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Introduction

It is the purpose of the present;, second, report on Hill's

equation to provide the reader with a few ready made transformation

and approximation formulas which may be useful to anyone working on

a particular problem. AlsO; we shall discuss some examples in detail,

partly because they illustrate the general theory and partly because

they appear frequently in applications. Tlie section on the coexistence

problem contains a little more than mere examples. It may be

considered as a complete discussion of those results which can be

obtained from the investigation of three term recurrence relations.

A third part of this report will contain applications of the

theory to problems of physics and engineering.

3. Transformations

3.1 Elementary formulas

(i) Transformation into a standard form

The differential equation

(3.1) —^ a(x) II+ b(x) z =

dx""

can be transformed into

.2

(3.2) ^ + Q(x)y =

dx

by putting

(3.3) y = [exp ^ A(x)]z
,

a(x) = dA/dx

where



/-
1 ^ r. 1 da 1 2 ^

(il) The Liouville Transformation

The differential equation for the interval < t < co:

2

(3.5) ^ + AM (t) z = (X = constant, M(t) > O)

dt

can he transformed into the differential equation

2

(5.6) ^ + \\7^ + Q(x)]y =

dx^

for the interval < x < it hy the Liouville Transformation :

(3.7) X =^
i
J m2(t) dT

, ^ =
^ / ^^(*) "^^

(5.8) y(x) = M(t) z(t)

(3.9) Q(x) = (M(t))-i^ = -7'[M(t)]-54 fju
dx dt V

The inverse of this transformation is given by

(3.10) . ^ rT -^ '
y''

-

""' r-^
° [M*(0] ° [M*(l)]

where M (x) = M(t) is a positive solution of the differential equation

(3.11) ^ = Q(x) M^(x) .

dx



It should be noted that the Liouville transformation is not applicable

unless M(t) is twice differentiable, at least in the sense that

d M/dt is bounded and continuous almost everywhere. An example for

the Liouville transformation is provided by the following

Lemma 3.1: The function Q(x) corresponding to M(t) under the

Liouville transformation is a constant if and only if

_ 1

(3.12) M(t) = [at^ + 2|3t + 6] ^
, (a,p,6 constant) .

In this case the differential equation for y(x) will be

2

(3.13) H + y^l^ -(aS-P^)]y = .

dx

If

i3-lh) D^ = ccS- p^ > ,

2
that is if at + 2pt + does not have any real zeros, we have

(5.15) nJyy = tan""^[(aw + p) |d""^] - tan'"'"(pD"''") .

Obviously,

|D7| < 1 .

(iii) Polar Coordinates

Let y, (x) and yp(x) be the standard solutions of

.2

(3.16) ^ + Q(x)y =

dx

which satisfy the initial conditions



(3.17) y^(0) = 1, y^Co) - 0, y|(0) = 0, y^(0) = 1,

where a prime denotes the derivative with respect to x. If we interpret

y and y as Cartesian coordinates in a plane ^ a transformation to polar

coordinates leads to the following formulas: Let

(3.18) y^(x) - p cos ,
y^{yi) = P sin

P > , 0(0) = , p(0) - 1 .

Then

(5.19) 0(x) =
^"^ ^^

o P^(t)

(3.20) p^(x) = yf(x) + y^(x)

2

(5.21) ^ - p"^ + Q(x)p =

dx:

It should be noted that 0(x) is a monotonically increasing function of

X. If |0(x)
I

-* 00 as X -^ +00 or X -> -M , both y-j^(x) and Y^{yi) will

have infinitely many zeros. Otherwise , both of them will have a finite

number of zeros.

(iv) Differential equation for the product of two solutions.

Let J = r\ and y = t^ be any two solutions of

,2

(3.22) ^ + Q(x)y =

dx

where ^ for all x,



Q(x+rt) = q(x)

Let

z = %'nr

he the product of these solutions. Tlien

(3.23) ^+1,q|^ + 2^^ '
., y dx dx
dx

and equation (^.2^) has at least one non-trivial periodic solution with

period n. The following result holds:

Lemma 3-2. Either all periodic solutions of (3.23)

with period tc are constant multiples of a single one, or all solutions

of (5.25) are periodic with period n. Tliis takes place if and only if

all solutions of ('I.16) are periodic with period n or 2n.

Lemma 3-2 is an immediate consequence of Floquet's Tlieorem (see

Part I, Section 1.2). If the characteristic equation for (I.I6) has the

roots p ,P^, and if ri ,t]^ are non-trivial solutions such that

(3.2lf) Ti^(x + rt) = p-j_Ti^(x), ^^(x+jt) = p^T\^{x)
,

then clearly t\ r\^ is periodic with period 7t since p-,p^ = 1. In general,

all periodic solutions of (3.23) with period n will be multiples of this

particular one because of the following rather obvious fact:

If T) and T) are two linearly independent solutions of (I.I6), then

h' W^



are linearly independent solutions of (5.23). That all solutions of

(5.23) will have period jt if and only if all solutions of (I.I6) are

periodic with period n or 2rt can be derived from this fact "by choosing

for T] and t\ the linearly independent solutions which appear in

Floquet's Theorem.

Equation (3.23) can be reduced to a non-linear second order

equation:

where C is a constant. Putting z = ^^^p} we find

1 f ^
^ " " 2 Ml dx ''2 d^

and this implies

Lemma 3.3 . Assume that not all of the solutions of (3- 23) are

periodic with period jt. Then^ if z is a periodic non-trivial solution;,

the constant C in (3.25) will be

negative, if y"+ Qy= has an unbounded solution,

positive, if all solutions are bounded,

zero, if a non-trivial solution has period it or 2rt.

k. Tests for the existence of oscillating solutions.

The real solutions of Hill's equation with a real X and Q:

.2

(If.l) ^ + [X+Q(x)]y = , Q(x+jt) = Q(x)

djc

may or may not have infinitely many zeros. The situation can be described



as follows

:

Theorem ^.1 . Either all non-trivial real solutions of (^.l)

have only a finite number of zeros _, or all real solutions of (^.l)

have infinitely many zeros. Let X be the smallest value of X for

which (^.1) has a periodic solutions. Then for X < X , all non-trivial

real solutions have only a finite number of zeros, but for X > X _,

every real solution has infinitely many zeros.

We shall prove Theorem k.l by using part of a result which is

due to Hamel, 1912:

Theorem k.2 . Tliere exists a real solution of (^.l) which has

only a finite number of zeros if and only if for all continuously

differentiable functions w(x) with period rt

(1^.2) JLx+QWJ w2(x) dx< J (^g)
dx .

o o

We shall need only the fact that (4.2) must hold if {k.l) has

a solution without infinitely many zeros ;, and we shall not prove the

sufficiency of condition {k.2). (See Lemma k.2).

To prove Theorem k.l, we observe first that every real solution

of {k.l) will have infinitely many zeros if a single non-trivial

solution has this property. This follows from the formulas which describe

the transformation to polar coordinates. In fact, (3.I8) shows that

every real solution of {k.l) can be written in the form



(1^.3) y(x) = Ap(x) cos(0-0^)
o

where A ajid are constants. If (4.3) has infinitely many real zeros

for A ^ and a particular value of , then 0(x) must be imbounded

if X goes from -oo to -^^^ , and therefore y(x) has infinitely many zeros

for every choice of and A. Now we can prove

Lemma 4.1 . If (4.1) has a real^ non-trivial^ solution with

finitely many zeros, then (4.1) must have a real solution y(x) such

that

(4.4) y(x+j:) = py(x)

where p is real and positive and where y(x) has no zeros.

Proof: If there exists a solution of (4.1) such that p is

complex; we know from Floquet's theorem that all solutions are hounded.

In this case, formulas (5.I8) to (3-20) show that 0-oo as x->oo and

therefore (4.3) shows that there is a real solution with infinitely many

zeros and no real solution with finitely many. Therefore we know that

p in (4.4) must be real and that we may take y In (4.4) to be real also

if there exists a solution with finitely many zeros. But in this case,

p must also be positive since otherwise y would have infinitely many

changes of sign, and y itself cannot vanish for any fixed x=x because

it would also vanish for x=x + nrt , n = 0, +1, +2,. . . . This proves

Lemma 4.1 completely. Now we shall prove

Lemma 4.2, If (4.1) has a real solution with finitely many zeros.



then the inequality (it-.2) of Theorem k.2 holds for all continuously

differentlable functions w(x) for which w(x+jt) = w(x)

.

Proof: We know from Lemma k.l that we have a real solution y

satisfying {h.3) with a positive p. Putting p = exp (3, where p is

real; we can write

3x
y(x) = e p(x) = exp P(x)

where

p(x+jr) = p(x), P(x+jt) = p + P(x)

and where P(x) is two times differentlable since p(x) does not vanish.

We find easily that

(1^.5) P" + (F'f + Q*(x) =

X-

where Q = Q + X^ and therefore

/ Q*(x) w^(x) dx = -
/

(P'w^)"dx - / (P'w-w')^(ix

+ (W)^

Since

/ (P'w^) '

dx; =
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because of the periodicity of P' and v, Lemma h.2 is true. Wow we can

prove

Lemma k. 3 . Let X "be the smallest value of X for which (ij-.l)

has a periodic ; non-trivial solution y = p (x) with period rt. Then

for any X > X , every solution of (^+.1) has infinitely many zeros.

Proof: According to Lemma k.2, it suffices to show that for

X > X the inequality (^.2) of Theorem i|.2 can be violated by at least

one periodic function w(x). We choose w = p (x) ^ and we find

Tt

(h.8) (X + Q)p^^- (p')^ dx

o

"' "
2

(X^^Q)p/-(p^)2 dx.

The second integral on the riglit hand side of {h.6) vanishes because

•(P')^ + (Q+X )p ^ = -(p p')
^^o o o ^-^o o

and the integral offp p') from zero to j: vanishes since p p' is periodic
^-^o o o o

with period rr. This proves Lemma ^.5, since the first integral on the

right hand side of {k.G) is positive.

All that remains to do now is an investigation of the case

X < X . We shall reduce this problem to the case X = X by proving

Lemma h. k . If (2.1) has a real, non-trivial solution V, "vrlth

Infinitely many zeros , for X = X , the same is true for all X > X .
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Proof: If (h.l) sho-uld have a solution with finitely many-

zeros , we could (according to Lemma k.l) assume that it has a real

solution y(x) of type {h.k) where p is positive and y(x) has no zeros.

We shall show that this leads to a contradiction. For this purpose^

we construct the solution y of

y*" + (X*+ Q) y* =

which has the same initial conditions at x = as y(xj. Clearly, y

is real and, according to our assumption and the remarks made hefore

Lemma It-. 1, it will have infinitely many zeros (although it is not

identically zero). But then y(x) will also have a zero. For let

X be the smallest positive zero of y . We find easily

X

(U.7) yy*' - y*y' = (x-/) / y(t) y*(t) dt .

We may assimie that at x = 0, both y and y are positive. Then, at the

first zero x of y , clearly y ' must be negative since a solution of

a homogeneous linear second order differential equation cannot vanish

together with its first derivative. Therefore, for x= x , we have

x

(1+.8) y(>CQ) y '(x^) = {\-X)J y(x) y (x) dx .

o

However, if y does not have any zeros, the left hand side in (2.8) is

negative but the right hand side is positive. Therefore y(x ) <

and y(x) has a zero between and x . This proves Lemma k.h.
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Nov we shall have completed the proof of Theorem 1|. 1 once we

shall have proven

Lemma k.^ . Let X and p (x) he defined as in Lemma k.^. Then

p (x) 4 for all X,

The combination of Lemma k.3 and. Lemma h.'^, together with the

remarks made before Lemma k.l; contains the full statement of Theorem

i|-.l. We shall now prove Lemma I+.5. Firsts we observe that p (x) must

have at least two zeros in the half open interval < x < 7t if p (x)

has any zeros at all. This follows from p(o) = p(n)^ p'(o) = p'(ji:).

If p(o) =): 0, p(x) has two zeros in o < x < jt since it must change its

sign at least twice. If p(o) = 0., we have p'(o) =^ and if p'(o) > 0^

it follows that p(x) must be increasing at x = it. Therefore^ p(e) > 0^

p(rt - e) < for a sufficiently small e > 0.

We shall now consider

A(X^) = y^U,\^) + y^UAj

where y (x)
,
yp(x) are the standard solutions of (i+.l) for \=X defined

by the initial conditions (3.17). We know from the general theory of

Hill's equation (Part One of this report^ Theorem 12. land Lemmas 2.1,

12.2) that

A(\ ) = 2, A(X) > 2 for X < X

We also know from the proof of Lemma 2.1 in Part I of this report that
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y^{x,\*) > , y^i^A*) >

X-

for all X > if \ is such that

X + Q(x) <

for all X. We know that X < X and that
o

A(x ) > 2

We shall prove Lemma i|.5 hy showing:

If p (x) has at least two zeros in < x < n^ then there exists a

value X ' of X such that

a(x') < 0, X* < X' < X' o

But in this case, X cannot "be the smallest value of X for which (4.1)
' o

has a periodic solution of period n since there would exist a value

X ' of X such that

A(X^) = -2 , XIx; < X
o

and (l|.l) would have a solution of period 2jt for X=X'. (For a proof;

see Lemma 2.k of Part l). But this contradicts Tlieorem 2.1 of Part I

about the arrangement of the characteristic values of Hill's equation.

In order to show that X' exists ^ we introduce the quantity

Jt
_

^M =
J

[y^^(x,x) + yg^C^A)] ^ •
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Then we have according to (j.lS) that

y-j_(xA) = p(x) cos , y^{y^,\) = p(x) sin

where 0(x^x) is an increasing function of x such that

0(o,x) = , 0(rtA) = t(^) .

We can write p (x) in the formo

p^(x) = Ap cos(0-0^)

where ^ for < x < jt ,

< < ^{\^) .

Since p is supposed to have two zeros in < x < n^ we have

^^^(X^) > It

On the other hand^ since for X = X neither y^ nor y have any zeros

for X > 0^ we see that

< ^{\*) <|

Since it is clear that ^i/ix) depends continuously on X; it follows that

there exists a value X = A. ' such that

il;(x') = Ti , X < X' < X
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Wow we have

A(X') = y^CrtA') + yg^rt.X') = p(«)(l+ t'(^')) cos ^^(X')

+ p '(:n:) sin \|;(X ')

where \|/'(^) = <i0/d^ for x= n and p'(x) = dp/dx. Since d0/dx > 0, it

follows from i]/ ( X ' ) = n that

A(X') < .

This proves our contention and Lemma k.'^. Therefore, Theorem k.l has

"been proven completely.

We can use the method of proving Lemma h. 5 to derive the following

Theorem k.y. Let X be the smallest value of X for which (k.l)
o

has a periodic ; non-trivial solution of period rt. Let X < X and let

y exp (px) p(x) , p(x + rt) = p(x) , P^

he a Floquet-type solution of (2.1). Then

p > (X -x)^/^ .

= o

Proof ; Using the fact that p(x) satisfies the differential equation

p" + 2pp' + (X + Q+P^)p = ,

we find hy a calculation similar to the one used in proving Lemma 1+. 3 that.
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for any constant p.

(..9) /
o

(H+Q)p2_p'2 dx = (ti- X - 3^) / p^dx

Therefore we see from Lemma k-.2 that the real^ non-trivial solutions of

y" + (ti +Q)y =

must all have infinitely many zeros if

M. > X + (3^

since then the right hand side in (4-9) is positive. But then it follows

from Tlieorem ij-.l that

X+ P > X .

= o

Finally^ we mention the following

Corollary h.2: If X+Q(x) < for all x, then the non-trivial solutions

of (^.l) have only finitely many zeros. If

/

I

X+ Q(x) dx > ,

o

the real solutions of (^.l) will always have infinitely many zeros.

The proof of the first statement of Corollary k.l can be given

by using the fact that y„(x) will have only one zero if X+ Q < for

all X. This follows in the same manner in which Lemma 2.1 of Part I of

this report has been proven. The second statement of Corollary k.l

follows if we use Lemma k.2 with w(x) = 1.
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5. Intervals of Stability

^.1 Introduction

The general theory,, as presented in Part I of this report, has

"been supplemented hy numerous investigations both of special cases and

of classes of functions Q(x) for which more precise statements can be

obtained. We shall try now to indicate what has been achieved. Since

in most cases the results either are complicated or based on numerical

computations, we shall confine ourselves to giving a general description

of the most important methods together with a few references. Only

the results about the so-called "regions of absolute stability" which

are due to G. Borg, 19^*+; will be presented in detail. Tlie notations

used will be those of Part 1. We shall always write Hill's equation

in the form of Equation 2.1 as

(5.1) y" + [X+Q(x)]y =
, Q(x+«) = Q(x)

and we shall use the terminology of Theorem 2.1. For Q(x) we shall

assume a convergent Fourier expansion

(5.2) Q(x) =
Y^ g^ e^^"^

, s^= 0, S_^ = ^ .

r=-c>o

where a bar denotes the conjugate complex quantity. Unless otherwise

stated, we shall ass\ime that

(5.3) 2_j
""^

l^n'^ < °°

n=:l

The model for the questions to be asked about Hill's equation
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has been provided by Mathieu's equation which we shall write in the

form

(5.^) y" + [x-20 cos 2xjy = .

Thorough accounts of the theory of this equation and its application

have been given^ at different times^ by Strutt^ 1932; McLachlan^ 19^+7;

and by Meixner and Schaefke^ I95U. It may be considered as a two

parameter equation ^ and the points in the X,©-plane where the solutions

are stable forai certain stability regions which have been studied

thoroughly. Strutt^ 19kk has considered numerous other two and three

parameter equations of Hill's type; we shall report on some of his

results in Section 5. 3- The intervals of instability of Mathieu's

equation (for a fixed 0) are known to decrease exponentially with

their order. A generalization of this result found by Hochstadt will

be formulated below in Theorem 5.I,

If we consider Hill's equation as an equation with infinitely

many parameters g , the dependence of the intervals of instability

on these parameters can be described approximately by a theorem due

to Erdilyi. This will be discussed in section '}.k. If we write

Q(x) = 30(x) and subject 0(x) to certain normalizing conditions^

we obtain two-parameter problems for which Borg has given regions of

"absolute" stability. These regions will be described in Section 5.2.

Finally, in Section 5.5, we shall describe briefly some results found

by an application of the theory of general systems of linear differential

equations.
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With respect to the question of the actual behavior of the

length of n-th interval of instability of Hill's equation we mention

Theorem ^.1 . If Q(x) = Q(-x), Q(x+rt) = Q(x) , and if Q(x) is an

analytic function of x in a strip of the complex x-plane containing

the real x-axis^ and if L denotes the length of the n-th interval

of instability of Hill's equation, then for any positive integer M,

(5.6) L n = .

^ ' n -^ 00 n

For a proof see Hochstadt, I961 . The question when some intervals of

instability will actually disappear can also be answered in certain

cases. For this problem, see Chapter 1,.

5.2 Regions of absolute stability

We shall now write

(5.7) Q(x) = 3t(x)

where, according to (5-2)

(5.8) / ij/(x) dx = .

o

We shall consider all "Functions \[; of class p" which are defined by

1/p

(5.9) 7 U(^)l^ ^ 1

where p=l,2,3,... or p= co . If p = co, (5.9) means, of course, that

Max U(x)
I

= 1 .
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We shall not postulate (5- 5) in this section. It suffices to assume

that f{x) is continuous except for a finite number of points where

\}f(x) may have a jump.

A region in the real A, (3 plane will be called a region of absolute

stability for functions of class p , if, for any point in this region,

(5.1) will have stable solutions for all functions Q = Pi|; where \Jf

belongs to the class p.

Borg, 19^^^ proved the following results:

Theorem ^.2 . Let n=0,l,2,... . The region of absolute stability

for functions \lf(x) of class one is bounded by the curves

^ kin + 1) \/\

Vl ==
=^^

nVa

2(n+ 1)

, n^ < X < (n+l)^

P. = -2X(l-n/^l, X>1, n>l
n

a = for n = ^

and is such that none of these curves is contained in its interior.

The open region bounded by these curves is maximal; for any point

outside or on the boundary of this region, there exists a function f

of class one such that not all solutions of (5-1) a-^^e bounded.

2
Theorem ^.3 - Let k. be a real variable, < k < 1, and let

k/2 ^/2

K = /
<^s

, E = / Vl-i^^^sin s ds .

^
\/, 2.2 io V l-K sm s '-'
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Then the curves defined for n=0,1^2;... by

3^^^
= -8.5"^/^n"^(n+l)^ K:^(k^-1)+ 2KE(2-k^) - 3E^

ni/2

X ,
= lfrt"^(n+l)^

n+1 ^

K^(k^-1)+ 2KE ,

X > ,

"bound the region of absolute stability of the functions of class 2.

The boundaiy points do not belong to the region^ since for

X + Q(x)

= ^rt"^(n+l)^K^(l+K^) -8jt"^(n+l)^K^K^sn^(|(n+l)Kxj

the differential equation (5'l) has only one periodic solution (and,

therefore, at least one unbounded solution). The periodic solution

(with period n or 2n) is

y = sn t , t = 2(n+l)Kx/rt

where sn t is the Jacobian elliptic function with module k and period kK.

Theorem ^.h . For the functions of class «> , the region of absolute

stability is bounded by the curves

1

.Vi + Vi 2 tg
I
. Wi ^ Vit^ ^(n+l)1

,Vl- Pn-M ^^Sh VVl- Pn+1[. v-> 4(n+l)'l
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where

n = 0,1,2,,

and where the region does not contain any one of these curves in its

interior. If one of the square roots should be imaginary, the

functions tg and ctg have to be replaced by the corresponding

hyperbolic functions.

Borg also observed that Liapounoff 's Theorem 2.13 can be derived

from Theorem 5-2, and that Theorems 5- 3 and ^,h contain, respectively,

the following results as special cases:

If Q(x) + X >

U + Q(x)J

and

dx <

n/2

6h } r ds

3jt
2

\A ^2
V 1 + sm s

then the solutions of (5-^) axe stable. The same is true if

max [q(x) + x] < 1

Finally, Borg indicates how the following result due to A. Beurling

(iinpublished) can be derived from his arguments

:

Theorem 30- If a,b are real nimbers and

a^ < X + Q(x) < b^ ,

then the solution of (5.I) will be stable for all possible Q(x) + X

2 2
satisfying this condition if and only if the interval (a ,b ) does not

contain the square of an integer.
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^3 Equations with two or more parameters

Strutt, 19^^, has investigated the differential equations

(5.10) y" + U + 7 $(^ y =

and

(5-11) y" + Tx + j^^ix) + y^^ix) y =

where ^, ^-, , ^p are real periodic functions of x with period ^ and

\, J, J , 7 are parameters. His approach is the following one: Let

a be a constant such that | a
|

= 1. Then Strutt asks for the values of

\, 7 or (in the case of 5-11) of X;,7^7 for which (5-10) or (5.II) has

a solution y = w(x) such that

(5.12) w(x + |) = aw(x) ; w'(x + |) = crw'(x) ,

where w does not vanish identically. In earlier papers (Strutt, 19^5)^

it had been demonstrated that, for given values of y^jfr^, the smallest

value of X for which (5-11) has a solution satisfying (5- 12) is the

minimum assumed by the expression

% I i

M = -/ vv"dx-7 / ^-, (x) V dx- 7^ / ^g v dx
,000

for the set of all two times differentiable functions v for which

v(x+ l) = v(x) , v'(x+^ ) = v'(x)
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and
5

V V dx = 1

Here a "bar denotes the conjugate complex quantity. Higher "eigenvalues"

X can be found "by Maximum - Minimum conditions of a more complicated

nature. Another approach utilized by Strutt, 19^1, is the method of

linear integral equations. The function w(x) will satisfy the equation

P

(5.13) w(x) =
J

j^^(t) + y^^{t)']G{x,t) w(t) dt ,

o

when G(x,t) is Green's function for the case 7-, = /o = which;, for

/—I + +
p yx j m: , n=0;,-l,-2,. . .

is given by

„/ ,N _ -gco" sin co(x - t + g ) + Lj" sin Lo(x-t)
Ul^X^tj -

p
a - 2a cos w| +1

for X < t ,

-1 2 -1
„/ V _ goj sin cj(x - 1 - I ) -a co sin oj(x-t)
ijl,X;tJ - 2

a -2a cos cog +1

for X > t

where co = \/\ . Strutt; 19^+^^ derives from 5' 13 the inequality
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2
dx dt

Other results obtained by Strutt refer to the shape of the

surfaces in the (x,7 ;7p)-space belonging to a constant a, including

asymptotic relations.

Strutt applies his results to differential equations arising

from the separation of variables of Laplace's equation in four

variables in a coordinate system that is based on copfocal paraboloids

in a subspace of three dimensions. One of the resulting ordinary

differential equations arising from separation of variables is

2

(5.1)4.) y''+
\ ^ - -o oT - (p+l)a cos 2x + -s- cos hyi) y = ,

which is a special case of (5.11). QtTdtt , 19^^^ discusses the

surfaces in the spaces of the parajneters belonging to cr = 1.

5.^ Remarks on a perturbation method

In a certain sense, most of the methods dealing with Hill's

equation may be considered as perturbation methods. The number of

papers applying iteration or perturbation methods to technical or

physical problems is rather large, and a good survey of the older

literature may be found in Erd^lyi, 1935' Erd§lyi, 195^^ 1955 investigates

closed electric circuits with time deiDendent, periodic capacitance,

inductance and (Olimic) resistance, the period being the same for all
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three quantities. This problem leads (after an application of a

Liouville transformation) to an equation of Hill's type, and Erdelyi

develops a formal but rather general perturbation theory for it,

with a critical commentary on the range of validity of the formulas.

We shall indicate briefly what may be found in Erdelyi 's papers which

are particularly systematic and thorough.

In order to make Erdelyi 's impers more accessible, we shall use

here the notation that is used there. Consider

(5.15) d^
+ [x - l'a-(x)] z r(x +2rt) = r(x) ,

define X ' by

X' = (n/2)^ - X n =

where |u] means the largest integer not excedding u. Then, for large

values of X, we may write

X' = X + - K + [- ) x^+...
o n 1 V n / 2

z(x) = z^(x) +
I

z^(x) + f Ij ZgCx) + ... ,

where

zjx) cos - nx - T] T] = constant ,

and where
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X

z(x) = zjx)+| r r.+ kr(^)1z(|) sin^i^^^ d|

and therefore^ for v- 1,2,^,. .

.

X

z^(x)
=J

fx^ + krd)! sin
I

n(x -^)z^_^(|)d5

o

V-1 X

X /sin - n(x- |)z ^^ (|)d|
p J 2 ^

^'^ v-p+1^^' ^

P=l

If X is a characteristic value ^ z(x) will be of period 2n or kn

respectively if n is even or odd, and conditions for determining

T^^X ;X ,X_,... may be obtained by postulating that z (x) is periodic

with the corresponding period 2n or Urt. Assume that

kr(x) = ) 7^ cos (vx- e^)

r=0

Then the postulate that z (x) shall be periodic leads to the conditi

2(^0+ 7q) sinf-nx-Tij + -jj-/^ sin f -nx + t) - e^ |
= 0,

which gives, as a first approximation

(5.16) X » (|nj + 7„+|7,

or
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(5.17) ^^(IM -^-^o-i^n

The solutions belonging to the X values in (5.16) and (5.I7) are,

respectively

cos 1
- nx - - G^

j
, sin f - nx - - e^

Erdelyi continues by giving an approximate form for the unbounded

solutions in the case where X is in an interval of instability, using

a method introduced by Whittaker, 191^+. Critical remarks about the

method may be found in Erdelyi, 193^; P- 617-

In a subsequent paper (Erdelyi, 1935)^ the equation

(5.18) , y" + U + 7^(x)Jy =

with
2rt

5(x+2n) = ^(x) , / ^(x)dx = , |$(x)
I

< 1

o

is treated in the two cases where \j\ is small compared to 1 and where

X is positive and large compared to 1, \j\ being smaller than X.

Conditions for stability are established and approximate formulas for

the solutions are given, in the second case (x large) by using a

refined W.K.B. method.

With respect to the approximations given by (5.I6) and (5.17)^

see also Theorem 6.5.
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^.^. Application of the Theory of Systems of Differential Equations

Haake, 1952, Gambill, 195i|-;1955;. and Golomb; 1958;- applied their

results obtained for systems of linear homogeneous differential equations

to the theory of Hill's equation which is a special case of a system

of two differential equations of the first order. We shall deal here

only with the results of Golomb, 1958-

According to Floquet 's Tlieorem (see Section 1.2), Hill's equation

(5-19) y" + Q(x)y = o

always has a pair of solutions f ,
(x) , fp(x) given by

„ / , ictx / V jn / \ -iccx / \

f^(x) = e p^(x) , fgCx) = e pgix) ,

where p, (x) and Pp(x) are periodic with period jt. (if a
=f 0^ ±}-> tJ^>-''>

these solutions are linearly independent). We shall call a and -a

the characteristic exponents of (5.19)- Assume now that Q(x) is even.

Then we may write

(5.20) Q(x) = oj^ + 29 \ 7 cos 2nx

n=l

Equations (5.I9) and (5.20) are equivalent to a system of linear

differential equations for two functions w and m , defined by

w^ = -wy + iy' , w^ = -coy - iy ' ,
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which emerges in the forai

to ^^1 2
= CO w, + ') (7 cos 2nx) (w + w )

i dx 1
n=l

<3.Wp
p

CO w„ + 9 ^ (7 cos 2nx) (w + w )

i dx
n=l

Golomb;, 1958 shows that a can be determined from the equation

(5.21) a^ = co^ + 0^ \
n=-K!

(2n+a) - CO

+ 0'

CO

E
^ Inl^ Iml^ in-mi

r2 2I n 22
(2n+a) - CO (2m+a) - co

n4 m

d{9^) ,

(where 7 = O) ^ provided that is sufficiently small. The resulting

value for a, apart from an error of the order of , may be written

(with the convention 7 = O) in the form

(5.22) a = +
0^

CO + T

—

4W

n-1
2 2

n - CO

320J

00

E
7|n|7|m|7|n-m

I ^ P{(r.h

nm(n+cj) (m+oj)
dw

n,m=-«'

n zj: m
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If^ in (5.22)^ a is equated to 0^1,2,...; one obtains relations between

CO and which, if satisfied, guarantee that (5-19)^ (5-20) has a periodic

solution of period it or 2rt.

Formulas for the solutions of 5.19) and answers to questions of

convergence were also given by Golomb, 1958-

6. Discriminant

The discriminant of Hill's equation.

(6.1) y" + X + Q(x) y =U + Q(x)J

where

CO

(6.2) Q(x) = Y] Sn^
2inx

-n n
n=-oo

has been introduced in Part I, Section 2. We shall assume that

(6.5) Y] ^^ISnl^<~
n=-oo

and that

i6.k) g^ =

We shall use the notations introduced in Section 2.2; in particular,

we shall define the quantities A as in {2.kh) , {2.k^) , and we shall



52

use the notation \/\ = w and the definition of the discriminant A:

00

A = Y] ^n^^^ •

n=0

We recall that the boimdary points (^-co)

'^Q'^±'^2' '"''
2n-l'' 2n''

'**

of the even-numbered intervals of instability are the roots of A-2 =

and that the boundary points

X^Ag^ ....
^2n-l'^2n^

of the odd-numbered internals of instability of (6.1) are the roots of

A+2 = 0. For this reason^ a more precise and a more explicit knowledge

of the A seems desirable. The first three theorems of this section
n

will provide information of this type. The last two theorems will be of

a more theoretical interest in connection with Borg's Theorem 2.12 and

with Erdelyi's approximation formulas (See Formulas 5 .16^5 -17). The

method used in proving Theorem 2..h (of Part l) can be applied to prove

the more general

Theorem 6.1 . For real positive x-*+oo
,

W

(6.5) A(.)-^ A^(X)| = ^L-(^-l)/2

n=0

Theorem 6.1 could also be proven by using the following result which
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sharpens Theorem 2.5:

Tlieorem 6.2. Let

J- l^ li

be the coefficient of

12 n

in A . Then
n

sin rt \/\

cii ,...,i^) = A{\) cos n v^ + B(x)

where A,B are rational functions of X such that the degree of denominator

exceeds that of the numerator

in A(x) by at least n -
I [n/2]

in B(x) by at least n - -x n/2 - o }

where n/2 is the largest integer not exceeding n/2.

It seems that the only way to prove Theorem 6.2 is the one that

uses the definition of A as an infinite determinant. Using Tlieorem 2.9

of Part I^ and inspecting the determinant D (x) , we see that A can be

written as an infinite s\am of determinants with n rows in columns^ each

of which is multiplied by the reciprocal of a polynomial in X. Instead



of writing down the general formula^ we shall illustrate the situation

by writing down the expressions for A and A. which will make apparent

the general law for the formation of A . We have
n

{6.6) -Aj [h sin^ L \f^l^ 1
'^

00 CO

I. ,Ta.=l t=-co

g

; -m -m

(x-ht^ \-h{t+mf~\\\-k{t+l+mf~\

and

(6.7) -A^[^ s±n^ Lsfll^
J

E E
i,m,k=l t=-oo

P(X;t,k,^m)
'-1

^l+m. ^i+m+k

^ ^+k

'-i-m ^-m ° ^k

'-£-m-k ^-m-k ^-k °

where

(6.8) P(\;t,k.-e.m) = fx-l|t^j fx- if(t+k)^ ifx- l+(t+k+m;
2
\- U(t+k+m+i) ^]
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We know from Theorem 2.5 the general behavior of the coefficient c of

a particular product of degree n in the g . If we make uj purely

2
Imaginary and X = w negative, i.e. if we put

to = 10, - 9

then, for Q -* oo,

(6.9) c(£^, ..., i^) h . 2 jtsm — w C^(e-')

where d is the smaller of the differences between the degrees of the

denominators and the numerators in A(w) and B(uj). (Special attention

must be given to the case where these two differences are equal and

where d may be greater than either of these two differences because

in A cos jru) + B sin Jtw, the asymptotic behavior for co = iO, -» +oo

may be different from that of A cos nco and of B sin jto). This case

has to be settled by putting co = (l+i)0, and letting -> +co, ) If we

wish to compute d by using (6.9)^ we may apply the following.

Lemma 6.1. For -> +00,

(6.10)

00 +00

t=-oo
m^ , . .

.
,m =1

1-^ ' r

t +m + . ^^)^" (e + t-)

-1

(Qr-2n-l^

The proof of (6.I0) is based on a comparison of the multiple sum in (6.10)

with the multiple integral
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CO 00 00

(6.11)
J

...
J d|i^...du^J dT(0^+T^) ff 1^9^+ (t+^x^+.-. + h^)^''

o o

By substituting Qr, Q\i^, ..., 0[j. for t f\i ,. . . ,[x , this integral is

seen to be equal to

CO 00 00

©"""^"""^J
...

J
d|i^...d^^

J
drfl+T^J TT [l+(T+(i^+...+ 11^)^1

O O -00

and here the integral is a constant independent of 0. On the other hand,

it is easily seen that (6.11) is a majorant of the sum in (6.10).

Using Lemma 6.1 we can prove Theorem 6.2 as follows: Looking at the

representation of A as a sum of determinants which are divided by

certain products of the type appearing in (6.10) and picking a particular

product

1 n

appearing in these determinants^ we see that P can appear in infinitely

many of these determinants only if several of the subscripts i ,..,,!.

are coupled in pairs, say ^-| ^-^p ^^'^ ^V^k ®''^'^*
•>
such that i = -i ,

i^ = -^v} and so on. If we have r such pairs, the coefficient of P in

A is essentially an (r + l)-fold infinite sum of the type (6.10). But

in a determinant of the type appearing in (6.7) (which illustrates the
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case n= ij-) at most [n/s] such pairs can appear^ and this proves Theorem

6.2.

Since a skew symmetric determinant of odd order always vanishes,

we have as a by-product of our determinantal expression for A :

-n n

Corollary 6.2 . If Q(x) in (6.1) is an odd function (that is, if

) , then A = for n= 1,5,5,. . . •

As an aid for computational purposes we state now

Theorem 6.3 . For n =0,1,2,3,)+, the values of A are given hy

the following formulas

:

A (X) = 2 cos rt y>^ , A, (x) =

jr sm
^^M

n /\ r -r

2 JX ^—V X -r

A^{X)

2 2
sin It v^ V^ (g^g3g_^_3 + g_^g_3g^^3) (r +s +rs-3X)

EvA ^-_i (x-r2)(x-s2)[x-(r+s)^

cos

A, (X) = -n"

a v/x

l6x

00

E
r=l

'r -r

X - r

jC sin jt >/x

6^V^
^r^-r

r=l

2 Q 2 ^ i)-

\ 30X^- 70Xr - l6r

rt sin rt >/x
CO

E
r,s=l
r >s

? g g g R Mr -r s -s r,s
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CO

^—r -I / k,il (HI

where the functions R (x) and S, . (x) are defined by

R r^^ - 5^ -?^(r + s ) +r s

""^^ x(x-r)(X-s^)

2^2
lOX - 2r - 2s

(x-r2)(x-s2)rx-(r-s)2jpx-(r+s)2j

and by

ll-R „ (x) = i afk+m.i) - r-r^ r o(ni.i) rrr-T o(k,i+m)

with

^^ (X- £2)(x-m^)rX-(£+iTi)2l

The proof of Theorem 6.3 is based on some juggling with infinite

s-ums. The basic information required is the following one: By expanding

cos (xco)/2 in a Fourier series in the interval -jt < x < rt we find
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(6.12)

t itx
e

t=-oo
U) - Ij-t

t cos (xt>j/2)

2oj sin(jtw/2)

By substituting -(t+ i) for t in the left hand side^, the right hand

side of (6.12) does not change^ and we find thus

(6.15) s(o - y irx-H^irx-^(t+i)^ji

t=- 00

2j:

/ ^ ^t itX
(-1) e

-Ti t=-oo t=-oo

, ,t -itx
(-1) e

dx

Jt (-1)

8rtcj sin {nui/2)

cos (xoj/2je dx

-It

n cos (lOTl/2)

1+w sin(wrt/2) [oj - £'j

Formula (6.15) allows us to compute the value of l\^{\) . For the

computation of A,(x) we need

00

;(m,0 = ^ '

t=-oo

X -Ut' X -lf(t+m)^ X- iv(t+m+0

and we find after an elementary calculation that
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S(m,£) = T-7^^^ +
S(m) ^ S(^+m) S(0

il-£(m+i) Tim ~ i4m(m+i)

where S(i) is defined by (6. 15).

Finally, we need several sians for the computation of D, , all

of which can "be obtained through linear combinations from the

formulas already used and from their derivatives with respect to X.

For details see Magnus, 1959-

The following theorems are of some interest because of their

relation to Borg's Theorem 2.12 and to Erdelyi's approximation formulas.

The method used in the proofs was established by Schaefke, 195^-

We have

Theorem 6.k . Let the roots of A(x) +2 and of A(x) - 2 be denoted

as the beginning of Chapter 6. Then

i6.ik)

CO

E t2n-l-^2n-2(2n-l)']
n-1

00

(6.15) X^+ E [Wl^^2n-2^2n)2] .

Whereas Theorem 2.12 shows that for large n, x' and X exceed

(2n-l) and X , and X exceed (2n) , it follows from Theorem 6.k- that the
2n-l 2n

same statement cannot be tine for all n.

The next result refers to the case where g(x) is an even function
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of X, i.e. where

Q(x) = Q(-x) ; g_^ = g^ (n=l,2,5,...)

In this case, the periodic solutions of (6.1) belonging to the

characteristic values X^ ^ and X^ are either even or odd periodic
2n-l 2n

functions of x with period 2jt. Let

7-J^
< 72 < ••• < ^n

'^

be the ordered sequence of those members of the set X^ -, . X^ to which
2n-l 2n

there belongs an even periodic function of period 2-k , and

CT, < a^ < . . . < a <12 n

be the ordered sequence of the remaining numbers of the X^ -, ? X^ to
2n-l 2n

which there belongs an odd periodic solution of (6.1). Similarly, let

72_ < 72 < ••• < ^n
'^

be the characteristic values belonging to the set of numbers Xp , and

Xp to which there belong even solutions of (2.1) which are of period n

and

0-, < a_ < . . . < a < .

.

12 n

the sequence of characteristic values corresponding to odd solutions of

period jt. Then we have
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Theorem 6.^

CO 00

n=l n=l

'2n

n=l n=l

The following comment should he made concerning Theorem 6.5. For large n.

' n n ' 2n 2n-l

(6.18)

' n n' 2n 2n-l

Therefore;, the absolute values of the terms in the sums on the left-hand

sides of the equations in Theorem 6,5 represent the lengths of the intervals

of instability^ at least for large values of n. On the other hand,

A.Erdelyi, 1$^h, has shown that, for sufficiently small values of

00

E 1^1^'

n=l

the n-th interval of instability is approximately of length 2|g |.

Theorem 6.5 shows that, although Erdelyi 's result may not be exact for
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the individual intervals of instability, there exist a weaker but exact

substitute for it in the forni of a relation between sums.

We shall now prove Theorem G.k, and we shall confine ourselves

to a proof of (6.1ii-)- We know from Borg's Theorem (2.12) that

(6.19) (2n-l)2[x2^_^ - (2n-l)2j

and

(6.20) (2n-l)2[x2^-(2n-l)2j

are bounded for n ^ oo , We also know that A + 2 is a function of order

of growth — and that therefore for a suitable value of the constant c

,

(6.21) A + 2 = c IT
n=l X,

2n-l. 2n.

imless one of the \ vanishes, in which case we would have to use a
n

slight modification of this formula which will not affect the proof.

We know from Theorem 6.5 that, for large positive values of \i = -\

(6.22) A+2 2 cosh -^Vil
Tt sinh rt\/iI/2 S~* '^n' ^,

2\f^ cosh nV^/2 ^ n+n^
(.-5/^)
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Now consider the behavior of

(6.23) L(n) = ^- log
^^

cosh2(jtV^/2)

for |i -* CO.

From the product representation of A + 2 and of cosh(rt \/(I/2) we

find

(6.24) L(n) =
Y] ^

n=l

1 1+
I , t

^^+
^2n-l ^^^2n M. + (2n-l)'

Cl- (2n-l)' ^2,- (2n-l)'

n=l (n+X2n_^)j^^+ (2n-l)^1 (n+ X2n)^^^ + (2n - l)^
j

I] [d-^^2n-2(2n-l)']^-2
n=l

n=l

(2n-l) ']

^^[Wl^^2n-l)2j+.^^_^(2n-l)

H^^ + (2n - ifl U +
^2n-l1

^ [x^^.(2n-l)2],.,'^(2n-l)^

n=l n2[jx+(2n-l)2j[^+x^J
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We wish to show that

(6.25) L(n) = Y^ [Wl^^2n-2^2^-l^^]^^'^ "" ^^^

n=l

-5/2,

for la
-* 00. For this purpose, we have to estimate the last two sums in

-5/2
{6.2h) , proving that they are of the order of |j. . Using the

boundedness of the expression (6. 19) we find that

00

(6.26)
Y] ["2n-l-(2n-l)']

n=l

^[^2n-l^(2n-l)2].x'^_^(2n-l)2

[,-.(2n-l)2][,+X2^_J

can be majorized by

S = M \ " •
^"' '^ 2

r~l n + (2n-l)

n=l 1(1 + (2n- 1)^1

where M is a suitable constant. By using a standard procedure we see that

S can be written in the form

00

(6.27) 2M J
^'^^

g
dt + O'iii'^)

o (li+ t )



Wow the integral in (6.27) equals rt/2 v^ and this proves (6.25).

Wext^ we shall derive an asymptotic expansion for L(|j.) from

(6.22). From some calculations and by using an argument similar to

the one we employed in estimating (6.26) we find that

(6.28) L(n) = (y(^"5/2)

provided that

n=l
n'

A comparison of (6.25) and (6.28) proves Theorem G.h.

The proof of Theorem 6.5 may be based on the following remarks:

I t

First, we can show that for large n the pair of numbers y , a is
' -^ n n

t I

identical with the pair Xp
^

, \^ , apart from the ordering of the

numbers. To prove this statement^ we will have to consider the equation

y " + fx + eg(x)1 y = ^ ^ ^ ^ 1}

e = 0, X^ , = X^ = (2n - 1) . If e increases, the difference X_ ^
' 2n-l 2n 2n-l

will; in general; be different from zero, but it will stay small and one

of the periodic solutions belonging to these two numbers will be odd, the

other, even. Since both x' -, and X„ will not leave a certain neighborhood
' 2n-l 2n

? 2 1 2 1
of (2n-l) bounded by, say, (2n - l) - — and (2n-l) + - , these two
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numbers will always be the characteristic values belonging respectively

to the n-th even and to the n-th odd periodic solution of period 2n

,

although we do not know whether X belongs to an even or to an odd

solution.

From this remark and from Borg'd Theorem 2.12 we see that the series

(6.16) and (6.17) converge absolutely and can be majorized by the

series M 5]] n" where M is a constant. Furthermore, we know that the

numbers

' n' n n n
(7 = X )^' o o

are respectively the zeros of

y^(it/2A). y^{n/2,x),y^in/2,\), y^in/2,\)

where y , y^ are the normalized solutions of (6.I) described in Chapter 1.

(See Theorem l.l) From the method of solving (6.I) by iteration, we

find that, for X= -^i, n large and positive

(6.29) y^(n/2,-n) =cosh(jt ^/2)
=2n+l

CO

ŷ
H +(2n- 1)'

. a(.-5/2)

(6.30) y^(rt/2,-n)= cosh(« v/m/s)

00

E
^2n+1

^^^ H+(2n+l)
. cfi.-^h

(6.31) y^(jt/2,-[i)= ^ sinh(n ^/2)

00

8l.-'h
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(6.32) y^U/2,-^)
sinh rt s/iI/2

00

n=l

(?(.-'/")

Qf(\i~''' ) -terms may be differentiated with respect to |i,

5/2

where the

having a derivative of the order of (i

Again ^ the left-hand sides in (6. 2k) to (6.31) are functions of

|i of order of growth —, and will admit product representations of the

type (6.21), e.g. (for X^ 4 0^^ 4 0^
-^n

^ °^

(6.35) y'(i:/2,-n) = c(l+nA)fr (l+^^^„)
^ n=l

(6.3i^) y^U/2,-^) = c IT (1+fi/c^)

n=l

where c,c are constants. Now we can calculate an asymptotic expansion for

y^(rt/2,-n)

A 1°S

in two different ways, using (6. 31) and (6.32) or using (6.33) and (6.5^)

By equating these two expansions, we find

00 00

n=l
I n + l^n

0-7
n n

{[1 + 7 ) (m- + cr )
o '—r" 'n^ n

n=l
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or

03

Q

n=l n=l

03

(7 -aJ
n=i

-P
. ^(.-5/2)

which proves (6.I7). Equation (6.16) can be proved in the same manner.

7. Coexistence

7.1. Introduction .

According to Floquet's Theorem (Section 1.2); Hill's equation

will; in general, have only one periodic solution (and its constant

multiples) of period n or 2n. If it should happen that two linearly

independent (and therefore all) solutions of Hill's equation are of

period n or 2rt; we shall say that two such solutions coexist or we shall

call this an instance of coexistence. It should be noted that,

according to the Corollary to Floquet's Theorem in Section 1.2; the

coexistence problem never arises for solutions of a period njt where

n=3;^;5j»-'- • AlsO; we should recall here that coexistence of periodic

solutions of period jt or 2n is equivalent, respectively, to the occurrence

of a double root of the equation A(x) - ^l- = or A(x) + 1| = 0. If,

say, the n-th root of A(x) = ij- is a double root, i.e. if

^2n-l
"

^2n
(n=l,2,3, . .

.

)

we may say that the 2n-th interval of instability disappears ; similarly,

if

Wl = 4 > (n.1,2,5,...)
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we may say that the (2n-l)-st interval of Instability disappears^ and

these statements are equivalent with the statement that coexistence of

periodic solutions of period n or 2rt occurs. It may be useful to recall

here that X can never be a double root of A - 4 = 0, and that the
o '

zero-th interval of instability from -ao to X cannot disappear at all.

It had been noted early and proven repeatedly that for Mathieu's

equation

(7-1) y" + (X + a cos 2x)y = ,

no interval of instability can ever disappear unless a= 0, in which case

only the zero-th interval of instability remains. For a proof see, e.g.

MacLachlan, 19^7- Tlie methods developed in the following sections would

also lead to an easy proof of this fact.

Meissner, 19l8^ studied the equation

(7-2) y" + Xg(x)y =

where g(x) is a piecewise constant function assuming two different values

in the interval < x < jt. For this case^ the coexistence problem can

be answered completely; a recent discussion of the situation can be found

in a paper by Hochstadt (1961) and also in section 8.2. However, it is

impossible to transform (7-2) into the standard form of Hill's equation

used throughout the present monograph, since the Liouville Transformation

as defined by equations ( 5' o) to (5>9) cannot be applied to non-differentiable

fimctions.
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For various cases of Hill's equation with an analytic coefficient

Q(x) the coexistence problem has been investigated. Of these ^ the case

of Lame's equation is particularly important; it offers the simplest

example of an equation of Hill's type for which all but a finite number

k of intervals of instability disappear. In view of the generalized

Fourier Tlieorem 2.l6, these cases provide particularly simple analogs

to the ordinary Fourier theorem^ since the integration has to be extended

over a finite number of intervals only. Lame's equation will be discussed

in Section 7- 3-

It has been shown by S. Winkler (1958) that all known cases of

equations of Hill's type with analytic coefficients and with a decidable

coexistence problem are special cases of a four parametric equation that

was called "
ince's Equation " by Winkler. It is the most general equation

to which Ince's method of three term recurrence relations can be applied.

The theory of Ince's equation will be developed in Section 7.2. The

equation can be transformed into the standard form (5.2) by using the

substitution (3-3) with a properly defined A(x)

.

It is necessary to solve a transcendental equation if we wish to

decide whether an equation of Hill's type has a periodic solution of

period jt or 2n. However^ once it is known that a given equation of Ince's

type has a solution of period n or 2n, in general merely the solution of

a problem of linear algebra :.s required in order to decide whether all

solutions of Ince's equation are periodic with the same period. In

addition^ there exists a very simple necessary condition for the parameters

of the equation that must be satisfied if coexistence can occur, regardless

of the existence or non-existence of at least one periodic solution with

period jt or 2n.
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7-2 Ince 's Equation

We shall discuss the coexistence problem for Ince 's equation

that will be written in the form

(7.3) (l+a cos 2x)y" + b(sin 2x)y' + (c+d cos 2x)y =
,

where a,b,c^d are real parameters and |a| < 1. The transformation

y = (l + a cos 2x) ' ^ ' z

carries (7- 5) into the equation

(7.U) z" + "-+ P g°s 2x + 7 cos Ifx
2 = 0,

(l+a cos 2x)

[provided that a =)= O) ^ where

a = c - ab - b^/8 + ad/2

3 = d + ac - b

7 = ad/2 + b^/8 ;

and (7-^) has the form of Hill's equation. The case where a=0 can be

dealt with by the substitution

w exp (b cos 2x) /h

which leads to

(7-5) w" + Tc - b^/8 + (d-b) cos 2x + (b^/8) cos ij-x w = ,
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and this is the most general equation of Hill's type where the coefficient

of w is of the form

a + p cos 2x + 7 cos '4x

with 7 > 0.

However, we shall base our discussion on Equation (To)- Tlie first

result we shall prove is

Theorem J.l . If Ince 's equation (7- 3) h^s two linearly independent

solutions of period n, then the polynomial

Q(n) = 2a^l^ -h\i - d/2

has a zero at one of the points

|i = 0, +1, +2, ....

If (7' 3) has two linearly independent solutions of period 2n , then

Q*(n) = 2Q(n - i) = a(2n -1)^ - b(2^- 1) - d

vanishes for one of the values of |_i = Oj, +1, +2, ... .

To prove Theorem 7-1^ we need the following

Lemma 7-1- Let P(n) "be a polynomial of first or second degree in

|j. and let D (n=0,l,2,. . . ) be elements of a sequence which satisfy the

recurrenee relations.

(7.6) P(n)D^ = P(-n-2)D^^^, n=0A.2,..
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and the limit relations

lim p
(7.7) nPD =0 for p=l,2,3,.

Then either all D vanish or P(ll) has an integral root,
n

Proof

:

If P(m.) does not have an integral root then either all of

the D are zero or none of them vanishes. (See (1.6)). Assume that
n

none of the D vanishes and that P(n) and P(-n- l) are different from
n

zero for all integers n. Then we can obtain a contradiction to (7'T)

and therefore prove our lemma. To do this^ we choose a fixed integer

k. > and derive from (7-6) that

(1 R) T)
- P(-k-2)P(-k-3) ••• P(-k-r-2)

^'•'^' \ - P(k) P(k+1) ... P(k+r) Vr+1

(r=0A;2,...)

Assume that P(m.) is of second degree and that

P(^) = A(^- X^)(n -Xg)

Then (7.8) can be written as

r(k+2+X^) r{]^+2+X^)

r(k-x^) rik-x^) ^k

(7.9)
r(k+>i-X +r) r(k+><-X +r)

r(k-A^+l+r) r(k-X2+i+i-) \+T+l '
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and if P(li) is of first degree and

then

P(n) = A(n- a) ,

(^ iA^ r(k+2+x) ^ _ / ^^r + l r(k+>X+r)

Here P denotes the Gamma fimction. As a simple consequence of Stirling's

Formiila we have the asymptotic relations

lim
t^+oo

r(t+p) -p
= 1 ,

:7.ii)
lim

t-* +00

r(t+p) -2p

rXt^

where p is any fixed real or complex number. Putting t = k+r+1^

p = X+1;, we find from (T-IO) and (T-7) ^by letting r^oo that

(7.12) r(k-x) ^k

Similarly, we find that the left hand side in (7.9) must vanish , and

this proves Lemma T-l' Incidentally, we can use the vanishing of the

left hand sides of (7-9) and (7-10) to prove

Lemma 7.2 . If the numbers D satisfy the recurrence relations (7-6)

and the limit relation (7-7)^ then D = for n > k^, where k^ is the

largest non-negative integer such that P(k ) = 0. If no such integer

exists, all D vanish.
* n



56

We shall apply Lenma 7-2 to the proof of a later theorem. To

prove Theorem ^.1, we shall derive now

Lemma 7-3 - If Ince's equation has two linearly independent

solutions of period n ox 2i: , then two solutions y ,y can "be found

such that either

CO 00

(7.13) ^1 = }_ A2n ^°^ ^^ ' ^2 "
/ \n ^^^ ^^^

n=0 n=l

or

oo oo

(7.1^) ^1 ^ )_. A2^+iCos(2n+l)x , y^ = V^ B2^^^sin(2n+l)x

n=0 n=0

where ^ for every positive exponent p.

(7.15)
^^"^ nPA^^ =

li"^ nPB^ = ^^"^ nP A^ = ^^"^ nP B, = 0.
n-»oo 2X n-» 00 2n n-^ oo 2n+l n^ oo 2n+l

Proof: We know from Theorem 2.1 that an equation of Hill's type

cannot have a solution of period jt and a solution of period 2n (which is

not of period n) . Since Ince's equation can be transformed into Hill's

equation by multiplication of y with a function of period n , the same is

true of Ince's equation. Also^ we can apply to Ince's equation (7.5)

the results of Theorem 1.1, since (7.3) can be transformed into a

symmetric equation of Hill's type. Therefore, (7.5) has an even and an

odd solution, both with the same period, and if the period is 2rt, the

solutions must multiply by (-1) if x is increased by rt.
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These remarks prove (Y-J-5) and (T-l^). To prove (7.1'!)), we observe

that the solutions of (7- 5) must be analytic in a strip of constant

width in the complex x-plane that contains the real axis. Tlierefore^

the series in (7-13) and (7-1^) must converge for x= x + ix
;,
where

X ,x are real^ x is arbitrary ;, and x ranges over a sufficiently

small interval defined by

1

1 + a cos (x + ix
)

I > .

Tlierefore^ there exists a constant M > 1 such that, for instance,

n -^- oo 2n

and this fact implies immediately the first limit relation in (7-15)

•

This completes the proof of Lemma 7- 5' Now we need

Lemma 7 •

^

• If Ince 's Equation (7- 3) has the solutions y, ,yp defined

by 7-13^ then the A ,B satisfy the recurrence relations

(7.16) -cA^ + Q(-1)A2 =

(7.17) Q(n-1)A2^_2 + (^n^-c)A2^ + Q(-n-l)A2^_^2 = 0, (n=l,2,3, • - •

)

(7.18) (2^- c)B2 + Q(-2)Bj^ =

(7.19) Q(n-1)B2^_2 + (i|n^- c)B2^ + Q(-n-l)B2^^2 = 0, (n=2,3,i+,
• . •

)

and if (7.3) has the solutions defined by (7-1^)^ then the recurrence

relations
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(7.20) Fq^Co) - 2(c-l)j Ai + q''(-1)A3 =0 "

(7.21) Q*(n)A2^_^ +2 F2n+l)^-c1 A^^^^ + Q*(-n- l)A,

(n=l,2,3,...)

2n+3 = °

and

(7.22) r-Q*(o) - 2(c-l)l B^ + q''(-1)B^ =
3

(7.23) Q''(n) B^^_^ + 2 r(2n+l)^- cl B2^_^^ + Q*(-n - 1)B2^^^ =

hold for n=l,2^3,. , . .

The proof is obvious if we substitute the series in question into

the differential equation. Our last step in proving Theorem 7.1 may

be formulated as

-)f -x- -X-

Lemma 7.3 . Let D,^^ D , B^, ... and I) , D , D^, ... be defined

respectively by

^0 = V2 ' \ = -A2n-f2^2n ^ ^2n+2^2n '

(n=l,2,3....)

and

D^ = A, B, , D = -A^ , B^ -, + A^
n
B. . .11^ n 2n+l 2n-l 2n-l 2n+l

(n=l,2,3....) .

Then the following recurrence relations hold:
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(7.21^) Q(n)D^ = Q(-n-2)D^^^ , (n=0A.2,...)

*, . * * , . *
(7.25) 2Q (o) D^ = Q (-l)D^

(7.26) Q*(n)D* = Q*(-n-l) D*_^^ (n=l,2,3,. • • ) •

The proof is immediate from the recurrence relations of Lemma T.k.

Now the proof of Theorem 7-1 is easy. Lemmas 7-1 3-nd. 7-5 show that

all D of Lemma 7-5 must vanish if Q(|a) does not have a root which is

an integer. But then D = A B^ = and either B^= or A^ =0. If
o o 2 2

B = 0; the recurrence relations of Lemma 7'^ show that all B must

vanish (since Q(n-l) =j: O) ^ and therefore the series y in (7-15) is

identically zero and y ,y are not linearly independent. If A =0;,

it follows that y. vanishes identically.

Since the proof of Lemma 7-1 would also go through if^ in {'J.G),

we would replace P(-n- 2) by P(-n-l), it follows from a modified

Lemma 7-1 an<3. from Lemma 7-5 that all the D in Lemma 7-5 must vanish

when Q (|a) has an integral root. Again D = A B = implies that

either all A^ ^ or all B^ ., vanish which, in turn, would contradict
2n+l 2n+l ' '

Lemma 7- 3' This completes the proof of Theorem 7-1'

We have now a necessary condition for coexistence of two periodic

solutions of (7- 5) with periods n or 2ji:, and this condition can be

stated even without knowing whether (7' 3) has at least one periodic

solution or not. In order to obtain sufficient conditions for the
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coexistence of periodic solutions of Ince's equation we have to assume

that the values of the parameters are such that at least one solution

with period n or 2jt exists. We shall settle here first the question of

the existence of such values of the parameters by proving

Theorem 7.2 . For any given real values of. the parameters a,b,d

(with |a| < l) ^ there exist infinitely many values of the parameter c

such that Ince's equation has an even or an odd periodic solution of

period n or 2n.

Before proving Tlieorem 7-2 we note that the parameter c does not

enter into the necessary conditions (as stated in Theorem 7'l) for

Ince's equation to have periodic solutions of period n or 2n. To

prove Theorem T.2, we shall write (7'^) i^i the form

(7.27)
p+ a cos 2x+ T cos ^x

1 + a cos 2x /^ ^ \2
(1 + a cos 2xj

.

where p, <y , t do not depend on c. Let us denote the coefficient of z

2 2
by H(x) ^ and let X be the minimum and A the maximum of H in

2 2
< X < rt. Obviously^ both X and A increase as c increases ; and

they tend to infinitey as c-»+cd. Let z and z be the standard

t I

solutions of (7.27) defined by z (o) = z (o) = 1 and z-,(o) = z (o) =

The number of zeros of z ,z ^z ,z in the interval < x < Tt/2 is

then majorized or minorized respectively by the number of zeros of

2 2
the corresponding solutions ofz"+ Az = or z"+Xz = 0,

Since the zeros of the solutions depend continuously on c, it follows
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that^ with increasing c, we must obtain infinitely many values for c

such that^ for the solutions of (7-27)^ one of the quantities

z^(jt/2), z^(rt/2), Z2(n/2), Z2(rt/2)

vanishes. Now an application of Theorem 1.1 will prove Theorem 7-2.

We shall now try to find out under which circumstances the

necessary conditions of Theorem 7-1 for coexistence are also sufficient.

We shall need the following

Definition: A solution of Ince's equation (7- 3) that is given "by

a series of type (7-15) is called finite of order k if A^, or B^, is
2k 2k

different from zero, but if all A^ or B^ with n > k vanish. Similarly
;,

2n 2n

y (or y ) in (7-1^) will be called finite of order k if A (or

B^, -, ) is 4 0, but A^ , = (or B^ n
= O) for n > k.

2k+l^ ' 2n+l ^ 2n+l '

Our results >ri.ll be stated by formulating several theorems.

Theorem 7' 3 - If Q(m-)^ as defined in Theorem 7-1^ has a non-negative

integral root^ and if k is the largest such root, then Ince's equation

will have two linearly independent solutions of period rt provided that

one such solution (of type (7-13)) exists that is either infinite or

finite of an order k > k . Similarly, two linearly independent

solutions of period 2n will exist if Q {\i) has an integral non-negative

root k (and no larger one), provided that one solution of type (7-1^)

exists that is infinite or of finite order k > k .

o

Proof . Consider the case where Ince's equation has a solution

oo

E^2 =
2_l ^2n ^^^ 2^

n=l



62

such that B^, 4= for a k > k . In general , we shall define the
2k I o

solution

00

^1 =
2_| ^2n =°" 2mc

n=0

in the following manner: Let A„ = B_ for k > k . Our assumptions^ 2n 2n o

then guarantee that y is not identically zero and that the series

defining it converges everywhere. If y is to be a solution of (7>5)?

the recurrence relations {^.16), (7.1?) must "be satisfied. For n > k

this will be automatically true since the B satisfy the same

recurrence relations as the A^ . Note that this is true even if k =0,
2n o

because then (7.l8) has the same shape as (7-17) for n= 1. For n < k ,

we must determine the A from the following system of linear equations

(7.28) -cA^ + Q(-1)A2 =

and. if k > 0;

(7.29) Q(n-l)A2^_2 + (l+n^- c)A2^ + Q(-n-l)A2^^2 =

(n=l,...,k^-l)

and finally

(7.50) Q(k^-1)A2^_2+ (4k^'-c)A2^ . -Q(-k^-l)B2j^ ^2 '

o o o

These are exactly k + 1 linear equations for the unknowns

A ,...,A . In general, they will have a unique solution, namely
O idl^

O

when the determinant of the matrix K of the coefficients of the unknowns

is different from zero. In this case we have constructed y in the
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required manner. However ; it may happen that K has determinant zero.

Then we shall define y^ as follows : Determine A .... ,A^, as a
1 o-^ ' 2k

o

non-trivial solution of the homogeneous equations (7.28), (7.29),

(7-30), (replacing B^, _ hy zero). For n > k , put A^ = 0. Since
\ I ^ / ^ \ X- ° 2k +2 o 2n

o

Q(k ) = 0, this leads to a non-trivial solution of our system of

recurrence relations and to a solution y^ of finite order <k .

''I =0

A similar argument can be used to prove Theorem 7-3 in the

remaining three cases where another one of the four series in (7-13)

and (7-1^) is assumed to be a solution of (7- 3)- The case where

Q(o) = and a series of type y in (7-13) is a given periodic

solution requires special attention but is perfectly trivial.

Having disposed of the case where Q or Q has a non-negative

integral zero, we can now discuss the situation described in the following

Theorem 7- ^ - Assume that Q(m.) (as defined in Theorem 7-1) has

one or two negative integral zeros but none that is >0. Let -k - 1

denote this zero or one of them if there are two, where k = 0,1,2,... .

Then Ince's equation will never have a solution of period n that is

of finite order. If it has one (infinite) solution y of period n,

it will have two linearly independent ones if, and only if, the

coefficient of cos 2k>c (for an even y) or of sin 2k x (for an odd y)

in the expansion (7-13) vanishes. In this case all Fourier coefficients

of the periodic solution with an index less than 2k also vanish.

Proof

:

Since Q(|_i) 4 for |a=0,l,2,... , it follows from the

recurrence relations (7-l6) to (7-19) that all A (or all Bp ) vanish

for n < £ if A2^_^2 and K^^^i^ (or
\j^_^_2

and B^^^^^) vanish. Therefore,



periodic solutions of finite order cannot exist. Assume now that

(7-3) has solutions y and y of type (7.13). According to Lemma 7-2^

all D vanish. In particular, A^B^ = 0. Assume A^ = 0, and let A^,
n -"^ •'0 2 -^ 2i

be the first one of the A that does not vanish. A glance at (7-17)

shows that then i = k + 1, where Q(-k - l) = 0. Since, according to

Lemma 7 • 2

,

^2£-2 \l " ^21 \l-2 '

and since A = 0, it follows that B = 0. A similar argument

is valid if B = 0. Therefore the conditions for coexistence stated

in Theorem 7-^ are necessary ones. But they are also sufficient.

For suppose again that

^o = ^2 = • • • = ^2£-2 = °^ ^2£-2 = ° >

and that (7-3) has a solution y of type (7-15) • Then we may choose

y to be defined by

CD

E,^1 =
2_J ^2n "°" 2nx

n=k '+1

and the Fourier coefficients of y will satisfy (7'l6) and (7-17)^ since

those of y satisfy (by assumption) (7- l8) and (7- 19)' We see easily

that B^ . ^ = implies that the previous B^ also vanish.
2i-2 ^ -^ 2n

A result similar to that of Theorem 7-^ holds for solutions of

period 2jt. We have:

Theorem 7-^ Ass\ime that Q {\j.) (as defined in Theorem 7-l) has
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one or two negative integral roots but none that is >0. Let -k - 1

denote one of these roots, where k = 0,1,2,... . Then Ince's equation

will never have a solution of finite order that is of period 2n. If

it has at least one (infinite) solution y of period 2n , it will have

two such solutions that are linearly independent if and only if the

coefficient of cos(2k*+ l)x (if y is even) or if sin(2k + l)x (if y

is odd) in the Fourier expansion of y vanishes.

The proof follows exactly the line of the proof of Theorem 7.^1-

and will be omitted here.

Theorems 7.1 to ^.k* allow us to decide for (7-5) whether two

linearly independent solutions of period jt or 2n exist provided that

one such solution is known, unless the known solution is of finite

order and there do not exist two linearly independent solutions of

finite order.

Because of the importance of solutions of finite order for the

coexistence problem we shall prove

Theorem 7.5 A necessary condition for Ince's equation to have two

linearly independent solutions of finite order is that Q(|i) (for period jt)

or Q*(iJ.) (for period 2rt) has two integral roots, at least one of which is

positive ^ The order of the finite solutions cannot exceed the largest

positive root of Q(ij,) or Q*(|j.) •

Proof . As in the proof of Theorem ^.k it follows from the recurrence

relations (7-16) to (7-22) that A^^ vanishes if A^^^^ ^'^^
^2i+h

^^"^^^^^

unless Q(2£) = 0. Similar argijments hold for the 3 other solutions
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of type (7-13)^ (7'1^); s^nd therefore a solution of finite order can

exist only if Q(m.) or Q (la.) have a non-negative root, and the order

cannot exceed the largest root of this type. An inspection of the

recurrence relations shows immediately that at most one solution of

finite order can exist if p. = is the largest integral root of Q(|j)

or of Q(ti ). Therefore Q(|j.) or Q (p) must have at least one positive

integral root. The rest of Theorem 7-5 will be proven if we can show

that b/(2a) must be an integer. Because in this case.

H^ - Pn - d/(l^a) = , (p = b/(2a))

must have an integral root. Since p is integral, it follows that

<l/{ka) is also an integer, and therefore Q(m.) has two integral roots.

A similar argument works for Q (|_t). Tlierefore , all that remains to

be shown is

Lemma 7-6 . If (7- 3) has two linearly independent solutions of

finite order, then b/(2a) is a non-negative integer.

Proof: If J-. ,7^) 3-re solutions of finite order of (7- 3); then

w = j-^y^ -
y^y-L

is also of finite order. If y ,y are linearly independent, w does not

vanish identically. Also

(l+ a cos 2x)w + b(sin 2x)w - ,

and therefore we have, with a constant w ^ ,

(^ o ^b/(2a)
w = w (1 + a cos 2xj '^ '
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Obviously, W will have a finite Fourier expansion if and only if

b/(2a) = 0,1.2,5.... .

In our discussion of Ince 's equation, none of the parameters

a,b,c,d plays exactly the role of the eigenvalue parameter X of the

standard Hill's equation used in the first chapter. However, in special

cases c may play this role, and we then can talk about intervals of

stability and instability. The following result prepares the way for

the investigations of this type in later sections. We have:

Theorem 7-6 . Let a,b,d be such that Q(m-) or, (for period 2jt)

Q*(l_i) has an integral non-negative root k or (for period 2tc) k*.

If there are two such solutions, k or k^ shall denote the larger one of

the two. Let C be the (infinite) set of all values of c for which,

with the given values of a,b,d, (7.3) has at least one periodic

solution of period n or 2ji:. Then there will be at most k+1 or

(for period 2n) k* + 1 values c ,...,c, or c-^,...,c* in C for which
\ j^ ' o k o k"^

(7.3) has a solution of finite order. For all other values of c e C,

Ince's equation will have two linearly independent solutions of

period jt or 2jt,

Proof

:

According to Theorem 7.3. Ince's equation will always

have two linearly independent solutions of period it or 2jt, if the assumptions

of Theorem 7-6 are satisfied and if one solution of period jt or 2it is

given that is of infinite order. According to Theorem 7-6, the order

of a finite solution cannot exceed k or k*. All we have to show now

is that there are at most k+1 (or k*+l) different values of c for
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which such a finite solution can exist. By inspecting the recurrence

relation (7.16) to (7.22) we see that the existence of such a finite

solution is equivalent to the existence of a non-trivial solution for

a system of at most k+1 (or k + l) linear homogeneous equations with

an equal number of unknowns.

In tum^ the existence of such a non-trivial solution is

equivalent to the vanishing of the determinant of the system. Since

every row of the determinant in question involves c linearly, the

determinant is a polynomial on c of a degree < k + 1 (or k + l) and

does not have more zeros than its degree indicates. This proves Theorem

7.6.

We can prove an analog to Tlieorem 7*6 which shows that, in general,

coexistence takes place if Q(|-l) or Q (|j.) has a negative integral root.

We have

:

Theorem 7.7 . Let a,b,d be such that Q(m.) or, (for period 2n) ,

Q'^(li) has a negative integral root. Let -k - 1 or (for roots of Q (n) ),

-k* - 1 be the smallest of these roots. Then there exist at most k^+ 1
o o

or, (for period 2n) , k +1 values of c such that Ince's equation has one

periodic solution of period n or 2jt but not two linearly independent ones.

Proof: We observe that, in the proof of Theorem l.k, ^2' ' ' ' '^211-2

will satisfy a homogeneous system of linear equations. This can have

a non-trivial solution for only a finite number of values of c , as may

be seen by the argument used in proving Theorem 7- 3'
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7.$. Lame's Equation and Generalizations

Lame's differential equation may be written in the form

I

>t - m(m +l)k sn x(7.31) y" + hv- m(m+l)k sn X y = ,

vhere sn x is Jacobi 's elliptic function defined by

sn X

(7.52) X = ]
4^ .

o V 1 - k sin jZ)

2
Here k is called the module of sn x. The basic periods of sn x are

denoted by 2K and 2iK; we are only interested in the real period 2K

which is given by

(7.35) K

Jt/2

d0

I 2 2
o VI - k sin (i

Lame's equation arises from the theory of the potential of an ellipsoid.

It is discussed in detail in Chapter 15 of "Higher Transcendental Functions,

Vol. Ill; by A. Erd^lyi et al. ; 1955- Obviously, Lame^'s equation is of

the standard type introduced for Hill's equation in Chapter I. We can

apply the terminology used there and, in particular, we can talk about

intervals of instability on the X-axis. Our main result will be the

following

Theorem 7*

8

- If and only if m is an integer can periodic solutions

of period 2K or kYi of Lame's equation coexist. If i is defined by

i- m if m is a non-negative integer and by i = -m -1 if m is a negative
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integer^ then Lame's equation will have at most St +1 intervals of

instability (including the zero-th inteirval which starts at X = -oo).

Proof

:

We shall transform. (7-31) into an equation of Ince's

type "by substituting

(7.5^) .
X - am(t,k) ,

where the function am(t,k) is defined by

^ = (1- k^sin^tV''" (k^ < 1) .

Then Lame's equation takes the form

(7.35) (l-k2sin2t)4-|l^'(--2t)f

X -m(m +l)k sin t y =

which is Ince's equation with

a - -b = k^/(2 - k")

c =
I

2X - m(m+l)k^ |/(2 -k^)

d = m(m +l)k^/(2 -k^)

The period 2K of (7.31) corresponds to jt for (7-35)- The roots of the

polynomial Q(|i) belonging to (7-35) a^re

H^ = m/2 , H2 = -(m+ l)/2
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and the roots of Q ()j.) are

H* = (m + l)/2 , n* = -m/2 .

None of the numbers p. , \i , \j. , [i can be an integer unless m is an

integer. We may assume that m > 0, since Lame's equation remains

unchanged if m is replaced by -m -1. If m is an even integer^ m = 2£ ,

then

According to Theorem 7.6, there will not exist more than £+1 values

of c (and^ therefore ; of x) for which one but not two linearly independent

solutions of period jt exist. Similarly;, it follows from Theorem 7-7

that not more than £ values of c and of \ exist for which (7- 35) has

one but not two linearly independent solutions of period 2n. Therefore,

at most 2i + 1 = m+1 intervals of instability may remain. The case

where m is odd can be dealt with in the same manner.

A. Erdelyi, 19^1^ showed also that not fewer than m+1 intervals

of instability remain if the parameter m in Lame's equation is a

non-negative integer.

There are several generalizations of Lame's equation which can

be treated in the same manner. We shall list here the results

briefly, following Winkler, 1958:

The Hermite elliptic equation can be written in the form

/„ -,^N „ 2(r + l)k sn X en X t F / >/
, ^^,2 2

| ^
(7- 3o) y + —^^

-^ y + a -(m - r) (m + r + IJk sn x y =
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2
where k and sn x are defined as above and

en X = 1 1 - sn X
j

, dn x = ( 1 - k sn x
j

the transformation x = am(t^k) carries (T.56) into

(7.57) Tl-k^sin^t"^ ^ + r(2r+l)k2sin t cos t1 ||

A - (m- r) (m+ r + l)k sin t y =

This is Ince's equation (7. 5) with

a = k2/(2-k^)

h = (2r+ l)kY (2- k^)

(2-k2)2X - (m - r)(m+ r + l)k

d = (m- r)(m+ r+ l)kY(2 -k^)

The roots of Q(ij,) are given in this case by

H^ = |(r+m+l) ^2 = 2^'^""^^

and the roots of Q ((j.) are given by

^*^ = -ICm+r) + 1 n* = |(r-m+l).

Necessary and sufficient condition for one of them to be an integer is

that r + m or r - m is an integer.
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The Picard elliptic equation may be vrritten in the fonn

2
In zQ\ ,, ,

k sn X en X ' ^ _
(7.38) y" + —^^^ y + ^y = .

The transformation x = am(t^k) carries it into Ince's equation with

a = h = k^/(2-k^)

c = x/(2-k^), d = .

In this case^ Q((i) always has the root zero and therefore there exists

at most one value of X for which (7.58) has one hut not two linearly

independent solutions of period 2K.

Equation (7- 36) can be transformed into an equation of the form

r 2 2 2 "1

u" + H + psn X + q(cn x/dn x) u =

with constant H,p,q by putting

y = u(dn x)"

This equation for u was called the "Associated LamI Equation" by Ince.

7A. The Whittaker-Hill Equation

The differential equation

(7.39) y" + X + kmci cos 2x + 2q cos hxly =

appeared first in the work of Liapounoff , I9O2. It was studied extensively
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"by Whittaker; 1915 in ^ paper on differential equations whose solutions

satisfy homogeneous integral equations. Whittaker remarked that (7-3^)

is related to the Mathieu equation in the same manner in which the

equation for the associated Legendre functions is related to Bessel's

equation. Ince^ 1923^ pointed out that Whittaker 's equation (7- 39)

has the same relation to the confluent hypergeometric equation as the

Mathieu equation has to the Bessel equation. Ince, 1926, discussed

the real zeros of the solution of Whittaker 's equations. Klotter and

Kotowski, 19^3; conducted extensive numerical calculations in

connection with (7- 3^) which resulted in a stability chart and examples

for coexistence of periodic solutions. Humbert, 1926a, obtained the

Whittaker equation from a separation of the Laplace equation (in four

dimensions) by introducing hypercylinders formed by three-dimensional

confocal paraboloids.

The Whittaker equation (7-3^) is not the most general Hill's

equation with three real parameters. The assumption that q be real

enforces that the coefficient of cos kx is non-negative. It has been

shown by Winkler, 1958^ that coexistence of periodic solutions of (7-3^)

cannot occur if the coefficient of cos kx is replaced by -2q (and if X

m, q are real)

.

The substitution

y = u exp(q cos 2x)

carries (7-3^) into a special case of Ince's equation, namely

(7.^0) u" - i^q(sin 2x)u' + rx + 2q^+ l|.(m -l)q cox 2x u = 0.
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Tlie polynomials Q(|j.) and Q (ji), as defined in the theory of Ince's

equation (Section 7-2), are linear for (7.'+0); we have

Q(^i) = hqi - 2(in-l)ci

Q^{\x) = ^ci(2n -1) - Hm -l)q .

If q 4 ("t^^® ^^^^ q = is trivial)^ we see that Q(ij.) has the root

M- = ^(^ -1)

and Q (^I) has the root

n'^ = m/2 .

Now the theory of Ince's equations gives us the following result:

Theorem 7.9 . Whittaker's equation (7- 39) can have two linearly

independent solutions of period jt or 23t if and only if m is an integer.

If m=2£ is even, then the odd intervals of instability on the X-axis

disappear with at most |i| + 1 exceptions, but no even interval of

instability disappears. If m = 2i + 1 is odd, then at most |^| + 1

even intervals of instability remain but no odd interval of instability

disappears.

7.^. Finite Hill Equations

The solutions of the Ince equation in the case of coexistence

are such that the coefficients of the sine series and the coefficients

of the cosine series are equal except for at most the first N coefficients,

which sometimes all vanish identically. However, for the Wliittaker

equation, as a result of the transformation required to put it into the



76

form of an Ince equation ^ these Ince-type solutions do not occur.

Instead^ the solutions of the Whittaker equation are Ince-type

multiplied by an exponential in cos 2x. That Ince-type solutions

cannot coexist for a Finite Hill equation is the content of the

following theorem.

Theorem 7- 10- In the differential equation

(l.kl) y" + (C +C^ cos 2x + ... + C^ cos 2mx)y =
\ 1 / ^ o 2 2m

where m > is any integer^ two solutions with period n of the form

N <^

(7.i+2a) "^1 " )i ^2n
^°^ 2nx + \ A^^ cos 2nx

W+1

and

N

(7.i^-2b) ^2 " / ^2n
^^^ 2nx + \ A^^ sin 2nx

1 N+1

or two solutions with period 2jt of the form

N

(7.^5a) ^1 = / ^2n+l
cos(2n+l)x + V'' A^^^^ cos(2n+ l)x

o fel

and

N CO

il-h^b) ^2 " / B2^_^^ sin(2n + l)x + \ A^^^^ sin(2n + l)x

o N+1

cannot exist simultaneously.
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We assume, of course. C^ 4 0*

Proof. Assume that equations (T.^2) coexist for N = 0. Then by-

direct substitution in the differential equation we obtain the following

pair of identities

:

00

{^.hka.) y^ (2C^- 8n^)A2^cos 2nx+ C2A2^cos(2n+ 2)x + . . . + C2^A2^cos(2n + 2m)x

+ C2A2^cos(2n- 2)x+ ... + C^^A2^cos(2n -2m)x Uo

(7.1^.Ub) > j(2C -8n^)A^ sin 2nx C^A^ sin(2n+ 2)x + . . . + C„ A^ sin(2n + 2m)x
l_ I L_ o 2n 2 2n 2m 2n

1

+ C^A„ sin(2n - 2)x + . . . + C^A^ sin(2n - 2m)x =0.
2 2n 2m 2n J

The recurrence relations obtained from both (Y-^Ua) or ["J .kh'b)

will be identical for n > m. Hence

(7-^5) C^A^ ^+... + C^A^ o +(2C - 8n^)A^ + C„A_ ^ + . . . + C„ A^ o™ = Oj
^ ' 2m 2n+2m 2 2n+2 ^ o ' 2n 2 2n-2 2m 2n-2m '

(n > m) .

Wow consider the recurrence relations for n=ra.

(7. hGa) C^A, + . . . + C^A^ ^ + (2C - 8m^)A^ + C A^ ^ + . . . + C^ -A^ + C^A =
^ ' ^ 2m i4-m 2 2m+2 ^ o ' 2m 2 2m-2 2m-2 2 2m o

il.hSb) C^A, +... +C A^ o + (2C -8m^)A^+ C^A^ ^ + . . . + C„ 0^0 = ^
^ ^ 2m 4m 2 2m+2 ^ o ' 2m 2 2m-2 2ra-2 2

It is clear that A = 0.
o
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Comparing the relationships for n=m-l yields A = 0^ since

sin(-2x) = -sin 2x and cos(-2x)= cos 2x. Thus

(TATa) C^A, ^+...+ CA +[20 -8(m-l)'^1 A^ ^ + C^A^ , + ... +
^ '

' ^ 2m ltti-2 2 2m L o ^ 'J 2m-2 2 2m-4

C^
,
A^ + C^ ^A + C_ A^ =

2m-4 2 2m-2 o 2m 2

(7.4Tb) C„ A, ^ + ...+ C^A^ +[20 -8(m-l)^lA„ ^ + C_A_ ,

^ ' ' 2m itm-2 2 2m _ o ^ 'J 2m-2 2 2m-4
+ . . . +

C_ , A^ - C^A^ = .

2m-4 2 2m 2

But A = 0, and therefore, subtracting (7.47b) from (7.47a) gives

2C2m^2 = °-

Continuing this process we get, upon reaching the recurrence

relationship for n = 0,

(7.48) = A^ - A^ = A, = ... = A.
o 2 " 4 ~ •" " 2m

Then with (7.48) and the recurrence relationship for n = 1, A =

and so on, until the recurrence relationship for n = m, A, = is reached.

Therefore

(7.49) = A = A^ = ... = A^ = ... A,
^ '

-^

'

o 2 2m 4m

Now consider equation (7-45) for n = m + 1

(7.50) C„A, ^ + C^^A, + ... + C^ ^A, + C^A^ =
^ ^

2ra ittii+2 2m-2 4m 2ra-2 4 2m 2
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and applying equation (7-^9)

C^A, „ =
2m it-m+2

Continuing with n = m + 2, ni+3, ... , it is clear that all the A's must

vanish. Hence the theorem is true for W = 0.

If N =1= 0^ compare the recurrence relationships for n = N + m.

Since by hypothesis A ^ B„„ but all A = B for n > N +1^ we obtain

(^•51^) C^^2N^L«u '-"' C2m-2^2N+2 ^Can^2N = ^

^'^•^l^) Can^2N+l.m^ • ' ' ^ C2m-2^2N+2 -^^2m^2N = °

Subtracting (7.51"b) from (7- 51a)

(7.52) C (A -B ) = or A_ = B^.,
2m 2W 2N 2W 2W

contrary to hypothesis, and the theorem holds for solutions with period %.

If solutions (7-^3) coexist, then for N= and n > m, the recurrence

relations are the same for (7'^5a-) and (7.^5b), or

(7.53) C. A_ _^^ + . . . + 2 C -(2n+l)^
o ^ ' '^2n+l ^ • • •

"^
^2m^2n-aii+l " °

Compare recurrence relationships for n = m - 1 and find, by the same

reasoning as before, that

2m 1
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By continuing with the relationships for n = m - 2^ m - 3, ...

ve o'btain

(7.5^) = A^ ^ ... =A^_^ .

Now, from the recurrence relations for n= 1, we get A^ ^ = 0.
' 2m+l

Examination of the recurrence relations as n increases makes it clear

that all the A's must vanish.

For N 4 0, by comparing the recurrence relationships for

n = N + m^ we find the contradiction

(^^•55) C^(^2N+l - ^2N-M^ = '

which completes the proof of the theorem.

The impossibility of the coexistence of finite trigonometric

polynomial solutions^ which is not included in Tlieorem 21.1, could be

demonstrated by using the same procedure as in Section 21. However, it

is possible to prove the stronger result:

Theorem 7.11 . Finite Hill equations cannot have finite trigonometric

polynomial solutions.

Proof: Assume a solution of equation (7-^l) exists in the form

W N

(7.56) y = \ A cos 2nx or y = > A sin 2nx

where A is the last non-zero coefficient in either of the series (7-56).

For n > m the recurrence relations (7.^5) hold. Consider the



81

recurrence relation for n = N + m, since all A„ = for n > N + 1
2n —

^^^^^ ^2m^2N = ° - ^2N = °

This contradicts the hypothesis that A is the last non-zero coefficient

and proves the theorem for solutions with period n.

Assume that a solution of equation (7-^1) exists in the form

N N

(7-58) ^ "
y_i

A2jj+iCOs(2N+l)x or y = ^1 A^^^sin(2M + l)x ,

where A is the last non-zero coefficient of either of the series (5).

Consider the recurrence relation (7'55) for n = N+m. Since all

A^ , = for n > N +

1

2n+l

(^•59) C^^A^j^^i = °^ A2N+1 = '

contradicting the hypothesis that A is the last non-zero coefficient.

This proves the theorem.

Further results on finite Hill equations have heen found by

S. Winkler, 19 58.

8. Examples

In this chapter, we shall discuss briefly a few examples of

equations of Hill's type which are particularly easily approachable

and which may be useful for the purpose of a first orientation. The

first three cases are distinguished by the fact that they admit an explicit
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integration of Hill's equation in tenns of well known functions. The

fourth example (the equation for frequency modulation) offers the

simplest illustration available for the results on coexistence in

Chapter 7'

8.1. Impulse functions

In connection with a problem in quantum theory (electrons in

a one-dimensional conductor) ^ Kronig and Penney, 1931^ studied the

special equation of Hill's type:

(8.1) y" + [X + Q(x)Jy =

where

Q(x) = -V for -b < X <
o

Q,(x) = for < X < a

Q(x+c) = Q(x) where c = a+ b .

The problem is to find intervals of stability, that is those values of

X for which (8.1) has a non-trivial solution y with the property

/ N ike / %

y(x+ c) = e y(x)

where k is real. Such a solution will exist if and only if the equation

V - 2X

(8.2) cos a \/x cos b \/X - v + —^;^;^ sin a \/\ sin b \Jx-y = cos kc

^ * o

can be satisfied for a real value of k. Of course, this means that the
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left hand side of (8.2) must lie between -1 and +1.

Equation (8.2) is still somewhat hard to discuss numerically.

A further simplification can be obtained if we replace Q (which so

far has the shape of a "well") by a Dirac Delta function. This can

be done by letting

b -* 0. V -> CO , bv -» P/a^
' o ' o '

where P is a positive constant. Then (8,2) reduces to

(8.3) cos a v^ + sin a ^ = cos kc ,

a y/x

and the condition that the left hand side of (8.5) should have

values between -1 and +1 can be discussed readily by drawing the

curve

P .

u = cos V + — sm V
V

in the (u,v) -plane. It follows that the intervals of instability

(where (8.3) cannot hold for a real value of k) will tend towards zero

-1/2
like X ' as X -* +» .

We followed here the exposition given by Sommerfeld and Bethe,

1933^ where many more details may be found. See also Strutt^ 1932.

8.2. Piecewise constant f-unctions

Meissner, I918, investigated the equation

(8.4) y" + co2q(>c)y =
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where q(x) assumes a finite nturiber of different values in the interval

< X < 2tc and is periodic with period 2jt. Although (8. it-) cannot be

transformed into an equation of type (8.1) since the Liouville

transformation is not applicable to discontinuous functions ^ equation

(8. it-) is relevant to the theory of Hill's equation and we shall now

report briefly on it.

Assume that the interval < x < 2jt has been divided into n

parts of length r., i=l^...^n^ t + ...+ t = 2n , and ass\;ime that

q(x) = v^ /()+« )

in the i-th interval. We shall use the notations

C. = cos
1

fwv.T./2j:j
;,

S. = slnfoJv.T./2n]

\,^ - i(^"$' ' (±,^=l,2,...,n)

^3 = ^1^2^ -^12^1^3 -"l3'l'3'2-^2322S3'l

^2 = ^1^2 --12^1^2

Then the necessary and sufficient condition for (8.1+) to have a periodic

solution of period 2n is^ for n=3^ J- = 1 and for n=2; '^p'^ ^' Similarly^

(8.1+) will have a periodic solution of period 1+rt if and only if

J =-1 (for n=3) or J = -1 (for n=2). If, in particular,
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and if we put

we find

1 Al '^2\
(8.5) J^ = J^i^^,^r) = cos x^ cos x^ -

2 ( ^ -
3^ )

"^^ ^1 sm X

Meissner draws the curves J = +1 in the (x,x) -plane. Tliey consist

of infinitely many separate branches bounding the regions of instability

for {Q.h) in the case n = 2.

Hochstadt; Y)fjO , analysed more thoroughly an equation which is

equivalent to (8.4). Considering

(8.6) y" + oj^Q(x)y =

with

Q(-x) = Q(x), Q(x+2L) = Q(x),

Q(x) = 1 for Ixl < 1, Q(x) = a for 1 < |x| < L,

he shows that (8.6) will have a periodic solution of period 2L for w
,

m=Q,l,2,..., where, for large m = 2n - 1 or m=2n,

'^2n
=

I
1+ a(L - l) I I ^ ®l1^1+ a(L - 1)

J

r 2n "I rt

''2n-l - In- a(L- l) 22 - «l
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Here [u] denotes the largest integer not exceeding u^ and is an

undetermined quantity

< < 1

Similarly-; (8l6) will have solutions of period i|-L if w = u) , where,

for large m = 2n or m = 2n - 1

,

CO,
2n

r 2n - 1

l+a(L -1) 2^2

2n-l
[

2n - 1

1+ a(L -1) 2 -^ ^2

It can be shown that the lengths of the intervals of instability , that

is, the differences

2 2
cJ„ - w^
2n 2n-l

'2 t2

2n 2n-l

will; in general; tend to infinity as n -^ oo. Also, coexistence of

periodic solutions of period 2L or hh can be shown to take place if

and only if a(L -l) is a rational number.

8. 3- Fiecewise linear reciprocal function .

Schwerin; 1931^ also investigated the case where Q,(x) is piecewise

constant and, in addition ; the case where i/q(x) is a piecewise linear

function, and where X=0. In this case, (8.1) can be integrated

explicitly in terms of Bessel functions. Using the notation of Schwerin's

paper, we shall write the differential equation in the form
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(8.T) S-«'^ = «

where e(t) is either a triangular function:

e(t) = e + 2(£, -£ )t for < t < -^

o ^ 1 o - = 2.

e(t) = e, - 2(e, - e )t for ^ < t < 1 ,1 1 o 2 = =

e(t + l) = e(t) , 0<e<e, , e+e, =2
o 1 ^ o 1

or a wedge function: (with a jump at t= 0, +1, +2;, ...)

e(t) = e + (e, - e )t for < t < 1
o 1 o

e(t + l) = e(t), 0<e <e, , e +e, =2
o 1 o 1

In the case of the triangular function, the values of for

which (8.7) has a periodic solution of period 1 are the roots of a

transcendental function which is defined as follows:

Let J . Y (m=0,l) t)e respectively the Bessel and the Neumannmm
function of order m. Then must satisfy one of the equations

or
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, ,1^1 . r^/%
o \ e^ - e / o I e^ - e

1 o / \ 1 o

if (8.7) has a solution of period 1. Similarly^ (8-T) will have a

solution of period 2 if and only if one of the following equations

is satisfied:

or

•'iv\ '' =7^ ' v^ -V-i-:

'. Is '^m :m) ..m
Similar equations can be obtained if e(t) is a wedge-shaped function.

Schwerin, 1931^ draws stability charts showing the regions of stability

and instability in a plane with the Cartesian coordinates 9 and e^.

Also; nximerical tables and a large variety of comments (in part empirical)

on the regions of stability may be found in this paper.

8.k. The frequency modulation equation

The equation

(8.8) (l+a cos 2x)y"+ Xy =

has been studied by Cambi , 19h&, 19k9 . Because of its applications, it

may be called the equation of frequency modulation. We shall assume

that |a| < 1 and;, of course, that a and X are real. Equation (8.8) is

not in the form of (8.I), but it can be transformed into it by using



the Liouville transformation of Section J.l. Therefore, we may talk

about intervals of stability and instability on the X-axis. According

to Corollary ^1.2, the zero-th interval of instability contains all

values X < 0. Obviously , X = 0, since for X = 0, (8.8) has the

periodic solution y = 1. We shall now prove that, except for the

zero-th one, all even intervals of instability disappear for (8.8)

but no odd interval of instability disappears if a =)= 0. If we look

at Theorem 7.1, we see at once that Q*(n) = a(2)j - l) will not vanish

for any Integral value of [i , unless a=0, in which case (8.8) is

trivial. This proves our statement about the odd-niimbered intervals

of instability. With respect to the even ones, we find that Q(|j,),

as defined in Tlieorem 7.1, is simply a m.
and therefore has the integral

root zero and no other one (if a 4 O) . Now Theorem 7>5 shows that

(8.8) must have two linearly independent solutions of period jr whenever

it has one such solution unless this solution is a constant. However,

a constant solution of (8.8) can occur only for X=0, a case already

considered.
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