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I 

TEACHERS    COMMENTARY 

Introduction 

This  unit  presents  what  is,    at  least  nominally,    a  one -seinester 

N 

5I  course  which  includes  the  properly  geometrical  topics  usual  to  a  high 
.     ifi  school  course  in  geoinetry.     [it  can  be  taught  either  before  or  after 

'     *^  Unit  5.]     Much  less  tinne  than  usual  is   spent  on  mechanical  drawing 
[constructions],    and  on  trivial  instancing  of  theorems.     None  should  be 

spent  on  rote  learning  of  proofs.     Although  most  of  the  "important" 
theorems  are  boxed  and  numbered,    many  theorems  are  represented 

only  by  exercises  of  the  hypothesis-conclusion  form.     [For  numbered 
theoreiTis,    see  the  sunni-nary  at  the  end  of  each  section.  ]     Finally,     a 
considerable  saving  of  tiine  results,    on  the  one  hand,    from  the  con- 

sistent treatment  of  geometric  figures  as  sets  of  points,    and,    on  the 
other,    froin  the  use  of  precise  language,    and  attention  to  the  nature  of 

proof.      The  appendix  on  logic,    which  is  intended  to  be  studied  con- 
currently with  section  6.  01,    helps   students  to  become  aware  of  the  basic 

rules  of  reasoning,    some  of  which  they  have  practiced  in  earlier  units. 
Just  as  knowledge  of  the  principles  for  real  numbers  supplies  meaning 
to  such  processes  as  the  simplification  of  algebraic  expressions,    so, 

k  knowledge  of  the  principles  of  logic  is  a  prerequisite  for  understan
ding 

the  nature  of  proof.     [On  this  point,    see  the  beginning  of  the  COMMEN- 
TARY for  page  6-357.]     In  both  cases,    the  1-aiowledge  acquired  increases 

one's  chances  of  being  able  to  apply  what  he  knows  in  new  situations. 

Most  students  m  Ainerican  high  schools  begin  their  study  of 

;         geometry  with  a  totally  inadequate  knowledge  of  the  facts  of  physical 
geometry,    and  with  no  idea  of  the  nature  of  proof.      Indeed,    one  of  the 
professed  major  aims  of  geoinetry  courses  has  been  to  initiate  students 

into  the  mysteries  of  proof  --  typically,    "algebra  is  when  you  solve 
problems,    and  geometry  is  when  you  prove  theorems".      Consequently, 
a  teacher  of  geometry  has  to  spend  considerable  time  in  what  may 
properly  be  considered  as  remedial  work.     This,    of  course,    leaves 

him  with  less  than  enough  tinne  for  his  proper  tasks   --  (1)  leading 
students  to  see  geometry  as  a  nnathenaatical  theory,    abstracted  from 
physical  experience,    and  deductively  organized;  and,    (2)  helping 
students  gain,    first,    more  of  the  kind  of  insight  which  will  enable  them 
to  guess  probable  consequences  of  assuinptions,    and,    second,    a  deeper 
understanding  of  logic  which  will  aid  thenn  in  establishing  that  their 
guesses  are,    indeed,    consequences  of  their  assumptions.     A  more 
serious  result  of  such  remedial  work  is  that  it  blurs  the  distinction  be- 

tween physical  and  "matheiTiatical"  geometry  and,    as  indicated  above, 
suggests  a  distinction  between  branches  of  inathematics  which  does 
not,    in  fact,    exist. 
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Fortunately,    students  of  earlier  UICSM  units  already  have  con- 
siderable experience  in  proving  theorems,    experience  which  they  have 

gained  in  the  relatively  simple  process  of  deducing  consequences  of  the 

basic  principles  for  real  numbers.      They  have  learned  the  use  of  '  =' 
to  refer  to  the  logical  relation  of  identity  [and  only  for  this]  and  are 
aware,    at  least  on  a  nonverbal  level,    of  the  basic  logical  principles 

which  govern  its  use   --  the   substitution  rule  for  equations  [page  6-359] 
and  the  principle  of  identity  [page  6-362],     They  also  understand  the 
use  of  variables  and  quantifiers,    and  the  role  of  test-patterns  as  proofs 
of  universal  generalizations.     Finally,    they  have  had  a  little  experience 
with  conditional  sentences  and  the  use  of  the  basic  principles  which 

govern  the  use  of  'if.  .  .  then   '   --  inodus  ponens  [page  6-367]  and 
conditionalizing,    and  discharging  an  assumption  [page  6-373],      Thus, 
they  are  in  large  part  prepared  for  understanding,    and  discovering, 
the  much  more  complex  proofs   required  for  theorems  of  geometry. 

That  they  have  this  much  preparation  is,    indeed,    fortunate.      For 
it  would  be  difficult  to  find  a  branch  of  mathematics  at  all  accessible  to 

high  school  students  which  is  less   suitable,    than  geometry,    as  an  intro- 
duction to  rigorous  thinking.     Because  of  its  intuitive  appeal  [to  students 

well-grounded  in  physical  geonietry]  and  the  intricacy  of  the  proofs  of 
most  of  its  substantial  theorenns,    it  is  fairly  good  as  a  second  experience 
with  proof.     However,   the  great  number  and  variety  of  geometrical 
concepts,    which,    admittedly,    adds  interest  to  the  subject,    results  in 
proofs  which  are,    for  the  most  part,    too  complex  to  be  accessible  to 

most   16  year-olds.      Consequently,    the  usual  high  school  geometry 
proofs  are  full  of  holes.     And,    for  that  inatter,    so  are  most  of  the  proofs 
in  this  unit.     However,    there  is  a  difference.      In  c6nventional  geometry 
courses,    the  holes  are,    for  the  most  part,    not  apparent  to  a  student, 

and  he  is,    in  consequence,    led  into  habits  of  sloppy  thinking.      In  con- 
trast,   a  student's  experience  in  studying  this  unit  should  result  in  his 

being  aware  of,    at  least,    inost  of  the  gaps  in  his,    and  the  text's,    proofs, 
and  in  his  knowing,    to  some  extent,    how  these  gaps  could,    given  time 
and  patience,   be  filled,     [At  this  point,    it  may  be  helpful  for  you  to  read 

some  of  the  COMMENTARY  for  page  6-18,    beginning  at  the  middle  of 
TC[6-18]a.] 

Sloppy  reasoning  is  not  inherently  bad  --  indeed,    in  dealing  initially 
with  a  complicated  situation  it  is  almost  unavoidable.     But,    what  is 
unconscionable  is  failure  to  be  aware  of  sloppy  reasoning  when  it  occurs. 
Now,    it  is  much  more  difficult  to  learn  to  reason  correctly,    after  one  is 
habituated  to  reasoning  sloppily,   than  it  is  to  learn  to  judge  the  degree 
of  sloppiness  which  a  given  occasion  justifies,    after  one  has  learned  at 
least  what  it  means  to  reason  correctly.      Consequently,    in  section 
6.01,   for  example,    proofs  are  given  in  considerable  detail,    and  such 
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gaps  as  there  are,    are  clearly  labelled  and  discussed  in  the  light  of  the 
Introduction  section.     [To  make  this  possible,    the  theorems  of  section 

6.01  are  of  a  rather  sinnple -minded  kind.]    As  a  student's  experience 
grows,    and  his   sensitivity  to  non  sequiturs  increases,    he   should  be 
allowed  to  oinit  more  steps  from  his  proofs.     [Of  course,    the  teacher 

should  run  frequent  spot-checks  to  make  sure  that  students  are  aware 
of  the  gaps  they  leave,    and  that  they  have  some  reasonable  basis  for 
believing  that  they  can  be  filled.]     Routine  procedures  for  omitting  steps, 
in  certain  circumstances,    or  of  certain  kinds,    are  discussed  on  page 

6-33  ['Introduction',    'algebra'],    page  6-42  ['figure'],    page  6-43  ['Steps 
like.  .  .  '],    and  page  6-72. 

It  has  been  said,    above,    that  the  theorems  of  section  6.  01  are  of  a 

rather  sinnple-niinded  kind.     By  this  it  was  meant  that  they  are,    for  the 
most  part,    intuitively  obvious.      For  example,    the  proof  of  Theorem  1-1 
[page  6-33]  shows  that  Axiom  A  implies  a  statement  which  Axiom  A  was, 
with  some  explicit  pains  [see  the  paragraph  beginning  with  the  last  five 

lines  on  page  6-30],    framed  to  imply.      It  is  sonnetimes  asserted  that  to 
ask  students  to  study  proofs  of  "obvious"  theoren-is  is  [necessarily] 
stultifying.      On  the  contrary,    for  a  student  who  already  has   some  notion 
of  proof  and  is  in  the  process  of  enlarging  this  notion,    such  proofs 
serve  as  tests  of  the  principles  of  logic  which  he  is  on  the  verge  of 
accepting.     Rather  pragmatically,   he  argues  that  since  the  use  of  these 
principles  enables  hiin  to  prove   some  theorems  which  are  intuitively 
correct,   the  principles  are  probably  valid.     Moreover,   the  principles 
will  be  worth  using  in  cases  where  the  result  to  be  proved  is   surprising. 

One  innovation  introduced  in  this  unit  is  the  one -column  proof. 
[This  is  not  absolutely  an  innovation,    since  it  is  commonly  favored  by 

logicians.  ]     The  two-column  proof  customary  in  conventional  geometry 
texts   gives    a   false  impression  of  the  logical  structure  of  a  proof  and, 

in  fact,    has  to  be  tortured  to  accomodate  "indirect"  proofs.    [This  may 
be  one  reason  why  indirect  proofs  are  considered  difficult  to  understand.  ] 

It  seems  a  likely  guess  that  the  two-column  form  grew  out  of  the  belief 
that  all  reasoning  is  syllogistic,    a  conclusion  belied  by  the  amazing 
growth  of  logical  theory  since   1840.     For  a  chain  of  syllogisms,   two 
columns  are  convenient: 

N 

minor  premiss  (1) 

conclusion  ( 1) 

[=  minor  premiss  (2)] 

conclusion  (2) 

major  premiss  (1) 

major  premiss  (2) 

etc. 
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For  the  more  varied  modes  of  reasoning  employed,    not  only  in  mathe' 
matics,    but  in  every-day  living,    this  form  is  totally  inadequate. 

If  one  wishes  to  display  the  structure  of  a  proof,    one  needs  some- 
thing equivalent  to  the  tree -diagrams  used  in  the  text.     [The  proof  of 

Theorem  1-5,    given  in  paragraph  form  on  pages  6-44  and  6-45,    ana- 

lyzed in  column-form  on  pages  6-400  and  6-401,    and  "treed"  on 
TC[6-400],    is  an  example  of  a  not  very  complicated  argument  which 
could  only  with  difficulty,    and  great  loss  of  clarity,    be  put  in  the 

standard  two-column  form.]    However,   tree-diagrams  are  very  uneco- 
nomical of  space,    especially  when  the  steps  of  the  proof  are  written 

in  the  diagram  instead  of  merely  being  referred  to  by  number.      Fortu- 
nately,   a  one-column  proof  does  not  distort  the  picture,    as  does  a  two- 

column  proof,    by  separating  "statements"  and  "reasons",    and  can 
easily  be  supplennented  by  marginal  comments  [see,    for  example,    page 

6-33]  which  convey,    less  graphically,   the  structure  which  is  displayed 

by  the  "tree". 

Although  the  writing  of  column  proofs,    supplemented  by  marginal 
comments,    and,   then,    diagramming  such  proofs  by  trees,    is  a  good 
way  to  learn  how  the  rules  of  reasoning  operate,    column  proofs,    despite 
conventions  for  omitting  steps,    grow  to  unwieldy  length  in  the  case  of 

most  "interesting"  theorems.     Consequently,    it  is  desirable  to  sunnma- 
rize,    or  outline,    colunnn  proofs  in  the  form  of  paragraph  proofs.     This 

is  done  frona  the  beginning  [see  pages  6-35  and  6-41],    and  students  are 
expected,    in  the  later  parts  of  the  unit,   to  give  paragraph  proofs  in 
preference  to  column  proofs.     This,    of  course,    is  what  they  will,    in 
the  natural  course  of  events,    be  expected  to  do  in  later  courses  in 
mathematics. 

It  is  now  high  time  that  something  is  said  about  the  particular 
organization  of  geometry  which  has  been  adopted  in  this  unit.     Mention 
has  already  been  made  of  the  complications  which  are  inherent  in 
geonaetry  because  of  the  number  and  variety  of  geometrical  concepts. 
The  situation  can  be  sinaplified  to  some  extent,    as  is  done  in  this  unit, 
by  treating  all  geometric  figures  as  sets  of  points.     This  approach  has 
the  added  advantage  of  giving  UICSM  students  additional  practice  in 
thinking  in  terms  of  the  concepts  of  set  and  operations  on  sets,    which 

concepts  are  of  fundamental  importance  in  much  of  present-day  mathe- 
matics.    However,    if  one  is  to  avoid  sloppy  thinking,    or  even  to  be 

aware  of  the  degree  of  sloppiness  in  his  thinking,    in  geometrical  matters, 
one  oiust  take  some  account  of  many  complications  which  still  remain. 
As  an  indication  of  the  kind  of  point  on  which  more  care  must  be  lavished 
than  is  usual,    if  one  is  to  give  adequate  proofs  of  geometry  theorems, 
consider  the  following  alleged  proof  of  the  statement: 
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Each  right  angle  is  congruent  to  an  obtuse  angle. 

D' 
Let  ZABC  be  any  right  angle,    and  construct  a  rectangle  ABCD.     Choose 

D',    outside  of  ABCD  so  that  the  segments  AD'  and  AD  have  the  sanne 
length.     The  perpendicular  bisectors  of  segments  DC  and  D'C  intersect, 
in  a  point  P,    as  shown  in  the  figure.     AAPB,    AD'PC,    and  ADPC  are 
isosceles  triangles;   so,   AAD'P  and  ABCP  are  congruent.     In  particular, 
ZPAD'  andZPBC  are  congruent  and,    since  ZSAPB  is  isosceles,  Z  PAB 
andZPBA  are  congruent.     Since  differences  of  congruent  angles  are 

congruent,  ZBAD'  and  ZABC  are  congruent.     But,  ZBAD'  is  an  obtuse 
angle;  so,  ZABC  is  congruent  to  an  obtuse  angle. 

[Before  reading  further  you  may  wish  to  discover  the  error  in  this 
reasoning.     A  carefully  drawn  figure  will  help.] 

The  error  in  the  supposed  proof  lies  in  the  tacit  assumption  that  the 

point  B  is  interior  to  ZPAD',   just  as  A  J^  interior  toZPBC,     It  is  on  the 
basis  of  this  assumption  that  one  argues  from  the  congruence  of  ZPAD' 
andZPBC,    and  the  congruence  of  Z  PAB  andZPBA,   to  the  conclusion 

that  ZBAD'  and  ZABC  are  congruent.     A  "carefully  drawn  figure"  will 
show,    for  example,   that  A  and  B  are  on  the  same  side  of  the  line  through 

P  and  D',    rather  than  on  opposite  sides  of  this  line,    as  suggested  by 
the  figure  above.     But,   this  should  not  restore  one's  feeling  of  satisfaction 
(if  any)  with  conventional  proofs,     A  proof  of  a  theorem  of  geometry 
should  show  by  logically  justifiable  steps  that  the  theorem  is  a  consequence 
of  the  postulates.     V/hen  one  introduces  into  his  reasoning  a  conclusion 
drawn  only  from  a  figure,    whether  the  picture  is  the  one  above,    or  a 

"carefully  drawn"  one,   he  has  departed  frona  this  standard  of  rigor. 
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Without  recourse  to  the  postualtes,    one  has  no  nnore  justification  for 

introducing  into  a  proof  his  "correct"  conclusion  as  to  the  relative 
position  of  the  points  A  and  B  than  the  writer  of  the  proof  given  above 

had  for  assuming  that  B  is  interior  to  Z  PAD'. 

\ 

COURSE    CONTENT 

In  order  to  give  rigorous  proofs  of  theorems  of  geometry  it  is  es- 
sential that  one  pay  attention  to  questions  such  as  which  of  three  col- 

linear  points  is  between  the  other  two,    and  whether  two  points  are  on 
the  same  side  of  a  line,    or  on  opposite  sides  [or  neither].     For  many 
reasons,    it  is  impossible  to  adhere  consistently  to  such  standards  of 
rigor  in  an  elementary  course.     However,    as  remarked  earlier,    it  is 
not  so  important,    at  this  level,    at  least,   to  adhere  to  such  standards  as 
to  be  aware  of  when  one  departs  fronn  them.     In  order  to  lay  the  basis 
for  such  an  awareness  [and  also  to  introduce  some  concepts  which  will 
be  of  continual  use  in  the  sequel],   the  unit  begins  with  an  Introduction 

[pages  6-1  through  6-28]  which  deals,   for  the  most  part,    with  the 
notion  of  betweenness  and  related  concepts.     Students  become  ac- 

quainted with  fifteen  Introduction  Axioms  [which  they  are  not  expected 
to  memorize]  and  with  a  few  of  the  theorems  which  follow  from  these 
axioms.     To  help  teachers,    who  so  desire,   to  appreciate  a  rigorous 
exposition  of  euclidean  geonnetry,    proofs  of  these  theorems  are  given 
in  the  COMMENTARY.      Later,    at  appropriate  places  in  the 
COMMENTARY,    other  such  theorems  are  proved.     Furthermore,   the 
answers  in  the  COA-IMENTARY  for  the  exercises  are  usually  given 

in  complete  enough  detail  that  a  teacher  can  supply  such  "Introduction 
material"  as  is  necessary  for  a  rigorous  solution  of  each  exercise. 
Suggestions  as  to  how  far  one  may  m.ake  use  of  such  material  in  class 
will  be  given  later. 

The  geometrical  content  of  section  6.  01  has  to  do  with  measures  of 
segments.      Three  axioms  are  introduced,    and  some  of  their  consequences 
derived.     Section  6,  02  deals  with  angles,    and  their  degree-nneasures, 
perpendicularity  and  adjacent  angles.     Five  more  axioms  on  angle - 
measure  and  its  relation  to  segnnent -measure  are  introduced  in  this 
section.     [Except  for  two  axioms  on  area-measure,    introduced  in 
section  6.  11,   this  completes  the  set  of  axioms.]    At  this  point,    special 
mention  should  be  made  of  Axiom  E,    first  given  on  page  6-54,      This  is 
an  existence  axiom  which,    among  other  things,    guarantees  the  existence 
[and  uniqueness]  of  the  perpendicular  to  a  line  at  a  point  on  it  and,    as 
is  seen  later,   also  guarantees  the  existence  of  the  parallel  to  a  given 
line  through  a  given  point  not  on  the  line,     [in  this  connection,   note  that 
lines  are  sets  of  points  and  exist  independently  of  our  labors.     Properly, 
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one  considers  the  (already  existing)  line  through  two  given  points,    or 

perpendicular  to  a  given  line  at  a  given  point,    rather  than  "constructing" 
or  "drawing"  it.     The  usual  justifications  of  constructions  are  actually- 
proof  s  of  the  existence  of  lines,    circles,    or  what  have  you,    which  satis- 

fy given  conditions.     On  the  other  hand,    in  classroonn  discussion  of 
pictures  drawn  to  illustrate  geometrical  situations,    it  is  perfectly 

correct  to  say,   for  example,    'Draw  the  circumcircle  of  the  triangle.  ', 
meaning  thereby  that  the  hearer  is  to  draw  a  picture  of  this  circle. 
In  writing  up  the  corresponding  proof,    one  might  find  it  convenient  to 

write  'Consider  the  circumicircle  of  the  triangle.  ',    or  'Let  O  be  the 
center  of  the  triangle's  circumcircle.  '.]    Axiom  F  justifies  conclusions 
as  to  the  sums  of  measures  of  adjacent  angles.     Axiom  H  furnishes  a 
quick,    and  natural,    path  to  the  usual  congruence  theorems  for  triangles. 

One  point  of  usage  introduced  in  section  6.  01  may  also  require 
special  mention  here.     In  view  of  the  fact  that  in  this  as  in  earlier 

units  '='  always  means  'is'  in  the  sense  of  'is  the  same  as',    one  must 
refrain  from  speaking  of  'equal  angles'  or  'equal  segnnents'  except  in 
cases  in  which  only  one  angle  or  segment  is  being  referred  to.     Two 
angles,    or  segments,    are,   by  virtue  of  their  being  two,    never  equal. 
However,    in  case  they  have  the  same  measure,   they  are  congruent. 

In  section  6.  03  the  notion  of  a  triangle  is  introduced,    and  the 
congruence  theorems  s.  s.  s.  ,    s.  a.  s.  ,    and  a.  s.  a.    are  proved,   together 
with  the  usual  applications  to  isosceles  triangles,    etc.     In  going  over 
this  material,    one  realizes  that  one  seldom  is  interested  in  merely 
proving  that  two  triangles  are  congruent.     What  one  wants  to  know  is 

that,   for  example,   two  angles  are  congruent  "because  they  are  corre- 
sponding parts  of  congruent  triangles".     The  need  to  be  able  to  know 

without  referring  outside  a  proof,   which  are  "corresponding  parts  of 
congruent  triangles"  motivates  the  discussion  of  matching  [page  6-80, 
et.    seq.  ]  and  the  somewhat  unusual  form  in  which  the  congruence 

theorems  are  stated  [page  6-86]. 

Section  6.  04  deals  with  geometric  inequations   --  the  exterior  angle 
theorem  is  perhaps  the  most  familiar  exannple  of  a  theorem  which  deals 
with  such  matters.     A  strong  case  could  be  made  for  the  statement  that, 
throughout  mathematics,    inequations  occur  more  frequently  than  equations. 
Consequently,   inequations  deserve  a  much  more  extended  treatment 
then  has  customarily  been  accorded  to  them  in  elennentary  courses. 

Section  6.  05  deals  with  parallel  lines,   alternate  interior  angles, 
etc.     The  exercises  give  a  preview  of  the  developments  in  section  6.  06 
which  treats  of  polygons,   with  special  emphasis,    as  usual,    on  various 
kinds  of  quadrilaterals.     In  this  latter  section  students  are  given  an 
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opportunity  to  search  out,    and  prove,   theorems  of  their  own  devising 
[see  the  two  final  paragraphs  on  page  6-166]. 

After  a  short  interlude  on  the  notion  of  necessary  and  sufficient 
conditions,    which,    incidentally,    serves  as  a  review  of  section  6.  06, 
section  6.  07  takes  up  proportionality  and  the  concept  of  similarity. 
Section  6.  08  applies  some  of  the  results  to  an  elenaentary  discussion 
of  trigonometric  ratios. 

Section  6.  09  is  a  short  introduction  to  analytic  geometry.     The 

COMMENTARY  for  page  6-232  attempts  to  clarify  the  role  of  measure 
■■which,  in  contrast  to  conventional  treatnnents,    plays  a  pronninent 
part  in  this  unit  --in  euclidean  geometry. 

Section  6.  10  introduces  circles  and  related  concepts.     There  are 
the  usual  theorems  on  tangents,    inscribed  circles,    measures  of  angles 
inscribed  in  a  circle,    etc.     The  COMMENTARY  for  page  6-329  contains 
a  rather  extensive  discussion  of  the  notion  of  arc -length-measure  [as 
contrasted  with  arc -degree-measure],    for  those  who  wish  to  go  further 
than  does  the  text  into  such  questions  as  why  the  circunnference  of  a 

circle  is  given  by  the  fornnula  'c  =  27rr'. 

The  final  section,    6.  11,    deals  with  area-nneasure.     As  a  basis  for 
justifying  the  conclusions  which  are  drawn,   two  additional  postulates 
are  introduced,    and  some  theorems  whose  proofs  are  far  beyond  the 
level  of  this  course  are  introduced  without  proof. 

Following  the  appendix  on  logic  there  are  collections  of  supple- 
mentary exercises.     Most  of  these  are  referred  to  at  appropriate  points 

in  the  text.     [See  bottom  of  page  6-50  for  an  example  of  such  a  reference.] 
They  consist,    for  the  naost  part,    of  easy  exercises  and  are  meant  to 
supplement,    at  need,   the  nninimunn  collections  of  such  exercises  in  the 
text  proper.     However,    some  contain  minor  theorenns.     Certain  of  the 
collections  of  supplementary  exercises  are  not  signalled  in  the  text 
but  are  noticed  at  appropriate  places  in  the  COMMENTARY.     Among 

these  are  the  ones  on  sets  [pages  6-402  through  6-404]  and  on  square 
root  [pages  6-431  and  6-432].     They  will  be  of  help  to  students  who 
have  not  studied  Unit  5  or  who  need  a  review  of  these  subjects. 

Finally,   there  is  a  collection  of  review  exercises,    some  easy, 
others  difficult.     They  are  suitable,    for  exannple,   to  use  as  reminders 
of  geometry  at  times  when  students  are  studying  later  units.     They 

include  [pages  6-451  through  6-453]  the  only  specific  mention  of  the 
word  'locus'  in  the  course.      You  nriay,    if  you  wish,    bring  up  the  concept 
of  locus  at  some  earlier  point. 

TC[6-viii] 





In  addition,    of  course,   to  Units   1  through  5,   there  are  a  number  of 
books  which  can  be  of  help  to  a  teacher  who  wishes  to  supplement  his 

mathematical  background.     Among  those  which  are  particularly  perti- 
nent to  the  subject  matter  of  Unit  6,   the  following  are  especially  worth 

mentioning: 

Euclid's  Elements,   translated  with  introduction  and  commentary 
by  Sir  Thomas  L.    Heath  [3  vols.]    [Dover  reprint] 

The  Foun'^ations  of  Geometry,    by  O.   Veblen,    in  Monographs  on 
Topics  of  Modern  Mathematics,    edited  by  J.    W.   A.    Young 
[Dover  reprint] 

How  to  Solve  It,   by  G.    Polya  [Anchor  Books  reprint] 

Mathematics  and  Plausible  Reasoning,    by  G.    Polya  [Z  vols.  ] 
[Princeton  University  Press] 

Introduction  to  Logic,    by  P.    Suppes  [Van  Nostrand] 

PEDAGOGY 

A  person  who  reads  this  unit  [or,    for  that  matter,    any  of  the  UICSM 
units]  and  notices  the  care  we  have  used  in  saying  things  precisely  is 
likely  to  go  away  thinking  that  the  teachers  and  students  who  use  the 
text  must  also  carry  on  their  classroom  conversations  with  the  same 
kind  of  precision  of  spoken  language.     A  visit  to  the  classroom  of  a 
teacher  who  is  using  these  textbooks  properly  would  soon  dispel  such  a 
notion.     Any  successful  teacher  knows  that  the  spoken  word  conveys 

only  a  small  portion  of  the  ideas  which  are  exchanged  in  face-to-face 
communication.     Spoken  words  are  accompanied  by  paralinguistic 
devices  such  as  intonations,    inflections,    and  pauses,    as  well  as  by 
kinesic  devices  such  as  shrugs,      grinnaces,    and  hand  movements. 
Teachers  who  have  learned  to  recognize  the  nonverbal  awarenesses  in 
their  students  which  are  promoted  through  exploratory  exercises  have 
really  succeeded  in  opening  more  channels  of  communication  between 
themselves  and  their  students.     Since  the  most  cleverly  formulated 
metaphor  in  written  language  is  probably  not  as  effective  as  the  into- 

nations which  any  child  will  pick  up  from  his  culture,    a  textbook  author 
must  maintain  a  high  standard  of  precision  when  he  makes  assertions. 
If  he  tries  to  use  only  examples  to  get  a  generalization  across  [as  we 
do  in  many  places],   there  must  be  a  skillful  teacher  somewhere  in  the 
picture  who  can  detect  nonverbal  awareness,    and  who  can  invent  more 
examples  when  necessary.     And,    of  course,   the  teacher  can  rely  upon 
spoken  language  with  all  of  its  paralinguistic  and  kinesic  devices  to 
enrich  the  communication  as  he  gives  the  examples. 
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The  teaching  of  geometry  has  a  long  tradition  of  excellent  pedagogy 
and  practically  all  of  it  can  be  used  in  teaching  this  unit.     Take,   for 
example,   the  technique  of  helping  students  discover  relationships  by 
using  deformable  figures  or  having  students  imagine  points  moving  or 

lines  rotating.     Although  these  things  are  not  part  of  our  formal  geo- 
nnetric  structure,    we  fully  expect  teachers  to  make  ample  use  of  them 
in  the  classroom.     A  few  of  these  techniques  are  suggested  in  the 
COMMENTARY  and  we  urge  teachers  to  familiarize  themselves  with 
some  of  the  vast  professional  literature  on  the  subject.     In  writing  the 
COMMENTARY  we  have  assumed  that  either  the  teacher  has  had  ex- 

perience in  using  such  devices  in  conventional  courses  and  will  not 
hesitate  to  use  them  in  this  one  or  that  he  has  access  to  additional 

pedagogical  sources. 

N 

In  a  similar  fashion,   we  are  also  assuming  that  teachers  and 
students  will  feel  free  to  invent  names  for  the  axioms  and  theorems 
which  are  used  over  and  over  again  or  which  take  so  many  words  to 
state  that  to  do  so  in  class  discussion  or  even  on  homeowrk  papers 

would  be  irksome.     For  example,   Axiom  A  naight  be  called  'the  point - 
on-segment  axiom'  or  'the-segment-sum  axion:i';  Axionri  F  might  be 
called  'the -angle -sum  axiom';  Theorem  3-5  might  be  called  'the -base- 
angles -of -an-isosceles -triangle  theorem'.     [Even  in  the  text  itself,   we 
felt  it  necessary  to  use  the  familiar  names  's.  a.  s.  ',    's.  s.  s.  ',    etc.    for 
the  various  triangle -congruence  theorems.]     The  need  for  such  short 
names  will  arise  naturally  in  class,    and  the  inventions  should  conne 
from  the  students  with  help  from  the  teacher.     Of  course,   the  teacher 
will  want  to  make  occasional  checks  to  be  sure  students  can  state  the 
theorenas  they  actually  use,    but  no  attempt  should  be  naade  to  compel 
students  to  mennorize  the  wording  used  in  the  text. 

As  a  teaching  aid  we  have  included  in  the  COMMENTARY  a  quiz 
for  each  section,    a  naid-unit  quiz,    and  a  unit  quiz.     For  the  most  part, 
these  quiz  items  are  designed  to  test  the  "average"  student.     They  are 
straight -forward  and  reasonably  routine,    probably  more  so  than  are 
the  regular  exercises  in  the  text.      For  classes  of  high  ability  students, 
these  tests  should  be  augmented  with  more  difficult  items.     In  a  few  of 
the  tests  we  have  included  starred  items  for  this  purpose.     But,    once 
again,   we  are  assuming  that  the  teacher  is  responsible  for  evaluating 
his  course,    and  that  he  has  access  to  sources  of  ideas  for  test  questions. 
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[in  this  connection,   we  call  to  your  attention  the  excellent  problem  book  ^^^ 
Mathematics  Review  Exercises  (3rd  Edition)  by  Snnith  and  Fagan  (Boston:  ^ 
Ginn  and  Company,    1956).     Since  the  problems  in  this  book  are  designed 
for  the  conventional  high  school  curriculum,   they  are  not  stated  in 
language  which  follows  our  conventions.     Nevertheless,   the  problem 
ideas  are  good  and  varied,    and  it  is  not  hard  to  rephrase  the  problems 
if  you  wish  to.      In  fact,    after  your  students  have  completed  section  6.  06, 
they  should  be  able  to  handle  geometry  problems  stated  in  conventional 
language,   for  the  statements  of  such  problems  are  mostly  descriptions 
of  drawings.  ] 

As  mentioned  earlier,    many  of  the  solutions  given  in  the  COMMEN- 
TARY deal  with  issues  which  a  teacher  would  not  expect  to  find  in  so- 
lutions submitted  by  students.     These  COMMENTARY  solutions  are  not 

to  be  regarded  as  models  against  which  a  student's  solutions  should  be 
graded.     They  are  included  to  alert  the  teacher  to  opportunities  to  point 
out  to  all  students  that  there  are  gaps  in  their  solutions.     For  most 
students,   for  example,    a  good  job  of  teaching  would  consist  in  having 
them  admit  that  they  did  assume,    probably  without  knowing  it,   that  the 
diagonals  of  a  parallelogram  crossed  each  other.     Other  students  should 
express  their  conviction  that  such  an  assumption  could  be  predicted  from 
the  axioms.      And,    still  other  students  should  feel  that  given  enough 

time  and  patience,   they  could  probably  carry  out  the  steps  in  the  deri- 
vation.    Naturally,   the  teacher  does  not  raise  these  issues  for  every 

exercise  in  the  text.     But,   he  should  do  it  enough  tinnes  to  insure  that 
students  do  not  leave  the  course  thinking  that  their  proofs  are  connplete, 
and  that  they  know  all  there  is  to  know  about  geometry.     In  fact,   the 
course  will  have  been  successful  if  the  students  have  become  sufficiently 
critical  observers  to  raise  these  issues  themselves. 

As  remarked  at  the  beginning  of  this  introduction,   this  unit  can  be 
taught  before  Unit  5  or  after  Unit  5.     The  choice  depends  largely  on 
local  custom.     In  some  high  schools  it  is  expected  that  students  complete 
their  geonaetry  course  by  the  end  of  the  tenth  grade  because  nnany  of 
them  will  not  study  more  mathematics  in  high  school.     If  it  is  likely 
that  students  will  not  complete  Unit  6  at  the  end  of  the  tenth  grade  should 
it  be  taught  after  Unit  5,   the  natural  order  of  the  units  should  be  reversed. 
Unit  5  contains  many  topics  which  are  customarily  taught  at  the  eleventh 
grade  level. 
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It  should  be  pointed  out,   however,   that  Unit  6  is  designed  for  ^ 
students  who  have  studied  Units   1-4.     A  teacher  who  wishes  to  use 
Unit  6  with  students  who  have  not  been  through  Units   1-4  will  have  at 
least  two  major  problenas.     The  first  of  these  is  to  prepare  his  students 

for  the  use  of  set-notation.     Although  the  supplementary  exercises  on 
pages  6-402  through  6-404  will  help  in  this  matter,   they  will  not  be 
enough.     The  second  problem  is  more  serious.     Students  of  Units   1-4 
have  experienced  a  careful  development  of  deductive  proof  in  algebra. 
They  know  what  proof  does,    and  naany  of  them  have  acquired  a  real 
taste  for  it.     That  is,   they  feel  uncomfortable  about  leaving  provable 

things  unproved,    not  because  they  need  to  be  convinced  of  their  cor- 
rectness,   but  because  they  want  to  show  that  the  things  fit  in  the  system. 

Unit  6  simply  continues  in  this  vein.     Proving  theorems  is  an  accepted 

thing  for  these  students  and  they  don't  have  to  be  motivated  by  the  usual 
devices  found  in  conventional  geometry  textbooks.     Moreover,   the 

appendix  on  logic  which  attempts  to  call  students'  attention  to  some  of 
the  principles   underlying  deductive  reasoning  includes  many  exannples 
of  proofs  of  theorems  studied  in  Unit  2,     These  two  problems  --  the 
use  of  set-notation  and  the  need  for  motivating  proof  --  are  not  insuper- 

able but  their  solution  does  demand  more  instructional  material  than  is 
provided  in  Unit  6. 

To  end  this  Introduction  on  a  highly  practical  note,   we  pass  on  to 

you  Mr.   Howard  Marston's  suggestion  that  you  use  index  tabs  or  loose- 
leaf  dividers  to  mark  the  various  sections  of  the  book. 
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A  VISIT  TO  THE  PLANET  GLOX  is  intended  to  reacquaint  the  student 

with  the  idea  that  if  he  accepts  certain  *'facts",  he  can  deduce  new information  from  these  facts.     This  new  information  will  be  as  valid 

as  the  previous  facts.     Thus,   Jo  at  Zabranchburg  High  deduces  new 
information  from  the  five  original  messages.     These  new  facts  were 
verified  by  the  observations  of  the  second  space  nnan  but  this  was  an 
unnecessary  expenditure  of  time. 

Pages  6-1  through  6-6  should  be  completed  in  one  day.     V/riting 
Messages  1-5  on  the  board  as  a  student  reads  may  prove  helpful  for 
the  discussion  on  page  6-4.     At  this  stage  we  do  not  intend  that  the 
student  nnake  a  verbal  identification  of  cities  with  points,  and  high- 

ways with  lines.  Even  though  you  know  that  these  nnessages  will  "turn 
into"  the  axioms  of  connection,    do  not  suggest  that  the  student  think  in these  terms. 
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Message  B. 

Jo  had  just  deduced  that  there  were  at  least  three  highways.     Message 
3  had  told  her  there  were  at  least  three  cities.     She  wondered  if 

there  were  two  highways  Vv'hich  inet  in  two  cities  A  and  B. 

But,    Message  5  told  her  that  there  was  one  and  only  one  highway 
connecting  two  cities  A  and  B,   which  convinced  her  that  there  could 
not  be  two  highways  running  between  cities  A  and  B. 

Message  C. 

Jo  started  thinking  about  the  cities  on  Glox.     Could  she  get  on  sonae 
highway  in  city  A  and  travel  through  every  otiier  city  on  Glox  without 
changing  highways?     If  this  were  the  case,    then  each  Gloxian  city 
had  to  be  on  this  highway.     But,    Message  3  said  that  there  were  at 
least  three  cities  not  all  on  the  same  highway.     She  deduced  that  there 

was  at  least  one  city  she  couldn't  reach  by  staying  on  this  highway. 

Sentences   (1),    (2),    and  (3)  concerning  the  businessmen  in  Zabranchburg 
are  analogous  to  Messages  3,    4,    and  5  froiTi  Glox.      The  sentence  that 
says  that  there  are  at  least  three  partnerships  among  these  businessmen 
corresponds  to  Message  A,    and  can  be  deduced  in  a  manner  entirely 

parallel  to  Jo's  reasoning.     We  can  also  deduce  sentences  corresponding 
to  Messages  B  and  C. 

Corresponding  to  Message  B:     There  are  not  two  partnerships  which 
contain  the  same  two  businessmen.     If  the  students  do  not  respond 
readily  with  such  a  statement,   accept  an  instance  such  as: 

If  Smith  and  Jones  are  two  businessmen,   there  are  not  two 

partnerships  to  which  both  Smith  and  Jones  belong. 

Corresponding  to  Message  C: 
businessmen. 

No  single  partnership  contains  all  the 
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Answers  for  questions  on  page  6-9. 

line  12.  One. 

line  14.  No.   [Remember  that  when  we  talk  about  two  straight  lines 

i  and  nn,  we  mean  that  i  and  m  are  different  straight  lines, 

that  is,    that  H  ̂   m,  ] 

line  15.  Yes.    [parallel  straight  lines] 

line  20.  Read  'i  '^  m  =  {P}'  as  'the  intersection  of  lines  i  and  m  is 

the  set  consisting  of  the  point  P'  or  as  *S.  intersects  m  at  P' 

or  as  *i  intersects  m  in  P'. 

^ — ^  K  ̂   K  ̂  

line  4b.  PR  is  m;    PQ  ̂   PR  =  {P}    [Read  the  latter  as  'the  intersec- 

tion  of  lines  PQ  and  PR  is  the  set  consisting  of  the  point  P' 

or  as  'lines  PQ  and  PR  intersect  at  [or  :  in]  P'.  ] 

<-»       <— >       ,     ̂     ̂   <-> 
line  3b.  PQ  -^  RQ  =  {Q  )    [Although  RQ  is  not  pictured  in  the  figure, 

it  does  exist.  ] 

<— >       <— >      <->      <— > 
line  lb.  Yes;    AB  ̂   BA  =  AB  =  BA 
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Since  we  wish  to  think  of  geometric  figures  as  sets  of  points,   we  do  not 

say  that  a  point  is  a  geometric  figure.     The  set  consisting  of  a  point  P 

is  a  geometric  figure.     However,   avoid  any  discussion  of  this  matter. 

On  the  other  hand,   the  distinction  between  P  and  {P}  must  be  made 

clear.     The  following  example  nnay  help. 

Suppose  that  the  Zabranchburg  High  School  Music  Club  has 
ten  members.     Five  members  graduate  and  three  members 
move  away.     Mary  Smith  and  Jane  Dale  are  still  members 
of  the  club.     Now,    suppose  that  Mary  Smith  resigns.     Jane 
Dale  is  still  a  member  of  the  club.     The  Student  Council  de- 

cides to  abolish  the  club,   but  it  does  not  abolish  Jane  Dale. 

[Chapter  III  of  the  23rd  Yearbook  [NCTM]  is  a  very  good  reference  if 
you  wish  to  read  more  about  sets  in  general,  or  about  the  distinction 
between  a  singleton  set  and  its  single  member.] 

Observe  that  a  sentence  such  as: 

the  intersection  of  two  straight  lines  is  at  most  a  single  point 

is  meaningless.     It  is  correct  to  say     'The  intersection  of  two  straight 

lines  contains  at  most  a  single  point*.     Since  a  straight  line  is  a  set  of 
points,   the  intersection  of  two  straight  lines  must  be  a  set.     If  the  lines 

are  parallel,    this  intersection  is  the  empty  set.     If  the  lines  are  not 

parallel,   the  intersection  is  a  set  consisting  of  a  single  point. 

The  Supplementary  Exercises  on  page  6-402  are  designed  to  acquaint 

[or  reacquaint]  the  student  with  set  notation.     You  may  wish  to  use  these 

exercises  to  facilitate  the  reading  of  page  6-9  and  subsequent  pages. 

[Also,   see  section  5.02  of  the  1960-61  edition  of  Unit  5  and  the  related 

COMMENTARY.  ] 
■J, 
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Answers  for  questions  on  page  6-10. 

line  1.     No. 

line  3.     One.      [Read  'i  r>  AB  =  0  '  as  *i  and  AB  have  no  point  in 

common'  or  as   'i  and  AB  intersect  in  the  empty  set'  or  as 

'the  intersection  of  i  and  AB  is  empty'  or  as  'i  and  AB  do 

not  intersect'.  ] 

line  6.     Notice  the  use  of  'if  and  only  if.      This  is  the  first  occurrence  of 
this  sentence  connective  in  Unit  6.      [See  pages  6-390  and  6-391.] 

At  this  time  point  out  to  the  student  that  the  'if  and  only  if  in 
line  6  tells  him  that  whenever  he  sees  a  sentence  like  's  is  par- 

allel to  t'  he  can  replace  it  by  the  sentence  's  r^  t  =  0',    and 
conversely,    's  /^  t  =  0'  can  be  replaced  by  's  is  parallel  to  t'. 

By  our  definition,    which  is  the  one  ordinarily  used  in  secondary  school 

mathematics,   a  line  is  not  parallel  to  itself  [V.  Jl  r\  i  =  S.  and  i  /  0].     In 

more  advanced  work,    it  is  sometinnes  convenient  to  use  the  following 
definition: 

V.  V      i  is  parallel  to  m  if  and  only  ifi/^m  =  0ori  =  m 

line  7.  No;  yes.  [Suppose  that  s  is  parallel  to  t.  Then,  by  definition, 
3  r\  t  =  0,  Since  intersection  of  sets  is  a  commutative  opera- 

tion,  t  r^  s  =  0.      So,    again  by  definition,   t  is  parallel  to  s.] 

line  8.     No.     [it  could  be  the  case  that  i  -  n.     But,   it  does  follow  that  i 
is  parallel  to  n  or  i  =  n.     If  we  had  started  the  question  by  say- 

ing that  i,    m,   and  n  are  three  lines     then  the  conclusion  that  i 
is  parallel  to  n  would  follow.] 

line  11.     Yes. 

lines  12-13.    Here  is  another  occurrence  of  'if  and  only  if.     Be  certain 
that  students  understand  that  if  you  are  told  that  M,   N,   and 
R  are  collinear  points    then  you  can  conclude  that  there  is  a 
line  which  contains  M,    N,    and  R,    and  if  you  are  told  that 
M,    N,    and  R  belong  to  the  sanne  line  then  you  can  conclude 
that  M,    N,   and  R  are  collinear  points. 
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The  answers  to  the  exercises  on  page  6-10  and  everywhere  else  in  the 
Introduction  should  be  informal.     Do  not  expect  or  insist  on  polished 

answers,    especially  to  the  tell-why  questions .      Renaember,    the  pur- 
poses of  the  Introduction  are  to  build  up  good  intuition  about  problems 

concerning  coUinearity,     order  of  points  on  a  line,     separation,     etc., 
and  to  give  practice  in  using  set  notation. 

line  19, Note  the  use  of  a  principle  about  sets  in  the  Solution  to  Sample 
2.     If  a  point  belongs  to  a  first  set  and  to  a  second  set  then  it 
belongs  to  their  intersection.     [See  section  5.02  of  the  1960- 
61  edition  of  Unit  5  for  a  detailed  treatment  of  the  principles 
of  sets .  ] 

Answers  for  Part  A   [on  pages  6-10  and  6-11]. 

1.     Drawings  like  any  of  the  following  five.     Be  sure  that  all  five  are 
shown  in  class . 

2. 

3.       Can't  occur.     Two  straight  lines,   i  and  m.,    cannot  have  more  than 
one  point  in  common.     '{P,  R}  C   i  /^  m'  and  'P  f  R',   together,    say 
that  i  and  m  have  two  points  in  common. 

4. 

D 

[Any  picture  which  shows  A,    B,    C, 
and  D  coUinear  is  correct.] 
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[Read  *{r  r\  s)  r\  t*  as  *r  intersection  s  intersection  t' 
for  the  set  of  points  which  belong  to  both  t  r^  s  and  t. 
if(r/^  3)r>t  =  rr>,(s/^t).] 

It  stands 
Ask  students 
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Answers  for  questions  at  the  bottom  of  page  6-11. 

On  marking  another  point  V  on  i,    students  may  produce  one  of  three 

pictures. 

Q 
For  this  picture,    statements 

(3)  and  (4)  are  true. 

Q 
For  this  picture,    statements 

(5)  and  (6)  are  true. 

Q 
For  this  picture,    statements 

(1)  and  (2)  are  true. 
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<— ̂     <— > 14.    Can't  occur.     If  A,    B,    and  C  are  three  collinear  points,    AC  =  BC; 
<-^  .<— ̂  and,    if  B,    C,    and  D  are  three  noncollinear  points  then  BC  f  CD. <— >  ,<— >  _ 

So,    if  the  conditions  of  the  exercise  are  met,   AC  ;=  CD,    and  A,    C, 

and  D  are  not  collinear. 

16.    Can't  occur.     If  A,   B,    C,    amd  D  are  four  points  then  B  /  A.     Hence, < — >  <-^  <-^  <— > 
if  B  €  AC  then  C  e  AB,   and  if  B  e  AD  then  D  €  AB.     Consequently,    if ^— > 

the  conditions  of  the  exercise  are  met,    both  C  and  D  belong  to  AB, 

and  A,   B,    C,    and  D  cannot  be  noncollinear. 

'f 

Answers  for  Part  ''^B    [on  page  6-11]. 

1.  Yes.     If  s  is  empty  or  consists  of  a  single  point  [that  is,    if  s  is  a 

degenerate  set],   then  s  is  clearly  a  set  of  collinear  points.     Now, 

suppose  that  s  contains  at  least  two  points,    and  let  A  and  B  be  two 

points  of  s.     If  X  is  any  other  point  of  s  then,    since  each  three <-^ 
points  of  s  are  collinear,    X,    A,    and  B  are  collinear.     So,    X  €  AB, 

Since,    also,    {A,  B]  ̂ AB,    it  follows  that  each  point  of  s  belongs  to 

AB.     Consequently,    s  is  a  set  of  collinear  points. 

2.  No.     Since  any  two  points  are  collinear,    any  set  of  noncollinear 

points  is  a  counter-example. 

3.  t  is  a  straight  line.     For,    since  t  is  a  set  of  collinear  points,   there 

is  a  straight  line  i.  such  that  each  point  of  t  belongs  to  i--that  is, 

such  that  t  Ci.     Now,    if  P  e  i,    it  follows  that  each  point  of  t  ̂   {P} 

belongs  to  i.  and,   hence,    that  t  ̂   {P}  is  a  set  of  collinear  points. 

But,   we  are  given  that  if  P  ̂   t  then  t  "^  {P}  is  not  a  set  of  collinear 

points.     So,    we  know  that  if  P  £i  then  it  is  not  the  case  that  P  J^t, 

That  is,    each  point  of  i  belongs  to  t.     Since  each  point  of  t  belongs 

to  i  and  each  point  of  i  belongs  to  t,    t  =  I. 
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8. 

9. 

10. 

Same  answer  as  for  Exercise  7. 

Can't  occur.     A  subset  of  the  intersection  of  two  sets  is  a  subset 

of  each  of  them.     So,    if  {P,  Q}  C  (r  r^  s)  '^  t  then  {P,  Q}  C  r  ̂   s. 

Thus,    we  have  the  same  situation  as  in  Exercise  3.      This  provides 

a  chance  for  sonrae  good  teaching  in  showing  students  how  to  reduce 

a  new  problem  to  one  which  has  already  been  solved. 

[Read  *t  r~\  (r  ̂ ^  s)'  as  'the  intersection  of  t  and  the  union  of  r  and  s'. 
Students  will  find  the  exercise  very  easy  if  they  recall,    from  Unit 

5,    that  t  r>,  (r  v_/  s)  =   (t  -^  r)  w  (t  r^  s).     If  they  don't  recall  it,    they 
may  discover  the  generalization  as  a  result  of  working  the  exercise.] 

't 

s  s 

Exercises  1-9  are  the  build-up  for  Exercise  10.     Although  we  do  not 

introduce  the  term  'transversal'  at  this  tinne,   Exercise  10  actually 

foreshadows  the  definition  given  on  page  6-142. 

11.     Any  figure  showing  four  collinear  points,   A,    B,    C,    and  D. 

C  B 

Any  two  intersecting  lines,  i  and  m, 

such  that  £  r^  m  =  {B},    {A,  B,  C}  C  i, 

and  (B,  D,   E}  C  m 

C    [To  say  that  points  are  noncollinear 

amounts  to  saying  that  there  does  not 

exist  a  line  which  contains  all  of  them.] 
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Answers  for  questions  on  page  6-12. 

line  4.     Only  one. 

lines  7,    8. 

B B  is  between  A  and  D, 

C  is  between  A  and  D. 

-I" 

Read  'P^'  as  'half -line  PQ'. 

Notice  that  P  /  PQ  .     [Pel,   but  P  is  not  on  either  side  of  itself.  ] 

If  the  students  are  familiar  with  the  idea  of  complementation  of  sets 

[see  the  Supplementary  Exercises  on  pages  6-403  and  6-404],    they 
may  appreciate  the  statement: 

if  P  e  i  then  the  complement  of  {P}  with 

respect  to  i  is  the  union  of  two  half-lines 

This  is  a  fancy  [and  correct]  way  of  saying  that  if  you  pluck  a  point 

out  of  a  line,    what's  left  is  a  pair  of  half-lines. 
'I* 

The  first  paragraph  on  page  6-12  makes  clear  that  betweenness  is 
a  notion  that  pertains  to  coUinear  points. 
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Suppose  that  B  is  also  between  A  and  D.      Where  might  D  be? 

[Answers  should  lead  to  concluding  that  either  D  is  between  B  and  C,    or 

D  =  C,    or  D  is   "to  the  right  of  C".     Indicate  on  drawing.] 

(D)  (D)  (D) 
A  B  C 

Suppose,   now,   that  D  /  C. 

(D)  i^        (D) 
A  B  C 

What  can  we  sayaboutB,    C,    andD?     [Discussion,    pronnpted  if  necessary 

by  the  question  'Can  we  be  sure  that  D  is  between  B  and  C7\    should  lead to  the  conclusion  that  either  C  is  between  B  and  D  or  D  is  between  B 
and  C. ] 

So  [writing],    if  B  is  between  A  and  C  and  also  between  A  and  D, 
and  C  /  D,   then  either  C  is  between  B  and  D  or  D  is  between  B  and  C. 

Can  we  write  this  a  shorter  way?     What  can  we  write,    for  example, 

instead  of  'B  is  between  A  and  C  ?     [Answer:    B  €  AC] 
So,    we  can  write  [doing  so]: 

if  B  e  AC  and  B  e  AD  and  C  /  D  then  [C  e  BD  or  D  e  BC] 

We  can  use  set  notation  to  shorten  this  still  more.     [Try  to  elicit  how 
this  can  be  done,    and  rewrite,    as  below.  ] 

if  B  e  AC  r^  AD  and  C  /  D  then  [C  e  BD  or  D  €  BC] 

So  far,    we  have  been  writing  open  sentences.     Can  we  write  a  gen- 
eralization which  has  this  [pointing  to  last  sentence]  as  an  instance? 

[Students  should  suggest  writing  'V.  VL  V_  V„'   in  front  of  last  sentence. Do  so.     Then  ask  if: 

V^  V^  Vy  V^,  if  X  e  WY  r^  WZ  and  Y  ;^  Z  then  [Y  €  XZ  or  Z  e  XY] 

'*says  the  same  thing".] 

As  students  will  learn  [but  should  not  be  told  at  this  time],   proofs  are 

clearer  if  one  uses  one  set  of  letters  [say,    'W',    'X',    'Y',   and  'Z']  with 
quantifiers  when  stating  generalizations,    and  another  set  [say,    'A',    *B', 
'C,    and  'D']  in  fornnulating  instances. 
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line  16.     'C   €  AB' follows  from  (a),   from.(b),   from,  (f),    and  from  (g). 

(e)     describes  the  intersection  of  the  half-line  AB  and  the  half- 

line  consisting  of  points  "to  the  right  of  B".      Since  the  second 
half-line  is  a  subset  of  the  first,   the  intersection  of  the  two  is 

the  second  half-line.     [Another  description  of  this  set  is  that 

it  is  the  complement,    with  respect  to  £,   of  the  ray  {B  }  v^  BA.] 

line  23.  B  ^,.  B or .  — •   •   •   • — 

A  CD*  A  DC 

line  24.    A,   B,    C,    and  D  must  be  coUinear.     For,   if  B  e  AC  r\  AD  then 
—  —        «^^  «^^ 

B  €  AC.     Since  AC  C  AC,   it  follows  that  B  €  AC.     Since  B  /  A, 

it  follows  that  C  e  AB.      Similarly,    D  e  AB. 

In  the  first  figure,    above,    C  e  BD  and  D  $^  BC. 

In  the  second  figure,    above,    C  /  BD  and  D  €  BC. 

[So,    a  student's  answers  to  the  last  tw^o  questions  in  line  23 
depend  on  which  figure  he  has  drawn.] 

line  25.    No.     The  second  figure  above  provides  a  counter-example;   the 
third  point,    C,   is  not  between  the  second,   B,    and  the  fourth,   D. 

line  26.    Yes. 

The  last  five  lines  on  page  6-13  serve  to  develop  an  idea  which  will  be 
stated  in  one  of  the  Introduction  Axioms  [Axiom  12  on  page  6-21].      To 
help  prepare  students  to  grasp  such  generalizations  more  easily,    you 
might  try  to  get  thenn  to  state  this  one  right  now.      Here  is  one  possible 
approach. 

Suppose  that  B  is  between  A  and  C.     [Draw  on  board.] 

A  B 

So  [pointing],    C  is  over  here,    somewhere. 
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Since  we  learned  on  page  6-12  that  no  one  of  three  noncoUinear  points 
is  between  the  other  two,    B  is  not  between  A  and  K.     So, 

K  i  {X:    B  is  between  A  and  X}. 

It  follows  that  the  set  in  which  we  are  interested  is  a  subset  of  i. 

Let's  canvass  the  points  of  i  to  see  which  of  them  belong  to  the  set. 

Try  A.      Since  B  is  not  between  A  and  A,   we  reject  A. 

Try  B.      Since  B  is  not  between  A  and  B,    we  reject  B. 

Try  C.      Since  B  is  between  A  and  C,    we  accept  C;    so 

C  e  {X:    B  is  between  A  and  X}. 

Now,    consider  a  point  R  "to  the  left  of  A",   that  is,   a  point  R  such  that 
A  is  between  R  and  B.      Since  just  one  of  three  coUinear  points  is 
between  the  other  two, 

B  is  not  between  A  and  R. 

So,   we  reject  R.      Consider  a  point  S  which  is  between  A  and  B.      For 
the  reason  just  cited, 

B  is  not  between  A  and  S. 

So,   we  reject  S. 

The  only  remaining  points  of  i  are  those  "to  the  right  of  B".     [We  have 
already  tried  one  of  these,   the  point  C.  ]     Such  points  are  just  those 
points  T  such  that  B  is  between  A  and  T.      Somewhat  anticlimatically, 
these  are  just  the  points  which  satisfy  (*)  and,   also,    are  just  the  points 

which  belong  to  BC.      So,    {X:    B  is  between  A  and  X}  =  BC. 

line  8.      {X:    B  is  between  C  and  X}  =  BA 

k 
line  9. 

M  N 

line  10.    MN  i  NM^     MN  w  NM  =  MN  =  k; 

MN  r^  NM  =   {X:    X  is  between  M  and  N} 

line  14.    Yes;    MN  =  NM.     [Read  'MN'  as  'interval  MN'.] 
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safety's  sake,    a  restriction  ['x  a  real  number']  to  indicate  the  domain 
of  the  index.     The  index  and  the  restriction  are  separated  by  a  colon 

from  a  sentence   ['2x  +  3  =  -7'],    called  the  set  selector.     The  whole 
symbol  names  the  set  whose  elements  are  just  those  mennbers  of  the 
domain  of  the  index  which  satisfy  the  set  selector.     In  the  case  in  point, 
the  set  named  is  that  whose  sole  member  is  the  real  nunnber  -5. 

In  Units  3  and  4  we  were  most  often  interested  in  sets  of  real  numbers. 
So,    for  brevity,   we  adopted  the  convention  that,   in  the  absence  of  a 
restriction,    the  domain  of  an  index  was  to  be  understood  to  be  the  set 

of  real  numbers.     Under  this  convention,    *{x,   x  a  real  number: 
2x  +  3  =  -7}'   reduces  to   '{x:    2x  +  3  =  -7}'. 

In  this  unit  we  shall  be  interested  mainly  in  sets  of  points.     We  shall 

use  capital  letters  'W,    'X',    'Y',    and  'Z'    [and,    sometimes  others]  as 
indices,   and  shall  adopt  the  convention  that  their  domain  is  the  plane. 
So,   for  example,   the  symbol: 

{X:    X  is  between  P  and  Q} 

nannes  the  set  whose  members  are  just  those  points  each  of  which  is 

between  the  point  P  and  the  point  Q.      [So,   if  P  =  Q  then  the  set  in 
question  is  the  empty  set.] 

Consider,   now,    {X:    B  is  between  A  and  X},    where,    as  on  page  6-13, 
B  is  between  A  and  C. 

•K 

R  S  T 
— •   •   •   •   •   ♦- 

A  B  C 

To  decide  whether  a  given  thing  is  a  member  of  this  set,    we  must 
decide  whether  it  is  a  point  which  satisfies  the  set  selector: 

(*)  B  is  between  A  and  X 

Evidently,   we  nnay  restrict  our  queries  to  things  which  are  points. 

[The  answer  to  the  question  'Does  Johnny  belong  to  this  set?'   is, 
trivially:    no]    Let  us  begin  by  considering  a  point  K  which  does  not 
belong  to  i.     Does  K  satisfy  (*)?    This  is  the  case  if  and  only  if 

B  is  between  A  and  K. 

TC[6-13]b 



\: 



Answers  for  questions  on  page  6-13. 

line  2.   (a)     [it  is  helpfiil  to  use  shading  or  colored  chalk  to  show  the 

half -line  BC5  in  the  diagram.] -<^ 

Then,   to  show  that  'D  e  BC'  does  not  follow  from  (a),    a 
student  can  naark  the  point  D  between  A  and  B.     Since  D  is 

not  in  the  shaded  portion,   D  f  BC.     In  that  case,   D  is  be- 

tween A  and  C  but  D  ̂   BC.     A  student  might  protest  and 

say    'But,   what  if  the  point  D  is  between  B  and  C?'.     In  such 

a  case,    point  out  that  ■when  you  ask  w^hether  'D  €  BC  follows 

from  'D  is  between  A  and  C,   what  you  mean  is  whether 

someone  can  predict  [w^ith  complete  accuracy]  that  D  6  BC 
from  the  knowledge  that  D  is  between  A  and  C. 

(b)     Yes  (c)     No  (d)     Yes  (e)     Yes 

(f)      Yes     [Notice  that  this  condition  takes  account  of  all  cases 

in  which  D  e  BC] 

line  7.    The  set  of  all  points  X  such  that  B  is  between  A  and  X  is  BC. 

Word  descriptions  of  sets  of  points  can  be  quite  complicated.     We  can 
simplify  descriptions  of  sets  by  adopting  the  brace -notation  of  Units  3, 
4,    and  5.      For  example,   the  synnbol: 

{x,   X  a  real  number:     2x  +  3  =  -7} 

is  a  name  for  the  set  whose  only  nnember  is   -5.      We  use  a  pair  of 
braces  to  show  that  we  are  naming  a  set,    an  index  [here,    'x  ]  and,   for 
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line     1.    The  phrase  'the  half -line  PQ'  should  be  read  as  *the  half-line 

PQ'  [rather  than  as  'the  half-line  the  half-line  PQ*J.  It  contains 

a  redundancy  which  is  included  for  emphasis.     [Similarly,    'line 

PQ'  is  read  as  'line  PQ*  and  'interval  PQ'  is  read  as    interval 

PQ'.] 

line  12.    Read  'PQ*  as  'ray  PQ'. 

line  15.    Read  'PQ'  as  'segment  PQ'. 

As  a  help  in  remembering  the  difference  between  intervals  and  segments, 

recall  that  'inter'  corresponds  to  'between',    while  'segment'  suggests, 
perhaps,    a  hunk  of  material,    complete  with  ends. -J, 

When  summarizing  our  discussion  of  intervals,    segments,   etc.    in  the 
axioms  at  the  end  of  this  introduction,   it  will  be  convenient  to  extend 
the  notions,    somewhat.     For  example,    although  on  page  6-14  we  do  not 
explicitly  assume  that  P  /  Q,    students  have  reason,   in  view  of  the  pre- 

ceding development,  to  expect  this  to  be  the  case.     So,   what  they  have 
learned  upon  completing  page  6-14  includes,    among  other  things,   that 
if  P  /  Q  then 

(1)     PQ  =  (Z:    Z  is  between  P  and  Q}  P   Q 

(2)  PQ  =  PQ  w  {P,  Q}  P   Q 

(3)  PQ  =  PQ  w  {Z:    Q  is  between  P  and  Z}       P   Q 

(4)  PQ  =  {Z:     Ze  PQ  and  Z  ;^  P}  P  Q     ̂  

<^       ->         — >  
  ' — ^~ 

(5)  PQ  =  PQ  <_^  QP  ,      P   Q      , — K — '   '   ^— 

Now,   for  technical  reasons,    it  is  inconvenient  to  use  a  notation  ['PQ', 
for  example]  which  is  defined  only  conditionally  [that  is,    subject  to  the 

condition  'P  /  Q']»     This  inconvenience  has  already  been  noted,    in 
connection  with  division  by  0,    on  TC[2-84]ab.     As  was  pointed  out  there, 

'0' 
since    -^   is  meaningless,   we  cannot,   for  example,    accept  the  generali- zation: 

V     if  x  /  0  then  -  =  0 X  '  X 
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as  true  because  it  has  the  meaningless  "instance": 

if  0  ;^  0  then  §-  =  0 

*0' So,    it  is  necessary  either  to  give     jr-    a  meaning  or  to  use  a  restricted 
quantifier  and  write  instead: 

"^x  ;^  0   X   =  ° 

Since,    in  Unit  2,   the  first  way  out  would  have  been  too  confusing  to  stu- 
dents,   we  introduced  restricted  quantifiers. 

A  similar  situation  arises  here.      For  example,   it  follows  from  (1)  and 

(2),    above,   that  each  interval  with  two  end  points  [say,   P  and  Q]  is  a 

subset  of  the  segment  with  the  samie  end  points.     If  interval  and  segnnent 

are  defined  only  conditionally,   we  cannot  state  this  consequence  of  (1) 

and  (2)  as  : 

Vj^  Vy   if  X  /  Y  then  XY  C  XY, 

because  the  "instance": 

if  P  /  P  then  PP  C  PP 

is,   in  this  situation,    as  meaningless  as: 

if  0  7^  0  then  ̂   =  0 

The  "instance"  is  meaningless  because,   if  interval  and  segment  are 

defined  only  conditionally,    'PP'  and  'PP'  are  nonsense.     We  could,   as 
in  the  case  of  division  by  0,   use  a  restricted  quantifier  and  write: 

^X^Y/X^YCX? 
However,   this  solution  to  the  difficulty  is  unsatisfactory,    due  in  part  to 

the  difficulty  of  writing  restricted  quantifiers,   and  in  part  to  certain 

technical  disadvantages  to  the  use  of  restricted  quantifiers.     Fortunately, 

there  is  another  way  out.      All  we  need  do  is  to  so  franne  the  definitions 

that  'PP',   etc.   are  meaningful.      We  do  this  in  Axiom  5  [page  6-19]   by 

accepting  (1)  -(6)  without  the  restriction  *P  /  Q'.     It  follows,   now,   that 
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since  there  is  no  point  which  is  between  a  given  point  P  and  itself, 

PP  =  {Z:    Z  is  between  P  and  P}  =  0  . 

Hence,   by  (Z), 

PP  =  PP  w   {P,  P}  =  0  w   {P}  =  {P}. 

Also,    since  no  point  is  between  itself  and  a  second  point, 

{Z:    P  is  between  P  and  Z}  =  0. 

Hence,   by  (3), 

PP  =  PP  w  {Z:    P  is  between  P  and  Z}  =  {P}  w  0  =  {P}. 

By  (4),   then,    PP  =  0,   and,    by  (5),   PP  =  0. 

Now,    we  can,   for  example,    accept: 

Vj^  Vy  XY  C  XY 

[The  previously  sticky  case,    *PP  C  PP',   is,   now,   just  a  long  way  of 

writing  *0  C  {P}'.     This  latter  is  so  because  the  empty  set  is  a  subset 
of  each  set.  ] 

Of  course,  with  these  conventions,    we  are  no  longer  entitled  to  read 

'AB'  as  'line  AB'  unless  we  know  that  A  ;^  B.     [For  the  empty  set  is  not 
a  line.]    Fortunately,   this  anticipated  difficulty  does  not  occur  in  prac- 

tice.     For,    on  the  one  hand,   if  one  wishes  to  introduce  the  notation  'AB' 

into  a  discussion,    as  an  abbreviation  for  'the  line  determined  by  the 

points  A  and  B',    one  will  surely  have  already  proved  [or  assumed]  that 
r     A  and  B  are  two  points --that  is,   that  A  ;^  B.     And,    on  the  other  hand,   if 

I  one  wants  to  initiate  a  discussion  about 
 points  and  lines  one  may  either 

say,  for  example: 

suppose  that  i  is  a  line,   and  P  is  a  point  such  that  P  j^  i 

or,  in  a  different  situation: 

suppose  that  Q  e  AB 

In  the  first  case,   if  one  later  finds  two  points  R  and  S  which  belong  to  i, 

i 
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one  may,   if  it  is  convenient  to  do  so,   assert    that  i  =  RS.     In  the  second 

case,   one  is  supposing  that  AB  ̂   0;    and,    from  this  it  follows  that  A  /  B 

and,    so,   that  AB  is  indeed  a  line. 

So,    in  practice,    one  will  never  have  occasion  to  use  'AB',    say,   in  cases 
where  it  does  not  refer  to  a  line.     Hence,    in  practice,    one  will  always  be 

justified  in  reading  'AB'  as  'line  AB'.     A  similar  discussion  applies  to 

symbols  such  as  'AB'  and  'AB'.     As  far  as  'AB'  and  'AB'  are  concerned, 

there  is  little  that  is  counter -intuitive  in  accepting  these  as  referring  to 

an  interval  and  a  segment,    respectively,    even  if  A  and  B  should  refer 

to  the  same  point. 

The  preceding  discussion  is  largely  for  your  own  orientation.     However, 

after  completing  the  exercises  on  page  6-15,   you  may  find  it  worthwhile 

to  develop  (1)  -  (5),    above,    on  the  board,   without  mentioning  'P  ̂   Q'. 
Sample: 

How  can  we  use  set  notation  to  describe  the  interval  joining  P  and  Q? 

PQ  =  {Z:   [what?]  } 

How  about  the  segment  joining  P  and  Q? 

How  about  the  ray  from  P  through  Q? 

P        -»       .^ 
PQ  =  PQ  [and  what  else?] 

etc. 

Then,   ask  what,   in  view  of  (1),    one  could  mean  by  *PP'.     By  'PP'. — ^  — >  <->  <-> 

By  *PP'.     By  'PP'.     By  'PP'.     So,   to  know  that,    say,   AB  is  really 
a  line,   you  need  to  know  that  A  /  B.     And,   you  do  know  this  if  you 

know  that  AB  i=-  0. 
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24.   ^     ;    C   a   •   •    *  — »   •   •   

A  B  A  B 

25.  Can't  occur.     B  cannot  be  between  A  and  A. 

26.  Occurs  only  in  case  A  =  B. 

27.  "  [only  easel — •   m   •   •    '•  ^  J 

A  DC 

28.  ,   ^   ^          [only  case] 
ABC    

29.  Can't  occur.     If  B  €  AC  then  BC  =  {Z:    BeAZ}.     So,    since  De    BC, 
it  follows  that  B  €  AD. 
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14.     Can't  occur  [except  in  the  trivial  case  in  which  A  =  B  =  C].     If 

A  /  B  then  A  e^^  but  A  ̂   AC"  and  A  /  A^.     [if  B  /  C  then 
either  B  or  C  is  different  from  A,   and  AC  w  AB  /  0.     So,    if 

^^=  A^w  A^then,    if  B  ̂   C,  ̂if"/  0.     Hence,    if  B  /  C  then A/B.] 

15. 

16. 

[only  case] 

[only  case] 
A  EC 

17.     Can't  occur.     A  ̂   AB,   but  A  €  AB  w  BC  because  A  e  AB. 

18. 
m 

n m 

19.     See  second  solution  for  Exercise  18. 

20. 

21.     Can't  occur.     If  B  e  AB  o,  AC  then  AB  /  0  /  AC;  so,   B  /  A  /  C. 
Hence,  A  and  B  are  two  points  which  belong  to  the  line  AC  as  well 

as  to  the  line  AB.     Since  two  points  determine  a  line,  AB  =  AC. 

22. 

['C  6  {Z:     Z  is  between  A  and  B}'  is  just  a  long  way  of  saying  that 
C  is  between  A  and  B.  ] 

23. C 

B 
[only  case] 
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The  case  shown  is  the  only  one. 

Note  that  if  the  intersection  of  two 

sets  is  not  empty  then  there  is 

something  which  belongs  to  both  of 
them.     Hence,    neither  set  is  empty. 

So,    if  PQ  ̂   A^/  0  then  PQ  /  9^;  so 

P  /  Q.     Also,  A^/  0;  so,  A  /  R. 

If  A,    P,   and  R  were  collinear  then,    if  PQ  r>.  AR    /  0,    the  points  A, 

P,    Q,    and  R  would  be  collinear.     But,    then  AP  ,   AQ,    and  AR    would 

be  the  same  half -line,    or  two  of  them  would  be  the  same  and  the 

other  would  be  collinear  with  that  one.     In  neither  case  could  AF*, 

AQ,  and  AR    be  three  half-lines.     [Exercises  9  and  10  foreshadow 

the  work  on  adjacent  angles  starting  on  page  6-69.] 

10. 
R 

Q 
—      < — > 

[A,  P,  Q   are  collinear]      [PQ  r\  AR  might  not  be  0] 

11.  Can't  occur.     If  Q  is  between  P  and  R  then  P,   Q,   and  R  are  collinear. 

12. 
R 

— •   r- 
S 

— • — •- 

[if  A  /^  B  then  R  and  S  may  be  any  two 

points  of  AB.     If  A  =  B  then  R  =  S 

[M  =  0  =  y]. 
A  B 

But,    don't  go  out  of  your  way  to  bring  up  this  last  unimportant  case.] 

13.   Can't  occur.     AC  =  AC  w  CA.;  so,    if  B€  AC  then  either  B  £  AC  > 
B  €  CA. 
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Answer  for  Exercises  [which  begin  on  page  6-14]. 

[When  the  situation  described  in  an  exercise  can  occur,  there  are  usually 
several  possible  cases.     In  class  discussion,   sufficiently  many  of  such 
cases  should  be  brought  up  to  illustrate  their  variety.     In  the  answers 
which  follow  we  shall  occasionally  show  more  than  one  correct  drawing, 
but  no  attenript  will  be  made  to  picture  all  cases.     To  save  space,  all 
lines  will  be  drawn  horizontally.     However,   this  should  be  avoided  in 
board  work.     You  should  also  avoid  marking  points  A,   B,   and  C,   say, 
in  alphabetic  order  from  left  to  right.     Go  from  right  to  left  occasion- 

ally, and  look  for  opportunities  to  mix  up  the  order,] 

1. 
A 

• — c B 

2. 

N Q P M 

^. ^ 9 
C 

A, 

B 
D 

^   4- 
D 

> A,B D 

AB  =  0.     Also,    in  Exercise  3,    if  C  =  D  then  A  =  B.] 

C,D [Note  that  if  A  =  B  then,    since  there  are  no  points  between  A  and  A, 

4.  [There  are  3  other  cases  in  which 

~X                                ̂           2              B/^  A;  don't  bother  with  the  case in  which  B  =  A], 

5.  c  .  C 

A  B  A  B 

6,     Can't  occur.     Of  three  points,  at  most  one  is  between  the  other  two. 

7. 

8.        2   i-   .   [9  cases] ^K. 
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You  may  want  to  assign  the  Supplementary  Exercises  dealing  with 
complennentation  on  pages  6-403  and  6-404  before  doing  the  work  on 
page  6-16. 

The  verb  'separates'  is  commonly  used  in  two  quite  different  senses. 
One  of  these  is  somewhat  like  the  meaning  of  'classifies'.     Examples 
of  this  use  are  'John  separates  the  nnilk  [into  skim  milk  and  cream],  ' 
and  'Lois  separated  her  guests  into  two  groups.  '.     In  this  sense,    'sepa- 

rates' refers  to  an  action.      The  only  reason  for  mentioning  this  mean- 
ing of  'separates*  is  to  alert  you  to  the  possibility  that  students  may 

have  trouble  in  reading  page  6-16  through  interpreting  the  word  in  this 
sense. 

The  second  meaning  of  'separates'  refers,    initially,    to  spatial  relation- 
ships.    One  says,    for  example,    that  two  city  lots  are  separated  by  an 

alley,    or  that  a  city  is  separated  into  two  parts  by  a  river.     In  the  lat- 
ter case,    a  portion  of  the  river  will  be  within  the  city  limits  but  will 

not  be  reckoned  as  belonging  to  either  part  of  the  city.     Similarly,    the 
white  stripe  painted  down  the  middle  of  a  highway  separates  the  road 
into  two  traffic  lanes,    neither  of  which  contains  the  white  strip.      This 

use  of  'separates'  has  been  extended  in  mathematics,    where,    generally, a  subset  s  of  a  set  t  is  said  to  separate  t  if  the  points  of  t  which  are  not 

in  5  fall  into  two  sets,    t^  and  t^  such  that  a  "path"  from  any  point  of  tj 
to  any  point  of  t^  must  intersect  s.     Here,    what  one  means  by  a  "path" 
depends  to  some  extent  on  the  branch  of  mathematics  one  is  developing. 

In  this   sense  we  say  that  a  point  P  of  a  line  2  separates  2  into  two  half- 
lines,   neither  of  which  contains  P.    [  It  would  correspond  better  to  the 
general  situation  described  above  if  we  were  to  say  that  {P},    rather 

than  P,    separates  i.  ]     In  this  case,   a  "path"  from  a  point  R  of  one  of 
the  half -lines  to  a  point  Q  of  the  other  may  conveniently  be  thought  of 

as  the  segment  joining  R  and  Q[and  this  path  intersects  {P}]. 

In  an  entirely  similar  way,   a  line  separates  the  plane  into  two  half- 
planes.     Neither  half-plane  contains  any  point  of  i,   but  each  point 
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of  the  plane  belongs  either  to  one  of  the  two  half-planes  or  to  i.     Here 
again,    one  may  think  of  the  segment  joining  R  and  Q  as  being  a  "path" 
between  points  R  and  Q  of  opposite  half-planes. 

Answers  to  questions  on  page  6-16, 

line  7,     h^  Vl^  i  w  h^  is  the  plane.    [By  convention,    'h     w  i  w  h^'  is 

an  abbreviation  for  *(h^  w  i)  w  h^'.] 

line  8.     h^^  r>,  i  =   0;  h^  o,  h^  =   0 

line  9.     Yes. 

-:  1 

line  10.     Yes. 

line   12.     Yes. 
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line  16.     No. 

/  I 
'r\  \'\\.  ̂ \    \ 

// line  18.     No.      .     /  /  /  /  / 

line  20.     Yes.         ./  -       ''  O^Q- V^ 

line  21.     No. 

line  22.     Yes. 

I 
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3. 
D 

B 

D 

B 

A 

4. C 
— *   •- 

A B 

5. 
6. 

A 

A 

B  C 

7. 
I,  m 

8. B  E         A  F  D 
— •   •   

[There  are  other  cases,    but  for  all  of  them,    B,    A,    and  D  are  collinear. 

You  will  be  starting  section  6.01  very  soon.     Remind  students  to  bring 
rulers  with  English  cind  metric  scales. 
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Quiz. 

Draw  pictures  which  illustrate  the  situations  described  below. 

1.      A,   B,   and  C  are  three  collinear  points,   and  D  is  a  point  such  that 

D^  A? 

2t      i  and  m  are  parallel  lines  and  n  is  a  line  such  that  a  ̂ ^  I  ̂  0  and 

n  '^  m  =  0 

3.  A,   B,    C,   and  D  are  four  points  and  AD  C  BC 

4.  A  and  B  are  two  points  and  C  is  a  point  such  that  C  6  AB  and  C  ̂   AB 

5.  A  and  B  are  two  points  and  C  is  a  point  such  that 

C  e  {Z:  Z  €  AB  and  Z  €  BA} 

6.  A  and  B  are  on  opposite  sides  of  a  line  i  and  C  is  a  point  such  that 

AC  (^  i  /  0  and  BC  ̂   i  /^  0 

7.  i  and  m  are  lines  such  that  i  -^  m  =  0  [The  symbol  *m*  stands  for 
the  complement  of  m  with  respect  to  the  plane.  ] 

8.  A,    B,    C,   and  D  are  four  points  and  E  and  F  are  points  such  that 

E  e  AB,    F  €  AD,   EF  /^  AC  =  0,   and  EF  r>,  aB  ̂  0 

Answers  for  Quiz. 

1.  .D 
  »  «  «   
A  C  B 

2.  I,   n 

m 
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line  14.     Iz^  ̂   k^  is  the  plane line  15.     k^   <^  k^    =  i 

7. 

[The  >word  'crosses'  is  a  good  one  to  use  in  place  of  'intersects' 
when  you  mean  that  the  intersection  contains  exactly  one  point.     The 

word  'intersects'  is  used  in  conventional  geometry  courses  with  the 

meaning  of  'crosses'.     But,   in  this  course,  when  one  says,   for 
AB  intersects  CD,   he  could  mean  either  that  AB example,   that 

<— >    <—^ 
crosses  CD  or  that  AB  =  CD.     Conventional  courses  take  care  of 

this  other  meaning  of  'intersects'  by  using  the  word  'coincides'.] 

[Note:     c  -^  k  is  the  union  of  the 

set  consisting  of  points  "above" 
both  m  and  n,   the  set  RT,   and 
the  set  R^.] 

9.    Can't  occur.     If  A  and  B  both  belong  to  i  then  AB  QL     So,   AB  Ck. 
If  one  of  the  points  does  not  belong  to  £  [or  if  neither  belongs  to  i] 

then,    since  A  e  k  and  B  €  k,  AB  is  a  subset  of  the  half-plane  which 

consists  of  the  points  of  k  not  on  i.     In  either  case,  AB  Q  k. 

A 
10,    Can't  occur. BD  does  cross  AC 

[Exercises  8  and  10  foreshadow  the  work  on  interiors  of  eingles. 
See  page  6-55.  ] 
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Answers  for  Exercises. 

1.       Can't  occur.     If  AB   |  |  i  then  AB  ry  S.  =  (f).     But,    from  the  work  done 

on  page  6-16,    if  A  and  B  are  on  opposite  sides  of  i  then  AB  f^  I  ■f  <f>. 
Since  AB  is  a  subset  of  AB,    it  follows  that  any  point  common  to  AB 

and  I  must  also  be  common  to  AB  and  i.     So,    since  AB  r^  i  ̂  0,   it 

follows  that  AB  r\  if  (p. 

2. 

\    \    '.    1    ̂    ̂    \    \    \ 

i_LA 

\    \    \    \    \    , 

'    \   \    \    \   \k\   -    \    \   \   \ 

/ 

'/W? 

\\\\  \^i 

3.       Can't  occur.     If  AB  ̂   i  =  0  then  A  and  B  are  on  the  sanne  side  of  i. 

If  BC  (^  i  =  0  then  B  and  C  are  on  the  same  side  of  i.     So,   under  the 

conditions  of  the  exercise,   A,    B,    and  C  are  on  the  same  side  of  i. 

But,    if  A  and  C  are  on  the  same  side  of  i  then  AC  '^  i  =  0. 5. 

[Note:    Mr?  I  |  B^ 

6.       Can't  occur.     If  M  ei  then  M  cannot  belong  to  either  side  of  i.     But 

[since  M  -f  N],    M  €  NM.     Hence,    NM  is  not  a  subset  of  either  side 
of  i  because  there  is  a  point  of  NM  which  does  not  belong  to  either 

side  of  i.     [If  you're  wondering  about  how  to  show  that  'M  ̂   N' 

follows  from  the  premisses  'Mei'and  'N  ̂   i',    see  TC[6-378,  379]c.] 
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The  fifteen  Introduction  Axioms  on  pages  6-18  through  6-22  state  some 
of  the  facts  about  points  and  lines,    and  also  characterize  some  of  the 
concepts  which  students  have  discovered  while  studying  the  preceding 
pages.     The  basic  concept  is  that  of  betweenness--of  one  point  being 
between  two  others.     As  was  pointed  out  on  TC[6-14]a,   the  notions  of 
interval,    segment,    ray,   half-line,    and  line  can  all  be  characterized  in 
terms  of  betweenness.     [See  Axiom  5  on  page  6-19,   and  Theorem  4  on 
page  6-24.]    This  is  also  true  of  the  separation  of  the  plane  by  a  line. 
[See  Axiom  15  on  page  6-22.]    In  fact,   in  the  COMMENTARY  for  pages 
6-23  through  6-28,   it  is  pointed  out  that  the  axioms  might  be  modified  in 
such  a  way  that  the  resulting  set  of  axioms  would  contain  one: 

a  set  i  is  a  line  if  and  only  if  there         «-^ 
are  two  points,    X  and  Y,    such  that  i  =  XY 

which  serves  essentially  as  a  definition  of  the  word  'line'.     If  this  pro- 
cedure were  adopted,    it  would  be  unnecessary  to  use  the  word  'line'  in 

any  of  the  other  axioms.     In  fact,   this  word  would  then  become  excess 
baggage  and  could,    except  for  strong  pedagogical  reasons,    be  deleted 
from  the  text. 

The  Introduction  Axioms,    and  the  Introduction  Theorems  which  can  be 

derived  from  them  [a  few  of  which  are  given  on  pages  6-23  through  &-Z8-\, 
deal     for  the  most  part  with  properties  of  geometric  configurations 

which  are,    customarily,    "seen  from  the  figure".     In  the  succeeding 
sections  of  this  unit  we  shall  adopt  this  custom  and,    so,    shall  very 
seldom  make  explicit  reference  to  this  Introduction.      Consequently,    it 
is  completely  unnecessary  for  students  to  memorize  the  Introduction 
Axioms,    or  to  study  proofs  of  any  Introduction  Theorems.     Indeed, 
memiorizing  the  Introduction  Axioms  [or  the  given  Introduction  Theorems] 
would  be  an  intolerable  burden. 

In  view  of  this,    one  may  well  ask  'What  is  the  purpose  of  giving  the 
Introduction  Axioms  to  students?'.      There  are  two  kinds  of  reasons 
for  doing  so.     In  the  first  place,    reading  and  discussing  the  Introduction 
Axioms  and  some  Introduction  Theorems  will  increase  a  student's 
ability  to  make  use  easily  and  with  understanding     of  set  notation  and  of 
the  notation  introduced  in  Axiom  5  for  intervals,    segments,    etc.     This 
is  important,   because  he  will  use  these  notations  throughout  the  course. 

In  particular,    such  reading  and  discussion  will  sharpen  a  student's 
intuitive  feeling  for  the  features  of  the  terrain  [actually,    of  course,   the 
plane]  which  he  will  study  during  the  remainder  of  this  unit. 

Another  reason  for  giving  the  Introduction  Axioms  arises  out  of  the  fact 

that  in  addition  to  teaching  the  "facts  of  geometry",  one  of  the  custom- 

ary aims  of  a  geometry  course  is  to  enlarge  a  student's  understanding 
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of  the  nature  of  proof.     Now,   a  proof  of  a  theorem  should  be  an  argument 
which  starts  from  axioms,   or  previously  proved  theorems,   and  shows 
how  the  theorem  in  question  follows,   by  accepted  logical  principles, 
from  just  these  premisses.     Such  an  argument  may  be  stated  in  any  num- 

ber of  forms  [two-column,   one -column,  paragraph,   or  what -have -you]. 
But,  the  essential  point  is  that  the  proof  must  show  that  the  explicitly 
stated  premisses  suffice  to  yield  the  desired  conclusion.     For  example, 
the  proofs  with  which  students  have  become  acquainted  in  Unit  2  fulfill 
this  requirement.     Each  proof  in  Unit  2  shows  how  the  algebra  theorem 
which  is  being  proved  follows  from  basic  principles,   and  previously 
proved  theorems,   which  are  explicitly  stated  in  the  proof. 

Now,   it  happens  to  be  the  case  that  geometry  is  much  more  complicated 
than  algebra.    In  fact,  it  is  so  complicated  that  it  seems  to  be  impossible 
at  the  high  school  level  to  give  really  solid  proofs  of  any  but  a  few  of  the 
usual  theorems.     Consider,   as  one  of  the  simplest  examples,  the  theorem: 

the  diagonals  of  a  parallelogram  bisect  each  other 

Somewhere,   in  any  form  of  proof  of  this  theorem,   there  will  be  a  step 
like : 

let  P  be  the  point  in  which  the  diagonals  of  /    7  ABCD  intersect 

Now,   before  introducing  this  step  one  must,   in  all  strictness,   have 
proved  that  the  diagonals  ofZ   /ABCD  do  indeed  intersect,   and  that  they 
intersect  in  a  single  point.     This  is  typical  of  the  sort  of  thing  which, 

customarily,   one  "sees  from  the  figure",   and,   as  has  already  been  said, we  shall  follow  this  custom.     However,   if  one  leaves  it  at  this,   the 

student's  notion  of  proof  will  be  dulled,   rather  than  sharpened.     It  is 
important  that  he  realize  that  the  conclusions  which  he  is,   for  practical 
reasons,   taught  to  draw  from  the  figure,   actually  can  be  derived  from 
his  axioms.     In  other  words,   he  should  be  aware  of  the  fact  that  most  of 
the  proofs  he  gives  have  gaps  in  them  and,  in  general,  he  should  know 
where  these  gaps  are.     But,  he  should  realize  that  these  gaps  exist,   not 
because  his  axioms  do  not  give  a  sufficient  basis  for  filling  them,   but 
merely  because  taking  the  time  to  fill  them  would  direct  his  attention 
away  from  what,  for  him  now,   are  more  important  matters.     Reading 
and  discussing  the  axioms  and  theorems  on  pages  6-18  through  6-28 
should  prepare  him  to  recognize  gaps  in  his  proofs,   and  give  him  an 
inkling  of  how  they  could  be  filled.     [When  he  does  discover  such  a  gap, 
he  can  signal  his  discovery  by  writing  'Introduction'  as  part  of  the  explan- 

ation for  the  resulting  step.     See  the  column  proof  on  page  6-33.] 
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The  first  four  axioms  deal  with  simple  properties  of  points  and  lines. 
Axiom  1  rules  out  the  possibility  that  the  emipty  set  or  singleton  sets 
are  lines.     Together  with  later  axioms  [particularly,   Axioms  8  and  11], 
it  ensures  that  each  line  contains  many  points. 

Axiom  2  says  two  things.     First,   that 

each  two  points  are  contained  in  at  least  one  line, 

and,   second,  that 

each  two  points  are  contained  in  at  most  one  line. 

From  the  second  of  these  it  follows  that  two  lines  cannot  have  more 

than  one  point  in  cominnon--that  is,   that  the  intersection  of  two  lines  is 
a  degenerate  set.     [See  Theorem  1  on  page  6-23.]     Furthermore,   a 
line  is  determined  by  any  two  of  its  points. 

Notice  that,    although  Axiom  1  tells  us  that  if  there  is  a  line  then  there 
are  at  least  two  points,    and  Axiom  2  tells  us  that  if  there  are  two  points 
then  there  is  at  least  one  line,   neither  of  these  axioms  tells  us  that 
there  are  any  points  or  any  lines.     Axiom  3  does  this  for  us. 
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AA  C  AA,   and  A  €  AA.     So,   AA  =   {A}.     This  takes  care  of  the  uninter- 

esting cases.     Now,    what  about  AA  and  AA?     Well,  Axiom  5  tells  us 

that  AA  C  AA;  so,   AA  C  {A}.      That  is,   A  is  the  only  point  which  can 

belong  to  AA.     But,  Axiom  5  also  tells  us  that  A  does  belong  to 

AA[AA  =  AA  w  {A,   A}].     So,   AA  =   {A}.     As  to  AA,    we  know  that 

AA  C  AA  [see  preceding  bracket].     So,   A  is  the  only  point  which  can 

belong  to  AA.     However,   by  Axiom  7,   A  ̂   AA.     Hence,  AA  =  0.     This 

result  agrees  with  our  intuition;  for,    there  should,    surely,    be  no 

points  between  a  point  and  itself. 

Axioms  7,  9,   and  10  state  some  of  the  simple  properties  of  betweenness. 

Axiom  9,    for  exannple,    says,    in  ternns  of  intervals,    that  the  points 

which  are  between  A  and  B  are  just  those  which  are  between  B  and  A, 

Axiom  7  tells  us  that  A  is  not  between  A  and  B.     Since,    similarly,    B 

is  not  between  B  and  A,    we  see  by  Axiom  9  that  B  is  not  between  A  and 

B.      Finally,   Axiom  10  tells  us  that  if  C  is  between  A  and  B  then  B  is 

not  between  A  and  C.     Since,    if  C  is  between  A  and  B  then  C  is  between 

AC  B 

B   and  A,     it  follows  similarly  that  if  C  is  between  A  and  B  then  A  is 

not  between  B  and  C.     So,   Axionns  9  and  10  together  tell  us  that, 

given  three  points,    at  most  one  of  them  is  between  the  other  two. 

Axioms  8  and  11      give  us  additional  information  about  the  existence  of 

points.     Axiom  8,    for  example,    tells  us  that  between  any  two  points 

there  is  at  least  one  more,     Axionn  11  tells  us  that  "beyond"  any  two 

points,    in  either  direction,    there  is  at  least  one  more. 
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If  students  bring  up  the  degenerate  cases  'AA,    .  .  .  ,    'AA',    delay 
discussing  them  until  the  discussion  of  Axiom  6. 

As  pointed  out  on  page  6-20,  Axiom  6  tells  us  two  things: 

(1)  if  A  /  B  and  A,   B,   and  C  are  coUinear  then  C  e  AB, 

and:  ^^ 
(2)  if  C  e  AB  then  A  /  B  and  A,    B,   and  C  are  collinear 

The  first  of  these  tells  us  that  if  A  and  B  are  two  points  [and,    so,   by 

Axiom  2,    determine  a  line]  then  each  point  C  of  the  line  determined 

by  A  and  B  is,   also,   a  point  belonging  to  AB.     The  second  tells  us  that 

if  there  is  any  point  which  belongs  to  AB  then  A  and  B  are  two  points, 

and  each  point  C  which  belongs  to  AB  also  belongs  to  the  line  deter- 

nnined  by  A  and  B.     Combining  these  results  we  see  that  if  A  ̂   B  then 

AB  is  the  line  determined  by  A  and  B.     [See  Theorem  4  on  page  6-24. J 

As  has  been  pointed  out,   above,    one  consequence  of  (2)  is  that  if  there 

is  any  point  which  belongs  to  AB,    then  A  /  B.     That  is,    if  A  =  B  then 

there  is  no  point  which  belongs  to  AB.     [See  Theorem  5(d)  on  page 

6-25.]    More  simply,   for  any  point  A,  AA  =  (p.     Now  is  the  time  to 

discuss  the  degenerate  cases  of  Axiom  5.     [See  the  COMMENTARY 

for  page  6-14.]    Evidently,    it  is  not  strictly  correct  to  read  'AB'  as 

'line  AB'  unless  one  knows  that  A  /  B.     However,   as  you  can  assure 

your  students,    the  case  'A  =  B'  will  never  occur  in  connection  with 

the  notation  'AB'  except  in  this  Introduction.     In  fact,   the  only  other 
tinne  it  will  so  occur  is  in  the  discussion  of  Theorem  5(d).      The  same 

applies  to  the  notations  'AB*  and  'AB'.     However,    we  shall  some- 

times want  to  use  *AA'  and  'AA';  so,   let's  see  what  Axiom  5  actually 
tells  us  about  these  cases.     Since  AA  =  0,   and  since,   by  Axionn  5, 

AA  =  AA  v-y  AA,    it  follows  that  AA  =  ̂ .     Furthermore,    since,   by 

Axiom  5,   AA  =   {Z:     Z  £  AA  and  Z  /  A},   and  since  AA  =   0,    it  follows 

that  A  is  the  only  point  which  can  belong  to  AA.     But,    by  Axiom  5, 

TC[6-19.    20]b 





Axiom  2  tells  us  that  each  two  points  are  coUinear.     Axiom  3,    on 
the  other  hand,   tells  us  that  there  are  three  noncollinear  points.     In 

particular,  Axiom  3  tells  us  that  there  are  at  least  three  points.     As 
Jo  discovered  by  analyzing  Messages  3  and  5,  Axioms  2  and  3  together 
inr^ply  that  there  are  at  least  three  lines.     One  further  immediate 
consequence  of  Axiom  3  is  that  not  all  points  belong  to  any  single  line. 

Equivalently  [see  Theorem  2  on  page  6-23],   for  each  line,   there  is  a 
point  not  on  it. 

Axiom  4  tells  us  that  if  neither  of  two  lines  intersects  a  third  then 

they  do  not  intersect  each  other.     Consequently,    if  the  lines  do  inter- 
sect then  at  least  one  of  them  intersects  any  given  third  line.     In  other 

words  [see  Theorem  3  on  page  6-24],    there  cannot  be  two  lines  through 
a  given  point  both  of  which  are  parallel  to  a  given  line,     [it  will  be 
proved  at  the  beginning  of  section  6.  05  that,    given  a  line  SL  and  a  point 
P  ̂   i,   there  is  at  least  one  line  through  P  which  is  parallel  to  SL.     So, 
from  this  and  Axiom  4- it  will  follow  that  there  is  exactly  one  line 
through  P  and  parallel  to   i.j 

Axiom  5  introduces  notations  with  which  students  have  already  become 
familiar.     The  diagram  below  may  be  helpful  in  illustrating  Axiom  5. 

A  B 

  <   ^^^^   f   —   9   —   >   
{Z:    A  €  BZ)  I  AB  '     {Z:    B  e  AZ} 

I  
' I   ^   + 

I  AB  I 

AjB 

-d5   + 
^A  I 

aS 

BlA 
AB 
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is  interpreted.]    Now,    draw  attention  to  the  theorem  stated  and  proved 

on  TC[6-21,  22]e,    and  check  that  it,   also,   is  a  true  statement  no  matter 

which  of  these  interpretations  is  given  to  the  word  'line'.     Elicit  from 
your  students  that,    since  the  theorem  is  a  consequence  of  Axioms  2  and 

3,    it  follows  that  any  interpretation  of  'point'  and  'line'  for  which  Axioms 
2  and  3  are  true  is  bound  to  make  the  theorem  true.     Similarly,    under 

any  "true  interpretation"  of  the  complete  set  of  axioms,   all  the  theorems 
derived  from  the  postulates  will  be  true  statements.     While  studying 

"mathematical"  geometry,   it  is  no  concern  of  ours  what  the  "undefined 

terms"  'point',    'line',    and  'between'  mean.     All  that  does  concern  us  is 
what  sentences  are  consequences  of  the  sentences  we  have  chosen  as 

axioms.     [Of  course,    our  choice  of  axioms  was  strongly  motivated  by 

consideration  of  particular  interpretations  for  these  three  words.]    So, 

this  course  presents  an  abstract  deductive  theory  in  which  all  we  are  con- 

cerned with  is  the  logical  relationships  among  certain  sentences.     How- 

ever,   as  pointed  out  above,    students  will  have  in  mind  preferred  models 

of  this  deductive  theory.      There  is  no  harnn  in  this  as  long  as  they  refrain 

from  nnaking  use  of  properties  of  their  models  which  are  not  formulated 

in  the  axionns. 

A  more  extensive  discussion  of  the  matter  treated  above  is  given  in 

Chapter  VII  of  An  Introduction  to  Logic  and  Scientific  Method  by  Cohen 

and  Nagel  [Harcourt  Brace  and  Company,    New  York].     See,   also,   the 

very  valuable  article:    "Geometry  and  Empirical  Science"  by  Carl  G. 
Hempel,    in  vol.    52  [1945]  of  the  American  Mathematical  Monthly. 

TC[6-21,  22]g 



NSOj 



'1- 

It  may  interest  you  or  your  students  to  notice  that  thirteen  of  the  fifteen 

axioms  will  be  satisfied  if  one  interprets  *point',    'line',   and  'between' 

in  such  a  way  that  there  are  just  three  points,    P^^ ,    Pg  ,   and  Pg ,  three 

lines  {Pj^  ,   Pg  }.    {^2'    ̂ 3^'    ̂ "^^{^3'    ̂ 1  )'    and  no  point  is  between  the 

other  two.     In  this  case,   Axioms   1,    2,    and  3  are  obviously  satisfied, 

and  Axiom  4  is  satisfied  for  the  reason  that  there  are  no  parallel  lines. 

The  only  interval  is  the  empty  set.     There  is  no  difference  between  seg- 

ments and  rays,   and  each  is  either  a  line  or  consists  of  a  single  point. 

The  half-lines  are  the  sets  which  consist  of  a  single  point.     Axioms  6, 

7,    9,    and  10  are  obviously  satisfied,   but,    since  the  only  interval  is  the 

empty  set,   Axioms  8  and  11  are  not.      On  the  other  hand.    Axioms   12, 

13,    and  14  are  satisfied  because  the  only  interval  is  the  empty  set. 

Finally,   Axiom  15  is  satisfied.      For  examiple,    the  two  half-planes 

determined  by  the  line  {P^  ,    P^  }  are   {P^  }  and  0. 

Your  students  will  probably  have  in  mind  some  particular  interpretation 

of  the  words  'point',    'line',    and  'between'  for  which  the  axioms  are  true 

statements --that  is,    they  will  have  in  mind  some  model  of  the  deductive 

theory  based  on  these  axioms.      More  exactly,    probably,    each  student 

has  in  nnind  some  vague  notions  of  interpretations  for  the  words   'point', 

'line',   and  'between'  for  which  the  axionns  are  "nearly  true"  statements. 
[You  will  do  well  not  to  inquire  too  closely  into  these  interpretations.] 

Point  out  that,   at  least  as  far  as  Axioms  1,    2,    and  3  are  concerned  [the 

situation  is  similar  for  the  connplete  set  of  axioms],    there  are  alternative 

interpreSations- -theirs,    Gloxian  cities  and  highways;   businessmen  and 

partnerships  [see  page  6-6],    and  various  three-point  interpretations  of 

the  kind  explored  above.     [Since  Axioms    1,    2,    and  3  do  not  deal  with 

betweenness,    it  is  immaterial,    for  your  present  purposes,   how  'between' 
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Under  this  correspondence,    Message  3  beconnes:  i 

The  plane  has  at  least  three  points 
not  all  on  the  same  line. 

And,   of  course,  this  says  just  what  Axiom  3  says. 

Message  4  becomes:  j 

Each  line  in  the  plane  passes  I 
through  at  least  two  points.  j 

This  is  equivalent  to  Axiom  1. 

Message  5  tells  you  that,   for  each  two  cities  on  Glox,   there  is  a  highway 

connecting  them,    and,    mioreover,   this  is  the  only  highway  connecting  thena. 

This  is  like  saying  that  each  two  cities  on  Glox  determine  a  highway.    So, 

Message  5  can  be  translated  into  Axiom  2. 

Now,    Message  A  translates  readily  into  a  theorem  that  claims  that  there 

are  at  least  three  lines.      Since  Message  A  follows  from  Messages  3 

and  5,   the  same  reasoning  will  show  that  the  theorem  about  lines  follows 

from  Axioms  3  and  2.      [See  below.] 

Theorem.      There  are  at  least  three  lines. 

Proof.     By  Axiom  3,   there  are  at  least  three  noncollinear  points. 

Suppose  that  A,   B,    and  C  are  three  such  points.      Since  A  /^  B,  it 

follows  from  Axiom  2  that  there  is  one  and  only  one  line,   i,   which 

contains  A  and  B.      Similarly,  there  is  one  and  only  one  line,    m, 

which  contains  B  and  C,    and  one  and  only  one  line,   n,   which  con- 

tains C  and  A.     Since  A,   B,    and  C  are  noncollinear,   neither  i,   m, 

nor  n  contains  all  three  points.      So,    since  A  and  B  belong  to  i, 

C  ̂   £.      But  C  e  rn  and  Gen.      Hence,   S.  ̂  m.  and  i  ̂  n.     Similarly, 

A  ̂   m,    but  A  e  n.     Hence,   m  /  n.     So,   i,    m,   and  n  are  three  lines. 

Consequently,   there  are  at  least  three  lines. 
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Two  points  are  said  to  be  on  opposite  sides  of  i  when  the  first  belongs 

to  one  of  the  two  half-planes  determined  by  i  and  the  second  belongs  to 

the  other  of  these  two  ha  If -planes. 

Notice  that  if  two  points  are  on  the  same  side  of  i  or  on  opposite  sides 

of  I  then  neither  point  belongs  to  i.     [So,   if  either  of  two  points  belongs 

to  i  then  the  two  points  are  not  on  the  same  side  of  i  and  are  not  on 

opposite  sides  of  i.]     Conversely,   if  neither  of  two  points  belongs  to  i 

then  the  two  points  are  either  on  the  same  side  of  i  or  on  opposite  sides 

of  i. 

Comments  on  the  bottom  paragraph  on  page  6-22. 

If  you  handle  this  in  class,   take  the  time  to  write  the  three  messages 

and  the  three  axionns  on  the  board  in  this  order: 

Message  3.       

Message  4-      

Message  5.       

Axiom  1.       

Axiom  2.       

Axiom  3.       

It  should  be  very  apparent  that  Message  3  resembles  Axiom  3,    Message 

3  mentions  three  cities,    and  Axiom  3  mentions  three  points.     So,  perhaps 

cities  correspond  to  points.      Noncollinear  points  are  points  not  all  on 

the  same  line.     So,   noncollinear  points  correspond  to  cities  not  all  on 

the  same  highway.      Hence,   highways  correspond  to  lines.      Lines  and 

points  are  in  the  plane;    cities  and  highways  are  on  Glox. 

Cities  -•—  Points,     Highways  — *  Lines,     Glox  ■—*■  The  Plane 
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Where  must  such  a  point  be? 

B 

What  does  the  picture  suggest  about  A,   B,    and  D,   this  tinne  ? 

Now,    state  Axiom  14. 

With  the  foregoing  approach,    some  of  your  students  may  see  that  Axioms 

13  and  14  amount  to  saying  that  if  B  e  AC  and  D  e  BC  then  B  e  AD.      In 

other  words, 
—  ->  — 

if  B  e  AC  then  BC  C  {Z:    B  e  AZ}. 

As  a  matter  of  fact,    it  was  brought  out  earlier  [on  page  6-13,   line  6, 

part  (f)]  that 

if  B  e  AC  then  BC  =    {Z:    BeAZ}. 

What  we  have  just  suggested  that  students  might  notice  is  that  "half"  of 
this  result  is  an  immediate  consequence  of  Axioms  13  and  14. 

Finally,   Axiom  15  deals  with  the  separation  of  a  plane  by  a  line.      The 

discussion  on  page  6-16  pointed  out  that  the  complement  of  a  line  is  the 

union  of  two  sets  called  half -planes.     Axiomi  15(1)  says  that  two  points, 

P  and  Q,    belong  to  the  same  half -plane  determined  by  a  line  i    [or:    are 

I   /^^'Q   /  /  I  I  I  /  /  /i I  !  /  / 

on  the  same  side  of  i]  if  PQ  r^  i  =  0.  Axiom  15(2)  says  that  if  two  points, 

P  and  Q,  belong  to  the  same  half -plane  determined  by  i.  then  PQ  is  a  sub- 

set of  this  half -plane. 
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Does  A  belong  to  BC?     [Yes;    since  B  /  C,   BC  is  the  line  containing 

B  and  C.      But,  there  is  only  one  such  line, 

and  AC  is  it.  J 

Is  there  a  fourth  point  D  such  that  C  e  BD? 

Where  must  such  a  point  be? 

Could  you  show  that  A,   B,    C,   and  D  are  collinear? 
«-> 

[Yes;   D  €  BC  for  the  same  reasons  that 

A  €  BC.     So,   A,  B,  C,    and  D  all  belong  to  BC] 

Could  you  show  that  A,    B,    C,   and  D  are  four  points  ? 

[Well,   we  showed  that  A,   B,   and  C  are  dif- 

ferent points,  and,  for  the  same  reasons,  B, 

C,  and  D  are  different.    So,  that  just  leaves 

A  and  D.    I  don't  see  how  D  could  be  A.    Oh, 

yes,  if  D  =  A  then,  since  C  e  BD,   it  follows 

that  C  e  BA.    But,  B  e  AC.    And,  Axioms  9  and 

10  say  that  these  can't  both  happen.    So,  D  /  A.] 

What  does  the  picture  suggest  about  A,   B,    and  D? 

[Well,   it  looks  as  though  B  €  AD.      But,   I 

don't  see  how  to  prove  it.  ] 

[At  this  point,   the  student  is  ready  for  Axiom  13.     So,    state  it,] 

Now,   let's  go  back  to  where  we  were  when  we  supposed  that  B  €  AC, 
Is  there  a  fourth  point  D  such  that  D  e  BC? 

B 
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It  seems  intuitively  obvious  that  [once  we  know  frona  Axiom  8  that  there 
is  at  least  one  point  between  any  two  points]  we  should  be  able,    given 
two  points  A  and  B,  to  find  as  many  points  between  A  and  B  as  we  wish. 
For  example,   if  we  choose  a  point  C  between  A  and  B,   we  can  then  find 

A  C  D        E  .    .    .    B 

a  point  D  between  C  and  B,    a  point  E  between  D  and  B,    etc.     However, 
our  axioms  so  far  are  not  sufficient  to  guarantee  that  if  C  is  between  A 
and  B,   and  D  is  between  C  and  B,   then  D  is  between  A  and  B,     [Theorem 

5(e)  says  that  this  is  the  case,   but  to  prove  this  theorem,   we  need  addi- 
tional axionris.]    Axioms  12,    13,    and  14  contain  enough  additional  infor- 

mation about  betweenness  to  settle  questions  of  this  kind.       From  these 
three  axioms  [together  with  some  of  the  earlier  ones],   it  follows  that  if 
you  have  pictured  sonne  points  on  a  line  then  any  other  point  which  is 
between  some  two  of  these  is  also  between  any  two  which  it  looks  to  be 
between.     For  exanaple,    referring  to  the  figure  above,  any  point  between 
C  and  D  is  also  between  A  and  D,   between  C  and  E,    and  between  C  and 
B.     [Warning:    The  proof  of  this  is  not  altogether  easy.] 

On  TC[6-13]d  and  e,  there  is  a  suggested  procedure  for  clarifying  the 
meaning  of  Axiom  12.  Similar  procedures  can  be  used  for  Axioms  13 
and  14.     For  example: 

Suppose  that  B  €  AC. 

A 

Can  B  =  A?      [No;   Axiom  7.] 

B 

Can  B  =  C?      [No;   Axioms  9  and  7.] 

Can  A  =  C?      [No;   if  A  =  C  then  AC  =  0.      Therefore,   B  couldn't 

belong  to  AC.  ] 

So,  A,   B,   and  C  are  three  points. 

Are  they  collinear  ?      [Yes;    since  A  /  C,   AC  is  the  line  containing 
—       < — >  — A  and  C,   and  since  AC  C  AC  and  B  €  AC,   it 

follows  that  B  is  a  point  of  the  line  containing 
A  and  C.  ] 
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Theorem  20. 

\
"
 

i 

\^ 

m 

\ 

[if  i  I  I  m  and  n  crosses  i  then  n  crosses  m] 

Suppose  that  i   |  j   m  and  that  n  crosses  i.     Then,   i  (^  m  =  0  and,    by 

Theorem  19»   i  -^  n  consists  of  a  single  point,    say  the  point  A.     So, 

n  ;^  m  [A  €  n  but  A  ̂   m]  and,    by  Theorem  1,    n  /^  m  consists  of  at  most 

one  point,     li  n  i^  m  =  0  then  i  and  n  are  two  lines  through  the  point  A 

which  are  parallel  to  m.     By  Theorena  3,   this  cannot  be  the  case.     So, 

n  /^  m  7^  0.     Hence,   n  ̂ ^  nn  consists  of  a  single  point  and,    by  Theorem 

19,   n  crosses  m. 
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Theorem  19. 

if  m.  "^  i  consists  of  a  single  point  then  m  crosses  i--that  is, 

m  contains  points  on  each  side  of  i;   if  m  crosses  SL  then  m  '~^  i 
consists  of  a  single  point 

Suppose  that  m  '^  i  =  {A}.     Then,    A  €  m  and,   by  Axiom  1,    there  is  a 

point  B  €  m  such  that  B  f  A.     Hence,    by  Theorem  4,    m  =  AB.     By  Axiom 

11,    there  is  a  point  C  such  that  A  €  BC  and,   by  Axiom  9i   it  follows  that 

A  e  CB.     Since  Bern  and  B  ̂   A,   it  follows  that  B  ̂   i.     So,    since  A  e 

CB  ̂   Si,    it  follows  by  Theorenn  16  that  C  and  B  are  on  opposite  sides  of 

i.     Since  we  know  that  Bern,    it  will  follow  [from  the  definition  of 

*crosses'--see  Exercise  7  on  page  6-17]  that  m  contains  points  on  both 
sides  of  i  once    we  have  shown  that  C  €  nn.     Now,    since  A  e  CB,    it  follows 

from  Theorem  14  that  m  =  AC  ̂   {A}  ̂   AB.     By  Axiom  7,    since  A  e  CB, 

K^C.     Hence,    by  Theorem  5  (c ),    C  €  AC.     So,    C  €  m. 

Suppose,    now,    that  m  crosses  i.      Then,    there  are  two  points,    B  and  C, 

of  m  on  opposite  sides  of  i.     By  Theorem  16,    C  ̂   St  and  BC  r\  i  ̂  (jf). 

Since  C  €  m  and  <Z  i  i.,    it  follows  that  m  ̂   SL  and,    by  Theorem  1,    m  ̂   i 

consists  of  at  most  one  point.     Since  B  ̂   C  and  both  B  and  C  belong  to 

m,    it  follows  by  Theorem  4  that  m  =  BC,     By  Theorem  5(b),    BC  £  BC. 

So,    since  ̂ C  r\  ji  ̂   (p,    BC  r^  SI  ̂   0,  --that  is,    m  '^  i  /  0.     Hence,    m^  i 

consists  of  exactly  one  point. 
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Theorem  17. 

[if  BC  '^  i  =  0  and  AB  ̂   i  /  0  then  AC  ̂   i  /  0] 

Suppose  that  BC  ̂   i  =  0  and  that  AB  r^  i  :f  (p.     From  the  first  assumption, 
it  follows  from  Theorem  15  that  B  and  C  are  on  the  same  side  of  j8  and, 

in  particular,    that  B  ̂   j8.     From  this  last  and  the  second  assumption,   it 

follows  by  Theorem  16  that  A  and  B  are  on  opposite  sides  of  i.     Consfe- 

quently,   A  and  C  are  on  opposite  sides  of  i.     So,    by  Theorem  16, 

AC  '^i  /^  0. 

[One  consequence  of  this  theorem  is  that  a  line  i  which  intersects  one 

side  of  AABC  and  contains  no  vertex  of  this  triangle  nnust  intersect 

another  side  of  the  triailgle.  ] 

Theorem  18. 

[if  A  €£  and  B  ̂   i  then  AB  is  a  subset  of  one  side  of  i] 

Suppose  that  A  €  i  and  B  (^  i.     Then,   by  Theorem  7,   AB  -^  i  =  0.     By 

Theorem  13,    if  a  point  C  6  AB  then  BC  C  AB.     Hence,    if  C  e  AB  then 

BC  ̂   i  =  0,    and,   by  Theorem  15,    B  and  C  are  on  the  same  side  of  i. 

Consequently,    if  A  ei  and  B  ̂   i  then  each  point  of  AB  is  on  the  same 

side  of  i.  as  is  B. 
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Theorem  16. 

if  B  ̂   i  and  AB  ̂   i  /  0  then  A  and  B  are  on  opposite  sides  of  2; 

_if  A  and  B  are  on  opposite  sides  of  i  then  B  ̂   i  and  AB  r>  I  ̂   0 

Suppose  that  B  /  i  and  that  AB  ̂   j?  /  0.     Since,    by  Theorem  5(a),   AB  C 

AB,    it  follows  that  AB  r^  2  ̂   0.     Hence,    by  Theorem  15,   A  and  B  are 

not  on  the  saine  side  of  It,     Since  the  two  sides  of  a  line  are  subsets  of 

its  complement,    it  will  now  follow  that  A  and  B  are  on  opposite  sides  of 

i  if  we  can  show  that  neither  belongs  to  l.    But,    by  Theorem  5(b),    AB  C 

AB.     So,    since  AB  ̂   i  /  0,    AB  r^  i  ̂   0.     Hence,    by  Theorem  7,    since 

B  ̂   i,   it  follows  that  A  /  i.     So,    as  was  to  be  shown,   neither  A  nor  B 

belongs  to  i.      Consequently,    if  B  /  ̂  and  AB  t~\  i  ̂  0  then  A  and  B  are  on 
opposite  sides  of  L 

Suppose,   now,    that  A  and  B  are  on  opposite  sides  of  i.      Then,   neither  A 

nor  B  belongs  to  i,    and  A  and  B  are  not  on  the  same  side  of  i.     Hence, 

by  Theorem  15,    AB  r\  i  -f  0,    and  since,    by  Theorem  5(a),    AB  =  AB  ̂  

{A,  B  },    AB  '^  i  /  0.     Consequently,    if  A  and  B  are  on  opposite  sides  of 

I  then  B  ii  and  AB  r^  i  ̂  0. 

TC[6-23]j 





The  remaining  six  theorems  deal  with  the  separation  of  the  plane  by  a 

line.     As  discussed  on  page  6-16,    the  complement  of  a  line  is  the  union 

of  two  sets,   called  half-planes.     As  stated  in  Axiom  15,    (1)  two  points, 

P  andQ,   belong  to  the  same  half-plane  determined  by  £  [or:    are  on  the 

/  .^/ 

////V 

same  side  of  i]  if  PQ  /^  i  =  0;   and  (2)  if  two  points,    P  and  Q,    belong  to 

the  same  half -plane  determined  by  i  then  PQ  is  a  subset  of  this  half-pleine. 

Two  points  are  said  to  be  oti  opposite  sides  of  £  when  the  first  belongs  to 

one  of  the  two  half -planes  determined  by  i  and  the  second  belongs  to  the 

other  of  the  two  half-planes.     Notice  that  if  two  points  are  on  the  same 

side  of  i  or  on  opposite  sides  of  i  then  neither  point  belongs  to  i.    [So,    if 

either  of  two  points  belongs  to  Jt  then  the  two  points  are  not  on  the  same 

side  of  £  and  are  not  on  opposite  sides  of  i.  ]    Conversely,    if  neither  of 

two  points  belongs  to  i  then  the  two  points  are  either  on  the   same  side  of 

i  or  on  opposite  sides  of  i. 

Theorem  15.    [See  picture  above.] 

if  AB  /^  S.  =  0  then  A  and  B  are  on  the  sanae  side  of  £; 

_if  A  and  B  are  on  the  same  side  of  S.  then  AB  /^  £  =  0  _ 

By  Axiom  15(1),    if  AB  '^  i  =  0  then  A  and  B  are  in  the  same  half -plane 

determined  by  I.     That  is,   A  and  B  are  on  the  same  side  of  i. 

By  Axiom  15(2),    if  A  and  B  are  in  the  same  half-plane  determined  by  i 

then  AB  is  a  subset  of  this  half-plane.     Since  the  half -plane  is  a  subset 

of  the  complement  of  i,   AB  is  a  subset  of  the  complement  of  2.     So, 

AB  r^  £  =  0. 
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Theorem  13. A B C 

or 
A C B 

A 

or 

C,  B 

[if  C  e  AB  then  BC  C  AB] 

— > 

Suppose  that  C  e  AB.     By  Theorem  5(d),    A  /  B.     So,    by  Theorem  8, 

AB  =  AB  w  {b}  w  {Z:   B  €AZ}.     Since  C  e  AB,    it  follows  that  either 

(1)  C  €  AB,    or  (2)  C  =  B,    or  (3)  B  £AC.     If    (1)  C  eAB  then,   by  Theorem 

5(e),    CB  C  AB.     So,   by  Axiom  9,   BC  C  AB.     Hence,   by  Theorem  5(b), 

BC  C  AB.     So,    if  C  eAB  then  BC  C  AB.     If  (2)  C  =  B  then,   by  Theorem 

5(d),    BC  =  0  C  AB.     If  (3)  B  €  AC  then,   by  Theorem  5(e),    BC  C  AC  and, 

by  Theorem  5(b),    BC  C  AC.     But,    by  Theorem  12,    since  C  €  AB,    it 

follows  that  AC  =  AB.     So,    if  B  €  AC  then  BC  C  AB.     Hence,    in  any  case, 

if  C  eAB  then  the  interval  BC  C  AB.     But,    also,    if  C  e  AB  then,    as  we 

have  seen,   A  ;^  B  and,    by  Theorem  5(c),    B  eAB.     Since  BC  =  BC  w 

{B,  C},    we  have,    finally,    that  if  C  eAB  then  the  segment  BC  C  AB. 

Theorem  14. 

[if  A  e  CB  then  AB  =  AC  ̂   {A}  w  AB] 

< — >      -^         ~^  — 
By  Axiom  5,   AB  =  BA  w  AB.     Suppose  that  A  e  CB.     By  Axioms  7  and  9, 

A  /^  B;    so,    by  Theorem  8,    BA  =  {Z:  A  e  BZ}  w  {a}  w  bA.     By  Axiom  9, 

CB  =  BC.     So,   A  eBC.     Hence,    by  Theorem  11,    {Z:   A  eBZ}  =  AC.     By 

Axiom  9,    BA  =  AB,    and,    by  Theorem  5(b),   AB  C  AB.     Consequently, 

BA  w  AB  =  AC  w  {a}  w  AB. 
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On  the  other  hand,    still  assuming  that  A  c  DB,    if  C  €  {Z  :  A  e  DZ  },    so 

that  A  €  DC,    then,    by  Axiom  12,    either  C  =  B  or  C  €  AB  or  B  €  AC.     In 

any  case,    CeAB.     Hence,    {Z:   AeDZ}CAB. 

Consequently,   if  A  e  DB  then  AB  =  {Z :  A  e  DZ  }. 

Theorem  12. 
A B C 

or 

A C B 

or 

A 
C,  B 

[if  A  /  B  and  A^  =  AB  then  C  e  AB;   if  C  €  AB  then  A  ̂   B  and  AC  =  AB] 

Suppose,    first,    that  A  /  B  and  that  AC  =  AB.     By  Theorem  5(c),    B  €  AB; 

so,   AB  /  0.     Hence,   AC  /  0  and,    by  Theorem  5(d),    A  ̂   C.     Hence,    by 
— ^  -> 

Theorem5(c),    C  6  AC.     So,    CeAB. 

On  the  other  hand,    suppose  that  C  €  AB.     By  Theorem  5(d),   A  7^  B;    so, 

by  Axiom  11,     {Z  :  A  e  BZ  }  ji^  0.      Let  D  be  a  point  in  {Z  :  A  €  BZ  },    that  is, 

such  that  A  e  BD.     By  Axiom  9,    BD  =  DB;    so,    A  €  DB.      Consequently, 

by  Theorem  11,    AB   =  {Z:   A  eDZ}.     It  follows  that,    since  C  €  AB, 

A  €  DC.     So,    by  Theorem  11,   A^  =  {Z:   A  £  DZ}.     Hence,    AC  =A^. 

Corollary  of  Theorem  12.     [Same  picture  as  for  Theorem  12.] 

[if  C  e  AB  then  B  6  AC] 

Suppose  that  C  €  AB.     By  Theorem  12,   A  /  B  and  AC  =  AB.     Since  A  j^  B, ->  — >        -^ 
it  follows  by  Theorem  5(c)  that  B  £  AB.     So,    since  AC  =  AB,    it  follows 

~> 

that  
B  €  AC. 
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From  Axiom  6  it  follows  at  once  that  if  A,    B,    and  C  are  three  collinear 
< — >  r 

points  then  [since  A  f  BJ  C  e  AB,     Consequently,    by  Theoremi  8,    [since 

C  /  A  and  C  /  B],    either  A  e  BC  or  C  e  AB  or  B  e  AC.     So  we  have 

Theorem  9. 

On  the  other  hand,   if  C  €  AB  then,    by  Theorem  5(b),    C  €  AB.     Hence,   by 

Axiom  6,   A  ̂   B  and  A,    B,    and  C  are  collinear.      Moreover,    if  C  €  AB 

then,     by  Axioms  7  and  9,    C  ;^  A  and  C  /^  B.     Consequently,   if  C  €  AB 

then  A,    B,    and  C  are  three  collinear  points.     Hence,    Theorem  10. 

For  each  of  the  remaining  ten  theorems  we  shall  give  a  picture  illustra- 

ting the  theorem  and  a  terse  outline  of  a  proof.      The  pictures  should  be 

used  in  class   discussion  of  the  theorems;   the  proofs  are  for  you  to  fall 

back  on  in  case  you  are  pushed  by  exceptionally  interested  students. 

Theorem  1 1. 

D 

[if  A  €  DB  then  AB  =  {Z  :  A  e  DZ  }] 

Suppose  that  A  €  DB.     By  Axioms  7  and  9,   A  /  B.     So,    by  Theorem  8, 

a1  =  AB  w  {b}  ̂   {Z:    B  €  AZ}.     By  Axiom   14,    since  A  e  DB,    it  follows 

that  if  a  point  C  e  AB  then  A  e  DC.     So,   AB  C  {Z:   A  e  DZ}.     Again,    since 

A  e  DB,    {b}  C   {Z:   A  e  DZ}.     By  Axiom  13,    since  A  e  DB,    it  follows  that 

if  B  eAC  then  A  e^C.     So,    {Z:    B  €  AZ  }  C   {Z  :  A  e  DZ  }.      Combining  these 

results,   we  see  that  [assuming  that  A  £  DB]  AB  C   {Z :  A  €  DZ  }. 
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Incidentally,   Axiom  14,   which  was  used  in  proving  Theorem  5(e),    can 

be  derived  from  some  of  the  earlier  Introduction  Axioms,    including 

Axioms   12  and  13.     However,    since  this  derivation  of  Axiom  14  is  some- 

what complicated,  we  shall  not  give  it  here. 

Theorem  6  is  essentially  equivalent  to  (*)  on  TC[6-23]b,    and  has  been 

proved  on  TC[6-23]c. 

Theorem  7  says  that,    given  a  line  i,   a  second  line,  which  contains  a 

point  A  €  i  and  a  point  B  ji^  i,    contains  no  point  of  i  other  than  A.     Also, 

that  AB  -^  j8  =  0.     The  first  part  of  the  theorem  follows  at  once  from 

Theorem  1,    once  one  has  noted  that,    by  Theorem  4,   AB  is  a  line  which 

contains  A.     The  second  part  now  follows  from  the  first,    together  with 

the  fact  that,    since  AB  C  AB,   AB  ̂   i  C  AB  r\  l,    and  the  fact  that  A  f  AB. 

Theorem  8  tells  us,    first,   that 

if  A  ;^  B  then  AB  =  AB  ̂   {B} '-^  {Z:    BfAZ}. 

->  •-> 
By  Axiom  5,  AB  is  the  set  consisting  of  all  the  points  in  AB  except  A. •— >  — 
Also  by  Axiom  5,  AB  is  the  set  of  all  the  points  which  belong  to  AB 

or  to  {A,  B}  or  to  {Z:    B  €  AZ}.     Now,   by  Axiom  7,   A  ̂   AB.     And,    by 

Theorem  5(d),   AA  =  0;    so,    since  B  i^AA,   A  ̂   {Z :    B  €  AZ  }.     Hence,    if 

A  ̂   B  then  AB  is  the  set  of  all  the  points  which  belong  to  AB  or  to  {b} 

or  to  {Z :    B  €  AZ  }.     So,   we  have  proved  the  first  part  q$  Theorem  8. 

For  the  second  part  of  the  theorem,  we  need  only  remark  that,   by  the 

first  ̂ art,^if  B^A  then  BA  =  BA  w  {a}  '^_{Z:  A  €  BZ  },   that,    by  Axiom 
5,   Ab  =  BA  w  AB,    and  that,  ̂   Axiom  9,    BA  =  AB.     As  a  consequence, 

"^  =  {Z:    A  €  BZ>  w  {A}  w  AB  w  {B}  w  {Z:    B  €  AZ}. 
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to  AB.     The  other  part  of  Axiom  6  can  now  be  derived  if  we  use  the 

theorem: 

(3)  V^  XX   =  0 

[This  we  have  previously  seen  to  be  a  consequence  of  Axiom  6.]    In 

fact,    if  C  e  AB  then  it  follows  from  the  theorem  just  stated  that  A  /=  B. 

So,    by  definition,   AB  is  a  line  which,    by  Axiom  5,    contains  A  and  B. 

So,   A,    B,    and  C  are  collinear. 

The  upshot  of  all  this  is  that  Axioms  1,    2,   and  6  might  be  replaced  by 

the  displayed  sentences  (1),    (2)  [or  (*)],    and  (3). 

We  return  now  to  parts  (e)  and  (f)  of  Theorem  5.      To  prove  part  (e),   we 

need  to  show  that  if  C  €  AB  then  CB  C  AB.     That  is,    we  need  to  show 

that  if  C  e  AB  and  D  e  CB  then  D  €  AB.     We  begin  by  using  Axiom  14. 

This  axiom  tells  us  that  if  C  €  AB  and  D  e  CB  then  C  €  AD. 

AC  B 

By  Axiom  9,    CB   =  BC  and  AD  =  DA.     So,   we  know  that  if  C  €  AB  and 

D  e  CB  then  C  e  DA;     also,    D  e  BC.     However,    Axiom  13  tells  us  that  if 

D  €  BC  and  C  €  DA  then  D  e  BA.     Since  BA  =  AB,    it  follows  that  if  C  €  AB 

and  D  e  CB  then  D  e  AB.      That  is,    if  C  €  AB  then  CB  C  AB. 

The  proof  of  Theorem  5(f)  is  now  easy.     We  want  to  show  that,    if  A  /  B, 

there  are  at  least  two  points  in  AB.     Axiom  8  tells  us  at  once  that  there 

is  at  least  one  such  point.     Suppose,    then,    that  C  is  a  point  such  that 

C  eAB.     Axioms  7  and  9  tell  us  that  C  /  B.     So,    again  by  Axiom  8,    there 

is  a  point,    say  D,    such  that  D  e  CB.     By  Axiom  7,    D  /  C.     By  Theorem 

5(e),    since  C  eAB,    CB  C  AB.     So,    since  DeCB,    D  e  AB.     Consequently, 
there  are  at  least  two  points  in  AB. 
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This  is,   in  fact, Theorem  6  [on  page  6-25].      To  prove  this  theorem, 

suppose  that  C  f  D  and  that  {C,  D)  CAB.     It  follows,    from  the  latter 

< — > assumption,   that  AB  -f  0  and,   hence  [as  proved  earlier],   that  A  ̂   B.    So, 
by  Theorem  4,   AB  is  a  line.     Hence,    AB  is  a  line  which  contains  the 

points  C  and  D.     By  (*),    since  C  7^  D,    it  follows  that  there  is  at  most  one 

such  line.     In  fact,    by  Theorem  4,    this  line  is   CD.     So,    CD  =  AB. 

We  have  seen  that,    from  Axiom  1  and  Theorem  4,    one  cein  derive: 

(1)  A  set  i  is  a  line 

if  and  only  if 

there  are  two  points  X  and  Y  such  that  i  -  XY 

This  suggests  that  we  might  have  defined  the  word  'line'  in  this  way.     Had 
we  done  so,   Axiom  1  could  have  been  onnitted.     For,    as  we  have  seen, 

it  follows  from  Axiom  5  that  if  A  and  B  are  two  points  then  {A,  B}  C  AB. 

Moreover,    the  part  of  Axiom  2  which  says  that  each  two  points  are  con- 
tained in  at  least  one  line  could  have  been  omitted.     For,    if  A  and  B  are <— > 

two  points,    it  would  now  follow,    by  definition,    that  AB  is  a  line  and,    by 

Axiom  5,    that  this  line  contains  A  and  B.      The  remaining  part,    (*),    of 

Axiom  2  could,    then,    be  replaced  by  Theorenn  6: 

'^^^  < — >     ■^^• 

(2)  ̂ w'^x^Y^Z  ̂ ^^  ̂   ̂  ̂ nd  (W,   Z}  C  XY  then  WZ  =  XY 

For,    from  this  and  the  suggested  definition  for  'line'  it  follows  that  if  i. 
is  any  line  which  contains  two  given  points,    C  and  D,    then  S.  is  the  line 
<— ̂  
CD.     So,    (*)  is  a  consequence  of  Theorem  6  and  the  suggested  definition. 

Hence,    Axioms   1  and  2  could  be  replaced  by  Theorenn  6  and  the  suggested 

definition   of  'line'. 

Once  these  changes  are  made,  part  of  Axiom  6  beconnes  superfluous. 

For,  if  A  ;^  B  and  A,  B  and  C  are  collinear  then  AB  is  the  unique  line 

containing  A  and  B;    and  C,    being  collinear  with  A  and  B,   must  belong 
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Parts  (e)  and  (f)  of  Theorem  5  depend  on  some  of  the  later  axioms.     But, 

before  taking  these  up,    it  will  be  helpful  to  get  a  better  idea  of  how  Axioms 

1,    2,    5,   and  6  hang  together.     In  the  process,    we  shall  prove  Theorem  4, 

on  page  6-24,    and  Theorem  6,    on  page  6-25.     And,   we  shall  see  that 

Axioms   1,    2,    and  6  could  be  replaced  by  a  definition  of  'line'.    Theorem 

6,   and  the  theorem  'V      XX  =  0'. 

We  can  use  Axiona  6  to  link  up  the  word  'line'  with  the  notation  used  in 
Axiom  5.     Suppose  that  A  and  B  are  two  points.     As  has  just  been  shown, 

it  follows  frona  Axiom  5  that  AB  f  <p.     So,    there  is  a  point  C  in  the  set  AB. 

Hence,    by  Axiom  6  [only-if-part],    C  belongs  to  sonae  line  containing  A  and 

B.     So  [without  using  Axiom  2],    there  is  a  line  which  contains  A  and  B. 

However,   Axiom  2  tells  us  that  [assuming  that  A  /  B]  there  is  at  naost  one 

line  which  contains  A  and  B.     So,    if  A  ;^  B,    each  point  of  AB  belongs  to 

the  line  containing  A  and  B.     On  the  other  hand,   by  Axiom  6,    if  A  /=  B  and 

C  belongs  to  the  line  which  contains  A  and  B,   then  C   6  AB.     Hence,    if 

A  /^  B,    each  point  of  the  line  which  contains  A  and  B  belongs  to  AB.     Con- 

sequently,    if  A  /t  B  then  the  set  AB  is  the  line  which  contains  A  and  B. 

So,   we  have  proved  Theorem  4: 

V   V      if  X  ;^  Y  then  XY  is  the  line  determined  by  X  and  Y X     X 

In  the  first  part  of  the  proof  of  Theorenn  4,    we  saw  that  it  follows  from 

Axioms  5  and  6,    without  using  Axiom  2,    that  each  two  points  are  con- 

tained in  at  least  one  line.     So,    this  part  of  Axiom  2  might  be  omitted- - 

that  is,    we  naight  replace  Axiom  2  by  the  weaker  sentence: 

(*)         Each  two  points  are  contained  in  at  most  one  line. 

Now,    by  Axiom  1,    each  line  contains  two  points,    and  so,    by  Theorem  4, 

each  line  is  some  set  XY,    for  two  points  X  and  Y.     Hence,    {*)  and  Theo- 
rem 4  tell  us  this  : 

^V^V^V^      if  W  /  Z    and    {W,    Z}c1cifthen   WZ  =  XY 
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line  5b  should  read  'Theorems  1,    4,    5b,    and' 

Theorems   1,    2,    3,    and  4  have  been  discussed  in  the  COMMENTARY  for 

pages  6-18,   6-19,    and  6-20.      Now,   we  shall  discuss  the  remaining  theo- 
rems,   beginning  with  Theorem  5  on  page  6-25. 

In  addition  to  this  we  shall  give  an  alternative  proof  for   Theorem  4. 

This  proof  is  more  complicated  than  that  given  on  TC[6-19,  20]b,    but  is 
needed  to  justify  the  remarks  on  TC[6-18]a  concerning  the  possibility  of 

defining  the  word  'line*. 

You  will  probably  find  little  direct  use  for  this   COMMENTARY  in  the 
classroom.     However,    study  of  it  will  deepen  your  understanding  of  the 
Introduction  Axioms  and  should  help  you  decide  how  [and  how  far]  to 
proceed  in  discussing  the  Introduction  Theorems.     You  will  find  it  easier 
to  read  and  appreciate  what  follows  if  you  invest  some  time  in  trying  to 
prove  the  Introduction  Theorems  by  yourself. 

Axiom  5  introduces  various  notations  with  which  the  student  has  become 

familiar,    and  shows  how  each  can  be  described  in  terms  of  the  notion  of 

betweenness.     Theorem  5(a)  on  page  6-25  summarizes  some  of  the  obvi- 

ous consequences  of  Axiom  5.      The  same  holds  for  Theorem  5(b),    except 

that  its  first  clause  ['XY  C  XY']  depends,    in  part,    on  Axiom  7.      For,    by 
Axiom  5  [or  Theorem  5(a)],    AB  CAB.     But,    by  Axiom  7,   A  /  AB.     There 

fore,    since  AB  consists  of  the  points  of  AB  other  than  A,   AB  CAB. 

An  argument  for   Theorem  5(c)  goes  as  follows: 

By  Axiom  5,   A  e  BA.     Hence,    again  by  Axiom  5,   A  e  BA  and, 

if  A  /  B,    A  eBA.    Since  AB  =  {A}^AB,   AB  C  BA  w  AB  =  AB. 

As  a  consequence  of  this,    we  see  that  if  A  /  B  then  {A,  B)  CAB.     In 

particular,    if  A  /  B  then  AB  /^  0. 

Theorem  5(d)  depends  on  Axiom  6.     By  this  axiom,    if  there  is  a  point  C 

such  that  C  6  AB  then  A  /  B.     In  other  words,    if  AB  /  0  then  A  /  B.     So, 
if  A  =  B  then  AB  =  0.     [Equivalently:   V^   XX  =  0] 
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line  27.    about  5.08;   about  3.81;   about  8.89 

[Students  will  probably  give  results  such  as  5.05  or  5.  1,    3.  8, 

and  8.  85  or  8.  9  .     Accept  such  results  without  getting  entangled 

in  the  subject  of  approximations.     This  work  and  the  work  at  the 

top  of  page  6-30  should  move  rapidly  toward  Axiom  A.] 

line  32.    Notice  the  functional  notation  introduced  in  line  32.      This  is 

not  an  accident.      There  exists  a  function   [a  variable  quantity] 

which  we  call  'inch-nn'.     It  is  a  set  of  ordered  pairs.     The  first 
component  of  each  of  these  pairs  is  a  segaient,   and  the  second 

component  is  a  number  of  arithmetic.     The  second  connponent 

is  seiid  to  be  the  inch-measure  of  the  first  connponent.     There 

are  many  such  measure  functions.      Another  is  called  'j-inch- 

m',    and  another  is  called   'cnn-m'.      If  the  value  of  inch-nrx 

for  a  given  segment  is  k  then  the  value  of   |--inch-m  for  that 

segment  is  2k  and  the  value  of   cm-m  for   that   segment   is 
2.  54k. 

At  the  moment,    all  we  know  in  our  formal  geometry  about  these 

measure  functions  is  that  they  are  functions  with  the  set  of  all 

segments  as  domain  and  the  set   of  numbers  of  arithmetic  as 

range.     Som.e  of  the  properties  of  this  undefined  concept  are 

expressed  by  Axioms  A,   B,   and  C. 

There  are  measure  functions  for  intervals,    but  we  shall  have 

no  need  for  such  functions  in  our  geometry. 
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Correction.     On  page  6-29,   line  18  shoiiLd 

read  'To  BC?     To  AC?'. 

Line  lb  should  begin  '[Read   '. 

line   14.    Have  students  turn  their  rulers  so  that  the  scale  numerals  are 

inverted  and  facing  up.      Ask  if  they  still  get  the  same  scale 

difference  for  AB. 

line  17.    Since  we  always  subtract  the  smaller  scale  number  from  the 

larger  to  obtain  the  measure  of  the  segmient,  the  same  number 

is  assigned  to  both  AB  and  BA.      We  should  expect  this  to  be 

the  case  because  AB  =  BA  and  m  is  a  function  which  maps 

segments  into  numbers.     So,   m{AB)  =  m(BA).     [By  Axiom  5, 

AB  =  AB  w   {A,  B}  and  BA  =  BA  w  {B,  A}.      By  Axiom  9, 

AB  =  BA.      So,    since   {A,  B}  =  {B,  A},   AB  =  BA.  ] 

line  18.    m(BC)  =  1.5;    m{AC)  =  3.5 

line  20.    An  architect's  scale  or  an  engineer's  scale  would  be  a  handy 
thing  to  have  in  the  classroom  at  this  time. 

If  you  don't  own  one,    borrow  one  from  the  mechanical  drawing 
teacher  or  the  shop  teacher. 

line  23.    4;    3;    7 
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lines  3-7. 

When  the  unit  is 

the  J -inch 

the  Q-  -inch 

the  2- inch 

the  centimeter 

the  og 

m iMI 
IS 

^ 

(72) 

& 

5.08 

28 

m(BC)  is (D nn(AC)  is 

0 
@ 

(£s) 
(S) 

(jj^ 

(sTsi) (tM) 

@ 

(±i) The  United  States  standard  inch  is  now  defined  to  be  exactly  2.  54 
centimeters.     This  means  that  the  standard  inch  today  is  approxi- 

mately 0.  00000508  centimeters  shorter  than  it  was  prior  to  the 
legislative  action. 

line  20.  Be  sure  that  *AB'  is  read  'the  measure  of  segment  AB'  often 
enough  that  the  students  think  of  it  properly.  Since  nn(AB)  is 

a  number,    so  is  AB. 

line  6b.      Point  out  that  in  stating  generalizations  we  use  the  letters 
that  conne  late  in  the  alphabet,   and  in  stating  instances  we 
use  the  letters  that  come  early.      This  distinction  will  nnake 
it  easier  to  follow  and  write  proofs. 

It  is  helpful  if  students  read  'Y  €  XZ'  as  'Y  is  between  X  and  Z'  rather 

than  as  'Y  belongs  to  the  interval  XZ'. 
■'I- 

Intuitively,    (*)  says  that  if  you  take  a  segment  and  break  it  into  two 
segments  at  some  point  between  its  end  points  then  the  measures  of 
the  two  pieces  add  up  to  the  measure  of  the  given  segment. 
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Intviitively,   Axiom  A  says  that  it  doesn't  matter  at  what  point  in  a  given 
segment  you  break  it  in  two- -the  measures  of  the  two  pieces  will  add 
up  to  the  measure  of  the  given  segment.     (*)  restricted  us  to  breaking 

the  segment  at  a  point  between  its  end  points.     Of  course,    neither- (*) 

nor  Axiom  A  requires  that  the  segment  have  two  end  points.     How- 
ever,   in  practice,    one  would  use  {*)  only  with  nondegenerate  segments 

while  Axiom  A  could  be  used  in  all  cases. 

Note  that  Axiom  A  is  somewhat  like  the  conventional  axiom  about  the 
whole  being  equal  to  the  sum  of  its  parts.      The  conventional  axiom  is 

ambiguous  in  many  respects.     Does  the  word  'sum'   refer  to  segments 
or  to  measures  of  segments?    And,    what  is  meant  by  'part'?    Is  a  part 
of  a  segment  just  any  subset  of  it?     Or  nnust  a  part  of  a  segment  be  a 
segment?    Also,   how  many  parts  does  a  segment  have?     It  is  clear 
that  the  precise  language  of  Axiom  A  avoids  such  ambiguities,    and 
thereby  makes  it  usable  in  proofs.     But,    before  one  can  feel  at  ease 
v/ith  this  precise  language,    he  must  have  the  experience  provided  by 
the  table  and  discussion  on  page  6-30.      Under  ideal  circumstances, 
each  class  should  produce  its  own  statements  of  axionas,    sharpening 
the  statennents  until  they  express  exactly  what  is  nneant. 

i AB. 
1 

B.C 
1 

AB.  +  B.C 
1          1 

AC 

1 / 

/.  5"
 

2.b ^ 

2 I.S 1.  5 3 z 
3 I.S 1 

Z.S 

£ 

4 z 1 3 Z 

5 3 1 f z 
6 0.  5 

Z.S 3 z 

line  2b.     AB.  +  B.C    >  AC  [Notice,   also,   that  B^  i  AC] 

line  lb.     No 
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In  accepting  Axiom  B,   be  sure  students  understand  that  Axiom  B  holds 
even  if  Y  is  collinear  with  X  and  Z.      This  idea  is  covered  in  the  cases 

of  points  B^  and  B^   on  page  6-31.     But,    unless  students  have  had  the 
experience  of  trying  to  state  Axiom  B  by  themselves  with  these  cases 
clearly  in  view,    the  full  message  of  Axiom  B  may  escape  them.     Hence, 
it  would  be  good  practice  to  get  them  to  state  Axiom  B  when  they  reach 
the  bottom  of  page  6-31  and  before  turning  to  page  6-32. 

Answers  for  Exercises. 

1.  
* 

2. 

18 

A  2x  P  X  C  .    , 
Suppose  that  PC  is  x.     Then,  AP  is  2x  and,    since  P  €  AC  and  AC  = 
CA,  it  follows  from  Axiom  A  that2x+  x=   18.     So,    x  is  6.     Hence, 
AP  is  12.     [Of  course,   all  that  students  should  be  required  to  sub- 

mit in  answer  to  this  exercise  is:     12.     If  you  discuss  the  exercise 
in  class,    you  can  bring  in  the  role  of  Axiom  A,  ] 

X                   4                 X  x+4+x=24;x=10 •   •   •   ^ 
A  P        B  CSo,  AB  =   14  and  PC  =   14. 

[Actually,   there  is  quite  a  bit  involved  in  this  problem,   although  it 

should  not  be  your  purpose  to  dig  it  out  unless  students  raise  ques- 

tions.    For  example,   how  do  we  get  the  equation  'x  +  4  +  x  =  24'  ? 
Well,   we  are  given  that  B  €  PC.     From  this  and  Axiom  5,    it  follows 

that  B  €  PC.     So,   by  Axiom  A,    since  PB  =  4  and  BC  =  x,    it  follows 

that  PC  =  4  +  X.     Now,    since  P  €  AB  and  B  €  PC,    it  follows  from 

Axiom  13  that  P  €  AC.      Then,    by  Axiom  5  and  Axiom  A,   AC  =  AP  + 

PC.     Since  AP  =  x,    PC  =  4  +  x,   and  AC  =  24,    it  follows  that 

24=  x+   {4+  x).  ] 

3. 
A 

-  3x    

x+  6  =  3x 

x=  3 

C 
3x 

B     A 

x+  3x  =  6 
x=  1.5 

There  is  no  third  case 

--that  is,   a  case  in 

which  C  €  BA.     The  fact 

that  AC  >  AB  rules  this out. 
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4.     Suppose  that  B  /AC.     Now,    either  A,    B,   and  C  are  coUinear  or 

A,    B,   and  C  are  noncollinear. 

Consider  the  case   in  which  A,    B,    and  C  are  collinear.     Since 

B  i  AC,    it  follows  that  either  C  e  AB  or  A  e  BC.     Now,    since 

AC  =  9.   AB  =   5,    and  BC  is  a  number  of  arithmetic,    it  follows 

that  AC  +  CB  /  AB.     So,    by    Axiom  A,    C  /  AB.     Thus,    C  /AB. 

Hence,    if  B  /  AC  and  A,    B,    and  C  are  collinear  then  A  €  BC. 

In  that  case,   BA  +  AC  =  BC.     That  is  5  +  9  =  BC.     So,   BC  =   14. 

Also,    by  Axiom  B,    since  B  /AC,    it  follows  that  AB  +  BC  >  AC. 

That  is,    5  +  BC  >   9.     So  BC  >   4. 

Now,   consider  the  case  in  which  A,    B,    and  C  are  noncollinear. 

B  Then,   A/BC.     So,    by  Axiom  B, 

BA  +  AC  >   BC.      That  is,    5  +  9  > 

■^  ^  BC.     So,    BC  <    14. 

Consequently,   if  B  /  AC  then  4  <   BC  <    14.     EC  /  16  and  BC  /  2. 

[Do  not  ask  for  more  than  an  intuitive  defense  of  the  correct 

answers.  ] 

[More  intuitive  problems  of  this  nature  are  on  page  6-405.     You 

may  wish  to  assign  these  before  you  reach  page  6-36.     Students 
will  find  it  convenient  to  use  compasses  in  Exercises  2  and  3 

on  page  6-405.  ] 
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As  suggested  in  the  box  at  the  bottom  of  page  6-34,   this  is  an  appropriate 
place  to  stop  the  study  of  geometry  and  take  a  look  at  some  of  the  logical 
principles  used  in  writing  proofs.     We  have  placed  our  treatment  of  logic 
on  a  semi -optional  basis  because  we  have  not  had  an  opportunity  to  test 
this  treatment.     We  have  included  it  in  this  revision  because  of  the  de- 
mcuid  of  many  cooperating  teachers  for  an  explicit  treatnnent  of  logic. 
We  hope  that  all  teachers  will  include  the  Appendix  in  the  course.     In  fact, 
if  the  interest  of  the  class  warrants  it,   you  might  just  as  well  teach  the 

nnaterial  fronn  page  6-357  through  page  6-398  before  returning  to  page 
6-35. 

The  problem  of  teaching  students  to  write  paragraph  proofs  is  a  very 
difficult  bit  of  pedagogy  not  unlike  that  the  English  teacher  faces  in  ttieme- 
writing.     Our  point  of  view  here  is  that  the  student  will  learn  to  do  this 
by  being  exposed  to  good  examples  of  such  proofs  and  by  trying  to  write 
his  own  and  then  comparing  his  products  with  the  models.     We  do  not  want 
students  to  drop  column  proofs  in  favor  of  paragraph  proofs  immediately, 
but  we  know  that,    eventually,    colunnn  proofs  will  become  so  burdensome 
because  of  their  length  and  degree  of  detail  that  students  will  need  another 
mode  of  proof-writing  to  turn  to.     They  cein  be  preparing  for  this  stage 
right  now  by  writing  paragraph  proofs  as  suggested  in  pages  6-35  through 
6-40. 

Another  reason  for  trying  to  get  students  to  write  paragraph  proofs  is 
that  such  proofs  are  customary  in  all  parts  of  mathematics  [except  high 
school  geometry].     Our  column  proofs  are  useful  as  preparation  for 
paragraph  proofs  because  the  marginal  comments  that  acconnpany  column 
proofs  make  it  easy  for  the  student  [and  the  teacher  who  checks  his  paper] 
to  see  the  logical  connections  between  steps.     Once  a  student  has  a  firnn 
grasp  of  these  matters,   he  is  ready  to  move  to  paragraph  proofs. 

There  are  certain  pedagogical  objections  to  paragraph  proofs.     One  of 
these  is  the  business  of  checking  student  work.     Column  proofs  are 
easier  to  check,    probably  because  they  are  easier  to  read.     High  school 
students  who  cannot  write  sentences  cam  still  produce  readable  column 
proofs.     What  they  do  with  paragraph  proofs  is  alnnost  beyond  descrip- 

tion.    Another  objection  teachers  raise  to  paragraph  proofs  is  that, 
since  students  are  not  required  to  state  axioms  and  theorems  [as  they 
are  in  column  proofs],    they   get  no  opportunity  to  learn  [or  memorize] 
the  principles.     We  have  concocted  a  device  which  we  believe  will  meet 
this  valid  objection.     See  pages  6-73  and  6-100. 
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We  start  the  column  proof  by  writing  Axiom  A  since  our  preceding 

analysis  indicated  that  this  premiss  would  be  fruitful.     Then,   we  state 

(2),    an  instance  of  Axiom  A.     Now,    since  we  wish  to  deduce  the  sen- 

tence 'AA  +  AA  =  AA',    all  we  need  for  our  next  premiss  is  *A  €  AA' 
because  this  affirnns  the  antecedent  [modus  ponens]  of  the  conditional 

sentence  {2).     Now,    from  where  do  we  get  the  premiss  *A  eAA'?     This 
is  a  consequence  of  one  of  the  Introduction  Theorems.     In  particular,    it 

is  a  consequence  of  Theorem  5(d).     But,    the  particular  Introduction 

Theorem  is  not  important.     All  we  want  here  is  that  the  student  recog- 

nize that  *A  6  AA'  follows  from  the  work  in  the  introductory  section  of 
the  unit. 

In  view  of  (2)  and  (3),  one  can  conclude  (4).  And,  in  view  of  his  work 

in  algebra,  (4)  leads  to  (5).  So,  steps  (1)-  (5)  make  up  a  test-pattern 
for  (6). 

As  indicated  in  the  text  at  the  bottom  of  page  6-33  and  in  the  second 
paragraph  on  page  6-34,   the  column  proof  has  two  gaps  in  it.     One  of 
these  gaps  can  be  closed  by  making  explicit  use  of  an  Introduction 
Theorenn- -that  is,   by  giving  the  Introduction  Theorem  as  one  of  the 
steps  in  the  proof.     This  is  a  kind  of  gap  which  we  must  tolerate  in 

proofs  in  geometry  if  we  are  ever  "to  get  on  with  the  subject".     All  the 
student  needs  to  know  at  this  point  is  that  there  is  a  gap  and  that  the 
Introduction  Axioms  are  sufficient  to  provide  the  necessary  theorems 
with  which  to  close  the  gap,     [in  proofs  which  occur  somewhat  later  in 
the  text,   we  shall  not  bother  even  to  give  explicit  notice  of  the  gaps. 
But,    we  shall  try  to  alert  you  in  the  COMMENTARY  to  their  presence, 
at  least  in  the  case  of  proofs  of  important  theorems.  ] 

A  second  kind  of  gap  is  that  in  which  we  omit  mention  of  the  algebra 
theorems  used  in  deriving  certain  conclusions.     Since  the  algebra 
theorenns  are  not  part  of  the  structure  of  geometry,   we  feel  they  can  be 
omitted.     [This  coincides  with  the  practice  in  conventional  courses.] 
On  the  other  hand,   with  students  of  this  age,    it  may  be  pedagogically 
fitting  to  ask  students  to  state  such  algebra  theorems  when  they  give  an 
oral  presentation.     It  would  be  deadening  to  require  thenn  to  do  it  in 
writing  as  a  standard  part  of  their  assignments. 
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Correction,     On  page  6-35,   line  11 
should  begin; 

column  proof.     If  you   T 

We  give  here  a  Unit  2-type  proof  and  a  column  proof  of  the  algebra 
theorem  used  in  the  proof  of  Theorem  1-1. 

Prove:     V    if  x  +  x  =  x  then  x  =  0 '  X 

Proof  I.  Suppose 

Then, 

Hence, 
So, 

a  +  a  =  a. 

a  +  a  =  a  +0. 
a  =  0. 

if  a  +  a  =  a  then  a  =  0. 

Consequently,     V    if  x  +  x  =  x  then  x  =  0, 

Proof  II. 

(1)  a  +a  =  a 

(2)  V^  X  +  0  =  x 

(3)  a  +0  =  a 

(4)  a  +  a  =  a  +  0 

(5)  VVV    if  X  +y  =  X  +  z  then  y  =  z 
'  X  y  z  ' 

(6)  ifa+a=a+0  then  a  =  0 

(7)  a  =  0 

(8)  if  a  +  a  =  a  then  a  =  0 

(9)    V    if  X  +  X  =  X  then  x  =  0 

'4' 

[paO] [left  cane.  prin.  for  add.] 

[assumption]  ♦ 

[basic  pr^iciple] 

[U)l 

[(1)  and  (3)] 

[theorem] 

[(5)1 

[(4)  and  (6)] 

[(7);   *(1)] 

[(l)-(8)] 

To  see  how  to  prove  Theorem  1-1  [*l-r  because  it  is  the  first  theorem 
of  section  6.  01],    one  must  first  understand  what  it  says.     It  claims  that 
the  measure  of  a  degenerate  segment  is  0.     This  is  something  of  which 
we  were  aware  when  we  strengthened  {*)  to  produce  Axiom  A.     But,  just 
as  {*)  arose  from  intuitive  explorations  with  scedes,    so  did  the  fact  that 
the  measure  of  a  degenerate  segment  is  0.     To  make  it  part  of  our  formal 
geometric  structure,  we  can  state  it  as  a  separate  axiom  or  we  can  try 
to  deduce  it  from  axioms  ailready  stated. 
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Correctioru     On  page  6-37,  the  last 
part  of  line  13  should  read: 

  the  if-part  of  step  (11)  is  the r 

After  learning  from  Theorem  1-1  that  each  degenerate  segment  has 
zero-measure,   the  next  natural  question  to  ask  is  if  each  nondegenerate 
segment  has  nonzero -measure.     Since  measures  are  numbers  of  arith- 

metic,  this  is  the  same  as  asking  if  the  measure  of  each  nondegenerate 

segment  is  greater  than  0.     Intuitively,  the  answer  is  'yes*.     But,  is 
this  something  we  can  deduce  from  our  present  axioms  and  theorems, 
or  is  it  something  we  must  assume? 

In  trying  to  prove  Theorem  1-2,   we  shall  start  with  the  assumption  [or: 
supposition]: A/^B. 

and  try  to  deduce  from  this  premiss  together  with  axioms  and  theorems 
the  sentence: 

AB  >  0 

The  next  step  in  the  proof  would  then  be  the  conditional  sentence: 

if  A  /^  B  then  AB  >  0 

This  conditional  sentence  is  a  consequence  of  just  the  axioms  and  theo- 
rems used  in  the  proof. 

So,  the  problem  is  one  of  finding  out  how  to  deduce  *AB  >  0'  from  'A  =  B' 
and  other  premisses.     Since  Axiom  B  deals  with  inequality  of  measures, 

it  appears  reasonable  that  we  shall  want  to  use  Axiom  B.      Let's  look  at an  instance  of  Axiom  B : 

if  B  /  AC  then  AB  +  BC  >  AC 

If  we  let  A  =  C,   we  get  the  instance : 

if  B  ̂   AA  then  AB  +  BA  >  AA 

And,  if  we  use  Theorem  1-1,   we  get: 

if  B  ̂   AA  then  AB  +  BA  >  0 

Now,   since  A  /^  B,  it  follows  from  the  Introduction  Axioms  that  B  i  AA. 
So,   the  antecedent  of  the  last  conditional  is  affirmed.    Hence,  AB  +  BA  >  0, 
It  follows  from  the  Introduction  Axioms  that  AB  =  BA.     So,   by  algebra, 
we  now  have : 

2-AB  >  0 

Hence,  by  algebra  again,  we  have: 

AB  >  0 
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Answers  for  Part  B    [on  pages  6-36  and  6-37], 

(2)    Vj^Vy  V^  if  Y  ̂   XZ  then  XY  +  YZ  >  XZ 

(6)  Vj^  XX  =  0 

(7)  AA  =  0 

(12)    V^Vy  i£  X  ;^  Y  then  XY  >  0 

If  a  student  were  writing  his  own  column  proof  of  Theorem  1-2,    his 

marginal  comment  for  step  (2)  would  just  be  'axiom',    and  that  for  step 
(6)  would  be  'theorem'.     It  is  not  necessary  to  cite  axioms  and  theorems 
by  letter  or  number.     We  do  this  early  in  the  text  just  for  reference 
purposes,   but  later  [see  page  6-99]   we  omit  such  references. 

(a)  [These  remarks  are  superfluous  for  students  who  have  studied  the 
Appendix.  ] 

(b)  if  A  /  B  then  B  ̂   AA 

(c)  [See  comment  above  for  (a).] 

(d)  V    if  x  +  x  >  0  then  x  >  0  [Proof:  Suppose  that  x  +  x  >  0.      Then, 
^  1 since  x  +  x  =  2x,   it  follows  that  2x  >  0.     By  the  mtpi,    since  f  >  0, 
11 

Zx-  J-  >  0  '  -y-      So  [by  various  elementary  theorems],   x  >  0.  ] 

2.       [See  page  6-41.] 
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Theorem  1-3  is  another  result  which  is  intuitively  obvious  from  the  work 
students  have  done  in  using  a  r\aler.     The  proof  of  this  theorem  shovild 
not  be  presented  as  a  device  for  convincing  students  of  the  correctness 
of  the  theorem.     Rather,   you  should  ask  the  question  about  whether  to 
make  the  statenaent  of  Theorem  1-3  an  axiom  in  our  system  or  whether 
the  statement  can  be  predicted  from  statements  already  in  the  system. 

[Generally  speaking,    a  proof  does  add  to  one's  conviction,   but  not  in 
the  case  of  the  theorems  of  section  6.  01.] 

Here  is  an  approach  which  may  help  students  formulate  their  own  column 
proof. 

We  are  given  the  segment  joining  A  and  C,   and  some  point  B  which 
is  between  the  end  points  A  and  C.      We  want  to  show  that  the  seg- 

ment joining  A  and  B  has  a  smaller  measure  than  the  segment  join- 
ing A  and  C.     By  Axiom  A,    we  know  that  AB  +  BC  =  AC.      We  want 

to  show  that  AB  <  AC.     Now,    if  you  have  a  first  number  [AB]  and 
a  second  number  [BC]  whose  sum  is  a  third  number  [AC],    does  it 
follow  that  the  first  number  is  less  than  the  third?    It  certainly 
does  not  follow  if  the  second  number  is  negative  or  0.     But,    since 
measures  are  numbers  of  arithmetic,    BC  is  not  negative.     Can 

BC  =  0?     Not  if  B  /  C.      For,    by  Theorem  1-2,    if  B  /  C  then 
BC  >   0.     But,    since  B  is  between  A  and  C,    it  follows  from  the 
Introduction  Axionns  that  B  /  C.      So,    BC  >   0.     And,    with  the  help 

of  a  little  algebra,    we  deduce  from  'AB  +  BC  =  AC  and  *BC  >   0* 
the  sentence  *AB  <  AC',     Let's  see  how: 

BC  >   0  ^     .    ■ 

)atpi 

BC  +  AB  >   0+  AB  •^ 

AOAB  >C  =  
AB+BC 

[See,   also,    Exercise  4  on  page  6-39.] 

With  this  approach,    the  sequence  of  steps  used  in  the  column  proof  on 
page  6-38  will  be  easy  to  understand. 

Answers  for  Part  C  [on  pages  6-38  and  6-39]. 

1.     (2)    \/^  Vy  V^  if  Y  €   XZ  then  XY  +  YZ  =  XZ 

( 3 )    if  B  €  AC  then  AB  +  BC  =  AC 

(5)    AB  +  BC  =  AC  [This  and  (9)  are  key  steps  in  the  proof.] 
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(7)  V^  Vy  if  X  /  Y  then  XY    >   0 

(8)  if  B  /  C  then  BC  >  0 

(11)  if  B   €  AC  then  AB  <  AC 

(12)  V^  '^Y  "^Z    ̂^  Y  e  5CZ  then  XY   <   XZ 

(a)  if  B  €  AC  then  B  €  AC  [Actually,    this  is  not  an  instance  of  any 

of  the    theorems  on  pages  6-23  through  6-28.     By  'Introduction 

Theorem'  we  mean  any  consequence  of  the  Introduction  Axioms. 
You  may  want  to  warn  students  about  this  to  save  them  from  a 

fruitless  search  through  pages  6-23  through  6-28.  ] 

(b)  if  B  e  AC  then  B  /  C 
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5.       [See  page  6-41.] 

Here  is  an  approach  to  Theorem  1-4. 

Suppose  that  I  have  a  segment  AC  which  is  10  inches  long,    and  I 

pick  a  point  B  on  the  segment.     What  can  you  predict  about  the 

lengths  of  the  segments  AB  and  BC  ?     [They  add  up  to  10  inches.  ] 

What  is  the  basis  for  this  prediction?     [Axiom  A.]    Now,   let's  sup- 
pose that  I  have  a  segment  AC  which  is  10  inches  long,    and  that  I 

pick  some  point  B  in  such  a  way  that  when  I  measure  AB  and  BC, 

and  add  their  measures,    I  get  10.     What  can  you  predict  about  the 

location  of  the  point  B  ? 

The  student's  work  on  converses  in  the  Appendix  should  help  him  see 
that  the  basis  for  the  prediction  that  B  €  AC  is  the  converse  of  Axiom  A. 

Once  again,   we  have  a  result  which  is  intuitively  correct;    shall  we  add 

it  to  our  list  of  axioms,   or  shall  we  try  to  deduce  it  ? 

•— • 
Let's  try  to  prove  that  if  AB  +  BC  =  AC  then  B  €  AC.     We  start  by 

supposing  that  AB  +  BC  =  AC.     This  tells  us  that  AB  +  BC  ̂   AC. 

Now,   take  a  look  at  Axiom  B  on  page  6-32.     What  do  you  conclude? 

[Students  who  have  studied  modus  toUens  in  the  Appendix  should 

give  the  answer  quickly.  ]    Axiom  B  tells  us  that  if  B  ̂   AC  then 

AB  +  BC  >  AC.     But,   we  know  that  AB  +  BC  p'  AC.     So,    it  must 
be  the  case  that  B  £  AC. 

[It  is  easy  to  devise  a  similar  approach  which  contains  the  reasoning  in 

the  alternate  proof  of  Theorem  1-4  given  in  Exercise  2  on  page  6-40.] 
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*3. * * 

(1) (2) (1) (7) 

(4) (3) 
(6) 

(8) 

(5)   (9) 

(10) 
* 

(11) 

(12) 

The  dotted  bars  show  very  clearly  the  gaps  in  the  proof.     We  know 

that  the  gaps  can  be  filled  by  bringing  in  Introduction  Theorems  and 

algebra  theorems.     So,   as  we  can  tell  by  examining  the  ends  of  the 

branches  in  the  diagram,    (12)  is  a  consequence  of  (2),    (7),    Introduc- 

tion Theorems,    and  algebra  theorems.     Since  we  also  know  that  (2) 

is  an  axiom  and  (7)  is  a  theorenn,   we  can  see  that  (12)  is  a  theorem. 

4.    (a)     We  infer  (9.  1)  from  (5)  and  an  instance  of  the  algebra  theorenn: 

VVV      ifx  +  y  =  z  then  y  =  z   -  x 
X    y    z  '  ' 

[This  theorem  is  proved  in  Unit  2  on  page  2-89.]    Of  course,    a 

student  might  say  that  (9.  1)  is  obtained  by  using  the  addition 

transfornaation  principle  and  other  theorems  for  simplifying 

expressions.     In  saying  this,   he  is  really  telling  what  he  would 

use  to  prove  the  theorem  displayed  above.     It  is  more  impor- 

tant at  this  time  that  he  actually  state  the  displayed  theorem 

rather  than  tell  what  would  be  used  to  prove  it.     In  fact,   the 

proof  of  the  algebra  theorem  is  unimportant  right  now. 

(b)  Step  (9.  2)  is  obtained  by  substituting  'AC  -  AB'  from  (9.  1)  for 
'BC  in  (9). 

(c)  Step  (9.  2)  and  an  instance  of  the  algebra  theorem: 

VV      ifx-y>0  then  x  >  y 
x    y  '  ' 

imply  step  (9.  3). 
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Correction.     On  page  6-40,    line  7 « — t 

should  read  '   then  B  €  AC. 

Line  12b  should  read: 

(8) 

.    [(1) 

1^ 

Answers  for  Part  D   [on  pages  6-40  and  6-41], 

1.  (1) AB  +  BC  =  AC 

AB  +  BC  ;^  AC 
\,icA4uy77i^yu<r>t 

(2) 

(3) 

XI);   algebra] 

[Axiom  B] 

(4) ^e>^^^^^^^^+sc>/^c [(3)] 

(5) 

(6) 

(7) 

B  €  AC 

if  AB  +  BC  =  AC  then  B  €  AC 

[(2)  and  (4)] 

[r5);  *  (I)  1 

[(1)  -  (6)] 

2.    (1) 

(2) 

B  ̂   AC [assumption]-^ 

[Axiom  B] 

(3) l^^4^  tiMi  ̂ 6-hBc  >/?<^ 
[(2)] 

(4) /^S  +^C  >  /^c [(1)  and  (3)] 

(5) 

(6) 

(7) 

,      (8) 

AB  +  BC  ;^  AC 

ifB/I^then     M-^Sci=flC •— • 
if  AB  +  BC  =  AC  then  B  e  AC 

[  (^)  :  algebra] 

[(^J:^    0)  1 

[(6)] 

[(1)  -(7)] 

3.    [S( ;e  page  6-41 . 

14.    Vj^  ̂Y  ̂Z  ̂  ̂  -^^  ̂ ^  ̂^'^  °"^y  if  XY  +  YZ  =  XZ 
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Correction.     On  page  6-42,   in  the  Hypothesis 
for  the  Example,    insert  a  comma  after 
'AM  =  AP'. 

Step  (8)  in  the  proof  is  inferred  from  (6),    (7),    and  an  instance  of  the 
algebra  theorem: 

VVVV     ifu  =  v  and  x  =  y  then  u  +  x  =  v  +  y 
u    V    X    y  '  ' 

If  we  wish  to  show  this  explicitly,   we  could  include  the  following  steps 
in  the  proof: 

(7.  1)       VVVV     if  u  =  V  and  x  =  y 
u    V    X    y  ' 

then  u  +  X  =  V  +  y 

(7.2)       if  AM  =  AP  and  MN  =  PQ 
then  AM  +  MN  =  AP  +  PQ 

(7.  3)       AM  =  AP  and  MN  =  PQ 

(8)       AM  +  MN  =  AP  +  PQ 

[algebra  theorem] 

[(7.1)] 

[(6)  and  (7)] 

[(7.3)  and  (7.  2)] 

Then,   to  show  the  actual  substitution  inferences  involved  in  deriving 
step  (9),   we  could  continue  as  follows: 

(8.  1)       AN  =  AP  +  PQ 

(9)       AN  =  AQ 

[(4)  and  (8)] 

[(5)  and  (8.  1)] 

Note,    by  the  way,   the  justification  for  step  (7.  3).      The  logical  principle 
used  here  is  the  first  of  the  three  logical  principles  for  working  with 
conjunction  sentences.     [See  page  6 -392.  J 

'4^ 

One  could  avoid  the  use  of  the  algebra  theorenn  mentioned  above  and 
derive  (9)  just  by  using  substitution  inferences.      This  should  not  be  sur- 

prising when  you  realize  that  the  algebra  theorem  in  question  is  a  conse- 

quence of  logical  principles  only.     [See  the  proof  of  Exercise   '^6  on  page 
TC[2-66]b  of  Unit  2.] 
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Here  is  an  outline  of  the  derivation  in  the  Example  on  page  6-42,   as 

expanded  on  TC[6-42]a: 

(2)  (6)  (7)  (7.1) 

(2)  (1)  (3)  (7.3)  (7.2) 

(!')  (3')  (4)  (8) 

(5)  (8.1) 

(9) 

Evidently,  (9)  is  a  consequence  of  premisses  [(6)  and  (7)]  stated  in  the 

hypothesis,   additional  premisses  [(1),   and  (l')«     P  €  AQ]  suggested  by 
the  figure,   an  axiom  [(2)],    and  an  algebra  theorem  [(7.  1)].      One  nnight 

have  derived  (6),   (7),   (1),   and(l')  from  a  single  premiss: 

(0)  M  £  AN  and  P  c  AQ  and  AM  =  AP  and  MN  =  PQ 

[An  outline  for  such  a  derivation  would  differ  from  the  one  shown  above 

only  in  having  a  *(0)*  surmounting  each  of  the  symbols  '(1')',    *(1)',    '(6)', 

and  '(7)'.]     So,   (9)  is  a  consequence  of  (0),   an  axiom,   and  an  algebra 
theorem.     Conditionalizing  so  as  to  discharge  the  premiss  (0)  would 
result  in  a  derivation  of: 

(10)    if  M  €  AN  and  P  €  AQ  and  AM  =  AP  and  MN  =  PQ  then  AN  =  AQ 

from  an  axiom  and  an  algebra  theorem.     So,  the  generalization  displayed 

on  page  6-43  is  a  theorem. 

Any  hypothesis -conclusion  argument  can,   in  the  way  just  illustrated,   be 

enlarged  to  a  proof  of  a  theorem.     Notice  that  there  are  two  steps.     The 

important  step,   if  one  wishes  a  correctly  stated  theorem,   is  making 

explicit  the  premisses  which  are  suggested  by  the  figure.     The  other 

step,    extending  the  derivations  at  both  ends  to  obtain  a  proof  of  the 

desired  theorem,   is  purely  mechanical  and,   once  understood,   can  safely 

be  omitted. 
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inferences  have  been  combined  in  some  of  the  proofs  given  above.  For 
exannple,  consider  the  proof  for  Exercise  2.  Here  are  the  steps  which 
follow  (7)  in  an  expanded  version: 

(7.1)  AD  =  CB  [(6)  and  (7)] 

(7.2)  CE  +  EB  =  AD  [(7.  1)  and  (5)] 

(8)  AF  +  FD  =  CE  +  EB  [(7.  2)  and  (4)] 

(9)  AF  =  CE  [Hypothesis] 

(9.1)     CE  +  FD  =  CE  +  EB  [(9)  and  (8)] 

(10)    FD  =  EB  [(9.  1);   algebra] 

To  show  the  algebra  involved,    we  can  expand  it  still  further: 

(9.  2)    VVV    ifx  +  y  =  x  +  z  then  y  =  z  [algebra  theorem] 
X      y      32 

(9.3)  if  CE  +  FD  =  CE  +  EB  then  FD  =  EB      [(9.  2)] 

(10)     FD  =  EB  [(9.  1)  and  (9.  3)] 

It  should  be  clear  that  we  must  pernnit  and  even  encourage  students  to 
combine  steps  if  we  expect  them  to  do  several  proofs  in  a  homework 
assignment. 
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2. 

4. 

F  e  AD [figure] 

W  V^  if  Y  e  XZ  then  XY  +  YZ  =  XZ  [axiom] 

if  F  €  AD  then  AF  +  FD  =  AD 

AF  +  FD  =  AD 

CE  +  EB  =  CB 

AD  =  BC 

BC  =  CB 

AF  +  FD  =  CE  +  EB 

AF  =  CE 

FD  =  EB 

B  €  AC 

[(2)] 

[(1)  and  (3)] 

[Steps  like  (1)  and  (3)] 

[Hypothesis] 

[Introduction] 

[(4),   (5),  (6),   and  (7)] 

[Hypothesis] 

[(8)  and  (9);   algebra] 

[figure] 

\  ̂Y  ̂Z  ̂^  "^  ̂  -^^  *^^^  XY  +  YZ  =  XZ  [axiom] 
if  B  e  AC  then  AB  +  BC  =  AC 

AB  +  BC  =  AC 

BC  +  CD  =  BD 

AB  =  CD 

AC  =  BD 

[(2)] 

[(1)  and  (3)] 

[Steps  like  (1)  and  (3)] 

[Hypothesis] 

[(4),   (5),   and  (6);   algebra] 

You  can  obtain  a  proof  for  this  exercise  just  by  interchanging  steps 
6)  and  (7)  in  the  proof  for  Exercise  3.] 

When  you  discuss  these  exercises  with  the  class,   you  may  very  well 
wish  the  students  to  show  in  detail  the  substitutions  they  made  and  the 
algebra  they  used  in  deriving  various  steps.      Several  substitution 
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c orrection. 
should 

On  page 
read: 

6-43,   line  11 

if  Y  e  XZ, 
U  €  XV,   XY  = 

XU  and 

In  the  Hypothe sis  for  Exercise 

2, 

insert a  comma  after  'AD  =  BC 
1 • 

line  1 .     The  missing  steps  are  'P  e  AQ'  and  'if  P  €  AQ  then  AP  +  PQ  =  AQ'. 
o^ 

The  word  'hypothesis',    as  it  is  used  in  these  geometry  "originals",   is 
synonymous  with  'assumptions'. 

As  illustrated  in  the  paragraph  preceding  the  exercises,    each  original 
provides  you  with  a  theorem,   that  is,   the  proof  of  the  original  is  really 
the  major  part  of  the  proof  of  the  corresponding  theorem.     The  theorem 
is  a  conditional,   and  the  antecedent  is  the  conjunction  of  the  assumptions 
used  in  the  proof.     These  assumptions  are  either  stated  in  the  hypothesis 
or  are  taken  from  the  figure.      Usually,  the  theorem  thus  obtained  is  of 
so  little  importance  in  helping  to  prove  other  theorems  that  we  do  not 
bother  to  take  explicit  notice  of  it  either  by  stating  it  or  by  giving  it  a 
number.      However,    there  will  be  cases  in  the  text  where  a  theorem 

proved  in  one  exercise  could  be  used  in  solving  another  exercise  occur- 
ring later  in  the  list. 

Answers  for  Exercises. 

1.    (I)    E  €  AC  [figure] 

(2)  Vy  V    V     if  Y  e  5CZ  [axiom] 
then  XY  +  YZ  =  XZ 

(3)  if  E  €  AC  then  AE  +  EC  =  AC       [(2)] 

(4)  AE  +  EC  =  AC  [(l)and(3)] 

(5)  AE  =  EC  [Hypothesis] 

(6)  AE  =  i«AC  [(4)  and  (5);    algebra] 

(7)  ED  =  ;|.BD  [Steps  like  (1),  (3),  (4),  and  (5)] 

(8)  AC  =  BD  [Hypothesis] 

(9)  AE  =  ED  [(6),  (7),   and  (8);   algebra] 

TC[6-43]a 



Answers  for  Exploration  Exercises  [on  page  6-44]. 

A.    1-5. 
H       (I) 

— •   •   (I)         G 
D 

B.     1,    3. 

2.     No;   no;   yes 

P 
C.    1,    3. 

R         S 
-•   ♦- 

Q 

4.     No;   no;    yes 

N       M 
— •   •   «   

K 

2.     No;   no;    yes 4.     Yes;    no; 
no 

"1- 

Answers  for  Exploration  Exercises  [on  page  6-46]. 

1,  (a)     Yes;    Theorem  1-2. 

(b)  Yes;   just  one.     Since  k  >   0,    it  follows  that   ■=-  >  0.      Also, 

A  /  B.      So,   Axiom  C  tells  us  there  is  one  and  only  one  such 

point  P. 

(c)  By  Theorem  1-5,    since  P  €  AB  and  AP  <  AB,   it  follows  that 
P  e  AB. 

(d)  Yes.     [Since  P  e  AB,   AP  +  PB  =  AB.     Since  AP  =   y  and  AB  =  k, k 
it  follows  that  PB  =  j.      So,   AP  =  PB.] 

2.  (a)    No,   k  =  0.      Theorem  1-1. 

(b)    Yes,   the  point  A. 
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Using  Axiom  C  and  Introduction  Axioms  one  can  show  that,    given  two 

points  A  and  B,   there  is  a  one-to-one  mapping  of  the  number  line  onto 

AB.     That  is,  it  is  possible  to  associate  each  point  of  AB  with  a  single 

corresponding  real  number  in  such  a  way  that  each  real  number  is  asso- 

ciated with  a  unique  point.     In  fact,  by  Axioms  11  and  9,   there  is  a  point 

C  such  that  A  e  CB;   and,  by  Introduction  Theorem  14,  AB  =  AC»^  {A}v^  AB, 

The  desired  mapping  is  then  obtained  by  associating  the  real  number  0 

with  the  point  A,  and,  for  each  nonzero  number  x  of  arithmetic  associ- 

ating the  real  number  *x  with  the  point  Z  €  AB  such  that  AZ  =  x  and  the 

real  number  ~x  with  the  point  Z  e  AC  such  that  AZ  =  x.     [Axiom  C  tells 
us  that,  for  each  such  x,  the  points  in  question  are  unique.]    For  this 

correspondence,   it  is  not  difficult  to  prove  that  the  distance  between  any 

two  points  of  AB  is  the  absolute  value  of  the  difference  of  the  real  num- 

bers associated  with  them.     [However,  the  proof  is  tedious,    and  we  shall 

not  give  it  here.] 

Such  a  correspondence  between  the  points  of  a  line  i  and  the  real  num- 
bers is  called  a  coordinate  system  on  i.     With  respect  to  a  given  coordi- 
nate system  on  i,   the  number  associated  with  any  point  of  i  is  called 

the  coordinate  of  that  point,   and  the  point  of  i  whose  coordinate  is  0  is 
called  the  origin  of  the  coordinate  system.     From  the  discussion  above, 
it  is  clear  that,    given  two  points  of  a  line,   there  is  a  coordinate  system 
whose  origin  is  the  first  of  the  two  points  and  which  is  such  that  the 
coordinate  of  the  second  point  is  positive. 

^ 

It  would  be  possible,    without  loss,   to  omit  the  words  'and  only  one'  from 
Axiom  C.     For  it  follows  from  Introduction  Axioms  and  Theorems  1-5 

and  1-6  that,   if  A  /  B  then  there  cannot  be  two  points,    C  and  D,   of  AB 

such  that  AC  =  AD.     In  fact,   by  Introduction  Theorem  12,  if  C  e  AB  then 
—>        ->  -^  — ^ 
AC  =  AB,     So,   if  D  e  AB  then  D  e  AC.     Hence,    by  Introduction  Theorem 

8,    D  €  AC  or  D  =  C  or  C  e  AD.     But,    by  Theorem  1-5,   if  D  e  AC  then 

AD  <  AC  and,   by  Theorem  1-6,   if  C  e  AD  then  AD  >  AC.     The  assump- 
tion that  AC  =  AD  contradicts  both  of  these  alternatives.     So,   if  C  €  AB, 

D  e  AB,  and  AC  =  AD,  then  D  =  C. 
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page  6-359],    eliminate  the  word  'midpoint',   from  any  context,   in  favor 
of  the  more  elementary  notions  of  segment  and  measure.     It  turns  out  to 

be  somewhat  sinnpler  to  adopt  a  slightly  different  record  of  our  agreement: 

(3)     V^  Vy  V„  [Y  is  the  nnidpoint  of  XZ  if  and  only  if 

[Y  €  XZ  and  XY  =  Y  Z]] 

Using  (3)  we  can,    by  virtue  of  the  substitution  rule  for  biconditional  sen- 

tences [see  page  6-391  and  accompanying  COMMENTARY],    replace  such 

sentences  as  'B  is  the  midpoint  of  AC  by  more  basic  ones --in  this  case,     \ 

by  'B  €  AC  and  AB  =  BC. 

Notice  that  the  only-if-part  of  (3)  says  just  that  the  midpoint  of  a  seg- 
ment belongs  to  the  segment  and  is  equidistant  from  its  end  points  while 

the  if -part  of  (3)  says  that  there  is  no  other  such  point.      Hence,   the 
content  of  (3)  is  that  there  is  one  and  only  one  point  of  a  segment  which 

is  equidistant  from  the  segment's  end  points --to  wit,   the  m.idpoint  of  the 
segment.     So,    (3)  turns  out  to  be  only  a  restatement  of  (1),  in  terms  of 

the  word  'midpoint'.     Consequently,   it  is  not  unreasonable  to  accept  (3) 
--that  is.    Theorem  l-7--as  a  surrogate  for  (1),    and,    at  the  same  time, 

to  call  it  'the  definition  of  nnidpoint'. 

In  general,    once  we  have  proved  an  existence  and  uniqueness  theorem 

[(!)],  we  may  then  introduce  an  appropriate  definite  description  ['the.  ...  *], and  substitute  for  the  theorem  a  restatement  [(3)]  in  terms  of  the  definite 
description.     This  restatennent  is,    at  the  same  tinne,    a  theorem  and  a 
definition. 

The  subject  of  definition  will  be  discussed  further  in  later  parts  of  this 
COMMENTARY. 
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The  sentence  'Either  A  /  B  or  A  =  B'  is  valid  [see  TC[6-395]d]  and,    so, 
can  be  accepted  as  a  premiss  of  any  argument,    without  cost.     The  reason 
for  this  is  that,    as  shown  on  TC[6-394]a,    it  can  be  derived  fronn  two 

assumptions,    'A  ̂   B'  and  'A  =  B',   both  of  which  are  discharged  during 
the  derivation.     Hence,   if  it  is  itself  used  as  an  assumption,   it  can  be 
thought  of  as  being  discharged  as  soon  as  it  is  written  down. 

On  definitions .  --The  great  number  of  geometrical  concepts,    and  the 

connplexity  of  most  of  them,    makes  a  consistent  formal  treatment  of 

definitions  innpractical--at  least  in  a  beginning  course.      Consequently, 

we  limit  ourselves  to  occasional  illustrations  of  formal  procedures  for 

the  introduction  of  new  terms  and,   for  the  most  part,   introduce  such 

terms  in  infornnal  discussions.     The  treatment  of  'midpoint*  on  page 
6-47  is  an  illustration  of  how  a  definite  description- -roughly,    a  phrase 

beginning  with  'the.  .  .  '--can  be  formally  "defined". 

The  procedure  begins  by  proving  a  theorem: 

(1)  V^  V„  there  is  one  and  only  one  point  Y  such  that 

Y  €  XZ  and  XY  =  Y Z 

Since  this  is  a  theorenn,    one  may  speak  of  the  point  of  a  given  segment 

which  is  equidistant  from  the  end   points  of  the  segment  and,    for  brevity, 

call  this  point  the  midpoint  of  the  given  segment.      This  amounts  to 

agreeing  that,    for  exannple,   the  phrases  'the  midpoint  of  AC  and  'the 

point  Y  such  that  Y  e  AC  and  AY  =  YC  are  to  be  considered  equivalent 

geometric  expressions.     [The  meaning  of  'equivalent'  here  is  completely 
analogous  to  its  meaning  in  discussions  of  equivalent  algebraic  expres- 

sions.]   We  could  record  this  agreement  by  writing: 

(2)  ̂ Y  ̂ 7  the  midpoint  of  XZ  =  the  point  Y  such  that 

[Y  e  XZ  and  XY  =  Y Z] 

Using  (2)  we  could,    by  virtue  of  the  substitution  rule  for  equations  [see 
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In  order  to  shorten  column  proofs  we  shall  not  introduce  definitions  as 
steps  in  such  proofs.     Instead,   as  illustrated  in  the  Example  on  page 
6-48,   we  shall  pass  directly  fronn  a  step  containing  a  defined  term  to 
its  defining  sentence  or  sentences.     And,    as  is  illustrated  by  the  pas- 

sage from  steps  (4)  and  (16)  to  step  (17),     we  shall  also  reverse  this 
process.     In  each  case,   the  marginal  comments  can  be  made  suffi- 

ciently explicit  to  clarify  what  is  going  on.     In  the  case  of  the  example, 
this  procedure  saves  nine  steps.     Without  it,   the  examiple  would  be 
supplemented  as  indicated  below. 

(0)  ̂ x^Y  ̂ Z  ̂  ̂^  *^®  midpoint  of  XZ 
if  and  only  if  Y  £  XZ  and  XY  =  Y  Z 

(0.1)    B  is  the  midpoint  of  AC 

if  and  only  if  B  6  AC  and  AB  =  BC 

(0.2)    B  e  AC  and  AB  =  BC 

(0.3)     C  is  the  midpoint  of  BD 

if  and  only  if  C  £  BD  and  BC  =  CD 

(0.4)     C€BDandBC  =  CD 

(0.5)     D  is  the  midpoint  of  CE 

if  and  only  if  D  €  CE  and  CD  =  DE 

(0.6)    D€  CE  and  CD  =  DE 

(1)  B€AC 

:  [steps  (2),   (3),   and  (4)] 

(5)         AB  =  BC 

[steps  (6)  -  (16)] 

(16.1)  C€AEandAC=CE 

(16.2)  C  is  the  nnidpoint  of  AE 

if  and  only  if  C  €  AE  and  AC  =  CE 

(17)  C  is  the  midpoint  of  AE 

[def.   of  midpoint] 

[(0)] 

[Hypothesis  and  (0.  1)] 

[(0)1 

[Hypothesis  and  (0.  3)] 

[(0)] 

[Hypothesis  and  (0.5)] 

[(0.2)] 

[(0.2)] 

• 

[(4)  and  (16)] 

1(0)] 

[(16.  1)  and  (16.  2)] 
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Answer  for  Part  ̂ C   [on  pages  6-49  and  6-50], 

The  problem  posed  here  is  the  following.     Someone  tells  you  that  he  has 

marked  a  point  P  on  the  line  containing  A  and  B.     He  measures  AP  and 

PB,   and  reports  that  AP  =  PB„     With  this  information,   you  can  conclude 

that  P^is  the  midpoint  of  AB,    because  just  knowing  that  AP  =  PB  and  that 

P  €  AB  is  enough  to  tell  you  that  P  e  AB,     Here's  why.      Suppose  that ^ — ^ 

P  €  AB  and  that  AP  =  PB.      By  an  Introduction  Theorem,    it  follows  that 

(1)  B  e  PA  or  (2)  A  €  PB  or  (3)  P  e  AB.      If  B  €  PA  then  [by  Theorem  1-3 

and  some  algebra]  PB  /^  PA.     Since  AP  =  PB,   that  is,   since  PB  =  PA, 

it  follows  [using  modus  toUens]  that  B  i  PA.      Similarly,   if  A  e  PB  then 

PA  /  PB.     So,   A  ̂   PB.     Therefore,   if  P  €  AB  and  AP  =  PB  then  P  e  AB. 

[See  the  discussion  on  page  6-394  concerning  the  rule  for  denying  an 

alternative,    and  the  discussion  on  pages  6-400  and  6-401.] 

Theorem  1-9  is  used  on  page  6-92  in  proving  that  each  point  equidistant 

from  A  and  B  belongs  to  the  line  perpendicular  to  AB  at  its  midpoint. 

So,    even  though  Part  C  is  starred,    all  students  should  know  what  Theo- 

rem 1-9  is  about. 

Here  is  a  concise  translation  of  Theorem  1-9: 

V^  Vy  V^  if  X  /  Y,    XZ  =  ZY,    and  Z  €  XY 
then  Z  is  the  nnidpoint  of  XY 

Students  will  need  protractors  for  the  work  starting  on  page  6-51.    Now 
might  be  a  good  tinne  to  alert  thenn  about  bringing  protractors  to  class. 
You  might  find  it  useful  to  keep  a  supply  of  protractors  on  hand.    And,  of 
course,   it  is  very  helpful  to  have  a  large  protractor  for  blackboard  use. 
[Also,   in  view  of  the  exploration  exercises  starting  on  page  6-297,   it 
might  be  a  good  idea  to  have  a  few  circular  protractors  in  your  collec- 

tion.    However,    don't  use  them  until  students  are  convinced  that  there 
are  no  such  things  as  reflex  angles  in  our  geometry.] 

TC[6-49.  50]c 



» 

^ 



Students  will  appreciate  the  concise  language  of  the  theorems  and  axioms 
preceding  Theorem  1-8  after  they  have  had  experience  writing  a  step  like 
(2).     Some  students  may  ask  if  a  briefer  statement  can  be  used  such  as: 

W  ̂ Z  ̂^  ̂   ̂ ^  ̂ ^®  midpoint  of  XZ  then  YX  =  j«XZ  =  YZ 

Of  course,   your  answer  should  be  'yes'.     The  displayed  translation  of 
Theorem  1-8  miakes  it  easier  to  form  an  instance  of  it,    something  the 
student  has  to  do  in  writing  step  (3).     Students  may  need  a  bit  of  help  in 
recognizing  that  Theorem  1-8  is  actually  a  translation  of  a  conditional 
sentence.     This  problem  must  be  faced  eventually  [see  page  6-60];   this 
might  be  a  good  time  to  do  it.     Of  course,   the  students  could  avoid 
Theorem  1-8  altogether  by  giving  a  different  proof   [see  the  proof  of 
Exercise  1  on  TC[6-43]a].      In  that  case,    you  should  develop  the  proof 
shown  above  to  exemplify  the  labor-saving  aspects  of  using  theorems 
already  proved  rather  than  going  back  to  the  axioms. 

Paragraph  proof  of  Exercise  Z: 

Since  M  is  the  midpoint  of  AB  and  N  is  the  midpoint  of  AC,   it  follows 

from  an  earlier  theorem  (1)  that  AM  =  j'AB  and  AN  =  ;|«AC.      But,   by 

hypothesis,   AB  =  AC.      So,  AM  =  AN. 

(1)    The  distance  between  the  midpoint  of  a  segment  and  either  end  point 
of  the  segnnent  is  half  the  distance  between  the  end  points. 

Answers  for  Part  B    [on  page  6-49]. 

1.  No.        — — — '   '    M  must  also  belong  to  AB. MA  B 

2.  (a)    5  (b)    1  (c)    1;   5 

3.  (a)     3.5  (b)     2.5  (c)    0.75 
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Answers  for  Part  A, 

1,    (1)    B  is  the  midpoint  of  AC  [Hypothesis] 

(2)  AB  =  BC  [{1);    def.   of  midpoint] 

(3)  AB  =  CD  [Hypothesis] 

(4)  BC  =  CD  [(2)  and  (3)] 

(5)  CeBD  [figure] 
♦ — ♦ 

(6)  C  is  the  midpoint  of  BD     [(4)  and  (5);    def.   of  midpoint] 

[Note  the  need  for  step  (5).     Ask  students  to  draw  a  figure  meetin^Jhe 
conditions  in  the  hypothesis  but  such  that  C  is  not  the  midpoint  of  BD,  ] 

Paragraph  proof  of  Exercise  1; 

By  hypothesis,   B  is  the  midpoint  of  AC.     So,   by  definition,  AB  =  BC, 

But,   we  are  given  that  AB  =  CD.     So,   BC  =  CD,     Also,   from  the  figure, 

we  see  that  C  €  BD.      Hence,   by  definition,    C  is  the  midpoint  of  BD. 

2.    (1)    M  is  the  midpoint  of  AB 

(2)  The  distance  between  the  midpoint 
of  a  segment  and  either  end  point 
of  the  segment  is  half  the  dis- 

tance between  the  end  points, 

(3)  if  M  is  the  midpoint  of  AB  then 
AM  =  i  •  AB 

(4)  AM  =  i»AB 

(5)  AN  =  i'AC 

(6)  AB   =  AC 

(7)  AM  =  AN 

[Hypothesis] 

[theorem] 

[(2)] 

[(1)  and  (3)] 

[Steps  like  (1)  and  (3)] 

[Hypothesis] 

[(4),  (5),   and  (6)] 

[Ask  students  to  draw  a  figure  for  which  A,  B,    C  are  coUinear,  which 
meets  the  conditions  in  the  hypothesis,   and  for  which  the  conclusion  holds.] 
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Quiz. 

1.  State  the  axiom  that  tells  you  in  the        a 

situation  pictured  on  the  right  that 

AB  +  BC  >  AC. 

2.  Suppose  that  P,    Q,   and  R  are  coUinear  points  and  that  R  €  PQ.     If 

PQ  =  7  and  PR  =  7.0001,   it  follows  that  Q  e  PR.     State  the  theorem 

which  justifies  this. 

3.  Suppose  that  B  e  AC  and  that  AB  =  x*BC.     If  M  is  the  midpoint  of 
AC  and  M  e  AB  then  (?) 

(A)    0  <  X  <    J (B)    i  <  x<   1 

4.     Fill  in  the  blanks  in  the  following  proof 

A 

B     ̂ -^---^      D 

Hypothesis  :     B  €  AC, 

C  e  BD 

(1)  CeBD 

(2)      

(3) 

(4)  BC  <  BD 

(5)  B  €  AC 

(6)  B  €  DA 

(7) 

Conclusion:     BC  <  AD 

[   ^1 

[theorem] 

[(2)] 

[(1)  and  (3)] 

[   ^1 

(8)  DB  <  DA 

(9)  DB  =  BD 

[(1)  and  (5); 

[(2)] 
[   

(C)     1  <  X 
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(10)    

(11)    

(12)  DA  =  AD 

(13)  BC  <  AD 

5. Hypothesis  :     MQ  =  PQ, 

QS    =  QR 

Conclusion:     MS   =  PR 

Answers  for  quiz. 

1.     Vj^  Vy  V^.  if  Y  (^  5cz  then  XY  +  YZ  >  XZ      [Axiom  B] 

2.     Vj^  V    V^,  if  Z  €  XY  then  Y  e  XZ  if  and  only  if  XZ  >  XY      [Th.    1  -6] 

K'    [Of  course,    alphabc 

"    full  credit.     Also, 

>etic  variants  of  these  generalizations  should  be  given 
a  student  should  receive  full  credit  if  he  writes  as 

his  answer  for  itenn  2: 

^x\  "^Z^^  ̂   ̂  ̂^  ̂ ^®"  Y  €  XZ  if  XZ  >  XY 
or: 

V^  Vy  V^  if  Z  e  XY  and  XZ  >  XY  then  Y  e  XZ 

Each  of  these  alternative  answers  is  a  logical  consequence  of  just  Theo- 
rem 1-6.      Students  should  not  be  expected  to  memorize  the  exact 

wording  of  the  axioms  and  theorems  in  the  text.      What  is  expected  is 
that  they  be  able  to  recognize  theorenns  which  have  been  proved  and 
logical  consequences  of  these  theorenns.] 
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3.     (C)      [Since  M  e  AB,   it  follows  that  AB  >  BC.     So,   AB  -r  BC  >    1.  ] 

(1) CeBD 
[  //^j;£Ze7t^*<U^      ] 

(2) [theorem] 

(3) 

(4) 

(5) 

^Ce6Dt;^4^SC^30 
BC  <  BD 

B  e  AC 

B  €  DA 

DB  <  DA 

DB  =  BD 

DA  =  AD 

BC  <  AD 

[(2)] 

[(1)  and  (3)] 

(6) 

(7) 

(8) 

[(l)and(5);    c^?«^«ro^:<7^] 

[(2)] 

(9) 
\sit^ykr*£cuy&r>L\ 

(10) 

(11) 

[(8)  and  (9)] 

[(4)  and  (10);      ,;j^^^^<^] 

(12) 

(13) 
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5.    (1)    MQ  =  PQ  [Hypothesis] 

(2)  QS  =  QR  [Hypothesis] 

(3)  MQ  +  QS  =  PQ  +  QR  [(1)  and  (2);  algebra] 

(4)  Q  e  MS  [figure] 

(5)  V^  Vy  V^  if  Y  e  XZ  then  XY  +  YZ  =  XZ      [axiom] 

(6)  if  Q  €  MS  then  MQ  +  QS  =  MS  [(5)] 

(7)  MQ  +  QS  =  MS  [(4)  and  (6)] 

(8)  PQ  +  QR  =  PR  [Steps  like  (4)  and  (6)] 

(9)  MS  =  PR  [(3),   (7),  and  8)] 

Paragraph  proof  for  item  5: 

By  hypothesis,    MQ  =  PQ  and  QS  =  QR.     So,    MQ  +  QS  =  PQ  +  QR. 

From  the  figure,    Q  e  MS  and  Q  €  PR.      Hence,  by  an  axiom  (1), 

MQ  +  QS  =  MS  and  PQ  +  QR  =  PR.      So,    MS  =  PR. 

(1)    Vj^Vy  V^  if  Y  e  XZ  then  XY  +  YZ  =  XZ 
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using  such  formality.  Consequently,  as  in  the  case  of  *an  angle'  we 
shall  introduce  indefinite  descriptions  quite  informally.  You  should 

probably  point  out  to  students  that  the  definition  in  the  text: 

An  angle  is  the  union  of  two  noncollinear  rays 

which  have  the  same  vertex. 

is  short  for: 

For  each  set  s,    s  is  an  angle  if  and  only  if  s  is  the  union 

of  two  noncollinear  rays  which  have  the  same  vertex. 

Consequently  [only  if-part],    each  angle  is  the  union  of  two  noncollinear 

rays  which  have  the  same  vertex.     And  [if-part],    each  union  of  two  non- 

collinear rays  which  have  the  same  vertex  is  an  angle. 
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More  on  definitions.  --In  the  COMMENTARY  for  6-47  we  have  discussed 

definitions  which  introduce  definite  descriptions.     A  phrase  such  as    'an 

angle*  is  an  indefinite  description.     Such  a  phrase  can  be  introduced  by  a 
defining  postulate  like: 

For  each  set  s,    s  is  an  angle  if  and  only  if  there  exist  three 

noncollinear  points  X,    Y,   and  Z  such  that  s  =  YX  '^  YZ. 

This,    by  virtue  of  the  substitution  rule  for  biconditional  sentences, 

paves  the  way  for  elinninating  a  phrase  such  as  *s  is  an  angle'  in  favor 

of  the  more  "primitive"  phrase  'there  exist  three  noncollinear  points, 

X,    Y,   and  Z  such  that  s  =  YX  w  YZ'. 

To  make  convenient  use  of  such  a  definition,    one  needs  to  use  quanti- 

fying phrases  like  'for  each  angle  p',    as  in: 

For  each  angle  p,    for  each  Y,    Y  is  the  vertex  of  p  if  and  only  if 

there  exist  points  X  and  Z  such  that  p  =   YX  ̂ ^  YZ. 

For  technical  reasons,   the  introduction  of  such  a  quantifying  phrase 

requires  a  preliminary  theorem,    which,    in  this  case,    turns  out  to  be 

Introduction  Axiom  3: 

There  are  [at  least]  three  noncollinear  points. 

Briefly,   just  as,    when  introducing  a  definite  description,    one  must  first 

establish  the  existence  and  uniqueness  of  the  object  which  is  described, 

so,    in  order  to  introduce  variables  ['p']  whose  domain  is  a  set  of  ob- 
jects covered  by  an  indefinite  description,    one  must  first  establish  the 

existence  of  such  objects.     Failure  to  do  so  may  introduce  inconsistency 

into  a  previously  consistent  systena. 

Obviously,    in  a  beginning  course  there  is  no  time  for  developing  and 
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answer  is   'no'.     Even  though,   for  each  X,    JD  =  XX,   the  empty  set  is  not 
a  line;    neither  is  a  unit  set  a  ray.     [Of  course,    even  if  we  did  decide  to 

call  unit  sets  'rays',   this  would  not  modify  the  concept  of  angle.      For 
there  would  not  exist  two  noncollinear  rays  with  a  comnnon  vertex  one 

of  which  is  a  unit  set.] 

•J. 

'I- 

In  order  to  completely  justify  speaking  of  the  sides  and  the  vertex  of  an 

angle  it  would  be  necessary  [see  COMMENTARY  for  page  6-47]  to  prove 

that  if  a  set  is  an  angle  then  there  is  just  one  couple  of  rays  whose  union 

is  the  set,   and  that  if  a  set  is  a  ray  then  there  is  just  one  of  its  points 
-^        — > 

which  is  its  vertex  [that  is,    if  AB  =  CD  then  A  =  C].      These  theorems 

can  be  derived  from  the  Introduction  Axioms,    using,    of  course,   in  the 

case  of  the  first,   the  definition  of  angle.      However,   attention  to  such 

theorems  would  require  more  time  than  is  available  for  a  beginning 

course  in  geometry. 

"r 

Note  that,   in  introducing  notations  such  as   'ZEFG',    we  offer  no  interpre- 
tation for  cases  in  which  the  points  referred  to  are  coUinear.     So,  as  in 

the  case  of  "division  by  0"  [see  TC[6-14]a],    we  should,    strictly,   take 
care  to  guard  against  meaningless  expressions.     We  do,    in  fact,    do  so 
when  stating  Axioms  D,    E,    F,    and  G  on  pages  6-54  and  6-56.      The 
restricted  quantifiers  in  these  statennents  preclude  the  possibility  of 
these  axioms  having  instances  in  which  symbols  which  refer,    ostensibly, 
to  angles  are,    actually,    meaningless.     However  [as  noted  on  lines  7  and 
6  from  the  foot  of  page  6-51],    we  shall  not  always  be  so  careful.     As  has 
been  mentioned  previously,    geometrical  notation  is  too  complex  to  allow 
for  a  completely  formal  beginning  treatment. 

Notice  that  Theorem  12  on  page  6-27  tells  us  that  if  V  e  PK  and  W  €  PJ 

then  PV  =  PK  and  PW  =  PJ .      Hence,    it  follows  that  ZVPW  =  ZKPJ. 
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The  definition  of  an  angle  as  the  union  of  two  noncollinear  rays  with  the 
same  vertex  is  in  accord  with  our  stipulation  that  geometric  figures  be 
sets  of  points.     One  of  the  alternative  definitions  which  this  stipulation 
excludes  is  the  one  according  to  which  an  angle  is  a  pair  of  rays  with  a 
common  vertex- -that  is,    a  set  with  two  nnembers,    each  of  which  is  a 
ray  and  both  of  which  have  the  same  vertex.     There  is,  of  course,  nothing 

"wrong"  with  this  latter  definition  of  angle.      Our  preference  for  the 
former  definition  is  due,   in  part,   to  an  aesthetic  bias  toward  having 
lines,  angles,  triangles,  etc.  be  the  same  sort  of  thing,    and,    in  part,   to 
the  fact  that  the  habit  of  thinking  of  geometric  figures  as  sets  of  points 
is  good  preparation  for  later  work  in  mathematics.     Furthermore,  this 
approach  gives  students  needed  practice  in  thinking  in  terms  of  sets  and 
operations  on  sets. 

Notice  that,    since  an  angle  is  the  union  of  two  noncollinear  rays,   there 

are,   in  this  treatment,  no  "straight  angles".     One  reason  for  this  exclu- 
sion is  pointed  out  on  pages  6-56  and  6-57.     A  straight  angle  would,  in  a 

treatment  such  as  ours,    be  merely  a  straight  line,    and  would  not  have  a 
unique  vertex,   a  unique  interior,    or  a  unique  bisector. 

Also,   this  text  does  not  recognize  "reflex  angles".     We  could  do  so  by 
defining  an  angle  as  the  union  of  three  sets --two  of  them  being  noncol- 

linear rays  with  a  connmon  vertex,    and  the  third  being  either  the  interior 
or  the  exterior  [see  page  6-55]  of  the  union  of  the  two  rays.     In  this  case, 
two  noncollinear  rays  with  a  commion  vertex  would  determine  two  angles, 

one  of  which  could  be  called  'a  reflex  angle'.     In  consequence,  one  could 
not  properly  speak  of  the  angle  whose  sides  are  given  rays,   BA  and  BC. 
Instead,    one  would  be  forced  to  speak  of  the  reflex  angle  with  these  sides 
and  of  the  nonreflex  angle  with  these  sides.     Presunnably,   the  notation 

'ZABC  would  be  used  in  referring  to  the  latter,    and  some  new  notation 
would  be  devised  for  the  former.     Concepts  based  on  the  notion  of  angle 
would  either  have  to  be  revised  so  as  to  apply  to  angles  of  both  kinds,  or 
restricted  to  nonreflex  angles.     The  first  course  would  introduce  addi- 

tional connplexities,    on  top  of  the  already  more  complicated  notion  of 

angle,    and  both  courses  would  result  in  a  rash  of  'nonreflex's  in  the  state- 
ments  of  definitions  and  theorems.     Clearly,   the  cost  of  introducing  re- 

flex angles  is  much  too  great  in  comparison  with  the  small  advantage 
which  nriight  be  gained. 

'I- 

If,    as  seems  unlikely,   a  student  brings  up  the  point  that,   for  each  point  X, 

{X}  =  XX,  and  asks  whether  a  set  consisting  of  a  single  point  is  a  ray,  the 
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Angle-measure  is,    like  segment-measure,    one  of  our  primitive  concepts 
Just  as  in  the  latter  case  the  concept  is  developed  by  leading  students  to 
experiment  with  rulers,    so,    here,    the  concept  of  angle -nne as ure  is  de- 

veloped through  experiments  with  protractors. 

There  are  many  systems  of  linear  measure  [inch-nneasure,   yard-meas- 
ure,   etc.]    Similarly,    there  are  many  systems  of  angular  measure.     For 

simplicity,   we  concentrate  on  degree-measure.     [The  subsidiary  units, 
1  minute,    and  1  second,  are  introduced  in  Exercise  2  on  page  6-409.] 

Note  that  just  as  the  inch-measure  of  a  segment  2  inches  long  is  the 
number  2,    so  the  degree-measure  of  an  angle  110  degrees   "large"  is the  number  110. 

TC[6-52] 



i 





Correction.     On  page  6-53,    in  Exercise  2 

of  Part  B,    delete  the  period  after   '60°'. 

Answers  for  Part  A    [which  begins  on  page  6-52]. 

1.     m(^B)=60;    m(ZABC)  =  60;    m(ZCBA)  =  60;    ZABC  is  an  angle  of  60»; 
m(BC  w  BA)  =  60;    m(B^  w  bB)  =  60. 

2.     130 

Answers  for  Part  B, 

3.     90 4.     95 

3.     m(ZBAC)  =  115    [Students  who  recall  the  appropriate  theorem  from 
an  earlier  course  may  determine  this  measure  without  using  a  pro- 

tractor.    This  is  permissible  for  this  kind  of  exercise.     If  they 
mention  the  theorem  at  this  time,    just  say  that  it  will  be  included 

in  our  geometry  later  in  the  course.     See  page  6-148.] 

4.     m(ZQOR)  =  55 5.     mUQOR)  =  5 6.     m(h  ̂   BA)  =  161 

Answers  for  Part  C    [on  page  6-54]. 

1.     27  2.     145  3.     35;   37;    72 4.     55;    125;   55;    125 

Answer  for  Part  E  [on  page  6-54], 

There  is  only  one  half-line  h  C  3     such  that  m(h  "^  AB)  =  25, 

"IT- 

Axiom  D  tells  us  that  the  range  of  the  degree-measure  function  for 
angles  is  a  subset  of  the  set  of  all  nonzero  numbers  of  arithmetic  be- 

tween 0  and  180.     In  view  of  the  definition  of  angle,   this  tells  us  that 
there  is  no  angle  with  degree -nneasure,    say,    230.     So,    there  are  no 
"reflex  angles"  in  our  geometry. 

Notice,    however,   that  Axiom  D  does  not  tell  us  that  there  exists,    say, 

an  angle  of  70°.     Axiom  E  tells  us  this  among  other  things. 

Note  the  similarity  between  Axiom  E  and  Axiom  C.     Also,    compare 
Axiom  F  with  Axiom  A. 
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AB  ̂    CD  AB  =   EF 

CD  S   EF 

is  valid  because  it  is  an  abbreviation  for: 

m(AB)  =  m(CD)  m(AB)  =  m(EF) 

m{CD)    =  m(EF) 

and  the  latter  is  valid  by  virtue  of  the  substitution  rule  for  equations. 

Similarly,    the  inference: 

AB  S   CD  m(AB)    =    2'm(EF) 

m(CD)    =  2'm(EF) 

is  valid  [roughly,  one  can  substitute  from  segment-congruence  into 

segment-measure  contexts],  but,  as  is  seen  by  unabbreviating,  the 
inference: 

AB  =   CD  P    =  the  midpoint  of  AB 

P   =   the  midpoint  of  CD 

is  not  valid.     [Note  that  failure  to  distinguish  notationally  between 

identity  and  congruence  would  make  it  difficult  to  explain  why  this  last 

inference  is  invalid.] 

In  addition  to  the  general  consequences  of  reflexivity  and  a  restricted 

rule  of  substitution  [see  Exercise  1  on  page  6-408],    particular  equiv- 

alence relations  enjoy  special  properties.     For  example,   the  statement 

'V-j^V^  5cY  S   YX'  is  an  abbreviation  for  'V^V     m(XY)  =  m(YX),    which 
is  an  easy  consequence  of  the  Introduction  Theorem  *V    V     XY  =  YX'. X     Y 
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Note  that,    in  this  development  of  geometry,    'AB  =   CD'  is  merely 

another  abbreviation  for  'm(AB)  =  m(CD)',     Similarly,    VABC  =  ZPQR' 

is  just  an  abbreviation  for  *m(ZABC)  =  m(ZPQR)'.     And,    on  page  6-83, 

we  introduce  'AABC  =  ADEF'  as  an  abbreviation  for  the  much  longer 

sentence  'There  is  a  matching  of  the  vertices  of  AABC  with  those  of 

ADEF  such  that  all  corresponding  parts  are  congruent.  '. 

Each  of  these  notions  of  congruence  corresponds  to  a  way  of  classifying 

objects  [segments,    angles,   or  triangles]  into  sets  of  objects  which  share 

a  common  property.     Congruence  of  segments  [or:    of  angles,    or:    of 

trieuigles]  is  an  example  of  what  is  technically  called  an  equivalence 

relation.     [AB  =    CD  if  and  only  if  AB  is   "equivalent  in  length"  with _________ 

CD.]    Another  equivalence  relation  is  identity,   =,  which  classifies  objects 

in  a  trivial  way  into  unit  sets.     [AB  =  CD  if  and  only  if  AB  is   "equivalent 

in  identity"  with  CD--that  is,    if  and  only  if  AB  is   CD.]    As  illustrated 
by  identity  and  congruence  for  segments,    objects  of  the  same  kind  may, 

for  different  purposes,    be  classified  in  different  ways.      For  example, 

four  common  ways  of  classifying  triangles  are  in  terms  of  identity, 

congruence,    similarity,    and  equivalence-in-area.     Considerable  con- 

fusion can  be  introduced  if  one  fails  to  distinguish  notationally  among 

different  equivalence  relations.     It  is  for  this  reason  that  we  insist  on 

using  '=  '  and  'equals'  only  when  referring  to  the  relation  of  identity. 
Thus,    for  example,    we  distinguish  sharply  between  identity  of  segmients 

and  congruence  of  segnnents. 

For  each  equivalence  relation,    there  is  an  analogue  of  the  principle  of 

identity  [technically,    each  equivalence  relation  is  reflexive]  and,   for 

each  equivalence  relation,   there  is  Sonne,    more  or  less  restricted,    rule 

of  substitution.      For  example,      'V    V      XY  =    XY'  is  an  abbreviation  for 

'"^X^Y  m{XY)  =  m{XY)'  and,    so,    is  a  consequence  of  the  principle  of 
identity.     Also,    the  inference: 
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Answers  for  Part  A. 

1.  Students  are  supposed  to  do  this  exercise  by  measuring  ZA  and  then 

using  their  protractors  to  locate  a  point  in  DF. 

2.  By  Axiom  D,    m(ZA)  is  a  number  between  0  and  180.      So,   Axiom  E 

can  now  be  called  into  play.     It  is  the  axiom  which  tells  you  that  the 

required  half-line  exists. 

3.  Axiom  E. 

Answers  for  Part  B    [on  pages  6-57  and  6-58], 

1.  m(ZPBA)  =  40 

2.  m{RQ  w  RM)  =  70 

3.  (a)    165         (b)    15 

5.     (a)    No 

6.     (a)    X 

4. 

(b)    Yes 

'1^ 

Answers  for  Part  C   [on  page  6-58]. 

1.      130  2.     43 

The  graph  is  an 
interval,   not  a 

segment. 

45       90      136     180 

(c)   No     N  .B 

7.    [ZDCA  is  an  angle  of  120*.  ] 

3.     133 4.     54 
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are  the  corresponding  degree-measures.     In  working  with  this  set  of 
ordered  pairs,    we  become  aware  of  a  certain  one  of  its  subsets.      This 
subset  consists  of  all  the  ordered  pairs  with  second  component  90, 
Since  the  domain  of  this  subset  is  of  interest  to  us,   we  decide  to  name 
it.      The  label  we  use  is: 

(2) 
an  angle  of  90° 

Let  us  suppose  that  we  have  not  yet  made  the  discovery  that  we  are 
dealing  in  these  two  cases  with  the  very  same  set.     In  the  first  case, 
suppose  we  decide  to  shorten  the  label  to: 

(3) a  right  angle 

just  because  it  is  easier  to  use  the  shorter  label.      The  act  of  attaching 

this  label  to  the  set  amounts  to  defining  the  common  noun  'right  angle'. 
The  naeaning  or  referent  of  'right  angle'  is  the  set  to  which  the  label  is 
attached.      This  is  the  action  we  took  when,    on  page  6-5  9,    we  defined 
'a  right  angle'. 

Now,    after  some  thought,   we  discover  that  labels  (1)  and  (2)  are  really 
attached  to  the  same  set.     This  means  that  the  angles  we  have  been 

calling  'right  angles'  are  precisely  the  same  things  we  have  been  calling 
'angles  of  90°',     And,   this  is  what  Theorem  2-1  tells  us. 

It  is  conceivable  that  we  might  have  decided  to  use  the  shorter  label  (3) 
in  place  of  (2).     This  act  would  have  given  us  a  different  definition  for 

the  common  noun  'right  angle'. 
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The  intuitive  feeling  students  should  develop  for  a  pair  of  supplementary- 
angles  is  that  you  can  place  the  angles  in  such  a  position  that  a  side  of 
one  coincides  with  a  side  of  the  other  and  the  other  sides  form  a  straight 
line. 

The  predicate  'is  a  supplement  of  denotes  a  relation  among  angles.     The 
relation  is  a  synnmetric  one.      That  is,    for  eachZX,    for  each  ZY,    ifZX 
is  a  supplement  of  ZY  then  ZY  is  a  supplement  of  ZX.     [This  is  a  conse- 

quence of  the  definition  and  the  commutative  principle  for  addition.] 
Because  the  relation  is  symmetric,    it  makes  sense  to  say  that  two  angles 
are  supplementary. 

The  relation  of  being  a  supplement  of  is  not  reflexive.     That  is,    it  is  not 
the  case  that  for  eachZX,  ZX  is  the  supplement  of  ZX.     However,   the 

solution  set  of  'ZX  is  the  supplement  of  ZX'  is  of  special  interest.     In 
fact,   we  give  a  special  name  to  this  set:    the  set  of  all  right  angles.     In 
view  of  the  definition  of  supplementary  angles,   it  follows  that  each  such 

angle  is  an  angle  of  90°.     [This  is  Theorem  2-1.]    And,    so,    in  view  of 
the  definition  of  congruent  angles,    it  turns  out  all  the  angles  in  this  set 
are  congruent  to  each  other.     [This  is  Theorem  2-2.] 

The  discussion  following  the  column  proof  of  Theorem  2-1  on  page  6-60 
deals  with  the  problem  of  assigning  names  to  abstract  entities.     In 
working  with  the  set  of  ordered  pairs  of  angles  which  belong  to  the 
relation  of  being  a  supplem.ent  of,    we  become  aware  of  a  certain  subset 
of  this  relation.      This  subset  is  the  set  of  all  such  ordered  pairs  of 
angles  with  equal  connponents.     Since  the  domain  of  this  subset  is  of 
special  interest  to  us,   we  hang  a  label  on  it: 

<1) an  angle  which  is 

its  own  supplement 

Now,    let's  direct  our  attention  to  another  set  of  ordered  pairs,   this 
time  the  degree-measure  function.      This  set  consists  of  all  the  ordered 

pairs  whose  first  components  are  angles  and  whose  second  components 
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Correction.     On  page  6-61,    line   11, 

change  'steps'  to  'Steps'. 
T 

You  may  wish  to  assign  the  exercises  on  page  6-408  before  you  get  to 
page  6-62.      The  exercises  provide  practice  with  the  concepts  of  right 
angle  and  congruent  angles,   and  they  foreshadow  the  work  with  comple 
mentary  angles  and  acute  and  obtuse  angles. 

«.i^ 

'!"• Marginal  comments  for  the  column  proof  on  page  6-61. 

(1)    [assumption]*  (3)    [(2)]  (4)    [(3)] 

(6)    [(4)  and  (5)]  (7)    [Steps  like  (3).    (4),   and  (5)] 

(10)   [(9);  *(l)]  (11)   [(l)-(lO)] 
^1^ 

'1^ 

Note  the  justification  for  step  (5).     Step  (5)  follows  from  the  conjunction 
sentence  (1)  by   virtue    of  the  second  logical  principle  for  conjunction 

sentences.     [See  page  6-392.] 

Answers  for  question  in  the  text  on  page  6-62. 

line  7b.     ZM  has  an  infinite  number  of  complements. 

line  6b.     The  measure  of  each  complement  of  ZM  is  70. 

line  5b.     Although  each  angle  has  a  supplement,    it  is  not  the  case  that 
each  angle  has  a  complement.     Ah  angle  whose  measure  is 
not  less  than  90  does  not  have  a  complement. 

line  2b.     Suppose  ZA  is  acute.     Then,   m(ZA)  <   90.     So,    90  -  m(ZA)  >  0. 

Since,   by  Axiom  D,   m(ZA)  >  0,    90  -  m(ZA)  <  180.     So,   by 

Axiom  E,   there  exists  an  angle,  ZB,    such  that  m(ZB)  =  90  - 

m(ZA).     Hence,  ZB  is  a  complement  of  ZA.     On  the  other  hand, 

suppose  ZB  is  a  complement  of  ZA,     Then,   m(ZA)  =  90  -  m(ZB)i 

But,   by  Axiom  D,    m(ZB)  >  0.     So,   m(ZA)  <  90.     Hence,  ZA 

is  acute. 
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ZPOQ  is  a  right  angle; 

ZAOP  and  ZAOQ  are  complenaentary; 

ZBOQ  and  ZQOA  are  supplementary; 

ZBOP  and  ZPOA  are  supplementary. 

10. ZPOQ  is  a  right  angle; 

ZPOB  and  ZQOA  are  complennentary; 

ZPOB  and  ZPOA  are  supplementary; 

ZQOA  and  ZQOB  are  supplementary. 

11.  From  the  figure  we  assume  that  P  is  in  the  interior  of  ZAOQ,    that  Q 

is  in  the  interior  of  ZPOR,    and  that  R  is  in  the  interior  of  ZQOB. 

Then,    since  O  €  AB,    it  follows  from  Axioms   F  and  G  that 

m(ZAOP)  +  m(ZPOQ)  +  m{ZQOR)  +  m(ZROB)  =  180. 

But,   we  are  assuming  that  ZPOQ  =  ZAOP  and  that  ZQOR  =  ZBOR. 

So,    m(ZPOQ)  +  m(ZQOR)  =  }•  180  =  90.     Hence,    by  Axiom  F, 

m(ZPOR)  =  90. 

12.  Suppose  the  angle  is  an  angle  of  x°.      Then,    x  =  8(180  -  x).     So,    x  =  1601 
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Correction.     On  page  6-63,  the  last 
part  of  line  13  should  read: 

  measures  of  a  supplement  and  a  com- r  T 

Answers  for  Exercises 

1. 

ZABC  is  a  right  angle; 

BD  is  a  half-line; 

ZABD  and  ZDBC  are 

acute  angles. 

B  e  DC  and  B  €  AE. 

ZABD  and  ZCBE  are  two 

supplements  of  ZABC. 

3. 
Al 

ZABC  is  a  right  angle; 

BD  is  a  half-line; 

ZABD  cind  ZDBC  are 

obtuse  angles. 

4.     No;    no.     In  neither  case  is  the  sum  of  the  measures   180. 

5.     40;     130 6.     180  -  k;    90  -  k;    90 

7.     No 
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Marginal  comments  for  the  column  proof  on  pages  6-64  and  6-65. 

(1)  [assumption]*  (2)    [(1);    def.   of  congruent  angles] 

(3)  [(1);   def.    of  supplementary  angles] 

(4)  [(1);   def.    of  supplementary  angles] 

(5)  [(2),    (3),    and  (4);   algebra]  (6)    [(5);    *(1)] 

(7)  [(1)  -  (6);    def.   of  congruent  angles] 

The  justification  for  step  (2)  involves  the  use  of  the  inference  scheme: 

p  and  q  and  r 

p  and  q 

This  inference  schenne  follows  from  two  applications  of  the  second  logi- 
cal principle  for  conjunction  sentences  [see  page  6-392],     Of  course,   the 

sentence  *ZA  =  ZB'  is  translated  into  *m(ZA)  =  nn(ZB)'  by  using  the  def- 
inition of  congruent  angles. 

The  justification  for  step  (3)  involves  the  use  of  the  inference  scheme: 

p  and  q  and  r 

p  and  q 

which  follows  from  the  second  and  third  logical  principles  for  conjunction 

sentences.     The  sentence  VC  is  a  supplement  of  ZA'  is  translated  into 
*m(ZA)  +m(ZC)  =  180'  by  using  the  definition  of  supplementary  angles 
[and  the  commutative  principle  for  addition]. 

A  paragraph  proof  and  a  column  proof  for  Theorenn  2-4  are  obtained  by 
a  simple  paraphrasing  of  the  two  forms  of  proof  for  Theorem  2-3. 
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Correction.     On  page  6-72,   the  last 
part  of  line  14b  should  read; 

[Steps  like  (1)  and  (2)] 

T    T 

Answers  for  Part  A. 

[The  Given-Find  format  for  exercises  indicates  that  the  only  thing 
required  is  a  numerical  answer.     You  can  ask  for  justifications  during 
recitation.  ] 

1.  m(ZBOC)  =  50;    m(ZEOD)  =  40;    m(^EOC)  =  130  [Since  ZAOC  is  a 

right  angle,   ZAOB  andZBOC  are  complementary.     So,    m(ZBOC)  =  50. 

Since  O  e  AD  and  O  e  BE,  ZAOB  and  ZEOD  are  vertical  angles.     So, 

m(ZEOD)  =  40.     Since  0€EB,    m(ZEOC)  +  m{ZBOC)  =  180.     There- 

fore,   m(ZEOC)  =    130.] 

2.  m(ZFOG)  =  25;    m(ZGOH)  =  25;    m(ZHOC)  =  130;    m(ZHOB)  =  155 

[ZEOF  andZCOD  are  vertical  angles.     So,    m(ZCOD)  =  20.     Also, 

m(ZEOC)  =  160.     But,    m(ZEOA)  =  110.     So,    m(ZAOC)  =50.     There- 

fore,   m(ZBOC)  =  25.     Since  ZFOG  and  ZBOG  are  vertical  angles, 

m(ZFOG)  =  25.     Since  ZGOH  and  ZAOB  are  vertical  angles,    m(ZGOH) 

=  25.     Since  Oc  AH,    m(ZHOG)  =  180  -  m(ZAOC)  =  130.     Similarly, 

m(ZHOB)  =  180  -  m(ZAOB)  =  155.] 

3.  m(ZAOD)  =  90  =  m(ZDOC)  =  m{ZCOB).     [This  exercise  foreshadows 

Theorem  2-7  on  page  6-67.  ] 

Answers  for  Part  B. 

(1)  For  each  three  noncollinear  points  [axiom] 
X,    Y,    and  Z,   and  each  point  W 

interior  to  ZXYZ,     'miZXYW)  + 
-mlZWYZ)  =   °m(ZXYZ) 

(2)  B,    O,    and  D  are  three  noncol-  [figure] 
linear  points 

(3)  C  is  interior  to  ZBOD  [figure] 

(4)  m(ZBOC)  +m(ZCOD)  =  m(ZBOD)  [(1),    (2),    and  (3)] 

TC[6-66,  67,  68,  69]a 
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Correction,     On  page  6-72,   the  last 
part  of  line   14b  should  read: 

[Steps  like  (1)  and  (2)] 

T   T 

Answers  for  Part  A. 

[The  Given-Find  format  for  exercises  indicates  that  the  only  thing 
required  is  a  numerical  answer.     You  can  ask  for  justifications  during 
recitation.  ] 

1.  mUBOC)  =  50;    m(ZEOD)  =  40;    m(^EOC)  =  130  [Since  ZAOC  is  a 

right  angle,   ZAOB  and  ZBOC  are  complementary.     So,    m(ZBOC)  =  50. 

Since  O  £  AD  and  O  e  BE,  ZAOB  and  ZEOD  are  vertical  angles.     So, 

mUEOD)  =  40.     Since  O  €  EB,    m(ZEOC)  +  m{ZBOC)  =  180.     There- 

fore,   m(ZEOC)  =    130.] 

2.  m(ZFOG)  =  25;     m(ZGOH)  =  25;    m(ZHOC)  =  130;    m(ZHOB)  =  155 

[ZEOF  andZCOD  are  vertical  angles.     So,    m{ZCOD)  =  20.     Also, 

m(ZEOC)  =  160.     But,    m(ZEOA)=110.     So,    m(ZAOC)  =  50.     There- 

fore,   m(ZBOC)  =  25.     Since  ZFOG  and  ZBOC  are  vertical  angles, 

m(ZFOG)  =  25.     Since  ZGOH  and  ZAOB  are  vertical  angles,    m(ZGOH) 

=  25.     Since  Oe  AH,    m(ZHOC)  =  180  -  m(ZAOC)  =  130.     Similarly, 

m(ZHOB)  =  180  -  m(ZAOB)  =  155.] 

3.  m(ZAOD)  =  90  =  m(ZDOC)  =  m(ZCOB).     [This  exercise  foreshadows 

Theorem  2-7  on  page  6-67.  ] 

'1^ 

^,     Answers  for  Part  B. 

(1)  For  each  three  noncollinear  points  [axiom] 
X,    Y,    eind  Z,   and  each  point  W 

interior  to  ZXYZ,    "mtZXYW)  + 
»m(ZWYZ)  =   °m(ZXYZ) 

(2)  B,    O,    and  D  are  three  noncol-  [figure] 
linear  points 

(3)  C  is  interior  to  ZBOD  [figure] 

:(4)     m{ZBOC)  +m(ZCOD)  =  m(ZBOD)  [(1),    (2),    and  (3)] 
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(5)  m(ZAOB)  +  m(ZBOC)  =  m(ZAOC)  [Steps  like  (2)  and  (3)] 

(6)  ZBOD  andZAOC  are  right  angles  [Hypothesis] 

(7)  All  right  angles  are  congruent.  [theorem] 

(8)  m(ZBOD  =  m(ZAOC)  [(6)  and  (7);    def.  of  cong.  angles] 

(9)  ZAOB  S  ZCOD  [(4),  (5),  and  (8);  algebra;  def. 
of  congruent  angles] 

[Notice  that  step  (2)  could  be  justified  by  noting  that  by  hypothesis,  ZBOD 
is  an  angle,   and  then  using  the  definition  of  angle.] 

Answer  for  Part  C. 

(1)  ZA  andZB  are  supplementary  [assumption]* 
andZA  S  ZB 

(2)  m{ZA)  +  m(ZB)  =  180  [(1);  def.  of  supp.  angles] 

(3)  m(ZA)  =  m(ZB)  [(1);  def.  of  cong.  angles] 

(4)  m{ZA)  =  90  [(2)  and  (3);   algebra] 

(5)  An  angle  is  a  right  angle  if  [theorem] 

and  only  if  it  is  an  angle  of  90°. 

(6)  if  IK  is  an  angle  of  90°  then  ZA         [if -part  of  (5)] 
is  a  right  angle 

(7)  ZA  is  a  right  angle  [(4)  and  (6)] 

(8)  ZB  is  a  right  angle  [Steps  like  (4)  and  (6)] 

(9)  ZA  and  ZB  are  right  angles  [(7)  and  (8)] 

(10)  if  ZA  and  ZB  are  supplementary        [(9);*(1)] 
and  ZA  =  ZB  then  ZA  and  ZB  are 
right  angles 

(11)  If  two  supplementary  angles  are       [(1)  "  (10)] 
congruent,    they  are  right  angles. 
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Paragraph  proof  for  Part  C  : 

Suppose  that  ZA  and  ZB  are  supplementary  and  congruent.     By  the 
definition  of  supplementary  angles,    m(ZA)  +  m(ZB)  =  180,    and  by  the 
definition  of  congruent  angles,    m(ZA)  =  m(ZB).     So,    m(ZA)  =  90  and 
m(ZB)  =  90.      Therefore,    since  an  angle  is  a  right  angle  if  it  is  an  angle 
of  90°,   ZA  and  ZB  are  right  angles.     Hence,    if  ZA  cind  ZB  are  supple- 

mentary and  congruent  then  ZA  and  ZB  are  right  angles.     Consequently, 
if  two  supplennentary  angles  are  congruent,    they  are  right  angles. 

Perpendicularity  is  a  relation  among  lines.      The  relation  consists  of 

ordered  pairs  of  lines  (i,  m)  such  that  i  "^  m  contains  a  right  angle. 
Since  i  *^  m  =  m  *^  i,    perpendicularity  is  a  symmetric  relation.     But, 
it  is  not  reflexive  [since  any  angle  must  contain  three  noncollinear  points]. 

The  discussion  of  Theorem  2-8  on  page  6-68  should  be  carried  out  at  the 
board.      Use  a  blackboard  protractor  to  find  a  point  of  h.      That  the  line  nn 

•which  contains  h  is  perpendicular  to  i  follows  from  the  definition  of 
perpendicular  lines. 

Answers  for  Exercises  [on  page  6-69] 
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After  students  have  examined  the  three  pictures  of  pairs  of  adjacent 

angles  ZAOB  and  ZBOC  [figures   (1),    (2),    and  (4)],   and  the  one  picture  of 

nonadjacent  angles  ZAOB  and  ZBOC,    ask  them  to  draw  a  picture  of  two 

adjacent  angles,   ZMRS  and  ZSRN,    and  a  picture  of  two  nonadjacent 

angles  ZMRS  and  ZSRN. 

>:^ Note  the  phrase  'closed  half-planes '  in  the  definition  on  page  6-70. — >  -^         <— >    — > 
Since  side  OA  of  ZAOB  is  a  ray  and  O  €  OA  r\  OB,   OA  is  not  a  subset  of <-^  — > 

either  of  the  half-planes  determined  by  OB.     But,   OA  is  a  subset  of  one <-> 

of  the  closed  half-planes  determined  by  OB.     In  fact,   by  Introduction 
   -^  <— >  -^ 

Theorem  18,    OA  is  a  subset  of  the  A-side  of  OB.     So,   OA  is  a  subset  of 
<->  <-> 

the  closed  half-plane  which  is  the  union  of  OB  £uid  the  A-side  of  OB. 

Notice  that  this  argument  shows  that  ZAOB  and  ZBOC  are  adjacent  if  A 

and  C  are  on  opposite  sides  of  OB.     The  converse  follows  from  the  fact 

that  A  e  OA  and  C  €  OC  [and  the  assumption,   made  inaplicitly  in  speaking 

of  ZAOB  and  ZBOC,    that  neither  A  nor  C  belongs  to  OB].     Using  Intro- 

duction Theorem  12,   this  criterion  can  be  generalized,    showing  that  if 

P  €  OA  and  Q  e  OC  then  ZAOB  and  ZBOC  are  adjacent  angles  if  and  only 

if  P  and  Q  are  on  opposite  sides  of  OB.     By  Introduction  Theorem  16,    it 

then  follows  that  if  Q  €  OA  and  P  €  OC,  ZAOB  and  ZBOC  are  adjacent  if 
—        <— > 

and  only  if  PQ  -^  OB  /^  0. 
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The  applications  of  Axiom  F  in  cases  (1)  and  (2)  depend  on  the  fact  that 

if  PQ  -^  OB  =  {R},  where  R  /^  O,  then  OR  is  a  subset  of  the  interior  of 

ZAOC.     This  is  a  consequence  of  two  basic  results: 

If  P  €  OA  and  Q  €  OC  then  PQ  C  the  interior  of  ZAOC. 

If  R  €the  interior  of  ZAOC  then  OR  C  the  interior  of  ZAOC. 

For  the  first  of  these  results,    note  that,    by  Introduction  Theorem  18, 
— >  <->  -^  — > 
OA  C  the  A-side  of  OC.     Hence,    if  P  €  OA  then  P  e  the  A-side  of  OC. 

So,    by  the  same  theorem,    if  Q  C  OC  then  QP  C  the  A-side  of  OC. 

Similarly,    TO  C  the  C-side  of  OA.     Consequently,    since  PQ  =  QP  r\  PQ, 
PQ  C  the  interior  of  ZAOC. 

The  second  result  is  deduced  from  Introduction  Theorem  18  by  the  same 

kind  of  argument. 
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3.     (1)  EBXBC  [Hypothesis] 

(2)  ZEBC  C   EB   w   BC  [figure] 

(3)  [Theorem  2-7  on  6-67]  [theorem] 

(4)  ZEBC  is  a  right  angle  [(1),  (2),    and  (3)] 

(5)  [Theorem  2-1  on  6-60]  [theorem] 

(6)  m(ZEBC)  =  90  [(4)  and  the  only-if-part  of  (5)] 

(7)  A  is  interior  to  ZEBC  [figure] 

(8)  [Axiom  F  on  6-56]  [axiom] 

(9)  m(ZEBA)  +  m(ZABC)  =  90  [{6),   (7),   and  (8)] 

(10)  ZEBA  is  a  complement  of  ZABC     [(9);  def.   of  comp.   angles] 

(11)  ZDCA  is  a  complement  of  ZACB     [Steps  like  (1)  -  (9)] 

(12)  ZABC  S  ZACB  [Hypothesis] 

(13)  [Theorem  2-4  on  6-65]  [Theorem] 

(14)  ZEBAS  ZDCA  [(10),   (11),   (12),    and  (13)] 

Paragraph  proof  of  Exercise  3: 

By  hypothesis,  EB  J.  BC.    So,  ZEBC  is  a  right  angle,    or  an  angle  of 

90  (1,  2).      From  the  figure,   A  is  interior  to  ZEBC.      So,    m(ZEBA)  + 

m(ZABC)  =  90  (3).      Therefore,    ZEBA  is  a  complement  of  ZABC. 

Similarly,  ZDCA  is  a  complement  of  ZACB.      But,    by  hypothesis, 

ZABC  S  ZACB.      So,  ZEBA  S  ZDCA  (4). 

(1)  [Theorem  2-7  on  6-67] 

(2)  [Theorem  2-1  on  6-60] 

(3)  [Axiom  F  on  6-56] 

(4)  [Theorem  2-4  on  6-65] 
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2.      (1)    B  €  AC 

(2)  ZABD  andZDBC  are  adjacent 
angles  whose  noncommon  sides 
are  collinear 

(3)  [Theorem  2-9  on  6-71] 

(4)  ZDBC  is  a  supplement  of  ZABD 

(5)  ZABE  ^  ZDBC 

(6)  ZABE  is  a  supplement  of  ZABD 

(7)  E  and  D  are  in  opposite  sides 

of  AB 

(8)  ZABD  and  ZABE  are  adjacent 
angles 

(9)  D,   B,   and  E  are  collinear 

[Hypothesis;  figure] 

[(1);  def.  of  adj.  angles] 

[theorem] 

[(2)  and  the  if -part  of  (3)] 

[Hypothesis] 

[(4)  and  (5);  def.  of  supp. 
angles;  def.  of  cong.  angles] 

[figure] 

[(8);  def.  of  adj.  angles] 

[{6),   (8),   and  the  only-if- part   of  (3)] 

Paragraph  proof  of  Exercise  2: 

By  hypothesis.   A,  B,    and  C  are  collinear.     Since  fronn  the  figure, 

B  €  AC,   it  follows  from  the  definition  of  adjacent  angles  that  ZABD  and 

ZDBC  are  adjacent  angles.     Also,   their  noncommon  sides  are  collinear. 

So,  ZDBC  is  a  supplement  of  ZABD  (1).     But,    by  hypothesis,  ZABE  S 

ZDBC.      So,    by  the  definitions  of  supplementary  angles  and  congruent 

angles,  ZABE  is  a  supplement  of  ZABD.     Since,   from  the  figure,    E  and 

D  are  in  opposite  sides  of  AB,   it  follows  that  ZABE  and  ZABD  are  sup- 

ple nnentary  adjacent  angles .     Hence,   D,   B,   and  E  are  collinear  (1). 

(1)     [Theorem  2-9  on  6-71] 
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Answers  for  Exercises. 

1.     (1)  A,  B,   E  are  three  noncoUinear 
points  and  D  is  interior  to  ZABE 

(2)  [Axiom  F  on  6-56] 

(3)  m(ZABE)  =  w  +  X 

(4)  m(ZEBC)  =  y  +  z 

(5)  m(ZABE)  +  m(ZEBC)  =  w  +  x  +  y+z 

(6)  w  +  y  =  90  =  X  +  z 

(7)  m(ZABE)  +  m{ZEBC)  =  180 

(8)  ZABE  andZEBC  are  supplementary 

(9)  A  and  C  are  in  opposite  sides  of  BE 

(10)  ZABE  and  ZEBC  are  adjacent  angles 

(11)  [Theorem  2-9  on  6-71] 

(12)  A,   B,   and  C  are  coUinear 

[figure] 

[axiom] 

[(1)  and  (2)] 

[Steps  like(l)  and  (2)] 

[(3)  and  (4);  algebra] 

[Hypothesis] 

[(5)  and  (6);  algebra] 

[(7);  def.  of  supp.  angles] 

[figure] 

[(9);  def.  of  adj.  angles] 

[theorem] 

[(8),   (10),   and  the  only- if-part  of  (11)] 

Paragraph  proof  of  Exercise  1: 

Since,  from  the  figure.  A,   B,   and  E  are  noncoUinear  and  D  is  inte- 

rior to  ZABE,   m(ZABE)  =  w  +  x(l).     Similarly,    m(ZEBC)  =  y  +  z.     But, 

by  hypothesis,    w  +  y  =  90  and  x  +  z  =  90.     So,    by  algebra,   m(ZABE)  + 

m(ZEBC)  =  180.     Now,    since  BE  is  a  side  common  to  ZABE  and  ZEBC, 

and  since,  fromi  the  figure,   BA  and  BC  are  contained  in  opposite  closed 

half -planes  determined  by  BE,   it  follows  from  the  definition  of  adjacent 

angles  that  ZABE  and  ZEBC  are  adjacent  angles.     But,   by  the  definition 

of  supplementary  angles,  ZABE  and  ZEBC  are  supplementary.     Hence, 

BA  and  BC  are  collinear  (2).     That  is.  A,   B,   and  C  are  collinear. 

(1)    [Axiom  F  on  6-56] 
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4.    (1)     MeAB  [Hypothesis] 

(2)  ZBMP  and  ZAMP  are  adjacent  [(1);  def.  of  adjacent  angles] 
angles  whose  noncommon  sides 
are  coUinear 

(3)  [Theorem  2-9  on  6-71]  [theorem] 

(4)  ZBMP  and  ZAMP  are  supple-  [(2)  and  the  if -part  of  (3)] 
mentary 

(5)  ZBMP  ^  ZAMP  [Hypothesis] 

(6)  [Theorem  2-6  on  6-67]  [theorem] 

(7)  ZBMP  is  a  right  angle  [(4),    (5),   and  (6)] 

(8)    PM  X  AB  [(7);  def,  of  perpendicular  lines] 

Paragraph  proof  of  Exercise  4: 

By  hypothesis,    M  e  AB.      So,  ZBMP  and  ZAMP  are  adjacent  angles 

whose  noncommon  sides  are  coUinear.     Hence  ZBMP  and  ZAMP  are 

supplementary  (1).      But,    by  hypothesis,  ZBMP  ^  ZAMP.      So,  ZBMP  is 

a  right  angle  (2).      Thus,    by  the  definition  of  perpendicular  lines, 

PM  ±  AB . 

(1)    [Theorem  2-9  on  6-71]  (2)    [Theorem  2-6  on  6-67] 

>'< 

Answers  for  Exploration  Exercises. 

1.  Axiom  C  tells  you  that  once  B  is  chosen,   there  is  a  unique  point  B' 
such  that  AB  =  A'B'.     [Of  course,   in  order  to  put  Axiom  C  into  play, 
we  need  Theorem  1-2  to  assure  us  that  since  A  j^  B,   AB  >   0.]    It 
should  turn  out  to  be  the  case  that  BC  =  B'C. 

2.  As  in  Exercise  1.  3.     BC  7^  B'C 
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Axiom  H  is  the  key  axiom  to  be  used  in  our  work  in  the  next  section  -with 
congruent  triangles.     The  exercises  on  6-75  and  6-76  foreshadow  the 
proofs  of  the  s.  s.  s.    and  the  s.a.  s,   triangle-congruence  theorenms. 

Answers  for  Exercises  [on  pages  6-75,  6-76,  and  6-77], 

1.  The  relevant  instance  of  Axiom  H  is: 

if  AB  =  PT  and  BC  =  TQ  then 
CA  =  QP  if  and  only  if  m(ZABC)  =  m(ZPTQ) 

Since  AB  =  5  =  PT  and  BC=10  =  TQ,    we  have  [by  nrxodus  ponens]: 

CA  =  PQ  if  and  only  if  m(ZABC)  =  m(ZPTQ) 

Since  ZABC  =  ZPTQ,   we  have  [using  the  if -part  of  the  foregoing 
biconditional,    and  modus  ponens]: 

CA  =  QP 

So,    since  CA  =7,    PQ  =  7. 

2.  Since  C  is  the  midpoint  of  AD,    we  know,  by  definition,   that  AC  =  DC 

and  that  C  e  AD.      From  the  figure,   A  f  D.      So,    C  e  AD.     Similarly, 

CB  =  CE  and  C  e  BE.      Since  C  €  AD  and  C  e  BE,  ZACB  and  ZDCE 

are  vertical  angles.     So,   they  are  congruent.     By  Axiom  H, 

if  AC  =  CD  and  CB  =  CE  then 

BA  =  ED  if  and  only  if  m(ZACB)  =  m{ZDCE). 

Since  AC  =  CD  and  CB  =  CE,    and  since  ZACB  S  ZDCE,    it  follows 

[from  the  if -part]  that  BA  =  ED.      But,   BA  =  4.      So,    DE  =  4. 

Again,    by  Axiom  H, 

if  BA  =  ED  and  AC  =  DC  then 

CB  =  CE  if  and  only  if  m{ZBAC)  =  m(ZEDC). 

Since  [by  the  preceding  part]  BA  =  ED  and  AC  =  DC,   and  since 

CB  =  CE,   it  follows  [from  the  only-if-part]  that  m{ZBAC)  =  m(ZEDC). 
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c orrection.     On.  page  6-76, 
shoiild  read: 

If  AB  =  AC  thenZC 

line 
3b 

• 

3.     In  this  exercise  and  in  Exercise  4,    it  helps  to  think  of  the  "over- 

lapping triangles"  as  being  **nnoved  apart": 

or,    to  mark  the  congruent  sides  with  colored  chalk  in  the  given 

figure  [RV  and  SU  red,    RU  and  SV  blue,    VU  and  UV  white]. 

Since  RV  =  SU  and  RU  =  SV,    and  since  VU  =   UV,   it  follows  from 

Axiom  H  that  m(ZR)  =  m(ZS)  =  35. 

Since  RU  =  SV  and  UV  =  VU,    and  since  RV  =  SU,    it  follows  from 

Axiom  H  thatZSVU  s  ZRUV. 

Also,  ZRTS  ̂   ZUTV  [vertical  angles]. 

4.  Since  B  is  the  midpoint  of  AC,    CB  =   j  'AC,    Similarly,    CD  =   j  'EC. 

Since  AC  =  EC,    CB  =  CD.     So,    since  AC  =  CE  and  CD  =  CB,   and 

since  m(ZACD)  =  m(ZECB)  [because  ZACD  =  ZECB],   it  follows  from 

Axiom  H  that  AD  =  EB.     So,   AD  S  EB.     Also,   AB  S   ED  [B  and  D 

are  midpoints  and  AC  =   EC], 

5.  Since  C  is  the  midpoint  of  AE  and  BD,    and  since  AE  =   BD,    it 

follows  that  BC  =  CE  =  AC  =  CD.     Because  ZACB  and  ZDCE  are 

vertical  angles,    they  are  congruent.     So,    since  BC  =  EC  and 

CA  =  CD,    and  since  m(ZACB)  =  m(ZDCE),    it  follows  from  Axiom  H 

that  AB  =  DE.     Again,   by  Axiom  H,    since  AB  =  DE  and  BC  =  EC, 
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and  since  AC  =   DC,    it  follows  that  m(ZABC)  =  m(ZDEC).     Hence, 

ZB  =  ZE.     [The  sentence  'ZB  =  ZD'  was  put  in  the  consequent  to 
have  students  search  for  another  angle  congruent  to  ZB.     Of  course, 

they  can  put  an  'ZB'  or  even  an  'ZD'  in  the  blank  and  be  correct. 
But,    we  hope  they  will  not  be  so  clever.] 

6.  Since  AC  =  AB  and  CB  =  BC,    and  since  AB  =  AC,    it  follows  from 

Axiom  H  that  m{ZACB)  =  m(ZABC),     So,   ZC  S  ZB.     [Colored  chalk 

is  exceedingly   helpful  for  this  problem.  ] 

7.  140;  40;  140;  40;   140;  40;   140 

Quiz. 

(a)  Draw  an  acute  angle  ZABC,    and  an  obtuse  angle  ZCBD  such 
that  Z ABC  and  ZCBD  are  adjacent  angles. 

(b)  Repeat  (a)  but  make  ZABC  and  ZCBD  nonadjacent  angles. 

(c)  If  m(ZABC)  =  X  and  m(ZCBD)  =  y,    compute  m(ZABD)  in  part  (b). 

Z.     If  m(ZA)  is  two  thirds  the  measure  of  one  of  its  complements,    how 
many  degrees  are  there  in  ZA? 

3.     Suppose  that  C  and  D  are  two  points  in  the  interior  of  Z  A  OB  such 
that  C  is  in  the  interior  of  ZAOD.     If  Z  A  OB  and  Z  COD  are  supple- 

mentary and  ZAOC  and  ZBOD  are  connplementary,   find  the  number 
of  degrees  in  ZCOD. 

4. 

» 

Given: AD  J.  CF, 
<->      <-» GO  i.  BE, 

m{ZAOG)  =  70 

Find:        m(ZBOD), 

m(ZEOF) 
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6. 

A D 

Answers  for  Quiz. 

1.     (a) 

Hypothesis:    AB  ±  BC, 
ZDBC  S  ZC, 

ZABD  s  ZA 

Conclusion:    ZA  and  ZC  are 

complementary 

'I* 

(b) 

(c)    y  -  X 

2.     X  +  jx  =  90;  X  =  36;     ZA  is  an  angle  of  36" 

3. 
(90  -  y  +  x+  y)  +  x=   180 x=  45 

ZCOD  is  an  angle  of  45° 

4.     m(ZBOD)  =   160;  m(ZDOG)  =  70 

if- 
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5.     (1)  AB    X  BC  [Hypothesis] 

(2)  [Theorem  2-7]  [theorem] 

(3)  ZABC  is  a  right  angle  [(1)  and  (2)] 

(4)  D  is  interior  to  ZABC  [figure] 

(5)  [Axiom  F]  [axiom] 

(6)  m(ZABD)  +  m(ZDBC)  =m(ZABC)   [(4)  and  (5)] 

(7)  [Theorem  2-1]  [theorem] 

(8)  m(ZABC)  =  90  [  (3)  and  the  only-if-part  of  (7)] 

{9)  m(ZABD)+  m(ZDBC)  =  90  [(6)  and  (8)] 

(10)  ZABD  S  ZA  [Hypothesis] 

(11)  ZDBC  S  ZC  [Hypothesis] 

(12)  m(ZA)+  m(ZC)  =  90  [(9).    (10),    and  (11);  def.   of 
cong.   angles] 

(13)  ZA  andZC  are  complementary      [(12);  def.   of  comp.    angles] 

Paragraph  proof  of  item  5: 

By  hypothesis,   AB  ±    BC.     So,   ZABC  is  a  right  angle  (1),   that  is, 

an  angle  of  90°   (2).     Since,    from  the  figure,    D  is  interior  to  ZABC,  it 

follows  that  m(ZABD)  +  m(ZDBC)  =   90  (3).     But,    by  hypothesis 

ZABD  s  ZA  and  ZDBC  S  ZC.     So,   m(ZA)  +  m(ZC)  =  90.     Hence,  ZA  and 

ZC  are  complennentary. 

(1)  [Theorem  2-7] 

(2)  [Theorem  2-1] 

(3)  [Axiom  F] 

► 
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In  the  second  paragraph,    it  is  implied  that  each  side  of  a  triangle  is  a 

subset  of  two  of  its  angles.     For  example,    CA  C  ZCAB  and  CA  C  ZACB. 

Also,    each  side  of  a  triangle  is  a  subset  of  the  triangle.     But,    it  is  not 

the  case  that  an  angle  of  a  triangle  is  a  subset  of  the  triangle.     For 

example,    suppose  that  D  is  a  point  such  that  C  e  AD.     Then,    since 

DeAC,    DeZCAB.      But  D  )?  AC.     Also,    since  A,    B,    and  C  are  none ol- 

linear,    D  ̂   AB  and  D  f  BC.     So,    D  ̂   AABC.      Therefore,   ZCAB  ̂    AABC. 

So,    although  a  triangle  has  sides  and  angles  and  contains  its  sides,    it 

does  not  contain  its  angles. 

'4^ 

Answers  for  Exercises  [on  pages  6-79  and  6-80]. 

1.       AABG,     AACD,     AAJE,     AACJ,     AADE, 

ABCH,     ACDJ,    ADFG,     ADEJ,     AGJH 

2. 

N 

[More  practice  with  overlapping  triangles.  ] 

ZMRN  =  ZSRT;  so,  ZMRN  ^  ZSRT.  Hence, 

there  is  an  angle  of  AMNR  which  is  congru- 

ent to  an  angle  of  ARST. 

3.       Two  cases:     [There  are  others.] 
B,  C 

A  B'  C  A,  B'  A'  C 

Ask  students  to  draw  AABC  and  AA'B'C  such  that  each  vertex  of 

AA'B'C  belongs  to  two  sides  of  AABC.     What  conclusion  can  they 

draw  about  AABC  and  AA'B'C?    [AABC  =  AA'B'C] 

[it  is  impossible  to  draw  two  triangles  such  that  the  vertices  of 

each  belong  to  the  sides  of  the  other.] 
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4.     [Reading  practice]  5.     [See  the  COMMENTARY  for 
Exercise  2  on  page  6-75.] 

6.    ZPTK;  TK;  ZTPK 

Note  carefully  that  in  talking  about  the  matching  of  the  vertices  of  AABC 
with  those  of  AFED,   nothing  is  said  about  congruence  of  angles  [or  of 

sides].    The  word  'match'  sometimes  denotes  a  comparison.    Hence,  stu- 
dents may  think  that  to  match  the  vertices,   you  nnust  compare  the  angles. 

Intuitively,  you  can  think  of  matching  the  vertices  as  follows.    Take  three 
strings,   and  tack  an  end  of  one  string  at  A,   an  end  of  a  second  at  B,  and 
an  end  of  the  third  at  C.     Now,   take  the  string  which  is  fastened  at  A  and 
tack  its  other  end  at  one  of  the  three  vertices,   F,   E,   or  D.     As  soon  as 
this  is  accomplished,   you  have  indicated  a  matching  of  A  with  one  of  the 
vertices  of  AFED.     Similarly,   tack  the  other  end  of  the  second  string  at 
one  of  the  two  remaining  vertices  of  AFED,    Thus,  you  have  a  matching 
of  B  with  one  of  the  vertices  of  AFED.    There  is  only  one  vertex  of  AFED 
left.     This  is  the  one  at  which  you  tack  the  other  end  of  the  third  string. 
Now,  you  have  one  matching  of  the  vertices  of  A  ABC  with  those  of  AFED. 
[Segments  drawn  with  colored  chalk  can  be  used  instead  of  string.  ] 

Students  of  Unit  5  should  recognize  a  matching  of  the  vertices  of  AABC 
with  those  of  AFED  as  a  mapping  or  function  whose  domain  is   {A,  B,  C} 
and  whose  range  is   {D,  E,  F}.      Each  such  mapping  has  an  inverse. 

[Hence,    the  '-— ►'  notation.  ]     Incidentally,    the  symbol  'ABC  — —  FED'  is  a 
noun,    not  a  sentence.      It  can  be  thought  of  as  an  abbreviation  for 

'{(A,  F),    (B,  E),    (C,  D)}' 
•J, 

't- 

The  idea  underlying  the  top  paragraph  on  page  6-81  is  that  it  makes  no 
sense  to  talk  about  corresponding  sides  and  corresponding  angles  unless 
you  have  in  mind  some  matching  of  the  vertices.    For  each  pair  of  sides, 
one  fronn  AABC  and  the  other  from  AFED,  there  are  two  nnatchings  of  the 
vertices  of  AABC  with  those  of  AFED  with  respect  to  which  the  pair  of 
sides  is  a  pair  of  corresponding  sides.    And,  there  are  four  matchings  with 
respect  to  which  this  pair  of  sides  is  not  a  pair  of  corresponding  sides. 

The  exercises  on  page  6-81  and  the  exercises  on  pages  6-412  and  6-413 
are  very  important.     You  might  have  students  do  those  on  page  6-81  in 
class,   and  assign  those  on  6-412  and  6-413  for  homework.     Students 
should  feel  at  home  with  matchings  and  the  procedure  for  picking  out 
pairs  of  corresponding  parts  before  they  attennpt  the  work  on  congruent 
triangles  starting  on  page  6-82. 
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Answers  for  Exercises, 

1.  (KQ,    JM),    (QG,    ML),    (GK,    LJ),    (ZGKQ,  ZLJM),    (ZKQG,  ZJML), 

(ZQGK.  ZMLJ) 

2.  (QK,    ML).    (KG,    LJ),    (GQ,   JM),    (ZGQK,   ZJML),    (ZQKG,  ZMLJ), 

(ZKGQ,  ZLJM) 

[A  good  question  to  ask  following  Exercise  2  is: 

Now,   list  the  pairs  of  corresponding  parts  of  AKQG  and  AJML 
with  respect  to  the  matching  QGK  *—  MJL. 

Those  who  missed  the  point  of  the  question  at  the  very  bottom  of 

page  6-80  will  get  another  chance  to  see  that  a  matching  can  have 
several  names.] 

[We  hope  that  students  are  discovering  how  to  pick  out  names  of 
corresponding  parts  just  by  using  a  name  of  the  matching.  ] 

3.  There  are  two  matchings  [of  the  vertices  of  AABC  with  those  of 

APQR]  with  respect  to  which  AB  and  PQ  are  corresponding  sides. 

These  are  the  matchings  ABC  *-♦  PQR  and  ABC  ■*-*  QPR.     So,    it 

is  only  with  respect  to  the  first  of  these  matchings  that  AC  and 

PR  are  corresponding  sides.     On  the  other  hand,  ZC  andZR  are 

corresponding  angles  with  respect  to  each  of  the  two  matchings. 

So,    the  answer  to  (a)  is  'no'  and  the  answer  to  (b)  is  'y^s*. 

4.  (a)  ABC  *-  FDE,  ABC  -*  DFE 

(b)  ABC  *-  DFE,  ABC  *-  EFD 

(c)  ABC  *-*  EDF 

(d)  ABC  —  DEF 

(e)  ABC  —  FED 

(f  )  ABC  —  EDF,  ABC  *^  FDE 

5.  ABC  —  ABC,  ABC  —  ACB,  ABC  *-*  BCA,  ABC  —  CAB, 
ABC  *^  CBA 
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One  Ccin  get  a  good  intuitive  feeling  for  what  a  pair  of  congruent  triangles 
is  by  imagining  one  of  the  tricuigles  being  picked  up  and  rotated  or  turned 
over  in  such  a  way  that  it  can  be  superposed  on  the  other  with  all  the 

parts  fitting  "just  right".     In  order  to  see  what  the  matching  of  vertices 
has  to  do  with  congruence  of  triangles,   imagine  that  a  triangle  AMRT  is 
drawn  on  a  flat  level  board  with  holes  drilled  through  the  board  at  M,    R, 
and  T.     Suppose  that  another  triangle  AKGD,    nnade  of  coat  hanger  wire, 
is  placed  on  the  board.     Strings  are  fastened  at  G,    K,    and  D.     Now,   to 

indicate  the  matching  GKD  — —  RMT,    we  pass  the  strings  through  the 
holes  at  R,    M,   and  T.      To  say  that  GKD  — -  RMT  is  a  congruence  is  to 
say  that  if  the  strings  are  grasped  under  the  board  and  pulled  away  from 
the  board,   AGKD  will  eventually  come  to  rest  right  on  top  of  ARMT  with 
no  string  showing  above  the  board  [except  for  knots  at  G,    K,    and  D],     By 

'eventually'  we  mean  that  the  wire  triangle  may  have  to  be  flipped  over 
one  or  more  times.     It  is  easy  to  see  that  even  though  GKD  •-*  RMT  is  a 
congruence,   there  may  be  other  matchings  which  are  not.     In  fact,    if 

ARMT  is  scalene,    GKD  — -*  RMT  is  the  only  congruence. 
o- 

'r 

The  definition  given  in  the  first  paragraph  on  page  6-82  replaces  the 
corresponding-parts -of-congruent-tricuigles -are-equal-refrain  of  many 
conventional  courses.      The  definition  is  very  easy  to  use.     Since  there 
are  six  matchings  of  the  vertices  of  a  first  triangle  with  those  of  a 
second,    all  one  needs  to  do  to  show  that  the  triangles  are  congruent  is 
to  test  each  nnatching.     If  at  least  one  of  the  matchings  is  such  that  all 
six  pairs  of  corresponding  parts  with  respect  to  this  matching  are  pairs 
of  congruent  parts  then  the  triangles  are  congruent.     Each  such  matching 
of  the  vertices  is  called  a  congruence  [or;    a  congruence  of  the  vertices 
--see  line  3  on  page  6-84].     On  the  other  hand,    if  you  are  told  that  a  first 
triangle  is  congruent  to  a  second,    then  the  definition  tells  you  that  there 
must  be  at  least  one  matching  of  the  vertices  which  is  a  congruence.     It 
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is  convenient  to  indicate  one  such  matching  when  you  state  that  the  tri- 
angles are  congruent.      This  is  the  burden  of  the  discussion  on  the  lower 

half  of  page  6-83.     We  try  to  adhere  to  this  convention  of  indicating  the 
congruence  in  the  assertion  that  the  triangles  are  congruent.     But,    this 
convention  is  not  observed  widely  and  students  should  not  depend  on  it 
when  taking  standardized  tests  or  using  other  textbooks.     On  the  other 

hand,   the  double -arrow  notation  for  naming  a  matching  which  is  a  con- 
gruence,   for  example; 

ABC  "-*  EDF  is  a  congruence 

is  most  useful  since  the  names  of  congruent  corresponding  parts  can  be 
picked  out  of  the  sentence  mechanically. 

AB 

BC 

ABC  ^ 

CA 

ED 
DF 

>  EDF  is  a  congruence 

FE -ZA 

-ZB 

ABC   t- 

ZE 

ZD 

Tl 

EDF  is  a  congruence 

ZC     ̂      ZF 
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Correction.     On  page  6-83,    line  3b 

should  begin  'is  more  helpful  because 

Answers  for  Exercises  [on  pages  6-83  and  6-84]. 

A.  A  triangle  is  congruent  to  itself.     For  each  triangle  AABC,   ABC  "- * 
ABC  is  a  congruence  because  an  angle  is  congruent  to  itself  and  a 
segment  is  congruent  to  itself. 

A  triangle  with  two  congruent  sides  and  with  the  angles  opposite  these 

sides  congruent  also  is  a  triangle  for  which  two  inatchings  are  con- 
gruences.    [This  foreshadows  the  work  on  pages  6-103  and  6-104.] 

A  triangle  with  three  congruent  sides  and  with  three  congruent 

angles  is  a  triangle  for  which  more  than  two  matchings  are  congru- 
ences.    In  fact,    in  that  case,    all  six  matchings  are  congruences. 

B.  No.     Some  other  matching  of  the  vertices  might  be  a  congruence. 
In  fact,   ABC  —•  EDF  is  a  congruence. 

C_.      AA'B'C   =  AWZY   [A%'  ̂   WZ,     B^'  =   ZY,     cTa'  S   YW,     zA'  S  zW, 

ZB'  S  ZZ,     ZC  =  ZY] 

AGHI  =  ACDX  [GH  =   CD,     HI  ̂    DX,     IG  S   XC,     IC  S  ZC,     ZH  =  ZD,' 

ZI  S  ZX] 

AJKL  =  APRQ  =  AAST    [JK  S   PR  S  AS,      KL  S   RQ  S  5t, 

£j  =  QP  =    XA,     ZJ  =  ZP  S  ZA,     ZK  =  ZR  =  ZS,     ZL  =  ZQ  =  ZT] 

ANMO  S  AUVB   [NM  ̂    UV,     MO  ̂    VB,     ON  =  BU,     ZN  =  ZU, 

ZM  =  ZV,     ZO  =  ZB] 

».•- 

"f 

Alert  students  to  the  need  for  compasses  in  doing  the  work  on  page  6-87. 
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Answers  to  questions  in  the  text. 

(1)    ZTQR  (2)    TQ  and  TR  (3)    RT  (4)    ZRTQandZTRQ 

"I* 

Answers  for  Part  A. 

1.     Let  students  experiment  a  bit  in  this  exercise.     Most  of  them  should 
remiember  the  drawing  technique  from  their  7th  or  8th  grade  work. 
Note  that  we  are  not  interested  in  this  exercise  in  a  Euclidean 

construction  problem.      All  we  want  students  to  do  is  know  how  to 
use  drawing  instrunnents.      See  pages  6-293  and  6-294. 

Many  such  triangles  can  be  drawn.      Be  sure  that  students  see  that 
the  vertex  opposite  the  longest  side  can  be  on  either  side  of  i.     All 
such  triangles  are  congruent  by  virtue  of  the  s.s.s.  theorem  and  the 
definition  of  congruence. 

2.  If  there  were  such  a  triangle  then,    since  the  vertices  are  noncoUinear, 

Axiom  B  tells  us  that  GH  +  IJ  >  KL.     But,   GH  +  IJ  /-  KL.     So,   there 

is  no  triangle  whose  sides  are  congruent  to  GH,   IJ,   and  KL. 

3.  (a)    triangle  (b)    AC  •   (c)     CA  (d)    BA 
(e)    It  is  greater  than  the  measure  of  the  third  side.     Axiom  B. 

[See  Theorem  4-1  on  page  6-112.] 

I 

i 
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Answers  for  Part  B. 

I 

Method:      V/ith  the  compass,    draw  part  of  the  circle  with  center  A 

and  radius  BC  so  that  it  intersects  the  sides  of  ZA  in  D  and  E.     Then, 

find  the  point  F  in  one  of  the  half -planes  deternnined  by  BC  such 
that  F  is  in  the  intersection  of  the  circle  with  center  B  and  radius 

BC  and  the  circle  wit?i  center  C  and  radius  DE.     Since  AD  =  BC, 

AE  =  BF,    and  DE  =  CF,    it  follows  from  s.  s.  s.   that  ADE  — *  BCF 

is  a  congruence;    so,  ZA  ̂   ZB. 

The  exercises  on  pages  6-414,    6-415,   and  6-416  will  help  prepare  stu- 

dents to  use  the  congruence  theorems  in  proofs. 
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Answers  for  Part  A. 

1.       (1)     M  is  the  midpoint  of  AB  [Hypothesis] 

(2)  AM  S   BM  [(1);  def.  of  midpoint] 

(3)  MD  =   MC  [Hypothesis] 

(4)  DA  S   CB  [Hypothesis] 

(5)  A,    M,    D  and  B,    M,    C  [figure] 
are  vertices  of  triangles 

(6)  s.s.s.  [theorem] 

(7)  AMD  —  BMC  is  a  congruence      [(5),    (2),    (3),    (4),    and  (6)] 

(8)  ID  =  IC  [(7);  def.  of  congruence] 

(9)  Z DAE  and  Z DAM  are  adjacent        [figure] 
angles  with  their  noncommon 
sides  collinear 

(10)  [Theorem  2-9  on  page  6-78]  [theorem] 

(11)  ZDAE  is  a  supplement  of  ZDAM  [(9)  and  the  if-part  of  (10)] 

(12)  ZCBG  is  a  supplement  of  ZCBM  [Step  like  (9)] 

(13)  [Theorem  2-3  on  page  6-78]  [theorem] 

(14)  ZDAMSZCBM  [(7);  def.   of  congruence] 

(15)  ZDAE  S  ZCBG  [(11),    (12),    (14),    and  (13)] 

iParagraph  proof  for  Exercise  1; 

We  are  given  that  M  is  the  midpoint  of  AB.     Hence,   AM  =  BM. 

ilso  by  hypothesis,    MD  =   MC  and  DA  =   CB.     So,    by  s.  s.  s.  ,    for 

(triangles  AAMD  and  ABMC,    AMD   — *  BMC  is  a  congruence.     Therefore, 
ZD  ̂   ZC. 

TC[6-90,  9l]a 





From  the  figure,   we  see  that  ZDAE  and  ZDAM  are  adjacent  angles 

with  their  noncommon  sides  collinear.     So,    these  angles  are  supple- 

mentary (1).     Similarly,  ZCBG  amd  ZCBM  are  supplementary.     But, 

since  AMD  *—  BMC  is  a  congruence,   ZDAM  =  ZCBM.     So,   ZDAE  = 
ZCBG  (2). 

^ 

(1)  [Theorem  2-9  on  page  6-78.] 

(2)  [Theorem  2-3  on  page  6-78.] 

2.       (1)     AC  and  BD  bisect  each  other      [Hypothesis] 
at  E 

(2)  E  is  the  midpoint  of  AC  [(1);   def.    of  bisect] 

(3)  AE  S  EC  [(2);   def.    of  midpoint] 

(4)  BE  S   ED  [Step  like   (2)] 

(5)  ZAEB  and  ZCED  are  vertical      [figure] 
angles 

(6)  [Theorem  2-5  on  page  6-78]        [theorem] 

(7)  ZAEB  S  ZCED  [(5)  and  (6)] 

(8)  A,    E,    B   and  C,    E,    D  are  [figure] 
vertices  of  triangles 

(9)  s.a.  s.  [theorem] 

(10)  AEB  -*  CED  is  a  congruence     [(8),    (3),    (7),    (4),    and  (9)] 

(11)  AB  S  CD  [(10);    def.   of  congruence] 

(12)  BC  =  AD  [Steps  like  (2)-  (5)  and  (7),    (8), and  (10)] 

[Note..     Actually,   the  derivation  of  (12)  amounts  to  nothing  more  than  an 
alphabetic  variant  of  the  derivation  of  (11).     Just  interchange  'A'  and  *C*.] 
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Paragraph  proof  of  Exercise  2: 

By  hypothesis,    AC  and  BD  bisect  each  other  at  E.     So,   AE  =  EC 

and  BE  =   ED.     The  vertical  angles,  ZAEB  andZCED,   are  congruent. 

So,    by  8.  a.  s.  ,   AEB  ■*-*  CED  is  a  congruence.     Hence,   AB  =   CD. 

Similarly,    BC  =   DA. 

You  might  try  having  students  give  plans  or  "oral  proofs"  for  Exercises 

3-6  on  page  6-417. 

•J, 

'I* 

Answers  for  Part  B  [on  page  6-91]. 

(1)  [Hypothesis] 

(2)  [Hypothesis] 

(5)  [assumption]* 

(6)  M  is  the  midpoint  of  AB 

(7)  AM  =  MB 

(8)  AP  =  PB 

(9)  [(8);  *(5)] 

1(10)  [assumption]! 

1(12)  [identity;   def.   of  cong.    segments] 

(13)  [Theorem  2-7  on  page  6-78] 

(14)  ZPMB  and  ZPMA  are  right  angles 

(15)  [Theorem  2-2  on  page  6-78] 

(16)  ZPMB  S  ZPMA 

(19)  [(11),    (12),    (16),    (17),    and  (18)] 

(21)  [(20);    t  (10)] 
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Corrections.     On  page  6-92,   line  7b  should 
read  'vertices  of  triangles'. 

On  page  6-93,   line  9b  should  read: 
  such  that  JDL  — *  JDE  is  a  congruence. and  line  lb  t.hc  u^ci  read: 

  svv:h  that  VRS  '— •  MNS  is  a  congruenrc. 

Answers  for  Par;  C. 

[assumption]* 

[Hypothesis] 

[Theorem  i-9  on  page  6-5  0] 

P  is  the  midf  oinl  of  AB 

[Hypothesis] 

P  =  M 

P  €i 

[(9);   *(2)] 

[assumption]  t 

f(ll);   H   p^ti.-is] 

'H/pcthes'  s] 

aT)  =   BM 
•— •  ■ — • 

i  ir  S   iv'P,   [ld?ntity;    dif.    of  cong.    segments] 

AMP  ~—  Liv4P  i°  a  congn  e.iCe 

[(17);   daf.    of  congruence] 

Theorem  ''-9  on  p.g^  ̂ -78 

ZPJVIA  and  ̂ PMB  are  o-  pplementary;    [(19)  and  the  if-part  of  (<iO)1 

[The-jrenri  2--)  on  page  6-78] 

ZPMa  and  ZPMB  are  ripht  •  ngles 

[l-Jypotlxesis 

Th3c-<"=  n  --So.  page  6-7°- 

[(28);    t  (11)] 
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Answers  for  Part  E  [on  page  6-93]. 

I.       No.     This  result  is  intuitively  obvious  and,    since  we  shall  make  no 

use  of  it  later,   we  shall  not  show  how  it  can  be  derived  from  the 

Introduction  Axioms. 

2.  As  in  Exercise  2  of  Part  D,    MRS  — *  MNS T 

is  a  congruence  if  and  only  if  RS  =  NS  and 

MR  =  MN.     So,    since  N  e  ST,    N  is  the 

— » 

point  
of  ST  such  

that  RS  =  NS.     
And,   

as 

before,    M  may  be  any  point  of  the  perp- 
endicular bisector  of  RN  which  is  exterior 

to  ARST.     Since  the  midpoint  of  RN  is 

interior  to  ZRST,    the  half-line  with  vertex 

S  which  contains  this   nriidpoint  intersects  RT  in  a  single  point  P. 

Any  point  M  such  that  P  e  MS  will  satisfy  the  requirements  of  the 

problem.     [So  will  any  point  M  such  that  S  €  MP.  ] 

TC[6-93]e 



"^^gJRg 



(2)     if  D  is  interior  to  ZCAB  then  B  and  C  are  on  opposite  sides  of  AD. 

To  do  so,    consider  a  point  B'  such  that  A  is  between  B'  and  B.     By 

Theorem  16,    B'  and  B  are  on  opposite  sides  of  AD.     So,   to  establish 

(2)  it  is  sufficient  to  show  that  B'  and  C  are  on  the  same  side  of  AD-- 

that  is  [Theorem  15],   that  B'C  r^  AD  =  0.     Since  B'C  =  CB'  r\  B'C  and 

AD  =  AD  w  AD',    this  will  follow  if  we  show  that  CB'  r^  AD  =  0  and  that 

B'C  (^  AD'  =  0--for,   if  so,   no  point  of  B'C  can  belong  to  either  AD  or 

to  AD'. 

Now,    since  B  and  B'  are  on  opposite  sides  of  AC  and  B  and  D  are  on  the 
same  side  of  AC,   it  follows  that  B    and  D  are  on  opposite  sides  of  AC. 

So,   by  Theorem  18,    CB'  and  AD  are  subsets  of  opposite  sides  of  AC. 

In  particular,    CB'  -^  AD  =  0.     Since  C  /^  A,    and  since  neither  C  nor  A 
is  on  either  side  of  AC,    it  follows  that  CB    '^  AD  =  0,     Similarly,    since 

D  and  D'  are  on  opposite  sides  of  AB  and  D  and  C  are  on  the  same  side 

of  AB,    it  follows  that  D'  and  C  are  on  opposite  sides  of  AB.     So  [arguing 

as  before],    B 'C  -^  AD'  =  0.      This  connpletes  the  argument  for  (2). 

Combining  (1)  and  (2),    and  the  first  result  in  the  COMMENTARY  for 

page  6-71: 

if  P  €  AB  and  Q  €  AC  then  PQ  is  a  subset  of  the  interior  of  ZCAB, 

we  can  now  show  that 

(3)  if  D  is  interior  to  ZCAB  then  AD  r>.  bC  consists  of  a  single  point. 

For.^by  (2),    B  and  C  are  on  opposite  sides  of  AD,   whence,    by  Theorem 

19,   AD  r^  BC  consists  of  a  single  point.      Consequently,    since  BC  is  a 

subset  of  the  interior  of^CAB^and^y  (1)^  no  point  of  AD'  isjnterior  to ZCAB,    it  follows  that  AD  r^  BC  =  AD  ̂   BC.     Hence,   AD  ̂   BC  consists 
of  a  single  point. 
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LK--that  is,   to  the  fact  that  the  apparently  unlikely  event  suggested  at 
the  end  of  the  solution  for  Exercise  2,    does  not  occur.      To  see  that  this 

is  the  case,   we  shall  now  prove  some  additional  Introduction  Theorems. 

To  begin  with,    recall  that,    according  to  the  second  result  given  in  the 

COMMENTARY  for  page  6-71, 

if  D  is  interior  to  ZCAB  then  AD  is  a  subset  of  the  interior  of  ZCAB. 

We  can  strengthen  this  result  by  showing  that 

(1)     if  D  is  interior  to  ZCAB  then  the  intersection  of  AD  and  the  interior 

of  ZCAB  is  AD. 

To  do  so,    since  A  is  not  interior  to  ZCAB,    it  is  sufficient,    by  Theorem 

14  of  page  6-27,    to  show  that  if  A  is  between  D  and  D'  [and  D  is  interior 

to  ZCAB]  then  no  point  of  AD'  is  interior  to  ZCAB.     Now,   using  Theorem 

16  of  page  6-27,    D'  and  D  are  on  opposite  sides  of  AB  and,    since  C  and 

D  are  on  the  same  side  of  AB,    it  follows  that  C  and  D    are  on  opposite 

sides  of  AB.     Hence,    using  Theorenn  18,    each  point  of  AD'  is  on  the  side 

of  AB  opposite  C.     So,    no  point  of  AD'  is  on  the  C-side  of  AB;   whence, 

by  definition,    no  point  of  AD'  is  interior  to  ZCAB.     Consequently,    (1)  is 
established. 

Next,   we  need  to  show  that 
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2.  ^  ^^'  The  matching  JDL  *-*  JDE  is  a 

congruence  if  and  only  if  JE  =  JL 

and  LD  =  ED.     So,   to  satisfy  the 

conditions  of  the  problem,    E  must 

be  the  point  of  JK  such  that  JE  = 

JL.     The  problem  can  now  be 

solved  by  locating  a  point  D  interior  to  AJKL  and  equidistant  fronn 

L  and  E.     The  point  most  obviously  equidistant  from  L,  and  E  is  the 

midpoint,    R,    of  LE  and  [see  the  COMMENTARY  for  page  6-71]  this, 

like  any  point  of  LE,    is  at  least  interior  to  ZLJK.     So,    if  R  is  on  the 

J-side  of  LK,   the  problem  can  be  solved  by  taking  D  to  be  R.     In 

general,    however,    this  is  not  the  case.     But,    since  JRL  —^  JRE  is, 
in  any  case,    a  congruence,   ZLJR=  ZEJR.     From  this,   together 

with  the  fact  that  LJ  =  EJ,    it  follows  that  each  point  of  JR  is  equi- 

distant from  L  and  E.     Since  [see  the  COMMENTARY  for  page  6-71], 

because  R  is  interior  to  ZLJK,    each  point  of  JR  is  interior  to  ZLJK, 

-^ 

it  suffices  

to  choose  

for  
D  any  

point  
of  JR  

which  

is  on  
the  

J-side  

of 
LK.     If  JR  intersects   LK  in  a  point  F  then,    using  Introduction 

Theorem  18,   any  point  between  J  and  F  will  do  for  D.     And,    in  the 

apparently  unlikely  event  that  JR  and  LK  do  not  intersect,   then, 

using  Introduction  Theorem  15,    D  might  be  chosen  anywhere  on  JR. 

Note  that  this  exercise  introduces  ideas  relating  to  the  notions  both 

of  perpendicular  bisector  [JR  is  the  perpendicular  bisector  of  LEJ 

and  of  angle  bisector  [jR  is  the  angle  bisector  of  ZLJE].     It  may  be 

thought  of  as  exploration  for  Theorem  3-3  on  page  6-94,    Theorem 

3-7  on  page  6-  107,    and  Theorem  4-  17  on  page  6-133. 

In  a  later  COMMENTARY  we  shall  want  to  make  use  of  the  fact  that  a 

half-line  which,    like  JR,    is  interior  to  an  angle,   ZLJK,    does  intersect 

i 
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Answers  for  Part  D 

1.       No 

/- Suppose  P  belongs  to  i(ZBAC)  ̂   iCiiBCA).      Ther..    P  €  i(ZBAC)  and 

P  e  i(ZBCA).     By  the  definition  of  the  interior  of  angle,    since 

P  €  i(ZBAC),    it  follows  that  P  belongs  to  the  C-side  of  AB  [and  to 

the  B-side  of  AC].     Also,    since  P  €  i(ZBCA),    P  belongs  to  the  A- 

side  of  BC  [and  to  the  B-side  of  ACJ.     So,    again  by  definition,    since 

P  belongs  to  the  C-side  of  AB  and  to  the  A-side  of  BC,    it  follows 

that  P  e  i{ZCBA).      Therefore,    if  P  €  i(ZBAC)  r^  i(/BCA)  then  P  € 

i(ZCBA).     So,    if  P  belongs  to  the  intersection  of  the  interiors  of 

two  angles  of  a  triangle,    it  also  belongs  to  the  interio.  of  the  third 

angle.      That  is,    it  belongs  to  the  intersection  of  all  three  interiors. 

So,    by  definition,    it  belongs  to  the  interior  of  the  triangle. 

The  foregoing  argument  proves  the  theorem  th?t  the  interior  of  a 

triangle  is  the  intersection  of  the  interiors  of  any  two  angles  of  the 

trianole.     Similar  arguments  show  that  the  interior  of  AABC  is  the 
<-^  <-^ 

intersection  of  the  A-side  of  BC,    the  B-side  of  CA,    and  the  C-side <— > 
of  AB,    and,    so,    that  it  is  the  intersection  of  the  interior  of  ZC  and 

the  C-side  of  AB. 
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Answers  for  Part  A  [on  pages  6-94  and  6-95]. 

1.      (a)  ^  ̂    p^  Since  AP  =  AQ  =  BP  =  BQ,    the  points  P 

^\  and  Q  are  equidistant  from  A  and  B.     So, 

'  P  and  Q  determine  the  perpendicular 

bisector  of  AB. 

/ 

/ 

b 

A         ,       \       I         B 
^     !    / 

2,  Find  the  nnidpoint  by  drawing  the  perpendicular  bisector, 

3.  Locate  two  points  A  and  B  on  the  given  line  such  that  the  given • — • 

point  is  the  midpoint  of  AB.      Then,    since  the  given  point  is  on • — • 

the  perpendicular  bisector  of  AB,   just  find  one  more  point  on  the 

perpendicular  bisector.      The  perpendicular  bisector  of  AB  is  the 

perpendicular  to  the  given  line  at  the  given  point. 

Answers  for  Part  B  [on  page  6-95], 

1.  Since  M  is  the  midpoint  of  BC,    M  is  equidistant  from  B  and  C. 

Also,    by  hypothesis,   A  is  equidistant  from  B  and  C.     From  the 

figure,    B  /  C.     So,    by  the  only-if-part  of  Theorem  3-3,   A  and  M 

are  points  on  the  perpendicular  bisector  of  BC,     From  the  figure 

we  see  that  A  and  M  are  two  points.     So,    they  determine  the  per- 

pendicular  bisector  of  BC,     Hence,   AM  X  BC.     Since     AM   C  AM, 
— •        — .  <— >         <— >  —       ►-T"      ►— . 
AM  ±  BC.     Finally,    since  {M}  =  AM   r^   BC  and  M  €  BC,   AM  X  BC 

at  M. 

2.  We  see  from  the  figure  that  B  /  C  and  A  /  D.     By  hypothesis,   A 

and  D  are  each  equidistant  from  B  and  C,     So,   AD  is  the  perpen- 
dicular bisector  of  BC.     Since  AD   C   AD,   AD  X  BC. 
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Answers  for  Exploration  Exercises  [on  pages  6-96  and  6-97], 

A.       2,     Yes[s.s.s.];    no  B.     2.     Yes[s.a.s.];    no 

C.       2.     Yes;    no  [intuition]  D.     2.     Yes  [or:    no];    yes 

E.       2.     Yes;    no  [intuition] 

G.       2.     Yes;    no  [intuition] 

F.     2.     Yes  [or:    no];  yes 

-1^ 

Parts  C,    D,   and  E  of  the  Exploration  Exercises,    in  addition  to  pro- 
viding foils  for  the  a.  s.  a.    congruence  theorem  suggested  in  Part  F, 

call  student's  attention  to  the  "ambiguous  case"  and  foreshadow  the 
resolution  of  this  ambiguity  given  in  Theorem  4-13  and  Theorem  4-14 
on  page  6-129.     In  Parts  C,    D,    and  E,    students  are  asked  to  consider 
pairs  of  matched  triangles  for  which  two  pairs  of  corresponding  sides 
are  congruent  and  the  angles  opposite  the  nnennbers  of  one  of  these 
pairs  of  sides  are  also  congruent.     Part  C  may  suggest  the  conclusion 
that  this  is  sufficient  in  order  that  the  triangles  be  congruent,   but  Part 
D  should  correct  this  error.     Reconsideration  of  these  exercises  may 
suggest  [Part  C]  that  two  such  triangles  are  congruent  if  the  angles 
which  are  specified  as  being  congruent  are  obtuse,   but  [Part  D]  that 
two  such  triangles  need  not  be  congruent  if  the  angles  in  question  are 
acute.     Further  consideration  of  Part  D  may  suggest  that  the  ambiguity 
of  the  case  of  acute  angles  can  be  resolved  by  specifying  that  the  angles 
opposite  the  other  two  congruent  sides  be  both  obtuse  or  both  acute. 
|Part  E  suggests  another  re  solution- -the  triangles  are  congruent  if  the 
i sides  opposite  the  angles  specified  to  be  congruent  are  longer  than  the 
i other  congruent  sides. 
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Corrections.     On  page  6-99, 
line   15  should  read: 

(4)     ---    [Step  like  (1)] 
and  line  3b  should  read: 

(19)  ---   [Step  like  (16)] 

You  may  wish  to  motivate  the  proof  on  page  6-98  by  an  intuitive 

superposition  argument.     If  you  pick  up  AABC  and  place  it  on  AA'B'C' 

so  that  A  fits  on  A',    B  on  B',    and  C  and  C'  are  on  the  same  side  of < — >  — ^  • — >  — >  • — > 

A'B',  then  AC  will  fit  on  A'C'  and  BC  will  fit  on  B'C'.     The  problem, 

then,    is  to  show  that  C  fits  on  C', 

line  8  on  page  6-98.     Since  A',    B',    and  C'  are  noncoUinear,    it  follows 
< — >        < — >        ,      ,  — >        < — >  — >        < — > 

that  A'C  r^  B'C  =  {C}  .     So,    since  A'C  C  A'C'  and  B'C  C  B'C, 

and  since  C'  €  A'C'  r\  B'C',   we  know  that  C'  is  the  only  point  which 

belongs  to  A'C'  and  B'C.     Hence,    P  =  C'. 

'C'A'B'  "—  CAB  is  a  congruence'  follows  from  'P  =  C"  and  (*)  by  sub- 
stitution. 

^ 
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Answers  for  Part  A  [on  pages  6-100  and 

1.  (1)  ZAED  and  ZAEB  are  adjacent 

angles  with  their  noncommon 
sides  coUinear 

(2)  [Theorem  2-9  on  page  6-78] 

(3)  ZAED  is  a  supplement  of  ZAEB 

(4)  ZCED  is  a  supplement  of  ZCEB 

(5)  ZAEB  =  ZCEB 

(6)  [Theorem  2-3  on  page  6-78] 

(7)  ZAED  S  ZCED 

(8)  ED  S  ED 

(9)  ZADE  S  ZCDE 

(10)  A,    E,    D   and   C,    E,    D 
are  vertices  of  triangles 

(11)  a.s.a. 

(12)  AED  —  CED  is  a  congruence 

(13)  AE  S   CE 

6-101]. 

[figure] 

[theorenn] 

[(1)  and  the  if -part  of  (2)] 

[Step  like  (1)] 

[Hypothesis] 

[theorem] 

[(3),  (4).  (5),  and  (6)] 

[identity;   def,    of  congruent 
segments] 

[Hypothesis] 

[figure] 

[theorem] 

[(10),  (7),  (8),   (9).  and  (11)] 

[(12);   def.  of  congruence] 

[Note  step  (9).     Actually,    the  hypothesis  tells  us  that  ZADB  =  ZCDB, 

But,    since  E  e  DB,    we  can  use  an  Introduction  Theorem  to  prove  that 

DE  =  DB.      Then,   by  using  the  definition  of  an  angle  and  substitution,   we 

can  show  that  ZADE  =  ZCDE.      This  is  the  kind  of  gap  in  the  proof  that 

we  can  ignore.  ] 
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Paragraph  proof  for  Exercise  1: 

From  the  figure,   we  see  that  ZAED  and  ZAEB  are  adjacent  angles 

with  their  noncommon  sides  collinear.     So,    they  are  supplementary  (1). 

Similarly,   ZCED  andZCEB  are  supplementary.     Since,    by  hypothesis, 

ZAEB  =  ZCEB,    it  follows  from  an  earlier  theorem  (2)  that  ZAED  =  ZCED. 

Now,    EDS   ED,    and,    by  hypothesis,    ZADE  ^  ZCDE.     So,    by  a.  s.a., 

AED  ■— •  CED  is  a  congruence.     Hence,   AE   S  CE. 

(1)  [Theorem  2-9  on  page  6-78] 

(2)  [Theorem  2-3  on  page  6-78] 
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students  can  organize  the  data  in  a  problem  of  this  type  into 

Hypothesis -Conclusion  format,    listing  all  of  the  suppositions  in 
the  hypothesis.     But,    to  save  time  and  writing,    it  is  good  practice 
to  put  as  many  of  the  suppositions  into  the  figure  as  possible. 
[Students  should  be  encouraged  to  write  very  informal  paragraph 

proofs  for  problems  of  the  *'show  that*'  variety]. 

ABE  —-"  DCE  is  a  congruence  by  a,  s.a. 

So,  AE  S  ED.     Also,  ZAEF  S  ZDEG 

since  they  are  vertical  angles.     There- 

fore,  by  a.  s.  a.  ,  AEF  — «-  DEG  is  a 

congruence.     So,    FE  =  GE. 
<— > 

fit  is  interesting  to  note  that  if  the  line  FG  pivots  about  the  point 

E  with  F  €  AB  and  G  e  CD  then  E  is  the  midpoint  of  FG.  ] 
<-^ 

Since  MN  X  BD,  ZMDB  and  ZNDB  are  right  angles.      So,  they  are 

congruent.      Also,   BE)  s   BD.      So,    since  ZDBA  s  ZDBC,    it  fol- 

lows from  a.  s.a.  that  BDM  ♦-*   BDN   is  a  congruence.     Therefore, 

ZDMB  S  ZDNB. 

This  is  the  intersection  of  the 

exteriors  of  the  three  angles  of 

AABC.     It  is  not  the  same  thing 

as  the  exterior  of  AABC. 

This  is  not  the  same  set  as  in  part 

(a).  This  set  includes  the  sides  of 

the  vertical  angles  of  the  angles  of 

AABC.  [Ask  students  to  sketch  the 

union  of  the  exteriors  of  the  angles 

of  AABC.  Is  this  the  same  thing  as 

the  exterior  of  AABC?] 
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(2)  ZA  S  ZC  [Hypothesis] 

(3)  AB  =   CB  [Hypothesis;  def.    of  mid- 
point] 

(4)  G  is  interior  to  ZCBF  [figure] 

(5)  [Axiom  F  on  page  6-78]  [axiom] 

(6)  m(ZCBF)  =  m{ZCBG)  +  m(ZGBF)  [(4)  and  (5)] 

(7)  m(ZABG)  =  m(ZABF)  +  m(ZGBF)  [Step  like  (4)] 

(8)  m(ZABF)  =  m(ZCBG)  [Hypothesis;  def.    of  cong. angles] 

(9)  ZABG  S  ZCBG  [(6),    (7),   and  (8);  def.    of 
cong.   angles] 

(10)  a.s.a  [theorem] 

(11)  ABG  —  CBF  is  a  congruence  [(1),    (2),    (3).    (9),   and  (10)] 

(12)  AG  S   CF  [(11);  def.    of  congruence] 

Paragraph  Proof  of  Exercise  3: 

For  the  triangles  AABG  and  ACBF,    we  are  given  that  ZA  =  ZC  and 

AB  S   CB.     Since  F  is  interior  to  ZABG  and  G  is  interior  to  ZCBF,    it 

follows  from  an  axiom  (1)  that  m(ZABG)  =  m(ZABF)  +  m(ZFBG)  and  that 

m(ZCBF)  =  m{ZCBG)  +  m(ZFBG).     But,    by  hypothesis,    m(ZABF)  = 

m(ZCBG).     So,   m(ZABG)  =  m(ZCBF).     Hence,    bya.  s.a,  ,   ABG  — ►  CBF 

is  a  congruence;  so,   AG  S   CF. 

(1)    [Axiom  F  on  page  6-78] 
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(1)  ZBCA  and  ZDCE  are 
vertical  angles 

(2)  [Theorem  2-5  on  page  6-78] 

(3)  ZBCA  S  ZDCE 

(4)  AD  bisects  BE 

(5)  {C}  =  AD  r^  BE 

(6)  BC  S   CE 

(7)  ZB  =  ZCED 

(8)  A,    B.    C  and  D,   E,   are 
vertices  of  triangles 

(9)  a.  s.  a. 

(10)  ABC  — *  DEC  is  a  congruence 

(11)  AC   S  CD 

(12)  BE  bisects  AD 

[figure] 

[theorem] 

[{l)and  (2)] 

[Hypothesis] 

[figure] 

[(4)  and  (5);  defs.   of 
bisect  and  midpoint] 

[Hypothesis] 

[figure] 

[theorem] 

[(8).    (3).    (6).    (7).   and  (9)] 

[(10);  def.    of  congruence] 

[(5)  and  (11);  defs.    of  mid- point and  bisect] 

Paragraph  proof  of  Exercise  2: 

For  the  triangles  AABC  and  ADEC,    we  are  given  that  ZB  S  ZDEC. 

Since  ZBCA  and  ZECD  are  vertical  angles,    they  are  congruent  (1). 

Since,   by  hypothesis,  AD  bisects  BE,   and  since  C  is  the  common  point 

of  these  segments,    it  follows  that  BC  =  EC.     So,   by  a.  s.a,  ABC  ■*-♦  DEC 

is  a  congruence.     Hence,   AC   =  DC.     So,    since  C  6  AD,    BE  bisects  AD. 

(1)     [Theorem  2-5  on  page  6-78.] 

3,     Plan.     Show  that  ABC  •*-*■  CBF  is  a  congruence. 

(1)    A,  B,  G  and  C,  B,  F  are  vertices  of  triangles [figure] 
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Answers  for  Part  B. 

1.  (i)    ZA  s  ZB  [Hypothesis] 

(2)  AB  =  BA  [Identity;  def .  of  cong.  segments] 

(3)  ZB  S  ZA  [(1);  def.  of  cong.  angles] 

(4)  A,   B,    CandB,   A,    C  are                [figure] 
vertices  of  triangles 

(5)  a.s.a.  [theorem] 

(6)  ABC  —  BAG  is  a  congruence        [(4),   (1),   (2),   (3),   and  (5)] 

2.  (7)    BC  s  AC  [(6);  def.  of  congruence] 

Answers  for  Part  C   [on  page  6-102], 

1.  In  triangles  AACB  and  ABCA,   AC  ̂   BC  by  hypothesis.     So,  CB  S   CA. 

Also,   by  identity,   AB  S  BA.      Hence,    by  s.s.s.,   ACB  •—  BCA  is  a 

congruence.     [Students  might  also  note  that  ZACB  S  ZBCA  and  use 

s.  a. s  .  ] 

2.  Since,   by  Exercise  1,  ACB  —»  BCA  is  a  congruence,   it  follows  that 
ZB  S  ZA. 

Note  that  the  substitution  rule  for  biconditional  sentences  justifies 
inferring  that  a  triangle  is  isosceles  if  and  only  if  two  of  its  angles  are 
congruent  from  the  definition  of  an  isosceles  triangle  and  Theorem  3-5. 
If  one  wanted  to,  he  could  use  this  inferred  result  as  the  definition  and 
then  derive  from  it  and  Theorem  3-5  what  is  now  the  definition.     Which 

of  the  two  statements  is  actually  called   'the  definition  of  an  isosceles 
triangle'   is  a  matter  of  custom. 
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In  checking  a  student's  understanding  of  the  terms  'legs',    'base', 
'base  angle',    and  'vertex  angle',    it  is  a  good  idea  to  draw  pictures 
of  isosceles  triangles  in  various  positions. 

Then,    ask  questions  such  as  the  following: 

(1)  If  you  are  told  that  AaBC  is  isosceles,    can  you  tell  which 
of  its  sides  are  the  legs?    [Answer:    no] 

(2)  If  ZC  is  the  vertex  angle  of  the  isosceles  triangle  AABC, 
which  sides  are  the  legs?     V/hich  angles  are  the  base  angles? 

<3)     IfZE  S<  ZD,    is  AEDF  isosceles?     What  tells  you  this  ? 
[Answer:    the  if -part  of  Theorem  3-5  and  the  definition  of 
isosceles  triangle] 

(4)     If  HG  =  GI,    is  AHIG  isosceles  ?     V/hat  tells  you  this  ? 
[Answer:    the  definition  of  isosceles  triangle] 

The  familiar  "base  angles  of  an  isosceles  triangle  are  congruent" 
theorem  is  a  consequence  of  Exercise  2  of  Part  C  on  page  6-102.     It 
follows  from  the  only-if-part  of  Theorem  3-5  [and  the  definition  of 
base  angles  of  an  isosceles  triangle]. 
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Correction.     On  page  6-105,   line  lib 
should  read: 

---,  ZDCA  S  ZDCB. 
t 

For  a  definition  of  'corollary'  see  page  6-27. 

The  word  'equilateral*  refers  to  the  fact  that  the  three  sides  of  the 
triangle  have  equal  naeasures,    not  that  the  sides  are  equal.     Similarly, 

'equiangular'  refers  to  the  fact  that  the  three  angles  of  the  triangle 
have  equal  measures. 

Since  two  sides  of  an  equilateral  triangle  are  congruent,    it  follows 
that  the  triangle  is  isosceles. 

'«- 

Proof  of  Theorem  3-6: 

By  definition,   AlMN  is  equilateral  if  and  only  if  LM  =  MN  =  NL. 
By  Theorem  3-5,    LM  =  MN  =  NL  if  and  only  if  ZN  S  ZL  =  ZM.     By 
definition,  ZN  =  IL  sZMif  and  only  if  ALMN  is  equiangular.     So, 
ALMN  is  equilateral  if  and  only  if  ALMN  is  equiangular.     Consequently, 
a  triangle  is  equilateral  if  and  only  if  it  is  equiangular. 

Notice  that  in  the  colunnn  proof  on  page  6-105,    step  (1)  is  justified  by 
the  two  assunnptions  'AABC  is  isosceles'  and  'ZC  is  its  vertex  angle' 
together  with  the  definitions  of  isosceles  triangle  and  vertex  angle  of 
an  isosceles  triangle. 

Answers  for  Part  A  [on  page  6-105], 

1.       six  2.     two  or  six 3.     one 
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Corrections.     On  page  6-106,   the 
Exercise  1  should  include  a  *n 

figu 

'  to 

re  for 

show 

that  CD  ±    AB  [as  in  the  figure  for 
Exercise  2]. 

On  page  6-108,   line  2b  should 
(8)  ---    [Step  like  (5)] 

T     t            t 

read: 

Answers  for  Part  B, 

[We  give  just  brief  outlines  of  proofs.] 

1.      ZACD  s  ZBCD,    CD  =  CD,    and  ZCDA 
is  a  congruence.     Hence,  AC  =  BC. 

S  </CDB.     So,  ACD  —  BCD 

2.  CD  =   CD,    ZCDA  s  ZCDB,    and  DA  =  DB.     So,   CDA  — <-  CDB  is  a 
congruence.     Hence,    AC  =  BC. 

Alternative:     Just  use  Theorem  3-3. 

3.  Since  AB  =  BC,  ZA  S  ZC.     Also,    since  DE  =  EC,   ZEDC  S  ZC.     So, 
by  the  definition  of  congruent  angles   [and  substitution],   ZA  S  ZEDC. 

4.  ZMRP  =  ZNSP  because  they  are  supplements  of  congruent  angles. 
By  Theorem  3-5,    RP  =  SP.     Since  ZR.PM  S  ZSPN  by  hypothesis, 
it  follows  from  a.  s.a.   that   MRP*-*  NSP  is  a  congruence.     So, 
MP  =  NP. 

T5r, 
ZA  S  ZB  S  ZC.     Since  AM  =  MB  =  BN  =  NC  =  CP  =  PA  it  follows 

that  PAM  —  MBN,    MBN  —  NCP,    and   NCP  —  PAM  are  congru- 
ences.    So,    PM  =  MN  =  NP. 
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intersect  in  a  single  point,    it  is  enough  to  establish  the  more  general 

result  that 

if,    in  AABC,    D  €  AC  and  E  e  AB  then  BD  r^  CE  consists 

of  a  single  point. 

To  show  this,   we  note  that,    since  D  e  AC,    D  is  interior  to  ZABC  eind 

that  since  E  €  AB,   ZEBC   =  ZABC.     So,    D  is  interior  to  ZEBC  and,    by 

the  previously  mentioned  result,    BD  ̂ ^  EC  consists  of  a  single  point. 

Similarly,    CE  /^  BD  consists  of  a  single  point.     Now,    since  A  ̂   BC, 
<—>     < — >  < — >    < — > 
BD  '^  CE  consists  of  at  most  one  point.     [Otherwise,    BD  =  CE,    from 

<r   >  < — > 
whence  it  follows,    first,   that  D  €  BC,    and,   then,    that  A  cBC]    But, 

since  BD  C  BD  and  EC  C  CE,   the  point  of  intersection  of  BD  and  EC 
<— >     < — > 

belongs  to  BD  /^  CE,    and  this  latter,    then,    consists  of  this  single  point. 
— >         —       < — >     < — > 

It  results  fronri  a  similar  argument  that,  also,  CE  <^  BD  =  BD  ̂ ^  CE. 
< — >         < — >■ 

Hence,    the  unique  point  of  intersection  of  BD  and  CE  belongs  to  both 

EC  and  BD.     So,    EC  i^  BD  consists  of  this  single  point. 
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Answers  for  Part  B. 

1.  By  Theorem  3-8,    m(ZFBC)  =  j'mUABC)  and  m(ZFCB)  =  j*  m(^ACB). 

But,   by  Theorem  3-5,  ZABC  S  ZACB.     So,  ZFBC  ^  </FCB.     Hence, 

by  Theorem  3-5,   FC  =  FB. 

2.  FB  =  FC,  ZFBA  S  ZFCA,   and  BA  =  CA.     So,   FBA  *-*  FCA  is  a 

congruence.     Hence,   ZFAB  S  ZFAC.     Assuming  from  the  figure 

that  F  is  in  the  interior  of  ZA,   it  follows  from  the  definition  of  angle 

bisector  that  AF  is  the  bisector  of  ZA. 

'4* 

In  order  to  avoid  awkward  questions  in  class,   we  have  included  a  gratu- 

itous assumiption  in  the  Hypothesis  of  Exercise  1  of  Part  B.     This 

assumption  is  that  the  bisectors  of  ZB  and  ZC  intersect  in  a  single  point, 

F.     It  is  gratuitous  in  that  it  can  be  proved,   using  the  Introduction  Axioms 

and  the  definition  of  angle  bisector,   that  the  bisectors  of  each  two  angles 

of  a  triangle  intersect  in  a  single  point.     [One  needs  this  preliminary 

result  in  the  proof  [see  page  6-134]  that  the  angle  bisectors  of  a  triangle 
are  concurrent.  ] 

In  fact,   we  have  already  shown  [see  result  (3)  in  the  COMMENTARY  for 

page  6-93]  that 

if  D  is  interior  to  ZABC  then  BD  r^  AC  consists  of  a  single  point. 

From  this,   and  the  definition  of  angle  bisector,   it  follows  that 

the  bisector  of  ZB  of  AABC  intersects  AC  in  a  single  point 

and  that 

the  bisector  of  ZC  of  AABC  intersects  AB  in  a  single  point. 

So,  in  order  to  show  that  the  bisectors  of  each  two  angles  of  a  triangle 
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Answers  for  Part  C. 

1. 

B D 

Hypothesis:     ZABC  and  ZCBD  are 
adjacent  supplementary 
angles, 

BE  is  the  bisector  of  ZABC, 

BF  is  the  bisector  of  ZCBD 

Conclusion:     BE  x  BF 

^ 

[See  COMMENTARY  for  Exercise  11  on  page  6-63.] 

Since  ZABC  S  ZDBE,    it  follows  from  Theorem  3-8  that  ZABG 

ZFBE.     So,    as  in  Exercise  2  on  page  6-73,    F,    B,    and  G  are 
collinear . 

D 

By  Exercise  2,    A,    P,    and  B  are 

collinear  and  C,    P,    amd  D  are 

collinear.     By  Exercise  1, 

PA  X  PC.     So,   AB  and  CD  are 

perpendicular  lines. 

Answer  for  Part  D. 

ZAC'B  is  a  supplement  of  ZBC'C.   ZBC'C  ̂   ZC, 
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Answers  for  Quiz. 

1.       2.5;    90 

3.  JK;    MK 

4.  ADB  '-*  CBE 

5.  BAD  — *  CDA;    s.a.s. 

6.  By  Theorem  3-3,    BA  =  BC  and  CA  =  CB.     So,   AB  S  AC. 

7.  BAD  *-*  CAD  is  a  congruence  by  s.  a.  s.  So,  BD  =  CD.  Similarly, 

BAE  — *  CAE  is  a  congruence.  So,  BE  =  CE.  But,  BD  =  BE.  So, 
CD  =  CE. 
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Quiz. 

1.  Suppose  that  A,    B,    and  C  are  three  collinear  points  and  that  B  €AC. 

If  D  is  a  point  such  that  DA  =  10  =  DC  and  ZADB  ^  ZCDB,   and  if 

AC  =  5  then  AB  =    and  m(ZDBA)  =    . 

2.  Suppose  that  ZRPT  S  ZSQU,   that  TR  =  PT  =  9  =  QS,   and  that  UQ  = 

4  =  RP.     Then,    US  =   . 

3.  If  AMJKis  isosceles  andZKis  the  vertex,angle  then  the  legs  are 

and  .         > 

Consider  the  triangles  AADB 

and  AEBC.     Give  a  matching 

of  the  vertices  for  which  AD 

and  EC,   AB  and  CE,    are  pairs 

of  corresponding  sides. 

5.  [Refer  to  the  diagrann  in  Exercise  4.]    If  AB  =  DC  and  ZBAD  S  ZADC,] 

give  a  matching  of  the  vertices  of  A  BAD  with  those  of  AADC  which  is 

a  congruence.     What  triangle-congruence  theorem  tells  you  that 

this  matching  is  a  congruence? 

-^  < — > 
6.  Suppose  that  D  is  a  point  on  side  AC  of  ZBAC  such  that  BD  is  the  per- ■^•^  • — .  •->  <     > 

pendicular  bisector  of  AC  and  that  E  is  a  point  on  AB  such  that  CE  is   I 

the  perpendicular  bisector  of  AB.     Show  that  AB  S  AC. 

7. 
Hypothesis  :        AE  is  the  bisector  of  ZBAC, 

ABDE  is  isosceles  with 

vertex  angle  ZDBE, 

Conclusion: 

AB  =  AC 

ACED  is  isosceles 





Answers  for  Part  ''^C  [on  page  6-113], 

1.  By  Theorem  3-3,    AD  =  FD.     So,    AD  +  DB  =  FD  +  DB.     Since  D  e  FB, 

FD  +  DB  =  FB.     Hence,    AD  +  DB  =  FB. 

2.  As  in  Exercise  1,    AP  +  PB  =  FP  +  PB.     Since  F,    B,   and  P  are  non- 

collinear,   it  follows  from  Theorem  4-1  that  FP  +  PB  >   FB.     So, 

since  FB  =  AD  +  DB,   AP  +  PB  >  AD  +  DB. 

3.  In  view  of  Exercises   1  and  2,    the  "minimizing"  point  is  the  point  of 

intersection  of  BF  and  CE  where  F  is  the  point  such  that  AC  =  CF 

and  AF  ±  CE.     If  Q  is  this  point  of  intersection  then,   for  each  point 

X  c  CE  other  than  Q,    AX  +  XB  >  AQ  +QB.     Since  Q  €  FB,   IFQC  S 

ZBQE.     Since,    by  s.s.s.,   AQC  — *  FQC  is  a  congruence,   ZAQC  S 

^FQC.     So,   ZAQC  ^  ZBQE. 

Part  C  is  the  basis  of  an  interesting  application.     Suppose  that  AP  is  a 
•-^  •— • 

ray  of  light  and  that  PB  is  the  ray  of  light  reflected  by  the  nnirror  CE. 

Since  light  travels  in  such  a  way  that  the  path  it  takes  is  always  a  mini- 

mum path,    then  AP  +  PB  is  a  minimunn.     That  is,    P  =  Q.     Let  RQ  be  the 
< — >  •—  _ 

half-line  on  the  A -side  of  CE  and  perpendicular  to  CE  at  Q.     Then,   ZAQR 

•— > 

is  called  'the  angle  of  incidence'  of  the  light  ray  AQ,   and  ZBQR  is  called 

its  'angle  of  reflection'.  Since,  ZAQC  ^  ZBQE,  it  follows  that  the  angle 

of  incidence  of  a  ray  of  light  is  congruent  to  the  angle  of  reflection  of  the 

ray  by  a  plane  mirror. 

I 
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Corrections.     On  page  6-113,    line   14, 
delete  the  'inter'  which  occurs  at 
the  end  of  the  line.     In  line   lb, 

insert  a  period  after  'ZBQE'. 

The  exercises  on  page  6-422  provide  a  brief  review  of  inequations. 

3. 

no 

4. 

yes 

8. 

yes 

'1* 
9. 

no 

Answers  for  Part  A. 

1.     no  2.     no  3.     no  4.     yes  5.     yes 

6.     yes  7.     no 

Answers  for  Part  B. 

1.  Suppose  the  side-measures  of  a  triangle  are  a,    b,    and  c.     Now, 

either  a  >  b  or  a  <  b.     In  the  first  case,    since,    by  Theorem  4-1, 

a  <   b  +  c,    it  follows  that  a  -  b  <  c.     In  the  second  case,    since 

b  <   a  +  c,    it  follows  that  b  -  a  <  c.     So,   in  either  case,   |a  -  b|   <  c. 

2.  By  Theorem  4-1,  BC  <  BD  +  DC.  But,  by  hypothesis,  AD  =  BD. 

So,  BC  <  AD  +  DC.  From  the  figure,  D  e  AC.  So,  by  Axiom  A, 

AC  =  AD  +  DC.     Therefore,    BC  <  AC. 

*3.       [Note  the  implicit  use,   in  the  Hint,    of  result  (3)  of  the  COMMEN- 

TARY for  page  6-93.] 

Let  E  be  the  point  of  intersection  of  AC  and  BD. 

For  AADE,    AE  <  AD  +  DE.  For  ABCE,    CB  <  CE  +  EB. 

So,  AE  +  CB  <  AD  +  DE  +  CE  +  EB. 

But,    C  €  AE  and  E  e  DB. 

So,  (AC  +  CE)  +  CB  <  AD  +  (DE  +  EB)  +  CE 

and  AC  +  CB  +  CE  <  AD  +  DB  +  CE. 

Hence,  AC  +  CB  <  AD  +  DB. 

^, 
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CAM  "•—  C'BM  is  a  congruence  by  s.a.s. 

B  i  CC'  because  if  B  did  belong  to  CC,    so  would  A.     [Since  M  is  the 
midpoint  of  AB,    MeAB;    so,   B,    M,   and  A  are  collinear.]    But,    we  are 

given  that  A,    B,    and  C  are  vertices  of  a  triangle.     Hence,    they  are  non- 

collinear,    and  A  does  not  belong  to  the  line  determined  by  B  and  C. 

Answers  for  Exercises  [on  page  6-115], 

A.  Suppose  that  a  and  (3  are  the  measures  of  two  angles  of  a  triangle. 
Then,    by  Theorenn  4-2,    a  +  p  <    180.     Hence,    by  the  definition  of 
supplementary  angles,   the  amgles  whose  measures  are  a  and  p  are 
not  supplementary. 

B.  Suppose  that  ZA  of  AABC  is  a  right  angle  or  an  obtuse  angle.     Then, 
m(ZA)  >  90.     So,    by  Theorem  4-2,    m{ZB)  <    180  -  m(Z A)  <   90. 
Hence,   ZB  is  acute.     Similarly,  ZC  is  acute. 

■     C.     Suppose  that  a,    p,    and  y  are  the  measures  of  the  angles  of  a  triangle, 
i  Then,    by  Theorem  4-2, 

\ 

I 

a  +  p  <    180,       p  +  Y  <    180,       and      y   +  a   <    180. 

So,    (a   +  p  +  y)  +  (p  +  Y   +  a)  <   540.     Hence,   a  +  p  +  y  <   270. 

D.     Since  6  +  p  =  180  and  a  +  p  <    180,   it  follows  that  a  +  p  <  6  +  p.     So, 
a  <   6.     Similarly,    y  *^   6. 

A  triangle  has  six  exterior  angles,  two  at  each  vertex.     The  two  at  each 
vertex  are  congruent. 

I 
Note  the  predicate  'is  larger  than'  in  Theorem  4-5.     ZA  is  larger  than ZB  if  and  only  if  m(ZA)  is  greater  than  m(ZB). 
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Answers  for  Part  E. 

4.  two;    one 

5.  It  must  have  at  least  two  acute  angles.     It  can  have  at  most  one  right 
angle,    and  at  most  one  obtuse  angle. 

6.  An  exterior  angle  of  a  triangle  is  a  supplenaent  of  one  of  the  angles 
of  the  triangle.     Since  each  angle  is  acute,   it  follows  that  each 
exterior  angle  is  obtuse. 

7.  Suppose  ZC  of  A  ABC  is  a  right  angle.     Then,    each  of  the  exterior 
angles  at  A  and  at  B  is  larger  thanZC*     Hence,    each  such  exterior 
angle  is  obtuse. 

8.  [As  in  Exercise  7.] 

Answer  for  Part  F. 

No,    since  these  two  exterior  angles  may  have  the  same  vertex.     If  the 
exterior  angles  have  different  vertices,    then  the  angles  of  the  triangle 
to  which  they  are  adjacent  and  supplementary  are  also  congruent.     Hence, 
the  triangle  is  isosceles  by  Theorem  3-5.     [A  triangle  which  has  three 
congruent  exterior  angles  is  isosceles  !] 

Answer  for  Part  G. 

Since  B  €  AC,   ZABD  is  an  exterior  angle  of  ABDC.     So,   by  Theorem 

4-5,    p^  >   Y'     Since  B  is  interior  to  ZADC,    it  follows  from  Axiom  F  that 

m(ZADC)  =  5^  +62-     By  Axiom  D,    6^  >  0.     So,   m(ZADC)  >  5^,     But, 

since  AD  =  AC,    m(ZADC)  =  y     So,    ̂   >  h ̂ .     Hence,    p^^  >  6^^. 

'4- 

Answer  for  Part  '^, 

By  Theorem  4-1,    CC  <   C'B  +  CB.     Since  CAM  -—  C'BM  is  a  congruence, 

CA  =  C'B.     So,    CC  <  CA  +  CB.     But,    M  is  the  midpoint  of  CC'.     Hence, 
CM  <  ̂ (CA  +  CB).     [This  exercise  tells  us  that  a  median  of  a  triangle  is 
shorter  than  the  average  of  the  sides  which  "include"  the  median.] 
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Here  is  an  approach  to  the  proof  of  Theorem  4-6  which  might  help 

students  discover  the  isosceles  triangle  gimmick.    Consider  the  isosceles 

triangle  AABC  with  AB  =  AC.     If  the  side  AC  is  shortened  by  sliding  C 

toward  A,   what  happens  toZC?    It  gets  larger.     Why?    Because  ZAC'B 
is  an  exterior  angle  of  ABC'C,    ZAC'B  is  larger  thanZC.     What  happens 
toZABC?    It  gets  smaller.     Why?     Since  C   is  interior  toZABC, 

Axiom  F  tells  us  that  m(ZABC')  +  m(ZC'BC)  =  m(ZABC).     But,   by  Axiom 
D,   m(ZC'BC)  >  0.     So  [by  algebra- -see  Exercise  2(e)  on  page  6-42Z], 
ZABC    is  smaller  thanZABC.     Now,    since  ZC  s  ZABC,   it  follows  that 

ZAC'B  is  larger  thanZABC'.     So,    by  shortening  one  leg  of  an  isosceles 
triangle,    you  change  the  base  angles  in  such  a  way  that  the  one  opposite 
the  longer  leg  is  larger  than  the  one  opposite  the  shorter  leg. 

This  suggests  that  given  a  triangle  with  one  side  longer  than  the  other, 
you  can  tell  which  of  the  opposite  angles  is  the  larger  by  considering 
the  isosceles  triangle  from  which  the  given  triangle  was  generated. 

line  5.       [See  the  COMMENTARY  for  Exercise  6(c)  on  page  6-421.] 

line  9.      ZACB  is  an  exterior  angle  of  ABCD  andZD  is  one  of  the  angles 
opposite  it.     So,   by  Theorem  4-5,  ZACB  is  larger  thanZD, 

line  10,    The  base  angles  of  an  isosceles  triangle  are  congruent. 

line  8b.     [See  the  COMMENTARY    for  Exercise  6(c)  on  page  6-421.] 

line  7b,     Since  ZB  is  not  larger  than  ZC,   it  follows  from  Theorem  4-6 

[and  modus  toUens]  that  AC  is  not  longer  than  AB. 

line  5b,     If  AC  i>  AB  then  either  AC  =  AB  or  AC  <  AB.     But,   AC  i  AB, 
So,   AC  <  AB.     That  is,   AB  >  AC, 
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Answers  for  Part  A. 

1.    ZR;    ZM  2.     UB;    TB  3.     AR  <   CR 

4.     The  smallest  angle  of  AABC  is  ZBCA.      The  smallest  angle  of  ACDE 

is  LH.      Since  ZBCA  S  ZDCE  [by  Theorem  2-5],   it  follows  that  ZD 

is  smaller  than  ZBCA.      So,  ZD  is  the  smallest  of  the  six  angles  of 

AABC  and  ACDE. 

Answers  for  Part  B. 

1.  Since  ZACB  is  an  exterior  angle  of  AACD, 

it  follows  from  Theorem  4-5  that  ZACB 

is  larger  thanZD.      But,    by  Theorem  3-5, 

ZACB  S  ZB.      So,  ZB  is  larger  than  ZD. 

Hence,    by  Theorem  4-7,   AD  >  AB. 

Since  D  is  in  the  interior  of  ZBAC, 

^/>*C^^^  m(ZBAC)  =  m(ZA^)  +  mlZA^);    and, 

^^  ^'^'^^■^--^  since  A  is  in  the  interior  of  ZBDC, 

<^2   ~  IH-^^    m(ZBDC)  =  m(ZD^)  +  mlZD^).      Now, 

^'^.^  ̂ ^^^'^^'^^^  since  AB  <  BD  and  AC  <   CD,   it 
Cr\^  follows  from  Theorem  4-6  that 

m(ZA^)  >  m(ZD^)  and  mlZA^)  >  mlZD^).     So,    m(ZA^)  +  mlZA^)  > 

m(ZDj^)  +  mlZDg).      Hence,  ZBAC  is  larger  than  ZBDC. 

[An  interesting  variation  of  Exercise  2  arises  from  stipulating  that 

A  is  a  point  in  the  exterior  of  ZBDC  rather  than  in  the  interior.] 
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Answers  to  questions  in  the  text  on  page  6-119. 

line  10.    Suppose  m  and  n  are  two  lines  through  P  and  perpendicular  to  £, 

Let  the  two  points  of  intersection  with  i  be  M  and  N,   respec- 

tively.    Then,  PM  >  PN  and  PN  >  PM;    so,  by  algebra,  PM  >  PM. 

But,    PM  /  PM.      So,   there  cannot  be  two  lines  through  P  and 

perpendicular  to  Jt, 

line  8b,    PP'   intersects  i  because  P  and  P'   are  on  opposite  sides  of  i. 

line  7b.    If  R  e  QT  then  /PQT  =  ZPQR  and  ZP'QT  =  ZP'QR;   if  Q  €  RT  then 

ZPQT  is  a  supplement  of  ZPQR  and  ZP'QT  is  a  supplement  of 

ZP'QR.      In  either  case    [and,    since  R  /  Q,   there  is  no  other], 

ZPQT  S  ZP'QT  because  ZPQR  S  h  w  QR  =  ZP'QR. 

line  6b.    Theorem  2-6 line  2b.     QT line  lb.    RT 

Note  that  the  distance  between  a  point  and  a  line  i  has  been  defined  con- 

ditionally:    If  P  ̂   i  then  the  distance  between  P  and  I  is  PT  where  PT  is 

the  perpendicular  to  i  through  P  and  PT  r>  i  =  {T}.     It  is  natural  to  ask 
about  the  distance  between  P  and  i  if  P  €  i.     The  natural  extension  of  the 

definition  is  to  say  that  in  such  a  case  the  distance  is  0. 

o. 

Answers  for  Part  A   [which  begins  on  page  6-120]. 

1.     (a)    6  (b)    4;    8  (c)    0;    4  (d)    12;    10 

TC[6-119,  120] 



i 



Corrections. 

On  pag 

e  6- 

121 

,    line 

15 should read: 

[Choose  P    .so 
that  T €  pZ 

"
^
3
 

and^P 

iT 

=  TP3. 

Then  --- 
after On  page  6-122, 

'BISECTOR'. 

t 
line 

7, 

delete  the  period 

2.  (b)    We  assume  from  the  figure  that  the  perpendicular  to  BC  through 

A  intersects  BC.  The  nneasure  of  the  perpendicular  segment  is 

the  smallest  value  of  the  variable  quauitity  y.  So,  since  there  is 

a  perpendicular  segment  from  A  to  BC,   y  has  a  smallest  value. 

3.  (a)   4 

(b)    y(P^)  =y{P^) 

[See  the  COMMENTARY  for  Exercise  2  on  page  6-106.] 

Case  II 

-      ̂ 1      T    P3      P^ 

There  are  two  cases.     In  either  case,    see  the  COMMENTARY 

for  Exercise  1  of  Part  B  on  page  6-118  and  for  Exercise  7  on 

page  6-138.     In  each  case,   y(P2)  >  y(JPi)«     [Theorem  4-9  takes 

care  of  the  trivial  case  in  which  P^  =  T.] 

4.    4 

5.    Since  AC  >  AB,    it  follows  from  Theorem  4-6  that  ZB  is  larger  than  ZC. 

(a)    Yes.     ̂ [APC  is  an  exterior  angle  of  AABP;   so,   it  is  larger  than  ZB. 

Since  ZB  is  larger  than  ZC,  ZAPC  is  larger  than  ZC. 

(b)    Yes.     Theorem  4-7. 

\ 

6.    Yes.     By  the  same  argument  as  in  Exercise  5(a),   ZAPC  is  larger  than    'j 

ZB.     But,   ZB  ̂   ZC;   so,  ZAPC  is  larger  than  ZC.     Hence,    by  Theorem 

4-7,   AC  >  AP. 

i 
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is  isosceles  with  vertex  angle  at  A,     Consequently,    if  the  altitude 

of  AABC  from  A  is  the  angle  bisector  of  AABC  from  A  then  AABC 

is  isosceles  with  vertex  angle  at  A. 

3.      Suppose  that  AD  is  the  altitude  of  AABC  from  A  and  AD  is  the 

median  of  AABC  from  A.     Then,   AD  ±  BC  and  BD  =  DC.     Since 

Z.D^   and  ZDg  are  right  angles,   they  are  congruent.     Also,   AD  =  AD. 

So,    by  s.a.  s.,    it  follows  that  BAD  — *  CAD  is  a  congruence.     There- 

fore,   BA  =  CA.     So,   AABC  is  isosceles  with  vertex  angle  at  A. 

Consequently,    if  the  altitude  of  AABC  from  A  is  the  median  of  AABC 

from  A  then  AABC  is  isosceles  with  vertex  angle  at  A. 

TC[6-123]b 





The  assertion  in  the  bracket  at  the  top  of  page  6-123  is  proved  in  the 
COMMENTARY  for  page  6-109. 

o- 

'*'• Answers  for  Part  B. 

1.  Aa  Suppose  that  AB  =  AC  and  ZA^^  S  z/^.     Then, 

since  AD  =  AD,    it  follows  from  s.a.s.  that 

BAD  *—  CAD  is  a  congruence.     So,   ZD^  =  ZD^. 

Since  ZD     and  ZD     are  supplementary,   it  follows 

that  they  are  right  angles.     Now,    since  AD  is  a 
ii  u  ^ 

subset  of  the  interior  of  ZBAC,    and  since  ZA 

ajid  ZA-,  are  congruent,    it  follows  that  AD  is  a  subset  of  the  bisector 
■^  —*  < — > 

of  ZBAC.     So,   AD  is  the  angle  bisector  of  AABC  from  A.     Since  AD 
<-^>  —  ^  <■ — > 

is  the  perpendicular  to  BC  through  A,    and  since  AD  C  AD,    it  follows 

that  AD  is  the  altitude  of  AABC  from  A.     Consequently,   the  angle 

bisector  of  AABC  from  A  is  the  altitude  of  AABC  from  A. 

Now,    suppose  that  AB  =  AC  and  BD  =  DC.     Then,    since  AD  =  AD,    it 

follows  from  s.s.s.  that  BAD  ■•-*■  CAD  is  a  congruence.     So,   as  above, 
AD  is  the  altitude  of  AABC  fronrx  A.     Since  AD  is  the  median  of  AABC 

from  A,   it  follows  that  the  median  of  AABC  from  A  is  the  altitude  of 

AABC  from  A. 

So  [by  substitution],   the  angle  bisector,   the  median,    and  the  altitude 

of  an  isosceles  triangle  from  the  vertex  of  the  vertex  zmgle  are  the 

same  segment. 

Suppose  that  AD  is  the  altitude  of  AABC  from  A 

and  AD  is  the  angle  bisector  of  AABC  from  A. 

Then  AD  J.  BC  and  ZA^  S  ZA^.     Since  ZD^  and 

ZDg  are  right  angles,   they  are  congruent.     Also, 

AD  =  AD.     So,   by  a.  s.  a. ,    BAD  --»  CAD  is  a 

congruence.     Therefore,    BA  =  CA.     So,   AABCi 
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Corrections.     On  page  6-124,    line  7  should 
begin  'AC  =  A'C,   AB  =  A'B',    and  ---'. T 

Line  5b  should  read: 

we  conclude  that  C"  is  interior  to  ZBAC. V   > 

t 

Answers  for  Part   '^C. 

line  11 .    AB  is  not  longer  than  AC  if  and  only  if  AB  _<  AC,   and  AC  is 

not  longer  than  AB  if  and  only  if  AC  ̂   AB.      So,   these  two 

cases  are  the  only  ones  necessary  to  consider,    since 

y>c  ̂y  ̂  —  y  °^  y  —  ̂* 

1.  By  Axioms  D  and  E,   there  is  a  half -line  h  in  the  C-side  of  AB  with 

vertex  A  such  that  m(h  \^  AB)  =  m(ZA').     By  Axiom  C,  there  is  a 

point  C"    on  h  such  that  KC"  =  A'C'.     Since  C"  €  h,    C"  is  in  the 
C-side  of  AB. 

So,  ZC'AB  ^  ZA'   and  AC"  S  A/C',   and  since  AB  ̂   A/B' ,   it  fol- 

lows by  s.a.s,  that  ABC"  *-*  A'B'C    is  a  congruence. 

So,   there  exists  a  point  C"  in  the  C-side  of  AB  such  that 

ABC"  -^-  A'B'C  is  a  congruence. 

2.  If  C"  €  AC  then  m(ZC"AB)  =  m(ZCAB).  But,  m(ZCAB)  >  m{ZA')  = 

m(ZC"AB);    so,   m(ZC"AB)  ;^  m(ZCAB).      Hence,    C"  /  AC. 

3.  Since  m(ZCAB)  >  m(ZC"AB),  m(ZCAB)  +  m(ZCAC")  >  m{ZC"AB); 

so,  m(ZCAB)  +  m(ZCAC")  ^  m{ZC"AB).  Hence,  by  Axiom  F,  the 

point  C  is  not  interior  to  ZBAC". 

The  conclusion  in  Exercise  3  follows  from  the  results  of  Exercises  2 

and  3,   and  the  fact  that 

if  C  and  C"  are  on  the  same  side  of  AB  then  either  C"  e  AC 

or  C"   is  interior  to  ZBAC  or  C  is  interior  to  ZBAC". 
<  >  <  > 

To  establish  this  fact,  we  note  that,    since  A  f  B  and  C  ̂   AB,    B  ̂   AC. 

L 
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Also,    since  C"    is  on  the  C-side  of  AB,   it  follows  that  if  C"  f  AC  then 

C"  i  AC.      Consequently,   if  C"  i  AC  then  either  B  and  C"  are  on  the 

same  side  of  AC  or  B  and  C"  are  on  opposite  sides  of  AC.      Under  the 

first  alternative,    since  C     is  on  the  B-side  of  AC  and  on  the  C-side  of 

AB,   it  follows  that  C"  is  interior  to  ZBAC.      Under  the  second  alter- 

native,  we  have  C"   and  C  on  the  same  side  of  AB  and  B  and  C"  on 

opposite  sides  of  AC.     To  conclude  that,   in  this  case,    C  is  in  the  inte- 

rior  of  ZBAC",   we  need  to  deduce  that  B  and  C  are  on  the  same  side 

of  AC".     To  do  so,    choose  B'    so  that  A  €  B'B.     Then,   B'  and  B  are  on < — >  <-^ 

opposite  sides  of  AC"  and  on  opposite  sides  of  AC.     Since,   by  hypoth- 

esis,  B  and  C"  are  on  opposite  sides  of  AC,    it  follows  that  B'  and  C" 

are  on  the  same  side  of  AC,      But,   by  hypothesis,    C"  and  C  are  on  the 

same  side  of  AB'.      So,    C"   is  interior  to  ZB'AC.      Consequently,    by 

result  (2)  in  the  COMMENTARY  for  page  6-93,    B'  and  C  are  on  opposite < — > 

sides  of  AC".      Since,   as  noted  above,    B'  and  B  are  on  opposite  sides < — >  4-^ 

of  AC",    it  follows  that  B  and  C  are  on  the  same  side  of  AC", 

The  result  (2)  in  the  COMMENTARY  for  page  6-93  and  the  result 

obtained,  above,  in  treating  the  second  alternative  can  be  combined: 

If  C  and  D  are  on  the  same  side  of  AB 

then  B  and  C  are  on  opposite  sides  of 

AD  if  and  only  if  B  and  D  are  on  the 
< — > 

same  side  of  AC. 
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4.  As  in  the  case  of  the  angle  bisector  [see  note  at  top  of  page  6-123, 

and,    more  explicitly,    result  (3)  in  the  COMMENTARY  for  page  6-93], 

since  C"  is  interior  to  ZBAC,  BC  r\  AC"  consists  of  one  point. 

5.  By  Theorem  4-10,    since  AB  is  not  longer  than    AC,   AC  is  longer 

than  AD.      So,    since  AC"  =  AC,   AD  is  shorter  than  AC". 

6.    Since  D  e  AC"  and  AD  <  AC",   by  Theorem  1-5,    D  e  AC". 

7.    Since  D  €  C"A,   it  follows  from  Axiom  5  that  A  e  C"D.     Since  D  e  BC, 

D  is  interior  to  ZCC"B.      So  [see  result  (1)  of  the    COMMENTARY 

for  page  6-93],    C"D  is  a  subset  of  the  interior  of  ZCC"B.     Hence, 

A  belongs  to  the  interior  of  ZCC'B.     By  a  similar  argument,   B  is 

interior  toZACC". 

8.  Since  AC  =  AC",  it  follows  from  Theorem  3-5  that  Z AC C"  S  ZAC"C. 

9.  Exercise  7  and  Axioms  F  and  D. 

10.    Theorem  4-7.  11.    BC"  ̂   B'C',    and  Exercise  10. 

12,  Theorem.  If  two  triangles  agree  in  two  pairs  of  sides  but  not  in 

the  third  pair  of  sides  then  the  triangle  with  the  longer  third  side 

has  the  larger  angle  opposite  the  third  side. 

Proof.    Suppose  that,  in  A  ABC  and  AA'B'C,   AB  =  A'B',  AC  =  A'C', 

and  BC  >  B'C.     It  follows  that  ABC  — *  A'B'C  is  not  a  congruence 

and  so,    by  s.a.  s.,   that  m{ZA)  /  m(ZA').    So,  either  m(ZA)  >  m(ZA') 

or  nni(ZA')  >  m(ZA).     In  the  latter  case  it  follows,    by  Theorem  4-11, 

that  B'C  >  BC  and,    since  BC  >  B'C,   that  BC  >  BC.     But,  BC  ̂   BC. 

Hence,    m(ZA')  />  m(ZA).     Consequently,    m(ZA)  >   m(ZA'). 
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Answers  for  Part  A, 

1,  If  ZQ  andZQ'  are  acute  angles  then  m(ZQ)  +  m(ZQ')  <   180.     So,  ZQ 

andZQ'  are  not  supplementary,    and,   by  the  Sample,    we  conclude  that 

RPQ  -^  R'P'Q'  is  a  congruence. 

2,  [Similar  to  Exercise  1,] 

3,  If  ZP  is  a  right  angle  then,    since  ZP  =  ZP',    so  is  ZP'.     Hence,   by 

Theorem  4-4,  ZQ  and  ZQ'  are  acute  angles.     Consequently,    by  Exer- 

cise 1,  RPQ  ■•—  R'P'Q'  is  a  congruence. 

4,  [Similar  to  Exercise 3.] 

5,  [Similar  to  Exercise  3.] 

't- 

Another  condition  [you  might  make  this  Exercise  6]  which  leads  to  the 

conclusion  that  RPQ  *—  R'P'Q'   is  a  congruence  is  'RQ  >  PR'.     For, 

from  this  and  Theorem.  4-6,   it  follows  that  ZP  is  larger  thanZQ.    Hence, 

ZQ  is  an  acute  angle.     For,  if  ZQ  were  not  acute  it  would  follow  that  ZP 

was  not  acute,    and  that  APQR  would  have  two  nonacute  angles.     Since 

PR  =  P'R'  and  RQ  =  R'Q',   it  follows  from  the  assumption  that  RQ  >  PR, 

that  R'Q'  >  P'R'.     So,   in  a  similar  manner,  ZQ'  is  an  acute  angle. 

Consequently,    by  Exercise  1,   RPQ  ■•—  R'P'Q'  is  a  congruence. 

This  result  yields  the  following  theorem  [see  Part  E  on  page  6-97]: 

If,   for  some  matching  of  the  vertices  of  one  triangle  with 

those  of  a  second,   two  pairs  of  corresponding  sides  are 

congruent,   and  the  angles  opposite  the  members  of  the 

pair  of  longer  sides  are  congruent,   then  the  matching  is 

a  congruence. 

■TC[6-128,  129]a 





Notice  that  Theorem  4-14  on  page  6-1Z9  follows  from  the  theorem  just 

proved  and  Theorems  4-7  and  4-4.      For,   if  ZP  is  not  acute  then,   by 

Theorem  4-4,   m(ZP)  >   m(ZQ)  and,   by  Theorem  4-7,   RQ  >   PR.     So,   by 

the  theorem  just  proved,   RQP  — *  R'P'Q'  is  a  congruence. 

After  discussing  the  exercises  of  Part  A,   it  may  be  helpful  to  discuss 

again  Parts  C,    D,   and  E  of  Exploration  Exercises  on  pages  6-96  and 

6-97.     As  mentioned  on  page  TC[6-96,  97],    Part  C  suggests  Theorem 

4-14,    Part  D  suggests  Theorem  4-13,    and  Part  E  suggests  the  theorem 

proved  above. 

Here  is  an  exercise  which  your  class  might  discuss  in  order  to  eluci- 

date Theorem  4-13. 

A  Hypothesis:     AB  =  AC, 

CE  =  BD  >  BC 

I Conclusion:     EB  =  DC 

Solution.     In  AEBC  and  ADCB,   BC  =  CB,    CE  =  BD  and,   by  Theorem 

3-5,  since    AB  =  AC,  ZEBC  S  ZDCB.      So,   we  can  use  Theorem  4-13 

to  show  that  EBC  -—   DCB  is  a  congruence  and,   hence,  that  EB  =  DC, 
if  we  can  show  that  ZBEC  and  ZCDB  are  either  both  acute  or  both 

obtuse.     Now,    since  BD  >  BC,   it  follows  from  Theorem  4-6  that  ZDCB 

is  larger  than  ZCDB.     But,  ZDCB  is  acute,   for,   if  it  were  not,   AABC 

would  have  two  nonacute  angles.     Hence,  ZCDB  is  acute.     Similarly, 

ZBEC  is  acute.     So,    by  Theorem  4-13,    EBC  ——   DCB  is  a  congruence, 
and  EB  =  DC. 
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When  first  suggesting  this  exercise  to  your  students,    omit  the  part 

'>  BC  of  the  hypothesis,   and  elicit  from  them  the  content  of  the  first 
two  sentences  of  the  preceding  solution.     Have  students  attempt  to  show 

thatZBEC  andZCDB  are,   as  the  figure  suggests,   both  acute.     Then, 

draw  another  figure,    say,   the  one  below,   in  which  the  two  angles  are 

both  obtuse,   noting  that,   by  Theorem 

4-7,   this  can  happen  only  if  CE  and  BD 

are  shorter  than  BC.     Now,   ask  whether 

there  is  another  point,    D',    on  AC  such 

that  BD'  =  BD.     [Of  course,   the  point 

D'  e  AC  such  that  the  foot  of  the  altitude 

to  AC  is  the  midpoint  of  DD'  is  such  a 

point.]    Draw  BD',    and  point  out  that 

CE  =  BD'  but  EB  /  D'C.     So,   the  con- 

clusion of  the  exercise  does  not  follow  from  the  hypothesis.     Can  we 

strengthen  the  hypothesis  so  that  the  conclusion  will  follow?    It  should, • — •  • — • 
now,   be  easy  to  elicit  the  information  that  if  BD  is  longer  than  BC  then, 

by  Theorem  4-6,  ZDCB  is  larger  thanZCDB.      So  [see  Solution],  ZCDB 

is  acute.      Hence,   adding  the  part  '>  BC  to  the  hypothesis  is  sufficient 
to  guarantee  the  desired  conclusion. 

This  should  be  a  good  point  at  which  to  bring  in  the  discussion  suggested 

on  TC[6-128,  129]a.     The  proof  of  the  theorem  given  at  the  foot  of  that 

page  of  the  COMMENTARY  duplicates  the  last  part  of  the  Solution  of  the 

exercise,    and  the  exercise  serves  as  motivation  for  stating  and  proving 

the  theorem  in  question.     Once  this  is  done,  the  Solution  of  the  exercise 

can  be  shortened.     All  we  need  is  the  first  sentence  of  the  given  Solution 

and  a  second  sentence:     Since,   by  hypothesis,    CE  and  BD  are  longer 

than  BC  and  CB,   it  follows,   by  the  theorem  of  TC[6-128,  129]a,  that 

EBC  — —   DCB  is  a  congruence  and,   hence,  that  EB  =  DC. 
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Answers  for  Part  B. 

1.  Since  AC  =  AD,    ZADC  S  ZACD.     By  Theorem  4-2,   each  of  these 

angles  is  acute.     So,   since  a  supplement  of  an  acute  angle  is  not 

acute,  ZADE  and  ZACB  are  not  acute.     Also,   since  ZADC  S  ZACD, 

ZADE  S  ZACB.     So,  in  the  triangles  AADE  and  AACB,  AE  =  AB, 

AD  =  AC,   and  the  angles  opposite  AE  and  AB  are  congruent  and  not 

acute.     Hence,   by  Theorem  4-14,  AED  -•-*•  ABC  is  a  congruence. 

So,  ED  =  BC. 

2.  In  the  triangles  AACB  and  ADCE,  AB  =  D£,  AC  =  DC,   and  the  angles 

opposite  AB  and  DE  are  right  angles.     So,  they  are  congruent  and 

oot  acute.     Hence,   by  Theorem  4-14,   ACB   ——   DCE  is  a  congruence. 

So,    CB  =  CE,    and  by  definition,   ABCE  is  isosceles. 

3.  In  the  triangles  AACD  and  AACB,  AC  =  AC  and  CD  =  CB,   and  the 

angles  opposite  AC  are  ZD  andZB,   respectively.      But,   these  are 

right  angles.     Hence,   they  are  congruent  and  not  acute.      So,    by 

Theorem  4-14,   ACD  —   ACB  is  a  congruence,    andZDAC  ^  ZBAC. 

*4.     Since  BA  =  BC,  ZA  S  Z  C,   and  BD  =  BD,   it  follows  from  the  Sample 

on  page  6-128  that  if  ZBDA  andZDBC  are  not  supplementary  then 

BAD  -—   BCD  is  a  congruence.      But,    by  hypothesis,   BAD  — •  BCD 

is  not  a  congruence.     So,  ZBDA  andZBDC  are  supplementary.     But, 

they  are  adjacent  angles.      So,   A,    D,   and  C  are  collinear. 
•J, 

[A  right  triangle  can  be  isosceles.     In  that  case,   the  right  angle  is  the 

vertex  angle.  ] 
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Answers  for  Part  D  [on  page  6-131], 

1.  ^  ^,  Suppose  that  AC  and  A'C' 
are  hypotenuses  of  the  right 

triangles  AABC  andAA'B'C, 
respectively.     Further, 

suppose  that  AC  =  A'C  and 

AB  =  A'B'.      Now,    by  the  definition  of  hypotenuse,  ZB  andZB'  are 

right  angles.      Hence,   they  are  congruent  and  not  acute.     So,    by 

Theorem  4-14,    ABC  — *  A'B'C   is  a  congruence.      Therefore,   if 

AC  and  A'C'  are  congruent  hypotenuses  of  the  right  triangles  AABC 

andAA'B'C',   and  AB  and  A'B'  are  congruent  legs,  then 

ABC  ••—   A'B'C   is  a  congruence, 

Z.     If  the  hypotenuse  of  a  first  right  triangle  is  congruent  to  a  leg  of  a 
second  then,   by  Exercise  1  of  Part  C,   the  hypotenuse  of  the  second 
triangle  is  longer  than  each  side  of  the  first.     So,   there  can  exist  no 
matching  of  the  vertices  of  the  triangles  for  which  the  hypotenuse  of 
the  second  triangle  and  a  side  of  the  first  are  congruent  corresponding 
parts.      Hence,   the  two  right  triangles  are  not  congruent, 

A  -^ 
3,  y\  AACE  is  right-angled  at  E.      So,   AC  is  its 

hypotenuse  and  CE  is  one  of  its  legs. 

Similarly,   AB  is  the  hypotenuse  and  BD  is 

a  leg  of  AABD.      So,    since  AC  ̂   AB  and 

CE  S   BD,   it  follows  from  Theorem  4-15 
B  C 

that  ACE   ——  ABD  is  a  congruence, 

[That  the  altitudes  to  the  legs  of  an  isosceles  triangle  are  congruent 
is  Exercise  2  of  Part  E  on  page  6-134.] 

I 

I 

J 
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Correction.     On  page  6-132,   line  2  shoxild read: 

  in  the  interior  of  an  angle  and 

The  right  triangles  pictured  at  the  top  of  page  6-131  are  AEAB,    AEBC, 

AECD,    AEDA,    AABC,    ABCD,    ACDA,    ADAB;     AFGH,    AFHI,    AFGI. 

Answers  for  Part  C. 

1.  Suppose  that,   in  right  triangle   AABC,   AB  is  the  hypotenuse.     Then, 

ZC  is  a  right  angle,    and,   by  Theorem  4-4,    ZA  and  ZB  are  acute 

angles.     So,   since  ZC  is  larger  than  Z A  andZB,   it  follows  from 

Theorem  4-7  that  AB  is  longer  than  BC  and  AC.      Hence,   if  AB  is 

the  hypotenuse  of  the  right  triangle  AABC,  AB  is  longer  than  BC 

and  AC. 

[A  set  of  concurrent  lines  is  a  set  of  lines  which  intersect  in  a  single 

point.     Similarly,   a  set  of  concurrent  segments  is  a  set  of  segments 

which  intersect  in  a  single  point]. 

^, 

2.  The  vertex  of  the  right  angle  of  a  right  triangle  is  the  foot  of  each 

of  the  altitudes  from  the  vertices  of  the  acute  angles.     It  is  also  one 

end  point  of  the  altitude  to  the  hypotenuse.     So,  the  point  of  concur- 

rence of  the  three  altitudes  of  a  right  triangle  is  the  vertex  of  the 

right  angle. 

3.  Each  exterior  angle  of  a  triangle  is  a  supplennent  of  the  angle  of  the 

triangle  which  is  not  opposite  the  exterior  angle.      So,   for  a  right 

triangle,    each  exterior  angle  is  a  supplement  of  either  a  right  angle 

or  an  acute  angle.     Hence,    each  exterior  angle  is  either  a  right 

angle  or  an  obtuse  angle. 
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Correction.     On  page  6-133,    line  6  should 
begin: 

BA,    and,   by  Theorem  1-6,  A  e  BA", T 

The  last  sentence  in  the  first  paragraph  might  be  clearer  if  it  were 

rewritten  as :      Hence,    ZA"  =  LA',    and,    since,   by  hypothesis, 

ZCAB  ^  ZA',    ZCAB  ^  ZA". 

The  second  paragraph  contains  a  nice  example  of  the  use  of  modus 

tollens  and  double  denial.     We  show  that  if  B'A'  is  longer  than  BA  then 

ZCAB  ̂   ZA".      But,    in  the  preceding  paragraph,    we  show  that 

ZCAB  S  ZA",   that  is,  that  it  is  not  the  case  that  ZCAB  ̂   ZA".     So, 

applying  modus  tollens,  we  conclude  that  B'A'  is  not  longer  than  BA, 

The  'Similarly'  in  the  third  paragraph  nnay  need  expanding.     If  we  sup- 

pose that  BA  is  longer  than  B'A'  then,    by  Theorem  1-5,   A"  e  BA.     In 

this  case,  ZCA"B  is  an  exterior  angle  of  ACA"A;    so,  ZCAB  ̂   ZCA"B. •— ♦  • — • 
Hence,   BA  is  not  longer  than  B'A'. 

Note  in  Theorem  4-17  the  phrase  'interior  to  the  angle'.     If  [as  we  have 

said  in  line  3  on  page  6-132]  the  distance  between  a  point  and  a  side  of 

an  angle  [that  is,    a  ray]  is  the  distance  between  the  point  and  the  line 

containing  the  side,   the  point  can  be  equidistant  from  the  sides  of  an 

angle  and  not  belong  to  the  angle  bisector. 

I 

bisector 
of  ZBAC 

[See  Part  D  on  page  6-134.] 
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Answer  for  Part  A   [on  page  6-133], 

C  y\C'   Suppose  that  ZB  andZB'  are  right 
angles,   that  the  hypotenuses  AC 

and  A'C'  are  congruent,   and  that 

B'    /A  =  ZA'.      Now,    consider  the  nnatch- 

ing  ABC  —   A'B'C.      Since  ZB  S  ZB',    ZA  ̂   ZA',    and  the  sides  opposite 

ZB  andZB'  are  congruent,    it  follows  from  Theorem  4-16  that  this 
matching  is  a  congruence. 

Now,    suppose  that  the  legs  BC  and  B'C'  are  congruent  and  the  acute 

angles  ZA  andZA'  are  congruent.      Since  ZA  =  ZA',    ZB  =  ZB',    and  the 

sides  opposite  ZA  and  ZA'    are  congruent,    it  follows  from  Theorem 

4-16  that  ABC   — -  A'B'C  is  a  congruence. 

Answers  for  Part  B. 

1.  Since  P  belongs  to  the  bisector  BD  of  ZABC,    it  follows  from 

Theorem  4-17  that  PH  =  PF.     Similarly,    PH  =  PC.     So,    PH  =  PF  = 

PG.      That  is,    P  is  equidistant  fronn  the  sides  of  A  ABC.     [In  this 

context,   we  are  defining  the  distance  between  a  point  and  a  segment 

to  be  the  distance  between  the  point  and  the  line  containing  the  seg- 

ment, ] 

2.  Since  PF  =  PG  and  P  is  in  the  interior  of  ZCAB  [because  it  is  in 

the  interior  of  the  triangle  and  the  interior  of  the  triangle  is  the 

intersection  of  the  interiors  of  its  angles],    it  follows  from  Theo- 

rem 4-17  that  P  belongs  to  the  bisector  of  ZCAB, 
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Answer  for  Part  C, 

Suppose  that  lines  S.  and  m  are  the  perpendicular  bisectors  of  sides  AB 

and  BC,   respectively,   of  AABC,   and  suppose  that  P  is  the  point  of 

intersection  of  i  and  m.      By  Theorem  3-3,    PA  =  PB  and  PB  =  PC.     So, 

PA  =  PC,     Therefore,   by  Theorem  3-3,   P  is  a  point  on  the  perpendicu- 

lar bisector  of  AC,     Hence,    P  is  the  point  of  intersection  of  all  three 

perpendicular  bisectors  of  the  sides  of  AABC.     [A.s  an  application  of 

this  theorem,  ask  students  to  locate  the  center  of  a  circle  which  con- 

tains the  vertices  of  a  given  triangle.     See  page  6-282.] 

'f 

Recall  that  the  result  needed  in  Part  B,  that  two  angle  bisectors  of  a 

triangle  intersect  at  a  point  interior  to  the  triangle,   can  be  derived 

from  the  Introduction  Axioms,     [See  the  COMMENTARY  on  Part  B  on 

page  6-109.]    In  contrast,   the  proof  that  the  perpendicular  bisectors 

of  two  sides  of  a  triangle  intersect  depends  on  properties  of  parallel 

lines  which,   in  turn,   depend  on  some  of  our  measure  axioms. 

Answer  for  Part  D. 

The  set  of  points  which  are  equi- 
distant from  i  and  m  is  the  union 

of  the  line  containing  the  bisector 

of  ZAPB  and  the  perpendicular  to 

this  line  through  P. 

[See  Part  C  on  page  6-110.] 
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Answers  for  Part  *E. 

1,     ̂   ^f  Suppose  that  ABC  — '  A'B'C  is  a 

congruence.     Then,  medians  AD  and 

A'D'  are  corresponding  medians. 

B  D       C         B'  D'     C         Since  ABC -I— A'B'C  is  a  congruence, 

AB  =  A'B',  ZB  ̂   ZB',   and  BC  =  B'C.     Since  D  and  D'  are  midpoints 

of  BC  and  B^',   respectively,   it  follows  that  BD  =  B'D'.     So,   by 

s.  a.  s. ,   ABD  ■— *  A'B'D'  is  a  congruence,    and  AD  =  A'D'. 

Now,  suppose  that  AD  and  A'D'  are  corresponding  angle  bisectors. 

Since  ZB  S  ZB',  BA  =  B'A',  and  Z BAD  S  ZB'A'D',  it  follows  from 

a.  s.a.  that  BAD  — *  B'A'D'  is  a  congruence.     So,   AD  =  A'D'. 

Finally,    suppose  AD  and  A'D'  are  corresponding  altitudes.     Now, 

either  ZB  and  ZB'  are  obtuse  or  not  obtuse.     If  they  are  obtuse,  B  e  DC —  -»  • — > 
and  B'  e  D'C.     If  they  are  not  obtuse,    D  e  BC  and  D'  €  B'C.     Con  - 

sider  the  first  case.      Since  ZABC  S  ZA'B'C,    ZABD  S  ZA'B'D' 

because  supplements  of  congruent  angles  are  congruent.     Also,   the 

right  angles  ZD  and  £D'  are  congruent.     Since  the  sides  of  AADB  and 

AA'D'B'  opposite  ZD  andZD'  are  congruent  [ABC  — *  A'B'C  is  a  con- 

gruence],  it  follows  from  a.  a.s,  that  ADB  — *  A'D'B'  is  a  congruence. 

So,   AD  =  A'D'.     Now,    consider  the  case  in  which  D  e  BC  and  D'  e  B'C. 

If  D  =  B  then  m(ZB)  =  90  =  m{ZB');    so,    D'  =  B'  and  AD  =  A'D'.     If — >  — > 
D  e  BC  then  D'  e  B'C  and  ABD  — -  A'B'D'  is  a  congruence  by  a. a.s. 

Hence,  AD  =  A'D'. 

2. 

D  C 

E  B 

ZAEC  s  ZADB,    ZA  s  ZA,   and 

AC  =  AB.      So,    by  a.  a.  s. , 

AEC  -*-♦  ADB  is  a  congruence. 

Hence,    CE  =  BD. 
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Answers  for  Miscellaneous  Exercises  [on  pages  6-137  and  6-138], 

1.  m{ZQ)  <  60 

2.  XZ  is  between  5  and  13 

3.  [Since  ZBj^   and  ZB^  are  supplementary  and  ZB^^  is  larger  than  ZBg, 

it  follows  that  ZB^  is  obtuse.] 

IB^  is  larger  thanZM,  ZR3,  ZRj^,  IS,    ZN; 

ZR^  S  ZRg  and  larger  than  ZT 3,    ZT^,    ZS,    ZN,    ZM,    ZBg; 

ZTg  S  ZT^  and  larger  than  ZS,    ZR^,    ZR3; 

ZTj^  S  ZT 3  and  larger  than  ZM,    ZN; 

ZB     is  larger  than  ZS,    ZN; 

ZR,  S  ZR^ 

4. 
Since  D  e  BC,  ZDg  is  an  exterior 

angle  of  AABD.     So,    ZDg  is  larger 

than  ZA^.      But,  ZA^^  S  ZAg.      So, 

ZDg  is  larger  thanZA^.     Therefore, 

AC  >   CD.      Similarly,   AB  >  BD. 

5.  (a)  ZQPM,  ZQMP,  ZONQ,  ZNOQ 

(b)  ZQOP,  ZQPO,  ZQNM,  ZNMQ 

(c)  MN  >  OQ   [Theorem  4-11] 

6,  Suppose  that  ZA  and  ZB  are  the  base  angles  of  an  isosceles  triangle. 

Then,    by  Theorem  3-5,    m(ZA)  =  m{ZB),    and,   by  Theorem  4-2, 

m(ZA)  +  m(ZB)  <   180.     So,   m(ZA)  <  90.     Hence,  ZA  is  acute.     Simi- 

larly, ZB  is  acute.     Consequently,   if  ZA  and  ZB  are  the  base  angles 

of  an  isosceles  triangle,  ZA  and  ZB  are  acute. 
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7.     By  Axiom  C,   there  is  a  point  P  €  TC  such  that  TP  =  TA.      Since 

TA  <  TC,    TP  <  TC.      So,   by  Theorem  1-5,   P  €  TC.      Now,   since 

BT  is  the  altitude  and  median  from  B  of  AABP,   it  follows  from 

Theorem  4-12(b)  that  AABP  is  isosceles  with  ZABP  as  vertex  angle. 

Hence,    by  Theorem  3-5,  ZBPA  S  ZBAP.      Since  P  e  TC,    ZBPA  is 

an  exterior  angle  of  ABPC.      So,    by  Theorem  4-5,  ZBPA  is  larger 

than  Z  C.      Hence,  ZBAC  is  larger  than  ZC.      So,    by  Theorem  4-7, 

BC  >  AB. 

Ox 

8.  Since  BD  =  BD  and  CB  =  AB,   it  follows  from  h.l.  that  BDC   *-<-   BDA 
is  a  congruence.      So,    DC  =  AD, 

9.  Since  the  hypotenuse  is  the  longest  side,    its  measure  is  50, 

Quiz. 

1.  X*-*  Is  there  a  point  P  on  line  AB  such 

that  B  e  AP  and  m(ZCPB)  =  50  ? 

Justify  your  answer. 

2.     If  AABC  is  an  obtuse  isosceles  triangle  with  vertex  angle  at  B  then 
ZA  cannot  be  an  angle  of      ? 

(A)    20' 
(B)     32' (C)     39.9' 

(D)    44.8' 

(E)    45' 
3.  In  AABC,   AB  =  2.  5,    BC  =  7.  5,    and   CA  =  5.  5.      Name  the  largest 

angle  of  AABC. 

4.  Prove  that  an  altitude  of  a  triangle  is  shorter  than  two  of  the  sides. 

Hypothesis:    ZDBC  and  ZACB  are 
right  angles, 

AB  =  CD 

Conclusion:     ZA  S  ID 
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■^6.     Suppose  that  AABE  is  isosceles  and  that  C  and  D  are  points  on  the 
base  BE  such  that  D  €  CE  and  BC  =  CD  =  DE.    Do  you  think  the  angles 

ZBAC,  ZCAD,    and  Z DAE  are  congruent?     Prove  your  conjecture. 

'I- 

Answers  for    Quiz. 

1,  No.     If  there  were  such  a  point  P  thenZABC  would  be  an  exterior 

angle  of  ABCP  and  m(ZCPB)  would  be  less  than  50.     [Students  might 

also  note  that  m(ZCBP)  would  be  130  and  then  use  Theorem  4-2  or 

Theorem  4-3.  ] 

2.  (E)    45" 

3.    ZA 

4.  Suppose  that  AD  is  the  altitude  of  A  ABC  from  A.     Then,  by  Theorem 

4-9,   AD  is  shorter  than  AB  and  AC. 

5.  By  hypothesis  [and  definition],   AB  and  CD  are  the  hypotenuses  of  the 

right  triangles  AABC  and  ADCB,    respectively.     Also,   BC  =  BC. 

So,   by  h.i.  ,   ABC  -—  DCB  is  a  congruence.      Hence,  ZA  s  ZD. 

^6. 

B        C       D        E 

AC  is  the  nnedian  of  AABD  from  A.      So, 

by  Theorem  4- 12(b),    if  AC  is  the  angle 

bisector  of  AABD  from  A  then  AB  =  AD. 

But,  ZADB  is  an  exterior  angle  of  AADE; 

so,    ZADB  is  larger  than  ZE.      Since 

AB  =  AE,    ZE  ̂   ZB.      So,  ZADB  ̂   ZB. 

Hence,  AB  /  AD.     Therefore,  AC  is  not 

the  angle  bisector  of  AABD  from  A.     So, 

ZBAC  ̂   ZCAD. 

TC[6-138]b 





i 



Note  that,   although,   using  Axioms  D  and  E,   we  can  also  show  that  there 

is  only  one  line  through  P  for  which  [see  figure  at  foot  of  page  6-139] 

a  =  p,   this  does  not,   in  itself,    establish  the  uniqueness  of  the  parallel 

to  i  through  P.     The  argument  shows  only  that,   for  lines  through  P  which 

are  not  parallel  to  £.,   alternate  interior  angles  are  not  congruent.     But, 

it  does  not  preclude  the  possibility  that  there  may  also  be  lines  through 

P  which  are  parallel  to  Jt  and  for  which  alternate  interior  angles  are  not 

congruent.      So,   the  argument  based  on  Axioms  D  and  E  shows  that  the 

line  through  P  for  which  a  =  p  is  a^  parallel  to  i.      Axiom  4  is  needed  to 

show  that  there  is  no  other  parallel  to  i  through  P. 

The  omission  of  Axiom  4  would  allow  interpretations  in  which,   for  each 

line  i,    and  for  each  point  P  ̂   i,   there  is  more  than  one  line  through  P 

which  does  not  intersect  i.     [Thus  showing  that  Axiom  4  cannot  be  derived 

from  the  other  axioms.]    A  somewhat  more  radical  revision  of  the 

axioms  would  allow  interpretations  in  which  each  two  lines  intersect  in 

a  single  point  [but  in  which  a  substantial  number  of  Euclidean  theorems 

still  hold].     These  noneuclidean  interpretations  are  models  of  two  kinds 

of  noneuclidean  geometry,   hyperbolic  geometry  and  elliptic  geometry, 

respectively.      The  first  of  these  was  developed  during  the  first  half  of 

the  19th  century  by  a  Russian,    Lobachevsky,    a  Hungarian,   Bolyai,   and 

a  Gernnan,   Gauss.      The  second  was  developed  by  another  German  mathe- 

matician,  Riemann.     Although  these  geometries  are  of  great  interest, 

both  for  their  own  sakes  and  as  examples  of  the  development  of  mathe- 

matical thought,   it  seems  inappropriate  to  discuss  them  in  this  course. 

An  adequate  discussion  from  either  of  the  points  of  view  just  mentioned 

would  be  too  lengthy- -an  inadequate  one  would  be  likely  to  create  con- 

fusion.    [At  the  very  least,    we  would  have  to  make  one  Glox-type  visit 

for  each  interpretation.  ] 
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Correction.     On  page  6-139,    in  the  figure 

at  the  bottom  of  the  page,    insert  an  'i* 
<r—> below  the  right  end  of  AC. 

There  are  two  competing  uses  of  the  word  *paraller.     According  to  one 
[the  one  adopted  in  the  text],   a  line  i  is  parallel  to  a  line  m  if  and  only  if 

£  r\  m  =  0.     According  to  the  other  case,   i  is  parallel  to  m  if  and  only  if 

either  i/^m  =  0ori  =  m.     This  second  use  has  considerable  technical 

advantage  over  the  first.     For  example,   using  'parallel'  in  this  sense, 
parallelism  is  transitive:  if  i  is  parallel  to  m  and  m  is  parallel  to  n  then 

i  is  parallel  to  n  [with  the  first  use,   the  consequent  must  be  replaced  by 

'£.  is  parallel  to  n  or  i  =  n'].      Also,   in  the  second  sense,    such  definite 

descriptions  as  'the  line  parallel  to  i  through  P'  are  always  meaningful, 
but,   with  the  first  use,   we  must  first  establish  that  a  point  is  not  on  a 

line  before  we  may  speak  of  the  line  through  this  point  and  parallel  to  the 

given  line. 

Despite  these  advantages,   we  have  adopted  the  first  use  of  'parallel'  as 
being  more  in  accord  with  common  speech. 

For  handy  reference,   here  is  a  proof  of  Theorem  3: 

Suppose  that  P  ̂   i,   that  P  e  m  r\  n,  that  m   j  |  i,  and  that  n   j  |  i. 

By  Axiom  4,   if  m  /  n  then  m   j  j  n.     But,  since  P  e  m  r\  n,   m  j^  n. 

Hence,   m  =  n.     So,  if  P  ̂   i,  there  are  not  two  lines  which  contain 

P  and  are  parallel  to  i--that  is,   there  is  at  most  one  line  which 

contains  P  and  is  parallel  to  i. 

5*' 

The  proof  in  the  text,  that,   through  a  point  P  ̂   i,  there  is  at  least  one 

parallel  to  H,   amounts  to  showing  that  if  P  e  m  and  mj^i  then  a  pair  of 

alternate  interior  angles  [see  page  6-142]  are  not  congruent.     So,   if 

Pern  and  a  pair  of  alternate  interior  angles  are  congruent  them  m    |  j  i. 

Axionns  D  and  E  guarantee  the  existence  of  such  a  line  m.      So,   among 

the  lines  through  P,   there  is  at  least  one  which  is  parallel  to  i. 
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Answer  for  Part  A. 

[Part  A  makes  use  of  a  theorem  which  was  proved  on  pages  6-139  and 

6-140  but  which  is  first  stated  on  page  6-144  as  Theorenn  5-2.] 

Since  p  =  60,   it  follows  that  m^Q    J  j  i.      So,   m^Q  r^  jC  =  0.      Hence, 

since,    also,    P  e  n^^o  i^^^  ̂   i  ̂'   ̂^  follows  from  Theorem  5-1  that 

m^Q  is  parallel  to  i  through  P.     Since,  by  Axiom  E,   m^g  g  /  "i^o' 

P^  m^g.g  or  m^g.g  r^  l  ̂  ̂  . 

.gg_g  is  not  parallel  to  i  through  P.      So,    by  Theorem  5-1,    either 

^  m. 
intersects  i. 

Since  P  €  m^g^g,   it  follows  that  ni^g   g 

[More  briefly:     Since  p  =  60,   it  follows  that  m^Q    J  |    i.      Since  P  e  m^o 

and  P  /  i,   it  follows  from  Theorem  3  that  no  other  line  through  P  is 

parallel  to  i.      But,    Pcm^g   g    and,    by  Axiom  E,   m^g^    /   "^60*     Hence, 

mgg   g  y( H.      Consequently,   m^g   g  intersects  i.  ] 

Answer  for  Part  B. 

The  line  RP  is  parallel  to  i  and  contains  P.      So,   by  Theorem  5-1,   RP 

is  the  line  m^Q  of  Part  A.      Therefore,   R  is  any  point  of  tn^Q  on  the  A- 
side  of  PC. 

Answers  for  Part  C. 

(a)     60 

(f)      130 

(k)    60 

(b)  130 

(g)  120 
(St)     110 

(c)    60 

(h)    70 

(d)    50 
(i)     180 

(e)    60 (j)     110  j 
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The  careful  descriptions  of  the  various  pairs  of  angles  associated  with 
two  lines  and  a  transversal  are  given  to  show  students  that  it  is  not 
necessary  to  point  to  a  picture  in  order  to  describe  these  pairs  of  angles, 
But,   such  descriptions  should  not  be  memorized  or  belabored. 

Answers  for  Part  A. 

(1) 

ZA^ andZB^, 

ZA3 

andZBj^, 

^c^ 

andZD^, 

^^3 

andZD^ 

(2) 

^A, andZBj^, 

ZA, 

andZBg, 

ZA3 

andZBg, 

^K 

andZB^, 

^c. andZDg, 

^^3 

andZDg, 

^c. 

andZDj^, 

^C, 

and  ID^ 

(3) 

ZB^ 
and  ZA^, 

^^3 

and  ZA^, 

^c. 

andZDg, 

^c. 

andZDg 

(4) 

ZA3 andZB^, 

^^3 

and  ZB^, 

^^^ 

andZD^, 

ZC3 

andZD^ 

(5) 

ZA, 
andZBg, 

^^4 

andZBg, 

^c. 

and  ZD  3, 

^c. 

andZD^ 

(6) 

ZA, and  ZAg, 

ZA3 

and  Z  A3, 

ZA3 

andZA^, 

^A, 

andZAj^, 

^^. 
andZBg, 

^^2 

andZBg, 

^^3 

and  ZB^, 

^B, 

andZBj^, 

^c. andZCg, 

ZC3 

and  ZCg, 

^^3 

andZC^, 

^c^ 

andZC^, 

^^x 
andZDg, 

^^2 

andZDg, 

^^3 

and  ZD4, 

^D, 

and  ZDj^ 

(7) 

^^1 and  ZAg, 

^^2 

andZA^, 

^^1 

andZBg, 

^B^ 

andZB^, 

^^1 
andZCg, 

ZC^ 

and  ZC^, 

^^^ 

* 

andZD3, 

^^2 

and  ZD_^ 

By  now,    some  of  your  students  may  have  invented  the  following 

"nnnemonic"  devices  for  picking  out  a  pair  of  alternate  interior  angles 
and  a  pair  of  corresponding  angles: 
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Correction.     On  page  6-145,   line  17  should read: 

(9)    ---    [(6),   (7),   and  (8)] 

T 

Answer  for  Part  B. 

By  hypothesis,   BC    |  |  AD  and  ZA^  andZBg  are  alternate  interior  angles; 

so,    by  Theorem  5-3,  ZA^  ̂   ZB^.      But,  ZB^^  andZB^  are  adjacent  angles 

whose  noncomnnon  sides  are  coUinear;    so,   by  Theorem  2-9,   they  are 

supplementary.      Hence,  ZB^^  and  ZA^  are  supplementary. •J, 

Theorems  5-2  and  5-4  give  us  two  ways  of  showing  that  lines  are  parallel, 

and  Theorems  5-3  and  6-5  tell  us  two  of  the  things  that  follow  from 

assuming  that  the  lines  are  parallel.     Schematically: 

if 
(1)  alt.  int.  Zs  are  s 

(2)  cons.   int.  Zs  are  supp. 
then  lines  are 

if lines  are then 
r  (1)    alt.   int.  Zs  are  s 

1^  (2)    cons.   int.  Zs  are  supp. 

In  Part  C  the  student  is  asked  to  discover,    state,   and  prove  another  pair 

of  theorems  about  corresponding  angles  and  parallel  lines.     These  new 

theorems  should  be  added  to  the  scheme  shown  above. 
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Correction.     On  page  6-146,    line  8  should 
read: 

  to  Theorems  5-2  and  5-4.     Then, 
T 

Answers  for  Part  C. 

[Theorems  5-6  and  5-7  are  stated  on  page  6-158.] 

1. 
B/1 Hypothesis  :     ZB^  andZA^  are  congruent 

corresponding  angles 

Solution. 

D 
Conclusion:     BC    |  |  AD 

<— > 

By  hypothesis,  ZB^^  =  ZA^.  Since  BC  and  BA  are  straight  lines, 

the  vertical  angles  ZB^  andZBg  are  congruent.  So,  ZBg  ~  ZA^. 

But,  fronn  the  figure,  ZB„  andZA  are  alternate  interior  angles. 

So,   by  Theorem  5-2,   BC         AD. 

[Same  figure  as  in 
Exercise  1.] 

Hypothesis  :     BC    j  |  AD, 

^  and  ZA corresponding  angles 
ZB^  and  ZA^  are 

Conclusion:     ZB. ZA, 

Solution. 
<— > 

<-^ 

Since,    by  hypothesis,   BC    |  j  AD,   it  follows  fronn  Theorem.  5-3 

that  each  two  alternate  interior  angles  are  congruent.      From  the 

figure,   ZBp  and  ZA     are  alternate  interior  angles;    so,    they  are 

congruent.      Since  BC  and  BA  are  straight  lines,   the  vertical  angles 

ZBg  andZBj^  are  congruent,   also.      So,  ZB^  s  ZA^. 

'I- 
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Answers  for  Part  D. 

1. 
i 

.1 B 

tn 
Hypothesis  :     f  X  p  at  A, 

m  JL  p  at  B, 

Conclusion:     i   j  j  m 

2. 

Solution. 

By  hypothesis,   i  -L  p  and  nn  -L  p.      So,   the  corresponding  angles 

ZA     andZBj^  are  right  angles.     Hence,   they  are  congruent,   and,   by 

Theorem  5-6,    Jt   I  I  m. 

[Same  figure  as  in  Exercise  1.] 

Hypothesis  :     i   (  j  nn, 

i  X  p  at  A 

Conclusion:     m  x  p 

Solution. 

By  an  Introduction  Theorem   [Theorem  3  on  page  6-24],   m 

intersects  p.     [Otherwise,   i.  and  p  would  be  two  lines  parallel  to  m 

through  A.]    Let  B  be  the  point  of  intersection.     Since  p  is  a  trans- 

versal of  the  parallel  lines  i  and  m,   it  follows  from  Theorem  5-7 

that  the  corresponding  angles  ZA     andZB^^  are  congruent.      But, 

since  i  x  p,  ZA^  is  a  right  angle.      So,  ZB^  is  a  right  angle,   also. 

Therefore,    m  x  p. 
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Answers  for  Part  F   [on  pages  6-147  and  6-148]. 

1.     [Suppose  that  D  is  on  the  A-side  of  BC.      Since,    by  hypothesis, 

CD        AB,    CD  r•^  AB  =  0.     Hence,  D  is  not  interior  toZACB.     Since 

D  is  on  the  A-side  of  BC,   it  follows  that  D  is  not  on  the  B-side  of 

AC.      Also,    since  CD   |  |  AB,    D  f  AC.      Consequently,   D  and  B  are 

on  opposite  sides  of  AC.      Since  C  £  BE,    it  follows  that  D  is  on  the 

E-side  of  AC.      And,    since  D  is  on  the  A-side  of  BC,   it  follows  that 

D  is  interior  to  Z ACE.] 

<->  — 
Since  A  and  D  are  on  the  same  side  of  BC  and  C  e  BE,   it  follows 

<->  ,  .  <-^ 
thatZB  andZC^  are  corresponding  angles.     Hence,    since  AB  |  |  CD» 

it  follows,   by  Theorem  5-7,   that  ZB  =  ZC,,     Since  [as  shown  above] 

B  and  D  are  on  opposite  sides  of  AC,   it  follows  that  ZA  andZC„  are 

alternate  interior  angles.      Hence,    since  AB    )  |  CD,   it  follows,    by 

Theorem  5-3,   that  Z A  s  ZC^.      Consequently,    m(ZA)  +  m(ZB)  = 

m(ZC^)  +  nn(ZCg).      But,    since  [as  shown  above]  D  is  interior  to 

ZACE,   it  follows,    by  Axiom  F,   that  m(ZC^)  +  miZC^)  =  m{ZACE). 

So,   m(ZA)  +  m(ZB)  =  m(ZACE). 

2.     It  follows  from  Axiom  G  that  m(ZACE)  +  m(ZACB)  =  180.     So,    by  the 

result  of  Exercise  1,   m(ZA)  +  m(ZB)  +  m{ZACB)  =  180. 

3.     (a)    70  (b)    40;    20 

(e)    45,   90  or  67^,    67^ 

(c)    90;    complementary  (d)     60 

(0     120  (g)    90+1 
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Answers  for  Part  E. 

1.     Since  ZD3SZE,    andZE,  ^ZF, ,    ZD_^ZF, .      So,   by  Theorem  5-2, 

AD   I  I  CF.     Hence,    by  Theorenn  5-7,  ZA^  ̂   ZC3.      But,  ZA3  and 
ZA     are  supplementary.     Therefore,    so  are  ZC„  andZA   . 

2.  A  Since  i.   j  |  AB,   it  follows  from  Theorem  5-7 

that  the  corresponding  angles  ZB  andZPQC 

are  congruent.      Since  AB  =  AC,    it  follows 

from  Theorem  3-5     that  ZB  ̂ ZC.      So, 

ZPQC  ^  ZC.      Hence,   by  Theorem  3-5, 

PC  =  PQ,    and,    by  definition,   APQC  is  isos- 

celes.     [If  ZC  is  the  vertex  angle  of  the 

isosceles  triangle  AABC,   thenZB  ^  ZA.     Since,   by  Theorem  5-7, 

ZPQC  S  ZB  andZQPC  3  ZA,   it  follows  that  ZPQC  S  ZQPC.     Hence, 

by  Theorem  3-5,    PC  =  QC.     So,    by  definition,   APQC  is  isosceles, 

but  this  time  with  vertex  angle  at  C  rather  than  at  P.] 

[It  is  interesting  to  vary  the  problem  by  replacing  'AC  by  'AC  and 

<— > 
'BC  and  'BC  and  assuming  that  C  /  i.] 

[Note  the  arrowheads  in  the  figure  to  show  that  lines  AB  and  i  are 

given  to  be  parallel.  You  may  want  to  use  this  marking  device  in 

other  problems.] 

3.     Consider  the  triangles  AABC  and  AMNP.     By  hypothesis,  AB  =  MN. 

Also,   BN  =  CP.      So,    since,   from  the  figure  N  €  BC  and  C  e  NP, 

and  since  BN  +  NC  =  NC  +  CP,   it  follows  from  Axiom  A  that  BC  =  NP. 

By  Theorem  5-7,    since  AB    )  |  MN,   the  corresponding  angles  ZB  and 

ZMNP  are  congruent.     Thus,    by  s.a.s.,   ABC 

So,  ZACB  S  ZMPN,    and  by  Theorem  5-6,   AC 

'I- 
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/  F 

the  problem,   it  is  sufficient  to  show  that  F  is 

in  the  interior  of  ZB'A'C'.     For,    in  that  case, 

the  result  (3)  on  TC[6-93]d  would  allow  us  to 
— >  < — > 

conclude  that  A'F  crosses  B'C  in  a  point  be- 

tween B'  and  C.     Once  this  is  established,   the 

problem  is  solved  in  a  nnanner  entirely  anal- 

ogous to  that  used  in  the  alternative  described 

above.     So,    let  us  show  that  F  is  in  the  interior 

of  ZB'A'C. 

The  result  stated  at  the  bottom  of  TC[6-124,   125]a  is  what  we  need. 

Since  B'  and  F  are  on  the  sam^e  side  of  A'C',    it  follows  that  either  F  € 

A'B'  or  B'  is  in  the  interior  of  ZFA'C  or  F  is  in  the  interiorof  ZB'A'C'. 

If  F  eA/?' then  ZFA'C  =  ZB'A'C.     But,     30/35.     So,    Fj^'A'B'.     IfB' 

is  in  the  interior  of  ZFA'C  then,    by  Axiom  F,    m(ZFA'B')  +  m(ZB'A'C') 

=  m(ZFA'C'). 

Since,    by  Axiom  D,    m(ZFA'B')>  0,    m(ZB'A'C')  <  m(ZFA'C').     But, 

35  ̂   30.     So,    B'  is  not  in  the  interior  of  ZFA'C'.     Therefore,    F  is  in 

the  interior  of  ZB'A'C. 

The  foregoing  discussion  suggests  the  following  theorem: 

V    V    V    V X    Y    U    V <-> 

a  X  f  Y  and  U  and  V  are  on  the  sanne  side  of  XY 

then  m(ZUXY)  <  m{ZVXY)  if  and  only  if 

U  is  in  the  interior  of  ZVXY 
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There  is  an  interesting  alternative  justification  of  this  result  which  does 

not  make  use  of  Theorem  5-12.     [Thus,    it  could  be  used  in  a  problem 

with  a  weaker  hypothesis,    say,    'm(ZB)  >  m(ZB')  >  m(ZA')'.] 

There  is  a  point  E  e  CB  such  that  CE 

=  C'B'.     As  above,   ACE  — *  A'C'B' 

is  a  congruence.     So,  AE  =  A'B',  ZE 

is  an  single  of  55°,   and  ZEAC  is  an 

angle  of  35°.     Now,    either  E  =  B  or 
E  e  BC  or  B  e  EC.     If  E  =  B  then 

ZEAC  =  ZBAC.     But,   by  Theorem 

5-11,  ZBAC  is  an  angle  of  30°.    Since 
35  ̂   30,     ZEAC  /ZBAC.     So,    E  /  B.     Now,    suppose  that  E  €  BC.     Then, 

ZAEC  is  an  exterior  angle  of  ABAE.     So,   by  Theorenn  4-5,   if  E  e  BC 

then  m(ZAEC)  >  m(ZABC).     But,   55  f   60,     So,     E  i  BC.     Therefore, 

B  €EC. 

So,    since  E  €  CB  and  B  e  EC,   it  follows  from  Theorem  1-6  that  EC  >   BC. 

Since  EC  =  B'C,   B'C  >  BC. 

By  Theorem  4-7,    since  m(ZB')  >  m(ZA'),   A'C  >   B'C.     So,    since  AC  = 

A'C,   AC  >   B'C  >  BC. 

By  Theorem  4-7  again,    since  m(ZC)  >  m(ZCBA),  AB  >  AC.     So,   AB  > 

AC  >   B'C  >   BC. 

Finally,    since  ZEBA  is  a  supplement  of  the  acute  angle  ZABC,    it  is  an 

obtuse  angle  and  is,   therefore,    larger  than  ZE.     So,    Theorem  4-7  tells 

us  that  AE  >  AB.     Since  AE  =  A'B',   A'B'  >  AB  >  AC  >   B'C  >  BC. 

Some  students  might  approach  this  problem  by  first  drawing  the  half-line 

A'F  in  the  B'-side  of  A'C  such  that  ZFA'C  is  an  angle  of  30°.     To  solve 
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Theorem  3-5,   ZD  is  an  angle  of  60°.     So,    by  Theorem  5-11,  ZBAD 

is  an  angle  of  60°.     By  Theorem  3-5,   AB  =  DB.     So,    since,    by 

Theorem  1-8,    BC  =  |  •  DB,    it  follows  that  BC  =  |'  AB. 

2.      A^',    AB,    AC,    B^',    BC 

The  following  justification  of  this  result     is  an  interesting  variation 

of  the  one  used  for  Exercise  1.  _^ 
There  is  a  point  D  e  BC  such 

that  CD  =  C'B'  and  C  €  BD. 

ZACD  is  a  right  angle  since 

it  is  a  supplenraent  of  the 

right  angle  ZACB.     So,  ZACD 

^  ZC     Since  AC  =  A'C,   it 
follows  from  s.a.  s.  that  ACD 

*-'  A'C'B'  is  a  congruence. 

So,    AD  =  A'B'  and  ZD  is  an  angle  of  55°.     Now,    in  AABD,    since  ZB 

is  larger  than  ZD,    it  follows  from  Theorem  4-7  that  AD  >  AB. 

Hence,   A'B'  >  AB. 

By  Theorem  4-9,    the  perpendicular  segment  AC  is  shorter  than  AB. 

So,   A'B'  >  AB  >  AC. 

By  Theorem  5-11,   ZBAD  is  an  angle  of  (180  -  60  -  55)%    that  is,   an 

angle  of  65".     So,    by  Theorem  4-7,    BD  >  AB.     But,    since  ZBAC  is 

an  angle  of  30°  [Theorem  5-11],    it  follows  from  Theorem  5-12  that 
AB  =  2  •  BC.     Now,    since  C  e  BD,    BC  +  CD  =  BD.     So,    BC  +  CD  > 

2'BC.     Hence,    CD  >    BC.     But,    since  ACD  *— A'C'B'  is  a  congruence, 
CD  =  C'B'.     So,    B'C  >  BC. 

Finally,    since  ZA'  is  an  angle  of  35°  [Theorem  5-11],    it  follows  from 

Theorem  4-7  that  A'C  >  B'C.     But,   AC  =  A'C.    So,   AC  >   B'C. 
Therefore,   A'B'>  AB  >  AC  >  B'C  >  BC. 
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Answer  for  Part  G  [which  begins  on  page  6-148], 

Since  AM  =  MP,    NM  =  MQ,    and  the  vertical  angles  Z.M^  and  Z.M^  are 

congruent,    it  follows  from  s.a.  s.   that  AMN  ■•-*  PMQ  is  a  congruence. 
So,   ZNAM  S  ZQPM.     Since  N  and  Q  are  on  opposite  sides  of  AP,   ZNAM 

and  ZQPM  are  alternate  interior  angles.     Hence,    by  Theorem  5-2, 

1^ 

Here  is  another  interesting  way  to  locate  a  point  on  the  line  parallel  to 

i  through  P.     Find  a  point  N  on  i  such  that  AP  =  AN.     Next,   find  the 

point  Q  on  the  non-A-side  of  PN  such  that  QP  =  PA  =  QN.      The  line  PQ 

is  parallel  to  i. 

Students  may  enjoy  an  opportunity  to  discover  other  constructions. 

'1^ 

Answers  for  Part  H  [on  pages  6-149,  6-150,  and  6-151]. 

1.       Axiom  C  tells  us  that  there  is  a  point  D  in  BC  such  that  BC  =  CD. 

[Since  B  ̂   BC,    D  ̂   B.     So,    by  Theorem  1-9,    C  is  the  midpoint  of 

BD.  ]    Hence,    AC  is  the  median  of  AABD  from  A.     By  Theorem 

5-ll,^_m{ZACB)  =  180  -  30  -  60  =  90.     So,   ZACB  is  a  right  angle, 
and  AC  is  the  altitude  of  AABD  from  A.      Therefore,    by  Theorem 

4-12(b),   AABD  is  isosceles,   with  vertex  angle  at  A,    and,    by 
TC[6-149]a 



Suppose  that  ADAB  =   ADCB.      Then,    there  is  some  matching  of  the 

vertices  of  ADAB  with  those  of  ADCB  such  that  the  corresponding 

parts  are  congruent.     Since  ZA  and  ZC  are  right  angles  and  since 

no  triangle  can  have  more  than  one  right  angle,    the  only  matchings 

which  can  be  congruences  are  DAB  — —  BCD  and  DAB  -— ^  DCB.     If 

DAB  — *  BCD  is  a  congruence  then  ZADB  =  ZCBD.     From  the  fig- 
ure,   B  is  interior  to  ZADC.     So,    if 

m(ZADB)  =  a  then  m(ZCDB)  =   60  -  a, 

and  by  Theorem  5-11,    m(ZCBD)  = 

30  +  a  .     Hence,    a  =   30  +  a,    that  is, 

0  =  30.     So,   assuming  that  B  is 

interior  to  ZADC,    if  DAB  *-  BCD  is 

a  congruence  then  0  =  30.     But,    0  / 

30.     So,    DAB  — ►  BCD  is  not  a  con- 

gruence.    Hence,    DAB  ■— *  DCB  is  a  congruence.      Therefore  ZADB 

S  ZCDB.     So,   ZADB  is  an  angle  of  30°  and  ZABD  is  an  angle  of  60". 

By  Theorem  5-12,   AB DB.     But,   AB  =  BC.     So,   AB  +  BC  =  DB. 

If,    despite  the  figure,    we  assume  that  B  is  not  interior  to  ZADC,    it 

turns  out  that  DAB  — *  BCD  is  a  congruence  and  that  DAB  -—  DCB 

is  not.     But,    in  that  case,   AB  +  BC  >  DB.     [When  students  have  had 

the  Pythagorean  Theorem  you  may  wish  to  give  them  the  problenn 

of  computing  DB  given  AB.  ] 

4.       Since  NQ  =  ;|  •  MN,   and  since  PN  =   ̂   •  NQ,    it  follows  that  PN  =  ̂   •  MN. 

[You  can  extend  the  problem  by  drawing  the  altitude  PR  of  APQN 

from  P,    the  altitude  RS  of  ARPN  from  R,   and  asking  what  fraction 

SN  is  of  MN.  ] 
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There  is  a  point  Pe  ST  such  that  ST  =   TP. 

Since  P  7^  S,    it  follows  that  T  is  the  mid- 

point of  SP.     Hence,    RT  is  the  median  of 

ARPS  from  R.     Since  RT  J-  ST,    RT  is  the 

altitude  of  ARPS  from  R.     So,   ARSP  is  an 

isosceles  triangle  with  RS  =  RP.     By  hypo- 

thesis,   ST  =  ̂ 'SR.     Since  ST  =  TP,  SP  =  SR 

So,   ASPR  is  equilateral.     Hence,    it  is  equiangular,   and,    by  Theo- 

rem 5-11,  ZS  is  an  angle  of  60°. 

6.       (a) Since  CM  =  AM,   ZC^  S  lA.     Since 

CM  =  BM,   ZC^  '^  ZB.     Since  M  is  inte- 
rior to  ZACB,    m(ZC)  =  m{lC^)  +  m(ZC2): 

m(ZA)  +  m(ZB).     But,    by  Theorem 

5-11,   m(ZC)  +  [m(ZA)  +  m(ZB)]  =   180. 

So,  LC  is  an  angle  of  90°, 

(b)    No.     In  view  of  Exercise  6(a),    such  a  triangle  would  have  two 

right  angles. 

7.  Since  AM   >  CM,   ZC     is  larger  than  ZA.      Since  BM  >  CM,   ZCp  is 

larger  than  ZB.     So,    since  M  is  in  the  interior  of  ZACB,    m{ZC)  > 

m(ZA)+m{ZB).     Hence,    by  Theorem  5-1 1,    2-m(ZC)>180.      There- 
fore,  ZC  is  obtuse. 

8.  [Similar  to  Exercise  7.  ] 
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Since,   from  the  figure,   B  is  in  the  interior  of  ZACE,   m(ZACE)  = 
m(ZACB)  +  m{ZBCE).       Since  A  is  in  the  interior  of  ZDCB,    nn(ZDCB) 
=  m(ZACD)  +  m(ZACB).     But,   ZBCE  s  ZACD.     So,  ZACE  ^  ZDCB. 
Also,    by  hypothesis ,    CE  =  CB  and  CA  =  CD.      So,    by  s.a.  s., 
ECA  —  BCD  is  a  congruence.      Hence,   AECA  s   ABCD. 

m(ZETB)  =  a  +  p    [Theorem  5-10] 

m(ZCBD)  =  (3    [ECA  — •  BCD  is  a  congruence] 

m(ZTRB)  =  a    [Theorem  5-10] 

10.    Since  ZETB  is  an  exterior  angle  of  both  ATCE  and  ATRB,    90  + 
m(ZAEC)  =  m(ZTRB)  +  m(ZDBC).     As  in  Exercise  9,    ECA  — *  BCD 
is  a  congruence.     So,  ZAEC  S  ZDBC.     Therefore,  ZTRB  is  a  right 
angle.     So,    m{ZTRS)  =  90. 

11. m(ZECB)  =  70, 

m{ZACD)  =  70, 
AC  =  DC, 

CE  =  CB. 

Find  m(ZTRS). 

[Students  should  make  the  discovery  that  the  nunnber  of  sides  of  the 

figures  adjoined  to  AABC  is  irrelevant.      The  points  F  and  G  play  no 

essential  role  in  Exercise  10,    and,    as  shown  in  the  second  part  of 

Exercise  9,    ZTRB  s^  ZBCE.      So,   in  any  case,    ZTRS  is  a  supplement  of 

ZBCE.     {However,   the  proof  is  slightly  different  if  ZBCE  is  supplemen- 

tary to,    or  larger  than,  ZACB.     In  the  first  case  C  e  AE,   and  CA  v>_/  CE 

is  not  an  angle,    while  in  the  second,    B  is  not  interior  to  ZACE.)] 
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Correction.     On  page  6-152,    line  4  should 
read: 

  parallel  if  and  only  if  they  are   

t 

line  6 , No,    because  MN  and  PQ  could,   for  example,    be  subsets  of  the 
same  line. 

Answers  for  Part  I   [on  pages  6-152,    6-153,    and  6-154], 

[AB  and  DC  are  parallel  because  AB  C  MT,    DC  C  GJ,   and  MT    |  |  GJ.] 

1.     GD,    DC,    JC,     CJ 

•— >      »->       —>      — >      •->        —->       -^ 
2.     GD,    DJ,    AB,    AT,    BT;    [AT  =  AB] 

3.  DG,    AM,    BA 

4.  (a)    yes  (b)    yes 

(c)    They  are  congruent.       [Each  is  congruent  toZRBT.] 

5.  (a)  yes       (b)  yes 

(c)  They  are  congruent.   [Each  is  congruent  to  Z  CBT.  ] 

6.     (a)    ZGDEandZGCL    [or  ZGDA  and  ZGCB,     ZCDEandZLCJ, 
ZCDN  andZJCB] 

These  angles  are  congruent. 

(b)    ZGDE  and  ZJCB    [or  ZGDA  and  ZLCJ,     ZCDEandZGCB, 
ZCDN  andZGCL] 

These  angles  are  congruent. 

7.     ZMAN    [or  ZMBR,   ZDCR,   ZGDN] 
They  are  supplementary. 

-> 

For  each  two  points  A  and  B,   AB  and  AB  are  similarly  directed,    and 

AB  and  BA  are  oppositely  directed. 
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The  proof  of  Theorem  5-13  is  somewhat  complicated  by  the  need  to 

consider  several  cases.     Suppose  that  Z CAB  andZC'A'B'  are  two  angles 

such  that  AB  and  A'B'  are  sinnilarly  directed,    and  AC  and  A'C'  are 

similarly  directed.     We  note,  first,  that  it  follows  that  A  ̂   A'.     For,  if 

A  =  A'  then,  for  any  points  P  and  P'  such  that  AP  and  A'P'  are  similarly — >       . — > 

directed,   AP  =  A'P'.     So,   if  A  =  A'  then  Z  CAB  =  ZC'A'B'.      However, 

since  Z  CAB  andZC'A'B'  are  two  angles,  A  /  A'.      Next,   we  note  that, 

since  AB  and  AC  are  noncoUinear,  they  are  not  both  subsets  of  AA'. 

So,    we  may  simplify  the  discussion  by  assuming  that  AB  is  not  a  subset 
<— >  — ^  • — > 

of  AA'.     Now,    since  AB  and  A'B'  are  similarly  directed,   it  follows  that ■^^        <— ̂   ->  — >  <^-^ 
AB         A'B'  and  that  AB  and  A'B'  are  subsets  of  the  same  side  of  AA'. — >  • — >  •— >  «— > 

[If  AB  and  A'B'  were  collinear,  AB  would  be  a  subset  of  AA'.] 

/ 

/ 

A'  i.   S^   
/ 

/ 

/ 

A/   5   
/ 

/ 

There  are  now  three  cases  to  consider: 

(1)  AC  is  a  subset  of  AA' 

(2)  AC  is  on  the  non-B-side  of  AA' 

(3)  AC  is  on  the  B-side  of  AA' 

•->  • — > 

In  case  (1),    since  AC  and  A'C'  are  similarly  directed,   one  is  a  subset 

of  the  other,    and  we  may  assume  that  AC  C  A'C.     It  follows  that  A  e  A'C' 

and,    since  A  ;^  A',   that  A'  i  AC.      Hence,  ZCAB  andZC'A'B'  are 
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corresponding  angles  [exterior  and  interior,    respectively]   and,    since 

<-> 

B' 

B 

AB    I  I  A'B',   it  follows  by  Theorem  5-7  that  Z CAB  S  ZC'A'B'. <-> 

In  case  (2),    since  AC  and  A'C'  are  similarly  directed,   AC         A'C'  and — >  — >  ^-^> 
AC  and  A'C  are  both  subsets  of  the  non-B-side  of  AA',      Let  D  be  a 

B' 

B 

point  such  that  A  e  DA'.     Since  A,   B,   and  C  are  not  coUinear,   and  since 

B  and  C  are  on  opposite  sides  of  AD,   it  follows  by  Theorem  2-9  that 

Z  CAD  is  not  a  supplement  of  Z  DAB.      So,    either: 

(2')      ZCAD  is  smaller  than  a  supplement  of  ZDAB, 
or; 

(2")     ZCAD  is  larger  than  a  supplement  of  ZDAB <-> <— > 

In  the  second  of  these  cases,    since  AC    )  j  A'C',   it  follows  by  Theorenn 

5-7  thatZC'A'D  is  larger  than  a  supplement  of  ZDA'B'.     Hence,  a  supple^ 

ment  of  ZC'A'D  is  smaller  than  ZDA'B'.      Consequently,    if  D'  is  a  point 
such  that  A'  e  D'D,    ZC'A'D'  is  smaller  than  a  supplement  of  ZD'A'B'. 
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Comparing  this  condition  with  (2'),   we  see  that  it  is  sufficient  to  consider 

the  first  of  the  two  cases.     So,   we  assunae  (2').     From  this  it  follows, 

using  Theorem  5-7,   thatZC'A'D  is,   also,    smaller  than  a  supplement  of 

ZDA'B',     Since,    as  we  shall  see,   it  follows  on  the  assumption  (2')  that 

D  is  interior  to  ZCAB,   it  also  follows  that  D  is  interior  to  ZC'A'B', 

From  this,    Theorem  5-7,    and  Axiom  F,    it  follows  thatZCAB  ^  ZC'A'B'. 

So,   to  settle  case  (2),   all  that  remains  is  to  show  that,   assunning  (2'), 
D  is  interior  to  ZCAB.      To  do  so,   we  note  that,    since  B  and  C  are  on 

opposite  sides  of  AA',    BC  crosses  AA'  at  a  point  P  interior  to  ZCAB, 
So,    by  Axioms  F  and  D,   m{ZCAP)  +  m(ZPAB)  =  m(ZCAB)  <    180.    Hence, 

ZCAP  is  smaller  than  a  supplement  of  ZPAB.      Now,   either  A  e  PD  or 

D  e  AP  and,    so,   is  interior  to  Z  CAB .     But,   if  A  £  PD  then  Z  CAP  and  Z  CAD 

are  supplementary,   as  are  ZPAB  andZDAB,     So,    since  ZCAP  is  smaller 

than  a  supplement  of  ZPAB,   a  supplement  of  ZCAP,    such  as  ZCAD,   is 

larger  than  ZPAB.      Hence,  ZCAD  is  larger  than  a  supplement  of  ZDAB. 

Consequently,   if  ZCAD  is  smaller  than  a  supplement  of  ZDAB  then  A  ̂   PD, 
  ̂  

D  £  AP,   and  D  is  interior  to  ZCAB. 

Case  (3)  is,   now,    settled  very  easily.     For,   if  C^and  C^^'  are  points 

such  that  A  £  C^C  and  A'  £  C^'C  then  AC^^  and  A'C^^'  are  subsets  of  the 

C,    /7 / 
^      I 

I 

non-B-side  of  AA'.     So,    by  case  (2).  ZC^AB  ̂   ZC^'A'B'.     But,  also. 
ZCAB  andZC^AB  are  supplementary,   as  are  ZC'A'B'  and  Z C  'A'B'. 
So,    by  Theorem  2-3,  ZCAB  s  ZC'A'B'. 
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8.     Theorem  5-14  is: 

If  the  sides  of  two  angles  can  be  matched  in  such  a  way  that 

corresponding  sides  are  oppositely  directed  then  the  angles 

are  congruent. 

This  theorem  follows  imnnediately  from  Theorem  5-13  and  Theorem 

2-5.     There  are  two  cases:     If  the  angles  have  the  same  vertex  then 

they  are  vertical  angles  and  are  congruent  by  Theorem  2-5.     If  the 

angles  do  not  have  the  same  vertex  then,    by  Theorem  5-13,   either 

is  congruent  to  the  vertical  angle  of  the  other.      So,   by  Theorem 

2-5,   the  angles  are  congruent. 

9. The  missing  word  is  'supple- 

mentary'.    To  prove  Theorem 

5-15  it  is  sufficient  [referring 

to  the  figure]    to  consider  a 

point  B^  such  that  A  e  B^^B. 

B,  A  /  B  By  Theorem  5-14,  Z CAB j^  and 
ZC'A'B'  are  congruent.     Since 

ZCAB  and  Z CAB ^   are  supple- 

mentary,  it  follows  that  ZCAB  andZC'A'B'  are  supplementary. 

[Theorem  5-15  can  also  be  deduced  fronn  Theorem  5-13.     This  pro- 

cedure requires  the  consideration  of  two  cases,   A  =  A',    and  A  j^  A',] 
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2.  By  the  Example  [foot  of  page  6-154],  ZC  is  a  right  angle  and  ZB  = 

ZD.  By  Theorem  5-9,  CD  ±  AD;  so,  ZD  is  a  right  angle.  Hence, 

ZB  is  a  right  angle. 

3.       From  the  figure,   A  is  in  the  interior  of  ZBCD  and  C  is  in  the 

interior  of  ZBAD.     So, 

m(ZBAD)  =  m(ZBAC)  +  m{ZDAC), 

and  m(ZBCD)  =  m(/BCA)  +  m(ZDCA). 

By  Theorem  5-11, 

m(ZBAC)  +  m(ZBCA)  =   180  -  m(ZB), 

and  m(ZDAC)  +  m(ZDCA)  =   180  -  m(ZD). 

So,  m(ZBAD)  +  m(ZBCD)  =   3.60  -  m(ZB)  -  m(ZD). 

Therefore,  m(ZBAD)  +  m(ZB)  +  m(ZBCD)  +  m(ZD)  =  360. 
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In  connection  with  the  Example  [which  begins  on  page  6-154],    since 

AB    I  I  CD,    C  and  D  are  on  the  sanne  side  of  AB.     So,    since  BC    |  |  AD, 

it  follows  that  BC  and  AD  are  similarly  directed  rays.  So,  BC  and  DA 

are  oppositely  directed.  This  argument  shows  that  it  is  not  necessary, 

as  is  done  in  the  text,    to  appeal  to  the  figure. 

The  Example  can  also  be  solved  by  using  Theorem  5-5:    Since  AB    |  j  CD, 
C  and  D  are  on  the  same  side  of  AB.     So,  ZA  and  ZB  are  consecutive 

interior  angles  and,    since  BC    |  |  AD,   are  supplementary.     Similarly, 

ZA  and  ZD  are  supplementary.     Consequently,    by  Theorem  2-3,  ZB  ̂   ZD. 

The  problems  of  Part  J  are  important  in  two  respects.      For  one  thing, 

the  strategies  used  will  be  helpful  in  deriving  theorenas  about  quadri- 
laterals in  section  6.06.     In  fact,    some  of  the  exercises  will  suggest 

theorems.     For  example,    the  Example  leads  to  the  theorem  about  the 

opposite  angles  of  a  parallelogram  being  congruent.     These  problems 

are  also  important  in  that  the  results  of  exercises  solved  early  in  the 

list  can  be  used  to  solve  problenas  which  occur  later  in  the  list.      For 

exannple,    the  result  of  the  Example  can  be  used  to  good  advantage  in 

Exercises   1  and  2,    and  Exercise  3  can  be  used  in  Exercise  5.     Students 

should  be  encouraged  to  look  for  connections  like  these.      This  outlook 

will  be  helpful  to  the  student  in  the  next  section. 

Answers  for  Part  J  [on  pages  6-155,    6-156,    and  6-157]. 

1.       Since  AB  ±  BC,    DC  ±  BC,    and  [from  the  figure]  AB  /  DC,    it  fol- 

lows  from  Theorem  5-8  that  AB  |  |  DC.  Similarly,  BC  |  |  AD.  So, 

by  the  Example  [foot  of  page  6-154],  Z  BAD  =  ZDCB.  Hence,  since 

ZDCB  is  a  right  angle,    so  is  ZBAD.     Therefore,    BA  ±  DA. 

[Alternative  proof.     After  showing,   as  above,   that  AB    |  |  DC,    use 
«->    «->  «->    ̂ ->  , 

Theorem  5-9  and  the  hypothesis  that  DCxAD  to  show  that  BAxDA.J 
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4. 
By  Theorem  5-11, 

m(ZA)  +  m{ZC2)  =  90 

and  m(ZB)  +  m(ZC^)  =  90. 

But,  ZC^  and  ZC^  are  vertical  angles. 
So,  ZA  S  ZB. 

5.       From  the  figure,    B  is  interior  to  ZA  and  A  is  interior  to  ZB.     So, 

by  Exercise  3,   m{ZA)  +  90  +  m(ZB)  +  90  =  '360.     Hence,  ZA  and  ZB 
are  supplementary. 

From  the  figure,  ZABD  and  ZCDB  are  alternate  interior  angles  and, 

since  AB    |  |  DC,    it  follows  by  Theorem  5-3  thatZ  ABD  =  ZCDB. 

Similarly,  ZADB  =  ZCBD.     So,   by  a.  s.a,  ,   ABD  —  CDB  is  a  con- 

gruence.    Hence,   AB  =  CD  and  AD  =  CB. 

The  reference  to  the  figure  is  not  needed.     To  show  that  ZABD  and 

ZCDB  are  alternate  interior  angles,    we  need  to  know  that  A  and  C 

are  on  opposite  sides  of  BD.     We  do  so  by  showing  that  AC  /^  BD  f  (p 

[that  is,    that  the  diagonals  of  a  parallelogram  intersect].     Since 

AB   I  I  DC,    B  is  on  the  A-side  of  DC,     Since  AD   |  |  BC,   B  is  on  the 

C-side  of  AD.     Hence,   B  is  interior  to    ZADC.     Consequently, 
— >         — 
DB  r\  AC  consists  of  a  single  point.     Similarly,    C  is  interior  to 

ZDAB.     Consequently,    DB  r^  AC  consists  of  a  single  point.     It  fol- 

lows  that  DB  r\  AC  consists  of  a  single  point,   and  that  this  point  be- 
longs to  both  DB  and  AC. 

7. 
By  s.  s.  s.  ,   ABD  -— *  CDB  is  a  congruence.     So,  ZABD  S  ZCDB  and 

ZADB  =  ZCBD,     From  the  figure,   these  are  pairs  of  alternate  intc 
rior  angles.     Hence,   by  Theorem  5-2,  AB    i  I  CD  and  AD   I  I  CB. 
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Note  that,   for  Exercise  7,    reference 

must  be  made  to  the  figure.     That 

this  is  so  can  be  seen  by  considering 

the  figure  consisting  of  two  legs  and 

the  diagonals  of  an  isosceles  trapezoid. 

To  avoid  reference  to  the  figure  [of  Exercise  6],    it  is  sufficient  to 

add  to  the  Hypothesis  of  Exercise  7  the  condition:    A  and  C  are  on 

opposite  sides  of  BD. 

8.  No.     Since  ABD  -^  CBD  is  a  congruence,    it  follows  that  ZABD  = 

ZCBD,     It  may  not  be  the  case  that  ZABD  =  ZCDB.     If  not.   AB^H' CD. 

9.  Since  AB    i  |  DC,    it  follows  from  Theorem  5-3  that  ZABD  =  ZCDB. 

So,   ABD  ■•—  CDB  is  a  congruence  [by  s.a.s.].     Hence,  AD  =  CB. 

Also,  ZADB  S  ZCBD.     So.   by  Theorem  5-2,   AD  |  |  BC. 

Note  that,   as  in  Exercise  7,    the  conclusion  that  ZABD  and  ZCDB  are 

alternate  interior  angles  [  so  that  Theorem  5-3  is  applicable]  is  one 

which  must  be  drawn  from  the  ficure.     As  in  Exercise  7,    one  as- 

sumes  that  A  and  C  are  on  opposite  sides  of  BD.     This  also  insures 

that  ZADB  andZCBD  are  alternate  interior  angles,    so  that,    in  show- 

ing that  AD   I  I  BC,   one  can  apply  Theorem  5-2. 

10.       By  Exercise  6,   BA  =   CD.     By  hypothesis,  ZBAD  is  a  right  angle, 

and,   by  Exercise  2,  ZCDA  is  a  right  angle.     Also,   AD  S   DA.     Hence, 

by  s.a.s.,   BAD  — •  CDA  is  a  congruence.     Consequently,  AC  ̂    DB. 
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7.     ZABE  s  ZDEF  by  Theorem  5-7.      Since  m(ZCBE)  =  |  •  m(Z ABE)  and 

m{ZGEF)  =  i'm(ZDEF),    it  follows  that  ZCBE  =  ZGEF.     So,    by 
< — 5>   ,  ,  ■$ — > 

Theorem  5-6,    CB    |  |   GE. <-> 

[Since  from  the  figure,   A  and  D  are  on  the  same  side  of  BE  and 

E  e  FB,  ZABE  andZDEF  are  corresponding  angles.     By  the  definition 

of  angle  bisector,    C  is  on  the  A-side  of  BE  and  G  is  on  the  D-side  of <  > 
BE.      So,   again,  ZCBE  and  ZGEF  are  corresponding  angles,] 

8.  p  Q  Let  A  and  B  be  the  feet  of  the 

perpendiculars  to  £.  from  P  and 

Q.     Since  PA  and  QB  are  per- 

pendicular to  i,   it  follows 

from  Theorem  5-8  that 

PA    I  I  QB.     So,    by  Theorem 

5-3,  ZPAQ  s  ZBQA.     By  hypothesis,    PA  =  BQ.     Also,  AQ  =  QA. 

So,    by  s.  a.  s.  ,    PAQ  *-*  BQA  is  a  congruence.     Hence,  ZPQA  s  ZBAQ. 

Therefore,    by  Theorem  5-2,    PQ   |  |  AB. 
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Answers  for  Quiz. 

1.  57" 

2.  ZC 

3.  m(ZC)  =  180  -  2a,  m(ZA)  =  a  -  p 

4. 

B 

X  +  2x  =  60 
X  =  20 

m(ZA)  =  180  -  20  -  60  =  100 

5. 
AC  =  7,       AD  =  3.  5 

So,    DB  =  10.  5 

s  a 
Since  ZACB  -  ZDCE,   it  follows  by  s.  a.  s.    that  ACB  ̂ ^  DCE  i 

congruence.     So.   ZBAC  ̂   ZEDC.^Henc^    by  Theorer.  5-2,    [since A  and  D  are  on  opposite  sides  of  BE],    AB    j  j  ED. 
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r 
4.  Suppose  that  AABC  is  isosceles  with  AB  =  AC.      If  BD  is  the  angle 

bisector  of  AABC  from  B  and  m(ZADB)  is  60,    what  is  m{ZA)  ? 

5.  In  AABC,  ZA  is  an  angle  of  60°,  ZC  is  an  angle  of  90°,   and  AB  =  14. 

If  CD  is  the  altitude  of  AABC  from  C  then  DB  =    . 

6.  /  Hypothesis :     C  is  the  midpoint  of  AD, 

C  is  the  midpoint  of  BE 

Conclusion:     AB    |  |  ED 

7.  Hypothesis:     AB    j  j  DE, 

BC  bisects  ZABF, 

EG  bisects  ZDEF 

Conclusion:     CB    j  j  GE 

^8.  p  Q  Hypothesis :     P  and  Q  are  two  points 
on  the  same  side  of  i 

and  equidistant  from 

Conclusion:     PQ    j  j  £. 
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11.  [As  shown  in  the  discussion  of  Exercise  6,   the  third  part  of  the 

Hypothesis  of  Exercise  11  is  unnecessary.     The  diagonals  of  a 

parallelogram  do  intersect  in  a  single  point,    and  one  is  at  liberty 

to  call  the  point  'E'.]    Since  BD  and  AC  cross  at  E,   A  and  C  are  on 
opposite  sides  of  BD.     So,   ZCBD  amd  ZADB  are  alternate  interior 

angles.     Since,    by  hypothesis,   BC   |  |  AD,    it  follows  by  Theorem 

5-3  thatZCBD  s  lADB.     Similarly,   ZBCA  S  ZDAC.     Also,    since 

AB   I  I   CD  and  BC    |  |  AD,    it  follows  from  Exercise  6  that  BC  =  AD. 

So,    by  a.s.a.,    BCE  ■•— *  DAE  is  a  congruence.     Consequently,    DE  = 

BE  and  CE  =  AE.     Since,    by  hypothesis,    E  e  BD  r>  AC,    it  follows 

that  E  is  the  midpoint  of  BD  and,    also,    the  midpoint  of  AC.     So,   by 

definition,   AC  and  BD  bisect  each  other. 

12.  By  Exercise   11,    ED  =  EB.     By  hypothesis,    DA  =  BA.     So,   by 

Theorem  3-3,   AE  is  the  perpendicular  bisector  of  DB.     Cons-equently, 
AC  X  BD  at  E. 

'I* 

Quiz. 

1.  In  AABC,  if  ZA  is  an  angle  of  50°  and  ZB  is  an  angle  of  73"  then  ZC 
is  an  angle  of    . 

2.  In  AABC,    if  AB  >   BC  and  ZA  is  an  angle  of  60°,    which  is  the  largest 

angle  of  the  triangle? 

3.  ^^  Suppose  that  D  is  a  point  of  AC  such  that  CD  =  CB, 

m(ZCBD)  =  a,    and  m(ZDBA)  =  (3.     Use  a  and  (3  to 

compute  the  measures  of  ZC  andZA. 
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Answers  for  Part  A. 

Starting  at  A,  he  can  walk,   first,   to  any  of  the  four  points  B,    C,    D,   and 
E;  next,  to  any  of  the  remaining  three  points;  next,  to  any  of  the  remain- 

ing two  points;  and,  finally,  from  there  to  A.     So,  there  are  4X3X2,   or 
24,   possible  trips.     However,   with  each  trip  there  corresponds  another 
in  which  he  traverses  the  same  path  in  the  opposite  direction.      For 

example,    the  trips  A  —  B  —  C-*D— E  —  A  and  A  —  E^D— C  —  B  —  A  are 
taken  over  the  same  path.     So,  there  are  12  possible  paths. 

Answer  for  Part  B. 

Yes;  the  only  simple  closed  polygonal  path  is  that  which  connects  A  and  B, 
B  and  D,    D  and  C,    C  and  E,    and  E  and  A. 

Properties  (1)  and  (2)  are  not  [contrary  to  the  statennent  at  the  foot  of 
page  6-159]    quite  sufficient  to  characterize  what  are  usually  called 

'simple  closed  polygonal  paths'.     In  addition  to  these,   it  is  customarily 
assumed  that  a  simple  closed  polygonal  path  is  connected- -that  is,    "all 
one  piece".      Each  of  the  twelve  paths  of  Part  A  has  this  property,    but 
a  union  of  six  or  more  segments  nnay  have  properties  (1)  and  (2)  but  not 
be  connected: 

F._   

In  the  figure,    each  of  the  six  let- 
tered points  is  an  end  point  of  just 

K»^  C  D  two  segments  and  no  two  segments 
intersect  except  at  an  end  point. 

[Incidentally,  (2)  should  be  interpreted  as  saying  that  if  two  segments 
intersect  then  their  intersection  consists  of  a  single  point  which  is  an 
end  point  of  both  segnnents.  You  may  wish  to  nnake  this  more  explicit, 

here  and  on  page  6-160,  either  by  replacing  the  word  'an'  in  (2)  by  'a 
common',  or  by  adding  'of  both'  after  the  word  'point'.  It  is  good 
practice  to  encourage  students  to  correct  the  wording.] 

In  discussing  the  notion  of  simple  closed  polygonal  path,   it  will  be  best  to 
bring  out,   by  examples  such  as  that  pictured  above,   the  notion  of  connect- 

edness,  and  agree  with  your  students  that  simple  closed  polygonal  paths 

should  be  connected.     Then,   in  the  definition  of  'polygon'  on  page  6-160, 
supplement  line  13  to  read: 

A  connected  set  which  is  the  union  of  a  finite  number  of  segments 
satisfying  the  conditions: 
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Answers  for  Part  C. 

1.  Yes.      Each  triangle  is  the  union  of  its  three  sides,   each  vertex  is 

an  end  point  of  just  two  sides,   no  two  sides  intersect  except  at  a 

common  end  point,   and  a  triangle  is  connected. 

2,  There  are  two  possibilities. 
D 

[B  interior  to  AACD] 

[no  nonsinnple  path] 

DC  DC 

-.B 

A  K  NB 
nonsimple simple 

3.     Yes.     If  A,    B,    and  C  are  coUinear  and  B,    say,   is  between  A  and  C 

then  AB  v_/  BC  v^  CD  v^  DA  is  a  simple  closed  polygonal  path  from 

A  back  to  A. 

line  8  from  bottom: An  angle  of  a  polygon  is  an  angle  which  contains 
two  adjacent  sides  of  the  polygon. 

'1^ 

Answers  for  Part  D. 

1.  Yes,     It  is  a  triangle,   AACD,    which  is  the  union  of  AC,    CD,    and 

DA.     [It  is  not  polygon  ABC D.     See  the  note  on  TC[6-161]a.  ] 

2.  'triangle' 
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Answers  for  Part  F, 

1.  The  diagonals  are  five  in  number;   AC,   AD,   BD,   BE,   and  CE.     For 

each  n,   an  n-gon  has  n(n  -  3)/2  diagonals.     [There  are  n  -  3  diagonals 

with  a  given  vertex  as  end  point,   and  each  diagonal  has  2  end  points.] 

2.  Two.     Some  four -sided  polygons  have  intersecting  diagonals,    others 
do  not: 

3.     0;    2;    5;    9;    14;    20;     170;    4850;    49985000 
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The  notation  *ABCD'  is  an  abbreviation  for  'AB  ̂ ^  BC  w  CD  k.j  DA'.     In 

the  case  pictured  on  page  6-161,   ABCD  is  a  polygon  and,    in  particular, 

is  a  four-sided  polygon,    or  quadrilateral.     Since  CDAB  =  CD  w  DA  '-^ 

AB  w  BC  [and  since  unioning  is  associative  and  commutative],    CDAB  = 

ABCD.     On  the  other  hand,    BDAC,    while  it  is  a  closed  polygonal  path, 

is  not  a  simple  one.     So,    BDAC  is  not  a  polygon  and,    in  particular, 

BDAC  ]^  ABCD.     If  the  figure  on  page  6-161  were  nnodified  in  such  a 

way  that  D  =  C,  ABCD  would  still  be  a  polygon  [AB  w  BC  '.>  CC  '^  CA  = « — •         ►— •  • — • 
AB  w  BC  w  CA].     However,   it  is  convenient  to  adopt  the  convention 

that  when  one  uses  such  phrases  as  [see  Exercise  1  of  Part  E]  'polygon 

UICSM',    one  implies  that  the  points  referred  to  are  different  and  are  the 

vertices  of  the  polygonj    and  that  in  questions  like  that  of  Exercise  3(a), 

the  word  'polygon'  signals  that  A,    B,   C,   and  D  are  the  four  vertices  of 

the  polygon  in  question.     Thus,   the  polygon  described  in  the  solution  for 

Exercise  3  of  Part  C  on  page  6-160  can  properly  be  spoken  of  as  'the 

polygon  ACD',    but  not  as  'the  polygon  ABCD'. 

I 

[I,   S,    and  M 
are  collinear.] 

(a) y D  is  either  on  the  non-B-side 

of  AC,    or  interior  to  the  angle 

vertical  toZB  or  interior  to 

ZB  and  not  on  AC 

<— >       <— >      <—> 
(b)     The  set  in  question  is  the  complement  of  AB  v.^  BC  '^  CA, 

-.   ̂ ^ 
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Answers  for  Part  G. 

By  definition,   a  polygon  is  convex  if  and  only  if,   for  each  of  its  sides, 

all  of  its  points  not  on  this  side  belong  to  the  same  one  of  the  two  half- 

planes  whose  common  edge  contains  the  side  in  question.     For  example, 

the  polygon  MNOPQR,   pictured  above,    is  not  convex  because  N  and  O 

are  on  opposite  sides  of  MR  and,  also,  because  M  e  OP.      On  the  other 

hand,    DEFGH  is  convex.      For  a  more  explicit  example,    it  is  easy  to 

show  that  a  parallelogram  is  convex.     For,   if  CD   |  I  AB  then,  by  Theorem 

15,    C  and  D  are  on  the  same  side  of  AB.      Consequently,   AD,    DC,   and 

BC  are  all  subsets  of  this  same  side  of  AB.      [See,    for  AD  and  BC, 

Theorem  18,   and,    for  DC,    Theorenn  15.]    So,   for  parallelogram  ABCD, 

all  points  not  on  AB  are  on  one  side  of  AB.     Similarly,    all  points  not  on 

BC  are  on  one  side  of  BC,    all  points  not  on  CD  are  on  one  side  of  CD, 

and  all  points  not  on  DA  are  on  one  side  of  DA.      So,   ABCD  is  convex. 

A  similar  argument  proves  that  to  show  any  given  quadrilateral  [four- 

sided  polygon]  ABCD  to  be  convex,   it  is  sufficient  to  show  that  C  and  D 
^->  <^^ 

are  on  the  same  side  of  AB,   that  D  and  A  are  on  the  same  side  of  BC, <-^ 

that  A  and  B  are  on  the  same  side  of  CD,    and  that  B  and  C  are  on  the 

same  side  of  DA.      To  establish  the  convexity  of  quadrilateral  ABCD  it 

is,    in  fact,    sufficient  to  show  merely  that  C  and  D  are  on  the  same  side 

of  AB  and  A  and  B  are  on  the  same  side  of  CD.        [Among   other 
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consequences,   this  implies  that  trapezoids  are  convex.]    To  see  that  this 

is  so,    we  shall  first  establish  that 

if  A,   B,    C,   and  D  are  four  points  such  that ^-> 

(1)  C  and  D  are  on  the  same  side  of  AB, 
«^ 

(2)  A  and  B  are  on  the  same  side  of  CD,   and 
<-^ 

(3)  A  and  D  are  on  opposite  sides  of  BC, 

then  BC  r>  AD  consists  of  a  single  point. 

.C 

<-^ 

<->         — 
For,   from  (3)  it  follows  that  BC  rN  AD  consists  of  a 

<-> 

single  point  P.     By  (1),    D  is  on  the  C-side  of  AB. 

So,    since  P  e  AD  C  AD,    P  is  on  the  C-side  of  AB. 

Hence,    since  P  €  BC,    it  follows  that  P  e  BC.     Simi- 

larly,   using  (2),    P  e  CB.     Since  BC  r\  CB  =  BC, 

P  e  BC.     Consequently,    since  P  €  AD,    P  e  BC  r^  AD. 

Finally,    since  BC  C    BC  and  P  is  the  only  member 

of  BC  r^  AD,   it  follows  that  P  is  the  only  member  of  BC  <^  AD, 

Now,    if  ABCD  [that  is,    AB  w  BC  w  CD  ̂   DA]  is  a  quadrilateral  then, 

by  definition,   BC  r^  AD  =  0.     So,    from  the  result  just  proved,    if,    in 

quadrilateral   ABCD,  C  and  D  are  on  the  same  side  of  AB  and  A  and  B 

are  on  the  same  side  of  CD,   then  A  and  D  are  not  on  opposite  sides  of 

BC.     Since,    by  definition,    neither  A  nor  D  belongs  to  BC,   it  follows  that <-> 

A  and  D  are  on  the  sanne  side  of  BC.     Similarly  [interchanging  the  roles 

of  A  and  C  and  those  of  B  and  D],   it  follows  that  B  and  C  are  on  the  sanie 

side  of  AD.     So,    since  each  two  adjacent  vertices  of  quadrilateral  ABCD 

are  on  the  same  side  of  the  line  containing  the  other  two,    quadrilateral 

ABCD  is  convex. 

Note  that  if  A,   B,    C,   and  D  are  any  points  such  that  A  and  B  are  on  the 
<r-> 

<^-> 

ame  side  of  CD,    B  and  C  are  on  the  same  side  of  DA,   and  C  and  D  are 
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on  the  same  side  of  AB,    then  ABCD  is  a  quadrilateral  and,    by  the  result 

just  established,   is  convex.     For,   to  show  that  ABCD  is  a  quadrilateral, 

it  is  sufficient  to  show  that  each  of  the  sets   (B,    C,    D},    {A,    C,    D}, 

{A,    B,    D},    and  {A,    B,    C}  is  a  set  of  noncoUinear  points,    and  that  each 

of  the  sets  AB  r^  CD  and  BC  r^  DA  is  empty.      But  since,    by  hypothesis, 

A  and  B  are  on  the  same  side  of  CD,   it  follows  that  B,    C,   and  D  are 

noncoUinear,   that  A,    C,    and  D  are  noncoUinear,  and  that  AB  r\  CD  =  0. 

And,    since  C  and  D  are  on  the  sanae  side  of  AB,    it  follows  that  A,    B, 

and  D  are  noncoUinear  and  that  A,   B,    and  C  are  noncoUinear,     Finally, 

since  B  and  C  are  on  the  same  side  of  DA,    BC  r^  DA  =  0. 

3. 

The  diagonals  of  the  convex  polygon  intersect;   those  of  the  nonconvex 

polygon  do  not. 

4.     (a) 

The  points  in  question  are  those 

which  are  interior  to  ZB  and  on 

the  non-B-side  of  AC. 
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Exercise  3  of  Part  G  suggests  that 

for  each  four -sided  polygon,   the  diagonals  of  the 

polygon  intersect  if  and  only  if  the  polygon  is  convex. 

To  establish  this,    suppose,   first,   that  ABCD  is  a  convex  four-sided 

polygon.     By  definition,    C  is  on  the  D-side  of  AB  and  on  the  B-side  of 

AD--that  is,    C  is  interior  toZDAB.      Hence,   BD  intersects  AC  in  a 

single  point.     Similarly,   A  is  interior  toZBCD,    and,    so,   BD  intersects 

CA  in  a  single  point.     From  each  of  these  results  it  follows  that  BD  and 

AC  intersect  in  a  single  point,    and,   fronn  both  together,   it  follows  that 

this  point  belongs  both  to  BD  and  to  AC. 

On  the  other  hand,    suppose  that  ABCD  is  a  four -sided  polygon  whose 

diagonals  intersect.     Since,    by  definition,   no  three  of  the  four  vertices 

are  collinear,   it  follows  that  AC  r\  BD  consists  of  a  single  point  P,    and 

that  this  point  P  is  not  collinear  with  any  side  of  the  quadrilateral. 

Since  C  €  AP  and  D  e  BP,   it  follows  that  C  and  D  are  on  the  same  side 

of  AB  [in  fact,   the  P-side  of  ABJ.     Similarly,   D  and  A  are  on  the  same 

side  of  BC,   A  and  B  are  on  the  same  side  of  CD,   and  B  and  C  are  on  the 

same  side  of  DA.      Consequently,   ABCD  is  convex. 

Note  that,    since  we  have  shown  that  parallelograms  and  trapezoids  are 

convex,   it  follows  that  the  diagonals  of  a  quadrilateral  of  either  of  these 

kinds  intersect.     [Most  elennentary  texts  assume,    tacitly,   that  the  diag- 

onals of  a  parallelogram  intersect,   as  a  basis  for  proving  that  they  bisect 

each  other,  ] 
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(3)  Quadrilateral  RSTU  is  such  that  RS  =  ST  =  TU  =  UR. 

By  definition,   what  kind  of  quadrilateral  is  this  ? 

[Answer:     a  rhombus.     It  is  also  the  case  that  this 

quadrilateral  is  a  parallelogram,    but  to  justify  this 

one  requires  more  than  the  definition  of  a  parallelogram.) 

(4)  Quadrilateral  ABCD  is  a  trapezoid. 

What  follows  from  this  by  definition  ? 

[Answer:     either  AB    j  j  DC  or  BC    |  j  DA,   but  not  both.] •J, 

Our  definitions  could  be  innproved.      For  example,   the  definition  of 
parallelogram  does  not  tell  us  that  a  parallelogram  is  a  quadrilateral. 

Although  the  phrase  'various  types  of  quadrilaterals'  indicates  that  we 
are  talking  about  quadrilaterals,    and  that  the  boxed  statements  should 
be  read  in  this  context,   the  boxed  statements  by  themselves  are  not 
definitions  in  the  sense  that  they  single  out  from  the  universe  in  which 
we  are  working  those  things  which  are  parallelograms  or  rectangles  or 
rhonnbuses,    etc.      Statennents  which  would  serve  as  definitions  of  a 
parallelogrann  are: 

and: 

A  set  [of  points]  is  a  parallelogram  if  and  only  if  it 
is  a  quadrilateral  whose  opposite  sides  are  parallel. 

A  parallelogram  is  a  quadrilateral  whose  opposite 
sides  are  parallel. 

In  the  latter  statennent,  the  'is'  is  the  'is'  of  definition. 
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The  definitions  of  the  various  types  of  quadrilaterals  given  on  pages  6-163 
and  6-164  may  differ  from  some  of  those  which  students  learned  in  earlier 
grades  or  from  those  in  conventional  textbooks  on  high  school  geometry. 
For  that  niatter,   conventional  textbooks  differ  among  themselves.     All  of 
this  serves  to  point  out  that  definitions  involve  a  certain  element  of  arbi- 

trariness and  that  there  is  no  universal  agreennent  on  the  nneaning  of  terms 

like  'rhombus'  or  'trapezoid'.      In  some  treatments,   a  square  is  not  a 
rhombus;  in  ours,  it  is.     In  some  treatments,  a  parallelogram  is  a  trape- 

zoid; in  ours,   it  is  not. 

The  purpose  of  these  definitions  is  to  single  out  certain  subsets  of  the 
set  of  all  quadrilaterals.     It  is  conceivable,   for  example,  that  someone 
might  define  a  parallelogram  to  be  a  quadrilateral  with  opposite  sides 
congruent.     In  that  case,   he  would  have  as  a  theorem  what  is  now  our 
definition.     Or,    someone  might  define  a  parallelogram  to  be  a  quadri- 

lateral with  opposite  sides  both  parallel  and  congruent.     In  that  case,  he 
would  have  as  theorems  that  a  quadrilateral  is  a  parallelogram  if  and 
only  if  its  opposite  sides  are  parallel  and  if  and  only  if  its  opposite  sides 
are  congruent.     It  is  sometimes  said  in  conventional  textbooks  that  one 
should  not  include  in  a  definition  a  property  which  can  be  derived  from 
other  properties  stated  in  the  definition.     For  example,    such  textbooks 
would  object  to  our  definition  of  a  rectangle.     They  would  claim  that  all 
we  should  say  is  that  a  quadrilateral  is  a  rectangle  if  and  only  if  three 
of  its  angles  are  right  angles.     For,   then,   we  could  prove  that  the  fourth 
angle  is  a  right  angle,     [See  Exercises  1  or  3  on  page  6-155.]    But,    such 
textbooks  do  not  observe  this  principle  when  they  define,    say,    congraient 

triangles.     They  say  that  congruent  triangles  are  triangles  which  "agree 
in  all  their  parts",    and  then  they  obtain  a  theorem  which  shows  that 
congruent  triangles  are  triangles  which  agree  in  their  sides.      Clearly, 
their  definition  included  more  than  was  necessary. 

You  can  give  students  some  preliminary  practice  in  learning  these  defi- 
nitions by  giving  them  exercises  like  the  following: 

(1)  I  know  that  quadrilateral  ABCD  is  a  parallelogram. 

What  follows  from  this  by  definition? 

[Answer:     AB    |  |  DC  and  BC    j  |  DA.  ] 

(2)  Quadrilateral  MNOP  is  a  rectangle. 

What  follows  from  this  by  definition? 

[Answer:    ZM,  IN,  ZO,   andZP  are  right  angles.] 
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Correction. 

On  page  6-165,   line  8  should  read: 
(6)    ...  [Steps  like  (2)  and  (3)] 

T 

Notice  that  Example  1  is,    except  for  the  introduction  of  the  word 

'parallelogram',  the  same  as  Exercise  6  on  page  6-156.     As  pointed 

out  on  TC[6-42]b,    the  transformation  of  a  hypothesis -conclusion  argu- 

ment such  as  Exercise  6  into  a  proof  of  the  corresponding  theorenn  is  a 

relatively  standardized  procedure.     Roughly,    one  treats  the  hypothesis 

as  an  assumption  and,   on  reaching  the  conclusion,    conditionalizes, 

thereby  discharging  this  assumption;   and  generalizes. 

As  pointed  out  in  the  COMMENTARY  for  Exercise  6  on  page  6-156,  step 

(3)  of  the  column  proof  on  page  6-165  can  be  derived  from  step  (1)  [so, 

in  this  case,    reference  to  the  figure  is  unnecessary].     The  argument  is, 

in  part,    similar  to  that  given  on  TC[6-l62]d  to  show  that  the  diagonals 

of  a  convex  quadrilateral  intersect.     Also,    step  (8)  is  a  consequence  of 

part  (3)  of  the  definition  of  polygon  on  page  6-160,     So,  in  sum,  Theorem 

6-1    [step  (13)]   is,   indeed,    a  theorem. 

Step  (4)  is,   of  course.   Theorem  5-3,   and  step  (9)  is  a,  s.a. 
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Correction. 

On  page  6-166,    line  11  should  read: 

(4).  ..  [Step  like  (2)] 

and  line  14  should  read: 

(7).  .  .[Steps  like  (3)  and  (4)] 

  ^    , 
In  the  column  proof  on  page  6-166,    step  (5)  is  Theorena  5-8.      Strictly, 

in  order  to  use  this  theorem  one  should  establish  a  step  'AD;=  BC*. 

The  class  project  nnentioned  at  the  bottom  of  page  6-166  should  prove  to 

be  a  delightful  experience  for  students.     You  will  find  students  to  be  quite 

productive.     The  practice  they  get  in  nnaking  conjectures,   trying  to  prove 

them,    and  then  trying  to  state  theorems  in  unequivocal  language  cannot  be 

nnatched  by  any  set  of  textbook  exercises.     Students  will  probably  obtain 

ideas  for  possible  theorems  by  making  drawings.     You  may  also  find  it 

worthwhile  to  introduce  mechanical  aids  consisting  of  sticks  which  can 

be  pivoted  together  at  various  points  to  form  defornnable  models  of  quad- 

rilaterals.    [See  the  18th  Yearbook  of  the  National  Council  of  Teachers 

of  Mathematics.] 

Some  of  the  theorems  which  your  students  should  discover  are  given  on 

pages  6-176  through  6-178.      [These  include  the  unnumbered  boxed  theo- 

rems on  pages  6-165  through  6-172.]     Students  should,   before  going  on 

to  page  6-179,   prove  any  of  the  first  29  of  these  theorems  which  they 

have  not  already  proved.     [Theorems  6-30  through  6-33  should  be  thor- 

oughly understood,   but  their  proofs  require  mathematical  induction.] 

Examples   1  and  2  are  Theorems  6-1  and  6-2  of  page  6-176.     Students  are 

already  acquainted,  from  the  Example  on  pages  6-154  and  6-155,   with 

Theorem  6-4  and  can,   as  in  the  Exannple,    easily  prove  Theorenn  6-3. 

They  have,    essentially,   proved  Theorem  6-5  when  solving  Exercise  11 

on  page  6-157.     Part  G  on  pages  6-148  and  6-149  requires,    basically, 

the  proof  of  Theorem.  6-7.     Theorenns  6-6  and  6-8  are  suggested  by 

Exercises  7  and  9  on  page  6-156. 
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As  noted  in  the  COMMENTARY,    one  nnust,    for  completeness,    strengthen 

the  hypothesis  in  each  of  Exercises  7  and  9  on  page  6-156  in  order  to  be 

able  to  show  that  A  and  C  are  on  opposite  sides  of  BD.     As  shown  in  the 

COMMENTARY  for  page  6-162,    if  ABCD  is  a  quadrilateral  such  that 

AB   I  I   CD  then  ABCD  is  convex.     So,    as  shown  later  in  the  same  COM- 

MENTARY,   the  diagonals  of  ABCD  intersect.     Hence,    if  ABCD  is  a  quad- 

rilateral with  AB   J  I   CD  then  A  and  C  are  on  opposite  sides  of  BD. 

Consequently,    in  the  case  of  Exercise  9,    sufficient  strength  is  gained  by 

assuming  that  ABCD  is  a  quadrilateral.      This  takes  care  of  Theorem 

6-8.     A  different  argument  is  required  to  boost  the  solution  for  Exercise 

7  to  a  complete  proof  of  Theorenn  6-6.     Here  is  such  a  proof: 

Suppose  that  ABCD  is  a  quadrilateral  such  that  AB  =  CD  and  DA  =  BC. 

Since  BD  =  DB,    it  follows  by  s.  s.  s.   that  ABD  — *  CDB  is  a  congruence. 

Hence,    ZABD  S  ZCDB  and  ZADB  S  ZCBD.     If  A  and  C  are  on  opposite 

sides  of  BD  then  these  are  pairs  of  congruent  alternate  interior  angles 

and,    by  Theorem  5-2,    AB   |  |   DC  and  AD   |  |    BC.     So,    to  show  that  ABCD 

is  a  parallelogram  it  only  remains  to  be   shown  that  A  and  C  are  on  oppo- <— > 
site  sides  of  BD.     Since  ABCD  is  a  quadrilateral,   neither  A  nor  C  belongs 
<-^  <— > 

to  BD.     Suppose,   now,    that  A  and  C  are  on  the  same  side  of  BD.     Since 

ABCD  is  a  quadrilateral,    C  /  DA.     Hence,    either  A  is  interior  to  ZCDB 

or  C  is  interior  to  ZADB.     Suppose  that  A  is  interior  to  ZCDB.     Then, 

DA  rA  CB  7^  0.    and  m(ZADB)  <   m(ZCDB).     Since  ZADB  S  ZCBD  and 

ZCDB  S  ZABD,    it  follows  that  m(ZCBD)  <   m(ZABD).     Hence,    by  the 

assumption  that  A  and  C  are  on  the  same  side  of  BD,    it  follows  that  C 

is  interior  to  ZABD.     So,    AD  r\  BC  j^  0.     Since,    as  shown  earlier, 

DA  r-\  CB  /^  0,    it  follows  that  AD  ̂   BC  ̂   0.      But,    since  ABCD  is  a  quad- 
rilateral,   this  is  not  the  case.     Consequently,    A  is  not  interior  to  ZCDB. 

Sinnilarly,    C  is  not  interior  to  ZADB.     Hence,    A  and  C  are  not  on  the 
<— > 

same  side  of  BD.     Since,    as   shown  earlier,   neither  A  nor  C  belongs  to 
<-^  <-^ 
BD,    it  follows  that  A  and  C  are  on  opposite  sides  of  BD. 
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Note  that  Theorem  6-13  ["A  rhombus  is  a  parallelogram.  '*]  is  a  corollary 
of  Theorem  6-6.     Also,    Theorem  6-14  is  a  corollary  of  Theorem  6-1. 

't- 

Theorem  6-11  ["The  diagonals  of  a  rectangle  are  congruent.  "]  may  be 

suggested  by  Theorem  6-1  and  Theorem  6-2.  If  ABCD  is  a  parallelogram 

then  DA  S  CB  and  AB  S  BA.  So,  by  Theorem  4-11,  if  the  diagonal  BD 

is  longer  than  the  diagonal  AC  then  ZA  is  larger  than  ZB;  and,  if  AC  is 

longer  than  BD  thenZB  is  larger  than  Z A.  So,  if  ZA  =  ZB  then  neither 

AC  nor  BD  is  longer  than  the  other;  that  is,  if  ZA  ̂   ZB  then  AC  s  BD. 

Now,  if  ABCD  is  a  rectangle,  ZA  S  ZB  and,  by  Theorem  6-2,  ABCD  is 

a  parallelogram.     So,  the  diagonals  of  a  rectangle  are  congruent. 

A  similar  argument  suggests,   and  proves.   Theorem  6-lZ  ["If  the  diag- 
onals of  a  parallelogram  are  congruent  then  the  parallelogrann  is  a 

rectangle.  "]    One  argues,    on  the  basis  of  Theorem  4-11  that  if  Z A  is 
larger  than  ZB  then  BD  is  longer  than  AC,    etc.      Hence,    if  AC  S   BD  it 

follows  that  Z A  =  ZB.      But,   by  Theorem  6-3,    ZA  and  ZB  are  supple- 

mentary.     Hence,    by  the  definition  of  right  angle,    both  are  right  angles. 

Still,    by  Theorem  6-3,  /LC  and  ZD  are  right  angles.     Hence,   ABCD  is  a 

rectangle. 

-I" 

If,   in  Theorenn  6-9,    one  inserts  'convex'  before  the  first  'quadrilateral', 
then  the  weakened  theorem  which  results  is  easy  to  prove.     For  if  ABCD 

is  a  convex  quadrilateral  then  C  and  D  are  on  the  same  side  of  AB,    and 

ZA  and  ZB  are  consecutive  interior  angles.     So,    by  Theorem  5-4,   if  ZA 

and  ZB  are  supplementary,   AD    |  j  BC.      Similarly,    if  ZA  and  ZD  are 

supple nnentary  then  AB    j  (  CD.     Hence,    a  convex  quadrilateral  such  that 

each  two  adjacent  angles  of  it  are  supplementary  is  a  parallelogram. 
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Similarly,   if  one  inserts  'convex'  in  Theorem  6-10  one  obtains  a  theorem 
which  is  not  difficult  to  prove.     One  way  is  to  make  use  of  Theorem  5-11 

and  the  weak  form  of  Theorem  6-9  which  has  just  been  proved.     In  fact, 

if  ABCD  is  convex  then  the  sunn  of  the  measures  of  its  angles  is  360  [See 

Exercise  3  on  page  6-155].     So,   if  ZA  ̂   Z  C  and  ZB  ̂   ID  then 

m(ZA)  +  m(ZB)  =  180  and  m(ZA)  +  m{ZD)  =  180.     So,   as  before,   ABCD  is 

a  parallelogram. 

However,   to  establish  Theorems  6-9  and  6-10  as  stated  [without  'convex'], 

it  is  easier  to  begin  by  proving  Theorem  6-10.       Once  this  is  done.   Theo- 

rem 6-9  follows  at  once.     For,   if  each  two  adjacent  angles  are  supple- 

mentary then,   by  Theorem  2-3,    each  two  opposite  angles  are  congruent. 

Theorenn  6-10  can  be  proved  by,   first,   proving  that  each  quadrilateral 

whose  opposite  angles  are  congruent  is  convex  and,  then,  proving  that 

each  convex  quadrilateral  whose  opposite  angles  are  congruent  is  a 

parallelogram.     We  shall  not  give  a  complete  proof  of  the  first  result. 

However,   the  basic  idea  for  such  a  proof  is  that  if  a  quadrilateral  is  not 

convex  then  two  of  its  vertices,    say  A  and  C,    are  on  the  sanne  side  of 

the  line  containing  the  other  two,    and  one  of  A  and  C,    say  C,   is  interior 

to  the  angle  which  has  the  other.   A,   as  vertex. 

Now  it  follows  easily  that  ZC  is  larger  than  ZA. 

For,    since  C  is  interior  to  ZBAD,   AC  r\  BD 

consists  of  a  single  point  P.     Since  P  e  BD,    P 

is  interior  toZBCD.     So,     m{Z  C)  =  m{ZBCP)  + 

m{ZPCD),   and  m{ZA)  =  m{ZBAP)  +  m{ZPAD).     Since  ZBCP  is  an  exterior 

angle  of  A  ABC,    m(ZBCP)  >  m(ZBAP).     Similarly,    m(ZPCD)  >   m{ZPAD). 

Hence,   m(ZC)  >  m(ZA).     [You  may  want  to  use  this  result  in  the  form: 

if  C  is  interior  to  ABAD  thenZBCD  is  larger  than  ZBAD,   as  a  review 

question  for  section  6.04.]    So,   a  quadrilateral  whose  opposite  angles 

are  congruent  is  convex. 
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There  are  no>v  two  ways  to  proceed: 

Method  I.     Suppose  that  each  two  opposite  angles  of  ABCD  are  congruent. 

Then,   ABCD  is  convex  and,  as  shown  earlier,   each  two  adjacent  angles 

are  supplementary.     From  this,   by  the  weak  form  of  Theorem  6-9,   it 

follows  that  ABCD  is  a  parallelogram.     So,   a  quadrilateral  whose  oppo- 

site angles  are  congruent  is  a  parallelogram. 

Method  II.     Suppose  that  each  two  opposite  angles  of  ABCD  are  congruent. 

Then,   ABCD  is  convex.     So,    [see  figure].   Pi  +  P2  ~  Vi  ̂   Yo*     But,   by 

Theorem  5-11,   a  +  ̂ ^  +  y^  =  a  +  y^  +  ̂ ^; 

whence,   P^  +  Y2  =  Yx  "*■  Pa*     ̂ *^  [subtract- 

ing].  Pa  -  Y2  =  Y2  -  Pg.     Hence,   p^  =  y^. 
Consequently,    since  A  and  C  are  on  oppo- 

site  sides  of  BD,   AD   |  |  BC.     Similarly, 

AB    I  I  CD.     So,   ABCD  is  a  parallelogram. 

Having  proved  Theorem  6-10,   we  can  now  proceed  to  derive  Theorem 

6-9  from  it  and  Theorem  2-3.     Note  that  if  we  use  the  first  procedure 

to  prove  Theorem  6-10,    we  are,   ultimately,   using  the  weak  form  of 

Theorem  6-9  to  prove  the  strong  form.     Of  course,  this  involves  no 

circularity. 
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Answers  for  Exercises. 

2.  m(ZA)  =  120  =  m(ZC);    m(ZB)  =  60  =  m(ZD)  [By  Theorem  5-5.  ZA  and 

and  ZB  are  supplementary.  ] 

3.  (a)    m(ZA')  =  m(ZA);    m(ZB')  =  m(ZB);    m(ZC')  =  m{ZC)    [Students  may 

justify  these  answers  by  referring  to  the  Example  on  page  6-154. 

Alternatively,  they  may  first  solve  part  (b)  of  the  present  exer- 
cise. ] 

(b)  ABC  — *  A'CB  is  a  congruence  by  Theorem  5-3  and  a,  s.a.     Etc, 

(c)  Since  ABC  -•-♦  BAG'  and  ABC  *-*  CB'A  are  congruences,  so  is 

BAG'  -^  CB'A.  Hence,  B'A  =  AC.  Since  A  e  B'C,  it  follows 

that  A  is  the  midpoint  of  B'C.     Etc. 

(d)  The  altitude  from  B  of  AABC  is  the  segment  whose  end  points 

are  B  and  the  foot  of  the  perpendicular  from  B  to  AC.      Since 

A'C    II  AC,   it  follows  by  Theorem  5-9  that  this  segment  is 

perpendicular  to  A'C'.      So,   it  is  a  subset  of  the  perpendicular 

at  B  to  A'C.     But,    since  B  is  the  midpoint  of  A'C    [part  (c)],   the < — > 

perpendicular  at  B  to  A'C'  is,    by  definition,   the  perpendicular 

bisector  of  A'C'. 

(e)     [Note  that  the  boxed  statement  of  part  (e)  involves  a  colloquialism. 
The  proper  interpretation  is  that  the  lines  which  contain  the  alti- 

tudes of  a  triangle  are  concurrent.     Be  sure  that  students  see  that 
the  actual  altitudes  of  an  obtuse  triangle  are  not  concurrent.] 

From  part  (d),  the  lines  which  contain  the  altitudes  of  a  triangle 

are  the  perpendicular  bisectors  of  the  sides  of  another  triangle. 

Hence,    by  Theorem  4-19,    these  lines  are  concurrent. 
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Correction. 

On  page  6 
-168. line  9 should begin: 

(b)    Sho w  that 

I' 

the  se 

t gment 

.._ 

4.    (a)  /  By  Theorem  5-3  and  a.  s.  a.,   ABP  — -  PCA 

is  a  congruence.     [See  solution  for  Exercise 

6  on  page  6-156.]    Hence,  ZBPA  £^  ZCAP. 

But,   by  hypothesis,  ZCAP  ^  ZBAP.     So, 

ZBPA  s  ZBAP  and,    by  Theorem  3-5, 

AB  s  BP.     But,   by  hypothesis  and  defini- 

tion,  ABPC  is  a  parallelogram.     Hence,    by  Example  1  on  page 

6-164,   AB  s  PC  and  BP  ̂    CA.      So,   ABPC  is  a  quadrilateral 

whose  sides  are  congruent- -that  is,   ABPC  is  a  rhombus.     [Note 

that  we  did  not  use  the  hypothesis  that  ZA  is  an  angle  of  60".  ] 

(b)    AABC  is  an  isosceles  triangle  whose  vertex  angle  at  A  is  an  angle 

of  60°.     By  Theorem  5-11,  the  sum  of  the  measures  of  its  base 

angles  is  120.     Since,    by  Theorem  3-5,   these  angles  are  congru- 

ent,   each  is  an  angle  of  60°.     Hence,    AABC  is  equiangular  and, 

by  Theorem  3-6,   is  equilateral.     So,   BC  =  AB. 

5.  BA   '^(Z  ABC  — —  CDA  is  a  congruence.     So,    by  Exer- 

cise 1  of  Part    "E  on  page  6-134,   the  alti- 
tude from  B  of  AABC  and  the  altitude  from 

D  of  A  ADC  are  congruent.     Hence,    by 

definition,    B  and  D  are  equidistant  fronn  AC. 
L  b 

6.  (a)  ^,  ^  Suppose  that  M  is  the  midpoint  of  AD.     The 

line  through  M  parallel  to  AB  intersects 

BC  at  a  point  N.  [For  proof  of  this,  see 

below.  ]    Since  AB    |  |  MN  and  AM    j  |  BN, 

A  M  D  ABNM  is  a  parallelogram  and,   by  Example 

1  on  page  6-164,   AM  s  BN.     Similarly,    MD  S  NC.     Hence, 

since  N  e  BC,    it  follows  that  N  is  the  midpoint  of  BC. 
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[To  show  that  the  line  through  M  parallel  to  AB  does  intersect  BC 

at  a  point  N,   one  may  argue  as  follows:      First,   since  A,   B,    and  D 

are  not  coUinear,    M  d  AB.     So,   there  is  a  unique  line  through  M 

parallel  to  AB.     This  line  is  not  AD,    since  AD  r\  AB  ;^  0  [that  is 

AD.,|^AB].      So,   the  line  in  question  crosses  AD.      Consequently, 

by  Theorem  20  on  page  6-28,   the  line  crosses  BC  at  some  point  N. 
'  «-^    ,  ,  ̂ ^  ^->  -> Since  MN         AB,    N  is  on  the  M-side  of  AB .      Since  M  e  AD  and 

CD        AB,    M  and  C  are  on  the  same  side  of  AB.      So,   N  is  on  the 

C-side  of  AB.      Similarly,    N  is  on  the  B-side  of  CD.     Since  N  e  BC, 
it  follows  that  N  €  BC. 

Actually,   it  is  not  necessary  for  the  purposes  of  the  exercise  to  show 

that  N  €  BC.      If  one  uses  Theorenn  1-9f    rather  than  the  definition  of 

midpoint,   it  is  enough  to  know  that  N  e  BC.  ] 

(b)     Suppose  that  M  is  the  midpoint  of  AD  and  that  N  is  the  midpoint  of 

BC.      Since,    by  part  (a),   the  line  through  M  parallel  to  AB  contains 

N,   it  follows  that  this  line  is  MN.      So,    MN  is  parallel  to  AB. 

Since  MN   j  |  AB  and  AM   |  |  BN,    ABNM  is  a  parallelogram  and,    by 
*— «  •— • 

Example  1,    MN  ̂   AB. 

(c)     By  part  (a),  the  line  through  the  midpoint  M  of  AB  and  parallel  to 

AC  intersects  CD  at  its  midpoint  E.      By  Example  1,   AB  s   CD.     So, 

MB  ~  EC.     As  shown  in  Exercise  4(a),   ABC  ■•—  DCB  is  a  congru- 

ence.    So,  ZMBN  S  ZECN.     ZMNB  andZENC  are  vertical  angles 

and,    so,    are  congruent.     Hence,    by  Theorem  4-16  [a.a.s.], 

MNB  ——  ENC  is  a  congruence.     Consequently,   BN  s  NC.     Since 

N  e  BC,   N  is  the  midpoint  of  BC. 
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[That  the  line  through  M  parallel  to  AC  does,    as  shown  in  the  figure, 

intersect  BC,   may  be  proved  as  follows:     As  shown  in  the  solution 

for  Exercise  6  on  page  6-156,   A  and  D  are  on  opposite  sides  of  BC. 

So,   since  M  €  BA  and  E  e  CD,   M  and  E  are  on  opposite  sides  of  BC. 
— *  ^^  . — .  <— > 

So,    ME  crosses  BC  at  some  point  N.     Since  MN  is  parallel  to  AC  it 
<->  — > 

follows  that  M  and  N  are  on  the  same  side  of  AC.     Since  M  e  AB, 

this  is  the  B-side  of  AC.     Similarly,   N  is  on  the  C-side  of  BD.     So, 

since  N  £  BC,   it  follows  that  N  €  BC.  ] 
<-^ 

(d)     By  part  (c),  the  parallel  through  M  to  AC  contains  N.      So,   this  line 

is  MN,     Hence,    MN    j  |  AC.     Furthermore,   it  was  shown  in  part  (c) 

that  [M  being  the  midpoint  of  AB  and,    as  just  shown,    MN  being 

parallel  to  AC]   MNB  — *   ENC  is  a  congruence.      So,    MN  s  EN. 

Since  N  €  ME,   it  follows  that  MN  =  |«  ME.     But,    since  AMEC  is  a 

parallelogram,    ME  =  AC,      Hence,    MN  =  |'AC. 

;      To  establish  the  boxed  theorenns,   the  work  in  parts  (c)  and  (d)  needs  to 

•      be  supplemented  by  a  proof  that,    given  AABC,  there  is  a  point  D  such 

that  ABDC  is  a  parallelogram.      To  show  this,   let  i  be  the  parallel  to 

AC  through  B  and  let  m  be  the  parallel  to  AB  through  C.     Now,   if  i   Mm 

then,    since  i         AC,    it  follows  that  m         AC  or  m  =  AC.      And,    since 

m    I  I  AB,    it  then  follows  that  AC   |  j  AB  or  AC  =  AB.      Since  this  is  not 

the  case,   £j^m.      Hence,   i  /^  m  ;^  0,    and  one  can  choose  for  D     any 

point  of  this  intersection.      [Of  course,   with  a  little  more  trouble,    one 

can  prove  that  the  intersection  consists  of  a  single  point.] 
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Here  is  an  interesting  exercise  which  can  be  solved  by  using  the  second 

of  the  boxed  theorems: 

c 

,  ^______  Hypothesis:    ZA'BA  and  ZC'BC 
are  right  angles, 

BC  =  BC, 
BA'  =  BA, 

M  is  the  midpoint 

of  AC 

Conclusion:     MB  =  j«A'C' 

Solution.     ZABC  andZA'BC'  are  supplementary.     So,  if  AA'BC  is  rotated 

about  B  so  that  C  coincides  with  C,    the  points  A',    B,    and  A  become  col- 

linear.     Now,    MB  is  the  segment  joining  the  nnidpoints  of  two  sides  of  a 

triangle  whose  third  side  has  measure  A'C'.     So,    MB  =  |^'A'C'. 

The  loose  talk,    above,    about  rotating  AA'BC'  can  be  replaced  by: 

If  A"  is  the  point  on  the  non-A-side  of  BC  such  that  ZA"BC  S  ZA'BC' 

and  A"B  =  A'B,   then  by  s.  a.  s.  ,   A"BC  -—  A'BC'  is  a  congruence.     And, 

since  ZA"BC  and  ZABC  are  adjacent  supplementary  angles,   B  e  A"A, 

So,    B  is  the  midpoint  of  A"A  and,    since  M  is  the  midpoint  of  AC,   it 
«—  < — >  ,  . — . 

follows  that  MS>  is  parallel  to  A"C  and  that  MB  =  |«A"C.     But,  A"C  S 

A^'.      So,    MB  =  i-A'C. 

However,   the  point  of  such  an  exercise  as  this  is  to  generate  the  insight 

that  AA'BC'  and  A  ABC  can  be  "put  together"  into  a  larger  triangle,    and 

the  rotation-language  expresses  this  clearly  enough. 
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on  page  6-177.     So,  this  exercise  may  suggest  Theorem  6-Zl 
[and,    also.    Theorem  6-20].     Another  method  for  proving  (4) 
is,   first,   to  prove  that  the  diagonals  of  an  isosceles  trapezoid 
are  congruent,    and,   then,   use  Theorem  6-24.     [This  is  the 
second  theorem  at  the  foot  of  page  6-168.]    [Alternatively,   if 
one  has  proved  (4)  in  another  way,    one  may  use  it  and  Theorem 
6-24  to  prove  that  the  diagonals  of  an  isosceles  trapezoid  are 
congruent.  ] 

To  prove  Theoremi  6-21,    suppose  that  ABCD  is  an  isosceles 

trapezoid  with  AB  and  DC  as  bases.     Since  ABCD  is,    by  defi- 

nition,  not  a  parallelogram,   it  follows  by  Theorem  6-8  that 

AB  5^    CD.     For  simplicity,    suppose  that  CD  is  longer  than  AB. 

The  parallel  to  AD  through  B  will  intersect  CD  at  a  point  R  such 

that,   by  Theorem  6-1,   DR  s  AB.     Since  B,  C,  and  R  are  on  the <-^  — >  — 
same  side  of  AD,   R  e  DC.     So,    since  DR  =  AB  <   CD,   R  e  DC. 

Since  ABRD  is  a  parallelogram,  ZD  andZBRD  are  supplemen- 

tary.    So,  ZD  and  ZBRC  are  congruent.     But,    since  ABRC  is 

isosceles,  ZBRC  and  Z  C  are  congruent.     So,  £D  =  ZC.     By 

Theorem  5-5,    and  the  convexity  of  ABCD,  ZA  andZB  are  sup- 

plements of  the  congruent  angles  ZD  andZC.     So,  by  Theorem 

2-3,  ZA  3  ZB. 

To  prove  Theorem  6-20,    suppose  that  ABCD  is  a  nonisosceles 
trapezoid.     Proceeding  as  in  the  proof,  above,  for  Theorem  6-21, 
ZD  and  ZBRC  are  congruent.     But,  since  BR/  BC,  ZBRC  ̂   IC. 
So,  ZC  5^  ZD.     Hence,    by  Theorem  5-5  and  Theorem  2-3, 
ZA  5^  ZB.     Hence,    if  either  pair  of  base  angles  of  a  trapezoid 
are  congruent  then  the  trapezoid  is  isosceles. 

Theorem  6-21  can  be  used  to  prove  that  the  diagonals  of  an 
isosceles  trapezoid  are  congruent.     For  [see  figure],    it  follows 
by  s.  a.  s.   that  ADC  •*-*  BCD  is  a  congruence. 

(5)     For  this,    see  the  discussion  of  (2). 

10.    Since  ABA'B'  is  a  parallelogrann,    AA'  and  BB'  bisect  each  other. 
Since  ACA'C'  is  a  parallelogrann,    AA'  and  CC'  bisect  each  other. 
Consequently,    BB'  and  CC  bisect  each  other.      So,    BCB'C  is  a 
parallelogram. 
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a  rhombus.     To  establish  the  if-part  of  this  guess,    suppose  that  ABCD 

is  a  rhombus.     Then,    by  s.s.s.,   ABC—*  ADC  is  a  congruence.    Hence, 

ZBAC  =  ZDAC.     Moreover,    since  each  rhombus  is  convex,    each  point 
-^  •^ 

of  AC  is  interior  to  ZA.     Consequently,   AC  is  the  bisector  of  ZA.     Simi- •-^  •— 
larly,    CA  is  the  bisector  of  ZC.     So,   the  diagonal  AC  is  a  subset  of  the 

bisector  of  each  of  the  angles  ZA  and  ZC.     So  [Theorem  6-18),    the 

diagonals  of  a  rhombus  are  contained  in  the  bisectors  of  its  angles. 

Suppose,   now,   that  ABCD  is  a  quadrilateral  whose  diagonal  AC  is  a  sub- 

•-> 

set  of  the  bisectors  
of  ZA  andZC.      

[Then,   the  bisector  
of  ZA  is  AC 

.-> 

and  that  of  Z  C  is  CA.  ]     Then,    since  C  is  interior  to  ZA,   it  follows  that 

B  and  C  are  on  the  same  side  of  AD  and  that  C  and  D  are  on  the  sanme 

side  of  AB;    and,   since  A  is  interior  to  LC,   it  follows  that  A  and  B  are 

on  the  same  side  of  CD  and  that  A  and  D  are  on  the  same  side  of  BC. 

Consequently,   ABCD  is  convex.     Moreover,    bya.s.a.,   ABC  ■*-^  ADC  is 

a  congruence.     Hence,   ABCD  is  a  kite,    with  Z A  and  Z  C  as  "vertex 

angles".     So,   if  a  diagonal  of  a  quadrilateral  is  a  subset  of  the  bisectors 
of  each  of  two  of  its  angles,   then  the  quadrilateral  is  a  kite.     From  this 

it  is  only  a  step  to  prove  that  if  each  diagonal  of  a  quadrilateral  is  a 

subset  of  the  bisector  of  each  of  two  angles  of  the  quadrilateral,   then  the 

quadrilateral  is  a  rhombus.     This  is  Theorem  6-19.     [To  establish  the 

only-if  part  of  the  guess --that  a  parallelogram  two  of  whose  angle  bi- 

sectors are  collinear  is  a  rhombus --it  is  sufficient  to  note  that  a 

parallelogram  which  is,   also,    a  kite  is  a  rhomtbus.] 

(4)  A   M   B  Here  one  can  use  the  same  method  of 
solution  as  for  case  (1)  [that  is--prove 
that  MAQ  -.—  MBN  is  a  congruence], 
once  one  has  proved  that  each  pair  of 
base  angles  of  an  isosceles  trapezoid 
are  congruent.     This  is  Theorem  6-21 
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(2)  Since  the  sides  of  MNPQ  are  parallel  to  the  diagonals  of  ABCD,   (2) 
will  follow  if  we  show  that  the  diagonals  of  a  rhombus  are  perpendic- 

ular to  each  other,    and  that  lines  parallel  to  two  perpendicular  lines 
are,    also,   perpendicular  to  each  other.     This  procedure  will  also 
take  care  of  (5),   once  we  have  proved  that  the  diagonals  of  a  kite  are 
perpendicular.     [In  fact,    since  each  rhombus  is  a  kite,    (2)  is  a  con- 

sequence of  (5).]    But,    by  definition,    and  Theorem  3-3,   the  line 
containing  one  of  the  diagonals  of  a  kite  is  the  perpendicular  bisector 
of  the  other  diagonal.     So,   the  diagonals  of  a  kite  are  perpendicular 
to  each  other  [this  is  Theorem  6-15]  and,   in  particular,   the  diagonals 
of  a  rhombus  are  perpendicular  bisectors  of  each  other  [this  is  The- 

orem 6-16].     All  that  remains  to  the  proof  of  (2)  and  of  (5)  is  to  show 
that  if  i  X  m,   ix    |  |  -^.    and  m^    |  j  m,   then  ii  X  mi.     By  definition,   if 
i  X  m  then  St  and  m  intersect  at  a  unique  point  E.     Since  mi    |  |  m,    i 
also  crosses  m.-^,   say  at  F.     Since  i^    j  )  i  and  mi  and  m  cross  i, 
they  also  cross  ii,    say  at  G  and  H,    respectively.     It  follows  that 
EFGH  is  a  parallelogram  such  that  ZE  is  a  right  angle.     So,    by  The- 

orem 6-4  and  Theorem  2-1,  ZG  is  a  right  angle.     Hence,    ̂ i  x  mi . 

It  is,    of  course,   not  a  theorem  that  if  the  diagonals  of  a  quadrilateral 
are  perpendicular  then  the  quadrilateral  is  a  kite.     However  [Theo- 

rem 6-17],   if  the  diagonals  of  a  quadrilateral  are  perpendicular 
bisectors  of  each  other  then  the  quadrilateral  is  a  rhombus.     For, 
by  Theorem  6-7,    such  a  quadrilateral  ABCD  is  a  parallelogram  and, 
in  addition,   if  the  point  of  intersection  of  its  diagonals  is  P  then,    by 
s.a.  s.,    APB  ♦-*  CPB  is  a  congruence.     So,   AB  =  CB  and,    by  Theo- 

rem 6-14,    ABCD  is  a  rhombus. 

(3)  Since  a  square  is,    by  definition,   a  rectangle  and  a  rectangle  is,    by 
Theorem  6-2,    a  parallelogram,    a  square  is  a  parallelogram.    Since 
two  adjacent  sides  of  a  square  are  congruent,    it  follows  by  Theorem 
6-14  that  a  square  is  a  rhombus.       So,    each  square  is  a  rhombus 
which  is  a  rectangle.      On  the  other  hand,    each  rhombus  which  is  a 
rectangle  is,    by  definition,   a  square.      Hence,   (3)  follows  at  once 
from  (1)  and  (2). 

While  discussing  rhombuses,    students  may  discover  Theorem  6-18  and 

Theorem  6-19.      It  is  easy  to  see  that  the  bisectors  of  two  opposite 

angles  of  a  parallelogram  are  either  parallel  or  collinear;    and  it  is  a 

natural  guess  that  they  are  collinear  if  and  only  if  the  parallelogram  is 
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9.    (a)  B  By  t^®  second  boxed  theorem  on  page 

6-168,    MN    I  I  AC  and  PQ   |  |  AC. 

Hence,   MN   |  |  PQ   [or,    MN  and  PQ 

are  coUinear].     Similarly,   NP    |  |  QM 
* — *  ' — * 

[or  NP  and  QM  are  coUinear].    Conse- 

quently,   MNPQ  is  a  parallelogram. 

[The  bracketed  remarks  are  usually 

omitted.     However,  to  justify  the  con- 

clusions,   one  must  show  that  M,   N, 

P,   and  Q  are  not  coUinear,     But,  if  M,  N,  P,   and  Q  are  coUinear 

then,    since  AC   |  |  MN  and  BD   |  |  NP,   it  follows  that  AC   J  |  BD  or 

A,   B,    C,   and  D  are  coUinear.     The  second  alternative  is  ruled 

out  by  the  assumption  that  ABCD  is  a  quadrilateral,   and,   for  the 

sanne  reason,   neither  C  nor  D  can  be  on  AB.      Now,   under  the 

first  alternative,   if  C  and  D  are  on  the  same  side  of  AB  then 

ACDB  is  a  trapezoid  [or  a  parallelogram]  and  its  diagonals  AD 

and  BC  intersect;   while,    if  C  and  D  are  on  opposite  sides  of  AB, 

ACBD  is  a  trapezoid  [or  a  parallelogram],    and  AB  and  CD  inter- 

sect.     But,    both  these  possibilities  are,    again,   ruled  out  by  the 

assumption  that  ABCD  is  a  quadrilateral.     So,   the  midpoints  of 

the  sides  of  a  quadrilateral  are  noncollinear.  ] 

(b)     Using  the  notation  of  part  (a), 

(1)  if  ABCD  is  a  rectangle  then  MNPQ  is  a  rhombus, 
(2)  if  ABCD  is  a  rhombus  then  MNPQ  is  a  rectangle, 
(3)  if  ABCD  is  a  square  then  MNPQ  is  a  square, 
(4)  if  ABCD  is  an  isosceles  trapezoid  then  MNPQ  is  a  rhombus 

and   (5)  if  ABCD  is  a  kite  then  MNPQ  is  a  rectangle. 

In  case  (1),    MA  =  MB,  ZA  s  ZB,   and  [because  a  rectangle  is  a 

parallelogram,    whence  AD  =  BC]  AQ  =  BN.     So,    bys.a.s., 
MAQ  — *  MBN  is  a  congruence.     Hence,    MQ  =  MN.     Since,    by 

part  (a),    MNPQ  is  a  parallelogram,   it  follows,   using  Example  1 

on  page  6-164,   that  all  four  sides  of  MNPQ  are  congruent.     So, 
MNPQ  is  a  rhombus. 
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7.     15 

8.    (a)     The  line  through  M  parallel  to  AD  contains  the  midpoint  P  of  BD. 

Since  BC    |  j  AD,   this  line  is  the  line  through  P  parallel  to  BC. >   • 
But,    this  line  contains  the  midpoint  N  of  CD,      So,   the  line 

through  M  parallel  to  AD  is  MN. 

This  argument,  as  remarked  in  part  (b),  shows  that  the  median 

[MN]  of  a  trapezoid  is  parallel  to  the  bases  of  the  trapezoid.  It 

also  proves : 

The  line  which  bisects  one  leg  of  a  trapezoid  and  is 

parallel  to  the  bases  bisects  the  other  leg, 

(b)     From  the  figure,    P  e  MN.      So,    by  Axiom  A,    MN  =  MP  +  PN. 

But,   fronn  the  second  boxed  theorem  on  page  6-168,    MP  =  ̂  •  AD 

andPN  =  |'BC.     So,    MN  =  |{AD  +  BC).     [You  can  relate  these 

results  and  those  of  Exercise  6  by  pretending  that  a  triangle  is 

a  trapezoid  with  one  base  of  m.easure  0.]    [For  completeness, 

we  should  show,    without  reference  to  the  figure,    that  P  €  MN. 

(Although  we  know,    from  part  (a),    that  Pe  MN,   this  is  not  suf- 

ficient for  part  (b).)    As  shown  in  the   COMMENTARY  for  page 

6-162,    a  trapezoid  is  convex  and,    hence,   the  diagonals  of  a 

trapezoid  intersect.     Referring,    for  notation,    to  the  figure,    it 

follows  that  AC  r^  BD  /  0  and,    since  B,    C,    and  D  are  noncol- 

linear,    it  further  follows  that  A  and  C  are  on  opposite  sides  of 
<->  — »  -^-^  -> 

of  BD.     Since  N  €  DC,    N  is  on  the   C-side  of  BD.     Since  M  e  BA, 

^-> M  is  on  the  A-side  of  BD.      So,     M  and  N  are  on  opposite  sides 
<-^  — •  "^-^ 

of  BD.       Hence,    MN  intersects  BD  in  a  single  point.       Since 

P  e  MN  r^  BD  it  must  be  the  point  in  question.     So,    P  €  MN.] 
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11.    [The  bracketed  remarks  at  the  beginning  of  the  solution  of  each  part 

show  how  one  can  avoid  reference  to  the  figures.    From  your  students* 
viewpoint,   the  unbracketed  parts  of  the  solutions  will  probably  suffice. 

(a)  [Suppose  that  i^,   i^,   S.^,   and  S.^  are  parallel  lines  and  that  m  and 

m'  are  parallel  lines  such  that  m  r^  i^  =  {A}  and  m'  r\  l^-  {A'}. 

Then,    m  crosses  ig,   ig,   and  i^  at  points  B,    C,   and  D,    and  m' 

crosses  i^,  ig,   and  i.^  at  points  B',    C',   and  D'.    Since  m    j  j  m', 

it  follows  that  P^^  P^',   B  f-Q',    C  /  C,   and  D  /  D'.     So,  i,  =  AA', 

i,  =  BB',    i„  =  CC,    and  i.  =  DD'.      Since  i,  i  .,   A  ;«^  D  and 

A'  /  D'.     Hence,   m  =  AD  and  m'  =  A'D'.  ]   Since  AA'    j  |  BB'  and 

AB    )  I  A'B',    it  follows  that  AA'B'B  is  a  parallelogram.     Hence, 

by  Example  1  on  page  6-164,   AB  S  aTb'.    Similarly,  BC  S   B^C , 

and  CD  S    C^'.    Hence,  assuming  that  AB  =  BC  =  CD,  it  follows 

that  A'B'  =  B'C  =  CD'. 

(b)  [Suppose  that  i^,   S.^,   ig,    and  i^  are  parallel  lines  and  that  m  and 

m'  are  nonparallel  lines  such  that  ra  n\  i^  -  {A}  and  m.'  r\  l^  - 

{A'}.     Then,  nn  crosses  i.^,   ig,    and  i^  at  points  B,    C,    and  D,    and 

m'  crosses  i.^,   SL^,    and  i^  at  points  B',    C,    and  D'.     Suppose  that 

B  £  AC  and  that  C  e  BD.      Suppose  that  A'C  r\  AC  =  0  and  that 

B^'  r^  BD  =  0.      It  follows  that  A  ;^  A',   B  /  B',    C  /  C,    and 

D  f  D'.     Hence,    Si^  =  AA',   i^  =  BB',    l^  =  CC\    and  i^  =  DD'. 

Since  2^    |  j  i^,   A  /  D  and  A'  j^  D'.     Hence,  m  =  AD  and  m'  =  A'D'.  ] 

Since  AA'    |  |   CC',   A/C'  r^  AC  =  0,   and  A/C'  Jtf  AC,   it  follows 

that  AA'C'C  is  a  trapezoid  with  legs  AC  and  A'C.     Since  B  e  AC, 

and  assuming  that  AB  =  BC,   it  follows  that  B  is  the  midpoint  of 

AC.      Consequently,    BB'  is  the  line  which  bisects  the  leg  AC  of 

trapezoid  AA'C'C  and  is  parallel  to  its  bases,    AA'  and  CC'. 
Hence,    by  a  previous  theorem  [see  COMMENTARY  for  part  (a) 

* — >  • — • 
of  Exercise  8],    BB'  bisects  the  other  leg,   A'C'.     So,    B'  is  the 

nnidpoint  of  A'C',   and  A'B'  =  B'C.     Similarly,    assunning  that 

BC  =  CD,   it  follows  that  B'C  =  CD'. 
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(c)     [Suppose  that  l^,   i.^,   i^,   and  i^  are  parallel  lines  and  that  m  and  ni' 

are  any  two  transversals  intersecting  £^,   i^,   i^,   and  i^  in  the  points 

A,  B,  C,  D,   and  A',   B',    C,    D',    respectively.     Suppose  that  B  e  AC 

and  that  C  e  BD.      Let  m"    be  a  line  parallel  to  m' ,   intersecting  i,, 

ig,  ig,   and  l^  at  A",   B",    C",    and  D",    such  that  A^"  r^  AC  =  0 

and  B"D"  r>  BD  =  0.    Such  a  transversal  can  be  found  by  considering, 

first,   the  transversal  through  A  parallel  to  m'.     This  intersects  i 

at  a  point  P.     It  is  sufficient  to  take  for  nn"  the  line  parallel  to  m' 

through  any  point  D"   such  that  P  €  D"D  and  P  /^  D'.  ]    By  part  (b), 

assuming  that  AB  =  BC  =  CD,  it  follows  that  A"B"  =  B"C"  =  C"D". 

So,   by  part  (a),   A'B'  =  B'C  =  CD'. 

The  boxed  statement  at  the  foot  of  page  6-170  is  a  somewhat  imprecise 

statement  of  the  result  established  in  Exercise  11,     What  has  actually 

been  shown  is  that 

if  i   ,    l^,   ig»    and  i.  are  parallel  lines  which  intersect  a  transversal 

m  in  points  A,  B,  C,    and  D,  respectively,  such  that  B  e  AC,    C  e  BD, 

and  AB  =  BC  =  CD,   then  they  intersect  any  other  transversal  m'  in 

points  A',    B',    C,    and  D'  respectively,  such  that  B'  e  A'C,    C  €  B'D', 

and  A'B'  =  B'C  =  CD', 

A  result  which  is  sometimes  more  useful  is  that 

if  £^,   i^,   ̂3,    and  i^  are  parallel  lines  which  intersect  a  transversal 

m  at  points  A,   B,    C,   and  D,    such  that  AB  =  CD,   then  they  intersect 

any  other  transversal  m'  in  points  A',   B',    C,    and  D',    respectively* 

such  that  A'B'  =  CD'. 

For  this  result,   the  case  in  which  m    j  |  m'  can  be  handled  just  as  in  part 

(a).     The  case  in  which  m  J^m'  is  somewhat  more  complicated  because 
of  the  nunfiber  of  subcases  which  nriust  be  treated. 
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(b)     If  PQ   I  I  i  and  A  and  B  are  the  feet  of  the  perpendiculars  to  £.  from 

P  and  Q,  respectively,  then,  by  Theorem  5-8,  since  P  /  Q  it  follows •— .  • — • 
that  PA   I  I  QB.     So,  by  definition,  APQB  is  a  parallelogram.    Hence, 

P  and  Q  are  on  the  same  side  of  AB.      Also,   by  Theorem  6-1, 

PA  =  QB.     So,   by  definition,    P  and  Q  are  equidistant  from  AB. 

Theorenn  6-29  is  a  brief  way  of  saying  that  if  i   |  |  rn  then  each  two  points 
of  i  are  equidistant  from  m,    and  each  two  points  of  m  are  equidistant 
from  i.     This  is  justified  by  part  (b)  of  Exercise  15. 

It  is  a  triviality  that  the  sunn  of  the  measures  of  the  angles  of  a  rectangle 

is  360.     If  ABCD  is  a  parallelogram  then,    since  AD  j  |  BC,   B  and  C  are <— » 

on  the  same  side  of  AD.      Hence,  ZA  and  ZD  are  consecutive  interior 
•— «  •— • 

angles  and,    since  AB  j  j  DC,    are  supplementary.     Similarly,  ZB  and  Z  C 

are  supplementary.      So,   the  sum  of  the  nneasures  of  the  angles  of  a 

parallelogram  is  360.      The  case  of  a  trapezoid  ABCD,  with  bases  AB 

and  CD,    can  be  handled  similarly  once  it  is  known  that  B  and  C  are  on 

the  same  side  of  AD  [and  that  A  and  D  are  on  the  same  side  of  BCJ. 

Your  students  are  not  likely  to  question  this,    but,   in  the  COMMENTARY 

for  page  6-162,   it  has  been  shown  to  be  the  case. 

The  suggestion  that  the  sum  of  the  measures  of  the  angles  of  any  quad- 

rilateral is  360  is,    of  course,    misleading.     The  argument  given  on  page 

6-173  for  the  quadrilateral  pictured  at  the  foot  of  page  6-172  uses  the 

fact  that  C  is  interior  to  ZDAB  and  that  A  is  interior  to  Z BCD- -that  is, <-> 

that  C  and  B  are  on  the  same  side  of  AD,    C  and  D  are  on  the  same  side 

of  AB,   A  and  B  are  on  the  same  side  of  CD,    and  A  and  D  are  on  the  same 

side  of  CB.     In  other  words,  the  argument  depends  on  the  fact  that  ABCD 

is  convex. 
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13.    By  Exercise  6(b)  on  page  6-168,    NM  |  |  AD.     So,    by  Theorem  6-23, 

NM  bisects  AC.     Let  R  be  the  midpoint  of  AC.     Then,    since  P  and 

Q  are  trisection  points  of  AC,    AP  =  QC.     But,   AR  =  CR.     So,    by 

Axiom  A,    PR  =  QR.     Hence,    NM  bisects  PQ.     By  Theorem  6-24, 

NR  =  J*  AD  and  RM  =  }•  BC.     But,    since  ABCD  is  a  parallelogram, 

AD  =  BC;    so,    NR  =  RM.     Hence,    PQ  bisects  NM.     Thus,    by 

Theorem  6-7,    MPNQ  is  a  parallelogram.. 

14.    (a)    5 

(b)    Theorem.    The  measure  of  the  median  to  the  hypotenuse  of  a 
right  triangle  is  half  the  measure  of  the  hypotenuse. 

Proof.  Let  C    be  the  point  of  CM  such  that 

CM  =  MC.     Then,    by  Theorem  6-7, 

ACBC  is  a  parallelogram.     Since 

Z  C  is  a  right  angle,   it  follows  [for 

example,   using  Theorem  6-3]  that 

ACBC'  is  a  rectangle.    Hence,  by 

Theorem  6-11,    CC  =  AB.     Consequently,    CM  =  ̂ 'AB. 

(c)    [See  Theorem  6-28  on  page  6-178.] 

15.    (a)   If  A  and  B  are  the  feet  of  the  perpendiculars  to  i  from  P  and  Q, 

respectively,   then  by  Theorem  5-8,    PA    |  (  QB,    or  PA  =  QB. 

If  P  and  Q  are  equidistant  from  i  then  PA  =  QB.     So,   if  P  and  Q 

are,    also,    on  the  sanne  side  of  i  and  P  ;^  Q,   it  follows  that  A  7^  B; 

whence,   PA  ̂   QB.     So,   if  P  and  Q  are  two  points  on  the  same 

side  of  e.  and  equidistant  from  i  then  PA   |  |  QB  and  PA  s  QB. 

Hence,    by  Theorem  6-8,   APQB  is  a  parallelogram.     Conse- 

quently,  PQ   I  I  i. 
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Theorem  5-11,  to  show,  systematically,  that  the  sum  of  the  measures 

of  the  angles  of  a  convex  quadrilateral  is  1 80  +  180,  or  180  •  2,  that  of 

a  convex  pentagon  is  180  •  2  +  180,  or  180  •  3,  that  of  a  convex  hexagon 

is  1  80  •  3  +  180,  or  180  •  4,  etc.  [The  proof  that,  for  each  whole  num- 

ber n  >  2,  the  sum  of  the  measures  of  the  angles  of  a  convex  n-gon  is 

180(n-  2),    requires  a  procedure  known  as  mathematical  induction.  ] 

Suppose  that  A,   B,   and  C  are  successive  vertices  of  a  convex  polygon 

[not  a  triangle].     We  shall  show  that  the  figure  which  results  on  replac- 

ing the  sides  AB  and  BC  by  the  diagonal  AC  is  also  a  convex  polygon. 

To  establish  this,  it  is  sufficient  to  show  that  each  vertex  Q  of  the  orig- 

inal  polygon,    other  than  A,  B,  and  C,  is  on  the  non-B-side  of  AC.     This 

we  proceed  to  do.     Since  the  given  polygon  is  convex,  A  and  Q  are  on  the 

same  side  of  BC  and  C  and  Q  are  on  the  same  side  of  AB.      So,    Q  is 

interior  toZABC.     Let  P  be  a  vertex  adjacent  to  Q.     Then,  P  ;^  B.    Sup- 
<-^  — 

pose  that  Q  €  AC.     Then,    since  Q  is  interior  to  ZABC,    Q  €  AC.     But,    if 

this  were  so,   A  and  C  could  not  be  on  the  same  side  of  PQ.     So,  Q  /  AC. 
<-^ 

Suppose  that  Q  is  on  the  B-side  of  AC.     Then,    Q  is  interior  to  ZCAB  and 

is,    also,   interior  to  ZACB.     Hence,   AQ  r^  CB  /^  0  and  CQ  r>  AB  /^  0. 

So,  since  B  and  C  are  on  the  same  side  of  PQ,  P  ̂   AQ.     Similarly,  P  (?  BQ. 

On  the  other  hand,    if  P  is  interior  to  ZAQB  or -to  its  vertical  angle  then        ̂  
QP  or  PQ  intersects  AB.     Since  A  and  B  are  on  the  same  side  of  PQ,   this 

is  impossible.    Finally,  if  P  is  interior  to  one  of  the  adjacent  supplenaents 

of  ZAQB  then  QP  or  PQ  intersects  CB  [at  a  point  between  B  and  the  point 
  ^     ^   ^ 

where  AQ  intersects  BCl.      Since  B  and  C  are  on  the  sanne  side  of  PQ, 

this  is  impossible.     So,    Q  is  not  on  the  B-side  of  AC.     Since,    as  shown 

previously,    Q  ̂   AC,    it  follows  that  Q  is  on  the  non-B-side  of  AC. 

Answers  for  Part  A. 

1.     180-4  2.     180-10  3.     180-1000  4.     180{n-2) 
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Correction. 

On  page  6-173,    line  2b  should  read: 
.  .  .  angles  of  a  convex  polygon  of 

line  6.       Any  nonconvex  quadrilateral  ABCD  such 

that  C  is  not  the  "re-entrant"  vertex. 
D 

Since  the  pentagon  ABCDE  is  convex,   A  and  B  are  on  the  sanne  side  of 

CD  and  A  and  D  are  on  the  same  side  of  BC.     So,  A  is  interior  to  ZBCD, 

and  m(ZC)  =  m(ZBCA)  +  m(ZACD)  =  y,  +  y„.     Similarly,    m(ZD)  =  6,  +  6„. 

Also,    C  and  E  are  on  the  same  side  of  AB,   and  C  and  B  are  on  the  same 

side  of  AE.     So,    C  is  interior  to  ZEAB,    and 

m{ZEAB)  =  m{ZEAC)  +  m{ZCAB)  =  m{ZEAC)  +  a^ 

If  it  can  be  shown  that  D  is  interior  to  ZEAC,    it  will  follow  that  m(ZEAC) 

=  a,  +  a',    so,    m{ZA)  =  a^^  +  a^  +  a^.     Then,    the  sum  of  the  measures  of 
the  angles  of  ABCDE  is 

(a^  +  a^  +  ag)  +  (3  +  (y^  +  y^)  +  (6^  +  S^)  +  € 

=    (a3  +  p  +  y^)  +  (a^  +  yg  +  S^)  +  (a^  +62  +  6) 

=    180-3, 

by  Theorem  5-11.      Now,    by  a  result  proved  in  the  COMMENTARY  for 

page  6-162,    since,    because  of  the  convexity  of  ABCDE,    C  and  D  are  on 
the  same  side  of  EA  and  A  and  C  are  on  the  same  side  of   DE  and  E  and 

A  are  on  the  same  side  of  CD,    it  follows  that  CDEA  is  convex.     So,    D  and 

E  are  on  the  same  side  of  AC,   and,   as  was  to  be  shown,    D  is  interior 

to  ZEAC. 

More  generally,   one  can  show  that  "cutting  a  corner  off  any  convex 

polygon"    [replacing  ABCDE  by  ACDE]    "leaves  it  convex".     [Of  course, 
the  given  polygon  naust  have  more  than  three  sides.]      We  shall  prove 

this  shortly.     Once  this  is  known,    one  can  proceed,    starting  with 
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Corrections. 

On  page 
6-175, line 10b  should  read 

5.      .  . .  angles of  a convex 
polygon 

and  line 2b  should  readT 
9.      .. .angles of  a convex 

t polygon 

of 

Answers  for  Part  B. 

[Be  sure  that  students  see,    by  examples,   that  a  convex  polygon  which  is 
equiangular  need  not  be  equilateral  (for  example,   a  nonsquare  rectangle), 
and  that  a  convex  polygon  which  is  equilateral  need  not  be  equiangular 
(for  example,   a  nonsquare  rhombus).] 

,       180(5-2)            ,„„           ,       ,^     Q^      ,„Q      ,,„      ....      180000        180(n-2) 
1.       ^   L,   or  108  2.     60;    90;    108;    120;    144;     -Y002~'       n   

[Students  nnay  enjoy  considering  what  floor  patterns  can  be  laid  out  using 
tiles  in  the  shapes  of  regular  polygons.     Restricting  yourself  to  tiles  of 
one  size  and  shape,   it  can  be  seen  from  the  table  of  Exercise  2  that  the 
only  usable  regular  shapes  are  equilateral  triangles,    squares,    and  regu- 

lar hexagons.     If  one  allows  tiles  of  two  shapes  one  can  combine  squares 
and  regular  octagons.] 

'1* 

Answers  for  Part  C. 

1.     An  exterior  angle  of  a  convex  polygon  is  one  which  is  adjacent  and 
supplementary  to  one  of  the  angles  of  the  polygon. 

2,  3,  4.  5.     360  6.     360  [n(180  -    ̂ 80(n-2)^j  ̂ ^     3^  g^ 

360 

Answers  for  Part  D   [on  pages  6-174  and  6-17S]. 

1.     rhombus  2.     rectangle  3.     square 

4.     (a),  (b),  (e),   and  (f)  are  theorems.     Counter-examples  for  the  others 

(c)    any  nonsquare  rectangle         (d)    any  nonsquare  rhombus 

(g)  C^        ̂ ,  (h)    any  sat-upon  regular  pentagon 

(i)     any  not  too  sat-upon  regular  pentagon         (j) 

Answers  for  Part  E   [on  page  6-175]. 

1.     30  2.     540  3.     8  4.     36 

7.      120,   if  convex;     90,    if  not  convex 
[See  Exercise  4(k)  of  Part  D.] 
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Proofs  of  Theorems  6-1  through  6-14  are  discussed  in  the  COMMENTARY 

for  page  6-166;    Theorems  6-15  through  6-21  in  the  COMMENTARY  for 

page  6-169;    Theorem  6-22--page  6-167;    Theorem  6-23  and  Theorem 

6-24--page  6-168;    Theorem  6-25  and  Theorenn  6-26--page  6-169;    The- 

orem 6-27--page  6-170;    Theorem  6-28  and  Theorem  6-29--pages  6-171, 

172;    Theorem  6-30--page  6-173;    Theorenn  6-31  through  6-33--pages 

6-174,    175. 

The  following  is  a  quiz  covering  pages  6-159  through  6-178.     A  quiz  over 

pages  6-1  through  6-185  is  given  in  the  COMMENTARY  for  page  6-185. 

Quiz. 

1.  Suppose  that  quadrilateral  ABCD  is  a  parallelogram  and  that  the 

measure  of  ZA  is  three  times  the  measure  of  ZB.     How  many  degrees 

are  there  in  Z  C  ? 

2.  Find  the  number  of  degrees  in  each  exterior  angle  of  a  regular  12- 

sided  polygon. 

3.  If  an  exterior  angle  of  a  regular  polygon  is  an  angle  of  10°,    what  is 
the  sum  of  the  measures  of  the  angles  of  the  polygon? 

4.  Suppose  that  quadrilateral  ABCD  is  a  parallelogram,   that  E  is  a 
—  -^  -- 

point  in  BC  such  that  AE  bisects  ZBAD,    and  that  F  is  a  point  in  AD 
•— >• 

such  that  CF  bisects  ZBCD.     If  ZBAE  is  an  angle  of  x" ,    what  are 
the  measures  of  the  angles  of  the  quadrilateral  AECF? 

5.  Suppose  that  quadrilateral  ABCD  is  a  rhombus  and  that  ZABC  is  an 

angle  of  x" .      If  the  diagonals  AC  and  BD  intersect  at  E,   what  are 
the  measures  of  ZEAB,  ZABE,  ZEBC,   andZBCE? 
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6.  One  of  the  base  angles  of  an  isosceles  trapezoid  is  an  angle  of  60°. 
If  the  bases  of  the  trapezoid  are  10  inches  and  16  inches  long,  how 

long  is  each  leg? 

7.  Suppose  that  AABC  is  a  right  triangle  with  ZB  an  angle  of  60°  and 

ZC  a  right  angle.      If  D  and  E  are  the  midpoints  of  AC  and  AB,    res- 

pectively,  and  AB  =  8,    what  is  ED? 

Hypothesis  :     quadrilateral  ABCD  is 

a  parallelogram, 

E  and  F  are  two  points 

on  AC  such  that 

BE  X  AC  and  DF  J-  AC 

D Conclusion:     quadrilateral  BFDE  is 

a  parallelogram 

Suppose  that  quadrilateral  ABCD  is  a  square.     Let  A'  be  the  point  on 

AB  such  that  AB  =  BA',    B'  be  the  point  on  BC  such  that  BC  =  CB', 

C  be  the  point  on  CD  such  that  CD  =  DC',    and  D'  be  the  point  on  DA 

such  that  DA  =  AD'.     Prove  that  the  quadrilateral  A'B'C'D'  is  a 

square. 

Answers  for  Quiz. 

1.     Since  m(ZA)  +  m{ZB)  =  180  and  since  m(ZA)  =  3-m(ZB),    m(ZB)  =  45 

andm(ZA)  =  135.      Since  ZC  S  ZA,   m(ZC)  =  135. 

2. 

3. 

=  30 360 
12 

-T-rr-  =  36.     So,   the  polygon  has  36  sides.     Each  angle  is  a  supplement 

of  an  angle  of  10°;    so,  each  angle  is  an  angle  of  170°.     170  X  36  =  6120 
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4.  m(ZFAE)  =  X,    m(ZAEC)  =  180  -  x,    m{ZECF)  =  x,    m(Z  CFA)  =  180  -  x 

5.  m{ZEAB)  =  90   -   J,    m{ZABE)  =   |,    m(ZEBC)  =   J,    tn(ZBCE)  =  90   -   J 

6.  Each  leg  is  6  inches  long. 

7.  2 

• — *  • — • 
8.  Since  quadrilateral  ABCD  is  a  parallelogrann,   AB  =  CD  and  AB    j  |   CD. 

Since  AB    |  |   CD,  ZBAE  s  ZDCF.     Also,    since  ZBEA  andZDFC  are 

right  angles,   they  are  congruent.     So,    by  a.  a.  s.  ,    BAE  — »  DCF  is  a <—>  <—> 

congruence.     Hence,    BE  =  DF.     Since  BE  and  DF  are  two  lines  per- <— >    <-^        <-^ 
pendicular  to  AC,    BE    |  |  DF.     Hence,    by  Theorem  6-8,    quadrilateral 

BFDE  is  a  parallelogrann. 

9.  D'  Consider  the  triangles  AA'AD'  and 

AB'BA'.    A'A  =  B'B,  ZA'AD'  ^  ZB'BA', 

and  AD'  =  BA'.     So,   A'AD'  —  B'BA' 

is  a  congruence.     Therefore,  ZD'A'A 

S  ZA'B'B.      But,    since  ZB'BA'  is  a 

right  angle,  ZA'B'B  is  a  connplement 

ofZBA'B'.      Consequently,  ZD'A'A  is 

a  complement  of  ZBA'B'.     Since  D' 

and  B'  are  on  opposite  sides  of  AA',   A  is  interior  toZD'A'B'.     So, 
since  the  sum  of  the  measures  of  complementary  angles  is  90, 

ZD'A'B'  is  an  angle  of  90°;    that  is,    it  is  a  right  angle.     Similarly, 

ZA'B'C,  ZB'C'D',    andZC'D'A'  are  right  angles.     So,    by  definition, 

quadrilateral  A'B'C'D'  is  a  rectangle.     Since  A'AD'  —  B'BA'  is  a 

congruence,    D'A'  =  A'B'.     So,  quadrilateral  A'B'C'D'  is  a  rectangle 
with  two  adjacent  sides  congruent.     Hence,    by  definition,   it  is  a 

square. 
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The  material  covered  in  pages  6-179  through  6-185  serves  two  purposes. 

For  one  thing,    it  acquaints  students  with  a  mode  of  speech  found  in  many 

mathematics  textbooks.     Secondly,    it  provides  the  students  with  a  fairly 

comprehensive  review  of  the  first  half  of  the  course.     A  nnid-unit  exam- 

ination is  given  in  the  COMMENTARY  for  6-  185. 

Answers  for  Exploration  Exercises. 

(1)    No;    Yes                (2)     Yes;   No  (3)  No;    No  (4)  Yes;  No 

(5)    Yes;   Yes              (6)     Yes;    Yes  (7)  No;   No  (8)  Yes;  No 

(9)    Yes;    Yes           (10)    Yes;   No  (11)  Yes;    Yes  (12)  Yes;  Yes 

(13)    No;    No  (14)    No;    Yes 

[Note  that  if  we  interpret  *ABCD'  merely  as  an  abbreviation  for 

*AB  w  BC  w  CD  w  DA'   then  neither  (6)  nor  (12)  implies  (*).     On  the 

other  hand,    if  one  reads  'ABCD'  as  'quadrilateral  ABCD*  then  both  <6) 

and  (12)  do  innply  ( *).  ] 
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line  3.       ( 1),  (5),  (6),  (9),  ( 1 1),  ( 12),  and  (14)  are  sufficient  conditions  for  {*). 

line  7.       ('^)  is  a  sufficient  condition  for  (2),    (4),    (5),   (6),    (8),   (9),    (10), 
(11),   and  (12). 

line   14.    (2),    (4),    (5),    (6),    (8),    (9).    (10),   (11),    and  ( 12)  are  necessary 
conditions  for  (*).     In  short,  the  sentences  which  are  necessary 
conditions  for  (*)  are  exactly  the  sentences  for  which  (*)  is  a 
sufficient  condition. 

line   16.     (*)  is  a  necessary  condition  for  (1),  (5),  (6),  (9),  ( 1 1),  (12),  and 
(14).     In  short,  the  sentences  for  which  (*)  is  a  necessary  condi- 

tion are  exactly  the  sentences  which  are  sufficient  conditions 
for  (*). 

The  expressions  'if.  ..then   ',    '   if...'   and    *,  .  .  only  if   '   have 
been  discussed  in  the  COMMENTARY  for  page  6-384. 

Note  that  the  scheme  in  the  box  on  page  6-180  [likewise,    the  scheme  in 

the  box  on  page  6-182]  is  not  quite  technically  adequate.     If  the  'p's  and 

'q's  to  the  left  of  the  brace  are  replaced  by  sentences  then  [see  line  2 
below  the  box]  each  of  the  three  resulting  compound  sentences  should  be 

enclosed  in  semiquotes,    and  [see  line  4  below  the  box]  the  'p's  and  'q's 
to  the  right  of  the  dashed  lines  should  be  replaced  by  names  of  the  given 

component  sentences.     Part  of  what  the  scheme  is  intended  to  convey 

can  be  said  more  correctly  as  follows: 

If  one  replaces   'p'  and  'q'  in: 

'if  p  then  q'  is  a  theorem 

by  sentences,    and  replaces   'P'  and  'Q'  in: 

P  is  a  sufficient  condition  for  Q 

by  names  of  these  sentences,    then  the  two  statements  which 

result  say  the  same  thing. 
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Answers  for  Part  A, 

1.    (a)     'AABC  is  equilateral'  is  a  sufficient  condition  for  'AABC  is  I 
isosceles'. 

(b)  'AABC  is  isosceles'  is  a  necessary  condition  for  'AABC  is  J 
equilateral'.  j 

(c)  'AABC  is  isosceles  if  AABC  is  equilateral'   is  a  theorenn. 

(d)  'AABC  is  equilateral  only  if  AABC  is  isosceles'  is  a  theorem. 

The  solutions  for  Exercises  2,    3,    and  4,    are  similar  to  that  for  1. 

Answers  for  Part  B    [on  page  6-182]. 

The  sentences  on  page  6-179  which  are  both  necessary  and  sufficient  for 

(*)  are  (5),  (6),  (9),  (H),  and  (12).  The  fact  that  sentence  (5)  is  neces- 

sary and  sufficient  for  sentence  {*)  is  expressed  by  each  of  the  following 
statennents: 

(I)  'the  diagonals  of  ABCD  are  perpendicular  bisectors  of  each  other' 

is  a  necessary  and  sufficient  condition  for  'ABCD  is  a  rhombus*. 

(II)  'ABCD  is  a  rhombus'  is  a  necessary  and  sufficient  condition  for 

'the  diagonals  of  ABCD  are  perpendicular  bisectors  of  each  other*. 

(III)  'the  diagonals  of  ABCD  are  perpendicular  bisectors  of  each  other 

if  and  only  if  ABCD  is  a  rhombus'  is  a  theorem. 

(IV)  'ABCD  is  a  rhombus  if  and  only  if  the  diagonals  of  ABCD  are  per- 

pendicular bisectors  of  each  other'  is  a  theorem. 
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Answers  for  Part  C   [on  pages  6-183,  6-184,  and  6-185], 

1.     (a)    Yes;    Yes  (b)    No;   Yes  (c)     Yes;    Yes  (d)    No;   Yes 

(e)    Yes;    Yes  (f)     Yes;    No  (g)     Yes;    No 

In  connection  with  sentence  (f),    note  that,    fronn  the  figure,   ZA^  and 

ZA     are  vertical  angles  as  are  ZB^  andZB^^.     So,    by  Theorem  2-5, 

sentence  (f)  is  a  theorem.     So,    by  conditionalizing,    'if  1.  is  parallel 

to  m  then  ZA^  ̂   ZA^  and  Zl 

necessary  condition  for  (*), 

to  m  then  ZAg  ̂   ZA^  and  ZB^  ̂   ̂ ^4     ̂ ^  ̂   theoremi.     Hence,  (f)  is  a 

Note  that  whether  one  sentence  is  a  necessary  or  a  sufficient  condition 
for  another  is  relative  to  the  postulates  whose  consequences  are  being 

developed.     For  example,   to  say  that  'ABCD  is  a  square'  is  a  sufficient 
condition  for  'ABCD  is  a  rhombus'  is  to  say,   in  the  context  of  this  book, 
that  from  our  postulates  and  definitions,   together  with  the  assumption 

'ABCD  is  a  square'  one  can  derive  the  conclusion  'ABCD  is  a  rhombus'. 
In  another  context,    say  with  weaker  postulates  or  different  definitions, 
it  might  not  be  possible  to  carry  out  such  a  derivation.     In  such  a  case, 

'ABCD  is  a  square'  would  not  be  a  sufficient  condition  for  'ABCD  is  a 
rhoinbus'. 

In  exercises  which,   like  those  of  Part  C,    require  a  figure  for  their 

interpretation,   the  words  'necessary'  and  'sufficient'  are  used  in  a 
somewhat  looser  sense.     For  example,   that  (a)  is  a  necessary  condition 
for  (*)  means  that  fronn  postulates,    definitions,    and  the  premiss 

'ZA     andZB     are  corresponding  angles '  [which  is  suggested  by  the  figure], 
together  with  the  assumiption  i"^),    one  can  derive  the  conclusion  (a). 
Similarly,   in  showing  that  (d)  is  sufficient  for  ('•')»    and  that  (g)  is  neces- 

sary for  (*),    one  "takes  for  granted"  not  only  the  postulates  and  def- 
initions but  also  the  prenniss   'i  ̂   m'. 

5!c 

(b)    No;    No (c)    No;    No (d)     No;    No 

(f)     No;    Yes 

2.  (a)    No;    Yes 

(e)     Yes;    No 

3.  (a)     Yes;    No  (b)    No;    Yes  (c)     Yes;   No  (d)    Yes;    No 

(e)    Yes;    No                (f)     Yes;   No             (g)    Yes;    Yes            (h)    Yes;    No 
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48.  „  Since  the  base  angles  of  an  isosceles 

triangle  are  congruent,  /  EGA  =  ZDAC. 

Since  BC  =  BA,    BE  =  BD,    D  €  BA,    and 

E  e  BC,    it  follows  from  an  axiom  that 

EC  =  DA.      Finally,    CA  =  AC.     So,    by 

s.  a.  s.  ,   ECA  — —  DAC  is  a  congruence. 

So,  ZEAC  S  ZDCA,     Therefore,    since 

two  congruent  angles  of  a  triangle  are 

opposite  congruent  sides,    FC  =  FA  and,    by  definition,   AAFC  is 

isosceles, 

49.  .  Since  the  sum  of  two  sides  of  a  triangle 

is  greater  than  the  third,   AB  +  AC  >  BC. 

By  hypothesis,  AB  =  AC.     So,  2'AB>BC. 
Now,    since  D  and  E  are  midpoints  of  two 

sides  of  a  triangle,    it  follows  that  DE  is 

half  the  measure  of  the  third  side.     So, 

2  •  DE  =  BC.     Hence,    2  •  AB  >  2  •  DE  and, 

so,  AB  >  DE, 

50.      Let  P  be  the  nnidpoint  of  AB.      Then,    since  M  is  the  midpoint  of  BD, 

PM    I  I  AD.     Since  AD    |  |  BC  and  PM  /  BC,    PM   |  |   BC.     Since  N  is 

the  midpoint  of  AC,    N  €  PM.     Now,  PM  =   |  -AD  and  PN  =   j-BC. 

But,    MN  =   PN  -  PM.     So,    MN  =   ̂ (BC  -  AD). 
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45.        B  Since  the  sum  of  the  measures  of  the  angles  of  a 

triangle  is   180  and  a  right  angle  is  an  angle  of  90° 

it  follows  that  m(ZA)  =   90  -  m(ZB^)  and  m(ZC)  = 

90  -  m{Z.B^).     But,  by  hypothesis,  m(ZBj_)  >  mUB^). 
CD  A        So,    m(ZA)  <  m{ZC).      Therefore,  since  the  longer  of 

two  sides  of  a  triangle  is  opposite  the  larger  of  the  two  opposite 

angles,    AB  >    BC. 

Since  D  is  interior  to  ZABC,    it  follows  from  an 

axiom  that  ZABC  is  larger  thanZEBC.     Similarly, 

since  D  is  interior  to  ZBCE,   ZBCE  is  larger  than 

ZACB.     But,    by  hypothesis,    AABC  is  isosceles 

with  vertex  angle  at  A.     So,    since  the  base  angles 

B  C  of  an  isosceles  triangle  are  congruent, 

ZABC  =  ZACB.     Hence,   ZBCE  is  larger  thanZEBC.      Therefore, 

since  the  longer  of  two  sides  of  a  triangle  is  opposite  the  larger 

of  the  two  opposite  angles,    BE  >   CE. 

47.     Since  quadrilateral  ABCD  is  a  parallelogram,   AE    |  |   DF.     So, 

ZDFA  =  ZFAE.     But,    by  hypothesis,   AF  is  the  bisector  of  ZDAE. 

So,  ZDAF  =ZFAE.     Hence,   ZDFA  =  ZDAF.      Therefore,    since  two 

sides  of  a  triangle  are  congruent  if  they  are  opposite  congruent 

angles,    DA  =  DF.     Similarly,    DA  =  AE.      Therefore,    DF  =  AE.     So, 

since  a  pair  of  opposite  sides  of  quadrilateral  AEFD  are  both  paral- 

lel and  congruent,    it  is  a  parallelogram.     But,    two  of  its  adjacent 

sides  are  congruent,   also.     So,    by  definition,    it  is  a  rhombus. 
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18.     16 

24.     (B) 

27. 

19.     2  20.      1080 

25.     (C)  26.     (A) 

21.      15 22.     (C)  23.     (B) 

32.     theorem 

33.     theorem 

29.     theorem 

30.     theorem 

35. 

^^ 

38.  A  ,  39.     theorem        40. 
AB;^AC 

36.     theorem 

37.     theorem 

42. 

41.     theorem 
B  C 

43.     Since  AD  >  DC,  ZACD  is  larger  than  ZCAD.     Since  quadrilateral 

ABCD  is  a  parallelogram,   AB    |  |   CD;   so,  ZACD  S  ZCAB.     Hence, 

ZCAB  is  larger  than  ZCAD,     So,   ZCAB  ̂     ZCAD  and,    therefore, 

AC  is  not  the  bisector  of  ZBAD. 

44.     Since  BC    |  |  DE  and  DB    |  |  CE,    it  follows  that  quadrilateral  BCED 

is  a  parallelogram.     So,    since  the  opposite  sides  of  a  parallelo- 

grann  are  congruent,    BD  =  CE.     But,   by  hypothesis,   BD  =  AC. 

Therefore,   AC  =  CE.     Since  the  base  angles  of  an  isosceles  triangle 

are  congruent,  ZCAD  =  ZCED.     But,   since  BD    |  |   CE,    it  follows 

that  the  corresponding  angles  ZBDA  and  ZCED  are  congruent.     So, 

ZCAD  S  ZBDA.     Finally,   AD  =  DA.     So,   by  s.a.  s.  .   ACD  *-*  DBA 

is  a  congruence;  whence,    CD  S   BA. 
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47. Hypothesis:     quadrilateral  ABCD  is 

a  parallelogram, 

AF  bisects  ZBAD, 

DE  bisects  ZFDA 

Conclusion:      quadrilateral  AEFD  is 
a  rhombus 

48.  Suppose  that  AABC  is  isosceles  with  AB  =  BC.      Let  D  be  a  point  on 

AB  and  E  be  a  point  on  BC  such  that  BD  =  BE.     If  AE  r^  CD  =  {F}, 

prove  that  A  AFC  is  isosceles. 

49.  Suppose  that,    in  the  isosceles  triangle  AABC,    D  and  E  are  the  mid- 

points of  the  congruent  sides  AB  and  AC,    respectively.      Prove  that 

2  •  AB  >  BC  and  that  AB  >  DE. 

50. Hypothesis:     quadrilateral  ABCD  is 

a  trapezoid  with 
AD    I  j   BC, 

M  and  N  are  the  mid- 

points of  BD  and  CA, 
respectively, 

BC  >  AD 

Conclusion:     MN  =   t(BC   -  AD) 

Answers  forQuiz. 

1.     90  -  X  or  270  -  X         2.      one  3.     60 

6.     55  7.      24  8.      15  9.     50 

12.     24  13.      6  14.      18  15.      5  in. 
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42.     For  each  triangle  A  XYZ,    if  AXYZ  is  isosceles  then  the  median  of 
AXYZ  fronn  Y  is  the  angle  bisector  of  AXYZ  fronn  Y, 

Part  III. 

43. Hypothesis:    quadrilateral  ABCD 

is  a  parallelogram, 
AD  >  DC 

Conclusion: AC  is  not  the  bisector 

of  ZBAD 

44.  _  _  Hypothesis:    quadrilateral  ABCD 

is  a  trapezoid  with 

BC    I  I  AD, 

D  e  AE,   AC  S    BD, 

CE    I  I  BD 

Conclusion:     AC  =  CE, 

ACD  — '  DBA  is  a 

congruence, 

AB    S   CD 

45.  Suppose  that  AABC  is  an  acute  triangle  and  that  BD  is  the  altitude 

from  B.     If  ZABD  is  larger  than  ZCBD,    prove  that  AB  >  BC. 

46.  Suppose  that  AABC  is  isosceles  with  vertex  angle  at^.     Let  D  be 

a  point  on  AC  and  E  be  a  point  on  BD  such  that  D  €  BE.     Prove  that 

BE  >  CE. 
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II 

29.  For  all  angles  ZX,   ZY,    andZZ,    if  ZX  is  an  acute  angle  and 
ZY  is  a  supplennent  of  ZX  andZZ  is  a  complement  of  ZX 
then  m(ZY)  -  m(ZZ)  =   90. 

30.  If  two  parallel  lines  are  cut  by  a  transversal,    the  bisectors  of  two 
consecutive  interior  angles  are  perpendicular. 

31.  If  diagonal  AC  of  quadrilateral  ABCD  divides  it  into  two  congruent 
triangles  then  the  quadrilateral  is  a  parallelogram. 

32.  If  the  diagonals  of  a  quadrilateral  are  not  congruent  and  bisect  each 
other  a.t  right  angles,    the  quadrilateral  is  a  rhombus. 

33.  If  two  segments  join  the  midpoiiits  of  the  opposite  sides  of  a  quadri-        ' 
lateral,    the  segments  bisect  each  other. 

34.  If  two  triangles  have  a  side  and  two  angles  of  one  congruent  to  a  side 
and  two  angles  of  the  other  then  the  triangles  are  congruent. 

35.  If  the  point  of  concurrence  of  the  altitudes  of  a  triangle  is  not  in  the 
interior  of  the  triangle  then  the  triangle  is  an  obtuse  triangle. 

36.  The  perimeter  of  the  triangle  formed  by  joining  the  midpoints  of  the 
sides  of  a  given  triangle  is  one  half  the  perimeter  of  the  given  triangle 

37.  The  bisectors  of  two  supplementary  adjacent  angles  are  perpen- 
dicular to  each  other. 

38.  The  bisector  of  an  angle  of  a  triangle  bisects  the  side  opposite. 

39.  Two  isosceles  triangles  are  congruent  if  their  vertex  angles  are 
congruent  and  their  bases  are  congruent. 

40.  If  the  diagonals  of  a  parallelogram  are  congruent,    the  parallelo- 
gram is  a  square. 

41.  If  the  diagonals  of  a  parallelogram  are  congruent  and  perpendicular, 
the  parallelogram  is  a  rectangle. 
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22.  If  CD  is  the  median  of  AABC  from  C  and  AB  =  2  •  CD  then  AADC  and 

ABDC  are       (?)      triangles. 

(A)    congruent  (B)     right  (C)    isosceles 

23.  Two  opposite  angles  of  an  isosceles  trapezoid  are         (?)     . 

(A)    congruent  (B)     suppleinentary        (C)    complementary 

24.  The  point  which  is  equidistant  from  the  three  vertices  of  a  triangle 

is  the  point  of  concurrence  of         (?) 

(A)    the  angle  bisectors      (B)    the  perpendicular  bisectors  of  the  sides 

(C)    the  altitudes 

25.  An  exterior  angle  at  one  vertex  of  a  triangle,   and  an  exterior  angle 

at  another  vertex  of  the  triangle  may  both  be  (?)     ■ 

(A)    acute  (B)    right  (C)    obtuse 

26.  Suppose  that  A,    B,   and  C  are  vertices  of  a  triangle  and  that  D  is  a 

point  on  BC  such  that  Ce   BD.      From  this  it  follows  that         (?) 

(A)    m(ZACD)  >  m(ZA)  (B)    m(ZACD)  <  m(ZA) 

(C)    m(ZACD)  >  m(ZACB)         (D)    m(ZACD)  <  m(ZACB) 

Part  II. 

Each  of  the  following  sentences  is  a  generalization.     If  you  think  the 

generalization  is  a  theorem,    say  so.     If  you  think  the  generalization  is 
not  a  theorem,    draw  a  counter-example. 

2  7.       If  two  triangles  have  two  sides  and  an  angle  of  one  congruent  to  two 

sides  and  an  angle  of  the  other,    the  triangles  are  congruent. 

28.       If  a  polygon  is  equilateral,    it  is  equiangular. 

TC[6-185]d 





13.  Suppose  that  N  and  P  are  the  midpoints  of  the  diagonals  AC  and  BD, 

respectively,    of  quadrilateral  ABCD.     If  M  is  the  midpoint  of  AD 

and  MN  =   5  and  MP  =  3,    what  is  AB  ? 

14.  If  the  measures  of  the  diagonals  of  a  quadrilateral  are  8  and  10, 

what  is  the  perimeter  of  the  new  quadrilateral  whose  adjacent 

vertices  are  the  midpoints  of  the  adjacent  sides  of  the  given  quad- 
rilateral ? 

15.  The  median  of  a  trapezoid  is  7  inches  long  and  one  base  is  9  inches 

long.     How  long  is  the  other  base? 

16.  If  the  hypotenuse  of  a  right  triangle  is   15  inches  long,    how  long  is 

the  median  to  the  hypotenuse  ? 

17.  In  AABC,   LC  is  a  right  angle,   AB  =  6,    and  AC  =  3.     Find  the  number 

of  degrees  in  ZB. 

18.  Suppose  that  each  of  a  pair  of  base  angles  of  an  isosceles  trapezoid 

is  an  angle  of  45",    the  smaller  base  is   10  inches  long,   and  the  bases 
are  3  inches  apart.     How  long  is  the  longer  base? 

19.  Suppose  that  quadrilateral  ABCD  is  a  parallelogram  with  AB  =    10 

and  AD  =  4.      If  ZA  is  an  angle  of  30°,    what  is  the  distance  between 
AB  and  DC? 

20.  If  the  average  of  the  measures  of  the  exterior  angles  of  a  convex 

polygon  is  45,    what  is  the  sum  of  the  measures  of  the  angles  of  that 

polygon? 

21.  An  angle  of  a  regular  polygon  is  an  angle  of  156°.     Find  the  number 
of  sides  of  the  polygon. 
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2.  Points  P  and  Q  are  7  inches  apart.     How  many  points  are  there 

which  are   12  inches  from  P  and  5  inches  from  Q? 

3.  What  is  the  measure  of  an  angle  whose  supplement  is  four  times  its 

connplement  ? 

4.  Two  angles  are  complementary  and  one  is  20°  larger  than  the  other. 
Find  the  number  of  degrees  in  the  smaller  angle. 

5.  The  measures  of  the  three  angles  of  a  triangle  are  in  the  ratio 

1:  3:5.      What  is  the  measure  of  the  smallest  angle  of  the  triangle? 

6.  The  vertex  angle  of  an  isosceles  triangle  is  an  angle  of  70°.      Find 
the  number  of  degrees  in  a  base  angle. 

7.  Suppose  that,    in  AABC,    m(ZC)  =   90  and  m(ZB)  =  33  .     If  CM  is  the 

median  and  CD  is  the  altitude  of  AABC  from  C,    what  is  m{ZMCD)  ? 

8.  In  AABC,  nn(ZB)  =  3  •  m(ZA)  and  an  exterior  angle  at  C  is  an  angle 

of  60°.  How  nnany  degrees  are  there  in  the  smallest  angle  of  the 
triangle  ? 

9.  If,    in  AABC,    m{ZA)  =  x+  5,    m(ZB)  =  x+   15,    and  m(ZC)  =  2x  -  20, 

what  is  the  measure  of  the  smallest  angle  of  the  triangle? 

10.  Suppose  that  quadrilateral  ABCD  is  convex  and  that  m{ZA)  =   85and 

m(ZB)  =   100.     If  E  is  a  point  such  that  CE  bisects  ZBCD  and  DE 

bisects  ZCDA,    find  the  number  of  degrees  in  ZCED. 

<->        «-> 

11.  Suppose  that  quadrilateral  ABCD  is  a  trapezoid  with  AB    |  |   CD, 

AB  =  2  •  DC,   and  AD  =  DC  =  CB.      What  is  m(ZADC)  ? 

12.  In  AABC,    D  and  E  are  midpoints  of  AB  and  BC,    respectively.     If 

DE  =   12,    what  is  AC? 
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(i)      Yes;     Yes  (j)      Yes;     Yes  (k)    No;     Yes  {1)    Yes;     Yes 

(m)     Yes;     Yes  (n)     Yes;     Yes 

In  Exercise  2,    the  only  role  played  by  the  figure  is  to  identify  ZA  as 

ZCAB,   ZB'  as  ZA'B'C,    etc.     In  Exercise  3,    the  figure  plays  no  essen- 
tial role  except  in  part  (i)  where  to  show  that  (i)  is  sufficient  for  (*)  one 

must  take  for  granted  that  C  and  D  are  on  the  same  side  of  AB.     In  Exer- 

cise 4,  different  people  may  reasonably  give  different  answers  according 

as  to  what  each  takes  from  the  figure.     For  example,    one  who  accepts 

the  figure's  suggestion  that  AD  ,|^BC  will  say  that  (a)  is  necessary  for 
(*),    while  one  who  does  not  accept  this  suggestion  will  say  that  (a)  is  not 

necessary  for  (*)  [but  that  'AB    |  |   DC  or  AD    |  |   BC'  is  necessary  for 

('!')].     Similarly,    one  who  accepts  the  suggestion  that  AD  r\  BC  =   <^  will 

say  that  (b)  is  sufficient  for  (*),    while  one  who  does  not  accept  this  sug- 

gestion will  say  that  (b)  is  not  sufficient  for  (*).      The  answers  given 

below  are  based  on  the  figure's  suggestion  that  AB  v^  BC  v_/  CD  v_^  DA  is 
a  quadrilateral,    and  [for  part  (d)]  that  its  diagonals  intersect  at  E. 

4.       (a)    No;     No  (b)    No;     Yes  (c)    No;     Yes  (d)    No;     Yes 

Quiz.     [Covering  pages  6-1  through  6- 185]. 

[There  probably  are  more  items  here  than  you  might  wish  to  include 

even  in  a  mid-unit  examination.     Perhaps  you  will  find  use  for  some  of 
them  in  review  assignments  to  be  given  prior  to  the  examination.] 

Part  I. 

1.  Suppose  that  B  is  a  point  in  ED  and  A  and  C  are  two  points  in  the 

same  side  of  ED  such  that  ZABC  is  a  right  angle.  If  m(ZCBD)  is 

X  then  m(ZABE)  =         ? 
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Corrections, 

On  page  6-  187,    delete  'also'  from  the  last 
part  of  line  7b : 

.  .  .  ,   and   are  in  pro- 

Line  2b  should  end  with: 
.  .  .  ,   and  BC  are  in 

t 

Answers  for  Part  A   [on  pages  6-186  and  6-187], 

1.     (a)    J (b)     2  (c)     1  (d)    J    [See  Part  B  on  page  6-187.] 

(e)     2  (f)      congruent 

(g)    ̂  

2.     (a)    8;    12 (b)     l;    2 

(c)    I 

3.     (a)     PN;    QS    [or:    MN;    RS] 
(b)     2 

Answers  for  Part  B  [on  pages  6-187  and  6-188], 

['nondegenerate  ones'  signifies  that  none  of  the  ratios  we  shall  consider 

is  0,     The  'of  course'  signifies  the  restriction  about  not  dividing  by  0,] 

In  Unit  5,    we  said  that  nonzero  numbers  u,   v,   x,   and  y  are  in  proportion 

if  and  only  if  u/v  =  x/y.     In  Unit  6,    we  extend  the  meaning  of  'in  propor- 

tion' to  segments.     Similarly,   the  word  'ratio'  has  its  meaning  extended 

to  include  segnnents.      These  extensions  in  meaning  are  not  too  great. 

In  fact,  if  we  wished  to  be  pedantic,  we  could  stick  with  the  Unit  5  nnean- 

ing  completely  just  by  talking  about  the  ratio  of  the  measure  of  a  first 

segment  to  the  measure  of  a  second,    etc. 

*— •      • — •      • — •  • — •  AB  CD 
AB,    EF,    CD,    and  GH  are  in  proportion  because    p^    =    ̂ ttt  , 

•— «     • — •       • — •  • — •  AB      /     GH 
AB,   EF,    GH,   and  CD  are  not  in  proportion  because    ^^f-  t    th^  • 

1.      CD;     EF;    GH;     CD;     GH;     EF 

2,      Since    yrr   =    -T— f      DE  =   2. 
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i.     Suppose  that  AD,    DE,   AB,    and  BC  are  in  proportion.      Then,    by- 
definition, 

AD    AB 
DE    BC 

So, 
AD 

DE 

AB 

(DE-BC) 

=    BC<^^-^^)' AD'BC =    AB  •  DE, 

AD-BC AB-DE 
AD«AB 

BC AD • AB ' 
DE AB 

AD' 

BC 

AB    ̂   ̂ 

= 

AD   ̂   ̂'
 

BC  +  AB DE  +  AD 
AB 

AD        ' 
AC 

AE 
Xb 

AD' 

AC  /AB  •  AD  \ 
AB  [aC- AE  / 

= AE  /AB  -AD 

AD  (aC-AE 
AD AB 
AE "~ AC 

Therefore,   by  definition,   AD,   AE,   AB,   and  AC  are  in  proportion. 
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.       „.  AB        CD         ,    CD        FG      .^  ,  ,,  ^.     ̂   AB        FG       ̂ ,  - 
4.     Since  r^-^  =  ̂ ^  and  ̂ ^  =   7=r?T,   it  follows  that  ̂ ^-^  =   qiT.     Therefore, 

by  definition,   AB,   BC,    FG,   and  GH  are  in  proportion. 

Answers  for  Part  C   [on  pages  6-188,  6-189,  and  6-190], 

1.     4  :  5;     5  :  4  2.     Since  |;^--^    =       ̂          and  N^N^  >  0,    N^^N^  =  6. 

46 

3.  (a)     10  (b)    4  (c)     10  (d)     20  (e)     10,  -10  (f)     -^ 

4.  10,    ~,     30    or    6,     10,     18    or     ̂ ,     ~,     10  5.     ak,    bk,    ck 

/jbdcd  -jvL  abc 
6.     d,     — ,      —  7.     Yes,    because   _=_=_  =  ...    . 

8.  kXj^;    kx^;    kxg 

Proof.     Suppose  Xj^,    x^,   Xg,    ...   is  proportional  to  y^,   y^,    y^,    .... 

X.  X  X.  V 

Then,    by  definition,     — 3^  =   -S-  =   -2.  =   .  .  .    .      Let  k  =   -i.     k  ;^  0 
yi        Ys        Ya  ^1 

y  y  y 

because  y     /  0.      Also,    V^  =   -r-'^^f    Yp  =   :3^  '  Xp  =   — ^'  x   ,    ...    . 

So,   y^^  =  kXj^,     y^  =  kx^   

On  the  other  hand,    suppose  there  is  a  nonzero  number  k  such  that 

Yj^  =  kXj^,    y^  =  kXg,    y^  =  kXg,    ...    .      Then,    since  none  of  the  nunnbers 

x^,   _  ̂  _  x^        X3 
Xj^,    Xg,    Xg,    .  .  . ,    y^,    Y^,    y^,    .  .  .    is  U.   ̂   -—.... 

So,   by  definition,   x^^,   x^,   Xg,    ...  is  proportional  to  y^^,   y^,   y^,    .... 

9.  Suppose  that  a,   b  is  proportional  to  c,    d.      Then,    a/c  =  b/d.     That 
is,    b/d  =  a/c.     So,  b,  a  is  proportional  to  d,  c.     Hence,   if  a,   b  is 
proportional  to  c,    d  then  b,    a  is  proportional  to  d,    c. 
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10.    (a)    Suppose  that  a,    b  is  proportional  to  c,    d.     Then,    by  definition, 

—  =   -r.      So,    — (cd)  =   -T(cd)    and   ad  =  be.      Hence,   if  a,    b   is  pro- 

portional to  c,    d  then  ad  =  be. 

(b)  ad  =  be;     ad*  —y  =  be  •  -—3-;      —  =  -3-.      So,   a,   b  is  proportional 
cd  cd        c        d  r      f 

to  c,    d. 

(c)  a,    b  is  proportional  to  c,   d 

ad  =  be  [Part  (a)] 

ad  =  eb 

a,    c  is  proportional  to  b,    d  [Part  (b)] 

(d)  a,    b  is  proportional  to  c,    d 

ad  =  be  [Part  (a)] 

ad  +  ab  =  be  +  ab 

a(b  +  d)  =  b(a  +  e) 

a,    b  is  proportional  to  a  +  c,    b  +  d  [Part  (b)] 

[Also,  see  the  COMMENTARY  for  Exercise  3  of  Part  B  on  6-187.] 

(e)  a,    b  is  proportional  to  c,    d 

ad  =  be  [Part  (a)] 

ad  +  ae  =  be  +  ae 

a(c  +  d)  =  (a  +  b)c 

a,   a  +  b  is  proportional  to  e,    c  +  d  [Part  (b)] 

11.    Given: 
HA  AB  BD  DF 

lA  AC  CE    "    EG 

,,.    e-  AB        BD      .       „  ,.,    ,      AB        AB  +  BD         „    ̂  
(1)   Since  -^  =   ■^,    by  Exercise  10(e).    -^  =   AC  +  CE  '      ̂ "*' 

AR  AD 

AB  +  BD  =  AD  and  AC  +  CE  =  AE.      So,    ■—  =   ̂ . 
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,-.     „.  AB        BD       .^  r  ,,  r  TT  •        11/iv  *L   .  AB        AD 
(2)  Since   -^-p   =   7==^.    it  follows  from  Exercise  11(1)  that   X7=="  -   'af"  * 

So,   by  Exercise  10(c),     -^-^  =  -^^. 

(3)  Since  y^  =   ;^-p->    it  follows  from  Exercise  10(e)  that  yk~  ~   Tr~* 

So,    by  Exercise  10(c),    ttq    =   jqJ    that  is,    ryg-  =   j^. 

...     „.  BD        DF      .^  .   „  ,  ^  ,-,    .     ̂     ̂    BD        BF 
(4)  Since   jr^  =    g7^»    it  follows  from  Exercise  10(e)  that  -pp-  =   -pp. 

la      TT  11/ix      AB         AD        „  AB         BD      .,  ,   „ 

By  Exercise  11(1),    -^-^  =   -Tw-     ̂ °'  since   -^-^  =   -p^i    it  follows  that 

A§  =   IS-      ̂°'    '^y  Exercise  10(c),    ̂   =  :^. 

(5)  By  Exercise  11(3),    -j^  -   Tn"*     ̂ °'    since   y^  =   g^,    it  follows  that 

g§  =  S§.      Hence,    by  Exercise  10(c),    gj  =  f£. 

(6)  Since   -pg-  =   ̂ q-i    it  follows  from  Exercise  10(e)  that   ■p^  =    pp-. 

AB         R  D 

(7)  Since   j-^  =   -^^-j    it  follows  from  Exercise  10(a)  that  AB  •  CE  =  BD'AC; 
thct  is,    that  AB  •  CE  =  AC  •  BD. 

,„.     „.  AB        BD        DF       .^  .   „  ^  „  ,„,    , 
(a)     bince   -^-p-  =   ̂ g-  =   gQ-i     it  follows  from  Exercise  10(e)  that 

AB    _   AB  +  BD   _   AB  +  BD  +  DF    _   AF 

AC  "  AC  +  CE   "  AC  +  CE  +  EG   ~   AG  *  '    ̂   Exercise  10(a), 

AB-AG  =  AF-AC;   that  is,   AF-AC  =  AG«AB. 

(9)    Since  -j-^  =   -^^  =  -g^,    it  follows  from  Exercise   10(e)  that  ■ja'  ~   TT^' 

So,   by  Exercise  10(a),   HA  •  CG  =  BF  •  LA;   that  is  CG  •  AH  =  BF  •  lA. 
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HA        AB 
(10)    Since  yx~  -   "fire'    ̂ ^  follows  from  Exercise  10(a)  that 

HA  -AC  =  AB  •  lA;    that  is,   that  AB  •  AI  =  HA  •  AC. 

12.  (I)        'a,    b  is  proportional  to  c,    d'  is  a  necessary  and  sufficient 
condition  for  'ad  =  be'. 

(II)  'ad  =  be'  is  a  necessary  and  sufficient  condition  for  'a,    b  is 
proportional  to  c,    d'. 

(III)  'a,    b  is  proportional  to  c,    d  if  and  only  if  ad  =  be'  is  a  theorem, 

(IV)  'ad  =  be  if  and  only  if  a,    b  is  proportional  to  c,    d*  is  a  theorem. 

13.  (a)    sufficient  [See  Exercise  10(e).] 

(b)  only  if  [See  Exercise  10(d).] 

(c)  necessary  [See  Exercise  10(e).] 

[Actually,    'necessary'  is  also  correct  for  part  (a).     The  converse 
of  the  theorem  in  Exercise  10(c)  is  just  an  alphabetic  variant  of  the 
theorem  itself.  ] 

14.    Ex.    10(c):     if  a,    c  is  proportional  to  b,    d  then  a,    b  is  proportional 
to  c,    d 

This  is  a  theorem  because  it  is  just  an  alphabetic  variant  of  the 

given  conditional.     [Interchange  'b'  and  'c'.] 

Ex.    10(d):     if  a,    b  is  proportional  to  a  +  c,    b  +  d,    then  a,    b  is 
proportional  to  c,    d 

This  is  a  theorem.     Just  reverse  the  order  of  the  steps  in  the 
proof  for  Exercise  10(d). 

Ex.    10(e):     if  a,    a  +  b  is  proportional  to  c,    c  +  d  then  a,   b  is 
proportional  to  c,    d 

This  is  a  theorem.     Just  reverse  the  order  of  the  steps  in  the 
proof  for  Exercise  10(e). 
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Correction. 

On  page  6-192,   the  last  part  of  line  6  should 
be:       FGHE  —  ABCD 

line  3:     Theorem  6-24 

MN  1  NR 
line  8: RS 

line  6:     Theorenn  5-13 

SM 
AB 

BC    "     CD  DA 

Answers  for  Part  A. 

Answers  for  Parts  B  and  C   [on  page  6-192]. 

AD  E 

Part  B 

The  exercises  on  page  6-430  are  innportant  for  the  work  in  the  next 
subsection. 
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Correction. 

On  page  6 
In  line  4, 

-193. 

chang 
line  3, 

e  *B'A" 

— ^ 

change  'A'B" to  'B'A". 

to 

— ^ 

'A'B". 

Answers  to  questions  on  page  6-193. 

line  7.       Theorem  5-11  line  12.      s.a.s, 

The  argument  referred  to  between  brackets  on  line  1 1  of  page  6-194  can 
be  obtained  by  starting  on  line  10  of  page  6-193  and  systematically  inter- 

changing 'A'  and  'B'  throughout  the  text  up  to  and  including  line  6  on  page 
6-194.     Also,    replace  the  two  figures  on  page  6-193  as  indicated. 

Referring  to  the  figure  on  page  6-195,    note  that  each  of  the  p  congruent 
segments  is  congruent  to  each  of  the  q  congruent  segments. 

That  aAz   is  not  rational  can  be  proved  as  follows  [see  Unit  4,   page  4-48]; 

Suppose  that  nTZ  were  rational.     Then,    there  would  be  many  nonzero  whole 
numbers  whose  products  by  nZ  would  be  whole  numbers.     Let  q  be  the 
least  such,    and  suppose  that  qNfZ  =  p.     Since  1  <  'v/Z  <   2,    1  <  p/q  <   2. 
Hence,    q  <  p  <   2q,    and  0  <  p  -  q  <   q.      Since  p  -  q  is  a  nonzero  whole 
nunnber  smaller  than  q,    it  follows  that  (p  -  q)'/2  is  not  a  whole  number. 
But,    (p  -  q)^rZ  =  (p  -  q){p/q)   =  (pVq^)  '  q  "  P  =  2q  -  p.     Since  2q  -  p  is 
a  nonzero  whole  number,   it  follows  that  (p  -  q)'sr2  is  a  whole  number, 
results  from  this   contradiction  that  there  is  no  whole  number  whose 

product  by  n/T  is  a  whole  number.     That  is,   '^/~2  is  not  rational. 

It 

If  [line  3  fronn  foot  of  page  6-195]  it  were  possible  to  find  a  point  B  e  AC 
such  that  the  two  segments  could  be  divided  into  p  segments  and  q  seg- 

ments,   respectively,    all  congruent,    then  n/~2  =  AB/BC  =  p/q;    whence, \fZ  would  be  rational.     Since  \fZ  is  irrational,   there  is  no  such  point  B. 
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Correction. 

On  page  6-199,    line  8  b  should  read; 
(10)  ...    [Steps  like  (2),    (4),    (6),    (7),    and  (8)] 

Answers  to  questions  on  page  6-199. 

line  5.     Theorem  2-1  and  Theorenn  5-11 

last  line.      (16)    AB  and  AC  are  propor- 

tional to  A^'  and  A^' 

[(14);  def.  of  triangle-simi- 

larity] 

(17)    AB/A'B'  =  AC/A'C [(16);  def,  of  proportionality] 

(18)    AB  •  A'  C  =  A'B'  •  AC [(17)1 

Answers  for  Part  A  [on  page  6-200], 

1.     By  Theorem  7-2,     -?-  -   T  -    q*      '^°>   x  =  12  and  y  =  18. 

3  X 

2.     By  Theorenn  7-2,    -^  = 
5         c  -7        J  20 

4        28/3   =   y-      ̂°'   ̂ =  7andy=  
 ̂ . 

5        7  21 
3.  By  Theorenn  7-1,    t  =  —.      So,   x  =  -=- . J  X  o 

2        X 

4.  By  Theorenn  7-1,    x  ~    c"*      ̂ o»   ̂   ~  2.5. 

5.  This  problem  requires  a  double  use  of  Theorenn  7-1. 

By  Theorenn  7-1,    —  =   —  and —  =   -r. '  u        V  X        4 
So, 

i.  H.  =  1.1 
u      X        V      4  * 

Therefore,    —  =  -r.    So,   x  =  rj-. X        4  3 

5         7  49  84 
6.  By  Theorenn  7-1  [and  Axiom  A],    y  =  — .      So,   y  =  -^,     So,   x  =  -r-. 

[Or,    use  Exercise  10(d)  on  page  6-189  to  get  *5/l2   =   7/x'.] 

2        3  3        X 

7.  By  Theorenn  7-1,    —  =  ̂ r.      So,   x  =  2.      But,    j-  ~  ~-      So,   y  =  4. 

8.  Use  various  transfornnations  to  get  '7/35    =   x/30'.     Then,   x  =  6. 
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QR         SQ 
Since  MNP  <-•  SQR  is  a  similarity,   it  follows  that  ̂ r^p-  =  -rrsr.      So, 

^  =   f^;   and  QR  =  2  •  NP.     [Now,   if  K  e  NP  then  either  K  e  NP  or  K  =  P JNP  1 J    

or  P  e  NK.     But,   if  K  =  P  then  KP  =  0  and  if  P  e  NK  then  KP  <  NK.    Since 

KP  =  10  and  NK  =  5,   it  follows  that  KP  /  0  and  that  KP  /^  NK.     So,   K  /^  P 

and  P  ̂   NK.     Hence,   if  K  €  NP  then  K  e  NP.  )    Since  K  e  NP,    NP  =  NK  + 

KP  =  5  +  10  =  15.     Since  QR  =  2  •  NP,   QR  =  30.     [Since  (assuming  that 

K  e  NP)  T  €  QR,   and  since  QT  =  10  <   30   =  QR,    it  follows  that  T  e  QR.] 

Since  T  e  QR,   TR  =  QR  -  QT  =  30  -  10  =  20.     [On  the  other  hand,   if 

N  e  KP  and  Q  e  TR  then  KP  =  KN  +  NP  and  TR  =  TQ  +  QR.     Hence, 

NP  =  10  -  5  =  5  and,    since  QR  =  2«NP,    QR  =  10.     So,   TR  =20.] 

Answer  for  Part  D. 

By  Theorenn  3-6,   the  triangles  are  equiangular.     By  Theorem  5-11, 
each  angle  is  an  angle  of  60°.     So,  ZA  =^  ZD  andZB  =  ZE.     Hence,   by 
the  a.  a.    similarity  theorem,   ABC  -•-•  DEF  is  a  similarity.     Therefore, 
by  the  definition  of  similar  triangles,   A  ABC  ~  ADEF.     [Ask  students  if 
each  two  squares  are  similar.     How  about  each  two  rectangles?     Each 
two  rhombuses?] 

Answer  for  Part  E. 

By  Theorem  2-2,  ZA  s  ZA',   and,   by   hypothesis,  ZB  s  ZB'.     So,   by  the 
a.  a.   similarity  theorem,  ABC  *—  A'B'C'  is  a  similarity.      Hence, 
AABC  ~  AA'B'C. 

Answers  for  Part  F    [on  pages  6-201  and  6-202]. 

[The  exercises  in  Part  F  foreshadow  Theorems  10-30,  10-31,  and  10-32.] 

1.     The  vertical  angles  ZAPD  and  ZBPC  are  congruent.     By  hypothesis, 

so  are  ZD  and  ZC.      Hence,    by  the   a.  a.    similarity  theorem, 

APD  — »  BPC  is  a  similarity.     By  the  definition  of  triangle -sinnilarity, 

gp-  =   gg-.       Finally,    by  algebra,   AP-PC  =  BP  •  PD. 
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[Since  MN  -/^  MK,    K  ;^  N.     So,    either  K  e  NP  or  N  e  KP.     In  either  case, 

since  ZMKN  is  a  right  angle,   ZMNK  is  an  acute  angle.     If  K  e  NP  then 

Z  MNK  =  Z  MNP,    and  Z  MNP  is  acute .     If  N  e  KP  then  Z  MNK  and  Z  MNP 

are  supplennentary,   andZMNP  is  obtuse.     Since  MNP  — *  SQR  is  a  simi- 

larity,  ZMNP  S  ZSQR.     So,    if  K  e  NP,   ZSQR  is  acute  and,   if  N  €  KP, 

ZSQR  is  obtuse.     Hence,    since  ST  J.  QR,  it  follows,  in  both  cases,  that 

T  ;^  Q.     So,    either  T  e  QR  or  Q  e  TR.     Since  if  T  e  QR  then  ZSQT  =  ZSQR 

and  ZSQT  is  acute,   it  follows  that  if  T  e  QR  then  N  i  KP.     Hence,   if 

N  e  KP  then  T  i  QR;    so,    Q  €  TR.     Similarly,   if  K  e  NP  then  T  €  QR.] 

N      K 

Q      10      T 

Now,   if  K  e  NP  and  T  €  QR  then  ZMNK  =  ZMNP  and  ZSQR  =  ZSQT. 

Since  MNP  *—  SQR  is  a  siaiilarity,    it  follows  that  ZMNP  S  ZSQR. 

Hence,  Z  MNK  s  ZSQT.  [On  the  other  hand,   if  N  e  KP  and  Q  6  TR  then 

ZMNK  and  ZSQT  are  supplements  of  the  congruent  angles  ZMNP  and 

ZSQR.     So,  in  this  case,  also,  ZMNK  S  ZSQT.]    Since  ZMKN  andZSTQ 

are  right  angles,    they  are  congruent.     Hence,  by  the  a.  a.    similarity 
MK        KN        NM 

theorem,    MKN  —*■  STQ  is  a  similarity.     Therefore, 
12        KN         13 

ST 

TQ 

QS  • 

So, 
ST 10 =   yr- .      Consequently,   ST  =  24  and  KN  =  5. 
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The  exercises  on  pages  6-431  and  6-432  give  a  developmental  review  of 
work  with  radicals.     Students  will  need  such  skills  in  connection  with  the 
Pythagorean  Theorem. 

Answers  for  Part  B, 

[Notice  that  as  in  the  case  of  triangle-congruence,    one  cannot  depend 
upon  a  sentence  like  *AABC  ~  ADEF'  to  tell  him  which  of  the  six  match - 
ings  of  the  vertices  is  a  similarity.     Hence,   the  bracketed  sentence  for 

safety's  sake.  ] 

1.     Since  ABC  — •  DEF  is  a  similarity,    it  follows  from  the  definition  of 
triangle -similarity  that  AB/DE  =  BC/EF  =  CA/FD,     Therefore, 
2/DE  =  7/14  =  6/FD.      Hence,   FD  =  12  and  DE  =  4. 

2. 4 
7 

10         ptr  -    35 
EF'    ̂ ^-     2 

3. DE  -  3/2 

DE 

4 
6 

AC 

AC  +  5/2 

4  •  DE    =    6  •  DE  -  9 4'AC  +  10    =   6- AC 

DE   =   I AC   =    5 

-=M  =  3 
-  =  -!  =  ¥ 

Answer  for  Part  C. 

For  this  exercise  there  are  two  cases  to  be  considered,    according  as 

K  €  NP  and  T  e  QR  or  N  e  KP  and  Q  e  TR.     A  complete  solution  includes 

a  proof  that  these  are  the  only  cases.     You  may  wish  your  students  to 

concentrate  on  the  solution  of  the  first  case.     If  so,    omit  the  bracketed 

portion  of  the  solution  which  follows.     If  you  want  to  make  the  exercise 

still  simpler,   assume  that  K  e  NP  and  T  e  QR  and  onnit  the  portions  of 

the  third  paragraph  which  are  enclosed  in  bold-face  brackets. 
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2.     By  hypothesis,  ZA  ̂   ll>.     Also,  ZP  S  ZP.     So,    by  the  a.  a.   simi- 
AP  PC 

larity  theorem,   APC  — *  DPB  is  a  similarity.      So,     ̂ p-    =    p=-  , 

Hence,  AP  •  PB  =  DP  •  PC;   that  is,    PA  •  PB  =  PD  ■  PC. 

3.     By  hypothesis,  ZA  ̂   ZPBC.      Also,  ZP  s  ZP.      So,   by  the  a.  a. 

similarity  theorem,    PBC  "-—  PAB  is  a  similarity.      So,   APBC  ' 

APAB.      Also,    px    ""    ?§•      ̂^^'=^'   (PB)^  =  PA.PC. 

Answers  for  Part  G. 

[This  part  foreshadows  Part  H.] 

1.  Since  ZC  and  ZD  are  right  angles,   AABC  and  AFED  are  right  triangles, 

By  Theorem  5-11,  ZA  is  a  complement  of  ZB,   and,    by  hypothesis, 

ZF  is  a  complement  of  ZB.     So,  ZA  ̂   ZF.     Hence,    by  Theorem  7-3, 

AABC  ~  AFED. 

2.  Since  ZC  ̂   ZD  and  ZA  ̂   ZF,    ABC  —  FED  is  a  similarity.     So, 

^.      Therefore,    ED  =  6 

AB        BC 

FF  "   ED   " 
CA 

DF  • 

That  is, 5           3 
10        ED 

and  DF  =  8. 

'!< 
Answers  for  Part  H. 

1.  By  Theorem  5-11,    ZACD  is  a  complement  of  ZA,   and  ZB  is  a 

complement  of  ZA.      Hence,  ZACD  S  ZB.     So,    by  Theorem  7-3, 

AADC  ~  ACDB. 

2.  Since  Z  ADC  S  ZCDB  and  ZACD  £^  ZB,    ADC  — *  CDB  is  a  similarity. 

So,    ̂   =  gC  ̂     That  is,   (CD)^  =  AD-  DB.     So,    CD  =  V3-  12   =  6. 
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3.     Since  ZA  ̂   ZA,   it  follows  from  Theorem  7-3  that  AACD  ~   AABC. 

4.     Since  ZADC  ^  ZACB  andZA  s  ZA,    ACD  —   ABC  is  a  similarity. 
AD        AC 

So,    g^  =  ̂.      That  is,   (AC)^  =  AD- AB.     So,   AC  =  V5  •  20   =  10. 

5.  Since  L'^  3  ZB,   it  follows  from  Theorem  7-3  that  ABCD   ~  ABAC. 

[Alternatively,    one  can  prove  that  triangle -similarity  is  a  tran- 

sitive relation  and  a  symmetric  relation  and  use  Exercises   1  and  3 

to  do  Exercise  5.] 

6.  Since  ZCDB  S  ZACB  andZB  S  ZB,    BCD  —   BAC  is  a  similarity. 

So,     ̂     =    &S- .      That  is,   (BC)^  =  BD-BA.      But,    BA  =  AD  +  DB. B.A.  B  U 

Hence,    BC  =  V9(7  +  9)    =  12. 

7.  From  Exercise  4,   (AC)^  =  AD-AB.      So,    AC  =  -H^c  . 

8.  From  Exercise  6,    (BC)^  =  BD-BA.      So,    BC  =  V7c. 

9.  From  Exercises  7  and  8,    (AC)^  +  (BC)^  =  xc  +  yc  =  (x  +  y)c.    Since 

D  e  AB,   AD  +  DB  =  AB;    that  is,    x  +  y  =  c.      So,    since  AB  =   c^ 

(AC)^  +  (BC)2  =  {AB)^ 

A  good  visual  aid  for  Part  H  can  be  made  by  cutting  two  enlarged  copies 

of  AABC  from  cardboard.      Color  one  of  these  red.     Then,   draw  CD  in 

the  other,    and  cut  along  CD  to  obtain  the  second  and  third  triangles 

[AACD  and  ABCD].     Color  the  larger  of  these  yellow  and  the  other  blue. 

The  smaller  ones  can  then  be  nnanipulated  and  compared  both  with  the 

larger  and  with  each  other. 
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In  Exercises  6  and  9  of  Part  H  one  assumes,   from  the  figure,  that 

De  AB.     Since  the  figure  is  part  of  these  exercises,   this  is  a  legitimate 

assumption.     However,    Theorem  7-4  speaks  of    "segments  into  which 

the  foot  of  the  altitude  divides  the  hypotenuse",    and  in  the  proof  of 

Theorem  7-5  given  at  the  foot  of  page  6-203  it  is  assumed  that  D  e  AB 

[y  +  X  =  c].      In  these  situations  it  is  essential  that  we  be  able  to  prove 

that  D  e  AB,   without  any  reference  to  the  figure.     Here  is  a  proof  that 

if,    in  AABC,    ZC  is  a  right  angle  then  the  foot  D  of   the  altitude  from  C 

belongs  to  AB : 

In  AABC,  ZC  is  larger  than  ZA.      So,   AB  >  BC.      In  ABCD, 

ZCDB  is  larger  thanZDCB.      So,   BC  >  BD.     Hence,   AB  >  BD. 

Consequently,    A  i  BD.     Similarly,   AB  >  AD.      So,    B  i  AD. 

Since  D  e  AB,   it  follows  that  D  e  AB.      [Note  that  this  argu- 

ment applies  more  generally  than  to  the  case  in  which  Z  C  is 

a  right  angle.     It  is  sufficient  that  neither  ZA  nor  ZB  be  larger 
thanZC] 
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Encourage  students  to  carry  out  the  dissection  problem  suggested  at  the 
bottom  of  page  6-204.  Putting  the  pieces  (1)  -{5)  together  to  form  (6)  is 
an  interesting  jigsaw  puzzle.     Here  is  a  solution  to  the  puzzle: 

Another  area  approach  to  the  Pythagorean  Theorem  is  the  following; 

__  a  _  _  Ja 

a  b 

Figure  2. 

Figure   1  shows  the  right  triangle  A  ABC  with  a  square  built  on  it.     The 

area-measure  of  the  total  square  is  c^  +  4t,    where  t  is  the  area-measure 

of  one  of  the  right  triangles.     Figure  2  shows  the  same  total  square  but 

dissected  in  such  a  way  that  its  area-measure  is  a^  +  b    +  4t.     So,  since 

a^  +  b^  +  4t  =  c^  +  4t,   it  follows  that  a^  +  b^  =  c^. 
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Answers  for  Part  A. 

5    _   4  +  X  _    8_  4      _    5^  10 

i-     3   -       4      '     ̂   "    3'  STI"       y'     ̂         3 

2.     x2  =  5^  +  12^     x=13;        5^  =  12z.     z  =   ||;        5^  +  (H]'  =  y^    y  =  i| 

Answers  for  Part  B. 

1.     10,  I0V2  2.    7,  7/2  3.    5/2  4.     ̂ 4^  5.    s/2  6.     ̂ ^ 

0- 

Answers  for  Part  C   [on  page  6-207]. 

(1)     5  (2)     12  (3)    41  (4)     /2T 

(5)     2/6  (6)     5/58  (7)     7/5  (8)    no  such  triangle 

3. 2x, 

x/1 
6. 

X 

2'
 

x/3 
2 

9 
x/3 

2x/3 

Answers  for  Part  D  [on  page  6-207], 

1.      16,    8/3  2.     170,     85/1 

4.     50,    50/3  5.     J,     |-/3 

7.      10,     20  8.     ̂.     ̂  

Answers  for  Part  E    [on  pages  6-207  and  6-208]. 

1.  Since  AC  =  BD,   and  (AC)^  =  7^  +  9^,   it  follows  that  AC-BD  =  130. 

2.  25/2     [Use  the  theorem  proved  in  Exercise  5  of  Part  B.] 

3.  16/3     [Use  the  theorem  proved  in  Exercise  9  of  Part  D.  ] 

4.  AB  =  /n  5.     13^ -x^  =  15^ -(14-x)^;    AD  =  5,     DC  =  9,     BD  =  12 
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Correction. 

On  page  6-Z08,    Exercise  12  should  begin: 

12.     In  AABC,   if  m(ZA)   ... 

t 

y^  +  x^    = 

(10  +  yf  +  x^    = 

100   +  20y   +  y^  +  x^    = 
100  +  20y  +  81    = 

y   = 

X     = 

9'
 

289 

289 

5.  4 

7.  2 

8.     16v3   inches 

10.    BD    =     lO/T 

BC     =     20 

11. 

BE  =  3\^ 

12. 
BD 
DC 

(BC)^ 

AD    =    3/2"  , 
20  -  3VT, 

(BD)^  +  (DC)^ 

18+400  -  120^/2"+18 
BC    =    2's/l09   -  30vT 

The  measure  of  a  mean  proportional 

between  AM  and  MB  is  VAM  •  MB. 

But,    AM  =  MB.     So,    this  measure  is 

AM,     But,    by  Theorem  6-28,    CM  = 

AM.     So,    CM  is  a  nnean  proportional 

between  AM  and  MB. 

TC[6-208,  209]a 





Answers  for  Part  F  [on  pages  6-208  and  6-209]. 

1. 
a 3 5 7 9 

11 

13 
15 

17 

19 

21 
23 

25 

b 4 
12 

24 40 
GO 8^  /'Z 

/f^- /5^ 

Z?o 

264^ 

3/2 c 5 13 25 

H-l 

61 
8b //3 

/V-5 /^/ 

III 

Z^5 

3/3 

2. 

2k  +  1 

y^   =   x^  +  (2k  +  1)^ 

y^  -  x^   =    (2k  +  1)^ 

(y  +x)(y   -  x)    =    (2k  +  1)^ 

We  notice  from  the  table  that  y  -  x  =  1. 

So,  y  +  X   =    (2k  +  1)' 
Also,    y+x  =  (x+l)+x  =  2x  +  l. 
So, 

Therefore, 

and 

2x  +  1    =  (2k  +  1)^ 
=  4k^  +  4k  +  1 

X   =  2k^  +  2k, 

y    =  2k^  +  2k  +  1. 

3.       (x  +  1)^  -  x^  =  2x  +  1  =  (V2x  +  1)^ 

'4- 

line  13.       A'C  =  5  because,    by  Theorem  7-5,    A'C  =   V32  +  42. 

line  14.       Yes. 

line  15  .      ABC  — *  A'B  'C  is  a  congruence  by  s  .  s  .  s. 

line  16.      ZB  and  ZB'  are  corresponding  angles  with  respect  to  this 

matching.     So,    ZB   S  ZB'  and,    since  ZB'  is  a  right  angle,    so 
is  ZB.     Hence,   by  definition,   AABC  is  a  right  triangle. 
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Answers  for  Part  G:      1,     2,     4,     5,     6,     7,     8 

Answer  for  Part  H. 

Since,    for  each  nonzero  number  k  of  arithmetic  (3k)     +  (4k)    =  (5k)  , 
it  follows  from  Theorem  7-6  that  any  triangle  with  sides  3k,    4k,    and 
5k  is  a  right  triangle. 

Answers  for  Part  ''^I. 
'1^ 

2v2 

1.       Since  (p^  -  q^)^  +  (2pq)^  =  p''  -  2p'q'  +  q*  +  4p'q'^  =  (p'  +  q^)%    U  follows 
from  Theorem  7-6  that  the  triangle  whose  sides  measure  p     -  q  ,    2pq, 2  2 

and  p     +  q    is  a  right  triangle. 

2. 

p 2 3 4 5 6 7 8 9 3 4 

q 1 1 1 1 1 1 1 1 2 2 

p  -  q 
3 8 

15 
24 

35 

48 

63 
80 5 

12 

2pq 
4 6 8 

10 
12 14 

16 

18 
12 

16 

P^  +  q^ 
5 10 

17 26 
37 

50 65 

82 

13 
20 

Answers  for  Part  J. 

1.  By  hypothesis,    DE   |  |   BC.     So,    by  Theorem  5-7,   ZADE  S  ZABC. 
Also,   ZA  ̂   ZA.     So,    by  the  a.  a.    similarity  theorem,    ADE  ——ABC 
is  a  similarity.     Hence,    AADE  ~  AABC. 

2.  Suppose  that  AABC  S  AA'B'C     Let  ABC  — *  A'B'C  be  a  congruence, 
Then,   ZA  ̂   ZA'andZB  =  ZB'.     So,    by  the  a.  a.    similarity  theorem, 
ABC  —*  A'B'C  is  a  similarity.     Hence,   AABC  ~  AA'B'C. 

3.  Suppose  that  AABC  ~  AGHI  and  ADEF  ~  AGHI.     Let  ABC  — *  GHI 
and  DEF  —  GHI  be  similarities.     Then,   ZA  S  ZG  and  ZD  S  ZG.    So, 
ZA  =  ZD.     Similarly,   ZB  S  ZE.     Hence,    by  the  a. a.   similarity 
theorem,    ABC  — '  DEF  is  a  similarity.     So,    AABC   ~  ADEF. 
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Correction. 

On  page  6-215,   lines  7b  and  6b  should  read: 

...    [Steps  like  (1)  -(3)  and  (5)  -(7)] 

lines  9,    10.     Yes 

lines  17-20.  AR'S'T'  ^  ARMN  because,  by  s.a.  s.,  R'S'T'  — *  RMN  is  a 

congruence.  Now,  since  MN  joins  the  midpoints  of  sides 

RS  and  RT  of  Z^RST,  MN  is  parallel  to  ST.  So  [by  Exercise 

1  of  Part  J  on  page  6-210],  ARST  ~  ARMN.  Since  AR'S'T' 

£^  ARMN,  it  follows  from  Theorem  7-7  that  they  are  simi- 

lar. And,  since  ARST  ~  ARMN,  it  follows  from  Theorem 

7-8  that  AR'S'T'  ~  ARST. 

line  7  on  page  6-212.       Theorems  7-7  and  7-i 

line  9  on  page  6-212.       Theorem  5-7 

line  10  on  page  6-213.     Substitution 

Query  on  page  6-214. If  ZA  is  a  right  angle,    CD  =  CA  and  BE  =  BA. 

So,    of  course,    CD  •  AB    =   BE  •  CA.     Otherwise, 

whatever  the  sizes  of  ZA,  ZB,    and  Z  C  [as  long 

as  ZA  is  not  a  right  angle],     C,  D,  and  A  are  non- 

coUinear  and  B,  E,    and  A  are  noncoUinear .     So, 

the  proof  given  in  the  solution  continues  to  apply. 

Students  should  sketch  other  cases  [for  examiple, 

one  in  which  ZA  is  obtuse,   and  one  in  which  Z  C 

is  obtuse]  and  see  that  the  positions  of  D  and  E 

on  AB  and  on  AC,    respectively,   are  irrelevant 

to  the  argument. 

Note  on  page  6-214.  3*4  =  5x.      So,   x  =  2.4. 

TC[6-211,  212,  213,  214] 



Answers  for  Part  A. 

,       ac  -         ac  o         ab  ^  bd 
1  •       ,  ^« b  a+b  b+c  a+b+c 

'J- 

Answer  for  Part   "^^B. 

„.                  PD    +    C  X  C  X-a  £:■  nr-^  ^C 
Since       ST=;     =    -,        ̂ 5T=r    =    — -— .  So,     PD  = 

PD       ~    a'  PD    ~       a    •        "".    -  ̂       x-a" 

Also.     P^^i^^-^^)  =   ̂.       So.    PD=   ̂ <f±^. '              PD  a                                b  -  a 

T,.         ,                 ac  a(c  +  d)          ,                x-a         b-a Therefore.        =   — ;   -;     whence,         =   — ; — v x-a  b-a                                 c             c  +  d 

„                     ,    c(b  -  a)  ad  +  be 
So,    X  =  a  +    ,  ■  ,       =    \    .    . c+d  c  +  d 

Answer  for  Part  C. 

Suppose  that  A  is  the  point  of  intersection.     Measure  ZBAC    [with  a 

magnetic  compass].     Then,    draw  a  triangle  AA'B'C  such  that  ZA'  s 

ZBAC  and  A'B'  and  A'C'  are  proportional  to  AB  and  AC.     [Of  course, 

we  are  assuming  that  the  roads  are  straight.]    Then,    by  the  s.a.  s, 

similarity  theorenn,   A'B'C   ••— ►   ABC  is  a  similarity.     So,   by  algebra, 

BC  =   j^i-Qt  '  B'C. 

Measure  B'C,    and  then  compute  BC.     To  find  the  direction  from  B  to 

C,    measure  ZB'.      Then,    use  this  nneasure  together  with  your  knowledge 

of  the  direction  from  A  to  B  to  connpute  the  direction  from  B  to  C. 
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PA  AB  ,  PA  AC 

PA*    "  A"^  ^"^  PA'    "  A'C'- 

So,    -P^   =  4^-     Also,  ZBAC  S  ZB'A'C.     So,   by  the  s.a.s. 

similarity  theorem,   ABC  — *A'B'C'  is  a  similarity.     So,  ZABC  = 

ZA'B'C,     But,   ZPBA  S  ZPB'A'.     So,  ZPBC  s  ZPB'C;  whence. 

BC    II    B'C. 

2.      As  in  Exercise  1  of  Part  D,   GKE  —- *  HKF  is  a  similarity.     So, 

gg   =  gj.     Hence,    GK' KF  =  EK'KH. 

3.  By  Theorem  5-13,  ZE  =  ZB.     So,   by  the  a. a.   similarity  theorem, 

..       ■  rr,^         r  ED         DF         EF 
EDF  -—^  BCA  IS  a  similarity.     Therefore,    -^r^  =  ̂ ^    =  gx  • 

So,    ED   =  EF-—    and  DF    =   EF-~. 

[Note  that  this  exercise  deals  with  the  problenn  of  the  inclined  plane. 

The  force  needed  to  move  a  body  along  the  incline  and  the  weight  of 

the  body  are  proportional  to  ED  and  EF,  respectively.    The  moving 

force  is  BC/BA  of  the  weight.     Clearly,    the  steeper  the  incline,    the 

larger  the  force  required  to  move  the  body.     If  you  wish  to  move 

the  body  through  a  vertical  distance  (BC),    you  can  increase  the 

mechanical  advantage  by  using  a  longer  inclined  plane  (BA).] 

4.  Let  D  be  the  point  of  intersection  of  the  three  segments.     Then,    as 

in  Exercise   1  of  Part  D,   ABD  —  A'B'D  and  ACD  —  A'C'D  are 

sinnilarities.     So, 

AB           AD 
A'B'        A'D 

,             AC      _    AD 
^"^           A'C'        A'D 

Therefore, AB           AC 

A'B'        A'C" c        AB        A'B' 
^'''    AC        A'C" 
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Answers  for  Part  D. 

1. 
ABE  — *  CDE  is  a  similarity. 

c         AB         BE        -,  BE         - 

^°'    CD    =   DE-     ̂ ^''^^'    DE    =   ̂• 

Ti.        f             BE  +  DE        _  ̂   , Iheretore,      ?5r7=:     =7  +  1. 
DE 

So,    BD  =  8*  ED. 

'^->        <->  • — ►        *— . 
[Vary  the  problem  so  that  AC  ̂   BD  =  {E}  while  AC  r\  BD  =  0. 

Then,    show  that  BD  =  6'  ED,] 

2.  Yes;  ABC  — *  FED 

3.  We  recognize  this  triangle  as  one  which  is  similar  to  a  3-4-5  tri 

angle.     So,    it  is  a  right  triangle.     Hence,    if  x  is  the  measure  of 

the  altitude  to  the  longest  side,      60x  =  36  •  48  [by  Example  1  on 

page  6-214].     So,    x  =  144/5. 

4.       Since  ABC  — •  A'B'C  is  a  similarity,   ZB  S  ZB'  and 

Now,    BM  =  !•  BC  and  B'M'  =  I'B'C.     So, 
BM 

B'M' 

AB 

A'B' 

BC 

B^C^' 

BC 

"    B^" Hence, 

To-r .     So,    by  the  s.a.s.    similarity  theorem,    ABM 
WW        JTB' 

A'B'M'  is  a  similarity.     Hence,    j- 

AM 

M'
 

AB 

A^B^- 

'1- 

Answers  for  Part  E, 

1.       Since  AB    ||   A/B',    ZPAB  S   ZPA'B'.     So,    since  ZP  =  ZP,    it  follows 

from  the  a.  a.   similarity  theorem  that  PAB  — *  PA'B'  is  a  similarity. 

Similarly,    PAC  — ^  PA'C  is  a  similarity.     Therefore, 
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Answers  for  Part   ''^  F 

1 
n 

p        m  +  n 

3.     ̂   +  ̂   =         " 

2. 

r 
q 

= m 
m  +  n 

m n  +  m 

-•   ? 

+ 1 1 
m  +  n m  +  n q r 

p         q         m  +  n 

Draw  AB  so  that  its  length  is  3  inches,    and  draw  CF  so  that  its 

length  is  5  inches.     Then,    regardless  of  the  length  of  AC,    ED  will 
« — •      • — > 

be    15/8   inches  long.     Moreover,   it  is  not  necessary  that  AB,    DE, 

and  CF  be  perpendicular  to  AC.     They  need  only  be  parallel  to  each 

other.      This  latter  point  is  nnade  in  Exercise  5. 

By  Exercise  3,     =r=r   =  —  +  —  and  -^ry^  =  —  +  — .     So,  FG  =  2  •  FE 
^  FE         X        y  EG        y        x 

and,    since  FE   =  — r^,     FG  =  — P— . X  +  y  X  +  y 

[Notice  that  FG  is  the  segment  with  end  points  on  the  legs  of  the 

trapezoid,   parallel  to  the  bases,   and  containing  the  point  of  inter- 

section of  the  diagonals.       If  the  distance  between  the  bases  is 

increased,    the  distance  between  E  and  AB  is  increased;     but,    no 

change  takes  place  in  the  length  of  FG.      Another  parallel  segment 

whose  length  does  not  change  when  the  distance  between  the  bases 

is  changed  is  the  median  of  the  trapezoid.     Notice  that  the  median's 
measure  is  the  arithmetic  mean  of  the  measures  of  the  bases,    and 

that  FG's  measure  is  the  harmonic  mean  of  the  nneasures  of  the 

bases.    An  interesting  problem  is  to  find  the  parallel  segnnent  whose 

measure  is  the  geometric  mean  of  the  measures  of  the  bases.    The 

arithmetic  mean  segment  contains  the  midpoints  of  the  legs,    and 

the  harmonic  nmean  segment  contains  the  intersection  of  the  diagonals. 

What  special  property  does  the  geometric  mean  segment  have?] 
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10. 
F      D 

Answers  for  Quiz. 

1.    63 

4.    30 

5.    6.5 

Hypothesis  : quadrilateral  ABCD  is 
a  parallelogram, 

De  FC, 

B  e  CH 

Conclusion: PE  •  PF    =    PG  •  PH 

2.     ABC  —   ADB     or    ABC   —    DAB 

A 

6.  ^  \^,  ̂       AD  =    ioV3, 

AB    =    20/3 

3.     20/3 

7,  1/2 

8.  15;    20 

9.    Each  side  of  the  smaller  triangle  is  half  as  long  as  the  parallel  side 

of  the  larger  triangle.      So,   the  triangles  are  similar  by  the  s.s.s. 

sinnilarity  theorem. 

AP  PE 
10.    APE  —    CPH  is  a  similarity.       So,     -^r^  -    pTT' 

AP  PG 
APG  — *    CPF   is  a  similarity.      So,     -^^  =    pp-- 

Therefore, PE PH 
PG 
PF So,    PE-  PF    =   PG-  PH. 
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Quiz. 

1.  Suppose  that  ABC  — -    DEF  is  a  similarity.      If  AB  =  3  •  DE  and  the 

perimeter  of  ADEF  is  21,   what  is  the  perimeter  of  AABC? 

2.  Suppose  that  AABC  is  isosceles  with  vertex  angle  at  C.  If  D  is  a 

point  in  AC  such  that  AB  =  BD,  give  a  matching  of  the  vertices  of 

AABC  with  those  of  AABD  which  is  a  sinnilarity. 

3.  B  If  DE    I  I  AB,     AD  =  2,     DB  =  3,     and  DE  =  4, 

then  AC  =        ? 

A  C 

4.  If  the  measure  of  an  altitude  of  an  equilateral  triangle  is  5v3,   what 

is  the  perimeter  of  the  triangle? 

5.  If  the  nneasures  of  two  legs  of  a  right  triangle  are  5  and  12,   what  is 

the  nneasure  of  the  median  from  the  vertex  of  the  right  angle? 

6.  Suppose  that,   in  AABC,  ZA  is  an  angle  of  105",  Z  C  is  an  angle  of  45°, 
and  AC  =   lOV^.      Find  the  measure  of  AB. 

7.  Suppose  that  quadrilateral  ABCD  is  a  parallelogram  and  that  M  is  the 

midpoint  of  AB.     If  DM  r^  AC  =   {P},   what  is  the  ratio  of  AP  to  PC? 

8o     Suppose  that  AABC  is  a  right  triangle  with  ZC  the  right  angle.      If 

CD  ±  AB  at  D,   AD  =  9,    and  BD  =  16,  then  AC  =  _?_  and  BC  =      ?    . 

9.      Prove  that  the  triangle  whose  vertices  are  the  midpoints  of  the  sides 

of  a  given  triangle  is  similar  to  the  given  triangle. 

TC[6-219]a 



Answers  for  Exploration  Exercises. 

A,      By  Exercise  5  of  Part  B  on  page  6-206,     d  =  svZ 

B. 1.     By  Exercise  6  of  Part  D  on  page  6-207, 

d^  =  2(1^)  =  s^- 

2.     By  the  same  exercise,    d. 2s 

Parts  A  and  B  are  readily  solved,    since  the  ratios  of  the  sides  of 
45-45-90  and  30-60-90  triangles  are  well-known.      A  similar  pro- 

cedure for  finding  the  measure  of  the  diameter  of 
a  regular  pentagon  would  require  finding,    first, 
the  ratios  of  the  sides  of  a  36-54-90  triangle.    The 
purpose  of  this  exercise,    indeed,    is  to  point  out 
the  utility  of  the  ratios  of  the  sides  of  a  right  tri- 

angle [that  is,  the  trigonometric  ratios]  by  placing 
students  in  a  position  where  they  will  wish  to  know 
them.     It  is  not  likely  that  many  students  will  find 

the  formula  asked  for,    nor  is  it  worth  much  of  their  time  to  search 
for  it.      However,    here  is  a  simple  derivation  of  the  formula  from 
theorems  about  isosceles  triangles  and  similarity  of  triangles;    Since 

each  angle  of  a  regular  pentagon  is  an  angle  of  10  8",    the  base  angles 
of  the  isosceles  triangle  AABC  [see  figure],    whose  base  has  measure 

d  and  whose  legs  have  measure  s,    are  angles  of  36°.      Since   108  = 
36  •  3,    the  two  diagonals  from  a  vertex  of  a  regular  pentagon  trisect 
the  angle  at  that  vertex.    It  now  follows,  by  a,  s.  a.  ,  that  ABC  — *  AFC 
is  a  congruence.     Hence,    by  the  s.  a.  s.    similarity  theorem,    ACD  -— 
CDF  is  a  similarity.      Consequently,    AC/CD   =    CD/DF- -that_is, 
d/s    =    s/(d  -s).   Heiice,    d^  -  sd  -  s^  =  0,    and  d  =  ;^(s  +  Vs^  +  4s2) 
or  d  =  |- (s  -  V  s^  +  4s^)  .     Since  d  is  a  number  of  arithmetic,    only  tlie 
former  makes   sense.      Hence,     d  =  ̂ ^(l  +  V  5). 

^D.      d^  =  s  +  2s^  =  s(I  +  VI); 

d,   =  d,^  =  sy2  +  /2 1  3    2 

dg  =  ̂ U^^  +  s^    -    sy4  +  2/2; 
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Approximations  asked  for  in  last  three  paragraphs  on  page  6-222. 

The  measure  of  a  diagonal  of  a  regular  pentagon  whose  side -measure 
is   10  is   16.  18  correct  to  the  nearest  0.  01.     [In  fact,   16.  179  <  d  <    16.  181. 
So,     |d  -   16.  18|   <  0.  001.] 

The  corresponding  result  for  a  regular  pentagon  whose  side-measure  is 
8  is   12.  94.     [In  fact,   12.  9432  £  d  <    12.  9448.     So,    |d  -  12.  944  |  <  0.  0008.  ] 

If  the  measure  of  a  diagonal  of  a  regular  pentagon  is   162  then  the  side- 
naeasure  is  approximately  100,    and  the  perimeter  is  approximately  500. 

An  approximation  to  ST  correct  to  the  nearest  0.  01  is   16.  38.     [In  fact, 
16.  383  <  ST  <    16.  385.      So,     |ST   -   16.  384  |  <  0.  00  1.  ] 

Since  each  two  congruent  acute  angles  have  the  same  sine  ratio,   we 
can  think  of  a  sine  ratio  as  pertaining  to  the  class  of  all  angles  of  a 
given  size,    rather  than  to  individual  angles.     So,    for  example,    if  /.A 

is  an  angle  of  36°,    we  can  speak  of  the  sine  ratio  of  36°,    rather  than 
the  sine  ratio  of  ZA.     Each  of  the  expressions  'sin  36°'  and  'sinZA' 
is  useful  in  various  contexts,    and,    at  this  level,    it  will  usually  not  be 
necessary  to  distinguish  between  the  somewhat  different  meanings 

which  'sin'  has  in  the  two  expressions.     However,  if  one  wishes  to  talk 
about  trigonometric  functions,    the  'sin'  in  'sin  36°  '  nannes  a  function 
whose  donnain  is  the  set  of  congruence  classes  of  acute  angles,    while 
the  'sin'  in  'sin  ZA'  names  a  function  whose  donnain  is  the  set  of  acute 
angles.     One  argument  of  the  first  function  is,  for  example,  the  class 

of  all  36°- angles,    while  one  argunnent  of  the  second  function  is  some 
particular  36°-angle.     In  this  unit  we  make  little  use  of  the  function 
concept,   and  both  'sin  36°'  and  'sinZA'    [when  nn(ZA)  =  36]    can  be 
thought  of  merely  as  new  nun^erals  for  a  certain  number  which  is, 
approximately,    0.  5878. 

Answers  for  Part  A   [on  page  6-223]. 

I,    0.6691  2.     5.6713  3.    0.9659  4.     1  5.    0.7071 

6.    0.5  7.    0.866  8.    0.866  9.    0.0175         10.    0.7431 

11.    0.7431  12.     0.3249  13.     0.3502  14.     0.6177  15.    0.4970 

Exercises  7  and  8  and  Exercises   10  and  11  may  call  students'  attention 
to  the  theorem  according  to  which  if  ZA  andZB  are  complementary  then 
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COS  ZA  =  sin  ZB.      This  theorem  follows  at  once  from  Theorem  5-11  and 
the  definitions  on  page  6-223. 

The  answers  given  above  for  Exercises   13,    14,    and  15  have  been 
obtained  by  linear  interpolation  in  the  table  on  page  6-231.       Alterna- 

tive acceptable  answers  are: 

13.    0.3420  [or:    0.3584]  14.    0.6249  15.    0.5 

The  word  'approximations'  covers  a  nnultitude  of  alternatives.     We  do  not 
attempt  to  teach  the  method  of  linear  interpolation  in  the  text,    since  we 
are  not,  here,  particularly  interested  in  refined  computations.     However, 
as  you  know,  the  method  of  linear  interpolation  is  a  good  application  of 
Theorenn  7-3,    and  you  may  wish  to  touch  on  it  in  your  class. 

'r 

Note  that,    since  there  are  [in  this  treatmtent  of  geometry]  no  angles 
of  0°,     'sin  0°',    'cos  0°'  and  'tan  0°'  are  meaningless.     Students  who 
have  heard  otherwise  should  be  told  that  the  conventional  values  [O  for 
the  first  and  third,    and  1  for  the  second]  are  useful  in  other  contexts 
than  this,    and  that  they  will  be  nnade  sensible  in  a  later  unit.     Sinnilar 

remarks  pertain  to  'sin  90°'  and  'cos  90°',    but,    of  course,    'tan  90°' is  never  defined. 
o, 

'r 

1. 64 
2. 

78 

6. 72 

7. 

28 

10. 45 11. 30 

Answers  for  Part  B    [on  page  6-224], 

3.     34  4.     56  5.     18 

8.     44  [or:    43.7]  9.     70  [or:    69.8] 

12.     30  13.     The  solution  set  is   {p :   0  <  p  <  90 }. 

Exercises  7,    8,    and  9  do  not  quite  fit  the  instructions  for  Part  B.    A 

root  of  the  equation  'sinZA  =  0.4695'  is,    strictly,  an  angle  whose  sine 
ratio  is  0.4695,  and  each  such  angle  is  a  root  of  the  equation.     However, 
the  conclusion  which  students  will  want  to  draw,  later,  fronn  'sinZA  = 
0.4695'  is  'ZA  is  an  angle  of  approximately  28°'. 

An  alternative  form  for  answering  Exercise  7  is  suggested  by  the  intro- 

duction of  the  synabol  '='  in  Example   1   on  page  6-224:    m{ZA)  =  28 

Note  well  that,    as  indicated  in  the  sample  for  Part  B,    although  the 

tabular  entry  for  tan  51°   is   '1.  2349',    all  this  tells  us  is  that  tan  51°   is 
1.  2349  correct  to  the  nearest  0.  0001.     So,    51  is  only  an  approximiation 
to  the  root  of  'tan  x°    =   1.  2349'.     In  contrast,  the  solutions  for  Exercises 
10,    11,   and  12  are  "exact". 
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r Answers  for  Part  C. 

1.     p  =  48;   a  =  13.4;    b  =  14.9  2.  a  =  62;    m  =  5.  3;    s  =  11 .  3 

3.     a  =  40;   t   =  22.  5;    u  =  26. 8  4.  p  =  20;    g  =  9. 1;   k  =  26. 6 

5.     c  =  5;    a  =  36.  9;   P  =  53.  1  6.  s  =  loVl  =  17.  3;    a  =  60;   p  =  30 

7.     a  =  56;   X  =  y  =  32  8.  a  =  p  =  65;    c  =  42.  3 

Answers  for  Part  D   [on  page  6-226]. 

1.     46.6  2.     83.9  3.     37.3    [z  =  y  -  x] 

[Be  sure  that  all  three  of  these  exercises  are  assigned  since  Exercise  3 
capitalizes  on  Exercises   1  and  2.] 

Answers  for  Part  E    [on  pages  6-226  and  6-227], 

1.  [Explanation:     a.  a.  s  .   congruence  theorem] 

BD  =   10  cos  70°   =  3.  42; 

AD  =  10  sin   70°   =  9.  4,    m{ZDAC)  =  62,    DC  =  9.  4  tan  62°   =  17.  67; 
BC  =  BD  +  DC  =  3.42  +  17.  67  =  21.  1 

2.  (a)    17.4  (b)    20.5  (c)    12.3  (d)    17    [Note  that  ZR  is  a 
right  angle.  ] 

3.  (a)    p  =  24;    a  =  46;    x  =  18.  3  (b)    p  =  72;    a  =  33;    x  =  14.  2 

4.  AB  =   100  cos  40°   +  80  cos  53°,    or  AB  =  100  cos  40°    -  80  cos  53°. 
So,   AB  =  125  or  AB  =  28. 

[Interpolation  gives  53.  5  in  place  of  53,    and  124  and  29  as  approxi- 
nnations  to  AB.  ] 
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Answers  for  Part  F    [on  pages  6-2Z8,  6-Z29,  and  6-230]. 

1.     This  exercise  has  two  interpretations.      'travelling  2  miles'  might 
mean  actual  distance  traveled  [hypotenuse]  or  ground  distance 
[horizontal  leg]. 

1000 
10560 1000 

In  the  first  case,   the  angle  of  climb  is  an  angle  of  approximately 

5.  43°,     In  the  second  case,   it  is  an  angle  of  approximately  5.  41°. 
Within  the  limits  of  accuracy  which  we  are  using,   the  answer  is  the 
same  in  both  cases.     Students  should  discover  this  by  solving  the 
exercise  both  ways. 

2.  X  =  500  tan  38°   =  390.  7.      So,   the  monument  is  about  391  feet  tall. 

3.  tan  (90  -  a)"  =  2.  47.     So,   the  measure  of  the  angle  of  elevation  is 
approximately  22. 

4.  X  =  120  (tan  75°    -  tan  70°)  =  118.  152,      So,   the  distance  is  about 
118  feet. 

5. 

tan  y° 

BC  = 

BP 

20  sin  50° 30  -  AP        30  -  20  cos  50' 

BP  20  sin  50° 

sin  Y 
sm  Y 

20  sin  50°  =  15.  32;     20  cos  50°   =  12.  96;    tan  y°   =  0.  8991;     y  =  42; 

15    32     • sin  42°   =  0,  6691;    BC  =   ̂     Am    =  22.  9.      So,   the  ships  are  about 0.6691 

23  nniles  apart. 

6. 

20°       100 

X  =  100  (tan  25°   -  tan  20°)  =  10.  23 

So,   the  antenna  is  about 

10  feet  3  inches  tall. 
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7,  3000  tan  57"  =  4620.      So,   the  cloud  is  about  4600  feet  high. 

8.  /  d  =  -^%,   ;    875 -  -         ̂      -  cos  41° 

45  miles  per  hour  =  66  feet  per  second 

60  miles  per  hour  =  88  feet  per  second 
660  875 

Since     jj     =  10  >      _„  ,    the  second  car  will  reach  the  intersection 

before  the  first  car  does.      [They'll  probably  collide.  ] 

As  indicated  in  the  figure,   there  are 

two  locations  possible  for  the  car.     The 

distance  between  the  locomotive  and 

the  car  is  either  LC^  yards  or  LC^ 

yards.     If  P^^  and  Pg  are  the  feet  of  the 

perpendiculars  to  LI  from  C^  and  C^.    respectively,  then  IP^^  =  IP^  = 

15  and  C^^P^^  =  CgPg  =  15-/3  =  26.     So,    LP^^  =  35  and  LP^  =  65.    Hence, 
26 
35 

tan  o,"  =  ̂   =  0.  7429  and  tan  ttg"  =  j^  =  0,  4.      Consequently, 
0 

a^  =  37   and  a^  =  22.      So,    LC^^  = 

26 

65 
LP 

cos  a. 
35 

0. 7986 
=  43.  8  and 

65 

2        0.9272 =    70,  1.       Hence,   the  distance  between  the  loconnotive 

and  the  car  is  either  about  44  yards  or  about  70  yards. 
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Answers  for  Part  G. 

1. 

sm 

cos 

.0872 

.9962 

85° 

.9962 

.0872 

12° 

.2079 

.9781 

7  8° 

.9781 

.2079 

■
V
 

■
V
 

89* 

.9998 

.0175 

1' 

.0175 

.9998 

2.     For  each  a  such  that  0  <  a  <   90,   there  is  a  right  triangle  AABC  such 

that  m(ZA)  =  a  and  m(ZB)  =  90   -  a.      By  definition, 
BC 

sin  a"   =   X7=r  =  cos  (90  -  a,)°. 

3.     With  the  notation  of  Exercise  2,   for  each  a  such  that  0  <  a  <  90, 

sin  a°     _    BC/AC    _    BC    _    , 

F^FE^    -    Ab/AC    -    AB     -   *^"  °-   • 

4.     With  the  notation  of  Exercise  2,   for  each  a.  such  that  O  <  a  <  90| 

[sin  a°]^  +  [cos  a°  J^ 

^AC-'  ^AC^ 

(BC)^  +  (AB)^ TACp 

=    1,   by  the  Pythagorean  Theorem. 

5. 
/a. 

V 

/6or ^30
° 

4T 

sin  30°   =  J 

a/3 
cos  30°  =  ̂  

tan  30-  =   ̂  

sin  60°  =  ~ 

cos  60°  =  J 

1 
tan  60°  =   -/I 

^5°  ri 

VI 

sin  45°   =  -=-  =  cos  45' 

tan  45°  =  1 
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Quiz. 

1.  Suppose  that  A  ABC  is  a  right  triangle  with  AB  as  hypotenuse.     If 
AC  =  5  and  BC  =   12,    what  are  sin  ZA,    cos  ZA,    and  tan  ZA? 

2.  If  0  <  X  <   90  and  sin  x°    =  cos  x"'   then  x  =        ? 

3.  Suppose  that,   in  A  ABC,  Z  C  is  a  right  angle,  ZB  is  an  angle  of  54°, 
and  BC  =  8,     Find  AC  correct  to  the  nearest  unit. 

4,  Suppose  that  quadrilateral  ABCD  is  a  rectangle,   AC  is  11,   and 
AB  is  9.     Find  m(ZCAB)  correct  to  the  nearest  degree. 

Given:     m(ZA)  =  43, 

m{ZBDC)  =  54, 

m{ZC)  =  90, 
DC  =  170 

Find:       AB,    correct  to  nearest  unit 

6.     Suppose  that  AB  and  DC  are  the  bases  of  trapezoid  ABCD.      If 

AB  >   CD,    ZB  is  a  right  angle,  ZA  is  an  angle  of  67°,  AD  =  8,   and 
DC  =  12,   find  the  distance  between  the  bases,   and  AB,   each  correct 
to  the  nearest  unit. 

•J, 

Answers  for  Quiz. 

•      /A         12  /A  5       ,        ,.         12 
1.     sin  ZA  =   Y5-;    cos  ZA  =  j^;    tan  ZA  =  -^ 

2.     45 

3.     AC  =  8  •  tan  54°  =  8  •  1.  3764  =  1 1 

4.  cos  ZCAB  =  JY  =  0.  8182;    m(ZCAB)  =  35 

^         •      .,o        BC       .„  BC  DC -tan  54° 5.  sm  43      =    T^o-;     AB   =    — :   T^rr    =      
AB  sin  43° 

sin  43" 

170  -tan  54° 

sin  43° -    170-  1.  3764  _    233.988   ^  ,    , 
0.682  0.682 

6.     distance  between  bases  =  8 -sin  67°   =  8-0.9205  =  7; 
AB  =  12  +  8 'COS  67°   =  12  +  8-0.  3907  =  15 
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On  pages  6-29  and  6-30,   in  the  introductory  remarks  to  section  6.01,   it 

was  pointed  out  that,    *'in  real  life",    given  a  system  of  linear  measure, 
one  can  obtain  another  such  system  by  replacing  the  given  m^easures  by 
numbers  proportional  to  them.    That  this  is  also  the  case  for  the  abstract 
segnnent-measures  dealt  with  in  our  axiomis  can  be  seen  by  examining 
Axioms  A-H.     Of  these,    only  Axioms  A,  B,  D,    and  H  refer  to  measures 

of  segments.     Suppose,   for  the  moment,   that  *k'  denotes  somie  nonzero number  of  arithmetic,    and  define,   for  each  X  and  Y, 

d{XY)  =  k-XY. 

If,   now,   one  replaces,   in  Axioms  A,   B,    C,   and  H, 

*XY'  by  *d(XY)',     'YZ'  by  *d(YZ)',    etc.  , 

each  of  the  resulting  statements  is  [by  virtue  of  the  definition]  equivalent, 
by  algebra,   to  the  corresponding  axiom.     The  fact  that  each  is  derivable 
froni  the  corresponding  axiom  means  that,    given  any  theorenn,   the  state- 

ment obtained  from  it  by  nnaking  the  substitutions  indicated  above  is  also 
a  theorem. 

As  an  application  of  this  relativity  of  segment-measure,    if  O  and  U  are 

two  points  and  we  define,   for  each  X  and  Y,    d{XY)  =  XY/OU,  then  d  is 

a  segment-measure  function  and,    whatever  systenn  of  nneasures  expres- 

sions like  'AB'  refer  to,   d(OU)  =  1.      In  other  words,    given  any  nonde- 

generate  segment  OU,  there  is  a  segment-measure  function  with  respect 

to  which  OU  is  a  unit  segment.     [As  a  matter  of  fact,   there  is  only  one 

such  measure  function;    but,   this  is  rather  difficult  to  prove.] 

On  TC[6-44,  45,  46]b  we  showed  how,   in  terms  of  a  segment-measure 
function,    one  can  assign  a  coordinate  to  each  point  of  a  line.      The  pro- 

cedure described  on  page  6-232  for  assigning  a  pair  of  coordinates  to 
every  point  amounts  to  using  the  earlier  procedure  to  assign  a  coordinate 

to  each  point  of  each  of  two  perpendicular  lines,   in  terms  of  the  segment- 
measure  function  d  defined  in  the  preceding  paragraph.    Then,  one  defines 
the  corresponding  coordinate  pair  of  each  point  as  the  pair  of  coordinates 
of  its  projections  on  the  two  lines.     That  this  procedure  assigns  a  unique 
pair  of  coordinates  to  each  point  follows  from  the  uniqueness  of  the  per- 

pendicular to  a  line  from  a  point.     That  each  pair  of  real  numbers  is  the 
coordinate  pair  of  a  unique  point  follows  from  the  theorem  that  lines 
which  are,    respectively,   perpendicular  to  two  perpendicular  lines  are 
perpendicular  to  each  other  and,    so,   intersect  in  a  unique  point. 
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Note  that  the  introduction  of  a  coordinate  systenn  does  not,    by  some 
magic,   turn  a  point  into  an  ordered  pair  of  real  numbers.      The  nunnber 
plane--whose  points  are  ordered  pairs  of  real  numbers--is  a  unique 
plane.      The  discussion  of  coordinate  systems  shows  how  this  one  plane 
can  be  nnapped,    in  many  ways,    on  any  given  plane.       It  turns  out  that 
such  mappings  can  be  used  in  proving  theorems  about  subsets  [geometric 

figures]  of  the  given  plane.      This  is  because  the  introduction  of  coordi- 
nates opens  the  way  for  the  use  of  algebraic  techniques  based  on  the 

properties  of  the  real  number  system.      Since  algebraic  techniques  are, 
in  some  ways,   more  simple  and  powerful  than  geometric  techniques, 
this  is  sometinnes  an  advantage.    [However,  the  advantage  often  lies  with 

the  "synthetic"  rather  than  with  the  "analytic**  approach.] 

On  measures.  --Throughout  our  development  of  geometry,    our  funda- 
mental assumption  [aside  from  the  assumptions  stated  in  the  Introduction 

Axioms]  has  been  that  there  is  a  measure  function  for  segments,   and  a 
measure  function  for  angles,   which  satisfy  Axioms  A-H.     In  contrast  to 
this  apparent  preoccupation  with  measures,   the  classical  developnnent  of 
euclidean  geonnetry  says  nothing  about  measures.     There,  instead  of  the 
concept  of  measures,  one  deals  with  concepts  of  congruence,  and  of  ratio, 
of  segments  and  angles.     In  our  treatnnent,    congruency  of  segments,    or 
of  angles  means  equality  of  their  measures,    and,   when  we  speak  of  ratios 
of  segments,   or  of  angles,   this  is  merely  another  way  of  referring  to  the 
ratios  of  their  measures.     Note  that,  for  us,  congruency  can  also  be  de- 

fined in  terms  of  measure-ratios.      For  congruency  means  equality  of 
measures  and  [setting  aside  the  trivial  case  of  degenerate  segments]  to 
say  that  two  segnnents,  or  two  angles,  have  the  same  measure  is  merely 
to  say  that  the  ratio  of  their  measures  is  1. 

The  question  now  arises,   is  our  geometry  essentially  different  fronn 

Euclid's?     More  specifically,    do  we  in  terms  of  our  measure  functions, 
have  theorems  which  are  not  merely  restatennents  of  theorenms  of  clas- 

sical euclidean  geometry?     The  answer  can  be  discovered  by  examining 
Axioms  A-H.     If,  to  set  aside  formally  the  case  of  degenerate  segments, 
we  adopt  a  consequence  of  Introduction  Axioms  and  Axioms  A  and  B: 

Vj^Vy  [XY  =  0  if  and  only  if  X  =  Y] 

as  an  axiom  then  Axionn  A  can  be  replaced  by: 

V^Vy  V^,    /  X  if  Y  e  XZ  then  (XY/XZ)  +  (YZ/XZ)  =  1 

in  which  measures  occur  only  in  ratios.      For,    from  these  two   [and 

TC[6-232,  233]b 





Introduction  Axioms]  it  is  easy  to  infer  Axiom  A.      Now,   Axiom  B  can 
be  treated  in  a  similar  manner.      And  Axiom  C  can  be  replaced  by: 

V^  Vy  7  vV    ̂    -    there  is  one  and  only  one  point  Z  such  that 

Z  e  XY  and  XZ/XY  =  x 

For,   the  point  Z  e  AB  such  that  AZ  =  c  is  the  point  Z  e  AB  such  that 
AZ/AB  =  c/AB.      [And,    assuming  that  B  /  A,    c  >  0   if  and  only  if 
c/AB  >  0.]     So,  Axiom  C  really  refers,   not  to  measures  per  se,   but 
only  to  measure-ratios.    The  only  other  axiom  which  refers  to  measures 
of  segments  is  Axiom  H,    and,   here,    only  equality  of  measures  is  in 
question.     As  we  have  seen,    equality  of  measures  amounts  to  one-ness 
of  their  ratio.    So,  Axiom  H  can  be  rewritten  in  such  a  way  that  segment- 
measures,   and  also  angle-measures,    occur  only  in  ratios.     Clearly, 
since  Axiom  D  imiplies  that  angle  measures  are  different  from  0,  Axionn 
F  can  be  rewritten  so  that  measures  occur  only  in  ratios.     This  leaves 
us  with  Axioms  D,    E,   and  G,    which  deal  only  with  angle-measure.    All 
axioms  which  refer  to  segment-measure  can  be  replaced  by  axioms 
which  refer  to  measure-ratios.     Consequently,    all  our  theorems  which 
deal  only  with  segment-nneasure  are  [if  we  exclude  degenerate  segments] 
essentially  euclidean. 

When  we  include  angle-measure,   the  situation  is  slightly  different,   but 
not  significantly  so.    Axiom  G  restricts  us  to  degree -measure  for  angles, 
and  allows  us,    for  example,   to  prove  Theorena  2-1,    which  is  foreign  to 

Euclid's  own  development  of  geometry.    In  place  of  Theorem  2-1,  Euclid 
had  Theorem  2-2.     [As  a  matter  of  fact,  this  was  one  of  his  postulates.] 
Still,    this  difference  is  a  nninor  one.     For,    suppose  that  we  choose  any 
nonzero  number  of  arithmetic,   k,    and  define,   for  each  three  noncollinear 
points  X,    Y,    and  Z, 

*m(ZXYZ)  =   ̂ --miZXYZ). 

Then,    replacing,    in  Axioms  D,    E,   F,    and  G,    '180'  by  'k',    "'m(ZXYZ)' 
by  '*m(ZXYZ)',    etc.  ,    we  obtain  statements  equivalent  to  the  original 
axioms.     Using  these  new  axionns  we  should  derive  the  same  theorems 

as  before,   except  that,   for  example,   Theorem  2-1  would  read  'An  angle 
is  a  right  angle  if  and  only  if  its  ̂ -measure  is  k/2.  '.      Other  extra- 
euclidean  theorems  would  undergo  similar  na edifications.     The  fact  that 
replacing  degree-measures  of  angles  by  numbers  proportional  to  them 
makes  no  significant  change  in  our  axioms  shows  that,    except  for  the 
rather  fortuitous  singling  out  of  the  number   180,    our  axioms  prescribe 
only  properties  of  angle-measure  which  have  to  do  with  measure -ratios. 

Consequently,    in  spite  of  the  introduction  of  measure,   in  itself  foreign 

to  Euclid's  geometry,    our  geometry  is  richer  than  his  only  to  the  extent 
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that  it  contains  theorems  which  [like  Theorems   1-1  and  1-2]  deal  with 
degenerate  segments  and  theorems  which  [like  Theorenn  2-1]  specify  the 
degree -naeasures  of  angles  of  particular  kinds. 

[Theorems  like  Theorenn  5-11  and  Theorem  6-30  are  replaced  in  Euclid's 
treatment  by  theorems  dealing  with  sums  of  angles,     Euclid's  theorem 
corresponding  with  Theorem  5-11  is,   when  translated  from  the  Greek, 
and  slightly  paraphrased:     A  sum  of  the  angles  of  a  triangle  is  a  sum  of 

two  right  angles.     Simiilarly,   in  place  of  speaking  of  a  SO'-angle,   Euclid 
would  refer  to  an  angle  which  is  a  third  of  a  right  angle.      As  for  us,    so 
for  Euclid,    a  right  angle  is  one  which  is  congruent  to  one  of  its  supple- 

ments.    Angles  are  supplementary  if  they  are  congruent,   respectively, 
to  adjacent  supplennentary  angles;   and  adjacent  supplementary  angles 
are  adjacent  angles  whose  noncommon  sides  are  collinear.     (Incidentally, 

Euclid  did  not  countenance  "straight  angles".  )] 

Answers  for  questions  (I)  -{4)  on  page  6-233. 

(1)    1  and  0        (2)    0  and  0        (3)   positive;  neither       (4)    Don't  know 

The  additional  infornnation  about  P  enables  one  to  conclude  that  x(P)  =  2 
and  y(P)  =  -3. 

As  pointed  out  in  the  COMMENTARY  for  page  6-232,    changing  the 

nneasure  function  has  no  effect  on  coordinates  of  points.      So,   using  the 

measure  function  m  for  which  m(OL))  =  8,   one  still  finds  that  x{P)  =  2 

and  y(P)  =  -3.      And  this  continues  to  be  the  case  if  one  uses,    as 

nneasure  function,    one  for  which  the  nneasure  of  OU  is  2.     In  this  case, 
•— «  » — • 

the  measures  of  OL  and  OM  are  4  and  6,    respectively,    but,    again, 

x(P)  =  2  and  y(P)  =  -3. 

The  choice  of  a  different  unit  point  will  result  in  a  change  in  the  assign- 
t — • 

nnent  of  coordinates.     If  the  midpoint  W  of  OU  is  chosen  as  unit  point, 

then  the  coordinates  of  each  point  are  doubled.     So,  in  this  case,  x(P)  =  4 

and  y(P)  =  -6   [independently  of  the  measures  of  OU  and  OW].     Doubling 

the  unit  segnnent--that  is,    choosing  for  unit  point  the  point  V  such  that 

U  is  the  midpoint  of  OV- -halves  the  coordinates  of  all  points. 
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Answers  for  Part  A. 

1. 

2. 

3. 

4. 

^1 

Pa 
^3 

P4 

P5 

A B c D E 

x(P) 3 

-1 
-3 

-3 

4 1 2 3 4 5 

y(P) 
5 2 0 

-1 -3 

0 0 0 0 0 

x(P) 1 
1 
3 

-1 
-1 

4 
3 

1 
3 

2 
3 

1 
4 
3 

5 
3 

y(P) 
5 
3 

2 
3 

0 
1 

-3 

-1 

0 0 0 0 0 

x(P) 3 

-1 
-3 

-3 

4 1 2 3 4 5 

y(P) 
5 2 0 

-1 
-3 

0 0 0 0 0 

x{P) 3 

-1 -3 
-3 

4 1 2 3 4 5 

y(P) 
5 2 0 

-1 
-3 

0 0 0 0 0 

'r- 

Answers  for  Part  B  [on  page  6-235]. 

1. 

^3 

0 A B C D E 

m(OP) 9 0 3 6 9 
12 15 

x(P) 3 0 1 2 3 4 5 

^3 

0 A B C D E 

d{OP) 3 0 1 2 3 4 5 

3.       (a)    2,    2 

(e)    4,   4 

(b)     I,    1 

(f)     4,   4 

(c)     3,    3 

(g)     3,    3 

(d)     3.    3 

(h)     3,    3 
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Correction. 

On  page  6-238,   line  9b  should  read: 

d(PQ)  =  V   x{Q)  -  x(P)  i^  +     y(Q)  - T 

y{P)  ' 

T 

Answers  for  Part  C   [on  pages  6-236  and  6-237], 

2.  (a)  1,  1,  0  (b)  3,  3,  0  (c)  4,  4,  0  (d)  2,  2,  0 

(e)  3,  3,  0  (f)  4,  4,  0  (g)  3,  0,  3  (h)  6,  6,  0 

(i)     4,   4,   0  (j)     2,   0,    2                 (k)     3,   0,  3                 (i)  2.   0,    2 

(m)     3,   0,    3  (n)    0,   0,   0                 (o)    0                             (p)  8 

3.  (b)    5         (c)    /5,    2,    1       (d)    6.    6,   0        (e)    3/2         (f)    4         (g)     VT? 

4.  (a)    the  set  consisting  of  the  point  with  coordinates  (2,   0) 

(b)  the  line  perpendicular  to  the  x-axis  at  the 
point  with  coordinates  (2,   0) 

(c)  the  line  perpendicular  to  the  x-axis  at  the 
point  with  coordinates  {-3,    0) 

(d)  the  line  perpendicular  to  the  y-axis  at  the 
point  with  coordinates  {0,    3) 

(e)  the  X-axis 

5.  (a)    the  line  perpendicular  to  the  x-axis  and  containing  the  point  P 

(b)  the  line  perpendicular  to  the  y-axis  and  containing  the  point  P 

(c)  (1)  perpendicular  (2)    parallel 

(3)x{Z)=x(P)  (4)     {Z:  x(Z)  =  x(P)} 
*)^ 

Students  will  need  cross -section  paper  for  the  exercises  from  page 
6-239  through  page  6-245  and  from  page  6-257  through  page  6-268. 
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Answers  for  Part  A. 

d(AB):     2/2,     5,     5,     13,     3/2,     10,     13,      \^  -  2)^  +  (n  -  3)2 

Answers  for  Part  B. 

1.  d(AB)  =  5,      d(BC)  =  5,      d(CA)  =  5Vl. 

So,   since  d(AB)  =  d(BC),    AABC  is  isosceles  with  vertex  angle  at  B. 

2.  perimeter  of  AABC  =  5  +  5  +  5 VI  =  10  +  5/2 

Answers  for  Part  C. 

2.  d(AB)  =  15,       d(BC)  =  10,       d(AC)  =  5. 

So,    since  15+10/5,    it  follows  from  Axiom  A  that  B  4  AC. 

3.  Since  d(AC)  +  d(CB)  =  5  +  10  =  15  =  d(AB),   it  follows  from  Theorem 

1-4  that  C  €  AB.     So,  A,  B,   and  C  are  collinear.     That  is,   B  e  AC. 

4.  Yes,  because  10  >  5.  [Ask  students  to  graph  the  set  nnentioned  in 

this  exercise.  It  is  the  set  of  all  points  "outside"  the  circle  with 
center  C  and  radius  d{AC).] 
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Correction.     On  page  6-240,   line  11  should  read: 

---  of  AB  [A(2,  4),   B(-l,    7)]. 

Answers  for  Part  D. 

2.  d(AB)  =  ly'^,      d(AC)  =  4/5,       d(BC)  =  10. 

So,   since  (2V1)^  +  (4/5)^  =  10^,    it  follows  from  Theorem  7-6  that 

AABC  is  a  right  triangle  with  right  angle  at  A. 

3.  Let  M  be  the  midpoint  of  BC.     Then,  the  coordinates  of  M  are  (2,  1), 

So,   d{AM)  =  V9  +  16   =  5  =  i*d(BC).      So,    since  AM  is  the  median 

to  BC,   it  follows  from  Theorem  6-28  that  AABC  is  a  right  triangle 

with  right  angle  at  A. 

4.  d{DE)  =  /26,       d(EF)  =  /650,       d(FG)  =  /26,       d(GD)  =  /650  . 

So,   quadrilateral  DEFG  is  a  parallelogram  since  its  opposite  sides 

are  congruent  [Theorem  6-6], 

d(FD)  =  ■/676,      d(EG)  =  /676  . 

So,  parallelogram  DEFG  is  a  rectangle  since  its  diagonals  are 

congruent  [Theorem  6-12]. 

5.     The  point  of  intersection  of  the  diagonals  is  their  common  midpoint. 

So,   find  the  coordinates  of  the  midpoint  of  either  diagonal.     They 

are  (3,    3). 

The  work  on  finding  the  coordinates  of  midpoints  in  Exercises  3  and  5 
foreshadows  the  formal  development  starting  with  the  Exploration  Exer- 

cises on  page  6-241.      In  Exercises  3  and  5  students  can  compute  the 
coordinates  on  the  basis  of  intuition  or  they  can  find  the  coordinates  by 
inspecting  the  figure.     They  can  then  prove  that  the  point  whose  coordi- 

nates they  have  found  is  the  midpoint  of  the  segment.     They  can  do  this 
by  appealing  to  the  definition  of  miidpoint.     For  example,   in  Exercise  3, 
they  should  just  use  Theorem  1-4  to  show  that  the  point  with  coordinates 
(2,    1)  belongs  to  the  segment  whose  end  points  have  coordinates  (7,    1) 
and  (-3,    1).     Then,  use  the  distance  formula  to  show  that  the  distance 
between  the  alleged  midpoint  M  and  one  end  point  is  the  distance  between 
M  and  the  other  end  point. 
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Answers  for  Part  E. 

1.  Let  M  be  the  point  with  coordinates  (-2,    5),    N  be  the  point  with 

coordinates  (-5,    1),    P  be  the  point  with  coordinates  (-1,    —2),   and 

Q  be  the  point  with  coordinates  (2,    2).     Now,   d(MN)  =  5   and 

d(QP)  =  5.    Also,   d(MQ)  =  5  and  d(NP)  =  5.     So,   by  Theorem  6-6, 

MNPQ  is  a  parallelogram.     Since  d(MP)  =  /sO    =  d(NQ),   it  follows 

from  Theorem  6-12  that  parallelogram  MNPQ  is  a  rectangle. 

Finally,    since  d(MN)  =  5  =  d(NP),   it  follows  from  the  definition  that 

rectangle  MNPQ  is  a  square. 
►— •  «  « 

2.  Let  P  be  the  point  with  coordinates  (2,    7).     Then,    d(PA)  =  3  =  d(PB). « — • 

So,   by  Theorem  3-3,   P  belongs  to  the  perpendicular  bisector  of  AB. 

3.  Since  AD   |  |  BC,   and  BC  is  parallel  to  the  y-axis,   and  since  A  jf  BC, 

y(D)  =  y(A)  =  2.     Since  d(AD)  =  d(BC)  and  d(BC)  =  5,   x(D)  is  6  or  -4. 

Since  AD  and  BC  miust  be  similarly  directed  and  since  x{C)  >  x(B), 

it  follows  that  x(D)  >  x(A).     So,   x(D)  =  6  and  the  coordinates  of  D 

are  (6,    2) . 

Note  that  one  consequence  of  our  procedure  for  introducing  coordinates 

is  that  parallel  rays  AB  and  CD  which  are  not  perpendicular  to  the  x-axis 

are  similarly  directed  if  and  only  if  x{B)  -  x(A)  and  x(D)  -  x(C)  are  both 

positive  or  both  negative.      Similarly,   parallel  rays  MN  and  PQ  which 

are  not  perpendicular  to  the  y-axis  are  similarly  directed  if  and  only  if 

y(N)  -  y(M)  and  y(Q)  -  y(P)  are  both  positive  or  both  negative. 

4.     (9/2,    7/2) 
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Answers  for  Part  F. 

1.      ̂ V9m2  +  100n2  2.     i/PT^  3.     V{a  -  3)2  +  (b  +  7)2 

4.       V(x-4y)2  +  {x-9y)='     [or:     VZx^  -  26xy  +  97y2  ] 

5.      i  V(a-2)2  +  b2  6.      |2  -  al 

Answers  for  Part  G. 

1.  d(OC)  =  a;      d(AC)  =  V2a(a  +  c);      d(BC)  =  V2a(a  -  c);      d{AB)  =  2a; 

[d{AC)]^  +  [d(BC)]^  =  2a{a  +  c)  +  2a(a  -  c)  =  43^  =  d(AB)^ 

so,   m(ZACB)  =  90. 

2.  Same  answer  as  for  Exercise  1,   but  replace  'c'  by  'd'. 

3.  d(OE)  =  a;      d(AE)  =  aVl ;      d(BE)  =  a;      d(AB)  =  2a. 

Since  [d(AE)]2  +  [d(BE)]2  =  3a}  +  a^  =  4a2  =  [d(AB)]2,  ZAEB  is  a  right 

angle.      Since  d(BC)  =  |«d(AB),  ZEAB  is  an  angle  of  30". 

Answers  for  Exploration  Exercises. 

1.    (t,    0)  2.    (2,   0)  3.    (0,    8)  4.    (0.    -J) 2'      '  *    '    '      '  •    '    '      '  •    '    '        Z 

5.    (2,  ~)  6.    (-1,    7)  7.    (5,    5)  8.    (-1,    1) 

9.    (3,  4)  10.    (2,  |)  11.    (7,    5)  12.    (3,  ̂ -) 

2 13.    (5,    1)  14.    (J,    -4) 
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Correction.     On  page  6-242,    line  4b  should 
begin: 

Axiom  A  and  properties   

last  paragraph  on  page  6-242. • — • 

We  know  that  A  ;^  B  since  we  have  assumed  that  AB  is  perpendicular  to 

the  y-axis.     Hence,    since  M  is  the  midpoint  of  AB  and  A  /  B,     Me  AB. 

Since  y(A)  =  y(M)  =  y(B)  and  A,    M,    and  B  are  three  points,   x(A)  /  x(M) 

i^  x{B).      Since  M  €  AB, 

(*)  d(AM)  +  d(MB)    =   d(AB); 

that  is, 

jx(M)  -  x(A)  I    +    |x(B)  -  x(M)  I    =     |x(B)   -  x(A)  |. 

Now,    suppose  that  x(M)  -  x{A)  is  positive  and  x(B)   -  x(M)  is  negative. 

Then,   it  follows  that 

|x(M)   -  x(A)  i  +    |x(B)   -  x(M)  j    =     jx{M)   -  x(A)  +  x(M)   -  x(B)  j 

=     |2-x(M)   -  [x(A)  +x(B)]| 

and  that  2  •x{M)   -  [x(A)  +  x(B)]  is  positive.       Now,    if  x(B)  >   x(A), 

x(B)   -  x(A)  is  positive.      So,   from  (*), 

2-x(M)   -  [x{A)  +  x{B)]    =   x(B)   -  x{A). 

From  this  it  follows  that  x{M)  =  x(B),      Consequently,    since  x{M)  ̂   x(B), 

it  follows  that  x(B)  f  x(A)--that  is,    x(B)  <  x(A).      But,   if  x(B)  <  x(A) 

then  x(A)   -  x{B)  is  nonnegative;    so,    from  ('•'), 

2'x{M)   -  [x(A)  +  x(B)]   =   x{A)   -  x(B). 

Fronn  this  we  see  that  x(M)  =  x(A) .     So,    since  x(M)  /  x(A),   x(B)  ̂   x(A). 

Consequently,   it  is  not  the  case  that  x(M)   -  x{A)  is  positive  and 

x(B)  -  x(M)  is  negative.     Hence,  recalling  that  x(B)  /  x(M),    if  x(M)  -  x{A) 

is  positive  then  x(B)   -  x(M)  is  positive.      Similarly,   if  x(B)   -  x(M)   is 

positive  then  x(M)  -  x(A)  is  positive.    It  follows,  since  x(A)  ̂   x(M)  -f^  x(B), 

that  x(M)   -  x(A)  and  x(B)   -  x(M)  are  both  positive  or  both  negative. 
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lines  4  and  5  on  page  6-243.    The  argument  is  precisely  the  same  as  that 

given  in  the  case  of  AB  perpendicular  to  the  y-axis  except  that  'x'  and 

*y'  should  be  interchanged. 

line  8  from  foot  of  page  6-Z43.     Theorem  6-23 

line  2  on  page  6-244.     The  formulas  do  hold  for  A  =  B.    For,  x(M)  = 

^ '  ̂̂ -^^   =  x(A)  and  y(M)  =  llXi^  =  y(A);   so,   M  =  A.    And,  the  midpoint of  AA  is  A. 

5!< 

Answers  for  Part  A  [on  page  6-244], 

1.     (5,    4) 

5.     (a  +  |.    b  +  1) 

2.     (^,    -1) 
3.     (10,   5) 

L      I     .    c  +  e 6.    (a  +  — = — 

.     b+^) 
4.     (4.  -4) 

2 

-I   -(Vx 

Answer  for  Part  B   [on  page  6-245]. 

Intuitively,  we  see  that  the  co- B(8,6) 
ordinates  of  H^  are  (4,   3)  and 

■^   I  those  of  Hg  are  (6,  3).     So, 

x(Tj^)  =  4  and  xCTg)  =  6.    Simi- 
larly,  since  the  coordinates  of 

Vj^  are  (8,  4)  and  those  of  Vg  are 

(8,   5),   y(TJ  =  4andy<Tg)  =  5. 
Therefore,  the  coordinates  of 

1^  are  (4,  4)  and  those  of  Tg  are  (6,  5).     We  can  prove  that  our  answer 

is  correct  by  showing  that  T^^  and  Tg  belong  to  AB  (Theorem  1-4)  and 

that  ATj^   s  Tj^Tg  s  TgB  (use  the  distance  formula).     That  Hj^  and  Hg 

are  the  trisection  points  of  AC  and  that  V.    and  Vg  are  the  trisection »— • 

points  of  CB  follow  from  Theorem  6-27   [or  Theorem  7-1]. 

^^»3)  H^  Hg 

C(8,3) 
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After  noting  the  corresponding  result  for  a  segment  perpendicular 
to  the  X-axis,   one  can,   with  the  aid  of  Theorem  7-1,   combine  the 
two  results  to  obtain  the  desired  conclusion. 

2.  By  simple  algebra,   q  •  x(A)  +  p  •  x{B)  =  (p  +  q)  •  x(A)  +  p[x(B)  -  x(A)]. 

3^^     q.x(A^H-p.x(B)    ̂   ̂ (^j  ̂   __a_    j^(3)  .  ̂ ^^^^ 

3.  For  the  midpoint,  substitute  *1*  for  *p'  and  for  *q'.    For  the  trisec- 
tion  points,   substitute,   first,   '2'  for  *q'  and  *!'  for  *p',  and,  next, 
'1'  for  'q'  and  '2'  for  *p'. 

4.  ,a,   (ili4JLl2,     l:±4jiUl)  ...hat  is   (6.    f ) 
(b)    The  point  in  question  divides  AB  from  A  to  B  in  the  ratio  r;  1  -  r. 

[(AP/AB)  +  (PB/AB)  =  1,   by  Axiom  A.]     So,   using  the  result  of 

Exercise  2,      x(P)  =  x{A)  +  r[x(B)  -  x(A)] 

and  y(P)  =  y(A)  +  r[y(B)  -  y{A)]. 

Answers  for  Part  E   [on  page  6-245]. 

1.  median  from  A  :  10;        median  from  B  :  10;         miedian  from  C  :  2vl0 

2.  d(AB)  =  2/5,      d(BC)  =  /65,     and  d(AC)  =  /89  .     So,   since  no  two  of 

these  three  measures  add  up  to  the  third  measure.  A,  B,   and  C  are 

not  collinear.     Hence,  AC  r\  BD  consists  of  at  most  one  point.    Now, 

the  midpoint  of  AC  has  coordinates  (2,  -3/2),   and  these  are  also  the 

coordinates  of  the  midpoint  of  BD.    So,  AC  and  BD  bisect  each  other. 

Hence,   by  Theorem  6-7,   quadrilateral  ABCD  is  a  parallelogram. 

3.  Although  the  midpoint  of  AD  is  the  midpoint  of  BC,  it  does  not  follow 
that  ABDC  is  a  parallelogram.    Actually,  ABDC  is  not  a  quadri- 

lateral.   It  is  a  segment. 

4.  (-1,   4)  5.     (-1,   4)   or  (1,    -4)   or  (7,   6) 

TC[6-245]b 
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Correction.     On  page  6-245,   line  5b  should 
begin: 

D  (924,   725) the  --- 

Answer  for  Part  C, 

The  derivation  here  is  essentially  the  same  as  that  of  the  nnidpoint  for- 

mulas.    As  there,  one  begins  by  considering  a  segment  AB  which  is  per- 

pendicular to  the  y-axis.    If  T  is  the  point  which  divides  AB  from  A  to  B 

in  the  ratio  2: 1 --that  is,  if  T  is  the  point  of  AB  such  that  AT/TB  =  2-- 

then,  as  before,   y(A)  =  y(T)  =  y(B),   and  |x(T)  -  x(A)  |  =  2  |x(B)  -  x(T)  |. 

Again,  it  can  be  shown  [see  COMMENTARY  for  page  6-242]  that,   since 

T  €  AB,  x{T)  -  x(A)  and  x(B)  -  x(T)   are  either  both  positive  or  both 

negative.     So,   x(T)  -  x(A)  =  2[x(B)  -  x(T)l,   and 

(1)  x(T)    =    -(^)^l'-i^). 
The  formula  for  the  y-coordinate  of  the  corresponding  trisection  point 
of  a  segment  which  is  perpendicular  to  the  x-axis  is  obtained  in  a  similar 
fashion.     Finally,  the  case  of  an  oblique  segment  is  treated  just  as  on 
page  6-243  except  that  Theorem  7-1  must  be  used  instead  of  Theorem 
6-23.     The  resulting  formulas  are  (1)  and: 

(2) 

y(T)  =  Yi^)^l'yi^), In  order  to  obtain  formulas  for  the  coordinates  of  the  other  trisection 

point,   one  need  merely  interchange  *A*  and  *B'  in  formulas  (1)  and  (2). 

Answers  for  Part  D. 

1.  One  can  derive  the  formulas  implied  by  this  exercise  by  a  procedure 
which  does  not  differ  essentially  from  that  used  in  Part  C,  The  only 
real  difference  is  that,   if  P  is  the  point  in  question,   then 

q|x(P)  -x(A)|  =p|x(B)  -x(P)J. 

As  before,   since  P  €  AB,   both  differences  are  either  positive  or 
negative.     Hence,  the  absolute  value  bars  may  be  replaced  by 
brackets,  and  elementary  algebra  yields: 

x(P)  -   q-x(A)  +p-x(B) p  +  q 

TC[6-245]a 



According  to  one  author,   the  term  'analytic  geometry'  came  about 
"because  the  science  of  calculating  with  letters,   introduced  by  Vieta, 
was  ternned  analysis".     [See  page  3  of  F.D.   Murnaghan's  Analytic 
Geometry  (New  York:     Prentice -Hall,    Inc.,    1946).] 

Connment  on  last  sentence  on  6-246. 

As  we  have  seen,    one  of  the  freedoms  one  has  in  setting  up  a  coordinate 
system  is  the  choice  of  the  unit  point.      This  freedom  is  due  to  the  fact 
that,    in  euclidean  geometry,    only  ratios  of  measures  are  significant. 
This  fact  is  frequently  overlooked  by  writers  of  analytic  geometry  texts. 

Such  writers  would  claim  that  the  solution  given  on  pages  6-247  and 
6-248  is  not  adequate,    since  it  only  applies  to  a  trapezoid  one  of  whose 
bases  has  measure  2.     The  answer  to  this  objection  is  that  any  [non- 
degenerate]  segment  has  measure  2  with  respect  to  some  system  of 
measurement. 

Note  1  on  page  6-248. 

The  midpoint  of  QN  has  coordinates  (1,   r-  )  and  so  does  the  midpoint  of 

PM.     Since  M  and  P  have  the  same  first  coordinate,    MP  is  perpendicu- 

lar to  the  X-axis.     Since  Q  and  N  have  the  same  second  coordinate,    QN 

is  perpendicular  to  the  y-axis.     Since  the  x-axis  and  y-axis  are  perpen- 

dicular to  each  other,    so  are  MP  and  QN.     So,   by  Theorem  6-17,    MNPQ 
is  a  rhombus. 

Note  2  on  page  6-248. 

The  coordinates  of  D  are  (2a,    2b)  and  the  coordinates  of  C  are  (2  -  2a,  2b). 

So,   the  coordinartes  of  N  are  (2   -  a,    b),   those  of  P  are  (1,    2b),    and  those 

of  Q  are  (a,   b). 

last  line  on  page  6-249. 

d(AD)  =  1,     So,   'a"  +  b    =  1'  is  the  additional  condition. 

TC[6-246,    247.    248,    249] 





Cross-section  paper  should  not  be  used  for  these  exercises. 

Answers  for  Part  A  [on  pages  6-250  and  6-251] 
1. 

(I)  (11) 

(1,   1) 

B  (1,  0) 

D    (-1,  2) 

A(-l,  0)       ,  B(l,  0) 

(III) (IV) 

D(l,  1)       '^   C(l,  -1) 
X 

Y'
 

A(-l,  1)  ,  B(-l, -1) 

C(l,  0) 

B(0, -1) 
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2.     (I) 
D(d  -  1,  h) 

d  -  1,  h) 

(1,  0) 

TC[6-250]b 
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A(l,  a) 

5.      (I) 
C(p,  q) 

(II) 

B{1,  0) 

Y 

C(c,  c') (d,  ay        \ 

>B(b,b') 

X'
 

A(a,a') X 

i 

Y'
 

TC[6-251]b 



I 

I 

f 

I 



3.      (I) 

(ID 

4.      (I) 

C(|-,  h) 

A(l,  0) 

TC[6-251]a 



Answers  for  Part  B   [on  pages  6-252  and  6-253]. 

1.  Assume  that  ABCD  is  a  trapezoid  with  AB    |  j  CD  and  DC/AB  =  p  <   1. 

Let  M  be  the  midpoint  of  BD  and  let  N  be  the  midpoint  of  AC.    Choose 

coordinates  so  that  the  coordinates  of  A  are  (0,  0),  those  of  B  are 

(2,  0),   and  those  of  C  are  (2r,  2s).     Since  AB  and  DC  are  similarly 

directed,   and  since  d{AB)  =  2  and  DC/AB  =  p,   the  coordinates  of  D 

are  (2r  -  2p,    2s).     So,  by  the  midpoint  formula,   the  coordinates  of  M 

are  (r  -p  +  1,    s)  and  those  of  N  are  (r,  s).     Since  y(M)  =  y(N), 

MN   I  j  AB.     By  the  distance  formula,    d(MN)  =    |p  -  1  |,    d(AB)  =  2, 

and  d{CD)  =  2p.     Since  DC/AB  =  p  <    1,   it  follows  that  d(MN)  =  1  -  p  = 

i[d(AB)  -  d(CD)]. 

2.  Suppose  that  A,   B,  and  C  are  the  vertices  of  a  triangle  and  that 

ZACB  is  a  right  angle.     Let  the  coordinates  of  C  be  (0,    0),   those  of 

B  be  (2,   0),    and  those  of  A  be  (0,    2p).     If  M  is  the  midpoint  of  the 

hypotenuse  then  the  coordinates  of  M  are  (1,  p).      Now,    d(MA)  = 

Vl  +  p2  =  d(MB)  =  d(MC).     So,    M  is  equidistant  from  A,    B,    and  C. 

■>      n,^  J-      *         r^  /a  +  b      a'+bM      ̂ .  -  , ,  /b  +  c      b'  +  c'\ 
3.  The  coordinates  of  Q  are     — 5 — ,    — = —    ,  those  of  M  are  I — = — ,  — 5 — j, 

r  K,            /c  +  d     c'  +  dM  ,  ̂ .  ,  n  /d  +  a     d*  +  a'' those  of  N  are      — = — ,     =      ,   and  those  of  P  are 

J-      *         r  .u         -^     ■   .     t  ̂,           /d-t-a  +  b  +  c     d^+a^+b^  +  c' The  coordinates  of  the  midpoint  of  PM  are  I   ^   ,     7   

J  .u            r  *u         -^      ■   ̂      t  ̂1           /a  +  b  +  c  +  d      a^  +  b^+c^+d^ and  those  of  the  midpoint  of  QN  are   (   -r   ,      -j   

So,   PM  and  QN  have  the  same  midpoint.      Hence,    since   PM  and  QN 

are  not  collinear,   they  bisect  each  other. 

4,     [Use  the  coordinate  system  of  Exercise  3(1)  on  page  6-251.]    The 

y  I  and  those  of  M  are      j,    y coordinates  of  N  are    j  j,    -rr  I  and  those  of  M  are    (•^,    tj-)  .      So, 

h^
 

d(BN)  =  V/yg-  +  ̂ =  d(AM).      Hence,  AM  s  BN. 
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5,     Let  the  coordinates  of  A  be  (0,  0),   those  of  B  be  (2,  0)  and  those  of  C 

be  (2p,  2q).       Then,   the  coordinates  of  N  are  (p,  q)  and  those  of  M 

are  (p  +  1,    q) .      Now, 

d(AM)  =    V(p  +  1)2  +  q2   and   d(BN)  =    V{p  -  2)2  +  q2  . 

But,    by  hypothesis,    d{AM)  =  d(BN).      So, 

¥ 

V(p  +  1)2  +  q2    =    V(p  -  2)2  +  q2  , 

(p  +   If  +  q2    =    (p   -   Zf  +  qS 

(p  +  1)^    =    (p  -   2)2, 

p+l=p-2orp+l  =  2-p, 

1 P=    2- 

Therefore,  the  coordinates  of  C  are  (1,  2q),     Since  the  midpoint  of 

AB  has  the  coordinates  (1,  0),    C  belongs  to  the  perpendicular  bisec- 

tor of  AB.      So,    CA  s  CB. 

j_     6.     Let  the  coordinates  of  A  be  (0,  0),    of  B  be  (1,  0),   of  C  be  (1,  a),   and 
of  D  be  (0,  a).     Then,   assuming  that  the  coordinates  of  P  are  (p,  q), 

[d(PA)]2  +  [d{PC)]2  =  p2  +  q2  +  (1    -  p)2  +  (a  .  q)2 
and 

[d(PB)]2  +  [d(PD)]2  =  (1   -  p)2  +  q2  +  p2  +  (a  -  q)2  . 

[P  can  be  any  point  at  all.  ] 

7.     Let  the  coordinates  of  A  be  (2a,  0),   those  of  B  be  (2b,  0)  and  those  of 
C  be  (0,  2c).     Then,   the  coordinates  of  Q  are  (a  +  b,   0),   those  of  M 
are  (b,  c),   and  those  of  N  are  (a,  c).     So 

[d(AM)]2  +  [d(BN)]2  +  [d(CQ)2 

=  (b  -  2a)2  +  c^  +  (a  -  2b)2  +  c^  +  (a  +  b)^  +  4c2  =  (i(a}  +  b^  +  c''  -  ab). 

Also,    [d(AB)f  +  [d(BC)f  +  [d(CA)]2 

=   4(a  -  b)2  +  4b2  +  4c^  +  4a2  +  4c2  =  8(a2  +  b^  +  c^  -  ab). 

TC[6-252]b 







8.     [Use  the  figure  of  Exercise  1  on  page  6-252.]    Let  the  coordinates  of 

A  be  (0,  0),   those  of  B  be  (1,  0),   those  of  D  be  (p,  q),   and  those  of  C 

be  (p  +  b,   q)  where  0  <  b  <    1.      Now,   d(AC)  =   V{p  +  b)2  +  q^  and 

d{BD)  =    V(p  -   1)2  +  q2.      Since,    by  hypothesis,    d{AC)    =   d(BD), 

(p  +  b)^  =  (p  -  1)^.     So,    since  0<b,   p  +  b=l-p.     Hence,   b  »  1  -  2p. 

Again,   by  the  distance  formula, 

d(AD)  =  Vp2  +  q2    and    d(BC)  =    V{p  +  b  -  1)2  +  q2  . 

But,   since  b  =  1  -  2p,  (p  +  b  -  1)^  =  (-p)^  =  p^     So,   d(AD)  =  d(BC). 

Answers  for  Part  C. 

1,  By  Theorem  7-4,   y^  =  64.      So,   y  =  8  or  y  =  -8. 

2.  By  Theorem  7-4,     |x(A)  |  •  jx(B)  |  =  [y(C)]2.      So,    |x(A)  |  •  1  =  b^. 

Hence,   x(A)  =  b^  or  x(A)  =  -b^.      Since  the  foot  of  the  altitude  to  the 

hypotenuse  is  between  A  and  B,   and  since  the  foot  is  the  origin, 

x{A)  =  -b^.      Hence,   the  coordinates  of  A  are  (-b^,   0). 

3.     By  the  distance  formula,    d(CB)  =  V  1  +  b^  .     Since  ZC  is  the  vertex 

angle,   d(CA)  =  V  1  +  b^  .      Since  C  and  A  are  on  the  x-axis, 

d{CA)  =    |x(A)   -  x(C)|.      So,    either 

x{A)  =  x(C)  +  VTTP    or    x{C)  =  x(A)  +  V  1  +  b^  . 

Since  x(C)  =   1,    either  x(A)  =  1  +  V  1  +  b2    or    x(A)  =  1   -  V  1  +  b*  . 

4.     C(|-,    ̂),     D{1,  /3),     E(0,  /3),     F(-i,   ̂ ) 
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Answer  for  Part  A, 

P(p,  q)  ̂^''"c'  '^^    Let  AM/AC  =  r  and  BM/BD  =  s. 
Then,   the  coordinates  of  M  are 

(x(A)  +  r[x(C)  -x(A)],   y(A)  +  r[y(C)  -y(A)]) 

They  are,   also, 

(0,0)  B(1,0)  (x(B)  +  s[x(D)  -x(B)],   y(B)  +  s[y{D)  -y(B)]). 

So,    (r(p  +  1),    rq)    =   (1  +  s(p  -  1),    sq).       Therefore, 

(1)    r(p  +  1)  =   1  +  s(p  -   1)     and    (2)     rq  =  sq. 

Since  q  /  0,    (2)  tells  us  that  r  =  s.     From  this  and  (1)  it  follows  that  r  =  -5-. 

Answer  for  Part  B. 

[Use  the  coordinate  systenn  of  Part  A.]  Suppose  that  AP/AC  =  r  and 

BP/BR  =  s.  Then,  (r(p  +  1),  rq)  =  ( 1  +  3  {  J  -  1),  s^.).  So,  s  =  2r 

r  =   1/3.     [Note  that  P  and  Q  are  the  trisection  points  of  AC.] 

PA        RA 
By  synthetic  geometry,    since  RPA  — -►   BPC  is  a  sinnilarity,    rg-p-  =   — — •  , 

But,   RA  =  ̂«BC.      So,    PA  =  I -PC.      Hence,    PA  =  |  •  AC. 

Answers  for  Part  C. 

1.     CG  =   I  •  i  •  AB  =   -J  •  30  =   10 z.    d=|.|/5  =  4I 

3.     Let  P  be  the  point  of  concurrence  of  the  medians.     Thus,    since  the 

measure  of  the  hypotenuse  is  sV2,   the  measure  of  the  median  to  the 

,  ^  s^^2.        c        r-T-,        2      s^.^        sVT 
hypotenuse  is    — ^ — .      00,    CP  =   -^  •  — = —  =   — ^ — , 

The  measure  of  the 

median  to  each 1  •      ~\  /  2    _L     S2  S\^ 

leg  xs   ys^  +  -^,    or    ̂ -. 
So,  AP  =  ̂ ^  =  BP. 

TC[6-256,  257]a 





a,   +  b,  +  c, 

4.     (a)     {-i   i   ^ 
a-  +  b„  +  c_ 

^   ,      — ^   —   —)     [Note  that  the  x-coordinate  of  the 

point  of  concurrence  is  the  arithmetic  mean  of  the  x-coordinates 

of  the  vertices.      Similarly,   for  the  y-coordinate.  ] 

(b)     (4,    5) 

Answers  for  Part  D, 

1. 3  a ■;    a  =  3 

Q(10,  4)  4  "    l~r^ 

1^  So,   the  coordinates  of  R  are  (6,  0). 

P(3,  -3) 
2.     As  in  Exercise   1,   use  similar  triangles  to  deduce  that  y(S)  =  6. 

'1^ 

Answers  for  Part  A   [which  begins  at  the  foot  of  page  6-256], 

1.     45  2.     135  [45] 

3. 

4.     45 

60 120 30 150 74 149 

120 60 150 30 106 31 

5.     135 

'I- 

Answers  for  Part  B    [on  page  6-257], 

1.     63.4  2.     63.4 3.     50,2 
4.     135 

5. 60 

120 

63,4 

116,6 

145 135 101,3 

6.     45 

35  45  78.7 

7.      123.7 

TC[6-256,  257]b 
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Answers  to  questions  in  the  text  on  page  6-258. 

line  7.     Axiom  E  line  8.    a 

In  inferring  that  a  =  nri(ZQPD),    we  have  tacitly  assumed  that  x{Q)  >  x{P) 

and  y(Q)  >  y(P).     But,    since,    for  each  two  points  P  and  Q  of  an  oblique 
v(Q)  -  v(P)       v(P)  -  v(Q)  . 

line,      /Q\'-'    /p\  ~      /p(  _     /Qv  .    the  results  obtained  are  independent  of 
this  assumption. 

I Answers  for  Part  A  [on  page  6-260], 1.  -1;  135  2. 

f.   173 

;  14   4.  0;  —  5. ;  90   6. 

f:   38.7 Answers  for  Part  B  [on  page  6-260]. 

1.  Yes;  No  [They  might  be  perpendicular  to  the  y-axis] 

2.  Yes;  No  3.     Yes;  Yes 

'I* 

Answers  for  Part  C  [on  page  6-260]. 
<-^  1  <-^  <— >  ,  ,  <— >       <— >     <— > 

1.  slope  of  AB  =  --=-  =  slope  of  CD-.    So,    either  AB         CD  or  AB  =  CD. 

But,   the  slope  of  AC  =   -1;  so,   AC  /  AB,   and,    hence,    CD  5^  AB. 

Therefore,   AB    |  |  CD. 

<-^  «->  <->     <->        <->  ,  ,  <-> 
2.  slope  of  AB  =   -1  =  slope  of  BC.     So,    either  AB  =  BC  or  AB    |  |  BC. 

But,    B  e  AB  ̂   BC.     So,   AB  r^  BC  /  95 .     Hence,   AB^BC.     Thus. 

AB  =  BC,    and  A,    B,    and  C  are  collinear. 

3.  ̂ SS!  "  ̂  =       J  "  I   =  r  •     This  is  the  case  if  and  only  if  x{D)  /  4 x(D)  -4-3-25 

and  y(D)  =  -  •  x(D)  +  -r-.     Hence,    D  is  any  point  except  C  whose 
^  ^  1  26 

coordinates  are  such  that  y(D)  =  t-   •  x(D)  +  -r-  . 

36 
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Answers  for  Part  A, 

1.     y=2x+3  2.     y=x+2 3.     x=  5 

5.    y=7-x 
4.     y  =   -x+  11 

4  83  —  4 
7.     y=-7-x+Yo'  slope  of  AC  =   *  5  • 

9.     y  =  4x  -  13 

12.     x=  0 

,n  -   2  20 
10.     y=  -X--3- 

13.     y  =    -X  -  2 

6.     y=   -|x+  3 

8.     y=   -3X+  -^ 

11.     y  =  x+  4 

•J, 

Answers  for  Part  B. 

1.     3;  (0.    -5);  (|,    0) 

4.     2;  (0,    5);  (-|,    0) 

7.     j;  (0,    -5);  (15.   0) 

2.     3;  (0.  -5);  (|,   0)  3.     3;  (0.    -5);  (|,    0) 

5.     8;  {0,    -16);  (2.    0)         6.     -j;  (0.    0) 

8.      10;  (0.    6);  (-|.    0)        9.      10;  (0.  6);  (- 1.    0) 

10.     5;  (0,    4);  (-|,    0)  11.     -7;  (0.    2);  (|,   0)        12.     3;  (0,    -2);  (|.    0) 

13.      -f,{0.    2);  (5,    0) 14.     |;(0.    -6);  (5.    0)  15.     -  y.  (0.    3).    (9.0) 

16.     -^;  (0,    7);  (4,    0)  17.     |;  (0,    -2).    (3,    0) 

18.     slope  is  not  defined;  ( — r-  ,    0) 
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Answers  for  Part  A, 

1.  ii:y=   -2x+   10;    SL^'.y=  |x+  | 

2.  ij^iy  =   3x  -  5;    i2:y=-|^+| 

o  n  4  50       ,  7  5 
3.  i,:y=  -  -X  -  — ;    i^  :  y  =  -x  -  j 

4.  j2^  :x=   2;    i^  :  y  =   5 

5.  i^  :y  =   -7;     x=  4 

6.  i^:y=x-l;    i^iy  =   -x.  -  l\ 

'I" 

Answers  for  Part  B. 

<-^  <->  <-^  , 
1.  slope  of  AB  =  -2,    slope  of  CD  =   -2,    slope  of  AD  =   1/2,   and  slope  of 

<-^         ,  <-^     ̂ -^     <^->     «6->    <->      «->  «— >      <-> 
BC  =   1/2.     So,   AB  ±  CB,    CD  ±  BC,   AD  X  CD,   andADxAB.     Hence, 

the  angles  of  quadrilateral  ABCD  are  right  angles.     So,   by  definition, 

it  is  a  rectangle, 

<— >  <— >  <— > 
2.  slope  of  AB  =  7/4,    slope  of  CD  =  7/4,    slope  of  AD  =   -l/2,   and  slope 

of  BC  =   -1/2.     Since  slope  of  AB  /  slope  of  BC,   A,    B,   and  C  are  not 

collinear;  so,   AB  /  CD  and  AD  /  BC.     Hence,   AB    |  |   CD  and 

AD   j  I  BC.     Therefore,  ABCD  is  a  parallelogram.     Since  neither 

line  is  perpendicular  to  an  axis  and  since  (— 1/2)(7/4)  7=  —1,    it  follows 

from  Theorem  9-6  that  AB  /.  BC.     So,   ZABC  is  not  a  right  angle. 

Hence,    by  definition,    quadrilateral  ABCD  is  not  a  rectangle. 

3.  If  A,    B,    C,   and  D  are  the  vertices  of  a  square  then  four  of  the 

segments  AB,   AC,   AD,    BC,    BD,    and  CD  are  congruent.     But, 

AB  =  -sfgO,   AC  =  nHIo,  ad  =  '/To,    BC  =  4aO.    BD  =  n/Ho,    and 

CD  =  n/W.     No  four  of  these  are  congruent.     Hence,   A,  B,    C,   and 

D  are  not  the  vertices  of  a  square. 
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A  r  A  7  1 
4.     from  A:  y  =  -x  -  - 

^  Tj  2     ̂   32 
from  B:  y  =  :=-x  +  — 

,  n  5  35 
from  C:  y  =  —  x   — 

— •  7  5 

5.     of  BC:  y  =  —  X  -  J 

r^  2  37 of  CA:  y  =  7^  -  Y4 

of  AB:    y  =  rx+  - 

Ai+Z-I         i  -_  iil         _        615.  I     7    _       199 

•     2"^      4      9""       3'    -^^  62'    y"   ~  124  "^    4  "        62    ' 
/     123  199 \ 

The  coordinates  of  the  point  of  concurrence  are     (-  Ty,  — Try  J 

P(p,  q) 

Parallelogram  ABCD  is  a  rhombus  if 

and  only  if  AD  =  DC;  that  is,    if  and 

only  if 

C(l,  0) 

{-p,  -q) 

'v/TpTT?  +  q^  =  'v/(p  -   1)^+  q2, 

or  p  =  0, 

But,    p  =  0  if  and  only  if  DB  is  perpen- 

dicular  to  AC.     So,    parallelogram 

ABCD  is  a  rhombus  if  and  only  if  the 

diagonals  are  perpendicular. 

a  4  4,.x,y, 
8.      --;     y=   --X+  4;    J  +    J=   1 

9.     (a)    |;    y=  7X+  5;   fx  + 

(b)    1;    y=|x-6;    f+    ̂  
1 1 

(c)    -f;    y=  -fx-  2;  4+  ::^=  1 

<d)    -|;    y=-|.,b;f+-=    1 :£  - 
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Answers  for  quiz. 

1.     (7,  1)  2.     (a)   d(AB)  =  /To   =  d(CB)  (b)   (3,  6)  ;^  (4,  5) 

3.     d(AB)  =  13,     d(BC)  =  5,     d(  CA)  =  ̂ 68 .     Since  5  <  /68  <   13,    ZC  is 

the  largest  angle  of  the  triangle. 

4.  y  =  -  jx 

5.  d(AB)  =  10,   d(BC)  =  s/z,   d(CA)  =  5-/2.     So,  the  triangle  is  isosceles. 

[d(AB)]^  =  [d(BC)]^  +  [d(CA)]^.     So,   the  triangle  is  a  right  triangle. 

<-> 

6.     (a)    slope  of  DC  = 
2-5 
-2-4 

-5 

<-» 

=   2   =    -5  -  15   =  slope  of  AB. <-> 
<-> 

(b)    BC  is  perpendicular  to  the  y-axis.     An  equation  of  BC  is  *y  =  5'. 

The  coordinates  of  M  are  (1,  0), 

C(2,  2p)^^  ̂   ̂ ^^  ̂ 2,  p),    of  P  are  (1,  2p), 

and  of  Q  are  (0,  p).     So,   d(MN)  = 

A{0, 0)  M 
B{2,0) 

7. 

Vl  +  p2,   d(NP)  =  Vl  +  p2,   d{PQ)  = 

Vl  +  p2,    and  d(QM)  =  V  1  +  p2.    So, 

all  four  sides  of  the  quadrilateral 

PQMN  are  congruent.      Hence,   it  is  a  rhombus. 

"^  8.     Suppose  the  coordinates  of  A  are  (0,  0)  and  those  of  B  are  (2,  0), 

Let  the  coordinates  of  C  be  (1,    V3).     Then,   the  coordinates  of  A' 

are  (4,  0),   those  of  B'  are  (0,  2V3),   and  those  of  C  and  (-1,    -/3). 
So, 

d(A'B')    =  V(0  -4)2  +  (2aA3  -  0)^  =  \fZ8  , 

d(B^')    =  V(-l  -0)2  +  (-V3  -  2V1)2  =   /28, 

and  d(C'A')    =  V(4+l)2  +  {0  +  Vl)2  =    /Is 

Hence,    AA'B'C  is  equilateral. 
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Quiz. 

1.  Find  the  coordinates  of  the  midpoint  of  a  segment  if  the  coordinates 

of  its  end  points  are  (8,  -3)  and  (6,  5),    respectively. 

2.  Given  the  points  A{2,  3),    B(3,  6),    and   C(6,  7).^_^Prove 

(a)  that  B  is  on  the  perpendicular  bisector  of  AC,   and 

(b)  that  B  is  not  the  midpoint  of  AC. 

3.  Which  is  the  largest  angle  of  the  triangle  whose  vertices  are 

A(3,  -2),     B(8,  10),     and   C(5,  6)? 

4.  Write  an  equation  of  a  line  which  passes  through  the  origin  and  is 

perpendicular  to  the  line  an  equation  of  which  is  '3y  -  9x  +  4  =  0'. 

5.  Prove  that  the  segments  joining  the  points  A(5,  3),    B(15,  3),    and 

C(10,  8)    are  the  sides  of  an  isosceles  right  triangle. 

6.  The  vertices  of  quadrilateral  ABCD  are  A(-5,  -5),    B(15,  5), 

C(4,  5),    and  D(-2,  2). 

(a)  Use  slopes  to  prove  that  DC  is  parallel  to  AB. 

(b)  Write  an  equation  of  BC. 

7.  Use  the  method  of  analytic  geometry  to  prove  that  the  midpoints  of 

the  sides  of  a  rectangle  are  the  vertices  of  a  rhombus. 

^  8.     Suppose  that  AABC  is  equilateral.      Let  A'  be  a  point  on  AB  such 

that  AB  =  BA',    B'  be  a  point  on  BC  such  that  BC  =  CB',    and  C  be 

a  point  on  CA  such  that  CA  =  AC'.      Use  the  method  of  analytic 

geometry  to  prove  that  AA'B'C  is  equilateral. 
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Correction.     On  page  6-271,   the  label  at  the 
center  of  the  circle  should  be  'C(h,  k)'. 

line  3,       The  alternative  use  of  'radius',  to  refer  to  a  segment,   is 

introduced  on  page  6-277. 

The  development  on  pages  6-274  and  6-275,   which  culnninates  in  Theo- 

rem 10-1  on  page  6-276,  is  a  good  example  of  the  power  of  the  method  of 

analytic  geometry.     A  synthetic  treatment  would  be  much  more  difficult. 

Solutions  for  (1)  -  (4)  on  page  6-271. 

(1)    x^  +  /  =  49  (2)     10;    (0,  0) 

(3)     /2;    (0,0)  (4)    (x-3)2  +  (y-5)2  =  4 

Note  that  not  only  can  one  derive  the  equation  [see  middle  of  page  6-272]: 

(*)  [x(P)  -  4f   +   [0  -  4f   =   25 

from  (1)  and  (2),   but  one  can  derive  (1)  from  (*)  and  (2).       That  is,  the 

system  consisting  of  (1)  and  (2)  is  equivalent  to  [has  the  same  solution 

set  as]  the  system  consisting  of  (*)  and  (2).      Now,   {*)  is,   as  shown, 

equivalent  to : 

(**)  x(P)  =  7   or   x(P)  =  1 

So,   the  system  consisting  of  (1)  and  (2)  is  equivalent  to  the  system  con- 

sisting of  {**)  and  (2).     Hence,  both  systems  have  the  same  solution  set, 

{(1,  0),   (7,  0)}.     Consequently,  there  is  no  need  to  carry  out  the  checking 

procedure  given  at  the  foot  of  page  6-272.     [Nevertheless,   you  may  wish 

to  require  your  students  to  carry  out  such  checks  for  the  purpose  of  dis- 

covering errors  in  computation.] 
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Answers  for  Part  A. 

1.  (x  -  2)2  +  (y  -   1)2  =  9     [or:    x^  +  y^  -  4x  -  2y  -  4  =  O] 

2.  (x  -   1)2  +  (y  -  2)2  =  9  3.     (x  +  5)2  +  (y  -  6)2  =  6 

4.  {x+  3)2 +  (y  +  5)2  =  121  5.     (x  -  5)2  +  (y  -  7)2  =  29 

6.     (x  -  3)2  +  (y  -  4)2  =  25     [or:    x2  +  y2  -  6x  -  8y  =  0] 

Answers  for  Part  B. 

1.     (0,  0);   9  2.     (0,  0);    12 

5.  (3,  0);    10  6.     (-3,  -4);    1 

9.     {P:    x(P)  >  0   and  y(P)  <  O};    The  circle  of  Exercise  6  is  the  only 

one  whose  center  belongs  to  Quadrant  III,    so,   none  of  the  other 

circles  can  be  subsets  of  this  quadrant.       The  circle  of  Exercise  6 

is  a  subset  of  Quadrant  III. 

♦ 

3.     (1.  2);    13 4.     (-1,  2);    15 

7.     (0.  -9);    3 8.     (a/1,  -^f3)^,  V6 

Answers  for  Part  C. 

1.     (3,  4).    (3,  -4) 

4.     none 

2.     (4,  3),    (4,  -3) 

5.     (3,  4),    (-3,   -4) 

3.     (5,0) 

6.     (0,  0),    (0,  8) 
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Correction.     On  page  6-279,   line  9b  should read: 

(8)  ---    [Steps  like  (3)  and  (5)] 

r 

intersect  a  noncircular  curve  in  exactly  one  point  and  still  not  be  tangent 
to  the  curve.     But,    [for  any  sufficiently  smooth  curve]  one  can  define, 

through  each  point  of  the  curve,   a  "normal  line",    and  the  tangent  to  the 
curve  at  a  given  point  is  the  line  which  contains  the  point  and  is  perpen- 

dicular to  the  normal  line  at  that  point. 

'I- 

Answers  to  questions  after  Theorena  10-2  on  page  6-277, 

(a)      1  (b)     none  (c)     two 

Theorem  10-3  is  not  quite  correct,    since  there  are  two  radii  perpen- 

dicular to  a  given  chord.     It  can  be  corrected  by  replacing  'radius'  by 
'diameter'. 

By  Theorem  10-1,   the  distance  between  the  center  of  a  circle  and  a 
chord  is  less  than  the  radius  of  the  circle.     So,  by  sentence  (4)  on  page 
6-275,  the  line  through  the  center  and  perpendicular  to  the  chord  inter- 

sects the  chord  at  its  midpoint.     So,  the  distance  between  the  center  of 
the  circle  and  the  midpoint  of  the  chord  is  less  than  the  radius  of  the 
circle.     Again,  by  Theorem  10-1,  the  line  through  the  center  and  perpen- 

dicular to  the  chord  intersects  the  circle  in  two  points.     These  points  are 
on  opposite  sides  of  the  given  chord,  so  the  chord  whose  end  points  they 
are  contains  the  midpoint  of  the  given  chord.     Consequently,  the  diameter 
perpendicular  to  a  chord  bisects  the  chord. 

Since  there  is  only  one  line  perpendicular  to  a  chord  at  its  midpoint. 
Theorem  10-3  also  tells  us  that  the  perpendicular  bisector  of  a  chord 
of  a  circle  contains  the  center  of  the  circle. 

'I* 

As  in  the  case  of  'radius',  one  who  speaks  of  the  diameter  of  a  circle 
must  mean  to  refer  to  the  comnnon  measure  [see  Exercise  7  of  Part  F 
on  page  6-280]  of  chords  which  contain  the  center  of  the  circle,  while 
one  who  speaks  of  a  diameter  refers  to  such  a  chord. ■Jl. 

Answers  for  Part  E   [on  page  6-278], 

1.     13 2.     3 
24 
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Corrections.     On  page  6-276,    change  lines  6b  and 
5b  to  read: 

  ,    since  the  perpendicular  segment  frona 
C  to  j2   is  the  only  segment  from  C  to  i   which 

has  this  measure,    it  follows   

In  line  2b,    insert  a  comma  between  'because' 
and  '  since'. 

As  pointed  out  in  the  COMMENTARY  for  page  6-272,   the  substitution 
check  described  just  after  equation  (4)  on  page  6-275  is  gratuitous. 

From  (2)  and  (3)  [near  the  foot  of  page  6-275]  it  follows  that  a  line  whose 
distance  from  the  center  of  a  circle  is  equal  to,    or  greater  than,    the 
radius  of  the  circle  does  not  intersect  the  circle  in  two  points.     Hence, 
if  a  line  intersects  a  circle  in  two  points  then  the  distance  between  the 
line  and  the  center  of  the  circle  is  less  than  the  radius. 

Similarly,   it  follows  from  (1)  and  (3)  that  if  a  line  intersects  a  circle 
in  exactly  one  point  then  the  distance  between  the  line  and  the  center  of 
the  circle  is  the  radius  of  the  circle. 

From  (1)  and  (2)  it  follows  that  if  a  line  does  not  intersect  a  circle  then 
the  distance  between  the  line  and  the  center  of  the  circle  is  greater  than 
the  radius  of  the  circle. 

In  general,   from  three  conditional  sentences  : 

(1)     if  p  then  s  (2)     if  q  then  t  (3)     if  r  then  u 

and  four  sentences  : 

p  or  q  or  r  not  (s  and  t)  not  (t  and  u)  not  (u  and  s) 

one  can  infer  the  converses  of  (1),    (2),   and  (3): 

if  s  then  p  if  t  then  q  if  u  then  r 

Note  that  when  one  speaks  of  the  radius  of  a  circle,   he  musi:  be  using 
'radius'  as  it  was  introduced  on  page  6-270.    One  who  speaks  of  a_  radius 

of  a  circle  is  using  the  word  with  the  nneaning  of  'radial  segment'. 
»v 

Note  that  one  could  take  Theorem  10-2  on  page  6-277  as  a  definition: 

A  line  is  tangent  to  a  circle  if  and  only  if  it  contains  a  point  of 
the  circle  and  is  perpendicular  to  the  radius  at  that  point. 

In  this  case,   one  would  have,   in  place  of  Theorem  10-2,   the  theorem: 

A  line  is  tangent  to  a  circle  if  and  only  if  it  intersects  the  circle 
at  a  single  point. 

Such  a  rearrangement  might  accord  better  with  more  advanced  mathe- 
matics courses.      For  a  tangent  to  a  noncircular  curve  may  intersect 

the  curve  at  other  points  beside  the  point  of  tangency,    and  a  line  may 
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Answers  for  Part  F. 

1.  Suppose  that  AB  and  DE  are  congruent  chords  of  a  circle  with  center 

C  and  that  M  and  N  are,    respectively,   the  feet  of  the  perpendiculars 

from  C  to  AB  and  DE,    We  also  assume  fronn  the  figure  that  M/C/^N. 

By  Theorem  10-3,    M  is  the  midpoint  of  AB  and  N  is  the  midpoint  of 

DE.    Hence,  since  AB  =  DE,  it  follows  that  MB  =  NE.    Since  B  and  E 

are  points  of  the  circle,   BC  =  EC.     Since  CM  ±  AB  and  CN  ±  DE,  both 

ACMB  and  ACNE  are  right  triangles.     Hence,   by  h.  1. ,    CMB  *--  CNE 

is  a  congruence,    and  CM  =  CN. 

• — •  • — t 

2.  Suppose  that  AB  and  DE  are  chords  of  a  circle  with  center  C  and  that 

the  feet  M  and  N  of  the  perpendiculars  from  C  to  AB  and  DE,    respec- 

tively,  are  equidistant  from  C.     Also,   from  the  figure,   we  assume 

that  M  /  C  /^  N.      Since  M  and  N  are  equidistant  from  C,    CM  =  CN. •— «        • — * 

Since  B  and  E  are  points  of  the  circle,    CB  =  CE.     Since  CM  JL  AB  and 

CN  X  DE,   both  ACMB  and  ACNE  are  right  triangles.     Hence,  by  h.  i. , 

CMB  —•  CNE  is  a  congruence,  and  MB  =  NE.     But,  by  Theorem  10-3, 

M  and  N  are  the  midpoints  of  AB  and  DE.      Consequently, 

AB  =  2-MB  =  2-NE  =  DE. 

3.  Since  AB  is  a  diameter  of  the  circle,   the  center  C  of  the  circle 

belongs  to  AB.     So,  CA  =  CB.     Since  i  is  tangent  to  the  circle  at  A 

and  m  is  tangent  to  the  circle  at  B,  it  follows  from  Theorem  10-2  that 

i  J.  CA  and  that  m  x  CB.     Since  CA  =  CB,   and  A  /  B,  it  follows  from 

Theorem  5-8  that  i   j  j  m. 

4.  Since  i  and  m  are  tangents  at  T  and  S,    respectively,   it  follows  by 
<-^  ^^  <^  ,  , 

Theorem   10-2  that  jf  J.  CT  and  m  ±  CS.      Since  i  -L  CT  and  i         m, 
^->  ^^     «->' 

it  follows  by  Theorem  5-4  that  m  -L  CT.     Since  m  J.  CS,    CS  is  the 
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perpendicular  to  m  from  C;  since  m  ±  CT,  CT  is  the  perpendicular 

to  m  from  C.     Hence,    CT  =  CS  and  S,    C,   and  T  are  collinear.    Since 

i  I  I  m,    T  e  i,   and  S  e  m,   it  follows  that  S  /  T.     Since  S  and  T  are 

points  of  the  circle,    CS  =  CT.     Consequently,   using  Axiom  C,   it  fol- ■ —  »  • 
lows  that  C  €  ST .     So,   by  definition,   ST  is  a  dianneter. 

5.  By  Theorem  3-3,    each  point  equidistant  from  the  end  points  of  a 

chord  belongs  to  the  perpendicular  bisector  of  the  chord.    So,  since 

the  center  of  a  circle  is  equidistant  from  the  end  points  of  each  chord, 

the  center  belongs  to  the  perpendicular  bisector  of  every  chord.    [This 

also  follows  at  once  from  Theorem  10-3.     See  COMMENTARY  for 

page  6-277. ] 

6.  By  Theorem  10-3,  the  line  through  the  center  of  a  circle  and  perpen- 

dicular to  a  chord  contains  the  midpoint  of  the  chord.      If  the  chord 

is  not  a  diameter  then  its  midpoint  is  not  the  center  of  the  circle, 

and,    since  the  center  and  the  midpoint  are  two  poiit  s  on  the  perpen- 

dicular through  the  center  to  the  chord,    the  center  and  midpoint 

determine  this  perpendicular  to  the  chord. 

7.  By  Axiom  A  and  the  definitions  of  chord,    diameter,   and  radius,   the 

measure  of  each  diameter  of  a  circle  is  twice  the  radius  of  the  circle. 

So,    each  two  diameters  have  the  sanne  mieasure.      Hence,    each  two 

diameters  are  congruent. 
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Proof  of  Theorem  10-4:     By  Exercises   1  and  2  of  Part  F  on  page  6-280, 

it  follows  that  two  chords  of  a  circle,   neither  of  which  is  a  diameter, 

are  congruent  if  and  only  if  they  are  equidistant  from  the  center.      If 

two  chords  are  equidistant  from  the  center  of  a  circle  and  one  is  a 

diameter  then  so  is  the  other;    and,   by  Exercise  7,   the  chords  are  con- 

gruent.    Finally,   if  two  chords  are  congruent,    and  one  is  a  diameter, 

then  so  is  the  other.     For,   if  AB  is  a  chord  which  is  not  a  diameter  and 

AC  is  the  diameter  which  contains  A,  then  it  follows  by  Theorem  6-28 

that  ZABC  is  a  right  angle.    So,  by  Theorems  4-4  and  4-7,  AC  is  longer • — •  •— • 
than  AB.     So,  by  Exercise  7,  AB  is  shorter  than  each  diameter.     Conse- 

quently,   each  chord  congruent  to  a  diameter  is  a  dianneter.      So,   two 

congruent  chords,    one  of  which  is  a  diameter,    are  both  diameters  and, 

so,    are  equidistant  from  the  center.       This  completes  the  proof  of 

Theorem  10-4. 

Theorem  10-5  follows  fronn  Exercises  3  and  4  of  Part  F. 

Theorem  10-6  follows  from  Exercise  5. 

Theorem  10-7  follows  from  Exercise  6. 

Theorem  10-8  follows  from  the  Example  on  pages  6-278  and  6-279. 

Theorem  10-9  follows  from  Exercise  7.     It  happens  to  be  a  corollary 

of  Theorem  10-4,    but  it  was  used  as  a  lemma  in  the  above  proof  of 

Theorem  10-4. 
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Correction.     On  page  6-283,    line  5b 
should  begin: 

2.     Show  that,  each   

Answer  for  Part  C. 

By  Theorem  6-28,   the  midpoint  of  the  hypotenuse  of  a  right  triangle  is 
equidistant  fromi  the  vertices  of  the  triangle.      Since  the  circumcenter 
of  the  triangle  is  the  only  such  point,   it  follows  that  the  circumcenter  of 
a  right  triangle  is  the  midpoint  of  the  hypotenuse  of  the  triangle.      Now, 
if  ABCD  is  a  rectangle  then  AABC  and  ABCD  are  right  triangles  with  a 
common  hypotenuse.     Hence,   they  have  the  same  circumcircle. 

Answer  for  Part  D. 

By  Axiom  A,  the  perimeter  of  AABC  is  AM  +  MB  +  BN  +  NC  +  CQ  +  QA. 
By  Theorem  10-8,   AM  =  QA,    MB  =  BN,    and  NC  =  CQ.     Hence  [by  sub- 

stitution], the  perimeter  of  AABC  is  AM  +  BN  +  BN  +  CQ  +  CQ  +  AM-- 
that  is,   is  2(AM  +  BN  +  CQ). 

"t- 

Answers  for  Part  E. 

1.  By  Theorem  4-12,   the  perpendicular  bisectors  of  the  sides  of  an 
equilateral  triangle  contain  its  medians.     By  Theorem  9-3,   the  point 
of  concurrence  of  the  medians  is  2/3  the  length  of  each  median  from 
the  corresponding  vertex.     By  Theorem  4-12,   the  medians  of  equi- 

lateral triangle  are  its  altitudes.     By  Example  3  on  page  6-205,   the 
measure   of  an  altitude  of  an  equilateral  triangle  of  side  measure  s 
is  sv3/2.«     So,   the  radius  of  the  circumcircle  of  such  a  triangle  is 
s^^3/3. 

2.  By  Theorenn  4-12,  the  angle  bisectors  of  an  equilateral  triangle  are 
its  medians.     Arguing  as  in  Exercise  1,   the  radius  of  the  incircle  of 
an  equilateral  triangle  of  side  nneasure  is  sV3/6. 

3.  This  has  been  established  in  Exercises  2  and  3. 

Answers  for  Part   ''^F. 

See  COMMENTARY  for  page  6-423.     A  triangle  has  three  excircles. 
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Corrections.     On  page  6-285,    line   13  should 
begin: 

1.  Each  hoop  is   
t 

and  line   14  should  begin: 
2.  Each  hoop  is   

The  orthocenter  of  a  triangle  is  the  circumcenter  of  a  second  triangle 
each  of  whose  sides  contains  a  vertex  of  the  first  triangle  and  is 
parallel  to  the  side  of  the  first  triangle  which  is  opposite  this  vertex. 

Answers  for  Part  G. 

1.  [Since,   by  Theorem  10-8,   AB'  =  AC',    it  follows  by  Theorem  4-12 

that  the  bisector  AD  of  ZA  is  perpendicular  to  B'C.     So,   B'C  con- 

tains the  altitude  from  the  vertex  of  the  right  angle  ZB'  of  AAB'D. 

As  shown  in  the  COMMENTARY  for  page  6-203,   it  follows  that 

B'C  r>  AD  consists  of  a  single  point.     So,   AC'DB'  is  a  convex  quad- 

rilateral.]   Since,    by  definition,   the  convex  quadrilateral  AB'DC 

has  right  angles  at  C  and  B',   it  follows  from  Theorem  6-30  that 

m(ZA)  +  m(ZD)  =  180.     So,  ZA  and  ZD  are  supplemientary. 

2.  Since  P  is,    by  hypothesis,   the  center  of  the  circle  containing  A,   B, 

and  C,  ABPC  and  ACPA  are  isosceles  with  vertex  angles  at  P.    So, 

by  Theorem  3-5,  ZPBC  andZPCB  have  the  same  measure,    p,   and 

ZPCA  andZPAC  have  the  same  measure,    y      Since,    by  hypothesis, 

P  is  interior  to  AABC,    m(ZACB)  =  p  +  y.       Moreover,    since  P  is 

interior  to  AABC,   it  follows  that  CP  intersects  AB  at  a  point  E  such 

that  P  €  CE.      Hence,  ZEPB  is  an  exterior  angle  of  ABPC,    and 

m(ZEPB)  =  2p.     Similarly,    m{ZEPA)  =  Zy.     Since  PE  intersects  AB, 

E  is  interior  to  ZAPB.       Consequently,     m{ZAPB)    =   m(ZEPB)    + 

m{ZEPA)  =  2p  +  2y.      So,    m{ZACB)  =  i-m(ZAPB). 

[Here  is  an  alternative  solution  for  Exercise  2: 

Since,   by  hypothesis,   P  is  the  center  of  the  circle  containing  A,   B, 
and  C,   AAPB,    ABPC,    and  ACPA  are  isosceles  with  vertex  angles 
at  P.     So,  by  Theorem  3-5,  ZPAB  andZPBA  have  the  same  measure, 
q;   ZPBC  andZPCB  have  the  same  measure,    (3;  and  ZPCA  andZPAC 
have  the  same  measure,    y.     Since,    by  hypothesis,    P  is  interior  to 
AABC,   it  follows  that,    in  AABC,   m(ZA)  =  y  +  a,   m(ZB)  =  a  +  p, 
and  m(ZC)  =  p  +  y.      Hence,   using  Theorem  5-11,    it  follows  that 
Q  +  P  +  Y  =  90.    Using  the  same  theorem,    a  +  |  •  m(ZAPB)  =  90.    Hence, 
P  +  y  =  |-m{ZAPB)--that  is,    m(ZACB)  =  i-m{ZAPB).] 
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3.  If  the  circumcenter  P  of  AABC  belongs  to  AB  then  P  is  the  midpoint 

of  AB,  and  CP  =  j'AB.  So,  by  Theorem  6-28,  AABC  is  a  right  tri- 

angle. 

^4.     Since,   by  Theorem  6-24,    M^Mg  is  parallel  to  the  side  [of  the  given 

triangle]  whose  midpoint  is  M^^,   it  follows  by  Theorem  5-9  that  the 

perpendicular  bisector  of  this  side  is  the  line  which  contains  the 

altitude  from  M.  of  AMj^MgMg.      Similarly,    each  of  the  other  alti- 

tudes of  AM^MgMg  is  contained  in  a  perpendicular  bisector  of  a  side 

of  the  given  triangle.     So,  by  definition,  the  orthocenter  of  AMj^M^Mg 

is  the  circumcenter  of  the  given  triangle. 

[Compare  Exercise  4  with  Exercise  3  on  page  6-167.] 

Answers  for  Exploration  Exercises  [on  pages  6-284  and  6-285]. 

1.  Each  hoop  is  outside  the  other  [and  they  are  not  in  contact], 

2.  The  hoops  are  in  contact  at  one  point  and,   disregarding  this  point, 
each  hoop  is  outside  the  other. 

3.  If  r  =  s  then  one  hoop  will  be  on  top  of  the  other;    otherwise,   the 
smaller  hoop  is  inside  the  larger. 

4.  The  hoops  could  be  in  contact,    but  need  not  be.     If  r  =  10,    s  =  5  and 
d  =  4  then  the  smaller  hoop  is  inside  the  larger,    and  they  are  not  in 
contact.     If  r  =  10,    s  =  5,   and  d  =   5  then  the  hoops  are  in  contact  at 
a  single  point.     If  r  =  10,    s  =  5,    and  d  =  8,   they  are  in  contact  at 
just  two  points. 

5.  The  hoops  could  be  in  contact,    but  need  not  be.     The  possibilities  are 
illustrated  by  situations  in  which  s  =  3,    r  =  4,    and  d  =  6,    or  7,    or  8, 

6.  The  hoops  are  in  contact  at  exactly  two  points. 

Answers  for  Part  B    [on  page  6-285]. 

1.     d>r  +  s  2.     d=r  +  s  3.     d  =  r-s  4.     d<r-s 

5.     d  =  0  and  r  =  s  6.r-s<d<r  +  s 
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Corrections.     On  page  6-290,    line  3  should 
begin  'the  circles.     If  the  center  of  the, circles 

—  *  —  * 
• 

Line  4  should  read  '   tangent.    ̂ If  the 
centers  of  the  circles   '. 

Line  8  should  read  '   other.     If  the 
.centers  of  the^  circles   '. 

Comment  on  last  paragraph  on  page  6-286. 

If  d  =  0  then  C  =  D  and  CD  is  not  a  line.     Nevertheless,   in  this  case  (1) 
and  (2)  are  still  equations  for  the  circles,    with  respect  to  any  coordinate 
systems  whose  origin  is  C.     If  d  =  0  and  r  =  s,    there  is  only  one  circle. 
Algebraically,   the  solution  set  of  the  last  displayed  equation  [fourth  line 
from  foot  of  page  6-286]  is  the  set  of  all  real  numbers.     So,  the  solution 
set  of  the  system  consisting  of  (1)  and  (3)  is  just  the  solution  set  of  (1). 

Strictly  speaking,    not  (2')  on  page  6-289,    but  'x  =  (r^  -  s^  +  d^)/(2d)'   is 
an  equation  of  the  line  in  question.     [We  have  been  sinnilarly  sloppy  in 
lines  5  and  6  on  page  6-287.]    As  shown  on  page  6-286,   a  point  belongs 
to  both  circles  if  and  only  if  its  coordinates  satisfy  both  this  equation 
and  equation  (1).     So,    in  the  two-point  case,    both  points  of  intersection 
belong  to  this  line  and,    so,    determine  it.     In  particular,   the  two  points 
have  the  same  x-coordinate  and,    as  is  seen  by  substitution  in  (1),    oppo- 

site y-coordinates .     So,   the  midpoint  of  the  segment  joining  the  two 
points  of  intersection  is  on  the  x-axis.     Since  the  segment  is  perpendic- 

ular to  the  X-axis,    it  follows  that  the  x-axis  is  the  perpendicular  bi- 
sector of  the  segment.    [Theorem  10-13  also  follows  readily  from 

Theorenri  3-3.] 

With  Theorem  10-14  now  available,  it  is  easy  to  establish  another  neces- 
sary and  sufficient  condition  on  the  measures  of  the  sides  of  a  triangle: 

For  all  nonzero  numbers  of  arithmetic  x,    y,   and  z,   there 
is  a  triangle  whose  side  measures  are  x,   y,    and  z,    respec- 

tively if  and  only  if  x  +  y  >   z  and  y  +  z  >  x  and  z  +  x  >   y. 

For,  suppose  that  A,  B,  and  C  are  three  noncollinear  points,  and  that  a,  b, 

and  c  are  the  measures  of  BC,    CA,   and  AB,    respectively.     Then,   a,  b 

and  c  are  nonzero  nunnbers  of  arithmetic  and,  by  Axionn  B,  since  C  ̂ 'BA, 
a  +  b  >  c.    Sinnilarly,  since  A  ̂   CB,    b  +  c  >  a  and,  since  B  /AC,    c  +a  >  b. 

On  the  other  hand,    suppose  that  a,    b,   and  c  are  nonzero  numbers  of 
arithmetic  such  that  a  +  b>c,    b  +  c>a,    and  c  +  a  >  b.     Either  a  ̂   b 
or  b  >^  a.     In  the  first  case,  since  a  +  b  >   c  and  b  +  c  >  a,  it  follows  that 
a-b<c<a+b.     In  the  second  case,  since  a  +  b  >   c  and  c  +  a  >  b,   it 
follows  that  b-a<c<a  +  b.     So,    by  Theorem  10-14,   in  each  case, 
a,    b,    and  c  are  measures  of  the  sides  of  a  triangle. 
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Correction. On  page  6-291,    in  line  2b, 
change 'radii*  to  'radius'. 

Answers  for  Part  A   [which  begins  on  page  6-290]. 

1.  The  circles  have  the  same  radius. 

2.  (a)     12  (b)     36/5   and  96/5  (c)    4^3 

3.  Suppose  that  the  circles  have  centers  C  and  D  and  that  the  points  of 
• — •  • — » 

tangency  are  S  and  T,   respectively.     By  Theorem  10-2,    CS  and  DT 

are  both  perpendicular  to  i.     Assuming  that  S  /  T  [the  case  in  which 

S  =  T  is  treated  in  Exercise  1  of  Part  B,    below],    it  follows  by  Theo- 

rem 5-8  that  CS    I  j  DT.       Since  the  circles  have  the  same  radius, 

CS  =  DT.     Since  i  is  a  common  internal  tangent,    C  and  D  are  on 

opposite  sides  of  ST.     Since  [  because  CS    |  I  DT]  C  and  S  are  on  the 

same  side  of  DT  and  D  and  T  are  on  the  same  side  of  CS,   it  follows 

[by  a  result  in  the  COMMENTARY  for  page  6-162]  that  CD  r^  ST  con- 

sists of  a  single  point.     Hence,    CTDS  [rather  than  CSTD]  is  a  quad- 

rilateral and,    since  it  has  two  sides  parallel  and  congruent,   is,    by 

Theorem  6-8,    a  parallelogram.       Consequently,   by  Theorem  6-5, 
CD  bisects  ST . 

4.  There  are  six  possible  arrangements  :   four  in  which  all  three  circles 
have  a  common  tangent,  one  in  which  the  two  smaller  circles  form 
a  figure-eight  inside  the  largest,   and  one  in  which  the  centers  are 
vertices  of  a  triangle  with  side  measures  5,    7,    and  8. 

Answers  for  Part  B  [on  pages  6-291  and  6-292]. <— > 

1.  By  Theorem  10-2,    both  PT  and  P'T  are  perpendicular  to  MN.    So,  by <->      <— ̂  
Theorem  2-8,    PT  =  P'T.    Now,  P  /  P'.     For,  if  P  =  P'  then  PT  =  P'T, 

and  there  would  not  be  two  circles.     So,  PT  =  PP',   and  T  €  PP'  . 

2.  [Same  as  Exercise  1.] 

3.  By  Theorem  10-8,   AM  =  ME,    and  EM  =  MB.     Hence,   AM  =  MB. 
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4.  If  the  circles  have  the  same  radius  then  ABCD  is  a  rectangle. 

So,   AB  =  CD.     If  the  circles  do  not  have  the  same  radius  then  AB 

and  DC  intersect  at  a  point  P.     By  Th-eorem  10-8,   AP  =  DP  and 

BP=  CP.     Hence,   AD  =  DC. 

5.  By  Theorem  10-8,   AE  =  DE  and  EB  =  EC.     Since  E  €  AB  /">  CD,    it 
follows  that  AB  =  AE  +  EB  =  DE  +  EC  =  DC. 

6.  By  Theorem  10-8,    PA    =  PT  =   PB. 

Answers  for  Part  C. 

1.      Use   Theorem  6-28.  2,      Use  Exercise   1  and  Theorem  10-2. 

P  is  an  internal  point  with  respect  to  a  circle  if  and  only  if  CP  <  r. 

Students  who  have  learned  [see  Exercise  3]  to  draw  tangents  to  a  circle 
from  an  external  point,    nnay  be  interested  in  the  construction  of  common 
external  and  internal  tangents  to  two  circles. 

S 

rj.  Given  circles  of  radius 

r  and  s  with  r_>  s,    draw 

tangents  from  the  center 

of  the  smaller  circle  to 

the  circle  of  radius  r  -  s 

which  is  concentric  with 

the  larger  circle.     If  S' 

is  one  of  the  points  of  tangency  then  CS'  intersects  the  larger  circle  in 

the  point  at  which  one  of  the  common  external  tangents  is  tangent.     The 

point  of  tangency,    for  this  tangent,    on  the  smaller  circle  is  tne  point  at 

which  DT,    directed  similarly  to  CS,    intersects  the  smaller  circle. 

[For  internal  tangents,    use  a  similar  construction,   but  begin  by  draw- 

ing tangents  from  C  to  the  circle  of  radius  r  +  s  and  center  D.] 
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Correction.     On  page  6-294,   in  line  14,    delete 
the  comma  after  'Once'. 

On  page  6-295,   line  lib  should  begin 
'problem  provides   ',    and 

line  6  should  begin  '   half  of  BA   '. 

Answers  to  questions  in  the  text  on  page  6-294. 

line  12:    Since  the  common  radius  r  of  the  circles  is  greater  than  |-'CP, 
and  CP  is  the  distance  between  the  centers  of  the  circles,    it 

follows  that  r  -  r  <  CP  <  r  +  r.     So,   by  Theorem  10-12,    the 
circles  intersect  in  exactly  two  points. 

line  17:    If  s  is  the  radius  of  the  given  circle,   then,    since  CP  >  s,    the 
radius  MC  of  the  second  circle  is  a  nunnber  r  >  s/2.     The  dis- 

tance,   d,   between  the  centers  of  the  two  circles  is  r.     Now,    if 

r_>  s  then  r-s<r<r+s;  and,    if  s/2  <  r  <  s  then  s  -  r  <  r 
<  s  +  r.     Hence,    in  either  case,    it  follows  from  Theorem  10-12 
that  the  circles  intersect  in  exactly  two  points. 

line  18:     P  /  T,    since  T  belongs  to  the  given  circle  and  P  does  not. 

last  line:_  Since  B  and  C  belong  to  a  circle  with  center  A,  AB  =  AC. 
Since  A  and  C  belong  to  a  circle  with  center  B,    BC  =  BA. 

Answers  to  questions  in  the  text  on  page  6-295. 

line  7:       Since  both  circles  have  radius  r,   and  the  distance  between 

their  centers  is  r,   and  since  r-r<r<r+r.    Theorem  10-12 
tells  us  that  the  circles  intersect  in  exactly  two  points. 

line  24:  The  "other  proof*  referred  to  is  not,  in  the  present  develop- 
ment, of  any  probative  value.  For  [see  Solution.  ]  ,  it  makes 

use  of  Theorem  10-2,  which  was  proved  by  analytic  nnethods. 
And  Theorem  2-8  was  used  in  showing  that,  for  each  coordi- 

nate system,  each  pair  of  real  numbers  is  the  coordinate -pair 
of  some  point. 

line  29:    Proof  asked  for  is  similar  to  that  asked  for  in  line  12  on  page 
6-294. 

[For  an  interesting  discussion  of  the  problem  of  possible  euclidean 
constructions,    see  Chapter  3  of  Courant  and  Robbins,    What  Is 
Mathematics?    (New  York:     Oxford  University  Press,    1941).] 
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Answers  for  Part  A. 

(1)    90  (2)    60  (3)    90  (4)     150  (5)    40  (6)     10  [or:    90] 

(7)     250  [or:    350]  (8)     90  [or:    270]  (9)     HO  [or:    10] 

•J, 

'1- 

Answers  for  Part  B.  1.     40  2.     359 

'I- 

Note  that  a  semicircular  arc  is  the  intersection  of  a  circle  with  a  closed 

half -plane  whose  edge  contains  a  diameter  of  the  circle.     In  goneral,   it 
can  be  proved  that  an  arc  is  the  intersection  of  a  circle  with  a  closed 

half -plane  whose  edge  contains  a  chord  of  the  circle.     This  follows  from 
the  definition  on  page  6-298  and,   principally,   Theorem  4-10. 

What  is  required  is  to  show  that  if  AB  is  a  chord  of  a  circle  with  center 

C,    which  is  not  a  dianneter  of  the  circle,   then  a  point  P  of  the  circle 
<-> 

which  is  interior  toZACB  is  on  the  non-C-side  of  AB  and  a  point  P  of 
<-> 

the  circle  which  is  exterior  to  ZACB  is  on  the  C-side  of  AB.     Suppose 

that  P  is  a  point  of  the  circle  which  is  interior  to  ZACB.     Then,    CP 

crosses  AB  at  some  point  Q.     Since  Q  €  AB  and  CA  =  CB,   it  follows  from 

Theorem  4-10  that  CQ  <   CB.     Since  CP  =  CB,   it  follows  that  CQ  <   CP, 

and  P  is  on  the  non-C-side  of  AB.     Suppose  that  P  is  a  point  of  the  circle 

which  is  exterior  to  ZACB.     If  CP  r\  AB  =  0,    then  P  is  in  the  C-side  of 

AB.     Suppose,    on  the  other  hand,   that  CP  crosses  AB  at  a  point  Q.     Since 

P  is  exterior  to  ZACB,    P  /  AB.     Hence,   if  M  is  the  midpoint  of  AB, 

either  A  e  QM  or  B  e  QM.     In  either  case,    by  Theorem  3-10  and  Theorem 

4-9,    CM  <  CQ.     So,    by  Theorem  4-10,    either  CA  <  CQ  or  CB  <  CQ. 

Since  CA  =  CP  =  CB,   it  follows  that,   in  either  case,    CQ  >   CP.     Hence, 

CP  ̂   AB  =  0,   and  P  is  on  the  C-side  of  AB. 

%<^ 

It  follows  from  the  preceding  discussion  that  if  A,  B,  M,  and  N  are  points <— > 

of  a  circle  such  that  M  and  N  are  on  opposite  sides  of  AB  then  the  union 

of  AMB  and  ANB  is  the  circle,   and  their  intersection  consists  of  A  and  B. 

Also,    either  both  are  semicircles  or  one  is  a  minor  arc  and  the  other  a 
major  arc. 
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Answers  for  Part  A. 

1.     (a)   60      (b)    300  2.     (a)    130      (b)    160  3.     (a)    120      (b)    240 

Answers  for  Part  B    [on  pages  6-300  and  6-301], 

1.     150  2.    72  3.    240  4.    AB  5.    FAD  6.     {B} 

7.    the  circle  8.    the  circle  9.    can't  tell  10.    can't  tell 

I     11.    90;   90  12.    200;  160  13.    80;    150 

I ZRTS  is  not  inscribed  in  TU  because  the  vertex,    T,   of  ZRTS  is  an  end 
point  of  TU. 

Answers  for  Part  C   [on  page  6-302]. 

1.    ELB                          2.    EFB                          3.  H J  and  E LB                    4.    BK 

5.  ZEFG,    ZEGB,    ZEHM,    ZEIJ,    ZEBD 

/'~\                                    ^r~>,  ^"^                                              ^~\ 6.  BKJ                          7.    BKE                         8.  HJB                                     9.    EF 

10.    EBJ                        11.    FBH                       12,  LB  and  EHB 
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Answers  for  Part  D. 

1.  [If  AB  is  a  minor  arc  of  a  circle  with  center  O  then  both  AB  and  its 

chord  AB  are  said  to  subtend  the  central  angle  ZAOB.] 

Since,    by  definition,    minor  arcs  of  the  same  or  congruent  circles  are 
congruent  if  and  only  if  the  central  angles  which  they  subtend  are  con- 

gruent,   it  is  sufficient  to  prove  that  chords  of  nninor  arcs  of  the  same  or 
congruent  circles  are  congruent  if  and  only  if  the  central  angles  which 
they  subtend  are  congruent.     But,   the  if -part  of  this  last  is  an  immie- 
diate  consequence  of  s.  a.  s.  ,    and  the  only  if -part  is  an  imnnediate 
consequence  of  s. s. s. 

2.  Suppose  that  AB  is  longer  than  CD.    Suppose  that  AB  is  a  diameter.    It 

follows,    by  Theorem  10-9,  that  CD  is  not  a  diameter.     In  this  case, 

m(AB)  =   180  and  m(CD)  =  m(Z  COD)  <    180  [by  Axiom  D].     Moreover, 

the  distance  between  P  and  AB  is  0,  and  [using  Theorem  1-2]  the  dis- 

tance between  P  and  CD  is  greater  than  0.     Now,  suppose  that  AB  is 

not  a  diameter.     Then,  by  Exercise  1  of  Part  C  on  page  6-292,  Exer- 

cise 1  of  Part  C  on  page  6-131,  and  Theorem  10-9,  it  follows  that  AB 

is  shorter  than  each  diameter.     Since  CD  is  shorter  than  AB,  it  fol- 

lows  that  CD  is  shorter  than  each  diameter.     So,    CD  is  not  a  diameter. 

Consequently,  since  AB  is  longer  than  CD,  it  follows,  by  Theorem  4-11, 

thatZCPDis  not  larger  thanZAPB,  and,  by  s.a.s.,  thatZCPDis  not 

congruent  toZAPB.     Hence,  ZAPB  is  larger  than  Z  CPD.     So,  by  defini- 
•^-^  f-^  •— • 

tion  m(AB)  >  m(CD).     Finally,  if  d  is  the  distance  between  P  and  AB, »— • 

and  e  is  the  distance  between  P  and  CD,  then,  by  Theorem  10-1  and  the 

Pythagorean  Theorem,    d^  +  [|-AB]^  =  e^  +  [i  •  CDf .     So,  e^  -  d^  = 

j-'  [(AB)^  -  ( CD)^]  >  0  and  [since  e  and  d  are  numbers  of  arithmetic]  e  >  d. 

3.  Suppose  that  AB  is  closer  to  P  than  CD  is.     Suppose  that  AB  is  a  diam- 

eter.    Then  CD  is  not,    and,    as  shown  in  the  answer,  above,  for  Exer- 

cise 2,    CD  <  AB .     Suppose  that  AB  is  not  a  diameter.     Then,  again, 

neither  is  CD,    and  CD  <  AB  for  the  same  reasons  set  forth  in  the 

final  two  sentences  of  the  answer  for  Exercise  2,    above. 
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4.  AABC  is  isosceles  with  vertex  angle  at  B.     By  Theorem  4-12,   the 

bisector  of  ZB  is  a  subset  of  the  perpendicular  bisector  of  AC.    By 

Theorenn  10-3,  this  line  contains  O.     So,   the  bisector  of  ZB  is  a  sub- 

set  of  BO.     To  prove  that  the  bisector  of  /B  is  BO,   we  still  must 

show  that  O  belongs  to  the  bisector  of  ZB  [rather  than  to  the  other 

ray  with  vertex  B  which  is  a  subset  of  BOJ.      To  do  so,    let  M  be  the 

midpoint  of  AC.     As  previously  shown,   the  bisector  of  ZB  is  BM,    and 

our  problem  is  to  show  that  O  e  BM.     Now,    since  OM  is  perpendicu- 

lar to  AC  at  M,    and  A  /  M,   it  follows  that  OM  <  OA  =  OB.     But,   if 

O  i  BM  then,    since  O  e  BM,   B  e  OM  and,    by  Axiom  A,    OB  <  OM. 

Since,   as  just  noted,   this  is  not  the  case,    it  follows  that  O  e  BM,    [As 

with  many  of  the  exercises  in  this  unit,   most  students  will  be  satis- 

fied to  assume  fronn  a  figure  that  O  e  BM.     It  is  to  be  hoped,  however, 

that  there  are  students  who  will  wonder  if  such  an  assumption  can  be 

derived.  ] 

5.  By  Theorem  10-8  and  s.  s.  s.  ,    CTP  — —  CSP  is  a  congruence.    Hence 

[as  in  Exercise  4],    PC  is  the  bisector  of  ZTPS.     So,    m(ZTPC)  =  30 

and,    by  Theorem  10-Z  and  Theorem  5-11,    m(ZTCM)  =  60.     Now, 

since  APCT  is  30-60-90,    TC  =  i  •  CP.      Since  TC  =  CM,    CM  =  MP. 
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Answer  for  Part  E. 

Suppose  that  A  and  B  are  two  points  on  a  circle  with  center  C.     By 

Theorem  10-3,  the  diameter  PQ  perpendicular  to  AB  intersects  AB  at <->  —• 
its  midpoint  M.     The  points  P  and  Q  are  on  opposite  sides  of  AB.     If  AB 

is  a  diameter  thenZPCA  andZPCB  are  right  angles  and  AP  and  PB  are 
• — *  •'    V  •— • 

both  arcs  of  90".     So,   PQ  bisects  the  semicircle  APB.     Similarly,  PQ 
bisects  the  sennicircle  AQB.     If  AB  is  not  a  diameter  then  AACB  is  an 

isosceles  triangle  with  vertex  angle  C  and,    by  Theorem  4-12,    CM  is  the 

bisector  of  ZACB.     If,  say,  M  €  CP  then  CP  is  the  bisector  of  ZACB.    So, 

ZACP  ^  ZPCB  and,    by  definition,   AP  s  PB.     In  this  case,  ZACQ  and 

ZBCQ  are  congruent  since  they  are  supplements  of  congruent  angles. 

So,   AQ  ̂   QB.     [The  case  in  which  M  e  CQ  is  treated  similarly.  ] 

Answers  for  Part  F. 

1.     By  hypothesis  and  Theorem  3-3,    both  A  and  O  belong  to  the  perpen- 

dicular  bisector  of  BC.     So,    by  Theorem  4-lZ,   AG  is  the  bisector 

of  ZA,   and  m(ZOAB)  =  30.     Similarly,    m(ZOBA)  =  30.     Hence,    by 

Theorem  5-11,   m(ZAOB)  =  120.     So,   m{AMB)  =  120  and,   by  hypo - 

thesis,   m(AM)  =  60.     Similarly,    m(MB)  =  m{BN)  =  m(NC)  =  m(CP) 

=  m(PA)  =  60.     Hence,    by  Theorem  10-19,   AM  =  MB  =  BN  =  NC  = 

CP  =  PA.     Hence,  by  s.  s.  s.    AOAM  S  AOMB  S  ..  .    S  AOPA.    Since 

these  are  isosceles  triangles  with  vertex  angles  at  O,  ZOAM  =  ZOMA 

=  ZOMB  ^  ...    ̂   ZOPA  ^  ZOAP.     Hence,  ZPAM  ^  ZAMB  s  ...    s 

ZCPA.      Consequently,    since  AMBNCP  is  both  equilateral  and  equi- 

angular,   it  is  regular. 

2.  10 

3.  ACAD  is  an  isosceles  triangle  with  vertex  angle  at  A.     Since  one  of 

its  angles  is  an  angle  of  60°,    ACAD  is  equilateral. 
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[The  idea  of  having  students  use  an  opaque  circular  protractor  to  measure 

an  angle  and  thus  leading  them  to  discover  Theorems   10-22  through  10-26 
was  given  to  us  by  Mr.   Harry  Schor  of  Abraham  Lincoln  High  School  in 
New  York  City.  ]    Since  the  written  directions  for  these  Exploration  Exer- 

cises are  fairly  intricate,   we  suggest  that  the  exercises  be  done  in  class 

under  the  teacher's  supervision. 

Answers  for  Part  A. 

1.  60;    70;    90;    105;    140;    150;    160;    170;    doesn't  cross  [but,   BC  is,   in 
this  case,   tangent  to  the  circle  at  B] 

2.  30  3.     If  the  scale  nnark  for  O  is  not  interior  to  the 

angle,   then  m{ZABC)  is  one  half  the  scale 
A       I    \     nn      An  difference.     [Otherwise,    m(ZABC)  is   180 
4.     (a)     80;    40  .     ir  ,.,  i     jrV  i minus  one  half  the  scale  difference.  J 

(b)     120;    60 -J, 

Answers  for  Part  B. 

1.  The  values  read  off  the  scale  should  be  approximately  52  and  188. 

2.  |[(52 -0)  +  188- 180)]  =  30  3.     i  [(50  -  0)  +  (190  -  180)]  =  30 

Answers  for  Part  D   [on  page  6-308], 

1.     35  2.     65  3.     55;    110  4.     55;    160;    35 

'IT- 

Answer  for  Part  E     [on  page  6-308]. 

Yes,     [See  Theorem  10-26.] 

Answer  for  Part  F   [on  page  6-30  8], 

The  measure  of  the  angle  is  at  least  90.     [This  answer  is  based  on  the 
assumption  that  the  vertex  is  invisible  if  it  is  at  the  edge  of  the  pro- 

tractor. ] 
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ABC  is  a  major  arc.     So,    taking  account  of  the  definition  of  degree - 

measure  for  arcs,    it  follows  that,    in  each  case,    m(AB)  +  m(BC)  =  m(ABC). 

In  case  (iv),    since  B  is  exterior  to  ZAOC,  ABC  is  a  major  arc,   and 

m(ABC)  =     60  -  m(ZAOC).     Since  BA'C  is  a  semicircle,   m(BA'C)  =   180. 

Since  ZAOB  and  ZAOC  are  supplementary,    m(AB)  =  m{ZAOB)  =   180  - 

m(ZAOC).     Combining  these  results,    we  find  that,    in  case  (iv),   m(AB)  + 

m(BA'C)  =  m(ABC). <-> 

In  case  (v),    since  A'  and  C  are  on  opposite  sides  of  OB,    it  follows  that 

A'  is  exterior  to  ZBOC,   and  BA'C  is  a  major  arc.     Similarly,    B  is 
exterior  to  ZAOC,   and,    hence,   ABC  is  a  major  arc.     So,   to  show  that 

m(AB)  +  m(B'AC)  =  m(ABC),    we  need  to  show  that 

m(ZAOB)  +  [360  -  m(ZBOC)]  =  360  -  mfZAOC), 

that  is,    that  m(ZAOB)  +  m(ZAOC)  =  m(ZBOC).     But,    since,    in  case  (v), 

A  is  on  the  C-side  of  OB  and  B  and  C  are  on  opposite  sides  of  OA,    it 
follows  that  A  is  interior  to  ZBOC.     So,    the  desired  result  follows  from 

Axiom  F. 

This  completes  the  proof  of  Theorem  10-21. 
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Similarly,    each  point  of  AB,    except  B,    is  on  the  A-side  of  OB.     So,   in 
«'> 

the  first  three  cases,  of  the  two  arcs  with  end  points  B  and  C,   BC,   alone, 

intersects  AB  only  at  B,     Hence,    in  these  cases,    we  need  to  show  that 

m(AB)  +  m(BC)  =  m(ABC). 

In  the  fourth  case,    of  the  two  semicircles,    BAC  and  BA'C  with  end 

points  B  and  C,    it  is  only  the  second  which  intersects  AB  only  at  B.     So, 

in  this  case,  we  need  to  show  that  m(AB)  +  ni{BA'C)  =  m(ABC). 

In  the  fifth  case,   A  is  on  the  C-side  of  OB  and  B  and  C  are  on  opposite 

sides  of  OA.     So,  A  is  interior  to  ZBOC  and,    so,   belongs  to  BC.     On  the 

other  hand,   no  point  of  AB  other  than  B  belongs  to  the  major  arc  BA'C. 
For,    since  A  is  interior  to  ZBOC,    each  point  interior  to  ZAOB  is  interior 

to  ZBOC.     Hence,    no  point  interior  to  ZAOB  is  exterior  to  ZBOC.     So,    in 

the  fifth  case,    of  the  two  arcs  with  end  points  B  and  C,   the  major  arc 

BA'C,   alone,    intersects  AB  only  at  B.     Hence,    in  this  case,    we  need  to 

show  that  m(AB)  +  m(BA'C)  =  m(ABC). 

Now,    since,    in  the  first  three  cases,  A  and  C  are  on  opposite  sides  of 
<->  — 
OB,  ZAOB  and  ZBOC  are  adjacent  angles.     In  each  case,   AC  crosses 

OB.     In  case  (i),    since  C  is  on  the  B-side  of  OA,    so  is  the  crossing 

point.     Hence,    the  crossing  point  is  on  OB.     In  case  (ii),    the  crossing 

point  is  O.     In  case  (iii),    since  C  is  on  the  B'-side  of  OA,    the  crossing 

— ̂  

point  
is  on  OB'.     

It  follows,    

now,    
from  

the  
work  

on  sums  
of  measures of  adjacent  angles  on  page  6-71,    that 

in  case  (i),  m(ZAOB)  +  m(ZBOC)  =  m(ZAOC), 

in  case  (ii),        m{ZAOB)  +  m(ZBOC)  =   180,    and 

in  cas«  (iii),       m(ZAOB)  +  m(ZBOC)  =   360  -  m(ZAOC) 

In  case  (i),    since  B  is  interior  to  ZAOC,   ABC  is  a  minor  arc.     In  case 

(ii),   ABC  is  a  semicircle.     In  case  (iii),    since  B  is  exterior  to  ZAOC, 
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Correction.     On  page  6-309i   line  3b  should  end: 

  which  AKB  and  BLC  are  minor 

t 

For  connpleteness,    here  is  a  proof  of  Theorem  10-21  on  page  6-310. 

If  B  and  C  are  two  points  of  a  circle 

with  center  O  then,    if  O  J^BC,    the 

major  arc  with  end  points  B  and  C 

contains  the  point  B'   such  that 

O  €  BB'.     For,    since  B  and  B'  are 

on  opposite  sides  of  OC  and  B'  ̂   OB, 
B'  is  exterior  to  ZBOC.     On  the  other 

hand,   B'  belongs  to  both  sennicircular 
arcs  which  have  B  as  an  end  point. 

Consequently,    if  the  intersection  of 

of  two  arcs  which  have  B  as  a  common 

end  point  consists  of  the  point  B,   alone, 

then  one  of  these  is  a  minor  arc. 

Suppose,   now,   that  AB  is  a  nninor  arc,   and  that  A'  and  B'  are  the  opposite 
end  points  of  the  diameters  from  A  and  B,    respectively.     Each  point  C 

of  the  circle  such  that  C  JZ'AB  is  exterior  to  LKOB.     So,   there  are  five 
cases: 

(i)         C  is  on  the  A'-side  of  OB  and  on  the  B-side  of  OA. 

(ii)       C   €  OA'  [so,    C  =  A'], 

(iii)      C  is  on  the  A'-side  of  OB  and  on  the  B'-side  of  OA, 

(iv)      C  €  OB'  [so,    C  =  B'l, 

C  is  on  the  A-side  of  OB  and  on  the  B'-side  of  OA. (v) <-> 

In  each  of  the  first  three  cases,  A  and  C  are  on  opposite  sides  of  OB;  so, 

A  is  exterior  to  ZBOC  and  belongs  to  the  major  arc  with  end  points  B  and 

C.     On  the  other  hand,    each  point  of  BC,    with  the  exception  of  B  and  C,  is 

interior  to    ZBOC  and,  hence,  is  on  the  C-side  of  OB.     In  the  first  three 

cases,   this  is  the  A'-side  of  OB.     Also,    C  is  on  the  A'-side  of  OB. 
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Theorem  10-22  on  page  6-310  is  established  by  the  results  of  Exercises 
1,    2,    and  3  of  Part  A,    below. 

Answers  for  Part  A  [which  begins  on  page  6-310]. 

1.     ZACB  is  an  exterior  angle  adjacent  to  the  vertex  angle  ZACD  of 

isosceles  triangle  AACD.     So,    m(ZACB)  =  2-m(ZADB).     But,   by 

definition,   m(ZACB)  =  m(AB).     Hence,    m{ZADB)  =  t- m(AB). 

2.  B'  is  interior  to  ZADB,   and  AB'   ̂   B'B  =  {B'}.     So,  m(ZADB)  = 

m(ZADB')  +  m(ZB'DB),    and  m(AB'B)  =  m(AB')     +    m(B^).     But, 

by  Exercise   1,    m(ZADB')  =  j  •  m{AB')  and  m(ZB'DB)  =  2  •  m{B'B). 

So,    m(ZADB)  =  i  •  m(AB'B). 

3.  As  in  Exercise  2,   m{ZADB)  +  m{ZBDB')  =  m(ZADB')  =  ̂   •  m(AB')  = 

i  •m(AB)  +  I -mCBB').     But,    from  Exercise   1,    m(ZBDB')  =  i  •  m(BB'). 
So,    m(ZADB)  =  i  '  m(AB). 

4.  m(ZSTA)  +  m(ZATN)  =   90  =  ;|  •  m{TAN)  =  ̂   •  m(TA)  +  |  •  m(AN). 

Since  m(ZATN)=  i -mCAN),    it  follows  that  m{ZSTA)  =  |-m{TA). 

5.  m{ZSTA)  =   180   -  m(ZRTA)  =  i  -[360  -  m{TA)]  =^  •m(TKA) 

6.  a  =  m(ZAB'D)  +  m(ZB'AD)  =  |  •  [m(AKB)  +  m(A'K'B')] 

7.  m(ZP)  =  m(ZBAD)  -  m(ZADE)  =  |  •[m(BKD)   -  m(AE)] 

8.  Since  m{ZAED)  =  m(ZBAE),    it  follows  that  n:i(AKD)  =  m(BLE). 

So,   AKD   S   BLE. 

9.  Since  m(ZTBA)  =  m(ZSTB),    it  follows  that  m(AKT)  =  m(TLB). 

So,   AKT  ^    TLB. 
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10.    [as  in  Exercise  9]  11.    [as  in  Exercise  8] 

12.  Let  P'  be  a  point  such  that  T  e  PP'.  ^-^  .^ 
Since  m(ZP)  =  m{ZP'TB)  -  m(ZTBA),  m(ZP)  =  j[m(TKB)  -  m(TA)]. 

13.  Let  PC  intersect  TS  at  M  and  TKS  at  N.     Then,   m(ZP)  =  m(ZTPC)  + 

m(Z  CPS)  =  i  [mCTN)  -  m(fM)]  +      [m{NS)  -  m(MS)]  =  ̂  [m(TKS)  -  m(TS)]. 

Also,  m(ZP)  =  360-m(ZT)  -m(ZS)-m(ZC)  =  180-m(ZC)  =  180-m(TS). 

Theorem  10-23  follows  from  the  results  of  Exercises  4  and  5  on  page 

6-311  together  with  a  third  case  in  which  [see  figure]  A  =  N.     In  this 

case,    by  Theorem  10-2,    m(ZSTA)  =  90  =  i-m{TKA). 

Theorem  10-24  follows  from  the  result  of  Exercise  6  on  page  6-312. 

Theorem  10-25  follows  from  the  result  of  Exercise  7. 

Theorem  10-26  follows  from  one  of  the  results  of  Exercise  13,  the 
definition  of  arc -measure,   and  the  definition  of  supplementary  angles. 

Theorem  10-27  follows  from  the  results  of  Exercises  8  and  9  and  a 
third  case  of  parallel  tangents.     [This  third  case  is  settled  by  Theorem 
10-5  and  the  remark  that  semicircular  arcs  of  the  same  circle  are  con- 

gruent.]   [Exercises  10  and  11  suggest  that  there  may  be  additional  cases. 
But,   Exercises  8  and  11  have  a  common  solution,    as  do  Exercises  9  and 
10.     So,   the  suggestion  is  misleading,] 

Here  is  a  graphic  device  which  may  help  students  recall  whether  to  add 

or  subtract  in  using  Theorems  10-24  and  10-25.     Let  ZAPB  be  an  in- 

scribed angle  which  intercepts  AKB,     Then,    m{ZAPB)  =  j  •  m(AKB).    Let 

P  move  into  the  interior  of  the  circle.     The  new  angle  is  larger,    and, 

so,   its  measure  is  greater  than  ̂ "nnlAKB).     If  P  moves  into  the  exterior 

of  the  circle,  the  new  angle  is  smaller.     Therefore,  its  measure  is  less 

than  l'm(AKB). 

TC[6-313,  314] 





Correction. On  page 

6- 

-315, 

in Exercise 2 

of 
Part  C, 

insert 

'Y  =  _ 

,  '   after 

'M. 

1   • 

Answers  for  Part  B, 

1.  Since  the  arcs  are  congruent,   they  have  the  same  measure.     Since 

the  measure  of  each  angle  is  the  difference  between  180  and  half  the 

measure  of  the  corresponding  arc,   the  angles  have  the  same  meas- 

ure.    Since  the  angles  have  the  same  measure,  they  are  congruent. 

2.  Since  the  measure  of  a  semicircle  is  180,   the  measure  of  an  angle 

inscribed  in  a  semicircle  is  90.     Hence,    such  an  angle  is  a  right 

angle. 

Answers  for  Part  C   [on  pages  6-315  and  6-316], 

1.  90;   45;   45 

3.  35;    60;   not  determined 

6.  70;   60;    110 

6.  160;    200;    100 

2.     40;    50;    180 

4.     120;    240;   not  determined,   unless, 

as  the  figure  may  suggest,    A,    C, 

and  N  are  coUinear,     In  this  case, 

m{ZASN)  =  105. 

Exercise  6  suggests  the  easily  established  result  that  opposite  angles  of 

an  inscribed  quadrilateral  are  supplementary.     [See  Theorem  10-33  on 

page  6-323.]    One  can  also  prove  that  if  two  opposite  angles  of  a  convex 

quadrilateral  are  supplementary,   then  the  vertices  of  the  quadrilateral 

are  concyclic.     [Hint:     Suppose  that  ZB  andZD  are  supplementary,   and 

consider  the  circumcircle  of  AABC.      Consider  the  consequences  of 

assuming,   first,   that  D  is  inside  the  circle  and,    second,   that  D  is  out- 

side the  circle. ] 
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Correction.     On  page  6-320,  line  3  should  begin: 

PT  is  a  mean   
t 

Proof  of  Theorem  10-31    [stated  on  page  6-318]. 

^EAB  andZBDE  are  congruent,  since  the  measure  of  each  is  |^'m(BE). 

Consequently,  their  supplements,  ZEAP  and  ZBDP  are  congruent. 

Hence,   by  the  a.  a.   similarity  theorem,  AEP  — *  DBP  is  a  similarity.. 

Consequently,  AP/DP  =  PE/PB,   and  PA  •  PB  =  PD«PE. 

'1^ 

Answers  for  Part  A  [on  page  6-318]. 

1.     6  2.     4 3.     4 
4.     23/4 

Answers  for  Part  B    [on  page  6-319]. 

1.     15/4  2.     17 

Proof  of  Theorem  10-32   [stated  on  page  6-320]. 

1  
*~^ 

ZATP  andZTBP  are  congruent,  since  the  measure  of  each  is  j'mCAT). 

Consequently,   by  the  a.  a.   similarity  theorem,  ATP  •-•  TBP  is  a  simi- 

larity.    So  PT/PB  =  PA/PT,   and  (PT)^  =  PA-PB. 

Answers  for  Part  A  [on  page  6-320]. 

1.    6  2.     16/3  3.    6  4.     8;  9;    12 5.     4 
6.     7 
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Answers  for  Part  B. 

1.     8  inches;    12  inches  2.      16/5 

3.  If  s  is  the  measure  of  a  secant  segment  from  P,   c  is  the  measure 

of  its  chord,   and  t  is  the  m,easure  of  the  tangent  segment  from  P, 

...          2       /             V              J            c  +  Vc2  +  4t2  -  t^         c        ..u then  t'  =  (s  -  c)s,   and  s  =    s    and  c  =  s  -  — .     So,  the 

measure  of  a  secant  segment  from  P  is  determined  by  the  measure 

of  its  chord,   and  vice  versa. 

4.  As  in  Exercise  3,  t^  =  (s  -  c)s.      So,    tV(s  -  c)  =  s  >  s  -  c,   and 

t^  >  (s  -  c)^.     Hence,   t  >  s  -  c.     [Similarly,   t  <  s.] 

A  polygon  which  is  inscribed  in  a  circle  is  convex.     For,    suppose  A 

and  B  are  adjacent  vertices  of  a  polygon  inscribed  in  a  circle  of  center 
^ — ^  ^ — ^ 

O  and  radius  r.     If  M  is  a  third  vertex  then  M  %  AB.     For,   if  M  e  AB 

then,   since  A  and  B  are  adjacent,   either  A  e  MB  or  B  €  MA.     Since 

neither  A  nor  B  is  at  a  distance  less  than  r  from  O,   this  is  impossible. 

Furthermore,   there  cannot  be  two  vertices  on  opposite  sides  of  AB. 

For,   if  there  were  such  vertices  then  there  would  be  adjacent  vertices, 

M  and  N  on  opposite  sides  of  AB.     If  so,    MN  would  cross  AB  at  a  point 
- —  «->  — 

P.      Since  P  €  MN,    PO  <  r.     Since  P  6  AB  and  PO  <  r,   P  €  AB.      But, 

since  A  and  B,    and  M  and  N  are  adjacent  vertices,    MN  r\  AB  =  0. 

Consequently,    all  vertices  other  than  A  and  B  are  on  one  side  of  AB. 

Since  this  is  the  case  for  each  pair  of  adjacent  vertices,   the  polygon 

is  convex. 

A  polygon  which  is  circunnscribed  about  a  circle  is,   also,   convex. 

The  proof  will  not  be  given  here. 
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Correction.     On  page  6-322,    line  5b  should  read: 

(5)     ---  [Step  like  (2)] 

The  second  sentence  of  Exercise  2  of  Part  A  is  intentionally  misleading. 

Unless  a  student  has  drawn  a  square,   in  answer  to  the  first  part  of  the 

exercise,  the  description  'the  circle  which  is  inscribed  in  the  rectangle' 
is  nonsense. 

In  the  Example,   the  hypothesis  'ADC  i s  a  nninor  arc    is  unnecessary. 

Since,    as  shown  in  the  COMMENTARY  for  page  6-321,   ABCD  is  convex, 

it  follows  that  B  and  D  are  on  opposite  sides  of  AC,     So,  either  ADC  and 

ABC  are  both  semicircles  or  [see  COMMENTARY  for  page  6-298]  one  is 

a  minor  arc  and  the  other  a  major  arc.     In  either  case,   m(ADC)  =  360  - 

m(ABC). 

For  a  further  comment  relating  to  Theorem  10-33  on  page  6-323,    see  the 

COMMENTARY  for  page  6-315. 
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Answers  for  Part  B. 

1.     Since  opposite  angles  of  a  parallelogram  are  congruent,  and  opposite 

angles  of  an  inscribed  quadrilateral  are  supplementary,   it  follows 

that  opposite  angles  of  an  inscribed  parallelogram  are  right  angles. 

So,   such  a  parallelogram  is  a  rectangle.     [Square] 

Z.     Adjacent  angles  of  a  trapezoid  which  are  not  base  angles  are  supple- 

mentary.    Opposite  angles  of  an  inscribed  quadrilateral  are  supple- 

mentary.    So,  adjacent  base  angles  of  an  inscribed  trapezoid  are 

congruent.     Hence,  by  Theorem  6-20,    an  inscribed  trapezoid  is  isos- 

celes.    [Alternatively,  this  result  can  be  obtained  from  Theorem 

10-27  and  a  stronger  form  of  the  only  if-part  of  Theorem  10-19: 

Chords  of  congruent  arcs  are  congruent.    In  proving  the  latter,  note 

that  congruent  arcs  are  both  minor,    both  semicircular,    or  both  major.] 

3.  By  Theorem  10-8  and  Axiom  A,   AD  =  w+z,   BC  =  x  +  y,  AB  =  w  +  x, 

and  DC  =  y  +  z.      So,   AD  +  BC  =  x  +  y  +  w  +  z  =  AB  +  DC. 

4.  Suppose  ABCD  is  a  parallelogram  circumscribed  about  a  circle.     By 

Theorem  6-1,   AB  =  CD  and  BC  =  AD.     By  Exercise  3,   AD  +  BC  = 

AB  +  DC.     Substituting,    2  •  AD  =  2  •  CD.     Hence,   by  Theorem  6-14, 
ABCD  is  a  rhombus. 

5.  To  have  an  incenter  is  to  have  an  inscribed  circle.     The  necessity 

of  the  condition  has  been  established  in  Exercise  4.     That  the  con- 

dition is  sufficient --that  is,   that  each  rhombus  has  an  incenter- - 

follows  from  Theorems  6-18,   6-13,   6-5,   4-17,   4-9,   and  10-2. 

6.  Rectangle.     The  necessity  of  the  condition  has  been  established  in 

Exercise   1.     The  sufficiency- -that  each  rectangle  has  a  circum- 

center --follows  from  Theorems  6-2,    6-5,    and  6-11. 
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line  8.  definition  of  regular  polygon 

line  10.  Theorenn  10-21 

line  11.  Theorem  10-19 

line  13.  Theorem  10-28 

line  16.  We  didn't. 

line  21.    Equiangular  triangles  [inscribed,   or  not]  are  regular;    since 

each  rectangle  is  inscribable,   an  inscribed  equiangular  quad- 

rilateral need  not  be  regular.     Consider,   now,    an  inscribed 

equiangular  pentagon  ABCDE.    [See  figure  on  page  6-324.] 
Since  ZEAB  S  ZABC,  it  follows  that  EAB  S  ABC.     So,   m{EA) 

+  m{AB)  =  m(AB)  +  m(BC),    and  EA  ̂   BC.     Similarly,  BC  S  DE, 

DE  ̂   AB,  AB  S   CD,    and  CD  s  EA.     By  Theorem  10-19, 

ABCDE  is  equilateral. 

If  one  tries  the  above  procedure  in  the  case  of  an  equiangular 

hexagon,  he  sees  that  alternate  sides  of  an  inscribed  equiangular 

hexagon  are  congruent;    and,   it  is  easy  to  draw  inscribed  equi- 

angular hexagons  which  are  not  equilateral.    A  short  meditation 

on  evenness  vs.   oddness  leads  one  to  the  conclusion  that  inscribed 

equiangular  polygons  with  an  odd  number  of  sides  are  regular  and 

that  inscribed  equiangular  polygons  with  an  even  number  of  sides 

have  alternate  sides  congruent.     As  a  matter  of  fact,   an  equi- 

angular polygon  with  an  odd  number  of  sides  is  inscribable  if  and 

only  if  it  is  regular  [see  above,   and  Theorem  10-35],    and  one 

with  an  even  number  of  sides  is  inscribable  if  and  only  if  alter- 

nate sides  are  congruent.     Corresponding  results  hold  concerning 

the  circunnscribability  of  equilateral  polygons. 
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Correction.     On  page  6-3Z5,   line  2  should  begin: 

not?]    for  a    
t 

The  proof  of  Theorem  10-35  is  invalid.     [The  difficulty  is  hidden  in  the 
word  'similarly'  on  the  13th  line  from  the  bottom  of  the  page.]    To  cor- 

rect the  proof,    replace  the  18th  line  from  the  bottom  by: 

this  circle  by  showing  that  OD  =  OB., 

and  replace  the  14th  line  fronn  the  bottom  through  the  10th  line  by: 

sector  of  Z ABC,   and  m(ZOBC)  =  |'m(ZABC). 

Now,    since  AOBC  is  isosceles,  ZOBC  ^  ZOCB.     Hence, 

m(ZOCB)  =i  •m{ZABC).     But,   by  hypothesis,  ZABC  S  ZBCD. 

Hence,   m(ZOCB)  =  i'm(ZBCD).     So,  ZOCB  S  ZOCD.     Since 

OC  =  OC  and,    by  hypothesis,    CB  =  CD,   it  follows  that  OCB  *-• 

OCD  is  a  congruence  [Why?].     Consequently,    OD  =  OB. 

The  answer  to  the  query  in  the  last  line  of  the  correction,   above,   is 
s  •  a.  s  •    • 

The  *'theorenn  about  numbers"  mentioned  in  the  6th  line  from  the  bottonn 
of  the  page,   is  the  principle  of  nnathematical  induction. 

line  3  on  page  6-326.      Theorem  10-3. 

line  4.     By  Theorem  10-2,   AB  is  tangent  at  M  to  the  circle  in  question. 

line  6.     By  the  Pythagorean  Theorem  [or  by  the  "corresponding  medians 
of  congruent  triangles"  theorem  (see  Exercise  1,  Part  E,  page 
6-134)],  the  midpoints  of  the  sides  of  the  polygon  are  equidistant 
from  O.     Consequently,    by  the  argument  referred  to  in  lines  3 
and  4,   all  sides  are  tangent,   at  their  midpoints,   to  the  same 
circle. 
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of  each  angle  of  the  polygon  is    (   j  180.     By  Exercise  3,  this  is 

also  the  sum  of  the  measures  of  the  base  angles  of  each  of  the  isos- 

celes triangles.     So,   by  Theorem  5-11,    each  central  angle  is  an 

angle  of  [1  -  2-li]  iso"  --that  is,   of  -^^. ®  •■  n     ••  n 

5,  By  Exercise  4  and  Theorem  6-33. 

6.  Let  Sj^  be  the  side-measure  of  an  equilateral  triangle  inscribed  in  a 

circle  of  radius  r,   and  let  s^  be  the  side -measure  of  an  equilateral 

triangle  circumscribed  about  a  circle  of  radius  r.     Since  the  perpen- 

dicular bisectors  of  the  sides  of  an  equilateral  triangle  contains  its 

medians,  it  follows  from  Theorem  9-3  that  the  radius  of  the  circum- 

scribed circle  of  an  equilateral  triangle  is  2/3  the  common  mieasure 

of  its  m.edians.     For  an  equilateral  triangle  of  side  Sj^,   this  is 

(2/3)(s  j^v3/2),   or   sV3/3.     Since  the  angle  bisectors  of  an  equilateral 

triangle  are  its  medians  and  its  medians  are  its  altitudes,   it  follows 

by  Theorem  9-3  that  the  radius  of  the  inscribed  circle  of  an  equilat- 

eral triangle  is  l/3  the  common  measure  of  its  medians.     For  an 

equilateral  triangle  of  side  Sg.  this  is  (l/3){s^\^/Z),    or  SgV3/6.     Con- 

sequently,   Sj^\/3/3  =  r  =  s^/T/6,    and  Sg  =  2s  .   Since  the  ratio  of  the 

sides  of  the  triangles  is  1:2,   the  ratio  of  their  perimeters  is  1;2. 

Answers  for  Part  C   [on  pages  6-327  and  6-328]. 

1.  (a)    The  vertices  of  an  inscribed  square  are  the  end  points  of  two 
perpendicular  diameters. 

(b)     16/2  (c)     ̂ fZ 

(d)  Bisect  the  angles  contained  in  the  union  of  lines  containing  the 
diagonals  of  the  square. 

(e)  32/rr7T  (f)    2VTTVT 

2.  80 'Sin  18°;    4 -cos  18°     [=24.7;      =3.8] 
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Correction.     On  page  6-327,   in  line  8,   change 

the  colon  after  'following'  to  a  period. 

In  line  9,    change  'equilateral'  to  'equiangular'. 

2. 

15/2;     15 
4. 

2/3;    /3 
-:< 

Answers  for  Part  A. 

1.     16/3;     8/3 

3.     10;    5 

Answers  for  Part  B. 

1.     Suppose  that  ABCD.  ..is  an  equiangular  polygon  circumscribed  about 

a  circle  with  center  O,    and  let  a  be  the  measure  of  each  of  its  angles. 
«->  <— > 

LfCt  S  and  T  be  the  points  at  which  AB  and  BC  are  tangent  to  the  cir- •— • 

cle  and  let  M  be  the  midpoint  of  ST.     Since  ABST  and  AOST  are  isos <— > 

celes  triangles  with  vertex  angles  at  B  and  O,    respectively,   BMJ-ST 

and  OM  J-  ST.     Hence,   BM  =  OM.     Since  ABST  is  isosceles,   BM  is 

the  bisector  of  ZABC.     Hence,   m(ZABO)  =  q/2  =  m(ZCBO).    Similarly, 

m(ZBAO)  =  a/2,   and  m(ZBCO)  =  a/2.     Since  OB  =  OB,   it  follows  by 

a.  a.s.  that  BAG  ♦—  BCO  is  a  congruence.     Consequently,   AB  =  BC. 

So,   each  two  adjacent  sides  of  the  polygon  are  congruent,   and  the 

polygon  is  equilateral.     Since,    by  hypothesis,   the  polygon  is  equi- 

angular,  it  follows  that  it  is  regular. 

2.  An  apothem  intersects  its  regular  polygon  only  at  a  point  where  one 

of  the  sides  of  the  polygon  is  tangent  to  the  inscribed  circle.     Since 

an  apothem  is  a  radius  of  this  circle,    an  apothem  which  intersects 

a  side  of  the  polygon  is,   by  Theorem  10-2,   perpendicular  to  that 

side.     That  it  bisects  the  side  follows  by  h.i.  and  the  fact  that  a 

regular  polygon's  incenter  is  its  circumcenter. 

3.  [The  solutionis  contained  in  the  answer  for  Exercise  1,   above.] 

4.  Each  central  angle  is  the  vertex  angle  of  an  isosceles  triangle  whose 

base  is  a  side  of  the  polygon.    By  Theorem  6-31,  the  degree-measure 
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i^ 
3.     4'cos(ll^)°;     128•sin(ll^)^     4-cos(5|)'';     256«sin(5|)' 

4.     256 'tan  (5^)' 

5,  Consider  the  case  in  which  the  vertices  of  the  n-gon  are  among 
those  of  the  2n-gon  and  apply  Axiom  B. 

6,  Consider  the  case  in  which  the  vertices  of  the  inscribed  polygon  are 
the  points  of  tangency  of  the  circumscribed  polygon,    and  use  Axioms 
A  and  B. 

It  is  important  that  students  realize  that  although  they  probably  have  a 
clear  idea  of  the  measure  of  a  segment,   and  of  the  perinneter  of  a  poly- 

gon, the  question  as  to  what  is  the  length-measure  of  a  circle  is  of  an 
entirely  different  sort.     One  cannot,    rationally,   at  least,   imagine  a 

circle  to  be  a  "regular  polygon  with  infinitely  many,   infinitely  short 
sides"  and,    so,  treat  the  problem  of  finding  its  circumference  as  one 
does  that  of  finding  the  perimeter  of  a  polygon.     Even  in  the  case  of  a 

polygon,    we  need  a  definition  of  'perimeter'- -the  perimeter  of  a  polygon 
is  [by  definition]  the  sum  of  the  measures  of  its  sides.     Similarly,  in  the 

case  of  a  circle,   we  need  a  definition  of  'circumference'--the  circum- 
ference of  a  circle  is  [by  definitioni  the  least  upper  bound  of  the  perimeters 

of  inscribed  polygons.     To  justify  this  choice  of  definition,    one  must  show 
that  the  perimeters  of  inscribed  polygons  do  have  a  least  upper  bound. 

The  following  COMMENTARY  goes  into  more  detail  on  these  matters,  and 

on  the  general  subject  of  length-measure  for  arcs.     The  latter  subject  is 

glossed  over  [intentionally]  in  Example  2  on  page  6-329.      There  it  is 
assumed  that  arcs  [like  circles]  do  have  length-measures,  and  that  since 

a  circle  is  a  union  of  six  60°-arcs,   the  length-measure  of  any  60''-arc  will be  one-sixth  the  circumference  of  its  circle.     The  hidden  assumptions 

are  (I)  that  each  arc  has  a  length-measure,    (2)  that  congruent  arcs  have 

the   same  length-measure,  (3)  that  the  length-measure  of  an  arc  which  is  the 
union  of  two  arcs  with    only  an  end  point  in  common  is  the  suna  of  the 

length-measures  of  the  two  arcs,    and  (4)  that  the  sum  of  the  length-meas- 
ures of  the  two  arcs  determined  by  two  points  of  a  circle  is  the  circum- 

ference of  the  circle. 
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On  arc -measure.  --The  degree-measure  of  an  arc  is  simply  the  degree- 

measure  of  "the  angle  between  the  directions  of 
the  forward  tangents"  at  the  end  points  of  the 
arc--that  is,   it  is  the  degree-measure  of  "the 
angle  through  which  the  tangent  rotates  as  the 
point  of  tangency  moves  from  one  end  of  the  arc 

to  the  other".     In  still  other  words,   the  degree- nneasure  of  an  arc  is  a  measure  of  amount  the 

arc  bends.     It  is  for  this  reason  that  arc-degree- 
\  /  measure  is  convenient  for  measuring  angles 

associated  with  an  arc.     Since  the  "rate  of  bending"  is  the  same  for  arcs 
of  the  same  or  congruent  circles,    arc-degree-measure  is  also  suitable 
for  comparing  "lengths"  of  arcs  of  the  same  or  congruent  circles.     But, 
before  we  can  make  sense  of  either  "rate  of  bending"  or  "length  (of  arc)", 
we  need  to  know  what  is  meant  by  the  length -measure  [or:     linear  meas- 

ure] of  an  arc. 

What  we  want  is  a  concept  of  arc -measure  which  will  grow  naturally  out 
of  the  concept  of  segment  measure.       In  this   COMMENTARY,    we  shall 
develop  such  a  length-measure  concept  for  circular  arcs.     [As  a  nnatter 
of  fact  the  samie  concept  applies  to  a  much  larger  class  of  sets,   called 
rectifiable  arcs.      These  include  segments,   polygonal  lines,    circular 
arcs,   and  many  other  sets.] 

Given  a  circular  arc,   the  first  question  we  need  to  answer  is:     What  do 
we  mean  by  its  length-measure  ?     At  the  moment,   we  have  no  ready 
answer,    and  our  first  problem  is  to  frame  a  suitable  definition.     As  a 
first  step,   let  us  choose  some  points,    in  order,    on  the  arc  including  the 

end  points  among  them,   and  join  suc- 
cessive ones  by  segments.     It  is 

natural  to  define  the  length-measure 
of  the  inscribed  polygonal  line  so  ob- 

tained as  the  sum  of  the  nneasures  of 

its  "sides".     And,   it  is  also  natural 
to  require  that,   however  we  may  come 
to  define  the  length-measure  of  a  cir- 

cular arc,   this  length-nneasure  should, 
in  sonie  sense,  be  approximated  by  the 
length-measures  of  the  polygonal  lines 
which  are  inscribed  in  the  arc.     As  to 

the  length-measures  of  such  polygonal 
lines,  we  can  at  once  make  two  obser- 

vations.     First,   there  is  a  shortest  such  polygonal  line- -the  segment 
whose  end  points  are  those  of  the  given  arc.    This  observation  is  no  more 
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important  than  it  probably  appears  to  be.      But,    second,  there  is  no  ^ 
longest  polygonal  line  inscribed  in  the  given  arc.     For,  given  any  in- 

scribed polygonal  line,   we  can  find  a  longer  one  by  replacing  one  of  its 
sides  by  two  segments  which,   together  with  it,   are  the  three  sides  of  a 
triangle  [see  dotted  lines  in  figure].     We  may  now  guess  that,   the  longer 
an  inscribed  polygonal  line  is,  the  better  its  length-measure  should  approx- 
innate  the  still-to-be-defined  length-measure  of  the  given  arc.     For  this 
to  be  so,  the  length-measure  of  the  arc  must  be  a  number  which  is  not 
less  than  the  length-measure  of  any  inscribed  polygonal  line.     If  there  is 
a  least  such  upper  bound  to  the  set  of  length-measures  of  inscribed  poly- 

gonal lines,  then  it  will  have  the  further  property  that  it  can  be  approxi- 
mated as  closely  as  one  desires  by  the  length-measures  of  an  inscribed 

polygonal  lines.     Such  a  number,   if  there  is  one,   would  be  an  ideal  candi- 
date for  the  tital  of  the  length-measure  of  the  given  circular  arc.     As, 

by  now,   you  probably  suspect,   it  can  be  proved  that,    given  any  circular 
arc,  the  set  of  numbers  which  are  length-measures  of  polygonal  lines 
inscribed  in  the  arc  does  have  a  least  upper  bound;    and  this  least  upper 
bound  is,    by  definition,   the  length-measure  of  the  given  arc. 

For  the  proof  we  need  to  use  a  basic  principle  for  numbers  of  arithmetic 
[there  is  an  analogous  one  for  real  numbers]  which  we  shall  call  the 
least  upper  bound  principle.      To  prepare  for  stating  this  principle  we 
note,   first,   that,    given  any  set  S  of  numbers,   any  number  which  is  not 
less  than  each  member  of  S  is  called  an  upper  bound  of  S.     For  example, 
each  number  which  is  greater  than  or  equal  to  3  is  an  upper  bound  for 
the  set  of  all  numbers  of  arithmetic  between  2  and  3.     On  the  other  hand, 
the  set  of  whole  numbers  has  no  upper  bound.     Now,  the  least  upper 
bound  principle  is  simply  this  : 

Each  set  of  numbers  of  arithmetic  which  has  an  upper  bound 
has  a  least  upper  bound. 

In  other  words,   if  a  set  of  numbers  of  arithmetic  has  an  upper  bound, 
then  the  set  of  all  its  upper  bounds  has  a  smallest  member. 

In  view  of  this  principle,  to  show  that  the  set  of  length-measures  of 
polygonal  lines  inscribed  in  a  given  arc  has  a  least  upper  bound,   it  is 
sufficient  to  show  that  it  has  some  upper  bound.     This  is  easy  to  do.     We 
begin  by  noting  that,    given  any  polygonal  line  inscribed  in  an  arc,  there 
is  a  corresponding  polygonal  line  circumscribed  about  the  arc  which 
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consists  of  segments  of  the  tangents  to  the  arc  at  the  vertices  of  the 
given  inscribed  polygonal  line. 

It  follows  from  Axiom.  B  that  an  inscribed  polygonal  line  is  shorter  than 
the  corresponding  circumscribed  polygonal  line.     And  it  follows  fromi 
the  same  axiom  that  introducing  a  new  vertex  [P]  results  in  an  inscribed 
polygonal  line  which  is  longer  than  the  given  one,   and  a  corresponding 
circunnscribed  polygonal  line  which  is  shorter  than  that  corresponding 
to  the  given  inscribed  polygonal  line. 

Fronn  these  two  remarks  it  follows  that  each  inscribed  polygonal  line  is 
shorter  than  each  circumscribed  polygonal  line.     For,  given  any  inscribed 
polygonal  line  £  and  any  circumscribed  polygonal  line  L,    we  can  take  the 
vertices  of  i  together  with  the  points  of  tangency  of  L  as  the  vertices  of 
an  inscribed  polygonal  line  S.^   and,    also,   as  the  points  of  tangency  of  a 
circumscribed  polygonal  line  L^  .     Since  the  vertices  of  £  are  among  those 
of  ij^,   £.  is  shorter  than  i^  .      Since  i^  and  L^   are  corresponding,   ij.   is 
shorter  than  L^  .     Since  the  points  of  tangency  of  L^   include  those  of  L, 
lij^   is  shorter  than  L.     So,   i  is  shorter  than  L. 

One  consequence  of  the  result  just  established  is  that  the  set  of  numbers 
which  are  length-mieasures  of  polygonal  lines  inscribed  in  a  given  arc 
does  have  upper  bounds.     For,   the  length-measure  of  each  polygonal 
line  circumscribed  about  the  arc  is  one  such  upper  bound.     Consequently, 
by  the  principle  of  least  upper  bounds,    given  any  arc,   there  is  a  number 
which  is  the  least  upper  bound  of  the  length-measures  of  polygonal  lines 
inscribed  in  the  arc. 
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As  we  said  before,   the  length-measure  of  the  given  arc  is  defined  to  be 
this  number.     Arc -length-measure  has  a  number  of  important  properties. 
We  shall  mention  six  of  them. 

In  the  first  place,    a  change  in  the  unit  for  segment-measure  has  the 
expected  effect  on  length -measures  of  arcs.     For  example,  since  doub- 

ling the  unit  segment  halves  the  length-naeasure  of  each  segmBTit,    it 
also  halves  the  length -measure  of  each  polygonal  line.     So,  doubling  the 
unit  segment  halves  the  length-measure  of  each  arc. 

In  the  second  place,   congruent  arcs  have  the  same  length-measure.    For, 
given  any  polygonal  line  inscribed  in  one  of  two  congruent  arcs,  there  is 
[by  s.  a.s.]  a  polygonal  line  inscribed  in  the  other  which  has  the  same 
length -measure.    Hence,  the  measure  of  each  of  the  two  arcs  is  the  least 
upper  bound  of  the  same  set  of  numbers. 

Third  [by  the  same  argument,    but  using  the  s.a.s.   similarity  theorem], 
length-measures  of  arcs  which  have  the  same  degree-measure  are  pro- 

portional to  the  radii  of  the  arcs.     In  particular,   the  length-measure  of 
an  arc  of  a"   of  a  circle  of  radius  r  can  be  found  by  multiplying  the  length- 
measure  of  an  a°-arc  of  a  circle  of  radius   1  by  r. 

In  the  fourth  place,   length-measure  for  arcs  is  additive,    in  the  sense 

that  the  length-measure  of  an  arc  which  is  the  union  of  two  arcs  which 

have  only  an  end  point  in  common  is  the  sum  of  the  length-measures  of 

the  two  arcs.     In  contrast  to  the  corresponding  theorem  on  arc -degree- 

measure  [Theorem  10-21],   this  is  very  easy  to  prove.     For,  if  A,   B, 

and  C  are  three  points  on  a  circle  then  each  polygonal  line  inscribed  in 

ABC  which  does  not  have  B  as  one  vertex  is  shorter  than  some  inscribed 

polygonal  line  which  does  have  B  as  a  vertex.     So,  the  length-measure  of 

ABC  is  the  least  upper  bound  of  the  length-measures  of  those  inscribed 

polygonal  lines  which  have  B  as  one  vertex.     But  each  of  these  is  the 

union  of  a  polygonal  line  inscribed  in  the  portion  of  ABC  "between"  A  and 

B  and  a  polygonal  line  inscribed  in  the  portion  between  B  and  C.    So,  the 

length-measure  of  ABC  is  the  sum  of  the  length-measure  of  these  subarcs. 
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The  fifth  property  is  that,   for  arcs  of  the  same  radius,   length-measure 

is  proportional  to  degree-measure.     This  follows  in  a  fairly  straight- 

forward way,   using  the  additivity  property.     For  exannple,   if  ABC  is  an 

arc  of  (Zq)"  which  is  bisected  at  B  then  each  of  the  arcs  AB  and  BC  are 

arcs  of  a"  and,  since  they  are  congruent,  have  the  same  length-naeasure. 

So,  by  additivity,  the  length-nneasure  of  an  arc  of  (Za)"  is  twice  the  length- 

measure  of  an  arc  of  a". 

Finally,   the  length-measure  of  an  arc  is  greater  than  the  length-measure 
of  each  inscribed  polygonal  line,   and  is  less  than  the  length-nneasure  of 
each  circumscribed  polygonal  line.     For,   the  length-measure  of  an  arc 
is,    by  definition,   the  least  upper  bound  of  the  length-measures  of  inscribed 
polygonal  lines,   and,    as  we  have  seen,   the  length-measure  of  each  cir- 
cunnscribed  polygonal  line  is  an  upper  bound  of  these  numbers. 

The  next  question  is  this:     Having  defined  length-measure  for  arcs,    and 
established  sonne  of  its  properties,   how  can  we  compute  the  length-meas- 

ure of  a  "given"  arc?    Specifically,  given  the  degree-measure  and  the 
radius  of  an  arc,   how  can  we  compute  its  length-measure?     This  turns 
out  not  to  be  difficult.     Recall  that  the  length-measure  of  arcs  which  have 
the  same  degree -measure  are  proportional  to  their  radii,  and  that  the 
length-measures  of  arcs  which  have  the  same  radii  are  proportional  to 
their  degree -measures.     It  follows  that  there  is  a  number  k  such  that  the 
length-measure  s  of  any  arc  of  degree -measure  a  and  radius  r  is  kar. 
So,   to  relate  length-measure  to  degree -measure,  all  we  need  is  to  know 
the  number  k.      We  can  determine  this  number  by  finding  the  length- 
measure  of  some  one  arc  of  given  degree-measure  and  radius.      For 
simplicity,   we  shall  choose,  for  this  arc,   a  sennicircle  of  radius   1.     It 
is  customary  to  denote  the  length-measure  of  a  semicircle  of  radius   1 
by  the  Greek  letter  *7r'.      Adopting  this  convention,    tt  =  k  •  180  •  1,   and 
k  =  7r/l80.     So,  the  formula  relating  length-measure,  s,  degree-measure, 
a,   and  radius,    r,   is: 

[However,   until  we  have  computed  tt,    this  is  no  more  useful  than  the 

formula  *s  =  kar'.] 

In  order  to  compute  ;r--that  is,   to  compute  the  length-measure  of  a  semi- 
circle of  radius   l--we  shall  find  the  length-measures  of  some  polygonal 

lines  inscribed  in  such  a  semicircle. 

TC[6-328,  329,  330]f 





To  begin  with,   we  need  some  results  on  lengths  of  chords  and  segments 

of  tangents  of  circles  of  radius  1.     Suppose  that  A  and  B  are  end  points 

of  an  arc  of  a  circle  of  radius  1,   and  that  AB  =  c.      Let  M  be  the  mid- 

point  of  AB,    P  the  bisection  point  of  AB,   and  Q  the  point  of  intersection 

of  the  tangents  to  the  circle  at  A  and  B.     The  points  O,   M,    P,   and  Q  are 

collinear,   in  that  order;    OM  x  AB,   OB  x  BQ,    OB  =  1  =  OP,   BM  =  c/2, 

and  QA  =  BQ. 
Q 

Using  these  results,   the  Pythagorean 
Theorem,   and  Axiom  A,   we  see  that 

(OM)2  =  (0B)2  -  (BM)=^  =  1  -  cV4, 

PM  =  OP  -  OM  =    1  -  V  1  -  cV4  , 

(BP)2   =  (BM)2  +  (PM)2  =  cV4  +  [1  -  V  1  -  cV4]^ 

=  cV4  +  [1  -  ZVl  -cV4  +  1  -  cV4] 

=  2  -  2V  1  -  cV4  =  2  -  V4  -  c2  , 

(1)  BP   =  72  -  7T 

c2
 

By  the  a.  a.   similarity  theorem,    OBQ  — *    OMB  is  a  similarity.     Hence, 

BQ/MB  =  OB/OM.      Consequently,   BQ  =  c/[2V  1  -  cV4  ]    =   c/V4  -  c^ 
Finally, 

(2)  BQ  +  QA  =  2c/V4  -  c^  . 

Since,    by  (1),   (BP)^  =  2  -  V4  -  c^  ,     it  follows  that  (BP)^   <  2  and 

2  -  (BP)2  =  V4  -  c2.     From  this  last  it  follows  that  4-4«{BP)2  +  (BP)*  = 

4-c^     So,   (BP)2[4-(BP)2]  =  c\     But,    since  (BP)^   <   2,   4  -  (BP)^  >   2. 
Hence, 

(3)  {BP)2    <  cV2. 

We  now  consider  a  sequence  Jl^,  i^,  ig,  ...  of  polygonal  lines  inscribed 

in  a  sennicircular  arc  of  radius  1,  and  the  sequence  Lj^,  Lg,  Lg,  ...  of 

corresponding  polygonal  lines  circumscribed  about  this  sennicircle.    The 
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vertices  of  H^   [and  the  points  of  tangency  of  L.^^]   are  the  two  end  points 

and  the  bisection  point  of  the  semicircle.      For  each  n,   the  vertices  of 

i  [and  the  points  of  tangency  of  L  ]  are  the  vertices  of  i     tog&ther 

with  the  bisection  points  of  the  arcs  whose  end  points  are  adjacent  ver- 

tices of  i   .     For  each  n,   i     is  the  union  of  2      congruent  segments,  and 

L,^  is  the  union  of  2     +1  segments--2  congruent  ones  tangent  at  the  ends 

of  the  semicircle  and  2-1  which  are  tangent  at  intermediate  points 

and  are  twice  as  long  as  those  at  the  ends.     So,   if  c^  is  the  measure  of  a 

side  of  i    then  the  length-measure,    s„,    of  i    is  2"c^;   and  if  C     is  the n  °  n'  n  n  n 
measure  of  one  of  the  longer  sides  of  L   ,    the  length-measure,   S   ,   of 

L     is  2   C„  . n  n 

Since  the  diameter  of  the  semicircle  is  2,    it  follows  from  (1)  that 

Ci   =~\J^  -  V4  -  22  =  /2.      Similarly,    c^  =~\lz  -  \^  -  c^^   =    -Jz  -  /2  , *^3 

=  ̂2  -  -/TWT,    etc.     So,  .s^  =  2/2,    Sg  =  4V2  -  /2,    S3  =  8V2  -  TTwl, 
etc.     The  numbers  s^^,    Sg,    Sg,    etc.    are  successively  better  approxima- 

tions to  the  length -measure  s  of  the  semicircle --that  is,   to  the  number  ir. 

With  a  considerable  amount  of  labor  one  can  find  that  s^^  =  3.  141591, 

and  that  S^^  =  3.  141595.    [jr  =  3.  141592653589793238462643383.  .  .  .  ] 

Since  the  polygonal  lines  i^,    2^,    i.^,    etc.   are  only  a  relative  few  of  the 

polygonal  lines  inscribed  in  the  semicircle,    we  do  not,    as  yet,   know 

that,   for  n  sufficiently  large,    s     is  an  arbitrarily  good  approximation 

to  IT.     To  prove  that  it  is,   we  recall  that  the  length-measure  tt  of  the 

sem.icircle  is  not  only  greater  than  s^^,    but  is  also  smaller  than  S    . 

Now,   by  (2), 

r  2 n  I        n 

Jhence, 

S„  =   — — —    s„  . 
n         I   r      n 

V4  -  c   ̂ 
n 
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Consequently, 

so, 
S„    <    TT   < 

V4^ 

'n' 

0    <    TT 

«n< 

/4 

n 

n 
n 

V4 

-   1 

n 

Hence,   in  order  to  show  that,   for  n  sufficiently  large,    s     differs  from 

7r  by  as  little  as  we  wish,   it  is  sufficient  to  show  that,    for  n  sufficiently 

large,    2/V4  -  c   ̂    differs  fronn   1  by  as  little  as  we  wish.      Intuitively 

[and  we  shall  take  the  matter  no  further  here],    this  will  be  the  case  if 

V4   -  c^   is  arbitrarily  close  to  2.     And,    again  on  an  intuitive  basis, 

this  will  be  the  case  if  c^  is  arbitrarily  small.       Now,    as  we  know, 

Cj^  =  VT  and,   by  (3),    for  each  n,    Cj,    .    ,  £  '~rJ  So  [as  can  be  proved 

by  mathematical  induction],   for  each  n,    c^^  <    l/[vZ]'^  ~  ̂  .     Hence,   it 
seems  likely  [but  still  requires  proof]   that,    for  n  sufficiently  large,    Cj^ 

is  arbitrarily  small.      [Of  course,    it  is   "obvious  fronn  the  figure"  that 

the  side  measures  of  the  successive  polygonal  lines  i^,   i^,    ig,    etc. 

approach  0.  ] 

As  a  generalization  of  the  property  of  additivity  of  arc -measure,  it  is 
natural  to  define  the  length-measure  of  a  circle  [its  circumference]  to 
be  the  sum  of  the  length-measures  of  any  two  of  its  arcs  which  have  the 
same  end  points.  Due  to  additivity,  it  makes  no  difference  which  two 
points  of  the  circle  one  chooses  as  end  points  of  the  arcs;  and  it  turns 
out  that,  according  to  this  definition,  the  circumference  of  a  circle  of 
radius  r  is  27rr. 
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Answers  for  Exercises    [on  page  6-330]. 

1.     47r 3.     37r;    6ir;    72;     216;     18;     — ;     ISO/tt;     30 

[To  drive  honne  the  fact  that  n  is  an  honest  number,    students  should  be 

required  to  give  rational  approximations  to  3;r,    bir,    and  ISO/tt 

37r=  12.42,     67r  =  24.  85,    and  IBO/tt  i  57.  296.  ] 

4.     807r/3  [=  83.78] insufficient  data 

6.     'kir 
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w 11. Hypothesis :     O  is  the  center  of  the  circle, 

BM  =  MC,     BN  =  ND, 

BP  =  PO 

Conclusion:     MP  =  PN 

12. Hypothesis :     BD  is  a  diameter  of  the 

circle  with  center  O, 

BF  is  the  altitude  of  AABC 

from  B 

Conclusion:     AB  •  BC  =  BD'BF 

'1- Answers  for  Quiz. 

I.    5                      2.     130 

3. 

42 

4. 
13 

5. 

75 
6.    3                     7,     8 

8. 

150 
9. 

977 

10. 

30 

11.  By  theorem  10-7,   AOMB  is  right-angled  at  M.     Hence,    median  MP 
«— •  f — • 

is  half  as  long  as  OB.     Sinnilarly,    median  NP  of  right  triangle  AONB 

is  half  as  long  as  OB.     So,    MP  =  PN. 

12.  By  Theorem  10-29,  ZBAD  is  a  right  angle.     By  hypothesis,    so  is 

ZBFC.     By  Theorem  10-28,  ZBDA  s  ZBCA.     So,    by  the  a. a.    simi- 

larity theorem,    BAD  *—  BFC  is  a  similarity.     So,    BA/BF  =  BD/BC. 

Therefore,   AB  •  BC  =  BD'BF. 
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Correction.     On  page  6-331,   line  16  should 

begin: 
circumscribed  polygon  [6-321] 

On  page  6-334,   line  lib  should  read: 
  tangent  segment  is  a  mean   

T 

Quiz. 

1.  An  8-inch  chord  is  3  inches  fronrx  the  center  of  a  circle.     Find  the 

length  of  a  radius  of  the  circle. 

2.  Suppose  that  AB  is  a  diameter  of  a  circle  and  is  perpendicular  to  a 

chord  CD.     If  BD  is  an  arc  of  50°,   how  many  degrees  are  there  in  AC? 

3.  A  regular  hexagon  is  inscribed  in  a  circle  whose  radius  is  7.     What 

is  the  perimeter  of  the  hexagon? 

4.  What  is  the  radius  of  a  circle  whose  center  has  coordinates  (0,  0) 

and  which  passes  through  a  point  with  coordinates  (-12,  5)? 

5.  Suppose  that  the  lines  PA  and  PB  are  tangents  to  a  circle  at  A  and  B, 

respectively.     If  AB  is  an  arc  of  105°,    what  is  m(ZAPB)? 

6.  Suppose  that  PQ  and  MN  are  chords  of  a  circle  and  that  PQ/^  MN=  {R}. 

If  PR  =  5,  QR  =  6,    and  MR  =  10,    what  is  NR? 

7.  Suppose  that  AB  =  10  and  that  A  is  the  center  of  a  circle  with  radius 

6.     What  is  the  measure  of  a  tangent  segment  from  B  to  the  circle? 

8.  Suppose  that  A  and  B  are  points  on  a  circle  with  center  O  such  that 

ZAOB  is  an  angle  of  60°.  If  C  is  a  point  on  the  minor  arc  AB,  what 
is  m(ZACB)? 

9.  What  is  the  circumference  of  a  circle  inscribed  in  a  square  whose 

perinneter  is  36? 

10.    Suppose  that  quadrilateral  ABCD  is  inscribed  in  a  circle  and  that 

AB  r^  DC  =  {P}.     If  m(AB)  =  50,    m(BC)  =  70,   and  m(CD)  =  110, 

what  is  m(ZBPC)? 
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Answers  for  Part  A. 

1.       24  2.       24  3.       3  4.       257T/2 

Answers  for  Part  B  [on  pages  6-336  and  6-337]. 

1.  K{AA'B'C')  =  i'B'C- A'D'  =  ̂ r*  BC  •  AD  =  r-  K(AABC) 

[Note  that  the  figure  for  Exercise  1  is  misleading.  It  does  not  sug- 

gest, as  it  should,  that  A'D'  =  AD;  and  it  does  suggest,  as  it  should 

not,   that  B'D'/D'C  =  BD/DC] 

2.  This  follows  from  the  definition  of  area-measure  and  the  theorem 

on  corresponding  altitudes  of  congruent  triangles.     [See  Exenrcise  1 

of  Part  E  on  page  6-134.] 

3.  No.     [See  Exercises  1  and  2  of  Part  A,    above.] 

4.  Same  computation  as  for  Exercise  1.     [The  figure  is,    again,    mis- 
leading. ] 

5.  The  set  is  the  union  of  two  lines  parallel  to  and  equidistant  fronn 

AB.     [The  distance  of  each  line  from  AB  is  the  measure  of  the 

altitude  of  A  ABC  from  C. 

6.  2:1  7.       3:7 

The  "filled-in-triangle"  symbol  used  in  naming  a  triangular  region  and 
the  other  filled-in  symbols  are  introduced  as  a  device  for  making  sure 
the  student's  attention  is  called  to  the  fact  that  the  donnain  of  the  area- 
measure  function  consists  of  regions  rather  than,  for  example,  polygons, 
A  student  who  has  been  exposed  to  this  kind  of  careful  treatment  at  the 
beginning  will  not  be  confused  by  colloquialisms  such  as  those  found  in 
Part  B  on  pages  6-341  through  6-343. 
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Obviously  either  Axioni  I  or  Theorem  11-1  can  be  taken  as  an  axiom  and 
the  other  derived  from  it  by  use  of  Axiom  J.     [The  derivation  of  Axiom  I 
from  Theorem  11-1  and  Axiom  J  goes  in  three  steps.     First,   derive  the 
case  of  Axiom  I  in  which  the  triangle  there  referred  to  is  a  right  triangle 
and  the  altitude  and  base  are  its  legs --then  extend  this  result  to  arbitrary 
triangles,   taking  the  longest  side  as  base  [so  the  corresponding  altitude 
intersects  the  base]--then  use  the  result  already  referred  to  from  page 
6-214.  ]   Since  each  polygon  region  can  be  split  up  into  triangular  regions. 
Axiom  I  is  a  nnore  convenient  starting  point  than  is  Theorem   11-1. 

The  measure  of  the  polygonal  region  ABCDEF  [page  6-339]  is   116. 

line  2  on  page  6-340. The  region  ABCDEF  can  be  cut  up  into  4,    but  no 
fewer,   triangular  regions. 

Theorenn  11-2  is  intuitively  obvious,   in  view  of  Axiom  J.     However,   its 

proof  requires  considerable  attention  to  "Introduction  matters",    as  well 
as  a  careful  definition  of  'boundary'.     Consequently,  it  is  best  illustrated 
by  examples  .     For  instance  : 

The  measure  of  the  polygonal  region 
ABCDEF  is  the  sum  of  the  measures  of 
the  four  triangular  regions.      But,   the 
sum  of  the  measures  of  two  of  these  is 
the  measure  of  the  upper  rectangular 
region,    and  the  sunn  of  the  measures  of 
the  other  two  is  the  measure  of  the  lower 

rectangular  region.     So,   the  nneasure  of 
the  polygonal  region  ABCDEF  is  the  sum 
of  the  measures  of  the  two  rectangular 

regions . 
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Answers  for  Part  A. 

1.     K  =  bh  2.     K  =  i{bj^  +  b2)h  3.     K  =  ̂ ip-  4.     K  = 
^1^2  ^        ̂ ,         s^/I •J, 

'I* 

Answers  for  Part  B    [on  pages  6-341,    6-342,    and  6-343]. 

1.    $99.84  2.     112.5  3.     1 12, 5  square  inches 

4.    375/3/2  5.     200 V2T  square  feet  6.     K  =  b^  -  a^ 

7.  The  two  triangles  have  congruent  bases  and  the  same  altitude.     So, 

the  two  triangular  regions  have  the  same  area-measure. 

8.  One  diagonal  divides  the  region  into  two  triangular  regions  with  con- 

gruent bases  [Theorem  6-I]  and  congruent  altitudes  [Theorem  6-29]. 

By  Theorem  6-5,   the  other  diagonal  contains  a  median  of  each  of 

these  two  triangles  and,    so,    by  Exercise  7,   divides  each  into  two 

triangular  regions  having  the  same  measure. 

9.  6/9T  10.     10  inches  11.    25/3  12.     13 

13.  The  set  is  the  union  of  two  lines  parallel  to  AB  and  each  at  a  dis - 
tance  4  from  AB . 

14.  2/5,       2/15,       4/5  15.    16 

TC[6-341,  342] 





Correction,     On  page  6-343,   line  4b, 

insert  a  'ir'  to  the  left  of  '22.  '  . 

16.     72 17.    75/2 18.    800/3 

19.    By  Theorem  6-24  and  Theorem  7-1,   the  measure  of  the  altitudes, 

from  M  and  N,    of  AAMP  and  APNC,    respectively,    is  half  the  mea- 

sure of  the  altitude  of  AABC  from  P.     Hence,    K{AAMP)  +  K(APNC) 

=  }*K(AABC).     So,   by  Theorem  11-2,    the  area-measure  of  MPNB 
is,    also,   half  that  of  AABC, 

20.    K  =  |bc*  sin  a" 21.    K  = 

5s' 

•  tan  54° 

^22.    By  the  Pythagorean  Theorem,    c^  -  (b  -  x)^  =  h^  =  a^  -  x^ 

So,  x^  -  (b  -  x)^  =   c^  -  a^ 

that  is. 

Hence, 

Consequently, 

and 

(2x  -  b)b    =   a^  -  c^ 

So, 

Hence, 

and 

X   =  (a^  +b^  -  c^)/(2b). 

h^  =  a^  -  [(a^  +b^  -  c^)/(2b)]^ 

4bV  =  4aV  -  (a^  +  b^  -  c^)^ 

4bV  =  [2ab  +  (a^  +  b^  -  c^)][2ab  -  (a^  +  b^  -  c^)] 

=  [(a  +  hf  -  c^][c^  -  (a  -  b)^] 

=  [(a  +  b  +  c){a  +  b  -  c)][(a  -  b  +  c)(-a  +  b  +  c)] 

=  2s  •  2(s  -  a)*  2(s  -  b)  •  2(s  -  c). 

b^hV4    =  s(s   -  a)(s  -  b)(s  -  c), 

K(AABC)   =  Vs(s  -  a)(8  -  b){s   -  c). 
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Answers  for  Exploration  Exercises. 

1.  Since  DB/AB  =  EB/CB,    and  ZB  S  ZB,    it  follows  by  the  s.a.e.    simi- 

larity theorem  that  ABC  ——  DBE  is  a  similarity. 

2.  By  Theorem  6-24,    DE  =  7/2.     So,   the  perimeter  of  ADBE  =  2  +  3  +  j 
=  half  the  perimeter  of  AABC. 

3.  By  Theorenn  7-1,    the  ratio  of  the  altitudes  from  B  is  2:  1. 

4.  So,    since  the  ratio  of  the  bases  is  2:  1,    the  ratio  of  the  area-measures 

is  4: 1. 

Note  that  the  ratio  of  similitude  is  defined  in  terms  of  a  given  similarity 

between  AABC  and  AA'B'C.     For  conmpleteness,   we  should  show  that  if 
there  are  two  matchings  of  the  vertices  of  the  triangles  which  are  both 

similarities,    then  one  gets  the  sanne  ratio  of  similitude  in  both  cases. 

This  is  easy  to  do.     For,    suppose  besides  the  matching  ABC  ••-*  A'B'C, 
some  other  matching  is  a  sinnilarity.     This  second  similarity  will  match 

one  of  the  vertices,    say,   A,    with  another  vertex  than  before,    say,    B'. 

Since  both  matchings  are  similarities,   ZA'  S  ZA  S  ZB'.     [The  first  con- 
gruence stems  from  the  first  similarity,   the  second  congruence  from 

the  second  similarity.]    Since  ZA'  =  ZB',    it  follows  that  a'  =  b'.     Since, 

for  the  first  sinnilarity,    the  ratio  of  similitude  is  a/a'  and,   for  the 

second,    it  is  a/b',   it  follows  that  the  ratio  of  similitude  is  independent 
of  which  similarity  one  uses. 
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Answers  for  Part  A  [on  page  6-345],  4:  9 

Answers  for  Part  B. 

1.      9:100  2.      4:9  3.       1:16 

[in  Exercise  3,    since  the  ratio  of  the  distances  to  the  left-hand 
vertices  is  1:4,    it  follows  by  Theorem  7-1  that  the  ratio  of  the 
distances  to  the  top  vertices  is   1:4.     So,    again  by  Theorem  7- 1, 
the  ratio  of  the  distances  to  the  right-hand  vertices  is   1:4.     Hence, 
if  the  measures  of  the  bases  of  the  triangles  are  x  and  y,    (1   +  x)/ 
(4+y)  =  1/4.     So,    x/y  =  l/4.     Since  the  ratio  of  sin:iilitude  is   l/4, 
the  ratio  of  the  area-nneasures  is  1/16.] 

Answers  for  Part  C, 

MC/AC  =    1/V7.     So,    ̂ ^^^^c^  =  ̂ /2■,    ̂    =   yi-   1, 

andi!^    =-^    =   ̂ /^+l. MA        yfz  -  I 

Answers  for  Part  D. 

1.  Since  AB  =  BC  =  CD  =  DE  and  A'B'  =  B'C  =  CD'  =  D'E', 
A'B'/AB  =  B'C'/BC  =  C'D'/CD  =  D'E'/DE.     So,    since  all  right 
angles  are  congruent,    the  squares  are  similar. 

2.  Suppose  that  the  ratio  of  similitude  of  ABCDE  to  A'B'C'D'E'  is  k. 
Since  AB  =  k*  A'B',   AE  =  k' A'E',    and  ZA  ̂   ZA',    it  follows  by  the 
s.a.s.   similarity  theorem  that  BE  =  k*  B'E'.     Similarly, 
BD  =  k'B'D'.     Since,    by  hypothesis,    ED  =  k*  E'D',    it  follows  by 
the  s.s.s.   similarity  theorem  that  BED  — *  B'E'D'  is  a  similarity. 

3.  As  shown  in  Exercise  2,   the  ratio  of  corresponding  diagonals  of 
similar  quadrilaterals  is  the  ratio  of  similitude.     [Now,    any  quad- 

rilateral has  at  least  one  diagonal  which  divides  the  corresponding 
quadrangular  region  into  two  triangular  regions.     (Either  diagonal 
of  a  convex  quadrilateral  will  do  this).     And,   for  similar  quadri- 

laterals,   corresponding  diagonals  both  have,    or  both  fail  to  have, 
this  property.  ]    So,    by  the  s.s.s.    similarity  theorem,    each  of  the 
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boundaries  of  the  triangular  regions  into  which  a  diagonal  of  a  quad- 
rilateral divides  its  quadrangular  region  is  similar  to  the  boundary 

of  the  corresponding  one  of  the  triangular  regions  into  which  the 
corresponding  diagonal  of  a  similar  quadrilateral  divides  its  quad- 

rangular region.     Hence,    the  ratio  of  the  area-measures  of  such 
corresponding  triangular  regions  is  the  square  of  the  ratio  of  simil- 

itude.    Since  the  area-measure  of  each  quadrangular  region  is  the 
sum  of  the  area -measures  of  the  two  triangular  regions  into  which 
it  is  divided,    [and  since  multiplication  is  distributive  with  respect 
to  addition],    it  follows  that  the  ratio  of  the  area-nneasures  of  the 
two  quadrangular  regions  is  also  the  square  of  the  ratio  of  similitude. 

4.       The  ratio  of  the  area -measure  of  [the  regions  bounded  by]  two 
similar  polygons  is  the  square  of  the  ratio  of  similitude. 

Answers  for  Part  E  [on  page  6-347]. 

1.      3/7;    3/7;    9/49  2.       1/5  3.      1225.     400 

4.      As  should,    by  now,    be  well-known,    all  angles  shown  in  the  figure 

are  angles  of  30%    60°,    90°,   or  120°.     Each  side  of  the  boundary  of 
the  shaded  region  occupies  the  miiddle  third  of  a  short  diagonal  of 

the  regular  hexagon  ABCDEF,    and  the  measure  of  each  short  diag- 
onal is  VT'AB.     So,   the  measure  of  each  side  of  the  shaded  region 

is   (/S/S)*  AB.     Hence,    the  boundary  of  the  shaded  region  is  similar 
to  the  regular  hexagon  ABCDEF,    the  ratio  of  similitude  being  v3/3. 
So,    by  the  theorem  stated  in  answer  to  Exercise  4  of  Part  D,   the 
ratio  of  the  area-measure  of  the  shaded  region  to  that  of  the  region 

bounded  by  ABCDEF  is  (VT/3)2,    or  l/3. 
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Note  that,   as  in  the  text  on  page  6-347,   and  in  the  exercises  on  page 

6-348,   the  word  *apothem'  is  used,   not  only  to  refer  to  a^  radius  of  an 
inscribed  circle,   but  also  to  the  radius  of  such  a  circle. 

Answers  for  Part  A. 

1.     1/2  2.     1//2  3.     /3/2 

4.     The  region  bounded  by  a  regular  n-gon  is  divided,    by  the  radii  to  its 

vertices,   into  n  congruent  triangular  regions.     The  measure  of  each 

triangular  region  is  half  the  product  of  the  measure  of  a  side  of  the 

polygon  and  the  measure  of  an  apothem.     So,   the  area-measure  of 

the  polygonal  region  is  n  times  this  product.     Since  the  perimeter  of 

the  polygon  is  n  times  the  measure  of  one  of  its  sides,  it  follows  that 

the  area -measure  of  the  polygonal  region  is  half  the  product  of  its 

perimeter  by  its  apothem. 
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The  text  on  page  6-349  overlooks  a  very  important  point  which  you  should 
make  clear  to  your  students.    As  in  the  similar  situation  concerning  the 
circumference,    or  length-measure,    of  a  circle  [see  the  COMMENTARY 
for  page  6-329],   nothing  up  to  this  point  gives  any  meaning  to  the  phrase 
'area-measure  of  a  circular  region'.    We  need  a  definition.    And,  although 
we  shall  treat  exercises  such  as  those  on  pages  6-350  and  6-351  quite 
informally,    our  definition  should  be  such  as  to  apply  to  regions  like  those 
pictured  there. 

The  treatment  leading  up  to  Theorem  11-4  suggests  that  one  define  the 
area-measure  of  a  "region"  to  be  the  least  upper  bound  [if  such  exists] 
of  the  area-measures  of  polygonal  regions  whose  boundaries  are  inscribed 
in  the  boundary  of  the  given  region.      As  a  matter  of  fact  this  would  be 
adequate  for  circular  regions  or,   indeed,   for  any  convex  region.     But, 
this  definition  clearly  assigns  an  area-measure  larger  than  one  wishes 
to  regions  such  as  those  pictured  in  Exercise  3  on  page  6-350.     It  turns 
out  that  an  adequate  definition  is:     The  area-measure  of  a  region  is  the 
least  upper  bound  of  the  area-measures  of  the  polygonal  regions  which 
are  subsets  of  the  given  region.     [Of  course,  to  make  clear  sense  of  this, 

one  must  have  a  satisfactory  definition  of  'region'.     This  we  refrain  from 
giving.]    With  this  definition,    a  theorem  like  Theorem  11-2,  but  with  the 
word  'polygonal'  omitted  [both  times],    can  be  proved.      The  previously 
rejected  definition,   when  miodified  to  apply  only  to  convex  regions,   also 
becomes  a  theorem.     And,  on  the  basis  of  this  latter  theorem,  the  argu- 

ment on  page  6-349  is  at  least  fair  evidence  for  Theorem  11-4.     [What, 
principally,    is  missing  is  an  argument  to  show  that  the  area-measure  of 
any  polygonal  region  inscribed  in  a  circular  region  is  less  than  that  of 
some  inscribed  regular  polygonal  region.] 

'1^ 

Answers  for  Part  B. 

1. 

(a)     24n- 
(b) 6 

(c)     SttV^ (d) 51.84?r 

2. 
(a)     367r (b) SI/tt 

(c)     1927r (d) 
1616.  04?r 

3. 
(a)     8 

(b) 2/2 (c)     lO/Vlr (d) 6.3 

4. 13//^ 

5.     144;r  [Note  that,  here,   we  use  the  analogue,    mentioned  above,   of 
Theorem  11-2,]  Ask  students  if  they  could  have  answered  the  exer- 

cise had  the  word  'concentric'  been  omitted. 
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Correction.     On  page  6-350,    change  the  sentence 
in  Exercise  3  to  read: 

Prove  that  if  AB,   AO,  and  OB  are 

diameters,   the   

Answers  for  Part  C. 

1.  7r(r/2)  +  7r(r/2)  =  irr 

2.  n[{r  +  x)/2]  +  tt[(t  -  x)/2]  =  irr  [x  =  OP] 

3.  [By  the  previously  mentioned  analogue  of  Theorem  11-2],  the  area- 
measure  of  each  of  the  shaded  regions  is  half  the  area  of  the  circular 
region  which  is  their  union.     [Ask  whether  there  is  a  generalization 
of  Exercise  3,   like  the  generalization  of  Exercise  1  which  is  given 
in  Exercise  2.  ] 

4.  (27rR)/(27rr)  =  R/r;    {TtR^)/{7Tr^)  =  R^/t^.     [One  may,   reasonably,   call 
the  ratio  of  the  radii  of  two  circles  their  ratio  of  similitude,   and 
speak  of  the  circles  as  similar.     Then,  as  for  polygons,  the  ratio  of 
the  area-measures  of  two  (sinrxilar)  circular  regions  is  the  square  of 
this  ratio  of  similitude.     See  below,   for  further  discussion.] 

5.  irR^  '  7rDV4,     irx^  =  7rdV4,     (iTD^/4)/(ird^/4)  =  DVd^ 

6.  16 

The  concept  of  similarity  can  be  extended  to  arbitrary  sets  of  points. 
One  procedure  is  to  say  that  two  sets  are  similar  if  and  only  if  all  the 
points  of  one  can  be  matched,    one-to-one,   with  all  the  points  of  the  other 
in  such  a  way  that  corresponding  angles  are  always  congruent.     Such  a 
matching  is  called  a  similarity.     It  follows,   now,   fronn  the  a. a.   similar- 

ity theorem  that,   in  any  similarity,  the  distance  between  each  two  points 
in  one  set  is  proportional  to  the  distance  between  the  corresponding  points 
of  the  other  set.     [Conversely,    by  the  s.s.s.   similarity  theorem,    each 
matching  which  has  this  proportionality  property  is  a  similarity.  ]    Con- 

sequently, this  extended  notion  of  similarity  agrees,   for  polygons,   with 
the  usual  nnore  elementary  notion,     [in  fact,   two  polygons  are  similar, 
in  either  the  usual  or  the  extended  sense,   if  and  only  if  there  is  a  match- 

ing of  their  vertices  such  that  corresponding  angles  of  the  polygons  are 
congruent  and  angles  containing  pairs  of  corresponding  diagonals  are 

congruent.]    The  ratio  between  corresponding  distances  is  called  *the 
ratio  of  similitude',   and  if  this  ratio  is   1  then  the  sets  are  said  to  be 
congruent.     As  in  the  elementary  case,   the  ratio  of  the  length-measures 
of  two  similar  "curves"  is  the  ratio  of  similitude,   and  the  ratio  of  the 
area-measures  of  two  similar  "regions"  is  the  square  of  the  ratio  of similitude . 
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Correction.     On  page 

area-measure  of  a 

t 

6-351,   line  4  should 

circular  sector. 

read: 

A  circular  sector  is  a  region  whose  boundary  is  the  union  of  an  arc  and 

the  radii  to  the  end  points  of  the  arc.     [Since  two  points  of  a  circle  deter- 

mine two  arcs,   they  also  determine  two  sectors,   a  minor  sector  and  a 

major  sector,    or  two  semicircular  sectors.] 

Formula  (1)  for  the  area-measure  of  a  circular  sector  applies  to  all 

circular  sectors;    formula  (2)  applies  only  to  minor  ones.     The  simplest 

proof  of  formula  (1)  is  like  that  of  Theorem  11-4.      Perhaps  the  best 

thing  to  do  is  to  approximate  the  proof  by  drawing  pictures  showing 

polygonal  lines  inscribed  in  arc  AB  and  triangular  regions  based  on  the 

sides  of  these  polygonal  lines  and  having  O  as  one  vertex.      Point  out 

[as  you  no  doubt  did  in  discussing  Theorem  11-4]  that  the  length-meas- 

ures  of  such  polygonal  lines  approximate  the  length-measure  of  AB, 

and  that  the  unions  of  the  triangular  regions  tend  to  fill  up  the  sector. 

Repeat,   with  AB  replaced  by  a  major  arc.     This  should  be  sufficient. 

For  formula  (2),    remind  students  of  Exercise  3  on  page  6-330.     In  doing 

this  exercise  they  must  have  become  aware  of  the  fact  that  the  length- 

measure  of  an  arc  is  7r/l80  times  its  degree-measure.     Hence,  the  length- 

measure  of  a  niinor  arc  of  radius  r  is  7rr/l80  times  the  degree -measure 
1  1  TTr 

of  its  central  angle.     So,  in  the  case  of  a  minor  arc,    ̂ rs  =  jr  •  t^tt  6. 

[For  a  mnennonic,   point  out  that  a  sector  of  6°  is  theta-three -sixtieths 
of  a  circular  region.] 

Answers  for  Part  A   [on  pages  6-351  and  6-352]. 

1.     257r  2.     157r/4  3.     12507r/3   [7r(25)2  -  |7r(25)^] 

4.  507r/3  -  25-/3   [The  shaded  region  is  a  circular  segnnent--that  is,   a 
region  whose  boundary  is  the  union  of  an  arc  and  its  chord.] 

5.  1007r/3  -  25V3    [The  shaded  region  has  the  same  area-measure  as 
does  a  segment  of  a  circle  of  radius  10  which  subtends  a  central 

angle  of  120".  ] 
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Correction.     On  page  6-352,  the  last  line  of 

Exercise  8  should  be  *of  AABC.  '  . t 

In  line  Zb,   change  the  period  after  'others' 
to  a  question  mark. 

6.     (4  -  n)'  100  7.     (tt  -  2)-  100 

8.     What  we  want  amounts  to  showing  that  the  sum  of  the  area-measurea 

of  the  partially  shaded  semicircular  sectors,   plus  the  area-measure 

of  AABC,   minus  the  area-measure  of  the  totally  unshaded  semicir- 

cular section  is  the  area-measure  of  AABC.     In  other  words,  we  want 

to  show  that  the  sum,   j  irc^  +   ̂ Tra^,    of  the  area-nneasures  of  the  par- 

tially shaded  semicircular  sectors  is  the  area-measure,    jirh^,    of 

the  totally  unshaded  one.     But,  this  is  obvious.     For,  AABC  is  right- 

angled  at  B,   and,    by  the  Pythagorean  Theorem,   c^  +  a^  =  b^. 

Answers  for  Part  B    [on  pages  6-352  and  6-353], 

1.  By  formula  (2)  on  page  6-351,   the  ratio  of  the  area-measures  of 

minor  circular  sectors  which  have  congruent  central  angles  is  the 

square  of  the  ratio  of  their  radii.     [This  is,   in  a  more  general  set- 

ting,  a  consequence  of  the  theorem  according  to  which  the  ratio  of 

the  area-measures  of  two  similar  sets  is  the  square  of  their  ratio  of 

similitude.  ]    Since  AOCB  is  an  isosceles  right  triangle,    OC/OB  = 

l/v2.      Hence,  the  ratio  of  the  area-measures  is   l/2, 

2.  4275ir  3.      12(5  +it)  inches 

4.     5(3  +  7r)/2  feet 
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Correction.     On  page  6-353,   in  Exercise  6,   add 

this  line  to  the  Hypothesis  : 

AC  and  CB  are  diameters 

/ 

5.      16 

6.     Let  AB  =  d.      Then,   AC  = 
kd 

k  +  1 
and  CB 

k  +  1* 

So,   the  ratio  of  the 

area-measures  is  [l  +(kTT)'  -(fTt)'^/^^  "  (  kTr)  '  "^  (fTt)  '  1- 
Simplifying,   the  ratio  is  k.     [This  is  an  exannple  of  the  fact  that  mul- 

tiplying lengths  in  one  direction  by  k  multiplies  areas  by  k.     Doing 

this  in  two  directions  results  in  naultiplying  areas  by  k^.  ] 

7.     AB  bisects  11  APBU,   BC  bisects  HI  BQCV,    etc.     So,  twice  the  area- 

nneasure  of  iSiABCD  is  the  sum  of  the  area-measures  of  the  four 

regions  at  the  corners  of  the  figure  plus  twice  the  area-measure  of 

iHJSTUV.      But,   this  is  the  sum  of  the  area-measures  of  ̂   STUV 

and  Hi  MPQR.     Hence,   the  conclusion. 

8.     By  s.  a.  s.  ,   ADM, BAM ^  is  a  congruence. Since  ZBAM^  is  a 

right  angle,    ZAM^B  is  a  complement  of  ZABM^.      Hence,   it  is  a 

complennent  of  ZDAM^.     So,   AAEM^  is  right-angled  at  E.      Conse- 

quently, ZFEH  is  a  right  angle.     Similarly,  ZEHG,  ZHGF,   andZGFE 

are  right  angles.     So,    EFGH  is  a  rectangle. 

Since  ZDAH  S  ZABE  andZAHD  ^  ZBEA,    and  AD  ̂   BA,    it  follows 

by  a.  a.  s.   that  DAH ABE  is  a  congruence.     So,   AH  =  BE.     Since 

M^  is  the  midpoint  of  AD  and  M^E    j  |  DH,   it  follows  that  E  is  the 

midpoint  of  AH.     Similarly,    F  is  the  midpoint  of  BE.     Consequently, 

EH  =  FE.     So,    rectangle  EFGH  is  a  square. 

*  Since  AADMg  is  right-angled  at  D  and  DH  ±  AMg,  AHD  -'—  ADM3  is 

a  similarity.     So,   AH/AD  =  AD/AM3.     But,  since  AD  =  2  •  DM3, 

AM3  =  (/5/2)  -AD.     Hence,  AH  =  (2/^/l)  -AD.     Since  AH  =  2-EF, 
EF  =  AD/VT.    So,  the  area-measure  of  EFGH  is  one  fifth  that  of  ABCD. 
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Quiz. 

1.  What  is  the  area-measure  of  an  equilateral  triangle  whose  side- 
measure  is  2  ? 

2.  Suppose  that  quadrilateral  ABCD  is  a  parallelogram,   AB    =    10, 
AD    =  6,    and  m(ZA)   =   30.     What  is  the  area-measure  of  ABCD? 

3.  The  ratio  of  the  corresponding  sides  of  two  similar  triangles  is 
2:3.     If  the  area-nneasure  of  the  larger  triangle  is  36,   what  is  the 
area-measure  of  the  smaller? 

4.  If  the  central  angle  of  a  circular  sector  is  an  angle  of  80°  and  the 
area-measure  of  the  circle  is  727T,  what  is  the  area-measure  of 
the  sector? 

5.  The  area  of  a  trapezoid  is  60  square  inches.     If  the  bases  are  7 
and  17  inches  long,    respectively,   how  many  inches  apart  are  the 
bases  ? 

6.  A  circle  with  radius  k  is  inscribed  in  a  square.     What  is  the  area- 
measure  of  the  square? 

7.  Find  the  area-measure  of  a  regular  polygon  whose  perimeter  is  60 
and  whose  apothenn  is  5. 

8.  If  the  radius  of  a  circle  is  tripled,   what  change  takes  place  in  the 
area -measure? 

9.  Two  squares  have  a  side  of  one  congruent  to  a  diagonal  of  the  other. 
What  is  the  ratio  of  their  area-measures? 

10. Hypothesis:     DA,    CB,    and  CD  are 
tangents  to  the  circle 
with  center  O, 

DC4^AB 

Conclusion:     the  area -measure  of 

ABCD  is  ̂ ' AB*  CD 

TC[6-354]a 



r 
w '/''/ 

r 
//y r 



11.  Suppose  that  two  of  the  medians  of  a  triangle  are  congruent,  each 
with  measure  30.  If  the  third  median  of  the  triangle  has  measure 
36,   what  is  the  area-measure  of  the  triangle? 

■^12.    Suppose  that  the  coordinates  of  the  vertices  of  a  triangle  are  (2,    3), 
{5,   7),    and(4,   10),    respectively.     What  is  the  area-measure  of  the 
triangle? 

Answers  for  Quiz. 

1.    a/T  2.     30 

7.     150 

16 167T 

8.    multiplied  by  9 

5.    5 

9.    2:  1 

6.    4k' 
10.    Since  AD   j  |    BC  and  DC  xpf  AB,   quadrilateral  ABCD  is  a  trapezoid. 

So,    since  AB  is  perpendicular  to  the  bases,    the  area-naeasure  of 

ABCD  is  7*  AB(AD  +  BC).     But,    since  CT  and  CB  are  tangents, 

TC  =  BC.     Similarly,    DT  =  AD.     So,    the  area-measure  of  ABCD  = 

i*  AB(DT  +  TC)  =  i-  AB*  DC. 

11. 

k 

*12. 

(4,   10) 

(2,   10) r 

•^(5.  10) 

(5,   7) 

(2,3)  (5,  3) 

3-7-  (i-4-3+|--l«3+}-2-7)  =  6.5 
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Quiz  [covering  pages  6-1  through  6-356], 

[As  in  the  case  of  the  mid-unit  quiz,    you  may  wish  to  choose  items  from 
the  following  list  for  a  unit  examination.     The  remaining  items  can  be 
used  for  review.] 

Part  I. 
•- — » 

1.  The  altitude  of  AABC  from  A  is    to  side  BC. 

2.  Diagonal  AC  of  parallelogram  ABCD    diagonal  BD. 

3.  The  sum  of  the  measures  of  two  supplementary  angles  is    . 

4.  The  bisectors  of  two  connplementary  adjacent  angles  are  the  sides 
of  an  angle  of   degrees. 

5.  If  a  line  is  perpendicular  to  one  of  two  parallel  lines,    it  is   
to  the  other. 

6.  If  the  midpoints  of  two  adjacent  sides  of  a  rhombus  are  joined  by  a 
segment,    the  triangle  thus  fornned  is    , 

7.  In  two  concentric  circles,   all  chords  of  the  larger  circle  which  are 
tangent  to  the  smaller  circle  are    . 

8.  The  segnnent  whose  end  points  are  the  midpoints  of  two  sides  of  a 
triangle  is    to  the  third  side. 

Part  II. 

9.     If  the  sunn  of  the  measures  of  two  angles  is  the  nneasure  of  an 
obtuse  angle  then  one  of  the  two  angles  nnust  be 

(A)    an  acute  angle        (B)    a  right  angle         (C)    an  obtuse  angle 

10.     Two  angles  that  are  congruent  and  supplementary  are 

(A)    adjacent  angles     (B)    right  angles  (C)    acute  angles 
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11.  If  ZA  is  a  complement  of  ZB  and  ZC  is  a  supplement  of  ZB  then 

(A)    m(ZA)>m(ZC)  (B)    m(ZA)  =  m(ZC) 

(C)    m(ZA)  <  m{ZC) 

12.  If,    in  quadrilateral  ABCD,   AB  =  BC  and  CD  =  DA  then  the  diagonals 
AC  and  BD 

(A)    bisect  each  other       (B)    are  perpendicular       (C)    are  congruent 

K  13..     The  circumcenter  of  a  triangle  is  interior  to  the  triangle  if  the 
V  triangle  is 

B  (A)    acute  (B)     right  (C)    obtuse 

I Part  III. 

f 
14.  What  is  the  sum  of  the  measure  of  the  angles  of  a  convex  polygon 

of  5  sides? 

15.  Suppose  that  in  AABC  a  line  parallel  to  AC  intersects  AB  at  D  and 

CB  at  E.     If  AB  =8,    BC  =   12,    and  BD  =  6.    find  BE. 

16.  A  tangent  segment  and  a  secant  segment  to  a  circle  from  an  exter- 
nal point  are  6  inches  and  12  inches  long,    respectively.     How  long 

is  the  external  segnnent  of  the  secant  segment? 

17.  What  is  the  distance  between  the  point  with  coordinates  {3,    3)  and 
(8,    8)? 

18.  Find  the  length-measure  of  an  arc  of  45°  in  a  circle  whose  radius is  8. 

.— «  /~^ 

19.  Suppose  that  AB  is  a  chord  of  a  circle  and  that  AB  is  an  arc  of  50° 

Find  the  measure  of  the  acute  angle  one  of  whose  sides  is  BA  and 

the  other  of  whose  sides  is  tangent  to  the  circle  at  B. 
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20.  The  measure  of  the  altitude  to  the  hypotenuse  of  a  right  triangle  is 
4,  and  the  measure  of  one  of  the  segments  of  the  hypotenuse  made 
by  the  altitude  is  2.  Find  the  measure  of  the  other  segment  of  the 
hypotenuse. 

21.  What  are  the  measures  of  the  angles  of  a  parallelogram  in  which 
one  of  the  angles  is  three  times  as  large  as  another? 

22.  Suppose  that  in  AABC,  ZA  is  an  angle  of  60°  and  an  exterior  angle 
at  B  is  an  angle  of  130°.      Which  is  the  longest  side  of  the  triangle? 

If  ZA  is  an  angle  of  18°  and  BE  is  an  arc  of  24°, 

A         what  is  the  number  of  degrees  in  CD? 

24.  A  circle  is  tangent  to  each  of  the  sides  of  an  angle  of  72°.     Find  the 
measures  of  the  arcs  determined  by  the  points  of  tangency. 

25.  Two  tangent  segments  to  a  circle  from  an  external  point  are  each 

6  inches  long  and  are  contained  in  an  angle  of  60°.     How  long  is  the 
chord  joining  the  points  of  tangency? 

26.  Corresponding  sides  of  two  similar  triangles  are  in  the  ratio  1  :  4. 
What  is  the  ratio  of  a  pair  of  corresponding  altitudes? 

27.  What  is  the  area-measure  of  an  equilateral  triangle  whose  side- 
measure  is  5? 

28.  Suppose  that  in  AABC,   AB  =  BC.     Find,   correct  to  the  nearest  unit, 
the  measure  of  the  altitude  from  B  if  m(ZB)  =  96  and  AB  =10. 

29.  If  the  diagonals  of  a  rhombus  are  10  inches  and  20  inches  long, 
respectively,    how  many  square  inches  are  there  in  its  area? 

3.0.     The  side -measure  of  a  right  triangle  are  3,    4,   and  5,    respectively. 
What  is  the  cosine  of  the  smallest  angle? 

31.     How  far  from  the  center  of  3-inch  circle  should  you  choose  a 
point  so  that  the  tangent  segments  to  the  circle  are  4  inches  long? 
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32.  Chord  AB  is  bisected  at  M  by  chord  CD.     If  CM  =  8  and  MD  =  18, 
what  is  AB  ? 

33.  If  a  radius  of  a  circle  is   13  inches  long,   how  long  is  the  shortest 
chord  which  contains  a  point  5  inches  from  the  center? 

34.  Suppose  that,   in  AABC,  AB  =  16  =  AC  and  BC  =  24.     What  is  the 
diameter  of  the  circumcircle  of  AABC? 

35.  The  sunn  of  the  area-measures  of  two  sinnilar  triangles  is  78.     If  a 
pair  of  corresponding  sides  nneasure  6  and  9,    respectively,   what  is 
the  area-measure  of  the  smaller  triangle? 

36.  If  the  bases  of  an  isosceles  trapezoid  measure   10  and  14,    respec- 
tively,   and  the  measure  of  a  diagonal  is   13,   what  is  the  area-measure 

of  the  trapezoid? 

Part  IV. 

37.  Suppose  that  A(9,  10),    B(-3,  -6),    and   C(13,  2)  are  the  vertices  of  a 
triangle. 

(a)  Prove  that  the  triangle  is  a  right  triangle. 

(b)  Find  its  area-measure. 

(c)  Find  the  radius  of  its  circumcircle. 

(d)  Write  an  equation  of  its  circumcircle. 

38.  Suppose  that  A,  B,  and  C  are  points  on  a  circle  such  that  ABC  is  a 

major  arc  and  B  is  its  midpoint.  If  D  is  a  point  on  the  circle  such 

that  AC  r>  BD  =  {E},    show  that  (AB)^  =  BD-BE. 

39.  Suppose  that,   in  quadrilateral  ABCD,   AB  =  BC  and  m(ZA)  >  m(ZC). 

Prove  that  CD  >  DA. 

40.  Suppose  that  AABC  is  right  angled  at  A.     Let  AM  be  the  median  from 

A,   AH  be  the  altitude  from  A,    and  AT  be  the  angle  bisector  from  A. 
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Assuming  that  T  e  HM,    show  that  AT  bisects  ZHAM. 

[Unless  AABC  is  isosceles,    T  €  HM.     For,  if  AABC  is  not  isosceles, 

ZB  is  smaller  than  each  of  the  congruent  angles,  ZTAB  and  Z TAG. 

But,  ZMAB  andZHAC  are  both  congruent  toZB.] 

>:< 

Ans wers  for  Quiz. 

1. perpendicular 
2. 

bisects 

3. 

180 

4. 45 

5. 

perpendicular 

6. 
isosceles 

7. congruent 

8. 

parallel 
9. 

(A) 

10. (B) 
11. 

(C) 
12. 

(B) 

13. (A) 
14. 

540 
15. 

9 

16. 3 17. 5V7 
18. 

Zir 

19. 25 
20. 

8 
21. 

45  and  135 

22. AB 23. 60 24. 108  and  252 

25. 6  inches 
26. 

1:4 

27. 
25V3/4 

28. 7 
29. 100 

30. 

0.8 

31. 5  inches 
32. 

24 
33. 

24 

34. 25 35. 24 
36. 

60 

37.    (a)     [d{AB)f  =  400,    [d{BC)]2  =  320,    [d(CA)]2  =  80.     So,  the  triangle 

is  right-angled  at  C. 

(b)  d(BC)  =  8/^  andd{CA)  =  4/5.     Therefore,  the  area-measure 

is  I -8/5 -4/5  =  80. 

(c)  radius  of  circumcircle  =  j«  measure  of  hypotenuse  =  10 

(d)  (x  -  3)^  +  (y  -  2)2  =  100 
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38.  Since  AB  S  BC,   it  follows  that  ZBAC  s  ZBDA.      Also,  ZB  s  ZB. 

So,   by  the  a.  a.   similarity  theorem,   ABE  -»—  DBA  is  a  similarity. 

Hence,    (AB)^  =  BD-BE. 

39.  Since  AB  =  BC,    m(ZBAC)  =  m(ZBCA).      Since  m(ZBAD)  >   m{ZBCD), 

m{ZDAC)  >  m(ZACD).      So,   in  AACD,    CD  >   DA. 

40.  ABH  — ►  CBA  is  a  similarity;   so,   ZBAH  S  ZBCA.     Since  AM  is  the 

median  to  the  hypotenuse,   AM  =  MC.      So,   ZBCA  s  ZCAM.     Hence, 

ZBAH  =  ZCAM.      But,    by  hypothesis,    ZBAT  ^  Z  CAT  .       So, 

ZHAT   S  ZMAT. 
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Here  is  a  slightly  more  complicated  column  proof  which  still  depends 

only  on  universal  instantiation  and  the  test-pattern  principle: 

<1)  V  V  xy    =   yx  [basic  principle] 

X  y 

U)  V      (a  +  2)y    =   y{a  +  2)  [(1)] 

(3)  (a  +  2)a    =   a(a  +  2)  [(2)] 

(4)  Vx    (x  +  2)x   =  x(x  +  2)  [(l)-(3)] 

Here,    each  of  steps  (2)  and  (3)  follows  from  the  preceding  step  by  un- 
iversal instantiation;   and  steps  (l)-(3)  constitute  a  test-pattern  for  the 

conclusion.     So,    the  proof  shows  that 

'V      (x  +  2)x   =   x(x  +  2)' 

is  a  logical  consequence  of 

'V  V    xy    =  yx'. 

x  y     ' 
Since  this  premiss  is  a  basic  principle,    the  conclusion  is  a  theorem. 

In  practice,    one  would  probably  omit  step  (2),    and  consider  that   (3) 

follows  from  (1)  by  instantiation.   [On  this  point,    see  the  COMMENTARY 

for  page  2-30. ] 

As  a  final  example,    consider  : 

(1)  V  V  xy    =   yx  [basic  principle] 

X   y 

(2)  V      (a  +  2)y    =   y(a  +  2)  [step  (1)] 

(3)  (a  +  2)b    =  b{a  +  2)  [step  (2)] 

(4)  V      (y  +  2)b    =  b(y  +  2)  [steps   (l)-{3)] 

(5)  V  V      (y  +  2)x    =   x{y  +  2)  [steps   {l)-(4)] 

X   y 

In  this  proof  there  are  two  uses  of  universal  instantiation,    followed  by 
two  cases  of  the  test-pattern  principle.     In  practice,    the  proof  would 
probably  be  abbreviated  to  three  steps,    steps   (1),    (3),    and  (5). 
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w There  is  a  third  form  of  proof-  -tree-form  proofs  --which  has  been  ill- 
ustrated at  various  places  in  the  COMMENTARY  for  Unit  1  and  Unit  2. 

[See,    for  example,    TC[2-31,  32]b.  ]     Using  this  form,   we  should  write: 

V      X*  1    =    X X 

(2a)-  1    =   2a 

V     (2x)  •  1    =    2x 

Here,    the  single  horizontal  bar  indicates  that  the  second  line  is  a  con- 
sequence of  the  first,   while  the  double  bar  indicates  that  the  two  lines 

above  it  constitute  a  test-pattern  for  the  universal  generalization  sen- 
tence written  below  it.     In  Unit  6  we  shall  not  write  proofs  in  tree-form, 

but  we  shall  use  a  similar  device  to  diagram  the  structure  of  a  proof. 
For  example,    we  would  diagrann  the  preceding  column  proof  by: 

(1) 

(2) 

(3) 

Notice  that,    although  in  Unit  2  we  would  probably  have  used  *(2x)*  1  =  2x' 
as  step  (2)  in  the  preceding  proof,    the  use  of  a  different  letter,    say  'a', 
instead  of  'x'  makes  for  a  clearer  understanding  of  the  different  roles 
of  the  'x's  in 

*V     X-  1  =x' X 

and  the  *a's  in 

*(2a)-  1  =  2a'. 

The  latter  are,    in  the  strict  sense  of  the  word,    pronumerals  - -it  nnakes 
sense  to  replace  them  by  numerals.      The  former,    on  the  other  hand, 

serve  nnerely  as  indices  which  link  the  quantifier  'V '  with  the  two  argu- 
ment places  in  the  predicate  '.  .  .    •  1  =    '.     For  a  more  complete  dis- 

cussion of  this,    see  TC[2-27].     As  far  as  your  students  are  concerned, 
it  may  be  sufficient  to  tell  them  that  forming  instances  of  a  generalization 
by  using  letters  other  than  those  associated  with  the  quantifiers  makes 
proofs  easier  to  follow.     As  remarked  earlier  [TC[6-13]b},  we  shall,    for 
the  most  part,    use  *W',    'X',    'Y',    and  'Z'  with  quantifiers  in  geometry 
theorems,    and  use  alphabetically  earlier  letters  in  forming  instances, 

[in  technical  terms,   we  use  'W',    'X',    *Y',    and  *Z'  as  apparent  variables, and  the  other  capital  letters  as  variables.  ] 
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By  universal  instantiation,   the  pml  implies  each  of  its  instances.     So, 
in  particular,    it  implies 

Since  each  instance  of 
*(2a)-  1  =  2a'. 

'V     {2x)-  1  =  2x' X 

can  be  obtained  by  nnaking  suitable  substitution  for  the  *a's  in  this  in- 
stance of  the  prnl,  we  can  construct  a  test-pattern  for  this  universal 

generalization  sentence.     The  form  used  in  Unit  2  is: 

(2a)*  1    =   2a  [V    x*  1  =  x] 

Since  this  is  a  test-pattern  for  'V     {2x)*  1  =  2x',   the  test-pattern  principle 
justifies  our  adding: 

therefore,     V     (2x)*  1    =   2x X 

The  two  displayed  lines  just  above  constitute  a  proof  which  shows  that 

the  conclusion  *V     (2x)*  1  =  2x'is  a  consequence  of  the  premiss 
•V     (x-  1)  =  x'. X 

X 

In  Unit  6  we  adopt  a  different  form  for  writing  proofs.     Using  it  here, 
we  should  write: 

(1)  V  X-  1    =   X  [pml] 

(2)  (2a)-  1    =   2a  [(1)] 

(3)  V^   (2x)-  1    =    2x  [(1)  and  (2)] 

The  proof  consists  of  the  three  sentences  in  the  middle  column.     Proofs 
of  this  form  will  be  called  column  proofs.     [Each  sentence  is  a  step  in 

the  proof.]    The  parenthesized  numerals  in  the  left-hand  colunnn  merely 
furnish  an  easy  way  to  refer  to  the  steps  of  the  proof.     The  bracketed 

remarks  in  the  right-hand  column  indicate  the  source  of  each  step.     They 
are  aids  to  following  the  proof,    but  are  not  part  of  it.     The  comment 

'pnnl'  for  step  (1)     identifies  this  step  as  the  principle  for  multiplying  by  1. 
A  less  explicit,    but  probably  adequate,    comnnent  which  might  have  been 

used  is  'basic  principle'.      The  comment  for  step  (2)  indicates  that  this 
step  is  a  consequence  of  step  (1).     Inspection  of  the   two  steps  shows  that 
(2)  follows  fronn  (1)  by  virtue  of  the  rule  of  universal  instantiation.      The 
comment  for  step  (3)  draws  attention  to  steps  (1)  Eind  (2),   where  one  sees 
that  these  form  a  test-pattern  for  (3). 
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One  of  the  purposes  allegedly  served  by  the  study  of  geometry  is  the 
development  of  an  understanding  of  the  nature  of  proof.     Something 
concerning  this  has  already  been  said  in  the  COMMENTARY  for  page 

6-18.     As  was  remarked  there,    a  proof  shows  how  its  conclusion 
follows,    step-wise,    from  its  premisses,    by  the  application  of  principles 
of  logic.     So,    one  can  scarcely  understand  the  nature  of  proof  unless  he 
is  acquainted  with  at  least  some  of  the  logical  principles  which  justify 
his  inferring  of  later  steps  in  the  proof  from  earlier  ones.     This  appen- 

dix furnishes  an  introduction  to  some  of  the  more  commonly  used  logical 
principles,    and  contains  illustrations  of  their  use  in  proofs  of  theorems 
from  algebra.     Since  its  illustrations  are  drawn  from  algebra,   the 

Appendix  can  be  studied  independently  of  the  remainder  of  Unit  6.     How- 
ever,   it  will  probably  be  of  more  help  to  students  of  Unit  6  if  it  is  studied 

piecewise,    as  is  suggested  at  various  places  in  section  6.01.     The  MIS- 
CELLANEOUS NOTES,   beginning  on  page  6-398,    illustrate  this  use  of 

logical  principles  in  some  proofs  of  theorems  from  geometry. 

'I* 

Note  the  word  'premiss'   [plural:  prennisses].     This,    rather  than  the 
legal  term  'premise',    is  the  historically  proper  word  to  use  in  referring 
to  the  sentences  which  one  takes  as  the  initial  ones  of  a  proof. 
[The  usage  dates  back  at  least  to  1599.] 

Students  of  Unit  2  have  already  become  acquainted  with  some  principles 
of  logic.     For  example,   they  have  learned  that  one  c£ui  prove  a  universal 
generalization  sentence  such  as 

'V^    X(X  +    1)    =  XX  +  x' 
by  constructing  a  testing  pattern  for  its  instances.     [See  pages  2-31 

through  2-33.]    Moreover,    they  are  aware  that  a  universal  generaliza- 
tion sentence  implies  each  of  its  instances.     The  first  of  these  two 

rules  may  be  called  the  test -pattern  principle,   the  second,   [the  rule  of] 
universal  instantiation.     Together,   they  explain  the  meaning  of  universal 
generalization  sentences. 

As  an  example  of  the  use  of  the  test-pattern  principle  and  universal 
instantiation,    consider  the  derivation  of  the  universal  generalization 
s  entenc  e 

'V^  (2x)-  1  =  2x' from  the  principle  for  multiplying  by  1, 

V     x-l=x\ X 
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Although  universal  instantiation  and  the  test-pattern  principle  are  of 
fundannental  importance,   it  is  obvious  that  no  very  startling  conclusions 
can  be  justified  by  virtue  of  these  rules  of  reasoning  alone.      In  fact, 

most  of  the  proofs  in  Unit  Z  appeal  to  two  other  logical  principles --the 
substitution  rule  for  equations  and  the  principle  of  identity.      [Both  are 

illustrated  in  the  tree-form  proof  on  TC[2-31,  32]b.      Three  of  the  four 
principles  of  logic  naentioned  so  far  are  illustrated  in  the  discussion, 

beginning  on  page  6-357,   of  the  theorem 

•V     X(X  +    1)    =   XX  +  x' X 

The  principle  of  identity. 

*V    X  =  x' X 

(10 V   V   V    x(y  +  z)  =  xy  +  xz 
x    y    z     ̂                    ' 

(2') 
3(3  +  1)  =  3-3  +  3 

(3') 
V    x-1  =  X X 

(4') 
3-1  =  3 

(50 3(3  +  1)  =  3-3  +  3 

is  first  mentioned  on  page  6-362.]     The  use  of  the  substitution  rule  for 
equations  is  best  discussed  in  connection  with  the  column  proof  on  page 
6-358.     The  first  five  steps  of  this  proof  constitute  a  test-pattern  for 

the  sixth.      Let's  consider  a  particular  instance  of  the  sixth  line,    say, 
'3(3  +  1)  =  3  •  3  +  3*   and  see  how  the  test-pattern  yields  a  proof  of  this 

instance.      What  we  must  do,    of  course,   is  substitute  '3's  for  the  'a's. 

[theorem] 

[(!')] 
[basic  principle] 

[(3')] 
[(2')  and(4')l 

Step  (2')  follows  from  step  (1')  by  the  principle  of  universal  instantiation 
[actually,    by  three  applications  of  this  principle],   and  the  same  principle 

justifies  inferring  step  (4')  from  step  (3').     Step  (5')  is  obtained  by  sub- 
stituting the  right-hand  side  of  step  (4')  for  the  *3'  1'  in  step  (2').     The 

substitution  rule  for  equations  says  that,    since  the  left-side  of  (4')  is 
'3*  r,   it  follows  that  (5')  is  a  consequence  of  (4')  and  (2'): 

3-1  =  3   3(3  +  I)  =  3-3+3-1 

3(3  +  1)  =  3-3  +  3 

Just  as  the  test-pattern  principle  and  universal  instantiation  embody  the 
meaning  of  universal  generalization  sentences,    so  the  substitution  rule 
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and  the  principle  of  identity  embody  the  meaning  of  equation  sentences. 

The  acceptability  of  the  inference  of  (5')  from  (4')  and  (2')    [and  the 
acceptability  of  the  substitution  rule,   generally]   is  due  entirely  to  our 

interpretation  of  equation  sentences.      Step  (5')  is  a  consequence  of  {4') 
and  (2')  just  because  we  have  agreed  to  understand  '  =  '  in  such  a  way 
that  (4')  means  that  '3'  1'  and  '3'  are  names  for  the  same  thing. 

Returning,  now,  to  the  proof  on  page  6-358,   step  (5)  follows  from  steps 
(4)  and  (2): 

al  =  a   a(a+  1)  =aa  +  al 

a(a  +  1)  =  aa  +  a 

^(5) 

because  the  same  argumient  given  above  for  the  case  in  which  the  *a's 
were  replaced  by  '3's  applies  equally  well  no  matter  what  numeral 
replaces  the  'a's.      [Notice  that  we  cannot,   here,   parody  the  argument 

by  saying  that  the  inference  is  valid  because  (4)  means  that  'al'  and 
'a'  are  names  for  the  same  thing.     For,   neither  'al'  nor  'a'  is  a  name 
for  anything.      Only  the  numerical  expressions,   which  result  when 
numerals  are  substituted  for  the  'a's,   are  names.] 

Diagramming  proofs  is  one  of  the  best  ways  of  learning  to  appreciate 
the  role  of  logical  principles.     In  discussing  the  diagram  on  page  6-360, 
it  will  be  helpful  to  have  the  column  proof  on  page  6-358  on  the  board, 
and  to  write  the  diagram,  as  is  done  in  the  text   [beginning  on  page 
6-359]   one  inference  at  a  time.     Before  writing  an  inference  in  the 
diagrami,   locate  the  corresponding  marginal  comment  in  the  colum,n 
proof.      When  reading  the  three  sentences  preceding  the  exercises, 
point  to  the  appropriate  inferences  in  the  diagram.      [Notice  that  the 
premiisses  of  which  the  last  conclusion  is  a  consequence  can  be  located 
by  going  to  the  very  top  of  the  branches  in  the  diagram.] 
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of  the  principle  of  identity  and  the  substitution  rule  for  equations,   that 

equality  is  synnmetric. 

In  view  of  this  result,   we  have  another  substitution  rule  for  equations. 

The  statement  of  this  rule  can  be  obtained  from  that  in  the  box  on  page 

6-359  by  interchanging  the  words  'left'  and  'right'.     This  second  sub- 

stitution rule  can  be  applied  in  Exercise  7  on  page  6-363  where  the  first 

is  not  applicable.      In  Exercise  9,   the  missing  premiss  can  be  supplied 

in  either  of  two  ways,   to  illustrate  either  of  the  substitution  rules.     For 

Exercise  10,   there  is  1  solution  which  illustrates  the  first  substitution 

rule  and  there  are  31  solutions  each  of  which  illustrates  the  second  rule. 
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Answers  for  Part  A   [\Vhich.  begins  on  page  6-360]. 

1.  if  B  €  AC  and  C  e  BD  then  C  e  AD        
[or :    if  P  e  OR  and  R  e  PF  then  R  €  QF   ] 

[For  later  exercises,   we  shall  refrain  from  giving  alternative 
answers  which  are,   like  the  bracketed  one  above,   merely  alphabetic 
variants  of  previously  given  answers.] 

2.  (3  +  5)^  =  3^  +  3  •  3^  •  5  +  3  •  3  •  5^  +  5^ 

[or:    (a  +  2b)^  =  a^  +  3a2(2b)  +  3a(2b)2  +  (2b)^] 

3.  V   V    (u  -  v)2  =  u^  -  3u2v  +  3uv^  -  v^ U      V 

4.  VVVifx  +  y=z  then  x  =  z  -  y 
X    y    z  ' 

Answers  for  Part  B    [on  pages  6-361  and  6-362]. 

[The  two  other  possible  conclusions  for  the  Sample  are  '7  •  8  >  5(6  +  2)' 
and  '7(6  +  2)  >  5(6  +  2)'.] 

1.     8(2  +  1)  >  23  2,     8'3  >  7-3 

3.  (b  +  c)2  -  d^  =  (b  +  c  -  d)(b  +  c  +  d),    [or:    (b  +  c)^  -  d^  =  (a  -  d)(a  +  d), 
or:    ...    There  are  7  possible  answers.] 

4.  The  length  of  AB  =  the  length  of  BA   [There  are  two  other  answers.] 

5.  if  a  >  b  and  b  >  c  then  a  >  c    [There  are  two  other  answers.] 

6.  a  =  a 

The  principle  of  identity,    'A  thing  is  itself.  ',   is  a  logical  principle  which 

justifies  accepting  premisses  such  as  '2  =  2',    'AB  =  AB',   etc.     As  is 
illustrated  in  Exercise  6,   the  use  of  such  premisses  opens  the  way  for 

applications  of  the  substitution  rule  for  equations  which  justify  inter- 

changing the  sides  of  an  equation.      In  other  words,   it  is  a  consequence 
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When  diagramming  a  proof  it  is  helpful  to  indicate  inferences  which 
depend  on  the  substitution  rtile  for  equations  by  placing  the  reference 
to  the  equation  from  which  the  substitution  is  made  on  the  left  and  the 
reference  to  the  sentence  in  which  the  substitution  is  made  on  the  right. 
Thus,   above: 

(6)  (5)  (5)  (6) 
  ,     not:        
(7)  (7) 

Students,   having  seen  that  the  substitution  rule  for  equations  and  the 

principle  of  identity  justify  turning  an  equation  around- -that  is,   that 
symmetry  of  equality  is  a  consequence  of  the  substitution  rule  for 
equations  and  the  principle  of  identity- -may  try  to  use  Exercise  12  as 
an  argument  to  show  that  the  principle  of  identity  follows  from  the 
substitution  rule  and  symmetry  of  equality.     Such  an  argument  may 
proceed  as  follows: 

a  =  b  b  =  a 

b  =  b 

So,  if  you  have  *b  =  a',  then,  since  equality 
is  symmetric,  you  have  *a  =  b'.  And,  from 
these  you  get  'b  =  b*,   by  substitution.     [Q.E.D.] 

The  fallacy  here  is  that,    even  if  you  grant  the  symnaetry  of  equality, 

you  still  need  the  assumption  'b  =  a'  in  order  to  draw  the  conclusion 
'b  =  b'.     What  has  been  shown  is  that  it  follows  from,  the  substitution 
rule  and  the  symmetry  of  equality  that  if  a  thing  is  anything,    it  is  it- 

self,    [if  one  adopts  an  additional  principle  to  the  effect  that  everything 
is  something,   then  one  can  use  the  above  argument  together  with  this 
additional  principle  to  prove  that  everything  is  itself.] 
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7.    3'2  +  7  =  13 8.    a  =  c 

10.    aa  =  aa  +  aO 9.    a  =  5  [or:    5  =  a] 

[One  can  also  obtain  a  correct  conclusion  for  Exercise  10  by  replacing 

any  (at  least  one)  of  the  five  'a's  in  the  second  premiss  by  '(a  +  0)'.] 

11.    b  =  a  [or:    a  =  b,   or:    a  =  a]        12.    b  =  b   [or:    a  =  a] 

13.    ac  =  ac   [or:    be  =  be]  14.    a  +  b  >  0 

15.    c  =  d  [or:    d  =  c]  16.    if  B  e  BC  then  BC  r>  i  =  {A} 
[15  solutions] 

17.    James  lives  in  the  capital  of  California 

18.    M  =  N  [or:    N  =  M] 19.    M  is  the  midpoint  of  AB 

Answers  for  Part  C   [on  pages  6-363  and  6-364]. 
1. 

2. 

apm;   instance  of  (1);   cpm;   instance  of  (3);    substitution  from  (4) 
into  (2);   instance  of  (1);    substitution  of  (6)  into  (5);   instance  of  (3); 
substitution  of  (8)  into  (7);   instance  of  (1);    substitution  of  (10)  into 

(9);   (l)-(ll)  form  a  test-pattern   [Eventually  you  should  accept  less 
explicit  marginal  comments:    basic  principle;   (1);   basic  principle; 
(3);   (2)  and  (4);   (1);   (5)  and  (6);   (3);   (7)  and  (8);   (1);   (9)  and  (10); 
(l)-(ll)] 

(1) 

(10) 

(11) 

(12) 

(9) 

(3) 
(1) 

(1) 

(6) 

(4)           (2) 

(3) (5) 

(8) (7) 

Note  that  (12)  is  a  theorem 
because  it  is  a  consequence 
of  (1)  and  (3),    and  ( 1)  and 
(3)  are  basic  principles. 
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The  Exploration  Exercises  lead  to  the  principle  of  logic  called  modus 

ponens    [or,    sonne times,   the  rule  of  detatchment].      This  is  one  of  the 

two  basic  principles  of  logic  which  deals  with  conditional   [or:    if-then] 

sentences.      The  other  such  rule,    c onditionali zing ,   and  discharging  an 

assumption,   is  discussed  on  page  6-372  et  seq. 

Answers  for  Exploration  Exercises. 

Exercises  1,    2,    3,    6,    8,   and  10  are  valid  inferences.     Exercise  11  is  a 
scheme  which  exhibits  the  form  common  to  each  of  these.     If  copies  of 
any  sentence  are  written  in  the  two  rectangles,   and  copies  of  any  sen- 

tence are  written  in  the  two  ovals,   the  result  will  be  a  valid  inference. 

'1^ 

One  sometimes  hears  it  said  that  "anything  follows  from  a  false  pre- 
naiss"  or  "a  false  statement  implies  anything".      There  is  a  possibility 
that  one  of  your  students  may  have  heard  this  and  may  bring  it  up  in 
connection  with  Exercise  9     to  support  a  claim  that  the  conclusion  of 
this  exercise  does  follow  from  the  premisses.     [If  this  does  not  happen, 
you  will  be  wise  not  to  mention  it.]    If  someone  does,    explain  that  one 
thing  which  leads  people  to  nnake  such  misleading  statements  as  those 
quoted  above  is  the  fact  that  any  sentence  does  follow  from  any  two  pre- 
nnisses,    one  of  which  is  the  denial  of  the  other.     So,   as  you  will  later 

be  in  a  position  to  show  [see  TC[6-386]a],    '2  =  3',    or  any  other  sentence, 
does  follow  logically  from  the  two  premisses  '7  =  8'  and  '7  ̂   8*.     But, 
'2  =  3'  does  not  follow  fronn  '7  =  8'  alone,    or  from  '7  =  8'  together  with 
*if  2  =  3  then  7  =  8'.     Another  thing  which  may  lead  a  person  to  make 
one  of  the  questionable  statements  is  that  it  is  conventional  to  label  'if 
7=8  then  2  =  3'  true  on  the  grounds  that  '7  =  8*  is  false.     However, 
this  convention  has  nothing  to  do  with  the  problenn  of  what  sentences 

follow,   logically,   from  the  premiss  '7  =  8'.     In  fact,   as  we  are  devel- 
oping the  concept  here,   the  notion  of  logical  consequence  depends  in  no 

way  on  notions  of  truth  and  falsity.     When  students  do  the  exercises 
using  modus  ponens  on  pages  6-368  and  6-369,   you  will  probably  have 
to  point  out,    again,   that  the  truth  or  falsity  of  the  premisses  is  entirely 
irrelevant  to  the  problem  of  completing  the  inferences.     Stress  the  fact 
that  deternnining  whether  or  not  a  given  inference  is  an  example  of 
modus  ponens  [or  of  any  logical  principle]  is  a  purely  mechanical  task, 
something  a  machine  could  do. 
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Correction.     On  page  6-367,   line  10  should  read: 

(8)    — a  =  a 
T 

(4.1) 0    =    -a  +  a 

(5) -a  +  a  =   0 

(4.1) 0   =    -a  +  a 

(4.2) 0   =   0 

(5) -a  +  a   =   0 

In  the  proof  on  page  6-366,    step  (1)  is  the  principle  of  opposites,   step 
(3)  is  the  commutative  principle  for  addition,  and  step  (6)  is  the  0-sum 
theorem.  Steps  (2),  (4),  and  (7)  follow  from  (1),  (3),  and  (6),  respec- 

tively,   by  universal  instantiation.     Step  (5)  follows  by  substitution  fronn 
(4)  into  (2).     [(5)  could  also  be  obtained  by  substitution  from  (2)  into  (4), 

yielding  '0  =  -a  +  a',   followed  by  an  application  of  the  principle  of 
symmetry  of  equality.     So,   following  step  (4),   one  might  have: 

[substitution  from  (2)  into  (4)] 

[(4.  1),    by  symmetry  of  equality] 
or: 

[substitution  from  (2)  into  (4)] 

[principle  of  identity] 

[substitution  from  (4.  1)  into  (4.  2)]] 

Step  (8)  follows  from  (5)  and  (7)  by  the  new  rule,   modus  ponens.     This 
rule,   like  the  earlier  ones,   is  acceptable  by  virtue  of  the  logical  terms 

in  question- -in  this  case,   the  sentence  connective  'if  ...   then   '. 
One  who,   for  exannple,   claims  that  bats  are  birds,   and  admits  [perhaps 
on  the  basis  of  a  belief  that  all  birds  lay  eggs]  that  if  bats  are  birds 
then  bats  lay  eggs,   is  stuck  with  the  conclusion  that  bats  lay  eggs. 

Answers  to  questions  near  the  bottomi  of  page  6-367. 

Of  the  Exploration  Exercises  on  page  6-365,   Exercises  1,    2,    3,   6,    8, 
and  10  illustrate  modus  ponens.     For  these,  the  replacements  for  *p' 
and  'q'  in  the  scheme  on  page  6-367  are: 

1.     2=2;    2  +  3  =  2+3  2.    a  =  b;a  +  c=b  +  c 

3.     bats  are  birds;  bats  lay  eggs        6.    A  e  BC;  m(BA)  +  m(AC)  =  m(BC) 

8.     2=3;    2  +  5  =  3  +  5  ,10.    a/b;a>bora<b 

One  can  see  that  Exercise  4  does  not  fit  this  scheme  by  noticing  that  to 

obtain  the  first  premiss,    *p'  must  be  replaced  by  'Ed  lives  in  Iowa', 
while  to  obtain  the  second  premiss,    'p'  must  be  replaced  by  'Ed  lives 
in  Ames'. 
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The  fallacy  of  affirming  the  consequent  is  committed  when  one  judges 
an  inference  like  those  of  Exercises  4,    5,    7,   and  9  on  page  6-365  to 
be  valid.     This  happens  more  often  than  one  might  think.     Arguments 
like  the  following  one: 

if  3x  +  5  =  2  then  x  =  -1;    so,   the  root  of  '3x  +  5  =  2'  is   -1 

are  not  unconnmon.     [Of  course,   all  that  one  is  entitled  to  conclude 

from  'if  3x+  5  =  2  then  x  =   -1'  is  that  the  equation  '3x+  5  =  2'  has 
no  root  other  than  —1.]     Probably,    one's  failure  to  recognize  the 
invalidity  of  such  arguments  is  due,    in  part,    to  prior  knowledge, 
gained  by  inspection  of  the  equation,   that  —1  is,   indeed,   the  root  of 
*3x+  5  =  2'.     And,    in  part,    it  may  be  due  to  confusing  the  argument 
quoted  with  a  more  complex  bit  of  valid  reasoning: 

* 3x  +  5  =  2'  has  a  root,   and  if  3x  +  5  =  2  then  x  =   - 1 ;  so 
the  root  of  '3x  +  5  =  2'  is  -1 

That  the  simpler  argument  is  invalid,  despite  the  correctness  of  its 
conclusion,  is  easily  seen  by  considering  a  parallel  argument  which 
leads  to  a  false  conclusion: 

if  X  +   1  =  X  then  (x  +  1)  x  =  x  ,   x^  +  x  =  x^,   and  x  =  0;  so 
the  root  of  'x  +  1  =  x*  is  0 

Here,   one  can  carry  the  argument  preceding  the  sennicolon  further, 
to  obtain  a  valid  result,   as  follows: 

so,    if  X  +  1  =  X  then  0+1=0,    whence  1=0;  hence,    since 

1  f  0,   *x  +  1  =  x'    has  no  root 

Answers  for  Part  A  [on  pages  6-368  and  6-369]. 

Answers  consist  of  3  parts: 

the  missing  sentence;  the  antecedent  of  if-then  sentence; 
the  consequent  of  if-then  sentence 

1.     c  =  d;  a  =  b;  c  =  d 
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2.  A  e  BC;  A  €  BC;  A  e  BC  [For  this  exercise.^ome  student  may 

supply  *if  [if  A  €  BC  then  A  €  BC]  then  A  €  BC'  as  the  missing 
sentence.     This  is  a  correct  answer.     However,    in  writing 
illustrations  of  modus  ponens,    we  shall  customarily  follow  the 

form  displayed  in  the  box  on  page  6-367.  ] 

3.  if  a  +  b  =  0  then  b  =   -a;  a  +  b  =  0;  b  =  -a 

4.  ab  =  c;  ab  =  c;  b  =  c  -r  a 

5.  if  a  -  b  f^  0  then  a7^b;a-b/0;a/b 

6.  A  €  m;  A  €  i;  A  em 

7.  if  A  /  i  then  A  ̂   m;  A  /  i;  A  ̂ m 

8.  if  je|  |m  then  i  ̂   m  =  (^;je|  |m;  i  r>>  m  =  0 
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r 9.     Bill  lives  in  Texas;  Bill  lives  in  Dallas;  Bill  lives  in  Texas 

10.  if  Bill  lives  in  Texas  then  Bill  lives  in  Dallas;  Bill  lives  in  Texas; 
Bill  lives  in  Dallas 

11.  if  Bill  does  not  live  in  Texas  then  Bill  does  not  live  in  Dallas;  Bill 
does  not  live  in  Texas;  Bill  does  not  live  in  Dallas 

Answers  for  Part  B. 

1.  a  =  b  a  /  c  [substitution] 

^-j^O        ''^^i^ciu^ /^^         [modus  ponens] 
b/  d 

[Notice  that  our  convention  concerning  the  writing  of  substitution 
inferences  precludes  the  possibility  that  the  second  of  the  two  infer- 

ences be  of  this  kind.     For,    its  first  premiss  is  clearly     'b  /  c', 
and  this  is  not  an  equation.  ] 

2.  a  =  b     ̂ X^CjU 
   [substitution] 

  [substitution] 
a  =  c 

[In  place  of  "cc^oJ ,    one  might  have  '/-^',   or  'i^<x-'^^>^  O-'-C^*, 
In  place  of  '^:jC'  one  might  have  ''^^■6- cCX.-di£M  O^-^C^ '     With  either of  these  last  alternatives,    the  inference  whose  premiss  is  involved 
would  be  an  example  of  modus  ponens.] 

2\\r^    if  i   I  I   m  then  m   |  |   i     ̂ ^^^^^  p^^^^^-j i  =  n  m 
[substitution] 

4.  _        ̂--^    if^6rCthenl^^i=(A}     [^.^stitution] 

BC   ̂   ̂   =   {A} 

[In  place  oi"A-C\   one  might  have  *  C-  /^  '•] 
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Answers  for  Part  C. 

1.  No.     Mr.  Jones  has  connmitted  the  fallacy  of  affirming  the  conse- 
quent,    [incidentally,   even  though  his  reasoning  is  invalid,   his 

conclusion  might  be  true.] 

2.  Steve's  reasoning  is  not  correct.     Still,   he  did  carry  out  the  teacher's 
instructions.     Notice  that,   in  his  reasoning,   Steve  committed  the 
fallacy  of  affirming  the  consequent,   but  that  he  can  defend  his  answer 
by  a  use  of  modus  ponens : 

ZA  and  ZB  are             if  ZA  and  ZB  are  two  right  angles  then  ZA  and 
two  right  angles         ZB  have  the  same  number  of  degrees   

ZA  andZB  have  the  same  number  of  degrees 

He  would  use  universal  instantiation  to  infer  the  second  premiss  of 
this  inference  from  his  theorem: 

if  two  angles  are  right  angles  then  they 
have  the  same  number  of  degrees 

"I" 

(3 

(4; 

(5 

(6 

(7 

(8 

(9 

(10 

V    X  +  0  =  X 
X 

a  +  0  =  a 

Answers  for  Part  D  [on  pages  6-370  and  6-371]. 

1.    (1 

(2 

if  a  +  0  =  a  then  (a  +  0)a  =  aa 

(a  +  0)a  =  aa 

[  (0  \ 

[theorem] 

[(3)] 

(a  +  0)a  =  aa  +  Oa 

aa  +  Oa  =  aa 

aa  +  0  =  aa 

[by  modus  ponens  from 
(2)  and  (4)] 

[basic  principle] 

[   (£i__] 

[  {5)c>>n^(7)       ] 

[(1)] 

[(8)  and  (9)] 
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(11)    Vart/yb'j  C^X.-h\^^X-hZ  M^!/'-^ 
[theorem] 

2. 

(12)  i/a^4-Oci^=aa.-i-o 

(13)  Oa  =  0 

-deAiOa.-. 

1^
 

[(11)] 

-^yyJKjZ-)        ] 

(14)    t/x  (/y  ̂!r  =-  !f^ _ [basic  principle] 

(15)  aO  =  Oa 

(16)  aO  =  0 

[(14)] 

[  r/3) 

a^t^  (/s]  1 

(17)  V^xO  =  0 

(1) 

[(1)-(16)] 

(3) 

(6) 

(7) 

(2) (4) 

(1) (5) 

(11) 

(12) 

(9) (8) 

(10) (14) 

(13) (15) 

(16) 

(17) 

Answers  for  Part  E   [on  page  6-371], 

!•     ̂ x\r^z  ̂ ^^  ~  "^  th.&xi  xy  =  xz   [or:    the  left  uniqueness  principle  for 
multiplication] 

2.     The  left  uniqueness  principle  for  multiplication,   and  the  principle 
for  multiplying  by  0. 

Part  E  is  exploration  for  a  new  principle  of  logic --conditionalizing, 
and  discharging  an  assumption. 
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Just  as  the  rule  of  universal  instantiation  justifies  the  basic  procedure 
for  inferring  conclusions  from  universal  generalization  sentences,    so 
nnodus  ponens  justifies  the  basic  procedure  for  inferring  conclusions 
from  premisses,   one  of  which  is  a  conditional  sentence.     Now,   the 
test-pattern  principle  complements  universal  instantiation  by  justifying 
the  basic  procedure  for  arriving  at  conclusions  which  are  universal 
generalization  sentences.      What  is  still  needed  is  a  principle  of  logic 
which  similarly  complements  nnodus  ponens.      How  do  we  infer  conclu- 

sions which  are  conditional  sentences?     The  means  is  well-known  and 
has  been  illustrated  in  Part  E  on  page  6-371.      One  adopts  the  antecedent 
of  the  desired  conditional  conclusion  as  an  additional  premiss,    often 
calling  it  an  assunnption,   or  a  supposition.      Then,    one  attennpts  to 
derive  the  consequent  of  the  desired  conclusion  from  this  and  other 
premisses.      If  this  can  be  done,   the  conditional  sentence  whose  ante- 

cedent is  the  assumption  is  said  to  follow  from  just  these  other  pre- 

misses.     For  exannple,   if,   from  an  assumption  'it  will  rain  this  after- 
noon' and  other  premisses,   one  can  infer  the  conclusion  'the  grass  will 

need  to  be  cut',   then  the  other  premisses,    alone,   imply  the  conclusion 
'if  it  will  rain  this  afternoon  then  the  grass  will  need  to  be  cut'.     One 
keeps  the  chain  of  reasoning  going  by  inferring  the  conditional  sentence; 

(1)    if  it  will  rain  this  afternoon  then  the  grass  will  need  to  be  cut 

from  its  previously  derived  consequent: 

the  grass  will  need  to  be  cut 

[this  is  called  conditionalizing],   and  then  discharges  the  assunnption  'it 
will  rain  this  afternoon'  which  is  the  antecedent  of  (1). 

In  the  test-pattern  on  page  6-372,   the  two  premisses  are  the  assumption 
'a  =  b',   and  the  principle  of  identity.     From  these,    by  universal  instan- 

tiation   [to  obtain  'a  +  c  =  a  +  c']    and  substitution,    one  derives  'a  +  c  = 
b  +  c'.      Conditionalizing,   one  can  infer  from  'a  +  c  =  b  +  c*,   the  condi- 

tional sentence  'if  a  =  b  then  a  +  c  =  b  +  c'.     Since  the  assumption  is  the 
antecedent  of  this  conditional  sentence,   one  can  discharge  the  assump- 

tion.    That  is,    one  recognizes  that  although  'a  +  c  =  b  +  c'  depends  on 
both  'a  =  b'  and  the  principle  of  identity,   the  conditional  sentence  de- 

pends only  on  the  latter. 

The  sanne  kind  of  situation  occurs  in  Part  E  on  page  6-371.  Here, 
'ab  =  0'  is  derived  from  'b  =  0'  and  'Vx  xO  =  0'.  From  'ab  =  0'  one 
can  infer  the  weaker  conditional  conclusion  'if  b  =  0  then  ab  =  0'. 
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Having  done  so,  the  assumption  'b  =  0'  can  be  discharged.      So,   the 
conditional  sentence  is  a  consequence  of  the  pmO.      The  proof  is  simple 
enough  to  use  as  an  illustration  of  a  tree-form  proof: 

Vj^  xO  =  0 b  =  0 
aO  = 

0 

ab  =  0 ^ 

if  b  = 0  then  ab 

=  0 

— — 

V   V    if  y  =  0  then  xy  =  0 
X    y       '  ' 

[universal  instantiation] 

[substitution] 

[conditionalizing,    and  discharging] 

[test-pattern  principle] 

Now,   notice  how  we  can  use  the  principle  of  identity  and  modus  ponens 
to  derive  the  pmO  fronn  the  theorem  we  have  just  proved. 

[universal  instantiation] 

[modus  ponens] 

[test-pattern  principle] 

Since  the  principle  of  identity  is  a  principle  of  logic,   we  are  free  to  use 
it  as  a  premiss  and,   then,   to  forget  about  it.     You  can  think  of  it  as 
having  been  discharged  as  soon  as  it  is  used.      So,   the  only  undis  - 

charged  premiss  in  the  above  derivation  is  'VxVy  if  y  =  0  then  xy  =  0*, and  the  derivation  shows  that  this  premiss  implies  the  pmO. 

V    x  = X 
X V   V    if  y  =  0  then  xy  =  0 

X    y        '                         ' 

0  =  0 if  0  =  0  then  aO  =  0 

aO  =  0 

V  xO  =  0 X 

..1^ 

Answers  for  Part  A  [on  page  6-374]. 

1.  Al*s  reasoning  is  valid.     His  premisses  are: 
the  Queen  of  England  lives  in  Chicago;    anyone  who  lives  in 
Chicago  lives  in  Illinois;    anyone  who  lives  in  Illinois  lives 
in  the  United  States 

2.  if  the  Queen  of  England  lives  in  Chicago  then  the  Queen  of  England 
lives  in  the  United  States 
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Correction.     On  page  6-375,   the  first  two  lines 

[Exercises  1  and  2]  should  follow  the  last  line 

of  the  proof. 

Answers  for  Part  B   [which  starts  on  page  6-374], 

1.     [basic  principle];    [(2)];    [(l)and(3)];    [basic  principle];    [(5)]; 

[(4)  and  (6)];   [theorem];   [(8)];   [(7)  and  (9)]:    [conditionalizing  (10); 

discharge  (1)];    [(l)-(ll)] 

2. 
(2) 

(5) (1) 

(6) (4) (8) 

(7) (9) 

(10) 

(Jl) 
(12) 

Answers  for  Part  C. 

1.    (1)  ^-  X 

(2) yxx  ̂ X 
(3) 

(4) 

a  =  a 

(5) if   a,'£-  Z5^rt  ̂ '^i^ 

(6) Y.v  if  x=y25dHy-X 

2. 

[assumption] 

[logical  principle] 

[        (/;   a.^^  O) 

J 

J 

[       {0-(s)   1 

* 
(2) 

(1) (3) 
(4) 

(5) 
* 

(6) 
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Answers  for  Part  *D. 

Theorem:    V   V    if  x  =  y  then  x^  =  y^ 
       X    y  '  ' 

Proof: 

(1)  a  =  b  [assumption] 

(2)  V   X  =  X  [logical  principle] 

(3)  a^=  a^  [(2)] 

(4)  a2=  b^  [(l)and(3)} 

(5)  if  a  =  b  then  a^  =  b^  [conditionalizing  (4);  discharge  (1)] 

(6)  V^Vy  if  X  =  y  then  x^  =  y^  [(l)-(5)] 'I" 

Answers  for  Part  E  [on  pages  6-376  and  6-377]. 

1.  if  a  =  2  then  2^ +3*2  -6=0 

2.  if  c  =  d  then  b  /  d 

3.  if  a#  c  then  b  ̂  d 

Exercises  2  and  3  make  the  important  point  that  one  can  often  condition' 
alize  in  different  ways,   and,   so,   discharge  different  premisses.     The 
answer  to  the  questions  concerning  how  you  know  which  you  should  do 
must  be  answered  in  the  same  way  as  are  similar  questions  relating  to 
factoring:    In  context,   one  knows  what  conclusion  he  wants,  and,   if 
possible,   conditionalizes  in  such  a  way  as  to  obtain  it.     It  may  help  to 
call  to  students'  attention  the  fact  that  both  Exercise  2  and  Exercise  3 
can  be  extended  by  two  more  conditionalizing  steps,   resulting  in  the 
discharge  of  all  three  premisses.     For  example: 

a  =  b   a  /  c 

c  =  d  b/ c 

  b/d  A 

if  a  ?^  c  then  b  9^  d   

—    t 

if  a  =  b  then  [if  a  ̂  c  then  b  /  d] 
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* 

4.     <5l    =      .o-  ac  = i£- 

au^  -  £- 
iiCL'  £r-     then  ac  =  be 

5.      Ed  lives  in  if  Ed  lives  in  Miami 
Miami   then  Ed  lives  in  Florida 

^^^^-j'-e^  .-^U^  if  Ed  lives  in  Florida 
'^.^^^^rz^^^J^'^^   then  Ed  lives  in  the  U.S. 

^jZ  ̂ ^^^  .^^  ̂   ̂ .  5, 

o.       p           if  p  then  q  7.     a  =  b      if  a  =  b  then  c  =  d 

"^   if  q  then  r  X^-    -  -^   a   ^   _       ;j5 

* 

/^^  Z^{^    /t 

Exercise  6  shows  how  modus  ponens,   and  conditionalizing,   and  dis- 
charging an  assumption  can  be  used  to  justify  an  important  logical 

principle --the  hypothetical  syllogisnn.     Schenmatically: 

if  p  then  q  if  q  then  r 

if  p  then  r 

Exercise  7  points  out  that  using,   first,   modus  ponens  and  then, 
second,    conditionalizing,   and  discharging  a  premiss,   leads  you  back 
to  the  conditional  premiss  you  started  from. 

'I* 

The  statennent,    on  page  6-373,    of  the  rule  for  discharging  an  assump- 
tion is  over-simplified.     For  completeness,   we  shall  point  out  here  how 

the  use  of  the  r\ile,    as  it  is  stated  in  the  fifth,    sixth,   and  seventh  lines 
above  the  box  on  page  6-373,    can  lead  to  incorrect  conclusions,    and  how 
the  statement  of  the  rvile  can  be  modified  to  avoid  this.     However,    unless 
your  students  have  a  very  good  grasp  of  the  subject  matter  of  this 
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appendix,   it  will  probably  be  best  to  let  the  rule  stand  as  it  is  on  page 
6-373. 

Consider  the  following  argument  in  tree -form: 

Vj^  X  •  0  =  0 b *  0                      1 -O  =  0 

l.b=  0 

V    1-y =  0 y 

if  b  =  0  then  V     1  •  y  =  0 

V      X=    X X V    if  X  =  0  then  V     1  •  y  =  0 
X                                 y        ' 

0=0 if  0  =  0  then  V     1  •  y  =  0 y 

V     1 -y =  0 y 

Since  the  premisses  [the  pmO  and  the  principle  of  identity]  are  accept- 
able and  the  conclusion  is  not,    something  is  wrong  with  the  argument. 

And,    it  is  not  difficult  to  see  what  is  wrong:    The  first  three  lines  form 

a  test-pattern  for  the  fourth  line  ['V     1  •  y  =  0'],     However,    the  assump- 

tion *b  =  0*  is  not  discharged  in  this  test-pattern  but  is  discharged  after 
the  test-pattern  has  been  invoked  in  obtaining  the  fourth  line.     Now, 
once  the  test-pattern  principle  has  been  applied,   the  test-pattern  nnust 
be  held  inviolate;  for,    if  it  is  changed,    it  is  no  longer  a  test-pattern 
for  the  same  generalization.     The  error  in  the  above  argument  con- 

sists in  discharging  the  assumption  'b  =  0'  after  it  has  been  "blocked 
off"  by  an  application  of  the  test-pattern  principle.     [Alternatively, 
one  might  claim  that  the  error  is  due  to  applying  the  test-pattern  prin- 

ciple before  discharging  the  premiss  *b  =  0'  which  contains  the  pattern- 
variable  *b'.  ] 

So,   the  rule  for  discharging  an  assumption  must  not  be  applied  in  a  case 
where  the  assunnption  to  be  discharged  contains  the  pattern-variable  of 
a  test-pattern  which  has  already  been  blocked  off  by  an  application  of 
the  test-pattern  principle. 

In  practice,   one  is  not  likely  to  violate  this  restriction.     If  one  makes 
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an  assumption  in  order  to  obtain  a  test-pattern  for  a  generalization,   he 
will  ordinarily  be  careful  to  see  that  this  assumption  is  discharged,   be- 

fore stating  the  generalization  as  his  conclusion.     For  this  reason,    it 
has  seemed  better  to  omit  discussion  of  this  somewhat  complicated 
restriction  in  the  students'  text. '1^ 

The  rules  discussed  so  far  have  been  the  basic  rules  for  dealing  with 
universal  generalizations,   equations,   and  conditionals.     Now,    we  need 
to  consider  rules  which  are  concerned  principally  with  denial  sentences. 
In  English,    one  forms  a  denial  of  a  given  sentence,   for  example,    of 

'Bill  lives  in  Honolulu'   by  introducing  the  word  'not*,   and  making  vari- 
ous other  changes  dictated  by  rules  of  grammar.     One  denial  of  'Bill 

lives  in  Honolulu'  is  'Bill  does  not  live  in  Honolulu';  another  is  'It  is 
not  the  case  that  Bill  lives  in  Honolulu.  '.     The  grammatical  vagaries 
of  English  being  of  no  present  concern  to  us,    we  shall  sometimes  form 

a  denial  of  a  sentence  by  merely  prefixing  the  word  'not'.     Thus:    not 
Bill  lives  in  Honolulu.     And,    we  shall  call  the  sentence  so  obtained  the 

denial  of  the  given  sentence.     So,   the  denial  of  '3  =  4'  is  'not  3=4'  and, 
of  course,   this  is  often  abbreviated  to  '3  /  4'. 

It  is  possible,   and  aesthetically  pleasing,   to  base  the  discussion  of 
denial  sentences  on  a  single  basic  principle  of  logic,    the  reverse  rule 
of  contraposition,   given  on  page  6-386,    or  an  equivalent  rule.     How- 

ever,  for  a  beginner,    it  is  simpler  to  start  with  three  basic  rules: 

modus  tollens  [page  6-377]  and  the  two  rules  of  double  denial  [page 
6-383].     On  the  basis  of  these  three  rules,    together  with  the  two  basic 
rules  for  conditional  sentences,    one  can  readily  justify  various  fornns 
of  contraposition,   and  procedures  for  indirect  proof. 

Just  as  modus  ponens  has  associated  with  it  a  fallacious  kind  of  reason- 

ing [affirming  the  consequent],    so  there  is  a  fallacy,   [denying  the  ante- 

cedent],  which  is  sometimes  confused  with  modus  tollens.     [An  example 

of  this  fallacy  can  be  obtained  from  Exercise  4  of  Part  A  on  page  6-378 

by  supplying  the  conclusion  'A  ̂   EC]     This  fallacy  is  pointed  out  on 

page  6-379.     As  indicated  on  page  6-387,   both  of  these  fallacies  arise 
from  confusion  of  a  conditional  sentence  with  its  converse. 
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Answers  for  Part  A. 

Exercises   1,    2,    3,    6,   and  8  can  be  completed  to  give  illustrations  of 
modus  toUens.     Here  are  the  missing  sentences: 

I.     a  /^  b  2.     -a  ̂   -b 

6.     Tom  does  not  live  in  Atlanta 

3.     A  /  BC 

8.     it  is  not  raining 

[Exercise  4,    as  noted  on  TC[6-376,  377]c,    can  be  completed  to  yield  an 

illustration  of  the  fallacy  of  denying  the  antecedent.      Exercise  5  can  be 

completed,    by  supplying  the  conclusion  *A  e  BC,    to  an  illustration  of 

modus  ponens.      Exercise  7  is  similar  to  Exercise  4,] 

Answers  for  Part  B    [on  page  6-379]. 

[l.     a=2  a'-  3a  -6  =  0 

2^  -   3  ♦  2  -  6  =  0  ̂ 

^a.-2i^L.Z'-'J-Z-(^  -O  2^-3-2-6/0 
<:\. 

f^ 2.     if  a  =  0  then  ab  =  0 tb  /  0 

<^^   /    O 
if  a  /  0  then  a'  >  0 

gy-  >  O 

^a4-  ̂ o^4j^a^yo 

[3.     if  A  €  BC  then  A  6  BC  A  ̂   BC 

[Exercise  3  illustrates  how  modus  tollens  and  conditionalizing,   and 
discharging  an  assumption  can  be  used  to  justify  inferring  the  con- 
trapositive  [see  page  6-381]  of  a  given  conditional  sentence  from  the 
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given  sentence.     Exercise  4  leads  students  to  construct  a  scheme 
for  this  procedure,   thus  showing  that  it  can  always  be  carried  out.] 

* 
4.     if  p  then  q   not  q 

Another  typical  application  of  modus  toUens  occurs  in  the  argument  by 

which  one  infers,   from  two  premisses,    'A  e  i'  and  *A  /  m',   the  conclu- 

sion 'i  -f-  m'.      You  might  try  writing  the  given  premisses  near  the  top 
of  the  board,   and  ask  students  what  conclusion  they  can  draw  concerning 

i.  and  m.     Having  obtained  some  such  response  as  ̂ i-f^  m'  or,    even, 

'they're  different',   write  'i  ;^  m'   near  the  bottom  of  the  board,    and  ask 
for  suggestions  on  how  to  obtain  this  conclusion  from  the  given  premisses. 

Someone  [perhaps  you]  should  eventually  suggest  that  if  you  had  'if  i  =  m 

then  A  €  m',    you  could  use  modus  toUens  to  get  the  desired  conclusion 

from  this  and  the  premiss  'A  ̂   m'.      Start  filling  in  the  derivation  so 
that  the  board  looks  like  this : 

A  e  i,   A  /  m 

if  i  =  m  then  A  e  m   A  //  m 

i/  m 

Now,   how  to  get  this  conditional  sentence?    How  else  than  by  condition- 

alizing?    So,   we  need  to  get  *A  e  m'  from  somewhere,    and  we  can  use 
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*i  =  m'  as  an  assumption  which  will  be  discharged  when  we  conditionalize. 
The  board  should  now  look  like  this : 

A  €  i,    A  ̂   m,  i  =  m  <e- [assumption] 

A  e  m 

if  i  =  m  then  A  e  m 

i!^ 
m 

A^ 

m 

Now,  how  can  we  use  the  assumption  to  get  'A  €  m' ?  Well,  we  haven't 

yet  used  the  given  premiss  'A  e  i'.  From  the  assumption  and  this  pre- 

miss we  can  infer  'A  €  m* . 

i  =  m A  e  i 

A  €  m 

if  i  =  m  then  A  £  m 

A^ 

m 

ij^ m 

As  a  variant  of  this  problem,    students  can  now  discover  how  to  infer 

•A  /^  B'  from   *A  e  i'  and  'B  ̂   i'. 

A  =  B A  6  i 

B  €  i 

if  A  =  B  then  B  e  i B  /  i 

A/  B 

Through  such  exercises,   students  can  begin  to  get  an  understanding  of 

"indirect  proofs". 
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Answers  for  Part  C. 

[Note  the  use  of  '*'s  in  the  column  of  conriments  to  indicate  [step  (5)] 
where  an  assumption  is  discharged,   and  [step  (1)]  that  it  has  been 
discharged.     In  writing  proofs,    students  should  not  star  assumptions 
(hopefully)  until  they  have  arrived  at  the  step  at  which  they  actually 
are  discharged.] 

1. (2) jjc 

(3) (1) 

(4) 
* 

(5) 

(6) 

2.  (a)    universal  instantiation         (b)    modus  toUens 

(c)  conditionalizing  (d)    test-pattern  principle 

3.  (a)    (1)  and  (2)  (b)    (2)  (c)    (2) 

(d)  Because  it  is  a  consequence  of  the  theorem  (2). 

4.  li,  in  the  answer  for  Exercise  1,  one  blocks  out  *(2)'  and  '{6)', 
and  takes  account  of  the  forms  of  sentences  (3),  (1),  (4),  and  (5), 

he  should  see  that  this  part  of  the  proof  illustrates  the  scheme 

developed  in  Exercise  4  of  Part  B.  As  pointed  out  on  page  6-381, 

steps  (1)  and  (4)  of  the  proof  could  be  omitted,  and  step  (5)  in- 

ferred from  (3)  by  virtue  of  the  rule  of  contraposition  which  is 

justified  by  the  schenne  of  Exercise  4  of  Part  B. 
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We  can  justify  this  new  rule  schematically  by: 
* 
P 

if  p  then  q 

if  not  q  then  not  p 

This  scheme  shows  how,   in  a  proof,   the  effect  of  using  the  new  rule  can 
be  obtained  by,   first,    conditionalizing,   and  discharging  an  assumption, 
and,   then,   using  the  rule  of  contraposition. 

On  the  other  hand,    if  we  take  the  new  rule  as  basic,   we  can  justify  the 
rule  of  contraposition  as  follows,    using,   first,   modus  ponens  and,  then, 
the  new  rule : 

* 
P if  p  then  q 

if  not  q  then  not  p 

Summarizing,   the  three  rules  expressed  schematically  by: 

if  p  then  q 

[p] 

q if  p  then  q         not  q 

not  p  if  not  q  then  not  p  if  not  q  then  not  p 

are  equivalent,   in  the  sense  that  each  of  them  can  be  used,  together  with 
our  two  basic  rules  for  conditional  sentences,   to  justify  any  inference 
which  can  be  justified  by  using  either  of  the  other. 
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When  'p'  and  *q'  are  replaced  in  'if  p  then  q'  and  in  'if  not  q  then  not  p' 
by  sentences,  then  the  second  of  the  resulting  sentences  is  the  contra- 
positive  of  the  first.     Note  that  the  first  is  not  the  contrapositive  of  the 
second--contrapositing  is  a  one-way  street.      The  contrapositive  of  the 

second  sentence  is  obtained  by  making  the  same  replacements  for  'p' 
and  'q'  in  'if  not  not  p  then  not  not  q'.      The  third  sentence  so  obtained 
can  be  shown,   by  using  the  rules  of  double  denial  [see  page  6-383],  to 
be  equivalent  to  the  first  sentence- -each  of  the  two  sentences  is  a  con- 

sequence of  the  other --but,   they  are  different  sentences. 

The  rule  of  contraposition,   which  says  that  each  conditional  sentence 
implies  its  contrapositive,   was  justified,    on  the  basis  of  modus  tollens, 
and  conditionalizing,   and  discharging  an  assumption,   in  Exercise  4  of 
Part  B  on  page  6-379.     This  justification  is  given  again  on  page  6-381. 
The  reverse  rule  of  contraposition,   which  says  that  each  conditional 
sentence  is  implied  by  its  contrapositive,   will  be  justified  in  Exercise  3 
of  Part  B  on  page  6-386.     As  hinted  at  in  the  preceding  paragraph,  the 
justification  of  this  rule  makes  use  of  the  rules  of  double  denial. 

We  have  chosen  to  take  modus  tollens  as  one  of  our  basic  rules,   and 
have  justified  the  rule  of  contraposition  by  applying  modus  tollens,   and 
conditionalizing,   and  discharging  an  assumption.      Note  that  we  could 
as  easily  have  taken  the  rule  of  contraposition  as  basic,   and  used  it 
and  modus  ponens  to  justify  modus  tollens: 

if  p  then  q  r        .  •..•      i   *-      [contraposition] 
not  q            if  not  q  then  not  p     r       j  i   2   *-    [modus  ponens] 

not  p 

Another  alternative  to  choosing  modus  tollens  as  a  basic  rule  is  to  take 
as  basic  a  rule  which  combines  conditionalizing,   and  discharging  an 

assumption,   with  the  rule  of  contraposition.      Using  '[p]'   as  on  page 
6-373,   this  rule  can  be  expressed  schematically  by: 

[p] 

.   q   

if  not  q  then  not  p 

For  example,  using  this  rule,    we  can  infer  step  (6)  of  the  column  proof 
on  page  6-382  directly  from  (4),   and  in  doing  so,   discharge  (1).     So, 
step  (5)  could  be  omitted,   and  the  comment  for  (6)  be  replaced  by  that 
for  (5). 
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The  five-step  argument  on  page  6-383  illustrates  the  scheme: 

* 

  3      [double  denial] 

if  p  then  not  q   "Ot  not  q    ̂ ^^^^^  tollens] 

  S2__E   ,jj  [conditionalizing  and  discharging] 
if  q  then  not  p 

This  justifies  the  symmetric  rule  of  contraposition  given  on  page  6-384. 

[This  rule  is  called  'symmetric'  because  it  is  its  own  reverse --two 
successive  applications  of  it  bring  one  back  to  where  he  started.] 

•J, 

Answers  for  Part  A  [on  page  6-384]. 

1 .     if  A  ̂   BC  then  A  /  BC  2.     if  A  ̂   BC  then  A  j^  BC 

3.     if  a^  /^  4  then  a  ;^  2  4.     a  /  3  if  a^  /^  9 

5.     a  /  3  only  if  a^  9 

^i^ 

'r 

Exercises  4  and  5  of  Part  A  are  preparation  for  biconditional  sentences. 

[See  page  6-390.]    That  'a^  =  9  if  a  =  3'  is  another  way  of  saying  'if  a  =  3 

then  a}  -  9'  should  not  be  hard  to  see.     The  corresponding  fact  about 

Exercise  5  can  be  brought  out  by  noting  that  'a^  =  9  only  if  a  =  3'  says 

the  same  thing  as  does  'if  a  /  3  then  a^  ̂   9'.     But  this  last,   is  the  con- 

trapositive  of  'if  a^  =  9  then  a  =  3',   and  a  sentence  and  its  contrapositive 
do  say  the  same  thing. 
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Answers  for  Part  B   [on  pages  6-384  and  6-385]. 

''    <^)  _  ^  =  ̂         [d.d.] 
if  A  e  BC  then  B  /^  C                  not  (B  ;^  C)    r       ̂    ,   _   _i_    [m.t.J 

-J£~^   =^,  [c.d.] 

^"^^    9      [d.d.] 
if  p  then  not  q   not  not  q     r  -i —    — -  [m.t.j 

— -^^y^^ — *    [c.d.] 

2.    (a)    if  A  /  B  then  B  €  AB   B  ̂   AB     r  , 

^r^^i'^  [r.d.d.] 

  ^  ̂ ^   «  [c   d  ] 

* 

(b)    if  not  p  then  q   not  q     r  -i 

^'>^'^  [r.d.d.] 

lJ*^        [c.d.] 
S^^-ytc^a^tijZ^  fl 
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3-   <*)  _  _  :^il^      [d.d.l 
if  A^  BC  then  Af^  BC  /ft^/^4 6C       r       ̂   i 

not  (A  <  BC)  j^'^*^3 -^1^  .=^*  [c.d.] 

<*»>    E —   [d.d.] 
if  not  q  then  not  p      /ytfff/t-m   j^        rm  t  1 

22L!i2La  [r.d.d.] 

^fid^(^ 

[c.d.] 

4.    (a)    if  A  £  BC  then  AeBC               Afi'BCr^.i   _   c      im.t.J 

* 

^^'J    if  p  then  q  not  q      ̂ ^  ̂   j 

.      ̂ f   --*        [c.d.] 

Exercises  1(b)  cmd  2(b)  justify  two  symmetric  rules  of  contraposition; 
Exercise  3(b)  justifies  the  reverse  rule  of  contraposition;   Exercise  4(b) 
is  the  by  now  familiar  justification  of  the  rule  of  contraposition. 
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Correction.     On  page  6-386,   at  the  bottom  of 

the  page,   each  of  the  lines  beginning  'is  an 
instance  of  should  be  moved  down  to  line  up 

with  the  boxes. 

'     Fill-ins  for  bottom  of  page  6-386. 

if  w  /  t  then  r  /^  s;    if  w  =  t  then  r  =  s. 

^ 

Proofs  by  contradiction.  --By  conditionalizing,    and  using  modus  tollens, 
one  can  show  that  from  a  sentence  and  its  denial  one  can  infer  the 
denial  of  any  sentence: 

if  p  then  q 

not  q 
not  p 

By  replacing  'p',   in  the  scheme  above,    by  'not  p',   and  then  using  the reverse  rule  of  double  denial: 

_a_ 
if  not  p  then  q not 

not  not  p 

P 

one  sees  that,    as  already  noted  in  TC[6-365],   any  sentence  follows 
from  any  two  sentences  one  of  which  is  the  denial  of  the  other. 

Schematically : 

not 

This  rule  of  contradiction  is  at  the  root  of  proofs  by  contradiction. 
Such  proofs,   in  which  one  establishes  a  conclusion  by  showing  that  its 
denial  leads  to  a  contradiction,   are,    schemiatically,    of  this  form: 

* \no^p/ * \not_£/ 

not 
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I 
That  is,   if,   using  the  denial  of  the  desired  conclusion  as  an  assumption, 
one  can  derive  some  sentence  and  can,   also,    derive  its  denial,   then  one 
can  infer  the  desired  conclusion  and  discharge  the  assumption.     Here, 
one  infers  the  desired  conclusion  by  use  of  this  rule  of  contradiction, 
which  we  have  just  now  justified.     But,   it  remains  to  be  shown  that,   on 
using  the  rule  of  contradiction,   one  is  entitled  to  discharge  an  assum.p- 
tion  which  is  the  denial  of  the  conclusion  of  the  inference. 

Now,   we  do  know  that  we  are  entitled  to  discharge  an  assumption  after 
conditionalizing.     So,   we  might  proceed  as  indicated  below: 

*  « 
\not  p/  \not  p/ 

  —     [rule  of  contradiction] 
^   *       [c.d.] 

if  not  p  then  p 

Then,   we  will  have  justified  proof  by  contradiction  once  we  have  shown 
that: 

if  not  p  then  p 

P 

is  a  valid  schemie  of  inference.     This  we  now  proceed  to  do. 
* 

not  p         if  not  p  then  p  r  i 
  ^      «                      [m.p.J 

p                                 not  p  r        r       T   —  [r.  of  C.J 
not  [if  not  p  then  p]   *[c.d.l 

if  not  p  then  not  [if  not  p  then  pi     r  ^  i   *-   *   1-   s-*-    [rev.  contrap.  J 
if  not  p  then  p  if  [if  not  p  then  p]  then  p  r  ■. 

P 
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Correction.     On  page  6-390,   line  5  should  begin: 

V  V   V    if  X  +  z  =  --- 
X    y    z^-^ t 

Answers  for  Part  A  [on  pages  6-388  and  6-389] 

1.     if  A /^  BC  then  A  ̂   BC 

if  A  e   BC  then  A  e  BC 

2.     if  A  ̂   BC  then  A  ̂   BC 

if  A  e  BC  then  A  e  BC 

^ 

3.  if  AB  /  0  then  A  ;^  B 

if  AB  =  0  then  A  =  B 

4.  a  ;^  c  if  ac  /  be    [or :    ac  ;^  be  only  if  a  /^  c] 

a  =  e  if  ae  =  be    [or :    ac  =  be  only  if  a  =  c] 

5.  a.  j^  c  only  if  ae  ̂   be    [or:    ae  /  be  if  a  ;^  c] 

a  =  e  only  if  ae  =  be    [or :    ac  =  be  if  a  =  c] 

6.     ̂ x  ̂Y  ̂ 7  ̂^  ■^'    ̂ '    ̂ ^^  ̂   ̂ ^^  ̂ °*  collinear  then  Z  /  XY 
<-^ 

V„  Vy  V„  if  X,    Y,    and  Z  are  collinear  then  Z  €  XY 

7.  V   V    if  -X  ?^  y  then  x  +  y  ;^  0 
X    y  '    -^  ^  ' 

V  V    if  —X  =  y  then  x  +  y  =  0 
X    y  '  •' 

8.  V    V    /  _  V    V    /  .    if  XV  /  uy  then  —  j^  — 
xy;cOuv;cO  '       '  y'v 

V  V    /-,    V   V    /„   ifxv  =  uy  then  —  =  — 
X    Y  p OuvfO  '  yv 

9.     Vj^  Vy  if  X  ;^  Y  then  {Z:    Y  e  XZ}  ;^  0 

Vy  Vy  if  X  =  Y  then  {Z:    Y  c  XZ}  =  0 •J, "X  'Y 

Answers  for  Part  B    [on  page  6-389]. 

denying  the  antecedent:     1  inferring  the  inverse:    6 

inferring  the  converse:    7,    8  affirming  the  consequent:    9 
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Correction. 
On 

page 

6- 

391, 

in line 

7, 

delete 
the  comma after 

♦0 

• 

r The  substitution  rule  for  biconditional  sentences. 

Given  a  biconditional  sentence  and  another 

sentence,   if  the  left  side  of  the  biconditional  sen- 
tence is  replaced  by  its  right  side  somewhere  in 

the  other  sentence,   the  new  sentence  thus  obtained 
is  a  consequence  of  the  given  sentences. 
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In  the  column  proof,    step  (8)  is  the  conclusion  of  a  dilemma  whose  _> 
premisses  are  steps  (1),   (3),   and  (7).     Here  is  a  diagram  of  the  columin  ^ 
proof: 

(2) 

(3) 

(5)  (2) 

(6)  (4) 

(1) 
(7) 

(8) 

(9) 

(10) 

The  law  of  the  excluded  middle  can  be  justified  by  using  a  method  of 
proof  called  proof  by  cases.     Schematically,   proof  by  cases  can  be  indi- 

cated by: 

[p]  [notp] 

q 

In  words:    K  q  can  be  derived  from  the  assumption  p,    and  other  pre- 
naisses,   and  can  also  be  derived  from  the  assumption  not  p,   and  other 
premisses,   then  q  is  a  consequence  of  the  other  premisses,   alone. 

Before  justifying  proof  by  cases,   let's  use  it  to  establish  the  law  of  the excluded  middle: 
*  * 

  p                            not  p 

p  or  not  p   p  or  not  p 

p  or  not  p 

The  foregoing  scheme  shows  how  any  sentence  of  the  form  'p  or  not  p' 
can  be  derived,   using  two  of  the  rules  for  alternation  sentences  and  proof 
by  cases.     In  deriving  such  a  sentence,    all  the  premisses  in  the  deriva- 

tion are  discharged.      Hence,    such  a  sentence  can,   itself,   be  used  as  a 
premiss  in  any  derivation  and  be  treated  as  a  discharged  premiss. 
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The  following  scheme  shows  how  proof  by  cases  can  be  carried  out  by 
using  only  rules  which  have  previously  been  discussed: 

* 

t 
\not  p/ 

if  p  then  q 

if  not  q  then  not  p   if  not  p  then  q 
if  not  q  then  q 

q 

The  kinds  of  inference  used  above  are  conditionalizing,    discharging  an 
assumption,    contraposition,  the  hypothetical  syllogisai   [Exercise  6  on 
page  6-377],    and  the  kind  of  inference  justified  on  TC[6-386]b. 

The  rules  for  denying  an  alternative  can  also  be  justified  on  the  basis  of 
earlier  rules.     For  example,   the  first  form  is  justified  by  the  scheme: 

t 

q  not  q 

  E   «           E   t 

p  or  q   if  p  then  p   if  q  then  p 

The  inferences  used  are  a  contradiction,    conditionalizing,   and  dis- 
charging an  assumption  [twice],   and  a  dilemtma. 
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But,  the  truth-table  tells  us  that,   for  this  to  be  so,   the  antecedent  of  the 
premiss  must  be  true  and  its  consequent  must  be  false.      Now,    in  order 
to  conclude  that  the  denial  [not  q]  of  a  true  statement  [q]  is  false,   all  we 
need  is  to  be  assured  that  there  is  some  false  statement  which  we  can 

substitute  for  'p'.     We  are  assured  of  this  by  (iii).     Similarly,   in  order 
to  conclude  that  the  denial  [not  p]  of  a  false  statement  [p]  is  true,   all  we 
need  is  assurance  that  there  is  some  true  statement  which  can  be  sub- 

stituted for  'q'.     But,   as  we  have  seen,   any  statement  of  the  form  *if  p 
then  p'  is  true. 

In  a  similar  [but  simpler]  fashion,   one  can  use  (i),   together  with  the 
rules  which  specify  inferences  of  the  fornns  : 

p  and  q p  and  q 

p  and  q 

as  valid,   to  deduce  the  truth-table  for  conjunction  statements  [see  below]. 
And,   one  can  use  (i),   together  with  the  rules  that  specify  inferences  of 
the  fornns  : 

p  or  q p  or  q 

p  or  q     if  p  then  r      if  q  then  r 

as  valid,    and  the  rule  that  statements  of  the  formi  'if  p  then  p'  are  true, 
to  deduce  the  truth-table  for  alternation  statements.      [Hint:     In  the 

scheme  for  the  dilennnna,   replace  'r'  by  'p'.] 

p q p  and  q p  or  q 

T T T T 

F T F T 

T F F T 

F F F F 
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the  fact  that  each  statement  of  the  form: 

(**)  if  p  then  p 

is  valid--that  is,    is  a  consequence  of  the  empty  set.     That  this  is  so  is 
shown  by  the  scheme: « 

P 
* 
p if 

p  then 

P 

P 

if 
P 

then  p 

This  being  the  case,   it  follows  from  (i)  that  each  statement  of  the  form 

(**)  is  true.     In  particular,    a  statement  obtained  by  replacing  'p'  in  (**) 
by  a  false  statement  must  be  true.     Such  a  statement  is  a  conditional 
statement  whose  antecedent  and  consequent  are  both  false.     Now,   by  (ii), 
it  follows  that  since  this  conditional  statement  is  true,    each  conditional 
statemient  whose  antecedent  and  consequent  are  both  false  nnust,   also,   be 
true.     So,   we  have  the  entry  in  the  fourth  line  of  the  truth  table. 

Now  that  we  have  deduced  the  truth-table  for  conditional  statements  from 
(i)  and  (ii),  and  the  three  rules  of  reasoning  for  conditional  sentences,  we 
can  use  this  truth-table,    (i),  (ii),  and  the  reverse  rule  of  contraposition 
to  deduce  the  usual  truth-table  for  denial  sentences.     This  table  is: 

p  not  p 

T  F 

F  T 

In  words:  the  denial  of  each  true  statement  is  false;  the  denial  of  each 
false  statement  is  true.  To  establish  this,  consider  an  inference  of  the 
form; 

if  not  p  then  not  q 

if  q  then  p 

obtained  by  replacing  'q'  by  a  true  statement  and  'p'  by  a  false  statement. 
The  truth -table  for  conditional  statennents  tells  us  that  the  conclusion  of 
this  inference  is  false.     So,  by  (i),  the  premiss  of  the  inference  is  false. 

TC[6-395]g 





For  all  these  reasons,   we  consider  the  approach  to  validity  through 
truth-tables  to  be  an  unsatisfactory  one,    especially  for  beginning  students. 
For  one  who  adopts  our  point  of  view  concerning  validity,   any  attempt 
to  define  validity  in  ternns  of  truth  appears  to  be  putting  the  cart  before 
the  horse.     For,   as  we  shall  now  show,   the  rules  which  we  have  adopted 
to  prescribe  what  inferences  are  valid,   when  supplemented  by  three 
general  rules  concerning  truth,   force  us  to  adopt  the  usual  truth-tables. 
In  other  words,    one  can  define  truth  for  compound  statements  [condi- 

tionals,  denials,   conjunctions,   and  alternations]  in  terms  of  validity. 
The  three  general  rules  concerning  truth  are: 

(i)    If  some  consequence  of  a  set  of  premisses  is  false 
then  at  least  one  of  the  premisses  is  false. 

(ii)    Whether  a  compound  statement  is  true  is 
determined  by  which  of  its  components  are  true. 

(iii)    Not  all  statennents  are  true. 

From  these  and  the  rules  modus  ponens,    conditionalizing,   and  discharging 
an  assunaption,   we  shall  now  derive  the  truth -table  for  conditional  state- 

ments.    To  begin,    since  each  inference  of  the  form: 

if  p  then  q 

is  valid,   it  follows  from  (i)  that  if  a  conditional  statement  [if  p  then  q]  is 
false,   then  its  consequent  [q]  must  be  false.     Equivalently,  if  the  conse- 

quent of  a  conditional  statement  is  true,  then  the  statement  itself  is  true. 

This  gives  us  the  entries  under  'if  p  then  q'  in  the  first  two  lines  of  the 
truth-table. 

Similarly,   since  each  inference  of  the  form: 

p        if  p  then  q 

is  valid,   it  follows,  again  from  (i),   that  if  the  consequent  of  a  conditional 
is  false  then  the  conditional  statement  and  its  antecedent  cannot  both  be 
true.     So,   if  the  consequent  of  a  conditional  statement  is  false  and  its 
antecedent  is  true,   then  the  conditional  statement  must  be  false.      This 
gives  us  the  entry  in  the  third  line  of  the  table.     Finally,  we  make  use  of 
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There  is  an  alternative  procedure  for  justifying  the  acceptance  of,    say, 
modus  ponens-type  inferences  as  valid.      This  procedure  is  based  on  the 
truth-table  for  conditional  statennents: 

p q if  p  then  q 

T T T 

F T T 

T F F 

F F T 

This  table  asserts,    that  [see  third  line]  a  conditional  statennent  is  false 
if  its  cintecedent  is  true  and  its  consequent  is  false,    and  [see  first,    second, 
and  fourth  lines]  is  true  if  its  consequent  is  true  or  its  antecedent  is  false. 
In  particiolar,    it  asserts  that  if  the  antecedent  of  a  conditional  is  true 
[first  and  third  lines]  and  the  conditional  is  itself  true  [ruling  out  the 

third  line],   then  the  conditional's  consequent  is  true.     So,    [the  truth -table 
asserts],    a  modus  ponens-type  inference  can  never  lead  one  from  true 
premisses  to  a  false  conclusion.     So  far,    so  good,    assuming  that  one  has 
accepted  the  truth-table.     But,    as  pointed  out  earlier,    one  must  also  be 
convinced  of  the  validity  of  modus  ponens-type  inferences  whose  premisses 
are  not  both  true.      The  argument  based  on  the  truth -table  does  nothing  to 
satisfy  this  need.     Consequently,   this  approach  is  inadequate.     Moreover, 
if,    as  has  been  urged,    one  grants  that  a  valid  inference  is  valid  irrespec- 

tive of  the  truth  or  falsity  of  its  premisses  or  conclusion,    then  the  truth - 
table  approach  appears  to  be  irrelevant. 

Pedagogically,   the  approach  to  validity  through  truth -tables  has  disad- 
vantages besides  those  mentioned  in  the  preceding  paragraph.    To  begin 

with,   one  needs  to  give  some  sort  of  argument  for  accepting  the  truth- 
tables.     It  is  not  easy  to  give  a  satisfactory  reason  for  accepting  a 
conditional  sentence  as  true  when  its  antecedent  and  consequent  are  both 
false.     In  fact,    a  teacher  is  likely  to  encounter  resistance  against  even 
considering  conditional  sentences  whose  antecedents  are  false.     In  over- 

coming these  difficulties,    so  much  emphasis  is  likely  to  be  placed  on 
truth  as  to  make  it  even  harder  to  convince  students  that  the  essence  of 

a  proof  is  not  that  it  shows  that  its  conclusion  is  true  if  its  premisses 
are  true,    but,    rather,   that  it  shows  that  its  conclusion  necessarily 
follows  from  its  premisses,    whether  these  are  true  or  false.      The 
relevance  of  this  to  the  understanding  of  proofs  by  contradiction  has 
been  pointed  out  earlier. 
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'f  (2)     If  John  is  poor  then  John  is  happy, 
from: 

(3)     John  is  happy. 

For  that  matter,  from  (3)  one  is  entitled,   by  conditionalizing,   to  infer: 

(2')   If  grass  is  blue  then  John  is  happy. 

The  ground  for  accepting  any  such  inference  again  lies  in  the  meaning 

intended  for  'if.  .  .then.  .  .  '.      Because  of  this  meaning,   statement  (3)  is 
a  "stronger"  statement  than  each  statement  like  (2)  or  (2').     [In  some 
sense,   it  says  what  is  said  by  all  such  statements,   taken  together.     The 

flat  statement  'John  is  happy.  '  tells  us  that,   whatever  conditions  may 
exist,    John  is  happy.  ] 

The  rule  for  discharging  assumptions  on  conditionalizing  [page  6-37, 
lines  3  through  11;  page  6-372  et  seq.  ]  completes  the  explanation  of 
what  'if. .  .then.  .  .  '   nneans. 

We  have  said  earlier  that,  in  addition  to  inferences,  we  would  call  certain 
sentences  valid.    To  illustrate  this  use  of  the  word,  consider  the  scheme: 

* 
q 

if  p  then  q 

if  q  then  (if  p  then  q) 

This  shows  that,    since  conditionalizing  and  discharging  an  assumption 
are  valid,   each  sentence  of  the  form: 

(*)  if  q  then  (if  p  then  q) 

is  a  consequence  of  the  empty  set  ["of  sentences"].      Since  such  a  sen- 
tence is,   trivially,   a  consequence  of  a  set  of  sentences  no  one  of  which 

is  false,  it  follows  from  the  relationship,  previously  pointed  out,  between 
validity  and  truth,   that  each  statement  of  the  form  (*)  is  true.     Since  the 
truth  of  such  statements,   like  the  validity  of  conditionalizing,  and  dis- 

charging an  assumption,    stenns  just  from  the  meaning  of  'if. .  .then.  .  .  *, 
it  is  natural  to  call  these  statements  valid.      Furthermore,   for  the  pur- 

poses of  test -patterns,   it  is  convenient  to  call  any  sentence  of  the  form 

(*)  'valid',   since  substituting  names  for  its  variables  will  produce  a valid  statement. 
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A  similar  situation  arises  in  proofs  by  contradiction,   where  one  attempts 
to  show  that  a  given  statement  is  a  consequence  of  certain  prennisses  by 
showing  that  the  premisses  and  the  denial  of  the  given  statement  yield  a 
contradiction.      Hence,    if  the  premisses  happen  to  be  true,   the  given 

statement  will  be  true,   also.      This  is  "in  spite  of  the  fact"  that  in  using 
the  denial  of  this  true  statement  as  an  assumption,   one  has    "accepted", 
at  least  temporarily,   an  additional  premiss  which  is  false.      Probably 
one  difficulty  which  some  have  in  granting  validity  to  proofs  by  contra- 

diction is  due  to  their  failure  to  distinguish  between  accepting  a  statement 
as  a  premiss  and  accepting  it  as  being  true.     In  the  preceding  derivation 

of  (3)  from  (1)  and  (4)  we  "accepted  (4)  as  a  premiss".      But,   the  deriva- 
tion formed  part  of  the    evidence  on  which  we  based  our  decision  not  to 

accept  (4)  as  true.     This  distinction  is  confused  in  the  less  formal  state- 

ment of  the  argument  which  begins  'Suppose  that  everyone  who  is  poor 
is  happy.',   and  ends  'But,    John  is  not  happy.     So,   not  everyone  who  is 
poor  is  happy.  ' 

The  preceding  discussion  shows  the  inadequacy  of  the  frequently  given 
argument  that  modus  ponens-type  inferences  should  be  ranked  valid 
because,    by  using  such  inferences,    one  will  never  infer  a  false  conclu- 

sion from  true  premisses.     That  such  should  never  happen  is,  as  pointed 
out  earlier,  a  necessary  condition  for  the  validity  of  any  inference.     But, 
it  obviously  is  not  a  sufficient  condition  for  accepting  the  validity  of  such 
inferences  as  that  of  (3)  from  (1)  and  (2),  in  which  the  premisses  are  not 
both  true. 

Beyond  this,   we  contend  that  the  real  ground  for  accepting  an  inference 
as  valid  has  nothing  to  do  with  truth.       Our  ground  for  rating  modus 
ponens-type  inferences  valid- -that  is,  for  accepting  what  such  an  infer- 

ence  "says"--lies  in  the  meaning  which  we  intend  the  phrase  'if.  .  . 
then.  .  .  '  to  have.     Conversely,   when  we  tell  someone  that  such  infer- 

ences are  valid,   we  are  giving  him  a  partial  explanation  of  the  meaning 

of  'if.  .  .then.  .  .  '.     [Imagine  that,   through  some  system  of  language 
reform,    'if.  .  .then.  .  .  '  came  to  have  the  meaning  which  we  now  associate 
with  '.  ..    or  .  .  .  '.      Then,   we  should  no  longer  agree  with  what  modus 
ponens-type  inferences  say,   and  would  no  longer  rank  them  valid.] 

Similar  remarks  apply  to  the  other  rules  of  reasoning  discussed  in  this 
appendix.     For  example,   take  conditionali  zing --the  rule  according  to 
which  inferences  of  the  form: 

q 

if  p  then  q 

are  valid.     As  an  instance  of  this,   it  is  correct  to  infer: 
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But  this,    although  it  follows  from  the  validity  of  the  inference: 

John  is  poor.   If  John  is  poor  then  John  is  happy. 
John  is  happy. 

is  quite  different  from  the  inference  itself.     The  inference  *'says"  that 
(3)  is  a  consequence  of  ( 1)  and  (2),   and  makes  no  reference  to  the  truth 
of  any  of  these  three  statements.      When  we^  say  that  the  inference  is 

valid,    we  are  saying  that  we  accept  what  it  "says".     As  an  example  of 
what  such  acceptance  means,    suppose  that  we  believe  (1)  and  (2)  to  be 
true  and,   in  consequence  of  the  validity  of  the  inference,   accept  (3)  as 
true.      Now,   if  we  discover  that  (3)  is  false,    we  should  not  say  that  we 
reasoned  incorrectly- -that  is,   that  the  inference  is  not  valid.     Rather, 
we  should  conclude  that  we  were  incorrect  in  believing  that  both  (1)  and 
(2)  were  true. 

[Just  as  the  validity  of  an  inference  does  not  guarantee  the  truth  of  its 
premisses,    or  of  its  conclusion,    so,  the  truth  of  premisses  and  conclu- 

sion does  not  guarantee  the  validity  of  the  inference.     For  example,    even 
if  (1),   (2),   and  (3)  are  all  true,   it  is  incorrect  to  infer  (1)  from  (2)  and 
(3).     Doing  so  is  to  connmit  the  fallacy  of  affirming  the  consequent.] 

As  a  matter  of  fact,   we  often  find  occasion  to  reason  from  premisses 
which  we  know   [or,   at  least,    believe]   to  be  false.      As  an  example, 
consider  the  universal  generalization: 

(4)    Everyone  who  is  poor  is  happy. 

We  may  believe  this  to  be  false,    and  attempt  to  establish  its  falsity  by 
finding  a  counter-example.     We  succeed  in  finding  John  who,   we  discover, 
is  certainly  poor,    and  certainly  unhappy.     Using  universal  instantiation 
and  modus  ponens : 

Everyone  who  is  poor  is  happy. 

John  is  poor.        If  John  is  poor  then  John  is  happy. 
John  is  happy. 

iil U)   iil 

(3) 

we  see  that  (3)  is  a  consequence  of  (4)  and  (1).     But,   by  observation,   we 
have  seen  that  (3)  is  false.     So,   either  (4)  or  (1)  must  be  false.     Since 
we  have  seen  that  (1)  is  true,   (4)  must  be  false.     [And,   for  that  niatter 
since  (3)  is  a  consequence  of  (I)  and  (2),   (2)  nnust  also  be  false.] 
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Correction.     On  page  6-396,   the  inference  scheme 
for  Double  denial  should  be: 

not  not  p 

t. 

On  page  6-397,   in  line  6b,    change  *An'  to  *A' 

On  validity  and  truth. --Truth  is  a  property  of  statennents--sonne  statements 
are  true,    some  are  not.     [Statements  which  are  not  true  are  called  false. 
Sentences  which  are  not  statements --that  is,    open  sentences  such  as 

*a  =  b  +  3',   are  neither  true  nor  false.]    For  example,  'Grass  is  green.', 
*2  +  2  =  4',   and,   as  we  shall  see,    'If  5  =  7  then  grass  is  blue.'   are  true 
statements,   while  'Grass  is  blue',    '5  =  7',    and,   as  we  shall  see,    'If 
grass  is  green  then  5  =  7.'   are  false  statements. 

Validity  is,   at  first  mention,   a  property  of  inferences  whose  premisses 
and  conclusions  are  statements.     [In  constructing  test -patterns,  we  rate 
an  inference  valid  if  each  inference  which  is  obtained  by  substituting 
names  for  the  variables  which  occur  in  the  given  inference  is  valid. 
Later,   we  shall  also  speak  of  certain  sentences  as  being  valid.]     For 
example,   any  inference  of  the  form: 

p   if  p  then  q 

in  which  'p'  and  *q'  are  replaced  by  statements,   is  valid.     Specifically, 
from  the  premisses: 

( 1)  John  is  poor. 

(2)  If  John  is  poor  then  John  is  happy. 

one  is  justified  in  inferring  the  conclusion: 

(3)  John  is  happy. 

Notice  that  one's  justification  for  drawing  the  conclusion  (3)  on  the  basis 
of  the  premisses  (1)  and  (2)  comes  merely  from  the  mieaning  of  the  phrase 

'if.  .  .then.  .  .  '.     In  other  words,  the  validity  of  the  inference  in  question 
derives  solely  from  the  fact  that  (2)  is  a  conditional  sentence,   (1)  is  its 
antecedent,  and  (3)  is  its  consequent.     Which,  if  any,  of  the  three  state- 

ments are  true,  and  which  are  false  has  no  bearing  on  the  validity  of  the 
inference. 

Validity  and  truth  are  related  in  that  consequences  of  true  premisses 
are  also  true.    [We  shall  see  that  this  niakes  it  possible  to  use  the  notion 
of  validity  to  explain  the  circumstances  under  which,    say,   a  conditional 
statement  is  true.]     Because  of  this  relationship  between  validity  and 
truth  and  because  the  inference  from  (1)  and  (2)  to  (3)  is  valid,   it  follows 
that 

.,,,..  .    •     ̂   J    r         If  John  IS  poor  . 
if    John  IS  poor,     is  true,   and  if  ̂ ,         t   l      •     u  •   ̂ s  true, ^  then  John  is  happy. 

then  'John  is  happy'  is  true. 

TC[6-395]a 
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7 

1.  (a)  universal  instantiation 

(b)  modus  ponens 

(c)  universal  instantiation 

(d)  substitution  rule  for  equations  [substitution  from  (7)  into  (5)] 

(e)  conditionalizing,  and  discharging  an  assumption 

(f)  the  test -pattern  principle 

2.  BA  =  AB;    substitution  rule  for  equations 

3. * 

(1)           (2) 

(6) (4)           (3) 

(7) (5) 

(8) •    •    • 

(9) 
•    ■  • 

(10) 
   * 

(11) 

(12) 

4.     (a)     modus  toUens 

(b)     modus  ponens 

TC[6-399] 



Here  is  a  diagram  of  the  proof  of  Theorem  1-5: 

t 
(1)           (2) 

Th.  1-3      (4) 
•    •    •                     •    •    • 

(6)           (5) (4) 

(3) (7) (10)             (9) 

(8) (11) 

(12) 

(13) 

Th.  1-3 
(14) 

(15) 

(16) 

Th.  1-5 

TC[6-400] 





Answers  for  Supplementary  Exercises  for  Page  6-9. 

1.       (a)    T  (b)    F  (c)    T  (d)    T  (e)  T 

(g)    F  (h)    T  (i)     F  (j)     T  (k)  T 

(m)    T  (n)    F  (o)    T  (p)    T  (q)  T 

(f)    T 

(i)    T 

1 
2.       (a)  {1,    2,  3,  4.  5}  (b)  {3,    4} 

(c)  {1.    2,  3,  4.  5,   6,  7.    8,    9}           (d)  0 

(e)  {1,    2,  3.  4,  5,    6,  7,    8,    9}           (f)  {3,    4,    5,    6,    7,  8  ,    9} 

(g)  {5}  (h)  0 

(i)  {1.   2,  3.  4,  5.   6,  7,   8,   9}          (j)  0 

Answers  for  Supplementary  Exercises  for  Page  6-16. 

1.  (a)    {6,   7,   8.    9,    10}  (b)    {l,    2,    3.   4,   5,    10} 

(c)  {10} 

(d)  c[a  r>  b  =  0;  V    the  connplement  of  0  with  respect  to  x  =  x] 

(e)  {6,    7,    8,    9,    10}  (f)     {l,    2,    3,    4,    5,    10} 

2.  (a)    Yes      (b)    h      (c)    the  complement  of  h  with  respect  to  k      (d)    0 

3. (a) CD 
^ 

(b) 
DC 
<-> 

(c) 
CD (d) BE 

(e) AB — > <j BC (f) AC 

-> 

(g) 0 

—> 

(h) {c} 

(i) CA (j) CA 
(k) 

CE 

_^ 

(i) CA  w  DE 

(m) 0 

-> 

(n) {c} (o) 
BA 

<y 

BC 

— > 

(P) DC 
v^ 

DE (q) 
BA 

>^ 

BD  w 
DE 

(r)    {X:    A  €  BX}  w  AB  w  BC  w  CD  w  DE  '^  {X:  E 
 e  DX} 

TC[6-402,    403,    404] 







Answers  for  Supplementary  Exercises  for  Page  6-32. 

1.       (a)    6  (b)    5  (c)  6 

(d)  No  [Axiom  B] 

(e)  Since  F /i,  F/AC.  So,  by  Axiom  B.  AF  +  FC  >  AC.  Since 

Be  AC,  it  follows  from  Axiom  A  that  AB  +  BC  =  AC.  Hence, 

AF  +  FC  >  AB  +  BC. 

2,       (a)    By  Axiom  A,    if  P  e  AB  then  AP  +  PB  =  AB.     By  Axiom  B,    since 

C  i  AB,   AC  +  CB  >  AB.     Hence,   AP  +  PB  <  AC  +  CB.     So, 

there  is  no  point  P  such  that  P  €  AB  and  AP  +   PB  =  AC  +  CB. 

(b)  There  are  two  such  points,    P^^  and  P^,    where  A  €  P^^B  and 

B  €  AP^. 

(c)  P^A  =  P^B 

^3.       (c)    {X:    AX  +  XB  =  3}  is  an  ellipse  with  A  and  B  as  foci. 

TC[6-405] 



Answers  for  Supplementary  Exercises  for  Page  6-50. 

[Notice  that  'Given'  is  used  as  a  synonym  for  'Hypothesis'.] 

1.       (a)    AB  =  AC 

From  the  figure,    B  e  AD  and  C  €  AE.     So,   by  Axiom  A, 

AB  +  BD  =  AD  and  AC  +  CE  =  AE,     By  hypothesis,  AD  =  AE. 

Therefore,   AB  +  BD  =  AC  +  CE.     But,   by  hypothesis,   BD  =  CE. 

So,   by  algebra,   AB  =  AC. 

(b)  MN  =  PQ 

Since,    by  hypothesis,    MN  =  QM  and  PQ  =  QM,    it  follows  [by 

substitution]  that  MN  =  PQ. 

(c)  DB  =  AB         [See  argument  for(a).  ] 

(d)  AC  =  AF,  AD  =  AG,    BC  =  EF,    BD  =  EG 

Since  B  is  the  midpoint  of  AC,    it  follows  from  Theorem  1-8 

that  AC  =  2  -AB.    Also,    since  C  is  the  midpoint  of  AD, 

AD  =  2 'AC.     So,  AD  =  4-AB.     Similarly,  AF  =  2«AEand 

AG  =  4'AE.     But,    we  are  given  that  AB  =  AE.     Hence, 

AC  =  AF  and  AD  =  AG. 

Since  B  is  the  midpoint  of  AC,   BC  =  AB.     Similarly,   EF  =  AE. 

So,    BC  =  EF. 

Finally,    since  C  is  the  midpoint  of  AD,    CD  =  2  'AB. 

From  the  figure,    C  €  BD.     So,    by  Axiom  A, 

BD  =  BC  +  CD  =  AB  +  2  -AB  =  3-AB.     Similarly,   EG  =  3«AE. 

So,   BD  =  EG. 

(e)  D  is  the  midpoint  of  AC 

By  hypothesis,  AD  =  DB  and  BD  =  DC.  Since  DB  =  BD, 

AD  =  DC.  From  the  figure,  D  e  AC.  So,  by  definition, 

D  is  the  midpoint  of  AC. 

TC[6-406,    407] 
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Correction;     The  first  line  of  part  (d)    on  page 
6-407  should  read: 

  ,    for  each  k  >  0,   there   

2.      (a),     (b).     (c) 

B 

(d)  Yes;    Axiom  C;     no 

(e)  Two.     [One  of  the  points  belongs  to  AB  and  the  other  to  BA.] 

'IT- 

Answers  for  Supplementary  Exercises  for  Page  6-61. 

1.  (a)  By  the  logical  principle  of  identity,  m(ZA)  =  m(ZA).  Hence, 
by  the  definition  of  congruent  angles,  ZA  S  ZA.  [Therefore, 
angle -congruence  is  a  reflexive  relation.] 

(b)  Suppose  that  ZA  =  ZB.     Then,   m(ZA)  =  m(ZB).     So,   m(ZB)  = 
m(ZA).     Hence,  ZB  ̂   ZA.     [Therefore,   angle -congruence  is 
a  symmetric  relation.  ] 

(c)  Suppose  that  ZA  S  ZB  and  ZB  ̂   ZC.     Then,   m(ZA)  =  m(ZB) 
and  m(ZB)  =  m(ZC).     So,   m(ZA)  =  m(ZC).     Hence,  ZA  3  ZC 
[Therefore,   angle -congruence  is  a  transitive  relation.] 

C 

TC[6-407,    408] 



3. 
M 

Q 

Theorem  2-1  that  m(ZMPQ)  =  90. 

by  definition,   ZRPQ  S  ZMPQ. 

Since  Q  i  MR  and  P   e  MR, 

it  follows  from  Axiom  G  that 

m(ZMPQ)  +  m(ZRPQ)  =   180. 

But,    since  ZMPQ  is  a  right 

angle,    it  follows  from 

Hence,    m(ZRPQ)  =  90.     So, 

4. 

K 

m(ZRJl.)  +  m(ZQJK)  =   180 

K 

m(ZRJL)  +  m(ZQJK) 

180+  2-m(ZQJL) 

m(ZRJL)  +m{ZQJK)  = 
180+  2-m(ZRJK) 

TC[6-408]a 





m(ZACD)  =  45 

m(ZACE)  =   135 

V. o m(ZNOR)  =   150 -^K 

7.       (a)    m{ZABC)>  90 (b)    m(ZMNP)  <  90 

8. 

m(ZECF)  =  90 

TC[6-408]b 
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Answers  for  Supplementary  Exercises  for  Page  6-63. 
1. 

ZA 

37° 

24^- 
81° 

7/''
 

(2y)° 

(90-x)° 

[180-(x  +  y)]° 
supplement  of  Z A 

/yjo
 156° 

990
 /o^" 

(/60-Zj 

(30  +  x)° 

i^^^y 
complement  of  ZA 

53° G.^
" 

0,"
 

19° 

^0-Zy) 

X"
 

l/x+y)-9^r 

2^    (a)    43°  20'   23' 

y<(/5      )(<9o     90<><  +  y<  180 

(b)    37°  41'    15"  (c)    63°  16'  42" 

3.    (a)    ZAXC  =  ZDYF 

Since  B  is  interior  to  ZAXC,    it  follows  fronm  Axiom  F  that 

m(ZAXC)  =  m(ZAXB)  +  m(ZBXC). 

Similarly,  m(ZDYF)  =  m(ZDYE)  +  m(ZEYF). 

By  hypothesis,  ZAXB  =  ZEYF  and  ZBXC  =  ZEYD. 

So,  m(ZAXB)  =  m{ZEYF)  and  m(ZBXC)  =  m(ZEYD). 

Therefore,    m(ZAXC)  =  m(ZDYF).     Hence,  ZAXC  =  ZDYF. 

(b)    m(ZM)  +  m{ZN)  +  m(ZP^)  =  180 

By  hypothesis. So, ZP^    =  ZNMP  andZP^   =  ZPNM. 

m{ZP^)  =  m(ZM)  and  mCZP^)  =  m(ZN). 

But,    by  hypothesis,        m(ZP^)  +  m{ZP2)  +  m(ZP   )  =  180. So, 

m(ZM)  +  m(ZN)  +  m(Z  P    )  =  180. 

(c)    ZCDE  S  ZCED 

From,  the  figure,    C  is  interior  to  ZADE.     So,    by  Axi  om  F, 

m(ZCDE)  =  m(ZADE)  -  m(ZADC). 

Similarly,  m(ZCED)  =  m(ZBED)  -  m(ZBEC). 

But,    by  hypothesis,       ZADE  S  ZBED  and  ZADC  =  ZBEC. 

So,  m(ZADE)  =  m(ZBED)  and  m{ZADC)  =  m(ZBEC). 

Therefore,   m(ZCDE)  =  m(ZCED).     Hence,  ZCDE  =  ZCED. 

TC[6-409,  410] 



(d)  ZMBC  =  ZMCB 

From  the  figure,    M  is  interior  to  ZABC.     So,   by  Axiom  F, 

m(ZABC)  =  m{ZABM)  +  m(ZMBC).     But,   by  hypothesis,  ZABM 

^  ZMBC.     So,    m(ZABM)=  m{ZMBC).     Hence,    m(ZMBC)    = 

j*m(ZABC).     Similarly,    m(ZMCB)  =  }•  m(ZACB).     By  hypothesis, 

ZABC  S  ZACB;   so,    m(ZABC)  =  m(ZACB).     Therefore,    m(ZMBC) 

=  m(ZMCB).     Hence,   ZMBC  S  ZMCB. 

(e)  complementary 

From  the  figure,    D  is  interior  to  ZBAC.     So,   by  Axiom  F, 

m(ZBAC)  =  m(ZBAD)  +  m(ZDAC).     By  hypothesis,   ZB  =  ZCAD; 

so,    m(ZB)  =  m{ZCAD).     Hence,   m(ZBAC)  =  m(ZBAD)  +  m(ZB). 

Since  ZBAC  is  a  right  angle,    it  follows  from  Theorenn  2-1  that 

m(ZBAC)  =  90.     Therefore,    m{ZBAD)  +  m(ZB)  =  90.     Hence,   by 

definition,   ZB  and  ZBAD  are  connplementary. 

(f)  ZB  =  ZC 

By  hypothesis,    ZA^  =  ZB.     Since  angle -congruence  is  a  symmetric 

relation,   ZB  =  ZA^.     But,    by  hypothesis,   ZA^  =  ZA^.     So,    since 

angle-congruence  is  a  transitive  relation,   ZB  =  ZA^.     Again  by 

hypothesis,    ZA^  =   LC.     So,   ZB  =  ZC. 

(g)  ZAEB  S  ZDEC 

From  the  figure,    B  is  interior  to  ZAEC.     So,   by  Axionn  F,    m(ZAEB) 

=  m(ZAEC)  -  m(ZBEC).     Similarly,    m(ZDEC)  =  m(ZDEB)  -  m{ZBEC). 

By  hypothesis,   ZAEC  =  ZDEB;    so,    m(ZAEC)  =  m(ZDEB).    There- 

fore,   m(ZAEB)  =  m{ZDEC).     Hence,    ZAEB  =   ZDEC. 

TC[6-410] 







hypothesis,  ZEGC  =  ZFGB;    so,   they  have  the  same  measure. 

Therefore,    m(ZAGE)  =  m{ZDGF).     Hence,  ZAGE  =  ZDGF. 

5.      ZAOC  ^  ZBOD 

From  the  figure,    B  is  interior  to  ZAOC.     So,   by  Axiom  F, 

m(ZAOB)  +  m(ZBOC)  =  m{ZAOC). 

Similarly,        m(ZBOD)  =  m(ZBOC)  +  m(ZCOD). 

But,    by  hypothesis,  ZAOB  ^  ZDOC;    so,    m(ZAOB)  =  m(ZCOD). 

Therefore,    m{ZAOC)  =  m(ZBOD).     Hence,  ZAOC  =  ZBOD. 

'J* 

Answers  for  Supplementary  Exercises  for  Page  6-81. 

1.  (a),     (b),     (e),     (f),     (h) 

2.  (a)  AABE  [or  AABC];  ADEC  [or  ADBC] 

(b)  ABE  *-  DCE,  ABE  —  DEC 

3.  (a)  AABE,  AABC 

(b)    ABE  —  BAG  [or  ABE  —  CAB,   ABE  — *  BCA,   ABE  —  CBA] 

4.  (a)    ACD  -*  BCD  [or  ACD  -^  BDC] 

(b)  ACD  —  ABC  [or  ACD  — *  CBA] 

(c)  ABC  —  CBD  [or  ABC  —  DBC] 

(d)  ABC  —  ACD  [or  ABC  —  CAD] 

TC[6-411,    412,    413]b 
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Answers  for  Supplementary  Exercises  for  Page  6-74. 

1.  ZA^  =  ZB^ 

From  the  figure,  ZA^^  and  ZA     are  adjacent  angles  whose  non- 

common  sides  are  collinear.     So,   by  Theorem  2-9,   ̂ ^^  ̂ ^  ̂  

supplement  of  ZA^^,     Similarly,  ZB^   is  a  supplement  of  ZB^^. 

Since,    by  hypothesis,  ZA^  S    ZB^  it  follows  from  Theorem  2-3 

that  ZAg  =  ZB^. 

2.  ZB  =  ID 

By  hypothesis,    EF  x  BE.     So,   by  Theorem  2-7,  ZAEF  is  a  right 

angle,   and  by  Theorem  2-1,   m(ZAEF)  =  90.     Since,    from  the 

figure,    D  is  interior  to  ZAEF,    it  follows  from  Axiom  F  that 

m(ZDEA)  +  m{ZE2)  =  m{ZAEF)  =  90.     By  hypothesis,  IB  =  ZDEA. 

So.   m(ZB)  =  m(ZDEA).     Hence,   m(ZB)  +  mCZE^  )  =  90.     Thus,   by 

definition,  ZB  is  a  complement  of  ZE^.     Similarly,  ZD  is  a  comple- 

ment of  ZCj^.     But,   by  hypothesis,  ZC^^  =  ̂ ^s'     ̂ °'   ̂ ^  Theorem 

2-4,  ZB  -  ZD. 

3.  ̂ -^1  ̂''^'^  ̂ -^p  ̂ ^®  complementary 

Since  n  X  p,    it  follows  fronn  Theorem  2-7  that  ZA     [not  marked] 

is  a  right  angle,   and  by  Theorenn  2-1,   m(ZA    )  =  90,     By  Axioms 

G  and  F  and  the  hypothesis  that  m  is  a  straight  line,   m(ZA^)  + 

m(ZA3)+  m(ZA2)  =   180.     So,   m(ZA3^)  +  m(ZA2)  =  90.     Hence,   by 
definition,   ZA     and  ZA     are  complementary. 

4.  ZAGE  ^  ZDGF 

Since  AB  r^  CD  =  {G},   Z  AGO  and  ZDGB  are  vertical  angles;  so, 

by  Theoremi  2-5,    they  are  congruent.     From  the  figure,    E  is 

in  the  interior  of  ZAGC.     So,    by  Axiom  F,   m(ZAGE)  +  m(ZEGC) 

=  m(ZAGC).     Similarly,   m(ZDGF)  +  m(ZFGB)  =  m(ZDGB).     By 

TC[6-411,    412,    413]a 





Correction. 

Exercise 

On 

6(b)  s page hould 

6-413, 

read  ' 

the  las 

TR  and 
t  part  of 

PK'. 

5.  (a)  AEBF  and  ADCF;  EBF 

AEBF  and  ADCB;  EBF 

AEBC  and  ADCF;  EBC 

AEBC  andADCB;  EBC 

(b)  ABDA  and  AECA;  BDA 

ABDA  and  AECB;  BDA 

ABDC  and  AECA;  BDC 

ABDC  and  AECB;  BDC 

DCF  [or  EBF  —  CDF] 

DCB  [or  EBF  —  CDB] 

DCF  [or  EBC  -^  CDF] 

DCB  [or  EBC  —  CDB] 

ECA  [or  BDA  —  CEA] 

ECB  [or  BDA  *—  CEB] 

ECA  [or  BDC  —  CEA] 

ECB  [or  BDC  —  CEB] 

6.       (a)     ABC  — *  MNQ (b)    TJR  — «•  KSP 

R 

(c)     ABC  —  DAC 
B 

(e)     PBM  *-  TBM 

(d)    JTS  —  RJP 

(f)     BPM  —  MTB P 

TC[6-413] 





Answers  for  Supplementary  Exercises  for  Page  6-88. 

1.  (a)    BF  =  EC.  IF  S  ZC,   AF  =  DC 

(b)  s,a, s. 

(c)  BFA  — *  ECD  is  a  congruence 

(d)  ZA  S  ZD,  ZABF  ^  ZDEC,  AB  =  DE 

2.  (a)  FC  =  CF,  ZAFC  S  ZFCD,  AF  =  DC 

(b)  s.a.  s, 

(c)  FCA  ■•-»  CFD  is  a  congruence 

(d)  ZACF  S  ZDFC,  ZA  S  ZD,  AC  =  DF 

3  .   (a)  BC  =  ED,  CD  =  DC,  BD  =  CE 

(b)  s.  s,  s. 

(c)  BCD  — ♦  EDC  is  a  congruence 

(d)  ZBCD  ^ZEDC,  ZCDB  ^  ZDCE,  ZDBC  s  ZCED 

4.   (a)  AG  =  DF,  ZBGA  S  ZEFD,  BG  =  EF 

(b)  s.  a,  s. 

(c)  AGB  — ►  DFE  is  a  congruence 

(d)  AB  =  DE,   ZGAB  S  ZFDE,ZABG  S  ZDEF 

[The  hypothesis  that  £C  is  a  right  angle  is  not  used  in  this 

problem.     But,    students  will  meet  figures  of  this  type  in  the 

work  on  similar  triangles.  ] 

TC[6-415] 



8. 

a)  CE  =  CA,  ZECB  ^  ZACD,    CB  =  CD 

b)  s.  a.  s. 

c)  CEB  — ♦  CAD  is  a  congruence 

d)  EB  =  AD,  ZCEB  S  ZCAD,  ZCBE  =  ZCDA 

BAD  — *  DEB  is  a  congruence,    also.] 

a)  AF  =  DC,  ZF  s  ZC,    FE  =  CB 

b)  s.  a.  s. 

c)  AFE  ••-•  DCB  is  a  congruence 

d)  AE  =  DB,  ZFAE  s  ZCDB,   ZFEA  s  ZCBD 

ABE  — *  DEB  is  a  congruence,   also.] 

a)  BE  =  DE.  ZBEC  S  ZDEC,    EC  =  EC 

b)  s.  a.  s. 

c)  BEC  ■•-*  DEC  is  a  congruence 

d)  BC  =  DC,  ZBCE  =  ZDCE,   ZEBC  ^  ZEDC 

AEB  — '  AED  and  ABC  — *  ADC  are  congruences,   also.] 

a)  AC  =  DC,  ZACB  s  ZDCE,    BC  =  EC 

b)  s.  a.  s. 

c)  ACB  — •  DCE  is  a  congruence 

d)  AB  =  DE,   ZABC  =  ZDEC,   ZBAC  ^  ZEDC 

DCE  -—■  GFE  and  ACB  ♦—   GFE  are  congruences,   also.] 

TC[6-416] 







Answers  for  Supplementary  Exercises  for  Page  6-90. 

1.  Since  RS  =  RM,  ZS   s  ZM,   and  ST  =  MQ,    it  follows  from  s.a.  s. 

that  RST  — —  RMQ  is  a  congruence.     So,   by  the  definition  of 

triangle -congruence,   ARST   S  ARMQ. 

2.  Since  ZB  and  ZP  are  right  angles,    it  follows  from  Theorem  2-2 

that  ZB  s  ZP.     Also,   by  hypothesis,   AB  =  MP  and  BC  =  PQ. 

Hence,    by  s.a.  s.  ,   ABC  — ♦  MPQ  is  a  congruence.     So,   by  the 

definition  of  triangle -congruence,   AC  =  MQ. 

3.  DC  =  DB.  ZC  =  ZB,    CF  =  BE.     So,   by  s.a.  s.  .    DCF  —  DBE  is 

a  congruence.      Therefore,   ZFDC  S  ZEDB. 

4.  ZADB  and  ZCDB  are  supplements  of  the  congruent  angles  ZADE 

andZCDE,    respectively.     So,  ZADB  S  ZCDB.     Also,  AD  =  CD 

and  DB  =  DB.     So,   by  s.  a.  s.  ,   ADB  —^  CDB  is  a  congruence. 

Hence,  ZABD  ^  ZCBD.     Since  BD  =  BE,  it  follows  that 

ZABE  ̂ ZCBE. 

5.  Since  AF  =  CD,    it  follows  that  AC  =  FD.     Also,    CB  =  DE  and 

BA  =  EF.     So,    by  s.  s.  s.  ,   ACB  -—  FDE  is  a  congruence.     Hence, 
ZB    S  ZE. 

6.  AB  =  CD,    BC  =  DA,   and  CA  =  AC.     So,   ABC  *-  CDA  is  a 

congruence.     Hence,   ZABC  ^  ZCDA.     Similarly,  ABD  — *  CDB 

is  a  congruence,   and  ZDAB  =  ZBCD. 
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Answers  for  Supplementary  Exercises  for  Page  6-95. 

1.  ZABD  =  ZCBE  because  they  are  complements  of  congruent  angles. 

Also,   AB  =  BC  and  DB  =  EB.     So,   by  s.a.  s.  ,    DBA   — •  EBC  is  a 

congruence.     Hence,  ZD  S  ZE. 

2.  ZCEA  S  ZBED  since  they  are  right  angles.    Also,    CE  =  BE  and 

EA  =  ED.     So,   by  s.a.  s.  ,    CEA  — *  BED  is  a  congruence.    Hence, 
AC  =  DB. 

3.  QP  =  4 

4.  ZADC  =  ZABC  since  they  are  supplements  of  the  same  angle. 

AD  =  AB  and  DF  =  BE.     So,    by  s.a,  s.  ,   ADF  »-*  ABE  is  a  congru- 
ence.    Hence,  ZBAE  ^  ZDAF. 

5.  ZDBE  =  ZFEC  since  they  have  the  same  measure.     BE  =  EC  since 

E  is  the  midpoint  of  BC.     Also,   EF  =  DA  and,    since  D  is  the  mid- 

point of  BA,    BD  =  DA.     So,    EF  =  BD.     Therefore,    bys.a.s., 

DBE  — *  FEC  is  a  congruence.     So,   ZBDE    £='  ZEFC. 
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Correction.     On  page  6-419,    change  lines  2 
and  3  to  read: 

1.   below,   use  a  definition  to  re- 
state the  property  expressed  by 

the  sentence. 

Answers  for  Supplementary  Exercises  for  Page  6-111. 

a)  BC  is  in  the  interior  of  ZABD  andZCBA  S  ZCBD 

b)  AB  =  CD 

c)  m{ZA)  +  m{ZB)  =  90 

d)  ZK  is  its  own  supplement 

e)  i  v^  m  contains  a  right  angle 

f)  AB  is  perpendicular  to  CD  at  its  midpoint 

g)  MTR  *-*  SPQ  is  a  matching  of  the  vertices  of  AMTR  with  the 
vertices  of  ASPQ  for  which  corresponding  parts  of  the  tri- 

angles are  congruent 

h)    AABC  is  not  isosceles  [AB  /  BC  ̂   CA,   and  AB  4  CA] 

i)     AABC  has  three  congruent  angles 

j)     AABC  has  three  congruent  sides 

k)    there  is  a  n^atching  of  the  vertices  of  AABC  with  the  vertices 
of  A  DEF  which  is  a  congruence 

[i)     ZE  and  ZD  are  supplementary 

(m)    i  is  parallel  to  m  [  See  page  6-10] 

n)    AB  is  the  perpendicular  bisector  of  CD 

o)    A,    B,   and  C  are  vertices  of  an  isoceles  triangle 

p)    in  AMNR,    MR  =  RN 

q)    ZT  is  a  right  angle 

r)    m{ZJKL)   <  90 
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3.      (a)    AB  =  BC,  /ABC  ^  ZBCD,   BC  =  CD.     So,   by  s.a.  s.  , 

ABC  — *  BCD  is  a  congruence.     Hence,  AC  =  BD. 

(b)  AC  =  DB,   CD  =  BA,   DA  =  AD.     So,   by  s.  s.  s.  ,  ACD  —  DBA 

is  a  congruence.     Hence,  ZCDA  =  ZBAD. 

(c)  Since  ACD  ->—  DBA  is  a  congruence,  ZCAD  s  ZBDA.     So,   by 

Theorem  3-5,   ED  =  EA.     Hence,  by  definition,  AEAD  is 

isosceles. 

It  is  instructive  to  note  that  the  hypothesis  of  Exercise  3  is  con- 

sistent with  each  of  three  additional  figures,    essentially  different 

from  that  in  the  text. 

►C 

The  solution  for  part  (a)  makes  no  reference  to  the  figure  and,    for 

each  of  the  four  situations  pictured,   AC  =  BD.      By  convention,    the 

conclusion  for  part  (b)  implies  that  we  are  to  assumie  B,   A,   and  D 

to  be  noncollinear,   and  this  makes  figure  (2),   above,    inappropriate. 

However,   the  solution  given  for  part  (b)  applies,   as  well,   to  the 

situations  pictured  in  figures  (1)  and  (3). 

Finally,   the  solution  for  part  (c)  makes  use  of  the  assumption  that 

AC  and  BD  intersect  at  a  point  E,   not  collinear  with  A  and  D.     This 
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is  not  the  case  in  any  of  the  situations  indicated  in  figures  (1),    (2), 

and  (3).     Still,    for  figure  (1),    in  which  AC  and  BD  intersect  in  a 

point  E  such  that  A  €  EC  and  D  €  EB,   the  solution  can  be  modified 

to  give  the  desired  conclusion.     In  the  case  of  figure  (3),    in  which 

A  and  D  are  on  opposite  sides  of  BC,   AC  r^  BD  =  0. 

4.  (a)    3 

(b)  6  [assuming  no  three  are  coUinear] 

[For  each  whole  number  of  arithnnetic  n  >  2,   n  points,   no 

three  of  which  are  coUinear,    determine  n(n  -  l)/2  lines.] 

(c)  A,   B,   and  C  are  coUinear  and  A  e  BC 

(d)  A,    B,   and  C  are  noncoUinear 

5.  The  three  triangles  are  isosceles  and  congruent. 

Since  AABC  is  equilateral,    it  follows  from  Theorem  3-6  that 

ZBAC  =  ZCBA  S  ZACB.     Since  AG  is  the  bisector  of  ZBAC, 

it  follows  from  Theorem  3-8  that  m(ZGAB)  =  ̂ -mfZBAC). 

Similarly,   m(ZGBA)  =  i-m(ZCBA).     Since  m(ZBAC)  =  m(ZCBA) 

m(ZGAB)  =  m{ZGBA).     So,   by  Theorem  3-5,  AGAB  is  isosceles. 

Similarly,   AGAC  and  AGCB  are  isosceles.     Also,    since  AG  is 

the  bisector  of  ZBAC,   ZGAB  =  ZGAC;  and,   as  above,    since 

ZCBA  S  ZACB,    it  follows  that  ZGBA  =  ZGCA.     So,    since  AB  =  AC, 

it  follows  from  a.  s.a.    that  AGB  — *  AGC  is  a  congruence.     Simi- 

larly,  AGC  — •  CGB  and  CGB  — »  BGA  are  congruences.     There- 

fore,  A AGC  S  A CGB  S  A BGA. 
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6.     (a)    Perhaps  AB  =  BC  or  AC  =  BC. 

(b)  By  Theorem  3-5,    if  ZC  =  ZA  then  AB  =  BC.     But,   we  are  given 

that  AB  /  BC.     So  [by  modus  tollens],  ZC  ̂   ZA. 

(c)  This  follows  from  Theorem  3-5  by  the  reasoning  displayed  below: 

p  if  and  only  if  q 

if  p  then  q 

if  not  q  then  not  p 

p  if  and  only  if  q 

if  q  then  p 

if  not  p  then  not  q 

not  p  if  and  only  if  not  q 

7.    (a) 

(b) 

8.    By  s.a.  s.  ,    EAD  —  BAD  is  a  congruence.     Hence. 
   ED  =  BD.     Since, 

by  hypothesis.   AE  =  BD,    it  follows  that  AE  =  ED. 
    Also,   by  hypo- 

thesis.  AB  =  BD.     So,    since  EB  =  EB,   it  follows  from  s.
  s.  s.  that 

AEB  *-  DEB  is  a  congruence.     Hence,     ZEAB  =  ZEDB. 
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Correction.     On  page  6-422,    part  (e) 
of  Exercise  2  should  read: 

VV     ̂ _x+y>x 
X    y  >   0  ' t 

Answers  for  Supplementary  Exercises  for  Page  6-112. 

1.       (a)    {x:  X  >  17}  (b)    {x:    x  <    1}  (c)     (x:  x  >  0} 

(d)    {x:  x>    1} (e)     {x:    X  <   4} (f)     {x:  X  <   3} 

(a)  True 

a  >  b  if  and  only  if  a  -  b  >  0.     But,   a  -  b  =  (a  +  c)  -  (b  +  c). 

So,   a  -  b  >   0  if  and  only  if  (a  +  c)  -  (b  +  c)  >   0;  and 

(a  +  c)  -  (b  +  c)  >     0  if  and  only  ifa+c>b+c.     Hence,   a  >  b 

if  and  only  ifa+  c  >  b+  c.     Consequently,   V    V    V    x  >  y 
'  X     y     z 

if  and  only  ifx+  z>y+  z. 

(b)  False  [2  >  5  +   -6  but  2  /  5] 

(c)  True 

Suppose  that  c  >  0  and  suppose  that  a  >  b  +  c.     Then,   a  -  b  >  c 

and  a  -  b  >  0.     So,   a  >  b.     Hence,    if  c  >  0  then  if  a  >  b  +  c 

then  a  >  b.     Consequently,  V    V    V     if  z  >  0  then  if  x  >  y  +  z '       X     y     z 

then  X  >  y.     In  other  words,  VVV     ^„ifx>y+z  then  x  >  y. 

xyz>t) 
(d)  False  [2  +  0  ;<^  2] 

(e)  True 

Suppose  that  b  >  0.     Then,   a+b>a+0=a.     So,    if  b  >  0  then 

a  +  b  >  a.     Consequently,  V    V     if  y  >  0  then  x  +  y  >  x.     In  other 

X     y 

words,   V    V     ̂ „x+y>x. 
X     y  >  (J 

(f)  True 

Suppose  that  a  >  b  and  c  >  d.     Then,    since  a  >  b,   a  -  b  >  0, 

and  since  c  >  d,    c  -  d  >  0.     So,    (a  -  b)  +  (c  -  d)  >  0.     That  is, 

(a  +  c)  -  (b  +  d)  >  0.     Hence,   a  +  c  >  b  +  d.     Thus,    if  a  >  b  and 

c  >  d  then  a  +  c  >  b  +  d.     Consequently,  V    V    V    V    ifx>y 
X     y     u     V 

and  u  >  V  then  x  +  u  >  y  +  v. 

(g)  False  [3  >  1  and  5  >  1  but  3  J^  5] 
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(h)    True 

Suppose  that  a  >  b  and  b  >  c.     Then,   a  +  b  >  b  +  c.     So, 

a  +  b  >  c  +  b.     Hence,    a  >  c.     Consequently,  V  V  V     if  x  >  y 
^  '       X  y   z  •' 

and  y  >  z  then  x  >  z.     [The  relation  >  is  a  transitive  relation.  ] 

3.  (a)    Yes  (b)    No  [Perhaps  B  ̂ AC.  ] 

4.  (a)    Yes  (b)    Yes  (c)    No  [Perhaps  AB  =  A' B'.] 

'I* 

Answers  for  Supplementary  Exercises  for  Page  6-138. 

1.  By  definition,   each  of  the  altitude,   angle  bisector,   and  median 

from  a  vertex  of  a  triangle  is  a  segment  one  of  whose  end  points  is 

that  vertex  and  whose  other  end  point  is  on  the  line  containing  the 

side  of  the  triangle  opposite  that  vertex.     Also     by  definition,    the 

altitude  is  perpendicular  to  the  line  containing  the  base.     Hence, 

by  Theorem  4-9,   the  altitude  is  not  longer  than  the  angle  bisector 

or  the  median.     [Note  that  it  would  be  incorrect  to  change  'not 

longer'  to  'shorter'  since  in  an  isosceles  triangle  one  of  the  alti- 

tudes is^  one  of  the  nnedians.     Hence,    in  that  case,   an  altitude 

and  a  median  have  the  same  measure.] 

2.  AB  [The  figure  is  deliberately  misleading.] 
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Let  D  and  E  be  points  on  the  non-C-side  of  AB  and  belonging  to  the 

lines  containing  the  bisectors  of  the  exterior  angles  at  A  and  B, — ^  — > 
respectively.  It  can  be  shown  that  AD  and  BE  intersect  at  a  point  G 

interior  to  ZACB.  Since  Ge  AD.  it  follows,  by  Theorem  4-17,  that 

G  is  equidistant  from  AC  and  AB.     Similarly,   G  is  ecniidistant  from 

AB  and  BC.     Hence,   G  is  equidistant  from  AC  and  BC.     So,    since  G 

is  interior  to  ZACB,   it  follows,    by  Theorem  4-17,    that  G  belongs  to 

the  angle  bisector  of  ZACB,     Hence  [F  being  a  point,    other  than  C,  oi 

this  angle  bisector],  AD,    CF,   and  BE  are  concurrent. 

The  proof  that  AD  and  BE  intersect  at  a  point  G  interior  to  ZACB 

depends  on  theorems  on  parallel  lines  [see  section  6.  05].     Briefly, 

since  m(ZDAB)  is  half  that  of  another  angle,   ZDAB  is  acute.    Similarly, 

ZEBA  is  acute.     Since  ZDAB  and  ZEBA  are  both  acute,    they  are  not 

supplementary.     Hence,   AD  and  BE  intersect.     In  fact  since  ZDAB  and 

ZEBA  are  acute,   the  half-lines  AD  and  BE  intersect.     It  remains  to  be 

shown  that  the  point  G  at  which  they  intersect  is  interior  to  ZACB --that 

is,    that  G  is  on  the  B-side  of  AC  and  the  A-side  of  BC.     To  establish 

this,    it  is  sufficient,   because  of  Theorem  18,    to  show  that  D  is  on  the 

B-side  of  AC  and  that  E  is  on  the  A-side  of  BC.     Now,    since  D  belongs 

to  the  line  containing  the  bisectors  of  the  two  exterior  angles  at  A  [and 

since  D  /  A],    D  is  interior  to  one  of  these  two  exterior  angles.     That 

is,    either  D  is  on  the  C-side  of  AB  and  on  the  non-B-side  of  AC,    or  D 

is  on  the  non-C-side  of  AB  and  on  the  B-side  of  AC.     Since,   by  hypoth- 

esis ,    D  is  on  the  non-C-side  of  AB,   it  follows  that  it  is  on  the  B-side 

of  AC.     Similarly,   E  is  on  the  A-side  of  BC. 
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Correction.     On  page  6-423.,    change  line  6b  to: 

[See  Exercisers,    Part  B,   on  6-113.] T 
t 

3.  By  Theorem  4-1,    PX  +  PY  >  XY,    PY  +  PZ  >  YZ,   and  PZ  +  PX  >  ZX. 

So,    (PX  +  PY)  +  (PY  +  PZ)  +  (PZ  +  PX)  >  XY  +  YZ  +  ZX. 

But,    (PX+  PY)+  (PY+  PZ)+  (PZ+  PX)=  2(PX+  PY  +  PZ). 

Hence,    PX  +  PY  +  PZ  >  |(XY  +  YZ  +  ZX). 

4.  By  Exercise  3  of  Part  B  on  page  6-113,    PX  +  PY  <  XZ  +  ZY, 

PY  +  PZ  <  XY  +  XZ,   and  PZ  +  PX  <  YZ  +  YX.     So,    (PX  +  PY)  + 

(PY  +  PZ)  +  (PZ  +  PX)  <  (XZ  +  ZY)  +  (XY  +  YZ)  +  (YZ  +  YX). 

Therefore,    2(PX+  PY  +  PZ)  <  2(XZ  +  ZY  +  YX). 

Hence.    PX  +  PY  +  PZ  <  XZ  +  ZY  +  YX. 

[Exercises  3  and  4  tell  us  that  the  sum  of  the  distances  from  a 

point  in  the  interior  of  a  triangle  to  the  three  vertices  is  between 
the  semiperimeter  and  the  perimeter.] 

5.  c^  By  Theorem  4-1,   CM  <  CA+  AM 

and  CM  <  CB  +  MB. 

So,   2  •  CM  <  CA  +  CB  +  (AM  +  MB). 

^  MB         Therefore,   CM  <  j(CA  +  CB  +  AB). 

[You  can  get  a  simpler  proof  if  you  use  Part  H  on  page  6-116.] 

6.  «^C  Hypothesis;    IA^=/.A.^, 

ZB^  =ZB2. 

ZC^  =ZC2. 

\ 

Conclusion:    AD,   CF,   and  BE 

are  concurrent 
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Correction.     On  page  6-424,   line  lb  should  read: 

Conclusion:    m(ZCEB)  =    
ft  t 

Line  9  should  begin: 
of  two  consecutive  --- t 

Answers  for  Supplementary  Exercises  for  Page  6-151. 

1.       2x+  (x+  30)+   3x=   180,  x=  25;  75        2.     2x+70=180;55 

3.      x+  (x+  32)  =   180;  74 

5. 

4.     x+  (x+  30)  =   180;  75 

2x+  2y  =   180 

x+  y  =  90 

The  lines  which  contain  the  bisectors  are  perpendicular  to  each 

other. 

8. 

2x  =  2y x=   y 

The  lines  containing  the  bisectors 

are  parallel  to  each  other. 

From  the  figure,    C  is  interior  to  ZDBE.    ZDBC  ^  ZEBC  since  they 
»— > 

are  supplements  of  congruent  angles.     So,    BC  bisects  ZDBE. 

<— >        <-$• 

^^       Since  AB    |  |  CD,  Yi  +  Yg  =   ̂ ^O. 

But,    Yi  +  2a  =   180.     So,    y^^   2a. 

C      Since  Y2+  2(i  =   180,    2a  +  2(3  =   180. 

Hence,   a  +  p  =  90.     Therefore, 

m(ZCEB)  =  90. 

[See  pages  82-83  of  M.    Kline's  Mathematics  and  the  Physical 

World  (New  York:     Thomas  Y.    Crowell  Company,    1959)  for  a 

discussion  of  this  problem  and  others  involving  successive 

reflections  of  light  rays.  ] 
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r 9.       m(ZB)  =   180  -  60  -  65  =  55.     So,  IK  is  the  largest  angle  of  the 

triangle.     Hence,    BC  is  the  longest  side. 

10.      m(ZD)  +  m(ZE)  >  135.     So,   m(ZF)  <  45.     Hence,  ZF  is  the  smallest 

angle.     So,    DE  is  the  shortest  side. 

11. 

12.       p±  n 

Suppose  that  AB  >  BC.  Then,  p  >  a. 

So,  since  2p  =  180  -  a,  2a  <  180  -  a. 

Hence,   a  <  60. 

13,     p   II  n 

14. False.     [It  might  be  the  other  line  itself.] 15.     45 

16.  A  Bys.a.s.,   BAD  —  CAD  is  a 

congruence.     So,  ZB   =  ZC. 

By  Theorem  5-10,    since 
ZAED  is  an  exterior  angle  of 
A  ABE. 

m(ZAED)  =  m(ZB)  +  m(ZBAE). 

Also,   m(ZAFD)  =  m(ZC)  +  m(ZFAC). 

Since  ZBAE  ^  ZFAC  and  ZB  =  ZC, 

it  follows  that  ZAED  S  ZAFD. 

17.  By  Theorem  5-10,   m(ZCAE)  =   110.     So,   m{ZEAD)  =  55.     Since 

m(ZDBA)  =  30,    it  follows  from  Theorem  5-10  that  m(ZBDA)  =  25. 

[In  general,   m(ZBDA)  =  ̂ ' m(ZACB).  ] 
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Correction.     On  page  6-427, 

line  lb  should  begin: 

Find  m(ZD),   
tt      t 

Answers  for  Supplenrientary  Exercises  for  Page  6-157. 

1.       By  Theorem  5-10,   m(ZAOC)  =  m(ZB)  +  m(ZC).     By  hypothesis, 
CO  =  AO  and  AO  =  OB;  so,    CO  =  OB.     Hence,  ZB  =  ZC.     So, 

m(ZB)=  ;^-m(ZAOC). 

2.      [See  Exercise  8  on  page  6-424.] 

B 

By  Theorem  5-11,   m(ZA)  =  90  -  ̂ -mCZE). 
Since  ADEF  is  isosceles  with  vertex  angle  ZE, 

ZD  =  ZF.     So,   m(ZD)  =  90  -  |-m(ZE).     Hence, 

ZA  s  ZD.     So,   by  Theorem  5-6,  AB         DF. 

4.       (a)    70 
(b)    130 (c)    100 

m(ZB,)=  65,   m(ZC^)  =  115,   m(ZC„)  =  65,   m(ZD„)  =  65 

6. 

7. 

A m 

--^- —   -E- 

A n 

C 

M            A N 

A 

m     Suppose  that  p  is  the  line  parallel  to  m  and  to  n 

through  B.      Then,    m(ZA^)  =  a   and  m{lC^)  =  (:  . 

But,  a  +  (3  =  m(ZB    ).     So, 

mCZBg)  =  m(ZA^)  +  mUC^). 
<— » 

<— > 

Since  AE  x  AD,    BF 

Since  MN   |  |  BC,    it  follows  from  Theorem  5-3 
thatZMAB  S  ZABC  and  that  ZNAC  =  ZACB.     But, 

by  hypothesis,  ZMAB  =  ZNAC.     So.  ZABC  = 

ZACB.     So,   by  Theorem  3-5,  AABC  is  isosceles. 

AE,   and  BF CG,   it  follows  from  Theorem 

5-9  that  ZFBC  and  ZGCD  are  right  angles.     So,   by  Theorem  5-11, 

ZBCF  is  an  angle  of  50°.     Since  EB 

5-7  that  ZABE  is  an  angle  of  5  0' 

Theorem  5-7  that  ZD  is  an  angle  of  50° 

FC,    it  follows  from  Theorem 

Since  EB    I  I  GD,    it  follows  from 

TC[6-426,   427] 





Answers  for  Supplementary  Exercises  for  Page  6-178. 

1.  5x  -  1  =  i<9x+  3);  5 

2.  Since  MN  =   15  and  AC  =  2  •  MN.   AC  =  30.     But,   BD  =  AC.     So, 
BD  =  30. 

3.  Since  AB  =  DC,  x  +  4  =  3x  -  36  and  x  =  20.  So,  BC  =  2  •  20  -  16  = 
Since  BC  =  DA,  DA  =  24,  Also,  AB  =  20  +  4  and  DC  =  3-20  -  36. 
So,  AB  =  24  =  DC  =  BC  =  DA.     Hence,   ABCD  is  a  rhombus. 

24. 

Since  RS 
triangle. 

.  1 
So, NP  and  RS  =   10,    NP  =  20.     But,  A  MNP  is  a  30-60-90 

MP  =  i  •  NP.     That  is,   MP  =  10. 

Since  AABC  is  isosceles  and  BT  is  the  angle  bisector  from  B,    it  is 
also  the  median  from  B.     But,   ZB  is  a  right  angle.     So,   by  Theorem 
6-28,  AC  is  20. 

A(17+  22) 19.5        7.     [See  Exercise  1  of  Part  C  on  page  6-131.] 

Let  PR  be  the  line  parallel  to  AB  through  P. 

Then,    by  Exercise  2  of  Part  E  on  page  6-147, 
APRC  is  isosceles  with  vertex  angle  at  R.     So, 

by  Exercise  2    of  Part  *E  on  page  6-134, 
PE  =  CQ.     Also,   by  Theorem  6-29.    PD  =  QH. 
So.    PD  +  PE  =  CQ  +  QH  =  CH. 

Let  B'C  be  the  line  through  P  parallel  to  BC. 
Then,    since  AAB'C  is  isosceles  with  vertex 
angle  at  A,    PD  +  PE  is  the  measure  of  the  alti- 

tude of  AAB/  C'  from  C     But,    since  ZA  is  an 
angle  of  60°,   AAB'C  is  equilateral.     So,   the 
altitude  of  AAB'C  from  C  is  congruent  to  the 
one  from  A.     Hence,    PD  +  PE  =  AH'.     By  Theo- 

rem 6-29,    PF=  H'H.     So,    PD  +  PE  +  PF  = 
AH'  +  H'H  =  AH. <-> 

<— > 

10.     Let  Xe  AB  and  Z  €  DC.     Since  ZC    |  |  AX,  ZZCY  =  /XAY.     Also, 

since  quadrilateral  ABCD  is  a  parallelogram,    CY  =  AY.     Fmally_. 

ZXYA  S  ZZYC.     So.    XYA  —  ZYC  is  a  congruence.     Hence,    XY  -   
zlY. 

But,    XY  =  3.5.     So,    ZY  =   3.5.    and  XZ  =   7. 
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11.     60 12.     30[See  Exercise  5  on  page  6-150.] 

<   >         <   >  •-> 
13.  Since  RS   |  |  AC,  ZRDA   ^  ZDAC.     But.    since  AD  bisects  ZRAC, 

ZRAD  s  ZDAC.     So,   ZRAD  =  ZRDA.     Hence,  AR  =  RD.     Similarly, 
CS  =  SD.     So,    RS  =  AR+  CS.     Hence,    CS  =  32. 

14.  Since,  ZABC  is  an  angle  of  120°,    it  follows  that  ZA  is  an  angle  of 
60°.     So,   AABD  is  equilateral.     Hence,    BD  =  7. 

X  =  3.5 15.  16.     m(/U)  =  2[180  -  m(ZU)]; 

m(ZU)  =   120; 

m(ZW)  =   120 

17.  [Draw  an  equilateral  triangle  and  bisect  one  of  its  angles.  ] 

18.  Each  exterior  angle  is  an  angle  of  60°.  So,  for  example,  ZE  is  an 

angle  of  60°.  Similarly,  ZA  is  an  angle  of  60°.  So,  AAIE  is  equi- 
angular.    Hence,    it  is  equilateral. 

Draw  a  regular  pentagon  and  extend 

the  sides  so  that  each  side  is  the 

base  of  an  isosceles  triangle.     Each 

angle  of  the  regular  pentagon  BDFHJ 

is  an  angle  of  108°.     Each  exterior 

angle  is  an  angle  of  72°.     So,  ZA  is 

an  angle  of  36°,  ZABC  is  an  angle  of 

108°,  ZC  is  an  angle  of  36°,   etc. 

'1^ 

Answers  for  Supplementary  Exercises  for  Page  6-192  fon  page  6-430]. 

1.  Theorem  6-27 

2.  (a)    2/3  (b)    3/5  (c)    2/3  (d)    1;  1 

3.  (a)     10.5;  2/3  (b)    1^;  \/Z  (c)    7/9 
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Answers  for  Supplementary  Exercises  for  Page  6-202. 

1.     two        2.     one         3.     one        4.     0  5.     25  6.     9 

8.     81  9.     36        10.     30        11.     2  12.     783      13.     5163 

7.     144 

14.     835      15.     589      16.     347;  698 

18.  1873;  6952 

21.  64;  36 

26.  5:  7 

31.  ab 

35.  25;  3;  5;  3 

38.  28;  4;  7;  4;  7 

19.     1873;  6952 

22.     64;  36 

27.     18;  2 

32.     ab 

36.     500;  100;   10 

17.     1873;  6952 

20.     189;  189 

23.     5;  7       24.     5;  7       25.     one 

28.     p  29.     ab  30.     ab 

33.     ab  34.     one;  ab 

37.     49;  2;  49;  2;  7;  2 

39.     99;  9;  11;  9;  11 

40.     16;  10;   16;  10;  4      41.     36;  3;  36;  3;  3 

42.     9;  7;  3;  7  43.     363  44.     18  45.     10;  2's/TO 

46.     (a)    3\/34  (b)    2Nf26      (c)    l4l     (d)    ̂ /I  (e)    4     (f)    5      (g)    12 

(h)    3\/T  (i)     4Nf30      (j)     2'v/T     (k)    4^/6  (i)     (InTs  |      (m)     ||n/To 

(n)     \Y^ (o)     \t\4l (p)     |k|  (q)     IklN/T 

47.     (a)    12  (b)    30  (c)    90  (d)    8  (e)    20  (f)    66 
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Answers  for  Supplementary  Exercises  for  Page  6-219. 

1.     (a)    s  (b)    p+  r 
(c) 

(d)    - 

r 

2.     6 3.     12 4.     Yes;  ABC  -—  FDE  is  a  similarity 

-      AE  +  20  _    40      .-       ,o      , 

5-  AE        -    30'  ̂ ^=  ̂°      ̂'     x+4  -    10 
=    T77.    X  =  4 

7.     4 ft      BD  _    BE     AD+  3        20      .n-o 
**•     AD  "    EC         AD     -    15'       ̂ "  ̂  

9.     6^=  4 -DC.   DC  =  9 10.     x(20  -  x)  =  36;  2  and  20  -  2,   or  18 

11.     \r29  12.     4^/T  13.     2'srr5  14.     ISn/T 

15.     15n/T  16.     3k^yT  17.     10  18.     ̂ ^^5/2  19.    4 

20. 

^^40 

21.     No.     n/  8^  +  3^  =  'v/n  <  9 

[How  about  a  table  top  8.  5  feet  in  diameter?] 

18  32 

22.    AC  =  2  •  BM  =  20;  BC  =  2  •  MP  =  16;  AB  =  2  •  PB  =  12;  perimeter  =  48 

23.     5  in. 

24.     10 

26.     k  and  k-s/T 

AC  =  n/27  +  169 

=  14 

27.     3 

28.     By  the  a.  a.   similarity  theorem,    PBM  *-•  QDM  and  SBM  -—  RDM 

are  similarities.     So,    we  have  the  first  two  sentences  in  the 

Conclusion.    From  them  it  follows  that  ̂ M  =    fM  •     Now,   the  verti- MQ        MR 
cal  angles  ZSMP  and  ZRMQ  are  congruent.     So,   by  the  s.a.  s. 

similarity  theorem,    PSM  *-•  QRM  is  a  similarity. 

TC(6-433,  434.  435] 



Corrections.     On  page  6-436,    line  15b  should 
read: 

[Hint.     Use  Theorem  6-2%,] 
t 

and  line  14b  should  read: 

(b)   such  that  B  ̂   AC.   

•— •         •— •  AC        CT 
*29.     (a)    Since  AT   |  |  DB,    it  follows  fronm  Theorem  7-1  that    j-^  =    ̂ g  • 

It  also  follows  that  ZDBA  =  ZBAT  and  ZD  =  ZCAT.     But,  by- 

hypothesis,  ZBAT  S  ZCAT.     So,  ZDBA  =  ID.     Hence, 

AD=AB.     So,  fl    =||. 

(b)    By  part  (a),   j^  =  -^  .     But,   QM  =  —  -MP.     So,   ̂   =   — . 

■^30.     (a)    i-eti    be  the  line  parallel  to  BE  through  A.     Then,   by  Theorem 

6-27,    since  £    |  |  BE    |  |  C^  |  |  13" and  AE  =  EG  =  GI, 
AB  =  BC  =  CD. 

(b)    D  and  E  are  the  midpoints  of  BC  and  AB,    respectively. 

"^il.     (a)    AD'E'   —  ADE  and  AF'D'  *-  AFD  are  similarities. 

AD'        D'E'       ̂   AD'        F'D'       ̂ ,  .  D'E'  _    F'D' 
S°'    AD     =    "dE   ̂ "^  AD"    =  ~FD  •     Therefore,    -jg^  -    -j^ . 

That  is.   §|-  =  §J§^.     But,    F'D'  =  D'E'.     So,    FD  =  DE. 

Hence,    rectangle  FDEG  is  a  square. 

(b)    Choose  a  point  A'  e  MN,   and  draw  the  perpendicular  segment 

from  A'  to  MP.     Let  B'  be  the  foot  of  this  perpendicular. 

Then,    construct  a  square  A'B'C'D'  with  C  €  B'P.     The  half- 

line  MD'  intersects  NP  in  one  vertex  of  the  required  square. 

There  are  many  problems  which  can  be  solved  in  a  manner  similar  to 
Exercise  31(b).     Here  are  two: 

(a)  Draw  a  square  two  of  whose  vertices  belong  to  a  given  arc,   while 
each  of  its  other  vertices  belongs  to  one  of  the  radii  to  the  end  points 
of  the  arc. 

(b)  Draw  a  circle  which  is  internally  tangent  to  a  given  arc  and  is  also 

tangent  to  the  rays  which  contain  the  radii  to  the  end  points  of  the  arc. 
TC[6-436]a 
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In  each  picture,   the  dotted  lines  are  "construction  lines".     One  obtains 
an  interesting  modification  of  problem  (b)  by  replacing  'internally*  by 
'externally*.     A  slightly  nnore  difficult  problem  of  the  same  kind: 

(c)    Draw  a  circle  which  is  tangent  to  a  given  line  and  which  contains  two 
given  points. 

There  are  several  cases  which  must  be  treated  for  a  complete  solution, 

but  the  "general  case"  is  illustrated  by  figure  (c).  Note  that  there  are two  solutions.  \ 

Although  part  (b)  of  Exercise  31  and  each  of  the  problems  (a),    (b),   and 
(c),   above,   has  been  stated  as  a  problem  in  mechanical  drawing,   each 
of  them  corresponds  to  an  existence  theorem.     The  justification  for  the 
solution  of  problenn  (a)  can,   for  example,   be  taken  as  a  proof  of  the 
theorem: 

For  each  minor  arc,    there  exists  a  circle  which  is  internally 
tangent  to  it  and  tangent  to  the  radii  to  its  end  points. 

TC[6-436]b 
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The  range  is  the  length  of  the  hypotenuse  of  a  right  triangle  in  a 

vertical  plane  through  T  and  G. 

Jp     G'  is  the  actual  position  of  the  gun  and,   by  figure  (3) 

is  [6000  -  3000  cos  50°]  feet  above  its  projection  G. 

(5)  So,   CG'  =  6000  -  1928  =  4072.     GT  can  be  com- 

puted from  figure  (4).     Since   a=  52,  p   =8,   and  GT  =  12867  cos  8°  + 

2298  cos  52"  =   12742+   1415  =   14157.     G'T  can,    with  considerable 

labor,   be  found  by  using  the  Pythagorean  Theorem.     However,    it 

is  less  work  to  find  the  angle  of  depression  of  T  from  G',   and  use 

this  to  compute  G'T.     [The  gunners  will  want  to  know  this  angle, 

anyway.]    From  figure  (5),    tan 5°  =    7^   -   TTTTt"^    0.2876.     So, 

6  =  16.     Finally,   G'T  =  -^-^  =    }^}u\    =  14727.     So,   the  desired '  cos  5  0. 9613 

range  is  about  14730  feet. 

tan(90  -  a)»  =   ̂^qgoq^^  =  7.92    So,    90  -a 

is  approximately  83°,   and  the  minimum 

15  X  5280  angle  of  climb  is  an  angle  of  about  7°. 

TC[6-437]c 
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3. 

N, 

30-|^o 

d=  230  sin  1°  =  4.025 

So,  at  closest,   he  will  be  about  4  miles 

from  Zilchville. 

4.     (a)    3.6  feet         (b)    about  78'       (c)    8  sin  79'  feet;  so,   about  7.85  feet 

5. 

s  =  4.     So,    the  perimeter  is  24  and  d  =  4^^3. 

6.     This  is  a  rather  complex  exercise.     Projecting  the  observer,   tanks, 

and  guns  on  a  horizontal  plane  we  obtain  figure  (1).     Evidently,    the 

desired  bearing  is  N{a  +  10)°  W.     Since  ZTOG  is  an  angle  of  120'  we 
can  find  a  once  we  have  computed  OT  and  OG.  To 

find  OT  and  OG,  we  consider  vertical  planes  con- 

taining O  and  T,   and  O  and  G,    respectively. 

3000 

(2)  ^  (3) 
From  figure  (2),    OT  =  6000  tan  65°  =  12867.     From  figure  (3), 

OG  =  3000  sin  50°  =  2298.     Since  [see  figure  (4)]  OP  =  |-  OG,    it 
follows  that  TP  =  12867  +  1149  = 

12867 
14016.     Since,  also,  PG  =  -^  •  OG, 

PG  =  1990.     Hence,   tan  (a  +  30)°  = 

■^^mi  =    7  and  a  +  30  =  82.     Conse- 

quently,  the  desired  bearing  is  No2°W. 

TC[6-437]b 
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Answers  for  Supplementary  Exercises  for  Page  6-230. 

Choose  a  mark  C  on  the  opposite  side  of 

the  river  and  two  positions  A  and  B  which 

are  50  feet  apart  and  such  thatZCAB  and 

ZCBA  are  both  acute. 

=   tan  p  • ,   it 

— j~; — .        -  o  3-n-d 
a    +  tan  £ 

o-  d       .  o        J         d 
Since  —  =  tan  a     and  ■=-= — 
X  50  - 

follows  that  X  tan  a"  =  (50  -  x)  tan  p°.     So,   x  = 

-  50  tan  g*    •  tan  p' a 

tan  a'  +  tan  p 
e 

tan  a*  +  tan  p °^ 

[If  the  river  is  very  wide,   the  surveyor  can  obtain  a  more  accurate 

measure  of  its  width  by  choosing  a  longer  base  line,    say,   one  which 

is  100  yards  long.     He  may  also  save  computation  by  choosing  B, 

say,    so  that  ZCBA  is  approximately  a  right  angle,   and  using  the 

formula  'd  =  50  tan  a"] 

d=  75  tan  80°=  425. 

So,   the  smoke  is  about  425  feet  from  the  base 

of  the  tower. 

A  sensible  answer  for  part  (b)  is  that  the  fire 

is  about  2  miles  from  headquarters.     How- 

ever,  for  computational  practice,   the  solution 

may  be  carried  out  in  the  style  of  Exercise  5 

on  page  6-229.     On  doing  so,    it  turns  out  that 
a  is  about  2.3  and  that  d  is  approximately 

10517.     So,   the  fire  is  about  43  feet  less  than 

2  miles  from  headquarters.     [If  one  accepts  2 

as  an  approximation  for  a,   one  obtains  10515 

as  an  approximation  for  d.] 
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Answers  for  Supplementary  Exercises  for  Page  6-316. 

1.     37  2.     60  3,     140  4.     40  5.     101 

6.     80  7.     30  8.     117  9.     75;     105 

10.  One  of  the  angles,  ZPAC  and/PAE,    is  an  angle  of  60",   and  the  other 

is  an  angle  of  120';  m(ZPAD)  =  90. 

11.  130  12.     25 

■J, 

'I" 

Answers  for  Supplementary  Exercises  for  Page  6-334. 

1.     About  48.  2.     7/3  3.     6  4.     18  5.     7.5 

6.  By  Theorem  10-3  and  Theorem  10-29,    half  the  measure  of  the  chord 
is  the  measure  of  the  altitude  to  the  hypotenuse  of  a  right  triangle 
whose  hypotenuse  is  the  given  diameter.     So,    the  desired  result  fol- 

lows by  Theorem  7-4. 

7.  10  inches  8.     24  9.     4^/T  inches;    60 

10.  By  s.a.s.,  ADB  -*—  BDC  is  a  congruence.     So,  AB  =  BC. 

11.  Since  ZODA  is  inscribed  in  a  semicircle,   it  is,   by  Theorem  10-29, 

a  right  angle.     So,   by  Theorem  10-20,    BC  =  AC. 

12.  The  nneasure  of  each  of  the  arcs  into  which  the  bisector  of  the  angle 
divides  the  intercepted  arc  is,    by  Theorem  10-22  and  the  definition 
of  angle  bisector,    twice  half  the  measure  of  the  given  angle.     Since 
they  have  the  same  measure,   the  arcs  are  congruent. 

li.     (a)    100  (b)    55  (c)    90  (d)    P  =  80;  x  =  80 

14.     Since  the  base  angles  of  an  isosceles  triangle  are  congruent,    it  fol- 
lows,  by  Theorem  10-22,   that  the  arcs  intercepted  by  the  base  angles 

of  an  inscribed  isosceles  triangle  are  congruent.     So  [unless  the 

tangents  at  the  vertices  of  the  base  angles  are  parallel]  the  points 
of  intersection  of  the  tangents  are  the  vertices  of  a  triangle  which, 

by  Theorem  10-26  has  two  congruent  angles. 

15.     About  20  inches.  TC[6-438,    439.    440] 
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Corrections.     On page  6-441,    line  9  should read: 

of  radius 

7 [inch]  which   
and  line  7b  should  end: 

"  ■•  ~ in  feet  pe r  minute,   of 

40 
16.     A  radius  of  the  rope  circle  is  —  feet  longer  than  a  radius  of  the 

40 
earth.     Since  —  >  6.36,   a  6  foot  4  inch  person  could  walk  under 

the  rope  without  stooping.     Since  the  record  for  the  high-jump  is 4 
7  feet  3^  inches  [and  — 
to  jump  over  the  rope. 

7  feet  3^  inches  [and  —  <  6.  37],    some  people  would  find  it  possible 

17.     The  center  of  the  arc  is  at  the  intersection  of  the  bisector  of  ZCBA 
<-^  <-^ 

and  the  line  parallel  to  AB  which  is  on  the  C-side  of  AB  and  jinch <-> 
from  AB. 

18.  27r(6  -  1)  =  31.4.     So,   the  second  man  runs  about  31.4  feet  further 
than  the  first. 

19.  SOOtt  feet  per  minute 

20.  By  Exercise  1  of  Part  B  on  Page  6-291,   and  Axiom  A,   the  centers 

of  the  circles  are  the  vertices  of  an  equilateral  triangle  whose  sides 

contain  the  points  of  tangency.     Since  the  degree -measure  of  each 

angle  of  an  equilateral  triangle  is  60,    the  degree-measure  of  each 
of  the  arcs  SR,    RT,    and  TS  is  60.     So,   the  sum  of  these  measures 

is  180. 
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Answers  for  Review  Exercises. 

The  Review  Exercises  are  designed  to  give  the  students  additional 

practice  in  solving  "numericals",    "originals",    and  construction 
problems.     They  nnay  be  used  while  the  students  are  studying  later  units 

to  help  maintain  the  students'  efficiency  in  geometry  and  also  as  a 
"break"  from  some  of  the  algebraic  work. 

1.     2100  [2(3x+  7x)  =  200] 

2. 

A        P 

By  hypothesis,   BRPS  is  a  parallelogram. 

So,    RP  =  BS.     Since  BA  =  BC,  IK  =  ZC 

and,    since  AB    |  |  PS,  ZA  ̂   ZSPC.     Thus, 

ZSPC  S  ZC.     Therefore,    SC  =  SP.     Hence, 

RP+  PS  =  BS+  SC  =  BC. 

3.     1  :  4  [See  Exercise  1  of  Part  B  on  page  6-336.  ] 

By  hypothesis,   AB  =  BC  =  CD,    and  BC    |  |  AD. 

Since  AB  =  BC,   ZC,  =  ZA  _     Also,    since 

BC    I  I  AD,   IC^  =  ZAg.     Hence,   ZA^  S  ZA^. 

Similarly,  ZD^^   ̂   ZDg.     [Ask  your  students 

what  type  of  quadrilateral  ABCD  is  if  the 

diagonals  bisect  the  angles  at  C  and  B  as  well  as  those  at  A  and  D.  ] 

5. a  =  40 

Since  BE  and  CD  are  angle  bisectors, 

a=   180  -  2[m(ZB2)+  mfZC^)].     Also, 

m(ZB2)  +  m(ZC2)  =   180  -  110  =   70. 
Thus,  Q  =   180  -  2(70)  =  40. 

[Note  that  the  condition  'AB  S  AC  is  not 
necessary.] 

TC[6-442]a 



/ 



7^='s/y 

Since  ABCD  is  a  parallelogram,   AD    (  (   BC, 

AD  ̂     BC,   andZCg  =  ZA^.     Since  E  and  F 

are  the  first  and  third  quadrisection  points, 

respectively,    of  AC,   AE  S   FC.     So,   by 

s.a.s.,   ADE  -*—  CBF  is  a  congruence,    and 

ED  =    FB.     Similarly,    FD  =   EB.     Hence, 

EDFB  is  a  parallelogram. 

«-> 
<— $► 

<-^- 

«-> 

By  hypothesis,    EP   |  |  AF   |  |   EC.     Hence,    EP   |  |   BC,      Thus, 

ZAEP  =  ZB.     Since  ZEAP  S  ZBAC  and  ZAEP  S  ZB,    EAP  »-  BAC  is 

a  similarity.      Thus,   AE/AB  =  EP/BC.     Since  ABCD  and  EPFA  are 

parallelograms,   AE  =   PF,    EP  =  AF,   AB  =  CD,    and  BC  =  AD.     So, 
AE 
AB 

PF 
CD 

EP 

BC 

AF 

AD* 

Also,    since  ZAEP  S  ZB,   ZEAF  ^  ZBAD, 

ZEPF  =  ZBCD  [each  is  congruent  to  ZEAF],    andZPFA  =  ZCDA 

[PF  I  I  AB    II   CD],   AEPF-^-  ABCD  is  a  similarity,     [See  definition 

on  page  6-192. ] 
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14.  AB  =  AC,  AC  =  AB',    andZBAC'S  ZCAB'.     Hence,  ABC'—*  ACB' 

is  a  congruence,   and  BC'  =  B'C  .     [it  is  sufficient  that  the  triangles 
be  isosceles  with  congruent  vertex  angles.  ] 

15.  an  angle  of  45° 

4  3 
16.  cos  ZA  =   — ;    tan  ZA  =  - 

17.  Suppose  that  m(ZAEB)  =  y.   m(ZBDC)  =  p,   m(ZBAC)  =  a,   and 

m(ZBCA)  =  6  .     Since  BC  =  CD  and  BD  =  DE,   m{ZDBC)  =  p  and 

ni(ZDBE)  =  Y.     So,    p  =  Zy  and  6  =  2p,    by  the  exterior  angle  theorem. 

Thus,  5    =  4v.     That  is,    m(ZAEB)  =  :f  •  m{ZBCA). 

Since  CA  =  CB  and  CB  =  CD,    CA  =  CD.     So,    BC  is  a  nnedian  to  AD. 

Hence,    since  CB  =  CA,      ABD  is  a  right  angle.     So,  ZA  and  ZADB 

are  complementary. 
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9.     By  hypothesis,  T'S'xAB,    T'S'   t|   P'R',   and  T'P'   ||  BA.     Thus, 
<   >        <  > 

P'T'S'R-'  is   a  rectangle.     Since  PRST  is  a  square,    PT   |  |  AB.     Since, 

T'P'    I  I  AB,    PT   I  I   P'T'.     So,  APT  —  A'P'T'  is   a  similarity. 

AP  PT 

Hence,   -r-^,  =    pT^p-.     Also,   APR  ■•—  AP'R'  is  a  similarity.     So, 

AP    _       PR       „  PT  _      PR        ̂ ,  PT 
AP'  ~    P'R'*     "S'^ce,    pz-p/  -    p'j^' •      -J-hus,    p^ 

P'T' 

^D  '  • 

P'R 

PT  r  P'T' 
But,    p^  =    1.     [PTSR  is  a  square.]    Hence,    j^/u>  =    1.     That  is, 

P'T'  =  P'R'.     Thus,    since  P'R'S'T'  is  a  rectangle  and  P'T'  =  P'R', 

P'R'S'T'  is  a  square. 

10.     6  ft;  6  ft 

3 
5 

X 

10 [Your  students  nnay  come  up  with  a  statement  something  like  this: 

No  matter  how  long  the  see-saw  is,    one  end  of 
the  board  will  rise  6  feet  above  the  ground. 

This  is  incorrect.     Try  a  see-saw  5  feet  long.] 

11.     200(.  1736)  <  Area-measure  <  200(.  9848) 

200(,  1736)  <  Area-measure  <  200 

[in  general,    if  two  sides  of  a  parallelogram  nneasure  a  and  b, 

respectively,    and  the  degree-measure  6   of  the  included  angle  is  a 
number  between  a  and  p,  P   <  90,    then  ab^  sin  a"  <  area-measure 

^ab'sinp".     If  p   >  90,    then  ab  •  sin  a°  <  area-measure  <  ab.  ] 

12.     110 
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18.     (a)    Analytic  proof: 

<-^        b 

slope  (CO)  =   — 

slope  (EO)  =    - 
B(2,  0) 

Since  AADB  is  a  right  triangle,   [d(AD)]2  +  [d(DB)]^  =  [d(AB)]^. 

Thus,    4a^  +  4b^  +  4  +  4b^  =  4  -  8a  +  4a^.     Hence,   b^  =   -a.     There- 

fore,    slope  (CO)  •  slope  (EO)  =    ̂^       -^  =    -1.    So,    CO  x  EO  and a         a 

AEOC  is  a  right  triangle. 

(b)    Synthetic  proof: 

By  hypothesis,    D  and  E  are  midpoints, 
*  •  • — • 

respectively,    of  AB  and  AC.     So, 

DE    I  I  BC.     Thus,   m(ZDFB)  =  m(ZFDE) 

[Alt.   int.   angles].     Since  AF  is  an  alti- 

tude,  AAFB  is  a  right  triangle  with 

hypotenuse  AB,     Since  D  is  the  midpoint  of  AB,    FD  =  DB,     [The 

measure  of  the  median  to  the  hypotenuse  of  a  right  triangle  is  half 

the  measure  of  the  hypotenuse.]     Thus,   m(ZDBF)  =  m(ZDFB),     So, 

since  m(ZDFB)  =  m(ZFDE),   m(ZDBF)  =  m(ZFDE),     Similarly, 

m(ZFCE)  =  m(ZFED).     Now,    since  ZBAC  is  a  right  angle,    it  follows 

that  m(ZDBF)  +  m(ZFCE)  =  90.     So,   m(ZFDE)  +  m(ZFED)  =  90, 

Hence,   m(ZDFE)  =  90  [Sum  of  the  angle  measures  of  a  triangle  is 

180,].     That  is,   ADFE  is  a  right  triangle. 
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Since  PB  =  5.    OB  = 'n/ r^  +  25.     So,   the  area- 
g  measure  of  the  larger  circle  is  jr(r^  +  25), 

Hence,    the  area-measure  of  the  circular  ring 
is  7r(r^+  25)  -  ffr^    that  is,    25^. 

sinZB  =    11=  .96 sinC/C)  =    .  28 

cos  ZB  =    -^  =    .  28  cos  ZC  =    .96 

tanZB  =    4^^3.4286    tan  ZC    =    .2917 

C    m(ZB)    =  74  m{ZC)     =    16 

^21. 

I    [See  Part  C  on  page  6-113.] 

CP  =  4  [ACPA'  ~  ADPB] 
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25. 

Case  1.     A  =  5  •  5 25 

•N/l 

00 
25 

4 

=  ̂'vri5 4 

7.5 Case  2.     A  =   ̂   -  10  -  \l  ~-   -  Z5 

GAF  -^-^^  GCE  is  a  congruence. 

Hence,  ZGAF  S  ZGCE. 

So,   AD   II  BC.     Thus,    if  AD  =  BC, 

ABCD  is  a  parallelogram.     If  AD  /  BC, 

ABCD  is  a  trapezoid. 

26.     -J-,    bit 27.      1440 

28.     51^ 

29.     (n  -  2)  180  =   12-  360 

n  -  2  =   24 

n  =   26 

30.      110 
31.     if^[2;r  -  3«/3] 
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Correction.     On  page  6-445,   line  lib  should  end 

'.  .  .a  trapezoid  or  a  parallelograrn*. 

Line  9b  should  end  ' .  .  .  and  B  ?  ' . 
t 

*22.     Suppose  w  is  the  width  of  the  rectangle  [which  has  perimeter  p] 

of  largest  area -measure.     Then  i  =    ̂   -  w,   and  the  area-measure 

is  w(^  -  w).     So, 

A  =  w(^  -  w) 

=   — w  +  ̂ w 

=  ~[w2 
w 

^  +  ̂ 1  +  x 

-^1  + 

16J^
 

16 
£l2  j.^ 

Hence,  A  is  a  maximum  when  w  =  ̂ .  Since  i  =  ̂   -  w,  the  length 

is  also  ̂ .  [There  is  no  rectangle  with  perimeter  p  and  snnallest 
area-measure,  ] 

^23. 
A Consider  the  similar  triangles, 

ABDE  and  ABAC. 

D 

y^
 

i         X 

W 

A G 
<^   -     b        

j^ — . c 

h  - 

h 
w 

SL 

~  b* 

b(h - 

w) 

So,    the  area -measure  of  rectangle  DEFG  is        '     "  ̂'  ,  or  -^w^  +  bw. h  h 

A  =   -^w^  +  bw h 

b.2       1        .h,.bh 
=   -^(w^  -  hw+  ̂ )+  -^ 

Hence,   the  maxintium  area  is  obtained  when  w  =  j*     Thus,    D  and  E 
• — •  • — > 

are  the  midpoints  of  AB  and  BC  respectively. 
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32.    AEB  — '  CFD  is  a  congruence  [h.  i].     Thus,   AE  =  CF.     Since 

AE    i  I    CF  [ABCD  is  a  parallelogram]  and  AE  =  CF,  AECF  is  a 

parallelogram.     So,    GF   ||    EH.     Also,    GE   |  |   FH  [Theorems  5-9 

and  5-8].     Since  GF  |  |   EH  and  GE   j  |  FH,    EHFG  is  a  parallelogram. 
■^-> 

<-> 

33.    Consider  ABGC.     KN  =  |  •  GC  and  KN  |  |   GC   [midpoint  theorem  for 

triangles].     Sinrxilarly,   in  AAGC,    LM  =  j *  GC  and  LM  |  |   GC.    Hence, 

KN  =  LM  and  KN  |  |    LM.     So,    KNML  is  a  parallelogram.     Conse- 

quently,   LN  and  KM  bisect  each  other. 

34.    By  definition,   the  centroid  of  a  triangle  is  the  intersection  of  the 

medians  of  the  triangle.     But,    in  an  equilateral  triangle,    the  median 

fronn  a  vertex  is  the  angle  bisector  from  that  vertex.      Thus,   the 

intersection  of  the  medians  is  the  intersection  of  the  angle  bisectors; 

that  is,   the  centroid  of  an  equilateral  triangle  is  the  incenter  of  the 

equilateral  triangle.      Now,    use  Exercise  3  of  Part  E  on  page  6-283. 

36. 

K{A^)    =   K(Ag^)    "^ 

K(^) 

K{^).  ̂  

K(A  ) 
2 

\  congruent  bases /  and  same  altitude 
and   K(A^) 

Also.    K{AJ  +  K(A^)  +  K(^)  =  K(A^)  +  K{A^)  +  K(A^).     Hence, 

Z'Ki^^)  +  K{^)  =  2    KlA^)  +  K(A^).     But,    KlA^ )  =  K(£^). 

So,    K{A^)  =  KlA^).     Consequently,    K(^)  =  K(A^)  =  KiAj  =  K(^  ). 

Similarly,   we  can  establish  that  K(A^)  =  KiA^)  =  K{A^  )  =  KiA^)  =  K(^  ) 

TC[6-446]a 



/ 



36.    A,    C,    and  D  belong  to  the  circle  with  center  B.      Thus,   ZDAC  is  an 

inscribed  angle  which  intercepts  the  same  arc  as  central  angle 

ZCBD.     Since  ABCD  is  equilateral,    m(ZCBD)  =  60.     Consequently, 

m(ZDAC)  =  30. 

37. K(APCD) 

K(AAPD) 

K(APBC) 

=    Tbh 

3' 

ib,h 

ib^h 

Thus,    K(AAPD)  +  K(APBC)   =   ̂ b^h  +  fb^h  =  |h(b^  +  b^) 

=  jhb  =  K{APCD). 

38.    Ratio  of  their  perimeters  is   ̂ . 

Ratio  of  the  area-measures  is   yy  . 

The  area  of  the   smaller  is   100  square  inches. 
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43. 
Distance:     17  miles;    Bearing:     S62'E 

ll   =  tan  58° 

X   =    8 

^  =  tan  (ZNTL) 

62    I   m{ZNTL) 

44. 
R 

12 

B 

r 
I 

\ 

\ 

/    \ 

'      o    58  A ^79  ^3 
60 

The  length  of  the  flag  pole  is  approxi- 

mately 16.  3  feet. 
BR  ..  coo 

-7-yr    =  tan  5  8" 60 
BR    1    96 

FP 
Hence,    BF  =    84.      Thus,    ̂     1   tan  IT 
So,    FP   =    16.  3. 

45.     80 46.       10,     11,     and  12.     [Suppose  x  is  the 

measure  of  the  edge  of  the  center  cube. 

Then,    5(x  +  1)^  +  4x^  +  4(x  -   1)^  =  1604.] 

47.     (a)    X  =  80;    m(DF)  =  80;    m(FG)  =  108;    m(GC)  =  122 

(b)    m(ZCHG)  =  101;    m(ZE)  =  21;    m(ZACG)  =  61;    m(ZGFK)  =  94 
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Correction.     On  page  6-447,    line  2 
should  read: 

  a  diagonal.     Prove  it^ 
t 

On  page  6-448,   line  5b  should  begin 
'an  arc   '. t 
Since  ABCD  is  a  parallelogram,   O 

is  the  midpoint  of  AC  and  BD.     So, 

CO  is  a  median  of  ADBC.     Since  DE 

is  also  a  median  of  ADBC  [E  is  the 

midpoint  of  BC],    it  follows  that 

CH=2'HO.     Similarly,   AG  =  2*  GO. 

Hence,    CO  =  3  •  HO  and  AO  =  3  •  GO.     Since  CO  =  AO,    HO  =  GO. 

Therefore,    CH  =  2  •  HO  =  AG;  also,    2*  HO  =  HG.    So,    CH  =  HG  =  GA. 

40.    50VT  [GC  =  GA  =  CA  =  10^/2".     K(AACG)  =  ii°l^  •  VF  ] 

41. 
12 

[x^  +  r^  =  9    and  (5   -  x)^    +  r^  =  16;    so,    9  -  x^  =  16   -  (5   -  x)^] 

42. 
Suppose  that  E  is  the  foot  of  the  per- 

pendicular from  P  to  DA,    and  F  is  the 

foot  of  the  perpendicular  from  B  to 

DA.      Then,   ADEP  and  ADFB  are 

right  triangles,    and,    since  ZPDE  = 

ZBDF,    DEP  — -^  DFB  is  a  similarity. 

By  Exercise  39,    DP  =  ̂DB;    so,    EP  =   jFB,    that  is,    h  =  jh'. 
Since  AAPD  and  AABD  have  the  same  base,    it  follows  that 

1 1 

K<AAPD)  =  J  •  K(AABD).     Now,    since  K(AABD)  =  j'  K(,^ABCD), 

K(AAPD)  =  T-' K(/!li7ABCD).     Hence,   the  ratio  of  the  area-measure D 

of  AAPD  to  the  area-measure  of  ̂ ^ABCD  is   -r . 
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Summarizing,    if  the  conditions  of  this  exercise  be  supplemented 

in  any  one  of  three  ways:     (1)  ZA  is  not  acute:     (2)    BD  >  BA; 

(3)    AD   I  I  BC,   then  it  follows  that  ABCD  is  a  parallelogram. 

51.  26 

52.  By  Theorem  6-17,   ABCD  is  a  rhombus.     Thus,   by  Theorem 

6-12,  ABCD  is  a  rectangle.     Hence,   by  definition,   each  of  the 

angles  is  a  right  angle. 

53. 

54. 

55. 

13  inches 

n/3*+  4*+  12^=  13 

He  could  measure  any  convenient  distance 

along  AB  and  along  AD.     Then,    he  could 

use  Theorem  7-6  to  determine  the  length 

of  a  piece  of  wood  to  nail  at  P  and  Q. 

ZADB  and  ZBDC  are  right  angles  [inscribed 

in  a  semicircle].     Thus,  ZADB  and  ZBDC 

are  supplementary.     Hence,   by  Theorem 

2-9.    DA  and  DC  are  collinear;  that  is.  A, 

D,    and  C  are  collinear. 
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Correction.     On  page  6-449,   line  12 

should  end  with  '   a  parallelogram?'. t 

48.    112;    128;    120;    82 49.     200  ft.     [The  grade  of  the  highway  is 
the  slope  of  the  highway.] 

50.    [This  exercise  furnishes  a  good  opportunity  to  review  pages  6-128 
and  6-129.] 

The  given  conditions  are  not  sufficient  to  insure  that  ABCD  be  a 

parallelogram.     The  natural  procedure  to  use  in  attempting  to 

show  that  quadrilateral  ABCD  is  a  parallelogram  is  to  prove  that 

ABD  —-*  CDB  is  a  congruence,   and  then  use  Theorem  6-6.     Now, 

since  ZA  =  ZC,   AB  =  CD,    and  BD  =  DB,   we  can  argue  by  Theorena 

4-14  that  if  ZA  is  not  acute  then  ABD  *-*  CDB  is  a  congruence.    Or, 

using  a  slight  extension  of  the  theorem  at  the  foot  of  TC[6-128,   129]a, 

we  can  argue  that  if  BD  >  BA  then  ABD  —*■  CDB  is  a  congruence. 
[This  includes  the  case  in  which  ZA  is  not  acute,    for  it  ZA  is  not 

acute  then  m(ZA)  >  m(ZD),    and  BD  >  BA.] 

However,    if  BD  <   BA,   then  AABD  and  ACDB  need  not  be  congruent. 

[if  they  are  not  congruent,   ZADB  andZCBD  are  supplementary.] 
D  C 

So,    ABCD  need  not  be  a  parallelogrann.     However,    if  one  knows 

that  AD  I  I  BC  then  ZADB  and  ZCBD  are  known  to  be  congruent,   and 

ABD  — -*  CDB  is  a  congruence.     So,    one  has  an  additional  theorem 

on  parallelograms,    reminiscent  of  Theorenns  6-6,    6-8,   and  6-10: 

If  two  sides  of  a  quadrilateral  are  paraxlel,   two  sides 

are  congruent,    cuid  two  opposite  angles  are  congruent, 

then  the  quadrilateral  is  a  parallelogrann. 
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Correction.     On  page  6-450,    line  6 

should  begin  **57,    .  .  .'. 

56.     a+  m(/BAD)  +   Y+  m(^BCD)  =   360.     By  Theorem  6-30, 

P  +  m(ZBAD)  +   5  +  m(ZBCD)  =   360.     Hence,    a  +   y  =  P  +  6  . 

'^57.  T5  Let  I  be  the  incenter,   E  the  excenter,   and 
M  the  midpoint  of  IE.     Our  job  is  to  show 

that  A,    B,    C,   and  M  are  concyclic.     We  can 

do  this  by  showing  that  ZABC  and  ZAMC  are 

supplementary.     [See  COMMENTARY  for 

Exercise  6  on  page  6-3  16.]    Since  AE  and 

AI  are  bisectors  of  supplementary  angles, 

ZIAE     is  a  right  angle  [Exercise  1  of  Part 

C  on  page  6-110],     Similarly,  ZICE  is  a 

right  angle.     Consequently,    since  M  is  the 

midpoint  of  IE,    MA  =  MI  =  MC  =  ME 

[Theorem  6-28],     Thus,    M  is  the  circum- 

center  of  AICE.     So,   m(ZAMC)  =  2-m(ZAEC). 

Now,   m(ZAEC)  +  90  +  a  +  2p  +  y  +  90  »  36  0  [Theorem  6-30],     Thus, 

mCZAMC)  =  2[360  -  180  -  a  -  2p  -  y] 

=  360  -  (2a  +  2p  +  2y)  -  2p 

=  360  -  180  -  2p 

=   180  -  2p 

So,    m(ZAMC)  +  m(ZABC)  =   180  -  Zp  +  2p  =   180, 

58.     See  Davis,    D.  R.  ,    Modern  College  Geometry,    (Cambridge,    Mass.: 

Addison-Wesley  Publishing  Company,    Inc.  ,    1949)  on  the  "nine-point circle    . 
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Corrections.      On  page  6-452,    line  6,    change 

'endpoints'  to  'end  points'.     Also,    delete  parts 
(g)  and  (k)  of  Exercise  59. 

On  page  6-543,    line  2  should  read: 

(a)    at  a  distance   —  from  a  point  Q; 
Line  3b  should  read: 

(a)  at  a  given  distance  from  a  point  C; 

Line  2b  should  read: 

(b)  at  a  given  distance  from  a  linei; 

59.      (a)     The  intersection  of  two  circles  with  radius  3  and  centers 
A  and  B. 

[Note;     'two  points'  means  'two  particular  but  unspecified 
points'.     A  similar  convention  applies  to  the  rest  of  these  locus 
problems.  ] 

(b)  A  line  parallel  to  the  given  lines  and  "halfway"  between  them. 

(c)  A  circle  with  radius  one  half  that  of  the  given  circle  and  concentric 
with  the  given  circle. 

(d)  The  median  to  the  given  side  less  its  end  points. 

(e) 

Distance  from  a  point  P  to  a  line  i  has  been  defined  as  the  measure  of  the 
the  shortest  segment  from  P  to  i.     It  seems  reasonable  to  define  dis- 

tance from  a  point  P  to  any  set  of  points  in  a  sinnilar  way.     Hence,    by 

'the  distance  irom.  P  to  s'  we  mean  the  measure  of  the  shortest  segment 
PQ  where  Q  e   s. 

(f)    A  circle  concentric  with  the  given  circle  and  with  radius  equal 
to  the  distance  between  the  center  of  the  given  circle  and  one  of 
the  congruent  chords. 
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(h)  /t  The  locus  is  the  union  of  the  angle 
bisector  and  the  intersection  of  two 

closed  half -planes  whose  edges  are 

perpendicular  to  the  sides  of  the 

angle  and  do  not  contain  the  respective 

sides.     For  each  point  P  €  h,    the  dis- 

tance from  P  to  BA  is  m(PB),   which 

is  equal  to  the  distance  from  P  to  BC.     [Ask  your  students  to 

consider  the  locus  of  points  which  are  equidistant  from  the  lines 

containing  the  sides  of  an  angle.     This  locus  is  the  union  of  two 

perpendicular  lines,   one  of  which  contains  the  bisector  of  the 

angle,    and  one  which  contains  the  bisector  of  the  supplementary 

angle  adjacent  to  the  given  angle.] 

(i)      The  set  consisting  of  the  incenter  of  the  triangle.     [Have  the 

students  describe  the  locus  of  points  which  are  equidistant  fronn 

the  lines  containing  the  sides  of  a  triangle.     This  locus  is  a  set 

consisting  of  four  points,    the  incenter  of  the  triamgle  and  its 

three  excenters.] 

(j)      Relative  to  the  circle  which  has  the  hypotenuse  as  a  diameter, 

the  locus  is  the  complenaent  of  the  set  consisting  of  the  end 

points  of  the  connmon  hypotenuse,     [in  other  words,    a  circle 

which  has  the  common  hypotenuse  as  a  diameter,    less  the  end 

points  of  this  hypotenuse,    is  the  locus  in  question.] 

60.    See  Courant,    R  and  Robbins,   H.  ,    What  is  Mathematics? 
(New  York:   Oxford  University  Press,    1941),    pp.    152-155. 

(b)  a  parabola 

(d)  an  hyperbola 

61.  (a)   a  circle  with  radius  j 

(c)  an  ellipse 

62.  (a)   a  sphere  (b)  a  cylindrical  surface 

(c)   a  torus --the  surface  of  a  doughnut 
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