \

b"- \
that it also satisfies postulate IV. So, it is a model for the

four postulates. The statement we are considering is

false, since for each partnership, there is only one business-

man not contained in the partnership.

1. There are three lines which do not all contain a same point.

2. For each line, there is at least one point not on the line.

3. For each point, there are at least two lines which contain it.

4. For each point, there are at least three lines which contain it.

5. For each two lines, there is at least one point which belongs

to both lines.

D. 1. Tell which of the sets of objects described in Exercises 1-5

on pages 1-43 through 1-45 are models of the four -postulate

set.

*2. Describe a model for the four-postulate set which consists of

13 things called 'points' and 13 things called 'lines'.

E. Transform each of the following equations into the form of:

ax + by + c ~ 0,

and tell which of them have the same locus [set of points (x, y)] as :

2x + 6y - 24 = 0.

1. x + 3y - 12 = 2. 8x + 24y - 96 =

3. 3x + 9y - 36 = 4. -2x - 6y + 24 =

5. 3x - 9y - 36 ^ 6. -x - 3y = 12

(continued on next page)
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[1.03] [1-52]

7. 6y + 2x = 24

9. (x - 3) + 3{y - 7) =

11. 2x + 6(y - 7) = 6

13. 2x + 6y =

8. -y - yx + 4 =

10. (3 - x) - 3(y - 7) =

12. x + 3y ^ 10

14. 0(x - 3) = 0(y - 7)

15. 2k(x - 3) + 6k(y - 3) = 16. 2k(x - 3) + 3k{y - 7) =

17. (x + 3)^ + 7(3 - y) = (4 - x)(3 - x) - 2{5y - 6x - 15)

18. 5{2x) + 5(3y) = 120

20. jx + 2y - 8 =

19. 4x + 12y - 72 =

21. r(x - 3) + s{y - 7) =

F. Two equivalent linear equations have the same locus, and two

linear equations which have the sanne locus are equivalent. This

last statement should not be surprising for it simply expresses

what is meant by 'equivalent equations'. In Exercise 14 on

page 1-35, you showed that for each a and b, not both 0, if

{(x, y): a(x - x^) + b(y - y^) = o}

is the same as

{(x. y): (y^ - yQ)(x - x^) - (x^ - XQ)(y - y^) = o}

then there is a number r / such that ra = y - y and

rb = -(x^ - Xq) [Why *r /^ 0'?].

Use this result to show that, for each a and b, not both 0,

and each a' and b', not both 0, if

{(x,y): a(x - x^) + b(y - y^) = o}

is the same as

{(x.y): a'{x - x^) + b'{y - y^) = o}

then there is a number k / such that a' = ka and b' = kb .

[Hint : There is a point (x,, y,) / (^n' ^n^ which belongs to

both sets [Why?].]
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[1.03] [1-53]

FINDING THE POINT OF INTERSECTION OF TWO LINES

Theorem 2 on page 1-50 tells you that the intersection of two lines

contains either no points or one point. Suppose you are given two lines

in the number plane,

i = {(x, y) : ax + by + c = o} ,

and i' = {(x, y) : a'x + b'y + c' = o}.

If you are told that their intersection is not empty [that is, i /^ i' ;^ 0],

then you know that there is exactly one ordered pair which belongs to

i and to i' [Why?]. How can you find this ordered pair?

One way is to draw on a picture of the number plane the graphs of

i and i' . The dot where the lines cross tells you the ordered pair.

Here is an illustration of this procedure for

i = {(x, y): 3x + 2y - 12 = o},

and i' = {(x, y): x - 3y - 15 = o}.
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[1.03] [1-54]

The picture indicates that (6, -3) is the ordered pair of real numbers

which belongs to each of the lines i and i' . To check our work, we

need to check that (6, -3) satisfies both of the equations.

3x + 2y - 12 =

3(6) + 2(-3) - 12

18-6 - 12

X - 3y - 15 =

6 - 3(-3) - 15

6+9 - 15

Practice this method of finding the point of intersection of two lines in

the following exercises.

(1) i = {(x, y): 3x - 5y + 10 = o}

i' = {(x, y): 2x - 3y + 3 = O}

(2) i = {(p, q): p + 2q - 7 = 0,}

£' = {(p, q): 3p - q - 14 = o}

(3) i = {(r, s): 2r + s - 4 = o}

i' = {(p, q): -5p X 2q - 5 = o}

The problem of finding the point of intersection of two lines is often

referred to as the problem of solving ^ system of two linear equations .

In the "graphical procedure", you draw the graphs of the two lines and

guess at the components of their common point. Sonnetimes this is

easy to do [Exercise (1)], sometimes harder [Exercise (2)], and some-

times practically impossible [suppose the point of intersection were

(93.7183, -81.0006)]. There are other procedures which do not require

guesswork. Here is an illustration of such a procedure [an "algebraic

procedure"].

Consider the system of equations :

(1) 3x + 5y - 13 =

(2) 7x - 2y - 3 = 0.

UICSM-4-57, Second Course
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[1.03] [1-55]

If there is an ordered pair (x, y) which satisfies both (1) and (2)

then it satisfies both:

7[3x + 5y - 13] =

and: 3[7x - 2y - 3] = ,

or, more simply, both:

(1') 21x + 35y -91=0
and: (2') 21x - 6y - 9=0.

If this ordered pair satisfies (1') and (2') then it also satisfies:

[21x + 35y - 91] - [21x - 6y - 9] = 0,

or, more sinnply:

(3) 41y - 82 = 0.

Now, every ordered pair (x, y) which satisfies (3) must have 2 as its

second component. So, if there is an ordered pair which satisfies both

(1) and (2) , its second component is 2. We can find the first component

of such an ordered pair by replacing 'y' in either (1) or (2) by '2'. Replace

•y' in (1):

3x + 5(2) -13 = 0.

Since the root of this last equation is 1, then if there is an ordered pair

which satisfies both equations (1) and (2), it must be the ordered pair

(1, 2). We know that this ordered pair satisfies equation (1). Check

to see that it also satisfies equation (2).

Let us analyze the steps we took in solving the system of equations.

If there is an ordered pair (x, y) which satisfies (1), then, for these

values of 'x' and 'y', the value of '3x + 5y - 13' is 0. Since, for every

number z, z X = 0, if (x, y) satisfies (1), then 7[3x + 5y - 13] = 0.

Similarly, if (x, y) satisfies (2), then 3[7x - 2y - 3] = 0. Since -0=0,

if (x, y) satisfies both (1) and (2), then

[21x + 35y - 91] - [21x - 6y - 9] = 0,

that is, 41y - 82 = 0. Do you see why 7 and 3 were chosen as multipliers

in going from the system [(1) and (2)] to the equation '41y - 82 =0'?
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[1-03] [1-56]

This process of going from the system of two equations in two pronumerals

to the single equation in one pronumeral is often called ' eliminating one

of the pronumerals from the system'.

In practice, this algebraic procedure for solving a system of equations

is carried out in a very brief form. We illustrate.

3x - 8y - 15 =

23x + 5y + 16 =

15x - 40y - 75 =

184x + 40y + 128 =

199x + 53 :=

X :

53

199

3(-lV,)-
8y- 15 ^=

-159 - 1592y - 2985 :=

-1592y := 3144

y
39 3

" 199

Check

23 A 53 \^ 3/393
^^(^ 139

J \ 199V 16

J
1219 1965
199 199

3184
199

-3184 + 3184
199

53 393
So, the ordered pair which satisfies the system is [

-
-j-qq- . " Tqq'
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[1.03] [1-57]

EXERCISES

A. Solve each of these systems of linear equations by the graphical

procedure and by the algebraic procedure illustrated above.

1. r 5a - 7b - 17 - 2. J lOt + 5u - 14 =

I 3a + 5b - 1 = I 2t - 5u - 40 =

3. J 7y + 4 = 6x 4. J x + 1 = 2y

I -3x + 17 = 4y I 3y + 1 = X

B. Solve each of these systems.

3x + 7y + 6 = 2. r 2x - 3y - 5 =

8x + 4y - 28 = 1 7x + By + 34 =

3. f 5x - 7y + 4 = 4. J 2x - 12y - 7 =

-2x+8y-3 = ll3x+2y + 4 =

3x - 7y = 2 6. J 5 + 3x = 13y

14y = 12x 1 3y - 7 = 9x

C. Solve each of these systems by the graphical procedure and by the

algebraic procedure.

1. f X + 2y = 4 2. r x + 2y = 4

3x + 6y = 18 I 3x + 6y = 12
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[1.03] [1-58]

PROPORTIONALIT Y

You have probably discovered an easy way to tell when two equations

have the same locus, and when the two equations have loci which intersect

in the empty set. Explain why each pair in the left column has the same

locus, and why each pair in the right column has an empty intersection.

Same locus for each pair

3x + 7y + 4 =

6x + 14y + 8 =

Empty intersection for each pair

3x + 7y + 4 =

6x + 14y + 9 =

3x + 2y + 12 =

9x + 6y + 36 =

3x + 2y + 12 :=

9x + 6y + 5=0

8x + 12y - 20 =

2x + 3y - 5=0
8x + 12y - 20 =

2x + 3y - 20 =

13x - 5y + 17 =

-39x + 15y - 51 =

lOx + 21y - 34 =

347 X 21
2x + -^y =

13x - 5y + 17 =

-39x + 15y + 5=0

lOx + 21y - 34 =

2x + -^y - 1=0

For those pairs of equations which have the same locus, the three

coefficients [that is, the values of 'a', 'b', and 'c'] of one equation

can be obtained by multiplying the three coefficients of the other by

some number other than 0. For those pairs of equations whose loci

intersect in the empty set, only the coefficients of 'x' and 'y' in one

equation can be obtained in this way.

Let us examine more closely the coefficients of the first pair of

equations in the left column.

3 7 4

14
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[1.03] [1-59]

Each number in the second group is obtained by multiplying the

corresponding number in the first group by 2. In order to avoid con-

fusion in telling which numbers correspond, it is convenient to treat

these groups of numbers as the ordered triples (3, 7, 4) and (6, 14, 8).

Then, the first components correspond, the second components cor-

respond, and the third components correspond. We say that the

ordered triple (3, 7, 4) is proportional to the ordered triple (6, 14, 8)

because

6 = 2X3, 14 = 2X7, and 8 = 2X4.

The ordered pair (7, 9) is not proportional to the ordered pair (21, 18)

because

21=2><7 but 18/2^9.

Study each of the following statements and tell whether it is true

or false.

(2, 9, 12) is proportional to (1, 4y, 6).

(-3, 8, ~-^) is proportional to (-120, 320, -10)

(8, 2, -3) is proportional to (-8, -2, -3).

(2, 0, 5) is proportional to (14, 0, 35).

(1, 3, -9) is proportional to (1, 3, -9).

(4, 3, -2) is proportional to (8, -4, 6).

(8, 4) is proportional to (— , — ).

(9, 3) is proportional to (q"i t)-

2 5
(9, -2, 3, -5) is proportional to (-3, —, -1, ^)
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[1.03] [1-60]

In general,

(a, b, c, . . .) is proportional to (a', b' , c', . . .)

. if and only if there is a number k / such that

I

a = ka', b = kb', c = kc',

EXERCISES

A. 1. Give five ordered triples each proportional to (2, 5, 7).

2. Give five ordered pairs each proportional to (3, y).

3. Give five ordered pairs each proportional to (0, 0).

4. For each of the following, find all values of the pronumerals

which satisfy the statennent.

(a) (3, x) is proportional to (2, 7)

5
(b) (9, X, 5) is proportional to (1, 4, 5-)

(c) (x, 8) i.p.t. (2, 7) (d) (5, x) i.p.t. (x, 5)

(e) (0, x) i.p.t. (0. 9) (f) (0, 0) i.p.t. (3, x)

(g) (x, y, 3) i.p.t. (2, -1, 6)

(h) (3, -1, 5) i.p.t. (3a, -a, 5a)

( i) (a - b, 3, 0) i.p.t. (b - a, x, y)

2 2 2
( j) (x , x, -1) i.p.t. (x, X , X )

2 2 2
(k) (x, 2x, -x) i.p.t. (x , 2x , X )

2 2
*( 1) (a - 4a + 4, X, 4 - a ) i.p.t. (a - 2, 1, y)

(continued on next page)
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[1.03] [1-61]

5. (a) Solve.

(1) (4, 7) i.p.t. (x, 7) (2) (3, 5) i.p.t. (3, x)

(3) (x, -1) i.p.t. (13.4, -1) (4) {^, x) i.p.t. (|, ||)

(b) Show that, for each x and y, (x, y) is proportional to (x, y).

6. (a) Solve.

(1) If (4, 7) i.p.t. (8, x) then (8, x) i.p.t. (4, 7).

(2) If (x, 3) i.p.t. (45, 15) then (45, 15) i.p.t. (x, 3).

(3) If (3x, 7x) i.p.t. (3. 7) then (3, 7) i.p.t. (3x, 7x).

(b) Show that, for every x, y, x', and y', if (x, y) is proportional

to (x' , y') then (x', y') is proportional to (x, y)

.

27 27
7. (a) If (yr. x) is proportional to (3, 4), then (fj, x) is

proportional to which of the ordered pairs listed below?

(7, 15) (31, 58) (27, 43)

(9. 71) (-18, -37) (-1, -|)

(10, 29) (30, 40) (-33, -44)

(b) Prove that, for every x, y, x', y', x", y" , if (x, y) is

proportional to (x', y'), and if (x', y') is proportional to

(x", y"), then (x, y) is proportional to (x", y").

vi^ vi^ v'^
'4'' W '4*

The principle stated in Exercise 5(b) tells you that proportionality

is a reflexive relation; 6(b) tells you that it is a symmetric relation;

7(b) tells you that it is a transitive relation. [Look up the three

underlined words in an unabridged dictionary and show the connection

between these meanings of the words and their dictionary meanings.]

vP.. vl- ^1^
'4* '!"• ""«•

(continued on next page)
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[1.03] [1-62]

8. Use the symmetric and transitive properties of the relation of

proportionality to prove the following.

For every X, y, x', y' , x" , andy",

if (x'j y') is proportional to (x, y),

and if (x", y") is proportional to (x, y),

then (x'j y') is proportional to (x", y").

9. Prove that if two ordered pairs are proportional, the line which

passes through them also passes through (0, 0). [Hint

:

Suppose

(p, q) and (r, s) are the proportional pairs. Then, there exists

a number k / such that r = kp and s = kq. ]

10. Prove that if three ordered pairs are proportional, the line

which passes through two of them also passes through the third.

11. List all positive integral solutions for each of the following,

(a) (r, 2) i.p.t. (15, s) (b) (a, 3) i.p.t. (8, b)

(c) (5, x) i.p.t. (y.. 4) (d) (7, c) i.p.t. (d, 4)

(e) (a, b) i.p.t. (^, c) (f) (r, s) i.p.t. {^, ^)

Find a counter-example for each of the following generalizations,

(g) For every r, and every s, and every t,

(r, s) i.p-t. {-, -) .

(h) For every m, and every n, and every p,

(m; n) i.p.t. (p, — ).

^1^ O^ vl-

(continued on next page)
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[1.03] [1-63]

Complete each of the following.

( i) For every x and every y,

(x, 3) i.p.t. (10, y) if and only if xy =

{ j) For every x and every y,

(2, x) i.p.t. (y, 10) if and only if xy =

(k) For every x and every y,

(1, x) i.p.t. (y, 17) if and only if xy =

(1) For every x and every y,

(x, 0) i.p.t. (0, y) if and only if xy = _

(m) For every x and every y,

(0, x) i.p.t. (y, 17) if and only if xy

(n) For every m and every p,

(m, 0) i.p.t. (22, p) if and only if p

'1^ '1^ u^

12. Exercise 11 illustrated the following principle. Prove it.

1

1
For every (a, b) Mo.

1

0) and 1

1
for every (a', b')/(0. 0), 1

1

(a. b) is prop*artional to (a', b')
'

1 if and only if
1

1

1

ab' = a'b.
1

1

L

[Do you see that '(a, b) / (0, 0)' is equivalent to 'a and b not

both 0'?]

(continued on next page)
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[1.03] [1-64]

[Hint: First, prove the "if part":

if ab' = a'b then (a, b) is proportional to (a', b').

To do this, consider the case a' / and then the case a' = .

If a' / and ab' = a'b then [solving for 'b'] we see that

Also,

(1) b = 4^ . fjry.

(^) - = -(ir)- (-frV.

Now, a 7^ because if a = then, from (1), b = 0. So, if

k = —
J- then k / and, from (1) and (2),

h = kb' and a = ka'.

Therefore,

(a, b) is proportional to (a', b').

Next, consider the case a.' ~ 0. Settle this, and finally,

prove the "only if part":

if (a, b) is proportional to (a', b') then ab' = a'b.]

13. True or false ? [Use the boxed principle of Exercise 12. ]

(a) (2, 3) i.p.t. (6, 9) (b) (^|, 1^ i.p.t. (^^. ^^
, , /21 5\ . ^ /6 30
<^^ (^49' -8) '^'-

(^7' "24

(d) fs, 1^ I.p.t. f|, 8^ (e) (0, 5) I.p.t. fo, -I

(f) (x, 0) i.p.t. (3.5, 0) (g) (a - b, d - c) i.p.t. (b - a, c - d)
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[1.03] [1-65]

MORE ON SOLVING SYSTEMS OF EQUATIONS

You have proved [Theorem Z, page 1-50] that the intersection of

two lines is either empty or consists of just one point. When you are

given the equations for two intersecting lines in the number plane, you

know that you can find the components of their common point by elimi-

nating one of the pronumerals from the given equations.

Let us apply this procedure in the case of two lines H and i', whose

equations are :

(1) 3x + 6y -f 1 ^

and: (2) 2x + 4y - 5 = .

K there is a point (x, y) in i r> i' then

2[3x + 6y + 1] = and 3[Zx + 4y - 5] = 0,

so

[6x + 12y + 2] - [6x + 12y - 15] = 0,

and

17 = 0!

Since 17 f^ 0, there is no point (x, y) in .f r> /.

Note that in our attempt to eliminate one of the pronumerals from

(1) cind (2), we have succeeded in eliminating both of them. This happened

because the coefficients of the pronumerals in equation (1) are pro-

portional to those in equation (2); that is, (3, 6) is proportional to

(2, 4). Is it always the case that when (a, b) is proportional to (a', b'),

the intersection of the lines {{x, y) : ax + by + c = | and

{(x, y) : a'x + b'y + c' = o} is the empty set ?

Your work in Part E on page 1-51 shows that if

S. - {(x, y) : ax + by + c = o}

and: i' = {(x, y) : a'x + b'y + c' = o} ,

then i = i' if and only if (a, b, c) is proportional to (a', b', c') .

[Did you consider such a case when answering the question at the end

of the last paragraph?] You now see that if (a, b) is proportional to

(a', b') but (a, b, c) is not proportional to (a', b', c') then i r^. i' - 0.
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[1.03] [1-66]

V/hat do you think will be the case for SL and i' if (a, b) is not

proportional to (a', b')? [Your work in finding points of intersection

me.y have suggested that the answer to this question is that i r\ l!

consists of just one point. In one of the exercises which follow, you

will prove that this is the case.
]

Summarizing: If (a, b, c) is not proportional to (a', b', c') then

(i) if (a, b) is proportional to (a', b') then i ,--^ i' =
, and

(ii) if (a, b) is not proportional to (a', b') then I r\ i' ^ .

vl> O^ -J,w "t"- w

In carrying out proofs of statements (such as those given above,

and others) ic is convenient to be aware of some facts of logic.

Consider three statements :

(1) if it is raining then it is cloudy,

(Z^ if it is not cloudy then it is not raining,

(3] if it is cloudy then it is raining.

You will probably agree that statements (1) and (2) "say the same

thing". That they do cay the same thing is just a result of the way we

ordinarily use the v/ords 'if . . . then ' and 'not . . .
'. Statement (2)

is called the contrapositive of statement ( 1) . Statement (1) is of the

form :

if . . . then

[that is, it i'3 a cGnditional statement], and statement (2) [also a con-

ditional statement;] is of the form:

if not then not ...

Like (1) and (2), a conditional statement and its contrapositive are equi-

valent. Here arc several examples of pairs of conditional statements

in v,/hich the second in each pair is the contrapositive of the first.
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if 5 > 4 then 5 > 3

if 5 / 3 then 5^4

if Bangor is in Maine then Bangor is in the U. S.

if Bangor is not in the U. S. then Bangor is not in Maine

if St. Louis is north of Chicago then Chicago is south
of New Orleans

if Chicago is not south of New Orleans then St. Louis
is not north of Chicago

if peaches squiffle then hefferdunks are aquatic

if no hefferdunk is aquatic then there isn't a squiffling peach

Now, consider statements (1) and (3):

(1) if it is raining then it is cloudy,

(3) if it is cloudy then it is raining.

You will probably agree that statements (1) and (3) do not make the

same assertion. In fact, it is certainly not a result of the way we use

the words 'if . . . then ' that either of these statements is a logical

consequence of the other. Statements (1) and (3) are conditional state-

nnents, and each is called the converse of the other .

In proving statements it will often be helpful to use the fact that

each conditional statement implies its contrapositive, and vice versa .

You will often make use of this fact by proving the contrapositive of

the conditional statement you wish to prove. On the other hand, although

it may happen that a statement is implied by its converse, this is not

usually the case. Study these pairs of converses.

if 5 > 4 then 5 > 3

if 5 > 3 then 5 > 4

(continued on next page)
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if Bangor is in Maine then Bangor is in the U. S.

if Bangor is in the U. S. then Bangor is in Maine

if St. Louis is north of Chicago then Chicago is

south of New Orleans

if Chicago is south of New Orleans then St. Louis
is north of Chicago

if peaches squiffle then hefferdunks are aquatic

if hefferdunks are aquatic then peaches squiffle

The conjunction of statement (1) and its converse, (3), is:

if it is raining then it is cloudy

and

if it is cloudy then it is raining.

This can be simplified to

:

(4) it is raining if and only if it is cloudy.

The first 'if in (4) corresponds to statement (3) [(3) might be written:

it is raining if it is cloudy].

The 'only if in (4) corresponds to statement (1) [(1) might be written:

it is raining only if it is cloudy].

Statement (4) follows from the two statements (1) and (3) together, and

each of (1) and (3) follows from (4). This is a result of the way in which

we use the words '. . . if and only if '.

A statement like (4) is called a biconditional.

'•" '<^ '4^

Returning to the summary on page 1-66, you will see that the

contrapositive of (i) is :

(i') if i ^ i' / then (a, b) is not proportional to (a', b').

Since we know that if (a, b, c) is not proportional to (a', b', c') then

(i) if (a, b) is proportional to (a', b') then H r\ i' - 0,
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we know that if (a, b, c) is not proportional to (a', b', c') then

(i') if 2 r\ Jl' ^ then (a, b) is not proportional to (a', b').

Consequently, we can restate our summary as follows .

If (a, b, c) is not proportional to (a', b', c') then

(i') ii Jt r>. £.' / then (a, b) is not proportional to (a', b') and

(ii) if (a, b) is not proportional to (a', b') then i r\ i' ^ 0.

Since (i') and (ii) are converses, our summary is equivalent to:

If (a, b, c) is not proportional to (a', b', c') then i r\ i' ^

if and only if (a, b) is not proportional to (a', b').

EXERCISES

A. From the summary on page 1-66, derive the following statement:

If (a, b, c) is not proportional to (a', b', c') then

(a, b) is proportional to (a', b') if and only ii i r\ i' - 0.

[Hint: You can do this in just the way we derived the statement

immediately preceding these exercises.]

B. For each of the following systems of linear equations whose loci

are i and m, tell whether i r\ ra - ^ or I r\ m. -f <p .

1. r 5x + 2y = 8 2. r 5x -f 2y = 8

t 15x + 6y = 9 L 15x + 6y = 24

3. r 5x + 2y := 8 4. r 5x + 2y = 8

15x + 7y = 2 t 15x + 7y = 24

5. f X + 8y = 15 6. r 3x - 5y = 7

2x -f I6y = 30 I -3x + 5y = 7

8x - 5y = 12 8. r X = 5

9x + 4y=3 ly=7

3{x + 2) + 6(y - 1) = 5 - y

7(1_^)
"^ ~ 3
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C. For those exercises in Part B where you decided that £. r^ m / ,

tell whether i = m or i / m.

D. In each of the following exercises you are given a linear equation

with locus i. Write three other linear equations with loci m, n,

and p, respectively, such that

i = m, i r> n = 0, and i r^, p ;^ but i / p -

1. 7x + 5y = 17

3. 5y - 2x - 1 =

5. 8 - 3y := 9x

E. You have not yet proved (ii) of the summary on page 1-66. You

will have done so when you have completed the next two exercises.

1. Use the method of eliminating a pronumeral to show that

if (x, y) € i r\ SL' , where

S. - {(x, y) : ax + by + c = O} ,

and i' = {(x, y): a'x + b'y + c' = o}, then

(1) [ab' - a'b]x + [cb' - c'b] =

and (2) [ab' - a'b]y + [ac' - a'c] = 0.

2. Show that if (a, b) is not proportional to (a', b') then

cb' - c'b ac' - a'c^
^ ,, ^ ^,

2. X - 4y + 3 =

4. 7 + 2x - 3y =

6. 1 + ix - iy =

ab' - a'b ' ab' - a'b

[Remember the need for checking.]
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PARALLEL LINES

We know that two lines intersect in either a set consisting of just

one point or in the empty set. In the latter case, we say that the one

line is parallel to the other. We shall use the word 'parallel' to

abbreviate many of our postulates and theorems. Therefore, we should

be careful to say precisely what we mean by this word. Statements

which assign meanings to new words in terms of familiar words are

called definitions . [Each definition used to abbreviate postulates and

theorems will be enclosed in a red box. Definitions for terms used

in connection with models for the postulate system, such as the definition

of 'line' on page 1-27, are not enclosed in red boxes.]

Definition i

A line is parallel to a line I

if and only if their intersection I

is the empty set.
|

m
1

1 n if and only if m r> n = 0i

[Note the abbreviation * jj' for 'is parallel to'.]

EXERCISES

Prove each of the following theorems. [Renaember that in proving

theorems we deduce them from the postulate system and do not use

a nnodel.
]

1

.

For each line i , i Jf ^ .

2. For each line m and each line n,

if m
1

1 n then n
1

1 m.

[This theorem tells you that parallelism is a symmetric relation.

Hence, we are justified in saying

'iTL and n are parallel'

(continued on next page)
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when we know that m || n or n j| m. Is parallelism a reflexive

relation ?]

3. For all lines m and n,

if m and n are parallel then m / n.

MODELS AND POSTULATES

You will recall from our earlier discussion of models that in Stan

Straight's model for the system of postulates I, II, and III, 'point'

means an ordered pair of real numbers, and 'line' means

{(x, y) : ax + by + c = o}, a and b not both 0. In Carl Circle's model

for the three -postulate system, 'point' means an ordered pair of real

numbers, and 'line' means |(x, y) : (x - a) + (y - b) = c }, c > 0.

Stan's guess that for each two points there is at most one line which

contains them was false for Carl's model. Therefore, Stan knew that

he could not deduce this statement from postulates I, II, and III, alone.

[Naturally, if Stan could deduce the statement from the three postulates,

so could Carl, because deducing statements from postulates has nothing

to do with models for the postulates.] However, Stan's guess was true

for his model. You know it was true because you proved this [Exercise 5

on page 1-49] by deriving it from the properties of Stan's model. We
formulated Stan's guess as postulate IV. Carl's interpretation of the

three -postulate system did not give him a model for the four -postulate

system although Stan's interpretation did.

The way in which Stan draws pictures of his model [See conditions

(1), (2), and (3) at the top of page 1 - 10 . ] is just the way we picture

things we call 'lines' and 'points' in the everyday world. Statements

deduced from postulates which are satisfied by Stan's model often give

us useful information about the world. In fact, they permit us to make

predictions about it. For this reason, the only postulates we shall

add to those already set down are statements which are true of the num-

ber plane model.

Now, there are many statements about points and lines which are

true of the number plane model. Which of these shall we add to the

UICSM-4-57, Second Course
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postulate set? What we want is a set of postulates from which we can

deduce all the "geometrical" statements about points and lines which

are true of the number plane. We could take all such statements as

postulates, but one of our purposes is to show that all these statements

can be deduced from a few of them. Consequently, we shall try to

choose as postulates those statements which we think will be most

fruitful as a basis for deducing others. [Of course, you can't be sure

in advance about which statements will be fruitful postulates, any more

than you can be sure of success in tackling any difficult problem. But,

the more experience you have had, the more likely you are to be suc-

cessful. ] Since we wish to end up with only a few postulates, we shall

try to add to our set of postulates only statements which we think

cannot be deduced from the postulates already chosen. A way to tell

that a statement cannot be deduced from the postulates is to find a model

for these postulates for which the statement is false. [This is just

what we did with Stan's guess. Carl's model was one for which Stan's

guess was false.]

Before adding a statement to the postulate set, we make sure that

it is true of the number plane model by deriving it from properties of

ordered pairs of real numbers and the definitions of 'point' and 'line'

which describe this model. [Sometimes it takes a lot of complicated

algebra to derive the statement. In fact, it may take more algebra than

we want to take time to teach you. In such cases (there will be very

few of these), we shall ask you to take our word that the statements

can be derived.

]

^1.. v'.- -.'^

'f '1^ 'f

Here is an example of a statement which Stan Straight thinks is

true of his model.

For each three lines i, m, and n,

if I is parallel to m, and

m is parallel to n,

then £ is parallel to n.
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[It is natural for Stan to make this guess because he has been thinking

a great deal about parallel lines, and has been studying them by means

of pictures of his model. ] He tries to establish this statement by trying

to deduce it from postulates I, II, III, and IV, the definition of 'parallel

lines', and the theorems. He is unsuccessful, and so would yoy, be,

no matter how hard you tried. Here is why.

Stan Straight, after long hours of trying to deduce the statement,

telephones Larry Lattice and tells Larry about his guess. Now, Larry

doesn't interpret 'point' and 'line' in the same way Stan does. Larry

thinks a point is an ordered pair of integers , and that a line is a non-

empty set of all ordered pairs of integers (x, y) which satisfy

'ax + by T c =0' [a, b, and c are integers, a and b are not both 0].

Larry's interpretation does give him _a number plane model for the

four -postulate system. Pictures of points and lines in his model are

like pictures you drew when you studied plane lattices in an earlier

unit. When Larry hears Stan's statement, he makes a quick sketch

like this :

-2

D

6

• • •

• ® • A

• •AD
• A -

2 4

• --4 A

A6

A

A

A

•

6 ° 8
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and says, "No wonder you couldn't deduce it from the four postulates.

I've got an example which shows that the statement you made is false.
"

Larry's • -line is parallel to his A -line, and his A -line is

parallel to his -line, because they have no points in common. Yet,

the • -line is not parallel to the -line since each line contains

(3, 4).

Do you see why it is impossible for Stan to deduce his statement

from the four -postulate system? [If he could, it would be a theorem

in the system, and would then be true in every model for the system,

including Larry's.]

EXERCISES

A. Stan realizes that he cannot deduce his statement from the four-

postulate system. Also, he has not been able to find a counter-

example in his own model. So, he tries to derive the statement

from properties of his model. Here is how he starts his proof;

your job is to finish it.

For each three lines i, m, and n, if i || m, there are linear

equations of i and m :

(1) ax + by + c =

and: (2) a'x + b'y + c' ^ 0,

respectively, such that (a, b) is proportional to (a', b'). [(a, b, c)

is not proportional to (a', b', c') because i /^^ m.] If m |j n, there

is a linear equation of n:

(3) a"x + b"y + c" =

such that (a', b') is proportional to (a", b"). [ Since m / n, (a', b', c')

is not proportional to (a" , b", c"), and since i / n, (a, b, c) is not

proportional to (a", b", c").]

Now, ...

(more space on next page)
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B. In Part A you derived Stan's statement from properties of his

model. You also know that it cannot be deduced from the four-

postulate system. We shall soon conjecture other statements about

parallel lines. If we add Stan's statennent to the postulate set, it

may prove useful to us in trying to deduce other propositions from

the postulates . So, we add to our set the postulate

(continued on next page)
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V . For each three lines i , m, and n,

if ^
1

1 m, and m || n, then i || n.

In the following exercises you are given several statements

about parallel lines. Some can be deduced fronn the five -postulate

system, some can be derived by using the properties of Stan's

nn.odel but cannot be deduced from the postulate system, and some

are false in Stan's model. Those which are deducible from the

five -postulate system are theorems. Those which can be derived

from properties of Stan's model, but cannot be deduced from the

five -postulate system, could be added as postulates to the five-

postulate set.

Deduce from the five -postulate system as many of these state

-

nnents as you can. For those which you cannot deduce, it may

be the case that

(1) you have not been clever enough, or

(2) it is not a theorem in the five -postulate system.

Show that it is the second of these cases by exhibiting a counter-

example in some model.

1. For each line m and each point P, there is at most one line n

such that Pen and n || m.

2. For each three lines, if two of these lines are parallel and one

of them is intersected by the third, the other is intersected

by the third.

3. For each three lines p, q, and r, if p J^ q, and qj^r,

then p Ji^ r

.

4. For each line m and each point P / m, there is at least one

line n such that Pen and n 11 m.
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C. Tell \which of the sets of objects described on pages 1-42 through

1-45 are models for the postulates I-V.

Sample . We showed on page 1-50 that the set of objects described

in the Sample on page 1-42 was a model for postulates

I - IV . Recall that the points are the three businessmen

A, B, and C, and that the lines are the three partner-

ships {a, b}, {b, c}, and {a, c}.

A
A

/ \

/ \

/ \

/ \

/ \

/ \

/ \

/ \

/ \

/
B^ -^C

Solution . We need to check postulate V. Let us restate this

postulate in terms of 'businessmen' and 'partner-

ships'.

For each three partnerships £, m, and n,

if i and m have no common partners, and

m and n have no common partners, then

i and n have no common partner.

Now, for this postulate to fail to check, we would have to find

a counter-example in this model. This means that we would

have to find two things :

(1) A pair of partnerships, i and m, with no common

partners,

and

(2) another pair of partnerships, m and n, with no

common partners,

(continued on next page)
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such that the pair of partnerships, i and n, do have a common

partner. It is clear that we cannot find (1) and (2). So, this

model for postulates I - IV does not have a counter-example

for postulate V. Therefore, the set of objects is a model

for postulates I -V. That is, postulate V is true of this niodel.

[Note carefully the two statements

'there are no parallel lines in the model'

and

'if i
II
m, and m || n, then i || n'.

Both of these are true of the model in question.]

*D. Which of the sets given below are lines in Larry Lattice's model?

1 . |{x, y) : X and y are integers, and x + 4y - 7 = O}

2. {(x, y) : x and y are integers, and 3x + 3y - 4 = O}

r 2 5-1
3. |(x, y) : x and y are integers, and tj-x - yy + 4 = 0|

4. {(x, y) : X and y are integers, and '>/2 x + y = O}

1 . 04 Primitive terms . - -A model for a postulate system is obtained by

assigning meanings to certain of the words which occur in the postulates.

These words are called primitive terms . Up to this point in the develop-

ment of our postulate system, we have used two primitive terms, 'point'

and 'line'. [We have assumed that everyone has the same interpretation

for all the other words (for example, 'each', 'three', 'set'; 'e', and

'there is') used in the postulates, theorems, and definitions. Also, we

have assumed that everyone who is willing to work with the postulates

uses the same kind of logic in his reasoning. ] A model for a postulate

set in which 'point' and 'line' are primitive terms is obtained by des-

cribing what are to be called 'points' and 'lines'. Of course, you naust

make certain that the postulates are satisfied by these points and lines.
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In the development of our full postulate set, we shall introduce just

two more primitive terms. Anyone who wants to construct a model for a

postulate set in which the four primitive terms are used must give an inter-

pretation not only for 'point' and 'line' but also for the other two prinaitive

terms. Since we want to continue with our number plane model, we shall

have to assign number plane meanings to these new primitive terms.

From another point of view, what we need to do is to study the num-

ber plane model, and, in this way, discover new properties which involve

other concepts than those of point and line. In stating these properties

we shall have to use new words for these concepts, and these words will

be our new primitive terms

.

BETWEENNESS
Here is a picture of several sets of points in Stan's nnodel.
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Stan notices that {K, T, v} differs from {u, V\/ , x} in a way that seems

interesting to him. He expresses this by saying that K is between T

and V, but none of the points U , W , and X is between the other two.

He also says that Q is between P and R. Look at the pictures of the

other sets, and guess what Stan said about the points in each of them.

Do you agree with Stan that none of the points D, E, and F is between

any two of them? Stan decided that he would not say that a point is between

two points unless these points all belong to the sanae line [that is, unless

the points are coUinear ]. His decision agrees more or less with the

way people ordinarily use the word 'between' in talking about the world.

When they say one object is between two others, they usually imply

that the objects are "lined up".

Since we are going to use the words ' is between . . . and '

frequently, it will be convenient to abbreviate them by '[. . . _^_]'.

For example, the statennent:

K is between V and T

will be abbreviated as :

[VKT].

[Remember that '[VKT]' is a complete statement, and it is read as

'K is between V and T'. ] Practice using this new notation by reading

aloud each of the following statements which refer to the sets pictured

on page 1-80.

(1) [RQP].

(2) [PQR].

(3) It is not the case that [QPR].

(4) [BAG].

(5) It is not the case that [SON].

(6) It is not the case that [LZM].

(7) [(-5, 2)(-4, 3)(-3, 4)].

(8) It is not the case that [(1, 0)(0, 0)(0, 1)].
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[1.04] [1-82]

After reading the eight statements above [all of which are correct]

you see that it is not difficult to tell, in most cases, whether or not

one of three pictured points is between the others. But, since we want

to refer to betweenness in later postulates and theorems, we need a

precise interpretation of '[ . . . ]' so that for any three ordered

pairs (x^, y_), (x , y ), and (x^, y ), we can tell whether or not

[(x„, y^), (x , y ), (x , y-,)]. The following exercises should help

you arrive at a precise interpretation.

EXERCISES

A. In each of the following exercises you are given a set of collinear

points. Your job is to state which of the points is between the

other two. Try to do this without making a picture.

Sample 1. {(-2,0), (5.5,0), (3,0)} [( -2, 0)( 3, 0)(5. 5, 0)]

Sample 2. {(4, 0), (6, - ly), (2, 1 j)} [(2, l|-)(4, 0)(6, -l|)]

1. {(7, 0), (2, 0), (4, 0)}

2. {(-8, 0), (0, 0), (-10, 0)}

3. {(0, 0), (0, 5), (0, 5. 1)}

4. {(0, -7), (0, -9), (0, -1)}

5. {(3, 4), (-2, 4), (7, 4)}

6. {(-2, 7), (-2, -3), (-2, 10)}

7. {(3, 3), (5, 5), (4, 4)}

8. {{7. 10), (9, 13), (5, 7)}

9. {(3, 8), (5, 6). (-1, 12)}

10. {(5, -1), (2, 2), (11, -7)}

11. {(6, y^), (3, y^), (12. y^)}

12. {(-5, Yq), (0, y^), (7, y^)}

13. {(xq, 2), (x^, -5), (x^, 1)}

(continued on next page)
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[1.04] [1-83]

14. {(Xq, -6), (x^, -IZ), (x^, -3)}

15. {(3, 7), (8, 5), (3. 7)}

16. {(xq, 6), (x^, 7), (xq, 6)}

17. {(3. Yq), (4. Yq). (4, Yq)}

B. The picture below is one of a drawing of the number plane model

in which part of the drawing has been torn awaY- The part torn

awaY contained a picture of part of a line with three dots marked

on it. The dotted lines point to the projections of the three dots

on the component axes. Thus, a, b, and c are the first components

of the three points, and d, e, and f are the second components.

1. Sketch in the missing line showing on it the dots corresponding

to the ordered pairs (a, d), (b, f), and (c, e).

2. Repeat for the ordered pairs (a, f), (b, d), and (c, e).

3. Repeat for the ordered pairs (a, e), (b, f), and (c, d)

.

4. Repeat for the ordered pairs (a, d), (b, e), and (c, f )

.
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Here is a precise interpretation of '[.

plane model.

]' for the number

r
For all ordered pairs (x^, y^), (x^, y^), and (x^, y^).

[(Xq, yQ)(x^, y^)(x^, y^]

if and only if

(1) there is a linear equation whose solution

set contains {(x^, y^), (x^, y^), (x^, y^)} >

and (2) x < x^ < x or x^ > x^ > x. or

^0 ^ ^2 ^ y 1 °^ ^0 > ^2 > y]

»l^ O* S.I,

C. True or false?

Sample
J,.

[(-2, 2){8, 12)(3, 7)].

Solution . We see immediately that it is not the case that

either -2 < 8 < 3, or -2 > 8 > 3, or

2 < 12 < 7, or 2 > 12 > 7. So, by (2) above, we

know that the statement is false.

Sample 2. [{-2, 2)(3, 7){8, 12)].

Solution . We see immediately that at least one of the four

conditions given in (2) is satisfied. [Which of

the four?] So, now we check to see that the points

are coUinear. On page 1-35, we have a formula

for a linear equation which is satisfied by two

(continued on next page)
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[1.04] [1-85]

points, (xq, Yq) and (x^, y^).

Using the given points (-2, 2) and (3, 7), we obtain:

(7 - 2)(x + 2) - (3 + 2)(y - 2) = 0.

Check the third point, (8, 12) :

(7 - 2)(8 + 2) - (3 + 2)(12 - 2)=50-50
= 0.

So, the points are collinear and the given statement

is true.

1. [(4, 16)(12, 8)(8, 12)] 2. [(157, 84)(162, 86)(217. 108)]

3. [(5, -1)(7, 4)(11, 8)] 4. [(367, -187)(303, -110)(297, -103)]

5. [(-15, -20)(-4, -l6)(-7, 11)] 6. [(365, 4)(366, 5)(367, 6)]

7. [(-4, 8)(0, 5)(2. 0)] 8. [(-14, -10)(-13.8, 0)(8, 8)]

D. Given two ordered pairs with first components equal to k. Show

that every ordered pair which is on the line containing the given two

ordered pairs must have first component k.

Repeat for two ordered pairs with second components equal

to k.

E. 1. You know that, for every a and b, a < b if and only if b - a is

a positive number. Use this fact to show that

^0 < ''2 <
""l °'" ^0 ^ ^2 "^ ^1

if and only if

(x^ - -2)(-2 - -o)
> °-

2. Use the result of Exercise 1 to replace the four double inequalities

in (2) of the dashed box by two inequalities.

F. Show that if the points (x-, y_), (x , y ), and (x , y.) are collinear

then

(YO - YzH^i - ^z) - (^0 " ^2)<yi " ^2^ = °-
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[1.04] [1-86]

G. 1. Show that, for every three ordered pairs (x_, y„), (x., y.),

and (x^, y^), if (x^, y^), (x^, y^), and (x^, y^) are coUinear,

and if x_ < x-, < x,, then either y_ < y < y, or

y^ > y^ > y^ or 70=72=71-

[Hint : Use the result of Part F and the fact that if

x„ < X < x then x - x is positive and x^ - x is negative.]

Z. Use Exercise 1 to show that the points referred to in Exer-

cise 5 of Part C are not collinear.

H. Use the results of Exercises 1 of Parts E and G to show that for

the collinear ordered pairs (x , y ), (x , y, ), and (x , y ),a a D D c c

if (7, -
7b)(7b

- Ya) >

then either

(x - x, )(x, -x)>0 or X =x, =x.
* c b b a' a b c

I_. Show that if some two points of a line have different first components,

then each two points of the line have different first components.

[Compare with Part D.]
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[1.04] [1-87]

CONGRUENCE

We now have three primitive terms, 'point', 'line', and

'[. . . ]' for which we have interpretations in the number plane

model. We have one more to deal with.

Here is a picture of several sets of points in Stan's model.
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Stan notices that the distance between A and B is the sanne as the distance

between C and D. He also sees that he can make similar statements

about the members of other sets he has pictured. Since he believes that

he will often want to make statements of this kind, he decides on a

briefer way of making them. Instead of saying:

the distance between A and B

is the same as

the distance between C and D

he says

:

\A, B| is congruent to {C, D}.

[The word congruent is frequently used in everyday speech to refer to

objects which have the same "size and shape". So Stan's choice of

abbreviation is a pretty good one.]

Look at the pictures of the other sets and check these statements.

(1) {h, g} is congruent to {e, f}

(2) {C, D| is congruent to {r, S}

(3) {a, B} is congruent to {r, s}

(4) {E, F} is not congruent to {b, A}

[We abbreviate '.
. . is congruent to 'by'... = '.]

(5) {j. 1} S {k, l}

(6) {j, l} ^ {m, n}

(7) {m, n} S {m, n}

(8) {(0, 0), (1, 1)} S {{0. 1), (1, 0)}

(9) {(-6, -6), (-1, 6)} ^ {(6, -2). (-6, 3)}

Statement (9) is not as easy to check as the others. However, as you

may already have done in checking the other statements, you can use

the distance formula [page 1-13].

V (-1 + 6)^ + (6 + 6)^ = V (-6 - 6)^ + (3 + 2)^
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[1.04] [1-89]

So, our fourth (and, last) primitive term, '. . . = ', and its

interpretation for the number plane model is given in the following

statement.

r n
For every (x^^, y^, (x^, y^), (x^', y^), and (x^'. V-^),

{(Ky yp, (x^, y^)} ^ {(xj', yp, (x^', yp}

if and only if

))
= d(<-i'' y{)' <-2' ^z')}

d((Xj, yp, (x^, y^)

I I

EXERCISES

A. Use the above interpretation of '.
. . S ' to tell which of the

following statements are true of the number plane model and which

are false for it.

1. {(4. 3), (9. 15)} S {(6, -2), (18, -7)}

2. {(5. 5). (0, 0)} ^ {(6, 6), (1. 1)}

3. {(9, 4). (10, 0)} ^ {(10, 0), (14, -2)}

4. {(7, 2), (-2, 11)} S {(19, -13), 7. -8)}

5. {(19, -50). (28, 41)} S {(7, 2). (-2, U)}

6. {(3, 5), (9, 7)} s {(9, 7), (3. 5)}

7. {(8. -2). (3, 12)} S {(8, -2), (3, 12)}

B. Show that, for every (x,, y.) and (x^, y^),

{(x^, yp, (x^, y^)} S {(x^, y^), (x^, y^)}-

In other words, show that in the case of the number plane model,

congruence is a reflexive relation.
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[1.04] [1-90]

C. Show that, for every (x^, y^), (x^, y^), (x^', yp, and (x^', yp,

if{(x^, y^), (x^, y^)} = {{k{, y/). (x^'. yp}

then{(x^', y{)> {^{> y{)] = {(x^, y^), (x^, y^)} .

In other words, show that congruence, in the case of the number

plane model, is a symmetric relation.

D. 1. K{(87t + 43, 16t - 13), (84t + 42, 12t - 14)} ^ {(0, 0), (1, 1)},

then {(87t + 43, I6t - 13), (84t + 42, 12t - 14)} is congruent to

which point couples in the following list ?

{(7, 5), (9. 8)} {(3, 5). (4, 2)} {(6, 8). (7, 9)}

{(-5, 6), (4, 3)} {(5, 5), (6, 6)} {(k, m), (k + 1, m + 1)}

2. Show that in the case of the number plane model, congruence

is a transitive relation. That is, show that, for every

(x^. y^), (x^, y^), (x^', y^'), (x^', yp, (x^", y^"), and (x^", y^"),

if{(x^, y^), (x^, y^)} S {(xj, yp, (x^'.yp

and{{xj', yp, (x^', y^} S {(x^", y^".-, (x^", y^")},

then{{x^, y^, (x^, y^)} S {(x/', y^"), (x^", y^")}.

E. Use the results of Parts C and D to derive the following statement.

For all points A, B, A', B', A", and B",

if JA', B'} S {a, b}, and JA", B"} S {a, b},

then {a', B'} S {a", B"} .

O, vt^

The next statement which we shall add to our postulate set

will refer to the concepts of betweenness and congruence. In the

next section you will learn some of the algebra which you would

need to show that this postulate is true of the number plane model.
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[1.05] [1-91]

1.05 (1-1) -correspondences between points on a line and real numbers .
--

Consider one of the lines in the number plane which is parallel to the

first component axis, for example, {(x, y) : y = 4/. There are many

(1- l)-correspondences between the points on that line and the real numbers.

For example, each point on the line can be paired with its first component.

Or, each point can be paired with twice its first component. Or, each

point can be paired with 5 more than 4 times its first connponent. Some

of the pairings in each of these three (1 - 1) -correspondences are shown

in the picture. Clearly, there is no end to the number of such (1-1)-

correspondences you can construct between the points of this line and

the real numbers. Similarly, you can construct many (
1 -1) -correspondences

in

A
1 1

A f^

5 '

1
+

o in

A A
1 : j

•—1

A

in r-

'^ A

V V \k V <i/ v/ i i

v.
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6
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/ / 5.5
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1 '
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-1

1

>
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between the points of a line parallel to the second component axis, and

the real numbers. In fact, you can construct a countless nunnber of

( 1 - l)-correspondences between the points of any line and the real
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[1.05] [1-92]

numbers. In the diagram below there is a picture of part of the line

{(x, y) : 2x + y - 4 = 0} on which are marked several points. A (1-1)-

correspondence between the points of this line and the real numbers is

obtained by pairing each point with its first component. If you think

of this (1 -l)-correspondence as a set of ordered pairs

(point, real number)

and call this set of pairs 'f, then a few of the elements in the set f are

(A, -1), (B, -|-), (C, 0). (D, j), (E, 1),

(F, |). (G,
J).

(H, |). (I, n), (J, |).
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Another { 1 - 1) -correspondence between the points of this line and the

real numbers is obtained by pairing each point with its second component.

Call this ( 1 - 1)- correspondence ' s '. A few of the elements in s are

(A, 6), (B, 5), (C, 4). (D, 3), (E, 2),

(F, 1), (G. j). (H, -j), (I, 4 - Zir). (J, -3).

Still another { 1 - 1) -correspondence is obtained by pairing each point with

the real number which is 3 more than 4 times its first component. If

c is this ( 1 - 1) -correspondence then a few of the elements in c are

(A. -1). (B, 1), (C, 3), (D, 5). (E, 7),

(F, 9). (G, 10), (H, 12), (I, 47r - 3), (J, 17).

EXERCISES

A. Here is a picture of the line {{x, y) : 2x - 3y + 6 = 0|.
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[1.05] [1-94]

1. List six of the elements in the set g, where g is the (1-1)-

correspondence which pairs each point of this line with the real

number which is its first component.

2. List six of the elements in the set h, where h is the (1-1)-

correspondence which pairs each point of this line with the real

number which is twice its second component.

3. List six of the elements in the set k, where k is the (1-1)-

correspondence which pairs each point of this line with the real

number which is 3 less than 5 times its first component.

4. Suppose c is the (1 - l)-correspondence which pairs each point

(x, y) in this line with the real number which is 7 more than 3

times its second component. Another way of describing c is:

For each (x, y) in {(x, y) : 2x - 3y -t- 6 = O},

c((x. y)) = 3y + 7.

[Read *c(-_-)' as 'see of ...'.]

So, c(A) = 3(-2) + 7=1, and c((3, 4)) = c(V) = 3(4) + 7 = 19.

The symbol 'c((3, 4))' is a name for a real number, and this

real number is computed by using the formula 'c((x, y)) = 3y + 7'.

Compute each of the following. [Refer to Exercises 1, 2,

and 3 to obtain descriptions of g, h, and k.
]

(a) c(S) (b) c(B) (c) c(J) (d) c(N)

(e) c(D) (f) c(C) (g) c(M) (h) c(K)

(i) g(R) (j) g(U) (k) g(N) (1) g(V)

(m) h(P) (n) h(R) (o) h(S) (p) h(M)

(q) k(S) (r) k(Z) (s) k(C) (t) k(J)

(u) c(A) (v) g(A) (w) h(A) (x) k(A)
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B. In Exercise 4 of Part A, we said that the {
1 -1) -correspondence c

is the set of ordered pairs of the form of:

(x. y), c({x,
y))J

,

where (x, y) e {(x, y) : 2x - 3y + 6 = o} and c({x, y)) = 3y + 7. Each

element in c is an ordered pair in which the first component is a

point, (x, y), of the given line, and the second component is a real

number, c({x, y)). There is another set closely associated with c,

in which each element is an ordered pair of the form of ;

c{{x, y)), (x, y)

In these ordered pairs, the first component is a real number,

c({x, y)), and the second component is a point, (x, y), of the given

line. You can get all the elements in this second set simply by

interchanging the components of the elements in c. The second

set is called the inverse of £ and is labelled *c '. c isa(l-l)-

correspondence which pairs the real numbers with the points of

the given line. Then, just as 'c((3, 4))' is regarded as a name for

the real number 19, 'c (19)' [read as 'see inverse of 19'] can be

regarded as a name for the point (3, 4). Study each of the following

lists. They contain a few of the elements in c and a few of the

elennents in c' .
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(x, y), c((x, y)) c({x, y)), (x, y)

(A. 1)

(S, 3)

(P. 7)

((3. 4). 19)

((8, 3-). 29)

(1, A)

(3, S)

(7. P)

(19. (3, 4))

(29, (8. ^))

(100. ^), 213

373, (180, 122)

How do we know that the point c"^(373) is (180, 122)? c"^(373) is

that point in {(x, y) : 2x - 3y + 6 = 0/ which corresponds under c with

the real number 373. Since c((x, y)) = 3y + 7, the second component,

y, of this point is the root of the equation:

3y + 7 = 373,

that is, the second coinponent is 122. But, if the second component

is 122, the first component, x, is the root of the equation:

2x - 3(122) +6 = 0,

or, 180. So, c"M373) = (180, 122).

1. List six of the elements of c other than those given in the list

above.

2. Compute.

(a) c'M7) (b) C-M247) (c) c^-M) (d) c'(7r)

(continued on next page)
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3. List six of the elements of g . Of h . Of k .

4. Compute.

(a) g-M4) (b) g"Ml2) (c) h-M6) (d) h'{17)

(e) k-^12) (f) k'(32) (g) c-'(O) (h) k"'(0)

(i) c-'(^c((6,
6))J

(j) k'^k((-6, -2))

(k) g-^ (t) ( 1) h"^ (t) (m) k ' (t) (n) c"^ (t)

C. Consider the line i, where £ = {(x, y) : 4x + 3y - 12 = o}. Let c be

the ( 1 - 1) -correspondence between the points of this line and the real

numbers, such that

c({x, y)) = 2x - 1.

1

.

Compute

.

(a) c((3,0)) (b) c((-6, 12)) (c) c''(17) (d) €'^(0)

2. Compute c (t). That is, find a formula for the point which

corresponds, under the ( 1 - l)-correspondence c, with the real

number t.

PARAMETRIC EQUATIONS FOR A LINE

In Exercise 2 of Part C above, you were asked to compute c (t)

where c'""" is the inverse of a ( 1 - 1) -correspondence c which pairs each

point (x, y) of i. [i = {{x, y) : 4x + 3y - 12 = }] with the real number t

[t = 2x - 1].

For each real number t and its corresponding point (x, y),

t = 2x - 1,

or,

1 + t

But, if X is the first component of a point on i, then the second com-

ponent y can be obtained by solving for *y' the equation:

4(l±l) . 3v - IZ = 0,
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2 + 2t + 3y- 12 =

3y= 10 - 2t

10 - 2ty-—3—

So, for each real number t, the point 1,^ —^^— , ^ j is on i . In

fact, since c is a ( 1 - 1) -correspondence between all real numbers and

all points on £, we can compute the first and second components of each

point on 2 by using the corresponding value of ' t ' in the equations :

X =

For example, for t = 17,

and

X =

1 + t

2

10 - 2t

1 + 17 _ o
2

^

10 - 2(17)

So, (9, -8) is the point on i which corresponds with the real number 17.

[Check this by replacing 'x ' by '9' and 'y' by '-8' in the equation of i

,

'4x + 3y - 12 = 0'.]

You can use the equations :

1 + t

(1)

10 - 2t

3

to find points on the line i, even more easily than you can use the equa-

tion :

(2) 4x + 3y - 12 = 0.

If you want to find the point on i which has first component -7, you can

find its second component by using equation (2);

4(-7) + 3y - 12 =

3y = 40

40
y = ^ •
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Another way of finding its second conaponent is to use equations (1):

1 + t

The equations :

- 1

2 »

t = -15,
r

10 - 2(--15)
y 3

40
3

1 + t
X

2

\r
10 - 2t

are called parametric equations for the line L [' t ' is called a parameter .

In finding values of '(x, y) ' you first replace 't ' by a name of one of its

values
.

]

EXERCISES

A. Given a linear equation for a line i. , how can we obtain a pair of

parametric equations for this line?

Suppose 2 - {(x, y) : 7x - 2y + 4 = O}. Construct some

( 1 - 1) -correspondence c between points of i and the real numbers;

for example, let

c((x. y)) = 3y + 7.

Then, compute c"^(t).

3y + 7 = t

-7 + t one of a pair of
^ 3 parametric equations

7x - 2^^-^^^ +4=0 ^ '7x - 2y + 4 = 0- is

3 J
an equation for i

21x - 2(-7 + t) + 12 =

21x + 14 - 2t + 12 =

21x = -26 + 2t

-26 + 2t the other parametric
21 equation
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So, a pair of parametric equations for i is :

-26 + 2t
""

21

-7 + t

3

a- e ^ .V . ,
I

-26 + 2t -7 + t ) . . r
Since, for every t, the point I j-,— , r

—

j is on Jt
, [an

equation for which is '7x - 2y + 4 = '], a check on the computations

made in deriving the parametric equations for H is obtained by noticing

that, for every t,

<^^ - <^) ^ ^

-26 + 2t -14 + 2t ^ 12
3 3 3

-26 + 2t + 14 - 2t + 12

3

= 0.

Note that these parainetric equations were obtained after choosing

a particular ( 1 - 1) -correspondence, c. K you picked another (1-1)-

correspondence, would you get a different pair of parametric equations?

Try it.

Find a pair of parametric equations for the line which is the locus

of the given equation. Check your computations.

1. 7x - 2y + 10 = 2. -yx + 9y - 6 =

3. 4x - 5y = 4. X + 17 =

5. Find a pair of parametric equations for the line which contains the

points (3, 5) and (7, 8).

UICSM-4-57, Second Course



lUi'i '.!

Ay- -is,..

xT



[1.05] [1-101]

B. In the next section you will learn that each pair of equations of the

form of

:

X = m. + n.t

y = m^ + n^t ,

•where (n,, n^) / (0, 0), are parametric equations in 't' for some

line. [Parametric equations of other forms may also have lines

as loci, but we shall not have occasion to consider them.]

Consider the parametric equations :

X = 3 + 5t

y = 4 + 2t .

How can we obtain a linear equation for their locus i ? Fronn the

preceding paragraph, we know that i is a line, and we know,

given the components of two points in S. , how to find a linear equa-

tion for i . We get two points by using the values and 1 for 't'

in the parametric equations:

X = 3 + 5(0) = 3

y^ = 4 + 2(0) = 4

Xj = 3 + 5(1) = 8

y^ - 4 + 2(1) = 6

So, (3, 4) and (8, 6) are points in i. . Then, a linear equation

for i is obtained froin :

(6 - 4)(x - 3) - (8 - 3)(y - 4) = [see page 1-35].

2(x - 3) - 5(y - 4) =0,

2x - 5y + 14 = 0.

Another way to obtain a linear equation for the line which is

the locus of the given parametric equations is to eliminate the

parameter from the pair of equations.

(continued on next page)
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X = 3 + 5t

y = 4 + 2t

2x = 6 + lot

5y = 20 + lot

2x - 5y = -14

2x - 5y + 14 =

In each of the following exercises you are given a pair of parametric

equations for a line. In each case, find a linear equation whose

locus is the given line.

X - 10 + t

y = 5 + 4t

X = t

y = -3 + 7t

6.
f

X = -2z + (1 + 2z)t

1 y = z + (-2z - l)t

7. r X = -b + (2b - |)t 8. ^ x = x^ + (x^ - XQ)t

| + (| -2c)t 1 y =
yo+(y, - y^H

1.
/

"" = 11 + 6t

i V - 1 - t

3.
J

^ - 2 + t

1 y = 3 - 2t

5.
/

"" = a + bt

i y = c + dt

TWO-POINT FORM FOR PARAMETRIC EQUATIONS

Consider now the general problem of finding a pair of parametric

equationsfor aline which contains two given points, (x„, y-) and

{xj, y,). From your work in Exercise 8 of Part B, you might guess

that the equations given there are such a pair of parametric equations.

Your guess would be correct, but the job is not finished because we

have not shown that the parametric equations in Exercise 8 are equations

of a line. So, let us derive the equations in Exercise 8 from a linear

equation for a line which contains {x_, y») and (x., y,).
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We are given (x„, y_) / (x,, y,). [That is, we are given two points

j

so Xq / Xj, or Yq / y^.] Then:

(y^ - Yq)(^ - Xq) - (Xj - XQ)(y - Yq) = 0.

or :

(1) (x - XQ)(y^ - y^) = (x^ - XQ)(y -
y^)

is a linear equation of i . Now, on page 1-6 3, we established the prin-

ciple that, for (a, b) / (0, 0) and (a', b') / (0, 0),

ab' = a'b

if and only if

(a, b) is proportional to (a', b') .

This principle can be applied to (1). Since either x. ;^ x, or y^, / y,,

we know that (x^ - x^, y^ - y^) / (0, 0). K (x - x^, y - y^) / (0, 0)

then because

(1) (x - XQ)(yj - Yq) = (xj - XQ)(y - y^) ,

t t I \

a b' a' b

we have :

(x - Xq, y - Yq) is proportional to (x^ - x^, y^ - y^).

In other words, for every (x, y) / ^^n' ^0^' ^^' ^^ satisfies equation (1)

if and only if there is a real number t / such that

X - Xq = t(x^ - Xq) and y - y^ = tiy^ - y^) .

So, we have shown that, for every point (x, y) of i except (x , y ) there

is a real number t / such that

(x = X +t(x - X )

(2) y U 1 u

jy = Yo +t{yi - Yq).

Also, because the principle on page 1-63 was of the "if and only if"

type, we have shown that for each real number t / 0, the parametric

equations (2) give a point (x, y) which satisfies equation (1), and is,

therefore, a point on SL . What about the point (x , y ) ? Clearly, this
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point is on i . You can get this point frona equations (2) by assigning

to 't' the value 0.

Sunaming up.

r
1

I

For each two points (x^, y^) and (x., y,). i

the line which contains (x_, y^) and (x , y ) is '

{(x, y) : For some real number t,
|

X = Xq + t(Xj - Xq)

and y = Yo +t(yj y, .)}•

L J

[Compare this boxed statement with the one on page 1-35.]

If we have a line i which contains the two points (x„, y^) and (x, , y,)»

then the boxed statement above tells us that, for each real number t,

the corresponding point on S. is

(^0 "'^^^i -'^0^' ^0 +^(^1 - ^0^) '

and, for each (x, y) on 1, there is a corresponding real number t such

that

(x. y) = i^Q + t(x^ - Xq), y^ + t(yj - y^)^ .

Since either x, - x ;^ or y, - y^ / 0, different values of 't' give

either different values of 'x' or different values of 'y'. So, the corre-

spondence between real numbers, t, and the points, (x, y), of i, which

is established by the parametric equations, is (1-1).

The job of writing a pair of parametric equations for the line which

contains two given points is quite easy. For example, given the points
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(3, 9) and (5, -2), a pair of parametric equations for the line through

these points is :

X = 3 + t(5 - 3)

y - 9 +t(-2 - 9),

or, more simply:

[Refer to the first paragraph of Part B on page 1-lOi. Do you see that

the parametric equations :

X = m, + n t

[(n^, n^) / (0, 0)]

y = m^ + n^t ,

have as locus the line containing the two points (m., m^) and

(m^ + n^, m^ + n^) ?]

EXERCISES

A. Find parametric equations for the line through the given points.

[Graph each line and save the pictures for Parts B and C]

1. (3, 2), (-1, 1) 2. (-4, 3), (0, 0)

3. (-5, -2), (-7, 8) 4. (-7, 8), (-5, -2)

5. (3, 1), (3, -5) 6. (1. 1), (-7, -7)

B. For each exercise of Part A, choose four values of the parameter

and find the corresponding points on the given line.

C. For each exercise of Part A, choose four points on the given line

[use the picture], different from the points which you found in

answering Part B, and find the corresponding values of the parameter.

D. You should have noticed that the same line is referred to in Exercises

3 and 4 of Part A. You may have gotten different pairs of parametric

equations for this line. Use the same method you used in Part A to

find three other pairs of parametric equations for this line.
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(1-1) -CORRESPONDENCES AND PARAMETRIC EQUATIONS

Each pair of parametric equations for a line specifies a (1-1)-

correspondence between the points of the line and the real numbers.

The two -point form for a pair of parametric equations :

X = Xq + t(x^ - Xq)

y =
yo +t(yi - v^)

indicates a ( 1-1) -correspondence. With what value of 't' does the point

(x_, y_) correspond? If x. / x , we can find this value by replacing

'x' by 'x_ ' in the first parametric equation.

Xq = Xq +t(x^ -Xq)

= t(x^ - Xq)

:^ t .

K X, - ^n then y, ^ y_, and we find from the second parametric equa-

tion that the corresponding value of 't' is still 0. Similarly, if

(x_, y^^) / (x,, y.), the parametric equations tell us that the point

(x, , y.) corresponds with the real number 1.

In general,

and

[We know that x, / x or Yi / Yn • Why?]

So, the (1- 1) -correspondence c specified by the given pair of

parametric equations is given by:

(1) c((x, y)) = _

°
[if X /x ].x^ Xq i u

Y ~ y
(2) c((x. y)) = _ ^ [if Y,/ Yq]-

Do (1) and (2) give for 't' when (x, y) = (x , y ), and 1 for 't' when

(x, y) = (x^, yp?
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Consider the pair o£ parametric equations for the line S. which

contains the points (-1, 1) and (2, -y):

X 1 + t(-l - 2)

y = 1 +t(--^ - 1)

or :

X = -1 - 3t

y = 1 - ft

A description of a { 1 - 1) -correspondence c which pairs points on

this line with the real numbers can be obtained by solving either of the

parametric equations for 't':

X = -1 - 3t

X + 1 = - 3t

X + 1

y = 1 - yt

y 1 = -i'

2(y - 1)

-3
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Then, there is a ( 1-1) -correspondence c between the real numbers and

the points of i such that if (x, y) e i , then

c((x, y)) =
X + 1

-3
[or. c((x. y)) = ^^X-^h.

Some of the elements in the set c are (A, c(A)), (B, c{B)), (C, c(C)), etc.

You can compute the elements in c by using either the formula

x+1, __.,..^ ._..,. ,v 2(y - 1) .

*c((x, y)) = —
^
— ' or the formula 'c((x, y))

•5 + 1
{A. c(A)) = (-5, 3),

= ((-5, 3), I

/

For example.

2(3 - 1)
(A, c(A)) = ( (-5. 3),

3

(-5, 3), I ].

[Of course, the value of 'c(A)" is precisely that value of the parameter

't' \which corresponds with point A.]

EXERCISES

A. Refer to the line pictured on page 1-107, and compute for the set c the

elements

1. (B, c{B))

4. (E, c(E))

7. (H, c(H))

2. (C. c(C))

5. (F, c(F))

8. (I. c(I))

3. (D, c(D))

6. (G, c{G))

9. (J, c(J))

B. Note that for the line pictured on page 1-107, B is between A and C,

that is, [ABC]. By our interpretation of '[. . . j' given on

page 1-84, we know that [ABC] because {a, B, C} C i and
1 4 2

-5 < -3 < -2 [as well as 3 > 2 > y ]• Since c(A) = -^ , c(B) = r-

,

and c{C) = ^, we have, along with the fact that

[ABC] ,

the fact that

c(A) > c(B) > c(C).

(continued on next page)

UICSM-4-57, Second Course



^^U i..!
-'.'1

mnv'. ;.•:.'•: O'Turr i^Tfcv^ i(kii:f.t :.y,.-,

>:;i/a i

•fr- ...yCl'n-i .Z)

ic-rn

M.i! - -fe
v-i

1-- /it

^ JT ,c:-, .

.\ »

i -A jHica ;a«G T'lr

:01

d] > :;';•? :.i' "-•'' i'3-.'qrrjoo b;;*> ji'^J*!-^! 9t.j^q tiv ii'^-r/. i ^[ij S/xii" srf

\' '

7y 'f-

via"-;!:-;-. ? y'^'

anOi.-'

.a

.'aj t.

^:jt^J>q Ti' rAh'ihrfii^i'-i^



[1.05] [1-109]

That is, the point B is between the points A and C, and the parameter

value corresponding with the point B is between the parameter values

corresponding with the points A and C.

Check to see if these two facts [betweenness for points and

betweenness for parameter values] go together for other triples

of points among the points A, B, C, D, E, F, G, H, I, and J.

PARAMETRIC EQUATIONS AND BETWEENNESS

Consider the pair of parametric equations for the line i through

the points (x^, y^) and (x^, y^):

X = Xq + t (x^ - Xq)

y = Yq +t{yi - Yq)-

For each point (x , y ) in i, there is a real number , t , such that

^p = ^0 +^1 "
""o^-

Now, consider points and their corresponding parameter values:

'^a' ^a) ^—^ ^a

<^b' V ^ S

^^c' ^c^ ^ 'c

Part B of the preceding Exercises suggested that

t(^a' ^a^^^b- ^b^^^c' ^^c)l

(*) if and only if

t < t^ < t or t > t, > t .

a b c a b c

Let us try to establish this.

From our interpretation of '[
.

]* on page 1-84 and from Part E

on page 1-85, we know that since (x , y ), (x, , y, ), and (x , y ) are

collinear

,

if and only if

("c - "b^^^b - ^a) ^ ° °^ (^c - ^b^^^b - Va) > °-
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Since

^a
=

^0 +y^l - ^O^'

""b
=

^0 + ^b^^'l
" ^0>'

and
^c

=
^0 + ^c^^'l

'^q)'

then x^ - x^^ = t^(x^ - Xq) - t^(K^ - x^)

= (t, - t^Xxj - Xq),

and x^ - x^ = (t^^ -tj(x^ -Xq).

So,

(1) (x^ - x^^)(x^ - x^) = (t^ - t^^)(tj^ - tj(x^ - Xq)^

In the sanne way, you can show that

<2) (Vc - VbHYb - Va) = (^c - ^b)<S - ^aHVi ' Yq)'-

We know that either x. - x_ / 0, or y, - y /^ 0. Suppose

x. - X- / 0. Then, since (x, - x_) > 0, it follows from (1) that

if (t - t, )(t, - t ) > then (x - x, )(x. - x ) > 0.
^ c b' b a' ^ c b'^ b a'

Hence, in this case, if t, is between t and t then
b a c

t<^a' ya)<^b' V^^'c' ^c^^'

K y, - y^ / 0, you can establish the same conclusion by using (2)

instead of (1). So, we have established the "if part" of (*).

Again suppose x, - x_ / 0. It follows from (1) that

if (x - x^)(x. - x ) > then (t - t, ){t, - t ) > 0.
c b b a' c b b a'

Moreover, if (y - y, )(yu " y ) ^ then, by Part H on page 1-86,
c D D a

either (x - x, )(x, -x)>0 or x =x, =x
^ c b'^ b a' a b c

But, if (y^ - yb)(yb
" Ya^ ^ *^ ^^^^

^^a' ^a^' ^^b' ^b^'
^"^^

^^c' ^c^

are different points. Since (x_, y ) and (x,, y.) are coUinear with these
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three points and have different first components, it follows from Part I

on page 1-86, that x , x, , and x are different. So, if
3. D C

(y " yu)(yL y ) > O then (x - x, )(x, - x ) > O and, as shown above,^c 'b ^b 'a' ^ c b" b a'

(t - t. )(t. - t ) > 0. Hence [in case x, - x^ / O], ifcbba lU
[{x , y )(x, , y, )(x , y )1 then t, is between t and t . Again, if•aaDbcc b a c

Y-i
~ Yn /- 0» y°^ can establish this same conclusion by using (2) instead

of (1). So, we have also established the "only if" part of (*).

Thus, we know that if c is the (
1 -l)-correspondence between the

real numbers and the points of a line i. which is specified by a pair of

parametric equations for i, then, if JA, B, C} C -^

.

[ABC]

if and only if

c(A) < c(B) < c(C) or c(A) > c(B) > c(C).
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EXPLORATION EXER.CISES

The line pictured in the diagram has the pair of parametric equations

X = 1 + 2t

y = T +t.

1

I

A

1
,

^
1 K^-^

->
,

J

k-

^1 )

I1^
(1, |)

i

I
r

L,

„ (

<

1 -;

)

I : 2 5
c

^^
- 1

-2

A. Complete the following table.

p A B C D E F Ct H I J K L M

t

p

7
"2
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B. Complete the following tables.

{P.O} {A, C} {C, E} E, G} 11. W {I. K} {m, k} J, i-,}

d(P.Q) nTs

t -t
q p

{P. Q} {A, e} {g, c} {E.I} {k, g} {d. h}

d{P, Q)

t -t
q p

{p. Q} {A. G} {g, m} {a. k} {m. c} {b. l}

d(P, Q)

t -t
q p

C. Study the tables in Part B and complete the following statement.

For collinear points A, B, C, and D

with parameter values t , t. , t , and t ,, respectively,

{a, b} ^ {c, d}

if and only if

Try to derive this statement before reading the next section.
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PARAMETRIC EQUATIONS AND CONGRUENCE

Your work in the preceding Exploration Exercises suggested that

congruence of point couples on a line is related to the absolute value of

the difference between the parameter values of the points in the couple.

Let us state this idea more precisely.

Suppose A, B, C, and D are points on the line i which passes through

the two points P_ and P, . If P^ = (x_, y ) and P, = (x, , y.) then:

X = Xq + t (X^ - Xq)

y = Vo +t(yj - y^)

are parametric equations of £ . In the associated correspondence

between the real numbers and the points of i , corresponds with P„

and 1 with P,. Suppose t corresponds with A, t, with B, t with C,la b c

and t , with D. Then we want to establish that
d

{a, b} = {C, d} if and only if |t,^ - t^
|

- 1^^ ' ^^ I
•

In order to establish this, suppose {P, P'} C^ ^ • If P = (x, y)

and P' = (x', y'), then there are real numbers t and t' such that

X = Xq + t (Xj - Xq) x' = Xq + t' (Xj^ - Xq)

and

y = Yo +t(yi - Yq) y' = y^ + t' (yj - y^)

By the distance formula,

d(P, P') = V{x'- x)" + (y'- y)" .

Since x' - x = (t' - t)(x^ - x^) and y' - y = (f - t)(y^ - y^),

', P') = V{x'- x)^ + (y'-
'^
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d(P, P') (f - t)(x^ - Xq)

= V (t'(f - t)^(x^ - Xq)^ + (t' - t)^{y^ - Yq)^

- V (f - t(f- t)^[(x^ - Xq)S (y^ - Yq)^]

V(7^t)^ - y/u^ -Xq)^{Yi - Yq)^

= |t'- t| d(PQ, P^)

[Return now to the Exploration Exercises, find the points whose parameter

values are

just derived

:

values are and 1, call them 'Pf^' a-nd 'P,'> a-nd check the formula

d(P, P') = |t' - t| d(PQ. Pj),

for several pairs of points contained in the line through H and I.
]

Coming back now to the result we are trying to establish, we recall

that, by the explanation of congruence for the number plane model,

{a, b} S {C, d} if and only if d(A, B) = d(C, D).

But, by the formula we derived above,

d{A, B) = |t^

and d(C, D) = |t.

Since d(PQ, P^) / [Why?],

'b ^al ^<P0'
^l)

tj d(PQ, pp.

d(A, B) = d(C, D) if and only if |t, - t
j

D a

Hence, as we wished to show,

{a, b} = {C, d} if and only if |t, - t |

' d c

' d c

Thus, we know that if c is the ( 1 - 1) -correspondence between the

real numbers and the points of a line i which is specified by a pair
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of parametric equations for i , then if {a, B, C, d} c ^,

r ~]

{a. b} s {c, d}

if and only if

|c(B) - c(A)| - |c(D) - c(C)|.

COORDINATES ON LINES

You have seen that for each two points P^ and P., if P_ = (x_, y^)

and P, = (x, , y,), the correspondence c such that, for each real num-
1 1' M

ber t,

c'" (t) Xq + t(xj - Xq), yQ + t(yj - y^) ) ,

is a ( 1 - 1) -correspondence between the points of the line 2 through P

and P, and the real numbers; c(P_) = and c(P,) = 1. Moreover,

this correspondence has the two properties described in the dashed

boxes on pages 1-111 and 1-116. ( 1 - 1) -correspondences with these

two properties are very useful and deserve a special name. Such a

( 1 - 1) -correspondence will be called a coordinate system on i .
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Idltftliititllllti

Definition

A coordinate system on a line i is a (l-l)-corre-

spondence c between the points of i and the real

numbers such that

(1) if {a, B, c} c i then

[ABC]

if and only if

c(A) < c(B) < c(C) or c(A) > c(B) > c(C),

and

(2) if {a, B, C, D,} c i then

{a. b} S {c, d}

if and only if

|c(B) - c(A)| = |c(D) - c(C)|.

The point c" (0) is the origin of the coordinate system c.

The point c (1) is the unit -point of the coordinate

system c.

For each A e S. , c(A) is the coordinate of A with

respect to the coordinate system c.

As noted above, we have derived the following statement from

properties of the number plane model.

i
I

I For each two points P^ and P, there is a '

I
coordinate system on the line through P. and

I P, such that its origin is P and its unit-point

I

is P^ .

{

I I
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Since it is true of the number plane model we could add this statement

to our set of postulates. You can see that if we added this to our set of

postulates it would help us prove theorems about betweenness and con-

gruence. From the earlier postulates alone we could not prove such

theorems because these postulates do not mention these two notions.

For this reason, it is impossible to deduce the boxed statement itself

from our postulates.

Another way to see that the boxed statement cannot be deduced from

postulates I - V is to describe a model of the postulates for which the

boxed statement is false. One such model consists of the three business-

men (points), A, B, and C, and their three partnerships (lines), {A, B},

{b, c}, and {c, a}. We might describe '[. , . ]' by saying that

each sentence of this form is false; and describe ',
. . = ' by saying

that each sentence of this form is true. But, whatever interpretation

is put on these primitive terms, it is clear that the statement in the

dashed box on page 1-117 would be false. For there is no (l-l)-corre-

spondence between the real numbers and the members of the line \A, B|.

However, rather than adding the boxed statement on page 1-117 to

our postulate system, we choose to add the following statement.

VI. For each two points P_ and P,, there

is one and only one coordinate system

on the line through P_ and P, such

that its origin is P_ and its unit-point

isP^.
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We have shown for the number plane model that there is one coordinate

system, c, which has the given points P_ and P., as origin and unit-

point, respectively. To complete the derivation of postulate VI from

properties of the number plane model, we should have to show that

there is no other such coordinate system. That is, we should have

to show that

I
I

If c and g are coordinate systems j

on the line through P^ and P, such ')

that

c(Pq) = = g(PQ)

and '

c{P,) = 1 = g(P^)
{

then, for each point P on the line, '

I

g(P) = c(P).
I

II

This can be done, but it requires a greater knowledge of algebra than

you now have, or will need for the remainder of this course. We ask

you to accept the fact that the boxed statement can be derived from the

properties of the number piane nnodel. Postulate VI is a consequence

of the two statements in the dashed boxes, the one above and the one

on page 1-117.
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EXERCISES

The points A, B, C, D, and E are coUinear, and f is a coordinate system

on the line containing them such that

f(A) = 4, f(B) = 1, f(C) = 0, f(D) = 3, f(E) - -1.

True or false :

1. [ABC] 2. [BCD] 3. [EAB]

4. [CDE] 5. [ECD] 6. [BAC]

7. {a, b} S {c, d} 8. {b, c} S {d, C}

9. {d, e} S {e, b} 10. {a, c} S {d, e}

vU ^1^ vl^
.-,» .-,. ^,%

We introduce a new notation.

Definition

For all points A, B, C, and D,

[ABCD]

if and only if

[ABC] and [BCD].

vl^ O.. vl^
'I* "I" '•"

True or false :

11. [ABCD] 12. [ABCE] 13. [CBDA]

14. [ECBA]
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A BETWEENNESS POSTULATE

In solving the preceding exercises you were able to use postulate VI

to check on numerous examples of betweenness. The reason you could

do this using only postulate VI is that you were given that all the points

you dealt with were coUinear. Suppose you are given three points, A,

B, and C, which are not coUinear. Could you decide from the postulates

alone whether [ABC] or not? From our interpretation of '[. . . - ---]'

for the number plane model, you would say that '[ABC]' is false. But

we don't have a postulate which would enable us to do so. What we want

is a postulate which tells us that

For every A, B, and C,

if A, B, and C are not coUinear

then it is not the case that [ABC].

However, from your study of statements and their contrapositives,

this is equivalent to

VII. For every A, B, and C,

[ABC]

only if

A, B, and C are coUinear.

Postulate VII is simpler than the equivalent statement which was displayed

above it.

With postulates I -VII, and the red-boxed definition, we are ready

to prove several interesting theorems.
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Example. Although, in the number plane nnodel, it is clear that if

[ABC], then A, B, and C must be different points, we

have not yet seen that it is a consequence of our postulates,

[if it were not, we would certainly want to add it (or

something which would imply it) to our set of postulates.] We shall

show you that it can be deduced from the postulates already chosen

by giving a proof for it. In the exercises which follow, we give

several statements which you are to show to be theorems by deducing

them from the postulates, that is, by proving them.

Theorem . If [ABC] then A, B, and C are different points.

Proof. By postulate VII, if [ABC] then there is a line i such

that {a, B, c} c I. By postulate I, there are at least

two points on £. By postulate VI, there is a coordinate

system c on i . By the definition of 'coordinate system

on a line', we know that if [ABC] then the coordinate c(B) is between

c(A) and c(C), that is,

(1) (^c(C) - c(B)Vc(B) - c(A)^ > 0.

But, if (1), c(C) - c(B) / and c(B) - c(A) / 0. R-ence,

c(A) / c(B) and c(B) / c{C). We also need to show that

c(C) / c(A). Suppose c(C) = c(A). Then

(2) (^c(C) - c(B)j(^c(B) - c{An = - (c(B) - c{A)V.

Since - TcCB) - c(A)j^ < 0, (2) contradicts (1). So, c(C) /^ c(A).

Since we have shown that if [ABC] then c(A), c(B), and c(C)

are different coordinates, and since c is a ( 1 - 1) -correspondence

between the real numbers and the points on i , it follows that if

[ABC] then A, B, and C are different points.

Since this proof is probably more complicated than any you have yet

given, we shall talk about it a bit.

By'proving a theorem' we nnean showing that it is a consequence of

our postulates and our red-boxed definitions. In this case, we set out

to prove :

(3) if [ABC] then A, B, and C are different points.
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We recognized that in order to prove this it would be sufficient to prove:

(4) if [ABC] then in some coordinate system, A, B, and C have

different coordinates.

[We knew that this would be sufficient because, by definition, a coordinate

system is a ( 1 - 1) -correspondence. ] Now, in order to show that (4)

follows from our postulates and definitions, it is sufficient to show that :

in some coordinate system, A, B, and C have different

coordinates

follows from our postulates, definitions, and [ABC]. [In this proof, as

throughout the course, we take for granted facts concerning sets (such

as { 1- l)-correspondences) and facts concerning real numbers {such as,

-(^c(B) - c(A)J < 0).]

Since A, B, and C might be any points whatever, we are justified

in claiming to have proved the generalization:

For every A, B, and C,

if [ABC] then A, B, and

C are different points.

Compare this statement with the statement of the theorem given on

page 1-122. Frequently, theorems will be stated without the beginning

phrase 'For every . . .
'. Just as in the present case, you may always

add such a phrase.

EXERCISES

Show that each of the following can be deduced from the postulates and

red-boxed definitions. [Since the previous theorems have been deduced

from postulates and red-boxed definitions, you may also use these in

your proofs. For the same reason, in solving each of the following

exercises, you iTiay use the results of the previous exercises.]

1. If [ABC] then [CBA].

2. K [ABC] then not [BAC].

3. K not [ABC] then not [CBA].

(continued on next page)
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4. If A, B, and C are three coUinear points, then either [ABC],

or [ACB], or [CAB].

5. If A / B then there is a point P such that [APB].

[This theorem tells you that between each two points there is

a third point.
]

6. If A / B then there is a point P such that [ABP].

7. If [ABCD] then A, B, C, and D are different.

8. If [ABCD] then [ABD] and [ACD].

9. If [ABC] and [ACD] then [ABCD].

10. Show by a counter-example that:

if [ABD] and [ACD] then [ABCD]

is not a theorem.

11. Is:

if [ABD] and [BCD] then [ABCD]

a theorem ?

SUBSETS OF LINES

Using the notion of betweenness we can define several kinds of

subsets of lines which we shall use in the next unit. [In stating these

definitions, we use the expression ' {P : [APB]} '. Can you tell what it

means ?]

V " •
'

s

I
Definition I

I For every A and B, I

i (1) AB = {P: [APB]} I

I
[read ' AB ' as 'the interval ay bee'], |

I (2) AB = AB w {a, b} I

I o o I

I [read ' AB ' as 'the segment ay bee'], |

(continued on next page)
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(3) AB^ = AB w {b} w {P: [ABP]}

[read ' AB ' as 'the half -line from

ay through bee'],

(4) AB = {a} w AB
.°—

^

[read ' AB ' as 'the ray from ay

through bee '].

— o

[The end-points of AB, AB are A and B; the
> o >

vertex of AB and of AB is A.
]

The expression 'the line containing the two points A and B' will usually
< >

be abbreviated ' AB '.

The following pictures illustrate the definitions given in the box.

A B A B
o_
AB AB

A B A B

o—

>

—

>

AB AB
EXERCISES

Suppose A and B are different points and c is the coordinate system

on the line through A and B such that is origin is A and its unit-

point is B. Then, for each point P, P e AB if and only if

< c(P) < 1, [by postulates VI and VII].

Make similar statements for cases (2), (3), and (4) of the

red-boxed definition.
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B. To give you practice in using these new symbols, read each of the

following statements, and tell whether it is true or false. [The

true ones are provable as theorems, and you may prove them if

you want to. In later exercises you will be asked to prove theorems

like these.
]

1. AB = BA

2. No interval contains its end-points.

[To prove this, it would be sufficient to prove: A / AB

.

Why?]

3. No segment contains its end-points.

> > > o -> < -> < >
4. AB = BA 5. AB = BA 6. AB = BA

7. Given any two points on a ray, there is a point between them.

8. Given any point on a ray, there are two points belonging to the

ray such that the first point is between them.

9. Given any point on a half-line, there are two points belonging

to the half -line such that the first point is between them.

10. Given any two points, there is one and only one ray containing

them.

11. Given an ordered pair of two points, there is one and only one

ray for which the first point is the vertex and which contains

the second point.

-^ <—->

12. If [ABC] then BC w BA = AC.
<—

>

,
<—->

13. H E e AC and B / C, then A € BC.

C. Prove the following theorenns.

Sample 1. K [ABC] then AB C AC.

A B

(continued on next page)
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Proof . If [ABC] then A /- 3, so, as in Part A, there is a coordinate

system c such that c(A) = 0, c(B) = 1, and c(C) > 1. For

each point P, P e AB if and only if < c{P) < 1, and

P g AC if and only if < c(P) < c(C). Since c(C) > 1,

each point which belongs to AB also belongs to AC. Thus,

we have shown that

For every A, B, and C,

if [ABC] then AB C AC.

Sample 2. If [ABC] then AB r^ BC = and AB w BC = AB'

ABC
Discussion. In referring to the conditional sentence which we are

trying to prove, it will be convenient to refer to certain

parts of it. The sentence

'[ABC]'

is called the antecedent of the conditional , and the

sentence

'AB ^ BC = and AB w BC = AB'

is called the consequent of the conditional .

Since in this case the consequent is a conjunction,

in order to prove the theorem, we must prove two

conditional sentences :

.(1) K [ABC] then AB r^ BC = 0,

and:

(2) If [ABC] then AB w BC = AB.

Proof of (1).

[Choose a coordinate system c as in Sample 1.] If P e AB r\ BC

then P e AB and P e BC. If P 6 AB then < c(P) < 1.

o >
K P e BC then 1 < c(P) [Why?]. Since no number can be

both less than 1 and greater than or equal to 1, there is no such

point P. Thus, AB r\ BC - . In choosing

(continued on next page)
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a coordinate system, we made use of the fact that [ABC].

Hence, we have proved that

For every A, B, and C,

if [ABC] then AB r^, BC = 0.

Proof of (2).

[Again, choose a coordinate system c as in Sample 1 . ]

A point P e AB if and only if < c(P) < 1, and belongs to

BC if and only if 1 < c(P) . Therefore, for each point P,

P e AB w BC if and only if < c(P). But this is the case

if and only if P e AB. [Complete the proof of (2), and of the

given theorem.
] —> —-> <—> —

>

—

>

1. If A / B then AB = AB -> BA, and AB = BA w AB.

2. If [ACB] then CA r^ CB = 0, and AB = CA w CB.

3. If [ABCD] then BC = AC - BD.

4. If C € AB then AC = AB.

5. If C e AB then AC w BC C AB.

SUMMARY

Part of what you did in this unit was to study properties of the number

plane. For example, you saw that

(1) each linear equation is satisfied by at least two ordered pairs

of real nunnbers,

(2) there are three ordered pairs of real numbers which do not

satisfy any one linear equation,

(3) each two ordered pairs of real numbers satisfy some linear

equation,

and (4) if two ordered pairs of real numbers satisfy each of two linear

equations then these two equations are equivalent.
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We decided to interpret the words 'point' and 'line' for the number

plane as follows :

(a) a point in the number plane is an ordered pair of real numbers,

and (b) a line in the number plane is the solution set of a linear equa-

tion [page 1 -27].

In this language of points and lines, statements (l)-{4) can be refornaulated

as :

I. Each line is a set of points, and contains at least two

points [page 1-28].

II. There are three points which do not belong to the same

line [page 1 -28].

III. For each two points, there is a line which contains them

[page 1-36].

IV. For each two points, there is at most one line which

contains them [page 1-49].

Statements (a) and (b) describe what we called 'the number plane

model for postulates I - IV'. You saw that there are other possible nnodels

for I - IV [Part D on page 1-51].

From I - IV, without thinking of any model, you were able to deduce

other statements, for example:

Theorem 1. For each line, there is a point not on the line

[page 1-30],

Theorem 2. The intersection of two lines consists of at most

one point [page 1-50].

[There are other exanaples on pages 1-50 and 1-51.] Each such state-

ment tells you something about each model of I - IV . For example.

Theorem 2 tells you the following fact about the number plane model:

Two non- equivalent linear equations have at most one

common solution.

"We called statements I, II, III, and IV postulates , and called the

statements that can be deduced from them theorems . The words 'point'

and 'line' we called primitive terms. You can describe a model for a

set of postulates by assigning meanings to their primitive terms in such
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a way that the postulates became true statements. No matter how you

do this, the theorems will also become true statements. This fact

makes it possible to study many subjects at the same time. [For exajmple,

parts of the real world are "approximate" models for our postulates,

so the theorems provide us with useful approximations in working with

these parts of the real world.
]

In addition to the primitive terms, it is often convenient to use other

terms which can be defined from the primitive terms. For example,

we defined ||' by:

Definition

:

m
1

1 n if and only if m r> n = [page 1-71].

Using this, we were able to state an additional postulate.

V. For each three lines, i, m, and n, if i
1

1 rn and m
1

1 n,

then i
II

n.

This postulate tells us something about the number plane model. In fact,

like the earlier postulates, we got it by translating into the language of

points and lines a fact which we had discovered concerning solution sets

of linear equations. [What is this fact?]. From postulates I-V, you

were able to deduce additonal theorems which you could not deduce

from postulates I - IV . [Three such theorems are stated in Exercises 1,

2, and 4 on page 1-77.] Each such theorem tells you something about

each model of I-V. [Because it does, you saw a way of proving that

some statements cannot be deduced from I-V. How?]

Sometimes, in order to deal with new situations, it is necessary to

introduce additional primitive terms. We did this in section 1.04 where

we discussed the notions of betweenness and congruence. We first

explained these notions in connection with the number plane model and

then, after learning more about algebra [parainetric equations of lines],

were able to formulate two new postulates.

VI. For each two points P_ and P., there is one and only one

coordinate system on the line through P„ and P, such that

its origin is P„ and its unit-point is P, [page 1-119].

VII. For every A, B, and C, [ABC] only if A, B, and C are

coUinear [page 1-121].
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[Before stating postulate VI, we had to define [page 1-117] 'coordinate

system', 'origin', and 'unit-point'. We did this by using the new primitive

terms '[. . . ]' and '... S '. The word 'coUinear ' in postulate

VII was defined [page 1-81]; using the primitive terms 'point' and 'line'.]

Using the primitive terms, we defined additional terms [page 1-120 and

pages 1-124 and 125], and, using the new postulates, we were able to

deduce new theorems.

In later units we shall choose additional postulates [there will be

fifteen altogether], and deduce additional theorems.

In order to show that the number plane model is actually a model

for I - VII, we needed to know sonae algebra beyond that which you learned

in FIRST COURSE. You learned something about the algebra of sets

[pages 1-18 through 1-22] and about (1 - l)-correspondences (section 1.05)],

You learned how to solve systems of linear equations [pages 1-53 through

1-57] and, by using the notion of proportionality [pages 1-58 through

1-64], how to determine whether or not such a system has a solution

[pages 1-65, 1-66, and 1-68 through 1-70]. You also studied parametric

equations of lines [pages 1-97 through 1-116]. In particular, you learned

the two-point form for parametric equations of lines [page 1-104], which

is comparable with the two-point form for linear equations (of lines)

[page 1-35].

You also learned something about logic. On pages 1-66 through 1-68

you studied conditional sentences and their converses and contrapositives,

and on page 1-123 you studied how a statement which is a generalization

of a conditional sentence can be proved. Later we shall tell you more

about the rules of logic by means of which you can construct proofs.
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REVIEW EXERCISES

A. In each of the following exercises, you are given a system of equa-

tions [in some cases, not linear]. Graph each equation in each

system, and tell all the comnaon solutions of each system. [A

member of the solution set of an equation is called a solution of

the equation . The common solutions of a system are the members

of the intersection of the solution sets of the equations.
]

3x + 2y = 7

y = X - 9

5x - 2y = 4

3y + 7x ~ -2

8x = 7y - 2

14x = I6x + 5

r x^ + y^ = 25

L X + y = 7

2 '
x" + y" = 9

X + y = 6

10|x| + |y|
2 2 ,,

X -r y =36

4. [ X + 3y - 2 =

I 4 - 6y = 2x

10.

y = 1

X + y = io

|x| = |y

2y + X = 6

2

2

y = X

L y = 2 - X

B. Solve these systems of equations by an algebraic procedure.

1. r 7x - 2y = 5 2. r 6x - 5y = 9

3x + 4y = 9 I 7x + 1 3y = 6

3. X = 4y + 9

x = 3y - 7

5. J 3x + 5y = 7

I 2(x - 3) + 4(y + 7). = 9

4. 2y = 6 - 3x

5x = 12

2 - 7(x + y) = 3 - 9x

8 - 5(x - y) = 7 + 2y

C. Give a linear equation whose locus is a line which contains the

given points

.

1. (3, 5), (-2, 9) 2. (6, -1), (0, -3)

3. (-8, -8), (7, -8)

5. (3, 9), (6, 13), (0, 5) 6. (2, 5), (7, 6), (8, 7)
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D. For each of the exercises in Part C, give a pair of parametric

equations for the line which contains the given points.

E. In each of the following exercises, you are given two pairs of points.

Find a linear equation of the line which passes through the points

in one pair, and parametric equations for the line which passes through

the points in the other pair. Then use the linear equation and the par-

ametric equations to find the intersection of the lines.

Sample . {(3, 4), (2, 7)} and {(5, 2), (6, 9)}

Solution . Linear equation :

(7 - 4)(x - 3) - (2 - 3)(y - 4) =

3(x - 3) + (y - 4) =0

3x + y-13 =0

Parametric equations

/
" = 5 + t{5 - 6)

1 y = 6 + t(2 - 9)

or:

X = 5 - t

1 y = 6 - 7t

3(5 - t) + (6 - 7t) - 13 -

15 - 3t + 6 - 7t - 13 =0

8 - lot =0

' =1

X = 5 -
4 21

5 5

y = 6 - 7(i) = i
'^5' 5

"? 1
"?

The intersection is {(-F"» t)}

(continued on next page)
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1. {(8, 3), (7, 1)} and {{-4, 9), (-2, 5)}

2. {(2, -4), (-3, 5)} and {(-b, 0), (0, -6)}

3. {(17, 12), (8, -13)} and {(9. 16), (-4, -15)}

4. {(a, 5), (7, a)} and {(b. 6), (3, b)}

5. {(a, b), (c, d)} and {(e, f), (g, h)}

Solve the following exercises just as you did those in Part E, but

in each case, use parametric equations for the line which passes

through the second pair of points. State your answer by using

'[. . . ]' for the points in the second pair and the point of inter-

section. For example, in stating the answer to the Sample in

4Part E, since < -^ < 1, we would write:
D

(5. Z){^-, |)(6, 9)

1. {(9, 7). (2, 5)} and {(6. 1), (3, -2)}

2. {(-1, 3), (5, 8)} and {(-4, -3), (5, 7)}

3. {(2, 1), (7, 11)} and {(6, 3), (10, -1)}

4. {(10, -1), (6, 3)} and {(7, 11), (2, 1)}

G. In each of the following exercises you are given two points, P^

and P, . Find the coordinate system c on the line Pp,Pi such that

c(P_) = and c(P,) - 1. Then compute as indicated.

Pq = (3, 5), P^ - (5, 8).

c((7, 11)) c((2. 2)) - ? , c"M5) = c'M204) = ?

2. Pq = (7, 8), P^ = (-6, -4).

c((7, 8)) - ? . c'^(2) = ? , c"'(7)
-I

, cM-6)

3. (a, b). P^ = (c, d).

-1/ 1\
c {j)

3

4c"'(t) = ? . c-MD = ? , c'MlO) - ?

Pq = (a, b), P^ = (a + m, b + n).

c-^i)^^. c-(|) , c-M-|-) - ? , c'M-l)
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H. True or false ?

1. [(-10, 12)(-4, 9)(4. 5)] 2. [(8, 3)(7, 6)(2, 4)]

3. [(6, -2)(8, 6)(10, 14)] 4. [(3, 9){7. 2)(12, -4)]

5. [(3, 5)(7, 11)(5, 8)(11, 17)] 6. [{-2. 8)(3, 9)(13. 11)(18, 12)]

7. {(10, -10), (12, -5)} S {(15, -12), (10, -14)}

8. {(12, 7),(I5, 1)} S {(15, 10), (17, 17)}

9. {(6, 3),(-8, 4)} ^ {(9, 1), (7, -3)}

L 1. For each of the pairs of points, {P, q}, given below, find a

point M such that [PMQ] and {P, m} S {m, Q}.

(a) {(0, 0), (10, 0)} (b) {(0, 0), (0, -8)}

(c) {(1, 1), (7. 7)} (d) {(-6, -6), (9, 9)}

(e) {(3, 4), (9, 8)} (f) {(-6, 2), (8, 16)}

[Hint: Use condition (2) in the definition of 'coordinate system'

given on page 1-117.
]

2. Prove the following theorem [that is, deduce it from postulates

I -VII].

If P / Q, there is just one point M such

that M e PQ and {P, m} S {m, q}.

[
Hint : Suppose c(P) - and c(Q) - 1. Show that there is

just one number x such that |x-0| = Jl -x).]

-1^ ^U v'^
'p '1^ '1^

Definition

If P / Q then the point M such that

M e PQ and {P, m} S {m, q}

is the mid-point of {P, Q}.

UICSM-4-57, Second Course
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3. Prove :

If P / Q , M is the mid-point of {p, q}, and c is any
<—

>

coordinate system on PQ , then

c(M) = j[c(P) + c(Q)] .

[Hint : Show that |^[c{P) + c(Q)] - c(P)
|
- |c(Q) - |-[c(P) + c(Q)]

|
. ]

Show that, for each two points, (x„, y_) and (x,, y,), of the

number plane, the mid-point of {(x_, y^), (x,, y,)} is

^0 + ^1 ^0 + ^r

[Hint : Apply the result of Exercise 3 for the coordinate system c

< ->

on (xq, y^), (x^, y^) such that c{(xq, y^)) =0 and c((xj, y^)) = 1.]

J_. Show that for all a, b, c, a', b', and c',

(a, b, c) is proportional to (a', b', c')

if and only if

(a, b) is proportional to (a', b'),

and (b, c) is proportional to (b', c'),

and (c, a) is proportional to (c', a').

K. The subject of proportionality at one time occupied an important

place in the study of arithmetic. There were many special rules

which students were required to memorize. These rules were

just shortcuts for applying the equation transformation principles.

Before discussing these rules, we should define a few terms.

(1) The ratio of a first number to a second number is the

quotient of the first by the second.

(2) A proportion is an equation whose members are ratios.

The numbers a, b, c, and d (in this order) are said to be in pro-

portion if

a _ £
b ~ d

[This was sometimes written, 'a:b::c:d'.]
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Our work on proportionality in this unit is related to the notions

of ratio and of proportion. In fact, if t- = -r , then (a, b) is

proportional to (c, d) [and if bd / then the converse is true].

In the exercises which follow, assume that the domains of

the pronumerals are such that division by does not occur.

Show that
a _ c

'• S
=

-J if and only if ad = be.

[This result was often referred to by saying that in a pro-

portion, the product of the means (b X c) equals the product

of the extremes (a X d).
]

4.

^E
c

d
then

b
a

d
c

< c

d
then

a

c

b
d

"E
c

d
then

a + b

b
=

c + d
d

[Hint : If
a c

b ' d
then

a

b
.!=£. 1.]

«E
c

d
then

a - b

b
=

c - d
d

"E
c

d
then

a - b

a + b
=

c - d
c + d

If r- = T then
b d b + d b

Another topic related to proportion is that of variation . Probably

the most important feature of that topic is the special language used

in connection with it. Here are several examples of sentences

which deal with variation .

(1) y varies (directly) as x [or: y is proportional to x].

(2) y varies inversely as x [or: y is inversely proportional to x].

(3) y varies jointly as x and z.

Statement (1) refers to a {(x, y) : y = kx} , for some number

k / . [The niimber k is called the constant of proportionality ,
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[k / 0]

or : the constant of variation .
]

If
(^l> y^) e {{x, y): y = kx}

and (x^, y^) e {(x, y) : y :^ kx}

then, since

^1 ~ ^^r ^^^ ^2 ~ ^"'z'

(y., y ) is proportional to (x,, x^).

Several proportions can be derived from this. For example:

Statement (2) refers to a {(x, y) : xy = k} , for some number

k/O. If{{x^, yp, (x^, y^)} is contained in {(x, y) : xy = k}, k / 0,

then since,

x.y, = k and ^^V? ~ ^'

y., Y-}] is proportional to ( — , — j.

So, one proportion which is derivable from this is :

Zi - !1a

^2
" ^1

Statement (3) refers to a |{x, z, y) : y = kxz|, for some nunnber

k/O. If(x,, z,, y.) and (x^, z , y^) belong to this set, a pro-

portion which can be derived is:

yi
x^zj

^z Vz
Most of the situations in which this "language of variation"

is used are problems in applied mathematics. We solve one of

these problenris as a Sample.

(continued on next page)
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Sample . The circumference, C, of a circle varies directly as

its radius, r. A circle of radius 3. 8 has a circumference

of 7. 677. What is the circumference of a circle of radius

9. 3?

Solution . Since "C varies directly as r", there is a number

k / such that, for each circle,

C = kr.

We can find the number k as follows. For one circle,

C = 7 .6iT and r = 3. 8. So, 7. Gir = 3. 8k, and, therefore,

k = Ztt. Hence, since C varies directly as r, for

every circle, C = 27rr. So, a circle whose radius

is 9.3, has circumference 27r(9.3), or 18. 6?:.

A second method of solving this problem is to

use the proportion:

^ - !i
^2 " ^2

Let C, = 7. 67r , r = 3. 8, and r = 9. 3. Then

7.67r 3.8

So,

C3 - 9.3

7.67r
*^2

3. 8 9.3'

and C^ = 27r(9. 3) ^ 18. 677.

[In the Sample, the equation 'C = kr' is called the equation of variation .]

1. The perimeter of an equilateral triangle is directly proportional

to its altitude. Write an equation of variation to express this

fact. Use it to find the perimeter of an equilateral triangle

whose altitude is 7 when the perimeter of another equilateral

triangle with altitude 9 is 18*^^ .

(continued on next page)
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2. At a constant temperature the pressure of a gas varies inversely

as its volume. Write an equation of variation. If the pressure

in pounds per square inch is 18 and the volume in cubic inches

is Z50, what would be the pressure if the volume is reduced

20%?

[You can find many more problems like these in high school and

college algebra textbooks.]

M. Show that postulate VII cannot be deduced from postulates I -VI.

N. Prove each of the following theorems.

1. If A / B and C ^ AB then B / C and A / BC.

2. For each two points, there is just one interval of which the given

points are end-points.

3. If A / B and AB C AC then AB = AC.

4. If {a, b} c CD then AB c CD.

5. H [ABC] then BC w BA = AC.

6. If [ABCD] then AD = AC w BD, and BC = AC r^ BD.

O. Prove each of the following theorems.

1. Each line contains just as many points as there are real numbers.

[Compare with postulate I.
]

[In proving this theorem you must

have used postulates I and VI, and the fact that a coordinate

system is a (1 - 1) -cor respondence.

How many people are in your classroom?

How many heads do they have?

Are there just as many people in your

classroom as there are heads?

Do you need to know the answers to the first two questions before

you can answer the third question? Describe a way of determining

whether two sets have the same number of members which does

not require knowing how many members each set has. Do you

UICSM-4-57, Second Course
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know an answer to the question 'How many real numbers are

there ? ' ? (Compare this question with the first question in this

paragraph. ) Show that {x : x is a real number and < x < 1}

and {x : x is a real number and < x < Z\ have the same number

of members . ]

2, Each point is contained in at least as nnany lines as there are

real numbers

.
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